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Abstract

The Fermi-Eyges model of electron transport forms the
basis of many algorithms used to predict radiation dose
distributions in electron beam therapy. However, it has
been shown that the errors in the dose distribution
calculated using these algorithms may be unacceptably large.
Part of the difficulty is due to the inadequacy of the
Fermi-Eyges model for the description of electron transport
in dense media. Also, in calculating the dose from a single
pencil beam, these algorithms assume that inhomogeneities
are infinite in their lateral extent.

A modification of the Fermi-Eyges model of electron
transport is developed here to overcome the aforementioned
weaknesses. The new model, referred to as the restricted
scattering model, limits the angular spread of the electrons
in order to model the observed saturation in the angular
spread of electrons as they penetrate a scattering medium.
In this work, dose predictions of both the Fermi-Eyges and
restricted scattering models are compared with measured
data. It is demonstrated that the restricted scattering
model better predicts the observed angular and spatial
distribution of electrons for both pencil beams and clinical
broad beams.

An integral equation based on Fermi-Eyges theory is
developed and incorporated into a numerical algorithm

suitable for the calculation of the electron probability



ix

density at all points in a heterogeneous medium. It is
shown that the algorithm successfully reproduces known
analytical results. A modification of the integral equation
is then made such that the small angle approximation is
relaxed. It is demonstrated that the modified equation
gqualitatively reproduces the large angle scattering "tails"
observed in pencil beam profiles obtained by measurements or

Monte Carlo simulations.
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Chapter 1

Introduction

1.1 Radiation Therapy with Electron Beams

Fast electrons interact with a scattering medium through
various types of interactions: nuclear Coulomb scattering,
bremsstrahlung production and electron-electron collisions.
Zerby and Keller (1967) discuss these interaction processes
in their review of electron transport theory. For electron
energies and scattering media of interest in electron beam
radiotherapy (energies of 5 to 30 MeV and atomic numbers
less than 13), the dominant interaction is that of small-
angle nuclear Coulomb scattering.

Electrons have a fairly well defined range since they
lose energy nearly continuously through ionization
interactions in the scattering medium. As a result, they
have the advantage of sparing normal tissues "down-stream"
of the target volume. This is their main advantage over
high energy photons for use in radiotherapy. Reports on the
use of electron beams for radiotherapy appeared more than
three decades ago (Loevinger et al.,1961). However,
radiotherapy is still dominated by high energy photon beam
therapy. One of the impediments to the more wide-spread use
of electron beam radiotherapy is the difficulty in
predicting the radiation dose distribution in a

heterogeneous medium (Brahme,1985).
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It is the continuous interaction of the electrons with
the scattering medium which gives rise to the difficulty in
treatment planning. 1In contrast to high energy photons
which travel in straight paths between discrete interaction
sites, electrons follow tortuous paths due to multiple
small-angle scattering events. Any model of electron
transport applied to radiotherapy treatment planning must
take this fact into account and yet remain practical for
routine treatment planning purposes.

Most modern electron beam treatment planning systems are
based on the Fermi-Eyges model of charged particle transport
(Rossi and Greissen,1941; Eyges,1948) which makes the

following assumptions:

i) An electron's angle of travel remains small with
respect to its initial line of travel over the entire
range of the electron.

ii) The sole means of interaction between an electron and
the scattering medium is multiple small-angle
scattering.

iii) An electron's kinetic energy is a well defined

function of depth in the scattering medium.

These may be poor assumptions especially towards the end
of the electron range. However, due to its importance in

modern electron beam treatment planning, the Fermi-Eyges
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model will be introduced in detail in section 1.3.

1.2 Linear Angular Scattering Power

Before discussing the Fermi-Eyges model of charged
particle transport, it is necessary to introduce the linear
angular scattering power (or simply, the scattering power).

It is defined as (ICRU, 1984b),

where <©2> is the mean square angular spread of a beam of
electrons and s is path length. Therefore, the scattering
power characterizes the increase in the angular spread of
electrons as they traverse a scattering medium.

The value of the scattering power depends on both the
scattering medium and the kinetic energy of the electrons.
Several expressions which give the scattering power exist
(ICRU,1984b; Jette,1988; McParland,1989) but the one which
will be adopted in the remainder of this thesis is the one

given by Jette et al. (1983),

k(z) = koo [ poyagoy 1 [1-2]

where T is the ratio of the electron's kinetic energy to its
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rest mass and ko is the scattering constant characteristic

of the scattering medium. ko is given by,

ke = ;Gge‘ © I, {N:Zi(Ze+1)1n(2042.-272)}  [1-3]

where e is the electron charge, moc? is the electron rest
mass and N. and Z. are the atom density and atomic number,
respectively, of the ith element in the scattering medium.
The scattering power given by [1-2] and [1-3] accounts for
both electron-electron and electron-nucleus Coulomb
scattering (Jette et al.,1983). The summation includes all
atomic elements in the scattering medium. Table 1.1 gives

the scattering constant, ko, for several materials.

1.3 The Fermi-Eyges Model of Electron Transport

The time development of the distribution of energetic
electrons in a scattering medium is governed by the
appropriate Boltzmann equation (Bethe et al.,1938). Using
the assumptions (i) to (iii) outlined in section 1.1, a
simplified transport equation - the Fermi-Eyges equation -
may be derived from the Boltzmann eguation (Brahme,1985).
However, the approach taken here will be to use a physical
argument based on a derivation given by Rossi (1952) to
arrive at the Fermi-Eyges transport equation.

Figure 1.1 defines the coordinate axis and the angle of



Table 1.1 Scattering constant, ko, for several

materials.
Material Scattering Constant®* (rad2/cm)
Water 47.40
Lung™ 12.48
Bone~™ 113.9
Polystyrene 40.92
Carbon (graphite) 67.49
Aluminum 185.2
Copper 1237.
Cadmium 1728.
Lead 3432,

*Calculated from equation [1-3].

"Lung and bone refer to lung equivalent, LN1, and bone
equivalent, SB3, respectively (White,1978).



Fiqure 1.1

Coordinate Axis and Angle of Travel

The positive z-axis indicates increasing depth in the scattering
medium and the lateral position of an electron is given by the
(x,y) coordinates. & represents the direction of travel of an
electron. The electron's angle of travel, ©, is the angle between
% and the z-axis. The angle between the z-axis and the projection
of @ on the xz-plane is 6x. Similarly, ©, is the angle between the

z-axis and the projection of % on the yz-plane.
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travel, ©. The angles, ©. and ©,, are the angle of travel
projected onto the xz-plane and yz-plane respectively. From

figure 1.1, it is straightforward to arrive at the relation,

tan®@ = tanZ®@. + tanZze, [1-4]

If ® is small, then we may make the approximation tan®=0,
tan®.»@. and tan®,~®,. Thus, in the small angle

approximation, the angles are related by,

0% = 0,2 + 0,2 [1-5]

Let <©%> denote the change in the mean angle of travel of an
ensemble of electrons traversing an increment of depth, dz.
Since the scattering process is cylindrically symmetric, we

must have <©x*>=<®©,2> and therefore,

<@2> = 2<0x=> = 2<0,2> = kedz {1-6]

This last equality follows from the definition of scattering
power [1-1] since, if © is small, dsxdz. The relation [1-6]
will be needed in the following derivation.

Let p(6x',0,';6x,0,) be the probability density for an
electron to make a transition from direction (6.,®,) to a
new direction (©x',®,') in a depth, dz. Also, let us denote

the joint angular-lateral probability density for an
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electron at depth, z, as F(z,x,0x,Y,©,). In other words,
the probability of finding the electron at depth z with a
position in the interval [(x,x+dx], ly,y+dy] and with an
angle of travel in the interval [©.,®x+d6x], [®y;@y+d®y] is
F(z,X,0x,Y,0,)dXdyd®.d0,. The electron transport problem is
then to find F(z,x,0x,y,®,) for all depths, z, in the
scattering medium.

First, consider the change in the angular state of an
electron as it propagates from z to z+dz. The change in the
probability density due electrons scattering out of (©.,0,)
is the total scattering probability (i.e. the integral of p
over all ©.' and ©,') multiplied by the probability density

at (6x,9,),

- F(2,%,0x,y,0,)+[7 [% plext, 0, 0.,0,) don'ae,

[1-7])
Similarly, the change in probability density due to

electrons scattering from other states into (©.,0,) is,

ffmffm F(Z,%,0:',Y,0,"')°P(0x,0,;0x",0,"') d0x'd0,"

{1-8]
The net change in the probability density due to angular

scattering, dFa., is the sum of [1-7] and [1-8]1,
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aFa = [© [ (F(z,%,0x',y,0,")-F(z,%,0.,0,)}

.p(®x,®y;®x',®y') d@x'dey’ [1"'9]

To arrive at [1-9], it has been assumed that
P(Ox' ;0" ;0x,0,)=p(0x,0,;0:x',0,"').

Assuming that the change in angle is small then the
probability density falls off rapidly as ©x' or ©,' deviate
from @~ or ©, and we can expand F(z,x,0x',y,©,') in a Taylor

series about (©.,0,),

dF
F(z,%X,0x',Y,0,"') = F(2,%X,0.,Y,0,) + (@x'-ex)‘a@:
_ ar (Ox'-0x)* d=F (0,'-0,)2 4°F
+ (6, @,)-d@y + ~ ‘To=T + _~__7_~__ Jo=
dzr

+ (@x"’@x).(@y'_@y).m— [l"'lO]

Substituting [1-10] into [1-9] and noting that terms
containing odd powers of (©,'-©.) or (©,'-0,) will vanish

(since the scattering probability must be symmetric) yields,

sz @
dFa = 2_ do6,. = \[ J‘ "@x)zp(ex'@y;ex',e)y')d@x'd@y
2
d F J‘m jw '—ey)zp(exl@y,'@x',@y')d@x'd@y'
[1-11]

The first integral is simply <©.2> and the second is

<@y,%>. Using [1-61, we get,
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_ kedz_ - 4=F dzF

aFa = %[ Goor * Foow | [1-12]

Now consider the change in the probability density due to
the lateral drift of the electrons as they move from depth =z
to depth z+dz. Electrons starting with position (x-0,dz, y-
©y,dz) and with direction (©x,©,) arrive at position {x,vy).
Therefore, as the electrons move, the electrons at (x,y) are
replaced by electrons from position (x-6.dz,y-0,dz).
Denoting the change in probability density due to drift of

electrons by dFa, we have,

dFa = F(Z,X-0,dz,0,,y-0,4dz,60,) - F(z,%,0:,Y,0.)
[1-13]
Expanding the first term on the right hand side to first

order in a Taylor series about the point (x,y) yields,

- JAF LAF N

The complete change in probability density as the
electrons propagate from depth z to depth z+dz is given by
summing the two contributions [1-12] and [1-14]. Performing
this summation and dividing by dz yields the Fermi-Eyges

transport equation,
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afF _ _ . ,4F _ _ dF _ k(z), - d%F d2F _
iz = Ose I e, Iy t g [ To-= + Joo= ] [1-15]

Implicit in the derivation above is the assumption that the
scattering power, k, does not change in the lateral
direction. Therefore, in [1-15], the scattering power is
written as a function of z only. This implies that the
electron kinetic energy may vary with depth only (see
equation [1-2]) and that any inhomogeneities in the
scattering medium must be infinite slabs perpendicular to
the z-axis.

Since the transport equation [1-15] is separable, it may
be written as two equations involving scattering in the xz-

plane and scattering in the yz-plane. By writing,
F(Z,X,0x,Y,0y) = Fx(2,%X,0x)*F,(2,y,0,) [1-16]}

we find that the transport equation governing scattering in

the xz-plane is,

dFa> _ _ dF e k(z) d=F., _
3z~ ®'ax t T a3o= (1-171
An analogous equation exists for the yz-plane. Because of

the separability of the Fermi-Eyges transport equation,
only the scattering in the xz-plane will be considered in

the present work and the subscript, x, will be dropped for
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convenience (Fx and ©. become F and ©, respectively).

Using Fourier transform methods, Eyges (1948) has solved
[1-17]1 for an incident point monodirectional pencil beam.
More generally, for an incident beam which is jointly
Gaussian in x and ®, the solution of {1-17] is (Brahme et

al.,1981),

F(z,x,0) = cl.exp[cz-{53$§57 - 2r~08(;f:2x(z) ¥ Ux:f:)} ]
[1-18a]
where Ci = 1/(2n0e0x(1l-r2)%) [1-18Db]
Cz = -1/{2(1-r2)} [1-18c]
Y = rxe(z)/{0e(z)*0x(2)} [1-184]
® = (6-8(z)) [1-18e]
Ax = (x-X(2)) [1-18f)

©(z) and X(z) denote the mean projected angle of travel
and mean lateral position at depth z, respectively. oe2(z)
and ox*(z) are the angular and lateral variances,
respectively, and rxe(z) is the angular-lateral covariance.

These parameters are given at any depth, z, by,

e(z) = 8(0) [1-19a]
X(z) = X(0) + ©(0)ez [1-19bl
0e2(z) = Aol(z) + 0a2(0) [1-19c]
Yxa{Z) = A1(2) + 0e3(0)*Z 4+ Twe(0) [1-194]

Ox*(2) A2(z) + 08%(0)e2? + 2rxe(0)ez + 0.2(0) [1-19%e]
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where the moments, A.(z) (i=0,1,2), are given by,
Au(z) = 3 [Z k(z')e(z-2")2dz" [1-20]

Any broad beam distribution may be thought of as a
superposition of a collection of these Gaussian "pencil"
beams and this is the basis of pencil beam algorithms for

dose calculations in radiotherapy treatment planning.

1.4 Dose Computations Using Pencil Beams

Early methods for electron beam treatment planning
involved shifting a standard isodose distribution along ray
lines emanating from a "virtual source" (Laughlin,1965;
Boone et al.,1967; Almond et al.,1967; Bagne,1976). The
assumption implicit in these methods is that the electrons
travel in nearly straight paths from the virtual source to
the end of their range. As mentioned in section 1.1,
electrons do not travel in straight paths and these methods
tail to reproduce known effects such as the "hot" and "cold"
spots near the edge of an inhomogeneity.

Other methods (Kawachi,1975; Edwards and Coffey,1979) are
based on analytical expressions with free parameters which
are determined from measured data. However, the reports

deal only with homogeneous scattering media and methods for
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calculations in the presence of inhomogeneities are not
discussed. These methods of electron beam treatment
planning will not be discussed here. Instead, the
discussion will concentrate on pencil beam methods of
treatment planning.

Pencil beam methods of treatment planning treat broad
beams as a superposition of narrow pencil beams. Figure 1.2
shows schematically how the superposition of pencil beams
yields a broad beam distribution in a homogeneous medium.
Lillicrap et al. (1975) were one of the first to use the
concept of pencil beams explicitly for treatment planning
purposes. They measured the dose distributions from narrow
electron beams and then used this data to reconstruct
various broad beam distributions.

Perry and Holt (1980) present an approximate analytical
method of dose calculation in the presence of small
inhomogeneities. The method is based on the solution to the
Fermi-Eyges transport equation [1-17] but it neglects the
electron energy loss in the scattering medium. Hogstrom et
al. (1981) have developed a practical pencil beam algorithm
for dose calculation by using measured depth dose data as
input to the calculations. This approach accounts for dose
deposited by secondary electrons and bremsstrahlung photons.

Brahme et al. (1981) and Werner et al. (1982) have
modified the Gaussian solution to the transport equation [1-

17] to account for the loss of electrons from the forward
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Figure 1.2

The Summation of Pencil Beams to Produce a Broad Beam

The figure shows schematically how a broad electron beam may be
considered as a superposition of pencil beams. Each pencil beanm is
assigned a "weight" according to the broad beam profile at the
surface of the medium. The individual pencil beam distributions
are then calculated using the Fermi-Eyges model and summed to

yield the complete broad beam distribution.
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beam and the resulting decrease in the lateral pencil beam
spread. Bruinvis et al. (1983), in their pencil beam dose
calculation algorithm, have chosen the Gaussian pencil beam
parameters to obtain the best fit to measured dafa.

It is these analytically based methods mentioned above
which are of interest in the present work.

Recall from section 1.3 that the Fermi-Eyges model
assumes that the scattering power, k, is a function of
depth only. Therefore, the model is restricted to slab-type
inhomogeneities in the scattering media (i.e. infinite slabs
lying parallel to the xy-plane). 1In practice, it is assumed
that the inhomogeneities are large compared to the width of
the pencil beam and that they are well approximated by a
slab. Figure 1.3a depicts a single pencil beam passing
through an inhomogeneity and figure 1.3b shows the
equivalent analytically solvable geometry. All the pencil
beams composing a broad beam may be propagated by setting
the scattering power at a given depth to be equal to the
scattering power on the central axis of the pencil beam. 1In
this way, the complete broad beam distribution may be
determined.

The moments method (or pencil beam redefinition
algorithm) is a variation on the pencil beam approach
(Storchi and Huizenga,1985; Shiu and Hogstrom,1987). The
idea of this method is to decompose the beam into a new set

of pencil beams at each increment of depth. Thus, the width
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Fiqure 1.3
Equivalent Slab Geometry for Calculations in the Presence of an

Inhomogeneity

One of the pencil beams which make up a broad beam is shown
passing through an inhomogeneity in an otherwise homogeneous
scattering medium (A). The calculation of the pencil beam
distribution is performed as if the inhomogeneity were an infinite
slab as shown in (B). The thickness of the slab and its depth in
the scattering medium are determined by the points at which the
central axis of the pencil beam intercepts the boundaries of the

inhomogeneity.



' EDGE OF BROAD BEAM
(A) | ¥
/ | \
/ | \
/ \ LEAD
AANARNRRRRANNY / TLLLTTITIT & COLLIMATORS
/ \
/ \
/ \\
// \ = . )
\ SURFACE OF
/ \ SCATTERING
/ \ MEDIUM
/ \
/ \
| INHOMOGENEITY |
| \
\
// !
) \
(B)
/
/ i ‘\
/ | \
/ \
\\\\\‘\\\"\\\‘t \\;\\.\\\\\\‘\\‘a*
:"[ \
\
i \\
/ R —
] | \ sy
\

| \
M{?WxWVM/K&//W//ﬂ >
\

EQUIVALENT SLAB

/ i

i ; \
/ ! \
; f \



18
of the pencil beams remains small compared with the size of
inhomogeneities. As a result, the dose distribution near
small inhomogeneities is predicted with greater accuracy
(Storchi and Huizenga,1985).

However, the original implementation of this approach
makes assumptions which are inconsistent with the Fermi-
Eyges model (Storchi et al.,1987). Specifically, the method
assumes that the angular distribution of electrons at some
depth, z, and a fixed lateral point, x, is always Gaussian.
However, even for the simple case of a parallel rectangular
beam incident on a homogeneous scattering medium, the Fermi-
Eyges model predicts a non-Gaussian angular distribution at
any fixed lateral point, x. Thus, the moments method cannot
be considered as equivalent to the pencil beam methods
described above. A numerical method which accounts for the
possibility of non-Gaussian angular distributions would be

desirable.

1.5 The Purpose of the Present Work

The present work is intended to deal with three separate
issues:
(i) The Fermi-Eyges model of electron transport predicts
that the electrons' mean sqguare angle of travel and mean
square lateral position increase monotonically with depth in

the scattering medium and approach infinity as depth
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approaches the electron range. However, experimental data
indicate that the mean square angle of travel reaches a
constant value with increasing depth (Roos et al. 1973).
Also, the mean square lateral position reaches a‘maximum
value and then decreases towards the end of the electron
range (Sandison et al.,1989).
(ii) In the case of small inhomogeneities (where the width
of the inhomogeneity is considerably less than the width of
the pencil beam) or near the edge of an inhomogeneity, the
assumption of slab-geometry is poor. 1Indeed, it is possible
to have unacceptably large errors in the predicted dose
distribution for some situations (Shortt et al.,1986; Cygler
et al.,1987; Mah et al.,1989).
(i11) The Fermi-Eyges model of electron transport predicts a
Gaussian spatial distribution of electrons given an incident
point monodirectional pencil beam. However, Monte Carlo
generated data (Lax et al.,1983) shows that the distribution
has broad non-Gaussian tails due to electrons with large

angles of travel.

Chapter 2 presents a modification of the Fermi-Eyges
model of electron transport. This new model, called the
restricted scattering model, limits the angular spread of
the electrons in order to model the observed saturation in
the mean square angle of travel as the electrons penetrate

the scattering medium. The predictions of the Fermi-Eyges
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and restricted scattering models for mean sguare angular
spread, mean square lateral position and beam profiles are
compared to measured data.

Chapter 3 presents a numerical method of propégating an
incident distribution of electrons through an inhomogeneous
medium. The numerical method is suitable for dose
calculations in the presence of small inhomogeneities.
However, unlike the moments method (or pencil beam
redefinition algorithm), the numerical method accounts for
the possibility of non-Gaussian angular distributions. It
is shown that, aside from discretization errors, the method
reproduces the analytical predictions of the Fermi-Eyges
model.

A modification of the numerical method is then made which
relaxes the small angle approximation of the Fermi-Eyges
model. It is shown that the modified numerical method
qualitatively reproduces the large angle scattering tails

seen in Monte Carlo generated data (Lax et al.,1983).
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Chapter 2

The Restricted Scattering Model

2.1 The Fermi-Eyges Model: Stochastic Equations Approach

The Fermi-~Eyges model of charged particle transport in
dense media was discussed in section 1.3. Before
introducing the restricted scattering model, however, it
will be instructive to re-formulate the Fermi-Eyges model in
the language of stochastic equations. The restricted
scattering model will then be introduced as a generalization
of the Fermi-Eyges model.

As in section 1.3, it is assumed that the only scattering
mechanism is that of small angle Coulomb collisions
(electron-electron and electron-nucleus collisions). At any
given point along the électron's path, the angle of travel
is a result of many small independent angular displacements.
Therefore, the evolution of the angle of travel along the
electron's path is analogous to the time evolution of the
position of a particle in Brownian motion.

Brownian motion is well modeled by the Wiener process
which will be denoted by W(z). It is a limiting case of the
random walk with infinitely small but infinitely many steps
and it has the following properties (Karlin and Taylor,1975;

Hoel et al.,1984):

(i) W(a+z)-W(a) is normally (Gaussian) distributed with
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mean 0 and variance z where "a" is a constant.
(i1) The increments W(za)-W(zz2), W(Z2)-W(Zs), ..., W(Zn-2)-
W(zn) are independent random variables if
Z1<225Z3<Za%...<2Zn.

(iii) W(0)=0 and W{(z) is continuous at z=0.

If the scattering power is constant with depth then the

cumulative angle of travel is given by,
@(z) = ©(0) + Yk/ZewW(z) [2-1]

Since the variance of W(z) is z, the factor Vk/Z in [2-1]
ensures that the mean square angle of travel is kz/2 as
predicted by the Fermi model. The guantity ©(0) is a random
variable representing the initial angle of travel. If the
scattering power varies with depth, then it is necessary to

write,
o(z) = o(0) + [Z [ K21 4% aqy(5) [2-2]

Now consider the evolution of the electron's lateral
position with depth. For a small angle ©, the change in
lateral position of an electron in an increment of depth,
dz, is simply ©edz. The lateral position of the electron is
the sum of the lateral displacements in each increment of

depth. Thus, we write,
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z
xX(z) = x%x(0) + JO e(z')dz" [2-3]

The quantity x(0) is a random variable representing the
electron's initial lateral position. Substituting [2-2]

into [2-3) yields,

X(z) = x(0) + ©(0)ez + J‘g g'[ }_(__(__;L)_]% dw(z") dz

[2~4]

The stochastic equations [2-2] and [2-4) represent a
linear transformation of the Wiener process, W(z). This may
be made clear by considering the following identity (Hoel et

al.,1984),

fg £(z)dW(z) = £(b)*W(b) - f(a)*W(a) - fgf'(z)'W(z)dz

[2-5]

The integrals in [2-2] and [2-4] are of the form appearing
on the left hand side of [2-5]. The right hand side of [2-
5] is clearly a linear transformation of W(z) and it follows
that [2-2] and [2-4] are also linear transformations of
W(z). Since W(z) is a Gaussian process, [©(z),x(z)] must be
a jointly Gaussian process and have a probability density of
the form [1-18].

The jointly Gaussian probability density, F(z,x,©), given

by [1-18] is uniquely determined at any given depth, z, by
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specifying the mean angle of travel, ©(z), the mean lateral
position, X(z), the angular variance, 0e2(2z), the lateral
variance, ox*(z), and the angular-lateral covariance,
Yxe{(z). These parameters may be calculated by evaluating

the appropriate expectation values,

6(z) = E{©(2)} [2-6a]
X(z) = E{x(z)} [2-6Db]
0eZ(z) = E{(0(z)-0(z))=} [2-6C]
Ixel(z) = E{(x(2)-X(z))*(6(2)-6(z))} [2-6d]
0x2(2) = E{(x(2)-X(2))=2} [2-6e]

The symbol, E{ }, denotes the average over the probability
space. In appendix 2A, these parameters have been
calculated assuming an incident beam which has a jointly
Gaussian distribution at the surface of the scattering

medium. The results of this calculation are,

©(z) = ©(0) [2-7al
X(2) = X(0) + ©(0)ez [2-7b]
0e%(z) = Aoc(z) + 0s2(0) [2-7c]
Ixa(Z) = A1(2z) + 08%(0)*2 + rixel(0) [2-7d]
0x2(2) = A2(2) + 082(0)*22 + 2r.e(0)z+ 0x2(0) [2-7e]

where the moments, A.(z) (i=0,1,2), are given by,
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Ar(z) = 5 [Z k(z')e(z-z") taz [2-8]

In [2~-71, 510), x(0), 0a?(0), Ixe{0) and o0x.2(0) are the
parameters specifying the jointly Gaussian distribution of
the incident beam.

The parameters given by [2-7] and [2-8] are identical to
those given by [1-19] and [1-20]. This demonstrates the
equivalence of the stochastic equations approach and the

differential equations approach outlined in section 1.3.

2.2 The Restricted Scattering Model: Stochastic Equations
Approach

The Fermi-Eyges model predicts that the mean square angle
of travel increases without bound as the electrons penetrate
the scattering medium (see [2-7c] and [2-8]). However, it
has been experimentally observed (Roos et al.,1973) that the
mean square angle of travel approaches a constant value as
depth increases. This suggests that electron transport in a
dense scattering medium may be better modeled by placing
some restriction on the angular scattering of electrons. An
analogous problem arises in the description of the velocity
distribution of particles in a fluid and this may be modeled
using the Ornstein-Uhlenbeck process (Hoel et al.,1984).
Therefore, we adopt a model which is mathematically similar

to the Ornstein-Uhlenbeck process.
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The stochastic equation describing the evolution of the

angle of travel now becomes,

o(z) = e(0) - 82 o(z")az' + fg [ EL;LL ]"aw(z )

[2-91
The parameter, 8, is a constant which we shall call the
restriction parameter. B has units of inverse length. The
evolution of the lateral position is given, as in section

2.1, by,
x(z) = x(0) + fg e(z')dz' [2-10]

Equation [2-9] is a generalization of the analogous
equation [2-2] in section 2.1 due to the addition of the
term involving 8. The effect of the additional term is to
introduce a scattering bias such that electrons tend to
scatter toward smaller angles rather than larger angles.

The magnitude of the parameter, B, determines the strength
of the scattering bias. Notice that as B or z tend to zero,
the stochastic equations [2-2] and [2-4] describing the
Fermi-Eyges model are recovered. The determination of R
will be discussed later.

In [2-9], ©(z) appears on both sides of the equation. By

noting the identity,
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e(z) + Bfg 6(z')dz' = exp(—Bz)-ag[ exp(ﬁz)fg e(z')dz']

[2-11]
and after some manipulation, it is possible to rewrite [2-9]

as,

@(z) = ©(0)eexp(-Rz) + fg [ Eiéll ]%dW(z')
- 8 [Fexp(-8(z-z')) [2'[ K2 1Hagiznyaz

[2-12]
By using [2-12] in [2-10], it may also be shown that the
equation describing the evolution of the lateral position

is,

x(z) = x(0) + Qi%l.[ 1 - exp(-8z) ]
+ [Bexp(-8(z-z)) [2'[ EEZY) 1Hagiznyaz

[2-13]

Equations [2-12] and [2-13] show that x(z) and ©(z) are a
linear transformation of the Wiener process. Therefore, as
in the case of the Fermi-Eyges model, the electron
probability density is the jointly Gaussian density given by
[(1-19]. As before, the parameters specifying the Gaussian
density may be calculated from the appropriate expectation
values. These calculations are given in appendix 2B and the

results are,
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©(z) = ©(0)sexp(-Bz) [2-14a]
- _ ©(0)
X(z) = %X(0) + —5—* (1-exp(-8z)) [2-14b]
0e2(z) = Ac(zZ) + 0e2(0)eexp(-2Rz) [2-14c]
Ixel(z) = Ai(z) + Efgigl'[ exp(-8z) - exp(-28z) ]

+ rwae{0)eexp(-Bz) [2-144]
0x?(z) = Az(z) + gf%égl-[ 1 - exp(-8z) ]2

+ 2Zx200)r g~ exp(-82) ] + 0wz(0) [2-14e]

The moments, A.(z) (i=0,1,2), are now redefined as,

Au(z) = 5 [Zk(znyep XRBLEZITL G pag(zm2)) az

[2-15]

It should be noted that the restricted scattering model
makes the z-axis its preferred direction. Equation [2-14a]
shows that ©(z) approaches zero as z becomes large
regardless of the choice of ©(0). 1In other words, the beam
will tend to bend to become parallel with the z-axis.
Obviously, this is not observed in practice and a solution
which makes ©(0) the preferred direction is more realistic.

Such a solution may be obtained by taking the solution
for a normally incident beam (i.e. ©(0)=0 ) and rotating by
the appropriate angle. For a small angle of rotation, ¢,

equations [2-14a] and [2-14b] should be replaced by,
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8(z)

¢ [2-16a]

X(0) + ¢ez [2-16Db]

x(z)

equations [2-14c] to [2-14e] remain unchanged provided ¢ is
small. Thus, an appropriate solution may be obtained for
any angle of incidence, ¢, which is consistent with the
small angle approximation.

Some value for the restriction parameter, 8, must be
determined. 1In order to find the appropriate value, we
first make some observations. First, for a scattering
power, k, which remains constant with depth and for an
incident point monodirectional pencil beam (i.e.
F(0,x,0)=6(x)6(®) ), the angular variance is easily obtained

from {2-14cl and [2-15],

0e®(2) = Ao(z) = (k/4B)*(l-exp(-2Rz)) [2-17]

From this, it may be seen that ce2(z) approaches a constant
value of k/4R as z becomes large.

Secondly, as seen in equation [1-6], the mean square
angle of travel, <®©2(z)>, measured for a pencil beam is

twice the projected quantity, oe2(z). 1i.e.

<®*(z)> = 208%(2) [2-18]
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Finally, it is seen experimentally (Roos et al.,1973) that
<®%(z)> approaches a constant value close to 0.65 radianz
for all scattering media and electron energies. Therefore,

using [2-17] and [2-18], we arrive at the relatibn,

B = k/1.3 [2-19]

Equation [2-19] applies only when scattering power is not
a function of depth. The assumption of a constant
scattering power is equivalent to an assumption of
negligible energy loss. Obviously, such an assumption is
not valid in dense media and it is preferable to incorporate
the energy loss of the electrons in the model by allowing
the scattering power to vary with depth. A numerical
solution which allows both k and 8 to vary with depth may be
constructed as follows.

The electron range may be divided into small increments
of depth. Within each increment, the electron energy,
scattering power and restriction parameter, R, are held
constant. For a Gaussian beam incident on the itr
increment, equations [2-14] and [2-15] (with the
modification [2-16]) if necessary) may be applied assuming
constant scattering power to obtain the parameters
specifying the distribution at the end of the i*® increment.
The electron energy, scattering power and restriction

parameter (equation [2-19]) may now be recalculated for the
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(i+1)*" increment. The distribution just calculated for the
end of the i®® increment now becomes the initial condition
for the (i+1)®" increment and the distribution at the end of
the (i+1)*®" increment may be calculated. Iterating in this
way over many increments, the distribution may be obtained
at any depth in the scattering medium. Unless stated
‘otherwise, this is the approach taken in all calculations

presented below.

2.3 Comparisons of Mean Square Angle of Travel

Roos et al. (1973) measured, for a range of incident
electron energies (5 MeV to 20 MeV) and scattéring media
(atomic numbers 6 to 82), the angular distribution of
electrons as a function of depth for an incident point
monodirectional pencil beam. Experimental values of the
mean square angle of travel are given for a range of depths
and may be used for comparison to the predictions of the
Fermi-Eyges model and restricted scattering model.

Under the assumption of constant scattering power and an
incident point monodirectional pencil beam, the predictions
of the Fermi-Eyges model and restricted scattering model for
<®%(z)> may be given in closed analytical form. 1In

particular, the Fermi-Eyges model gives,

<@2(2)> = 208=% = kz [2-20]
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The restricted scattering model, on the other hand yields

the expression,
<©(2)> = Ko (1 - exp(-282)) [2-21]

In figure 2.1, the predictions of both [2-20] and [2-21]
for <©%(z)> are plotted as a function of kz. Also shown is
the data measured by Roos et al. (1973). The curve shows
that, for constant scattering power, the restricted
scattering model shows the correct saturation behaviour.

As previously mentioned, the case where the scattering
power varies with depth is of more interest. Harder's
formula may be used to approximate the variation of the

average electron energy, <E(z)>, with depth (ICRU,1984b),
<E(z)> = <E(0)>¢(1-z/Ry) [2~-22]

<E(0)> is the mean incident electron energy and Rp is the
practical range of electrons of energy <E(0)>. This may be
used to find the variation of scattering power, k{z), with
depth as described in section 1.2.

Closed form equations may be obtained for the moments,
A.(z), predicted by the Fermi-Eyges model when the energy
varies according to Harder's formula (Jette et al.,1983).
In the case of the restricted scattering model, the

numerical approach described at the end of section 2.2 may



33

Figure 2.1
Comparison of model predictions of mean square angle of travel for

constant scattering power

The mean square angle of travel (denoted 62 in this figure) as
measured by Roos et al. (1973) is plotted against the dimensionless
parameter, kz, for several incident electron energies and
scattering media (symbols). The dashed line is the prediction of
the Fermi-Eyges model and the solid line indicates the restricted
scattering model prediction for a constant scattering power, k.

The scattering power was calculated using the initial beam energy.
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be used. 1In the present case, the electron range was
divided into 100 depth increments and Harder's formula [2-
22] was used to calculate the electron energy at the start
of each increment. The predictions of the Fermi;Eyges model
and the restricted scattering model are compared to the
measured data of Roos et al. (1973) in figures 2.2, 2.3 and

2.4,

2.4 Comparisons of Mean Square Lateral Position

The width of a broad beam penumbra, w(z), is defined as
the lateral distance between the intersections of a line
tangent at the 50% dose point with the 100% and 0% dose
levels. The beam profile at the given depth, z, must be
normalized to 100% on the central axis. The penumbra width
and mean square pencil beam spread, o.2(z), are related by

(Sandison and Huda,1988),

_ . erfla(z)/vV2 ox(z)} _
w(z) = /21 ox(2) TT=exp =232 () /5 = (=TT} [2-23]

where a(z) is the half-width of the broad beam at depth, z,
and erf denotes the error function (Arfken,1970).

Values of 0x*{z) have been obtained by measuring w(z) for
a 10x10 cm® field of 16 MeV electrons incident on lung
equivalent (LN1l) and bone eqguivalent (SB3) material

(White,1978) and for 22 MeV electrons incident on
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Fiqgure 2.2

The mean square angle of travel versus depth in carbon

The mean square angle of travel, 53, is plotted against depth
normalized to the continuous slowing down range (defined below),
z/Ro, for a 10 MeV point monodirectional pencil beam incident on
carbon (graphite). The points (®) are the measured data of Roos et
al. (1973). The dashed line and the solid line are the Fermi-Eyges
model and restricted scattering model predictions, respectively,
using Harder's formula [2-22] to model the variation of electron
energy with depth.

The continuous slowing down range is defined as,

R = [Ee GE
° =0 Beoe(®)

where Seoc(E) is the total stopping power in the appropriate medium
for electrons of energy, E, and E. is the energy of the incident

electrons.
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Figure 2.3

The mean sqguare angle of travel versus depth in aluminum

The mean square angle of travel, 55, is plotted against depth
normalized to the continuous slowing down range, z/Ro, for a 10 MeV
point monodirectional pencil beam incident on aluminum. The points
(#) are the measured data of Roos et al. (1973). The dashed line
and the solid line are the Fermi-Eyges model and restricted
scattering model predictions, respectively, using Harder's formula

[2-22] to model the variation of electron energy with depth.
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Figure 2.4

The mean square angle of travel versus depth in lead

The mean square angle of travel, 6%, is plotted against depth
normalized to the continuous slowing down range, z/R., for a 10 MeV
point monodirectional pencil beam incident on lead. The points (e)
are the measured data of Roos et al. (1973). The dashed line and
the solid line are the Fermi-Eyges model and restricted scattering
model predictions, respectively, using Harder's formula {2-22] to

model the variation of electron energy with depth.
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polystyrene. The electron beams were produced by a
Sagittaire Therac 40 linear accelerator and the measurements
were accomplished using film (Kodak Industrex M) mounted
parallel to the beam axis in a homogeneous phantom. The
method has been described in detail elsewhere (Sandison et
al.,1989).

The predictions of the Fermi-Eyges model and the
restricted scattering model are compared to the measured
data in figures 2.5, 2.6 and 2.7. Harder's formula [2-22]
has been used to calculate the electron energy loss. 1In the
case of the restricted scattering model, the numerical
method described at the end of section 2.2 was used to

perform the calculations.

2.5 Clinical Beam Profiles
It is straightforward to integrate Gaussian pencil beamns
across a broad beam area to obtain the predicted broad beam

probability density in a homogeneous scattering medium,

1 SSD 2
Flz,%) = 7°[ g5+ =% |
*lerf{A(a,x)} - erf{A(-a,x)}]

*lerf{A(b,y)} - erf{A(-b,y)}] [2-24a]

where the function, A(u,v), is given by,
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Figure 2.5

The root mean square lateral position versus depth in lung

The root mean square lateral position, o (=/0.2), is plotted
against depth, z, for a 16 MeV point monodirectional pencil beam
incident on a lung equivalent medium. Both o and z have been
normalized to the continuqus slowing down range, Ro. The points
(@) are the measured data obtained from broad beam penumbra (see
text). The dashed line and the solid line are the Fermi-Eyges
model and restricted scattering model predictions, respectively,
using Harder's formula [2-22] to model the variation of electron

energy with depth.
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Figure 2.6

The root mean square lateral position versus depth in bone

The root mean square lateral position, ¢ (=/0.2), is plotted
against depth, z, for a 16 MeV point monodirectional pencil beam
incident on a bone equivalent medium. Both o and z have been
normalized to the continuous slowing down range, Ro. The points
(®) are the measured data obtained from broad beam penumbra {see
text). The dashed line and the solid line are the Fermi-Eyges
model and restricted scattering model predictions, respectively,
using Harder's formula [2-22] to model the variation of electron

energy with depth.
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Figqure 2.7

The root mean square lateral position versus depth in polystyrene

The root mean square lateral position, o (=/0.%), is plotted
against depth, z, for a 22 MeV point monodirectional pencil beam
incident on polystyrene. Both ¢ and z have been normalized to the
continuous slowing down range, R.. The points (e) are the
measured data obtained from broad beam penumbra (see text). The
dashed line and the solid line are the Fermi-Eyges model and
restricted scattering model predictions, respectively, using
Harder's formula [2-22] to model the variation of electron energy
with depth. Error bars are not visible on the measured points
indicating that the estimated error is less than or equal to the

size of the points.
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qe[ SSD + z o _
A(u,v) = [ue[ —5s5— ] v ]
Vi Oxl2Z)

[2-24Db]

SSD is the source-to-surface distance and a and b are the
half-field width and length, respectively, at the surface of
the scattering medium. At a given depth, z, the probability
of finding an electron with x coordinate in the interval
[x,x+dx] and y coordinate in the interval [y,y+dyl is
F(z,x,y)dxdy.

The distribution given by [2-24]1 is valid for both the
Fermi~-Eyges model and the restricted scattering model
provided the modification [2-16] is employed in the
restricted scattering model (i.e. the solution for a
normally incident pencil beam is rotated by an appropriate
angle). The only difference between the two models is the
expression used for o.®(z): equation [2-7el for the Fermi-
Eyges model and equation [2-14e] for the restricted
scattering model. However, for a clinical beam, the pencil
beam parameters, 082(0), rxe(0) and 0x2(0), have non-zero
values and they must be determined in order to find ox2(z).
Methods to determine these parameters for a magnetically
scanned beam exist in the literature (Huizenga and
Storchi,1987; Sandison and Huda,1988).

In order to compare the predicted broad beam probability
density with measured data, it has been assumed that, for a

set depth z in a homogeneous medium, the probability density
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is proportional to the radiation dose. Therefore, measured
dose profiles may be compared to the theoretical predictions
of probability density by normalizing the measured dose
profile and the predicted probability density to the same
value (eg. 100%) on the central axis.

Using the same method as in section 2.4, dose profiles
were measured for a 10x10 cm?®, 16 MeV beam in lung (LN1) and
bone (SB3) equivalent media (White,1978) and for a 10x10
cm?, 22 MeV beam in polystyrene. These measurements have
been compared to beam profiles calculated using the Fermi-
Eyges and restricted scattering models in figures 2.8, 2.9

and 2.10.

2.6 Discussion

The observation from measured angular distribution data
(Roos et al.,1973) that the mean sguare angle of travel,
<®%(z)>, saturates with depth is the motivation for the
modification of the Fermi-Eyges model. As shown in figqures
2.1, 2.2, 2.3 and 2.4, the restricted scattering model
successfully predicts this saturation for both constant and
variable scattering power, k(z). When scattering power is
allowed to vary with depth in the scattering medium,
reasonable agreement is obtained with the measured angular
distribution data at all depths for a wide range of incident

electron energies (5 to 20 MeV) and scattering media (atomic



44

Fiqure 2.8

Broad beam profile for 16 MeV electrons in lung

A broad beam profile is shown at 22 cm depth in a lung equivalent
medium (practical range, R,, of 27.9 cm). The beam has dimensions
10x10 cm® at 100 cm SSD (source-to-surface distance) with an
incident energy of 16 MeV. The points (®) indicate data measured
using film as described in the text. The dashed line and the solid
line are the Fermi-Eyges and restricted scattering model
predictions, respectively. Harder's formula [2-22) was used to

model the variation of electron energy with depth.
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Fiqgure 2.9

Broad beam profile for 16 MeV electrons in bone

A broad beam profile is shown at 4 cm depth in a bone equivalent
medium (practical range, R,, of 4.67 cm). The beam has dimensions
10x10 cm® at 100 cm SSD (source-to-surface distance) with an
incident energy of 16 MeV. The points (@) indicate data measured
using film as described in the text. The dashed line and the solid
line are the Fermi-Eyges and restricted scattering model
predictions, respectively. Harder's formula [2-22] was used to

model the variation of electron energy with depth.
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Figure 2.10

Broad beam profile for 22 MeV electrons in polystyrene

A broad beam profile is shown at 9.6 cm depth in polystyrene
(practical range, Ry, of 10.46 cm). The beam has dimensions 10x10
cm® at 100 cm SSD (source-to-surface distance) with an incident
energy of 16 MeV. The points (e) indicate data measured using film
as described in the text. The dashed line and the solid line are
the Fermi-Eyges and restricted scattering model predictions,
respectively. Harder's formula [2-22] was used to model the

variation of electron energy with depth.
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numbers ranging from 6 to 82). This agreement is indicated
in fiqgures 2.2, 2.3 and 2.4 for a 10 MeV point
monodirectional pencil beam incident on carbon, aluminum and
lead.

It was noted earlier that the lateral scattering process,
x(z), 1s an integral of the angular scattering process,
©(z), so we expect that an improvement in the prediction of
the variation of <©2(z)> with depth will coincide with an
improvement in the prediction of the variation in the
lateral pencil beam spread with depth. 1In figures 2.5, 2.6
and 2.7, it can be seen that both the Fermi-Eyges and
restricted scattering models agree closely with the measured
lateral spread of electrons up to about 0.7 of the
continuous slowing down range. The curve predicted by the
restricted scattering model lies slightly below that
predicted by the Fermi-Eyges model but, in general, both
curves lie within the experimental error. However, the
restricted scattering model does provide a significant
improvement over the Fermi-Eyges model deeper in the
scattering medium. As a result of this improvement, the
restricted scattering model gives better predictions of
clinical beam profiles at depths greater than 0.7 of the
csda range as indicated in figures 2.8, 2.9 and 2.10.

Some empirical modifications to the pencil beam spread,
0x%(2z), predicted by the Fermi-Eyges model have been

suggested (Werner et al.,1982; Lax et al,1983). For certain
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beam energies and scattering media these give good agreement
with the measured pencil beam spread, o.2(z). However, it
has been shown (Sandison et al.,1989) that the modifications
are not applicable to the entire range of energiés and
scattering media of clinical interest. The modification of
0x*(z) suggested by Lax et al. (1983) may be generalized for
use at any energy and in any scattering medium by
introducing 3 parameters which may be determined by a fit to
measured data (Sandison et al.,1989). The resulting values
of the parameters depend on the scattering medium and,
possibly, beam energy. Therefore, this approach is
inconvenient for dose calculations in heterogeneous media.
The restricted scattering model gives improved fits to
measured pencil beam spread, ox2(z), for the entire range of
beam energies and scattering media investigated. Also, no
additional parameters are required since the restriction
parameter, B, may be easily determined from the linear
scattering power, k(z), using equation [2-19].

Pencil beam dose calculation algorithms currently in
clinical use are based on Gaussian pencil beams and the
restricted scattering model retains the Gaussian features of
the Fermi-Eyges model. Therefore, the application of the
restricted scattering model is straightforward since it can
be directly incorporated into existing pencil beam dose

computation algorithms.
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2.7 Conclusion

The restricted scattering model is successful in
predicting the variation of the mean square angle of travel
of the electrons with depth over the entire electron range
for incident electron energies from 5 MeV to 20 MeV in
various scattering media with atomic numbers from 6 to 82.
An improvement over the Fermi-Eyges model is obtained in the
prediction of the variation of the lateral pencil beam
spread for depths greater than about 0.7 of the electron
range. The improvement in the prediction of the pencil beam
spread leads to an improvement in the prediction of penumbra
shape for clinical beams in homogeneous scattering media.
Also, since the restricted scattering model retains the
Gaussian features exhibited by the Fermi-Eyges model and no
additional measured data is required, it may be readily

incorporated into existing dose computation algorithms.
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Appendix 24

In this appendix, the moments specifying the jointly
Gaussian probability density predicted by the Fermi-Eyges
model are explicitly calculated. It is assumed fhat x{0)
and ©(0) are random variables which represent the initial
pencil beam position and angle, respectively, and that they
have a jointly Gaussian probability density.

As mentioned in section 2.1, the moments are given by the
appropriate expectation values. 1In order to evaluate these
expectation values, we use the following properties of the

Wiener process (Hoel et al.,1984),
B{ [2 £(z) aw(z) 3 = 0 [2A-1]
and,

BC [ [5 £z) awiz) 1+ [ qcz) awiz) ] 3
= fgin(a’b)f(z)'g(z) dz

[2A-2]
Using [2-2] and the properties [2A-1] and [2A-2], the
mean angle of travel is,

©(z) = E{e(z)} = ©(0) [2A-3]

Also, from [2-4), the mean lateral position is,
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X(z) = E{x(z)} = X(0) + ©(0)ez [2A-4]

The interchangeability of the expectation and integration
with respect to z has been used to arrive at [2A-4].
Now consider the mean square angle of travel, ce2(z).

ce2(z) E{[6(z)~-6(z)12}

"

E{[©(z)-0(0)]12}

Bt [ o) + [7 [ X2 tHawzn) - B0y 1%

The Wiener process, W(z), and the initial random
variables are independent. If the initial mean square angle

of travel is 0e2(0), then we have,

0e?(z) = 0e=(0) + » [% k(z')az’ [2A-6]

Similarly, the covariance is given by,

Toa(2Z) E{lx(z)-X(z)]le[0(z)-0(z)]}

I

Taxa{0) + 0a2{(0)ez + % fg k{zt)e(z-2')dz'

[2A-7]

Finally, the mean square lateral position is,
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0a2(z) = E{[x(z)-X(2)]1=2}

= 0x2(0) + 2rne(0)z + 062(0)22 + % fg k(z')e(z-2")%dz"

[2A-8]

To summarize, the parameters specifying the jointly

Gaussian probability density predicted by the Fermi-Eyges

model are,

@(z) = ©(0)

X(z) = X(0) + ®(0)ez
Oe?(z) = 02(0) + Ac(z)
Ixa(Z) = Ixe(0) + 0o2(0)%z + Ai(2Z)

Ox2(2Z) Tx2(0) +

where the moments,

As{(z) = ¥ fg

2rxe(0)*z 4+ 02 (0)ezZ + Az(z)

A,(z) (i=0,1,2), are given by,

k(z')°(z—z')idz'

[2A-9a]
[2A-9b]
[{2A-9¢C]
[2A-94]

[2A-9¢e]

[2a-10]

These are the parameters [2-7] given in section 2.1.
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Appendix 2B

In this appendix, the parameters specifying the Jjointly

Gaussian probability density predicted by the restricted

scattering model are explicitly calculated. It is assumed

that x(0) and ©(0) are random variables which represent the

initial pencil beam position and angle, respectively,

that they have a jointly Gaussian probability density.

calculations are exactly analogous to those performed
the Fermi-Eyges model and are based on the properties
Wiener process [2A-1]1 and [2A-2].

The stochastic processes @(z) and x(z) are related
Wiener process, W(z), by [2-12] and [2-13]. The mean

of travel and the mean lateral position are given by,

6(z) E{®(z)}

E{x(z)1}

x(z)

®(0)

i}

The mean square angle of travel is,

0e®(2z) E{[©(z)-6(2)]12}

i}

and
The
for

of the

to the

angle

©(0)sexp(-Bz) [2B~1]

X(0) + 2o 1 - exp(-Bz) ] [2B-2]

ce?(0)eexp(-262) + 5 [Z k(z')eexp(-28(z-2'))

[2B-3]
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The angular-lateral covariance is,

E{lx(z)-X(2z)]1e[0(2)-0(2)]

Yxa(2)

Ixe(0)eexp(-Bz) + Egi%—q—)—-[exp(—ﬁz)—exp(—Zﬁz)]

7% Ig k(z')elexp(-2B(z-z'))-exp(-B8(z~-2'))] dz®

[2B-4]

Finally, the mean square lateral position is,

0x2(2) = E{[x(z)-X(z)]2}

= 0,2{(0) + zf:%LELOIl—exp(—ﬁz)] + zfgégl-[l—exp(—ﬁz)lz

+ 7%7 fg k(z')’eXP(‘252)°[exp(Bz)—exp(ﬁz')]2 dz°

[2B-5]
To summarize, the parameters specifying the jointly
Gaussian probability density predicted by the restricted

scattering model are,

B(z) = 6(0)eexp(-Bz) [2B-6a]
X(z) =%0) + 22 (1-exp(-82)) [2B-6b]
0e”(2) = Ao(z) + 0eZ(0)eexp(-2Rz2) [2B-6c]

Yxe(z) = Ax(z) + Efgigl-[ exp(-Rz) - exp(-2Rz) ]

+ Ixe(0)eexp(-Rz) [2B-64]
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Ox?(2) = Az(z) + Ef%égl°[ 1 - exp(-8z) ]2

+ 2rx®(0)
—

[ 1 - exp(-82) ] + 0=2(0) [2B-6e]

The moments, A.(z) (i=0,1,2), are given by,

As(z) = % fﬁ k(z')'[ eXP(B(§~Z'))—l ]i exp(-28(z-z')) dz'

[2B-71

These are the parameters [2-14] given in section 2.2.
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Chapter 3

A Numerical Algorithm for Transport Calculations

3.1 Infinitesimal Integral Formula for Small Angles

In this section, we derive an integral which allows the
determination of the electron probability density at a
depth, z+6, given the electron probability density at a
depth, z. This provides a means to propagate an incident
electron probability density through a heterogeneous medium
in increments of depth, 6.

The derivation may be done for two lateral dimensions, x
and y. In chapter two it was noted that the Fermi-Eyges
transport equation is separable and scattering in the xz
plane and yz plane may be treated separately. Only
scattering in the xz plane is considered here and the beam
and inhomogeneities are taken to be infinite in the y
direction.

Let us start by noting that the probability density at

depth, z+dé, will, in general, be given by

F(z+6,x,0) = Ifw meF(Z,X',G')'pa(X,@;X',G') dx'de’
[3-1]

where F(z,x,®) is the electron probability density at depth,
z, lateral position, x, and angle ©®. The function,
Ps(x,0;x',0'), represents the transition density for an

electron to reach (x,©) in an increment of depth, &, given
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that it starts at coordinates (x',®'). 1In other Qords, the
probability that an electron starts at depth z with
position x' and direction ®' and arrives at depth z+6 with
position in the interval [x,x+dx] and direction in the
interval [©,6+d®] is ps(x,0;x',0')dxd®. The function,
Ps(x,0;x',0"'"), may also be referred to as the Green's
function or scattering kernel.

The Fermi-Eyges model predicts that the angular
transition density is Gaussian (section 2.1). If we assume
that the scattering power is constant in the small increment

of depth, 8, then the angular transition density is given

by,

Pa(©;0') = Ceexp{-(6-0')2/kd} [3-2a]
where C = 1//nké [3-2b]

The lateral transition density, according to the Fermi-Eyges
model, is also Gaussian with a variance, k63/6. This is
much less than the variance, ké/2, for the angular
transition density [3-2] provided 6 is small. Therefore,
the lateral transition density may be approximated by a

Dirac delta function

Px(X;X'") ® fasrac{X - (X'+06+a(0'-0)35)1} [3-3]

In other words, electrons starting at (x',0') end up with
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lateral position x'+03+0(®'~-®)3 with probability 1 and
their angular distribution is determined by [3-2]. The
constant, «, is introduced to allow for the fact that the
electrons scatter continuously as they travel from depth, z,
to depth, z+d. 1If, instead, the electron scattered from
angle ©' to © at depth, z, and drifted freely to depth, z+6d,
then the change in lateral position becomes simply &8 (i.e.
a=0). Conversely, if all the scattering took place at
depth, z+6, then the change in lateral position becomes ©'§
(i.e. e=1). We expect that the change in lateral position
would be somewhere between these two extremes so that 0<ec<l.
It will be seen, in fact, that @ can be chosen arbitrarily
as any finite real number.

Neglecting terms of order higher than &, it is possible
to write the complete transition density as a product of [3-

2] and [3-3]. The integral [3-1] then becomes

F(z+40,%,0) = [® F(z,%x-06-0(8'-0)5,0')+p(0;0') do'

[3-4]

where the subscript © on the function pe(©;®') has been
dropped for convenience.
Making the change of variables, ¢=6'-0, the integral

becomes,
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F(248,%,0) = |® F(z,x-(0+a0)8,0+¢)p(0;0+0) do

[3-5]

With «=0, equation [3-5] reduces to the infinitesimal
integral formula given by Storchi and Huizenga (1985). With
=1, equation [3-5] forms the basis of the numerical
algorithm which is presented here. 1In appendix 34, it is
shown that equation [3-5] is equivalent to the Fermi-Eyges
differential transport equation up to terms of order &

regardless of the choice of «.

3.2 Infinitesimal Integral Formula for Large Angles

In this section, we introduce a modification of the
infinitesimal integral formula [3-5] presented in the
previous section. The modification accounts for the fact
that the angle of travel of the electrons does not remain
small. In this new infinitesimal integral formula, changes

in lateral position, x, are equal to tan(®+a¢)d rather than

(6+a¢)S. The modified equation is,
n/2
F(z+0,x,08) = _E/ZF(z,x—tan(®+a¢)6,®+¢)-p(®;®+¢) do

{3-61

Notice that the limits of the integration have been changed

to include only electrons travelling in the forward
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direction. Also, it should be noted that a similar equation
presented in the literature (Jette, 1988) uses etan(®-¢)+(1-
a)tan® intead of tan(®+a¢). The two equations are
equivalent in the sense that they both lead to the same
differential equation up to terms of order & regardless of
the choice of «.

In appendix 3B, it is shown that, up to terms of order &,
equation [3-6] is eguivalent to the differential transport

equation,

ar _ ar k d2F _
gz = "tan(@) 3z + Feasz (3-71

Equation [3-6] may be used as the basis of a numerical
algorithm which propagates an incident electron probability

density through a heterogeneous medium.

3.3 Numerical Implementation of the Infinitesimal Integral
Formula
The first step in modifying the infinitesimal integral
equation [3-5] or [3-6] for use in a numerical algorithm is
to discretize the probability density, F(z,x,®). The
probability density will be defined only at a finite number
of points, (zs:,Xs,®x), for i=1,..,Nz, 3=1,..,Nx and k=-

Ne,..,Ne. The number of depth increments is N., the number
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of lateral increments is N, and the number of angular
increments is 2Net+l. Also, the size of the depth, lateral
and angular increments will be 6, ax and 40 respectively.

The integrals [3-5] and [3-6] must also be discretized.
Assuming that the angular increments are small enough that
the probability density does not change much in any given
angular interval, (©x-40/2,0.+40/2), and the probability
density is essentially zero beyond some maximum angle Nge*aA®,

then equation [3-5] may be written,

Ne Ox+4B/2
F(z+6,x,0) = ¢ F(z,X-06x0,0x )" p(©®;0') de’
k=-Ne Ox—a0/2 [3-8]

A completely analogous discrete version of [3-6] may also be
obtained. The integral within the sum represents the
probability that an electron scatters from an interval of
angle 4© centred on ©x to an angle ©. The integral will be
denoted by P(©,0x,40) and, using [3-2], it may be written as

a difference of error functions,

P(O,0x,40) = % [erf{(0-0.+40/2)//ké }

- erf{(0-0x-40/2)/ykd }1 [3-91]

where erf denotes the error function (Arfken,1970). The
scattering power, k, will vary with both electron energy and

the type of scattering material and may be different at



62
different points in a heterogeneous medium. In other words,
k=k(E,x,y,z). (note: although k is used for both scattering
power and the angular index, the meaning will be clear from
the context).

The problem with direct implementation of [3-8] is the
fact that the lateral points, x-©x6, do not necessarily
coincide with the discrete lateral points, xs. The sum is,
therefore, built up in an indirect way. Electrons at a
point (zi1,Xs,0x) are translated to a point (Za+a,X3+6x0,0x)
and, using a linear interpolation, electrons are shared
between the two discrete lateral points nearest to xs5+0xd.
Using equation [3-9], electrons are then spread into angular
points around ©x. This procedure is repeated for each of
the discrete points in the plane corresponding to depth z..
The process is shown schematically in figure 3.1 and each
step is described in detail in table 3.1.

The steps described in table 3.1 form the core of the
numerical algorithm since they allow the discrete
probability density at depth, z+6, to be determined from the
probability density at depth, z. As long as the probability
density is known at the surface of a medium, the process may
be applied to each plane in succession in order to build up
the complete probability density. Methods of calculating
the electron distribution from a clinical electron linear
accelerator at the surface of a medium have been described

in the literature for magnetically scanned beams (Huizenga
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Fiqure 3.1
Schematic diagram for the propagation of electrons in the

numerical algorithm.

The propagation of electrons from a point at depth, z., into
points at depth, z:+., is shown schematically. Electrons are first
projected into the z.+. plane. They are then shared between the
two closest discrete lateral points and finally they are spread
into angular points. The process is described in detail in table

3.1.
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Table 3.1 Logic flow for a numerical method of electron
transport calculations.

Step Description
1 Choose a point zi,xs,0x.
2 Project to a lateral point in the zZi+a

plane: x=x3+0x06 for small angles and
x=xs+tan(@x )8 £for large angles

3 Find the discrete points, Xn and Xn+a,
which are closest to x.

4 Calculate the weighting functions for the
linear interpolation: WA=|Xn—X|/AX and
We=|Xn+21-X|/AX

5 For each discrete angular point, ©m,
(m=-N&, ...,Ne) assign probability
densities to the points (Zi+a1,Xn,Bm)
and (Zi+2,%Xn+1,0®x) according to the
rules™,

F(Z342,%Xn,;0®m) = F(Z1+1,%Xn,0m) +
WB’F(ZL,X:,@&)’p(em,@k,Ae)

F(zi*l’Xn-f-l’@m) = F(Z;«rl,an-l,@m) +
WasF(2a1,X3,0x)*P(On, 0k, 40)

6 Repeat steps 1 through 5 for each point
in the zi:th plane.

* The sign "=" is to be read " assigned the value of".
The function, P(Om,0x,40), is given by equation [3-9].
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and Storchi,1987; Sandison and Huda,1988).

3.4 Incorporation of Electron Energy Loss in the Algorithm
The energy loss of the electrons must be included in
order to calculate realistic distributions. 1In the present
algorithm, an energy is associated with each lateral point

and it is assumed that the energy of the electrons is
independent of the angle of travel. The energy at a given

lateral point is calculated from,

E(z+6,%X5) = E(Z,X3) - Stoe*f [3-10]

where E(z,x) indicates the kinetic energy of an electron at
point (z,x) and Sco« is the total stopping power for
electrons of the appropriate energy in the given material.
Therefore, the electron energy at a point is dependent only
upon the energy and type of material associated with the
point immediately above.

The stopping power in water for any electron energy may
be obtained by a fit to published data (ICRU,1984). 1In this
case, the stopping power data has been fitted to the

formula,

Seoe™(E) = a + bE + % [3-11]
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where the superscript, w, indicates that the medium is
water. Using a least squares fit, the constants are found
to be a=1.792 MeV/cm, b=0.03212 cm—* and c=0.08497 MeVZ2/cm.
The least squares fit is compared with published data in
figure 3.2. Over the range 0.5 to 35 MeV, the fit is within
3% of the true value.

A means of obtaining the stopping power in media other
than water is now reguired. Huizenga and Storchi (1985)
suggest that, for materials and electron energies of
clinical interest, the stopping power may be scaled
according to the relative electron density of the medium
(the electron density of the medium divided by the electron
density of water). Therefore, provided the relative
electron density is known throughout a heterogeneous medium,
the electron energy may be calculated at all points given an

incident beam energy.

3.5 Requirements for Grid Spacing

The use of a discrete calculation grid is only an
approximation to the continuous case. The required size of
the grid increments to achieve sufficient accuracy must be
known and in this section the limits for the coarseness of
the calculation grid are discussed.

As discussed in sections 3.1 and 3.2, the infinitesimal

integral formulas are accurate up to order & (the size of
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Figure 3.2
Stopping power for electrons in water as a function of

energy.

Stopping power for electrons in water is shown as a function of

the electron kinetic energy. The solid line represents the "true"

values taken from ICRU report 37 (ICRU,1984). The dashed line is a

fit to the equation,

Sece™ = a + bE + c/E

Using a least squares fit, the constants a,b and c are found to be,

a = 1.792 MeV/cm
b =10.03212 cm™2
c = 0.08497 MeV2/cn
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the depth increments). Therefore, the depth increments
should be made as small as possible, allowing for
limitations in calculation time and computer memory.

Recall that the angular transition density is Gaussian
with variance ké/2. To predict the angular spreading of
electrons accurately, the angular grid increment should be
small compared to the root mean square spread in the angular

transition density,

a® << (kd/Z)% {3-12]

A basic assumption of both the infinitesimal integral
equations [3-5] and [3-6] is that the spread of the lateral
transition density is negligible (i.e. it is approximated by
a Dirac delta function). Therefore, it would not be correct
to impose a condition analogous to [3-12] on the lateral

grid increments. Instead, we require that,

(_iF_(Z_é%g)_oAx << 1 [3-13]

In other words, the change in the probability density in a
distance, 4x, must be small. The lateral variation of the
probability density can be very rapid for a narrow beam and
this represents a severe test of the algorithm. Near the

surface of the scattering medium, a pencil beam will always
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be in violation of the condition [3-13]. However, as the
electrons penetrate the scattering medium, they will spread
laterally so that the beam is better approximated by a
discrete grid. It is shown in section 3.6 that the
performance of the algorithm for an incident pencil beam is
satisfactory.

Broad clinical beams vary much more slowly in the lateral
direction than narrow beams and it is expected that they
will be better approximated by a discrete lateral grid. 1In
the case of calculations with clinical beams, the lateral
increment size is normally chosen to be about 2 or 3 mm.

Note that the angular grid spacing is determined by the
angular scattering power, k, and the depth increment, & (see
[3-121). 1In practice, the number of angular and lateral
increments i1s limited by the available computer memory.
Given a scattering power (i.e. an incident beam energy and
type of scattering medium) the depth increment, g, may be
chosen to satisfy both [3-12] and the computer memory

reguirements.

3.6 Calculations in Homogeneous Media: Small Angles

It is the aim of this section to compare the results of
calculations using the numerical algorithm to the
theoretical predictions of the Fermi-Eyges model. The

purpose of such a comparison is to show that the algorithm



70
is successful in reproducing known results. These
calculations have been performed for both pencil beams and
broad beams using the numerical algorithm based on the
"small angle" equation [3~5].

There are several algorithm parameters which may be
varied. These are the number of angular bins, 2Net+l1l, the
number of lateral bins, N., the number of depth increments,
N., the angular increment size, 40, the lateral increment
size, ax, and the size of the depth increments, 6. Due to
the limited memory available (64K) on the DEC LSI 11/73
computer on which the calculations were performed, Neo and Nai
were set to 30 and 64 respectively for all runs. Since the
number of angular increments is set, the choice of the
angular increment size determines the maximum grid angle.

The first set of calculations was designed to test the
effects of varying the lateral grid spacing, ax, and the
size of the angular increments, 4®. For a point
monodirectional pencil beam incident on water, three
calculations were performed for ax equal to 0.3 cm, 0.2 cm
and 0.15 cm. For all three calculations, Nz, 6 and a@® were
set to 20, 0.3 cm and 0.051501 radians respectively. Note
that the angular increment size corresponds to a maximum
grid angle of wn/2 radians.

The mean square angle of travel produced by these
calculations is plotted as a function of depth in figure

3.3. For comparison, the Fermi-Eyges prediction is also
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Fiqure 3.3
Mean square angle of travel versus depth - theoretical

calculations and numerical algorithm results.

The mean square angle of travel is shown as a function of depth
for a 10 MeV point monodirectional pencil beam incident on water.
The symbols represent the numerical algorithm results and the solid
line represents the Fermi-Eyges prediction. The parameters used in

the numerical algorithm are:

Ne = 30

Nx = 64

N = 20

A8 = 0.051501 rad

Ax = 0.3 cm, 0.2 cm, 0.15 cm
d =0.3cm

Note that all three lateral grid spacings produce exactly the same
mean square angular spread. Also, the angular increments, 46, are

chosen to correspond to a maximum grid angle of wn/2 radians.
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Figure 3.4
Mean square lateral position versus depth - theoretical

calculations and numerical algorithm results.

The mean square lateral position is shown as a function of depth
for a 10 MeV monodirectional pencil beam incident on water. The
numerical algorithm parameters are the same as in figure 3.3. The
symbols correspond to three different lateral grid spacings: ax=0.3
cm (triangles), ax=0.2 cm (squares) and ax=0.15 cm (inverted
triangles). As in figure 3.3, the maximum grid angle is n/2

radians.
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plotted. The mean square lateral position is plotted in
figure 3.4 for the same calculations.

It is evident from figures 3.3 and 3.4 that the agreement
between the algorithm calculations and theoretical
predictions is excellent at shallow depths but becomes poor
deep in the scattering medium. The reason for the
discrepancy is the fact that many electrons attain an angle
greater than wn/2 deep in the medium and are lost from the
calculation grid. The result is an under estimation of the
mean square angle of travel and mean square lateral
position.

To demonstrate that this is the case, the calculations
were re-done using the same parameters except for a change
in 4®. The size of the angular increments, a4®, was
increased to correspond to a maximum grid angle of =n
radians. Figures 3.5 and 3.6 show the mean square angle of
travel and mean square lateral position respectively for
this second set of calculations. As expected, the agreement
between the algorithm results and theoretical predictions is
much better.

Figures 3.7, 3.8 and 3.9 show the pencil beam profiles at
1.5 cm, 3.0 cm and 4.5 cm depth respectively for the same
beam and grid parameters as in figures 3.5 and 3.6. It may
be seen that the agreement between the theoretical
predictions and algorithm results improves as the lateral

grid spacing is made smaller. Also, the least favourable
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Figure 3.5
Mean square angle of travel versus depth - theoretical

calculations and numerical algorithm results.

The mean square angle of travel is shown as a function of depth
for a 10 MeV point monodirectional pencil beam incident on water.
The symbols represent the numerical algorithm results and the solid
line represents the Fermi-Eyges prediction. The parameters used in

the numerical algorithm are:

Ne = 30

N. = 64

Ne = 20

AQ@ = 0.10300 rad

ax = 0.3 cm, 0.2 cm, 0.15 cm
d =0.3 cm

Note that all three lateral grid spacings produce exactly the same
mean square angular spread. Also, the maximum grid angle is =n
radians. There is a marked improvement over the case where the

maximum grid angle is n/2 (figure 3.3).
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Fiqure 3.6
Mean square lateral position versus depth - theoretical

calculations and numerical algorithm results.

The mean square lateral position is shown as a function of depth
for a 10 MeV monodirectional pencil beam incident on water. The
numerical algorithm parameters are the same as in figure 3.5. The
symbols correspond to three different lateral grid spacings: ax=0.3
cm (triangles), ax=0.2 cm (squares) and ax=0.15 cm (inverted
triangles). As in figure 3.5, the maximum grid angle is n radians.
Note the significant improvement over the case where the maximum

grid angle is w/2 (figure 3.4).
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Fiqure 3.7
Beam profile at 1.5 cm depth in water for an incident 10 MeV

point monodirectional pencil beam.

The electron fluence as predicted by the Fermi-Eyges model and as
calculated by the numerical algorithm at 1.5 cm depth is shown for
a 10 MeV pencil beam incident on water. Each fluence profile has
been normalized to 100% on the central axis. Only half the profile
is shown since it is symmetric about x=0. The solid line is the
Fermi-Eyges prediction and the symbols represent the numerical
algorithm results for ax=0.3 cm (triangles), 4x=0.2 cm (squares)
and 4x=0.15 cm (inverted triangles). The remaining algorithm

parameters are:

Ne = 30

Nx = 64

Ne = 20

AQ = 0.10300 rad
6 =0.3 cm

These parameters are the same as in figure 3.5.
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Figure 3.8
Beam profile at 3.0 cm depth in water for an incident 10 MeV

point monodirectional pencil beam.

The electron fluence as predicted by the Fermi-Eyges model and as
calculated by the numerical algorithm at 3.0 cm depth is shown for
a 10 MeV pencil beam incident on water. Each fluence profile has
been normalized to 100% on the central axis. Only half the profile
is shown since it is symmetric about x=0. The solid line is the
Fermi-Eyges prediction and the symbols represent the numerical
algorithm results for ax=0.3 cm (triangles), ax=0.2 cm (squares)
and 4x=0.15 cm (inverted triangles). The remaining algorithm
parameters are identical to those of figure 3.7. Note that the
agreement between the algorithm results and the theoretical

prediction improves as ax becomes smaller.
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Fiqure 3.9
Beam profile at 4.5 cm depth in water for an incident 10 MeV

point monodirectional pencil beam.

The electron fluence as predicted by the Fermi-Eyges model and as
calculated by the numerical algorithm at 4.5 cm depth is shown for
a 10 MeV pencil beam incident on water. Each fluence profile has
been normalized to 100% on the central axis. Only half the profile
is shown since it is symmetric about x=0. The solid line is the
Fermi-Eyges prediction and the symbols represent the numerical
algorithm results for ax=0.3 cm (triangles), 4x=0.2 cm (squares)
and 4x=0.15 cm (inverted triangles). The remaining algorithm
parameters are identical to those of figure 3.7. Note that the
agreement between the algorithm results and the theoretical
prediction improves slightly as ax becomes smaller but all lateral
grid spacings produce reasonable agreement with theoretical
predictions. This can be contrasted with figures 3.7 and 3.8 where

the beam profile varies much more rapidly.
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results are obtained at shallow depths where the beam
profile has the highest dose gradients.

The simulation of a pencil beam is a severe test of the
algorithm due to the rapidly varying beam profile. A
realistic beam will have a finite lateral and angular spread
at the surface of the scattering medium and is more suited
to a discrete representation. Calculations have been made
for a 10 MeV broad beam incident on water. The angular-
lateral electron density at the surface of the water was
calculated using the method of Sandison and Huda (1988)
assuming a 10x10 cm® beam at 100 cm SSD (source-to-surface
distance). It was assumed that beam trimmers were in
place. The lateral grid increment, ax, was 0.3 cm and the
maximum grid angle was mn radians. All other grid parameters
were identical to those used in the calculations described
above. Beam profiles are shown in figures 3.10, 3.11 and

3.12 for depths of 1.5 cm, 3.0 cm, and 4.5 cm respectively.

3.7 Calculations in Homogeneous Media: Large Angles

This section will compare calculations made using the
large angle infinitesimal integral equation [3-6] with
calculations made using the analogous small angle equation
[3-5]. Also, calculated pencil beam profiles are compared
to data presented by Lax et al.(1983).

Lax et al. (1983) have made fits to pencil beam profiles
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Fiqure 3.10
Broad beam profile at 1.5 cm depth for a 10 MeV beam in

water.

The electron fluence as predicted by the Fermi-Eyges model and as
calculated by the numerical algorithm at 1.5 cm depth is shown for
a 10 MeV broad beam in water. The beam is 10x10 cm? at 100 cm SSD
and trimmers are used. Each of the fluence profiles has been
normalized to 100% on the central axis. The solid line is the
Fermi-Eyges prediction and the symbols are the algorithm results

for the following grid parameters:

Ne = 30
Nx = 64
N = 20
46 = 0.10300 rad
ax = 0.3 cm
4 =0.3cm

The lateral distance between the theoretical prediction and the
algorithm results is within one lateral grid increment, ax, at all

points.
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Figure 3.11
Broad beam profile at 3.0 cm depth for a 10 MeV beam in

water.

The same beam as in figure 3.10 is shown at 3.0 cm depth.
Again, the lateral distance between the theoretical prediction and
the algorithm results is within one lateral grid increment at all

points.
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Fiqure 3.12
Broad beam profile at 4.5 cm depth for a 10 MeV beam in

water.

The same beam as in figure 3.10 is shown at 4.5 cm depth.
Again, the lateral distance between the theoretical prediction and

the algorithm results is within one lateral grid increment at all

points.
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calculated using Monte Carlo technigues. The fitted

equations are of the form,

d(x) = Aeexp(-x2/a®) + Beexp(-x2/bZ) + Ceexp(-x2/c?)

{3-14]

where d(x) is the radial dose profile and x is the lateral
distance from the beam axis. The parameters A,B,C,a,b, and
¢ are given in tabular form for several depths at beam
energies of 5, 10 and 20 MeV in water. The authors state
that the fits are generally within a few tenths of a percent
of their Monte Carlo results and deviate by no more than

two percent.

As in the previous Section, Ne and N, were set to 30 and
64, respectively, due to limitations in the available
computer memory. Figures 3.13 and 3.14 show small and large
angle calculations compared to the fitted data of Lax et al.
(1983) at 2.1 cm and 3.0 cm depth in water for anincident
10 MeV point monodirectional pencil beam. The depth
increment, 8, lateral increment, ax, and angular increment,
49, were 0.3 cm, 0.15 cm and 0.051501 radians respectively.
Note that the angular increment size corresponds to a

maximum grid angle of n/2 radians.
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Figure 3.13
Comparison pencil beam profiles for small and large angle

calculations.

Profiles at 2.1 cm depth in water are shown for an incident 10
MeV point monodirectional pencil beam. Calculations were made
using the small angle transport equation [3-5] (triangles) and
using the large angle transport equation [3-6] (squares). The
solid line is the fit to Monte Carlo data given by Lax et al.
(1983). It has been assumed that the electron fluence calculated
by the algorithm is proportional to dose. All profiles have been

normalized to 100% on the central axis.
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Figure 3.14
Comparison pencil beam profiles for small and large angle

calculations.

Profiles at 3.0 cm depth in water are shown for an incident 10
MeV point monodirectional pencil beam. Calculations were made
using the small angle transport equation [3-5] (triangles) and
using the large angle transport equation [3-6] (squares). The
solid line is the fit to Monte Carlo data given by Lax et al.
(1983). It has been assumed that the electron fluence calculated
by the algorithm is proportional to dose. All profiles have been

normalized to 100% on the central axis.
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3.8 Discussion

The results of section 3.6 indicate that the algorithm is
successful in reproducing known results. Although pencil
beam profiles at shallow depths are not well represented by
the discrete lateral grid (see figure 3.7), good agreement
with analytical results is obtained deeper in the medium
(see figures 3.8 and 3.9). Even at shallow depths, however,
the lateral distance between the algorithm-generated results
and the analytically calculated curve is less than the
lateral grid increment, ax.

In the case of broad beams, the electron probability
density varies much more slowly in the lateral direction
than it does for a pencil beam. As a result, good agreement
is obtained between analytical and algorithm-generated
results over the entire electron range. Figures 3.10, 3.11
and 3.12 indicate that the discrepancy is less than the
lateral increment size, ax. It should be noted that this
agreement 1s achieved with the coarsest lateral grid
increment (4x=0.3 cm) that was used in the pencil beam
calculations.

Beam energies which are greater than 10 MeV and
scattering media which are less dense than water require a
smaller angular increment size and/or a larger depth
increment size (see [3-12]) than was used in the results
presented in sections 3.6 and 3.7. For instance, if the

beam energy is doubled, then, for a given angular increment
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size, 46, the depth increment, &, must be increased by a
tfactor of four (since scattering power, k, varies as the
inverse square of the beam energy). For the calculations
presented in sections 3.6 and 3.7, the depth increment was
0.3 cm. Therefore, a doubling of the energy would imply a
depth increment size of more than a centimeter. A decrease
in the angular increment size accompanied by an increase in
the number of angular increments would not be possible due
to the limitations in the available computer memory.

Figures 3.13 and 3.14 show that the large angle transport
equation [3-6] is successful in gualitatively reproducing
the broad "tails" in the pencil beam profiles given by Lax
et al. (1983). The fitted profiles given by Lax et al.
(1983) are based on Monte Carlo calculations which include
all types of electron interactions (i.e. bremsstrahlung
emission, delta ray production, large angle collisions and
small angle multiple scattering are all modeled). The
model presented here accounts for only small angle multiple
scattering and the lack of guantitative agreement in figures
3.13 and 3.14 is, therefore, not surprising.

A logarithmic scale is used in figures 3.13 and 3.14 to
clearly demonstrate the effects of the large angle transport
equation [3-6] as compared to the small angle transport
equation [3-5]. It should be noted, however, that the
differences are large only at points where the dose is less

than a few percent of the central axis dose.
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3.9 Conclusions

The numerical algorithm presented in this chapter is
successful in reproducing known analytical results. For
incident electron energies of 10 MeV or less and scattering
media with relative electron densities greater than or equal
to unity, the agreement with analytically calculated pencil
beam and broad beam profiles is within the lateral grid
increment, 4x, at all points. The algorithm based on the
large angle transport equation [3-6] predicts,
qualitatively, the large angle scattering "tails" in the
pencil beam profiles calculated by Monte Carlo techniques

(Lax et al., 1983).
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Appendix 3A
In this appendix, it is shown that the integral [3-5] is
eguivalent to the Fermi-Eyges transport equation up to terms
of order 6. Expanding the density, F(z,x-(0+a¢)s,0+0), in

[3-5] to second order in a Taylor Series yields,

dar

Fz,x-(0+a0)6,0+0) = Flz,x,0) - (0+a)6 3 + o g%

r

(0+0¢) 262 d=F . 4%F
+———2——a—.zx + ¢ Jo=

d=F

Substituting back into the integral [3-5] and using the

properties of the angular transition density,

[? ple;ete) ap = 1 [3A-2a]

jfmwp(®;®+¢) de = 0 [3A-2b]

fw 6*p(0;0+9) do = ko [3Aa-2c]
-® 4 T

yields the equation,

F(z+6,%x,0) = F(z,x,0) - ©8 gg + ' Jo° [3A-3]
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To obtain this last expression, terms of order 62 or higher
have been neglected. Notice that the factor, @, no longer
appears, indicating that the choice of « is irrelevant.
An expansion of F(z+6,x,©) to first order for small 6

gives,
dF

F(z+6,x,0) = F(z,%x,0) + & = [3A-4]

Finally, substitution of [3A-4] into [3A-3] yields the

Fermi-Eyges transport equation,

= .o 9F _
I ° ) Ix + a5z [3A-5]
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Appendix 3B
In this appendix, it is shown that the integral [3-6] is
equivalent to the differential transport equation [3-7] up
to terms of order 6. Expanding the density, F(z,x-

tan(®+a¢)d,0+¢), in [3-6] to second order in a Taylor Series

vields,
dFr dar
F(z,x-tan(e+a¢)0,6+¢) = F(z,x,©) - tan(®+a¢)d =t a5
, tan=(0+a9)62 d2F . ¢2 d=F
2 dx= 72 de=
- ¢tan(o+tad)s 9oF [3B-1]
dxde

The function, tan(®+a¢), may also be expanded in a Taylor

Series to give,

tan(©+a¢) = tan® + apesec?® + aZPp2etanB@esec=0 [3B-2]
Substituting [3B-1] and [3B-2] into the integral [3-6],
using the properties of the angular transition density [3A-

2] and neglecting all terms of order 62 or higher we get,

F(z+6,%,0) = F(z,x,0) - tan(®)s gg + §ﬁogé§ [3B-3]

Finally, expanding the left hand side to first order in a

Taylor Series for small increments, &6, gives the transport
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equation,

= = -tan® Izt T Jo= {3B-4]

As expected, we have recovered the transport equation [3-7].
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Chapter 4

Summary and Future Work

4.1 The Restricted Scattering Model

It was noted in the first chapter that one impediment to
the use of electron beams in radiotherapy is the lack of a
method of accurate dose prediction. The difficulty is
partly due to the inadequacy of the Fermi-Eyges model for
the description of electron transport deep in the scattering
medium. The Fermi-Eyges model predicts that the mean square
angle of travel increases monotonically with depth in the
scattering medium and approaches infinity at a depth
corresponding to the electron range. The restricted
scattering model goes some way toward compensating for the
weaknesses of the Fermi-Eyges model by forcing the angular
spread of electrons to reach an equilibrium value in
accordance with measured data (Roos et al.,1973).

The saturation in mean square angle of travel is
achieved by modeling the variation of the angle of travel
with depth as an Ornstein-Uhlenbeck stochastic process (Hoel
et al.,1984). 1In this approach, a scattering bias is
introduced such that electrons tend to scatter toward
smaller angles rather than larger angles. The parameters
specifying the Jjointly Gaussian angular-lateral probability
density predicted by the restricted scattering model are

given explicitly in section 2.2.
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The improved prediction of the mean square angle of
travel is indicated in figures 2.1, 2.2, 2.3 and 2.4. An
improved prediction of the mean square lateral position is
also demonstrated in chapter 2 in figures 2.5, 2.6 and 2.7.
This leads to a more accurate representation of the broad
beam dose profile in a homogeneous medium as indicated in
figures 2.8, 2.9 and 2.10.

It should be noted that the restricted scattering model
is not a physically based model in the sense that the
angular restriction is ndét introduced to model a known
physical interaction process. Rather, the angular
restriction is introduced to model the observed macroscopic
behaviour of a beam of electrons as it penetrates a dense
scattering medium.

The testing of the restricted scattering model in a
heterogeneous medium requires that the model be incorporated
in a treatment planning algorithm. Since the restricted
scattering model has the advantage of retaining the Gaussian
teatures of the Fermi-Eyges model, it may be readily used in
existing pencil beam algorithms. However, it is also
possible to incorporate the restricted scattering model in
the algorithm presented in chapter 3 by using the
appropriate angular transition density. Both these

possibilities remain for future work.
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4.2 The Numerical Algorithm

In chapter 3, an integral equation is derived which
allows the determination of the electron probability density
at a depth, z+d, in the scattering medium given the
probability density at a depth, z. This integral equation
is shown to be consistent with the Fermi-Eyges model in the
limit of small 6. A modification of the integral equation
is then made where changes in lateral position are given by
6etan® rather than the small angle approximation, Je+0.

Both these integral equations are discretized for use in a
computexr algorithm.

Figures 3.5 and 3.6 show that the small angle equation is
successful in reproducing the mean square angle of travel
and mean square lateral position analytically predicted by
the Fermi-Eyges model. Also, the small-angle-algorithm
recovers analytically predicted pencil beam and broad beam
profiles as indicated in figures 3.7 to 3.12. The
discrepancy between the algorithm-generated results and the
analytically predicted curves is generally within the
discrete lateral increment size, ax. 1In section 3.7, it is
shown that the large-angle-algorithm qualitatively
reproduces the large angle scattering tails seen in Monte
Carlo generated data (Lax et al.,1983).

In order to test the accuracy of the algorithm in
inhomogeneous media, it is necessary to compare the

algorithm results with measured data. However, in a
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heterogeneous medium, it is not possible to assume that the
probability density calculated by the algorithm is
proportional to dose (as was the case in a homogeneous
medium). Therefore, the probability density which is
generated by the algorithm must be converted to dose in
order to make meaningful comparisons to measured data. A
means of performing this conversion for the moments method
(Storchi and Huizenga,1985) based on the input of measured
broad beam depth dose data has been presented (Storchi and
Huizenga,1986). Future implementations of the numerical
method presented in chapter 3 may incorporate a similar
empirical dose calculation scheme.

A more accurate "energy accounting” may be implemented in
the numerical algorithm to improve its accuracy. Presently,
the energy of electrons at a given lateral position is
calculated using the energy of the electrons at the same
lateral position in the plane above (see equation [3-10]).
This approach does not account for the skewness of the
electrons' paths. Electrons with obligue angles of travel
follow relatively long paths in traversing a depth
increment, 6. However, these electrons are assigned the
same energy as electrons with shallow angles of travel which
follow shorter paths over an increment of depth, 6. By
defining several energy "bins" at each lateral position, a
distribution of electron energies at each point may be

calculated. The limited computer memory of the DEC LSI
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11/73 computer does not allow this approach to be taken in
the present work. However, the method of energy "binning"
is a possibility for a future implementation of the
numerical algorithm.

The work of chapter 3 indicates the feasibility of the
use of the numerical algorithm in radiotherapy dose
calculations. Also, using the large angle transport
equation, it may be possible to improve upon the predictions

of the Fermi-Eyges model.
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