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Abstract

Much attention has been given to response adaptive designs recently because of their
ethics advantages. However, the adaptation of the treatment allocation creates a
dependence structure in the collected data and raises concerns about the validity of
statistical analysis, the loss of power for testing hypotheses and experimental bias.
My thesis focuses on the development of statistical inference methodologies and the
investigation of optimality properties for response adaptive designs.

The issue of statistical inference for response adaptive clinical trials has been both
important and challenging. Due to the dependency in data collected from response
adaptive designs, traditional statistical inference methods cannot be applied without
modification to analyze data from adaptive clinical trials. I study the treatment ran-
domization processes of response adaptive clinical trials. The information gathering
process in the trial is formulated as a stochastic process, in particular a Markov pro-
cess for dichotomous responses. Then the logarithm of the likelihood ratio test and
the goodness-of-fit test are extended to analyze dependent data from the adaptive
trial. I also examine the issue of asymptotic efficiency of estimation in response adap-
tive designs of clinical trials. The asymptotical lower bound of exponential rates for
consistent estimators is established and the maximum likelihood estimator of the treat-
ment cffect is shown to be asymptotically efficient in the Bahadur sense for response
adaptive clinical trials.

Besides the éxplQration on the statistical inference for response adaptive designs,
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I investigate the optimality properties of the designs and explore the evaluation of
response adaptive designs using the variance-penalized criterion. It is shown that
this criterion evaluates the performance of a response adaptive design based on both
the expected number of patients assigned to the better treatment and the power
of the statistical test. A new proportion of treatment allocation is proposed and
simulation studies are conducted to compare the proposed design with the existing
designs. The proposed desigh has the advantage of assigning more patients to the
potentially better treatment with less loss in power of the statistical test in common
clinical trial conditions.

However, the optimal treatment allocation under the variance-penalized criterion
is deterministic, and hence is vulnerable to selection bias in clinical trials. Searching
for an optimal randomization allocation is still under study. Constrained dynamic
programming techniques may be employed and algorithms will developed to search

for an optimal adaptive allocation rule in my further research.
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Chapter 1

Introduction

Much attention has been given to adaptive designs of clinical trials in recent years
because of their efficiency and ethical advantages. However, the adaptation of an on-
going trial raises concerns about the validity of statistical conclusions, the logistical
issues and experimental biases. This chapter introduces the background on adaptive

designs, the motivation as well as the main results of my research.

1.1 Adaptive Designs

This section briefly introduces the definition of adaptive designs, various classes of
adaptive designs and the major issues for the designs.

An adaptive design is defined by Chow et al. (2005) as a design that allows adap-
tations or modifications to some aspects of a clinical trial after its initiation without
undermining the validity and integrity of the trial. This definition is consistent with
that given in an executive summary of the PhRMA working group (Gallo et al., 2006).
Ore kind of modification during the course of a trial could be the adaptation of ran-
domization procedures. An adaptive designs with this kind of modifications is called a
response adaptive design. In a response adaptive design, the probability of allocating

the next patient to a particular treatment is adapted based on the accumulated in-



formation such as the responses of previously treated patients and previous treatment
allocations. The treatment allocation is deliberately biased to assign more patients to
the potentially better treatment. The modification could also be other changes of the
design or statistical analysis procedures based on the observed interim results and/or
any information from outside the trial. This kind of modification includes sample size
re-estimating, early stopping due to efficacy or futility, dropping inferior treatment
groups, modifying statistical hypotheses, changing inclusion/exclusion criteria, ad-
Justing study dose of drugs and adapting endpoints during the course of a trial. This
type of adaptive design is said to be a sequential adaptive design in which interim
data analysis is a characteristic. No matter what kind of modifications is applied to a
trial, the goal of adaptive designs is to learn from the accumulating information and
to apply the learned knowledge to benefit the patients within the trial or to speed up
the development of efficient drugs.

Adaptive designs are of great advantages including ethical and efficiency advan-
tages. Firstly, in response adaptive designs, the motivation of the adaptation of treat-
ment randomization is to modify the randomization procedure and to assign more
patients within the trial to the potentially better treatment. The future patients
within the trial are assigned to the better treatment with large probabilities. In se-
quential adaptive designs, patients in a trial may benefit from the drop of the inferior
treatment and early stopping of a trial. A trial may be stopped if the experimental
treatment is clearly better or worse than the control, or the futility stopping criterion
is met in the interim analysis. These modifications of an on-going trial based on in-
terim results of the trial not only potentially prevent exposing patients to the inferior
treatment in the trial, but also reduce the number of experimental units required in
the trial. In addition, interim information helps recalculate sarﬂple sizes and this may

reduce the possible overly large size of the trial, thus limiting the exposure of patients
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to the inferior treatment and saving resources. In adaptive designs, the accrued data
in a trial are used to modify the on-going trial for economic consideration and/or
concerns about the welfare of the patients within the trial.

Adaptive designs have attracted great interest due to their potential efficiency
and/or ethical advantages. However, the modification of an on-going trial raises great
concerns about the validity of statistical inference, logistical issues and procedural
challenges when applying adaptive designs in practice.

The modification of an on-going trial presents statistical challenges to draw con-
clusions on medical questions at the end of the trial. In response adaptive designs, the
modification of treatment allocation is based on the accumulated information in the
trial. This adaptation creates a dependency structure in the collected data énd the tra-
ditional statistical analysis methods cannot be applied directly without justification.
In sequential adaptive designs, the modification of the trial is based on the interim
analysis, thus resulting in the use of “non-standard” test statistics in the overall data
analysis. It is of concern that the Type I error rate may have been inflated (Chang et
al., 2006, Bauer and Kohne, 1994, Proschan and Hunsberger, 1995, Posch and Bauer,
2000). “In adaptive designs often test statistics diverging from the conventional test
statistics may have to be used for the test decision” (citing Bauer and Einfalt, 2006).
Jennison and Turnbull (2006) argued that “the final analysis of data from an adaptive
trial design typically involves the use of unfamiliar test statistics that do not satisfy
the sufficiency principle”. Burman and Sonesson (2006) questioned whether analysis
based on non sufficient statistics can be deemed “valid”. Chow et al. (2006) noticed
that there is a high risk that a clinical trial using adaptive designs /methods may fail
in terms of drawing valid statistical conclusions and /or fail to provide useful infor-
mation with desired power, especially when the sizes of the trials are relatively small

and there are a number of protocol amendments.
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The estimation problem for treatment effects is another concern. The executive
summary of the PhARMA working group (Gallo et al., 2006) argued that issues with the
estimation of treatment effect have not been fully resolved for some adaptive designs
in the frequentist paradigm. This point of view is supported by Wassmer (2006).
The research by Bauer and Einfalt (2006) found that, in the published literature, a
problem exists with estimation in adaptive designs. Bauer and Einfalt (2006) claimed
that “mid-trial design modification may have a negative impact on the persuasiveness
and perception of the results.” They further suggested that more research on the
properties of suitable estimates following design adaptations is important for applying
adaptive designs in practice in the future.
| In addition, the modification of an on-going trial raises concerns on logistical
or/and procedural issues in adaptive designs. The adaptations of an on-going trial are
based either on cumulated information on treatment effects or interim analysis. This
requires rapid data collection, effective communication between patients/investigators
and the randomization center, and appropriate management of interim information
to maintain the validity of a clinical trial, thus bringing great challenges to reduce
selection bias when implementing adaptive designs in practice.

How to reduce selection bias is a common issue in clinical trials including tradi-
tional and adaptive trials. The issue is more specific in adaptive trials because the
modification of an on-going trial requires conveying the information on responses of
previous patients or interim analysis during the trial. This leads to the difficulty
of reducing selection bias. In adaptive designs, the selection bias could come from
the investigator (trial personnel and/or sponsor representatives) or from the patients
that are involved or will be involved in the trial. A trial personnel could guess the
probability of treatment allocation for the next patient according to the adaption rule

from previous responses of patients. A sponsor for a pharmaceutical company may
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manipulate the available interim results to affect the adaptation of the trial at the
anxiety to see the company’s latest pharmaceutical product succeed. As a result, the
subconscious preference or deliberate dishonesty of the investigator could be included
in the data. The selection bias could also come from the patients’ aspect. A patient
in the trial may choose to quit the treatment if he or she feels it is not effective or
requires to transfer to another treatment group provided that he or she guesses the
other treatment is more effective based on the responses of previous patients. In some
adaptive designs, patients are informed of the nature of the adaptation of the trial for
ethical consideration or in order to be compliant with regulations on good clinical trial
practice. In the screening phase of a trial, except for emergencies, patients may prefer
to be recruited later so that the chance for her or him to get the better treatment be-
comes larger. This behavior of patients results in the problem of data missing not at
random or casts the doubts on the randomness of treatment allocation. Consequently,
it leads to some challenges and some problems for statistical analysis.

Selection bias raises serious concerns about the validity of the analytical results or
creates problems in statistical analysis. The best way to reduce selection bias is to
mask the interim information of the trial from the investigators and patients. How-
ever, the design feature of response adaptive trials needs to convey the accumulated
information for the modification of the trial or it is difficult to mask the study in some
situations. As pointed out by Rosenberger and Lachin (2002), “it is not unusual for
patients to be unmasked during the course of the trial due to either adverse events
known to be highly associated with one of the treatments, life-threatening emergen-
cies requiring unmasking, or distinguishing features of the masked treatment, such as
taste”. Recently, the potential impact of conveying interim analysis information to
investigators or other people were discussed by many researchers. Lokhnygina (2006)

noticed that a potential problem of unblinding the interim data and the resulting op-

5



erational bias have long been the source of concerns for many researchers considering
the use of adaptive designs. Bauer and Brannath (2004) argued that applying such
adaptive designs requires new tools of statistical monitoring. The executive summary
of the PhRMA working group (Gallo et al., 2006) recommended expanding the re-
sponsibility of the independent Data Monitoring Committees, limiting the extent of
sponsor involvement and withholding the details of the adaptive procedure to a sep-
arate document in order to reduce the negative impact of leaking interim results to
investigators or other persons involved in the trial. Lokhnygina (2006) strongly sup-
ported this recommendation and claimed that it could make the implementation of
the adaptive designs in practice more plausible.

In summary, adaptive designs of clinical trials are potentially efficient and /or have
ethical advantages. But the modification of an on-going trial presents some of the
greatest challenges in statistical analysis and in the reduction of selection bias. My
dissertation focuses on the design and statistical inference of response adaptive clinical

trials.

1.2 Response Adaptive Designs

With a response adaptive design, the probability of treatment allocation to the next
patient is modified based on the cumulating information on providus treatment al-
locations and responses of previously treated patients in the trial. The purpose of
the design is to deliberately bias the treatment allocation in order to assign more pa-
tients to the potentially better treatment. Response adaptive designs are developed

alternatively for ethical considerations in clinical trials.



1.2.1 Ethical Issues

Traditional randomization provides a powerful method for comparing treatrrient ef-
fects and has many statistical and scientific advantages. The 50-50 randomization is
considered as a gold standard in clinical trials. However, this standard is criticized for
being unethical when the equipoise on treatment effects is broken, because half of the
patients are assigned to the inferior treatment.

Most researchers agree that randomization is the best method for achieving com-
parability among treatment groups and constitutes the basis of statistical inference.
Randomization tends to balance the treatment groupé with respect to known or un-
kown covariates and is used to protect against selection bias from investigators. The
probabilities introduced by randomization establish the fundamentals of statistical
inference. Randomization guarantees the validity of a statistical conclusion at a sig-
nificant level. As Byar et al. (1976) claims, “Randomized clinical trials remain the
most reliable method for evaluating the efficacy of therapies.”

However, randomized clinical trials present a dilemma for investigators between
individual and collective ethics when considering the responsibilities of investigators.
On the one hand, investigators need to consider the well-being of individual patients
within the trial and do what is the best for individual patients. On the other hand,
investigators want to gather information about and draw valid statistical conclusions
on treatment effects to benefit future patients. Royall (1991) examined the personal
care principle and argued “that principle can make it difficult or impossible for a physi-
cian to participate in a randomized clinical study.” The World Medical Association’s
Declaration of Helsinki clearly states that in medial research on human subjects, con-
siderations related to the well-being of the human subject should take precedence over

the interests of science and society. Palmer and Rosenberger (1999) described the role



of individual and collective ethics in designing clinical trials and claimed that greater
attention should be paid to the former. The ethical tension between individual and
collective ethics was also noticed by Pullman and Wang (2001).

For instance, the zidovudine trial (AZT) done by the AIDS clinical trial group
(ACTG 076) was controversial on ethical grounds. The trial was to investigate the
effect of a short term zidovudine (AZT) therapy on reducing the risk of maternal-
infant HIV transmission. From April 1991 to December 1993, 477 pregnant women
with HIV-infection were recruited into the trial. 239 of the women were given the
short term AZT therapy using permuted block randomization and the remaining 238
constituted the placebo group. The first publication of the ACTG 076 study (1994)
indicated that the effect of AZT on reducing the HIV transmission from mother to
infants is statistically significant (P-value 0.00006) and the reduction is approximately
two-thirds. A data analysis in 1996 confirmed the results in 1994 by ACTG 076 and
the infection rate was 7.6% in the AZT group and 22.6% in the placebo group. The
findings presented by ACTG 076 is a scientific breakthrough, but the randomization
employed in the trial is controversial. Lurie and Wolfe (1997) argued that “on the basis
of the ACTG 076 data, knowledge about the timing of perinatal transmission, and
pharmacokinetic data, the researchers should have had every reason to believe that
well-designed shorter regimens would be more effective than placebo. These findings
seriously disturb the equipoise (uncertainty over the likely study result) necessary to
justify a placebo-controlled trial on ethical grounds.” Yao and Wei (1996) criticized
the randomization procedure used in the trial and claimed that the procedure had put
too many pregnant women on the placebo group and resulted in a large number of
HIV-positive infants.

A good clinical trial practice should address both the individual and collective

ethics. The 50-50 randomization is criticized for being unethical because individual
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ethics (for trial patients) is often sacrificed, especially in desperate medical situations.
According to Zelen (1969), “the ethical principle has motivated the development of
statistical techniques which attempt to end a trial at the earliest moment when a
decision can be made at to which therapy (if any) is most beneficial”. Plenty of
ethically motivated designs for clinical trials (see Armitage 1960, Anscombe 1963
and Palmer and Shahumyan, 2007), including response adaptive designs pioneered
by Zelen (1969), have been proposed to alleviate the tension between the individual
and collective ethics. Response adaptive designs modify the treatment allocation
probabilities based on the treatment allocations and responses so far accumulated
in the trial, and tend to assign more patients to the better treatment. Zelen (1969)
found that, as a consequence of his response adaptive procedure (play-the-winner),
“the ethical problem posed by an unnecessarily long clinical trial is not as serious as
a trial where patients are allocated in equal numbers to the treatments for the length
of the clinical trial.”

Zelen’s play-the-winner procedure was extended to a randomized play-the-winner
(RPW) procedure by Wei and Durham (1978) in the thought of reducing selection bias.
This design has be.en used in the extracorporeal membrane oxygenation (ECMO) trial
conducted by Bartlett and his colleagues (1985) at the University of Michigan. The
ECMO technique was employed to treat newborns with respiratory failure charac-
terized by persistent pulmonary hypertension (PPH). PPH results in low blood flow
through the lungs, thus inadequate oxygenation of the blood. Newborns with PPH are
at high risk of death in the first days of life. ECMO is an external system for providing
temporary support during respiratory failure. Historically, researches reported 80%
survival rate in the use of ECMO to treat newborns with PPH and only 20% or less
survival rate in other traditional treatments. Questions were raised on the compara-

bility of the survival rates because of the absence of the concurrent control groups in
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those studies. The Michigan trial group recognized the need of a control group to draw
a valid conclusion and was also strongly concerned about the ethical issue raised by
using 50-50 randomization. The Michigan ECMO trial is the first randomized clinical
trial carried out on the effect of ECMO.

The RPW design used in the Michigan ECMO trial can be described by an urn
which initially contains a ball labeled with ECMO and a ball with the label CT rep-
resenting the conventional treatment. When a patient is ready to be treated, a ball is
randomly drawn with replacement and the corresponding treatment is applied. The
urn is updated when the outcome of an applied treatment is available. An additional
ball of the same type is added to the urn if the treatment is successful. Otherwise, an
additional ball representing the opposite treatment is added. The allocation probabil-
ity of the next patient depends on the allocations of previous patients and responses
of previous treated patients. In time, the urn is expected to contain a high proportion
of balls associated with the more successful treatment. In the Michigan ECMO trial,
the first ball drawn from the urn was an ECMO ball and the first baby was assigned
to the ECMO treatment. The baby survived and an additional ECMO ball was added
to the urn. The second baby was assigned to CT treatment using the urn and the
baby died, so another additional ECMO ball was added to the urn. This procedure
continued until the next seven babies were assigned to the ECMO treatment and all
survived. The randomization ceased since the planned sample size was reached. Later,
two more babies were treated with ECMO and both survived. In brief, 10 babies were
treated with the ECMO treatment and all survived. Only one was assigned to the CT
treatment by the RPW design but died. The data provided encouraging information
about the survival rate of infants treated with ECMO, but was not conclusive because
only one baby was allocated to the CT treatment.

However, the conclusion in another randomized ECMO trial conducted by the UK
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collaborative trial group showed that the RPW design used in Michigan ECMO trial
did assign more patients to the better treatment. The UK collaborative ECMO trial
enrolled 185 mature infants from 1993 to 1995 and the recruitment was stopped early
in No_veinber in 1995 on the advise of the Independent Data-monitoring Committee
because the accumulated data showed a clear advantage with ECMO. 93 of the re-
cruited infants were randomly assigned to ECMO and 92 to the CT treatment. The
survival infants after the treatments were followed up to one year old to observe the
morbidity status. The data analysis demonstrated that ECMO reduces the risk of
death without a concomitant rise in severe disability. A follow-up study to 7 years
(McNally et al., 2006) concluded that the beneficial influence of ECMO is still present.
This trial was unethical because many infants were treated with the inferior treatment.
But the trial did provide a sound conclusion and justified the routine use of ECMO
in medical practice.

In summary, the 50-50 randomization presents ethical difficulties in clinical trialé,
especially in desperate medical situations. But ethical concerns should not preclude
randomization in clinical trials. As one of the alternatives, response adaptive designs
integrate randomization with the ethical consideration and provide a better way to

alleviate the tension between the individual and collective ethics.

1.2.2 Types of Response Randomization Procedures

Response adaptive designs modify treatment allocations based on the accumulated
responses of previously treated patients in the trial and deliberately bias treatment
allocations to assign more patients to the potentially better treatment. The designs
apply what is learned from the accumulated information on treatment effects to benefit
future patients within the trial. Response adaptive designs have been studied for

decades and many adaptive randomization procedures have been developed, including
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the procedures based on urn models, sequential estimation procedures and decision-
analytic procedures.

The treatment randomization based on an urn model is based on the urn compo-
sition process, which is modified according the responses of previous patients. This
adapted urn composition process automatically represents the information gathering
process on treatment effects in the trial.

An important contribution on urn models is the randomized play-the-winner (RPW)
procedure proposed by Wei and Durham in 1978. This randomization procedure was
used in the ECMO trial by Bartlett et al. in 1985 and in the clinical trial on fluoxetine
versus placebo for depressive disorder (Tamura et al., 1994). Urn models originated
from the Pélya urn scheme presented by Eggenberger and Pélya (1923). The Pdlya
urn was generalized by Friedman in 1949. The idea of using urn models for response
adaptive randomization can be traced back to the researches in 1960s (Athreya and
Karilin, 1967, 1968, and Zelen, 1969). Zelen (1969) introduced the play-the-winner
procedure (PW) to alleviate the ethical tension between individual and collective ethics
presented by the 50-50 randomization. Zelen’s PW was generalized to the random-
ized play-the-winner design (RPW) by Wei and Durham in 1978, which inherits the
spirit of Zelen’s procedure that tends to assign more patients to the better treatment,
but is less vulnerable to experimental bias because of the randomized allocation of
treatments. In general, a RPW(«, 3,7) design is described by an urn that contains
initially « balls of ‘type A and (8 balls of type B representing treatments A and B
respectively. When a patient is ready to be treated, a ball is drawn at random and
the corresponding treatment is applied. Then the ball is returned to the urn and the
urn is updated based on the patient’s responses. An additional v balls of the same
type are added to the urn if the response of the patient is a success. For a failure,

an additional v balls of the opposite type are added. In time the urn is expected to
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contain a high proportion of balls associated with the more successful treatment, thus
future patients within the trial have a large probability to be assigned to the better
treatment.

Since the works of Zelen (1969) and Wei and Durham (1978), many urn models
have been developed using different adaptation rules on the composition of an urn.
The updating rule employed by Durham and Yu (1990) is that a ball of the same type
is added if there is a success and the urn composition remains the same for a failure.
Ivanova et al. (2000) proposed the birth and death urn in which a ball is added to
the urn for a success response and a ball is removed from the urn for a failure. The
drop-the-loser rule (DL) developed by Ivanova (2003) adapts the urn composition by
1’emo§ing a ball if there is a failure and keeping the urn composition unchanged if
there is a success. Furthermore, Ivanova and Flournoy (2001) generalized the binary
response urn models to a ternary urn model with three outcomes. Other classes of urn
models include the generalized Friedman’s urn model (also called generalized Pélya
urn model, GPU for short) (Wei, 1979, Rosenberger et al., 1997, Bai et al., 2002),
the randomized Pélya urn model (Durham et al., 1998) and the sequential estimation-
adjusted urn models (Zhang et al., 2006). Urn models were reviewed in Dirienzo (2000)
and Rosenberger (2002). Recently, the drop-the-loser urn model has been extended
by Sun et al. (2007) and Zhang (2007).

Another class of treatment randomization procedures in response adaptive designs
is the sequential estimation procedures. This type of randomization is to target a
certain proportion of treatment allocation. The target proportion is pre-specified ac-
cording to the objective of the design and involves the unknown parameters of the
treatments in the trial. The unknown parameters are sequentially estimated and
the updated estimates are used in the randomization procedure to achieve the target

proportion. Major sequential randomization procedures include the doubly-adaptive
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biased coin design (DBCD)(Eisels, 1994, Eisele and Woodroofe, 1995, Hu et al., 2003,
Hu and Zhang, 2004), the doubly adaptive weighted difference design procedure (Ger-
aldes et al., 2006) and the sequential maximum likelihood procedure (Melfi et al.,
2001, Roseberger et al., 2001, Baldi et al., 2005).
Among the sequential randomization procedures, the doubly-adaptive biased coin
design is very flexible in that it can target any proportion. Moreover, this procedure
is shown to be asymptotically less variable in proportions of treatment allocation than
the maximum likelihood procedure (Hu et al., 2003). The idea of the doubly-adaptive
biased coin design can be traced back to Efron’s biased coin design which is used to
balance treatment assignments. But the ethical concern in a clinical trial requires
to bias the treatment allocation to assign more patients to the better treatment.
To achieve a desired allocation proportion, Fisele (1994) and Eisele and Wooodroofe
(1995) proposed the doubly-adaptive biased coin design procedure, where an allocation
function was defined and the conditions on the allocation function were given. As
Melfi et al. (2001) pointed out, the complicated nature of these conditions can be
a barrier for the procedure to be applied in practice and the choice of allocation
function in the example of the last section of the two papers (Eisele, 1994 and Eisele
and Wooodroofe, 1995) violated their regularity conditions. Hu and Zhang (2004)
developed a set of widely satisfied conditions for the allocation function for doubly-
biased coin designs and proposed a specific allocation function. This specific allocation
function was shown to generate asymptotically less variable allocation proportions (Hu
et al., 2003) than other procedures, and the sequential maximum likelih;Jod procedure
was demonstrated to be a special case of the doubly-biased coin design under the
specific allocation function. Geraldes et al. (2006) extended the idea of biased coin
designs and proposed the doubly adaptive weighted difference design.

The third randomization procedure in response adaptive designs is the decision-
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analytic procedure incorporating the Bayesian methodology. The learning on the
treatment effect in the decision-analytic procedure is represented by the updating of
the posterior distribution of parameters and the decision on the treatment allocation
is made on the learning process. Early in the 1960s, Anscombe (1963) proposed the
alternative formulation of sequential clinical trials from the point of view of Bayesian
inference for ethical considerations. Later, Berry (1989) and Kass and Greenhouse
(1989) argued that the alternative of randomized trial due to the ethical concern was
to use the Bayesianly oriented methodology. The Bayesian method was used in Berry
(2001, 2004), Berry and Eick (1995), Hardwick and Stout (1991), Muliere et al. (2006).
Recently, Cheng and Berry (2007) proposed a r-optimal design which maximizes the
expected utility in a Bayesian decision-analytic setting with an adaptive randomization
allocation.

Other randomization procedures such as covariate-adjusted response adaptive ran-
domization were considered by Rosenberger et al. (2001) and Biswas et al. (2006).

In brief, there are three major types of randomization procedures in response adap-
tive designs. Different procedures present different ways of information gathering in
clinical trials. The common purpose of these procedures is to apply the collected
information on treatment effects to assign more patients to the potentially better

treatment, thus providing good medical practices for ethical considerations.

1.3 My Research

Response adaptive designs are very attractive to clinical and biostatistical researchers
due to their efficiency and ethical advantages in clinical trials. However, the adaptation
of the treatment allocation creates a dependence structure in the collected data and

introduces more variability into the data, hence raises concerns about the validity of
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statistical conclusions, power loss of statistical tests and experimental bias, etc. These
issues lagged behind the application of response adaptive designs in practice. My
dissertation focuses on the development of statistical inference methods for response

adaptive designs and searching for a better treatment randomization procedure.

1.3.1 Issues and Literature Review

Response adaptive designs have been studied for decades. Statistical methodologies
have been advanced and optimal adaptation procedures have been explored. However,
the exploration of optimal treatment allocation procedures is very restricted and tradi-
tional statistical methodologies need to be justified for dependent data from response
clinical trials, or new statistical methods must be developed.

Response adaptive designs tend to assign more patients to the better treatment
based on the accumulated information of previously treated patients in the trial. Three
classes of response adaptive designs developed in decades are discussed in the previ-
ous section. They are urn models, sequential estimation procedures and the decision-
analytic models. In any of the response adaptive designs, interim information such
as previous treatment allocation and the responses of previously treated patients are
gathered for the modification of the probability of treatment allocation for the next
patient. This adaptation of treatment allocation creates a dependency in the data col-
lected from the trial and leads to difficulties and complications in statistical inference
and in the development for the optimal allocation procedure.

Although statistical inference is very complicated for response adaptive designs,
because of the dependency in the data from the trial, many statistical inference meth-
ods have been explored for adaptive designs in decades. Firstly, the exact distribution
method was used for analyzing the data from the Michigan ECMO trial (Wei, 1988).

Wei (1988) calculated the exact conditional p—valﬁe of the permutation test for the
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Michigan ECMO trial in which the RPW design was used. Later, Wei et al. (1990)
used the network method to derive the exact distribution of a sufficient statistic and
derived the exact conditional and unconditional confidence intervals of the parame-
ters for the ECMO data. Lin et al. (1991) employed the exact distribution method
to the statistical inference of group sequential trials. However, the use of the exact
distribution for the test statistic is computationally intensive for large scale clinical
trials.

In addition, many researchers have investigated the limit theorems of allocation
proportions and asymptotic properties of the maximum likelihood estimation of the pa-
rameters for different response adaptive models. Smythe (1996) and Bai et al. (2002)
examined the urn composition process of GPU and demonstrated the asymptotic nor-
mality of the process. Inouse and Aki (2005) considered the multivariate distribution
of the numbers of occurrences of different types of runs, and gave a recursive formula
-for the probability generating function of the GPU model. Under general assumptions
on random generating matrices which determine how balls are added to the urn, Bai
and Hu (2005) studied a very general urn model and established the strong consistency
and asymptotic normality for both the urn composition and the proportion of treat-
ment allocation. Eisele and Woodroofe (1995) proved the central limit theorems for
the doubly adaptive biased coin design. Later, Hu and Zhang (2004) established the
asymptotic properties of the proportions of treatment allocations for multi-treatment
clinical trials with a doubly adaptive biased coin design. Recently, Zhang et al. (2007)
explored the asymptotic properties of covariate-adjusted response-adaptive designs.

Several researchers also investigated the maximum likelihood estimation for general
response adaptive models. Rosenberger et al. (1997) studied the maximum likelihood
estimators for multi-parameter response adaptive designs. Regularity conditions were

provided for the existence of the maximum likelihood estimator and its asymptotically
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multivariate normality. Melfi and Page (2000) considered the estimation problem for
general response adaptive designs and used the non-martingale approach to show the
asymptotic normality of point estimators of the parameters. Melfi et al. (2001) then
applied the martingale method to demonstrate the consistency and asymptotic nor-
mality of the point estimators for the adaptive design achieving a desired allocation
proportion. Recently, Hu et al. (2006) also showed the asymptotic normality of the
maximum likelihood estimator when studying the best response adaptive randomiza-
tion procedures.

With the exception of maximum likelihood estimation, Coad and Woodroofe (1998)
obtained some results on the bias of the maximum likelihood estimator for sequen-
tially designed experiments. Coad and Ivanova (2001) derived the bias and variance
of the maximum likelihood estimators of the probabilities of success and proposed
bias-corrected estimators for adaptive urn designs. Cheng and Vidyashankar (2006)
discussed the existence and asymptotic properties of the minimum Hellinger distance
eétimators for the randomized play-the-winner design. They established both consis-
tency and asymptotic normality of the estimators.

Other methods such as nonparametric techniques are also used in the statistical
analysis of response adaptive designs. Zhang and Rosenberger (2005) developed the
log rank test for a wide class of randomization procedures including the adaptive ran-
domization procedures. The Wilcoxon-Mann-Whitney score is used by Bandyopand-
hyay and Biswas (2004) to construct a test procedure for two univariate continuous
populations.

Another concern on the use of response adaptive designs is the loss of power of
statistical tests. The adaptation of treatment allocation introduces more variation
to the estimators of parameters and to test statistics. Simulation results (Melfi and

Page, 1998, Rosenberger et al., 2001, Ivanova, 2003) have demonstrated that a large
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variance of the allocation proportion would reduce the power of the test. Hu and
Rosenberger (2003) theoretically examined the relationship between the asymptotic
power of Wald’s test and the variance of allocation proportions. They found that less
variability in the allocation proportion resulted in less loss in the asymptotic power
of the test. Recently, Chen (2006) and Baldi Antognini (2007) provided theoretical
analysis of power for the biased coin design.

The selection of treatment allocation procedures is a challenging problem in adap-
tive designs. On the one hand, a design is expected to assign as many patients as
possible to the better treatment. On the other hand, too skewed treatment groups in
a trial may result in the failure of drawing a valid statistical conclusion at the end of
the trial. A response adaptive design has the advantage of balancing the individual
ethics and collective ethics. However, different adaptive designs present very different
tradeoffs between the individual and collective ethics.

A good response adaptive design is expected to assign more patients to the better
treatment with a minimal loss in the power of the statistical test. Developing for an
optimal design is complicated due to the adaptive process of treatment allocations.
Rosenberger et al.(2001) obtained an optimal allocation proportion to minimize the
expected number of treatment failures for a fixed power of the test. Although both
the power and the expected number of failures were considered, this optimal alloca-
tion proportion doesn’t depend on the desired power. Hu et al. (2006) established a
lower bound on the asymptotic variances of the allocation proportions when the al-
location proportions were asymptotically normally distributed. They concluded that
Ivanova’s DL design is the asymptotically best among the designs with the same
allocation proportion as the DL’s. The DBCD with allocation function g(z,y) (pro-
posed by Hu and Rosenberger (2003) and Hu and Zhang (2004)) was also claimed

to be asymptotically best as the number of patients within the trial goes to infinity.
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However, this comparison of designs is restricted to those with the same allocation
proportion. Bandyopadhay and Bhattacharya (2006) developed a randomization rule
which switches between the Neyman allocation and the myopically better treatment
and conducted a simulation comparison of their randomization rule with the existing
adaptive designs using the expected faﬂure proportion criterion. Recently, Biswas et
al. (2007) considered optimal response adaptive designs for continuous responses in
Phase III trials. Cheng and Berry (2007) introduced a r-optimal design, a constrained
adaptive randomized design in Bayesian decision-analytic setting, to maintain the ran-
domness of treatment allocations. But the comparison of the r-optimal design with
existing designs has not been conducted. In conclusion, different evaluation methods
have been developed in the search for optimal response adaptive designs. However,
the comparisons of adaptive designs are restricted to a particular class of designs. Fur-
thermore, the optimal design may result in extremely unbalanced treatment groups
and thus becomes unethical or difficult for statistical analysis.

In summary, both the tasks of searching for an optimal design and developing
appropriate statistical inference for response adaptive designs are very challenging.
Although statistical inference fnethodologies for response adaptive designs have been
advanced, more traditional statistical inference methods need to be extended to de-
pendent data from response adaptive designs, and efficient estimation and powerful
tests need to be investigated, or new statistical methods must be developed. Besides,
the exploration of optimal designs is very restricted and new methods to evaluate

response adaptive designs need to be advanced.

1.3.2 Main Results

In my dissertation, I discuss several statistical inference methods such as the log

likelihood ratio test, goodness-of-fit test and efficient estimation for a wide class of -
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response adaptive designs. The evaluation of response adaptive designs is also explored
and a new randomization procedure is proposed, which is better than the existing
procedures under common conditions.

Firstly, I investigate the randomization process of response adaptive clinical trials.
The information gathering process in the adaptive trial has been formulated as a
stochastic process, especially a Markov process for dichotomous responses. From the
formulated stochastic process, the likelihood function for the observed data is derived.
This explains why the format of the likelihood function for response adaptive designs is
not affected by the use of adaptive treatment allocation and why there is more variation
in the maximum likelihood estimators of the parameters for adaptive designs.

Then common test statistics including the log likelihood ratio statistic and goodness-
of-fit test statistic are explored for response adaptive designs. I examine the limiting
properties of proportions of treatment allocation using the theory of martingales and
discuss the consistency and asymptotic normality of the maximum likelihood estima-
tors for a wide class of adaptive designs. It is shown that the maximum likelihood
estimators are strongly consistent and asymptotically normally distributed under some
regularity conditions. These results hold for a wide class of response adaptive designs
including the RPW design, the GPU model and the designs with a targeted alloca-
tion proportion. Under some regularity conditions, the logarithm of the likelihood
ratio statistic for dependent data from a general class of response adaptive designs
is proven to be asymptotically chi-square distributed. This provides a foundation for
asymptotic analysis of adaptive clinical trials with multiple treatments. For response
adaptive designs with dichotomous responses, under assumptions less restricted than
those for general models, the estimated odds ratio and its logarithm are shown to
follow asymptotically normal distributions. Moreover, the ordinary goodness-of-fit

test statistic for two-by-two contingency tables with dependent data is proven to be
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asymptotically chi-square distributed.

The third main result is on the efficient estimation for response adaptive designs.
In the literature, the maximum likelihood estimators, bias-corrected estimators and
minimum Hellinger distance estimators were discussed for response adaptive designs.
An interesting question is which estimation is the best under what criterion. I discuss
the issue of asymptotic efficiency of estimation for response adaptive designs of clinical
trials. The asymptotic lower bound of exponential rates for consistent estimators is
established and it is shown that under certain regularity conditions, the maximum
likelihood estimator attains the asymptotic lower bound for response adaptive designs
with binary observations. The estimation of the treatment effect is also investigated
and the maximum likelihood estimator of the treatment effect is shown to be asymp-
totically efficient in the Bahadur sense under some regularity conditions for response
adaptive designs with general responses.

At last, the evaluation of response adaptive designs is explored. I examine the
optimality properties of response adaptive designs with a variance-penalized criterion.
All response adaptive designs including those with different allocation proportions can
be compared under this criterion. More importantly, the penalty criterion evaluates
the performance of a design according to both the mean and the variability of the total
responses. A good design under this criterion tends to allocate more patients to the
better_treatment and to increase the power of the test. I propose such a design and
compare the design with some existing response adaptive designs. The asymptotic
variance of the allocation proportion of our proposed design is shown to be smaller
than that of the DL design if ps + pp > ¢, where ¢ is a pre-fixed number, a measure
of tradeoff between individual and collective ethics. Simulation results indicate that
our proposed design is better than other existing designs under the variance-penalized

criterion, except for extreme values of the probabilities of success (such as very large
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pa and pp or extremely small pg). Potentially, our proposed design assigns a higher
proportion of patients to the better treatment than the existing adaptive designs and
the power of the statistical test remains good when the difference between p, and
pp is not small (say, larger than or equal to 0.4). For trials with a large number of
paﬁents, the overall performance of our design is better than the existing designs.

In this dissertation, Chapter 2 introduces the formulation of response adaptive
designs. The results on the log likelihood ratio statistic and the goodness-of-fit test
statistic are presented in Chapter 3. The efficient estimation problem for response
adaptive designs is discussed in Chapter 4. Chapter 5 examines the evaluation issue
and the optimal properties of response adaptive designs. Chapter 6 concludes the

dissertation and discusses further research directions.

23



Chapter 2

Formulation of Response Adaptive
Designs

Response adaptive designs are characterized by randomized treatment allocation rules
that are adaptive to previous responses. This chapter introduces the information
gathering processes in an adaptive clinical trial and the Markov decision models for

response adaptive designs with dichotomous responses.

2.1 Formulation of Adaptive Designs with General
Responses

Suppose that trial subjects arrive sequentially and each receives one and only one of
k treatments. Patients’ responses Y;, Ya;, -« from treatment j are independent and
identically distributed with the density function f;(y, 6;), where 0, € 9;, 1 <j<k,
is an unknown parameter. Denote 6 = (61,65, - -, 8;)?, where ¢ stands for transpose.
Besides making a statistical comparison of the alternative treatments at the conclu-
sion of the trial, it is also desired to allocate trial subjects to the potentially best
treatment as many as possible in order to balance collective and individual ethics.
Response adaptive designs are aimed at this purpose by sequentially allocating treat-

ments adaptive to responses so far accumulated in the trial.
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Let 8; = (0i1,0s2, - - - , dix) be the 7™ treatment assignment such that 6;j = 1if the it
patient receives treatment j and d;; = 0 otherwise, and y, = (Yi10:1, Yia0s0, - - - y Yirlir)
be the corresponding response. Here we use the convention that if treatment 5 is
not applied to patient ¢, then the response is 0. When the " patient (i > 2)is
to be treated, the information available is given by the o algebra F;_; generated by
{01, y1), -, (dicr, ¥, 1) b

A response adaptive design is defined by a sequence of possibly randomized allo-
cation rules m = {m;, ¢ = 1,2,---} such that each m; = (i1, T, - -+, Tax) 18 given
by the conditional treatment allocation probabilities Ty = P(d; = 1|Fi_1), i > 2,
Zle m;; = 1, and the initial possibly randomized treatment allocation probabilities
my; = P(8; = 1) are pre-fixed values (such as 1/k), 1 < j < k. Moreover, each
randomized allocation rule 7 defines a probability measure Py on the space of all
possible sequences of treatment allocations and responses.

Ifn,n =1,2,---, patients have been treated in the adaptive trial, let N;(n) be the
number of patients allocated to treatment j and X;(n) = (Y1, Yo, - - - , Yiv,(n);) be the
corresponding observations on treatment j, where j = 1,2,--- , k. Then Z?:l N;(n) =

n. Define
W(n) = (Nl(n)7 NQ(”)’ e ’Nk—l(n)le(n)7X2(n)7 T ’Xk(n))

Clearly the information contained in {(81,y,),- -, (dn,y,)} is equivalent to the in-
formation contained in {W(1), W(2),--- , W(n)}. So the treatment allocation for the
(n+1)"" patients depends on {W(1), W(2), - - - , W(n)}. Hence, {W(n),n=1,2,---}
becomes a stochastic process with a transition probability function specified by the
allocation rule w = {m,, n=1,2,---}.

The transition probability function of the stochastic process W(n),n = 1,2,-- -,
under Ppr is Hle (733 £ (yij, 017 .
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For each observed sequence {(d1,¥;), -, (0n,¥,)}, the likelihood function is
n ok n k
LO) = [ [ T [lms fi (s, 01% = hmw) [T 1] £ (v 65)%
i=1j=1 i=1 j=1
where h(mw) =], H;”le ﬂf}j , and H;.c:l fi(yij,0;)% is the contribution of (d;,y;) to
the likelihood, 0° = 1, and oo = 1.
Compared to the likelihood function for the data from an independent and identical
distribution, the likelihood function for a response adaptive design is related to the
randomized allocation rule 7r. However, the second part in the likelihood function

containing the parameters is not affected by 7 directly.

2.2  Markov Decision Models for Response Adap-
tive Designs with Dichotomous Responses

If the response in an adaptive trial is dichotomous (say, success or failure), the infor-
mation gathering process can be formulated as a Markov decision process.

Let 6; be the probability of success on treatment j. Then if treatment 7 is assigned
to patient i, its response Y;; follows the Bernoulli distribution f;(y;,8;) = (6;)%(1 —
6;)*~vi, where yi; = 1 for a success and 0 for a failure.

After n patients have been treated in the adaptive trial, Nj(n) is the number of
patients allocated to treatment j as defined previously. Let S;(n) be the number
of successes on treatment j, where j = 1,2,--- ,k. Then Ni(n) = 37 85, 5i(n) =
> ic1 9iyi5. Clearly the information contained in {(dy,y,), -+ , (6n, V) } is equivalent
to the information contained in
{(M(), - Nica (1), 811, Se(D)), -+, (Ma(n), -, Neca (), Si(n), -+, Su(m))}.
So the treatment allocation for the (n 4 1)™ patient depends on the observations of

the stochastic process {(N1(2),-- -, Ni-1(2), S1(4), -+ , Sk(4)),5 = 1,2,--- ,n}.
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For each randomized allocation rule 7, the likelihood function for the observed

sequence {(81,¥1), -, (8n,¥,)} is

n k k n
Yij =Y 107 . 5:‘]‘ Sjn . ) i(n)=S;(n
L) = [ [ [Ilms65" (1 = 6;) v =T <H7rij ) 65 (1 g;)Nsw=Ss(m)

i=1 j=1 j=1
Therefore, the statistic (Vi(n), - -, Ng-1(n), S1(n),- - - , Sp(n)) is sufficient and the
maximum likelihood estimators for 6; is éj = S;(n)/N;(n), 7 = 1,2,--- k. The
statistic
(Ni(n),--- , Ng—1(n), S1(n), - - - , Sg(n)) summarizes the previous treatment allocations
and accumulated information of the responses of previously treated patients in the
trial. Thus, it is reasonable to set the randomized allocation Tne1 for the (n+1)%
patient depending only on (Ny(n),- -, Ny_1(n), Si(n), - -, Sk(n)). An allocation rule
with this property is said to be a Markov raﬁdomization rule.

In brief, the information gathering process on the treatment effects in a binary

response adaptive clinical trial can be formulated as the following stochastic process:
{(Nl(n), tte 7Nk—l<n)a Sl(n)a e 7Sk(n))a n= 15 2) Tt }

Due to the sufficiency of (N1(n),-- -, Ny_1(n), S1(n),-- -, Sk(n)), only Markov alloca-
tion rules w = {m;, i = 1,2,---}, are to be considered, where ;1 depends only on
the current state

(N1(@), -+, Np—1(2),51(2), - - -, Sk(4)). This class of allocation rules includes a wide
range of adaptive designs, such as the RPW(a, ) design, the drop-the-loser design
(Ivonava 2003), the optimal adaptive design (Rosenberger et al., 2000), the GPU
design, and the doubly adaptive biased coin design with binary responses.

For example, in a trial with two treatments, say treatments 4 and B, the RPW(a, £)
“design assigns the i** patient to treatment A with the probability

ria = Plin = 11Fy) = &F Sali - 1)622 ﬂfvé(f}fﬁ) —Sp(i=1)8
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Instead, the probability in the optimal design proposed by Rosenberger (2000) is

ria = P(6un = 1| Fiy) = R*(Ba(i —1),05)(i — 1)
T T T R Gali— 1), 05— 1)’

where R*(04,05) is the optimal proportion of patients assigned to treatment A to
these assigned to treatment B and 84 = S, /Ny, b = Sg /Ng. In the doubly biased
coin designs with the allocation function developed by Hu and Zhang (2004), the

probability of allocating the ** patient to treatment A is

1 ifz=0,
’/r,L'A: O o fAzl
PE/2)T - ifo<z<1,

AB/E)T+H(1-p)((1-p)/ (1~%))7

where z is the proportion of patients to treatment A, # = Na(i—1)/(i—1), p is the tar-
get proportion for treatment A and the estimated value 4 of p depends on 6,4 (i—1) and

05(i —1). In all the above designs, the allocation probability m;4 depends only on the

current state of the information process {(N1(n), -+, Ny—1(n), S1(n),--- , Si(n)),n =
1,2,---,}. In other words, the allocation rules are Markovian in these adaptive de-
signs.

Under a Markov allocation rule, the process

{(Nl(n)> aNk—l(n)’Sl(n)"" >Sk(n))’n: 1’2»"' v}

is a Markov process. The Markov property of {(Ni(n), -+ , Np_1(n), S1(n), - - , Si(n)),
n=1,2,--.} was firstly noticed by Wei et al (1990) in the randomized play-the-winner
design for k = 2. Actually, it can be proved that {(N1(n), - , Ne_1(n), S1(n), - -, Sk(n)),
n=1,2,---} is a Markov process under the probability measure Py specified by a
Markov allocation rule 7 for any adaptive designs with dichotomous responses.

The decision model for response adaptive designs with dichotomous responses con-

sists of
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1. a state space {(Ni(n), -+, Ny_1(n), Si(n),- -, Sk(n)) € N1}

2. an allocation rule 7 = {m,, n=1,2,---},

3. a transition probability specified by mr,

4. an objective to minimize the total number of failures or to achieve other goals.

The decision model becomes a Markov decision model if the allocation rule = is
Markovian. Based on the formulation, the objective function is used to compare two
adaptive designs v and =’

In brief, the adaptation of treatment allocation in response adaptive designs is
based on accumulated information such as previous treatment allocations and re-
sponses of previously treated patients. The information gathering process can be
formulated as a stochastic process, especially a Markov process for designs with di-
chotomous responses. This formulation explains the format of the likelihood function -

of response adaptive designs.
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Chapter 3

Likelihood Ratio Test and
(Goodness-of-fit Test

This chapter examines the extension of common statistical procedures such as the
log-likelihood ratio test and the goodness-of-fit test to dependent data from a wide

class of response adaptive designs.

3.1 Likelihood ratio test

Let F, be the o-algebra generated by {(61,y;), -, (8,,¥,)}, representing the infor-
mation available for allocating the treatment to the (n+ 1)* patient, n = 1,2,--- .
For each j, j = 1,2,---,k, >7_,(8;5 — my) is a martingale and S o0 i~2F[(d;; —
7i5)%|Fiz1] < oo since [8;; — my;| < 1. Therefore, by the strong law of large numbers

for martingales, £ >°" | (;; — m;;) — 0 almost surely. We have then

Lemma 3.1.1. —1\%@ — Z—Lnl—ﬂ — 0 almost surely, 7 = 1,2, --- , k under the allocation

rule .

Lemma 3.1.1 is an extension of Proposition 1 in Melfi et al. (2001), whose allocation
rule is limited with a target allocation proportion, but our allocation rule applies to a

wide class of adaptive designs including Melfi’s, the RPW design, the optimal adaptive
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design in Rosenberger et al. (2000), the GPU model and the doubly adaptive biased
coin design.
The log-likelihood function is
1(6) = In L(6) = Inh(m) + Zg (i,0),
where ¢(7,0) = Zle di;1n f;(ys5, 0;). Obviously,
ole) & ‘ =
20, > 5,(6,0) = 6(In f;(Yy, 0;))s, -
i=1 i=1
Under the usual regularity conditions, the Fisher information I;(6;) = —E ((ln fi(X,8;) g])
is finite and positive and there exists a solution éj of M =0,7=1,2,---,k. Further
we assume that the second moment of (In f;(X,6;));. exists and is finite, and there
exists o > 0, M < oo such that E(|(In f;(Ys, Hj))'ej|2+“) < M.

. L R t
Let & = (0y,8y,--- ;) and 1'(0) = <aé<£), %0 ... ’32592)) :

Lemma 3.1.2. If the allocation rule ® = {mwy, o, -} satisfies the condition that
&:7;@ —v;(0) € (0,1), asn—o00,j=1,2,--- ,k, then as n — 0o,

(1) 6 — 6 almost surely,

(2) n=121'(8) — Ni(0,T(9)),

(3) n/*(6 - ) — Ni(0,171(9)),

where I'(0) = diag(vy (0)11(61), v2(0)12(02), - - - , v (0) L (8;)).

Proof. Notice that gg (4,8) = d;;(In £;(V;;, 6 ;))s, and
Elgg, (4, 0)|Fiia] = m E [(In fj(%ﬁj))gj] = —mi; 1;(6;)-
Therefore, >7,(g5.(¢,0) + m;1;(6;)) is a martingale. Since E[(In fi(Yi5.05))5,7 is
finite, >°, i‘zE[(ggj (4,0) + m;1;(0;))*|Fiz1] < oo. Using the strong law of large

number for martingale,

lim — Zg (2,0) = — lim %)

Z;‘z i 15 (0;
n—co 1 n=s00 _”'17”*“ = —v;(6)1;(6;) (3.1.1)
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almost surely. Applying the strong law of large number for martingales to Do 90, (1,0),

(Z géj (¢,8))/n — 0 almost surely .
i=1

By Taylor expansion of (3, 96,(2,0))/n and equation (3.1.1),

~ A

(Z 96;(1,0))/n = —v;(0)1;(6;)(6; — 6;) + 0,(6; — 6).

Hence part (1) is proved. Obviously,

~ . Elqg! (i,0)|F;_ no 10,
lim D i [90;1( NFia] o m Do Z]IJ(GJ) — —0,(0)L,(6;)

almost surely and

-1l—x - / « M
n! /2;E([(Sij(lnfj(yij,9]-))9].|2+ |Fic1) < 7

Therefore parts (2) and (3) follow from Rosenberger et al. (2002). O

Lemma 3.1.2 implies strong consistency and asymptotic normality of the max-
- imum likelihood estimator of @ for any allocation rule @ = {m1, 72, } satisfy-
ing the regularity condition Y, m;/n — v;(8) # 0,1. This condition is not re-
strictive and holds true for many adaptive designs, such as the RPW(0,1) (where
> iz M/ — qB/(ga+qp) almost surely), the optimal adaptive design of Rosenberger
et al. (2001) (where for the sequential maximum procedure, 1, m/n — R*/(1+ R*)
almost surely), and the allocation rule in Melfi et al. (2001) if the desired allocation
proportion is not 0 or 1.

Lemma 3.1.2 is more general than that in Hu et al. (2006) in which the response
function is restricted to the exponential family. Our results are more general and
include non-exponential families. Furthermore, Hu et al. (2006) and Rosenberger
and Lachin (2002) did not consider strong consistency. Melfi and Page (2000) derived
results similar to lemma 3.1.2 by a non-martingale theory, but their allocation rule is

a special case of ours.
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Let Hp : @ = 6° be the null hypothesis, where 8° € © and the parameter space
© =01 X Oy--- x O is an open set. All results established in this section require the
following regularity condition:

Regularity Condition 1: Y 7 | ™ — v;(0) € (0,1), 1 = 1,2,--- , k almost surely.

i=1 n

Theorem 3.1.3. Under regularity condition 1, the statistic
—~2[}(6°) — max1(6)) = 2[1(6) — 1(6°)]

Jollows asymptotically the x* distribution with k degrees of freedom when the null hy-

pothesis is true.

Proof. The Taylor expansion of 1(§) = In L(0) = In k() + >, g(4,8) at 6° gives us
k 1 [

0)—1(6°) =Y " |(6;— ) ngzeo} 5{29—90 Zg( 0%)| + op(1).
j=1

Jj=1

Hence,

2(1(6) — 1(8°)) = 2(6 — 6°)'1'(6°) -+ Z(e — §9)? Zg (i,8%) + 0,(1). (3.1.2)
It’s obvious that
(6 6°)'1'(8%) = niT#(6°)(8 — 6°)'[n 4T 3(6°)1'(6),
k ) n k L

D 0= g5,(.0% = 2 (4; — 6P [ (4,6°) }

J=1 g=1 j=1
By Lemma (3.1.2), the first term in equation 3.1.2 is equivalent to 2[ n:lz 00 9 —
8°)]}[n2T'2(6°)(8 — 6°)] and using equation (3.1.1), the second term in equation (3.1.2)
is equivalent to —[n %F%(GO)(O 0t [n%I’%(OO)(é — 6°%)], where equivalence means

that the two random variables have the same asymptotic distribution. Therefore,

2(1(6) — 1(6%) is equivalent to [n2'2(6°)(6 — 0°)]*[n2I'2(6°)(6 — 6°)] which follows
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asymptotically the x? distribution with k& degrees of freedom when the null hypothesis
is true. [

If the response functions f;(y,6;), j = 1,2,--- ,k, have the same form f(y,6;),
then the statistic in the following theorem can be used to test the null hypothesis

H(’)Zelzeg—:'-'zgk.
Theorem 3.1.4. Under the regularity condition 1, the statistic

-2 nbaéxl(O) — mgxl(@)

follows asymptotically the x* distribution with k — 1 degree of freedom when the null

hypothesis H} : 61 = 0y = --- = 8 1is true.

Proof. Set 6° = (6°,6°,--- ,6°). For the linear mapping 6; = 0, 6, = 0, - - - , 0, =0,
Theorem 11.2 in Billingsley (1961) shows that 2(max; 1(8) — [(6°)) is asymptotically
x? distributed with 1 degree of freedom, and 2(maxe 1(6) — maxgy [(6)) is asymptot-
ically x? distributed with & — 1 degrees of freedom. [J

Although Billingsley (1961) derived results similar to theorems 3.1.3 and 3.1.4,
his results apply only to stationary Markov processes. But the stochastic process
{W(m),m =1,2,---} is neither stationary nor Markov for general response adaptive

designs. Hence our results are more general.

3.2 Goodness-of-fit test for contingency tables with
dependent data

As an application of the results in Section 3.1, we consider hypothesis tests for response
adaptive clinical trials with dichotomous response (say, success and failure). A tradi-
‘tional method for comparing dichotomous populations based on independent samples

is the goodness-of-fit test. In this section, we extend this test to dependent data from
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k dichotomous populations. Our focus is on the asymptotic sampling distribution of
the test statistic.

Let 6; be the probability of success on treatment j. Then if treatment j is assigned
to patient , its response Y;; ~ B(1, 6;), the Bernoulli distribution.

For each (randomized) allocation rule w# = {m,, n = 1,2 ---}, the likelihood

function for the observed sequence {(81,y,),--- ,d1, yi)}is
k n :
L(8) = HH (5657 (1 — 6;) )% = [ | <H ) 67 (1 - g,)Nstm=S;(m),
i=1 j=1 Jj=1 =1

where N;(n) is the number of patients allocated to treatment j and S;(n) is the
number of successes on treatment j among the n patients, j = 1,2, --- , k. Therefore,
the statistic (N(n),-- -, Ny-1(n), S1(n), - -, S(n)) is sufficient and the unrestricted
maximum likelihood estimators for 6; is §; = S;(n) /N;(n).

Let Hy: 6; = 9 =1,2,--- ,k, be the null hypothesis such that 0 < 9? <1, 5=
1,2,--- k. The parameter space is set to be © = (0,1)*. It can be shown that for
adaptive designs with dichotomous responses, Y7 | m;/n — N;(n)/n almost surely.
"That is, under the condition that Y77, m;/n — v;(8), 0 < v;(0) < 1 almost surely,
we have N;(n) — oo almost surely.

Writing A = L(6°)/L(8) as the likelihood ratio, the following result is a conse-

quence of Theorem 3.1.3.

Corollary 3.2.1. Under the regularity condition 1, the statistic —21In \ is asymp-
totically x* distributed with k degrees of freedom when the null hypothesis Hy : 6; =

69, 5 =1,2,-- ,k is true.

After n patients have been treated in an adaptive clinical trial with k treatments

and dichotomous responses, the contingency table has the following data structure
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Treatment 1 2 e k Total
Success S1(n) Sa(n) e Sk(n) S(n)
Failure | Ni(n) = S1(n) Na(n) — Sa(n) -+ Ni(n) = Si(n) | n— S(n)

Total Ni(n) Ny(n) e Ni(n) n

where S(n) = Z;'::l Sj(n). The dependency among the entries is reflected in the
observed treatment allocations.

The traditional form of the test statistic

observed — expected)?
N )
expected

all cells

is applied for dependent data. For simplicity, denote S;(n) = S; and N;(n) = N;,5 =
1,2,-- k.

For the proof of the next result, let X, ~ Y, denote that lim, 0 (X,, ~ ¥,) =0 in

probability, where X,, and Y,, are random variables.

Theorem 3.2.2. Under the regularity condition 1, the test statistic

>

for the null hypothesis Hy : 6; = 6%, j = 1,2,--- ,k is asymptotically x? distributed
J J

{ (S; = N;62  (N; —8; — N;(1 —69))2
;0 N;(1 = 6%)

with k degrees of freedom.

Proof. First of all, the likelihood ratio is

_L(BO) Hk (90)Sj( 90)1\%—5-

COLO) [T, 60(1 -GN

and so

~

—2In\ = 22 sm‘9 + (N; — S)m

J=1
For j = 1,2,--- .k, we have N].l/3(sj/Nj — 69) = [V/n(S;/N; — 69)(N;}"*//m). By
Theorem 3.1.2, /n(S;/N; —69) — N(0, (v;(6)1;(6))~1). Hence NJ-I/B(SJ-/Nj -69) —0

é‘
—
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in probability. Under regularity condition 1, N; — oo almost surely. It follows from
Theorem 12.2 in Billingsley (1961) that

b; 1— é]} N [(S]- — N;60)2 ., (N; — 8; — N;(1 —0?))2}

Sjln = + (N; — S;) In
5 1Y N6 ;60

Therefore,

(S; — N; 9 )2 (N; = S; — N;(1 - 0?))2
A~ Z { N;6? " N;6? J

and the result follows from corollary 3.2.1. O
The above theorem investigates the asymptotic sampling distribution of the test
statistic for given values of the parameters under the null hypothesis. If we wish to

see if the k treatments are equally effective, we have the following.

Theorem 3.2.3. Under the reqularity condition 1, the test statistic

S |G 2 | (W= S, = Ny(1 - )
N;é N;(1 - 6)

for the null hypothesis Hy : 0, = 0y = --- = 6, = 0 is asymptotically x* distributed
with k—1 degree of freedom, where 6 = S (n)/n is the restricted (i.e. pooled) estimator
for 6.

Proof. The likelihood ratio is A = §5M (1 — §)n- S(")/H Sj(l — 0, )Ni=5i. Then
—2In A follows asymptotically the x? distribution with & — 1 degree of freedom by

Theorem 3.1.4. However,

k
—2InA =) 2 Sj1nﬁ];+(Nj—Sj)1 N8 )
= N;6 N;(1 - 6)

It follows from Theorem 3.1.2 that v/n(S;/N; — 6) — N(0, (v;(8)1;(8))7?) for j =
1,2,--- k. Therefore le/s(Sj/Nj—H) — 0 in probability. Similarly, (Nj)l/S(é—é’) —0
in probability under the null hypothesis 6§, = 6, = --- = ;. The proof is completed

by following steps similar to those taken in the proof of Theorem 3.2.1. [J
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In conclusion, this chapter discusses both the consistency and asymptotic normal-
ity of the maximum likelihood estimators for a wide class of response adaptive designs.
Under regularity conditions, the logarithm of the likelihood ratio statistic —21In \ for
dependent data is shown to be asymptotically chi-square distributed. Moreover, the
goodness-of-fit test is also extended to the data from adaptive designs with dichoto-

Imous respomnses.
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Chapter 4

Efficient Estimation

Many researchers have considered the maximum likelihood estimation, the bias-corrected
estimation and the minimum Hellinger distance estimation for response adaptive de-
signs. To answer the question of which estimator is the best, this chapter is to inves-
tigate the efficient estimation for response adaptive designs.

The efficiency of response adaptive randomization procedures has been studied in
depth. by Hu and Rosenberger (2003). The variability of allocation proportions is
affected by the treatment randomization procedure. Hu and Rosenberger (2003) ex-
plicitly established the relationship between the power of the test and the variability of
allocation proportions and showed that the asymptotic power is a decreasing function
of the asymptotic variance of the allocation proportions. There is extensive literature
on the efficiency of estimation in statistics for independent data (see, for example,
Bahadur (1971), Fu (1973), Bucklew (1990)). Anscombe (1949, 1952) discussed the
large-sample problem for sequential estimation, however the assumption for his results
to hold are not satisfied when considering response adaptive designs.

For simplicity; we write Py as P. Denote Pg as the probability measure under
with parameter 6. The induced expectation is denoted as Eg.

Throughout this section, we assume that the second moment of In fi(Y,0}) exists
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and is finite under Pg for any €', j = 1,2,--- , k. Furthermore, we assume
Regularity condition 2: the fourth moments of both (In f;(Y, 0;))6, and [In(f;(Y, )16,
exist and are finite.

Under regularity condition 1 and using the martingale strong law of large numbers,

the limit of & In ((90) exists and

1 L) fi(Y,65)  fi(Y.6))
Jim, 2 Ty = 2. (0)Fg (fjoc 0,) " 0j>)

j=1
almost surely in the probability measure Pgr. This limit is in fact the Kullback-Leibler
number £(60’,0) = lim,,_.., { In IL((% } almost surely in Pgs. We now establish an

asymptotic equivalence of £(6’, 0) by means of Fisher’s information number I;(6;) =
2
By ((1n £5(X.0)), ) -

Lemma 4.0.4.
1
k(6',6) ~ 5(0’ - G)tF(B)(H’ —-0) as b’ — 0,

where T'(0) = diag(v1(0)11(61), v2(0)12(62), - - -, vi(0)Ix(61)) is the diagonal matriz.

_ e

Proof: Write r; = 7 (y 5

) Bya Taylor expansion, r;Inr; ~ (r; — 1)+ (r; — 1)? as
r; — 1. Hence, Eg(r;lnr;) ~ 5Eg(r; — 1) as r; — 1. Expanding f;(z, 0;) at 6;, we
have

(508 = 15,6 ~ F10Y, 0,0, (6 — 65) + 3 1Y, 6,0, (65 = 6,
as ¢; — 6;. Under the regularity condition 2,

(Y, 07)0,\
s - ()

as 0; — 0;. Therefore, the result follows. O

0; — 0;) = I;(6;)(6; — 6;)

J
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4.1 Asymptotic efficiency of the maximum likeli-
hood estimator

In this section, we discuss the asymptotic efficiency of maximum likelihood estimators.
A measurable function T',, = (T7,T%,-- -, T)! is said to be a consistent estimator of
0 = (01,02, - ,6;)t if, for any € > 0, we have Pg(d(T,,8) <€) — 1 asn — oo, where
- d is the Euclidean distance in RF.

Consider testing the null hypothesis H, : @ = 6, against the alternative hypothesis
H, : 8 = 6. Let 3 be the probability of committing type II error, n be the sample

size, and
an(B) = inf{ay, : o, is the size of a test for testing H, vs H, with power (1 — (3)}.

The following result is an extension of the Stein’s Lemma for independent data. A

similar result is derived in Bahadur (1971) for independent data.

1
Lemma 4.1.1. Under regularity conditions 1 and 2, lim {E In an(b’)} = —k(6',6,)

for any (3.

Proof. Without loss of generality, suppose k(6’,680) > 0. Set 0 < 8 < 1. By the
Neyman-Pearson Lemma, there exists a test statistic

1 ifr,>c,
(/J):L = gn if Tn = Cp
0 ifr,<e,

such that Eg/(¢;) = 1— 4 and Eg,(87) = an(8), where 0 < &, < 1, 7, = L(6")/L(6,)
is the likelihood ratio. We show that lim,,_. {% In cn} = k(6’,0¢) by the method of
contradiction.

Assume that limsup, ., {fInc,} = a > k(@’,8;). Since Zlnr, — k(6,80) al-
most surely in FPgs by law of large numbers, for any & > 0, Py (% Inr, <k(6',60) +¢) —

lasn — oo. Set € = a — k(6',0¢). Then Pgs (Llnr, >a) — 0 as n — co. This is

41



contradictory to PBI (% Inr, > %ln cn) > 1— (3> 0. Hence, limsup,,_,, {% In cn} <
k(0’,8y). Similarly, liminf,_, {% In cn} > k(6',0,).

The rest of the proof follows the similar idea as that in Bahadur (1971).

On the one handk, let d,, be any positive constant such that d,, > r,. Since ¢, has

power 1 — 3 and achieves type I error a,(3), then,

@wlf) = Boyon)> [ gudPy,

Jrn<dn

2 / TTLQSndPOO
n Jrp<dn

1 ,
dn n Tn>dn

(1-5) —/ ) ¢ndP9/) > ;ll—((l—ﬂ) — Pgi(rn > dy,).

-

—~
IA

v
B e

Take d,, = e"’“(e,’eﬂ)“s, where € > 0.
1
sz(rn >d,) = PB' (E Inr, > k(6’,0,) + 5) — 0 as n — oo.
Thus,

1
- In Pgo(Tn > e,) >

S|

1
[—(nk(6€’,60) + ne)] + - In[(1-0) - Py (ry > dn)].
Therefore, for any ¢ > 0,

.. 1
liminf {Eln PHO (rn > cn)} > —k(6',80) — €.

n—oeQ

Hence,

lim inf {llnan(ﬁ)} > —k(6',6).

n—oo mn

On the other hand,

a(6) = Poyrnze)= [ app,

A
|
oK
Q
s
ll
|
Q.
R}
A
|
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Therefore,

lim sup {%In an(ﬂ)} < — lim {%In cn} = —k(0',0y). 0

n—00 =200
Applying Lemma 4.1.1, we now establish an asymptotic lower bound of exponential

rates for consistent estimators.

Theorem 4.1.2. Assume the regularity conditions 1 and 2 hold. For any consistent

estimator T, of 6y, we have

o 1 .
h}}lglf {E In Py (d( Ty, 60) > 5)} > — 13,‘["{19(0/’ 6o) : d(6,8,) > ).
Proof: For any given ¢ > 0, let 6’ be any point in @ such that d(6’,8,) > ¢. Consider
testing H, : @ = 0y with the alternative hypothesis H, : 6 = 6’. Set a = a,,(0.5). By

Lemma 4.1.1, lim, o {% In a;} = —k(6',0,). For any consistent estimator T',, of 6y,

define

qb _ 1 d(Tn,BQ)ZEf
"0 d(T0) <e

By the consistency of T, Py (d(T,,0’) <d(6’,6) —¢) — 1 as n — oco. Hence,
Egi(¢n) — 1 as n — oco. Therefore for any 6’ such that d(6’,6,) > ¢, Eg,(¢n) = as,.
The result follows. d

Theorem 4.1.2 is similar to Theorem 4.1 in Bahadur et al. (1980) and the result of
Bucklew (1990, page 21). Bucklew obtained the lower bound of LI Py(d(T,0) > ¢)
by the moment generating function method. However it is impossible to derive the
closed form of the moment generating function for T, in response adaptive designs
because of data dependency. Bahadur et al. (1980) defined the Kullback-Leibler
information number £(6’,0) in a general but complicated way. We define k(6”, ) in
a simpler manner and derive the lower bound with a straightforward method.

Theorem 4.1.2 shows that the asymptotic lower bound of exponential rates for

consistent estimators is of the type —infg/{k(¢’,0) : d(6’,6) > }.
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For a response adaptive design with dichotomous responses, let S;j(n) be the num-

ber of successes from treatment j after n patients have been treated in the adap-

tive trial. Yi and Wang (2007b) showed that both ( Do T — Nj:”) — 0 and
%;%((% — 0; almost surely as n — 00,5 = 1,2,--- , k. Therefore, the maximum likeli-
hood estimator T, = (Si(n)/Ni(n), -, Sk(n)/Ni(n)) is a consistent estimator of 6.

We show that this estimator achieves the asymptotic lower bound.

Theorem 4.1.3. Consider a response adaptive design with dichotomous responses.
If N’}En) — v;(0) € (0,1) almost surely as — oo and v;(0) is continuous in 0, j =

1,2,--- ,k, then for very small €,
nN—oo

lim inf {—ln Py(d(T;,0) > )} = —iglf{k(e’,ﬁ) :d(0',0) > e}

for the mazimum likelihood estimator T, = (S1(n)/Ny(n), So(n)/Nao(n),-- -,
Sk(n)/Ne(n)).

Proof: We only need to prove

=00

hmlnf{—ln Pg(d(T,,0) > 5)} < —ig/f{k(o’,e) : d(0,8) > €}, (4.1.1)

Note that for an adaptive trial with dichotomous responses,

(1. L)) & 6, 1-6
(6 = l - = : ng. Nl (0’ - @ J
k(6',0) = lim {nln (@) } g {U](O )0 In 7, +v;(6")(1 — 6) In =0,

=1

- almost surely in Pps. Writing I} = S;(n)/N;(n), j=1,2,--- ,k, then

k n\ Sj(n) ny\ Nj(n)-S;(n)
7 TN = 1 T J
0) = (T )——1 - .
)= 2wy K@-) =k }

Since T, — 6 almost surely as n — oo and v;(8) is continuous in 6, v (T:z)'N_TEn“) —1
7

almost surely as n — oo, j = 1,2, , k. Therefore,
H] 1<Tn)S 5(n) ( Tn)N i{(n)—S;(n)

[T 677 (1 = 8;) =550

nk(T7,0) =In

WT7),
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1-17¢

S;j(n) ny Nj(n)—S;(n)
where W(T3) = S o | ()7 (52) ™7 and o) 0 00 m
Ooaj::172f"ak'

Let n; and s; be nonnegative integers, j = 1,2, ,k,andz = (ny,- - ,ng, 51, , 8x),
and t, = (s1/n1, -+, se/mk), and A, = {z : d(t,,0) > &, Z?:l n; =n,0 <s; <n,;l,
and A} be the set of all sample paths leading to the observation z of M(n) =
(Ni(n), -+, Ng(n),Si(n),- -+ ,Sk(n)). Then

k
Po(M(n) =7) = 3 (HHW (1 - )" ) <H9jf(1 - ej)nj—Sj>

AM i=1 j=1 j=1

e—nk(tz,0)+h(tz)ptz (M(n) = 2).
and therefore

Pg(d(T;,0) 2 ) = Y Pg(M(n) =z) < e "anlbtd) §™ ) p (M(n) = 7).
2EAR zEA,

For cach fixed n, there are at most (n+1)%* points in A,,. So if we let h* be the largest
value of A(T), then

1 2k) 1 1
~InP((T;,0) > €) < —inf{k(t,, 0)} + h* -(—’”-)i?i@i-l
Since £h* — 0 and Q’”)—I'lnﬁﬂl — 0 as n — 00, we have

lim inf {%lnP(d(T,’;, 0) > 5)} < ——iélf{k(tz,a)} < —ig,f{k(e', 8o) : (6", 60) > <.

So equation (4.1.1) follows.
The result follows from Theorem 4.1.2 and the format of £(6’, ). O
A similar result appears as Example 5.4 in Bahadur (1971) for the multinomial

distribution. Our result is an extension of Bahadur’s result.
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4.2 Asymptotically efficient estimation of treatment
effects

Suppose that the treatment effect is described by a real-valued and differentiable
function g(0) in @ € ©. For example, in a response adaptive design with dichotomous
responses, g(@) can be the difference of the success probabilities of two treatments or
the odds ratio.

Let U, be an estimator of g(@). For any 6 and € > 0, let 7,,(¢, 8) be such that
Py(IUs —~ 9(0)| 2 ¢) = Py (1Z] > /ma(c,6))

0 < 1,(¢,0) < oo, where Z follows the standard normal distribution. Obviously, U,
is consistent if and only if lim,_, 7,(¢,8) = 0. Such a 7,(¢, 6) is called the effective
standard deviation of U, given 6. Bahadur (1971) showed that if U, is asymptotically
normal with mean g(6) and variance u(8)/n, then lim, ., n72(n""2¢, 6) = u().

In this section, we derive the asymptotic lower bound of exponential rates for con-

sistent estimators of the treatment effect, and show that this lower bound is achieved

by the maximum likelihood estimator.
Theorem 4.2.1. Assume regularity conditions 1 and 2 hold. If U, is a consistent
estimator of g(0), then

(1 1
llrer}}glfllgglf{gglnpa(luvn - g(0)] = 8)} 2 —2w(9)’

where w(@) = Z?zl[vj(e)jj(ej)]_l[(9(0))(%]2'

Proof. The proof follows an idea similar to that in Theorem 6.1 of Bahadur (1971).

Without loss of generality, assume w(0) > 0. For any 6, € O, set

6" = 60+ (00)(9(0)5,, (9(6)3,), -, (9(0).)),-
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- For any consistent estimator U,,, we construct a test statistic ¢, for testing H, : 6 = 6,
with the alternative hypothesis H, : & = 6. Reject H, under ¢, if |U, — 9(60)| >
Aew(Bo), where 0 < X < 1. Note that g(8*) — g(8o) ~ ew(6y) and K(6* 6y) ~
3€2w(6,) as € — 0. For fixed type II error 3, Eg-(¢n) = 1>1—p asn — oo by the
consistency of U,,. Therefore E90(¢n) > o, (). The proof is completed after applying
Lemma 4.1.1 and setting A — 1. O

An estimator U, is said to be asymptotically efficient in the Bahadur sense if

1

1 I
hrgrgglf lim inf {nsQ In Py(|U,, — g(8)| > 6)} 2w(8)

n—00
The following result states that the maximum likelihood estimator of 9(0) is asymp-
totically efficient in the Bahadur sense.

Theorem 4.2.1 shows that e"*/29(O) ig the fastest rate of Po(|Un — g(0)] > ¢)
converging to 0 exponentially. Bahadur (1971) derived a similar result for independent
data, but our result applies to the case of dependent data from response adaptive
designs.

For the standard normal distribution, (} — %) \712=ﬂe_t2/ < P(Z>t)< %#e‘tz/ 2,
It can be shown that In P(|U, — g(0)] > €) ~ —?/[272(¢,0)] as n — oo. Applying

Theorem 4.2.1, we have the following extension of Theorem 6.1 in Bahadur (1971).

Corollary 4.2.2. Assume regularity conditions 1 and 2 hold. If U, is a consistent

estimator of g(0), then
lim i&lf liminf{n72(c, 8)} > w(H),

where w(®) = 377, [0;(0)1;(9;)] 7 [(9(6))y, 1%
Corollary 4.2.3. Assume regularity conditions 1 and 2 hold. If the mazimum likeli-

hood estimator 971 of @ exists, then

bt {n—l— In Pr(19(8,.) — 9(6)] > e|e>} - o3
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"The proof follows from the asymptotic variance w(8) = Z;.”':l [v;(0)1;(6;)] " [(9(9))’01,]2 /n
of g(8,) and In P(JU, — g(6)| > &) ~ —e?/[272(e, 0)] as n — oo and € — 0.

In summary, this chapter examines the issue of asymptotic efficiency of estima-
tion for response adaptive designs of clinical trials, from which the collected data set
contains a dependency structure. The asymptotic lower bound of exponential rates
for consistent estimators is established. Under certain regularity conditions, the maxi-
mum likelihood estimator is shown to achieve the asymptotic lower bound for respornse
adaptive trials with dichotomous responses. Furthermore, it is proven that the max-

imum likelihood estimator of the treatment effect is asymptotically efficient in the

Bahadur sense for response adaptive clinical trials.
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Chapter 5

Response Adaptive Designs with a
Variance-Penalized Criterion

A good response adaptive design is expected to assign more patients to the better
treatment with minimal loss in the power of the statistical test. Evaluating the qual-
ity of a response adaptive design from multiple objectives is difficult because of the
dependency in the data and the involvement of the unknown parameters in the design.
This chapter discusses the evaluation of response adaptive designs with a variance-

penalized criterion.

5.1 The variance-penalized criterion

Suppose that patients are recruited sequentially into a clinical trial and are treated
with one and only one of two treatments A and B. Suppose that the responses from
treatment k, kK = A, B, are independent and follow a distribution fr(z, 8), where the
unknown parameter vector ) may consist of parameters such as mean p and standard
deviation o of the distribution. We assume that the larger the mean response, the
better the treatment. A design is good if it assigns as many patients as possible to
the better treatment and achieves this goal with less variability.

Let 4, be the treatment allocated to the n** patient such that 8, = 1 for treat-
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ment A, 6, = 0 for treatment B, and Y, be the response following the distribution
Ji(z, 8;) if the patient is assigned to treatment k,k = A4, B. In an adaptive design,
the treatment allocation 4, for the n'* patient depends on the accumulated informa-
tion {(01,%1), -+ , (0n=1,¥n-1)}, n > 2. The response adaptive design is specified by its
randomized allocation rule.

Under the variance-penalized criterion, the objective function is the expected total

responses minus a positive multiple of its variance. The objective is to maximize

(5[5 v (24}

which is called the variance-penalized mean, where A > 0 is the penalty parameter.

Deriving the optimal design is very difficult in both template and computation of
the optimal solution for general responses. However, if the responses are binary, the
information gathering process can be formulated as a Markov process (Yi and Wang,
2007b), and the stochastic optimality problem of response adaptive designs becomes a
variance-penalized Markov decision process. In this situation, there are algorithms to
compute the optimal allocation rule 7 (see White, 1992 and Collins, 1997). However,
the optimal allocation rule is deterministic and vulnerable to selection bias in a clinical
trial. |

Let NV}, = Ni(n) be the number of patients allocated to treatment % after n patients
have been treated in the trial, £ = A, B. Denote the responses of the N, patients as
X+, Xy Then S04 Xy = Y0 ¥idi and 3208 Xip = % ¥i(1 - 43). So
Y Yo=Y X+ 318 Xip.

It can be shown that

E (i Y;) = (ua — p)E(N4) + nus, (5.1.1)
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and
Var (Z Yi> = (0% — 05)E(Na) + nok + (ua — p5)?Var(Ny). (5.1.2)
i=1

where p4 = E(X;a), up = E(Xp), 04 = Var(X;4) and o5 = Var(X;g). Therefore,

the optimality problem of response adaptive designs is equivalent to achieving
max {[pa — up — A(0% — 0B)|E(Na) — Mpa — p5)*Var(Na)} .

A treatment is said to be better than another if its variance-penalized mean of
the responses is larger. The first term of the criterion demonstrates that the design
with a larger value of the objective function is expected to assign more patients to the
better treatment. The second term indicates that for a fixed total number of patients
n, the design with a larger value of the objective function has a smaller variance of
the treatment allocation proportion, hence yields more power when conducting Wald’s
test according to the results of Hu and Rosenberger (2003). Therefore, the variance-
penalized criterion prefers a design that allocates as many patients as possible to the
better treatment while keeping Wald’s test more powerful. |

If 04 = op, then for a small value of \, more weight is put on the mean number
of patients assigned to the better treatment. A large value of A emphasizes the power
to draw a statistical conclusion. Therefore, the parameter ) is a measure of tradeoff
between the individual and collective ethics.

In an adaptive design with binary responses, the response is 1 for a success and
0 for a failure. Our objective is to maximize the expected total number of successes

with less variability. This is equivalent to achieving
max {(pa — p5)[L — AL — pa — p)IE(NA) — AMpa — p5)*Var(Na)},

where p4 and pp are success probabilities of treatment A and B respectively. Without

loss of generality, assume psy > pg. f pa+pg > 1 — %, then (1= M1 —pa —pz)) > 0.
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When 0 < A < 1, ps + pé > 1-— % is always true. In this case, the treatment
with a higher success probability has a larger variance-penalized mean. Under the
variance-penalized criterion, we prefer the design that assigns more patients to the
highly successful treatment with less variability of the allocation proportion. In the

remaining part of this chapter, we choose 0 < A < 1.

5.2 Randomization procedures

The randomization procedures in typical urn models such as the RPW (Wei and
Durham, 1978) and the DL (Ivanova, 2003) update the urn compositions sequentially
based on the responses of »previously treated patients. The urn will eventually contain
a high proportion of balls representing the more successful treatment. The sequential
randomization procedures are flexible to target any proportion of treatment allocation.
This kind of procedure includes the DBCD (Eisele, 1994, Hu and Zhang, 2004) and
the randomization procedure considered by Melfi et al.(2001) and Rosenberger et al.
(2001).

We prefer a design that assigns more patients to the better treatment with less’
variability under the variance-penalized criterion. Our design is to target the treatment

allocation proportion

qp + emin{qa, gg}sign(gs — qa)
ga + 4B

i

where g4 =1 —py, gg =1 —ps and 0 < € < 1. If € = 0, this proportion reduces to
the one in Ivanova’s DL (2003). If € > 0, a higher proportion of patients is expected
to be assigned to the better treatment. From the individual ethics point of view, we
should choose ¢ as large as possible. However, when e approaches 1, it is possible that
only a few number of patients are allocated to the inferior treatment. This will make

it inadequate to draw a statistical conclusion about the treatment effect. Intuitively,
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¢ is a kind of measure of tradeoff between individual and collective ethics.

We wish to achieve the target proportion p using DBCD with the allocation func-

tion
B p(p/x)?
9w h) = T T =P = /A=)
9(0,p) =1,
g(la P) =0.

This allocation function was proposed by Hu and Rosenberger (2003), and Hu and
Zhang (2004). Using Theorem 2.1 of Hu and Zhang (2004), the allocation proportion

in our randomization procedure is asymptotically normal. That is,

v (%*— - p) N0, ),

where for ps > ppg,

2 { (1 = €)qags[(1 — €)pags + pelgs + €qa))
(g5 +44)* (g5 + €q4)
1 {(1 — ¢)qa(qp + €qa) " (1 - €)gaqa[(1 — €)pags +pa(gs + €QA)]:I }
142y (g8 +qa)? (g8 +q4)%(g + €qa) ’

and for p4 < pg,

22 { (1 —€)gags|[(1 — €)prqa + palga + cqz)]
(g8 +94)3(qa + €ga)
1 [(1 —€)gp(qa+egs) | (1 —€)qaga[(1 — €)ppga +palga+ 6613)]} }

+
1+2y (g8 +qa4)? (g + q4)%(qa + €gB)

It can be shown that if p4 + pg > 1 — ¢ and v — oo, then

7 < qags(2 - (g4 +g8))/(qa + g8)°, (5.2.1)

where ¢agp(2 — (g4 + gB))/(g4 + ¢5)® is the asymptotic variance of the DL design.

Hu et al. (2006) claimed that Ivanova’s DL is the asymptotically best design in that
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it attains the lower bound on the asymptotic variances of the allocation proportions
among all the designs with the target proportion gg/(gp + g4) when the allocation
- proportions were asymptotically normal. The target proportion of our proposed design
is p = (g5 + emin{qa, gn}sign(gs — q4))/(g4 + g5), which is larger than gz/(qs + qu)
for p4 > pp and smaller than ¢p/(gs + qa) for ps < pp. Therefore, the proposed
design asymptotically assigns a higher proportion of patients to the better treatment

with less variability than the DL design.

5.3 A comparison of designs

The variance-penalized criterion prefers the design that assigns more patients to the
better treatment with less variability. Adaptive designs can be compared and evalu-
ated under this criterion, even if the designs target different proportions. We compare
our proposed design with some existing designs such as the RPW, DL, the design
targeting the optimal allocation proportion (denoted as RSTHR, Rosenberger et al.
(2001)) and the design proposed by Bandyopadhay and Bhattacharya (2006) (denoted
as BB).

We use the RPW with an initial structure of 5 balls in the urn representing treat-
ment A and 5 balls for treatment B, as recommended by Rosenberger (1999). The DL
(Ivanova (2003)) is the design with 3 balls representing treatment A and B respectively
and 1 immigration ball. The RSIHR design considers both the expected number of
failures and the power of the test. The target proportion of sub jects receiving treat-
ment A in the RSIHR design is p = /pa/(y/Pa++/P5). The allocation function g(z, p)
with v = 100 is used to target the RSIHR proportion and our proposed proportion.
‘The BB design is the combination of the Neyman allocation and the myopically better

treatment. The sequential maximum likelihood procedure is employed to target the
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BB proportion

vVPAqG4 . VPAGA
£ = max ( ,Ca I@AzpB] + min ,Ca I{pA>pB]a
vPaqa + \/PBAB VPAaqa + \/DBaB
where (4 = & (—M— and @ is the cumulative standard normal distribution
VPAGATPBAIB
function.
pa=0.2 . pa=0.5
& | = Proposed : g — Proposed
sexe DL i - DL .
: o o BE 5 © ] BB L
2 Tl - RsiHR ¢ 2 -+ RSIHR
8 2 & g 0
= g =
o EE | o o
O 4oA X
T T T T T T - 1 1 I 1
00 02 04 06 08 10 04 06 08 1.0
pb pB.
pa=0.8
o | —— Proposed -
: === DL
8B
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objective
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Figure 5.1: Comparison of the objective functions with A = 1/2

DL: the drop the loss design; RSIHR:the optimal design proposed by Rosenberger et al.;BB:
the design proposed by Bandyopadhyay and Bhattacharya; Proposed: ¢ = 1 /2.

Figure 5.1 gives a comparison of the objective functions of different designs for a

total number of patients n = 30. The RPW is omitted because of its similar behavior
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as the DL. From the graphs we see that if the success probability p4 of the standard
treatment is less than 0.8, then our proposed design (¢ = 1/2) generates a higher
expected number of successes with less variability than all other designs, except for
extremely small values of pg. But when both the success probabilities p4 and pg are
large, say both are larger than 0.8, then the DL is better than other designs for clinical
trials with a small number of patients.

Tables 5.1, 5.2 and 5.3 describe the simulation results for a total number of patients
of n = 100 with 10000 replications. The proposed designs I and II are defined with
¢ = 1/2 and ¢ = 1/4 respectively. Table 5.1 gives the simulated values of the objective
function (A = 1/2) of the DL, RSIHR, BB and our proposed designs. It seems that
the proposed designs have objective values larger than all the others when p4 and pg

differ.

DA DB DL  RSIHR BB Proposed I Proposed II
09 0985565 85.429 85.557 85.353 85.405
0.7 76.529 61.987 63.823 79.729 78.863
0.5]72.012 14.503 24.388 79.065 76.284
0.3 |69.260 -21.395 -4.249 78.250 74.334
0.7 0.7]59.114 59.543 59.560 59.361 59.730
0.5 ]49.679 24.584 24.262 51.034 51.115
0.3 | 42.928 -41.346 -42.617 50.716 47.233
0.1|37.163 -33.771 -48.818 48.698 43.104
0.5 0537419 37542 37.542 37.848 37.558
0.3 28600 -3.089 -4.170 29.507 29.942
0.1 21.754 -43.147 -45.749 29.067 25.415

Table 5.1: Simulation of the variance-penalized mean
DL: the drop the loss design; RSIHR:the optimal design proposed by Rosenberger et al.;BB:
the design proposed by Bandyopadhyay and Bhattacharya; Proposed I: € = 1 /2; Proposed
I e=1/4.
Without loss of generality, we assume that the treatment A is better than B.

Table 5.2 gives the simulation results for the expected proportion of patients assigned

to treatment A, together with the standard deviation of N4/n given in parentheses.
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Our proposed designs allocate higher expected proportions of patients to the superior
treatment than the DL, although the standard deviations are a little bit large when
pa and pp are close to each other. As the difference between p4 and pg increases, the
standard deviations of our proposed designs become smaller. Except for very small
values of pp such as 0.1, our proposed designs assign higher proportions of patients

to the better treatment with much smaller standard deviations than both the RSIHR

and BB designs.

P4 PB DL RSIHR BB Proposed I  Proposed II
0.9 0.9 0.499(0.065) 0.498(0.217) 0.502(0.220) 0.497(0.285) 0.500(0.210)
0.7 | 0.639(0.062) 0.620(0.275) 0.663(0.623) 0.849(0.099) 0.803(0.08)
0.5 | 0.730(0.045) 0.737(0.279) 0.786(0.257) 0.908(0.039) 0.869(0.045)
0.3 | 0.788(0.036) 0.851(0.239) 0.881(0.216) 0.932(0.023) 0.902(0.031)
0.7 0.7 0.500(0.063) 0.496(0.349) 0.498(0.347) 0.496(0.256) 0.497(0.164)
0.5 | 0.605(0.053) 0.630(0.374) 0.631(0.369) 0.772(0.126) 0.707(0.076)
0.3 | 0.677(0.042) 0.771(0.342) 0.773(0.342) 0.844(0.035) 0.772(0.036)
0.1 ] 0.728(0.033) 0.918(0.223) 0.906(0.241) 0.872(0.018) 0.810(0.026)
0.5 0.5 0.500(0.048) 0.495(0.424) 0.502(0.422) 0.498(0.244) 0.502(0.146)
0.3 | 0.577(0.040) 0.660(0.418) 0.653(0.419) 0.751(0.122) 0.676(0.062)
0.1 ] 0.635(0.031) 0.858(0.310) 0.849(0.315) 0.818(0.023) 0.731(0.023)

Table 5.2: Simulation of the expected proportion (standard deviation)
DL: the drop the loss design; RSIHR:the optimal design proposed by Rosenberger et al.;BB:

the design proposed by Bandyopadhyay and Bhattacharya; Proposed I: ¢ = 1 /2; Proposed
IIe=1/4.

Table 5.3 gives the simulated power of the Wald’s test for the data collected from’
different designs. The statistical powers of our proposed designs are higher than those
of both RSIHR and BB designs. If the difference between p4 and pp is small, say 0.2,
the statistical powers of our proposed designs are smaller than that of the DL. But
as the difference increases, the powers of our proposed designs increase and the power
of the proposed design II is close to that of the DL design. The table entries of 1 are
rounded values.

From Tables 5.2 and 5.3, it is clear that the parameter ¢ in our proposed design
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measures a tradeoff between individual and collective ethics. The design with a large
value of € assigns a high proportion of patients to the better treatment and also results
in more loss of the statistical power than a design with a small value of ¢. Because of
this compromise, no significant difference exists in our two proposed designs in terms

of the variance-penalized objective function (Table 5.1).

pa ps| DL RSIHR BB Proposed I Proposed II
0.9 09)0.049 0.060 0.056 0.050 0.050
0.710.737 0.458 0.448 0.468 0.606
0.510997 0.560 0.578 0.900 0.976
0.3 1 0.438 0.464 0.995 1
0.7 0.7]0.050 0.051 0.050 0.050 0.050
05]0524 0224 0.228 0.361 0.471
0310983 0.290 0.305 0.899 0.964
0.1 1 0.220 0.249 1 1
0.5 0.5]0.050 0049 0.051 0.049 0.050
030526 0.144 0.144 0.385 0.480
0.110996 0.175 0.206 0.972 0.992

Table 5.3: Simulation of statistical power
DL: the drop the loss design; RSIHR:the optimal design proposed by Rosenberger et al.;BB:
the design proposed by Bandyopadhyay and Bhattacharya; Proposed I: ¢ = 1 /2; Proposed
I e =1/4.

In the zidovudine trial (Connor et al (1994)), the HIV infection rates for the
AZT group and the placebo group were observed to be p4 = 0.916 and pp = (0.748
respectively for a total number of patients n = 477. Yao and Wei (1996) and Ivanova
(2003) redesigned the trial using the RPW and DL designs. In Ivanova’s study, the
DL design was compared with the RPW and the other two designs, one targeting the
optimal allocation that maximizes the power while testing treatment difference against
0, another targeting the optimal allocation that maximizes the power while testing the
log odds ratio against 0. Ivanova showed that the DL design potentially assigns more

patients to the AZT treatment than the two designs with optimal proportions, and

is less variable than the RPW. In this chapter, we compare our proposed design with
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the DL, RPW, RSIHR and BB designs assuming instantaneous responses. Table 5.4
compares various designs based on the simulation results for the expected proportion
allocated to the AZT treatment (treatment A), the expected total number of HIV free
infants and tail probabilities. In Table 5.4, S denotes the total number of HIV free
infants in the trial and ¢ = 1/2 is given in our proposed design. :

The overall performance of our proposed design is very good. Table 5.4 shows that
the proportion of patients assigned to the AZT treatment using our proposed design
is at least 16% larger than the proportions from the other designs, and results in a
higher proportion of success with less variability. The probability that our proposed
design assigns more than 80% patients to the better treatment is 0.99, which is much
higher than the other designs. The upper and lower tail probabilities (with cutoff
points of 0.95 and 0.05) of our design are almost the same as those of the RPW and
DL designs. That means that it does not lead to extremely unbalanced treatment
groups. But both the RSIHR and BB designs do so with more than 25% and 21%
probabilities respectively. Furthermore, both the RSIHR and BB designs allocate
higher proportions of patients (more than 95%) to the inferior treatment with about
6% probability. Our proposed design as well as the RPW and DL designs do not have
this problem.

Compared with other adaptive designs, our proposed design has the potential to
assign more patients to the AZT treatment with less variability, and does not result.
in extremely unbalanced groups. According to Hu and Rosenberger’s (2003) result,
a higher proportion of AZT treatment allocation does not necessarily result in a loss
of power when the variance of the treatment allocation proportion is small. Moreover
the sample size of the placebo group is still reasonably large. Furthermore if needed,
we can decrease the value of ¢ to achieve a desired power.

In summary, this chapter discusses response adaptive designs with a variance-
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DL RPW Proposed RSIHR BB
E(Na/n) 0.701 0.653 0.873 0.609  0.595
S.Dof Na/n |0.038 0.081 = 0.028 0.262 0.250
E(S/n) 0.864 0.859 0.894 0.850 0.848
S.D of S/n 0.016 0.020 0.015 0.046 0.045
p(N4/n > 0.80) | 0.003 0.027 0.991 0.253  0.221
p(Na/n > 0.95) 0 0 0 0.253 0.213
p(Na/n < 0.05) 0 0 0 0.069 0.064

Table 5.4: Comparison of alternative designs for the zidovudine trial
DL: the drop the loss design; RPW: the played-the-winner design; RSIHR:the optimal de-

sign proposed by Rosenberger et al.;BB: the design proposed by Bandyopadhyay and Bhat-
tacharya; Proposed: ¢ = 1/2.

penalized criterion. A new design is proposed and compared with other existing de-
signs according to the criterion.

We have investigated the properties of the variance-penalized criterion. This cri-
terion evaluates the performance of a design according to both the mean number of
patients assigned to the better treatment and the power of the statistical test for the
data collected from the design. The variance-penalized criterion prefers the design
that allocates more patients to the better treatment and at the same time keeps the
statistical power at a high level.

In this chapter, we have also proposed a new proportion of treatment allocation and
used the DBCD to target the proportion. The asymptotic variance of the allocation
proportion of our proposed design is shown to be smaller than that of the DL if
pa+pp > 1—cand vy — oo. Simulation results suggest that our proposed design is
better than other existing designs under the variance-penalized critérion, except for
extreme values of the probabilities of success (such as very large p4 and pp or extremely
small pp). Potentially, our proposed design assigns a higher proportion of patients to
the better treatment and the power of the statistical test remains competitive when

the difference between py and pg is not small (say, larger than or equal to 0.4). For
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a fixed large number of patients, the overall performance of our design is better than
the existing designs.

In brief, the variance-penalized criterion considers both the number of patients
assigned to the better treatment and the power of the statistical test. Our proposed

design has good performance in common clinical situations.
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Chapter 6

Conclusion and Further Research

A traditional randomized clinical trial provides a powerful tool for the comparison of
treatment effects. The balanced randomization is often regarded as a gold standard
for clinical research. However, such a randomized design becomes ethically infeasible
in desperate medical situations because individual ethics is often sacrificed. For a
more ethical balance between individual and collective ethics, alternative designs such
as response adaptive designs have been proposed and employed in some clinical trials.
A response adaptive design adapts the treatment allocation based on accumulated
information of the treatment effect to assign more patients to the potentially better
treatment. However, the adaptation of the treatment allocation creates a dependence
structure in the collected data and raises concerns about the validity of conventional
statistical inference, the loss of power of testing hypotheses, experimental bias. My
dissertation focused on the statistical inference and the optimality of response adaptive
designs.

The issue of statistical inference for response adaptive clinical trials has been both
important and challenging. Due to the adaptation of the treatment allocation, data
collected from response adaptive designs are dependent, and hence traditional statis-

tical inference assuming independent observations is not applicable without modifica-
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tion. I studied the treatment randomization processes of response adaptive clinical tri-
als. The information gathering process in the trial has been formulated as a stochastic
process, especially a Markov process for dichotomous responses. Then the logarithm
of the likelihood ratio test and goodness-of-fit test were extended to dependent data
from adaptive trials. I also examined the issue of asymptotic efficiency of estimation in
response adaptive designs of clinical trials. An asymptotic lower bound of exponential
rates for consistent estimators was established and the maximum likelihood estimator
of the treatment effect was shown to be asymptotically efficient in the Bahadur sense
for response adaptive clinical trials.

In addition, I investigated the optimality properties of the designs. How to select
treatment allocation procedures is a commonly difficult issue in adaptive designs. On
the one hand, a design is expected to assign patients to the better treatment as many
as possible. On the other hand, unbalanced treatment groups can reduce the power of
statistical test and hence result in failure of drawing a valid conclusion at the end of the
trial. Response adaptive designs have the advantage of balancing the individual ethics
and collective ethics. But different adaptive designs present very different tradeoffs
between individual ethics and collective ethics. This thesis proposed to use a variance-
penalized criterion for the evaluation of response adaptive designs. It was shown that
this criterion accesses the performance of a response adaptive design based on both
the expected number of patients assigned to the better treatment and the power of the
statistical test. A new proportion of treatment allocation was proposed and simulation
studies were conducted to compare the proposed design with some existing designs.
The proposed design has the advantage of assigning more patients to the potentially
better treatment with lower loss of power for testing hypotheses in common clinical
trial conditions.

However, the optimal treatment allocation under the variance-penalized criterion
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is deterministic, which is vulnerable to selection bias in clinical trials. Searching
for an optimal randomization allocation is still under study. Constrained dynamic
programming techniques will be employed and algorithms will be developed to search
for an optimal solution in my further research. Moreover, although the log-likelihood
ratio test and goodness-of-fit test are extended to data from response adaptive clinical
trials, the power performances of the two statistical tests are not very good. The most

powerful test statistic for response adaptive designs is waiting for further exploration.
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Appendix
Proofs of equations and inequality

Proof of equation (5.1.1):
Since Z?zlYg = ZfiAl XiA + Z'fiBl XiB and NB =n-— NA,

() - el

= E{NAE(XZA} + E{NBE(XlB} - (/,LA — /,LB)E(NA) + nyp.

Proof of equation (5.1.2):
- oS- (B (Breo-o ()]
e (i) (2 ()
)

Na Np Na Np
= Var (ZXM> + Var (ZX"B> + 2Cov <ZX1-A,2X1~B
i=1 i=1 i=1 i=1

E

I

Since
Ny
Var (Z XiA> = E(N4)o? + p4Var(Na),
i=1 '
Np
Var (Z Xu_:;) = E(Ng)o% + /J,%;Var(NB),
i=1
and
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Ng Np
Cov <Z Xia, ZXiB)
i=1 v, 1=1 e N
= E {Cov <Z Xia, ) Xip NA> } + Cov (E (Z Xia
=1 i=1 i=1

= Cov(NaoE(X;4), NpE(X;p))

w)

Np
NA> E (Z Xip
i=1

= pappCou(Na, Np)
- /,LA/,LBCOU(NA,TL—NB)

= —paspupVar(Ny)
Therefore,
Var (i Y})
L= E(Nj)laf; + 14Var(Na) + E(Ng)og + p%Var(Ng) — 2uapsVar(Ny)

= E(Na)o% + p3Var(Na) + E(n — Na)o% + p5Var(n — Np) — 2uapusVar(Ny)

= (04 — 03)E(Na) +no% + (pa — pp)*Var(Na).
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2

Proof of asymptotic variance 7° on page 52:

We show that for py > ppg,

2 { (1 —€)gags[(1 — €)pags + pa(gs + €qa)]
‘ (g8 +qa)3(aB + €qa) .
1 [(1 —e)qalgs +eqa) (1 —€)qags[(l — €)pags + pales + qu)]} }
142y (g8 + qa)? (a8 +q4)3(aB + €qa) ’

+

and for p4 < pg,

2 { (1 — €)gags((1 — €)ppga + pa(qa + €gs)]
(a8 + qa)%(qa + €gB)

1 {(1 —¢)gp(qa +eqs) | (1—€)qagal(1 — €)ppga +palga + qu)]] }

142y (g8 +q4)? (g8 + q4)®(qa + €qB) '

Proof: According to Theorem 2.1 in Hu and Zhang (2004), the asymptotic variance |

2 .

7% is
2
g 2
72— p(1 - p) + ; (ayl(PaP)) s
=T _ 50 P o ’
1-25 ., (1 ~ o <p,p)) <1 - Qa—i’@,p))
where
) ) PAGA a_d&
g3= (a—p% apﬂB) < p pqupB > 8_52. ’
- B

For the allocation function g(z,y),

99 _ =y a1 — )1 - 2) 77 — (1 — ) (L - 2)

Oz [y =7 + (1 - y)*+(1 - z)]? ’

and

g _ (4 7)yre™(1—y) (1 —2)" + (1 +9)y™*7z7 (1 —y)"(1 — )"

Oy [y 7z + (1 —y)*(1 —2)7P
So,
99
% (0.0 o
g—z ( =1+47.
p:0)
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When ps > pg, for the target proportion p(pa,ps),

p(pA pB) — gB + €44
’ g +qa’
(1 - E)QA
1— p(pa,pg) = ————.
ol ») g8 +4qa

Then,

p(pa,ps) _ €lgs+aa) — (g5 +eqa) _ —(1—€)as
Opa (g8 +4q4)* (g5 +qa)?’
ppa,ps) _ (a8 +44) — (g8 +cqs) _ (L —€)aa

Ops ds +qa B (gB +qa)?

Therefore,

5 as+qa (1—€)%¢ g +qa (1—€¢2¢%
93 = Pada g +€qa (g +qa)t P (1—€)qa (g +qa)!
paqa(l — €)%qq pBge(l — €)qa
(g +q4)*(gB + €qa) (g8 +qa)?
paqa(l —€)’q% + pas(l — €)qalgs + €qa)
(g8 + cqa)(gs + qa)?
(1 —€)gagpl(1 — €)paga +pe(gB + €qa)]

(g +qa)3(gB +€qa)

Hence,

2o pl=p) 2047
142y (1+7)(1+27) 8
1 (gg+eqa)i—e)ga , 2(1+7) (1 —€)qgagsl(l — €)paga + ps(gs + €ga)]
1+2y (g8 +4ga) 1+ 2y (g8 + cqa)(gp + q4)?
(1 —¢)qags((1 — ¢)paga+ps(gs + cqa)l
(g8 +q4)*(gB + €qa)
1 (1 —€)galgp + €qa) (1 — €)qaga[(1 — €)paga +pB(gs + €q4)]

1+2y (g8 + qa)? (g8 +qa)3(gs +€qa)

The result on 72 for p4 < pp can be proven similarly.
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Proof of inequality (5.2.1):

If pa+pp 2 (1 —¢), then

2—(pa+pe) <(1+e).
1+e¢ 1+e¢
2 - 27

da +qB —

If g4 + g > 1<, we have

1+e\® _ (1+¢)?
(qA+qB— 26> < 46). (A1)

1+¢
If g4 + g < <, then

1+¢ 1+4¢
— <
5 (ga+4gB) < 5

since g4 + gg > 0. Hence the inequality (Al) is still valid.
Firstly, we prove the inequality (5.2.1) when ps > pp.

From inequality (A1), it is obvious that

(1+¢)?
.

1+¢\?
(QA + 495 — -——2——) < 2(1 — €)QB +
To prove that as v — oo,
7 < 04q5(2 — (94 +¢8))/(g4 + ¢8)%,

we want

(1 -1 - )pags + pa(gs + €q4)]

< [2-(gqa+gs)]

gB +€q4
: (1 -¢*(1—-qa)gs
[ +(I—-¢)(1 - <|12-(ga+
g5 + €qa ( )( CIB) > [ (QA QB)]
: (1-¢)*(gB — gB4a)
i.e. <2—(1—€)—qgs—an+ap(l—c)
45 + €t < (1—€)—qa—az+aqa(l—c¢)
) 1—¢)*(gp —
i.e. ( )'(a5 — 454) <1+4e—(qa+egn).
gB +€q4
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This is equivalent to

(1-¢)q5—(1- E)QQBQA.S (L+€)(gp +¢qa) — (g8 + €qa)(qa + €gB)
= (1+¢)gp +e(1+€)ga — qraa — qi — €qi — €2qags,

ie.  (1-€)%gs < (1+€)gp +e(1+€)ga — e(ga + ga)%,
ie.  €(ga+qp)® < 3eqp — e’qp + (1 + €)ga,
ie.  (qa+¢s)? <3qp—eqp + (1+€)qa

=2¢p — 2eqp + (1 + €)g + (1 +€)qa

=2(1 = €)gz + (1 +¢)(ga +g3),
(1+¢)?

>§2(1—6)QB+ R

+€

. 1
1.€. ga+4qp —

which is true. Hence, the result follows.

Secondly, for p4 < pp, From inequality (A1) we have

(14¢)?
YR

1+¢ 2
<QA+QB—T> <2(1—€)ga+

To prove that as v — oo,

7% < qags(2 - (qa +q8))/(qa + g5)°,

we want
1-— 1 - +
( )l( €)pBqa +pa(qa + €gg)) < 12— (g4 + g8)]
ga + €gp
. (1- C)2(1 —qB)qa
L€ +(1—=¢)(1l— <[2- +
qa+ €qp ( e)( qa) <[ (ga + gB)]
: (1 —¢)*(g5 — qB4a)
i.e. <2—(1—¢)—qg4—an+ 1—e
45 + <0 S ( ) — qa — g + g5( )
1—¢€)2g4 — (1 —¢€)?
i.e. (1 -€)’qa — (1 - €)%qpqa <T+e— (g5 +eq).
qa + €gp
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This is equivalent to

(1= ¢)%qa = (1 —©)%qraa < (1+€)ga + €(1+ €)g5 — (g5 + €4)(q4 + €gB)
= (1+e€)ga+c(1+ €)gs — qBga — €43 — €44 — €°quqs,

ie.  (1—€)%qa < (1+€)ga+e(l+¢)gs —elga + g5)?,
ie.  €(ga+qp)’ < 3eqa — €qu + (1 +€)ga,
ie.  (ga+gs)’ <3qa—ega+(1+¢)gs

=2qa — 2eqa+ (14 €)ga + (1 + €)gp

=2(1 — €)ga + (1 + €)(qa + g5),
(14 ¢)?

>S2(1~6)QA+ YR

1+¢

i.e. <QA +gp —

which is true. Therefore, the result follows.

Therefore, as v — oo,

7> < qugs(2 — (qa + ¢8))/(ga + g5)°.
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Programs

#it### RPW

da<-477
a<-5
b<-5
Add<-1
pa<-0.916

pb<-0.748

cutPoint<-1.96"2

r<-10000

distrSRPW<-function(a,b,Add, cutPoint,pa,pb,r,d){
naCount<-rep(0,d+1)
sCount<-rep(0,d+1)
zCount<-0
for (n in 1:r){ na<-0
nb<-0
sa<-0
sb<~0
aBall<-a
bBall<-b
Add<-Add

p<-aBall/(aBall+bBall)
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for (i in 1:d){
u<-runif(3,0,1)

e<-¢(0,0,0)

if (ul1l<p){na<-na+1
if (u[2]<pa){sa<-sa+Add
aBall<-aBall+Add
el[2]<-1}
if (e[2]==0){bBall<-bBall+Add}
e[1]<-1}
if (e[1]==0){nb<-nb+1
if (u[3]<pb){sb<-sb+Add
bBall<-bBall+Add
e[3]<-1}
if (e[3]==0){aBall<-aBall+Add}
}

p<-aBall/(aBall+bBall)}

s<-sa+sb
naCount [na+1] <-naCount [na+1]+1

sCount [s+1]1<-sCount [s+1]+1

paHat<-(sa+0.5)/(na+1)
pbHat<~(sb+0.5)/(nb+1)
z<-(palat-pbHat) /sqrt (paHat* (1-paHat) / (na+1) +pbHat* (1-pbHat) / (nb+1))

cl1<-0
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if (z"2<cutPoint){ci<-1}

if (c1==0){zCount<-zCount+1}
}

xNA<-0:d

probNA<-naCount/r

probS<-sCount/r

power<-zCount/r

return(list (xNA=xNA, probNA=probNA, probS=probS, power=power) ) }

m<-100

dd<-(1+d) *m

ZrpwFinal .probNA<-matrix(1:dd,ncol=m) ZrpwFinal.power<-1:m

for (n in 1:m){erw<—distrSRPW(a,b,Add,cutPoint,pa,pb,r,d)
tt<-matrix(Zrpw$probNA,ncol=1)
ZrpwFinal.probNA[,n]<-tt
ZrpwFinal.power [n]<-Zrpw$power}

save (ZrpwFinal.probNA,file="ZrpwFinal.probNA")

save(ZrpwFinal.power,file="ZrpwFinal.power")

#it###DL

Im<~1
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aBall<-3

bBall<-3

distrSDL<-function(Im,aBall,bBall,pa,pb,d,r,cutPoint){
naCount<-rep(0,d+1)
sCount<-rep(0,d+1)

cl<-0

for (n in 1:r){naAdd<-rep(0,d+1)
sAdd<-rep(0,d+1)
w<-0
na<-0
sa<-0
sb<-0

nb<-0

urn<-c{Im,aBall,bBall)

while (w<d){u<-runif (4,0,1)
delta<-0
if (ulil<urn[1]/sum(urn)){delta<-1
urn<-urn+c(0,1,1)}
if (delta==0){w<-w+1
e<-c(0,0,0)
if (u[2]<urn[2]/sum(urn[2]+urn[3])){na<-na+1

if (u[3]<pa){sa<~-sa+1
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e[2]<-1}
if (e[2]==0){urn[2]<-~urn[2]-1
if (urn[2]1<0){urn[2]<-0}}

e[1]<-1}

if (el[1]==0){nb<-nb+1
if (u[4]<pb){sb<-sb+1
e[3]<-1}
if (e[3]1==0){urn[3]<-urn[3]-1
if (urn[31<0){urn[3]<-0}}
}

paHat<-(sa+0.5)/(na+1)

pbHat<~(sb+0.5)/(nb+1)

Def<-paHat-pbHat

varDef<-sqrt (paHat*(1-paHat)/(na+1)+pbHat* (1-pbHat) /(1+nb))
z<-Def/varDef

c2<-0

if (z"2<cutPoint){c2<-1}

if (c2==0){cil<-cl1+1}

naAdd [na+1]<-1
s<-sa+sb

sAdd[s+1]<~1
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naCount<-naCount+naAdd
sCount<-sCount+sAdd

}
power<-cl/r
probNA<—naCount/?
probS<~sCount/r
xvalue<-0:d

return(list(xvalue=xvalue,probNA=probNA,probS=probs, power=power))}

dd<-(1+d) *n
ZDLFinal . probNA<-matrix(1:dd,ncol=m)

ZDLFinal.power<-1:m

for (n in 1:m){ZDL<-distrSDL(Im,aBall,bBall,pa,pb,d,r,cutPoint)
tt<-matrix (ZDL$probNA,ncol=1)
ZDLFinal.probNA[,n]l<~tt
ZDLFinal.power [n] <-ZDL$power}
save(ZDLFinal.probNA,file="ZDLFinal.probNA")

save(ZDLFinal.power,file="ZDLFinal.power")

###H#H+# DBC

gamma<-100

alpha<-10~(-7)
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n0<~1

d<-d-2*n0

dd<-(1+d) *m

distrSDBC<-function(pa,pb,alpha,gamma,n0,d,r,cutPoint){
naCount<-rep(0,d+n0)
xNA<-n0: (d+n0)
sCount<-rep(0,d+2+n0+1)
x8<-0: (d+2%n0)

zCount<-0

for (n in 1:1){
sa<-0
sb<-0
na<-1

nb<-1

ul<-runif(2,0,1)
if (uil[1]<pa) {sa<-sa+1}

if (u1[2]<pb) {sb<-sb+1}

paHatl<-sa/na
paHat<-paHatl+alpha*(as.numeric(paHat1==0))-alpha*(as.numeric(paHati==1))

pbHat1<-sb/nb
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pbHat<-pbHat1+alpha*(as.numeric(pbHat1==0))-alpha* (as.numeric(pbHat1==1))
EstiProp<-TargProp(paHat,pbHat)

x1<-1/2

y<-EstiProp

gl<—y*(y/x1) “gamma/ (y* (y/x1) “gamma+(1-y)* ((1-y) /(1-x1)) “gamma)

p<-gl

for (i in 1:d){
u<-runif(3,0,1)
e<-0
if (ul1]<p){na<-na+1
if (u[2]<pa){sa<-sa+1}
e<-1}
if (e==0){nb<-nb+1

if (u[3]<pb){sb<-sb+1}}
paHatl<-sa/na
paHat<-paHat1+alpha*(as.numeric(paHat1==0))-alpha*(as.numeric(paHati==1))
pbHat1<-sb/nb

pbHat<-pbHatl+alpha*(as.numeric(pbHat1==0))-alpha*(as.numeric(pbHat1==1))

EstiProp<-TargProp(paHat,pbHat)
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x1<-na/ (2*n0+i)

y<-EstiProp

gl<-y*(y/x1) "gamma/ (y*(y/x1) “gamma+(1-y) * ((1-y) /(1-x1) ) “gamma)
p<-gl
}
s<-sat+sb
naCount [na-n0+1]<-naCount [na-n0+1]+1

sCount [s+1]<-sCount [s+1] +1

paHat<-(sa+0.5)/(na+1)

pbHat<-(sb+0.5)/(nb+1)

Def<-paHat-pbHat

varDef<-sqrt (paHat*(1-paHat)/(na+1)+pbHat* (1-pbHat)/(1+nb))

z<-Def /varDef

c2<-0

if (z"2<cutPoint){c2<-1}

if (c2==0){zCount<-zCount+1}
+

probNA<-naCount/r

probS<-sCount/r

power<-zCount/r

return(list (xNA=xNA, probNA=probNA,xS=xS, probS=probS, power=power) )}
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#HH#HH# epsilinl<-0.5

TargProp<-function(pa,pb){ga<-1-pa
gb<-1-pb
rho<-(gb+epsilinl*min(qa,qb)*sign(pa-pb))/(gb+qa)
return(rho)’}

dd<-(d+1)*m

ZDBC.newFinal.probNA<-matrix(1:dd,ncol=m)

ZDBC.newFinal.power<-1:m

for (n in 1:m){ZDBC<-distrSDBC(pa,pb,alpha,gamma,n0,d,r,cutPoint)
tt<-matrix(ZDBC$probNA,ncol=1)
ZDBC.newFinal.probNA[,n]<-tt
ZDBC.newFinal.power [n] <-ZDBC$power?

save (ZDBC.newFinal.probNA,file="ZDBC.newFinal.probNA")

save (ZDBC.newFinal.power,file="ZDBC.newFinal . power")
#H## gamma<-0 epsilini<-0.5

Targ?rop(—function(pa,pb){qa<—1—pa
gb<-1-pb
rho<-(gb+epsilini*min(qa,qb)*sign(pa—pb))/(gb+qa)
return(rho)}

dd<-(d+1)*m
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ZDBC.newFinalO.probNA<-matrix(l:dd,ncol=m)

ZDBC.newFinalQ.power<-1:m

for (n in 1:m){ZDBC<-distrSDBC(pa,pb,alpha,gamma,n0,d,r,cutPoint)
tt<-matrix(ZDBC$probNA,ncol=1)
ZDBC.newFinalO.probNA[,n]<-tt
ZDBC.newFinalO.power [n]<-ZDBC$power}
save(ZDBC.newFinalO.probNA,file="ZDBC.newFinalO.probNA")

save(ZDBC.newFinal0.power ,file="ZDBC.newFinal0.power")

#i#### TargProp<-function(pa,pb) {rho<-sqrt(pa)/(sqrt (pa)+sqrt (pb))

return(rho)}

ZDBC.RSTHRFinal.probNA<-matrix(1:dd,ncol=m)
ZDBC.RSIHRFinal.power<-1:m for (n in
1:m){ZDBC<-distrSDBC(pa,pb, alpha,gamma,n0,d,r,cutPoint)
tt<-matrix(ZDBC$probNA,ncol=1)
ZDBC.RSIHRFinal.probNA[,n]l<-tt
ZDBC.RSIHRFinal.power [n]<-ZDBC$power}
save(ZDBC.RSIHRFinal.probNA,file="ZDBC.RSIHRFinal;probNA")

save (ZDBC.RSIHRFinal.power,file="ZDBC.RSIHRFinal.power")

#i#t### gamma<-0
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TargProp<-function(pa,pb){rho<-sqrt(pa)/(sqrt(pa)+sqrt(pb))
return(rho)}

ZDBC.RSIHRFinal.probNAO<-matrix(1:dd,ncol=m)

ZDBC.RSIHRFinal.power0<-1:m for (n in

1:m){ZDBC<-distrSDBC(pa,pb,alpha,gamma,nl,d,r,cutPoint)
tt<-matrix(ZDBC$probNA,ncol=1)
ZDBC.RSIHRFinal.probNAO[,n]<-tt
ZDBC.RSIHRFinal.powerO [n]<-ZDBC$power}

save (ZDBC.RSIHRFinal.probNAO,file="ZDBC.RSIHRFinal.probNAO")

save (ZDBC.RSIHRFinal .powerQ,file="ZDBC.RSIHRFinal.power0")

#H### gamma<-100
TargProp<-function(pa,pb){rho<-sqrt (pa*(1-pa))/(sqrt(pa*(1-pa))+sqrt(pb*(1-pb)))
return(rho)}
ZDBC.NeymanFinal.probNA<-matrix(1l:dd,ncol=m)
ZDBC.NeymanFinal.power<-1:m for (n in
1:m){ZDBC<-distrSDBC(pa,pb,alpha,gamma,n0,d,r,cutPoint)
tt<-matrix(ZDBC$probNA,ncol=1)
ZDBC.NeymanFinal.probNA[,n]<-tt
ZDBC.NeymanFinal .power [n] <-ZDBC$power}
save (ZDBC.NeymanFinal .probNA,file="ZDBC.NeymanFinal . probNA")

save (ZDBC.NeymanFinal.power,file="ZDBC.NeymanFinal.power")

##### gamma<-0
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TargProp<-function(pa, pb){rho<-sqrt (pa*(i-pa))/(sqrt(pa*(1-pa))+sqrt (pb*(1-pb)))

return(rho)}

ZDBC.NeymanFinalO.probNA<-matrix(1:dd,ncol=m)

ZDBC.NeymanFinalO.power<-1:m for (n in

1:m){ZDBC<-distrSDBC(pa,pb,alpha,gamma,n0,d,r,cutPoint)
tt<-matrix(ZDBC$probNA,ncol=1)
ZDBC.NeymanFinalO.probNA[,n]<-tt
ZDBC.NeymanFinalO.power [n] <-ZDBC$power}

save (ZDBC.NeymanFinalO.probNA,file="ZDBC.NeymanFinalQ.probNA")

save(ZDBC.NeymanFinalO.power,file="ZDBC.NeymanFinalO.power")

##### Band&Bhatt
TargProp<-function(pa,pb) {Ney<-sqrt(pa*(1-pa))/(sqrt (pa*(1-pa))+sqrt (pb*(1-pb)))
pi<-pnorm((pa-pb)/(sqrt (pax (1-pa))+sqrt (pb*(1-pb))),0,1)
if (pa>=pb){p<-max(Ney,pi)}
if (pa<pb){p<-min(Ney,pi)}
return(p=p)}

n0<-1 lambda<-0.5 alpha<-10~(-7) r<~10000 cutPoint<-1.96"2

d<-477

d<-d-2+#n0

pa<-0.916

pb<-0.748
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distrSBB<-function(pa,pb,alpha,n0,d,r,cutPoint){
naCount<-rep(0,d+n0)
XNA<—nO:(d+nO)
sCount<-rep(0,d+2*n0+1)
x5<~0: (d+2*n0)

zCount<-0

zDistr<-rep(0,r)

for (n in 1:r){
sa<-0
sb<-0
na<-1

nb<-1

ul<-runif(2,0,1)
if (ul[1]<pa) {sa<-sa+1}

if (ul[2]<pb) {sb<-sb+1}

paHatl<-sa/na
paHat<—paHat1+alpha*(as.numeric(paHat1==O))—alpha*(as;numeric(paHat1==1))
pbHat1<-sb/nb

pbHat<-pbHat1+alpha*(as.numeric(pbHat1==0))-alpha*(as.numeric(pbHatl==1))
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p<-TargProp(paHat ,pbHat)

for (i in 1:d){
u<-runif (3,0,1)
e<-0
if (ul1]<p){na<-na+l
if (u[2]<pa){sa<-sa+1}
e<-1}
if (e==0){nb<-nb+1

if (u[3]<pb){sb<-sb+1}}

palatl<-sa/na
paHat<-paHat1+alpha*(as.numeric(paHat1==0))-alpha*(as.numeric(paHati==1))
pbHati<-sb/nb

pbHat<-pbHat1+alpha*(as.numeric(pbHat1==0))-alpha*(as.numeric(pbHat1==1))

p<-TargProp(paHat ,pbHat)
}
s<-satsb
naCount [na-n0+1]<-naCount [na-n0+1]+1

sCount [s+1]<-sCount [s+1]+1

paHat<-(sa+0.5)/(na+1)
pbHat<-(sb+0.5)/(nb+1)
Def<-paHat-pbHat

varDef<-sqrt (paHat*(1-paHat)/(na+1)+pbHat*(1-pbHat)/(1+nb))
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z<-Def/varDef

zDistr[nl<-z

c2<-0
if (z"2<cutPoint){c2<-1}
if (c2==0){zCount<-zCount+1}
}
probNA<-naCount/r
probS<-sCount/r
power<-zCount/r
sF<-xS
probS<-probS
MeanS<-sum (sF*probS)
M2S<-sum (sF~2*probS)
varS<-M2S-MeanS~2

obj<-MeanS-lambda*varS

MeanNA<-sum (xNA*probNA)

M2NA<-sum (xNA"2*probNA)

varNA<-M2NA-MeanNA"2

varNAFinal<-varNA*(r/(r-1))
return(list(zDistr=zDistr,xNA=xNA, probNA=probNA, probS=probs,
power=power,objective=obj,MeanNA=MeanNA,VarNA=varNAFinal,

pa=pa,pb=pb, cutPoint=cutPoint))}
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R m<-100 dd<-(d+1)*m

ZDBC.BBFinal.probNA<-matrix(1:dd,ncol=m)

ZDBC.BBFinal.power<-1:m

for (n in 1:m){ZDBC<-distrSBB(pa,pb,alpha,n0,d,r,cutPoint)
tt<-matrix(ZDBC$probNA,ncol=1)
ZDBC.BBFinal.probNA[,n]<-tt
ZDBC.BBFinal.power [n] <-ZDBC$power?}

save (ZDBC.BBFinal.probNA,file="ZDBC.BBFinal.probNA")

save (ZDBC.BBFinal.power,file="ZDBC.BBFinaldd.power")
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