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Abstract 

This thesis comprises the studies and results fiom the application of artificial neu- 

ral networks (ANN) and fiizzy logic theory to the control of the high voltage direct cment 

(HVdc) systems. The studies considered their implementation in both low and high level 

control systems in HVdc systems. The study is verified using the electromagnetic tran- 

sients simulation software. The results demonstrated successful performance for single 

mode control (either constant extinction angle or constant current) using an ANN based 

on-line controller. The results for the fiizzy logic based controller showed many improve- 

ments compared to the conventional HVdc control scheme. The fupy logic based control- 

ler concept was M e r  successfidly extended to high level control problems such as the 

control of SSR and power swings. Finally in order to facilitate further application of new 

control techniques such as ANN or fuzzy logic, a MATLAB to transient simulation sofi- 

ware interface was developed. Using this interface, all the h/lKïALB commands and Tool- 

boxes may be used within the transient simulation software. 
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1. Introduction 

High voltage direct current (HVdc) transmission plays an important role in today's 

electrical power transmission systems. The dc voltage in conjunction with fast acting 

power electronic devices in an HVdc system, makes it the most reiiable method for power 

transmission over long distances, and power injection into load buses without much con- 

ceni about system stability and dynamics. 

HVdc systems have been in service for over half a century, and their performance 

is greatiy affected by the control methods used Application of advanced methods such as 

optimal control [4], adaptive control [5 11, multi-variable control [54,60] and different 

approaches such as microprocessor based controllers [38] and digital signal processing 

[39] have been investigated or under investigation. In this dissertation, the application of 

artificial neural networks and fiizzy logic techniques to various HVdc control levels have 

been evaluated. 

Artificial neural networks (ANN) are gaining widespread application in several 

areas of engineering [66], especiaily where, due to non-linearity of the process, it is ofken 

too cumbersome to analyse the process or the plant under study. The ANN has the capabil- 

ity to leam and extract information in systems where the non-linearity and tirne depend- 
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ency do not permit one to use methods such as fkequency or modal analysis. Although it is 

aiways possible to linearize such a system around an operating point and conduct such 

studies, such derived models always remain valid only within the limited region. 

ANN techniques have been applied extensively in the domain of power system. 

Among these works, the contributions of El-Sharkawi to various aspects of power system 

such as secun-îy assessrnent [ 1,2,17,18,64], load forecasting [19,47,48] and drives control 

[26,65] are notable, The ANN has also been applied widely to other fields such as fauit 

detection . 

ANN applications in HVdc system control have only recently become a topic of 

interest. The works of Sood in the application of ANN to HVdc control [39,43,56,57] are 

notable in this area. The application of the ANN has also been studied for fault detection 

in HVdc systems [36,58 1. 

Adaptive control theory, in which the conaoller adapts its parameters andor struc- 

ture to changes in the operating point, is an attractive control technique for HVdc systems. 

This is because the dynamic response of the HVdc 'plant' changes with variations in the 

operating point. However, adaptive controllers require for their design, a fiequency 

domain model of the controlled plant. Due to the switched mode non-linear operation of 

the HVdc system, such a model is difficult to obtain. On the other hand, the ANN tech- 

niques can be applied even without the availability of fiequency models and are thus 

potentialiy attractive. 
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The most widely used control block for conûol tracking is the proportional-inte- 

gral (P-1) controller. It has been widely used in HVdc systems for the interna1 control 

loops. On the other hand, the ANN, through its adaptive [fl response offers the possibili- 

ties of good performance over a wide range. 

in this thesis, afier some prelhimry introduction to the ANN theory, the applica- 

tion of the ANN based controller to HVdc systems, is studied. The results are presented 

and the advantages and disadvantages of the approach are discussed. It is deduced that the 

ANN controiier performs in a mariner comparable to, and even supenor to the P-1 control- 

ler when it is working under one control mode. However, during the course of the HVdc 

investigations, it was discovered that the ANN was not a suitable tool for multi-mode con- 

trol of dc systems. This is because it is not possible to get an adequate description of the 

'planr' . 

Following this, the application of the fllzzy logic method is investigated. The fiizzy 

logic technique is a simple method for encoding the verbal rules into a mathematical 

framework [34,49]. Thus the control rules of the HVdc plant are stated verbally and for- 

mulated into the fuzzy logic implernentation. 

The application of fiizzy logic technique to power systems and HVdc has also been 

widely studied. These application includes gain scheduling [Il, 121, tuning of DC link con- 

trollers [ 1 31 and enhancement of the VDCL performance [U]. 

In this dissertation a novel approach to apply fuzzy logic me- to HVdc control 

is investigated. The method works in a supervisory technique, irrespective of the control- 



ler type (P-1, ANN, ...). It is shown that the fiipy logic method improves the control sys- 

tem performance considerably, and the process to include more elaborate control d e s  is 

also demonstrateci- 

Later the application of the fupy logic to high level HVdc control schemes and the 

ïmplementation of these methods to high level control such as power swing damping are 

also investigated. 

In the course of the thesis investigations, a new technique for investigating 

advanced control methods in an EMTP '-type simulation h e w o r k  was developed This 

technique embodied the seamless integration of the PSCAD/EM'ïDCTM simulation pro- 

gram with the powerfil MATLAB package. M.Alï,AB bas many built-in useful functions, 

and many practical Toolboxes such as neural network and fuzzy logic Toolboxes. 

Although not of direct relevance to the main thesis topic, this technique is an asset for 

investigation of new methods. It also saves a lot of time impiementhg the new technique 

during the preliminary studies. The technique has therefore been presented in Appendix. 

1. Elecîromagnetic transient program 



2. Neural Network 

2.1 Theory 

An artificial neural network as defined by Hect-Nielsen 1241, is a parallel, distrii 

uted information processing structure consisting of processing elements intercomected 

via unidirectional signal channels called connections or werghts. Each processing element 

or neuron has a single output connection that branches (fans out) into as many coilateral 

connections as desired; each carries the same signal -the processing output signal. The 

processing element output signai can be of any mathematical type desired- The informa- 

tion processing that goes on within each processing element can be defined arbitrarily with 

the restriction that it must be completely local; that is, it must depend only on the current 

values of the input signals amving at the processing element via impinging connections 

and on values stored in the processing element's local memory. Neural systems encode 

sampled information in a parallel-distri'buted fkmework. 

There are different types of ANN where each type is suitable for a specific applica- 

tion. The main interest here is applying the ANN for a non-linear mapping. Neural net- 

works can also be used to estimate input-output functions. They are trainable dynamical 

systems. Unlike statistical estimators, they estimate a fimction without a mathematical 
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mode1 of how outputs depend on inputs. They are modelfiee estimators. They learn fiom 

experience with numerical sample data. 

S u p e ~ s e d  feed forward models provide the most tractable, and most applicable 

neural models. Assume that we have a set of observations. This set consists of a group of 

input and output value pairs. Each of these pairs is of the form (x, y), where x is the input 

and y is the output. The set of these pairs inherits the mapping between the input and the 

output. The emphasis here is to extract the closest mapping from the input domain to the 

output range. The measure of this closeness c m  be chosen to conform to some appropriate 

fonn such as least squared error (though it is not the only function but it is quite simple). 

Therefore the objective is to estimate an unknown function f (X+ Y) derived from 

observed set samples ( x l  , yl ),. .. . (xm , y, ) by mïnimiziog an unknown expected error 

fiinctional E [ w ]  . 

We defme error as desired performance minus actual pedormance. Desired per- 

formance refers to the value (yi), while the actual performance is the network output to 

the input (xi). SupeMsion uses the desired performance and actual performance of the 

network to provide an ever-presect error or teaching signal. 

E [ w ]  defmes an average error surface over the weight space. At each iteration, 

the current sample (+yi) and the previous initial conditions define an instantaneous error 

surface. We indirectly search E [wJ for the global minimum by using an optimization 

algorithm such as stochastic gradient descent [25]. Due to the nonlhear nature of the prob- 
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lem, we often converge to a local minhum (w*). The Local minimum w+ may cliffer sig- 

nificantly fiom the global minimum of E [w ]  . Some shaiiow local minima may be no 

better than expected error values detemiined by randomly picking network parameters. 

Since we do not know the shape of the E (w]  , we do not know the depth of its local 

minima. In general, nonlinear muiti-variable systems define complicated, and bumpy, 

average error d a c e s .  However, for smali dimensional problems like the one reported in 

this thesis, no speciai technique is used to guarantee an absolute global minimum. This is 

in conformance with the current practice in the ANN field [55]. 

Consider a set of Input ( x i )  and Output (yi) which are derived fiom an actual 

measurement or simulation of a specific plant. It is desired to fhd a function which can 

resemble the whole plant based on this set of discrete vectors (+yi). In other words we 

want to find a function which approximates the plant to a specific degree of accuracy 

instead of anatysing the nonlinear equation of the plants. 

Figure 2-14 : Geometry of neural fiaction estimation 

A typical feed-forward ANN is shown in figure 2-1 -2. It has one input node x, and 

one output node O dong with k hidden nodes, VI to Y'. The objective is to produce the 



output oi which is as close as possible to the desired target yi, when xi is the input of the 

Figure 2-1-2 : A two layer feed-forward network 

The output of any hidden or output neuron is calculated nom a weighted sum of 

the inputs to that neuron. in addition to the inputs to each pcocessing neuron, a bias level B 

(usually equal to one) may also be applied to each newon. The bias is co~ec ted  with an 

adjustable weight to each hidden and output neuron. Thus, for example, the excitation of 

node Vk is h =wk*xl+bk*B. The output of the neurm Vkis generated by applying a sigmoid 

non-linearity as shown in figure 2-1-3 to the excitation [25]. The same nonlinear fuoction 

is also used for the output neuron. 

Neuron output 

Neuron excitation ( h )  

Figure 2-1-3 : Sigmoid nonlinear function 

The sigmoid function used for this study has an input to output function given by 

eq. 2- 1 - 1. The output range of the fùnction presented in eq. 2- 1 - 1 is the closed interval 

[O, 1 ] (continuous interval between zero and one, including zero and one). Therefore, the 
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output of each processing node (hidden and output) lies in the continuous interval between 

zero and one. The parameter f3 in eq. 2- 1 - 1 decides the fiinction's slope. 

(eq. 2- 1 - 1) 

Using an optimization technique, the weights are adjusted so as the eïror 

for the entire input-output set becornes as low as possible. Usually the mean square error, 

eq. 2-1-2, is chosen as the performance index or cost f'unction: 

(eq. 2- 1-2) 

th 
where i is the number of input pattern (i = 1.2. .. .,p) and oi is the i computed output. We 

seek the weight vector w which results in a global minimum for E [ w ]  . 

Leaming or weight adjustment is carried out by detennining the contribution of 

each connection to the output error and correcting that weight correspondingly. Applying 

the steepest descent algorithm [25], the adjustment in wk yields as: 

(eq. 2- 1-3) 

where q is called the learning rate and is a very crucial parameter in the learning process. 

This procedure is also c d e d  bockpropagation [24], since the output error is back propa- 

gated through the network in order to detennùie the contribution of each single weight to 

it. It should be mentioned that wkis chosen as an arbitrary weight, and the same derivation 

applies to al1 the weights either between two neurons or the weights between the bias and 

any neurons. 



It is reporteci in the literature [25], that the cost fiinction is u d y  fidl of vaiieys 

with steep sides but a shaliow dope dong the floor, and the aforementioned method usu- 

ally gets stuck in these regions and the learning process becomes too slow. There are a 

number of ways of dealing with this problem, including the replacement of gradient 

descent b y more sophis ticated minimization algorithms. However a much simpler 

approach, the addition of a momentum [25], is often effective and is very commonly use& 

The idea is to give each comection some inertia or momentum, so that it tends to 

change in the direction of the average downhill force that it feels, instead of oscillating 

wildly with every Little kick. Then the effective learning rate can be made larger without 

divergent oscillations occuming. This scheme is implemented by giving a contribution 

from the previous time step to each weight change: 

(eq. 2- 1-4) 

Besides it can be shown [24] that "Given any & > O  and any function 

f ;  [O ,  2 ] " c R" + R" . ihere exists a three loyer back-propagation neural network that 

crin approximate f (f E L2 ) ro within E rnean squared error accuracy". Here L2 is the 

mathematical space of functions that can be approximated by its Fourier series to any 

desired degree of accuracy in the mean squared error sense. 

Aithough the above staternent parantees the ability of a multi-layer network with 

the correct weights to accurately impiement an arbitrary function, it does not comment on 

whether or not these weights can be leamed using any existing le-g law. This is an 

open question [24]. 
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In addition there is no guarantee that the fünction king approximated satisfies the 

above L2 condition. Such a function wouid not be amenable to approximate by an ANN. 

However the above theorem suggests that assuming a reasonable fûnction, a three layer 

ANN should norrnaily suffice for most application with variable number of hidden units. 

There is no rule or theorem expressing the optimal number of hidden layer neurons, and is 

unially denved fiom empirical results or mal-enor m e t h d  

The update rule, as defmed by eq. 2 - 1 4  is written in the incremental form, In 

other words for each input-output pair (pattern Q, the adjustment to individual weights are 

denved from tbis equation. The pattern i is presented to the ANN network, and then ai l  the 

weights are updated before the next pattern is considered. This clearly decreases the cost 

function (for smaii enough q) at each t h e  step, and lets successive steps adapt to the local 

gradient . 

The developed neural network system cm be trained and implemented in two dif- 

ferent ways. In one approach, the network can be trained with a set of known input-output 

data pairs known as the training set and, aAer some standard venfication, can be used for 

the actual application. For example a neural aetwork can be trained with some known data 

for sonar target recognition and a* achieving desireâ level of accuracy, it can be used for 

real sonar detection purpose. In this way the ANN network, after extracting the d e s  fiom 

examples or a training set, is known to perform some sort of generaiization whenever it 

corne across new inputs. This method is called ofiline training because the weights 

adjustment is perfiormed pnor to implementing the network in the analysis. In the second 



method, the leaming can be done while the network is k ing  Unplemented in the pmcess. 

In this way the network corrects itself as it cornes across new inputs; leaming while new 

sequences are behg presented rather than afier they are complete. It can thus deai with 

sequences of arbitrary length and there is no requirement to allocate memory proportional 

to the maximum sequence length. This method is called on-line training. In this method 

there is no generalization and al1 the input-output pairs are member of training set. 

The neural network architecture used through out this dissertation, is as shown in 

figure 2-14. It is a two layer network with one input unit, two hidden units (adjustable) 

and one output unit. The weights are altered (leaming process) in order to minimize the 

mean square error between the desired and actual outputs, using eq. 2-1-2. This is done by 

perfonning a gradient descent algorithm on eq. 2-1-4 which results in the normal back 

propagation algorithm (BP). 

u 
Bias x 

Figure 2-14 : Neural network architecture 

This model is developed as a block and used in the digital simulation analysis pro- 

gram. Therefore at each time step an input xi is represented to the neural network model 

and the error between oi and yi is then used to adjust the weights with back-propagation 

algorithm. 



For on-line training (incremental), the weight update is done once each time step. 

Thus for this particula. implementation eq. 2- 1-2 takes the form: 

2.2 ANN Based Control, Literature Survey 
Various attempts have been carried out to use ANN for control putposes. Based on 

the learning method, the ANN based controllers can be divided in two categories. The first 

category are the controllers with off-line learning. Here, f h t  the learning is performed, 

and then the trained ANN is implemented to the process which is under control- Nguyen 

and Widrow [45,46] have shown in a novel approach the use of this method for backing up 

a trailer in a two dimensional plane. Kong and Kosko [33] tried also the same approach, 

but used the truck kinematic equation instead of truck emulator as used by Nguyen. Beau- 

fays et al. [6] have used this method for load frequency control in power systems. Gener- 

ally, the off-line method is applicable to a process with explicit mathematical formulation. 

The second category includes the controllers that use on-line learaing. Chen [7] 

has investigated on-line learning for adaptive control, although his method is ody  applica- 

ble to single input, single output linearizable systems. It is shown that the Iearning process 

makes this controller an adaptive one. On-line learning has been successfilly used for 

underwater vehicle control as reported [6 11. The proposed learning algorithm and the net- 

work architecture provides stable and accurate tracking performance. For the on-line 

learning method, the mathematical formulation of the process under the control is needed. 



Neural Network 

Schiff'mann et al. [55] have reported a comparative study for a .  ANN on-line controller 

and a P-1 controiier. The resuits show that the ANN controller is very effective. In their 

study the plant is treated as an additional and non-modifiable layer of the network and 

only simple qualitative knowledge of the plant is necessary. 

The on-line training makes an ANN controlier an adaptive controiler. The leaming 

process based on the back propagation, adjusts the ANN parameters (weights) such that 

the output follows its reference value. 

2.3 On-line Training 

Assume that a single input single output plant is cascaded to a neural network 

(feed forward connection). The single input single output plant is connected as a 1 s t  level 

to the ANN, and c m  be taken as the 1 s t  processing unit of this network, Le. we can imag- 

ine that the whole system starting nom input to the output of the plant is an additional 

processing unit (neuron) to the network. The last processing unit of this augmented net- 

work does not have a characteristic like the other ANN neurons, in fact the characteristics 

is non-linear and Ume-dependent and not expücitly known. As already explained in $2.1, 

the leaming algorithm tries to set the system weights in order to make the output of the 

network be equal to some desired quantity. Thus by comecting an ANN as a controller 

connected to the input of the plant and implementing the learning process to adjust the 

weights, it is theoretically possible to make the plant output follow the reference order, 

provided that the network parameeters and weights get adjusted by the output error. 



Using a feed forward system for controi purposes, a se l f - s~pe~sed  leamhg sys- 

tem must be used. One such a system bas been reported in [SOI. Of the three proposed 

methods, specialized learning seems to be the best and is chosen for this study. This 

method requires knowledge of the Jacobian matrix of the plant. For a single input single 

output plant, the Jacobian reduces to derivative of the inputsutput function of the plant. 

Figure 2-3-1 : Specialized Learning 

The ody difference of such a composite feed forward system is that the plant is the 

last layer of the network, (in this thesis this last Iayer is a single input single output sys- 

tem) and has the following ciifferences with an ANN: 

The output unit (plant) does not have any adjustable parameters. 
The derivative of the output unit to the input is not explicitly known. 

The fust point implies that the plant does not take part in the leaming process, 

while the second one tacitly reveals that the error c m  not be adjusted in order to get the 

modified error (c) at the neural network output. The back-propagation algorithm used for 

setting the ANN weights, requires the error at the output of the ANN, Le. the error 

between the actual output c and the desued output (the desired output is the one that 

makes the plant error E to be zero). However, the error of interest in the application is the 

error at the plant output. The value of c must be back-caiculated fkom this error; and this is 

only possible if the plant derivative do/& is known, either explicitly or approximately. 
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As already explained, the error that should be back propagated through the neural 

network is the error of c and not E (figure 2-34), and the error of c can be derived if the 

derivative of the plant is known at any operating point. The plant is mostiy viewed as a 

single input single output (SISO) plant and the sensitivity of the plant's input versus out- 

put for the cases under study never changes in sign. This is typicaliy me, for example in 

an HVDC rectifier, where increasing the firing angle a results in a reduction in output 

voltage [XI. Therefore in this analysis, E is treated as if it is the actual ANN output error. 

The controller implementation is shown in figure 2-3-2. 

Reference 
0 

C Output 
Cyftroller Plant - 

/' 

Figure 2-3-2 : On-iine training 

Here, the well known back-propagation rule [24] is used to perform gradient 

descent optimization on eq. 2-1-5 based on error E. Here, the controller acts like a conven- 

tional type P-1 controller and based on the error 6, the controller tries to change its output 

in order to minimize the error E. 

Similar works have been done by Sood et al. 156,573. In contrast to this approach, 

they treated the error E independently for each layer of ANN (using the delta [25] nile for 

each layer). Also they did not incorporate the activation functions slope (p) in their study 

and treated a and q as the only ANN parameters. In a recent publication [43] they consid- 
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ered the effect of the activation fùnction slope on the system behaviour. The parameters a, 

f5 and q are describeci in 92.1. 

2.4 Off-Line Training 

Off-line training is not an adaptive process, but it is fastest to implement, because 

the weights are not changed in the field. One promising method for on-line training is 

using the recurrent ANN, and the methoci is briefly presented in this section. This mode1 is 

trained in the rnan.net shown in figure 2-4-1. This methud is applied by Nguyen [45,46] 

and recently is used for load-fkequency control[6]. The process is outlined as follows. 

In this approach, before training the neural network controller, a separate neural 

network, which is called an emulator, is trained to behave like the plant. Training the emu- 

lator is similar to plant identification in control theory, except that the plant identification 

here is carried out by using the method of back-propagation. 

Figure 2 4 1  : Training the Neural Network Plant Emulator 

The training process begins with the plant in an initial state. At time k, the input of 

the neural net is set equal to the curent state of the plant zk and the plant input uk. The 
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neural net is trained by back propagation to predict the next state of the plant, with the 

value of the next state of the plant zk + used as the desired respcnse during training. 

Given that the emulator now closely matches the plant dynamics, we use it for the 

purpose of training the controller. The controlier leam to derive the plant emulator f?om 

an initial state z0 to the desired state rd in "k" (determined by the designer) tirne steps. 

The objective of the leaming process is to fhd a set of controller weights that minimizes 

the error function J, where J is averaged over the set of initial sets zo . 

Figure 2 4 2  : Training the ControUer with Back Propagation 

Once the plant mode1 is obtained, a candidate ANN controller is w w  designed to 

match the desired control characteristic of a conventional controller. After training, the 

ANN controller will mimic the conventional controller fkom which the training was 

derived. However, the performance of the off-line ANN controller can only be as good as 

that of the conventional one. 



3. The Artificial Neural Network 
Controller 

3.1 ANN Current Control 

To gain familiarity with ANN control of power electronic circuits, the author first 

developed this concept on a simple three phase rectifier connected to an active load. The 

circuit Iayout is shown in figure 3- 1- 1. 

Figure 3-1-2 : Current Control Scheme 

I 

E+I-]{ $ 1  Id , 

I 
a 

Figure 3-1-1 : Current Control Circuit Diagram 

In the above circuit, the current Idin the lagging load is controlled through the 

adjustment of the firing dehzy angle of the rectifier or a. The conventional method to con- 

trol the converter is to apply a proportional integral type (P-I) controller as in the figure 3- 

1-2. 
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The proportional part reacts instantaneously to any ciifference in the measured and 

ordered current, wbereas the integral part keeps varying a till there is no steady state error. 

The current error is fed into a P-1 controller which adjusts a in turn in order to min- 

the error. The P-1 controller has two parameters KI and Kp (integral and proportional 

gain), whicb should be tuned in order to get the best performance. This type of controuer 

is not adaptive and thus following any system changes one has to tune the controller 

parameters accordingly. 

For this analysis the P-I controllers is substituted with the ANN based on-line con- 

troller. The source code for back-propagation is incorporated in a model used in the 

PSCAD/EMTDCm electromagnetic transients program. The model and the control dia- 

gram is depicted as figure 3- 1-3. Since the output of ANN is between zero and one (see 

figure 2- 1 -3), a re-scaling of the output of ANN in the range of a,, and a,, is required 

and is carried out inside the block. 

amin 

Figure 3-1-3 : Current control with ANN 

As is shown in figure 3-1-3, the ANN model responds to two signals. These signals 

are as follows: 

ReJ: This is the ordered value of the controlled parameter. As has already been 

explaineci, the network is feed-forward in topology, and the only input to the ANN net- 

work is this signal. 
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Error: This is the most important signal, and is the only measure of performance 

achievement and is used in the setting the ANN weights. The gradient descent moves 

the weights (w)  so that Qw] approaches its (local) minimum vaiue. The weights and 

their impacts on an ANN are explained in $2.1. 

In addition to the two mentioued inputs descnied above, there exist other parame- 

ters assoçiated with any ANN. The other parameters of this block are: 

the momentum term (a) which is usuaiiy between 0.5 and 0.9. 

the Iearning rate (q) which is n o d y  between 0.5 and 0.9. 

the slope tem (P). This term defines the slope of the sigmoid function and is usually 

between 0.0 1 and 0.1. 

These last three ternis are standard tenns in ANN Iiteratures [23,25] and were dis- 

cussed briefly in $2.3. 

The necessary ANN block was developed and added to the DILUT user compo- 

nents. The electrical circuit developed within DRAFT is shown in figure 3 - 1 4  and the 

ANN block is shown dong with the rest of the control scheme are shown in figure 3- 1-5. 

Figure 3-14 : Electric circuit 
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Figure 3-1-5 : ANN control scheme 

With sorne experimentation, the parameter values selected were a=O. 1, fb0.0 15 

and q=0.6. These values appeared to provide the best learning performance. A simulation 

time-step of 5 psec is used and the weights are continuously updated during each time 

step- The ANN topology is a two layer network with one input neuron, two hidden neu- 

rons and one output neuron. The voltage source in series with the load is set to zero, unless 

it is noted. 

As the first performance and the evaluation test, the current reference change is 

investigated. The steady response with ANN control for this test is shown in figure 3-1-6. 
Firing angle a [degree] 

time {secl time rsecl 

Figure 3-1-6 : Simple ANN current reference change response 
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The ANN based on-line controller as shown in figure 3-1 -3, has the capability to 

adjust the firing angle (a) in order to minimize the dc current error and make the plant to 

follow the reference value. The methods and modifications to improve the response speed 

are discussed later. 

3.2 Behaviour Analysis of the ANN 
As shown in the previous section, an ANN based on-üne controller has the capa- 

bility to adjust the füing angle such mat the dc current follows the reference change. The 

current reference change response shows that the ANN is capable of controllkg the sim- 

ple rectifier for simple curent order change. Artificial neural networks have many variable 

parameter and characteristics such as leaming rate and number of hidden units, where 

each has substantial effect on the ANN performance. The ANN parameters such as leam- 

ing rate (q), momentum (a), activation fiinction siope (B), the number of hidden units and 

the type of the input to the ANN are the parameters that should be fiirther investigated and 

studied. Thus it is straightforward to follow the analysis by studying the effect of these 

parameters on the ANN and the system performance. In order to investigate the behaviour 

of this controller, following tests and simulations have been carried on. 

Operdng point change 

As shown in figure 3-1-4 the load is in series with a dc voltage source. Any varia- 

tion in this series voltage source, direcdy changes the firing angle and the operating condi- 

tion of the rectifier. In order to study the behaviour of ANN due to the operating point 

changes on the performance of the system, the voltage is changed at t=0.2sec., and the 
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response to a step change in cwrent order is shown in figure 3-29 1. Figure 3-2-1 shows the 

response with two différent values for the dc voltage: E&=20 and Ek=O. 

time [sec] 

Figure 3-2-1 : Response of ANN with changes in E& 

System changes as shown in figure 3-2-1 show that the behaviour of the system 

changes with change of the operating point As shown, increasing the load voltage, brings 

about a faster and more oscillatory response. 

With a constant ac bus voltage, the dc voltage ignoring the commutation reactance, 

is Vd = kVaccosa (where V, is the rms value of the line voltage, a is the converter fir- 

ing angle and k = 3 a / x  ) [32], which gives the sensitivity of converter dc voltage to a 

changes as -kVacsina. Clearly, the controller is more sensitive for large a, i.e. smaller 

values of Vd , explaining the larger overshoot at the smaller voltages in figure 3-2-1. 

ANNparameters change 

In addition to the system change, ANN parameter changes should be considered as 

well. The ANN parameters such as activation function dope (fl), the learning rate (q) and 

the momentum (a) have direct effect on the ANN pedomiance. (The following tests were 
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conducted for Ed=O, unless otherwise noted). The foiiowing test (figure 3-2-2) shows the 

result of the activation fünction slope (p) change on the systern response. 

time [sec] 

Figure 3-2-2 : Response of ANN with f3 change 

Similarly the effects of learning rate (q) and momentum (a) on the system 

response are shown in figure 3-2-3 and figure 3-2-4 respectively. 

time [sec] 

Figure 3-2-3 : Response of ANN with q change 

time [sec] 

Figure 3-24 : Response of ANN with a change 
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Considering the r d t s  of the conducted tests, the foNowÎng points are deduced: 

1. The response is very sensitive to the dope (f3) of the activation hction. As shown in 

figure 3-2-2, higher f3 implies faster ANN performance. Therefore it seems very plau- 

sible to apply the siope change for increasing the ANN system response. Sood et al. 

have also pointed to this fact in their recent publication [43]. The method has some 

superficial simiIarity to the simulared annealing [35]. 

2. The leaming rate q also determines the ANN performance. The learning rate as 

defined by its very first definition [25] adjusts the weights' updates in each epochl. 

Hence the higher q irnplies larger adjustment and therefore faster response. 

3. The momenturn a incorporates the previous weight update in the recent weight 

update. As shown in figure 3-2-4 the value chosen for the momentum does not contrib- 

ute significantly to the speed, except for a s m d  increase in the oscillations observed 

for large a. 

Of the two parameter slope and learning rate, it tums out that the slope bas the pre- 

vailing effect in system performance speed. This fact will later be utilised with the aid of 

fuay logic reasoning to improve the ANN response [§6.6]. 

AMVtopology, number of the hidden neuruns 

The number of hidden neurons in an ANN is one of the main characteristics of the 

system. The number of neuroos in an ANN determines the total number of ~ o w m  in 

the network. The larger the number of neurons, the more time consuming and lengthy is 

the learning process. Cornnion experiments fiom the ANN [25] shows the optimal per- 

1. training cycle 
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formance of the ANN is achieved within a range of hidden unit nwnbers, and for the low 

order ANN of this study this number need not be more than two or three. To investigate 

the effect of number of hidden neurons on the ANN performance, the ANN with both two 

and three hidden neurons were simulated, and the resuits are shown in the figure 3-2-5. 

time [sec] 

Figure 3-2-5 : Response of  ANN with 2 and 3 neurons 

Figure 3-2-5 shows that the ANN performance does not improve considerably by 

employing more hidden neurons. 

ANN topology, the effect of bias 

So far it is assumed that al1 the neurons in the ANN block, were comected through 

adjustable weights to a constant quantity called bias. As a M e r  study the effect of the 

bias on the overall performance is investigated. 

The following test as shown in figure 3-2-6 reports the response of the ANN con- 

troller with and without the bias (figure 3-2-7). 
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Figure 3-24 : ANN with and without bias 

- - - * - - -  without bias - with bias 

thne [sec] 

Figure 3-2-7 : Response of ANN with and without bias 

The hidden units as well as the bias determine the number of unknowns associated 

with the ANN. Bot .  of these tests suggest that increasing the number of unknowns for this 

simple ANN (one-input, one-output) does not contribute to system speed and even makes 

the system more oscillatory. The ANN with bias has three weights (two to hidden, one to 

output) more than the ANN without bias. Similarly the ANN with three hidden neurons 

has three (one nom input, one to output, one h m  bias) weights more than the ANN with 

two hidden neurons. 
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Increasing the number of ANN weights does not contribute to system performance 

and makes the response even more oscïilatory. 

ANN topofogy, iinput form 

As already was shown in figure 3-1-5, the input to the ANN is the reference signal, 

and the error signal is used for weights adjustments. Therefore any reference changes will 

also be sensed through the enor signal. This tacitly implies the fact that the input change is 

also sensed by the ANN through the sudden jump of error, and the input need not neces- 

sarily be the reference value, and other signais can be taken as the ANN input. Three dif- 

ferent inputs are investigated as the ANN input signal forms. These three different ANN 

topologies are schematically shown in figure 3-2-8. 

ReJ signal ar 
& -+ r4nir~ input 

Ref: 

Const. si'gnal at 
ANN input 

lan E m r  signal at 

1C7d, m i n p u t  

Figure 3-2-8 : ANN topologies 
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The result of the simulation with these three different input signals are reported in 

the foUowing figure 3-2-9. 

time [sec] 

Figure 3-2-9 : Response of ANN with different reference inputs 

In the second f o m  (constant input), the ANN input can be regarded as a bias, 

which contributes to the output through its connection. While the diird form (error input) 

has an input which is zero whenever the error signal is zero. 

It is interesting to point out the following subtle point. Methods 1 and II mostly 

provide a large positive or negative bias on the neuron's input which drives the neuron 

closer to the nonlinear region of its activation hc t ion  where the change of gain is not so 

pronounced. Conversely, the use of error as the input (method III) forces the operating 

point tc *% centre of the linear region of the sigmoid fùnction, where the neuron activa- 

tion function is linear and input change contributes to the output. 

Although the third method (error input) shows slower overall response, note that 

this method initially responds faster than other two. Thus using the error signal as the 

input and increasing the speed by using steeper activation functions, lends itself to 

improved performance (see ANN response shown dotted in figure 6 6 6 ) .  
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Simulation time step 

Ail the studies discussed in this dissertation are based on using an electrornagnetic 

transient program [14] type software. In this type of the study the equatios for the system 

are solved once every time step and similarly the ANN weights are adjusteci the same way- 

Since the back propagation is carried on in each time step, the fiequency that the weights 

are updated is directly related to the simulation time step Obviously the smaller time step 

implies more fiequent weight adjustment in a nin, or faster and more osciiiatory response 

as shown in the following figure 3-2- 10. 

- - - - - - -  A P 2 0  psec 
- At = 5 p e c  
-- At = 3 psec 

O 
O 

010 O, 1 0.2 0.3 0.4 0.5 0.6 

time [sec] 

Figure 3-2-10 : Effect of simulation time step 

The results of various studies on the ANN behaviour, suggest new possibilities in 

the ANN implementation. For example it is possible to use an ANN with low training fie- 

quency, and compensate for the reduced response speed by using neurons with steeper 

slopes (higher B). 

3.3 Synchronized Learning 
Firing angle to a converter is the only signai that controls the converter and its per- 

formance, and al1 the control goals are achieved via this signal. The very nature of the con- 

verter is such that the firing angle c m  only affect the converter performance six times 
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during the fiindamental p e n d  (for a six pulse converter). Once a firing is issued and one 

valve starts conducting, any subseqyent changes within the f /6  sec. to the firing angle 

wi i l  not affect the converter. 

Thus if the learning is carried out once in each time step, then most of the times the 

ANN output (firing angle) does not bring about any changes to the converter performance. 

For exarnple for a simulation time step of At=50ms and the fundamental fiequency of 

60Hz, using the on-line training, the ANN is trained 400 times in each cycle, while only 

six of these trainings are really altering the performance and the error, while the rest 394 

trainings do not affect the converter operation. Therefore for the most of the time, the 

learning procedure does not get any relevant information regarding its performance 

achievement, 

In order to solve this short coming of the on-line ANN learning, the learning is car- 

ried out six times in each cycle (of fundamental frequency). The training instants are 

detennined fiom a synthesized train of pulses assembled fiom the converter firing control 

circuitry. This signal is composed of unit impulses at the instants that each valve com- 

mences to conduct, or at the end of commutation period (in other words, a periodical sig- 

nal consisted of six equidistant impulses within the fiindamental period). Therefore this 

synthesized signal reproduces the instants that a change in the firing angle makes a change 

in converter performance. Thus the leaming carried out at these instants are bound to train 

the ANN paraxneters. This synthesized signal can then be connected to the ANN enable 

input, or more simply multiplied by the training error. The method is named as synchro- 
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nous training. The figure 3-3-1 shows the results of cornparison between normal on-line 

training as explained previously in this chapter with synchronized training, The results 

show that the speed and the accuracy of the synchronized method is considerably better 

than the on-line method- 

S ync hronized on-line 
On-iine tirne [sec] 

Figure 3-3-1 : Syncbronized on-line training 

The learning and its effect on the performance are more prominent in the synchro- 

nized leaming than normal on-line learning. For example the results of the operating point 

change as shown in figure 3-2-1, do not show any peifomiance improvements as the learn- 

h g  continues after the sudden change in the series dc source. While conducting the same 

time [sec] time [sec.] 

test shows graduai performance irnprovement even for a larger change (EdP = 100 ). - 100 - - --- 
3 80 3 ::: - L L  

Figure 3-3-2 : Synchronized operaüng point change 
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ANN and P-1 Controllers Performance Comparison 

The ANN controller as discussed earlier is equipped with an adaptive procedure 

which guarantees that the ANN evolves with the system changes. While the P-1 controller 

is not adaptive. The results of the two controllers on the system behaviow are shown in the 

figure 3 4  1 . - 

U 
O. 1 0.2 0.3 1-7 1.8 1.9 

sec. 

Figure 3 4 1  : P-L and ANN cornparison 

Both P-1 and ANN as depicted in figure 3-41 show initially the same response 

speed, while the P-1 has more overshoot and the change in the operating point results in 

substantial P-1 response degradation, while the ANN controller c m  adaptively adjust the 

controller performance and behaviour due to any system changes. 

In order to make the P-1 response more robust, a compromise gain is usually 

selected in typical control systems. This gain setting gives acceptable response at each 

operating point, but is not the best possible response at any operating points. 



The Artificial Neural Network Controiier 

3.5 Conclusion 
The ANN is applied to the contra1 of a simple rectifier c o ~ e c t e d  to an active Ioad 

Preliminary studies show that the ANN provides superior performance under diflerent 

system conditions. Further, the effect of the ANN parameters are investigatd It nims out 

that the response speed increases with activation funftion siope change. This idea wiil be 

followed later in $6.6. The effect of different inputs to the ANN was investigated. It is 

found that the error c m  also be used as the ANN single input. In effect throughout $4, the 

error is used as the single input of the ANN along with increased slope (B) for the activa- 

tion function. The result of performing the on-line training procedure, six times in each 

cycle has shown significant improvement. This method, referred to as synchronized l e m -  

hg, is independent of the simulation tirne step. 



4. The CIGRE HVDC 
Benchmark Mode1 

In order to investigate the performance of ANN controllers on an HVdc system, 

thefirst C .  NVdc benchmark model is chosen [59j as the HVdc system under study. 

This benchmark was designed by CIGRE study group 14.02 with parameters that present 

a high degree of difficulty for the control studies. 

Since the advent of HVdc transmission systems, their controls have been studied in 

great detail [20,37], and many proprietary methods [3] have been developed- These con- 

trol schemes are quite compiicated and includes many protective measures. They also 

have been utilized for many yearr and with ongoing modifications, are now considerably 

optimized. 

Ushg a practical and complete control system for the studies conducted in this the- 

sis is firstly very cumbeaome and secondly distracts one fron the primary objectives of 

the study. Also, many of these control systems are of proprietary nature and have not been 
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published. Here the aim is to investigate the feasibility of applying new techniques to the 

HVdc control schemes. Therefore only the main modes of the HVdc control are imple- 

mented, without adding the auxiliary modincations and improvements. The main parts of 

the HVdc control are weli explained and elaborated [59], 

The FGH report [67] which describes a proposed control method for the CIGRE 

benchmark, is used here as the basis of the control scheme. This control scheme is referred 

to as the conventional control scheme, when being compareci to the methods proposed in 

this dissertation. 

It should be reiterated that the conventional method used in this dissertation is not 

the complete actual control method used in a real ENdc system. However the conven- 

tional method comprises the main modes common to al1 controt schemes. 

This chapter describes the CIGRE HVdc model and control, and also identifies the 

control parameters to be replaced with the ANN or fiizzy controllers later in this disserta- 

tion. 

4.1 CIGRE Benchmark 

The CIGRE benchmark mode1 is used as a test system. The CIGRE benchmark 

model has been designed for conducting cornparisons of performance of different dc con- 
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trol equipment and control strategies. The configuration is a two-terminal dc scheme, 

depicted as in figure 4- 1 - 1. 

SOOkV, 2kA 

Figure 4-14 : CIGRE benchmar 

The short circuit ratio and the effective short circuit ratio (SCR and ESCR), are 

important indices for characterizing the degree of expected operational problems in a dc 

transmission scheme. The SCR is defined as the ratio between the ac system short circuit 

MVA and the dc power. If the filter MVArs' are subtracted h m  the ac system MVA in the 

above calculation, the resultant quantity is the ESCR The circuit under study [67] has the 

following rectifier and inverter ac system characteristics: 

Rectifier SCR = 2.51-85O ; ESCR = 1.9/-û2° 

Inverter SCR = 2.U-75O ; ESCR = I.91-70° 
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These short circuit ratios characterize wealc systems. The combination of the weak 

inverter system, the dc side resonance (large admittance) near fundamental, and the ac 

side resonance (large impedance) near the second hannonic makes the benchmark system 

particuiarly onerous for dc contml operation. 

4.2 HVDC Control Strategy 

Both converter substations (rectifier and inverter) are provided with a current con- 

trol loop including a current measuring device, a current controller and firing control 

equipment. Usually, one of the converters is current controlled, and the other operates in 

constant extinction angle as described below. 

The control system for the benchmark mode1 has two main parts. 

Rectifier constant current (CC) 

Luverter constant current (CC) or inverter constant extinction angle (CEA) 

Normally the operating point is the intersection of the rectifier CC and inverter 

CEA (point A figure 4-24), which results in the minimum reactive power deaiand [SI, 

without an excessive risk of commutation failure. With the rectifie;, in the CC control 

mode and the inverter in the CEA mode, the terminal dc voltage is the intersection of the 

two characteristics as shown by point A (figure 4-2- 1). At this operating point the firing 

angle to the rectifier is above that of the iimiting value amin (the minimum rectifier firing 

angle). 
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There, the rectifier current controiler adjusts the voltage to keep the current con- 

stant at some point on the vertical he.  During transients, e-g. Line faults, there are excur- 

sions of voltage. During these transients the current is ternporafily different h m  the set 

value. Note that the charactexistic shown in figure 4-2- 1 is the locus of the operating points 

during the steady state operation of the HVdc system, and does show any transient operat- 

ing point. 

There are fou. reasons for keeping the power factor high; two concerning the con- 

verter itself and the other two concerning the ac system to which it is comected. The k t  

reason is to keep the rated power of the converters as high as possible for the given current 

and voltage ratings of valves and ttansformers. The second reason is to reduce the stresses 

on the valves and damping circuits, The third reason is to minimize the required curent 

rating and the copper losses in the ac ïmes to the converter. The fourth reason is to mini- 

rnize voltage drops at the ac tenninals of the converter as the loading increases. The last 

two reasons apply to any large ac loads. 

The power factor c m  be raised by adding shunt capacitors, and if this is done the 

disadvantages become the cost of the capacitors and switching them as the load on the 

converter varies. 

The reactive power demand of the converters is a function of firing angle. The 

reactive power demand of the rectifier: 
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1 
cos+ = 2 [cosa+ cos (a + u)] (eq. 4-2-1) 

increases with converter firing angle (a) and similarly the reactive power demand of the 

inverter: 

2 
COS+ = 2 [COSY + COS ( y +  U) ] (eq. 4-2-2) 

increases with converter extinction angle (y). In order to get a reasonably high power fac- 

tor, it is preferred to operate the inverter with minimum extinction angle (y) and the recti- 

fier with minimum firing angle (a). 

In a rectifier, it is easy: we can make a=OO, for which cosa = I . (For practical 

reasons, a should be about 5"). In an inverter it is more difficult, and y must be greater 

than zero by some margin. The extinction angle (y) should not breach this Limit for the rea- 

son that follows. 

The reason lies in the fact that, after a valve (thyristor) tum off it should regain its 

blocking capability, prior to re-application of the forward voltage. We can not control y 

directly but instead must control the ignition advance angle B = y + u in accordance 

with the value of overlap angle u. 

A cornmon malfiuiction of an inverter is a failure of commutation. Commutation 

failure is the phenomenon in which an off-going valve (thyristor) either does not com- 

pletely extinguish, or re-ignites immediately on forward voltage. Commutation failure 

occurs when conditions in the ac or dc circuits outside of the bridge resdts in inadequate 

line voltage which is necessary for valve tum-off. 
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In order to ensure çuccessful commutation during steady state operation, the on- 

going valve should be fired when there is sufficient line voltage to successfully transfer 

current nom one valve to another. This can be achieved by maintainhg a minimum com- 

mutation margin, Le. making sure that after a valve tums off, it does not see forward volt- 

age until the end of the margin penod. This penod, expressed as an electrical angle, is 

called the extinction angle (y) of the valve, and the above strategy ensures that its value be 

kept at a constant y,, (typically 15°-180). The controller that achieves this goal is called 

the constant extinction angle (CEA) controller. 

Under rated conditions the rectifier is in CC and inverter is in CEA control mode. 

System changes such as ac side voltage reduction at the rectifier end pushes the CC con- 

troller to hit the minimum firing angle limit on the rectifier side (a = amin ), and the con- 

troller acts as the constant firing angle. 

Sünultaneously the inverter controller should switch fiom CEA to CC. In other 

words the current control function is taken over at the inverter end, with the rectifier oper- 

ating on its uncontrolled charactenstic at the minimum firing angle. The inverter is pro- 

vided with a current controller, but for this station the current reference is reduced by the 

amowt Md, the so called cuwent ma@. 

In the effort to M e r  improve the control system response some other details are 

also incorporated into the HVdc control scheme. Some of these modifications are of gen- 

eral nature and common among ail the control schemes, and are summarized. 
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In order to prevent sudden changes in the operating point during system transients 

(as mentioned above), the crossover sharp h e e  (as shown dashed-dotted figure 4-2-1) is 

broken with a positive resistance dope fiom the ymin characteristic to current control 

characteristic of the inverter (AB instead of AB 'B figure 4-2- 1). 

This droop characteristic is usudy calied cumnt error control (CEC) as shown in 

figure 4-3- 1. in fact as long as the CEC block is active and the operating point lies on the 

droop line AB, the inverter is under the CEA control mode with adjusted value for the ref- 

erence y. 

At point A the y reference is ymin. As the point moves dong line AB a linear off- 

set is added to ymin which is equal to Ay at point B. The actual mode cross over from CEA 

to CC and vice versa occurs at point B. This fact will M e r  be used in 96. 

A voltage dependent current Iimit (VDCL) is usually inîroduced in order to reduce 

the current order to approximately 0.33 p.u. at low dc voltages. This ensures that if the low 

voltage is caused by an inverter side commutation failure, the inverter valve that has failed 

to tum off does not continue to cany fidi load dc current and hence be subjected to thermal 

overload. The VDCL also has the additional bonus benefit of providing improved start-up 

and fault recovery characteristics. 
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The aforementioned operation modes, lend the foiiowing characteristic. 

Figure 4-2-1 : HVDC Control Characteristic 

4.3 HVDC Control Diagam 

The basics of the HVdc control are briefly discussed in 94.2. In order to imptement 

these basics to the CIGRE benchmark, the control diagram shown in figure 4-3-2 is used. 

1 CEC 1 

Rectifier Control 

Figure 4-34 : Conventional Control Scheme 
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Note: The limits of the P-1 controllers as shown in figure 4-3-1, are show11 in the P-1 
blocks oniy for the emphasis. However these limits are treated within the P-1 algorithm 
used for simulation studies, and the P-1 controiiers used are non-wind-up. 

Most the of parameters and terminology used in this diagram are discussed in 54.2. 

The inverter control circuit as shown in figure 4-3-2 is composed of two separate feedback 

loops. The top one is the current controiler and the bottom one is the constant angle con- 

troller. The outputs of these two is fed into a minimum selector. The smallest of the two 

firing angles generated, is then selected as the inverter firing angle. Thus the minimum 

selector ensures that oniy CC or CEA is active. This minimum selector does the controlier 

switch over fiom CEA to CC and vice verse. Besides when one of the controllers is 

selected, the other becomes saturated at its limit. This intruduces unwanted deiay or dead 

band when the control mode on the inverter side should be switched. In order to improve 

the inverter controller performance and speed up the mode switching this minimum selec- 

tor provides also an auxiliary signal. This signal disables the controller which is not 

selected, thus prevents it from going into saturation and thus reducing the switch over 

dead band. This select signal is set to one whenever the CEA mode is chosen and zero 

when the inverter is in CC control mode, thus shows the inverter mode of control. 

select r 
Figure 4-3-2 : De-selection method 
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Making the output of the de-selected controller foilow the output of the selected 

one, a technique cornmon to analog controilers (usuaily b o w n  as follow-up), can not be 

used here. 

In the nominal condition, the lower path (CEA) is active thereby ensuring con- 

stancy of extinction angle at its nominal value of 15". However, for a drop in the rectifier 

ac voltage, the CC path would become active. The current error (CE) mode of operation 

descnied earlier in $4.2 is implemented by modimg the extinction angle reference value 

with an offset which is proportionai to the dc current. This block is shown as CEC in fig- 

ure 4-3-2. 

The rectifier control scheme is composed of a curent control and a voltage 

dependent current limit (VDCL) block. VDCL produces a current order (say 1.5 p-u.), 

which under the normal operathg dc (Vd,) voltage is more than the rated dc reference cur- 

rent (1 p.u.), thus the minimum operator in the rectifier control scheme chooses the actual 

dc current reference. However during low dc voltage this block issues a reduced current 

order (0.33 p-u.), and thus the reduced current order is fed to the controiler. Later as the dc 

voltage builds up, the reduced current order is ramped up and ha l l y  the actual current ref- 

erence is fed to the rectifier cmrent controller. 

The dc current reference (Id& is normally derived t b u g h  a power control loop as 

is discussed in $4.4. 
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4.4 Power Flow Control 

For controlling the dc power, rhe current reference in the cwrent controller is 

derived f?om the ratio of the power order and the inverter side dc voltage, as shown in fig- 

ure 4-44. The inverter side dc voltage can be estimateci fiom the rectifier side voltage by 

subtracting the dc line voltage drop. 

The rectifier substation as shown in figure 4-41, is provided with a power control- 

ler. The current reference is cdculated by dividing measured dc power by measured dc 

voltage. The upper limit of the dc reference current is M e r  adjusted by the measured dc 

voltage [30]. 

Figure 4-41 : Power flow control loop 

V& 

The control system at the rectifier is similar, except that the dc current margin is 

not subtracted fkom the current reference (this ensures that the rectifier and inverter will 

not sirnultaneously attempt to control current). 

Conventionally these controllers are P-1 controllers with gains and Iimits set for 

optimal performance 1671. This control scheme is referred to as the conventional method 

al1 through this dissertation. Henceforth, the application of new modes and techniques to 

these control principles are investigated or evaluated. 

OS 1 

* ' - O E e  O 5  0.9 v 

Power flow control = 

Pr 4-1 - 0 *=&f 



5. ANN Control Studies 

In this chapter the performance of the HVdc system using ANN controllers is 

investigated. The control diagram shown and desmibed in 94.3, is used for the W d c  sys- 

tem under study. This control scheme is referred to as conventional scheme throughout 

this dissertation. In the conventional scheme the three controîler blocks used as shown in 

figure 4-3- 1, are proportional integral (P-I) type blocks. It has been verified by the studies 

and analyses conducted in 93, that an ANN based controuer can be substituted and used 

instead of a P-1 contrder in control systems. 

Using the same control basics as shown in 94, the three controllers shown in $4-3- 

1 are substituted with three ANN based on-line controllers, 

It was shown in 83 that there are three important parameters associated with each 

ANN. The simulation r e d t s  have shown that the best performance using ANN controilers 

is achieved by adjusting these parameters, discussed eariier in $2.3, as foliows: 

a = 0.1, learning momentum 

f3 = 0.1, activation fiinction dope 

q =0.6, leaming rate 



In order to M y  evaluate the performance of the system, the following tests were 

conducted on the system to veriQ the controller behaviour. 

Current order reduction and restoration (20%) 

Rectifier ac side voltage reduction and restoration (20%) 

Rectifier ac side 3-phase fault and recovery 

Inverter ac side 3-phase fault and recovery 

Dc line fault and recovery 

The objective of conductîng the above tests is to investigate the behaviour of the 

ANN based controller in HVdc control scheme. It turns out that the ANN is not a suitable 

control scheme for multi-mode Wdc operation. The work presented in this chapter 

describes why this is so. 

5.1 The Current Order Change 

Normally in an HVdc system the inverter operates under the CEA mode. A current 

order change does not initiate any crossover nom CEA to CC on the inverter side. Figure 

5- 1 - 1 shows the result for a 20% current order change on the CIGRE benchmark. The 

ANN controllers both on the rectifier and the inverter side perform properly, however they 

are slower in contrast with P-1 based controllers. 
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Figure 5-14 : Dc current change 

The current order change as already mentioned above, does not initiate any control 

crossover on the inverter side. Thus, only the (CEA) controller is active on the inverter 

side during the transient while the other controller (CC) is hilly de-selected. The response 

speed cm M e r  be improved by M e r  adjustment to ANN activation functions' dope. 

However it tums out that, this can deteriorate the system responses as shown in the later 

tests. 

5.2 The AC Voltage Reduction Test 
Although an HVdc system normally works with CEA mode on the inverter side 

and CC on the rectifier side, the inverter sometimes assumes control of current with low 

rectifier voltage. The change of the operathg mode is ofien referred to as control mode 

crossover. Thus any proposed control scheme such as an ANN scheme, should be tested 

for such a mode crossover. The example discussed earlier in $5.1 did not present a control 

mode crossover. Presented below is a case of rectifier side ac voltage reduction in which 

the lower ac voltage forces a control crossover fiom CEA to CC on the Uiverter side. 



The voltage is hitiaily reduced by 20% (figure 5-24} on ali three phases. Folïow- 

hg the voltage reduction, the rectifier firing angle hits the controîler's lower limit and the 

inverter curent controller, afier some delay, switches to curent control which adjusts the 

dc current to the reduced current reference (Id-hId) equal to 0.9 p.u. It was observed, 

upon the ac voltage restoration the HVdc system undergoes a commutation faïiure. 

As soon as the de-selected ANN controller, becomes selected again, it shows a 

very sluggish response. The controlier behaves as if it star& to train for the first tirne, and 

the previous trainings are ail forgotten. The ANN used to work fine prior to de-selection, 

but when it is re-selected, the ANN controller with the old parameters (weights of the 

ANN) does not generate a suitable output, and new training should be starteâ, which needs 

more tirne. The ANN finally succeeds to restore the control and recover the system power 

to 1 p-u. dc current, which means the new training converges. 

In addition, M e r  tests and experhents which initiate controi crossover on the 

inverter side, al1 ended up in the same system performance. It was concluded that control 

crossover on the inverter side detenorates the system performance and results in a com- 

mutation failure. However following this commutation failure the ANN controller always 

succeeds to control the plant. 
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Figure 5-24 : Ac voltage change 

Compared to the ANN, the conventional method using P-1 controllers with gains 

and parameters given in [67], performs quite well subjected to al1 different tests without 

any commutation failure and restores the transmitted power very smoothly to one p-u. 

5.3 Commentary on the Unsuitabiiity of ANN 
Foiiowing Mode Crossover 

The mentioned drawback of the ANN based control lies in the basic principle of 

the on-line training mechanisrn. As has already been explained, in this type of Iearning 

procedure, the ANN parameters (weights) are adjusted once every time step. Thus when 

the system experiences a transient, the weights of the ANN change in a direction to 

improve the ANN performance under this transient. When this transient finally dies out 

and the system reaches a new steady state operating point, the ANN parameters have been 

varied so many times, they hardly include any adjustments made at the instant the tnm- 

sient began. In other words the ANN forgets what it has learned, due to the abundant flow 

of information. 
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The P-1 controller response to error change is predictable, and as long as its output 

lies between the output limits, one always expects to see the output changes in proportion 

to input changes. For the ANN controller the situation is not so straightforward. The 

behaviou. of the ANN following the crossover is quite unexpected. Figure 5-2-1 shows 

that the CC controller on the inverter side does not seem to be fast enough folIowing the 

voltage drop and restoration, while it shows reasonable speed elsewhere- With on-line 

learning, the ANN controller has to be re-trained for any new operating condition. As this 

takes the, the response immediately foilowing the crossover is very P r ,  as the network 

has been trained for the pre-crossover mode. 

It should be stated that we have not used any derivative information in the control 

algorithm. This is because an input-output rate of change for a converter is not continuous. 

For example, consider a simple 6-pulse rectifier as shown in figure 3- 1 - 1, where the firing 

angle a is the sole input to the rectifier. Now if a is changed by an infinitesimal value 

equal to Au, the change in firing angle wili not affect the rectifier prior to the next firing 

instant. This fact may also be fonnulated as an uncertain delay fiom O to 1 / (6fi sec., 

where f is the ac voltage frequency (fundamental). There is no way to give a precise 

amount for this value, unless the instant of f'uing angle and firing angle change (Aa) with 

respect to the ac voltage is known in advance. Henceforth, for a specific Au, the associ- 

ated dc current change, q, is zero fiom the moment that the a changes till the next the 

f i n g  instant. Therefore the quantity dId/da , where 5 is the dc current, assumes zero 

value and then changes to some non-zero quantity, which is correlateci to a changes made 

by the controller between firing instants. Thus, it is impossible to define a unique inverti- 
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ble mapping between a and the system response, as demanded by the back propagation 

aigorithm. 

Another aspect that makes the use of derivative information (Jacobian) in the con- 

trol scheme difficult is that the equations which descni a converter are based on constant 

dc current. It should pointed that the fiindamental HVdc equations shown in eq. 5-3-1 [62] 

only involves average and mis quantities, although hvertible, is of no interest to us for 

definhg a Jacobian. 

5.4 Composite Error Control 
Another possible control method was proposed during the course of this thesis. 

This was to use composite error. The idea is to perform the minimum selection at the level 

of the control errors (y and Id errors) instead of doing the selection at the output of the two 

controllers (CEA and CC figure 4-3-2). Using this rnethod, only one controller will be 

used on the inverter side and this removes the de-selection problem mentioned earlier. The 

rnethod is briefly outlined in the following figure. 

'"f l Md 

+ ymeasw Inverter C ontrol 

Figure 5-44 : Composite e m r  control scheme 
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The composite error control scheme as shown in figure 5 4 1 ,  includes ody  one 

controller instead of two, which c a .  be either P-1 for conventional method or ANN for this 

study. 

Since only one controller is used, the two errors must be scaled with KI and K2 as 

shown in figure 5 4 1  to make the controller parameters suitable for both options. For the 

purpose of argument, assume ody  a single gain KC for the single controiier. Let KI and K, 

be the desired gains for the current and y path respectively (these values could be obtained 

from simulation or other studies). In order for scaling to work, we must have W K I = K ~  

and K ~ K - F K ~ ,  from which the gains KI and Kt can be calculated. 

Using an ANN in the error composite scheme, the ac voltage test is carried out. 

The results do not show any improvement. Conducting the ac voltage test, following the 

voltage restoration the inverter expenences a commutation failure, as in the previous sim- 

ulation, This M e r  reiterates that the control mode crossover results in the ANN mal- 

fhction. 
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5.5 ANN Modifications 

The performance of the ANN when only one controlier is active at the inverter side 

is comparable to the P-1 performance, and it is also possible to chwse the ANN parame- 

ters in order to speed up the response time [SA. However the performance is quite unpre- 

dictable and sluggish when control mode crossover occurs at the inverter side, 

The author tried other methods in order to improve the ANN performance. The 

ANN controller used so far has only one input, Therefore it may not get enough informa- 

tion fiom the system under control. A two level ANN with as many as 10 inputs, 10 hid- 

den and one output neuron is developed using the back-propagation for the learning 

process. The inputs are chosen fiom the different system parameters and quantities both 

on the rectifier and inverter side. 

in addition to this, the minimum selector used in figure 4-3-2 is equipped with a 

binary signal (select) in the output as shown in figure 5-5- 1. This select signal is set to one 

whenever the CEA mode is chosen and zero when the inverter is in CC control mode, thus 

indicating the inverter mode of controi. The appropriate form of this signal (select) is mul- 

tiplied by the error used for the ANN such that the weight adjustment stops in the de- 
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selected controîier. Once a mode becomes selected, the other controlier becomes deacti- 

current error * 
sel 

gamma error 4' 
sefect 2Il- 

Control 

current error _ 
Idr 

k f  
"dr  

Vacr 

a, Rectifier Control 

Figure 5-54 : Modified ANN control scheme 

The rectifier current controlier has five inputs which are: rectifier measured dc cw- 

rent (Idr), dc current reference (Id, rectifier measured dc voltage (Vdr), rectifier meas- 

ured ac bus voltage (VaCr) and the rectifier nrllig angle from ( ar ) which will be the value 

of the firing angle from previous t h e  step. The ANN weights for this ANN are adjusted 

by the current error (shown dotted). This ANN has ten hidden units. 

The inverter CEA controller has seven inputs which are: select signal (select), 

inverter measured dc curent (Idi), dc cutfent reference ( I d ,  inverter measured dc voltage 



(Vdi), inverter measured ac bus voltage (vach, inverter firing angle (ai ) and the measured 

extinction angle (y,,). The ANN weights for this ANN are adjusted by the gamma 

error (shown dotted). This ANN has ten hidden units. 

On-line learning poses a special problem for the de-selected controiler. If the con- 

trol algorithm is allowed to keep operating, this de-selected controller moves to its 

extreme litnit of operation. The output is thus no longer a fhction of its input and M e r  

training results in meaningless weights being set. Also making the output of the de- 

selected controller follow the output of the selected one, a technique common to analog 

controllers (usuaiiy known as follow-up), can not be used here, because if the training is 

allowed to continue, the de-selected controller erroneously thinks that its weight adjust- 

ments are actually affecting the output, thereby again resulting in incorrect training. 

Freezing the weights during the de-selection mode is the only alternative, and this 

was used in the course of this work. This objective is carrïed out by the select signal (intro- 

duced earlier) . 

In order to improve this performance even M e r  an iterative scheme was used. 

The on-line 1e-g method d e s c n i  so far, has the shortcoming that the ANN does not 

learn long enough with the important patterns. Most of tbe time the system is under steady 

state condition, and therefore the patterns seen by the ANN are not a good example for 

training the network for tcansients. During the tramients, such as fault recovery, the error 

and the system parameters contain important information about the system behaviour. But 
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inverter side, upon the restoration of the ac voltage to one p.u-, the inverter suffers from a 

commutation failure, 

e 
0.8 

02 0.8 
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Figure 5-5-3 : MoMed ANN ac voltage change 

As was shown in $3.2, the ANN parameters play an important role in the speed of 

the ANN controller. Therefore the author tried by using a fiiuy logic based inference 

algorithm to Vary the dope of the ANN activation function. The method will be descnied 

in the f k q  logic section (96.6) of the dissertation. Unfortunately, the performance of the 

ANN, particularly undesired delays, were not substantially improved. 

The author believes that as long as the plant information is not incorporated into 

the learning process, the on-line training would not be a successfùl method. Besides by 

having the incessant learning process in an on-line training, the important features that 

ANN has learned during transients get forgotten. In addition, due to the intrinsic nature of 

the converter any adjustments made to the firing angle only effects the converter six times 

in each cycle, and any adjustments between them do not have any effect on converter per- 

formance. Thus the author believes that the provision must be made to carry out the leam- 

ing six times in each cycle instead of once in each tirne step. 

In the next section the author reports a novel fuey logic method for HVdc control. 



6.1 Basics 
Fuzzy logic is a technique that allows for quantification and processing of com- 

mon laquage rules to arrive at a decision. Al1 the rules are considered at once or in paral- 

le2 to arrive at a weighted decision 134,491. In this chapter the basics of applying the fuzzy 

logic method to HVdc conaol[9] are discussed. Later the fùzzy logic modified ANN con- 

trolers are presented. 

We demonstrate the application of fuzzy logic by demonstrating the conversion of 

the HVdc control system shown in figure 6-1-1, to the fbzzy control system shown in fig- 

ure 6- 1-2. 

The plant in figure 6- 1-1 consists of the inverter and the remainllig addc network. 

As the variables on which the control system acts are the dc current and the extinction 

angle, the plant appears to the contmUer as a one-input (ai), two-output ( I d ,  ym,, ) sys- 

tem. 



The F u z y  Logic Method 

Figure 61-1 : Generai inverter control system 

In the conventional method of figure 6-1 - 1, the plant is either under CC or CEA 

control mode and thus one of the two P-1 controilers is selected. Note that each P-1 con- 

troller has its own separate gains and error signal, and that the selection process is carried 

out at the output end of the two controllers. Thus at the transition fiom one control mode 

to another, the controlling error and the controiler gains are abruptly interchanged. In the 

proposed fuay logic approach, we perform the selection procedure on the input side of 

the controllers by deriving a composite error as shown in figure 6- 1-2. Two new coeffi- 

cients pcc and pCEA are introduced that allow for a gradua1 transition in the selection 

process. This can be regarded as a generalization of the conventional process in figure 6- 1 - 

1, where exactly one of pcc or pCm is one and the other zero (in CEA mode po = O, 

~ E A  = 1 and in CC mode pcc = 1, pCEA =O). In the fuzzy logic approach these two 

coefficients are continuous numbers in the closed interval [0,1] and not necessarily com- 

plements. At the nominal operathg point, however, the controller is in extinction angle 

control, with pcC = O, pcEA =1. 

Plant 

Ymeas 

Figure 6-1-2 : Fuzzy logic control of SIMO systems 

-62- 
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The two coefficients pCEA and pCC are denved nom simple verbaiiy stated con- 

trol rules. For example whenever the measured extinction angle is smaiier than its set 

value, the CEA mode of control should be selected in order to bring the extinction angle to 

its reference in order to provide sufficient commutation margin. The set of rules are 

explaùied next in 86.2. Using the fuzzy coefticients pCEA and pcc , the deriving error of 

the P-1 controller (e in figure 6-1-2) is calculateci as shown in figure 6-1-3. 

e m r  to P-l 

Figure 6-1-3 : Composite error derivation 

In a similar fashion, the P-1 controller gains and limits are also continuously 

adjusted through a weighting process (depending on the output errors, pCEA and pcc) 

and are continuously loaded into the P-1 block as shown schematically in figure 6-1-2. 

6.2 F u z q  Logic Formulation 
Ail the rules are based on two inputs, the curent and the extinction angle measure- 

ments. The first step in fuzzy logic is to define the fuuy nzembership funcfion for the 

inputs. In d e t e d s t i c  logic, we assign a truth value of "ya (2)" or bbna (O)" to the state- 

ment "... the c u m t  is large". Ia fuzzy Logic, the aaswer can take on values between O and 

1. At the extremities, where it is clear that the current is large (or small) we may assign a 

value of 1 (or O). 

Thus as in figure 6-2- 1, a value of Is=l implies that the current is "definitek) small" 

whereas Is=O means that the current is "definitely not small"; intermediate values between 
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O and 1 implying something in between. Similady IL=l implies that the current is "'defi- 

nitely large", and so on. 

For the two inputs under consideration h and y the foiïowing simple hear sets are 

used (Note: The overlap of the two sets is not necessarily 50%). 

Figure 6-24 : F i u y  membership functions 

Note: The definition of small or large current is defined with respect to the reference 

current, Le. hi is definitely srnail (Is=l) if it is significantly less than the reference cur- 

rent. A similar argument appiies for y. 

Is and IL are a measure of srnail and large dc current respectively. Using the mem- 

bership values for I d  and y, the following set of rules is used for control. 

RULE I: IF 1s AND y, THEN p,, 

RULE II: IF 1s AND y,  THEN pCc 

RULE III: IF ILAND y, THEN p, 

RULE IK IF IL AND yL T ' E N  pcc 

One ratiod b e b d  the d e  is that the extinction angle control is most important 

whea there is a higher probability of commutation failure, i.e. at higher currents and 

smaller y. If however the current is large and y is large, then current control is stiil the pre- 
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fmed mode because the large y indicates that commutation failure is not a problem. Simi- 

lady at the srnalier current, commutation faiiure is not a problem and so current control is 

the prefmed mode- 

The rules are shortband expressions for simple real-language statements which 

describe desired operating strategy. For example, d e  IV states that ifthe current is large 

and the extinction angle is large, eument control should be used. However, unlike deter- 

ministic logic, this d e  does not assign a value of O or 1 to pcc, but rather just assigns a 

contribution. The contributions to pcc fiom d e s  1, II and IV are then used to determine 

its final value using some de-fuznfication method. 

Shown below is the procedure for using the above d e s  in quantitative manner. For 

any typicai measured Idi and ym,, , the quantities IL, IS, yL and ys assume some values 

between O and 1. For exampie suppose that for some Idi and ymeas we get Is=0.3, IL=0.6, 

yL =0.75 and ys =O. 1. Using correlation-product inference [34] the above rules give the 

following: 

RULE I: pcc = 0.3 * 0.75=0.225 

RULE II: pcc = 0.3 * 0. k0.03 

RULE IIk pcEA = 0.6 * 0.75=0.45 

RULE pcc = 0.6 * 0. k0.06 

The selected de-fuzzification method used to obtain a unique value for the hiay 

coefficients, is the M&mum Membership De-fuaifation Method [34]. In this method, 

we simply use the largest values generated by the rules, i.e., pCEA =0.45 and pcc=0.225. 
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Thus, instead of having a controlling error of e. or eI as in the conventional 
f 

method, we now have an error of O . 6 *  ey +O.ZS* eI at this operating point. 

A similar approach is used to set the gains and the limits of the composite control- 

ler; with the same values of pCEA and pcc obtained above for this operating point. Thus, 

if the P-I controller proportional gains for the CC and CEA modes are respectively KPcc 

and KPCEA; then the value assigned to the composite gain is KP = 0.45 KPCEA + 

0.225-. 

A compact form for visualizing the control d e s  1 - N  is the Fur,y Associative 

Mernory (FAIM) shown in figure 6-2-2. 
Ys Y L 

Figure 6-2-2 : FAM for the control strategy 

The FAM shown above has the Id-y plane analogy as shown in figure 6-2-3. As 

shown by figure 6-2-3, in different areas of this plane, at Ieast one specific control mode 

should be active. The control modes obey the same rule set explained earlier in 42.3. 

These rules render the two dimensional visualization as fotlows. 
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Figure 6-2-3 : Plane analogy of the FAM 

On the left and the upper side of ihis figure the f k z y  membership functions for y 

and Id are also shown. 

The pCC and pCEA participation factors are then used to evaluate the P-1 gains 

and deriving error. 

The two participation factors ( pCC and pCEA ) are calculated using the fuay 

inference method descnbed previously. For any points on the Id-y plane as shown in figure 

6-2-3, the pcc and pCEA are driven. These factors are then used to get the P-1 propor- 

tional gains. The proportional composite gain is derived as KP = KPCEA *pCU + 

e f p c c .  The proportional gains for the two inverter control modes as given by [67] 
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are: -0.62992 and KP<zQ=O. 75055, then the composite KP can be visualized as 

three dimensional surface as shown in the following figure. 

Figure 62-4 : Three dimensionai plot of composite KP 

The shape of the three dimensional plot for KP shows two plateaus which corre- 

spond to the CC and CEA modes respectively. in the transition, there appears to be a val- 

ley. However the shape of the fiinction is strictly dependent on the selected overlap among 

the membership hctions. The graph in figure 6-2-4 is for a 25% overlap. No such valley 

is seen for a 50% overlap; in which case the transition between the two plateaus is smooth. 

This figure depicts how the proportional gain KP, changes for different extinction angle 

and dc curent quantities. The proportional gain as well as the other parameters are set 

according to the four simple control rules expressed earlier. 



The Fuzzy Logic Method 

It is interesting to point that it is alsi' possible to use even simpler set of rules for 

the same objective. For example, as the figure 6-2-3 justifies, the foilowing three rules set 

express the same objectives as the initial four des set. But with these three des, instead 

of defining the universe of discourse as four quadrant using four des ,  the three proposed 

rules d e h e s  the sarne universe of discourse by two strips and one quadrants. These rules 

are simpler than the initiai d e  set and the irnplementation would be more straighâorward, 

although they both convey absolutely the same purpose. 

RULE I: IF 1, THEN p,, 

RULE II: IF yL THEN pcc 

RULE III: IF IL AND ys THEN pcm 

The simple four-rule FAM or the three.de set, was used to descnie and simulate 

the proposed fuPy logic method. As will be shown in the 56.4, even a larger number of 

rules can also be used to m e r  adjust and improve the HVDC control system. 

6.3 Tests With Initial Rule-Set 

Both the f k z y  logic and the conventional methods are simulated and the results 

are compared. The parameters anci settings for the conventionai controllers are taken fiom 

1671. The thyristors' turn off time rf is taken equal to 200 ps (4.3O at 60 Hz) and the thfis- 

ter mode1 is forced to re-ignite if the extinction time is less than this value. The current 

characteristic (line AB in figure 4-2-1) is generated by adding an additional reference Ay 

to that of the CEA controller which is 16" at the point B in figure 4 2 -  1, where dc current 

is Idref AId. 
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The fùzzy parameters for membership h c t i o m  (see figure 6-2-1) are selected as: 

6I=O. 1, wlOO and the overlap between the fuzy sets is 25%. 

During the preliminary studies it tumed out that the system performance is quite 

satisfactory and the control system response is also comparable to the conventional 

scheme. Thus the two respooses for the same test are reported for the sake of cornparison. 

The following tests were conducted for evaluating the new control method: 

rectifier side ac faults 

inverter side ac faults 

dc line faults 

set-- 

step changes to current order 

rectifier ac voltage change 

The performance of the fuPy logic scheme is compared with the conventional 

method, and the results for different tests are reported. In al1 the foLlowing figures the solid 

line and the dotted line refer to the fûzzy logic and the conventional method respectively, 

unless otherwise captioned. 

W~th the straightforward application of fuPy control d e s  as shown in $6.2, the dc 

power recovery is not as good as the conventional methoci. The minimum extinction angle 

for the fuay logic scheme is larger than the conventional one, while the power recovery is 
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poorer- Figure 6-3-1 shows the performance of the fùzzy bgic method in contrast to con- 

ventional method for a rectifier ac side fauit. 

0.0 O- 1 0.2 03 0.0 O. 1 0.2 0.3 sec. sec. 

Figure 6-34 : Recovery h m  a 3-phase ac fault at rectifier 

The other tests also show poor power recovery, and higher extinction angle. Since 

the control strategy is based on simple language d e s ,  this drawback can be easily 

improved by incorporating new rules and using a more elaborate rule set. Thus additional 

rules are included to enhance the performance of the fuzzy logic control and improve the 

power recovery. 

6.4 Enhanced Rule-Set 
h order to speed up the dc power recovery, one additional piece of system infor- 

mation is included in the fuzzy reasoaing. The rate of the change of the dc current 

( DI = dI/dt  ) is taken as tbis additional parameter, and the corresponding membership 
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fùnctions are shown in figure 6 4 1 ,  where SDI, UDI, and LDI stand for srnall, medium 

and large dc current rate of change. 

t Sol  MD1 LDI 

Figure 6 4 1  : Membership functions with additional parameter DI 

From experïments, it turned out that if the rate of rise of dc current were too hi& 

then the dc power recovery would be poorer. It was observed that the rate of nse of current 

could be reduced by having a larger contribution towards current control fiom the inverter 

current controller. The earlier d e  set, recommended current control via Rules 1, II and l7l 

One additional nile is added in favour of the cuxrent control mode for large d i /d t  values. 

Similarly instead of prescnbing the CEA only for Rule III (in the previous rule set), we 

modiQ this rule, to also favour CEA for low DI = dUdt . 

Thus the new rule set will be as: 

RULE 1': IF Is AND ys THEN pCc 

RULE II': IF IsAND y, THEN p, 

RULE LU': IF IL AND yS AND SDI THEN pCEA 

RULE IV': IF IL AND y, THEN p,, 

RULE V':ï.F LDI THEN p,, 

The Or operation is carried out by a maximum fhction and the And is carried out 

by a minimum function. The two statements give the values for pcc and pCm independ- 
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ently, based on the system information as measured dc curent, rate of change of dc cur- 

rent and measured extinction angle. 

The parameters for membership fiinctions as shown in figure 6 4 1  are taken as, 

DI2 =5, DI2=24 D13=50, and the overlap of these sets is set to be 25%. 

6.5 Simulation Results 

.A Three phase recfrpeer fault: 

As shown previously in figure 6-3-1, the power recovery fiom a three phase recti- 

fier side ac fault, compared to the conventional scheme, is poorer. The results fiom the 

enhmced d e  set are shown in figure 6-5-1. The power recovery is still marginally slower 

than with P-1 option. The extinction angle y always remains above 1 5 O  for the fizzy 

approach, whereas with the P-1 option, the system experiences a dangerously smaller com- 

mutation margin (7") during the recovery. On the other hand, the smaller y during the 

recovery means that the inverter side dc voltage builds up quicker which is why the recov- 

ery of the power is somewhat faster than the fuzsr option. Nevertheless the modified 

funv nile set results in a much irnproved power recovery in comparison with original d e  

set (figure 6-3- 1). 
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Figure 6-51 : Rectifier short circuit recovery 

d3 Three phase inverfer fa&: 

Figure 6-5-2 shows the results of a two cycle ac fault on the inverter ac bus. As in 

the previous test the fuzzy controller results in marginally slower power recovery and a 

higher transient y. 

Figure 65-2 : Inverter short circuit recovery 
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*C Dc iine fauft: 

A dc line fault is applied at 50 ms into the run (see figure 6-5-3). The fault is 

cleared by a force retard action of the rectiner in which the firing angle is increased into 

the inverter region (120°), kept there for 150 ms thereby de-energïzing the fadt, and then 

ramped back to the value set by the control loop. In this case, with the selected ramp rates, 

the conventiooal controller appears to suffa a commutation failure during recovery which 

the fùzzy controller does not. 

0.5 . - .  .- 
0-0 

0.0 0.1 0.2 0.3 0.4 0.5 
sec. 

Figure 6-5-3 : DC üne fault 

.D Current order change: 

The cwrent order is changed fiom 1.0 p.u. to 0.8 p-u. and restored to 1 .O p.u. (20% 

change). During the test the rectifier side is under constant curent control and the inverter 

side is under constant extinction angle control and no control crossover occurs. Through- 

out this transient the pCEA is entirely 1 except for very short instants and thus the two 

methods results in the approxirnately the same response as seen in figure 6-5-4. 
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Figure 6-54 : Current order change 

a E  Rectifier AC voltage change: 

This test is carried out in order to investigate the control transition between CC and 

CEA. The ac voltage on the rectifier bus is reduced by 20% and then restored to its rated 

value. As previously pointed out, a rectifier side AC voltage reduction causes the crosso- 

ver on the inverter side control fiom CEA to CC, and vice-versa during the voltage recov- 

ery. For 20% voltage reduction and restoration the results are shown in figure 6 - 5 4  

With the fuzzy option the response is better than with the P-1 option, particularly 

on voltage restoration. During ihis transition, a commutation failure is experienced with 

the conventional approach. The fuzzy controiler's tight regdation of the extinction angle y 

allows for much better recovery. Also shown in figure 6-5-5 are the membership coeffi- 

cients pCEA and pcc which give an idea of the participation of the CC and CEA control 

modes during the transient Intetestingiy, during the voltage depression, the CEA control- 

ler is disabled as expected, but the CC controiler is almost 65% active. This is d o g o u s  
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to having an adaptive gain in the CC controller which takes on smaller value during the 

disturbance. 

Note that during the disturbance, the depressed voltage means that the inverter bas 

to operate at a firing angle closer to 90°. Hence, the sensitivity of the dc voltage to small 

changes of firing angle is increased (note: d V'/da a -kVacsina ). The reduced CC gain 

durhg this voltage depression compensates for the higher sensitivity. 

The maximum voltage change limit that the conventional control scheme for the 

HVdc CIGRE benchmark may successfully tolerate without ending up in commutation 

failure is 15%, while the fuzzy logic method is able to handle 20% voltage change, where 

the minimum extinction angle foliowing the ac voltage restoration is 12O. Considering the 

fact that the fuzy method uses the same gains and limits as the P-1 controllers in the con- 

ventional scheme, the fact that the composite fupy controller is adaptable becomes more 

pronounced. For example the f&zzy R I  controller has a proportional gain as pictured in 

figure 6 - 2 4  

0.0 0.1 0.2 0.3 0.4 0.5 
sec. 

0.0 0.1 0.2 0.3 0.4 0.5 
sec. 



The Fuzzy Logic Method 

As is shown in the figure 6-55, the 20% voltage change results in commutation 

failure for the conventionai method while with the fuPy logic method the lowest y is more 

than 10°. 

6.6 Fuzzy Modification to the ANN ControUer 
The ANN based controller has been briefly discussed and analysed in 93.1, and the 

effect of ANN parameters such as learning rate (q), momentum (a) and activation h c -  

tion slope (B) are shown, and it has been shown how the controller speed varies with these 

parameters variation. 

We expected that using the fuPy logic control in a supervisory role [49] to change 

the ANN parameters (a$,?) could improve the HVdc controller response significantly 

compared to the results presented in $5. However the results o d y  showed a marginal 

improvement for the HVdc multi-mode control, although significant improvement was 

observed for single mode control. This section discusses the attempt made toward these 

improvements. Here a fuzzy controller is used to adjust the ANN parameters and the 

learning algorithm. The primary role of the fuzzy controller is to nine up the numencal 

algorithm by advishg on the most relevant values of the leaming parameters. The funy 

controller produces a numerical factor based on the rule set inference, which wiil be multi- 

plied to any of the ANN parameters. Therefore the ANN parameter(s) can be dynamically 

varied. 

Consider the simple six-pulse rectifier as presented in 93.1. The learning parame- 

ter B directly effects the learning and simultaneously the response speed. The error (e) and 
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the rate of change of the error (de /& = e ) are taken as the fùzzy variables. In order to 

assign an order of granularity for e and e , the discrete plot of error e versus the rate of 

change of the error é for some arbitrary run is plotted as foilows. 

Figure 6-64 : Discrete plot of e and e 

The figure 6-6-1, shows the phase plane plot for the two f b z y  variables e and e 

(referred to in fbzzy temiinology as the universe of discourse [49]). Considering the char- 

acteristics of the distllict points as well as the theK density in different areas the following 

fuzy membership fiinctions are proposeci in terms of values for e and e . 

NLE NE y PE PLE NR 
ZR 

I 
PR 

Figure 6 6 2  : Fuzzy membership funclions 
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The fiizzy membership functions are implemented within the D k W ï  module of 

PSCADEMTDCTM using the necessary developed blocks. The following figure shows 

the derivation of the e, deMt = é and the corresponding fbzzy variables in the DRAFï 

palette, 

Figure 6-6-3 : Derivation of e and é in DRAFI' 

As previously indicated, increasing P, decreases the ANN response tirne and 

increases the control system speed, and it was shown that among all the ANN parameters 

the response has the highest sensitivity to B. 

The error to the ANN controller, which is used to adjust the controiler parameters, 

is also a measure of controller performance. In other words, large error means that the 

controller has not achieved its goal, thus faster control measures (larger P) are required. 

On the other hand, a small error means the controller is achieving its goal, therefore the 

controller may slow down in order to avoid oscillations. 

The comments quoted in the above paragraph, yield themselves easily to fiuy 

logic formuiation. The method closely resembles the one discussed by Rueda and Pedrycz 
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[53]. We next move forward to speciq the f h q  d e s  or the bank of the- associative 

memory (FAM). The mies are based on the two quantity e and e , and produce a factor that 

will M e r  be utilized to tune the ANN parameters. 

The following FAM is used as the f û z q  inference rule set. 

e 

ZE PE PLE 

Figure 6-64 : FAM bank of the modifieci ANN 

The fiizzy variables LA, ME and NC are respectMy stand for Large, Medium and 

No-Change. The fuay outputs are then a large or a medium numerical value based on the 

type of the ANN parameter, and is one for the no-change case. Therefore each of the 15 

cells used for this analysis individualiy generates 15 coefficients such as: 

IF e=NLE And è =AR Then output=LA (eq. 6-6-1) 

which should later be de-funified and the final fuzy inference output will be a single 

quantity. Multiplying this final denved quantity by the activation function slope (B) as 

shown in figure 6-6-5 introduces an activation bc t ion  slope change in the range of 1-5 

times the nominal value. This factor continuously increases the siope (p) of the ANN acti- 

vation functions as the measured signal tends to deviate fiom the reference value, and as 
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the measured signal approaches the reference value, contuiuously decreases and fïnally 

becomes one. The method is brïefly shown in figure 6-6-5. 

Figure 6-64 : Activation function dope change 

The modified ANN response is faster and has smaiier overshoot compared to the 

original ANN response (figure 3- 1-6). 

0 1 -  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 

time [sec] 

Figure 6-6-6 : Modified ANN response 

The above figure shows that the modified ANN is both faster and the has lower 

overshoot compared to the initial ANN response. It is therefore deduced that for single 

mode control, Say CC or CEA the modified ANN gives the necessary speed as well as the 

minimal response overshoot. 
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However in an HVdc system the control mode crossover is of particuiar interest 

and any proposeci conaoller shouid be subjected to it. In order to apply this method to the 

HVdc ANN based control scheme three separate fuzy inference algorithm should be 

implemented for the three controilers in the HVdc control scheme ($4.2). 

Applying the same procedure as discussed for the simple six-pulse converter in 

this chapter to the three HVdc controilers, the modined control scheme is subjected to dif- 

ferent tests and f d t s  as cited in $6.4. The modified ANN approach still suffers nom the a 

commutation failure following the control mode crossover on the inverter side. The r e d t  

for the 20% current order change is depicted in the figure 6-6-7. 

time [sec] timeCsec.1 

Figure 6-6-7 : 20% DC current change 

The above procedure was an attempt to improve the reçponse of the ANN control- 

ler descnbed in 53. However, the results show that although in cornparison to figure 5-5- 

2, the response for the restoration of dc current has improved, it is still far fiom desired. 

This shows that, for the rasons discussed in 95.3 the ANN controller still behaves poorly 

following mode crossover. 

6.7 Conclusions and Recommendations 
The fuzzy logic methd aliows for the incorporation of simple d e s  into a control 

system. The d e s  are first stated in simple language and then are quantified for inclusion 
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into the control system by using the fuPy reasoning appmach. If the performance is does 

not meet some requirements, additional parameters and d e s  can be added. 

In the fuzsr logic approach, the basic control unit is stiZl the P-1 controller, but its 

gain and time constant are adjusted by fÙzzy reasoning. The limiting values of the gains 

and the tirne constants are the same as the conventional system, so as to ensure similar 

small signal behaviour when it is clear in which control mode the controller should be 

operating. 

Converthg the P-1 controller based control system for an HVdc scheme to one 

based on fiizzy logic results in ünproved immunity to commutation failure during recov- 

ery fiorn dc faults and ac voltage dips. Although initial implernentation showed poor 

recovery of dc power following ac side fault, the inclusion of additional parameters and 

d e s  improved the power recovery rernarkably. 

The area of stability analysis of the fuay control is still under investigation. There 

have been some papers [49] that address this issue, but are applicable when the plant is of 

a smail order. Also, the approach of this thesis involves fuzzy supervisory contml applied 

to a P-1 controller. The mathematics for this are yet not developed. Thus for the h d  of 

problem being considered here, digital simulation seems to be the only viable approach. 

Although not reported in the text, the controllers were robust and operated weli with dif- 

ferent system configurations. 

The most important ment of the fiiav logic approach is higher extinction angle. 

Since the extinction angle y for the fuzzy logic method is greater than when the conven- 
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tional method is used, the ordered y can be made srnalier. This means lower reactive power 

consumption on the inverter side, 

It is shown that more elaborated d e s  and information can be incorporated in deci- 

sion making in order to achieve different goals. More extensive rules which incorporate 

some protective measures or modulation to damp out the sub-synchroaous osciüations of 

other machines in the system can be incorporated in the formulation of the d e s ,  and will 

be discussed in 57. 



7. High Level Control Studies 

So far, the application of new techniques were solely considered for the level 

HVdc control loops such as current and extinction angle control loops. The advantages 

and disadvantages of applying such techniques to low level control were fully described 

and analysed in 96. In this section fuzzy logic techniques are applied to higher level con- 

trol functions- 

Other authors have used such techniques for ac and dc systems such as, dampuig 

of the tie line oscillations [63], power swing damping [ 1 11, gain scheduling [ 121 and tun- 

ing of DC link controllers [13]. The ANN technique has also been applied to HVdc sys- 

tems for fault identification and detection [36,58]. 

in this section the applications of the fiizzy logic method to two high level control 

problems are presented. This includes, damphg of the two synchronous machines con- 

nected to the converter ac side, and as well as the damping of SSR (sub-synchronous reso- 

nance) oscillations. 

7.I MechanicalDamping 
The CIGRE benchmark is composed of two ac sources, one at the inverter and one 

at the rectifier side. Each of these ac sources, is assumed to be the Thevenin equivalent of 
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a real source. However in actuality a machine (generator or synchronous condenser) is a 

part of the ac source at a converter station. The mechanicd and the elecaical parts of the 

machine constitute a dynamical system which may develop oscillations under faults or 

system changes [69]. These include the so calleci the SSR oscillation. The CIGRE bench- 

mark model is rnodified to reflect this situation by replacing the rectifier ac source with a 

synchronous machine driven by a multi-mass steam turbine model. The steam turbine 

complex is composed of one high, one intermediate and two low pressure turbines. The 

synchronous machine is equipped with an static exciter which varies the dc field such that 

the terminal ac voltage remains constant [28]. The parameters such as shaft constants, 

mutual damping and inertia constant for the multi mass turbine are obtained fiom the 

EEE SSR benchmark [29] and scaled to fit the MW ratings of the dc scheme. The com- 

plete data for this study are given in the §B. 1. The HVdc system with the rectifier side 

generator and the equivalent six mass mechanical system are shown in 7- 1 - 1. 

Figure 7-14 : HVDC system and the sir-mass spring model 
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Starting nom steady state a system perturbation initiates and buiids up oscillations 

at SSR fiequencies in the mechanicd multi-mass system, in which the different turbine 

sections oscillate with respect to one amthet. These osciiiations apply severe stress on the 

shaft between the two masses and leads to faim or 106s of iife expectancy. 

Studies conducted using the transient program verified that a dc line fault and 

recovery generates a sufficient perturbation and would cause oscïliations to build up in the 

system. Therefore a dc line fault and recovery test is conducted on the HVdc model. The 

resdts for the multi-mass system are shown in the figure 7- 1-2. 

GEN-EX 

IP-LPA 

O 1 2 3 4 5 O 1 2 3 4 5 
sec. sec. 

Figure 7-1-2 : Torsional osciüations 

The results show that the amplitude of the oscillations tends to grow; the oscilla- 

tion amplitude between LPA and LPB turbines being particularly severe. These oscilla- 

tions result in the fatigue of the steel sbaff and decreases the shaft life expectancy. 
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HVdc systems are very fast acting systems, and it is possible to control such sys- 

tems six times (for six-pulse bridges) or 12 times during each p e n d  of ac waveform. Such 

a possibility lends itself easily to be used for system control both in low and high level 

modes- 

A particularly serious possibility for sub-synchronous resonance arises when there 

is a single large synchronous generator C O M ~ C ~ ~  in the vicinity of an HVdc rectifier sta- 

tion [15]. The fuzy logic method used to damp out these oscillation is briefly outlined in 

figure 7- 1-3. The controller input is the synchronous machine angular velocity (a), and 

the output is the A a ,  which is added as an auxiliary signal to the a order derived fiom the 

rectifier control scheme, as shown in figure 4-3- 1. 

Mu1 ti-mas Sync. 
Machine Converter 

a order fiom 
Aa control scheme 

Figure 74-3 : Fuzy logic osciüation damping 

In order to develop a fupy inference scheme to mitigate the oscillation magnitude, 

the anguiar velocity of the synchronous machine (CO) is chosen as the control signal. This 

signal is readily measurable either on the electrical or mechanical side. The machine angu- 

lar velocity o and its rate of change d d t  are the only two inputs to the fuzzy damping 
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system. The fÙzzy membership fiinctions for the o and the do/dt are depicted in figure 7- 

1 4 .  

Figure 7-14 : Fuzzy membership hinctions 

The fuay inference scheme generates an additional modulation in the f k g  angle 

via the signal Aa. The inference operation noms required in the fiizzy algorïthm, such as 

AND and OR are chosen to be minimum and maximum respectively [49], and the fiizzy 

centroid de-fimification scheme is used. Using the correlation-product Uiference [34], the 

de-fuzzification process is significantly facilitateci, and the output centroids are only used 

in the de-fimification procedure. 

and is 

The fuzzy associative memory [34] (FAM) for this case, 

shown in figure 7- 1-5. 

O 

PR 

is composed of five d e s  

Figure 7-14 : FAM bank for oscillation damping 

-90- 
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The parameters NL, NM, ZE, PM and PL used in this FAM stand for Negative 

Large, Negative Medium, Zero, Posirive Mediwn and Positive Large respectively. Each of 

these fuay values refer to a fbzzy membership fiinction, but as already explained previ- 

ously, only their centriods participate in the de-fupification procedure. Thus each can be 

represented by numerical values of the area and the centroid of the FAM d e ' s  conse- 

quence. The numerical values for each one is assumed to be NL = 4, NM = -1, ZE = 0, 

PM=IandPL =4. 

The fuzzy logic scheme output is then used to modulate the firing angle order to 

the rectifier converter. 

The fuzzy logic inference scheme as shown in figure 7- 1-3, modulates the rectifier 

firing angle. This control scheme results in a substantial reduction in the SSR oscillation 

following a dc line fault. The results of the proposed system foliowing a dc lhe fault and 

recovery are shown in figure 7-1 -6, and should 

damping (figure 7- 1 -2). 

HP-IP 

, 
GEN-EX 

O 1 2 3 4 5 
sec. 

be compared with the case without SSR 

IP-LPA 

LPA-LPB 

Figure 7-1-6 : Torsional oscüïations damping 

-9 1- 
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The following figure 7-1-7, shows the modulateci m g  angle as superimposed on 

the rectifier firing angle. 
Rectifier Mng [deg] 

O 1 2 3 4 5 
sec. 

2.0 2.1 22 2-3 2.4 2.5 
sec, 

Figure 7-1-7 : Rectifier firing angle 

As shown srna11 modulation of the rectifier angle (which has an approximate mag- 

nitude of about 1 peak-peak) successfully stabilizes the oscillations, especialiy the LPA- 

LPB oscillation as is seen by comparing the figure 7- 1-2 with figure 7- 1-6. Since the firing 

angle modulation is of small magnitude, it does not contribute to non-characteristics har- 

monics generation. 

The delivered dc power for the two cases shown is in figure 7-1-8. This figure 

shows that the fuPy controller reduces the power oscillations in the dc line significantly 

compared to the case without the controller. 

DC power [p.=] 
Without damping 

DC power @.u] 
With fiipy damping 

0 1 2 3 4 5 6 7 8 9 L O  0 1 2 3 4 5 6 7 8 9 1 0  
sec. sec. 

Figure 7-1-8 : Power response 

Therefore the fuzzy controller can successfully reduce the oscillations in the 

mechanical part as well as the electrical counterpart of the system. 



7.2 Power Oscillation Damping 
As another example of the application of the fuzzy control to a hi& level control 

scheme, power oscillation damping is investigated. In this case the inverter side source of 

the CIGRE benchmark is substituted with an equivalent synchronous machine mode1 

equipped with the solid state exciter and hydro govemor. The ratings of the synchronous 

machine, exciter and hydro govemor are given in gB.2. In addition a synchronous con- 

denser is also connected to the inverter side ac bus, which supplies about 30% of the 

inverter bridge reactive power under the rated steady state codition.The ratings of this syn- 

chronous condenser as weii as the correspondhg exciter are given in the 8B.2. 

The combined system on the inverter side which is now composed of two synchro- 

nous machines, shows new dynamical performance. The two machine are now able to 

oscillate either with respect to a fixeci rotating fiame or relative to each other. The former 

wiil be detected through extemal systern performance while the latter would be left unde- 

tected, The circuit is shown in the figure 7-2-1. 

Figure 7-24 : CIGRE benchmark with modifieci inverter 

-93- 
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The resuits of the simulation show that even the start-up pmcess is very osciilatory 

which damps out very slowly (roughly 10 sec.). 

DC power oscillation 
1 9  

O 1 2 3 4 5 6 7 8 9 1 0  
sec. 

Figure 7-2-2 : Dc power osciïïations during the start-up 

In order to be able to damp out the oscillations, one should be able to measure the 

frequency and the deviation of the line voltage. The main obstacle in these kind of prob- 

lems is that, there is no reference fkame for cornparison. In order to elaborate more on this 

subtle point, consider that the ac voltage phasor on the inverter bus is aligned with an arbi- 

trary but synchronized phasor under the steady sate condition. It is obvious that under a 

new steady state condition long after any changes on the inverter side the voltage phasor 

does not remain aligned with the arbitrary phasor. Figure 7-2-3 shows this fact. The volt- 

age phasor (solid vector) which is initially aligned with the arbitrary reference phasor 

(dotted vector), will not remain aligned with the reference phasor following a system 

change. 

Aiigned phasor 

-* - 
System change 

Figure 7-23 : Reference phasor 



This reference phasor is only required to be at synchronous speed Obviously the 

static deviation of the two phasors, does not contribute to any system oscillations, while 

the dynamic deviations such as oscillation of the voltage phasor about the arbitrary phasor 

directly related to system oscillations. The high fiequency deviations of the voltage are not 

important either, because of the existing hannonics in the system. In order to differentiate 

between these three distinct cases the following filtering scheme is utilised. 

Line phase 
voltage , 

reference 
p hasor 

Figure 7-24 : Load angle measurement scheme 

The FFT block calculates the fundamental phase angles associated with each vec- 

tor. Then the difference between the two phases (0) is fed into two cascaded filters. The 

first filter allows the output to follow the sudden changes of the input but washes out the 

slow changes in the input from appearing in the output. The second filter is used to filter 

low frequencies from the signal. Thus the overall filtering is like a medium pass filter and 

therefore the output as named in figure 7-2-4 by Os, is a close measure of the voltage 

angle deviation k m  the reference phasor within the proper fiequency band. 
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The Bode plot (phase and magnitude) for the series connection of the washout and 

the reai pole filters in figure 7-24 is shown in figure 7-24. 

0.1 1 10 100 1000 

Frequency [rad./sec .] 

Figure 7-2-5 : Bode plots of the tüter 

Using such a measuring scheme applied to the line voltage of the ac bus, the Os 

plot versus tirne during the start up process is rnea~u~ed and shown in the figure 7-2-6. A 

close look at this figure shows that the line voltage oscillates with a fiequency of about 2 

Hi, at syncbronous speed. 

Voltage angle 8, 
20 

O 
? -20 
2 -40 
Tp. -60 

-80 
- 100 

2 3 4 5 6 7 8 9 1 0  
sec. 

Figure 7-24 : Os angle oscillation 
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in order to damp the generated osciiiations, a funy inference algorithm is devel- 

oped using the Os angle as the input. 

The figure 7-2-7, shows the overall fùzzy control scheme used here. The Line volt- 

age is measured at the converter bus, and the synchronous machine is comected through 

the Thevenin equivalent impedance to this bus. The constant capacitor, filters and the syn- 

chronous condenser are all connected to this bus, 

a order h m  
control scheme 

to power 
m 
C, 

control loop -- Y- O 

Fuzzy Merence 

Figure 7-2-7 : Fuzzy inference diagram 

The funy Merence controller shown in figure 7-2-7 generates a signal Al?, which 

can be comidered as the power order modulation. This power order modulation is used as 

an auxiliary input in the power control loop, shown in figure 4-4- 1. 
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The signal AP derïved through the funy iriference algorithm is added as an a d -  

iary input signal to the power reference signal in the power control loop. 

Figure 7-2-8 : Power coatrol loop 

vd, 

Thus the power modulation is applied through AP in the power control bop, mod- 

dates the dc current reference and the converter's firing angle. 

0 5  . . 

The fupy membership fiinctions for the es, the des/dt and the FAM consisting of 

Power flow control b'-015ci 0 3  0.9 v h = 

the fùzzy rules are shown in figure 7-2-9. 

ZE PS NE 
ZR 

NL NS PL PO 

+ 

25% overlap iw-* --!-2 

-100 
es Cd%] dgddt [deghec] 

.=aor 

Figure 7-2-9 : Fuzy memberships and FAM 
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The acronyms NL, NM, 2, PM and PL stand for Negative Large, Negative 

Medium, Zero, Positive Medium and Positive Large. 

The use of the funy controiier redts in significant damping of the oscillations 

shown earlier. For example the dc transmitted power during the start up as shown earlier in 

figure 7-2-2, is significantly improved as is shown in figure 7-2-10. 

I with î ùzq  control 

0 1 2 3 4 5 6 7 8 9 1 0  
sec. 

Figure 7-2-10 : Improved power recovery 

The fuzzy controller also improves the line voltage oscillations. The oscillations in 

the voltage angle 8 and the fïitered phase 0, are significantly reduced using the funy con- 

Figure 7-2-11 : 0 and es responses with the fiipy controller 

Conclusion 
The fiizy logic method has been successfully applied to high level HVdc control. 

The implementations outline the basics of the method, and the results show significant 

improvements in the system performance. 



8. Conclusion 

8.1 Contributions 

In this dissertation the application of the artificial neural network and fuPy logic 

control was studied and presented. Throughout this work several important contributions 

were made. The eminent contributions made in this dissertation can be summarized as fol- 

Iows: 

ANN control of KVdc systems was investigated. Various candidate nenworks were 

considered and it was conciuded (with the justification in 52.4) that the off-line ANN 

would not show any improvement over conventional P-1 controller. On the other hand, 

on-line ANN controllers were shown to be more applicable (52.3). 

Using the case of a three phase rectifier connected to an R-L load, the ANN on-line 

based controller was shown to have very favourable response in cornparison to a P-1 

based controller. The gain setting in a P-1 controller can not be achptively changed, 

thus the P-1 controller c m  only be optimized at one operating point. Because of the 

learning feahw of the ANN controiler, it provides a favourable response over entire 

operating range. 

The on-line controller worked very weiî with the HVdc system as long as there is no 

control mode crossover. However, with control mode crossover, the response follow- 

h g  the mode change was very poor. Various attempts such as fkeezing the weight 
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adjustments did not improve the response to an acceptable level ($5.4 and $5.5). 

Finally a justification was presented for such unfàvourable bebaviour (Q5.3). 

F q  logic was also successfiilly implemented in the primary control loops of the 

HVdc systems. The general techniqye in order to improve and incorporate more con- 

trol d e s  into the control scherne is also presented [gq .  The fuzzy logic metbod allows 

for the incorporation of simple d e s  into a control system. The d e s  are first stated in 

simple Ianguage and then are quantified for inclusion into the control system by using 

the fiiuy reasoning approach. If the performance is does not meet some requkements, 

additional parameters and d e s  can be added. 

The application of fuPy logic to high level conml problems of the HVdc system, 

resulted in improved stability of the electric system. The successfùl application of 

fuay logic to problems such as SSR and power swing damping are presented [$7]. 

The topic of ANN controller which showed poor behaviour for mode crossover, was 

revisited. An attempt was made to use the funy logic as a supe~sory  loop for the 

ANN on-line control blocks. Although this did result in some improvemenf the over- 

al1 response proved to be less than desired. 

8.2 Additional Conclusion 

A MATLAB-PSCADEMTDCTM interface was developed. This interface dows  one 

to integrate MATLAB's powerful computational engine into the electromagnetic tran- 

sients simulation software PSCAD/EMTDC- and ailows for direct incorporation of 

MATLAB Toolboxes into the transient simulation. 

8.3 Future Recommendations 

1. The GNN studies have indicated that the on-line based ANN controller fails to achieve 
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a satisfactory r d t  for the HVdc control mode crossover. The foilowing areas for 

fihm works are recommended. 

The response speed of the ANN with synchronized learning was significantly 

improved with the technique presented in $3.3. One area for fùture study couid be the 

inclusion of the plant Jacobian into the leaming process. The denvatives can be substi- 

tuted with discrete rate of change between input-output pairs. In other words, substi- 

tuting dWda with A U A a  computed for each commutation inte~ai.  

Another area for the improvement could be changing the optimization in the ANN 

such that it behaves as a CC or CEA controiler in different operating regions, with the 

aid of a different cost fiinction than the one used here. 

Other activation fkction such as radial buis function [25] should also be investi- 

gated. 

The application of ANN to high level control studies such as SSR and power swing 

damping may also be investigated. 

The application of f k q  logic to both low and high level control were studied in this 

thesis. The results have shown satisfactory results. Foilowing is a List of recommenda- 

tions for fùture works in this field. 

The inclusion of more control d e s  into the d e  set was represented. The incorpora- 

tion of protective control d e s  into the controllhg d e  set may also be studied 

Domain knowledge such as specific characteristics of ac or dc systems can also be 

included as a fllzzy inference algorithm into the HVdc control scheme. This may aiso 

be considered as a potential field in this area. 
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AppendrX A. MATLAB Aided 
Simulation 

A. I Introduction 
Previous experiences with ANN and fuzzy logic as reported in $5 and $6 respec- 

tively, have s h o w  that it is not straight forward to implement a new ANN or fuzzy logic 

algorithm into the simulation software. The simulation software PSCAD/EMTDCm as 

any other electromagnetic transient simulation program is developed to study electric sys- 

tems, and many common control blocks (such as P-Z) are also provided in the default 

libraries provided by theu vendors. 

However when one tries to introduce new areas in conjunction with the simulation 

studies, one has to develop the necessary software in order to successfully implement this 

new technique into the study. Thus one has to initially achieve an in-depth familiarity with 

the new field and then spend a long tirne, developing and customizing the necessary pro- 

grams- 

MATLAB is a well known computational package with rich built-in commands 

and numerous Toolboxes, These Toolboxes are mainly developed and customized for 

technical fields such as artificial neural network and funy logic. 

The author believes that the possibility of synergy between MATLAB and the 

PSCAD/EMTDCm facilitates the incorporation and study of new fields into the simula- 

tion studies by saving the time spend to develop new models and programs into the 
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PSCADIEMTDCT This interface would then be regarded as a great asset and usefùl tool 

in the studies. 

This chapter describes the procedure and redts for interfacing the computatiod 

engine of the MATLAB program with PSCAD/EMTDCm program. The interface is 

developed using conversation pipes on UNIX platfoms, Such pipes are used for the inter- 

process communication between the two separate programs. 

Using this approach, it is possible to run the two programs simultaneously on sep- 

arate cornputers even when they have different architecture, For ease of use, the interface 

is incorporated into the P S C A D / D M .  This allows the entry of MATLAB commands 

merely by clicking on the appropriate PSCAD/DRAFT icon. In addition to the description 

of the interface, a typical simulation example of an artificial neural network based control- 

ler for an ac-dc controlled rectifier (same as $3) is presented [IO]. 

The emtp-type program PSCAD/EMTDP [22] has been designed to take advan- 

tage of piped communication. The popular mathematics and control systems design soft- 

ware package MATLAB [41] also has this capability. 

The synergy of an electrornagnetic transient program with MATLAB has several 

advantages. Although the power system network equations c m  be programmed into MAT- 

LAB, this requires the user to manually enter these equations. The emtp-type programs are 

optirnized for power-network simulations and automatically generate the network equa- 

tions directly from the topological description and constraints of the network. They also 

usually run faster than interpreted MATLAB code. 
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The DRAFT available with PSCAD/EMTDCCM is also customized for power- 

industry applications. On the other hanci, MATLAB offers a large ii'brary of contml b c -  

tions, and through its T001boxes, it also offers a wide range of preprogrammed algorithms. 

hcorporating new techniques of control for power systems using simulation, 

requires that the user be quite famiiiar with the new control area, and write the necessary 

code in a programming language which is mostly FORTRAN. This requires an extensive 

effort especially d u ~ g  the preliminary snidies just to investigate the feasibility of such 

applications. Thus during the preliminary studies, it is convenient to use MATLAB built- 

in function and Toolboxes, 

Previous work on the subject includes writing of the emtp-type algorithm using 

MATLAB [40]. An approach similar to the one used here has been reported with the AW 

program[3 11. However in this chaptei we describe an automated approach where the new 

component and the necessary interface files are generated automatically. The resulting 

component is then available in graphical fonn as a block in PSCAD/EMTDCTM. 

A.2 Structure of the Interface 
The structure of the interface is as shown in figure A-2-1. PSCADIEMTDCTM has 

a FORTRAN file called DSDYN through which external FORTRAN subroutines can be 

called. A FORTRAN subroutine is therefore developed which starts the MATLAB engine 

and sets up the data communication pipe between this subroutine and the MATLAB 

eagine. Through this FORTRAN file, the  f fil el containing the MATLAB commands is 

1. The fiie aame extension (*m) for a H e  containing MATLAB cornman&. The füe is referred to 
in MATLAB tenninology as m-fiie. 
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also passed to the MAIZAB engine. The MATLAB part of the simulation is, of course, 

independently written and stored in the M-file. 

It should be noted that the FORTRAN subroutine is not user-written but is auto- 

matically generated using a program speciaiiy developed for this purpose. This program 

generates al1 the necessary files for a new MATLAB block. This block is added to the 

DRAFT repertoire. The program and the intexface have been successfully tested on Sun 

and DEC Alpha platforms. 

Since the MATLAB computational engine is invoked using a FORTRAN subrou- 

tine and the data communication is established between PSCAD/EMTDCTM and MAT- 

LAB, it is possible in a network to run these two programs on two separate platforms; 

even when the two machines have different architecture. The resultant parallelism gives a 

speed-up in the total execution the .  
F r i i i -  

subroutine 
I 

1 I r - - l - -  1 

I 1 DSDYN 1 
L - - - J  

- I I  
I 

' ' M-me 
L - - - -  J I 

Figure A-2-1 : Structure of PSCAD/EMTDCT"LMATLAB interface 

A.3 Development of the MATLAB Block 
The MATLAB block in PSCAD/EMTDC- is seen as a graphical icon on the 

DRAFï palette. Connections to this block h m  other PSCADIEMTDCTM blocks are made 

by dragging and dropphg comecting wires. With each MATLAB block there are three 

associated files. The main file is the M-file which is interpreted by the MATLAB engine 
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and includes all the commands that will be executed by MATLAB engine. The second nle 

is the FORTRAN file- This FORTRAN file incorporates the main interface commands, 

such as starting the MATLAB mgine and data sending and retrieving fiom MALZAB. The 

third file comprises the D M  description for the icon, 

A new MATLAB block can be developed using a program specially developed for 

this purpose. This program asks for the name of the new component, the nurnber of inputs 

and outputs and their names. A graphical icon of the block is then automaticaily generated 

dong with an empty M-file, which is opened for user input in a text-editor shell. The user 

should then enter the appropriate MAIZAB statements into this M-file. 

It should be mentioned that the developed piece of code wrïtten in C, generates i 

necessary commands and calls the necessary functions to establish the data exchange 

between the FORTRAN subroutine and the MAIZAB engine. 

On one side of this data exchange, FORTRAN deals with floating point and inte- 

gers values, while on the other side of the data exchange, W A B  deals with dynamical 

pointers to arrays. 

Therefore in order to pass data from FORTRAN to MATLAB, first a pointer must 

be assigned to the data and the address of the pointer should be passed to the MATLAB 

and conversely for passing data fkom MATtAB to FORTRAN. Therefore one variable has 

many assigned names which are al1 kept in a record. However the user only deals with a 
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single name that appears both in the DRAFT graphical user interface and the MATLAB 

M-file. 

Figure A-3-1 : The PSCAD MATLAB block and its constituents 

Figure A-3-2 shows a typical PSCADEMTDCn case in which the MATLAB 

component labeiied "MATLAB" is being used. hputs or outputs can be scalars or arrays. 

The input in figure A-3-2 is an array of two components (Ref. and error), and the output is 

a scalar (a). 

Once the component is developed, it may be used later merely by dragging and 

dropping the icon on the D M  palette fiom user library. The user can even edit the 

developed component's M-file directly tiom DRAFï via a popup menu tbat is selected by 

clicking on the component's icon. 

Figure A-3-2 : P S C A D / E M T f l  pilette 4 t h  MATLAB block 
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A.4 Simulation Example 
The example presented here describes the application of the PSCAD/EMTDCm 

interface to the ac-dc converter being controlled by an artificial neural network (ANN) 

based controiler. This case is identicai to the example already presented in $33.  A similar 

simulation is also developed using the fuzy logic method, using the fuzzy logic Toolbox 

[2 11. Here the ANN is hained in incremental or on-line training mode which aies to make 

the dc current foilow the reference value and reduce the error to zero. The ANN is mod- 

eiled using the MATLAB neural network Toolbox. The ANN is comprised of one input (in 

ANN temiinology only Ref. is the input to ANN), two hidden and one output neurons. The 

current error is used to adjust the weights using the back-propagation as shown schemati- 

cally in figure A 4  1 . 

MI plant 

Figure A-4-1 : On-line ANN controiier basics 
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The schematic diagram can be seen in the DILUT palette shown in figure A-3-2, 

with the associateci M-file shown in figure A 4 2 .  In the simulated case, the current refer- 

ence is switched between two setopoints (2.0 kA and 3.5 kA) at 200 ms intervls. 

This function i s  generated by mTLAB-PSCAD 

Input: 
IN-2 06 diaension 2 1 

OUT-1 06 dinension 1 1 

1 globa l  u l  u2 b l  b2 dui dw2 dbl db2 slope l 
iF( isglobal(wl))  

wi = [@;a]; 
w2 = [O a]; 
b l  = [@;a]; 
b2 = [a]; 
dwî=wî ;diR=r2;dbl=bl ;db21b2; 

end 

pr i ( '10g~ig '  , ' logs igm , IH_2[1) , IN-2(2) , t p  ); 
) * 9 :  âScaling the  output t o  0-90 degrees 

Figure A 4 2  : M-fiie for PSCAD/MATLAB block 'WATLAB" 

This M-file shown in figure A 4 2  calls another M-file named upd-bpm.m (see 

arrow). This M-file (shown in figure A-4-3) executes the back-propagation algorithm 

using MATLAB neural network Tmlbox commaridds. The entries in the M-file are directly 
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entered using the popup editor window which appears when the 'MAILAB' component in 

the DDRAFT palette (figure A-3-2) is clicked upon. 

e - er ror  
t p  - t ra in ing  pa ra i r te rs  

Trainfng paraneters are: 
TP(1) - Learning rate. 
TP(2) - bcientur  constant, 

obal  rl r2 b l  b2 d r i  du2 db4 db2 

Z Learning ra te -  
% Honentun constant. 

df1 = feual(f1,'delta'); % Oeriuatiue Functions 
dÇ2 = feual(f2,'delta'); 

a l  = feual(Çl ,uî~.b l ) ;  % Sinulate the netmrk  
a2 = Çeual(f2,~2*al, b2) ; 

2 = feual(dF2 ,a2.e) ; % Calculates deriuatiues 06 SSE 
= Feual(dfl,al,d2,r2); 3 wi th  respect t o  layer net  i npu ts  

wi.dbl]=learnbpna(p.dl .lr,nc,dri ,del); 
r 2 , d b 2 ] - l e a r n b p ~ ~ a l s d 2 , ~ r S ~ , d r R s d b 2 ) ;  

% Take a step i n  d i rect ion o f  
% o f  d t r i ua t i ue  wi th step s i ze  
% deterdned by learning r a t e  Ir, 

= b2 + db2: 

Figure A 4 3  : The on-üne back-propagation algorithm 

The results fiom the simulation are seen in figure A 4 4  The first plot shows the 

dc load current and the reference current order, and the second one shows the associated 

firing angle that is generated at the output of the ANN controiier. 

Although the overail simulation time required for the example is larger than that if 

the ANN cornponent were directly programmed in FORTRAN as a standard PSCAD/ 

EMTDCTM block, the intdace aiiows one to investigate a large number of control strate- 

gies using the preprogrammed libraries of the MAIIAB Tmlboxes, thereby saving much 

effort in developing and utilizing the new models. However, once the control strategy is 
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finalized, it may be worthwhile to reprograrn the algorithm into a standard PSCAD/ 

EMDC"( block written in F O R W .  This also dows for the block to be compiied and 

made into a library within PSCAD/EMTDCTM and thus speeds up the simulation process. 

In a s i d a r  manner any other fiinction available in the basic MAIZAB program or 

its Toolboxes can be included into PSCADEMTDCTM. One additional advantage of this 

approach is to that of animated output rendering. For example, during the program's exe- 

cution, the path of the flux-current point on a saturation cuve of a typical transformer can 

be traced via MATLAB commands or the locus of a relay trajectory can be seen super- 

posed on the relay characteristic. S imilarly three dimensional plotting cornmands in MAT- 

LAB can reveal intereshg features of the simulation during execution tirne. 

Figure A 4 4  : Simulation results 

A. 5 Conclusions 
The powerfbl control system modelling capabilities in MATLAB were accessed 

through the PSCADIEMTDCTM simulation program. The FORTRAN Interface avaiiable 
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in PSCAD/EMTD<7M coupled with the data exchange over inter-praiess communication 

pipes on the UNIX platform aliows for such an interface to be easily constnicted. 

A special program that perfomis the automatic generation of the component icon 

and associates the correspondhg files with the icon, was found to greatiy simpii@ the 

process of new component design. The newly developed component is then accessible 

through the graphical user intertace of PSCAD/EMTDCTM just like any other component 

in iîs repertoire. 

The technique allows for immediate access to a whole range of pre-developed 

MATLAB control Iibraries as shown by the example of the ANN based controlier for an 

ac-dc converter. It also offers the possibility of using advanced MATLAB graphics com- 

mands for animated on-line displays. 

The CPU time required for the combined PSCAD/EMTDC--MATLAB simula- 

tion is more than if the MATLAB component were modelled directly in PSCAD/ 

EMTDC-. Thus the above simulation approach is recommended during the evaluation 

stage in which several different control algorithms are being investigated. For the fastest 

possible nuis, the component should be compiled and used in PSCAD/EMTDCW. 

Although this powerful technique could have been used extensively during the 

progress of this thesis, it was only completed toward the end of the research. By that time 

the author already gained sufficient experience with the artificial neural networks and 

f h q  logic, and directiy developed the components in PSCAD/EMTDCTM. 
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Appendk B. Data for 57 

Data for g7.1 

EXCITER PARAMETERS: 

Tl "Rectifier Smoothing Time Constant" 

Ta "Controller Lead Time Constant" 

Tb "Controiler Lag Time Constant" 

Te "'Exciter T i e  Constant7' 

K "ExciterGain" 

Emax "Maximum Field Voltage" 

Emin "MiaimumFieldVoltage" 

Vbase "L-G Voltage Base" 

Ibase '2ine Current Base" 

Rrev "Reverse Resistance" 

"Exciter Voltage Supply Bus Fed" 

"0.02 sec" 

"1.43 sec9' 

"7.04 sec" 

"0.032 sec" 

"500 p-u-" 

"5 p-u." 

'C5 p*u-" 

"199.18584 kV, nns" 

'2 kA, rms" 

"14285 Ohms" 

MULTI-MASS PARAMETERS: 

N 'Wumber of Turbines (1 to 5)" "4" 

MVA "Machine 3 phase MVA" "1200 MVA" 

F "Electrical base fkequency" "60.0 Hz" 

RPM "Machine rated speeâ" "3600.0 rpm" 

''INERTIA CONSTANTS" 

H 1 'Turbine # 1 Inertia Constant" 

H2 "Turbine #2 Inertia Constant" 

H3 "Turbine #3 hertia Constant" 

H4 "Turbine #4 Inertia Constant" 

"0.0929" 

"O. 1556" 

"0.8587" 

''O. 8 842" 
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HG "Generator hertia Constant" 

HE "Exciter hertia Constant" 

"MUTUAL DAMPING" 

"'ALL SET TO ZERO" 

"SHAIIT SPRtNG CONSTANT" 

K12 "Spring Constant From Turbine #l to #2" 7277" 

K23 "Spring Constant From Turbine #2 to #3" "1 3 168" 

K34 "Spring Constant From Turbine #3 to #4" "1 96 1 8" 

KLG "Spring Const. From Last Turb. to Gen." '2 67 13" 

KGE "Spring Const. From Generator to Exciter" "1 064" 

"TURBINE TORQUE SHARE" 

TF 1 "Torque Share for Turbine #1" "0.30 P.u." 

TF2 "Torque Share for Turbine #2" "0.26p.u." 

TF3 "Torque Share for Turbine #3" "0.22 P.u." 

TF4 "Torque Share for Turbine #4" "0.22 P.u." 

SYNCHRONOUS MACHINE PARAMETERS: 

H "Inertia Constant" "2.89 MWs/MVA" 

OMO 'Base Angular Frequency" "3 76.992 rad/sW 

Vbase "Rated RMS Phase Voltage" "15.011 kv" 

base "Rated RMS Phase Current" '26.5477 kA" 

"GENERATOR FORMAT' 

Xp "Potier Reactance" "O. 130 P.u." 

Xd "Direct-Axis Reactance" "1.79 P.u." 

Xd' 'Direct-Axis Transient Reactance" "O. 1690 P.u." 

Xd" 'Direct-Axis Sub-Transient Reactance" "0.1 3 5 p.u." 

Xq "Quad-Axis Reactance" "1 -7 1 P.u." 

Xq" "Quad-Axis Sub-Transient Reactance" "0.2 P.u." 

Ra "Armature Resistance" "0.02 P.u." 
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Tdo' 'Direct-Axis Transient T i e  Constantn "4.3 sec" 

Tdo" "Direct-Axis Sub-Transient T m e  Constant" '0.032 sec" 

Tqo" "Quad-Axis Sub-Transient T h e  Constant" '0.05 sec" 

B.2 Data for 87.2 

SOURCE PARAMETERS 

"GOVERNER PARAMETERS" 

f 'Base Frequency" 

Tl "Controller Real Pole Gain" 

T2 "Controller Proportional Gain" 

T3 "Controlier integral Gain" 

T4 "Controller Real Pole Time Const" 

T5 'Turbine Lead T m e  Constant'' 

T6 'Turbine Lag Time Constant" 

TS "Governor T ï e  Constant" 

C I "Inverse Gate Velocity Limit" 

C2 "Gate Velocity Time Constant'' 

C3 "Permanent Droop Gain" 

C4 "Gate Position Control Rate Limit" 

CS ''Temporary Droop Gain" 

C6 "Temporary Droop Time Constant" 

Tmax "Conversion Constant" 

TmOs "Time Constant for Smoothing TmO" 

EXCITER PARAMETERS: 

T 1 'Xectifier Smoothing Time Constant" 

Ta "Controller Lead Time Constaat" 

Tb "Controiler Lag Time Constant" 

"60.0 Hz" 

"0.88 " 

"3.7 " 

"0.44 " 

"0.02 sec" 

"0.8 sec" 

"0.4 sec" 

"0.05 sec" 

"4.8 sec/p.u." 

"0.1 sec" 

"0.04" 

"0.22 pu./sec" 

"0.0" 

" 1 .O sec" 

"0.957" 

"0.02 sec" 

"0.02 sec" 

"1.5 sec" 

"1.0 sec" 
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Te "Exciter T h e  Constant" 

K 'Exciter Gain" 

Emax 'Maximum Field Voltage" 

Emin "Minimum Field Voltage7' 

Vbase "L-G Voltage Base" 

Ibase 'Zine Current Base" 

Rrev ''Reverse Resistance" 

"Exciter Voltage Supply Bus Fed" 

SYNCHRONOUS MACHINE PARAMETERS: 

H "Tnertia Constant" 

OMO 'Base Angular Frequency" 

Vbase "Rateci RMS Phase-to-Ground Voltage" 

hase "RMS Phase Current (MVA/ [3*Vbase] )" 

VT "Terminal Voltage Magnitude at t=O" 

Pheta 'Terminal Voltage Phase at t=O" 

PO "Real Power at t=O (+=Out)" 

QO 'Reactive Power at t=O (+=Out)" 

''EQW. CIRCUIT FORMAT' 

XS 1 "Stator Leakage Reactançe" 

XMDO 'Vnsaturated Mapetking Reactance" 

X3 D "Damper Leakage Reactance" 

X2D "'Field Leakage Reactance" 

XMQ "Quad-Axis Magnetizing Reactance" 

X2Q "Quad-Axis Damper Leakage" 

Rs 1 "Stator Resistance" 

R2D Tield Resistance" 

R3 D "Direct- Axis Damper Resistance" 

R2Q "Quad-Axis Damper Resistance" 

"0.02 sec" 

"100 p.&" 

"5 p.&" 

"-5 P.L" 

"132.79 kV, rms" 

"3.7653 kA, nns" 

"1 5000 Ohms" 

"5 sec" 

"3 76.992 rads" 

"10.392 kV" 

"48.1125 k W  

"0,94839 130 P.u." 

"-0.4293 5 1 rad" 

"-25.0 M W  

"-270.0 MVAr" 

"O. 14 PA." 

"1 -445 P.u." 

"0.0437 P.u." 

"0.2004 p.u." 

"0.91 P.u." 

"O. 106 P.u." 

"0.0025 P.u." 

"0.00043 P.u." 

"0.005 1 p-u." 

"0.00842 P.u." 
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SYNCHRONOUS CONDENSER PARAMERES 

EXCITER PARAMETERS: 

Tl "Rectifier Smoothing Tune Constant" "0.02 sec" 

Ta "'Controiler Lead Tkne Constant" " 1 -5 sec" 

Tb "Controller Lag Time Constant" "1.0 sec" 

Te "Exciter Tirne Constant" "-02 sec" 

K 'Exciter Gain" "100 P.u." 

Emax "Maximum Field Voltage" "5 p-u." 

Emin "Minimum Field Voltage" “-5 p,u? 

Vbase '2-G Voltage Base" "132.7906 kV, rms" 

Ibase '2ine Current Base" "0.6276 kA, rms" 

"Exciter Voltage Supply Bus Fed" 

SYNCHRONOUS MACHINE PARAMETERS: 

H "Inertia Constant" 

OMO "Base hgular Frequency" 

Vbase "Rated RMS Phase-to-Grouad Voltage" 

Ibase "RMS Phase Curreat (MVA/ [3*Vbase] )" 

"GENERATOR TYPE FORMAT' 

Xp "'Potier Reactance" 

Xd 'Direct-Axis Reactance" 

Xd' "Direct-Axis Transient Reactance" 

Xd" "Direct-Axis Sub-Transient Reactance" 

Xkf "Damper-Field Mutual Reactance" 

Xq "Quad-Axis Reactance" 

Xq" "Quad-Axis Sub-Transient Reactance" 

Ta "Armature Time Constant" 

Tdo' 'Direct-Axis Transient Time Constant" 

Tqo" "Quad-Axis Sub-Transient T i e  Constad' 

"1.7 sec" 

"376.992 rad/s" 

"10.392 kW' 

"35.283 kA" 

"0.2 P.u." 

"1.56 P.u." 

"0.300 P.u." 

"0.280 p.u." 

"0.0 P.U." 

"1 S6O P.u." 

"0.230 P.u." 

"0.332 sec" 

"1.1 sec" 

"0.05 sec" 
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