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Abstract

In this thesis, a method of distortion analysis of electromagnetic field sensors using or-

thogonal polynomial subspaces is presented. The effective height of the sensor is viewed

as the impulse response of a linear system. The impulse response corresponds to a linear

transformation which maps every electromagnetic incident field waveform to a received

voltage waveform. Hermite and Laguerre orthogonal polynomials are used as the basis

sets for the subspace of incident electromagnetic field waveforms. Using the selected basis

set, a transformation matrix is calculated for the sensors. The transformation matrices

are compared to a reference transformation matrix as a measure of distortion.

The transformation matrices can describe the sensor behavior up to a certain frequency

range. The limits on this frequency range are investigated for both Hermite-Gauss and

Laguerre functions. The unique property of Laguerre functions is used to prove that the

transformation matrix has a particular pattern. This method is applied on case studied

sensors both in computer simulation and measurements.
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Chapter 1

Introduction

IEEE standard for “Calibration of Electromagnetic Field Sensors and Probes, Excluding

Antennas, from 9 kHz to 40 GHz” defines an electromagnetic field sensor as “An electri-

cally small device without electronics (i.e., passive) that is used for measuring electric or

magnetic fields, with a minimum of perturbation to the field being measured [1].” The

ratio of the electric voltage or current at the terminals of the sensor to the electromagnetic

field is called the sensor transfer function. Physical and electrical properties of the sensor

determine the transfer function [1], [2]. Electromagnetic field sensors are used to measure

the electromagnetic field variations with time. Applications include measurement of elec-

trical field in medical imaging, Partial Discharge (PD) measurements, Electromagnetic

Compatibility (EMC) tests, Electromagnetic Pulse (EMP) experiments [3], etc. In a gen-

eral sense, electromagnetic field sensors are divided into two groups of “free field” and

“ground plane” sensors. Dipole and loop antennas are prototypes for the free field electric

1



Chapter 1. Introduction 1.1. Problem Definition

and magnetic field sensors, respectively. Electric and magnetic field sensors over a ground

plane have monopole and half-loop structures [1]. In addition to this, the sensors which

deliver the derivative of the incident field flux density at their output are considered as an

important class and are denoted as Ḋ and Ḃ for the electric and magnetic field sensors,

respectively.

1.1 Problem Definition

In this thesis, a general distortion analysis for electromagnetic field sensors is presented.

The proposed distortion characteristic should be able to describe the sensor performance

over a specific range of frequency. The way the term “distortion” is defined, determines

the characteristic we are seeking. For now, we refer to distortion as any unsimilarity

introduced to the output waveform of an electromagnetic field senor, compared to the

expected signal when both signals are normalized. As it is denoted in [1], the expected

ideal signal waveform is a linear transformation of the incident field. For instance, Ḋ

sensors deliver a voltage at their terminals which is proportional to the first derivative of

the incident electric field waveform with respect to time.

In order to establish characteristics for electromagnetic field sensors, one should refer to

the well defined antenna characteristics standardized in [4] as the sensors are modeled

as antennas in the receiving mode. Most of the conventional antenna characteristics are

frequency-domain parameters, such as gain, directivity, radiation pattern, beam-width,

2



Chapter 1. Introduction 1.2. Motivation

etc. For sensor characterization, however, there is a need to evaluate the frequency-

domain definitions for a range of frequencies. In addition, there is no frequency-domain

distortion characterization which is applicable for sensor application. Precisely speaking,

frequency-domain return loss can be viewed as a distortion measure, but there are cases

which return loss is not sufficient to decide how well an antenna receives a signal that

covers a wide frequency spectrum.1

Further to pursuing a general methodology to analyze the distortion characteristic, one has

to establish a relationship between this characteristic and other important characteristics

such as sensitivity. As it is shown in the upcoming chapters, it is not realistic to compare

the distortion characteristics of different sensors without considering their sensitivities.

There is always a trade-off between the sensitivity of the senor to the incident electric field

and the distortion behavior. In other words, a combined parameter should be introduced

which includes both the distortion character and sensitivity of a sensor.

1.2 Motivation

In applications using electromagnetic field sensors, distortion analysis is necessary to have

a measure of sensor accuracy. Distortion characteristic has only been defined in the time

domain. The classical time-domain distortion characteristic known as “fidelity” is a wave-

form dependent parameter [6]. A more general approach based on system linearity and

1The example is the Vivaldi antenna, which has a very good return loss, but the phase center is varying
with respect to frequency, not having a good distortion characteristic [5].

3



Chapter 1. Introduction 1.3. Thesis Outline

Hermite orthogonal polynomials can give a more general understanding of the distortion

introduced by the sensor has been introduced by Carro and De Mingo [7]. In addition

to a distortion measure, this approach gives a general system identification. Frequency-

domain system characterization is sometimes a tedious task for systems performing under

the transient regime. Both the characterization and measurement has to be performed

repeatedly in the whole frequency range to obtain a sufficient resolution. On the contrary,

time-domain measurement and characterization can be more efficient. More importantly,

time-domain approach gives a more comprehensible vision of the transient behavior of the

system.

1.3 Thesis Outline

A background on the characterization of antennas in the time domain is presented in

Chapter 2. The subspaces methodology is described in Chapter 3. Chapter 4 discusses

the interpretation of the results obtained from employing different polynomials using the

subspaces method. Finally, the distortion characteristic obtained from simulation data

is compared to the one obtained from measurement data for some prototype sensors in

Chapter 5. The concluding remarks and the future work are summarized in Chapter 6.

4



Chapter 2

Background

In this chapter a review on the existing literature on antenna characterization is presented.

Electromagnetic field sensor characterization is an especial case of antenna characteriza-

tion. This is why antenna characterization is applicable to electromagnetic field sensors.

To begin with, some of the classical antenna frequency-domain characteristics are pre-

sented. Then the time-domain generalization of antenna characteristics are reviewed.

Finally, considering all of these characterization methods, distortion characterization is

investigated. It should be noted that not all of the characteristics summarized in this chap-

ter are used in this thesis. However, time-domain characteristics are described briefly in

order to document the performed literature review.

2.1 Frequency-Domain Antenna Characteristics

The parameters originally defined in IEEE standard for “Definitions of terms for anten-

nas” [4], are frequency-domain definitions. The following has been selected from many

5



Chapter 2. Background 2.1. Frequency-Domain Antenna Characteristics

frequency-domain characteristics defined in [4]. The terms in quotation marks are adopted

from [4]. These characteristics are outlined in this thesis for the sake of the completeness

of this document.

• Far-field region

“That region of the field of an antenna where the angular field distribution is essen-

tially independent of the distance from the antenna. If the antenna has a maximum

overall dimension D, the far-field region is commonly taken to exist at distances

greater than 2D2/λ from the antenna, λ being the wavelength [4].” In the far-field

region, the electromagnetic fields are in the TEM mode1 and electromagnetic fields

vary inversely proportional to the distance from the source [8].

• Radiation pattern RP (θ, φ)

“A mathematical function or a graphical representation of the radiation properties

of the antenna as a function of space coordinates. In most cases, the radiation

pattern is determined in the far-field region and is represented as a function of the

directional coordinates. Radiation properties include power flux density, radiation

intensity, field strength, directivity, phase or polarization[8] and [4].” For example

1TEM mode is the Transverse Electro-Magnetic mode where the electric and magnetic field vectors
are perpendicular to each other and to the direction pf propagation and, in free space, hold a ratio of
η0 = 377Ω between their magnitudes.

6



Chapter 2. Background 2.1. Frequency-Domain Antenna Characteristics

if the transmitted energy is considered, the radiation pattern can be defined as [6]

RP (θ, φ) =
1

2πη0

∫ ∞

−∞
|Et(r, θ, φ, ω)|2 r2dω (2.1)

where η0 is the free space impedance equal to 377 Ω2 and Et(r, θ, φ, ω) is the trans-

mitted electric field the location (r, θ, φ) and frequency ω/2π.

• Radiated power

“The average power radiated by the antenna [8].” If the power density term is as-

signed to the time average Pointing vector that is

Wrad =
1

2
Real {E×H∗} , (2.2)

then the radiated power is defined as,

Prad =

∫ ∫
Wrad · ds. (2.3)

• Radiation intensity U(θ, φ, ω)

“The power radiated from an antenna per unit solid angle [4], ” in a certain direction

is called the radiation intensity. As Radiation intensity is a far-field parameter, it

can be obtained by multiplying the radiation power density in the square of distance

2In [6] the r2 coefficient in the integrand is not considered which has been corrected in [9].

7



Chapter 2. Background 2.1. Frequency-Domain Antenna Characteristics

[8] as,

U(θ, φ, ω) = r2Wave(θ, φ, ω). (2.4)

• Directivity D(θ, φ, ω)

“The ratio of the of radiation intensity in a given direction from the antenna to the

radiation intensity averaged over all directions [4]” is called directivity and is given

by,

D(θ, φ, ω) =
4πU(θ, φ, ω)

Prad

, (2.5)

where, U is the magnitude of the vector U in the desired direction.

• Gain G(θ, φ, ω)

“The ratio of the radiation intensity in a given direction to the radiation intensity

that would be obtained if the power accepted by the antenna were radiated isotrop-

ically. The radiation intensity corresponding to the isotropically radiated power is

equal to the power accepted (input) by the antenna divided by 4π[4].” The radiated

power is a fraction of the input power to the antenna as3 [8],

Prad = ecdPin, (2.6)

where, ecd is a positive number smaller than one. Directivity and gain are related

3Also called antenna radiation efficiency.

8
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AZ

Antenna

-gV

gZ
LZ
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effincOpen LEV )(

(a) (b)

Figure 2.1: Antenna circuit model without considering a transmission line a) antenna in the
transmit mode, and b) antenna in the receive mode.

by the same factor as,

G(θ, φ, ω) = ecdD(θ, φ, ω). (2.7)

• Antenna field factor F(ω, r)

“The antenna is the transitional structure between free-space and a guiding device

[8]. ”Antenna field factor is a function which when multiplied by the antenna

voltage/current will give the propagating electric field at a given distance. Antenna

field factor can be defined in different ways with respect to the generator voltage

or current. The definition also differs when different circuit models are assumed for

an antenna in the transmit mode. In [6], for the circuit model of Fig. 2.1a, the

transmitted electric field, Et, is related to the generator voltage Vg by,

Et(r, ω) =
jVg(ω)η0
Zg + ZA

F(r, ω)
e−jkr

4πr
, (2.8)

9



Chapter 2. Background 2.1. Frequency-Domain Antenna Characteristics

where, Zg and ZA are the generator and the antenna impedances, respectively. In

(2.8), F is the antenna field factor, Et(r, ω) is the transmitted electric field at the

location r and frequency ω/2π. A similar idea appears in [10] with consideration

of a transmission line in the antenna circuit model as seen in Fig. 2.2a. If the

generator impedance is assumed to be purely resistive, equal to the transmission line

characteristic impedance, then the radiated electric field is related to the generator

voltage using,

Et(r, ω) =
e−jkr

r
FBaum(r, ω)Vg(ω). (2.9)

Antenna field factor can be defined with respect to the current or voltage. These

definitions are presented in [11]. In addition, Shlivinski et al. [12], have used a

definition for field factor4 which is related to reflection-free current traveling along

the transmission line. In [12], the field factor, FShlivinski, is defined so that the

transmitted electric field is found using,

Et(r, ω) = − μ

4πr
I+(r, ω) · FShlivinski(r, ω), (2.10)

where, in Fig. 2.2a, the generator impedance is assumed to be matched to the

transmission line and I+ is the reflection-less line current. Eqs. (2.8)-(2.10) show

that the field factor is proportional to the current distribution of an infinitesimal

4The field factor is alternatively denoted as antenna effective height in the transmit mode in [12].
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Antenna

cZ
-

gZ

gV
LZ

Antenna
-
recVcZ

(a) (b)

Figure 2.2: Antenna circuit model considering a transmission line a) antenna in the transmit
mode, and b) antenna in the receive mode.

dipole5 which radiates the same field as the antenna under study. Antenna field

factor is the antenna transfer function in the transmit mode.

• Antenna effective length Leff (θ, φ, ω)

In [4], the antenna effective length is defined as “for a linearly polarized antenna

receiving a plane wave from a given direction, the ratio of the magnitude of the open

circuit voltage developed at the terminals of the antenna to the magnitude of the

electric field strength in the direction of the antenna polarization.” This means,

Leff (θ, φ, ω) =
V open
rec (ω)

Erec(θ, φ, ω)
. (2.11)

• Effective height Heff (θ, φ, ω)

5A current element which has a spatial current distribution proportional to δ(r).
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In [11], “other vectors” are defined with respect to Fig. 2.1b as,

hI(ω, r) = − 1

ZA

Leff (ω, r)le, (2.12)

hW (ω, r) =
ZL

ZA + ZL

Leff (ω, r)le, (2.13)

where, le is the antenna polarization vector and hI(ω, r) and hW (ω, r) represent

effective heights defined with respect to the input current or voltage, respectively.

This leads to the vector definition of effective height. As defined in [10], the received

voltage in Fig. 2.2b is given by,

Vrec = Heff (θ, φ, ω) · Einc(θ, φ, ω), (2.14)

where, · represents the inner product of vectors. The load impedance, ZL, is assumed

to match the characteristic impedance of the transmission line. The effective height

is antenna transfer function in the receive mode.

• Reciprocity theorem in the frequency domain

Antenna field factor and the effective height as defined in (2.9) and (2.14) are related

to each other as [11],

FBaum(θ, φ, ω) = −jωμ0

4πZc

Heff (θ, φ, ω), (2.15)

where Zc is the transmission line characteristic impedance. This means that an

12



Chapter 2. Background 2.2. Time-Domain Antenna Characteristics

antenna transmits the same electric field waveform as the one it has received when

illuminated by a specific incident electric field if the generator voltage has the form

of the integral of the incident electric field.

2.2 Time-Domain Antenna Characteristics

Frequency-domain characterization is appropriate for narrow-band systems. Transient

analysis techniques for systems which deal with pulses6, are inherently required to pos-

sess certain characteristics for a wide range of frequencies, therefore one has to sweep a

frequency range to acquire the desired frequency-domain characteristics. Further, it is

both easier and more efficient to measure and characterize wideband systems in the time

domain [13]. For example in time-domain measurements, unwanted reflections can be

removed by applying an appropriate time window [14]. This could be of great value in

comparison to the cost and complexity imposed by frequency-domain reflection cancella-

tion methods. A time-domain measurement process essentially consists of transmitting

and/or receiving a transient pulse which is more straightforward than repeating the same

measurement for the whole frequency spectrum. Instead of preventing the reflections

using expensive anechoic chambers, the reflections can be eliminated using proper time-

windowing techniques in the time-domain measurement.

Furthermore, there are some characteristics which are intrinsically time-domain concepts

6Precisely speaking, these pulses have risetimes of less than 1 ns [6].
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such as distortion characteristic. In the frequency domain, distortion characterization

has to be related to the input impedance of an antenna or similarly to the return loss.

Although these parameters compare the antenna performance with an ideal case which

is a matched impedance situation, this is not always sufficient for a complete distortion

analysis [5]. In addition to return loss the phase center of an antenna should be inspected

to be stable otherwise it gives rise to distortion in the time domain [5]. In the time-

domain on the contrary, there is a parameter defined as “fidelity” which considers solely

the distortion behavior of the antenna.

The main approach for defining most of the time-domain characteristics is to adapt the

same frequency-domain definitions in the time domain using an appropriate mathematical

norm. In this section, time-domain definitions for antenna gain and radiation pattern are

presented in correspondence to their frequency-domain counterparts.

2.2.1 Time-domain definitions complying to frequency-domain

definitions

These are the definitions which are based on the same ideas as those the frequency-domain

definitions rely on. The only change is to use an appropriate norm to convert time-domain

functions into scalars/vectors which are not functions of time. Parseval theorem7 makes

the connection between the time and frequency domains whenever an energy parameter

7Parseval theorem states if F (ω) is the Fourier transform of the time-domain function f(t) then∫∞
−∞ |f(t)|2 dt = 1

2π

∫∞
−∞ |F (ω)|2 dω.
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is used.

• Time-domain far-field zone

The criteria for the far-field zone can be translated into the time-domain terms [12].

A given point in spherical coordinates as (r, θ, φ) is located in the far-field zone of

an antenna with dimension l when [12],

r � l2

cτ
, (2.16)

where, τ is the time-domain pulse risetime and c is the speed of light in free space.

If ω = 1/τ is considered, (2.16) will result in the frequency-domain far-field zone

criteria.

• Time-domain radiation pattern RPTD

A similar idea as (2.1) can be applied to define the time-domain radiation pattern.

Using the Parseval theorem one can find the same definition for the radiated energy

pattern as [6],

RPTD(θ, φ) =
1

η0

∫ ∞

−∞
|et(r, θ, φ, t)|2 r2dt.8In(2.17),

et (r, θ, φ, t) is the time-domain transmitted electric field. (2.17)

8The r2 factor has not been included in [6] which has been corrected in [9].
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• Time-domain antenna field factor Ftime(θ, φ)

Equation (2.8) suggests that antenna field factor is proportional to the ratio of the

transmitted electric field to the applied voltage at a specified frequency. Similarly,

one can apply an appropriate norm on the time-domain electric field and voltage

and define the ratio as the time-domain field factor. This is the idea presented in

[15], although named as “transmitting antenna factor”, the defined parameter is

the time-domain counterpart for the antenna field factor as defined in (2.8). The

so-defined time-domain antenna field factor is given by [15],

Ftime(θ, φ) =
maxt

∣∣et(r=1m)(r, θ, φ, t)
∣∣

maxt |vg(t)| . (2.18)

• Time-domain transmitting antenna energy factor F energy
time (θ, φ)

Energy factor is defined in the same way as the field factor. The 2-norm is used to

convert the time-domain transmitted electric field and generator voltage to scalar

values. In [15], energy factor is defined as,

F energy
time (θ, φ) =

√√√√∫∞
−∞ |et(θ, φ, t)|2 dt∫∞

−∞ |vg(t)|2 dt
. (2.19)

• Time-domain effective length (Allen et al. definition) Leff
time

Known as “antenna effective height”, a definition is given in [15] which matches

effective length definition as given by (2.11). The ∞-norm is applied on the time-

16
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domain functions that yields,

Leff
time =

maxt |vopen(θ, φ, t)|
maxt |einc(θ, φ, t)| . (2.20)

In (2.20), einc(θ, φ, t) is the incident electric field and vopen is the open circuit voltage.

• Time-domain antenna gain Gtime(θ, φ)

Antenna gain is defined in the transmit mode of an antenna as [15],

Gtime(θ, φ) =
4πr2

η0

∫∞
t=−∞ |et(θ, φ, t)|2 dt∫∞
t=−∞ vg(t)ig(t)dt

. (2.21)

In (2.21), vg(t)ig(t) gives the input power.

• Time-domain directivity Dtime(θ, φ)

Following the same definition as given in (2.5) will result in [15],

Dtime(θ, φ) =

∫∞
−∞ |et(θ, φ, t)|2 dt

1
4π

∫ 2π

0

∫ π

0

∫∞
−∞ |et(θ, φ, t)|2 dtdθdφ

. (2.22)

2.2.2 Time-domain definitions specifically defined in time do-

main

• Time-domain antenna field factor (Baum and Farr’s definition [10]) FBaum
time (θ, φ, t)

Taking the inverse Fourier transform of (2.9), Baum and Farr give the time-domain
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radiated electric field as,

et(τ) =
1

r
[FBaum

time (θ, φ) ∗ vg](τ) (2.23)

where τ = t− r
c
is the propagation delay. In (2.23), ∗ represents the convolution op-

erator and the vector et is obtained y convolving the scalar vg with every component

of the vector FBaum
time .

• Time-domain antenna field factor (Shlivinski’s definition [12]) FShliv.
time (θ, φ)

Using (2.10), the time-domain radiated electric field is given by,

et = − μ

8πrZc

[vg(.) ∗ FShliv.
time (θ, φ, .)](τ) (2.24)

where, as noted before, τ is the delayed time.

• Time-domain effective length (Baum and Farr definition) Leff
time(θ, φ, t)

This definition relies on the exact inverse transform of the frequency-domain effective

length used in [10]. The time-domain open circuit voltage received by an antenna is

the convolution of the time-domain effective length9 and the time-domain incident

electric field as [10],

vopenrec (t) = [Leff
time(.)� einc(θ, φ, .)](t). (2.25)

9Also called the effective height in Baum’s note [11].
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In (2.25), the effective length has been defined as a vector which is in the direction

of the antenna polarization. The symbol � stands for temporal convolution of two

vectors10. This is the time-domain equivalent of frequency-domain definition given

in the IEEE standard for antenna definitions [4].

• Time-domain antenna effective height( Defined by Baum and Farr [10]) hBaum
eff (θ, φ, t)

For the circuit model shown in Fig. 2.2b, with the condition of matched load

(ZL = Zc), the effective height is defined with respect to the voltage received in a

matched load as,

vrec(t) = hBaum
eff (θ, φ, t)� et(θ, φ, t). (2.26)

• Time-domain antenna effective height (Defined by Shlivinski et al. [12]) hShliv.
eff (θ, φ, t)

Using a circuit model as shown in Fig. 2.2b, Shlivinski et al. define the effective

height of an antenna when the generator is matched to the transmission line. They

define the time-domain effective height so that the reflection-less received voltage

shown as v−rec(t) is given by

v−rec(t) = [hShliv.
eff (θ, φ, .)� et(θ, φ, .)](t). (2.27)

• Antenna as a linear system

For the circuit model shown in Fig. 2.2 (which assumes the transmission line is

10If A(t) = (Ax(t), Ay(t), Az(t)) and B(t) = (Bx(t), By(t), Bz(t)) then A(t) � B(t) ≡
(Ax(t) ∗Bx(t), Ay(t) ∗By(t), Az(t) ∗Bz(t)).
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matched to both the load impedance in the receive mode and to the generator

impedance in the transmit mode), antenna field factor and effective height as de-

scribed in equations (2.23), (2.26), (2.24), and (2.27) are the impulse responses in

either transmit or receive mode according to different definitions.

• Antenna reciprocity in the time domain

Eq. (2.15) states that the frequency-domain field factor is proportional to the

frequency-domain effective height with a coefficient which is a linear function of

jω. In the time domain, this means that time-domain field factor is proportional to

the time derivative of the effective height. For the definitions given by Baum and

Farr we have [10], [11],

FBaum
time (θ, φ, t) = − ∂

∂t

(
μ0

4πZc

hBaum
eff (θ, φ, t)

)
. (2.28)

• Time-domain antenna gain (Baum and Farr’s modified definition [10]) GBaum
time (θ, φ)

Baum and Farr’s definition for gain follows the frequency domain concept of gain

which is the ratio of the output signal to the input signal. However, there exist

important contributions in their time-domain definitions.

1- As the input and output in the antenna case will be time-dependent waveforms,

there should be appropriate norms to convert the time-domain functions into scalar

values. Baum and Farr use a general concept of norms for signals. Unlike (2.22)
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and (2.21) which use the energy norm, they define the time-domain definition inde-

pendent from the norm used. The mathematical norm could be selected from the

family of p-norms.11

2- In addition to introducing proper norms, they have used operator norms. An

operator norm is a norm which determines the possible values of an operator can

yield when a specific norm is taken [16]. In antenna time-domain analysis this is

of great value because convolution with the effective height and the field factor ap-

pears frequently as an operator. Using the properties of p-norms, operator norms

and impulse responses of antennas, maximum achievable values for specific types of

antennas has been derived in [10].

3- Gain as defined (2.21) considers only the transmit mode of an antenna. In [10]

definitions for both the transmit and receive mode gains are given. Receive mode

gain is defined as,

GBaum
RX (θ, φ) =

√
Zc ‖vrec(t)‖√

η0 ‖einc(θ, φ, t)‖ , (2.29)

where ‖.‖ is the selected norm. For the transmit mode, the gain is defined with

a slight modification to 2.21. As stated in (2.28) time-domain field factor is pro-

portional to the derivative of the time-domain effective height. In order to have

similar gains for both the receive and transmit modes, one has to define gains with

11If f(t) : 
 �−→ 
 is a function in 
, the p− norm of f(t) is defined as a function which maps f(t) to

[
∫∞
t=−∞ |f(t)|p dt] 1p
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respect to similar outputs. The output in the transmit mode is proportional to the

derivative of the output of the antenna in the receive mode when the inputs are set

the same. Considering this, Baum and Farr have used the integral of the transmit-

ted electric field instead of the electric field itself to define the transmit mode gain

GTX(θ, φ) [10] as,

GBaum
TX (θ, φ) = limr→∞

2πc
√
Zc

∥∥∫ ret(θ, φ, t) · ledt
∥∥

√
η0 ‖vg(t)‖ . (2.30)

In (2.30), the infinity limit of ret(θ, φ, t) with respect to r is taken to cancel the

dependency on distance, r, in the far-field zone. le is the desired polarization vector.

• Time-domain antenna gain (Defined by Shlivinski et al. GShilv.(θ, φ, ζ) [12])

In contrary to the definitions for antenna gain given in (2.21), (2.29), and (2.29)

which are all time-independent values, Shlivinski et al. define antenna gain as a

function of time. There are two remarks to this definition:

1- Time-independent gain defined in (2.21) is a especial case of this time-dependent

gain. If the 2-norm is used in (2.29), the new formulation gives result to it as an

especial case too.

2- Using a time-dependent gain, a transmit-receive system can be described in the

time domain as a counterpart for the radar equation in the frequency domain [12].

3- Definition of gain in either receive or transmit modes is proportional to the an-
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tenna impulse response in that mode.

As (2.24) suggests, antenna transmitted electric field is proportional to the con-

volution of the antenna field factor and the generator voltage. The time-domain

gain is defined such that it relates autocorrelation functions, corresponding to the

transmitted electric field, Re(θ, φ, ζ)
12 , and the generator voltage, R̄Vg(ζ) as

Re(θ, φ, ζ) =
ηeg
4πr2

(
GShilv.

TX (θ, φ, .) ∗ R̄vg(.)
)
(t).13 (2.31)

In (2.31), eg is defined as,

eg =
1

4

‖vg‖2
Zc

, (2.32)

where, ‖.‖ stands for the 2-norm and Zc is the matched generator impedance as

shown in Fig. 2.2a. It can be proved14 that the auto-correlation of convolution of

two functions is equal to the convolution of autocorrelation of the two. Considering

equations (2.24) and (2.31) yields in an structural description for the gain as

GShliv.
TX (θ, φ, t) =

1

4πc2
RFShliv.

(θ,φ,t).(2.33)

12If x(t) represents a function of t then its autocorrelation function, Rx is defined as, Rx(ζ)a =∫∞
−∞ x(t)x(t− ζ)dt.

13Re = Rexax +Reyay +Rezaz and Rvg (t) =
¯Rvg (t)

Rvg (0)
.

14The proof is presented in appendix A.
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The energy gain defined as (2.21) is now given as an especial case by

G(θ, φ) =
∣∣GShliv.

TX (θ, φ, t) ∗ R̄vg(t)
∣∣
t=0

. (2.34)

A similar definition to (2.33) can be derived for the antenna gain in the receive mode

with respect to the antenna effective height autocorrelation function.

2.2.3 Antenna Time-Domain Distortion Analysis

In the time-domain, distortion analysis is analogous to the recognition of any dissimilarity

between the antenna response and the excitation waveform. In the receive mode, which

describes electromagnetic field sensors for instance, the antenna’s received voltage and

the expected voltage are compared. Below is a summary of some distortion measures.

• Fidelity

The classical distortion analysis introduces a parameter known as “fidelity” which

measures the similarity between the two waveforms [6]. For a receiving antenna, the

distortion introduced by the antenna is measured by calculating the mean square er-

ror of the actual and expected waveform.15 For two signals f(t) and r(t), considering

the time shift τ , the mean square error, d, is

d = minτ

∫ ∞

−∞

∣∣∣r̂(t+ τ)− f̂(t)
∣∣∣2 dt. (2.35)

15The mean square error(MSE) is statistical difference between an estimated value and the actual value.
MSE = E[(X −X0)

2] [17].
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f̂(t) and r̂(t) are normalized signals defined as,

f̂(t) =
f(t)√∫∞

−∞ |f(t)|2 dt
(2.36)

r̂(t) =
r(t)√∫∞

−∞ |r(t)|2 dt
. (2.37)

Equation (2.35) can be written as,

d = minτ

[∫ ∞

−∞
|r̂(t+ τ)|2 dt+

∫ ∞

−∞

∣∣∣f̂(t)∣∣∣2 dt− 2

∫ ∞

−∞
r̂(t+ τ)f̂(t)dt

]
(2.38)

= minτ [2− 2

∫ ∞

−∞
r̂(t+ τ)f̂(t)dt]. (2.39)

In (2.38), the term
∫∞
−∞ r̂(t+ τ)f̂(t)dt is the the cross-correlation between the two

normalized signals which varies between zero and one. The more the similarity

between the signals, the closer this number to unity. The fidelity is defined as the

cross-correlation of the antenna output, y(t), and the expected one. For an antenna

as a linear system, the expected waveform is a linear transformation of the input

signal provided to the antenna. If L[x(t)] represents this linear transformation, then

the fidelity, F is defined as [6],

F = maxτ [

∫ ∞

−∞
ŷ(t+ τ)L̂[x(t)]dt].16 (2.40)

Instead of using a fixed definition for the reference signal, a linear transformation

16Both y(t) and L[x(t)] are normalized similar to equation (2.36).
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of the electric/magnetic field is considered because many sensors such as Ḋ and Ḃ

sensors deliver a time derivative version of the incident field in their output. For a

single antenna, fidelity should be calculated for every single incident field waveform

separately.

• Correlation pattern

A spatial distortion characteristic is introduced in [9] as the correlation pattern. The

correlation pattern measures the similarity of the transmitted or received signal to a

certain template signalT(θ, φ, t). It is assumed that the time and spacial coordinates

are separable in the template function as,

T(θ, φ, t) = T (t)a(θ, φ, t). (2.41)

The radiation pattern is then defined as [9],

RP corr. =

[∫∞
−∞ e(θ, φ, t) · a(θ, φ, t)T (t)rdt

]2
η0
∫∞
−∞ |T(t)|2 rdt . (2.42)

Caushy-Schwartz inequality for integrals implies the radiation pattern defined in

2.41 is always less that or equal to the radiation pattern defined in (2.17). The

equality happens only if

e(θ, φ, t) = T (t)f(θ, φ) (2.43)

where, e(θ, φ, t) is separated into product of a time-dependent function T (t) and a
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location-dependent function, f(θ, φ) is a spatial vector.

• Pulse width stretch ratio SR

For transmitting a pulse s(t), the temporal width is defined as the time interval

which contains 90% of the total pulse energy. If the normalized comulative energy

function is defined as

Es(t) =

∫ t

−∞ |s(t)|2 dt∫∞
−∞ |s(t)|2 dt (2.44)

then the signal pulse width for 90% energy W (s), is obtained using,

W (s) = E−1
s (0.95)− E−1

s (0.05). (2.45)

The strech ratio is then defined as the transmitted electric field pulse, Et, width to

the generator voltage pulse, vg, width as [18],

SR =
W (et)

W (vg)
. (2.46)

The stretch factor is calculated using the far-field transmitted electric field. It

measures the distortion introduced by the antenna in the transmitted waveform

which usually results in a larger temporal width.

• Subspaces Method

Eq. (2.40) shows a clear dependence upon the incident field waveform. In other
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words, to compare the distortion characteristics of different antennas one has to cal-

culate fidelity for every single time-domain waveform. This is the main motivation

for the new approach given in [7]. The operation of an antenna is assumed to be a

linear transformation. For every linear transformation there is a matrix representa-

tion which relates the input signal n-tupple representation to the output n-tupple

representation [19]. The analysis perused in this thesis can be categorized in this

class of time-domain distortion analysis. In addition to Hermite-Gauss functions

used in [7], application of Laguerre functions are also studied in this thesis.
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Chapter 3

Distortion Analysis Using Signal

Subspaces

Distortion analysis using signal subspaces is based on the fact that an electromagnetic field

sensor is a linear time-invariant system and can be viewed as a linear operator. In the lin-

ear system representation of electromagnetic field sensors, the incident electric/magnetic

field waveform is the input signal and and the received voltage/current is considered as the

output signal. In order to find the corresponding operator for the sensor under study, one

has to first define a vector space which contains the input and output signals. The other

thing to be determined is whether the analysis is being done in an infinite-dimensional

vector space or a finite-dimensional subspace of it. Although the methodology and prob-

lem statement are the same in both approaches, interpretation of results will be different.

In this chapter, the methodology used in the rest of this thesis is described in two scenar-

ios. The first one includes the method used in [7] using Hermite-Gauss signal subspaces.
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The other method presented in this thesis relies on an infinite dimensional vector space

and uses unique properties of Laguerre polynomials. Before proceeding to describe any

of those approaches, a few general remarks are presented in the next section.

3.1 General Remarks

Electromagnetic field sensors are basically antennas in the receiving mode. Depending on

the definition of input and output signal set, terminal impedance, and sensor polariza-

tion, different transfer functions can be defined for them in the frequency domain. The

so-defined transfer function corresponds to a time-domain impulse response. As it will

be shown in the following sections, the definition used for the transfer function is the

focal point in the methodology used in this thesis. The following is a list of remarks and

conventions used in the rest of this thesis:

1- The sensors are assumed to be located in the far-field zone of the electromagnetic field

radiating source.

2- It is assumed that the sensors are terminated at 50Ω loads.

3- For the electric field sensors, the input signal is assumed to be the electric field wave-

form while the output signal is the voltage waveform received at the sensor terminals.

4- For the magnetic field sensors, the input signal is assumed to be the magnetic field

waveform and the output is the current waveform received at the sensor terminals.

5- Considering the above conditions, the definitions given in Chapter 2 in (2.14) and (2.26)
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are equivalent to the electric field sensor transfer function. For magnetic field sensors, a

similar definition can be made replacing the electric field with the magnetic field.

6- For simplicity, the electric field sensor terminology is used in the rest of this thesis for

the sake of formulation. The same arguments will be applicable to magnetic field sensors

replacing the electric field with the magnetic field.

7- Sensor effective height is a vector. The spatial inner product in the frequency domain

(or similarly spatial convolution in the time domain) of this vector and the incident field

results in the scalar received voltage. In this thesis, sensor transfer function (sensor ef-

fective height) is considered for only one direction and that is the direction which the

electric/magnetic field is polarized. This convention adds simplicity to the analysis with-

out the loss of generality, as the frequency-domain transfer function or correspondingly

the time-domain impulse response will be a scalar. Equivalently (2.14) and (2.26), vec-

tor inner product of the effective height and the electric field vector will be simplified

to multiplication of magnitudes of the electric field and the effective height. It is also

reasonable to study sensors only in one direction, as most of the electric field sensors are

omni-directional.

8- Mathematical definition of terms which are denoted in italic letters is given in more

details in Appendix B.
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3.2 Finite Dimensional Analysis

The sensor as a linear system is associated with a linear transformation, T , which maps

the electric field (input signal) to the received voltage (output signal) as,

T {einc(t)} = vrec(t), (3.1)

where, einc(t) is the incident electric field and vrec(t) is the received voltage. As both input

and output signals are finite energy signals they belong to the the set of quadratically

integrable functions L2(
)1,

einc(t), vrec(t) ∈ L2(
). (3.2)

In linear algebra, the set of quadratically integrable functions, L2(
), forms a vector

space over the complex numbers field. The inner product operation for two arbitrary real

functions x(t) and y(t) in L2(
) is defined as,

〈x(t), y(t)〉 �
∫ ∞

−∞
x(t)y(t)dt. (3.3)

For an arbitrary function in L2(
), x(t), the norm is defined as,

‖x(t)‖ ≡
√
〈x(t), x(t)〉. (3.4)

1L2(
) is also known as the Lebesgue space for p = 2.
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3.2.1 Finite Dimensional Terminology

For every vector space, there is a set of linearly independent vectors, which span the

whole space. This set is called the basis set. Every element in the vector space can be

decomposed into a linear summation of basis vectors. For example, if the basis set is

B = {b1, b2, b3, ..., bi, ...}, the element x in vector space V can be expressed as,

x = x1b1 + x2b2 + x3b3 + ...+ xibi + . . . . (3.5)

The decomposition in (3.5) is unique, meaning that xi|i=1,2,... coefficients are unique.

Therefore for every element x in the vector space V there is a vector representation as,

x = [x1, x2, ..., xi, ...]
t, (3.6)

which describes the element x. In (3.6), bold letters refer to column vector and super-script

t means matrix transposition. The number of basis vectors in the basis set is equivalent to

the number of dimension of the space. Although L2(
) is an infinite dimensional vector

space, in a finite dimensional analysis, a sufficiently big subspace of L2(
) is chosen which

essentially has finite number of basis vectors. Assume that the desired N-dimensional

subspace of L2(
) is named VN and it includes an approximation of einc(t) and vrec(t)
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such that,

einc(t) =
N∑
i=1

eibi(t), (3.7)

vrec(t) =
N∑
i=1

vibi(t). (3.8)

In (3.7), it is assumed that B = {b1, b2, b3, ..., bN} spans VN . It is also notable that vector

representation for einc(t) and vrec(t) are actually n-tupple representations,

einc = [e1, e2, ..., eN ]
t, (3.9)

vrec = [v1, v2, ..., vN ]
t. (3.10)

3.2.2 Linear-Operator Representation of Sensors

A Linear operator is basically the matrix representation for a linear transformation. Eq.

(3.1) is expressed in an N-dimensional subspace of L2(
) as,

T : einc �−→ vrec. (3.11)

For every linear transformation, there is a matrix which relates the domain subspace to

the range subspace [19], [20]. For the case of a sensor, the domain and the range subspaces

are both an N-dimensional subspace of L2(
). Therefore, there exists an N ×N matrix,

known as the transformation matrix L, which gives the N-tupple representation of the

received voltage vrec, when it is multiplied by the vector representation of the incident
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electric field einc as,

vrec = L · einc. (3.12)

Calculation of transformation matrix is dependent on the choice of the basis sets for

the domain and range subspaces. For the electric field sensor with linear transformation

T , both subspaces are assumed to be the same with one similar set of basis set B =

{b1, b2, ..., bN}. The ij element of matrix L = [lij]i,j=1,2,..,N , lij is calculated as [20],

lij = 〈T (bj(t)), bi(t)〉 . (3.13)

The sensor linear transformation can be stated as a convolution with the sensor impulse

response in the direction of the electric field polarization or,

vrec(t) = h(t) ∗ einc(t), (3.14)

and, (3.13) can be written as,

lij = 〈h(t) ∗ bj(t), bi(t)〉 , (3.15)

where, h is the component of the sensor effective height which is parallel to the electric

field.
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3.2.3 Calculation of the Transformation Matrix

Eqs. (3.13) and (3.15) can be summarized in the following steps:

1- A set of basis functions should be selected.

2- N-tupple representation of sensor response to the ith basis vector forms the ith column

in the transformation matrix.

3.2.4 Distortion Analysis

In this thesis, distortion is defined as any unsimilarity between the received voltage and the

expected voltage for a particular incident electric field. To carry out a finite dimensional

distortion analysis using signal subspaces one has to choose a subspace with sufficiently

large number of dimensions. The number of dimensions is selected so that signals with

a minimum risetime can be approximated by the basis functions expansion. When the

basis functions are set the following steps can be followed:

1- A reference sensor which ideally delivers the expected signal is selected. The reference

transformation matrix, R, is calculated. In many cases, it is desired to have the similar

waveforms in the received voltage and the incident field. This is the case for identity

linear transformation which corresponds to an N × N identity matrix, IN . There are

also cases where it is possible to find an inverse transformation for the reference system.

Applying the inverse transformation on the sensor linear transformation, one can compare

the results to the identity system. A common example is the Ḋ sensor. Rather than
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comparing the transformation matrix for a Ḋ sensor and an ideal differentiator, one can

calculate the transformation matrix for the integrated voltages and compare the obtained

matrix to the identity matrix.

2- In calculating the transformation matrix, the response of the sensor (or alternatively the

desired transformation of response of the sensor) to each basis vector should be normalized

to its norm as defined in (3.4). This is also the case for calculating the transformation

matrix for the ideal sensor. This is the approach in [7] to focus on the shape of the signals

only and not on the sensitivity of the sensors.

3- The actual and reference transformation matrices are being compared. A more detailed

comparison scheme is presented in the next chapter. The main comparison tool would

be the norm of difference of the matrices. Frobenius norm or the HilbertSchmidt norm

is selected among other possible matrix norms [7], [20]. In [7], the distortion measure is

defined as,

ηN =
‖L−R‖F√

N
, (3.16)

where, sub-script F stands for Frobenius norm and R is the reference transformation

matrix. Ferobenius norm of an M ×N matrix such as A = [aij]1≤i≤M,1≤j≤N is calculated

as,

‖A‖F =

√√√√ N∑
j=1

M∑
i=1

a2ij. (3.17)
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If the reference matrix R is the identity matrix IN then the above equation is simplified

to,

ηN =

√
1 +

tr(LLH)− 2tr(L)

N
. (3.18)

In (3.18), tr(.) stands for trace of the matrix or the summation of diagonal elements. The

superscript H stands for transpose-conjugate operator. The proof of (3.18) is presented

in Appendix C. Because of normalization used in calculating the transformation matrices

,ηN varies between 0 to
√
2. The maximum value corresponds to the maximum difference

between the matrices and hence the maximum distortion. One can use the distortion

measure given in (3.16) to obtain the distortion characteristics for a subspace of incident

electric fields. This approach has the following advantages over the classical fidelity anal-

ysis:

1- The value of fidelity is dependent on the incident field waveform. When two or more

sensors are being compared one has to calculate the value of fidelity for all of the possible

incident field waveforms for all of the sensors [7].

2- Using proper basis sets, different rows and columns on the transformation matrix can

be interpreted differently in terms of bandwidth/risetime.

38



Chapter 3. Distortion Analysis Using Signal Subspaces3.3. Infinite Dimensional Analysis

3.2.5 Hermite-Gauss Functions as the Basis Vectors

Hermite-Gauss functions form a complete basis set for L2(
). Hermite-Gauss functions

are the result of a Gram-Schmidt2 procedure on Gaussian functions [21], [22]. They have

many interesting properties which are discussed in Appendix D in more details. The

following properties make Hermite-Gauss functions attractive for being used as the basis

set in finite-dimensional analysis:

1- Hermite-Gauss functions of orders zero to N-1 form an N dimensional basis set for a

subspace of L2(
) which has a specific bandwidth. The relation of the order of Hermite-

Gauss functions to the bandwidth will be given in the next chapter.

2- Hermite-Gauss functions are the eigenfunctions of the Fourier transform [23]. This

means that their Fourier transform has the same form as the time-domain signal [24].

This makes it possible to calculate the transformation matrix from data collected in one

set of measurement as it will be shown in Chapter 5.

Interpretation of the transformation matrix when Hermite-Gauss functions are used is

described in Chapter 4.

3.3 Infinite Dimensional Analysis

In this approach, the sensor is assumed to be a linear operator which maps an infinite-

dimensional domain vector space space to an infinite dimensional range vector space [25].

2Is employed to obtain orthogonal functions from a set of non-orthogonal functions.
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A infinite dimensional vector space is defined similar to a finite dimensional vector space.

In addition, the following properties hold [25]:

1- The basis set has infinite number of vectors. In other words, it is denumerable.3

2- The linear decomposition for every arbitrary signal has the form of (3.5) and is an

infinite series expansion.

3- The vector representation for the functions in an infinite-dimensional vector space

would be a column matrix with infinite number of rows. The entries are decomposition

coefficient just as in (3.6).

4- The transformation matrix would have the same definition as the it has in an N-

dimensional vector space. The matrix is not bounded.

L2(
) is an infinite-dimensional vector space, however vector norms are all bounded due

to the definition for norm of a vector in (3.4) and the definition of L2(
) which is the set

of quadratically integrable functions.

3.3.1 Distortion Analysis Using Laguerre Functions

Unlike finite-dimensional analysis, a norm of distance measure as in (3.16) is not practical

to calculate for a transformation matrix with infinite numbers of rows and columns, in

the general case. However,r it is possible to choose a set of basis functions which their

associated transformation matrix has a predictable pattern. Interestingly, this is the case

when Laguerre polynomials are used. In the next chapter, it is shown how a distortion

3A denumerable set is a set which has infinite number of members but is countable.
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measure is extracted from a transformation matrix calculated using Laguerre functions.

Laguerre functions and their properties are discussed in Appendix E.
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Chapter 4

Interpretation of the Transformation

Matrix

As given in (3.16), the norm of the distance matrix is a measure of the distortion intro-

duced by the sensor when the analysis is performed in a finite-dimensional vector space.

In infinite-dimensional analysis the matrix norm should be calculated too. One should be

able to relate this distortion measures to different risetimes/bandwidths of the incident

field waveform. This spectral interpretation is completely dependent on the choice of the

basis set. In addition, the choice of basis set is crucially important in infinite-dimensional

analysis. A proper basis set should be selected in order to be able to calculate the norm

of an unbounded distance matrix.

In the first section of this chapter, interpretation of the transformation matrix is described

when Hermite-Gauss functions are used as the basis set. In the second section, distortion
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analysis in an infinite-dimensional vector space is described based on Laguerre functions.

Along with each analysis, simulated examples are provided.

4.1 Finite-Dimensional Analysis

In the finite-dimensional distortion analysis as described in section 3.2, a basis set with

finite number of basis vectors is chosen. The distortion analysis is performed for the

subspace of incident field waveforms which is spanned by the basis set. If the basis

vectors are Hermite-Gauss functions of orders 0 to N − 1 then the spanned subspace

contains waveform with risetimes bigger than a certain value. This is a consequence of

Hermite-Gauss functions properties in the time and frequency domain. Hermite-Gauss

functions and their properties are reviewed in Appendix D in detail. A summary is given

in the following section.

4.1.1 Hermite-Gauss Functions

Hermite-Gauss functions are the solution for Schrodinger equation [26]. The nth order

Hermite-Gauss function φn(t), is given by,

φn(t) =
1√

σn!2n
√
π
e
−(t/σ)2

2 Hn(
t

σ
), (4.1)

where, Hn(t) is the nth order Hermite polynomial [27], and σ is the scaling factor which

shrinks and expands the waveform. Different orders of Hermite-Gauss functions are shown
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Figure 4.1: Hermite-Gauss functions for different orders and σ = 1 in a) the time domain
and, b) the frequency domain.
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in Figs. 4.1a and 4.1b in the time and frequency domains, respectively.

Hermite-Gauss functions have many interesting properties including:

• Hermite-Gauss functions form a complete basis set for L2(
) [28].

• Hermite-Gauss functions are eigenfunctions of the Fourier transform [23]. In other

words, if Φn(j2πf) stands for the Fourier transform of the nth Hermite-Gauss func-

tion, φn(t), then we can write:

Φn(j2πf) =
1

2πσ
(−j)nφn(fσ). (4.2)

• Hermite-Gauss functions form an orthonormal basis set for frequency domain func-

tions with finite energies.

Proof:

If x(t) ∈ L2(
) and x(t) =
∑N−1

k=0 xkφk(t) then taking the Fourier transform of x(t),

yields,

X(f) =
N−1∑
k=0

(−j)k

2πσ
xkφk(f), (4.3)

where, Fourier transform of the basis functions are replaced from (4.2). The arbi-

trary frequency-domain function X(f), is a linear summation of mutually orthog-

onal φks. Therefore Hermite-Gauss functions form an orthonormal basis set for

frequency-domain functions as well.
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• Signals N-tupple representations are related in the time and frequency domains.

When an arbitrary function such as x(t) is expanded in terms of Hermite-Gauss

functions, it is associated with an N-tupple vector representation [x1, x2, ..., xN ]
t as

given in (3.6). The Fourier transform of the signal X(f) is also associated with an

N-tupple representation such as [x̂1, x̂2, ..., x̂N ]
t. The time and frequency domain

vector representations are related as,

x̂k =
(−j)k

2πσ
xk 1 ≤ k ≤ N. (4.4)

Applying the Fourier transform and its inverse on signals is then possible using

this property. This is particularly used when calculating the transformation matrix

using the measurement data.

• Hermite-Gauss signals have time durations which increases with the order.

Fig. 4.2a shows the time duration where the amplitude of the pulses falls to one

percent of the maximum value for different orders when a scaling factor of σ = 1 is

selected. As it is seen the time duration increases when the order of Hermite-Gauss

functions increases.

• Hermite-Gauss signals cover frequency ranges which increase with the order.

As Hermite-Gauss functions are eigenfunctions of the Fourier transform, they have

a similar shape in the time and frequency domains. The frequency range where the
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Figure 4.2: Variation of a) the time duration where time-domain Hermite-Gauss functions fall
to 1% of their maximum and, b) the frequency range where the magnitude of the
Fourier transform of Hermite-Gauss functions fall to 1% of their maximum , when
σ = 1 is selected.
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magnitude of Hermite-Gauss frequency domain functions falls to 1 percent of its

maximum value is shown in Fig. 4.2b. Similar to the graph in Fig. 4.2a, this graph

is calculated and plotted for a scaling factor of σ = 1. When N , or the number

of Hermite-Gauss functions is selected, one can find the proper scaling factor such

that the highest order covers the desired frequency range.

4.1.2 Selection of a Proper Scaling Factor

With an arbitrary scaling factor, Hermite-Gauss functions, form a complete basis set

for L2(
). However the choice of the scaling factor is important in order to be able to

approximate a time-domain function with a limited time duration and bandwidth1 with

a reasonable number of basis functions. If the scaling factor is too big, then a very large

number of basis functions will be needed to capture the variations. When the scaling

factor is too small, the time duration of the basis functions will be too small comparing

to the time duration of the signal. Therefore, a large number of basis functions will be

needed in order in order to reconstruct the signal from the coefficients.

If the time-domain signal x(t) has the time duration of τ and bandwidth BW , then the

N th basis function should cover the signal in both the time and frequency domains. Let’s

assume that Dτ (n) and DBW (n) are the functions plotted in Figs. 4.2a and b where n is

the order. For a scaling factor of σ the time duration and frequency range covered by the

1Precisely speaking, it is not possible to have a signal which covers limited ranges in the time and fre-
quency domains. However, by limited bandwidth we mean the range of frequencies which the magnitude
of the function Fourier transform falls to a percentage of its maximum value [29].
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nth basis function would be Dτ (n)σ and DBW (n)/σ, respectively. If the expansion has N

terms, then in order for the N th Hermite-Gauss function to cover the signal in the time

and frequency domains we should have,

τ ≤ Dτ (N − 1)σ, (4.5)

BW ≤ DBW (N − 1)

σ
. (4.6)

As Hermite-Gauss functions are related as (4.2) in the time and frequency domains, we

have,

Dτ (n) =
1

2π
DBW (n). (4.7)

Combining (4.5) to (4.7) yields,

1

2πDBW (N − 1)
≤ σ

τ
≤ DBW (N − 1)

BWτ
. (4.8)

The product τBW is called the time-bandwidth product of the signal, which is a different

value for every time-domain signal. It also varies according to the definitions used for the

time and frequency durations.

For a time-domain signal x(t) with the Fourier transform X(f), the time-domain variance

around the mean value α is given as [30],

σt =

√∫ ∞

−∞
(t− α) |x(t)|2 dt. (4.9)

49



Chapter 4. Interpretation of the Transformation Matrix4.1. Finite-Dimensional Analysis

A similar quantity is defined in the frequency domain as the frequency domain variance

around the mean value β as,

σf =

√∫ ∞

−∞
(f − β) |X(f)|2 df. (4.10)

Heisenberg uncertainty principle states that [30],

σtσf ≥ 1

4π
. (4.11)

If the time duration and the frequency range is defined so that they are greater than the

signal variances in the time and frequency domain or,

τ ≥ σt, (4.12)

BW ≥ σf , (4.13)

then, one can use (4.11) to conclude

1

2πDBW (N − 1)
≤ σ

τ
≤ 4πDBW (N − 1). (4.14)

Although the upper limit in (4.14) is higher than the upper limit in (4.8), but (4.14) can

be used as a rule of thumb to pick the proper value of the scaling factor σ.
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4.1.3 Distortion Analysis in a Certain Frequency Range

Fig. 4.1b shows magnitude of the Fourier transform of Hermite-Gauss functions. From

the figure it is observed that:

1- Hermite-Gauss functions are base-band signals.

2- Every order covers the frequency range which is shown in Fig. 4.1b.

For a distortion analysis in an N-dimensional subspace spanned by Hermite-Gauss func-

tions VN , one should first select a proper value for the scaling factor using Fig. 4.1b

which gives the desired bandwidth for the maximum number of dimensions N . N should

have been chosen beforehand for a reasonable resolution. The transformation matrix is

calculated as given in (3.13) to (3.15). With a selected scaling factor σ, the ith column

of the transformation matrix means how the sensor performs when the incident electric

field has the frequency contents of the ith order Hermite-Gauss function. If the transfor-

mation matrix is L = [lij]1≤i,j≤N , then M ×M diagonal block sub-matrices of L such as

LM = [mij]1≤i,j≤M and,

m11 = lkk 1 ≤ k ≤ N, (4.15)

describe the sensor performance in an M × M subspaces of VN when the incident field

has the frequency content of BWE, where,

BWk ≤ BWE ≤ BWk+M . (4.16)
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BWk and BWk+M are frequency ranges covered by the kth and (k+M)th Hermite-Gauss

functions.2 Recognizable diagonal block sub-matrices with the condition of (4.15), can

be extracted from the transformation matrix. These sub-matrices should be compared to

proper reference matrices. The following examples illustrate the method more clearly.

4.1.4 Examples

In this section, the transformation matrix for an ideal differentiator, a lowpass, a bandpass,

and a highpass filter are calculated. The transformation matrices are illustrated as two-

dimensional graphs. The norm of the distance matrices are also calculated as a measure

of distortion.

An Ideal Differentiator

The associated transformation matrix of an ideal differentiator is given by,

TD(x(t)) =
dx(t)

dt
, (4.17)

where x(t) is a real function in L2(
) spanned by Hermite-Gauss functions as,

x(t) =
N−1∑
k=0

xkφk(t). (4.18)

2It is assumed that 1 ≤ k ≤ N −M .
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In Appendix D it is proven that,

dφn(t)

dt
=

√
n

2σ2
φn−1(t)−

√
n+ 1

2σ2
φn+1(t) n ≥ 1. (4.19)

For φ0(t) we have,

dφ0(t)

dt
= −

√
1

2σ2
φ1(t). (4.20)

Therefore the transformation matrix for an ideal differentiator is a matrix with diago-

nal elements equal to zero. On the nth column, the elements immediately above and

below of the diagonal element will have values of
√

n
2σ2 and −

√
n+1
2σ2 , respectively. The

transformation matrix calculated for the ideal differentiator is shown in Fig. 4.3a. The

transformation when every column is normalized, is shown in Fig. 4.3b. A scaling factor

of σ = 2 ns is used for calculating the matrices.

Lowpass, Bandpass, and Highpass Filter

Transformation matrices are calculated for a lowpass filter and a highpass filter with cut-

off frequencies of 500 MHz along with a bandpass filter with a passband of 400MHz ≤

f ≤ 600MHz. The scaling factor is σ = 2 ns which corresponds to a 1-GHz bandwidth

for the order of 60 in Hermite-Gauss functions as shown in Fig. 4.2b. The transforma-

tion matrices are shown in Figs. 4.4-4.6 for the lowpass, highpass, and bandpass filters,

respectively. Lowpass filter transformation matrix is diagonal up to the 20th row and

column which is corresponding to 500 MHz bandwidth for Hermite-Gauss functions with
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Figure 4.3: Transformation matrices calculated for an ideal differentiator with σ = 2ns for a)
normalized outputs, b) unnormalized outputs.
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Figure 4.4: Transformation matrix calculated for a lowpass filter with a cut off frequency of
500 MHz using σ = 2 ns.

σ = 2ns. The elements on the 30 × 30 sub-matrix starting at the 20th diagonal element

tend to vanish. An opposite behavior is recognized in the highpass filter transformation

matrix in Fig. 4.5 as the upper 20 × 20 sub-matrix is nearly zero and the matrix tends

to be more diagonal in the last rows and columns. Finally, the elements on the band-

pass filter transformation matrix shown in Fig. 4.6 are negligible before the 20th row and

column and after the 30th row and column which matches the filter pass band.

Comparing Lowpass filters with different cut-off frequencies

A lowpass filter with a nearly flat frequency response can be viewed as an identity system

in its passband but distorts the signals which have frequencies higher than its cut-off

frequency. Therefore a lowpass filter transformation matrix should be compared with an
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Figure 4.5: Transformation matrix calculated for a highpass filter with a cut off frequency of
500 MHz using σ = 2 ns.
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identity matrix. Fig. 4.7 shows the norm of the distance matrix ηN , calculated for the

different cutoff frequencies. The norm of the distance matrix is calculated using (3.18)

using a scaling factor of σ = 2 ns when a 51-dimensional subspace is selected. The filters

all have 1 dB ripple in the pass band and the minimum loss in the stop band is set

to be 80 dB. For a value of σ, depending on the number of dimensions, the calculated

transformation matrix covers different frequency ranges, therefore the calculated ηN would

be different. Calculated matrix norms are shown in Fig. 4.7 with respect to the filter

cut-off frequency for three choice of N =10, 30, and 51, which cover frequency ranges up

to 250, 600, and 1000 MHz, respectively. This figure shows how the distortion decreases

as the cut-off frequency increases. It also demonstrates selecting a higher N increases the

frequency scope of the analysis and yields larger values for ηN . A smaller number of N

would mean that the distortion analysis is valid for a smaller subspace of input signals.

4.2 Infinite-dimensional Analysis

When the incident field subspace has infinite number of dimensions, infinite number of

basis functions would be needed to approximate any waveform in the subspace. This

means that vector representations have infinite number of elements. For the sensor under

study, the transformation matrix is still calculated using (3.13) and (3.15) but is un-

bounded. Calculating the Frobenius norm of an unbounded matrix in the general case is

not practical. However, if the matrix follows a certain pattern, it is possible to compare
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Figure 4.7: Variation of the calculated ηN for three different values of N using σ = 2 ns, for
lowpass filters with respect to the lowpass filter cut-off frequency .

the transformation matrix with a reference transformation matrix. In this chapter, it is

shown how Laguerre functions are used to form the transformation matrix. The unique

property of Laguerre functions in preserving convolution is used to calculate the norm of

an unbounded matrix. Using the approach that is described later, one can find a struc-

tural measure of distortion related to the sensor impulse response which is calculable in

analytically. The link between the distortion measure obtained from this analysis and

the frequency content or risetime of the incident field is presented as well. Finally, an

example describes the method more clearly.
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4.2.1 Laguerre Functions

Laguerre functions are defined as [31],

lpn(t) = (−1)n
√

2pLn(2pt)e
−pt t ≥ 0, (4.21)

where, p is a parameter controlling the function duration in the time domain so that 1/p

is the function scaling factor. Ln(t) is the nth order Laguerre polynomial given by [32],

Ln(x) =
n∑

k=0

⎛
⎜⎝ k

n

⎞
⎟⎠ (−x)k

k!
n = 0, 1, 2, .... (4.22)

Fig. 4.8 shows Laguerre functions for different orders assuming p = 1. Laguerre functions

have many interesting properties including:

• The set of B = {lpn(t)}n=0,1,2,... forms a complete orthonormal set for L2([0,∞))3

[33]. Orthonormality means,

∫ ∞

0

lpn(t)l
p
m(t)dt = δn,m, (4.23)

where δn,m is the Kronecker delta function which has the value of 1 only if n = m,

otherwise it is zero.

3L2([0,∞)) is the set of all real causal quadratically integrable functions.
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Figure 4.8: Different orders of Laguerre functions for p=1.

• The time duration in which Laguerre functions fall to one percent of their maximum

approximately varies linearly with the order of functions. Fig. 4.9 shows the time

duration calculated for p = 1.

• The Laplace transform of the nth order Laguerre function is [24], [31],

l̂pn(s) =
√

2p
(p− s)n

(p+ s)n+1
s ∈ C, s �= −p. (4.24)

Therefore the Fourier transform of lpn(t) shown as Lp
n(jω) is given by,

Lp
n(jω) =

√
2p

e−j(2n+1)tan−1(ω
p
)√

ω2 + p2
. (4.25)

From (4.25) it is observed that the magnitude of the Fourier transform of Laguerre
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functions is the same for any order of the function. This means that frequency

contents of all the basis functions are the same. The frequency which the magnitude

of Lp
n(jω) falls to 10 percent of its maximum value is calculated using,

f10% = 1.59p. (4.26)

Fig. 4.9b shows the magnitude of Lp
n(jω) for p = 1. Laguerre functions can be

assumed as baseband signals with a 10 dB frequency range of f10%.

• Convolution of Laguerre functions is written as a summation of Laguerre functions

[31],

lpn(t) ∗ lpm(t) =
1√
2p

[
lpn+m(t) + lpn+m+1(t)

]
. (4.27)

This is an extremely significant property which makes it possible to simplify the

transformation matrix in terms of the sensor impulse response. The idea is described

in more details in the next section.

4.2.2 Transformation Matrix Calculated in Laguerre Subspace

When the basis set is selected to be a set of Laguerre functions of different orders

{lpn(t)}n=0,1,2 as given in (4.21), the transformation matrix has a certain pattern. Simi-

lar to the finite-dimensional analysis (3.15), the unbounded transformation matrix L =

61



Chapter 4. Interpretation of the Transformation Matrix4.2. Infinite-dimensional Analysis

0 10 20 30 40 50 60 70

20

40

60

80

100

120

140

Order

T
im

e
 d

u
ra

ti
o

n
 [

s
]

(a)

0 1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency [Hz]

|L
1 n
(j

ω)
|

(b)
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with respect to the order and, b) magnitude of the Fourier transform of Laguerre
functions with respect to the frequency.
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[lij]i,j=1,2,..., is calculated in a Laguerre subspace using,

lij =
〈
h(t) ∗ lp(j−1)(t), l

p
(i−1)(t)

〉
i, j ≥ 1, (4.28)

where h is the system impulse response. In case of an electric field sensor, it is the

component of sensor effective height as defined in (2.26) which is parallel to the incident

field. Since the effective height h(t) is a causal time-domain signal with finite energy it

can be expressed in terms of the basis functions as,

h(t) =
∞∑
k=0

hkl
p
k(t). (4.29)

Substituting (4.29) in (4.28) and exchanging the summation and the inner product results

in,

lij =
∞∑
k=0

hk

〈
lpk(t) ∗ lp(j−1)(t), l

p
(i−1)(t)

〉
i, j ≥ 1, k ≥ 0. (4.30)

Using Laguerre convolution property given in (4.27), (4.30) can be written as,

lij =
1√
2p

∞∑
k=0

hk

〈
lpk+j−1(t), l

p
(i−1)(t)

〉
+

1√
2p

∞∑
k′=0

hk′
〈
lpk′+j(t), l

p
(i−1)(t)

〉
. (4.31)

Due to orthogonality of Laguerre function (4.23), (4.31) is simplified to,

lij =
1√
2p

∞∑
k=0

hkδk+j−1,i−1 +
1√
2p

∞∑
k′=0

hk′δk′+j,i−1. (4.32)
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To avoid zero values for delta function in (4.32),

k = i− j, (4.33)

k′ = i− j − 1. (4.34)

Considering k, k′ ≥ 0, we can write (4.32) in a more compact form as,

lij =
1√
2p

(hi−ju(i− j) + ji−j−1u(i− j − 1)), (4.35)

where u(.) is a unit step function which is zero for negative arguments and is equal to one

for arguments greater than or equal zero. The following properties result from (4.35):

• The diagonal elements are all equal to each other and have the value of 1√
2p
h0.

• For i < j both u(i− j) and u(i− j − 1) vanish. In other words the elements above

the matrix diagonal are all zero.

• The first column L1 has the form of,

L1 = [h0, h0 + h1, h1 + h2, ..., hi + hi+1, ...]
t . (4.36)

• Careful consideration of (4.35) reveals that different columns in the transformation

matrix are shifted version of the first column. Precisely speaking, the jth column
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Figure 4.10: Transformation matrix for a sensor associated with the impulse response h(t)
expanded as h(t) =

∑∞
k=0 hkl

p
k(t), using Laguerre functions.

can be written as,

Lj = [0, 0, ..., 0︸ ︷︷ ︸
j

, h0, h0 + h1, h1 + h2, ..., hi + hi+1, ...]
t. (4.37)

An illustration of the transformation matrix in a Laguerre subspace is shown in Fig.

4.10. As Fig. 4.10 shows, to determine the senor transformation matrix, it is sufficient

to calculate only the first column. The observed pattern also helps to derive a distortion

measure for the unbounded matrix.

4.2.3 Distortion Analysis in Laguerre Subspace

Calculating Ferobenius norm for an unbounded matrix is not practical in the general case.

However, if a pattern in the transformation matrix exists it is possible to compare it to a

reference matrix. Suppose that the sensor is associated with the impulse response heff (t)

and the reference sensor impulse response is shown as href (t). Now if h−1
ref is inverse of
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the reference sensor impulse response, then instead of comparing heff to href , one can

compare h = h−1
ref ∗heff to the identity system. However for reference systems which have

no zeros in the frequency domain it is not a place of question. Assume that Href (f) is

the Fourier transform of href . If for all frequencies Href (f) �= 0, then 1
Href (f)

exists and

the inverse of the reference system is given by,

h−1
ref = F−1[

1

Href (f)
], (4.38)

where F−1[.] is the inverse of Fourier transform. The transformation matrix associated

with h = h−1
ref ∗ heff has the elements as calculated in (4.35) and shown in Fig. 4.10. As

concluded before, only the first column of the transformation matrix would be enough

to determine the rest of the matrix. As mentioned before the reference transformation

matrix is the unbounded identity matrix shown as I∞. I∞ has zero elements everywhere

except on the diagonal where all the diagonal elements are equal to 1. Considering the

pattern in the transformation matrix, the distance between a transformation matrix L

and the unbounded identity matrix I∞ = [ikk′ ] is given as,

η∞ = limN→∞

√∑∞
k=0

∑∞
k′=0 (lkk′ − ikk′)

2

N
, (4.39)
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where, lkk′ is the element on the kth row and k′th column of L. Now substituting lkk′ from

Fig. 4.10 results in,

η∞ = limN→∞

√
N((h0 − 1)2 +

∑∞
k=1(hk + hk−1)2)

N
(4.40)

=

√√√√(h0 − 1)2 +
∞∑
k=1

(hk + hk−1)2) (4.41)

If each of the columns of L is normalized to its norm, η∞ varies between 0 and
√
2.

4.2.4 Selection of a Proper Scaling Factor

In [24] a hybrid algorithm is provided to find the number of basis functions and the

scaling factor simultaneously. Here, a similar procedure to what is presented in section

4.1.2 is perused to obtain a safe range for p. If fT (n) shows the time duration in which

Laguerre function of order n falls to one percent of the maximum value shown in Fig.

4.9a, one-dimensional polynomial fitting results in,

fT (n) = 1.92n+ 2.64. (4.42)

If τ and BW show the time and frequency content of the signal approximated with N

basis functions we should have,

τ ≤ fT (N)

p
(4.43)

BW ≤ f10%, (4.44)

67



Chapter 4. Interpretation of the Transformation Matrix4.2. Infinite-dimensional Analysis

where f10% is given by (4.26). Comparing (4.43), (4.44), (4.42), and (4.26) results in,

BW

1.59
≤ p ≤ 1.92N + 2.64

τ
. (4.45)

Using (4.12) we have,

0.05 ≤ pτ ≤ (1.92N + 2.64). (4.46)

4.2.5 Distortion Analysis in a Certain Frequency Range

Fig. 4.9b shows that for a given p the frequency content of all of the basis functions

would be the same. Using η∞ calculated for a given p, one can compare the distortion

level for different sensors. Using other values for p yields different values for η∞. As given

in (4.26), larger values of p correspond to a higher 10 dB frequency range in Laguerre

basis functions. Therefore, higher values of p, result in η∞s which describe the distortion

characteristics in a higher frequency range. One way to relate calculated η∞ to a frequency

range, is to use the 10 dB frequency range of the used Laguerre functions. This is a result

of inequality (4.44). Although this criteria is not exact, it gives an approximation of the

frequency range which calculated distortion characteristics can be used in.

4.2.6 Example

As an example, η∞ is calculated for low pass filters with different cut-off frequencies. In

addition, different values of Laguerre 10 dB frequency ranges are used to calculate the

68



Chapter 4. Interpretation of the Transformation Matrix4.2. Infinite-dimensional Analysis

2 2.5 3 3.5 4 4.5 5
0.18

0.2

0.22

0.24

0.26

0.28

Cut−off frequency [GHz]

η ∞

p=1.26GHz

p=1.89GHz

p=2.51GHz

p=3.14GHz

Figure 4.11: Different values obtained for η∞ for lowpass filters with different cut-off frequen-
cies when different values of p is used.

distortion measure η∞ for the filters. The results are shown in Fig. 4.11. For a fixed

value of p, as the cut-off frequency increases the value of η∞ decreases. However, for

a fixed cut-off frequency, η∞ has a smaller value when smaller value of Laguerre 10 dB

frequency range is used. This means that with increasing the value of p, the frequency

range in which the distortion analysis is performed, is wider and therefore distortion level

increases for a lowpass filter.
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Chapter 5

Simulation and Measurement

Results

The electric field sensors studied in this thesis consist of wire monopoles of 5, 10, and 15

cm, a 3×3 cm parallel plate sensor with a 2 mm air dielectric, and a 5 cm high Asymptotic

Conical Dipole (ACD) [34], [35]. Pictures of the parallel plate, the ACD, and the wire

monopole are shown in Figs. 5.1-5.3. The parallel plate and monopole antennas were

made at the University but the ACD is a commercial sensor made by Prodyn (Model AD-

S30). Wire monopoles with different lengths are used in order to take sensor sensitivities

into the account. Using a time-domain simulation, distortion characteristics described

in Chapter 3 and 4 are calculated for the sensors. In addition, a method to derive the

distortion characteristic from one set of measurement is described.
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Figure 5.1: Photo of the 3 × 3 cm parallel plate sensor with 2 mm air dielectric, used in the
experiments and modeled in the simulation.

Figure 5.2: Photo of the 5 cm heigh AD-S30 ACD manufactured by Prodyn, uses in the ex-
periments and modeled in the simulations.
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Figure 5.3: Photo of the wire monopole used in the experiments and modeled in the simulations.

5.1 Simulation Method

The time-domain simulation is performed by modeling the sensors as wire structures. The

wire monopoles modeling is straightforward. The ACD is modeled piece-wise linearly as

shown in Fig. 5.4. The electric current of each wire segment is calculated by solving an

Electric Field Integral Equation (EFIE) using the Method of Moments (MoM) [36]. For

a selected time step of Δt, the length of each segment Δl should be selected so that,

Δl ≤ cΔt, (5.1)

where, c is the speed of light in the surrounding medium. All of the sensors are assumed

to be terminated at 50 Ω loads. As shown in Fig. 5.4, the sensor is oriented such that

its polarization vector is in line with the incident electric field. Fig. 5.4 also shows the
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Figure 5.4: ACD wire model used in the time-domain simulations and the electromagnetic
field. The sensor is terminated at a 50 Ω load. An EFEI is solved using M0M to
determine the voltage at the terminal of the senor.

procedure to calculate the transformation matrix. To calculate the element on the ith

row and the jth column of the transformation matrix, lij, the waveform of the incident

electric field has to vary as the jth basis function. The received voltage is then projected

on the selected basis functions to yield the jth column. The transformation matrices used

in both finite and infinite dimensional techniques described in Chapter 4 are calculated as

described. The only difference is that using Laguerre functions, one only has to simulate

the received voltage for only one of the basis functions as every column of the transfor-

mation matrix is a shifted version of the first one. This property significantly reduced the

computation time.
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5.2 Finite-Dimensional Analysis

Hermite-Gauss functions are used to perform a finite-dimensional distortion analysis.

As discussed earlier in Chapter 4, the value of the scaling factor σ in (4.1) determines

the frequency range in which the distortion analysis is performed. Here, two scaling

factors of 2 ns and 4 ns have been selected which are corresponding to one percent

frequency ranges of 1 GHz and 500 MHz for the highest order of 60 in Hermite-Gauss

functions. For every sensor, the simulation is repeated 61 times in order to obtain a

61×61 transformation matrix, for a maximum Hermite-Gauss function order of 60. These

particular types of senors are ideally expected to deliver the derivative of the incident

electric field at their terminals. However, it is always worth investigating if the sensors

perform as an identity systems. Therefore the transformation matrices are calculated for

both the received voltages and their integrals. Figs. 5.5-5.9 show the transformation

matrices for every sensor calculated for the voltages and their integrals for Hermite-

Gauss functions with a scaling factor of σ = 2 ns. Fig. 5.10 to Fig. 5.14 illustrate

the transformation matrices when σ = 4 ns is selected. To have a better graphical

interpretation the absolute value of the transformation matrices are shown.

5.2.1 Interpretation of the Results

In all of the transformation matrices calculated for σ = 2 ns, shown in Figs. 5.5-5.9, two

distinct regions are recognizable. This will be discussed for each of the sensors individually.
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Figure 5.5: Transformation matrices calculated for the ACD using σ = 2 ns for a) the received
voltage and, b) the integral of received voltage.
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Figure 5.6: Transformation matrices calculated for the 15 cm monopole using σ = 2 ns for a)
the received voltage and, b) the integral of received voltage.
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Figure 5.7: Transformation matrices calculated for the 10 cm monopole using σ = 2 ns for a)
the received voltage and, b) the integral of received voltage.
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Figure 5.8: Transformation matrices calculated for the 5 cm monopole using σ = 2 ns for a)
the received voltage and, b) the integral of received voltage.
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Figure 5.9: Transformation matrices calculated for the 3 × 3cm parallel plate with 2 mm air
dielectric, using σ = 2 ns for a) the received voltage and, b) the integral of received
voltage.
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Figure 5.10: Transformation matrices calculated for the ACD using σ = 4 ns for a) the received
voltage and, b) the integral of received voltage.
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Figure 5.11: Transformation matrices calculated for the 15 cm monopole using σ = 4 ns for
a) the received voltage and, b) the integral of received voltage.
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Figure 5.12: Transformation matrices calculated for the 10 cm monopole using σ = 4 ns for
a) the received voltage and, b) the integral of received voltage.
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Figure 5.13: Transformation matrices calculated for the 5 cm monopole using σ = 4 ns for a)
the received voltage and, b) the integral of received voltage.
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Figure 5.14: Transformation matrices calculated for the 3× 3cm parallel plate with 2 mm air
filling, using σ = 4 ns for a) the received voltage and, b) the integral of received
voltage.
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• The ACD

As shown in Fig. 5.5a, the transformation matrix shows a differentiator behavior similar

to Fig. 4.3, up to the 11th row and column. This is confirmed by the transformation

matrix calculated for the integrated voltages as a diagonal matrix is observed for the

upper 11 × 11 sub-matrix in Fig. 5.5b. Therefore the ACD delivers a derivative version

of the incident electric field at its terminals up to 500 MHz which is the corresponding

bandwidth for the maximum order of 11 and σ = 2 ns, as shown in Fig. 4.2b. The ACD

transformation matrix tends to be diagonal in 5.5a for the rows and columns greater than

11. This means that for higher frequencies up to 1 GHz, the ACD receives an electrical

voltage which is more similar to the incident electric field itself.

• 15 cm monopole

The differentiative behavior is observed for the upper 4 × 4 sub-matrix in Fig. 5.6. For

higher frequencies up to 1 GHz no diagonal pattern is observed in Fig. 5.6a. Therefore,

the 15 cm monopole acts like a differentiator at low frequencies up to 365 MHz. At higher

frequencies the monopole distorts the signal.

• 10 cm monopole

A similar behavior to the ACD’s is observed in the 10 cm wire monopole. The differen-

tiator behavior exists for frequencies lower than 500 MHz in Fig. 5.7. The only difference
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with the ACD is that the monopole antenna transformation matrix does not show a di-

agonal behavior for higher frequencies. Therefore, it can be concluded that the ACD has

a better distortion performance in the higher frequencies compared to the 10 cm monopole.

• 5 cm monopole

As Fig. 5.8a shows a differentiator behavior up to the 40th row and column which corre-

sponds to a frequency range of 800 MHz. The 5 cm monopole delivers a derivative of the

incident electric field at its terminal for frequencies up to 800 MHz.

• The parallel plate

The 3 × 3 cm parallel plate with 2 mm air dielectric acts as an differentiator up to 1

GHz. Fig. 5.9 has a similar pattern to what obtained in the case of an ideal differentiator

transformation matrix in Fig. 4.3.

Table 5.1 summarizes calculated ηN defined in (3.18), for N = 61 when the reference

matrix is selected to be the 61×61 identity matrix, I61. The numbers show that the ACD

has the least distortion compared to an identity system. The distortion increases for the

parallel plate, the 10 cm monopole, the 5 cm monopole and the 15 cm monopole. Table

5.2 summarizes the calculated ηN for N = 61 for the transformation matrices calculated

for the integrated voltages and compared to I61. As differentiators, the least to the most

distortive sensors are the parallel plate, the 5 cm monopole, the ACD, the 10 cm monopole,
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and the 15 cm monopole. To see how the sensors perform in lower frequencies in more

Table 5.1: Calculated ηN for simulated voltages (σ = 2ns), for N = 60 which corresponds to a
maximum frequency rang of 1 GHz. The ACD has the least distortion as an identity
system.

Sensor Type η61
ACD 0.8254

10 cm monopole 1.0152

Parallel plate 1.0710

5 cm monopole 1.0760

15 cm monopole 1.1647

Table 5.2: Calculated ηN for the integral of simulated voltages (σ = 2ns), for N = 61 which
is corresponding to a maximum frequency of 1 GHz. The parallel plate and 5 cm
monopole have the least distortion introduced as a differentiator.

Sensor Type η61
Parallel plate 0.6316

5 cm monopole 0.7938

ACD 1.2039

10 cm monopole 1.2709

15 cm monopole 1.3612

details, the transformation matrices are calculated using σ=4 ns. The transformation

matrices are shown in Figs. 5.10-5.14. σ = 4ns corresponds to a one percent frequency

range of 500 MHz for the highest order Hermite-Gauss functions is selected to be 60. A

similar behavior is observed in the transformation matrices illustrated in Figs. 5.10-5.14.

The transformation matrices calculated for the integrated voltages tend to be diagonal

for the ACD, 5 and 10 cm monopole, and the parallel plate. The transformation matrix

for the 15 cm monopole is diagonal up to the 37th row and column which corresponds to

frequencies lower than 360 MHz. The calculated ηN are summarized in Table 5.3 when

ηN shows the distance between the transformation matrices calculated for the integral of
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voltages and IN for N = 61.

Table 5.3: Calculated ηN for the integral of simulated voltages (σ = 4ns).

Sensor Type η61
Parallel plate 0.0783

5 cm monopole 0.0328

ACD 0.2915

10 cm monopole .1259

15 cm monopole 0.3539

5.2.2 Sensitivity Analysis

It is not practical to compare the distortion level without considering the sensitivities

of the sensors. As the smaller antennas distortion levels are very small but so is their

sensitivity. To give an idea of how the sensitivity should be involved, let’s assume that an

evaluation of distortion characterization of the ACD is desired. To find the proper sensor

to compare with the ACD, the sensors received voltages are plotted in Fig. 5.15 when

the incident electric field has a Gaussian waveform with a 10 dB frequency range of 1

GHz. Comparing the voltages show that the ACD and the 10 cm have close sensitivities

as their maximum received voltages have a ratio of 1.2. Table 5.4 shows η11 calculated

for both the the upper 11× 11 sub-matrices of the transformation matrices shown in Fig.

5.5b and 5.7b when the reference matrix is selected as I11. Table 5.5 summarizes the

ηN of the lower 50 × 50 sub-matrices shown in Fig. 5.5a and 5.7a when the reference

matrix is selected to be I50. Table 5.4 shows that both sensors have similar distortion
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Figure 5.15: Received voltages when the incident electric field has a Gaussian waveform with
1 GHz bandwidth.

level for frequencies lower than 500 MHz while Table 5.5 shows that the ACD has a better

distortion characteristic for frequencies higher than 500 MHz and up to 1 GHz.

Table 5.4: Calculated ηN for the integral of simulated voltages (σ = 2 ns).

Sensor Type η11
10 cm monopole 0.5330

ACD 0.5540

Table 5.5: Calculated ηN for the the simulated voltages (σ = 2ns)

Sensor Type η50
10 cm monopole .9733

ACD .7646
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5.2.3 Calculating the Transformation Matrix Using Measure-

ment Data

The following challenges exist in calculating the transformation matrix using the measured

voltages:

• Unlike the simulation, in measurement it is not feasible to generate electromagnetic

waves which vary as Hermite-Gauss functions with time. This problem is accen-

tuated particularly when it is needed to calculated the transformation matrix for

various values of σ.

• To calculate an N ×N transformation matrix, the simulation should be repeated N

times. In both the simulation and the measurement this procedure is time consuming

for large values of N .

• Unlike the simulation, the incident electric field is not known. A method of deter-

mining the electric field should be performed first.

In this section, we describe a methodology for obtaining the transformation matrix using

only one set of time-domain measurement. Let’s assume vrec(t) represents sensor measured

voltage when the incident electric field is einc(t). We can write,

vrec(t) =
N−1∑
n=0

vnφn(t), (5.2)

einc(t) =
N−1∑
n=0

enφn(t), (5.3)
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where, φn(t) is the nth order Hermite-Gauss function. Using the property of Hermite-

Gauss functions given in (4.2), we can take the Fourier transform of (5.2) and (5.3) as,

Vrec(ω) =
N−1∑
n=0

vn(−j)nφn(ω), (5.4)

Einc(ω) =
N−1∑
n=0

en(−j)nφn(ω). (5.5)

If the sensor transfer function in denoted byH(ω), using (5.4) and (5.5) it can be expressed

as,

H(ω) =

∑N−1
n=0 vn(−j)nφn(ω)∑N−1
n=0 en(−j)nφn(ω)

. (5.6)

As shown in (3.13)-(3.15), to calculate the ik element, lik, the received voltage vkrec should

be known when the incident electric field is φk(t). The Fourier transform of vkrec(t), V
k
rec(ω),

is calculated as,

V k
rec(ω) = H(ω) · F [φk(t)]. (5.7)

Using (4.4), V k
rec(ω) also has the vector representation of V̄ k

rec given by,

V̄ k
rec =

[
vk0 , (−j)vk1 , ..., (−j)N−1vkN−1

]t
. (5.8)

The frequency-domain vector representation of the sensor received voltage V̄ k
rec is related

to its corresponding time-domain vector v̄krec as

v̄krec =
[
vk0 , v

k
1 , ..., v

k
N−1

]t
. (5.9)
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If the vector v̄krec is normalized to its energy norm, it forms the kth column of the transfor-

mation matrix. In using this method, a proper σ should be selected so that (5.3) and (5.2)

are reasonable approximations of the incident field and the received voltage, respectively.

The inequality derived in (4.14) can be used to find a proper scaling factor.

Measurement Setup

A schematic of the measurement setup is shown in Fig. 5.16. The sensors are placed inside

the GTEM cell.1 A Picosecond Pulse Labs 1000A voltage generator2 is used to generate

the electromagnetic impulse. The impulse generator is connected to the GTEM cell apex.

The received voltage at the terminal of the sensor is recorded using a Tektronix R© TDS

8200 Digital Sampling Oscilloscope (DSO). The input impedance of the DSO is also 50 Ω.

The DSO is triggered by the voltage generator. The voltage impulse directly measured

by the DSO is shown in Fig. 5.17. The electric field sensors were tested separately and

the voltages received at the terminal of the DSO are plotted in Fig. 5.18. To find the

electric field waveform to be used in (5.3), a test sensor with a known effective height is

used. Suppose that the test senor is the parallel plate sensor. For a parallel plate sensor

with an electrically small height, the effective height can be approximated using the fact

1A GTEM cell is a suitable test environment for electrically small devices without interference from the
ambient electromagnetic field. It has the shape of a triangular pyramid. The TEM field forms between
the bottom edge and a middle plate. The middle plate distance from the bottom edge increases as shown
in Fig. 5.16. The middle plate is terminated to a 50 Ω load. To prevent reflections from the edge in front
of the apex, absorbers are installed on the frontier.

2The voltage generator is capable of generating a pulse with maximum amplitude of 45 V and a 370
ps risetime.
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Figure 5.16: The measurement setup, including a GTEM cell as the test environment, the
impulse generator and the DSO.
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Figure 5.17: The voltage generator time-domain pulse directly measured by the DSO.
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Figure 5.18: Time-domain measured voltages at the terminals of the sensors when located
inside the GTEM cell.

that the electric field is distributed uniformly between the plates, so that,

vopen(t) = e
inc
(t)h, (5.10)

where h is the height of the parallel plate sensor and vopen(t) is the received open circuit

voltage when the incident electric field is e
inc
. If the sensor is connected to a 50 Ω load,

the received voltage in (5.2) can be calculated using the circuit model shown in Fig. 5.19.

For a parallel plate with a height of h and an area of the plates of A, the capacitance C

is calculated using,

C = ε
A

h
. (5.11)

For the 3× 3 cm parallel plate with a 2 mm air dielectric the capacitance is 4 pF. Using
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Figure 5.19: The circuit model for the parallel plate sensor with capacitance of C and height
h.

the circuit model in Fig. 5.19, in the frequency domain we have,

Vrec(ω) =
50jωCh

50jωC + 1
Einc(ω). (5.12)

Using (5.12), the Fourier transform of the incident field Einc(ω) is determined. Taking the

inverse Fourier transform of (5.12), we find the time-domain electric field. The incident

electric field calculated using the parallel plate sensor is plotted in Fig. 5.20. It is

noticeable that the GTEM cell has added reflections to the impulse generator voltage

shown in Fig. 5.17. The transformation matrices calculated using the measured voltages

shown in Fig. 5.18 and the electric field shown in Fig. 5.20 are shown in Figs. 5.21 to

5.24. The scaling factor is set to be 2 ns. This value satisfies the requirement given in

(4.14) properly. Comparing Figs. 5.21 to 5.5a, 5.22 to 5.6a, 5.23 to 5.7a, and 5.24 to 5.8a,

shows a close agreement between the simulation results and the measurement. Table 5.6
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Figure 5.20: Measured time-domain electric field in the GTEM cell at the location of the sen-
sors, using the parallel plate sensor.

summarizes η61 calculated for the mentioned transformation matrices. The values are

close enough to confirm the visual inspection conclusion.

Table 5.6: Calculated ηN for the the simulated and measured voltages (σ = 2ns)

Sensor Type η61 (Simulated) η61 (Measured)

ACD 0.8254 0.8316

15 cm monopole 1.1647 1.1380

10 cm monopole 1.0152 0.9539

5 cm monopole 1.076 1.0881

5.3 Infinite-Dimensional Analysis

Laguerre functions are used to perform an infinite-dimensional distortion analysis. The

transformation matrices for the 5, 10, and 15 cm monopole antennas and the ACD are

shown in Figs. 5.25-5.28. The transformation matrices have been calculated using p =
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Figure 5.21: Calculated transformation matrix for the ACD using the time-domain measured
voltage for σ = 2 ns, when the incident electric field varies as Fig. 5.20.
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Figure 5.22: Calculated transformation matrix for the 15 cm monopole antenna using the time-
domain measured voltage for σ = 2 ns, when the incident electric field varies as
Fig. 5.20.
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Figure 5.23: Calculated transformation matrix for the 10 cm monopole antenna using the time-
domain measured voltage for σ = 2 ns, when the incident electric field varies as
Fig. 5.20.
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Figure 5.24: Calculated transformation matrix for the 5 cm monopole antenna using the time-
domain measured voltage for σ = 2 ns, when the incident electric field varies as
Fig. 5.20.
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1010 in (4.21). It is observed that the transformation matrices have the same shape of

Fig. 4.10. To calculate the distortion characteristic η∞ as given in (4.40), one should

first calculate the effective height of the sensors under study. The time domain impulse

responses have been calculated simply by simulating the received voltage of the sensors

when illuminated with a Gaussian pulse with 10 GHz bandwidth. The frequency-domain

transfer functions are calculated as the ratio of the frequency-domain received voltage

to the frequency-domain incident field. Taking the Fourier transforms yields he effective

heights. The effective heights calculated for the 4 sensors are plotted in Fig. 5.29.

Time-domain effective heights are used to calculate η∞ as a measure of the distortion

introduced by the sensor comparing to the identity system. Calculated η∞ for the sensors

is shown in Fig. 5.30 as a function of the frequency range which Laguerre functions cover.

The values shown in the figure confirm the relative values for η61 listed in Table 5.1.

In other words, the sensors performance can be compared in a similar way using both

methods. Alternatively, one can calculate η∞ for the integral of the effective heights to

obtain a measure of distortion when the sensors are compared to the ideal differentiators.

The values for η∞ obtained using the integrated effective heights are shown in Fig. 5.31

and are in agreement with values summarized in Table 5.2 and 5.1.
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Figure 5.25: Calculated transformation matrix using Laguerre functions with p = 1010 for a 5
cm monopole antenna.
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Figure 5.26: Calculated transformation matrix using Laguerre functions with p = 1010 for a
10 cm monopole antenna.
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Figure 5.27: Calculated transformation matrix using Laguerre functions with p = 1010 for a
15 cm monopole antenna.
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Figure 5.28: Calculated transformation matrix using Laguerre functions with p = 1010 for a 5
cm ACD.
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Figure 5.29: Effective heights calculated for the electric field sensors, when the sensors received
voltages are simulated when illuminated by an incident electric field which has a
Gaussian waveform with a 10 GHz bandwidth.
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Figure 5.31: Calculated η∞ for the integral of sensors effective heights.

5.3.1 Calculating the Effective Height Using one Set of Mea-

surement

It is possible to calculate the effective height Laguerre expansion coefficients using one set

of time-domain measurement. Assume that the effective height is heff (t) =
∑k=0

∞ hkl
p
k(t).

If the incident electric field is einc(t) =
∑∞

k=0 ekl
p
k(t) and the received voltage is vrec(t) =

∑∞
k=0 vkl

p
k(t), then we can write,

vrec(t) = h(t) ∗ einc(t). (5.13)

Substituting Laguerre expansions of h(t) and einc(t) in (5.13) results in,

vrec(t) =
∞∑
k=0

∞∑
k′=0

ekhk′l
p
k(t) ∗ lpk′(t), (5.14)
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which using (4.27) yields to,

√
2pvrec(t) =

∞∑
k=0

∞∑
k′=0

ekhk′ [l
p
k+k′(t) + lpk+k′+1(t)]. (5.15)

The jth coefficient in vrec(t) Laguerre expansion, vj is given by,

vj =
〈
vrec(t), l

p
j (t)

〉
. (5.16)

Substituting (5.15) in (5.16) gives,

√
2pvj =

∞∑
k=0

∞∑
k′=0

ekhk′
〈
lpk+k′(t), l

p
j (t)

〉
+

∞∑
k=0

∞∑
k′=0

ekhk′
〈
lpk+k′+1(t), l

p
j (t)

〉
. (5.17)

Recalling orthogonality in (4.23) simplifies (5.17) to,

√
2pvj =

∞∑
k=0

∞∑
k′=0

ekhk′δk+k′,j +
∞∑
k=0

∞∑
k′=0

ekhk′δk+k′+1,j. (5.18)

(5.18) can be solved for different values of j, to find the unknown hk′ coefficients. The

unknown coefficients can be solved recursively as,

h0 =

√
2pv0
e0

, (5.19)

h1 =

√
2pv1 − h0(e1 + e0)

e0
, (5.20)

h2 =

√
2pv2 − [h0(e2 + e1) + h1(e1 + e0)]

e0
,
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hN =

√
2pvN − [h0(eN + eN−1) + h1(eN−1 + eN−2) + . . .+ hN−1(e1 + e0)]

e0
. (5.22)

The above solution has been used to calculate the impulse response of various systems.

The choice of p in Laguerre functions in incredibly critical in order to reach convergence

[24]. Proposed as the future work, the convergence was not achieved to calculate the

effective heights in the electric field sensors studied in this thesis.
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Chapter 6

Concluding Remarks and Future

Work

6.1 Concluding Remarks

In this thesis, a distortion analysis of electromagnetic field sensors was performed using

orthogonal polynomials. Hermite and Laguerre orthogonal polynomials were used to

form basis sets which in turn span subspaces of L2(
). A transformation matrix has been

calculated for every electric field sensor. This transformation matrix was compared to

a reference transformation matrix as a measure of distortion. Distortion characteristic

of a 5 cm ACD, a 5, 10, and 15 cm monopoles were compared to each other using two

method of distortion characterization. In the first method, the transformation matrices

are calculated in a finite-dimensional subspace which gives a valid distoriton characteristic

for frequencies up to 1 GHz using the selected parameters. The results summarized in
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Tables 5.1 , 5.2, and 5.3 show that when the sensors electric sizes decrease, the sensors tend

to perform as differentiators up to a higher frequency range. In the case of the monopoles

the signal is distorted after that certain frequency. Whereas, The ACD performs as a

differentiator in lower frequencies while being more like an identity system in the higher

frequencies.

Using an infinite-dimensional vector space, one can calculate the transformation matrices

using Laguerre functions as described in Chapter 4. In the infinite-dimensional analysis,

one has to calculate the sensors effective heights in order to calculate η∞. The results

shown in Figs. 5.30 and 5.31 confirms the distoriton characteristic calculated in Tables

5.1 and 5.2. The followings are the highlights of this thesis:

• Unlike the classical distortion characteristic, fidelity, transformation matrices de-

scribe the sensor performance for a subspace of waveforms.

• The relation of the studied subspace and the polynomials parameters is discussed.

• A discussion on selecting proper scaling factors is presented.

• In Laguerre subspace, it has been proved that only one column of the transformation

matrix is sufficient for a complete distortion analysis.

• Methods have been presented to calculate the transformation matrix from only one

set of time-domain measurement.
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6.2 Future Work

There are many aspects of the work which need further investigation. Some of those are:

• This analysis is not able to recognize delay in the signals. In other words, a delay

system is considered as a ditortive system. There still is a need to work out methods

which are able to distinguish delay.

• The frequency-dependency of the subspaces still needs to be worked on. In this

thesis, it is assumed that the frequency range of interest is the frequency range

which is covered by the basis functions. However, no mathematical proof is given.

• Other sensors, including magnetic field sensors should be tested using this method.

• The sensitivity should be included in a quantitative manner in the distortion char-

acteristic in order to obtain a realistic measure.

• Fabrication of a variety of 2-D and 2.5-D ACDs allows us to investigate the distortion

characteristic of these sensors in more details.
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Appendix A

Proposition:

If x(t), y(t) ∈ L2(
) then Rx∗y = Rx ∗Ry

• Lemma: Rx(τ) = Rx(−τ)

Proof:

Rx(τ) =
∫∞
−∞ x(t)x(t− τ)dt =

∫∞
−∞ x(α + τ)x(α)dα = Rx(−τ)

Proof :

Rx∗y =
∫∞
−∞ (x ∗ y)(t)(x ∗ y)(t− τ)dt =

∫∞
−∞

∫∞
−∞ x(α)y(t− α)dα

∫∞
−∞ x(λ)y(t− τ − λ)dλdt

If u = t− α

∫∞
−∞

∫∞
−∞ x(α)x(λ)dα

∫∞
−∞ y(u)y(u+ α− τ − λ)dudλ =

∫∞
−∞

∫∞
−∞ x(α)x(λ)dαRy(τ + λ− α)dλ

If u′ = λ− α

∫∞
−∞

∫∞
−∞ x(α)x(u′ + α)dαRy(τ + u′)du′

=
∫∞
−∞ Rx(u

′)Ry(u
′ + τ)du′

Using the above lemma we have Rx(u
′) = Rx(−u′) then
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Rx(τ) =
∫∞
−∞ x(t)x(t− τ)dt =

∫∞
−∞ Rx(−u′)Ry(u

′ + τ)du′

=
∫∞
−∞ Rx(θ)Ry(τ − θ)dθ = Rx ∗Ry. �
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The following is a summary of the mathematical terms used in this thesis.

• Field

Consider a non-empty set F , which has two elements 1 and 0, and two binary

operations, addition and multiplication. For two arbitrary elements of F such as

a and b, addition is shown as (a, b) �−→ a + b, while multiplication is shown by

(a, b) �−→ a · b. F is a field if:

∀a, b, c ∈ F (a+ b) + c = a+ (b+ c),

∀a, b, c ∈ F (a · b) · c = a · (b · c),

∀a, b ∈ F a+ b = b+ a,

∀a, b ∈ F a · b = b · a,

∀a ∈ F a+ 0 = a,

∀a ∈ F a · 1 = a,

∀a ∈ F ∃ − a ∈ F so that, a+ (−a) = 0,
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∀a ∈ F ∃a−1 ∈ F so that, a · a−1 = 1,

∀a, b, c ∈ F a · (b+ c) = a · b+ a · c [37].

• Vector space

Consider V as a collection of elements, V = {x, y, ...}. If addition operation is

defined as, (x, y) �−→ x+ y, V is a vector space over the field F , if [25],

1- If x, y ∈ V then, x+ y ∈ V ,

2- ∀x, y ∈ V, x+ y = y + x,

3- ∃0 ∈ V so that ∀x ∈ V, x+ 0 = x,

4- ∀x ∈ V, ∃ − x ∈ V so that x+ (−x) = 0,

5- ∀α, β ∈ F

α(βx) = (α · β)x,

(α + β)x = αx+ βx,

α(x+ y) = αx+ αy.

• Linear transformation

A linear transformation, T, is a function which maps vectors from the vector space

VD into the vector space VR,

T : x �−→ y, where, x ∈ VD, y ∈ VR, and is additive and homogeneous, or [37],

∀x, x́ ∈ VD, T (x+ x́) = T (x) + T (x́) (additivity),

∀α ∈ F, ∀x ∈ VD, T (αx) = αT (x) (being homogeneous).
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• Subspace

A subspace V of the vector space U is a non-empty subset of U which is a vector

space itself.

• Domain subspace, Range subspace

A linear transformation maps vectors from a vector space VD to a vector space VR.

As VD and VR can be considered subspaces of a larger vector space, VD and VR are

denoted as the domain and the range subspaces, respectively.

• Inner product

The inner product is an operation defined in the vector space V which maps every

two arbitrary vectors x, y ∈ V to a scalar in the field F , which V is defined over.

As,

(x, y) �−→ 〈x, y〉.

• Orthogonality

Two vectors x, y in the vector space V are orthogonal if and only if,

〈x, y〉 = 0.

• Norm of a vector

Norm of an arbitrary vector x in the vector space V with a certain inner production

is defined as [25],

‖x‖ �
√〈x, x〉.

117



B. Appendix B

• L2(
)

Is a vector space including functions which are quadratically integrable,or ,

∀f(t) ∈ L2(
) ∃M ∈ 
 so that
∫∞
−∞ |f(t)|2 dt < M .

• Span

Cosinder the set S = {s1, s2, ..., sN} in the vector space V . S spans V if and only if,

∀x ∈ V, ∃αi ∈ F, so that, x =
∑N

i=1 αisi.

• Basis vector, Basis set

The set B = b1, b2, ..., bN in the vector space V is said to be a basis set for V if and

only if,

1- B spans V ,

2- b1, b2, ..., bN are mutually orthogonal.

The vectors, b1, b2, ..., bN are called the basis vectors. N determines the dimension

of the vector space. Every arbitrary vector x in V is written uniquely as a linear

summation of the basis vectors as,

x =
∑N

i=0 xibi.

• n-tupple representation

For every arbitrary vector x in the vector space V with the basis set B = b1, b2, ..., bN ,

the 1×n matrix, x = [x1, x2, ..., xN ]
t is the n-tupple representation. The superscript

t stands for the transposition while xis are the coefficients in the expansion,
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x =
∑N

i=0 xibi.

• Linear operator

A linear operator is the matrix representation for a linear transformation. AnM×N

matrix L, can be viewed as a linear operator which maps a 1 × N matrix, x, to a

1×M matrix using,

y = Lx [25].

• Frobenius norm

For an M ×N matrix A = [aij], the Frobenius norm is defined as [25],

‖A‖F =
√∑N

j=1

∑M
i=1 a

2
ij.

• Infinite-dimensional vector space

An infinite-dimensional vector space is a vector space which has a denumerable basis

set. L2(
) is an example [25].
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Proposition:

ηN =
√

1 + tr(LLH−2tr(L))
N

if the reference matrix is IN = [aij]1≤i,j≤N

Proof:

When the reference matrix is the identity matrix, ηN can be written as,

ηN =
‖L− IN‖√

N
. (C.1)

Using (3.17), (C.1) is written as,

ηN =

√∑N
i=1

∑N
j=1 (lij − aij)

2

N
. (C.2)

Using this, we have,

ηN =

√∑N
i=1

∑N
j=1 |l|2ij +

∑N
i=1

∑N
j=1 a

2
ij − 2

∑N
i=1

∑N
j=1 lijaij

N
. (C.3)
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As aij are the elements of the identity matrix, they are equal to one when i = j and are

equal to zero otherwise. Therefore, (C.3) is simlified to,

ηN =

√∑N
i=1

∑N
j=1 |l|2ij +N − 2

∑N
i=1 lii

N
. (C.4)

In (C.4),

N∑
i=1

N∑
j=1

|l|2ij = tr(LLH), (C.5)

N∑
i=1

lii = tr(L). (C.6)

So we have:

ηN =

√
1 +

tr(LLH)− 2tr(L)

N
. � (C.7)
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D.1 Hermite Polynomials

Schrodinger equation is stated as [26],

d2Ψ(ζ)

dζ2
+

2

ζ

Ψ(ζ)

dζ
+

1

ζ4
(ε− 1

ζ4
)Ψ(ζ) = 0. (D.1)

When it is assumed that ε − 1 = 2n, n = 0, 1, 2, ... and x = 1
ζ
, the solution to (D.1) is

given by,

Ψ(x) = Hn(x)e
−x2/2. (D.2)

Hn(x) in (D.2) is the nth order Hermite polynomial and is given in the closed form as [26],

Hn(x) =

[n2 ]∑
j=0

(−1)j2n−2jn!

(n− 2j)!j!
xn−2j. (D.3)
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D.2 Hermite Polynomials Properties

• Recursion relations [26]:

Hn+1(x) = 2xHn(x)− 2nHn−1(x) n ≥ 1, (D.4)

H1(x) = 2xH0(x), (D.5)

dHn(x)

dx
= 2nHn−1(x) n ≥ 1, (D.6)

dH0(x)

dx
= 0. (D.7)

• Orthogonality

Hermite polynomials are orthogonal to each other with respect a weight function of

e−x2
, as we have [26],

∫ ∞

−∞
e−x2

Hn(x)Hm(x)dx =

⎧⎪⎨
⎪⎩

0 if n �= m;

2nn!
√
π if n = m.

(D.8)

• The nth derivative of the nth order polynomial is given by [26],

dnHn(x)

dxn
= 2nn!. (D.9)
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• Rodriguez formula

Hn(x) = (−1)nex
2 dn

dxn
[e−x2

]. (D.10)

D.3 Hermite-Gauss Functions and Their Properites

Hermite-Gauss functions are the solution to (D.1). The nth order Hermite-Gauss function

is defined as [26],

φn(x) =
1√

2nn!
√
π
Hn(x)e

−x2

2 . (D.11)

Hermite-Gauss functions have many interesting properties including:

• Hermite-Gauss functions form a complete basis set for L2(
) [28].

• Hermite-Gauss functions are the eigenfunctions of the Fourier transform [23]. Fourier

transform of the nth oprder Hermite-Gauss function is given by,

F [φn(x)] =
1

2π
(−j)nφn(f). (D.12)

• The first derivative of the Hermite-Gauss functions can be written in terms of other

Hermite-Gauss functions, or,

dφn(x)

dx
=

√
n

2
φn−1(x)−

√
n+ 1

2
φn+1.
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Proof :

Taking the first derivative of (D.11), results in,

dφn(x)

dx
=

e−
x2

2√
2nn!

√
π
[−xHn(x) +

dHn(x)

dx
]. (D.14)

Assuming n ≥ 1, we can substitute xHn(x) and dHn(x)/dx from (D.7) and (D.6),

respectively, to have,

dφn(x)

dx
=

e−
x2

2√
2nn!

√
π
[nHn−1 − 1

2
Hn+1], (D.15)

Which recalling (D.11) results in (D.13).
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E.1 Laguerre Polynomials

The solution to the time-independent Schrodinger differential equation can be sep-

arated to two functions, one only dependent on the radius and one dependent on

the azimuth and inclination angles. The solution to the radius dependent function

leads to the Laguerre equation, given by [26],

x
d2Ln(x)

dx2
+ (1− x)

dLn(x)

dx
+ ny = 0. (E.1)

The solution to (E.1) is given by the nth order polynomial, Ln(x), as [26],

Ln(x) =
n∑

r=0

(−1)r
n!xr

(n− r)!(r!)2
. (E.2)
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E.2 Laguerre Polynomials Properties

Some of the properties can be summarized as [26],

– Rodriguez formula

Ln(x) =
ex

n!

dn

dxn
(xne−x). (E.3)

– Orthogonality

Hermite polynomials are orthogonal to each other with respect to the weight

function e−x, in the positive real numbers [26],

∫ ∞

0

e−xLn(x)Lm(x)dx =n,m (E.4)

– Recursion relation

Ln+1(x) =
(2n+ 1− x)Ln(x)− nLn−1(x)

n+ 1
. (E.5)

dLn(x)

dx
=

nLn(x)− nLn−1(x)

x
. (E.6)
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E.3 Associated Laguerre Polynomials and Prop-

erties

The associated Laguerre polynomials are the solution to the differential equation

MathMeth,

x
d2Lk

n(x)

dx2
+ (k + 1− x)

dLk
n(x)

dx
+ nLk

n(x). (E.7)

The associated Laguerre polynomials are given by [26],

Ln(x) =
n∑

s=0

(−1)s(n+ k)!xs

(n− s)!(k + s)!s!
. (E.8)

Some of the associated Laguerre polynomials properties can be summarized as [26],

– Orthogonality

Associated Laguerre polynomials are orthogonal to each other with respect to

the weight function xke−x as,

∫ ∞

0

e−xxkLk
n(x)L

k
m(x)dx =

(n+ k)!

n! n,m
. (E.9)

– Recursion relation

Lk
n+1(x) =

(2n+ k + 1− x)Lk
n(x)− (n+ k)Lk

n−1(x)

n+ 1
. (E.10)
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dLk
n(x)

dx
=

nLk
n(x)− (n+ k)Lk

n−1(x)

x
. (E.11)

– Rodriguez formula

Lk
n(x) =

exx−k

n!

dn

dxn
(xn+ke−x). (E.12)

Laguerre polynomials given in (E.2) are in fact the associated Laguerre polynomials

for k = 0.

E.4 Laguerre Functions

Laguerre functions are defined in relation to the Laguerre polynomials as [31],

ln(x) = (−1)nLn(x)e
−x

2 . (E.13)

Laguerre functions have many interesting properties, including:

– Completeness of the spanned subspace

Laguerre functions form a complete orthogonal basis set for L2(
+) [33].

– Recursive relations

Using (E.5) and (E.13), we can write,

ln+1(x) = −(2n+ 1− x)ln(x)− nln−1(x)

n+ 1
. (E.14)
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– Convolution of Laguerre functions [31]

ln(x) ∗ lm(x) = ln+m(x) + ln+m+1(x). (E.15)

– Frequency domain relation

The Fourier transform of Laguerre functions is given as [31],

F [ln(x)] =
e−j(2n+1)tan−1(2ω)√

ω2 + (1
2
)
2

. (E.16)

Therefore, different orders of Laguerre functions have frequency-domain coun-

terparts which are all the same in the magnitude and are only different in the

phase.
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