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Abstract

This thesis comprises the studies and results from the application of artificial neu-
ral networks (ANN) and fuzzy logic theory to the control of the high voltage direct current
(HVdc) systems. The studies considered their implementation in both low and high level
control systems in HVdc systems. The study is verified using the electromagnetic tran-
sients simulation software. The results demonstrated successful performance for single
mode control (either constant extinction angle or constant current) using an ANN based
on-line controller. The results for the fuzzy logic based controller showed many improve-
ments compared to the conventional HVdc control scheme. The fuzzy logic based control-
ler concept was further successfully extended to high level control problems such as the
control of SSR and power swings. Finally in order to facilitate further application of new
control techniques such as ANN or fuzzy logic, a MATLAB to transient simulation soft-
ware interface was developed. Using this interface, all the MATALB commands and Tool-

boxes may be used within the transient simulation software.
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1. Introduction1

————

High voltage direct current (HVdc) transmission plays an important role in today’s
electrical power transmission systems. The dc voltage in conjunction with fast acting
power electronic devices in an HVdc system, makes it the most reliable method for power
transmission over long distances, and power injection into load buses without much con-

cern about system stability and dynamics.

HVdc systems have been in service for over half a century, and their performance
is greatly affected by the control methods used. Application of advanced methods such as
optimal control [4], adaptive control [51], multi-variable control [54,60] and different
approaches such as microprocessor based controllers [38] and digital signal processing
[39] have been investigated or under investigation. In this dissertation, the application of
artificial neural networks and fuzzy logic techniques to various HVdc control levels have

been evaluated.

Artificial neural networks (ANN) are gaining widespread application in several
areas of engineering [66], especially where, due to non-linearity of the process, it is often
too cumbersome to analyse the process or the plant under study. The ANN has the capabil-

ity to learn and extract information in systems where the non-linearity and time depend-
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ency do not permit one to use methods such as frequency or modal analysis. Although it is
always possible to linearize such a system around an operating point and conduct such

studies, such derived models always remain valid only within the limited region.

ANN techniques have been applied extensively in the domain of power system.
Among these works, the contributions of El-Sharkawi to various aspects of power system
such as security assessment [1,2,17,18,64], load forecasting [19,47,48] and drives control
[26,65] are notable. The ANN has also been applied widely to other fields such as fault

detection.

ANN applications in HVdc system control have only recently become a topic of
interest. The works of Sood in the application of ANN to HVdc control [39,43,56,57] are
notable in this area. The application of the ANN has also been studied for fault detection

in HVdc systems [36,58].

Adaptive control theory, in which the controller adapts its parameters and/or struc-
ture to changes in the operating point, is an attractive control technique for HVdc systems.
This is because the dynamic response of the HVdc ‘plant’ changes with variations in the
operating point. However, adaptive controllers require for their design, a frequency
domain model of the controlled plant. Due to the switched mode non-linear operation of
the HVdc system, such a model is difficult to obtain. On the other hand, the ANN tech-
niques can be applied even without the availability of frequency models and are thus

potentially attractive.
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The most widely used control block for control tracking is the proportional-inte-
gral (P-I) controller. It has been widely used in HVdc systems for the internal control
loops. On the other hand, the ANN, through its adaptive [7] response offers the possibili-

ties of good performance over a wide range.

In this thesis, after some preliminary introduction to the ANN theory, the applica-
tion of the ANN based controller to HVdc systems, is studied. The results are presented
and the advantages and disadvantages of the approach are discussed. It is deduced that the
ANN controller performs in a manner comparable to, and even superior to the P-I control-
ler when it is working under one control mode. However, during the course of the HVdc
investigations, it was discovered that the ANN was not a suitable tool for multi-mode con-
trol of dc systems. This is because it is not possible to get an adequate description of the

‘plant’.

Following this, the application of the fuzzy logic method is investigated. The fuzzy
logic technique is a simple method for encoding the verbal rules into a mathematical
framework [34,49]. Thus the control rules of the HVdc plant are stated verbally and for-

mulated into the fuzzy logic implementation.

The application of fuzzy logic technique to power systems and HVdc has also been
widely studied. These application includes gain scheduling [11,12]), tuning of DC link con-

trollers [13] and enhancement of the VDCL performance [44].

In this dissertation a novel approach to apply fuzzy logic method to HVdc control

is investigated. The method works in a supervisory technique, irrespective of the control-
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ler type (P-I, ANN, ...). It is shown that the fuzzy logic method improves the control sys-
tem performance considerably, and the process to include more elaborate control rules is

also demonstrated.

Later the application of the fuzzy logic to high level HVdc control schemes and the
implementation of these methods to high level control such as power swing damping are

also investigated.

In the course of the thesis investigations, a new technique for investigating
advanced control methods in an EMTP 1-type simulation framework was developed. This
technique embodied the seamless integration of the PSCAD/EMTDC™ simulation pro-
gram with the powerful MATLAB package. MATLAB has many built-in useful functions,
and many practical Toolboxes such as neural network and fuzzy logic Toolboxes.
Although not of direct relevance to the main thesis topic, this technique is an asset for
investigation of new methods. It also saves a lot of time implementing the new technique

during the preliminary studies. The technique has therefore been presented in Appendix.

1. Electromagnetic transient program



2. N egral N etwork

2.1 Theory

An artificial neural network as defined by Hect-Nielsen [24], is a parallel, distrib-
uted information processing structure consisting of processing elements interconnected
via unidirectional signal channels called connections or weights. Each processing element
or neuron has a single output connection that branches (fans out) into as many collateral
connections as desired; each carries the same signal -the processing output signal. The
processing element output signal can be of any mathematical type desired. The informa-
tion processing that goes on within each processing element can be defined arbitrarily with
the restriction that it must be completely local; that is, it must depend only on the current
values of the input signals arriving at the processing element via impinging connections
and on values stored in the processing element’s local memory. Neural systems encode

sampled information in a parallel-distributed framework.

There are different types of ANN where each type is suitable for a specific applica-
tion. The main interest here is applying the ANN for a non-linear mapping. Neural net-
works can also be used to estimate input-output functions. They are trainable dynamical

systems. Unlike statistical estimators, they estimate a function without a mathematical
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model of how outputs depend on inputs. They are model free estimators. They learn from

experience with numerical sample data.

Supervised feed forward models provide the most tractable, and most applicable
neural models. Assume that we have a set of observations. This set consists of a group of
input and output value pairs. Each of these pairs is of the form (x, y), where x is the input
and y is the output. The set of these pairs inherits the mapping between the input and the
output. The emphasis here is to extract the closest mapping from the input domain to the
output range. The measure of this closeness can be chosen to conform to some appropriate
form such as least squared error (though it is not the only function but it is quite simple).
Therefore the objective is to estimate an unknown function f(X— Y) derived from
observed set samples (x 1Y ),...,(xm v Ym) by minimizing an unknown expected error

functional £ [w] .

We define error as desired performance minus actual performance. Desired per-
formance refers to the value (y, ), while the actual performance is the network output to
the input (x;). Supervision uses the desired performance and actual performance of the

network to provide an ever-present error or teaching signal.

E [w] defines an average error surface over the weight space. At each iteration,
the current sample (x,y,) and the previous initial conditions define an instantaneous error
surface. We indirectly search E [w] for the global minimum by using an optimization

algorithm such as stochastic gradient descent [25]. Due to the nonlinear nature of the prob-
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lem, we often converge to a local minimum (w*). The local minimum w* may differ sig-
nificantly from the global minimum of E[w] . Some shallow local minima may be no
better than expected error values determined by randomly picking network parameters.
Since we do not know the shape of the E[w] , we do not know the depth of its local
minima. In general, nonlinear multi-variable systems define complicated, and bumpy,
average error surfaces. However, for small dimensional problems like the one reported in
this thesis, no special technique is used to guarantee an absolute global minimum. This is

in conformance with the current practice in the ANN field [55].

Consider a set of Input (xz.) and Output ( y;) which are derived from an actual
measurement or simulation of a specific plant. It is desired to find a function which can
resemble the whole plant based on this set of discrete vectors (x,y;) . In other words we
want to find a function which approximates the plant to a specific degree of accuracy

instead of analysing the nonlinear equation of the plants.

Figure 2-1-1 : Geometry of neural function estimation

A typical feed-forward ANN is shown in figure 2-1-2. It has one input node x, and

one output node o along with & hidden nodes, ¥, to ¥, . The objective is to produce the

-7-
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output o, which is as close as possible to the desired target y,, when x; is the input of the

network.

Figure 2-1-2 : A two layer feed-forward network

The output of any hidden or output neuron is calculated from a weighted sum of
the inputs to that neuron. In addition to the inputs to each processing neuron, a bias level B
(usually equal to one) may also be applied to each neuron. The bias is connected with an
adjustable weight to each hidden and output neuron. Thus, for example, the excitation of
node Vi is h=wg*xi+b;*B. The output of the neuron ¥V is generated by applying a sigmoid
non-linearity as shown in figure 2-1-3 to the excitation [25]. The same nonlinear function

is also used for the output neuron.

Neuron output

Neuron excitation (/)

Figure 2-1-3 : Sigmoid nonlinear function

The sigmoid function used for this study has an input to output function given by
eq. 2-1-1. The output range of the function presented in eq. 2-1-1 is the closed interval

[0,1] (continuous interval between zero and one, including zero and one). Therefore, the
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output of each processing node (hidden and output) lies in the continuous interval between

zero and one. The parameter 3 in eq. 2-1-1 decides the function’s slope.

1
glh] = T+ o5 (2Ph) (eq. 2-1-1)

Using an optimization technique, the weights are adjusted so as the error
for the entire input-output set becomes as low as possible. Usually the mean square error,

eq. 2-1-2, is chosen as the performance index or cost function:

1
Elw] = 33 [7,—0,] (eq. 2-1-2)

where [ is the number of input pattern (i = /,2,...,p) and o. is the iﬂl computed output. We
I

seek the weight vector w which results in a global minimum for E[w] .

Learning or weight adjustment is carried out by determining the contribution of
each connection to the output error and correcting that weight correspondingly. Applying

the steepest descent algorithm [25], the adjustment in w,_yields as:

oE
Aw, = —rréTk (eq. 2-1-3)

where 1 is called the learning rate and is a very crucial parameter in the learning process.
This procedure is also called back propagation [24], since the output error is back propa-
gated through the network in order to determine the contribution of each single weight to
it. It should be mentioned that wyis chosen as an arbitrary weight, and the same derivation
applies to all the weights either between two neurons or the weights between the bias and

any neurons.

9-
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It is reported in the literature [25], that the cost function is usually full of valleys
with steep sides but a shallow slope along the floor, and the aforementioned method usu-
ally gets stuck in these regions and the learning process becomes too slow. There are a
number of ways of dealing with this problem, including the replacement of gradient
descent by more sophisticated minimization algorithms. However a much simpler

approach, the addition of a momentum [25], is often effective and is very commonly used.

The idea is to give each connection some inertia or momentum, so that it tends to
change in the direction of the average downhill force that it feels, instead of oscillating
wildly with every little kick. Then the effective learning rate can be made larger without
divergent oscillations occurring. This scheme is implemented by giving a contribution

from the previous time step to each weight change:

Aw, (m+1) = -ng%m+ aAw, (m) (eq. 2-1-4)

Besides it can be shown [24] that “Given any €>0 and any function

10, 1] "<=R" > R", there exists a three layer back-propagation neural network that
can approximate f ( f € L, ) to within € mean squared error accuracy”. Here L) is the
mathematical space of functions that can be approximated by its Fourier series to any

desired degree of accuracy in the mean squared error sense.

Although the above statement guarantees the ability of a multi-layer network with
the correct weights to accurately implement an arbitrary function, it does not comment on
whether or not these weights can be learned using any existing learning law. This is an

open question [24].
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In addition there is no guarantee that the function being approximated satisfies the
above L) condition. Such a function would not be amenable to approximate by an ANN.
However the above theorem suggests that assuming a reasonable function, a three layer
ANN should normally suffice for most application with variable number of hidden units.
There is no rule or theorem expressing the optimal number of hidden layer neurons, and is

usually derived from empirical results or trial-error method.

The update rule, as defined by eq. 2-1-4, is written in the incremental form. In
other words for each input-output pair (pattern i), the adjustment to individual weights are
derived from this equation. The pattern i is presented to the ANN network, and then all the
weights are updated before the next pattern is considered. This clearly decreases the cost
function (for small enough n) at each time step, and lets successive steps adapt to the local

gradient.

The developed neural network system can be trained and implemented in two dif-
ferent ways. In one approach, the network can be trained with a set of known input-output
data pairs known as the training set and, after some standard verification, can be used for
the actual application. For example a neural network can be trained with some known data
for sonar target recognition and after achieving desired level of accuracy, it can be used for
real sonar detection purpose. In this way the ANN network, after extracting the rules from
examples or a training set, is known to perform some sort of generalization whenever it
come across new inputs. This method is called off-line training because the weights

adjustment is performed prior to implementing the network in the analysis. In the second
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method, the learning can be done while the network is being implemented in the process.
In this way the network corrects itself as it comes across new inputs; leaming while new
sequences are being presented rather than after they are complete. It can thus deal with
sequences of arbitrary length and there is no requirement to allocate memory proportional
to the maximum sequence length. This method is called on-line training. In this method

there is no generalization and all the input-output pairs are member of training set.

The neural network architecture used through out this dissertation, is as shown in
figure 2-1-4. It is a two layer network with one input unit, two hidden units (adjustable)
and one output unit. The weights are altered (learning process) in order to minimize the
mean square error between the desired and actual outputs, using eq. 2-1-2. This is done by
performing a gradient descent algorithm on eq. 2-1-4 which results in the normal back

propagation algorithm (BP).

Figure 2-1-4 : Neural network architecture

This model is developed as a block and used in the digital simulation analysis pro-
gram. Therefore at each time step an input x; is represented to the neural network model
and the error between o; and y; is then used to adjust the weights with back-propagation

algorithm.

-12-
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For on-line training (incremental), the weight update is done once each time step.

Thus for this particular implementation eq. 2-1-2 takes the form:

E[w] = (ai— y,.)z (eq. 2-1-5)

2.2 ANN Based Control, Literature Survey

Various attempts have been carried out to use ANN for control purposes. Based on
the learning method, the ANN based controllers can be divided in two categories. The first
category are the controllers with off-line learning. Here, first the learning is performed,
and then the trained ANN is implemented to the process which is under control. Nguyen
and Widrow [45,46] have shown in a novel approach the use of this method for backing up
a trailer in a two dimensional plane. Kong and Kosko [33] tried also the same approach,
but used the truck kinematic equation instead of truck emulator as used by Nguyen. Beau-
fays et al. [6] have used this method for load frequency control in power systems. Gener-

ally, the off-line method is applicable to a process with explicit mathematical formulation.

The second category includes the controllers that use on-line learning. Chen [7]
has investigated on-line learning for adaptive control, although his method is only applica-
ble to single input, single output linearizable systems. It is shown that the learning process
makes this controller an adaptive one. On-line learning has been successfully used for
underwater vehicle control as reported [61]. The proposed learning algorithm and the net-
work architecture provides stable and accurate tracking performance. For the on-line

learning method, the mathematical formulation of the process under the control is needed.

-13-
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Schiffmann et al. [55] have reported a comparative study for an ANN on-line controller
and a P-I controller. The resuits show that the ANN controller is very effective. In their
study the plant is treated as an additional and non-modifiable layer of the network and

only simple qualitative knowledge of the plant is necessary.

The on-line training makes an ANN controller an adaptive controller. The learning
process based on the back propagation, adjusts the ANN parameters (weights) such that

the output follows its reference value.

2.3 On-line Training

Assume that a single input single output plant is cascaded to a neural network
(feed forward connection). The single input single output plant is connected as a last level
to the ANN, and can be taken as the last processing unit of this network, i.e. we can imag-
ine that the whole system starting from input to the output of the plant is an additional
processing unit (neuron) to the network. The last processing unit of this augmented net-
work does not have a characteristic like the other ANN neurons, in fact the characteristics
is non-linear and time-dependent and not explicitly known. As already explained in §2.1,
the learning algorithm tries to set the system weights in order to make the output of the
network be equal to some desired quantity. Thus by connecting an ANN as a controller
connected to the input of the plant and implementing the learning process to adjust the
weights, it is theoretically possible to make the plant output follow the reference order,

provided that the network parameters and weights get adjusted by the output error.

-14-
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Using a feed forward system for control purposes, a self-supervised learning sys-
tem must be used. One such a system has been reported in [50]. Of the three proposed
methods, specialized learning seems to be the best and is chosen for this study. This
method requires knowledge of the Jacobian matrix of the plant. For a single input single

output plant, the Jacobian reduces to derivative of the input-output function of the plant.
rd - ~
r L~ C -~ (4]

p| Neural| o
Ne/t;:vork Plant

- ~

y 3 £

Figure 2-3-1 : Specialized Learning
The only difference of such a composite feed forward system is that the plant is the
last layer of the network, (in this thesis this last layer is a single input single output sys-

tem) and has the following differences with an ANN:

« The output unit (plant) does not have any adjustable parameters.
« The derivative of the output unit to the input is not explicitly known.

The first point implies that the plant does not take part in the learning process,
while the second one tacitly reveals that the error can not be adjusted in order to get the
modified error (c) at the neural network output. The back-propagation algorithm used for
setting the ANN weights, requires the error at the output of the ANN, i.e. the error
between the actual output ¢ and the desired output (the desired output is the one that
makes the plant error € to be zero). However, the error of interest in the application is the

error at the plant output. The value of ¢ must be back-calculated from this error; and this is

only possible if the plant derivative do/dc is known, either explicitly or approximately.

-15-
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As already explained, the error that should be back propagated through the neural
network is the error of ¢ and not & (figure 2-3-1), and the error of ¢ can be derived if the
derivative of the plant is known at any operating point. The plant is mostly viewed as a
single input single output (SISO) plant and the sensitivity of the plant’s input versus out-
put for the cases under study never changes in sign. This is typically true, for example in
an HVDC rectifier, where increasing the firing angle a results in a reduction in output
voltage [32]. Therefore in this analysis, € is treated as if it is the actual ANN output error.

The controller implementation is shown in figure 2-3-2.

Reference —/—L c Output
gontroller—" Plant -

Figure 2-3-2 : On-line training

Here, the well known back-propagation rule [24] is used to perform gradient
descent optimization on eq. 2-1-5 based on error €. Here, the controller acts like a conven-
tional type P-I controller and based on the error &, the controlier tries to change its output

in order to minimize the error €.

Similar works have been done by Sood et al. [$6,57]. In contrast to this approach,
they treated the error € independently for each layer of ANN (using the delta [25] rule for
each layer). Also they did not incorporate the activation functions slope (8) in their study

and treated a and ) as the only ANN parameters. In a recent publication [43] they consid-
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ered the effect of the activation function slope on the system behaviour. The parameters a,

B and n are described in §2.1.

2.4 Off-Line Training

Off-line training is not an adaptive process, but it is fastest to implement, because
the weights are not changed in the field. One promising method for on-line training is
using the recurrent ANN, and the method is briefly presented in this section. This model is
trained in the manner shown in figure 2-4-1. This method is applied by Nguyen [45,46]

and recently is used for load-frequency control [6]. The process is outlined as follows.

In this approach, before training the neural network controller, a separate neural
network, which is called an emulator, is trained to behave like the plant. Training the emu-
lator is similar to plant identification in control theory, except that the plant identification

here is carried out by using the method of back-propagation.

Zhrl
_.
Plant
—b
z’i..
e Vv +
uy : r——=-=-0
LN / & —
» Neuyai-Net
> El;mlator _
v Sk+1

Figure 2-4-1 : Training the Neural Network Plant Emulator

The training process begins with the plant in an initial state. At time £, the input of

the neural net is set equal to the current state of the plant z, and the plant input «, . The

-17-
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neural net is trained by back propagation to predict the next state of the plant, with the

value of the next state of the plant z,  , used as the desired respcnse during training.

Given that the emulator now closely matches the plant dynamics, we use it for the
purpose of training the controller. The controller learns to derive the plant emulator from
an initial state z, to the desired state z d in “k” (determined by the designer) time steps.
The objective of the learning process is to find a set of controller weights that minimizes

the error function J, where J is averaged over the set of initial sets Z,-

J = E( 2= k||2) (eq. 2-4-1)

The training process for the controller is illustrated in the following figure.

7 7

C=controller

20 | c |«o Zl) clao— .. z; ~ E=emulator
B E ) E
z0 2]

| e _
Error Back Propagation k +
2d

Figure 2-4-2 : Training the Controller with Back Propagation

Once the plant model is obtained, a candidate ANN controller is now designed to
match the desired control characteristic of a conventional controller. Afier training, the
ANN controller will mimic the conventional controller from which the training was
derived. However, the performance of the off-line ANN controller can only be as good as

that of the conventional one.
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3. The Artificial Neural Network
Controller

3.1 ANN Current Control

To gain familiarity with ANN control of power electronic circuits, the author first
developed this concept on a simple three phase rectifier connected to an active load. The

circuit layout is shown in figure 3-1-1.

,—/Tm‘ AW —
L.

o i ”’

1

a

Figure 3-1-1 : Current Control Circuit Diagram

In the above circuit, the current /in the lagging load is controlled through the
adjustment of the firing delay angle of the rectifier or a. The conventional method to con-
trol the converter is to apply a proportional integral type (P-I) controller as in the figure 3-

1-2.

Figure 3-1-2 : Current Control Scheme
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The proportional part reacts instantaneously to any difference in the measured and
ordered current, whereas the integral part keeps varying a till there is no steady state error.
The current error is fed into a P-I controller which adjusts a in turn in order to minimize
the error. The P-I controller has two parameters Ky and Kp (integral and proportional
gain), which should be tuned in order to get the best performance. This type of controller
is not adaptive and thus following any system changes one has to tune the controller

parameters accordingly.

For this analysis the P-I controllers is substituted with the ANN based on-line con-
troller. The source code for back-propagation is incorporated in a model used in the
PSCAD/EMTDC™ electromagnetic transients program. The model and the control dia-
gram is depicted as figure 3-1-3. Since the output of ANN is between zero and one (see
figure 2-1-3), a re-scaling of the output of ANN in the range of a,,;, and a.,,, is required

and is carried out inside the block.

I L
Ref.

Figure 3-1-3 : Current control with ANN

As is shown in figure 3-1-3, the ANN model responds to two signals. These signals

are as follows:

e Ref.: This is the ordered value of the controlled parameter. As has already been
explained, the network is feed-forward in topology, and the only input to the ANN net-

work is this signal.
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e Error: This is the most important signal, and is the only measure of performance
achievement and is used in the setting the ANN weights. The gradient descent moves
the weights (w) so that E[w] approaches its (local) minimum value. The weights and

their impacts on an ANN are explained in §2.1.

In addition to the two mentioned inputs described above, there exist other parame-

ters associated with any ANN. The other parameters of this block are:

» the momentum term (o) which is usually between 0.5 and 0.9.
» the learning rate (m) which is normally between 0.5 and 0.9.
» the slope term (B). This term defines the slope of the sigmoid function and is usually
between 0.01 and 0.1.
These last three terms are standard terms in ANN literatures [23,25] and were dis-

cussed briefly in §2.3.

The necessary ANN block was developed and added to the DRAFT user compo-
nents. The electrical circuit developed within DRAFT is shown in figure 3-1-4 and the

ANN block is shown along with the rest of the control scheme are shown in figure 3-1-5.

i)
iyt
|

¥

Figure 3-1-4 : Electric circuit
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luu

T .

Figure 3-1-5 : ANN control scheme

With some experimentation, the parameter values selected were a=0.1, p=0.015
and n=0.6. These values appeared to provide the best learning performance. A simulation
time-step of 5 usec is used and the weights are continuously updated during each time
step. The ANN topology is a two layer network with one input neuron, two hidden neu-
rons and one output neuron. The voltage source in series with the load is set to zero, unless

it is noted.

As the first performance and the evaluation test, the current reference change is

investigated. The steady response with ANN control for this test is shown in figure 3-1-6.

Liaa [A] Firing angle o [degree]
4 ; :
20 1A\ ' N —
. s -f— ‘ Y Bt
! i
2 10 §-— ““—k”""_ ——L’ e
1 — 5 N S
00 01 02 03 04 05 06 00 01 02 03 04 05 0.6
time {sec] time [sec]

Figure 3-1-6 : Simple ANN current reference change response

22



The Artificial Neural Network Controller

The ANN based on-line controller as shown in figure 3-1-3, has the capability to
adjust the firing angle () in order to minimize the dc current error and make the plant to
follow the reference value. The methods and modifications to improve the response speed

are discussed later.

3.2 Behaviour Analysis of the ANN

As shown in the previous section, an ANN based on-line controller has the capa-
bility to adjust the firing angle such that the dc current follows the reference change. The
current reference change response shows that the ANN is capable of controlling the sim-
ple rectifier for simple current order change. Artificial neural networks have many variable
parameter and characteristics such as learning rate and number of hidden units, where
each has substantial effect on the ANN performance. The ANN parameters such as learn-
ing rate (17), momentum (a), activation function slope (B), the number of hidden units and
the type of the input to the ANN are the parameters that should be further investigated and
studied. Thus it is straightforward to follow the analysis by studying the effect of these
parameters on the ANN and the system performance. In order to investigate the behaviour

of this controller, following tests and simulations have been carried on.

» Operating point change

As shown in figure 3-1-4 the load is in series with a dc voltage source. Any varia-
tion in this series voltage source, directly changes the firing angle and the operating condi-
tion of the rectifier. In order to study the behaviour of ANN due to the operating point

changes on the performance of the system, the voltage is changed at r=0.2sec., and the
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response to a step change in current order is shown in figure 3-2-1. Figure 3-2-1 shows the

response with two different values for the dc voltage: E.=20 and E4=0.

e

2

£ 4

S,

% 3._.

E 27

(3]

o 1

= 00 0.1 0.2 0.3 0.4 0.5 0.6

Figure 3-2-1 : Response of ANN with changes in Eg4.

System changes as shown in figure 3-2-1 show that the behaviour of the system
changes with change of the operating point. As shown, increasing the load voltage, brings

about a faster and more oscillatory response.

With a constant ac bus voltage, the dc voltage ignoring the commutation reactance,
is ¥, = kV_ cosa (where ¥, is the rms value of the line voltage, a is the converter fir-
ing angle and k = 3./2/7) [32], which gives the sensitivity of converter dc voltage to a
changes as —k¥, _sina . Clearly, the controller is more sensitive for large a, i.e. smaller

values of V4, explaining the larger overshoot at the smaller voltages in figure 3-2-1.

* ANN parameters change

In addition to the system change, ANN parameter changes should be considered as
well. The ANN parameters such as activation function slope (), the learning rate (n) and

the momentum (a) have direct effect on the ANN performance. (The following tests were
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conducted for E4.=0, unless otherwise noted). The following test (figure 3-2-2) shows the

result of the activation function slope () change on the system response.

»

w
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N

f—

dc current [ampere)

0.0 0.1 0.2 03 04 0.5 0.6

time [sec]
Figure 3-2-2 : Response of ANN with § change

Similarly the effects of learning rate (1) and momentum (a) on the system

response are shown in figure 3-2-3 and figure 3-2-4 respectively.

PN

(V)
"

N

dc current [ampere]

p—

=3
=
=3
©
%)
e
u
=)
H
o
ta
o
o\

time [sec]

Figure 3-2-3 : Response of ANN with n change
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Figure 3-2-4 : Response of ANN with a change
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Considering the results of the conducted tests, the following points are deduced:
The response is very sensitive to the slope (B) of the activation function. As shown in
figure 3-2-2, higher g implies faster ANN performance. Therefore it seems very plau-
sible to apply the slope change for increasing the ANN system response. Sood et al.

have also pointed to this fact in their recent publication {43]. The method has some

superficial similarity to the simulated annealing [35].

The learning rate n also determines the ANN performance. The learning rate as
defined by its very first definition [25] adjusts the weights’ updates in each epochl.
Hence the higher nj implies larger adjustment and therefore faster response.

The momentum o incorporates the previous weight update in the recent weight
update. As shown in figure 3-2-4 the value chosen for the momentum does not contrib-
ute significantly to the speed, except for a small increase in the oscillations observed
for large .

Of the two parameter slope and learning rate, it turns out that the slope has the pre-

vailing effect in system performance speed. This fact will later be utilised with the aid of

fuzzy logic reasoning to improve the ANN response [§6.6].

ANN topology, number of the hidden neurons

The number of hidden neurons in an ANN is one of the main characteristics of the

system. The number of neurons in an ANN determines the total number of unknowns in
the network. The larger the number of neurons, the more time consuming and lengthy is

the learning process. Common experiments from the ANN [25] shows the optimal per-

1. training cycle
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formance of the ANN is achieved within a range of hidden unit numbers, and for the low
order ANN of this study this number need not be more than two or three. To investigate
the effect of number of hidden neurons on the ANN performance, the ANN with both two

and three hidden neurons were simulated, and the results are shown in the figure 3-2-5.

T 4

[ =5

] .

a 3 - .

'.‘E" ——— 3 hidden
g PR R T ~_ W AN A c SO R 2 hidden
=

[#]

o 1

00 0.1 02 0.3 04 0.5 0.6

time [sec]

Figure 3-2-5 : Response of ANN with 2 and 3 neurons

Figure 3-2-5 shows that the ANN performance does not improve considerably by

employing more hidden neurons.

» ANN topology, the effect of bias

So far it is assumed that all the neurons in the ANN block, were connected through
adjustable weights to a constant quantity called bias. As a further study the effect of the

bias on the overall performance is investigated.

The following test as shown in figure 3-2-6 reports the response of the ANN con-

troller with and without the bias (figure 3-2-7).
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Figure 3-2-6 : ANN with and without bias

/ R R without bias

/ ________ \ P | —— with bias

time [sec]

dc current [ampere]

Figure 3-2-7 : Response of ANN with and without bias

The hidden units as well as the bias determine the number of unknowns associated
with the ANN. Both of these tests suggest that increasing the number of unknowns for this
simple ANN (one-input, one-output) does not contribute to system speed and even makes
the system more oscillatory. The ANN with bias has three weights (two to hidden, one to
output) more than the ANN without bias. Similarly the ANN with three hidden neurons
has three (one from input, one to output, one from bias) weights more than the ANN with

two hidden neurons.
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Increasing the number of ANN weights does not contribute to system performance

and makes the response even more oscillatory.

» ANN topology, input form

As already was shown in figure 3-1-5, the input to the ANN is the reference signal,
and the error signal is used for weights adjustments. Therefore any reference changes will
also be sensed through the error signal. This tacitly implies the fact that the input change is
also sensed by the ANN through the sudden jump of error, and the input need not neces-
sarily be the reference value, and other signals can be taken as the ANN input. Three dif-
ferent inputs are investigated as the ANN input signal forms. These three different ANN

topologies are schematically shown in figure 3-2-8.

Ref. signal at
‘ ANN input
Id_’

Const. signal at
|_p ANN input

] Error signal at
Id» ANN input

Figure 3-2-8 : ANN topologies

-29-



The Artificial Neural Network Controller

The result of the simulation with these three different input signals are reported in

the following figure 3-2-9.

»

. F= \ B s const. ref.
: ' \\; normal ref.
217 T — :7? =~ —— errorinput

0.0 0.1 0.2 03 04 0.5 0.6

w

dc current fampere)

time [sec]
Figure 3-2-9 : Response of ANN with different reference inputs

In the second form (constant input), the ANN input can be regarded as a bias,
which contributes to the output through its connection. While the third form (error input)

has an input which is zero whenever the error signal is zero.

It is interesting to point out the following subtle point. Methods I and II mostly
provide a large positive or negative bias on the neuron’s input which drives the neuron
closer to the nonlinear region of its activation function where the change of gain is not so
pronounced. Conversely, the use of error as the input (method III) forces the operating
point tc the centre of the linear region of the sigmoid function, where the neuron activa-

tion function is linear and input change contributes to the output.

Although the third method (error input) shows slower overall response, note that
this method initially responds faster than other two. Thus using the error signal as the
input and increasing the speed by using steeper activation functions, lends itself to

improved performance (see ANN response shown dotted in figure 6-6-6).
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e Simulation time step

All the studies discussed in this dissertation are based on using an electromagnetic
transient program [ 14] type software. In this type of the study the equations for the system
are solved once every time step and similarly the ANN weights are adjusted the same way.
Since the back propagation is carried on in each time step, the frequency that the weights
are updated is directly related to the simulation time step. Obviously the smaller time step
implies more frequent weight adjustment in a run, or faster and more oscillatory response

as shown in the following figure 3-2-10.

4

o

dc current [ampere]
- N W

0.0 0.1 0.2 03 0.4 0.5 0.6

time [sec]
Figure 3-2-10 : Effect of simulation time step
The results of various studies on the ANN behaviour, suggest new possibilities in

the ANN implementation. For example it is possible to use an ANN with low training fre-

quency, and compensate for the reduced response speed by using neurons with steeper

slopes (higher ).

3.3 Synchronized Learning
Firing angle to a converter is the only signal that controls the converter and its per-
formance, and all the control goals are achieved via this signal. The very nature of the con-

verter is such that the firing angle can only affect the converter performance six times
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during the fundamental period (for a six pulse converter). Once a firing is issued and one
valve starts conducting, any subsequent changes within the f/6 sec. to the firing angle

will not affect the converter.

Thus if the leaming is carried out once in each time step, then most of the times the
ANN output (firing angle) does not bring about any changes to the converter performance.
For example for a simulation time step of At=50ms and the fundamental frequency of
60Hz, using the on-line training, the ANN is trained 400 times in each cycle, while only
six of these trainings are really altering the performance and the error, while the rest 394
trainings do not affect the converter operation. Therefore for the most of the time, the
learning procedure does not get any relevant information regarding its performance

achievement.

In order to solve this short coming of the on-line ANN learning, the learning is car-
ried out six times in each cycle (of fundamental frequency). The training instants are
determined from a synthesized train of pulses assembled from the converter firing control
circuitry. This signal is composed of unit impulses at the instants that each valve com-
mences to conduct, or at the end of commutation period (in other words, a periodical sig-
nal consisted of six equidistant impulses within the fundamental period). Therefore this
synthesized signal reproduces the instants that a change in the firing angle makes a change
in converter performance. Thus the learning carried out at these instants are bound to train
the ANN parameters. This synthesized signal can then be connected to the ANN enable

input, or more simply multiplied by the training error. The method is named as synchro-
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nous training. The figure 3-3-1 shows the results of comparison between normal on-line
training as explained previously in this chapter with synchronized training. The results
show that the speed and the accuracy of the synchronized method is considerably better

than the on-line method.

L 1

NN W
- N W u.SGol}.’o

-

dc current [A] firing angle [deg.]

0.0 0.1 0.2 0.3 0.4 0.5 0.6
—— Synchronized on-line

______ On-line time [sec]

Figure 3-3-1 : Synchronized on-line training

The learning and its effect on the performance are more prominent in the synchro-
nized learning than normal on-line learning. For example the results of the operating point
change as shown in figure 3-2-1, do not show any performance improvements as the learn-
ing continues after the sudden change in the series dc source. While conducting the same

test shows gradual performance improvement even for a larger change (E ;. = 100).
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Figure 3-3-2 : Synchronized operating point change
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3.4 ANN and P-1I Controllers Performance Comparison

The ANN controller as discussed earlier is equipped with an adaptive procedure
which guarantees that the ANN evolves with the system changes. While the P-I controller

is not adaptive. The results of the two controllers on the system behaviour are shown in the

figure 3-4-1.
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Figure 3-4-1 : P-I and ANN comparison

Both P-I and ANN as depicted in figure 3-4-1 show initially the same response
speed, while the P-I has more overshoot and the change in the operating point results in
substantial P-I response degradation, while the ANN controller can adaptively adjust the

controller performance and behaviour due to any system changes.

In order to make the P-I response more robust, a compromise gain is usually
selected in typical control systems. This gain setting gives acceptable response at each

operating point, but is not the best possible response at any operating points.
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3.5 Conclusion

The ANN is applied to the control of a simple rectifier connected to an active load.
Preliminary studies show that the ANN provides superior performance under different
system conditions. Further, the effect of the ANN parameters are investigated. It turns out
that the response speed increases with activation function slope change. This idea will be
followed later in §6.6. The effect of different inputs to the ANN was investigated. It is
found that the error can also be used as the ANN single input. In effect throughout §4, the
error is used as the single input of the ANN along with increased slope () for the activa-
tion function. The result of performing the on-line training procedure, six times in each
cycle has shown significant improvement. This method, referred to as synchronized learn-

ing, is independent of the simulation time step.
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4. The CIGRE HVDC
Benchmark Moﬂ_gl_

In order to investigate the performance of ANN controllers on an HVdc system,
the first CIGRE HVdc benchmark model is chosen [59] as the HVdc system under study.
This benchmark was designed by CIGRE study group 14.02 with parameters that present

a high degree of difficulty for the control studies.

Since the advent of HVdc transmission systems, their controls have been studied in
great detail [20,37], and many proprietary methods [3] have been developed. These con-
trol schemes are quite complicated and includes many protective measures. They also
have been utilized for many years and with ongoing modifications, are now considerably

optimized.

Using a practical and complete control system for the studies conducted in this the-
sis is firstly very cumbersome and secondly distracts one from the primary objectives of

the study. Also, many of these control systems are of proprietary nature and have not been
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published. Here the aim is to investigate the feasibility of applying new techniques to the
HVdc control schemes. Therefore only the main modes of the HVdc control are imple-
mented, without adding the auxiliary modifications and improvements. The main parts of

the HVdc control are well explained and elaborated [59].

The FGH report [67] which describes a proposed control method for the CIGRE
benchmark, is used here as the basis of the control scheme. This control scheme is referred
to as the conventional control scheme, when being compared to the methods proposed in

this dissertation.

It should be reiterated that the conventional method used in this dissertation is not
the complete actual control method used in a real HVdc system. However the conven-

tional method comprises the main modes common to all control schemes.

This chapter describes the CIGRE HVdc model and control, and also identifies the
control parameters to be replaced with the ANN or fuzzy controllers later in this disserta-

tion.

4.1 CIGRE Benchmark

The CIGRE benchmark model is used as a test system. The CIGRE benchmark

model has been designed for conducting comparisons of performance of different dc con-
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trol equipment and control strategies. The configuration is a two-terminal dc scheme,

depicted as in figure 4-1-1.

500kV, 2kA
Rectifier Inverter

5 TI ¥

3t

Figure 4-1-1 : CIGRE benchmark

The short circuit ratio and the effective short circuit ratio (SCR and ESCR), are
important indices for characterizing the degree of expected operational problems in a dc
transmission scheme. The SCR is defined as the ratio between the ac system short circuit
MVA and the dc power. If the filter MVArs’ are subtracted from the ac system MVA in the
above calculation, the resultant quantity is the ESCR. The circuit under study [67] has the

following rectifier and inverter ac system characteristics:

Rectifier SCR = 2.5/-85° ;ESCR= [.9£-82°

Inverter SCR= 2.5/4-75° ;ESCR= 1.9/-70°
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These short circuit ratios characterize weak systems. The combination of the weak
inverter system, the dc side resonance (large admittance) near fundamental, and the ac
side resonance (large impedance) near the second harmonic makes the benchmark system

particularly onerous for dc control operation.

4.2 HVDC Control Strategy

Both converter substations (rectifier and inverter) are provided with a current con-
trol loop including a current measuring device, a current controller and firing control
equipment. Usually, one of the converters is current controlled, and the other operates in

constant extinction angle as described below.

The control system for the benchmark model has two main parts.
e Rectifier constant current (CC)

e Inverter constant current (CC) or inverter constant extinction angle (CEA)

Normally the operating point is the intersection of the rectifier CC and inverter
CEA (point 4 figure 4-2-1), which results in the minimum reactive power demand [5],
without an excessive risk of commutation failure. With the rectifier in the CC control
mode and the inverter in the CEA mode, the terminal dc voltage is the intersection of the
two characteristics as shown by point A (figure 4-2-1). At this operating point the firing

angle to the rectifier is above that of the limiting value o (the minimum rectifier firing

min

angle).
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There, the rectifier current controller adjusts the voltage to keep the current con-
stant at some point on the vertical line. During transients, e.g. line faults, there are excur-
sions of voltage. During these transients the current is temporarily different from the set
value. Note that the characteristic shown in figure 4-2-1 is the locus of the operating points

during the steady state operation of the HVdc system, and does show any transient operat-

ing point.

There are four reasons for keeping the power factor high; two concerning the con-
verter itself and the other two concerning the ac system to which it is connected. The first
reason is to keep the rated power of the converters as high as possible for the given current
and voltage ratings of valves and transformers. The second reason is to reduce the stresses
on the valves and damping circuits. The third reason is to minimize the required current
rating and the copper losses in the ac iines to the converter. The fourth reason is to mini-
mize voltage drops at the ac terminals of the converter as the loading increases. The last

two reasons apply to any large ac loads.

The power factor can be raised by adding shunt capacitors, and if this is done the
disadvantages become the cost of the capacitors and switching them as the load on the

converter varies.

The reactive power demand of the converters is a function of firing angle. The

reactive power demand of the rectifier:
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cosdh = é [cosa + cos (o + u) ] (eq. 4-2-1)

increases with converter firing angle (a) and similarly the reactive power demand of the

inverter:

1
cosp = 5 [cosy+ cos (y+u)] (eq. 4-2-2)
increases with converter extinction angle (). In order to get a reasonably high power fac-

tor, it is preferred to operate the inverter with minimum extinction angle (y) and the recti-

fier with minimum firing angle (o).

In a rectifier, it is easy: we can make a=0°, for which cosa = /. (For practical
reasons, o should be about 5°). In an inverter it is more difficult, and y must be greater
than zero by some margin. The extinction angle (y) should not breach this limit for the rea-

son that follows.

The reason lies in the fact that, after a valve (thyristor) turns off it should regain its
blocking capability, prior to re-application of the forward voltage. We can not control y
directly but instead must control the ignition advance angle B = y+u in accordance

with the value of overlap angle u.

A common malfunction of an inverter is a failure of commutation. Commutation
Jailure is the phenomenon in which an off-going valve (thyristor) either does not com-
pletely extinguish, or re-ignites immediately on forward voltage. Commutation failure
occurs when conditions in the ac or dc circuits outside of the bridge results in inadequate

line voltage which is necessary for valve turn-off.
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In order to ensure successful commutation during steady state operation, the on-
going valve should be fired when there is sufficient line voltage to successfully transfer
current from one valve to another. This can be achieved by maintaining a minimum com-
mutation margin, i.e. making sure that after a valve tumns off, it does not see forward volt-
age until the end of the margin period. This period, expressed as an electrical angle, is
called the extinction angle (y) of the valve, and the above strategy ensures that its value be
kept at a constant y,,,;, (typically 15°-18°). The controller that achieves this goal is called

the constant extinction angle (CEA) controller.

Under rated conditions the rectifier is in CC and inverter is in CEA control mode.
System changes such as ac side voltage reduction at the rectifier end pushes the CC con-

troller to hit the minimum firing angle limit on the rectifier side (¢ = a and the con-

min )’

troller acts as the constant firing angle.

Simultaneously the inverter controller should switch from CEA to CC. In other
words the current control function is taken over at the inverter end, with the rectifier oper-
ating on its uncontrolled characteristic at the minimum firing angle. The inverter is pro-
vided with a current controller, but for this station the current reference is reduced by the

amount Al{, the so called current margin.

In the effort to further improve the control system response some other details are
also incorporated into the HVdc control scheme. Some of these modifications are of gen-

eral nature and common among all the control schemes, and are summarized.
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In order to prevent sudden changes in the operating point during system transients
(as mentioned above), the crossover sharp knee (as shown dashed-dotted figure 4-2-1) is

broken with a positive resistance slope from the y_. characteristic to current control

min

characteristic of the inverter (AB instead of AB!B figure 4-2-1).

This droop characteristic is usually called current error control (CEC) as shown in
figure 4-3-1. In fact as long as the CEC block is active and the operating point lies on the
droop line AB, the inverter is under the CEA control mode with adjusted value for the ref-

erence y.

At point A the y reference is vy, . . As the point moves along line AB a linear off-

min
setis added to v, . which is equal to Ay at point B. The actual mode cross over from CEA

to CC and vice versa occurs at point B. This fact will further be used in §6.

A voltage dependent current limit (VDCL) is usually introduced in order to reduce
the current order to approximately 0.33 p.u. at low dc voltages. This ensures that if the low
voltage is caused by an inverter side commutation failure, the inverter valve that has failed
to turn off does not continue to carry full load dc current and hence be subjected to thermal
overload. The VDCL also has the additional bonus benefit of providing improved start-up

and fault recovery characteristics.
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The aforementioned operation modes, lend the following characteristic.

Vd
Normal voltage lines

0 + Aly e

Figure 4-2-1 : HVDC Control Characteristic

4.3 HVDC Control Diagram

The basics of the HVdc control are briefly discussed in §4.2. In order to implement

these basics to the CIGRE benchmark, the control diagram shown in figure 4-3-2 is used.
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Figure 4-3-1 : Conventional Control Scheme
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¢ Note: The limits of the P-I controllers as shown in figure 4-3-1, are shown in the P-I
blocks only for the emphasis. However these limits are treated within the P-I algorithm
used for simulation studies, and the P-I controllers used are non-wind-up.

Most the of parameters and terminology used in this diagram are discussed in §4.2.

The inverter control circuit as shown in figure 4-3-2 is composed of two separate feedback

loops. The top one is the current controller and the bottom one is the constant angle con-

troller. The outputs of these two is fed into 2 minimum selector. The smallest of the two
firing angles generated, is then selected as the inverter firing angle. Thus the minimum
selector ensures that only CC or CEA is active. This minimum selector does the controller
switch over from CEA to CC and vice verse. Besides when one of the controllers is
selected, the other becomes saturated at its limit. This introduces unwanted delay or dead
band when the control mode on the inverter side should be switched. In order to improve
the inverter controller performance and speed up the mode switching this minimum selec-
tor provides also an auxiliary signal. This signal disables the controller which is not
selected, thus prevents it from going into saturation and thus reducing the switch over
dead band. This select signal is set to one whenever the CEA mode is chosen and zero

when the inverter is in CC control mode, thus shows the inverter mode of control.

-
I di [
- 3 3 % Cm)é

CEC ~ select
Tref select ﬁ—-ai
Ymeas al
Con/

Figure 4-3-2 : De-selection method
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Making the output of the de-selected controller follow the output of the selected
one, a technique common to analog controllers (usually known as follow-up), can not be

used here.

In the nominal condition, the lower path (CEA) is active thereby ensuring con-
stancy of extinction angle at its nominal value of 15°. However, for a drop in the rectifier
ac voltage, the CC path would become active. The current error (CE) mode of operation
described earlier in §4.2 is implemented by modifying the extinction angle reference value
with an offset which is proportional to the dc current. This block is shown as CEC in fig-

ure 4-3-2.

The rectifier control scheme is composed of a current control and a voltage
dependent current limit (VDCL) block. VDCL produces a current order (say 1.5 p.u.),
which under the normal operating dc (V) voltage is more than the rated dc reference cur-
rent (1 p.u.), thus the minimum operator in the rectifier control scheme chooses the actual
dc current reference. However during low dc voltage this block issues a reduced current
order (0.33 p.u.), and thus the reduced current order is fed to the controller. Later as the dc
voltage builds up, the reduced current order is ramped up and finally the actual current ref-

erence is fed to the rectifier current controller.

The dc current reference (1) is normally derived through a power control loop as

is discussed in §4.4.
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4.4 Power Flow Control

For controlling the dc power, the current reference in the current controller is
derived from the ratio of the power order and the inverter side dc voltage, as shown in fig-
ure 4-4-1. The inverter side dc voltage can be estimated from the rectifier side voltage by

subtracting the dc line voltage drop.

The rectifier substation as shown in figure 4-4-1, is provided with a power control-
ler. The current reference is calculated by dividing measured dc power by measured dc

voltage. The upper limit of the dc reference current is further adjusted by the measured dc

voltage [30].
Vi 10 - - - -
. _/_ L »  Power flow control
7
05 09 Vdd

Pr . .i _fi:m .[def

Figure 4-4-1 : Power flow control loop

The control system at the rectifier is similar, except that the dc current margin is
not subtracted from the current reference (this ensures that the rectifier and inverter will

not simultaneously attempt to control current).

Conventionally these controllers are P-I controllers with gains and limits set for
optimal performance [67]. This control scheme is referred to as the conventional method
all through this dissertation. Henceforth, the application of new modes and techniques to

these control principles are investigated or evaluated.

47-



5. ANEI Contzol Studies

In this chapter the performance of the HVdc system using ANN controllers is
investigated. The control diagram shown and described in §4.3, is used for the HVdc sys-
tem under study. This control scheme is referred to as conventional scheme throughout
this dissertation. In the conventional scheme the three controller blocks used as shown in
figure 4-3-1, are proportional integral (P-I) type blocks. It has been verified by the studies
and analyses conducted in §3, that an ANN based controller can be substituted and used

instead of a P-I controller in control systems.

Using the same control basics as shown in §4, the three controllers shown in §4-3-

1 are substituted with three ANN based on-line controllers.

It was shown in §3 that there are three important parameters associated with each
ANN. The simulation results have shown that the best performance using ANN controllers

is achieved by adjusting these parameters, discussed earlter in §2.3, as follows:

e o =0.1, learning momentum
e B =0.1, activation function slope

e 1 =0.6, leamning rate
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In order to fully evaluate the performance of the system, the following tests were

conducted on the system to verify the controller behaviour.

e  Current order reduction and restoration (20%)
« Rectifier ac side voltage reduction and restoration (20%)
e Rectifier ac side 3-phase fault and recovery
o Inverter ac side 3-phase fault and recovery
e Dc line fault and recovery
The objective of conducting the above tests is to investigate the behaviour of the
ANN based controller in HVdc control scheme. It tums out that the ANN is not a suitable

control scheme for multi-mode HVdc operation. The work presented in this chapter

describes why this is so.

5.1 The Current Order Change

Normally in an HVdc system the inverter operates under the CEA mode. A current
order change does not initiate any crossover from CEA to CC on the inverter side. Figure
5-1-1 shows the result for a 20% current order change on the CIGRE benchmark. The
ANN controllers both on the rectifier and the inverter side perform properly, however they

are slower in contrast with P-I based controllers.
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Figure 5-1-1 : Dc current change

The current order change as already mentioned above, does not initiate any control
crossover on the inverter side. Thus, only the (CEA) controller is active on the inverter
side during the transient while the other controller (CC) is fully de-selected. The response
speed can further be improved by further adjustment to ANN activation functions’ slope.

However it turns out that, this can deteriorate the system responses as shown in the later

tests.

5.2 The AC Voltage Reduction Test

Although an HVdc system normally works with CEA mode on the inverter side
and CC on the rectifier side, the inverter sometimes assumes control of current with low

rectifier voltage. The change of the operating mode is often referred to as control mode
crossover. Thus any proposed control scheme such as an ANN scheme, should be tested
for such a mode crossover. The example discussed earlier in §5.1 did not present a control
mode crossover. Presented below is a case of rectifier side ac voltage reduction in which

the lower ac voltage forces a control crossover from CEA to CC on the inverter side.
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The voltage is initially reduced by 20% (figure 5-2-1) on all three phases. Follow-
ing the voltage reduction, the rectifier firing angle hits the controller’s lower limit and the
inverter current controller, after some delay, switches to current control which adjusts the
dc current to the reduced current reference (Ipef-Alg) equal to 0.9 p.u. It was observed,

upon the ac voltage restoration the HVdc system undergoes a commutation failure.

As soon as the de-selected ANN controller, becomes selected again, it shows a
very sluggish response. The controller behaves as if it starts to train for the first time, and
the previous trainings are all forgotten. The ANN used to work fine prior to de-selection,
but when it is re-selected, the ANN controller with the old parameters (weights of the
ANN) does not generate a suitable output, and new training should be started, which needs
more time. The ANN finally succeeds to restore the control and recover the system power

to 1 p.u. dc current, which means the new training converges.

In addition, further tests and experiments which initiate control crossover on the
inverter side, all ended up in the same system performance. It was concluded that control
crossover on the inverter side deteriorates the system performance and results in a com-
mutation failure. However following this commutation failure the ANN controller always

succeeds to control the plant.
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Figure 5-2-1 : Ac voltage change
Compared to the ANN, the conventional method using P-I controllers with gains
and parameters given in [67], performs quite well subjected to all different tests without

any commutation failure and restores the transmitted power very smoothly to one p.u.

5.3 Commentary on the Unsuitability of ANN
Following Mode Crossover

The mentioned drawback of the ANN based control lies in the basic principle of
the on-line training mechanism. As has already been explained, in this type of learning
procedure, the ANN parameters (weights) are adjusted once every time step. Thus when
the system experiences a transient, the weights of the ANN change in a direction to
improve the ANN performance under this transient. When this transient finally dies out
and the system reaches a new steady state operating point, the ANN parameters have been
varied so many times, they hardly include any adjustments made at the instant the tran-
sient began. In other words the ANN forgets what it has learned, due to the abundant flow

of information.

-52-



ANN Control Studies

The P-I controller response to error change is predictable, and as long as its output
lies between the output limits, one always expects to see the output changes in proportion
to input changes. For the ANN controller the situation is not so straightforward. The
behaviour of the ANN following the crossover is quite unexpected. Figure 5-2-1 shows
that the CC controller on the inverter side does not seem to be fast enough following the
voltage drop and restoration, while it shows reasonable speed elsewhere. With on-line
learning, the ANN controller has to be re-trained for any new operating condition. As this
takes time, the response immediately following the crossover is very poor, as the network

has been trained for the pre-crossover mode.

It should be stated that we have not used any derivative information in the control
algorithm. This is because an input-output rate of change for a converter is not continuous.
For example, consider a simple 6-pulse rectifier as shown in figure 3-1-1, where the finng
angle a is the sole input to the rectifier. Now if a is changed by an infinitesimal value
equal to Aa, the change in firing angle will not affect the rectifier prior to the next firing
instant. This fact may also be formulated as an uncertain delay from 0 to 1/ (6f) sec.,
where fis the ac voltage frequency (fundamental). There is no way to give a precise
amount for this value, unless the instant of firing angle and firing angle change (Aa) with
respect to the ac voltage is known in advance. Henceforth, for a specific Aa, the associ-
ated dc current change, A/ , is zero from the moment that the a changes till the next the
firing instant. Therefore the quantity 47 ,/da , where [ 4 s the dc current, assumes zero
value and then changes to some non-zero quantity, which is correlated to a changes made

by the controller between firing instants. Thus, it is impossible to define a unique inverti-
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ble mapping between a and the system response, as demanded by the back propagation

algorithm.

Another aspect that makes the use of derivative information (Jacobian) in the con-
trol scheme difficult is that the equations which describe a converter are based on constant
dc current. It should pointed that the fundamental HVdc equations shown in eq. 5-3-1 [62]
only involves average and rms quantities, although invertible, is of no interest to us for

defining a Jacobian.

3
V,= 135V, -cosa+=-X_-I, (eq. 5-3-1)

5.4 Composite Error Control

Another possible control method was proposed during the course of this thesis.
This was to use composite error. The idea is to perform the minimum selection at the level
of the control errors (y and / p errors) instead of doing the selection at the output of the two
controllers (CEA and CC figure 4-3-2). Using this method, only one controller will be
used on the inverter side and this removes the de-selection problem mentioned earlier. The

method is briefly outlined in the following figure.
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Figure 5-4-1 : Composite error control scheme
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The composite error control scheme as shown in figure 5-4-1, includes only one
controller instead of two, which can be either P-I for conventional method or ANN for this

study.

Since only one controller is used, the two errors must be scaled with K; and K, as
shown in figure 5-4-1 to make the controller parameters suitable for both options. For the
purpose of argument, assume only a single gain K¢ for the single controller. Let Kfand K,
be the desired gains for the current and y path respectively (these values could be obtained
from simulation or other studies). In order for scaling to work, we must have K*K ;=Kj

and KC*K,=K,, from which the gains K, and K can be calculated.

Using an ANN in the error composite scheme, the ac voltage test is carried out.
The results do not show any improvement. Conducting the ac voltage test, following the
voltage restoration the inverter experiences a commutation failure, as in the previous sim-
ulation. This further reiterates that the control mode crossover results in the ANN mal-

function.

-55-



ANN Control Studies

5.5 ANN Modifications

The performance of the ANN when only one controller is active at the inverter side
is comparable to the P-I performance, and it is also possible to choose the ANN parame-
ters in order to speed up the response time [57]. However the performance is quite unpre-

dictable and sluggish when control mode crossover occurs at the inverter side.

The author tried other methods in order to improve the ANN performance. The
ANN controller used so far has only one input. Therefore it may not get enough informa-
tion from the system under control. A two level ANN with as many as 10 inputs, 10 hid-
den and one output neuron is developed using the back-propagation for the learning
process. The inputs are chosen from the different system parameters and quantities both

on the rectifier and inverter side.

In addition to this, the minimum selector used in figure 4-3-2 is equipped with a
binary signal (select) in the output as shown in figure 5-5-1. This select signal is set to one
whenever the CEA mode is chosen and zero when the inverter is in CC control mode, thus
indicating the inverter mode of control. The appropriate form of this signal (select) is mul-

tiplied by the error used for the ANN such that the weight adjustment stops in the de-
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selected controller. Once a mode becomes selected, the other controller becomes deacti-
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Figure 5-5-1 : Modified ANN control scheme

The rectifier current controller has five inputs which are: rectifier measured dc cur-
rent (I;,), dc current reference (I,ej), rectifier measured dc voltage (V4,), rectifier meas-
ured ac bus voltage (V,,) and the rectifier firing angle from (o)) which will be the value
of the firing angle from previous time step. The ANN weights for this ANN are adjusted

by the current error (shown dotted). This ANN has ten hidden units.

The inverter CEA controller has seven inputs which are: select signal (select),

inverter measured dc current (I;;), dc current reference (1,.p), inverter measured dc voltage

-57-



ANN Control Studies

(V4), inverter measured ac bus voltage (V,,), inverter firing angle ( a ;) and the measured

extinction angle (y ). The ANN weights for this ANN are adjusted by the gamma

meas

error (shown dotted). This ANN has ten hidden units.

On-line learning poses a special problem for the de-selected controller. If the con-
trol algorithm is allowed to keep operating, this de-selected controller moves to its
extreme limit of operation. The output is thus no longer a function of its input and further
training results in meaningless weights being set. Also making the output of the de-
selected controller follow the output of the selected one, a technique common to analog
controllers (usually known as follow-up), can not be used here, because if the training is
allowed to continue, the de-selected controller erroneously thinks that its weight adjust-

ments are actually affecting the output, thereby again resulting in incorrect training.

Freezing the weights during the de-selection mode is the only alternative, and this
was used in the course of this work. This objective is carried out by the select signal (intro-

duced earlier).

In order to improve this performance even further an iterative scheme was used.
The on-line learning method described so far, has the shortcoming that the ANN does not
learn long enough with the important patterns. Most of the time the system is under steady
state condition, and therefore the patterns seen by the ANN are not a good example for
training the network for transients. During the transients, such as fault recovery, the error

and the system parameters contain important information about the system behaviour. But
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these patterns only exist during the transients, which are of short duration, and therefore
the ANN may not train long enough with them and the weight adjustment may not be of
satisfactory extent. Thus a simple mechanism in the learning algorithm is provided to
carry out the back-propagation many times in each epoch l, and learning iterates for a spe-
cific number of times, during each time step, instead of default only once (note: in on-line
learning the weight adjustment is carried out only once in each time step). In each itera-
tion, the weights are repeatedly adjusted using the same error and the same inputs from the

system.

The modified ANN with 30 learning back-propagation iterations in each time step
is modelled and used for simulation studies. The results for a 20% current reference
change is shown as in the figure 5-5-2. This method shows faster response than the origi-
nal ANN method. The activation functions used in this method have flatter characteristics
compared to the original method discussed in §5.1. The overall performance compared to

the original ANN [figure 5-1-1] is better but still far from desirable.
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Figure 5-5-2 : Modified ANN current reference change

The control cross over on the inverter side still shows unacceptable results.
Although the controllers do not get into saturation, the performance is still poor. As shown

in figure 5-5-3, for 15% ac voltage change which initiates control mode crossover on the

1. Training cycle
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inverter side, upon the restoration of the ac voltage to one p.u., the inverter suffers from a

commutation failure.
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Figure 5-58-3 : Modified ANN ac voltage change

As was shown in §3.2, the ANN parameters play an important role in the speed of
the ANN controller. Therefore the author tried by using a fuzzy logic based inference
algorithm to vary the slope of the ANN activation function. The method will be described
in the fuzzy logic section (§6.6) of the dissertation. Unfortunately, the performance of the

ANN, particularly undesired delays, were not substantially improved.

The author believes that as long as the plant information is not incorporated into
the learning process, the on-line training would not be a successful method. Besides by
having the incessant learning process in an on-line training, the important features that
ANN has learned during transients get forgotten. In addition, due to the intrinsic nature of
the converter any adjustments made to the firing angle only effects the converter six times
in each cycle, and any adjustients between them do not have any effect on converter per-
formance. Thus the author believes that the provision must be made to carry out the learn-

ing six times in each cycle instead of once in each time step.

In the next section the author reports a novel fuzzy logic method for HVdc control.
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6. The Fuzzy Logic Method

6.1 Basics

Fuzzy logic is a technique that allows for quantification and processing of com-
mon language rules to arrive at a decision. All the rules are considered at once or in paral-
lel to arrive at a weighted decision [34,49]. In this chapter the basics of applying the fuzzy
logic method to HVdc control [9] are discussed. Later the fuzzy logic modified ANN con-

trollers are presented.

We demonstrate the application of fuzzy logic by demonstrating the conversion of
the HVdc control system shown in figure 6-1-1, to the fuzzy control system shown in fig-

ure 6-1-2.

The plant in figure 6-1-1 consists of the inverter and the remaining ac/dc network.
As the variables on which the control system acts are the dc current and the extinction

angle, the plant appears to the controller as a one-input (a;), two-output (I, ) sys-

meas

tem.
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Figure 6-1-1 : General inverter control system

In the conventional method of figure 6-1-1, the plant is either under CC or CEA
control mode and thus one of the two P-I controllers is selected. Note that each P-I con-
troller has its own separate gains and error signal, and that the selection process is carried
out at the ourput end of the two controllers. Thus at the transition from one control mode
to another, the controlling error and the controller gains are abruptly interchanged. In the
proposed fuzzy logic approach, we perform the selection procedure on the input side of
the controllers by deriving a composite error as shown in figure 6-1-2. Two new coeffi-
cients p~~ and p .., are introduced that allow for a gradual transition in the selection
process. This can be regarded as a generalization of the conventional process in figure 6-1-
I, where exactly one of p .~ or p, is one and the other zero (in CEA mode p .~ =0,
Mcpyq =1 and in CC mode p -~ =1, p-p, =0). In the fuzzy logic approach these two
coefficients are continuous numbers in the closed interval [0,1] and not necessarily com-
plements. At the nominal operating point, however, the controller is in extinction angle

control, with Koo =0, KCEA =1.
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Figure 6-1-2 : Fuzzy logic control of SIMO systems
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The two coefficients u ., and p . . are derived from simple verbally stated con-
trol rules. For example whenever the measured extinction angle is smaller than its set
value, the CEA mode of control should be selected in order to bring the extinction angle to
its reference in order to provide sufficient commutation margin. The set of rules are
explained next in §6.2. Using the fuzzy coefficients p ., and p -, the deriving error of
the P-I controller (e in figure 6-1-2) is calculated as shown in figure 6-1-3.

3§
ervor to P-I

e

Figure 6-1-3 : Composite error derivation
In a similar fashion, the P-I controller gains and limits are also continuously
adjusted through a weighting process (depending on the output errors, p .., and p )

and are continuously loaded into the P-I block as shown schematically in figure 6-1-2.

6.2 Fuzzy Logic Formulation

All the rules are based on two inputs, the current and the extinction angle measure-
ments. The first step in fuzzy logic is to define the fuzzy membership function for the
inputs. In deterministic logic, we assign a truth value of “yes (1)” or “no (0)” to the state-
ment “... the current is large”. In fuzzy logic, the answer can take on values between 0 and
1. At the extremities, where it is clear that the current is large (or small) we may assign a

value of 1 (or 0).

Thus as in figure 6-2-1, a value of Ig=1 implies that the current is “definitely small”

whereas Ig=0 means that the current is “definitely not small’; intermediate values between
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0 and 1 implying something in between. Similarly I; =1 implies that the current is “defi-

nitely large”, and so on.

For the two inputs under consideration I and y the following simple linear sets are

used (Note: The overlap of the two sets is not necessarily 50%).
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Figure 6-2-1 : Fuzzy membership functions

e Note: The definition of small or large current is defined with respect to the reference
current, i.e. L; is definitely small (Ig=1) if it is significantly less than the reference cur-

rent. A similar argument applies for y.

I and [} are a measure of small and large dc current respectively. Using the mem-

bership values for [ and v, the following set of rules is used for control.

RULE I TF IgAND yg THEN p .
RULE II: IF IgAND v, THEN p_..
RULE [I: TF I AND yg THEN p .,

RULE IV:TF I, AND v, THEN p

One rational behind the rule is that the extinction angle control is most important
when there is a higher probability of commutation failure, i.e. at higher currents and

smaller y. If however the current is large and v is large, then current control is still the pre-
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ferred mode because the large y indicates that commutation failure is not a problem. Simi-
larly at the smaller current, commutation failure is not a problem and so current control is

the preferred mode.

The rules are shorthand expressions for simple real-language statements which
describe desired operating strategy. For example, rule IV states that if the current is large
and the extinction angle is large, current control should be used. However, unlike deter-
ministic logic, this rule does not assign a value of 0 or 1 to K- but rather just assigns a
contribution. The contributions to p . from rules I, I and IV are then used to determine

its final value using some de-fuzzification method.

Shown below is the procedure for using the above rules in quantitative manner. For

any typical measured I and y the quantities Iy, Is, v, and y; assume some values

meas’

between 0 and 1. For example suppose that for some I;; and vy, - we get Ig=0.3, I; =0.6,
¥, =0.75 and y;=0.1. Using correlation-product inference [34] the above rules give the

following:

RULEI: p (- =03 *0.75=0.225
RULE II: p - = 0.3 * 0.1=0.03
RULE [II: p -, = 0.6 * 0.75=0.45

RULEIV: p . =0.6 * 0.1=0.06

The selected de-fuzzification method used to obtain a unique value for the fuzzy
coefficients, is the Maximum Membership De-fuzzification Method [34]. In this method,

we simply use the largest values generated by the rules, i.e., p . ,=0.45 and p .~ =0.225.
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Thus, instead of having a controlling error of e, or e; as in the conventional

method, we now have an error of 0.45 *e_{ +0.225*% ¢, at this operating point.

A similar approach is used to set the gains and the limits of the composite control-
ler; with the same values of p . , and p .~ obtained above for this operating point. Thus,
if the P-I controller proportional gains for the CC and CEA modes are respectively KP¢c
and KPcga; then the value assigned to the composite gain is KP = 0.45 KPcga +

0.225KPcc.

A compact form for visualizing the control rules I-IV is the Fuzzy Associative

Memory (FAM) shown in figure 6-2-2.

N
7

EA CC

Figure 6-2-2 : FAM for the control strategy

The FAM shown above has the I;-y plane analogy as shown in figure 6-2-3. As
shown by figure 6-2-3, in different areas of this plane, at least one specific control mode
should be active. The control modes obey the same rule set explained earlier in §2.3.

These rules render the two dimensional visualization as follows.

-66-



The Fuzzy Logic Method

YS YL
1 - = "\ [ mm——-
\/
A
jy‘ -
— 0 ref Y

Figure 6-2-3 : Plane analogy of the FAM

On the left and the upper side of this figure the fuzzy membership functions for y

and [ are also shown.

The p, - and p ., participation factors are then used to evaluate the P-I gains

and deriving error.

The two participation factors (Lo and U, ) are calculated using the fuzzy
inference method described previously. For any points on the Id-y plane as shown in figure
6-2-3, the p .~ and p ., are driven. These factors are then used to get the P-I propor-
tional gains. The proportional composite gain is derived as KP = KPcp *Hpy +

KPcc* - The proportional gains for the two inverter control modes as given by [67]
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are: KPr=0.62992 and KPg4=0.75055, then the composite KP can be visualized as

three dimensional surface as shown in the following figure.

Figure 6-2-4 : Three dimensional plot of composite KP

The shape of the three dimensional plot for KP shows two plateaus which corre-
spond to the CC and CEA modes respectively. In the transition, there appears to be a val-
ley. However the shape of the function is strictly dependent on the selected overlap among
the membership functions. The graph in figure 6-2-4 is for a 25% overlap. No such valley
is seen for a 50% overlap; in which case the transition between the two plateaus is smooth.
This figure depicts how the proportional gain KP, changes for different extinction angle
and dc current quantities. The proportional gain as well as the other parameters are set

according to the four simple control rules expressed earlier.
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It is interesting to point that it is als> possible to use even simpler set of rules for
the same objective. For example, as the figure 6-2-3 justifies, the following three rules set
express the same objectives as the initial four rules set. But with these three rules, instead
of defining the universe of discourse as four quadrant using four rules, the three proposed
rules defines the same universe of discourse by two strips and one quadrants. These rules
are simpler than the initial rule set and the implementation would be more straightforward,

although they both convey absolutely the same purpose.

RULE I TF I THEN p .-
RULE II: TF y; THEN p .

RULE [II: IF 1 AND y¢ THEN pi .,

The simple four-rule FAM or the three-rule set, was used to describe and simulate
the proposed fuzzy logic method. As will be shown in the §6.4, even a larger number of

rules can also be used to further adjust and improve the HVDC control system.

6.3 Tests With Initial Rule-Set

Both the fuzzy logic and the conventional methods are simulated and the results
are compared. The parameters and settings for the conventional controllers are taken from
[67]. The thyristors’ turn off time i is taken equal to 200 ps (4.3° at 60 Hz) and the thyris-
tor model is forced to re-ignite if the extinction time is less than this value. The current
characteristic (line AB in figure 4-2-1) is generated by adding an additional reference Ay
to that of the CEA controller which is 16° at the point B in figure 4-2-1, where dc current

is IdmfAId’
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The fuzzy parameters for membership functions (see figure 6-2-1) are selected as:

0I=0.1, 3y=10° and the overlap between the fuzzy sets is 25%.

During the preliminary studies it turned out that the system performance is quite
satisfactory and the control system response is also comparable to the conventional

scheme. Thus the two responses for the same test are reported for the sake of comparison.

The following tests were conducted for evaluating the new control method:

Eault tests;

« rectifier side ac faults

e inverter side ac faults

e dc line faults

Set-point changes:

e step changes to current order

« rectifier ac voltage change

The performance of the fuzzy logic scheme is compared with the conventional
method, and the results for different tests are reported. In all the following figures the solid
line and the dotted line refer to the fuzzy logic and the conventional method respectively,

unless otherwise captioned.

With the straightforward application of fuzzy control rules as shown in §6.2, the dc
power recovery is not as good as the conventional method. The minimum extinction angle

for the fuzzy logic scheme is larger than the conventional one, while the power recovery is
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poorer. Figure 6-3-1 shows the performance of the fuzzy logic method in contrast to con-

ventional method for a rectifier ac side fauit.

Idi[p.u.] V [kV]

LS 600

1.0
0.5 - \
0.0 - MV

e, 02 . 03 00 o . 02 0.3

Figure 6-3-1 : Recovery from a 3-phase ac fault at rectifier

The other tests also show poor power recovery, and higher extinction angle. Since
the control strategy is based on simple language rules, this drawback can be easily
improved by incorporating new rules and using a more elaborate rule set. Thus additional
rules are included to enhance the performance of the fuzzy logic control and improve the

power recovery.

6.4 Enhanced Rule-Set

In order to speed up the dc power recovery, one additional piece of system infor-
mation is included in the fuzzy reasoning. The rate of the change of the dc current

( DI = dI/dt ) is taken as this additional parameter, and the corresponding membership
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functions are shown in figure 6-4-1, where SDI, MDI, and LDI stand for small, medium

and large dc current rate of change.
SDI MDI LDI

- = N T 0T
AN ‘et P
. \/ n\:/ [

DIl DIz DB hI

Figure 6-4-1 : Membership functions with additional parameter DI

From experiments, it turned out that if the rate of rise of dc current were too high
then the dc power recovery would be poorer. It was observed that the rate of rise of current
could be reduced by having a larger contribution towards current control from the inverter
current controller. The earlier rule set, recommended current control via Rules I, Il and IV.
One additional rule is added in favour of the current control mode for large dI/dt values.
Similarly instead of prescribing the CEA only for Rule III (in the previous rule set), we

modify this rule, to also favour CEA forlow DI = dl/d:t .

Thus the new rule set will be as:

RULEI': TF Ig AND yg THEN p -~

RULE IT': TF I AND y; THEN p..

RULE IT’: TF I; AND Y4 AND SDITHEN p o,
RULE [V':IF I; AND y, THEN p .

RULE V’:IF LDI THEN p

The Or operation is carried out by a maximum function and the And is carried out

by a minimum function. The two statements give the values for p -~ and p ., independ-
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ently, based on the system information as measured dc current, rate of change of dc cur-

rent and measured extinction angle.

The parameters for membership functions as shown in figure 6-4-1 are taken as,

DII=5, DI2=20, DI3=50, and the overlap of these sets is set to be 25%.

6.5 Simulation Results

4 Three phase rectifier fault:

As shown previously in figure 6-3-1, the power recovery from a three phase recti-
fier side ac fault, compared to the conventional scheme, is poorer. The results from the
enhanced rule set are shown in figure 6-5-1. The power recovery is still marginally slower
than with P-I option. The extinction angle y always remains above 15° for the fuzzy
approach, whereas with the P-I option, the system experiences a dangerously smaller com-
mutation margin (7°) during the recovery. On the other hand, the smaller y during the
recovery means that the inverter side dc voltage builds up quicker which is why the recov-
ery of the power is somewhat faster than the fuzzy option. Nevertheless the modified
fuzzy rule set results in a much improved power recovery in comparison with original rule

set (figure 6-3-1).
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Figure 6-5-1 : Rectifier short circuit recovery

B Three phase inverter fault:

Figure 6-5-2 shows the results of a two cycle ac fault on the inverter ac bus. As in

the previous test the fuzzy controller results in marginally slower power recovery and a

higher transient y.
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Figure 6-5-2 : Inverter short circuit recovery
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*C  Dc line fault:

A dc line fault is applied at SO ms into the run (see figure 6-5-3). The fault is
cleared by a force retard action of the rectifier in which the firing angle is increased into
the inverter region (120°), kept there for 150 ms thereby de-energizing the fault, and then
ramped back to the value set by the control loop. In this case, with the selected ramp rates,

the conventional controller appears to suffer a commutation failure during recovery which

the fuzzy controller does not.
1,[p.ul

1.5
1.0
0.5
0.0

Yimeas [deg-]

1.5
1.0 +
0.5
0.0

60
30

00 0.1 00 O@ 02 03 04 05

Figure 6-5-3 : DC line fault

D  Current order change:

The current order is changed from 1.0 p.u. to 0.8 p.u. and restored to 1.0 p.u. (20%
change). During the test the rectifier side is under constant current control and the inverter
side is under constant extinction angle control and no control crossover occurs. Through-
out this transient the p .., is entirely 1 except for very short instants and thus the two

methods results in the approximately the same response as seen in figure 6-5-4.
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Figure 6-5-4 : Current order change
*E  Rectifier AC voltage change:

This test is carried out in order to investigate the control transition between CC and
CEA. The ac voltage on the rectifier bus is reduced by 20% and then restored to its rated
value. As previously pointed out, a rectifier side AC voltage reduction causes the crosso-
ver on the inverter side control from CEA to CC, and vice-versa during the voltage recov-

ery. For 20% voltage reduction and restoration the results are shown in figure 6-5-5.

With the fuzzy option the response is better than with the P-I option, particularly
on voltage restoration. During this transition, a commutation failure is experienced with
the conventional approach. The fuzzy controller’s tight regulation of the extinction angle y
allows for much better recovery. Also shown in figure 6-5-5 are the membership coeffi-
cients p ce4 3d p o~ which give an idea of the participation of the CC and CEA control
modes during the transient. Interestingly, during the voltage depression, the CEA control-

ler is disabled as expected, but the CC controller is almost 65% active. This is analogous
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to having an adaptive gain in the CC controller which takes on smaller value during the

disturbance.

Note that during the disturbance, the depressed voltage means that the inverter has
to operate at a firing angle closer to 90°. Hence, the sensitivity of the dc voltage to small
changes of firing angle is increased (note: dV /doa=—kV _sina). The reduced CC gain

during this voltage depression compensates for the higher sensitivity.

The maximum voitage change limit that the conventional control scheme for the
HVdc CIGRE benchmark may successfully tolerate without ending up in commutation
failure is 15%, while the fuzzy logic method is able to handle 20% voltage change, where
the minimum extinction angle following the ac voltage restoration is 12°. Considering the
fact that the fuzzy method uses the same gains and limits as the P-I controllers in the con-
ventional scheme, the fact that the composite fuzzy controller is adaptable becomes more
pronounced. For example the fuzzy P-I controller has a proportional gain as pictured in
figure 6-2-4.
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Figure 6-5-5 : 20% Voltage change
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As is shown in the figure 6-5-5, the 20% voltage change results in commutation
failure for the conventional method while with the fuzzy logic method the lowest y is more

than 10°.

6.6 Fuzzy Modification to the ANN Controller
The ANN based controller has been briefly discussed and analysed in §3.1, and the

effect of ANN parameters such as learning rate (), momentum (o) and activation func-
tion slope (B) are shown, and it has been shown how the controller speed varies with these

parameters variation.

We expected that using the fuzzy logic control in a supervisory role [49] to change
the ANN parameters (a,8,1) could improve the HVdc controller response significantly
compared to the results presented in §5. However the results only showed a marginal
improvement for the HVdc multi-mode control, although significant improvement was
observed for single mode control. This section discusses the attempt made toward these
improvements. Here a fuzzy controiler is used to adjust the ANN parameters and the
learning algorithm. The primary role of the fuzzy controller is to tune up the numerical
algorithm by advising on the most relevant values of the learning parameters. The fuzzy
controller produces a numerical factor based on the rule set inference, which will be multi-
plied to any of the ANN parameters. Therefore the ANN parameter(s) can be dynamically

varied.

Consider the simple six-pulse rectifier as presented in §3.1. The learning parame-

ter B directly effects the learning and simultaneously the response speed. The error (e) and
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the rate of change of the error (de/dt = ¢) are taken as the fuzzy variables. In order to
assign an order of granularity for ¢ and ¢, the discrete plot of error e versus the rate of

change of the error ¢ for some arbitrary run is plotted as follows.

100
50 = - ' ﬁ
de/dt 0 - -~
S04 - _— "..“ ﬁ‘ 'ﬁ} '_-":'M’___ —
-100 v T ’ T
=2 -1 0 1 2

Figure 6-6-1 : Discrete plot of e and e

The figure 6-6-1, shows the phase plane plot for the two fuzzy variables e and e
(referred to in fuzzy terminology as the universe of discourse [49]). Considering the char-
acteristics of the distinct points as well as the their density in different areas the following

fuzzy membership functions are proposed in terms of values fore and e .

NLE NE PE PLE NR PR

e de/dt

Figure 6-6-2 : Fuzzy membership functions
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The fuzzy membership functions are implemented within the DRAFT module of
PSCAD/EMTDC™ using the necessary developed blocks. The following figure shows
the derivation of the e, de/dt = ¢ and the corresponding fuzzy variables in the DRAFT

palette.

Figure 6-6-3 : Derivation of e and ¢ in DRAFT

As previously indicated, increasing B, decreases the ANN response time and
increases the control system speed, and it was shown that among all the ANN parameters

the response has the highest sensitivity to f3.

The error to the ANN controller, which is used to adjust the controller parameters,
is also a measure of controller performance. In other words, large error means that the
controller has not achieved its goal, thus faster control measures (larger ) are required.
On the other hand, a small error means the controller is achieving its goal, therefore the

controller may slow down in order to avoid oscillations.

The comments quoted in the above paragraph, yield themselves easily to fuzzy

logic formulation. The method closely resembles the one discussed by Rueda and Pedrycz
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[53]. We next move forward to specify the fuzzy rules or the bank of the fuzzy associative
memory (FAM). The rules are based on the two quantity e and €, and produce a factor that

will further be utilized to tune the ANN parameters.

The following FAM is used as the fuzzy inference rule set.

e

NLE NE ZE PE PLE

NR | LA | ME | NC | NC | NC

= ZR | ME | NC [ NC | NC | ME
PR | NC NC NC ME LA

Figure 6-6-4 : FAM bank of the modified ANN

The fuzzy variables LA, ME and NC are respectfully stand for Large, Medium and
No-Change. The fuzzy outputs are then a large or a medium numerical value based on the
type of the ANN parameter, and is one for the no-change case. Therefore each of the 15

cells used for this analysis individually generates 15 coefficients such as:

IF e=NLE And ¢ =NR Then output=LA (eq. 6-6-1)

which should later be de-fuzzified and the final fuzzy inference output will be a single
quantity. Multiplying this final derived quantity by the activation function slope () as
shown in figure 6-6-5 introduces an activation function slope change in the range of 1-5
times the nominal value. This factor continuously increases the slope (B) of the ANN acti-

vation functions as the measured signal tends to deviate from the reference value, and as
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the measured signal approaches the reference value, continuously decreases and finally

becomes one. The method is briefly shown in figure 6-6-5.

-
1 é
.

Figure 6-6-5 : Activation function slope change

The modified ANN response is faster and has smaller overshoot compared to the

original ANN response (figure 3-1-6).

4 —_

3 ' - —— Modified ANN
5 L R — Normal ANN

1

dc current [A)
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Figure 6-6-6 : Modified ANN response

The above figure shows that the modified ANN is both faster and the has lower
overshoot compared to the initial ANN response. It is therefore deduced that for single
mode control, say CC or CEA the modified ANN gives the necessary speed as well as the

minimal response overshoot.
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However in an HVdc system the control mode crossover is of particular interest
and any proposed controller should be subjected to it. In order to apply this method to the
HVdc ANN based control scheme three separate fuzzy inference algorithm should be

implemented for the three controllers in the HVdc control scheme (§4.2).

Applying the same procedure as discussed for the simple six-pulse converter in
this chapter to the three HVdc controllers, the modified control scheme is subjected to dif-
ferent tests and faults as cited in §6.4. The modified ANN approach still suffers from the a
commutation failure following the control mode crossover on the inverter side. The result

for the 20% current order change is depicted in the figure 6-6-7.
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Figure 6-6-7 : 20% DC current change

The above procedure was an attempt to improve the response of the ANN control-
ler described in §3. However, the results show that although in comparison to figure 5-5-
2, the response for the restoration of dc current has improved, it is still far from desired.
This shows that, for the reasons discussed in §5.3 the ANN controller still behaves poorly

following mode crossover.

6.7 Conclusions and Recommendations
The fuzzy logic method allows for the incorporation of simple rules into a control

system. The rules are first stated in simple language and then are quantified for inclusion
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into the control system by using the fuzzy reasoning approach. If the performance is does

not meet some requirements, additional parameters and rules can be added.

In the fuzzy logic approach, the basic control unit is still the P-I controller, but its
gain and time constant are adjusted by fuzzy reasoning. The limiting values of the gains
and the time constants are the same as the conventional system, so as to ensure similar
small signal behaviour when it is clear in which control mode the controller should be

operating.

Converting the P-I controller based control system for an HVdc scheme to one
based on fuzzy logic results in improved immunity to commutation failure during recov-
ery from dc faults and ac voltage dips. Although initial implementation showed poor
recovery of dc power following ac side fault, the inclusion of additional parameters and

rules improved the power recovery remarkably.

The area of stability analysis of the fuzzy control is still under investigation. There
have been some papers [49] that address this issue, but are applicable when the plant is of
a small order. Also, the approach of this thesis involves fuzzy supervisory control applied
to a P-I controller. The mathematics for this are yet not developed. Thus for the kind of
problem being considered here, digital simulation seems to be the only viable approach.
Although not reported in the text, the controllers were robust and operated well with dif-

ferent system configurations.

The most important merit of the fuzzy logic approach is higher extinction angle.

Since the extinction angle y for the fuzzy logic method is greater than when the conven-
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tional method is used, the ordered y can be made smaller. This means lower reactive power

consumption on the inverter side.

It is shown that more elaborated rules and information can be incorporated in deci-
sion making in order to achieve different goals. More extensive rules which incorporate
some protective measures or modulation to damp out the sub-synchronous oscillations of
other machines in the system can be incorporated in the formulation of the rules, and will

be discussed in §7.
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So far, the application of new techniques were solely considered for the level
HVdc control loops such as current and extinction angle control loops. The advantages
and disadvantages of applying such techniques to low level control were fully described
and analysed in §6. In this section fuzzy logic techniques are applied to higher level con-

trol functions.

Other authors have used such techniques for ac and dc systems such as, damping
of the tie line oscillations [63], power swing damping [11], gain scheduling [12] and tun-
ing of DC link controllers [13]. The ANN technique has also been applied to HVdc sys-

tems for fault identification and detection [36,58].

In this section the applications of the fuzzy logic method to two high level control
problems are presented. This includes, damping of the two synchronous machines con-
nected to the converter ac side, and as well as the damping of SSR (sub-synchronous reso-

nance) oscillations.

7.1 Mechanical Damping

The CIGRE benchmark is composed of two ac sources, one at the inverter and one

at the rectifier side. Each of these ac sources, is assumed to be the Thevenin equivalent of
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a real source. However in actuality a machine (generator or synchronous condenser) is a
part of the ac source at a converter station. The mechanical and the electrical parts of the
machine constitute a dynamical system which may develop oscillations under faults or
system changes [69]. These include the so called the SSR oscillation. The CIGRE bench-
mark model is modified to reflect this situation by replacing the rectifier ac source with a
synchronous machine driven by a multi-mass steam turbine model. The steam turbine
complex is composed of one high, one intermediate and two low pressure turbines. The
synchronous machine is equipped with an static exciter which varies the dc field such that
the terminal ac voltage remains constant [28]. The parameters such as shaft constants,
mutual damping and inertia constant for the multi mass turbine are obtained from the
IEEE SSR benchmark [29] and scaled to fit the MW ratings of the dc scheme. The com-
plete data for this study are given in the §B.1. The HVdc system with the rectifier side

generator and the equivalent six mass mechanical system are shown in 7-1-1.

S00kV, 2kA
! S ¥
ez T
- HP IP @ LPA LPB GEN EX =

Figure 7-1-1 : HVDC system and the six-mass spring model

-87-



High Level Control Studies

Starting from steady state a system perturbation initiates and builds up oscillations
at SSR frequencies in the mechanical multi-mass system, in which the different turbine
sections oscillate with respect to one another. These oscillations apply severe stress on the

shaft between the two masses and leads to failure or loss of life expectancy.

Studies conducted using the transient program verified that a dc line fault and
recovery generates a sufficient perturbation and would cause oscillations to build up in the
system. Therefore a dc line fault and recovery test is conducted on the HVdc model. The

results for the multi-mass system are shown in the figure 7-1-2.
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Figure 7-1-2 : Torsional oscillations
The results show that the amplitude of the oscillations tends to grow; the oscilla-
tion amplitude between LPA and LPB turbines being particularly severe. These oscilla-

tions result in the fatigue of the steel shaft and decreases the shaft life expectancy.
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HVdc systems are very fast acting systems, and it is possible to control such sys-
tems six times (for six-pulse bridges) or 12 times during each period of ac waveform. Such
a possibility lends itself easily to be used for system control both in low and high level

modes.

A particularly serious possibility for sub-synchronous resonance arises when there
is a single large synchronous generator connected in the vicinity of an HVdc rectifier sta-
tion [15]. The fuzzy logic method used to damp out these oscillation is briefly outlined in
figure 7-1-3. The controller input is the synchronous machine angular velocity (»), and
the output is the Aa, which is added as an auxiliary signal to the a order derived from the

rectifier control scheme, as shown in figure 4-3-1.

Multi-mass Sync.
Machine Converter

[ —

—f]

1
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" %. § A a order from
" =1 s g ¢ control scheme
=

~-------‘

Fuzzy Inference

Figure 7-1-3 : Fuzzy logic oscillation damping

In order to develop a fuzzy inference scheme to mitigate the oscillation magnitude,
the angular velocity of the synchronous machine (®) is chosen as the control signal. This
signal is readily measurable either on the electrical or mechanical side. The machine angu-

lar velocity ® and its rate of change dw/dt are the only two inputs to the fuzzy damping
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system. The fuzzy membership functions for the ® and the dw/dr are depicted in figure 7-

1-4.
NR R PR NRI 2RI PRI

0

' | I |

| | 25% overlap | :

{ |
1 1 . 1 L >
-6 6 -120 120
® do/dt

Figure 7-1-4 : Fuzzy membership functions

The fuzzy inference scheme generates an additional modulation in the firing angle
via the signal Aa. The inference operation norms required in the fuzzy algorithm, such as
AND and OR are chosen to be minimum and maximum respectively [49], and the fuzzy
centroid de-fuzzification scheme is used. Using the correlation-product inference [34], the
de-fuzzification process is significantly facilitated, and the output centroids are only used

in the de-fuzzification procedure.

The fuzzy associative memory [34] (FAM) for this case, is composed of five rules

and is shown in figure 7-1-5.

®
NR ZR PR
NR1| NL
‘fi_(:‘) ZRI| NM | ZE | PM
PR1 PL

Figure 7-1-5 : FAM bank for oscillation damping
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The parameters NL, NM, ZE, PM and PL used in this FAM stand for Negative
Large, Negative Medium, Zero, Positive Medium and Positive Large respectively. Each of
these fuzzy values refer to a fuzzy membership function, but as already explained previ-
ously, only their centriods participate in the de-fuzzification procedure. Thus each can be
represented by numerical values of the area and the centroid of the FAM rule’s conse-
quence. The numerical values for each one is assumed to be NL = -4, NM = -1, ZE = 0,

PM =[] and PL = 4.

The fuzzy logic scheme output is then used to modulate the firing angle order to

the rectifier converter.

The fuzzy logic inference scheme as shown in figure 7-1-3, modulates the rectifier
firing angle. This control scheme results in a substantial reduction in the SSR oscillation
following a dc line fault. The results of the proposed system following a dc line fault and

recovery are shown in figure 7-1-6, and should be compared with the case without SSR

damping (figure 7-1-2).

HP-IP IP-LPA
2 2 -
1 L
0 ‘ i

0 -1

-l T T T 1 ‘2

GEN-EX LPA-LPB

0.1
0.0
-0.1

Figure 7-1-6 : Torsional oscillations damping
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The following figure 7-1-7, shows the modulated firing angle as superimposed on

the rectifier firing angle.
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Figure 7-1-7 : Rectifier firing angle
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As shown small modulation of the rectifier angle (which has an approximate mag-

nitude of about 1° peak-peak) successfully stabilizes the oscillations, especially the LPA-

LPB oscillation as is seen by comparing the figure 7-1-2 with figure 7-1-6. Since the firing

angle modulation is of small magnitude, it does not contribute to non-characteristics har-

monics generation.

The delivered dc power for the two cases shown is in figure 7-1-8. This figure

shows that the fuzzy controller reduces the power oscillations in the dc line significantly

compared to the case without the controller.

DC power [p.u.]
Without damping

Figure 7-1-8 : Power response

DC power [p.u.]
With fuzzy damping
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Therefore the fuzzy controller can successfully reduce the oscillations in the

mechanical part as well as the electrical counterpart of the system.
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7.2 Power Oscillation Damping
As another example of the application of the fuzzy control to a high level control

scheme, power oscillation damping is investigated. In this case the inverter side source of
the CIGRE benchmark is substituted with an equivalent synchronous machine model
equipped with the solid state exciter and hydro governor. The ratings of the synchronous
machine, exciter and hydro governor are given in §B.2. In addition a synchronous con-
denser is also connected to the inverter side ac bus, which supplies about 30% of the
inverter bridge reactive power under the rated steady state codition.The ratings of this syn-

chronous condenser as well as the corresponding exciter are given in the §B.2.

The combined system on the inverter side which is now composed of two synchro-
nous machines, shows new dynamical performance. The two machine are now able to
oscillate either with respect to a fixed rotating frame or relative to each other. The former
will be detected through external system performance while the latter would be left unde-

tected. The circuit is shown in the figure 7-2-1.
S00kV, 2kA

T

3
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Figure 7-2-1 : CIGRE benchmark with modified inverter
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The results of the simulation show that even the start-up process is very oscillatory

which damps out very slowly (roughly 10 sec.).

DC power oscillation
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Figure 7-2-2 : Dc power oscillations during the start-up

In order to be able to damp out the oscillations, one should be able to measure the
frequency and the deviation of the line voltage. The main obstacle in these kind of prob-
lems is that, there is no reference frame for comparison. In order to elaborate more on this
subtle point, consider that the ac voltage phasor on the inverter bus is aligned with an arbi-
trary but synchronized phasor under the steady sate condition. It is obvious that under a
new steady state condition long after any changes on the inverter side the voltage phasor
does not remain aligned with the arbitrary phasor. Figure 7-2-3 shows this fact. The volt-
age phasor (solid vector) which is initially aligned with the arbitrary reference phasor
(dotted vector), will not remain aligned with the reference phasor following a system

change.

Aligned phasor

0
rewwriie :: = -
System change

Figure 7-2-3 : Reference phasor
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This reference phasor is only required to be at synchronous speed. Obviously the
static deviation of the two phasors, does not contribute to any system oscillations, while
the dynamic deviations such as oscillation of the voltage phasor about the arbitrary phasor
directly related to system oscillations. The high frequency deviations of the voltage are not
important either, because of the existing harmonics in the system. In order to differentiate

between these three distinct cases the following filtering scheme is utilised.

line

phase
voltage
—
FFT \‘{.( N > 1 —
N ¥ g s+1 0.01s+1 | 6
reference
phasor

Figure 7-2-4 : Load angle measurement scheme

The FFT block calculates the fundamental phase angles associated with each vec-
tor. Then the difference between the two phases (0) is fed into two cascaded filters. The
first filter allows the output to follow the sudden changes of the input but washes out the
slow changes in the input from appearing in the output. The second filter is used to filter
low frequencies from the signal. Thus the overall filtering is like a medium pass filter and
therefore the output as named in figure 7-2-4 by 8., is a close measure of the voltage

angle deviation from the reference phasor within the proper frequency band.
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The Bode plot (phase and magnitude) for the series connection of the washout and

the real pole filters in figure 7-2-4 is shown in figure 7-2-5.
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Figure 7-2-5 : Bode plots of the filter

Using such a measuring scheme applied to the line voltage of the ac bus, the 6
plot versus time during the start up process is measured and shown in the figure 7-2-6. A

close look at this figure shows that the line voltage oscillates with a frequency of about 2

Hz, at synchronous speed.
Voltage angle 6
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Figure 7-2-6 : 0, angle oscillation
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In order to damp the generated oscillations, a fuzzy inference algorithm is devel-

oped using the 6 angle as the input.

The figure 7-2-7, shows the overall fuzzy control scheme used here. The line volt-
age is measured at the converter bus, and the synchronous machine is connected through
the Thevenin equivalent impedance to this bus. The constant capacitor, filters and the syn-

chronous condenser are all connected to this bus.

'l' [ | 3 Sync.
Sync. f P g Condenser
Machine
Converter
L --——

FFT & 4_3 45 .

--------~ (lOtderfrom

: AP control loop

0 ¢ control scheme
s | |
1 = ¥
v | = & ,:,? :
1| Z § E., to power
G g
1 S

' 4

~-------O

Fuzzy Inference

Figure 7-2-7 : Fuzzy inference diagram

The fuzzy inference controller shown in figure 7-2-7 generates a signal AP, which
can be considered as the power order modulation. This power order modulation is used as

an auxiliary input in the power control loop, shown in figure 4-4-1.
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The signal AP derived through the fuzzy inference algorithm is added as an auxil-

iary input signal to the power reference signal in the power control loop.

10 - - - -

sl _/— > Power flow control
7
0.5 09 VA

> Max

> —»I‘h'f

Figure 7-2-8 : Power control loop

Thus the power modulation is applied through AP in the power control loop, mod-

ulates the dc current reference and the converter’s firing angle.

The fuzzy membership functions for the 6., the 46 s/ dt and the FAM consisting of

the fuzzy rules are shown in figure 7-2-9.

NL NS ZE PS PL NE 2R PO
|
| I 25% overlap [
1
1 L — . —
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doy/d:e
NE ZR PO

NS | NM PM
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PS | NM | NM | PM
PL | NG | NM | PG

NL | NG | NM | PM
Z
V4

Figure 7-2-9 : Fuzzy memberships and FAM
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The acronyms NL, NM, Z, PM and PL stand for Negative Large, Negative

Medium, Zero, Positive Medium and Positive Large.

The use of the fuzzy controller results in significant damping of the oscillations
shown earlier. For example the dc transmitted power during the start up as shown earlier in

figure 7-2-2, is significantly improved as is shown in figure 7-2-10.
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with fuzzy control

DC power [p.u.]

Figure 7-2-10 : Improved power recovery
The fuzzy controller also improves the line voltage oscillations. The oscillations in

the voltage angle 0 and the filtered phase 6, are significantly reduced using the fuzzy con-

troller.
65[deg.]
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Figure 7-2-11 : 6 and 6 responses with the fuzzy controller

7.3 Conclusion
The fuzzy logic method has been successfully applied to high level HVdc control.

The implementations outline the basics of the method, and the resuits show significant

improvements in the system performance.



8. Conclusion

I

8.1 Contributions

In this dissertation the application of the artificial neural network and fuzzy logic

control was studied and presented. Throughout this work several important contributions

were made. The eminent contributions made in this dissertation can be summarized as fol-

lows:

ANN control of HVdc systems was investigated. Various candidate networks were
considered and it was concluded (with the justification in §2.4) that the off-line ANN
would not show any improvement over conventional P-I controller. On the other hand,

on-line ANN controllers were shown to be more applicable (§2.3).

Using the case of a three phase rectifier connected to an R-L load, the ANN on-line
based controller was shown to have very favourable response in comparison to a P-I
based controller. The gain setting in a P-I controller can not be adaptively changed,
thus the P-I controller can only be optimized at one operating point. Because of the
learning feature of the ANN controller, it provides a favourable response over entire

operating range.
The on-line controller worked very well with the HVdc system as long as there is no
control mode crossover. However, with control mode crossover, the response follow-

ing the mode change was very poor. Various attempts such as freezing the weight
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adjustments did not improve the response to an acceptable level (§5.4 and §5.5).
Finally a justification was presented for such unfavourable behaviour (§5.3).

¢ Fuzzy logic was also successfully implemented in the primary control loops of the
HVdc systems. The general technique in order to improve and incorporate more con-
trol rules into the control scheme is also presented [§6]. The fuzzy logic method allows
for the incorporation of simple rules into a control system. The rules are first stated in
simple language and then are quantified for inclusion into the control system by using
the fuzzy reasoning approach. If the performance is does not meet some requirements,

additional parameters and rules can be added.

» The application of fuzzy logic to high level control problems of the HVdc system,
resulted in improved stability of the electric system. The successful application of

fuzzy logic to problems such as SSR and power swing damping are presented [§7].

e The topic of ANN controller which showed poor behaviour for mode crossover, was
revisited. An attempt was made to use the fuzzy logic as a supervisory loop for the
ANN on-line control blocks. Although this did result in some improvement, the over-

all response proved to be less than desired.

8.2 Additional Conclusion
» A MATLAB-PSCAD/EMTDC™ interface was developed. This interface allows one
to integrate MATLAB’s powerful computational engine into the electromagnetic tran-

sients simulation software PSCAD/EMTDC™ and allows for direct incorporation of
MATLAB Toolboxes into the transient simulation.

8.3 Future Recommendations

1. The ANN studies have indicated that the on-line based ANN controller fails to achieve
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a satisfactory result for the HVdc control mode crossover. The following areas for

future works are recommended.

The response speed of the ANN with synchronized leaming was significantly
improved with the technique presented in §3.3. One area for future study could be the
inclusion of the plant Jacobian into the learning process. The derivatives can be substi-
tuted with discrete rate of change between input-output pairs. In other words, substi-
tuting dI/da with AI/ Ao computed for each commutation interval.

Another area for the improvement could be changing the optimization in the ANN
such that it behaves as a CC or CEA controller in different operating regions, with the

aid of a different cost function than the one used here.

Other activation function such as radial basis function [25] should also be investi-

gated.

The application of ANN to high level control studies such as SSR and power swing
damping may also be investigated.

. The application of fuzzy logic to both low and high level control were studied in this
thesis. The results have shown satisfactory results. Following is a list of recommenda-

tions for future works in this field.

The inclusion of more control rules into the rule set was represented. The incorpora-

tion of protective control rules into the controlling rule set may also be studied.
Domain knowledge such as specific characteristics of ac or dc systems can also be

included as a fuzzy inference algorithm into the HVdc control scheme. This may also
be considered as a potential field in this area.

-102-



MATLAB Aided Simulation

Appendix A. MATLAB Aided
Simulation

A.1 Introduction
Previous experiences with ANN and fuzzy logic as reported in §5 and §6 respec-

tively, have shown that it is not straight forward to implement a new ANN or fuzzy logic
algorithm into the simulation software. The simulation software PSCAD/EMTDC™ 3s
any other electromagnetic transient simulation program is developed to study electric sys-
tems, and many common control blocks (such as P-I) are also provided in the default

libraries provided by their vendors.

However when one tries to introduce new areas in conjunction with the simulation
studies, one has to develop the necessary software in order to successfully implement this
new technique into the study. Thus one has to initially achieve an in-depth familiarity with

the new field and then spend a long time, developing and customizing the necessary pro-

grams.

MATLAB is a well known computational package with rich built-in commands
and numerous Toolboxes. These Toolboxes are mainly developed and customized for

technical fields such as artificial neural network and fuzzy logic.

The author believes that the possibility of synergy between MATLAB and the
PSCAD/EMTDC™ facilitates the incorporation and study of new fields into the simula-

tion studies by saving the time spend to develop new models and programs into the
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PSCAD/EMTDC™. This interface would then be regarded as a great asset and useful tool

in the studies.

This chapter describes the procedure and results for interfacing the computational
engine of the MATLAB program with PSCAD/EMTDC™ program. The interface is
developed using conversation pipes on UNIX platforms. Such pipes are used for the inter-

process communication between the two separate programs.

Using this approach, it is possible to run the two programs simultaneously on sep-
arate computers even when they have different architecture. For ease of use, the interface
is incorporated into the PSCAD/DRAFT. This allows the entry of MATLAB commands
merely by clicking on the appropriate PSCAD/DRAFT icon. In addition to the description
of the interface, a typical simulation example of an artificial neural network based control-

ler for an ac-dc controlled rectifier (same as §3) is presented [10].

The emtp-type program PSCAD/EMTDC™ [22] has been designed to take advan-
tage of piped communication. The popular mathematics and control systems design soft-

ware package MATLAB [41] also has this capability.

The synergy of an electromagnetic transient program with MATLAB has several
advantages. Although the power system network equations can be programmed into MAT -
LAB, this requires the user to manually enter these equations. The emtp-type programs are
optimized for power-network simulations and automatically generate the network equa-
tions directly from the topological description and constraints of the network. They also

usually run faster than interpreted MATLAB code.
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The DRAFT available with PSCAD/EMTDC™ is also customized for power-
industry applications. On the other hand, MATLAB offers a large library of control func-

tions, and through its Toolboxes, it also offers a wide range of preprogrammed algorithms.

Incorporating new techniques of control for power systems using simulation,
requires that the user be quite familiar with the new control area, and write the necessary
code in a programming language which is mostly FORTRAN. This requires an extensive
effort especially during the preliminary studies just to investigate the feasibility of such
applications. Thus during the preliminary studies, it is convenient to use MATLAB built-

in function and Toolboxes.

Previous work on the subject includes writing of the emtp-type algorithm using
MATLAB [40]. An approach similar to the one used here has been reported with the ATP
program[31]. However in this chapter we describe an automated approach where the new
component and the necessary interface files are generated automatically. The resulting

component is then available in graphical form as a block in PSCAD/EMTDC™,

A.2 Structure of the Interface
The structure of the interface is as shown in figure A-2-1. PSCAD/EMTDC™ has

a FORTRAN file called DSDYN through which external FORTRAN subroutines can be
called. A FORTRAN subroutine is therefore developed which starts the MATLAB engine
and sets up the data communication pipe between this subroutine and the MATLAB

engine. Through this FORTRAN file, the M-file! containing the MATLAB commands is

1. The file name extension (*.m) for a file containing MATLAB commands. The file is referred to
in MATLAB terminology as m-file.
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also passed to the MATLAB engine. The MATLAB part of the simulation is, of course,

independently written and stored in the M-file.

It should be noted that the FORTRAN subroutine is not user-written but is auto-
matically generated using a program specially developed for this purpose. This program
generates all the necessary files for a new MATLAB block. This block is added to the
DRATFT repertoire. The program and the interface have been successfully tested on Sun

and DEC Alpha platforms.

Since the MATLAB computational engine is invoked using a FORTRAN subrou-
tine and the data communication is established between PSCAD/EMTDC™ and MAT-
LAB, it is possible in a network to run these two programs on two separate platforms;
even when the two machines have different architecture. The resultant parallelism gives a

speed-up in the total execution time.

8 |FORTRAN MATLAB | I
i subroutine engine ]
| I | T |
i r- -1 [ lr————ﬂl
i1 | pDsbyn | 8 11 M‘H_L“B I8
I t———a 3 e
! pscaAD/EMTDC™S ! mataB B
b s s d oo oawewd

Figure A-2-1 : Structure of PSCAD/EMTDC™-MATLAB interface
A.3 Development of the MATLAB Block

The MATLAB block in PSCAD/EMTDC™ is seen as a graphical icon on the
DRAFT palette. Connections to this block from other PSCAD/EMTDC™ blocks are made
by dragging and dropping connecting wires. With each MATLAB block there are three

associated files. The main file is the M-file which is interpreted by the MATLAB engine
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and includes all the commands that will be executed by MATLAB engine. The second file
is the FORTRAN file. This FORTRAN file incorporates the main interface commands,
such as starting the MATLAB engine and data sending and retrieving from MATLAB. The

third file comprises the DRAFT description for the icon.

A new MATLAB block can be developed using a program specially developed for
this purpose. This program asks for the name of the new component, the number of inputs
and outputs and their names. A graphical icon of the block is then automatically generated
along with an empty M-file, which is opened for user input in a text-editor shell. The user

should then enter the appropriate MATL AB statements into this M-file.

It should be mentioned that the developed piece of code written in C, generates the
necessary commands and calls the necessary functions to establish the data exchange

between the FORTRAN subroutine and the MATLAB engine.

On one side of this data exchange, FORTRAN deals with floating point and inte-
gers values, while on the other side of the data exchange, MATLAB deals with dynamical

pointers to arrays.

Therefore in order to pass data from FORTRAN to MATLAB, first a pointer must
be assigned to the data and the address of the pointer should be passed to the MATLAB
and conversely for passing data from MATLAB to FORTRAN. Therefore one variable has

many assigned names which are all kept in a record. However the user only deals with a
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single name that appears both in the DRAFT graphical user interface and the MATLAB

M-file.

( MATLAB block in PSCAD )

DRAFT icon F ORTR{\I‘D ( M-file )
subroutine

Figure A-3-1 : The PSCAD MATLAB block and its constituents

Figure A-3-2 shows a typical PSCAD/EMTDC™ case in which the MATLAB
component labelled “MATLAB” is being used. Inputs or outputs can be scalars or arrays.
The input in figure A-3-2 is an array of two components (Ref. and error), and the output is

a scalar (o).

Once the component is developed, it may be used later merely by dragging and
dropping the icon on the DRAFT palette from user library. The user can even edit the
developed component’s M-file directly from DRAFT via a popup menu that is selected by

clicking on the component’s icon.

Jo b

vi::—"_ ”

Figure A-3-2 : PSCAD/EMTDC™ palette with MATLAB block
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A.4 Simulation Example
The example presented here describes the application of the PSCAD/EMTDC™

interface to the ac-dc converter being controlled by an artificial neural network (ANN)
based controller. This case is identical to the example already presented in §3.2. A similar
simulation is also developed using the fuzzy logic method, using the fuzzy logic Toolbox
[21]. Here the ANN is trained in incremental or on-line training mode which tries to make
the dc current follow the reference value and reduce the error to zero. The ANN is mod-
elled using the MATL AB neural network Toolbox. The ANN is comprised of one input (in
ANN terminology only Ref. is the input to ANN), two hidden and one output neurons. The

current error is used to adjust the weights using the back-propagation as shown schemati-

cally in figure A-4-1.
+ -_—
»-O--
error, ~
P d
Ref AXNN  [®| DCplant Ilmr

V5

Figure A-4-1 : On-line ANN controller basics

-109-



MATLAB Aided Simulation

The schematic diagram can be seen in the DRAFT palette shown in figure A-3-2,
with the associated M-file shown in figure A-4-2. In the simulated case, the current refer-

ence is switched between two set-points (2.0 kA and 3.5 kA) at 200 ms intervals.

; nesr FAAT e Bt

unction [OUT_1] = neu_MATCIN.2)

Input:

|
f This function is generated by MATLAB-PSCAD
! IN_2 of dimension 2 1

Output: B2
QUT_1 of dimension 1 1

global w1 w2 b1 b2 dwi dw2 db1 db2 slope

if(isglobal(wl))
wi = [0;0];
w2 = [8 0];
i b1 = [9;0];
? b2 = [8];
‘ dul=w1;dw2=w2 ;db1=b1;db2=b2;

i
a
|
i
|

tend

{tp=[s.6,8.1];
slope = 0.1;

JOUT_1 = upd_bpm(°logsig’ , ‘'logsig’ , IN_2(1) , IN_2(2) , tp );
inUT_j = (OUT_1) = 9@; <%Scaling the output to 8-90 degrees

D .
LLLLLmLs;;;;ALJLLﬂQELLLLALLLA;4544*44444;L£A¥'

R R T T T S S AP
RO I R I R R R LR R
R R R S S R AR RS

Figure A-4-2 : M-file for PSCAD/MATLAB block “MATLAB”
This M-file shown in figure A-4-2 calls another M-file named upd_bpm.m (see
arrow). This M-file (shown in figure A-4-3) executes the back-propagation algorithm

using MATLAB neural network Toolbox commands. The entries in the M-file are directly
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entered using the popup editor window which appears when the ‘MATLAB’ component in

the DRAFT palette (figure A-3-2) is clicked upon.

vl D Maote g

{Function a2 = upd_bpm(F1.£2.p.e,tp)
UPD_BPHM Update two-layer network with backprop.

p - input
e - error
tp - training parameters

Training parameters are:
TP(1) - Learning rate.
TP(2) — MHomentum constant.
global wi w2 b1 b2 dw1l dw2 db1 db2

1r = tp(1); 2 Learning rate.
fmc = tp(2); 3 Momentum constant.

1dF1 = feval(f1,°delta’); % Derivative Functions
df2 = feval(f2,"delta’);

a1 = feval(f1i,wisp bi1); 2 Simulate the network

32 = feval(f2,w2=31,b2);

{d2 = feval(df2,a2.,e); 2 Calculates derivatives of SSE

{01 = feval(df1,a1,d2,w2); < with respect to layer net inputs

[dwi,db1]=1earnbpma(p,d1,lr ,nc,dwl,ddl); 3 Adjust weights

[dw2,db2]~1earnbpma(al,d2,1lr ,ac,dw2,db2); 2

Jul = o1 + dwi; 3 Take a step in direction of

bt = b1 + db1; 2 of derivative with step size Sou

w2 = w2 + dw2; 2 determined by learning rate 1r. o

{b2 = b2 + db2; o)
:__;:;;_::;1;:;.;.;.::;;A:‘.;;:.;.:.&:.'.sg;-.-;-:"-.;:;-5'5._:;-.'.3.-:-.'-:;;';-:’{.-r;':f.'.-.'-;-;.;.r.-.:ii

Figure A-4-3 : The on-line back-propagation algorithm
The results from the simulation are seen in figure A-4-4. The first plot shows the
dc load current and the reference current order, and the second one shows the associated

firing angle that is generated at the output of the ANN controller.

Although the overall simulation time required for the example is larger than that if
the ANN component were directly programmed in FORTRAN as a standard PSCAD/
EMTDC™ block, the interface allows one to investigate a large number of control strate-
gies using the preprogrammed libraries of the MATLAB Toolboxes, thereby saving much

effort in developing and utilizing the new models. However, once the control strategy is
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finalized, it may be worthwhile to reprogram the algorithm into a standard PSCAD/
EMTDC™ block written in FORTRAN. This also allows for the block to be compiled and

made into a library within PSCAD/EMTDC™ and thus speeds up the simulation process.

In a similar manner any other function available in the basic MATL AB program or
its Toolboxes can be included into PSCAD/EMTDC™. One additional advantage of this
approach is to that of animated output rendering. For example, during the program’s exe-
cution, the path of the flux-current point on a saturation curve of a typical transformer can
be traced via MATLAB commands or the locus of a relay trajectory can be seen super-
posed on the relay characteristic. Similarly three dimensional plotting commands in MAT-

LAB can reveal interesting features of the simulation during execution time.

lioad anad Her.|kA|

a (deg)

00 01 02 03 04 05 06

Figure A-4-4 : Simulation results

A.5 Conclusions
The powerful control system modelling capabilities in MATLAB were accessed

through the PSCAD/EMTDC™ simulation program. The FORTRAN Interface available
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in PSCAD/EMTDC™ coupled with the data exchange over inter-process communication

pipes on the UNIX platform allows for such an interface to be easily constructed.

A special program that performs the automatic generation of the component icon
and associates the corresponding files with the icon, was found to greatly simplify the
process of new component design. The newly developed component is then accessible
through the graphical user interface of PSCAD/EMTDC™ just like any other component

in its repertoire.

The technique allows for immediate access to a whole range of pre-developed
MATLARB control libraries as shown by the example of the ANN based controlier for an
ac-dc converter. It also offers the possibility of using advanced MATLAB graphics com-

mands for animated on-line displays.

The CPU time required for the combined PSCAD/EMTDC™-MATLAB simula-
tion is more than if the MATLAB component were modelled directly in PSCAD/
EMTDC™. Thus the above simulation approach is recommended during the evaluation
stage in which several different control algorithms are being investigated. For the fastest

possible runs, the component should be compiled and used in PSCAD/EMTDC™.

Although this powerful technique could have been used extensively during the
progress of this thesis, it was only completed toward the end of the research. By that time
the author already gained sufficient experience with the artificial neural networks and

fuzzy logic, and directly developed the components in PSCAD/EMTDC™.

-113-



Data for §7

Appendix B. Data for §7

B.1 Data for §7.1

EXCITER PARAMETERS:
Tl  “Rectifier Smoothing Time Constant” “0.02 sec”
Ta  “Controller Lead Time Constant™ “1.43 sec”
Tb  “Controller Lag Time Constant” “7.04 sec”
Te  “Exciter Time Constant” “0.032 sec”
K  “Exciter Gain” “500 p.u.”
Emax ‘“Maximum Field Voltage” “5 p.u.”
Emin “Minimum Field Voltage” “-5 p.u.”
Vbase “L-G Voltage Base™ “199.18584 kV, rms”
Ibase “Line Current Base” “2 kA, rms”
Rrev “Reverse Resistance” “14285 Ohms”

“Exciter Voltage Supply Bus Fed”

MULTI-MASS PARAMETERS:

N  “Number of Turbines (1 to 5)” “4”
MVA “Machine 3 phase MVA” “1200 MVA”
F  “Electrical base frequency” “60.0 Hz”
RPM ‘“Machine rated speed” “3600.0 rpm”
“INERTIA CONSTANTS”

H1  “Turbine #1 Inertia Constant” “0.0929”

H2  “Turbine #2 Inertia Constant” “0.1556”

H3  “Turbine #3 Inertia Constant” “0.8587”

H4  “Turbine #4 Inertia Constant” “0.8842”
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HG  ““Generator Inertia Constant™
HE  “Exciter Inertia Constant”

“MUTUAL DAMPING”
“ALL SET TO ZERO”

“SHAFT SPRING CONSTANT”
K12 “Spring Constant From Turbine #1 to #2”
K23 “Spring Constant From Turbine #2 to #3”
K34 “Spring Constant From Turbine #3 to #4”
KLG “Spring Const. From Last Turb. to Gen.”
KGE “Spring Const. From Generator to Exciter”

“TURBINE TORQUE SHARE”
TF1 “Torque Share for Turbine #1”
TF2 “Torque Share for Turbine #2”
TF3 “Torque Share for Turbine #3”
TF4 “Torque Share for Turbine #4”

“0.8685
“0.0342”

“7277”
“13168”
“19618”
“26713”
“1064”

“0.30 p.u.”
“0.26p.u.”
“0.22 p.u.”
“0.22 p.u.”

SYNCHRONOUS MACHINE PARAMETERS:

H “Inertia Constant”

OMO “Base Angular Frequency”
Vbase “Rated RMS Phase Voltage”
Ibase “Rated RMS Phase Current”

“GENERATOR FORMAT™”
Xp  “Potier Reactance”
Xd “Direct-Axis Reactance”
Xd’ “Direct-Axis Transient Reactance™
Xd” “Direct-Axis Sub-Transient Reactance”
Xq “Quad-Axis Reactance”
Xq” ““Quad-Axis Sub-Transient Reactance”
Ra  “Armature Resistance”
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“2.89 MWs/MVA”
“376.992 rad/s”
“15.011 kV”
“26.5477 kA”

“0.130 p.u.”
“1.79 p.u.”
“0.1690 p.u.”
“0.135 pu.”
“1.71 pu.”
“0.2 p.u.”
“0.02 p.u.”



Tdo’
Tdo” *“Direct-Axis Sub-Transient Time Constant™
Tqo” *“Quad-Axis Sub-Transient Time Constant”

Data for §7

“Direct-Axis Transient Time Constant”

B.2 Data for §7.2

SOURCE PARAMETERS

“GOVERNER PARAMETERS”

f  ‘“Base Frequency”

T1  “Controller Real Pole Gain”

T2  “Controller Proportional Gain”

T3  “Controller Integral Gain”

T4  “Controller Real Pole Time Const”

TS  “Turbine Lead Time Constant”

T6  “Turbine Lag Time Constant”

TS “Govemor Time Constant”

Cl1  “Inverse Gate Velocity Limit”

C2 “Gate Velocity Time Constant”

C3  “Permanent Droop Gain”

C4  “Gate Position Control Rate Limit”

C5 “Temporary Droop Gain”

C6 “Temporary Droop Time Constant™

Tmax *“Conversion Constant”

TmOs “Time Constant for Smoothing Tm0”
EXCITER PARAMETERS:

Tl  “Rectifier Smoothing Time Constant”

Ta  “Controller Lead Time Constant”

Tb  “Controller Lag Time Constant”
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G64.3 SCC”

“60.0 Hz”
“0.88
“3.7

“0.44 «

“0.02 sec”
“0.8 sec”
“0.4 sec”
“0.05 sec”
“4.8 sec/p.u.”
“0.1 sec”
“0.04”

“0.22 pu./sec”
“0.0”

“1.0 sec”
“0.957”
“0.02 sec”

“0.02 sec”
“1.5 sec”

“1.0 sec”

“0.032 sec”
“0.05 sec”



Data for §7

Te  “Exciter Time Constant” “0.02 sec™

K  “Exciter Gain” “100 p.u.”

Emax “Maximum Field Voltage™ “S p.u.”

Emin “Minimum Field Voltage” “5pu”

Vbase “L-G Voltage Base” “132.79 kV, rms”
Ibase “Line Current Base” “3.7653 kA, rms”
Rrev “Reverse Resistance” “15000 Ohms™

“Exciter Voltage Supply Bus Fed”

SYNCHRONOUS MACHINE PARAMETERS:

H “Inertia Constant” “S sec”

OMO “Base Angular Frequency” “376.992 rad/s”
Vbase “Rated RMS Phase-to-Ground Voltage” “10.392 kV”
[base “RMS Phase Current (MVA/ [3*Vbase] )” “48.1125 kA”

VT  “Terminal Voltage Magnitude at t=0" “0.94839130 p.u.”
Pheta “Terminal Voltage Phase at t=0 “-0.429351 rad”
PO  “Real Power at t=0 (+=Out)” “-25.0 MW”

Q0 “Reactive Power at t=0 (+=Out)” «“-270.0 MVAr

“EQUIV. CIRCUIT FORMAT”

XS1 “Stator Leakage Reactance” “0.14 p.u.”
XMDO “Unsaturated Magnetizing Reactance” “1.445 p.u.”
X3D “Damper Leakage Reactance” “0.0437 p.u.”
X2D “Field Leakage Reactance” “0.2004 p.u.”
XMQ “Quad-Axis Magnetizing Reactance” “0.91 p.u.”
X2Q “Quad-Axis Damper Leakage” “0.106 p.u.”
Rsl “Stator Resistance” “0.0025 p.u.”
R2D “Field Resistance™ “0.00043 p.u.”
R3D “Direct-Axis Damper Resistance”  “0.0051 p.u.”

R2Q “Quad-Axis Damper Resistance” “0.00842 p.u.”
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Data for §7

SYNCHRONOUS CONDENSER PARAMTERES

EXCITER PARAMETERS:
Tl  “Rectifier Smoothing Time Constant” “0.02 sec”
Ta  “Controller Lead Time Constant” “1.5 sec”
Tb  “Controller Lag Time Constant” “1.0 sec”
Te  “Exciter Time Constant” “0.02 sec”
K “Exciter Gain” “100 p.u.”
Emax “Maximum Field Voltage” “S p.u.”
Emin “Minimum Field Voltage” “5pu”
Vbase “L-G Voltage Base” “132.7906 kV, rms”
Ibase “Line Current Base” “0.6276 kA, rms”
“Exciter Voltage Supply Bus Fed”
SYNCHRONOQUS MACHINE PARAMETERS:
H  “Inertia Constant” “1.7 sec”
OMO ‘“Base Angular Frequency” *“376.992 rad/s”
Vbase “Rated RMS Phase-to-Ground Voltage” “10.392 kV”
Ibase “RMS Phase Current (MVA/ [3*Vbase] )” “35.283 kA”
“GENERATOR TYPE FORMAT"”
Xp  “Potier Reactance” “0.2 p.u.”
Xd “Direct-Axis Reactance” “1.56 p.u.”
Xd’® “Direct-Axis Transient Reactance” “0.300 p.u.”
Xd” “Direct-Axis Sub-Transient Reactance” “0.280 p.u.”
Xkf “Damper-Field Mutual Reactance” “0.0 p.u.”
Xq “Quad-Axis Reactance” “1.560 p.u.”
Xq” “Quad-Axis Sub-Transient Reactance” “0.230 p.u.”
Ta  ‘“Armature Time Constant” “0.332 sec”
Tdo’ “Direct-Axis Transient Time Constant” “f.1 sec”
Tqo” “Quad-Axis Sub-Transient Time Constant™ “0.05 sec”

-118-



9. References

(1 -

2] -

[3] -

[4] -

[5] -

Aggoune M., El-Sharkawi M. A., Park D.C., Damborg M.J. and Marks Il R.J.,
“Preliminary Results of Neural Networks for Security Assessment.” [EEE PAS 6

(1991): 890-896.

Aggoune M. E,, Atlas L. E., Cohn D. A., El-Sharkawi M. A. and Marks R. ],

“Artificial Neural Networks for Power System Static Security Assessment.”

[EEE I onal S i Sircui LS Portland, C :
9-11, 1989, 490-494.

Ainsworht, J.D., “The Phase-Locked Oscilator—A new Control System for Con-

trolled Static Converters.” IEEE PAS 87 (1965): 859-865.

Alves, J.LE.R.; Pilotto, L.A.S.; Watanabe, E.H, ‘“Adaptive digital controller

applied to HVDC transmission.” IJEEE Transactions on Power Delivery 8 (1993):
1851-1859.

Arrillaga, J. High Voltage Direct Current transmission. [.ondon: Peter Pereginus
1983.

-119-



(6] -

71 -

(8] -

o1 -

[10] -

[y -

[12] -

References

Beaufays, F., et al.,:”Application of Neural Networks to Load-Frequency Control

in Power Systems.” Neural Networks, 7.1 (1994): 183-194.

Chen, Fu-Chuang, “Back-Propagation Neural Networks for Nonlinear Self-Tun-

ing Adaptive Control.” IEEE Control Systems Magazine, (1990): 44-48.

Daneshpooy, A., Gole, AM. (1994):"HVDC Control with On-line Learning

Based Neural Network™ Proceedings of the International Confefernce on Power
System Technology, ICPST"94, Oct. 18-21, Beijing, China, 479-483.

Daneshpooy, A., Gole, A.M., Chapman,D.G., Davies,J.B., “Fuzzy Logic Control

for HVDC Transmission”, JEEE Winter Meeting, New York, 1997,

Daneshpooy, A., Gole, A.M. "Linking Computational Engine to Electromagnetic

Transients Program™ Proceedings of the Second International Conferemce on
Digital P S Simul ICDS 97. Montréal, Québec May 28-30. 1997

143-147.

Dash, PK,, et. al. , “High performance controllers for HVdc transmission links.”,

IEE Proc. Gener. Trans. Dist, 5 (1994): 422-428.

Dash, PK.; Routray, Aurobinda; Panda, S.K.,”Gain scheduling adaptive control
strategies for HVDC systems using fuzzy logic”, Proceedings of the IEEE Inter-

tral Growth, PEDES v 1 1996. IEEE, Piscataway, NJ, USA. 134-139.

-120-



[13] -

[14] -

[15] -

[16] -

(171 -

[18] -

References

Dash, PK.; Panda, SK_; Liew, A.C. “Fuzzy tuning of DC link controllers.”, Pro-

Delivery, EMPD v 1 1995. IEEE, Piscataway, NJ, USA,95TH8130. 370-375

Dommel, W. H., “Digital Computer Solution of Electromagnetic Transients in

Single and Multiphase Networks™ [EEE PAS 88 (1969): 388-398.

Electric Power Research Institute (EPRI), “HVDC System Control for Damping
of Subsynchronous Oscillations”, EPRI EL-2708, Project 1425-1, Final Report,

October 1982.

El-Sharkawi M. A., Marks R.J., Oh S., Huang S.J., Kerszenbaum I. and Rod-

riguez A., “Localization of Winding Shorts Using Fuzzified Neural Networks.”

IEEE Transaction on Energy Conversion 10 (1995): 140-146.

El-Sharkawi M. A., Marks R. J., Aggoune M. E., Park D. C., Damborg M. J. and

Atlas L. E., “Dynamic Security Assessment of Power System Using Back Error
Propagation Artificial Neural Networks” Second Symposium on Expert Systems
Application to Power Systems, Seattle, Washington, July 17 - 20, 1989, 366-370.

El-Sharkawi M. A., Marks R. J., Damborg M. J,, Atlas L. E., Cohn D. A. and

Aggoune M., ““Artificial Neural Networks as Operator Aid for On-Line Static
Security Assessment of Power Systems™ Power Systems Computation Confer-
ence, Graz, Austria, August 19-24, 1990, 895 - 901.

-121-



(191 -

[20] -

[21] -

[22] -

[23] -

[24] -

[25] -

References

El-Sharkawi M. A., Oh S., Marks R. J., Damborg M. J. and Brace C. M., “Short

Term Electric Load Forecasting Using an Adaptively Trained Layered Percep-

trone” First International Forum on Applications of Neural Networks to Power
Systems, Seattle, July 23 - 26, 1991, 3-6.

Engstrom, P.G., “Operation and Control of H.V.D.C. Transmission.”, JEEE PAS

83 (1964): 71-77.

Gole, A.M., Daneshpooy, A., “A PSCAD/EMTDC™ to MATLAB Interface”,

[PST 97, 22-26 June, Seattle, USA

Gole A.M., Nayak O.B., Sidhu T.S. , Sachdev M.S. , "A Graphical Elecromag-

netic Simulation Laboratory for Power Systems Engineering Programs”, [EEE
PES Summer Meeting, Portland, OR, July 1995,
Hecht-Nielsen, R. Neurocomputing. NewYork:Addison-Wesley Publishing co.,

1990.

Hect-Nielsen, R. "Theory of the Backpropagation Neural Network.”, Proceed-

ings of the International Joint Conference on Neural Network June 1989. , New

York: IEEE Press, vol. I, .593-611.

Hertz, J., et al. Introduction to the Theory of Neural Computation. Lecture notes
I, Santa Fe Institute in Sciences of Complexity, New York: Addison-Wesley Pub-

lishing co. 1991.

-122-



[26] -

[27]

(28]

[29]

[30] -

[31] -

[32] -

[33] -

References

Huang T., Weerasooriya S. and El-Sharkawi M. A, “Novel Approaches to Drives
Control: Neural Networks and Fuzzy Control” The Third Intern