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Abstract

A dyadic Green's function based solution is studied and implemented to

investigate the design characteristics of microstrip structures. This technqiue

requires derivation of an integral equation solution in terms of vector and scalar

potentials of the dyadic Green's function. The extraction of Green's function through

Sommerfeld integral equations is avoided by enforcing instead the approximate

Green's function. The reliability and efflciency of this approach is thoroughly

examined and verifled by comparing the solution with published results.

The final solution for the integral equation is acquired numericalty by

implementing the Method of Moments. A complete theoretical study of the numerical

technique is presented. Surface current can be extracted from the solution and will

provide a starting point for analysis of microstrip structures. Numerical results

associated with the analysis of various microstrip lines and antennas are presented.

Design and experimental results of a circularly polarized microstrip antenna are also

provided.
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Chapter I

Introduction

1.1 Microstrip Tþansmission Lines

Over the past few decades, microstrip structures have gained considerable

popularity in integrated circuit design. Major advantages such as efficient

integration of active components and fairly compact size have attracted circuit

designers to further explore the potentials of microstrip structures. This has resulted

in a substantial increase in the application of various forms of microstrip

transmission lines in different technological flelds. Presentl¡2, their use is

concentrated mostly in high frequency communication and microwave circuit design.

Also, the same concept has been applied to design all kinds of printed circuits.

Demands for portable microwave circuitry for use in different applications,

such as aerospace and satellite communications,led to the evolution of printed circuit

design in early 1950s. Also, in the 1950s the concept of microstrip radiator was first
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proposed by Deschamps [8]. The first practical and fully operational microstrip

antenna 'vvas designed by Howell and Munson. Further advancement and study of

printed transmission lines resulted in the technology of Microwave Integrated

circuits (MICs). Presently, the use of MICs as well as Microwave Monolithic

Integrated Circuits (MMICs) is very popular among high frequency circuit designers

t111.

The demand for analysis tools for practical microstrip structures such as

printed circuit boards and integrated antennas is growing very fast. Due to the

advancement in microstrip technology, researchers as well as industries try to look

for the most efficient anaiysis approach. In the long run, their major concern is the

efficiency of the analysis tool, i.e. program run-time and computer memory

requirement. Therefore, an efficient tool with an accuracy of within few percentage is

certainly more desirable than a tool which has a higher accuracy but requires large

CPU time and memory. The main objective in circuit design these days is that as long

as there is a good starting point in design specifications, modiflcations can be made

faster experimentally. For most designers, this practical aspect is more important

when considering economical advantages.

A microstrip structure, in its simplest form, comprises of two paraliel

conducting layers separated by a dielectric substrate. As shown in Fig. 1.1, the lower

conductor functions as a ground plane and the upper conductor acts as the

conducting line or radiator. These types of structures cannot support a pure TEM

(Tîansverse Electromagnetic) wave due to the presence of the dielectric-air interface.

Therefore, microstrip lines differ considerably from other transmission line

structures such as the waveguide and coaxial line. The open configuration of

microstrip structure makes it very convenient for use in integrated circuit design.
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Lumped elements such as transistors and resistors can be integrated on the same

surface as the transmission line. This will drastically reduce the size of circuit boards

and structures [1]-1.

Dielectric substrate
conductor

Ground
Plane

Fígure. 1.1 : A simple mícrostríp Structure

Antennas based on the microstrip concept inherit the same properties as all

microstrip structures. Microstrip antennas have considerable advantages over other

types of conventional antennas. For example, because of their thin profile and light-

weight structure, they can be easily integrated onto the structure of satellites,

rockets and missiles. Microstrip antennas'popularity also lies in their compatibility

with solid state devices, which can be fabricated, along with the feed lines, on the

same substrate. However, they also suffer from some major disadvantages such as

narrow bandwidth, poor isolation between the feed and the radiating element and

poor endflre radiation. But, the advantages of microstrip antennas outweigh their

disadvantages and furthermore, various techniques have been developed in order to

counter these disadvantages [12]. Presently, there are numerous methods that can be

used for the design and analysis of microstrip structures. An outline on the existing

analysis methods is provided in the next section.
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L.2 Mícrostrip Analysis Techniques

There is a big demand for an accurate and efficient analysis method for

microstrip structures. Over the years researchers have developed various numerical

technqiues that can be applied to analyze microstrip structures. Presently, most of

the microstrip analysis methods can be placed into three different categories. In the

flrst category, the general microstrip characteristics are calculated from the

electrostatic properties of the structure. These are known as the quasi-static methods

and are adequate for designing circuits at low frequencies. The second category

involves dispersion models, which takes into consideration the results obtained from

either exact theoretical or experimental dispersion behaviour of the microstrip

structure. In the final category, the hybrid nature of the mode of propagation is taken

into consideration and is also known as the full wave analysis technique. Full wave

analysis methods consider the complete field distribution of the microstrip structures

and they require considerable computational and anaiytical efforts [6].

One of the most popular full wave analysis technique involves computation of

integral equations by implementing Green's functions. The Green's functions are

expressed in terms of Sommerfeld integrals which in turn form a solution to the \Mave

equation in a defined medium t3l. Different numerical techniques can be

implemented to solve and approximate the Sommerfeld integrals in order to extract

the Green's function. This is generally a time consuming procedure. However, an

approximation of the Green's function can be obtained through the Sommerfeld

identity without the use of Sommerfeld integrals. With the absence of numerical

integration, the calculation of Green's functions becomes very efficient and wiil

translate to an efflcient solution, both theoretically and numerically [5].

The use of an approximate Green's function is considered to be less reliabie for
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both far field and near field analysis. Nevertheless this method can still be

successfully implemented to analyze microstrip characteristics and will be the main

objective of this thesis. Previous studies in Green's function solution by Yeung [2] and

Mosig and Gardiol [1], t3l will be the foundation of this work. First, there are few

reasonable assumptions that need to be considered in order to simplify the

formulation of the method. The microstrip substrate is assumed to be homogenous,

Iinear and isotropic and is assumed to extend to inflnity in the transverse direction.

The conductor itself is assumed to have zero thickness and considered a perfect

electric conductor. Further assumptions are also introduced in the actual formulation

and will be discussed in the relevant chapters.

1.3 Objective and Overview

The primary objective of this thesis is to validate the full-wave analysis

method which implements an approximation method to extract Green's function

instead of using the Sommerfeld integral technique. A computer program is written

in Fortran to acquire the desired solutions. The numerical data obtained from our

study is compared and verified with some published results. The solution is further

criticized by comparing the data with a full-wave analysis software tool called

PRELUDE [25]. Finally, a microstrip antenna is fabricated and analyzed to obtain

certain design parameters and then compared with the results obtained from the

numerical solution.

The thesis is presented in flve different chapters. The second chapter focuses

on conceptualizing the theory of Green's function and its integration into the Mixed

Potential Integral Equation. A thorough derivation of the concept associated with the
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method is provided. Following this, in chapter 3, the integral equation wiil be

completeiy transformed into a set of linear equations by implementing Method of

Moments. Important considerations in both numerical as well as computational

concepts will be explored thoroughly. In chapter 4, the theory associated with the

extraction of S-parameters will be discussed, foilowed by a general derivation of the

theory of far-field radiation pattern. Finally, the numerical data obtained from our

solution will be compared and criticized with published results. Conclusions along

with suggestions for improving the efficiency of the technique will be presented at the

end of the thesis.



Cho,pter II

Mixed Potential Integral trquation and

Dyadic Green's tr'unction

2.7 Introduction

The Mixed Potential Integral Equation technique is widely used in the

analysis of wire antennas and has been successfully adapted to analyze microstrip

structures t3l. A detailed description of the theory and application of the Mixed

Potential Integral Equation (MPIE) is presented in this chapter. The dyadic Green's

function used in the MPIE formulation will also be discussed in this chapter.

2.2 Mixed Potential Integral Equation (MPIE)

The MPIE has been extensively used in conjunction with the moment's

method to analyze wire antennas. The modified MPIE formulation wiil be adapted in
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our work to analyze general microstrip structures [1]. Consider the microstrip

structure shown in Fig. 2.1, where Co is the conducting patch on top of a grounded

dielectric substrate of height h and dielectric constant er. The thickness of the top

conductor is assumed to be zero for this case. The electric and magnetic excitation

fields are denote d,by Ee anð, If , respectively.

t"\

.r I Et 0<zõ=l ez -h<z<o

Fígure 2.7 : Microstrip structure with excitation

The excitation flelds can be created by a finite source, located within the

conductor or can be the fields of a plane wave originating at infinity. Other excitation

fieids are also integrable to this structure, depending on the application. The surface

charge density P" and surface current density { are due to the introduction of a

conducting plane within the excitation fields. Therefore, the total electromagnetic

field is the sum of the excitation fields and the diffracted or scattered fleids Ed and
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lf . fn"diffracted fleids are created by the presence of charge and current densities.

The total electric field has to satisfy Maxwell's equations and the associated

boundary conditions on the ground piane and the interface S. Therefore, assuming a

perfect conductor, the boundary condition can be derived as,

"-rïtot 
(r) - e,x 7Ed (r) + nt e) jzz

= E! (r) + nirr) = Q

The magnetic vector potential A can be such that,

rf = lvr,'
p

Now, from Maxwell's equation we have the following relationships

y xE = _jlop.H

Substituting the magnetic potential, we obtain

.T

Y x (E* + jurA) = 0
By integrating the above equation and simplifyrng, the scattered field is given by,

Ed = -ja|-vv

12.tl

12.21

12.31

12.41

12.51

12.61

12.7J

the above

Similarly, the divergence to the scalar potential V is given by,

y.A = -japV
The tangential component of the incident electric fleld is derived from

equations as,

Ei = jl.i,a+yv 12.81

The scalar and vector potentials can be further expressed as superposition integrals

of the corresponding Green's functions and the surface current density and surface

charge density. Therefore :
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(r') dr'

the dyadic Green's functions for the

vector potential and scalar potential respectively. Also, r represents the location of

the observation point and r' is the source point location. Solutions for the vector and

scalar potentials created by x- directed horizontal electric dipole is the basis of MPIE

formulatio". da ?lr') is a dyadic function and it consists basically of nine terms

which derives from,

do = "*GL+erG\*".éo 12.Ltl

Further simplifi cation gives,

d^ = .*("*cf, + erGf; * ""cff) *.r(.*ctf, + erGvl * ""cvf) *

I -^" --\e I e G'i +e G'! +e G'Í Iz\ x A y t\ z A./ 12.121

In the above equation, since there is no z-directed current, because of the

absence of vertical component in microstrip structures xz, yz and zz cornpoÍrents are

neglected. AJso, the xy and yx components vanish and through the MPIE solution,

where only tangential flelds are considered, zx and zy components will not be

implemented in the solution. Therefore, only two components, xx and yy, need to be

considered. By substituting the dyadic Green's function in the tangential component

of electric field given in equation2.8, we obtain

a(r)

v (r)

In the above equation

)P"

are

= !èoçr1r'
s

= JGr{'l''
s

da and Gu

) J" (r') dr' 12.el

12.101

. { (r') dr' + Y ,tGy?lr'¡ p r(r') dr' l2.l3l
S

term can be derived in terms of surface current

i r"> = ;c,rJd¿ QV')
s

Furthermore, the scalar

10
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density by implementing the continuity equation.

I .-
P, = -jt, (Vr'4)

Therefore, the MPIE is given as,

ni fr) = ;roJd¿ QV) .J"(r') d.r'
s

12.L4l

J 
" 

(r') dr' 12.L5)+ v tlcv Qlr') Y ,
s

The above MPIE expression is used for the solution of all general microstrip

structures. The dyadic Green's functions can be derived from either Sommerfeld

integrals or from it's approximate solution. Our objective in this work is to implement

an approximation method to extract Green's function components that can be

implemented in the MPIE. This approach wiil increase the efficiency of the solution.

In the above formulation, current density is the only unkno\Mn component and a

numerical technique will be applied for its' solution. As will be explained later, the

Method of Moments is considered to solve the MPIE. This method basically involves

transforming the above integrals into a simple set of linear equations and calculating

the unknown (currents). The method wiil be discussed in the foliowing chapter.

2.3 Approximation of Dyadic Green's tr'unction

The basic definition states that the Green's functions are actually the

potentials created by unit sources located within a surface. Once the impulse

response, i.e. Green's function, is known, the flelds produced by any current

distribution can be easily determined by superposition. This is possible with Dirac

delta sources located throughout the whole surface, which in limit reduces to the

integral equation as given above in equation (2.15).

As mentioned previously, the dyadic Green's functions for open microstrip

11
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structures are obtained through the Sommerfeld integrals [4]. Since the derivation of

Sommerfeid integrals is beyond the scope of our thesis, it will not be discussed here.

The computation of Sommerfeld integrals is not only time consuming but also

requires a large computation memory space. The solution is considerabiy demanding

in terms of run time and memory. Furthermore, this complexity grows as the

structure to be analyzed becomes larger. To avoid these problems, an approximate

form of spatial dyadic Green's function can be impiemented in the MPIE solution to

obtain the design characteristics of microstrip structures.

The Green's function is represented by a combination of three different parts.

First part consists of a quasi-dynamic images, dominant in the near fleld region. The

second part represents the contribution of complex images, which are dominant in

the intermediate region and the flnal part represents the contribution of surface

waves dominating in the far field region of the substrate. The combination of these

three parts represents the closed form solution to the dyadic Green's function. Among

the three regions, the near fleld approximation is most dominant and it substantially

influences the outcome of the final fieid solution [5]. The remaining two parts wiil be

briefly discussed below. lVe know that,

G1* = G'^* +G7*â, tto .t]., cL

Gv = Gvo* Gv,"i

In the above equation, the vector and

the intermediate region is given as [5],

^3C,X,r G*^* _.. l2.L6lA,SW

* G,, ^_.. l2.L7Jv, sw

scalar Green's function associated with

exp (-jkor¡)
G1*.=

11, cL

IG-,. - +V, CL 4nX
o

r.
L

exp (-jhor'¡)

u

4'rT,
L

N
I ¿. t2.181

t2.lel

_t
-1

N
I ø'.

i= I r'.
L

12
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where ri, r'i are the complex distances and o,¡, d,' , are the amplitudes given by,

BiTo

. T.4
a, = Are 12'201

Similarly, the vector and scalar Green's functions which contribute to the

surface waves are given by t5l

12.2rl

12.221

where,

Gl{, 
"* =} r-tni) Res ,H[2) {t roù tr *

Gv,"* = àG2ni)n"rru[2) Ørrùlzro

In above relations, kO, í" the surface wave pole which is located on the real

axis of the complex åO plane. Also, .Res is the residue of the corresponding integrand

at the VoIe lz, = k pp and given by

f exp (-jk"o(z + z
L l-

PølE) L j2h"o - k pp) RrE 12.231

Res,
f exn (-ik (z + z

o rÉ,rm¡l i'u'o
(Rrø + Rq) 12.241

')) II lim. ( I¿
ln =h Prp pp

II lim(k -l? )
ln =h P PP'rp pp

'))

( 
" 

-jzn'n\
D --\rto+e )
--'t'E 

. TE -i2hzh
1+rtT e

n I -¡zn n\
2l?' (l-¿ lll-¿" " Izo' r'\ )

12.251

(k"t + k") (k"t + erkzo)Q * rîio 
"-t'u")(t 

+ rlf e

12.261

Rfn and Re take into consideration the properties associated with

microstrip substrate. The flnal solution for the surface'\Mave Green's functions can be

Re=

13
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obtained from complex integrals. As mentioned before, this term however is not very

critical in the calculation of current distribution and near freld solutions. 'We will not

further investigate the surface wave and intermediate region solutions. Therefore,

the above mentioned Green's function associated with the two regions will not be

implemented in our analysis. Reference [5] provides the necessary derivations

related to the vector and scalar potential Green's functions dominant in the far field

and intermediate field.

In actual calculations, for most practical microstrip structures, the

contribution of the quasi-dynamic images, which are dominant in the near field, is

sufflcient. This is valid in most microstrip circuits and was studied rigorously by

Mosig and Gardioi [1]. Furthermore, the solution can be manipulated to obtain the

far-field properties of microstrip structures. fn our MPIE solution, the quasi-static

approximation of Green's function will be implemented to obtain surface currents and

far field radiation patterns. The solution will be verifled by comparing it to the

published results l2l,l4l, [7] as well as results obtained from an existing fuli-wave

analysis tool. As stated before, this is the main focus of our study.

The vector and scalar components of the near field approximation of dyadic

Green's function are given by,

cf,trtr')=HYry

4njcoeol ,o

p2 * ("+2ih)2

(e," - 1)

(Ê +1)rr

-jkor ì
rI

exp (

_jkori)

r.
L

exp (

i= I

12.271

12.281Gr, (rlr')

where,
2ri=

q-

T4
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From the above approximate equations we can observe that the vector

potential does not depend on the substrate permittivity. The expressions are related

to image theory, in which the reflections from ground plane are accounted for by

virtual sources. The real source is approximated by the first exponential term and the

image source is approximated by the second term.

In our study the numerical integration of Sommerfeld integrals will be

completely avoided and instead the estimated near field approximations of the vector

and scalar Green's functions wiII be used in the MPIE . Our work will be compared

with the studies conducted by Yeung [2] and Couture l4l to show that these

approximated solutions are as effective as the solutions obtained by implementing

Sommerfeld integrals. The following chapter focuses on the formulation associated

with the application of the method of moments to the MPIE.

15



Chapter III

The Method of Moments and its

Application to Mixed Potential Integral Equation

S.l Introduction

The Method of Moments is generally used in the calculation of integral

equations. its use in electromagnetics was flrst thoroughly explored by Harrington

[10] and has been one of the more popular techniques for soÌving integral equations.

The main focus of this chapter is to understand the theory associated with the

transformation of Mixed Potential Integral Equation (MPIE) into linear equations by

implementing the Method of Moments (MOM). General properties of the MOM will

be discussed in the next section followed by a thorough explanation of basis and

testing functions. To make the flnal solution more efficient, we will introduce some

programming techniques in the algorithm. Some of the important methods that can

substantially reduce the run time are presented at the end.

16
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3.2 The Method of Moments

The Method of Moments (MOM) has been frequently used in applied

electromagnetics and high frequency problems for solving complex integral equation

based problems. The main feature of this method is that it can transform differential

equations (or integrais) to a set of linear equations by expanding the unknown

variables into a set of specific functions. The approximate solution can be obtained by

applying an error limiting process [10].

To clarify this method, consider an inhomogeneous function

L(f) - I t3-11

In the above equation Z is the linear operator, f is the response (unknown)

and g is the excitation coefficient (known). Since f can be expanded in a series of

functions f ,,f,f j, ... in the domain of L,we have,

f = Icr f' ; n'n

where cx- are the expansion coefÊcients. Forn

13.21

exact soiution of f the

summation is usually inflnite and fn will form a complete set of basis functions.

However, flnite summation will provide an approximate solution for f , which will

then consist of a flnite number of f ,.Therefore, by substitution we get

ZanL (fn) - I
n

Assuming an inner product (f g') has been determined for the problem, we

can deflne a set of weighting (testing) functions wt,uz,w3... in the range of L.

Taking the inner product of the above function with each w n, we obtain,

t3.31

L7
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I a (ut .L (f ,)) = (w *, g) t3.41
î 

n' ftL'

wltete,n'L = 1,2,3,...M aîd n = 1,2,3,...N.Now, this set of equations

can be written in a matrix form as,

?-Åvs = þÀ
where,

l@,,1(rì>- I t@,,s)]
V*Å=l landb,À=l I

L ... (w M,¿ rfN) ).1 l<ut ¡a, s))

If the above matrix is non-singular, the inverse of Ú*)"""

obtained. Therefore, the unknown response f can be calculated :

r = tnl þJ = VÀ?-Å-'Þ"¡

where 
VÀ = lf 1,f2,f ,, ...1

t3.51

t3.61

be easily

13.71

As explained previously, increasing the matrix dimension improves the

solution. The accuracy of this method is also directly affected by the choice of basis

and testing functions.

3.3 T?ansformation of MPIE by MOM

The MPIE method described in Ch. 2 will now be implemented to the analysis

of general microstrip structures. In short, the procedure involves transforming the

MPIE into a system of linear equations through the application of MOM. This will

involve specifying basis and testing functions to expand the integral equations. To

18
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simplify the analysis, we will introduce the theory in two subsections : in the first

part, the basis functions will be discussed followed, in the second part, by a thorough

derivation of the MPIE to linear equation transformation.

3.3.1 Basis tr'unctions

First of all, before deciding the type of basis functions to be used, the

microstrip structure to be examined is discretized into small rectangular/square

segments called charge segments. Despite the original shape of the microstrip

structure, which can be either rectangular or can assume any shape, its'region can

be segmented into charge cells of equal dimension. It is important for the analysis

that the charge cells be of equal size, which is critical in order to minimize tlne

complexity of the MPIE solution. But this can be modified when analyzíng structures

with varying dimensions. In our case rectangular charge cells are considered.

The selection of basis functions is one of the keys to obtaining satisfactory

results from MOM. Basis functions shouid be linearly independent so that f , glven

above in equation 3.7, can be approximated reasonably. Subdomain basis functions

are used for our case mainly because no assumptions are needed for current

distributions over the conductor. The 2-D rooftop function and 2-D pulse function are

used as the basis functions for the expansion of surface current and charge density,

respectively. The use of basis and testing functions can be further clarified by an

example, provided below.

Consider a rectangular microstrip conductor of length I and width ru, as shown

in Fig 3.1. To make the explanation simpler, assume that the y-component of the

current is negligible because the width is assumed to be very small. However, the y-

19
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directed current will be taken into consideration

The physical derivation is quite similar to the

discussed in the end sections. For now, we will

supports x-directed currents.

in the final calculation procedure.

x-directed current and it wiII be

assume that the conductor only

The patch is segmented into N charge cells having equal dimensions of length

ø and width ¿u. TWo adjacent charge cells, which share a common border along x-

direction, will form one current cell having dimension of (2ax a.r) . This wiil result

in a situation where one charge cell may contribute to the formation of four different

current cells, when considering the cell division along the y-direction. Since a pair of

charge cells constitute a current cell, there will be an overlapping of current cells. In

the figure, rn is the center of individual current cell. AIso, rrr* and. rn- are the

centers of the adjacent charge cells which make up the current cell.

/_

Figure 3.7 : Segmentation procedure for charge and current

x

cells

20
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The number of current cells is directly related to the number of charge cells.

For example, for a conductor strip wítln M charge cells, the number of current cells

is (M - I) . But this might also depend on the shape of the conductor.

Each of these current cells support one basis function, as shown in Fig.3.2. For

the anaiysis of microstrip structures, the use of a rooftop function (2-D tnangular

function) as the basis function is more suitable [2]. The expansion of current density

distribution by 2-D triangular function is given by [3],

.^¡-1
t / T (r-r\HTN

n=l

where 1 is the current associated with each cell and?xnx

l*l <o, lyl

elsewhere

t3.81

(r-r) is the 2-D

t3.el

over the conductor.

the basis functions

J =Isg¡

triangular function. The introduction of L in the expansion above yields an
w

unknown current coefficient having dimension of a current. Furthermore, every

current coefficient gives the total current located within the individual current cells

and the current flowing across the boundary of two charge cells.

u)tz{'-9
0

Fig. 3.2 shows the actual distribution of basis functions

Since the current cells overlap each other, the same is true for

because each current cell supports a single basis function.

27
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Rooftop Basis Function

¡ lf-
lrr

,/'+rn .1r., 1l

current cell #1

current cell#2 x

Figure 3.2 : Curcent basis functions for x-directed cells

The surface charge density ps can be obtained by using the continuity

equation to the expansion of 4, as described in Cln. 2. The notation ó will be used

for the width of the microstrip line.

p" = -j¿., (v, 4)

= -l' *li)z','.*.('-"1

[3.10]

t3.111

[3.12]

t3.131

- N-l-1 \--ioæ L
" n= l

where, A (r) is a two dimensional unit puise function situated over a single

charge cell.

R(r-r,) = { 
t

0

l*1.7, lyl.2
elsewhere

r,*ln(,-,n* )-"(' -,, )l

The charge density within each charge cell remains constant and is made up
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of at least two components from the two adjacent current cells.

2D pulse function

d,

Figure 3.3 : Charge basis functions for x-directed cells

The concept is shown in Fig. 3.3, where the distribution of charge basis

function is located within the adjacent charge cells associated with an individual

current celÌ. This is true throughout the distribution of surface charge cells except at

the end cells, where the charge cell contributes to the formation of only one current

cell. The charge density is discontinuous on the borders between the adjacent charge

cells and a singularity situation may arise. Therefore, a testing function must be

seiected carefuliy in order to avoid the points where the electric fieid becomes

singular. The selection of testing function will be discussed in the next section, which

describes the final transformation of MPIE to linear equations.

3.3.2 Equivalent Linear Equations for MPIE

The final step now is to introduce a testing function in the MPIE¿N{OM

formulation. As mentioned before, the testing function must be compatible with the

basis functions. Once again, for simplicity we are still considering only x- directed

23
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currents and therefore all the tangential components are x- directed. Going back to

the tangential component of the electric field, from equation 2.13,

nirr) = irlt ?lr') . J,(r') dr' + y r[Gy?lr'¡ p*(r') d.r' t3.141

= ¡^lèi eV) .J*(r') d.r' + fr lcrtrlr) p*(r,) d.r,

SS

Substituting the current density expansion in the vector term

equation, rve have,

t3.151

of the above

. 
^¡-1øirrl =t# Z I *n I d; ?V') r*(r - r,) d.r'+
n=I s

lcr{rlÒ p*Q) dr' l3.L6l
s

)-o(' -rn ))r' tB.1zl

d
dx

In the first term of the MPIE equation, s, is the area of the associated

current cell and rn is the center of the cell. Similarly, substitution into the second

(scalar) term will give,

. N-1
nirr) ='# Z I*, I d{ 0lr')r*(r -rn) d.r'

n=I s

I
I ' jaab

N-1

n=I
,*, * I *r?tr') ("(, -,n*

S

In the above equation, so, is the area of individual charge cell. and rj are

the centers of associated charge cells which make up one current cell. To simplify the

analysis, a vector potential lO, which is created by the surface current and a scalar

potential ly, created from a distribution of surface charge, is introduced. Therefore,

24
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ff {rlr; = Iü{ ?v')r,(r'-rn)d.r'

lu?lro) = I *r(rlr') R (r' -ron) d.r'

t3.181

and

[3.le]
ofL

In general calculations, the above equations must be evaluated by using a

numerical integration method. But in cases where the source and observation points

are located within the same cell, numerical integration is not possible due to

singularity. Thus, to avoid problems, the Green's function should be separated into

their regular and singular parts. The singular parts can be integrated analybically

and then included back into the main formulation. The analybic solutions are very

crucial and will be further discussed in this chapter.

A simplified version of MPIE can now be written as,

N-l

'IH X,n
n=l $lrr(,v,. )- ru(','_ r't)

b

, N-Ixx. I
Í-^'- (rlr ')+=-i - t I-â r I n' jøab _-u , *, ")l

t3.2ol

A suitable test function is needed for the application of MPIE into MOM. The

test function must be compatible with the basis functions and as suggested in studies

by Mosig and Gardiol [3], unidimensional rectangular pulses are used. The pulse

functions are suitable to the basis functions that were chosen and also it can

contribute considerably in the efficiency of the algorithm. Each of these functions are

non-overlapping and located between the centers of two adjacent charge cells, which

form a single current cell.
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2a

lxlca/2 y=0

elsewhere

Figure 3.4 : Testing functions ( I-dimensiond.l recto.ngular pulse function )

The set of the testing function can be written as,

u{") = {

In the above equation, r* is the center of the associated current cell, as

shown in Fig. 3.4. The testing function is applied through the formation of an inner

product for the MPIE given in equation 3.20. Therefore forming the inner product of

the testing function with the MPIE, we obtain :

(u*(r - r*), 8",{r)> = I ríQ) d.x = t'* 13.221

,^

From the first term of eqn. 3.20, we have

N-1
t U (r-r )
H

m= ]

,r, ta, 
, 

'*, 
T-b L'xnJ'AQlrn')dx

n=I ,*

Similarly, for the second term,

t3.211

t3.231
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>n

- N-l '*

^*')Z',,* 
I$['u('t',

,*

i-2'¡.,lrr('; l',. )-tu('-. l'"- )] -

. 
)- ru(,y*- )Jo" 13.241

13.251

Further simplification of the second term can be achieved by removing the

derivative by the application of the inner product

,.,lrr(,* l,n* )-ru?; l'"- )]
There are (l/-1) number of current cells and also the same number of

testing functions. This wiII yield an (N-1) x (N-1) system of linear equations

and it can be expressed in terms of two dimensional matrix in order to simplify the

formulation and numerical evaluation. The system of iinear equation is now

transformed into a simple electric current/impedance relationship, where the RHS of

the MPIE equation is the product of current and impedance.

Y.,Å = V.ÀV*À
t3.261

With a proper speciflcation of the source column, t" Y.rÀ, we can solve for

the unknown current distribution. Further derivation of the impedance matrix setup

is provided in the following section.

3.4 Moment Matrix Setup and Numerical Considerations

In the previous section, the MPIE has been completely transformed into a

system of linear equations. These linear equations are derived in terms of a square
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Source Location

t0... ...1+j0 ...01

Zm,n+L

Figure 3.5 : Delta-gap excítation for x-directed current cells

From the impedance matrix expression, equation 3.28, v/e can see that each

individual term in the matrix involves multiple integrations for both vector and

scalar potentials. A Gaussian quadrature technique is implemented for the actual

integration aigorithm.

When the observation point is located within the source cell or very close to it,

i.e. the diagonal terms, application of Gaussian quadrature technique will not

provide reasonably accurate solutions for both the vector and scalar potential terms.

Furthermore, singularities for Green's functions exist if the source and observation

points are located within the same cell. This leads to situations where the soiution

may not converge properly. Thus, for diagonal terms, the dominant term in both

Green's functions is given by the static Green's functions, which are

Z^,n

xx
Astatic

I
FA

LI,

=-4n 13.zel

t3.301

potential

whereas

Gv"rori" = 2ne (e + 1)o'r

From the above approximate equation, it can be seen that the vector

of the Green's function is completely independent of substrate parameters

I
V4
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the scalar term depends on the effective permittivity of the substrate. The vector and

scalar component of the impedance matrix can now be expanded in terms of its'

corresponding static terms as [2]

fa = IGf -Gl{"tot¡"),.o, * !G\,ror,"r*as t3.311

fy = I f*r- Gv"rori) R*ds * IGvrrorr"Rrd,s t3.321

The first term for both scalar and vector expressions can be integrated

normally by implementing a Gaussian quadrature (GQ) technique. But the second

term for both expressions needs to be integrated analytically and its full derivation is

provided in Appendix A. The analytic integration was studied previously by Yeung l2l

and was found to be quite satisfactory in terms of numerical efficiency. A full

numerical procedure is outlined in [4].

Going back to the Gaussian quadrature technique : it basically involves

choosing a number of quadrature points for integration and for accurate results an

odd number of points should be used. The reason being that by choosing odd number

of points the center of the associated current cell will be included in the integration

process. In our case, its applied for integration situations where the source and

observation points are not iocated within the same cell. The use of odd number of

points leads to a higher probabiiity of source and observation points coinciding, when

located within the same cell. Therefore, odd number of qudrature points are taken

only for non-horizontal terms in the matrix and even number of quadrature points

are taken for the horizontal terms, where the occurrence of singularity is inevitable.

The number of quadrature points depends on the cell size as well as the location of

the source ceII from the observation cell.
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The convergence of the solution is achieved easily when the observation cell is

located very far from the source cell. This also depends on cell sizes and the smaller

the cell size the higher the probability of fast convergence. Also, as the distance

between source and observation point gets bigger the convergence in the solution of

vector and scalar terms is easier. This can be clarifled by observing the Green's

function itself, as shown in Fig. 3.6. It shows the real and imaginary component of

vector potential Green's function. We can see that the Green's function becomes

slowly osciliating function with large distance and has less variation in the solution.

Thus, the caiculation procedure at large separation is less exhaustive. However, we

can see that as the distance between the source and observation points become

smaller, the Green's function value becomes larger. Therefore, for these situations,

higher number of quadrature points should be used to obtain accurate results.
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Figure 3.6 : ReaI and Imagina,ry com,ponent of Vector Potential Green's function

In our case, for non-diagonal terms only five points were implemented for

Gaussian Quadrature integration method and for diagonal terms the number of

points was increased to ten. This significantiy contributes to the efficiency of the final

calculation.
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Some numerical considerations will be discussed in the next section. First, we

have to take into account the y-directed currents for the soiution. To make the

calculation more efflcient, some programming techniques will be proposed in the

concluding section.

3.4.L Y-Directed Currents

The concept and expressions derived in the previous sections can be

implemented for the solution of y-directed currents. To avoid redundancy, we wiII not

discuss the whole procedure, but the final derivations are provided in Appendix B. In

the flnai solution of MPIEiIVIOM, both x- and y- directed currents must be considered.

For illustration purposes, a rectangular strip of length I and width ru is considered,

as shown in Fig. 3.7.

y-current cell

' ---/ -/
// /

/
- _ _ -/

x-current cell

Fígure 3.7 : x- and y-directed current cells for a. n'Lícrostrip conductor

For the above conductor having MxN charge cells, there will be (M-l)N

current cells along x-direction and M(N-1) along y-direction. Every y-directed current

/¡
/

-/
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cells support 2D rooftop functions, as in the x-directed ceils. The same is true for the

testing functions. The expressions and matrix elements can be easily obtained by

carefully interchanging the couple terms (x,y), (ø,b) and (M,N) within the defined

expressions. Important expressions for y-directed current cells are provided in

Appendix B. Thus, the final matrix equation to solve for the unknown currents along

x- as well as y-direction is given by,

þ.:- 1)Nx (M - t)N "'i,* - r) x (M -,,'l [-t;l = t41 rB.sB]

Yr.* -1)Nx M (N -,¡ zti r* - I) xMtor- tl LltJ YÀ

In the above matrix equation, fy = Zl* unð.consists of

z*ln = #)z' ,lrr(,; l,n. )-rr(,; l'" )l -

[.u(.; l,n. )-rr(,* l'" )] t3.341

The total number of matrix elements is | (M -1) N x M (N -l¡ 1 
2. 

T}rls

turns out to be a very big matrix and requires an exhaustive computation. Obviously,

it will also depend on the size of the structure and number of cells within the

structure. Larger cells will definitely increase the accuracy of the solution but will

result in an increase in computation time as weil as data storage capacity. To balance

trade-offs between the two situation, there should a compromise.

From the above matrix equations, we have seen that the current distribution

along both x- and y- directions can be obtained from the MPIEÄ\{OM soiution. In

some applications the calculation of y-directed currents is not very important. For

example in the analysis of simple microstrip lines and feed lines with considerably

small widths, only the x- directed currents are sufflcient to obtain necessary design
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characteristics. However, the solution of y-directed current is equally important in

most other type of structures. In the calculation of far fleld radiation pattern, the

contribution of currents along both direction is critical. In this work, to simplify the

MPIE solution as well as to budget run time, the y-directed currents are computed

only when desired. This does not however jeopardize t};.e accuracy of the solution in

any way. Some considerations regarding the computation of the MPIEiIVIOM solution

will be discussed in the next section. This will involve introduction of numerical

techniques to save CPU time.

3.4.2 Programming Considerations

It is recommended that equal dimension ceII sizes be used for the analysis of

general microstrip structures. It is more convenient to use a large number of same

sized celis rather than fewer number of celis of varying dimensions. However, this

can not be achieved sometimes due to the irregularity in the conductor shapes. Also,

this may account for extra computation time due to the increase in the number of

cells to accommodate the cell size equality. Some numerical techniques can be

implemented to counter these problems.

Since the matrix is more dominant in diagonal terms rather than off-diagonal

terms, some approximations may be used for non-diagonal terms. Previous study by

Mosig and Gardiol [3] shows that the numerical integration associated with the

scalar and vector potential of the Green's function may be replaced by analytical

approximation for a large source to observation separation. Therefore, the vector and

scalar potential terms of the MPIE, given in equations 3.18 and 3.19, can be written

âS,

34



Method of Moments and its Application to Míxed Potential Integral Equation

,i ^XXG (rlr')T*(r' -rr) (koab)
A

(rlrn.. 1

'Lr t3.351

lr(rlro) = EoGv?lr') R (r' - ro) (koab) t3.361

For this work, the above approximation is implemented only for specified non-

diagonal terms and it is varied for different applications. The main reason is that we

have already introduced approximation to the Green's function and by implementing

further approximation to the calculation we might end up with an error dominated

solution. But for a general case, if the distance is more than 20 times greater than the

length of the associated cell, the analytical approximation is implemented. As it will

be shown in the examples later, the accuracy is not affected significantly. This is also

true if we have to analyze large structures. If very large number of cell sizes are

needed, it's numerically efflcient to use the above approximation method for big

source to observation point separations.

The above described method drastically cuts down the run time and requires

Iess intensive computation. Since we are already implementing approximations for

the Green's function itself, it may not be very wise to use any more numerical

approximation in the computation. However, some methods that can reduce

computation time is applied in our solution. One approach is to use the "comparison"

technique. Since the calculation of Green's function depends on the absolute

distances between the source and observation point, we can avoid some repetion in

the calculation by comparison, i.e. Z *n = Z n*.This is very critical in reducing run

time for the calculation procedure and is implemented in the calculation of all

general microstrip structures. One important requirement for this technique is that

the cell sizes must be of equal dimensions. It cannot be used for the analysis of
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structures where the use of different cell sizes is required.

Consider a strip having rL number of segments, as shown in Fig. 3.8. The line

is segmented into n cells along the iength and there are no segments along y-

direction. The cells have equal dimension and support x-directed currents only.

Ztn

1

zn
2 n

rt
zn+t

Zß

Figure. 3.8 : Impedance calculation procedure for mícrostrip line

In the above conductor strip, the first calculation of Z values

lZ I l, Z rr, Z rr, Z rn...Z rnl will yield the impedance values for all the current cells,

by the method of comparison. Thus, calculation of Zr,23, ...2n is not required

and this wiil considerably reduce the run time. Oniy a single calculation of

impedance values will produce the solution for ail the elements. This is crucial when

analyzíng large microstrip structures such as antennas integrated with feed

structures and will be implemented in the calculation of microstrip antennas.

The Green's function based solution has been completely derived in this

chapter. Also, several numerical considerations and techniques have been discussed.

The following chapter focuses on the procedure for acquiring frequency dependent

design characteristics such as the S-paramters and far fleld radiation patterns.
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Cho,pter IV

S-Parameters and

Far-Field Radiation Patterns

4.I Introduction

This chapter focuses mainly on the two signifi.cant characteristics associated

with the design of microstrip antennas and circuits : S-parameters and far fleld

radiation patterns. fn antenna design, S-Parameter terms such as the reflection

coefficient and transmission coefflcient predicts the performance of the antenna to a

certain degree. The basic theory associated with the extraction of frequency

dependent S-Parameters is explained in this chapter. The E- and H- plane far fleld

radiation patterns for microstrip structures and antennas will also be discussed.
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4.2 tr'requency Dependent S-Parameters

The S-parameters can be extracted directly from the MPIE/IUOM solution. A

single port microstrip antenna is considered as an example to illustrate the

extraction of frequency-dependent S-parameters. However, the same technique can

be applied to all general microstrip structures. The technique involves the calculation

of S-parameter terms, such as the reflection coefficient, by considering the maximum

and minimum values of the current distribution along the transmission line. A

microstrip line with Delta-gap generator excitation is implemented as the feeding

mechanism. The radiating patch is fed by a microstrip iine as shown in Fig. 4.1.

Fígure 4.1 : Simulation. setup for a single feed microstrip antenna

The feedline should be considerably large to avoid higher order modes

generated by the discontinuity between the feedline and the radiating element. There

will be a region in the transmission line where the higher order modes are

suppressed. In this region, only the quasi-TEM mode propagates. For the analysis ,

Radiating element
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only the longitudinal current component is required. This means that the

computation of only x-directed currents is suffrcient for the whole section of the

feedline. A standing \Mave pattern can be obtained for the current distribution along

the quasi-TEM line. Assuming that no radiation occurs in the feedline, we can

implement transmission line theory for the analysis of standing wave pattern to

obtain the reflection and transmission coeffrcients. A transmission line model of the

above antenna system is given in Fig. 4.2.

Delta-gap
Generator

Feedline Radiating
Element

Standing-wave

xg

x=0 xmax xmin

;

Figure 4.2 : Tlansmissíon line model for single feed microstrip antenna,

In the model, a reference point ø,. is located after the voltage source and

before the radiating patch. Furthermore, the distance between r,. and xo is

considerably large to obtain a quasi-TEM behaviour between the voltage source and

the reference point rr. The analysis concept is mainly based upon the values of

current maxima and minima at this portion of the feedline [2]. The current

T'

xr
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distribution along the feedline can be obtained from the MPIEiIMOM solution. Then

location of these maxima and minima can be determined by simple observation of the

standing wave pattern. But for accurate results, an interpolation method should be

implemented. In our study a cubic spline interpolation method is used to determine

the exact location of current maxima and minima.

At the reference plane xr, t}rre reflection coefficient f is obtained from,

f, = lfleJe

_ swH-I 
"ioSWR + 1"

4nd
where,O = # and d = (x -x .rr) .In the above notation xmir¿ is the location

LU ' r InLL

where the first current minima occurs. The guided wavelength of the feedline is

obtained from transmission line theory l19l and is given as,

¡, =2xlx -x .lg I max mrnl 14.3J

The standing wave ratio of the pattern can be calculated in terms of current

values by,

swÃ =lþ4
I nllnl

14.41

For the characterization of a single port circuit, such as the patch antenna,

analysis of the reflection coefflcient is suffrcient to validate the match between the

feeding mechanism and the radiating element. Therefore, the magnitude and phase

of the reflection coefficient is given by [15],

V _I . II m,ax mlnl
14.51

14.rl

14.21

lft,rl = V +I .l
I max, ûLLnl
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The return loss, which is defined as the ratio in decibels of the incident po\¡¡er

to the reflected po\Mer, is given as

^ 2n.e , =:):(x -x )pnøse tr'r ma.x'

RL = zoøs{1
I Lnl

Tr = 2olog I
IJ 

'-Frrlt

14.61

14.71

t4.81

Similarly, the transmission loss can also be obtained. Transmission loss

defined as the ratio of incident power and the transmitted power. As in the case

return loss, the expression is obtained in decibels.

is

of

The return loss is one of the significant design characteristics of microstrip

structures, including antennas. The main reason is that it helps to determine the

impedance matching between source and the circuit. An accurate calculation of the

return loss is very important in order to predict the final performance of the antenna.

4.3 E- and H- Plane Radiation Patterns

A horizontal electric dipole is used for the general derivation of the far fleld

pattern of microstrip structures. In the second chapter, it has been shown that the

electric field can be expressed in terms of vector and scalar potentials. From equation

12.61

g = -jøA-VV 14.91

The current density { can be obtained from an equation derived in the

previous chapter. Therefore, going back to the electric fleld-current relationship, we

have [3]
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E = IGE.J"(r,)d.s'
s

where, G" represents the electric dyadic Green's function and is given by

GE = -iclGe?lr) . i*o (YGv(rlr') )

t4.101

14.LLl

Since rñ/e are concerned with the far field radiation pattern, we can assume

that the distance between the source and observation point is inflnitely large. This

will allow the application of asymptotic expressions for the Green's function instead.

Therefore, the radiation field is then obtained by transforming the asymptotic terms

into spherical coordinates. The fleld relationships for unit current are [6],

Er=o 14.L2J

cosQ cos0 -jk,eEo= t4.131

,on(u oo

E, =a

sinþcos0
"-ikr 14.L4l

In order to calculate the far field pattern of the surface conductoq a pattern

multiplication method is used. The main consideration here is that the patch or the

conductor surface is assumed to be an array of current cells. The current distribution

for the entire patch can be obtained by the MPIE/IVIOM solution. Thus, by

introducing pattern multiplication in equation. 4.10, we obtain.
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t4.151

The dyadic Green's function in spherical coordinates is obtained from

previous derivation and transforming the remaining electric field expression into

spherical coordinates, we can derive the final expression for the radiation field of a

microstrip structure. The E-plane and H-piane radiation patterns are calculated for

0 = 0o and Q = 90o respectively [6], t13l

E - Plane

M - / iå (1. È.) ^, 
N_ t jn^(Ì. È,)

Er,q = G*E

i= I i= I

cos0 N-t ih x.
t LxI .e oL
4 r,L

i= I

Eþ=

H - Plane

N- 1 il¿ 
^t.t L^tI .e o"'

H"yL
i-- I

Ea=

Eo=

-mrlk oh

t4.161

14.L7l

t4.181

14.re)

cosï - j
*"(n"n f,- ,t*r)

cos0

cos0

N- I iI¿ v.
t Lt,I .å o"'
H"YL

i= I
,on(uooF;;N

cos0
N-1 ik x.
t LxI .å o'
H X,L

i=l
Eþ=

must be

- rir2O

In the above equations, the current distributions along x and y
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carefully implemented. In other words, the current distribution associated with each

current cells must be systematically chosen in relation to the location of the cells.

In this chapter, the theory associated with the extraction of S-parameters and

calculation of far fieid radiation patterns have been discussed thoroughly. In the

following chapter, the accuracy of the theoretical results, derived in this chapter, will

be compared with the existing results as well as results obtained from a software

tool. Furthermore, experimental results of a designed microstrip antenna will also be

presented
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Chapter V

Numerical Results

5.1 Introduction

The MPIE/IVIOM solution discussed in the previous chapters will now be used

to analyze actual microstrip structures. Before this method can be applied to the

design of various microstrip structures, it is important that the method be validated

first. In this chapter the MPIE/I\4OM solution generated from our study is verified by

comparing it to the results obtained from the research work done by Yeung [2],

Couture [4] and Balanis [7]. Also, the MPIEÂVIOM solution is used to design and

analyze microstrip antennas. Main characteristics such as the reflection coefflcient

and the E- and H- Plane far field patterns is analyzed and compared with the results

obtained from the software tool PRELUDE t251. Design, analysis and experimentai

results for a circularly polarized microstrip antennas are also included in this

chapter.
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5.2 Microstrip T?ansmission Lines and Dipoles

Before implementing the MPIE/1\{OM formulation for the analysis of complex

structures, it is tested for simple microstrip problems with known solutions. The

veriflcation involves testing the accuracy as weil as the rate of convergence. Three

separate test simulations are performed. The first test involves a convergence test for

a full-wavelength, center fed horizontal dipole over an infinite ground piane. The

second simulation test looks at the accuracy of the input impedance calculation and

the last test focuses on the calculation of characteristic impedance for microstrip

Iines of varying width dimensions. Furthermore, the effect of varying the height of

the substrate on the performance of microstrip line is observed. This analysis is

based mainly on the input impedance characteristic of the microstrip line.

5.2.L Microstrip Dipoles

Microstrip dipoles have been analyzed by many researchers [8], [11], 116l and

is a good choice for validating our solution because of the availability of results from

their work. For the flrst simulation test, we analyze a full-wavelength horizontal

microstrip dipole placed in free space over an inflnite ground plane. The width of the

line is considered to be significantly small in comparison to the length of the

microstrip line.

The main assumptions are that the microstrip dipole to be analyzedhas zero

thickness, perfect-conducting transmission line located horizontally at a vertical

distance ä over the ground plane. The ground plane is also considered to be a

perfectly conducting material. For this case, frequency is taken as a constant, such

that À^ = 1 . The dipole is fed at the center by a delta-gap voltage source, as showno
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in Fig. 5.1. The dielectric constant is Ê,^ = 1 for free space.

Figure 5.1 : Mícrostrip dípole with delta-gap excitatiorL

The conductor is segmented only along x-direction, i.e. there are only x-

directed current cells. Since the width of the conductor is very small, discretization

along y-direction is not necessary. An even number of charge cells are used because

that will generate an odd number of current cells, which translates to the location of

the voltage source exactly in the middle of the line. In other words, this causes an

alignment between the center of the dipole and the middle current cell, which is the

location of the voltage source. The length of the strip is I = I?"o , the width is

w = 0.0Lmm and the height from the dipole to the ground plane is h = 0.1?,"o.

The Current distribution for the dipole is obtained by the MPIE/iVIOM

solution for different number of charge cells. Our main goal here is to test the

convergence ofthe solution in relation to the density ofcurrent (or charge) cells along

the microstrip surface. A reasonably large number of charge cells are used for the

analysis.

The current values are obtained in terms of magnitude and phase and are

shown in Fig. 5.2 and Fig. 5.3 respectively. Fig 5.2 shows the magnitude of the
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current distribution along the length of the strip. Each current value is calculated

exactly at the center of each current cell. Five simuiations are performed for different

cell densities.

o.4 0.5 0.6
Distance (m)

Figure 5.2 : Current n'Ld,gnitude for single wauelength microstríp dipole

From the above flgure it can be seen that the solution converges very fast. The

standing wave pattern seems to have converged after 40 cells. Fig 5.3 shows the

phase distribution for the full-wavelength transmission line.

<t)(l)
(¡)
o,
<l)oo
q)
Ø
cú
-co_

-50

-1 00
o.4 0.5 0-6

Distance (m)
o.7

Figure 5.3 : Phase distríbutíon. for single wauelength microstrip dipole

For this case no approximation was introduced in the calculation and it did

fl*i
,"ffi
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not upset the run-time of the simulation. For example, for 120 charge cells, the whole

simuiation run took a little less than 8 seconds in a SPARC-I machine. From above

plots, it can be seen that the MPIE/I\4OM formulation is valid wheî Ê, = 1 and

convergence is achieved quite easily. With the convergence confirmed, we can

caiculate the input impedance by implementing frequency and comparing the input

impedance values with the values obtained from [2].

For the second test, a half wavelength center fed dipole is simulated to

analyze the input impedance. The calculation is performed at f = 3 GHz and a

dielectric constant €, = I (free space) is used. The length of the dipole at the given

frequency is I = 0.05m and w = 0.0lmm chosen as the width of the dipole, in

order to compare it to the existing results l4l. The input impedance for the dipole is

calculated for various ground plane to dipole height h . For a total of 100 charge cells,

the input impedance value is calculated from h = Imm to h = l)mm and is

shown in Fig. 5.4. Also, the impedance values obtained from the [2] is plotted in the

same graph.
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Figure 5.4 : Input impedance of the microstrip line for dífferent ground
to dipole heíght
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A slight discrepancy can be seen in our simulation results. For these type of

analysis, the use of further numerical approximations should be avoided. In Fig. 5.5,

once again the input impedance values are calculated for a wide range of ground

plane to dipole heights.

60 ao 100 120 140
substrate height (m) (x1 O 3)

Figure 5.5 : Input ímpedance us. ground plane to dipole height

In the above graph,'we can see that the input impedance value approaches a

virtually constant value as the height between the dipoie and the ground plane

approaches a very large value. The real part ofthe impedance approaches 7Jf) and

the imaginary part shifts close to 42.5Q, which are the exact known values of a half-

wavelength dipole and was obtained from Balanis [7]. These values also agree with

the data obtained from similar test performed by Yeung [2]. Thus, from the above

data, we can say that the result obtained from the MPIEiIVIOM solution for a small

substrate height is satisfactory and the error can be considered marginal. However,

precautions should be taken when analyzing structures having a small substrate

height. In other words, further numerical approximations should be avoided.

The impedance values obtained from our MPIEÂVIOM solution also seem to be

1AO160
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relatively accurate for thicker substrates. Comparison of the results show a marginal

error in our MPIE^4OM solution as opposed to the solution obtained from

Sommerfeld Integral equation. The associated errors are present mainly due to the

introduction of approximate Green's function. Additional simulation tests are carried

out to further explore the accuracy and error domination in the final solution.

5.2.2 Characteristic Impedance of Microstrip Lines

In this section, an open microstrip transmission line is analyzed to verify

design parameters such as the characteristic impedance Zo and effective relative

permittivity E^rr. The results are compared with the data obtained from a previouselI

work by Couture [4].

First consideration to be made here is that the guided wavelength value is

approximately equal to the free space wavelength, so that the source can be located

at a distance 0.20?u^ from one end of the microstrip line. The total length is

I = 0.10m and the width ¿o is varied according to the simulation tests in [4] for

comparison purposes.

The thickness of the substrate is h = lmm and the dielectric constant is

E, = 2.3. As mentioned in the previous chapter, the guided wavelength can be found

by method of current maxima and minima, which are obtained by implementing the

cubic spline method. A typical standing wave pattern for the microstrip line is shown

in Fig. 5.6.
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Fígure 5.6 : Current distribution for off-center fed microstríp líne

In the above standing wave pattern, the total number of charge cells used is

120 and the width is 7mm. One curious observation is that the location of the source

is reflected clearly in the standing wave pattern. A slight peak is observed at about

20 mm, where the source is located. Far-field radiation pattern for both E- and H-

planes are provided in Fig. 5.7. The values are individually normalized to their

respective maxmima.

Figure 5.7 : Far field radiatíon pattern for off-center fed mícrostríp line
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The guided wavelength of the transmission line can be calculated in terms of

the free space wavelength and effective dielectric constant.

l"
o

t5.11

current values, the

calculated from the

Since we can calculate the guided wavelength from the

effective dielectric constant and characteristic impedance can be

following transmission line relationships [18],

(?,.\t
E"ff = 

t CJ
15.21

l"=õ
b ¡;-

4'eff

t5.31

In this part of the simulation, 130 charge cells are used at a frequency

f = 2 GHz. The result seems to converge around this number of cells but it is

slightly higher than the number of cells used in reference [2]. This does not cause any

significant change in the flnal result. Table 1 shows a side by side comparison of the

characteristic impedance and effective dielectric constant values obtained from our

MPIEiNIOM solution and the ones obtained from [4].

From the data table, it can be seen that the results obtained from our MPIE/

MOM solution are very close to the results obtained from Sommerfeld integrals. As

expected, slight error is noticable in our calculation because of Green's function

zo =Løon,lul* 7.?nY
l¿"" Lw 4i \w)

N CfI

Table 5.1 : Characteristic Impedance of Off-Center Fed Microstrip Line

Width(mm) Zo (MOM) Zo (Ref.[4]) €"¡¡ (MOM) e"¡¡ (Ref.[4])

0.4 t40.32 734.5 7.716 1.802

1.0 r02.!2 93.5 r.757 1.841

2.0 68.91 64.5 1.810 1.908

4.0 42.72 41.0 1.886 7.994
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approximation. However, it does not significantly influence the final result.

In this MPIE/MOM solution, numerical approximation is first introduced in

the MOM procedure itself. As mentioned previously, the exact solution is obtained

only by apptying an infinite number of matrix terms. However this is not possible and

thus a reasonable number of matrix elements have to be used. This approximation

reduces the accuracy to a certain degree. Since this is unavoidable, further

approximation in most MPIE/I\4OM solutions is prevented through the use of

Sommerfeld integrals to calculate Green's function. In our case, since the use of

Sommerfeld integrals is totally absent and instead approximate Green's functions

aÍe implemented, we are definitely introducing more approximations in the

calculation. For example, the data obtained from the simulations show a marginal

erïor associated with our solution. The discrepancy in the results seems to be fairly

minimal and does not signiflcantly affect the overall analysis procedure. In the

calculation of characteristic impedance of the microstrip lines, we can see that on

average the error does not exceed to more than few percents. The worst case has an

error of about 97o for impedance and about íVo for effective dielectric constant.

5.3 Microstrip Antennas

From the analysis of simple microstrip structures, we have seen that the

results are in a reasonable agreement with the data obtained from the exact

Sommerfeld equations' solution. Now, we will further test the MPIE/IUOM solution

by analyzing microstrip antennas. First, a single feed microstrip antenna is analyzed

and then compared with the results obtained from a software tool called PRELUDE.

Next, a circularly polarized antenna will be designed and tested experimentally. The
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main design criterias to be considered here is the input impedance and reflection

coefflcient. Also, the E- and H- plane radiation pattern will be calculated and

compared with the PRELUDE results.

5.3. 1 Single Feed/Linearly Pol.arízed Microstrip Antenna

Microstrip patch antennas with a single feed can be used in different

applications. However, due to some disadvantages such as low bandwidth, patch

arrays are more popular as opposed to a single patch element. The performance of the

array depends critically on the individual elements and care must be taken in

designing these elements. In this section a single feed patch antenna is analyzed in

terms of it's main design characteristics such as the input impedance and return loss.

The numerical results are compared with the data obtained from PRELUDE.

The main design parameters used for the calculation are selected so that it

can be simulated with both tools. The antenna is designed at a frequency

f = 4GHz and the substrate parameters are : dielectric constant Er = 2.2 arrd

height h = 0.79mm. The radiating patch is of length I = 25mm and width

w = 40mm . T]ne dimensions of the patch are taken such that the width is slightly

less than the full wavelength in the substrate and the length is about half

wavelength long, for the design frequency. For the first test simulation, the patch is

fed directly by a 50O line without the use of any impedance matching, as shown in

Fie. 5.8. The width of the feedline is about 2.46mm. The feedline is made

considerably long to suppress higher order modes and to generate quasi-TEM mode

oniy. For this case, the length is l2mm.
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Numerical Results

In the design of the CP antenna, the first step is to calculate the input

impedance of the radiating patch at the two feed points. Impedance values should be

equal at these feed points, i.e. Zinr, = Zínrr. The input impedance results are

given below in Fig. 5.18, for 2GHz to SGHz frequency range.
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2

1
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2.3 2.4 2.5 2.6 2.7

Frequency (GHz) 1xt Oe)

Figure 5.18 : Normalízed input impedance of the radíating element

Now a matching circuit is designed for the input impedance at resonant

frequency. Since a 50{l feed line is used, the antenna should be matched for this

impedance. An extra quarter-wave iine is added to one of the matching feed iines to

achieve circular polarization. A simple power divider is used to split the power

between the feeds [18]. The length of the main 50O feed line can be used as desired.

The completed design is provided in Fig. 5.17(i). Irregular dimensions of the two

feeds may lead to design discrepancies. This translates to a poor circular polarization

from the antenna. Therefore, the two feedlines are carefully designed so as to obtain

maximum performance.

The whole structure is simulated to extract the reflection coeffrcient. For a 2
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GHz to 3 GHz frequency range, the forward reflection coefficient of the entire circuit

is calculated and shown in Fig. 5.19. From the graph, we can see that the antenna is

matched quite well near the design frequency. It seems that the resonant frequency

has shifted a little bit, but it is still reasonably close to the design frequency.

2.3 2-4 2.5 2.6 2.7
Frequency (cHz) (x1Oe)

Figure 5.19 : Calculated reflection coeffr.cient of the CP microstrip antenna,

The antenna is fabricated using the milling machine provided by the

Department of Electrical and Computer Engineering. The dimensions are first

sketched in AutoCA-D and then transferred to a software which controls the

operation of the milling machine. The sketching of the whole antenna structure

required extra caution mainiy because the preciseness in the dimensions of the

antenna as well as the feed structure is very important. This will determine the

actual performance of the antenna. It took about 8 minutes to fabricate the whole

antenna structure. The corresponding dimensions of the final prototype is very

accurate with virtually no errors. A picture of the designed antenna is shown in Fig.

5.17(ii).

The reflection coefflcient of the antenna is measured using a Network
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AnaIyzer. A 50O coaxial connector is connected to the main feed line and sweep for

the entire frequency range (2 GHz to 3 GHz) is shown in Fig. 5.20.
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Figure 5.20 : Measured reflectíon cofficient of the CP microstríp antenna

We can see that the antenna is matched weil around the design frequency. The

resonant frequency is about 2.53 GHz for the fabricated antenna. The antenna is now

tested in the Anechoic chamber to measure far field radiation pattern. It's mounted

as a receiver on a rotating shaft and a linearly polarized horn antenna is used as a

transmitter. The transmitter is systematically rotated to obtain circular polarization.

Due to the unavailability of a circularly polarized transmitter, the cross polar pattern

could not be measured in the chamber.

The tests are carried out for the whole frequency range at certain intervals.

We will look at two radiation pattern measurements, one at 2.5 GHz and one at the

resonant frequency, 2.54 GHz. These are shown in Fig. 5.21 and 5.22, respectively.
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Figure 5.21 : Far-field po.ttern at 2.5 GHz

At 2.5 GHz, tlne measured gain is 6.77 dB. Also, the measurement is not

symmetric due to irregularity in the mounting platform and the transmitting tower.
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Figure 5.22 : Far-fi,eld pa.tterrL at 2.54 GHz

The final actual gain of the antenna at 2.54 GHz is 4.27 dB. Performance

seems to be better at this frequency. As in the previous measurement, a slight

ANG: .E: (A)
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irregularity is noticable in the pattern and it's due to irregularities in the mounting

ofthe antenna.

In this chapter, we have proven that the approximate Green's function based

MPIE/IVIOM solution is quite effective in predicting the performance of microstrip

structures. 'We have compared our results with the published results and also with a

full-wave analysis based software tool. A linearly polarized and a circularly polarized

microstrip antenna are designed and analyzed. The experimental data for the

circularly polarized antenna showed that the design characteristics are quite

accurate. This further enforces the accuracy of the approximate Green's function

based MPIE/I\{OM solution method. Errors visible in this method can be iimited by

avoiding the use of too many numerical approximations in the computation process.

Introduction of approximations will defrnitely reduce run time but will result in an

error dominated solution. Therefore, a compromise between efflciency and accuracy is

the key to achieving a satisfactory and effrcient design method.
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Conclusion

An approximate Green's function technique in conjunction with the method of

moments proves to be an efficient and powerful technique for the analysis of

microstrip structures. Investigation into the accuracy and effrciency of this method

have provided conclusive evidence that the procedure is quite reliable and compares

well with established full-wave analysis techniques.

The thesis is divided into three main parts. First, a general derivation of

approximate Green's function is presented as the starting point of the formulation.

The Green's function is applied in the Mixed Potential Integral Equation (MPIE) to

formulate the solution for microstrip structures. This required the use of boundary

conditions and few theoretical assumptions. The Method of Moments technique is

used to acquire solution from the MPIE. Extraction of surface currents from the

MPIEI1VIOM solution provides the initial stage for the analysis. Further
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Conclusion

manipulation of this solution yields frequency dependent characteristics such as the

S-parameters and far fleld radiation patterns.

Based on the theoretical analysis of the the Green's function method, a

computer program has been developed to solve the MPIE/IyIOM soiution. The results

are compared with published numerical results as well as experimental results. In

addition, the accuracy of the solution is weighed against the results obtained from a

full-wave analysis based software tool and is found to be in good agreement. A half

wavelength dipole is analyzed to test the convergence of the solution and to verify the

solution in terms of input impedance calculations. The characteristic impedance and

effective dielectric constant of a off-center fed microstrip transmission line are also

calculated and compared with existing results. Design of a microstrip antenna and.

it's matching feed line is presented. Furthermore, a design of a circularly polarized

microstrip antenna and the corresponding experimental results are provided.

There are few recommendations that might be useful for future research.

Foremost is that a closed form solution to extract Green's function, instead of

Sommerfeld integrals, might lead to an even more accurate and efficient method.

Secondly, in the present simulation pïocess, the circuit needs to be segmented into

current cells first. If the structure to be analyzed is complicated, the segmentation

process can be a very tedious and time consuming. Use of a tool to extract mesh

coordinates will provide a less exhaustive simulation process and is recommended for

future research.

The numerical method developed in this project is an efficient and reasonably

accurate technique and it can be implemented to design microstrip circuits and

antennas. Further research into this numerical approach may provide effrcient

design environment for high frequency circuit designers.
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Appnrudix A

Analytical Integration of Green's Function

The dominant term in the vector and scalar potential Green's

given by the corresponding static terms, Gl{"tot¡" und Gvrtoti,

ntx lLo IuAttoti" = 4n V4

functions are

t3.11

t3.21

t3.31

For a current cell having the dimension 2a xb , tlne final analytic integration

expression for eqn. (3.1), without the constants, for a static term of the vector

potential Green's function is given by l2l

'nl, * *)2c(4iÐ) + (a-*t'"(:#)-2 @,)'"(:+)1.

uII
" Vstøtic

llr+ø')bs(re;Ð) * ," -t>us(2-@Ð)-tur*')s( +)]

= sinh-l (ú) . Also, x' is the location of

F;ng. F-7ry -,þr.çuy1
where, C (ú) = ,orh-I (r) and S (ú)

observation point.
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Simiiarly, from eqn. (3.2), the analybic expression for the vector potential

static Green's function is given as l2l

,l*( E4 ; e)' . 3-, )) - ^(,le- 
*,)' . (2)' -3-, ))] 13 4l

Where, as in the vector case, x' is the location of observation point. These

solutions were rigorously studied by the author [ ] and was found to be accurate.
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Appendix B

Derivations for y- directed Current

rvn
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Figure 8.7 : configuration for y-dírected current cell

The y-directed surface current is expanded over a set ofcurrent basis function

(2D triangular function) [3].

-N-1
J .. = ! t 1. -- 7.. (r - r... \ t3.11sY d "rtn Yt Yn'

where,

, t -14 wr.2, wl <o
Tn?) = t o ¿ 13.2)" 0 elsewhere

Similarly, the surface charge density is given by,
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where,

R (r)

The vector potential

equations [3],

)l

W1.2, Wl.i
elsewhere

scalar potentialf V are given

t3.31

13.41

by the following

13.51

I
JOab

N-1
T

n=I

. ( ,\ (
I lRl r-r l-Rl r-rynL \ yn ,/ \ yn

I1=L
0

lO and

t'f; e¡, n') = I è'i elr') T, (r' - r rn) d.r'

n

f ,(rlro) = J *u?lr') R (r' - rrr) d.r' t3.61
trn

The tangential electric field is calculated from,

. N-l , N-I a _

EiØ = t#')7' 
,r*fi etrnl.Å*')Z' ,rr,$[.u('¡',. )-.,,(.''" )]

t3.71

From the above expressions, y-directed current distribution can be calculated

by the Method of Moments solution.
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