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Abstract 

Deuterium (2H) and Nitrogen 14 (14N) NMR spectroscopy were used to investigate the 

molecular dynamics in one thermotropic and one lyotropic liquid crystal. Quantitative 

analyses of deuterium spectral densities of motion for three deuteron sites (ring and Cα) 

at two different Larmor frequencies (46 and 61.4MHz) are reported in the smectic A and 

C* phases of (S)-[4-(2-methylbutyl)phenyl]-4’-octylbiphenyl carboxylate (8BEF5-d15), a 

partially deuterated smectogen. 2H spectral densities for two deuteron sites on the chain 

(C1 and C2/C3) at Larmor frequency 61.4MHz and 14N spectral densities for the head 

group (NH4
+) of the molecule decylammonium chloride (DACl) at 28.9MHz are reported 

in the lamellar phase of a partially deuterated sample, DACl-d11/H2O binary system.  

The motional model is the small step rotational diffusion for reorientations plus internal 

rotations in the strong collision limit. In the chiral C* phase of the first molecule, 

8BEF5-d15, the helical axes are aligned along the external magnetic field and the deuteron 

spins appear to relax in a macroscopically uniaxial environment. After including the 

molecular tilt, the reorientation processes in the SmC* phase are found to have higher 

activation energies than those in the smectic A phase. 

Applying the same motional models to the lyotropic molecule DACl-d11, the tumbling 

motion of the long axis of the molecule in the aggregates is more rigorous in comparison 

to the molecular spinning motion. The similarity of deuterium spectral densities from the 

C1 and C2/C3 sites may indicate a relatively rigid unit of C1-C2-C3-C4 in the backbone. 
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1 Introduction 

Nuclear Magnetic Resonance (NMR) was discovered by the groups of Purcell [1] and 

Bloch [2] in the 1940s. NMR is a phenomenon found in nuclear spin systems that involve 

magnetic moments and angular momenta [3]. The broad areas under study by NMR 

include solid-state physics, chemistry, chemical physics, biophysics and biochemistry, in 

which information on an atomic or molecular level can be obtained. Recently, Magnetic 

Resonance Imaging (MRI) has found exciting applications in medicine, e.g. in high 

quality but safe diagnosis by scanning the appropriate parts of the human body.  

One of the most important fields of study in material sciences today is the study of liquid 

crystalline materials, which typically involve organic compounds and show a state of 

order intermediate between the crystalline solid and the isotropic liquid state. In 1888 

Reinitzer [4] found, by using a polarizing microscope, a cloudy but completely fluid state 

in a substance (molten cholesteryl benzoate) which appeared between the solid phase at 

145.5 ºC and a completely clear liquid phase at 178.5 ºC. This peculiar state was later 

called “liquid crystal” by Lehmann [5]. Today, “mesophase” is a more commonly used 

term than liquid crystals among scientists.  

NMR has proven to be a powerful tool for studying mesophases [6]. In some cases, NMR 

is the only technique available to obtain information on the order of microscopic (atomic) 

scale in mesogenic materials. 2H and 13C NMR studies are conducted extensively in 
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dynamics and static structural research of liquid crystals. Other nuclei, such as 14N and 1H, 

have also been used. 

1.1 Thesis Outline 

Chapter 1 provides some fundamental NMR concepts both in a classical and a quantum 

mechanical picture. The structure of mesophases of liquid crystals and experimental 

methods closely related to the present research on a thermotropic and a lyotropic liquid 

crystal are outlined in Chapter 2. Chapter 3 outlines some particular motional models that 

are popular in the 2H and 14N NMR relaxation study of liquid crystals. The study based 

on a new approach in treating chiral smectogen in a biaxial phase as a uniaxial case is 

summarized in Chapter 4. The last chapter addresses another category of liquid crystals, 

lyotropics, and a dynamics study combining both 2H and 14N relaxation information is 

described.  

1.2 Basic NMR in a Classical Picture  

Nuclear Magnetic Resonance (NMR) is a phenomenon associated with the interactions 

between the magnetic moments of the spinning nuclei of matter and applied static and 

rotating magnetic fields. These nuclear magnetic moments, created by the electric charge 

and intrinsic angular momentum (or spin) of the nuclei, can precess about the direction of 

the static field at a well-defined Larmor frequency because of the torque resulting from 

the interaction with the static field. Another torque due to interaction with a second field, 
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which rotates about the static field at approximately the Larmor frequency, allows a 

change of declination of the bulk magnetic moment relative to the direction of the static 

field–the moment nutates. Thus, as the bulk magnetic moment precesses, having been 

nutated (or flipped) away from its equilibrium alignment with the static field, the NMR 

phenomenon is observed by detecting the e.m.f. (electromotive force) induced in a 

receiving coil placed perpendicular to the static field. 

Not all nuclei possess spin, but plenty do, for example: 1H, 2H, 17O, 13C, 14N, 31P, etc. The 

availability of these nuclei in materials makes NMR a powerful and versatile tool in 

learning about the physical, chemical, and/or biological properties of matter [7]. 

Spin is a basic quantity like mass and electrical charge. While the rotation of the mass 

produces an angular momentum L, the rotation of the charge gives the nucleus a magnetic 

moment m [8], which experiences a magnetic torque in a static field. The Irish physicist 

Larmor showed in 1897 that the application of any aligning force (torque) to a spinning 

object causes a circular motion known as precession [9]. An everyday example is the slow 

wobble of a child’s top (or a gyroscope) as it slows down. Here gravity produces a torque 

that causes the spinning object to rotate about a vertical axis. Similarly, a spinning 

magnet subjected to an external applied magnetic field can precess. The number of times 

per second that the axis of the magnet revolves about the static field direction is termed 

the resonant frequency, or the Larmor frequency. The linking of the Larmor frequency 

and the magnetic field strength is the most important relationship in magnetic resonance. 

The proportionality between the two is called the nuclear gyromagnetic ratio γ.  
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When a sample is placed in a strong static magnetic field, its magnetic moment grows 

parallel to the applied 0B
v

 field (the direction of the laboratory z axis) over the order, 

typically, of a fraction of a second, giving an equilibrium magnetisation Mo. 

(Magnetisation is magnetic moment per unit volume, and having direction and amplitude 

can be represented by a vector M
v

 [7].) This process of growth is termed longitudinal 

relaxation. Now instead of the laboratory frame (x, y, z) used above, it is often convenient 

to describe the precession in a rotating frame (x', y', z'), which rotates about the z axis at 

approximately the Larmor frequency of the spinning nucleus. When viewed from the 

frame rotating exactly at the Larmor frequency, the magnetisation does not precess, viz. it 

is stationary. The situation of no precession leads to the conclusion that in the rotating 

frame, there is no static 0B
v

 field! If now, in our rotating frame, an additional magnetic 

field 1B
v

 is applied perpendicular to the static field, the magnetic moment must precess 

about the direction of this new field due to the absence of the 0B
v

 field. The declination 

of the magnetic moment therefore progressively increases. By only keeping the 1B
v

 field 

on for the appropriate time (a pulse), the magnetisation can be “flipped” through any 

desired declinational angle, and in particular, flip angles of 90° (or π/2), 180° (or π) of 

M
v

 can be obtained. The jargon for such flips is “a 90 (180) degree pulse”. Note that by 

applying successive pulses of 1B
v

 field at various orientations in the rotating x´y´ plane, 

not only the declination but also the azimuth of the magnetisation can be altered, for it 

always precesses about the   
v 
B 1 field.  

In general, the reference frame does not have to rotate at the Larmor frequency – the 
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former’s frequency may be larger or smaller than the latter’s. Here any magnetisation that 

is not along the z axis appears to be slowly precessing about the z axis. This implies the 

existence of a small residual 0B
v

 field, 0B
v

∆ , either in the +z direction, corresponding to 

when the frame rotates more slowly than the Larmor frequency, or in the –z direction, 

relating to when the frame rotates more quickly than the Larmor frequency. Then, when 

the 1B
v

 field, which is rotating with the rotating frame and is stationary therein, is 

applied, the magnetisation will precess about the vector sum effB
v

 of the fields 0B
v

∆  and 

1B
v

, as shown in Fig. 1.1.  

 
Fig. 1.1 The effective magnetic field effB

v
in the rotating frame, is the vector 

sum of the external field 0B
v

, the fictitious field γω/v
 and r.f. field 1B

v
. 

Note that if the applied 1B
v

 field rotates at a frequency far off the Larmor frequency, 

namely, 0B
v

∆ >> 1B
v

, there will be negligible flipping of magnetisation and therefore 

negligible transverse magnetisation. Proper signal detection requires a big transverse 

magnetisation so that a large voltage is induced in a receiving coil, and this only is 

possible when the rotational frequency of the 1B
v

 field is close to the Larmor frequency. 

Clearly, the phenomenon satisfies a definition of “resonance” [10]: When an abnormally 

large vibration of an object is produced in response to an external stimulus at a frequency 

which is the same, or nearly the same, as the natural vibration frequency of the object. 

γω /v

1B
v

effB
v0B

v
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To further this discussion, we now turn to a more formal mathematical description of the 

subject. Mathematically, the relation of the fixed lab frame and the rotating frame could 

be derived by considering time derivatives of M
v [11],  

M
dt
Md

dt
Md

rotfixed

vv
vv

×+







=







 ω ,                    (1.1) 

where the magnitude of ωv  gives the angular frequency of rotation of the unit frame 

( kji ˆ,ˆ,ˆ ), while the direction of ωv  is the axis about which the rotation occurs. In such a 

rotating coordinate system all three unit vectors rotate with a velocity and direction 

defined by the same ωv . Since in the laboratory frame,  

 
d

v 
M dt( )fixed

= γ
v 

M ×
v 
B ,                       (1.2) 

where   
v 
B  is a general magnetic field, one finds in the rotating frame,  

  
d

v 
M /dt( )rot

= γ
v 

M ×
v 
B − v ω ×

v 
M = γ

v 
M × (

v 
B + v ω /γ) .             (1.3) 

The fictitious term γω /v  is introduced by the rotation. If  
v 
B  is a constant field  

v 
B 0 in 

the z direction, then when   
v ω = −γ

v 
B 0 the magnetisation is a fixed vector and precesses 

with an angular velocity 00 Bγω −= , the Larmor frequency. However, if the total field  
v 
B  

is the sum of the constant field  
v 
B 0 and another field  

v 
B 1, perpendicular to   

v 
B 0 and 

rotating it around it with an angular velocity  
v ω , then there is an effective field 

( ) iBkBBeff
ˆˆ/ 10 ++= γω

v
,                      (1.4) 

where the   
v 
B 1 field has been placed along the x axis of the rotating frame. One then finds 

from Eq. (1.3) that 

( ) effrot BMdtMd
vvv

×= γ/ .                        (1.5) 
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and M
v

precesses about the effB
v

field in the rotating frame, Upon resonance, the fictitious 

term γω/v  in Eq. (1.4) is in the opposite direction to 0B
v

 and cancels 0B
v

, leaving, in 

the rotating frame, only 1B
v

 interacting with M
v

. However, in an off-resonance situation, 

the 1B
v

 field and the rotating frame are not at the resonant Larmor frequency ωo, and the 

term γω/v  cannot cancel 0B
v

 completely, leaving a component of the effective field in 

the z direction. Then,  

  

v 
B eff = B0 −ω /γ( )2 + B1

2[ ]1/2
 

= 1/γ( ) ω0 −ω( )2 +ω1
2[ ]1/2

≡ Ω/γ ,            (1.6) 

where ω1 = γB1 is the on-resonance nutational frequency and  Ω is the off-resonance 

nutational frequency. 

Apart from a deliberate choice, this off-resonance condition ( ≠ω ωo) could be due to a) 

field inhomogeneity, i.e., nuclei at different positions experience different magnetic fields 

resulting in different Larmor frequencies, or b) chemical shifts that are caused by the 

small magnetic field of surrounding electron clouds, or c) additional local magnetic fields 

introduced by neighbouring nuclei. The magnetic field at the nucleus is not equal to the 

applied magnetic field, since electrons around the nucleus shield it from the applied field. 

The difference between the applied magnetic field and the field at the nucleus is termed 

the nuclear shielding or chemical shift. Chemical shift anisotropy is described by the 

chemical shift tensor σ̂ , and is particularly important in obtaining molecular structure 

information [12]. 

So far, we have considered ways of understanding excitation and mentioned the factors 
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that determine the Larmor frequency. However, after excitation, the nuclear system 

returns to equilibrium and we now briefly examine how. In a microscopic picture, the 

molecules, which bear nuclear spins, are randomly moving and tumbling in a manner that 

is traditionally described as “Brownian motion”. This is due to the kinetic energy of the 

molecules along with constant collisions between them. The accompanying random 

motions of the nuclear magnetic moments in space, as the nuclei “tag along for the ride”, 

generate fluctuating magnetic fields which provide an interaction mechanism between 

nuclei. The magnetisation M
v

then relaxes due to these interactions. Transverse 

components of the fluctuating fields rotating at the Larmor frequency change the 

declinations of the magnetic moments, providing a mechanism, on average, for release of 

magnetic energy 0BM
vv

⋅−  and eventual partial alignment with 0B
v

. Attainment of 

alignment and therefore release of energy, which minutely heats the sample and increases 

the molecular translational and rotational energy, is typically an exponential process, with 

a characteristic time constant T1 determined by the molecular dynamics. This dynamic 

mechanism (sometimes called a spin-lattice relaxation mechanism, a term borrowed 

rather loosely from sold-state physics) effectively determines the recovery behaviour of 

the longitudinal magnetisation Mz, the z-component of the magnetisation vector, to its 

equilibrium value Mo. If the equilibrium magnetisation is flipped by a 90º pulse into the 

xy plane, Mz can be plotted as a recovery function as follows,  

Mz = M0 1−e−t /T1( ).                        (1.7) 

This experimentally-observed exponential relaxation can be incorporated into the 
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equation of precessional motion given above (Eq. 1.2) as the following 

phenomenological equation formulated by Bloch [2], 

( )
1

0

T
MMBM

dt
dM z

z
z −−×=

vv
γ .                    (1.8) 

There is a second relaxation process in NMR, associated with low-frequency, axial 

(parallel to 0B
v

) components of the fluctuating magnetic fields, that occurs 

simultaneously with longitudinal relaxation. Fluctuating differences in 0B
v

 from place to 

place in the sample give rise to a range of Larmor frequencies, constantly fluctuating, and 

hence a progressive random and irreversible dephasing of the sum transverse 

magnetisation. As energy is exchanged only between nuclei in this process, it is 

sometimes termed spin-spin relaxation, or more commonly transverse relaxation for it 

causes the xy component of M
v

, Mxy , to decrease to zero. T2 is the time constant 

describing the decay of the transverse magnetisation to zero according to 

( )
2T

M
BM

dt
dM xy

xy
xy −×=

vv
γ                       (1.9) 

2/
0

Tt
xyxy eMM −=⇒ .                       (1.10) 

Eqs. (1.8) and (1.9) are the Bloch equations. T1 relaxation processes arise only from 

fluctuating magnetic field with components in the x' and y' directions, while T2 processes 

arise from components in all three directions [11]. Although the T1 and T2 processes happen 

simultaneously, in the solid state the T2 process is usually much faster than the T1 process. 

However, T1 is equal to T2 in isotropic liquids, due to the rapidity of the motional 

processes which causes the effects of the transverse fluctuating fields to be dominant. In 
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general, any mechanism which gives rise to fluctuating magnetic fields at a nucleus is a 

possible relaxation mechanism. Various physical interactions have been found to be 

important in spin-lattice relaxation and these interactions are discussed in Section 1.5. 

In practice, inhomogeneity in the main magnetic field 0B
v

significantly affects the T2 

process. It causes the Larmor frequency to differ from place to place in the sample adding 

a term inhoT2  into the actual time constant that we measure, called *
2T , represented by 

inhoreal TTT 22
*

2 /1/1/1 += .                     (1.11) 

Note that the dephasing caused by static field inhomogeneity is macroscopic and in 

principle reversible, while the spin-spin relaxation, characterized by realT2 , is microscopic 

and irreversible. To illustrate how macroscopic dephasing can be reversed, we consider a 

simple pulse sequence, the Hahn echo experiment [13], a practical way of measuring T2 

(Fig. 1.2). Due to the field inhomogeneity, transverse magnetisations imv  arising from 

nuclei in different parts of the sample experience slightly different values of applied field, 

and thus, following a 90º pulse (Fig 1.2.i and following), they precess with a range of 

frequencies about the Larmor frequency. The imv  thus start to “fan out” in the x'y' plane 

(ii). However, a subsequent 180º pulse (iii) at time τ inverts the y´ components of 

magnetisation, and an element that had precessed an angle φ from the x axis now is at 

angle –φ. The field inhomogeneity affecting the nuclei prior to the 180º pulse will 

continue to influence the same nuclei in precession in the same manner after the inversion 

pulse (iv), and so the spins refocus along the –y axis at time 2τ with an amplitude 

diminished only by true transverse relaxation (T2). 
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Fig. 1.2 Illustration of spin dynamics of Hahn echo experiment [14]. 

Turning very briefly now to experimental details, in performing an NMR experiment, an 

alternating RF magnetic field [15] is created when an alternating RF current at the Larmor 

frequency is passed through a transmitter coil surrounding the sample. In the laboratory 

frame, this magnetic field can be considered to be an oscillating vector along the x axis 

having amplitude 2B1. However an oscillating vector can be decomposed into two 

components, each of amplitude B1, one rotating clockwise at a frequency of +ωo, and the 

other rotating counterclockwise at -ωo. In a frame rotating clockwise about the z axis at 

frequency +ωo, the 1B
v

 vector component that rotates clockwise in the laboratory frame 

will be stationary, while the 1B
v

 counterclockwise rotating component will be at 

frequency -2ωo in the positively rotating frame. A field that rotates about the z axis at 

-2ωo is so far from the resonance frequency of the spins that it can be ignored [7]. To 

transmit then, a high power RF amplifier [10] is used to put RF current into the coil for the 

length of time needed to create the desired pulse.  

robyjadmin
Placed Image

robyjadmin
Placed Image
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Besides the coils of wire in a persistent superconducting magnet which generate the 

strong external 0B
v

 field along the z direction, a receiving coil must be present to 

perform signal detection. The signal is received by the precessing transverse 

magnetisation’s inducing a voltage in the receiving coil ― the FID. That coil must 

therefore be designed so that, if current were passed through it, would produce a 1B
v

 

field in the xy plane. The maximum signal to noise ratio can be obtained by an 

appropriate coil design. The underlying assumption here is that the noise originates solely 

from the Brownian motion of the electrons in the receiving coil and is a manifestation of 

coil resistance and temperature [10]. The FID signal is now passed to a low-noise 

pre-amplifier and thence to the spectrometer receiver for analysis. In practice, a 

quadrature detector [16] is used to subtract the transmitter frequency from that of the FID 

while retaining the value(s) and the sign(s) of the difference frequency(ies). This makes 

analogue-to-digital conversion easier while preserving chemical shift information. 

Plotting received voltage as a function of time gives a sine wave, which will decay with a 

time constant *
2T . To get frequency information, a frequency domain spectrum is then 

obtained by Fourier Transformation (FT) [7] of the FID. In the early days of NMR, a 

simple method called a continuous wave (CW) experiment was performed at constant 

radio frequency by sweeping the B0 field strength to observe a signal when resonance was 

attained. Nowadays, pulsed methods and fast FT by means of a computer make NMR 

versatile for various complicated experiments. In FT-NMR, all frequencies in an NMR 

spectrum are stimulated simultaneously with a short radio-frequency pulse. Compared to 
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a CW experiment, FT-NMR has the advantage of saving a great amount of time [17]. 

1.3 Quantum Mechanical Aspects of NMR 

Since spin is described with a quantum number, it can only be multiples of ±1/2. 

Unpaired protons, electrons, neutrons are spin 1/2. Two or more particles with opposite 

signs can eliminate their spins. For a deuterium atom 2H, a neutron and a proton have a 

total nuclear spin I = 1. 

Let us consider a simple case: a proton with spin 1/2 is put in an external magnetic field. 

The energy of magnetic interaction 0Bm
vv ⋅  is quantized and there are thus two energy 

states ― ‘spin up’ and ‘spin down’. The spin could transit to a high energy state ‘spin 

down’ only if it absorbs an exact amount of energy that is equal to the energy difference 

between spin up level and spin down level. After absorption, the spin cannot stay at that 

excited energy state for long, but drops back to the low energy level and in the meanwhile, 

releases that amount of energy to the surroundings   the ‘lattice’. The lifetime of this 

energy emission process is the spin-lattice relaxation time T1, during which the excited 

spin-down spins fully release all the excess energies, and the spin exchange between both 

energy levels reaches a dynamic equilibrium. In general, for a nucleus of spin I, its energy 

can be represented by 

IIImBmE −−=−= ....1,,0hγ ,                  (1.12) 

where h  is the Planck’s constant over 2π, m the quantum number, I the spin ( I = 1 for 

deuteron), and γ the gyromagnetic constant, which is specific to each kind of nuclei. Both 
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the γ and the external magnetic field Bo determine the exact amount of energy gap for a 

resonance. However, only certain transitions are allowed, governed by the selection rule 

∆m = ±1. Thus the allowable change in energy is 

 ∆E = γhB0                          (1.13) 

or 

0ωh=∆E                    (1.14) 

Thus, if an applied B1 field has a frequency ωo, a quantum of energy may be absorbed 

from the field or released to the field. In particular, such fields provide a relaxation 

mechanism for extracted energy from an excited system. Relaxation phenomena are of 

paramount importance in NMR. It is because of the existence of relaxation mechanisms 

that the nuclear spin can ‘feel’ the temperature of the lattice, and that differences of 

populations can appear between the various energy levels of the nuclear spin system, 

leading to a net absorption by the spin system of r.f. power supplied by an external 

generator. As a consequence of these differences, a net nuclear magnetisation [15] 

kT
BIINM

3
)1( 0

22 v
hv += γ                        (1.15) 

appears in an applied field 0B
v

. Here N expresses the number of nuclear spins per unit 

volume, k denotes Boltzmann’s constant and T is absolute temperature. At equilibrium 

and room temperature, the number of spin in the lower energy state is slightly greater 

than the number in the upper energy level. This spin distribution obeys Boltzmann 

statistics. For a coupled spin 1/2 pair, each spin can be in the α (spin up) or β (spin 
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down) state, and so there are four possibilities: α1α2, α1β2 or β1α2 and β1β2. These four 

possibilities correspond to four energy levels. Note that subscript 1 or 2 is added to 

differentiate the two nuclei. The close correspondence of the classical and quantum 

mechanical treatments is made particularly clear by examining a differential equation 

relating the time variations of the expectation values xµ , yµ , and zµ . It is found 

that the equation of the expectation value of magnetisation [3] 

B
dt

d vv
v

γµ
µ

×=                         (1.16) 

is just the classical equation and the expectation value of the magnetic moment obeys the 

classical equation of motion. Eq. (1.16) was derived for a single spin. If the spins are 

assumed not to interact with one another in a system, Eq. (1.16) can be easily proved to 

be true for the expectation of the total magnetisation. In practice, this is true because we 

measure the results of a number of spins simultaneously; the observed bulk magnetisation 

is simply the expectation value of the total magnetic moment [3].  

Although radiative transitions between energy levels are commonly used as a simple 

picture in the literature to explain the NMR signal, this is not actually the case: if a 

significant number of radiative transitions were to occur during signal reception, these 

would dissipate the stored energy as emitted radio waves; however, the energy associated 

with signal reception is mostly lost in the form of heat in the resistance of the receiving 

coil and pre-amplifier through which the induced current passes. This near-field loss 

mechanism can be so large as to change the effective longitudinal relaxation time T1.  
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Thus, NMR is actually not about absorption and emission of radio waves [18], as almost 

universally portrayed in the scientific literature and community. For more details, please 

refer to the explanation of an exchange of virtual phonons [18] in the theory of quantum 

electrodynamics by Hoult and Ginsberg. 

1.4 Density Matrix  

In a complex multi-spin system, the density matrix, σ , is a good tool in treating a huge 

number of atoms with certain interactions given by a spin Hamiltonian via statistical 

means. This is because no solution of the probability amplitudes, or a complete set of 

wave functions is necessary. The spin system is in a state of wave function or ket kϕ| , 

which is in general time-dependent and may be expanded using a complete orthonormal 

basis set of m stationary kets ii || ≡φ . So, 

∑
=

=
m

i

k
ik itC

1
|)(|ϕ ,                         (1.17) 

where Ci is the amplitude. The density matrix element, jiσ , is defined as the ensemble 

average of product of amplitudes from two orthonormal basis sets 

∑ ==
k

ij
k
i

k
jji CCNCC ** /σ ,                     (1.18) 

where i and j represent the index of the orthonormal basis.  

The evolution of density matrix is given by the following equation, 

])),('[( 0 σσ tHHi
dt
d +−= ,                      (1.19) 

where H0 is the static Hamiltonian and 'H  represents the time-dependent spin-lattice 
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coupling. One can show that the irreducible spectral densities )( ,qmmJ ω are the Fourier 

transforms of the correlation functions )(τmG ,  

ττρω τω
λ deGCJ qmi

mqmm
,

0

2
0,2, )()()( −∞

∫= ,                (1.20) 

where qm,ω  are the characteristic frequencies arising through transforming to the 

interaction picture and can be expressed in terms of a linear combination of the resonant 

frequencies of the relaxing spin(s) [6]. The relaxation rates (1/T1 and 1/T2) can be written 

as a linear combination of irreducible spectral densities and the coefficients of expansion 

are obtained by evaluating the double commutators of spin operators for a specific 

spin-lattice interaction λ. In working out )(τmG , one can use successive transformations 

from the principal axis system (PAS) to the laboratory frame and the closure property of 

the rotation group to rewrite )(2
0 PLmD Ω  so as to include the effects of local segmental, 

molecular, and/or collective motions for molecules in liquid crystals.    

1.5 Spin Interaction 

A NMR spectrum of a liquid crystal contains, in principle, both static and dynamic 

information. The position and the relative intensity of the peaks can give the partially 

averaged spin interactions [19], while the linewidths of these peaks may provide dynamic 

information. The Hamiltonian [6] of the spin system is used to describe the quantum 

interaction in NMR. Here five kinds of interactions are of interest: Zeeman interaction, 

nuclear dipole-dipole interaction, J-coupling, quadrupolar interaction and chemical shift, 

which are indexed as Z, D, J, Q, CS, respectively for future notation.  
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Spin Hamiltonian 

The Zeeman Hamiltonian Hz between the magnetic moment of a nucleus and external 

magnetic field is written as 

0BIH Z

rr
h ⋅−= γ .                         (1.21) 

If including the chemical shift anisotropy, also called diamagnetic shielding, which 

describes the weakening effect of the external field due to neighbouring electron clouds, 

the Zeeman interaction should be rewritten as  

0)ˆ1̂( BIH Z

rr
h ⋅−⋅−= σγ ,                      (1.22) 

where σ̂  is a 2nd rank tensor that describes the chemical shift anisotropy.  

The dipole-dipole (dipolar) Hamiltonian HD shows the magnetic interaction between two 

magnetic moments,  

jiji
ij

ji
D IDI

r
H

rrh
⋅⋅= ˆ

3

2γγ
,                      (1.23) 

where ijr is the internuclear distance between the two nuclei, and ijD̂  is a dipolar 

coupling tensor of 2nd rank, which is similar to a chemical shift tensor. Its main difference 

from the chemical shift interaction, however, is that the dipolar tensor is traceless; that is, 

the sum of its diagonal elements is zero.  Therefore, unlike the chemical shift, dipolar 

interactions are averaged to zero in solution due to the isotropic tumbling of molecules. 

In addition, the indirect, electron-mediated interaction called J-coupling is different from 

dipolar interaction because J-coupling works through the electrons in bonds while the 

dipolar interaction works directly between nuclei. Now 
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jijiJ IJIH
rr

h ⋅⋅= ˆ ,                        (1.24) 

where the J-coupling tensor ijĴ is not traceless.  In liquid crystal, HJ is usually small 

compared to HD and will be ignored. The quadrupolar Hamiltonian is the main interaction 

in our 2H and 14N NMR study, its presentation is deferred to section 1.6. 

Motionally Averaged Hamiltonian 

Although having similarities to both solid and liquid phases, the molecules in liquid 

crystals are rotating and diffusing at rates similar to those in isotropic liquids, but are not 

random. The fast motion in the mesophase of a liquid crystal is such that usually the 

nuclear spin interactions are averaged, but the non-randomness means that the averages 

are different from those in its isotropic phase. In liquid crystals, three main types of 

interactions of interest are time-averaged dipolar, quadrupolar and chemical shift 

Hamiltonians. The time averaging nuclear spin Hamiltonians may be easily studied in the 

form of irreducible spherical tensor operators of rank l, mlT , and mlR , .  

∑∑
−=

−−=
l

l

lm
mlml

m RTCH λλ
λλ ,,)1( ,                    (1.25) 

where l = 0,1,2 and scalar factor Cλ is the appropriate interaction constant with a label λ 

for the type of interaction. Thus, 

πγγµ 2/2
0 hSIDC −= , )12(2/ −= IIeQCQ , hICSC γ= .        (1.26) 

For λ=D or Q, the spin operators mlT ,  in the laboratory frame are  

SIT
rr

⋅−=
3
1

0,0 , ( )SISIT ZZ

rr
⋅−= 3

6
1

0,2 , 
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( )ZZ SISIT ±±± +=
2
1

1,2 m , ±±± = SIT
2
1

2,2 .               (1.27) 

Here, the two spins I
r

, S
r

 can be either the same for homonuclear dipolar coupling or 

quadrupole coupling, or unequal for heteronuclear dipolar interaction.   

The coupling tensor mlR ,  in the laboratory frame is time-dependent due to motions of 

spin-bearing molecules. It is more convenient to transform mlR ,  to the principal axis 

system (PAS), in which the irreducible components are nl ,ρ , and  

nlPL
l
mnml DR ,
*

, )( ρ∑ Ω= ,                      (1.28) 

where )(, PL
l

nmD Ω  denotes the Wigner rotation matrices and PLΩ  are the Euler angles 

by which the laboratory frame is brought into coincidence with the PAS. Meanwhile, 

λρ ∆=
2
3

0,2 , 01,2 =±ρ , λληρ ∆=± 2
1

2,2 ,               (1.29) 

where in the dipolar case λ=D, 0=Dη  and 3/1 ISD r=∆  and ISr is the internuclear 

distance. In the quadrupolar case (see below), λ=Q, Q∆ and Qη  can be obtained from iiV , 

the principal values of the electric field gradient tensorV
)

, which is diagonalized in the 

PAS. The electric field gradient, abbreviated as efg, eqVzzQ ==∆ , and the asymmetry 

parameter [6] of the efg tensor is defined as 

zz

yyxx
Q V

VV −
=η .                          (1.30) 

1.6 Nuclear Electric Quadrupolar Interaction 

The quadrupolar interaction arises from the interaction, at the site of the nucleus, between 

the nuclear electric quadrupole moment eQ and the non-spherically symmetric electric 
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field gradient, efg, caused by the electric charge distribution of the atom or molecule. The 

quadrupolar Hamiltonian only occurs when I > 1/2, and is expressed as,  

IVI
II

eQIQIHQ

rrrr
h ⋅⋅

−
=⋅⋅= ˆ

)12(2
ˆ ,                 (1.31) 

where the quadrupolar coupling tensor Q̂  has been written in terms of efg tensor V̂ . 

Now, in the general irreducible tensor representation, Q
mlR , , are nonzero only when 

2,0 ±=m , and the components 1±=m  vanish. Since V̂  is symmetric and traceless in 

PAS, the quadrupolar Hamiltonian can be written in PAS as:   

( ) ( )






 −+



 +−= 222

3
1

3
1

yxzQQ IIIIIH ηωh ,              (1.32) 

where the quadrupolar frequency ωQ is defined as  

( )h124
3 2

−
=

II
qQe

Qω , zzVeq = .                    (1.33) 

In the deuteron case, the asymmetry parameter η can usually be approximated as η = 0 

(η∼ 0.04 for aromatic deuterons) due to “axial” symmetry of the electric field gradient 

along the C-2H bond. Thus, Vxx = Vyy, and the principal z axis is along the C-2H bond.  

The time-averaged quadrupolar Hamiltonian, for a deuteron spin with axially symmetric 

efg (η = 0), becomes 

]3/)1([ 2 +−= IIIH zQQ ω ,                   (1.34) 

where  

),(),(
4
3 2

0,
2
,0

2

αβϕθω m
m

mQ DDqQe ∑=
h

,               (1.35) 

with ( αβ , ) being the polar angles of the C-2H vector in the molecular frame, and the 
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time-averaged Wigner rotation matrices ),(2
,0 ϕθmD being the order parameters in a 

uniaxial phase. These order parameters can be written in terms of a Cartesian order tensor 

Ŝ [20,21] which is symmetric and traceless 3×3 matrix. The Ŝ  has a maximum of five 

independent, nonzero elements, and their relations with the time-averaged Wigner 

rotation matrices are 

2
0,0DSzz = , ( )2

2,0
2

2,02
3

−+=− DDSS yyxx , ( )2
2,0

2
2,08

3 DDiSxy −= −  

( )2
1,0

2
1,08

3 DDSxz −= − , ( )2
1,0

2
1,08

3 DDiS yz −= −              (1.36) 

Hence, the quadrupolar splitting (Fig. 1.3) of a Zeeman line is  

( ) 






 −+





 −=∆ αββν 2cossin

2
1

2
1cos

2
3

2
3 22

2

yyxxzzQ SSS
h
qQe       (1.37) 

 
Fig. 1.3 Energy level diagram for a deuteron spin in a magnetic field. ω0/2π is the Larmor frequency. 

If η is nonzero as in the aromatic deuteron site, Eq. (1.37) must be modified to give [19,22] 











 +−⋅×








=∆ i

QR
i

QRzz
i
q TS

h
qQeTv ,

2
,

2
2

sin
22

1cos
2
3][

2
3][ βηβ  

  ( )







 ++∆+ 1cos

3
sin ,

2
,

2 i
QR

i
QRbiaxial βηβ ,                  (1.38) 
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where ∆biaxial is a molecular biaxial parameter and is )( yyxx SS − , i
QR,β is the angle 

between the C-D bond and the para axis of the phenyl ring of the molecule 8BEF5 to be 

discussed in Chapter 4. When the quadrupolar interaction is cylindrically symmetric (η 

= 0), and the Euler angle α = 0º [in Eq. (1.37)], Eq. (1.38) goes back to Eq. (1.37).  

In lyotropics, the doublet spacing v∆ depends on a) the orientation of the average 

surface normal at a particular site w.r.t. the symmetry axis of the aggregate (angle “Φ”), 

b) the orientation of symmetry axis of the aggregate w.r.t. the magnetic field (angle “Θ”). 

Fig. 1.4 shows the lamellar phase structure and these angles. Thus, the quadrupolar 

splitting of the nitrogen in the head group of the molecule can be expressed as [23,24] 








 −Θ







 −Φ








=∆

2
1cos3

2
1cos3

2
3 222

CNN S
h
qQev

           (1.39) 

where CNS  is the segmental order parameter of the nitrogen. 

 
Fig. 1.4 Schematic diagram of the lamellar phase and the orientation of the molecules. B

v
is the 

external field and nv is the average surface normal. The tilted axis on the enlarged molecule is  
the symmetry axis of the aggregates. Water flows within the layers 
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Mathematics of Solid Echo Sequence  

To investigate how the radiofrequency pulses affect a spin system, it is helpful to examine 

the evolution of the density matrix in a quantum picture [6]. The so-called “solid echo” 

pulse sequence [25] echoyx −−°−−° ++ ττ 9090 , where 2T<τ , serves as a good example 

to illustrate the advantage of quantum mechanics. By ignoring the chemical shift and at 

exact resonance, the Hamiltonian in the rotating frame is  

xzQ IQH 1ωω +=                          (1.40) 

The spins, initially in zI  state, flip to yI− state after a x°90  pulse. Then under the 

quadrupolar interaction ZQQω , the spins precess at different rates causing them to fan out 

in the yy JI − plane. So at the instant before the second pulse, the density matrix for each 

spin packet is 

τωτωτσ QyQy JI sincos)( +−=                     (1.41) 

A y direction pulse does not affect yI  but causes yJ to precess in the “ yy KJ − plane” 

at 12ω− . The density matrix just after the second pulse is 

τωφφτωτσ QyyQy KJI sin)2sin2cos(cos)( −+−=+            (1.42) 

and when °= 90φ , 

τωτωτσ QyQy JI sincos)( −−=+                    (1.43) 

This corresponds to a quadrupolar echo experiment. Further evolution under the 

quadrupolar interaction makes the dephased spin packets to refocus on the yy JI − plane: 

τωωωτωωωτσ QQyQyQQyQy tItJtJtIt sin)sincos(cos)sincos()( +−+−=+  



 25 

)(sin)(cos τωτω −+−−= tJtI QyQy                           (1.44) 

and at time τ=t , 

yI−=)2( τσ                           (1.45) 

So the spins refocus after time 2τ. 

Frame Transformation  

The description of the orientation of a molecule in liquid crystals, where the molecule is 

rotating and diffusing, is more complex. It is necessary to define the director reference 

frame (D), xDir, yDir, zDir. Euler angles (α,β,γ) between x, y and z axes of two frames are 

employed to describe the rotational transformation. In detailed study of the motion of the 

nuclei at a particular site inside a molecule, the segmental frame (S) and the Principal 

Axis System (PAS) where the interactions take place should be included in addition to 

molecule-fixed frame (M) and laboratory frame (L). A particular link among these frames 

by successive transformations is  

The Laboratory frame (L)  →← ),,( LDLDLD γβα  The Director reference frame (D)  

 →← ),,( DMDMDM γβα The Molecule-fixed frame (M)  →← ),,( MSMSMS γβα  

The Segmental frame (S)  →← ),,( SPSPSP γβα The Principal Axis System (PAS) 

Actually, the orientation for the director frame fluctuates continuously and is spatially 

random. The time-dependent director orientation can make an appreciable or even a 

dominant contribution to the spin relaxation. Thus it is necessary to differentiate between 

an instantaneous director, for which nx, ny, and nz will be time-dependent, and the 

time-averaged director. This is needed to describe order director fluctuations [6]. 
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2 Liquid Crystals and Experimental Methods 

2.1 Mesophases in Thermotropic Liquid Crystals 

Liquid crystals have traditionally been divided into two broad classes: thermotropic and 

lyotropic liquid crystals. Thermotropic liquid crystals are generally formed by organic 

molecules, whose mesomorphic behaviours arise from changing the temperature. 

Lyotropic liquid crystals gain anisotropic properties from mixing two or more 

components. Here, both the concentration of mesogenic materials and/or the temperature 

can induce various mesophases. Due to the existence of long range orientational order in 

liquid crystals, molecules are preferably aligned along a particular direction in space, 

labeled by the local director n̂ . The diamagnetic susceptibility of a liquid crystal is 

anisotropic, due to the shape anisotropy of the molecules. The diamagnetic susceptibility 

χ  has two principal components in an uniaxial phase, where //χ  is the component 

along the director, while ⊥χ is that perpendicular to the director. If the diamagnetic 

susceptibility anisotropy χ∆ )( // ⊥−= χχ  is positive, the director will align along the 

magnetic field. This is favoured by most rod-like molecules, while a negative χ∆  is 

common for disc-like molecules. A typical rod-like liquid crystal molecule has 20~30Å in 

length and ~5Å in width.  

Before discussing the mesophases of a liquid crystal, it is beneficial to take a look at the 

isotropic phase, as shown in Fig. 2.1a, which is a completely disordered liquid. In the 

isotropic phase, molecules possess no long range positional or orientational order. The 
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isotropic liquid has a low viscosity and is clear. Actually, some short-range order may 

exist in the isotropic phase of liquid crystals, i.e. over a short length scale of a few 

molecular distances. The short-range orientational order parameter is non-zero but small. 

The Nematic Phase 

The nematic phase (see Fig. 2.1b) has a long-range orientational order [1] because the 

molecules tend to align along n̂ . However, positional order of molecular centres is still 

absent. The reason is, at a certain temperature the thermal energy may be sufficient to 

destroy the positional order of a solid but not enough to destroy its orientational order. 

Macroscopically, these materials show anisotropic properties, such as refractive index, 

dielectric constant and light scattering. Nematic phase is apolar, since + n̂  and - n̂  are 

equivalent. In addition, most thermotropic nematics known so far are uniaxial, due to the 

rotational symmetry around the director n̂ . The orientational order of molecules can be 

described by a second-rank tensor in the first approximation. In the case of rod-like 

molecules, this order is specified by an order parameter S=<P2(cosθ)>, where θ  is the 

angle between the rod axis and the director.  

 
Fig. 2.1 Being cooled down, (a) an isotropic phase could form (b) a nematic phase with the director,  
(c) a smectic A phase with the director or (d) a smectic C phase with two vectors for ordering. 

Let us now consider the nematic-isotropic phase transition, where the long-range 

(d)Smectic C (c)Smectic A(b)Nematic (a)Isotropic 

n̂
cv
n̂
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orientational order is suddenly destroyed upon heating, and the order parameter S drops 

discontinuously from a nonzero value to zero. This first order transition temperature Tc is 

also known as the clearing point. This behaviour was successfully interpreted by Maier 

and Saupe [2,3]. Assuming that anisotropic dispersion forces are responsible for the 

nematic order among the molecules, they have proposed an orientational pseudo-potential 

)(cos)(cos)( 22 θθεθ PPV −= ,                  (2.1) 

where the parameter ε scales the intermolecular interaction. The orientation of molecules 

in a mesophase can be specified by a singlet distribution function )(Ωf , where Ω  

denotes the Euler angles ),,( ϕθφ  involved in transforming between the molecular frame 

and the director frame. )(Ωf  originates from this orientational pseudo-potential )(ΩV  

according to, 

ZVf /)}(exp{)( Ω−=Ω β ,                      (2.2) 

where TkB/1=β  and Z is the single-molecule partition function  

∫ Ω−Ω= )}(exp{ VdZ β .                      (2.3) 

The average of any single molecule property )(ΩX  over the orientations of all 

molecules is defined by 

∫ ∫∫ ΩΩ=
π ππ

ϕθθφ
0

2

0

2

0
)()(sin fXdddX .               (2.4) 

If )(cosθLPX = , then the generalized order parameter LP  is given by 

∫=
1

0
)(cos)(cos)(cos θθθ dfPP LL .                  (2.5) 

Among all the orientation order parameters of different ranks, only 2P can be determined 

from the dipolar or quadrupolar splittings in NMR spectra [4]. Due to the fourth-rank 
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tensor nature of the scattering interaction, 2P and 4P are accessible by the Raman 

scattering technique. Although it is usually not straightforward, 4P  can also in 

principle be obtained from nuclear spin relaxation [5]. 

The Smectic A Phase 

The word smectic has a Greek origin, i.e. ‘smectos’, which means ‘soap-like’. Besides 

the orientational order, molecules arrange themselves into layers and show some degree 

of positional order, as the molecular centres of mass are arranged on the average in 

equidistant planes (see Fig. 2.1c). Additional phase symmetry properties are used to 

distinguish different smectic phases, with a label from A to I.  

In the smectic A phase, the director n̂  is parallel to the normal of the smectic layers. The 

layers form a one-dimension density wave. Due to the freedom of motion of molecules 

within the layers, SmA phase could be considered a two dimensional liquid.  

The Smectic C Phase  

Molecules in the SmC phase (see Fig. 2.1d) differ from those in the SmA phase by tilting 

themselves at an angle θ with respect to the layer normal. This tilt angle θ depends on the 

compound, and for a given compound, it can vary over a range of temperature or stay 

relatively constant. This phase is biaxial. Besides the director n̂ , its projection onto the 

layer defines another ordering direction cr . 

The Chiral Nematic (Cholesteric) Phase 

‘Chiral’ means handedness, or means molecules arrange themselves such that they share 

the same local director in each of the nematic layers. These local directors form a screw 
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framework, either right-handed, or left-handed. The molecules contain a chiral centre and 

have intermolecular forces that favour the alignment of molecules at a slightly different 

angle to one another. This leads to the formation of a helical structure which can be 

visualized as a stack of very thin 2-D nematic-like layers with the director in each layer 

twisted with respect to those above and below [6]. Indeed the local directors of different 

layers vary continuously from 0º to 360º. This 360º rotation of n̂  is completed over a 

distance of p, called the pitch, and the direction of p is called the pitch axis, which is 

perpendicular to all n̂ . The pitch length is usually of the order of the wavelength of 

visible light. Light of particular wavelength can be selectively reflected from a sample of 

chiral nematics. Since a decrease in temperature will increase the degree of twist, thereby 

shortening the pitch, the colour of the reflected visible light will change accordingly [7]. 

Twisted nematic liquid crystals have broad applications in the LCD industry [8]. 

The Chiral Smectic C (Ferroelectric) Phase 

Chirality [9] in self-organizing systems can lead to a reduced phase symmetry and can 

yield a huge variety of novel mesophases with unique structures and properties [10]. 

Strong chirality, has lead to a series of fascinating frustrated phases, such as Blue Phases 

(BP) [11] and the Chiral Smectic C phase (SmC* [12]). Similar to the chiral nematic phase, 

molecular chirality in the SmC* phase leads to a helicodial structure, in which molecules 

with a tilt angle θ position in each layer but with various azimuthal angle φ , from 0º to 

360º, at different layers. The tilt θ is dependent on temperature. This phase is also biaxial, 

but the cr  axis rotates according to the φ angle.   
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Special molecules (e.g. bent shaped dimesogens [10]) can lead to an anticlinic molecular 

organization (SmCA), in which the tilt direction alternates between φ=0º and 180º from 

one layer to the next, giving rise to antiferroelectric properties of the corresponding chiral 

mesophases (SmC*A) [13]. Further, at least two subphases occur between the SmC* and 

the SmC*A phases. One of them is the ferri-smectic (SmC*γ) phase [13], which has 

superlattice periodicities consisting of three layers. Fig. 2.2 illustrates these three chrial 

phases from above and side views. 

 
Fig. 2.2 Chiral smectic C (SmC*) phase, antiferroelectric smectic C  
(SmC*A) phase and ferri-smectic C (SmC*γ) phase. 

For achiral molecules of rigid bent (banana shaped) molecular structure [14], Niori [15] et al. 

observed chirality and polar order of electric dipoles in smectic phases. Here, a polar 

order within the layer arises from the directed stacking of bent core units to minimize the 

excluded volume [10]. This leads to several possible smectic phases [16,17], known as B 

(banana) phases. 
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The Columnar Phase 

The columnar phase is formed by stacking discotic (disc-like) molecules [18]. These 

molecules tend to stack themselves into columns, and their directors are along the column 

axis (i.e. perpendicular to the molecular planes). Also, the arrangement of the columns 

can show different patterns, including hexagonal, rectangular or oblique symmetry. 

2.2 Classification of Lyotropic Liquid Crystals 

To form a lyotropic liquid crystal, at least two components are needed. One component 

contains amphiphilic molecules, which are composed of a polar head group (which is 

hydrophilic) and a hydrocarbon tail (hydrophobic). The other component is the solvent in 

which amphiphilic molecules reside. Lyotropic liquid crystal exists everywhere in our 

daily life. Soap in water forms a variety of lyotropic phases. A common soap is sodium 

dodecylsulphate where an ionic group (sulphate) is attached to a hydrocarbon chain [6]. 

The sulphate head group is soluble in water while the chain part is quite insoluble. Thus, 

in a dilute solution, the soap molecules form a spherical structure, called a micelle, 

leaving the soluble head group outside in the water, while keeping the hydrophobic chain 

inside away from water molecules (see Fig. 2.3). Micelles come in various sizes, but the 

diameter of the smallest sphere could be of only two molecules’ length.  
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Spherical Micelle Cross Section 

Fig. 2.3 Structure of spherical micelles [6]. 

The term “critical micelle concentration” (CMC) [19] describes the minimum 

concentration of the surfactant molecules in the solvent. Above the CMC, micelles are 

formed. At the CMC the hydrocarbon chains undergo a substantial change in their 

environment since below this concentration they are interacting mainly with the solvent 

and above it primarily with each other. This difference may be revealed in nuclear 

magnetic shielding as changes in the chemical shift of the nucleus of interest. A break in 

the curve of the chemical shift against concentration usually appears at the CMC [19]. 

As the concentration increases, the micelles begin to arrange themselves into a cubic 

pattern and then a hexagonal pattern. The cubic phase has a structure similar to that of a 

face-centred or body-centred cubic crystal lattice, though micelles take the place of atoms 

or ions (note that cubic phases also exist in thermotropic liquid crystals [20]). The 

hexagonal phase is formed by rod-shaped molecule aggregates, whose surface is 

composed of hydrophilic heads while the hydrophobic tails are kept inside. Six rods 

group around a seventh rod, showing a compact and stable structure (see Fig. 2.4).  

The lamellar phase forms at an even higher concentration. This bilayer structure has 

molecules arranging their hydrophilic polar heads facing into in the solvent, while 
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hydrophobic nonpolar tails fill the inside, as also shown in Fig. 2.4.  

The viscosities of the three phases, cubic, hexagonal and lamellar, are inversely related to 

their concentrations, because of their specific structures. The cubic phase is the most 

viscous among the three, because it lacks a sheer plane that allows sliding of molecules. 

In contrary, the sheet-like parallel layers that allow sliding on each other help the lamellar 

phase to gain higher fluidity with less water content. The hexagonal phase is more 

compact but has somewhat a sliding plane, showing medium viscosity. A typical phase 

diagram of lyotropic liquid crystals is shown in Fig. 2.4.  

 
Fig. 2.4 Phase diagram of a lyotropic crystal as a function of both concentration and temperature 
[6].The dotted line is the critical micelle concentration. The cubic phase is one of the intermediate 
phases between the hexagonal and the lamellar phase. The dark boundary line refers to the Kraff  
temperature, below which few liquid crystalline state form. 
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The phase transitions in Fig. 2.4 can be determined by a number of strategies [19], e.g. 

polarizing microscopy, differential scanning calorimetry, X-ray diffraction and proton 

NMR linewidth study, where an abrupt discontinuity in linewidth occurs at the phase 

transition.  

In lyotropic systems, intermediate phases between the lamellar and the columnar (here 

hexagonal in Fig. 2.4) organization can provide a wide variety of complex meso- 

morphologies [9]. The bicontinuous cubic phases and non-cubic intermediate phases 

(rhombohedral phases, tetragonal phases and different mesh phases) represent possible 

phases between the lamellar and the columnar organization. They are summarized in Fig. 

2.5 [10]. 

 
Fig. 2.5 Intermediate phases occurring at the transition between the lamellar smectic and the columnar 
organization of amphiphilic molecules [21-25]. Though the shown phases have mostly been found in 
lyotropic systems [26], related structures should also be possible for thermotropic intermediate phases. 

If the concentration of micelles is such that their weight of amphiphilic molecules is 
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greater than that of the water, the molecules can form a spherical structure trapping water 

droplets inside, with the amphiphilic polar head in contact with the water, and the 

nonpolar tails isolated on the outside. This is shown in Fig. 2.6a. Another scenario occurs 

when the micelles are dissolved in a nonpolar solvent. Provided the concentration of 

micelles is low, the molecules can form the same structure, called an ‘inverse micelle’. 

      
Fig. 2.6 (a) Cross section of an inverse micelle and (b) Cross section of a vesicle [6]. 

Surfactants dissolved in water can also form lyotropic phases. Thus, phospholipids can 

form another phase, vesicles (Fig. 2.6b), other than micelle in dilute solution. Vesicles are 

bilayers that have folded into a three-dimensional spherical structure, similar to a micelle 

but with two layers of molecules. Vesicles form because they eliminate the edges of 

bilayers, protecting the hydrophobic chains from the water at the centre. For a flat bilayer 

to be without edges, it would have to be infinite. Molecules that form vesicles usually 

have a fluid double chain and a large optimal area per head group [27]. Lipids found in 

biological membranes spontaneously form vesicles. Lyotropic liquid crystals are also 

extremely important because of their role in biological membranes. Membranes are 

composed of amphiphilic lipids - mostly phospholipids and cholesterol. 

Recently, intensive study of novel non-conventional materials has led to novel 

(a) (b) 
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mesophases and deeper understanding of the driving force for their self-organization [10]. 

It is found that besides the molecular shape and space filling effects, nanoscale 

segregation of incompatible molecular parts (micro segregation), and the minimization of 

resulting interfaces between these nanoparticles [28] play an important role in mesogenic 

self assembly, leading to new mesophase morphologies [9,29-31].   

2.3 Pulse Sequences  

Solid Echo Sequence  

The solid echo pulse sequence [32] is a routine way to acquire quadrupolar splittings in a 

liquid crystal sample. In contrast to liquid state, where the relaxation time is on the order 

of 1 s, the relaxation time scale in solid is so short such that T2 is on the order of 100 µs. 

Since the instrument (e.g. deadtime in NMR probe) cannot response fast enough to 

capture the full FID over this short time scale, acquiring a true FID signal by a simple 90º 

pulse is impossible. For τ larger than the deadtime, the trailing half of the solid echo is 

equal to the true FID [33]. Therefore, the solid echo is a good technique for overcoming 

the effects of the deadtime in determining the FID shape [34]. By adjusting the echo delay 

τ, left shifting proper amount of FID data points, the true FID can be obtained. 

Various versions of Jeener-Broekaert Sequence 

The Jeener-Broekaert (JB) sequence is used in this thesis to measure spin-lattice 

relaxation times by first maximizing the quadrupolar order, or “spin alignment” according 

to Spiess [35]. An additional 45º pulse added to the JB sequence can produce the net effect 
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of subtracting the equilibrium ∞M  signal (the equilibrium magnetization at infinite time) 

from the JB signal. This would minimize any long-term instability in the NMR signal 

immediately after the second 45º pulse. Besides, if a deadtime problem occurs, where it is 

difficult for the spectrometer to observe signal soon after the second 45ºy pulse, a 

refocusing 90ºy pulse may be added as in the solid echo sequence. When there are several 

doublets of interest to be measured in the same spectrum, a separate experiment with a 

specific τ is required to maximize the quadrupolar order of each doublet. Alternatively, 

broadband excitation may be used to irradiate several doublets identically using a 

Broadband JB (BBJB) sequence, or called Wimperis sequence [36,37]. This is particularly 

useful if the NMR spectrum represents a powder sample. Also, the BBJB has the 

advantage of saving time on a relaxation experiment. The BBJB sequence with 

∞M subtraction and proper phase cycling is routinely used to measure spin-lattice 

relaxation times (Fig. 2.7) in the present work.  

To calculate both T1Z and T1Q from the decay curve composed by the 15 measurements, 

the sum S(t) and difference D(t) of the spectrum and its reverse w.r.t. Larmor resonance 

frequency, are given by 

)/exp()( 1ZTttS −∝                          (2.6) 

)/exp()( 1QTttD −∝                          (2.7) 

The BBJB sequence – M∞ sequence works successfully with the 2H study. However, 

when it came to 14N T1 measurements, spectra in a relaxation measurement require proper 

phase correction [34]. The way of phase correction in our 14N NMR was verified by 
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employing different versions of JB sequences.  

 
Fig. 2.7 Pulse diagram of BBJB-M∞ sequence. Recycle delay after the 5th pulse is to 5T1 when the 
magnetization fully recovers. In the pulse sequence, T(n) is a list of times within the relaxation time 
scale. In practice, 15 points of different T(n), are used to obtain partially relaxed spectra. 

2.4 Apparatus  

We used a Bruker Avance 400 spectrometer with 9.1 tesla superconducting magnet. 2H is 

measured at 61.4 MHz and 14N at 28.9 MHz. The sample temperature was regulated by 

an air flow to better than 0.1ºC. A pulse width about 3 µs was employed in the 

two-channel probe to obtain an optimized 90º pulse for 2H. 2H relaxation data of 8BEF5 

were collected for aromatic deuteron sites ‘a’ and ‘b’, and the deuterons at the methylene 

Cα, by measuring their Zeeman (T1Z) and quadrupolar (T1Q) spin-lattice relaxation times. 

Relaxation delay of 200 ms was used and the number of scans for signal averaging was 

128. The uncertainty of T1Z and T1Q measurements was estimated to be less than 5%. In 

the BBJB sequence, the delay time τ between the first and the second pulse (see Fig. 2.7) 

was set accordingly [38] to make the efficient irradiation on the splitting peaks of interest. 

In other words, to produce a more pronounced difference between right peak and left 

peak. The best scenario of the quadrupolar order was when the left component of the 
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doublet totally disappeared in the BBJB-M∞ sequence. In the lyotropic measurements, the 

samples were in 4 mm NMR tubes to save the amount of deuterated materials. The 

relaxation times of five deuterium doublets vary significantly, ranging from 50 ms for 2H 

at carbon site 1 (near the head group) to over 1 s for 2H at carbon 10 (at the end of chain).  

For 14N lyotropic study, the lyotropic samples were sealed in 7.5 mm NMR tubes. A pulse 

width of 3.7-3.9 µs was used for 14N in a single-channel 14N probe. The dwell time was 2 

µs and the corresponding spectral width was ±250 kHz. A signal averaging of 16k scans 

was routine in the literature [39,40], while here the number of scans was up to 8k. An 

excitation delay τ of 5 µs to 20 µs was used at different temperatures according to the 

splitting of 14N doublet. At lower temperature, a τ of less than 4 µs between the first and 

the second pulse was found to give a better broadband irradiation.  

2.5 Liquid Crystal Samples 

Chiral Smectic Sample 8BEF5 

The smectogen (S)-[4-(2-methyl-butyl) phenyl]-4’-n-octybiphenyl carboxylate (8BEF5) 

exhibits a variety of mesophases, and was investigated in a previous study [4]. Our 

8BEF5-d15 sample (in 5 mm NMR tube) was kindly provided by Dr. C.A.Veracini, 

University of Pisa. It was specifically deuteriated at the aromatic and alpha carbon sites, 

and is shown in Fig. 4.1, while the other methylenic sites were accidentally deuteriated 

during the synthesis, resulting in much lower intensities for these sites. 

The smectic-isotropic transition temperature is 408 K. The sample shows powder pattern 
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before its alignment at high temperature (>380 K) by the external field. By melting it 

completely in isotropic phase, the sample gains a well defined monodomain in both SmA 

and SmC* phases after cooling down slowly.  

Lyotropic Sample DACl/H2O Binary System at Lamellar Phase  

The decylammonium chloride (DACl)/H2O binary system is popular as a model system 

in the study of lyotropic liquid crystals [41,42] and biological membrane system. It belongs 

to a family of long-chain cationic surfactants, whose family members are different by the 

number of carbons and the type of the halides [43,44]. At higher DACl concentrations, a 

variety of mesophases are formed, including hexagonal phase, lamellar phase, nematic 

and micellar isotropic phase. The DACl was synthesized by C. Morcombe, Brandon 

University. Two non-deuterated DACl/H2O (54 wt.%) and DACl/H2O (56 wt.%) samples 

were packed into 7.5 mm NMR tubes. The two selectively deuterated 1,9,10-DACl-d7 

and 2,3-DACl-d4 were provided by Dr. A. S. Tracey, Simon Fraser University. These two 

kinds of deuterated DACl crystal powders were mixed to a weight ratio of 2 to 1, then 

were used as the solute 1,2,3,9,10-DACl-d11 and mixed with doubly-distilled water to 

prepare samples in different concentrations for 2H study. The experimental 2H NMR 

investigation was focused on a series of samples with concentrations chosen to cover 

interesting regions of the DACl/H2O phase diagram (Fig. 2.8) [45]. They contained 54, 56, 

59 wt.% of 1,2,3,9,10-DACl-d11 in H2O to study the lamellar phase behavior. 

1,9,10-DACl-d7 and 2,3-DACl-d4 were also mixed respectively with water, and both were 

at the 54 wt.%, for reference. The uncertainties in sample concentrations were estimated 
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to be less than 2%. By measurements of sample containing only one kind of selectively 

deuterated material [46], it is found that the C2, C3 doublets appear indistinguishable and 

thereby only one quadrupolar splitting and relaxation can be recorded. On the other hand, 

in the lamellar phase of 1,9,10-DACl-d7/H2O, besides the 1v∆ , 9v∆  and 10v∆ , an 

additional weak splitting appeared, which is probably deuterated accidentally at the 

carbon site between C4 and C8. We named this CX. Thus, in total, there are five doublets 

in the combined deuterated lyotropic samples. 

 
Fig. 2.8 Phase diagram of DACl/H2O binary system is reproduced [45]. 

To align these lyotropic samples in the lamellar phase quickly, heating outside the magnet 

into fluid state is necessary before putting the samples into the superconducting magnet 

bore. However, the samples were usually not well aligned when first cooled down into 

the lamellar phase. The signal to noise was poor especially for doing relaxation 
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experiments. Then the sample must be heated up again and be kept at some high 

temperature for a few hours then cooled down slowly. This kind of process was repeated 

several times until a well aligned sample was achieved. A deuterated 54 wt.% sample was 

heated to 345 K into the micellar isotropic phase, the deuterated 56 wt.% one to 360 K 

and the deuterated 59 wt.% one was 410 K. Before completely becoming isotropic, a 

lamellar-isotropic biphasic region extending 10-20 degree appears, whose span 

corresponds the phase diagram reported earlier [45] by polarizing microscopy. The 

boundary of the biphasic regions was actually determined by the onset of relatively 

temperature-insensitive splittings and the existence of an isotropic peak between the 

doublets in the spectrum. In fact, this isotropic peak exists for quite a large temperature 

range in the lamellar phase. The phases and transitions temperatures are summarized in 

Table 2.1. 

Table 2.1 Transition temperatures determined for  
the samples used in both 2H and 14N studies. 

Sample wt.％ Phases and transition temperatures  

54 lamellar  → K334 lamellar+isotropic  → K345 isotropic 

56 lamellar  → K342 lamellar+isotropic  → K357 isotropic 

59 lamellar  → K380 lamellar+isotropic  → K410 isotropic 

2.6 Sample Preparation of Lyotropic Samples 

The decylammonium chloride (DACl)-D2O binary system was prepared at a serial of 

concentrations (38 wt.%.~59 wt.%) in NMR tubes for mapping the phase diagram and 

14N study, while the deuterated DACl-H2O (doubly distilled) binary system of 
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corresponding concentrations for 2H relaxation study. The preparation methods were 

surveyed [39,41,45,47,48], and detailed procedures and precautions in preparing a particular 

DACl/D2O (43.0 %w.t.) sample carried out are given here. 

A. Solute Weighing and Solvent Injection 

DACl was weighed to an accuracy of 1 mg and then put into a small clean bottle with a 

microbar in it. 15 spoons of DACl weigh around 120mg of DACl. A 180-250 mg 

well-mixed mixture could be good for one transfer into a 4 mm NMR tube, while 

350-400 mg for a 5 mm tube and 650-750 mg for a 7.5 mm tube. These vary somewhat 

depending on the concentration and viscosity of the mixture.  

A 50 µL syringe was used to inject D2O (H2O) to the bottom of bottle at the first shot to 

let them mix easily; DACl on the wall inside was flushed down at later shots. Some drops 

left at the opening of the bottle were used for later concentration correction if required. 

For D2O, 100 µL equals around 110 mg.  

B. Mixing 

Before the bottle was capped, teflon tape was used around the opening of the glass bottle 

for a few turns to make a thin film before capping the bottle to prevent water loss. Then 

the gap between the cap and the bottle was glued by putting pre-mixed epoxy (30 min 

before) and then drying the glue for a day. The sample was then stirred on a magnetic 

Stirrer/Hot plate by the microbar for over 1 hr at room temperature. For higher DACl 

concentration (>48% wt), the bubbles introduced by fast stirring made the mixture looked 

like white soap, indicating a well mixed sample. After centrifuging the bottle for over 30 
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min, a layer of condensed bubble remains on the top of the clear mixture, these bubbles 

were reduced by centrifuged up and down for 2 times, each for 5 min. To mix the sample 

in isotropic phase, the bottle was stirred while immersing into high temperature oil which 

was heated above the predicted phase transition temperature (usually >70 ºC). In high 

concentration case, mixture might need to go as high as 110 ºC to reach isotropic phase, 

then the mixture was cooled down out of the oil bath. Finally, the mixture would become 

clear liquid without bubble. The water vapor left on the inner wall was removed by 

rolling mixture over the bottle to cover all the area of the inner wall and then centrifuging 

up and down 3 times, each for 10 min. The whole process was cycled for a second time 

until transparent homogenized mixture was obtained. Typically, the sample was 

equilibrated at room temperature for a least 1 hr before transferring.  

C. Transferring and Sealing 

Since DACl/ D2O lyotropic mixtures remained in micellar phase at room temperature, we 

could transfer it into a NMR glass tube at room temperature at ease. If necessary, 

everything was pre-cooled below room temperature (at 5~15 ºC) before transferring. 

High temperature (in isotropic phase above the hexagonal or lameller region) transferring 

would not work because the sample cooled down quickly and became too viscous to flow 

and sticked on the pipette in a few seconds.  

Before transferring, the cap was sawed out halfway carefully. To avoid dust dropping into 

the mixture, the saw dust was cleaned with wet napkin constantly. A constriction on the 

sample tube was made by a propane flame. Longer tube would make sealing easier. The 
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mixture was sucked gently and transferred to the bottom of the NMR tube. Great care 

was needed to prevent leaving mixture on the upper part of the NMR tube. If a big 

amount mixture stayed at the wide junction of pipette and it could not be blown out, then 

waited for a while till it flowed into the fine tip region. The opening of the sample tube 

was capped by a parafilm tape to prevent water loss and was frozen a bit and then 

centrifuged to get rid of the bubbles.  

To seal the NMR tubes, the chemicals on its inner wall must be cleaned with ethanol after 

freezing the sample by liquid nitrogen in advance. Otherwise, the chemicals will be burnt 

during sealing and cause the sample not to seal at all. The sample must be constantly and 

completely frozen for degassing and sealing. Then the sample tube was plugged into a 

vacuum system to gain a reduced pressure for easy sealing. A propane gun was used to 

seal at the constriction. Finally, the sample was equilibrated in room temperature for a 

week before experiment. 
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3 Relaxation Models of Liquid Crystals 

3.1 Correlation Function and Spectral Density 

In NMR spectroscopy, correlation functions of the orientation of atom-atom vectors are 

of prime importance. Correlation times that describe the rate of molecular reorientation 

are derived from these. The time correlation function [1] is of great value for the analysis 

of dynamical processes in condensed phases. When a time-dependent quantity A(t) is 

multiplied by itself at a different time, it is called an auto-correlation function. But if A(t) 

is multiplied by another time-dependent quantity B(t') evaluated at time t', it is called a 

cross-correlation function. Both products are averaged over some equilibrium ensemble. 

For example, an autocorrelation function for a property, A, measures the correlation 

between the value of A(0) at an arbitrary initial time and its value at a later time t, A(t). 

The normalized autocorrelation function for A is defined as:  

)0()0(
)0()(

)(
AA
AtA

tG Auto = ,                       (3.1) 

where the brackets imply an ensemble average. In molecular systems undergoing 

stochastic fluctuations, this function varies from a maximum of 1 at t = 0, to a value of 

zero at long times, where all correlation between the initial and current A values has been 

lost.  

In Eq. (1.20), under the assumption that the PAS frame is rigid in the molecular frame, i.e. 

the Euler angles between the two frames are time independent, )(tG
Lm  may be 
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evaluated in terms of the Wigner rotation matrix )(2
LMmm ML

D Ω  in the fluctuating 

Hamiltonian 

{ }∑ −Ω=
M

MLMLML
m

mmLMmmmm DDdtG 2222
0 )]0([)]([)( θ { }*2*2 )]([

MLML mmLMmm DtD −Ω× .  (3.2) 

Now LMΩ ( γβα ,,≡ ) denotes the Euler angles that transform from a molecular frame 

fixed on the molecular core to the laboratory frame, θ  is the angle between the PASz  

axis of the PAS frame (in 2H study, this would refer to the C-D bond) and the Mz axis of 

the molecular frame, and Lm and Mm are the projection indices for a tensor of rank two 

in the laboratory and molecular z axes, respectively.  

Recall from the chapter 1, the spectral density comes from the Fourier transformation of 

the autocorrelation function )(tG
Lm , but now it is a real quantity. For a quadrupole 

interaction, Eq. (1.20) becomes 

dttmtGqmJ LmCDLm LL
)cos()()(

2
3)(

0

2
2

ωπω ∫
∞

= ,            (3.3) 

where the nuclear quadrupolar coupling constant hqQeqCD /2= (η = 0 is assumed). 

On the other hand, spectral densities can be simply related to the measured relaxation 

rates ( 1
1
−T or 1

2
−T ). In quadrupolar interaction, by using Jeener-Broekaert sequence, 

Zeeman spin-lattice relaxation time T1Z and quadrupolar spin-lattice relaxation time T1Q 

are measured simultaneously. 2H T1Z and T1Q relate to the spectral densities Jm(mω0,Θ ) 

for the director oriented at an angle Θ with respect to the external magnetic field as 

follows [2] :  
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),(31
01

1

Θ= ωJ
T Q

                              (3.4) 

),2(4),(1
0201

1

Θ+Θ= ωω JJ
T Z

,                   (3.5) 

where ωo is the Larmor frequency. For the director aligned along the external magnetic 

field, Eqs. (3.4) and (3.5) enable the determination of spectral densities )0,( 01 °ωJ  

and )0,2( 02 °ωJ . 

3.2 Rotational Diffusion Model 

In a stochastic Markovian process, the orientational correlation function for a uniaxial 

molecule can be written as 

∫ ∫ ΩΩΩΩ= )()()( 0
*

00
'
'

L
mn

LL
nmm DPddtG )()|( '

'0 ΩΩΩ L
nmDtP ,          (3.6) 

where for simplicity, m and n are used to represent the Lm , the projection index in the 

laboratory frame and Mm ,the projection index in the molecular frame, respectively. 

)|( 0 tP ΩΩ  is the conditional probability of finding a molecule at orientation Ω  at a 

time t if the orientation of molecule was 0Ω  at t=0.  

Nordio et. al [3-5] proposed the small step rotational diffusion (SRD) model to describe the 

evolution of the conditional probability )|( 0 tP ΩΩ  where the molecular reorientation in 

a potential of mean torque takes place through a sequence of small angular steps. The 

rotational diffusion tensor is diagonalized in a molecular frame. 

Uniaxial Molecule in Uniaxial Phases 

Taking the simplest situation where an uniaxial molecule reorients in a unixial phase, the 
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solution to the rotational diffusion equation is discussed in Appendix A.  

For 2=L the reduced correlation function [Eq. (A.24)] in the notation of Tarroni and 

Zannoni is 

( ) ( )[ ]∑=
k

knmknmnm ttg 2
,

2
,

2
, exp)( αβ ,                    (3.7) 

where the decay constants, ⊥Dkmn /)( 2α , are the eigenvalues of the rotational diffusion 

matrix, and kmn )( 2β , the corresponding eigenvectors, govern the relative weights of the 

exponentials. The diffusional coefficient ⊥D  represents tumbling rotation of the 

molecule about one of its short molecular axes, while ||D  the spinning motion about the 

long molecular axis. Both ⊥D  and ||D appear in kmn )( 2α . 

As an approximation, the correlation functions [Eq. (3.7)] can be written using a single 

exponential by restricting the sum over K to the leading term, 

( ) ])exp[()()( 1
2

,0,0,

22
,

22
,

2 tDDtg
MLMLMLMLML mmmmmmmmmm αδδ ×



 −=  

]/exp[),( 2
, ML mmML tmm τκ −= .                           (3.8) 

Vold and Vold [6] have solved for a cylindrical molecule reorienting in uniaxial 

mesophases numerically, and using the notation of Vold and Vold, Eq. (3.7) becomes 

[ ]∑
=

−=
3

1

)(
,

)(
,,, /exp)(

j

j
nm

j
nmnm

MR
nm tactg τ ,                      (3.9) 

where nmc , represents the mean square of the Wigner rotation matrices,  

( )22
00

22
,, )( DDc nmnm −Ω= .                     (3.10) 

The correlation times )(
,
j
nmτ  at each temperature depend on the order parameter 2P  and 
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on the rotational diffusion tensor components. The )(
,
j
nma  expresses normalized weights of 

the exponentials whose time constant 

[ ] )(6
||

2
)(

,

1)(
, ⊥

⊥− −+= DDn
b
D

j
nm

j
nmτ .                      (3.11) 

The )(
,
j
nma , )(

,
j
nmb  and nmc ,  coefficients for all the correlation functions are given 

numerically as a polynomial in 2P  and their expansion coefficients are tabulated in 

Table I of Ref. [6] for a Maier-Saupe potential [7,8]. 

The SRD model gives [from Eq. (3.2) and (3.7)] the spectral densities of a deuteron due 

to molecular rotations (MR, as the superscript)  

[ ] ∑∑ +
⋅

=
k knm

knmknm

p
QMp

MR
m m

dmJ 22
,

2

2
,

2
,2

,
2

0 )()(
)()(

)()(
αω
αβ

θω ,              (3.12) 

where QM ,θ  is the angle between the cylindrical symmetry axis of the molecule and 

principal component of the spin interaction (e.g. C-D bond).  

Asymmetric Molecules in Uniaxial Phases 

In a more realistic situation, where the liquid crystal molecule is treated as a biaxial rotor 

reorienting in a uniaxial potential of mean torque, Tarroni and Zannoni’s model [9] has 

been proposed, in which )(ΩU  is independent of α  and may be expanded in terms of 

Wigner matrices as 

∑=
Jq

J
qJq Da

kT
U ),(),(

,0 γβγβ                      (3.13) 

and the equilibrium probability is 
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∫ −Ω
−=

]/),(exp[
]/),(exp[),(
TkUd

TkUP
B

B

γβ
γβγβ .                 (3.14) 

The conditional probability function )|( 0 tP ΩΩ  can be obtained from diagonalizing the 

diffusion matrix LmmL
nR ,'')ˆ( [9] in a basis set of Wigner functions. Here the correlation 

functions for reorientation can be nonzero for 'nn ≠ , and are given by a sum of infinite 

number of exponentials: 

∑=
k

kmnnkmnnmnn ttg ])exp[()()( 2
'

2
'

2
' αβ ,                 (3.15) 

where the decay constants, ⊥Dkmnn /)( 2
'α , are the eigenvalues of the rotational diffusion 

matrix, and kmnn )( 2
'β , the corresponding eigenvectors, govern the relative weights of the 

exponentials. The spectral densities of motion for the unique axis of the interaction tensor 

making an angle θ  with the molecular z axis are obtained by Fourier transforming 

)(2 tG
Lm  to give 

∑∑ ∑ +
=

M M MML

MMLMML

MML
m m k Lkmmm

kmmmkmmm
mmLm m

ddmJ
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222
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)()()(
ωα

αβ
θθω .      (3.16) 

The Tarroni and Zannoni model has been applied in a deuterium NMR study of a biaxial 

solute in nematic phase [10] and to the solvent molecules in smectic liquid crystals [11,12]. 

Uniaxial Molecules in Biaxial Phases 

When a uniaxial molecule is reorienting in biaxial mesophases of hD2  symmetry, a 

model has been proposed by Berggern et. al[13,14]. The consequence is the possibility of 

observing correlation functions with LL mm '≠ . It is shown that some spectral densities 

vanish, while others change continuously at the biaxial-uniaxial phase transition. The 

biaxial spectral densities are those which are nonzero in a biaxial phase and vanish in a 



 58 

uniaxial phase. Here )(ΩU  is independent of γ  and expanded in terms of Wigner 

matrices as 

∑=
Jp

J
pJp Da

kT
U ),(),(

0, βαβα ,                    (3.17) 

and the equilibrium probability is 

∫ −Ω
−=

]/),(exp[
]/),(exp[),(
TkUd

TkUP
B

B

βα
βαβα .                 (3.18) 

The conditional probability function )|( 0 tP ΩΩ  can be obtained from diagonalizing the 

diffusion matrix LmmL
nR ,'')ˆ(  [13] in a basis set of Wigner functions. The correlation 

functions for reorientation are given by a sum of infinite number of exponentials: 

∑=
k

knmmknmmnmm ttg ])exp[()()( 2
'

2
'

2
' αβ .                 (3.19) 

By Fourier transforming )(2
' tg nmm , taking into account the unique axis of the interaction 

tensor making an angle θ  with the molecular z axis, the spectral densities are 
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⋅
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k kmmm

kmmmkmmm

m
mmm

MLL

MLLMLL

M

MLL
dJ 22

'
2

2
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2
'22
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)()(

)()(
αω

αβ
θω .            (3.20) 

3.3 Superimposed Rotations Model 

Apart from the overall motion of molecules discussed in the previous section, internal 

dynamics of flexible mesogens are now described. One basic internal rotation model, 

rotational isomeric state model (RIS) [15], applies to rotational jumps among the three 

equilibrium sites when the potential barriers are larger than kBT. This is due to the fact 

that rotation about each carbon-carbon (C-C) bond in the chain is assumed to take one of 



 59 

the three dihedral angles (φ=0º, ±112º). These correspond to the trans (t) and two 

symmetric gauche (g±) linkages. The gauche states have higher energy in comparison to 

that of the trans by an amount of Etg. Since our samples are not fully deuterated on the 

chain, not enough information is available to solve the full chain dynamics. The RIS 

model cannot be used to generate all possible chain conformations.  

The other model involving a stochastic rotational diffusion about a bond is discussed in 

more details here. It is found that the deuteron spin-lattice relaxation rates )( jR , where j 

labels the position of the deuteron in the alkyl chains, decrease monotonically along the 

chains of mesogens. Beckmann et. al [16] have proposed a model of superimposed 

rotations which is consistent with a monotonic decrease of relaxation rates along the 

pentyl chain of 5CB-d15. Here we apply this model to internal ring flips in our sample 

8BEF5 (Fig. 3.1).   

 

Fig. 3.1 Sketch of 8BEF5, the location of the molecular frame and internal rotation axes.  
The YM axis is chosen to complete a right-handed Cartesian coordinate system.  

In this model, the molecule is taken to be made of a number of rigid sub-units, labeled as 

in figure above. R is for the aromatic ring containing deuterons and i=1 to 4 for the CD2 

and CD3 groups. The structure and the location of internal rotation axes are as shown. 

Since the C-C1 bond between the aromatic ring and carbon 1 (C1) are supposed to be rigid, 
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Rz and 1z  are parallel to one another. An angle θ is defined between the Mz  molecular 

axis and the para axis, along which Rz and 1z  now lie. The internal rotation axis linking 

fragments i and i+1 is used to define z axis for the ith sub-unit while its y axis is taken to 

be orthogonal to zi and zi+1. With this definition the Euler angle 1, +iiα linking fragments i 

and i+1 is zero, and the Euler angle 1, +iiβ  is time-independent and thus leaving only the 

Euler angle 1, +iiγ which contains the time dependence of internal motion. The PAS for 

quadrupolar tensor of a particular deuteron is denoted byQ ; to a good approximation this 

tensor is cylindrically symmetric and the symmetry axis is labeled Qz . 

Again, we start with the correlation function, 

)()0()( *),2(),2( tFFtG LL

L

mm
m = ,                  (3.21) 

where ),2( LmF  is the Lm th component of the irreducible spherical tensor representing the 

quadrupolar interaction; it is expressed in the laboratory frame (L) with the z axis parallel 

to the magnetic field. Now the molecular frame is assumed to be the principal frame for 

the quadrupolar tensor. In transforming into a molecular frame (M) in which the 

components ),2( MmF are time-independent,  

∑ Ω=
M

M

LM

L

m

m
LMmm

m FtDtF ),2(2),2( )]([)( ,                (3.22) 

and substituting Eq. (3.22) into Eq. (3.21), we have 

)]([)]0([)( 22)',2(),2(

'

'* tDDFFtG LMmmLMmm
mm

m m
m LMLM

MM

M M

L
ΩΩ=∑∑ .      (3.23) 

Apply this treatment to 8BEF5, and take the ring deuterons of 8BEF5, three coordinate 

transformations have to be considered: First the quadrupolar frame ( RQ ) to the segmental 
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frame fixed on the para axis of the phenyl ring, and this requires the Euler angles 
RRQΩ . 

From here we transform to the molecular frame involving Euler angles MRΩ , and then to 

the laboratory frame with the Euler angles LMΩ . Thus, 

∑∑∑ ΩΩΩ=
M R Q

Q

RRRQRMRLM

L

m m m

m
QRQmmMRmmLMmm

m FDDDtF ),2(222),2( )()()()( .     (3.24) 

The subscript on ),2( Q

R

m
QF is to emphasize that these tensor components are, in principle, site 

dependent. Following the same substitution in Eq. (3.23), 
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m m m
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2 tDDtDD RMmmMRmmLMmmLMmm RMRMLMLM
ΩΩΩΩ× , (3.25) 

where the superscript (R) in )()( tG R
mL

 is to label the correlation function for the deuterons 

on the phenyl ring.  

Two drastic approximations are necessary in order to simplify this complex correlation 

function to the point where its evaluation is practical [16]. First, the internal and external 

modes of motions are decoupled from one another. Thus the time-averaged factor in the 

correlation function is separated into two parts to be evaluated. The first of these is for 

reorientation of the molecular reference frame in the laboratory frame, and this part of the 

correlation function is given by 

 
MM

M

LMLMLM mm
m

MmmLMmmLMmm tgDtDD '
)(22*2

'
2 )(||)]([)]0([ δ=ΩΩ ,      (3.26) 

where now we have introduced the second assumption that the correlation function can 

be written in terms of a time independent and time dependent term. The latter is a reduced 

correlation function )()( tg Mm
M  and is taken to be independent of Lm . This assumption is 

consistent with the strong collision model [5]. The above delta function arises from the 
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assumed cylindrical symmetry of rotational motion about a fixed axis thereby leading to 

equality for terms with Mm± . 

The second part in the correlation function is for the internal rotation, and can be 

rigorously separated into time independent and time dependent parts: 

)()()]([)]0([ 2
'

2*2
'

2
MRmmMRmmMRmmMRmm MRMRMRMR

ddtDD ββ=ΩΩ  

)]0()('[exp[ MRRMRR mtmi γγ −−×      (3.27) 

When 0=Rm , this correlation becomes constant and independent of internal rotation 

about the CRing-C1 bond (para axis). Thus, 

22*2
'

2 )]([)]([)]0([ MRmmMRmmMRmm MRMRMR
dtDD β=ΩΩ

RRR mmmRR tgtg '0 }]1)([)({ δδ−−× , (3.28) 

where )(tgR is 

)]0()([exp{)( MRMRRR timtg γγ −−= .                 (3.29) 

The subscript R indicates that the reduced correlation function is for rotations about the 

para axis. Finally, the correlation function describing the molecular reorientation and 

internal ring motion gives, 

22)(222)0,2()( )]()[(||)()(
1 MRmm

m
M

m m
mmQ

R
m MR

M

M R

LML
dtgDFtG β∑∑=  

22
00 )]([}]1)([)({

RRR RQmmRR dtgtg βδ ×−−× .                (3.30) 

A similar expression can be obtained for the first methylene group rotating about the 

CRing-C1 bond. By including a geometric factor 2
,1

2
1 )]([ iimm ii

d −− β  and another term 

involving internal correlation function }]1)([)({ 0imii tgtg δ−− , we can generalize the 

correlation function for additional sub-units. For example, for the deuteron on the second 
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rigid methylene group )()2( tG
Lm ,  
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For simplicity, apply the Fourier transform to Eq. (3.30) 
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Now the spectral densities for the deuteron on C1 site (or for the ring deuterons by 

interchanging labels 1 and R) can be written as 
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For the term with 01 =m  in Eq. (3.33), in the fast motion limit,  
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For the products of correlation function in Eq. (3.33), when 01 ≠m in the fast motion limit 
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Finally, combining the small step diffusion rotation model, the superimposed rotation 

model with strong collision limit, we arrive at the expression of the spectral densities 

22
,

2
,

2
0,

2
2

)]([])([)(
2

3)0,( MRpn
n p

i
QRp

i
CDm ddqmJ θβπω ∑∑=°  

                      

[ ]
[ ]∑

−++

−+
×

k pkmn

pkmnknm

Dm

D
2

0,
22

0,
22

,

')1()()(

')1()()(

δαω

δαβ

,              (3.36) 

where 'D  is 1/1 τ  in the above equations, i = ring or CH2 group. MRθ  is the angle 
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between the long molecular axis and the para axis. This equation is applied in the 

deuterium study of chiral smectigen 8BEF5 discussed in Chapter 4. Similarly, the spectral 

densities for the nitrogen and deuteron NMR study of a lyotropic sample DACl/H2O will 

be included in Chapter 5.  

Since nitrogen 14 nuclei has also a spin I = 1 system and governed by the quadrupole 

interaction, we can treat 14N relaxation as we did in 2H study. Thus, for the nitrogen on 

the head group N-C1 bond, the spectral densities labeled by a superscript N 
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N
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where nitrogenq is the quadrupolar coupling constant for nitrogen, and NCθ  is the angle 

between the N-C1 bond and the long molecular axis. For the deuteron 2HC1 on the chain 

C1 site of DACl,  
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where the diffusion coefficient 'D  corresponding the correlation time 1τ  in Eq. (3.35) 

is included for the superimposed internal rotation. The CDq stands for the quadrupolar 

coupling constant for deuteron on the C-D bond. And NCHβ  is the angle ∠ N-C1-H. For 

the deuteron 2HC2 on the chain C2 site,  
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where ''D  is the diffusion coefficient for deuterons rotating about the C1-C2 bond. 

)(2
, NCCpjd γ denotes the Wigner matrix whose C1-C2 segment is rotating about the N-C1 

bond. CCHβ is the angle ∠ C1-C2-H. 

3.4 Angular-Dependent Relaxation 

In liquid crystals, it is customary to write the irreducible spectral densities given in the 

laboratory frame in terms of spectral densities expressed in the crystal-frame, which is 

defined by the symmetry axis (director) of the phase. In the case of the director not 

aligned along the external magnetic field, the extra transformation involves Euler angles 

LDΩ [ ),( LDLD θφ≡ ] from the crystal frame to the laboratory frame. This produces linear 

combination of the crystal frame spectral densities according to [13,17,18]. If the assumption 

of letting LDφ  distinguishable in our SmC* study in the next chapter, one obtains in 

biaxial liquid crystalline phases [17] 
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where uniaxial spectral densities ( 'mm = ) are J0,0, J1,1, and J2,2, and biaxial spectral 

densities J2,0, J1,-1 and J2,-2 are only nonzero in biaxial phases. Note that Ji,i ≡ Ji(ω). Even 

in biaxial mesophases, the biaixial spectral densities are unobservable if the director is 

aligned with the external field as in some SmC phases. Biaxial spectral densities due to 

molecular reorientations in biaxial phases are only calculated theoretically based on the 

small step rotational diffusion model [13,14], but no experiments have been reported on the 

determination of biaxial spectral densities so far. 
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4 Chiral Smectgon 8BEF5 in the 
SmA and SmC* Phases 

4.1 Introduction 

One of most fascinating properties of liquid crystals is their diverse molecular behaviour 

in various mesophases due to even minor structural changes. Although thorough studies 

of mesogens at high temperature unaxial phases, such as Nematic and Smectic A phases, 

are well documented [1-7], efforts are still necessary to understand the structure and polar 

properties of chiral smectogens which may exhibit ferroelectric [8], antiferroelectric [9] and 

related subphases.  

13C NMR studies have proven useful to understand the molecular structure via studying 

of orientational order and dynamics near the SmA-SmC* transition [10-14]. For example, 

information of the angle between the bent chiral chain and long molecular axis of some 

ferroelectric liquid crystal can be obtained [14,15]. On the other hand, deuterium NMR 

study is a powerful tool used extensively for extracting dynamical information [1]. 

However, the characterization of dynamic behaviour of these biaxial smectogens is not 

easily accessible. The problems, in particular the relation between tilted molecules in 

different smectic planes and the chiral pitch axis, are due to the difficulty of extracting 

meaningful spectral parameters from experimental observations and the lack of a suitable 

theoretical motional model (of the SmC* phase) which involves incredible number of 

parameters. Two chiral smectogens 10B1M7 [16,17] and 8BEF5 [18,19] have been studied in 
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our lab using 2H NMR but with limited success.  

Recently, Domenici et. al [20] proposed a new approach to tackle the problem in SmC* 

phase by treating aromatic deuterons of 8BEF5 at a single Larmor frequency. In this 

chapter, we present the experimental spectral data for the aromatic and alpha deuterons 

on the chiral chain at a higher Larmor frequency, and the analysis of deuteron results 

from two frequencies, 46 and 61.4 MHz, which can provide more reliable information to 

further test this approach [21]. The limiting assumption such as Perrin model [22] used 

before has been removed. Comparison of derived motional parameters among SmA phase 

and SmC* phase will be discussed.  

4.2 Quadrupolar Splitting and Ordering 

A typical deuterium NMR spectrum in a more ordered smectic phase, shown in Fig. 4.1 at 

352 K, gives separate quadrupolar doublets, similar to those reported earlier [18]. The 

overlap among the aromatic peaks ‘a’ and ‘b’ were similar in both SmA and SmC* phase. 

This overlap only exacerbated when entering other smectic phases below 340 K. The 

spectral densities derived for the region of overlapped aromatic peaks at SmC* phase 

were improved by deconvolution [23,24] using Bruker NMR software. 
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Fig. 4.1 Plot of a typical deuterium spectrum (352 K) and molecular structure of  
(S)-[4-(2-methylbutyl)phenyl]-4’-octylbiphenyl carboxylate and its phase sequence. 

Despite the ability of NMR to detect the transition temperature between mesophases, 

optical methods of texture observation, such as polarizing microscopy, can determine the 

mesophase transitions of liquid crystals more accurately. This is due to a tiny 

homogenized sample under study. NMR samples usually require much greater mass 

(volume), and as a consequence a temperature gradient across the sample exists. Since 

there is always a temperature variance inside the NMR probe for each experiment, and 
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the thermocouple is only located close to the NMR sample but not inside the sample, the 

set temperature of the temperature control unit does not reflect the real temperature of the 

sample accurately. A means of calibration of temperature must be employed to make 

experiments on the same sample consistent. In our case, quadrupolar splittings of 

different deuterium nuclei as a function of temperature (Fig. 4.2) were used to calibrate 

the ‘real temperature’ of the sample [18]. The peak assignments in Fig. 4.2 show increasing 

motional flexibility towards the end of the chain, while the deuterons on the aromatic 

sites are more motionally averaged because of the ring flip. Quite a portion of splitting 

data of deuterons on site ‘ω’ and site ‘γ’ were missing, because these sites happened to be 

overlapped by those from the aromatic deuterons and also they have lower deuteration. In 

the SmA phase, the splittings increase smoothly upon decreasing temperature (reported 

every 5 degrees). Experiments were done more frequently, every 1 or 2 degrees, to record 

quadrupolar splittings in chiral mesophases within a small range of low temperatures. At 

75 ºC, SmA-SmC* transition was observed as a change in slope consistent with the 

previous paper [18]. The SmC* phase terminates with a sharp increase at the onset of SmI* 

phases at around 62 ºC. If omitting the data of SmC* phase, we can see a smooth 

connection between SmA and SmI* for most sites. The SmC* data may be explained by 

the occurrence of tilt angle θ between director and the normal of smectic plane.  
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Fig. 4.2 Quadrupolar splittings measured for the different deuterium nuclei in the  
various mesophases as a function of temperature. The legend from the top to bottom,  
square, circle, up closed triangle, down open triangle, tilted square, left open triangle,  
right closed triangle refer to sites ‘α’, ‘β’, ‘γ’, ‘b’, ‘a’, ‘ω’ and ‘δ’, respectively. 

The quadrupolar splittings of sites a and b can also be used to obtain the order parameter 

Szz, by means of Eq. (1.38), where i denotes the deuteron site, and i
QR,β is the angle 

between the para axis and the i site C-D bond. The angle i
QR,β are 59.3º for i = ‘a’ 

deuterons (next to the COO group), 60.3º for the ‘b’ deuterons (next to the chiral chain) 

and 107.5º for the ‘α’ methylene deuterons, quadrupolar coupling constant i
CDq = 185 

kHz for aromatic deuterons ‘a’ or ‘b’, α
CDq = 165 kHz for the carbon site α, and for the 

aromatic sites, an asymmetry parameter η = 0.04 is used. The very small best-fitting 

parameter ∆biaxial indicates a low molecular biaxiality in SmC* phase. The experimental 

values of order parameter exp
zzS  have been described in the following equation to relate 
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the calculated values cal
zzS  , which are obtained by extrapolating from the SmA phase, 

ranging between 0.86 to 0.9, and the tilt angle θ in the SmC* phase,  

2
1cos3 2

exp −= θcal
zzzz SS

.                        (4.1) 

The tilt θ is found to vary from 0º to 11º upon decreasing temperature in the SmC* phase.  

4.3 Results and Discussion 

2H T1Z and T1Q in the SmC* phase give spectral densities Jm(mω0,θº) since the director is 

oriented at the tilt angle θ with respect to the external magnetic field. Eqs. (3.40) are used 

to relate them to the calculated spectral densities for the director parallel to the magnetic 

field. To describe the spectral densities, there are several motional models to treat the 

overall molecular rotation, such as Nordio’s model, Vold and Vold’s model and third rate 

model [25,26]; and to account for the internal motion such as superimposed rotations, 

models like strong collision limit and small step limit. In the present study, we are using 

small step rotation diffusion [27,28] to describe the molecular reorientation, plus 

superimposing internal bond (ring) rotation treated in the strong collision limit [29]. 

Collective order director fluctuation (see Appendix B) [1] is deemed to be negligible based 

on previous studies [19,20]. Tarroni and Zannoni [28] solved the rotational diffusion equation, 

yielding the decay constants ⊥Dkmm ML
/)( 2α , which are the eigenvalues of the rotational 

diffusion matrix, and kmm ML
)( 2β , the corresponding eigenvectors, which govern the 

relative weights of the exponentials. The diffusional coefficient ⊥D  represents tumbling 
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rotation of the molecule about one of the short molecular axes, while ||D  the spinning 

motion about the long molecular axis. Both of ⊥D  and ||D  appear in kmn )( 2α . The 

spectral densities for the aromatic ( RDD =' ) and methylenic ( αDD =' ) deuterons in the 

phenyl ring and at the Cα site are given by Eq. (3.36) in Chapter 3, where 'D  is the 

internal rotation diffusion constant of the ring or the methylenic group about the para 

axis, and the angle between the para axis and the long molecular axis °= 8MRθ  [18]. The 

term )1( 0,pδ−  in Eq. (3.36) denotes the choice of strong collision limit. The order 

parameter Szz extrapolated from the SmA phase and the tilt angle (see Table 4.1) in the 

SmC* phase are those determined previously [18]. The Szz is required to construct the 

anisotropic potential of mean torque for solving the rotational diffusion equation. 

Table 4.1 Tilt angle and extrapolated Szz in the SmC* phase used in Eqs. (3.40). 

Temperature ( ºC ) Tilt Angle ( º ) Order Parameter Szz 
75 
73 
71 
69 
67 
65 
63 
62 

0 
4.6 
8.0 
9.4 

10.4 
10.8 
10.9 
11.0 

0.86 
0.87 
0.87 
0.87 
0.88 
0.88 
0.89 
0.89 

The SmC* phase was difficult to tackle before [30] due its phase biaxiality. In the 

helicoidal structure, the local director describes the molecular tilt with a fixed angle θ 

from the normal to the smectic planes, while the value of azimuthal angle φ varies from 

0º to 360º according to different smectic planes in which the molecule are located. Fig. 

4.3 shows a general situation where the pitch axis of a molecule in SmC* phase tilts an 
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angle Θ from the external field direction, z axis.  

 
Fig. 4.3 Geometric diagram of a molecule in SmC* phase in a general situation. The grey bar is  
the molecule. Here the pitch axis lies on the layer normal. The tilt angle θ from the pitch axis,  
the azimuthal angle φ, the angle Θ between the pitch axis and the z axis, and the angle γ  
between the molecule and the z axis are shown as above. 

Since the quadrupolar splitting is related to cosγ, 
2
1cos

2
3)(cos 2

2 −=∝∆ γγPv , and there 

is a trigonometric relation between these angles 

φθθγ cossinsincoscoscos Θ+Θ= .                  (4.2) 

When the sample is aligned, the pitch axis, and the plane normal are along the external 

magnetic field. So the angle Θ = 0. This makes the term involving the azimuthal angle φ 

trivial, and there is no φ dependence for the ∆v. Besides, it is classically understandable 

that the variety of azimuthal angle φ on different smectic planes contribute mutually 

cancelling effects, yielding the same quadrupolar splitting as in a macroscopically 

uniaxial phase. There is no experimental evidence of φ dependence in spin relaxation 

rates, leading to the assumption of ignoring φ (set φ = 0º) [20] and the treatment of the 
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biaxial SmC* phase as an uniaxial environment. Hence, the spectral densities at the tilt 

angle θ can be associated to the spectral densities Jm,m’(ω,0º), where the subscripts m and 

m′ are projection indices in the laboratory frame. According to Eqs. (3.40), only uniaxial 

spectral densities (m=m′) J00, J11, and J22 are used in the present study, while biaxial 

spectral densities J2,0, J1,-1 and J2,-2 disappear. Indeed, the biaxial spectral densities have 

been difficult to detect or measure experimentally. Since the studied SmC* phase has 

relatively small tilt angle, it is justified to discard the small biaxial spectral densities. The 

spectral densities of the ‘a’ and ‘b’ deuterons in the SmC* phase at 46 MHz [20] seem to 

support such an assumption. 

The spectral densities for aromatic deuterons ‘a’ and ‘b’, and chiral chain site Cα at 61.4 

MHz as a function of temperature in the SmA and SmC* phases are plotted in Fig. 4.4a, 

while their corresponding spectral densities [18] at 46 MHz are reproduced in Fig. 4.4b. 

The unavailability of Cα data at 46 MHz was caused by the poor signals in the SmC* 

phase. The spectral densities measured at 61.4 MHz show continuous behaviours across 

the SmA-SmC* transition just like those reported at 46 MHz. This continuity is in fact 

expected even if the biaxial terms are included, because the tilt angle θ at SmC* phase 

drops gradually to 0º at the onset of the SmA phase. Eq. (3.36) is employed for SmA 

phase, while in addition Eqs. (3.40) without biaxial contribution is used for SmC* phase.  
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Fig. 4.4 Plot of spectral densities of aromatic (‘a’ site, circles, open symbol for J1 and closed symbol 
for J2; ‘b’ site, up triangles for J1and down triangles for J2) and αc (squares, open symbol for J1 and 
closed symbol for J2) deuterons in the SmA and SmC* phases of 8BEF5 at 61.4 (a) and 46 (b) MHz. 

 Vertical dash denotes SmA-SmC* transition. 
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Assuming the diffusional coefficients Di obey an Arrhenius behaviour 

( ]/exp[ RTEDD i
aii −= ∞ , the label i specifying the type of motion) within a smectic phase, 

the ‘global target’ approach is used to analyze the smoothed spectral densities data in 

these phases. Instead of using ∞
iD  as fitting parameters, the above relation is rewritten 

in terms of iTD at a particular chosen temperature Ts. The iTD can be obtained by an 

‘individual target’ analysis, which is a more usual starting approach when we try to find a 

rough set of parameters that are needed for the global target approach. By combining our 

data of 6 spectral densities at 16 temperatures and two frequencies, we have 192 data in 

total to determine 8 target parameters. All diffusion constants are now varied 

independently, which was not possible in the previous study [20] due to the lack of 

experimental data. Ts=391K was used in the SmA phase, and the fitting were optimized 

by minimizing the sum square error (F) using a program called AMOEBA[31].  

∑∑∑∑ −=
k i m

k
Expi

m
Cali

m mJmJF
ω

ωω 2)()( )]()([ ,               (4.3) 

where the sum over k is for 16 temperatures, the sum over i covers sites ‘a’, ‘b’ and ‘α’, 

the sum over ω is for two frequencies and m=1 and 2. The fitting quality factor Q is given 

by the percentage of mean-squared deviation, 

  ∑∑∑∑=
k i m

k
Expi

m mJFQ
ω

ω 2)( )]([/100                   (4.4) 

In fitting the SmC* data, iTD  at Ts=348K (tilt angle=0º) were fixed at their best values 

found in the SmA phase analysis, and only the four activation energies were varied to 

minimize F. Calculated spectral densities from our global analyses at 46 MHz and 61.4 
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MHz are shown as curves (solid lines for ‘a’ site and αC  deuterons, while dashed lines 

for ‘b’ site deuterons) in Fig. 4.4. As seen in this diagram, the fits to the experimental 

results are quite good. As a consequence, the derived motional parameters iD , shown in 

Fig. 4.5, should be quite reliable. The error limits are estimated by keeping all parameters 

fixed at their optimized values except the one for which the error limits are seek. The 

target parameter is changed gradually such that the F value is approximately doubled to 

give the error bounds. As usually found in low molecular mass liquid crystals, the 

activation energy of the tumbling motion is slightly less than that of the spinning motion 

[1]. The fitting result plus error limits are presented in Table 4.2. 

Table 4.2 Fitting parameters of diffusional coefficients  
and activation energies with error limits. 

 SmA phase SmC* phase 

∞
||D  (6.10 ± 1.10)×1013 s 1−  (6.02 ± 1.30)×1016 s 1−  

∞
⊥D  (1.97 ± 0.23)×1011 s 1−  (8.82 ± 3.68)×1012 s 1−  

∞
RD  (4.39 ± 0.19)×1014 s 1−  (2.10 ± 0.10)×1014 s 1−  

 

∞
αD  (3.24 ± 0.43)×1014 s 1−  (8.37 ± 1.74)×1013 s 1− , 

aE||  32.4 ± 0.5 kJ/mol 52.7 ± 0.6 kJ/mol 

aE⊥  24.6 ± 0.4 kJ/mol 35.7 ± 1.2 kJ/mol 

a
RE  32.0 ±0.1 kJ/mol 29.9 ±0.1 kJ/mol 

 

aEα  29.5 ±0.4 kJ/mol 25.6 ±0.6 kJ/mol 

Pre-exponential Factor
A

ctivation Energies
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Fig. 4.5 Plots of diffusion constants in the SmA (solid lines) and SmC* phase  
(dashed lines). They are αD , RD , ||D  and ⊥D starting from the top. 

As seen in Fig. 4.5 and Table 4.2, the activation energies for the spinning and tumbling 

motions increase noticeably in the SmC* phase in comparison to those in the SmA phase 

as found previously [20], although here we have found that the ||D / ⊥D  ratio is about 30, 
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which is larger than 8 according to the Perrin model [22]. The reasons for an increase in 

the activation energies for both the spinning and tumbling motion in the SmC* phase 

could be due to the smaller layer thickness and the helical structure. It is noted that ∞
⊥D  

is not as well determined in the SmC* phase. This might be due to the smaller number of 

available spectral densities. The activation energies for the internal ring flips and bond 

rotation of the Cα methylene group in the SmC* phase are marginally changed to lower 

values.  

A valuable concern is raised about the possibility that molecules diffuse along the helical 

pitch in the SmC* phase. This might influence the molecular orientation process and thus 

spectral densities. We believe that the diffusion process along the pitch axis is only fast in 

the high temperature cholesteric and blue phases. Considering a typical diffusion constant 

D is on the order of 10-7 cm2/s, and the correlation time (measurement time) in smectic 

C* phase τ ~ 10-4 s - 10-5 s, a molecule diffusion distance ≈τD 0.01 µm is found to be 

smaller than a typical pitch length of 50 µm [32] in a similar chiral compound. The 

molecular translational diffusion is quite slow as compared to rotation diffusion, or to say, 

they are not on the same time scale. Hence, the change in molecular reorientation due to 

molecular translation diffusion along the pitch axis is negligible in comparison to the 

rotational diffusive motion. There is also evidence of small translation contribution in 

comparison with rotational contribution in the SmC* phase of a ferroelectric liquid 

crystal based on angular dependent proton relaxation studies [33]. 

In summary, we have demonstrated that the relaxation data in the tilted SmC* phase of 
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the studied deuteron sites can be reasonably interpreted based on the concept that 

molecules are tilted in the external magnetic field and the helicoidal structure formed by 

them effectively makes the biaxial spectral densities unobservable. It is important to point 

out that meaningful motional parameters can be derived from deuterium NMR relaxation 

as long as sufficient number of deuterated sites and frequencies are available as noted in 

the literature [34]. 
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5 Lyotropic Liquid Crystal Study of 
DACl/H2O Binary System 

5.1 Introduction 

Using 1H NMR fast field cycling T1 measurements, Wachowicz et. al [1] recently found 

that layer undulations (or ODF), make an important contribution to slow molecular 

dynamics in both hexagonal and lamellar phase, with different frequency dependence. 

This indicates a relatively weak interaction between neighbouring decylammonium 

chloride (DACl) layers in water. But at high frequency region (>105 Hz), the fast 

molecular motions [2] dominate the dynamics, such as internal rotation of alkyl chains 

about their long molecular axes, trans-gauche isomerization and lateral diffusion. In 

consideration of fast local orientation and surface diffusion around the aggregate axes, 

Halle’s group[3] proposed a motion model for spin relaxation in the hexagonal phase, 

which was successfully applied by Dong [4] to interpret the 14N relaxation   

measurements in a similar binary system. However, the study of the lamellar phase is still 

rare. Here we present the spin-lattice relaxation data of DACl/H2O in the lamellar phase 

by exploiting both 2H and 14N nuclei. Despite the low gyromagnetic ratio of 14N and 

difficulty in detection of the 14N signals, the 14N spectrum is easily identified and less 

affected by liquid crystal impurities [5]. With deuterons on the first three alkyl carbon sites 

of DACl and the associated nitrogen on the head group, an attempt is made to measure 

their relaxation properties in order to account for the overall molecular motion in the 
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lamellar phase. Fig. 5.1 illustrates the 3D chemical structure of a DACl molecule.  

 
Fig. 5.1 3D structure of a DACl molecule. The ten black atoms in zigzag chain are the hydro-carbon 

 backbone. The head group -NH3+ and Cl- are hydrophilic and in contact with the water layer, where 
 Cl- can flow. The hydrogens in deep colour denote deuterated sites under study. 

5.2 Geometric Model 

 
Fig. 5.2 2D Illustration of molecular structure of deuterated DACl at Carbon sites C1,  
C2/C3, C9, and C10 in its all transformation. The geometric angles will be employed in  
later discussion of the superimposed rotation model. The dashed line is the  
long molecular axis ZM which is more or less parallel to layer normal. 

A schematic diagram of the molecular geometry is shown in Fig 5.2. In the lamellar 

phase, some parts of the DACl geometry are still unknown. When it is in the crystalline 

phase, C2 to C10 on the DACl chain are supposed to be coplanar, while N and C1 are 

displaced significantly from these ideal carbon zigzag planes [6,7]. The failure of placing 
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the N-C1 bond on the long molecular axis in our spectral density calculations seems to 

confirm the existence of an angle NCθ  between and N-C1 bond and the long molecular 

axis. This angle is estimated to be less than 30º [8]. From our simulation of the 2HC1 and 

14N spectral densities, angles NCθ  of 26º and 28º produced satisfactory results for DACl 

56 wt.% and 54 wt.%, respectively. However, the uncertainty of the angle NCθ  could be 

3º. This is due to the lack of enough information in the literature, and the experimental 

errors (Chapter 2) in the present study because of the instrumentation limit. Both 2H and 

14N are spin I = 1 system. A typical nitrogen NMR doublet (Fig. 5.3) was similar to the 

deuterium counterparts (Fig. 5.4).  

 
Fig. 5.3 Typical nitrogen NMR spectrum (303.5K) of 56wt.% DACl/H2O sample.  
Note that the noise is much greater than that in Fig. 5.4. 
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Fig. 5.4 Plot of a typical deuterium spectrum (323K)  
with peak assignments of 54 wt.% DACl/H2O sample. 

From the quadrupolar splittings of 2H NMR spectra, segmental order parameters SCD on 

the C-D bond can be obtained as follows. Recalling Eq. (1.39), in the aligned lamellar 

phase, the layer normal is perpendicular to the magnetic field [2], and the symmetry axis 

of the aggregate is along the layer normal. This makes °=Φ 0  and °=Θ 90 , and Eq. 

(1.39) reduces to  

)(

4
3 i

CDCDi Sqv =∆
,
                          (5.1) 

where CDq is the quadrupolar coupling constant for the deuteron on the chain, and )(i
CDS  

is the segmental order parameter of the C-D bond of a particular carbon site i. Applying 

Eq. (5.1) to 14N, one obtains  
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4
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where Nq is the quadrupolar coupling constant for nitrogen and CNS  refers to the 

segmental order parameter of the C-N bond, and zzS is the nematic order parameter. 

Similarly for 2HC1 on the first carbon site, 

CDCDD Sqv
C 4

3
1

=∆  

)(cos)(cos
4
3

22 NCHNCzzCD PPSq βθ= ,               (5.3) 

where NCHβ =106.7º is used for the angle for N-C1-H, and CDq  is taken to be 170 kHz [9]. 

Combining Eqs. (5.2) and (5.3) and using the 2H and 14N splittings yield the value for 

Nq . The Nq  value is found to change weakly in temperature. Thus, it is taken to be the 

average value, 523.2 kHz for 56 wt.% DACl/H2O sample and 503.5 kHz for 54 wt.% 

sample. These values are similar to (but lower than) the value obtained in crystal [8]. 

Similar to 2H, 14N spin lattice relaxation time of Zeeman (T1Z) and quadrupolar (T1Q) 

orders can be measured simultaneously using BBJB-M∞ sequence described in Chapter 2 

to give spectral densities ),( 01 ΘωJ and ),2( 02 ΘωJ  [Eq. (3.4) and (3.5)], where πω 2/0  

is the Larmor frequency, and Θ is the angle between the external magnetic field and the 

phase director (see Fig. 2.2). Taking into account the superposition of different kinds of 

motion, such as collective order fluctuation, molecular rotation, and internal 

isomerization, these spectral densities can be calculated by a suitable model. AT 9.4 tesla 

(28.9 MHz) for 14N, collective fluctuations of layers are relatively unimportant [2] and 

thus we again employ a small step rotation diffusion model [10,11] to describe the 

molecular reorientations of the head group.  

The superimposed bond rotations on the overall motion with strong collision limit [12] is 
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employed to account for the internal bond motion. The rotational diffusion equation 

solved by Tarroni and Zannoni [11] is now applied, giving Eqs. (3.37), (3.38) and (3.39) 

for the spectral densities for the head group nitrogen, deuterons on the first and the 

second carbon site, respectively. Here NCHβ  is taken to be 107.5º, and NCCγ  is assumed 

to equal ∠ C-C-C of 113.5º [13,14].  

In the lamellar phase, since the layer normal is perpendicular to the applied magnetic 

field, the angle θ  of 90º in Eqs. (3.40) should be used to give simplified expressions for 

the measured spectral densities in this study. It is worth to note that lamellar phase is 

uniaxial when using Eqs. (3.40) here.  

5.3 Results and Discussion 

The splitting of 14N and 2H of the C1 site versus temperature are shown in Fig. 5.5 and 5.6, 

for 54 wt.% and 56 wt.% DACl/H2O system, respectively. Since no suitable temperature 

calibration method was available for the 14N measurement, 2HC1 splittings were used to 

scale their corresponding nitrogen data, where both splittings display similar temperature 

dependence. As for the 2HC1 experiments, the temperatures were calibrated by using the 

known phase transition temperatures of a deuterated mesogen 5O.7-d4 [15] . It is also 

found that in the reduced temperature [16] scale, the quadrupolar splittings of both the 14N 

and 2H exhibit very little dependence on the sample concentration.  
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Fig. 5.5 Quadrupolar splittings of 54 wt.% DACl/H2O sample. The open square is for  
nitrogen at 28.9MHz, while the close square is for the deuteron on C1 site at  
61.4 MHz. The ratio of splitting of the two nuclei is around 7.92:1. 
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Fig. 5.6 Quadrupolar splittings of 56 wt.% DACl/H2O sample. The open square is for nitrogen, while. 
the close square is for the deuteron on C1 site. The ratio of splitting of the two nuclei is around 8.21:1. 
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By using Eq. (5.3), and the θNC value (26º or 28º), the orientational order values vary 

between 0.45 to 0.57 for the aligned aggregate of DACl molecules in 54 wt.% (θNC=28º) 

and 56 wt.% (θNC = 26º) samples (Fig. 5.7). This Szz and the corresponding θNC are 

determined in conjunction with the fitting of the spectral densities. The decrease in 

splittings (Szz) predicts the progression of disorder with increasing temperature. The 

slightly higher order in 56 wt.% than in 54 wt.%. DACl/H2O system is due to the increase 

in concentration of DACl in the lamellar phase, and the increased viscosity in the sample. 

The 2H NMR spectra of selectively deuterated DACl molecules give information about 

fast anisotropic motions of a particular C-D bond. The quadrupolar splitting of each of 

C1~C10 deuterons measured in the lamellar phase at two DACl concentrations (54% and 

56%) can be used to evaluate the temperature dependence of the C-D bond order 

parameter, )(i
CDS , on the basis of Eq. (5.1). Fig. 5.8 presents the segmental order 

parameters of six deuterated sites on the chain at two concentrations. The value of 

segmental order parameters )(i
CDS  (<0.18) as well as the small difference (<15%) among 

the two concentrations correspond to those reported by Jurga et. al [1]. The smaller 

quadrupolar splitting and consequently the segmental order parameter CDS  observed for 

deuterons further down the carbon-carbon backbone, reflect an increase in motional 

disorder along the chain, and is a consequence of an increase of gauche conformation 

probability [1].  

Plots of deuteron spectral densities for methylene sites as a function of temperature in the 

lamellar phase are shown in Fig. 5.9 for two concentrations (54 wt.% and 56 wt.%). At a 
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glance, crossovers between J1 and J2 are pronounced in C1, and C2/C3, in both 

concentrations. This crossover phenomenon is quite rare among thermotropic liquid 

crystals [17] and was only detected in a recent work described in chapter 4. In addition, 

spectral densities for C1 and C2/C3 are of similar values within error limits.  

 
Fig. 5.7 Temperature dependence of order parameter Szz for DACl/H2O 54 wt.% (a) and 56 wt.% (b) 

 samples. The dotted line is the transition temperature for biphasic lamellar+isotropic region. 
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Fig. 5.8 Temperature dependence of segmental order parameters of for C1, C2/C3, CX, C9, and C10, 
segments denoted by squares, circles, up triangles, down triangles, diamonds, respectively, in the 
system containing 54 wt.% (a) and 56 wt.% (b) DACl in H2O. In (a), to the right of the dotted line 
shows the biphasic region. In (b), the region between the dotted lines shows the biphasic region, 
while the right dotted line indicates the Lamellar-isotropic transition. The splitting in the biphasic 
region shows little temperature dependence. 
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Fig. 5.9 Plot of spectral densities of deuterons on C1, C2/C3, CX, C9 and C10 of the 54 wt.% (a) 
and 56 wt.% (b) DACl in water, with the close symbol diamonds, crosses, circles, 
triangles and squares, for J1 respectively. The open symbols are the corresponding J2, 
except C2 is denoted by star. The 2nd polynomial fitting curves are just plotted to aid  
the eyes. The solid curves are for J1, while the dotted lines for J2. 
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Fig. 5.10 and 5.11 show plots of 14N and 2HC1 spectral densities for 54 wt.% and 56 wt.% 

DACl/H2O samples, respectively. There is no obvious crossover in the 14N data in view 

of larger uncertainties of these data. The two concentrations showing similar temperature 

behaviours seem to enhance the creditability of our 14N experiments. Using Eqs. (3.37), 

(3.38) and Eqs. (3.40), we can simulate the smoothed spectral density data in the lamellar 

phase via a ‘global target’ approach, in which an Arrhenius behaviour is assumed for the 

various diffusion constants. As the geometry of the DACl structure in the lamellar phase 

is not fully known, θNC is first guessed by trial and error. The order parameter Szz and the 

quadrupolar coupling constant Nq  are then calculated by fitting both splitting data of 

2HC1 and 14N. After several simulations with an averaged Nq value, θNC is determined by 

the best fitting quality of 14N and 2H spectral densities. Now the temperature dependence 

can be written as ]/exp[ RTEDD i
aii −= ∞ , where i is the specific type of motion. Instead 

of fitting ∞
iD , the diffusion coefficients at some particular temperature, iTD  were used. 

Before running the global target program, a ‘single temperature’ fitting approach 

facilitates the estimation of approximate values, which can later be used as initial input of 

the fitting parameters. Apart from predicting ||D  and ⊥D  for both 14N and 2H, another 

internal rotational diffusion parameter, 'D  is included for rotating the methylene group 

about the N-C bond in the superimposed rotation model. Now at each temperature, four 

spectral densities determine three parameters, and the quality of the fit for the 54% 

sample was good (f = 0.08). The minimization of the sum square fractional error f given 

by Eq. (5.4) is carried out using AMOEBA,  
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where the sum over k is for 16 temperatures, the sum over i covers sites ‘14N’, ‘2HC1’, and  

m=1 and 2 (14N for 28.9MHz, and 2H for 61.4MHz only).  

Calculated spectral densities from our global analysis at 28.9 MHz and 61.4 MHz are 

shown as curves (solid lines for J1, while dotted lines for J2). In total, 4×16＝64 spectral 

densities are used to obtain 6 parameters. As seen in this diagram, the fitting quality for 

both nuclei is quite good and the crossovers of J1 and J2 in Fig. 5.10 and 5.11 are 

reproduced. As a consequence, the derived motional parameters shown in Fig. 5.12 

should be quite reliable. Table 5.1 summarizes the result for diffusion coefficients and 

their activation energies. The error limits are estimated by varying one parameter while 

fixing the rest to their best values to yield a doubling in f value.  

Unusually, the tumbling motion is found to be comparable to the spinning motion, which 

seems unrealistic at a glance. This is in view of the molecules being anchored at the 

interfacial lamellar layers. However, if the layer undulations are considered, comparable 

values of tumbling to spinning motion would indicate a rigorous motion of the local 

directors of aggregates of molecules. A simple physical picture is that the 2D lamellar 

layers resemble a wavy sea, where the ‘water’ surface is up and down, thereby leading to 

an apparent increase of the tumbling constant for the long molecular axis. Nevertheless, 

the activation energy for the spinning motion is lower than that for the tumbling motion. 

This seems reasonable since the DACl molecules are easier to rotate as they are loosely 
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anchored on the water surface.   

 
Fig. 5.10 Plots of spectral densities of both 2H and 14N of 54 wt.% DACl in water. The closed square 
and open circle refer to J1 and J2 respectively. Solid and dotted lines are for the corresponding 
calculated value J1 and J2 respectively. The left graph is for 2H experiment, while the right for 14N.  
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Fig. 5.11 Plots of spectral densities of both 2H and 14N of 56 wt.% DACl in water. The closed square 
and open circle refer to J1 and J2 respectively. Solid and dotted lines are for the corresponding 
calculated value J1 and J2 respectively. The left graph is for 2H experiment, while the right for 14N. 
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Fig. 5.12 Plots of diffusion constants for DACl/H2O sample with a 54 wt.% (a) and 56 wt.% (b) 

DACl. The solid line, dashed line and dotted line represent ||D , ⊥D and 'D , respectively. 
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Table 5.1 Fitting parameters of diffusional coefficients  
and activation energies with error limits.  

 54 wt.％ 56 wt.％ 

∞
||D  (1 .02 ± 0.08)×109s 1−  (5.60 ± 0.57)×109s 1−  

∞
⊥D  (5.96 ± 0.64)×1011s 1−  (5.73 ± 0.81)×1011s 1−  

l 

∞'D  (9.48 ± 1.09)×1014s 1−  (1.57 ± 0.16)×1012s 1−  

aE||  1.24 ± 0.20 kJ/mol 4.37 ± 0.27 kJ/mol 

aE⊥  17.5 ± 0.3 kJ/mol 18.0 ± 0.4 kJ/mol 

 

aE '  27.2 ±0.3 kJ/mol 11.4 ±0.3 kJ/mol 

As a step further, relaxation information of deuterons on C2/C3 have also been examined 

using the superimposed rotations model. Taking an additional superimposed rotation into 

account, Eq. (3.39) is used with ''D  for the C2/C3 methylene rotation, while the results 

of ||D , ⊥D and 'D  and their corresponding activation energies aE|| , aE⊥ and 

aE ' obtained from the previous simulation are fixed in the global target approach.  

However, the similarity of the relaxation values of C1 segment and C2/C3 segment is 

doomed to fail this attempt. Fig. 5.13 shows the results of the simulation of deuterium 

spectral densities on C2 site in both 54 wt.% and 56 wt.% samples. The fittings were not 

good and no crossover could be reproduced. The diffusion coefficients ''D  for 54 wt.% 

and 56 wt.% samples are small (4.78×109 at 301K and 7.26×109 at 299K) in comparison 

to the corresponding 'D  on the C1 site (20.34×109and 16.83×109). Similarly the 

activation energies for ''D  are also smaller than their counterparts for 'D  in both 

Pre-exponential
Factor 

A
ctivation

Energies 
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concentrations (see Table 5.2). Plots of spectral densities at a selected temperature as a 

function of ''D  are plotted in order to find the range of possible fitting parameter ''D , 

as shown in Fig. 5.14. It seems that J1 and J2 of 2HC2 can not be simulated with the same 

''D  value. Normally, under the superimposed motion theory, C2/C3 has more flexibility 

(higher disorder), and thus longer relaxation time. The overlapping of C2 and C3 doublets 

should even help their spectral densities deviate from the C1 data. The fact that the three 

carbon sites relax similarly may suggest that C1-C2-C3-C4 behave as a “rigid” group and 

share more or less the same diffusion parameter. Therefore, the superimposed rotations 

model is not a suitable model to account for the C2/C3 relaxation data. A fully deuterated 

DACl/H2O sample is, however, required for testing correlated rotations in the flexible 

C-C backbone using the decoupled model [18]. 

Table 5.2 Fitting parameters of diffusional coefficients ''D  and activation energies. 

 54 wt.% 56 wt.% 

∞''D  4.78×109s-1 2.43×1011s-1 

aE ''  0 kJ/mol 8.7 kJ/mol 
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Fig. 5.13 Plots of spectral densities of deuterons on C2 site of 54 wt.% (a) and 56 wt.% (b) DACl 
in H2O. The square and open circle represent experimental values of J1, J2, respectively.  
The solid line is for calculated value of J1, while the dotted for calculated value of J2.  
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Fig. 5.14 Plots of Spectral densities vs. diffusion coefficient ''D on the 2HC2 site of 54 wt.% (a)  
and 56 wt.% (b) DACl/H2O. The left graph is for 320.2K, and the right for 323K. Squares and  
open circles represent the experimental J1 and J2 at the best fitting ''D , respectively. The solid  
line is for calculated value of J1, while the dotted line for experimental J2. 
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In conclusion, the overall rotational diffusion model plus the internal superimposed 

rotation model with strong collision limit have been applied to study the dynamics of 

lyotropic liquid crystal in the lamellar phase. The relaxation data of studied C1 deuteron 

and nitrogen sites provide a way to investigate the head group motion at the water 

interface. Given the geometry of the molecule and sufficient number of deuterated sites 

and frequencies, some meaningful motional parameters could be obtained to account for 

the chain dynamics of the molecules in the lamellar phase. 
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Brief Conclusion 

Nuclear spin relaxation measurements can be used to study the molecular dynamics of 

liquid crystals. The present deuterium study of 8BEF5-d15 shows that by including the tilt 

angle w.r.t the pitch axis (the magnetic field), the liquid crystal molecules in the chiral 

smectic C (SmC*) phase can be treated as in an uniaxial phase. This assumption 

simplifies the calculation of spectral densities, and makes it possible to obtain meaningful 

parameters. The diffusion coefficients in the SmC* phase are found to vary continuously 

from the SmA phase. The higher activation energies in the SmC* are reasonable due to 

the twisted structure of molecules in the chiral phase.  

As another spin one nucleus, 14N NMR not only shares the same theory as 2H NMR, but 

also has its own advantage in yielding significant information of molecular dynamics. At 

the head group of DACl-d11 molecules, the 14N spin-lattice relaxation measurements in 

conjunction with 2HC1 data can give us the overall motional information of the molecule 

in the lamellar phase. Our 14N and 2H study also show that one can gather more reliable 

information on the location of the long molecular axis and account for the dynamics of 

the molecule in the lamellar phase. The studied lyotropic liquid crystal in its lamellar 

phase can be treated similarly to that of a thermotropic SmA phase. In the lamellar phase, 

⊥D seems to be comparable to ||D , which means a rigorous “tumbling” motion of the 

local directors of aggregates. This appears to be closely tied to layer undulations. On the 

other hand, lower activation energy for the spinning motion than that of the tumbling 
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motion shows that it is easier for molecules to rotate as they are loosely anchored. A 

series of 14N experiments on samples with different concentrations of DACl in the 

lamellar phase are expected to confirm the geometry of the molecule and the current 

results. 
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Appendix A 

Diffusion Equation for Relaxation [1] 

Among different types of orienting potential [2-8] )(ΩU  present in the mesophases, the 

case of uniaixal molecule reorienting in uniaxial phases is described here. The 

orientational distribution function )(ΩP  and the conditional probability 

function )|( 0 tP ΩΩ  are obtained by solving the rotational diffusion equation 

)|()()|(
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where ),,( zyx LLLL =α  is a component of a dimensionless angular momentum operator 

L
v

, and D̂  is a rotational diffusion tensor diagonalized in a fixed molecular frame [2].  

And the following quantities related to the diffusion tensor components are introduced for 

convenience.  

2
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=ρ , 
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DD
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z

DD
D
+

= 2η                (A.2) 

where ρ is the tumbling motion of the molecule, ε refers to the asymmetry parameter of 

the diffusion tensor, and η expresses the ratio between spinning and tumbling of the 

molecule. In the case of a symmetric rod molecule [2,3], Dx=Dy, then ρ becomes ⊥D , the 

diffusion constant of the molecule about an axis perpendicular to the its z axis, and η is 

the ratio of the parallel and perpendicular diffusion constants ( ⊥DD /|| ). The above 

diffusion equation becomes 
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where Γ is the diffusion operator which, for the purpose of numerical calculations, can 

be rewritten using unitary transformation as 
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where the nabla operator 2222
zyx LLL η++=∇ , and yx iLLL ±=±  is the angular 

momentum step operator, and )(ΩP denotes the orientational distribution function. The 

diffusion equation in this symmetrized form is given by 
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∂
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where  

)()|()()|(ˆ
0

2/1
0

2/1
0 ΩΩΩΩ=ΩΩ − PtPPtP                (A.6) 

is the symmetrized conditional probability. Now the symmetrized diffusion equation is 

solved using a matrix representation in a basis of normalized Wigner matrices 
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In particular, 
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where the expansion coefficients, mn
LC , are evaluated by using the initial condition 
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00 Ω−Ω=ΩΩ δP  to give 
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L DC                        (A.9) 

By substituting Eq. (A.8) in Eq. (A.5), multiplying both sides of the left by )(*
, ΩL
nmD  and 

integrating over Ω , a system of linear differential equations is obtained: 

)(ˆ)(1 tCRtC
D

=
⊥

& ,                        (A.10) 

where 

)(ˆ)(ˆ
,

'*
',',''' ΩΓΩΩ= ∫ L

nm
L

nmLmnnmL DDdR                  (A.11) 

The explicit expressions for the matrix elements LmnnmLR ,'''
ˆ  depend on the orienting 

potential )(ΩU . The form of )(ΩU  can be chosen on the basis of symmetry of the phase 

and of the molecule. The matrix representation of Γ̂ in a Winger basis set )(, ΩL
nmD is real 

and symmetric, and is thereafter called the diffusion operator matrix R̂ . This should not 

be confused with D̂ . In the presence of )(ΩU , the R̂ matrix will not be diagonal. 

In consideration of the simplest orienting potential, where cylindrical molecules in 

uniaxial phases like nematic and smectic A are applicable, )(ΩU  is independent of α  

and γ  and reduces to )(βU . The equilibrium orientational distribution )(ΩP  is 

connected to the Boltzmann distribution 

∫ −Ω
−=

]/)(exp[
]/)(exp[)(
TkUd

TkUP
B

B

β
ββ .                  (A.12) 

For uniaxial molecules in uniaxial phases, there will be no coupling between terms with 
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different m and n. Hence m and n can be used to label the diffusion matrices, that is, 

',',,''','
ˆ)ˆ( nnmmLmnnmLLL

mn RR δδ=                    (A.13) 

In solving the set of linear differential equations [Eq. (A.10)], a unitary eigenvector 

matrix mnX̂  which diagonalizes the self-adjoint diffusion matrix mnR̂  can be 

introduced such that 

mnmnmnmn rXXR ˆˆˆˆ = ,                       (A.15) 

where mnr̂  is a diagonal matrix which contains the eigenvalues of mnR̂ . The formal 

solution is 

)0()ˆ)(ˆexp(ˆ)( mnTmnmnmnmn CXtrDXtC ⊥=               (A.16) 

Considering the matrix elements of mnX̂  and substituting the zero time coefficients, it 

follows 

∑∑ Ω=Ω ⊥
K L

L
nm

T
KL

mnmn
KKL

mnmn
L DXtrDXtC

'
0

'*
,',',0 )()ˆ)(ˆexp()ˆ(),( ,     (A.17) 

where K  is used to label the eigenvalues of the diffusion matrix, mnR̂ . Using the 

un-normalized Wigner matrices here, the symmetrized conditional probability can be 

written as 

∑∑∑ ++=ΩΩ
K JJ mn

JJtP
'

20 )1'2)(12(
8

1)|(ˆ
π

 

)()()ˆ)(ˆexp()ˆ( 0
'*
,,,, ΩΩ×× ⊥

J
nm

J
nmKJ

mnmn
KKJ

mn DDXtrDX          (A.18) 

The orientational probability may be obtained from the asymptotic condition 

)|(lim)( 0 tPP
t

ΩΩ=Ω
∞→

                      (A.19) 

All the exponentials in Eq. (A.18) decay to zero at infinite time except for the one 
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corresponding to the zero eigenvalues, 00
0̂r . The long time behaviour of the symmetrized 

conditional probability is  

)()()|(ˆlim 2/1
0

2/1
0 ΩΩ=ΩΩ

∞→
PPtP

t
 

∑∑ ++=
'' '''

2 )1'''2)(1''2(
8

1
J J

JJ
π

)()()ˆ()ˆ( 0
'*''

0,0
''
0,00,'''

00
0,''

00 ΩΩ× JJ
JJ DDXX (A.20) 

Hence )(ΩP  is given by  

∑∑ ++=Ω
J J

JJP
'

2 )1'2)(12(
8

1)(
π

 

          )()()ˆ()ˆ( 0
'*
0,00,00,'

00
0,

00 ΩΩ× JJ
JJ DDXX ,           (A.21) 

where 0,'
00 )ˆ( JX  is from Eq. (A.15) using 0== nm . Rewriting the equation for a 

stochastic process[9],  

∫ ∫ ΩΩΩΩ×ΩΩΩ=ΩΩ )(),|()()()()( '*
','00,00

'*
','0,

L
nm

L
nm

L
nm

L
nm DtPdDPdDD    (A.22) 

the correlation functions are 

∫ ΩΩΩ= )()()( 0,0
2/1

0
L

nm
L
mn DPdtg ∫ ΩΩΩΩΩ× )()|(ˆ)( *

,0
2/1 L

nmDtPPd .    (A.23) 

Substituting Eqs. (A.18) and (A.20) to Eq. (A.23), the correlation functions become 

∑ ∑∑ ++
++= ⊥

K JJ JJ

mn
K

L
mn JJ

JJtrDtg
' ''''' )1'''2)(1''2(

)1'2)(12()ˆexp()(  

  0,'''
00

0,''
00

', )ˆ()ˆ()ˆ()ˆ( JJKJ
mn

KJ
mn XXXX×  

 ),;''',',(),;''',',( nnJJLcmmJJLc −−×  

 );'',,(),;''',,( nnJJLcmmJJLc −−× ,                  (A.24) 

where the results of the integrals involving three Wigner matrices have been expressed in 

terms of the Clebsch-Gordon coefficients ),;,,( edCBAc . The above equation can be 
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written as an infinite sum of decaying exponentials [Eq. (3.7)]. 

References 

1 R.Y.Dong, Nuclear Magnetic Resonance of Liquid Crystals, 2nd ed. (Springer, 

New York, 1997). 

2 P.L.Nordio and P.Busolin, J. Chem. Phys. 55, 5485 (1971). 

3 P.L.Nordio, G.Rigatti, and U.Segre, J. Chem. Phys. 76, 253 (1972). 

4 J.M.Bernassau, E.P.Black, and D.M.Grant, J. Chem. Phys. 76, 253 (1982). 

5 J. Bulthuis and L.Plomp, J. Phys. France 51, 2581 (1990). 

6 R.Tarroni and C.Zannoni, J. Chem. Phys. 95, 4550 (1991). 

7 E.Berggren, R.Zannoni, and C. Zannoni, J. Chem. Phys. 99, 6180 (1993). 

8 E.Berggren and C.Zannoni, Mol. Phys. 85, 299 (1995). 

9 P.L.Nordio and U.Segre, The Molecular Physics of Liquid Crystals. (Academic 

Press, New York, 1979). 

 

 

 
 
 
 
 
 
 
 
 



 116 

Appendix B  

Order Director Fluctuation 

Order Director Fluctuations (ODF) [1,2] describe thermal fluctuations of the orientation of 

the director and involve collective motions of a large number of molecules in an 

anisotropic elastic continuum. In lamellar phase of lyotropics, where layer structures are 

more pronounced, this is sometimes called undulation [3]. Since ODF shows different 

frequency dependences in different mesophases, NMR field cycling experiments are 

instrumental to study ODF mechanism and ODF is found to dominate the spin-lattice 

relaxation dispersion at Larmor frequencies below 1MHz [4].  

To describe the ODF contribution to spectral densities, a small angle (θ) approximation is 

often used, where θ is the angle between the instantaneous director and its equilibrium 

orientation. Because ODF involve a distribution of correlation times involving long 

wavelength modes, the spectral densities show characteristic frequency behaviours. Here 

we highlight the orientation dependence of the equilibrium director being in the direction 

of the external 0B field. When the principal component of the spin interaction (e.g. C-D 

bond) is fixed w.r.t. an assumed axis of cylindrical symmetry of the molecule given by 

the angle QM ,β ,the spectral densities are given to second-order in θ for nematics by[5-7]  
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where 2P  is the nematic order parameter, the cutoff function )/( ωωcU accounts for 

the cutoff of coherence modes at high frequencies 

)]12(tan)12([tan1
12
12ln

2
1)( 11 ++−+


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+−= −− xx

xx
xxxU

ππ
     (B.4) 

and the prefactor A is given by, 

cK
kTA

ω
παη

π 22
3

24
3 2/1

3 =





= ,                    (B.5) 

where cω is the high frequency cutoff, K is an average elastic constant, η is an average 

viscosity and the α parameter defined by Eq. (B.5) is a measure of the magnitude of 

director fluctuations (α <<1). 
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