
A Comparative Evaluation of Web Server
Systems: Taxonomy and Performance

by

Manikandaprabhu Ganeshan

A thesis
presented to the University of Manitoba

in partial fulfilment of the
requirements for the degree of

Master of Science
in

Computer Science

Winnipeg, Manitoba, Canada, 2005

c©Manikandaprabhu Ganeshan 2005

Signature

i

Abstract

The Internet is an essential resource to an ever-increasing number of businesses
and home users. Internet access is increasing dramatically and hence, the need
for efficient and effective Web server systems is on the rise. These systems are
information engines that are accessed through the Internet by a rapidly growing
client base. These systems are expected to provide good performance and high
availability to the end user. They are also resilient to failures at both the hardware
and software levels. These characteristics make them suitable for servicing the
present and future information demands of the end consumer.

In recent years, researchers have concentrated on taxonomies of scalable Web
server system architectures, and routing and dispatching algorithms for request
distribution. However, they have not focused on the classification of commercial
products and prototypes, which would be of use to business professionals and soft-
ware architects. Such a classification would help in selecting appropriate products
from the market, based on product characteristics, and designing new products with
different combinations of server architectures and dispatching algorithms.

Currently, dispatching algorithms are classified as content-blind, content-aware,
and Domain Name Server (DNS) scheduling. These classifications are extended,
and organized under one tree structure in this thesis. With the help of this exten-
sion, this thesis develops a unified product-based taxonomy that identifies product
capabilities by relating them to a classification of scalable Web server systems and
to the extended taxonomy of dispatching algorithms. As part of a detailed analysis
of Web server systems, generic queuing models, which consist of a dispatcher unit
and a Web server unit are built. Some performance metrics, such as throughput,
server performance, mean queue size, mean waiting time, mean service time and
mean response time of these generic queuing models are measured for evaluation.
Finally, the correctness of generic queuing models are evaluated with the help of
theoretical and simulation analysis.

ii

Acknowledgements

First, I need to acknowledge the Department of Computer Science, University of
Manitoba for giving me the opportunity to pursue my master’s degree.

I would like to express my sincere gratitude and appreciation to my supervisors,
Dr. Randal Peters and Dr. Rasit Eskicioglu for their personal guidance, encourage-
ment, support, and motivation all through this research. It was a great pleasure to
conduct this thesis under their supervision. I want to thank them for all their help,
interest, and valuable hints.

I am deeply grateful to professors, Dr. Attahiru S. Alfa and Dr. Neil Arnason,
who have guided me in the right way of my ”queueing theory” research. Their
ideals, concepts, detailed and constructive suggestions have had a remarkable influ-
ence on this thesis and my entire study in the field of queuing theory. I would also
like to thank Dr. Robert D. McLoed, who monitored my work and took effort in
reading and providing me with valuable comments on this thesis.

I owe my warm and sincere thanks to my friends, Hossein Pourreza and Ye Li,
who have been of great support throughout my research.

I am deeply indebted to all my friends in Winnipeg, who are of great value
to me, for their moral support and timely help. Without them, I could not have
completed this thesis successfully.

I dedicate this thesis to my beloved parents, whom I consider the most important
people in my life. Needless to say that I am grateful to my sisters and in-laws, whose
inspirations make me work hard all the time.

iii

Contents

1 Introduction 9

1.1 Objectives . 11

1.2 Basic Architecture of Web server systems 13

1.3 Key Contributions . 21

1.4 Organization of the Thesis . 22

2 Taxonomy 23

2.1 Server Architectures . 24

2.1.1 Cluster-Based Web Systems 26

2.1.2 Virtual Web Clusters . 29

2.1.3 Distributed Web Systems 30

2.2 Dispatching Algorithms . 32

2.2.1 Content-Blind Dispatching Policies 35

2.2.2 Content-Aware Dispatching Policies 36

2.3 Extended Taxonomy of Dispatching Algorithms 37

3 Products and Prototypes 40

3.1 Related Work . 41

3.1.1 Hardware Solutions . 42

3.1.2 Software Solutions . 43

1

CONTENTS 2

3.1.3 Both Hardware and Software Solutions 44

3.1.4 Prototypes . 45

3.2 Unified Product-Based Taxonomy 47

3.2.1 Content-Blind Layer-4 Products and Prototypes 47

3.2.2 Content-Aware Layer-7 Products and Prototypes 52

3.2.3 Virtual Web Clusters . 57

3.2.4 Distributed Web Systems 57

4 Generic Queuing Models 61

4.1 Model Description . 63

4.1.1 Generic Queuing Models Without Feedback 66

4.1.2 Generic Queuing Models With Feedback 68

4.2 Model Evaluation . 71

4.2.1 Analytical Modeling . 72

4.2.2 Simulation . 86

4.3 Model Validation . 90

4.3.1 Comparison of Analytical and Simulation Results 90

4.3.2 Closeness . 95

4.3.3 Confidence Interval (CI) 95

4.4 Steady State Performance . 97

4.4.1 Long runs (LR) . 97

5 Conclusions and Future Work 107

Abbreviations 110

Appendix A 114

Appendix B 128

CONTENTS 3

Appendix C 135

Appendix D 142

Appendix E 149

List of Tables

4.1 Metrics—Random Policy Model Without Feedback 77

4.2 Metrics—RoundRobin Policy Model Without Feedback—Dispatcher
Unit (M/M/1) . 77

4.3 Metrics—RoundRobin Policy Model Without Feedback—Server Unit
(Erk/M/1) . 80

4.4 Metrics—Random Policy Model With Feedback 81

4.5 Metrics—RoundRobin Policy Model With Feedback—Dispatcher
Unit (M/M/1) . 81

4.6 Metrics—RoundRobin Policy Model With Feedback—Server Unit
(Erk/M/1) . 83

4.7 Metrics—RoundRobin Policy Model With Extra Feedback 86

4.8 Simulated Outputs—Performance Metrics 89

4.9 Comparative Analysis—Random Policy Model Without Feedback . 91

4.10 Comparative Analysis—RoundRobin Policy Model Without Feed-
back . 92

4.11 Comparative Analysis—Random Policy Model With Feedback . . . 93

4.12 Comparative Analysis—RoundRobin Policy Model With Feedback . 94

5.1 RMWF—Mean Queue Size . 115

5.2 RMWF—Mean Waiting Time . 116

5.3 RMWF—Total Response Time . 117

5.4 RRMWF—Mean Queue Size . 118

4

LIST OF TABLES 5

5.5 RRMWF—Mean Waiting Time 119

5.6 RRMWF—Total Response Time 120

5.7 RMF—Mean Queue Size . 121

5.8 RMF—Mean Waiting Time . 122

5.9 RMF—Total Response Time . 123

5.10 RRMF—Mean Queue Size . 124

5.11 RRMF—Mean Waiting Time . 125

5.12 RRMF—Total Response Time . 126

5.13 RRMEF—Performance Metrics 127

5.14 LR—RMWF (n=100)—Mean Queue Size 129

5.15 LR—RMWF (n=200)—Mean Queue Size 130

5.16 LR—RMWF (n=500)—Mean Queue Size 131

5.17 LR—RMWF (n=100)—Mean Waiting Time 132

5.18 LR—RMWF (n=200)—Mean Waiting Time 133

5.19 LR—RMWF (n=500)—Mean Waiting Time 134

5.20 LR—RRMWF (n=100)—Mean Queue Size 136

5.21 LR—RRMWF (n=200)—Mean Queue Size 137

5.22 LR—RRMWF (n=500)—Mean Queue Size 138

5.23 LR—RRMWF (n=100)—Mean Waiting Time 139

5.24 LR—RRMWF (n=200)—Mean Waiting Time 140

5.25 LR—RRMWF (n=500)—Mean Waiting Time 141

5.26 LR—RMF (n=100)—Mean Queue Size 143

5.27 LR—RMF (n=200)—Mean Queue Size 144

5.28 LR—RMF (n=500)—Mean Queue Size 145

5.29 LR—RMF (n=100)—Mean Waiting Time 146

5.30 LR—RMF (n=200)—Mean Waiting Time 147

5.31 LR—RMF (n=500)—Mean Waiting Time 148

LIST OF TABLES 6

5.32 LR—RRMF (n=100)—Mean Queue Size 150

5.33 LR—RRMF (n=200)—Mean Queue Size 151

5.34 LR—RRMF (n=500)—Mean Queue Size 152

5.35 LR—RRMF (n=100)—Mean Waiting Time 153

5.36 LR—RRMF (n=200)—Mean Waiting Time 154

5.37 LR—RRMF (n=500)—Mean Waiting Time 155

List of Figures

1.1 Message flow—Client to Server 14

1.2 Basic Architecture of Web Server Systems 15

1.3 Flow of requests—Client to DNS servers for IP address translation . 16

1.4 HTTP client and HTTP server communication 18

1.5 Physical Flow of Requests—Client, Dispatcher Unit and Server Unit 20

1.6 Handshakes: Client–Dispatcher–Server 21

2.1 Detailed Taxonomy of Web Server Architectures 25

2.2 Cluster-Based Web System Architecture 27

2.3 Virtual Web Cluster Architecture 30

2.4 Distributed Web System Architecture 32

2.5 Taxonomy of Dispatching Algorithms 34

2.6 Extended Taxonomy of Dispatching Algorithms 39

3.1 Content-Blind Classification I . 49

3.2 Content-Blind Classification I . 50

3.3 Content-Aware Classification I . 53

3.4 Content-Aware Classification I . 54

3.5 Content-Blind Classification II . 58

3.6 Content-Blind Classification II . 59

7

LIST OF FIGURES 8

4.1 Product-Based Taxonomy with respect to Generic Queuing Models . 62

4.2 Generic Queuing Models . 63

4.3 Design—Generic Queuing Models Without Feedback 66

4.4 Structure—Generic Queuing Models Without Feedback 67

4.5 Design—Generic Queuing Models With Feedback 69

4.6 Structure—Generic Queuing Models With Feedback 69

4.7 LR—Mean Queue Size—RMWF (n = 100, 200 and 500) 99

4.8 LR—Mean Waiting Time—RMWF (n = 100, 200 and 500) 100

4.9 LR—Mean Queue Size—RRMWF (n = 100, 200 and 500) 101

4.10 LR—Mean Waiting Time—RRMWF (n = 100, 200 and 500) 102

4.11 LR—Mean Queue Size—RMF (n = 100, 200 and 500) 103

4.12 LR—Mean Waiting Time—RMF (n = 100, 200 and 500) 104

4.13 LR—Mean Queue Size—RRMF (n = 100, 200 and 500) 105

4.14 LR—Mean Waiting Time—RRMF (n = 100, 200 and 500) 106

Chapter 1

Introduction

The Internet is a popular medium for communication, commerce, knowledge dis-

semination, and information exchange. Much of the functionality provided through

the Internet is generally serviced by a variety of Web server systems, which are

physically characterized as a cluster of quasi-independent servers connected by a

local area network. The intrinsic features of these systems include: high perfor-

mance, high availability, high scalability, and resiliency to failures. The servers in

a Web server system collectively service requests and handle failures. Such con-

figurations typically incorporate significant amounts of redundancy and are easily

expanded by adding more identically configured components. This makes them

suitable for handling large amounts of Web traffic. One important challenge in de-

signing these Web server systems is to effectively balance the load across servers

and their storage sub-systems.

The demand for Internet access is increasing dramatically and, hence, the need

for efficient Web server systems is on the rise. Interest in Web server systems has

9

CHAPTER 1. INTRODUCTION 10

received greater attention in recent years. A larger number of commercial prod-

ucts [Aka99, Nor00, Nor02, F5N00, Res00, Cis02, Fou02, Zeu02, Cis00, Mic00]

are available in the market and are in use today. Furthermore, several research

groups are actively pursuing and developing Web server system prototypes [LVS98,

APE96, KBM94, AYHI96, DCH+97, ZBCS99], each with varying goals in mind.

A number of factors contribute to the rising demand for the Internet. One is

the proliferation of high speed Internet access to the end consumer through better

availability, and affordability of technology such as Cable and Digital Subscriber

Line (DSL) [DSL04] modems. This demand is further augmented by an increased

use of Cable/DSL routers by home and small business users, who can easily share

an Internet connection between multiple computers within their respective estab-

lishments.

Another factor is the growing user demand for enriched content that includes

high-definition images (jpg [Joi04]), animation (flash, shock wave, QuickTime VR

[Mac04, App04]), audio (mp3), and video (mpg, avi, QuickTime) [Mov04, AVI04].

Web server systems can improve the delivery of these media types by exploiting

content-aware methods, and the ability to evaluate and compare various mecha-

nisms is an important challenge. Some additional factors are the increased need

for encryption, authentication, and general security in the support of e-commerce

transactions with respect to application service providers from the banking, shop-

ping, business purchasing, and delivery sectors.

The flexibility of multi-tier Web server systems can make them susceptible to in-

creased traffic by the nature of their designs. For example, the use of XML [Nor98],

and XSLT [Ken00] make it fairly easy to open up Web server systems to a large

number of new devices. This means that multi-tier Web server systems utilize com-

CHAPTER 1. INTRODUCTION 11

mon data and business layers to retrieve back-end data in XML format and apply

business rules in a consistent fashion. The resulting XML can then be transformed

using an appropriate XSL [Ken04] style sheet to produce the appropriate HTML

[Eri95] for a requesting device. By detecting the browser string of different devices

and browsers, an appropriate selection of XSL style sheets can be made. For ex-

ample, to support Palm and PocketPC devices in an existing XML/XSL-based Web

site, all that is needed is to write the appropriate XSL style sheets for the requesting

browsers. Thus, with relatively little effort, Web server systems can dramatically

increase their potential client base to include a whole new set of devices and hence,

a whole new set of traffic demands.

Web Services is yet another technology that many Web server systems are be-

ginning to offer and it is becoming increasingly popular. Use of this technology

allows applications to act as clients of Web server systems. These applications

can place a much greater demand on Web server systems than a user sitting at a

browser. As a result, architectures and algorithms need to evolve to better support

this expanding set of new clients.

1.1 Objectives

Several research efforts are ongoing in Web-based information systems to satisfy

user needs for efficient Web services. Research interest in this field is likely to

increase because of the number of users accessing the Web and expanding develop-

ments in Web technologies.

The goals of this research are to:

CHAPTER 1. INTRODUCTION 12

• extend an existing taxonomy [CCCY02] of dispatching algorithms.

• develop a unified product-based taxonomy, which uses the taxonomic cate-

gories developed in [CCCY02].

• build generic queuing models to evaluate Web server systems with the help

of metrics such as throughput, server performance, mean queue size, mean

waiting time, mean service time, and mean response time.

• analyze the correctness of models using theoretical and simulated results of

the model.

• validate and verify these models for accuracy and correctness.

This thesis reviews the state-of-the-art in commercial and prototype Web server

systems, and devises a unified product-based taxonomy that identifies product ca-

pabilities by relating them to a classification of scalable Web server systems and

a taxonomy of dispatching algorithms. To accomplish a unified taxonomy that

encompasses a large set of products, the set of dispatching algorithms identified

by Cardellini et al. [CCCY02], Colajanni et al. [CYD98], and Schroeder et al.

[SGR00] are extended to include a number of additional classifications. The uni-

fied product-based taxonomy forms a basis to analyze and quantify the fundamental

characteristics of the products and prototypes. Thus, this new taxonomy is a sig-

nificant step towards a methodology for classifying products with respect to their

capabilities. Generic queuing models are built and the above mentioned perfor-

mance metrics are evaluated. The correctness of these models is also analyzed by

comparing the theoretical and simulation results of these models. The findings are

CHAPTER 1. INTRODUCTION 13

valuable to business professionals to help them compare products against one an-

other when evaluating a Web server system deployment. Furthermore, these models

could be extended by designing and analyzing models with exact product specifica-

tions, which in turn help software architects in identifying weaknesses in existing

products. New products with enhanced capabilities that support emerging client

bases such as mobile devices and Web service applications could be developed.

1.2 Basic Architecture of Web server systems

This section analyzes the flow of messages in the Internet. It first considers the

basic message flow structure and then describes the details in terms of message flow,

protocols, ports, and standards. This section is meant as an overview of message

sequence interchange and will help establish the basis for analyzing web server

systems in the following chapters.

When a client demands a request from a server, it initially sends a connection

request message to the server. The server receives the connection request message

and sends back a connection reply message to the client, based on its availability

and then any necessary information is transferred. The general flow of requests

from a client to a server is represented in Figure 1.1 [KR03].

Internet activities are administered by protocols, which are standards involv-

ing the communication between entities like client and server. For communication

between computers, the International Organization for Standardization (ISO) de-

veloped communication architectures, Open System Interconnection (OSI) model

and Transmission Control Protocol /Internet Protocol (TCP/IP) model that describe

the linking standards. The OSI model consists of seven layers, physical, data link,

CHAPTER 1. INTRODUCTION 14

Client Server

Connection Request

Connection Reply

URL : www.info.com

Required File Information

Figure 1.1: Message flow—Client to Server

network, transport, session, presentation and application. In the TCP/IP model, the

number of layers is reduced to five, which are physical, data link, network, transport

and application accommodating the necessary requirements. Some of the protocols

used in different layers are HTTP (HyperText Transfer Protocol), SMTP (Simple

Mail Transfer Protocol), FTP (File Transfer Protocol), DNS (Domain Name Server)

[Application Layer], TCP (Transmission Control Protocol), UDP (User Datagram

Protocol) [Transport Layer], and IP (Internet Protocol) [Network Layer] [KR03].

In the Internet, Web servers are computers that administer and serve-up Web

pages. They have specific IP address and are typically referenced by a domain

name. Domain names are “user-friendly” identifiers of IP addresses. Virtually any

modern computer can be modified into a Web server by installing server software

and linking it to the Internet. When a client visits a Web page, with the help of the

URL of that site, the browser initiates the Web server connection through the Inter-

CHAPTER 1. INTRODUCTION 15

net. DNS servers are responsible for mapping a domain name to an IP address of a

Web server system and the respective server that stores client desired information.

The flow of the requests from a client to a target server consists of two phases:

(i) the look-up phase and (ii) the request-response phase. The basic architecture

of the request flow in Web server systems is shown in Figure 1.2. In the look-up

phase, a URL request from a client is directed to the Authoritative DNS servers

(A-DNS) (step 1), which are responsible for the translation of the Web site name

to the IP address of the target server. The client uses the IP address obtained from

an A-DNS server (step 2) to establish a TCP connection to the destination. The

request-response phase involves forwarding requests to the target server (step 3)

and delivering the processed requests to clients (step 4).

1

3

42

Local DNS

(A−DNS)
DNS

Authoritative
Web Servers

(1...N)

C l i e n t

I n t e r n e t

Look−up Phase Request−Response Phase

Figure 1.2: Basic Architecture of Web Server Systems

CHAPTER 1. INTRODUCTION 16

Look-up Phase:

The entities involved in the look-up phase are the client and DNS servers. DNS

consists of a collection of name servers and application layer DNS protocols for

translating the host name to an IP address [KR03, Bla00]. DNS servers run over

the transport layer protocol UDP at port 53 to communicate with the clients for

IP address translation. The name servers found in DNS are local DNS, root name

DNS, intermediate DNS, and authoritative DNS servers. The flow of requests to the

DNS from the client is shown in Figure 1.3.

Client
[client.start.ca] -

Need for an target
IP address for the
target host name
(server.cs.end.ca)

Local
DNS

[dns.start.ca] -
Checks for the

target IP address
in the local name

servers

Root
DNS

[dns.next.ca] -
Checks for the

target IP address
in the root name

servers

Intermediate
DNS

[dns.end.ca] -
Checks for the

target IP address in
the intermediate

name servers

Authoritative
DNS

[dns.cs.end.ca] -
Translates the

target hostname to
its respective IP

address

N N N

YY Y

Based on the information available in any of the
DNS servers, the host name is translated to

target IP address and responded directly to the
client

Check Check Check
HostName

Figure 1.3: Flow of requests—Client to DNS servers for IP address translation

As an example, let us consider a client with a host name client.start.ca that

requests a URL server.cs.end.ca/index.html. The URL consists of two parts, a host

name and the path name. The client browser is responsible for extracting the host

name from the URL. The client needs to target the Web server, which holds the

specific information. In order to obtain the IP address of the target server, the client

CHAPTER 1. INTRODUCTION 17

contacts the DNS. First, the client application checks the client side of the DNS and

responds directly if the target IP address is found or passed to the collection of name

servers in DNS. The flow of DNS servers, is such that, it reaches local DNS, root

DNS, intermediate DNS and authoritative DNS for the IP address translation of the

target server. Based on the information found in any level of DNS servers, the host

name is translated to an IP address that is sent back to the client. The local DNS are

DNS servers pertaining to that locality, such as a department or a company. Suppose

our local name server is dns.start.ca. It will check for the IP address translation for

server.cs.end.ca. Alternatively, the client query is passed on to root DNS, which are

grouped based on a zone or an area if it is not listed in the local DNS. Let us consider

the IP address of root DNS as dns.next.ca. From the root DNS, if the IP address

of the target server is not translated, the client query is supplied to the intermediate

DNS (address: dns.end.ca) and then A-DNS (address: dns.cs.end.ca), in which

every host for domain cs.end.ca is registered and a DNS record for translating the

host name (server.cs.end.ca) to IP address should be found.

Request-Response Phase:

In the request-response phase section, the HTTP (HyperText Transfer Protocol)

application layer protocol and its Web activities are overviewed [KR03, Bla00].

HTTP explains the standards for communication with the client and the server. The

client and server communicate with the help of HTTP message requests as shown in

Figure 1.4 [KR03]. The HTTP client initiates a TCP connection to the target server.

After the establishment of the connection, the client and target server processes

exchange information by accessing TCP through a socket interface.

CHAPTER 1. INTRODUCTION 18

Socket Interface

Client Process

TCP

Socket Interface

Server Process

TCP

HTTP
CLIENT

HTTP
SERVER

HTTP Request

HTTP Response

Figure 1.4: HTTP client and HTTP server communication

The message sequence is as follows:

• The HTTP client initiates a TCP connection to the server server.cs.end.ca at

port number 80, which is the default HTTP port number

• After the acknowledgement from the server for a TCP connection, the HTTP

client sends a HTTP request message via a socket interface with both the host

name and path name server.cs.end.ca/index.html

• The HTTP server accepts the client requests and extracts the object /index.html

and responds to the client via a socket interface

• The HTTP client accepts the server response and the TCP connection is ter-

minated only after client extracts the required file information

HTTP connections are of two types: Non-persistent (HTTP/1.0) and persis-

CHAPTER 1. INTRODUCTION 19

tent (HTTP/1.1). In non-persistent connections, a single Web object is exchanged

over a TCP connection. Persistent connections involve the transfer of multiple Web

objects in the same TCP connection. Persistent connections can be explained by

two mechanisms: with pipelining and without pipelining. In persistent connection

without pipelining, after establishing TCP connection, each client request waits for

the response from the server before its next request. In persistent connection with

pipelining, new client requests can be supplied to the server, before its first response

from the server.

The decision to choose the request route from a client to the target server can

be done at several places. The four possible ways for this routing decision of the

client requests to the target server are [NM00]: (i) Web client-based, (ii) DNS-

based, (iii) dispatcher-based, and (iv) server-based. In the first approach, the client,

who originates the request, is responsible for request routing. In the DNS-based

approach, routing decisions are made during the look-up phase and are handled by

the A-DNS servers. The dispatcher-based approach deals with switching devices

for routing the requests to the target server. In this approach, the basic scheduling

algorithms include Round Robin (RR), Least Connected, and Least Loaded tech-

niques [TA01]. In the server-based approach, the Web server systems processes the

requests by themselves or redirects them to other servers in the Web server system.

In this thesis, we concentrate on the Layer-4 one-way architecture, which in-

volves a dispatcher unit for distribution of client requests to the server unit. Figure

1.5 illustrates the physical flow of client requests to a target server, via Layer-4

dispatcher. The Layer-4 dispatcher acts as a dispatcher unit and is responsible in

keeping track of target server IP addresses. The IP address of the Layer-4 dispatcher

is alone visible to the client, while the IP addresses of the target servers are hidden.

CHAPTER 1. INTRODUCTION 20

The client contacts the dispatcher, which in turn connects to the target server. In

the one-way architecture, the target server responds to the client without passing

through the dispatcher again.

CLIENT

Layer-4
Dispatcher

3

 Client
ProcessA

T

N

D

P

Socket
Interface

A

T

N

D

P

 Server
Process

Socket
Interface

TARGET
SERVER

 A – Application Layer
T - Transport Layer N – Network Layer
D – Data Link Layer P – Physical Layer

N

D

P

T

1 2

Cluster-Based Web System

Internet

Figure 1.5: Physical Flow of Requests—Client, Dispatcher Unit and Server Unit

Let us consider the packet single rewriting one-way architecture in detail. IBMs

TCP router supports the packet single rewriting one-way architecture. The inbound

client packets reach the dispatcher, whose IP address is alone visible to the client.

The dispatcher replaces the destination address of the inbound packets from VIP

address of the dispatcher to the IP address of the target server and TCP/IP header

sum is recalculated. In the target server, before sending the response packets to

the client, IP address of the target server is replaced with the VIP address of the

dispatcher, such that the client contacts the dispatcher for all its processes.

The travel path of the requests from the client, dispatcher and the target server

is explained in Figure 1.6 [KR03]. In the first part of the handshake, the client

CHAPTER 1. INTRODUCTION 21

Target Server

1

2

3

4

5

6

Layer-4
Dispatcher

Client

1,2,3 – Connection Establishment
4,5,6 – Request and Response

Figure 1.6: Handshakes: Client–Dispatcher–Server

initiates a call to get a TCP connection with the target server. The dispatcher routes

the request to the target server, which responds directly to the client. The steps 1, 2,

and 3 illustrate the connection establishment phase with the client and server. After

the connection is established, the client acknowledges the dispatcher, which in turn

connects with the target server for the data transfer.

In summary, this section describes the message sequence between a client and

a server. Various tasks involved during this communication process are explained

in detail. It gives an overview of the flow of messages from a client to a server, and

vice versa.

1.3 Key Contributions

The significant contributions of this thesis are as follows:

CHAPTER 1. INTRODUCTION 22

• The extended taxonomy of dispatching algorithms brings content-blind, content-

aware, DNS scheduling algorithms and a few other additional classifications

under a single taxonomy, which provides a broad overview of dispatching

algorithms found in the field.

• The unified product-based taxonomy could help allow business professionals

to explore and pick products in the market based on their architectural and

dispatching characteristics. This research could also be applied to design-

ing products with new combinations of Web server system architectures and

dispatching algorithms.

• Evaluation of generic queuing models form the basis of Web server modeling.

The identified metrics used in such an evaluation contribute to analyzing the

Web server systems in depth.

1.4 Organization of the Thesis

The remainder of the thesis is organized as follows. Chapter 2 discusses the pre-

vious work on the existing taxonomies of scalable Web server systems and dis-

patching algorithms, along with the extended taxonomy of dispatching algorithms.

Chapter 3 describes the classification of the various products and prototypes in ref-

erence to the integrated product analysis taxonomy. Chapter 4 presents the generic

queuing model architecture, its operation details, and the theoretical and simula-

tion analysis for random and round robin dispatching policies. Finally, chapter 5

concludes the thesis and outlines future work.

Chapter 2

Taxonomy

Taxonomy is the process of grouping any entity. Identification has always been

a challenging task in science. Taxonomy attempts to identify various classes and

organize them into broader categories. These classifications are of great explanatory

value and display a vivid picture of the existing diversity. The knowledge of any

system can be summarized by integrating the system components into a taxonomy.

As demands for Web-based services and complexity in Web applications are

escalating, researchers are increasingly interested in various Web system related is-

sues. Research has been done in architectural and dispatching solutions for Web

server systems. The classification of scalable Web server systems and the taxon-

omy of dispatching algorithms are explained in this chapter in detail. An extended

taxonomy of dispatching algorithms is developed and dispatching algorithms are

grouped under one graph.

Several on-going research efforts categorize the various Web server technolo-

gies. In this thesis, Web server architectures and dispatching algorithms are elab-

23

CHAPTER 2. TAXONOMY 24

orated, as they form the basis for building a new product taxonomy. This chapter

deals with the scalable Web server system architectures and the dispatching algo-

rithms in particular.

Scalable Web server systems are broadly classified into “scale-up” and “scale-

out” categories [CCCY02]. The scale-up category deals with a single server and

is divided into hardware and software scale-up. Hardware scale-up [DGLS99] in-

volves adding more resources to an existing server, thus relieving short-term pres-

sure only. Software scale-up [NBK02] includes employing efficient Web server

algorithms with suitable dispatching policies and building effective operating sys-

tems. The scale-out category [DGLS99], which involves multiple servers, is further

divided into local scale-out and global scale-out categories. Local scale-out systems

include servers that lie within a single local network. The complete classification of

Web server systems as discussed in [GEP02] is shown in Figure 2.1. In the global

scale-out category, servers are located at different geographical locations. In this

thesis, we concentrate more on the local scale-out Web server systems and discuss

their server architectures and dispatching algorithms, in detail.

2.1 Server Architectures

Local scale-out distributed architectures are divided into three main classes: (i)

cluster-based Web systems, (ii) virtual Web clusters, and (iii) distributed Web sys-

tems [CCCY02]. In a cluster-based Web system, a dispatcher is involved in the

distribution of the requests. Only the virtual IP address (VIPA) of the dispatcher is

visible to the clients and all actual servers IP addresses are hidden from the clients.

In virtual Web clusters no separate dispatching device is used for request routing.

C
H

A
PT

E
R

2.
TA

X
O

N
O

M
Y

25

Scale-Out

Hardware Scale-up Software Scale-up Local Scale-out Global Scale-out

Cluster Based
Systems

Virtual Web
Clusters

Distributed
Web Systems

Layer-4 Layer-7

One-Way Two-Way One-way Two-Way

UniCast MultiCast

Packet
Forwarding

Packet
Tunneling

Packet
Single

Rewriting

Packet
Double

Rewriting

TCP
Handoff

TCP
Connection

Hop

TCP
gateway TCP splicing

DNS
Servers

Web
Servers

Triangulation HTTP
Redirection

URL Rewriting

Scale-Up

Scalable Web Servers

DNS Servers Web Servers

Figure
2.1:D

etailed
Taxonom

y
ofW

eb
ServerA

rchitectures

CHAPTER 2. TAXONOMY 26

All the servers in the Web server system share the same VIPA and this VIPA is the

only one visible to the client. Request routing in virtual Web clusters is done at

the media access control (MAC) layer. A filtering mechanism is employed in each

server of the Web server system to accept or reject the requests. Distributed Web

systems have a visible IP architecture where the IP addresses of the servers are vis-

ible to clients. Routing of requests can be done at the DNS or Web server level in

distributed Web systems.

2.1.1 Cluster-Based Web Systems

Cluster-based Web system deals with a dispatcher unit for routing of packets to the

target server, as shown in Figure 2.2. Cluster-based systems are classified either

as Layer-4 or Layer-7, according to the OSI layer protocol stack. Depending on

the data flow, Layer-4 and Layer-7 are further classified as one-way and two-way

architectures. One-way architectures allow only inbound packets to flow through

the dispatcher, while the target servers communicate the outbound packets directly

to the client. In two-way architectures both inbound and outbound packets flow

through the (front-end) dispatcher. In a one-way Layer-4 architecture the routing

techniques involved are packet single rewriting, packet tunneling, and packet for-

warding [ADZ99]. In the packet single rewriting technique the dispatcher rewrites

the destination address of inbound packets. The VIPA and the earlier destination

address of inbound packets are rewritten to the target server’s IP address to process

the requests. The outbound packets are delivered directly to the client. IP tunneling

involves encapsulation of IP datagrams within IP datagrams. The inbound packet is

encapsulated with an IP datagram, which holds the VIPA and the target server’s IP

CHAPTER 2. TAXONOMY 27

Client

Local DNS

I n t e r n e t

Authoritative DNS

Dispatcher

Web Server Systems

Web
Servers

Figure 2.2: Cluster-Based Web System Architecture

address as its source and destination addresses, respectively. Once inbound pack-

ets reach the target server the encapsulated datagram is stripped for processing re-

quests. In packet forwarding the same VIPA is shared by all Web servers and the

dispatcher. The unique private addressing of each server in the Web server system

is done at the MAC layer. A dispatcher directs inbound packets to a target server

whose MAC address is used for destination reference.

CHAPTER 2. TAXONOMY 28

In packet double rewriting of two-way architecture the dispatcher rewrites the

destination address field of inbound packets by changing the VIPA to the unique

IP address of the target server. The source address of outbound packets is also

rewritten by changing it from the IP address of the target server to the VIPA.

In the Layer-7 category a dispatcher establishes a TCP connection and the HTTP

requests are confirmed before any decisions are made. In the one-way architecture

of Layer-7 TCP hand-off and TCP connection hop mechanisms are involved. In the

TCP hand-off mechanism the dispatcher hands off the TCP connection to a target

server once the connection is established. Persistent connection is achieved with the

help of multiple hand-off and back-end forwarding mechanisms. In the multiple

hand-off method a hand-off protocol is used to migrate the connections between

Web servers [PAB+98, HKM98]. The back-end forwarding mechanism deals with

forwarding requests from a server to other servers in Web server system when they

could not serve a particular request. In the TCP connection hop method the packets

are hopped to the target server after the connection is established. The packets are

encapsulated with the help of a TCP-based encapsulation protocol when using TCP

connection hop. Responses are delivered directly to clients as these techniques fall

under one-way architecture.

A two-way architecture in Layer-7 deals with TCP gateway and TCP splicing

[MB98] for routing decisions. In a TCP gateway mechanism a proxy is responsi-

ble for client-server communication, which runs in the dispatcher at the application

level. An open persistent TCP connection is maintained by the proxy for distribu-

tion of the requests to a target server. The TCP splicing method forwards packets at

the network level between the network interface card and the TCP/IP stack. Once

the client to switch connection and TCP persistent connection between the switch

CHAPTER 2. TAXONOMY 29

and servers are established both connections are spliced together for communica-

tion. IP packets are forwarded at the TCP layer on the dispatcher without passing

up to the application layer on the Web switch.

2.1.2 Virtual Web Clusters

In virtual Web cluster architecture request routing is content-blind. This server ar-

chitecture, as represented in Figure 2.3, avoids the single point of failure because it

has no dispatcher to direct the client requests to a target server. All servers in the

Web server system have a filtering mechanism, which computes a hash function on

the respective client’s IP address or the port number. Based on the match between

the hash value and server’s own value the packet is accepted or discarded. As VIPA

is shared by all the servers in the Web server system the request routing is done

at the MAC layer. Unicast MAC address and multicast MAC address are the two

approaches used in the servers of virtual Web clusters for routing [Mic00]. In a

unicast approach the original MAC address of the network adapter (called the clus-

ter adapter) is reassigned as the cluster MAC address. This common cluster MAC

address is assigned to all the servers in the virtual Web cluster. For intra-network

communication a second adapter is used in each server. The second adapter’s MAC

address is mapped as the server dedicated IP address to communicate between the

servers in the Web server system.

In a multicast method all the servers have a virtual common MAC address,

which are their references to the virtual Web cluster. All the servers in the clus-

ter hold their unique built-in MAC address for intra-network communication. The

servers in the multicast approach works with one network adapter for both client to

CHAPTER 2. TAXONOMY 30

Client

Local DNS

I n t e r n e t

Authoritative DNS

Web Server Systems

Web
Servers

Figure 2.3: Virtual Web Cluster Architecture

server and within server traffic.

2.1.3 Distributed Web Systems

Authorized DNS server are included in the distributed Web system architecture as

shown in Figure 2.4. The routing mechanisms for distributed Web systems consist

of DNS-based routing and Web server routing. In DNS-based mechanisms routing

CHAPTER 2. TAXONOMY 31

is done during the look-up phase at the beginning of the Web transaction. A-DNS

(Authoritative DNS) systems are responsible for mapping the name of a Web site

to the IP address of the respective Web servers. The A-DNS systems respond to

every address request with a tuple, which consists of an IP address of one of the

servers in the distributed Web system and a Time-To-Live (TTL) value determining

the validity period of the host-name address mapping. Web server routing can be

implemented by one of the three methods: (i) Triangulation, (ii) HTTP redirection,

and (iii) URL rewriting [AB00, Aka99]. The triangulation technique is done at the

TCP/IP level while HTTP redirection and URL rewriting mechanisms work at the

application level. Triangulation involves a packet-tunneling method for distribution

of requests and is also called Distributed Packet Rewriting (DPR) [AB00]. In the

DPR approach each Web server keeps track of information about the other servers

in the Web server system. Periodic updating of load information is maintained.

All servers in the Web server system participate in connection routing. Incoming

requests can address any server in the Web server system as all the individual ad-

dresses of the servers are published. A request may be redirected to a different

server based on the very first packet (SYN packet) received from the client. Each

SYN packet contains the Web server system state and relative load. In the HTTP

redirection mechanism Web server systems respond to client requests using status

codes of 301 or 302 to support URI (Uniform Resource Identifier) based redirection.

Status code 301 implies that the requested resource is assigned a new URI and has

moved permanently while status code 302 infers that a temporary URI is assigned

to the requested resource. The drawback in this mechanism is the extra round trip

latency during the redirection of resources. In the URL rewriting mechanism the

first contacted server changes the links for the embedded objects dynamically to the

CHAPTER 2. TAXONOMY 32

Client

Local DNS

I n t e r n e t

Authoritative DNS

Web Server Systems

Web
Servers

Figure 2.4: Distributed Web System Architecture

target server during the redirection.

2.2 Dispatching Algorithms

Dispatching algorithms are responsible for selecting the best-suited server to re-

spond to client requests [CCCY02]. They are static, dynamic, or adaptive. In

CHAPTER 2. TAXONOMY 33

static algorithms the scheduling decisions are made without considering any dy-

namic state information, and hence they are fast. Most commercial products prefer

these simple algorithms for doing server selection. Random and Round Robin (RR)

are examples of static algorithms [CYD98]. In dynamic algorithms server selec-

tion is based on the run-time system state information. Dynamic algorithms may

be further classified as client-state-aware policies, server-state-aware policies, and

combined client-server-state-aware policies. In client-state-aware policies request

routing is done on the basis of some client information (such as client IP address

or TCP port). A server-state-aware policy is based on past or current server load

conditions, the latency time to service requests, and server availability. In com-

bined client-server-state-aware policies, a dispatcher selects the target server using

both client and server state information. In adaptive algorithms the heterogeneity of

Web servers and changes in the Web server system are considered and dispatching

is adapted accordingly [CCY99].

The dispatching algorithms are broadly classified into content-blind and content-

aware dispatching [CCCY02]. Dispatching algorithms that do not consider message

content in performing target server selection and which work at the TCP/IP layer

are termed content-blind. In content-blind dispatching the routing decisions are

based only on IP header information and port numbers, and they do not consider

the actual content information in the packets. In content-aware dispatching policies

the process of selecting the target server may also consider detailed information

about the content of client requests. Content-aware dispatching policies work at the

application layer [Cis00, F5N00, LVS98, Fou02, HKM98]. Figure 2.5 shows the

taxonomy of dispatching algorithms [CCCY02].

C
H

A
PT

E
R

2.
TA

X
O

N
O

M
Y

34

Dispatching Algorithms

Content Blind Content Aware

Static Dynamic Dynamic

Round
Robin Random Client

Aware
Server
Aware

Client and
Server
Aware

Client
Aware

Client and
Server
Aware

Client
Partition

Least
Loaded

Dynamic
Weighted

Round
Robin

Client
Affinity

Static
Weighted

Round
Robin

Service
Paritioning

Cache
Affinity

Spl.
Servers

Load
Sharing

Client
Affinity

Cache
Affinity

Load
Sharing

URL
hashing SITA-E CAP Session

Identifier LARD

Figure
2.5:Taxonom

y
ofD

ispatching
A

lgorithm
s

CHAPTER 2. TAXONOMY 35

2.2.1 Content-Blind Dispatching Policies

Random and RR are two examples of static algorithms that use content-blind dis-

patching. In Random algorithm any server in the Web server system can be picked

for request processing. RR algorithms select servers in a cyclic manner. As static

algorithms do not consider the current state information, they have the disadvan-

tage of possibly selecting faulty servers. A modified version of RR algorithm is

the Static Weighted Round Robin (SWRR) algorithm in which servers are assigned

an integer weight indicating their capacity. In client-state-aware dynamic policies

the dispatcher uses the client’s source IP address and TCP port number for server

selection. Servers are statically partitioned and the same clients are assigned to the

same servers based on a hash function, which is applied to the client’s IP address.

Server-state-aware policies use a load index of Web servers to decide on the

target server’s address. Server-state-aware policies often use Least Loaded and

Dynamic Weighted Round Robin (DWRR) algorithms as their routing approach. Al-

gorithms like Least Connections (LC) and Fastest Response Time (FRT) fit into the

least loaded approach. In LC new requests are assigned to the servers with the

fewest active connections, while in FRT Web servers with smallest latency time in

the last observation interval are assigned a new connection, as they respond faster.

In DWRR algorithm each server is assigned a dynamic weight, which is propor-

tional to the server load state. The dispatcher gathers load information periodically

from the Web servers and the dynamic weights are computed. A Client Affinity

algorithm has also been proposed for client-server-state-aware policy, which is re-

sponsible for the assignment of the same client to the same server.

CHAPTER 2. TAXONOMY 36

2.2.2 Content-Aware Dispatching Policies

Content-Aware dispatching use client-state-aware and client-server-state-aware poli-

cies, and they work at the application level. Cache Affinity, Specialized Servers,

Load Sharing, and Client Affinity algorithms fall under client-state-aware policies.

Cache Affinity algorithms partition the file space among servers using a hash func-

tion applied to each URL. Some Web sites provide heterogeneous services and their

Web servers can be partitioned according to the services they handle. These special-

ized servers are employed to manage certain types of requests like dynamic content,

multimedia files, and streaming video. This content-aware dispatching algorithm is

referred as Service Partitioning that comes under the specialized server category.

Size Interval Task Assignment with Equal load (SITA-E) and Client-Aware-

Policy (CAP) support load sharing. SITA-E algorithm deals with assigning tasks

of certain size range to individual servers. The advantages of using the SITA-E is

that it limits the range of task sizes assigned to each server and reduces the waiting

time of the tasks. A popular content-aware algorithm is the Locality-Aware Re-

quest Distribution (LARD), which considers both client and server information for

its server selection. In LARD the incoming requests are directed to the same servers

from the same clients until a given load threshold is reached. When the threshold

is exceeded requests are redirected to the least loaded server or the server with the

fewest connections.

CHAPTER 2. TAXONOMY 37

2.3 Extended Taxonomy of Dispatching Algorithms

Merging Domain Name Server (DNS) scheduling in the content-blind and content-

aware classification could extend the earlier dispatching algorithms taxonomy. Dis-

tributed Web server systems use DNS scheduling algorithms for request routing.

They are content-blind and are associated with the content-blind category. Incorpo-

rating the server-state-content-aware policy to the earlier taxonomy further extends

the content-aware classification. A good example for this extended server-state-

content-aware policy is the Harvard Array of Cluster Computers (HACC) prototype

[ZBCS99], which uses the Least Loaded algorithm for distributing client requests.

This thesis extends the taxonomy of dispatching algorithms and the new categories

are represented as round objects as shown in Figure 2.6.

In this combined taxonomy the client-state-aware component is extended with

DNS scheduling algorithms like Proximity and Multi-Tier Round Robin (MTRR).

Proximity algorithms focus on network proximity information such as round trip

delays for the selection of servers. MTRR algorithms use client information hidden

load weight, which is the average data request rate from a domain to Web site dur-

ing each measurement period. For different ranges of hidden load weight various

RR chains are used in MTRR. Other extensions found in the updated dispatching

taxonomy is the inclusion of Least Residual Load and Adaptive TTL algorithms in

the client-server-state-aware policy. Least Residual algorithm selects the respective

Web server based on both domain and server information [CYD98]. The hidden

load weight along with Web server systems of minimum number of residual re-

quests are considered for request processing in the least residual policy. The adap-

tive TTL algorithm involves the dynamic reduction of the TTL value. In adaptive

CHAPTER 2. TAXONOMY 38

TTL the choice of the Web server depends on the hidden load weight algorithms

and an appropriate TTL period value assigned by the DNS servers. Adaptive TTL

does not take any proximity into consideration.

C
H

A
PT

E
R

2.
TA

X
O

N
O

M
Y

39

Content Blind

Dynamic Static

Server
Aware

Client
and

Server
Aware

Round
Robin

Client
Aware

Static
Weighted

Round
Robin

Random

Content Aware

Dynamic

Client
Aware

Cache
Affinity

Special
Servers

Load
Sharing

Client
Affinity

Cache
Affinity

Load
Sharing

Client
and

Server
Aware

Least
Loaded

Extended Dispatching Algorithms

Server
Aware

Adaptive
TTL

Multi Tier
RRProximity

Load

Least
Residual

Dynamic
Weighted

Round
Robin

Loaded
LeastClient

Partitioning Affinity
Client

URL
Hashing

Service
Partitioning

SITA−E CAP Session
Identifier

LARD

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �
��

��
�

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �
��

��
�

��
��

�
	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	

� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �

� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �

� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �
� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �
� �� �� �� �� �� �� �� �� �� �� �� �� �� �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �
� � � �� � � �� � � �� � � �� � � �� � � �
� � � �� � � �� � � �� � � �� � � �� � � �
� � �� � �� � �� � �� � �� � �
� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

��
��

��

! ! ! ! ! ! ! !! ! ! ! ! ! ! !! ! ! ! ! ! ! !! ! ! ! ! ! ! !! ! ! ! ! ! ! !
" " " " "" " " " "" " " " "" " " " "" " " " "" " " " "" " " " "" " " " "" " " " "" " " " "" " " " "" " " " "" " " " "" " " " "" " " " "" " " " "

#

$ $ $ $ $$ $ $ $ $$ $ $ $ $$ $ $ $ $$ $ $ $ $$ $ $ $ $$ $ $ $ $

% % % % %% % % % %% % % % %% % % % %% % % % %% % % % %

Figure
2.6:E

xtended
Taxonom

y
ofD

ispatching
A

lgorithm
s

Chapter 3

Products and Prototypes

In recent years many companies and organizations have concentrated on building

commercial products, developing research prototypes, and expanding their knowl-

edge in Web server systems. Both educational institutions and industries have

come up with innovative and advanced solutions in this field. A classification of

these products and prototypes gives a better understanding of these entities that

are launched in the market. In order to have a clearer picture of the Web server

systems categorization, a taxonomy with classifications of server architectures, dis-

patching algorithms, products, and prototypes is very much necessary and helpful.

This motivated the development of a unified product-based taxonomy in this thesis.

This chapter gives an overview of the commercial products and research prototypes

found in the market along with the unified product-based taxonomy.

Commercial products select simple dispatching algorithms for their routing as

they are cost effective and easy to implement. Research prototypes tend to explore

new areas and provide ingenious solutions.

40

CHAPTER 3. PRODUCTS AND PROTOTYPES 41

3.1 Related Work

The need for efficient load balancing techniques in Web server systems rises due to

an increase in the number of Internet applications. With the help of load balancing

technology available servers in the Web server system are utilized to their maximum

potential. The dispatcher, which is responsible for distributing the load among Web

servers, receives all client requests and selects the best server for the job. The load

balancing techniques used in these commercial products and research prototypes are

built in such a way that they suit different Web server architectures and dispatching

algorithms based on client requirements.

Commercial products and prototypes are implemented on specialized hardware

or in software. Request routing techniques are implemented on hardware in some

of the products like Foundry Networks’ ServerIron [Fou02], Cisco’s LocalDirector

(LD) [Cis00], and Cisco’s DistributedDirector (DD) [Cis02]. In the Linux Virtual

Server (LVS) [LVS98], the Resonate’s Central Dispatch (CD) [Res00], Microsoft’s

Network Load Balancing (NLB) [Mic00], Akamai [Aka99], IBM’s Network Dis-

patcher (ND) [IBM01] and Zeus’s Load Balancer (LB) [Zeu02], the routing tech-

niques are implemented in software. Certain products like F5 Network’s BIG-IP

[F5N00] and Nortel Networks’ Alteon Web Switch (AWS) family [Nor00] use both

hardware and software in their implementation for forwarding their requests to Web

servers. Non-commercial software solutions are identified as research prototypes.

Magicrouter [APE96], Harvard Array of Cluster Computers (HACC) [ZBCS99],

ClubWeb [CC01], and ScalaServer [PAB+98] prototypes use software for imple-

menting their routing decisions. Some of the other prototypes are TCP Router

[DKMT96], ONE-IP [DCH+97], National Center for Supercomputing Applications

CHAPTER 3. PRODUCTS AND PROTOTYPES 42

(NCSA) [KBM94], Scalable Web Server (SWEB) [AYHI96], Distributed Packet

Rewriting (DPR) [AB00], and Internet2 Distributed Storage Infrastructure project

(I2-DSI) [BM98].

3.1.1 Hardware Solutions

ServerIron supports high performance Layer-2 through Layer-7 switching. Server-

Iron accommodates Internet traffic management applications like Reliable Server

Load Balancing (RSLB), Global Server Load Balancing (GSLB), FireWall Load

Balancing (FWLB), and Transparent Cache Switching (TCS). The key benefits of

this product are server and application availability, maximum scalability, and simple

configuration.

Cisco’s LD is a hardware solution that load balances TCP/IP traffic across mul-

tiple servers and is highly scalable. LD connected with Catalyst 6000 family switch

supports Accelerated Server Load Balancing (ASLB) that allows it to accelerate

TCP sessions and to provide high availability. LD security features filter incoming

traffic and allow only essential requests to pass through real and virtual servers, thus

protecting the Web server system.

DD provides efficient distributed Internet services globally. DD are very suited

for load balancing geographically dispersed servers. With the help of a routing

table, intelligence in the network infrastructure, and Distributed Response Protocol

(DRP), DD forwards the client requests to the closest proximity available server

increasing the server access performance.

CHAPTER 3. PRODUCTS AND PROTOTYPES 43

3.1.2 Software Solutions

LVS is a software tool that runs on the Linux operating system. It supports network

services with high scalability and availability. Load balancing is done at the IP level

(Layer 4) in LVS. The three load balancing techniques used in LVS are virtual server

via Network Address Translation (NAT), via IP tunneling, and via direct routing.

In CD the traffic management software ensures optimal performance for e-

business applications and online services. CD includes useful load balancing API

that provides effective traffic management solutions. CD also accommodates en-

hanced denial of service protection and end-to-end transaction time measurement.

Microsoft’s NLB uses a clustering software technology that supports a virtual

Web cluster architecture. Some of the key features of NLB are secure network

communications, routing and remote access services, Virtual Private Networking

(VPN), and dynamic DNS services. Due to virtual Web clustering in NLB, a high

availability, scalability and easier manageability of Web servers is achieved.

Akamai provides e-business infrastructure services and assures faster and easier

implementation. Akamai servers are distributed worldwide and proximity between

servers and clients are reduced to a larger extent, which provides efficient services

to their customers.

IBM’s ND is capable of supporting large-scale high-load Web sites. Its TCP

connection router provides a fast IP packet forwarding kernel extension to the

TCP/IP stack. This software product began as a research prototype supporting scal-

able Internet services [HKM98]. The highlights and the usefulness of this prototype

were recognized and the prototype was produced as an IBM product.

LB is a pure software application that provides excellent solutions for Web

CHAPTER 3. PRODUCTS AND PROTOTYPES 44

server management, traffic management, and e-commerce applications. LB works

on Layer-7, which the application layer for routing the requests to respective servers.

LB application runs on the front-end machines in order to route the incoming re-

quests to the back-end server machines. A Zeus Admin server, which can be in-

stalled in the front-end, back-end or on separate dedicated machines, monitors the

performance of Web servers and manages LB.

3.1.3 Both Hardware and Software Solutions

BIG-IP product deals with intelligent load balancing and excellent fail over de-

tection mechanisms. Its exceptional traffic control mechanisms assure Quality of

Services to end users. Health monitors in BIG-IP helps in real time performance

monitoring and to test the availability of servers and applications in the Web server

system. BIG-IP uses a specialized hardware switch combined with some control

functions implemented in software for request routing.

AWS product family consists of Alteon ACEdirector series, Alteon 180 series,

and the Alteon Web Switching Module for the Passport 8600. The main advantages

of AWS are intelligent traffic management, multi-application support, network scal-

ability, high performance security, rapid deployment, and fail-safe network assur-

ance. Alteon Web OS [Nor02] software implemented on AWS provides advanced

filtering, application redirection, effective server load balancing, and security ser-

vices.

CHAPTER 3. PRODUCTS AND PROTOTYPES 45

3.1.4 Prototypes

In Magicrouter a software prototype developed at University of California, Berkeley

implements fast packet interposing to intercept packets to different destinations.

Fast packet interposing allows a user level process to modify the packet’s data when

flowing through device drivers to redirect to a different route.

HACC concentrates on locality enhancement and dynamic load balancing. A

Smart router found in HACC consists of two layers: (i) High Smart Router (HSR)

and (ii) Low Smart Router (LSR). Dynamic load balancing is implemented with the

help of the Performance Data Helper (PDH) interface. PDH acts as a monitoring

agent that gathers the machine’s performance statistics.

The ClubWeb prototype uses Client-Aware policy (CAP) as its dispatching pol-

icy. It classifies user requests based on the impact on server resources like CPU,

network interface, and disk. In this prototype the Web cluster architecture con-

sists of a dispatcher for distributing the client requests and a LAN connection that

connects the back-end servers and Web servers with the dispatcher.

ScalaServer focuses on the resource management in cluster-based Web systems.

ScalaServer, developed at the Rice University and uses a content-based request dis-

tribution technique. A persistent connection is established with the client and re-

spective Web server by the dispatcher allowing multiple requests to the same server,

which in turn reduces client latency and server overhead.

The TCP Router uses a combination of TCP routing and DNS techniques for

load balancing the requests. TCP router provides an effective server failure detec-

tion mechanism to enhance high availability of Web servers for processing requests

at higher rates.

CHAPTER 3. PRODUCTS AND PROTOTYPES 46

ONE-IP dispatches packets at the IP level. The two techniques used in ONE-IP

for forwarding requests to appropriate servers are routing-based dispatching, where

a central dispatcher is involved, and broadcast-based dispatching, which uses a

broadcast mechanism and local filtering.

In NCSA a RoundRobin DNS dispatching mechanism is used for request distri-

bution. It allows dynamic scalability and helps in increasing the number of servers

and the load capacity of the virtual server. A distributed File System mechanism

employed in NCSA manages the synchronized set of documents found in the Web

server system.

SWEB is implemented on distributed memory machines and is well suited for

client requests that demand large digitalized documents. SWEB monitors and uti-

lizes multiple system resources that effectively supports high scalability and server

availability.

DPR is a DNS prototype approach that distributes requests without using cen-

tralized resources. With the help of periodic multicast, each server in the Web server

system maintains the load information of the other servers. This helps the servers in

the Web server system to redistribute the client requests to any available respective

servers for processing.

I2-DSI concentrates on the engineering characteristics of available services.

The three main components found in I2-DSI are: replicated server systems, trans-

fer file, and intelligent redirection mechanisms. With the I2-DSI architecture, the

desired proximity between the client and servers is well achieved, even though the

servers are located at any point in the network.

CHAPTER 3. PRODUCTS AND PROTOTYPES 47

3.2 Unified Product-Based Taxonomy

This section discusses the unified product-based taxonomy in detail. The unified

product-based taxonomy is build based on Web server architectures and dispatch-

ing algorithms of the products and prototypes. The Content-Blind Layer-4, and

Content-Aware Layer-7 classification fall under the cluster-based Web server ar-

chitecture. Figures 3.1 and 3.3 summarize the unified product-based taxonomy

of Content-Blind Layer-4, virtual Web cluster, and distributed Web system archi-

tectures that uses content-blind algorithms for distributing client requests. Figure

3.5 illustrates the Content-Aware Layer-7 category of products and prototypes in

unified product-based taxonomy. Figures 3.2, 3.4, and 3.6 represent the unified

product-based taxonomy in a tabular format.

With the help of this unified product-based taxonomy the various products and

prototypes found in the market are identified distinctly with respect to their server

architectures and dispatching algorithms. It gives a comprehensive outlook of pre-

vailing products and prototypes helping the research community in designing new

products and prototypes with different combinations of architectures and dispatch-

ing algorithms.

3.2.1 Content-Blind Layer-4 Products and Prototypes

Cisco’s LD, Magicrouter, BIG-IP, TCP Router, LVS, IBM’s ND, and ONE-IP are

some of the products and prototypes that support cluster-based content-blind Layer-

4 server architecture. All the products and prototypes in this content-blind category

work at the TCP/IP level and are implemented on specialized hardware or soft-

ware. Some of the hardware-implemented Layer-4 products are LD and ServerIron.

CHAPTER 3. PRODUCTS AND PROTOTYPES 48

Products like LVS and ND, and prototypes Magicrouter, TCP Router and BIG-IP

are software implementations that uses content-blind information for routing the

requests. The content-blind Layer-4 architectures are further classified as one-way

and two-way based on their request flow. Some products like LVS and BIG-IP

handle more than one server architecture for request routing.

One-Way Architecture

ND, ONE-IP, LVS, and BIG-IP support the packet forwarding one-way architec-

ture of the Layer-4 category. ND uses the Dynamic Weighted RR algorithm for

dispatching. In this algorithm every server calculates a weighted value dynamically

based on its server load. The incoming requests are distributed to servers according

to this dynamic value of servers. The fault tolerance mechanism in ND consists

of the cache consistency protocol that runs along with the primary dispatcher and

acts as a backup mechanism if heartbeat messages from the primary dispatcher stop

[SGR00]. ND is also effective for TCP gateway two-way Layer-7 architecture.

ONE-IP supports routing-based and broadcast-based dispatching algorithms for

distributing the requests to servers. In the routing-based dispatching policy a dis-

patcher is responsible in the selection of servers based on a hash function, while in

the broadcast-based policy the Web server systems handle distribution of incoming

requests directly by local filtering techniques. A hash table is maintained to monitor

the updates of server information. These products use a Client Partition dispatching

policy for their server selection.

LVS can be configured to support one-way architectures like packet tunneling

and packet forwarding along with a packet double rewriting two-way architecture.

C
H

A
PT

E
R

3.
PR

O
D

U
C

T
S

A
N

D
PR

O
TO

T
Y

PE
S

49

Unicast

Multicast

Layer−4
(Cluster
Based
Web

Systems)

Virtual
Web

Clusters

One−way
Architecture

Two−way
Architecture

Packet
Double

Rewriting

Packet
Single

Rewriting

Packet
Tunneling

Forwarding
Packet

Network
Load Balancing

ONE−IP

Network
Dispatcher

Server (LVS)
Linux Virtual

TCP Router

BIG−IP

LocalDirector

Magic Router

Round Robin

Random

Static
Weighted RR

Client Partition

Proximity

Multi−tier RR

Least Loaded

Dynamic
Weighted RR

Client Affinity

Least
Residual Load

Adaptive TTL

Client
and

Server
Aware

Server
Aware

Client
Aware

Dynamic

Content
Blind

Static

Figure
3.1:C

ontent-B
lind

C
lassification

I

C
H

A
PT

E
R

3.
PR

O
D

U
C

T
S

A
N

D
PR

O
TO

T
Y

PE
S

50

M
a
g
ic R

o
u
te

r
L
o
ca

lD
ire

cto
r

B
IG

-IP
T

C
P

 R
o
u
te

r
L
in

u
x V

irtu
a
l

S
e
rve

r (L
V

S
)

N
e
tw

o
rk

D
isp

a
tch

e
r

O
N

E
-IP

N
e
tw

o
rk L

o
a
d

B
a
la

n
cin

g

Two Way

X
X

X

X

X

X
X

X
X

XX

X
X

X
X

X
X

X
X

X
X

X

Clent and Server Aware

P
ro

d
u

c
ts

 a
n

d
 P

ro
to

ty
p

e
s

One Way

Packet

Single

Writing

Packet

Tunneling

 Packet

Forwarding

 Packet

Double

Rewriting

Server Architectures

Layer-4 (Cluster Based Web Systems)
Virtual Web

Clusters

UnicastMulticast

X
X

X

Static

X

Proximity

Round Robin

(RR)
Random

Static

Weighted

RR

Client Aware

Dispatching Algorithms

Dynamic

Server Aware

Least

Loaded

Dynamic

Weighted

RR

Multi-tier

RR
Client Affinity

Least Residual

Load

Adaptive

TTL

Client

Partition

Figure
3.2:C

ontent-B
lind

C
lassification

I

CHAPTER 3. PRODUCTS AND PROTOTYPES 51

This is a special product that favors both one-way and two-way architectures. The

dispatching policies such as Static Weighted RR, Least Loaded, and Client Affinity

can be used for the request distribution. The LVS consists of a virtual server built

on a Web server system of real servers. Only the virtual server is visible to the client

and the real servers are hidden to users. Suitable dispatching policies are selected

based on their respective configuration.

In the TCP Router prototype a packet single rewriting architecture is employed.

TCP Router concentrates on high scalability and availability. It keeps a constant

check on the faulty servers so that they can be removed from the Web server system

immediately.

Two-Way Architecture

LD, Magicrouter, and BIG-IP encourage the content-blind two-way architecture.

LD supports RR, Weighted RR (WRR), Least Connections (LC), and Fastest Re-

sponse Time (FRT) dispatching algorithms for its request distribution. They come

under content-blind, server-aware, and least-loaded categories in the taxonomy of

dispatching algorithms. LD has a hot-standby fail over mechanism, which is a

backup dispatcher unit that works in case of a failure of the primary dispatcher

[SGR00]. Failed servers in the Web server system are detected when they do not

respond to the incoming request and are put in a testing phase. Once failed servers

regain their power to handle active connections, they are updated in the active list of

LD. LD uses reassigned and threshold commands to detect server failures. Security

features of LD include SecureAccess, SecureBind, SecureBridging, and SecureIP.

The Assign, secure and static commands of the LD product help in restricting access

to servers and thus, avoid unwanted traffic [Cis00].

CHAPTER 3. PRODUCTS AND PROTOTYPES 52

Magicrouter uses RR and Random dispatching policies for server selection. In

addition to these policies, Magicrouter also supports an Incremental Load Policy

that selects a server based on the current load of the server and the number of active

connections. They have primary or secondary backup mechanisms for recovery of

faulty dispatchers. Servers are checked with ARP queries periodically and unpro-

ductive servers are detected [SGR00].

BIG-IP supports both packet double rewriting of two-way and packet forward-

ing of one-way architectures. The requests are routed by RR and Least-Loaded

dispatching algorithms. These BIG-IP products are also capable of assisting Layer-

7 server architectures.

3.2.2 Content-Aware Layer-7 Products and Prototypes

Layer-7 products (Figures 3.3 and 3.4) work at the application level and can be

grouped based on their architectures. ScalaServer and ClubWeb handle TCP hand

offs and CD deals with TCP connection one-way architectures. The two-way ar-

chitectures involve TCP gateway and TCP splicing policies for server selection.

HACC, ClubWeb, and ND use a TCP gateway policy. Request routing in these

prototypes are implemented in software. Alteon Web OS, BIG-IP, ServerIron and

LB use a TCP splicing method. In this section we investigate the products and

prototypes that are content-aware.

One-Way Architecture

The prototypes that use the TCP hand off mechanisms are ScalaServer and Club-

Web while the Central Dispatch uses the TCP connection hop technique. ScalaServer

C
H

A
PT

E
R

3.
PR

O
D

U
C

T
S

A
N

D
PR

O
TO

T
Y

PE
S

53

Two−way
Architecture

One−way
Architecture

Layer
7

TCP Connection
Hop

TCP Handoff

TCP Gateway

TCP Slicing

Central Dispatch

Scala Server

Club Web

HACC

Load Balancer

BIG−IP

URL Hashing

Service
Partitioning

SITA−E

CAP

Session
Identifier

LARD

Cache
Affinity

Special
Servers

Load
Sharing

Client
Affinity

Least Loaded

Load
Sharing

Cache
Affinity

Client
and

Server
Aware

Server
Aware

Client
Aware

Dynamic Content
Aware

Alteon Web OS

ServerIron

Figure
3.3:C

ontent-A
w

are
C

lassification
I

C
H

A
PT

E
R

3.
PR

O
D

U
C

T
S

A
N

D
PR

O
TO

T
Y

PE
S

54

C
entral

D
ispatch

Scala Server
C

lub W
eb

H
AC

C
Alteon W

eb O
S

ServerIron
Load Balancer

BIG
-IP

TCP
Connection Hop

X

TCP Handoff

X
X

TCP Gateway

X

TCP Slicing

X
X

X
X

Cache AffinityLocal Sharing

Server Aware

X

Client Affinity

Seesion IdentifierCAP

X

SITA-E

Special Servers

Service
Partitioning

X
X

X

Cache Affinity

URL Hashing

X
X

Products and Prototypes

Server ArchitecturesDispatching Algorithms

Cluster Based Systems

Load Sharing

Client Aware

Dynamic

Content Aware

X

Client/Server Aware Layer 7

Two WayOne Way
Least Loaded

X

LARD

Figure
3.4:C

ontent-A
w

are
C

lassification
I

CHAPTER 3. PRODUCTS AND PROTOTYPES 55

uses the LARD policy for selecting the servers from the Web server system. The

FreeBSD operating system is modified to support a TCP Hand off protocol. Club-

Web prototype uses a modified Linux kernel to support this protocol. The ClubWeb

uses the CAP technique for dispatching and the stress on the components is shared

among Web servers.

The CD distributes HTTP requests to target servers based on client and server

information. To support the TCP connection hop mechanism, the installation of a

kernel module on both the dispatcher and the servers are required. The dispatcher

is responsible to parse the URL for its requested content and then a target server

is assigned based on the services offered by Web servers. A service partitioning

algorithm can be employed for request handling.

Two-Way Architecture

HACC distributes requests based on the locality of reference found in individual

Web servers. Client desired data is divided into smaller parts and spread within the

servers in the Web server system. A Smart Router with LSR and HSR distributes

incoming requests to the target server. The incoming requests are queued in LSR.

When a HTTP request is passed to LSR, the URL is extracted and copied to HSR

of the Smart router. HSR identifies the target server that can handle the request and

responds to LSR with required information. LSR now establishes a connection and

forwards the queued data over this connection. After the first request, subsequent

requests are assigned to the same server for better locality of reference. For dynamic

load balancing a performance monitoring thread is generated to collect periodic

performance data from each server. This thread gathers each server’s load statistics

such as CPU utilization, disk activity, paging activity, and queuing requests.

CHAPTER 3. PRODUCTS AND PROTOTYPES 56

In ClubWeb the dispatcher uses the Client Aware Policy (CAP) for its selec-

tion of the target server. The incoming requests can stress different Web System

resources like CPU, disk, or network. A dispatcher is responsible for estimating the

impact produced by the requests on Web System resources. CAP avoids overload

on each component by sharing the stress between Web servers.

Alteon Web OS is a software application that runs on the AWS family for re-

quest distribution and connection management. Service partitioning of the content-

aware policy is used to select Web servers. Web servers that are responsible in pro-

cessing client requests are partitioned based on the services they can handle. The

requests are directed to specific servers where its respective service type is offered.

BIG-IP supports both service partitioning and URL hashing dispatching algo-

rithms. In the URL hashing algorithm a hash function is applied to the URL and

static partitioning of the files are performed. The dispatcher for request distribu-

tion uses the same hash function. BIG-IP manages partial hardware and software

implementations in their front-end device.

Dispatching algorithms like RR, Least Connection, and URL hashing are as-

sisted by ServerIron for server load balancing and request distribution. With the

help of URL hashing, ServerIron investigates HTTP request information that inter-

nally guides it one of the respective Web server. Future requests that contain similar

information are forwarded to the same server.

LB employs the LARD policy for dispatching its requests to the servers. In

LARD the same servers that handle a particular type of requests are assigned re-

peatedly until a threshold is reached. If the servers reach a threshold value, then the

dispatcher is responsible for distributing the load to least loaded servers.

CHAPTER 3. PRODUCTS AND PROTOTYPES 57

3.2.3 Virtual Web Clusters

Network Load Balancing (NLB) product support the virtual Web cluster architec-

ture and the content-blind approach is used for request routing. The target server is

identified based on the client IP address and port. As NLB is a virtual Web clus-

ter product, each server has a filtering mechanism to accept or reject the request.

This filtering technique involves computation of a hash function on the client IP

address or port number. The client partition policy is used for target server selec-

tion. NLB favors both unicast MAC address and multicast MAC address modes

of virtual Web cluster architecture. This product analysis taxonomy of virtual Web

clusters is shown in Figures 3.1 and 3.2.

3.2.4 Distributed Web Systems

The Web server systems in the distributed Web systems can be located globally or

locally in a network. NCSA, SWEB, and Akamai are some of the products that

support local distributed Web systems. DD and I2-DSI use global distributed Web

system architecture for routing decisions as given in Figures 3.5 and 3.6.

In NCSA server and SWEB the DNS-RR algorithm is used for server selection.

The drawback of DNS-RR is its ignorance of the server capacity and availability.

DD can act as a primary DNS and can also be configured for the HTTP redirec-

tion approach. The Director Response Protocol is a simple User Datagram Proto-

col (UDP) based application that delivers the proximity information between Web

servers and clients to DD. The dispatching algorithms used in DD are multi-tier

RR and Least Residual Load. In the I2-DSI project a smart DNS uses a proximity

algorithm for name-to-address resolution.

C
H

A
PT

E
R

3.
PR

O
D

U
C

T
S

A
N

D
PR

O
TO

T
Y

PE
S

58

URL
Rewriting

Redirection
HTTP

Triangulation

Web Servers

Web Servers

DNS Servers

DNS Servers

Globally
Distributed

Web
Systems

Locally
Distributed

Web
Systems

Distributed
Director

I2−DSI

DPR Proposed

SWEB

NCSA

Akamai

Multi−tier RR

Proximity

Client Partition

Least Loaded

Static
Weighted RR

Random

Round Robin

Dynamic
Weighted RR

Client Affinity

Least
Residual Load

Adaptive TTL

Client
and

Server
Aware

Server
Aware

Client
Aware

Dynamic

Static

Content
Blind

Figure
3.5:C

ontent-B
lind

C
lassification

II

C
H

A
PT

E
R

3.
PR

O
D

U
C

T
S

A
N

D
PR

O
TO

T
Y

PE
S

59

N
C

S
A

A
kam

ai
S

W
E

B
D

P
R

 P
roposed

I2-D
S

I
D

istributed
D

irector

X
X

URL
Rewriting

X

HTTP
Redirection

X
Triangulation

X

X
XX

Client
Partition

Proximity

X
X

Multi-
tier RR

X

Least
Loaded

Dynamic
Weighted

RR

X

Client Affinity
Least Residual

Load

X

Adaptive
TTL

Dynamic

Server Architectures

Client Aware

Static

Round Robin
Rando

m
Static

Weigted RR Web
Servers

Dispatching Algorithms

Content Blind

P
roducts and P

rototypes

Server Aware

DNS
Servers

Locally Distributed Web Systems

X
X

X

Clent and Server Aware

Globally
Distributed Web

Systems

Web Servers

DNS
Servers

Figure
3.6:C

ontent-B
lind

C
lassification

II

CHAPTER 3. PRODUCTS AND PROTOTYPES 60

Akamai is configured for a DNS-based approach and URL rewriting in the

server selection process. In the Akamai infrastructure a dynamic page is gener-

ated that contains the URLs of the embedded objects found in the customer’s Web

site. The servers close to the clients are assigned the request for processing. In the

DNS-based approach, the EdgeSuite software running on Akamai servers help to

serve the proximity information to DNS [Aka99].

Chapter 4

Generic Queuing Models

Nowadays, Web researchers concentrate on serving data at a faster rate to the clients

and analyzing the performance of Web server systems. From the unified product-

based taxonomy, we get an overview of the products and prototypes in the market

along with their server architectures and dispatching algorithms. Now that the tax-

onomy is built, we need to focus on the performance analysis of Web server sys-

tems. In earlier research work, different Web performance models have been built

to meet their specific requirements [MA02].

In this thesis, we design generic queuing models that suit products with Layer-4

one-way architectures and content-blind static algorithms like Random and RoundRobin

(RR). Figure 4.1 schematically represents the product-based taxonomy with respect

to the generic queuing models. The products found in the market that satisfy the

Layer-4 one-way architecture and content-blind static algorithms are BIG-IP, and

TCP Router.

Layer-4 one-way architectures are dispatcher-based models, which deal with

61

CHAPTER 4. GENERIC QUEUING MODELS 62

Layer-4 Content-Blind

One-Way
Architecture

Packet Single
Rewriting

Packet
Tunneling

Packet
Forwarding

Static

Random

RoundRobin

P
R
O
D
U
C
T
S

Figure 4.1: Product-Based Taxonomy with respect to Generic Queuing Models

a dispatcher to distribute the client requests to the target server. The processed

requests, after being served are delivered to the client directly from the target server.

The one-way architectures like packet single rewriting, packet tunneling, and packet

forwarding are well suited architectures for the models used in this research. The

dispatching algorithms that are taken into consideration for the selection of servers

are Random and RR. The choice of Random and RR is due to the fact that most

of the commercial products prefer simple algorithms for their server selection. The

static algorithms, Random and RR are fast solutions as they do not rely on any

current state of the system. Random and RR algorithms are implemented in the

dispatcher to distribute the client requests to the target server.

The overall picture of the generic queuing models is depicted in figure 4.2. In

this thesis, the models are designed with a dispatcher unit and a server unit, which

are responsible for distributing and serving client requests, respectively.

CHAPTER 4. GENERIC QUEUING MODELS 63

Client
Requests

Dispatcher
Unit

Server
Unit

Dispatching
Algorithms

Random/
RoundRobin

Figure 4.2: Generic Queuing Models

4.1 Model Description

In the designed generic queuing models, the two categories of requests that leave

the dispatcher unit are:

• the client requests that leave the system directly from the dispatcher unit,

without service, and

• the client requests that are supplied to the server unit from the dispatcher unit,

for service.

For example, let us consider a client, who wants to browse a Web page. There are

two possibilities with respect to the response from a server to the client, namely, a

response from the server with necessary information, and no response from the

server. The “no response” possibility could be attributed to busy traffic, faulty

server, or server busy. In this research, we consider a case, where one of the servers

is shut down or faulty and the client never gets a response from this server. So, in

order to compensate this lack of response from the faulty server, generic queuing

models are designed with requests that leave the dispatcher unit, without service.

CHAPTER 4. GENERIC QUEUING MODELS 64

In this thesis, the generic queuing models are designed with and without feed-

back from the server unit to the dispatcher unit. In models without feedback, all the

requests that are assigned to the server unit leave the server unit directly after being

serviced. While in models with feedback, some of the requests from the server unit

are reprocessed by sending them back to the dispatcher unit.

In real world scenario, when a client queries information in the Internet, the

client either gets a reply immediately or after some delay. One of the reasons for

this delay is that the requests, which are not serviced for the first time, are repro-

cessed for service. In other words, the unanswered requests are fed back to the

Web server system for processing again, which causes the delay. Therefore, the

need for designing generic queuing models with feedback is mandatory in the Web

server modeling research. In this research, we deal with four models to analyze

the performance of Web server systems. The models designed are: (1) Random

Policy Model Without Feedback, (2) RoundRobin Policy Model Without Feedback,

(3) Random Policy Model With Feedback, and (4) RoundRobin Policy Model With

Feedback.

The designed models are theoretically analyzed and simulated for evaluation by

estimating their performance metrics. These models are then validated and verified

to determine the closeness of theoretical and simulated results.

These models are a network of simple queuing systems, which means that the

resources are interconnected. The outputs of the dispatcher unit are given as the

inputs to the server unit. Queuing networks are broadly classified as open, closed,

and mixed [All90, Jai91]. In open queuing networks the requests or customers

enter the system from outside the system and leave the system. The closed queuing

networks have no external arrivals or departures and the requests circulate within

CHAPTER 4. GENERIC QUEUING MODELS 65

the system. Mixed networks are partially open and partially closed networks, where

some requests enter or leave the system, and others circulate among their servers

indefinitely.

The queuing network in these models are designed in such a way that, the re-

quests entering the dispatcher is supplied to the next queue in the server unit. The

product form network analyzes the joint probability of queue lengths in m queues

by multiplying the individual probabilities. These product form solutions were ex-

tended by Jackson [Jac63] proving the computation validity of joint probability in

any arbitrary open network of m queues.

Jackson’s network accommodates models with single request class, unlimited

total number of requests, poisson arrivals, and exponential service distributions

along with load dependencies. Jackson’s network is well suited for analyzing the

models used in this research.

BCMP (Basket, Chandy, Muntaz, and Palacios) models [BGMT98] are more

generalized versions of Jackson networks allowing different classes of customers,

different service requirements, and different service distributions. There are four

different types of model categories that fulfill BCMP networks, The possible queu-

ing disciplines found in these type of BCMP models are -/M/m (FCFS), -/G/1 (PS),

-/G/infinity (IS), and -/G/1 (LCFS:PR), where

- means that arrival is no more Poisson and is unknown,
M represents Exponential service,
m is the number of servers,
FCFS is first come first served,
G signifies general distribution,
PS is processor sharing,
IS is infinite server, and
LCFS: PR symbolizes last come first served with preemptive resume.

CHAPTER 4. GENERIC QUEUING MODELS 66

The feedback models used in this research falls within the range of BCMP net-

works.

4.1.1 Generic Queuing Models Without Feedback

Dispatcher Unit

Incoming
Client

Requests

Leaves the
System from

Dispatcher Unit

Server Unit

Dispatching
Policy

Leaves the
System from
Server Unit

Figure 4.3: Design—Generic Queuing Models Without Feedback

The generic queuing models without feedback consist of two units: a dispatcher

and a server as shown in Figure 4.3. The dispatcher unit is responsible for accepting

the incoming client requests and distributing them to the server unit for processing,

based on their dispatching policies. Some of the requests that are not assigned to the

server unit leave the system directly from the dispatcher unit. The dispatcher unit

can have more than one dispatcher depending on the product specifications. The

server unit involves one or more servers to process incoming requests. The server

unit accepts requests from the dispatcher unit for service. The processed requests

leave the system immediately after service in these generic queuing models without

feedback. In this thesis, all the models deal with one dispatcher and four servers for

processing the client requests.

Figure 4.4 represents the model description of the generic queuing model with-

out feedback. The dispatcher unit consists of one dispatcher, which is termed as

CHAPTER 4. GENERIC QUEUING MODELS 67

CPU

I/O_1
(Leaves the
system from

Disk1)

(Leaves the
system from

CPU)

(Leaves the
system from

Disk 4)

I/O_2

I/O_3

I/O_4

(Leaves the
system from

Disk 2)

(Leaves the
system from

Disk 3)

55,

11,

33,

22 ,

44,

01P

12P

13P

14P

15P

20P

30P

10P

40P

50P

Figure 4.4: Structure—Generic Queuing Models Without Feedback

CPU. It accepts client requests and distributes them to the server unit based on se-

lected dispatching policies. In these models, four Input/Output (I/O) servers are

considered in the server unit to service requests from the dispatcher unit. As this

model is implemented without feedback, requests are not reassigned to the dis-

patcher unit from the server unit. As shown in figure 4.4, P01 is the routing prob-

ability from outside the system to CPU. While P12, P13, P14, and P15 are routing

probabilities from CPU to I/0 servers respectively. The routing probabilities P10,

P20, P30, P40, and P50 leave the system from CPU, and I/O servers respectively.

λ1, λ2, λ3, λ4, and λ5 symbolize the throughput of CPU, I/O 1, I/O 2, I/O 3, and

I/O 4 servers respectively. µ1, µ2, µ3, µ4, and µ5 represent the service rates of the

CPU, and the four I/O servers. The models are named based on their dispatching

policy and feedback mechanism.

CHAPTER 4. GENERIC QUEUING MODELS 68

Random Policy Model Without Feedback

In this model, the dispatcher unit implements a random algorithm for distributing

client requests. Any server from the server unit is picked randomly for service with

the help of a routing probability. As this generic model has no feedback, all the

requests assigned to the server unit are assumed to be serviced.

RoundRobin Policy Model Without Feedback

The model structure, and description of a RoundRobin Policy Model Without Feed-

back are similar to that of the Random Policy Model Without Feedback. This model

differs only in the dispatching algorithm that distributes the incoming requests to

the server unit. In this model, the dispatcher is responsible in distributing the re-

quests to the servers in a RR fashion. The incoming requests leave the system or

assigned to the server unit based on a routing probability. Any request that enters

the server unit is assigned and processed by the servers I/O 1, I/O 2, I/O 3, and

I/O 4 respectively in a RR fashion.

4.1.2 Generic Queuing Models With Feedback

Generic queuing models with feedback are designed with a dispatcher, and a server

unit along with their feedbacks. Figure 4.5 shows the design of generic queuing

models with feedback. The dispatcher and server unit have the same functionality

of distributing and serving incoming requests, as generic queuing model without

feedback, except that some of the requests from server unit are reassigned to the

dispatcher unit since it is a feedback model.

CHAPTER 4. GENERIC QUEUING MODELS 69

Dispatcher Unit

Dispatching
Policy

Incoming
Client

Requests

Leaves the
System from

Dispatcher Unit

FeedBack from Server Unit

Self FeedBack from Dispatcher Unit

Server Unit

Leaves the
System from
Server Unit

Figure 4.5: Design—Generic Queuing Models With Feedback

CPU

I/O_1
(Leaves the
system from

Disk1)

(Leaves the
system from

CPU)

(Leaves the
system from

Disk 4)

I/O_2

I/O_3

I/O_4

(Leaves the
system from

Disk 2)

(Leaves the
system from

Disk 3)

55,

11,

33,

22,

44,

01P

12P

13P

14P

15P

20P

30P

10P

40P

50P

11P

21P

31P

41P

51P

Figure 4.6: Structure—Generic Queuing Models With Feedback

CHAPTER 4. GENERIC QUEUING MODELS 70

The request flow of these feedback models are shown in Figure 4.6. Some of

the requests that are assigned to the server unit are supplied back to the dispatcher

unit for reprocessing again. The dispatcher unit is also provided with self feedback

requests of the dispatcher. In generic queuing models with feedback, routing prob-

abilities, arrival rates, and service rates are similar to the generic queuing model

without feedback except for the routing probabilities P11, P21, P31, P41, and P51,

which are feedback probabilities from CPU, and I/O servers (I/O 1, I/O 2, I/O 3,

and I/O 4) to CPU respectively.

Random Policy Model With Feedback

The random dispatching algorithm is implemented in this feedback model. The

servers from the server unit are selected in a random fashion by the dispatcher unit

for service. The dispatcher unit receives feedback from the server unit along with

the additional self feedback. The feedback requests are again reprocessed in the

dispatcher unit and serviced by the servers in the server unit randomly.

RoundRobin Policy Model With Feedback

As the model name suggests, this model is a feedback model, which implements RR

algorithm for dispatching client requests. This model is more complex than other

models as the requests reach the server unit from the dispatcher deterministically in

a RR fashion, along with a feed back mechanism.

CHAPTER 4. GENERIC QUEUING MODELS 71

4.2 Model Evaluation

The model evaluation techniques widely used are analytical modeling, simulation,

and measurement [Jai91]. Analytical modeling involves mathematical analysis of a

model to understand the system behavior of the model. Performance metrics of the

system resources are calculated analytically to evaluate their performance. Analyt-

ical modeling is cost-effective as the whole system is interpreted mathematically.

Simulation is the process of reflecting the real system to predict and evaluate the

performance of a system. Measurement techniques deal with experimental mod-

eling of a system. For any research, the choice of model evaluation techniques to

analyze their performance is vital. In this thesis, analytic modeling and simulation

techniques are selected for evaluating these models. Measurement approach is ex-

pensive compared to other evaluation techniques, as it requires real-time devices,

and tools to build the whole system.

The key elements of a queuing model are: calling population, the arrival pro-

cess, service mechanism, and the number of available resources. Calling popula-

tion, which can be finite or infinite, is the number of customers or client requests

that arrive to the system. If the client requests that enter the queuing system are

large, then the calling population is considered infinite. In this thesis, an infinite

calling population is considered. Arrival process is the manner in which the client

requests reach the queuing system. The service mechanism explains the service

offered by the servers to process client requests. The number of available resources

is the total capacity of the system resources, which are responsible for processing

client requests. The available resources in all the models of this thesis are structured

in such a way that each model has one dispatcher and four servers for serving the

CHAPTER 4. GENERIC QUEUING MODELS 72

client requests.

4.2.1 Analytical Modeling

This section deals with the theoretical analysis of the models studied in this re-

search. The basic assumptions, queuing discipline and performance metrics play

a major role in the analytical modeling of a system. In the theoretical approach

of a model, several simplifying assumptions are applied, as the real world system

cannot be replicated exactly as such. The queuing discipline for each model varies

based on their behavior. Performance metrics are calculated, and compared with

the simulation results in the later sections for each model.

Assumptions

The following assumptions hold for all the models used in this thesis. The assump-

tions are chosen to suit the considerations of any generic model like the utilization

of any device, ρ (λ/µ) is always less than 1. The mean inter-arrival time of the

requests to the dispatcher unit is assumed as 1.5 time units. The mean arrival rate,

λ0, which is the inverse of mean inter-arrival time is calculated. The service rates

for the dispatcher (µ1) and I/O servers (µ2, µ3, µ4, µ5) are assumed to be 1.5 re-

quests/time units and 0.5 requests/time units respectively. The routing probability

to the dispatcher unit from outside the system, P01, is set as 1.

The requests that are supplied from the dispatcher unit to the server unit and the

requests that leave the system from the dispatcher unit are tested for different ratios.

In order to be consistent, all the models are experimented with the same percentage

CHAPTER 4. GENERIC QUEUING MODELS 73

of requests, such that, 80% of the requests are supplied from the dispatcher unit

to the server unit and the remaining 20% of the requests leave the dispatcher unit

directly, without service.

In generic queuing models without feedback, 20% of the requests from the dis-

patcher is assumed to leave the system (P10 = 0.2), and 80% of the requests from the

dispatcher is fed to the server unit. So, the routing probabilities from the dispatcher

unit to the server unit P12, P13, P14, and P15 are fixed as 0.2. While the other rout-

ing probabilities from the server unit to outside the system P20, P30, P40, and P50

are set as 1, explaining the fact that all the requests assigned to the server unit are

processed.

The assumptions in the generic queuing models with feedback are 10% of the

requests from the dispatcher leave the system along with a 10% self feedback, and

80% of the dispatcher requests is supplied to the server unit. In the server unit 90%

of the requests are serviced, and 10% of the requests are fed back to the dispatcher

unit. The feedback routing probabilities P11, P21, P31, P41, and P51 are fixed as 0.1,

and the routing probabilities (P20, P30, P40, P50) that leave the servers in the server

unit are set to 0.9.

Queuing Discipline

A queuing discipline of a system is classified by a standard notation termed as

Kendal notation [Jai91]. In Kendal notation, a queuing system is represented in the

form A/S/m/B/K/SD, where

A - Arrival time distribution
S - Service time distribution

CHAPTER 4. GENERIC QUEUING MODELS 74

m - Number of servers
B - Number of buffers
K - population size
SD - Service discipline

The arrival and service time distributions are generally denoted by a one letter

symbol like M for Exponential, Ek for Erlang with parameter k, PH for phase-

type, etc. In most cases with infinite buffers and infinite population size, the Kendal

notation is of the form A/S/m.

Performance Metrics

Performance metrics evaluate the efficiency of a system. The selection of metrics

has a high impact in the analysis of a system’s performance. Factors like time, rate

and resource are taken into consideration, as they give a better view of the respon-

siveness, productivity and utilization of a system, respectively. The performance

of a system can be measured by the time taken to perform the service, the rate at

which the service is performed, and the resources consumed while performing the

service.

In this thesis, a set of performance metrics like throughput, utilization, mean

queue size, mean waiting time, and mean response time are selected for model

evaluation. Throughput is the rate at which requests are processed per unit time.

It is measured in requests per time units. Utilization is the traffic intensity of a

resource. It is the fraction of time when a server is busy. Mean queue size is

described as the number of requests waiting in the queue before they get serviced.

Mean waiting time is the average time that a request waits for its service. This

is the time interval between the time when a request arrives to the system till its

CHAPTER 4. GENERIC QUEUING MODELS 75

service starts. Response time is the total time by a client request in a system and is

calculated from the time a client sends a request till it receives a response.

In order to calculate these performance metrics of these models, the mean value

analysis algorithm is chosen, as they are simpler and easier to derive open queuing

network models [Jai91]. Theoretical analysis for each model is explained in the

following sections.

Random Policy Model Without Feedback

In the Random Policy Model Without Feedback, the dispatcher and each server in

the server unit handles the M/M/1 queuing discipline individually, where the first M

stands for the exponential inter arrival time; the second M stands for the exponential

service time and the number 1 denotes the number of servers [Tri02]. Based on the

earlier research efforts in this field, the choice of exponential distribution is best

suited for the theoretical analysis of these model types [MA02].

Throughputs of CPU and I/O servers are calculated mathematically by mean

value analysis and are drawn into equations with the help of their routing proba-

bilities (figure 4.4). Since input rates (nλn) must equal to the output rates at each

server, we have:

λ1 = λ0 (4.1)

λ2 = λ1P12 (4.2)

λ3 = λ1P13 (4.3)

λ4 = λ1P14 (4.4)

λ5 = λ1P15 (4.5)

CHAPTER 4. GENERIC QUEUING MODELS 76

We know that from the assumptions,

λ0 = 0.667 requests/time units,
µ1 = 1.5 requests/time units,
µ2 = µ3 = µ4 = µ5 = 0.5 requests/time units.

By solving the Equations 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 throughputs λ1, λ2, λ3, λ4, λ5

are calculated:

λ1 = 0.667,
λ2 = λ3 = λ4 = λ5 = 0.133,
P12 = P13 = P14 = P15 = 0.2.

The performance metrics of an M/M/1 queuing model are calculated from the

formulae given below [Jai91].

Utilization, ρ =
λ

µ
(4.6)

Mean number of jobs in the queue, E(nq) =
ρ2

1 − ρ
(4.7)

Mean Waiting T ime, E(w) = ρ(
1/µ

1 − ρ
) (4.8)

Mean Service T ime, E(s) =
1

µ
(4.9)

By substituting the values of throughputs and service rates of CPU and I/O servers

in the M/M/1 queue formulae, the metric values are computed, as shown in Table

4.1.

RoundRobin Policy Model Without Feedback

In the RoundRobin Policy Model Without Feedback two different queuing disci-

plines are found at the dispatcher and server unit, respectively. The dispatcher unit

CHAPTER 4. GENERIC QUEUING MODELS 77

Metrics Throughput Utilization Mean Queue Mean Waiting
Devices Size Time

CPU 0.667 0.445 0.356 0.533
I/O 1 0.133 0.267 0.097 0.727
I/O 2 0.133 0.267 0.097 0.727
I/O 3 0.133 0.267 0.097 0.727
I/O 4 0.133 0.267 0.097 0.727

Table 4.1: Metrics—Random Policy Model Without Feedback

handles a M/M/1 queuing discipline similar to the Random Policy Model Without

Feedback, with their exponential inter-arrival and service time. Using mean value

analysis and M/M/1 queue formulae discussed earlier in this section, the perfor-

mance metrics of this model’s dispatcher unit (CPU) is calculated (see Table 4.2).

Metrics Throughput Utilization Mean Queue Mean Waiting
Devices Size Time

CPU 0.667 0.445 0.356 0.533

Table 4.2: Metrics—RoundRobin Policy Model Without Feedback—Dispatcher
Unit (M/M/1)

As the server unit employs RR algorithm, the arrival behavior of requests to

each server is found in a different manner than before. The new arrival in each

server needs to wait in stages, as the request flows in a RR fashion in the servers.

The inter-arrival time of the client requests in the servers is no longer exponential.

So, the server unit is now considered to handle general independent inter-arrival

queuing discipline, and exponential service time. The queuing discipline of the

server unit in the RoundRobin Policy Model Without Feedback is now generalized

as GI/M/1, where

CHAPTER 4. GENERIC QUEUING MODELS 78

GI is symbol for general independent inter-arrival time distribution
M is the symbol for exponential service time
1 denotes the number of servers

The working process of the server unit is analyzed closely to understand the na-

ture of the queuing discipline. The behavior of the requests assigned to I/O servers

gives a clue that I/0 servers in this model employ the Erlang distribution, as the

requests navigate similar to stages in each server. The arrival of requests in each

server of the server unit, is such that every request waits for four stages till it gets

its next request. The queuing discipline of the server unit is concluded as Erk / M /

1, where k is the number of stages or hosts [SHB00].

By using the mean value analysis, the throughputs and utilizations of I/O servers

are calculated as shown in the Random Policy Model Without Feedback. In order to

calculate the metrics, mean queue size and mean waiting time for the Erk / M / 1

server unit model, the GI/M/1 Queue Formulae should be transformed and derived,

such that it suits Erk / M / 1 queuing discipline [All90]. In GI/M/1, the steady state

probability that an arriving request will find the system empty, π0, is the unique

solution of the equation,

1 − π0 = A∗[µπ0] : for all 0 < π0 < 1 (4.10)

where,

µ is the service rate
πn is the probability that an arriving request will find ‘n’ requests
A∗[µπ0] is the Laplace Stiltjes transform of the inter-arrival time, τ

In this model, as each server in the server unit needs to wait for four stages

(other servers in the server unit, along with one leaving the system) before its next

CHAPTER 4. GENERIC QUEUING MODELS 79

arrival, the value of k is specified as 4.

The Laplace Stiltjes transform of A∗[θ] for Erk is

(
kλi

kλi + θ
)k (4.11)

(1 − π0) = (
kλi

kλi + θ
)k (4.12)

(1 − π0)((kλi + µiπ0)
k) = (kλi)

k (4.13)

where,

k = 4
θ = µiπ0

µi = 0.5 requests/time units, i = 2, 3, 4, and 5
λi = 0.133 net requests/time units, i = 2, 3, 4, and 5

Now π0 is calculated by substituting the k, µi, and λi values in the above equa-

tion:

π0 = 0.916

From π0, mean queue size and mean waiting time in the queue are calculated an-

alytically, with the help of the formulae given below [All90] and are tabulated in

Table 4.3.

Utilization, ρ =
λ

µ
(4.14)

Mean Service T ime, E(s) =
1

µ
(4.15)

Mean number of jobs in the queue, E(nq) =
ρ(1 − π0)

π0

(4.16)

Mean Waiting T ime, E(w) =
E(s)(1 − π0)

π0

(4.17)

CHAPTER 4. GENERIC QUEUING MODELS 80

Metrics Throughput Utilization Mean Queue Mean Waiting
Devices Size Time

I/O 1 0.133 0.267 0.024 0.183
I/O 2 0.133 0.267 0.024 0.183
I/O 3 0.133 0.267 0.024 0.183
I/O 4 0.133 0.267 0.024 0.183

Table 4.3: Metrics—RoundRobin Policy Model Without Feedback—Server Unit
(Erk/M/1)

Random Policy Model With Feedback

In a Random Policy Model With Feedback some of the requests from the server unit

are fed back to the dispatcher unit. Although this model has a feedback, follows

the M/M/1 queuing discipline model still describes the marginal distribution of per-

formance results for both the dispatcher and server units. As discussed earlier in

this section, using mean value analysis, throughputs of CPU and I/O servers are

measured mathematically based on the assumptions of the feedback and routing

probabilities.

λ1 = λ0P01 + λ1P11 + λ2P21 + λ3P31 + λ4P41 + λ5P51 (4.18)

λ2 = λ1P12 (4.19)

λ3 = λ1P13 (4.20)

λ4 = λ1P14 (4.21)

λ5 = λ1P15 (4.22)

CHAPTER 4. GENERIC QUEUING MODELS 81

By solving these equations throughputs λ1, λ2, λ3, λ4 and λ5 are calculated:

λ1 = 0.813,
λ2 = λ3 = λ4 = λ5 = 0.163.

Metrics Throughput Utilization Mean Queue Mean Waiting
Devices Size Time

CPU 0.813 0.542 0.641 0.789
I/O 1 0.163 0.325 0.157 0.964
I/O 2 0.163 0.325 0.157 0.964
I/O 3 0.163 0.325 0.157 0.964
I/O 4 0.163 0.325 0.157 0.964

Table 4.4: Metrics—Random Policy Model With Feedback

Table 4.4 shows the performance metrics of the Random Policy Model With

Feedback calculated using the M/M/1 queue formulae.

RoundRobin Policy Model With Feedback

The feedback arrivals along with RR fashion distribution to the servers make the

RoundRobin Policy Model With Feedback a very interesting and complex model.

The dispatcher unit of the RoundRobin Policy Model With Feedback manages the

M/M/1 queuing discipline. The performance metrics of the dispatcher unit are cal-

culated from the formulae specified in previous section (Table 4.5). In the server

Metrics Throughput Utilization Mean Queue Mean Waiting
Devices Size Time

CPU 0.813 0.542 0.641 0.789

Table 4.5: Metrics—RoundRobin Policy Model With Feedback—Dispatcher Unit
(M/M/1)

CHAPTER 4. GENERIC QUEUING MODELS 82

unit, the arrivals in each server of this model are Erk with a feedback. For the

feedback models, the added effect caused by its feedbacks (self-feedback, and the

feedback from the server unit supplied to the dispatcher unit) reflects the perfor-

mance of the system to a larger extent. In this model, 10% of the requests from

server unit is fed back to the dispatcher unit along with 10% self-feedback of the

dispatcher unit. With the mean value analysis specified in the previous section and

using the procedure to calculate the π0 value of the Erk / M / 1 model (as speci-

fied in the RoundRobin Policy Model Without Feedback section), the performance

metrics of the server unit is theoretically analyzed.

The steps involved in determining the performance metrics of the server unit

model are,

• Compute the throughput and utilization using mean value analysis

λ1 = λ0P01 + λ1P11 + λ2P21 + λ3P31 + λ4P41 + λ5P51 (4.23)

λ2 = λ1P12 (4.24)

λ3 = λ1P13 (4.25)

λ4 = λ1P14 (4.26)

λ5 = λ1P15 (4.27)

By solving these equations throughputs λ1, λ2, λ3, λ4 and λ5 are calculated:

λ1 = 0.813,
λ2 = λ3 = λ4 = λ5 = 0.163.

• Compute the π0 value with the help of the Laplace Stiltjes transform of A∗[θ]

for Erk. Substituting the values,

CHAPTER 4. GENERIC QUEUING MODELS 83

k = 4
µi = 0.5 requests/time units, i = 2, 3, 4, and 5
λi = 0.163 requests/time units, i = 2, 3, 4, and 5

in Equations 4.11–4. 13 (as shown above) we get,

π0 = 0.871

• Compute the performance metrics with the help of the formulae

From π0, mean queue size and mean waiting time in the queue is calculated

analytically, with the help of the formulae shown in previous section (Equa-

tions 4.14–4.17) [All90].

Metrics Throughput Utilization Mean Queue Mean Waiting
Devices Size Time

I/O 1 0.163 0.325 0.048 0.297
I/O 2 0.163 0.325 0.048 0.297
I/O 3 0.163 0.325 0.048 0.297
I/O 4 0.163 0.325 0.048 0.297

Table 4.6: Metrics—RoundRobin Policy Model With Feedback—Server Unit
(Erk/M/1)

Table 4.6 shows the performance metrics of the RoundRobin Policy Model With

Feedback.

Derivation—Total Response Time

Little’s law states that the mean number of requests in the system is the product of

the arrival rate and the mean time each request spends in the system[Jai91]. We use

CHAPTER 4. GENERIC QUEUING MODELS 84

little’s law to derive the total response time formula, as shown below.

L = λ × E(R) (4.28)

where

λ = 0.667 requests/time units
L =

∑
5

i=1 (E(Nq)i
+ ρi)

E(R) - Total response time

By substituting the values of all the devices in the system, we calculate the total

response time in each model (Appendix A).

Testing with More Feedbacks

In order to analyze the consistency of this model, the feedbacks from the server

unit to the dispatcher unit are varied and tested. Feedback from each server to the

dispatcher unit is increased from 10% to 50%, and the results are analyzed. Mean

value analysis algorithm and the steps involved in the theoretical calculation of

dispatcher unit (M/M/1) and server unit (Erk/M/ 1) explained earlier in this section

are followed to determine the performance metric values. We know the service rates

in the server unit and dispatcher unit, as shown below.

µ1 = 1.5 requests/time units
µ2 = µ3 = µ4 = µ5 = 0.5 requests/time units.

Substituting the 50% feedback routing probability in the system,

P11 = P21 = P31 = P41 = P51 = 0.5,
P10 = P20 = P30 = P40 = P50 = 0.5.

CHAPTER 4. GENERIC QUEUING MODELS 85

we calculate the throughput and utilization using mean value analysis for each

device.

λ1 = 1.334
λ2 = λ3 = λ4 = λ5 = 0.267.

The utilization of any device, ρi is calculated from the formula,

ρi = (
λi

µi

) (4.29)

where

i = 1,2,3,4 and 5.

Therefore,

ρ1 = 0.889
ρ2 = ρ3 = ρ4 = ρ5 = 0.534

In the server unit, to calculate the performance metric values, π0 value is calcu-

lated with the help of the equation below.

(1 − π0) = (
kλ

kλ + θ
)k (4.30)

(1 − π0)((kλ + µπ0)
k) = (kλ)k (4.31)

where

k = 4
µ = 0.5 requests/time units
λ = 0.267 requests/time units
θ = µπ0

Now π0 is calculated by substituting the k, µ, and λ values in the above equation:

π0 = 0.659.

CHAPTER 4. GENERIC QUEUING MODELS 86

The performance metric values for the dispatcher unit (M/M/1) and the server

unit (Erk/M/ 1) are computed, as shown in Table 4.7.

Metrics Throughput Utilization Mean Queue Mean Waiting
Devices Size Time

CPU 1.334 0.889 7.120 5.339
I/O 1 0.267 0.534 0.276 1.035
I/O 2 0.267 0.534 0.276 1.035
I/O 3 0.267 0.534 0.276 1.035
I/O 4 0.267 0.534 0.276 1.035

Table 4.7: Metrics—RoundRobin Policy Model With Extra Feedback

4.2.2 Simulation

Models are simulated in several ways depending on the convenience, time, and

availability of resources. General-purpose programming languages like Java and C

are used simulate models. There are also specific simulation languages and simula-

tion packages available for easier implementation of models. Simulation packages

are more comfortable than simulation languages and general-purpose languages, as

these packages have a library of data structures, built-in routines and algorithms that

are essential for simulation. Simulation packages are time saving and easier to work

with, which makes it a popular choice for simulation modeling. Now, the selection

of a proper simulation package in developing a simulation model is necessary based

on user criteria and specifications [LK91].

In this research, SSJ, a simulation package is used for implementing these

generic queuing models [LMV02]. SSJ consists of a collection of classes imple-

mented in Java programming language, which provides extensive facilities for sim-

CHAPTER 4. GENERIC QUEUING MODELS 87

ulation programming. It has predefined classes that are responsible for generating

random numbers for various distributions, collecting statistics, managing a sim-

ulation clock, and a list of future events, synchronizing the interaction between

simulated concurrent processes, etc. SSJ permits event view, process view, contin-

uous, and mixed simulations. All these advantages made SSJ to be the choice for

simulating models used in this research.

The models, Random Policy Model Without Feedback, RoundRobin Policy Model

Without Feedback, Random Policy Model With Feedback, and RoundRobin Policy

Model With Feedback are simulated as per the assumptions and specifications men-

tioned in theoretical analysis. A calling population of 35,000 requests1 is simulated,

and fed into the dispatching unit. The calling population is considered infinite. The

generated requests are supplied to the dispatcher unit. The dispatcher unit is con-

sidered with one dispatcher to accept the incoming requests and distributed to the

server unit with four servers based on their respective dispatching policy.

In the Random Policy Model Without Feedback, the dispatcher unit is imple-

mented in such a way that, 80% of the incoming requests reach the server unit with

each server accepting 20% of requests randomly. The left over 20% of the incoming

requests leave the system directly from the dispatcher unit. The request flow in the

simulated models replicates the routing probability found in the theoretical analysis

of the models. As this research model has no feedback, all the requests that enter

server unit leave the system directly after service (Figure 4.4).

The RoundRobin Policy Model Without Feedback is implemented with the dis-

patcher unit distributing requests in a RR fashion to the server unit. Each server

1This count of 35,000 is arbitrary and the generation of requests is done with the help of random
number generators of SSJ using exponential arrival times.

CHAPTER 4. GENERIC QUEUING MODELS 88

in the server unit receives requests one after the other in an orderly fashion. This

queuing model is free from any feedback (Figure 4.4).

The implementation of the Random Policy Model With Feedback is a little dif-

ferent from the models without feedback, as it involves a feedback from server unit

to dispatcher unit and also a self feedback. 10% of the requests from the dispatcher

leaves the system directly and 10% is fed back (self-feedback) to the dispatcher

unit. From each server in the server unit, 90% of the requests leave the system and

10% of the requests from the server unit is fed back to the dispatcher unit (Figure

4.6).

The RoundRobin Policy Model With Feedback is implemented with a feedback

mechanism, where the incoming requests to the server unit flows in a RR fashion

one after the other to each server (Figure 4.6). All the assumptions are replicated in

simulation, as depicted in the theoretical analysis of these models. The simulated

results for all these models are tabulated in Table 4.8, as shown below.

CHAPTER 4. GENERIC QUEUING MODELS 89

Metrics Utilization Mean Queue Mean Waiting Mean Service

Devices
Size Time Time

CPU 0.440 0.342 0.515 0.663
I/O 1 0.273 0.097 0.730 2.048
I/O 2 0.265 0.102 0.744 1.943
I/O 3 0.263 0.100 0.750 1.981
I/O 4 0.266 0.090 0.680 2.008

(a) Metrics—Random Policy Model Without Feedback

Metrics Utilization Mean Queue Mean Waiting Mean Service

Devices
Size Time Time

CPU 0.445 0.347 0.516 0.662
I/O 1 0.273 0.019 0.142 2.035
I/O 2 0.275 0.024 0.182 2.051
I/O 3 0.275 0.028 0.205 2.047
I/O 4 0.280 0.026 0.190 2.082

(b) Metrics—RoundRobin Policy Model Without Feedback

Metrics Utilization Mean Queue Mean Waiting Mean Service

Devices
Size Time Time

CPU 0.541 0.638 0.787 0.668
I/O 1 0.320 0.158 0.982 1.990
I/O 2 0.316 0.139 0.864 1.964
I/O 3 0.330 0.165 1.001 2.006
I/O 4 0.327 0.154 0.937 1.996

(c) Metrics—Random Policy Model With Feedback

Metrics Utilization Mean Queue Mean Waiting Mean Service

Devices
Size Time Time

CPU 0.542 0.635 0.781 0.666
I/O 1 0.323 0.048 0.293 1.978
I/O 2 0.327 0.046 0.283 2.001
I/O 3 0.321 0.047 0.289 1.964
I/O 4 0.332 0.051 0.310 2.037

(d) Metrics—RoundRobin Policy Model With Feedback

Table 4.8: Simulated Outputs—Performance Metrics

CHAPTER 4. GENERIC QUEUING MODELS 90

4.3 Model Validation

The key aspect of modeling analysis lies in validating the designed model. Model

Validation is a process of determining whether a model is built reasonably [Jai91].

Assumptions, input parameter values, distributions, output values and conclusions

of a model are considered for model validation. There are techniques like expert

intuition, real system measurements, and theoretical results to perform validity tests

of a model. Expert intuition is brainstorming between people of related areas to ob-

tain expert advice from their analysis. Measuring real system parameters is a more

preferable model validation technique. But the fact is that it is not feasible, and too

expensive to incorporate a real system practically. In this thesis, theoretical analysis

is selected and compared with simulation outputs for model validation. If the metric

values of the theoretical results fall within the calculated confidence interval of the

simulated results, the closeness of a model is determined. This comparative analysis

of theoretical modeling and simulation ensures that both simulation and theoretical

analysis are correct though no assessment of realism. In this thesis, model valida-

tion is done for Random Policy Model Without Feedback, RoundRobin Policy Model

Without Feedback, Random Policy Model With Feedback, and RoundRobin Policy

Model With Feedback.

4.3.1 Comparison of Analytical and Simulation Results

The main concern of simulation modeling is how well it is implemented when com-

pared with their respective theoretical models. With the same assumptions for both

simulation and theoretical models, we calculate the performance metrics and ana-

lyze the closeness of the results. Tables 4.9, 4.10, 4.11, and 4.12 help to visualize the

CHAPTER 4. GENERIC QUEUING MODELS 91

Devices Metrics Simulated Theoretical
Output Value

CPU Utilization 0.440 0.445
E(Nq) 0.342 0.356
E(W) 0.515 0.533
E(S) 0.663 0.667

I/O 1 Utilization 0.273 0.267
E(Nq) 0.097 0.097
E(W) 0.730 0.727
E(S) 2.048 2.000

I/O 2 Utilization 0.265 0.267
E(Nq) 0.102 0.097
E(W) 0.744 0.727
E(S) 1.943 2.000

I/O 3 Utilization 0.263 0.267
E(Nq) 0.100 0.097
E(W) 0.750 0.727
E(S) 1.981 2.000

I/O 4 Utilization 0.266 0.267
E(Nq) 0.090 0.097
E(W) 0.680 0.727
E(S) 2.008 2.000

Table 4.9: Comparative Analysis—Random Policy Model Without Feedback

CHAPTER 4. GENERIC QUEUING MODELS 92

Devices Metrics Simulated Theoretical
Output Value

CPU Utilization 0.445 0.445
E(Nq) 0.347 0.356
E(W) 0.516 0.533
E(S) 0.662 0.667

I/O 1 Utilization 0.273 0.267
E(Nq) 0.019 0.024
E(W) 0.142 0.183
E(S) 2.035 2.000

I/O 2 Utilization 0.275 0.267
E(Nq) 0.024 0.024
E(W) 0.182 0.183
E(S) 2.051 2.000

I/O 3 Utilization 0.275 0.267
E(Nq) 0.028 0.024
E(W) 0.205 0.183
E(S) 2.047 2.000

I/O 4 Utilization 0.280 0.267
E(Nq) 0.026 0.024
E(W) 0.190 0.183
E(S) 2.082 2.000

Table 4.10: Comparative Analysis—RoundRobin Policy Model Without Feedback

CHAPTER 4. GENERIC QUEUING MODELS 93

Devices Metrics Simulated Theoretical
Output Value

CPU Utilization 0.541 0.542
E(Nq) 0.638 0.641
E(W) 0.787 0.789
E(S) 0.668 0.667

I/O 1 Utilization 0.320 0.325
E(Nq) 0.158 0.157
E(W) 0.982 0.964
E(S) 1.990 2.000

I/O 2 Utilization 0.316 0.325
E(Nq) 0.139 0.157
E(W) 0.864 0.964
E(S) 1.964 2.000

I/O 3 Utilization 0.330 0.325
E(Nq) 0.165 0.157
E(W) 1.001 0.964
E(S) 2.006 2.000

I/O 4 Utilization 0.327 0.325
E(Nq) 0.154 0.157
E(W) 0.937 0.964
E(S) 1.996 2.000

Table 4.11: Comparative Analysis—Random Policy Model With Feedback

CHAPTER 4. GENERIC QUEUING MODELS 94

Devices Metrics Simulated Theoretical
Output Value

CPU Utilization 0.542 0.542
E(Nq) 0.635 0.641
E(W) 0.781 0.789
E(S) 0.666 0.667

I/O 1 Utilization 0.323 0.325
E(Nq) 0.048 0.048
E(W) 0.293 0.297
E(S) 1.978 2.000

I/O 2 Utilization 0.327 0.325
E(Nq) 0.046 0.048
E(W) 0.283 0.297
E(S) 2.001 2.000

I/O 3 Utilization 0.321 0.325
E(Nq) 0.047 0.048
E(W) 0.289 0.297
E(S) 1.964 2.000

I/O 4 Utilization 0.332 0.325
E(Nq) 0.051 0.048
E(W) 0.310 0.297
E(S) 2.037 2.000

Table 4.12: Comparative Analysis—RoundRobin Policy Model With Feedback

CHAPTER 4. GENERIC QUEUING MODELS 95

theoretical and simulated performance metric values of the Random Policy Model

Without Feedback, RoundRobin Policy Model Without Feedback, Random Policy

Model With Feedback, and RoundRobin Policy Model With Feedback respectively.

4.3.2 Closeness

Although the theoretical and simulated results are closer, we are not too sure of

how close these results are needed to be validated as an acceptable model. In order

to determine the closeness of the models, the confidence interval for performance

metrics like mean queue size, mean waiting time, and total response time by replica-

tion technique is calculated [Mac87, LK91]. In the replication technique the results

are analyzed by simulating the whole model for a fixed number of turns and by

calculating the overall mean.

4.3.3 Confidence Interval (CI)

A confidence Interval involves the estimation of the mean and standard deviation

for the performance metrics. In this research a 95% CI of the results is considered.

It is calculated by the formula,

CI = X̄ ± 2 ∗ σ√
n

(4.32)

where,

X̄ = Sample Mean
σ = Standard deviation
n = Number of turns

CHAPTER 4. GENERIC QUEUING MODELS 96

A sample mean is simulated by estimating the averages of the populated mean

of each metric. In this thesis the number of replications is arbitrarily chosen as 100,

200, and 500 to obtain the CI of the metrics mean.

If the theoretical values of the selected metric lies between the calculated CI

(simulation) of that metric, then one can confirm the closeness of the simulated and

theoretical results. This procedure of calculating the closeness of the simulated and

theoretical results holds for all the models in this thesis. The calling population of

45,000 is simulated and supplied to the dispatcher unit. In these models, the sample

mean, and standard deviation for mean queue size, mean waiting time and total

response time of the dispatcher and I/0 servers are simulated with 100, 200, and

500 replications. The results for each metric of the models are tabulated in tables

A.1 to A.12 in appendix A.

From these tables it is clear that the theoretical mean queue size, mean waiting

time, and mean response time metric values of the CPU and I/O servers in each

model fall in between the calculated CI of the simulated results. This comparison

and the closeness of the results help us to validate the simulation and theoretical

models that are designed in this research.

The theoretical results for the RoundRobin Policy Model With Extra Feedback

are compared with its simulated outputs and the CI is calculated for 100 replica-

tions. The values are tabulated in the appendix A (Table A.13). Interestingly, the

theoretical results fall within the range of the simulated outputs proving the consis-

tency of the model, even when increased in feedback.

CHAPTER 4. GENERIC QUEUING MODELS 97

4.4 Steady State Performance

A steady state performance of a model is analyzed with the help of a transient re-

moval method. In the transient removal approach, the simulation models are studied

by removing the initial part of the simulation and inspecting the model with other

parameters like heavy load to determine the steadiness. The heuristics for analyz-

ing the steady state performance of a model through transient removal are long

runs, proper initialization, truncation, initial data deletion, moving average of inde-

pendent replications, and batch means. In this thesis the models are simulated for

long runs and their consistencies are determined [Jai91].

4.4.1 Long runs (LR)

Models are simulated for long runs and the outputs are analyzed by varying the

input parameters. In this thesis, the input requests supplied to the dispatcher unit

is varied from 10,000 to 500,000, and outputs are investigated in each model. The

CI for the designed models, Random Policy Model Without Feedback (RMWF),

RoundRobin Policy Model Without Feedback (RRMWF), Random Policy Model

With Feedback (RMF), and RoundRobin Policy Model With Feedback (RRMF) is

evaluated theoretically and simulated for 100, 200 and 500 replications.

The output graphs (Figures 4.7 - 4.14) help us to formulate an interesting con-

clusion about the behavior of these models when they are supplied with a wider

range of input requests. From the output graphs we also confirm that the CI in these

models converges to a smaller range for higher value of input requests. This gives

us a clue that the servers in these models attain a saturation point with the increase

CHAPTER 4. GENERIC QUEUING MODELS 98

in the number of requests. The values for these graphs are tabulated in the appendix

as B–E. Accuracy of any model can never be 100%. The calculated 95% CI of

the simulated results fall in the range of the theoretical results ensuring the model

consistency.

C
H

A
PT

E
R

4.
G

E
N

E
R

IC
Q

U
E

U
IN

G
M

O
D

E
L

S
99Vertical Line “|” : Confidence Interval

“-“ : Theoretical

CPU (100 TURNS)

0.346

0.348

0.35

0.352

0.354

0.356

0.358

0.36

10k 20k 40k 60k 80k 100k 500k

Number of Customers

M
ea

n
Q

ue
ue

 s
iz

e

CPU (200 TURNS)

0.348

0.352

0.356

0.36

10k 20k 40k 60k 80k 100k 500k

Number of Customers

M
ea

n
Q

ue
ue

 S
iz

e

CPU (500 TURNS)

0.351

0.352

0.353

0.354

0.355

0.356

0.357

0.358

10k 20k 40k 60k 80k 100k 500k

Number of Customers

M
ea

n
Q

ue
ue

 S
iz

e

I/O SERVERS(100 TURNS)

0.088
0.09

0.092
0.094
0.096
0.098

0.1
0.102
0.104

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

I/O 1 I/O 2 I/O 3 I/O 4

Number of Customers

M
ea

n
Q

ue
ue

 S
iz

e

I/O SERVERS (200 TURNS)

0.09

0.092

0.094

0.096

0.098

0.1

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

I/O 1 I/O 2 I!/O 3 I/O 4

Number of Customers

M
ea

n
Q

ue
ue

 S
iz

e

I/O SERVERS (500 TURNS)

0.093
0.094
0.095
0.096
0.097
0.098
0.099

0.1

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

I/O 1 I/O 2 I/O 3 I/O 4

Number of Customers

M
ea

n
Q

ue
ue

 S
iz

e

Random Policy Model Without Feedback

I/O SERVERS (100 TURNS)

Figure
4.7:L

R
—

M
ean

Q
ueue

Size—
R

M
W

F
(n

=
100,200

and
500)

C
H

A
PT

E
R

4.
G

E
N

E
R

IC
Q

U
E

U
IN

G
M

O
D

E
L

S
100

CPU (100 TURNS)

0.52

0.522

0.524

0.526

0.528

0.53

0.532

0.534

0.536

0.538

10k 20k 40k 60k 80k 100k 500k

Number of Customers

M
ea

n
W

ai
tin

g
Ti

m
e

CPU (200 TURNS)

0.524

0.526

0.528

0.53

0.532

0.534

0.536

0.538

10k 20k 40k 60k 80k 100k 500k

Number of Customers

M
ea

n
W

ai
tin

g
Ti

m
e

CPU (500 TURNS)

0.528

0.529

0.530

0.531

0.532

0.533

0.534

0.535

0.536

10k 20k 40k 60k 80k 100k 500k

Number of Customers

M
ea

n
W

ai
tin

g
Ti

m
e

I/O SERVERS (100 TURNS)

0.66

0.68

0.7

0.72

0.74

0.76

0.78

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

I/O 1 I/O 2 I/O 3 I/O 4

Number of Customers

M
ea

n
W

ai
tin

g
Ti

m
e

I/O SERVERS (200 TURNS)

0.69

0.7
0.71

0.72

0.73

0.74

0.75

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

I/O 1 I/O 2 I/O 3 I/O 4

Number of Customers

M
ea

n
W

ai
tin

g
Ti

m
e

I/O SERVERS (500 TURNS)

0.700
0.705
0.710
0.715
0.720
0.725
0.730
0.735
0.740
0.745

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

I/O 1 I/O 2 I/O 3 I/O 4

Number of Customers

M
ea

n
W

ai
tin

g
Ti

m
e

Random Policy Model Without Feedback

Vertical Line “|” : Confidence Interval
“-“ : Theoretical

Figure
4.8:L

R
—

M
ean

W
aiting

Tim
e—

R
M

W
F

(n
=

100,200
and

500)

C
H

A
PT

E
R

4.
G

E
N

E
R

IC
Q

U
E

U
IN

G
M

O
D

E
L

S
101

Round Robin Policy Model Without Feedback

Vertical Line “|”: Confidence Interval
“-“:Theoretical

CPU (100 TURNS)

0.348

0.35

0.352

0.354

0.356

0.358

0.36

10k 20k 40k 60k 80k 100k 500k

Number of Customers

M
ea

n
Q

ue
ue

 S
iz

e

I/O SERVERS (100 TURNS)

0.022
0.0225

0.023
0.0235

0.024
0.0245

0.025
0.0255

0.026

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50

0k

I/O 1 I/O 2 I/O 3 I/O 4

Number of Customers

M
ea

n
Q

ue
ue

 S
iz

e
CPU (200 TURNS)

0.348

0.349

0.35

0.351

0.352

0.353

0.354

0.355

0.356

0.357

0.358

10k 20k 40k 60k 80k 100k 500k

Number of Customers

M
ea

n
Q

ue
ue

 S
iz

e

I/O SERVERS (200 TURNS)

0.022
0.0225

0.023
0.0235

0.024
0.0245

0.025
0.0255

0.026

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50

0k

I/O 1 I/O 2 I/O 3 I/O 4

Number of Customers

M
ea

n
Q

ue
ue

 S
iz

e

CPU (500 TURNS)

0.351

0.352

0.353

0.354

0.355

0.356

0.357

0.358

10k 20k 40k 60k 80k 100k 500k

Number of Customers

M
ea

n
Q

ue
ue

 S
iz

e

I/O SERVERS (500 TURNS)

0.0225
0.023

0.0235
0.024

0.0245
0.025

0.0255

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50

0k

I/O 1 I/O 2 I/O 3 I/O 4

Number of Customers

M
ea

n
Q

ue
ue

 S
iz

e

Figure
4.9:L

R
—

M
ean

Q
ueue

Size—
R

R
M

W
F

(n
=

100,200
and

500)

C
H

A
PT

E
R

4.
G

E
N

E
R

IC
Q

U
E

U
IN

G
M

O
D

E
L

S
102

CPU (100 TURNS)

0.518

0.52

0.522

0.524

0.526

0.528

0.53

0.532

0.534

0.536

0.538

10k 20k 40k 60k 80k 100k 500k

Number of Customers

M
ea

n
W

ai
tin

g
Ti

m
e

I/O SERVERS (100 TURNS)

0.16
0.165

0.17
0.175

0.18
0.185

0.19
0.195

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

I/O 1 I/O 2 I/O 3 I/O 4

Number of Customers

M
ea

n
W

ai
tin

g
Ti

m
e

CPU (200 TURNS)

0.524

0.526

0.528

0.53

0.532

0.534

0.536

0.538

10k 20k 40k 60k 80k 100k 500k

Number of Customers

M
ea

n
W

ai
tin

g
 T

im
e

I/O SERVERS (200 TURNS)

0.165

0.17

0.175
0.18

0.185

0.19

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

I/O 1 I/O 2 I/O 3 I/O 4

Number of Customers

M
ea

n
W

ai
tin

g
Ti

m
e

CPU (500 TURNS)

0.527

0.528

0.529

0.530

0.531

0.532

0.533

0.534

0.535

0.536

10k 20k 40k 60k 80k 100k 500k

Number of Customers

M
Ea

n
W

ai
tn

g
Ti

m
e

I/O SERVERS (500 TURNS)

0.170

0.175

0.180

0.185

0.190

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

I/O 1 I/O 2 I/O 3 I/O 4

Number of Customers

M
ea

n
W

ai
tin

g
Ti

m
e

Round Robin Policy Model Without Feedback

Vertical Line “|”: Confidence Interval
“-“:Theoretical

Figure
4.10:L

R
—

M
ean

W
aiting

Tim
e—

R
R

M
W

F
(n

=
100,200

and
500)

C
H

A
PT

E
R

4.
G

E
N

E
R

IC
Q

U
E

U
IN

G
M

O
D

E
L

S
103

CPU (100 TURNS)

0.61

0.615

0.62

0.625

0.63

0.635

0.64

0.645

0.65

10k 20k 40k 60k 80k 100k 500k

Number of Customers

M
ea

n
Q

ue
ue

 S
iz

e

I/O SERVERS (100 TURNS)

0.145

0.15

0.155

0.16

0.165

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

I/O 1 I/O 2 I/O 3 I/O 4

Number of Customers

M
ea

n
Q

ue
ue

 S
iz

e

CPU (200 TURNS)

0.615

0.62

0.625

0.63

0.635

0.64

0.645

0.65

10k 20k 40k 60k 80k 100k 500k

Number of Customers

M
ea

n
Q

ue
ue

 S
iz

e

I/O SERVERS (200 TURNS)

0.152
0.153
0.154
0.155
0.156
0.157
0.158
0.159

0.16

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

I/O 1 I/O 2 I/O 3 I/O 4

Number of Customers

M
ea

n
Q

ue
ue

 S
iz

e

CPU (500 TURNS)

0.630

0.632

0.634

0.636

0.638

0.640

0.642

0.644

0.646

10k 20k 40k 60k 80k 100k 500k

Number of Customers

M
ea

n
Q

ue
ue

 S
iz

e

I/O SERVERS (500 TURNS)

0.153

0.154

0.155

0.156

0.157

0.158

0.159

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

I/O 1 I/O 2 I/O 3 I/O 4

Number of Customers

M
ea

n
Q

ue
ue

 S
iz

e

Random Policy Feedback Model

Vertical Line “|” : Confidence Interval
“-“ : Theoretical

Random Policy Model With Feedback

Figure
4.11:L

R
—

M
ean

Q
ueue

Size—
R

M
F

(n
=

100,200
and

500)

C
H

A
PT

E
R

4.
G

E
N

E
R

IC
Q

U
E

U
IN

G
M

O
D

E
L

S
104

Random Policy Feedback Model

Vertical Line “|” : Confidence Interval
“-“ : Theoretical

CPU (100 TURNS)

0.755

0.76

0.765

0.77

0.775

0.78

0.785

0.79

0.795

10k 20k 40k 60k 80k 100k 500k

Number of Customers

M
ea

n
W

ai
tin

g
Ti

m
e

I/O SERVERS (100 TURNS)

0.9

0.92

0.94

0.96

0.98

1

1.02

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

I/O 1 I/O 2 I/O 3 I/O 4

Number of Customers

M
ea

n
W

ai
tin

g
Ti

m
e

CPU (200 TURNS)

0.76

0.765

0.77

0.775

0.78

0.785

0.79

0.795

10k 20k 40k 60k 80k 100k 500k

Number of Customers

M
ea

n
W

ai
tin

g
Ti

m
e

I/O SERVERS (200 TURNS)

0.93
0.94
0.95

0.96

0.97

0.98

0.99

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

I/O 1 I/O 2 I/O 3 I/O 4

Number of Customers

M
ea

n
W

ai
tin

g
Ti

m
e

CPU (500 TURNS)

0.776

0.778

0.78

0.782

0.784

0.786

0.788

0.79

0.792

0.794

10k 20k 40k 60k 80k 100k 500k

Number of Customers

M
ea

n
W

ai
tin

g
Ti

m
e

I/O SERVERS (500 TURNS)

0.940
0.945
0.950
0.955
0.960
0.965
0.970
0.975

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

I/O 1 I/O 2 I/O 3 I/O 4

Number of Customers

M
ea

n
W

ai
tin

g
Ti

m
e

Random Policy Model With Feedback

Figure
4.12:L

R
—

M
ean

W
aiting

Tim
e—

R
M

F
(n

=
100,200

and
500)

C
H

A
PT

E
R

4.
G

E
N

E
R

IC
Q

U
E

U
IN

G
M

O
D

E
L

S
105

Round Robin Policy Model With Feedback

Vertical Line “|”: Confidence Interval
“-“:Theoretical

CPU (100 TURNS)

0.615

0.62

0.625

0.63

0.635

0.64

0.645

0.65

10k 20k 40k 60k 80k 100k 500k

Number of Customers

M
ea

n
Q

ue
ue

 S
iz

e

I/O SERVERS (100 TURNS)

0.045
0.046
0.047
0.048
0.049

0.05
0.051

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

I/O 1 I/O 2 I/O 3 I/O 4

Number of Customers

M
ea

n
Q

ue
ue

 S
iz

e

I/O SERVERS (200 TURNS)

0.045
0.046
0.047
0.048
0.049

0.05
0.051

10
k

20
k

40
k

60
k

80
k

10
0k

50

0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

I/O 1 I/O 2 I/O 3 I/O 4

Number of Customers

M
ea

n
Q

ue
ue

 S
iz

e

CPU (200 TURNS)

0.62

0.625

0.63

0.635

0.64

0.645

0.65

10k 20k 40k 60k 80k 100k 500k

Number of Customers

M
ea

n
Q

ue
ue

 S
iz

e

I/O SERVERS (500 TURNS)

0.047
0.0475

0.048
0.0485

0.049
0.0495

0.05

10
k

20
k

40
k

60
k

80
k

10
0k

50

0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50

0k

I/O 1 I/O 2 I/O 3 I/O 4

Number of Customers

M
ea

n
Q

ue
ue

 S
iz

e

CPU (500 TURNS)

0.632

0.634

0.636

0.638

0.64

0.642

0.644

10k 20k 40k 60k 80k 100k 500k

Number of Customers

M
ea

n
Q

ue
ue

 S
iz

e

Figure
4.13:L

R
—

M
ean

Q
ueue

Size—
R

R
M

F
(n

=
100,200

and
500)

C
H

A
PT

E
R

4.
G

E
N

E
R

IC
Q

U
E

U
IN

G
M

O
D

E
L

S
106

Round Robin Policy Model With Feedback

I/O SERVERS (100 TURNS)

0.275
0.28

0.285
0.29

0.295
0.3

0.305
0.31

0.315

10
k

20
k

40
k

60
k

80
k

10
0k

50

0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

I/O 1 I/O 2 I/O 3 I/O 4

Number of Customers

Me
an

 W
ait

ing
 Ti

me

CPU (100 TURNS)

0.76

0.765

0.77

0.775

0.78

0.785

0.79

0.795

10k 20k 40k 60k 80k 100k 500k

Number of Customers

Me
an

 W
ait

ing
 Ti

me

I/O SERVERS (200 TURNS)

0.28
0.285

0.29
0.295

0.3
0.305

0.31

10
k

20
k

40
k

60
k

80
k

10
0k

50

0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

I/O 1 I/O 2 I/O 3 I/O 4

Number of Customers

Me
an

 W
ait

ing
 Ti

me

CPU (200 TURNS)

0.765

0.77

0.775

0.78

0.785

0.79

0.795

10k 20k 40k 60k 80k 100k 500k

Number of Customers

Me
an

 W
ait

ing
 T

im
e

I/O SERVERS (500 TURNS)

0.29

0.295

0.3

0.305

0.31

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

10
k

20
k

40
k

60
k

80
k

10
0k

50
0k

I/O 1 I/O 2 I/O 3 I/O 4

Number of Customers

Me
an

 W
ait

ing
 Ti

me

CPU (500 TURNS)

0.78

0.782

0.784

0.786

0.788

0.79

0.792

0.794

10k 20k 40k 60k 80k 100k 500k

Number of Customers

ME
an

 W
ait

ng
 Ti

me

Vertical Line “|”: Confidence Interval
“-“:Theoretical

Figure
4.14:L

R
—

M
ean

W
aiting

Tim
e—

R
R

M
F

(n
=

100,200
and

500)

Chapter 5

Conclusions and Future Work

The demand for Internet access is increasing dramatically. Web server systems

are the information engines that service this rapidly growing client base. They

are expected to provide good performance and high availability to the end user.

The need for efficient and effective Web server systems is on the rise. An im-

portant step toward fulfilling this need is to identify the state-of-art in this area

and to have a clear understanding of existing products and prototypes. In this the-

sis, we reviewed a number of commercial and prototype Web server systems, and

devised a unified product-based taxonomy that identified product capabilities by

relating them to a classification of Web server architectures and to an extended

taxonomy of dispatching algorithms. The previous work on Web server systems

[CCY99, CCCY02, CYD98, SGR00] were extended to produce a base taxonomy

of dispatching algorithms that encompasses a more complete set of products.

The unified taxonomy is a significant step towards a methodology for classify-

ing products based on their capabilities. It acts as a bridge between the taxonomy

107

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 108

of server architectures and the taxonomy of dispatching algorithms, and this pro-

vides a clearer understanding of how the products relate to one another. This work

is valuable to business professionals to help compare products when deciding on

a Web server system deployment. It is also useful to software architects to help

improve existing products and to develop new products with enhanced capabilities.

In a competitive market, commercial Web server systems need to provide feature-

rich and efficient scalable services at low cost. Generic queuing models for Web

server systems were designed to evaluate Web server systems in this thesis. They

were configured without and with feedback mechanisms. Random and RR algo-

rithms were used as dispatching policies in these models. Metrics like utilization,

mean queue size, mean waiting time, and response time of these models were calcu-

lated theoretically and simulated using SSJ for performance evaluation. The models

were validated and steady state performance to confirm the closeness and consis-

tency in these models. The results achieved give a clear understanding that the

designed models were sensible, acceptable models and very useful in analyzing

Web server systems. The theoretical analysis of the feedback models is a useful

contribution for Web server modeling research. The percentage of requests to the

server unit was tested for different ratios and the models were consistent in all per-

formance tests. The limitations found in these models are that the designed models

are specific to Layer-4 one-way architecture and static content-blind dispatching al-

gorithms, random and RR. The models were not tested for real-time measurements,

and were evaluated using simulation and theoretical analysis.

Any research attains its goal only when it could be extended. The generic mod-

els used in this thesis forms the basis for modeling Web server systems. For fur-

ther research these generic queuing models could be extended more with specific

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 109

product specifications in order to analyze them individually. Models could also

be extended with different architectures and dispatching algorithms suiting product

specifications. An effective analysis of available products is an attractive area for

future work. Different new metrics could be devised and the performance of these

models based on end-user goals for the specific metrics also could be analyzed. A

subsequent step to this research could be grading of products with the help of their

performance metrics. This will provide a basis for classifying products, compar-

ing them to one another, and recognizing the novel features of new products. A

product rating system of this nature would be advantageous in a Web server system

deployment, as it would evaluate the performance of individual products.

Abbreviations

API Application Program Interface

AVI Audio Video Interleave

AWS Alteon Web Switch

ASLB Accelerated Server Load Balancing

CAP Client-Aware Policy

CD Central Dispatch

CPU Central Processing Unit

DD Distributed Director

DNS Domain Name Server (System or Service)

DPR Distributed Packet Rewriting

DRP Distributed Response Protocol

DSL Digital Subscriber Line

110

Abbreviations 111

DWRR Dynamic Weighted Round Robin

FRT Fast Response Time

FWLB Firewall Load Balancing

GSLB Global Server Load Balancing

HACC Harvard Array of Cluster Computers

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

I2-DSI Internet2 Distributed Storage Infrastructure

JPG/JPEG Joint Photographic Experts Group

LARD Locality-Aware Request Distribution

LD Local Director

LVS Linux Virtual Server

MAC Media Access Control

MP3 MPEG1 Audio Layer 3

MPG/MPEG Moving Picture Experts Group

MTRR Multi-Tier Round Robin

NAT Network Address Translation

NCSA National Center for Supercomputing Applications

Abbreviations 112

NLB Network Load Balancing

RMF Random Policy Model With Feedback

RMWF Random Policy Model Without Feedback

RR Round Robin

RRMF RoundRobin Policy Model With Feedback

RRMEF RoundRobin Policy Model With Extra Feedback

RRMWF RoundRobin Policy Model Without Feedback

RSLB Reliable Server Load Balancing

SITA-E Size Interval Task Assignment with Equal load

SWEB Scalable Web Server

SWRR Static Weighted Round Robin

TCP/IP Transport Control Protocol/Internet Protocol

TCS Transparent Cache Switching

TTL Time To Live

UDP User Datagram Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

VIPA Virtual IP address

Abbreviations 113

VPN Virtual Private Networking

XML Extensible Markup Language

XSL Extensible Stylesheet Language

XSLT Extensible Stylesheet Language Transformations

Appendix A

Confidence Interval (CI)

Models:

• Random Policy Model Without Feedback (RMWF)

• RoundRobin Policy Model Without Feedback (RRMWF)

• Random Policy Model With Feedback (RMF)

• RoundRobin Policy Model With Feedback (RRMF)

• RoundRobin Policy Model With Extra Feedback (RRMEF)

Performance Metrics:

• Mean Queue Size

• Mean Waiting Time

• Total Response Time

Replications:

• n = 100, 200 and 500

114

Appendix A 115

Simulated Output—E(Nq) Theoretical
Devices Mean SD CI Value—E(Nq)

CPU 0.356 0.010 [0.358,0.354] 0.356
I/O 1 0.096 0.005 [0.097,0.095] 0.097
I/O 2 0.097 0.006 [0.098,0.096] 0.097
I/O 3 0.098 0.006 [0.099,0.097] 0.097
I/O 4 0.096 0.005 [0.097,0.095] 0.097

(a) n=100

Simulated Output—E(Nq) Theoretical
Devices Mean SD CI Value—E(Nq)

CPU 0.356 0.009 [0.357,0.355] 0.356
I/O 1 0.096 0.005 [0.097,0.095] 0.097
I/O 2 0.097 0.006 [0.098,0.096] 0.097
I/O 3 0.097 0.006 [0.098,0.096] 0.097
I/O 4 0.097 0.005 [0.098,0.096] 0.097

(b) n=200

Simulated Output—E(Nq) Theoretical
Devices Mean SD CI Value—E(Nq)

CPU 0.356 0.010 [0.357,0.355] 0.356
I/O 1 0.097 0.006 [0.098,0.096] 0.097
I/O 2 0.097 0.005 [0.097,0.097] 0.097
I/O 3 0.097 0.005 [0.097,0.097] 0.097
I/O 4 0.097 0.005 [0.097,0.097] 0.097

(c) n=500

Table 5.1: RMWF—Mean Queue Size

Appendix A 116

Simulated Output—E(W) Theoretical
Devices Mean SD CI Value—E(W)

CPU 0.533 0.014 [0.536,0.530] 0.533
I/O 1 0.722 0.036 [0.729,0.715] 0.727
I/O 2 0.730 0.042 [0.738,0.722] 0.727
I/O 3 0.731 0.041 [0.739,0.723] 0.727
I/O 4 0.722 0.038 [0.730,0.714] 0.727

(a) n=100

Simulated Output—E(W) Theoretical
Devices Mean SD CI Value—E(W)

CPU 0.534 0.013 [0.536,0.532] 0.533
I/O 1 0.721 0.037 [0.726,0.716] 0.727
I/O 2 0.729 0.040 [0.735,0.723] 0.727
I/O 3 0.730 0.040 [0.736,0.724] 0.727
I/O 4 0.726 0.037 [0.731,0.721] 0.727

(b) n=200

Simulated Output—E(W) Theoretical
Devices Mean SD CI Value—E(W)

CPU 0.533 0.013 [0.534,0.532] 0.533
I/O 1 0.726 0.040 [0.730,0.722] 0.727
I/O 2 0.726 0.038 [0.729,0.723] 0.727
I/O 3 0.730 0.037 [0.733,0.727] 0.727
I/O 4 0.727 0.037 [0.730,0.724] 0.727

(c) n=500

Table 5.2: RMWF—Mean Waiting Time

Appendix A 117

Simulated Output—E(R) Theoretical
Devices Mean SD CI Value—E(R)

Total system 3.380 0.027 [3.385,3.375] 3.384

(a) n=100

Simulated Output—E(R) Theoretical
Devices Mean SD CI Value—E(R)

Total system 3.381 0.026 [3.385,3.377] 3.384

(b) n=200

Simulated Output—E(R) Theoretical
Devices Mean SD CI Value—E(R)

Total system 3.382 0.027 [3.384,3.38] 3.384

(c) n=500

Table 5.3: RMWF—Total Response Time

Appendix A 118

Simulated Output—E(Nq) Theoretical
Devices Mean SD CI Value—E(Nq)

CPU 0.356 0.010 [0.358,0.354] 0.356
I/O 1 0.024 0.002 [0.024,0.024] 0.024
I/O 2 0.024 0.002 [0.024,0.024] 0.024
I/O 3 0.024 0.002 [0.024,0.024] 0.024
I/O 4 0.025 0.002 [0.025,0.025] 0.025

(a) n=100

Simulated Output—E(Nq) Theoretical
Devices Mean SD CI Value—E(Nq)

CPU 0.355 0.011 [0.357,0.353] 0.356
I/O 1 0.024 0.002 [0.024,0.024] 0.024
I/O 2 0.024 0.002 [0.024,0.024] 0.024
I/O 3 0.024 0.002 [0.024,0.024] 0.024
I/O 4 0.024 0.002 [0.024,0.024] 0.024

(b) n=200

Simulated Output—E(Nq) Theoretical
Devices Mean SD CI Value—E(Nq)

CPU 0.355 0.010 [0.356,0.354] 0.356
I/O 1 0.024 0.002 [0.024,0.024] 0.024
I/O 2 0.024 0.002 [0.024,0.024] 0.024
I/O 3 0.024 0.002 [0.024,0.024] 0.024
I/O 4 0.025 0.002 [0.025,0.025] 0.024

(c) n=500

Table 5.4: RRMWF—Mean Queue Size

Appendix A 119

Simulated Output—E(W) Theoretical
Devices Mean SD CI Value—E(W)

CPU 0.533 0.014 [0.536,0.530] 0.533
I/O 1 0.182 0.013 [0.185,0.179] 0.183
I/O 2 0.182 0.015 [0.185,0.179] 0.183
I/O 3 0.183 0.015 [0.186,0.180] 0.183
I/O 4 0.185 0.013 [0.188,0.182] 0.183

(a) n=100

Simulated Output—E(W) Theoretical
Devices Mean SD CI Value—E(W)

CPU 0.532 0.014 [0.534,0.530] 0.533
I/O 1 0.182 0.013 [0.184,0.180] 0.183
I/O 2 0.183 0.014 [0.185,0.181] 0.183
I/O 3 0.183 0.014 [0.185,0.181] 0.183
I/O 4 0.184 0.014 [0.186,0.182] 0.183

(b) n=200

Simulated Output—E(W) Theoretical
Devices Mean SD CI Value—E(W)

CPU 0.533 0.014 [0.534,0.532] 0.533
I/O 1 0.183 0.013 [0.184,0.182] 0.183
I/O 2 0.183 0.014 [0.184,0.182] 0.183
I/O 3 0.183 0.013 [0.184,0.182] 0.183
I/O 4 0.184 0.014 [0.185,0.183] 0.183

(c) n=500

Table 5.5: RRMWF—Mean Waiting Time

Appendix A 120

Simulated Output—E(R) Theoretical
Devices Mean SD CI Value—E(R)

Total system 2.946 0.021 [2.950,2942] 2.946

(a) n=100

Simulated Output—E(R) Theoretical
Devices Mean SD CI Value—E(R)

Total system 2.945 0.022 [2.948,2.942] 2.946

(b) n=200

Simulated Output—E(R) Theoretical
Devices Mean SD CI Value—E(R)

Total system 2.947 0.022 [2.949,2.945] 2.946

(c) n=500

Table 5.6: RRMWF—Total Response Time

Appendix A 121

Simulated Output—E(Nq) Theoretical
Devices Mean SD CI Value—E(Nq)

CPU 0.640 0.021 [0.644,0.636] 0.641
I/O 1 0.157 0.008 [0.159,0.155] 0.157
I/O 2 0.157 0.008 [0.159,0.155] 0.157
I/O 3 0.157 0.009 [0.159,0.155] 0.157
I/O 4 0.157 0.009 [0.159,0.155] 0.155

(a) n=100

Simulated Output—E(Nq) Theoretical
Devices Mean SD CI Value—E(Nq)

CPU 0.640 0.021 [0.644,0.640] 0.641
I/O 1 0.157 0.008 [0.158,0.156] 0.157
I/O 2 0.156 0.008 [0.158,0.156] 0.157
I/O 3 0.156 0.008 [0.157,0.155] 0.157
I/O 4 0.157 0.009 [0.158,0.156] 0.157

(b) n=200

Simulated Output—E(Nq) Theoretical
Devices Mean SD CI Value—E(Nq)

CPU 0.642 0.021 [0.644,0.640] 0.641
I/O 1 0.157 0.008 [0.158,0.156] 0.157
I/O 2 0.157 0.008 [0.158,0.156] 0.157
I/O 3 0.156 0.008 [0.157,0.155] 0.157
I/O 4 0.157 0.008 [0.158,0.156] 0.157

(c) n=500

Table 5.7: RMF—Mean Queue Size

Appendix A 122

Simulated Output—E(W) Theoretical
Devices Mean SD CI Value—E(W)

CPU 0.787 0.023 [0.792,0.782] 0.789
I/O 1 0.964 0.046 [0.973,0.955] 0.964
I/O 2 0.964 0.047 [0.973,0.955] 0.964
I/O 3 0.964 0.048 [0.974,0.954] 0.964
I/O 4 0.964 0.048 [0.974,0.954] 0.964

(a) n=100

Simulated Output—E(W) Theoretical
Devices Mean SD CI Value—E(W)

CPU 0.787 0.024 [0.790,0.784] 0.789
I/O 1 0.964 0.046 [0.971,0.957] 0.964
I/O 2 0.962 0.045 [0.968,0.956] 0.964
I/O 3 0.961 0.047 [0.968,0.954] 0.964
I/O 4 0.962 0.048 [0.969,0.955] 0.964

(b) n=200

Simulated Output—E(W) Theoretical
Devices Mean SD CI Value—E(W)

CPU 0.789 0.023 [0.791,0.787] 0.789
I/O 1 0.966 0.045 [0.970,0.962] 0.964
I/O 2 0.965 0.045 [0.969,0.961] 0.964
I/O 3 0.961 0.047 [0.965,0.957] 0.964
I/O 4 0.963 0.045 [0.967,0.959] 0.964

(c) n=500

Table 5.8: RMF—Mean Waiting Time

Appendix A 123

Simulated Output—E(R) Theoretical
Devices Mean SD CI Value—E(R)

Total system 4.664 0.046 [4.673,4.655] 4.664

(a) n=100

Simulated Outputs—E(R) Theoretical
Devices Mean SD CI Value—E(R)

Total system 4.662 0.047 [4.669,4.655] 4.664

(b) n=200

Simulated Outputs—E(R) Theoretical
Devices Mean SD CI Value—E(R)

Total system 4.668 0.048 [4.672,4.664] 4.664

(c) n=500

Table 5.9: RMF—Total Response Time

Appendix A 124

Simulated Output—E(Nq) Theoretical
Devices Mean SD CI Value—E(Nq)

CPU 0.641 0.017 [0.644,0.638] 0.641
I/O 1 0.049 0.003 [0.050,0.048] 0.048
I/O 2 0.049 0.003 [0.050,0.048] 0.048
I/O 3 0.049 0.003 [0.050,0.048] 0.048
I/O 4 0.049 0.004 [0.050,0.048] 0.048

(a) n=100

Simulated Output—E(Nq) Theoretical
Devices Mean SD CI Value—E(Nq)

CPU 0.640 0.018 [0.643,0.637] 0.641
I/O 1 0.049 0.003 [0.049,0.049] 0.048
I/O 2 0.049 0.003 [0.049,0.049] 0.048
I/O 3 0.049 0.003 [0.049,0.049] 0.048
I/O 4 0.049 0.003 [0.049,0.049] 0.048

(b) n=200

Simulated Output—E(Nq) Theoretical
Devices Mean SD CI Value—E(Nq)

CPU 0.642 0.019 [0.644,0.640] 0.641
I/O 1 0.049 0.003 [0.049,0.049] 0.048
I/O 2 0.049 0.003 [0.049,0.049] 0.048
I/O 3 0.049 0.003 [0.049,0.049] 0.048
I/O 4 0.049 0.003 [0.049,0.049] 0.048

(c) n=500

Table 5.10: RRMF—Mean Queue Size

Appendix A 125

Simulated Output—E(W) Theoretical
Devices Mean SD CI Value—E(W)

CPU 0.789 0.019 [0.793,0.785] 0.789
I/O 1 0.300 0.018 [0.304,0.296] 0.297
I/O 2 0.299 0.017 [0.302,0.296] 0.297
I/O 3 0.300 0.018 [0.304,0.296] 0.297
I/O 4 0.301 0.021 [0.305,0.297] 0.297

(a) n=100

Simulated Output—E(W) Theoretical
Devices Mean SD CI Value—E(W)

CPU 0.787 0.002 [0.790,0.784] 0.789
I/O 1 0.299 0.018 [0.302,0.296] 0.297
I/O 2 0.300 0.017 [0.302,0.298] 0.297
I/O 3 0.299 0.017 [0.301,0.297] 0.297
I/O 4 0.299 0.019 [0.302,0.296] 0.297

(b) n=200

Simulated Output—E(W) Theoretical
Devices Mean SD CI Value—E(W)

CPU 0.789 0.021 [0.791,0.787] 0.789
I/O 1 0.299 0.018 [0.301,0.297] 0.297
I/O 2 0.299 0.017 [0.301,0.297] 0.297
I/O 3 0.299 0.018 [0.301,0.297] 0.297
I/O 4 0.298 0.018 [0.300,0.296] 0.297

(c) n=500

Table 5.11: RRMF—Mean Waiting Time

Appendix A 126

Simulated Output—E(R) Theoretical
Devices Mean SD CI Value—E(R)

Total system 4.664 0.046 [4.673,4.655] 4.664

(a) n=100

Simulated Output—E(R) Theoretical
Devices Mean SD CI Value—E(R)

Total system 4.662 0.047 [4.669,4.655] 4.664

(b) n=200

Simulated Output—E(R) Theoretical
Devices Mean SD CI Value—E(R)

Total system 4.668 0.048 [4.672,4.664] 4.664

(c) n=500

Table 5.12: RRMF—Total Response Time

Appendix A 127

Simulated Output—E(W) Theoretical
Devices Mean SD CI Value—E(Nq)

CPU 7.172 0.680 [7.308,7.036] 7.120
I/O 1 0.282 0.014 [0.285,0.279] 0.276
I/O 2 0.277 0.013 [0.280,0.274] 0.276
I/O 3 0.278 0.014 [0.281,0.275] 0.276
I/O 4 0.276 0.013 [0.279,0.273] 0.276

(a) Mean Queue Size (n=100)

Simulated Output—E(W) Theoretical
Devices Mean SD CI Value—E(W)

CPU 5.374 0.494 [5.473,5.275] 5.339
I/O 1 1.056 0.051 [1.066,1.046] 1.035
I/O 2 1.039 0.048 [1.049,1.029] 1.035
I/O 3 1.042 0.050 [1.052,1.032] 1.035
I/O 4 1.035 0.048 [1.045,1.025] 1.035

(b) Mean Waiting Time (n=100)

Table 5.13: RRMEF—Performance Metrics

Appendix B

Steady State Performance—Long Runs (LR)

Model:

• Random Policy Model Without Feedback (RMWF)

Replications:

• n = 100, 200 and 500

Performance Metrics:

• Mean Queue Size

• Mean Waiting Time

Input Parameters:

• Ranging from 10,000 to 500,000 input requests

128

Appendix B 129

No. of Simulated Output—E(Nq) Theoretical
Devices Customers Mean SD CI Value—E(Nq)

CPU 10k 0.354 0.018 [0.358,0.350] 0.356
20k 0.355 0.013 [0.358,0.352] 0.356
40k 0.356 0.010 [0.358,0.354] 0.356
60k 0.356 0.008 [0.358,0.354] 0.356
80k 0.356 0.006 [0.357,0.355] 0.356

100k 0.355 0.006 [0.356,0.354] 0.356
500k 0.356 0.003 [0.357,0.355] 0.356

I/O 1 10k 0.095 0.011 [0.097,0.093] 0.097
20k 0.096 0.008 [0.098,0.094] 0.097
40k 0.096 0.005 [0.097,0.095] 0.097
60k 0.096 0.004 [0.097,0.095] 0.097
80k 0.096 0.004 [0.097,0.095] 0.097

100k 0.096 0.003 [0.097,0.095] 0.097
500k 0.097 0.002 [0.097,0.097] 0.097

I/O 2 10k 0.097 0.012 [0.099,0.095] 0.097
20k 0.097 0.008 [0.099,0.095] 0.097
40k 0.097 0.006 [0.098,0.096] 0.097
60k 0.097 0.005 [0.098,0.096] 0.097
80k 0.097 0.004 [0.098,0.096] 0.097

100k 0.097 0.003 [0.098,0.096] 0.097
500k 0.097 0.001 [0.097,0.097] 0.097

I/O 3 10k 0.099 0.012 [0.101,0.097] 0.097
20k 0.097 0.007 [0.098,0.096] 0.097
40k 0.098 0.006 [0.099,0.097] 0.097
60k 0.098 0.005 [0.099,0.097] 0.097
80k 0.097 0.004 [0.098,0.096] 0.097

100k 0.098 0.003 [0.099,0.097] 0.097
500k 0.097 0.001 [0.097,0.097] 0.097

I/O 4 10k 0.095 0.011 [0.097,0.093] 0.097
20k 0.096 0.008 [0.098,0.094] 0.097
40k 0.096 0.005 [0.097,0.095] 0.097
60k 0.096 0.004 [0.097,0.095] 0.097
80k 0.097 0.004 [0.098,0.096] 0.097

100k 0.097 0.003 [0.098,0.096] 0.097
500k 0.097 0.002 [0.097,0.097] 0.097

Table 5.14: LR—RMWF (n=100)—Mean Queue Size

Appendix B 130

No. of Simulated Output—E(Nq) Theoretical
Devices Customers Mean SD CI Value—E(Nq)

CPU 10k 0.355 0.018 [0.358,0.352] 0.356
20k 0.356 0.015 [0.358,0.354] 0.356
40k 0.356 0.009 [0.357,0.355] 0.356
60k 0.356 0.008 [0.357,0.355] 0.356
80k 0.356 0.007 [0.357,0.355] 0.356

100k 0.356 0.006 [0.357,0.355] 0.356
500k 0.356 0.003 [0.356,0.356] 0.356

I/O 1 10k 0.096 0.011 [0.098,0.094] 0.097
20k 0.096 0.008 [0.097,0.095] 0.097
40k 0.096 0.005 [0.097,0.095] 0.097
60k 0.096 0.005 [0.097,0.095] 0.097
80k 0.097 0.004 [0.098,0.096] 0.097

100k 0.097 0.004 [0.098,0.096] 0.097
500k 0.097 0.002 [0.097,0.097] 0.097

I/O 2 10k 0.097 0.011 [0.099,0.095] 0.097
20k 0.097 0.008 [0.098,0.096] 0.097
40k 0.097 0.006 [0.098,0.096] 0.097
60k 0.097 0.004 [0.098,0.096] 0.097
80k 0.097 0.004 [0.098,0.096] 0.097

100k 0.097 0.003 [0.097,0.097] 0.097
500k 0.097 0.001 [0.097,0.097] 0.097

I/O 3 10k 0.098 0.011 [0.100,0.096] 0.097
20k 0.098 0.008 [0.099,0.097] 0.097
40k 0.097 0.006 [0.098,0.096] 0.097
60k 0.097 0.004 [0.098,0.096] 0.097
80k 0.097 0.004 [0.098,0.096] 0.097

100k 0.097 0.003 [0.097,0.097] 0.097
500k 0.097 0.001 [0.097,0.097] 0.097

I/O 4 10k 0.096 0.011 [0.098,0.094] 0.097
20k 0.096 0.008 [0.097,0.095] 0.097
40k 0.097 0.005 [0.098,0.096] 0.097
60k 0.097 0.004 [0.098,0.096] 0.097
80k 0.097 0.004 [0.098,0.096] 0.097

100k 0.097 0.003 [0.097,0.097] 0.097
500k 0.097 0.002 [0.097,0.097] 0.097

Table 5.15: LR—RMWF (n=200)—Mean Queue Size

Appendix B 131

No. of Simulated Output—E(Nq) Theoretical
Devices Customers Mean SD CI Value—E(Nq)

CPU 10k 0.356 0.019 [0.358,0.354] 0.356
20k 0.355 0.014 [0.356,0.354] 0.356
40k 0.356 0.001 [0.357,0.355] 0.356
60k 0.355 0.008 [0.356,0.354] 0.356
80k 0.356 0.007 [0.357,0.355] 0.356

100k 0.356 0.006 [0.357,0.355] 0.356
500k 0.356 0.003 [0.356,0.356] 0.356

I/O 1 10k 0.096 0.011 [0.097,0.095] 0.097
20k 0.096 0.008 [0.098,0.095] 0.097
40k 0.097 0.006 [0.097,0.096] 0.097
60k 0.097 0.005 [0.097,0.097] 0.097
80k 0.097 0.004 [0.097,0.097] 0.097

100k 0.097 0.003 [0.097,0.097] 0.097
500k 0.097 0.001 [0.097,0.097] 0.097

I/O 2 10k 0.097 0.011 [0.098,0.096] 0.097
20k 0.097 0.008 [0.098,0.096] 0.097
40k 0.097 0.005 [0.097,0.097] 0.097
60k 0.097 0.004 [0.097,0.097] 0.097
80k 0.097 0.004 [0.097,0.097] 0.097

100k 0.097 0.003 [0.097,0.097] 0.097
500k 0.097 0.001 [0.097,0.097] 0.097

I/O 3 10k 0.098 0.011 [0.099,0.097] 0.097
20k 0.098 0.008 [0.099,0.096] 0.097
40k 0.097 0.005 [0.097,0.097] 0.097
60k 0.097 0.004 [0.097,0.097] 0.097
80k 0.097 0.004 [0.097,0.096] 0.097

100k 0.097 0.003 [0.097,0.097] 0.097
500k 0.097 0.001 [0.097,0.097] 0.097

I/O 4 10k 0.096 0.011 [0.097,0.095] 0.097
20k 0.097 0.008 [0.098,0.096] 0.097
40k 0.097 0.005 [0.097,0.097] 0.097
60k 0.097 0.004 [0.097,0.097] 0.097
80k 0.097 0.004 [0.097,0.097] 0.097

100k 0.097 0.003 [0.097,0.097] 0.097
500k 0.097 0.002 [0.097,0.097] 0.097

Table 5.16: LR—RMWF (n=500)—Mean Queue Size

Appendix B 132

No. of Simulated Output—E(W) Theoretical
Devices Customers Mean SD CI Value—E(W)

CPU 10k 0.532 0.026 [0.537,0.527] 0.533
20k 0.533 0.018 [0.537,0.529] 0.533
40k 0.533 0.014 [0.536,0.530] 0.533
60k 0.534 0.011 [0.536,0.532] 0.533
80k 0.534 0.009 [0.536,0.532] 0.533
100k 0.533 0.009 [0.535,0.531] 0.533
500k 0.534 0.004 [0.535,0.533] 0.533

I/O 1 10k 0.710 0.076 [0.725,0.695] 0.727
20k 0.722 0.057 [0.733,0.711] 0.727
40k 0.722 0.036 [0.729,0.715] 0.727
60k 0.719 0.030 [0.725,0.713] 0.727
80k 0.721 0.026 [0.726,0.716] 0.727
100k 0.721 0.025 [0.726,0.716] 0.727
500k 0.728 0.012 [0.730,0.726] 0.727

I/O 2 10k 0.727 0.082 [0.743,0.711] 0.727
20k 0.727 0.054 [0.738,0.716] 0.727
40k 0.730 0.042 [0.738,0.722] 0.727
60k 0.730 0.031 [0.736,0.724] 0.727
80k 0.729 0.028 [0.735,0.723] 0.727
100k 0.727 0.024 [0.732,0.722] 0.727
500k 0.728 0.010 [0.730,0.726] 0.727

I/O 3 10k 0.741 0.081 [0.757,0.725] 0.727
20k 0.730 0.052 [0.740,0.720] 0.727
40k 0.731 0.041 [0.739,0.723] 0.727
60k 0.733 0.032 [0.739,0.727] 0.727
80k 0.730 0.027 [0.735,0.725] 0.727
100k 0.730 0.023 [0.735,0.725] 0.727
500k 0.729 0.010 [0.731,0.727] 0.727

I/O 4 10k 0.719 0.081 [0.735,0.703] 0.727
20k 0.720 0.054 [0.731,0.709] 0.727
40k 0.722 0.038 [0.730,0.714] 0.727
60k 0.724 0.029 [0.730,0.718] 0.727
80k 0.726 0.028 [0.732,0.720] 0.727
100k 0.726 0.024 [0.731,0.721] 0.727
500k 0.728 0.012 [0.730,0.726] 0.727

Table 5.17: LR—RMWF (n=100)—Mean Waiting Time

Appendix B 133

No. of Simulated Output—E(W) Theoretical
Devices Customers Mean SD CI Value—E(W)

CPU 10k 0.533 0.025 [0.537,0.529] 0.533
20k 0.533 0.002 [0.536,0.530] 0.533
40k 0.534 0.013 [0.536,0.532] 0.533
60k 0.533 0.011 [0.535,0.531] 0.533
80k 0.533 0.010 [0.534,0.532] 0.533
100k 0.533 0.009 [0.534,0.532] 0.533
500k 0.534 0.004 [0.535,0.533] 0.533

I/O 1 10k 0.722 0.077 [0.733,0.711] 0.727
20k 0.722 0.056 [0.730,0.714] 0.727
40k 0.721 0.037 [0.726,0.716] 0.727
60k 0.723 0.033 [0.728,0.718] 0.727
80k 0.725 0.028 [0.729,0.721] 0.727
100k 0.726 0.026 [0.730,0.722] 0.727
500k 0.728 0.011 [0.730,0.726] 0.727

I/O 2 10k 0.727 0.076 [0.738,0.716] 0.727
20k 0.730 0.057 [0.738,0.722] 0.727
40k 0.729 0.040 [0.735,0.723] 0.727
60k 0.727 0.029 [0.731,0.723] 0.727
80k 0.726 0.027 [0.730,0.722] 0.727
100k 0.726 0.024 [0.729,0.723] 0.727
500k 0.728 0.009 [0.729,0.727] 0.727

I/O 3 10k 0.730 0.079 [0.739,0.723] 0.727
20k 0.731 0.054 [0.736,0.723] 0.727
40k 0.730 0.040 [0.733,0.724] 0.727
60k 0.729 0.030 [0.733,0.725] 0.727
80k 0.729 0.025 [0.733,0.725] 0.727
100k 0.730 0.022 [0.733,0.727] 0.727
500k 0.727 0.010 [0.728,0.726] 0.727

I/O 4 10k 0.720 0.078 [0.731,0.709] 0.727
20k 0.722 0.053 [0.729,0.715] 0.727
40k 0.726 0.037 [0.731,0.721] 0.727
60k 0.727 0.030 [0.731,0.723] 0.727
80k 0.726 0.027 [0.730,0.722] 0.727
100k 0.727 0.024 [0.730,0.724] 0.727
500k 0.727 0.012 [0.729,0.725] 0.727

Table 5.18: LR—RMWF (n=200)—Mean Waiting Time

Appendix B 134

No. of Simulated Output—E(W) Theoretical
Devices Customers Mean SD CI Value—E(W)

CPU 10k 0.533 0.027 [0.535,0.531] 0.533
20k 0.533 0.019 [0.535,0.531] 0.533
40k 0.533 0.013 [0.534,0.532] 0.533
60k 0.533 0.011 [0.534,0.532] 0.533
80k 0.533 0.010 [0.534,0.532] 0.533
100k 0.534 0.009 [0.535,0.533] 0.533
500k 0.533 0.004 [0.533,0.533] 0.533

I/O 1 10k 0.722 0.077 [0.729,0.715] 0.727
20k 0.721 0.056 [0.726,0.716] 0.727
40k 0.726 0.040 [0.730,0.722] 0.727
60k 0.727 0.032 [0.730,0.724] 0.727
80k 0.728 0.028 [0.731,0.725] 0.727
100k 0.728 0.025 [0.730,0.726] 0.727
500k 0.728 0.010 [0.729,0.727] 0.727

I/O 2 10k 0.730 0.078 [0.737,0.723] 0.727
20k 0.727 0.054 [0.732,0.722] 0.727
40k 0.726 0.038 [0.729,0.723] 0.727
60k 0.727 0.031 [0.730,0.724] 0.727
80k 0.728 0.027 [0.730,0.726] 0.727
100k 0.728 0.023 [0.730,0.726] 0.727
500k 0.727 0.010 [0.728,0.726] 0.727

I/O 3 10k 0.732 0.079 [0.739,0.725] 0.727
20k 0.730 0.054 [0.735,0.725] 0.727
40k 0.730 0.037 [0.733,0.727] 0.727
60k 0.729 0.030 [0.732,0.726] 0.727
80k 0.729 0.026 [0.731,0.727] 0.727
100k 0.729 0.023 [0.731,0.727] 0.727
500k 0.727 0.010 [0.728,0.726] 0.727

I/O 4 10k 0.722 0.074 [0.729,0.715] 0.727
20k 0.726 0.053 [0.731,0.721] 0.727
40k 0.727 0.037 [0.730,0.724] 0.727
60k 0.727 0.030 [0.730,0.724] 0.727
80k 0.728 0.026 [0.730,0.726] 0.727
100k 0.728 0.024 [0.730,0.726] 0.727
500k 0.727 0.011 [0.728,0.726] 0.727

Table 5.19: LR—RMWF (n=500)—Mean Waiting Time

Appendix C

Steady State Performance—Long Runs (LR)

Model:

• RoundRobin Policy Model Without Feedback (RRMWF)

Replications:

• n = 100, 200 and 500

Performance Metrics:

• Mean Queue Size

• Mean Waiting Time

Input Parameters:

• Ranging from 10,000 to 500,000 input requests

135

Appendix C 136

No. of Simulated Output—E(Nq) Theoretical
Devices Customers Mean SD CI Value—E(Nq)

CPU 10k 0.353 0.002 [0.353,0.353] 0.356
20k 0.354 0.014 [0.357,0.351] 0.356
40k 0.355 0.010 [0.357,0.353] 0.356
60k 0.356 0.008 [0.358,0.354] 0.356
80k 0.355 0.007 [0.356,0.354] 0.356

100k 0.355 0.007 [0.356,0.354] 0.356
500k 0.356 0.003 [0.357,0.355] 0.356

I/O 1 10k 0.024 0.004 [0.025,0.023] 0.024
20k 0.024 0.003 [0.025,0.023] 0.024
40k 0.024 0.002 [0.024,0.024] 0.024
60k 0.024 0.002 [0.024,0.024] 0.024
80k 0.024 0.001 [0.024,0.024] 0.024

100k 0.024 0.001 [0.024,0.024] 0.024
500k 0.024 0.001 [0.024,0.024] 0.024

I/O 2 10k 0.024 0.004 [0.025,0.023] 0.024
20k 0.024 0.003 [0.025,0.023] 0.024
40k 0.024 0.002 [0.024,0.024] 0.024
60k 0.024 0.002 [0.024,0.024] 0.024
80k 0.024 0.001 [0.024,0.024] 0.024

100k 0.024 0.001 [0.024,0.024] 0.024
500k 0.024 0.001 [0.024,0.024] 0.024

I/O 3 10k 0.024 0.004 [0.025,0.020] 0.024
20k 0.024 0.003 [0.025,0.020] 0.024
40k 0.024 0.002 [0.024,0.020] 0.024
60k 0.024 0.002 [0.024,0.020] 0.024
80k 0.024 0.002 [0.024,0.020] 0.024

100k 0.024 0.001 [0.024,0.020] 0.024
500k 0.024 0.000 [0.024,0.020] 0.024

I/O 4 10k 0.024 0.003 [0.025,0.023] 0.024
20k 0.024 0.002 [0.024,0.024] 0.024
40k 0.025 0.002 [0.025,0.025] 0.024
60k 0.025 0.001 [0.025,0.025] 0.024
80k 0.024 0.001 [0.024,0.024] 0.024

100k 0.024 0.001 [0.024,0.024] 0.024
500k 0.024 0.001 [0.024,0.024] 0.024

Table 5.20: LR—RRMWF (n=100)—Mean Queue Size

Appendix C 137

No. of Simulated Output—E(Nq) Theoretical
Devices Customers Mean SD CI Value—E(Nq)

CPU 10k 0.354 0.020 [0.356,0.350] 0.356
20k 0.355 0.014 [0.357,0.353] 0.356
40k 0.356 0.010 [0.356,0.354] 0.356
60k 0.356 0.008 [0.356,0.354] 0.356
80k 0.355 0.007 [0.356,0.354] 0.356

100k 0.356 0.006 [0.357,0.355] 0.356
500k 0.356 0.003 [0.356,0.356] 0.356

I/O 1 10k 0.024 0.004 [0.025,0.023] 0.024
20k 0.024 0.003 [0.024,0.024] 0.024
40k 0.024 0.002 [0.024,0.024] 0.024
60k 0.024 0.002 [0.024,0.024] 0.024
80k 0.024 0.001 [0.024,0.024] 0.024

100k 0.024 0.001 [0.024,0.024] 0.024
500k 0.024 0.000 [0.024,0.024] 0.024

I/O 2 10k 0.024 0.004 [0.025,0.023] 0.024
20k 0.024 0.003 [0.024,0.024] 0.024
40k 0.024 0.002 [0.024,0.024] 0.024
60k 0.024 0.002 [0.024,0.024] 0.024
80k 0.024 0.001 [0.024,0.024] 0.024

100k 0.024 0.001 [0.024,0.024] 0.024
500k 0.024 0.000 [0.024,0.024] 0.024

I/O 3 10k 0.024 0.004 [0.025,0.023] 0.024
20k 0.024 0.003 [0.024,0.024] 0.024
40k 0.024 0.002 [0.024,0.024] 0.024
60k 0.024 0.002 [0.024,0.024] 0.024
80k 0.024 0.001 [0.024,0.024] 0.024

100k 0.024 0.001 [0.024,0.024] 0.024
500k 0.024 0.000 [0.024,0.024] 0.024

I/O 4 10k 0.024 0.004 [0.025,0.023] 0.024
20k 0.025 0.003 [0.025,0.025] 0.024
40k 0.024 0.002 [0.024,0.024] 0.024
60k 0.024 0.002 [0.024,0.024] 0.024
80k 0.024 0.001 [0.024,0.024] 0.024

100k 0.024 0.001 [0.024,0.024] 0.024
500k 0.024 0.000 [0.024,0.024] 0.024

Table 5.21: LR—RRMWF (n=200)—Mean Queue Size

Appendix C 138

No. of Simulated Output—E(Nq) Theoretical
Devices Customers Mean SD CI Value—E(Nq)

CPU 10k 0.355 0.020 [0.357,0.353] 0.356
20k 0.355 0.015 [0.356,0.354] 0.356
40k 0.356 0.011 [0.357,0.355] 0.356
60k 0.356 0.008 [0.357,0.355] 0.356
80k 0.356 0.008 [0.357,0.355] 0.356

100k 0.356 0.007 [0.357,0.355] 0.356
500k 0.356 0.003 [0.356,0.356] 0.356

I/O 1 10k 0.024 0.004 [0.024,0.024] 0.024
20k 0.024 0.003 [0.024,0.024] 0.024
40k 0.024 0.002 [0.024,0.024] 0.024
60k 0.024 0.002 [0.024,0.024] 0.024
80k 0.024 0.001 [0.024,0.024] 0.024

100k 0.024 0.001 [0.024,0.024] 0.024
500k 0.024 0.000 [0.024,0.024] 0.024

I/O 2 10k 0.024 0.004 [0.024,0.024] 0.024
20k 0.024 0.003 [0.024,0.024] 0.024
40k 0.024 0.002 [0.024,0.024] 0.024
60k 0.024 0.002 [0.024,0.024] 0.024
80k 0.024 0.001 [0.024,0.024] 0.024

100k 0.024 0.001 [0.024,0.024] 0.024
500k 0.024 0.000 [0.024,0.024] 0.024

I/O 3 10k 0.024 0.004 [0.024,0.024] 0.024
20k 0.025 0.003 [0.025,0.025] 0.024
40k 0.024 0.002 [0.024,0.024] 0.024
60k 0.024 0.002 [0.024,0.024] 0.024
80k 0.024 0.001 [0.024,0.024] 0.024

100k 0.024 0.001 [0.024,0.024] 0.024
500k 0.024 0.000 [0.024,0.024] 0.024

I/O 4 10k 0.025 0.004 [0.025,0.025] 0.024
20k 0.024 0.003 [0.024,0.024] 0.024
40k 0.024 0.002 [0.024,0.024] 0.024
60k 0.024 0.002 [0.024,0.024] 0.024
80k 0.024 0.001 [0.024,0.024] 0.024

100k 0.024 0.001 [0.024,0.024] 0.024
500k 0.024 0.000 [0.024,0.024] 0.024

Table 5.22: LR—RRMWF (n=500)—Mean Queue Size

Appendix C 139

No. of Simulated Output—E(W) Theoretical
Devices Customers Mean SD CI Value—E(W)

CPU 10k 0.530 0.029 [0.536,0.524] 0.533
20k 0.531 0.019 [0.535,0.527] 0.533
40k 0.533 0.014 [0.536,0.530] 0.533
60k 0.534 0.011 [0.536,0.532] 0.533
80k 0.533 0.009 [0.535,0.531] 0.533
100k 0.532 0.009 [0.534,0.530] 0.533
500k 0.534 0.004 [0.535,0.533] 0.533

I/O 1 10k 0.184 0.028 [0.190,0.178] 0.183
20k 0.183 0.002 [0.187,0.179] 0.183
40k 0.182 0.015 [0.185,0.179] 0.183
60k 0.180 0.012 [0.182,0.178] 0.183
80k 0.181 0.010 [0.183,0.179] 0.183
100k 0.182 0.009 [0.184,0.180] 0.183
500k 0.183 0.004 [0.184,0.182] 0.183

I/O 2 10k 0.178 0.030 [0.184,0.172] 0.183
20k 0.180 0.021 [0.184,0.176] 0.183
40k 0.182 0.016 [0.185,0.179] 0.183
60k 0.183 0.012 [0.185,0.181] 0.183
80k 0.183 0.010 [0.185,0.181] 0.183
100k 0.183 0.009 [0.185,0.181] 0.183
500k 0.183 0.004 [0.184,0.182] 0.183

I/O 3 10k 0.182 0.027 [0.187,0.177] 0.183
20k 0.183 0.022 [0.187,0.179] 0.183
40k 0.183 0.016 [0.186,0.180] 0.183
60k 0.184 0.013 [0.187,0.181] 0.183
80k 0.183 0.012 [0.185,0.181] 0.183
100k 0.183 0.010 [0.185,0.181] 0.183
500k 0.183 0.004 [0.184,0.182] 0.183

I/O 4 10k 0.180 0.025 [0.185,0.175] 0.183
20k 0.182 0.017 [0.185,0.179] 0.183
40k 0.185 0.014 [0.188,0.182] 0.183
60k 0.184 0.011 [0.186,0.182] 0.183
80k 0.183 0.010 [0.185,0.181] 0.183
100k 0.183 0.009 [0.185,0.181] 0.183
500k 0.183 0.004 [0.184,0.182] 0.183

Table 5.23: LR—RRMWF (n=100)—Mean Waiting Time

Appendix C 140

No. of Simulated Output—E(W) Theoretical
Devices Customers Mean SD CI Value—E(W)

CPU 10k 0.532 0.026 [0.536,0.528] 0.533
20k 0.532 0.021 [0.535,0.529] 0.533
40k 0.533 0.013 [0.535,0.531] 0.533
60k 0.533 0.012 [0.535,0.531] 0.533
80k 0.533 0.011 [0.535,0.531] 0.533
100k 0.534 0.010 [0.535,0.533] 0.533
500k 0.534 0.004 [0.535,0.533] 0.533

I/O 1 10k 0.183 0.028 [0.187,0.179] 0.183
20k 0.182 0.020 [0.185,0.179] 0.183
40k 0.182 0.015 [0.184,0.180] 0.183
60k 0.181 0.012 [0.183,0.179] 0.183
80k 0.182 0.010 [0.183,0.181] 0.183
100k 0.183 0.009 [0.184,0.182] 0.183
500k 0.183 0.003 [0.183,0.183] 0.183

I/O 2 10k 0.180 0.025 [0.184,0.176] 0.183
20k 0.182 0.017 [0.185,0.179] 0.183
40k 0.183 0.012 [0.185,0.181] 0.183
60k 0.183 0.010 [0.185,0.181] 0.183
80k 0.183 0.009 [0.184,0.182] 0.183
100k 0.183 0.008 [0.184,0.182] 0.183
500k 0.183 0.003 [0.183,0.183] 0.183

I/O 3 10k 0.181 0.029 [0.185,0.177] 0.183
20k 0.183 0.022 [0.186,0.180] 0.183
40k 0.184 0.016 [0.186,0.182] 0.183
60k 0.184 0.012 [0.186,0.182] 0.183
80k 0.183 0.011 [0.185,0.181] 0.183
100k 0.183 0.009 [0.184,0.182] 0.183
500k 0.183 0.003 [0.183,0.183] 0.183

I/O 4 10k 0.182 0.027 [0.186,0.178] 0.183
20k 0.185 0.020 [0.188,0.182] 0.183
40k 0.183 0.014 [0.185,0.181] 0.183
60k 0.183 0.013 [0.185,0.181] 0.183
80k 0.183 0.010 [0.184,0.182] 0.183
100k 0.183 0.009 [0.184,0.182] 0.183
500k 0.183 0.003 [0.183,0.183] 0.183

Table 5.24: LR—RRMWF (n=200)—Mean Waiting Time

Appendix C 141

No. of Simulated Output—E(W) Theoretical
Devices Customers Mean SD CI Value—E(W)

CPU 10k 0.533 0.028 [0.536,0.530] 0.533
20k 0.532 0.019 [0.534,0.530] 0.533
40k 0.534 0.014 [0.535,0.533] 0.533
60k 0.533 0.011 [0.534,0.532] 0.533
80k 0.533 0.010 [0.534,0.532] 0.533

100k 0.534 0.009 [0.535,0.533] 0.533
500k 0.533 0.004 [0.533,0.533] 0.533

I/O 1 10k 0.181 0.028 [0.184,0.178] 0.183
20k 0.182 0.020 [0.184,0.180] 0.183
40k 0.183 0.015 [0.184,0.182] 0.183
60k 0.183 0.011 [0.184,0.182] 0.183
80k 0.183 0.010 [0.184,0.182] 0.183

100k 0.183 0.009 [0.184,0.182] 0.183
500k 0.183 0.004 [0.184,0.182] 0.183

I/O 2 10k 0.183 0.030 [0.186,0.180] 0.183
20k 0.183 0.020 [0.185,0.181] 0.183
40k 0.183 0.015 [0.184,0.182] 0.183
60k 0.183 0.012 [0.184,0.182] 0.183
80k 0.183 0.010 [0.184,0.182] 0.183

100k 0.183 0.009 [0.184,0.182] 0.183
500k 0.183 0.003 [0.183,0.183] 0.183

I/O 3 10k 0.183 0.030 [0.186,0.180] 0.183
20k 0.184 0.021 [0.186,0.182] 0.183
40k 0.183 0.015 [0.184,0.182] 0.183
60k 0.183 0.012 [0.184,0.182] 0.183
80k 0.183 0.010 [0.184,0.182] 0.183

100k 0.183 0.009 [0.184,0.182] 0.183
500k 0.183 0.003 [0.183,0.182] 0.183

I/O 4 10k 0.185 0.027 [0.187,0.183] 0.183
20k 0.183 0.019 [0.185,0.181] 0.183
40k 0.183 0.015 [0.184,0.182] 0.183
60k 0.184 0.012 [0.185,0.183] 0.183
80k 0.183 0.010 [0.184,0.182] 0.183

100k 0.183 0.010 [0.184,0.182] 0.183
500k 0.183 0.003 [0.183,0.183] 0.183

Table 5.25: LR—RRMWF (n=500)—Mean Waiting Time

Appendix D

Steady State Performance—Long Runs (LR)

Model:

• Random Policy Model With Feedback (RMF)

Replications:

• n = 100, 200 and 500

Performance Metrics:

• Mean Queue Size

• Mean Waiting Time

Input Parameters:

• Ranging from 10,000 to 500,000 input requests

142

Appendix D 143

No. of Simulated Output—E(Nq) Theoretical
Devices Customers Mean SD CI Value—E(Nq)

CPU 10k 0.630 0.035 [0.637,0.623] 0.641
20k 0.633 0.027 [0.638,0.628] 0.641
40k 0.640 0.021 [0.644,0.636] 0.641
60k 0.640 0.018 [0.644,0.636] 0.641
80k 0.640 0.015 [0.643,0.637] 0.641

100k 0.639 0.014 [0.642,0.636] 0.641
500k 0.642 0.006 [0.643,0.641] 0.641

I/O 1 10k 0.158 0.016 [0.161,0.155] 0.157
20k 0.157 0.012 [0.159,0.155] 0.157
40k 0.157 0.008 [0.159,0.155] 0.157
60k 0.157 0.006 [0.158,0.156] 0.157
80k 0.157 0.006 [0.158,0.156] 0.157

100k 0.157 0.005 [0.158,0.156] 0.157
500k 0.157 0.002 [0.157,0.157] 0.157

I/O 2 10k 0.159 0.016 [0.162,0.156] 0.157
20k 0.157 0.011 [0.159,0.155] 0.157
40k 0.157 0.008 [0.159,0.155] 0.157
60k 0.157 0.006 [0.158,0.156] 0.157
80k 0.156 0.005 [0.157,0.155] 0.157

100k 0.156 0.005 [0.157,0.155] 0.157
500k 0.157 0.002 [0.157,0.157] 0.157

I/O 3 10k 0.157 0.015 [0.160,0.154] 0.157
20k 0.157 0.012 [0.159,0.155] 0.157
40k 0.157 0.009 [0.159,0.155] 0.157
60k 0.157 0.006 [0.158,0.156] 0.157
80k 0.156 0.006 [0.157,0.155] 0.157

100k 0.156 0.005 [0.157,0.155] 0.157
500k 0.157 0.002 [0.157,0.157] 0.157

I/O 4 10k 0.155 0.016 [0.158,0.152] 0.157
20k 0.157 0.011 [0.159,0.155] 0.157
40k 0.157 0.009 [0.159,0.155] 0.157
60k 0.156 0.007 [0.157,0.155] 0.157
80k 0.157 0.006 [0.158,0.156] 0.157

100k 0.157 0.005 [0.158,0.156] 0.157
500k 0.156 0.002 [0.156,0.156] 0.157

Table 5.26: LR—RMF (n=100)—Mean Queue Size

Appendix D 144

No. of Simulated Output—E(Nq) Theoretical
Devices Customers Mean SD CI Value—E(Nq)

CPU 10k 0.633 0.039 [0.639,0.627] 0.641
20k 0.640 0.028 [0.644,0.636] 0.641
40k 0.640 0.021 [0.643,0.637] 0.641
60k 0.641 0.018 [0.644,0.638] 0.641
80k 0.642 0.015 [0.644,0.640] 0.641

100k 0.642 0.013 [0.644,0.640] 0.641
500k 0.642 0.006 [0.643,0.641] 0.641

I/O 1 10k 0.157 0.017 [0.159,0.155] 0.157
20k 0.157 0.011 [0.159,0.155] 0.157
40k 0.157 0.008 [0.158,0.156] 0.157
60k 0.157 0.007 [0.158,0.156] 0.157
80k 0.157 0.006 [0.158,0.156] 0.157

100k 0.157 0.005 [0.158,0.156] 0.157
500k 0.157 0.002 [0.157,0.157] 0.157

I/O 2 10k 0.157 0.015 [0.159,0.155] 0.157
20k 0.157 0.012 [0.159,0.155] 0.157
40k 0.156 0.008 [0.157,0.155] 0.157
60k 0.157 0.006 [0.158,0.156] 0.157
80k 0.157 0.005 [0.158,0.156] 0.157

100k 0.156 0.005 [0.158,0.156] 0.157
500k 0.157 0.002 [0.157,0.157] 0.157

I/O 3 10k 0.157 0.016 [0.159,0.155] 0.157
20k 0.157 0.012 [0.159,0.155] 0.157
40k 0.156 0.008 [0.157,0.155] 0.157
60k 0.156 0.006 [0.157,0.155] 0.157
80k 0.156 0.006 [0.157,0.155] 0.157

100k 0.156 0.005 [0.157,0.155] 0.157
500k 0.157 0.002 [0.157,0.157] 0.157

I/O 4 10k 0.157 0.016 [0.159,0.155] 0.157
20k 0.157 0.011 [0.159,0.155] 0.157
40k 0.157 0.009 [0.158,0.156] 0.157
60k 0.156 0.007 [0.157,0.155] 0.157
80k 0.156 0.005 [0.157,0.155] 0.157

100k 0.157 0.005 [0.158,0.156] 0.157
500k 0.157 0.002 [0.156,0.157] 0.157

Table 5.27: LR—RMF (n=200)—Mean Queue Size

Appendix D 145

No. of Simulated Output—E(Nq) Theoretical
Devices Customers Mean SD CI Value—E(Nq)

CPU 10k 0.639 0.039 [0.642,0.636] 0.641
20k 0.639 0.028 [0.642,0.636] 0.641
40k 0.642 0.021 [0.644,0.640] 0.641
60k 0.642 0.017 [0.644,0.640] 0.641
80k 0.642 0.015 [0.643,0.641] 0.641

100k 0.642 0.013 [0.643,0.641] 0.641
500k 0.641 0.006 [0.642,0.640] 0.641

I/O 1 10k 0.157 0.016 [0.158,0.156] 0.157
20k 0.157 0.011 [0.158,0.156] 0.157
40k 0.157 0.008 [0.158,0.156] 0.157
60k 0.157 0.007 [0.158,0.156] 0.157
80k 0.157 0.006 [0.158,0.156] 0.157

100k 0.157 0.005 [0.157,0.157] 0.157
500k 0.157 0.002 [0.157,0.157] 0.157

I/O 2 10k 0.157 0.016 [0.158,0.156] 0.157
20k 0.156 0.011 [0.157,0.155] 0.157
40k 0.157 0.008 [0.158,0.156] 0.157
60k 0.157 0.007 [0.158,0.156] 0.157
80k 0.157 0.006 [0.158,0.156] 0.157

100k 0.157 0.005 [0.157,0.157] 0.157
500k 0.157 0.002 [0.157,0.157] 0.157

I/O 3 10k 0.157 0.016 [0.158,0.156] 0.157
20k 0.156 0.012 [0.157,0.155] 0.157
40k 0.156 0.008 [0.157,0.155] 0.157
60k 0.156 0.006 [0.157,0.155] 0.157
80k 0.157 0.006 [0.158,0.156] 0.157

100k 0.157 0.005 [0.157,0.157] 0.157
500k 0.157 0.002 [0.157,0.157] 0.157

I/O 4 10k 0.157 0.016 [0.158,0.156] 0.157
20k 0.157 0.011 [0.158,0.156] 0.157
40k 0.157 0.008 [0.158,0.156] 0.157
60k 0.157 0.007 [0.158,0.156] 0.157
80k 0.156 0.005 [0.156,0.156] 0.157

100k 0.156 0.005 [0.156,0.156] 0.157
500k 0.157 0.002 [0.157,0.157] 0.157

Table 5.28: LR—RMF (n=500)—Mean Queue Size

Appendix D 146

No. of Simulated Output—E(W) Theoretical
Devices Customers Mean SD CI Value—E(W)

CPU 10k 0.777 0.039 [0.785,0.769] 0.789
20k 0.780 0.003 [0.781,0.779] 0.789
40k 0.787 0.023 [0.792,0.782] 0.789
60k 0.787 0.020 [0.791,0.783] 0.789
80k 0.787 0.017 [0.790,0.784] 0.789
100k 0.786 0.015 [0.789,0.783] 0.789
500k 0.790 0.007 [0.791,0.789] 0.789

I/O 1 10k 0.970 0.096 [0.989,0.951] 0.964
20k 0.968 0.097 [0.987,0.949] 0.964
40k 0.964 0.046 [0.973,0.955] 0.964
60k 0.964 0.034 [0.971,0.957] 0.964
80k 0.964 0.032 [0.970,0.958] 0.964
100k 0.965 0.030 [0.971,0.959] 0.964
500k 0.966 0.013 [0.969,0.963] 0.964

I/O 2 10k 0.983 0.090 [1.001,0.965] 0.964
20k 0.967 0.062 [0.979,0.955] 0.964
40k 0.964 0.047 [0.973,0.955] 0.964
60k 0.965 0.037 [0.972,0.958] 0.964
80k 0.962 0.031 [0.968,0.956] 0.964
100k 0.963 0.029 [0.969,0.957] 0.964
500k 0.965 0.012 [0.967,0.963] 0.964

I/O 3 10k 0.963 0.085 [0.980,0.946] 0.964
20k 0.964 0.070 [0.978,0.950] 0.964
40k 0.964 0.048 [0.974,0.954] 0.964
60k 0.959 0.035 [0.966,0.952] 0.964
80k 0.962 0.032 [0.968,0.956] 0.964
100k 0.963 0.029 [0.969,0.957] 0.964
500k 0.964 0.011 [0.966,0.962] 0.964

I/O 4 10k 0.956 0.094 [0.975,0.937] 0.964
20k 0.964 0.061 [0.976,0.952] 0.964
40k 0.964 0.048 [0.974,0.954] 0.964
60k 0.959 0.038 [0.967,0.951] 0.964
80k 0.962 0.033 [0.969,0.955] 0.964
100k 0.963 0.029 [0.969,0.957] 0.964
500k 0.962 0.014 [0.965,0.959] 0.964

Table 5.29: LR—RMF (n=100)—Mean Waiting Time

Appendix D 147

No. of Simulated Output—E(W) Theoretical
Devices Customers Mean SD CI Value—E(W)

CPU 10k 0.780 0.044 [0.786,0.769] 0.789
20k 0.787 0.031 [0.791,0.783] 0.789
40k 0.787 0.024 [0.790,0.784] 0.789
60k 0.788 0.020 [0.791,0.785] 0.789
80k 0.789 0.016 [0.791,0.787] 0.789
100k 0.789 0.015 [0.791,0.787] 0.789
500k 0.789 0.007 [0.790,0.788] 0.789

I/O 1 10k 0.968 0.099 [0.982,0.954] 0.964
20k 0.964 0.064 [0.973,0.955] 0.964
40k 0.964 0.046 [0.971,0.957] 0.964
60k 0.965 0.036 [0.970,0.960] 0.964
80k 0.967 0.032 [0.972,0.962] 0.964
100k 0.966 0.030 [0.970,0.962] 0.964
500k 0.965 0.013 [0.967,0.963] 0.964

I/O 2 10k 0.967 0.086 [0.979,0.955] 0.964
20k 0.964 0.066 [0.973,0.955] 0.964
40k 0.962 0.045 [0.968,0.956] 0.964
60k 0.965 0.036 [0.970,0.960] 0.964
80k 0.965 0.030 [0.969,0.961] 0.964
100k 0.965 0.029 [0.969,0.961] 0.964
500k 0.963 0.013 [0.965,0.961] 0.964

I/O 3 10k 0.964 0.091 [0.977,0.951] 0.964
20k 0.965 0.068 [0.975,0.955] 0.964
40k 0.961 0.047 [0.968,0.954] 0.964
60k 0.960 0.035 [0.965,0.955] 0.964
80k 0.962 0.032 [0.967,0.957] 0.964
100k 0.961 0.030 [0.965,0.957] 0.964
500k 0.964 0.012 [0.966,0.962] 0.964

I/O 4 10k 0.963 0.092 [0.976,0.950] 0.964
20k 0.964 0.062 [0.973,0.955] 0.964
40k 0.962 0.048 [0.969,0.955] 0.964
60k 0.961 0.037 [0.966,0.956] 0.964
80k 0.961 0.031 [0.965,0.957] 0.964
100k 0.963 0.027 [0.967,0.959] 0.964
500k 0.963 0.013 [0.965,0.961] 0.964

Table 5.30: LR—RMF (n=200)—Mean Waiting Time

Appendix D 148

No. of Simulated Output—E(W) Theoretical
Devices Customers Mean SD CI Value—E(W)

CPU 10k 0.786 0.044 [0.790,0.782] 0.789
20k 0.786 0.031 [0.789,0.783] 0.789
40k 0.789 0.023 [0.791,0.787] 0.789
60k 0.789 0.019 [0.791,0.787] 0.789
80k 0.790 0.016 [0.791,0.789] 0.789

100k 0.790 0.015 [0.791,0.789] 0.789
500k 0.789 0.007 [0.790,0.788] 0.789

I/O 1 10k 0.963 0.092 [0.971,0.955] 0.964
20k 0.964 0.064 [0.970,0.958] 0.964
40k 0.966 0.045 [0.970,0.962] 0.964
60k 0.966 0.038 [0.969,0.963] 0.964
80k 0.966 0.033 [0.969,0.963] 0.964

100k 0.966 0.031 [0.969,0.963] 0.964
500k 0.965 0.014 [0.966,0.964] 0.964

I/O 2 10k 0.963 0.091 [0.971,0.955] 0.964
20k 0.962 0.064 [0.968,0.956] 0.964
40k 0.965 0.045 [0.969,0.961] 0.964
60k 0.966 0.037 [0.969,0.963] 0.964
80k 0.965 0.031 [0.968,0.962] 0.964

100k 0.965 0.029 [0.968,0.962] 0.964
500k 0.963 0.013 [0.964,0.962] 0.964

I/O 3 10k 0.964 0.091 [0.972,0.956] 0.964
20k 0.958 0.065 [0.964,0.952] 0.964
40k 0.961 0.047 [0.965,0.957] 0.964
60k 0.962 0.036 [0.965,0.959] 0.964
80k 0.963 0.033 [0.966,0.960] 0.964

100k 0.964 0.029 [0.967,0.961] 0.964
500k 0.964 0.012 [0.965,0.963] 0.964

I/O 4 10k 0.962 0.091 [0.970,0.954] 0.964
20k 0.962 0.064 [0.968,0.956] 0.964
40k 0.963 0.045 [0.967,0.959] 0.964
60k 0.963 0.038 [0.966,0.960] 0.964
80k 0.962 0.031 [0.965,0.959] 0.964

100k 0.962 0.029 [0.965,0.959] 0.964
500k 0.963 0.013 [0.964,0.962] 0.964

Table 5.31: LR—RMF (n=500)—Mean Waiting Time

Appendix E

Steady State Performance—Long Runs (LR)

Model:

• RoundRobin Policy Model With Feedback (RRMF)

Replications:

• n = 100, 200 and 500

Performance Metrics:

• Mean Queue Size

• Mean Waiting Time

Input Parameters:

• Ranging from 10,000 to 500,000 input requests

149

Appendix E 150

No. of Simulated Output—E(Nq) Theoretical
Devices Customers Mean SD CI Value—E(Nq)

CPU 10k 0.635 0.036 [0.642,0.628] 0.641
20k 0.636 0.029 [0.642,0.630] 0.641
40k 0.641 0.020 [0.645,0.637] 0.641
60k 0.641 0.016 [0.644,0.638] 0.641
80k 0.640 0.012 [0.642,0.638] 0.641

100k 0.640 0.011 [0.642,0.638] 0.641
500k 0.642 0.005 [0.643,0.641] 0.641

I/O 1 10k 0.049 0.006 [0.050,0.048] 0.048
20k 0.049 0.004 [0.050,0.048] 0.048
40k 0.049 0.003 [0.050,0.048] 0.048
60k 0.049 0.003 [0.050,0.048] 0.048
80k 0.049 0.002 [0.049,0.049] 0.048

100k 0.049 0.002 [0.049,0.049] 0.048
500k 0.049 0.001 [0.049,0.049] 0.048

I/O 2 10k 0.049 0.006 [0.050,0.048] 0.048
20k 0.048 0.004 [0.049,0.047] 0.048
40k 0.049 0.003 [0.050,0.048] 0.048
60k 0.048 0.002 [0.048,0.048] 0.048
80k 0.049 0.002 [0.049,0.049] 0.048

100k 0.049 0.002 [0.049,0.049] 0.048
500k 0.049 0.001 [0.049,0.049] 0.048

I/O 3 10k 0.049 0.006 [0.050,0.048] 0.048
20k 0.049 0.004 [0.050,0.048] 0.048
40k 0.049 0.003 [0.050,0.048] 0.048
60k 0.049 0.003 [0.050,0.048] 0.048
80k 0.049 0.002 [0.049,0.049] 0.048

100k 0.049 0.002 [0.049,0.049] 0.048
500k 0.049 0.001 [0.049,0.049] 0.048

I/O 4 10k 0.048 0.006 [0.049,0.047] 0.048
20k 0.048 0.004 [0.049,0.047] 0.048
40k 0.049 0.003 [0.050,0.048] 0.048
60k 0.049 0.003 [0.050,0.048] 0.048
80k 0.049 0.002 [0.049,0.049] 0.048

100k 0.049 0.002 [0.049,0.049] 0.048
500k 0.049 0.001 [0.049,0.049] 0.048

Table 5.32: LR—RRMF (n=100)—Mean Queue Size

Appendix E 151

No. of Simulated Output—E(Nq) Theoretical
Devices Customers Mean SD CI Value—E(Nq)

CPU 10k 0.636 0.037 [0.641,0.631] 0.641
20k 0.641 0.027 [0.645,0.637] 0.641
40k 0.640 0.019 [0.643,0.637] 0.641
60k 0.641 0.016 [0.643,0.639] 0.641
80k 0.642 0.014 [0.644,0.640] 0.641

100k 0.642 0.012 [0.644,0.640] 0.641
500k 0.641 0.005 [0.642,0.640] 0.641

I/O 1 10k 0.049 0.006 [0.050,0.048] 0.048
20k 0.049 0.004 [0.050,0.048] 0.048
40k 0.049 0.003 [0.049,0.049] 0.048
60k 0.049 0.003 [0.049,0.049] 0.048
80k 0.049 0.002 [0.049,0.049] 0.048

100k 0.049 0.002 [0.049,0.049] 0.048
500k 0.049 0.001 [0.049,0.049] 0.048

I/O 2 10k 0.048 0.006 [0.049,0.047] 0.048
20k 0.049 0.004 [0.050,0.048] 0.048
40k 0.049 0.003 [0.049,0.049] 0.048
60k 0.049 0.002 [0.049,0.049] 0.048
80k 0.049 0.002 [0.049,0.049] 0.048

100k 0.049 0.002 [0.049,0.049] 0.048
500k 0.049 0.001 [0.049,0.049] 0.048

I/O 3 10k 0.049 0.006 [0.050,0.048] 0.048
20k 0.049 0.005 [0.050,0.048] 0.048
40k 0.049 0.003 [0.049,0.049] 0.048
60k 0.049 0.003 [0.049,0.049] 0.048
80k 0.049 0.002 [0.049,0.049] 0.048

100k 0.049 0.002 [0.049,0.049] 0.048
500k 0.049 0.001 [0.049,0.049] 0.048

I/O 4 10k 0.048 0.006 [0.049,0.047] 0.048
20k 0.049 0.005 [0.050,0.048] 0.048
40k 0.049 0.003 [0.049,0.049] 0.048
60k 0.049 0.003 [0.049,0.049] 0.048
80k 0.049 0.002 [0.049,0.049] 0.048

100k 0.049 0.002 [0.049,0.049] 0.048
500k 0.049 0.001 [0.049,0.049] 0.048

Table 5.33: LR—RRMF (n=200)—Mean Queue Size

Appendix E 152

No. of Simulated Output—E(Nq) Theoretical
Devices Customers Mean SD CI Value—E(Nq)

CPU 10k 0.640 0.037 [0.643,0.637] 0.641
20k 0.640 0.027 [0.642,0.638] 0.641
40k 0.641 0.019 [0.643,0.639] 0.641
60k 0.641 0.016 [0.642,0.640] 0.641
80k 0.642 0.014 [0.643,0.641] 0.641

100k 0.642 0.012 [0.643,0.641] 0.641
500k 0.641 0.005 [0.641,0.641] 0.641

I/O 1 10k 0.049 0.006 [0.050,0.048] 0.048
20k 0.049 0.005 [0.050,0.048] 0.048
40k 0.049 0.003 [0.049,0.049] 0.048
60k 0.049 0.002 [0.049,0.049] 0.048
80k 0.049 0.002 [0.049,0.049] 0.048

100k 0.049 0.002 [0.049,0.049] 0.048
500k 0.049 0.001 [0.049,0.049] 0.048

I/O 2 10k 0.049 0.006 [0.050,0.048] 0.048
20k 0.049 0.004 [0.049,0.049] 0.048
40k 0.049 0.003 [0.049,0.049] 0.048
60k 0.049 0.003 [0.049,0.049] 0.048
80k 0.049 0.002 [0.049,0.049] 0.048

100k 0.049 0.002 [0.049,0.049] 0.048
500k 0.049 0.001 [0.049,0.049] 0.048

I/O 3 10k 0.049 0.006 [0.050,0.048] 0.048
20k 0.049 0.005 [0.049,0.049] 0.048
40k 0.049 0.003 [0.049,0.049] 0.048
60k 0.049 0.003 [0.049,0.049] 0.048
80k 0.049 0.002 [0.049,0.049] 0.048

100k 0.049 0.002 [0.049,0.049] 0.048
500k 0.049 0.001 [0.049,0.049] 0.048

I/O 4 10k 0.049 0.007 [0.050,0.048] 0.048
20k 0.049 0.004 [0.049,0.049] 0.048
40k 0.049 0.003 [0.049,0.049] 0.048
60k 0.049 0.002 [0.049,0.049] 0.048
80k 0.049 0.002 [0.049,0.049] 0.048

100k 0.049 0.002 [0.049,0.049] 0.048
500k 0.049 0.001 [0.049,0.049] 0.048

Table 5.34: LR—RRMF (n=500)—Mean Queue Size

Appendix E 153

No. of Simulated Output—E(W) Theoretical
Devices Customers Mean SD CI Value—E(W)

CPU 10k 0.782 0.042 [0.790,0.774] 0.789
20k 0.783 0.033 [0.790,0.776] 0.789
40k 0.788 0.022 [0.792,0.784] 0.789
60k 0.788 0.018 [0.792,0.784] 0.789
80k 0.787 0.014 [0.790,0.784] 0.789
100k 0.787 0.013 [0.790,0.784] 0.789
500k 0.789 0.005 [0.790,0.788] 0.789

I/O 1 10k 0.299 0.034 [0.306,0.292] 0.297
20k 0.300 0.026 [0.305,0.295] 0.297
40k 0.301 0.045 [0.305,0.297] 0.297
60k 0.300 0.038 [0.303,0.297] 0.297
80k 0.299 0.033 [0.302,0.296] 0.297
100k 0.299 0.031 [0.301,0.297] 0.297
500k 0.299 0.014 [0.300,0.298] 0.297

I/O 2 10k 0.299 0.037 [0.306,0.292] 0.297
20k 0.296 0.026 [0.301,0.291] 0.297
40k 0.299 0.018 [0.303,0.295] 0.297
60k 0.298 0.014 [0.301,0.295] 0.297
80k 0.299 0.012 [0.301,0.297] 0.297
100k 0.300 0.011 [0.302,0.298] 0.297
500k 0.300 0.005 [0.301,0.299] 0.297

I/O 3 10k 0.302 0.036 [0.309,0.295] 0.297
20k 0.299 0.026 [0.304,0.294] 0.297
40k 0.300 0.020 [0.304,0.296] 0.297
60k 0.299 0.015 [0.302,0.296] 0.297
80k 0.299 0.013 [0.302,0.296] 0.297
100k 0.299 0.012 [0.301,0.297] 0.297
500k 0.299 0.004 [0.300,0.298] 0.297

I/O 4 10k 0.295 0.036 [0.302,0.288] 0.297
20k 0.298 0.026 [0.303,0.293] 0.297
40k 0.300 0.020 [0.304,0.296] 0.297
60k 0.301 0.016 [0.304,0.298] 0.297
80k 0.299 0.013 [0.302,0.296] 0.297
100k 0.299 0.013 [0.302,0.296] 0.297
500k 0.299 0.005 [0.300,0.298] 0.297

Table 5.35: LR—RRMF (n=100)—Mean Waiting Time

Appendix E 154

No. of Simulated Output—E(W) Theoretical
Devices Customers Mean SD CI Value—E(W)

CPU 10k 0.783 0.042 [0.789,0.777] 0.789
20k 0.788 0.032 [0.793,0.783] 0.789
40k 0.787 0.022 [0.790,0.784] 0.789
60k 0.788 0.018 [0.791,0.785] 0.789
80k 0.789 0.015 [0.791,0.787] 0.789

100k 0.789 0.014 [0.791,0.787] 0.789
500k 0.789 0.006 [0.790,0.788] 0.789

I/O 1 10k 0.300 0.037 [0.305,0.295] 0.297
20k 0.301 0.025 [0.305,0.297] 0.297
40k 0.299 0.020 [0.302,0.296] 0.297
60k 0.299 0.016 [0.301,0.297] 0.297
80k 0.300 0.013 [0.302,0.298] 0.297

100k 0.300 0.012 [0.302,0.298] 0.297
500k 0.299 0.005 [0.300,0.298] 0.297

I/O 2 10k 0.296 0.036 [0.301,0.291] 0.297
20k 0.299 0.026 [0.303,0.295] 0.297
40k 0.299 0.017 [0.301,0.297] 0.297
60k 0.301 0.015 [0.303,0.299] 0.297
80k 0.300 0.013 [0.302,0.298] 0.297

100k 0.300 0.011 [0.302,0.298] 0.297
500k 0.299 0.005 [0.300,0.298] 0.297

I/O 3 10k 0.299 0.035 [0.304,0.294] 0.297
20k 0.300 0.027 [0.304,0.296] 0.297
40k 0.299 0.019 [0.302,0.296] 0.297
60k 0.299 0.015 [0.301,0.297] 0.297
80k 0.299 0.013 [0.301,0.297] 0.297

100k 0.299 0.012 [0.301,0.297] 0.297
500k 0.300 0.004 [0.300,0.299] 0.297

I/O 4 10k 0.298 0.038 [0.303,0.293] 0.297
20k 0.300 0.026 [0.304,0.296] 0.297
40k 0.299 0.020 [0.302,0.296] 0.297
60k 0.299 0.016 [0.301,0.297] 0.297
80k 0.298 0.013 [0.300,0.296] 0.297

100k 0.299 0.013 [0.301,0.297] 0.297
500k 0.299 0.005 [0.300,0.298] 0.297

Table 5.36: LR—RRMF (n=200)—Mean Waiting Time

Appendix E 155

No. of Simulated Output—E(W) Theoretical
Devices Customers Mean SD CI Value—E(W)

CPU 10k 0.788 0.042 [0.792,0.784] 0.789
20k 0.787 0.030 [0.790,0.784] 0.789
40k 0.789 0.021 [0.791,0.787] 0.789
60k 0.789 0.017 [0.791,0.787] 0.789
80k 0.790 0.016 [0.791,0.789] 0.789

100k 0.789 0.014 [0.791,0.787] 0.789
500k 0.789 0.006 [0.790,0.788] 0.789

I/O 1 10k 0.299 0.036 [0.302,0.296] 0.297
20k 0.299 0.027 [0.301,0.297] 0.297
40k 0.299 0.019 [0.301,0.297] 0.297
60k 0.300 0.015 [0.301,0.299] 0.297
80k 0.299 0.013 [0.300,0.298] 0.297

100k 0.299 0.012 [0.300,0.298] 0.297
500k 0.299 0.005 [0.300,0.299] 0.297

I/O 2 10k 0.298 0.035 [0.301,0.295] 0.297
20k 0.300 0.026 [0.302,0.298] 0.297
40k 0.300 0.018 [0.302,0.298] 0.297
60k 0.300 0.015 [0.301,0.299] 0.297
80k 0.300 0.013 [0.301,0.299] 0.297

100k 0.300 0.011 [0.301,0.299] 0.297
500k 0.299 0.005 [0.300,0.299] 0.297

I/O 3 10k 0.299 0.037 [0.302,0.296] 0.297
20k 0.299 0.027 [0.301,0.297] 0.297
40k 0.299 0.019 [0.301,0.297] 0.297
60k 0.300 0.016 [0.301,0.299] 0.297
80k 0.300 0.013 [0.301,0.299] 0.297

100k 0.299 0.011 [0.300,0.298] 0.297
500k 0.300 0.005 [0.300,0.299] 0.297

I/O 4 10k 0.301 0.039 [0.304,0.298] 0.297
20k 0.299 0.026 [0.301,0.297] 0.297
40k 0.299 0.019 [0.301,0.297] 0.297
60k 0.299 0.015 [0.300,0.298] 0.297
80k 0.299 0.012 [0.300,0.298] 0.297

100k 0.299 0.012 [0.300,0.298] 0.297
500k 0.299 0.005 [0.300,0.299] 0.297

Table 5.37: LR—RRMF (n=500)—Mean Waiting Time

Bibliography

[AB00] L. Aversa and A. Bestavros. Load Balancing a Cluster of Web Servers:
Using Distributed Packet Rewriting. In Proceedings of the 2000 IEEE
International Conference on Performance, Computing and Communi-
cations (IPCCC 2000), pages 24–29, February 2000.

[ADZ99] M. Aron, P. Druschel, and Z. Zwaenepoel. Efficient Support for P-
HTTP in Cluster-Based Web Servers. In Proceedings of the 1999
USENIX Annual Technical Conference, pages 185–198, June 1999.

[Aka99] Akamai Technologies, Inc. Akamai. http://www.akamai.com, 1999.

[All90] A. Allen. Probability, statistics, and queueing theory with computer
science applications. Academic Press Professional, Inc., 1990.

[APE96] E. Anderson, D. Patterson, and E.Brewer. The Magicrouter, an Ap-
plication of Fast Packet Interposing. http://www.cs.berkeley.edu/ ean-
ders/projects/magicrouter, May 1996.

[App04] Apple. Quick Time VR. http://www.apple.com/quicktime/qtvr, 2004.

[AVI04] AVI. Audio Video Interleave. http://www.audio-video-
affair.com/audiovideointerleave.html, 2004.

[AYHI96] D. Andersen, T. Yang, V. Holmedahl, and O. Ibarra. SWEB: Towards a
Scalable World Wide Web Server on Multicomputers. In Proceedings
of the 10th International Conference of Parallel Processing Sympo-
sium (IPPS), pages 850–856, April 1996.

[BGMT98] G. Bolch, S. Greiner, H. Meer, and K. Trivedi. Queueing networks and
Markov chains: modeling and performance evaluation with computer
science applications. Wiley-Interscience, 1998.

156

BIBLIOGRAPHY 157

[Bla00] U. Black. Internet Architecture. Prentice Hall PTR, 2000.

[BM98] M. Beck and T. Moore. The Internet2 Distributed Storage Infrastruc-
ture Project: An Architecture for Internet Content Channels. Computer
Networks and ISDN Systems, 30(22–23):2141–2148, November 1998.

[CC01] E. Casallicchio and M. Colajanni. A Client-aware Dispatching Algo-
rithm for Web Clusters Providing Multiple Services. In Proceedings of
the 10th International World Wide Web Conference (WWW10), pages
535–544, May 2001.

[CCCY02] V. Cardellini, E. Casalicchio, M. Colajanni, and P. Yu. The State of
the Art in Locally Distributed Web-server Systems. ACM Computing
Surveys, 34(3):263–311, June 2002.

[CCY99] V. Cardellini, M. Colajanni, and P. Yu. Dynamic Load Balancing on
Web Server Systems . IEEE Internet Computing, 3(3):28–39, May–
Jun 1999.

[Cis00] Cisco Systems, Inc. LocalDirector. http://www.cisco.com, 2000.

[Cis02] Cisco Systems, Inc. DistributedDirector. http://www.cisco.com, 2002.

[CYD98] M. Colajanni, P. Yu, and D. Dias. Analysis of Task Assignment Poli-
cies in Scalable Distributed Web-server Systems. IEEE Transactions
on Parallel and Distributed Systems, 9(6):585–600, June 1998.

[DCH+97] O. P. Damant, P. E. Chung, Y. Huang, C. Kintala, and Y-M. Wang.
ONE-IP: Techniques for Hosting a Service on a Cluster of Machines.
Computer Networks and ISDN Systems, 29(8–13):1019–1027, April
1997.

[DGLS99] B. Devlin, J. Gray, B. Laing, and G. Spix. Scalability terminology:
Farms, clones, partitions and pack: Racs and raps. Technical Report
MS–TR–99–85, Microsoft Research, 1999.

[DKMT96] M. Dias, W. Kish, R. Mukherjee, and R. Tewari. A Scalable and Highly
Available Web Server. In Proceedings of the 41st IEEE International
Computer Conference (COMPCON96), pages 85–92, March 1996.

[DSL04] DSL. DSL. http://www.dsl.com, 2004.

BIBLIOGRAPHY 158

[Eri95] Eric Meyer. Introduction to HTML.
http://www.cwru.edu/help/introHTML/toc.html, 1995.

[F5N00] F5Networks, Inc. BIG-IP. http://www.f5labs.com, 2000.

[Fou02] Foundry Networks’, Inc. ServerIron.
http://www.foundrynet.com/products/webswitches/serveriron, 2002.

[GEP02] M. Ganeshan, R. Eskicioglu, and R. Peters. A taxonomy of commer-
cial and prototype web server systems. Technical Report MS–TR–99–
85, University of Manitoba, 2002.

[HKM98] G. Hunt, G. King, and R. Mukherjee. Network Dispatcher: A Connec-
tion Router for Scalable Internet Services. In Proceedings of the 7th
International World Wide Web Conference (WWW7), pages 347–357,
April 1998.

[IBM01] IBM. IBM WebSphere Edge Server.
http://www.ibm.com/software/webservers/edgeserver, 2001.

[Jac63] J. Jackson. JobShop-Like Queueing Systems. Management Science,
10:131–142, 1963.

[Jai91] R. Jain. The Art of Computer Systems Performance Analysis. John
Wiley and Sons, Inc., 1991.

[Joi04] Joint Photographic Experts Group, JPEG. JPEG Committee.
http://www.jpeg.org, 2004.

[KBM94] E. Katz, M. Butler, and R. McGrath. A Scalable HTTP Server: The
NCSA Prototype. Computer Networks and ISDN Systems, 27:155–
164, November 1994.

[Ken00] Ken Holman. XSLT. http://www.xml.com/pub/a/2000/08/holman,
2000.

[Ken04] Ken Holman. XSL. http://www.w3.org/Style/XSL, 2004.

[KR03] J. Kurose and K. Ross. Computer Networking. Pearson Education,
Inc., 2003.

BIBLIOGRAPHY 159

[LK91] A. Law and W. Kelton. Simulation Modeling and Analysis. McGraw-
Hill, Inc., 1991.

[LMV02] P. L’Ecuyer, L. Meliani, and J. Vaucher. Ssj: A framework for stochas-
tic simulation in java. In Proceedings of the 2002 Winter Simulation
Conference, pages 234–242, December 2002.

[LVS98] LVS Project. Virtual Server Project. http://www.linuxvirtualserver.org,
1998.

[MA02] D. Menasce and V. Almeida. Capacity Planning for Web Services.
Prentice Hall PTR, 2002.

[Mac87] M. MacDougall. Simulating Computer Systems Techniques and Tools.
MIT Press, 1987.

[Mac04] MacroMedia. MacroMedia. http://www.macromedia.com, 2004.

[MB98] D. Maltz and P. Bhagwat. Application Layer Proxy Performance using
TCP Splice. Technical Report RC–21139, IBM T.J. Watson Research
Center, 1998.

[Mic00] Microsoft Corporation. Network Load Balancing.
http://www.microsoft.com, 2000.

[Mov04] Movie Picture Experts Group. Movie Picture Experts Group.
http://www.chiariglione.org/mpeg, 2004.

[NBK02] E. Nahum, T. Barzilai, and D. Kandlur. Performance issues in www
servers. IEEE/ACM Transactions on Networking (TON), 10:2–11, Feb
2002.

[NM00] S. Nadimpalli and S. Majumdar. Techniques for Achieving High Per-
formance Web Servers. In Proceedings of the 2000 International Con-
ference on Parallel Processing (ICPP), pages 233–241, August 2000.

[Nor98] Norman Walsh. XML. http://www.xml.com/pub/a/98/10/guide0.html,
1998.

[Nor00] Nortel Networks, Ltd. Alteon Web Switch.
http://www.nortelnetworks.com/products/01/alteon/webswitch,
2000.

BIBLIOGRAPHY 160

[Nor02] Nortel Networks, Ltd. Alteon Web OS.
http://www.nortelnetworks.com/products/01/alteon, 2002.

[PAB+98] V. Pai, M. Aron, G. Banga, G. Svendsen, P. Druschel, W. Zwaenepoel,
and E. Nahum. Locality-Aware Request Distribution on Cluster-Based
Network Servers. In Proceedings of the 8th ACM Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 205–216, November 1998.

[Res00] Resonate, Inc. Central Dispatch. http://www.resonate.com, 2000.

[SGR00] T. Schroeder, S. Goddard, and B. Ramamurthy. Scalable Web Server
Clustering technologies. IEEE Network, 14(3):38–45, May–Jun 2000.

[SHB00] Bianca Schroeder and Mor Harchol-Balter. Evaluation of task assign-
ment policies for supercomputing servers: The case for load unbal-
ancing and fairness. In Proceedings of the Ninth IEEE International
Symposium on High Performance Distributed Computing (HPDC’00),
page 211, 2000.

[TA01] Y. Teo and R. Ayani. Comparison of Load Balancing Strategies on
Cluster-based Web Servers. Transactions of the Society for Modeling
and Simulation, pages 185–195, Nov–Dec 2001.

[Tri02] K. Trivedi. Probability and Statistics with Reliability, Queuing and
Computer Science Applications. John Wiley and Sons, Inc., 2002.

[ZBCS99] X. Zhang, M. Barrientos, J. B. Chen, and M. Seltzer. HACC An Archi-
tecture for Cluster-Based Web Servers. In Proceedings of 3rd Usenix
Windows NT Symposium, pages 155–164, July 1999.

[Zeu02] Zeus Technology, Inc. Zeus Load Balancer. http://www.zeus.com,
2002.

