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Abstract

N4uch attention has been given to response adaptive designs recently because of their

etliics advantages. However, the adaptation of the treatment allocation creates a

dependence str-ucture in the collected data and raises concerns about the validity of

statistical analysis, the loss of power for testing hypotheses and experimental bias.

iVIy thesis focuses on the development of statistical inference methodologies and the

investigation of optimality properties for- r=esporìse adaptive designs.

The issue of statisticai inference for response adaptive clinical trials has been both

irnportant and challenging. Due to the dependency in data collected frorn response

adaptive designs, traditioiral statistical inference methods cannot be applied without

modification to anal¡,ze data from adaptive clinical trials. I stridl' the treatment ran-

domization processes of response adaptive clinical trials. The information gathering

pr-ocess in the trial is formulated as a stochastic process, in particular a Markov pro-

cess for dichotomous responses. Then the logarithm of the likelihood ratio test and

the goodness-of-fit test are extended to analyze dependent data from the adaptive

trial. I also examine the issue of asymptotic efficiency of estimation in response adap-

tive designs of clinical tlials. The asymptotical lower bound of exponential rates for

consistent estimators is established and the maximum likelihood estimator of the tr-eat-

ment cffect is shown to be asymptoticallv efficient in the Bahadur sense for response

adaptive clinical trials.

Besides the exploration on the statistical inference for response adaptive designs,

I11



I investigate the optimality properties of the designs and explore the evaluation of

response adaptive desìgns using the variance-penalized criterion. It is shou'n that

this criterion evaluates the perfonnance of a response adaptive design based on both

the expected number of patients assigned to the better- treatment and the po\¡/er

of the statistical test. A new proportion of treatment allocation is proposed and

silnulation studies are conducted to compare the proposed design with the existing

designs. The proposed desigh has the advantage of assigning more patients to the

potentially better treatment with less loss in power of the statistical test in common

clinical trial conditions.

However, the optirnal treatment allocation under the variance-penalized criterion

is deterministic, and hence is vulner-able to selection bias in clinical trials. Searching

fot- an optirnaì randomization allocation is still under study. Constrained dynamic

programming techniques may be employed and algorithms will developed to search

for-an optimal adaptive allocation rule in my further research.
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Chapter 1

fntroduction

lVluch attention has been given to adaptive designs of clinical tr-ials in recent years

because of their efficiency and ethical advantages. However, the adaptation of an on-

going trial raises concerns about the validity of statistical conclusions, the logistical

issues and experimental biases. This chapter introduces the background on adaptive

clesigns, the motivation as well as the main results of my research.

1.1 Adaptive Designs

This section briefly introduccs ttre definitiorr of aclaptive designs, various classes of

adaptive designs and the major issues for the designs.

An adaptive design is defined by Chorv et al. (2005) as a design that allows adap-

tations or modifications to some aspects of a clinical trial after its initiation without

undermining the validity and integrity of the trial. This definition is consistent with

that given in an executive summary of the PLRMA working group (Gallo et aì., 2006).

One kind of modification during the course of a trial could be the adaptation of ran-

domization procedures. An adaptive designs with this l<ind of modifrcations is called a

Ìesponse adaptive design. In a lesponse adaptive design, the probability of allocating

the next patient to a particular treatment is aclapted based on the accumulated in-



formation such as the responses of previously treated patients and previous treatment

allocations. The treatment allocation is deliberately biased to assign more patients to

the potentiaìly better treatment. The modification could also be other changes of the

design or statistical analysis procedures based on the observed interim results and/or

any information from outside the trial. This kind of modification includes sample size

re-estimating, early stopping due to efficacy or futility, dropping inferior treatment

groups, modifying statistical hypotheses, changing inclusion/exclusion criteria, ad-

justing study dose of drugs and adapting endpoints during the course of a trial. This

type of adaptive design is said to be a sequential adaptive design in which interim

data analysis is a characteristic. No matter what l<ind of modifications is applied to a

triaÌ, the goal of adaptive designs is to learn from the accumulating information and

to apply the learned knowledge to benefrt the patients within the trial or to speed up

the deveiopment of efficient drugs.

Adaptive designs are of gleat advantages including ethical and efficiency advan-

tages. Firstly, in response adaptive designs, the motivation of the adaptatio¡ of treat-

rnent I'andomization is to modify the randomization procedure and to assign more

patients within the trial to the potentially better tleatrnent. The future patients

within the trial are assigned to the better- treatment with large probabilities. In se-

querrtiaÌ adaptive designs, patients irr a trial rrray benefit frorn the drop r¡f the irrfèr-ior

tleatment and early stopping of a trial. A trial may be stopped if the experimental

treatment is clearly better or worse than the control, or the futility stopping cliterion

is met in the interim analysis. These modifications of an on-going trial basecl on in-

telim results of the triaì not only potentially prevent exposing patients to the inferior

tleatment in the trial, but also reduce the number of experimental units required in

the trial. In addition, interim information helps recalculate sample sizes and this rnay

leduce the possible overly large size of the trial, tìrus limiting the exposure of patients



to the inferior tr-eatment and saving resources. In adaptive designs, the accrued data

in a trial are used to rnodify the on-going trial for- economic consideration and/or

concerns about the welfare of the patients within the trial.

Adaptive designs have attracted great interest due to their potential efficiency

and/or ethical advantages. However, the modification of an on-going trial raises great

concelns about the vaÌidity of statistical inference, logistical issues and proceduraÌ

challenges when applying adaptive designs in practice.

Tirc rnodification of a,n on-going trial prcsents statistical challengcs to draw con-

clusions on medical questions at the end of the trial. In response adaptive designs, the

modification of treatment allocation is based on the accumulated information in the

tlial. This adaptation creates a dependency structure in the collected data and the tra-

ditional statistical analysis methods cannot be applied directll, without justification.

In sequential adaptive designs, the modification of the trial is based on the interim

analysis, thus r-esulting in the use of "non-standard" test statistics in the overall data

anaiysis. It is of conceln that the Type I error rate may have been inflated (Chang et

al., 2006, Bauer and Kohne,1994, Pr-oschan and Hunsberger) 1g95, Posch and Bauer,

2000). "In adaptive designs often test statistics diverging from the conventional test

statistics may have to be used for the test decision" (citing Bauer and Einfalt, 2006).

Jennison and Turnbull (2006) argued that "the final analysis of data fi'orn an aclaptive

trial design typically involves the use of unfamiliar test statistics that do not satisfy

thc sufficiency principle". Burman and Sonesson (2006) questionecl whether analysis

based on non sufficient statistics can be deemed "valid". Chow et al. (2006) noticed

that there is a high risk that a clinical trial using adaptive designs/methods may fail

in telrns of drawing valid statistical conclusions and /or- fail to provide useful infor-

mation witir desired power, especially when the sizes of the trials ar-e lelatively small

and ther-e are a number of protocol amendments.



The estimation ploblem for treatment effects is another conceln. The executive

summaly of the PhRMA working group (Gallo et al., 2006) arguecl that issues with the

estimation of treatment effect have not been fully resolved for some adaptive designs

in the frequentist paradigrn. This point of view is supported by Wassrner (2006).

The research by Bauer and Einfalt (2006) found that, in the published literature, a

problem exists with estimation in adaptive designs. Bauer and Einfalt (2006) clairned

that "r¡rid-trial design nrodification may have a negative impact on the persuasiveness

and perception of the r-esults." They further suggested that more research on the

properties of suitable estimates following design adaptations is important for applying

aclaptive designs in pr-actice in the future.

In addition, the modification of an on-going trial raises concerns on logistical

or/and procedural issues in adaptive designs. The adaptations of an on-going trial are

based either on cumulated information on treatment effects or interim analysis. This

lequires rapid data collection, effective communication between patients/investigators

and the randotnization center-, and appr-opriate managernent of interim information

to maintain the validity of a clinical tlial, thus bringing great challenges to reduce

selection bias when implernenting adaptive designs in practice.

How to reduce selection bias is a common issue in clinical trials including tradi-

tiorlal and adaptive trials. The issue is more specific in adaptive tr-ials because the

rnodilicati<trt of an on-going tlizrl requires conveying thc information on responses of

prcvious patients or interim analvsis during the trial. This leads to the difficulty

of reducing selection bias. In aclaptive designs, the selection bias could come from

the investigator (trial personnel and/or sponsor representatives) or from the patients

that are involved or- will be involved in the trial. A trial personnel could guess the

probability of treatment allocation for the next patient according to the adaption rule

frorn previous responses of patients. A sponsor for a pharmaceutical company may



rnanipulate the available interim results to affect the adaptation of the trial at the

anxiety to see the company's latest pharmaceutical product succeed. As a result, the

subconscious pr-eference or deliberate dishonesty of the investigator could be included

in the data. The selection bias could also come from the patients' aspect. A patient

in the trial may choose to quit the treatment if he or she feels it is not effective or

requires to tr-ansfer to another treatment group provided that he or she guesses the

other treatment is more efl'ective based on the responses of previous patients. In some

adaptive designs, patients are informed of the nature of the adaptation of the trial for

ethical consideration or in order to be compliant with regulations on good clinical trial

practice. In the screening phase of a trial, except for emergencies, patients may prefer

to be recruited later so that the chance for her or him to get the better treatment be-

comes larger. This behavior of patients results in the problem of data missing not at

raudorn or casts the doubts on the randomness of treatment allocation. Consequently,

it leads to sorne challenges and some problems fol statistical analysis.

Selection bias raises serious concelns about the validity of the analytical results or

cr-eates problems in statistical analysis. The best way to reduce selection bias is to

mask the interim information of the trial from the investigators and patients. How-

ever, the design feature of response adaptive trials needs to convey the accumulated

inforrnation for the rnodificatiorr of the trial or it is difÍicult to mask the study in sorne

situations. As pointed out by Rosenberger arrd Lachin (2002), "it is not unusual for

patients to be unmasked duling the course of the trial due to either adverse events

known to be highly associated with one of the tr-eatments, life-threatening emergen-

cies requiring unmasking, or distinguishing features of the masked treatment, such as

taste". Recently, the potential impact of conveying interim analysis information to

investigators or othel people were discussed by many researchers. Lokhnygina (2006)

noticed that a potential problem of unblinding the interim data and the resulting op-



et'ational bias have long been the sou¡ce of concerns for many researchers considering

the use of adaptive designs. Bauer and Brannath (2004) argued that applying such

adaptive designs requires new tools of statistical monitoring. The executive summary

of the PhRMA wor-king group (Gallo et al., 2006) recommended expanding the re-

sponsibility of the independent Data Monitor-ing Committees, lirniting the extent of

sporlsor- involvement and withholding the details of the adaptive procedure to a sep-

arate document in order to reduce the negative impact of leaking interim results to

investigators or other persons involved in the trial. Lokhnygina (2006) strongly sup-

ported this r-ecommendation and claimed that it could make the implementation of

the adaptive designs in practice more plausible.

In summary, adaptive designs of clinical trials are potentially efficient and/or have

ethical advantages. But the modification of an on-going trial presents some of the

greatest challenges in statistical analysis and in the reduction of selection bias. My

dissertation focuses on the design and statistical inference of ,*esponse adaptive clinical

trials.

L.2 Response Adaptive Designs

With a response adaþtive design, the probability of treatment allocation to the next

patient is modified based on the cumulating information on prcvious treatment al-

locations and responses of previously treated patients in the trial. The purpose of

the design is to deliberately bias the treatment allocation in order to assign more pa-

tients to the potentially better treatment. Response adaptive designs are developed

alternatively for ethical considelations in clinical trials.



L.z.t Ethical Issues

Traditional rand.omization provides a powerful method for comparing treatment ef-

fccts and has many statistical and scientific advantages. The 50-50 randomization is

considered as a gold standard in clinical trials. However, this standard is criticized for

being unethical when the equipoise on treatment effects is broken, because half of the

patients are assigned to the inferior treatment.

Most researchers agree that randomization is the best method for achieving com-

parability among treatment groups and constitutes the basis of statistical inference.

Randomization tends to balance the treatment groups with respect to known or un-

kown covariates and is used to pr-otect against selection bias from investigators. The

probabilities intloduced by randomization establish the fundamentals of statistical

inference. Raudornization guarantees the validity of a statistical conclusion at a sig-

nificant level. As Byar et al. (1976) clairns, "Randomized clinical trials remain the

most leliable method fbr cvaluating thc efficacy of therapies."

However, r-andomized clinical trials present a dilemma for investigators between

inclividual and collective ethics when considering the responsibilities of investigators.

On the one hand, investigators need to consider the well-being of individual patients

within the trial and do what is the best for individual patients. On the other hand,

investigators want to gather information about and draw valid statistical conclusions

on treatment effects to benefit future patients. Royall (1991) examined the personal

care principle and argued "that pr-inciple can make it difficult or impossible for a physi-

cian to participate in a randomized clinical study." The \À¡orld Medical Association's

Declaration of Helsinki clearly states that in medial resear-ch on human subjects, con-

siderations related to the well-being of the human subject should take pr-ecedence over

the interests of science and society. Palmer and Rosenberger (1999) descr-ibed the role



of individual and collective ethics in designing clinical trials and claimed that greater

attention should be paid to the forrner. The ethical tension between individual and

collective ethics was also noticed by Pullman and Wang (2001).

For instance, the zidovudine trial (AZ'I) done by the AIDS clinical trial group

(ACTG 076) was controvelsial on ethical grounds. The trial was to investigate the

effect of a short term zidovudine (AZT) therapy on reducing the risk of maternal-

infant HIV transmission. From April 1991 to December 1993, 477 pregnant women

with HlV-infection were recruited into the trial. 239 of the women were given the

shor-t term AZT therapy using permuted block randomization and the remaining 238

constituted the placebo group. The first publication of the ACTG 076 study (1994)

indicated that the effect of AZT on reducing the HIV transmission from mother to

infants is statistically significant (P-value 0.00006) and the reduction is approximately

trvo-thirds. A data analvsis in 1996 confirmed the results in 1994 by ACTG 076 and

tlre infectiori rate was 7.67o in the AZT group and22.6To in the placebo group. The

findings presented by ACTG 076 is a scientiflc breakthrough, but the randomization

employed in the trial is controversial. Lurie and Wolfe (1997) argued that "on the basis

of the ACTG 076 data, knowledge about the timing of perinatal transmission, and

pharmacokinetic data, the researchers should have had every rea^son to believe that

rvell-designed shorter- regirnens would be more efI'ective than placebo. These findings

seriously disturb the equipoise (uncertainty ovel the likely study result) necessary to

justify a piacebo-controllecl trial on ethical grounds." Yao and Wei (1996) criticized

the randomization procedure used in the trial and claimed that the procedure had put

too many pregnant wornen on the placebo group and resulted in a large number of

HIV-positive infants.

A good clinical tr-ial practice should address both the individual and collective

ethics. The 50-50 r'andornization is criticized for being unethical because individual



ethics (for trial patients) is often sacrificed, especially in desperate medical situations.

According to Zelen (1969), "the ethical principle has motivated the developrnent of

statistical techniques which attempt to end a trial at the eariiest moment when a

decision can be made at to which therapy (if any) is most beneficial". Plenty of

ethically rnotivated designs for clinical trials (see Armitage 1960, Anscombe 1963

and Palmer and Shahumyan, 2007), including response adaptive designs pioneered

lry Zelen (1969), have been proposed to alleviate the tension between the individual

and collective ethics. Response adaptive designs modify the treatment allocation

plobabilities based on the treatment allocations and responses so far accumulated

in the trial, and tend to assign more patients to the better treatment. Zeien (1969)

found that, as a consequence of his response adaptive procedure (play-the-winner),

"the ethical problem posed by an unnecessarily long clinical trial is not as serious as

a trial where patients are allocated in equal numbers to the treatrnents for the length

of the clinical trial."

Zelen's play-the-winner procedure \¡/as extended to a randomized play-the-winner

(RPW) pr-ocedure by Wei and Durham (1978) in the thought of reducing selection bias.

This design has been used in the extracorporeal membrane oxygenation (ECMO) trial

conducted by Bartlett and his colleagues (1985) at the University of Michigan. The

ECN4O technique was ernployed to treat newborns with respiratory failure charac-

terized by pcrsistent pulrnonary hypertension (PPH). PPH results in low bloocl flow

through the lungs, thus inadequate oxygenation of the blood. Newborns with PPH are

ai high risk of death in the first days of life. ECMO is an external system for providing

temporary sttpport during respiratory failure. Historically, researches reported 80%

survival rate in the use of ECMO to treat newborns with PPH and only 20% or less

survival rate in other traditional tr-eatments. Questions were raised on the compara-

bility of the survival rates because of the absence of the concurrent control groups in



those studies. The Michigan trial group recognized the need of a control group to draw

a valid conclusion and was also strongiy concerned about the ethical issue raised by

using 50-50 randomization. The Michigan ECMO trial is the first randomized clinical

triai carried out on the effect of ECNIO.

The RPW design used in the Michigan ECMO trial can be described by an urn

which initially contains a ball labeied with ECMO and a ball with the label CT rep-

r-esenting the conventional treatment. When a patient is ready to be treated, a ball is

randomly drawn with replacement and the corresponding treatment is applied. The

urn is updated when tire outcorne of an applied treatrnent is available. An additional

ball of the sarne type is added to the urn if the tr-eatment is successful. Otherwise, an

additional ball representing the opposite treatment is added. The allocation probabil-

ity of th.e next patient depends on the allocations of previous patients and responses

of previous treated patients. In time, the ur-n is expected to contain a high proportion

of balls associated with the more successful tleatment. In the Michigan ECMO trial,

the first ball dr-awn from the urn was an ECMO ball and the first baby was assigned

to the ECMO tr-eatrnent. The baby survivecl and an additional ECMO ball was added

to the urn. The second baby was assigned to CT treatment using the urn and the

baby died, so another additional ECMO ball was added to the urn. This procedure

continued until the next seven babies were assigned to the ECMO treatment and all

survived. The randomization ceased since the planned sample size was reached. Later,

two more babies were treated with ECMO and both survived. In brief, 10 babies were

treated with the ECNIO treatment and all survived. Only one was assigned to the CT

treatment by the RPW design but died. The data provided encouraging information

about the survival rate of infants treated with ECMO, but was not conclusive because

only one baby was aÌlocated to the CT treatment.

Howevet, the conclusion in another randomized ECMO trial conducted by the UK

10



collabor-ative trial group showed that the RPW design used in Michigan ECMO trial

did assign more patients to the better treatment. The UK collaborative ECMO trial

enrolled 185 mature infants from 1993 to 1995 and the recruitment was stopped early

in November in 1995 on the advise of the Independent Data-monitoring Committee

because the accumulated data showed a clear- advantage with ECMO. 93 of the re-

cruited infants were randomly assigned to ECMO and g2 to the CT treatrnent. The

survival infants after the treatments wer-e followed up to one year old to observe the

rnorbidity status. The data analysis demonstrated that ECMO reduces the risk of

death without a concomitant rise in severe disability. A follow-up study to 7 year-s

(i\4cNally et al., 2006) concluded that the beneficial influence of BCMO is still present.

This trial was unethical because many infants were treated with the inferior treatment.

But the trial did provide a sound conclusion and justified the routine use of ECMO

in medical practice.

In summary, the 50-50 randomization presents ethical difficulties in clinical trials,

especialiy in desperate medical situations. But ethical concerns should not preclude

randomization in clinical tlials. As one of the alternatives, response adaptive designs

integrate randomization with the ethical corrsideration and provide a better way to

alleviate the tension between the individual and collective ethics.

1.2.2 Types of Response Randomization Procedures

Response adaptive designs modify treatment allocations based on the accumulated

responses of previously treated patients in the trial and deliberately bias treatment

allocatiorrs to assign rnore patients to the potentially better treatment. The designs

apply what is learned from the accumulated information on treatment effects to benefit

future patients within the trial. Response adaptive designs have been studied for

decades and many adaptive randornization procedures have been developed, including

11



the procedures based on urn models, sequential estimation procedures and decision-

analytic plocedures.

The tr-eatment randomization based on an urn model is based on the urn cornpo-

sition process, which is modified according the responses of previous patients. This

adapted utn composition process automatically represents the information gathering

process on treatment effects in the trial.

An important contribution on urn models is the randomized play-the-winner (RPW)

pr-ocedure proposed by Wei and Durham in 1978. This randomization procedure was

used in thc ECMO trial by Bartlett et al. in 1985 and in the clinical trial on fluoxetine

versus placebo for depressive disor-der (Tamura et al., 1994). Urn models originated

from the Pólya urn scheme presented by Eggenberger and Pólya (1923). The pólya

urn was generalized by tr'r-iedman in 1949. The idea of using urn models for response

adaptive r-andomization can be traced back to the researches in 1960s (Athreya and

Karilin, 1967, 1968, and Zelen, 1969). Zelen (1g6g) introduced the play-the-winner

procedure (PW) to alleviate the ethical tension between individuai and collective ethics

presented by the 50-50 ranclomization. Zelen's PW was generalized to the random-

ized play-the-winner design (RPW) by Wei and Durham in 1978, which inherits the

spir-it of Zelen's procedure that tends to assign more patients to the better treatment,

but is less vulnerable to experimental bias because of the randomized allocation of

treatments. In general, a RPW(rr, /i,7) design is described by an urn that contains

initially a balls of type .4 and É balls of type B representing treatments A and B

respectively. When a patient is ready to be treated, a ball is drawn at random and

the corresponding treatrnent is applied. Then the ball is leturned to the ur-n and the

urn is updated based on the patient's responses. An additional 7 balls of the same

type are aclded to the u¡n if the response of the patient is a success. For a failure,

an additional 1 balls of the opposite type are added. In time the urn is expected to

t2



contain a high propor-tion of balls associated with the more successful treatment, thus

future patients within the triai have a large probability to be assigned to the better

treatment.

Since the works of Zelen (1969) arrd Wei and Durham (1978), many urn models,

have been developed using different adaptation rules on the composition of an urn.

The updating rule employed by Durham and Yu (1990) is that a ball of the same type

is added if there is a success and the urn composition remains the same for a failure.

Ivanova et al. (2000) proposed the birth and death urn in which a ball is aclded to

the uln for a success response and a ball is removed from the urn for a failure. The

dlop-the-loser rule (DL) developecl by Ivanova (2003) adapts the urn composition by

removing a balÌ if there is a failure and keeping the urn composition unchanged if

there is a success. Furtherrnore, Ivanova and Flournoy (2001) generalized the binary

response urn models to a ternar-y urn model with three outcomes. Other classes of urn

models include the generalized Friedman's urn model (also called generalized Pólya

urn model, GPU for short) (wei, 1979, Rosenberger et al., 1gg7, Bai et a1.,2002),

the randomized Póiya urn model (Durham et al., 1998) and the sequential estimation-

adjusted uru rnodels (Zhang et al., 2006). IJrn models were reviewed in Dirienzo (2000)

and Roserrberger (2002). Recently, the drop-the-loser urn model has been extended

by Sun et al. (2007) and Zhang (2007).

Another class of treatment randomization procedures in response adaptive designs

is the sequential estirnation procedures. This type of randomization is to target a

certain ploportion of treatment allocation. The target proportion is pre-specified ac-

cording to the objective of the design and involves the unknown parameters of the

tleatrnents in the trial. The unknown parameters are sequentially estimated and

the updated estimates are used in the randomization procedure to achieve the tar-get

proportion. Major sequential randomization procedures include the doubly-adaptive

13



biased coin design (DBCD)(Eisels, 1994, Eisele ancl Woodroofe, 1995, Hu et al., 2003,

Hu and Zhang,2004), the doubl¡r adaptive weighted difference design procedure (Ger-

aldes et a1.,2006) and the sequential maximum likelihood procedure (Melfi et al.,

2001, Roseberger et al., 2001, Baldi et al., 2005).

Among the sequential randomization procedures, the doubly-adaptive biased coin

design is ver-y flexible in that it can target any proportion. Nloreover, this procedure

is shown to be asymptotically less variable in proportions of treatment allocation than

the maximum likelihood procedure (Hu et al., 2003). The idea of the doubly-adaptive

biased coirr design can be traced back to Efron's biased coin design which is used to

balance treatment assignments. But the ethical concern in a clinicai triai requires

to bias the treatment allocation to âssign more patients to the better tr-eatment.

To achieve a desired allocation proportion, Eisele (1994) and Eisele and Wooodroofe

(1995) proposed the doubly-adaptive biased coin design procedure, where an allocation

function was defined and the conditions on the allocation function were given. As

lVlelfi et ai. (2001) pointed out, the complicated nature of these conditions can be

a barrier for the procedure to be applied in practice and the choice of allocation

function in the example of the last section of the two papers (Eisele, 1994 and Eisele

and Wooodroofe, 1995) violated their r-egularity conditions. Hu and Zhang (2004)

developed a set of widely satisfred conditions for the allocation function for cloubly-

bi¿rscd coin designs and proposed a specifìc allocation f'unction. This specific allocation

function was shown to generate asymptotically less variable allocation propor-tions (Hu

et al., 2003) than other procedures, and the sequential maximum likelihood procedure

was demonstrated to be a special case of the doubly-biased coin design under the

specific allocatión function. Geraldes et al. (2006) extended the idea of biased coin

designs and proposed the doubly adaptive weighted difference design.

The third randomization procedure in response adaptive designs is the decision-
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anâlytic procedule incor-porating the Bayesian methodology. The learning on the

treatment effect in the decision-analytic procedure is represented by the updating of

the posterior distribution of parameters and the decision on the treatment allocation

is made on the learning process. Early in the 1960s, Anscombe (1963) proposed the

alternative formulation of sequential clinical trials from the point of view of Bayesian

inference for ethical considelations. Later, Berry (1989) and Kass and Greenhouse

(1989) argued that the alternative of randomized trial due to the ethical concern wa,s

to use the Bayesianly oriented methodology. The Bayesian method was used in Berry

(2001, 2004), Berry and Eick (1995), Hardwick and Stout (i991), Muliere et al. (2006).

Recently, Cheng and Berry (2007) proposed a r-optimal design which maximizes the

expected utility in a Bayesian decision-analytic setting with an adaptive randomization

allocation.

Other raudomization procedures such as covariate-adjusted response adaptive ran-

dornization were considered by Rosenberger et al. (2001) and Biswas et al. (2006).

In brief, there are three rnajor types of randomization procedures in response adap-

tive designs. Different procedures present different ways of information gathering in

clinical trials. The common purpose of these procedures is to apply the collected

infolmation on treatment effects to assign more patients to the potentially better

treatment, thus pr-oviding good rnedicaì practices for ethical considerations.

1.3 My Research

Response adaptive designs are vely attractive to clinical and biostatistical researchers

due to their efficiency and ethical advantages in clinical trials. However, the adaptation

of the treatment allocation creates a clependence structure in the collected data and

introduces rnor-e variability into the data, hence ¡aises concerns about the validitv of
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statistical conclusions, power loss of statistical tests and experimental bias, etc. These

issues lagged behind the ar,pplication of response adaptive designs in pr-actice. My

dissertation focuses on the development of statistical inference methods for response

adaptive designs and searching for a better treatment randomization procedure.

1.3.1 Issues and Literature Review

Response adaptive designs have been studied for decades. Statistical methodologies

have been advanced and optimal adaptation procedures have been explored. However,

the exploration of optimal treatment allocation procedures is very restricted and tradi-

tional statistical methodologies need to be justified for dependent data from ïesponse

clinical trials, ol new statistical methods must be developed.

Response adaptive designs tend to assign more patients to the better treatment

based on the accumulated information of previously treated patients in the trial. Three

classes of response adaptive designs developed in decades are discussed in the previ-

ous section. They are urn models, sequential estimation procedures and the decision-

analytic models. In any of the response adaptive designs, interim information such

as previous treatment allocation and the responses of previously treated patients are

gathered for the modification of the probability of treatment allocation for the next

patient. This adaptation of treatment allocation creates a dependency in the data col-

lected from the trial and leads to difficulties and complications in statistical inference

and in the development for the optirnal allocation procedure.

Although statistical inference is very complicated for response adaptive designs,

because of the dependency in the data from the trial, many statistical inference meth-

ods have been explored for adaptive designs in decades. Firstly, the exact distribution

method was used for-analyzing the data from the iVlichigan ECI\4O tlial (Wei, 1988).

Wei (1988) calculated the exact conditional p-value of the permutation test for the
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Ntlichigan ECIVIO trial in which the RPW design was used. Later, Wei et al. (1990)

used the network method to derive the exact distribution of a suffi.cient statistic and

derived the exact conditional and unconditional confidence intervals of the parame-

ters for the ECMO data. Lin et al. (1991) ernployed the exact distribution method

to the statistical inference of group sequential trials. However, the use of the exact

distribution for the test statistic is computationally intensive for large scale clinical

trials.

In addition, rnany researchers have investigated the limit theorems of allocation

proportions and asymptotic proper-ties of the maximum likelihood estimation of the pa-

rameters for different response adaptive models. Smythe (1996) and Bai et al. (2002)

exatnined the urn composition process of GPU and demonstrated the asymptotic nor-

mality of the process. Inouse and Aki (2005) considered the multivariate distribution

of the numbers of occurrences of different types of runs, and gave a recursive formula

for the probability generating function of the GPU model. Under general assumptions

on random generating matlices which determine how balls are added to the urn, Bai

and Hu (2005) studied a very gener-al urn model and established the strong consistency

and asymptotic norrnality for both the urn composition and the proportion of treat-

rnent allocation. Eisele and Woodroofe (1995) proved the centlal limit theorems for

tlre doubly adaptive biased coin design. Later, Hu and Zhang (2004) established the

asymptotic pr-operties of the proportions of treatment allocations for multi-treatment

clinical trials with a doubly adaptive biased coin design. Recently, Zhanget al. (2007)

explored the asymptotic properties of covariate-adjusted response-adaptive designs.

Several researchers also investigated the maximum likelihood estimation for general

l'esponse adaptive models. Rosenberger et al. (i997) studied the maximum likelihood

estimators for multi-parameter response adaptive designs. Regularity conditions were

pr-ovided for the existence of the maximum likelihood estimator- and its asymptotically
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multivariate normality. Melfi and Page (2000) considered the estimation probiem for

general response adaptive designs and used the non-martingale approach to show the

asymptotic normality of point estimators of the palameters. Melfi et al. (2001) then

applied the martingale method to demonstrate the consistency and asymptotic nor-

mality of the point estimators for the adaptive design achieving a desired allocation

proportion. Recently, Hu et al. (2006) also showed the asymptotic normality of the

maxitnurn likelihood estimator when studying the best response adaptive randomiza-

tion procedures.

With the exception of maximum likelihood estimation, Coad and Woodroofe (1998)

obtained some results on the bias of the maximum likelihood estimator fo¡ sequen-

tially designed experiments. Coad and Ivanova (2001) derived the bias and variance

of the rnaximum likelihood estimators of the probabilities of success and proposed

bias-corrected estimators for adaptive urn designs. Cheng and Vidyashankar (2006)

discussed the existence and asyrnptotic properties of the minimum Hellinger distance

estimators for the randomized play-the-winner design. They established both consis-

tency and asymptotic normality of the estimators.

Other rnethods such as nonparametric techniques are also used in the statistical

analysis of response adaptive designs. Zhang and Rosenberger (2005) developed the

log rank test for- a wide class of randomization procedures including the adaptive ran-

domization procedures. The Wilcoxon-Mann-Whitney scor-e is used by Bandyopand-

hyay and Biswas (2004) to construct a test procedure for two univariate continuous

populations.

Another concern on the use of Ìesponse adaptive designs is the loss of power of

statistical tests. The adaptation of treatment allocation int¡oduces more variation

to the estimators of parameters and to test statistics. Simulation results (Melfi and

Page, 1998, Rosenberger et al., 2001, Ivanova, 2003) have demonstrated that a large
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variance of the allocation proportion would reduce the power of the test. Hu and

Rosenberger (2003) theoletically examined the r-elationship between the asymptotic

power of Wald's test and the variance of allocation proportions. They found that less

variability in the allocation proportion resulted in less loss in the asymptotic power

of the test. Recently, Chen (2006) and Baldi Antognini (2007) provided theoretical

analysis of power for the biased coin design.

The selection of treatment allocation procedures is a challenging problem in adap-

tive designs. On the one hand, a design is expected to assign a,s many patients as

possible to the better treatrnent. On the other hand, too skewed treatment groups in

a trial may result in the failure of drawing a valid statistical conclusion at the end of

the trial. A response adaptive design has the advantage of balancing the individual

ethics and collective ethics. However, different adaptive designs present very different

tradeoffs between the individual and collective ethics.

A good response adaptive design is expected to assign mole patients to the better

treatment with a minimal loss in the power of the statistical test. Developing for an

optimal design is compÌicated due to the adaptive process of ti-eatment allocations.

Rosenberger et al.(2001) obtained an optimal allocation propor-tion to minimize the

expected number of treatment failures for a fixed power of the test. Although both

the power and the expected number of failures wer-e considered, this optimal alloca-

tion proportion doesn't depend on the desired power. Hu et al. (2006) established a

lower bound on the asymptotic variances of the aÌlocation proportions when the al-

location proportions wele asymptotically normally distributed. They concluded that

Ivanova's DL design is the asymptotically best among the designs with the same

allocation propor-tion as the DL's. The DBCD with allocation function g(r,g) (pro-

posed by Hu and Rosenber-ger (2003) and Hu and Zhang (2004)) was also claimed

to be asl'mptotically best as the numbel of patients within the trial goes to infinity.
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Howevet, this cornparison of designs is restricted to those with the same allocation

pr-oportion. Bandyopadhay and Bhattacharya (2006) developed a randomization rule

which switches between the Neyman allocation and the myopically better treatrnent

and conducted a simulation comparison of their randomization rule with the existing

adaptive designs using the expected failure proportion criterion. Recently, Biswas et

al. (2007) considered optimal response adaptive designs for continuous responses in

Plrase III trials. Cheng and Berry (2007) introduced a r-optimal design, a constrained

adaptive randomized design in Bayesian decision-analytic setting, to maintain the ran-

domness of treatment allocations. But the cornparison of the r-optimal design with

existing designs has not been conducted. In conclusion, different evaluation methods

liave beeu developed in the search for- optimal response adaptive designs. However,

the comparisons of adaptive designs are restricted to a particular class of designs. Fur-

thermore, the optimal design may result in extremely unbalanced treatment groups

and thus becomes unethical or difficult for statistical analysis.

In summary, both the tasks of searching for an optimal design and developing

applopriate statistical inference for response adaptive designs are very challenging.

Although statistical iuference methodologies for response adaptive designs have been

advanced, more traditional statistical inference methods need to be extended to de-

penderrt data from lesponse adaptive designs, and efficient estirnation ancl power-ful

tests need to be investigated, ol new statistical methods must be developed. Besides,

the exploration of optimal designs is very restricted and new methods to evaluate

response adaptive designs need to be advanced.

L.3.2 Main Results

In my dissertation, I discuss several statistical inference methods such as the log

likelihood latio test, goodness-of-fit test and efficient estimation for a wide class of
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I'esponse adaptive designs. The evaiuation of response adaptive designs is also expiored

and a new randomization procedure is proposed, which is better than the existing

plocedures under common conditions.

Firstly, I investigate tlte randomization pÌocess of response adaptive clinical trials.

The information gathering process in the adaptive trial has been formulated as a

stochastic plocess, especially a N4arkov process for dichotomous Ìesponses. R'om the

forrnulated stochastic process, the likeliÌrood function for the observed data is derived.

This explains why the format of the likelihood function for response adaptive designs is

not affected bv thc use of adaptivc treatment allocation and whv tirere is more variation

in the maximum likelihood estimators of the parameters for adaptive designs.

Then common test statistics including the log likelihood ratio statistic and goodness-

of-fit test statistic are explored fol response adaptive designs. I examine the limiting

properties of pr-oportions of treatrnent allocation using the theory of martingales and

discuss the consistency and asymptotic normality of the maximum likelihood estima-

tors for a wide class of adaptive designs. It is shown that the rnaximum likelihood

estimator-s are str-ongly consistent and asyrnptotically normally distributed und.er some

regularity conditions. These results hold for a wide class of ïesponse adaptive designs

including the RPW design, the GPU model and the designs with a targeted alloca-

tion proportion. Under- some regularity conditions, the logarithm of the likelihood

ratio statistic fol dependent data fi'om a general class of response adaptive designs

is proven to be asymptotically chi-square distributed. This provides a foundation for

asymptotic analysis of adaptive clinical trials with multiple treatments. For response

adaptive designs with dichotomous responses, under assumptions less restricted than

those for general tnodels, the estimated odds ratio and its logarithm are shown to

follow asymptotically normal distributions. Moreover, the ordinary goodness-of-fit

test statistic for two-by-two contingency tables with dependent data is proven to be
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asynptotically chisquare distributed.

The third main result is on the efficient estimation for response adaptive designs.

In the literature, the maximum likelihood estimators, bias-corrected estimators and

minitnum Hellinger distance estimators were discussed for response adaptive designs.

An interesting question is which estimation is the best under what criterion. I discuss

the issue of asymptotic efficiency of estimation for response adaptive designs of clinical

tr-ials. The a'symptotic lower- bound of exponential rates for consistent estimators is

esta,blished and it is shown that under certain regularity conditions, the maximum

likelihood estimator attains the asymptotic lower bound for lesponse adaptive designs

with ìrinary observations. The estimation of the treatment effect is also investigated

and the maximum líkelihood estimator of the treatment effect is shown to be asymp-

totically efficient in the Bahadur sense under some regularity conditions for response

adaptive designs with generai responses.

At last, the evaluation of response adaptive designs is explored. I examine the

optimality properties of response adaptive designs with a variance-penalized criterion.

All response adaptive designs including those with different allocation proportions can

be compared under this criterion. More importantly, the penalty criterion evaluates

the performance of a design according to both the mean and the variability of the total

responses. A good design under this cr-iterion tends to allocate more patients to the

better tre¿tment and to increase the power of the test. I propose such a design and

compare the design with some existing respolìse adaptive designs. The asymptotic

var-iance of the allocation pr-opoltion of our proposed design is shown to be smaller

than that of the DL design 1f po + pB ) €, where e is a pre-fixed number, a measuïe

of tradeoff between individual and collective ethics. Simulation results indicate that

our proposed design is better than other existing designs under the variance-penaiized

criterion, except for- extrerne values of the probabilities of success (such as very large
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pa and Pn or extrernely srnall p¡). Potentially, our proposed design assigns a higher

proportion of patients to the better treatment than the existing adaptive designs and

the power of the statistical test remains good when the difference between p¿ and

p6 is not small (say, larger than or equal to 0.4). For trials with a iarge number of

patients, the overall performance of our design is better than the existing designs.

In this dissertation, Chapter 2 introduces the formulation of response adaptive

designs. The results on the log likelihood r-atio statistic and the goodness-of-fit test

statistic are presented irr Chapter- 3. The efficient estimation problem for response

adaptive designs is discussed in Chapter 4. Chapter 5 examines the evaluation issue

and the optirnal properties of response adaptive designs. Chapter 6 concludes the

disseltatiorr and discusses further r-esearch directions.
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Chapter 2

Formulation of Response Adaptive
Designs

Response adaptive designs are characterized by randomized treatment allocation rules

that are adaptive to previous responses. This chapter introduces the information

gather-irrg pl'ocesses in an adaptive clinical trial and the Markov decision models for

response adaptive designs with dichotomous responses.

2.1 Formulation of Adaptive Designs with General
Responses

Suppose that trial subjects arrive sequentially and each receives one and only one of

k treatments. Patients' responsesYj,Yzj,... from treatment 7 are independent and

identically distributed with the density function f¡(.A,0i), where 0¡ € A¡, I < j < k,

isanunknownpalameter. Denote 0:(0r,02,...,d¡)¿,whereústandsfortranspose.

Besides makirrg a statistical cornparison of the alternative tr-eatments at the conclu-

sion of the trial, it is also desir-ed to allocate trial subjects to the potentially best

tleatment as many as possible in order to balance collective and individual ethics.

Respouse adaptive designs are aimed at this purpose by sequentially allocating treat-

ments adaptive to responses so far accumulated in the trial.
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Let õ¿: (ô¿r, 6¿2,- . . , ð¿¡) be the itt'treatment assignment such that õoj : I jf the ith

patient receives treatment j and õoj : 0 otherwise, and y, : (ytõn,yzõ¿2,. . . ,yn6on)

be tire corresponding response. Here we use the convention that if treatment j is

not applied to patient i, then the lesponse is 0. When the itt" patient (i > 2) is

to be treated, the information available is given by the o algebra -f;-1 generated by

{(ðt, yt), "', (ðn-r, y¿-r)}.

A response adaptive design is defined by a sequence of possibly randomized allo-

cation rules ur : {r¿, i : I,2,...} such that each rr¿ : (nn,lTi2t...,n-¿¿) is given

by the conditional treatment allocation probabilitie" nØ p(òij : IlFn_r), i ) 2,

D!:r"oi: 1, and the initial possibly randomized treatment allocation probabilities

nU P(õry :1) are pre-fixed values (such as llk), I < j < k. Moreover, each

r-anclomized allocation rule rr defines a probabilitv measnre P7¡ on the space of all

possible sequences of treatrnent allocations and responses.

rf n,n: 7,2, ' ' ' , patients have been tr-eated in the adaptive tr-ial, let N¡(") be the

number-of patients allocated to treatment 7 and x¡("): (\¡,y2j,... ,y*,@)¡) be the

corresponding observations on treatment j, where j : L,2,. . . ,li. Then l.l_, w.,(n) :
r¿. Define

W(") : (t/,(n;, Nr(n),. . . ,l/r_r(n), Xr(r), Xz(r),. . , X¡(n)).

Clearly the information contained in {(ôr,yr),... ,(õn,y,)} is equivalent to the in-

formation contained in {W(1), W(2), . . . 
, W(")}. So the treatment allocation for the

(n+I)th patients depends on {W(1), 
-W(2), . . ., W(")}. Hence, {W("), n : I,2,. . .}

becomes a stochastic process rvith a transition probability function specified by the

allocation rule ur : {Trr, n: I,2,. . .}.

The transition probability function of the stochastic plocess w("r), n: r,2,... ,

under Pv is III=, l"o, f¡(U4, 0,)16't .



For each observed sequence {(ôr,yr), ... ,(6n,y,)}, the likelihood function is

r¿k nk
L(0) : fllll",i f i (a r¡, 0 ¡)l6oi : h(¡r) II fI f i (a t¡, 9 ¡)6ni

i=I i:I

whele h(zr): lllrll':, n6;i, and,lT|o=rf,@0,,lj)uo,is the contribution of (ô¿,y¿) to

the likeiihood, 0o : 1, and ooo : l.

Compared to the likelihood function for the data from an independent and identical

distribution, the lihelihood function for a response adaptive design is related to the

randomized allocation rule er. However, the second part in the likelihood function

containing the pararneters is not affected by zr directly.

2.2 Markov Decision Models for Response Adap-
tive Designs vyith Dichotomous Responses

If the response in an adaptive trial is dichotomous (say, success or failure), the infor-

rnation gather-ing plocess can be formulated as a Markov decision process.

Let 0¡ be the probability of success on treatment j. Then if t¡eatment 7 is assigned

to patient i, its response )ii follows the Bernoulli distribution f¡(y¿¡,0 ) - (0 )uti(t -
0¡)1-uni, where U4 :7 for a success and 0 for a failure.

After n patients have been treated in the adaptive trial, {(n) is the number of

patients allocated to treatment j as defined previously. Let ^9¡(n) be the number

of successes on treatment j, where j : I,2,... ,Æ. Then N¡("): ÐL, 6¿¡,5¡(n) :

Ð7=ròn¡Aoi. Cleally the information contained in {(ði,yr),.. . ,(õn,y,)} is equivalent

to the information contained in

{(¡/t(1),..',Àh-r(1),^9r(1),...,Sr(t)),. .,(Nr("),...,ÀI*_,(n),51(n),...,^9u(r))}.

So tlre treatrnent allocation for the (n + I)th patient depends on the observations of

tlrestoclrasticprocess{(Nr(i),...,Nr_r(i),51(¿),...,Sr(r)),i:I,2,...,n}.

i.=L.j:1



For each randomized allocation rule zr, the likelihood function for the observed

sequence {(ô,, yr),. . . , (ô,, y,)} is

L(0):ryryt",,t1.,(1 - 0 )r-uo¡fdo¡:,u (ü r,) rr,*,(7 - e,¡Nir,)-s:(')
i:L j=I

Tlrerefore, the statistic (Nt("), ... ,Nn-r(n),,9r(rr),... , ^9*(r)) is sufficient and the

maximum likelihood estimators for 0¡ is êr: S¡(n)lN¡(n), j :7,2,...,k. The

statistic

(Nt("),... ,ÀL-r(r),Sr(r), .. , S*(r))summarizestheprevioustreatment allocations

and accumulated information of the Ìesponses of previously treated patients in the

trial. Thus, it is reasonable to set the randomized allocation z.n'1 for the (n+1)¿ä

patient depending only on (Nr("), .. ., Nx-r(n), Sr(r), . . ., S*(r)). An allocation rule

with this property is said to be a Markov r-andomization rule.

in brief. the information gathering process on the treatment effects in a binary

response adaptive clirrical trial can be formulated as the following stochastic process:

{(¡f,("), ... ,N*-r(n), S,(r),... ,,S*(r)) ,TL: I,2,...}.

Due to the sufficiency of (N1(n),... , Ä/r-r(n),^9r(rr),.. . ,,Sr(r)), only Markov alloca-

tion rules n : l¡ro, ,i: !,2,...\, are to be considered, where zr¿..1 depends only on

the curr-ent state

(^ir(¿), "', Àä-r(z),st(i), "',sr(¿)). This class of allocation rules includes a wide

lange of adaptive designs, such as the RPW(a, B) design, the drop-the-loser design

(Ivonava 2003), the optimal adaptive design (Rosenberger et al., 2000), the GpIJ

design, and the doubly adaptive biased coin design with binar-y responses.

For example, in a trial with two treatments, say treatments ,4 and B, the Rpw(a, B)

design assigns the ith patient to treatment ,4 with the probability

,,TiA : p(òoo : rl4¿_t) - 
a + Se(i - 1)þ + (NB(i -.1) - Su(¿ - t))þ 

.2a+(i.-I)p



Instead, the probability in the optimal design proposed by Rosenberger (2000) is

triA: P(6no: IIF¿-.-) : R-(oA(i-Ð,eùu-Ð
L + R. (0A(i - 7), 0B(i - 1))'

whele R(0,+,96) is the optimal pr-oportion of patients assigned to treatment A to

these assigned to treatrnent B and êt: S¡lN¿,êu : SalNp.In the doubly biased

coin designs with the allocation function developed by Hu and Zhang (2004), the

pr-obability of allocating the i¿l, patient to treatment ,4 is

wlrere r is the proportion of patients to treatment A, û : N¿(i- Ð lQ-1), p is the tar-

get proportiou for tr-eatment ,4 and the estimated value þ of p depends on 0¿(l-1) and

ïu(i - 1). In all the above designs, the allocation probability r¿¿ depends only on the

current state of the information process {(¡/r(rr), . . . 
, ÀL_r(r), Sr(r), . . . , S¡(n)),n :

7,2," ',Ì. It other words, the allocation ¡ules are Markovian in these adaptive de-

signs.

IJnde¡ a lVlarkov allocation rule, the process

{(¡'Ir("), ... ,Nn_r(n),Sr(r),... ,^9*(r)) ,fr: I,2,... ,}

is a Markov process. The Markov property of {(¡i, (n),. .. , l/r_r(n), Sr(r), . . . , ,Sr(r)),

h : 7,2,' ' 'I was frrstly noticed by \Mei et al (1990) in the randomized play-the-winner

designforÅ;:2. ActuaÌly, itcanbeprovedthat {(.ni1(n),... ,ÀL_r(r),,Sr(r),... ,Su(r)),

TL: r,2,"' j is a Markov process under the probability measure p¡ specified by a

Markov allocation rule er for any adaptive designs with dichotomous responses.

The decision model for-response adaptive designs with dichotomous responses con-

sists of



1. a state space {(.n[ (r),. .. ,l/r-r(n), Sr(n),. . . ,,S*(r)) a Nro-t),

2. an allocation rule n : {rtn, n: I,2,...},

3. a transition probability specifled by zr,

4. an objective to minimize the total number of failures or to achie',¡e other goals.

The decision model becomes a Markov decision model if the allocation rule zr is

iVlarkovian. Based on the formulation, the objective function is used to compare two

adaptive designs ¡r and ¡r'.

In brief, the adaptation of tr-eatment allocation in response adaptive designs is

based on accumulated inforrnation such as previous treatment allocations and re-

sponses of previously treated patients. The information gathering process can be

formulated as a stochastic process, especially a Markov process for designs with di-

chotomous responses. This formulation explains the format of the likelihood function

of response adaptive desigrrs.

29



Chapter 3

Likelihood Ratio Test and
Goodness-of-fit Test

This chapteL examines the extension of common statistical procedures such as the

log-likelihood ratio test and the goodness-of-fit test to dependent data from a wicle

class of response adaptive designs.

3.1 Likelihood ratio test

Let Fn be the ø-algebra generated by {(ôt,yr),..' ,(ô,,y,)}, representing the infor-

mation avaiiable for allocating the treatment to the (n + 1)"¿ patient, n : r,2,. . .

For each j, j : I,2,... ,k, Ði=r(6¿¡ - r¿¡) is a martingale and D|=ri-r4l(òo¡ -
n,¡)"lFo-r] ( oo since lõo¡ 

* n¿¡l ( 1. Therefore, by the strong law of large numbers

for rnartingales, 
",f 

Dl:r?o¡ - no¡) ---+ 0 almost surely. We have then

Lemma 3.L.1. ÚP -ry ---+ 0 almost surely, i : L,2,. . . ,k und,er the allocation

rule r.

Lemma 3.1.1is an extension of Proposition 1 in Melfi et al. (2001), whose allocation

rule is limited with a target allocation proportion, but our allocation rule applies to a

rvide class of adaptive designs including Melfi's, the RPW design, the optimal adaptive
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design in Rosenberger et al. (2000), the GPIJ rnodel and the doubly adaptive biased

coin design.

The log-likelihood function is

I@):InL(0): lnä(zr)* É s(i,0),
i=I

where g(i,0): Drf:, õ¿ilnfi(y d¡). Obviously,

al(e\ -\ n

;# : Ð n't,(t, o¡ : I aor1t" f¡(Y¡, 0))'r,
uuJ 

i:1 i=l

Under the usual regularity conditions, the Fisher information I j(0 j) : -ø ({f" Íi6,0)yi,)
isfinite andpositive arrcl ther-eexists asolution e, úW:0, j:7,2,... ,k.Fur-ther

we assume that the second moment of (ln f¡(X,?¡))'á, exists ancl is finite, and there

exists cr ) 0, M < æ such tirat ø(l(ln f ¡(Y¡,0))b,lr*^) < M.

Let ê): (0r,êr,... ,0u), arrd I,(g) : (%P,#,... ,u#P)'

Lemma 3.1.2. If the allocati,on rule r : {rt,ztz,...} sati,sfies the condition that

ü* -. u¡(0) € (0,1), as n -+ æ, i : r,2,... ,k, then as n ---+ æ1

(1) à --- o almost surely,

(z) n-ttz¿,(9) * Nx(o,f(d)),

(S) nr/2(?) - 0) - Nt"(0,f-t(0)),

where l( 0) : di,as (u í0) I 1(0 ), u2(0) I 2(0 r), . . ., u ¡,(0) I ¡(0 ¡)).

Proof Notice that 9'j (t,0¡ : õ¿¡(lnf¡(Y ,0¡))'f, and

E[g';,(i,O)lF"-] - nojE 
l{n'/r{ror, 0)yá,): -r¿¡Ii(L¡).

Ther-efore, Di:rØ'{(i,e) + r¿¡I¡(0¡)) is a rnarringate. Since E[(ln l¡(y¡,0¡)),j,]2 is

finite, Ð1ri-'El(O'í(t,0) + r¿¡I¡(0¡))rlFo_r) < oo. Using the strong law of large

number fol martingale,

:ll I f,n;,(t'e¡:--li* DT:"y¡t¡@) : -u¡(0)I¡(0¡) (3.1.1)n-cþ n /- -r- n_æ ni'=r
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almost surely. Applying the strong Ìaw of large number for martingales to Ði=, o'0,(1., 0),

ff,n'r,(i,o))ln---+ o almost su'ely .

i:l

By Taylor expansion of (IL, O',,(i,0))ln and equation (3.1.1),

n

(L-g'u,(i,,Q)ln: -u¡(O)I¡@)@¡ - 0¡) + oo(0, - e¡
i:I

Hence part (1) is proved. Obviously,

,.* ÐL' Elg';,(i, o)lFo -'llim - :-lim
n+oo n n+oo

almost surely and

,-r-a/2f u1¡u,r {t n f ¡(a¿¡, 0 ¡)),u,f**lto-ù t #i=I

Therefole parts (2) and (3) follow from Rosenberger et al. (2002). !
Lernma 3.1.2 implies strong consistency and asymptotic normality of the max-

imurn likeiihood estirnator of d for any allocation rule n : {rr,rr2,... } satisfy-

ing tlre regularity condition Ði:rnn¡ln -- u¡(0) + 0,L.This condition is not re-

strictive and holds true for m.any adaptive designs, such as the RpW(0,1) (where

Ðli:, no I n - qB I (q¿,+ qB ) almost surely) , the optimal adaptive design of Rosenberger

et al. (2001) (wher-e for the sequential maximum procedure, D]=r"ol, --. R. l(I+A-)
almost surely), and the allocation rule in Melfi et al. (2001) if the desired allocation

proportion is not 0 or 1.

Lemma 3.1.2 is more general than that in Hu et al. (2006) in which th.e response

function is restricted to the exponential famiiy. Our r-esults are moïe gener-al and

include nolr-exponential families. Furthermore, Hu et al. (2006) and Rosenberger

and Lachin (2002) did not consider strong consistency. Melfi and Page (2000) der-ived

results similar to lemma 3.1.2 by a non-martingale theory, but their allocation rule is

a special case of ours.

li:rr¿¡I¡(0¡) : -u¡(0)I¡(0¡)



Let Ho : 0 : 0o be the null hypothesis, where d0 e o and the parameter space

O : Or x Oz "' x Or is an open set. All results established in this section require the

following regularity condition:

ReguLari,ty Condition 1' Ð!:r!ii ---+ u¡(0) e (0,1), j :7,2,... ,k almost surely.

Theorem 3.1.3. Under regulari,ty condi,ti,on 1, the statistzc

-2U@\ -'T"¿(a)l : 2lt@) - l(00)l

follows asymptotically the y2 distribut'ion wzth k degrees of freedom when the nutl hy-

pothesis is true.

Proof. The Taylor expansion of l(d) :lnL(0)

L@) - ue\:å 
[,0 

- tl)ÐsL rt,e,¡]*

Hence,

: ln å(n) + DL, g(i,0) at 9o gives us

lå,* - eo,)' 

Ðnr,(,, 
r')] + ooe)

t
,

2(4Gù - qeo)) :2G)- 0o),r ,(eo) +ytA, - ,:l)rL,n",U.,0o)+ oo(1). (8.1.2)

It's obvious that

(è - 0o)\,(e\: 
"äyiçe}¡çêt - o\lt[n-+¡-å1a0;r,(00)],

k n ß f ,t n I
Ð()i - 0',)'Dn'á,(i,00): Dl"å @¡ - 0Ðf l: t s'J,Q,oo)l .

j=t r=1 j-=L l" îJ ' I
By Lemma (3.1.2). the first term in equation 8.1.2 is equivale't to 2lnàrà@o)(ê -
eo)ltln+l+(eo)(ô - do)] and using equation (3.1.i), the second rerm in equation (8.1.2)

is equivalent to -[nåf àçeo¡çê - g0)]¿[?¿åf àçeo¡(t - 0o)], where equivalence means

that the two r-andom variables have the same aßymptotic distlibution. Therefore,

2(l@) - ¿(90)) is equivalent to lnÈrÈ@o)@ - l')ltfniràçeo¡@ - ao)] which foilows



asymptotically the ¡2 distribution with ,k degrees of freedom when the null hypothesis

is true. n

If the response functions f¡(A,0¡), j : I,2,...

then the statistic in the following theorem can be

HI: 01 - 02: -- . - 0¡r.

,Æ, have the same form f(g,?¡),

used to test the null hypothesis

Theorem 3.1.4. Under the regularity condition 1, the stattstzc

lr-'Ltit(o)- m3x¿(o)l

follows asymptotically the y2 distribution wi.th k - 1 degree of freedom when the null

hypothesi,s HI : fu - 0z : ... - 0¡" is true.

Proof . Set 90 : (e0 ,00 , . . . , d0). For the linear mapping 0t : 0, 0z : g, . . . , 0k : 0 ,

Theorem 11.2 in Billingsley (1961) shows that 2(max u5\e) - ¿(00)) is asymptotically

¡2 distributed with 1 degree of freedom, and 2(maxo¿(0) - -*¡ró l(d)) is asymptot-

ically y2 distributed with ,k - 1 degrees of freedom. !
Although Biilingsiey (1961) derived results similar to theorems 3.1.3 and 3.1.4,

his results apply only to stationary Markov processes. But the stochastic process

{W(-), nt:1,2,'.''} is neither stationary nor Markov for general response adaptive

designs. Hence our r-esults are more gener-al.

3.2 Goodness-of-fit test for contingency tables ïr/ith
dependent data

As an application of the results in Section 3.1, we consider hypothesis tests for response

adaptive clinical trials with dicirotomous ïesponse (say, success and failure). A tradi-

tional method for comparing dichotomous populations based on independent samples

is thc goodness-of-fit tcst. In this section, rve extend this tcst to rlependent clata frorn
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k dichotornous populations. Our focus is on the asymptotic sampling distribution of

the test statistic.

Let 0¡ be the probability of success on treatment j. Then if treatment j is assigned

to patient i, its responseYnt - B(7,Éj), the Bernoulli distribution.

For each (randomized) allocation rule n: {nn, fr: r,2,...}, the likeli}rood

function for the observed sequence {(ôr, yl), . . . 
, ôr, yr)} is

nk
L@) :yürøq",(r - 0 )L-u¡1t0,:,U (ü -';,) ri,r,e - o,¡N:ø)-s:('),

where N¡(") is the numbel of patients allocated to treatment j and,9¡(n) is the

numbel of successes on treatment 7 among the n patients, j: I,2,... ,k. Ther-efore,

the statistic (¡/t("),.. . , À/r-r(r), St(r), . . ,^9r(r)) is sufficient and the rinrestricted

rnaximum likelihood estimators for d¡ is 0¡: S¡(n)lN¡(").

Let H6: 0, :01, j :7,2,... , Æ, be the null hypothesis such that 0 a ïoj < I, j :
7,2," ' ,k. The parameter space is set to be o : (0,1)0. It can be shown that for

adaptive designs with dichotomous responses, Ðl:rno¡ln --- N¡(n)ln almost surely.

Tlrat is, under the condition that Li:r"o¡lr-- u¡(0),0 <u¡(0) < l almost surely,

we have Ni(") ---+ oo almost surely.

\A¡riting 
^ 

: L@\ I f(fl as the likelihood ratio, the following result is a conse-

quence of Theorem 3.1.3.

Corollary 3.2.1. Under the reguLarity condztion 1, the stati.stic -2ln) ,is asymp-

toti,cally y2 di,stri,buted with k degrees of freed"orn when the nutt hypothesi,s Hs .. 0¡ :
ol, i : r,2,..' ,k is true.

After n patients ]rave been treated in an adaptive clinical trial with k treatments

and dichotomous Ìesponses, the contingency table has the following data structure
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Treatment
s n

Fai,Lure n - S(n)
¡/r(n) Nz(n

^I¡(n 
)

where ^9(n) : ÐÏ=, S¡("). The dependency àmong the entries is reflected in ihe

observed treatment allocations.

The traditional form of the test statistic

^.2 _ \- (obserued- erpected)2x - ,k," "rp*t"d
is appiied for dependent data. Fol simplicity, denote S¡(n):57 and Ni@): N¡, j:
Ir2, "' 'k'

For the proof of the next result, Iet X. - Ç denote that lim,__(X, - y,) :0 in

pr-obability, where X, and Yn arc random variables.

Theorem 3.2.2. Under the regularity conditi,on 1,

\- f 
(Si - NiÉ,Ð2 (N, - S; -Z-l- ^rao 

-r- 
^r/,

\ l(s, - N¡rr?)'
)t --L

al N¡0? '

tzcthe test

Nr(1 -

statzs

el))'l

-ljoj Nj(I- 0?ql
J/

for the null hypotheszs Hs:0i:01, ¡ : I,2,... ,k is asymptoticatLy X, di,stri,buted,

wi,th k degrees of freedom.

Proof. First of all, the likelihood ratio is

, _ t(oo) _ IIj:,(di)",(r- ol)Ni-si^-T6-@
arrci so 

.-À , e, , - er1
-2tnÀ : 

Ðz lsirn q * r*,- s¡) tn f_ r: )

For j : r,2,"',k, we hu,r. N3tlt(s¡lN¡ - 0'j) : lr/-"(silN¡ - dÎ)xN;/t lr/ù.ev
Theoremg.r.2,\/n(sjlN¡-01)---,n/(0,(u¡(o)I¡(eD-r) Hence w]/t(silNi-0!)--0

,Sr(r) Sr(n) Sn(r)



, 
[r,u, fr*r*,

Therefore,

- ^e¡),n ål - l,', 
--y"',' *

in probability. Under regularity condition 1, N¡ - oo almost surely. It follows frorn

Tlreorern I2.2 in Billingsley (1961) that

(¡/r-s¡-Nr(1
N¡ol

_2rnÀ _ + l6i - N,_0Ð' * (N, - s¡ - ¡r¡(r - df))'z1

fr L N¡0ï N¡0'¡ l
and the result foÌlows from corollary 3.2.1. !

The above theorern investigates tire asymptotic sampling distribution of the test

statistic for given values of the parameters under the null hypothesis. If we wish to

see if the k treatments are equally effective, we have the following.

Theorem 3.2.3. Under the regularity condi,t'ion 1, the test statisti,c

S [rs, - N,Ð' , (t/¡ - ^9j - ¡/j(1 - ely]?L-Ñì--@l
forthenuLlltypothes'is Hs:01 :02:...- 0x:0'is asymptoticatty X, d,i,stributed,

with k -7 degree of freedom, where e : S@)ln,is the restricted, (i.e. pooLed,) estimator

for 0.

Proof. Tlre likelihood ratio is À : Os(')(I * 0¡.-s<.¡,n::r[ltQ - g,)Ni-s¡. Then

-2In À follows asymptotically the ¡2 distribution with k - 7 degree of freedom by

Theorem 3.1.4. However,

-2tnÀ : iz fs,rr,å * (¡/, -,S,)ln 
t, - sl l

7- L' N¡0 \ J r/ 
Nr(1 -d)j

It follows from Theorem 3.1.2 that 1/n(S¡lN¡ - d) --* t/(0, (u¡(0)I¡(0))-i) fcr y :
I,2,... ,k. Theretoreltrl/t(.9i lN¡_ 0) ---+ 0inprobability. Similarly, (N )t/s(0-0) - 0

in probability under the null hypothesis 0t:02: ... : d¡. The proof is completed

by following steps sirnilar to those taken in the proof of rheorem 8.2.1. !

- ol))'

l
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In conclusion, this chapter discusses both the consistency and asymptotic normal-

ity of the rnaximum likelihood estimators for a wide class of response adaptive designs.

Under regularity conditions, the logarithm of the likelihood ratio statistic -2lnÀ for

dependent data is shown to be asymptotically chi-square distributed. Moreover, the

goodness-of-fit test is also extended to the data from adaptive clesigns with clichoto-

mous Ìesponses.
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Chapter 4

trfficient Estimation

\4any researchers have considered the maximum likelihood estimation, the bias-cor¡ected

estimation and the minitnurn Hellinger distance estimation for response adaptive de-

signs. To answet' the question of which estimator is the best, this chapter is to inves-

tigate the efficient estimation for response adaptive designs.

The efficiency of response adaptive randomization procedures has been studied in

depth by Hu and Rosenberger (2003). The variability of allocation pr-oportions is

affected bv the treatment randomization procedure. Hu and Rosenberger (2003) ex-

plicitly established the relationship between the power of the test and the variabiiity of

allocation proportions and showed that the asymptotic pov/eÌ is a d.ecreasing function

of the asymptotic variance of the allocation proportions. Ther-e is extensive literature

on the efficicncy of estimation in statistics for inclependent data (see, for example,

Bahadur (1971), Fu (1973), Bucklew (1990)). Anscornbe (1949, 1952) discussed the

large-sample problem for sequential estimation, however the assumption for his results

to hold are not satisfied when considering response adaptive designs.

For simplicity; we write P¡ as P. Denote Pg as the probability mea.sure under zr

witlr par-ameter 0. The induced expectation is denoted as Eg.

Thr-oughout this section) we assume that the second moment of Inf¡(Y,dj) exists
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and is finite under P6 for any 0', j : I,2,. . . , k. Fulthermore) we assume

Regularity condi,ti,on 2: tlrc fourth moments of both (\n f ¡(Y,0¡))'u, and ll"(/, (V, 0¡)),1,r,

exist and are finite.

IJnder regularity condition 1 and using the martingale strong law of large number-s,

the limir o¡ t¡nL(t^'* L@; exists and

#* ;,"'#: å u¡',) Es (ffiff^ #B)
almost surely in the probability measure Pgr. This limit is in fact the Kullback-Leibler

number k(e',0): Iim",-- {*^#} ahost surely in p6,. we now estabrish an

asymptotic equivalence of k(9t,0) bv means of Fisher's information numbe¡ I¡(0¡):
ø, (1r" f¡(x.o)y,,)

Lemma 4.O.4.

k@,,0) - Trt, - q.T:6)(0, - o) as o, - o,

where f(9) : diag(u1(0)I{01),u2(0)Iz(0r),... ,u¡(0)I¡(0¡)) is the diagonat matri,r.

Proof: \Ãhite ,, : ffi. By a Taylor- expansion, r¡lnr¡ - (r¡ - t) + |(rr- 1), *
ri - 7- Hence, Eg(r'ilnr¡) - iEe?t -1)'* rj -r. Expanding ¡r(r,0!) at0¡,we

have

( Í ¡ (Y, 0') - f i (y, 0 ¡)) - lj(y, e ) 0 j (0'¡ - 0 ) + |t'; çv, 0 ) e, (0,¡ - 0 i),

as 0l -- d3. Under the regularity condition 2,

Es(ri- 1), - "r (ffi)' ,,,- 0¡), : r¡(0¡)(0,, - g¡),

as 0', --+ 93. Ther-efore, the result follows. !
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4.L Asymptotic efficiency of the maximum likeli-
hood estimator

In this section, we discuss the asyrnptotic efficicncy of maximurn lil<elihoo<1 estimators.

A measurable function T.: (Ti,Ti,..-,2i3), ir said to be a consistent estimator of

0 : (0t02,.-- ,0¡)t rf, for any € ) 0, we have Pg(d,(T^,9) < e) ---+ 1 as rL ---+ æ, where

d is the Euclidean distance in IRÈ.

Consider testing tire null hypothesis Ho: 0: 0o against the alternative hypothesis

Ho : 0 : 0'. Let B be the probability of committing type II error, n be the sample

size, and

a"(/3) : inf {a,, : a, is the size of a test for testing Ho vs 11, with power (I - Ø}

The following result is an extension of the Stein's Lemma for independent data. A

sirnilar result is derived in Bahadur (1971) for- independent data.

Lemma 4.1.L. [Jnd,erregularity conditions l and. p, lím {1t" a.(t])}: -Æ(0,,d0)n--oo l?.ù ' ')
for any B.

Proof. Without loss of generality, suppose k(et,eù > 0. Set 0 < p < I. By the

Neyrnan-Pealson Lemma, there exists a test statistic

(t if r,->c,
ói": 1 €n if rn : ¿n

l. o if rnlcn
suclr that 80,@;) :1- P and Ego@Ð : a*(p), wher-e 0 < €, 1I, rn: L(0,)lL@0)

is the likelihood ratio. We show that lim,*- {}hic"} : k(0,,90) by the method of

contradiction.

Assume that limsup"¿--{1hc,} : a } k(e,,eù. Since !lnr, -- k(0,,0s) al-

most surely in Pg by law of large numbers, for any € ) 0, pe, (*lnrn < k(|t,0o) * e) --
1as n ---+ oo. set e : a-k(9',ds). Then Pe,(*lnrn) o) -- 0 as ?z ---+ oo. This is
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contr-adictory to Pg (jhr" > lln c,) 2I - p > 0. Hence, Iimsup,__ {*1" c*} <
k(0',0o). Similarly, liminf,,-- {} tnc"} > k(e',00).

The rest of the proof follows the similar idea as that in Bahadur (1921).

On the one hand, let dn be any positive constant such that dn ) rn. Since /, has

power 1 - B and achieves type I error a.(B), then,

a.(P) : Egr(ô,)a 
l,^.o_ó.dPoo

: * I,-rr.þnd,s' 
: i, (l þnd'Ps' - I,^,0-ø-d'Pe')

Take d,n: 
"nk(qt,0s)+", 

where e > 0.

Ps, (r. > d,,,) : ,u, (ILn r,, ) k(e' , eù+ r) --, 0 as n --) oo.

Thus,

11i:tnpgo(r,> c,,)) )l-l"n{e,,go) +ne)l +:t"¡1r - p) - pg,(r.n> d.)).

Ther-efor-e, for any 6 ) 0,

I'å'Jf 
{* 

t" peo(l-t 
",,)} 

> -.k(0',0o) - €.

Hence,

On the othel harrd,

o*(p) : pgo(rn > c_) : 
f,^r".orro

. r f .^ 1 f ._ 1

rïi,Jr {; t',(þ)} . -rçr',ro¡
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Therefore,

iimsJp{å'' *,@)} 
= -"t3g {!h,,}: -oçr',uo¡ !

Applying Lemma 4. 1. 1, we now estabiish an asymptotic lower bound of exponential

rates for consistent estimators.

Theorem 4.L.2. Assume the regularity condi,ti,ons 1 and 2 hold. For any consistent

esttmator T. oÍ 0s, we haue

Iil,Jr 
{å 

t' po"k|(r,,0o)=')} > -,6ftnfe,,0o), d.(0,,0s) > e}.

Proof: For any given e > 0, let g'be any point in @ such that d(0',0o) > e. Consider

testing Ho : 0 : 0o with the alternative hypothesis llo : 0 : 0,.Set ai : a,(O.b). By

Lemma 4.1.1, lim,-- {}t" cr;} : -k(0',gs). For any consistent estimator Tn of 0s,

define

.k _lt d(Tn,eù>u9':\ o d,(T.,oo)<,
By tlre consistency of Tn, Pe,(d(T",e') < d(e',îo) - e) --+ 1 as 7? ---+ oo. Hence,

Eo,kþò ---+ 1 as n'-+ æ. Therefore for any d' such that d,(0',go) > e, Eeo(ó*) > 
",i.

The result follows. D

Theorem 4.7.2 is similar to Theorem 4.1 in Bahadur et al. (1980) and the result of

Bucl<lew (1990, page 21). Bucklew obtained the lower bound of j h p6@,(T*,0) > e)

by the moment generating function method. However it is impossible to derive the

closed form of the moment generating function for Tn in response adaptive designs

l¡ecause of dat¿r dependerrcy. Bahadur et al. (1980) definecl the Kullback-Leibler

irrformation number k(0',0) in a gener-al but complicated way. We define k(7t,0) ín

a simpler manner and derive the lower bound with a straightforward method.

Theorem 4.1.2 shows that the asymptotic lower- bound of exponential rates fol

consistent estimators is of the type - inf 6,{k(0t,0): d(0',0) > e}.
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For a response adaptive design with dichotomous responses, let S, (n) be the num-

ber of successes from treatment 7 after n patients have been treated in the adap-

tive tr-ial. Yi and wang (2007b) showed rhat borh (* X, "r, - 
*P) ---+ 0 and

m -- d¡ almost surely a.s ?? ---+ @,i:7,2,...,k. Therefore, the maximum likeli-

hood estimaror Ti: $y(n)lNy(r),... ,S¡"(n)lN¡(n)) is a consistent estimator of 0.

We show that this estimator achieves the asymptotic lower bound.

Theorem 4.1.3. Consider a response adaptiue design with di,choton'Lous responses.

U \P --. ,¡(0) € (0, 1) almost surely ¿s ---+ oo and, u¡(0) ,is continuous ,in 0, i :
I,2,' .. ,k, then for uery small e,

Iiminf I 1 I
n-æ ¡;t" 

Po@(T,0) - t)Ì : -'¡l{n{e' ,0) : d(0' ,0) I e}

for the marimum li,kelih,ood esttmator 4 : 6r(r) I Nr(r), S2(n) lN2(n), . . . 
,

S¡"(n) lN¡,(n))

Proof: We only need to prove

timinf {1t,' pe((t(r;,Ø 2 e)} 
= - 

inf{k(o,,0) : d,(0,,0) 2 e}. (4.1.1)n+æ [n ')- þ7t'"t")")'"

Note that fo¡ an adaptive tr-ial with dichotomous responses,

k@,, 0i: J1g i*'" ffil : 
å lu¡@,)o,,t 

0¿ 
+ u¡(o,)(r - 0,,)tntå1

alrnost suleiy in P6,. Writing Tî : S¡(n) lN¡(n), j : I,2, . . . ,Æ, then

nk(ri,r) : 
å 

,,(ri)ffi," 
l(#) 

''r, ("_7)Ni(")-si(")]

since ?| ----n 0 almost surely aß n --+ oo and u¡(0) ís continuous ín 0, u¡(Ti)ffÐ --- r

almost surely aß n ---+ æ, j :1,2,... , k. Therefore,

nk(Ti,g) : 1' flLa?ils¡!ù0 -rÐtv¡øt-s¡øt
n;-,0;"@+h(Ti)'

44



wher-e hg;): Dï=,o,(1)r'lfel'''' (#)Ni('?)-si(2)] and o¡(1) ---+ 0 as n--*

@,.i:I,2,"' ,li.

Letn¡ ands3benonnegativeintegers,-7:1,2,...,k,and,:(rr,... ,flk,sr,...,sr),
and t, : (tr/rr,...,st ln*),and A, : {z : d"(t",O) 2 r,D}:, frj : TL,0 ( s¡ 1 nr},

and Äfr be the set of all sample paths leading to the observation z of M(n) :
(¡ir("),.. ., Äir(rr), ^9t(n),.' .,,S¡(n)). Then

p6(M(n) : z) : 
Ð ([ !"f' u - n,,),-u,)É n,(1 - di)",-"j)

: e-nk(t",e)+h(t") pt,(M(n) : z).

and therefore

Pykl\r;,0) 2 e) : t Pg(M(n) : z) S 
"-ninr6n{k(t"'Ø} Ð eh(",) pr"(M(n) : ,).

ze\n z€An

For each fixed n, there are at most (n+1)2k points in 4,. So if we let h. be the largest

value of /r.(Ti), then

!tup(¿(r;,0)>e) I -r¡f{Ä.(t,,0)} + In. *Qk)tnlx+1)

Since l/¿* --+ 0 and GÐ+"4.Ð. -- 0 as r¿---+ oo, we have

liminf {1t" p(dgi,o) I E)} 
= -inf{ti(r,,0)} < -inf{Ä,(g,, 0s): d,(rt,0o) > e}.,+æ [n 

\ \ rt) '--')- ã;' er'

So equation (4.1.1) follows.

Tlre result follows from Theor-em 4.I.2 and the format of k(0,,9). tr

A similar result appears as Example 5.4 in Bahadur (1971) for the multinomial

distr-ibution. Our- r'esult is an extension of Bahadur's result.
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4.2 Asymptotically efficient estimation of treatment
effects

Suppose that the tleatrnent cfI'ect is described by a real-valucd ¿r,nd differcntiable

function g(0) in0 e A. For example, in a response adaptive clesign with dichotomous

r-esponses, g(0) can be the differcnce of the success probabilities of trvo treatments or

the odds ratio.

Let un be an estimator or g@). For any 0 a,nd 6 ) 0, let rn(e,g) be such that

Pe(lU" - s@)l ) e) : pe |Zl ) tf r,(e,0)) ,

01rn(e,d) ( co, where Z follows the standard normal distribution. Obviously, U,"

is consistent if and only if lim,*- r*(e,Q): 0. Such a rn(e,d) is called the effective

standard deviation of U,, given d. Bahadur (1971) showed that if Ç is asymptotically

normal with mean g(0) and variance u(0)ln, then lim,,-*nr](n-r/ze,0):t1çg¡.

In this section, we derive the asymptotic lower bound of exponential rates for con-

sistent estimators of the treatment effect, and show that this lower bound is achieved

by the maximum likelihood estimator.

Theorem 4.2.1.. Assume regularity cond,,itiotns I and, z hold,. If U, i,s a consistent

estimator of g(0), then

riminrrimrn t 
{#o.p6l'u. - s(o)l= ,)} . -#@),

where w (0) : Dl =rlu, çe¡ I ¡ (0 )l-, lG @)),u,1, .

Proof. The proof follows an idea similar to that in Theorem 6.1 of Bahadur (1971).

Witlrout loss of generality, assume w@) > 0. For any 0s € O, set

0* : 0 o + 6f 
*1 

(d0) (g (0)'u,, b @)'rr), . . ., (g (0)'ù)b 
o.
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For any consistent estimator Un, we construct a test statistic þ. for testing Ho : 0 : 0s

with the alternative hypothesis Ho : 0 : 0*. Reject -Ë1, under ô. if lU^ - g(p¡)l >

Àew(?s), where 0 < À < 1. Note that g(0") - g(00) - ew(00) and. K(Q*,do) -
|e2w(0s) as E ---+ 0. For fixed type II error þ, Ee- (ó^) - 1 > 1 - þ as , --- oo by the

consistency of Un. Therefore E6"kÞò > cu"(P).The proof is compìeted after applying

Lemma 4.1.1 and setting À --+ 1. n
An estimator U," is said to be asymptotically efficient in the Bahaclur sense if

rigr#rr,p,*r 
{#^p6l(r. - s(o)t= ,)} : -#-^r,

The following result states that the maximum likelihood estimator of g@) is asymp-

totically efficient in the Bahaclur sensc.

Tlreolern 4.2.1 shows that e-nu2/¡z-10¡1is the fastest rate of pgiJu. - g(0)l > ,)
converging to 0 exponerrtially. Bahadur (1971) derived a similar resuit for independent

data, but our result applies to the case of dependent data from response adaptive

designs.

For tlre standard nor-rnal distribution, (+ - h) ¿"-nt, < p(Z > ú) < Ifi"-*tr.
It can be shown that lir P(IU" - g(0)l ) e) - -e2ll2rl(e, d)l as ?? ---+ oo. Applying

Tlreorem 4.2.7, we have the following extension of Theorem 6.1 in Bahadur (1971).

Corollary 4.2.2. Assume regulari,ty conditzons 1 and 2 \totd. If (1. i,s a consistent

est'imator of g(0), then

lig¡nf limrnf{nr,](r,0)} > w@),

wh ere w (0) : Ðl :rlu, çe¡ I ¡ (0 ¡)l-' [(g (0)),u,],

Corollary 4.2.3. Assume regularity condit'ions 1 and p hotd,.

hood est'in¿ator â, of 0 erists, then

riminrrirnrn t 
{#npv(s()*) - s@)l> ,10)}

If the marimum li,keli,-

1

2w@)'
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Tlre pr-oof follows from the asymptotic varianceu(0): Drf:, lu j(0)I j(0)]-t[k@))b)r l"
of gG)ò and ln P(IU,- g(0)l ) e) - -e2l[2r](e,g)] * r¿---+ oo and ¿--* 0.

In summary, this chapter examines the issue of asymptotic efficiency of estima-

tion for response adaptive designs of clinical trials, from which the collected data set

contains a dependency structure. The asymptotic lower bound of exponential rates

for consistent estimators is established. Under certain regularity conditions, the maxi-

murn likelihood estimator is shown to achieve the asymptotic lower bound for r-esponse

adaptive trials with dichotornous ïesponses. F\rrthermore, it is proven that the max-

imum lilielihood estimator of the treatment effect is asymptotically cfficient in the

Bahadur sense for response adaptive clinical trials.
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Chapter 5

Response Adaptive Designs with a
Variance-Penali zed Criterion

A good response adaptive design is expected to assign more patients to the better

treatment with minirnal loss in the power of the statistical test. Bvaluating the quai-

ity of a response adaptive design from multiple objectives is difficult because of the

dependency in the data and the involvement of the unknown parameters in the design.

This chapter discusses the evaluation of response adaptive designs with a variance-

penalized criterion.

5.1 The variance-penalized criterion

Suppose that patients ar-e recruited sequentially into a clinical trial and are treated

with one and only one of two treatments A and B. Suppose that the responses from

treatrnent k, k: A, B, are independent and follow a distribution f¡,(r,g¡), where the

unknown paratneter vector 0¡ ma] consist of parameters such as mean p. and, standard

deviation a of the distribution. We assurne that the larger the mean r-esponse, the

better- the treatment. A design is good if it assigns as mâny patients as possible to

the better tr-eatrnent and achieves this goal with less variability.

Let õ. be the treatment allocated to the nth patienl such that õ, : I for treat-
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ment 14, d' : 0 for treatment B, and Y" be the response following the distribution

fn@,?n) if the patient is assigned to treatment li,k : A,B. rn an adaptive design,

the treatment allocatiou d, for the nth patient depends on the accumulated informa-

tion { (ôi, at), ' ' ' , (d'-r, 'y._l)}, n ) 2. The response adaptive design is specifled by its

randomized allocatÍon rule.

Under the variance-penalized criterion, the objective function is the expected total

responses minus a positive multiple of its variance. The objective is to maximize

{"(å")-^,*(Ð-) }
which is called the variance-penalized mean) where À > 0 is the penalty parameter.

Deriving the optimal design is very difficult in both template and computation of

the optimal solution for general responses. However, if the responses are binary, the

information gathering process can be formulated as a Markov process (Yi and Wang,

2007b), and the stochastic optimality problem of response adaptive designs becomes a

variance-penalizecl Markov decisiorr process. In this situation, there are algorithms to

compute the optimal allocation rule z' (see White, 1992 and Collins, 1997). However,

the optimal allocation rule is deterministic and vulnerable to selection bias in a clinical

trial.

Let À'L : À/o(t ) be the number of patients allocated to treatment k after n patients

lrave been treated in the trial, k : A, B. Denote the responses of the À/¡ patients as

Xu",... ,XNuk.Then !þ X¿A : DT:rVfi and fr_I_", X¿B : Ði=ry! _ d¿). So

DT='Y: Iå x¿¿ *Ðl-j,xou.

It can be shown that

r (å ]1) : o,o - r,e)E(N,a) * npn,
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and

/:- \
var lLYl: (o'o- oN)nQvo) +nol+(po- ¡14)2var(N¿). (b.1.2)

\':r /
where p.q: E(X¿o), p": E(X¿B), oe:Var(X¿¿) and oB:Var(X¿¡). Therefore,

the optirnality problem of response adaptive designs is equivalent to achieving

try* { lpo - tt" - 
^(o'o 

- o'z)lU(N¡) - 
^0"e 

- tt1)2Var(¡¿r)}

A treatment is said to be better than another if its variance-penalized mean of

the responses is larger. The first term of the criterion demonstrates that the design

with a larger value of the objective function is expected to assign more patients to the

bctter trcatmcnt. The second term indicates that for a fixed total mrmber of patients

n, the design with a larger value of the objective function has a smaller variance of

the treatment allocation proportion, hence yields more power when conducting Wald's

test accor-ding to the results of Hu and Rosenberger (2003). Therefore, the variance-

penalized criterion prefers a design that allocates as many patients as possible to the

better treatnent while keeping Wald's test more powerful.

rf oa - 46, then for a small value of À, more weight is put on the mean number

of patients assigned to the better treatment. A large value of À emphasizes the pov/er

to draw a statistical conclusion. Therefore, the parameter À is a measure of tradeoff

betrveen the indiviclual and collective ethics.

In an adaptive design with binary responses, the response is 1 for a success and

0 for a failure. Our objective is to maximize the expected total number of successes

with less variability. This is equivalent to achieving

(/
-f"t@"-pB)[7 - À(1 -pt-pp)]E(Nò - À(po*pl)2var(¡/¡)],

wlrere p¿ and pp are success probabilities of treatment A and B respectively. Without

loss of generality, assume pt ) pp. rf p,qlpa > 1 - ], th"tr (1 - À(1 - pt -pB)) > 0.
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when0 < ) lr,pe-tpB > 1-i isalwaystrue. Inthiscase, thetreatment

with a higher success probability has a larger variance-penalized mean. Under the

variance-penalized criterion, we prefer the design that assigns tnore patients to the

highly successful treatment with less variability of the allocation proportion. In the

remaining part of this chapter, we choose 0 < À ( 1.

5.2 Randomization procedures

The randomization procedures in typical urn models such as the RPW (Wei and

Durhatn, 1978) and the DL (Ivanova, 2003) update the urn compositions sequentially

based on the responses of previously treated patients. The urn will eventually contain

a high proportion of balls representing tire more successful treatment. The sequential

randomization procedures are flexible to target any propoïtion of treatment allocation.

This kind of procedure includes the DBCD (Eisele, 1gg4, Hu and Zhang, 2004) and

the randomization procedure considered by Melfi et al.(2001) and Rosenberger et al.

(2001).

\4/e prefer a design that assigns more patients to the better treatment with less

valiability under the variance-penalized criterion. Our design is to target the treatment

allocation proportion

^ _ Qn * e min{q¿,An}sígn(q" - no¡

U+q"
whele Q.q, : 1 - p.¿., eB - 1 - p¡ and,0 ( e ( 1. If e : 0, this proportion reduces to

the one in lvanova's DL (2003). If e ) 0, a higher propor-tion of patients is expected

to be assigned to the better tleatment. Flom the individual ethics point of view, we

should choose e as large as possible. However, when e approaches 1, it is possible that

oniy a few number of patients are aliocated to the inferior treatment. This will make

it inadequate to dlaw a statistical conclusion about the treatment effect. Intuitively,
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e is a kind of measure of tradeoff between individual and collective ethics.

We wish to achieve the target proportion p using DBCD with the allocation func-

tion

-./ - ^\ PØ1")"r\ 1I / p(plr), + (1 - p)((1 - filQ - r¡¡t'
s(0, p) :7,

g(r, p) :0.

This allocation function was proposed by Hu and Rosenberger (2003), and Hu and

Zhang (2004). Using Theor-em 2l of Hu and Zhang (2004), the allocation proportion

in our randomization procedure is asymptotically normal. That is,

,-/No \
J \; - r)- N(0,r2),

wlrere for p¡ ) pB,

-2 I Q - ()qAqBl\ - e)pNB * pB(qn + rqo)l
t-

t (an -t q¡)s(nn -t eqa)

_-. 1 [(1 - .)qo(Qn -t eqa) (1 - €)qAq1l! - e)pmp -r pn(qn +.s¿)]l ì-4^,1--Gr+q,J-- ll'
and for p.q.1pB,

-2 lO - ()qAq'[(r - e)pBq¿.*p,q(q,q+ rq')]t-
- 1 [(t - c)øa(ee -t eql) , (1 - ,)qeq1l! - e)pnq¿-r p.q(qe+.s¡)]l ì

r -t 21 l, (qu + qA)2 (an -t q¡)s(ne i eqB) 

- 
I I

It can be shown that if pe I pB > 1 - e and 7 -+ oo, then

,' < qoq"(2 - (qo + qB)) l@A + qu)t , (5.2.1)

wlrere q¡qB(2 - (qo + qB)) l@,a + qB)3 is the asymptotic variance of the DL design.

Hu et al. (2006) claimed that Ivanova's DL is the asymptotically best design in that
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it attains the lor,ver bound on the asymptotic variances of the allocation propoltions

among all tire designs with the target proportion qB l1p + q,q) when the allocation

proportions \Mere â.symptotically normal. The target propor-tion of our proposed design

is p: (qu + rmin{q¿, Ça}sign(qr - qò)l@t+ qB), which is larger than qBIQB * Q.c)

for pa ) ps and srnalier than qBl@n * q¿) for p¡ 1 pB. Therefore, the proposed

design asymptotically assigns a higher proportion of patients to the better treatment

with less variability than the DL design.

5.3 A comparison of designs

The var-iance-penalized criterion prefers the design that assigns mot'e patients to the

better treatment with less variability. Adaptive designs can be compared. and evalu-

ated under this criterioll) even if the designs target different proportions. We compare

our ploposed design with some existing designs such as the RPW, DL, the design

targeting the optirnal allocation proportion (denoted as RSIHR, Rosenberger et al.

(2001)) and the design proposed by Bandyopadhay and Bhattacharya (2006) (denoted

as BB).

We use the RPW with an initial structure of 5 balls in the urrì ïepresenting treat-

ment ,4 and 5 bails for treatment B, as recommended by Rosenberger (1ggg). The DL

(Ivanova (2003)) is the design with 3 balls repr-esenting treatment A and B respectively

arrd 1 imrnigration ball. The RSIHR design considers both the expected number of

failures and the power of the test. The target ploportion of subjects ,".eirring treat-

ment ,4 in the RSIHR design is p : ,/p^lG/ru+ ,/pÐ. The allocation function g(r, p)

with l : 100 is used to target the RSIHR proportion and our- proposed proportion.

The BB design is the combination of the Neyman allocation and the myopically better

treatment. The sequential maximum likelihood procedure is employed to target the
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Figure 5.1: Comparison of the objective functions with À: Il2
DL: the drop the loss design; RSIHR:the optimal design proposed by Rosenberger et al.;BB:
the design proposed by Bandyopadhyay and Bhattacharya; proposed: e: L12.

Figure 5.1 gives a comparison of the objective functions of different designs for a

total number of patients n :30. The RPW is omitted because of its similar behavior



as the DL. From the graphs we see that if the success probability peof the standard

treatment is less than 0.8, then our proposed design (e : 712) generates a higher

expected number of successes with less variability than all other designs, except for

extremely small values of pB. But when both the success probabilities p¡ and pB are

large, say both are larger than 0.8, then the DL is better than other designs for ciinical

trials with a srnall number of patients.

Tables 5.7, 5.2 and 5.3 describe the simulation results for a total number of patients

of n : 100 with 10000 replications. The proposed designs I and II are definecl with

a:l12ande :1/4respectively. TableS.lgivesthesimulatedvaluesoftheobjective

function (^ : rl2) of the DL, RSiHR, BB and our proposed designs. It seerns that

tlre proposed designs have objective values larger than all the others when p¿ and. pB

differ'.

Pt PB DL IHR BB Proposed II
0.9 0.9 | 85.565 85.429 85.557 85.353

79.729
79.065
78.250

0.7 I 76.529 6i.987 63.823
0.5 I 72.0r2 14.503 24.388
0.3 I 69.260 -2r.395 -4.249

0.7 0.7 | 59.rr4 59.543 59.560
0.5 I 49.679 24.584 24.262

59.361
51.034

0.3 | 42.928 -4r.346 -42.677 50.7i6
0.1 I 37.163 -33.77r -48.818 48.698

85.405
78.863
76.284
74.334
59.730
51.1 15

47.233
43.104

37.558
29.942
25.475

0.5 0.5

0.3
0.1

37.419 37.542 37.542 37.848
28.600 -3.089 -4.170 29.507
27.754 -43.147 -45.749 29.067

Table 5.1: Simulation of the variance-penalized mean
DL: the drop the loss design; RSIHR:the optimal design proposcd by Rosenberger et al.;BB:
the design proposed by Bandyopadhyay and Bhattachar-ya; Proposcd r: e: r12; proposed
II: e:714.

Without loss of generality, we assurne that the treatment ,4 is better than B.

Table 5.2 gives the simulation results for the expected proportion of patients assigned

to treatment -4, together with the standard deviation of N¡f n given in parentheses.
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Our ploposed designs allocate higher expected proportions of patients to the superior

treatment than the DL, although the standard deviations are a little bit large when

p¡ and pB aïe close to each other. As the difference between p¿ and pB increases, the

standard deviations of our proposed designs become smaller. Except for very small

values of p¡ such as 0.1, our pr-oposed designs assign higher proportions of patients

to the better tr-eatment with much srnaller standard deviations than both the RSIHR

and BB designs.

P¿ PB DL IHR BB Pro Proposed II
0.9 0.9

0.7
0.5

0.3

0.7 0.7
0.5

0.3

0.1

0.4ee(0.065)
0.63e(0.062)
0.730(0.045)
0.788(0.036)

0.4e8(0.217)
0.620(0.275)
0.737(0.27e)
0.851(0.23e)

0.4e5(0.424)
0.660(0.418)
0.858(0.310)

0.220)
0.663(0.623)
0.786(0.257)
0.881(0.216

0.498(0.347
0.631(0.36e)
0.773(0.342)
0.e06(0.24i)
0.502(0.422
0.653(0.4le)
0.84e(0.315)

0.4e7(0.285)
0.84e(0.Oee)
0.e08(0.03e)
0.e32(0.023)
0.4e6(0.256)
0.772(0.126)
0.844(0.035)
0.872(0.018)
0.498(0.244)
0.751(0.r22)

0.500(0.210
0.803(0.08)

0.86e(0.045)
0.e02(0.031)
0.497(0.764
0.707(0.076)
0.772(0.036)
0.810(0.026)
0.502(0.146)
0.676(0.062)
0.731(0.023)

0.500(0.063)
0.605(0.053)
0.677(0.042)
0.72810.033

0.500(0.048
0.577(0.040)
0.635(0.031)

0.4e6(0.34e)
0.630(0.374)
0.77r(0.342)
0.e18(0.223)

0.5 0.5

0.3

0.1 0.818(0.023)

Table 5.2: Simulation of the expected proportion (standard deviation)
DL: the drop thc loss design; RSiHR:the optimal design proposed by Rosenberger et al.;BB:
thc dcsign proposcd by Bandyopadhyay and Bhattacharya; Proposcd I: e: r12; proposed

II: e : 714.

Table 5.3 gives the simulatecl power of the Wald's test for the data collected from

different designs. The statistical powers of our proposed designs are higher than those

of both RSIHR and BB designs. If the difference between pa and p6 is small, say 0.2,

the statistical powers of our proposed designs are smaller than that of the DL. But

as the ilifl'crence inclcases, the powers of our proposed clesigns increase and the power

of the proposed design II is close to that of the DL design. The table entries of 1 are

rounded values.

From Tables 5.2 and 5.3, it is clear that the-parametel e in our pr-oposed design
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meastues a tradeoff between individual and collective ethics. The design with a large

value of e assigns a high propoltion of patients to the better treatment and also ¡esults

in rnore loss of the statistical power than a design with a small value of e . Because of

this compromise, no significant difference exists in our two proposed designs in terms

of the variance-penalized objective function (Table b.1).

P¿, PB DL HR BB Proposed I
0.9 0.9

0.7
0.5

0.3

0.7 0.7
0.5

0.3
0.1

0.049 0.060 0.056
0.737 0.458 0.448
0.997 0.560 0.578

1 0.438 0.464
0.050 0.051 0.050
0.524 0.224 0.228
0.983 0.290 0.305

7 0.220 0.249
0.050 0.049 0.051
0.526 0.744 0.144
0.996 0.175 0.206

0.050
0.468
0.900
0.995

0.050
0.361

0.899
1

0.050
0.606
0.976

i
0.050
0.47L
0.964

1

0.050
0.480
0.992

0.5 0.5

0.3
0.1

0.049
0.385
0.972

Table 5.3: Simulation of statistical power

DL: thc drop thc loss dcsign; RSIHR:the optimal design proposecl by Roscnberger et al.;BB:
tlrc design proposcd by Bandyopadþay and Bhattacharya; proposcd r: e: r12; proposed
II: e:714.

In the zidovudine trial (Connor et al (1994)), the HIV infection rates for the

AZT group and the placebo group were observed to be p.c : 0.g16 and. pB : 0.748

respectively for a total number of patients n:477. Yao and Wei (1996) and lvanova

(2003) redesigned the trial using the RPW and DL designs. In Ivanova's study, the

DL design was cornpared with the RPW and the other two designs, one targeting the

optirnzr,l allocation that rnaxirnizes thc power while testing treatrnerrt cliffererrce against

0, another targeting the optirnal allocation that maximizes the power while testíng the

log odds ratio against 0. Ivanova showed that the DL design potentially assigns more

patients to the AZT tr-eatment than the two designs with optimal proportions, and

is iess valiable than the RPW. In this chapter, we compale our proposed design with
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the DL, RPW, RSIHR and BB designs assuming instantaneous responses. Table 5.4

compares various designs based on the simulation results for the expected proportion

allocated to the AZT treatment (tr-eatment ,4), the expected total number of HIV free

infants arrd tail probabilities. In Table 5.4, S denotes the total nunber of HIV free

infants in the trial and e :ll2 is given in our proposed design.

The overall performance of our proposed design is very good. Table 5.4 shows that

the proportion of patients assigned to the AZT treatment using our proposed design

is at least 16% Iarger than the proportions from the other designs, and results in a

higher proportion of success with less variability. The probability that our proposed

design assigns rnore than 80% patients to the better treatment is 0.99, which is much

higher than the other designs. The upper and lower tail probabilities (with cutoff

points of 0.95 and 0.05) of our design are almost the same as those of the RPW and

DL designs. That mearÌs that it does not lead to extremely unbalanced treatment

groups. But both the RSIHR and BB designs do so with more than 25% and 27%

probabilities respectively. Furtherrnore, both the RSIHR and BB designs allocate

higher proportions of patients (mole than 95%) to the inferior- treatment with about

6% probability. Our proposed design as well as the RPW and DL designs do not have

this problem.

Cornpared with other adaptive designs, our proposecl design has the potential to

assign rnore patients to the ÃZT treatment with less variability, and does not result

in extremely unbalanced groups. According to Hu and Rosenberger's (2003) result,

a higlrer proportion of AZT treatment allocation does not necessarily result in a loss

of power when the variance of the treatment allocation proportion is small. Moreover

the sarnple size of the placebo group is still leasonably large. Fulthermore if needed,

\Me can decrease the value of e to achieve a desired power.

In summary, this chapter discusses response adaptive designs with a variance-
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E(Naln)
S.D of Ntln

E(s ln)
S.D of Sln

p(N.+ln > 0.80)
p(N¿ln > 0.e5)
p(N,qln < 0.05)

DL RPW Proposed RSIHR BB
0.701 0.653 0.873
0.038 0.081 0.028
0.864 0.859 0.894
0.016 0.020 0.015
0.003 0.027 0.991
000

0.609 0.595
0.262 0.250
0.850 0.848
0.046 0.045
0.253 0.227
0.253 0.213
0.069 0.064

Table 5.4: Comparison of alternative designs for- the zidovudine trial
DL: the drop the loss design; RPW: the played-the-winner design; RSIHR:the optimal de-
sign proposed by Rosenberger et al.;BB: the design proposed by Bandyopadhyay and Bhat-
tacharya; Proposcd: e: I12.

penalized criterion. A uew design is pr-oposed and compared with other- existing de-

signs according to the criterion.

We have investigated the properties of the variance-penalized criterion. This cr-i-

telion evaluates the performance of a design according to both the rnean number of

patients assigned to the better treatment and the power of the statistical test for the

data collected from the design. The variance-penalized criterion prefers the design

that allocates more patients to the better treatment and at the same time keeps the

statistical power at a high levei.

In this chapter, we have also proposed a new proportion of treatment allocation and

used the DBCD to target the proportion. The asymptotic variance of the allocation

ploportion of our proposed design is shown to be smaller than that of the DL if

P.q * pp > 1 - e and 7 ---+ oo. Simulation results suggest that our proposed design is

better than other existing designs under the variance-penalized criterion, except for

extlerne values of the probabilities of success (such as very large pa andp' or extremely

small p6). Potentially, our- proposed design assigns a higher proportion of patients to

the better treatment and the po\Mer of the statistical test remains cornpetitive when

tlrc difl'crcncc betrveen pa a,nd p¡ is not small (say, larger than or equal to 0.4). For
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a frxed large number of patients, the overall performance of our design is better than

the existing designs.

In brief, the variance-penalized cliterion considers both the number of patients

assignecl to the better treatment and the power of the statisticai test. Our proposed

design has good performance in common clinical situations.
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Chapter 6

Conclusion and Further Research

A traditional randomized clinical trial provides a powerful tool for the comparison of

treatment effects. The balanced randomization is often regarded as a gold standard

for clinical research. However, such a randomized design becomes ethically infeasible

in desperate medical situations because individual ethics is often sacrificed. For a

more ethical balance between individual and collective ethics, alternative designs such

âs response adaptive designs have been proposed and employed in some clinical trials.

A response adaptive design adapts the treatment allocation based on accumulated

information of the treatment effect to assign more patients to the potentially better

treattnent. However', the adaptation of the treatment allocation creates a dependence

structure in the collectect data and raises concerns about the validity of conventional

statistical inference, the loss of power of testing hypotheses, experimental bias. My

clissertation focused on the statistical inference and the optimality of lesponse adaptive

designs.

The issue of statistical inference for response adaptive clinical trials has been both

important and challenging. Due to the adaptation of the treatment allocation, data

collected from response adaptive designs are dependent, and hence traditional statis-

tical inference assuming independent observations is not appìicable without mt-¡difica-
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tion. I studied the treatment randomization processes of response adaptive clinical tri-

ais. The information gathering process in the trial has been formulated as a stochastic

process, especially a Ndarkov plocess for dichotomous responses. Then the logarithm

of the likelihood ratio test and goodness-of-fit test were extended to dependent data

frorn adaptive trials. I also examined the issue of asymptotic efficiency of estimation in

I'esponse adaptive designs of clinical trials. An asymptotic lower bound of exponential

lates for consistent estimators was established and the maximum likelihood estimator

of the treatrnent eff'cct was shown to be asyurptotically efficient in the Bahadur sense

for lesponse adaptive clinical trials.

In addition, I investigated the optimality properties of the designs. How to select

treatment allocation procedures is a commonly difficult issue in adaptive designs. On

the oue irand, a design is expected to assign patients to the better treatment as many

as possible. On the other hand, unbalanced treatment groups can reduce the power of

statistical test and hence result in failure of drawing a valid conclusion at the end of the

tlial. Response adaptive designs have the advantage of balancing the individual ethics

and collective ethics. But different adaptive designs present very different tradeoffs

between individuaÌ ethics and collective ethics. This thesis proposed to use a variance-

penalized cr-iterion for the evaluation of response adaptive designs. It was shown that

this criterion accesses the performance of a ïesponse adaptive design based on both

the expected number of patients assigned to the better treatment and the power of the

statistical test. A new ploportion of treatment allocation was proposed and simulation

studies were conducted to compare the proposed design with some existing designs.

The proposed design has the advantage of assigning more patients to the potentially

better treatment with lower loss of povier for testing hypotheses in common clinical

tr-iai conditions.

However, the optimal treatment allocation únder the variance-penalized criterion
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is deterministic, which is vulrrerable to seiection bias in clinical trials. Searching

for an optimal randomization allocation is still under study. Constrained dynamic

programming techniques will be employed and algorithms will be developed to search

for an optimal solution in my further research. Moreover, although the log-likelihood

ratio test and goodness-of-fit test are extended to data from response adaptive clinical

trials, the power performances of the two statistical tests are not very good. The most

powerful test statistic for response adaptive designs is waiting for further exploration.
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Appendix
Proofs of equations and inequality

Proof of equation (5.t.2):

'-(Ð")

: 
"[ (ä x¿¿ -' (ä"''))'. (ä x¿B -" (ä*"))'

*, li x.-"(ä*.)) (ä'"-'(Ë-"))]

""('l,^) *,-(i-*") * ,,*(L*.,äo")
Since

Proof of equation (5.1.1):

Since fi, U : Ðl: X¿¿ t Dl!, xn" and ly's : n - NA,

' ( å " ) : :Y ̂!ä ::.. "ïi ;Ì 
jî4,, 

e - p B, E ( N a, +, 
" 
u

,- (t*,) : E(N¿)o2o-t ¡-t2ovar(N¿),

"- (Xo") : E(NB)o'zu + ¡L.lvar(NB),

and
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Proof of asymptotic variance 12 on page 52:

We show that for- p¿.) pn,

-2 lQ- €)qAqBlQ - e)pnB+pB(qB+rqo)l
\

, 1 l(1 - ,)qo( Qn -t eqa) (i - ,)qoqull - e)pøs * pe(qB+.qo)l'l ì-t*^,t @r+q^Y - @B+qA)B(qB+€qò )Ì'
and for p¡ 1pp,

-2 I 0 - r)q¿qB[(I - e)pBqa t p¡(q¿ + rqu)]

I
, 1 [(1 -e)ør(ea-tery) , (1 - r)qoqul!-e)psq,ql-pÁqe+rq")]-l ì-t*^,1---G;TnF-- )J

Proof: According to Theorem 2.1 in Hu and Zhang (2004), the asymptotic variance 
,

).1- ts

-2 PQ-ò
t - zT,lø,ø (r - #1,,,^) (, - rH¡,,,,,)

where

',:(# #)(r ffi)(#)
For the allocation function g(r,A),

0g -j,Ar+rr-'r-t(1 - g)t*t(1 - r)-, - ^/Ar+1r-"t (t - g)t*t(I _ r)-t-r
lyt+lr-l + (1 _ r¡t+t (I _ r)-t1z

and

As _ (7 + -y)a'Y{'t (I - a)L+1 (1 - r)-1 + (I + 1)ar+'t'-^t (I - a)1 (r - r)-^r
0g [Ar+1r-''t + (1 - ,¡t'+t(7 - r)-t]z

So,

asl
o*lø't I

0ol¿ | 
- 

1 1 ^.;-l -.r-T- )i.
ou lø,0)

67

'(H1,,*,)' '3

ôr



Wiren p¿ ) pB, for the target proportion p(p*pB),

Then,

Therefore,

t Qn I qe (I - r)'q'" QB -f q,q (L - e)'q1n
ûã : P¡|s . Å-rPe4P-qB -t- (Q,q. (qu + qo)n ' r DaD (L - ,)qo (q.u + qo)o

p(pe,pn) _ e(qB -r qt) - (qB * eq,q) 
- -Q - ,)qu

opo (øn + qo)z (øa + qo¡z'

p(p*pn) (qu + q.c) - (qa + eq¿) (t - ,)qo
qB + qA \rl" r rI^)-

pg¿.(7 - r)'q?u, ppaB(I - e)q¿,

M- @B+qò3
pn¿(I - e)2 q?u * paqB(I - e)qa(qB + eqt)

(Ça+eqo)çqB+qA)3
(r - r)qmpl\ - r)poqt + p"(qu + rq¿)l

op"

I (qB+eqò(i - e)qn r 2(1+l) (7 - r)q¿qBl(I- r)plqt+pa(qB+rqòl
I+r1---@B+qfr-- t*^
(7 - ,)qoq"[Q - ,)poqt -r pB(qB + ,qo))

ao)(qu -t eq¡)
(r - ,)qo(qa -l eqa)

I + 21 l---G" + q^Y @u + qòt(Qn t eq¡) l

The result on 12 for p.+ 1pn can be proven similarly.

(qu

1 (r - ,)qoqul$ - ,)poqt -r pB(qB -f eq.+)

+

lr
1l
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Proof of inequality (5.2.1):

rf po + pa > (1- e ), then

2-(po+pp) < (1+6).

Q,atqB- + 
= 
+2- 2

Ifqo+qu> *, wehave

( no ** - +)' . (t *-,')' . Ør)\-'^ 2) 4 '

If qo + qB 1 ), then

1*e 1*e
2 -løe+q")1 , ,

since q¿ I qB ) 0. Hence the inequality (41) is still valid.

Firstly, we prove the inequality (5.2.1) when p¿ ) pB.

FI-om inequality (41), it is obvious that

/ t+e\2 lr -.r -\2

(ø,+n"-î) <2G-e)qp+\j:L

To prove that as J --+ oo,

," < qoqu(2 - (qo + qB)) l@A + ql)s ,

we want

0 - ,)[Q - ,)poqu + p"(q" + r.q¡)] <. t,> _ /^ . _-r ^_\,
Qeleqn -:LZ-\Qe-rqB¡1

i,.e. o- t)2(1- qe)qB 
+ (1 - €)(1 - qn) <12 - (qo+qB)l

Qa * aq¡

i,.e. G - e)'z(q,B - q'q¡) 
< 2 -(1 -.) - Q¿,- qB + qB(L- €)

Qp I eqt

i,.e. G - c-)'2(q,a - q'qe) < 1+, _ (q¿.+ rq").
qB i eq.s
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This is equivalent to

(7 - r)'qu- (1 - ,)'qpqe < (1+ ,)(qp + rqo) - (qu + eqt)(qtl- eqp)

: (1 + e)qB + e(7 + e)ql - QnQt - €q2B - eq2A - ezqtqn,

i.e. (I - r)'q"< (1+ e)qp +e(1+e)q¡ - e(q,q+ qB),,

i'.e. e(q.q + ql)z 3 Srqu - ,'qu + e(r + e)q¡,

i e (øe+ qu¡2 <::; 
:::"lilï + (1+ e)q4

:2(r - e)qB + (1+ e)(q4 -r qB),

/ 1*r\ _ (1+6)22.e. (øa+q"- z )<2(r-e)qB+ 4

which is true. Hence, the result follows.

Secondly, for p¡ ( p6, füom inequality (41) we have

( 1 +.\' rt + r)'
(øo + n" - tï ) 

<2(I - e)q,c+

To prove tÌrat as ^/ ---+ æ,

,' < qoq"(2 - (qo + qB)) lØA t qn)3 ,

we want

(r - r)lQ - r)pBqt + p¿(q¿ t rqn)) . r, t ^ t ^ \.,

etl_eqB - <12- laa+qt¡1

i.e. G - c)2(,7 - q')q¿ 
+ (1 -.)(1 - qe) < 12 - (qo+ q,)l

Qe I eqB

i.e. Q-')'(q," * quqo) <2-(r - r) - e.s- qB+q*(r- €)
QB I cq¿

i.e. (r - e)2qt-,(7_- e)2qnqa < 1+, _ (qu + ÉqA).
Q'+ * eqp
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This is equivalent to

(r - r)"qo - (1 - ,)'qBq.q < (1+ e)q,q+ e(7+ e)qB - (q" + eq,q.)(qe+ eq')

: (1 + e)qa + e(r + e)6 - QBe,q, - eqL - eqzA - e2qtqe,

i,.e. (I - r)'qo< (1 + e)qa+ e(t + e)qB - €(qe+ qn)2,

i.e. e(q¡ + qB)2 I Srqo - e2qt + e(J, + e)qB,

i,.e. (Ua + qu¡2 1 3qo - eQt I (1 + e)qËr

: 2q¿. - 2rqt + (1 + e)qa + (1 + e)q¡

:2(r - e)q.q + (1 + e)(qn-t qa),

/ t_r_É\ _,(1*e)2i,.e. lqo+qB-# I <2(1 -e)q,q,\2./'4

which is true. Therefore, the result follows.

Therefore, as 7 ---+ oo,

"' < q¿.qu(2 - (qo + qB)) l@A + q¡)t.

71



Programs

##### RPI,J

d<-477

a<-5

b<-5

Add<-1

pa<-O.916

pb<-O.748

cutPoint<-I.96^2

r<-10000

distrSRP!ù<-function(a, b, Add, cutPoint , pa, pb, r, d) {
naCount(-rep (0 , d+1)

sCount<-rep (0, d+1)

zCount<-0

for (n in 1:r){ na<-O

nb<-0

sa(-0

sb<-0

aBal-1<-a

bBall<-b

Add<-Add

p<-aBa]1/ (aBa]]+bBatl )
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for (i in 1:d){

u(-ru¡if (3,0, 1)

e<-c (o, o, o)

if (u[lJ <p){na<-na+1

if (n[21<pa){sa<-sa+Add

aBal-I<-aBaI1+Add

e [2] <-1]

if (e [2i ==9; {bBa11<-bBall+Add}

e [1] <-1]

if (e[1]==0){nb<-nb+1

if (u [3J <pb) {sb<-sb+Add

bBall<-bBal1+Add

e [3] <-1]

if (e [3] ==0) {aBalI<-aBa]I+Add}

]
p<-aBalI,/ (aBall+bBa]1 ) Ì

s(-sa+sb

naCount [na+11 (-naCount [na+1] +1

sCount [s+1] <-sCount [s+1] +1

pallat<- (sa+O . 5) / (na+1)

pbHat<- (sb+0 . 5) / (nb+1)

z<-(paHat-pbHat) /sqrt(paHatx(l-paHat) /(na+L)+pbHatx(1-pbHat)/(nb+1))

c1<-0

t.)



if (z^ 2<ctttPoint) {c1<- 1}

if (c1==0) {zCount<-zCount+1}

Ì
xNA<-O: d

probNA<-naCount/r

probS<-sCount/r

power(-zCount/r

return (l-ist (xNA=xNA, probNA=probNA, probs=probs, poi.reï=por"rer) ) ]

n<-100

dd<- (1+d) *n

ZrpwFinal . probNA<-natrix ( 1 : dd, ncol=m) ZrpwFinal_ . power(- 1 ; m

for (n in 1 :n){Zrpw<-distrSRpVl(a,b,Add., cutpoÍnt,pa,pb,r, d)

tt<-natrix (Zrpw$probNA, ncol=1 )

ZrpwFinal . probNA [, n] <-tt

ZrpwFinal . power [nJ <-Zrpw$power]

save (ZrpvrFÍna] . probNA, f il-e="Zrpr,rFinal . probNA" )

save (Zrpr¿Final- . poi^ieï, f ile="ZrpwFinal_. power" )

#####DL

In<-1
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aBall<-3

bBall<-3

distrSDl<-function(Im, aBa1], bBa]1, pa, pb, d, r, cutpoint) {
naCou¡t(-rep (0, d+1)

sCou¡t<-rep (0, d+1)

c1<-0

for (n in 1:r){naAdd<-rep(0,d+1)

sAdd<-rep (0, d+1)

r¡<-0

na(-0

sa<-0

sb<-0

nb<-0

urn<-c (In, aBall , bBaII)

while (i¡<d) {u<-ru¡if (4, 0, 1)

del-ta<-0

if (u [1] <urn [1] /sun(urn) ) {detta<-1

urn<-urn+c (0, 1, 1) )
if (del-ta==0) {i^r<-r^r+1

e<_c (0,0,0)

if (u [2] <urn [2] ,/sun(urn [2] +urn [3] ) ) {na<-na+l

if (u[3Jcpa){sa<-sa+1
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e [2] <-1]

if (e [2] ==0){urn [2] <-urnL2l-I

if (urnl2l<0){urnt2l<-0}}

e [1] <-1]

if (ehl==0){nb<-nb+l

if (u[aJ<pb){sb<-sb+1

e [3] <-1]

if (e [3] ==0) {urn [3] <-urn t3l -1

if (urn [3] <0) {urn t3l <-0}}

Ì

]

Ì

paHat<- (sa+O . 5) / (na+1)

pbHat<- (sb+O . 5) / (nb+f)

Def<-paHat-pbHat

varDef(-sqrt (paHat* ( 1-paHat) / (na+1) +pbHat* (1-pbHat) / (1+nb) )

z<-Def/varDef

c2<-0

if (z^2<cL¿tPoínt) {c2<-1}

if (c2==O){c1<-c1+1}

naAdd [na+l] <-1

s(-sa+sb

sAdd [s+1] <-1
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naCount<-naCou¡t +naAdd

sCount<-sCount+sAdd

]
power<-c1/r

probNA<-naCount/r

probS<-sCount,/r

xval-ue(-0: d

return ( 1i st (xval-ue=xvalue , probNA=probNA , probS=probs , po!üeï=por¡rer) ) ]

dd<- ( 1+d) *m

ZDLFinal . probNA<-natrix ( 1 : dd, ncol-=m)

ZDLFinal . power(-1 : n

f or (n in 1 : m) {ZDL<-distrSDL (Im, aBall, bBa]l, pa, pb, d, r, cutpoint)

tt<-matrix (ZDL$probNA, ncol= 1 )

ZDLFinal . probNA [, n] <-tt

ZDLFinal . poi¡ier [nJ <-Znf $power]

save (ZDLFinal- . probNA, fil-e="ZDLFinal. probNA" )

save (ZDLFinal . poerer , f i 1e= " ZDLFinal- . power " )

##### DBC

gamma<-100

alpha<-10^ (-7)

77



n0<-1

d<-d-2xnO

dd<- ( 1+d) *m

distrSDBC<-function(pa, pb, alpha, gamma, nO, d , r, cutpoint) {
naCount(-rep (0, d+nO)

xNA<-nO: (d+nO)

sCount(-rep (0 , d+2*n0+1 )

xS<-O: (d+2xn9¡

zCount<-0

for (n in 1:r){

sa(-0

sb<-0

na(-1

nb<-1

ul<-runif (2,0, 1)

if (ul [1] <pa) {sa<-sa+1}

if (ul [2J <pb) {sb<-sb+1}

paIIatl<-sa/na

paHat<-paHat 1+alpha+ (as . numeric (paHatl==g) ) -atphax (as . numeric (paHatl==1) )

pbHatl<-sb/nb
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pbHat<-pbHat 1+al-phax (as . numeric (pbHat 1==g) ) -alpha* (as . numeric (pbHatl==1) )

Est iProp<-TargProp (paHat , pbHat )

x7<-I/2

y<-EstiProp

g1 <-y* Q / xI) ^gamma/ (y'r (y / xt) ^ gamna+ ( 1-y) x ( ( 1-y) / Q-xI) ) ^ ganm¿¡

p<-91

for (Í in 1:d){

u<-rulif (3,0, 1)

e<-0

if (u[lJ <p){na(-na+1

if (u [2] <pa) {sa<-sa+1}

e<- 1Ì

if (e==0){nb<-nb+l

if (ul3l <pb){sb<-sb+1}}

paHat 1<-sa/na

paHat<-paHat 1+a1pha+ (as . m:meric (pafiat 1==0) ) -alpha* (as . mrmeric (paHatl==1) )

pbHatl<-sb/nb

pbHat<-pbHat 1+afph¿x (as . numeric (pbHatl==g) ) -alphax (as . numeric (pbgatl==1) )

Est iProp<-TargProp (paHat , pbHat )
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xl<-na/ (2xn0+i)

y<-EstiProp

g1<-y* $ / xt) ^ gamma/ (yx (y/xr ) ^ganma+ ( r -y) *, ( ( 1-y) / (I-xI) ) ^ gamna)

p<-91

Ì
s(-sa+sb

naCou¡t [na-nO+1] (-naCount [na-n0+1] +1

sCount [s+1] <-sCount [s+1] +1

paHat<- (sa+O .5) / (na+1)

pbHat<- (sb+O . 5) / (nb+1)

Def<-paHat-pbHat

varDef(-sqrt (paHatx ( 1-paHat) / (na+t) +pbHatx ( 1-pbHat) / (l+nb) )

z<-Def /varDef

c2<-0

if (z^2<cltPoint) {c2<-tl

if (c2==0) {zCount<-zCount+1}

)

probNA<-naCount/r

probS<-sCou¡t/r

power(-zCount/r

return (l-ist (xNA=xNA , probNA=probNA, xS=xS, probS=probS , povJer=potrer) ) ]
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##### epsilinl<-O.5

TargProp<-function (pa, pb) {qa<- 1-pa

qb<-1-pb

rho(- (qb+eps111n1xmin (qa, qb) xsign(pa-pb) ) / (qb+qa)

return (rho) Ì
dd<- (d+1) *m

ZDBC . ner,¡Final- . probNA<-matrix ( 1 : dd, nco l=m)

ZDBC .newFinal- . power(- 1 : m

f or (n in 1 : m) {ZDBC<-distrSDBC (pa, pb, alpha, ganma, nO, d, r, cutpoint )

tt(-matrix (ZDBC$probNA, ncol_= 1 )

ZDBC . nei¡Final . probNA [, n] <-tt

ZDBC .newFinal . power [n] <-ZDBC$power]

save (ZDBC. nei"¡Final- . probNA, f il-e="ZDBC. net¡Final . probNA" )

save (ZDBC. newFinal . poïrer, file="ZDBC. newFinal . power" )

##### gamm¿<-Q epsilinl<-0. 5

TargProp<-function(pa, pb) {qa<-1-pa

qb<-1-pb

rho(- (qb+ep=lrtnlxmin(qa, qb) *sign(pa-pb) ) / (qb+qa)

return(rho) )
dd<- (d+1) xm
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ZDBC . nel"rFinal-0 . probNA<-matrix ( 1 : dd, ncol-=m)

ZDBC .neq¡FinaI0 . power(-1 : m

f or (n in 1 : n) {ZDBC<-distrSDBC (pa, pb, alpha, gamma, nO, d, r, cutpoint)

tt<-matrix (ZDBC$probNA, ncol=1 )

ZDBC. newFinal-O. probNA [, n] <-tt

ZDBC . newFinal0 . power [n] <-ZDBC$power]

save (ZDBC. nei^rFina10. probNA, f ile="ZDBC. newFinatO. probNA" )

save (ZDBC. ner¿Final-O . poT¡/er, f ile=" ZDBC. ner¿FinalO . power" )

##### TargProp<-f unct i on (pa, pb ) {rho<- sqrt (pa) / ( sqrt (pa) +sqrt (pb ) )

return (rho) ]

ZDBC . RS IHRFinal . probNA<-matrix ( 1 : dd, nco 1=m)

ZDBC.RSIHRFinal.power<-l :n for (n in

1 :m) {ZDBC<-distrSDBC(pa,pb, alpha, gamma,nO, d,r, cutpoint)

tt<-matrix (ZDBC$probNA , ncol-=1 )

ZDBC . RSIHRFinaI . probNA [, n] <-tt

ZDBC .RSIHRFinal . power [n] <-ZDBC$power]

save (ZDBC. RSIHRFinal.probNA, f iJ-e="ZDBC. RSIHRFinal. probNA" )

save (ZDBC. RSIHRFinaI . power, file="ZDBC. RSIHRFinaI . power" )

##### gamma(-O
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TargProp<-f unct i on (pa, pb ) {rho<-sqrt (pa) / (sqrt (pa) +sqrt (pb) )

return (rho) ]
ZDBC .RSIHRFinal- . probNA0<-matrix ( 1 : dd, ncol-=m)

ZDBC.RSIHRFinaI.powerO<-l:m for (n in

1 : m) {zlsc<-distrSDBC (pa,pb, a}pha, ga:nna, n0, d, r, cutPoint)

tt<-natrix (ZDBC$probNA, ncol-=1 )

ZDBC .RSIHRFinal . probNAO [, n] <-tt

ZDBC.RSIHRFinaI . powerO [n] <-ZISC$power]

save (ZDBC. RSIHRFinaI . probNA0, file="ZDBC. RSIHRFinal . probNAO" )

save (ZDBC. RSIHRFinaI . powerO, file="ZDBC. RSIHRFinaI . powerO" )

##### gamm¿<-lQQ

TargProp<-function (pa, pb) {rho<-sqrt (pa* ( 1-pa) ) / (sqrt (pa* I 1-0.¡ ) +sqrt (pb* (f-05¡; ¡

return(rho) ]

ZDBC .NeymanF inal . probNA<-natrix ( 1 : dd, ncol=n)

ZDBC .Neyma:rFinal . power(-1 :m f or (n in

1 : n) {ZDBC<-distrSDBC (pa,pb, alpha, gamma, n0, d, r, cutPoint)

tt<-natrix (ZDBC$probNA, ncol-=1)

ZDBC .NeymanFinal . probNA [, n] <-tt

ZDBC. NeymaaFinal . power [n] <-ZDBC$power]

save (ZDBC. Neyna:rFinal . probNA, file="ZDBC. NeymanFinaL . probNA" )

save (ZDBC. Neyna-nFinal . power, f i1e='rZDBC. NeynanFinal. power" )

##### gamm¿(-Q
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TargProp<-function (pa, pb) {rho<-sqrt (pa* ( 1-pa) ) / (sqrt (pax 11-Ou¡ ) +sqrt (pb* ( 1-pb) ) )

return (rho) ]

ZDBC . NeymanFinal0 . probNA(-natrix ( 1 : dd, ncol=n)

ZDBC.NeynanFinalO.power(-l:m for (n in

1 :n) {ZDBC<-distrSDBC (pa, pb, alpha, gamma, n0, d , r, cutpoint)

tt<-matrix (ZDBC$probNA, ncot=1 )

ZDBC . NeymanFinalO . probNA [, n] <-tt

ZDBC .NeynanFinal_0 . power [n] <-Zn¡C$power]

save (ZDBC. NeymanFinal0 . probNA, file="ZDBC. NeynanFinalO. probNA" )

save (ZDBC. NeymanFinal-0 . power, f i1e="ZDBC. NeymareFinal_0. power" )

##### Band&Bhatt

TargProp<-function (pa, pb) {Ney<-sqrt (pa*,( 1-pa) ) / (sqrt (pa* ( 1-pa) ) +sqrt (nt*,ç f-05¡ ¡,
pi<-pnorm( (pa-pb) /(sqrt (pax (1-pa) )+sqrt (pb* (1-pb) ) ), 0, 1)

if (pa>=pb) {p<-max(Ney,pi) }

if (pa<pb) {p<-min(Ney,pi)}

return(p=p) Ì
n0<-1 l-anbda<-O.5 alpha<-lO^ (-7) r<-10000 cutPoint(-t.96^2

d<-477

d<-d-2xnO

pa<-O.916

pb<-0.748
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distrSBB<-function(pa, pb, alpha, n0, d, r, cutPoint) {

naCount(-rep (0, d+nO)

xNA<-nO: (d+nO)

sCou:rt(-rep ( 0, d+2+n0+1 )

xS<-0: (d+2*n0)

zCount<-0

zDistr<-rep (0, r)

for (n in 1:r){

sa(-0

sb<-0

na(-1

nb<-1

ul<-runif (2,0, 1)

if (u1 [1] <pa) {sa<-sa+l}

if (ul [2] <pb) {sb<-sb+l}

paHatl<-sa/na

paHat<-paHat 1+alpha+ (as . numeric (paHatl==g) ) -alphax (as . numeric (paHatl==1) )

pbHatl<-sb/nb

pbHat<-pbHat 1+afph¿x (as . mrmeric (pbHatl==0) ) -alpha* (as . numeric (pbHatl==1) )
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p<-TargProp (paHat , pbHat)

for (i in 1:d){

u<-runif(3,0,1)

e<-0

if (u hJ <p) {na(-na+l

if (u[2J<pa){sa<-sa+1}

e<- 1Ì

if (e==0){nb<-nb+l

if (u[3Jcpb){sb<-sb+1}}

paHat 1<-salna

paHat<-paHat 1+al-pha* (as . numeric (paHat 1==g) ) -alpha* (as . numeric (paHat 1==1) )

pbHatl<-sb/nb

pbHat<-pbHat 1+alphax (as . m:meric (pbHat 1==Q) ) -alphax (as . numeric (pbHatl==1) )

p<-TargProp (paHat , pbHat)

]
s(-sa+sb

naCount [na-nO+1] (-naCount [1¿-nQ+]l +1

sCou¡t [s+1] <-sCount [s+1] +1

paHat<- (sa+O.5) / (na+1)

pbHat<- (sb+0 . 5) / (nb+1)

Def<-paHat-pbHat

varDef(-sqrt (paHat* (l-pallat) / (na+1) +pbHatx (l-pbHar) / ( l+n¡) )
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z<-Def/varDef

zDistr [n] <-z

c2<-O

Íf (z' 2<ctttP oint ) {c2<- 1}

if (c2==0) {zCount<-zCount+1}

Ì
probNA<-naCount/r

probS<-sCount/r

power(-zCount/r

sF<-xS

probS<-probS

MeanS<_sum (spxprobS)

M2S<-suro ( sF ^ 2*probS )

varS<-M2S-MeanS^2

ob j <-MeanS-l-ambdaxvarS

MeanNA<- sun ( xNAxprobNA )

M2NA<- sun (1¡4^ f xprobNA )

varNA<-M2NA-MeanNA^2

varNAFinal<-varNAx (r / G - L) )

return ( I i st (zDi str=zDi str, xNA=xNA, probNA=probNA, probS=probS,

power=pol¡er, obj ective=obj, Mea:rNA=MeanNA, VarNA=varNAFinal,

pa=pa, pb=pb, cutPoint=cutPoint) ) Ì
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#################### m<-100 dd<- (d+1) xm

ZDBC .BBFinal . probNA<-matrix ( 1 : dd, ncol=m)

ZDBC .BBFinal . power(-1 : m

for (n in 1 ;m){ZDBC<-distrSBB(pa,pb,alpha,n0,d,r,cutPoint)

tt<-natrix (ZDBC$probNA, ncol-=1)

ZDBC .BBFinal . probNA [, n] <-tt

ZDBC .BBF inal . poïier [n] <-ZISC$power]

save (ZDBC. BBFinal . probNA, file="ZDBC. BBFinal . probNA" )

save (ZDBC. BBFinal . poü/er, f il-e= "ZDBC. BBFinaIdd. power" )
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