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Abstract 

A method was developed for finding charge and current distribution in nanoscale 

electronic devices such as MOS capacitors and resonant tunneling diodes. 

A system of differential equations, comprised of the Poisson and Schrödinger 

equations, was solved iteratively to find the electric field and charge distribution 

inside devices under simulation. The proposed solution method was based on the 

non-equilibrium Green’s function approach, but expands on that approach by 

using spatially varying quasi-Fermi levels to construct density operators. 

The proposed method was applied to several example device models. The 

simulation results are presented. Calculated charge distributions in FET transistors 

were found to have necessary features: for example, the results showed inversion 

layer formation. However, the calculated current-voltage curves differed 

significantly from published experimental results and other simulators. 

Other published methods for charge transport simulation are compared to the 

proposed method. 
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1. Introduction 

1.1. Motivation 

Increasing the speed of the field effect transistors (FETs) used in digital integrated 

circuits is a problem at the centre of present-day technology. For the past 50 

years, continuous progress has been made by decreasing the size of the individual 

transistors that comprise integrated circuits. 

The structure of a FET is similar to that of a capacitor. One main factor 

controlling the switching speed of a FET is the charging or discharging time 

associated with its gate capacitance. Another factor is the time required for charge 

carriers to move through the doped semiconductor region between the FET’s 

source and drain. Like a parallel plate capacitor, the capacitance of a FET is 

proportional to the permittivity and area of the gate dielectric and inversely 

proportional to its thickness. The switching speed expected from a FET design 

can be increased by adjusting parameters to reduce the gate capacitance, unless 

the adjustments have adverse effects on the charge carrier transit time or the 

controllability of source-drain conductance that negate the benefit of reduced 

capacitance. 
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Reducing the area of the gate is one way to reduce the gate capacitance of a FET. 

Reducing the gate area implies reducing the channel length, or the distance 

between source and drain. If the gate area was reduced without adjusting other 

design parameters or operating voltages, then the electric field in the channel 

would be increased. Continued size reduction would eventually lead to dielectric 

breakdown in the channel when a potential was applied from source to drain. The 

FET would conduct from source to drain even when a potential was not applied to 

the gate. To prevent such breakdown, the applied voltages and the gate dielectric 

thickness are reduced when the gate area is reduced. 

The limit of FET scaling that can be achieved using the standard device 

structures, materials and scaling techniques of the past has nearly been reached. 

The thickness of gate dielectrics is now counted in atomic layers, and much 

further reduction is not possible. Until recently silicon dioxide was used as the 

standard gate dielectric material for (silicon-based) FETs because of good 

interfacial properties, acceptable electrical properties, and ease of use in 

manufacturing. Now alternative dielectric materials are being used and 

considered, with the goal of reducing electrical equivalent thickness while 

increasing or maintaining physical thickness. 

In order to evaluate new materials, structures, and manufacturing processes, 

simulation tools are invaluable. One important prediction that can be supplied by 
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simulation tools is the expected relation between applied gate voltage and gate 

leakage current that is expected from a particular design. If the leakage current is 

extreme, then the device will not operate correctly. Minimizing gate leakage 

current is often one of several FET design objectives, because high leakage 

current has an adverse effect by heating the device. Simulation tools can also be 

helpful for FET design by predicting how the physical properties of silicon-

insulator boundaries in devices with alternative dielectric materials will affect the 

electrical operation of those devices. For example, the concentration of interfacial 

traps or defects can influence the gate conductivity, capacitance and threshold 

voltage. 

As gate dielectric thickness approaches several atomic layers, it becomes 

inaccurate to think in terms of classical statistical mechanics and the properties of 

bulk matter (such as permittivity constant or effective mass) when designing 

devices. The fundamental nature of charge transport must now be considered in 

order to accurately predict device behaviour. Specifically, the quantum-

mechanical behaviour of charge carriers is becoming a key aspect of charge 

transport calculations. Simulators based on quantum mechanics are considered 

necessary to obtain accurate results for devices sized on the order of 100 nm or 

smaller [23], [24]. A reliable model of quantum mechanical transport, validated 

on current devices, would be useful to analyse innovative structures. 
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1.2. Objective 

The primary goal of this work was to develop and implement a model and 

methodology for predicting the flow and accumulation of electric charge in 

nanoscale electronic devices. The methodology was implemented in the form of a 

simulation tool. The intended use of the methodology was to analyze and predict 

the behaviour of evolutionary and innovative device structures, especially FET 

transistors and metal-oxide-semiconductor (MOS) capacitors. The quantities 

calculated in simulations were charge concentrations, voltage profiles, and 

current-voltage (I-V) curves. 

The methodology that was developed was meant to be used to simulate device 

regions that are 100 nm or smaller. At the intended scale, bulk descriptions of 

matter are still meaningful but quantum mechanical effects are important. It was 

considered desirable for the model to incorporate parameters descriptive of bulk 

matter, such as effective mass and dielectric permittivity, so that device models 

did not need to be sufficiently detailed to yield these effects from first principles. 

However, it was also considered desirable that the same model could in principle 

be extended to calculate effective mass or dielectric permittivity from first 

principles using the same conceptual framework. 
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A number of competing methods exist for performing simulations of charge 

transport in electronic devices, some of which are briefly outlined in this thesis. 

One widely published method is the nonequilibrium Green’s function method. 

That method, as applied in previously published works such as [14] and [16], 

constructs quantum-mechanical density operators representing the charge 

distributions inside devices, using Green’s functions of the Schrödinger equation  

and state occupation probabilities calculated at the device contacts. This work 

attempts a similar approach using Green’s functions, but uses Green’s functions 

and state occupation probabilities at all points interior to the device to construct 

the density matrices. The intent of this modification is to more accurately account 

for the effects of particles occupying potential wells inside the devices being 

simulated. 

1.3. Outline 

In Chapter 2, a brief overview of relevant mathematical and physical modeling 

concepts is provided, and notation is established. The numerical solution of 

differential equations using finite difference methods and Green’s functions is 

discussed. Maxwell’s equations for finding the force produced by moving charge 

distributions are presented. The Schrödinger equation, used to find the probability 

density function describing the position of a charge carrier, is introduced. The 
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Fermi-Dirac distribution, applicable to the energy of charge carriers, is also 

introduced. Readers familiar with these topics need not read Chapter 2. 

In Chapter 3, a description is provided of the type of device that was meant to be 

simulated using the methodology described in this thesis. A statement is given of 

the mathematical problem solved by the simulator. As Chapter 3 states, the 

essential problem was to obtain the density matrices describing representative 

charge carriers present inside electronic devices. The assumptions that were 

incorporated into the problem statement and the proposed solution methodology 

are discussed. Approaches that have been used in other works to solve the 

problem are briefly reviewed. 

In Chapter 4, the proposed methodology for obtaining a charge carrier density 

matrix is presented in detail. Methods for using the density matrix to find charge 

concentration and flux are described. 

In Chapter 5, the results of simulations that were performed for two example 

devices are presented. The devices discussed in chapter 5 were studied because 

they were similar to devices studied in other works, and therefore facilitated 

comparison of alternative simulation methodologies. Calculated charge 

distributions and current-voltage curves are shown, and compared with results 

from other works. 
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In Chapter 6, the results of simulations that were performed for example FET 

transistors are presented. Calculated charge distributions and current-voltage 

curves are shown, and compared with other results. 

Finally, in Chapter 7, some concluding remarks are given. The successes and 

failures of the method, as compared with experiment and with other simulators, 

are discussed. Improvements that would be beneficial to the proposed 

methodology are noted. 
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2. Background 

2.1. Mathematical Background 

2.1.1. Notation 

The derivative of a function ݂ሺݔሻ is denoted ݂ᇱሺݔሻ or simply ݂′. For functions that 

are dependent on a position variable and a time variable, the position derivative is 

shown as 
డ௙

డ௫
ൌ ݂′  and the time derivative is shown as 

డ௙

డ௧
ൌ ݂ሶ. 

Vector quantities are distinguished from scalar quantities by bold type: ݔ is a 

scalar and ࢞ is a vector. Matrices or operators usually appear in uppercase: for 

example, ܯ or Λ. 

When a semicolon is used in the argument list of a function, the symbols 

preceding the semicolon are arguments in the usual sense, and the symbols 

following the semicolon are “parameters” required to construct the function. An 

example is ݂ሺݖ; ܽሻ ൌ ଵ

௭ି௔
. In the notation that is being used, ݂ is a mapping 

݂: ԧ → ԧ, and would be written as ݂ሺݖሻ without the “parameter” annotation. 

The Laplace operator is denoted by ∆, and the symbol ߜ is used to mean the Dirac 

or Kronecker delta function, according to context [1]. The notation ሾܣ,  ሿ is usedܤ
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for the commutator of two operators or matrices, equivalently expressed as 

ܤܣ െ  .ܣܤ

In some sections discussing quantum mechanics, the Dirac notation is used. In 

this notation, the notation |݂〉 is used to indicate a column vector, alternatively 

shown as ࢌ. Its transpose conjugate is shown in the Dirac notation as 〈݂|, or 

alternatively as ሺ்ࢌሻ∗. 

Where the square root operator is used, it should be interpreted as yielding the 

principal value.  

2.1.2. Numerical Solution of Differential Equations 

An approximate value for the first derivative of a differentiable function 

݂ሺݔሻ: Թ → Թ  can be calculated using: 

௞݂
ᇱ ≅ ௞݂ାଵ െ ௞݂ିଵ

2∆
൅ ܱሺ∆ଶሻ (2.1)

In equation (2.1), ݇ is an index referencing a position in a vector containing ܰ 

regularly spaced samples of ݂, and  ∆ is the spacing between adjacent samples, 

sometimes called the “grid spacing”. The index ݇ runs from 0 to ܰ െ 1. The 

notation ܱሺ∆ଶሻ is used to indicate that the error in the approximation, compared 

to the actual value of the derivative, is proportional to the square of the sample 

spacing. 
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An approximate value for the second derivative of the same function is given by: 

௞݂′′ ≅
௞݂ାଵ െ 2 ௞݂ ൅ ௞݂ିଵ

∆ଶ
൅ ܱሺ∆ଶሻ (2.2)

Equations (2.1) and (2.2) are examples of finite-difference approximations for the 

first and second derivatives. Finite difference approximations for higher-order 

derivatives can be obtained based on Taylor series expansions, as discussed in [4]. 

An order-n finite difference approximation can be used to construct a square 

matrix such that the product of that matrix and a vector containing samples of a 

function is a vector containing samples of the approximate order-n derivative of 

that function. For example, the matrix corresponding to the second derivative 

operator is given by: 

ଶܦ ൌ
1
Δଶ

ۏ
ێ
ێ
ێ
ۍ 1 െ2 1 … 0

⋱
0 … 1 െ2 1

ے
ۑ
ۑ
ۑ
ې

 
(2.3)

In equation (2.3), ܦଶ is a finite difference approximation of the second derivative 

operator, and Δ is the associated grid spacing. Each row of (2.3) is an instance of 

equation (2.2), with k equal to the row number. The first and last rows cannot be 

supplied by equation (2.2) because for ݇ ൌ 0 and ݇ ൌ ܰ െ 1, equation (2.2) refers 

to vector indices that do not exist. To generalize: the finite difference 
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representation of an order-n derivative must be supplemented by at least n 

additional equations to obtain an invertible matrix. These additional equations can 

be supplied by boundary conditions. 

The finite difference approximations of differential operators can be used to solve 

differential equations. In general, a differential equation given by ݕܮ ൌ ݂, where 

 :is a linear differential operator, can be solved using the following procedure ܮ

1. Find a finite difference form of ܮ; it will be a sum of the form ∑ ௞௡ܦ௞ܣ
௞ୀ଴ , 

where each ܣ௞ is an invertible matrix and each ܦ௞ is the finite difference 

approximation of the order k differential operator. 

2. Replace all incompletely specified rows of ܮ with the left-hand sides of 

equations representing boundary conditions. There will be at least n such 

rows, but their exact number and their row indices will depend on the 

specific finite difference approximations used in step (1). 

3. For each row in step (2), replace the corresponding row of ݂ with the 

right-hand side of the same boundary condition. 

4. Solve the equation ݕ ൌ  and ݂ have been modified, to obtain ܮ ଵ݂, afterିܮ

the solution ݕ of the differential equation. 

In this thesis, a finite difference method was used to solve the Poisson equation, 

and a finite difference method was used to obtain Green’s functions for the 
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Schrödinger equation. The use of finite difference methods for the solution of 

differential equations is further discussed in [2]. 

2.1.3. Sparse Matrix Techniques 

Sparse matrix techniques are applicable to the numerical solution of differential 

equations by finite difference methods [3], and were used for that purpose in this 

thesis. 

One straightforward representation of a matrix in computer memory is as a 

contiguous block of numerical values stored in sub-blocks by row or column. 

With this matrix representation, the algorithms for basic matrix operations such as 

matrix-matrix multiplication or matrix-vector multiplication are straightforward. 

When most matrix entries are zero, many of the individual arithmetic operations 

performed as part of a matrix-algebraic operation have no effect on the result. For 

matrices with many entries equal to zero, called “sparse” matrices, a significant 

decrease in calculation time can be achieved when working with a matrix 

representation where zeros are not stored in memory. 

There are a few common choices for storing the nonzero elements of sparse 

matrices, notably the linked list and compressed sparse row (CSR) formats [5]. In 

the linked list format, each nonzero value is allocated individually, and stored in a 

data structure along with its row, column, and pointers to the next element in its 
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row and/or column. A separate array stores a pointer to the data structure for the 

first element in each row. The linked list format is used primarily because of the 

ease with which elements can be added and removed, but it is not preferred for 

arithmetic or matrix decomposition operations. In the CSR format, all nonzero 

elements are stored in a contiguous block, ordered in column and then in row 

order. A parallel array stores column indices. A third array stores the starting 

index of every row, including empty ones, with empty rows indicated by a 

repeated or placeholder value. 

The algorithms for matrix-algebraic operations are determined not only by the 

mathematical result that is to be obtained, but also the matrix storage format. 

Once a choice of representation in memory has been made, developing a naive 

algorithm for a sparse matrix arithmetic or decomposition operation based on the 

corresponding dense algorithm is typically straightforward. However, 

optimizations can sometimes be made that lead to significant performance 

improvements. 

One important operation involved in the solution of linear systems, including 

linear systems representing finite-difference differential equations, is the 

operation of “LU decomposition”. The LU decomposition operation, when 

applied to a matrix, yields an upper triangular matrix and a lower triangular 

matrix which have the original matrix as their product. 
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An important optimization is possible when performing LU decomposition on 

sparse matrices. In this optimization, a transformation is applied to a matrix 

before it is subject to LU decomposition, to re-order its rows and columns. The 

objective of the transformation is to re-order rows and columns such that the 

lower and upper triangular  matrices that result from LU decomposition have 

reduced numbers of nonzero elements. The transformation is stored, so that it can 

be reversed when performing calculations with the triangular matrices. Matrix re-

ordering, with the objective of reducing the number of non-zero elements in the 

LU decomposition results, can result in a large speedup when solving linear 

systems [5]. Among the notable matrix reordering algorithms are the column-

approximate minimum degree ordering (COLAMD) algorithm [6] and the 

multifrontal algorithm described in [7]. 

For this thesis, sparse matrix techniques were used in all program code. Finite 

difference representations of differential equations were solved using sparse re-

ordering and LU decomposition algorithms. These techniques were important, in 

that they allowed a typical 2010 desktop computer to be used to perform the 

calculations. 
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2.1.4. Solution of Differential Equations by Green’s Functions 

The Green’s function of a linear differential operator ܮ is an operator ܩሺݔ,  ሻ that′ݔ

satisfies the equation [1]: 

නܮ ⋅ ,ݔሺܩ ݔሻ݀ݔሺݕᇱሻݔ ൌ නߜሺݔ െ ݔሻ݀ݔሺݕሻ′ݔ ൌ  ሻ′ݔሺݕ
(2.4)

In equation (2.4), ݕሺݔሻ stands for any function to which the operator ܮ can be 

applied. The sign of the delta function is a matter of convention. The convention 

used in this thesis, that the delta function has a positive sign, is also used in works 

such as [1] or [26]; but the convention that it has a negative sign is sometimes 

seen in physics texts such as [25]. 

The Green’s function for the operator ܮ may be used to solve the differential 

equation ݕܮ ൌ ݂.  

Since ݕܩ ൌ  is a linear differential operator, the differential equation ܮ and ݂ܩ

immediately gives ܮሺݕܩሻ ൌ  :Integrating both sides of that equation yields .݂ܩ

නܮ ⋅ ,ݔሺܩ ݔሻ݀ݔሺݕᇱሻݔ ൌ නܩሺݔ,  ݔሻ݀ݔᇱሻ݂ሺݔ

The definition (2.4) is applied to obtain:  

ሻ′ݔሺݕ ൌ නܩሺݔ,  ݔሻ݀ݔሻ݂ሺ′ݔ
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The differential equation has thus been transformed into an integral equation, and 

the solution can be obtained by performing the integration, provided that the 

Green’s function ܩሺݔ,  .ሻ is known′ݔ

By analogy, the Green’s function of a finite, invertible ܰ ൈ ܰ matrix ܮ is the 

matrix that satisfies ݔ|ܩܮ|ݔۦ′ۧ ൌ  may represent a ܮ  .ଵିܮ ,that is :ۧ′ݔ|ݔۦ

differential operator. When it does, the solution of the differential equation 

〈ݕ|ܮ ൌ |݂〉 is |ݕ〉 ൌ  As noted in Section 2.1.2, a discrete differential .〈݂|ܩ

operator must be supplemented by boundary conditions in order to be invertible, 

and therefore, for its Green’s function to exist. 

The Green’s function concept is used in the construction of a multi-particle 

density operator in Chapter 4. 

2.2. Electrodynamics 

2.2.1. Maxwell’s Equations 

Maxwell’s equations are a system of differential equations that can be solved to 

calculate the forces acting on a charge distribution, based on the charge 

distribution itself. Thus, the time evolution of the positions of mobile elements of 

the charge distribution can be predicted. Maxwell’s equations in free space are 

[25]: 
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׏ ∙ ࡱ ൌ ݊ሺ࢞, ଴ (2.5)ߝ/ሻݐ

׏ ∙ ࡮ ൌ 0 (2.6)

׏ ൈ ࡱ ൌ െ
࡮߲
ݐ߲

 (2.7)

׏ ൈ ࡮ ൌ ࡶ଴ߤ ൅ ଴ߝ଴ߤ
ࡱ߲
ݐ߲

 (2.8)

 

In equations (2.5) to (2.8), ݊ is the distribution of electric charge, ࡱ is the electric 

field, ࡮ is the magnetic flux density, and ࡶ is current density. Based on these 

equations, the current conservation law can be derived: 

߲݊
ݐ߲

ൌ െ׏ ∙ (2.9) ࡶ

Maxwell’s equations as stated in (2.5) to (2.8) apply to charge distributions that 

exist in vacuum and are free to move. It is convenient to modify the equations to 

describe a population of charge consisting of some free charge and some fixed 

charge, located in an isotropic, linear, and homogeneous medium such as a 

crystalline solid. In this context, it is convenient to supplement the original 

equations with some auxiliary equations defining other quantities, to arrive at an 

expanded system of equations serving the same purpose as (2.5) to (2.8): 

׏ ∙ ࡰ ൌ ݊௙ (2.10.1)
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׏ ∙ ࡮ ൌ 0 (2.10.2)

׏ ൈ ࡱ ൌ െ
࡮߲
ݐ߲

 (2.10.3)

׏ ൈ ࡴ ൌ ௙ࡶ ൅
ࡰ߲
ݐ߲

 (2.10.4)

ࡰ ൌ ࡱ଴ߝ ൅ (2.10.5) ࡼ

ࡴ ൌ
࡮
଴ߤ
െ(2.10.6) ࡹ

ࡼ ൌ (2.10.7) ࡱ଴߯௘ߝ

ࡹ ൌ ߯௠(2.10.8) ࡴ

In equations (2.10.1-8), ࡰ is the electric displacement field, ࡴ is the magnetic 

field, ࡹ is magnetization, and ࡼ is polarization. The “f” subscript attached to the 

current and charge distributions indicates “free charge” and current arising from 

its motion. Constants are listed in the table of symbols. 

When bulk dielectric matter is considered, the material-specific constant ߝ ൌ

଴ሺ1ߝ ൅ ߯௘ሻ is defined. Using this definition, ࡰ ൌ ࡱ଴ߝ ൅ ࡼ ൌ  .ࡱߝ

This section has just served to introduce and state Maxwell’s equations. An 

introduction to electrodynamics can be found in Griffiths [27], and a fuller 

discussion can be found in Jackson [25].  
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2.2.2. The Poisson Equation: Quasi-static Charge Distributions 

The scalar electric potential and the vector magnetic potential are abstract 

quantities defined for the purpose of increasing the ease with which Maxwell’s 

equations can be solved. The scalar electric and vector magnetic potentials are 

defined by the system of equations: 

ࡱ ൌ െ׏߶ െ
࡭߲
ݐ߲

 (2.11)

࡮ ൌ ׏ ൈ (2.12) ࡭

Equations (2.11) and (2.12) are insufficient to uniquely specify the vector 

magnetic potential. An additional equation, called a “gauge”, is required to ensure 

that ࡭ is unique. 

If the Coulomb gauge is selected, meaning that the condition ׏ ∙ ࡭ ൌ 0 is imposed 

on the potentials, or if the magnetic potential is negligible, then the Poisson 

equation can be obtained. 

From equation (2.10.1), 	

׏ ∙ ࡰ ൌ ׏ ∙ ࡱߝ ൌ ݊௙ 

Therefore, using equation (2.11),  

׏ ∙ ࡱߝ ൌ െ׏ ∙ ൤ߝ ൬׏߶ ൅
࡭߲
ݐ߲
൰൨ ൌ െ׏ ∙ ߶׏ߝ െ

߲ሺ׏ ∙ ሻ࡭
ݐ߲

ൌ ݊௙ 
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If ࡭ ≊ 0 or ׏ ∙ ࡭ ൌ 0, then 

െ׏ ∙ ߶׏ߝ ൌ ݊௙ (2.13)

Equation (2.13) is the Poisson equation. If the material to which (2.13) is applied 

is properly homogeneous, meaning that the dielectric constant has no position 

dependence, then the Poisson equation can be further simplified to െߝ∆߶ ൌ ݊௙. 

However, when dielectric constant is position-dependent, equation (2.13) is 

sometimes used as stated. 

2.3. Quantum Mechanics 

2.3.1. Concepts from Classical Mechanics 

The subject of “classical mechanics” encompasses rules and conservation laws 

that describe the motion of particles or physical objects in terms of differential 

equations. Quantum mechanics and relativity can be viewed as refinements of 

classical mechanics that apply at scales of mass, momentum and distance at which 

precise measurements are not possible in everyday experience. 

The Hamiltonian is an important concept in both classical and quantum 

mechanics. The classical Hamiltonian is a mathematical expression that describes 

a system of particles: it yields the total energy of the particle system at any instant 

in time. A Hamiltonian is constructed using two state variables per particle and 

degree of freedom. The state variables for a particle are typically time-parametric 
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functions yielding position and momentum. State variables for all particles must 

yield positions and momenta in a consistent coordinate system, but that coordinate 

system need not be Cartesian. 

For a system comprised of ܰ particles with one degree of freedom, Hamilton's 

equations are a system of 2ܰ equations that can be solved to obtain the positions 

and momenta of the particles at any instant in time. Hamilton’s equations are 

given by: 

௞݌݀
ݐ݀

൅
ܪ߲
௞ݍ߲

ൌ 0 (2.14)

௞ݍ݀
ݐ݀

െ
ܪ߲
௞݌߲

ൌ 0 (2.15)

In equations (2.14) and (2.15), ݇ is a particle index that ranges from 1 to N; and 

the position and momentum of particle ݇ are denoted by ݍ௞ሺݐሻ and ݌௞ሺݐሻ 

respectively. 

This section contains a minimal introduction to the concept of the Hamiltonian 

that is required to discuss the Schrödinger equation. The subject of classical 

mechanics is  developed in Goldstein [29] or Landau and Lifshitz [28], and 

chapter 2 of Shankar [9] introduces the subject in the context of quantum 

mechanics. 
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2.3.2. The Schrödinger Equation 

Quantum mechanics is a set of rules for transforming a Hamiltonian, constructed 

according to the principles of classical mechanics, into a differential equation that 

yields wave-functions when solved. 

One feature of quantum mechanics is that exact trajectories and momenta, as 

found in classical mechanics, cannot be defined. As per the Heisenberg 

uncertainty principle (e.g. [9], ch. 9), position and momentum cannot 

simultaneously be determined with arbitrary precision. However, instead of 

precise trajectories, quantum mechanics provides a means to calculate position 

and momentum probabilistically. 

The square of the magnitude of a single-particle wave-function expressed in the 

position basis is a probability density function (PDF) describing the position of 

the particle. Provided that the wave-function has been normalized, the PDF may 

be integrated over a subspace to find the probability that the particle has a position 

within that subspace. Similarly, the square of the magnitude of the same wave-

function, when the wave-function is expressed in the momentum basis, is a 

probability density function describing the particle’s momentum. 

The principles of quantum mechanics allow for operators to be defined that 

represent observables other than position and momentum, and for probabilistic 
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calculations to be performed using such operators [9]. This procedure is discussed 

further in Chapter 4: an operator is introduced that measure electrical current 

when operating on wave-functions that describe charged particles. 

The rules set out in quantum mechanics for transforming a classical Hamiltonian 

expressed in Cartesian coordinates into a differential equation in position space 

that yields a wave-function are simple. Before the rules can be applied, the 

Hamiltonian must be expressed using momenta only, and not velocities. With this 

condition met, the following substitutions may be made: 

Position ݔ →  ݔ

Momentum ݌ → െ݅԰
߲
ݔ߲

Total energy ܧ → ݅԰
߲
ݐ߲

 

 

Two operators which have the same effect on the wave-function are obtained: on 

one hand by making these substitutions in the classical Hamiltonian; and on the 

other hand by using the total energy operator directly. The equation showing the 

equality of their results is the Schrödinger equation for the system under 

consideration. 
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A typical example of the use of a Schrödinger equation is in the description of a 

particle with one degree of freedom, moving in an external potential. The classical 

Hamiltonian describing one such particle is given by: 

ܧ ൌ
ଶ݌

2݉
൅ ሻ (2.16)ݔሺݑ

In equation (2.16), the total energy, momentum and mass of the particle are given 

by ݌ ,ܧ, and ݉ respectively, and its potential is given by ݑ. By applying the 

substitution procedure discussed in this section to equation (2.16), the following 

Schrödinger equation is obtained: 

݅԰ ሶ߰ ൌ െ
݄ଶ

2݉
߰ᇱᇱ ൅ ܷሺܺሻ߰ (2.17) 

Equation (2.17) is similar to the equation that is proposed in Chapter 3 to model 

the motion of a charge carrier in an electric field for the purpose of charge 

transport calculations. 

2.3.3. The Density Operator 

From any set of quantum numbers describing a particle, the Schrödinger equation 

yields exactly one wave-function. In the case of a simple Schrödinger equation 

such as (2.17), in which spin is not considered, only the particle energy is required 

to obtain the wave-function. 
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The expected value of an observable Ω of a particle, such as the position or 

momentum of the particle, is given by ߰ۦ|Ω|߰ۧ, where ߰ is the wave-function of 

the particle [9]. If the particle’s precise energy, or state, is known at the time of 

measurement, then its Schrödinger equation yields its wave-function, and the 

observable’s expected value can be calculated. 

Usually, a particle is not known to be in a specific, individual state. More 

typically, the particle may be described by a probability distribution assigning 

finite or infinitesimal probabilities to a series or spectrum of possible particle 

states. In this circumstance, the particle is appropriately described by a density 

operator. The following table compares wave-functions and density operators. 

 Wave-function Density operator 

Definition |߰ா〉 ߩ ൌ෍ |௞|߰௞〉〈߰௞ݓ
௞

 

Expected value of  

an observable 
 ா|Ω|߰ாۧ TraceሺρΩሻ߰ۦ

Probability density 

function 
|߰ா|ଶ ۧݔ|ߩ|ݔۦ 

 

Any wave-function ߰ must be normalized, by scaling it such that ߰ۦ|߰ۧ ൌ 1, 

before it is used to calculate probabilities. Similarly, density operators must 

satisfy normalization conditions. Each wave-function ߰௞ from which a density 

operator is constructed must individually satisty the requirement that ߰ۦ௞|߰௞ۧ ൌ
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1. Additionally, the “weights” must individually satisfy 0 ൑ ௞ݓ ൑ 1, and they 

must collectively satisfy ∑ ௞ݓ ൌ 1௞ . 

In addition to being useful when describing a single particle in an unknown state, 

the density operator can be used to describe an ensemble of non-interacting 

particles that obey the same Schrödinger equation. In this case the probability of 

finding any member of the ensemble in each possible state must be known in 

order to construct the density operator. The difference between these cases is not 

in the mathematical representation of the operator, but in the meaning of the 

coefficients ݓ௞ that are the weights for each wave-function. 

Further discussion of the density operator is found in chapter 3 of Sakurai [8]. 

2.4. Solid-State Physics 

2.4.1. Maxwell-Boltzmann and Fermi-Dirac Statistics 

The simulator developed for this thesis represents charge carrier populations using 

density matrices. As discussed in the previous section, the density operator 

representing a particle, such as a charge carrier, can be constructed from wave-

functions that are solutions to the Schrödinger equation describing the particle. 

For each state that contributes to the density operator, a weight must be 

determined. The magnitude of each weight is proportional to the probability of 
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finding the particle in the corresponding state. States, or wave-functions, are each 

associated with a specific value of particle energy. 

The Maxwell-Boltzmann and Fermi-Dirac distributions are statistical distributions 

of particle energies, and therefore they are useful when constructing density 

matrices. 

According to Maxwell-Boltzmann statistics, the distribution of particles in 

momentum for a particle that is free to move in three dimensions is [30]: 

݂ሺ࢖ሻ ൌ ሺ2݇ߨ஻ܶሻିଵ.ହ exp ൬െ
࢖ ∙ ࢖
2݉݇஻ܶ

൰ (2.18)

In equation (2.18), ࢖ is momentum, ܶ is temperature, ݉ is particle mass, and ݇஻ 

is the Boltzmann constant. 

As a consequence of (2.18), kinetic energy is distributed according to: 

݂ሺܧሻ ൌ ඨ
ܧ

஻ܶ݇ߨ
exp ൬െ

ܧ
݇஻ܶ

൰ (2.19)

In equation (2.19), ܧ is kinetic energy per degree of freedom. 

Whereas Maxwell-Boltzmann statistics are applicable to bosons, electrons are 

Fermions, and should consequently be described by Fermi-Dirac statistics. The 

reason for this is that the Pauli exclusion principle is not considered in the 

derivation of the Maxwell-Boltzmann distribution [31]. 
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The Fermi-Dirac distribution in energy, yielding the probability that an energy 

state ܧ will be occupied, is given by [31]: 

݂ሺܧሻ ൌ
1

1 ൅ exp ቀܧ െ ߤ
݇஻ܶ

ቁ
 

(2.20)

In equation (2.20), ߤ is the Fermi energy or “Fermi level”. It is a parameter whose 

value is “determined by the condition that the number of occupied states at all 

energies must be equal to the total number of electrons present” [31]. 

The Maxwell-Boltzmann and Fermi-Dirac distributions are derived in Pathiria 

[32]. 

Fermi-Dirac statistics are commonly used for quantum-mechanical transport 

calculations [33]. They are used in Chapter 4 of this thesis when constructing the 

density matrices. 
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3. Modeling Concepts 

3.1. Problem Summary 

The purpose of this work was to develop a method for calculating the charge and 

current distributions inside a nanoscale electronic device. The method was 

designed to be applicable to devices such as field effect transistors (FETs) or 

metal-oxide-semiconductor (MOS) capacitors. It was considered necessary to use 

quantum mechanics, rather than classical mechanics, to predict the motion of 

charge carriers. Other works have shown that predicting the gate tunneling current 

of a nanoscale FET requires a quantum-mechanical approach. 

3.2. Device Model 

The purpose of this section is to establish how devices are represented 

mathematically when formulating calculation procedures that are meant to be 

applied to them. 

A device was conceived of as occupying a simply connected subspace ஽ܸ of Թଷ 

bounded by the surface ܵ஽.  

Devices were modeled as containing two populations of free charge carriers: 

electrons, and virtual particles called holes that carry positive charge. The virtual 
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particle concept is described further in Section 3.4.3. Charge carriers were 

modeled as moving through the device, thus participating in the flow of electric 

current. 

The construction of a device was described using a series of functions defined on 

஽ܸ that gave material properties inside the device. The functions required to 

describe a device are listed in Table 1. 

Table 1: Device Material Properties 

݉௘
∗ሺݔሻ,݉௛

∗ ሺݔሻ Effective masses of electrons and holes 

,ሻ࢞ሺߝ  ሻ Permittivity (dielectric constant) and permeability࢞ሺߤ

 ሻ Band gap࢞ሺீߴ

 ሻ Conduction and valence band offset, respectively࢞௏஻ሺߴ ,ሻ࢞஼஻ሺߴ

஽ܰሺ࢞ሻ, ஺ܰሺ࢞ሻ Concentration of donor and acceptor dopants 

௜ܰሺ࢞ሻ Intrinsic carrier concentration 

 

The donors and acceptors referred to in Table 1 are particles, embedded in the 

substrate material of the device, that can be expected to be ionized. As such, they 

give rise to a concentration of fixed charge. 
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The simulator that was implemented was based on a model in which the only 

forces that acted on charge carriers, thus causing them to move, were the electric 

and magnetic forces. The force that acts on an individual charge carrier with 

charge ݍ and velocity ࢜ሺ࢞ሻ, in the presence of an electric field ࡱ and a magnetic 

field ࡮, is the Lorentz force: 

ࡲ ൌ ࡱሺݍ ൅ ࢜ ൈ  ሻ࡮

The simulator was developed for conditions in which ࡱ ≫ ࢜	 ൈ  and the ,࡮

magnetic field could therefore be neglected. 

Devices were modeled as being in contact with one or more reservoirs. Like the 

device, each reservoir was a simply connected subspace of Թଷ. Reservoirs were 

modeled as being in contact with the device only at the device surface, and were 

not in contact with each other, except indirectly via the device. Every point on a 

device surface ܵ஽ was a point on the surface of exactly one reservoir. 

Reservoirs did not have the properties that were defined in the device region. 

Reservoirs were considered to be conductors, and were therefore equipotential 

regions. The potentials of the reservoirs were required as input parameters for 

each calculation. These potentials were required to be time-independent. 
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3.3. General Problem Formulation 

In this section, a general method is formulated for finding the charge distribution 

inside a device. The general procedure described in this section is the basis for the 

calculation method developed in this thesis, as well as for a number of methods 

developed in other works. Specific implementations developed in this thesis and 

in other works differ in part because of assumptions or details not specified in this 

general formulation, in part because of the numerical methods used, and in part 

because of differences in formulation as compared to the general formulation 

presented here. 

The general method followed by this and other works involves the solution of the 

coupled Poisson and Schrödinger equations. Because the Poisson and Schrödinger 

equations are coupled, they are often solved iteratively. 

The Poisson equation may be solved to find the scalar electric potential inside a 

device. The Poisson equation cannot be solved unless the charge distribution is 

known in the solution region. The Poisson equation is given by: 

݀
ݔ݀

൜ߝሺݔሻ
݀߶
ݔ݀
ൠ ൅ ݊ሺݔሻ ൌ 0 (3.1)
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In equation (3.1), the scalar electric potential is denoted ߶ and the total charge 

distribution is denoted ݊. The total charge distribution applicable to the Poisson 

equation is given by: 

݊ሺݔሻ ൌ ݊௡ ൅ ݊௣ ൅ ஺ܰ ൅ ஽ܰ 
(3.2)

In equation (3.3), ݊௡ is the concentration of free electrons, ݊௣ is the concentration 

of free holes, and ஽ܰ and ஺ܰ are the concentrations of donors and acceptors, 

which are two of the material properties listed in Table 1 as being part of the 

device description. 

The reservoir potentials, together with the condition that the reservoirs are 

equipotential and the condition that every point on ܵ஽ is a point on the surface of 

exactly one reservoir, are sufficient information to provide a boundary condition 

for equation (3.1). The electrostatic potential on the device surface is denoted 

߶ௌሺݔሻ for all ݔ ∈ ܵ஽. The boundary condition used to solve equation (3.1) is 

given by equation (3.3): 

߶ሺ࢞ሻ ൌ ߶ௌሺ࢞ሻ for ࢞ ∈ ܵ஽ (3.3)

Since one of the quantities being calculated is the charge distribution inside the 

device, and the charge distribution is required to solve the Poisson equation, an 

iterative method may be required to solve equation (3.1). For each iteration, the 

Poisson equation is solved to find the scalar electric potential based on the charge 
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distribution, and Schrödinger equations are solved to find the charge distributions 

of the populations of electrons and holes using the scalar electric potential. 

The probability density functions (PDFs) of the positions of charge carriers inside 

the device are calculated using Schrödinger equations. Two Schrödinger 

equations need to be solved: one describing holes, and one describing electrons. 

The Hamiltonian used to construct each Schrödinger equation includes only the 

kinetic energy and the electrostatic potential energy of a single representative 

particle. The Schrödinger equations applicable to electrons and holes are given by 

equations (3.4) and (3.5) respectively: 

െ
԰ଶ

2݉௘
∗ ᇞ ௘ߦ െ ௘ߦ ∙ ߶ݍ ൌ ݅԰

௘ߦ݀
ݐ݀

 (3.4)

െ
԰ଶ

2݉௛
∗ ᇞ ௛ߦ ൅ ௛ߦ ∙ ߶ݍ ൌ ݅԰

௛ߦ݀
ݐ݀

 (3.5)

In equations (3.4) and (3.5), the wave-functions for electrons and holes are given 

by ߦ௘ and ߦ௛ respectively, the effective masses of electrons and holes are ݉௘
∗  and 

݉௛
∗  respectively, and the electric potential is ߶. 

Equations (3.4) and (3.5) are partial differential equations with both space and 

time parts. It was assumed that ߶ is not time-dependent, and therefore that (3.4) 



35 
 

and (3.5) are separable with respect to time. When the Schrödinger equation is 

separable, the separation constant is interpreted as an energy, denoted ܧ. 

The solutions to (3.4) and (3.5) are wave-functions of single particles. However, 

all charge carriers moving in a device are in the presence of the same electric 

potential ߶. Therefore, any individual carrier has a wave-function that is a 

solution to (3.4) or (3.5). However, as a consequence of the exclusion principle, 

each solution must correspond to a distinct energy, except inasmuch as 

degeneracy is permitted. 

Each solution to equation (3.4) or (3.5), corresponding to a particular energy, is 

required to satisfy the continuity equation for probability flux, 

ଶ|ߦ|݀

ݐ݀
െ ׏ ∙

݅԰
2݉

ሺߦ׏∗ߦ െ ሻ∗ߦ׏ߦ ൌ 0 (3.6)

The probability flux continuity equation (3.6) may be applied at the device 

boundaries to obtain boundary conditions for the Schrödinger equations. In 

equation (3.6), ߦ is a wave-function such as ߦ௘ or ߦ௛, and ݉ is the applicable 

mass, such as ݉௘
∗  or ݉௛

∗ . 

In this thesis, solutions to the Schrödinger equations (3.4) and (3.5) were obtained 

by constructing them from Green’s functions, rather than directly solving the 
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Schrödinger equations subject to a condition derived from (3.6). Chapter 4 

describes the selected approach in detail. 

Wave-functions that are found as solutions to (3.4) and (3.5) may be used to 

determine the concentrations of free electrons and holes, ݊௡ and ݊௣. The 

following general procedure may be used to find ݊௡: 

1. Solve (3.4) for each energy in a series of discrete samples of energy. 

2. Normalize each wave-function ߦ௘ሺݔ;  is the wave-function’s ܧ ሻ, whereܧ

energy, such that ׬ ଶܸ݀௏ವ|ߦ|
ൌ 1 (where ܸ݀ is the differential volume 

element). 

3. Calculate a weighted sum of the outer products of wave-functions, where 

the weight assigned to each wave-function is a function of energy. Obtain 

a density operator by normalizing the resulting matrix. 

4. Multiply the density operator by the total amount of charge in the device’s 

population of free electrons, and take the diagonal to obtain the free 

electron concentration, ݊௡. 

An analogous approach is used to find the free hole concentration, ݊௣. 
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The calculation in step (3) above may be performed using equation (3.7): 

ሻݔ௘ሺߩ ൌ෍ ;ݔ௘ሺߦ|௞ሻܧሺݓ ;ݔ௘ሺߦ〉〈௞ሻܧ |௞ሻܧ
ாೖ

 
(3.7)

In equation (3.7), ݓ is the weighting function, ܧ௞ refers to an energy in the 

discrete set, and ߦ௘ሺݔ;  ௞ሻ is the wave-function corresponding to that specificܧ

energy. The summation runs over all energies for which the Schrödinger equation 

is solved. 

The approach used to derive the weighting function applicable in (3.7) is one of 

the key differences between the various methods that have been developed for 

performing calculations of this type. The weighting function is often considered to 

be composed of two simpler functions: the density of states, and the probability of 

state occupation. The density of states is the eigenvalue spectrum of the linear 

differential operator representing the spatial part of the separated Schrödinger 

equation that was solved to find the wave-functions being weighted. The 

probability of state occupation is usually given by the Fermi function, as 

discussed in Chapter 2. 

One difficulty inherent in evaluating the weighting function is that of deriving the 

Fermi energy, required to evaluate the Fermi function. The device model 

described in the previous section allows for a device to be in contact with several 

reservoirs, and each reservoir when considered in isolation may have a Fermi 
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energy different from those of the other reservoirs. In this circumstance, it is not 

obvious how to find the Fermi energy applicable inside the device when 

evaluating the weighting function. This work proposes a method that uses a 

spatially varying “quasi-Fermi energy”, as described in Chapter 4. 

Another difficulty inherent in evaluating the weighting function is that of finding 

the eigenvalue spectrum of the energy operator, or finding a suitable 

approximation. One common approach is to use the eigenvalue spectrum 

applicable to a free particle moving in a flat potential. 

Once ݊௡ and ݊௣ have been found, they may be fed back into equation (3.2), and 

the process of solving the coupled Schrödinger-Poisson system may be repeated. 

3.4. Modelling Assumptions 

The general problem formulation presented in the previous section depended upon 

a number of assumptions and simplifications that may lead to simulated results 

that differ from reality. Furthermore, the simulator as implemented embodied 

some assumptions beyond those implicit in that general problem formulation, 

such as the assumption that a one-dimensional device representation could be 

used. The following sub-sections discuss the assumptions and simplifications that 

were made when developing the general problem formulation, or the specific 

calculation method presented in this thesis. 
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3.4.1. The Assumption of a Steady State 

The models developed in this work require that the potentials applied to device 

surfaces are not functions of time. Furthermore, it is assumed that any device 

being simulated has reached a steady state, and consequently that the electrostatic 

potential inside the device is not time-dependent. 

For time-invariant potentials, the Schrödinger equation is separable and wave-

functions that solve it have time dependence of the form expሺെ݅ݐܧ/԰ሻ. Because 

the potential inside the device was assumed to be time-invariant, the requirement 

to specify an initial condition in the form of a charge distribution was avoided. 

The initial condition was assumed to be the steady state condition. If the simulator 

had been designed to allow for time-varying boundary or interior potentials, then 

the calculation of steady-state current would require an initial charge distribution 

to be supplied, and the time evolution of this distribution would need to be 

calculated for a number of discrete time steps to find the eventual steady-state 

behaviour of the device. The amount of computation effort that this would require 

was seen as prohibitive. 

Counter-examples may be constructed to show that even if the boundary potential 

applied to a device is time-invariant, the interior potential may not be time-

invariant. One simple counter-example is the case of a charge distribution at 

ݐ ൌ 0 consisting of a Gaussian wave-packet representing a single charge carrier 
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with momentum approaching zero, located near a boundary, and boundary 

potentials such that the particle experiences a strong repulsive force (approaching 

infinity) near any boundary. For this example, a time-dependent simulator would 

yield an oscillatory potential inside the device, but a time-independent simulator 

may not fail to yield a result. The result that would be obtained from a simulator 

using the steady-state assumption, if a result were obtained, would not be 

accurate. 

The steady state assumption may have practical consequences, in that some 

devices studied in other works depend upon the Coulomb blockade effect for their 

operation. The assumption of a time-independent interior potential makes the 

simulator unable to correctly model some device behaviours, such as those arising 

from Coulomb blockade. In such devices, a stable “steady state” does not exist. 

3.4.2. Consideration of Edge Effects 

Devices in this work were modeled as being planar. Current was modeled as 

travelling in one dimension. That dimension is called the longitudinal dimension. 

Devices were modeled as being spatially invariant in the other two dimensions. 

Those dimensions are called the transverse dimensions. Spatial invariance in the 

transverse dimensions had the consequence that the modeled devices were infinite 

in volume. In reality, physical devices can be quite small in the transverse 

dimensions. The materials beyond the transverse boundaries have different 
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electrical properties, such as permittivity or dopant concentration, compared to the 

device region, and these varying properties give rise to a non-uniformity of 

longitudinal current per unit area. The effects of the materials beyond the device 

boundaries on current per unit area inside the device are referred to as “edge 

effects”. 

Edge effects are neither modeled nor quantitatively estimated for the results 

presented in this thesis. However, the chosen approach of treating devices as 

infinite in extent and calculating current per unit area is a common one. It has 

been used in many similar works. 

When a method for calculating current in a device is formulated in a way that 

allows for the device’s material composition to described in one dimension only, 

the method itself is referred to as one-dimensional. The method developed in this 

thesis is thus referred to as one-dimensional. However, despite the method being 

nominally one-dimensional, the process by which a particle exchanges 

momentum in the transverse and longitudinal directions of travel is actually a 

central feature of the simulator’s operation. This process is discussed further in 

Chapter 4. 
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3.4.3. The Use of Virtual Particles 

In semiconductors it is usually considered that there are two main mechanisms for 

charge transport: the motion of holes, and the motion of electrons. 

Electrons are point particles, but the principles of quantum mechanics require that 

calculations involving the positions of electrons describe the electrons’ positions 

using time-parameterized probability density functions (PDFs), rather than time-

parameterized positions (trajectories). When calculating the expected value of an 

observable that depends on the positions of several electrons, two common 

approaches exist. One approach is to work with a joint probability density 

function representing multiple electrons. The other approach is to use a density 

operator formed by summing the probability density functions of all contributing 

electrons. In this approach, the normalization condition ܶݎሺߩሻ ൌ 1 that is usually 

applied to a density operator ߩ is modified: ܶݎሺߩሻ ൌ ܰ, where N is the number of 

particles represented by the operator, is used instead. The multi-particle density 

operator approach is used. 

Holes are sometimes called virtual particles. A hole is a local maximum in charge 

density that arises when an electron is removed from a charge-neutral region, 

causing the region to have a positive charge. The concept of a hole is easiest to 

understand when the expected position of the hole is near an atom in a conducting 

or semiconducting solid. When an atom is ionized at the first ionization level, one 
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of the electrons that is normally bound to the atom has been removed. The region 

around the ionized atom has a net positive charge because that electron is missing. 

The amount of charge imbalance is equal but opposite in sign to the charge of an 

electron. The region of positive charge that arises because the atom is ionized is 

called a hole. 

Although the ionized atoms that contain the positive charge necessary for holes to 

exist may be stationary, a theory of hole transport can nevertheless be developed. 

An event in which an electron is transferred to an ionized atom from an un-

ionized neighbour in a semiconducting crystal could be described as a hole 

moving the inter-atomic distance. A series of such events is one process by which 

hole transport can occur. 

Unlike electrons, holes are not point-like. For example, a hole may arise as the 

result of the contributions of several partially ionized atoms. The mathematical 

description of a hole can take the form of a charge density function, defined on a 

region in which a solid exists. This function has the property that when integrated 

over its domain, the result is the total amount of charge represented by the hole; 

that is, ൅ݍ.  The charge density function may have a time parameter, thus 

allowing for hole transport to be described. This representation allows for hole 

transport to be described not only in insulators, where the paradigm of a sequence 

of electron exchanges between ions and adjacent non-ionized atoms is a 



44 
 

physically reasonable description of hole transport, but also in semiconductors or 

metals, where that paradigm is unrealistic. 

Holes are represented as virtual particles by making an analogy between the 

charge distribution function describing a hole and the probability density function 

describing a point-like particle. It is considered that the probability density 

function, multiplied by the electronic charge, is equal to the charge density 

function. This PDF is considered to have been generated by a Schrödinger 

equation, in the same way as the PDF of the position of an electron. The 

Schrödinger equation contains a kinetic energy term, an element of which is the 

mass of the particle described by the equation. It could be said that a hole, being a 

virtual particle, does not have a mass. However, it is common to ascribe a 

material-dependent “effective mass” to holes, used in place of the mass of a 

physical particle. The effective mass is phenomenologically determined based on 

the principle that the same applied field should cause the same time-evolution of 

the PDF of a hole and the PDF of an electron. 

3.4.4. Parabolic Dispersion and Effective Mass 

One application of the concept of effective mass, as described in the previous sub-

section, is to the kinetics of virtual particles described by a Schrödinger equation. 

However, the same concept has another important application. An effective mass 

is used to model the difference in rate of acceleration that is observed to result 
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from a force acting on a physical particle, when the particle in a material versus 

when the particle is in free space. Effective mass is applicable to an electron being 

accelerated in a solid by an external electric field. Effective masses of electrons 

and holes have been measured for many materials by comparing the effect of a 

field on charge in each material to the effect that the same field would have on 

charge travelling in empty space. Effective mass can be higher or lower than free-

space mass. 

The effective mass of a particle moving within a crystalline solid is dependent 

upon the direction of the charge carrier’s momentum relative to the crystal’s 

orientation. The reason for this anisotropy is that due to crystal structure, the 

probability of collision between charge carriers and substrate atoms depends on 

the direction of travel of the carriers. In this work, scattering and direction-

dependent effective mass was not considered. It was assumed that using a single, 

average value of effective mass, in the expected direction of travel of the charge 

carrier, was adequate. 

3.4.5. Consideration of the Magnetic Field 

There are several effects to consider when developing a model of charge transport 

in the presence of a magnetic field. 
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Firstly, any electric charge distribution that is evolving in time gives rise to a 

magnetic field that acts on free charge carriers in the vicinity through its 

contribution to the Lorentz force, ࡲ ൌ ࡱሺݍ ൅ ࢜ ൈ  ሻ. If a magnetic field were࡮

included in the model described in Section 3.3, then the free charge distribution 

݊௡ ൅ ݊௣ would not only give rise to a scalar electric potential ߶, but also to a 

vector magnetic potential ࡭. Both of these potentials would appear in the 

Hamiltonian. 

Secondly, an individual moving charge carrier is a contributor to the 

electromagnetic fields that influence its own motion. In the context of the single-

particle model described in Section 3.3, this contribution would be considered 

separately from the field originated by the entire population of carriers, despite 

the single particle being a member of that population. The effect of the magnetic 

field generated by a single particle on the particle itself is called the radiation 

reaction or Abraham-Lorentz force. The classical theory gives the radiation 

reaction force as:  

ࡲ ൌ
ଶݍ଴ߤ

ܿߨ6
݀ଶ࢜
ଶݐ݀

 (3.8)

A quantum-mechanical formulation of the radiation reaction force has been 

proposed by Johnson and Hu in [19] and [20], using a Langevin Equation 
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approach, but that approach is not usable in the context of the basic formulation 

presented in Section 3.3. 

Finally, the Hamiltonian of an electron moving in a magnetic field properly 

includes a term arising from interaction between the electron’s spin and the 

magnetic field.  

The magnetic field generated by the motion of free charge, the radiation reaction 

force, and the effect of spin have not been incorporated into the general model of 

Section 3.3 or the specific model developed in Chapter 4. Magnetic field effects 

were ignored because of the precedent set and justifications provided by other 

works, including all of those discussed in Section 3.5. 

3.4.6. Approximations Inherent in the Single-Particle Model 

The general problem formulation presented in Section 3.3 describes a model in 

which the charge distributions for holes and electrons are constructed from PDFs 

obtained by solving Schrödinger equations that represent a single hole and a 

single electron. An alternative to this model is to solve a single, multi-particle 

Schrödinger equation. The multi-particle Schrödinger equation would be based on 

a Hamiltonian that included a kinetic and potential energy contribution from 

every particle participating in conduction. The result of solving it, for a particular 

value of total system energy, would be the wave-function corresponding to a joint 
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probability distribution for the simultaneous positions of all particles. This multi-

particle model would have the capability of predicting collisions between charge 

carriers. Collisions would be events involving the exchange of momentum 

between the participating particles. The number of collisions predicted in a 

simulation would depend on the total energy of the system, the applied fields, and 

the initial positions of each particle. 

If a multi-particle model were used, the possibility would exist not only to model 

collisions between several charge carriers, but also collisions between charge 

carriers and the particles comprising the substrate through which they travel. 

Atomic nuclei could be represented as point particles having positive charge equal 

to an integer multiple of the electronic charge, and mass equal to the appropriate 

atomic mass. In this way, representation of the nuclear forces could be avoided, 

and a Schrödinger equation based on a multi-particle Hamiltonian could therefore 

be used. In order to model carrier-substrate collisions, the Hamiltonian would be 

expanded to include terms representing the kinetic and potential energies of all 

atomic nuclei and electrons comprising the substrate, as well as all carriers. In this 

hypothetical model, details such as the boundary conditions for the electric field 

would require modification. 

A multi-particle model that can predict collisions between individual particles, 

whether it includes only carriers or carriers and substrate particles, is necessarily a 
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time-dependent model. The hypothetical multi-particle model described in this 

section was not used because of the prohibitive calculation time that would be 

required to obtain results. Other works, including all works mentioned in Section 

3.5, have used the single particle model. In this thesis, the single particle model 

was used because precedents showed it to be acceptable and because the 

perceived alternative was computationally intractable. 

The single-particle model does not capture interactions between individual charge 

carriers or carriers and ions at fixed positions in the substrate. However, the 

aggregate effect of many such interactions is indirectly captured by the model, in 

that the electric field generated by all free carriers and ions acts on the 

representative carrier that is used to derive the free carrier distribution. 

In the single-particle model, the carrier-substrate interactions are modeled not 

only through the contribution of substrate ions to the electric field, but also by 

using an effective mass, as described in Section 3.4.4. 

3.4.7. Assumptions Regarding Density of States 

As stated in Section 3.3, the density of states, in the context of the general 

problem formulation presented in that section, is the eigenvalue spectrum of the 

linear differential operator representing the spatial part of the separated 



50 
 

Schrödinger equation. The boundary conditions associated with a linear operator 

affect the eigenvalue spectrum of the operator. 

In this thesis, the density of states inside devices is assumed to be constant. This 

approximation is made because the probability of state occupation, as a function 

of energy, is assumed to change much faster than the density of states. 

In some works such as [16], [17], [18], [45], and [46], density of states is assumed 

constant. Usually the constant value is determined based on the eigenvalue 

spectrum of the Hamiltonian operator for a single free particle free to move in two 

dimensions, with periodic boundary conditions applied, and is thus called the “2D 

density of states”. 

3.4.8. Assumptions Regarding Device Contacts 

Devices were modeled as being in contact with reservoirs of charged particles. 

The simulations found a steady state of device operation involving a fixed rate of 

transfer of particles from one reservoir to another. It was assumed, as a boundary 

condition, that the Fermi energy in each reservoir was fixed and time-invariant. It 

follows from this assumption that the reservoirs must contain infinite numbers of 

particles. 

It was assumed that density of states, as a function of position, was continuous at 

the device contacts. It follows from this assumption that the addition or removal 
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of particles from a reservoir must not cause the reservoir’s density of states to 

change. 

3.4.9. Consideration of Permittivity 

The general problem formulation presented in Section 3.3 included the use of a 

position-dependent dielectric constant in the Poisson equation, (3.1). 

As discussed in Chapter 2, the dielectric constant is applicable to charge carriers 

moving through bulk matter. The dielectric constant is used in the electromagnetic 

equations for bulk matter to account for the average effect of the fields of the 

individual atoms comprising the bulk matter on free charge present within the 

bulk matter. The dielectric constants of various materials are typically determined 

experimentally. 

The alternative to using the electromagnetic equations for bulk matter in a model, 

thus requiring dielectric constant to be supplied as an input to the model, is for the 

model to include the potentials of each atom comprising the bulk matter. This 

approach would be required for the multi-particle model discussed in Section 

3.4.6. 

The model of Section 3.3 makes use of the form of the Poisson equation 

applicable to bulk matter, even though it is intended for the model to be applied to 

devices with features having a thickness of a few atomic layers. It could be argued 
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that Maxwell’s equations for bulk matter are not meant to be applied to such 

devices, because the specific forms of the potentials of the atoms comprising the 

device could affect the calculation results. However, if individual atomic 

potentials were modeled, then it would no longer be possible to reduce the 

problem to a one-dimensional form, because no specific device cross-section 

could be considered representative when the atomic potentials were represented in 

the model. Instead, calculations would be required to cover three spatial 

dimensions. The computation time that would be required for this was seen as 

prohibitive, so Maxwell’s equations for bulk matter were used, in conjunction 

with model representing only one spatial dimension. The use of dielectric 

constants rather than atomic potentials has been used in many similar works, 

including the works discussed in Section 3.5. The successes of these works were 

considered to be justifications for continued use of the model. 

3.4.10. Consideration of Relativity 

It follows from use of the Schrödinger equation in Section 3.3 that the effects of 

special relativity are not properly reflected in the model. Special-relativistic 

effects are commonly neglected in semiconductor device simulations, including 

those described in Section 3.5. For typical input parameters, these simulations 

predict carrier speeds much less than the speed of light, thus justifying the use of 

non-relativistic quantum theory. 
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3.5. Previous Work 

The problem of charge transport in nanoscale electronic devices has been 

addressed in a considerable number of previous works. In this sub-section, a brief 

and incomplete review of some notable previous works is presented. Some 

previous results will be discussed in the context of the general problem 

formulation presented in section 3.3. 

The work of Buchanan et al [23] [38] addressed gate tunneling current in FET 

transistors. In that work, a coupled Schrödinger-Poisson system was solved 

iteratively and self-consistently to find charge concentration. The Schrödinger 

equation was solved with closed boundary conditions rather than conditions 

derived from equation (3.6). Thus, charge carriers were confined to the interior of 

the device, and not free to enter or exit via contacts. The density of states 

applicable to (3.7) was considered to be the product of a constant transverse part, 

and a longitudinal part obtained as the eigenvalue spectrum of a matrix 

representing the longitudinal Hamiltonian and the chosen boundary conditions 

(constructed from a finite-difference second order derivative operator). State 

occupation probability was calculated using Fermi-Dirac statistics. Once the 

charge concentration was obtained in this way, the corresponding potential was 

used to calculate current contributions for each energy in the spectrum of the 

previously constructed Hamiltonian. For states identified as quasi-bound, current 
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was calculated with an adaptation of the transverse resonance method used for 

electromagnetic waveguide analysis [42]. For states identified as free, the transfer 

matrix approach was used to solve the Schrödinger equation with open boundary 

conditions. This method yielded close agreement with measured results. 

The work of Frensley, reviewed in [35] and originally applied to resonant 

tunneling diodes, was addressed toward re-formulating the Schrödinger equation 

to enable intuitive and realistic boundary conditions to be applied. The Liouville-

von Neumann equation is a matrix equation for the density operator, given by [8]: 

݅԰
ߩ݀
ݐ݀

ൌ ሾܪ, ሿ (3.9)ߩ

The Liouville-von Neumann equation is equivalent to, and can be derived from, 

the Schrödinger equation [8]. It can be solved to obtain the elements of the 

density matrix. Frensley’s approach was to take the Wigner-Weyl transform [35] 

of the Liouville-von Neumann equation, so that the transformed equation would 

yield a phase-space distribution equivalent to the density matrix.  The boundary 

conditions took the form of values assigned to the phase-space distribution for 

positions at the device boundaries and all momenta. Once the phase-space 

distribution was obtained, it was de-transformed to find the density matrix. In this 

method, the solution of the Wigner-Weyl transformed Liouville-von Neumann 

equation replaced the solution of the Schrödinger equation (3.4) or (3.5), and the 

density matrix did not need to be constructed as in (3.7) because the entire density 
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matrix was obtained at once. Iteration between the Liouville-von Neumann and 

the Poisson equations remained necessary. Density of states and probability of 

occupation entered into the calculations via the boundary conditions specified for 

the phase-space form of the Liouville-von Neumann equation. It was assumed in 

[35] that density of states was constant, and Fermi-Dirac statistics were used. One 

issue with this method is that the boundary conditions are only true infinitely far 

from the contacts [43]. 

The work of Datta et al, reviewed in [14], made use of non-equilibrium Green’s 

functions to obtain the density operator. In that work, it was proposed to obtain 

Green’s functions using the same method as described in this work, i.e. from 

equation (4.13). In the method described in [14], the Green’s functions for each in 

a series of energy samples were found at the device boundaries. The contribution 

to the density matrix from each contact was given by a numerical integral over 

energy of the outer product of each Green’s function with itself, as in equation 

(3.7). Each Green’s function outer product in this integral was multiplied by the 

Fermi function ݂ሺܧ,  is the Fermi energy in the contact. The total ߤ ሻ, whereߤ

density matrix was given by the sum of the contributions from the contacts. In this 

method, the Schrödinger equation (3.4) or (3.5) was solved via use of Green’s 

functions, and the boundary conditions applied to the Green’s functions were 

those of outgoing waves at the contacts [14]. Iteration between the Poisson 
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equation and the density matrix construction process was required to solve the 

Schrödinger-Poisson system. 

One issue with this method is in representing the sub-population of charge carriers 

that exists in potential wells inside the device under simulation, when the 

potential wells have energy minima significantly lower than the Fermi energies of 

all contacts. It was this issue that motivated the present work. The method that 

will be described in Chapter 4 has many similarities with the method described in 

[14], but makes use of Green’s functions and Fermi energies at all points within 

the device, not just the boundaries. 

The work of Fischetti et al, reviewed in [44], was somewhat more of a departure 

from the general procedure discussed in section 3.3. In that work, the Liouville-

von Neumann equation (3.9) served as the starting point to obtain a Pauli master 

equation that was solved to find the time evolution of the density operator in the 

basis of wave-functions. The arguments used to obtain scattering rates for the 

master equation are too complex to do justice here, but are explained in [44]. The 

wave-functions themselves must be obtained by solving the Schrödinger equation, 

and with them, the density operator in the position basis can be obtained. This 

approach has the advantage that dissipative processes can be described relatively 

easily using a master equation, but this potentially comes at the cost of departing 

from the Liouville-von Neumann equation. 
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4. Methodology 

In this chapter, the method used to calculate charge distribution and current in 

devices is described. The method was realized in the form of a program. The 

program’s structure and operation are discussed. 

4.1. Overview 

The flowchart shown in Figure 1 describes the operation of the programs used to 

obtain the results presented in Chapter 5 and Chapter 6. This section summarises 

the structure and operation of the calculation programs. Sections 4.2 through 4.5 

provide further detail about common elements of the programs. 
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Figure 1: Program Flowchart 

 

 

The demonstration programs that implement the method described in this chapter 

were written in the Python language. One demonstration program was written per 

device. All of the programs share a common library that implements the 

calculation routines. Each device-specific program creates a data structure in 

memory that describes a device, and then calls library routines to perform 

calculations. No user interface was created, either in the form of an input file 
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specification and command line interface, or in the form of a graphical interface. 

However, since the relatively complex parts of the method were implemented in 

the library, the task of creating demonstration programs for specific devices was 

simple. 

The desired result of some calculations was a charge distribution or the expected 

value of an observable in a single specific condition. For that purpose, density 

matrices for electrons and holes were required. 

A main purpose of the calculator was to produce current-voltage (I-V) curves. To 

produce I-V curves, density matrices for electrons and holes were calculated at a 

series of discrete values of voltage sampled from a curve, and the density matrices 

were used to find net current. 

Density matrices were found iteratively. Iteration was necessary because the 

density matrices were constructed from the Green’s functions for Schrödinger 

equations in which the potential energy term was dependent on the charge 

distributions described by the density matrices themselves. 

The first step in an iteration of the density matrix calculation was to estimate the 

minimum kinetic energy that a free charge carrier within the device could have. 

This energy was a function of position. The model included two populations of 

free charge carriers, holes and electrons, and two distinct functions were required 
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to describe their minimum kinetic energies. For electrons, the minimum kinetic 

energy was given by the conduction band energy. For holes, it was given by the 

valence band energy. Both the conduction band energy and the valence band 

energy were found by solving the Poisson equation. For the first iteration, a 

calculated distribution of free charge carriers was not yet available. Therefore, for 

the first iteration only, the method described in Section 4.3 was used to find the 

conduction and valence band energies. The Poisson equation was solved 

assuming the device contained no free or fixed charge. For iterations subsequent 

to the first, an approximate free charge distribution was available from the 

previous iteration. For these iterations, the Poisson equation was solved with 

approximate free and fixed charge distributions represented as being present 

within the device. Section 4.5 describes how conduction and valence band 

energies were calculated for iterations subsequent to the first one. Position-

dependent quasi-Fermi distributions were calculated for electrons and holes based 

on the conduction and valence band energies. The formulae for doing this are 

given in Section 4.4.2. 

The second step in an iteration of the density matrix calculation was performed 

separately for holes and electrons. For each of these charge carrier populations, 

iteration over a set of energies was performed. The set of energies was sampled 

from a continuous range. The lower bound of the energy range was the minimum 
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kinetic energy that a carrier could have, regardless of its position inside the 

device. The upper bound of the energy range was the energy such that the 

probability of finding a carrier with a higher energy anywhere inside the device 

was negligible. For each of the energies, Green’s functions for the Schrödinger 

equation were calculated. One Green’s function was calculated per energy for 

each discrete position inside the device. 

The third step in an iteration of the density matrix calculation was to use all of the 

Green’s functions calculated in step two to construct the density matrix. The 

density matrix was found as a weighted sum of outer products of Green’s 

functions. The weights were provided by the quasi-Fermi distributions. A 

mathematical formulation is given in Section 4.4.2. 

The final step in an iteration of the density matrix calculation was to use the 

approximate density matrices for electrons and holes to obtain free charge 

concentrations to feed back into the iterative process. These were simply the 

diagonals of the density matrices. 

Density matrix calculation iteration was terminated when the difference in free 

charge distribution between iterations was negligible or when a pre-determined 

maximum number of iterations was reached. Further details regarding 

convergence and algorithm termination are given in Section 4.5. When a density 
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matrix that met one of the termination conditions was found, then observables 

such as current flow were calculated based on the density matrix. 

In the following sub-sections, the steps of the calculation process are discussed in 

much more detail. 

4.2. Device Description 

The implementation of the calculation method developed in this work required 

devices to be described using short programs that built data structures in memory. 

An implementation of the same method that was constructed for easy re-use 

would accept data files instead. In any case, a set of data must be collected before 

calculations can be done. 

The data required to begin performing calculations are the following: 

 Operating temperature. 

 A grid dividing the device into discrete one-dimensional cells. In this 

work, all such cells were required to be the same size, and that 

requirement is reflected in the equations stated in this chapter. 

 The voltage applied at each device contact. 

 Dielectric permittivity as a function of position, throughout the device. 

 Effective masses of holes and electrons as functions of position. 
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 Conduction and valence band offsets as functions of position. In this work, 

the offsets were referenced to the leftmost discrete cell of the device, but 

any reference point could be used. 

 Concentration of ionized acceptors and donors as a function of position. 

The entire device was assumed to be at a uniform and constant temperature. 

The macroscopic Maxwell’s laws were used to find the field and potential within 

the device, and therefore, a dielectric constant was a required input. This 

approximation was discussed in the previous chapter. 

The concentrations of ionized acceptors and donors were provided directly. A 

more accurate calculation would allow a dopant profile to be specified, and use 

the field, free charge concentration, and temperature within the device to calculate 

a position-dependent ionization rate. The increased complexity that would result 

from adding this feature was believed to be inessential to the operation of the 

basic simulator that was developed. It was envisioned that the simulator would be 

applied to devices and operating conditions in which the assumption of full 

ionization was acceptable. 
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4.3. Initial Calculation of Potential 

As explained in Section 4.1, charge density was calculated iteratively, based on a 

density matrix constructed from the Green’s functions of a device Hamiltonian. 

An estimate of the potential energy of a particle travelling through the device, as a 

function of position, was required to produce a numerical representation of the 

Hamiltonian. This potential is necessarily dependent upon the charge distribution, 

leading to a circularity. Therefore, the potential was calculated by assuming 

charge neutrality everywhere within the device for the first iteration. With no 

spatially varying charge distribution present, the one-dimensional potential is 

given by: 

݀
ݔ݀

൜ߝሺݔሻ
݀߶
ݔ݀
ൠ ൌ 0 (4.1)

 

In equation (4.1): ߝሺݔሻ is the dielectric constant; and ߶ሺݔሻ is the electric potential 

in Volts. The potential energy of a single hole or electron moving within the 

device is then given by േݍ߶, where ݍ is the electron charge. 

In subsequent iterations, the assumption of no charge being present within the 

device was removed. 
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4.4. Construction of the Density Matrix 

The density matrix was constructed by summing over a set of energies. For every 

energy, a Green’s function was calculated for each grid point within the device. 

The density matrix was constructed from all of the Green’s functions. 

The same method for calculating a density matrix is applicable for both holes and 

electrons. The calculations must be performed separately for each of these carrier 

types, however. The reason for this is that distinct potentials and effective masses 

are applicable to the two carrier types. The balance of the discussion describes the 

construction of a single density operator, with the understanding that the general 

procedure must be repeated for both carrier populations. 

4.4.1. The Contribution of Particles with a Specific Energy 

In this sub-section, a method is described for finding the Green’s functions for a 

particle with a particular total energy. This sub-section also describes how these 

Green’s functions were used to find the component of the density matrix 

corresponding to the selected energy value. The next sub-section will describe 

how the energies were selected for which to perform this calculation. It will also 

describe how the total density matrix was found. 

In working toward the desired one-dimensional model, the 3-D case must first be 

considered. The single dimension to which the calculation was eventually 
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restricted is referred to as the longitudinal or “x” direction. The calculated current 

flows were in the longitudinal direction. The other two directions are referred to 

as the transverse or “y” and “z” directions. 

The Schrödinger equation for a single, independent charge-carrying particle 

moving through a three-dimensional device is given in equation (4.2): 

ቈെ
԰ଶ

2݉
ᇞ ൅ܷ௫ሺܺሻ ൅ ܷ௬௭ሺܻ, ܼሻ቉ 〈ߦ| ൌ ݅԰

߲
ݐ߲
(4.2) 〈ߦ|

 

In (4.2), the total wave-function of the particle, including its dependence on time 

and all three spatial dimensions, is denoted by |ߦ〉 ൌ ,ݔሺߦ| ,ݕ ,ݖ  .〈ሻݐ

The Schrodinger equation has a kinetic energy term and a potential energy term. 

The reason that the particle is subject to a change in potential energy is that it is in 

the presence of an electric field. This field has two causes. One cause is the 

external, applied field. The other cause is charge distribution present within the 

device. The assumption was made that the potential applicable to the particle can 

be written as the sum of a part that varies only in the transverse directions, and a 

part that varies only in the longitudinal direction. In equation (4.2), these two 

parts are written separately. They are denoted respectively by ܷ௬௭ሺܻ, ܼሻ and 

ܷ௫ሺܺሻ. 
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The assumption was also made that the potentials ܷ௫ and ܷ௬௭ are not time-

dependent.  

Because of the assumptions that were made about the particle’s potential energy, 

the Schrödinger equation (4.2) is a separable partial differential equation. 

Appendix A shows explicitly how the separation of variables was performed. The 

part of the particle’s wave-function that depends only on ݐ is denoted ߴሺݐሻ. The 

part that depends only on ݕ and ݖ is denoted ߯ሺݕ,  ሻ. The part that depends onlyݖ

on ݔ is denoted ߰ሺݔሻ. The total wave-function is given in terms of these by 

,ݔሺߦ ,ݕ ,ݖ ሻݐ ൌ ߰ሺݔሻ߯ሺݕ,  ሻ. The transverse component of energy is denotedݐሺߴሻݖ

 Using these .ܧ ௫௬. The longitudinal component of kinetic energy is denotedܧ

symbols, Table 2 summarizes the parts into which equation (4.2) was separated. 

The right column of Table 2 gives the differential equation that must be solved to 

obtain the function given in the centre column.  

Table 2: Parts of the Separated Schrödinger Equation 

Time part ߴሺݐሻ 
൫ܧ ൅ ߴ௬௭൯ܧ ൌ ݅԰

ߴ߲
ݐ߲

 

Transverse part ߯ሺݕ,  ሻݖ
െ
԰ଶ

2݉
൬
߲߯
ݕ߲

൅
߲߯
ݖ߲
൰ ൅ ܷ௬௭߯ ൌ  ௬௭߯ܧ

Longitudinal part ߰ሺݔሻ 
െ
԰ଶ

2݉
߰ᇱᇱ ൅ ܷ௫߰ ൌ  ߰ܧ
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The direction in which current was calculated is the longitudinal direction. 

Although it is a slight misuse of terminology, this work refers to the linear 

differential operator representing the longitudinal part of equation (4.2) (as it 

appears in the bottom row of Table 2) as “the Hamiltonian”. The linear 

differential operator representing equation (4.2) is called “the total Hamiltonian”. 

A discrete formulation of the longitudinal Hamiltonian is desired so that ߰ሺݔሻ can 

be obtained numerically. The matrix containing the discretized representation of 

the Hamiltonian is denoted ܪ. It was constructed by starting with the finite 

difference representation of the second derivative operator as given in Chapter 2, 

multiplying by a constant, and adding a diagonal matrix with the diagonals equal 

to discrete samples of the particle’s potential energy. 

The matrix ܪ was subdivided into nine blocks. The top-left and bottom-right 

blocks encode the particle’s interaction with the left and right reservoirs, 

respectively. The top-left block is denoted ܪ௅ and is square with dimension ௅ܰ. 

The bottom-right block is denoted ܪோ and is square with dimension ோܰ. The 

centre block ܪ஽ encodes the particle’s interaction with the device. It is square and 

has dimension ܰ. The other blocks consist entirely of zeros, except for four single 

elements: one each in four of the blocks ߬௅, ߬௅
ற, ߬ோ, and ߬ோ

ற. These elements store 
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the off-diagonal elements of the second derivative operator that are present in ܪ 

to take derivatives at the boundary positions. 

Equation (4.3) gives the precise discrete form of the Hamiltonian. In equation 

(4.3), the uniform distance between discrete samples of the potential is denoted Δ. 

This value is called the spatial resolution. The potential ܷ௫ሺݔሻ has the single, 

fixed, constant value ܷ௫ሺݔሻ ൌ ௅ܷ inside the left reservoir. Similarly, ܷ௫ሺݔሻ ൌ ܷோ 

inside the right reservoir. 

ܪ ൌ ቎

௅ܪ ߬௅ 0

߬௅
ற ஽ܪ ߬ோ
0 ߬ோ

ற ோܪ

቏ (4.3.1)

ܽ ൌ ԰ଶ 2݉Δଶ⁄  (4.3.2)

݆ۧ|஽ܪ|݇ۦ ൌ ሺܷ௫ሺ݇ሻ ൅ 2ܽሻߜሺ݆, ݇ሻ െ ܽ൫ߜሺ݆, ݇ െ 1ሻ ൅ ,ሺ݆ߜ ݇ ൅ 1ሻ൯ (4.3.3)

݆ۧ|௅߬|݇ۦ ൌ െܽߜሺ݆, 1ሻߜሺ݇, ௅ܰሻ (4.3.4)

݆ۧ|ோ߬|݇ۦ ൌ െܽߜሺ݆, ܰሻߜሺ݇, 1ሻ (4.3.5)

ൻ݇หܪ௅|ோห݆ൿ ൌ ൫ܷ௅|ோ ൅ 2ܽ൯ߜሺ݆, ݇ሻ െ ܽ൫ߜሺ݆, ݇ െ 1ሻ ൅ ,ሺ݆ߜ ݇ ൅ 1ሻ൯ (4.3.6)

 

The density operator for a particle that has the Hamiltonian given in equation 

(4.3) is denoted ߩ. When reference is made in this chapter to the density operator, 

what is meant is an operator representing an ensemble of a large number of non-
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interacting particles, all moving in a common space. The usual normalization 

condition for a density operator is that Trሺߩሻ ൌ 1. It is necessary to scale the 

density operator by the total amount of charge to obtain a charge concentration. 

A block-wise definition for ߩ, structured such that the blocks of ߩ and ܪ are 

aligned and have the same size, is given in equation (4.4). 

ߩ ൌ ቎

௅ߩ ଵଶߩ ଵଷߩ
ଵଶߩ
ற ஽ߩ ଶଷߩ
ଵଷߩ
ற ଶଷߩ

ற ோߩ

቏ (4.4)

 

The centre block ߩ஽ is the solution being sought. The blocks representing particle 

density in the reservoirs, and the off-diagonal blocks, were not required for any 

further calculations. They were not calculated. 

The reservoirs are infinite in size. Therefore, the components ܪ௅ and ܪோ of the 

Hamilton operator, and the components ߩ௅ and ߩோ of the density operator, are 

infinite in size. However, the infinite size of these matrices does not prevent the 

numerical value of the centre block of the density operator, ߩ஽, from being 

calculated. 

In this work, the starting point for finding ߩ஽ was the Lippmann-Schwinger 

equation [10]. The Lippmann-Schwinger equation in the single particle context is 

applicable to a “system consisting of two interacting parts, which are such that the 
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interaction energy approaches zero as the two parts are separated spatially” [10]. 

The Hamiltonian consists of a term that describes the two parts that can interact, 

and another term that describes their interaction. These parts are denoted ܪ଴ and 

 ଵ respectively. The parts that can interact are the transverse and longitudinalܪ

fields and potentials. The interaction that physically occurs is an exchange of 

kinetic energy between the transverse and longitudinal directions, caused by an 

interaction between a particle and the device and/or other particles. 

The result of solving the Lippmann-Schwinger equation is a basis function; and a 

set of these basis functions can be used to construct a wave-function describing 

“the change in the state vector produced by the interaction process” [10]. 

Lippmann and Schwinger show that such basis functions exist, and show how to 

find them. These basis functions can be used to construct the wave-function of a 

particle that is affected by the interaction described by ܪଵ, even though they are 

time-independent. 

In this work, the explicit form of the total interaction potential that causes transfer 

of kinetic energy between the transverse and longitudinal directions is not given. 

However, the Green’s functions that are found can be used to describe any 

interaction. Each Green’s function corresponds to an interaction in which a 

particle that has a specific energy exchanges kinetic energy between the 

transverse and longitudinal directions at a specific position. The form of the 
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interaction was implicitly defined by the proposed method for constructing the 

density matrix from the Green’s functions, as described in this section and the 

next. 

Here, an abbreviated development of the Lippmann-Schwinger equation is given, 

following [10] and using similar notation. The full derivation is given in [10]. The 

Schrödinger equation from which the Lippmann-Schwinger equation is derived is 

stated as: 

݅԰
߲߰′
ݐ߲

ൌ ሺܪ଴ ൅ ′ଵሻ߰ܪ (4.5)

In equation (4.5), ߰′ is the wavefunction of the particle with the time-independent 

total energy ܪ଴ ൅  ,ଵ.  A unitary transformation is madeܪ

߰ᇱሺݔ, ሻݐ ൌ expሺ݅ܪ଴ݐ/԰ሻ ∙ ߰ሺݔ, ሻ (4.6)ݐ

Under this transformation the Schrödinger equation for the particle becomes 

݅԰
߲߰
ݐ߲

ൌ expሺ݅ܪ଴ݐ/԰ሻ ∙ ଵܪ ∙ expሺെ݅ܪ଴ݐ/԰ሻ߰ (4.7)

The notation is used:	 

ሻݐଵሺܪ ൌ expሺ݅ܪ଴ݐ/԰ሻ ∙ ଵܪ ∙ expሺെ݅ܪ଴ݐ/԰ሻ (4.8)

An operator ܷାሺݐሻ is defined by the equation ߰ሺݐሻ ൌ ܷାሺݐሻ߰ሺെ∞ሻ. 
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By integrating the Schrödinger equation, an integral equation is produced that can 

be solved for ܷାሺݐሻ: 

ܷାሺݐሻ ൌ 1 െ
݅
԰
න ′ݐᇱሻ݀ݐᇱሻܷାሺݐଵሺܪ
௧

ିஶ
 (4.9)

With reference to an initial state ߶ሺݔ, ;ݐ   ଴ሻ, Lippmann and Schwinger defineܧ

߰ାሺݔ, ;ݐ ,ܧ ଴ሻܧ ൌ lim
க→ஶ

න expሺ݅ሺܧ െ ԰ሻ/ݐ଴ሻܪ expሺെݐ|ߝ|
ஶ

ିஶ

/԰ሻܷାሺݐሻ߶ሺݔ, ;ݐ  ݐ଴ሻ݀ܧ

(4.10)

In equation (4.10): the parameter ܧ is the energy of the state ߰ା with respect to 

the Hamiltonian ܪ଴ ൅  ଴ is the energy of the state ߶ withܧ ଵ; and the parameterܪ

respect to the Hamiltonian ܪ଴. 

Using the definition given in equation (4.10), Lippmann and Schwinger show 

that: 

߰ା ൌ ߶ ൅
1

E ൅ ߝ݅ െ ଴ܪ
ଵ߰ା (4.11)ܪ

Equation (4.11) is called the Lippmann-Schwinger equation. 

Appendix B shows that the solutions ሺ߰ା െ ߶ሻ satisfy the Schrödinger equation 

for an interaction potential ܪଵ proportional to the Dirac delta function. In this 

work, a superposition of the solutions of equation (4.11) with ܪଵ proportional to 
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the delta function was used to represent a particle that enters the device, is subject 

to an interaction, and exits at a later time. 

Solutions to equation (4.11) are described in [10] as outgoing scattered waves. In 

their paper [10], Lippmann and Schwinger develop the time-reversed scenario in 

parallel. The solutions that result from the time-reversed development are called 

the incoming scattered waves. As it was argued by Datta in [14], the outgoing 

solutions must be used for the present application. 

The Hamiltonian to which equation (4.11) must be applied is the one stated in 

equation (4.3).  The unperturbed Hamiltonian that must be used when solving 

equation (4.11) is ܪ଴ ൌ  Equation (4.11) was solved for all energies, with a .ܪ

series of perturbations, to generate the set of Green’s functions applicable to that 

energy. Each of these perturbations was of the form: 

ଵܪ ൌ (4.12) |′ݔ〉〈′ݔ|߸

In equation (4.12): ߸ is the magnitude of the perturbation energy; and ݔ′ is the 

position at which the perturbed wavefunction is at a maximum. The expected 

position at which an exchange of transverse and longitudinal kinetic energy takes 

place is ݔ′. A Green’s function was obtained for every possible discrete position 

 .′ݔ
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The notation is now adopted that ݃ሺݔ; ,ᇱݔ ሻܧ ൌ ሺ߰ା െ ߶ሻ, where ܧ is the energy 

of state ߶. The functions ݃ሺݔ; ,ᇱݔ  are referred to as Green’s functions. It has	ሻܧ

been shown that each such Green’s function is an outgoing solutions to the 

longitudinal part of the Schrödinger equation (4.2) augmented by a perturbation 

potential. 

Using and the unperturbed and perturbation Hamiltonians from equation (4.3) and 

equation (4.12), the Lippmann-Schwinger equation that must be solved to obtain 

the Green’s function for the energy ܧ and the position ݔ′ is: 

൫ሺܧ ൅ ܫሻߝ݅ െ ;ݔ൯|݃ሺܪ ,ᇱݔ 〈ሻܧ ൌ ሺ߸|ݔ′〉〈ݔ′|ሻ|߰ା〉 (4.13)

The Green’s functions that resulted from solving equation (4.13) were 

normalized. Therefore, neither the magnitude of the perturbation energy ߸, nor 

the value of the perturbation component of the wavefunction ߰ା at the position 

 made any numerical difference to the end result. They can be assumed equal to ,′ݔ

one, or any other value, with no consequence. 

This thesis proposes to construct the component of the density matrix representing 

particles with energy ܧ using the equation: 

;ሺߩ ሻܧ ൌ න|݃ሺݔ; ,ᇱݔ ,ᇱݔሻ〉݂ሺܧ ܧሻθ൫ܧ െ ܷ௫ሺݔ′ሻ൯〈݃ሺݔ; ,ᇱݔ |ሻܧ ᇱ (4.14)ݔ݀
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In equation (4.14), ݂ሺݔ′,  :ሻ is the Fermi function, given byܧ

݂ሺݔ′, ሻܧ ൌ
1

1 ൅ exp ቀ൫ܧ െ ሻ൯/݇஻ܶቁ′ݔሺߤ
 (4.15)

Also in equation (4.14): θ is a step function that is zero when its argument is less 

than zero and one when its argument is greater than or equal to zero; and ܷ௫ሺݔ′ሻ is 

the same position-dependent longitudinal potential that was used in the 

Hamiltonian, equation (4.3). 

In equation (4.15): ߤሺݔ′ሻ is the position-dependent Fermi energy; ݇஻ is the 

Boltzmann constant; and ܶ is the temperature, which is assumed to be 

independent of time and position. Possible procedures for calculating the Fermi 

energy ߤሺݔ′ሻ are discussed in the next sub-section. 

The density matrix component ߩሺ;  ሻ was constructed by weighting the Green’sܧ

functions for each position and a common energy by the probability of occupation 

at position ݔ′ that a state with the common energy ܧ would be occupied. The step 

function θ൫ܧ െ ܷ௫ሺݔ′ሻ൯ appears in equation (4.14) to ensure that the Green’s 

function at position ݔ′ exists. In order to arrive at equation (4.13), it was assumed 

that the unperturbed and perturbed states at position ݔ′ did not have negative 

kinetic energy. If the integration of equation (4.14) were attempted without the 

step function present, then wave-functions that do not exist could be included in 
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the density matrix. Whether this problem actually occurred would depend on the 

specific potential being considered. 

The Hamiltonian that was referred to in equation (4.13) applies to all space, and 

even a discrete matrix representation of it would have an infinite number of rows 

and columns. The Hamiltonian was defined block-wise in equation (4.3), and the 

elements in the block-wise definition of a density matrix with the same matrix 

structure were assigned symbols in equation (4.4). A procedure for finding the 

Green’s functions block-wise is required so that the centre and only finite block, 

 ஽, of the density matrix can be found without calculating the elements of theߩ

other blocks. Using the notation of equation (4.3) and equation (4.4), the block-

wise statement of equation (4.13) is given as follows: 

ቐ
ܧ ൅ ߝ݅
߸

൥
ܫ 0 0
0 ܫ 0
0 0 ܫ

൩ െ
1
߸
቎

௅ܪ ߬௅ 0

߬௅
ற ஽ܪ ߬ோ
0 ߬ோ

ற ோܪ

቏ቑ

ିଵ

൥
ܫ 0 0
0 ܫ 0
0 0 ܫ

൩ ൌ ܩ

ൌ ൥
ଵଵܩ ଵଶܩ ଵଷܩ
ଶଵܩ ஽ܩ ଶଷܩ
ଷଵܩ ଷଶܩ ଷଷܩ

൩ 

(4.16)

This system was solved to find ܩ. Each column of ܩ is a Green’s function. 
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As shown in [11], multiplying ܩ by the middle row of ሺܧ ൅ ܫሻߝ݅ െ  yields the ܪ

equations: 

ሺܧ ൅ ஽ܩሻߝ݅ െ ൣ߬௅
ற ஽ܪ ߬ோ൧ ൥

ଵଶܩ
஽ܩ
ଷଶܩ

൩ ൌ  ܫ߸
(4.17.1)

൫ሺܧ ൅ ܫሻߝ݅ െ ଵଶܩ௅൯ܪ ൌ ߬௅
றܩ஽ 

(4.17.2)

൫ሺܧ ൅ ܫሻߝ݅ െ ଷଶܩோ൯ܪ ൌ ߬ோ
றܩ஽ 

(4.17.3)

Using the notation ߛ௅ ൌ ൫ሺܧ ൅ ܫሻߝ݅ െ ௅൯ܪ
ିଵ

 and ߛோ ൌ ൫ሺܧ ൅ ܫሻߝ݅ െ ோ൯ܪ
ିଵ

 , 

equation (4.17) can be restated as: 

൛൫ሺܧ ൅ ܫሻߝ݅ െ ௅൯ܪ െ ൫߬௅
ற ௅߬௅ߛ ൅ ߬ோ

ற ஽ܩோ߬ோ൯ൟߛ ൌ (4.18) ܫ߸

A further notational abbreviation is made: Σ௅ ൌ ߬௅
ற	ߛ௅߬௅, and Σோ ൌ ߬ோ

ற	ߛோ߬ோ. 

To proceed further, it was necessary to utilize a means of finding the values of 

specific elements of the semi-infinite matrices, ߛ௅ and ߛோ. The matrices ߬௅ and ߬ோ 

each have only one element, despite being infinite in size. Therefore, the only 

elements needed are the bottom right element of ߛ௅ and the top left element of ߛோ.  
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For an example device represented by a matrix of size 3 ൈ 3, this is demonstrated 

as follows: 

߬௅
ற	ߛ௅߬௅ ൌ ൥

0 	 0 െܽ
0 … 0 0
0 	 0 0

൩ ൥

ଵଵߛ … ଵ,ேಽߛ
⋮ ⋱ ⋮

ேಽ,ଵߛ … ேಽ,ேಽߛ
൩ ൦

0 0 0
	 ⋮ 	
0 0 0
െܽ 0 0

൪ ൌ ൥
ܽଶߛଵଵ 0 0
0 0 0
0 0 0

൩ 

The matrices of which ߛ௅ and ߛோ are the inverses are symmetric and tri-diagonal. 

Therefore, they are examples of Toeplitz matrices. A procedure for finding 

individual elements of the inverse of a Toeplitz matrix was found by Southern et 

al in [12]. That procedure built on the work of Hu and O’Connell in [13]. For the 

specific physical situation and the matrix formulation that are considered in this 

work, the applicable  Σ௅ and Σோ were found in [14] to be: 

݆ۧ|Σ௅|݇ۦ ൌ ܽ ⋅ ሺ0,0ሻߜ expሺ݅ ⋅ arccosሺ1 െ ሾሺܧ െ ܷ௫ሺݔ௅ሻሻ ܽ⁄ ሿሻሻ (4.19.1)

݆ۧ|Σோ|݇ۦ ൌ ܽ ⋅ ሺܰ,ܰሻߜ expሺ݅ ⋅ arccosሺ1 െ ሾሺܧ െ ܷ௫ሺݔோሻሻ ܽ⁄ ሿሻሻ (4.19.2)

In equation (4.19), ݔ௅ and ݔோ are the positions at which the device ends on the left 

and right sides, respectively. These formulae are based on the dispersion relation 

for the reservoirs [14], ܧ௄ ൌ 2ܽሺ1 െ cosሺ݇Δሻሻ	 where ܧ௞ ൌ ሺ԰݇ሻଶ/2݉. 
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Using the matrix elements for ܪ஽, Σ௅ and Σோ given in equation (4.3) and equation 

(4.19), the entire process can be summarized using the following expressions:  

ሻܧሺܨ ൌ෍ ,ݔሺ݂〈ݔ| ܧሻθ൫ܧ െ ܷ௫ሺݔ′ሻ൯〈ݔ|
௫

 (4.20.1)

ܳሺ; ሻܧ ൌ ൫ሺܧ ൅ ܫሻߝ݅ െ ஽ܪ െ Σ௅ െ Σோ൯
ିଵ
(4.20.2) ܫ߸

ܲሺ; ሻܧ ൌ ෍ܨ றܳ|ݔ〉〈ݔ|ܳ
௫

 (4.20.3)

;஽ሺߩ ሻܧ ൌ
ܲሺ; ሻܧ

Tr൫ܲሺ; ሻ൯ܧ
 (4.20.4)

 

The end result is a partial density matrix that describes a particle with energy ܧ. 

4.4.2. The Total Density Matrix 

In this section a method is proposed for constructing the total density matrix 

based on the energy-specific partial density matrices that were constructed in the 

previous section. It is argued that a density matrix constructed in the proposed 

manner will naturally incorporate a reasonable density of states and probability of 

state occupation. 
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This thesis proposes to construct the total density matrix for the device region, ߩ஽, 

as follows: 

஽′ߩ ൌ෍ ෍ ;஽ሺߩ ሻܧ
ா∈ௐሺ௫ᇲ,ேሻ௫ᇲ

ൌ෍ ෍ |݃ሺݔ; ,ᇱݔ ,ᇱݔሻ〉݂ሺܧ ܧሻθ൫ܧ െ ܷ௫ሺݔ′ሻ൯〈݃ሺݔ; ,ᇱݔ |ሻܧ
ா∈ௐሺ௫ᇲ,ேሻ௫ᇲ

 

(4.21.1)

ܹሺݔᇱ, ܰሻ ൌ ൜ܷ௫;௠௜௡

൅
݇

ாܰ
൫ܷ௫;௠௔௫ െ ܷ௫;௠௜௡ ൅ 	௫௠൯ܧ | ݇ ∈ ሼ0,1, … ாܰሽൠ 

(4.21.2)

஽ߩ ൌ ஽ሻ (4.21.3)′ߩ஽/Trሺ′ߩ

 

In equation (4.21): the set of positions ݔᇱ over which the outer summation is 

performed is the entire set of discrete positions that fall within the device region; 

ாܰ is a number of energies over which to perform the summation in energy; 

ܷ௫;௠௔௫ is the maximum value of ܷ௫ within the device region; ܷ௫;௠௜௡ is the 

minimum value of ܷ௫ within the device region; ܧ௫௠ is a kinetic energy such that 

the probability of finding a particle with a greater kinetic energy inside the device 

is negligible; and ݂ሺݔᇱ,  .ሻ is the Fermi function, as in equation (4.15)ܧ

It is worthwhile to consider the way in which the proposed density operator 

reflects the density of states. 
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A typical un-normalized density matrix construction is as follows: 

ߩ ൌ න ݂ሺ்ܧሻܽሺ்ܧሻ |߯ா೤೥߰ா〉 〈߰ா߯ா೤೥| ்ܧ݀
ஶ

଴
 (4.22)

In equation (4.22): ்ܧ is the longitudinal plus transverse energy, ்ܧ ൌ ܧ ൅   ;௬௭ܧ

݂ሺ்ܧሻ ൌ ቀ1 ൅ exp ቀா೅ିఓ
௞ಳ்

ቁቁ
ିଵ

 is the probability of state occupation given by the 

Fermi function; ܽሺ்ܧሻ is the three-dimensional density of states; the transverse 

part of the wave-function is ߯ா೤೥; and the longitudinal part of the wave-function is 

߰ா. 

Because the Fermi distribution gives the probability of state occupation, a density 

matrix construction that makes use of it must in some sense utilize a density of 

states. 

In this work, the applicable density of states was assumed to be constant. 

Weyl’s theorem [15] states that for a Sturm-Liouville operator with one singular 

endpoint ܽ and one regular endpoint ܾ, there is a unique solution corresponding to 

an eigenvalue ܧ ∈ Թ of the operator on ሺܽ, ܾሻ. For the problem under 

consideration in this work, with ܪଵ given by equation (4.12), each pair ሺݔᇱ,  ሻܧ

therefore results in a unique function ݃ሺݔ; ,ᇱݔ  .ሻܧ
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The density operator given by equation (4.22) can be restated as a double integral: 

ߩ ൌ නන݂൫ܧ ൅ ܧ݀|௬௭൯|߰ா〉〈߰ாܧሻܽ௬௭൫ܧ௬௭൯ܽ௫ሺܧ ⋅ ௬௭ (4.23)ܧ݀

 

To arrive at equation (4.23): the contribution from the transverse wave-function 

߯ா೤೥ ⋅ ߯ா೤೥തതതതതത is cancelled since the device has no features in the transverse direction; 

and the partitioning ܽ ൌ ܽ௫ ⋅ ܽ௬௭ is possible because of the separation of 

variables. As argued in the previous paragraph, the longitudinal density ܽ௫ሺܧሻ 

applicable to Green’s functions is constant. Therefore, the density matrix 

constructed from Green’s functions has the proportionality, 

ߩ ∝ නܽ௬௭൫ܧ௬௭൯ ൜න݂൫ܧ ൅ ;௬௭൯|݃ሺܧ ;ሻ〉〈݃ሺܧ ൠܧ݀|ሻܧ  ௬௭ܧ݀

As shown above, the assumption of a constant density of states becomes 

increasingly accurate as ܧ௬௭ becomes small relative to ܧ and ݂൫ܧ ൅ ௬௭൯ܧ ൎ ݂ሺܧሻ. 

Because the electric field causing net motion of particles participating in 

conduction is in the longitudinal direction, the assumption that 〈ܧ〉 ≫  is 〈௬௭ܧ〉

reasonable. 

The idea of a constant density of states has precedent in various other works, such 

as Lake [16], Rammer and Smith [17], and Jauho and Wilkins [18]. 
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Given an arbitrary ܽሺܧሻ, the method that has been presented would allow for 

calculating ߩ′஽ as ߩ஽
ᇱ ൌ ;஽ሺߩሻܧሺܽ׬  rather than using equation (4.21). This ܧሻ݀ܧ

work used ܽሺܧሻ ൌ ሺܿݐݏ݊݋. ሻ because no other choice was more obvious. 

4.5. Calculation of Potential Using the Density Matrix 

The density operators constructed in the previous section were used to calculate 

charge concentration within the device. 

The populations of holes and electrons in a device have different Fermi energies, 

potentials, and density operators. The following table summarizes the notation 

used for the populations of electrons and holes. 

 Population of 

electrons 

Population of  

holes 

Total amount of charge ሾܥሿ ܳି ܳା 

Free charge distribution ሾܥ ∙ ݉ିଷሿ ݊௡ሺݔሻ ݊௣ሺݔሻ 

Ionized dopant charge distribution 

ሾܥ ∙ ݉ିଷሿ 
஽ܰ
ାሺݔሻ ஺ܰ

ିሺݔሻ 

Fixed charge distribution ሾܥ ∙ ݉ିଷሿ ݖ௡ሺݔሻ ݖ௣ሺݔሻ 

Fermi energy ሾܬሿ ߤ௡ሺݔሻ ߤ௣ሺݔሻ 

Applicable potential ሾܬሿ ܷ௡ሺݔሻ ܷ௣ሺݔሻ 

Density matrix ߩ௡ ߩ௣ 
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Conduction/valence band offset ሾܬሿ ߴ஼஻ሺݔሻ ߴ௏஻ሺݔሻ 

Intrinsic carrier density ሾܥ ∙ ݉ିଷሿ ௜ܰ 

Band gap  ሾܬሿ ீߴሺݔሻ 

Net charge ሾܥ ∙ ݉ିଷሿ ݊ሺݔሻ 
  

The total electron charge was found by integrating the ionized donor 

concentration inside the device region: 

ܳି ൌ න ஽ܰ
ାሺݔሻ݀ݔ 

The concentration of free electrons is given by ݊௡ሺݔሻ ൌ  .ۧݔ|௡ߩ|ݔۦିܳ

Similarly, the total hole charge was found by integrating the ionized donor 

concentration inside the device region: 

ܳା ൌ න ஺ܰ
ିሺݔሻ݀ݔ 

The concentration of free holes is given by ݊௣ሺݔሻ ൌ ܳାൻݔหߩ௣หݔൿ. 

The total charge distribution was found by summing all of the contributions that 

are included in the model: 

݊ሺݔሻ ൌ ݊௡ ൅ ݊௣ ൅ ஺ܰ
ି ൅ ஽ܰ

ା ൅ ௡ݖ ൅ ௗ (4.24)ݖ

It is not necessary or expected that 100% of dopant sites will be ionized. 

However, modeling the interrelationship between Fermi level, field, and 

ionization rate was not considered central to this work. The flexibility of the 
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proposed methodology would allow for the proportion of dopant sites that are 

ionized to be adjusted during the Schrödinger-Poisson iteration process, if an 

adjustment were deemed necessary. 

The net charge concentration may include a population of fixed charge that will 

not be balanced by free carriers, thus causing the device to have a built-in voltage 

bias. This population was represented by ݖ௡ ൅  ௗ in equation (4.24). The fixedݖ

charge may be a fixed value, or set to zero. 

The voltage profile resulting from the charge distribution given in equation (4.24) 

was calculated using the Poisson equation: 

݀
ݔ݀

൜ߝሺݔሻ
݀߶
ݔ݀
ൠ ൅ ݊′ሺݔሻ ൌ 0 (4.25)

In equation (4.25), ݊′ሺݔሻ is a charge concentration. The simplest form of the 

algorithm sets ݊ᇱሺݔሻ ൌ ݊ሺݔሻ as given by equation (4.24). 

The differential equation, equation (4.25), was discretized and solved 

numerically. The discrete matrix form of equation (4.25) is: 

1
∆ଶ
൦

1 	
଴ߝ െ2ߝଵ ଶߝ
	 	 	 ⋱ 	
	 	 1

൪ࣘ ൌ െ࢔ ൅ (4.26) ࢈

 



87 
 

In equation (4.26): the first and last elements of ࢔, the net charge, are set to zero; 

and the boundary conditions are given by ࢈ ൌ ሾ ௅ܸ 0 … 0 ோܸሿ் with ௅ܸ|ோ 

being the left/right applied voltages. 

The potentials applicable to the populations of electrons and holes were calculated 

based on the solution of the Poisson equation, using the following equations: 

ܷ௡ሺݔሻ ൌ െݍ߶ሺݔሻ ൅ ሻ (4.27.1)ݔ஼஻ሺߴ

ܷ௣ሺݔሻ ൌ ሻݔሺ߶ݍ ൅ ሻ (4.27.2)ݔ௏஻ሺߴ

When the potential calculated from a charge distribution is significantly different 

from the one that originated it, then consistency between the Schrödinger and 

Poisson equations requires iteration to be performed. The new potential is fed 

back into the process by using it to construct a new Hamiltonian. The feedback 

loop is repeated until the input and output potentials are not significantly 

different. 

There are two degrees of freedom in finding the density of a carrier population 

corresponding to a potential: the quasi-Fermi level for the population, and the 

potential itself. The programs developed for this work assigned the quasi-Fermi 

levels using a very simple scheme. In this scheme, the quasi-Fermi levels were 

given by: 
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௡ߤ ൌ ஼஻ߴ െ
ீߴ
2
൅ ݇஻ܶ ln ቆ

஽ܰ
ା

௜ܰ
ቇ ൅ ሻ (4.28.1)ݔ଴,௡ሺߤ

௣ߤ ൌ ௏஻ߴ ൅
ீߴ
2
െ ݇஻ܶ ln ൬

஺ܰ
ି

௜ܰ
൰ ൅ ሻ (4.28.2)ݔ଴,௣ሺߤ

 

In equation (4.28), ߤ଴,௡ and ߤ଴,௣ are position-dependent offsets that relate the 

quasi-Fermi levels and the electric field inside the device. 

A number of different approaches may be used to relate the field and the quasi-

Fermi levels. One approach simply offsets the quasi-Fermi levels based on the 

potential, as follows: 

ሻݔ଴,௡ሺߤ ൌ െݍ߶ሺݔሻ (4.29.1)

ሻݔ଴,୮ሺߤ ൌ ሻ (4.29.2)ݔሺ߶ݍ

Another approach defines ߤ଴,௡ and ߤ଴,୮ piecewise in a way that is specific to a 

device structure. To give one example, the quasi-Fermi level for electrons in a 

MOS device could be defined as in equation (4.30). 

଴,௡ߤ ൌ ൞

௅ܸ, ݔ ൏ ௢௫ݔ
௅ܸ ൅ ோܸ

2
, ௢௫ݔ ൑ ݔ ൑ ௢௫ݔ ൅ ௢௫ݐ

ோܸ, ݔ ൐ ௢௫ݔ ൅ ௢௫ݐ

 (4.30)

 

In equation (4.30): ௅ܸ and ோܸ are the left and right applied voltages; and ݔ௢௫ and 

 .௢௫ are the position of the left edge and the thickness of the oxideݐ
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Both approaches were used for some of the results in subsequent chapters. 

The potentials given in equation (4.27) and the Fermi levels given in equation 

(4.28) may be used in Schrödinger-Poisson iteration to reconstruct the 

Hamiltonian and density matrix. 

In “self-consistent” calculations, density matrix calculation iteration was 

terminated when the difference in free charge distribution between iterations 

became negligible. In practical terms, this meant that charge concentration at any 

point did not change by more than 0.1% between iterations1. When the iteration 

process terminated because this criterion is met, the solution can be called self-

consistent. In order to ensure that the algorithm terminates and to place a limit on 

the real time that calculations can take, an additional termination criterion was 

added: The algorithm was terminated if the maximum permitted number of 

iterations (as chosen by the program operator) was exceeded. 

If the density matrix calculation terminated because the iteration limit was 

reached, the solution could not be called self-consistent. Experience with the 

calculation programs showed that divergence, in which iterations are 

progressively farther from the solution than previous ones, was not generally 

observed. However, this thesis cannot provide a convergence proof. 

                                                 
1 The 0.1% convergence threshold was selected somewhat arbitrarily, and a 
different value could be used. 
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To increase the rate of convergence, it was found beneficial to use a linear 

combination of the net charge concentration that was used in the previous 

iteration and the newly calculated net charge concentration. To do this, equation 

(4.25) may be modified using: 

݊ሺ௞ሻ
ᇱ ሺݔሻ ൌ ሺ1 െ αሻ݊ሺ௞ିଵሻ

ᇱ ሺݔሻ ൅ α݊ሺ௞ሻሺݔሻ (4.31)

In equation (4.31): a subscript in parentheses indicates the iteration number from 

which the annotated quantity originates; ݇ is the current iteration; and 0 ൏ ߙ ൏ 1 

is an experientially selected factor meant to accelerate convergence. For example, 

ߙ ൌ 0.3 might be used. 

Not all of the results presented in this work are self-consistent. Self-consistent 

results are noted as such. 

4.6. Calculation of Current and Other Observables 

The quantum-mechanical procedure for measuring the expected value of a generic 

observable represented by an operator is to take the trace of the operator applied 

to the density matrix: 

〈Ω〉 ൌ TrሺߩΩሻ (4.32)

In equation (4.32): Ω is an observable; and ߩ is a density matrix. 
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A position-dependent measurement, given operators in the position basis, is 

produced by: 

߱ሺݔሻ ൌ  ۧݔ|Ωߩ|ݔۦ

If this procedure were to fail, it would suggest the incorrectness of the density 

operator. 

The observable of primary interest in this work is current. The discrete matrix 

form of the position basis current operator used in the calculations was: 

ܬ ൌ
԰
݉Δ

൦

0 െ݅ 0
݅ 0 െ݅
0 ݅ 0 	

⋱

൪ (4.33)

 

The density operators to which this current operator was applied were scaled as 

follows: 

Trሺߩ௡ሻ ൌ ܳି 

Tr൫ߩ௣൯ ൌ ܳା 

4.7. Conservation Laws 

The conservation laws applicable to charge carrier transport have the following 

interrelated aspects: 

1. Conservation of charge 

2. Conservation of particle or quasi-particle count 
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3. Conservation of probability flux 

4. Conservation of momentum 

5. Conservation of energy 

The probability flux ݆ associated with a wave-function ߰ is given by: 

݆ ൌ െ
݅԰
2݉

൫࣒׏࣒ െ ൯ (4.34)߰׏߰

 

Based on this definition and the Schrödinger equation, the conservation law for 

probability flux, equation (4.35), may be derived [8]. 

ሶߩ ൅ ׏ ∙ ݆ ൌ 0 (4.35)

A density operator constructed from valid solutions of the Schrödinger equation 

must satisfy this conservation law, which implies conservation of momentum. 

This work attempted to construct steady-state density operators, which satisfy 

ሶߩ ൌ 0. The density operators constructed describe a fixed number of particles. If 

particle count in a system is conserved, then charge is also conserved. No physical 

process other than the addition or removal of particles was considered that can 

could the amount of charge. Particle count is given by the trace of the density 

matrix; thus the number of particles represented by a steady state density matrix 

can trivially be enforced by normalization and scaling. 
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Given a density matrix representing a fixed number of particles, the conservation 

law (4.35) can easily be verified by finding ׏ ∙ ݆. The numerical results generated 

by the method described in this chapter do not allow equation (4.35) to be 

verified, because while the density operators are calculated based on an implicit 

transfer of energy between the longitudinal and transverse directions, the 

transverse wave-functions are not calculated. However, provided that the 

functions from which the operators are constructed are correct solutions of the 

Schrödinger equation, conservation of momentum and probability flux must be 

obeyed. 
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5. Simulation Results 

In this section, the results of charge and current calculations for two test devices 

are presented. The devices were selected with the purpose of testing specific 

aspects of the calculation programs and the physical model and methodology 

described in the previous chapter. 

The convention that was followed in illustrations was to show devices with one 

spatial dimension, in which the coordinate increases along the x-axis, from left to 

right across the page. The y-axis shows the magnitude of position-dependent 

quantities such as energy, charge concentration, or current. In this chapter and the 

next, the convention was followed that voltages were applied at the contact where 

ݔ ൌ 0. 

5.1. Test Device 

The first device that was considered was a test device meant to show the 

qualitative behaviour of the simulator. The device was not considered to have any 

purpose other than to test the simulator. It was similar in structure to the n+/n/n+ 

resistor discussed in [14]. 

The device model included doping and counter-doping so that the simulations 

would yield results with substantial concentrations of both majority and minority 
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carriers. A position-varying dopant concentration was used, with the purpose of 

testing whether the results would show a correlation between free charge and 

fixed charge of the opposite sign (produced by ionized dopant atoms). The 

tendency toward local charge neutrality is expected of a physically realistic 

model. 

The device had asymmetry in its structure, so that potential errors in the 

calculation methodology related to symmetry could potentially be revealed. 

Self-consistent results were found, with programmatic, independent adjustment of 

the quasi-Fermi energies for electrons and holes. 

A starting potential was used that was far from the correct, self consistent 

potential, with the purpose of testing whether convergence could be reached in 

such circumstances. Applied voltages were simulated that were significantly 

higher than those tested in comparable works, such as [14]. The intention of using 

high applied voltages was to test the limits of the proposed new methodology. 

The device that was simulated is shown in Figure 2. Simulation results showing 

the concentrations of free electrons and holes are provided in Figure 3. Figure 4 

shows the starting potential and the ionized acceptor and donor concentrations 

that were used for the 1.0 V calculation. The same ionized acceptor and donor 

concentrations were used for all calculations. 
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Figure 2: Device Properties – Test Device 

 

 

 

Material 1 Material 2 

ΦCB = 0 ΦCB = 1.0 eV 

ΦVB = 0 ΦVB = 1.0 eV 

κ = 1.0 κ = 1.0 

EG = 1.0 eV EG = 1.0 eV 

me* = 0.25 me* = 0.25 

mh* = 0.25 mh* = 0.25 
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Figure 3: Charge Concentration Results – Test Device 

 (A) Voltage Applied: 0 V 

 

(B) Voltage Applied: 1.0 V 
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(C) Voltage Applied: -1.0 V 

 

 

Figure 4: Starting Potential and Charge Concentration – Test Device, 1.0 V applied 
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The device that was simulated has an 8 nm region with relatively low dopant 

concentration in its centre, and two 6 nm regions with relatively high dopant 

concentration adjacent to each contact. There is an insulator region located in the 

region 6 to 8 nm from the left contact. Electrons are the majority carriers. 

Figure 3 (A) shows the charge distributions, the Fermi energy, and the conduction 

band energy that are calculated when no voltage is applied across the device. The 

concentrations of free electrons and holes are reduced in the insulator region, as 

expected. The free electron concentration is reduced by approximately two orders 

of magnitude inside the potential barrier. Electron concentration is locally 

correlated with ionized donor concentration. Figure 3 (A) shows that free electron 

concentration is reduced in the centre of the device, where the concentration of 

fixed positive ions is lowest. The device has an abrupt changes in donor 

concentration at the edges of the centre region, but the free charge concentration 

is continuous, because it is a linear combination of PDFs obtained from 

continuous wave-functions. Furthermore, the device has an insulator region, 

inside which the free carrier concentration is reduced. For these reasons, the 

potential across the device is not expected to be flat. The simulator predicts that to 

the right of the insulator region, free electron concentration is higher than ionized 

donor concentration. Therefore, a potential well is created from the perspective of 
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the minority carriers, and a peak in hole concentration appears at the centre of this 

potential well. 

For Figure 3 (A), (B), and (C), the Fermi levels were calculated using equations 

(4.28) and (4.29). 

Figure 3 (B) and Figure 3 (C) results are shown for +1.0 V and -1.0 V 

respectively applied at the ݔ ൌ 0 contact. 

Comparing Figure 3 (B) with Figure 4, it can be seen how the self-consistent 

Schrödinger-Poisson potential differs from the potential that is calculated when 

charge neutrality is assumed everywhere. The free electron concentration is 

reduced to the right of the barrier in Figure 3 (B) for two reasons. Firstly, the 

dopant concentration is reduced; and secondly, the applied field accelerates free 

electrons present inside the device toward the contact. In the region to the right of 

the barrier, there is a potential well for holes. In this potential well, Figure 3 (B) 

shows the formation of a “quantized inversion layer”, where the concentration of 

free holes exceeds the concentration of free electrons. The pattern of maxima and 

minima is suggestive of the existence of standing waves in the potential well. 

Such standing waves could occur if the population of holes in the potential well 

occupied narrow energy bands. Since this feature of the results was unexpected 

and precedents were not found in the literature, the simulation was repeated with 

an increase in resolution in energy, to determine whether the apparent 
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quantization was the result of a limited number of energy samples having non-

negligible probability of occupation at the positions where the potential well 

existed. It was found that the same results were obtained even when resolution in 

energy was increased. 

Tunnelling from the inversion layer is an important effect co consider when 

calculating MOSFET leakage current [38], so it is important that inversion layer 

formation can be observed in the simulation results, and threshold voltage can be 

extracted. 

In Figure 3 (B), the minimum of free electron concentration is at the expected 

location, which is the right edge of the insulator region. That position is the 

expected free electron concentration minimum because the direction of electron 

travel is from left to right, so the only electrons expected to be found there are 

ones that have tunneled through the insulator region and those that have reached 

the barrier by travelling from the right contact, in opposition to the direction of 

net electron current flow. 

Figure 3 (B) may be compared with Figure 3 (C) to show the effects of voltage 

polarity on the charge distributions. As expected, when the voltage polarity is 

reversed, a potential well for electrons, instead of holes, arises to the right of the 

barrier. Despite the lower concentration of dopant in the well, electron density 

still reaches a peak value in this region. 
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5.2. Resonant Tunneling Diode 

The resonant tunneling diode (RTD) is an often-used device for non-equilibrium 

quantum-mechanical simulations [35] [36] [37] [22] [39]. In this section, the 

simulator developed in this thesis is applied to a resonant tunneling diode model, 

to facilitate comparison with other simulation methodologies. 

The resonant tunneling diode subject to simulation is shown in Figure 5. The RTD 

is meant to be similar to other RTDs simulated in [35], [37], and [22], and tested 

in [40]. 

5.2.1. Charge Concentration 

The calculated free carrier concentration in the RTD, with 0.25V applied, is 

shown in Figure 6. The charge concentration shown is self-consistent, meaning 

that it was produced by a convergent iteration between the coupled Poisson and 

Schrödinger equations. Figure 6 is provided to facilitate comparison with the 

results in [22] showing charge concentration for a similar RTD, the same applied 

voltage, and three alternative simulation methods. 
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Figure 5: Device Properties – Resonant Tunneling Diode 

 

Material 1 Material 2 

GaAs AlxGa(1-x)As2 

ΦCB = 0 ΦCB = 0.3 eV 

ΦVB = 0 ΦVB = 0.1 eV 

κ = 13.18 κ = 12.24 

me* = 0.067 me* = 0.067 

mh* = 0.34 mh* = 0.34 

EG = 1.42 eV  

ni = 2.03e12 m-3 [21]  

 

                                                 
2 The conduction band offset and effective mass are from [22] . It was assumed 
that x ~ 0.3. The dielectric constants are from [34] and the valence band offset is 
estimated based on [34] and [21]. 
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Figure 6: Charge Concentration – RTD, 0.25 V Applied 

 

The charge concentrations shown in Figure 6 and calculated in [22] have a few 

key differences. Foremost among these is that in Figure 6 the free and fixed 
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device/reservoir boundary, it is not equal to the fixed charge concentration, and 

the voltage in the reservoir is spatially invariant, the result in Figure 6 implies a 

discontinuity in fixed charge concentration or Fermi energy at the right contact. 

This result is not inconsistent with any explicit modelling assumption. It was 

assumed in the model that the Fermi level, as a function of position, could be 

discontinuous; and that discontinuities could arise at boundaries between different 

materials. Additionally, the model allows for arbitrary, possibly discontinuous 

fixed charge concentration. The simulator developed for this thesis did not ensure 

or guarantee that free and fixed concentrations at the device boundaries are equal, 

or that free charge concentrations at the device boundaries are equal to specific 

values. In order for the simulator to produce results with specific charge 

concentrations at the device boundaries, additional boundary conditions would 

need to be formulated and incorporated into the simulator. 

5.2.2. Current-Voltage Curve 

The simulator was used to calculate the current voltage curve for a resonant 

tunneling diode. The RTD that was simulated was a modified version of the one 

shown in Figure 5, with a total length of 35 nm. (The regions of “Material 1” 

adjacent to the contacts, shown in Figure 5 as 29.75 nm long, were shortened to 

be 12.25 nm). The current-voltage (I-V) curve for the RTD is shown in Figure 7. 
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Figure 7: Current-Voltage Curve – RTD  
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Table 3: Comparison of RTD Results 

Source Peak Resonant 

Current [A/m2] 

Peak/Valley 

Ratio 

Resonant Voltage 

[mV] 

Figure 7 2.4102 8.0 300 3 

Frensley [35] 1.8108 4.5 120 4 

El Ayyadi and Jungel [22] 1.1108 5.5 260 5 

Lake and Datta [37] 7.0108 > 10 150 6 

Reed et al, 

experimental [40] 

1.2105 4.5 260 

 

As Table 3 shows, the simulators’ predictions for resonant voltage were similar, 

and were close to the experimental result. The simulators discussed in [22], [35] 

and [37], made similar predictions for current density, on the order of 108 A/m2. 

The value measured in [40] was about 3 order of magnitude lower, and the value 

obtained in this thesis was 3 orders of magnitude lower than the measured value. 

                                                 
3 Measured relative to current zero 
4 Based on the Wigner function approach 
5 Based on the QDD-SP approach 
6 Based on the KKB approach 
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6. Application to Field Effect Transistor Modeling 

6.1. Basic Device Model 

The basic field effect transistor (FET) device considered in this thesis was similar 

to the one examined in [23]; it was an n-FET, with an n-type gate, a p-type 

substrate, and an SiO2 gate dielectric that varied in width from 1.2 nm to 6.4 nm. 

The device, with a specific gate dielectric width of 3.2 nm, is shown in Figure 8. 

Material parameters were obtained from published literature [21] [41]. When 

dielectric layers thicker or thinner than 3.2 nm were considered, the increase in 

size of the material 2 (gray) region was compensated by a decrease in size of the 

material 3 (blue) region. 
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Figure 8: Device Properties – Field Effect Transistor 

 

 

Material 1 Material 2 Material 3 

Poly Si SiO2 Si, ni = 1.0e16 m-3 

Φ = 0 Φ = 3.2 eV Φ = 0 

ΦVB = 0 ΦVB = 4.7 eV ΦVB = 0 

Eg = 1.12 eV Eg = 9 eV Eg = 1.12 eV 

Nd = 5e25 m-3  Na = 5e23 m-3 

κ = 11.7 κ = 3.9 κ = 11.7 

me* = 1.08 me* = 1.08 me* = 1.08 

mh* = 0.48 mh* = 0.48 mh* = 0.48 

 

6.2. Charge Distribution 

Two examples of  calculated charge distribution and conduction band offset are 

shown for the simulated device in Figure 9. In Figure 9 (A), the results are shown 
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for the n-FET in accumulation, with 0.4 V applied. In Figure 9 (B), the results are 

shown for the n-FET in inversion, with -1.0 V applied. The charge concentrations 

are self-consistent, in that a convergent solution of the Schrödinger-Poisson 

system of differential equations was found. The quasi-Fermi energies were 

defined piecewise, as per equation (4.29). Their values in the gate and body were 

held fixed to the values in the contacts. The quasi-Fermi energies in the dielectric 

were the averages of the gate and body values. Section 4.5 discusses alternatives 

for defining the quasi-Fermi levels and their consequences. 

 

Figure 9: Charge Concentration – FET 

(A): Accumulation (+0.4 V applied) 
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Figure 9 (B): Inversion (-1.0 V applied) 

 

 

Qualitatively, the charge concentrations had the expected features. Notably, 

formation of the inversion layer was observed. Without the proposed 

modifications to the nonequilibrium Green’s function method, it seems that this 

result would not be obtained. 
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piecewise. Figure 10 shows current-voltage curves for three variants of the basic 

device shown in Figure 8, with gate dielectric thickness varied. 

Figure 10: Current-Voltage Curve – FET 

 

 

Table 4 shows a comparison with the simulated results in [23] (which match quite 
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Table 4: Comparison of Tunneling Current Results 

Dielectric Thickness 1.6 nm 3.2 nm 

Applied voltage 0.5 V 1.5 V 0.5 V 1.5 V 

Figure 10 [A/cm2] 1.15  2.06 1.05 1.93 

Buchanan et al  [23] 

[A/cm2] 

~1 ~10 ~10-8 ~10-7 

 

Calculated results in the two studies give similar I-V curves for the 1.6 nm 

dielectric, but in this study, increasing the width of the dielectric has a relatively 

small effect on current. The failure to correctly capture the dependence of current 

on dielectric thickness is likely attributable in large part to the procedure used to 

assign quasi-Fermi levels within the device. For example, if there were a 

discontinuity in Fermi level at either boundary of the dielectric, the I-V curve 

could be considerably different. A secondary factor is the grid spacing used for 

the finite difference differential operators; the grid spacing used was 1% of device 

length. With smaller grid spacing, it is likely that the difference in current as a 

function of dielectric thickness would increase. 

To illustrate the significance of the way in which the quasi-Fermi levels in the 

device are determined, the limit was considered in which the gate dielectric was 

removed entirely. Two current-voltage curves, for the device of Figure 8 with the 

gate dielectric removed, are shown in Figure 11.  
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Figure 11: Current-Voltage Curves With No Gate Dielectric 
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7. Conclusion 

A general method has been presented for calculating charge concentration and 

current in nanoscale electronic devices. The proposed simulation methodology 

has been used to illustrate the qualitative behaviour of a resonant tunneling diode, 

the gate leakage of a MOS capacitor, and a P-N junction, with modest success. 

The calculation method is based on the well-published non-equilibrium Green’s 

function (NEGF) method [14], [16]. However, the standard method was modified 

by making use of spatially varying quasi-Fermi levels in the construction of 

density operators. 

Additional effort would be needed for the method presented in this thesis to 

progress from a conceptual demonstration to a practical predictive tool. The most 

significant improvements that are needed include: 

 An adaptation of the method to three dimensions, making it possible to 

obtain plausible results that obey conservation of energy and momentum 

 The development of a convincing procedure for finding uniquely correct 

position-dependent quasi-Fermi levels. It is possible that some conditions 

cannot adequately be described by quasi-Fermi levels, as the form of the 
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distribution could be entirely incorrect. In such cases, a replacement 

distribution (with position as a parameter) is really what is needed. 

 Possible replacement of the condition that devices be strictly charge 

neutral with the condition that net charge asymptotically approaches zero 

as the device expands to cover the reservoir regions  

The proposed method had a few successes. The shapes of current-voltage curves, 

though not the magnitudes, could be reproduced for resonant tunneling diodes and 

field effect transistors. One stated purpose, that of developing a Green’s function-

based method that predicted charge concentrations sensitive to potential wells 

inside devices, was achieved. The method was also successful at increasing the 

range of voltage that could be applied across device contacts as compared to 

typical NEGF methods. However, the dependence of the I-V curve of a FET on its 

gate dielectric thickness was not correctly determined by the simulator. 
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Appendix A: Separation of Variables for the 

Single Particle Schrödinger Equation 

This Appendix begins with equation (4.2), the Schrödinger equation for a single 

charge-carrying particle moving through a device. Time and three spatial 

dimensions are considered. It is shown how to separate the partial differential 

equation, equation (4.2), into the three separate equations listed in Table 2 that 

can be solved for components of the wave-function. 

The Schrödinger equation is: 

ቈെ
԰ଶ

2݉
ᇞ ൅ܷ௫ሺܺሻ ൅ ܷ௬௭ሺܻ, ܼሻ቉ 〈ߦ| ൌ ݅԰

߲
ݐ߲
 〈ߦ|

It is assumed that the wave-function can be written as: 

,ݔሺߦ ,ݕ ,ݖ ሻݐ ൌ ߰ሺݔሻ߯ሺݕ,  ሻݐሺߴሻݖ

Therefore, in the position basis, 
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Dividing both sides by the total wave-function yields 
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Since the left-hand side depends only on the variables x, y, and z, and the right-

hand side depends only on the variable t, the only way for the two sides to be 
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equal is for them both to be equal to a constant with an arbitrary value. This 

constant is denoted ܥଵ. Two equations are obtained: 

ଵܥ ൌ
݅԰
ߴ
ߴ݀
ݐ݀

 

And, 
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The right and left sides of the latter equation once again have no variables in 

common. The left side depends only on y and z, and the right side depends only 

on x. Therefore, both sides must be equal to an arbitrary constant. This constant is 

denoted ܥଶ. Two equations are obtained: 
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And, 
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൅ ܷ௫ሺݔሻ ൌ ଵܥ െ  ଶܥ

When the Schrödinger equation is separated, it is usual to interpret the constants 

of separation as energies. They have units of energy. 

The constant ܥଵ is equal to the total kinetic energy of the particle: 

ܧ ൅ ௬௭ܧ ൌ  ଵܥ
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The constant  ܥଶ is equal to the transverse kinetic energy of the particle: ܥଶ ൌ

 :is given by ܧ ௬௭. Therefore, the longitudinal kinetic energyܧ

ܧ ൌ ଵܥ െ  ଶܥ

In this way, the three separated differential equations that are given in Table 2 as 

components of the total wave-function are recovered. 
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Appendix B: Discussion of the Lippmann-

Schwinger Equation 

This appendix has the goal of demonstrating the sense in which solutions of the 

Lippmann-Schwinger equation are Green’s functions of the Schrödinger equation. 

The statement of the Lippmann-Schwinger equation given in Chapter 4 refers to a 

function ߰ା, which is defined as: 

߰ାሺݔ, ;ݐ ,ܧ ଴ሻܧ ൌ lim
ఌ→଴శ

න expቆ
݅ሺܧ െ ݐ଴ሻܪ

԰
ቇ

ஶ

ିஶ
expቆെ

|ݐ|ߝ
԰
ቇܷାሺݐሻ߶ሺݔ, ;ݐ  ݐ଴ሻ݀ܧ

The function ߶ሺݔ, ;ݐ -଴ሻ is defined to be a wavefunction that satisfies the timeܧ

independent Schrödinger equation ܪ଴߶ ൌ  ଴߶. Therefore the time derivative ofܧ

߶ሺݔ, ;ݐ  :଴ሻ isܧ

݅԰
݀߶
ݐ݀

ൌ ଴߶ (1)ܧ

 

The operator ܷାሺݐሻ for any specific perturbation Hamiltonian ܪଵ is given by the 

integral equation, 
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Differentiating the above yields: 
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The method proposed in this work uses the following ܪଵ: 

;ݔଵሺܪ ሻ′ݔ ൌ ݔሺߜ߸ െ  ሻ′ݔ

The delta function has the following properties: 
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Using the stated properties of the delta function, and noting that the differential 

operator only appears in even powers, it can be seen that for any ݂ሺݔሻ: 

නቈexpቆ
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Recalling from equation (4.8) that ܪଵሺݔ, ;ݐ ሻ′ݔ ൌ expሺ݅ܪ଴ݐ/԰ሻ ∙ ;ݔଵሺܪ ሻ′ݔ ∙

expሺെ݅ܪ଴ݐ/԰ሻ, and using the above, equation (2) becomes: 
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The limit evaluates to zero. The function ߰ାሺݔ, ;ݐ ,ᇱݔ ,ܧ  ଴ሻ therefore satisfies theܧ

Schrödinger equation, 
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Making use of equation (1), and the linearity of the time derivative, it is seen that: 
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As perturbation magnitude decreases, the following limit applies: 

lim
ధ→଴

ܧ ൌ  ଴ܧ

The notation is introduced: 

݃ሺݔ; ,ᇱݔ ሻܧ ൌ lim
ధ→଴,ఌ→଴శ

൫߰ାሺݔ, ;ݐ ,ᇱݔ ,ܧ ଴ሻܧ െ ߶ሺݔ, ;ݐ  ଴ሻ൯ܧ

The function ݃ሺݔ, ;ݐ ,ᇱݔ  ሻ is referred to as a Green’s function, and each oneܧ

satisfies a Schrödinger equation, 

݅԰
݀݃
ݐ݀

ൌ ݃ܧ ൌ ሺܪ଴ ൅  ଵሻ݃ܪ

Such Green’s functions are obtained by solving the matrix form of the Lippmann-

Schwinger equation. 
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