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Àbstract

The Fermi-Eyges model of electron transport forms the

basis of many algorithms used to predict radiation dose

distributions in eLectron beam therapy. However; it has

been shown that the errors in the dose distribution

calculated using these algorithms may be unacceptably 1arge.

Part of the difficulty is due to the inadeguacy of the

Fermi-Eyges model for the description of electron transport

in dense media. Also, in cal-culating the dose from a single
pencil beam, these argorithms assume that inhomogeneities

are infinite in their lateral extent.

À modification of the Fermi-Eyges model of eLectron

transport is developed here to overcome the aforementioned

weaknesses. The new model, referred to as the restricted
scattering model, limits the angurar spread of the electrons
in order to model the observed saturation in the angular

spread of electrons as they penetrate a scattering medium.

rn this work, dose predictions of both the Fermi-Eyges and

restricted scattering moders are compared with measured

data. rt is demonstrated that the restricted scattering
moder better predicts the observed angular and spatial
distribution of electrons for both pencil beams and clinical
broad beams.

An integral equation based on Fermi-Eyges theory is
developed and incorporated into a numericar algorithm
suitable for the carculation of the electron probability
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density at all points in a heterogeneous medium. It is
shown that the algorithm successfully reproduces known

anaJ.ytical results. À modification of the integrar equation

is then made such that the small angle approximation is
reraxed. It is demonstrated that the modified equation

qualitatively reproduces the large angre scattering'tails'

observed in pencil beam profiles obtained by measurements or

Monte Carlo simul_ations.
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Chapter 1

Introduction

1.1 Radiation Therapy with Electron Beams

Fast electrons interact with a scattering medium through

various types of interactions: nuclear Coulomb scattering,
bremsstrahi-ung production and eLectron-electron collisions.
Zexby and KeIler (7957 ) discuss these interaction processes

in their review of electron transport theory. For electron

energies and scattering media of interest in electron beam

radiotherapy (energies of 5 to 30 MeV and atomic numbers

less than l_3 ), the dominant interaction is that of small-

angle nuclear Coulomb scattering.

Electrons have a fairly well defined range since they

lose energy nearly continuously through ionization
interactions in the scattering medium. Às a result. they

have the advantage of sparing normal tissues rrdown-stream'r

of the target volume. This is their main advantage over

high energy photons for use in radiotherapy. Reports on the

use of el-ectron beams for radiotherapy appeared more than

three decades ago (Loevinger et aI. r 1951 ) . However,

radiotherapy is sti1l dominated by high energy photon beam

therapy. One of the impediments to the more wide-spread use

of electron beam radiotherapy is the difficulty in
predicting the radiation dose distribution in a

heterogeneous medium (Brahmer1985) .
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rt is the continuous interaction of the electrons with
the scattering medium which gives rise to the difficulty in
treatment planning. rn contrast to high energy photons

which travel in straight paths between discrete interaction
sites, erectrons fotlow tortuous paths due to murtiple
sma11-ang1e scattering events. Àny moder of electron
transport appried to radiotherapy treatment pranning must

take this fact into account and yet remain practical for
routine treatment planning purposes.

Most modern electron beam treatment pranning systems are

based on the Fermi-Eyges moder of charged particre transport
(Rossi and GreissenrLg4J"; Eygesrlg4B) which makes the

following assumptions :

Í) Àn electron's angle of travel remains sma11 with
respect to its initial rine of travel over the entire
range of the electron.

ii) The sore means of interaction between an electron and

the scattering medium is multiple smaIl-ang1e

scatt er i ng .

iii) Àn electronrs kinetic energy is a well defined

function of depth in the scattering medium.

These may be poor assumptions especially towards the end

of the erectron range. However, due to its importance in
modern electron beam treatment planning, the Fermi-Eyges
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model will be introduced in detail in section l_.3.

L.2 Linear .Angular Scattering power

Before discussing the Fermi-Eyges model of charged

particle transport, it is necessary to introduce the linear
angular scattering power (or simpty, the scattering power).

It is defined as (ICRU, 1984b),

where (o2) is the mean square angular spread of a beam of

erectrons and s is path length. Therefore, the scattering
power characterizes the increase in the angular spread of

electrons as they traverse a scattering medium.

The value of the scattering power depends on both the

scattering medium and the kinetic energy of the electrons.
several expressions which give the scattering power exist
(rcRUr1984b; Jette,l98B; Mcparland,lgBg) but the one which

will be adopted in the remainder of this thesis is the one

given by Jette et al. (1983),

Þ - d<@2>
cls

k(z) = ko. ¡ ffi$r, 1

t r_-i_ l

r. r-21

where T is the ratio of the electronrs kinetic energy to its
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rest mass and ko is the scattering constant characteristic
of the scattering medium. ko is given by,

. 16ne{l(o = 1*-¡=-¡z' Ei {NrZr(Zt+1)oIn(2042t-L/3)l tL-31

where e is the erectron charger rnocz is the electron rest
mass and Nr and zt are the atom density and atomic number,

respectively, of the ith erement in the scattering medium.

The scattering power given by t1-21 and t1-31 accounts for
both electron-electron and electron-nucreus coulomb

scattering (Jette et a1.rl9B3). The summation includes all
atomic elements in the scattering medium. Table 1.1 gives

the scattering constant, ko, f.ox several materials.

1.3 The Fermi-Eyges l{odel of Elect¡on Transport

The time development of the distribution of energetic
electrons in a scattering medium is governed by the
appropriate Boltzmann equation (Bethe et ä1.r1939). Using

the assumptions .(i) to (iii) outlined in section 1.1, a

simplified transport equation - the Fermi-Eyges equation
may be derived from the BoLtzmann equation (Brahme,l_9g5).

However, the approach taken here will be to use a physical
argument based on a derivation given by Rossi (1952) to
arrive at the Fermi-Eyges transport equation.

Figure l-.1 defines the coordinate axis and the angle of
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TabIe 1.1 Scattering constant, ko, for several
materials.

Mater ial Scattering ConstantÈ (rad2/cm)

hlater
Lung-
Bone *

P o lystyr en e
Carbon (graphite)
Àlumi num

Copper
Cadmium
Lead

47 .40
T2.48

113.9

40.92
67 .49

795.2

L237 .

7729.
3432.

iCalculated from equation t 1-3 I .

'Lung and bone refer to lung equivalent, LNI-, and bone
equivalent, SB3, respectively (t¡thite rLgTB) .



Figure 1.1

Coordinate Àxis and Àngì.e of Trave1

The positive z-axis indicates increasing depth in the scattering

medium and the lateral position of an electron is given by the

(xry) coordinates. d represents the direction of travel of an

electron. The electron's angle of travel, O, is the angle between

î and the z-axis. The angle between the z-axis and the projection

of ñ'on the xz-plane is ê*. Similarly, ê,, is the angle between the

z-axis and the projection of ñ'on the yz-plane.



v\
et \.

/E

Y

//'
t/

[.



7

travel, O. The angles, @* and @-, are the angle of travel
projected onto the xz-p1ane and yz-p1ane respectivery. From

figure 1.1, it is straightforward to arrive at the reration,

tanz@=tanz@*+tanz@_ t 1-4 1

If O is smaIl, then we may make

tanO*z@* and tano-z@-. Thus, i
approximation, the angles are r

the approximation

n the smal-l angle

elated by,

tan@r@¿

O?=@*2f@-= t1-51

Let <o"> denote the change in the mean angle of traver of än

ensemble of electrons traversing an increment of depth, dz.
since the scattering process is cylindrically symmetric, we

must have (@*?)=(@:.2) and therefore,

<O2> = 2(@*2) = 2(@.2> = k.dz t 1-6l

This last equality follows from the definition of scattering
power t1-11 since, Lf o is smarr, dssdz. The relation tr-6I
will be needed in the following derivation.

Let p(O*'r@-r;@*rO-) be the probability density for an

electron to make a transition from direction (@*rO).) to a

new direction (o*tr@-') in a depth, dz. Àrso, ret us denote

the joint angular-lateral probability density for an
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electron at depth, z, as F(zrxr@-ryr@-). In other words,

the probability of finding the electron at depth z with a

position in the interval Ixrx+dxl, Lyry+dy] and with an

angle of travel in the interval I O*, O-+dO* i , I O]., @].+dO>,I is
F(ztxr@*7yr@.)dxdyd@*d@-. The electron transport problem is
then to f ind F(ztXrO* ryr@-) f or all depths, z, in the

scattering medium.

First, consider the change in the angular state of an

erectron as it propagates from z to z+dz. The change in the

probability density due electrons scattering out of (o*rol.)

is the totar scattering probabirity (i.e. the integrar of p

over all @*' and @-') multiplied by the probability density
at (O*rO).),

- F(ztxr€.*ryr@y).J:-J:- p(o*, r@-, ;@*r@-) do*,d@-,

t 1-7l
Similarly, the change in probability density due to

electrons scattering from other states into (O*rO].) is,

J:-J:. F (z,xr@*',y r@-' ).p(o*,@.;@*',@-' ) do*tdo-'

t r.-8l

The net change in the probabirity density due to angurar

scattering, dF-r is the sum of t1-ZI and IL-BI,



.p(O*rO-;@*t r@-t) dO*f d@-' t1-91

To arrive at t1-91, it has been assumed that
p(o*' rØ-t i@*r@-) =p(6*rO-;@* t rO-t ) .

Assuming that the change in angle is small then the

probability density fal1s off rapidly as O*' or @-' deviate

from @* or @- and we can expand F(zrxr@-tryr@-t) in a Tay1or

s er i es about ( O*, Ol. ) ,

9

dF- = "l:.J:. tF ( z, x, o* , ,y,@-, ) -F (2,x, o*, @).) ]

F(zrxr@*' ,Yr@-') x F(ztXr@- ,yt@r,) + (o*r -o*).åä

+ (oy,-@-).Sä + (o*r-o*)2.åAL * (@:,r;@r,)2.3å:=

+ (o*'-o*)'(@y'-o-,'#åa; tr-lol

Substituting t1-f0l into t1-91 and noting that terms

containing odd powers of (@*f-@*) or (@-t-O-) will vanish

(since the scattering probability must be symmetric) yields,

dF- = +.Så- J:-,,i:-(@*, -o*) =p(@*,@*;@*,,@-' )do*,d@-,

- +.3å:= "l:-f:,(oy' -@].) =p(@-,@-;@*,,@-, )do*,d@-,

t L-11- l

The first integral is simpty (@*2) and the second is
(O-=). Using t1-61 t wE get,
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dF- = *'1".tËõ: - ååþl rr-1.21

Now consider the change in the probability density due to
the lateral drift of the erectrons as they move from depth z

to depth z+dz. Electrons starting with position (x-G.*ðzry-

@.dz) and with direction (@*ro),) arrive at position (xry).

Thereforer ås the electrons move, the er-ectrons at (xry) are

replaced by electrons from position (x-@-dz ry-@.dz) .

Denoting the change in probability density due to drift of
electrons by dFa¿ w€ have,

dFa = F (zrx-@*dzrO*ry-@-dzr@-) - f' (zrxr@*ryr@_)

t r-13 l

Expanding the first term on the right hand side to first
order in a Taylor series about the point (xry) yields,

dFa=-@*dz.gl-@-dz,9rox'dy t 1-r_4l

The complete change in probability density as the

electrons propagate from depth z to depth z+dz is given by

summing the two contributions il--121 and t1-141. performing

this summation and dividing by dz yíelds the Fermi-Eyges

transport equation,



l_ l_

Så = -@*.S+ "-.åi * 
*t",. f $"+ - $-_L I I r.-i-s l

rmplicit in the derivation above is the assumption that the

scattering power, k, does not change in the 1ateral
direction. Therefore, in [1-15], the scattering por^rer is
written as a function of z only. This implies that the

electron kinetic energy may vary with depth only (see

equation tf-21) and that any inhomogeneities in the

scattering medium must be infinite slabs perpendicular to
the z-axis.

Since the transport eguation t1-151 is separable, it may

be written as two equations involving scattering in the xz-
plane and scattering in the yz-plane. By writing,

F(ztXr@*ryr@.) = î*(zrxr0*).F.(zryr@-) t r-15 l

we find that

the xz-plane

the transport equation governing scattering in

is,

t 1-r_7 i

Àn analogous equation exists for the yz-plane. Because

the separability of the Fermi-Eyges transport equation,

only the scattering in the xz-pIane will be considered

the present work and the subscript, xr wi1l be dropped

of

in

for
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convenience (F* and @* become F and O/ respectively).
Using Fourier transform methods, Eyges (L948) has solved

t1-171 for an incident point monodirectional pencir beam.

More generally, for an incident beam which is jointly

Gaussian in x and o, the solution of tl-l7l is (Brahme et

ä1.,1981),

F(ztx,@) = cr.expfc=. { G%. - Zr o=Tlj#-a

L/(2ttoøo*(1-r2)*)

-I/ tZ (7-rz ) |

r-o(z)/{oø(z).o*(z)}
(o-otzl l

(x-Í(zl )

+ 
"-l{-r 1

t 1-l8a l

t 1-1Bb l

t L-18c l

t 1-1Bd l

t i--1Be l

t 1-r8f 1

where (- ¡_

Wz

r

0

ax

6tz) and l(z) denote the mean projected angle of travel
and mean lateral position at depth z, respectively. oø2(z)

and s*=(z) are the angurar and rateral variances,

respectivery, and x*ø(z) is the angurar-lateral covariance.

These parameters are given at any depth, z, by,

@(z) = @(0 )

il(z) = 1(o¡ + õt0).2
oø2(z) = Ao(z) t qo2(0)

r*ø(z) = Àr-(z) * oo2(0).2 + r-o(0)

o*= (z) = Az(z) + oo2 (O).zz + 2r*ø(0).2 + o*2 ( 0 )

I l-]-9a l

t 1-19b l

I l--19c l

t r_-r_9d l

l1-l-9e I
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where the moments , At(z) ( i=0r LrZ) , are given by,

t 1-20l

Àny broad beam distribution may be thought of as a
superposition of a collection of these Gaussian *pencirrl

beams and this is the basis of pencil beam algorithms for
dose calculations in radiotherapy treatment planning.

L.4 Dose Computations Using pencil Beams

EarIy methods for electron beam treatment planning

involved shifting a standard isodose distribution along ray
lines emanating f rom a I'virtual sourcer' (Laughlin, i-955;

Boone et ä1. r 1967; Àlmond et â1., L96l; Bagne ,i.976) . The

assumption implicit in these methods is that the electrons
travel in nearly straight paths from the virtual source to
the end of their range. Às mentioned in section L.L,
electrons do not traver in straight paths and these methods

fail to reproduce known effects such as the rrhot'r and rtcoldf'

spots near the edge of an inhomogeneity.

Other methods (KawachirL975; Edwards and Coffeyr]-gTg) are

based on analyticar expressions with free parameters which

are determined from measured data. However, the reports
deal only with homogeneous scattering media and methods for

At (z) = + 13 k(2, ). (z-2, ) adz,
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calcurations in the presence of inhomogeneities are not

discussed. These methods of electron beam treatment

planning will not be discussed here. Instead, the

discussion will concentrate on pencil beam methods of

treatment planning.

Pencil beam methods of treatment planning treat broad

beams as a superposition of narrow pencil beams. Figure L.z

shows schematically how the superposition of pencil beams

yields a broad beam distribution in a homogeneous medium.

Lillicrap et al. (1975) were one of the first to use the

concept of pencil beams explicitly for treatment pranning

purposes. They measured the dose distributions from narrow

erectron beams and then used this data to reconstruct
various broad beam distributions.

Perry and Holt (l-980) present an approximate anarytical
method of dose calculation in the presence of smal1

inhomogeneities. The method is based on the sol_ution to the

Fermi-Eyges transport equation tl--1Tl but it negrects the

electron energy ross in Ehe scattering medium. Hogstrom et

a1. (1981-) have developed ä practicar pencil beam algorithm
for dose calcuration by using measured depth dose data as

input to the calculations. This approach accounts fox dose

deposited by secondary electrons and bremsstrahlung photons.

Brahme et al. (1981-) and Werner et aI. (1982) have

modified the Gaussian soLution to the transport equation tl_-

77 I to account for the loss of electrons from the forward
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Figure 1.2

The Summation of Pencil Beams to produce a Broad Beam

The figure shows schematically how a broad electron beam may be

considered as a superposition of pencil beams. Each pencil beam is

assigned arrweightn according to the broad beam profile at the

surface of the medium. The individual pencil beam distributions

are then calculated using the Fermi-Eyges model and summed to

yield the compJ.ete broad beam distribution.
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beam and the resulting decrease in the lateral pencit beam

spread. Bruinvis et aI. (1983), in their pencil beam dose

calculation algorithm, have chosen the Gaussian pencir beam

parameters to obtain the best fit to measured data.

rt is these analytically based methods mentioned above

which are of interest in the present work.

Recall from section 1.3 that the Fermi-Eyges moder

assumes that the scattering power, k, is a function of
depth only. Therefore, the model is restricted to stab-type
inhomogeneities in the scattering media (i.e. infinite slabs
]-ying paral1e1 to the xy-ptane). rn practice, it is assumed

that the inhomogeneities are rarge compared to the wÍdth of
the pencil beam and that they are werl approximated by a

slab. Figure l-.3a depicts a singre pencil beam passing

through an inhomogeneity and f igure l_.3b shows the

equivalent analytically solvable geometry. À1r the pencil
beams composing ð broad beam may be propagated by setting
the scattering power at a given depth to be equal to the
scattering power on the central axis of the pencil beam. rn

this wäyr the complete broad beam distribution may be

determi ned .

The moments method (or pencil beam redefinition
algorithm) is a variation on the pencir beam approach

(Storchi and HuizengarlgB5; Shiu and HogstromrlgBT). The

idea of this method is to decompose the beam into a new set
of pencil beams at each increment of depth. Thus, the width
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Figure 1.3

Equivalent slab Geometry for calculations in the presence of an

I nhomogene i ty

One of the pencil beams which make up a broad beam is shown

passing through an inhomogeneity in an otherwise homogeneous

scattering medium (À). The calculation of the pencil beam

distribution is performed as if the inhomogeneity were an infinite

slab as shown in (B). The thickness of the slab and its depth in

the scattering medium are dete¡mined by the points at which the

central axis of the pencil beam intercepts the boundaries of the

i nhomogene i ty.
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of the pencil beams remains small compared with the size of
inhomogeneities. Às a result, the dose distribution neaï

small inhomogeneities is predicted with greater accuracy

( Storchi and Huizenga, i-985 ) .

However, the original implementation of this approach

makes assumptions which are inconsistent with the Fermi-

Eyges model ( Storchi et â1 . ,l_987 ) . Speci f icatJ-y, the method

assumes that the angular distribution of erectrons at some

depth, z, and a fixed lateral point, x, is always Gaussian.

However, even for the simple case of a parallel rectangular
beam incident on a homogeneous scattering medium, the Fermi-

Eyges model predicts a non-Gaussian angular distribution at

any fixed Laterar point, x. Thus, the moments method cannot

be considered as equivarent to the pencil beam methods

described above. À numerical method which accounts for the
possibility of non-Gaussian angular distributions wourd be

desirable.

1.5 The Purpose of the present úfork

The present work is inLended to deal with three separate

issues:

( i ) The Fermi-Eyges model of el-ectron transport predicts

that the electrons I mean sguare angle of traver and mean

square lateral. position increase monotonically with depLh in
the scattering medium and approach infinity as depth
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approaches the erectron range. However, experimentar data

indicate that the mean square angre of travel reaches a

constant val-ue with increasing depth (Roos et ar. 1923).

Àlso, the mean square lateral position reaches a maximum

value and then decreases towards the end of the electron
range ( Sandison et a1. ,1989 ) .

(ii) In the case of smaLl inhomogeneities (where the width

of the inhomogeneity is considerabLy less than the width of

the pencil beam) or near the edge of an inhomogeneity, the

assumption of slab-geometry is poor. rndeed, it is possible

to have unacceptabLy rarge errors in the predicted dose

distribution for some situations (shortt et ar.r19g6; cygler
et ä1. r 1987; Mah et a1., i_989 ) .

(iii) The Fermi-Eyges moder of electron transport predicts a

Gaussian spatial distribution of electrons given an incident
point monodirectional pencil beam. However, Monte carlo
generated data (Lax et al.rl-983) shows that the distribution

has broad non-Gaussian tails due to electrons with rarge

angles of travel.

Chapter 2 Ðresents a modification of the Fermi-Eyges

model of erectron transport. This new moder, carled the

restricted scattering model, limits the angular spread of

the el-ectrons in order to moder the observed saturation in
the mean square angle of travel as the eLectrons penetrate

the scattering medium. The predictions of the Fermi-Eyges
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and restricted scattering moders for mean sguare angurar

spread, mean square lateral position and beam profiles are

compared to measured data.

chapter 3 presents a numerical method of propagating an

incident distribution of erectrons through an inhomogeneous

medium. The numerical method is suitable for dose

carculations in the presence of smarl inhomogeneities.

However. unlike the moments method (or pencil beam

redefinition algorithm), the numericar method accounts for
the possibility of non-Gaussian angular distributions. rt
is shown that, aside from discretization errors, the method

reproduces the analytical predictions of the Fermi-Eyges

modeI.

À modification of the numerical method is then made which

relaxes the sma1l angle approximation of the Fermi-Eyges

model. rt is shown that the modified numerical method

qualitatively reproduces the large angle scattering tails
seen in Monte Carlo generated data (Lax et aL.rl_993).
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Chapter 2

The Restricted Scattering l{odel

2-L The Fermi-Eyges l{odel: stochastic Equations Àpproach

The Fermi-Eyges model of charged particle transport in
dense media was discussed in section 1.3. Before

introducing the restricted scattering mode1, however, it
will be instructive to re-formulate the Fermi-Eyges model in
the Ianguage of stochastic equations. The restricted
scattering model will then be introduced as a generalization
of the Fermi-Eyges model.

As in section r.3, it is assumed that the only scattering
mechanism is that of smaIl angle Coulomb collisions
(electron-electron and electron-nucleus collisions). At any

given point along the erectronrs path, the angre of travel
is a result of many smal1 independent angular displacements.

Therefore, the evolution of the angre of traver arong the

erectronrs path is analogous to the time evolution of the
position of a particle in Brownian motion.

Brownian motion is well modeled by the I¡Jiener process

which will be denoted by tI(z). It is a limiting case of the

random wark with infinitery small but infinitely many steps

and it has the forlowing properties (Karlin and TayrorrLgT5;

HoeI et ê1. r1984 ) :

(i) W(a+z)-W(a) is normally (Gaussian) distributed with
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mean 0 and variance z where ilatf is a constant.
(ii) The increments w(2.)-w(22) t I,ü(z¡)-gt(z¿)t ÞJ(z--r)-

W(z^) are independent random variables if

zt(zzSz=(zaS. . .1,2n.

( i i i ) W( 0 ¡ =9 and W(z) is continuous at z=0.

rf the scattering power is constant with depth then the

cumulative angle of travel is given by,

@(z) = @(0) + fu72.çrr(z) 'f,2-l)

since the variance of w(z) is z, the f actor ñ7 in lz-Ll
ensures that the mean square angle of travel is kz/Z as

predicted by the Fermi model. The quantity o(0) is a random

variable representing the initiar angle of travel. rf the

scattering power varies with depth, then it is necessary to

write,

t2-21

Now consider the evolution of the electronrs rateral
position with depth. For a small angl€ @, the change in
lateral position of an erectron in an increment of depth,

dz, is simply @.ð2. The lateral position of the electron is
the sum of the raterar dispracements in each increment of

depth. Thusr w€ write,

o(z) = @(o) - Jã f [l+ 1u awrz')
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The quantity x(0)

electronrs initial
into t2-31 yields,

is a random variable

lateral position.

t 2-31

representing the

Substituting t2-21

x(z) = x(o) + Jã @(zt)dz,

x(z) = x(0) + @(0).2 +

The stochastic equations t

linear transformation of the

be made clear by considering

al.,1984) ,

lá f ã' t Y+ th awtz" ) dz,

t 2-41

2-21 and l2-4) represent a

[.liener process, W(z) . This may

the following identity (Hoet et

J: r(z)dr,J(z) = r(b).h¡(b) - r(a).r^r(a) - J: r,(z).w(z)åz

t2-5J
The integrars in 1,2-21 and 't,2-41 are of the f orm appear ing

on the left hand side of l2-5j. The right hand side of l.z-

5l is crearry a linear transformation of þt(z) and it forrows

that I2-21 and 1,2-41 are also finear transformations of

9l(z). since w(z) is a Gaussian process, [@(z)rx(z)l must be

a jointly Gaussian process and have a probability density of

the form tl--181.

The jointly Gaussian probability density, F(ztxr@), given

by t 1-l-B I is uniquely determined at any given depth, z, by
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specifying the mean angle of travel, O(z), the mean lateral
position, î(z), the angular variance, oøz(z)¡ the lateral
variance, ø-7(z), and the angular-Iateral covariance,

r*o(z). These parameters may be calculated by evaluating
the appropriate expectation values,

6 (z)

T( z )

oø2 (z)

x *ø(z)

o*= (z)

E{@( z )}

Eix(z)i
E{(@(z)-6(z)

Et(x(z)-Í(z)

E{ (x (z)-T(z)

)=|

).(@(z)-õ(z))t

)=]

I 2-6aj

t 2-6b l

t 2-6c l

t 2-6d I

I 2-5e l

I 2-7 aJ

I Z-7bt

1,2-7 c l

t2-7At

l2-7el

The symbol, Et !, denotes the average over the probability
space. In appendix 2A, these parameters have been

calculated assuming an incident beam which has a jointly
Gaussian distribution at the surface of the scattering
medium. The results of this calculation are,

@(z) = @(0)

1.(z) = F(ol + õto).2
oø2(z) = Ao(z) + oez(0)

r*ø(z) = Ar(z) + oo2(0).2 + r*o(0)

s*= (z) = Az(z) + oe'2 (0).22 + Zr_ø(0)z+ o_= (0 )

where the moments, Ar(z) (i=0rLrZ), are given by,
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t2-81

rn L2-71, õ(o¡, î{o), oo2(0), r*o(0) and o*=(0) are the
parameters specifying the jointly Gaussian distribution of
the incident beam.

The parameters given by î,2-7) and lz-g) are identical to
those given by t l--19I and t l--20I . This demonstrates the

equivalence of the stochastic equations approach and the

differential equations approach outrined in section l_.3.

2.2 The Restricted scattering Hoder: stochastic Equations

Àpproach

The Fermi-Eyges moder predicts that the mean square angle

of travel increases without bound as the electrons penetrate

the scattering medium (see l.Z-7c I and t 2-g I ) . However, it
has been experimentarly observed (Roos et ar.rl9?3) that the

mean square angle of travel approaches a constant value as

depth increases. This suggests that electron transport in ä

dense scattering medium may be better modeled by placing
some restriction on the angurar scattering of erectrons. An

analogous problem arises in the description of the verocity
distribution of particles in a fluid and this may be modered

using the Ornstein-Uhlenbeck process (Hoe1 et a1.r1994).
Therefore, we adopt a moder which is mathematicalry similar
to the Ornstein-Uhlenbeck process.

Àr(z) = + 16 k(zt).(z-2,¡id",
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The stochastic equation describing the evolution of the

angle of travel now becomes,

@(z) = o(0) - ujã 6(2,)dz,- Jã lry lHaw{=,)

[2-9 ]

The parameter, ß, is a constant which we sha1I call the

restriction parameter. ß has units of inverse length. The

evolution of the lateral position is given¿ äs in section
2.7, by,

t2-101

Equation l2-91 is a generalization of the analogous

eguation r'2-21 in section 2.L due to the addition of the

term involving ß. The effect of the additional term is to
introduce a scattering bias such that electrons tend to

scatter toward smaller angles rather than rarger angles.

The magnitude of the parameter, ß, determines the strength
of the scattering bias. Notice that as ß or z tend to zexo,

the stochastic equations íz-zt and t2-4) describing the

Fermi-Eyges model are recovered. The determination of ß

will be discussed later.

In l2-91, @(z) appears on both sides of the equation. By

noting the identity,

x(z) = x(o) - Jã @(2,)dz'
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@(z) - ßJã @(2,)à2, = exp (-ßz).#t exp(u"lJã @(2, )dz,]

t,2-L7l
and after some manipulation, it is possibre to rewrite tz-gl
äs¿

o(z) = @(0).exp(-ßz) + Iã ly+ fna*(r,)

- ß Jãexp( -ß (z-2, ) ) Jã' I rya lnu* (2,,)dz,

t 2-1,2J

By using 't.2-L2I in [ 2-10 ], it may also be shown that the

equation describing the evolution of the lateral position
is,

x(z) = x(o) + ",3,.I t - exp(-ßz) ]

* Jfi"*n (-ß(z-2, ) ) Jã' r y+ 
1%awr 7tt )n7t

t 2-13 l

Equations l2-),21 and l,z-L3l show that x(z) and @(z) are a

linear transformation of the t^iiener process. Therefore, as

in the case of the Fermi-Eyges model, the electron
probabii.ity density is the jointly Gaussian density given by

t1-l-91. Às before, the parameters specifying the Gaussian

density may be calcurated from the appropriate expectation
varues. These calculations are given in appendix 2B and the
results are,
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õ(z) = õ(o).exp(-ßz)

1(z) =Tl(o) * U,3,.(1-exp(-ßz))

r r*a(0).exp(-ßz)

o*=(zl = A=(z) - "-#q.[ 1 - exp(-ßz) ]2

t 2-14a l

f 2-J,4bl

t 2-14d 1

+ 2r-@(0).I j. - exp(-ßz) ] + cr*=(0) t|-Ilel

The moments, Al-(z) (i=0rJ-rZ), are nov¡ redefined ds¿

t2-r5)
rt shourd be noted that the restricted scattering model

makes the z-axis its preferred direction. Equation I2-L4aj
shows that õt z ) approaches zero as z becomes large
regardless of the choice of õ(o). rn other words, the beam

wilr tend to bend to become paralrer with the z-axis.
obviously, this is not observed in practice and a solution
which makes 6'tOl the preferred direction is more realistic.

such a solution may be obtained by taking the solution
for a normally incident beam (i.e. õ(O)=O ) and rotating by

the appropriate angle. For a small angle of rotation, e,
equations l2-LAal and tZ-LAbl should be replaced by,

Àr(z) = + I3 k(2,).¡ exp(ß( exp(-2ß(z-zt)) ð,zl
z
ß It-z'))-r
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@(z) = o

V(z) =l(O) *A.z
t 2-l6a l

t 2-76bJ

equations l2-L4cl to l2-L4el remain unchanged provided o is
smalI. Thusr êrr appropriate solution may be obtained for
any angle of incidence, e, which is consistent with the

smaIl angle approximation.

Some value for the restriction parameter, ß, must be

determined. rn order to find the appropriate value¡ we

first make some observations. First, f.or a scattering
power, k, which remains constant with depth and for an

incident point monodirectional pencil beam ( i.e.
F( 0rxro)=ô (x)ô (@) ), the angular variance is easily obtained

from l2-L4c I and l2-L51,

oø2(z) = Ao(z) = (k/4ß).(1-exp(-2ßz)) Í.2-I7j

From this, it may be seen that oøz(z) approaches a constant
value of k/4ß as z becomes Iarge.

Secondly, as seen in eguation tl_-61, the mean square

angle of travel, (@2(z)), measured for a pencil beam is
twice the projected quantity, oøz (z) . i. e.

(o=(z)) = 2a@2(z) t 2-i-8l
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FinaIIy, it is seen experimentally (Roos et ä1..19?3) that
1@2(z)) approaches a constant value close to 0.65 radianz
for all scattering media and electron energies. Therefore,
us ing 1,2-17I and [ 2-18 ] , we arr ive at the relation,

ß = k/L,3 Í 2-L9 1

Equation T,2-19 J applies only when scattering power is not
a function of depth. The assumption of a constant
scattering power is equivarent to an assumption of
negligibre energy loss. obviousry, such an assumption is
not valid in dense media and it is preferable to incorporate
the energy loss of the erectrons in the modet by arlowing
the scattering power to vary with depth. À numerical
solution which allows both k and ß to våry with depth may be

constructed as follows.
The electron range may be divided into small increments

of depth. within each increment, the electron energy,

scattering power and restriction parameter, ß, are held

constant. For a Gaussian beam incident on the iÈts

increment, equations 1,2-l4l and l.Z-I-SI (with the

modification t2-161 if necessary) may be applied assuming

constant scattering pov.rer to obtain the parameters

specifying the distribution at the end of the iÈts increment.

The electron energy, scattering power and restriction
parameter (equation t2-191) may now be recalculated for the
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(i+1)Èh increment. The distribution just carculated for the

end of the ièÈ' increment now becomes the initial condition
for the (i+1)ëÈ'increment and the distribution at the end of
the (i+1)Èt' increment may be calculated. rterating in this
way over many increments, the distribution may be obtained

at any depth in the scattering medium. Un1ess stated

otherwise, this is the approach taken in a1r carculations
presented be1ow.

2.3 Comparisons of l{ean Square .Angle of Travel

Roos eL a1. ( l-973 ) measured, f or a range of incident
electron energies (5 Mev to 20 MeV) and scattering media

(atomic numbers 5 to 82), the angular distribution of

electrons as a function of depth for an incident point

monodirectional pencir beam. Experimental varues of the

mean square angle of travel are given for a range of depths

and may be used for comparison to the predictions of the

Fermi-Eyges model and restricted scattering model.

under the assumption of constant scattering power and an

incident point monodirectional pencil beam, the predictions

of the Fermi-Eyges moder and restricted scattering moder for
(@2 (z)) may be given in closed analytical form. In

particular, the Fermi-Eyges model gives,

(@2 (z)) = 2oø2 = kz | 2-20 J
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the expression,
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model, on the other hand yields

(@z(z)) = 
"å.,t 

- exp(-2ßz) ) t 2-2Ll

rn f igure 2.3,, the predictions of both r,z-zo I and L2-2rJ
for (@2(z)) are plotted as a function of kz. Àlso shown is
the data measured by Roos et aI. (1973). The curve shows

that, for constant scattering power, the restricted
scattering model shows the correct saturation behaviour.

Às previousry mentioned, the case where the scattering
power varies with depth is of more interest. Harderrs
formura may be used to approximate the variation of the
äverage electron energy, (E(z)), with depth (ICRUr19g4b),

<E(z)) = (E(0)>. (L-z/Rr) I 2-22 )

<E(0)> is the mean incident electron energy and RÞ is the
practical range of electrons of energy <E(0)>. This may be

used to find the variation of scattering power, k(z), with
depth as described in section l.Z.

closed form equations may be obtained for the moments,

A¡-(z), predicted by the Fermi-Eyges moder when the energy

varies according to Harderrs formula (Jette et aI. r 19g3 ) .

In the case of the restricted scattering mode1, the

numerical approach described at the end of section z.z may
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Figure 2.1

comparison of model predictions of mean sguare angì.e of travel for

constant scattering power

The mean squäre angle of travel (denoted e= in this figure) as

measured by Roos et al. (1973) is plotted against the dimensionless

parameter, kz, for several incident electron energies and

scattering media (symbols). The dashed Iine is the prediction of

the Fermi-Eyges model and the solid line indicates the restricted

scattering model prediction for a constant scattering power, k.

The scattering povrer was calculated using the initial beam energy.
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be used. In the present case, the electron range was

divided into 100 depth increments and Harder,s f ormula l.z-

221 was used to carcurate the electron energy at the start
of each increment. The predictions of the Fermi-Eyges model

and the restricted scattering model are compared to the

measured data of Roos et aI. (1973) in figures 2.2, 2.3 and

2.4.

2.4 Comparisons of llean Square Lateral position

The width of a broad beam penumbra, w(z), is defined as

the lateral distance between the intersections of a line
tangent at the 50% dose point with the i.00% and 0% dose

levels. The beam profile at the given depth, z, must be

normalized to l0Oeo on the central axis. The penumbra width

and mean square pencil beam spread, Ç*2(z), are rerated by

( Sandison and Huda,l_988 ),

w(z) = .ffi t*(z¡..- erf{a(z)/'E o*(z)lz)'ffi-p;\ifi¡ t2-231

where a(z) is the harf-width of the broad beam at depth, z,

and erf denotes the error function (ÀrfkenrJ-9?0).

varues of o-2(z) have been obtained by measuring w(z) for
a l-0x10 cm2 field of 15 Mev erectrons incident on lung

equivalent (LN1) and bone equivalent (SB3) material
(Whiterl.9TB) and for 22 MeV electrons incident on
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Figure 2.2

The mean sguare angle of travel. versus depth in carbon

The mean square angLe of travel , ú, is plotted against depth

normalized to the continuous stowing down range (defined below),

z/Ro, for a 10 Mev point monodirectional pencil beam incident on

carbon (graphite). The points (o) are the measured data of Roos et

al. (1973). The dashed line and the solid line are the Fermi-Eyges

model and restricted scattering model predictions, respectively,

using Harder's fornula \2-2zi to model the variation of eLectron

energy with depth.

The continuous slowing down range is defined as,

IE. dE
^' - Jo s:;;fE-I

where s..t(E) is the total stopping power in the appropriate medium

for el.ectrons of energy, E, and Eo is the energy of the incident

el ectr ons .
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Figure 2.3

The mean sguare angle of travel versus depth in aluminum

The mean square angle of travel , Ø=, is plotted against depth

normalized to the continuous slowing down range, z/Ro, for a 10 HeV

point monodirectional pencil beam incident on aluminum. The points

(r) are the measured data of Roos et aI. (1973). The dashed line

and the solid line are the Fermi-Eyges model and restricted

scattering modeJ. predictions, respectively, using Harder's formuLa

12-221 to model the variation of electron energy with depth.
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Figure 2.4

The mean sguare angle of travel versus depth in lead

The mean square angle of travel , &, is plotted against depth

normalized to the continuous slowing down range, z/Ro, for a 10 Hev

point monodirectional pencil beam incident on lead. The points (a)

are the measured data of Roos et aI. (1973). The dashed line and

the solid line are the Fermi-Eyges model and restricted scattering

model predictions, respectively, using Harder's formula lZ-Z2l to

model the variaLion of electron energy with depth.
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polystyrene. The electron beams were produced by a

Sagittaire Therac 40 linear accelerator and the measurements

were accomplished using film (Kodak rndustrex M) mounted

para11e1 to the beam axis in a homogeneous phantom. The

method has been described in detail elsewhere (Sandison et
al.,1989 ) .

The predictions of the Fermi-Eyges model and the
restricted scattering moder are compared to the measured

data in f igures 2.5, 2,6 and z.i. Harderf s formula ,î,2-z2l

has been used to calcurate the electron energy loss. In the
case of the restricted scattering mode1, the numerical
method described at the end of section 2.2 was used to
perform the calculations.

2.5 Clinical Beam profiles

It is straightforward to integrate Gaussian pencil beams

across a broad beam area to obtain the predicted broad beam

probability density in a homogeneous scattering medium,

F(z,x,y) = ä.[,=#fu It
. Ierf {À(arx) } - erf {A(-arx)} I

. I erf {À(b,y) } erf {À( -b,y) } ] l2-Z{al

where the function, À(urv), is given ]oy,
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Figure 2.5

The root mean sguare lateral position versus depth in lung

The root mean square lateral position, o (=l}l, is plotted

against depth, z, for a 16 Mev point monodirectional pencil beam

incident on a lung equivalent medium. Both o and z have been

normalized to the continuous slowing down rang€, Ro. The points

(e) are the measured data obtained from broad beam penumbra (see

text). The dashed line and the solid line are the Fermi-Eyges

model and restricted scattering model predictions, respectively,

using Harder's formula 12-221 to model the variation of electron

energy with depth.
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Figure 2.5

The root mean sguare lateral position versus depth in bone

The root mean square lateral position, o (={G), is plotted

against depth, zì for a 16 Mev point monodirectional pencil. beam

incident on a bone equivalent medium. Both q and z have been

normalized to the continuous slowing down range, Ro. The points

(a) are the measured data obtained from broad beam penumbra (see

text). The dashed line and the solid line are the Fermi-Eyges

nodel and restricted scattering model predictions, respectively,

using Harderrs formula lz-z2l to model the variation of electron

energy with depth.
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Figure 2.7

The root mean square }ateral position versus depth in potystyrene

The root mean square lateral position, o (=/oIã), is plotted

against depth, z, for a 22 HeY point monodirectional pencil beam

incident on polystyrene. Both o and z have been normalized to the

continuous slowing down range¡ Ro. The points (r) are the

measured data obtained from broad beam penumbra (see text). The

dashed line and the solid line are the Fermi-Eyges model and

restricted scattering model predictions, respectively, using

Harderrs formula î2-221 to model the variation of electron energy

with depth. Error bars are not visible on the measured points

indicating that the estimated error is ress than or equal to the

size of the points.



otr
b

0.40

0.36

0.32

0.28

0.24

4.20

0.1 6

0.12

0.08

0.04

0.00

POLYSryRENE, 22 MeV

7/R o



42

{2's*(z)

SSD is the source-to-surface

half-fie1d width and length,

the scattering medium. Àt a

of finding an electron with x

Ixrx+dx] and y coordinate in

F(ztxry)dxdy.

-vl t,2-24b1

distance and a and b are the

respectively, at the surface of

given depth, z, the probability

coordinate in the interval

the interval Iy,y+dyl is

À(u,v) = [ "I
SSD+zre-

The distribution given by Í2-241 is valid for both the

Fermi-Eyges model and the restricted scattering model

provided the modification t2-161 is employed in the

restricted scattering model ( i.e. the solution for a

normally incident pencil beam is rotated by an appropriate

angle). The only difference between the two models is the

expression used for o*2(z)z equation l2-7el for the Fermi-

Eyges model and equation t2-l_4el for the restricted

scattering model. However, for a clinicar beam, the pencil

beam pàrameters , oøz (0) ¡ r*ø( 0 ) and o*= ( 0 ), have non-zero

values and they must be determined in order to find s*= (z) .

Methods to determine these parameters for a magneticalry

scanned beam exist in the literature (Huizenga and

Storch i rL987 ; Sand ison and Huda, 19 B8 ) .

rn order to compare the predicted broad beam probability

density with measured data. it has been assumed that, for a

set depth z in a homogeneous medium, the probabirity density
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is proportionar to the radiation dose. Therefore, measured

dose profiles may be compared to the theoretical predictions
of probability density by normarizing the measured dose

profile and the predicted probability density to the same

value (eg. 100%) on the central axis.
using the same method as in section 2.4, dose profiles

were measured for a 10xl-0 cm2, L6 Mev beam in rung (LNr) and

bone (SB3 ) equivalent media (tlhite ,1_9l.B) and f or a 10x10

cR=, 22 Mev beam in porystyrene. These measurements have

been compared to beam prof iles calcurated using the Fermi-

Eyges and restricted scattering models in figures 2.8, 2.9

and 2.70 .

2.6 Discussion

The observation from measured angular distribution data
(Roos et al.r1973) that the mean square angle of travel,
<ø2(z))t saturates with depth is the motivation fox the

modification of the Fermi-Eyges modet. As shown in figures
2.1, 2.2, 2.3 and 2.4, the restricted scattering model

successfulry predicts this saturation for both constant and

variable scattering power, k(z). ÚÍhen scattering power is
allowed to vary with depth in the scattering medium,

reasonable agreement is obtained with the measured angular

distribution data at aIr depths for a wide range of incident
electron energies (5 to 20 MeV) and scattering media (atomic
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Figure 2.8

Broad beam profiLe for 16 HeV electrons in lung

À broad beam profile is shown al 22 cm depth in a lung equivalent

medium (practical rang€, Rp, of. 2j.9 cm). The beam has dimensions

10x10 cm2 at 1.00 cm SSD (source-to-surface distance) with an

incident energy of 16 Hev. The points (r) indicate data measured

using film as described in the text. The clashed line and the solid

line are the Fermi-Eyges and restricted scattering model

predictions, respectively. Harderrs formula î2-z2l was used to

model the variation of eLectron energy with depth.
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Figure 2.9

Broad beam profile for 16 HeV electrons in bone

A broad beam profile is shown at 4 cm depth in a bone equivalent

medium (practical range, R", of 4.57 cm). The beam has dimensions

10x10 cmz at 100 cm SSD (source-to-surface distance) with an

incident energy of 16 MeV. The points (o) indicate dat,a measured

using film as described in the text. The dashed line and the solid

line are the Fermi-Eyges and restricted scattering model

predictions, respectively. Harderrs formula t2-z2! was used to

model the variation of electron energy with depth.
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Figure 2.10

Broad beam profile for 22 Hev electrons in polystyrene

À broad beam profile is shown at 9.6 cm clepth in polystyrene

(practical range, R", of 10.46 cm). The beam has dimensions 10x10

cm2 at 100 cm ssD (source-to-surface distance) with an incident

energy of 16 Hev. The points (t) indicate data measured using film
as described in the text. The dashed line and the solid line are

the Fermi-Eyges and restricted scattering model predictions,

respectively. Harderrs formula lz-zzl was used to model the

variation of electron energy with depth.
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numbers ranging from 6 to BZ). This agreement is indicated
in figures 2.2, 2.3 and 2.4 for a 10 MeV point

monodirectional pencil beam incident on carbon, aluminum and

1 ead

rt was noted earlier that the lateral scattering process,

x(z), is an integrar of the angular scattering process,

@(z)r so we expect that an improvement in the prediction of
the variation of (@2(z)) with depth wirl coincide with an

improvement in the prediction of the variation in the

lateral pencil beam spread with depth. In figures z.5r z.6

and 2.7, it can be seen that both the Fermi-Eyges and

restricted scattering models agree crosely with the measured

lateral spread of electrons up to about 0.7 of the

continuous slowing down range. The curve predicted by the

restricted scatterÍng model lies slightly below that
predicted by the Fermi-Eyges model but, in general, both

curves lie within the experimental error. However, the

restricted scattering model does provide a significant

improvement over the Fermi-Eyges model deeper in the
scattering medium. Às a result of this improvement, the

restricted scattering model gives better predictions of

clinicar beam profires at depths greater than 0.? of the

csda range as indicated in figures 2.8, 2.9 and Z.IO.
some empirical modifications to the pencir beam spread,

o*=(z), predicted by the Fermi-Eyges model have been

suggested (tlerner et ä1., L982; Lax et arr 19B3 ) . For certain
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beam energies and scattering media these give good agreement

with the measured pencil beam spread, s*2(z). However, it
has been shown (sandison et ðr.rl-999) that the modif ications
are not applicable to the entire range of energies and

scattering media of crinicar interest. The modification of
o*=(z) suggested by Lax et aI. (1993) may be generalized for
use at any energy and in any scattering medium by

introducing 3 parameters which may be determined by a fit to
measured data (Sandison et al.ri_989). The resulting values

of the parameters depend on the scattering medium and,

possibly, beam energy. Therefore, this approach is
inconvenient for dose calculations in heterogeneous media.

The restricted scattering model gives improved fits to
measured pencil beam spreadt ú*=(z), for the entire range of
beam energies and scattering media investigated. Àlso, no

additional parameters are required since the restriction
parameter, ß, may be easily determined from the linear
scattering power, k(z), using equation l,Z-Lg).

Pencil beam dose carcuration algorithms currently in
cl-inical use are based on Gaussian pencil beams and the
restricted scattering model retains the Gaussian features of
the Fermi-Eyges model. Therefore, the application of the

restricted scattering moder is straightforward since it can

be directly incorporated into existing pencil beam dose

computation algorithms.
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2.7 Conclusion

The restricted scattering model is successful in
predicting the variation of the mean square angle of travel
of the electrons with depth over the entire erectron range

for incident erecLron energies from 5 MeV to zo Mev in
various scattering media with atomic numbers from 5 to 92.

An improvement over the Fermi-Eyges model is obtained in the

prediction of the variation of the rateral pencil beam

spread for depths greater than about 0.7 of the erectron
range. The improvement in the prediction of the pencil beam

spread leads to an improvement in the prediction of penumbra

shape for crinical beams in homogeneous scattering media.

À1so, since the restricted scattering model retains the

Gaussian features exhibited by the Fermi-Eyges model and no

additional measured data is required, it may be readiry

incorporated into existing dose computation algorithms.
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Àppendix 2A

In this appendix, the moments specifying the jointly
Gaussian probability density predicted by the Fermi-Eyges

model are explicitly calculated. rt is assumed that x(0)

and @(0) are random variabres which represent the initiar
pencil beam position and angle, respectively, and that they

have a jointly Gaussian probability density.
Às mentioned in section 2.r, the moments are given by the

appropriate expectation varues. In order to evaruate these

expectation valuesr wê use the following properties of the

I¡liener process ( Hoel et a1., L9B4) ,

E{ Jã r(z) dr.r(z) i = Q I 2A-r- l

and,

t Jã r(z) dtl(z) l't JB s(z) dt^I(z) l

(z) .9 (z) dz

t 2A-21

t 2À-1 I and ï2A-21, the

EI

_ lmin(a,b).- jo !

Us i ng 1,2-2 )

mean angle of

and the properties

travel is,

@(z) = EtØ(z) i = õ( O)

Also, from l2-4) t the mean lateral position is,

t 2A-3 l
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î(z) = E{x(z)} = ï(o) + õ(o).2 r,2A- 4l

The interchangeability of the expectation and integration
with respect to z has been used to arrive at l.ZA-4).

Now consider the mean square angle of travel, oøz(z).
Us i ng 1,2-2 ) t

sø2 (z) = Et tO(z)-@(z) 12!

= E{[@(z)-OtOl:=i

=Er Iotor + ]6 t$lllno*("') -õrotl2t

The [^liener process, W(z), and the initial random

variables are independent. rf the initial mean squaïe angle

of travel is oø2(o)t then we have,

t 2À-6 l

Similarly, the covariance is given by,

sø2(z) = oo2(o) - + I3 k(zt )dz,

r*ø(z) = E{ tx(z) -7(z) l. to(zl-õ( z) )t

= ï*o(0) + o@2 (0¡.= . + [3 k(z'¡c (z-2, )dz,

Fina11y, the mean square lateral position is,
t 2A-7 1
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oø2(z) = Ei

= o_2(0) +

Íx(z) -î(z) J=t

2r-ø(0)z + oø2(0)zz Jã k(2, ). (z-2,)2d2,-+

t 2A-8 l

To summarize, the parameters specifying the jointry
Gaussian probability density predicted by the Fermi-Eyges

model are,

@(z) = @(0)

V(z) = F(o) + €(o),2
sø2(z) = oo2(0) + Ào(z)

r-a(z) = r*e(0) * oo2(0).2 + Àr(z)
o*2(z) = o*2(0) * 2T*ø(0).2 + oo2(0).2= + Az(z)

where the moments, At(z) (i=0rLrZ), are given by,

!3 k(z' ). (z-z' )idz'_l_-2

t 2À-9a l

t 2À-9b l

[ 2A-9c ]

I 2À-9d I

[24-9e]

t 2A-10 lA'(z)

These are the parameters l2-71 gÍven in section Z.I
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Àppendix 2B

In this appendix, the parameters specifying the jointly
Gaussian probability density predicted by the restricted
scattering model are explicitly calculated. rt is assumed

that x(0) and o(0) are random variabres which represent the

initial pencil beam position and angle, respectively, and

that they have a jointly Gaussian probability density. The

calculations are exactry analogous to those performed for
the Fermi-Eyges moder and are based on the properties of the

9Jiener process t2À-11 and t2A-Zl.
The stochastic processes @(z) and x(z) are related to the

vJiener process , w(z), by lZ-IZ I and Í2-I3J. The mean angle

of travel and the mean lateral position are given by,

ø(z) = E{O(z)i

= õ'(0).exp(-ßz) t2B-i-l

x(z) = E{x(z)I

=?(o) + "t3'.I t - exp(-ßz) ] tzl-zl

The mean square angle of travel is,

sø7 (z) = E i l@(z) -@(z) )= I

= aø2 ( 0 ).exp (-2ßz) + + I3 k(2, ).exp (-2ß(z-2, ) )

t 2B-3 l
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The angular-latera1 covariance is,

r*ø(z) = E{ [x(z)-î(z) ]. to(z)-6(z) J

= ræo(0).exp (-ßz) * oa2(0). Iexp (-ßz)-exp (-2ßz)J

?z
J õ k (zt )' I exp (-2ß(z-zt ) ) -exp (-ß(z-zt ) ) ] ð,zl

1-Tß

Finally, the mean square lateral position is,

o*2(z) = E{ lx(z)-T(z)1=I

= o*2(0) + 2r-@(0).[].-exp(-ßz)l - 1+q¿.[]--exp(-ßz))z

!å k(z').exp (-2ßz). Iexp(ßz)-exp (ß2, ) ]2 ð2,

t2B-sl
To summarize, the parameters specifying the jointly

Gaussian probability density predicted by the restricted
scattering model are,

1+'TF

Í 2B- 41

[ 2B-5a ]

I 2B-6b l

[ 2B-6c ]

@(z) =

Vtzt =

of O l.exp (-ßz)

ãrnrx(0) * "';.,.(1-exp(-ßz) 
)É

sø?(z) = Ao(z) + cr@z(0).exp(-Zßz)

t 2B-5d l
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o*z(z) = Az(z) + o.ãlo). 
[ ]_ - exp (-ßz) l,

+ 2r-@(0).[ 1 - exp(-ßz) ] + cr*2(0) t2B-5el

The moments, At(z) (i=0rL12), are given by,

Ar(z) = I, Iå k(2, ).¡ exp(u,"-"',,-a 
, 
' 

exp(_2ß(z_2,)) dz,

L 2B-7 )

These are the parameters 1,2-L4 J given in section Z.Z.
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Chapter 3

À Humerical Àlgorithm for Transport Calculations

3.1 Infinitesimal fntegral Formula for SmaIl Àngles

In this section, we derive an integral which all_ows the

determination of the electron probability density at a

depth, z+õ, given the electron probability density at a

depth, z. This provÍdes a means to propagate an incident

erectron probability density through a heterogeneous medium

in increments of depth, ô.

The derivaLion may be done for two lateral dimensions, x

and y. In chapter two it was noted that the Fermi-Eyges

transport equation is separable and scattering in the xz

plane and yz plane may be treated separately. Only

scattering in the xz plane is considered here and the beam

and inhomogeneities are taken to be infinite in the y

direction.

Let us start by noting that the probability density at

depth, z*ô, wilI, in general, be given by

where F(zrxr@) is the electron probability density at depth,

z, lateral position, x, and angle O. The function,

P¿ (x r@;x 'ro'), represents the transition density f.or an

electron to reach (xr@) in an increment of depth, ð, given

F(z+ô,X,o) = J:. J:." (2,x,,O, ).po(x,@;x,,@, ) dx'd@ir_r,
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that it starts at coordinates (x,r@,). In other words, the
probability that an electron starts at depth z with
position xr and direction or and arrives at depth z+ô with
position in the interval Ixrx+dx] and direction in the

interval [@r@+d@] is Þo (x r@ix'r@')dxd@. The f unction

Pc (x, @; x' , @' ) r may also be referred to as the Green I s

function or scattering kernel.

The Fermi-Eyges model predicts that the angular
transition density is Gaussian (section 2.L). If we assume

that the scattering power is constant in the small increment

of depth, ô, then the angular transition density is given

by,

Po(@;@t) = C.exp{-(@-O, )=/k6.'

c=I/ffi
t 3-2a l

t3-2blwher e

The lateral transition density, according to the Fermi-Eyges

model, is also Gaussian with a variance, kôi/6. This is
much less than the variance, k6/2, for the angular

transition density l3-zJ provided ô is smarr. Therefore,
the lateral transition density may be approximated by a

Dirac delta function

p*(x;xr) = ôar=-e{X - (x'+@ô*c,(o'-o)ð)} t3-31

In other words, €lectrons starting at (x'rO') end up with



5B

lateral position x'+@ô+a(O,-O)ð with probabitity 1 and

their angular distribution is determined by l3-2J. The

constant, cr, is introduced to allow for the fact that the

el-ectrons scatter continuously as they travel from d epth, z,

to deptht z+ö. rf, instead, the electron scattered from

angle orto @ at depth, z, and drifted freely to deptht z+ô,

therr the change in laterar position becomes simply oô (i.e.
a=0). Conversely, if all the scattering took place at
depth, z+6, then the change in lateral position becomes orô

(i.e. a=1)- trle expect that the change in lateral position
would be somewhere between these two extremes so that 0scsl.
rt will be seen, in fact, that c, can be chosen arbitrarily
as any finite real number.

Neglecting terms of order higher than ö | it is possible

to write the complete transition density as a product of t3-
2l and t 3-3 i . The integral t 3-l_ I then becomes

t3-41

where the subscript @ on the function pa(@;@') has been

dropped for convenience.

Making the change of variables, 0=@'-O, the integral
becomes,

F(z+ö,X,@) = J:." (z,x-Grô-o(o' -o)ôro, ).p(@;@,) do,
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F(z+ô,x,@) = J:Co" (z,x-(@+cq)ö,O+6).p(O;@+O) dO

t 3-s l

with c=0, equation t3-51 reduces to the infinitesimal
integral formula given by storchi and Huizenga (l-985).

d=1, equation t3-51 forms the basis of the numerical

tiJi th

algorithm which is presented here. rn appendix 3A, it is
shown that eguation t3-51 is equivarent to the Fermi-Eyges

differential transport equation up to terms of order ö

regardless of the choice of cr.

3-2 Infinitesimal fntegral Formula for targe Angles

rn this section, we introduce a modification of the

infinitesimal integral formula t3-51 presented in the
previous section. The modification accounts for the fact
that the angle of travel of the electrons does not remain

small. In this new infinitesimal integral formula, changes

in lateral position, x, are equal to tan(@+o¿0)ô rather than
(O+c*q¡¡6. The modified equation is,

F(z+ôrx,ô) = z, x-tan(O+a6) ôrO+6) .p(@;@+O) dO
l3-5 i

!:0,,,

Notice that the

to include only

limits of the integrati

electrons travelling in

on have been changed

the forward
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direction. À1so, it should be noted that a simirar equation
presented in the literature (Jette, 19BB ) uses cgtan(o-o)+(1-

c)tanO intead of tan(O+ae). The two equations are

equivalent in the sense that they both lead to the same

differential equation up to terms of order ô regardress of
the choice of cr.

rn appendix 38, it is shown thatr up to terms of order ô,

equation t 3-5 I is equivarent to the differential transport
equat i on,

gr = -tan(o) dF k d2F
az ðx + 4'ffi t3-71

Equation t3-61 may be used as the basis of a numerical

argorithm which propagates an incident electron probability

density through a heterogeneous medium.

3.3 Numerical Implementation of the Infinitesimal Integral
Formula

The first step in modifying the infinitesimar integral
equation t3-5i or t3-61 for use in a numericar algorithm is
to discretize the probabiJ.ity density, F(zrxr@). The

probability density will be defined only at a finite number

of points, (zrtx) t @* ), for i=1, . . ¿N-, j=I, . . rN* and k--

No¿ . . rN-. The number of depth increments is N-r the number
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of lateral increments is N* and the number of angular

increments is 2No+1. À1so, the size of the depth, lateral

and angular increments will be ôt ax and aO respectively.

The integrals t3-51 and t3-61 must also be discretized.

Àssuming that the angular increments are smarl enough that
the probability density does not change much in any given

angular interval, ( @x-r@,/2 r@x+t@/2) t and the probabi l ity
density is essentially zeto beyond some maximum angle Nø.ao¿

then equaLion t3-51 may be written,

No
F(z+ô rxr@) x E F(ztx-Oxôr@x )

k =-No
.J""+t@/2

@x- t@/ 2

p(o;o') dO'

t 3-B l

t 3-s l

À completely analogous discrete version of t3-61 may also be

obtained. The integral within the sum represents the

probability that an electron scatters from an intervar of

angle ao centred on @x to an angle o. The integral wilr be

denoted by P(@r@xreO¡ and, using l3-2J, it may be written as

a difference of error functions,

P(Or@x¡e@) - h terf t(O-O,.+t@/Z)/.Ñ l

- erf i(o-@x-^@/2)/.Ñ l)

where erf denotes the error function (Àrfken,1_9?0). The

scattering power, k, will vary with both electron energy and

the type of scattering material and may be different at
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different points in a heterogeneous medium. rn other words,

k=k (ErX.yrz). (note: although k is used for both scattering
power and the angular index, the meaning will be clear from

the context ) .

The probì-em with direct implementation of t3-Bl is the

fact that the laterar points, x-oxô, do not necessarily
coincide with the discrete lateral points t x=. The sum is,
therefore, buirt up in an indirect way. Electrons at ä

point (z:-rxr¡O¡.) are translated to a point (zr*:-rx3*Oxö¡Ox)

and, using a linear interpolation, electrons are shared

between the two discrete lateral points nearest to x=*@xð.

using equation t3-91, êlectrons are then spread into angular

points around ox. This procedure is repeated for each of

the discrete points in the plane corresponding to depth zt.
The process is shown schematically in figure 3.1 and each

step is descr ibed in detai 1 in table 3 .1 .

The steps described in table 3.1 form the core of the

numerical algorithm since they allow the discrete
probability density at depth, z*6, to be determined from the
probability density at depth, z. As long as the probability
density is known at the surface of a medÍum, the process may

be appried to each plane in succession in order to buird up

the complete probability density. Methods of calcurating
the erectron distribution from a clinicar electron linear
accelerator at the suzface of a medium have been described

in the literature for magneticalry scanned beams (Huizenga
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Figure 3.1

Schematic diagram for the propagation of electrons in the

numerical algorithm.

The propagation of ei.ectrons from a point at depth, ztt into

points at depth, zt+t¡ is shown schematically. Electrons are first
projected into the zr+r plane. They are then shared between the

two closest discrete lateral points and finalry they are spread

into angular points. The process is described in detait in table

3.1.
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Tabre 3.1 Logic flow for a numerical method of erectron
transport calculations .

Step Description

Choose a point zttxttØx.

Project to a lateral point in the zt+t
plane ! x=x¡ *@¡.ô f or smal I angles and
x=Xr+tan(@x)ô for large angles

Find the discrete points¿ X- and Xn+r_¡
which are closest to x.

Calculate the weighting functions for the
linear interpolation: W.l=lx--xl/tx and
lrJe= 

| xn.rr -xl / tx

For each discrete angular point, @*,
(¡¡=-No¿ . . .rN.) assign probability
densities to the points (zt.+,--¿x-¡@-)
and (zt*:-¿xn+a¿@-) according to the
rules',

F(zr+:-¿X-r@-) = F(zr*:-7X-¡@-) +
We.F (Zt rx¿, @x ) .P ( @-¡ Ox¡ e@)

F(zt+r¿Xn+rr@^) = F(zt+r¿Xe¡1r@-) +
üI.a.. F (Z r , x3, @* ) . P ( @-, @x, r@ )

Repeat steps 1 through 5 for each point
in the zrth plane.

' The sign rr-rr is to be read tr assigned the value of rr.
The function, P(O*rOx¡a@), is given by equation t3-91.

1

2
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and Storch i ,L987 ¡ Sand ison and Huda, j_9 Bg )

3.4 rncorporation of Electron Energy Loss in the ^ä.lgorithm
The energy loss of the electrons must be included in

order to calculate realistic distributions. rn the present
algorithm, an energy is associated with each lateral point
and it is assumed that the energy of the erectrons is
independent of the angle of traver. The energy at a given

lateral point is calculated from,

E(z+ôrxs) = E(z,xt) - Seoe.ô t 3-10l

where E(zrx) indicates the kinetic energy of an electron at
point (zrx) and Seoe is the total stopping power for
eLectrons of the appropriate energy in the given material.
Therefore, the electron energy at a point is dependent only
upon the energy and type of materiar associated with the
point immediately above.

The stopping power Ín water for any electron energy may

be obtained by a fit to published data (IcRU,t9B4). In this
case, the stopping power data has been fitted to the

f ormu I a,

sro.*(E)=a+bE+å t 3-11 l
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where the superscript, w, indicates that the medium is
water. using a least squares fit, the constants are found

to be a=L.792 MeV,/cm, b=0. 032L2 cm-a and c=0.0 B4g7 MeVzlcm.

The least squares fit is compared with published data in
figure 3.2. over the range 0.5 to 35 Mev, the fit is within
3od of the true value.

À means of obtaining the stopping power in media other

than water is now required. Huizenga and storchi (l-985)

suggest that, for materials and electron energies of

clinical interest, the stopping power may be scaled

according to the relative electron density of the medium

(the electron density of the medium divided by the erectron
density of water). Therefore, provided the relative
erectron density is known throughout a heterogeneous medium,

the erectron energy may be calculated at ar1 points given an

incident beam energy.

3.5 Reguirements for Grid Spacing

The use of a discrete calculation grid is only an

approximation to the continuous case. The required size of
the grid increments to achieve sufficient accuräcy must be

known and in this section the limits for the coarseness of

the calculation grid are discussed.

Às discussed in sections 3.1 and 3.2, the infinitesimal
integral formulas are accurate up to order ô (the size of
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Figure 3.2

Stopping power for electrons in water as a function of

energy.

stopping power for electrons in water is shown as a function of

the electron kinetic energy. the solid rine represents the ntruerl

val.ues taken from ICRU report 3? (ICRUrlgS4). The dashed line is a

fit to the equation,

Stor-=a+bE+c/E

using a least squares fit, the constants arb and c are found to be,

a = 1.792HeV/cn

b = 0.03212 cm-a

c = 0.0849'l HeV2/cm
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the depth increments ) . Therefore, the depth increments

should be made as small as possible, äIlowing for
limitations in calculation time and computer memory.

Reca11 that the angular transition density is Gaussian

with variance kô/2. To predict the angular spreading of

electrons accurately, the angular grid increment should be

smal1 compared to the root mean square spread in the angular

transition density,

^o t 3-12l

À basic assumption of both the infinÍtesimal integral
equations t3-51 and t3-61 is that the spread of the lateral
transition density is negligible (i.e. it is approximated by

a Dirac rlelta function). Therefore, it would not be correct
to impose a condition analogous to t3-L2j on the lateral
gr id increments. Instead, we require that,

In other words, the change in the probabil

distancet Lx, must be sma11. The lateral
probability density can be very rapid for

this represents a severe test of the algor
surface of the scattering medium, a pencil

t 3-13l

ity density in a

variation of the

a narrow beam and

ithm. Near the

beam will always
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be in vioration of the condition t3-l-31. However¿ ãs the

electrons penetrate the scattering medium, they will spread

laterally so that the beam is better approximated by a

díscrete grid. It is shown in section 3.6 that the

performance of the algorithm for an incident pencir beam is
satisfactory.

Broad clinical beams vary much more s1ow1y in the lateral
direction than narrow beams and it is expected that they

will be better approximated by a discrete lateral grid. rn

the case of carculations with clinicar beams, the rateral
increment size is normally chosen to be about z or 3 mm.

Note that the angular grid spacing is determined by the

angular scattering power, k, and the depth increment, ö (see

t3-f2l). In practice, the number of angular and lateral
increments is linrited by the availabre computer memory.

Given a scattering power (i.e. an incident beam energy anri

type of scattering medium) the depth Íncrement, ô, may be

chosen to satisfy both t3-l_21 and the computer memory

requirements.

3.6 Calculations in Homogeneous Hedia: Small Àngles

rt is the aim of this section to compare the results of

calculations using the numerical algorithm to the

theoretical predictions of the Fermi-Eyges model, The

purpose of such a comparison is to show that the a]-gorithm
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is successful in reproducing known results. These

calculations have been performed for both pencil beams and

broad beams using the numericaL algorithm based on the

"smaLI angleil equation t3-51.

There are several algorithm parameters which may be

varied. These are the number of angular bins¡ 2Nø+1, the

number of lateral bins, Nx¿ the number of depth increments,

N-¡ the angular increment sizet L@t the lateral increment

size¿ ax, and the size of the depth increments, ô. Due to

the limited memory available (54K) on the DEC LSI ]-]-/j3

computer on which the calcul-ations were performed¿ Nø änd N-

were set to 30 and 64 respectively for all runs. since the

number of angular increments is set, the choice of the

angular increment size determines the maximum grid ang1e.

The first set of calculations was designed to test the

effects of varying the lateral grid spacing, ^x, and the

size of the angular increments¡ a@. For a point

monodirectÍona1 pencil beam incident on water, three
calculations were performed for ax equar to 0.3 cR¿ o.z cm

and 0.15 cm. For all three calculations, N-, ö and ^o were

set to 20, 0.3 cm and 0.051-501 radians respectively. Note

that the angular increment size corresponds to a maximum

grid angle of n/2 radians.

The mean sguare angle of travel produced by these

carculations is plotted as a function of depth in figure
3.3. For comparison, the Fermi-Eyges prediction is also
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Figure 3.3

Hean square angle of travel versus depth - theoretical

calculations and numerical. algorithm results.

The nean sguare angle of travel is shown as a function of depth

for a 10 Mev point monodirectional pencil beam incident on water.

The symbols represent the numerical algorithm results and the solid

line represents the Fermi-Eyges prediction. The parameters used in

the numerical algorithm are:

Ne=30

N* = 54

N. = 20

^@ = 0.05150i_ rad

ax = 0.3 cm, 0.2 cm, 0.15 cm

d = 0.3 cm

Note that aII three lateral grid spacings produce exactly the same

mean square angular spread. ÀIso, the angular increments, ¡Or are

chosen to correspond to a maximum grid angle of r/Z radians.
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Figure 3.4

Hean square lateral position versus depth - theoretical

calculations and numerical algorithm results.

The mean square lateral position is shown as a function of depth

for a 10 Hev monodirectional pencil beam incident on water. The

numerical algorithm parameters are the same as in figure 3.3. The

symbols correspond to three different laterat gricl spacings: 
^x=0.3

cm (triangles), 
^x=0.2 cm (squares) and ^x=0.15 cm (inverted

triangles). Às in figure 3.3, the maximum grid angle is r/Z
rad ians .
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plotted. The mean square lateraì. position is pl_otted in

figure 3.4 for the same calculations.

It is evident from figures 3.3 and 3.4 that the agreement

between the algorithm calcul_ations and theoretical

predictions is excellent at shallow depths but becomes poor

deep in the scattering medium. The reason for the

discrepancy is the fact that many erectrons attain an angle

greater than Í/2 deep in the medium and are lost from the

carculation grid. The result is an under estimation of the

mean square angle of travel and mean square Iateral

position.

To demonstrate that this is the case, the calculations

were re-done using the same parameters except for a change

in ^O. The size of the angular increments, LØ, was

increased to correspond to a maximum grid angle of Tr

radians. Figures 3.5 and 3.6 show the mean square angle of

travel and meàn square lateral position respectivety for

this second set of calculations. Às expected, the agreement

between the argorithm results and theoretical predictions is
much better.

Figures 3.7r 3.8 and 3.9 show the pencil beam profires at

1.5 cffi¿ 3.0 cm and 4.5 cm depth respectively for the same

beam and grid parameters as in figures 3.5 and 3.6. It may

be seen that the agreement between the theoretical
predictions and algorithm resurts improves as the lateral
grid spacing is made smaller. Also, the least favourable
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Figure 3.5

Hean square angle of travel versus depth - theoretical

calculations and numerical algorithm results.

The mean square angle of travel is shown as a function of depth

for a 10 Hev point monodirectional pencil beam incident on water.

The symbols represent the numerical algorithm results and the solid

line represents the Fermi-Eyges prediction. The parameters used in

the numerical algorithm are:

Ne=30

N- = 64

N. = 20

^@ = 0.10300 rad

ax = 0.3 cm, 0.2 cm, 0.15 cm

ô = 0.3 cm

Note that all three lateral grid spacings produce exactly the same

mean square angular spread. Àlso, the maxirnum grid angle is n

radians. There is a marked improvement over the case where the

maximum grid angle is ú2 (f igure 3.3).
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Figure 3.6

Hean square lateral position versus depth - theoretical

calculations and numerical algorithm results.

The mean sguare lateraL position is shown as a function of depth

for a i-0 Hev monodirectional pencil beam incident on water. The

numerical algorithm parameters are the same as in figure 3.5. The

symbols correspond to three different lateral grid spacings: ax=0.3

cm (triangles), rx=0.2 cm (squares) and rx=0.15 cm (inverted

triangles). Às in figure 3.5, the maximum grid angle is r radians.

Note the significant improvemenL over the case where the naximum

grid angle is r/2 (figure 3.4).
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Figure 3.7

Beam profile at 1.5 cm depth in water for an incident 10 MeV

point monodirectional- pencil beam.

The electron fluence as predicted by the Fermi-Eyges model and as

calculated by the numerical algorithm at 1.5 cnr depth is shown for

a 10 Mev pencil beam incident on water. Each fluence profile has

been normalized to 100t on the central axis. only half the profile

is shown since it is s¡rmmetric about x=0. The solid line is the

Fermi-Eyges prediction and the symbols represent the numerical

algorithm results for ^x=0.3 cm (triangles), 
^x=0.2 cm (squares)

and rx=0.15 cm (inverted triangles). The ¡emaining algorithm

parameters are:

Ne=30

N* = 64

N' = 20

¡O = 0.10300 rad

ð = 0.3 cn

These parameters are the same as in figure 3.5.
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Figure 3.8

Beam profiLe at 3.0 cm depth in water for an incident 10 MeV

point monodirectional pencil beam.

The electron fluence as predicted by the Fermi-Eyges model and as

calculated by the numerical algorithm at 3.0 cn clepth is shown for

a 10 Mev pencil beam incident on water. Each fluence profile has

been normalized to 100t on the central axis. only half the profile

is shown since it is symmetric about x=0. The solid line is the

Fermi-Eyges prediction and the symbols represent the numerical

algorithm resuLts for ¿x=0.3 cm (triangles), rx=0.2 cm (squares)

and rx=0.15 cm (invertecl triangles). The renraining algorithm

parameters are identical to those of figure 3.?. Note thaL the

agreement between the algorithm results and the theoretical

prediction improves as rx becomes smal.ler.
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Figure 3.9

Beam profile at 4.5 cm depth in water for an incident L0 Mev

point r¡onodirectional pencil beam.

The electron fluence as predicted by the Fermi-Eyges model and as

calculated by the numerical argorithm at {.5 cn depth is shown for

a l-0 Mev pencil beam incident on water. Each f 1uence prof ile has

been normalized to 100ï on the central axis. Onry half the profile
is shown since it is symmetric about x=0. The solid line is the

Fermi-Eyges prediction and the symbols represent the numerical

algorithm results for ax=0.3 cm (triangles), 
^x=0.2 cm (squares)

and rx=O.15 cm (inverted triangles). The remaining algorithm

parameters äre identicat to those of figure 3.?. Note that the

agreement between the algorithm results and the theoretical

prediction improves slightly as ^x becomes smaller but arl rateral

grid spacings produce reasonable agreement with theoretical

predictions. This can be contrasted with figures 3.? and 3.9 where

the beam profile varies much more rapiclly.
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results are obtained at shallow depths where the beam

profile has the highest dose gradients.

The simulation of a pencil beam is a severe test of the

algorithm due to the rapidly varying beam profile. À

realistic beam will have a finite lateral and anguì_ar spread

at the surface of the scattering medium and is more suited
to a discrete representation. carcurations have been made

for a 10 Mev broad beam incident on water. The angular-
laterar electron density at the surface of the water w,3s

calculated using the method of Sandison and Huda (199g)

assuming a 10x10 cm2 beam at 100 cm ssD (source-to-surface

distance). It was assumed that beam trimmers were in
p1ace. The lateral grid increment, ¡Xr hras 0.3 cm and the

maximum grid angle was n radians. À11 other grid parameters

were identical to those used in the calculations described
above. Beam prof iles are shown in figures 3.1-0, 3.1L and

3.L2 for depths of 1.5 cffi¿ 3.0 cmr and 4.5 cm respectivery.

3-7 Calculations in Homogeneous ìledia: Large Àngles

This section will compare carculations made using the

large angre infinÍtesimal integral equation t3-61 with
calculations made using the analogous small angre equation

t3-51- Arso, calculated pencil beam profiles are compared

to data presented by Lax et aI. ( l_983 ) .

Lax et al. (1983) have made fits to pencil beam profiles
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Figure 3.10

Broad beam profile at 1.5 cm depth for a 10 HeV beam in

water.

The electron fl.uence as predicted by the Fermi-Eyges model and as

calculated by the numerical algorithm at 1.5 cm depth is shown for

a 10 Hev broad beam in water. The beam is 10x10 cm2 at 100 cm ssD

and trimmers are used. Each of Lhe fluence profiles has been

normalized to 100t on the central axis. The solid tine is the

Fermi-Eyges prediction and the symbols are the algorithm results

for the following grid parameters:

No=30

N* = 64

N'=20

^6 = 0.10300 rad

ax = 0.3 cm

ð = 0.3 cm

The lateral distance between the theoretical prediction and the

algorithm results is within one lateral grid increment, Lxt at all
points.
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Figure 3.ll

Broad beam profile at 3.0 cm depth for a l0 HeV beam in

water.

The same beam as in figure 3.10 is shown at 3.0 cm depth.

Àgain, the lateraL distance between the theoretical prediction and

the algorithm results is within one lateral grid increment at alI
po ints .
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Figure 3.12

Broad beam profile at 4.5 cm depth for a 10 HeV beam in

water.

The same beam as in figure 3.10 is shown at d.5 cm depth.

Àgain, the lateral disLance between the theoretical prediction and

the algorithm results is within one 1ateral grid increment at all
points.
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calculated using Monte carlo techniques. The fitted
equations are of the form,

d(x) = A.eXp(-x2/az) + B.exp(-xz/h=) + C.exp(-x=/cz)

t 3-14l

where d(x) is the radial dose profile and x is the lateral
distance from the beam axis. The parameters ArBrCrarb, and

c are given in tabular form for severaÌ depths at beanr

energies of 5, 10 and 20 Mev in water. The authors state
that the fits àre generally within a few tenths of a percent

of their Monte carlo results and deviate by no more than

two percent.

As in the previous section, No ar¡d N* were set to 30 and

64, respectively, due to limitations in the availabLe

computer memory. Figures 3.13 and 3.L4 show sma11 and large
angle calculations compared to the f itted data of Lax et al.
(1983) at 2.1, cm and 3.0 cm depth in water for an incident
10 MeV point monodirectional pencil beam. The depth

increment, ô, lateral incrementt Lx, and angular increment,
¡or were 0.3 cR, 0.15 cm and 0.051501 radians respectivety.
Note that the angular increment size corresponds to a

maximum grid angle of r/2 radians.
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Figure 3.13

Comparison pencil beam profiles for small and large angle

calculations.

Profiles at 2.1 cm depth in water are shown for an incident 10

HeV point monodirectional pencil beam. Calculations were nade

using the small angle transport equation t3-51 (triangtes) and

using the large angle transport eguation t3-51 (squares). The

solid line is the fit to Monte Carlo data given by Lax et aI.

(1983). It has been assumed that the electron fluence calculated

by the algorithm is proportional to dose. À11 profiles have been

normalized to 100t on the central axis.
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Figure 3.1r1

Comparison pencil beam profiles for sma1I and large angle

calculations.

Profiles at 3.0 cm depth in water are shown for an incident l0

Hev point monodirectional pencil beam. calculations were made

using the small angle transport equaLion t3-51 (triangles) and

using the large angle transport equation I3-6J (squares). The

solid line is the fit to Honte carlo data given by Lax et aI.

(1983). It has been assumed that the electron fluence calculated

by the algorithm is proportional to dose. ÀlI profiles have been

normalized to 100t on the central axis.
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3. B Discussion

The results of section 3.6 indicate that the algorithm is
successful- in reproducing known resurts. Although pencil

beam profiles at shallow depths are not werl represented by

the discrete Iateral grid (see figure 3.?), good agreement

with analytical results is obtained deeper in the medium

(see figures 3.8 and 3.9). Even at shallow depths, however,

the lateral distance between the algorithm-generated results
anrl the analytically calculated curve is ress than the

lateral grid increment t Lx.

In the case of broad beams, the electron probability

density varies much more slowly in the lateral direction
than it does for a pencil beam. Às a resurt, good agreement

is obtained between analytical and algorithm-generated

results over the entire electron range. Figures 3.10, 3.11

and 3.12 indicate that the discrepancy is ress than the

lateral increment sizer ax. It should be noted that this
agreement is achieved with the coarsest lateral grid

increment (rx=0.3 cm) that was used in the pencil beam

calculat i ons .

Beam energies which are greater than 10 MeV and

scattering media which are less dense than water require a

smaLler angular increment size and,/or a larger depth

increment size (see t3-12I ) than was used in the resuLts
presented in sections 3.6 and 3.7. For instance, if the

beam energy is doubred, then, f.or a given anguì.ar increment
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sizet L@¿ the depth increment, ô, must be increased by a

factor of four (since scattering power, k, varies as the

inverse sguare of the beam energy). For the carculations
presented in sections 3.6 and 3.7, the depth increment was

0.3 cm. Therefore, a doubling of the energy would imply a

depth increment size of more than a centimeter. À decrease

in the anguì.ar increment size accompanied by an increase in

the number of angular increments would not be possible due

to the limitations in the available computer memory.

Figures 3.13 and 3.1,4 show that the rarge angle transport
equation t 3-6 I is successfur in qual itativety reproducing

the broad r?tails" in the pencil beam profiles given by Lax

et al. ( 1983 ) . The fitted profiles given by Lax et al.
(1983) are based on Monte carlo calcuLations which include

all types of erectron interactions ( i. e. bremsstrahrung

emission, delta ray production, large angle collisions and

smal1 angle multiple scattering are all modeled). The

moder presented here accounts for only smalL angle multipJ.e

scattering and the rack of quantitative agreement in figures
3.13 and 3.I4 is, therefore, not surprising.

A logarithmic scale is used in figures 3.L3 and 3.14 to

clearry demonstrate the effects of the rarge angle transport
eguation t3-61 äs compared to the sma11 angle transport

equation t3-51. It should be noted, however, that the

dif ferences are large only at points where the dose is less

than a few percent of the central axis dose.
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3.9 Conclusions

The numericaL algorithm presented in this chapter is
successful in reproducing known analytical results. For

incident electron energies of 10 MeV or less and scattering
media with rerative electron densities greater than or equal

to unity, the ägreement with analytically calculated pencil
beam and broad beam profiles is within the lateral grid
incrementt Lx, at all points. The algorithm based on the

large angle transport equation t3-61 predicts,
qualitatively, the large angle scattering,rtai1s,' in the
pencil beam profiles calculated by Monte carlo techniques
(Lax et ä1., l-983).
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Appendix 3A

In this appendix, it is shown that the integral t3-51 is

equivalent to the Fermi-Eyges transport equation up to terms

of order ô. Expanding the density, î(ztx-(@+ae)örO+q¡, in

I 3-5 I to second order in a Taylor Series yields,

F(z,x-(O+a4,)ð,@+g¡ r F(ztx,o) - (@+crq)6 Ë+ - o Eå

. (@+c¿ô)2ô" dzF d2F= _______T_.m= T e_ ilõ=-

- 0 (@+crq ) ## t 3A-1 l

Substituting back into the integral t 3-5 I and us ing the

properties of the angular transition density,

[34-2a]

t3A-2bl

Jl",n(o;@+q) do = l

,ll-an (o; o+q ) do - o

Jl-*=P{o;o+o) do = P

yields the equation,

F(z+ô,x,@) = F(z,x,o) - oô å+ - F,E#

t3A-2cl

t3À-3I
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To obtain this last expression, terms of order 62 or higher

have been neglected. Notice that the factor, a, no longer

appeärs, indicating that the choice of cr, is irrelevant.
Àn expansion of F(z+ôrxrO) to first order for small ô

g ives,

F(z+ôrxr@) : F(zrxr@) + ô 3å t 3A-4 l

Finalì-y, substitution of t 3À-4I into t 3À-3 J yields the

Fermi-Eyges transport eguation,

dF_ ^dF kdzF
M = -o d* + T.dõã t 3A-5 l
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Àppendix 3B

In this appendix, it is shown that the integral t 3-6 I is
equivalent to the differential transport equation t3-71 up

to terms of order ô. Expanding the density, î(zrx-

tan(@+crQ)ôrO+6¡, in t3-51 to second order in a TayIor Series

yields,

F(ztx-tan(O+aq)ô,O+q) r F(ztx,@) - tan(@+a6¡6 dF dF.!-+ó.Êox oc)

ö2 dzF
i'dõ=

The function, tan(O+ae), may also be expanded in a Taylor

Series to give,

tan(O+crQ) = tano + aO.sec2@ + a=O2.tan@'secz@ t3B-21

Substituting t 3B-l- I and t 3B-2 I into the integral t 3-6 l,
using the properties of the angular transition density t3A-

2) and neglecting all terms of order ô2 or higher we 9et,

. tan2(O+o¿ô)ô2 d2F= ______T_. ¡ç= -

- gtan(o+ao)o d2F
dRfõ

F(z+ô,X,o) = F(2,x,@) - tan(@)ô 3+ - P.åU+

t 3B-r_ 1

t 3B-3 l

Finally, expanding the left hand side to first order in a

Taylor series for smal1 increments, ô, gives the transport
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equat i on,

dF dF k dzF
- 

= -EanO --az dx * ?'d-@-t t3B-4l

Às expected, we have recovered the transport equation t3-71.
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Chapter 4

Summary and Future Work

4.L The Restricted Scattering Hode1

It was noted in the first chapter that one impediment to

the use of electron beams in radiotherapy is the lack of a

method of accurate dose prediction. The difficurty is
partly due to the inadequacy of the Fermi-Eyges moder for

the description of electron transport deep in the scattering
medÍum. The Fermi-Eyges model predicts that the mean square

angle of travel increases monotonically with depth in the

scattering medium and approaches infinity at a depth

corresponding to the electron range. The restricted

scattering model goes some way toward compensating for the

weaknesses of the Fermi-Eyges model by forcing the angular

spread of electrons to reach an equilibrium value in
accordance with meäsured data (Roos et a1. r 19?3 ) .

The saturation in mean sguare angle of travel is
achieved by modeling the variation of the angle of travel
with depth as an ornstein-uhlenbeck stochastic process (Hoe1

et a1.r1984). In this approach, a scattering bias is
introduced such that electrons tend to scatter toward

smarler angles rather than J-arger angres. The parameters

specifying the jointly Gaussian angular-tateral probability

density predicted by the restricted scattering modeL are

given explicitly in section 2.2.
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The improved prediction of the mean sguare angle of

travel is indicated in figures 2.I, 2.2, 2.3 and 2.4. An

improved prediction of the mean sguare laterar position is
also demonstrated in chapter 2 Ln figures 2.s, 2.6 and 2.7.

This leads to a more accurate representation of the broad

beam dose profile in a homogeneous medium as indicated in
figures 2.8r 2.9 and 2.L0.

rt shourd be noted that the restricted scattering model

is not a physically based model in the sense that the

angular restriction is nót introduced to model_ a known

physical interaction process. Rather, the angular

restriction is introduced to model the observed macroscopic

behaviour of a beam of erectrons as it penetrates a dense

scattering medium.

The testing of the restricted scattering model in a

heterogeneous medium requires that the model be incorporated

in a treatment planning algorithm. since the restricted

scattering model has the advantage of retaining the Gaussian

features of the Fermi-Eyges model, it may be readily used in
existing pencil beam algorithms. However, it is also

possible to incorporate the restricted scattering model in
the a)-gorithm presented in chapter 3 by using the

appropriate angular transition density. Both these

possibilities remain for future work.
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4.2 The Numerical Algorithrn

In chapter 3, an integral equation is derived which

al1ows the determination of the electron probabirity density
at a depth, z*ô, in the scattering medium given the

probability density at a depth, z. This integral equation

is shown to be consistent with the Fermi-Eyges model in the

limit of small- ô. À modification of the integral equation

is then made where changes in lateral position are given by

ô.tanO rather than the sma11 angle approximation, ð.O.

Both these integrà1 equations are discretized for use in a

computer algorithm.

Figures 3.5 and 3.6 show that the smal1 angle equation is
successful in reproducing the mean square angre of travel
and mean sguare lateral position analytically predicted by

the Fermi-Eyges model. AIso, the sma11-angle-algorithm

recovers analytically predicted pencil beam and broad beam

prof i les as indicated in figures 3. ? to 3.L2. The

discrepancy between the algorithm-generated results and the

anal-ytically predicted curves is generally within the

discrete lateral increment size t Lx. In section 3.7, it is
shown that the large-angIe-algorithm qualitativeLy

reproduces the large angre scattering tails seen in Monte

Carlo generated data (Lax et al.r 19B3 ) .

In order to test the accuracy of the algorithm in
inhomogeneous media, it is necessary to compare the

algorithm results with measured data. However, in a
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heterogeneous medium, it is not possible to assume that the

probability density calculated by the algorithm is
proportionaL to dose (as was the case in a homogeneous

medium). Therefore, the probability density which is
generated by the al-gorithm must be converted to dose in
order to make meaningful comparisons to measured data. A

means of performing this conversion for the moments method

(storchi and Huizengar1985) based on the input of measured

broad beam depth dose data has been presented (storchi and

Huizengar1985). F'uture implementations of the numerical

method presenterl in chapter 3 may incorporate a similar
empirical- dose calculation scheme.

À more accurate rrenergy accounting' may be implemented

the numerical algorithm to improve its accuracy. presentl

the energy of erectrons at ä given rateral position is
caLculated using the energy of the el-ectrons at the same

lateral position in the plane above (see equation t 3-l_0 I ) .

This approach does not account for the skewness of the

electronsr paths. Electrons with obrique angres of travel
fo1low relatively long paths in traversing a depth

increment, ö. However, these electrons are assigned the

same energy as eÌectrons with shallow angles of travel which

follow shorter paths over an increment of depth, ô. By

defining several energy I'bins" at each laterar position, a

distribution of electron energies at each poinL may be

calculated. The limited computer memory of the DEC LSr

in

Yt
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LL/73 computer does not allow this approach to be taken in
the present work. However, the method of energy 'rbinning"
is a possibility fox a future impl_ementation of the

numerical algorithm.

The work of chapter 3 indicates the feasibility of the

use of the numerical algorithm in radiotherapy dose

calculations. Also, using the large angle transport
equation, it may be possible to improve upon the predictions

of the Fermi-Eyges model-.
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