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Abstract

A dyadic Green’s function based solution is studied and implemented to
investigate the design characteristics of microstrip structures. This techngiue
requires derivation of an integral equation solution in terms of vector and scalar
potentials of the dyadic Green’s function. The extraction of Green’s function through
Sommerfeld integral equations is avoided by enforcing instead the approximate
Green’s function. The reliability and efficiency of this approach is thoroughly
examined and verified by comparing the solution with published results.

The final solution for the integral equation is acquired numerically by
implementing the Method of Moments. A complete theoretical study of the numerical
technique is presented. Surface current can be extracted from the solution and will
provide a starting point for analysis of microstrip structures. Numerical results
associated with the analysis of various microstrip lines and antennas are presented.
Design and experimental results of a circularly polarized microstrip antenna are also

provided.
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Chapter 1

Introduction

1.1 Microstrip Transmission Lines

Over the past few decades, microstrip structures have gained considerable
popularity in integrated circuit design. Major advantages such as efficient
integration of active components and fairly compact size have attracted circuit
designers to further explore the potentials of microstrip structures. This has resulted
in a substantial increase in the application of various forms of microstrip
transmission lines in different technological fields. Presently, their use is
concentrated mostly in high frequency communication and microwave circuit design.
Also, the same concept has been applied to design all kinds of printed circuits.

Demands for portable microwave circuitry for use in different applications,
such as aerospace and satellite communications, led to the evolution of printed circuit

design in early 1950s. Also, in the 1950s the concept of microstrip radiator was first
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proposed by Deschamps [8]. The first practical and fully operational microstrip
antenna was designed by Howell and Munson. Further advancement and study of
printed transmission lines resulted in the technology of Microwave Integrated
circuits (MICs). Presently, the use of MICs as well as Microwave Monolithic
Integrated Circuits (MMICs) is very popular among high frequency circuit designers
[11].

The demand for analysis tools for practical microstrip structures such as
printed circuit boards and integrated antennas is growing very fast. Due to the
advancement in microstrip technology, researchers as well as industries try to look
for the most efficient analysis approach. In the long run, their major concern is the
efficiency of the analysis tool, i.e. program run-time and computer memory
requirement. Therefore, an efficient tool with an accuracy of within few percentage is
certainly more desirable than a tool which has a higher accuracy but requires large
CPU time and memory. The main objective in circuit design these days is that as long
as there is a good starting point in design specifications, modifications can be made
faster experimentally. For most designers, this practical aspect is more important
when considering economical advantages.

A microstrip structure, in its simplest form, comprises of two parallel
conducting layers separated by a dielectric substrate. As shown in Fig. 1.1, the lower
conductor functions as a ground plane and the upper conductor acts as the
conducting line or radiator. These types of structures cannot support a pure TEM
(Transverse Electromagnetic) wave due to the presence of the dielectric-air interface.
Therefore, microstrip lines differ considerably from other transmission line
structures such as the waveguide and coaxial line. The open configuration of

microstrip structure makes it very convenient for use in integrated circuit design.
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Lumped elements such as transistors and resistors can be integrated on the same
surface as the transmission line. This will drastically reduce the size of circuit boards

and structures [11].

Dielectric substrate
conductor

Figure. 1.1 : A simple microstrip Structure

Antennas based on the microstrip concept inherit the same properties as all
microstrip structures. Microstrip antennas have considerable advantages over other
types of conventional antennas. For example, because of their thin profile and light-
weight structure, they can be easily integrated onto the structure of satellites,
rockets and missiles. Microstrip antennas’ popularity also lies in their compatibility
with solid state devices, which can be fabricated, along with the feed lines, on the
same substrate. However, they also suffer from some major disadvantages such as
narrow bandwidth, poor isolation between the feed and the radiating element and
poor endfire radiation. But, the advantages of microstrip antennas outweigh their
disadvantages and furthermore, various techniques have been developed in order to
counter these disadvantages [12]. Presently, there are numerous methods that can be
used for the design and analysis of microstrip structures. An outline on the existing

analysis methods is provided in the next section.
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1.2 Microstrip Analysis Techniques

There is a big demand for an accurate and efficient analysis method for
microstrip structures. Over the years researchers have developed various numerical
techngiues that can be applied to analyze microstrip structures. Presently, most of
the microstrip analysis methods can be placed into three different categories. In the
first category, the general microstrip characteristics are calculated from the
electrostatic properties of the structure. These are known as the quasi-static methods
and are adequate for designing circuits at low frequencies. The second category
involves dispersion models, which takes into consideration the results obtained from
either exact theoretical or experimental dispersion behaviour of the microstrip
structure. In the final category, the hybrid nature of the mode of propagation is taken
into consideration and is also known as the full wave analysis technique. Full wave
analysis methods consider the complete field distribution of the microstrip structures
and they require considerable computational and analytical efforts [6].

One of the most popular full wave analysis technique involves computation of
integral equations by implementing Green’s functions. The Green’s functions are
expressed in terms of Sommerfeld integrals which in turn form a solution to the wave
equation in a defined medium [3]. Different numerical techniques can be
implemented to solve and approximate the Sommerfeld integrals in order to extract
the Green’s function. This is generally a time consuming procedure. However, an
approximation of the Green’s function can be obtained through the Sommerfeld
identity without the use of Sommerfeld integrals. With the absence of numerical
integration, the calculation of Green’s functions becomes very efficient and will
translate to an efficient solution, both theoretically and numerically [5].

The use of an approximate Green’s function is considered to be less reliable for
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both far field and near field analysis. Nevertheless this method can still be
successfully implemented to analyze microstrip characteristics and will be the main
objective of this thesis. Previous studies in Green’s function solution by Yeung [2] and
Mosig and Gardiol [1], [3] will be the foundation of this work. First, there are few
reasonable assumptions that need to be considered in order to simplify the
formulation of the method. The microstrip substrate is assumed to be homogenous,
linear and isotropic and is assumed to extend to infinity in the transverse direction.
The conductor itself is assumed to have zero thickness and considered a perfect
electric conductor. Further assumptions are also introduced in the actual formulation

and will be discussed in the relevant chapters.

1.3 Objective and Overview

The primary objective of this thesis is to validate the full-wave analysis
method which implements an approximation method to extract Green’s function
instead of using the Sommerfeld integral technique. A computer program is written
in Fortran to acquire the desired solutions. The numerical data obtained from our
study is compared and verified with some published results. The solution is further
criticized by comparing the data with a full-wave analysis software tool called
PRELUDE [25]. Finally, a microstrip antenna is fabricated and analyzed to obtain
certain design parameters and then compared with the results obtained from the
numerical solution.

The thesis is presented in five different chapters. The second chapter focuses
on conceptualizing the theory of Green’s function and its integration into the Mixed

Potential Integral Equation. A thorough derivation of the concept associated with the
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method is provided. Following this, in chapter 3, the integral equation will be
completely transformed into a set of linear equations by implementing Method of
Moments. Important considerations in both numerical as well as computational
concepts will be explored thoroughly. In chapter 4, the theory associated with the
extraction of S-parameters will be discussed, followed by a general derivation of the
theory of far-field radiation pattern. Finally, the numerical data obtained from our
solution will be compared and criticized with published results. Conclusions along
with suggestions for improving the efficiency of the technique will be presented at the

end of the thesis.




Chapter 11

Mixed Potential Integral Equation and

Dyadic Green’s Function

2.1 Introduction

The Mixed Potential Integral Equation technique is widely used in the
analysis of wire antennas and has been successfully adapted to analyze microstrip
structures [3]. A detailed description of the theory and application of the Mixed
Potential Integral Equation (MPIE) is presented in this chapter. The dyadic Green’s

function used in the MPIE formulation will also be discussed in this chapter.

2.2 Mixed Potential Integral Equation (MPIE)

The MPIE has been extensively used in conjunction with the moment’s

method to analyze wire antennas. The modified MPIE formulation will be adapted in
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our work to analyze general microstrip structures [1]. Consider the microstrip

structure shown in Fig. 2.1, where C o is the conducting patch on top of a grounded

dielectric substrate of height A and dielectric constant €. The thickness of the top

conductor is assumed to be zero for this case. The electric and magnetic excitation

fields are denoted by Ef and H® , respectively.

2

A

Figure 2.1 : Microstrip structure with excitation

The excitation fields can be created by a finite source, located within the
conductor or can be the fields of a plane wave originating at infinity. Other excitation

fields are also integrable to this structure, depending on the application. The surface

charge density P and surface current density o ¢ are due to the introduction of a

conducting plane within the excitation fields. Therefore, the total electromagnetic

field is the sum of the excitation fields and the diffracted or scattered fields Ed and
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Hd . The diffracted fields are created by the presence of charge and current densities.
The total electric field has to satisfy Maxwell’s equations and the associated
boundary conditions on the ground plane and the interface S. Therefore, assuming a

perfect conductor, the boundary condition can be derived as,

< Etot (r) _

-4

e, x {E® (r) +E° (1)} [2.1]

Bl +ES(r) =0 [2.2]

The magnetic vector potential A can be such that,

H® - Lyxa [2.3]
n
Now, from Maxwell’s equation we have the following relationships

VXE = —jouH [2.4]

Substituting the magnetic potential, we obtain

Vx(Ed+jcoA) =0 [2.5]
By integrating the above equation and simplifying, the scattered field is given by,

E? = _joA_VV 12.6]

Similarly, the divergence to the scalar potential V is given by,
VeA = jouV [2.7]
The tangential component of the incident electric field is derived from the above

equations as,

E; = joA+VV [2.8]
The scalar and vector potentials can be further expressed as superposition integrals
of the corresponding Green’s functions and the surface current density and surface

charge density. Therefore :




Mixed Potential Integral Equation and Dyadic Green’s Function

A(r) = jéA(r;r') I (r)dr [2.9]
S

Vir) = J.GV(rlr')pS(r')dr' [2.10]
S

In the above equation G A and Gy, are the dyadic Green’s functions for the

vector potential and scalar potential respectively. Also, r represents the location of
the observation point and r' is the source point location. Solutions for the vector and
scalar potentials created by x- directed horizontal electric dipole is the basis of MPIE
formulation. G A (r|r') 1is a dyadic function and it consists basically of nine terms
which derives from,
éA = exG#j;+eyG§+esz1 [2.11]
Further simplification gives,

. xx xy xz yx Yy yz
Gy = ex(exGA +eyGA +ezGA)+ey(exGA +eyGA +ezGA)+

ez(exGZx + eyGZy + ezGZz) [2.12]

In the above equation, since there is no z-directed current, because of the
absence of vertical component in microstrip structures xz, yz and zz components are
neglected. Also, the xy and yx components vanish and through the MPIE solution,
where only tangential fields are considered, zx and zy components will not be
implemented in the solution. Therefore, only two components, xx and yy, need to be
considered. By substituting the dyadic Green’s function in the tangential component

of electric field given in equation 2.8, we obtain
E;(r) = jmj’c?:A (r|r) - () dr' + thGV(ryr') p, (r)dr [2.13]
S S

Furthermore, the scalar term can be derived in terms of surface current

10
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density by implementing the continuity equation.

I
Ps = p (Vi) [2.14]

Therefore, the MPIE is given as,
E;(r) = jcojG‘A (r|ry - T (P dr + Y, [Gy (r|r) V- I () dr [2.15]
S S

The above MPIE expression is used for the solution of all general microstrip
structures. The dyadic Green’s functions can be derived from either Sommerfeld
integrals or from it’s approximate solution. Our objective in this work is to implement
an approximation method to extract Green’s function components that can be
implemented in the MPIE. This approach will increase the efficiency of the solution.
In the above formulation, current density is the only unknown component and a
numerical technique will be applied for its’ solution. As will be explained later, the
Method of Moments is considered to solve the MPIE. This method basically involves
transforming the above integrals into a simple set of linear equations and calculating

the unknown (currents). The method will be discussed in the following chapter.

2.3 Approximation of Dyadic Green’s Function

The basic definition states that the Green’s functions are actually the
potentials created by unit sources located within a surface. Once the impulse
response, i.e. Green’s function, is known, the fields produced by any current
distribution can be easily determined by superposition. This is possible with Dirac
delta sources located throughout the whole surface, which in limit reduces to the
integral equation as given above in equation (2.15).

As mentioned previously, the dyadic Green’s functions for open microstrip

11
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structures are obtained through the Sommerfeld integrals [4]. Since the derivation of
Sommerfeld integrals is beyond the scope of our thesis, it will not be discussed here.
The computation of Sommerfeld integrals is not only time consuming but also
requires a large computation memory space. The solution is considerably demanding
in terms of run time and memory. Furthermore, this complexity grows as the
structure to be analyzed becomes larger. To avoid these problems, an approximate
form of spatial dyadic Green’s function can be implemented in the MPIE solution to
obtain the design characteristics of microstrip structures.

The Green’s function is represented by a combination of three different parts.
First part consists of a quasi-dynamic images, dominant in the near field region. The
second part represents the contribution of complex images, which are dominant in
the intermediate region and the final part represents the contribution of surface
waves dominating in the far field region of the substrate. The combination of these
three parts represents the closed form solution to the dyadic Green’s function. Among
the three regions, the near field approximation is most dominant and it substantially
influences the outcome of the final field solution [5]. The remaining two parts will be

briefly discussed below. We know that,

Gy = Gy + Gy + G [2.16]

Gy = Gy, + Gy i + G [2.17]

V,sw
In the above equation, the vector and scalar Green’s function associated with

the intermediate region is given as [5],

X K, N exp (“jkori)

i=1 z
N —ik r.
)i cexp (<Jk 1))
Gyei = g 2 O [2.19]
0 =] L

12
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where ry r'i are the complex distances and a., a'i are the amplitudes given by,

B.T
1 0
1+ jTo
a; = Aie - [2.20]
Similarly, the vector and scalar Green’s functions which contribute to the

surface waves are given by [5]

GA,sw T an (_2TEJ)R83]HO (kppp)kpp [2.21]
G = L (-2nj)Res,H (b, p)k [2.22]
V.sw ™ 4me 270 VppP) Fpp :

[o]

In above relations, & op is the surface wave pole which is located on the real

axis of the complex & 0 plane. Also, Res is the residue of the corresponding integrand

at the pole kp = kpp and given by
exp (—jk__ (z+2"))
Res, = Y [ 29 } lim(k -k )R [2.23]
! P (TE) ‘]ZkZO kp = kpp P pp TE
exp (—jk, (z+2))
Res, = 29 } lim(k -k ) (Rmm+ R, [2.24]
? P(TE,TM)[ Jj2k,, ko=kos P Tppt TITE TR
where,
TE 2k}
—\ 1 te
Rpp = P T [2.25]
1+ T €
5 ~j2k b
2k20(1-8r)(1—e )
RQ = [2.26]

TE Y2, M TR
(kz1+kzo) (kz1+£rkzo)<]+r10 e }j(]+r10 e z)

RTE and R Q take into consideration the properties associated with

microstrip substrate. The final solution for the surface wave Green’s functions can be

13



Mixed Potential Integral Equation and Dyadic Green’s Function

obtained from complex integrals. As mentioned before, this term however is not very
critical in the calculation of current distribution and near field solutions. We will not
further investigate the surface wave and intermediate region solutions. Therefore,
the above mentioned Green’s function associated with the two regions will not be
implemented in our analysis. Reference [5] provides the necessary derivations
related to the vector and scalar potential Green’s functions dominant in the far field
and intermediate field.

In actual calculations, for most practical microstrip structures, the
contribution of the quasi-dynamic images, which are dominant in the near field, is
sufficient. This is valid in most microstrip circuits and was studied rigorously by
Mosig and Gardiol [1]. Furthermore, the solution can be manipulated to obtain the
far-field properties of microstrip structures. In our MPIE solution, the quasi-static
approximation of Green’s function will be implemented to obtain surface currents and
far field radiation patterns. The solution will be verified by comparing it to the
published results [2], [4], [7] as well as results obtained from an existing full-wave
analysis tool. As stated before, this is the main focus of our study.

The vector and scalar components of the near field approximation of dyadic

Green’s function are given by,

exp (—jk r ) exp(—jk r,)
Gy (r|r) = ?[ P Pe) TP 1} [2.27]
T r, r,
, 1-n [ew (Fk,r,) = exp (—jk 1))
Gy (rir) = - -(1+ e L [2.28]
v () 47U(080{ r ( ﬂ)i§1 r
where,
rf = p2+ (z+2ih)2
_ (e.-1)
1= % D
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Mixed Potential Integral Equation and Dyadic Green’s Function

From the above approximate equations we can observe that the vector
potential does not depend on the substrate permittivity. The expressions are related
to image theory, in which the reflections from ground plane are accounted for by
virtual sources. The real source is approximated by the first exponential term and the
image source is approximated by the second term.

In our study the numerical integration of Sommerfeld integrals will be
completely avoided and instead the estimated near field approximations of the vector
and scalar Green’s functions will be used in the MPIE . Our work will be compared
with the studies conducted by Yeung [2] and Couture [4] to show that these
approximated solutions are as effective as the solutions obtained by implementing
Sommerfeld integrals. The following chapter focuses on the formulation associated

with the application of the method of moments to the MPIE.
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Chapter 111

The Method of Moments and its

Application to Mixed Potential Integral Equation

3.1 Introduction

The Method of Moments is generally used in the calculation of integral
equations. its use in electromagnetics was first thoroughly explored by Harrington
[10] and has been one of the more popular techniques for solving integral equations.
The main focus of this chapter is to understand the theory associated with the
transformation of Mixed Potential Integral Equation (MPIE) into linear equations by
implementing the Method of Moments (MOM). General properties of the MOM will
be discussed in the next section followed by a thorough explanation of basis and
testing functions. To make the final solution more efficient, we will introduce some
programming techniques in the algorithm. Some of the important methods that can

substantially reduce the run time are presented at the end.
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3.2 The Method of Moments
The Method of Moments (MOM) has been frequently used in applied

electromagnetics and high frequency problems for solving complex integral equation
based problems. The main feature of this method is that it can transform differential
equations (or integrals) to a set of linear equations by expanding the unknown
variables into a set of specific functions. The approximate solution can be obtained by
applying an error limiting process [10].

To clarify this method, consider an inhomogeneous function

L({f) =g [3.1]

In the above equation L is the linear operator, f is the response (unknown)

and g is the excitation coefficient (known). Since f can be expanded in a series of

functions f 7 f2, f 3> -+~ in the domain of L, we have,
f= Zocnfn [3.2]
n
where o are the expansion coefficients. For exact solution of f the
summation is usually infinite and fn will form a complete set of basis functions.
However, finite summation will provide an approximate solution for f , which will
then consist of a finite number of fn . Therefore, by substitution we get
2o L(f,) =g [3.3]
n

Assuming an inner product (f, g) has been determined for the problem, we

can define a set of weighting (testing) functions w ppWo Wy in the range of L.

Taking the inner product of the above function with each w, , we obtain,
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2o (w,  L(f,)) = (w,,,8 [3.4]

wherem = 1,2,3,..M and n = 1,2,3,...N . Now, this set of equations

can be written in a matrix form as,

| AR LA .5

where,

W, L)) ... (w,,8)
and l;gm:| = [3.6]

] =

If the above matrix is non-singular, the inverse of [Zmn:| can be easily

obtained. Therefore, the unknown response f can be calculated :

F= [l = )l fe] 3.7
where || = [f) o fp ]

As explained previously, increasing the matrix dimension improves the
solution. The accuracy of this method is also directly affected by the choice of basis

and testing functions.

3.3 Transformation of MPIE by MOM

The MPIE method described in Ch. 2 will now be implemented to the analysis
of general microstrip structures. In short, the procedure involves transforming the
MPIE into a system of linear equations through the application of MOM. This will

involve specifying basis and testing functions to expand the integral equations. To
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simplify the analysis, we will introduce the theory in two subsections : in the first
part, the basis functions will be discussed followed, in the second part, by a thorough

derivation of the MPIE to linear equation transformation.

3.3.1 Basis Functions

First of all, before deciding the type of basis functions to be used, the
microstrip structure to be examined is discretized into small rectangular/square
segments called charge segments. Despite the original shape of the microstrip
structure, which can be either rectangular or can assume any shape, its’ region can
be segmented into charge cells of equal dimension. It is important for the analysis
that the charge cells be of equal size, which is critical in order to minimize the
complexity of the MPIE solution. But this can be modified when analyzing structures
with varying dimensions. In our case rectangular charge cells are considered.

The selection of basis functions is one of the keys to obtaining satisfactory

results from MOM. Basis functions should be linearly independent so that f, given

above in equation 3.7, can be approximated reasonably. Subdomain basis functions
are used for our case mainly because no assumptions are needed for current
distributions over the conductor. The 2-D rooftop function and 2-D pulse function are
used as the basis functions for the expansion of surface current and charge density,
respectively. The use of basis and testing functions can be further clarified by an
example, provided below.

Consider a rectangular microstrip conductor of length / and width w, as shown
in Fig 3.1. To make the explanation simpler, assume that the y-component of the

current is negligible because the width is assumed to be very small. However, the y-
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directed current will be taken into consideration in the final calculation procedure.

The physical derivation is quite similar to the x-directed current and it will be

discussed in the end sections. For now, we will assume that the conductor only

supports x-directed currents.

.
N SR RO R
£ %‘é@&%@%@“ L

X

Figure 3.1 : Segmentation procedure for charge and current cells

The patch is segmented into N charge cells having equal dimensions of length

a and width w. Two adjacent charge cells, which share a common border along x-

direction, will form one current cell having dimension of (2a X w) . This will result

in a situation where one charge cell may contribute to the formation of four different

current cells, when considering the cell division along the y-direction. Since a pair of

charge cells constitute a current cell, there will be an overlapping of current cells. In

the figure, r. is the center of individual current cell. Also, r n+ and rn_ are the

centers of the adjacent charge cells which make up the current cell.
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The number of current cells is directly related to the number of charge cells.

For example, for a conductor strip with M charge cells, the number of current cells

is (M - 1) . But this might also depend on the shape of the conductor.

Each of these current cells support one basis function, as shown in Fig.3.2. For
the analysis of microstrip structures, the use of a rooftop function (2-D triangular
function) as the basis function is more suitable [2]. The expansion of current density

distribution by 2-D triangular function is given by [3],

N-1I

I T (r-r.) [3.8]

xn= x
1

J =

s

g I~

T\

n

where Ixn is the current associated with each cell ande (r—r. ) is the 2-D

triangular function. The introduction of é in the expansion above yields an

unknown current coefficient having dimension of a current. Furthermore, every
current coefficient gives the total current located within the individual current cells
and the current flowing across the boundary of two charge cells.

B pca <
Tx(r~rn) = a

0 elsewhere

[3.9]

Fig. 3.2 shows the actual distribution of basis functions over the conductor.
Since the current cells overlap each other, the same is true for the basis functions

because each current cell supports a single basis function.
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Rooftop Basis Function

current cell #1 :

current cell #2 X

Figure 3.2 : Current basis functions for x-directed cells
The surface charge density p, can be obtained by using the continuity
equation to the expansion of J, as described in Ch. 2. The notation b will be used

for the width of the microstrip line.

p, = _jim(vt.Js) [3.10]
N-1
1 d]l
" e ZE[E 2 Ianxv—rn% [3.11]
J n=1
; N-i . i
= souh n%jIxn[R(r—rn )—R(r—rn )] [3.12]

where, R (r) is a two dimensional unit pulse function situated over a single

charge cell.

I k<2 pl<2
R(r-r) = { 2 2 [3.13]
0 elsewhere

The charge density within each charge cell remains constant and is made up
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of at least two components from the two adjacent current cells.

2D pulse function

a

Figure 3.3 : Charge basis functions for x-directed cells

The concept is shown in Fig. 3.3, where the distribution of charge basis
function is located within the adjacent charge cells associated with an individual
current cell. This is true throughout the distribution of surface charge cells except at
the end cells, where the charge cell contributes to the formation of only one current
cell. The charge density is discontinuous on the borders between the adjacent charge
cells and a singularity situation may arise. Therefore, a testing function must be
selected carefully in order to avoid the points where the electric field becomes
singular. The selection of testing function will be discussed in the next section, which

describes the final transformation of MPIE to linear equations.

3.3.2 Equivalent Linear Equations for MPIE

The final step now is to introduce a testing function in the MPIE/MOM
formulation. As mentioned before, the testing function must be compatible with the

- basis functions. Once again, for simplicity we are still considering only x- directed
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currents and therefore all the tangential components are x- directed. Going back to

the tangential component of the electric field, from equation 2.13,

E (r) = jcoj@j;xmr') .Jx(r')dr'+thGV(r|r')px(r') dr' [3.14]
S S
= J(D{éf&x (r|r") ~Jx (r'ydr +ng— gGV(rlr') p, (r)dr [3.15]

Substituting the current density expansion in the vector term of the above
equation, we have,

. N-1I
' 1 d 1 1 T
E:(r) =%D nzz“IIanJ' @Zx(r]r)Tx(r—rn)dr+ T _S[Gv(r]r)px(r)dr [3.16]

In the first term of the MPIE equation, s, 1is the area of the associated

current cell and r, is the center of the cell. Similarly, substitution into the second

(scalar) term will give,

e jG) N
Ex(r) ='5"

1

T\

Ixn J. éjgx (r|r") Tx (r-r.) dr'

n=1

n

N-1
oa5, % n 3 (&(r=r,” )-Rlr=r,” ) Jor
+ jwabnazxn _EESJ Gy (rlr)| R\ r-r, Rlr-r =~ ||dr [3.17]

on

+
In the above equation, S, 1s the area of individual charge cell. and rr_z are

the centers of associated charge cells which make up one current cell. To simplify the

analysis, a vector potential I A which is created by the surface current and a scalar

potential FV’ created from a distribution of surface charge, is introduced. Therefore,
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Fj;x(rlrn') = I@Zx(r|r')Tx(r'~rn)dr' [3.18]
and
Ty(rlr,) = jGV(r|r')R(r'—ron)dr' [3.19]
SOT’L

In general calculations, the above equations must be evaluated by using a
numerical integration method. But in cases where the source and observation points
are located within the same cell, numerical integration is not possible due to
singularity. Thus, to avoid problems, the Green’s function should be separated into
their regular and singular parts. The singular parts can be integrated analytically
and then included back into the main formulation. The analytic solutions are very
crucial and will be further discussed in this chapter.

A simplified version of MPIE can now be written as,

N-1

E (r) = %"— Z_JIx Ty (rlr, )+ b 2 d [Tv(rlrn+ )—Fv(’"l’"n_ )]

n=1

[3.20]

A suitable test function is needed for the application of MPIE into MOM. The

test function must be compatible with the basis functions and as suggested in studies
by Mosig and Gardiol [3], unidimensional rectangular pulses are used. The pulse
functions are suitable to the basis functions that were chosen and also it can
contribute considerably in the efficiency of the algorithm. Each of these functions are
non-overlapping and located between the centers of two adjacent charge cells, which

form a single current cell.
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testing function
Ur)

2a

1 Ixl<a/2 y=0
U(r):{

0 elsewhere

Figure 3.4 : Testing functions ( 1-dimensional rectangular pulse function )

The set of the testing function can be written as,

N-1I
> Um (r—rm) [3.21]
m=1

In the above equation, T is the center of the associated current cell, as

shown in Fig. 3.4. The testing function is applied through the formation of an inner
product for the MPIE given in equation 3.20. Therefore forming the inner product of

the testing function with the MPIE, we obtain :

+
r

(U (r=1,),EL (1)) = [ B (r)dx =V, [3.22]

X

r
m

From the first term of eqn. 3.20, we have

N-1 "m
.Z? ; j L (r|r ) dx [3.23]

Similarly, for the second term,
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Jwab

i I, mj (_?—x[l“v(r|rn+ )—FV(rlrn_ ):Idx [3.24]

n=1

Further simplification of the second term can be achieved by removing the

derivative by the application of the inner product

r )—rv(rm“” r )]-

r )} [3.25]

N-1]

1 +
joab 2 Ixn [FV(rm
n=1]

Ixn [FV( rm_ "n i ) h 1HV( rm_

There are (IN — 1) number of current cells and also the same number of
testing functions. This will yield an (IN—1) x (N —1) system of linear equations
and it can be expressed in terms of two dimensional matrix in order to simplify the
formulation and numerical evaluation. The system of linear equation is now
transformed into a simple electric current/impedance relationship, where the RHS of

the MPIE equation is the product of current and impedance.

V] = Len) [ Zinn) [3.26]

With a proper specification of the source column, i.e. [me] , we can solve for

the unknown current distribution. Further derivation of the impedance matrix setup

is provided in the following section.

3.4 Moment Matrix Setup and Numerical Considerations

In the previous section, the MPIE has been completely transformed into a

system of linear equations. These linear equations are derived in terms of a square
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Source Location

[0, ..t 110 . 0]
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Tm T'm
Zm,n
Zm,n+1

Figure 3.5 : Delta-gap excitation for x-directed current cells

From the impedance matrix expression, equation 3.28, we can see that each
individual term in the matrix involves multiple integrations for both vector and
scalar potentials. A Gaussian quadrature technique is implemented for the actual
integration algorithm.

When the observation point is located within the source cell or very close to it,
i.e. the diagonal terms, application of Gaussian quadrature technique will not
provide reasonably accurate solutions for both the vector and scalar potential terms.
Furthermore, singularities for Green’s functions exist if the source and observation
points are located within the same cell. This leads to situations where the solution
may not converge properly. Thus, for diagonal terms, the dominant term in both

Green’s functions is given by the static Green’s functions, which are

xx K, 1
Gastatic = Iz 7 [3.29]
1 1
Gystatic = 2ne (g, +1) |r—r| [3.30]

From the above approximate equation, it can be seen that the vector potential

of the Green’s function is completely independent of substrate parameters whereas
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the scalar term depends on the effective permittivity of the substrate. The vector and
scalar component of the impedance matrix can now be expanded in terms of its’

corresponding static terms as [2]

XX XX xx
Ty = J( GA h GAstatic)Tde + _[GAstatichds [3.31]
Ty = J-(GV_ GVstatic)Rde + JGVstaticRxds [3.32]

The first term for both scalar and vector expressions can be integrated
normally by implementing a Gaussian quadrature (GQ) technique. But the second
term for both expressions needs to be integrated analytically and its full derivation is
provided in Appendix A. The analytic integration was studied previously by Yeung [2]
and was found to be quite satisfactory in terms of numerical efficiency. A full
numerical procedure is outlined in [4].

Going back to the Gaussian quadrature technique : it basically involves
choosing a number of quadrature points for integration and for accurate results an
odd number of points should be used. The reason being that by choosing odd number
of points the center of the associated current cell will be included in the integration
process. In our case, its applied for integration situations where the source and
observation points are not located within the same cell. The use of odd number of
points leads to a higher probability of source and observation points coinciding, when
located within the same cell. Therefore, odd number of qudrature points are taken
only for non-horizontal terms in the matrix and even number of quadrature points
are taken for the horizontal terms, where the occurrence of singularity is inevitable.
The number of quadrature points depends on the cell size as well as the location of

the source cell from the observation cell.
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The convergence of the solution is achieved easily when the observation cell is
located very far from the source cell. This also depends on cell sizes and the smaller
the cell size the higher the probability of fast convergence. Also, as the distance
between source and observation point gets bigger the convergence in the solution of
vector and scalar terms is easier. This can be clarified by observing the Green’s
function itself, as shown in Fig. 3.6. It shows the real and imaginary component of
vector potential Green’s function. We can see that the Green’s function becomes
slowly oscillating function with large distance and has less variation in the solution.
Thus, the calculation procedure at large separation is less exhaustive. However, we
can see that as the distance between the source and observation points become
smaller, the Green’s function value becomes larger. Therefore, for these situations,

higher number of quadrature points should be used to obtain accurate results.
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Figure 3.6 : Real and Imaginary component of Vector Potential Green’s function
In our case, for non-diagonal terms only five points were implemented for
Gaussian Quadrature integration method and for diagonal terms the number of
points was increased to ten. This significantly contributes to the efficiency of the final

calculation.

31



Method of Moments and its Application to Mixed Potential Integral Equation

Some numerical considerations will be discussed in the next section. First, we
have to take into account the y-directed currents for the solution. To make the
calculation more efficient, some programming techniques will be proposed in the

concluding section.

3.4.1 Y-Directed Currents

The concept and expressions derived in the previous sections can be
implemented for the solution of y-directed currents. To avoid redundancy, we will not
discuss the whole procedure, but the final derivations are provided in Appendix B. In
the final solution of MPIE/MOM, both x- and y- directed currents must be considered.
For illustration purposes, a rectangular strip of length / and width w is considered,

as shown in Fig. 3.7.

y-current cell

K/

x-current cell

Figure 3.7 : x- and y-directed current cells for a microstrip conductor

For the above conductor having M XN charge cells, there will be (M-I)N

current cells along x-direction and M(N-1) along y-direction. Every y-directed current
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cells support 2D rooftop functions, as in the x-directed cells. The same is true for the
testing functions. The expressions and matrix elements can be easily obtained by
carefully interchanging the couple terms (x,y), (a,b) and (M,N) within the defined
expressions. Important expressions for y-directed current cells are provided in
Appendix B. Thus, the final matrix equation to solve for the unknown currents along

x- as well as y-direction is given by,

xx xy

Z(M—-])NX(M—])NZM(N-—])X(M—])N Ix = Vi [3.33]
yx vy I

ZM-nNxMWN-1) L1y s v-1y| LY V;

N-1

In the above matrix equation, 7 = 7”" and consists of
ny 1 r +
mn joab z |: viU'm

+ + -
r. ) - FV( T Th )1 -
n=1»

[FV(rm— ’rn+ )—FV(rm— ‘rn— )] [3.34]

The total number of matrix elements is [(M-I)NXM (N-1)] 2. This

turns out to be a very big matrix and requires an exhaustive computation. Obviously,
it will also depend on the size of the structure and number of cells within the
structure. Larger cells will definitely increase the accuracy of the solution but will
result in an increase in computation time as well as data storage capacity. To balance
trade-offs between the two situation, there should a compromise.

From the above matrix equations, we have seen that the current distribution
along both x- and y- directions can be obtained from the MPIE/MOM solution. In
some applications the calculation of y-directed currents is not very important. For
example in the analysis of simple microstrip lines and feed lines with considerably

small widths, only the x- directed currents are sufficient to obtain necessary design
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characteristics. However, the solution of y-directed current is equally important in
most other type of structures. In the calculation of far field radiation pattern, the
contribution of currents along both direction is critical. In this work, to simplify the
MPIE solution as well as to budget run time, the y-directed currents are computed
only when desired. This does not however jeopardize the accuracy of the solution in
any way. Some considerations regarding the computation of the MPIE/MOM solution
will be discussed in the next section. This will involve introduction of numerical

techniques to save CPU time.

3.4.2 Programming Considerations

It is recommended that equal dimension cell sizes be used for the analysis of
general microstrip structures. It is more convenient to use a large number of same
sized cells rather than fewer number of cells of varying dimensions. However, this
can not be achieved sometimes due to the irregularity in the conductor shapes. Also,
this may account for extra computation time due to the increase in the number of
cells to accommodate the cell size equality. Some numerical techniques can be
implemented to counter these problems.

Since the matrix is more dominant in diagonal terms rather than off-diagonal
terms, some approximations may be used for non-diagonal terms. Previous study by
Mosig and Gardiol [3] shows that the numerical integration associated with the
scalar and vector potential of the Green’s function may be replaced by analytical
approximation for a large source to observation separation. Therefore, the vector and
scalar potential terms of the MPIE, given in equations 3.18 and 3.19, can be written

as,
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F0pr) =28 ()T, -r,) (kab) [3.85]
Ho 4
Iy (rir,,) = eOGV(r|r')R(r’—ron) (koab) [3.36]

For this work, the above approximation is implemented only for specified non-
diagonal terms and it is varied for different applications. The main reason is that we
have already introduced approximation to the Green’s function and by implementing
further approximation to the calculation we might end up with an error dominated
solution. But for a general case, if the distance is more than 20 times greater than the
length of the associated cell, the analytical approximation is implemented. As it will
be shown in the examples later, the accuracy is not affected significantly. This is also
true if we have to analyze large structures. If very large number of cell sizes are
needed, it’s numerically efficient to use the above approximation method for big
source to observation point separations.

The above described method drastically cuts down the run time and requires
less intensive computation. Since we are already implementing approximations for
the Green’s function itself, it may not be very wise to use any more numerical
approximation in the computation. However, some methods that can reduce
computation time is applied in our solution. One approach is to use the “comparison”
technique. Since the calculation of Green’s function depends on the absolute

distances between the source and observation point, we can avoid some repetion in

the calculation by comparison, i.e. Zmn = an . This is very critical in reducing run

time for the calculation procedure and is implemented in the calculation of all
general microstrip structures. One important requirement for this technique is that

the cell sizes must be of equal dimensions. It cannot be used for the analysis of
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structures where the use of different cell sizes is required.
Consider a strip having n number of segments, as shown in Fig. 3.8. The line
is segmented into n cells along the length and there are no segments along y-

direction. The cells have equal dimension and support x-directed currents only.

Zln
1 ¥
1 2 3 n
Zyy
I |
Zyg y
4 }
Zy3

Figure. 3.8 : Impedance calculation procedure for microstrip line

In the above conductor strip, the first calculation of Z values

[Z I VA 129 VA 13 Z J 4...Z In] will yield the impedance values for all the current cells,

by the method of comparison. Thus, calculation of Z,,, Z 37 ...Zn ; 1s not required

21’
and this will considerably reduce the run time. Only a single calculation of
impedance values will produce the solution for all the elements. This is crucial when
analyzing large microstrip structures such as antennas integrated with feed
structures and will be implemented in the calculation of microstrip antennas.

The Green’s function based solution has been completely derived in this
chapter. Also, several numerical considerations and techniques have been discussed.
The following chapter focuses on the procedure for acquiring frequency dependent

design characteristics such as the S-paramters and far field radiation patterns.
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Chapter IV

S-Parameters and

Far-Field Radiation Patterns

4.1 Introduction

This chapter focuses mainly on the two significant characteristics associated
with the design of microstrip antennas and circuits : S-parameters and far field
radiation patterns. In antenna design, S-Parameter terms such as the reflection
coefficient and transmission coefficient predicts the performance of the antenna to a
certain degree. The basic theory associated with the extraction of frequency
dependent S-Parameters is explained in this chapter. The E- and H- plane far field

radiation patterns for microstrip structures and antennas will also be discussed.
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4.2 Frequency Dependent S-Parameters

The S-parameters can be extracted directly from the MPIE/MOM solution. A
single port microstrip antenna is considered as an example to illustrate the
extraction of frequency-dependent S-parameters. However, the same technique can
be applied to all general microstrip structures. The technique involves the calculation
of S-parameter terms, such as the reflection coefficient, by considering the maximum
and minimum values of the current distribution along the transmission line. A
microstrip line with Delta-gap generator excitation is implemented as the feeding

mechanism. The radiating patch is fed by a microstrip line as shown in Fig. 4.1.

Radiating element

Feedline

Figure 4.1 : Simulation setup for a single feed microstrip antenna

The feedline should be considerably large to avoid higher order modes
generated by the discontinuity between the feedline and the radiating element. There
will be a region in the transmission line where the higher order modes are

suppressed. In this region, only the quasi-TEM mode propagates. For the analysis ,
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only the longitudinal current component is required. This means that the
computation of only x-directed currents is sufficient for the whole section of the
feedline. A standing wave pattern can be obtained for the current distribution along
the quasi-TEM line. Assuming that no radiation occurs in the feedline, we can
implement transmission line theory for the analysis of standing wave pattern to
obtain the reflection and transmission coefficients. A transmission line model of the

above antenna system is given in Fig. 4.2.

Delta-gap
Generator
ETAY
L
o {V ) ®
ZO Zin
@ @ L 4
Feedline Radiating
Element
Standing-wave .’ N v .
’ "/ + XC
[ ] | ! {
i i i i 1
X = O Xmax Xmin XI'
————
X

Figure 4.2 : Transmission line model for single feed microstrip antenna

In the model, a reference point X, is located after the voltage source and

before the radiating patch. Furthermore, the distance between x_  and x  is

considerably large to obtain a quasi-TEM behaviour between the voltage source and

the reference point %,.. The analysis concept is mainly based upon the values of

current maxima and minima at this portion of the feedline [2]. The current
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distribution along the feedline can be obtained from the MPIE/MOM solution. Then
location of these maxima and minima can be determined by simple observation of the
standing wave pattern. But for accurate results, an interpolation method should be
implemented. In our study a cubic spline interpolation method is used to determine

the exact location of current maxima and minima.

At the reference plane X, the reflection coefficient I" is obtained from,

r, = e [4.1]
SWR -1 jo
- Swiri® [4.2]
here,6 = 2% and d = ( ) . In the ab tati is the locati
winere, = _?.\,; an = xr——xmin . in € apove notation xmm 1S e location

where the first current minima occurs. The guided wavelength of the feedline is

obtained from transmission line theory [19] and is given as,

A= 2><|x -X [4.3]

g max min|

The standing wave ratio of the pattern can be calculated in terms of current

values by,

SWR = ]Imax| [4.4]
IIminl '

For the characterization of a single port circuit, such as the patch antenna,
analysis of the reflection coefficient is sufficient to validate the match between the
feeding mechanism and the radiating element. Therefore, the magnitude and phase

of the reflection coefficient is given by [15],

S
r,| = ||I—mi%.:[m—"‘| [4.5]

max min|
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0 _ 2z

phase — [4.6]

(% =%
The return loss, which is defined as the ratio in decibels of the incident power

to the reflected power, is given as
[4.7]

Similarly, the transmission loss can also be obtained. Transmission loss is
defined as the ratio of incident power and the transmitted power. As in the case of

return loss, the expression is obtained in decibels.

= 20l0g—— [4.8]
-,

inl

T,

The return loss is one of the significant design characteristics of microstrip
structures, including antennas. The main reason is that it helps to determine the
impedance matching between source and the circuit. An accurate calculation of the

return loss is very important in order to predict the final performance of the antenna.

4.3 E- and H- Plane Radiation Patterns

A horizontal electric dipole is used for the general derivation of the far field
pattern of microstrip structures. In the second chapter, it has been shown that the
electric field can be expressed in terms of vector and scalar potentials. From equation

[2.6]

E =-joA-VV [4.9]

The current density Js can be obtained from an equation derived in the

previous chapter. Therefore, going back to the electric field-current relationship, we

have [3]
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E = [Gg-J (r)ds [4.10]
S
where, GE represents the electric dyadic Green’s function and is given by

. f ] '
GE = —](DGA (r|r) +j?3—8TLV(VGV(r|r)) [4.11]

Since we are concerned with the far field radiation pattern, we can assume
that the distance between the source and observation point is infinitely large. This
will allow the application of asymptotic expressions for the Green’s function instead.
Therefore, the radiation field is then obtained by transforming the asymptotic terms

into spherical coordinates. The field relationships for unit current are [6],

E =0 [4.12]

2 .
cos§cos®,[e — sin~ O ~Jkr
E r ¢ [4.13]

6 L2 . cos0 r
ler—sm 0 - Je. =
tan(koh lsr—sin 9)

. —jkr
E = sin¢cos0 e [4.14]

Jer—sinze 4
(e, —sin’0)
tan koh €.~ sin 0

In order to calculate the far field pattern of the surface conductor, a pattern

cosB—j

multiplication method is used. The main consideration here is that the patch or the
conductor surface is assumed to be an array of current cells. The current distribution
for the entire patch can be obtained by the MPIE/MOM solution. Thus, by

introducing pattern multiplication in equation. 4.10, we obtain.
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. M-I Jh,Rery NI Jky (37
= GE Y AxIxie +GE S Aylyie [4.15]
i=1 i=1

Ee,q)

The dyadic Green’s function in spherical coordinates is obtained from
previous derivation and transforming the remaining electric field expression into
spherical coordinates, we can derive the final expression for the radiation field of a

microstrip structure. The E-plane and H-plane radiation patterns are calculated for

0 = O0 and ¢ = 900 respectively [6], [13]

E - Plane

.ler—sinze cos© N-1 Jk %,
Ey = S Axl e [4.16]
. 2 . cos® < XL
g.—sin 6 — je, : i=1
tan(koh lsr—sin 9)

N-1 ik .
cos 9 JRY;
E, = Y Anyie [4.17]

o~ 2 )
. ler— sin 9 =1
cos® — j
tan(koh ler—sinze)

H - Plane

e, - sin’® cosd N-1 Jkyy;
E I .e [4.18]

= A .
0 .2 ) cos® ; Yy
g.—sin 6 — je, = L=

tan(koh.ler—sin 9)

cosB
o=
ler—sinzﬁ i
cos® — j
tan(koh ler-sinze)

In the above equations, the current distributions along x and y must be

i
—~
~

_
=

ot [4.19]

&

!
"
>
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43



S- Parameters and Far Field Radiation Patterns

carefully implemented. In other words, the current distribution associated with each
current cells must be systematically chosen in relation to the location of the cells.

In this chapter, the theory associated with the extraction of S-parameters and
calculation of far field radiation patterns have been discussed thoroughly. In the
following chapter, the accuracy of the theoretical results, derived in this chapter, will
be compared with the existing results as well as results obtained from a software
tool. Furthermore, experimental results of a designed microstrip antenna will also be

presented
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Chapter V

Numerical Results

5.1 Introduction

The MPIE/MOM solution discussed in the previous chapters will now be used
to analyze actual microstrip structures. Before this method can be applied to the
design of various microstrip structures, it is important that the method be validated
first. In this chapter the MPIE/MOM solution generated from our study is verified by
comparing it to the results obtained from the research work done by Yeung [2],
Couture [4] and Balanis [7]. Also, the MPIE/MOM solution is used to design and
analyze microstrip antennas. Main characteristics such as the reflection coefficient
and the E- and H- Plane far field patterns is analyzed and compared with the results
obtained from the software tool PRELUDE [25]. Design, analysis and experimental
results for a circularly polarized microstrip antennas are also included in this

chapter.
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5.2 Microstrip Transmission Lines and Dipoles

Before implementing the MPIE/MOM formulation for the analysis of complex
structures, it is tested for simple microstrip problems with known solutions. The
verification involves testing the accuracy as well as the rate of convergence. Three
separate test simulations are performed. The first test involves a convergence test for
a full-wavelength, center fed horizontal dipole over an infinite ground plane. The
second simulation test looks at the accuracy of the input impedance calculation and
the last test focuses on the calculation of characteristic impedance for microstrip
lines of varying width dimensions. Furthermore, the effect of varying the height of
the substrate on the performance of microstrip line is observed. This analysis is

based mainly on the input impedance characteristic of the microstrip line.

5.2.1 Microstrip Dipoles

Microstrip dipoles have been analyzed by many researchers [8], [11], [16] and
is a good choice for validating our solution because of the availability of results from
their work. For the first simulation test, we analyze a full-wavelength horizontal
microstrip dipole placed in free space over an infinite ground plane. The width of the
line is considered to be significantly small in comparison to the length of the
microstrip line.

The main assumptions are that the microstrip dipole to be analyzed has zero

thickness, perfect-conducting transmission line located horizontally at a vertical
distance A over the ground plane. The ground plane is also considered to be a
perfectly conducting material. For this case, frequency is taken as a constant, such

that 7\,0 = 1. The dipole is fed at the center by a delta-gap voltage source, as shown
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in Fig. 5.1. The dielectric constant is g, = 1 for free space.

\ Ground Plane

Figure 5.1 : Microstrip dipole with delta-gap excitation

The conductor is segmented only along x-direction, i.e. there are only x-
directed current cells. Since the width of the conductor is very small, discretization
along y-direction is not necessary. An even number of charge cells are used because
that will generate an odd number of current cells, which translates to the location of
the voltage source exactly in the middle of the line. In other words, this causes an

alignment between the center of the dipole and the middle current cell, which is the

location of the voltage source. The length of the strip is [ = ]7»0 , the width is
w = 0.0lmm and the height from the dipole to the ground planeis A = 0.1 7L0.

The Current distribution for the dipole is obtained by the MPIE/MOM
solution for different number of charge cells. Our main goal here is to test the
convergence of the solution in relation to the density of current (or charge) cells along
the microstrip surface. A reasonably large number of charge cells are used for the
analysis.

The current values are obtained in terms of magnitude and phase and are

shown in Fig. 5.2 and Fig. 5.3 respectively. Fig 5.2 shows the magnitude of the
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current distribution along the length of the strip. Each current value is calculated

exactly at the center of each current cell. Five simulations are performed for different

cell densities.

100

Magnitude (x10%)
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- - 120 cells
: : 180 cells
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Distance (m)

Figure 5.2 : Current magnitude for single wavelength microstrip dipole

From the above figure it can be seen that the solution converges very fast. The
standing wave pattern seems to have converged after 40 cells. Fig 5.3 shows the

phase distribution for the full-wavelength transmission line.
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Figure 5.3 : Phase distribution for single wavelength microstrip dipole

For this case no approximation was introduced in the calculation and it did
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not upset the run-time of the simulation. For example, for 120 charge cells, the whole

simulation run took a little less than 8 seconds in a SPARC-1 machine. From above
plots, it can be seen that the MPIE/MOM formulation is valid when e. =1 and

convergence is achieved quite easily. With the convergence confirmed, we can
calculate the input impedance by implementing frequency and comparing the input
impedance values with the values obtained from [2].

For the second test, a half wavelength center fed dipole is simulated to

analyze the input impedance. The calculation is performed at f = 3 GHz and a

dielectric constant €, = I (free space) is used. The length of the dipole at the given

frequency is [ = 0.05m and w = 0.0Ilmm chosen as the width of the dipole, in

order to compare it to the existing results [4]. The input impedance for the dipole is
calculated for various ground plane to dipole height A . For a total of 100 charge cells,

the input impedance value is calculated from A = Imm to h = 10mm and is
shown in Fig. 5.4. Also, the impedance values obtained from the [2] is plotted in the

same graph.
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Figure 5.4 : Input impedance of the microstrip line for different ground
to dipole height
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A slight discrepancy can be seen in our simulation results. For these type of
analysis, the use of further numerical approximations should be avoided. In Fig. 5.5,
once again the input impedance values are calculated for a wide range of ground

plane to dipole heights.
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Figure 5.5 : Input impedance vs. ground plane to dipole height

In the above graph, we can see that the input impedance value approaches a

virtually constant value as the height between the dipole and the ground plane

approaches a very large value. The real part of the impedance approaches 732 and

the imaginary part shifts close to 42.5Q), which are the exact known values of a half-
wavelength dipole and was obtained from Balanis [7]. These values also agree with
the data obtained from similar test performed by Yeung [2]. Thus, from the above
data, we can say that the result obtained from the MPIE/MOM solution for a small
substrate height is satisfactory and the error can be considered marginal. However,
precautions should be taken when analyzing structures having a small substrate
height. In other words, further numerical approximations should be avoided.

The impedance values obtained from our MPIE/MOM solution also seem to be
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relatively accurate for thicker substrates. Comparison of the results show a marginal
error in our MPIE/MOM solution as opposed to the solution obtained from
Sommerfeld Integral equation. The associated errors are present mainly due to the
introduction of approximate Green’s function. Additional simulation tests are carried

out to further explore the accuracy and error domination in the final solution.

5.2.2 Characteristic Impedance of Microstrip Lines

In this section, an open microstrip transmission line is analyzed to verify

design parameters such as the characteristic impedance Z o and effective relative

permittivity €, £ The results are compared with the data obtained from a previous

work by Couture [4].
First consideration to be made here is that the guided wavelength value is

approximately equal to the free space wavelength, so that the source can be located

at a distance 0.20A , from one end of the microstrip line. The total length is

[ = 0.10m and the width w is varied according to the simulation tests in [4] for
comparison purposes.

The thickness of the substrate is A~ = Imm and the dielectric constant is
€. = 2.3 . As mentioned in the previous chapter, the guided wavelength can be found
by method of current maxima and minima, which are obtained by implementing the

cubic spline method. A typical standing wave pattern for the microstrip line is shown

in Fig. 5.6.
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Figure 5.6 : Current distribution for off-center fed microstrip line

In the above standing wave pattern, the total number of charge cells used is
120 and the width is Imm. One curious observation is that the location of the source
is reflected clearly in the standing wave pattern. A slight peak is observed at about
20 mm, where the source is located. Far-field radiation pattern for both E- and H-

planes are provided in Fig. 5.7. The values are individually normalized to their

respective maxmima.
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Figure 5.7 : Far field radiation pattern for off-center fed microstrip line
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The guided wavelength of the transmission line can be calculated in terms of

the free space wavelength and effective dielectric constant.

A
xg = 2 [5.1]

sy

Since we can calculate the guided wavelength from the current values, the

effective dielectric constant and characteristic impedance can be calculated from the

following transmission line relationships [18],

(}LOT [5.2]
€ pp = | — .
o = 7,
2
Zo =-]—601n[@+ 1+(2—@” [5.3]
w w

Fr

In this part of the simulation, 130 charge cells are used at a frequency

f =2 GHz . The result seems to converge around this number of cells but it is
slightly higher than the number of cells used in reference [2]. This does not cause any
significant change in the final result. Table 1 shows a side by side comparison of the
characteristic impedance and effective dielectric constant values obtained from our

MPIE/MOM solution and the ones obtained from [4].

Table 5.1 : Characteristic Impedance of Off-Center Fed Microstrip Line

Width(mm) Zo (MOM) Zo (Ref[4]) | goep (MOM) |  Eopp (Ref.[4])
0.4 140.32 134.5 1.716 1.802
1.0 102.12 93.5 1.751 1.841
2.0 68.91 64.5 1.810 . 1.908
4.0 42.72 41.0 1.886 1.994

From the data table, it can be seen that the results obtained from our MPIE/
MOM solution are very close to the results obtained from Sommerfeld integrals. As

expected, slight error is noticable in our calculation because of Green’s function
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approximation. However, it does not significantly influence the final result.

In this MPIE/MOM solution, numerical approximation is first introduced in
the MOM procedure itself. As mentioned previously, the exact solution is obtained
only by applying an infinite number of matrix terms. However this is not possible and
thus a reasonable number of matrix elements have to be used. This approximation
reduces the accuracy to a certain degree. Since this is unavoidable, further
approximation in most MPIE/MOM solutions is prevented through the use of
Sommerfeld integrals to calculate Green’s function. In our case, since the use of
Sommerfeld integrals is totally absent and instead approximate Green’s functions
are implemented, we are definitely introducing more approximations in the
calculation. For example, the data obtained from the simulations show a marginal
error associated with our solution. The discrepancy in the results seems to be fairly
minimal and does not significantly affect the overall analysis procedure. In the
calculation of characteristic impedance of the microstrip lines, we can see that on
average the error does not exceed to more than few percents. The worst case has an

error of about 9% for impedance and about 5% for effective dielectric constant.

5.3 Microstrip Antennas

From the analysis of simple microstrip structures, we have seen that the
results are in a reasonable agreement with the data obtained from the exact
Sommerfeld equations’ solution. Now, we will further test the MPIE/MOM solution
by analyzing microstrip antennas. First, a single feed microstrip antenna is analyzed
and then compared with the results obtained from a software tool called PRELUDE.

Next, a circularly polarized antenna will be designed and tested experimentally. The
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main design criterias to be considered here is the input impedance and reflection
coefficient. Also, the E- and H- plane radiation pattern will be calculated and

compared with the PRELUDE results.

5.3.1 Single Feed/Linearly Polarized Microstrip Antenna

Microstrip patch antennas with a single feed can be used in different
applications. However, due to some disadvantages such as low bandwidth, patch
arrays are more popular as opposed to a single patch element. The performance of the
array depends critically on the individual elements and care must be taken in
designing these elements. In this section a single feed patch antenna is analyzed in
terms of it’s main design characteristics such as the input impedance and return loss.
The numerical results are compared with the data obtained from PRELUDE.

The main design parameters used for the calculation are selected so that it

can be simulated with both tools. The antenna is designed at a frequency

f = 4GHz and the substrate parameters are : dielectric constant € = 2.2 and

height A = 0.79mm. The radiating patch is of length [ = 25mm and width

w = 40mm . The dimensions of the patch are taken such that the width is slightly

less than the full wavelength in the substrate and the length is about half

wavelength long, for the design frequency. For the first test simulation, the patch is
fed directly by a 50Q line without the use of any impedance matching, as shown in
Fig. 5.8. The width of the feedline is about 2.46mm. The feedline is made
considerably long to suppress higher order modes and to generate quasi-TEM mode

only. For this case, the length is I12mm .
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25mm

40mm

50 ohm feed line '

Figure 5.8 : Segmentation for microstrip antenna

A typical three dimensional standing wave pattern, for an x-directed current,

would look similar to the pattern shown in Fig 5.9, which is obtained for 168 current

cellsat f = 4GHz.
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Figure 5.9 : Current distribution along the microstrip antenna
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From the above plot, we can see that the standing wave pattern along the
feedline is considerably large due to reflection. Since the antenna is not matched,
most of the current will be reflected back and it is clearly noticable in the graph. In
the calculation procedure, current distribution are calculated for the whole structure.
In large structures this is not necessary, if the structure is symmetric. For example,
in the above microstrip antenna, the radiating patch itself can be disected into upper
and lower symmetrical segments. Thus, calculation for only one half is needed and
solution of the whole patch can be obtained. However, this technique is not
implemented in this case to verify the solution, but it will be applied in future

simulation examples in order to minimize run time.
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Figure 5.10 : Contour plot for the current distribution along the patch

From the contour plot in Fig. 5.10 we can clearly see that the calculation is
qualitatively accurate and current distribution is symmetric for the whole radiating

element. This further validates our MPIE/MOM calculation procedure.
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The input impedance values are first calculated and verified by comparing it
to the results obtained from PRELUDE. This requires a frequency sweep test and it
is performed for frequency range of f = 3.8GHz to f = 42GHz. The input
impedance is calculated right on the junction where the feed line is joined by the
radiating element. This may accurately predict the input impedance of the radiating
element alone. The real component (normalized) of the input impedance values
calculated from MPIE/MOM solution is shown in Fig. 5.11. It’s normalized to a
reference impedance of 50€2. The resonance frequency lies somewhere between 3.90
GHz and 3.95GHz. The normalized imaginary component is shown in Fig. 5.12 and
on close inspection, we can see that the imaginary part of the input impedance passes

through zero at about 3.92GHz. Therefore, at this resonant frequency the input

impedance of the patch is approximately /50€2.
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Figure 5.11 : Normalized input impedance (Real) vs. frequency
The same frequency sweep test is performed in PRELUDE and the real and

imaginary parts of the input impedance patterns are incorporated in the same

graphs, i.e. in Fig. 5.11 and Fig.5.12 respectively.
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Figure 5.12 : Normlized input impedance (Imaginary) vs. frequency

The impedance values from the above results show that our resonant
frequency is about 0.25% lower than the one obtained from PRELUDE. This is
expected due to the introduction of Green’s function approximation. Also, we can see
an increase in the impedance values around the resonant frequency. As verified in
the previous section, an increase in the impedance value is expected from our
calculation. However, since the increase is very marginal at resonant frequency, the

overall design procedure will not be affected very much. From PRELUDE results, we

can observe that the input impedance at resonance is about /44€), which is lower

than the impedance calculated from MPIE/MOM. Next, the far field radiation

patterns will be calculated.

Fig. 5.13 and 5.14 shows the normalized E-plane(q) = OO) and H-plane

((I) = 900J far field radiation pattern obtained from our calculation and from

PRELUDE.
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Figure 5.13 : E-Plane radiation pattern for the microstrip antenna

From the E-plane radiation patterns, we can see that the co-polar and
crossploar levels from our calculation are almost identical to PRELUDE results. A

slight error is noticable but it is not too significant.
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Figure 5.14 : H-Plane radiation pattern for the microstrip antenna

Furthermore, this error is more dominant in the crosspolar level but since the

crosspolar values are small and insignificant, there is virtually no concern about the
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error margin in this case. As in the E-plane case, the H-plane radiation pattern
results also show a good agreement with the results obtained from PRELUDE with
minor error for both copolar and crosspolar values.

Some discrepancies are found in our results when compared with PRELUDE.
As the reason stated before, it’s caused mainly by the introduction of approximation
procedure in the calculation of Green’s function. The error we have observed so far
does not significantly affect the overall design procedure.

The antenna is matched by adding a simple quarter wave transformer in
between the 502 feedline and the radiating patch. To match the antenna, it’s

resonance frequency must be known. In our case, we will design the matching

structure at 3.92 GHz. The input impedance of the patch is then the impedance at

that frequency multiplied by the reference impedance, which is 50€2. Since we are

considering resonance, the input impedance is assumed to have a pure real value.

25mm

quarter-wave line

LITTTTITTTT T s

40mm

e e

14.2 mm

50 ohm feed line '

Figure 5.15 : Segmentation for the matched microstrip antenna

We use a simple quarter wave transmission line to match the antenna to the

feedline. From transmission-line theory, the characteristic impedance of the quarter-
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wave line can be obtained [19]
7 = ZO Z . [5.4]

where, Zin is the input impedance of the antenna and ZO is the impedance of the

feed line. In our case, the quarter wave line impedance is 87€2. Therefore, the final
dimension of the transformer for the above impedance criteriais: ! = /4.2mm and

w = 0.9mm. Fig. 5.15 further illustrates our explanation. The results obtained
from both simulations follow.

A frequency sweep is performed to verify the matching of the antenna, which
is probably the most critical design criteria at this point. Reflection coefficient (S11)
for the entire antenna structure is calculated for the same frequency range, i.e.
[ = 3.8GHz to f = 4.2GHz. The first run showed that the antenna is slightly off
resonance and therefore several test runs are performed for slight variations in the
radiator width. It is found that the performance of the antenna is satisfactory when
the width of the radiator is changed from 25mm to 24.4mm. Also the width of the
quarter-wave line is changed to 0.85mm. The remaining dimensions are left
unchanged.

The reflection coefficient results obtained from PRELUDE and the one

obtained from our calculation are shown in Fig. 5.16. For this case, the Dirac-delta

voltage source is placed right at the end of 50Q feedline. Also, PRELUDE allows the
location of source at the end. The location of the source point will definitely influence
the outcome of the final solution. For comparison purpose, such as in our case, the
source location in both methods should be similar. Therefore, here we have tried to

place the source at exactly the same point for both cases.
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Figure 5.16 : Reflection coefficient of the matched antenna

From the graph we can see that the antenna is matched at the design
frequency. The comparison between the two results show that on average there is a
discrepancy of about 5 dB in the MPIE/MOM solution. Our calculation show that the
antenna is matched quite well at the resonant frequency (less than -20dB) and it’s a
reasonable starting point for most antenna designs.

Also, the simulation run time for the MPIE/MOM solution is observed and

provided in table 5.2.

Table 5.2 : Run-time for MPIE/MOM solution (SPARC-5 Machine)

Frequency points Total run time
(minutes)
7 7:09
14 15:03
21 23:42

The above results are obtained for 57 current cells and the program is
compiled under Unix environment in a Sparc 5 machine. No other processes were

active during the running phase. Because of the unavailability of run time data for
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actual Sommerfeld Integral based MOM solution, comparison tests between the two
methods could not be carried out. However, the data from the above table shows that
our MPIE/MOM solution is reasonably efficient. The run-time efficiency also depends
on the effectiveness of program coding as well as the computer capabilities. The
program is written in FORTRAN and care is taken to make it as efficient as possible.
However, this still does not guarantee the maximum efficiency that might be possible

for the solution. Therefore, from our observations it is justifiable to mention that our

MPIE/MOM solution is reasonably efficient.

5.4 Circularly Polarized Microstrip Antenna.

Circular polarization can be achieved in microstrip antennas by simply
modifying the feed structure to produce two degenerate orthogonal modes. This will
produce two orthogonally polarized waves and circular polarization is thus possible.
In this section, a circularly polarized microstrip antenna is analyzed both
theoretically and experimentally. The design is first verified numerically and a

fabricated prototype is tested to verify the performance.

5.4.1 Design, Simulation and Experimental Results .
A wide variety of design methods are available to obtain circular polarization
from patch antenna elements. In our case, we consider a simple design technique

which involves the use of two separate and spatially orthogonal feeds excited with a

relative +90° phase difference. A power splitter is used to supply power to the two
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feeds. The desired phase difference can be obtained by adding extra quarter wave line
in one of the feed lines.

The antenna is designed to operate at 2.5GHz. The dimensions of the patch is
chosen such that it’s less than a single wavelength (1.425 inches for our case) in both

length and width. A fiberglass reinforced substrate is used as a ground plane, for

which the dielectric constant is ¢, = 254 and height is 1/8”. The substrate is

considered to be very lossy and is not widely used for high performance microstrip
antennas. However, for this case, it can be used to test the design parameters.
Furthermore, fabrication is easier because of it’s tough durability.

The basic configuration of this type of circularly polarized (CP) antenna
includes a radiating element with two separate feeds originating from a single feed,

as shown in Fig. 5.17 (i). A power divider is used to split power between the feeds.

Feed 1

Quarter-wave line

Power Divider

50 ohm feed

1. Design configuration

ii. Fabricated prototype

Figure 5.17 : Circularly polarized microstrip patch antenna
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In the design of the CP antenna, the first step is to calculate the input

impedance of the radiating patch at the two feed points. Impedance values should be

equal at these feed points, i.e. Zin 1= Zin22. The input impedance results are

given below in Fig. 5.18, for 2GHz to 3GHz frequency range.

—— Real (Zin)
——=f~— Imag. (Zin)

Input Impedance [Zin11]

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

Figure 5.18 : Normalized input impedance of the radiating element

Now a matching circuit is designed for the input impedance at resonant
frequency. Since a 50€) feed line is used, the antenna should be matched for this
impedance. An extra quarter-wave line is added to one of the matching feed lines to
achieve circular polarization. A simple power divider is used to split the power
between the feeds [18]. The length of the main 50Q feed line can be used as desired.

The completed design is provided in Fig. 5.17(). Irregular dimensions of the two
feeds may lead to design discrepancies. This translates to a poor circular polarization
from the antenna. Therefore, the two feedlines are carefully designed so as to obtain

maximum performance.

The whole structure is simulated to extract the reflection coefficient. For a 2
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GHz to 3 GHz frequency range, the forward reflection coefficient of the entire circuit
is calculated and shown in Fig. 5.19. From the graph, we can see that the antenna is
matched quite well near the design frequency. It seems that the resonant frequency

has shifted a little bit, but it is still reasonably close to the design frequency.

: [—— s |
-20 T T T T T i T T T T T T T Y
2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

Frequency (GHz) (x10°)

Figure 5.19 : Calculated reflection coefficient of the CP microstrip antenna

The antenna is fabricated using the milling machine provided by the
Department of Electrical and Computer Engineering. The dimensions are first
sketched in AutoCAD and then transferred to a software which controls the
operation of the milling machine. The sketching of the whole antenna structure
required extra caution mainly because the preciseness in the dimensions of the
antenna as well as the feed structure is very important. This will determine the
actual performance of the antenna. It took about 8 minutes to fabricate the whole
antenna structure. The corresponding dimensions of the final prototype is very
accurate with virtually no errors. A picture of the designed antenna is shown in Fig.
5.17(ii).

The reflection coefficient of the antenna is measured using a Network
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Analyzer. A 50Q2 coaxial connector is connected to the main feed line and sweep for

the entire frequency range (2 GHz to 3 GHz) is shown in Fig. 5.20.
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Figure 5.20 : Measured reflection coefficient of the CP microstrip antenna

We can see that the antenna is matched well around the design frequency. The
resonant frequency is about 2.53 GHz for the fabricated antenna. The antenna is now
tested in the Anechoic chamber to measure far field radiation pattern. It’s mounted
as a receiver on a rotating shaft and a linearly polarized horn antenna is used as a
transmitter. The transmitter is systematically rotated to obtain circular polarization.
Due to the unavailability of a circularly polarized transmitter, the cross polar pattern
could not be measured in the chamber.

The tests are carried out for the whole frequency range at certain intervals.
We will look at two radiation pattern measurements, one at 2.5 GHz and one at the

resonant frequency, 2.54 GHz. These are shown in Fig. 5.21 and 5.22, respectively.
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Figure 5.21 : Far-field pattern at 2.5 GHz

At 2.5 GHz, the measured gain is 6.77 dB. Also, the measurement is not

symmetric due to irregularity in the mounting platform and the transmitting tower.
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Figure 5.22 : Far-field pattern at 2.54 GHz

The final actual gain of the antenna at 2.54 GHz is 4.27 dB. Performance

seems to be better at this frequency. As in the previous measurement, a slight
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irregularity is noticable in the pattern and it’s due to irregularities in the mounting
of the antenna.

In this chapter, we have proven that the approximate Green’s function based
MPIE/MOM solution is quite effective in predicting the performance of microstrip
structures. We have compared our results with the published results and also with a
full-wave analysis based software tool. A linearly polarized and a circularly polarized
microstrip antenna are designed and analyzed. The experimental data for the
circularly polarized antenna showed that the design characteristics are quite
accurate. This further enforces the accuracy of the approximate Green’s function
based MPIE/MOM solution method. Errors visible in this method can be limited by
avoiding the use of too many numerical approximations in the computation process.
Introduction of approximations will definitely reduce run time but will result in an
error dominated solution. Therefore, a compromise between efficiency and accuracy is

the key to achieving a satisfactory and efficient design method.
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Conclusion

An approximate Green’s function technique in conjunction with the method of
moments proves to be an efficient and powerful technique for the analysis of
microstrip structures. Investigation into the accuracy and efficiency of this method
have provided conclusive evidence that the procedure is quite reliable and compares
well with established full-wave analysis techniques.

The thesis is divided into three main parts. First, a general derivation of
approximate Green’s function is presented as the starting point of the formulation.
The Green’s function is applied in the Mixed Potential Integral Equation (MPIE) to
formulate the solution for microstrip structures. This required the use of boundary
conditions and few theoretical assumptions. The Method of Moments technique is
used to acquire solution from the MPIE. Extraction of surface currents from the

MPIE/MOM  solution provides the initial stage for the analysis. Further
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manipulation of this solution yields frequency dependent characteristics such as the
S-parameters and far field radiation patterns.

Based on the theoretical analysis of the the Green’s function method, a
computer program has been developed to solve the MPIE/MOM solution. The results
are compared with published numerical results as well as experimental results. In
addition, the accuracy of the solution is weighed against the results obtained from a
full-wave analysis based software tool and is found to be in good agreement. A half
wavelength dipole is analyzed to test the convergence of the solution and to verify the
solution in terms of input impedance calculations. The characteristic impedance and
effective dielectric constant of a off-center fed microstrip transmission line are also
calculated and compared with existing results. Design of a microstrip antenna and
it’s matching feed line is presented. Furthermore, a design of a circularly polarized
microstrip antenna and the corresponding experimental results are provided.

There are few recommendations that might be useful for future research.
Foremost is that a closed form solution to extract Green’s function, instead of
Sommerfeld integrals, might lead to an even more accurate and efficient method.
Secondly, in the present simulation process, the circuit needs to be segmented into
current cells first. If the structure to be analyzed is complicated, the segmentation
process can be a very tedious and time consuming. Use of a tool to extract mesh
coordinates will provide a less exhaustive simulation process and is recommended for
future research.

The numerical method developed in this project is an efficient and reasonably
accurate technique and it can be implemented to design microstrip circuits and
antennas. Further research into this numerical approach may provide efficient

design environment for high frequency circuit designers.
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Appendix A

Analytical Integration of Green’s Function

The dominant term in the vector and scalar potential Green’s functions are

X

given by the corresponding static terms, GZS ratic and G

Vstatic

xx K, 1
GAStatic = .47'5 lr_r'l [3'1]
1 1
Gystatic = 2rne (e, +1) |r-r] [8.2]

For a current cell having the dimension 2a x b, the final analytic integration
expression for eqn. (3.1), without the constants, for a static term of the vector

potential Green’s function is given by [2]

o+ (20 oo o252 e ()

é[(a + ) bs(?—(‘-‘b“L—x'l) + (a—-x) bs(gi‘%-x'—)) ~2b (x')S(z—b—x')] -

%[J(a +x’)2 + (2)2 + A/(a —x')2 + (g)z—ZJ(x')Z + (g)z} [3.3]

where, C (£) = cosh_l (¢) and S(¢) = sinh_] () . Also, X' is the location of

observation point.
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Similarly, from eqn. (3.2), the analytic expression for the vector potential

static Green’s function is given as [2]

(5=l 5T -8 -9l 5T~ T 2] -
(5o )5+ + 5 + 35 =)'+ (53]
o[ (52 + (3ol (G (T (-]

Where, as in the vector case, X' is the location of observation point. These

solutions were rigorously studied by the author [ ] and was found to be accurate.
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Appendix B

Derivations for y- directed Current

y T
.ryn
y-directed current cell

. 2bxa)

yn

x b -0
Tyn

a

Figure B.1 : configuration for y-directed current cell

The y-directed surface current is expanded over a set of current basis function

(2D triangular function) [3].

]N—]
sz == 3 IynTy (r—ryn) [3.1]
n=1
where,
1B < pl<a
T, (r) = { [3.2]
0 elsewhere

Similarly, the surface charge density is given by,
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- (r=ryn )-2(r-r,0 )
s = oub E LRl r-r,, J-R(r-r, || [3.3]
where,
b a
‘I lx|<—7 Iy|<_
R(r) = { 2 2 [3.4]
0 elsewhere

The vector potential I A and scalar potentialFV are given by the following

equations [3],

rjfly(’”lrn') = jéﬁy(mj T, (r'-r,,)dr [3.5]
Sn

Ty (rlr,.) = jGV(r;r')R(r'—ryn)dr' [3.6]
S
yn

The tangential electric field is calculated from,

N-1 N-1

TR T T R IR S
Ey (r) = — n;}[ynf‘z (rlrn)+j®abn§_:]Iyn @[FV rir, Tyl rir, :|

[3.7]

From the above expressions, y-directed current distribution can be calculated

by the Method of Moments solution.
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