GEOHYDROLOGY AND HYDROGEOCHEMISTRY OF GROUNDWATER: STREAMFLOW SYSTEMS IN THE WILSON CREEK EXPERIMENTAL WATERSHED, MANITOBA.

A Thesis Presented to The Faculty of Graduate Studies and Research The University of Manitoba

In Partial Fulfillment of the Requirements for the Degree Master of Science

by Franklin W. Schwartz August 1970

ABSTRACT

Geohydrologic and hydrogeochemical investigations of groundwater-streamflow systems in Wilson Creek watershed make possible further development and refinement of the hydrochemical method of hydrograph separation.

During storm runoff periods, dilution behaviour of the major ions in the streamflow is dependent upon its concentration in each of the streamflow sources, direct runoff, channel precipitation, quick return flow and extended return flow. The ions chosen to characterize a particular component or group of hydrograph components relate closely to the physical system as described.

Groundwater flow patterns and hydrochemistry indicate that during periods with little or no precipitation streamflow is maintained by extended return flows discharging from local and intermediate, transverse flow systems principally in dissected reaches of the watershed. High hydraulic conductivity of the Riding Mountain formation coupled with large transient water table fluctuations during storm runoff periods result in increased extended return flow contribution to the streamflow.

ii

Geohydrology and Hydrogeochemistry of Groundwater: Streamflow Systems in the Wilson Creek Experimental Watershed, Manitoba. Franklin W. Schwartz

M.Sc. Thesis, University of Manitoba, 1970

Contents

	Page
BSTRACT	ii
NTRODUCTION	1
CKNOWLEDGEMENTS	3
HYSIOGRAPHY AND GEOHYDROLOGIC SETTING	4
ETHODS OF INVESTIGATION	6
Precipitation	6
Streamflow	6
Hydraulic Head Distribution in the Groundwater Zone	7
Insitu Hydraulic Conductivity	8
Major Ion Chemistry	9
YDROGEOLOGY	11
Alluvium	11
Upper Glacial Drift	12
Lacustrine sediments	13
Lower Till	13
Riding Mountain Formation	14
Lower Bedrock	15

iii

Page GROUNDWATER FLOW SYSTEMS 17 Conceptual Model 17 Longitudinal Flow Pattern Beneath Intervalley Uplands 17 Details of Flow Systems . . . 18 GROUNDWATER GEOCHEMISTRY 23 Hydrochemical Facies 23 Controlling Parameters 24 HYDROCHEMISTRY OF STREAMFLOW . . 30 Source of Ions in Recession Flow 30 Geochemical Hydrographs 31 GEOCHEMICAL HYDROGRAPH SEPARATION 34 Idealization of Hydrograph Components . . . 34 Hydrochemical Separation 36 • SUMMARY OF CONCLUSIONS 41 • REFERENCES CITED 44 APPENDICES 78

iv

List of Figures

1.	Location of watershed and regional physiography 49
2.	Topography and location of instrumentation 50
3.	Geologic cross-section through the watershed 51
4.	Three detailed geologic cross-sections through the lower reaches of the watershed
5.	Conceptual groundwater model of an open watershed system
6.	Longitudinal flow pattern beneath uplands 54
7.	Schematic interpretation of groundwater flow pat- tern in a section transverse to valley trends 55
8.	Three geohydrologic cross-sections through lower reaches of the watershed
9.	Water table fluctuations in upper glacial drift and Riding Mountain formation
10,	Interpretation of water table contours and flow lines as basis of outflow computations
11.	Piper diagram of hydrochemical facies
12.	Histogram summary of cation and anion concentra- tions in water types I-IV
13.	Location of hydrochemical facies in cross-section . 61
14.	Time variation of ionic concentration and conduc- tivity of streamflow at Wilson Creek Weir 62
15.	Time variation of major ion concentration and conductivity of streamflow at Packhorse Weir 63
16.	Time variation of major ion concentration and conductivity for Wilson Creek during major storm 64
17.	Time variation of major ion and conductivity dilu- tion ratios for Wilson Creek (May 30 to June 10). 65

Page

Page

18.	Time variation of major ion and conductivity dilu- tion ratios for Wilson Creek (June 25 to July 1) . 66
19.	Effect of Bald Hill reservoir on SO ₄ ⁼ concentra- tion of Wilson Creek flow following major storm period
20.	Annual variation of $SO_4^{=}$ and conductivity, 1969 68
21.	Time variation of SO_4^{-} concentration and conductivity for McKinnon and Dead Ox Creeks 69
22.	Time variation of SO ₄ ⁼ concentration and conduc- tivity for Packhorse, Bald Hill, Dead Ox and McKinnon Creeks
23.	Geochemical hydrograph separation for Wilson and Packhorse Creeks using Na $^+$, Ca $^{++}$ and Mg $^{++}$ average . 71
24.	Detailed geochemical hydrograph separation for Wilson Creek using Na+, Ca++ and Mg++ average 72
25.	Geochemical hydrograph separation for McKinnon and Dead Ox Creeks using $SO_4^{=}$ dilution
26.	Detailed geochemical hydrograph separation for McKinnon and Dead Ox Creeks using $SO_4^=$ dilution 74
27.	Piezometer design
28.	Scatter diagram of total dissolved solids vs conductivity

vi

List of Tables

									Page
1.	Summarv	of	Hvorslev	measurements					12

List of Appendices

Α.	Description of stratigraphy and lithology of deposits in the lower reaches and east of the		70
	watershed	•	- 78
В.	Piezometer locations, design and test hole logs .	•	80
С.	Hydraulic conductivity data: Results of Hvorslev		99
		•	00
D.	Computer program for chemistry computations	•	101
Ε.	Tabulation of chemical analyses including percent		
	saturation and ion charge balance	•	106
F.	Hydraulic head data for piezometers	•	121
G.	Detailed description of the hydrograph separation		
	technique	•	124

viii

Page

INTRODUCTION

Studies of groundwater-streamflow systems in Wilson Creek Experimental Watershed (Fig. 1) began in 1968 in order to determine the hydrochemical characteristics of the groundwater and surface water flow systems, and to refine the hydrochemical method of hydrograph separation (Newbury et al., 1969; Cox, 1969).

The present study was motivated in part by the need for more detailed geohydrologic and hydrogeochemical information to assist in the development of digital response models for Wilson Creek watershed and other similar watersheds along the Manitoba Escarpment. Four specific objectives of this study were:

- to describe patterns of groundwater flow within and adjacent to Wilson Creek watershed
- to characterize hydrochemistry of the groundwater surface water system
- 3. to develop further and refine the hydrochemical method for separation of a composite hydrograph within Wilson Creek watershed and apply the technique to Dead Ox and McKinnon Creeks, small creeks in a similar physical setting along the Manitoba Escarpment
- to estimate the quantity of subsurface out-flow from Wilson Creek watershed.

Forty-five piezometer nests were utilized to investigate groundwater flow patterns and hydrochemistry as well as the spatial distribution of hydraulic conductivity. Stream hydrochemistry was monitored daily at five locations and often more frequently during storm runoff periods.

ACKNOWLEDGEMENTS

I wish to thank Dr. J.A. Cherry for his guidance and encouragement throughout this investigation and his critical review of the manuscript. I am grateful to Dr. R.W. Newbury and Professor C. Booy, members of my thesis committee, for reading this manuscript.

The assistance of Mr. J.E. Thomlinson, Watershed Manager, P.F.R.A., who provided technical advice and assistance, arranged for transportation, and made available data collected by him and the watershed staff is very gratefully acknowledged. Permission to work in Wilson Creek watershed was kindly arranged by Mr. G.H. McKay through the Wilson Creek Headwater Control Committee.

Thanks are also extended to all members of the watershed staff at Wilson Creek and in particular to Mr. Frank Thompson and Mr. Roy Mulligan for their excellent assistance. Finally, I am grateful to my wife Diane for her assistance in all phases of the work.

This research was supported by grants from the Department of Energy, Mines and Resources (N.A.C.W.R.R.) and the National Research Council of Canada. I conducted this research while recipient of a Graduate Scholarship from the National Research Council of Canada.

PHYSIOGRAPHY AND GEOHYDROLOGIC SETTING

Wilson Creek watershed (Figs. 1 and 2) is typical of many small watersheds located on the eastward facing slope of the Manitoba Escarpment. Within a relatively short distance streams rising at the top of the escarpment descend more than 1000 feet in elevation.

Upper reaches of Wilson Creek watershed (Fig. 2) are characterized by hummocky topography with closed depressions, sloughs and lakes. Middle reaches of the watershed are deeply dissected. Accentuated valleys typically are bounded by high, steep and unstable walls formed of weathered shale bedrock. A meandering stream channel and gentle slopes characterize lower reaches of the watershed. The alluvial fan developed here merges with Lake Agassz plain 3 to 5 miles east and northeast of Wilson Creek watershed (Fig. 2). Lake Manitoba (Fig. 2), with average water surface 813 feet above sea level, is situated approximately 37 miles east of the watershed.

Annual air temperature cycle in the watershed ranges between -45°F (-42.7°C) and +110°F (43.3°C) with a mean of about 30°F (-1.1°C). Air-mass movement along the Manitoba Escarpment produces frequent and intense rainfall between May and September. Intensities as large as 6 inches per hour have been recorded. Total summer rainfall on the watershed over the last 12 years has averaged 14 inches, (Newbury et al., 1969).

Formation of an open, discontinuous tree layer of hardwoods and spruces in upper reaches of the watershed is attributed to browsing of shrubs and young trees. Young stands of deciduous trees dominated by white birch and aspen poplar occupy the middle and lower reaches. The lowland plain at the base of the escarpment forms a mixed forest with an assortment of conifers and hardwoods.

Total stream channel discharge from the watershed ranged from .1 to 700 cfs during 1969. Waterlevels in Bald Hill Reservoir, a headwater storage reservoir fluctuated from empty to a maximum stage of 15.5 feet.

Post-Paleozoic formations in the Riding Mountain area of the Manitoba Escarpment range in age from Jurassic to Upper Cretaceous (Fig. 3). Siliceous shale bedrock in upper reaches of the watershed is overlain by thick glacial drift deposits predominantly composed of till with minor sand and gravel interbeds. A thin discontinuous veneer of glacial till overlies bedrock in middle reaches. A thick glacial drift sequence at the base of the escarpment overlies the shale bedrock and is blanketed by thin alluvial fan deposits (Fig. 3).

METHODS OF INVESTIGATION

Precipitation

Precipitation is measured by a network of 32 standard raingauges and 8 recording raingauges distributed within and adjacent to the watershed (Fig. 2). Rainfall distribution is variable within the watershed but most often is greatest in the middle and upper reaches. In one rainfall period in 1969, precipitation ranged from a high of 5.35 inches to a low of 3.60 inches.

6

Average precipitation for the watershed was calculated using the recording raingauges and the Theisson Polygon method (Theissen, 1911). Precipitation measured at raingauge No. 10 has been used in this study to approximate average basin rainfall because it corresponds closely to the calculated values. Rainfall samples for chemical analysis were collected using a polyethylene sheet as a catchment.

Streamflow

Streamflow was measured by two stage recording weirs, one located on Packhorse Creek and a second located at the exit of Wilson Creek from the watershed. Rating curves were constantly updated throughout the 1969 field season. Discharge measurements made at these weirs are accurate to ⁺5 percent (J.E. Thomlinson, Personal Communication, 1969). Stage recording installations at Bald Hill reservoir and Ridge dam also provided continuous outflow measurements. Discharge measurements along lower reaches of Bald Hill Creek have been approximated. It is assumed that the discharge sum of Bald Hill and Packhorse Creeks at any time t is equal to the measured discharge at Wilson Creek weir at t + 1 1/2 hours. This assumption is based on a measured 1 1/2 hour water travel time from the confluence of Packhorse and Bald Hill Creeks to Wilson Creek weir and no measurably significant increase or decrease in discharge along this reach. (J.E. Thomlinson, Personal Communication, 1969)

Stream stages of Dead Ox and McKinnon Creeks were measured daily using staff gauges. Discharge measurements were approximated from rating curves established by 5 discharge meterings during the period of observation June 13 to September 2, 1969.

Hydraulic Head Distribution in the Groundwater Zone

The movement of groundwater is governed by the distribution of hydraulic head and permeability of the porous medium. For shallow, steady state and transient flow systems, the expression for hydraulic head can be written

$$h = Z + \frac{P}{1g}$$

where h is hydraulic head, Z is elevation of the point above some datum, P is pressure, 1 is fluid density and g is the gravitational acceleration constant (Hubbert, 1940). From consideration of this expression, it follows that the waterlevel in a piezometer or watertable observation well,

expressed in feet above sea level is a direct measure of hydraulic head at the termination point of the well or piezometer. Throughout this investigation, the open standpipe type of piezometer has been utilized which in its simplest form (Appendix B, Fig. 27) consists of a standpipe or lined borehole open to the atmosphere.

Piezometers and watertable observation wells were emplaced at 45 locations in and adjacent to the watershed (Fig. 2). They were constructed from semi-rigid polyvynlchloride (P.V.C.) piping with diameters ranging from .8 to 1.5 inches. Test holes up to 80 feet deep were drilled using a truck-mounted power auger. A portable power auger was used to drill shallow test holes less than 45 feet deep.

Five piezometer nests installed in 1965 by the Geological Survey of Canada are designated alphabetically A to E with individual piezometers and watertable wells bearing the prefix GS before each individual identification number (Fig. 2). Piezometer nests emplaced during the present study bear the prefix F before each identification number (Fig. 2). Pipe dimensions, top elevations and piezometer depths are listed in Appendix B.

Insitu Hydraulic Conductivity

Each piezometer was subjected to drawdown response tests. The detailed procedure is outlined by Hvorslev (1951). Because the duration of any response test is generally short, estimated values of hydraulic conductivity represent only the

water bearing material close to the piezometer. When the vertical hydraulic conductivity of a porous media is but a fraction of the horizontal component, as is often the case, the flow induced during the short period of observation is two dimensional. Consequently, the horizontal component of hydraulic conductivity is measured preferentially.

The time for complete recovery of water levels in a bailed piezometer ranged from several seconds to approximately 14 days. Measurements of the recovery rates indicated that all piezometers had stabilized after installation.

Major Ion Chemistry

By using a small diameter pipe with a one-way valve at its base, water samples were collected close to the inlet portion of the piezometer in order to obtain samples not in contact with the atmosphere. Stream samples were collected daily from locations D2, D4, D5, D6 and D7 (Fig. 2). During the storm runoff period June 24 to July 4, 1969, these locations were sampled much more frequently.

Measurements of pH were made at the piezometers and wells with a temperature controlled, null balance, Radiometer type PHM4, pH meter and combination glass electrodes standardized to two buffers in the manner outlined by Barnes (1964). Each groundwater or stream sample was divided into an acidified and non-acidified portion. Within one to two days, non-acidified samples were analysed at a field laboratory for HCO_3^- , $C1^-$ and $SO_4^=$ concentrations. Concentra-

tion of HCO_3^- was determined by potentiometric titration (Barnes, 1964). Turbidometric and volumetric procedures supplied by a commercial field chemistry kit (Hach Co.) were used to determine SO_4^- and $C1^-$ concentrations respectively.

Concentrations of Ca⁺⁺, Mg⁺⁺, Na⁺ and K⁺ were determined at the University of Manitoba using a Perkin-Elmer 303 atomic absorption spectrophotometer. The detailed analytical procedures are given by Fishman (1966). Conductivity was measured for all samples and for comparison, results were standardized at 20°C.

Accuracy of the turbidometric procedure for $SO_4^{=}$ concentration was tested by preparing five different sulfate solutions in duplicate from a commercial standard solution and analysing them. Results indicate an accuracy of $\frac{t}{9}$ percent at concentrations less than 100 mg. per litre and $\frac{t}{15}$ percent at concentrations between 150-200 mg. per litre.

Quality of the analytical procedures for Ca^{++} , Mg^{++} , K^+ , Na^+ as well as HCO_3^- concentration measurements was examined by duplicating these determinations for several samples. Results indicate that concentrations of the four cations in all cases were reproducible to within 2 percent and those of HCO_3^- were reproducible to within 4 percent. The average deviation of the samples from electrical balance was 8 percent.

HYDROGEOLOGY

Six hydrostratigraphic units have been identified within the watershed on the basis of their geohydrologic properties such as effective porosity and permeability. In general, hydrostratigraphic units need not have a specific relationship with the formal stratigraphic units (Maxey, 1964).

Alluvium

Following the last Pleistocene deglaciation approximately 12,000 years B.P., an alluvial fan has formed at the base of the escarpment. Alluvium overlies lacustrine sediments to a depth of approximately 20 feet (Fig. 4) and extends northeast five miles to McCreary. These nonindurated deposits are discontinuously stratified with variable sorting. Sub-rounded siliceous shale fragments are abundant in a silt-sized matrix. Coarse alluvial terrace deposits along stream channels within the watershed extend upward into middle reaches. They are comprised almost completely of shale fragments with some coarse till-derived material.

An intergranular permeability is dominant in the alluvium because the overburden pressures have not been sufficient to decrease the pore volume. Three Hvorslev values of hydraulic conductivity ranged from 1.6 x 10^{-4} to 2 x 10^{-4} ft. per sec. (Table 1). Hydraulic conductivity data are listed in Appendix C.

Table	1.	Summary	of	Hvors1ev	Measurements
-------	----	---------	----	----------	--------------

Hydrostratigraphic	Number of Measure-	Horizontal Hydraulic Conductivity ft/sec.						
	ments	Range	Median					
Alluvium	3	$1.6 \times 10^{-4} - 2 \times 10^{-4}$	1.6×10^{-4}					
Upper Glacial Drift	5	$3x10^{-7}-7x10^{-8}$	-7 2x10					
Lacustrine Sediments	12	$1.6 \times 10^{-8} - 1 \times 10^{-4}$	1x10 ⁻⁵					
Lower Till	5	$7x10^{-9} - 2x10^{-5}$	1x10 ⁻⁸					
Riding moun- tain forma- tion	2	$1 \times 10^{-4} - 1.6 \times 10^{-3}$	8.5x10 ⁻⁴					
Lower Bedrock	8	$7x10^{-9} - 1x10^{-4}$	1.6x10 ⁻⁶					

Upper Glacial Drift

Shales of the Riding Mountain formation in the upper reaches of the watershed are blanketed by glacial drift deposits approximately 450 feet thick (Fig. 3). In sloping middle reaches, the upper glacial drift unit overlies shale bedrock as a discontinuous veneer 0 to 30 feet thick (Fig. 3).

The drift sequence is comprised mainly of calcareous glacial till with minor lenses of sand and gravel. The loosely compacted structure of the surficial till results in a dominant intergranular permeability with probably only minor secondary permeability. At depth, the changing stress conditions caused by glacial loading and unloading probably produces significant joints and fractures (Westgate, 1969). Five Hvorslev values of hydraulic conductivity ranged from $3x10^{-7}$ to $7x10^{-8}$ ft. per sec. with a median of $2x10^{-7}$ ft. per sec. This wide range reflects textural inhomogeneities that were observed within the unit.

Lacustrine sediments

An interbedded sequence of lacustrine sediments consisting mainly of calcareous silts and clayey silts with occasional clay laminae underlies the alluvial unit in lower reaches of the watershed (Fig. 4).

A primary permeability is the result of relatively small overburden pressures. Twelve Hvorslev values of hydraulic conductivity range from 1×10^{-4} ft. per sec. to 1.6×10^{-8} ft. per sec. with a median value of 1×10^{-5} ft. per sec. The wide range in hydraulic conductivity results in part from the spatial variation of grain size within the unit. Tree root penetration observed in upper portions of this unit results in development of secondary, vertical permeability. Origin and correlation of nonindurated sedimentary deposits situated near the base of the escarpment are discussed in Appendix A.

Lower Till

In lower reaches of the Wilson Creek watershed a thin, compact, silty clay till overlies shale bedrock (Fig. 4).

This unit is discontinuous and no outcrops were observed. Lithologically the till resembles closely the underlying shale bedrock units. Five Hvorslev values for hydraulic conductivity ranged from 2×10^{-5} to 7×10^{-9} ft. per sec. with a median of 1×10^{-8} ft. per sec. The hard compact nature of the till and wide range of hydraulic conductivity values suggest that a joint permeability rather than intergranular permeability has developed as a result of differential glacial stress.

Riding Mountain Formation

This unit outcrops along stream valley walls in the middle reaches and underlies the upper glacial drift unit in the upper reaches and intervalley regions of the middle reach. It has a maximum thickness of approximately 500 feet and is composed of hard grey shale with minor interbeds of calcium montmorillonite bentonite (Bannatyne, 1963).

Measurements of hydraulic conductivity in two deep piezometers indicate values as high as 1.6×10^{-3} and 1×10^{-4} ft. per sec. These high values of hydraulic conductivity and the hard siliceous nature of the unit suggest that flow at depth in this unit is confined to joint and fracture zones. In the Brandon area of Manitoba, Halstead (1959) found that a deep well yielding 10 gallons per minute in the Riding Mountain formation may be only 100 feet away from a well of the same depth yielding only about 1 gallon per minute. The fissile nature of the Riding formation in the weathering

zone as evidenced in surface outcrop and shallow boreholes results in extensive, secondary permeability and values of hydraulic conductivity that in general are enhanced over values expected at depth.

Valley walls outcrops of the Riding Mountain formation are easily erodable. Frequent slumping or other mass movements commonly observed along the stream channels result in development of additional fracture permeability. In order to describe the flow pattern beneath the intervalley uplands (Fig. 6), the horizontal component of hydraulic conductivity is assumed to be twenty times larger than the vertical component. In the absence of suitable field measurements, the degree of anisotropy was estimated to take into account the interbedded nature of the shales as evidenced by drill logs and outcrops.

The water table in soil free portions of the middle reach is extremely responsive to precipitation events. Resulting short period fluctuations can have maximum amplitudes of from 5 to 7 feet.

Lower Bedrock

This unit comprises all Upper and Lower Cretaceous formations stratigraphically underlying the Riding Mountain formation (Fig. 3). In lower reaches, the lower bedrock unit underlies the lower till unit or in some cases lacustrine sediments (Fig. 4). It is composed almost exclusively of

shale with local accumulations of calcite and natural gas.

Eight Hvorslev measurements of hydraulic conductivity ranged four orders of magnitude from 1×10^{-4} to 7×10^{-9} ft. per sec. with a median of 1.6×10^{-6} ft. per sec. Bentonite and interbeds with 10w hydraulic conductivity produce large scale anisotropic behaviour and the large range in measured values of hydraulic conductivity. The horizontal component of hydraulic conductivity was again assumed to be twenty times more than the vertical component.

Overburden pressure and glacial stress conditions have reduced considerably the size of the intergranular pore spaces. Accordingly, auger samples had a low water content and appeared almost dry in some of the test holes. A secondary joint and fracture permeability resulting from glacial or tectonic stresses has developed within the unit.

GROUNDWATER FLOW SYSTEMS

Conceptual Model

Regional groundwater flow has been analysed by Toth (1963), Freeze and Witherspoon (1966, 1967), Meyboom (1966) and Freeze (1967) with the groundwater basin as the unit of geohydrologic study. In the context of watershed hydrology, the concept of the groundwater basin is often difficult or impossible to apply because often the groundwater basin boundaries do not correspond to the watershed boundaries.

The conceptual watershed model proposed here (Fig. 5) enables the watershed itself to remain the basic unit of study. Groundwater flux across imaginery, vertical boundaries coincident with surface water boundaries of the watershed is termed groundwater inflow or groundwater outflow. At some depth, the lower boundary is defined by groundwater flow which neither recharges nor discharges within the watershed (Fig. 5). Following the terminology of Toth (1963), a local flow system within the watershed has its recharge area at a topographic high and its discharge area at the adjacent topographic low. When one or more topographic highs or lows separate the recharge and discharge areas the flow system is termed intermediate.

Longitudinal Flow Pattern Beneath Intervalley Uplands

Two dimensional generalization of the flow pattern (Fig. 6) along section $A-A^1$ considers the upper glacial drift

to be isotropic. The effect of vertical exaggeration in the isotropic units has been accounted for using the procedure outlined by van Everdingen (1963). Because it is not possible to accurately construct flow lines in exaggerated, anisotropic sections, flow directions in the anisotropic Upper Cretaceous formation were estimated. The estimation procedure involved taking the mean flow vector after considering vertical exaggeration only, assuming isotropic behaviour and secondly anisotropic behaviour only, following the permeability ellipse procedure, assuming no exaggeration. The data indicate that the groundwater flow in the intervalley regions above the confluence of Bald Hill and Packhorse Creeks is characterized by a downward hydraulic gradient. Maximum downward gradient in recharge areas of the upper reaches was 0.2 ft. per ft.

Details of Flow Systems

Local and intermediate flow systems are situated transverse to the general longitudinal flow pattern. In intervalley regions (Fig. 7), recharge moves downward into deeper flow systems and local and intermediate flow systems discharge into the stream network. A hummocky water table configuration in upper reaches of the watershed and deeply dissected stream valleys in middle reaches control the flow patterns of these local and intermediate flow systems (Fig. 7).

To characterize in detail groundwater flow patterns

in lower reaches of the watershed, a series of three, two dimensional flow diagrams were constructed (Fig. 8). Alluvium, lacustrine sediment and lower till units were considered to be isotropic. Lower bedrock units were assigned an estimated anisotrpy of 20:1 ($K_H:K_V$). Again in the isotropic units flow vectors were constructed following the procedure outlined by van Everdingen (1963) and in the anisotropic unit flow vectors were estimated. Groundwater flow here is characterized by small vertical gradients and general lateral movement (Fig. 8) and is controlled by the relatively gentle water table slope in the alluvial fan material.

In middle reaches of the watershed, particularly in soil free areas, high values of hydraulic conductivity result in virtually no surface runoff and water table fluctuations are accentuated. The hydrograph of water table observation well GS 5, located in such a soil-free region demonstrates these short period, large amplitude fluctuations (Fig. 9).

In the upper reaches of the watershed, relatively low values of hydraulic conductivity coupled with steeply sloping land surfaces and a decadent vegitative cover result in large amounts of surface runoff. Fluctuations of the water table here as exemplified by GS 1 (Fig. 9) typically have longer periods and shorter amplitudes. A comparison of the time rates of change of waterlevels in GS 1 and GS 5

indicates that precipitation infiltrates and groundwater discharges much more rapidly in portions of the middle reach.

The single most important factor expediating rapid groundwater movement along these transverse, local flow systems is the high hydraulic conductivity of the Riding Mountain formation both insitu and in the slumped valley wall material. The hydraulic conductivity of the Riding Mountain formation at depth is more than two orders of magnitude higher than the upper glacial drift unit (Table 1).

Streamflow persists throughout cold winter months along lower reaches of Bald Hill and Packhorse Creeks as well as Wilson Creek, where the regime of these streams is controlled by groundwater seepage. Preceeding the spring snowmelt period, a two day survey (April 4 and 5, 1969) was made to measure stream and bottom sediment temperatures as well as to determine the distribution of ice cover. In the upper reaches, Bald Hill and Packhorse Creeks were completely frozen with ice thicknesses from 12 to 18 inches. Along lower reaches of Bald Hill Creek water flowed under an ice cover greater than 12 inches thick. The first small discontinuous stretches of open water were observed near the junction with Packhorse Creek. Streambed temperatures in the ice free portions ranged from 2.0 to 3.1 degrees centigrade and were consistently higher than the water temperature which ranged from 1.6 to 1.9 degrees centigrade. Downstream from Beer Bottle Park, Wilson Creek generally had

few continuously frozen reaches.

Groundwater outflow from the basin was calculated using the Darcy equation to be .004 cfs. The flow net constructed (Fig. 10) tacitly assumes that the water table gradient over the entire outflow depth remains constant. For this calculation, an outflow depth of 100 feet was chosen to extend downward and include 50 to 60 feet of the lower bedrock unit. From Figure 10, the hydraulic gradient is .02 ft. per ft. and maximum possible outflow width from the flow net was estimated to be 6,500 feet. Sufficient data was not available to extend the flow net southward to include the total outflow width but available data has been extrapolated to include this additional area of suspected out-A value of 3×10^{-7} ft. per sec. was calculated for the flow. hydraulic conductivity by taking the mean of the hydraulic conductivities for the units involved.

A liberal estimate of groundwater outflow calculated using the Darcy equation with the highest measured hydraulic conductivity of 1.6×10^{-4} ft. per sec. and an assumed outflow depth of 200 feet, was 5 cfs. A conservative estimate of groundwater outflow of .00004 cfs was calculated using the lowest measured hydraulic conductivity of 3×10^{-9} ft. per sec. and an outflow depth of 100 feet. Because the highest and lowest values of hydraulic conductivity are representative of only a small fraction of the total outflow depth, the most probable estimate of outflow, calculated using the mean value

of hydraulic conductivity, is .004 cfs.

GROUNDWATER GEOCHEMISTRY

The chemical characteristics of natural waters result from direct solution and chemical reaction with solids, liquids and gases with which they have come into contact during various portions of the hydrologic cycle. The nature of the dissolved constituents in groundwater depends upon several important geochemical processes: a) chemical composition of precipitation b) gas generation in the soil zones of recharge areas c) dissolution of the porous media d) precipitation of mineral phases within the porous media e) ion exchanges between pore solutions and minerals of the porous media f) oxidation reduction reactions. These intimately related processes are strongly influenced by several environmental and dynamic parameters such as i) pressure ii) temperature iii) rate of fluid flow iv) chemical and structural variability of the solid phases in the porous media v) the order in which pore fluids come in contact with the porous media. Objectives of this geochemical investigation are to describe some of the specific geochemical processes operating in the groundwater system and to utilize major ion concentration to determine the source of ions in the streamflow.

Hydrochemical Facies

A six variable graphical representation (Piper, 1944) of the major ions in the groundwater (Fig. 11) shows

the general hydrochemical variation within and adjacent to Wilson Creek Watershed. On the basis of the similarity in the proportion of anion constituents (Fig. 11), four distinct hydrochemical facies have been recognized. Each facies type is designated by an identification number. Figure 12 is a histogram summary of the hydrochemistry of each facies.

The spatial distribution of the four facies are shown in figure 13. Type I water, a calcium-magnesium, bicarbonate facies (Back, 1966) is found in the upper reaches predominantly in the upper drift unit. Type II water, a calcium-sodium, bicarbonate-sulfate facies, is found in portions of the Riding Mountain formation as well as the alluvium, lacustrine sediment, and lower till units. Type III water, a sodium, chloride or sodium, chloride-bicarbonate facies, appears confined to the lower bedrock unit. Type IV water, a calcium-sodium or sodium calcium, sulfatechloride-bicarbonate facies, is found east of the watershed (Fig. 13) in the alluvium, lacustrine sediment and lower till units.

Controlling Parameters

A dominant influence in determining the composition of subsurface waters is the mineralogy of the solid phases with which they come into contact. Field observation indicates that the coarse fraction of the upper glacial drift unit is composed of dolostone, limestone and Precambrian

boulders. Dolomite, calcite, feldspar and clay minerals comprise the matrix material of this unit as well fine grained fraction of the drift derived alluvium and lacustrine sediment units. By analogy with the surface till described by Rozkowski (1967) in the Moose Mountain area of southeastern Saskatchewan, the probable dominant fine grained minerals are successively quartz, plagioclase, dolomite and calcite with montmorillonite predominating among the clay minerals. Because several Devonian evaporite members must have been eroded and material incorporated, the upper glacial drift probably contains minor amounts of gypsum, halite and other easily soluble salts. Rozkowski (1967) identified minor or trace quantities of hexahydrate, epsomite, halite and gypsum in the tills of the Moose Mountain area.

The following dissolution reactions indicate the ionic species associated with several of these minerals when in contact with an aqueous solution,

calcite:	$CaCO_3 \stackrel{2}{\leftarrow} Ca^{++} + CO_3^{} \cdots \cdots \cdots$	(1)
dolomite:	$(CaMg) (CO_3)_2 \stackrel{2}{\neq} Ca^{++} + Mg^{++} + 2CO_3^{-}$	(2)
gypsum:	$CaSO_4 \cdot 2H_2 0 \neq Ca^{++} + SO_4^{=} + 2H_2 0$.	(3)
halite:	NaCl \neq Na ⁺ + Cl ⁻	(4)

The Riding Mountain formation, lower bedrock unit and lower till unit derived from the bedrock are composed almost

exclusively of montmorillonite and illite (J. Eades, Personal Communication, 1970). Bannatyne (1963) describes minor occurences of calcium montmorillonite bentionite within the Riding Mountain formation. Type II water has SO_4^{-} concentrations that vary from 50 to 150 mg. per litre. Water flowing through the Riding Mountain formation and alluvium unit, which contains abundant shale fragments, derives SO_4^{-} from disseminated gypsum that is common found in marine sediments of this kind (J. Eades, Personal Communication, 1970). Wickenden (1945) has described the occurence of pyrite in cores from the Vermillion River, Riding Mountain and other upper Cretaceous formations. Minor contributions of SO_4^{-} could result from the oxidation of pyrite by the following reaction (Singer and Stumm, 1970).

Solubility constraints play an important role in determining the chemical evolution of groundwater (Schoeller, 1956; Back, 1961). The condition of chemical equilibrium is governed by the law of mass action and is described for equations 1, 2, 3, 4, by rewriting them in terms of dissociation constants,

dolomite:
$$K_{CaMg(CO_3)_2}^{t} = \frac{{}^{A}Ca^{++} \cdot {}^{A}Mg^{++} \cdot {}^{A}CO_3^{-}}{{}^{A}CaMg(CO_3)_2}$$
 (7)

gypsum:
$$K_{CaSO_4 \cdot 2H_2O}^{t} = \frac{A_{Ca^{++} \cdot A_{SO_4}}}{A_{CaSO_4_c}}$$
 (8)

halite:
$$K_{\text{NaCl}}^{\text{t}} = \frac{A_{\text{Na}}^{+} A_{\text{Cl}}^{-}}{A_{\text{NaCl}}} \dots \dots \dots \dots \dots (9)$$

where t is the temperature of the solution. In general, nearly all groundwater samples were saturated with respect to calcite, dolomite and aragonite but undersaturated with respect to gypsum (Appendix E). The computer procedure and solubility constants utilized to calculate percent saturation with respect to calcite, dolomite, gypsum and aragonite are listed in Appendix D. Cursory inspection of the relatively low concentrations of Na and Cl in the groundwater samples was sufficient to dismiss this reaction as a solibility constraint on the groundwater. Percent saturation values calculated for some metastable phases of the carbonate mineral--CaSO $_{\Lambda}$ -NaCl - H_2O systems (Appendix E), nesquehonite, $MgCO_3 \cdot 3H_2O$; hydromagnesite, $Mg_4(CO_3)_3(OH)_2 \cdot 3H_2O$; magnesite, $MgCO_3$; huntite, $Mg_3Ca(CO_3)_4$ and landsfordite $MgCO_3 \cdot 5H_2O$ were consistently less than 1 percent also dismissing them as solubility constraints on the groundwater.

High partial pressures of CO₂ are produced in the soil zones by decaying vegetation and respiration of plant roots. Calculated values of CO₂ partial pessures for shallow groundwater ranged between $10^{-2.30}$ and $10^{-1.30}$ atm., considerably higher than $10^{-3.5}$ atm., the atmospheric value (Garrels and Christ, 1965). Recharge infiltrating through these zones acquires high concentrations of HCO₃⁻, Ca⁺⁺ and Mg⁺⁺ through leaching of carbonate minerals by carbonic acid. Kinetically this reaction is very rapid (Weyl, 1958).

Contribution of Ca⁺⁺ derived from the dissolution of gypsum would tend to shift the carbonate equilibria toward precipitation of calcite, dolomite or aragonite. However, these precipitation reactions are kinetically slow (Hostetler, 1963) and therefore causes supersaturation of the groundwater with respect to calcite, dolomite and aragonite (Appendix E). The observed supersaturations cannot be completely explained by the common ion effect. For example, type I water generally containing less than 10 mg. per litre of $SO_4^{=}$ is supersaturated with respect to calcite and dolomite (Appendix E). The saturation data (Appendix E) indicates supersaturation of calcite and dolomite is not the result of equilibrium of the groundwater with the metastable carbonates, including aragonite. Bricker and Garrels (1967) indicate that the detailed chemical and structural variability of the solid phases are most important in the interpretation of chemical equilibria in natural water systems containing Ca and Mg carbonate com-
pounds. Observation of the mineral characteristics of the surfaces of the pore network was not feasible in this investigation.

The diminishing concentration of $SO_4^{=}$ and increasing concentration of HCO_3^{-} in type III water as compared to type II water is explainable in terms of sulfate reduction by aneorobic bacteria. Natural gas present in the lower bedrock unit could serve as a donor of organic hydrogen for the bacteria (Hvid-Hansen, 1951). The following equations modified from Hvid-Hansen (1951) and Hem (1959) provide an explanation of the high HCO_3^{-} content combined with low $SO_4^{=}$ content in the presence of bacteria and methane, a common constituent of natural gas,

> $SO_4^{=} + CH_4 = S^{=} + CO_2 + 2H_2O$ (10) $S^{=} + 2H_2O + 2CO_2 = H_2S + 2HCO_3^{-}$ (11)

HYDROCHEMISTRY OF STREAMFLOW

Source of Ions in Recession Flow

During extended periods with little or no precipitation, streamflow is maintained by extended return flows into the stream channels. Hydrochemistry of Wilson Creek and lower reaches of Packhorse and Bald Hill Creeks during these recession flows closely resembles type II groundwater (Figs. 14, 15; Appendix E). Chemistry data from all springs and apparent concentration of seepage along Bald Hill and Packhorse Creeks in the middle and lower portions of the upper reaches (Newbury et al., 1969) indicated ionic concentrations also comparable to type II water and the streamflow. Water table observation wells, F34, F35 and F36 along the Bald Hill Creek channel in the lower portion of the middle reach also possessed water of a similar chemical character (Appendix E). Type II water is therefore the dominant source of recession discharge for Bald Hill, Packhorse and Wilson Creeks. Low C1 concentrations in the streamflow and in groundwater types I and II as well as piezometric data presented in Figure 6 indicate that water from large, regional flow systems is not entering the surface water system within the watershed. These systems apparently discharge east of the escarpment.

Stream water during the recession periods was highly supersaturated with respect to calcite, aragonite and dolomite and undersaturated with respect to gypsum (Appendix E). When discharging groundwater comes into contact with the atmosphere the partial pressure of CO_2 gas is reduced but the concentration of CO_3^{-} increases. Because streamflow precipitation reactions for calcite and dolomite are kinetically slow (Barnes, 1964), supersaturation with respect to calcite, aragonite and dolomite was observed in Wilson and Packhorse Creeks.

Geochemical Hydrographs

Time variation (May to September, 1969) of major ions, Ca^{++} , Mg^{++} , Na^{+} , K^{+} , $HCO_3^{-} + CO_3^{-}$ and SO_4^{-} as well as electrical conductivity is depicted for Wilson and Packhorse Creeks (Figs. 14, 15). More detailed major ion and conductivity variation with time for Wilson Creek during a storm runoff period (June 24 to July 2, 1969) is presented in Figure 16.

To compare the concentration behaviour of individual ions, the dilution ratio of each was calculated and plotted versus time for two storm runoff periods (Figs. 17, 18). In general, Na⁺ and $SO_4^{=}$ concentrations are reduced considerably; while, Ca⁺⁺ and Mg⁺⁺, behaving almost identically, are diluted substantially less.

Precipitation falling in the watershed contains only minimal concentrations of dissolved material. Analysis of three rainfall samples determined maximum concentrations of Ca^{++} , Mg^{++} , Na^{+} and K^{+} to be 1.5, .45, 2.46 and 1.49 mg. per

litre respectively with total dissolved solids less than 15 mg. per litre.

Sulfate dilution behaviour as influenced by Bald Hill detention reservoir indicates the sensitivity of the geochemical hydrographs. At any reservoir stage except overflow, maximum discharge is 5 to 6 cfs. During periods with little or no precipitation, the reservoir is normally empty. Water is however ponded during the snowmelt period or heavy rainfall periods. Following the rainfall period of June 25 to July 8, the detention reservoir contained water for 14 days (Fig. 19).

During this time, $SO_4^{=}$ concentrations of Bald Hill Creek remained at a stable, low level because the higher than normal discharges from Bald Hill Reservoir had $SO_4^{=}$ concentrations only as high as 3-4 mg. per litre (Fig. 19). Concentrations returned to pre-storm, recession levels only after the reservoir had drained completely (Fig. 19). In contrast, concentration of $SO_4^{=}$ in Packhorse Creek rebounded quickly to its pre-storm, recession level (Fig. 19). Concentrations of $SO_4^{=}$ at Wilson Creek weir increased slowly reflecting the direct combination of Bald Hill and Packhorse Creek discharges (Fig. 19).

Annual variation of conductivity and $SO_4^=$ concentration at Wilson Creek weir (Fig. 20) shows an excellent negative correlation with discharge. Highest conductivity values and $SO_4^=$ concentrations were measured during the

winter months when Wilson Creek discharge was low.

Conductivity and $SO_4^=$ concentration behaviour as monitored at Dead Ox and McKinnon Creeks followed dilution trends quite similar to other creeks investigated (Fig. 21). However, for the entire period of observation, Dead Ox Creek consistently had the lowest $SO_4^=$ concentrations of all.

More detailed measurements of $SO_4^=$ concentration and conductivity variation of Dead Ox and McKinnon Creeks revealed dilution behaviour comparable to Packhorse and Bald Hill Creeks (Fig. 22). However, the magnitude of the $SO_4^=$ concentration dilution at a given time tended to be unique for each creek, controlled by several intimately related variables. The chemical comparison of Bald Hill, Packhorse and Wilson Creeks (Fig. 19) indicates that the relative effectiveness of headwater storage and the amount of streamflow combination are two important variables.

GEOCHEMICAL HYDROGRAPH SEPARATION

Idealization of Hydrograph Components

An important hydrologic problem is separation of the composite hydrograph into components and interpretation of these components. Traditionally, it has been recognized (Meyboom, 1961; Hall, 1968; Pinder and Jones, 1969) that streamflow during storm runoff periods consists of three main components: direct runoff, interflow and baseflow.

Processes contributing to the formation of the composite hydrograph are intimately related and depend upon several independent variables. Betson and Marius (1969) found that storm runoff originates from but a small portion of the total drainge area. Location and extent of the source area are dependent upon several parameters including rainfall intensity, hydraulic conductivity in the unsaturated zone and antecedent moisture conditions. Jameson and Amerman (1969) recognize two interflow components, quick return flow, defined as rapid lateral flow in the uppermost soil horizons and delayed return flow, defined as long term lateral flow in the remaining unsaturated portion of the soil.

During recession flow, streamflow is sustained by extended return flows, made up of a groundwater discharge component and a delayed return flow component. Hall (1968) concluded that baseflow as traditionally defined probably exists only in arid regions where there is negligible con-

tribution to the streamflow from prolonged non-linear drainage of the unsaturated zone.

The major ion concentration of Wilson and Packhorse Creeks during periods with little or no precipitation characteristically remains stable. However, during storm runoff periods additional discharge components, direct surface runoff, channel precipitation, and quick return flow are added to the streamflow. Each component possesses a unique ionic concentration determined according to the various modes of interaction with solids, liquids and gases with which they have come into contact.

Delayed return flow and quick return flow having flowed through a soil zone with high CO_2 partial pressures contain relatively high concentrations of Ca^{++} , Mg^{++} , and HCO_3^- . Direct surface runoff and quick return flow that have not passed through a soil zone do not contain appreciable concentrations of these ions because the partial pressure of CO_2 gas in the atmosphere is low. Both surface runoff and quick return flow could be expected to possess negligible concentrations of Na^+ , $SO_4^=$ and $C1^-$ because of the slow solution rates of sulfate and sodium silicate minerals, the short contact times involved and the general unavailability of the soluble sodium, sulfate and chloride salts on the ground surface and in leached upper soil horizons.

During recession flow, the hydrochemistry of Wilson Creek and lower reaches of Bald Hill and Packhorse Creeks

closely approximate Type II groundwater. Geochemical hydrographs from these creeks indicate that during rainfall periods contributions of direct runoff, channel precipitation, and quick return flow tend to chemically dilute the streamflow. Much of the surface runoff is contributed from the upper reaches where infiltration is restricted (MacKay and Stanton, 1964). Rapid infiltration into the highly permeable Riding Mountain formation results in large, transient increments in water table gradients as evidenced by the water table hydrograph of GS 5. Extended return flow contributions to the streamflow from transverse flow systems in the middle reach increase in response to increased gradi-Quick return flow probably originates in the greatest ents. quantity under large hydraulic gradients from along the very steep valley walls of the middle reach. Direct runoff contribution to the streamflow ends quickly after the precipitation ceases.

Hydrochemical Separation

The hydrochemical method for hydrograph separation (Voronkov, 1963; Zektser, 1963) has been used frequently to yield separations more closely related to the physical system. Kunkle (1965) used conductivity to estimate the groundwater contribution to baseflow. Toler (1965a, 1965b) has distinguished two components of baseflow and estimated total contribution by means of conductivity. Pinder and

Jones (1969) determined the groundwater component of total storm discharge using the dilution behaviour of several representative ions. In Wilson Creek Watershed, hydrochemical characteristics of the system were used to identify the baseflow component of storm runoff hydrographs (Newbury et al., 1969).

Extended return flows and quick return flows that have passed through a humic soil zone possess high Ca⁺⁺ and Mg⁺⁺ concentrations. Dilution of these ions in the streamflow results from the addition of direct runoff and channel precipitation as well as a portion of the quick return flow that infiltrates in soil-free shale bank areas and is chemically similar to direct runoff. Because the dilution behaviour of Ca⁺⁺ and Mg⁺⁺ in the streamflow are very nearly identical (Figs. 17, 18), the average of Ca⁺⁺ and Mg⁺⁺ dilution ratios has been utilized to separate a combined extended return flow and partial quick return flow component from the composite hydrograph.

Because only minor concentrations of $SO_4^{=}$ and Na^+ are contributed by quick return flow and because the dilution behaviour of Na^+ closely approximates that of $SO_4^{=}$ (Figs. 17, 18), direct surface runoff and channel precipitation, the dilution of $SO_4^{=}$ and Na^+ can separate the extended return flow contribution to the streamflow.

In general, the extent to which $SO_4^{=}$ and Na^+ are present in aqueous solution depends upon the availability

of sulfate and sodium containing minerals for dissolution and the length of time groundwater has been in contact with these minerals. Hydrochemical measurements of groundwater and streamflow indicate that during storm runoff periods the increases in the extended return flows must result from rapid, transient flow in the Riding Mountain formation. The expected pattern with $SO_4^=$ and Na^+ concentration dilution greater than the average of $Ca^{++} + Mg^{++}$ dilution results from the dual source of Ca^{++} and Mg^{++} in quick return flow and extended return flow as compared to a single, extended return flow source for $SO_4^=$ and Na^+ . A dilution pattern of this kind was observed for Wilson and Packhorse Creek during all storm runoff periods.

Three hydrograph components were separated in the composite hydrographs of Wilson and Packhorse Creeks (Figs. 23, 24). A single ratio characterizing dilution of Ca⁺⁺ and Mg⁺⁺ at a particular time was determined by averaging Ca⁺⁺ and Mg⁺⁺ concentrations, to separate from the total discharge hydrograph a combined extended return flow and partial quick return flow component as well as a combined channel precipitation and direct runoff component that includes some quick return flow. Because atomic absorption spectrophotometer determinations of Na⁺ concentrations are considerably more accurate than the field turbidometric procedure for SO₄⁼ concentration, Na⁺ has been utilized in this study to separate an extended return flow component.

Subtle concentration changes obvious in Wilson and Packhorse Creeks were not apparent with respect to SO_4^{-1} concentration.

The extended return flow component was separated for Dead Ox and McKinnon Creeks using SO_4^{-} dilution (Figs. 25, 26). The detailed procedure for the hydrochemical method of hydrograph separation is outlined in Appendix G.

The ions chosen to characterize a particular component or group of hydrograph components at Wilson Creek watershed relate closely to the physical system. The characteristic ions for any watershed tend to be unique depending in part upon the geohydrologic setting.

On the basis of information derived from this study, the hydrochemical hydrograph separation as developed at Wilson Creek watershed could be applied to many similar watersheds along the Manitoba Escarpment utilizing easily obtainable data. Rapid accurate analyses of Ca⁺⁺, Mg⁺⁺ and Na⁺ concentration can be made using atomic absorption spectrophotometer techniques. Stream discharge can be measured relatively easily using staff gauges and rating curves.

Investigators (Kunkle, 1965; Toler, 1965a, 1965b; Newbury et al., 1969) have utilized conductivity dilution to obtain hydrograph separations in part because of the ease with which these measurements may be made. Conductivity dilution as determined at Wilson Creek (Figs. 17, 18) and Packhorse Creek represents an average of the ion dilutions weighted according to the mass concentration of the individual

ions. Because the conductivity dilution is consistently 5 to 15 percent lower than the average of Ca⁺⁺ and Mg⁺⁺ (Figs. 17, 18), separations resulting are a combination of extended return flow plus a small proportion of quick return flow.

SUMMARY OF CONCLUSIONS

Six hydrostratigraphic units have been distinguished in the Wilson Creek watershed, a surficial alluvium unit, an upper till unit, a lacustrine silt-clay unit, a lower till unit, the Riding Mountain formation and a unit comprising the Cretaceous bedrock formations underlying the Riding Mountain formation.

In general, groundwater flow in the Wilson Creek watershed above the confluence of Bald Hill and Packhorse Creeks is characterized by a downward hydraulic gradient. Transverse, local and intermediate flow systems develop in the deeply dissected middle and hummocky upper reaches of the watershed and discharge into the surface water system. Recharge to deeper flow systems predominates in the intervalley regions of the middle and upper reaches. In lower reaches of the watershed, the gentle, relatively constant water table slope results principally in lateral flow with only minor vertical flow. Groundwater outflow from the watershed was estimated to be between 5 and .00004 cfs., with a best estimate of .004 cfs.

Four distinct hydrochemical facies occur in and adjacent to the watershed. The chemical character of the natural water evolves as a result of direct solution and chemical reactions with solids, liquids and gases with which it has come into contact. Hydrochemical comparisons of the groundwater and streamflow reveals that extended return flows from the upper glacial drift unit and the Riding Mountain formation in middle reaches of the watershed as well as from the glacial drift at the base of the escarpment are the major sources of recession stream flow. Groundwater flow patterns and hydrochemical measurements indicate that deep groundwater does not enter the surface water system within the watershed but rather discharges east of the escarpment.

The time variation of conductivity and major ions, Ca^{++} , Mg^{++} , Na^{+} , K^{+} , $HCO_{3}^{-} + CO_{3}^{=}$ and $SO_{4}^{=}$ in Packhorse and Wilson Creeks displayed a distinct, negative correlation with stream discharge. Dilution behaviour of the major ions in the stream flow during storm runoff periods is dependent upon its concentration in each of the streamflow sources, direct runoff, channel precipitation, quick return flow and extended return flow. Conductivity and concentration of $SO_{4}^{=}$ in Dead Ox and McKinnon Creeks also correlate well with stream discharge.

Average dilution of Ca^{++} and Mg^{++} was utilized to separate from the composite hydrograph an extended return flow and partial quick return flow component as well as a combined channel precipitation and direct runoff component that includes some quick return flow. Dilution of Na⁺ and SO_4^{-} was indicative of the extended return flow contribution

to the streamflow. The hydrochemical method of hydrograph separation as developed in Wilson Creek watershed was applied to Dead Ox and McKinnon Creeks situated in a similar physical setting along the Manitoba Escarpment.

With a few simple and readily obtainable measurements of chemistry and discharge, the hydrochemical method of hydrograph separation can be applied to numerous streams along the Manitoba Escarpment. These techniques may better represent the physical system than more arbitrary graphical methods.

REFERENCES CITED

Back, W. 1961. Calcium carbonate saturation in groundwater from routine analyses. U.S. Geol. Survey Water Supply Paper 1535-D.

_____. 1963. Preliminary results of a study of calcium carbonate saturation of groundwater in Central Florida. I.A.S.H. Publ., 8, pp. 43-51.

- , Cherry, R.N., and Hanshaw B.B. 1966. Chemical equilibria between the water and minerals of a carbonate aquifer. Natl. Speleol. Soc. Bull., 28, July.
- Bannatyne, B.B. 1963. Cretaceous bentonite deposits of Manitoba. Manitoba Mines Branch 62-5.
- Barnes, I. 1964. Field measurement of alkalinity and pH. U.S. Geol. Survey Water Supply Paper 1535-H.
- ______. 1965. Geochemistry of Birch Creek. Inyo County, California, a travertine depositing creek in a arid climate. Geochim. et Cosmochim. Acta, 29, pp. 85-112.
- Berner, R.A. 1967. Comparative dissolution characteristics of carbonate minerals in the presence and absence of aqueous magnesium ion. Am. J. Sci., 265, pp. 45-70.
- Betson, R.P., and Marius, J.B. 1969. Source areas of storm runoff. Water Resour. Res., 5, pp. 574-582.
- Bricker, O.P., and Garrels, R.M. 1967. Mineralogic factors in natural water equilibria. in Principles and Applications of Water Chemistry. ed. S.D. Faust and J.V. Hunter, John Wiley and Sons. New York, pp. 449-469.
- Cherry, J.A. 1968. Chemical equilibrium between gypsum and brackish and slightly saline waters at low temperatures and pressures. Chem. Geol., 3, pp. 239-247.
- Cox, R.A. 1969. Groundwater--streamflow systems in Wilson Creek Experimental Watershed, Manitoba. unpublished M. Sc. thesis, University of Manitoba.

- Elson, J.A. 1967. Geology of glacial Lake Agassiz. in Life, Land and Water. ed. W.J. Mayer-Oakes. Proceedings of the 1966 Conference on Environmental Studies of Glacial Lake Agassiz, Region. University of Manitoba Press. Winnipeg, 1967. pp. 37-96.
- Fishman, M.J. 1966. The use of atomic absorption for analysis of natural waters. Atomic Absorption Newsletter, 5, No. 5.
- Freeze, R.A. 1967. Quantitative interpretation of regional groundwater flow patterns as an aid to water balance studies. Extract of "Ground Water".
- , and Witherspoon, P.A. 1966. Theoretical analysis of regional groundwater flow. 1. Analytical and numerical solutions to the mathematical model. Water Resour. Res., 2, pp. 641-656.
- , and Witherspoon, P.A. 1967. Theoretical analysis of regional groundwater flow. 2. Effect of watertable configuration and subsurface permeability variation. Water Resour. Res., 3, pp. 623-634.
- Garrels, R.F., and Christ, C.L. 1965. Solutions, minerals and equilibria. Harper and Row, New York.
- Hall, F.R. 1968. Base-flow recessions--a review. Water Resour. Res., 4, pp. 973-981.
- Halstead, E.C. 1957. Ground-water resources of the Brandon map-area, Manitoba. Geol. Surv. Canada, Memoir 300.
- Hem, J.D. 1959. Study and interpretation of chemical characteristics of natural waters. U.S. Geol. Survey water Supply Paper 1473.
- Hostetler, P.B. 1963. The degree of saturation of magnesium and calcium carbonate minerals in natural waters. Publ. 64, Int. Assoc. Scient. Hydrol., Comm. Subterranean Waters, pp. 34-49.
- Hubbert, M.K. 1940. Theory of groundwater motion. J. Geol., 48, pp. 785-944.
- Hvid-Hansen, N. 1951. Sulphate-reducing and hydrocarbon producing bacteria in groundwater. Acta Path. Microbio. Scand., 29, pp. 314-334.

- Hvorslev, M.J. 1951. Time lag and soil permeability in groundwater observations. U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Mississippi, Bull. 36.
- Jamieson, D.G., and Amerman, C.R. 1969. Quick-return subsurface flow. J. Hydrol., 8, pp. 122-136.
- Johnston, W.A. 1946. Glacial Lake Agassiz. with special reference to the mode of deformation of the beaches. Geol. Surv. Canada, Bull., 7.
- Kunkle, G.R. 1965. Computation of ground-water discharge to streams during floods, or to individual reaches during base flow by use of specific conductance. U.S. Geol. Surv. Prof. Paper 525-D, pp. 207-210.
- Langmuir, D. 1965. Stability of carbonates in the system MgO - CO₂ - H₂O. Jour. Geol., 73, pp. 730-754.
- MacKay, G.H. and Stanton, C.R. 1965. Wilson Creek study, erosion and sedimentation control. Proceedings of Hydrology Symposium No. 4. Water Resources Branch, Dept. of Northern Affairs and National Resources, pp. 41-71.
- Maxey, G.B. 1964. Hydrostratigraphic units. J. Hydrol., 2, pp. 124-129.
- Meyboom, P. 1966. Groundwater studies in the Assiniboine River drainage basin. Geol. Survey of Canada Bull., 139.
- . 1961. Estimating ground-water recharge from stream hydrographs. J. Geophys. Res., 66, pp. 1204-1214.
- Newbury, R.W., Cherry, J.A., and Cox, R.A. 1969. Groundwater-streamflow systems in Wilson Creek experimental Watershed, Manitoba. Can. J. Earth Sci., 6, pp. 613-623.
- Pinder, G.F., and Jones, J.F. 1969. Determination of the ground-water component of peak discharge from the chemistry of total runoff. Water Resour. Res., 5, pp. 438-445.
- Piper, A.M. 1944. A graphical procedure in the geochemical interpretation of water analyses. Am. Geophys. Union trans., 25, pp. 914-923.

- Rozkowski, A. 1967. The origin of hydrochemical patterns in hummocky moraine. Can. J. Earth Sci., 4, pp. 1065-1092.
- Schoeller, H. 1956. Geochemie des eaux souterraines. Editions Technic, Paris.
- Singer, P.C. and Stumm, W. 1970. Acidic mine drainage: the rate determining step. Science, 167, pp. 1121-1123.
- Sippel, R.F. and Glover, E.D. 1964. The solution alteration of carbonate rocks, the effects of temperature and pressure. Geochim. et Cosmochim. Acta, 28, pp. 1401-1417.
- Theissen, A.H. 1911. Precipitation for large areas. Monthly Weather Rev., 39, pp. 1082-1084.
- Toler, L.G. 1965. Use of specific conductance to distinguish two base-flow components in Econfina Creek, Florida. Geol. Surv. Prof. Paper 525-C, pp. 206-208.
- . 1965. Relation between chemical quality and water discharge in Spring Creek, Southwestern Georgia. Geol. Surv. Prof. Paper 525-C, pp. 209-213.
- Toth, J. 1963. A theoretical analysis of groundwater flow in small drainage basins. J. Geophys. Res., 68, pp. 4795-4811.
- Voronkov, P.P. 1963. Hydrochemical basis for segregating local runoff and a method of separating its discharge hydrograph. Soviet Hydrol., No. 4, pp. 409-414.
- Westgate, J.A. 1969. The Quaternary geology of the Edmonton area, Alberta. Pedology and Quaternary Research, University of Alberta Printing Dept., pp. 129-151.
- Wey1, P.K. 1958. Solution kinetics of calcite, J. Geol., 66, pp. 163-176.
- Zektser, I.S. 1963. Role of artesian water in feeding large rivers as exemplified by the middle and lower reaches of the Neman River. Soviet Hydrol., No. 1, pp. 94-98.

FIGURES

1 - 28

Fig. 1 Location of watershed and regional physiography.

Fig. 2 Topography and location of instrumentation.

• 50

Fig. 3 Geologic cross-section through the watershed.

Fig. 4 Three detailed geologic cross-sections through the lower reaches of the watershed.

Fig. 6 Longitudinal flow pattern beneath uplands.

ភភ

Fig. 8 Three geohydrologic cross-sections through lower reaches of the watershed.

Fig. 9 Water table fluctuations in upper glacial drift and Riding Mountain formation.

Fig. 10 Interpretation of water table contours and flow lines as basis of outflow computations.

Fig. 12 Histogram summary of cation and anion concentrations in water types I-IV.

Fig. 13 Location of hydrochemical facies in cross-section

Fig. 14 Time variation of ionic concentration and conductivity of streamflow at Wilson Creek Weir.

Fig. 15 Time variation of major ion concentration and conductivity of streamflow at Packhorse Weir

Fig. 16 Time variation of major ion concentration and conductivity for Wilson Creek during major storm.

Fig. 17 Time variation of major ion and conductivity dilution ratios for Wilson Creek (May 30 to June 10).

Fig. 18 Time variation of major ion and conductivity dilution ratios for Wilson Creek (June 25 to July 1).

Fig. 20 Annual variation of SO_4^{-1} and conductivity, 1969.

Fig. 24 Detailed geochemical hydrograph separation for Wilson Creek using Na⁺, Ca⁺⁺ and Mg⁺⁺ average.

Fig. 25 Geochemical hydrograph separation for McKinnon and Dead Ox Creeks using SO_4^{-1} dilution.

Fig. 26 Detailed geochemical hydrograph separation for McKinnon and Dead Ox Creeks using SO₄⁼ dilution.

Fig. 28 Scatter diagram of total dissolved solids vs conductivity.

A P P E N D I C E S

APPENDIX A

Description of the stratigraphy and lithology of deposits in the lower reaches and east of the watershed

Oldest Pleistocene deposits in western Manitoba are Wisonsinan in age and consist of one to two tills overlying bedrock (Elson, 1967). Gradual retreat of the ice sheet and blockage of northward drainage resulted in formation of Glacial Lake Agassiz. Although evidenced in an area of nearly 200,000 square miles, the surface extent of any one phase of Lake Agassiz did not exceed 80,000 square miles (Elson, 1967).

Along the Manitoba Escarpment, near McCreary, Lake Agassiz strandlines are preserved. The Campbell beach is the highest found at a present elevation of 1120 feet above sea level in the vicinity of Wilson Creek watershed (Johnston, 1946). The Lower Campbell beach has an elevation of approximately 1080 feet above sea level in the same area (Johnston, 1946).

At the base of the escarpment a black (5 YR,2/1) compact silty clay till overlies shale bedrock. This unit sampled close to bedrock surface had a strong petroliferous odour. Overlying the till and underlying the alluvial deposits (Fig. 4), a thick sequence of waterlaid sediments was described consisting of well bedded silts with minor thinly interbedded clays. In general, the colour is a dark grey (5Y 3/1) but variations included olive grey (5Y 4/2), dark

grey (5Y 4/1) and dark greyish brown (10 YR 4/2). Because of their thickness, appearance and stratigraphic position, they appear to be lacustrine deposits of Glacial Lake Agassiz.

The thickness of Lake Agassiz sediments in the lower reaches of Wilson Creek is much greater than anticipated by Elson (1967) who described the near shore deposits along the base of the Manitoba Escarpment as an apron of silt a few feet thick and a dozen miles wide occuring downslope from the areas of wave action as indicated by terraces. Within Wilson Creek watershed, all sediments attributed to deposition in Lake Agassiz are found 10 to 110 feet above the elevation of the highest known beach. However, these deposits nowhere outcrop.

A process of alluvial fan formation has persisted, at least since the deposition of Lake Agassiz sediments, blanketing them to a maximum depth of approximately 35 feet (Fig. 4). In general, the alluvium is variably sorted with silt-size material predominating. Sub-rounded, silicerus shale fragments are common.

Appendix B Rezometer locations, design and test hole logs

Piezometer No.	Elevection	Length of piper	# of feet slotted	cliam. of hole inches			• • • •	Fiezometer No.	Elevation	Length of pipe feet	# of fect slotted	cham. ct hole inches	
F1-1	12042	5 23	3	3	i 			F13-1	1183,53	39.80	3	3.	
E1-2	1204.01	13	7	3				F13-2	1183.48	20	10	3	
F1-3	1203.46	50.	5	6				F14-1	1194.61	31.9	3	3	
F2-1	1230,57	18	9	3				F14-2	1194.61	21.5	13	3	
F2-2	230,59	23	3	3			. 4	F17-1	2395,9	127	15	3	
F2-3	1230,61	42	3	3			<u>}</u>	F18-1	2368.1	123	15	3	
F2-4	1230.31	66.7	5	6.	· · · · · · · · · · · · · · · · · · ·			F19-1	2426.9	31	15	E.	
F3-1	1247.07	40	3	3	н. 1997 — 1997 — 1997 — 1997 — 1997 — 1997 — 1997 — 1997 — 1997 — 1997 — 1997 — 1997 — 1997 — 1997 — 1997 — 1997 —		·· •.	F20-1	2455.0	928	12	3	
F3-2	1247.45	32	15	3			··· ··	121-10	381.15	28	10	3	
F3-3	1247.74	80	5	6				F22-1	2356.61	31-	15	B	
F4-1	276.53	. 40	3	3			•	F23-1	2420.94	14:1	9	3	
F4-2	1214.85	72.2	3	6			•	F24-1.	2484.70	25,5	17	З	
F5-1	1231.00	40	3	3	ing and a second se Second second s			F25-1	2389.75	23,3	19.9	3	
F5-2	1231,00	21	15	3				F26-1	2348.84	26.3	12.5	3	
15-3	1231.42	31		6				F27-1	2270,19	19	6	3	-
F5-4	1232.02	49	5	6			• • .	F27-2	2288.6	25.5	3	6	-
F6-1	1213,17	30	3	હ		ан алан 19 арын алан 19 арын алан	ι <u>.</u>	F27-3	8289.99	65,3	5	6	
F6-2	1213.45	16:5		3				F27-4	2302.05	27.6	3	6	
F6-3	1213.66	80	5	6				F_28-1	2188,4	720	10	6	
F7-1	290.35	42,5	3	3	·			F28-2	A 188.4	40	3	6	and a second
F7-2	289.56	28	6	3				F28-3	R188.19	81.4	5	6	
F7-3	1289.86	59	5	-6				F29-1	2013.34	20	10	6	
F8-1	1347.76	34.6	3	. 6			<u>.</u>	F29-20	2013.63	40	3	6	
F8-2	1347,7	20	10,	6		-		F29-3	2014.90	47.6	5	6	
F8.3	1347.9	0 56.8	5.	6	an de la companya de La companya de la comp		• • • • •	F30-1	1901.90	38	3	6	
59-1	1193,44	940.	3	3				F30-2	1901.80	20	10	6	a di manana di manan Nationa di manana di m
F9-2	1183,35	32	10	- 3			۰۰ منبع	F31-1	1865,12	† -	3	6	- and -
F9-3	1193,5	5 51.6	5	6				F.31-2	1865.80) -	3	6	
F10-1	186.80	39	3	3	,			F32-1	1585,47	25.2	3	6	
F10-2	1186.86	19.9	10	3				F32-2	585,47	9	3	6	
F10-3	1186.8	5 65.	5	6				F32-3	1585,18	17	3	6	-
F11-1	1179.3	8.11	7	3				F33-1	1432.20	19.7	15	3	autometra - stat
F11-2	1180.1	9 20	3	6				F34-1	1362.9	720	20	6	- merete - me
F12-1	1179.69	4 a4. 3	3 3	3				F35-1	1402.5	2 20	20	6	
F12-2	1180.0%	14.5	10	3				F36-1	132831	20	20	6	an a
	i.	1 1 1 1 1 1 1 1						F39-1	1257,13	18.1	15.2	6	

80

11.000

ż

,	una nungi da fili a	n y tyre oddrafy fanw y sow - -			,			والمراجع مراجع	2013(#)#) N.M. #	(riskete)ener	975-979-979-97 9		S. C. B. Devenue					•						
2												1	:						•					
fiezonæler No.	Elevation	length of Pipe Feat	#offeet	diam.ol hole inches	-								•						• •	81	-	··· ·· · ·		
F37-1	1288.06	20	8	6.											•								•	
F38-3	1260.79	69.4	5	6						• ,		· .	•						:					
=38-1	121.15	18	9	6											1					•				
F38-2	1261.13	45.2	3	6					- 1															
F40-1	125412	20	20	6						• ;										1 . 1				•
=41-1	1261.70	20	15	6						•	•				· · ·	-							· ·	
F41-2	1261.65	41.8	5	6			.: 													- 				
E42-1E	1313.11	27	3	3																k		: :	n y Ng Ng ng ng ng	
=41-21	1.373.05	30.8	5	6						•										•		· · · · · · ·	•	
-43-1	1350,07	20	14	6						4 .	briz ≰in da in											, 1, 1 1 1 1		
=43-2	1.350,07	55.0	5	6										 ; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;					1 - -	1	t n i t i i inn	: : #		
F44-1	1176.00	19	10	6						, 					: : :						!	1 1 1 1		
=44-2	1176.00	40	3	6				۰ د د د در د									ŧ		e e		• • •	lar parata	i i i i	
=44-3	1176.00	59	5	6			· · · ·	: : : :			1		la sup		: 	(1) 1)		t - 		1 				
F45-1	10\$0.00	25	5	6		1 r		1														4 4	n Alan Alan Alan Alan Alan	
										l Lytha		1		1] 	3				- 	1 7 7		1	n an an an an an a	
1												- 		-			5 2 4 4	• • • • •			la. Ann la	1 ⁻¹ . 	· · · · · · · · · · · · · · · · · · ·	
					1.4.14						1	 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		· · · · ·			- 1 1 1 1				s E e le sour	 	
													in Filmenen	 K L 									n	
1									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1	 		1 4 5	1		:		1 2 2 2	i .		
														1	, , ,				: :		- - -	: : :	1 / · · ·	
													1	4			1		: 	ļ	e ante ser			
																					s i i por s r	2 . 2		
										1								2 3 5 1	: -	•				
																	4. 4	- 	a se S				ار. مناقب من من من	
) 			1		1					
														1					1	i	1	1. 1		
									-				1		1	1				:		2. 		
					:													1						
								1									ستر انو	-			1			
1																						1	1	
																F7 (· ·				
													1		1						;			
- - -								•			•											•		
										- i var 1.		•••••••• 1												
								• • • • }		4 1			1 * *				1							
					-	1		·			• • • •								1	•			a a	
											• ; }	1	1 .	t t	4 .		1 1 2							-
• .									i :	1 ····	•• •• • •					x	1000	:						

TEST HOLE LOGS

Monday, July 7, 1969 1:50

F10-3

- 0-13' sandy, gravely, alluvium, abundant stones, poorly sorted.
- 13-23' grey, silty clay, lacustrine
- 23-36' stoney, silty till becoming at 27' very clayey and stone free COLOR (5 YR 2/1) looks very impermeable. 10 YR 3/1

36-40' possible bedrock clay or silt lens

- 40-46 (sample taken here) -48' glacial till, very stiff, fairly stoney, w. clay & silt same color 5 YR 2/1 slightly more stones. SMALL & LARGE SAMPLE sample @ 46' has a dry appearance, very stiff, brittle when broken, fine-med. pebbles abundant.
- 48-53-65' drilling is very stiff, could be very hard day, no stones. bedrock, no stones, clay rich, appears to be fossilate petroliferous
- 53' Drilling slightly softer, no stones
- 56' softer material, drilling easier, no stones
- 65' depth of hole piez is slotted 5'

very dry in appearance looks like calcareous bonds of shale Favel Formation? SMALL SAMPLE

length of pipe in the hole 64.8'

Monday, July 7, 1969 11:35

F9-3

0-24' sandy, stoney alluvium, gravel size

- 24' lacustrine silt, greenish, occasional grits gerogenous, becoming less green - more grey, calcareous, less iron. LARGE SAMPLE COLOR 5 Y 4/2 - but slightly more blueish
- 33-51' till? grey-black COLOR 10 YR 3/1 abundant coarse sand-sized pebbles, clayey, silty (clay rich.
- 45-50' lower portion of the till is sandy, with small pebbles, very little silt & clayey.
- 51-65' probably bedrock, very hard drilling no! till instead.

1:30 p.m. - 2:20 p.m.

hole caved in about 10' hole dug 65' re drill hole to 65' pipe slit 5' pipe was 80' cut off 28.4 length of pipe 51.6'

2:30	By	the	Farm	F6-1	30' West
				F6-2	16 1/2' East
				F6-3	E.E.

F6-3

- 0-15' sandy, gravely, alluvium
- 15-33' grey-blue lacustrine silt with twigs of wood etc. SMALL SAMPLE no stones, towards the last 10' very greasy & sticky, very fine, no stones, no plant material.
- 15-50' lake silt still LARGE SAMPLE (Bottom pieces of sample polluted)

84 July 7, 1969 2:30 By the Farm (Continued) 50 or 60' bedrock, possibly layered, hard and soft layers fine grained, non consolidated, petroliferous with calcite, carbonate spots and spotting, very dry. LARGE SAMPLE. Hole dug 80' pipe in just about 80' pipe silt at bottom for 5' 5:00 F3-3 (close to the road) 0-25 stoney 1/2 - 1 inch, sandy, alluvium 25-63' grey, silty lacustrine material. there is some shale fragments tending to become gritty. 63' till? no! its missing, didn't observe any till, therefore bedrock. Hole drilled 80' pipe silt for 5' at bottom Upper layers of bedrock very clay rich, unconsolidated with sand bands. 65' 65 = 13020 well 80 80 $3\overline{75}$ July 8, 1969 11:00 F2-4 at Rain Gauge 7 0-12' stoney, sandy alluvium 12' silty, lacustrine sediments, iron staining, no stones, oxidized near the surface becomes grey and unoxidized farther down, possible organic material

July 8, 1969 11:00 (Continued) hit hard material with the drill, bedrock petrolifer-43' ous, dark, grey-black, with white calcareous material. hole dug 65' length of pipe 66.7 11:40 Beer Bottle Park Nest #1 F38 0-22' very sandy, alluvium, with gravel sized pebbles, seems poorly sorted 23-63' blue-grey silt, fragments of organic material trees-wood hole drilled to 40' pipe silt 3' till 12:30 -30' of pipe in the hole. 1:00 Beer Bottle Park 0-22' same as previous 11 11 11 22-63' 72' - very hard drilling, probably bedrock. LARGE SAMPLE (hard drilling, therefore stop) hole dug to 73' no sand in the bottom of this piez, therefore hole caved in. length of pipe in the hole: 80 21.8 58.2' pipe in the hole pipe silt for 5' at the bottom. WATER TABLE pipe slit 15.2' at the bottom total length 18.1 South of Beer Bottle Park 3:00 Dug 25', hit rock & stop.

July 8, 1969 3:30 Turn-Around Spot on Bald Hill. Trail vicinity rain gauge 8 Dug 15', hit rock. 4:10F1-3 0-17' sandy, gravely, alluvium 17-38' lacustrine silts COLOR 5Y 3/1 possible plant material 38-50' bedrock COLOR 10 YR 2/1 LARGE SAMPLE hole dug to 50' pipe cut off at 50.6' pipe sliced for 5' 5:15 - 6:20 F5-4 0-25' buff brown, gravely alluvium, shale fragments possibly 1" in diam. 25-46' lacustrine silt, mottled grey-brown color, fairly uniform COLOR 5Y 3/1 46-47' bedrock, some fine grained shale, unconsolidated rest is petroliferous, dry, fine grained bedrock material. hole dug to 47' pipe length 49' pipe slotted 5' at bottom F5-3 Water table well driller hit water at 15'? pipe 31' long ĥole dug 30' pipe slotted 11' at the bottom

87 July 8, 1969 6:35 By Rain Gauge 21 F44 buff, silty alluvium, hit H₂O at 7' 0-9' blue, green, buff, lacustrine silt 9-22' LARGE SAMPLE stoney, gritty, clayey silt till 22' at 35' the till becomes very stoney, approx. coarse sand size! Pipe slit for 5' after 35' till resembles the 1st variety, less stones, very clayey, and silty, occasional gritts and small pebbles. Color 2.5Y 3/0 approx. start of bedrock 56' 59' hit bedrock Some portions of the till contain medium sized sand pebbles length of pipe put in = approx. 59.6
Pipe slit for 5' at bottom hole dug 59' Thursday, July 10, 1969 9:00 By Rain Gauge 21 F44 Hole dug to 40' (redug the hole) Pipe 40' long Pipe sit 3 ft. at bottom 1/2 of a 5 gal. pail of sand 10:00 by the 2 GS piez near Weir hole dug 25' poorly sorted, stoney alluvium, gravel size stones 0-9' blue lacustrine silt Color 5Y 4/1 9-17'

Thursday, July 10, 1969 10:00 (Continued) 17-24' harder drilling, probably till? hit bedrock 24' hole caved in 6' - put in 1/2 bucket of sand length of pipe 40 -20 20, Pipe slit 3' from bottom 10:50 - 11:00 well hole - 20' 11:10 - 12:15Measurement F4-1 29.1 4.7 F4-2 24.4 depth to H₂0] 0 - 16'brown, very silty alluvial material, stones not abundant. 18-36' brown, lacustrine silt, no stones, a few gritts LARGE SAMPLE. Color 10 YR 4/2 shale fragments become abundant towards the bottom of the lake sediments sequence. 75' now encountering stones end of hole in bedrock at 80' bedrock encountered 77' 60' - till - grey, unweathered, stoney - silty till hole dug 80' 80' pipe was 80' cut off 7.8 = final length of pipe

Pipe silt 3' at bottom

Thursday, July 10, 1969 12:55 - 2:15 Up Packhorse Trail before

F7-3

- 0-32' sandy, silty alluvium, abundant shale fragments, poorly sorted, soft and not very stiff. Color 2.5Y 5/2
- 20-25' LARGE SAMPLE
- 32-54' brown, silty, lacustrine deposit, occasional shale
 fragments, continue down
 COLOR 2.5Y 5/2
 to 54' this could be an alluvial type deposit
 have red iron staining in the lacustrine sediments.
- 54' possible till

lacustrine silt becomes blue and unweathered or unoxidized as you go down. COLOR 2.5Y 4/0

Hole dug 65 feet hole caved in so about 58' left

Pipe 80' long, cut off at 59' Pipe slit for 5' at bottom

5 gal. of sand and 1/2 of a small bucket and fine sand

2:20 Down the Right Fork on Bald Hill Trail

F8-1

0-11' Bluff brown stoney, silty alluvium, mostly shale pebbles.

11-35' brown lacustrine silt with shale pebbles

- 35' COLOR 2.5Y 4/2, a brown silty, very shaley alluvial type of material material coming from the auger at times looks like a shaley gravel.
- 45-50' apparently alluvial material, very stoney and silty. COLOR 10 YR 4/2 LARGE SAMPLE
- 55-60' apparently gravely material

60-65' sand and gravel

Thursday, July 10, 1969 2:20 (continued) at 65' just penetrated into bedrock. COLOR 7.5 YR 2/0 black-grey unconsolidated clay the bottom 15' was a till fairly stoney grey, unoxidized. Hole dug to 65' Used a pipe 80' cut off 23.2' Final length of pipe - 56.8' Pipe slit at bottom for 5' 5 gal. of sand and 1/2 of sand and fine sand. 3:20 - 3:45 F8-2 & 3 Hole dug to 38' - hole caved in some Depth to H₂O approx 12' Pipe was 40' Cut off 5.4' length of pipe left 34.6' Pipe slit for 3' at bottom 1/2 of 5 gal. of coarse sand Going to add an H₀ table one. 4:00 Packhorse Weir 10' Stop Move down to side of old trail across from Rain Gauge 4:30 #34 F43 Hole dug 15' - stone hit, stop 4:50 Start again 0-23' coarse very stoney alluvium material, cobble & pebble size, very difficult drilling almost like grave1. 23' the alluvium seems to be giving away to a silty, lacustrine deposit.

Thursday, July 10, 1969 4:30 (continued) 27-35' blue, - hit bedrock at 27' (porous shale?) COLOR 7.5 YR 2/0 2 LARGE SAMPLES (1 sample 27-35' another 35-40') black, unconsolidated shale bedrock, very fine grained. 35-40' In the upper 10' of the bedrock is more moist lower stretch or samples become drier and petroliferous final 10' of bedrock is becoming very dry Hole Dug 55' Pipe was 60' cut off 4.4' length of pipe 55.6' Going to add a H₂O table one pipe slit 5' at bottom H_0 pipe = 20' lõng sfit 14' 5 gal. of coarse sand and fine sand. 7:00 - 8:20 Near Packhorse Crossing F41 0-24' interbedded sands and other materials alluvial sequence 24' grey, lacustrine silt very occasional grits the bedding is very obvious COLOR 5Y 4/1LARGE SAMPLE from 45' at 62' till COLOR 10 YR 2/1 a few pebbles & grits, very silty, grades into bedrock at 70' 70' bedrock Hole dug 70' Caved in length of pipe 41.8' slit 5' at bottom H_2O table pipe slit ten feet at bottom Length of pipe = 20'

Friday, July 11, 1969 9:40 Ridge Dam Location F27 Hole dug 25', some seepage H_20 in the hole length of pipe 25.5' 2 1/2 gal. coarse sand 1/2 gal. fine sand. Dug a hole 25' - hit rocks & stop. light brown COLOR 10 YR 4/4 stoney, sandy, silty 0-20' till (quite moist) 20-25' get till, slightly darker than above COLOR 2.5 YR 4/2 (LARGE SAMPLE TAKEN) The tills are the same, but there's color changes going downwards. 25-35' greyer looking till COLOR 2.5 YR 3/2 LARGE SAMPLE Color of Tills: 0-20' 10 YR 4/4 20-25' 2.5 YR 4/2 25-35' 2.5 YR 3/2 Around 48' the till is grading into very soft, grey, COLOR 5Y 4/1, till was encountered very moist, only fine stones in it. 50-60' LARGE SAMPLE COLOR 2.5Y 4/2 a light brown very silty till. pebbles are abundant. Hole caved in Put in small pail of coarse sand pushed pipe about 7' in mud Hole dug 80' length of pipe in hole = 80 - 14.7 = 65.3'Pipe slit 5' at bottom

Friday, July 11, 1969 12:50 - 1:253' hole, little blue pipe slit for 1' length of pipe in hole = 4.7'
Length of pipe slit 1' at bottom 9' hole length of pipe in hole = 10' length of pipe slit 2' 15' hole Shove pipe 18' long 3' of holes Move farther up the hill Hole dug 30' and caved in Pipe length 40' cut off 10.4 Length of pipe in the hole = 29.6' Pipe slit for 3' 1/2 of a 5 gal. pail of sand. 2:45 - 3:45 Tried by Rain Gauge 33 Top of the Big Hill on Jet Trail down from 3:45 - 5:20Rain Gauge 33 F28 0 - 15;yellowish-orange-brown stoney silty till abundant water COLOR 2.5 Y 5/4 15' - grey, unweathered, stiff stoney till, does not appear as permeable COLOR 2.5 Y 4/0 Approx 45' the till is silty, very compact COLOR 2.5 Y 4/0 LARGE SAMPLE Hole dug to 80' Pipe 100' long, final length of pipe: 81.4' Pipe slit _____ ft. 5 gal. and 1 small bucket of sand.

Friday, July 11, 1969 5:20 - 6:00 On top of Big Hill on Jet Trail (same as previous one) - move up closer to the road. length of hole = 40'pipe length = 40' pipe slit = 3'5 gal. and small pail of coarse sand Move down a bit closer to the road - make a 20' H₂O table we11. Pipe 20' long slit for 10' At the Bottom of the Big Hill on the Jet Trail Hole 6:35 near Rain Gauge 11 F29 brown color 2.5 Y 5/4 silty till 0-11' 11' COLOR 5 Y 3/150-60' till LARGE SAMPLE, grey, stoney silty till, fairly compact. Redug hole to 80'. 1st time only 25' open Pipe 80-32.4 = 47.6 feet of pipe in the hole Use 1 small bucket of coarse sand and some fine sand 3 feet of the pipe = in mud 5 gal. and 1 small bucket of coarse sand. Saturday, July 12, 1969 9:29-10:05 Bottom of Big Hill on Jet Trail by Gauge 11 Hole dug 40' approx. pipe length 40' slit for 3' pipe length 20', slit for 10' 1/2 of a 5 gal. pail of sand and some fine sand.

Saturday, July 12, 1969 10:25 - 11:05 Further down Jet Trail, West of Rain Gauge 10 F30 0-15' brown iron stained till? COLOR 10 YR 4/3pebbles fairly abundant, sandy & silty. 15-37' COLOR 2.5 Y 4/0 grey, clay - till? pebbles are only occasional and small, very clay rich, at about 33' the till is becoming very stiff, cobble sized boulders are being encountered. 30-37' LARGE SAMPLE till COLOR 2.5 Y 4/0 Hole dug 37' Pipe 40 Slit for 3' 11:20 Hole #2 At Location West of Rain Gauge 10. F30 Very coarse cobbles - stopped drilling at 40', unable to penetrate, had to cover in the 40' to 20' and then put in an H_2O table piezometer. 20' pipe Silt for 10' 1:40 - 2:20 Along the Jet Trail. F31 brown very silty shale, pebbles COLOR 10 YR 4/4 0-16' alluvium or till? 16' COLOR 2.5 Y 3/2 hard, shale bedrock, dry. Hole dug 35', unable to drill, therefore very dry. LEFT OPEN

Saturday, July 12, 1969 2:20 - 3:05 Mulligan's Creek, along the Jet Trail. F32 10-16' LARGE SAMPLE brown COLOR 10 YR 4/4 silty, fairly stoney till, 0-17' near saturated with H_2O . 20' hard, dry shale bedrock Hole dug 25' Pipe 33' long, cut off 7.8 = <u>25.2</u>' long LEFT OPEN 2nd hole, same place as before. 3:05 F32 Hole dug for 17' Length of pipe = 20' - 3.1' = 16.9' long Pipe slit for 3' LEFT OPEN In the last hole which was before Mulligan's Creek on the Jet Trail the till was fairly moist but shale was dry. Down Jet Trail Bet. B. Bottle Park and Gauge 8. F37 very coarse gravel alluvium 0-13' 13' -Hole dug 20' An H₀ table piez. put in 21' long pipe²slit for 10 feet.

Saturday, July 12, 1969 4:50 Above Beer Bottle Park on Acces Trail

F38

10-15' LARGE SAMPLE COLOR 3 10 YR 4/2

0-37' stoney, silty, alluvium material lower portions becoming blue unoxidized.

- 37' grey-blue lacustrine silt with clay COLOR 5 Y 3/1
- 45-50' LARGE SAMPLE going downwards, the lacustrine sediments become nearly pure silt with occasional fine stones.

74' Bedrock LARGE SAMPLE

about 60' the lacustrine becomes very silty and clayey again, bedding obvious COLOR 5 Y 4/1

60' LARGE SAMPLE

74' LARGE SAMPLE bedrock with calcite crystals

Hole dug 75', cut off 10.6 - final length of pipe - 69.4 Pipe slit 5'

5 gal. and a small bucket of coarse sand and some fine sand.

6:30 2nd hole here Hole dug 45' Lake clay at 37' instead of 44' Pipe length 50.3 $-\frac{5.1}{45.2}$ feet long (H₂O not in yet) 40' & 10' of slit. Pipe slit for 3'

7:10

Water table piez. 20' long sawed for 15' across the creek at Beer Bottle Park beside the other one already there. Tuesday, July 22, 1969 12:00 - 6:15 By the 40' piezometer. Dee's Trail #A

F33

Hole dug 90' pipe slit 5' length of pipe 100'

- 0-16' silty brown COLOR 2.5 Y 5/2 alluvium, abundant shale pebbles 1/2 inch and smaller.
- 16-38' probable lacustrine sediments, sandy and silty
 brown and unweathered.
 becomes grey and unweathered, COLOR 5 Y 4/1
 of the occasional bands of clay up to 2" thick, grey,
 might be present.
- 38-50' grey-brown, silty alluvium, shale fragments present, very difficult to decide what it exactly is.
- 50-90' black, clay bedrock, unconsolidated, gas smell LARGE SAMPLE Occasional white calcareous? specks.

Hole caved in, re-dug

- no sand, therefore piez in the mud

length of pipe in the hole = 30.8'.

F45 Hole at Yakumchuk's Farm

0-13' brown pebbly (shale) alluvium

- 13-51' lacastrine sandy silt blueish green in color brownish grey in color for the most part - bands of 2" of dark green clayey silt - occasional grits present approx. med. sand size, lower down - grey with purple tint lacustrine silty clay stiffer than upper units.
- 51-80' black clay bedrock, pale yellow x line veins present, bands of light blue material
- 75-80' bedrock appears to be layered, hard and soft bands 2-3".

Piezometer depth 25'

APPENDIX C

ł

Hydraulic Conductivity Data: Results of Hvorslev tests

Piezometer location	Hydraulic Conductivity (ft./sec.)
F1-3	2.5×10^{-5}
F2-1	7×10^{-8}
F 2 - 2	1×10^{-5}
F2-4	1.6×10^{-7}
F3-1	1×10^{-6}
F3-3	7×10^{-9}
F4-2	3×10^{-6}
F 5 - 4	3×10^{-6}
F6-1	3×10^{-6}
F6-3	2×10^{-7}
F7-1	1×10^{-8}
F 8 - 1	2×10^{-4}
F9-3	1×10^{-6}
F10-1	1.6×10^{-8}
F10-3	7×10^{-9}
F11-2	3×10^{-6}
F12-1	3×10^{-8}
F13-1	7×10^{-9}
F14-1	1.6×10^{-4}

Piezometer	location	Hydraulic Conductivity (ft./sec.)
F27-2		3×10^{-7}
F27-3	,	3×10^{-7}
F28-3	, ,	7×10^{-8}
F29-2	/	1×10^{-7}
F 29 - 3		2×10^{-7}
F38-2		1×10^{-4}
F 38 - 3		2×10^{-6}
F39-2		2×10^{-7}
F 39 - 3		3×10^{-4}
F41-3		1.6×10^{-5}
F44-2		1×10^{-7}
F44-3		2×10^{-5}
GS5		1.6×10^{-6}
GS7		1×10^{-4}
GS9		1.6×10^{-6}
GS12		1×10^{-4}
GS14		1.6×10^{-8}
F43-2		7×10^{-9}
APPENDIX D

Computer program for chemistry computations

The chemistry program was developed to facilitate rapid evaluation of hydrochemical data. The program output includes the following

1) total parts per million

2) major ion concentration in molality

- 3) comparison of cation and anion equivalents per million
- 4) ionic strength
- 5) calculation of pertinent ion ratios
- 6) determination of activity coefficients
- 7) determination of equilibrium constants for a given temperature
- percent saturation, calcite, dolomite, gypsum aragonite, neglecting ion complexing

9) calculation of concentrations of complex ions

10) percent saturation including ion complexing

Input Format

Results of a single, complete analysis requires one data card. The following data is typed on the card in this order

- a) sample number F 5.1 format
- b) concentration in parts per million of Ca^{++} , Mg^{++} , Na^{+} , K^{+} , HCO_{3}^{-} , SO_{4}^{-} and $C1^{-}$ in that order F 7.1 format

- c) pH measurement F 6.2 format
- d) temperature in degrees centigrade between 0.0 and 25.0
 F 4.1 format

e) concentration in parts per million $CO_3^{=}$ - F 7.1 format

The total number of data cards to a maximum of 90 is also required imput, on a data separate card, I6 format. This information is the first data card preceding the chemistry data cards.

Calculation Procedures

Comparison of cation and anion total is presented as a percentage, epm cations/epm anions X 100.

Ratios calculated by the program are as follows

$$RA = (Ca^{++} + Mg^{++})/Na^{+}$$

 $RB = Ca^{++}/Mg^{++}$
 $RC = SO_4^{=}/C1^{-}$
 $RD = SO_4^{=}/HCO_3^{-}$
 $RF = Ca^{++}/Na^{+}$
 $RG = HCO_3^{-}/(C1^{-} + SO_4^{-})$
 $RH = HCO_3^{-}/C1^{-}$

Percent saturation, the ratio of the ion activity product and the dissolution constant expressed as a percent, are calculated for calcite, dolomite, gypsum and aragonite. Activity coefficients for all equilibria reactions are linearly interpolated from graphical relationships of ionic strength versus activity coefficient given by Garrels and Christ (1965) for Ca^{++} , Mg^{++} , HCO_3^- , SO_4^- and Na^+ for 1 atmosphere total pressure and 25°C.

Dissociation constants varying with temperatures are as follows:

Temp. °C. 0.0 5.0 10.0 15.0 20.0 25.0 pK calcite 8.31 8.31 8.32 8.34 8.37 8.40 (Langmuir, 1970 written communication) pK dolomite 16.57 16.63 16.71 16.79 16.89 17.00 (Langmuir, 1970 written communication) pK gypsum 4.71 4.69 4.66 4.65 4.64 4.62 (Cherry, 1968) pK aragonite 8.11 8.11 8.17 8.20 (Berner, 1967) pK bicarbonate 10.615 10.566 10.488 10.429 10.376 10.329 (Back, 1961, 1963)

The following reactions involving several metastable carbonates were also considered Magnesite: $MgCO_3 \neq Mg^{++} + CO_3^{=}$ Huntite: $Mg_3 Ca(CO_3)_4 \neq 3Mg^{++} + Ca^{++} + 4CO_3^{=}$ Landsfordite: $MgCO_3 \cdot 5H_2O \neq Mg^{++} + CO_3^{=} + 5H_2O$ Nesquehonite: $MgCO_3 \cdot 3H_2O \neq Mg^{++} + CO_3^{=} + 3H_2O$ Hydromagnesite: $Mg_4 (CO_3)_3 OH_2 \cdot 3H_2O \neq 4Mg^{++} + 3CO_3^{=} + 20H^{-} + 3H_2O$

To obtain saturation percentages of groundwater solutions with respect to the above mineral species, ion activity products computed from chemical analyses of each sample were compared to the following dissociation constants at 25°C. obtained from Langmuir (1965),

pK @ 25°C

magnesite: 5.10
Landsfordite: 5.46
mesquehonite: 5.59
hydromagnesite: 30.2
huntite: 7.80

In all of these equilibria calculations, the effects of pressure greather than 1 atm. has been neglected. Sippel and Glover, (1964) have shown that variations in hydrostatic fluid pressures between 0 and 6000 feet cause calcite solubility changes less than 1 percent at CO_2 partial pressures of 0.1 and 0.3 atm.

Concentrations of complex ions were calculated following an interative procedure again outlined by Garrels and Christ (1965). The solution was found to converge within the ten interations specified. Percent saturation based on the concentration of uncomplexed ions is recalculated for a revised saturation value.

List of variables:

PSUM	total parts	s per mil	llion	
CCAL	concentrat	ion in me	olality	Ca ⁺⁺
CMAG	11	11	11 *	Mg ⁺⁺
CSOD	11	11	* *	Na ⁺
СРОТ	**	11	11	K+
CBIC	11	11	tt	HCO ₇
CSUL	11	11	* *	S04-
CCHL	* *	**	**	C1
CCAB	**	11	ET	C0 ₃ =
ACTCA	activity	coeffic	ient	Ca ⁺⁺

ACTBIC ACTMG ACTSUL ACTNA	2 act	ivity coeffic """" """	ient	$HCO_{3}^{HCO_{3}}$ Mg^{++} $SO_{4}^{HCO_{3}}$ Na^{+}
BKA BKB BKC BKD BKE BKF BKG BKT BKS	equilibrium co "' "' "' "' temperatu	nstants rangi """"" """"" """"" re range 0.0	ng from 0.0 &	25.0°C - calcite bicarbonate dolomite gypsum aragonite H ₂ CO ₃ CO ₂
EQCAL EQBIC EQDOL EQGYP EQARG	interpolate "' "' "'	d equilibrium " " " "	constant -	calcite bicarbonate dolomite gypsum aragonite
SATCAL SATDOL SATARG SATGYP	percen "	t saturation " " "	(IAP/K) "'	calcite dolomite aragonite gypsum
FCAL FMAG FSOD FBIC FSUL FCAB	concentrat: """"""""""""""""""""""""""""""""""""	ion in molali """"" """"" """"	ty of free """" """" """" """	Ca ⁺⁺ Mg ⁺⁺ Na ⁺ HCO ₃ ⁻ SO ₄ ⁼ CO ₃ ⁼
BD BA BB BC BE BF	13 values o: 13 correspond: """" """"	activity coo ng activity (" " "	efficients coefficients " " "	for Ca ⁺⁺ '' HCO ₃ ⁻ '' Mg ⁺⁺ '' SO ₄ ⁼ '' Na ⁺
SMAG SNESQ SLANS SHYD	perce "	ent saturation " "	n (IAP/K)	magnesite nesquehonite landsfordite hydromagnesite

Appendix E

Ì

Tabulation of chemical analyses including saturation and ion charge balance

		****				· • • • • • • • • • • • • • • • • • • •				L			3
ATE	SAMPLE NO.	Ca ⁺⁺	Mg++	Nat	K ^r	HCO3	SQJ=	C1-	PH	TEHP.	C0,=	HCO3 + CO3	LOCATION OF GAMPLE
TAV I	2:5	57,3	21,4	8.6	2.84	228,0	79.0	2.5	7.971	15	0	228.0	D-5 Wilson
2	104	51.3	18,6	14.8	2.29	208.0	67.0	3.5	8.061	15	0	208.0	D-5
4	134	164.0	17.8	12.4	2.69	228.0	74.0	2.5	8,191	15	0	228.0	D-5
5	186	50.2	18,9	9.8	2.42	250.0	82.0	3.0	8.310	17.5	0	250,0	D-5
6	19	50.2	18.0	10.4	2.19	228.0	65.0	2.5	8.255	15	0	228.0	D-5
7	164	50.25	18.6	14.8	2.44	252.0	79.0	2.5	8.381	15	0	252	D-5
8	149	36.0	23,6	9.2	2.35	220	64	2.5	8.360	15	4	224	D-5
9	12	50,1	19.1	11.4	2.19	232	62	2.5	8.32	12	8	240	D-5
10	152	50.3	19.2	12.4	2.22	242	56	3.5	8.331	6	3	247	D-5
//	46	53.6	19.4	13.9	2.34	250	65	3.5	8.372	5	10	260	D-5
12	W-1	57,1	20,3	18.5	2.53	249	74	3.0	8,359	14	10	259	D-5
13	W-2	52.5	20.6	19.7	2.54	268	68	2.5	8.226	15	2	270	D-5
14	W3	53.6	19.7	19.1	2.72	260	68	3.0	8.322	17	6	266	D-5
15	W4	57,6	21.4	15.1	2.90	266	78	2.5	8.171	10	0	266	D-5
16	W5	57.1	21,4	16.0	2.72	268	85	2.5	8.379	<i>i1.4</i>	6	274	D-5
17	W6	57,9	22. D	21.4	2.80	2.55	94	2.5	8. F10	11	5	260	D-5
18	W7	61.9	22.4	22.8	2.80	257	88	2.5	8.405	11	5	262	D-5
19	W8	57.7	21.1	16.4	d,80	270	84	3.0	8.110	13	0	270	D-5
20	W9	58.6	21.8	23.8	2.71	268	89	3.0	8.209	9.9	0	268	D-5
21	W10	59.4	21,7	17.6	2.98	272	79	3.0	8.055	12.5	0	272	D-5
22	WII	52.0	22.2	17.8	3.29	270	88	2.5	8-296	12,5	4	274	D-5
23	W12	64,4	21.2	17.5	3.07	256	89	2.7	8.633	16.2	12	268	D-5
24	W13	58.4	21.8	19.2	2.86	269	90	3.0	8.352	9.2	5	274	D-5
25	W14	55,9	20,9	19.4	2.98	270	85	3.0	8.431	20,0	.4	274	D-5
26	W15	57.4	22.1	18,3	3,43	246	80	3.0	8.66	25	8	254	D-5
27	W16	58,6	22,9	16.5	3.15	232	74	3.0	8.647	11	24	256	D-5
28	W17	60,1	23.1	18,1	3,07	262	79	3.0	8.401	12.5	6	268	D-5
χŶ	W18	57.4	21.9	19.5	3.06	265	85		8.395	14.5	5	270	D-5
30	W19	58.4	22.7	20.3	3,17	261	84		8.415	12.2	6	267	D-5
31	W20	58,4	21.1	18,3	2.94	272	84		8.210.	12	0	272	D-5
INE		_		<i>n</i>				n de la composition de la comp			1		
1	WX/	5.3.0	16.4	18.6	1.93	207	43		8.225	14.5	0	207	D-5
2	W22	40.5	15,4	9.0	1.81	146	38		8.112	21	0	196	D-5
3	W23	45.5	17.2	8.77	2.25	220	50	ader ander agent	8.132	21	0	220	17-5
4	W 24	46,9	17.8	9.4	2.20	230	60	and the second se	8.270	21.5	2	237	D-5
		2	1			,	1			1			

2 89 4 041 - 1	-		· · · · · ·			n (*********************	1 1		n Angel an angel a transmission and	t ty - the characteria - the patients	the state data and a state		107
TE	SAMPLE NO.	: Ĉa ^{+†}	Mgtt	Nat	K۲	HCO3	say	CI-	ρĦ.	TEMP °C	C03=	HCO3 + CO3=	LOCATION OF
NE	W 25	46.5	18.2	11.5	2.16	232	51		8,303	22.	4	236	D5
;	W26	53.1	19.7	14.5	2.64	256	66		8.319	23.2	4	260	D-5
7	W27	58.5	21.5	16.6	2.52	260	66		1.992	20.	0	260	D-5
J }	W28	67.0	21.6	17.3	2.68	275	68		8.130	19.7	0	275	D-5
2	W29	67.0	22.1	18.6	2.87	276	75		8.223	20.5	0	276	D-5
2	W 30	68.6	22.6	19.4	2.92	280	85		8.182	20,5	0	280	D-5
/	W.31	10,4	22.9	19.7	2.87	286	89		8.206	19.0	0	286	D-5
2	W32	70.7	22.8	20.1	2.82	290	88		8.166	17.0	0	290	D-5
3	W33	68.5	22.9	20.8	2.90	280	91	1	8.221	15.5	0	280	D-5
4	1034	70.4	23.4	21.2	2.98	294	87		8.298	22.5	0	294	D-5
5	W35	71.4	22.7	21.7	3.19	278	83		8.441	22.0	8	286	D-5
6	W36	72.1	22.9	22.1	3.29	288	89	3.0	8-29	20.5	2	290	D-5
7	W37	74.0	22.9	22.5	3,19	278	89		8.228	21.2	2	280	D-5
8	W 38	70.5	23.3	22.8	3.27	277	91		8,293	18.	3	280	D-5
7	W39	69.1	22.6	22.6	3.16	285	84		8.25 à	10.5	3	258	D-5
0	W40	61.4	23.5	22.8	3,18	298	87		8.153	14	0	298	D-5
/	W41	67.1	23,9	23,1	3.27	288	98		8.301	22	6	294	D-5
2	10 42	64.9	22.0	18,5	2.88	266	66	L	8.300	21.5	4	270	D-5
3	W 43	13.2	23,2	24.2	3.44	290	83		8.244	24.0	2	292	D-5
4	1044	64.0	23.2	22.8	3.45	294	80		8,161	Q3.0	O.	294	D-5
) /	10 45	73.5	23.1	24.7	3.35	297	84		8,239	19.0	· 0	297	D-5
,	1046	44.4	12.3	1.45	1.76	160	27		7.922	21.0	0	160	0-5
' 2	W47	42.5	12.8	4.39	2.93	132	25		7.850	22.2	0	132	D-5
5	W48	53,1	16.1	6.25	2.14	166	35	•	7.979	21.0	0	166	D-5
1	W49	38,5	16.1	5.87	2.14	172	40		8.010	19.0	0	172	0-5
2	W5D	45,5	14.8	4.84	1.76	156	26		8.015	21.0	0	156	D-5 .
LY	1	-						an an taon Taona an taon					D-5
,	W51	23.3	14.7	6.4	1.90	186	36		8.101	19.5	0	186	D-5
,	W52	51.8	15,8	8.5	1.73	200	44		8.116	21.2	0	200	D-5
,	W53.	34.5	17.1	4.5	1.92	204	51	•	8.118	23	0	204	D-5
-	1034	54.0	16.5	10,0	1.83	210	50		8.194	22,2	0	210	D-5
	105	50.8	16.7	8.8	1.71	202	45		8.161	19.1	Ü	202	D-5
	W56	00,4	16.8	10.3	d.95	à//	53		8,176	24.8	0	211	D-5
• .	1057	30.9	15,85	8.6	2.05	208	50		8.120	24.5	0	208	D-5
	10.58	40.9	12.9	6.1	1.49	180	30		8, 178	24.5	0	180	0-5
L	W34	51.5	16.0	8.6	2.06	207	41		1.981	24	0	207	D-5
)	W60	36.5	17,1	10.3	2.24	266	57		8,44,2	20.8	8	274-	D-5
,	W61	61.0	11.9	11, 7	2.49	220	63		8.266	24.8	2	222	D-5
,	W62	36.7	17,3	11.7	2,50	233	65		8.241	24.2	1	234	D-5

	- 1	antinan di manda kan sa kan sa kanan kan I		·	1	· · · · · · · · · · · · · · · · · · ·	1	1					108
NTE.	SAMPLE	Catt	Mg++	Nat	K+	HCO3	504	CI	pH	TEMP.	C03=	HCO,	LOCATION
	100									<u>.</u>	ا دونونان بار مدودوماند.	+ (0, =	OF SAMPLE
13	W63	58,7	17.8	13.2	2.53	238	66		8.207	24.8	0	238	D-5
14	W 64	58,9	17.8	13,3	2.54	243	62		8.135	24.3	0	243	D-5
15	W 65	58,7	17.8	13.5	2.68	239	64		8.246	24,3	1	240	1-5
16	W66	58.7	17.8	13,8	2.69	244	56		8.187	24. 3	0	244	D-5
17	W67	57.6	17.8	13.9	2.66	226	59	•	8.131	19	0	226	D-5
18	168	55.1	17.6	13.7	2.65	218	57		8.231	24.2	0	218	0-5
19	W69	55,1	17.1	13,1	d.68	221	57		8.284	23,2	. 4	225	D-5
XO	10:70	55.2	16.9	13.2	2.70	222	59		8.140	22.0	0	2.22	D-5
21	W71	54.5	16.5	12.9	2.61	216	51		8.122	20	0	216	15
22	W72	54,3	17.4	13.4	2.73	214	54		8.290	21.5	2	216	D-5
<i>\$</i> 3	W73	54,3	17.4	13.6	2.74	226	56		8,230	21.4	0	226	D-5
24	W74	62.6	17.7	14.4	2.69	240	59		8,015	227.0	0	240	D-5
ź5	W75	69.1	19.2	18.2	3.23	260	69		8.241	22.0	2	262	D-5
26	1076	63,1	18,0	15.2	3,79	242	64		8,168	22.0	0	242	D-5
27	W77	67.4	18.6	13.0	2.74	260	56		8.243	21.5	0	260	D-5
28	1078	70.0	19.4	17.6	2.91	268	67		8.198	21.4	0	268	D-5
29	W79	72.4	20.0	18,5	3.02	277	75		8,220	21	, <i>O</i> , ,	277	D-5
30	180	73.2	20.1	19.8	3.22	278	81		8.206	20.8	.0	278	D-5
31	W81	73,2	20.2	19.5	3,09	280	76		8.2.54	22.5	0	280	25
HUG	1.1.60	7	0								1.5		<u> </u>
1	1082	15,7	20,3	20,8	3,30	294	82		8.042	21.5	0	294	D-5
X	W 83	75.7	20.8	21,4	3.44	285	86		8.179	23	0	285	D-5
3	1084	75,5	21.0	21.7	3.44	297	87		8.140	22	0	297	1)-5
7	W 85	76.6	21.6	22,3	3.46	292	89		8,143	22	0	292	D-5-
5.	W86 .	76.9	21.4	22.8	3:56	294	94		8,212	22	0	294	D-5
6	W87	78:2	21.8	22.6	3.60	298	87		8.181	22	0	298	D-5
7	W 88	76,9	21.6	22.3	3,55	298	84		8.205	22.5	0	298	D-5
8	W81	80,4	21.8	23.2	3,74	302	89		8,120	95	0	302	D-5
10	W91	78.1	21,4	23.3	3.86	298	78		7,977	15.1	0.	298	0-5
11	11/92	78.1	21.7	23,3	3,90	294	98		8.131	15.5	0	294	D-5
12	W43	18.5	21,7	23,3	4.02	300	103		8,297	16.0	2	302	D-5
13	W 94	70,9	19.9	23,3	3.85	280	99		8.179	17.6	0	280	D-5
14	N95	71.5	22.1	23,1	3.80	280	85	· · · ·	8.293	17.5	2	282	D-5
13	N96	72.0	25.9	23.1	3,86	298	87		8.340	[9.0	4	30,2	D-5
16	1041	13,8	22.3	23,4	3,48	296	82		8.351	17.5	4	300	D-5
17	W98	72.0	21,6	22.4	3,70	240	43	•	8,351	17.5	4	294	D-5
18	10 49	18.5	21,7	23.2	3.82	294	92		8.388	18.3	4	248	D-5
19	W100	80,0	21.6	23.2	3,82	298	45		8.210	22.0	0	298	D-5
20	W101	17,4	à2.1	23.2	3.86	28d	47		8.364	<i>20.</i>	6	294	D-5

San Sec. Sea May 199				,		f	•····	a a sa in an	•			ļ	109
DATE	SAMPLE NO.	lat+	Mg ^{t+}	Nat	K+	HCO3	50. 1	CI	PH	TEHP.	COz	HCQ-	LOCATION OF
tug	1102	804	110	125	200	199	. 90		9 110	16		24	No-
$\propto 1$	10/102	810	21.8	22.7	2,10	200			0,200	17. 11. c=	0	300	
17 IZ	WIN4	801	21.6	120	410	205	99		8.412	17.5	0	216	05
x0 14	10105	02,T	215	12 x	400	302	11	- -	8 194	17	6	201	05
25	RINI	83.0	and	121	200	JUL	100		8700	à1.0	0	302	125
XU 91	11100	00.0	all 1	12-	402	210	90		91303	18.0	6	302	0-5
∞6 ⊘7	WIUT	00,5	211	a2,5	1.02	171	10		0,011	15,2	• 0	302	0-5
イ / のロ	WIUS	43,3	1011	16,0	2.18	281	16		1,110	15.7	0	17/	0-5
28 10	W IOT	16,4	21.7	ana	3.78	200	91		0.3/3	10	4	290	0-5
×7	WIIO	19,1	a1.8	a3.2	3.91	296	97		8.300	αl	L	298	0-5
30	WIII	81.0	21.8	23.2	4.82	306	99		8,201	.19	Ű,	306	D-5
31	WIIZ	83.1	dd.5	23.4	3.19	295	. 99		8,270	14.8	2	297	05
SEPT	4/11.3	82.5	219	27 3	3.86	306	103		8 129	195		301	D-5
2	W114	825	217	236	3.88	200	96		8 240	17	2	306	25
ć i	32.	1.06	.68	246	119	500	10		0.077				
	33	1.47	72	1.37	1.03	1		е 12					
	34	.64	.55	76	.46								
*	····		an Richardson		10	د المراجع مراجع موجد رسانه ا							
10.1													Packhorse Cr
14 14	P3	55.4	19.7	18.0	9.05	246	.80	2.5	8,346	18	7.84	254	D-4
15	P4	53,4	25,4	18,8	2.71	248	81	2.5	8,189	10	0	248	D-4
16	P5	53,4	20,2	19.5	2,80	234	89	3.0	8.396	14.2	6	240	D-4
17	P6	55,6	20,4	21.2	2.80	238	95	2.5	8.450	11.5	8	246	D-4
18	P7	52.2	21.4	20.8	2.89	238	100	3.0	8.391	12.6	8	246	D-4
19	P8	48.8	21.4	24,3	2.71	246	99	3.0	8.298	12,8	4	250	D-4
20	Pq	54.8	. 19.8	21.6	2.89	246	99	2.5	8,320	10,5	4	250	D-4
<i></i> 21	PIO	48.8	20.2	20,1	3,24	254	86	2.5	8.067	8.3	0	254	D-4
22	PII	51.9	23,8	20,7	3,06	248	109	2.5	8,505	11.5	12	240	D-4
23	P12	52,0	20.5	22.8	3,07	274	110	2.6	8.610	16.0	4	278	D-4
â4	P13	53,6	20,6	23.1	3.02	254	105	3.0	8.242	10.5	0	254	D-4
25	P14	54.3	22.8	24.0	3,20	247	100	2	8,495	20.0	8	2.5.5	D-4
26	P15	52.4	20,8	24.3	3,47	240	9B	3	8.494	25.0	8	248	D-4
27	P16	67.4	20,7	21.3	3.07	238	84	3	8,662	11,5	12	250	D-4
28	P17	47,8	21.1	20.1	3,07	232	88		8.494	12	8	240	D-4
29	P18	52,6	20,3	23.3	3,24	25,2	87	-	8,252	23	2	254	D-4
30.	P19	54.9	21.3	23.7	3.40	244	118		8,340	12.4	4	248	D-4
31	P20	54.6	20.9	21.1	311	250	10.2		8.285	9	2	250	D-4
- /	-		∽ ~ - 77		0					•	f		
								•			· · · ·		· · ·
الروارية محمورة والمحمد المحمد المحمد													· .

		-	
1	Т.	Ω.	
1		v.	

States of the second second second

· · · · · · · · · · · · · · · · · · ·		·····							* **************	·····	+		TTO
ATE	SAMPLE NO.	Catt	Mg ⁺⁺	Net	K ⁺	HCOJ	504=	C1-	PH	TEHP, °C.	C0;=	+CO3 +CO3	LOCATION OF SAMIZES
JNE 1	Pal	40.5	16.3	6.4	1.71	200	35		8.005	19.5	0	200	D-4
2	122	38.4	15.5	6.9	1.42	190	35		8,150	19.5	0	190	D-4-
3	P23	41.0	17.7	10.2	1.89	209	49		8.229	19.8	0	209	D-4
4	P24	46.9	18.7	12.1	2.12	220	60		8.343	20.0	4	224	D-4
5	P25	47.2	18.5	14.6	2.36	239	20		8.282	20,4	/	240	D-4
r' 7	P26	50.6	19.9	16.7	2.82	242	14	•	8.381	20.4	4	246	D-4
7	P27	61.8	21.4	18.1	2.56	248	71		7.980	20.5	0	248	D-4
3	P28	66.0	23.1	19.7	2.82	254	76		8.246	20.5	0	254	D-4
9	P29	71.2	21.9	21,3	2.95	248	87		8.397	20.5	4	252	D-4
Ό	P30	70.4	22.0	22.4	3.46	252	106		8.379	21.0	8	260	D-4
1	R31	70.5	22,3	22.0	2.96	264	93		8.324	21.0	4	268	04
2	P32	72.6	22.4	23,0	2.96	254	98	ан 1911 - Эл	8.362	22.3	4	259	D-4
3	P33	71.9	22,6	24.2	3,10	256	105		8.390	22.2	4	260	D-4
4.	P34	72.6	22.6	25.2	3,22	258	101		8.321	24.0	Ź	260	D-4
15	P35	74.5	22,6	25.8	3.32	252	102		8.471	22.0	8	260	D-4
6	P36	12.2	22.9	26.6	3,42	253	104		8.4.21	16.5	3	256	D-4
7	P37	74.6	23,0	26.8	3,37	260	117		8.364	22,3	2	262	D-4
'8	P38	14.5	22.9	27,4	3,48	262	115		8.421	16.5	4	266	D-4
19	P39	74.5	23,2	27.7	3.38	260	103		8.357	12.5	5	265	D-4
20	P40	73.5	23,4	27.7	3,48	267	108		8,325	15-	4	271	D-4
6	P41	70.6	23.1	28,1	3.54	256	98		8,470	19	8	264	D-4
2	142	72,4	23.6	28.7	3,60	266	103		8,443	24.0	4	270	D-4
3	P43	71,6	23,4	29.2	3.81	262	101		8,432	23.3	4	266	D-4
'4	P44	72.1	23.2	30,0	3,77	262	103		8.345	23.5	2	264	D-4
5	P45	70.9	23.0	31.5	3,74	260	114		8, 432	16.0	8	268	D-4
6	P46	39.8	13,2	4.8	1,49	172	13		7,785	20	0	172	D-4
18	P48	42,5	12.7	5.9	2,13	158	38		8.040	18.8	0	158	D-4
9	P49	42.5	11.6	4.7	22.1	172	29		7.960	20.1	0	172	D-4
0	P50	39.5	12.1	5.7	1.63	152	32		8.090	20,5	0	152	D-4
'LY	0												
1	151	53,6	16.9	9.7	2.02	196	51		8,192	21.2	0 .	196	D-4
2	152	57,2	17.1	10,9	9.12	206	60		8.235	21.2	0	206	D-4
3	103	61.0	18.9	13,7	2.53	221	77		8.201	21.3	0	221	0-4
- 	134	61.5	17.8	14.0	à,40	A .	66		8.222	25	•		D-4
5	155	04.2	16,6	11.7	2.01	á'10	54		8.200	21	0	210	1)-4
5	P36	58.6	11.9	14.5	2.36	225	75		8.280	24.5	1	226	D-4
•	P57	51.5	15,7	10,4	1.88	208	55		8.118	24.5	0	208	D-4
,	P58	42.7	12.8	5.7	2.04	213	39		8.170	31.2	0	213	D-4
	159	53.0	15.8	10.6	1.12	208	55		7.912	17.0	0	208	D-4

	-	
1	1	1
-	-	_

							• ·····			•	•	.	a
ATE	SAMPLE NO.	Catt	Mg++	Nat	K+	HCO3-	504=	CI-	PH	TCHP.	C03=	HCOJ	LOCATION OF
JLY 10	P60	59,6	18.1	12.8	2.39	258	7.5		8.042	205	1	-258	D-U
11	P61	64.0 .	18.7	17.3	2.68	238	90		8.261	21.8	2	240	D-4
12	P62	66.0	14.5	19.0	2.95	244	100 %		8.243	21.2	2	246	D-4
13	P63	66.8	19.8	21.4	3.10	240	93	•	8,431	21.2	8	248	D4
14	P64	66.2	20.0	21.4	3,24	250	108		8.303	20.3	4	254	12-4
15	P65	66.5	28.7	23.3	3.28	248	113		8,355	20,2	6	254	D-4
16	P66	66,6	20.1	24.2	3.32	250	108		8.375	19.0	4	254	D-4
17	P67	65.4	20.4	24.7	3,37	254	113		8.345	19	4	258	D-4
18	P68	66.5	20.4	24.5	3,39	248	118		8.277	20,7	2	250	1-4
19	P69	68.0	20.9	24.4	3,37	264	107		8,295	21.0	4	268	D-4
20	P70	68.6	21.0	24.8	3,49	259	116		8.340	21.8	4	263	D-4
21	PTI	69.0	21.2	24.3	3,46	260	101	• • •	8.372	22.2	6	266	D-4
12	P12	69.2	21.3	25.4	3.54	259	106		8.318	22.2	3	262	D-4
?3	P13	69.2	21.4	26.0	3,60	256	111		8.428	20.5	6	262	D-4
94	P74	72.0	20.6	3.68	-260				8,080	21.2	0	260	0-4
25	P15	72.0	20,4	28.9	3.26	262	121		8,135	21.2	0	R62	D-4
26	P76	732	20.7	27.3	3,67	254	120.		8.285	21.2	2	261	D-4
27	P77	65.0	19.1	16.5	2.39	254	76	•	8.403	21.0	6	260	D-4
<i>S</i>	P78	69.7	19,8	<i>21.4</i>	3,00	260	86		8.341	22:0	4	264	D-4
29	P.79	70.9	20,1	22.3	3.22	266	86		8.399	22	6	272	0-4
30	P80	90,5	20,3	25,1	3.44	262	99		8.380	22	4	266	D-4
31	P81	12.6	21.0	26.3	3,43	267	102	· · · · ·	8,403	22	4	271	D-4
цб	P82	739	201	274	2 20	278	112		8 145	.10		のつめ	D-11
.)	P82	129	20,1	181	271	210	1100		0, aru 8 701	94 14	0	x10	D-11
3	P84	729	20 8	20,6	315	201	112		8.179	αT	\sim	x [] 2-74]	D + D+11
4	Pas-	141	211	299	280	$\frac{\alpha}{2}$	113		8 791	27 27	. 4	a IT	D. //
5	PSI	75 1	210	2/15	251	261	120		8 227	24 5	4	270	D-4
6	PRT	75.1	212	29.2	789	266	140		8195	12 5	2	271	D-4
7	P88	80.4	21.0	28.9	3.71	268	.98		8 3 3 8	235	~ 4	271	N-4
8	P89	73.9	209	31.2	4.0.5	216	116		8.356	255	. 10	276	5-4
9	P90	7.5.4	20,9	30,6	3.92	278	112		8.331	25.0	4	280	D-4
10	P91	75,0	21.6	31.3	4.12	264	133		8.035	14.6	0	264	D-4
1/ 1	P92	73.9	21.1	32.3	4.24	266	130		8.22	15,8	6	272	D-4
12	P93	74.8	22.2	32.8	4.36	278	145		8.212	17.6	0	278	D-4
13	P94	70.9	20,7	31,2	4.21	256	125		8.417	17.8	4	260	D-4
14	P95	7575	22.0	32.0	4.25	268	117		8.420	18.0	6	274	D-4
5	P96	74.4	21.8	32.9	4.40	264	117		8.345	- 15,7	6	270	D-4
6	P47	74.9	Z1. 8	33,6	4.26	264	113		8.364	17.0	4	268	0-4

•		ł	1		*****		}			a na provinski podretani konstanta da da			112
NTE	SAMPLE NO,	Ca ⁺⁺	Mg ^{t+}	'Nat	K⊢	HC03	50y=	CI-	рH	Темр. °С	$\mathcal{CO}_3^{=}$	HCQ +CQ=	LOCATION UF SAMPLE .
16. 17	P98	74.9	21,8	30.0	4.03	276	130		8.327	18.0	4	.280	D-4
18	Pgg	12.5	21.3	32,4	4.12	266	140		8.418	19.0	4	270	D-4
14	P100	74.8	21.9	32.8	4.24	268	140		8.360	~21.0	6	274	D-4
20	PIOI	73,5	22.3	32.9	4,25	262.	140		8,384	20.0	6	268	D-4
21	P102	73.0	21.3	33,6	4.30	264	140		8.220	15,5	0	264	D-4
82	P103	72.5	21,1	34.6	4.61	248	145		8.437	15.0	6	254	D-4
?3	P104	73.0	21.5	34,3	4.54	265	145		8.240	17.0	1	266	D-4
74	P105	13,5	21.3	34.9	4.56	263	150		8,245	- 23,0	1	264	D-4
25	P106	73.5	21.1	34.9	4.44	256	158		8,435	- X.O	6	272	D-4
?6	P107	73, 1	21.2	35.2	4.59	254	162	-	8.406	19.0	4	258	D-4
?7	P108	52.2	14.2	22.6	4.21	. 194	110		7,793	13.8	0	194	D-4
28	P109	76.4	22,2	30,9	4.10	288	125		8.289	15,5	2	290	D-4
29.	PIIO	77.1	22.4	32.9	4.32	271	145		8.408	22.0	8	279	D-4
30	P111	77.1	22.6	33,7	4.30	276	145		8.279	<i>RD.5</i>	. 2	278	D-4
31	P112	76.1	22.6	34.6	4.28	295	140		8.315	18.0	2	297	D-4
EPT	0.17	2000	201	3114	11-50	0	1110		9.15				0.1(
/	PIJS	13,5	22.4	34.6	4.31	266	140		8.433	14.8	6	272	<i>D</i> -4
ĩć	P/14 MCV	14.8	22.5	35,0	4.30	272	145	11	8.363	19.0	2	274	D-4
7	11 Minno Dead	10,0	21.7	01.7	2.20	258	41	<i>T</i>	3.285	25.5	8		D-7
/	OX	16.1	ad.7	19.20	a.11	026	\mathcal{T}	7	1,757	26.0	\mathcal{O}		1)-6
					an an Ara An Ara	na e Autor							
										n Maria An Angel			
													an a
													•
			n de la deserverte de la d							A second			• • •
					an a								
											,		
								at k					
			• -										· · · · ·
								and and a second se					•
								•					
					· .								
			<u> </u>					nancas kanaana baa					

18 - No - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 1		1	+	••••••••••							• •] 	13
TIME	SAMPIE NO.	Catt	Mg++	Nat	K+	HC0.3	50 ₄ =	CI	рĤ	TEHP.	C03	HCQ_ +CO_=	LOCATION OF SAMPLE
25 9:10 PM	T5-1	69.5	24.5	22.6	3,31	28.4	83		8.102	20.6	0		D-5 Wilson C.
10:05PM	2	69.1	20.4	21.6	3.26	264	85		8,143	21.0	0		D.5 Weit
15 PM	3	64.0	19.4	20.2	3.20	252	79		8.159	21.5	0		D-5
2:10 AI	4	64.0	19.3	19.9	3.18	246	83		8.125	21.5	0		0-5
15 AM	5	63.0	19.0	18.9	3.11	236	77		8.159	12.5	0		D-5
10 AH	6	58.5	18.5	19.7	2.96	234	75		8.031	19.0	0		D-5
15 RV7	7	69.5	19.2	15,3	2.82	236	83		2955	19.3	0		D-5
15AH	8	61.0	18.9	13.3	2.68	228	86		7.8.34	21.0	0		0-5
1.15 AM	9	52.9	16.6	11.2	2.45	228	64		8.129	20.7	0		D-5
:15 A M	10	53.0	15.5	9.3	2.22	196	49		2.9.24	201	1		D-5
10 AN		52.8	14.9	8.0	2.22	185	39		2913	19.5	0		D-5
:15 AT	12	46.0	13,2	7.95	1.95	182	29		2.825	19.5	0		0-5
7:15,717	/ /3	42.4	12.45	7.4	1.82	170	27		7.895	20 N	0		D-5
1:20AM	. 14	44.2	12.5	7.45	1.76	160	27		7.922	210	0		D5
15 PM	15	44.1	12.3	8.20	1.60	165	25		7.915	20.2	0		D-5
?15 FM	16	36.9	11.5	8.0	1.65	171	29		7979	20.5	0		D-5
OU PH	17	38.6	13.0	7.75	1.69	189	26		8.040	21.0	Λ		D5
:30 PM	18	40.6	11.8	6.76	2.30	176	27		8.000	19.0	0		D-5
:05 PM	19	38.2	11.5	6.40	2.12	156	30		7.950	20.5	0		D-5
2.50PM	1 20	38.2	11.5	6.15	2.89	160	32		7.901	20.5	0		0-5
1:10 AK	1 21	40.0	10,45	8.5	4.70	148	32		7.796	19.5	0		0-5
?:15 AM	22	38,7	9.85	8.1	5.54	142	30		7.902	19.5	0		D-5
15 AM	23	38.9	9.55	6,85	5,98	130	37		7.845	21.5	0		0-5
:15 AM	24	45,0	12.3	6,60	6.45	122	30		7.8 75	22.0	0		D-5
SDAM	25	43,2	12.7	4.45	5,48	122	27		7.927	23.0	0		D-5
:30.4H	26	47.8	12,7	4.35	3.14	117	26	•	7.899	23,5	0		D-5
:15 AM	27	42,4	12.8	4.39	3.2	132	25		1.850	22.2	0		D-5
1:15PM	28	42,2	12.9	4.61	2.92	132	.28		7.8.3/	21.0	0		D-5
45PH	29	42.5	13.1	4.54	2.65	132	27		7.890	21.5	0 -		0-5
1:00PM	' 30	49.5	14.8	4.75	2,42	142	33	in an e⊀ in . L	7.841	20.0	0		0-5
7:45AK	1 31	54.5	15.8	5,87	2.22	156	33		7,895	21.0	0		0-5
":20.AM	32	53.0	16.1	6.25	2.33	166	35		7.979	21.0	0		D-5
?:00PM	33	67.3	19.9	6.50	2.42	166	38		7.989	22.0	0		D-5
5.55 PM	1 34	63.5	17.8	6.70	2.42	166	39		8.101	23.0	0		D-5
207 PM	1 35	59.6	16.6	7.14	2.37	175	38		8.092	20.0	0		05
29 3.25AU	1 36	59.6	17.1	7.14	2.27	173	34	-	7.871	20.0	0		D-5
1:50 mm	' 37	53.1	16.3	6.45	2.16	168	43		7.921	19.5	0		D-5
:15AM	38	58.4	16.1	5.87	2.14	172	40 .		8.010	19.0	0		P-5
1:15 A	7 39	49.0	15.5	5.05	2.22	165	36		8.044	19.0	0		D-5
		-	-		- ~			. <u>(</u>		1.0	~		

			1	<u>+</u>] ·	 		<u> </u>				- 	114
THE	SAMPLE NO.	Catt	Mg++	Na ⁺	K [†]	.HCO3_	504	Cr	PH	TEHP.	C03	HCOS	LOCATION OF
24 155 H	Y T5-40	44.8	13.9	4.0	2.07	141	30		7920	220	0	+003-	SAMPLE
RON	4 41	44,4	13,9	4.09	1.79	139	25		8.009	22.2	0		15
30 8:10h	1 42	45,4	14.8	4.84	1.76	156	a26		8.015	21.0	0		0-5
2:20 F.	74 43	45.5	15,3	5.50	1.85	1.66	30		8.130	20,5	0		D-5
:00 PM	44	66.5	15,7	5.76	1,93	170	33		8,089	20.5	D		D-5
3011	7 95 M 41	57,0	14.0	6,17	1.89	176	34		7.819	19.1	0		0-5
1.05 P	H 47	51.5	14.4	614	2.0	203	56 39		8,101	17.5	0		0-5
		•7.0		1	9.0	400	57		01201	1	Ų.		2-5
			-			5.5 		•					
								-					
								· .					
						and and a second se Second second s				• • •	-		
											1.1		
												-	
			1 .								1		
							t.	n an Anal Ang Sana					•
		анан (т. 1997) 1997 — Прила Парадон, 1997 — Прила (т. 1997) 1997 — Прила Парадон, 1997 — Прила (т. 1997)											
		4											
										an De la			
		199	-		er e e				unut Maturi				
						e 1 - e Server B							•
	-												
				a i								9 - TENET	
							. 4						
		T							Wiji Milan - Tanaki Tan			a historia	
									ord of Program gamman				
									1		1		

* SAMPLE NO. 15 ALSO LOCATION

7	1			÷							
Saliple Not	Ca ⁺⁺	Mg++	Nat	K+	HCQ-	say=	CI	PH	TEHP. °C	C03=	1+ CO_
F1-1	93.9	22.4	19.1	4.95	334	85	9	7.205	22	0	
F1-2	93,9	21,4	22.4	4.36	345	124	6	7.200	22.5	0	
F7-3	83,1	29.2	469	17,6	562	67	790	7.549	21	0	
F2-1	104	18.4	52.2	10.9	313	124	26	7.501	22	0	-
F2-2	18,6	22.6	24.9	4.90	336	95	4,5	7.252	22.5	0	
F2-4	42.9	3.9	326	13,4	50	32	710	10,070	25	0	
F3-1	96.7	23,5	44.8	7.82	452	15	17	7.870	22.5	0	
F3-2	100	24.4	26.4	550	332	129	8	7,150	21.5	0	
F3-3	69.6	21.1	347	16.0	450	34	570	7.520	Q1.5	0	
F4-2	75.0	22.6	25,9	1.78	400	39	10.5	7.354	17.5	0	
5-3	95.0	24.7	34.5	5.30	336	131	13.5	7.445	20,	0	
F5-4	82.5	22.9	35.2	5.25	332	99	15	7.462	17.5	0	
F6-1	91.6	25,2	44.6	8.14	368	108	18	7.660	18.5	D	
F6-2	85.6	23.8	27.2	5.28	358	125	9.5	7,450	18	0	
F6-3	202	81.0	1628	37.9	402	50	3270	7.288	21.5	Э	1
F7-1	44.5	16.7	5.04	2.99	141	16.	4	6.908	22.5	0	
F7-3	78.0	23.4	18.5	4.02	300	69	4	7,552	16.1	0	
-8-3	71.6	18.8	52.6	8.88	250	80	8.0	8.900	16.5	0	
F9.1	85.6	29.8	437	9.31	429	92	37.5	7.825	18	0	
=9-2	109	23,4	28.8	5.50	420	95	9	7.287	22	0	
F9-3,	114	19.2	39.3	7.96	340	83	14	7.500	20,5	0	
F10-1	13.5	17.6	70.0	8,95	342	68	39	7.721	21.5	0	
F10-2	104	22.6	27.2	4.21	403	82	7,0	7,151	22,2	D	
F10-3	49.8	13,2	223	14.1	480	78	208	7,812	23	0	
F11-1	108	23.8	28.5	5.05	414	76	7.0	7,163	22.2	0	
F11-2	88.6	22.4	38,2	5.65	396	83	6.0	7,362	23.5	0	
F12-1	102	22.3	43,8	7.55	350	90	21.5	7,484	23.	0	
=12-2	110	23,2	28,4	4.19	386	101	7.5	7,024	21	0	
F13-1	43	9.95	201	11.2	430	131	41.5	9.105	23	28.0	
F13-2	123	24.2	23,8	4,94	461	112	6.0	7.223	20	0	
F14-1	116	24.0	25,2	5.95	386	108	4	7.252	21	0	** 4 (
F14-2	167	32.5	21.4	4.10	592	122	5	6.938	20.5	0	
E17-1	107	30.7	4.16	4.52	394	11	6	7.483	23	0	a
F18-1	82.7	28.0	2.98	2.56	239	13	3	7,739	23,5	0	
F19-1	118	41.3	7.15	3.46	554	39	10	7,135	23	0	
						~				-	1

. . . 115

F30-1 84.1 23.2 6.10 3.18 354 10 4 $7.30.3$ 22.2 6.2 $F21-1$ 40.7 37.3 1.67 1.77 4.30 6 2 7.144 19.5 6 $F32-1$ 88.4 27.9 4.76 3.33 392 2 3 7.143 70.5 6 $F32-1$ 88.4 27.9 4.76 3.33 392 2 3 7.143 70.5 6 $F33-1$ 133 36.3 3.57 4.59 542 3 3 7.143 70.5 6 $F34-1$ 55.6 14.5 9.50 3.79 306 11 3 7.632 18.2 6 $F34-1$ 57.6 14.7 7.64 360 5 2 7.197 7.22 6 7.445 21.0 6 7.445 21.0 6 7.445 21.0 6 7.445 21.0 6 7.445	4
F_{21-1} 90.7 37.3 1.67 1.77 4.30 6 2 7.144 19.5 6 F_{32-1} 88.4 27.9 4.76 3.33 392 2 3 7.193 20.5 6 F_{32-1} 133 36.3 3.57 4.59 542 3 3 7.193 20.5 6 F_{37-1} 133 36.3 3.57 4.59 542 3 3 7.193 20.5 6 F_{37-1} 55.6 14.5 9.50 3.79 306 11 3 7.632 18.2 6 F_{35-1} 67.2 27.4 1.67 $.64$ 360 5 2 7.197 23.2 6 F_{35-1} 67.2 27.4 1.67 $.64$ 350 5 2 7.197 23.2 20.2 6 F_{35-1} 170 39.4 4.10 $.81$ 577 1 2 7.942 21.0 </td <td>4</td>	4
F.22-1 88.4 27.9 4.76 3.33 39.2 2 3 $7.19.3$ 20.5 0.5 $F.23-1$ 133 36.3 3.57 4.59 542 3 3 7.118 17.5 0.5 $F.24-1$ 55.6 14.5 9.50 3.79 306 11 3 7.632 18.2 0.5 $F.35-1$ 67.2 27.4 1.67 $.64$ 360 5 2 7.197 22.2 0.2 $F.36-1$ 110 39.4 4.10 $.81$ 577 1 2 7.032 20.2 0.2 $F.27-1$ 93.4 21.7 2.6 8 1.57 320 6 2 7.445 21.0 0.2 $F.27-3$ 58.4 15.1 8.55 32 3.8 5 11.448 82 14 $F.27-3$ 58.4 15.1 2.23 2.86 21.2 21.5 0.2 $F.28-1$ 111 36.2 5.05 2.8 509 25 6.5 7.537 23.5 0.2 $F.28-2$ 113 34.6 1.71 3.14 55.6 15 4 $2.04.2$ 19 0	4
F_{23-1} 13336.33.574.59542337.11817.50 F_{34-1} 55.614.59.503.793061137.63.218.20 F_{35-1} 67.227.41.67.64360527.19722.20 F_{36-1} 11039.44.10.81577127.03220.20 F_{21-1} 93.421.72.681.57320627.44521.00 F_{27-3} 39.6.6015.18.55323.8511.4488214 F_{27-3} 58.41572.322.862122157.612170 F_{38-1} 11136.25.052.82509256.57.53723.50 F_{38-2} 11334.61.713.145561547.042190	7
F34-1 55.6 14.5 9.50 3.79 306 11 3 7.63.2 18.2 0 $F35-1$ 67.2 27.4 1.67 .64 360 5 2 7.197 22.2 0 $F35-1$ 67.2 27.4 1.67 .64 360 5 2 7.197 22.2 0 $F36-1$ 110 39.4 4.10 .81 577 1 2 7.032 20.2 0 $F27-1$ 93.4 21.7 2.6 8 1.57 320 6 2 7.445 21.0 0 $F27-2$ 39.6 .60 15.1 8.55 32 3.8 5 11.448 82 14 $F27-3$ 58.4 15.1 2.23 2.86 212 21 5 7.612 17 0 $F38-1$ 111 36.2 5.05 2.82 509 25 6.5 7.537 23.5 0 $F38-2$ 113 34.6 1.71 3.14 556 15	4
$F_{a}^{3}5^{-1}$ 67.2 27.4 1.67 $.64$ 360 5 2 7.197 22.2 67.2 7.197 72.2 67.2 7.197 72.2 67.2 7.197 72.2 67.2 7.197 72.2 67.2 7.032 20.2 67.2 7.032 20.2 67.2 7.745 21.0 27.2 67.2 7.445 21.0 67.2 7.445 21.0 67.2 7.445 21.0 67.2 7.445 21.0 67.2 7.445 21.0 67.2 7.445 21.0 67.2 7.445 21.0 67.2 7.445 21.0 67.2 7.445 21.0 67.2 7.445 21.0 67.2 7.445 21.0 67.2 7.445 21.0 67.2 7.612 17.2 67.2 7.612 17.2 67.2 7.612 17.2 67.2 7.612 17.2 67.2 7.612 17.2 67.2 7.612 17.2 67.2 7.537 23.5 67.2 7.2	4
F_{26-1} 110 39.4 4.10 $.81$ 577 1 2 7.032 20.2 0.2 F_{27-1} 93.4 21.7 2.6 8 1.57 320 6 2 7.445 21.0 0.2 F_{27-2} 39.6 $.60$ 15.1 8.55 32 3.8 5 11.448 82 14 F_{27-3} 58.4 15.1 2.23 2.86 21.2 21 5 7.612 17 0.2 F_{27-3} 58.4 15.1 2.23 2.86 21.2 21 5 7.612 17 0.2 F_{28-1} 111 36.2 5.05 2.82 509 2.5 6.5 7.537 23.5 0.2 F_{28-2} 113 34.6 1.71 3.14 556 15 4 7.042 19 0	4
F_{27-1} 93.4 21.7 2.6 8.57 320 6 2 7.445 21.0 0 F_{27-2} 37.6 $.60$ 15.1 8.55 32 3.8 5 11.448 82 14 F_{27-3} 58.4 15.1 2.23 2.86 21.2 21 5 7.612 17 0 F_{27-3} 58.4 15.1 2.23 2.86 21.2 21 5 7.612 17 0 F_{28-1} 111 36.2 5.05 2.82 509 25 6.5 7.537 23.5 0 F_{28-2} 113 34.6 1.71 3.14 556 15 4 7.042 19 0) 4
F_{27-2} 39.6 $.60$ 15.1 8.55 3.2 3.8 5 11.448 R_2 14 F_{27-3} 58.4 15.1 2.23 2.86 212 21 5 7.612 17 02 F_{28-1} 111 36.2 5.05 2.82 509 25 6.5 7.537 23.5 02 F_{28-2} 113 34.6 1.71 3.14 556 15 4 7.042 19 0	4
F_{27-3} $58, 4$ $15, 1$ $2, 23$ 2.86 212 21 5 7.612 17 0 F_{28-1} 111 $36, 2$ 5.05 2.82 509 25 6.5 7.537 23.5 0 F_{28-2} 113 34.6 1.71 3.14 556 15 4 7.042 19 0	
F38-1 111 36.2 5.05 2.82 509 25 6.5 7.537 23.5 C F38-2 113 34.6 1.71 3.14 556 15 4 7.042 19 0	
F28-2 113 34.6 1.71 3.14 556 15 4 7.042 19 0	
F28-3 82 27.0 5.36 4.39 338 33 3 1.395 18 0	ļ
F29-1 103 17.5 14.7 5.80 230 108 9 8.500 20.5 0	
F29-2 6.07 3.0 116 11.03 94 104 5 11.248 19.5 2.	6
F29-3 70.7 24.1 59.9 8.96 3 40 4 7.505 23 0	
F30-1 107 32.0 7.45 6.56 428 33 4 7.245 20 1	
F33-1 46.0 13,3 8.92 2.79 194 25 3 6.270 25 0	
F34-1 100 25.9 24.0 5.89 350 74 5 7.350 21 0	
F35-1 99.8 24.1 35.3 5.47 402 88 4 7.020 21.5 0	
F3-1 85.6 20.2 37.3 8.40 276 92 9 7.320 25 0	
F37-1 103 25,0 19.3 3,84 414 63 6 7,180 22 0	
F38-2 98.9 25.2 27.8 6.84 340 116 5 7.645 22 0	
F38-2 77.9 21.2 36.0 5.95 390 47 16 7.639 20 0	
F31-3. 94.4 20.8 28.6 3.92 300 113 4 7.450 21.5 0	
F39-2 74.6 19.6 27.8 4.62 285 111 10 7.670 19.5 0	
F41-1 101 21.7 20,2 4.30 330 72 6 7.630 20.4 0	
F41-2 102 25.3 26.9 4.85 342 115 4 7.420 17.0 0	
F42-174.6 20.8 182 15,1 530 70 154 7.660 25 0	
F43-1 28.5 10.8 820 17.0 662 11 1015 7.947 20.5 0	
1-43-2 60.6 ,121 23.1 5.46 89 94 5 10.80 23.5 3	3
1=44-1 40 16.6 40.0 7.25 110 208 11 9.29 21.5 19	
F44-2 125 29, 2 213 12.5 410 397 144 7.58 17.5 0	
F44-3 136 43.1 715 21.8 444 590 830 8.90 18.0 0	
145-1 11x 35.x 36.0 3.26 246 321 26 7.150 25.0 C	

SAMPLE NO.	Catt	rigt	Nat	Κ ^τ	HC03	saj"	C1-	рH	TEMP.	CO3=	
65 / 65 5 65 6 65 7 65 8	21, 2 8, 49 43, 5 21. 2 8, 6	17. 2 3.23 96.0 10. 3 ,06	3,50 6,14 3280, 697, 173	1.97 Q.51 68.2 4 Q.4 5.71	168 56,0 107 482	5 1 19 23 91	2 2 5980, 955 161	8,991 9,170 10,850	21.5 20,8 19,5 20,0	0 0 22 26	
65 9 65 10 65 12 65 16	146 11.8 12.7 8.6	30,7 10,8 1,01 1,91	1725, 48.0 244 82.4	40,7 9,74 11,0 8,69	116 200 443 210	44 24 101 1	5450 9 14 6	6,68 7,705 8,204 9,8 22	24.0 20.0 19.0 19.0	0 0 36	

	*****	na se	1.1.1	، بر بر بر بر سر بر	SHIT.	INA	TION		10000000000	1992-999-999- 	
òń	Gradiate and second	5	15		14	1.2	11	1/2	6	9750	
771	1 L	MITA	CNI	iu M	123	IE14	ERD.	1 8	717	18	118
001	H.C.	070	340	25	1400	561	25%	10,00	d'N	Ork	
Ň	Č	<u>a</u>	÷	Ö	- E	24	- S	R E	*	シぞ	
										100.11	
1	112.0	76.3	12.5	2.7	0.0	0.1	0.1	010	0.0 .	1014	
2	113:9	14.2	1314	3.8	Oil	011	0.1	0.0	0.0	89.5	
3	268.0	631.5	1/5.1	1.2	0.1	015	0.2	0.0	0.0	89.6	
-/	221.6	215.9	1435	4.1	0.0	01	01	010	0.0	10915	
2	133.3	102.6	86.0	31/ .7	0.0	0.1	01	0.0	0:0	104.4	
-4	4374	40626	2759	• <u>·</u> · · ·	013	019	Ui/	0,0	0.0	11.6	
1	106	3044	455	29	0.1	015	00	0.0	0.0	4412	
2	99.4	57.5	64.1	4.1	0.0	01	010	0.0	0.0	19.2	
5	19/13	281.1	124.4	' 6	01	O'Z.	01	0.0	0.0	85.6	
2	132.1	1.20.9	89.6	$\frac{h}{2}$	010	0.1	011	010	0.0	83.9	
5	119.7	201.6	118.5	40	0,0	01	011	0.0	00	97.6	
4	149.2	1.34.0	10.8	318	0.0	0.1	01	0.0	00	46.1	
1	292.3	543.3	195.5	3.2	01	0.2	0.2	0.0	0.0	10010	
2	16/./	165.9	10811	3.6	0,0	Oil	0.1	0.0	0.0	8614	
-3	183,4	258.6	119.5	10	Oil	012	012	0.0	0.0	8815	
1	14:5	2.0	9.4	0.0	0.0	0:0	010	0.0	0.0	14/10	
3	156.2	16/1	106.9	2.0	0.0	Oil	01	010	00	103.9	
-3	2507	34504	1704	2.1	0.6	1.8	114	0.0	00	1,2018	
1	456.1	1655	306.5	215	0.1	0.5	03	0.0	0.0	88.6	
2	1572	18814	12/3	3.2	0.0	0.1	0.1	0.0	0.0	96.0	
3	256.0	267.9	168.0	3.1	0.0	0.1	Del	0.0	0.0	119.0	
-/	293.5	507.9	190.9	1.8	0.1	0.2	01	0.0	0.0	103.3	
-2	130.8	13.5	\$4.6	2.7	0.0	0.1	0.1	0.0	0.0	98.10	and the second
-3	321.9	703.3	206.7	12	0.1	0.2	012	0.0	0.0	88.7	
/	142.2	112:2	92.0	2.6	0.0	0.1	Oi1	0.0	00	10/17	
2	187.4	229.0	119.8	2.4	0:0	011	0.1	0.0	0.0	96.2	
-/	244.7	<i>335</i> .4	157.1	2.9	0.0	0.1	0.1	0.0	0.0	109.8	
-2	92.7	44.5	60.6	3,5	0.0	Cul.	010	0.0	0.0	101.1	
-/	3945	83093	2534	1.5	0.7	2.2	1.6	0.0	0.0	100.9	
2	182.6	157.6	119.9	4.1	0.0	DI	0.1	0.0	0.0	9214	
-1	1643	136.9	107.3	3.9	0.0	01	0.1	0.0	0.0	10316	
-2	156:1	116.8	102.4	5.2	00	01	0.1	00	0.0	97.3	
-1	3:40	650.14	1953	0.4	0.1	0.2	0,2	0.0	0.0	119.0	
1	192.5	335.7	123.6	1.3	011	012	0.1	0.0	0.0	15.2	
-/	1:5.7	147.7	94.2	03	0.0	0.1	0.1	010	0.0	105.3	
-/	11319	128.1	75.5	02	0.0	0.1	0.1	0.0	0.0	116.7	
-1	121.5	114.1	79.7	011	DiD	0.1	0.1	0.0	0.0	106.9	
-1	174.0	190.7	17.5	0.1	0.0	DI	OIL	0.0	0.0	124.6	
-1	164.3	162.9	110.2	0,3	00	0.1	Dil	0.0	0.0	34.0	
-1	45.4	94.9	62.0	0.1	Din	0.1	0.1	0.12	0.0	94.0	
-1	134.2	170.7	91.6	0.0	0.0	0.1	Bil	0.0	0.0	936	
7}	144.7	2281	13015	0.2	0:0	Dil	0.1	0.0	0:0	121.7	A second seco
	/										
:		• •			••••••••••••••••••••••••••••••••••••••	3				· ···	
							:			1	
1					: :				1 × × × ×		
i	•					I .					
				•	A CONTRACTOR		1	1	1		A construction of the second

	:	PE PE	FAIT	1 < 1	TUPA	TION	, ,				
4	*	<u>i to ne</u>	1.	3/	L.	N.	4	Nu la		1.10	
110	121	15	11/2	8	100	HOVE:	1100	1.15	H.	12	119
411. CUB	121	100	32.20	Sil	2.15	SUE)	50	1. 2 × 2	12	1102	
21	64	Det	N-SH	36	1410	刻	TEN	H.C. W.G.	H.C.	いび	
	1					1					
27-2	0.0	0.0	00	0.0	0.0	00	00	0.0	0.0	46.3	
11.3	111.6	72.5	75.7	0.6	0.0	0.1	01	0.0	0.0	166.8	
28.1	4500	1717	287	0.8	0.1	OIK	0.3	00	00	91.4	4
28.2	1345	132.7	\$9.7	0.5	010	0.1	0.1	0.0	00	90,6	
15.3	152.2	1430	102.3	1.0	0.0	0.1	0.1	0.0	0.0	94.2	2
29-1	1573	9968	1032	3.8	0.2	0.7	0.5	0.0	0.0	117.4	
<i>?9-3</i>	1.9	0.0	1.2	1.2	010	0.0	0,0	0.0	0.0	834	
20-1	190.5	264.1	125.7	1.1	0.1	012	0.1	0.0	0.0	108.4	μ
33-1	5.0	0.2	3.2	015	0.0	0.0	0.0	0:0	DID	101.7	
34-1	1693	182.0	110.6	2.4	0.0	0.1	011	0.0	0.0	112.1	
35-1	401	48.1	53.6	25	00	01	0.0	0.0	0.0	101.2	
36-1	125.1	48.4	18:4	2.1	0.0	Oil	01	DID	0.0	18.4	
3/-1	143.3	1.251	92.4	21	0.0	O.I	Oc/	0.0	0.0	48.4	
18-1	22512	667.0	×10.1	3:1	01	602	012	0.0	0.0	103.2	
18-3	17:11	2165	18618	1.21	Dif	02	. 01	0.0	0.0	93.9	
30-2	202.0	2644	11219	30	0,0	0.7	0.1	0.0	010	105.2	
41-1	202.9	4701	120,0	2.5	0.0	0.2	0.1	0.0	0.0	115,0	
41-7	165.0	157.0	11207	3.4	DID	DI	0.1	0.0	0.0	104.1	
47-1	14:0.9	1210	2528	115	0.1	6.3	00	00	0.0	JUS	
43-1	251.7	6045	165.7	0.1	0.1	013	0.2	0.0	0.0	41.7	
43.2	9434	39918	6031	1.8	0.3	10	0.1	0.0	0.0	89.7	
14-1	1988	:2858	1018	29	0.6	1.8	13	0.0	0.0	16.3	
44-2	2666	375	180.0	11.0	0.1	0.2	0.2	0.0	0.0	95.7	
44-3	4350	164000	3259	14.0	1.4	4.3	3.2	CiO	0:0	97.7	
45-1	143.0	11115	90.Z	12.8	00	0.1.	0.1	00	00	167.4	4
.51	20.1	6.0	13.4	0.1	010	0:0	0.0	0.0	0.0	102.1	
.56	4.24.5	iclos	284	01/	1.0	2.9	212	0.0	0.0	39.9	
:57	23660	162020	11800	13	010	0.0	00	0.0	0.0	92.0	
54	10-2	0.6	6:5	0.6	0.0	0.0	0.0	010	OID	54.8	
9510	31.3	21.6	20.6	0.1	0.0	0.1	010	0.0	010	14,6	
15/Z	168.3	51.3	1/2.0	03	0.0	0:0	0.0	0:0	0.0	118.9	
7516			-	-	5			-	-		
10.11	12/.2	itau	1/22	. -	D.I					11-1 0	
.04-	2062 574	71911 2115A	2.96	1.7	0.7	013	02	0.0	0.0	9/18	
	5/6/	~ Y.3 7 72.2.1	205	2.2	0.2	00	00	0.0	00	59.6.	
010	303 303	2230	212	1.9	B.I	1.3	03	00	0.0	373	
014	8.77	6747	578	1.8	6,3	0.9	0.7	0.0	0.0	54.7	
015	1676	2007 NE 3 M	1032	1.7	015	16	1.2	0.0	0.0	91.N	
516	939	6805	662	1.7	0.4	11	0.8	0.0	0.0	401	
17	651.5	33/2	456	1.9	0.2	Ois	0.6	510	0.0	91.7	
122	261	631	170	0.7	Oil	0.3	0.2	0.0	0.0	911	
-26	73%	1440	468	1.4	0.2	0.7	0.5	0.0	0.0	85.8	
130	638	3201	419	2.2	0.2.	0.6	0:4	00	DD	96.2	
							-		. !		

					11		. a jaraques a jarjar ta jarjar	nen en	in na hAnna an an Anna Anna Anna Anna Anna Ann		tit onerenene	1072/9-101219 • •	werzsee	iyo ya ana kata dala da					a na mena na na na kata kata a	and permanent	An, a taya a a
				<u>,</u>					-			:		• • • •			• • •				
5		PE	RCE1	<u>e/ /</u>	SATI	12 12	VON	<i>p</i> 'I		ar			анана 1911 - 19		: :					•••	
2701	R	7116	NI	8	517	Įίχο	TIQ:	Sill	2	19		÷ 1				•	1	.20			
111	CIT	04	490	3611	106	nen	SPEK	-00 3.NE	111	101		,									
201	10	DCZ	θť	341	1119	12.	Nr	ION ION	<i>Ha</i> ,	143	4				. 1						
	~			0	<u> </u>	-2	<u> </u>	<u> </u>	<u> </u>			• • • • •									
34	455	7485	616.5	2.2	0.3	Dis	0.6	6.0	0.0	15.9						:			 -	•	
-37	125	4458	505.8	214	0.2	07	0.5	0.0	0.0	101.2		с. А				:			н	1.4	
äf	750	4131	SUV	2.4	0.2	0.7	015	0.0	1.0	98.4							:			• • • *	
134	528	1815	373	2.3	0.2	0.5	0.4	0.0	0.0	96.5	,		;	÷	1				·		
040	444	1534	208	21	0.2	0.5	0.4	0.0	0.0	895			4 · ·		.×						
141	867	6538	42	2.3	0.3	618	0.6	0.0	0.0	40.9		 					· · · · ·				
142	500	5262	520	1.6	0.2	0.7	0.5	0.0	0.0	99.6					·						
043	902	6598	574	2.1	0.2	0.7	0.6	0.0	0.0	101.0	1 : · ·	- 1 - 1			• · · ·	. 1	· · ·				
044	700	4/47.	450	2.0	0.2	0.6	0.5	0.0	0.0	97.9					1						
145	175	4355	516	2.2	0.2	0-7	0.5	0.0	0.0	100:4			ланы Айр								
,46	156	168	102	0.6	Dio	0.1	Oil	0.0	0.0	110.6									· · ·		
147	111	94	72	0.5	0.0	0.1	011	0.0	00	124.2						1					:
148	216	345	141.3	0.8	0.1	0.2	0.0	0.0	0.0	121.7							•		an a		÷ .
)49	242	317	161.2	1.0	0.1	0.2	011	0.0	0.0	121.8								•			
:50	196	305	128.0	0.6	0.1	0.2	0.1	0.0	0.0	117.6				: :			·				
051	300	589	199.1	0.9	0.1	0.2	0.2	0.0	0.0	108.0							:) <u>.</u>	•	an din Tinanan Tinanan	4	<i>.</i>
0.52	343	879	224	1.0	0.1	0:3	0.2	0.0	0.0	100.4				i i Aliantia	ار. او گرفت	· ·				÷.	
:53	387	1187	248	1.2	0.1	0.3	0.2	010	0:01	102.2			: 				· · ·	4	an sha Arts		1
54	449	1533	291	12	0.1	0.4	0.3	0.0	00	99.3							1	.			•
155	344	911	220	1:0	0.1	0.3	0.2	0.0	0.0	100.0			ia i Luca	د در ۱۰ مدر او ا			 		` د ۱۰۰۰ د		·
80	734	3550	480	2.2	0.2	0.6	Dif	010	0.0	98.8		s fr The second se	i Laitar	i i i inc		e		i Li je se s	· · · · · · · · · · · · · · · · · · ·		
281	862	5077	556	2:0	0.2	0.6	05	10.0	0.0	99.8				£lisij as sta	• • •						
182	554	2011	360	2.3	Dil	0.4	0:3	0.0	0.0	97.4				i i i i i i i i i i i i i i i i i i i		e e e e e Ser e e e e		1.1.1	•••••		• •
:83	776	4146	498	2.3	0.2	0.6	0.4	0.0	DiD	99.4		i i Van fasje		te dan Panapat		1.14 	 	- -	n ang Kabupatén		;
-84	707	3420	458	2.4	0.2	0.5	0.4	0.0	0.0	96.5			4					1			
ککان	704	3434	456	2.4	0.2	0.5	0.4	0.0	0.0	99.0		÷		ł		en en la compañía de la compañía de La compañía de la comp	÷ 1		la de la		
056	82Ş	4650	536	2.6	0.2	0.6	0.5	DiD	0.0	97.4		nt. The					· •				
088	864	5162	555	2.3	Diz	0.6	0.5	0.0	0.0	99.4		i. Let			- 	-					
089	803	4610	506	2.5	0.2	0.6	0.4	0.0	0.0	199,4		, 		n in the second se			: · · · ·			•	
87	801	4381	519	2.4	0.2	0.6	0.4	0.0	0.0	100:3				1	· · · ·	an a	1. 20				
5-19	139.5	141	91.5	0.6	0.0	0.1	0.1	010	010	19814	1 <u>.</u>					÷					•
5-70	127	117.4	\$3.3	0.6	0.0	011	0:0	0.0	0.0	95.6						•			1.1	•	
5-21	44.6	55.2	62.7	0.6	0.0	0.1	011	0.0	0.0	106.1				الم در المبر ماناً			•		ļ N	анан Тара	-
5-22	111.5	74.5	73.8	0.6	0.0	0./	0.1	0.0	0.0	107.4							•	* *	•		
5-23	98.0	-58.3	63.1	0.7	0.0	0.1	0.0	0.0	0.0	102.1	1									.w. 2	
VELING VELING	1474	13564	929	1.3	0.4	1.2	019	0.0	2.0	110.9		6	- 1 			алы. 1		11 11 11 11			
2.	543	2132	3/4	1.0	0.1	O.S	0.3	0.0	0.0	101.9						• ••					
14.	1904	1310	546	2.1	015	0.7	0.1	0.0	0.0	85.9		•	÷	-	4			-• •	·· ·		
15	1441	10/15	625	1.9	0.3	01	011	0.0	0.0	86.5				ين ،	÷ e		1				
21	1139	1410	1001	2.2	0.3		018	0.0	0.0	1990				т. ^с		9 () 1	•		• •		
r11 200	1360	12/94	1.04.2	1.8	02	01	0.6	0.0	0.0	84.8											
510	1773	14 14	1645	2.1	0.3	0.8	0.0	0.0	0.0	100.2				· .							
28	1461	514	1696	2.0	0.5	0.0	10.6		0,0	19914				•	•						
27	1001	4444	181	1-1	0.2	101	0.5	0.0	0.0	1020			5 4 14 1	• .	• •				•		
r 40	1765	13541	1201	121	1012	10	101	10.0	10.0	19512	1							÷ .			

· 1	openalix · 1	-			
	Hydrauli	c head d	ata for p	<u>piezamete</u>	cs , cs ,
,	Depth to	water, feet	, from top	of casing_	121
Piezoineter-	Date aug 21-23	Date: Scpt.8	Date: Oct 748	Date: Del 21	
FI-1	8,70	5,80	8,80	8,85	
F1-2	9.45	9.55	9.80	9.70	
F1-3	8,40	8.55	9.05	9.10	
F2-1	15.65	17.40	7.55	7,60	
F.Q-2	15.60	17,30	7.60	7.65	
-2-3	15.65	17.45	7.60	7.70	
F2-4	16.40	18.0	8,20	8.30	
F3-1	18,95	19.10	9,30	9.45	
F3-2	21.5	21.60	12.45	11.95	
F3-3	18.8	18,45	8.40	8.40	
54-2	27.7	27.7	18:40	19.20	
FA-1	27.0	60	2.50	4.10	
F5-1	7.30	7.40	7.85	7.95	
F3-2	ORY	DRY	DRY	DRY	
(5-3)	10.0	11.40	12,35	12:4	
5-4	8,40	\$,60	9.10	9.15	
-6-1	6.60	6.8.5	7.20	7.30	
F6-2	8.45	10.15	10.60	10.60	
F6-3	16.55	15125	13:60	13,00	
67-1	24.65	30.15	21.25	21.50	
17-2	DRY	26.55	13.05	(7.05	
67-3	40.55	40.65	21.25	29.85	
F8-1	DRY	31.70	21.45	21.45	
48-2	DRY	DRY	11:35	21.45	
F8-3	42.35	44,95	34.50	34.70	
-9-1	12143	12.05	6.80	6.80	
5-01-2	12:95	13.85	J:75	6:10	
Eq.	12125	16:15	5.20	3.15	
F107	13:10	8.70	11.20	11. 200	
-10 -20 E10 -21	10.00	14 00	14.40	15.0	
611-1	3.05	2.95	2.20	300	
F11-2	3.30	3,20	3.40	3,30	
FID-1	2150	2,40	2,50	2.55	
F12-2	14.30	4,20	450	4.30	
F13-1	7.45	6.60	1.90	7,85	
F13-2	5.65	5.55	5.90	5.80	
		1			

		erini (fri (fri commune			، . ماليەرىمىلەر بىر ئۇرىز بىر بىر كېر بىر	,,,			ta de las			n na na na na dia si na sina. T	*******	1999 - 1999 - 1997 - 1997 - 1997 - 1997 - 1	
		1	, · · · ·		· :	;									
harris 1	Noth to	water fee	+	· · · · · · · · · · · · · · · · · · ·	1	,			• •			 	÷.,	÷	
iezonielu W	Date: (lug 21-23	Dates Light S	Dates Oct 7+8	Dates Cet 21					•	<u>ا</u> ر.	66				
614-1	13.45	15.55	5.75	5.65			-				÷ .		· · ·		
=14-2	12+50	14.05	3.95	3.70			- }				•	1			
E 17-1	7.45	8.45	8105	7.25						•	•				
F 18-1	4.35	4.80	2.35	3110											
= 19-1	4.25	4.90	2.15	2.40				•		•	-				
= 20-1	3 35	3.90	1.95	2.35											
521-1	8.75		1.00	1.20			•		•	•			с. 4.1. — А.		•
F22.1	· •	-	1.70	1.90					: •						
-23-1	2:30	3.00	2.75	2.40			•				,	• •			
524-1	7.40	8.50	6.75	6.90	•					· .)	- 	•.		
= 25-1	4.25	4.95	3.80	A.O							i i i i i i i i i i i i i i i i i i i i	1	 		
526-1	5.95	6 1145	4.80	4.6								1			
-27-1	5.40	5.65	6.65	7.20								· · · ·			
=27-2	21.80	23.60	14.90	14.90				1							
-27-3	33.1	32.0	24.00	24,30				- 				· · · ·			
=27-4	DRY	DRY	21.15	DRY		· · · · ·	in an	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 					••	
=28-1	8.65	9.60	10.30	10.40				•	- - 			ر شهر مدیر فرن		•	
-28-2	5.60	7.35	8.20	8.90							a di si	· · · · · ·			
-28-3	8.45	9.60	10.95	11.60			· • • •	in Line and the		·	х 2 		· · · ·		
=29-1	7.75	8.90	8.35	8.45						, * • •					
= 29-2	9.15	10.10	9.90	10.10						5 	 	i . And A		•	
529-3	10.65	11.50	11.45	11.60							• • •	 	·		
= 30-1	DRY	DRY	28.40	DRY							4 1. 91 - 1	· · ·			
F30-2	7.85	8.50	8.50	8.65				1. 1. 1.	- -	 		· /	د • در در •		
F331	8.75	10.45	10.55	10:85				- 	•						•
534-1	2.25	2.50	2175	2.65		2 1 1.		1 				· · ·			
=35-1	2.75	3.00	3.15	3,20			: <u>}</u> .	1		i i Fritanaport	i 	i 	: 		
=36-1	6.55	6.60	7.15	7.25						e e La esta	- -				
=37-1	11.15	11.10	11.14	11.55								an e contra ter	1 400 - 100 - 1		
=38-1	DRY	18.3	8,70	DRY		1		4 -	1	: : 1 :	 	· · · •			
=38-2		18.0	8:55	12.2				• •							-
538-3	-	16.55	4.05	9.45				Ē.	•					•	
1=39-1	7.45	8.00	8.35	9.00			1 1				,				
-39-2	9.80	10.45	11.75	8.80		:		:	:						
-39-3	8.45	8.40	9115	7.35					•		,				
							:	, 1	÷		۰.				
	ł 	· · ·				,									

•			ana ana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny		en 1999 de la composición de la composi La composición de la c	(a) (1)	na mandra a na tanàna amin'ny faritr'ora dia dia mandra amin'ny faritr'ora dia dia dia dia dia dia dia dia dia
•		- 		-	7 7		
1	Depth 1	o water fo	<u>vet</u>		· · · · ·	177	e average
Perometer	Dute (14, 21-23	Me: Sept 8	Vale: Clettys	inte. allas		ц 2 Ј	
No.	j,					•	
F140-1	NALLD	1.80	2.50	MUD			
F41-1	10.50	10,40	9.80	10.00		 A A A A A A A A A A A A A A A A A A A	*
1-41-7	9.15	4.25	10.75	10.90			
Elin-1	10.25	20,20	10.60	10.80			4
721	10.25	180T	10.80	11.00			
-4/-2 Euro	18:25	12.00	10.00	2.00			
1-43-1	10100	1000	2.80	2.00			
E43-2	18.05	18.05	4.10	9,60			
F44-1	9.30	11,60	11.20	11.0			- :
544-2	4155	11.65	11,45	11.15		an a	4
E44-3	10.15	11,80	12.30	12.25		and a second	
F45-1	9.50	9.65	10.4	10.4			
:							
•							
· , · · ·							
	2000 (F. 1997) 					in provide a substant for an end of the second s	
, i i i			· · · · · · · · · · · · · · · · · · ·				
÷ ···							
ż	•						
•							
· •							• • • • • • • • •
						· · · · · · · · · · · · · · · · · · ·	
• •							
							• • • • • • • • • • • • • • • • • • •
· .							:
						an a	
						بر به به بر	
							r.
,							· ·

APPENDIX G

Detailed description of the hydrograph separation technique.

Discharge at any time t during the storm runoff period for a given component is as follows:

$$Qc = \frac{Cst \cdot Qst}{C_c}$$

- where Qc is the discharge contribution from the source under consideration. Cst is the total concentration of the characteristic ion in the streamflow Qst is the total stream discharge
 - Cc concentration of the characteristic ion in the groundwater

Expressing the above relationship in another manner, the discharge contribution to the streamflow is equal to the product of the dilution ratio and stream discharge. For each data point, the above calculation is made. It is necessary to assume a linear variation in concentration of the characteristic ion during the storm runoff period from a value before to a value after the storm runoff period.