
A HIERARCHICAL CONTROL SYSTEM FOR

SCHEDULING AND SUPERVISING FLEXIBLE

MANUFACTURING CELLS

by

SHERIF FAHMY

A thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements of the degree of

DOCTOR OF PHILOSOPHY

in

MECHANICAL AND MANUFACTURING ENGINEERING

Department of Mechanical and Manufacturing Engineering

University of Manitoba

Winnipeg, Manitoba, Canada

Copyright © 2009 by Sherif Fahmy

 ii

Abstract

A hierarchical control system is proposed for automated flexible manufacturing cells

(FMC) that operate in a job shop flow setting. The control system is made up of a higher

level scheduler/reactive scheduler, which optimizes the production flow within the cell,

and a lower level supervisor that implements the decisions of the scheduler on the shop

floor. Previous studies have regularly considered the production scheduling and the

supervisory control as two separate problems. This has led to: i) deadlock-prone

optimized schedules that cannot be implemented in an automated setting, ii) deadlock-

free optimized schedules that lack the means to be transformed into shop floor

supervisors, or iii) supervisors that can safely drive the system with no consideration for

production performance. The proposed control system combines mathematical models

and an insertion heuristic to solve the deadlock-free scheduling problem in job shops, a

deadlock-free reactive scheduling heuristic that can revise the schedules upon the

occurrence of a wide variety of disruptions, and a systematic procedure that can

transform schedules into readily implementable Petri net (PN) supervisors. The

integration of these modules into one control hierarchy guarantees a correct, optimized

and agile behavior of the controlled system.

The performances of the mathematical models, the scheduling and the reactive

scheduling heuristics were evaluated by comparison to performances of previous

approaches. Experimental results showed that the proposed modules performed

consistently better than the other corresponding approaches. The supervisor realization

procedure and the overall control architecture were validated by simulation and

 iii

implementation in an experimental robotic FMC. The control system developed was

capable of driving the experimental cell to satisfactorily complete the processing of

different product mixes that featured complex processing routes through the cell.

 iv

Acknowledgement

I wish to offer my sincerest thanks to my advisors, Dr. Subramaniam Balakrishnan and

Dr. Tarek ElMekkawy, for their patience, guidance, friendship, support, and

encouragement throughout this work. The opportunity that they have provided me to start

this work has been a life changing experience. Special thanks also to Mr. Ken Tarte who

provided all the necessary help during the final phase of the research in a timely and

efficient manner. I would also like to thank Dr. Aniruddha Gole, Dr. Norman Richards,

and Dr. Gary Wang, my advisory committee members, for their valuable and constructive

suggestions and support throughout the work. My deepest gratitude for Dr. M. Adel

Shalaby for all what I have learned from him during my early days as a researcher.

Finally, I wish to thank the University of Manitoba for the financial assistance they

provided me throughout these years.

 v

Dedicated to my late FFFFather, my caring MMMMother,
my precious and compassionate wife AAAAmira,
and my princess and lovely daughter NNNNadin.

 vi

Table of Contents

 Page

List of Tables xi

List of Figures xii

Nomenclature xv

Copyright Notices xx

1. Introduction 1

1.1 Background.. 1

1.1.1 Scheduling in Flexible Job Shops…………………. 4

1.1.2 Deadlocks in Automated Manufacturing Systems………. 5

1.1.3 Control in Discrete Event Systems………………… 7

1.1.4 Reactive Scheduling and Control…………………. 9

1.2 Research Motivation…………………………….... 10

1.3 Problem Statement………...................................... 11

1.4 Solution Approach.. 14

1.5 Thesis Outline... 16

2. Literature Review 18

2.1 Introduction.. 18

2.2 Supervisory Control of Automated Manufacturing Systems……... 20

2.2.1 Automata and Petri Nets………………………. 21

2.2.2 SCT Approaches…………………................ 23

2.2.3 Deadlock Analysis and SC Approaches using PNs……… 27

2.2.3.1 Generic PN deadlock analysis approaches……… 28

2.2.3.2 Siphons and deadlock analysis…………….. 31

2.3 Deadlock-free Scheduling... 35

2.3.1 PN and Automata Scheduling Approaches.................... 36

 vii

2.3.2 Mathematical Modeling in Scheduling Job Shops............. 43

2.3.3 Insertion Heuristics.. 44

2.4 Reactive Scheduling and Control.................................... 46

2.4.1 Reactive Supervisory Control……………………. 49

2.5 Controller Implementation.. 51

2.6 Conclusions.. 55

3. Deadlock-free Scheduling 58

3.1 Introduction.. 58

3.2 Mathematical Modeling... 61

3.2.1 Notation.. 64

3.2.2 The IBS Model.. 66

3.2.3 The IB1 Model.. 68

3.2.4 The IBA Model... 70

3.2.5 The CBA Model.. 73

3.2.6 Routing Flexibility.. 75

3.3 Operations Insertion Algorithm..................................... 76

3.3.1 The Operations Insertion Algorithm (OI)..................... 78

3.3.2 Order of Jobs and Position Evaluation........................ 83

3.3.3 Sufficiency for Deadlock Occurrence......................... 85

3.3.4 Complexity of Algorithm..................................... 86

3.4 Insertion of Transportation Operations............................... 87

3.5 Numerical Example... 89

3.6 Performance Evaluation... 96

3.6.1 Computational Study for the MIP Models..................... 97

3.6.2 Comparative Study for OI.................................... 100

3.7 Conclusions... 103

 viii

4. Reactive Scheduling 104

4.1 Introduction.. 104

4.2 Arrival of New Jobs…………………………….... 107

4.2.1 Job Insertion and Total Rescheduling………………. 108

4.2.2 Experimental Analysis………………………... 111

4.2.2.1 Relative performance criteria……………… 113

4.2.2.2 Experimental results…………................ 114

4.2.2.3 ANOVA results.................................... 117

4.3 Generic Reactive Scheduling………………………… 120

4.3.1 Machine Breakdowns………………………… 122

4.3.2 Process Time Variation……………………….. 123

4.3.3 Urgency of Existing Jobs…………………….... 125

4.3.4 Order Cancellations…………………………. 127

4.4 Comparative Analysis…………………………….. 130

4.4.1 Experimental Design………………………… 130

4.4.2 Experimental Results and ANOVA……………….. 134

4.4.2.1 Machine breakdowns…………………... 136

4.4.2.2 New job arrivals ……………………... 138

4.4.2.3 Process time variations…………………. 140

4.4.2.4 Urgent existing jobs………………....... 141

4.4.2.5 Order cancellations……………………. 142

4.5 Conclusions…………………………………… 143

5. Supervision of Automated Manufacturing Cells 147

5.1 Introduction…………………………………… 147

5.2 Transforming a Schedule into a MG ………………….... 149

5.3 Deadlock Analysis using MGs………………………... 154

5.3.1 Circuits in a SMG…………………………... 155

 ix

5.3.2 A Necessary and Sufficient Condition for Deadlock Occurrence 158

5.3.3 Interpretation in the Rank Matrix............................. 162

5.3.4 Sufficiency of the Pre-defined Deadlock Conditions……. 163

5.4 Deadlock Detection and Resolution……………….......... 166

5.4.1 Complexity of Detection and Resolution of Circular Blocks ... 166

5.4.2 Reducing the Search Space……………………... 167

5.4.3 Resolving a Circular Block……………………... 169

5.4.4 Illustrative Example…………………………. 170

5.5 Realizing the Supervisor from the Schedule……………….. 174

5.6 Simulation and Verification…………………………. 181

5.6.1 Selected Problems…………………………... 182

5.7 Conclusions…………………………………..... 186

6. Implementation in an Experimental FMC 188

6.1 Introduction………………………………….... 188

6.2 The Experimental FMC …………………................ 190

6.2.1 Programming the Robot Arm……………............ 191

6.2.2 The I/O Data Acquisition Module………………... 193

6.3 Computer-Based Control …………………............... 196

6.3.1 Associating Control Actions and Conditions to the ASMG… 197

6.3.2 Executing the ASMG………………………... 201

6.4 Implementation and Experimentation…………………… 203

6.4.1 Experimental Results………………………... 204

6.5 Conclusions………………………………........ 207

7. Conclusions and Recommendations 209

7.1 Research Contributions…………………………..... 210

7.2 Conclusions………………………………….... 212

7.3 Recommendations……………………………….. 215

 x

7.3.1 Plant-Wide Control………………………….. 216

REFERENCES 217

APPENDICES

A. Introduction to Petri Nets 234

A.1 Modeling Power of PNs…………………………… 236

A.2 Behavioral Analysis using PNs………………………. 237

A.3 Common PN Structures……………………………. 241

B. The Supervisory Control Theory (SCT) 243

C. Operational Data for Illustrative Examples 246

D. Structures of Robot Arm Control Programs 248

 xi

List of Tables

 Page

Table 3.1: Different combinations of the values of the binary variables............ 73

Table 3.2: Results of computational study………………………... 99

Table 3.3: Performance comparison results for OI…………………… 102

Table 4.1: Considered system parameters and their levels………………. 112

Table 4.2: Levels of experimental factors………………………… 132

Table 4.3: Average values of performance measures…………………. 134

Table 4.4: p-values for the ANOVA experiments…………………… 136

Table 5.1: Circular blocks (circuits) of illustrative example……………... 172

Table 6.1: Control input scheme for the robot arm…………………... 194

Table 6.2: Command functions of the I/O module…………………… 195

Table 6.3: Control action signals and conditions……………………. 198

Table 6.4: Handling times of robot arm (seconds)…………………… 203

Table 6.5: Results of Experiment 1……………………………. 205

Table 6.6: Results of Experiment 2……………………………. 205

Table 6.7: Results of Experiment 3……………………………. 205

Table C.1: Processing routes and times for the ‘6J x 3M’ numerical example….. 246

Table C.2: Processing routes and times for the ‘5J x 5M’ comparison problem…. 246

Table C.3: Processing routes and times for problem ‘4J x 3M’…………… 247

Table C.4: Processing routes and times for problem ‘ft06’……………… 247

 xii

List of Figures

 Page

Figure 1.1: Capacity vs. functionality of the different production paradigms…... 4

Figure 1.2: Circular waits in job shops…………………………... 7

Figure 1.3: A typical flexible manufacturing cell……………………. 12

Figure 1.4: Proposed hierarchical control system …………………… 14

Figure 2.1: De-centralized supervision…………………………... 25

Figure 2.2: A production Petri net (PPN)…………………………. 30

Figure 2.3: Special PN classes………………………………... 33

Figure 2.4: A transition diagraph (TD)…………………………... 41

Figure 2.5: The disjunctive graph (DG) with blocking ………………... 42

Figure 2.6: Blocking job shop schedule………………………….. 46

Figure 2.7: Resource failure in a PN……………………………. 50

Figure 2.8: Computer-based hierarchical control……………………. 53

Figure 3.1: Different types of buffers …………………………... 59

Figure 3.2: Swapping of jobs between machines ……………………. 63

Figure 3.3: Effect of yikprj in the IBS model……………………….. 67

Figure 3.4: Utilizing capacity of intermediate buffer………………….. 70

Figure 3.5: Utilizing an intermediate buffer with arbitrary capacity………… 72

Figure 3.6: Rank matrix illustration…………………………….. 78

Figure 3.7: Flowchart of Main Insertion Algorithm…………………... 79

Figure 3.8: Detection of circular waits in a rank matrix………………... 82

Figure 3.9: Detection of unfeasible sequences in a rank matrix…………… 83

Figure 3.10: Complex circular waits……………………………. 85

Figure 3.11: Solution of the RJI model of example problem…………….. 91

Figure 3.12: Solution of the IBS model of example problem…………….. 91

Figure 3.13: Solution of the IB1 model of example problem…………….. 91

Figure 3.14: Illustration of buffer usage in the IBA and CBA models for the

 xiii

example problem ……………………………………...... 93

Figure 3.15: Applying the transportation operations insertion algorithm on the

CBA solution………………………………………….. 94

Figure 3.16: Using OI to solve example problem……………………. 95

Figure 3.17: Using OI augmented with TOI to solve example problem…….... 96

Figure 4.1: Application of OI to perform TR and JI…………………... 109

Figure 4.2: Solution of comparison problem …………………….... 110

Figure 4.3: Main significant effects of factors on RNERV……………… 118

Figure 4.4: Main significant effects of factors on RMFT……………….. 118

Figure 4.5: Main significant effects of factors on RSOLT………………. 118

Figure 4.6: Significant interaction effects of factors on RNERV…………... 119

Figure 4.7: Significant interaction effects of factors on RMFT………….... 119

Figure 4.8: AOR and RSR ………………………………….. 121

Figure 4.9: Machine breakdown………………………………. 124

Figure 4.10: Process time variation ……………………………. 126

Figure 4.11: Urgent job …………………………………… 128

Figure 4.12: Order cancellation ……………………………… 129

Figure 4.13: One-way ANOVA results for the machine breakdown experiment… 137

Figure 4.14: Significant interaction effects for the machine breakdown experiment. 138

Figure 4.15: One-way ANOVA results for the new job arrival experiment……. 139

Figure 4.16: Significant interaction effects for the new job arrival experiment…. 139

Figure 4.17: One-way ANOVA results for the process time variation experiment.. 140

Figure 4.18: One-way ANOVA results for the urgent existing job experiment…. 141

Figure 4.19: One-way ANOVA results for the order cancellation experiment….. 142

Figure 4.20: Significant interaction effects for the order cancellation experiment... 143

Figure 5.1: A schedule of three jobs on three machines........................... 150

Figure 5.2: Three PPCs of the three jobs... 151

Figure 5.3: MG of the schedule (SMG).. 152

 xiv

Figure 5.4: An unfeasible schedule with a cycle…………………….. 155

Figure 5.5: a) A deadlock in a schedule; b) corresponding circuit in SMG......... 157

Figure 5.6: Illustration of the conditions associated with a circular block.......... 161

Figure 5.7: Illustration of a circular block using a rank matrix..................... 162

Figure 5.8: Circular wait recognition using Sub-algorithm 2...................... 164

Figure 5.9: Unfeasible sequence recognition using Sub-algorithm 3............... 165

Figure 5.10: Resolving circular blocks... 170

Figure 5.11: Rank matrix and SMG of illustrative example....................... 171

Figure 5.12: Reduced rank matrix and SMG of illustrative example............... 171

Figure 5.13: Search steps for circular blocks..................................... 172

Figure 5.14: Live and reversible SMG of illustrative example..................... 176

Figure 5.15: Addition of robot place and tasks to the SMG........................ 178

Figure 5.16: Regulating buffer capacity.. 179

Figure 5.17: Controller ASMG for the illustrative example....................... 181

Figure 5.18: Schedule and rank matrix of problem ‘4J X 3M’..................... 183

Figure 5.19: Controller ASMG of problem ‘4J X 3M’............................ 183

Figure 5.20: Schedule and rank matrix of problem ft06........................... 184

Figure 5.21: Controller ASMG of problem ft06.................................. 185

Figure 6.1: Experimental FMC in the Robotics & Automation Laboratory at

University of Manitoba... 191

Figure 6.2: Schematic of the control architecture of the experimental FMC........ 196

Figure 6.3: Association of transitions with action and condition signals and timers. 200

Figure 7.1: Integration of proposed tools in the proposed architecture………. 212

Figure A.1: Modeling power of PNs……………………………. 236

Figure A.2: Special net subsets……………………………….. 240

Figure A.3: PN subclasses………………………………….. 241

Figure B.1: A directed graph for a generator………………………. 244

 xv

Nomenclature

α(j-l) Control action signal to transport a job from machine j to machine l

β1 Control feedback condition to indicate availability of the robot

β2j Control feedback condition to indicate acquisition of resource j

A Rank Matrix

AGV Automated Guided Vehicle

Aik Set of alternative machines for operation oik

AMS Automated Manufacturing System

AOR Affected Operations Rescheduling

APN Automation Petri Net

ASMG Augmented Scheduling Marked Graph

ASRS Automated Storage and Retrieval Systems

B Capacity of central buffer

BF Best First Strategy

1 if job resides in a buffer before starting

0 otherwise,
{ ik

ik

i o
b =

(1)
1

1 if is started after is completed

0 otherwise,
{ ik p r

ikpr

o o
b

−
=

2

1 if is started before is started

0 otherwise.
{ ik pr

ikpr

o o
b =

Bj Capacity of intermediate buffer before (input buffer to) machine j

BS Beam Search Strategy

BUFP Buffer presence factor

 xvi

CB Central buffer

CBA MIP Model Featuring a Central Buffer with Arbitrary Capacity

CMS Cellular Manufacturing System

CNC Computer Numerical Control

CPN Colored Petri Nets

CPPN Controlled Production Petri Net

DEDS Discrete Event Dynamic System

DES Discrete Event System

DEV Deviation from original schedule in the reactive schedule

DG Disjunctive Graph

DMS Dedicated Manufacturing System

DP Dynamic Programming

E Set of operations that can be eliminated

E Small positive number

F Firing Vector of a Petri net

FLX System Flexibility factor

FMC Flexible Manufacturing Cell

FMS Flexible Manufacturing System

GA Genetic algorithm

GDRS Generic Deadlock-free Reactive Scheduling Tool

GT Group Technology

I Set of all Jobs {1, 2, ..., n}

Ii Input buffer of job i

 xvii

IB1 MIP Model Featuring Intermediate Buffers with Unit Capacity

IBA MIP Model Featuring Intermediate Buffers with Arbitrary Capacity

IBS MIP Model Featuring Intermediate Buffers for Swapping

IM Incidence Matrix of a Petri net

I/O Input/Output

J Set of all machines {1, 2, …, m}

JI Job Insertion

LLD Logic Ladder Diagram

m Number of machines in the system

M Marking of Petri net

M large positive number

Mo Initial Marking of a Petri Net

MAG Magnitude of Disruption Factor

mAOR Modified Affected Operations Rescheduling

MFT Mean Flow Time

MG Marked Graph

MIP Mixed Integer Programming

MS Makespan

MSorg Makespan of Original Schedule

MSrev Makespan of Revised Schedule

MTD Reactive Scheduling Method Factor

n Number of jobs in the system

NEWJ Number of New Jobs Factor

 xviii

NMFT Normalized Mean Flow Time

O Set of ordered pairs of operations corresponding to precedence relations in

routes of jobs

OB Output buffer

Oi number of operations of job i

OI Operations Insertion Algorithm

oik Operation k of job i

OPTIM Operation times of new jobs factor

PC Personal Computer

P/D Pick-up/Drop-off

pij Position in rank matrix (or place in PN) associated with the processing of job i

on machine j

Pj Set of operations processed on machine j

PLC Programmable Logic Controller

PN Petri Net

PPN Production Petri Net

Q Set of ordered pairs of operations corresponding to the processing order on the

machines defined by the schedule

Ri Number of alternative routes of job i

R(Mo) Reachability set of a Petri Net

RFLX Routing Flexibility Factor

RG Reachability Graph

RMFT Relative Mean Flow Time

 xix

RNERV Relative Nervousness

RSOLT Relative Solution Time

RSR Right Shift Rescheduling

RW Ramadge and Wonham

S Set of all operations that have successors in their jobs’ routes

SC Supervisory Control

SCT Supervisory Control Theory

SFC Sequential Function Chart

SIZ System size factor

SMG Scheduling Marked Graph

ST Solution Time

TD Transition Digraph

Tikj Processing time of operation k of job i on machine j

tj-s Transition of PN associated with the release of machine j and acquisition of

machine s

TOI Transportation Operations Insertion Algorithm

TPN Timed Petri Net

TR Total Rescheduling

TS Tabu Search

xiK Completion time of last operation (K) of job i

xikj Completion time of operation k of job i on machine j

1 if follows on machine

0 otherwise,
{ ik pr

ikprj

o o j
y =

 xx

Copyright Notices

1) With kind permission from Springer Science + Business Media:

International Journal of Flexible Manufacturing System, Analysis of reactive deadlock-

free scheduling in flexible job shops, Volume 19 (3), 264-285, Sherif Fahmy, Tarek

ElMekkawy, and Subramaniam Balakrishnan, figures number: 1, 2, 3, 6, 7, 8, 9, and 10.

2) With kind permission from Taylor & Francis Group:

International Journal of Production Research, A generic deadlock-free reactive

scheduling approach, iFirst, DOI: 10.1080/00207540802112652, Sherif Fahmy,

Subramaniam Balakrishnan and Tarek ElMekkawy, figures number: 3, 4, 5, 6, 7, 8, and

9, and tables number 2 and 3.

3) With kind permission from Inderscience Publishers:

- International Journal of Operational Research, Mathematical formulations for

scheduling in manufacturing cells with limited capacity buffers, in press, Sherif Fahmy,

Tarek ElMekkawy, and Subramaniam Balakrishnan, figures number: 1, 2, 3, 4, 5, 6, 7, 8,

9, 10 and 11, and tables number 1 and 3.

- European Journal of Industrial Engineering, Deadlock-free scheduling of flexible job

shops with limited capacity buffers, Volume 2 (3), 231-252, Sherif Fahmy, Tarek

ElMekkawy, and Subramaniam Balakrishnan.

 1

CHAPTER 1:

Introduction

1.1 Background

Functionality and capacity have been the two main parameters that defined the nature

and requirements of a production system since the early times of the industrial revolution.

In basic terms, functionality refers to the variety in product types that a single system can

produce, while capacity refers to the quantities produced.

In the early twentieth century, the notions of mass production and Dedicated

Manufacturing Systems (DMS) were introduced and established in North America, and

the focus was primarily on the quantity produced. Due to the lack of competitiveness and

the ever demanding war machine that prevailed during this era, DMSs had found their

way to dominate the production globe. After the end of World War II, rising economical

powers in Europe and Asia directed their attention towards industry, and hence more

competitors were acquiring portions of the global market. In addition, the advancements

in technology resulted in more consumer products being introduced into the market more

frequently. This all resulted in a gradual shift in industrial focus from quantity to variety,

and other types of more agile production systems being introduced.

 2

With DMSs’ dominant focus on quantity rather than variety, job shop systems have

usually characterized the other extreme. A job shop system usually features a functional

layout where machines that perform similar functions are grouped together in

departments, and has usually been utilized to produce customized products. These

systems are capable of producing any product whose manufacturing processes are within

the capacity of the available machines. Parts flow through these systems according to

their processing routes that define the sequence of operations required to complete the

product, with no restriction on which machine (or department) can be visited next after

completing an operation on another machine.

In a general job shop (will henceforth be just referred to as job shop), each product

may have a different processing route (or direction of flow) through the system. A flow

shop, on the other hand, is a special type of job shop that, like a DMS, has a uni-

directional flow restriction. In other words, a part may enter a flow shop system at any

machine, but has to follow the pre-defined direction of flow to complete all the required

operations. Accordingly, flow shops offer a smoother and faster production pace, but

without the full functionality provided by job shops.

By the mid 1960’s, it was realized that approximately 60-80% of the discrete products

market demanded mid-variety and mid-quantity products. To cope with this evident shift

in market behavior, the notion of Group Technology (GT) emerged. The basic idea

behind GT was to divide the massive capacity of a DMS between varieties of products.

This demanded the modification of the general layout of the system from a production

line, dedicated to produce only one product, to a group of production cells, and hence the

 3

paradigm of Cellular Manufacturing Systems (CMS). To increase the functionality of the

system, each of these cells was equipped with the group of machines (or processes)

required to produce a family of products, rather than one product. Members of these

families usually shared some common features related to the required manufacturing

processes and the sizes of the products.

With the emergence of computers and the introduction of more advanced equipment in

industry like Computer Numerically Controlled (CNC) machines, robot manipulators,

and automated guided vehicles (AGV), these manufacturing cells gained their share of

automation and were hence referred to as Flexible Manufacturing Cells (FMC).

Consequently, the production paradigm featuring a group of FMCs supported by an inter-

cellular material handling system was defined as a Flexible Manufacturing System

(FMS). These systems have an inherent higher flexibility and functionality than their

DMS counterparts and higher output capacity (quantities of products) than job shops as a

result of applying GT and automation. These systems hence provide an acceptable

balance between DMSs and job shops.

FMSs in industry usually feature a flow shop pattern. That is to say, members of a part

family have a restricted uni-flow direction within a cell. With the high levels of

automation that these cells feature nowadays, it has been argued that these systems

include more functions than what is actually needed. An example would be the

incorporation of a highly flexible robot to deliver parts to cater to unidirectional flow

between machines rather than a simple conveyor that can accomplish the same task.

However, the correct argument should be on how to utilize highly flexible equipment to

 4

its functional extent to attain the sought variety, or better yet flexibility, of FMSs. The

answer to this argument is the adoption of job shop flow patterns in FMSs. This will not

only ensure the full functional utilization of the equipment, but also the flexibility of

introducing any product to the system that does not necessarily require the same sequence

of operations required by other members of a product family; hence higher functionality

(Figure 1.1).

1.1.1 Scheduling in Flexible Job Shops

Production scheduling is the problem of sequencing the parts (jobs) visiting the system

to allocate processing times for their operations on the machines, such that some

objective criterion is optimized. In the previous scheduling literature, the two most

common objective criteria have been:

- Minimizing the total Makespan (MS): where the objective is to complete the

processing of all the jobs in the system in the minimum possible time, and

Figure 1.1: Capacity vs. functionality of the different production paradigms

 5

-Minimizing the Mean Flow Time (MFT): where the objective is to minimize the

average time spent by a job in the system.

The importance of these two criteria can be attributed to the positive impact they have

on the system performance in general, and their secondary effects that simultaneously

optimize other commonly used criteria. For example, minimizing the makespan

subsequently yields higher machine utilization, whereas minimizing the mean flow time

reduces the average work-in-process in the system and the average tardiness of jobs that

have set due dates.

In a job shop each job can have a different processing route through the system and

hence the scheduling problem becomes highly complex in systems that feature job shop

flow patterns. Indeed, where the scheduling problem in flow shops is just that of finding

the best sequence of jobs to visit the system, in job shops, the problem becomes that of

finding the best sequence of jobs to visit each machine in the system. Furthermore, in

more flexible job shops the problem is more complex since some (or all) jobs may have a

number of alternative processing routes that can be alternatively followed to complete all

the required processing operations.

1.1.2 Deadlocks in Automated Manufacturing Systems

Most automated manufacturing systems feature three inherent operational properties

(conditions). These are:

- Mutual exclusion: jobs utilize system resources in an exclusive mode.

 6

- No pre-emption: processing of a job on a machine cannot be pre-empted

(interrupted) to process another job.

- Hold-while-wait: a job keeps holding (or blocking) a resource until the next

resource in its processing route becomes available.

Because of these conditions and the inherent flow complexities in job shop systems,

when they are automated they become highly prone to what is known as deadlock. A

deadlock occurs in an automated manufacturing system when a set of jobs enter a

circular wait. In this situation, each job in this set continues holding (blocking) a system

resource indefinitely while waiting for another resource to become available, which is in

turn held by another job in this same set (Figure 1.2). Eventually, the whole system or

part of it becomes blocked, where no further processing could be accomplished, unless

the circular wait is resolved. It should be noted that circular waits, as shown in Figure 1.2,

cannot occur in flow shops because all the jobs share the same flow direction.

Nevertheless, a deadlock can still occur in an automated flow shop if a material handler

tries to deliver a job to an already occupied machine. These deadlocks, however, can be

averted by simply ensuring that jobs get delivered to machines only when they become

available.

In manually operated systems, circular waits can be easily resolved by human

intervention by manually swapping the jobs between the machines or temporarily placing

one of the jobs in a buffer. This is why assuming the existence of buffers with infinite

capacities or simply ignoring the occurrence of deadlocks had been an inherent

assumption when solving the classical job shop scheduling problem (to be discussed

 7

further in Chapter 2). In automated (or flexible) job shops however, unless circular waits

are prevented from occurring, or better yet the actual buffer capacity (if any) is taken into

consideration when scheduling the jobs, deadlocks become inevitable.

1.1.3 Control in Discrete Event Systems

In discrete-product manufacturing systems, the transformation behavior from raw

materials into finished products is almost dominated by discrete event activities. In other

words, the system state changes at discrete points in time, only due to the occurrence of

certain events. These can include the initiation of a processing operation, the completion

of an operation, the delivery of a job to a machine, or the delivery of a job to a buffer.

Accordingly, these systems are referred to as Discrete-Event Systems (DES). Automation

of DESs essentially requires efficient controllability, which can be achieved by direct

computer control of machine actuators at the local level and indirect computer control (or

supervision) at the shop or system level. A supervisor can then be defined as a controller

that uses available data via feedback loops to characterize the overall current behavior (or

Figure 1.2: Circular waits in job shops

 8

state) of the system, and accordingly modify the lower level controllers via control

actions to ultimately achieve the desired operational specifications in a deadlock-free

manner.

Deadlock-free operation necessitates that the supervisor does not allow the occurrence

of events that can directly or eventually drive the system into a deadlock state. This can

be achieved either by:

• real time look-ahead to define the possible future states that can result from

allowing an event to occur,

• pre-defining all possible deadlock states and preventing the occurrence of

events that can drive the system into these states from other states, or

• only allowing the occurrence of the events that are known beforehand to drive

the system to completion in a deadlock-free manner.

The first approach is not very efficient in real time control, especially when dealing

with large systems where the number of future states that need evaluation is considerably

large. Alternatively, although the second and third approaches can drive the system

efficiently in real time, they are vulnerable to changes that frequently occur in dynamic

production systems, which require frequent modifications in the control logic of the

supervisor. Furthermore, while the first two approaches can be less restrictive from a

control point of view, the third approach can be devised to not only drive the system

safely (deadlock-free), but to also attain an optimized performance regarding the different

production objectives.

 9

1.1.4 Reactive Scheduling and Control

A production system, like any real world system, is subject to many uncertainties and

disruptions. Frequent introduction of new production technologies, continuous changes in

customer needs, large scale competition between producers, and the unforeseen internal

disruptions that can affect the production process, all have led to a dynamic production

environment. The occurrence of such disruptions can affect both the performance and

stability of the production process. Hence, reacting to system disturbances is an essential

part of any control system in an automated manufacturing environment. One that does not

deal proactively with such disturbances can stall the whole system or render it in a

chaotic state.

When a production schedule is initially set to allocate the processing times of jobs on

the available machines, it consequently determines the utilization of other system

resources, delivery dates of products, assignment of tools to machines, and many other

production activities. Since these schedules are usually acquired in advance of the actual

production to plan such decisions, upon implementation, they become subject to all these

unforeseen randomly occurring disruptions. Hence, the scheduler part of the control

system must be capable of modifying, or re-generating, the production schedule to

account for such disruptions while preserving the efficiency and minimizing the amount

of disturbance caused in the system.

When dealing with automated systems, such scheduling modifications have to be

performed in real time. This consequently necessitates the availability of a robust

supervisor that can reflect and implement such modifications also in real time. This

 10

supervisor should hence be integrated with the reactive scheduler to ensure that the

proactive reactions are taken while considering the overall performance and the amount

of nervousness resulting in the system. Furthermore, it has to be ensured that the

modified schedules and the re-developed supervisor can still drive the system safely

without encountering deadlock states.

1.2 Research Motivation

The primary motivation for this research is to develop a control scheme that can be

used to efficiently and safely drive FMSs that incorporate job shop flow patterns (will be

referred to henceforth as flexible job shops). Although this type of system has a great

potential to meet the demands of the current global market (Figure 1.1), the current

industrial practice lacks a formal method by which these systems can be efficiently

operated and controlled. As a result, most FMSs in the industrial practice use the flow

shop perception and are still scheduled and operated using the simplest dispatching rules

[1]. This in turn has led to the belief that these systems include more functions, and thus

more capital, than what is actually needed, when the fact of the matter is that there

functionality and flexibility are just underutilized. Developing a control scheme (or

system) that can efficiently operate flexible job shops to their functional extent will not

only provide more benefits to practitioners that have already adopted the FMS notion, but

will further encourage more practitioners to exploit the benefits of implementing such

systems.

 11

The secondary motivation for this research is to ascertain that not only flexible job

shops can be efficiently operated, but are also robust enough to adapt to the ever

changing nature of today’s global market and any unplanned changes in the system. With

the current unpredictable trends in the global product demand, it is becoming harder to

forecast the best production levels that should be maintained for existing products.

Moreover, the rapid pace in technological developments resulted in a high frequency of

new consumer goods being introduced into the marketplace. The effects of these external

variations are reflected on the shop floor in the form of new products being inserted

suddenly in the production plan, due date revisions, lot size variations, and order

cancellations. On the local level, the manufacturing system can also be a source of

internal disruptions to the production process. Machine breakdowns and process time

variations are common examples of such disruptions. Whether external or internal, when

dealing with automated systems, the control system should be capable of incorporating

and reacting to such disruptions in a deadlock-free manner, such that the overall

performance of the system is minimally affected. Thus, if a robust controller for a flexible

job shop is sought, it has to be designed accordingly.

1.3 Problem Statement

The type of systems considered in this research is automated flexible manufacturing

systems (or cells) that feature a job shop flow pattern, or flexible job shops. An automated

flexible cell usually comprises a number of CNC machines that are served by a dedicated

material handler (like a robot manipulator). In addition, such cells usually include some

 12

buffer capacity that can be used to temporarily store a job to preserve the continuity of

flow or to resolve a deadlock. This buffer capacity can feature a central buffer that

equally serves the whole cell or intermediate (input) buffers dedicated to the individual

machines. A typical representation of such flexible cells is shown in Figure 1.3. The cell

shown is comprised of five machines (M1 through M5) that are visited by three different

jobs, A, B, and C. The figure shows the processing routes for the three jobs in a typical

job shop environment. It also shows that the cell may have some buffer capacity in the

form of intermediate buffers (b1 to b5) attached to the five machines, or a central buffer

with an arbitrary capacity that serves the whole cell.

The following assumptions define the operational conditions of the considered system:

� Jobs use the machines and the transporter(s) in an exclusive mode.

� Job pre-emption is not allowed; i.e., the operation of a job on a machine cannot be

interrupted to process another job.

Figure 1.3: A typical flexible manufacturing cell

 13

� Each operation of a job has a fixed processing time on each machine that can

process this operation.

� Some or all of the jobs may have routing flexibility; a number of alternative routes

are available to choose from to complete the processing of a job.

� Set-up times of jobs on machines are independent of the sequence of visiting jobs

and are included in the processing times.

� Transportation times between machines and other machines or the buffer are fixed.

Because of the dynamic production environment in which these cells are intended to

operate, they are usually prone to frequent disruptions. These can be external due to

product mix changes, or internal, caused by breakdowns or variations in the

manufacturing processes. Accordingly, the control system of such cells should be robust

enough to absorb these disruptions and modify the control commands in order to

maintain the stability and the optimized performance, while ensuring a deadlock-free

operation of the cell.

The problem focused on in this research can thus be formally stated as follows: given

an automated flexible manufacturing cell like the one illustrated in Figure 1.3, it is

required to sequence and control the flow of the visiting jobs through the cell, such that

the performance of the system is optimized and no deadlock situations are encountered.

Furthermore, upon the occurrence of a disruption, it is required to maintain the

performance and stability of the system, while preserving the deadlock-free operation,

when reacting to this disruption.

 14

1.4 Solution Approach

Ideally, the functions of a production control system can be classified into three

distinct functional modules; a scheduler, a monitor, and a dispatcher. Accordingly, the

current study proposes a hierarchical control system divided into an upper level

scheduler, and a lower level supervisor that monitors and dispatches commands to the

shop floor (Figure 1.4). The scheduler is responsible for determining a feasible allocation

of the resources that optimizes some performance measure, based on the current

production requirements and any unforeseen internal or external disruptions. The monitor

collects and summarizes shop floor status information and feeds it back to the dispatcher

and the scheduler. The dispatcher is then used to sequence and synchronize the physical

activities in the system, based on the decisions of the scheduler and the feedback from the

monitor.

Figure 1.4: Proposed hierarchical control system

 15

Realizing the control system shown in Figure 1.4 can guarantee, not only the correct

and safe operation of the controlled system, but also an optimized production

performance as follows:

- The scheduler is the decision maker in the control system. According to the current

product mix, it provides a production schedule that allocates processing slots for the jobs

on the available machines while optimizing some production objective criterion. Taking

into consideration the capacities of the available resources, this schedule will further

ensure that the resulting job flow cannot cause any deadlock situations. Upon the

occurrence of any internal or external disruption to the system, the scheduler will react to

the disruption such that the updated schedule still retains the optimized performance with

minimal variations from the original schedule.

- The supervisor is the command executer and observer of the system. In order to

implement the original or the updated schedule on the shop floor, the assigned processing

slots, and hence the underlying flow plan is transformed into a supervisory format that

can interact with the shop floor devices. The supervisor will guarantee that the flow plan

(behavior) determined by the scheduler is realized on the shop floor. It evolves in a

discrete event manner, and is capable of receiving feedback signals and accordingly

issuing action commands directly from/to the shop floor.

To attain and validate this hierarchical control design, the approach followed in this

research can be detailed as follows:

1. Development of mathematical models for the deadlock-free scheduling

problem of flexible job shops that can be solved to obtain optimal schedules

 16

while considering a variety of system parameters. The models can then be

utilized to schedule a new product mix for small systems, or in the design

stages of medium ones.

2. Development of a heuristic, capable of solving the same scheduling problem

for larger systems, which cannot be solved optimally using the mathematical

formulations due to computational time limitations.

3. Development of a generic tool that can modify the production schedule in a

deadlock-free manner to account for common internal or external disruptions

in real time, while preserving the production performance and stability of the

system.

4. Development of a formal method that can transform a production schedule

into a discrete event supervisor in real time, which can realize the correct,

optimized, and reactive behavior of the system determined by the scheduler.

5. Validation of the proposed hierarchical control approach by implementation in

a real manufacturing setting.

1.5 Thesis Outline

This thesis is organized as follows. In Chapter 2, a comprehensive literature review on

scheduling and control in manufacturing systems is provided, with special emphasis on

deadlock-free scheduling and supervisory control in automated systems. The literature on

reactive scheduling and control is also reviewed, and a number of controller

implementation approaches are discussed. Chapter 3 provides novel Mixed Integer

 17

Programming (MIP) mathematical models of the deadlock-free scheduling problem in

flexible job shops with limited capacity buffers, and a novel operations insertion heuristic

to solve the problem. Evaluations of both the approaches proposed are conducted via

comparative analysis. In Chapter 4, the problem of deadlock-free reactive scheduling is

addressed with emphasis on the product mix changes. A novel generic tool is proposed to

revise the production schedule in the face of a number of internal and external system

disruptions, while preserving the deadlock-free necessity in the revised schedules. A

formal approach to realize a deadlock-free schedule through a discrete event controller

(supervisor) is then proposed in Chapter 5. First, the deadlock-free schedule is

transformed into a Marked Graph that captures all the precedence relations between the

jobs on the different system resources. This graph is then augmented to include all the

necessary components required to drive a system autonomously in a correct and

optimized manner. Validation and evaluation of the hierarchical control approach via

implementation in an experimental flexible manufacturing cell is presented in Chapter 6.

Hardware and software components required to implement such a controller are also

demonstrated. Finally, in Chapter 7, conclusions of this work and recommendations for

future research directions are proposed.

 18

CHAPTER 2:

Literature Review

2.1 Introduction

Efficient allocation of system resources and proper and correct realization on the shop

floor can rather be expressed as scheduling and control, respectively. Scheduling and

control of manufacturing systems have been widely researched and reported in the

literature in the past decades. Although an ideal production control system should

integrate the scheduling and the control tasks to ensure a correct and optimized behavior

of the system, these two research areas have been treated separately in the past literature.

This has lead to a gap between the contributions found in the scheduling literature and

those pertaining to actual implementation on the shop floor [2], especially in automated

manufacturing systems (AMSs). Furthermore, it was mentioned in [3] that despite the

close relation between the control of AMSs and scheduling, there is a total lack of

connection between the extensive literature reported on control of AMSs and those that

deal with reactive scheduling. It was also mentioned that unless scheduling techniques

consider the logic, or behavior of the system that should be realized by the controller,

these schedules would certainly be unfeasible to implement. In fact, although much

research effort has been devoted to production scheduling, most AMSs in the industrial

environment are still scheduled using the simplest methods; namely dispatching rules [1].

 19

Lately, to cope with the expanding trends in automation, deadlock-free scheduling and

supervisory control approaches have, to some extent, dominated and replaced the

corresponding traditional approaches. Although this has reduced the gap between the two

hierarchical levels, the literature on deadlock-free scheduling still lacks a formal

approach that can transform a schedule into an implementable supervisor, and the

literature on supervisory control still considers the supervisor as the sole decision maker

in the control system. A few attempts, however, have been made to integrate both levels,

but these either lacked a global view of the system when performing the scheduling task

[4], or realized a poorer performance via the supervisor when compared to schedules

resulting from pure deadlock-free scheduling approaches [5].

The literature on scheduling and control in general is vast and too large to be covered

in this survey. Accordingly, the focus here will be directed towards supervisory control

and deadlock-free scheduling approaches, with occasional selections of some traditional

scheduling approaches, mainly for the purposes of illustration and comparison. The

literature on supervisory control can be classified into two main classes; approaches that

utilized automata and those that utilized Petri nets (PNs). The objective in both cases was

to acquire a supervisor capable of preventing the system from entering illegal (deadlock)

states, while conforming to the technological and production constraints of the system.

The traditional scheduling literature has utilized mathematical modeling, heuristics,

insertion heuristics, priority rules, and meta-heuristics, amongst other approaches.

Existence of infinite buffers has been assumed in all traditional approaches, and hence

they cannot be adopted for AMSs, especially those that follow the job shop flow pattern

 20

(Section 1.1.1). As a result, deadlock-free scheduling approaches have been receiving

greater attention lately and are being pursued as a potential substitute.

The approaches proposed in the deadlock-free scheduling and the supervisory control

literature are very closely related. In fact, these approaches have usually been

interchanged in analysis. To account for system flexibility, specifically for system

adaptability to unforeseen changes in the production state, the notions of rescheduling (or

reactive scheduling) and reactive control have also been introduced to the literature.

In the sections to follow, the major supervisory control and deadlock analysis

approaches will be reviewed first. This will be followed by a review of the deadlock-free

scheduling approaches that utilized modeling tools like PNs and automata, which

constitute the major portion of the deadlock-free scheduling literature. A review of some

mathematical modeling and operations insertion approaches for the scheduling problem

will then be presented. Literature on reactive scheduling and control will then be

reviewed. Finally, a brief account on some controller implementation approaches will be

given.

2.2 Supervisory Control of Automated Manufacturing Systems

The Supervisory Control (SC) problem for discrete event systems (DESs) can be

formally defined as follows: given a plant (system) and the specifications of its desired

behavior, the objective is to synthesize a controller that works in a closed-loop with the

plant to ensure that it behaves legally according to the desired specifications [6]. The

 21

word legally essentially implies the absence of deadlocks during the operation of the

plant. For a production system, the specifications basically describe the modeled system

with its resources and the processing requirements (or routes) of the parts (jobs) [7].

The Supervisory Control Theory (SCT) for DESs was proposed by Ramadge and

Wonham (RW) [8, 9, 10] using automata and formal language models (Appendix B). In

the SCT, the behavior of the DES is described by the sequences of events in the system.

It is assumed that the system asynchronously generates the events. A supervisor is then

defined as a controller that uses available data, or feedback, to characterize the behavior

of the system, and disable undesired transitions in response [11]. These undesired

transitions would lead the system to undesired states; mainly deadlock states. In general,

a supervisor has three main tasks; i) monitoring the behavior of the system through

feedback, ii) evaluating the current state and determining the appropriate control action,

and iii) enforcing the specified control action [12].

2.2.1 Automata and Petri Nets

The development of a SC entails these three main steps [12]:

1. Modeling the DES (plant) and the specifications.

2. Synthesizing the supervisory controller with its control laws.

3. Implementing the supervisor and its control laws using a Programmable Logic

Controller (PLC) or any computer based control system.

 22

In the previous literature, several methods have been proposed for modeling and

controlling DESs. These included RW’s SCT, PNs, timed-transition models, real-time

temporal logic, algebraic/language-based models and Moore automata. Although there

exists no common agreement as to which one of these is the most effective modeling

technique, the SCT and PNs have been the two most frequently used and commonly

accepted methods by researchers for modeling and control of AMSs [13].

Some researchers agree that it is more advantageous to consider a SCT based approach

over other approaches [14] because the resulting supervisors i) do not violate the

specifications and are deadlock-free by construction, and ii) are optimal (maximally

permissive) since all the legal events are allowed to occur in the system, unless they

contradict with the defined specifications. On the other hand, other researchers find that,

in automata models, the number of states increase exponentially with the system size and

the graphical representation becomes unfeasible [15]. It was also stated in [11] that

transforming system specifications into the formal languages of the SCT is not an easy

task, and that analyzing such models for system performance is very difficult. In contrast,

PNs were found to provide i) easily understandable graphical representations of the

system and its specifications, ii) a well-formed mathematical basis, iii) a more compact

description, and iv) analysis tools for the behavioral properties, performance evaluation

and systematic construction of controllers (an introduction to PNs, their representational

power, behavioral properties, and common structures is provided in Appendix A).

However, it was stated in [16] that, unlike SCT-based models, optimal supervisors need

not exist for all PN classes and that focus in PN models has usually been directed towards

 23

proving the deadlock-freeness of the final model, with disregard to other important

properties like reversibility.

There are some advantages and limitations associated with each of these two modeling

techniques. However, PNs seem to provide a more convenient modeling tool for DES

supervisors, and in the past decade PN approaches have, to some extent, dominated other

modeling approaches. In the next sub-section, a review of the work that utilized and

extended RW’s SCT will be highlighted. This will be followed by a comprehensive

review of the work that dealt with the supervisory control problem using PNs.

2.2.2 SCT Approaches

Centralized supervision implies that the whole system is supervised by a single

controller that features the required closed loop behavior. Because of the aforementioned

state explosion problem associated with automata models, the notion of modular

supervision was introduced [10]. Modular (or de-centralized) supervision divides the

system-wide supervisory task into two or more subtasks (or specifications). Each subtask

is then solved using the SCT approach to obtain individual supervisors, which can be run

concurrently to supervise the whole system [17]. Compared to the centralized supervisor,

it is easier to obtain a modular supervisor because of the reduction in the number of

associated states. Moreover, the modular supervisor is more readily modified, updated

and maintained. The modular approach has been applied in many studies to control more

complex AMSs than the ones controlled by the centralized approach. In [12], modular

 24

supervisors were employed to control a manufacturing cell consisting of a robot, a vision

system, a conveyor belt, and two numerically controlled (NC) machines to produce two

types of products. In [14], six assembly workstations working in series were supervised

by three modular supervisors.

The reduction in state space achieved by modular supervisors comes at the expense of

a considerably long computational time to ensure that the local supervisors are non-

blocking (or non-conflicting). The idea of modularity implies that the control action of

each of the modular supervisors is based on a partial view of the overall system state

(Figure 2.1 (a)). Consequently, the control commands issued by these supervisors can

sometimes come into conflict, especially when the behavior of some system resource is

controlled by more than one supervisor [18]. Some studies proposed methodologies to

introduce communication between the local supervisors [19], and to define conditional

decisions that empower the local supervisors [20, 21] to enhance the performance.

However, these methodologies in turn required substantial analysis and computational

time.

While modular supervision implies a horizontal division of the control tasks,

hierarchical supervision on the other hand implies a vertical division of these tasks [18].

In this setting, a high-level supervisor instructs and co-ordinates the tasks of lower-level

supervisors. When more than one low-level supervisors are utilized, as is usually the

case, it becomes a hierarchical-modular supervisor (Figure 2.1(b)). This is another form

of de-centralization, which can simplify the analysis of complex systems using the SCT,

while ensuring better coordination between local low-level supervisors. In [22], an

 25

interface level was added in the hierarchy between the high and low levels, to obtain a

hierarchical interface-based supervisory controller. This architecture enabled efficient

analysis and verification of the global controllability and non-blocking properties of the

overall supervisory system, just by verifying them at the local (lower) level. However,

this approach still suffered from state space explosion when the synchronous product

(Appendix B) of the high-level controller and all the interfaces is obtained. It was

concluded that this problem may be overcome by considering more levels of hierarchy.

The original SCT proposed by Ramadge and Wonham provided an abstract

synchronization of the qualitative, or logical, behavior of the modeled systems, with no

consideration of time. Temporal (timed) behavior was introduced in the SCT framework

in [23] and [24] using timed transition models (TTM). This was achieved by introducing

the activity transition function δact into the original generator automaton G, along with

lower and upper time bounds within which events were permitted to occur. In addition, a

Figure 2.1: De-centralized supervision; a) Modular supervision, b) Hierarchical-modular

supervision

 26

new event called tick was introduced into the model to represent the advancement in

time, and the state space of the system had to be increased to correspond to the change in

time. This approach has been applied within the frameworks of both centralized and

modular supervisors. However, introducing timing into the model in the above manner,

leads to a substantial increase in the number of states, and thus the complexity, of the

system [18].

In [25], [26], and [27], the notion of time-augmented automata, or augmented finite

automata (AFA), was proposed to incorporate the temporal behavior into the automata

model. An integer global clock T, a variable C for each automaton that is reset to T every

time an event changes the state of the system, and a label associated to each event to

represent the earliest time this event may occur were introduced. The original generator G

was then augmented with the finite set of labels ∆ and a one-to-one function ω that maps

each event to its associated label. This approach eliminated the increase in state space to

represent the temporal behavior. It was also possible to model more complex

manufacturing systems, namely job shops, and incorporate the temporal behavior of these

systems into the model for cycle time optimization purposes. However, the results

showed that obtaining the time-augmented models for relatively small job shops required

much more computational time than other optimization approaches.

It can be concluded from the above discussions that the limitations of the SCT

approaches can be attributed to the large state space required to represent even small

systems, and the complexity of analysis of the formal languages. This lately has lead to

the introduction of hybrid approaches that benefit from the advantages of both PNs and

 27

SCT in controlling DESs [11, 16]. In these approaches, the modeling power of PNs was

used to represent the uncontrolled behavior of the plant, and SCT was used to obtain the

optimal (maximally permissive) supervisors for the plant. With the final closed-loop

hybrid model described as a PN, PN analysis tools were then utilized to analyze the

behavior of the modeled systems.

2.2.3 Deadlock Analysis and SC Approaches using PNs

Unlike automata models, PN models can readily and explicitly describe the behavior

of the modeled system. Hence, the requirement of the supervisor to conform to the

specifications of the system is inherently satisfied in the PN models. Accordingly, the SC

problem in the PN formalism has usually been directed towards ensuring the safeness of

the final model, or more precisely, guaranteeing the deadlock-freeness or liveness of the

model.

In general, there are three strategies that address the deadlock problem; deadlock

prevention methods, deadlock avoidance methods, and deadlock detection and recovery

methods. Prevention methods guarantee that deadlock conditions cannot be

simultaneously satisfied at any point during the operation of the system [28]. They are

usually applied offline during the design stage, and hence do not require the knowledge

of the system state to realize the control action. Avoidance methods, on the other hand,

are online methods that require the knowledge of the current state of the system in real

time. Based on the system state, the controller can then inhibit or enable events using

 28

look-ahead procedures that determine future deadlock states. These methods also have to

detect unsafe states that may lead the system inevitably to deadlocks. Finally,

detection/recovery methods employ a monitoring mechanism to detect deadlocks and a

resolution procedure that can terminate deadlocked operations by releasing the associated

system resources. However, this strategy is difficult to apply in fully automated systems,

and can result in considerable system downtime if deadlocks are frequent.

In the PN literature, deadlock avoidance and prevention policies have usually been the

ones adopted. Some approaches proposed pure avoidance or prevention policies, while

others often proposed hybrid strategies that define some prevention control strategy

offline and apply this strategy online to avoid deadlocks. Furthermore, the PN literature

on deadlock avoidance and prevention can be fairly classified into generic approaches

that considered the liveness of the whole net, and approaches that characterized the

deadlock states using siphons analysis.

2.2.3.1 Generic PN deadlock analysis approaches

In [29], deadlock prevention and deadlock avoidance techniques for PNs were

proposed. The deadlock prevention policy was based on the exhaustive search of the

reachability graph (RG) of the PN model to identify deadlock markings, and the

determination of the paths in the RG that do not lead to those markings. On the other

hand, the avoidance policy constructed the RG only for a finite number of look-ahead

steps from the current state, to check for potential deadlock markings. The policy then

 29

avoided the undesirable paths by restricting the firing of the transitions to safe paths only.

However, approaches based on the reachability analysis suffer from state space explosion

when the system size, and hence the number of states, increases.

In [30], a deadlock avoidance algorithm (DAA) was proposed for AMSs. In addition,

the PN structure, Production Petri nets (PPNs), was defined to model the manufacturing

systems. A PPN consists of a set of shared resource places, where each resource is

represented by two places; tokens in the first place represent the jobs holding the resource

and those in the second represent the available number of units of this resource (Figure

2.2). The production sequence of each job (part type) is then represented by a sequence of

places and transitions, where places represent the required steps to produce the job and

the transitions model the release or acquisition of a resource to complete the associated

step (or operation).

The proposed DAA was defined as a resource allocation restriction policy that selects

specific enabled transitions for firing. This policy was based on two rules: i) a token is

allowed to enter a new zone in the production sequence only when the capacity (number

of available resource units) in the shared sub-zone exceeds the number of tokens (jobs),

and ii) if a shared resource is requested by a job, all the other resources in the associated

zone must be available. This policy was relatively simple because it was based only on

the analysis of resource requirements in the current production sequence zone for each

job. However, it was too conservative because it allowed a limited number of jobs in each

zone, and hence resulted in a poor overall system performance.

 30

In [31], another deadlock avoidance policy was proposed for an extension of PPNs

that allows an operation on a job to acquire more than one resource simultaneously. The

policy was achieved by augmenting the PPN with control places, defining a controlled

production Petri net (CPPN). The function of the control places in the CPPN is to

incorporate exogenous conditions for disabling transitions, whose firing may lead to a

deadlock. A validity test was also proposed to ensure the liveness of the CPPN for a

given initial marking, by determining the sequence of markings that lead to the

completion of all the required operations. Like the policy proposed in [30], the avoidance

policy proposed in [31] was too restrictive [28]. In [32] and [33], deadlock prevention

techniques were proposed for PN models of AMSs with shared resources. The PN models

were synthesized and analyzed to ensure structural liveness and reversibility. This was

Figure 2.2: A production Petri net (PPN)

 31

achieved by adding buffer modules or limiting the number of parts in the process, which

increased the conservativeness of the model.

In [15], the notion of Automation Petri nets (APNs) and the inhibitor arc method for

the control of DESs were proposed. In APNs, the firing of each transition is associated

with the occurrence of an external event. In addition, firing a transition initiates an event

in the system, like the start of a machining process. The inhibitor arc control method

involved first representing the uncontrolled behavior of the system with an APN. The RG

of the APN was then generated, and the bad markings (deadlock states) were identified

and removed. The reduced RG was then transformed into another APN, which was

connected to the original APN with inhibitor arcs to prevent the occurrence of events

(firing of transitions) that can lead to the identified deadlock states. In [16], instead of

generating the RG of the uncontrolled APN, the SCT was applied to obtain the

maximally permissive RW supervisor of the system. The obtained RW supervisor was

then transformed into an auto-net, which is a PN-like representation, which was then

connected to the APN model of the plant with inhibitor arcs.

2.2.3.2 Siphons and deadlock analysis

The above deadlock avoidance and prevention approaches suffered either from the

state explosion problem or the restrictiveness of the PN model. This was due to the

absence of a characterization of deadlock states [28]. Deadlock states in PNs can be

directly associated with the presence of empty siphons in the net (Appendix A). In [34],

 32

PPNs were extended to model flexible routing in the system, and a new PN structure

referred to as Systems of Simple Sequential Processes with Resources (S
3
PR) was

defined. An S
3
PR is a set of cyclic state machines (SMs), each with an idle place having a

number of tokens equal to the number of parts to be processed. These SMs are connected

via a number of places with tokens representing the number of available units of each

resource. The liveness of these nets was analyzed and it was shown that a S
3
PR net is live

iff for each reachable marking each minimal siphon had at least one token. A control

policy that determines the set of minimal siphons that can be emptied was established,

and additional places were introduced to the net to prevent these siphons from becoming

empty.

In [35], the liveness of another class of PNs was proved using minimal siphons. The

class of augmented marked graphs (AMGs) was introduced, and it was proven that an

AMG is live and reversible if no siphon is a potential deadlock (can become empty).

AMGs are cyclic marked graphs (MGs) augmented with places that represent the

available resources in the system. The main differences between AMGs and S
3
PR nets is

that in the former, a processing stage can utilize more than one resource, and in the latter,

routing flexibility is allowed (Figure 2.3). A sufficient condition for liveness based on the

state equation of the net was also proposed, and it had to be verified for each minimal

siphon that does not contain a marked trap. A Mixed Integer Programming (MIP) model

was further formulated to check for potential deadlocks.

 33

Because the number of minimal siphons is exponential with the number of places in

the net, the control policy proposed in [34] had an exponential complexity. This problem

was addressed in [36], where a logic programming algorithm was proposed to find the set

of minimal siphons in S
3
PR nets. This algorithm had a fast convergence rate, but still

suffered from an exponential worst-case complexity. In [37], S
3
PR nets were extended to

model jobs that can utilize more than one resource simultaneously by defining a PN

structure called Systems of Sequential Systems with Shared Resources (S
4
R nets). A

deadlock prevention policy that augmented the net with local additional places for each

minimal siphon was proposed to ensure that the net will remain marked for all reachable

markings. A look-ahead avoidance policy that did not guarantee the deadlock-freeness in

every case was also proposed. Alternatively, if a deadlock state was reached, a recovery

procedure was initiated to resolve the deadlock.

In the subsequent years, some approaches have been proposed to extend the types of

systems that can be modeled using similar PN structures, where deadlocks can be

characterized using minimal siphons. For example, in [38], the analysis of S
3
PGR

2
 nets

Figure 2.3: Special PN classes: a) S
3
PR nets; b) Augmented marked graphs (AMGs)

 34

was proposed. These nets can model systems where every processing stage poses a finite

number of alternative requests, such that each requires an arbitrary number of units of

each resource from a set of resources. Other approaches proposed more efficient

algorithms to compute the minimal siphons for special classes of PNs [39]. However, the

computation of minimal siphons remained with an exponential complexity.

Another problem with the minimal siphons approach for deadlock prevention is that

the control policy adds an additional place to each minimal siphon in the net to ensure its

liveness. This results in a much more complex PN control model than the original PN

model of the system [40]. To overcome this problem, the notion of elementary siphons

was introduced in [41]. In this study, it was shown that not all the minimal siphons in the

net need to be controlled (associated with additional control places), but only a limited set

of elementary siphons. It was also shown that the number of these elementary siphons is

only bounded by the number of places or transitions in the net (whichever is smaller). In

[42], an algorithm that can compute the optimal set of elementary siphons in polynomial

time was proposed. However, it was stated that this optimal set cannot be computed for

all PN structures. In [41], the algorithm was applied to S
3
PR nets to identify this optimal

set of siphons in polynomial time. However, a shortcoming of the elementary siphons

approach is that it required the prior knowledge of all the siphons in the net in order to

identify the set of elementary ones. Hence, it also suffered from the computational

complexity associated with computing the siphons of the net.

 35

2.3 Deadlock-free Scheduling

In the context discussed in the previous sections, the task of a controller (supervisor)

in an AMS was to realize the correct behavior that grasps the requirements of the system.

In another context, the role of the supervisor is just to coordinate and synchronize the

activities within the AMS [43]. In the latter context, a higher-level scheduler determines

which job the AMS accepts next, which machine a job visits next, and which job a

machine processes next. Indeed, it was also mentioned in [2] that the scheduler should be

the only decision maker in the overall control system. Employing such a hierarchy will

not only guarantee the correct behavior of the system, but also generate the one that is

optimal. Although much research has been devoted to production scheduling in the

previous decades, most production systems in industry still depend on very simple

dispatching policies for scheduling [1]. This, especially in AMSs, can be mainly

attributed to the lack of deadlock consideration in the scheduling level.

The research on production scheduling can be traced back to the beginning of the

previous century. This has included mathematical modeling, dispatching-rule-based-

heuristics, simulation, fuzzy logic, neural networks, local search algorithms, and met-

heuristics [26]. However, the notion of deadlock-free scheduling has begun to attract

attention only in the mid nineties. This was due to the increasing interest in AMSs, the

wide-spread of new manufacturing paradigms like FMSs, and most importantly the

introduction of the SCT and the application of automata and PNs in characterizing

deadlocks. Because automata and PNs have been the most widely employed modeling

 36

formalisms to detect and/or characterize deadlocks, they have usually been combined

with conventional scheduling approaches to obtain deadlock-free schedules.

2.3.1 PN and Automata Scheduling Approaches

The work proposed in [44] was perhaps the first to introduce the technique of

searching the RG of a Timed PN (TPN) to find the best deadlock-free schedule. In the

TPN, operation times were associated with places. The method first formulates the

scheduling problem using a PN model that captures the properties of the system to be

scheduled. A partial RG is then generated, based on a heuristic function, to define the

best schedule in terms of a sequence of transition firings. The generated firing sequence

drives the net from its initial state Mo to a final state, where all the jobs have completed

their processing in the system with the best makespan (MS). Potential deadlock states are

avoided in the path generation process since they are depicted by transitions that cannot

be fired. To avoid searching the whole RG, an A
*

search algorithm was employed. The

A
*
 search algorithm is a best first (BF) strategy, where each node in the search tree is

assigned an optimistic estimate of the ‘cost-to-go’; that is, the cost (time) of reaching a

node representing a final state. The nodes with the best cost estimate were then selected

for further exploration. The presence of intermediate buffers between machines that can

resolve deadlocks was also considered. It was concluded that formulating the scheduling

problem using PNs can easily handle essential properties of FMSs, like alternative

routing, shared resources, and different lot sizes.

 37

In [45], a hybrid search algorithm was combined with TPNs to find the best schedules,

with no consideration for deadlocks. Infinite buffers were assumed to exist in the system.

In this approach, a combination of a BF strategy and a Backtracking (BT) strategy was

utilized. The role of BT was to improve the solution found by the BF search. When a

final marking was reached, the BT was initiated up to a stage where alternative enabled

transitions existed. It then explored a new (alternative) branch by firing one of the

alternative transitions and repeating the BF strategy to obtain a new solution. In [46], this

work was extended by considering limited intermediate buffers and material handling

operations. Places representing buffer capacities were introduced into the TPN such that,

a job was only allowed to move to the next machine in its processing route if this

machine was available or the intermediate buffer preceding it had some available

capacity. In [47], the hybrid BF-BT search procedure was utilized to schedule systems

with alternative routes for jobs. A new heuristic function to provide better cost estimates

in the search process was also proposed.

In [48], a hybrid BF-BT search procedure was again employed, but with embedded

priority rules to select from possible alternative enabled transitions. The least work

remaining (LWKR) rule was used, and in case of transitions having the same LWKR, the

shortest processing time (SPT) rule was utilized to break the ties. Timed S
4
R nets were

used to model the system and the approach developed in [36] was utilized to compute the

minimal siphons of the net. The liveness condition of S
4
R nets, which is related to

minimal siphons, was then used as a truncation technique to reduce the search space, and

consequently the computational time of the algorithm. In [49], this work was extended by

considering the mean flow time (MFT) as the scheduling objective criterion rather than

 38

the MS, which was considered in all previous studies. A user control factor was also

proposed to compromise between the quality of the obtained solution, and the

computation time needed to acquire the solution.

In [50], TPNs were again employed to model the manufacturing system. While a cost

function was calculated to select the transition to be fired at each state, the algorithm was

set to look ahead several transitions to ensure that deadlock states are not reached.

Deadlock states were defined as states where the number of jobs in the whole system is

greater than or equal to the limited capacity of a central storage device (buffer) that

serves the whole system. The cost function was evaluated using the SPT or the LWKR

priority rules.

In [51], the transition sequence of the TPN model of the system was coded with

natural numbers as chromosomes in a genetic algorithm (GA). Siphons analysis was

employed to detect transitions leading to deadlocks, and was incorporated as a deadlock-

free constraint in the GA. Upon the detection of a bad transition, a decoding scheme was

used to reschedule the transition sequence to avoid the deadlocks. Finally, a penalty item

was added to the fitness function of the GA to avoid converging to unfeasible solutions.

This work was extended in [52] by considering multiple resource allocation systems,

where a part can use several units of several types of resources at a single processing

step.

In [53], a TPN model was used to represent the system, and a beam search (BS)

strategy was associated with the execution of the net. In a BS strategy, at each search

step, a number of nodes equal to the set beam width are evaluated. In order to avoid

 39

deadlocks, a siphon detection algorithm was employed to check whether the addition of a

node to the beam would cause a deadlock. The PN generation and siphons detection

algorithm were employed off-line to determine the deadlock states.

In [54], a feasibility condition for deadlock-free schedules was proposed. Schedules

were represented by MGs, and it was concluded that a schedule was feasible if it was free

from elementary circuits. The notion of simple systems was also introduced, where

resources are released as soon as the processing of a job is completed; in other words, the

hold while wait condition was not considered in simple systems. A dynamic

programming algorithm was also proposed to solve the scheduling problem of simple

systems to optimize the MS. In this algorithm, the scheduling problem was solved

recursively as a one-job problem, until all the jobs are included in the schedule. In [55],

the hold while wait condition was incorporated in the dynamic programming algorithm.

The schedule was represented using a place timed MG and a condition was added in the

dynamic program to check if performing an operation at a certain time period would lead

to a deadlock.

As for automata approaches, in [56], timed automata were employed to represent

manufacturing systems with limited buffers and an A* tree search algorithm was used to

find the best schedule. The search for deadlock states was done off-line, before the

application of the A
*
 algorithm and these states were removed from the search tree to

reduce the search space. In [25] and [27], the RW supervisor was obtained for the

modeled system using automata formalism. In order to search for the best schedule, the

RW supervisor was augmented with time to obtain the AFA (Section 2.2.2), and a BF

 40

strategy was applied to determine the deadlock-free schedule with the best MS. In [26], a

beam search (BS) strategy was employed instead of the BF strategy to find the best MS.

A k-step-look-ahead evaluation was also employed, such that k determines the depth (or

number of look-ahead steps) of each iteration. It should be noted that, before using both

search techniques (BF & BS), the AFA and the RW supervisor were obtained off-line to

reduce the computation time.

Although most of the studies concerned with deadlock-free scheduling relied on the

deadlock characterizations provided by PN and automata structures and analysis

methods, a few approaches considered other formalisms to define deadlock states. In

[57], the presence of central buffers was considered, and a GA was embedded with the

transition sequences of a graph theoretic approach employing transition digraphs (TD) to

optimize the deadlock-free scheduling problem. The TD represented the information

regarding job-resource interactions at each state of the system. The nodes of the TD

represented the resources (machines and central buffer), and the directed arcs represented

job transitions from one resource to another (Figure 2.4). A deadlock state was then

defined as a state where every reachable node is capacitated (occupied resource).

 41

In [58], Tabu search (TS) was combined with an extension of the classical geometric

approach, which was previously used to solve the classical two-job problems, to obtain

deadlock-free schedules. In order to detect deadlocks, a modification of the disjunctive

graph (DG) representation was used to model the schedule (DG with blocking), in which

the hold while wait condition was respected. In the proposed DG, each processing

operation was represented by a node and two types of arcs were defined to connect these

nodes; conjunctive arcs and disjunctive arcs. Conjunctive arcs connected the consecutive

operations in a job’s processing route to ensure the precedence constraints, while couples

of disjunctive arcs connected the operations sharing the same resources, such that the

hold-while-wait condition was respected (Figure 2.5). The TS algorithm was used to

select one of each of the disjunctive couples to obtain a schedule. A deadlock was then

defined as a circuit of disjunctive arcs in the DG. Upon the detection of a deadlock, a job

was rescheduled using the geometric approach to resolve it.

Figure 2.4: A transition diagraph (TD)

 42

Finally in [59], the modified geometric approach was used again to obtain deadlock-

free schedules. However, in this second study, a deadlock detection algorithm

incorporated in the geometric approach was used instead of the disjunctive graphs

method. The geometric approach was further modified to schedule the jobs in the system

one after the other, such that the sequences of already scheduled jobs are not altered when

a new job is added to the schedule. The geometric approach considered all the previously

scheduled jobs as one job, and hence solved a two-job problem every time a new job was

added to the schedule. The deadlock detection algorithm was imbedded in the geometric

approach, and had a polynomial computational complexity in the number of jobs and

number of operations on machines. Deadlocks were defined as obstacles in the modified

geometric approach that must be avoided by the feasible path representing the schedule.

These obstacles represented cases of conflicts between resources operating on the two

jobs and cases of deadlocks.

Figure 2.5: The disjunctive graph (DG) with blocking

 43

2.3.2 Mathematical Modeling in Scheduling Job Shops

Mathematical modeling (programming) is a typical traditional approach for modeling

production scheduling problems [60]. In the past literature, the traditional job shop

scheduling problem has often been solved while assuming the existence of buffers with

infinite capacities. The scheduling problem in general is classified as NP-hard from the

computational complexity point of view [61]. As a result, mathematical models have

been hardly proposed to solve the deadlock-free scheduling problem, since it is even

harder than the traditional one. However, due to the everyday advancements in computer

capabilities and the existence of highly efficient commercial software for modeling and

solving linear and non-linear programming problems, solving complex mathematical

models has become possible [61, 62, 63].

In general, solving a mathematical model of a problem using an exact method

provides the optimal solution. In addition, mathematical models provide general

framework for the considered problems that can usually be adapted to many instances by

adding or deleting some constraints [63]. In [64], an MIP formulation was proposed to

solve the traditional job shop scheduling problem. The models proposed in [61], [65],

[66], [67], [68], and [69], did not consider the hold while wait condition, but considered

some flexibility related issues like alternative routes, parallel resources of the same type,

and re-entrant jobs (or operations). In these models, routing flexibility has been

represented using two main approaches. In the first, a job was assumed to have more than

one alternative process plan, where each was assigned an integer variable with the role of

indicating whether that process plan was selected or not [65,66]. In the second, an

 44

operation of a job was allowed to select its processing machine from a pre-defined set of

machines. This selection was again modeled by binary decision variables [68].

Solving the deadlock-free scheduling problem of job shops using mathematical

models was only considered in [70]. In that study, the deadlock-free scheduling problem

was modeled by two mathematical formulations. In the first model, it was assumed that

the modeled system had no buffer space, while in the second, intermediate buffers were

assumed to exist between the machines. However, the second model did not lead to

optimal schedules since buffer capacities were not represented in the model. In fact, it

was mentioned in [46], [54], [58], and [70], that representing capacities of buffers of a

job shop system in mathematical models is a very difficult task.

2.3.3 Insertion Heuristics

Operations and job insertion scheduling approaches have been applied in previous

literature with two different objectives; to insert newly arriving jobs, or to build schedules

of all the available jobs. In [71], a polynomial insertion algorithm, based on disjunctive

graphs, was proposed to solve the job shop scheduling problem with multi-resource

requirements and resource flexibility, and the on-line insertion problem of new jobs. This

work was extended in [72] by considering jobs with sequence-dependant set-up times. In

[73], a real time insertion algorithm based on dispatching rules was proposed to schedule

continuously arriving new jobs on a single machine. In [74], MIP models were proposed

 45

to solve the job insertion problem, and a relaxation method to compute a strong lower

bound for the problem was proposed.

In [75], a BS job insertion algorithm was proposed to solve the traditional scheduling

problem of jobs with sequence-independent setup times. Schedules were generated and

checked for feasibility by utilizing the rank matrix representation of the schedule. This

rank matrix is equivalent to the special Latin rectangle (LR) that was proposed earlier in

[76]. The idea behind a rank matrix was that it provided all the routing and sequencing

information of a schedule in one compact form. The rows of the matrix provided the

processing routes of the jobs, and its columns provided the sequences of jobs visiting

each machine. Like the above approaches, the utilization of rank matrices in [75] and [76]

was to solve the traditional scheduling problem with no consideration for deadlocks.

Although insertion algorithms usually outperform algorithms based on priority rules

[75] and those based on enumeration algorithms [72], it was noticed that the deadlock-

free scheduling problem was hardly approached using insertion algorithms. In [77],

however, an insertion algorithm based on disjunctive graphs was proposed to solve some

extensions of the traditional job shop problem, including the blocking job shop problem.

In this problem, no buffer space was available, and the time within which a job could

hold (or block) a machine until the next machine in the processing route becomes

available was considered. However, these considerations do not prevent the occurrence of

deadlocks, since circular waits can still be formed as shown in Figure 2.6.

 46

In Figure 2.6, job J1 is not allowed to start processing on machine M1 until J2 releases

M1 and starts processing on M2. Hence, the time during which a job blocks a machine is

considered. However, unless there is some buffer space where one of the three jobs can

reside, the shown circular wait between J1, J2, and J3 will practically prevent any of these

jobs from moving from one machine to another, and force the system into a deadlock.

2.4 Reactive Scheduling and Control

Although in [78] seventeen types of production system disruptions were mentioned,

most of the reactive scheduling literature has focused on two main types of disruptions;

arrival of new jobs [79, 80, 81, 82] and machine breakdowns [83, 84, 85, 86, 87, 88].

However, a few studies have considered other types of disruptions, often along with the

previous two, like process times variations [89, 90], order cancellations [91, 92, 93], and

due date changes (or urgent jobs) [90, 91].

Figure 2.6: Blocking job shop schedule

 47

Revising a production schedule upon the occurrence of a disruption affects both the

efficiency and the stability of the production process. The effect on the efficiency is

usually measured in terms of the percentage change in the scheduling objective criterion

between the original and the revised schedules. Stability has often been measured in

terms of deviations in the starting times of operations between the two schedules [78, 81,

83, 90]. Unfortunately, pursuing the optimum efficiency of the revised schedule usually

results in major deviations from the original one, and vice versa. For instance, a total

rescheduling (TR) approach solves the problem from scratch for the remaining operations

in the schedule, with the objective of optimizing the original scheduling objective

criterion, with no regards to the resulting disturbance [94]. On the other hand, the Right

Shift Rescheduling (RSR) approach aims at minimizing the amount of deviation caused

in the schedule by simply pushing all the remaining operations ahead in time to

compensate for the disruption [85]. This is done without changing the defined sequences

of jobs on the machines. In between these two extremes, many schedule repair

approaches have been proposed in the past literature. These included heuristics (78, 79,

83, 90, 95], dispatching rules-based heuristics [80, 96], filtered BS [93], GAs [81, 91,

92], Tabu search [97], and artificial intelligence [98].

In [83], the Affected Operations Rescheduling algorithm (AOR) was proposed to

overcome the deficiency of the RSR approach when encountering a machine breakdown

in the system. This algorithm produced more efficient and stable reactive schedules when

compared to RSR. AOR was later modified in [86] to account for batch processing

changes and in [82] to account for new urgent orders. In [78] and [90], AOR was used as

a core for a modified AOR (mAOR) heuristic that defined generic schedule repair actions

 48

for a wide variety of disruptions. In the first study, mAOR was compared to RSR

regarding the performance for four types of disruptions; machine breakdowns, arrival of

new orders, process time variations, and urgency of existing jobs. The results showed that

mAOR outperformed RSR in terms of both efficiency and stability.

Reactive schedules that do not recognize situations like blocking of machines and

deadlocks, upon implementation through the controller will eventually drive the system

into these illegal states. However, only a few reactive scheduling studies considered the

deadlock-free operation of the system. In [89] and [99], hierarchical dynamic

rescheduling systems were used. In these systems, when deadlocks were detected, a

controller (or process runner) module was used to avoid it. In [92], adaptive GAs were

used for dynamic total rescheduling, and when the GA solution yielded sequences that

cause deadlock situations, simple dispatching rules were used to modify them to ensure

the feasibility of the schedules. In [84], deadlock situations were prevented while

considering finite capacity buffers. However, only machine breakdowns were considered

in that study.

Finally, if a deadlock-free disrupted schedule is input to RSR, AOR, or mAOR, the

resulting revised schedule would be also deadlock-free, since pushing operations ahead in

time does not create new circular waits between existing jobs. However, although the

AOR could be efficiently applied to react to machine breakdown disruptions while

keeping the deadlock-free status of the schedule, its application through mAOR to react

to other disruptions, like arrival of new jobs, may lead to considerable deterioration in

both the efficiency and stability of the resulting schedule.

 49

2.4.1 Reactive Supervisory Control

As mentioned earlier, the approaches for designing a supervisory controller for a

production system, using automata or PNs, strive to ensure that the controller is

maximally permissive. This means that the controller would allow any event to take place

in the system as long as it does not violate the production requirements or lead to a

deadlock situation. Accordingly, the occurrence of an internal disturbance in the system,

like a machine breakdown, would simply require that some events should be disabled

(failed machine should not be loaded). The system can then proceed by executing any of

the allowed events (if any), until the source of disturbance is alleviated (machine is

repaired).

To react to machine failures in the automata formalism, instead of just representing the

states of a machine as idle or busy, other states are added to the model to indicate that the

machine is in a failed state. Upon repair, its state is changed back to idle, allowing its

associated events to be executed. This approach however, increases the complexity of the

model and the computational time required to obtain the supervisor model dramatically.

In [7], an approach employing two algorithms was proposed to react to machine failures.

The first algorithm disabled the events requiring the utilization of the failed machine. The

second algorithm determined the allowable events after the repair, in accordance with the

status of the part that was being processed on the machine when it failed (if any). It was

shown that the computation time required to execute both algorithms was not significant

because they did not add any new states to original model. In the PN formalism,

indicating that a resource has failed simply requires removing the token in the place

 50

representing the availability of the resource. In this case, all the output transitions of this

place will be disabled, and tasks requiring the failed resource will not be executed (Figure

2.7).

In the case of external disturbances, like the arrival of a new job (order) to the system,

the problem becomes much more complex. The automata or PN model of a production

system, especially job shops, depends to a great extent on the processing requirements of

the available jobs. Upon the arrival of a new job that has new requirements, the whole

model must be reconfigured in order to capture these requirements. This in turn requires

calculating the supervisor model, whether using the SCT in case of automata or siphons

analysis in case of PNs, to obtain the new correct behavior of the updated system. In both

cases, as mentioned earlier in this chapter, this requires a substantial amount of

calculation time that does not concur with the requirements of real time reactive control.

In [13], this problem was addressed using the SCT and automata formalism. The idea

of a supervisor pair was proposed, where a nominal supervisor is ordinarily developed for

Figure 2.7: Resource failure in a PN

 51

the original parts in the system, and a complementary supervisor is added whenever a

new job is added to the system. The function of the complementary supervisor(s) was to

control the requirements of the new job(s), while preserving the structure of the nominal

supervisor and avoiding computing a new controller for the whole system. Although this

approach requires less time than updating the original supervisor, it was mentioned that it

still required a substantial amount of time to calculate, especially when the new parts

interact with many machines in the system. This approach also suffers from the

requirement of installing new hardware and wiring for the complementary supervisors,

every time a new order arrives.

The reaction to other system disturbances has not been considered in the SC context.

The cancellation of an order, like machine breakdowns, can simply be treated by

disabling the events associated with the cancelled job. As for performance related

disturbances, like process time variation or due date changes, these have not been

considered in the SC context, which has been usually concerned with the behavioral

correctness of the system actions.

2.5 Controller Implementation

As mentioned earlier in this chapter, a formal method for transforming a deadlock-free

schedule into an implementable supervisor has not been reported in literature. Moreover,

there is a structural difference between most of the abstract supervisors proposed in

literature and the implementable one that can realize the obtained behavior. Most

 52

supervisor models, whether automata or PN, evolve asynchronously, and some PN

models allow concurrency. Physical implementation devices, however, are synchronous

and strictly sequential [100]. In other words, industrial controllers, like Programmable

Logic Controllers (PLCs), do not have the power to choose from competing enabled

events, or the power of resolving conflicts. This has imposed many challenging technical

problems in the implementation stage.

In accordance with the work proposed in this study, focus in this section will be

directed towards implementation approaches that utilized PN supervisor models. In

general, there are two possible techniques that can be followed to implement a logic

controller using a PN model; interpret the PN model at run time using an industrial

computer, or transform the PN model using a compiler into a PLC program [101]. While

the first requires a fast industrial computer to realize the control actions in real time, the

second requires a substantial time to regenerate the PLC code every time a change occurs

in the system. However, the first approach provides more flexibility, and enables defining

generic rules that can be utilized to resolve conflicts or concurrency situations in the PN

models.

In [33], a PN-based supervisory controller for a FMS was implemented through a

hierarchical architecture that employed a central computer to supervise lower level

computers that directly control the system devices (Figure 2.8). The PN graphical

notation of the model was transformed into a text representation using a PN descriptive

language (PNDL). Each text file defined information about places, transitions, and the

connections between them. A PN supervisory system (PNSS) was then utilized to

 53

interpret the information given by the PNDL and deliver it to the device controllers. In

the case of concurrency among enabled transitions, priority policies like first-in-first-out

(FIFO) were used to select the transition to be fired.

In [102], a user-friendly computer-based control system was developed using PN

editors (model designers) and token players (simulators). The system consisted of three

main parts; i) The PN editor and token player, ii) a transition mapping server whose

primary function was to map the transitions of the token player to those in the equipment

drivers, and iii) an equipment driver implemented for each piece of equipment within the

controlled cell. Like the control system shown in Figure 2.8, in [102] the PN model

represented an operation by a command transition that signify the start of the operation,

followed by a place signifying the status of continuation of the operation, and a response

transition signifying the completion of the operation. It was stated that the main

advantage of this approach was enabling the user to modify the operation flow directly on

the modeled PN without programming efforts.

The IEC 1131 standard defines four languages for programming PLCs; instruction

lists, structured texts, logic ladder diagrams (LLDs), and function block diagrams. To

Figure 2.8: Computer-based hierarchical control

 54

structure larger software projects, the sequential function chart (SFC) graphical language

was also provided. Furthermore, to overcome structural conflict problems in PN models

resulting from nondeterministic firing of transitions, Grafcet was developed and accepted

as an international standard for designing PLC programs [103]. The supervisory control

approaches that transformed PN models into PLC programs have utilized a variety of

these languages. In [101] and [103], colored PNs (CPNs) were utilized to represent the

supervisor. Actions to be transmitted to the controlled system were associated with the

places of the CPN, and signals coming from the system were defined as input conditions

to the transitions of the CPN. The CPN model was then transformed into a textual

description that defines the places, transitions, and initial marking of the net. This textual

description was finally compiled in a structured text to program the PLC.

In [104], SFC was utilized to implement the controller. Like PNs, SFCs are defined by

two types of nodes, steps that resemble the places of a PN, and transitions. The main

differences between PNs and SFCs are that SFCs can only handle one token in each step

(place), and cannot represent transitions in conflict. To overcome these differences in

[104], safe MGs were used to model the controller. MGs by definition do not feature

conflicts, and safeness implies that each place can at most have one token in each

reachable state of the net. In [15], automation PNs (APNs) (Section 2.2.3.1) were

transformed into LLDs to implement the supervisor on a PLC. The places and transitions

of the APN were directly transformed into the corresponding LLD by defining a separate

rung for each transition and some places in the net. Like [101], sensor readings from the

system were considered as inputs to the controller and used as firing conditions on their

output transitions. Finally, in [100], a modular PN approach was proposed to develop a

 55

supervisor for a batch process. In accordance with the modular concept, macro tasks that

entailed a sequence of micro tasks to be carried out by the plant were defined. To

implement the control logic, first these macro tasks were transformed into SFCs.

Eventually, these SFCs and the other portions of the PN model were transformed into a

LLD to program the PLC.

2.6 Conclusions

From the review of literature, it can be generally concluded that the literature lacks a

formal approach that can transform a deadlock-free schedule of a job shop system into an

implementable supervisor. As mentioned earlier, the existence of such an approach will

guarantee, not only the correct behavior of the system, but an optimized one as well.

Furthermore, most deadlock-free scheduling approaches, with the exceptions of a very

few, rely on the available SC approaches for obtaining deadlock-free schedules. Indeed,

most of the reviewed studies approached the scheduling problem by searching the

feasible state space generated by solving the SC problem. However, the SC approaches,

especially those following the automata formalism and the SCT, require considerable

amount of time and resources to solve problems normally encountered in an industrial

setting. Moreover, SC approaches do not feature real-time flexibility to changes when

disturbances occur in the system, especially disturbances related to product mix changes

(addition of new jobs to the system).

 56

It can then be deduced that there is a need for integrated approaches that can ensure an

optimized and correct performance for the job-shop production systems, and be able to

react to sudden disturbances in real time. Furthermore, such an integrated approach

should provide a readily implementable supervisor to realize such performance. Along

with this general conclusion, the following points outline more specific observations that

can be deduced from the review:

� The job shop deadlock-free scheduling problem has been hardly approached using

mathematical models. This is due to the aforementioned hardness of representing the

capacities of buffers in the models. Yet, solving a mathematical model of the problem

using the available off-the-shelf software on today’s fast computers can provide the

optimal solutions for small problems in an acceptable time.

� Routing flexibility has not been addressed by the mathematical models that were

proposed to solve the deadlock-free scheduling problem in job shops.

� Very few studies have considered the deadlock-free reactive scheduling problem. In

addition, in most of these studies, deadlock consideration has been conducted from an

avoidance perspective, rather than from a prevention one, which does not guarantee

the realization of the optimized schedules upon implementation.

� Most of the literature that considered introducing a new job to the product mix has

followed the job insertion scheduling approach rather than the total rescheduling (TR)

approach. In addition, some studies have concluded that, in reactive scheduling in

general, TR can take significantly longer time and can result in more system

nervousness while providing a better schedule. However, it has not been conclusively

 57

stated when it is more beneficial to apply TR and which factors may affect these

conclusions.

� The reactive scheduling literature lacks a generic approach that can handle a wide

variety of disruptions in real time, while providing deadlock-free schedules.

� PN supervisors embedding a MG structure can be easily verified for liveness by

ensuring that all circuits are marked. Furthermore, these supervisors are more suitable

for direct implementation since they do not feature any conflicts in their structure.

� PN supervisor models can be easily transformed into a variety of programming

languages for PLCs. They can also be implemented through an industrial computer,

which is directly connected to the system to be controlled. The latter approach

provides more flexibility for changes and permits setting rules for resolving

concurrency problems.

 58

CHAPTER 3:

Deadlock-free Scheduling

3.1 Introduction

As indicated in Section 1.4, a scheduler should constitute the highest level in any

efficient control architecture of a production system. The function of a lower level

supervisor would then be to implement, in the shop floor, the decisions reached by the

scheduler. In automated systems, scheduling decisions should ensure that the controlled

system will operate in a correct manner, such that no deadlock situations are reached.

Accordingly, the considered deadlock-free scheduling problem in automated flexible job

shops can be summarized as follows: to optimize the schedule, based on a given criterion,

of a number of jobs, where each has a number of operations to be performed on some or

all of the available machines in the system (shop). In this thesis, the objectives considered

are either, minimizing the mean flow time (MFT) or the makespan (MS). Some or all of

the jobs may have alternative routes through the system. The system may have some

buffer capacity that can be used in preventing blocking of machines or resolving circular

waits. In addition, a transporter (e.g. robot) is used to perform all material handling

operations between machines and other machines or buffers.

 59

Different types of intermediate (machine input) and central buffers have been

considered in industry and in the previous literature. These ranged from simple vertical or

horizontal pallet stackers to Automated Storage and Retrieval Systems (ASRS) as shown

in Figure 3.1. In [105], some existing manufacturing systems, which have the five types

of buffer settings shown in the figure, were listed. Because a central buffer is usually

served by the material handler serving the machines in the system, it usually features a

simple, unsophisticated setting like the vertical or horizontal pallet stackers [105, 106,

107]. On the other hand, in the case of intermediate buffers (or input buffers to

machines), either a secondary material handler is set between a simple pallet stacker and

the corresponding machine, or a pallet indexing shuttle with a machine feeding

mechanism is utilized [105].

Figure 3.1: Different types of buffers; (a) ASRS with "pallet mover" elevator; (b) linear

pallet indexing shuttle; (c) rotary pallet indexing shuttle; (d) vertical pallet stacker; (e)

horizontal (linear) pallet stacker

 60

Whether intermediate or central, the choice of the buffer configuration (horizontal,

vertical, or rotary) has merely depended on the type of material handling equipment and

the available space in the system. In the current study, since focus is directed towards

FMCs, which usually employ a robot arm as the primary material handler, central buffers

can be assumed to be vertical pallet stackers, while intermediate buffers can either feature

linear or rotary pallet indexing shuttles.

To solve the defined deadlock-free scheduling problem, two approaches are proposed

in this chapter. The first approach (Section 3.2) utilizes Mixed-Integer-Programming

(MIP) formulations, where deadlocks are prevented by ensuring that a job does not block

any machine while waiting for its next resource to become available. To account for the

different types of buffers that can be available in the system and how they function, four

MIP models are proposed. Because of the aforementioned hardness of solving such

models in a reasonable time for medium and large problems, a second approach is

proposed (Section 3.3). This approach is an operations insertion algorithm (OI) that

utilizes rank matrices to generate the schedules and prevent or resolve circular waits as

well as unfeasible job sequences, taking into consideration the available buffer capacity.

To obtain more realistic schedules, a transportation operations insertion algorithm (TOI)

is also proposed (Section 3.4). This algorithm can be either used to insert the

transportation operations in the schedules obtained using the MIP models or OI, or

augmented in OI to consider the transportation operations in the schedule building

process. In Section 3.5, a numerical example is solved using both approaches for

illustration. In Section 3.6, the performances of the MIP models and OI are evaluated.

 61

3.2 Mathematical Modeling

In [70], Ramaswamy and Joshi proposed MIP formulations to solve the deadlock-free

scheduling problem of automated job shops for two different cases; in the first, no buffer

space was present in the system (formulation RJP1), and in the second, intermediate

buffers were used to swap jobs between machines (formulation RJP3). The objective in

these models was to ensure that jobs did not block any machines, and thus the occurrence

of deadlocks could be prevented. This was achieved in formulation RJP1 by guaranteeing

that a job, after finishing processing on a machine, always finds the next machine in its

processing route available as follows:

1

n

iK

i

Minimize Z x

=

=∑ (3.1)

1ikj ikj i(k)l

subject to :

x T x , i I−− ≥ ∀ ∈
 (3.2)

1ikj prj ikprj ikjx x M(y) T , j J ; (i, p) I− + − ≥ ∀ ∈ ∈ (3.3)

prj ikl ikprj prjx x My T , j J ; (i, p) I− + ≥ ∀ ∈ ∈ (3.4)

1 1i(k)l prj ikprjx x M(y) E, j J ; (i, p) I− − + − ≥ ∀ ∈ ∈ (3.5)

(1) , ; (,)p r w ikj ikprjx x My E j J i p I− − + ≥ ∀ ∈ ∈ (3.6)

where I is the set of all jobs, J is the set of all machines, xiK is the completion time of the

last operation of job i, xikj is the completion time of operation k of job i on machine j, Tikj

is the processing time of operation k of job i on machine j, M is a large positive number,

 62

E is a small positive number, and yikprj is equal to one if operation k of job i follows

operation r of job p on machine j, and equal to zero otherwise.

In formulation RJP1, constraint set (3.2) defined the processing time and routing

information of each job. Constraint sets (3.3) and (3.4) restricted each machine to process

not more than one job at a time. This was achieved by the binary variable yikprj, which, if

equal to one, will force operation oik to follow opr on machine j or, if equal to zero, will

force opr to follow oik. Constraint sets (3.5) and (3.6) were the ones that guaranteed the

deadlock-freeness of the resulting schedules. This was achieved by ensuring that the

operation completion time of a job on a machine must be greater than (at least by E) the

completion time of any other job that precedes the first job on the next machine in its

route. This guaranteed that a job would always find the next machine in its route

available, and hence machine blocking, and consequently the occurrence of deadlocks

was prevented.

Formulation RJP1 provided deadlock-free schedules for job shop systems with no

buffer space. Ramaswamy and Joshi [70] proposed formulation RJP3 to account for the

presence of intermediate buffers between machines. The difference between formulations

RJP1 and RJP3 was in setting the right-hand sides of constraint sets (3.5) and (3.6) to be

equal to zero (instead of E) in formulation RJP3. This modification allowed circular

transfer of jobs between machines to resolve deadlocks. In other words, machines were

allowed to swap the jobs (Figure 3.2) by using the intermediate buffer space.

 63

In Figure 3.2, if no buffer space is present in the system, the circular wait between

jobs J1 and J2 on machines M1 and M2 would force the system into a deadlock. If an

intermediate buffer between M1 and M2 is available, J1 (J2) can reside in it until J2 (J1)

acquires M1 (M2), after which J1 (J2) can acquire M2 (M1) as shown in Figure 3.2.

Formulation RJP3 allowed this kind of swapping by setting the right hand sides of

constraint sets (3.5) and (3.6) to zero. However, solving formulation RJP3 does not yield

optimal schedules as mentioned in [70]. This is because the capacities of buffers were not

represented in this formulation; alternatively, the virtual existence of these buffers was

only implicit in the setting of constraint sets 3.5 and 3.6. Accordingly, jobs were only

allowed to reside instantaneously in these buffers while being swapped and the capacities

of these buffers were underutilized.

The RJP1 model for the deadlock-free scheduling problem where no buffers existed

was efficiently formulated and obtained optimal solutions for the problem. Accordingly,

the objective of proposing the following formulations is to obtain schedules capable of

efficiently utilizing the available buffer space in the system. In the proposed models,

Figure 3.2: Swapping of jobs between machines

 64

deadlocks are avoided by preventing jobs from blocking machines. Four different models

are proposed to take into account the configuration of buffer capacity:

� Intermediate buffers used only for swapping jobs (IBS).

� Intermediate buffers with unit capacity (IB1).

� Intermediate buffers with arbitrary capacity (IBA).

� Central buffer with arbitrary capacity (CBA).

The objective in all these models is to guarantee that a job, after finishing processing

on a machine, always finds an available machine or a buffer space in its processing route.

Hence, machine blocking, and consequently deadlocks, can be prevented. Note that the

objective criterion considered in the following models is minimizing the MFT [70].

However, any objective criterion related to “completion times” such as minimizing the

MS, can also be handled by these models.

3.2.1 Notation

The following notation is used in the proposed models:

Indices:

i, p, q jobs (job types),

k, r order of operations in processing routes of jobs, and

j, s, l, w, a machines.

 65

Sets:

I set of all n jobs

J set of all m machines

Aik set of alternative machines that can process operation ik, and

Pj set of operations processed on machine j.

Parameters:

Tikj processing time of job i operation k on machine j,

oik operation k of job i

Oi number of operations of job i

Bj capacity of intermediate buffer before (input buffer to) machine j,

B capacity of central buffer,

M very large positive number, and

E very small positive number.

Variables:

xikj completion time of job i operation k on machine j,

1 if follows on machine

0 otherwise,
{ ik pr

ikprj

o o j
y =

1 if job resides in a buffer before starting

0 otherwise,
{ ik

ik

i o
b =

(1)
1

1 if is started after is completed

0 otherwise,
{ ik p r

ikpr

o o
b

−
= and

2

1 if is started before is started

0 otherwise.
{ ik pr

ikpr

o o
b =

 66

3.2.2 The IBS Model

In this model, it is assumed that the intermediate buffers are only used to swap jobs

between machines (Figure 3.2), like the model earlier proposed in [70] for the case of

intermediate buffers (RJP3). The IBS model is formulated as follows:

1

n

ikj i

i

Minimize Z x , k O ; j J

=

= = ∈∑ (3.7)

1ikj ikj

subject to :

x T , i I ; j J ;k≥ ∀ ∈ ∈ =
 (3.8)

1 1 ; ikj ikj i(k)l ix T x , i I ; k O j,l J−− ≥ ∈ < ≤ ∈ (3.9)

1 1 0 1;i(k)l prj ikprj ik pr jx x M(y) , j J ; i, p I ; l J ;k o ,o P− − + − ≥ ∀ ∈ ∈ ∈ > ∈ (3.10)

1 0 1;prj i(k)l ikprj ik pr jx x My , j J ; i, p I ; l J ;r o ,o P−− + ≥ ∀ ∈ ∈ ∈ > ∈ (3.11)

1 0 1p(r)w ikj ikprj ik pr jx x My , j J ; i, p I ;w J ;r ; o ,o P− − + ≥ ∀ ∈ ∈ ∈ > ∈ (3.12)

(1) , ; , ; , 1; ,ikj prj ikprj ikj ik pr jx x M y T j J i p I k r o o P− + − ≥ ∀ ∈ ∈ = ∈ (3.13)

1 prj ikj ikprj prj ik pr jx x My T , j J ; i, p I ; k ,r ; o ,o P− + ≥ ∀ ∈ ∈ = ∈ (3.14)

{0,1} ; , ; ,ikprj ik pr jy j J i p I o o P∈ ∀ ∈ ∈ ∈ (3.15)

In the above model, constraint sets (3.8) and (3.9) define the precedence relations

between operations in the processing route of each job. Provided that oik is processed on

machine j, constraint sets (3.10) and (3.11) force the binary variable yikprj to be equal to

one if the finishing time of oi(k-1) is greater than or equal to the finishing time of opr on

machine j, and zero otherwise. If yikprj is equal to zero, constraint set (3.12) will ensure

that opr is processed after oik on machine j. The combined effect of constraint sets (3.10),

 67

(3.11), and (3.12) ensures that, processing of a job i on a machine j precedes the

processing of any other job p on this machine if job p is completed on machine j after job

i is completed on the previous machine in its route. This guarantees that when a job i is

completed on a machine l, the successor machine j in its route will be available, and

hence blocking of machines can be prevented as shown in Figure 3.3.

Constraint sets (3.10), (3.11), and (3.12) along with constraint set (3.9) will further

ensure that no machine is simultaneously occupied by more than one job at any time.

However, since these constraint sets are defined for operations that have predecessors in

their jobs’ routes, constraint sets (3.13) and (3.14) are added to maintain the same

restriction only between the first operations of jobs that share the same machine. In

comparison to the RJP3 model, the IBS model only uses three constraint sets (3.10, 3.11,

and 3.12) to mutually ensure that, no machine is simultaneously occupied by more than

one job at any time and a job will always find the next machine in its route available. In

the RJP3 model, however, four constraint sets were used to achieve these two goals. Note

that the number of constraints in sets (3.10), (3.11), and (3.12) are all equal, and that the

Figure 3.3: Effect of yikprj in the IBS model

 68

RJP3 model has the same number of constraints in the corresponding sets. Furthermore,

the number of additional constraint sets, (3.13) and (3.14), in the proposed IBS model is

limited because these constraints are defined only between the first operations of jobs that

share the same machine. Hence, the number of constraints in the IBS model is potentially

less than that in the RJP3 model. Accordingly, the IBS model can be solved to obtain the

same objective values that can be obtained by the RJP3 model in potentially less

computing time.

3.2.3 The IB1 Model

In IBS and RJP3 models, the capacities of the intermediate buffers are not represented

in the model. Accordingly, solving these models to optimality will not guarantee the

optimal performance of the system, since the buffers will only be utilized to swap jobs. In

the following model this problem is overcome, where a job can reside in the intermediate

buffer while waiting for the corresponding machine to become available. However, it is

assumed that the buffers are unit capacity buffers, and that a job residing in a buffer must

precede any other job on the corresponding machine when this machine becomes

available. In other words, a machine feeding mechanism is assumed to automatically feed

the machine with the job in the buffer as soon as the machine becomes available.

Machine feeding mechanisms are routinely used in automated systems.

This model is similar to RJP3 except for the modifications in constraint sets (3.21) and

(3.22) as follows:

 69

1

n

ikj i

i

Minimize Z x , k O ; j J

=

= = ∈∑ (3.16)

1ikj ikj

subject to :

x T , i I ; j J ;k≥ ∀ ∈ ∈ =
 (3.17)

1 1 ; ikj ikj i(k)l ix T x , i I ; k O j,l J−− ≥ ∈ < ≤ ∈ (3.18)

1ikj prj ikprj ikj ik pr jx x M(y) T , j J ; i, p I ; l J ; o ,o P− + − ≥ ∀ ∈ ∈ ∈ ∈ (3.19)

prj ikl ikprj prj ik pr jx x My T , j J ; i, p I ; l J ;o ,o P− + ≥ ∀ ∈ ∈ ∈ ∈ (3.20)

1 1 0

1

i(k)l prj prj ikprj

ik pr j

x (x T) M (y) ,

j J ; i, p I ;k ; l J ;o ,o P

− − − + − ≥

∀ ∈ ∈ > ∈ ∈
 (3.21)

p(r 1)w ikj ikj ikprj ik pr jx (x T) My 0, j J ; i, p I ;r 1; w J ; o ,o P− − − + ≥ ∀ ∈ ∈ > ∈ ∈ (3.22)

{0,1} ; , ; ,ikprj ik pr jy j J i p I o o P∈ ∀ ∈ ∈ ∈ (3.23)

Similar to the RJP1 model, constraint sets (3.17) and (3.18) conserve the processing

routes of the jobs. Constraint sets (3.19) and (3.20) ensure that a machine will not be

simultaneously occupied by two jobs. If yikprj is equal to one, constraint set (3.21) will

ensure that job i is completed on the previous machine in its route, l, with or after job p is

started on machine j, while constraint set (3.22) will ensure the opposite, otherwise. The

difference between these constraint sets and the ones in RJP3 is adding the processing

time terms Tprj and Tikj to the left hand sides of constraint sets (3.21) and (3.22),

respectively. The effect of this modification is shown in Figure 3.4. In this figure it can

be seen that, adding the processing time term in constraint set (3.21) enables the

completion of job i on machine l as soon as job p is started on machine j. It can then

reside in the intermediate buffer bj before machine j until machine j becomes available,

 70

thus making machine l available to process any other job q. Without this modification, as

in IBS, RJP1 or RJP3, job i can only be completed on machine l after or when job p is

completed on machine j.

3.2.4 The IBA Model

In the IB1 model, only one job can reside in an intermediate buffer at any time.

Furthermore, this job has to be the first job to be processed on the corresponding machine

when it becomes available. In the IBA model, however, any number of jobs is allowed to

simultaneously utilize the available capacity of the intermediate buffers. There is also no

restriction on the order by which these jobs are dispatched from the buffer. Thus, the

obtained schedule will determine this dispatching order. This gives more flexibility to the

cell, but at the expense of more computational time required to solve the model;

representing the capacities of the buffers in the model require the use of additional binary

variables. The IBA model is formulated as follows:

Figure 3.4: Utilizing capacity of intermediate buffer

 71

1

n

ikj i

i

Minimize Z x , k O ; j J

=

= = ∈∑ (3.24)

1ikj ikj

subject to :

x T , i I ; j J ;k≥ ∀ ∈ ∈ =
 (3.25)

1 1 ; ikj ikj i(k)l ix T x , i I ; k O j,l J−− ≥ ∈ < ≤ ∈ (3.26)

1 1;ikj prj ikprj ikj ik pr jx x M(y) T , j J ; i, p I ; l J ;k o ,o P− + − ≥ ∀ ∈ ∈ ∈ > ∈ (3.27)

1;prj ikl ikprj prj ik pr jx x My T , j J ; i, p I ; l J ;k o ,o P− + ≥ ∀ ∈ ∈ ∈ > ∈ (3.28)

0ikj ikj i(k 1)l ik i(x T) x Mb i I ;1 k O ; j,l J−− − − ≤ ∀ ∈ < ≤ ∈ (3.29)

(1) 1() 0, , ; , ; , 1; ,ikj ikj p r w ikpr ik pr jx T x Mb j w J i p I k r o o P−− − − ≤ ∈ ∈ > ∈ (3.30)

1 1ik ikprj ikpr1 j

p i

i ik pr j

b [(y) b] B ,

i I ; 1 k O ; p I ; j J ; o ,o P

≠

+ − + − ≤

∀ ∈ < ≤ ∈ ∈ ∈

∑
 (3.31)

1

{0,1} ; , ; ,

{0,1} ;1

{0,1} , ; ; , 1; ,

ikprj ik pr j

ik i

ikpr ik pr j

y j J i p I o o P

b i I k O

b i p I j J k r o o P

∈ ∀ ∈ ∈ ∈

∈ ∀ ∈ < ≤

∈ ∈ ∈ > ∈

 (3.32)

Constraint sets (3.25), (3.26), (3.27), and (3.28) are the same as before, where the first

two capture the processing routes of the jobs, and the second two prevent a machine from

being simultaneously occupied by more than one job. In constraint set (3.29) the binary

variable bik will be equal to one if the starting time of oik on machine j is greater than the

finishing time of oi(k-1) on machine l. This indicates that oik will not be started on machine

j immediately after operation oi(k-1) is completed; hence job i will reside in the buffer

preceding machine j until it becomes available. If opr is processed on machine j,

constraint set (3.30) will force the binary variable bikpr1 to be equal to one if oik is started

 72

on machine j after op(r-1) is completed on some machine w. As shown in Figure 3.5,

having bik and bikpr1 equal to one and yikprj equal to zero, indicates that for a period of time

jobs i and p will share the capacity of the intermediate buffer bj.

Finally, constraint set (3.31) ensures that if any job visits the intermediate buffer

preceding a machine, the total number of jobs residing in that buffer at that time will not

exceed its capacity. As mentioned earlier, having oik ∈ Pj and bik equal to one indicate

that job i will visit bj. Furthermore, the term [(1 – yikprj) + bikpr1 – 1] will be equal to one

iff a job p is residing in this buffer when job i is started on machine j. Otherwise, this

term will be equal to zero as shown in Table 3.1. Summing the term [(1 – yikprj) + bikpr1 –

1] for all jobs p and adding the result to bik will give the total number of jobs residing in

the intermediate buffer when job i resides in it.

Figure 3.5: Utilizing an intermediate buffer with arbitrary capacity

 73

Table 3.1: Different combinations of the values of the binary variables

yikprj bikpr1 [(1 – yikprj) + bikpr1 – 1] Indication

1 0 -1
Not applicable since xp(r-1)w cannot be greater than xprj

- Tprj

1 1 0
oik is started on machine j after opr has already been

started on machine j

0 0 0
op(r-1) is finished on machine w after oik has already

been started on machine j

0 1 1

oik is started on machine j after op(r-1) is finished on

machine w, but before opr is started on machine j
(Figure 3.5)

3.2.5 The CBA Model

Unlike the intermediate buffers, a central buffer, not allocated to any specific machine,

can serve the whole cell (system). This type of buffers can sometimes be more suitable in

cells featuring a limited space problem, where there is no adequate space to attach a

buffer to every machine. Furthermore, one central buffer with a capacity equal to B can

sometimes perform as well as a number of intermediate buffers equal to the number of

machines, each with a capacity equal to B. However, this will not be true if the capacities

of the intermediate buffers are utilized simultaneously.

In the IBA model, since an intermediate buffer is associated with each machine, the

number of jobs residing in a buffer was determined in part by the value of yikprj

(constraint set (3.31)). However, this cannot be applied in the CBA model because the

central buffer is not associated with any machine and is set to serve the whole cell.

Accordingly, an additional group of binary variables, bikpr2, and constraints are added to

the model to fully define the number of jobs residing in the buffer when a job i resides in

 74

it. This will however result in more computational time to solve the CBA model than the

previous models. The first five constraint sets in the CBA model are the same as those in

the IBA model. The rest of the constraint sets are formulated as follows:

(1) 1() 0, , ; , ; , 1−− − − ≤ ∀ ∈ ∈ >ikj ikj p r w ikprx T x Mb i p I j w J k r (3.33)

1prs prs ikj ikj ikpr2(x T) (x T) Mb 0, i, p I ; j,s J ; k ,r− − − − ≤ ∀ ∈ ∈ > (3.34)

1 2[1] , ;1 ; ; , 1ik ikpr ikpr i

p i

b b b B i I k O p I k r
≠

+ + − ≤ ∀ ∈ < ≤ ∈ >∑ (3.35)

1 2

{0,1} ; , ; ,

{0,1} ;1

, {0,1} , ; , 1

ikprj ik pr j

ik i

ikpr ikpr

y j J i p I o o P

b i I k O

b b i p I k r

∈ ∀ ∈ ∈ ∈

∈ ∀ ∈ < ≤

∈ ∀ ∈ >

 (3.36)

In the above constraint sets, bikpr2 performs the same function of yikprj in constraint set

(3.31) of the IBA model. However, note that unlike the IBA model, in constraint sets

(3.33), (3.34), and (3.35), oik and opr do not have to be processed on the same machine.

Furthermore, the combinations (0,0), (0,1), (1,0), and (1,1) of binary variables bikpr2 and

bikpr1 will have the same indications shown in Table 3.1 for the combinations (1,0), (1,1),

(0,0), and (0,1), respectively, of yikprj and bikpr1. Hence, a job p will be in the central buffer

when another job i is started on a machine j iff bikpr2 and bikpr1 are both equal to one.

It should be noted that in the IBA and the CBA models, it is assumed that swapping

devices attached to machines [108] are used if instantaneous swapping of jobs (Figure

3.2) between machines would resolve a circular wait. This is because, in such a situation,

there will be no difference between (xikj - Tikj) and xi(k-1)l; hence constraint set (3.29) will

 75

not force the value of bik to be one, and consequently the models will not realize the need

of any of the jobs involved in the circular wait to reside in the buffer.

3.2.6 Routing Flexibility

In the proposed mathematical models, routing flexibility will be defined as the

possibility of processing an operation of a job on one of a set of alternative machines [68]

(Note that a different definition for routing flexibility will be given in Section 3.3).

Accordingly, the set of alternative machines for an operation oik is defined as Aik, first.

Next, a binary variable yika is defined for each alternative as follows:

1 if is processed on machine ,

0 otherwise,
{ ik ik

ika

o a a A
y

∀ ∈
=

To ensure that only one of the machines will be selected to process oik, the finishing

times of this operation on the other machines in Aik have to be equal to 0. Thus, these

possible processes on unselected machines would start and end at time 0. This can be

achieved by the following constraints:

 ika ika ikx My , a A≤ ∀ ∈ (3.37)

1

ik

ika i

a A

y , i I ; k O

∈

= ∈ <∑ (3.38)

The original constraints of the model(s) can then be adapted by repeating the

constraints that include oik each for |Aik| times, each associated with one of the machines

 76

in Aik. Finally, to eliminate the effects of the constraints involving the unselected

machines, the term M(1 – yika) can be added to the greater-than side of these constraints.

Thus when yika is equal to zero, indicating that machine a is not selected for oik, the

constraints involving processing oik on machine a will become redundant.

3.3 Operations Insertion Algorithm

The MIP models proposed in the Section 3.2, along with the RJP1 model provide

optimal solutions for the cases and assumptions considered. However, the problem size

that can be solved using these models, especially the central buffer model (CBA), is still

limited. Furthermore, if transportation operations were to be included in these models, the

complexity of the problem will grow dramatically [70]. As a result, in this section, an

operations insertion algorithm is proposed. As will be shown, the algorithm can solve the

deadlock-free scheduling problem when there is no buffer space, and when there is a

central buffer with a limited capacity. It can account for different buffer sizes,

transportation operations, and jobs with alternative routes, while providing deadlock-free

near optimal (or optimal) schedules.

The proposed algorithm is a greedy one, because it is based on inserting the available

jobs in the schedule one after the other, until a schedule for all the jobs is obtained. The

generation of the schedules and the identification of deadlocks are based on the analysis

of the associated rank matrices. In a rank matrix A of a schedule, each element pij

corresponds to the maximal number of vertices from a source to vertex (i, j) of the

 77

digraph representing the schedule. When each vertex (i, j) is assigned to an operation of a

job i on a machine j, each row of A then represents the processing route of a job, and each

column provides the sequence of jobs visiting each machine [75]. This rank matrix is

equivalent to the special Latin rectangle (LR) that was proposed in [76]. In that study, a

block-matrices-model was utilized in an insertion algorithm to solve the traditional job

shop scheduling problem. The rows of a matrix MO represented the order of visiting

machines in the processing route of each job. Knowing MO, iterations involving matrix

LR were conducted to obtain a matrix JO. The columns of matrix JO provided the final

order of each job in visiting each machine.

To illustrate, consider Figure 3.6 that shows the Gantt chart of a schedule of three jobs

on three machines, matrix MO of the jobs, the JO matrix, and the corresponding rank

matrix A. From this figure, it can be noticed that the rows of A are equivalent to the rows

of MO, and that the columns of A are equivalent to the columns of JO. For example, the

first row in A, like the first row in MO, indicates that job J1 visits machines M1, M2, and

then M3 because the second element in that row in A is larger than the first and the third

is larger than the second. Likewise, the second column in A, like the second column in

JO, indicates that M2 is visited by J2, J1 and then J3.

Accordingly, in the proposed insertion algorithm, every time a new operation is

inserted in the schedule, the rank matrix has to be updated to reflect its order on the

corresponding machine. The rank pij of any operation that follows the newly inserted

operation on that machine has to be incremented by one, along with the ranks of all the

operations that follow it in job i’s route on the other machines (if any), and so on.

 78

3.3.1 The Operations Insertion Algorithm (OI)

In the proposed algorithm, when operations are inserted, possible circular waits are

detected from the rank matrix and are prevented or resolved according to the available

buffer space. This ensures the deadlock-freeness of the resulting schedules. It should also

be noted that in the proposed algorithm, routing flexibility is defined by the number of

alternative routes that a job i can take through the system (Ri). This is a common measure

of flexibility that has been considered in previous literature [109].

The following steps outline the proposed algorithm. Details of some of the steps are

explained in the indicated sub-algorithms and sections. Figure 3.7 provides the flow chart

of the algorithm.

Figure 3.6: Rank matrix illustration

 79

Sub-algorithm 1

Determine Ji

Set Oi ← number of operations of Ji, Ri ← number of alternative routes of Ji, k ← 1, and r ← 1

Select a new combination of feasible positions of operations oik and oi(k+1). Update rank matrix.

Sub-algorithms 2 & 3: Determine circular waits/unfeasible sequences, and jobs

to reside in buffer.

Is buffer size

exceeded?

Yes

No

Store feasible combination.

Are all feasible

combinations evaluated?

No

Yes

Set k ← k + 1

Is k = Oi?

No

Store positions of

oil with the best

objective value as

the best positions

for route r of Ji.

Yes

Set r ← r + 1

Is r > Ri?

No
Set k ← 1

Select the route with the best objective value to be Ji’s route

Yes

Store new rank matrix. Set i ← i+ 1

Is i > n?

No

STOP
Yes

Initialize:

- Determine job with maximum processing time and insert it in the schedule

- Set n ← number of jobs, i ← 2

Figure 3.7: Flowchart of Main Insertion Algorithm

 80

Main Algorithm: Insertion algorithm

Step 1. Set n ← number of jobs. Determine the job with the maximum processing time

through the system and insert it in the schedule. Set i ← 2.

Step 2. Determine job Ji to be inserted (Sub-algorithm 1). Set Oi ← number of operations

of Ji, Ri ← number of alternative routes of Ji, k ← 1, and r ← 1.

Step 3. For each combination of feasible positions of operation oik and all positions of

oi(k+1) on the corresponding machines, do the following:

Step 3.1. Update the rank matrix.

Step 3.2. Check if a circular wait (Sub-algorithm 2) or an unfeasible sequence

(Sub-algorithm 3) is formed. If a circular wait is formed, and none of the

jobs in it is already scheduled to reside in the buffer, schedule Ji to

reside in the buffer after completing oik.

Step 3.3. Estimate the starting and finishing times of all the operations, and the

entrance and exit times of jobs scheduled to reside in the buffer.

Compare the buffer size required to satisfy the current schedule with the

buffer size available. If available size (zero or more) is exceeded, discard

that combination and move to the next. Else, store the current

combination as a feasible one along with its associated objective value

(Section 3.3.2).

Step 3.4. (Not mandatory) Insert the transportation operations (Section 3.4).

Step 4. Store all feasible positions of oi(k+1), each along with the positions of oih,where h =

1..k, that result in the best objective value. Set k ← k + 1. If k = Oi, store the

 81

positions of oih (where h = 1..Oi), that result in the best objective value, as the

best positions for route r of Ji. Else, go to Step 3.

Step 5. Set r ← r + 1. If r > Ri, select the route with the best objective value to be Ji’s

route along with the associated positions of operations on the machines. Else, set

k ← 1 and go to Step 3.

Step 6. Store the new rank matrix, and the new schedule.

Step 7. Set i ← i + 1. If i > n, Stop. Else, go to Step 2.

Sub-algorithm 1: Determining the job Ji to be inserted

Step 1. Calculate the flow factor fu for each of the remaining un-inserted jobs as follows:

each time a transition (e.g. Mj to Ml) in the processing route of an un-inserted job

Ju appears in any of the processing routes of the jobs already inserted in the

schedule, indicating a common move in the system, increment fu by one.

Step 2. Select the job with the maximum flow factor, max(fu), to be Ji. In case of ties,

select the job with the maximum processing time through the system.

Sub-algorithm 2: Detecting Circular Waits

Step 1. Determine positions pij and pil in the updated rank matrix, which correspond to

operations oik and oi(k+1) respectively.

Step 2. From pil, move vertically to each position pql with a smaller digit representing a

job q that precedes job i on machine l.

Step 3. From each pql, move horizontally and then vertically to determine the next

machine in job q’s route and the job preceding it on that machine.

Step 4. Repeat the cycle in Step 3 until one of the following conditions is met:

 82

 - If no position having a larger digit when moving horizontally or no position

having a smaller digit when moving vertically is found, then there is no circular

wait formed because of the considered positions of oik and oi(k+1).

- When moving vertically, if position pij is reached, this indicates the formation

of a circular wait (Figure 3.8) because of the considered positions of oik and

oi(k+1).

Sub-algorithm 3: Detecting Unfeasible Sequences (Figure 3.9)

Step 1. In the updated rank matrix, determine the pairs of columns associated with

position pil (that corresponds to oi(k+1)) and each position pil’ corresponding to a

previously inserted operation of job i (including pij which corresponds to oik).

Step 2. If there are two consecutive positions in some row q, where the smaller is in

column j and has a larger digit than that of pij, and the other is in column l and

has a smaller digit than that of pil, an unfeasible sequence is formed. Job i has

to reside in the buffer after completion on machine j, otherwise a deadlock will

occur.

Figure 3.8: Detection of circular waits in a rank matrix

 83

Step 3. If there are two directly consecutive positions in some row q’, where the smaller

is in column l’ and has a smaller digit than that of pil’, and the other is in

column l and has a larger digit than that of pil, an unfeasible sequence is

formed. Job q’ has to reside in the buffer after completion on machine l’.

3.3.2 Order of Jobs and Positions Evaluation

Due to the nature of the job shop problem, jobs often have different processing routes

through the shop. Some of these routes might also be opposite in the flow direction. Such

flow conflicts can cause deadlocks unless the available buffer space (if any) is utilized to

store some jobs to allow others with conflicting routes to move safely through the system.

Accordingly, in Step 1 of Sub-algorithm 1, a flow factor fu is calculated for each un-

inserted job, and the one with max(fu) is selected for insertion. The objective behind that

is to defer any potential conflicts in the schedule until a considerable number of jobs have

Figure 3.9: Detection of unfeasible sequences in a rank matrix

 84

been inserted, at which stage the buffer space can be better utilized to acquire schedules

with better objective values.

In Step 1 of the Main Algorithm, the job with the maximum processing time through

the system is first selected for insertion. Furthermore, in Step 2 of Sub-algorithm 1, the

maximum processing time through the system is used as a tie breaker between jobs

sharing max(fu). The objectives behind that are the following:

 - Early consideration of operations featuring long processing times, provide better

objective value estimates when evaluating the insertion positions of the operations

to follow.

- Early consideration of jobs with long processing times increases the possibility

for these jobs to find some available buffer space to reside in. This will permit

other jobs, with operations having shorter processing times, to be completed earlier

and thus will result in a better system mean flow time.

As for the evaluation of the positions of operations, it is mentioned in Step 3.3 of the

Main Algorithm that, if the current combination of positions of operations oik and oi(k+1)

on the machines is feasible, it is stored with its associated objective value (whether the

objective is minimizing MS or MFT). Since at this stage usually other jobs are not yet

inserted in the schedule, this associated objective value is estimated only based on the

already inserted jobs. In addition, the finishing time of Ji in the system is approximated

by adding the finishing time of operation oi(k+1) to the sum of processing times of the

operations following oi(k+1) in Ji’s route (if any).

 85

3.3.3 Sufficiency for Deadlock Occurrence

The procedure outlined in sub-algorithm 2 aims at detecting any circular waits in the

schedule as defined in the control context, where a set of jobs are each holding a resource

while waiting for another held resource to become available (Figure 3.8). However, in the

scheduling context the order of jobs on the machines is determined beforehand (before

implementation on the shop floor), hence a job can be involved in a circular wait even

before acquiring a resource (Jq on Ml and Ji on Ml’ in Figure 3.9). Since these situations

do not exactly follow the definition of a circular wait (Section 1.1.2), they have been

called unfeasible sequences in the current study. Sub-algorithm 3 is proposed to detect

such sequences.

The presence of circular waits or unfeasible sequences, as detected by sub-algorithms

2 and 3, must result in a deadlock in the corresponding schedule. However, the

application of these two sub-algorithms separately is not sufficient to detect all the

deadlocks in a schedule. For example, consider Figure 3.10 that shows the schedule of

three jobs on three machines and its associated rank matrix:

Figure 3.10: Complex circular waits

 86

The deadlock situation shown in Figure 3.10 cannot be detected using any of sub-

algorithms 2 or 3 on its own. Accordingly, in OI, these two sub-algorithms are combined

to detect a more general circular wait condition that takes into account the unfeasible

sequences shown above. The definition of this generalized condition and its sufficiency

for the detection of deadlocks will be provided in Section 5.3.

3.3.4 Complexity of Algorithm

The worst case complexity of OI would be encountered if each job has to be processed

on all the available m machines, and the capacity of the buffer space is large enough to

permit the feasibility of all positions of operations oik and oi(k+1). In this case, assuming

that n-1 jobs have already been inserted in the schedule, inserting the n
th

 job in the

schedule would involve evaluating n positions for each of the operations oik and oi(k+1).

This evaluation process will be repeated (m-1) times to insert all the operations of the n
th

job. Furthermore, within each evaluation, detecting circular waits and unfeasible

sequences (sub-algorithms 2 and 3) involves (m-1)(n-1) steps, equal to the number of

pairs of directly consecutive operations of the previously inserted jobs on the

corresponding machines. This results in a worst case complexity of O(n
3
m

2
) for inserting

the n
th

 job. More details on the complexity of detecting deadlocks while inserting an

operation will be provided in Section 5.4.1.

 87

3.4 Insertion of Transportation Operations

When the material handling (transportation) operations take relatively short amounts

of time compared to the processing operations, determining the sequence of

transportation operations in the system can be arbitrarily determined by the controller in

real time. However, when the transportation operations take relatively longer times, they

should be considered in the scheduling phase. Nevertheless, when an exact method is

used to obtain the schedules, like the MIP models, including the transportation operations

in the schedule building process will increase the complexity of the problem

dramatically. Ramaswamy & Joshi [70] introduced the transporter as a new machine

(resource) in the MIP model, with the transportation operations treated as processing

operations. This approach guaranteed optimal overall schedules, but since each

processing operation is usually associated with two transportation operations (to and from

the processing machine), the resulting mathematical models became very complex and

the solution time was prohibitive. They also proposed a second approach in which a

transportation operations insertion heuristic was used after the schedule had been

obtained using the MIP models. Although this heuristic produced fast and feasible results,

a fixed efficient rule to break ties between jobs competing for the transporter was not

defined.

Assuming that the transporter can handle only one job at a time, conflicts may arise at

some points in time when the transporter is needed simultaneously by more than one job.

In fact, some transportation operations must be carried out before others in order to

achieve deadlock-free implementation of the schedule. For example, if a job is to be

 88

delivered to a certain machine (or a buffer) that is already occupied by another job, then

the latter job must first be moved to its next stage. As a result, some rules must be defined

in order to resolve those conflicts while trying to achieve the best possible objective value

of the schedule. In order to achieve that goal, a transportation operation insertion

algorithm (TOI) is proposed. This algorithm can be utilized to insert the transportation

operations in the schedules obtained using the MIP models and OI, or can be augmented

in OI (Step 3.4 of the main algorithm) to consider the transportation operations in the

schedule building process. Steps of TOI can be listed as follows:

Step 1. Determine the critical path (the sequence of operations forming the longest path in

the schedule) of the current schedule.

Step 2. Determine the earliest scheduled time for a job to start or complete processing on

a machine, to enter the system (if any), to leave the system (if any), to be moved

to the buffer (if any), or to be moved from the buffer (if any).

Step 3. If more than one job shares the earliest scheduled time for a move, go to Step 4.

Else, insert the transportation operation required to move the job associated with

the earliest scheduled time. Go to Step 6.

Step 4. If one job is leaving a resource (machine or buffer) and another job is requesting

that same resource, insert the transportation operation of the former first, and go

to Step 6.

Step 5. If the jobs sharing the earliest scheduled time do not have a common resource in

their moves, insert the transportation operation of the job (operation) on the

critical path.

 89

Step 6. Update the starting and ending times of all the processing operations in the current

schedule and update the critical path.

Step 7. If all the transportation operations are inserted, STOP. Else, go to Step 2.

Since the proposed MIP models and insertion algorithm are generally associated with

time-related objective functions (MS and MFT), a good tie-breaking rule between jobs

competing for the transporter would then be the existence of their corresponding

operations on the critical path of the schedule. Operations existing on the critical path do

not have any slack, thus deferring such operations will always result in deferring other

directly and indirectly dependant operations.

3.5 Numerical Example

In this section, a scheduling problem is solved using the proposed MIP models and OI.

The model earlier proposed in [70] for the deadlock-free scheduling problem when

infinite buffers are present (RJI), is also solved here to obtain the best possible solution

for the problem in order to compare the capacity requirements in the IBA and the CBA

models. TOI is also utilized to illustrate the difference between, inserting the

transportation operations after obtaining the schedule with CBA model, and while

building the schedule using OI. All the MIP formulations are modeled and solved using

 90

the commercial software LINGO v6.0
1
, and OI is coded and solved using MATLAB

v7.1
2
 using a PC Intel Duo Core/1.66G with 1G DRAM

The example problem is randomly generated and it comprises a manufacturing cell

with three machines that are visited by six jobs. The processing routes and times of jobs

on each machine are shown in Table C.1 in Appendix C. First, the problem is solved

using the MIP models. The RJI, IBS, and IB1 models of this problem are solved first.

Note that if the RJP3 model was solved, the solution would have been the same as that of

the IBS model. The IBA and CBA models are then each solved while incrementing the

capacity of the buffer(s), until the solution obtained by RJI is obtained. In the IBA model,

the three intermediate buffers are assumed to have the same capacity.

The solutions obtained for the RJI, IBS, and IB1 models are shown in Figures 3.11,

3.12, and 3.13, respectively. The values obtained for the objective function of minimizing

the MFT by the RJI, IBS, and IB1 models are 140.17, 148.67, and 144 time units,

respectively. These solutions were obtained in 9, 2.5, and 3.5 seconds, respectively.

Figure 3.11 shows how the RJI model assumed that a machine becomes immediately

available after completing a job, whether the next machine in that job’s route was

available or not. For example, machine M2 started processing job J6 as soon as it

completed processing J1 at time 27, although J1 did not start its next operation on M3 until

time 82. If in the actual system there is no buffer space, this schedule will be unfeasible

to implement.

1
 Copyright © 2007 LINDO Systems, Inc.

2
 Copyright 1984 – 2007, The MathWorks Inc.

 91

Figure 3.11: Solution of the RJI model of example problem

Figure 3.12: Solution of the IBS model of example problem

Figure 3.13: Solution of the IB1 model of example problem

 92

From the solution obtained by the IBS model (Figure 3.12), it can be seen that the

intermediate buffers were used three times. First, at time 27, there was a circular wait

between J1, J4, and J6 on machines M2, M3, and M1, respectively. To resolve such a

circular wait, only one of these jobs needs to reside in the intermediate buffer preceding

the next machine in its route (e.g. J1 in b3) momentarily until the other two jobs acquire

their respective machines. In other words, the three jobs are swapped. The second time

was again between J1, J4, and J6 on machines M3, M2, and M1 at time 64. The third time

was to swap J2 and J3 between M1 and M2 at time 147.

In Figure 3.13, it can be seen how the IB1 model used the three intermediate buffers

six times to hold different jobs, enabling other jobs to acquire the machines when needed.

It can be noticed, however, that although this solution is superior to the one obtained by

solving the IBS model, it is inferior to the one obtained by solving the RJI model. This is

due to the restriction of having to start processing a job, residing in an intermediate

buffer, on the machine as soon as it becomes available. For example, J1 was released

from b1 as soon as J2 was moved from M1 to b2.

The IBA and CBA models are used to obtain the solution obtained by the RJI model.

The IBA model was able to obtain the same solution of 140.17 time units in 13 seconds

using unit capacity intermediate buffers. On the other hand, the capacity of the central

buffer in the CBA model had to be incremented to two in order to obtain this solution,

which took a computational time of 58 seconds. The utilizations of buffers in the

solutions obtained by the two models are shown in Figure 3.14. From this figure, it is

clear that the IBA model only required unit capacity intermediate buffers because none of

 93

these buffers were required simultaneously by more than one job at any time. The central

buffer in CBA model, however, had to have a capacity of two in order to accommodate

all the jobs in the buffer when required. This is because, as Figure 3.14 shows, J1 resided

in the buffer for a relatively longer time (from time 27 till time 82), which resulted in a

dual utilization of the buffer every time J4 or J5 resided in it.

The above example also shows that the performance of the IBA model, when the

capacity of the intermediate buffers is set to unity, can sometimes be better than that of

the IB1 model that has inherent unit capacity intermediate buffers. From Figures 3.11 and

3.14, it can be seen that in the solution of the IBA model, J1 was able to reside in b3 while

J5 followed by J6 were being processed by M3. This however cannot be achieved by the

IB1 model because of the aforementioned restriction in that model. Finally, TOI is

Figure 3.14: Illustration of buffer usage in the IBA and CBA models for the example

problem

 94

applied to the solution obtained by the CBA model. It is assumed that all the

transportation operations take four units of time to acquire a job and deliver it to its

destination. The obtained schedule has a MFT of 200 time units, and is shown in Figure

3.15.

From the above figure, it can be noticed that the obtained schedule is still deadlock-

free. In the original solution of the CBA model, J4 resided in the buffer after being

completed on M3 until J6 released M1. This was to enable J5 to start processing on M3 as

soon as possible. However, it could be noticed from Figure 3.15 that, after inserting the

transportation operations, this step was no longer necessary. Since J6 had already been

transferred to M2 before J4 acquired the transporter to be transferred to the buffer, J4

could have been directly transferred to M1 instead. Nevertheless, the algorithm still had to

apply this move since it was already scheduled in the original schedule. Although this

indicates that this solution cannot be optimal, considering the transportation operations

Figure 3.15: Applying the transportation operations insertion algorithm on the CBA

solution

 95

from the beginning in the mathematical model to obtain the optimal solution would

render it prohibitive to solve.

As for OI, it is used to solve the problem when there is a central buffer with a capacity

equal to two twice; in the first time, without considering the transportation operations,

and in the second, with TOI augmented in OI. The first schedule is obtained in 0.29

seconds and has a MFT of 148.83 time units (Figure 3.16). The order of insertion of jobs

in the schedule using OI is: J1 – J5 – J4 – J2 – J6 – J3. From Figures 3.11 and 3.16, it can be

noticed that OI failed to obtain the optimal solution having a MFT of 140.17 time units

because the order of insertion of jobs considered J2 before J6. This resulted in scheduling

J2 as the first job on M1 in the OI solution (the best schedule considering J1, J5, J4, and J2

only), which eventually resulted in the difference in the solution from the optimal.

When TOI is augmented in OI, a schedule with a MFT of 190.67 time units (Figure

3.17) is obtained for the problem in 0.62 seconds. Compared to the schedule obtained by

Figure 3.16: Using OI to solve example problem (buffer capacity = 2)

 96

inserting the transportation operations in the CBA model solution (Figure 3.15), it can be

noticed that augmenting TOI in OI resulted in a better MFT in much lesser computation

time. It can also be noticed that this schedule does not feature any unnecessary moves to

the buffer like the previous solution, because the transportation operations are considered

when such moves are scheduled.

3.6 Performance Evaluation

In this section, the performances of the proposed MIP models and OI are evaluated.

The MIP models are evaluated by performing a computational study, where a group of

randomly generated problems are solved using the proposed models and the RJI and RJP3

models. Performance is evaluated based on the solutions obtained and the computational

time required to obtain these solutions. As for OI, its performance is evaluated by

comparing it to those of previous approaches in solving a group of benchmark problems.

Again, the evaluation is based on the quality of solutions and the computational time in

some cases.

Figure 3.17: Using OI augmented with TOI to solve example problem (buffer capacity =

2)

 97

3.6.1 Computational Study for the MIP Models

Computational experiments have been a common method in literature to investigate

the performances of mathematical models [61]. In the current study, ten groups of

problems for ten different sizes of the problem on hand are studied. In each group, five

problems are randomly generated and then solved using the two models proposed in [70],

RJI and RJP3, and using the four proposed models; IBS, IB1, IBA, and CBA. In the

problems, the processing routes of jobs are randomly generated such that each job visits

each machine once. Flexible routes are not considered in the current experiment because

they were not modeled in [70]. Processing times of operations are randomly generated

from a discrete uniform distribution over (20, 40) time units. The buffer capacities of the

IBA and CBA models are incremented to obtain the best solution possible which is

obtained by the RJI model.

The ten groups of problems are classified into two classes according to the number of

machines in the system. The first class comprises of five-machine cells visited by 3, 4, 5,

6, and 7 different jobs. The second contains three-machine cells visited by 4, 5, 6, 7, and

8 different jobs. Although these problem sizes could be classified as small to fairly

medium in the general job shop scheduling literature, based on experience and on

previous literature they are realistic and represent real-world situations in FMSs that

employ the cellular layout.

Table 3.2 shows the results obtained for the experiment. The first column shows the

problem size indicated by n (number of jobs) x m (number of machines). The second

column shows the model used. The third and fourth columns show the average objective

 98

values obtained and average computational times required, respectively, for each problem

size. For the RJP3, IBS, and IB1 models, column five shows the average percentage

deviation in objective value from the RJI model. Finally, for the IBA and CBA models,

column six shows the average buffer capacities that were required to obtain the solutions.

Note that a computational time limit of 3600 seconds [62] has been set for the current

experiment. In other words, none of the models are allowed to exceed 3600 seconds in

solving a problem (except for the RJI to acquire the best solutions).

From Table 3.2, the following observations can be made:

� The CBA model required more computational time than the set limit to solve

problem sizes 7 x 5 and 8 x 3. Since it features the largest number of binary variables

and constraints, the larger computational time was expected when the problem sizes

got larger.

� On the other hand, although the RJI model features the minimum number of

variables and constraints among all the models, it required more time than the set

limit to solve problem sizes 7 x 3, 8 x 3, and 7 x 5. It can be noticed that the

computational time of this model increased dramatically from problem sizes 6 x 5 to

7 x 5, and from 6 x 3 to 7 x 3. This may be due to the huge solution space that this

model searches because of the minimized restrictions on the model.

� Although the IBS model obtained the same solutions as the RJP3 model, it required

the minimum computational time among all the models. In fact, the percentage

reduction in computational time achieved by this model, when compared to the RJP3

model, increased as the problem size increased until it reached nearly 57% for the 7 x

5 problem size.

 99

Table 3.2: Results of computational study

Problem

Size
Model

Objective value

(time units)

Computational

time (seconds)

Percentage

deviation (%)

Buffer

capacity

3 x 5

RJI 181.07 0

RJP3 182.60 0 0.84

IBS 182.60 0 0.84

IB1 181.07 0 0
IBA 181.07 0 1

CBA 181.07 0 1

4 x 5

RJI 190.8 0

RJP3 194.95 0 2.1
IBS 194.95 0 2.1

IB1 191.3 0 0.26

IBA 190.8 0 1
CBA 190.8 2.6 1

5 x 5

RJI 201.32 1.4

RJP3 209.64 1.6 4.1
IBS 209.64 0.8 4.1

IB1 202.44 1.6 0.55

IBA 201.32 4.6 1
CBA 201.32 23 1

6 x 5

RJI 208.77 13.4

RJP3 229.00 20.8 9.69

IBS 229.00 16.4 9.69
IB1 211.37 13.6 1.24

IBA 208.77 68.4 1.4

CBA 208.76 410.6 2.4

7 x 5

RJI 227.80 *

RJP3 248.60 497.2 9.13

IBS 248.60 212.8 9.13

IB1 228.94 532 0.5
IBA 227.80 2326.2 1.2

CBA * *

4 x 3

RJI 119.40 0

RJP3 126.75 0 6.15
IBS 126.75 0 6.15

IB1 119.40 0 0

IBA 119.40 0 1
CBA 119.40 0 1

5 x 3

RJI 134.36 0

RJP3 140.04 0 4.22

IBS 140.04 0 4.22
IB1 135.28 0 0.68

IBA 134.36 0 1.6

CBA 134.36 0.8 1.8

6 x 3

RJI 158.37 8

RJP3 166.86 3.2 5.36

IBS 166.86 2.8 5.36

IB1 160.23 4 1.17
IBA 158.37 15 1.6

CBA 158.37 59.4 1.8

7 x 3

RJI 168.49 *

RJP3 178.66 24.6 6.03

IBS 178.66 25.4 6.03

IB1 169.57 30.6 0.64
IBA 168.49 523.4 2.0

CBA 168.49 2977.4 2.2

8 x 3

RJI 173.88 *

RJP3 187.60 362.5 7.89
IBS 187.60 292.5 7.89

IB1 178.50 457.75 2.65

IBA 173.88 1872.5 2.6
CBA * *

* Average computational time exceeded 3600 seconds

 100

� The IB1 model performed quiet satisfactorily in terms of both solution quality and

computational time. On one hand it required computational times quiet comparable to

those required by the RJP3 model, and on the other it obtained solutions with

deviations in objective values from the best possible solutions of RJI, IBA, and CBA,

in the range of (0 to 2.65%) only. The RJP3 and IBS models, however, reached up to

9.69% deviations from these best solutions.

� The IBA model was capable of obtaining the best solutions for all problem sizes

within the allowed computational time limit.

� The CBA model generally required up to four or five times more computational

time than the IBA model. However, it should be noted that for the CBA model, the

buffer capacity requirement figures shown in Table 3.2, represent all the buffer space

required in the cell. However for the IBA model, these figures represent the buffer

capacity requirement for each intermediate buffer in the system.

3.6.2 Comparative Study for OI

A number of approximate approaches have been proposed in literature to solve the

deadlock-free scheduling problem (Chapter 2). Among these approaches, different

assumptions and problem parameters have been considered. Consequently, comparisons

will be classified according to the solved benchmark problems, and in each case, the

parameters considered in the other approach will be defined. The objectives of

minimizing MS and minimizing MFT are both considered.

 101

The first problem is a 4J x 3M problem and was introduced and solved in [70], [53],

[54], and [59]. The problem was solved in these studies under different objectives and

considering different system parameters. The next problem can be found in OR Library
3

under the name la01. This is a 10J x 5M problem and was solved in [57] considering the

presence of a central buffer with a capacity equal to five. The last two problems are a 6J x

6M and a 10J x 10M problems that can be found in OR Library under the names ft06 and

ft10, respectively. These problems were solved in [51], [53], and [56] assuming the

absence of buffer space and transporters, with the objective of minimizing MS. The best

solutions obtained for these problems using the above approaches and using OI, along

with the solution times of OI are shown in Table 3.3.

It should be noted that for problems ft06 and ft10, the approach proposed in [51] had

to be solved 20 times to obtain the best solutions shown in Table 3.3. For the 20 trials,

this approach obtained an average makespan of 72 time units for problem ft06, and 1310

time units for problem ft10. It was also noted in [53] that the approach in [51] required

over 200 CPU seconds on an AMD Duron 1GHZ processor to get a good solution. In

addition, in [53], it was mentioned that the CPU times required to solve problems ft06

and ft10 were almost negligible. However, the times required to construct the PN models

of these problems and to locate the minimal siphons to prevent deadlocks were not

mentioned. Furthermore, as in [51], the solution obtained in [57] for problem la01, was

the best among 20 solutions (having an average makespan of 673 time units) and took a

CPU time of 70 sec on a 500 MHz processor. Finally, the solution of ft10 obtained in [56]

3
 OR Library, URL: http://msemga.ms.ic.ac.uk

 102

was as well the best among other solutions that were obtained by varying a weight

function. These solutions had objective values of 1319, 1333, and 1391 time units.

Table 3.3: Performance comparison results for OI

Problem

Approach

proposed

in

Nature of

approach
Objective Buffer

Transporter

considered

Objective

value

OI

Objective

value

CPU

time

(sec)

‘4Jx3M’

[70]

MIP

 MFT

NO NO 301.50 301.50* 0.05

YES NO 287.75 272.75* 0.13

NO YES 332.50 332.50* 0.11

MIP &

heuristic
NO YES 336.20 332.50* 0.11

[54] PN & DP MS NO YES 663 560* 0.10

[53] PN & BS MS NO NO 593 512* 0.05

[59]

Geometric

approach

& TS

MS

NO NO 512 512* 0.05

YES NO 502 433* 0.14

NO YES 560 560* 0.10

la01 [57] TD & GA MS

YES

Cap. =5

NO 666 666* 8.58

ft06 |

ft10

[51] PN & GA MS NO NO 69 | 1252

69* |

1324

0.70 |

22.85

[53] PN & BS MS NO NO 69 | 1331

[56]
Automata

& A*
MS NO NO 69 | 1319

* Optimal solution

 103

3.7 Conclusions

In this chapter new MIP models and an operations insertion algorithm (OI) were

proposed to solve the deadlock-free scheduling problem with limited capacity buffers. In

addition, a transportation operations insertion algorithm (TOI) was proposed to either

insert transportation operations after obtaining the best schedules, or to augment these

operations in the schedule building process when using OI.

The novelty in the MIP models is that they provided constraints that could represent

and utilize the available buffer space, which was previously considered unachievable.

These constraints further prevented any job from blocking a machine while waiting for

the availability of the next machine in its route, and thus ensured the deadlock-freeness of

the resulting schedules. The performances of the proposed models were compared to

those of the models proposed in [70]. The computational results indicated that the IB1

model featured the best overall performance among all the models when considering

objective function value and computational time together. The IBS model can obtain the

same solution quality obtained by RJP3 in a considerably less computational time. The

buffer space capacity can be set arbitrarily in the IBA and CBA models. Although this

comes at the expense of the required solution time to solve these models, it can be very

beneficial in the system design stage, where solution time is not a major concern. These

models can be solved to determine the minimum buffer capacity requirements that

guarantee the optimal performance of the system. To optimize the performance of

existing systems, trade-offs should be made between the solution quality and solution

time when choosing between the proposed models.

 104

As for OI, it utilized rank matrices in generating and evaluating schedules, and in

detecting and preventing the occurrence of circular waits. It could handle a wide variety

of parameters in the deadlock-free scheduling problem; jobs with alternative routes, jobs

with different lot sizes, systems with no buffer space, and those with a limited central

buffer space. In addition, it was shown how augmenting TOI in OI can provide schedules

with better objective values than those obtained by inserting the transportation operations

in optimal schedules. The performance of OI was compared to the performance of a

number of approaches earlier proposed in literature in solving a group of benchmark

problems. The results showed that in most of the cases, OI either obtained the same or

better results than those achieved by other approaches in a timely and efficient manner.

Due to time and memory space considerations, the proposed MIP models can be used to

solve small and fairly medium-sized problems to optimality, whereas OI can be used to

solve larger problems.

 105

CHAPTER 4:

Reactive Scheduling

4.1 Introduction

As mentioned earlier in Chapter 2, a production system is a real world dynamic system

subject to many disruptions. These can be external to the system, like arrival of new jobs

(orders), cancellations of orders, and due date changes, or internal, like machine

breakdowns and process time variations. Such disruptions should be accounted for, and

reacted to efficiently, in real time to guarantee an efficient and stable performance of the

system. Relying on the supervisory controller solely to react to these disruptions can most

of the time realize a safe (deadlock-free) operation of the system. However, the efficiency

in terms of production objectives, and the stability that reflects a less disturbed

production flow, can only be addressed using a higher level reactive scheduler.

 In a job shop environment, system resources like machine tools and fixtures are

usually delivered to the corresponding machines based on the set production schedule.

Furthermore, jobs may be set on pallets in a queue and ordered according to the defined

sequence of operations in the schedule. Consequently, deviations in the set schedule may

result in substantial costs. These include carrying costs for early delivered material, rush

order costs for late delivery of tools and material, and costs incurred for re-sequencing

 106

the ordered job queue, and reallocating the pallets [83]. In previous literature, a number

of measures have been proposed for estimating system nervousness, or the amount of

deviation from the original schedule [80, 110]. However, the most common measure of

deviation from the original schedules has been the one used in [78], [81], [83], and [90].

It was measured as the normalized sum of absolute deviations of staring times of

operations in the revised schedule from their starting times in the original schedule:

∑

∑∑

=

= =

−

=
n

i

i

n

i

O

k

ikik

O

SOSR

DEV

i

1

1 1

|)(|

 (4.1)

where, SRik and SOik are the starting times of operation k of job i in the revised schedule

and the original schedule, respectively, and Oi is the number of operations of job i.

As stated earlier in Chapter 2, supervisory control (SC) approaches and deadlock-free

reactive scheduling approaches that rely on either the automata or the PN formalisms, can

handle system disruptions that do not add to the product mix of the system. Reacting to

the arrival of new jobs using these approaches requires re-computing the whole control

structure, which cannot be performed in real time. As for other disruptions, it has been

shown earlier that the reactive scheduling literature lacks a generic approach that could

handle a wide variety of disruptions in real time, while providing deadlock-free

schedules.

This chapter will accordingly be divided into two main parts. The first (Section 4.2)

will be dedicated to the new job arrival problem, where a detailed experimental study is

 107

conducted to evaluate the relative performance of two approaches that may be pursued to

react to this type of disruption; job insertion and total rescheduling (TR). In the second

part (Sections 4.3 and 4.4), it will be shown how the proposed insertion algorithm (OI)

can be extended to react to a number of disruptions through a generic deadlock-free

reactive scheduling tool (GDRS). An experimental study will be also conducted to

evaluate the performance of GDRS, via comparison with TR and the modified Affected

Operations Rescheduling algorithm (mAOR) proposed in [90].

Throughout this chapter, along with the assumptions previously presented in Chapter 1

that defined the operational conditions of the considered flexible job shop systems, the

following assumptions are adopted to define the reactive scheduling problem:

� An original deadlock-free production schedule that meets a certain objective

criterion is already available.

� The problem is event-driven and is solved on a rolling horizon basis [111], or

equivalently by taking snapshots of the systems when a disruption occurs [112].

This implicitly means that the actual time of occurrence of a disruption does not

affect the problem, because the problem is solved each time a disruption occurs,

considering only the remaining operations in the original schedule.

4.2 Arrival of New Jobs

Introducing a new job into a system, where a production schedule has already been

established, requires the determination of time intervals wherein operations of this job

 108

can be gainfully inserted. In the traditional reactive scheduling context, two approaches

have been usually followed to react to the arrival of new jobs to the system [113]; job

insertion (JI) and total rescheduling (TR). The JI problem was defined in [74] as finding a

feasible simultaneous insertion of the operations of a new job (or jobs) into an existing

feasible schedule of original jobs, while optimizing some objective criterion. TR on the

other hand, implies solving the scheduling problem from scratch upon the arrival of a

new job.

4.2.1 Job Insertion and Total Rescheduling

It has been noticed that most of the related literature have followed the JI approach

rather than the TR approach in solving the new job introduction problem. In addition,

some studies have concluded that, in reactive scheduling in general, TR can take

significantly longer time and can result in more system nervousness while providing a

better schedule (from the objective criterion’s perspective). However, it has not been

firmly stated when it is more beneficial to apply TR and which factors may affect these

conclusions. In addition, depending on the solution methodology used and system

properties being considered, these conclusions may not be valid all the time.

Furthermore, any approach that has been proposed in literature to solve the deadlock-free

scheduling problem can be utilized to solve the deadlock-free TR problem. However, the

reported literature almost lacks an approach that can be used to solve the JI problem in a

deadlock-free manner.

 109

The insertion algorithm (OI) proposed in Chapter 3 is essentially a greedy algorithm

that inserts into the schedule one job after the other in a deadlock-free manner. Hence, it

can be utilized in the current context to apply both the JI and the TR approaches to add

new jobs to the product mix. The only difference in application of OI for the two

approaches is in the first step as follows (Figure 4.1):

Step 1. (Total rescheduling) Set n ← number of jobs (original and new). Determine the

job with the maximum processing time through the system and insert it in the

schedule. Set i ← 2.

Step 1. (Job insertion) Set n ← number of new jobs. Set i ← 1.

To illustrate the difference between the two approaches, the problem previously solved

in [79] is solved here using JI and TR. In this problem, four jobs had been scheduled on

five machines, when an additional job (J5) was added to the system and had to be

included in the schedule. The processing times and routes of the jobs on the machines are

shown in Table C.2 in Appendix C. The schedule of the original jobs for this problem

was obtained in that study with an optimal makespan (MS) of 60 time units, and that

when J5 was inserted was obtained with an optimal MS of 64 time units (Note that the

Initialize: Total Rescheduling

- Set n ← number of jobs

(original and new), i ← 2.

- Determine job with maximum

processing time and insert it in

the schedule.

Start

Sub-algorithm 1

Determine Ji

Initialize: Job Insertion

- Set n ← number of new jobs,

i ← 1.

Figure 4.1: Application of OI to perform TR and JI

 110

approach proposed in that study was a traditional approach, where infinite buffers were

assumed). The reactive schedules obtained for this problem when applying JI and TR

using OI are shown in Figures 4.2 (a) and (b), respectively. To account for the infinite

buffers assumption in [79], a unit capacity central buffer is assumed to exist when solving

the problem using OI.

Figure 4.2: Solution of comparison problem: a) JI solution; b) TR solution

 111

From Figure 4.2, it can be noticed that both the JI and TR approaches obtained the

optimal MS of 64 time units. Furthermore, in the TR schedule, the original relative

sequences of the first four jobs on the machines are not preserved as in the JI schedule,

which results in a considerable amount of deviation from the original schedule.

4.2.2 Experimental Analysis

In the following experiment, the relative performance of the JI and the TR approaches

in solving a group of randomly generated reactive scheduling problems is tested and

compared. The objective criterion considered in this experiment is minimizing the mean

flow time (MFT) of the revised schedules. Furthermore, the effects of varying the values

of some system parameters on the relative performance of the two approaches are

studied. These parameters are system size, number of new jobs, routing flexibility,

presence of buffer space, and processing times of new jobs. In addition to applying the JI

and TR approaches, OI is also used to solve the randomly generated problems to obtain

the initial schedules.

The system size factor (SIZ) is used to represent the number of machines and the

number of original jobs in the system. Assuming that each job is processed once on each

machine, this factor consequently represents the number of operations in the schedule,

which if varied, may have a considerable effect on the revised schedules. The number of

new jobs factor (NEWJ) affects the ratio of new jobs to original jobs, and thus increasing

it may deteriorate the MFT of the JI approach. However, increasing it may also increase

 112

the system nervousness resulting from the TR approach. As for the routing flexibility

factor (RFLX), it is measured as the average number of alternative routes that a job can

take through the system. The buffer space presence factor (BUFP) gives both approaches

more flexibility in obtaining better schedules, since deadlock situations and blocking of

machines can be resolved. Finally, changes in the levels of the operation times of the new

jobs factor (OPTIM) may have considerable effects on the system nervousness and MFT.

In fact, larger processing times of new jobs could affect system nervousness, especially in

the TR approach, and can deteriorate the MFT obtained using JI. Table 4.1 summarizes

the considered factors and the values of their levels.

Table 4.1: Considered system parameters and their levels

Factor Code Level Value

System Size SIZ
Low Uniform*(3, 7) Jobs /uniform (3, 7) Machines

High Uniform (8, 12) Jobs /uniform (8, 12) Machines

Number of New Jobs NEWJ

Low 20% of original jobs

Medium 50% of original jobs

High 100% of original jobs

Routing flexibility RFLX
Low 1

High 4

Presence of buffer

space
BUFP

Low No buffer

High Central Buffer present

Operation times of

new jobs
OPTIM

Low 25% of original operations times

High 100% of original operations times

*Numbers of jobs and machines at each level are generated from uniform distributions

having the indicated ranges.

 113

Having five factors, each with two levels except for the NEWJ factor with three levels,

leads to 2 x 2 x 2 x 2 x 3 = 48 problem settings to study. In order to draw more accurate

conclusions, and to statistically deduce the average effects of the factors on the

performance measures, five replications are generated for each problem setting, resulting

in a total of 48 x 5 = 240 test problems to study. Along with the considered factors, other

parameters of the test problems are generated as follows:

� Processing times of operations of original jobs: generated from a uniform

distribution between 70 and 110 time units, setting the average original operation

time at 90 time units.

� Process plans of jobs: for each job, a random processing route is generated,

ensuring that each job is processed once on each machine in the system.

4.2.2.1 Relative performance criteria

The performances of the two reactive scheduling approaches are evaluated in terms of

three performance measures; system nervousness (deviation), MFT of the revised

schedule, and solution time. Equation 4.1 is used to measure the deviation from original

schedules. In the current experiment, it is assumed that every job is processed once on

every machine. Consequently, the MFT in the system will increase as the number of

machines increases with the increase in the system size factor (SIZ). Accordingly, this

proportional relation has to be suppressed in order to obtain the obscured effect of

changing the SIZ factor on the MFT measure. This is done, when applying the two

reactive scheduling approaches, by dividing the resulting MFT by the total number of

operations in the revised schedule to obtain the normalized mean flow time (NMFT).

 114

Since this experiment is a comparative one, the values obtained for each performance

measure by each of the two approaches are combined in one relative performance

measure as follows:

- Relative Nervousness (RNERV) = (DEVTR - DEVJI)/ average operation time

- Relative Mean Flow Time (RMFT) = (NMFTJI - NMFTTR)/ average operation time

- Relative Solution Time (RSOLT) = (STJI / STTR)

where the subscripts TR and JI refer to the criteria values obtained for total rescheduling

and job insertion respectively, and ST indicates the solution time spent in solving the

problem.

It should be noted that the value of RNERV (RMFT) is calculated as the difference

between DEVTR and DEVJI (NMFTJI and NMFTTR), because the nervousness (MFT)

resulting from applying TR (JI) is usually higher than that resulting from applying JI

(TR). It can also be noticed that the differences in deviation and normalized MFT

obtained from both approaches are further divided by the average operation time to

obtain the relative measures. This is done to eliminate the effect of the generated

processing times of the operations on the performance measures. The objective is to

obtain these measures in an absolute form, which can be utilized to evaluate any system

setting.

4.2.2.2 Experimental results

In a factorial experiment there are two types of effects to study, the main effects and

the interaction effects. The main effect of a factor corresponds to the average change in

 115

the measured criterion produced by changing the level of this factor [114]. An interaction

effect between two (or more) factors occurs when the change in the value of the criterion

between the levels of a certain factor is not the same at all levels of the other factor(s); in

other words, the effect of a certain factor depends on the levels of another factor(s). Main

effects can generally be deduced from the results of a factorial experiment. However,

significance of main effects and observation of interaction effects need more analysis to

be determined. Analysis of Variance (ANOVA) provides such details.

Each of the 240 generated problems is first solved using OI to obtain an initial

schedule for the original jobs with the objective of minimizing MFT. After including the

generated new jobs with their associated operation times, the generated problems are then

solved using JI and TR. The initial schedules are preserved in the JI solution, and are also

utilized in both approaches to calculate the deviations in the revised schedules. The

obtained averages for the three performance measures over the 240 problems are as

follows:

 - The average relative nervousness (RNERV) is 1.28.

 - The average relative mean flow time (RMFT) is 0.10.

 - The average relative solution time (RSOLT) is 0.80.

These results indicate that on an average, TR results in 128% more system

nervousness per original operation per average operation processing time than JI. In

addition, JI results in 10% more MFT per operation per average operation processing

time than TR. Finally, using OI, JI takes 80% of the time required by TR to add new jobs

in the production schedule. It should also be noted that the maximum solution time

 116

encountered when solving the 240 problems was around three minutes. This limit was

reached when applying TR to solve problems featuring high SIZ, NEWJ, and RFLX

levels. That is, when solving the scheduling problem of 24 jobs on twelve machines, with

each job having four alternative routes to choose from.

As mentioned earlier, having the performance measures in relative and absolute forms

can serve as guidelines for selecting the appropriate reactive scheduling approach for any

given setting. To illustrate, consider a system where 100 operations were originally

scheduled, and that five more jobs, each requiring 10 operations, are to be added to this

system, and that the average operation time in the system is 50 time units. Based on the

above results, the following figures can be estimated to compare the application of the

two approaches for this system setting:

- Difference in nervousness = 1.28 x 100 x 50 = 6400 more time units if TR is

applied.

- Difference in MFT = 0.1 x 150 x 50 = 750 more time units if JI is applied.

The difference in nervousness, can be combined with the associated carrying or rush

order, re-sequencing, and pallet reallocation costs (Section 4.1). Similarly, the difference

in MFT can be combined with operational costs or the penalties for late product delivery.

This would assist the decision maker in selecting the best approach based on actual cost

figures. However, it should be noted that the system size and number of new jobs in the

above example were set to represent an average sized system, based on the conducted

experiments. Furthermore, other system parameters, like flexibility and buffer presence,

were not taken into consideration. The following ANOVA results can account for these

considerations.

 117

4.2.2.3 ANOVA results

In general, ANOVA is conducted to determine if there are any significant main or

interaction effects of the factors on the considered performance criteria (responses). This

is done by comparing the variability among estimated effects (main and interaction) to

the variability among replicate observations to calculate a certain ratio (F-ratio). A large

F-ratio of an effect indicates the significance of that effect, and that it is larger than just to

occur by chance or due to random errors. Together with the F-ratio, a p-value is also

computed. The p-value represents the probability of making a Type 1 error and the null

hypothesis assumes that the associated effect is not significant. The smaller the p-value,

the smaller is the probability an error would be made by rejecting the null hypothesis

when it is true. A cut-off value of 0.05 is often used, that is, reject the null hypothesis

when the p-value is less than 0.05, indicating the significance of the effect [114].

Using the commercial statistical software MINITAB v13
4
, ANOVA is conducted for

the experiment on hand. The results indicate that changing the levels of SIZ, NEWJ,

RFLX, and OPTIM, and the interactions SIZ x RFLX, SIZ x OPTIM, and NEWJ x

OPTIM, all have significant effects on RNERV. In addition, the SIZ, RFLX, and BUFP

factors along with the SIZ x BUFP and NEWJ x OPTIM interactions all have significant

effects on RMFT. Finally, the NEWJ factor has a significant effect on RSOLT. To get a

better understanding of these results, consider Figures 4.3, 4.4, and 4.5, which show the

significant main effects. As for the significant interaction effects, Figures 4.6 and 4.7

display these effects on RNERV and RMFT, respectively.

4
 Copyright ©2006 Minitab Inc.

 118

Figure 4.3: Main significant effects of factors on RNERV

Figure 4.4: Main significant effects of factors on RMFT

Figure 4.5: Main significant effects of factors on RSOLT

 119

The following observations can be deduced from the above figures:

� From Figures 4.3 and 4.6, it can be seen that RNERV significantly increases when

OPTIM is high. In addition, this difference is further elevated when SIZ or NEWJ are

at their high levels, to reach a threshold value for RNERV of 3.0. The significant

increase in RNERV is a result of more operations having to be rescheduled. On the

other hand, Figure 4.7 shows that when OPTIM and NEWJ are high, the difference in

MFT between JI and TR becomes significant, and the value of RMFT reaches 0.22.

However, when NEWJ is high and OPTIM is low, RMFT decreases to a value of

0.05, with no significant effect on RNERV.

Figure 4.6: Significant interaction effects of factors on RNERV

Figure 4.7: Significant interaction effects of factors on RMFT

 120

� Figures 4.4 and 4.7 show that when SIZ and BUFP are high, the difference in

MFT between JI and TR becomes significant, such that the value of RMFT reaches

0.21. This is due to the inclusive nature of TR that makes better use of the buffer

space when all the jobs in the system are considered for scheduling, especially in

large systems. This eventually results in revised schedules with significantly better

MFT than the ones resulting from JI.

� Figures 4.3 and 4.6 show that although RNERV increases significantly when SIZ

is high, having routing flexibility (high RFLX) in the system suppresses this increase.

In addition, Figure 4.4 shows that RMFT significantly decreases when RFLX is high.

This indicates that having routing flexibility in the system on one hand reduces the

system nervousness resulting from TR, and on the other it improves the MFT attained

by JI.

� Finally, the effect shown in Figure 4.5 of NEWJ on RSOLT can be directly

related to the ratio of the number of new jobs to the number of original jobs. In JI,

increasing this ratio directly increases the solution time required, since this approach

schedules only the new jobs. On the other hand, this ratio has a minor effect on the

solution time of TR because in this approach, all the jobs (original and new) are

nevertheless scheduled.

4.3 Generic Reactive Scheduling

As mentioned in Section 2.4.1, the Affected Operations Rescheduling algorithm

(AOR) was proposed in [83], to react to machine breakdowns. In AOR, only the

 121

operations directly and indirectly affected are pushed in time to account for the

disruption, while keeping the original relative sequence of jobs on the machines

unaltered. This algorithm was based on a binary branching algorithm, and it produced

more efficient and stable reactive schedules when compared to right-shift-rescheduling

(RSR) (Figure 4.8).

In [90] and [78], AOR was used as a core for a modified AOR (mAOR) heuristic that

defined generic schedule repair actions for a wide variety of disruptions. In the first

study, mAOR was compared to RSR regarding the performance for four types of

disruptions; machine breakdowns, arrival of new orders, process time variations, and

urgency of existing jobs. The results showed that mAOR outperformed RSR in terms of

both efficiency and stability.

Figure 4.8: AOR and RSR; a) Machine 1 failure, b) reactive schedule using RSR, c)

reactive schedule using AOR

 122

In this section, the proposed operations insertion algorithm (OI) will be further

extended to react to a number of system disruptions. Since the fundamental step of OI is

the insertion of a single operation in a schedule in a deadlock-free manner, it can be

adapted to react to wide variety of disruptions. It is employed through a generic

deadlock-free reactive scheduling tool (GDRS) to react to machine breakdowns, process

time variations, urgency of existing jobs, and cancellation of orders (jobs), as well as

arrival of new jobs. In the sections to follow, the proposed set of steps required to react to

each of these disruptions will be outlined along with an illustrative example. These will

be followed by a comparative experimental study, in which the performances of GDRS,

mAOR, and TR are evaluated and compared regarding five types of system disruptions.

4.3.1 Machine Breakdowns

A machine breakdown simply means that a machine will be unavailable for a period of

time due to a sudden failure. In GDRS, the following steps are proposed to react to a

machine breakdown:

1. Remove the job(s) whose operations are directly affected by the breakdown; i.e.

operations on the broken down machine Mp whose starting times are less than the end

of the downtime.

2. Insert an operation on Mp with duration equal to the downtime. This operation is

inserted as the first operation on Mp. Note that according to the rolling horizon

assumption (Section 4.1), the time of occurrence of the disruption in the original

schedule is time zero in the revised schedule.

 123

3. Re-insert the removed job(s) in the schedule, making use of alternative routes (if

any) to avoid using Mp during its downtime, without altering the original relative

sequences of operations of other jobs on all the machines.

To illustrate this, consider the following example. Figure 4.9(a) shows the Gantt chart

of remaining operations in a deadlock-free schedule of four jobs on four machines with a

MS (the performance criterion) of 250 time units, at the time of occurrence of a

breakdown on Machine M4. The downtime of the machine is 100 time units. Figure

4.9(b) shows the revised schedule with mAOR having a MS of 350 time units. According

to GDRS, jobs J3 and J4 are directly affected by this downtime, and hence they are

removed from the schedule, and re-inserted as shown in Figure 4.9(c), to achieve a

makespan of 289 time units. Note that the machine downtime appears in the rank matrix

as a fifth job with only one operation to be performed first on M4.

4.3.2 Process Time Variation

This disruption is defined in [78] as the change in the end time of a process

(operation). This change might be an increase or a decrease depending on the cause of the

change. Since the defined sequences in a production schedule are merely based on the

processing times of operations, the occurrence of such a change could, to a great extent,

affect the logic behind which these sequences were obtained in the first place.

Accordingly, in GDRS, the following steps are proposed to react to this type of

disruption:

 124

Figure 4.9: Machine breakdown: (a) Original schedule of remaining operations; (b)

revised schedule using mAOR; (c) revised schedule using GDRS along with the

associated rank matrix

 125

1. Remove any job, whose operation has experienced a change in processing time,

from the schedule.

2. Re-insert the removed job(s) in the schedule, with the new processing time(s),

without altering the original relative sequences of operations of other jobs on all the

machines.

Figure 4.10 (a) shows the Gantt chart of the remaining operations of a schedule, with a

MS of 252 time units, at the time of discovery of a necessary increase in the processing

time of J3’s operation on M1 by 101 time units. Figure 4.10 (b) shows the revised

schedule with mAOR, having a MS of 353 time units. Figure 4.10 (c) shows the revised

schedule using GDRS with a MS of 325 time units after removing and re-inserting J3 in

the schedule.

4.3.3 Urgency of Existing Jobs

An urgent job is defined in [78] as an existing job that suddenly experiences an urgent

demand or a due date revision that precedes its original completion time. In GDRS, the

reaction to this disruption is carried out as follows:

1. Remove the urgent job from the schedule.

2. Re-insert the job, such that its completion time in the system precedes the revised

due date, without altering the original relative sequences of operations of other jobs

on all the machines.

 126

Figure 4.10: Process time variation; (a) Original schedule of remaining operations, (b)

Revised schedule using mAOR, (c) Revised schedule using GDRS

 127

Figure 4.11(a) shows the remaining operations of a schedule, with a MS of 243 time

units, at the time of receiving a revised due date for J2 equal to its remaining processing

time in the system; 128 time units. Figure 4.11(b) shows the revised schedule with

mAOR, having a MS of 371 time units. Figure 4.11 (c) shows the revised schedule using

GDRS after removing and re-inserting J2 in the schedule with a MS of 304 time units.

Note that because the mAOR approach is a modification of the AOR approach that

was originally developed to react to machine breakdowns, it reacts to the disruption of

the urgency of an existing job, or to that of the arrival of a new job, by scheduling this job

as the first job on all the machines that process this job in the revised schedule. This

negatively affects both the efficiency and stability of the schedules revised using this

approach due to the cumulative shifting action of other jobs on all the machines.

4.3.4 Order Cancellations

This disruption indicates that a job (order), already scheduled for processing in the

shop, is not required anymore [78]. This disruption does not require the insertion of any

operations; on the contrary, it requires the removal of some operations. In GDRS, the

reaction to this disruption entails the following steps:

1. Remove the cancelled job from the current rank matrix.

2. Update the rank matrix, without altering the original relative sequences of

operations of other jobs, and consequently the new starting and ending times of

 128

operations. In other words, the schedule is Left-shifted as opposed to right shifting in

RSR.

Figure 4.11: Urgent job; (a) Original schedule of remaining operations, (b) Revised

schedule using mAOR, (c) Revised schedule using GDRS

 129

Figure 4.12(a) shows the remaining operations of a schedule, with a MS of 247 time

units, at the time of receiving a cancellation order for J3. Figure 4.12(b) shows the revised

schedule using GDRS with a MS of 200 time units after removing J3 from the schedule.

Note that in mAOR, the reaction to this disruption only removes the cancelled job

without any further repair actions [78, 90]. In other words, if mAOR was used in the

shown example, the MS would have stayed at 247 time units.

Figure 4.12: Order cancellation; (a) Original schedule and rank matrix of remaining

operations, (b) Revised schedule and rank matrix using GDRS

 130

4.4 Comparative Analysis

In this section, an experimental study is conducted to compare the performances of the

three discussed reactive scheduling approaches; the proposed GDRS, mAOR, and TR.

Performance is evaluated in terms of efficiency and stability of revised schedules when

reacting to five types of system disruptions; machine breakdowns, arrival of new jobs,

process time variations, urgency of existing jobs, and order cancellations. Since there are

five types of disruptions, five separate factorial experiments will be conducted for each

type. Another objective of the experiment is to study the effects of changing a number of

system parameters (factors) on the performances of the approaches. The design entails

factorial experiments in which all the possible combinations of the levels of various

factors are studied in each trial [114]. The problems studied along with the disruptions

are randomly generated (Section 4.4.1). As in Section 4.2, in order to obtain the original

best deadlock-free schedules of the remaining operations for the problems and to apply

TR, OI is utilized. It should be noted that, although in Section 4.2 a dedicated

experimental study was conducted to study the arrival of new jobs, this disruption is

again considered in the current experiment mainly to compare the performances of GDRS

to mAOR.

4.4.1 Experimental Design

After a careful search within the literature for an experiment similar to the current one,

the experiment conducted in [83] appeared to be the most relevant. In that experiment,

 131

performance comparison was conducted between three rescheduling approaches, RSR,

AOR, and TR, where the effects of five experimental factors were studied; the

rescheduling method, time of occurrence of the disruption, magnitude of the disruption,

optimality of the original schedule, and the size of the original scheduling problem. The

‘optimality of the schedule’ factor is overlooked in the current experiment due to the

hardness of obtaining optimal solutions while solving the deadlock-free scheduling

problem for large problems. Accordingly, the factors considered in the current

experiment are:

� Reactive scheduling method (MTD): This factor is selected to study the effect of

changing the reactive scheduling method on the performance of the revised schedules.

� Size of the reactive scheduling problem (SIZ): This factor is a combination of the

‘time of occurrence of disruption’ and the ‘size of the original scheduling problem’

factors. It refers to the number of remaining operations in the schedule upon the

occurrence of the disruption.

� Magnitude (size) of the disruption (MAG): For each of the five experiments, this

factor is defined according to the associated type of disruption.

� Flexibility of system (FLX): This factor represents both the availability of routing

flexibility and buffer space in the system. Routing flexibility is again defined by the

available number of alternative routes for each job.

The MTD factor will feature three levels representing the three reactive scheduling

methods considered. As for the rest of the factors, each factor will feature two levels as

shown in Table 4.2. Note that in this table and in what follows, the terms MS and

 132

schedule refer to the schedule of the remaining operations at the time of occurrence of the

disruption. As for the disruptions, they are randomly generated in the problems as

follows:

Table 4.2: Levels of experimental factors

Experimental Factor Level 1 (Low) Level 2 (High)

Problem size (SIZ)
Uniform† (3 , 7) Jobs

Uniform (3, 7) Machines

Uniform (15, 20) Jobs

Uniform (10, 15) Machines

Magnitude of

disruption

(MAG)

Machine breakdown Downtime = 10% of MS Downtime = 40% of MS

Arrival of new job

Processing time/operation =

0.75 * average operation

time

Processing time/operation

= 1.25 * average operation

time

Process time variation Increase by 10% of MS Increase by 40% of MS

Urgent existing job
Revised due date = 150% of

processing time of job

Revised due date =

processing time of job

Order cancellation
Late scheduled job (last

third of schedule)

Early scheduled job (first

third of schedule)

Flexibility of system (FLX)
No alternative routes and

no buffer capacity

Routing flexibility = 2/job

Buffer size = 1 (small

problem) or 2 (large

problem)

† Numbers of jobs and machines are generated from uniform distributions having the

indicated ranges

� Machine breakdown: a machine is randomly selected to represent the broken down

machine, provided that this machine started processing on a job at time zero of the

schedule. This is done to ensure the direct effect of the disruption on at least one job.

� Arrival of new job: a new job is randomly generated.

� Process time variation: an operation is randomly selected, from those that start

processing at time zero on any machine, to vary its processing time.

� Urgency of existing job: a job is randomly selected from the schedule to revise its due

date.

 133

� Order cancellation: a job (order) is randomly selected to be cancelled according to the

levels shown in Table 4.2.

Considering three factors in the factorial combinations, each with two levels, leads to

2
3
 = 8 problem settings to study for each type of disruptions. In order to draw more

accurate conclusions, and to statistically deduce the average effects of the factors on the

performance measures, five replications [83] are generated for each problem setting. This

results in 40 test problems to study for each type of disruptions; 200 test problems in

total. In the test problems, processing times of original operations are generated from a

uniform distribution between 20 and 40 time units, setting the average original operation

time at 30 time units.

Two performance measures are collected in this experiment; efficiency and stability of

the revised schedules. In previous literature, efficiency was evaluated in terms of the

value of the MS of the revised schedule relative to that of the original schedule. In this

study, only the schedules of the remaining operations are considered. Consequently, the

evaluation of efficiency is based on the makespans of the revised and original schedules

of the remaining operations as follows:

%)(1001 ×
−

−=
org

orgrev

MS

MSMS
EFF (4.2)

where MSrev and MSorg are the makespans of the revised and original schedules of

remaining operations, respectively.

 134

Note that when reacting to the order cancellation disruption, this efficiency measure

should result in values either equal to or higher than 100%, since the revised schedules

are expected to obtain equal or lower makespans than the original schedules. As for the

stability measure, it is evaluated in terms of the deviation of the revised schedule from the

original schedule (Equation 4.1). Note that lower deviation values indicate higher

stability and thus better performance of the reactive scheduling approach.

4.4.2 Experimental Results and ANOVA

The algorithms for the three reactive scheduling approaches are coded using

MATLAB v7.1. Table 4.3 shows a summary of the average values of the performance

measures obtained from solving the test problems using the three approaches for each

type of disruptions:

Table 4.3: Average values of performance measures

Approach

Disruption

Machine

breakdown

New job

arrival

Process time

variation
Urgent job

Order

cancellation

EFF

(%)
DEV

EFF

(%)
DEV

EFF

(%)
DEV

EFF

(%)
DEV

EFF

(%)
DEV

GDRS 87.7 99.9 85.2 17.9 79.8 78.9 92.4 46.6 107.2 15.47

mAOR 75.6 108.5 59.0 169.4 78.5 89.0 66.6 132.1 100.2 0.0

TR 91.1 159.0 88.8 95.8 88.7 122.3 96.1 57.7 113.6 62.4

 135

From Table 4.3, it can be noticed that the proposed GDRS approach clearly

outperforms mAOR in terms of both efficiency and stability for most of the considered

disruptions. However, for the order cancellation disruption, mAOR results in less (zero)

deviation from the original schedules, but with a negligible improvement in schedule

efficiency. In addition, the difference in performance between the two approaches is

slight when reacting to the process time variation disruption. As for GDRS and TR, it can

be noticed that, with the exception of the process time variation disruption, GDRS tends

to result in revised schedules with efficiencies close to those obtained by TR. On the

other hand, GDRS clearly outperforms TR in terms of the stability of the revised

schedules for all the considered disruptions. As for the ANOVA, focus is directed

towards testing the significance of the following effects:

� Main effect of changing the levels of MTD on the two performance measures

(efficiency and stability). This is carried out by conducting a one-way ANOVA test

between the MTD levels on the EFF and DEV measures.

� Main effects of changing the levels of the other experimental factors (SIZ, MAG,

and FLX) on the two responses.

� Interaction effects between MTD on one hand, and SIZ, MAG, or FLX on the

other.

Using the commercial statistical software MINITAB v13, the results for the current

ANOVA experiments are obtained. Table 4.4 shows the p-values for the main and

interaction effects of the considered factors on the two performance measures for the five

types of disruptions (significant p-values are indicated using bold face).

 136

Table 4.4: p-values for the ANOVA experiments

Effect

Machine

Breakdown

New job

arrival

Process time

variation

Urgent

existing job

Order

cancellation

EFF DEV EFF DEV EFF DEV EFF DEV EFF DEV

MTD 0.000 0.022 0.000 0.000 0.004 0.048 0.000 0.000 0.000 0.000

SIZ 0.337 0.000 0.000 0.000 0.114 0.000 0.051 0.000 0.000 0.001

MAG 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.102 0.306 0.339

FLX 0.011 0.000 0.000 0.027 0.360 0.000 0.180 0.496 0.207 0.750

MTD*SIZ 0.004 0.000 0.171 0.000 0.142 0.128 0.029 0.010 0.010 0.000

MTD*MAG 0.000 0.003 0.009 0.000 0.000 0.003 0.098 0.072 0.615 0.743

MTD*FLX 0.229 0.102 0.342 0.358 0.686 0.119 0.297 0.106 0.573 0.899

4.4.2.1 Machine breakdowns

For the machine breakdown disruption, the results obtained for the MTD factor from

the one-way ANOVA test are shown in Figure 4.13. These results show that the

efficiencies of the schedules revised using GDRS and TR were significantly higher than

those revised by mAOR. This is because in GDRS, the starting times of the indirectly

affected jobs are not shifted unnecessarily like mAOR. The results also show that there is

no significant difference in efficiency between TR and GDRS. This is because, unlike

mAOR, GDRS does not right-shift the operations to account for the repair time of the

broken-down machine. It only reschedules the directly affected jobs, while making use of

alternative routes (if any), without deferring any operations on the other machines. This

minimizes the changes in the makespan of the schedule. As for stability, the results show

that, although GDRS results in less deviation than mAOR, this difference is not

significant. Furthermore, GDRS and mAOR obtain significantly lower deviations than

those obtained by TR.

 137

As for the other experimental factors, results from Table 4.4 indicate that, introducing

flexibility in the system increases the efficiency and stability of the revised schedules.

This is because of the alternative routes and the availability of buffer space that can be

utilized to reduce blocking of machines. As for the interaction effects, it can be seen in

Figure 4.14 that unlike the TR and GDRS approaches, mAOR tends to suffer from a

decrease in efficiency as SIZ increases. Results also show that, mAOR is more negatively

affected than TR and GDRS by the increase in MAG. As for the stability of the revised

schedules, Figure 4.14 shows that TR is more negatively affected by the increase in SIZ

than GDRS and mAOR. Furthermore, although GDRS and TR tend to maintain stability

with the increase in MAG, mAOR is negatively affected to the extent that it shows more

deviation than TR when large machine downtimes are experienced. This may be due to

the shifting approach of mAOR, which eventually accumulates more deviation when the

downtime is increased.

Figure 4.13: One-way ANOVA results for the machine breakdown experiment

 138

4.2.2.2 New job arrivals

Figure 4.15 shows the one-way ANOVA results for the new job arrival disruption. It

can be seen that the efficiencies of the schedules revised using GDRS and TR were

significantly higher than those revised by mAOR, and that there is no significant

difference in efficiency between TR and GDRS. This is because GDRS inserts the

operations of the new job on the machines at the positions that result in the least effect

possible on the makespan of the schedule. In addition, GDRS results in significantly

better stability than TR that in turn features significantly better stability than mAOR. This

deterioration in stability of schedules obtained by mAOR is due to the accumulative

effect of shifting the starting times of original jobs on every machine that performs an

operation on the new job.

Figure 4.14: Significant interaction effects for the machine breakdown experiment

 139

From table 4.4, it can be noticed that increasing SIZ improves the efficiency of the

schedules, which is probably due to the decreased ratio of new jobs to original jobs; in

both levels of SIZ, the number of new jobs is fixed at one. Furthermore, increasing FLX

again improves both the efficiency and stability of the revised schedules. Analysis of

interaction effects shows that the efficiency of mAOR is more negatively affected by the

increase in MAG than GDRS and TR. It also indicates that while the stability of revised

schedules obtained by mAOR and TR is negatively affected by the increase in SIZ and

MAG, GDRS tends to maintain the same level of stability of the revised schedules as

shown in Figure 4.16.

Figure 4.15: One-way ANOVA results for the new job arrival experiment

Figure 4.16: Significant interaction effects for the new job arrival experiment

 140

4.2.2.3 Process time variations

Figure 4.17 shows the one-way ANOVA results for the process time variation

disruption. These results show that TR obtains revised schedules with significantly better

efficiencies than GDRS and mAOR. On the other hand, the deviation resulting from

GDRS is significantly lower than that resulting from TR, but not significantly lower than

mAOR.

Table 4.4 shows that increasing FLX leads to reactive schedules with significantly

better stability. On the other hand, increasing SIZ has a significant negative effect on

stability. The MAG factor has a significant interaction effect with MTD on the efficiency

and the stability of the revised schedules. While the schedules obtained by both GDRS

and mAOR seem to be significantly affected by the increase in MAG, schedules obtained

by TR are less affected by such an increase.

Figure 4.17: One-way ANOVA results for the process time variation experiment

 141

4.2.2.4 Urgent existing jobs

Figure 4.18 shows the one-way ANOVA results for the urgent existing job disruption.

Results show that the GDRS and TR approaches result in schedules with significantly

higher efficiencies than those obtained by mAOR. Moreover, the difference between the

efficiencies of TR and GDRS is not significant. Likewise, GDRS and TR result in

schedules with significantly lower deviations than those obtained by mAOR, again with

no significant difference between the deviations resulting from GDRS and TR. Similar to

the arrival of new job disruption, mAOR again results in considerably reduced

effectiveness towards both efficiency and stability. The similarity in efficiency and

deviation resulting from GDRS and TR for this type of disruption can be attributed to the

existence of the urgent job in the original schedule. Furthermore, because the new due

date has to be respected, both approaches were forced to re-insert the operations of the

urgent job in similar positions on the corresponding machines.

Table 4.4 shows that increasing MAG has a significant negative effect on the

efficiency of the revised schedules in general. This is because, with the tighter revised

Figure 4.18: One-way ANOVA results for the urgent existing job experiment

 142

due date, the three reactive scheduling approaches are forced to schedule the urgent job

as the first job in the revised schedules. Furthermore, there is a significant interaction

effect between SIZ and MTD on both the efficiency and stability of the schedules. The

schedules obtained by the mAOR experience an improvement in efficiency when the

problem size gets larger, while the efficiencies of schedules of the other two approaches

remain unaffected by such change. As for the stability, while the three approaches suffer

from more deviation with the increase in SIZ, GDRS is less affected by such an increase.

4.2.2.5 Order cancellations

Figure 4.19 shows the one-way ANOVA results for the order cancellation experiment.

Results show that TR results in schedules with significantly higher efficiencies than

GDRS that in turn result in schedules with significantly higher efficiencies than mAOR.

As for stability, no significant difference between mAOR and GDRS in deviation of the

revised schedules is experienced. However, TR suffers from significantly higher

deviations than the former two approaches.

Figure 4.19: One-way ANOVA results for the order cancellation experiment

 143

Table 4.4 shows that, the interaction effect between SIZ and MTD on both efficiency

and stability is significant. While GDRS tends to maintain the resulting level of deviation

with the increase in SIZ, TR is negatively affected by that increases as shown in Figure

4.20. As for the efficiency, the GDRS and TR approaches are both negatively affected by

the increase in SIZ. However, note that for this type of disruption, the efficiency and

deviation resulting from the mAOR remain constant at almost 100% and zero,

respectively.

4.5 Conclusions

In this chapter, the proposed insertion algorithm OI was utilized to perform deadlock-

free reactive scheduling for flexible job shops. In Section 4.2, it was shown how OI can

be used to apply the job insertion (JI) and the total rescheduling (TR) approaches to

revise the production schedules when new jobs are added to the system. In Section 4.3,

OI was applied through GDRS to react to other four types of system disruptions; machine

breakdowns, process time variations, urgency of existing jobs, and order cancellations.

Two experimental studies were also conducted in this chapter; the first (Section 4.2.2)

compared the performances of the JI and the TR approaches using three relative

performance criteria when new jobs are added to the system, and the second compared

Figure 4.20: Significant interaction effects for the order cancellation experiment

 144

the performances of GDRS, mAOR, and TR when reacting to five different types of

system disruptions.

From the first experiment, it can be concluded that the difference in MFT, which was

shown to be insignificant in average, does not always justify applying TR over JI. In

addition, when an approximate approach, like OI, is utilized to apply TR, the difference

in solution time between JI and TR becomes insignificant to justify applying JI all the

time. However, the only measure that has shown a significant difference between the

applications of the two approaches was the deviation of the revised schedules from the

original schedules, which is significantly higher in the TR case.

In view of these findings, two relative practical measures, RNERV and RMFT, have

been proposed to assist in choosing between JI and TR. The average values obtained for

these two measures were 1.28 for RNERV and 0.1 for RMFT. Multiplying RNERV and

RMFT by other system parameters provide, in time units, the expected differences in

deviation between TR and JI, and in MFT between JI and TR, respectively. In addition, it

has been shown that different types of costs can be combined with each of these measures

to provide the decision maker with actual cost figures, upon which the selection of the

appropriate approach in a given situation can be based. However, ANOVA results

showed that the average values obtained for these measures are not suitable for

application in all cases:

� When the processing times and the number of new jobs are considerably large, the

threshold values of 3.0 and 0.22 for RNERV and RMFT, respectively, should be

considered.

 145

� When a large number of new jobs with small processing times are added to the

system, the value of RMFT decreases to only 0.05 with no change in RNERV. This

would clearly justify the use of JI over TR in such cases.

� When a buffer space is present, especially in a large system, the value of RMFT

increases to 0.21. This combined with the fact that the presence of buffer space had no

significant effect on RNERV, could justify the utilization of TR in such cases.

� Having routing flexibility, on one hand decreases RNERV to about 1.0, and on the

other also decreases RMFT to about 0.07. Hence, justifying the use of one of the two

approaches over the other in such cases is not practical, and cost figures should be

estimated.

As for the second experiment, the ANOVA results can be outlined in the following

conclusive points:

� GDRS clearly outperformed the mAOR approach in terms of both the efficiency and

stability of the revised schedules when reacting to most disruptions.

� GDRS provided revised schedules with higher stability than TR for all types of

disruptions, and in most of the cases the differences in stability were significant.

� When reacting to the machine breakdowns, arrival of new jobs, and urgency of

existing jobs disruptions, on average, no significant difference in efficiency was

observed between the schedules revised using TR and GDRS.

� The effectiveness of GDRS towards the efficiency and stability of the revised

schedules tends to be less affected by the increase in either the magnitudes of the

disruptions, or the size of the considered problem compared to mAOR and TR.

 146

� TR provided revised schedules with significantly higher efficiency but also with

significantly lower stability than those provided by GDRS, when reacting to process

time variations and order cancellations.

� Regardless of the utilized approach, having flexibility in the system in terms of

alternative routes and buffer spaces enhances the capability of obtaining revised

schedules with good efficiency and stability.

It can be noticed that the detailed analysis of the new job arrival disruption conducted

in the first experiment, provided some guidelines that can be followed when choosing

between TR and JI to react to this type of disruption. It can also be noticed that the

ANOVA results of this experiment showed that the average performance measure values

should not be followed all the time, because some combinations of values of the system

parameters can considerably change the values of these measures, and hence the

decisions based on their values. The second experiment was less detailed than the first,

since it was conducted on a larger number of disruptions. However, its results have

proven the overall efficiency of GDRS over mAOR. Its results further showed that the

performance of GDRS is to a great extent comparable to that of TR in reacting to most of

the disruptions, with a considerable improvement in the deviation values. Nevertheless, to

obtain similar guidelines to the ones provided by the first experiment, more detailed

experiments should be conducted to compare the performances of TR and GDRS when

reacting to machine breakdowns, process time variations, urgency of existing jobs, and

order cancellations.

 147

CHAPTER 5:

Supervision of Automated Manufacturing Cells

5.1 Introduction

In accordance with the adopted control approach (Figure 1.4), after obtaining the

deadlock-free scheduling and reactive scheduling tools that constitute the upper level of

the control hierarchy (scheduler), the task now is to attain the lower level control module

(supervisor) that can transform the schedules into control actions. This module will

perform monitoring and dispatching activities that can realize the original and the

updated (reactive) instructions coming from the scheduler on the shop floor. Accordingly,

the objective of this chapter is to introduce, analyze and verify a formal approach that can

transform a given schedule into an implementable supervisor. This supervisor should be

capable of driving a manufacturing system in the correct (deadlock-free) and optimized

manner acquired by the schedule.

It should be noted that the proposed approach can be extended to model controllers for

larger systems that may constitute different types of and/or more than one automated

material handling devices such as multiple robots and AGVs. However, in this study,

focus is limited to obtaining controllers for robotic manufacturing cells, in which all the

 148

material handling tasks between a number of CNC machines are performed by a single

robot manipulator. Extending the proposed approach to model controllers for larger

systems can be part of a future study.

In Chapter 2, it has been shown that Petri net (PN) supervisors in general can be easily

transformed into a programming language interpretable by a programmable logic

controller (PLC) or executed through a central computer. It has also been concluded that

PN supervisors embedding a marked graph (MG) structure can be easily verified for

liveness (deadlock-freeness) and are more suitable for direct implementation since they

do not feature any conflicts in their structure. Accordingly, the proposed supervisor

generation approach first involves transforming a deadlock-free schedule into a live and

reversible MG. Using a hybrid approach earlier proposed in literature [115], through a

series of top-down and bottom-up steps, the obtained MG is then augmented with

additional places to capture all the events that can take place in the system. These

augmentation steps preserve the liveness and reversibility of the initial MG, and

eventually provide the required supervisor.

In order to guarantee the liveness of the initial MG, the schedule used to generate this

MG must be deadlock-free. In Chapter 3, two deadlock-free scheduling approaches were

proposed; the first involved the utilization of MIP models and the second utilized an

insertion algorithm (OI). The insertion algorithm was further utilized in Chapter 4 to

obtain deadlock-free reactive schedules. The deadlock-freeness of the schedules obtained

using the MIP models was preserved by the constraints that prevented a job from holding

a machine while waiting for the next machine in its processing route to become available.

 149

As for OI (Section 3.3.3), two conditions for deadlock occurrence were identified and

prevented during the schedule generation process. However, the sufficiency of these

conditions for deadlock prevention has yet to be proven.

In this chapter, first the steps required to transform a schedule into an MG are defined

(Section 5.2). This will be followed in Section 5.3 by the definition of a necessary and

sufficient condition for deadlock occurrence in a schedule. The sufficiency of this

condition is proven by analyzing the types of circuits that exist in the MG representing

the schedule. In addition, the equivalence of the combination of the two conditions for

deadlock defined in Section 3.3.3 to the necessary and sufficient condition will be shown.

In Section 5.4, it is shown using an illustrative example and the corresponding MG how

that condition can detect a deadlock, and how such a deadlock can be resolved using a

buffer. In Section 5.5, the steps of the hybrid approach used to obtain a live and

reversible supervisor from the schedule generated MG are illustrated. In Section 5.6, the

proposed supervisor generation approach is verified by generating and simulating the

supervisors of two benchmark scheduling problems. This is followed by the conclusions

of this chapter in Section 5.7.

5.2 Transforming a Schedule into a MG

Consider the schedule of three jobs on three machines shown in Figure 5.1.

 150

The first step to transform a schedule into a MG is to represent the processing route of

each job by a production Petri net (PPN) [30], but without the resource (machine) places

associated with each processing operation on the job (Figure 2.2). This reduced PPN

provides the sequence of places and transitions that describe the flow of the job through

the system. The places represent the required processing operations to produce the job,

and the transitions model the release and/or acquisition of the corresponding machine that

perform the associated operations. A token in these places, which will be referred to

henceforth as flow places, indicates that a job is currently holding the corresponding

machine, either while begin processed or while waiting for the next machine in its route

to become available.

Initially, all the flow places are token-free (empty), indicating that no jobs are present

in the system. The processing routes of the jobs shown in Figure 5.1 can then be

represented by the reduced PPNs shown in Figure 5.2. In this figure, each flow place pij

represents a job i holding a machine j either for processing or waiting, and each transition

Figure 5.1: A schedule of three jobs on three machines

 151

tj-s represents the release of machine j and acquisition of machine s. Transitions of the

type tI-j and tj-O model the acquisition of the first machine and the release of the last

machine in a job’s route, respectively.

The next step in the transformation process is to represent the sequence of jobs visiting

each machine as indicated by the schedule. This is done by connecting each transition

representing the release of some machine to an additional place by an input arc. This

additional place is then connected to the transition representing the acquisition of the

same machine by the next visiting job by an output arc. Accordingly, this latter transition

will not be allowed to fire (assign the machine to the next job) before the first transition

fires (the machine is released by the previous job). In order to ensure the repetition of the

schedule for control purposes (reversibility), a final place is added between the transition

that releases the machine from the last job in the visiting sequence, and the transition that

acquires the machine for the first job in the sequence. Furthermore, a token is placed in

this latter place to allow the initiation of the schedule.

Figure 5.2: Three PPCs of the three jobs

 152

Thus, for each machine, a number of additional places equal to the number of jobs

visiting the machine are added to the net. The group of places associated with each

machine is included in one circuit, with a single token in the whole circuit. These places

will be henceforth referred to as scheduling places. Adding these places to the three

reduced PPCs shown in Figure 5.2, results in the net shown in Figure 5.3. Note that the

resulting net is still a MG.

This representation of a schedule as a MG will henceforth be referred to as a

scheduling marked graph (SMG). It can be noticed that the SMG captures the first three

necessary conditions for deadlock occurrence (Section 1.1.2); no pre-emption, mutual

exclusion, and hold while wait. The mutual exclusion and no pre-emption conditions are

preserved by the existence of a single token in the circuit associated with each machine.

Accordingly, at any given time each machine can be only acquired by a single job, and

Figure 5.3: MG of the schedule (SMG)

 153

the processing of a job on the machine must be completed before any other job can

acquire the machine.

As for the hold-while wait condition, since the firing of each transition represents both

the release of the current machine and the acquisition of the next machine in a job’s

route, a job will keep holding a machine until the next machine in its processing route is

released. For example in Figure 5.3, the scheduling place connecting t1-2 of J1’s PPC to

t2-1 of J2’s PPC ensures that J2 will keep holding M2 until M1 is released by J1.

Consequently, J3 cannot acquire M2 until J2 acquires M1. When t1-2 of J1’s PPC fires,

indicating the release of M1 by J1, a token will be placed in its output scheduling place,

enabling t2-1 of J2’s PPC to fire whenever p22 acquires a token.

It should be noted that similar MG models were used in previous literature to represent

production schedules. In [116], a MG model of the schedule was utilized to evaluate the

performance regarding minimizing the cycle time. In that approach, a command circuit

with one token was added for each machine to connect the transitions that corresponded

to the availability and utilization of the machine. A token in an input command place to a

transition indicated that the job that corresponds to that transition was the next job to be

processed on the machine. Accordingly, the token was initially placed in the input

command place to the first job scheduled on the machine, which was also the output

command place from the last job scheduled on the machine. However, it should be noted

that in that approach, deadlock considerations were not taken into account. Unlike the

present model, in that previous model a single transition modeled both the acquisition and

the release of the same machine, and its output flow place modeled the waiting of a job

 154

for the next machine in its route. Accordingly, that model did not capture the hold while

wait condition, and was prone for deadlocks. In [54], MGs were used to model schedules

to verify the absence of deadlocks. A very similar model to the present one was used, and

it was concluded that schedules expressed by such models are deadlock-free if and only if

every circuit in the MG contained at least one token.

5.3 Deadlock Analysis using MGs

In a MG, each place has exactly one input and one output transitions. Hence, a circuit

in a MG is like a siphon (Appendix A). In other words, if a circuit in a MG becomes

token-free, no transition firing sequence in the net will be able to place any tokens in this

circuit, and all the transitions associated with this circuit become dead. Accordingly, as

mentioned earlier, a MG is live if and only if it does not contain any empty circuits.

Consequently, a schedule is deadlock-free if its corresponding SMG is free of empty

circuits.

The simplest procedure to check the liveness of a MG is to first remove any places

that contain tokens, along with their input and output arcs, from the net. If the resulting

net is circuit-free, then the original MG is live. From Figure 5.3, it can be noticed that the

only places that contain tokens in a SMG are the input scheduling places to the transitions

associated with the jobs firstly visiting each machine according to the schedule.

Removing these places, along with their corresponding arcs, results in a reduced token-

free SMG.

 155

5.3.1 Circuits in a SMG

There are two types of circuits that can exist in a token-free SMG; circuits resulting

from cycles or those resulting from deadlocks in the corresponding schedule [75, 117]. A

cycle in a schedule is a chain of sequence and flow dependant operations, in which the

last operation has to precede the first operation on some machine. A schedule containing

a cycle is an unfeasible schedule because the sequences of jobs on the machines violate

the processing routes of the jobs. For example, Figure 5.4 shows the processing routes of

three jobs and their sequences on three machines, as defined by a schedule. This schedule

features a cycle because it requires the processing of the second operation of J3 before the

first operation of J1on M1. It also requires that the second operation of J1 precedes the first

of J2 on M2 and hence the second of J2 on M3, which in turn precedes the first operation

of J3 on M3. Because these requirements violate the processing routes of the jobs, the

schedule is unfeasible and its SMG contains an empty circuit (tI-1 – t1-2 – t2-O – tI-2 – t2-3 –

t3-O – tI-3 – t3-2 – t2-O – tI-1) as shown in the figure.

Figure 5.4: An infeasible schedule with a cycle

 156

 According to the above, the presence of an empty circuit in a SMG of a feasible

schedule can only be due to a deadlock in that schedule [54]. It should be noted that the

MIP models and the insertion algorithm (OI) proposed in Chapter 3 to solve the

deadlock-free scheduling problem do not generate schedules containing cycles by default.

This is because, while the constraints defined in the former prevent such cycles, the rank

matrix representation utilized in the latter does not allow the formation of cycles in the

associated schedules [75].

It can be noticed from Figure 5.4 that, because a cycle is a chain of sequence and flow

dependant operations, each transition associated with the corresponding circuit in the

SMG must be either preceded or followed by a flow place in the circuit. This flow place

represents an operation associated with the cycle. On the other hand, in order for a

deadlock to occur in a schedule, at least one job i must keep holding some machine j

indefinitely while waiting for another machine s, hence blocking other jobs from

acquiring machine j. Consequently, at least one transition that belongs to job i in the

corresponding circuit in the SMG, must be preceded and followed by scheduling places

in the circuit. The input scheduling place to this transition is associated with the job that

precedes job i on machine s, and the output scheduling place is associated with the job

that follows job i on machine j. Such a transition will henceforth be referred to as a

blocking transition, and a job associated with such a transition will be referred to as a

blocking job.

In Figure 5.5 (a), J1 will keep holding M1 indefinitely while waiting for M2 to be

released by J3. Hence, J2 will not be able to acquire M1, and the system will end in a

 157

deadlock. Accordingly, in the corresponding SMG shown in Figure 5.5(b), transition t1-2

of J1’s PPC becomes a blocking transition. This is because it is preceded by the

scheduling place associated with the release of M2 by J3, and is followed by the

scheduling place associated with the acquisition of M1 by J2 in the circuit (t1-2 – tI-1 – t1-3 –

t3-O – tI-3 – t3-2 – t2-O – t1-2) .

From the above analysis, it can be deduced that a feasible schedule will have a

deadlock if and only if its corresponding SMG features a deadlock circuit; an empty

circuit with at least one blocking transition. In other words, a deadlock circuit in a SMG

is a necessary and sufficient condition for a deadlock to occur in the corresponding

schedule. Note that having more than one blocking transition in a deadlock circuit

indicates the existence of a circular wait between more than one blocking jobs. In the

figures to follow, scheduling places along with their input and output arcs will sometimes

be replaced by bold arcs for ease of illustration.

Figure 5.5: a) A deadlock in a schedule; b) corresponding circuit in SMG

 158

5.3.2 A Necessary and Sufficient Condition for Deadlock Occurrence

Recall that, a set of jobs is in a circular wait if each job is holding a machine while

waiting for the next machine in its processing route, which is in turn held by another job

in that same set. Along with the mutual exclusion, no pre-emption, and hold-while-wait

conditions, the circular wait condition is traditionally the fourth necessary condition for a

deadlock to occur in a job shop (Section 1.1.2). Because a production schedule is set in

advance before implementation on the shop floor, it may feature a deadlock that does not

literally comply with the circular wait condition with its traditional definition.

From a scheduling perspective, a circular wait could occur between jobs that are

already holding some machines in the shop and other jobs that would acquire these

machines in the future, as determined by the schedule. For example, in Figure 5.5(a), J1

will keep holding M1 indefinitely while waiting for M2 because the processing of J3

precedes that of J1 on M2, and J3 cannot acquire M2 before J1 releases M1 according to the

defined sequences of J1, J2 and J3 on M1 and M3. Hence, there is a circular wait between

J1 and J3, although at the actual time of occurrence of the deadlock (when J1 is completed

on M1), J3 would have not entered the system yet. Accordingly, the circular wait

condition should be extended to account for such situations in a schedule.

A deadlock circuit in a SMG can be viewed as a sequence of transitions in which at

least one transition (blocking transition), belonging to a job (blocking job), is directly

preceded and followed by transitions that belong to a different job (or jobs) in the circuit.

As mentioned earlier, each of these transitions model the release of a machine and/or the

acquisition of another. From a scheduling perspective, each transition represents the

 159

completion of an operation and/or the beginning of the next operation in a job’s

processing route. Accordingly, a deadlock circuit in a SMG can be interpreted in the

corresponding schedule as a sequence of pairs of directly consecutive operations in routes

of jobs, which starts and ends with an operation pair of some job i. The operation pairs

that precede and follow job i’s operation pair in the sequence must belong to jobs other

than i. The relation between each two consecutive operation pairs in the sequence must

either follow the processing requirements (job routes) or the sequencing requirements

defined by the schedule. Such a sequence of operation pairs will henceforth be referred to

as a circular block, and can be formally defined as follows:

Definition: Let σj(oik) be the processing order of the k
th

 operation of job i on some

machine j in the schedule. Let O = {(oik, oi(k+1))}, be the set of ordered pairs of operations

corresponding to precedence relations in routes of all jobs and Q = {(oik, opr)} such that

σj(opr) - σj(oik) = 1, be the set of ordered pairs of operations that correspond to the

processing order on all the machines as defined by the schedule. A circular block exists

in a production schedule if and only if for some (oik, oi (k+1)) ∈ O:

σσσσ(oik) < σσσσ(opr, op(r+1)) < ...< σσσσ(oqw, oq(w+1)) < σσσσ(oi (k+1))

where:

a. σ(oik) < σ(opr, op(r+1)) if (oik, opr) or (oik, op(r+1)) ∈ Q.

b. σ(opr, op(r+1)) < σ(oqw, oq(w+1)) if:

i. (opr, oqw) or (opr, oq(w+1)) ∈ Q, or

ii. p= q and r + 1 = w, or

 160

iii. (op(r+1), oqw) or (op(r+1), oq(w+1)) ∈ Q where op(r+1) is the last operation of job p.

c. σ(oqw, oq(w+1)) < σ(oi (k+1))← (oqw, oi(k+1)) or (oq(w+1), oi(k+1)) ∈ Q.

Condition (a) indicates that an operation oik precedes an operation pair (opr, op(r+1)) in a

circular block if either the processing of opr or op(r+1) follows the processing of oik on

some machine.

Condition (b) indicates that an operation pair (opr, op(r+1)) precedes another operation

pair (oqw, oq(w+1)) in a circular block if: i) either the processing of oqw or oq(w+1) follows the

processing of opr on a machine, ii) both operation pairs belong to the same job and (r+1)

is equivalent to w, or iii) the processing of op(r+1), which is the last operation of job p,

precedes that of oqw or oq(w+1) on a machine. Stated in plain words, when an operations

pair (opr, op(r+1)) is reached when trailing a circular block, potentially two new pairs of

operations are considered in the next step. The first is the pair that includes the operation

that follows opr on the corresponding machine. The second is ((op(r+1), op(r+2)), which is

the next operation pair in job p’s processing route. However, if op(r+1) is the last operation

in job p’s processing route, the pair that includes the operation that follows op(r+1) on the

corresponding machine is considered.

Finally, condition (c) completes the circular block if the processing of oqw or oq(w+1)

precedes the processing of oi(k+1) on some machine. In the corresponding SMG, these

conditions can be interpreted as shown in Figure 5.6 (in this figure, places are associated

with the corresponding operations for illustration).

 161

From Figures 5.6 (a) and (c), it can be seen that conditions (a) and (c) mark the

beginning and the end of the deadlock circuit at the blocking transition; condition (a)

necessitates that the output of this transition be a scheduling place, and condition (c)

necessitates the same for its input place. Condition (b) trails the rest of the circuit by: i)

moving from the current job p to a new job q through a scheduling place, and ii) moving

from the current pair of operations to the next pair in the current job’s route, or iii)

moving from the last operation in the current job’s route (op(r+2)) to a new job through a

scheduling place. Accordingly, condition (b) can trail the circuit from and back to the

blocking transition through any possible arc in the net. Thus, the conditions associated

with the circular block definition are sufficient to track any circuit in a SMG that features

at least one blocking transition. Hence, it can be deduced that a circular block in a

schedule is a necessary and sufficient condition for the occurrence of a deadlock.

Figure 5.6: Illustration of the conditions associated with a circular block: a) condition

(a); b) condition (b); c) condition (c)

 162

5.3.3 Interpretation in the Rank Matrix

Recall from Chapter 3 that the value of position pij in a rank matrix that corresponds to

the k
th

 operation of job i, provides in column j the processing order of job i on machine j,

and in row i the order of operation oik in job i’s route. Accordingly, the rank matrix

captures both sets O and Q that define the processing routes of jobs, and their precedence

relations on the machines, respectively. Furthermore, the value of σj(oik) is equivalent to

the value of position pij with regards to column j. Thus, a circular block can be

determined using the rank matrix of a schedule by comparing the values of the rank

matrix positions using the above defined conditions of a circular block. For example, re-

consider the schedule that was shown earlier in Figure 3.10, along with its rank matrix

and associated SMG as shown in Figure 5.7.

The deadlock in this schedule can be deduced using the circular block condition and

the associated rank matrix as follows:

- (o11, o12) ∈ O, where o11 is processed on M1 and o12 is processed on M2. This can be

easily deduced from the rank matrix since p11 = 1 and p12 = 4.

Figure 5.7: Illustration of a circular block using a rank matrix

 163

- Condition (a): σ(o11) < σ(o21, o22) because (o11, o22) ∈ Q on M1 (Note that o22 is the

second operation of J2 that is performed on M1). In the rank matrix, this can be deduced

by comparing the values of p11 and p21, which indicates that the value of p11 is less than

that of p21.

- Condition (b-i): σ(o21, o22) < σ(o31, o32) because (o21, o31) ∈ Q on M3. In the rank

matrix, p23 (o21) is less than p33 (o31).

- Condition (b-iii): σ(o31, o32) < σ(o11, o12) because (o32, o12) ∈ Q on M2 and o32 is the

last operation of J3. In the rank matrix, p32 (o32) is less than p12 (o12).

- Condition (c): this condition is satisfied in the last step because o12 is reached, and

hence the circular block condition is complete.

Therefore σ(o11) < σ(o21, o22) < σ(o31, o32) < σ(o12), and hence the above schedule

features a deadlock that will occur when J1 completes processing on M1. It should be

noted that J2 is also a blocking job in this deadlock, and the circular block could have also

been deduced by starting with o21 instead of o11 (note that t3-1 in the PPC of J2 is a

blocking transition).

5.3.4 Sufficiency of the Pre-defined Deadlock Conditions

Combining the two conditions for deadlock occurrence defined in Section 3.3.3 results

in the circular block condition. The first of these two conditions used the rank matrix of

the schedule to recognize any circular wait in the given schedule. In fact, the sub-

algorithm proposed to recognize these circular waits using the rank matrix (Sub-

 164

algorithm 2) follows conditions (a), (b-i), and then (c) of a circular block. Thus, it does

not recognize deadlocks that may result from proceeding through conditions (b-ii) and (b-

iii). It is only capable of recognizing a circular wait, with its traditional definition, that is

caused by a set of jobs holding a set of machines as shown in Figure 5.8.

It can be noticed from the SMG in Figure 5.8 that, a deadlock circuit associated with a

circular wait constitutes only blocking transitions, and accordingly all the jobs involved

in this circuit are blocking jobs. Indeed, such a circuit does not pass by any flow places

since each of the involved jobs is currently holding a machine while waiting for another

machine.

The second condition that recognizes what has been referred to as unfeasible sequence

using the rank matrix in Sub-algorithm 3, follows conditions (a), (b-ii) or (b-iiii), and

then (c) of a circular block. In other words, it recognizes any job whose operations are

contained within two directly consecutive operations of another job as shown in Figure

5.9. From the rank matrix shown in Figure 5.9, it can be seen that the deadlock is tracked

Figure 5.8: Circular wait recognition using Sub-algorithm 2

 165

from position ppj to position pair (pij, pil) using condition (a), then from position (pij, pil)

to (pil, pis) using condition (b-ii), and finally from (pil, pis) to (ppj, pps) using condition (b-

iii) or from (pil, pis) to pps using condition (c). It can also be noticed that the circuit in the

SMG features only one blocking transition.

From the above analysis, it can be concluded that the circular block condition is a

combination of the traditional circular wait condition, and the unfeasible sequence

condition that results from jobs involved in circular waits that have not yet acquired their

respective machines. Combining both conditions through the circular block condition is

sufficient to recognize any deadlock in the schedule resulting from a circular wait (Figure

5.8), an unfeasible sequence (Figure 5.9), or a complex circular wait like the one shown

in Figure 5.7.

Figure 5.9: Unfeasible sequence recognition using Sub-algorithm 3

 166

5.4 Deadlock Detection and Resolution

When there is no buffer space in the system, a schedule that features a circular block

will eventually drive the system into a deadlock. Consequently, in the analysis of such

systems, it is sufficient to detect the presence of a circular block in a schedule to reject it.

However, in the case of the existence of some buffer space, such circular blocks can be

resolved by scheduling some job to reside in the buffer after the completion of an

operation. Accordingly, analysis of this case should further involve recognizing the jobs

that could resolve the blocks by residing in the buffer.

5.4.1 Complexity of Detection and Resolution of Circular Blocks

Many approaches have been proposed in literature to detect circuits in MGs. One of

these approaches is the Topological Ordering Algorithm (TOA) that was proposed in

[118]. This algorithm was originally proposed to obtain a topological order of a group of

nodes forming a network. It starts with determining the nodes with no input arcs, and

eliminates their output arcs that are inputs to other nodes. It keeps repeating this

procedure on every new node that ends with no input arcs. If the algorithm terminates

with nodes that still have input arcs, this indicated the existence of a circuit in the

network. The possibility of using this algorithm to detect circuits in MGs was mentioned

in [117], by considering the places and transitions of a MG to be the nodes of a network.

In the case of SMGs, the TOA can be employed by considering only the transitions as the

nodes of the network.

 167

The advantage of using the TOA over other algorithms is that, it has a worst case

complexity (number of steps) equal to the number of nodes of the network. However, the

TOA can only detect but not resolve deadlocks. Hence it can only be employed in

systems that do not feature a buffer space. OI, on the other hand, can detect and resolve

deadlocks with the same worst case complexity. For each evaluation of a position of an

operation in the schedule, the algorithm in the worst case performs a number of steps

equal to the number of operation pairs in the routes of jobs already inserted in the

schedule. This corresponds to the total number of transitions in the corresponding SMG

less the number of input and output transitions to and from the system. However, it

should be noted, that resolving the deadlocks using the buffer requires detecting all the

circular blocks that involve the operation being inserted, which usually require more

steps than just detecting the existence of a circular block. Fortunately, the number of

steps required to detect all the blocks is still limited by the mentioned worst case

complexity (this will be illustrated in Section 5.4.4).

5.4.2 Reducing the Search Space

In accordance with the search pattern of the circular block condition that tracks

operation pairs in routes of jobs, an initialization routine can be performed to reduce the

search space involved in the process. It resembles to a great extent the TOA, but is

applied on operation pairs with no successors (or transitions with no output arcs) rather

than those with no predecessors. This is because pairs of operations with no predecessors

cannot be reached when trailing a circular block, and hence there is no need to eliminate

 168

them from the search space since they cannot be reached in the first place. On the other

hand, eliminating operation pairs (transitions) with no successors can reduce the search

space, and will ensure that eventually the ones remaining in the schedule (SMG), are

members of circular blocks (deadlock circuits). This initialization routine can be added to

Step 3.2 in OI and be performed as follows:

Initialization routine: Eliminating Operations with No Successors:

Step 1. Set E = {} ← set of operations that can be eliminated, e = 0 ← indicator of

operations that can be eliminated.

Step 2. ∀oik ∈ Pj (processed on machine j) such that oik is the last operation of Ji that is

not an element of E, if ∀ opr ∈ Pj such that opr ∉ E, ppj < pij, then E ← E ∪ oik, e

← 1.

Step 3. ∀oik ∈ Pj such that k = 1 and oi(k+1) ∈ E ∀ k, if ∀ opr ∈ Pj such that opr ∉ E, ppj <

pij, then E ← E ∪ pij, e ← 1.

Step 4. If e = 1, e ← 0, Go to Step 2. Else, STOP.

Step 2 of the routine adds to E any operation, which is not a member of E, that has no

successor operation on the associated machine and in its corresponding job’s route. In

Step 3, if all the operations of a job, except for its first operation, have been added to E

and this first operation has no successor on its associated machine, then this operation is

also added to E. The routine is used in Section 5.4.4 to reduce the search space of an

insertion step in an illustrative example.

 169

It should be noted that, adding an operation to the set E is equivalent to eliminating the

corresponding flow place in the SMG, with all its input and output arcs. However, adding

an operation to E does not mean that this operation will not be considered in the search

process, with its predecessor operation in the job’s route, in an operation pair. Only when

its predecessor is as well added to E, an operation will not be considered in the search

process in an operation pair. This is equivalent to eliminating a transition from the SMG,

whose input and output flow places are the ones corresponding to the eliminated

operation pair.

5.4.3 Resolving a Circular Block

Recall from Section 5.3.1 that a blocking job in a SMG is one that features a blocking

transition in a deadlock circuit. In the corresponding schedule, a blocking job is the one

whose associated operation pair is both preceded and followed by operation pairs that

belong to other jobs in a circular block. Such job will keep holding a machine indefinitely

while waiting for the next machine in its route to become available, which causes a

deadlock. Hence, if such a job resides in the buffer after completing processing on the

potentially blocked machine, the corresponding circular block will be resolved. In the

corresponding SMG, this is equivalent to expanding the blocking transition into a flow

place piB in-between two transitions, tj-B and tB-l, as shown in Figure 5.10.

 170

A token in piB represents the blocking job while residing in the buffer. Firing tj-B

releases the potentially blocked machine j and places job i in the buffer, while firing tB-l

acquires machine l and moves job i from the buffer. It can be noticed from Figure 5.10

that this setting eliminates the potential circuit in the SMG.

5.4.4 Illustrative Example

Consider the schedule shown earlier in Figure 5.1 and its associated SMG shown in

Figure 5.3. Furthermore, consider that the operation currently being inserted in the

schedule by OI is o33, the third operation of J3 that is processed on M1, and that the

currently considered position for this operation is the third on M1. Figure 5.11 shows the

rank matrix of this schedule, along with its corresponding SMG after removing the token-

occupied scheduling places that mark the beginning of the processing on the machines

(recall that deadlocks in SMGs are only caused by token-free circuits).

Figure 5.10: Resolving circular blocks

 171

By applying the initialization routine, the third operation of J1 on M3, and the third

operation of J3 on M1 are firstly added to E, since they have no successors. Consequently,

o23 on M3 and o12 on M2 are added to E, and eventually E = {o13, o33, o12, o23}.

Accordingly, operation pair (o12, o13) can be eliminated from the search space, and flow

places p12, p13, p23, and p31 along with transitions t3-O in J1’s PPC, t3-O in J2’s PPC, t1-O in

J3’s PPC, and t2-3 in J1’s PPC can be eliminated from the SMG. Since transitions and

places with no input arcs cannot be reached in the search process, transitions tI-1 in J1’s

PPC, tI-2 in J2’s PPC, and tI-3 in J3’s PPC, and flow places p11, p22, and p33 can also be

eliminated from the SMG. The rank matrix and SMG can then be reduced as shown in

Figure 5.12.

Figure 5.11: Rank matrix and SMG of illustrative example

Figure 5.12: Reduced rank matrix and SMG of illustrative example

 172

Since the operation currently being inserted in the schedule is o33 on M1, the search

process for circular blocks starts with the operation pair (o32, o33) on machines M2 and

M1, respectively, which corresponds to transition t2-1 in J3’s PPC. Following the circular

block definition, three circular blocks (circuits) can be found for this example as shown

in Figure 5.13 and Table 5.1:

Table 5.1: Circular blocks (circuits) of illustrative example

Circular

Block 1

Circular

Block 2

Circular

Block 3

(o32, o33) (o32, o33) (o32, o33)

(o11, o12) (o11, o12) (o11, o12)

(o21, o22) (o21, o22) (o21, o22)

(o22, o23) (o31, o32) (o31, o32)

 (o22, o23)

Figure 5.13: Search steps for circular blocks

 173

From Figure 5.13, it can be noticed that there are three circular blocks in this example

because two operation pairs, (o21, o22) and (o31, o32) each had two successor operation

pairs. It should also be noted that only five search steps were required to determine all the

circular blocks in the schedule, which is equal to the number of operation pairs in the

reduced rank matrix and the number of transitions in the reduced SMG. Furthermore, if

the system had no buffer capacity, it would have only required four steps (circular blocks

1 and 2) to determine that the considered schedule features a deadlock that cannot be

resolved.

Assuming that the considered system features some buffer capacity, the job(s) that can

be used to resolve the three circular blocks, by being placed in the buffer, must be

identified. Blocking jobs can be determined from the identified circular blocks, as the

jobs whose operation pairs are preceded and followed by operation pairs of other jobs in

the circular blocks. Accordingly, from Table 5.1 the blocking jobs can be determined as

follows:

- Block 1: J3-(o32, o33); J1-(o11, o12).

- Block 2: J1-(o11, o12); J2-(o21, o22).

- Block 3: J3-(o32, o33); J1-(o11, o12); J2-(o21, o22); J3-(o31, o32); J2-(o31, o32).

In order to ensure the best utilization of the available buffer space, blocking jobs

whose associated operation pairs feature the maximum number of appearances in the

circular blocks are set to reside in the buffer. This is because, when a blocking job is

placed in the buffer, its associated circular block is resolved (Section 5.4.3). Accordingly,

for the considered example, since operation pair J1: (o11, o12) appears in the three blocks,

 174

J1 is selected to reside in the buffer after completing its processing on M1. This is

sufficient to resolve the three circular blocks in the schedule.

5.5 Realizing the Supervisor from the Schedule

After obtaining the best deadlock-free schedule for a system, a supervisor could be

obtained. This supervisor will not only ensure the correct behavior of the system like

conventional supervisory controllers, but will further guarantee the optimized

performance obtained by the schedule. The following procedure outlines the required

steps to transform a SMG of a schedule into a supervisor. The procedure follows the

hybrid synthesis approach proposed in [115]. The objective of this approach is to start

with a simple abstract model of a system in which important features, like liveness and

reversibility, can be easily or have already been verified. Then, through a number of

refinement (top-down) and aggregation (bottom-up) steps that preserve the liveness and

reversibility of the initial model, a complete model that provides the necessary details to

fully describe the system can be obtained.

The proposed procedure starts with the SMG of the problem on hand. It should be

noted however, that in the case of systems with a buffer space, the SMG is not circuit-

free until the buffer places are added to the SMG. This is followed by adding the

previously omitted scheduling places that contain the tokens, after which the SMG

becomes live and reversible by design. Finally, the necessary nodes required to represent

the material handling (robot) tasks and to organize the utilization of the buffer space are

 175

added to the SMG. This finally results in an augmented SMG (ASMG) that can realize

the control actions required to drive the system.

Procedure: Realizing a Supervisor from the SMG:

The supervisor realization procedure constitutes four main steps:

1. Adding buffer places and transitions to the SMG.

2. Re-inserting the token-occupied scheduling places.

3. Adding material handling places and transitions.

4. Organizing the utilization of the buffer capacity by adding command circuits.

The steps of the procedure can be illustrated using the illustrative example from

Section 5.4.4 as follows:

Step 1. Adding buffer places and transitions:

The best schedule found using OI for the problem on hand is the one shown in Figures

5.1 and 5.11 (assuming the existence of a unit capacity buffer). In the previous section it

was realized that if J1 resides in the buffer after completion of processing on M1, this

schedule will be deadlock-free. Accordingly, a buffer place p1B along with two

transitions, t1-B and tB-2, are added to the PPC of J1 to replace the blocking transition t1-2.

This, as previously shown in sections 5.4.3 and 5.4.4 eliminates the three circuits in the

SMG, which becomes circuit-free.

 176

Step 2. Re-inserting the token occupied scheduling places:

 Recall that at the beginning of the deadlock analysis (Section 5.3), the token-occupied

scheduling places, which mark the beginning of processing on each machine, were

removed to detect token-free circuits in the SMG. Accordingly, up to this point, the SMG

of the schedule cannot be live since it does not contain any tokens. By re-inserting these

places with their corresponding arcs in the circuit-free SMG, each place in the net

becomes included in a circuit that contains at least one token. Hence, the SMG becomes

live, and since it still retains its marked graph structure, it also becomes reversible [119].

The live and reversible SMG of the illustrative example can then be obtained after adding

the buffer place and transitions in J1’s PPC and inserting the token-occupied scheduling

places as shown in Figure 5.14.

Figure 5.14: Live and reversible SMG of illustrative example

 177

Step 3. Adding material handling (robot) place and tasks:

This step involves top-down decomposition and bottom-up aggregation sub-steps.

These two sub-steps do not affect the liveness or the reversibility of the SMG [115]. The

top-down decomposition involves place refinement of the flow places of the PPC of each

job to model the robot acquisition and release tasks. Since each flow place models a

processing operation on a machine, in practice it is associated with a robot task that

delivers the corresponding job to the acquired machine. Hence, each flow place is

decomposed into two places with a transition in-between. The first place models the job

while being handled by the robot, while the second preserves the function of the original

flow place.

In order to ensure that the robot is not acquired simultaneously by more than one

material handling function, a bottom-up aggregation step adds a robot place pR with one

token to the SMG. This place is connected with output arcs to every transition that

models the acquisition of the robot, and input arcs from every transition that models the

release of the robot. This ensures that when the robot is acquired to perform some task, pR

becomes token-free, and hence the robot cannot be acquired to perform another task. The

top-down decomposition and bottom-up aggregation steps are shown in Figure 5.15.

In Figure 5.15, transition tj-l models the acquisition of the robot to transfer job i from

machine j to machine l and the acquisition of machine l. Hence, tj-l cannot fire unless

place pR contains a token (indicating that the robot has been released), and when it fires,

the token in pR is removed. It should be noted that tj-l remains the output transition of the

scheduling place that enables Ji to acquire Ml and accordingly cannot be fired until this

 178

place acquires a token. Place piR models the handling operation of Ji by the robot, and

transition tRl models the delivery and the initiation of processing of Ji on Ml. Accordingly,

firing tRl returns the token to pR, and the robot becomes available again.

According to this setting, a robot cannot be acquired to transfer a job to a machine

until this machine becomes available to process this job. This ensures the deadlock-free

operation of the system when the supervisor is implemented, since the robot can never

deliver a job to an already occupied machine. It should also be noted that adding the

robot place pR, along with its input and output arcs, negates the marked graph structure of

the SMG. Hence an SMG after adding the robot place will be referred to as an augmented

scheduling marked graph (ASMG).

Step 4. Organizing the utilization of the buffer capacity:

The utilization of the available buffer space is more complicated than that of the robot

since it is not only sufficient to ensure that the capacity of the buffer will not be violated,

but also that the jobs visit the buffer in a correct order. For example, assume that two jobs

Figure 5.15: Addition of robot place and tasks to the SMG

 179

i and p are scheduled to visit the buffer (with a unit capacity) after completing processing

on machines j and l, respectively, and that they are both ready for that move. Further

assume that the next machine in Ji’s route is Ml, and that it is scheduled to visit this

machine after Jp. In this case, if Ji is placed in the buffer before Jp, it will keep holding

the buffer indefinitely while waiting for Jp to release Ml, which is in turn waiting for Ji to

release the acquired buffer space, and a deadlock will occur. Hence, Jp should visit the

buffer before Ji in order to avoid such a deadlock.

Accordingly, in order to realize the correct order by which the buffer is visited, a

command circuit, similar to the ones defined for the machines, has to be defined for the

buffer space. This can be achieved by adding to the ASMG a circuit containing a number

of buffer scheduling places equal to the number of visits made to the buffer, such that

only a single token is permitted to circulate between these places. Each buffer place has

one output arc to the transition that assigns the buffer to a job, and one input arc from the

transition that releases the buffer from the previous job as shown in Figure 5.16. Like the

machine command circuits, the circulating token is initially placed in the buffer

scheduling place preceding the transition that assigns the buffer to the first visiting job.

Figure 5.16: Regulating buffer capacity

 180

It should be noted that the order of jobs to visit the buffer is determined from the

deadlock-free schedule of the problem. Since the final schedule provides the times at

which each job will acquire and release the buffer, in a manner that does not violate the

capacity of the buffer, these times can be used to sort the jobs and determine a buffer

visiting order that does not violate the deadlock-freeness of the system. It should also be

noted that if a system features a buffer capacity greater than one, a command circuit is

defined for each unit of the capacity. In other words, the buffer is assumed to have a

number of slots equal to its capacity, and for each of these slots a job visiting sequence,

and consequently a command circuit, is defined.

After applying steps 3 and 4 of the supervisor realization procedure, the final ASMG

can be obtained for the illustrative example as shown in Figure 5.17. In this figure, the

arcs that connect pR to its associated transitions have been omitted for the sake of clarity,

with the exception of the set of arcs associated with the robot tasks that transfer the jobs

from the system input buffer(s) to the first machines in their corresponding routes. In

addition, except for the token-occupied scheduling places, all scheduling places along

with their corresponding arcs are represented by bold arcs. It should be noted that the

shown ASMG only features one buffer scheduling place because the buffer is only visited

once by J1 after completing processing on M1.

 181

5.6 Simulation and Verification

In order to verify that the supervisor realization approach produces supervisors that

can be executed in a deadlock-free manner to complete a set of given jobs, the

supervisors for two benchmark problems are generated and simulated in this section. The

simulation process entails executing the corresponding controller ASMGs of the

problems to simulate the production process. Executing a net means firing all the enabled

transitions as they become enabled (Appendix A). If the net completes execution with all

the jobs completed, this will indicate that the supervisor can correctly drive the system to

Figure 5.17: Controller ASMG for the illustrative example

 182

completion upon implementation. However, if the net completes execution with only a

fraction of the jobs completed, this will indicate the existence of a local deadlock

somewhere in the network. Moreover, if at some point during the execution none of the

transitions in the net becomes enabled, this will indicate a total deadlock (all machines or

jobs are blocked).

In order to test the reversibility and repeatability of the supervisors, they will be run

for lot sizes of five parts for each job type. This can be achieved by adding a place piI at

the beginning of each PPC of a job i in the net, with a number of tokens equal to five, and

a place piO at the end of each PPC to count the number of tokens that will eventually go

through, which represents the number of completed parts of each job type.

5.6.1 Selected Problems

The supervisor realization procedure is used to obtain the supervisors of the

benchmark problems ‘4J x 3M’ and ft06 that were solved using OI in Section 3.6.2. The

processing routes and times for these problems are shown in Tables C.3 and C.4 in

Appendix C, respectively. The best objective function values obtained for these problems

using OI are shown in Table 3.3. The instance selected for problem ‘4J x 3M’ is the one

that featured a unit buffer capacity, with the objective of minimizing the makespan (MS).

As for problem ft06, as was shown in Table 3.3, no buffer space is available in the

system, and the best MS solution shown in the table is selected. The best MS schedule

 183

obtained along with its associated rank matrices and the corresponding ASMG for

problem ‘4J x 3M’ are shown in Figures 5.18 and 5.19, respectively.

Figure 5.18: Schedule and rank matrix of problem ‘4J X 3M’

Figure 5.19: Controller ASMG of problem ‘4J X 3M’

 184

The best schedule and corresponding ASMG obtained for problem ft06 are shown in

Figures 5.20 and 5.21, respectively. It should be noted that the ASMGs were obtained for

problems ‘4J X 3M’ and ft06 in 0.05 seconds each.

The two ASMGs were executed, and the five tokens in each piI place in the two nets

reached the corresponding piO place, indicating that all the parts for all the job types for

the two problems were completed successfully. It should be noted that only problems ‘4J

x 3M’ and ft06, were selected for the verification process in order to be able to illustrate

the obtained controller ASMGs. In fact, the supervisor realization approach was verified

Figure 5.20: Schedule and rank matrix of problem ft06

 185

with a variety of problems, some of which were randomly generated and others were

from the literature. However, it was not practical to show an ASMG for a 10J X 10M or a

20J X 20M problems.

Figure 5.21: Controller ASMG of problem ft06

 186

5.7 Conclusions

In this chapter, a systematic procedure for transforming a deadlock-free schedule into

a supervisor for automated job shop systems was proposed. The overall approach starts

by generating a MG that captures the processing routes of the jobs and the sequence of

jobs to visit each machine in the system. This MG structure has been referred to as a

scheduling marked graph (SMG). The next step was to apply a hybrid synthesis

procedure to decompose and augment the SMG to obtain an augmented SMG (ASMG)

that can realize all the control actions required to drive a system. The supervisor

realization approach was verified by obtaining and simulating the controller ASMGs for

two benchmark problems in literature. Simulation results showed that both ASMGs were

successfully run to complete all the jobs of the two problems.

In this chapter, a condition for deadlock occurrence in job shop schedules was also

proposed. In addition, it was shown using an analysis of the types of circuits that may

exist in a SMG that this condition, the circular block condition, is necessary and

sufficient to detect any embedded deadlock in a given schedule. Furthermore, it was

proven that the combination of the two conditions for deadlock detection presented in

Chapter 3 is equivalent to the circular block condition, and that the combination of these

two conditions through OI ensures the deadlock-freeness of the obtained schedules.

Moreover, an initialization routine was also presented to reduce the search space of the

deadlock detection phase in OI, and through an illustrative example, it was shown that the

maximum number of steps in this deadlock detection phase is limited by the number of

operation pairs in the schedule.

 187

The supervisor realization procedure proposed in this chapter can be applied with any

deadlock-free scheduling approach. In other words, the only input to this procedure is a

deadlock-free schedule, regardless of the type of approach used to obtain this schedule.

Hence, it can be used with the MIP models or the insertion algorithm (OI) proposed in

Chapter 3, or any other available deadlock-free scheduling approach or approaches that

will be developed in future. Furthermore, focus in this study is to obtain controllers for

robotic flexible manufacturing cells. That is why the controller realization approach was

more oriented towards robotic tasks and a single material handler availability supposition.

Nevertheless, the proposed approach can be extended to model larger and more

sophisticated systems that feature more than one material handler, or different material

handling types (like robotic manipulators and automated guided vehicles) working

synchronously and autonomously. Yet, this remains a direction for future research.

 188

CHAPTER 6:

Implementation in an Experimental FMC

6.1 Introduction

In Chapter 5, it has been shown how a deadlock-free schedule can be transformed into

a readily implementable supervisor. This proposed supervisor is represented by a PN

structure in which an augmented scheduling MG (ASMG) is embedded. In this chapter, it

will be shown how this proposed supervisor can be implemented and utilized to supervise

and autonomously drive an experimental flexible manufacturing cell (FMC) to produce

different product mixes in a deadlock-free manner. The main objectives of this real-world

implementation of the proposed control architecture are to validate the correctness of the

scheduler/supervisor levels of the hierarchy and to identify any hardware or software

limitations (if any) that may be discovered during its implementation in a real industrial

setting.

It was shown in Section 2.5 that a number of approaches can be followed to implement

a PN controller in a manufacturing cell. The two main techniques to reach this goal is

either to interpret the PN model at run time using an industrial computer, or to transform

the PN model using a compiler into a PLC program. It was also mentioned that the

 189

former approach is more robust to sudden changes in the system, and can be used to

define rules for resolving conflicts or concurrency situations in the PN controller.

Accordingly, this former approach is adopted in this work.

In order to implement the PN controller using a computer, an interface must exist

between the computer and the system components to translate the control actions from

the PN to the cell components and the feedback from the cell to the PN into digital

signals. The digital signals must be interpretable by both levels of the control hierarchy.

Thus, the controlled experimental FMC will include three main elements:

i. A personal computer (PC); this constitutes the upper level controller

(scheduler) and the lower level controller (supervisor).

ii. The FMC components; these include a robot arm and a number of

experimental (virtual) machines and buffers.

iii. A digital Input/Output (I/O) data acquisition module to act as an interface

between the computer and the cell components.

In Section 6.2, a detailed description of the designed experimental FMC is presented.

In this section, it is also shown how the robot arm is programmed to perform all the

required movements in the cell. The task was made more challenging due to the limited

number of inputs and outputs on the robot controller. This is followed in Section 6.3 by

an illustration of how the execution of the ASMG can be conditioned by feedback signals

and translated into control actions to execute the processing tasks in the FMC. In Section

6.4, the results of executing a number of randomly generated product mixes in the

 190

experimental FMC are presented. The conclusions of this chapter are finally outlined in

Section 6.5.

6.2 The Experimental FMC

The experimental FMC is designed and set-up in the Robotics & Automation

Laboratory at the University of Manitoba. The designed cell consists of a five degrees of

freedom ASEA robot arm, four virtual machines, five input buffers (IA – IE) for five

different job types, a central buffer (CB) with a unit capacity, and an output buffer (OB)

that acts as a system output. To validate the correctness (deadlock-free operation) of the

proposed control system, the need for actual machining operations, and consequently

actual machines, becomes redundant. It is only required to ensure that all the jobs in the

system can follow their processing routes through the system to completion without

encountering any deadlock situations. Accordingly, in the experimental FMC, a machine

is virtually represented by a physical location that can hold a job and a sensor that

provides the status of the machine as being available or acquired by a job. Likewise, the

central buffer is represented by a physical location and a sensor.

As mentioned earlier in Chapter 3, the number of machines that can exist in a typical

robotic FMC is limited. This is because, along with the different types of buffers that may

exist in a cell, the work envelope of the robot arm and the number of pick-up/drop-off

(P/D) locations that it can physically and feasibly serve, limit the number of machines

that can exist in the cell. Hence, the designed cell contains only four machines, and along

 191

with the five input buffers, the central buffer, and the output buffer, contains in total

eleven P/D locations for the robot arm to serve. The experimental FMC is illustrated in

Figure 6.1.

6.2.1 Programming the Robot Arm

The ASEA robot arm has five degrees of freedom, and a control interface with 16

input and 16 output lines. The role of the robot arm in the cell is to perform all the

material handling operations between all the cell locations (machines and buffers), which

also include the P/D operations at each location. In the adopted job-shop manufacturing

environment, each job type can have a different processing route through the system.

Accordingly, the material handler operating in such systems must be capable of

performing all the possible handling operations between any two locations in the cell. It

should be noted however, that some movements between locations in the cell are

Figure 6.1: Experimental FMC in the Robotics & Automation Laboratory at University

of Manitoba

 192

redundant; these include the movements from any input buffer to the central buffer or the

output buffer, from any machine to any input buffer, from the central buffer to the output

buffer, and from the output buffer to any other location in the cell. Thus, for a cell

employing m machines to process n job types, provided that the robot arm returns to a

pre-defined home position after each handling operation, the required movements of the

material handler include:

• m movements from each of the n input buffers to each machine,

• one movement from each of the m machines to each of the other m - 1

machines,

• one movement from each of the m machines to the central buffer,

• one movement from the central buffer to each of the m machines, and

• one movement from each of the m machines to the output buffer.

Accordingly, the total number of required handling operations for a n x m job-shop

cell with a unit capacity central buffer is: mn + m(m – 1) + m + m + m = (m + n + 2) m.

Thus, the number of required handling operations by the robot arm in the 5 x 4

experimental FMC is 44 handling operations.

Because the ASEA robot arm provides only 16 input control lines, and since it is

required to execute 44 different handling operations, it was not feasible to associate each

input line with one handling operation. Accordingly, a combinatorial control input

scheme to the robot arm was developed. In this scheme, a combination of a number of

input signals to the robot arm is used to execute each of the 44 handling operations.

Because the input signals are binary (0-low or 1-high), the maximum number of input

 193

combinations that can be obtained using x input lines is 2
x
. Hence, to attain the 44

combinations required to execute the required handling operations, a minimum of six

input lines must be utilized to control the robot arm. The used combinations of the values

of these lines, and the associated handling operations are shown in Table 6.1.

In addition to the six input lines to the robot arm, a single output line is also utilized to

relay the status of the robot arm, as a feedback signal, to the control system. As will be

shown later in Section 6.3, this feedback signal indicates whether or not the robot arm is

at its home position. In accordance with the above defined control scheme of the robot

arm, one main program and 44 sub-programs are developed in the robot arm controller to

execute the 44 handling operations. The structures of the main program and one of the

sub-programs are shown in Appendix D.

6.2.2 The I/O Data Acquisition Module

As mentioned earlier, in order to translate the action commands and the feedback

signals between the computer based controller and the cell components, an interface must

be utilized. In the experimental FMC, a Data Translation DT9835
TM

 digital I/O data

acquisition module is used. This module has 64 configurable digital I/O lines and 32

dedicated input lines, all in banks of eight lines. In other words, the configurable 64 lines

have to be dedicated as input or output in banks of eight lines. The module is connected

to the PC externally via a USB cable, and to the cell components using a screw terminal

panel.

 194

Table 6.1: Control input scheme for the robot arm

Combination

Number

Input Lines
Handling Operation (Movement)

1 2 3 4 5 6

1 1 0 0 0 0 0 From Input Buffer 1 to Machine 1

2 0 1 0 0 0 0 From Input Buffer 1 to Machine 2

3 1 1 0 0 0 0 From Input Buffer 1 to Machine 3

4 0 0 1 0 0 0 From Input Buffer 1 to Machine 4

5 1 0 1 0 0 0 From Input Buffer 2 to Machine 1

6 0 1 1 0 0 0 From Input Buffer 2 to Machine 2

7 1 1 1 0 0 0 From Input Buffer 2 to Machine 3

8 0 0 0 1 0 0 From Input Buffer 2 to Machine 4

9 1 0 0 1 0 0 From Input Buffer 3 to Machine 1

10 0 1 0 1 0 0 From Input Buffer 3 to Machine 2

11 1 1 0 1 0 0 From Input Buffer 3 to Machine 3

12 0 0 1 1 0 0 From Input Buffer 3 to Machine 4

13 1 0 1 1 0 0 From Input Buffer 4 to Machine 1

14 0 1 1 1 0 0 From Input Buffer 4 to Machine 2

15 1 1 1 1 0 0 From Input Buffer 4 to Machine 3

16 0 0 0 0 1 0 From Input Buffer 4 to Machine 4

17 1 0 0 0 1 0 From Input Buffer 5 to Machine 1

18 0 1 0 0 1 0 From Input Buffer 5 to Machine 2

19 1 1 0 0 1 0 From Input Buffer 5 to Machine 3

20 0 0 1 0 1 0 From Input Buffer 5 to Machine 4

21 1 0 1 0 1 0 From Machine 1 to Machine 2

22 0 1 1 0 1 0 From Machine 1 to Machine 3

23 1 1 1 0 1 0 From Machine 1 to Machine 4

24 0 0 0 1 1 0 From Machine 1 to Central Buffer

25 1 0 0 1 1 0 From Machine 2 to Machine 1

26 0 1 0 1 1 0 From Machine 2 to Machine 3

27 1 1 0 1 1 0 From Machine 2 to Machine 4

28 0 0 1 1 1 0 From Machine 2 to Central Buffer

29 1 0 1 1 1 0 From Machine 3 to Machine 1

30 0 1 1 1 1 0 From Machine 3 to Machine 2

31 1 1 1 1 1 0 From Machine 3 to Machine 4

32 0 0 0 0 0 1 From Machine 3 to Central Buffer

33 1 0 0 0 0 1 From Machine 4 to Machine 1

34 0 1 0 0 0 1 From Machine 4 to Machine 2

35 1 1 0 0 0 1 From Machine 4 to Machine 3

36 0 0 1 0 0 1 From Machine 4 to Central Buffer

37 1 0 1 0 0 1 From Central Buffer to Machine 1

38 0 1 1 0 0 1 From Central Buffer to Machine 2

39 1 1 1 0 0 1 From Central Buffer to Machine 3

40 0 0 0 1 0 1 From Central Buffer to Machine 4

41 1 0 0 1 0 1 From Machine 1 to Output Buffer

42 0 1 0 1 0 1 From Machine 2 to Output Buffer

43 1 1 0 1 0 1 From Machine 3 to Output Buffer

44 0 0 1 1 0 1 From Machine 4 to Output Buffer

 195

The DT9835 comes with Data acquisition (DAQ) Adapter for MATLAB, which

provides an interface between the MATLAB Data Acquisition Toolbox
5
 and Data

Translation’s DT-Open Layers Architecture
TM

. Using the adapter and the toolbox, the

module and its I/O lines can be defined and operated by utilizing a series of command

functions in the MATLAB command window. Table 6.2 shows the main functions that

are used and their purposes:

Table 6.2: Command functions of the I/O module

Function Purpose

digitalio Creates the I/O module in the MATLAB environment

addline Adds digital Input or Output lines to the module

getvalue Reads values (0-1) from the Input lines

putvalue Writes values (0-1) to the output lines

As mentioned earlier, the machines in the experimental FMC and the central buffer are

represented by a physical location that can hold a job, and a digital sensor. Hence, these

cell components do not require any input (control action) from the cell controller.

Alternatively, they provide feedback signals to the controller indicating their availability

status. Accordingly, each of these components is connected through an input line to the

I/O module. Along with the output line from the robot arm, the total number of input

lines to the I/O module is six; one for each cell component to provide its status. As for the

output lines from the I/O module, only six output lines are required to provide the

aforementioned 44 input combinations required to control the robot arm.

5
 Copyright 1984 – 2005, The MathWorks Inc.

 196

It should also be mentioned that, the input/output module within the robot controller

requires 24 volts and the I/O module generates 5 volts only. Consequently, a relay box is

established between the screw terminal panel of the I/O module and the other cell

components. The function of the relays is to transform the electrical signals flowing

between the I/O module and the robot arm controller to the appropriate voltage values.

The overall control architecture for the experimental FMC can be illustrated as shown in

Figure 6.2.

6.3 Computer-Based Control

The objective of the interactive control system proposed in this work is to transform

the production requirements of a given automated manufacturing system into a set of

control actions. These actions can then safely drive the system to fulfill these

Figure 6.2: Schematic of the control architecture of the experimental FMC

 197

requirements, while maintaining an optimized behavior. In accordance, the highest level

of the proposed control hierarchy constitutes a scheduler that can transform the given

production requirements into a deadlock-free and optimized production schedule. This

scheduler is also capable of reacting to a wide range of system disruptions by modifying

the deadlock-free schedule to accommodate these disruptions in real time. To this end,

the MIP models, the operations insertion algorithm (OI), along with the reactive

deadlock-free scheduling tool (GDRS), constitute the building blocks of the scheduler

level in the control hierarchy.

6.3.1 Associating Control Actions and Conditions to the ASMG

In order to utilize a production schedule in supervising and driving an automated

manufacturing system, it must be first transformed into a discrete-event supervisor,

capable of driving the system in a closed loop. In Chapter 5, it has been shown how a

deadlock-free schedule can be transformed into an ASMG. This ASMG captures all the

required production requirements, and the safe optimized behavior that can drive the

system to execute these requirements. However, in order for the ASMG to interact with

the FMC in real time to realize the lower level control (supervisor) in the control

hierarchy, its transitions must be associated with the I/O signals transmitted to/from the

FMC. In other words, the execution of the FMC has to be associated with that of the

ASMG, which is defined by the firing sequences of its transitions, in order to realize the

required behavior. The simplest approach to reach this goal is to associate some of the

transitions of the ASMG with control actions that can initiate events in the FMC, and

 198

others with conditions in the FMC that have to be realized in order for these transitions to

fire (recall automation PNs from Chapter 2). In accordance with the previously defined

control scheme (Figure 6.2), the types of control action and condition (feedback) signals

used in the experimental FMC are shown in Table 6.3.

Table 6.3: Control action signals and conditions

 Description Symbol
Assoc.

Transition

Action Transport a job from P/D j to P/D l (44 signals) α(j-l) tj-l

Condition
Robot available at home position β1 tj-l

Resource j (machine, central buffer) is acquired β2(j) tRj

Recall that the presence of a token in an input scheduling place to a transition indicates

that the corresponding machine has already been released by the previous job in its

processing sequence. Hence, the availability of a machine l for acquisition in order for a

transition tj-l to fire can be solely determined by the presence of a token in the input

scheduling place to this transition. On the other hand, the availability of the robot for

acquisition cannot be exclusively determined by the presence of a token in the robot

place. This is because, a token in the robot place only indicates that the robot has been

released from its previous handling operation, but does not indicate if the robot has

returned to its home position or not. Accordingly, a feedback condition β1 indicating the

presence of the robot at its home position must be validated before firing a transition that

re-acquires the robot.

 199

Because the machines present in the experimental FMC are virtual ones, where no

actual processing takes place, a feedback signal from a machine indicating the

completion of processing of a job cannot be attained. In order to overcome this concern in

the experiments, each transition tj-l that models the completion of a processing operation

of a job i on a machine j in the ASMG is associated with a timer τij. The time associated

with each of these transitions is equivalent to the processing time of job i on machine j.

The timer τij is initiated in the ASMG when the feedback signal β2(j) associated with the

previous transition tRj in job i’s PPN is received from the cell, indicating that job i has

been delivered to machine j. When τij expires, transition tj-l can then be enabled to fire.

To illustrate, consider the PPN of J1 in the ASMG of problem ‘4J X 3M’ shown in

Figure 5.20. The transitions of this PPN can be associated with the action and condition

signals, and the timers as shown in Figure 6.3. Transitions of the type tI-l, tj-l, or tB-l model

the acquisition of the robot to transfer a job to a machine l. In Figure 6.3, transition tI-1

(and similarly transitions tB-2 and tB-3) models the acquisition of the robot to transfer J1

from the input buffer I to machine M1 and the acquisition of M1 as well. Thus, firing tI-1 is

conditioned by the feedback signal β1. In order to execute the handling operation of J1

between the input buffer and M1, an action signal must be sent to the robot arm to initiate

this operation. Accordingly, the action signal α1(I-1) is associated with tI-1.

Transitions of the type tRj model the delivery and the initiation of processing of a job

on some machine j. Accordingly, transition tR1 (and similarly transitions tR2 and tR3) in

Figure 6.3 cannot fire before receiving the signal β2(1) that indicates that a job has been

 200

delivered to M1. Firing this transition, also initiates timer τ11 to simulate the processing of

J1 on M1.

Transitions of the type tj-l, tj-B, or tj-O model the completion of processing of a job on

some machine j, the release of machine j, and the acquisition of the robot to deliver the

job to machine l, the central buffer, or the output buffer, respectively. Firing transition t1-B

(and similarly transitions t2-B and t3-O) is then associated with the expiry of timer τ11, the

Figure 6.3: Association of transitions with action and condition signals and timers

 201

β1 condition indicating the availability of the robot, and the α1(1-B) action signal for the

robot to transfer J1 from M1 to the central buffer.

Finally, transitions tRB model the delivery of a job to the central buffer. This type of

transitions are associated with only one feedback condition β2(B), which indicates that the

job has been placed in the central buffer. It can be noticed from Figure 6.3 that transition

tRO is not associated with any feedback condition. This is because in the current setting, it

is assumed that the output buffer is the final stage for the job in the system, after which

no further handling or processing operations will be performed. However, in the case

where the FMC is part of a bigger manufacturing system, feedback conditions could be

associated with such transitions to regulate the possible operation of other material

handling devices that transfer the jobs between manufacturing cells.

6.3.2 Executing the ASMG

Executing a PN means firing its enabled transitions. In addition, the structure and the

behavior of a PN can be defined by means of the incidence matrix (IM) and the state

equation of the net, respectively (Appendix A). The state equation defines the next

marking of the net based on the current firing vector F that lists the enabled transitions of

the net. Hence, to execute the ASMG of a product mix and consequently the processing

of this product mix in the manufacturing cell, first the IM is defined according to the

structure of the net. Then, based on the marking M of the net and the feedback signals

from the cell, F can be determined.

 202

In this work, the control algorithm was developed in MATLAB using the MATLAB

Data Acquisition Toolbox. In this algorithm, each of the control-action-initiating

transitions is associated with the corresponding vector of the robot control input

combinations (Table 6.1). When the corresponding element of any of these transitions in

F takes a value of 1, and the net fires, the corresponding input combination is sent to the

I/O module to execute the correct handling operation. The state equation of the net then

updates the marking of the net. The control algorithm repeats this process until all the

jobs in the cell are completed. It should be noted that, when more than one control-

action-initiating transition is enabled in the net, only one of these transitions is chosen

randomly to fire.

To illustrate, re-consider the PPN shown in Figure 6.3. In this PPN, transition tI-1

models the transportation of J1 from the input buffer to M1. According to the current

marking of the net, tI-1 is the only net-enabled transition in the net. However, in order for

this transition to fire, it must be also enabled by the cell. In other words, the value of β1

must be equal to one, indicating that the robot arm is at its home position and ready to

perform a transportation operation. Assuming that β1 = 1, then the firing vector of this

PPN will be [1 0 0 0 0 0 0 0 0 0 0 0]
T
. Firing tI-1 is associated with the control input

combination number 1: [1 0 0 0 0 0]. Hence, when the net fires, the command function

putvalue (Table 6.2) will set the values of output lines (1-6) of the I/O module according

to the selected combination. The values of these lines will then be input to the robot arm

controller to call sub-program 1 and execute the required handling operation.

 203

6.4 Implementation and Experimentation

In order to validate the correctness of all the levels of the proposed control hierarchy,

and to test whether there were any software or hardware problems in the setting of the

experimental FMC, nine problems are randomly generated and executed in the FMC. The

nine problems all feature the processing of five different job types on the four virtual

machines. Three of the problems are generated such that the jobs have short processing

times on the machines, three have medium processing times, and three have long

processing times. The processing times for the jobs on the machines are generated from

uniform distributions of (1,5), (5,10), and (10,15) seconds for the short, medium, and

long processing time problems, respectively. These values were selected in accordance

with the actual times required by the robot arm to perform each material handling task

within the experimental FMC, which are shown in Table 6.4.

Table 6.4: Handling times of robot arm (seconds)

FROM / TO M1 M2 M3 M4 CB OB

IA 5.05 4.59 4.95 5.08 N/A N/A

IB 4.31 4.52 4.73 4.91 N/A N/A

IC 4.08 4.28 4.53 4.66 N/A N/A

ID 3.98 4.20 4.39 4.66 N/A N/A

IE 4.39 4.55 4.59 4.83 N/A N/A

M1 0.00 4.67 5.11 5.13 5.03 5.91

M2 4.86 0.00 4.95 5.11 4.95 6.06

M3 5.13 4.97 0.00 5.17 5.09 6.50

M4 5.30 5.20 5.02 0.00 5.13 6.39

CB 5.44 5.47 5.55 5.45 0.00 N/A

 204

The steps required to execute each of the nine problems (product mixes) in the FMC

are set in accordance with the proposed control hierarchy as follows:

1. Solve the deadlock-free scheduling problem for the given product mix to

obtain the best schedule of the five jobs on the four machines.

2. Transform the obtained schedule into the corresponding SMG.

3. Realize the controller ASMG from the SMG.

4. Define the control actions and conditions associated with each transition in the

ASMG.

5. Execute the ASMG using the control algorithm.

6.4.1 Experimental Results

Using the proposed insertion algorithm (OI) to perform step 1 of the execution steps,

the time required to reach step 5 for each of the nine problems was less than one second.

Furthermore, the nine product mixes were executed in the experimental FMC, and were

all completed flawlessly.

To assess the performance of the control architecture and the experimental setting,

three experiments are performed using the nine problems. The objective of the first is to

examine the consistency of the control algorithm and setting in repeating the execution of

the same product mix more than once. This is achieved by collecting the actual times

required to execute one product mix from each of the three groups of problems for three

consecutive times. The objective of the second experiment is to observe the robot arm

 205

utilization and the deviation between the theoretical makespan obtained using OI and that

realized upon execution for each of the nine problems. In the third experiment, the same

metrics are measured when the material handling operations are considered in the

schedule building process using OI and the transportation operations insertion algorithm.

The results for experiments 1, 2 and 3 are shown in Tables 6.5, 6.6, and 6.7, respectively.

Table 6.5: Results of Experiment 1

 Fast Process. Time Med. Process. Time Slow Process. Time

Actual Makespan (sec)

Trial 1 166.60 165.14 213.12

Trial 2 166.95 165.03 213.14

Trial 3 166.45 165.09 213.11

Table 6.6: Results of Experiment 2

 Fast Process. Time Med. Process. Time Slow Process. Time

RU AMS TMS RU AMS TMS RU AMS TMS

Problem 1 87.1 166.60 26 85.2 165.14 62 68.4 213.12 113

Problem 2 85.0 178.50 21 80.5 175.00 64 65.8 221.76 109

Problem 3 85.3 164.90 22 79.9 177.23 59 74.5 195.26 101

* RU: Robot Utilization (%), AMS: Actual Makespan (sec), TMS: Theoretical Makespan (sec)

Table 6.7: Results of Experiment 3

 Fast Process. Time Med. Process. Time Slow Process. Time

RU AMS TMS RU AMS TMS RU AMS TMS

Problem 1 88.3 152.4 136.8 83.4 161.8 144.0 66.0 212.3 202.33

Problem 2 86.3 150.6 129.9 83.8 173.8 153.3 74.1 197.1 194.5

Problem 3 89.1 158.1 139.4 80.0 177.15 163.0 72.4 193.4 186.0

* RU: Robot Utilization (%), AMS: Actual Makespan (sec), TMS: Theoretical Makespan (sec)

 206

From Table 6.5, the maximum deviation in actual makespan between the three trials

(repetitions) for the three tested problems is 0.3% (fast processing time problem). This

shows that the utilized control algorithm and setting (hardware) can adequately realize

and preserve the control scheme embedded in the ASMG.

Table 6.6 shows that the deviation between the actual makespans and the expected

ones is vast, and is more significant in the fast and medium problems. This is because, in

these trials, the material handling times were not considered in the schedule building

process. In addition, as can be noticed from Table 6.4, these times are larger than and

almost equivalent to the processing times for the fast and medium problems, respectively.

This is also why, although the theoretical makespans are considerably larger in medium

problems than in the fast ones, the actual makespans for the fast and medium problems

are very close in value.

Table 6.7 shows that the deviation between the actual makespans and the theoretical

ones is drastically reduced when the material handling operations are considered in the

schedule building process. Nevertheless, some deviations still remain. These deviations

can be mainly attributed to the relatively slow scanning speed of the utilized robot arm

controller; it sometimes takes more than a second to call the correct sub-program. A

second cause for these deviations can be the random selection of a transition to fire

during execution when more than one is enabled. This table also shows that considering

the transportation operations in the scheduling process can reduce the actual makespan

realized on the shop-floor. This can be deduced by comparing the actual makespan values

in Tables 6.6 and 6.7, especially for the fast processing time problems.

 207

Finally, Tables 6.6 and 6.7 show that the robot arm is better utilized in the fast and

medium processing time product mixes than in the slow ones. This is expected since in

the slow ones, the robot arm remains idle for considerable amounts of time while waiting

for the processing of the jobs on the machines (simulated in the ASMG) to be completed.

6.5 Conclusions

In this chapter, the proposed control hierarchy was validated and implemented in an

experimental FMC. The FMC constituted a PC that represented the upper two levels of

the control hierarchy (scheduler and supervisor), an I/O data acquisition module, a relay

box, a robot arm, four virtual machines, five input buffers for five job types, a central

buffer with a unit capacity, and an output buffer. It was shown how the robot arm was

efficiently controlled using a combinatorial control scheme that utilized six input lines to

its controller to execute 44 different material handling operations. The utilization of the

I/O module and MATLAB’s Data Acquisition toolbox to relay the control signals

between the PC and the other cell components was also illustrated. Furthermore, the

types of control action and feedback signals that can be exchanged in such a

manufacturing environment were also discussed. In addition, the association of each type

of these signals with the transitions of the controller ASMG was shown.

The proposed control scheme was implemented in the FMC to execute nine product

mixes. All the mixes were successfully completed in the cell with no faults or deadlocks.

The time required to realize an executable controller for each of the given mixes was less

 208

than one second. This demonstrates the robustness and agility of the proposed control

architecture in dealing with today’s dynamic production environment. Indeed, by using

an ordinary PC and an off-the-shelf I/O digital module, efficient control algorithms for

complex job shop automated systems can be obtained instantly.

The experimental results showed that the utilized simple control setting can adequately

realize the generated control algorithms and preserve their consistency. They also showed

that considering the transportation operations in the schedule building process can more

accurately estimate and can reduce the actual makespans realized on the shop-floor.

Finally, the under-utilization of the robot arm in slow processing time mixes can be

efficiently exploited to increase the life expectancy of the arm components by reducing

the movement speed of the arm.

 209

CHAPTER 7:

Conclusions and Recommendations

The justification of fully automated systems in industry necessitates the availability of

efficient tools that can realize the best production outcome from such systems. The

investments required to install highly versatile CNC machines, flexible robot

manipulators or other autonomous material handling devices like automated guided

vehicles (AGVs), and automated storage and retrieval systems (ASRS), are high but are

needed to compete in the industrial market. Failing to utilize the foremost capabilities of

such resources can often result in denouncing their vital role in industry advancement.

Flexibility in production essentially refers to the capability of coping with and reacting

to the ever-changing customer needs and the strong competition in today’s global market.

If there is a single common feature between versatile CNCs, robotic manipulators, AGVs,

and ASRSs, it would indeed be flexibility; flexibility in performing various

manufacturing processes on a single resource, flexibility in processing and delivering any

part from/to any resource in the system at any time, flexibility of providing the required

part type or machine tool at any time, and many more types of other flexibilities.

Competition in today’s markets essentially requires these types of flexibilities.

Nevertheless, wide implementation of such flexibilities in industry has been impeded by

 210

undermined performance and autonomous control complexities, and has yet to be

realized.

7.1 Research Contributions

This research has proposed an efficient hierarchical scheduling and control

architecture for flexible automated manufacturing systems. The inputs to the proposed

architecture are simply the available resources in the system, the production routes of the

jobs to be produced, and any sudden internal or external disruptions to the system that

may occur during production. The final output is a control algorithm, capable of driving

the system to autonomously produce the required products in a deadlock-free manner,

according to the best production schedule that optimizes the performance measures of the

system. The control algorithm can further be readily updated in real time to accommodate

any changes in the product mix or the production conditions, while preserving the

optimized performance and maintaining the stability of the system. The hierarchical

architecture developed in this thesis is an integration of a number of tools as outlined

below:

• Four MIP models; IBS, IB1, IBA, and CBA. These four models can provide

the optimal deadlock-free production schedules for flexible job shop systems,

considering four different buffer configurations that may exist in a typical

manufacturing environment. The models can be used to optimize any

completion time-related objective criteria; these include minimizing the mean

 211

flow time (section 3.2), minimizing the makespan, maximizing machine

utilization, and minimizing the mean tardiness in the system.

• An operations insertion algorithm (OI) that can provide optimal or near

optimal deadlock-free production schedules with regard to the same objective

criteria indicated above, in near real time. The algorithm utilizes the rank

matrices of the schedules to detect and resolve any deadlock situations using

the available buffer space (if any).

• A generic deadlock-free reactive scheduling tool (GDRS) that can react to five

main types of disruptions that can occur in a manufacturing system, namely;

arrival of new jobs, machine breakdowns, processing time variations, urgency

of existing jobs, and order cancellations. The main building block of GDRS is

OI, and is proved to have the capability of producing reactive schedules that

feature optimized performance and preserved system stability.

• A formal procedure to transform a production schedule into an augmented

scheduling marked graph (ASMG). This ASMG can translate a production

schedule into a set of discrete event commands to realize the optimized and

correct performance attained by the schedule on the shop floor.

These four components were integrated to achieve the proposed scheduling and

control architecture as shown in Figure 7.1.

Implementation experiments were conducted in an experimental manufacturing cell to

validate the performance and correctness of the proposed architecture. The results

showed that, using an ordinary PC, an off-the-shelf digital I/O module, and a set of

 212

relays, the proposed architecture can be implemented and readily updated to schedule and

autonomously control the production of a number of job types, with complex routes, in a

typical flexible manufacturing environment.

7.2 Conclusions

In the previous chapters, the proposed tools were introduced in detail and evaluated

for performance. In Chapter 6, it was shown how these tools can be integrated to realize

efficient and correct production behavior on the shop floor. The following points

summarize the main achievements and results attained in this research:

Figure 7.1: Integration of proposed tools in the proposed architecture

 213

1. The proposed MIP models provided novel constraints that could represent and

utilize the available buffer space in the job shop environments considered, and

this was previously unachievable. The performance of these models was

compared to previously proposed models in literature in terms of both solution

quality and time. Results showed that the proposed models can obtain better

schedules due to efficient utilization of any available buffer space.

2. The operations insertion algorithm (OI) can handle a wide variety of

parameters in the deadlock-free scheduling problem, while providing optimal

or near optimal schedules, almost in real time. The performance of OI was

compared to the performance of a number of approaches proposed in

literature, and the results showed that in most of the cases, OI either obtained

the same or better results than those achieved by other approaches in a timely

efficient manner.

3. The proposed transportation operations insertion algorithm (TOI) can either

insert transportation operations after obtaining the optimal schedules, or

augment these operations in the schedule building process when using OI. It

preserved the deadlock-freeness of the resulting schedules while providing a

material handling schedule that conforms with the production schedule.

4. Because of solution time considerations, the MIP models can be used to solve

small and fairly medium-sized problems (Section 3.6.1) to optimality, whereas

OI can be used to solve larger problems. Nevertheless, the MIP models can

determine the optimal buffer configuration that can tolerate the best achievable

 214

production practice for medium-sized systems during the system set-up phase,

when solution time is not a considerable issue.

5. To the best of the author’s knowledge, GDRS is the first reactive scheduling

tool that can react to a wide variety of production disruptions while preventing

the deadlock inevitability in automated job shops. The performance of GDRS

was compared to an approach proposed earlier that can be utilized to react to

the types of disruptions considered (mAOR), and to the total rescheduling

approach (TR) that reschedules all the operations in the system to preserve

efficiency with no consideration for system stability. The results demonstrated

the overall efficiency of GDRS over mAOR, and showed that the performance

of GDRS is comparable to that of TR in most disruptions, but with a

considerable improvement in system stability.

6. The idea of transforming a schedule into a supervisor has been rarely

discussed in previous literature, with no actual application. The proposed

approach that transforms deadlock-free schedules into ASMGs is novel and

straightforward. Using this approach, a readily implementable controller can

be obtained for considerably complex systems in a few simple steps, not only

in a fraction of the time required by previous approaches, especially the ones

based on automata, but also in a manner that realizes the best performance of

the system.

7. The utilized implementation scheme is simple, yet effective. The set-up

required a PC and a few off-the-shelf components to realize a complex control

practice for a complex type of manufacturing systems.

 215

The demonstrated effectiveness of the proposed control architecture, along with the

simplicity in the required shop floor implementation scheme, can advocate and promote

the wider utilization of automated flexible manufacturing systems in industry.

7.3 Recommendations

Since the scheduler level of the control architecture is actually the one that determines

the final system behavior on the shop floor, improving the performance of the

components of this level (MIP models and OI) can enhance the performance of the whole

architecture. As for the MIP models, they are capable of attaining the optimal schedules

under the assumptions considered for the tested problem sizes. However, the solution

time required to solve these models remain an obstacle when considering medium and

large systems. To avert this problem, an approximation heuristic can be developed to

solve these models to obtain near optimal schedules in a timely efficient manner. Such

heuristics have been commonly used in previous literature to approximate complex MIP

models, mainly by developing the Lagrangian relaxation of the models.

As for OI, the order of insertion of the jobs in the schedule building process, can

highly affect the final outcome. In OI, this order was mainly based on the processing

routes of the jobs, with the objective of deferring any conflicts in these routes to the final

stages of the schedule building process. A more global approach that can base this order

on both the processing routes and also the potential performance of the final schedule can

be developed to tackle this issue. This approach can feature a meta-heuristic algorithm

 216

like GA, in which the deadlock detection and resolution techniques can be embedded.

Hence, instead of the current greedy nature of OI that schedules the jobs one after the

other, a more global approach can be utilized to obtain schedules with better values of the

performance measures.

7.3.1 Plant-Wide Control

The outcomes of this research have been mainly proposed, studied, discussed, and

implemented in a cellular level that features a single material handler. While these

outcomes can be beneficially utilized in systems featuring a single production cell, larger

systems that constitute multiple cells require a global plant-wide level of control. An

important research direction would then be to expand the current work to acquire global

controllers capable of driving a multi-cell manufacturing system in an autonomous,

optimized manner. This controller would ensure feasible and conflict-free interactions

within and between the cells, and concurrently guarantee the optimized performance of

the whole system. This can be achieved by firstly developing an algorithm to

concurrently optimize the cell formation and the deadlock-free scheduling problems in

the system design phase. An algorithm to schedule the utilization of inter-cell common

resources, like material handling devices, in a manner that ensures deadlock-free

operation, would then be developed. The obtained schedules can be eventually

augmented into a global system controller.

 217

References

[1] Sun, R.-L., Li, H.-X. and Xiong, Y., 2006. Performance-oriented integrated

control of production scheduling. IEEE Transactions on Systems, Man, and

Cybernetics, vol. 36, no. 4, pp.554-562.

[2] Lin, J. T. and Lee, C.-C., 1997. A Petri net-based integrated control and

scheduling scheme for flexible manufacturing system. Computer Integrated

Manufacturing Systems, vol. 10, no. 2, pp. 109-122.

[3] Aytug, H., Lawley, M. A., McKay, K., Mohan, S., and Uzsoy, R., 2005.

Executing production schedules in the face of uncertainties: A review and some

future directions. European Journal of Operational Research, vol. 161, pp. 86–

110.

[4] Li, L. and Jiang, Z., 2006. Formal design and analysis of a hybrid supervisory

control structure for virtual production systems. International Journal of

production Research, vol. 44, no.13, pp. 2479-2497.

[5] Mohan, S., Yalcin, A., and Khator, S., 2004. Controller design and performance

evaluation for deadlock avoidance in automated flexible manufacturing cells.

Robotics and Computer Integrated Manufacturing, vol. 20, no. 6, pp. 541-551.

[6] Ghaffari, A., Rezg, N. and Xie, X., 2003. Feedback control logic for forbidden-

state problems of marked graphs: application to a real manufacturing system.

IEEE Transactions on Automatic Control, vol. 48, no. 1, pp. 18-29.

[7] Yalcin, A., 2004. Supervisory control of automated manufacturing cells with

resource failures. Robotics and Computer-Integrated Manufacturing, vol. 20,

no.2, pp. 111-119.

 218

[8] Ramadge, P. J. and Wonham, W. M., 1987. Supervisory control of a class of

discrete event processes. Siam J. Control and Optimization, vol. 25, no. 1, pp.

206-230.

[9] Wonham, W. M and Ramadge, P. J., 1987. On the supremal controllable

sublanguage of a given language. Siam J. Control and Optimization, vol. 25, no.

3, pp. 637-659.

[10] Ramadge, P. J. and Wonham, W. M., 1989. The control of discrete event systems.

Proceedings of the IEEE, vol. 77, no. 1, pp. 81-89.

[11] Alpan, G. and Jafari, M. A., 2002. Synthesis of a closed-loop combined plant and

controller module. IEEE Transaction on Systems, Man, and Cybernetics, vol. 32,

no. 2, pp. 163-175.

[12] Brandin, B. A., 1996. The real-time supervisory control of an experimental

manufacturing cell. IEEE Transactions on Robotics and Automation, vol. 12, no.

1, pp. 1-14.

[13] Ramirez-Serrano, A. and Benhabib, B., 2003. Supervisory control of functionally-

expandable manufacturing systems. The International Journal of Flexible

Manufacturing Systems, vol. 15, no.3, pp. 241-271.

[14] Nourelfath, M. and Niel, E., 2004. Modular supervisory control of an

experimental automated manufacturing system. Control Engineering Practice,

vol. 12, no.2, pp. 205-216.

[15] Uzam, M., Jones, H. A. and Yőcel, I., 2000. Using a Petri-net-based approach for

the real-time supervisory control of an experimental manufacturing system.

 219

International Journal of Advanced Manufacturing Technology, vol. 16, no. 7, pp.

498-515.

[16] Uzam, M. and Wonham W. M., 2006. A hybrid approach to supervisory control

of discrete event systems coupling RW supervisors to Petri nets. International

Journal of Advanced Manufacturing Technology, vol. 28, no. (7-8), pp. 747-760.

[17] Brandin, B. A. and Wonham, W. M., 1993. Modular supervisory control of timed

discrete-event systems. Proceedings of the 32
nd

 Conference on Decision and

Control, vol. 3, pp. 2230-2235.

[18] Wonham, W. M., 2005. Supervisory control of discrete event systems. ©

Copyright by W. M. Wonham, 1997-2005.

[19] Barrett, G. and Lafortune, S., 2000. Decentralized supervisory control with

communicating controllers. IEEE Transactions on Automatic Control, vol. 45, no.

9, pp. 1620-1638.

[20] Yoo, T.-S. and Lafortune, S., 2004. Decentralized supervisory control with

conditional decisions: supervisor existence. IEEE Transactions on Automatic

Control, vol. 49, no. 11, pp. 1886-1904.

[21] Yoo, T.-S. and Lafortune, S., 2005. Decentralized supervisory control with

conditional decisions: supervisor realization. IEEE Transactions on Automatic

Control, vol. 50, no. 8, pp. 1205-1211.

[22] Leduce, R. J., Lawford, M. and Dai, P., 2006. Hierarchical interface-based

supervisory control of a flexible manufacturing system. IEEE Transactions on

Control Systems Technology, vol. 14, no.4, pp. 654-668.

 220

[23] Brandin, B. A., Wonham, W. M. and Benhabib, B., 1992. Manufacturing cell

supervisory control – A timed discrete event system approach. Proceedings of the

IEEE International Conference on Robotics and Automation, vol. 2, pp. 931-936.

[24] Brandin, B. A. and Wonham, W. M., 1994. Supervisory control of timed discrete-

event systems. IEEE Transactions on Automatic Control, vol. 39, no. 2, pp. 329-

342.

[25] Golmakani, H. R., Mills, J. K. and Benhabib, B., 2003. Deadlock-free scheduling

of flexible manufacturing workcells using automata theory. Proceedings of the

IEEE International Conference on Robotics and Automation, vol. 1, pp. 169-174.

[26] Golmakani, H. R., Mills, J. K. and Benhabib, B., 2006. Deadlock-free scheduling

and control of flexible manufacturing cells using automata theory. IEEE

Transactions on Systems, Man, and Cybernetics, vol. 36, no.2, pp. 327-337.

[27] Golmakani, H. R., Mills, J. K. and Benhabib, B., 2006. On-line scheduling and

control of flexible manufacturing cells using automata theory. International

Journal of Computer Integrated Manufacturing, vol. 19, no. 2, pp. 178-193.

[28] Fanti, M. P. and Zhou, M., 2004. Deadlock control methods in automated

manufacturing systems. IEEE Transactions on Systems, Man, and Cybernetics,

vol. 34, no.1, pp. 5-32.

[29] Viswanadham, N., Narahari, Y. and Johnson, T. L., 1990. Deadlock prevention

and deadlock avoidance in flexible manufacturing systems using Petri net models.

IEEE Transactions on Robotics and Automation, vol.6, no. 6, pp. 713-723.

 221

[30] Banaszak, Z. A. and Krogh, B. H., 1990. Deadlock avoidance in flexible

manufacturing systems with concurrently competing process flows. IEEE

Transactions on Robotics and Automation, vol. 6, no. 6, pp. 724-734.

[31] Hsieh, F.-S. and Chang, S.-C., 1994. Dispatching-driven deadlock avoidance

controller synthesis for flexible manufacturing systems. IEEE Transactions on

Robotics and Automation, vol.10, no. 2, pp. 196-209.

[32] Zhou, M. C. and DiCesare, F., 1991. Parallel and sequential mutual exclusions for

Petri net modeling of manufacturing systems with shared resources. IEEE

Transactions on Robotics and Automation, vol.7, no. 4, pp. 515-527.

[33] Zhou, M. C., DiCesare, F. and Derochers, A. A., 1992. A hybrid methodology for

synthesis of Petri nets for manufacturing systems. IEEE Transactions on Robotics

and Automation, vol.8, no. 3, pp. 350-361.

[34] Ezpeleta, J., Colom, J. M. and Martinez, J., 1995. A Petri net based deadlock

prevention policy for flexible manufacturing systems. IEEE Transactions on

Robotics and Automation, vol. 11, no. 2, pp. 173-184.

[35] Chu, F. and Xie, X.-L., 1997. Deadlock analysis of Petri nets using siphons and

mathematical programming. IEEE Transactions on Robotics and Automation, vol.

13, no. 6, pp. 793-804.

[36] Ben Abdallah, B., ElMaraghy, H. A. and ElMekkawy, T., 1997. A logic

programming approach for finding minimal siphons in S
3
PR nets applied to

manufacturing systems. Proceedings of the IEEE Conference on Systems, Man

and Cybernetics, vol. 2, pp. 1710-1715.

 222

[37] Ben Abdallah, I. and ElMaraghy, H. A., 1998. Deadlock prevention and

avoidance in FMS: A Petri net based approach. International Journal of Advanced

Manufacturing Technology, vol. 14, no. 10, pp. 704-715.

[38] Park, J. and Reveliotis, S. A., 2001. Deadlock avoidance in sequential resource

allocation systems with multiple resource acquisitions and flexible routings. IEEE

Transactions on Automatic Control, vol. 46, no. 10, pp. 1572-1583.

[39] Tricas, F. and Ezpeleta, J., 2006. Computing minimal siphons in Petri net models

of resource allocation systems: A parallel solution. IEEE Transactions on

Systems, Man and Cybernetics, vol. 36, no. 3, pp. 532-539.

[40] Li, Z. and Wei, N., 2007. Deadlock control of flexible manufacturing systems via

invariant-controlled elementary siphons of Petri nets. International Journal of

Advanced Manufacturing Systems, vol. 33, no. 1-2, pp. 24-35.

[41] Li, Z. W. and Zhou, M. C., 2004. Elementary siphons of Petri nets and their

application to deadlock prevention in flexible manufacturing systems. IEEE

Transactions on Systems, Man and Cybernetics, vol. 34, no. 1, pp. 38-51.

[42] Li, Z. W., Hu, H. and Zhou M. C., 2004. An algorithm for an optimal set of

elementary siphons in Petri nets for deadlock control. Proceedings of the IEEE

Conference on Systems, Man and Cybernetics, vol. 5, pp. 4849-4854.

[43] Zhou, M. C., DiCesare, F. and Rudolph, D. L., 1992. Design and implementation

of a Petri net based supervisor for a flexible manufacturing system. Automation,

vol. 28, no. 6, pp. 1199-1208.

 223

[44] Lee, D. L. and DiCesare, F., 1994. Scheduling flexible manufacturing systems

using Petri nets and heuristic search. IEEE Transactions on Robotics and

Automation, vol.10, no. 2, pp. 123-132.

[45] Xiong, H. H., Zhou, M. C. and Caudil, R. J., 1996. A hybrid heuristic search

algorithm for scheduling flexible manufacturing systems. Proceedings of the

IEEE International Conference on Robotics and Automation, vol. 3, pp. 2793-

2979.

[46] Xiong, H. H. and Zhou, M. C., 1997. Deadlock-free scheduling of an automated

manufacturing system based on Petri nets. Proceedings of the IEEE International

Conference on Robotics and Automation, vol. 2, pp. 945-950.

[47] Jeng, M. D., Chiou, W. D. and Wen, Y. L., 1998. Deadlock-free scheduling of

flexible manufacturing systems based on heuristic search and Petri net structures.

Proceedings of the IEEE International Conference on Systems, Man, and

Cybernetics, vol. 1, pp. 26-31.

[48] Ben Abdallah, I., ElMaraghy, H. A. and ElMekkawy, T., 1998. An efficient

search algorithm for deadlock-free scheduling in FMS using Petri nets.

Proceedings of the IEEE International Conference on Robotics and Automation,

vol. 2, pp. 1793-1798.

[49] Ben Abdallah, I., ElMaraghy, H. A. and ElMekkawy, T., 2002. Deadlock-free

scheduling in flexible manufacturing systems using Petri nets. International

Journal of Production Research, vol. 40, no. 12, pp. 2733-2756.

[50] Tamayo, A. J., Contreras, D. G. and Trevino, A. R., 1998. Petri net based control

for the dynamic scheduling of a flexible manufacturing cell. Proceedings of the

 224

IEEE International Conference on Systems, Man, and Cybernetics, vol. 1, pp.

553-557.

[51] Huang, Z. and Wu, Z., 2004. Deadlock-free scheduling method for automated

manufacturing systems using genetic algorithm and Petri nets. Proceedings of the

IEEE International Conference on Robotics and Automation, vol. 1, pp. 566-571.

[52] Huang, Z. and Wu, Z., 2004. Deadlock-free scheduling in automated

manufacturing systems with multiple resource requests. IEICE Transactions on

Fundamentals, vol. E87-A, no. 11, pp. 2844-2851.

[53] Shi, X. and Wu, Z., 2005. Deadlock-free scheduling methods for FMSs using

beam search. Proceedings of the IEEE International Conference on Systems,

Man, and Cybernetics, vol. 2, pp. 1188-1193.

[54] Damasceno, B. C. and Xie, X., 1998. Scheduling and deadlock avoidance of a

flexible manufacturing system. Proceedings of the IEEE International Conference

on Systems, Man and Cybernetics, vol. 1, pp. 564-569.

[55] Damasceno, B. C. and Xie, X., 1999. Petri nets and deadlock-free scheduling of

multiple resource operations. Proceedings of the IEEE International Conference

on Systems, Man and Cybernetics, vol. 1, pp. 878-883.

[56] Liljenvall, T., 1999. Scheduling for production systems with limited buffers.

Proceedings of the IEEE International Conference on Systems, Man, and

Cybernetics, vol. 6, pp. 469-474.

[57] Huang, Z. and Wu, Z., 2004. Deadlock-free scheduling method for automated

manufacturing systems with limited central buffers. Proceedings of the IEEE

International Conference on Robotics and Automation, vol. 1, pp. 560 – 565.

 225

[58] Mati, Y., Rezg, N. and Xie, X., 2001. A taboo search approach for deadlock-free

scheduling of automated manufacturing systems. Journal of Intelligent

Manufacturing, vol. 12, pp. 535- 552.

[59] Mati, Y., Rezg, N. and Xie, X., 2001. Geometric approach and Taboo search for

scheduling flexible manufacturing systems. IEEE Transactions on Robotics and

Automation, vol. 17, no. 6, pp. 805-818.

[60] Baker, K. B., 1974. Introduction to scheduling and sequencing. Wiley, New York.

[61] Pan, J. C.-H. and Chen, J.-S., 2005. Mixed binary integer programming

formulations for the reentrant job shop scheduling problem. Computers and

Operations Research, vol. 32, no. 5, pp. 1197-1212.

[62] Sawik, T., 2000. Mixed integer programming for scheduling flexible flow lines

with limited intermediate buffers. Mathematical and Computer Modeling, vol. 31,

no. 13, pp. 39-52.

[63] Gomes, M.C., Barbosa-Povoa, A.P. and Novais, A.Q., 2005. Optimal scheduling

for flexible job shop operation. International Journal of Production Research,

vol. 43, no. 11, pp. 2323-2353.

[64] Liao, C.-J. and You, C.-T., 1992. An improved formulation for the job-shop

scheduling problem. Journal of Operational Research Society, vol. 43, no. 11, pp.

1047-1054.

[65] Kim, K.-H. and Egbelu P.J., 1998. A mathematical model for job shop scheduling

with multiple process plan consideration per job. Production Planning and

Control, vol. 9, no. 3, pp. 250–259.

 226

[66] Kim, K.-H. and Egbelu, P.J., 1999. Scheduling in a production environment with

multiple process plans per job. International Journal of Production Research, vol.

37, no. 12, pp. 2725-2753.

[67] Tamaki, H., Ono, T., Murao, H. and Kitamura, S., 2001. Modeling and genetic

solution of a class of flexible job shop scheduling problems. IEEE Symposium on

Emerging Technologies and Factory Automation, vol. 2, pp. 343-350.

[68] Low, C. and Wu, T.-H., 2001. Mathematical modeling and heuristic approaches to

scheduling problems in an FMS environment. International Journal of Production

Research, vol. 39, no. 4, pp. 689-708.

[69] Low, C., Wu, T.-H. and Hsu, C.-H., 2005. Mathematical modeling of multi-

objective job shop scheduling with dependant setups and re-entrant operations.

International Journal of Advanced Manufacturing Technology, vol. 27, no. (1-2),

pp. 181-189.

[70] Ramaswamy, S. E. and Joshi, S. B., 1996. Deadlock-free schedules for automated

manufacturing workstations. IEEE Transactions on Robotics and Automation,

vol. 12, no.3, pp. 391-399.

[71] Artigues, C. and Roubellat, F., 2000. A polynomial activity insertion algorithm in

a multi-resource schedule with cumulative constraints and multiple modes.

European Journal of Operational Research, vol. 127, no. 2, pp. 297-316.

[72] Artigues, C. and Roubellat, F., 2002. An efficient algorithm for operation

insertion in a multi-resource job-shop schedule with sequence-dependant setup

times. Production Planning & Control, vol. 13, no. 2, pp. 175-186.

 227

[73] Ourari, S. and Bouzouia, B., 2003. An approach based on operation insertion for

the one-machine real-time scheduling. International Journal of Robotics and

Automation, vol. 18, no. 4, pp. 185 – 190.

[74] Kis, T. and Hertz, A., 2003. A lower bound for the job insertion problem.

Discrete Applied Mathematics, vol. 128, no. (2-3), pp. 395-419.

[75] Sotskov, Y. N., Tautenhahn, T. and Werner, F., 1999. On the application of

insertion techniques for job shop problems with setup times. RAIRO Recherche

Operationnelle, vol. 33, no. 2, pp. 209 – 245.

[76] Werner, F. and Winkler, A., 1995. Insertion techniques for the heuristic solution

of the job shop problem. Discrete Applied Mathematics, vol. 58, no. 2, pp. 191 –

211.

[77] Gröflin, H. and Klinkert, A., 2007. Feasible insertions in job shop scheduling,

short cycles and stable sets. European Journal of Operational Research, vol. 177,

no. 2, pp. 763 – 785.

[78] Subramaniam, V., Raheja, A. S. and Reddy, K. R. B., 2005. Reactive repair tool

for job shop schedules. International Journal of Production Research, vol. 43, no.

1, pp. 1-23.

[79] Chiang, T.-W. and Hau, H.-Y., 1996. Solving job insertion problem in job shop

scheduling using iterative improvement. Proceedings of the IEEE International

Conference on Systems, Man and Cybernetics, vol. 2, pp. 1525–1530.

[80] Hall, N. G. and Potts, C. N., 2004. Rescheduling for new orders. Operations

Research, vol. 52, no.3, pp. 440-453.

 228

[81] Branke, J. and Mattfeld, D. C., 2005. Anticipation and flexibility in dynamic

scheduling. International Journal of Production Research, vol. 15, no. 15, pp.

3103-3129.

[82] Li, L. and Jiang, Z., 2007. Self-adaptive dynamic scheduling of virtual production

systems. International Journal of production Research, vol. 45, no.9, pp. 1937-

1951.

[83] Abumaizar, R. J. and Svestka, J. A., 1997. Rescheduling job shops under random

disruptions. International Journal of Production Research, vol. 35, no. 7, pp.

2065-2082.

[84] ElMekkawy, T. Y. and ElMaraghy, H. A., 2003. Real-time scheduling with

deadlock avoidance in flexible manufacturing systems. International Journal of

Advanced Manufacturing Technology, vol. 22, no. (3-4), pp. 259-270.

[85] Jensen, M. T., 2003. Generating robust and flexible job shop schedules using

Genetic algorithms. IEEE Transactions on Evolutionary Computations, vol. 7, no.

3, pp. 275-288.

[86] Mason, S. J., Jin, S., and Wessels, C. M., 2004. Rescheduling strategies for

minimizing total weighted tardiness in complex job shops. International Journal

of Production Research, vol. 42, no.3, pp. 613-628.

[87] Bollapragada, R. and Sadeh, N. M., 2004. An empirical study of policies to

integrate reactive scheduling and control in just-in-time job shop environments.

International Journal of Production Research, vol. 42, no. 4, pp. 693-718.

 229

[88] Suwa, H. and Sandoh, H., 2007. Capability of cumulative delay based reactive

scheduling for job shops with machine breakdowns. Computers and Industrial

Engineering, vol. 53, no. 1, pp. 63-78.

[89] Sabuncuoglu, I. and Kizilisik, O. B., 2003. Reactive scheduling in a dynamic and

stochastic FMS environment. International Journal of Production Research, vol.

41, no. 17, pp. 4211-4231.

[90] Subramaniam, V. and Raheja, A. S., 2003. mAOR: A heuristic-based reactive

repair mechanism for job shop schedules. International Journal of Advanced

Manufacturing Technology, vol. 22, no. (9-10), pp. 669-680.

[91] Jain, A. K. and ElMaraghy H., 1997. Production scheduling/rescheduling in

flexible manufacturing. International Journal of Production Research, vol. 35,

no. 1, pp. 281-309.

[92] Honghong, Y. and Zhiming, W., 2003. The application of Adaptive Genetic

Algorithms in FMS dynamic rescheduling. International Journal of Computer

Integrated Manufacturing, vol. 16, no. 6, pp. 382-397.

[93] Shi-jin, W., Li-feng, X., and Bing-hai, Z., 2007. Filtered-beam-search-based

algorithm for dynamic rescheduling in FMS. Robotics and Computer-Integrated

Manufacturing, vol. 23, no. 4, pp. 457-468.

[94] Raheja, S.A. and Subramaniam V., 2002. Reactive recovery of job shop schedules

– a review. International Journal of Advanced Manufacturing Technology, vol.

19, no. 10, pp. 756-763.

 230

[95] Unal, A.T., Uzsoy, R., and Kiran, A. S., 1997. Rescheduling on a single machine

with part-type dependant setup times and deadlines. Annals of Operations

Research, vol. 70, pp. 93–113.

[96] Ourari, S. and Bouzouia, B., 2003. An approach based on operation insertion for

the one-machine real-time scheduling. International Journal of Robotics and

Automation, vol. 18, no. 4, pp. 185-190.

[97] Liu, S. Q., Ong, H. L., and Ng, K. M., 2005. Metaheuristics for minimizing the

makespan of the dynamic shop scheduling problem. Advances in Engineering

Software, vol. 36, no. 3, pp. 199-205.

[98] Rovithakis, G. A., Perrakis, S. E., and Christodoulou, M. A., 2001. Application of

a neural network scheduler on a real manufacturing system. IEEE Transactions on

Control Systems Technology, vol. 9, no. 2, pp. 261-270.

[99] Chen, Y. L., Sun, T. H. and Fu, L. C., 1994. A Petri-net based hierarchical

structure for dynamic scheduler of an FMS: rescheduling and deadlock avoidance.

Proceedings of the IEEE International Conference on Robotics and Automation,

vol. 3, pp. 1998-2004.

[100] Ferrarini, L. and Poroddi, L., 2003. Modular design and implementation of a logic

control structure for a batch process. Computers and Chemical Engineering, vol.

27, no. 7, pp. 983-996.

[101] Feldman, K., Colombo, A. W., Schnur, C. and Stıckel, T., 1999. Specification,

design, and implementation of logic controllers based on colored Petri net models

and the standard IEC 1131 Part II: design and implementation. IEEE Transactions

on Control Systems Technology, vol. 7, no. 6, pp. 666-674.

 231

[102] Huang, Y., Jeng, M., and Chung, S., 2001. Design, analysis and implementation

of a real-world manufacturing cell controller based on Petri nets. International

Journal of Computer Integrated Manufacturing, vol. 14, no. 3, pp. 304-318.

[103] Feldman, K., Colombo, A. W., Schnur, C. and Stıckel, T., 1999. Specification,

design, and implementation of logic controllers based on colored Petri net models

and the standard IEC 1131 Part I: specification and design. IEEE Transactions on

Control Systems Technology, vol. 7, no. 6, pp. 657-665.

 [104] Park, E., Tilbury, D. M., Khargonekar, P. P., 1999. Modular logic controllers for

machining systems: formal representation and performance analysis using Petri

nets. IEEE Transactions on Robotics and Automation, vol. 15, no. 6, pp. 1046-

1061.

[105] Mahadevan, B. and Narendran, T. T., 1993. Buffer levels and choice of material

handling device in Flexible Manufacturing Systems. European Journal of

Operational Research, vol. 69, no. 2, pp. 166-176.

[106] Stecke, K. E. and Solberg, J. J., 1981. Loading and control policies for a flexible

manufacturing system. International Journal of Production Research, vol. 19, no.

5, pp. 481-490.

[107] Fan, I. S. and Sackett, P. J., 1988. A PROLOG simulator for interactive flexible

manufacturing systems control. Simulation, vol. 50, no. 6, pp. 239-247.

[108] Agnetis, A., Pacciarelli, D. and Rossi, F., 1996. Lot scheduling in a two-machine

cell with swapping devices. IIE Transactions, vol. 28, no. 11, pp. 911-917.

 232

[109] Chen, J. and Chung, C.-H., 1996. An examination of flexibility measurements and

performance of flexible manufacturing systems. International Journal of

Production Research, vol. 34, no. 2, pp. 379–394.

[110] Wu, S. D., Storer, R. H. and Chang, P.-C., 1993. One-machine rescheduling

heuristics with efficiency and stability as criteria. Computers and Operations

Research, vol. 20, no. 1, pp. 1-14.

[111] Fang, J. and Xi, Y., 1997. A rolling horizon job shop rescheduling strategy in the

dynamic environment. International Journal of Advanced Manufacturing

Technology, vol. 13, no. 3, pp. 227-232.

[112] Bierwirth, C. and Mattfeld, D., 1999. Production scheduling and rescheduling

with Genetic algorithms. Evolutionary Computation, vol. 7, no.1, pp. 1-17.

[113] Wong, T. N., Leung, C. W., Mak, K. L., and Fung, R. Y. K., 2006. Integrated

process planning and scheduling/rescheduling – an agent-based approach,

International Journal of Production Research, vol. 44, no. 18-19, pp. 3627–3655.

[114] Montgomery, D. C., 1997. Design and analysis of experiments, Fourth edition.

John Wiley & Sons, New York.

[115] DiCesare, F., Harhalakis, G., Proth, G. M., Silva, M. and Vernadat, F. B., 1993.

Practice of Petri nets in manufacturing. Chapman & Hall, London.

[116] Laftit, S., Proth, J.-M., and Xie, X.-L., 1992. Optimization of invariant criteria for

event graphs. IEEE Transactions on Automatic Control, vol. 37, no. 5, pp. 547-

555.

 233

[117] Song, J.-S. and Lee, T.-E., 1998. Petri net modeling and scheduling for cyclic job

shops with blocking. Computers and Industrial Engineering, vol. 34, no. 2, pp.

281-295.

[118] Ahuja, R. K., Magnanti, T. L. and Orlin, J. B., 1993. Network flows: Theory,

algorithms and applications. Prentice Hall, New Jersey.

[119] Campos, J., Chiola, G., Colom, J. M. and Silva, M., 1992. Properties and

performance bounds of timed marked graphs. IEEE Transactions on Circuits and

Systems, vol. 39, no.5, pp. 386-401.

[120] Murata, T., 1989. Petri nets: properties, analysis and applications. Proceedings of

the IEEE, vol. 77, no. 4, pp. 541-580.

[121] Tuncel, G. and Bayhan, G. M., 2007. Applications of Petri nets in production

scheduling: a review. International Journal of Advanced Manufacturing

Technology, vol. 34, no. (7-8), pp. 762-773.

[122] Hillion, H. P. and Proth, J.-M., 1989. Performance evaluation of job-shop systems

using timed event-graphs. IEEE Transactions on Automatic Control, vol. 34, no.

1, pp. 3-9.

 234

Appendix A:

Introduction to Petri Nets

A PN is a general purpose graphical and mathematical tool, especially suited to model

discrete event dynamic systems (DEDSs). Its graphical representation is extremely easy

to understand. Hence, it provides a very powerful medium of communication between

theoreticians and practitioners (or modelers and users). As a mathematical tool, a PN

model can be described by a set of linear algebraic equations or other mathematical

models that reflect the behavior of the system. This enables the formal analysis of a given

model. Compared to other DEDS modeling methodologies, like Markov Chains and

Queuing Networks, PNs provide a convenient framework for describing and analyzing

DEDSs, are relatively easy to learn and utilize, can be automatically analyzed by the use

of software, can efficiently model many of DEDS features, and can serve as a ready

simulation tool for the system.

Basically, PNs are directed graphs described by three types of objects; places,

transitions and directed arcs connecting places to transitions and transitions to places

[120]. Places represent conditions and are depicted by circles. Transitions represent

events and are depicted by bars or boxes. Input and output places to transitions represent

the pre-conditions and post-conditions of events, respectively. Tokens appear in places as

small solid dots to indicate whether a condition associated with a place is true or false.

 235

The number of tokens in a place describes the local state (or marking) of the place [115]

and the marking of the whole net describes the state of the modeled system.

A weight of an arc in the PN represents the capacity of that arc, or the maximum

number of tokens that can simultaneously flow through this arc. The present work will

only consider PNs that have unity-weighted arcs, which are called ordinary PNs. In order

to simulate or model the dynamic behavior of a system, the PN has to be executed (or

change its state) by firing its transitions. The execution of the PN is controlled by the

number and distribution of tokens in the places as follows [120]:

i. A transition is enabled if each input place to this transition is marked by at least

one token (ordinary PN).

ii. An enabled transition may or may not fire, depending on the occurrence of some

external event (if any) that may be associated with that transition.

iii. The firing of an enabled transition removes one token from each input place and

adds a token to each output place of this transition.

Algebraically, the structure and the behavior of a PN can be defined by means of the

incidence matrix (IM) and the state equation of the net, respectively. The incidence

matrix of a net is a matrix of integers indexed by the number of transitions and places of

the net. The entry of the matrix is given as the difference between, the weight of the

output arc from a transition t to a place p, and the weight of the input arc from p to t

[120]. In the case of ordinary PNs, these entry values can then either be 1, -1, or 0. The

state equation of a net defines a possible future marking of the net based on a given firing

sequence of transitions, the current (or initial) marking of the net, and the IM. Hence, it

 236

can be used to determine the expected behavior of the net, and the set of reachable

markings from a current marking.

A.1 Modeling Power of PNs

The power of system modeling with PNs lies in their ability of representing many

characteristics of DESs (Figure A.1). These include sequential execution, choice (or

conflicts), concurrency, synchronization, merging, mutual exclusion, and priority.

Priorities have been sometimes modeled in PNs by the use of inhibitor arcs; a marked

place preventing an output transition from firing if it is connected to that transition with

an inhibitor arc. Graphically, the ends of inhibitor arcs are depicted by circles instead of

arrows, and firing the inhibited transition does not remove the token from the input place.

Initially, the concept of time was not explicitly provided in the PN formalism.

However, for performance evaluation and scheduling purposes of DESs, timing was

Figure A.1: Modeling power of PNs; a) Sequential execution, b) Choice, c) Concurrency,

d) Synchronization, e) Merging, f) Mutual exclusion, g) Priority

 237

explicitly associated with PN models [120]. Timed PNs (TPNs) are defined by: i)

Topological structure, which generally takes the form of basic PNs, ii) Labeling, which

associates numerical values representing times with transitions and/or places, and iii)

Firing rules that control the process of moving tokens around the net according to the

specified times. When a TPN is transition-timed, a token is withdrawn from all the input

places of the timed transition as soon as the transition is enabled. The firing process then

takes the amount of time associated with the transition, after which tokens are placed in

the output places of the transition. When a TPN is place-timed, tokens in timed places do

not enable the output transitions unless the associated time with the place has passed. In

general, when TPNs are transition (place)-timed, transitions (places) represent the system

operations [115]. TPNs have also been classified into deterministic TPNs and stochastic

TPNs. However, in the context of automated systems, focus has been on deterministic

TPNs.

A.2 Behavioral Analysis using PNs

PNs support the analysis of many properties associated with DESs. In general, there

are two types of properties that can be studied using PN models; structural and behavioral

properties. Structural properties only depend on the structure of the net with no regard to

its initial marking. Behavioral properties, on the other hand, depend on the initial marking

of the net and they include reachability, boundedness, liveness, reversibility, safeness,

and conservativeness [120]. In the current context, focus will be directed only towards

some of the behavioral properties that are directly related to the scheduling and SC

 238

problem, namely reachability, reversibility and liveness. The reachability problem is that

of finding out if a specific marking Mn of a given net is reachable from its initial marking

Mo. Mn is reachable from Mo if there exists a firing sequence of transitions that derives

the net from Mo to Mn. The reachable set of a net R(Mo) is the set of all possible markings

reachable from Mo. In previous control literature, reachability analysis has been utilized

mainly in identifying and avoiding reachable deadlock states [28]. This type of analysis

has also been utilized in the production scheduling literature to identify the final state of

the system that optimizes some performance criterion [121]. However, reachability

analysis suffers from the state explosion problem [120]. Consequently, it has been

relatively associated to systems that feature a limited size (and hence state space).

Reversibility is the ability of the system to return to its initial state. This notion is very

important in the supervisory control (SC) problem and in cyclic scheduling policies that

are based on periodically repeating the obtained production schedule during a given time

period. A PN is said to be reversible if the initial marking (state) Mo is reachable from

each marking in R(Mo). This condition can sometimes be relaxed by defining some home

states M
’
, which can be reached from each marking in R(Mo) [120].

Liveness is the PN property that investigates the complete absence or presence of

deadlocks in the modeled DES. That is why, this PN property has been the most studied

in deadlock-free scheduling and SC literature. A PN is live if from any marking in R(Mo),

it is possible to ultimately fire any transition in the net by progressing through some

firing sequence [120]. Hence, liveness guarantees the deadlock-free operation of the

modeled system, no matter what firing sequence is chosen. Because liveness can be

 239

viewed as a very strong property in some applications, different levels of liveness have

been defined for PNs. A transition in a PN is said to be:

1. L0-live (or dead) if it can never be fired in any firing sequence.

2. L1-live (potentially firable) if it can be fired at least once in some firing

sequence of the PN.

3. L2-live if it can be fired at least for a given number of times in some firing

sequence of the PN.

4. L3-live if it can be fired infinitely often in some firing sequence of the PN.

5. L4-live (live) if it is L1-live for every marking in R(Mo).

A PN is Lk-live if every transition in the net is Lk-live. Hence, a PN is live if every

transition in the net can be fired at least once in some firing sequence from every marking

in R(Mo). It should be noted, however, that in the PN context, deadlock-freeness is not

equivalent to, and is a weaker condition than liveness. A PN is said to be deadlock-free if

at least one transition is enabled at every reachable marking in R(Mo) [35]. This implicitly

means that, even if some transitions in the net are dead, a PN can still be defined as a

deadlock-free one. Since, in a manufacturing environment this might indicate that some

operations can never be started, in the SC and scheduling of manufacturing systems

literature, the PN liveness property has been the one adopted to characterize the

deadlock-freeness of the modeled systems.

In a PN, a siphon is a subset of places, where any input transition to this subset is also

an output transition (Figure A.2). A trap is a subset of places, where any output transition

of this subset is also an input transition [120]. A basic siphon (trap) cannot be represented

 240

as a union of other siphons (traps). A minimal siphon (trap) does not contain any other

siphons (traps). In previous PN literature, siphons and traps have been directly related to

the liveness of PNs. Because its input transitions are a subset of its output transitions, if a

siphon becomes unmarked (free of tokens), it will remain unmarked for any net

evolution. Accordingly, all of its input and output transitions will be dead (L0-live), and

hence the PN will not be live. On the other hand, if a trap becomes marked, it will remain

marked for any net evolution [115].

In previous literature, siphons have been considered as potential deadlocks, and the

absence of empty siphons in some PN structures implied the liveness of the net [35].

Furthermore, a siphon that contains an initially marked trap will never be empty, and

hence will not cause a deadlock. A considerable portion of the PN literature related to

deadlock-free scheduling and control has been associated with analysis of different types

of siphons.

Figure A.2: Special net subsets; a) A siphon, b) A trap

 241

A.3 Common PN Structures

Throughout the literature, different subclasses of PNs have been defined based on the

underlying structure of the net. The most common of these subclasses are marked graphs

(MGs) and state machines (SMs). A MG is an ordinary PN in which each place has

exactly one input transition and one output transition (Figure A.3(a)). A SM is also an

ordinary PN in which each transition has exactly one input place and one output place

[120]. Aside from siphon analysis, the characterization of liveness in SMs and MGs in

their basic forms can be associated to the structure of the net. Because in a SM, firing a

transition moves only one token from one place to another place, a SM is live if it is

strongly connected and Mo marks at least one place in the net (Figure A.3(b)). A PN is

said to be strongly connected if there exists a directed path from each node (place or

transition) in the net to every other node in the net.

On the other hand, a MG is live if Mo marks at least one place in each circuit of the

net. A circuit is a directed path that goes through the PN from one node back to this node

such that no other nodes are repeated [122]. Accordingly, a MG is live if the net structure

obtained by deleting all the places marked by Mo contains no circuits. Furthermore, a live

Figure A.3: PN subclasses; a) Marked graphs, b) State machines

 242

MG is also reversible [119]. Because of their potential modeling power and the ease of

their analysis, SMs and MGs have often been extended and analyzed [34, 35] to model

different kinds of manufacturing systems and characterize the associated deadlock

situations.

 243

Appendix B:

The Supervisory Control Theory (SCT)

The SCT theory was proposed by Ramadge & Wonham (RW) in 1987 [8]. The theory

considered logical DES models in which times of occurrence of events are ignored and

only the order in which they occur is considered. Logical models have often been

employed to describe the qualitative properties of DESs, which was the main concern of

the theory. In the SCT, the behavior of a plant is described by the set of sequences (or

strings) of possible events, which forms a language constructed with the alphabet of the

events. It further assumes that the plant generates controllable and uncontrollable events

spontaneously. The behavior of this plant can be controlled by a supervisor which can

disable some controllable events based on the string of events generated by the plant. The

objective of the SCT is to eventually design a supervisor (or supervisors) that makes the

plant behave according to the given specifications in a deadlock-free manner.

The first step in applying the SCT is to model an automaton: G = (Q, Σ, δ, Qm, qo),

which is called a generator of the DES, where Q is the set of states q, Σ is the set of event

labels called the alphabet, δ is the transition function that defines the resulting state upon

the occurrence of an event, Qm is the set of final (or marked) states and qo is the initial

state. The set of events Σ is partitioned into two disjoint sets; Σc, the set of controllable

events, and Σuc, the set of uncontrollable events. Controllable events are events that can

be prevented from occurrence, while uncontrollable events are those which are

 244

permanently enabled. Along with Σ, a set Σ* is used to denote the set of finite strings of

elements in Σ. When Q is finite, G can be described as a finite-state automaton and can be

represented by a directed graph. In this graph, the nodes are the states in Q, the arcs are

the transitions defined by the function δ, and the set of labels for the arcs are the events in

Σ (Figure 2.1). The set of all physically possible paths that initiate from qo is denoted by

L, the language (behavior) over the alphabet Σ. Another language Lm is also defined to

represent the sequences that can lead to completed tasks that correspond to Qm. To model

interactions between resources in the system, a synchronous (shuffle) product of the

generators of the interacting resources is obtained, namely: G = G1 || G2. The behavior of

G (the plant) is then determined by the concurrent behavior of G1 and G2.

The final step is to define a supervisor f of G, to enable or disable controllable events

by means of control inputs γ, based on the language generated by G. The supervisor acts

as a map of inputs over the language that specifies for each possible string of generated

events the control input needed to be applied. When a DES is supervised by a supervisor

f, it obeys the additional constraints forced by f, and the behavior of the system becomes

the supervised language Lf. Because of the presence of uncontrollable events, often the

language Lf (or its equivalent language K) is not fully controllable. In which case, the

qo

q1 q2

q3 q4

qf β1 γ1
α1

α2
β2

γ2

: Initial state

: Final state

Figure B.1: A directed graph for a generator

 245

problem becomes one of finding the largest controllable subset of language K (supremal

sub-language). This sub-language K
↑
 requires the least (or optimal) amount of control

action to preserve the restrictions of language K.

A supervisor has also been defined, alternatively, as an automaton T =(Σ, X, ξ, xo) and

a feedback function φ, where φ is a map of the set of control inputs over the set of

supervisor states X. G then plays the role of the plant, T functions as an observer, and φ as

the feedback. The outputs of G drive the state transitions of T, which determines the next

control input γ on G through feedback φ [8, 9, 10].

 246

Appendix C:

Operational Data for Illustrative Examples

Table C.1: Processing routes and times for the ‘6J x 3M’ numerical example

Jobs

Operations

Machine (Processing Time)

1 2 3

1 M2(25) M3(37) M1(38)

2 M1(39) M2(25) M3(25)

3 M3(33) M2(22) M1(21)

4 M3(24) M1(24) M2(37)

5 M3(29) M1(24) M2(40)

6 M1(27) M2(27) M3(28)

Table C.2: Processing routes and times for the ‘5J x 5M’ comparison problem

Jobs

Operations

Machine (Processing Time)

1 2 3 4 5

1 M1(8) M2(8) M5(9) M4(5) M3(2)

2 M1(9) M2(4) M3(9) M4(6) M5(3)

3 M1(8) M2(8) M5(9) M4(5) M3(2)

4 M1(9) M2(4) M3(9) M4(6) M5(3)

5 M1(8) M2(8) M5(9) M4(5) M3(2)

 247

Table C.3: Processing routes and times for problem ‘4J x 3M’

Jobs

Operations

Machine (Processing Time)

1 2 3

1 M1(40) M2(100) M3(36)

2 M2(45) M1(65) M3(98)

3 M1(212) M2(73) M3(32)

4 M3(55) M2(65) M1(35)

Table C.4: Processing routes and times for problem ‘ft06’

Jobs

Operations

Machine (Processing Time)

1 2 3 4 5 6

1 M3(1) M1(3) M2(6) M4(7) M6(3) M5(6)

2 M2(8) M3(5) M5(10) M6(10) M1(10) M4(4)

3 M3(5) M4(4) M6(8) M1(9) M2(1) M5(7)

4 M2(5) M1(5) M3(5) M4(3) M5(8) M6(9)

5 M3(9) M2(3) M5(5) M6(4) M1(3) M4(1)

6 M2(3) M4(3) M6(9) M1(10) M5(4) M3(1)

 248

Appendix D:

Structures of Robot Arm Control Programs

• Structure of main program (program 0):

10 If INP1= 1 &INP2 = 0 &INP3= 0 &INP4 = 0 &INP5= 0 &INP6 = 0, Call Sub-program 1.

20 If INP1= 0 &INP2 = 1 &INP3= 0 &INP4 = 0 &INP5= 0 &INP6 = 0, Call Sub-program 2.

:

:

440 If INP1= 1 &INP2 = 0 &INP3= 0 &INP4 = 0 &INP5= 0 &INP6 = 0, Call Sub-program

44.

• Structure of Sub-program 1:

10 Set OUT1 = 0 (Set the value of output line 1 to 0 to indicate that the robotic arm has been

acquired).

20 Go to the position of IA.

30 Pick-up Job A.

40 Go to the position of M1.

50 Drop-off Job A.

60 Return to home position.

70 Reset OUT1 = 1 (robot arm at home position).

80 RETURN to Main Program.

