ANALYSIS OF SHEAR WALL-FRAME STRUCTURES SUBJECTED TO LATERAL LOADS

BY

G. VISWANATHAN

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
In partial fulfilment of the requirements for the degree of MASTER OF SCIENCE IN CIVIL ENGINEERING

WINNIPEG, MANITOBA

The author oratefullv acknorledges the financial support of the National pesearch Council of Canada.

The author sincerely expresses his thanks to his adviser Dr. ©. P. Morris for his excellent guidance and assistance rendered during the preparation of this thesis.

Also, the author greatly appreciates the help given by Prof. R. B. Pinkney. His criticism and guidance in the computer program were invaluable.

Finally, thanks are extended to Mr. R. M. Eodse, Chief Structural Engineer with a Firm of Consulting Engineers in Winnipeg, for reading the thesis and his valuable criticism and to the Computer Centre, Universjty of Manitoba for allotting computer time for the preparation of the computer program.

TABLE OF CONTENTS
CHAPTER PAGE
INTRODUCTION1
1.1 Introduction 1
1.2 Review of the Previous Work 2
1.2(i) Frame Analogy Methods 111.2(ii) Finite Element Methods
1.3 Objective of Study 15
1.4 Assumptions and Limitations 18
I I GENERAL ANALYSIS OF STRUCTURE 20
2.1 Introduction 20
2.2 Analytical Model (Structural 21
2.3 Stiffness Method of Analysis 26
2.4 Condensation Process 33
2.5 Method of Elimination 36
2.6 Summary 38
I I I SHEAR WALL ANALYSIS 42
3.1 Introduction 42
3.2 Element Mesh and Element Types 45
3.3 Element Stiffness Matrices 48
(i) Edge Elment 48
(ii) Left Transition Element 52
(iii)Right Transition Element 55
(iv) Interior Element 59
3.4 Segment Stiffness Matrix 65
3.5 Linear Interpolation of Internal 75 75Displacements and CorrespondingModification to Stiffness Matrix3.5 (i) Linear Interpolation ofDisplacements76
3.5 (ii)Reduction of End Rotations of an Edge 84
3.6 Summary 92
CHAPTER PAGE
IV ANALYSIS OF FRAME 94
4.1 Introduction 94
4.2 Stiffness Matrix for Beam 96
4.2 (i) Stiffness Matrix for End 1 98
4.2 (ii) Stiffness Matrix for End 2 102
4.3 Stiffness Matrix for Column 105
4.3 (i) Stiffness Matrix for End 1108
4.3 (ii) Stiffness Matrix for End 2111
4.4 Modification to beam stiffness for 112
beams framing into shear wall4.4 (i) Left End of Beam Framing 114into Shear Wall
4.4 (ii) Right End of Beam Framing 118into Shear Wall
4.4.(iii) Both Ends of Beam Framing 121into Shear Wall
VEXAMPLES125
5.1 Example 1 - Four Storey Shear Wall- 125
Frame Without Openings in Shear Wall
5.2 Example 2 - Effect of Openings in 141
Shear Wall
5.3 Example 3 - Six Storey Shear Wall 145
5.4 Example 4 - Thirteen Storey Shear 156
Wall-Frame
5.5 Comparison of computer requirements for the three examples 166
VI CONCLUSIONS AND RECOMMENDATIONS 167
6.1 Conclusion 167
6.2 Recommendations for Further Work 168
LIST OF REFERENCES 171
APPENDIX A Aitkin's Method 175
APPENDIX B Computer Organization 180
APPENDIX $C \quad U s e r ' s ~ M a n u a l$ 194
APPENDIXD Program Listing 207

CHAPTER I

INTRODUCTION

1.1 INTRODUCTION

In recent years, construction of tall buildings has increased enormously. The trend in modern tall buildings is to have rịigidy connected frames, providing spacious interior areas, and stiff interior shear walls for the elevator core and stair wells. In addition, shear walls are sometimes provided on shorter exterior faces of buildings. These walls, in conjunction with frames, provide additional stiffness to resist lateral movements caused by wind or earthquakes, hence serving structural and non-structural functions. The increasing number of shear wall-frame structures has produced a need for a better knowledge of the interaction forces between the wall and the frame in order to permit more economical designs.

The shear wall is usually considered to be the principal lateral load-resisting element in tall shear wall-frame structures. At one time it was common practice to consider the shear wall to be a vertical cantilever beam resisting all of the lateral load. This resulted in very uneconomical designs. It has since been recognized that the
frame substantially enhances the lateral stiffness in two ways. Firstly, the beams framing into the shear wall provide resisting moments which tend to reduce the shear wall deflection. Secondly, toward the top of the structure the frame rather than the shear wall tends to resist the major portion of the lateral shear. If the shear wall alone resisted the lateral loads, it would deflect as a free cantilever as shown in Fig. $1.1(\mathrm{~b})$, while if the frame alone were to resist the lateral load, it would deflect in a shear mode as shown in Fig. 1.1(c). Since the shear wall and frame are interconnected at each floor level, interaction forces are developed between them. Thus, the combined action results in the deflected shape shown in Fig. 1.1(d).

1.2 REVIEW OF THE PREVIOUS WORK

Many investigations have been carried out on shear wall-frame structures in the elastic range. They can be classified as frame analogy methods and finite element methods. Work carried out on these two methods is briefly reviewed here.

1.2(i) FRAME ANALOGY METHODS

In this method the wall is idealized as a series of bending elements which approximate the structural characteristics of the wall. Fig. 1.2 shows a typical frame analogy for a structure.

FIG. 1.2 FRAME ANALOGY

Rosenblueth and Holtz (1) presented an approximate method of analysis for a rigidly jointed frame which includes a single shear wall. They assumed that the drift of a frame in any storey was proportional to the shear acting on the given frame in that storey and the moments and shears in girders supported by a shear wall were proportional to the flexural slopes of the deflected wall. In their study the wall was idealized as a beam on an elastic foundation, in which the reactions were proportional to the wall rotations rather than to its displacements. The problem could then be treated following the procedure of successive approximations described by Newmark (21) for beams on elastic foundations. Two methods were given for a suitable first configuration which could then be improved by successive approximations. Column shortening and foundation deformations were neglected in the analysis.

Cardon (2) developed expressions for the lateral stiffness of various types of beam and column arrangements. He expressed the angular deflection at all points with a second degree differential equation, taking into account the effect of bending and shear. The main assumptions in this approach were that the properties of the wall were constant throughout and that the forces acting on the wall were continuously distributed over the height of the building.

Gould (3) replaced the frame with rotational and translational springs, linked to the centre line of the
shear wall with rigid bars concentrated at frame levels. He used the finite difference technique in solving the problem. The interaction moments at each storey level were included in the beam equation by replacing them by statically equivalent equal and opposite forces at floors above and below. The assumptions were the same as those in Cardon's (2) paper.

Shear wall-frame structures have also been analysed by replacing the beams with a continuous lamina of equivalent stiffness.

Hubert Beck (4) proceeded on this basis and presented an approximate method which furnished simple formulae for the determination of statically redundant values. All redundant values were combined to form only one single unknown function. Hence, only one differential equation had to be solved in calculating the unknown function, instead of having a system of linear functions. The assumptions made were that all connecting beams had the same distance from each other and that the stiffness of all beams, except the end one, were the same. The end bear had one-half the cross section and one-half the moment of inertia of a normal connecting beam. The wind load was assumed distributed uniformly throughout the height of the building.

Bandel (5) introduced an energy method in which he replaced the shear wall by an equivalent truss, as shown in Fig. 1.3. He used a power series to represent the applied

FIG. I. 3 BANDEL'S MODEL
loading and the minimization of potential energy yielded a set of linear simultaneous equations. The axial deformations were neglected and only rigid foundations were considered.

Riko Rosman (6) used the same continuous system method as that used by Hubert Beck. The integral shear forces in the continuous connections of individual piers were chosen as the redundant functions. He dealt with only a single concentrated lateral load at the top of the wall. The assumptions were exactly the same as Bandel's as far as the properties of the beams and the stiffnesses were concerned.
A. L. Parme (9) published a paper on shear wall-frame structures where the procedure consisted of relating the total load at each floor level to the displacement of that floor and the two floors above and below. By writing an equation in terms of the relative stiffnesses of the different elements at any level, a set of simultaneous equations was obtained which could then be solved easily. The assumption was made that the lateral displacement at each level was the same for the shear wall and all columns. The axial deformations of the columns and the elongation and contraction of the outer fibres of the shear wall were neglected.

An iterative analysis procedure was presented by Khan and Sbarounis (8). The shear wall-frame structure was analysed as an analytical model consisting of a shear wall
system and a frame system. An initial deflection of the shear wall alone was computed either directly orwith a set of curves that was presented. By forcing the link beams between the frame and shear wall system to be constrained to follow the distorted form of the wall, as shown in Fig. 1.4 the bending moments throughout the frame could be determined, either by moment distribution or by an iterative, modified slope-deflection procedure. Hence the interaction forces on the wall for over all equilibrium at each floor level were obtained. An iteration technique employing initial and final deflections and rotations at the end of any cycle in conjunction with free wall deflections, as a starting point for the next cycle of iteration, was used to determine the final mode of the deformation of the combined system. Consideration was given to the effects of foundation deformations, local yielding of the wall, axial and shear deformations, torsion of the frame, shear walls which do not run the full height of the building, and to the problem of the determination of the effective widths of floor slabs which can be taken to act as beams. For design purposes, a set of influence curves was given, which showed the distribution of storey shears between shear wall and frame members for a range of wall-column and column-beam stiffness ratios and for several different forms of applied lateral loading.

Clough, King and Wilson (7) developed a computer

FIG. I. 4 KHAN'S MODEL
program for shear walls acting in conjunction with a frame. The stiffness method employed included flexural, shear and axial distortions of the members. However, the floor slab was considered to be rigid in its own plane, so that axial deformations of beams were neglected. The assumption was made that the building was laid out in a regular grid pattern with each floor level constrained to translate but not to rotate under the action of lateral loads. It was furthur assumed that the shear walls were of uniform width throughout the entire height -although variations in stiffness were allowed.

1.2(ii) FINITE ELEMENT METHODS

In these methods the wall is idealized as a system of elements, the behavior of which is similar to that of the real, continuous structure. The structure is then analysed by evaluating the properties of these interaconnecting elements. Fig. 1.5 shows a typical shear wall structure divided into finite elements.
C. V. Girijavallabhan (14) dealt with a shear wall with openings, by finite element method. He discussed the stress distribution in the shear wall with openings and predicted more accurate values for the bending moments, shear and axial forces which act upon the lintel beams when the shear walls are subjected to lateral loads. He also discussed the effects of changes in material properties such as Poisson's

DOTTED LINE INDICATES
THE STRUCTURE DIVIDED INTO FINITE ELEMENTS
ratio upon the stresses in shear walls and bending moments and axial forces in the connecting lintel beams. He developed a program which employed the conventional procedures of matrix structural analysis. He observed that the stress distribution in the medium depends upon: external load distribution, (2) relative stiffnesses of lintel beams and shear wall, and (3) the value of Poisson's ratio of the material used.

The linearly elastic plane stress analysis of a shear wall may be carried out using finite element idealizations. However, when the connecting beams are slender, existing types of elements are not suitable since they can not be connected with line elements in bending. I. A. Macleod (15) developed a new rectangular element which has a rotational degree of freedom at each node. This element overcomes the difficulty of combining line elements in bending with plane stress elements. He discussed the types of displacement functions used and the derivation of the element stiffness matrix. He developed a program which can include these new elements together with line elements in bending. The program is written in Algol and uses the -direct stiffness method of solution. Some guidance in the proportioning of finite elements for shear wall analysis was given and comparison of finite element solutions with a frame solution was made for a wall with two different patterns of openings. This technique shows promise of being most useful in the
analysis of shear walls with openings.
Recently, R. G. Oakberg and William Weaver (13) analysed a shear wall-frame structure by finite element technique. The finite element model included rectangular openings in the shear wall, and edge pilasters. They employed the method of substructures in the matrix stiffness analysis. The method took account of the effects of shearing and local distortions. The authors developed special elements which were used to combine with elements in bending. A program was written in Algol and the method of substructures allowed the solution of a fairly large problem in a reasonable amount of computer time. Using the substructure analysis, only the displacements at the connection points and the corresponding actions were retained and the lateral loads were applied only at the floor levels. The base was assumed to be fixed. The results were compared with those obtained using the deep column method and the discrepancies in the calculated rotations at the connection points were considerable. For larger shear wall height to width ratios, the discrepancies between the two sets of rotations were reduced. Therefore, this method would be suitable for lower ratios of height to width and the deep column method would be more economical for higher ratios.

1.3 OBJECTIVE OF STUDY

Computer methods areindispensable for the analysis of large structures, particularly in dealing with the finite element technique and most of the methods, as discussed in the previous section, lean heavily on a digital computer. The choice of a method depends on whether the most accurate method is sought regardless of the arithmatic labour involved or whether a practical method with a minimum amount of calculation or input data is desired.

In many instances, a series of openings are provided either for architectural or environmental reasons, thereby reducing the efficiency of the shear wall and altering its deformation characteristics. Other factors affecting the shear wall stiffness are thickness, material properties, height to width ratio, stiffness of beams framing into shear wall, width of openings and position of openings relative to the edges of the wall.

A completely rigorous analysis of a shear wall-frame structure generally requires extensive computation. In view of the approximate nature of the design wind, earthquake or blast loading assumed in the analysis and because the material properties can usually be estimated only approximately it is often felt that a completely rigorous solution is not warranted.

Several authors $(11,13,14,15)$ have indicated that the finite element method gives better results than other
methods. Unfortunately this method often gives rise to storage problems in the computer and becomes very uneconomical for large structures. However, if certain kinematic assumptions and other approximations are used, this problem can be overcome. It will be shown here that fairly large structures can be treated on finite element idealizations making the best use of the available computer storage.

Hence, the object of this dissertation is to develop a method of analysis of shear wall-frame steuctures subjected to laterà loads... with an ultimate aim of developing a fully automatic solution technique with a minimum computational effort. Shear walls with or without openings are considered and the study is limited to linear elastic analysis only.

The analysis presented herein uses the matrix stiffness method. While treating the wall on finite element idealizations, a special kind of element with a rotational degree of freedom at each node is required to combine the shear wall stiffness with those of beams framing.into shear wall. Such an element is given by R. G. Oakberg and William Weaver (13) and also by I.A. Macleod (15). The element presented by the former authors has been used in this analysis. The matrix reduction process has been intensively used here, utilizing the fact that the loads are applied only at the framing levels or at joints. A systematic
procedure is adopted in the analysis and finally, a computer program is presented wherein the input consists of the joint coordinates, material properties, coordinates of the element divisions in the shear wall, beam and column properties and other general information.

Certain kinematic assumptions are made which will simplify the problem without much affecting the accuracy of the results. However, due consideration is given to the following points.
(i) When the thickness of the shear wall of the lower level differs from that at the top in a real shear wall problem, the element stiffness properties at the lower levels are changed linearly in relation to the thickness.
(ii) If the value of the elastic modulus is different at different levels it is possible to easily incorporate the different moduli into the computer program.
(iii) The stiffness matrix being symmetrical, only one-half of the banded matrix is stored in order to save storage space in the computer.
(iv) As much advantage as possible is taken from symmetry, and identity of substructures in particular, in generating elements, nodal coordinates and the stiffness matrices.

1.3 ASSUMPTIONS AND LIMITATIONS

The assumptions made in the analysis are briefly outlined below. Certain kinematic assumptions reduce the number of generalized coordinates and in a few cases reduce the band width of the stiffness matrix. Wherever necessary these assumptions are explained in detail with mathematical derivations in subsequent chapters.
(i) The shear wall is assumed to run the full height of the building and the floor slab at each framing level divides the wall into segments. Hence, the number of segments in a shear wall is equal to the number of storeys. The middle surface of the slab is assumed to coincide exactly with the framing level.
(ii) Each floor slab is assumed to be infinitely rigid in its own plane. Hence, there is only one transverse degree of freedom at each floor level. Consequently, the axial deformations of the beams are neglected.
(iii) It is assumed that plane transverse sections through the shear wall at all floor levels remain plane.
(iv) The force-displacement relationship at any level of a shear wall is related to those at adjacent levels only.
(v) The shear wall and the columns of finite elements comprising it are of uniform width throughout the height of the structure. However, the thickness can be varied.
(vi) The frame has the same number of bays at each framing level.
(vii) The structure is assumed to have either fixed or pinned bases and all connections are assumed to be rigid.
(viii) External forces are assumed to be applied only at the corner nodes of a shear wall segment, or at joints.
(ix) The coordinate system used in the analysis is shown in Fig. 1.6.

- FIG. 1.6 POSITIVE COORDINATE DIRECTIONS

The directions shown are assumed positive for both forces and displacements.
(x) The structure is assumed to be linearly elastic.
(xi) Only rectangular panels are considered and no inclined members can be treated in the program.
(xii) Only rectangular finite elements are considered in the shear wall analysis.

GENERAL ANALYSIS OF STRUCTURE

2.1 INTRODUCTION

The use of "Numerical Methods" is inevitable in analysing complex structures which require reasonably accurate results in a short time. The numerical methods can be divided into two types, (i) numerical solutions of differential equations for displacements or stresses and (ii) matrix methods based on discrete-element idealizations. In the former case, for any particular structural configuration, the equations of elasticity are solved either by finite difference techniaue or by direct numerical integration. In this approach the analysis is based on mathematical approximation of differential equations and applications of these methods are restricted, due to practical limitations, to simple structures. In the second case, however, the structure is first idealized into an assembly of discrete structural elements with assumed forms of displacement or stress distribution and then the complete solution is obtained by combination of these distributions in a manner which satisfies equilibrium and compatibility at different joints. Methods based on this approach have
proven to be most suitable for the analysis of complex structures.

The two possible approaches in the matrix analysis are (i) the stiffness method (or displacement method) and (ii) the flexibility method (or force method). In both cases the conditions of equilibrium and compatibility are satisfied. The flexibility method involves fewer equations to be solved than stiffness method. For large structures, however, the difference is insignificant. The main advantage in stiffness method is its systematic approach which is well suited to programming. The flexibility method requires the exercising of judgement in the selection of suitable "redundant" force components and this choice has a significant bearing on the accuracy of the results obtained from a computer analysis. Hence, the flexibilty method is best suited to hand calculations. Present day matrix structural analysis using the computer is based mainly on the stiffness method and this method has been adopted in this study.

2.2 ANALYTICAL MODEL (STRUCTURAL IDEALIZATION)

The first step in matrix structural analysis is the formulation of a discrete element mathematical model which is equivalent to the actual continuous structure. The model is necessary since it establishes the finite number of degrees of freedom upon which matrix algebra operations can be performed. This is accomplished by equating energies of
the continuous and discrete element systems. A typical analytical model for a shear wall frame structure is shown in Fig. 2.1. The model essentially consists of rectangular panels with shear walls and columns connected by means of beams. The shear walls may have openings in them or there may be shear walls connected by lintel beams only.

The frame portion of the structure is composed of columns and beams which present no difficulty in the formulation of their discrete models. With this discrete system, the energy equivalence leads to exact representation of the frame system. However, for the shear wall it is necessary to use approximations. The shear wall is subdivided into a number of smaller elements with fictitious boundaries and with assumed displacement distributions within the elements. As the number of elements is increased the solutions for the structural displacements and stress resultants should tend to the exact values for the continuous system. The nodal points are considered to be the segment corners, intersections of the centre lines of beams and columns and intersections of the centre lines of beams and edges of shear walls. The shear wall is assumed to be divided into segments with boundaries at the various levels. This is shown by the dotted lines in Fig. 2.1(a). Although, the beam depths may vary and centre lines of adjacent beams and the centre lines of floor slab at any level may not coincide, this discripancy is considerd to be

minor. Fig. $2.1(\mathrm{~b})$ shows the idealized structure.
In the stiffness method it is necessary first to ascertain the degrees of freedom at each joint; i.e. the generalized coordinate system. A sample shear wall frame structure is shown in Fig. 2.2. All degrees of freedom are referred to a global system of axes as represented in Fig . $2.2(b)$. It is evident that each node has three degrees of freedom. But with some useful assumptions the total number of degrees of freedom for the whole structure can be reduced considerably. Since the floor slabs are assumed to be infinitely rigid in their own planes, a single horizontal degree of freedom at each level can be considered. This means that all nodal points at any particular level undergo the same displacement in the horizontal direction. Each node has a degree of freedom in the vertical direction. If the assumption from classical elastic theory, that plane sections remain plane before and after bending, can be applied to the shear wall, the left hand and right hand node points of a shear wall at any particular level undergo the same rotation. Further, this can be geometrically related to the corresponding vertical displacements of these nodes. Therefore the rotational degree of freedom can be suppressed at these nodes and the stiffness properties accordingly modified. This also leads to the fact that any beam end framing into the shear wall has only a vertical degree of freedom at the junction node. In the subsequent chapters

FIG.2.2 SAMPLE OF SHEAR WALL - FRAME WITH GENERALIZED COORDINATE

SYSTEM
these modifications are presented in mathematical terms. All other nodes namely those at the beam column junctions, have a rotational degree of freedom. These are represented in Fig. 2.2 as H, V and R. In the sample frame considered, there are 30 nodes and if there are 3 -degrees of freedom at each node, the total number of degrees of freedom is 90. With the assumption described above, the number is reduced to 54. This will be the number of equations to be solved in the stiffness analysis. The lateral loads are assumed to be applied as a series of concentrated loads, P, at the floor levels.

2.3 STIFFNESS METHOD OF ANALYSIS

Having idealized the structure as a system of discrete elements and ascertained the degrees of freedom at the different nodes, the next step in the analysis is to determine the stiffness characterstics of individual structural elements. For this purpose, the structure is subdivided into a shear wall system and a frame system.

In the shear wall system, the shear wall is subdivided into a number of finite elements. The stiffness of each element is computed first and the element stiffness matrices are superimposed to give the overall stiffness matrix for the shear wall. In this process of developing the stiffness matrix for the shear wall, certain internal nodes can be suppressed as will be explained in article 2.4 of this
chapter. A further reduction is done, as will be explained in chapter III, to give the shear wall force-displacement relationships relating forces and displacements at the shear wall segment corners only. However, in the frame system, the frame is already divided into discrete elements consisting of beams and columns connected by rigid joints. The stiffness properties of these members are evaluated individually and then they are superimposed at the common joints. Furhur, the stiffnesses at the nodes common to the shear wall and frame are superimposed to give the overall stiffness matrix of the structure.

The functional relationship between the nodal forces P (forces acting at the nodes) and their corresponding displacements D (nodal displacements) forms the basis of the stiffness approach. In its generalized. form this can be represented as,

Or, in symbolic form this can be written as,

$$
\begin{equation*}
\{P\}=[K]\{D\} \tag{2.1a}
\end{equation*}
$$

where P is the nodal force vector and D is the nodal displacement vector These are related by the structure stiffness matrix K. P, K and D are expressed in generalized coordinates. The order of [K], as explained earlier,is dictated by the total number of degrees of freedom for the structure. The main diagonal stiffness coefficients $K_{i i}$ are always positive. The subscripts 'i' and 'j' represent generalized coordinates and. ' $K_{i j}$ ' is the stiffness coefficient which represents the force in generalized coordinate direction i, due to a unit displacement in generalized coordinate direction j, with all other displacements zero. Therefore, the off diagonal elements in the stiffness matrix namely $k_{i j}$ for $i \neq j$, by Maxwell's Reciprocal theorem, are symmetrical $\left(K_{i j}=K_{j i}\right.$ for ifj).

Since by definition, the stiffness coefficient is the force developed in generalized coordinate direction i due to a unit displacement in generalized coordinate direction j, the problem of deriving the element stiffness matrix is handled systematically by giving the jth coordinate a unit displacement, holding all other coordinates at zero displacements. The resulting forces at all other coordinates due to this unit displacement form the coefficients of the jth column of the stiffness matrix K. The formulation of
the complete stiffness matrix can be achieved by giving each coordinate a unit displacement (treating one at a time) holding all others zero and evaluating the resulting forces at all coordinates.

The purpose of dividing the structure into discrete elements can now be more clearly understood. Because of the complexity of the structure, the amount of work involved in deriving directly the overall stiffness matrix becomes too involved, if not impossible. Therefore it is necessary to have individual stiffness matrices and then by superposing these matrices, the over all stiffness matrix for the structure can be obtained. As a demonstration the beam in Fig. 2.3, which has two degrees of freedom at each end, is considered. The force-displacement relationship for this beam can be written as,

$$
\left\{\begin{array}{l}
P_{1} \tag{2,2}\\
P_{2} \\
P_{3} \\
P_{4}
\end{array}\right\}=\left[\begin{array}{llll}
K_{11} & K_{12} & K_{13} & K_{14} \\
K_{21} & K_{22} & K_{23} & K_{24} \\
K_{31} & K_{32} & K_{33} & K_{34} \\
K_{41} & K_{42} & K_{43} & K_{44}
\end{array}\right]\left\{\begin{array}{l}
D_{1} \\
D_{2} \\
D_{3} \\
D_{4}
\end{array}\right\}
$$

Now considering the two-beam structure assembly Fig. 2.4(a), connected at node 2, it is desired to arrive at the overall structure stiffness matrix for nodes 1,2 and 3.

FIG.2.3 BEAM WITH FOUR DEGREES OF FREEDOM

(a) IDEALIZED TWO BEAM STRUCTURAL ASSEMBLY

(b) DISASSEMBLED STRUCTURE

FIG. $2 \cdot 4$

The equilibrium equations for the two can now be written as ,

$$
\left\{\begin{array}{l}
{\left[\begin{array}{l}
P_{1} \\
P_{2} \\
P_{3} \\
P_{4}
\end{array}\right\}=} \\
{\left[\begin{array}{llll}
K_{11} & K_{12} & K_{13} & K_{14} \\
K_{21} & K_{22} & K_{23} & K_{24} \\
K_{31} & K_{32} & K_{33} & K_{34} \\
K_{41} & K_{42} & K_{43} & K_{44}
\end{array}\right]} \\
\text { Beam - B1 }
\end{array}\left\{\begin{array}{c}
D_{1} \\
D_{2} \\
D_{3} \\
D_{4}
\end{array}\right\}, ~\left\{\begin{array}{c}
P_{3} \\
P_{4} \\
P_{5} \\
P_{6}
\end{array}\right\}=\left[\begin{array}{llll}
K_{33} & K_{34} & K_{35} & K_{36} \\
K_{43} & K_{44} & K_{45} & K_{46} \\
K_{53} & K_{54} & K_{55} & K_{56} \\
K_{63} & K_{64} & K_{65} & K_{66}
\end{array}\right] .\left[\begin{array}{c}
D_{3} \\
D_{4} \\
\text { Beam }-B 2 \\
D_{5} \\
D_{6}
\end{array}\right\}\right.
$$

Superposition of these two equations yields the structure stiffness matrix,

Because of the common node for the two coordinates, the order of the matrix is only 6X6. This structure stiffness can be symbolically put as 2.1(a)

$$
\{P\}=[K]\{D\}
$$

where K is a square matrix. By introduction of joint constraints (support conditions), the stiffness matrix can be made non-singular. Then, by confirming to the law of matrices, the joint displacements can be found by solving Eq. (2.1a)
i.e.

$$
\begin{equation*}
\{D\}=[K]^{-1}\{P\} \tag{2.4}
\end{equation*}
$$

To satisfy compatibility, all member ends framing into any particular joint undergo the same displacement as does the joint. Therefore, once the displacement vector D has been determined from Eq. 2.4, the member end displacements (which are the same as the corresponding joint displacements) can be incorporated into the individual member force-displacement relationship to calculate the member end forces.
i.e.

$$
\begin{equation*}
\left.\{P\}^{I}=[K]{ }_{2}^{I} D\right\}^{I} \tag{2.5}
\end{equation*}
$$

where I represents any member.
In this study all element stiffness matrices are expressed directly in the global system to avoid transformation of stiffness matrices and force and displacement vectors. This is convenient because the study is limited to structures : with rectangular frames and shear walls which can be subdivided into rectangular segments. Three kinds of element stiffness matrices are required for the analysis of this type of structure: (i) finite element stiffness matrix, (ii) beam stiffness matrix and (iii) column stiffness matrix. The finite element stiffness matrix is used for the shear wall and beam and column stiffness matrices are employed for the frame system. They are treated separately in Chapters III and IV respectively.

2.4 CONDENSATION PROCESS

The lateral loads due to wind or earthquake are assumed to act only at the joints or at segment corner nodes. Also, since the shear wall is primarily designed to resist lateral loads it is furthur safe to assume that no external load is ever applied to any interior point of a shear wall. Since the shear wall in the present analysis is treated by finite element idealizations, there is always a problem of storage and additional computational work. The purpose herein is to demonstrate how the storage problem can be avoided making use of the assumption that internal nodes are not loaded externally.

Consider a segment of the shear wall, as shown in Fig. 2.5(b). Assume, for the purpose of analysis that the segment is subdivided into a number of finite elements having 'n' external nodes and 'm' internal nodes. The nodes marked 'E' are external nodes and those marked 'I' are internal nodes. In order that continuity between the segments should not be broken, the nodes on the top and bottom edges of each segment are considered as external nodes and all other nodes, where no external loads are applied, are considered as internal nodes. The equation of equilibrium can now be written as

$$
\mathrm{P}=[\mathrm{K}] \mathrm{D}
$$

(a) SHEAR WALL ASSUMED TO BE LOADED EXTERNALLY AT • SEGMENT CORNERS

E - EXTERNAL NODES
1- INTERNAL NODES
(b) TYPICAL SEGMENT OF A SHEAR WALL FIG. $2 \cdot 5$

$$
\text { i.e } \quad\left\{\begin{array}{l}
P_{I} \\
P_{I}
\end{array}\right\}=\left[\begin{array}{cc}
K_{E E} & K_{E I} \tag{2.6}\\
K_{I E} & K_{I I}
\end{array}\right]\left\{\begin{array}{l}
D_{E} \\
D_{I}
\end{array}\right\}
$$

where P denotes the external force,
K denotes the stiffness matrix
and D denotes the displacement vector.
The subscripts E and I denote the external and internal nodal actions respectively. For the sake of simplicity, let each node have ' C ' degrees of freedom, the stiffness matrix ' K ' will then be of the order $(n+m) c x(n+m) c$.

Then since the internal nodes are not loaded, P_{I} is. zero, and

$$
\left\{\begin{array}{l}
\mathrm{P}_{\mathrm{E}} \\
0
\end{array}\right\}=\left[\begin{array}{ll}
\mathrm{K}_{\mathrm{EE}} & \mathrm{~K}_{\mathrm{EI}} \\
\mathrm{~K}_{I E} & \mathrm{~K}_{I I}
\end{array}\right]\left\{\begin{array}{l}
D_{E} \\
D_{I}
\end{array}\right\}
$$

Therefore without violating the law of matrices, the above expression can be expressed by the two matrix equations

$$
\begin{align*}
& P_{E}=K_{E E} D_{E}+K_{E I} D_{I} \tag{2.7a}\\
& 0=K_{I E} D_{E}+K_{I I} D_{I} \tag{2.7b}
\end{align*}
$$

From the second equation,

$$
D_{I}=-K_{I I}^{-1} K_{I E} D_{E}
$$

Substituting for D_{I} in equation (2.7a),

$$
\begin{aligned}
& P_{E}=K_{E E} D_{E}+K_{E I}\left(-K_{I I}^{-1} K_{I E}\right) D_{E} \\
& P_{E}=\left(K_{E E}-K_{E I} K_{I I}^{-1} K_{I E}\right) D_{E}
\end{aligned}
$$

which relates the external nodal forces to external nodal displacements only. This reduces the resultant stiffness matrix to the order of (nc x nc).
:Therefore,
Thus the $\frac{K_{\text {reduced }}=K_{E E}-K_{E I} K_{I I}^{-1} K_{I E}}{\text { internal nodes are suppressed. with a }}$ subsequent saving in storage.

2.5 METHOD OF ELIMINATION

The elimination phase and the subsequent expression of the stiffness matrix in terms of the external nodal forces and external nodal displacements follows "The Method of Aitken"(17) which is reproduced in Appendix A. Referring to this appendix the following correspondence of symbols will be used.

$$
\left[\begin{array}{ll}
A & B \tag{2.8}\\
C & 0
\end{array}\right] \equiv\left[\begin{array}{ll}
K_{I I} & K_{I E} \\
K_{E I} & 0
\end{array}\right]
$$

and

$$
-C A^{-1} \mathrm{~B}=-\mathrm{K}_{E I} \mathrm{~K}_{\mathrm{II}}{ }^{-1} \mathrm{~K}_{\mathrm{IE}}
$$

With ' n ' external nodes and ' m ' internal nodes , the over all stiffness matrix can be written as,

Rearranging the terms as per equation (2.8), we have

The aim is to reduce the K_{EI} matrix in the expression (2.10) to a null matrix. The process as we see in Aitken's method, produces the required matrix on the bottom right corner to replace the existing null matrix. To achieve this, the ordinary Gaussian elimination technique is used. To facilitate easy programming, the backward decomposition is adopted. Let the final matrix on the bottom right corner of expression (2.10), be represented, after reduction by [Q]. In the backward decomposition, the first pivotal row is the last row of K_{II}, as indicated in expression (2.10). The first pivotal element is the last element of $K_{I I}$,
i.e $K_{(n+m)(n+m)}$ in the above expression and the column below this is to be made zero. In general this process can be written in a simplified form as follws:

$$
K_{i j}=K_{i j}-\frac{K_{1 j}}{K_{11}} \times K_{i 1}
$$

where,
'l' is the pivotal row and K is the pivotal element. 'i' and 'j' are any typical row and column, respectively, that undergo subsequent changes.

The matrix [Q], which replaces the null matrix, represents the expression $-K_{E I} K_{I I}^{-1} K_{I E}$. Since we are interested in the expression ($\mathrm{K}_{\mathrm{E}}-\mathrm{Q}$), the mull matrix in equation (2.10) can be replaced by $\mathrm{KEE}_{\mathrm{EE}}$ which gives directly the required expression. The flow chart of the above process is presented in Fig. 2.6

For the purpose of comparison it is interesting to note here that the direct procedure to obtain the expression,
$K_{E E}{ }^{-K_{E I}} K_{I I}{ }^{-1} K_{I E}$
involves an inverse of a matrix of very high order, two multplications and a subtraction. This is very uneconomical from the computer point of view. On the other hand, the reduction process explained in this chapter involves only a single operation which takes care of everything relating to matrix operations in the above expression.

2.6 SUMMARY

The general analysis procedure is summarised in the following steps:
(i) The shear wall is subdivided into a number of finite elements and individual element stiffness matrices are evaluated from the element properties.

FLOW CHART FOR CONDENSATION OF INTERNAL NODES

FIG. 2.6
(ii) The stiffness matrices for the elements in a given shear wall segment are superimposed to obtain the stiffness matrix for the segment. The internal nodes for the segment are then condensed off, using force and kinematic assumptions. This gives the force-displacement relationship for the shear wall segment corners.
(iii) Beam and column stiffness matrices are evaluated individually from their respective properties and they are superposed at their common joints to give the frame stiffness matrix.
(iv) The frame stiffness and the shear wall stiffness are combined (the stiffnesses of the two systems are superimposed at the connection points between them) to give the over all stiffness matrix.
(v) The support condition is incorporated in the stiffness matrix formulated in step (iv).
(vi) With known applied loads at the node points, the equations of equilibrium for the whole structure are solved for the unknown displacements at the joints.
(vii) Knowing the segment corner displacements found from step (vi), the forces in the shear wall are calculated from direct multiplication of individual shear wall stiffness matrices and their corresponding segment corner displacements.
(viii) The beam end forces and column end forces are calculated in a similar manner, knowing their end
displacements and the individual stiffness matrices. (ix) Finally, the reactions are calculated.

CHAPTER III

SHEAR WALL ANALYSIS

3.1 INTRODUCTION

In most practical cases, the shear wall properties do not change for any particular storey, that is, between adjacent framing levels. Therefore, it is most convenient to calculate the stiffness matrix for each shear wall segment separately and then to combine the matrices to obtain the stiffness matrix for the overall shear wall. In the finite element analysis of the shear wall, it is obvious that conventional plane stress elements, which have two translational degrees of freedom at each node, are unsuitable to take into account the interaction between the shear wall and frame, or to combine with line elements in bending. Therefore, a third degree of freedom, namely the rotation at each node, becomes absolutely necessary. The question still remains as to whether all the interior nodes should also have the three degrees of freedom. The third degree of freedom, namely the rotational degree of freedom at the internal nodes, can be suppressed, or simple plane stress elements for the internal ones can be considered. This type of approach obviously tends to reduce the accuracy
of results. However, the three degrees of freedom at each node involve increased computational work and increased storage requirements. A compromise can be struck between the two approaches. A number of papers, the most recent of which is by R. G. Oakberg and William Weaver (13), point out the above facts. Oakberg and Weaver separated the edge elements and interior elements and introduced a new element called the transition element. The stiffness matrices for these elements are presented later in this chapter.
C. V. Girijavallabhan (14) has done :considerable work on element shape. He subdivided a model shear wall into discrete elements. Triangular elements were used for discretization, and later, rectangular elements were adopted. To obtain accurate results, he subdivided the structare into 1,568 triangular elements with 918 nodal points. Employing the direct stiffness method, the nodal displacement vector for the given boundary forces was determined for the complete assemblage of finite elements. The same model problem was again solved using 264 discrete rectangular elements with 334 nodal points, without altering the other properties of the wall.The nodal displacements obtained by the two analyses were : compared and it was observed that the overall displacement patterns were the same. Strains and stresses in each element were computed from nodal displacements in both cases and the results agreed very well. The solution obtained was sufficiently
accurate for design purposes when 264 rectangular elements instead of 1,568 triangular elements, were used with about one-third the total number of nodal points. Consequently, further analysis of the shear wall was made with rectangular elements only.

Additional advantages of using rectangular elements are:
(i) ease of forming the element mesh and generating nodal coordinates. Only coordinates of one horizontal row and one vertical row need be included among the input data. In addition, the divisions in the X -direction are constant throughout the height of the wall.
(ii) increased flexibility and decreased number of elements when coarser elements are used.
(iii) since, in the shear wall problem, more degrees have to be considered at some of the nodal points, the smaller the number of elements, the smaller the amount of computational work and storage requirements while forming the nodal equilibrium equation.
(iv) ease of systematic generation of element stiffness matrices in the global axes system for the structure. Hence, no transformation of the matrices is required.

If the existing stiffness matrix for any element has a coordinate system other than the global coordinate system then it is taken as the local system for the element which
then is transformed to global system using the transformation matrix.

3.2 ELEMENT MESH AND ELEMENT TYPES

Following the method adopted by Oakberg and Weaver, the element mesh for a typical panel is shown in Fig. 3.1. Since, on either edge of the panel, there may be beams framing into the shear wall, the two extreme vertical rows of elements are considered as edge elements to combine with beams in bending. These edge elements have three degrees of freedom at each of their nodes; two translational and one rotation. The interior nodes need not have the rotational degree of freedom since they are not directly connected to bending elements. But to satisfy compatibility at the nodes between edge elements and interior elements, a new element called the transition element is introduced between the two element types. That is, in the two vertical rows of elements adjacent to edge elements. They are further classified as left transition elements and right transition elements. A typical action of the combination of the three types of elements is shown in Fig. 3.2. It is clear from this figure that the two nodes of the transition element which are common to edge elements as well have three degrees of freedom, whereas the nodes that are common with interior elements need have only two degrees of freedom. Therefore, for a transition element, there are altogether 10 degrees of

FIG. 3.1 ELEMENT MESH FOR ANY TYPICAL SEGMENT

FIG. 3.2 COMBINATION OF EDGE, TRANSITION AND INTERIOR ELEMENTS
freedom. The stiffness matrix as given by Oakberg and Weaver (13) for these two types of elements are employed here.

3.3 ELEMENT STIFFNESS MATRICES

(i) EDGE ELEMENT

An edge element has three degrees of freedom at each of its nodes; two translations and one rotation. It thus has twelve generalized displacements, as shown in Fig. 3.3. The symbols 'a! and 'b' denote the width and the depth of the element. The displacement functions for this element are the products of linear and cubic polynomials in the dimensionless variables $\xi=x / a$ and $\eta=y / b$ as follows:

$$
\begin{align*}
\mathrm{a}_{1}(\xi, \eta, d)= & -(1-\xi)\left(2 \eta^{3}-3 \eta^{2}\right) d_{1}-b(1-\xi)\left(n^{3}-n^{2}\right) d_{3} \\
& -\xi\left(2 \eta^{3}-3 n^{2}\right) d_{4}-b \xi\left(n^{3}-\eta^{2}\right) d_{6} \\
& +(1-\xi)\left(2 \eta^{3}-3 n^{2}+1\right) d_{7}-b(1-\xi)\left(n^{3}-2 n^{2}+\eta\right) d_{9} \\
& +\xi\left(2 \eta^{3}-3 \eta^{2}+1\right) d_{10}-b \xi\left(n^{3}-2 n^{2}+\eta\right) d_{12} \tag{3.1.a.}
\end{align*}
$$

$\mathrm{u}_{2}(\xi, \eta, \mathrm{~d})=\left(2 \xi^{3}-3 \xi^{2}+1\right) \mathrm{d}_{2}+\mathrm{a} \eta\left(\xi^{3}-2 \xi^{2}+\xi\right) \mathrm{d}_{3}$
$-n\left(2 \xi^{3}-3 \xi^{2}\right) d_{4}-a n\left(\xi^{3}-\xi^{2}\right) d_{6}$
$+(1-n)\left(2 \xi^{3}-3 \xi^{2}+1\right) d_{8}+a(1-n)\left(\xi^{3}-2 \xi^{2}+\xi\right) d_{9}$
$-(1-n)\left(2 \xi^{3}-3 \xi^{2}\right) d_{11}-a(1-n)\left(\xi^{3}-\xi^{2}\right) d_{12} \quad$ (3.1.b.)
where α is the element displacement vector and u_{1} and u_{2} are the two displacement functions.

These functions provide identical rotation for adjacent edges at each corner of the element. Since the adjacent element edges experience the same rotation at each corner,

FIG.3.3 EDGE ELEMENT

FIG. 3.4 LEFT TRANSITION ELEMENT

TABLE 3.1

STIFFNESS MATRIX FOR EDGE ELEMENT
$\underset{\left(1-\mu^{2}\right)}{E t}\left[\begin{array}{cccccccccccc}\rho_{1} & -\rho_{2} & -\rho_{3} & \rho_{4} & -\rho_{5} & -\rho_{6} & \rho_{7} & \rho_{5} & -\rho_{9} & \rho_{10} & \rho_{2} & -\rho_{12} \\ -\rho_{2} & \beta_{2} & \beta_{3} & \rho_{5} & \beta_{5} & \beta_{6} & -\rho_{5} & \beta_{8} & \beta_{9} & \rho_{2} & \beta_{11} & \beta_{12} \\ -\rho_{3} & \beta_{3} & \gamma_{3} & -\rho_{6} & -\beta_{6} & \gamma_{6} & \rho_{9} & \beta_{9} & \gamma_{9} & \rho_{12} & -\beta_{12} & \gamma_{12} \\ \rho_{4} & \rho_{5} & -\rho_{6} & \rho_{1} & \rho_{2} & -\rho_{3} & \rho_{10} & -\rho_{2} & -\rho_{12} & \rho_{7} & -\rho_{5} & -\rho_{9} \\ -\rho_{5} & \beta_{5} & -\beta_{6} & \rho_{2} & \beta_{2} & -\beta_{3} & -\rho_{2} & \beta_{11} & -\beta_{12} & \rho_{5} & \beta_{8} & -\beta_{9} \\ -\rho_{6} & \beta_{6} & \gamma_{6} & -\rho_{3} & -\beta_{3} & \gamma_{3} & \rho_{12} & \beta_{12} & \gamma_{12} & \rho_{9} & -\beta_{9} & \gamma_{9} \\ \rho_{7} & -\rho_{5} & \rho_{9} & \rho_{10} & -\rho_{2} & \rho_{12} & \rho_{1} & \rho_{2} & \rho_{3} & \rho_{4} & \rho_{5} & \rho_{6} \\ \rho_{5} & \beta_{8} & \beta_{9} & -\rho_{2} & \beta_{11} & \beta_{12} & \rho_{2} & \beta_{2} & \beta_{3} & -\rho_{5} & \beta_{5} & \beta_{6} \\ -\rho_{9} & \beta_{9} & \gamma_{9} & -\rho_{12} & -\beta_{12} & \gamma_{12} & \rho_{3} & \beta_{3} & \gamma_{3} & \rho_{6} & -\beta_{6} & \gamma_{6} \\ \rho_{10} & \rho_{2} & \rho_{12} & \rho_{7} & \rho_{5} & \rho_{9} & \rho_{4} & -\rho_{5} & \rho_{6} & \rho_{1} & -\rho_{2} & \rho_{3} \\ \rho_{2} & \beta_{11} & -\beta_{12} & -\rho_{5} & \beta_{8} & -\beta_{9} & \rho_{5} & \beta_{5} & -\beta_{6} & -\rho_{2} & \beta_{2} & -\beta_{3} \\ -\rho_{12} & \beta_{12} & \gamma_{12} & -\rho_{9} & -\beta_{9} & \gamma_{9} & \rho_{6} & \beta_{6} & \gamma_{6} & \rho_{3} & -\beta_{3} & \gamma_{3}\end{array}\right]$
where,

$$
\begin{array}{ll}
\rho_{1}=\frac{13 b}{35 a}+\frac{2 \lambda a}{5 b} & \rho_{2}=\frac{(\lambda+\mu)}{4} \\
\rho_{3}=\frac{-11 b^{2}}{210 a}+\frac{\mu a}{24}-\frac{3 \lambda a}{40} & \rho_{4}=\frac{-13 b}{35 a}+\frac{\lambda a}{5 b} \\
\rho_{5}=\frac{(\mu-\lambda)}{4} & \rho_{6}=\frac{11 b^{2}}{210 a}-\frac{\mu a}{24}+\frac{\lambda a}{40} \\
\rho_{7}=\frac{9 b}{70 a}-\frac{2 \lambda a}{5 b} & \rho_{9}=\frac{13 b^{2}}{420 a}-\frac{\mu a}{24}-\frac{3 \lambda a}{40} \\
\rho_{10}=\frac{-9 b}{70 a}-\frac{\lambda a}{5 b} & \rho_{12}=\frac{-13 b^{2}}{420 a}+\frac{\mu a}{24}+\frac{\lambda a}{40}
\end{array}
$$

$$
\begin{array}{ll}
\beta_{2}=\frac{13 a}{35 b}+\frac{2 \lambda b}{5 a} & \beta_{3}=\frac{11 a^{2}}{210 b}-\frac{\mu b}{24}+\frac{3 \lambda b}{40} \\
\beta_{5}=\frac{9 a}{70 b}-\frac{2 \lambda b}{5 a} & \beta_{6}=\frac{-13 a^{2}}{420 b}+\frac{\mu b}{24}+\frac{3 \lambda b}{40} \\
\beta_{8}=\frac{-13 a}{35 b}+\frac{\lambda b}{5 a} & \beta_{9}=\frac{-11 a^{2}}{210 b}+\frac{\mu b}{24}-\frac{\lambda b}{40} \\
\beta_{11}=\frac{-9 a}{70 b}-\frac{\lambda b}{5 a} & \beta_{12}=\frac{13 a^{2}}{420 b}-\frac{\mu b}{24}-\frac{\lambda b}{40} \\
\gamma_{3}=\frac{b^{3}}{105 a}+\frac{a^{3}}{105 b}-\frac{\mu a b}{72}+\frac{3 \lambda a b}{40} & \\
\gamma_{6}=\frac{-b^{3}}{105 a}-\frac{a^{3}}{140 b}+\frac{\mu a b}{72}+\frac{\lambda a b}{40} & \\
\gamma_{9}=\frac{-b^{3}}{140 a}-\frac{a^{3}}{105 b}+\frac{\mu a b}{72}+\frac{\lambda a b}{40} & \\
\gamma_{12}=\frac{b^{3}}{140 a}+\frac{a^{3}}{140 b}-\frac{\mu a b}{72}-\frac{\lambda a b}{40} & \\
a n d \\
\lambda & \frac{1-\mu}{2}
\end{array}
$$

the shear strain is zero at four points on the element. The stiffness matrix for an edge element is presented in Table 3.1. In the stiffness matrix, E is the modulus of elasticity, ' μ ' is the Poisson's ratio, and 't' is the thickness of the element.

(ii) LEFT TRANSITION ELEMENT

Oakberg (18) introduced a transition element between an edge element and an interior element to assure displacement continuity. There are a total of ten generalized displacements for this element as shown in Fig. 3.4. The displacement functions for this element are as follows:

$$
\begin{align*}
u_{1}(\xi, \eta, d)= & -(1-\xi)\left(2 n^{3}-3 n^{2}\right) d_{1}-b(1-\xi)\left(n^{3}-n^{2}\right) d_{3}+\xi n d_{4}+(1-\xi) \\
& \left(2 n^{3}-3 n^{2}+1\right) d_{6}-b(1-\xi)\left(n^{3}-2 n^{2}+n\right) d_{8}+\xi(1-n) d_{9} \tag{3.2.a}
\end{align*}
$$

$u_{2}\left(\xi, \eta, d_{\sim}\right)=\eta(1-\xi) d_{2}+\xi n d_{5}+(1-\xi)(1-\eta) d_{7}+\xi(1-\eta) d_{10}$

The symbols are the same as for the edge element and the stiffness matrix for this element is presented in Table 3.2 .

TABLE 3.2

STIFFNESS MATRIX FOR LEFT HAND
TRANSITION ELEMENT

$$
\xlongequal{\mathrm{Et}}\left(1-\mu^{2}\right)\left[\begin{array}{cccccccccc}
\theta_{1} & -\theta_{2} & \theta_{3} & -\theta_{4} & \theta_{5} & \theta_{6} & -\theta_{5} & -\theta_{8} & -\theta_{9} & \theta_{2} \\
-\theta_{2} & \phi_{2} & \phi_{3} & -\theta_{5} & \phi_{5} & \theta_{5} & -\phi_{7} & -\phi_{3} & \theta_{2} & -\phi_{10} \\
\theta_{3} & \phi_{3} & \alpha_{3} & -\alpha_{4} & -\alpha_{5} & \theta_{8} & -\phi_{3} & -\alpha_{8} & \alpha_{9} & \alpha_{5} \\
-\theta_{4} & -\theta_{5} & -\alpha_{4} & \sigma_{4} & \theta_{2} & -\theta_{9} & -\theta_{2} & \alpha_{9} & \sigma_{9} & \theta_{5} \\
\theta_{5} & \phi_{5} & -\alpha_{5} & \theta_{2} & \phi_{2} & -\theta_{2} & -\phi_{10} & \alpha_{5} & -\theta_{5} & -\phi_{7} \\
\theta_{6} & \theta_{5} & \theta_{8} & -\theta_{9} & -\theta_{2} & \theta_{1} & \theta_{2} & -\theta_{3} & -\theta_{4} & -\theta_{5} \\
-\theta_{5} & -\phi_{7} & -\phi_{3} & -\theta_{2} & -\phi_{10} & \theta_{2} & \phi_{2} & \phi_{3} & \theta_{5} & \phi_{5} \\
-\theta_{5} & -\phi_{3} & -\alpha_{8} & \alpha_{9} & \alpha_{5} & -\theta_{3} & \phi_{3} & \alpha_{3} & \alpha_{4} & -\alpha_{5} \\
-\theta_{9} & \theta_{2} & \alpha_{9} & \sigma_{9} & -\theta_{5} & -\theta_{4} & \theta_{5} & \alpha_{4} & \sigma_{4} & -\theta_{2} \\
\theta_{2} & -\theta_{10} & \alpha_{5} & \theta_{5} & -\phi_{7} & -\theta_{5} & \phi_{5} & -\alpha_{5} & -\theta_{2} & \phi_{2}
\end{array}\right]
$$

where,

$$
\begin{array}{ll}
\theta_{1}=\frac{13 b}{35 a}+\frac{2 \lambda a}{5 b} & \theta_{2}=\frac{\lambda+\mu}{4} \\
\theta_{3}=\frac{11 b^{2}}{210 a}+\frac{\lambda a}{30} & \theta_{4}=\frac{7 b}{20 a}-\frac{\lambda a}{6 b} \\
\theta_{5}=\frac{\lambda-\mu}{4} & \theta_{6}=\frac{9 b}{70 a}-\frac{2 \lambda a}{5 b} \\
\theta_{8}=\frac{13 b^{2}}{420 a}-\frac{\lambda a}{30} & \theta_{9}=\frac{3 b}{20 a}+\frac{\lambda a}{6 b} \\
\phi_{2}=\frac{a}{3 b}+\frac{\lambda b}{3 a} & \phi_{3}=\frac{(\lambda-\mu) b}{24}
\end{array}
$$

$$
\begin{aligned}
\phi_{5} & =\frac{a}{6 b}-\frac{\lambda b}{3 a} & \phi_{7}=\frac{a}{3 b}-\frac{\lambda b}{6 a} \\
\phi_{10} & =\frac{a}{6 b}+\frac{\lambda b}{6 a} & \alpha_{4}=\frac{b^{2}}{20 a} \\
\alpha_{3} & =\frac{b^{3}}{105 a}+\frac{2 \lambda a b}{45} & \alpha_{8}=\frac{b^{3}}{140 a}+\frac{\lambda a b}{90} \\
\alpha_{5} & =\frac{(\lambda+\mu) b}{24} & \sigma_{9}=\frac{b}{6 a}-\frac{\lambda a}{3 b} \\
\alpha_{9} & =-\frac{b^{2}}{30 a} & \\
\sigma_{4} & =\frac{b}{3 a}+\frac{\lambda a}{3 b} &
\end{aligned}
$$

(iii) RIGHT TRANSITION ELEMENT

The right transition element is actually the mirror image of the left hand element with the axes rotated through 180 degrees. Therefore, the stiffness matrix for this element can be derived from that for the left transition element by rearranging the terms and using the transformation matrix. First, the left transition element is rotated through 180 degrees about the Z-axis, as shown in Fig. 3.5(a) where the element displacement vector has components ordered from 1 to 10. Considering this as the local system for the right transition element, the stiffness matrix is the same as for the left transition element. Since the stiffness matrix in the global system is desired components 1 to 10 of the element displacement vector are first rearranged as shown in Fig 3.5(b). Accordingly, the stiffness coefficients in the local system are rearranged to give the revised stiffness matrix for the right transition element, again in the local system. This matrix appears in Table 3.3. To identify the two coordinate systems used, local system has primes in them.

The transformation to the global system is through 180 degrees about the Z -axis of the translational displacement vectors only. This transformation matrix is presented in Table 3.4. There is no sign change for the rotation transformation. Finally, the following : matrix operation produces the required stiffness matrix for the right

(a) LOCAL SYSTEM

(b) DISPLACEMENT VECTOR REARRANGED
\mathcal{L}^{Y}

(c) GLOBAL SYSTEM (FINAL)

FIG. 3.5 RIGHT TRANSITION ELEMENT

TABLE 3.3

STIFFNESS MATRIX OF RIGHT TRANSITION
ELEMENT IN THE LOCAL SYSTEM 'S \mathbf{r}^{\prime}

$$
\xlongequal[\left(1-\mu^{2}\right)]{\mathrm{Et}}\left[\begin{array}{cccccccccc}
\sigma_{4} & -\theta_{2} & -\theta_{4} & \theta_{5} & \alpha_{4} & \sigma_{9} & -\theta_{5} & -\theta_{9} & \theta_{2} & \alpha_{9} \\
-\theta_{2} & \phi_{2} & -\theta_{5} & \phi_{5} & -\alpha_{5} & \theta_{5} & -\phi_{7} & \theta_{2} & -\phi_{10} & \alpha_{5} \\
-\theta_{4} & -\theta_{5} & \theta_{1} & \theta_{2} & -\theta_{3} & -\theta_{9} & -\theta_{2} & \theta_{6} & \theta_{5} & \theta_{8} \\
\theta_{5} & \phi_{5} & \theta_{2} & \phi_{2} & \phi_{3} & -\theta_{2} & -\phi_{10} & -\theta_{5} & -\phi_{7} & -\phi_{3} \\
\alpha_{4} & -\alpha_{5} & -\theta_{3} & \phi_{3} & \alpha_{3} & \alpha_{9} & \alpha_{5} & -\theta_{8} & -\phi_{3} & -\alpha_{8} \\
\sigma_{9} & \theta_{5} & -\theta_{9} & -\theta_{2} & \alpha_{9} & \sigma_{4} & \alpha_{2} & -\theta_{4} & -\theta_{5} & -\alpha_{4} \\
-\theta_{5} & -\phi_{7} & -\theta_{2} & -\phi_{10} & \alpha_{5} & \alpha_{2} & \phi_{2} & \theta_{5} & \phi_{5} & -\alpha_{5} \\
-\theta_{9} & \theta_{2} & \theta_{6} & -\theta_{5} & -\theta_{8} & -\theta_{4} & \theta_{5} & \theta_{1} & -\theta_{2} & \theta_{3} \\
\theta_{2} & -\phi_{10} & \theta_{5} & -\phi_{7} & -\phi_{3} & -\theta_{5} & \phi_{5} & -\theta_{2} & \phi_{2} & \phi_{3} \\
\alpha_{9} & \alpha_{5} & \theta_{8} & -\phi_{3} & -\alpha_{8} & -\alpha_{4} & -\alpha_{5} & \theta_{3} & \phi_{3} & \alpha_{3}
\end{array}\right]
$$

TABLE 3.4

TRANSFORMATION MATRIX 'T'

$$
\left[\begin{array}{cccccccccc}
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

transition element.

$$
S_{r}=T S_{r}^{\prime} T^{T}
$$

where S_{r} is the stiffness matrix in the global. system, $S_{r}{ }_{r}$ is the stiffness matrix in the local system, and T is the transformation matrix.

The final stiffness matrix for right transition element appears in Table 3.5.

(iv) INTERIOR ELEMENT

An interior element has two translational degrees of freedom at each of its nodes; giving eight generalized displacements. The stiffness matrix for this element was presented by R. J. Melosh (16). The element, and the assumed generalized coordinates are shown in Fig. 3.6(a). The origin is chosen at the centre of gravity of the element. The displacement functions (obtained from Lagrange interpolation formulae in two dimensions) are as follows:

$$
\begin{align*}
u_{1}(a b d)= & (x-a / 2)(y-b / 2) a_{1}^{\prime}-(x-a / 2)(y+b / 2) a_{3}^{\prime}+(x+a / 2)(y+b / 2) d_{5}^{\prime} \\
& -(x+a / 2)(y-b / 2) d_{7}^{\prime} \tag{3.4a}
\end{align*}
$$

$$
\begin{align*}
u_{2}(\mathrm{abd})= & (x-a / 2)(y-b / 2) d_{2}^{\prime}-(x-a / 2)(y+b / 2) d_{4}^{\prime}+(x+a / 2)(y+b / 2) d_{6}^{\prime} \\
& -(x+a / 2)(y-b / 2) d_{8}^{\prime} \tag{3.4b}
\end{align*}
$$

where u_{1} and u_{2} are displacement functions and $\underset{\sim}{d}$ is the element displacement vector.

The sides of the element are parallel to the x and y axes and are of length a and $b, r e s p e c t i v e l y$.

TABLE 3.5

STIFFNESS MATRIX FOR RIGHT TRANSITION
ELEMENT IN THE GLOBAL SYSTEM

$$
\xlongequal[\left(1-\mu^{2}\right)]{E t}\left[\begin{array}{cccccccccc}
\sigma_{4} & -\theta_{2} & -\theta_{4} & \theta_{5} & -\alpha_{4} & \sigma_{9} & -\theta_{5} & -\theta_{9} & \theta_{2} & -\alpha_{9} \\
-\theta_{2} & \phi_{2} & -\theta_{5} & \phi_{5} & \alpha_{5} & \theta_{5} & -\phi_{7} & \theta_{2} & -\phi_{10} & -\alpha_{5} \\
-\theta_{4} & -\theta_{5} & \theta_{1} & \theta_{2} & \theta_{3} & -\theta_{9} & -\theta_{2} & \theta_{6} & \theta_{5} & -\theta_{8} \\
\theta_{5} & \phi_{5} & \theta_{2} & \phi_{2} & -\phi_{3} & -\theta_{2} & -\phi_{10} & -\theta_{5} & -\phi_{7} & \phi_{3} \\
-\alpha_{4} & \alpha_{5} & \theta_{3} & -\phi_{3} & \alpha_{3} & -\alpha_{9} & -\alpha_{5} & \theta_{8} & \phi_{3} & -\alpha_{8} \\
\sigma_{9} & \theta_{5} & -\theta_{9} & -\theta_{2} & -\alpha_{9} & \sigma_{4} & \theta_{2} & -\theta_{4} & -\theta_{5} & \alpha_{4} \\
\theta_{5} & -\phi_{7} & -\theta_{2} & -\phi_{10} & -\alpha_{5} & \theta_{2} & \phi_{2} & \theta_{5} & \phi_{5} & \alpha_{5} \\
-\theta_{9} & \theta_{2} & \theta_{6} & -\theta_{5} & \theta_{8} & -\theta_{4} & \theta_{5} & \theta_{1} & -\theta_{2} & -\theta_{3} \\
\theta_{2} & -\phi_{10} & \theta_{5} & -\phi_{7} & \phi_{3} & -\theta_{5} & \phi_{5} & -\theta_{2} & \phi_{2} & -\phi_{3} \\
-\alpha_{9} & -\alpha_{5} & -\theta_{0} & \phi_{3} & -\alpha_{8} & \alpha_{4} & \alpha_{5} & -\theta_{3} & -\phi_{3} & \alpha_{3}
\end{array}\right]
$$

(a) ELEMENT DISPLACEMENTS IN LOCAL SYSTEM

(b) ELEMENT DISPLACEMENTS IN GLOBAL SYSTEM

FIG. $3 \cdot 6$ INTERIOR ELEMENT

The stiffness matrix as given by R. J. Melosh (16) appears below.

$$
K=\left[\begin{array}{ll}
\mathrm{K}_{11} & \mathrm{~K}_{21}^{\mathrm{T}} \\
\mathrm{~K}_{21} & \mathrm{~K}_{22}
\end{array}\right]
$$

where,

$$
\left.\begin{array}{c}
K_{11}=\left[\begin{array}{lll}
2 a_{11}+2 \bar{a}_{44} & \\
a_{11}-2 \bar{a}_{44} & 2 a_{11}+2 \bar{a}_{44} & \text { SYMMETRIC } \\
-a_{11}-\bar{a}_{44} & -2 a_{11}+\bar{a}_{44} & 2 a_{11}+2 \bar{a}_{44} \\
-2 a_{11}+\bar{a}_{44} & -a_{11}-\bar{a}_{44} & a_{11}-2 \bar{a}_{44}
\end{array} 2^{2 a_{11}+2 \bar{a}_{44}}\right.
\end{array}\right]
$$

and

$$
K_{22}=\left[\begin{array}{lll}
2 a_{22}+2 \dot{a}_{44} & & \\
-2 a_{22}+\dot{a}_{44} & 2 a_{22}+2 \dot{a}_{44} & \text { SYMMTRIC } \\
-a_{22}-\dot{a}_{44} & a_{22}-2 \dot{a}_{44} & 2 a_{22}+2 \dot{a}_{44} \\
a_{22}-2 \dot{a}_{44} & -a_{22}-\dot{a}_{44} & -2 a_{22}+\dot{a}_{44}
\end{array}\right.
$$

in which

$$
\begin{array}{ll}
a_{11}=\frac{E t}{\left(1-\mu^{2}\right)} \times \frac{b}{6 a} & a_{22}=\frac{E t}{\left(1-\mu^{2}\right)} \times \frac{a}{6 b} \\
\left.a_{12}=\frac{E t}{\left(1-\mu^{2}\right.}\right) \times 4 & a_{44}=\frac{E t}{\left(1-\mu^{2}\right)} \times \frac{(1-\mu)}{12 b} \\
\dot{a}_{44}=\frac{E t}{1-\mu^{2}} \times \frac{(1-\mu) b}{12 a} \text { and } & a_{44}=\left(1-E^{2}\right) \times \frac{(1-\mu)}{8}
\end{array}
$$

'E' and ' μ ' are the modulus of elasticity and Poisson's ratio, respectively, and 't' is the thickness of the element.

Substituting these values in the stiffness matrix, the matrix expressed in the local system as represented in Table 3.6, is obtained.
WGISAS TVOOT HHL NI LNAWHTG YOIG马LNI YOA XIELVW SSANAAILS

TABLE 3.6 .
$\frac{E t}{\left(1-\mu^{2}\right)}$

In the expanded form, the equilibrium equations for the interior element can be written as follows:

The terms are rearranged according to Fig. 3.6(b) to give the stiffness matrix for the interior element in the global system. This appears in Table 3.7.

3.4 SEGMENT STIFFNESS MATRIX

As mentioned earlier, the shear wall stiffness matrix is generated segment-wise and then the combination of the segmental matrices yields the required shear wall stiffness matrix. After the segment is subdivided into a number of rectangular finite elements, it is desired to develop the stiffness matrix that will relate the nodal displacements and the corresponding actions of the nodes that lie along the top and bottom edges of the segments. As was discussed in article 2.4 , the nodes that lie along the edge are termed external nodes, while the remaining nodes in the segment are designated internal nodes.

TABLE 3.7

STIFFNESS MATRIX FOR INTERIOR ELEMENT
IN GLOBAL SYSTEM

$$
\xlongequal[\left(1-\mu^{2}\right)]{E t}\left[\begin{array}{cccccccc}
\alpha_{1} & -\alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{5} & -\alpha_{4} & -\alpha_{7} & \alpha_{2} \\
-\alpha_{2} & \beta_{2} & -\alpha_{4} & \beta_{4} & \alpha_{4} & \beta_{6} & \alpha_{2} & -\beta_{8} \\
\alpha_{3} & -\alpha_{4} & \alpha_{1} & \alpha_{2} & -\alpha_{7} & -\alpha_{2} & \alpha_{5} & \alpha_{4} \\
\alpha_{4} & \beta_{4} & \alpha_{2} & \beta_{2} & -\alpha_{2} & -\beta_{8} & -\alpha_{4} & \beta_{6} \\
\alpha_{5} & \alpha_{4} & -\alpha_{7} & -\alpha_{2} & \alpha_{1} & \alpha_{2} & \alpha_{3} & -\alpha_{4} \\
-\alpha_{4} & \beta_{6} & -\alpha_{2} & -\beta_{8} & \alpha_{2} & \beta_{2} & \alpha_{4} & \beta_{4} \\
-\alpha_{7} & \alpha_{2} & \alpha_{5} & -\alpha_{4} & \alpha_{3} & \alpha_{4} & \alpha_{1} & -\alpha_{2} \\
\alpha_{2} & -\beta_{8} & \alpha_{4} & \beta_{6} & -\alpha_{4} & \beta_{4} & -\alpha_{2} & \beta_{2}
\end{array}\right]
$$

where,
$\alpha_{1}=\frac{b}{3 a}+\frac{\lambda a}{3 b}$
$\alpha_{2}=\frac{\lambda+\mu}{4}$
$\alpha_{3}=\frac{-b}{3 a}+\frac{\lambda a}{6 b}$
$\alpha_{4}=\frac{\lambda-\mu}{4}$
$\alpha_{5}=\frac{b}{6 a}-\frac{\lambda a}{3 b}$
$\alpha_{7}=\frac{b}{6 a}+\frac{\lambda a}{6 b}$
$\beta_{2}=\frac{a}{3 b}+\frac{\lambda b}{3 a}$
$\beta_{4}=\frac{a}{6 b}-\frac{\lambda b}{3 a}$
$\beta_{6}=\frac{-a}{3 b}+\frac{\lambda b}{6 a}$
$\beta_{8}=\frac{a}{6 b}+\frac{\lambda b}{6 a}$
and

$$
\lambda=\frac{1-\mu}{2}
$$

:Generation of the stiffness matrix starts from the topmost segment and the topmost row of elements. If all the elements in the segment are to be considered in one step to form the segment stiffness matrix, there is a problem of storage. To avoid this, the elements are considered row-wise starting from the top most row.

The top most row of elements, along with their nodal actions are shown in Fig. 3.7. Considering each element in this row in turn, the corresponding element stiffness matrix is generated. The stiffness matrix for the whole row is formed by superimposing the stiffnesses at common nodes. Since the top row of elements is pictured in Fig. 3.7, there is only one lateral displacement along line 1, which coincides with the centre line of the floor slab and is considered as the framing level. The matrix for this top row can be written as

$$
\left[\begin{array}{ll}
\mathrm{K}_{11} & \mathrm{~K}_{12} \\
\mathrm{~K}_{21} & \mathrm{~K}_{22}
\end{array}\right]^{\text {row }-1}
$$

where subscripts 1 and 2 denote the nodes on lines 1 and 2 , respectively.

As a second step, the next row of elements is considered and the stiffness matrix for this row is generated in a similar manner. Once again, the stiffnesses at the nodes along line 2 are obtained by superimposing the
values for the elements in the adjacent two rows. The procedure is illustrated in Fig 3.8 and the corresponding stiffness matrix is as follows:
$\left[\begin{array}{ccc}K_{11} & K_{12} & 0 \\ K_{21} & \left(K_{22}^{\text {rowl }}+K_{22}{ }^{\text {rown }}\right) & K_{23} \\ 0 & K_{32} & K_{33}\end{array}\right]$

Considering the nodes on line 2 as internal nodes, 'I', and the rest as external nodes, 'E', the previous stiffness matrix can be rewritten as

where the superscript denotes the rows.
The terms can then be rearranged and partitioned as follows.

$$
\left[\begin{array}{lc:c}
K_{E E}^{(1)} & 0 & 1 \\
0 & K_{E I}^{(1)} \\
\hdashline K_{E E}^{(2)} & K_{E I}^{(2)} \\
K_{I E}^{(1)} & K_{I E}^{(2)} & \\
\hline & \left.K_{I I}^{(1)}+2\right)
\end{array}\right]
$$

FIG. 3.7 ACTIONS ON TOP MOST ROW OF ELEMENTS

The previous matrix has the form:

$$
\left[\begin{array}{ll}
K_{E E} & K_{E I} \\
K_{I E} & K_{I I}
\end{array}\right]
$$

from which the matrix can be reduced to the form:

$$
\left(K_{E E}-K_{E I} K_{I I}^{-1} K_{I E}\right)
$$

as explained in article 2.4. This gives the reduced matrix:

$$
\left[\begin{array}{ll}
K^{\prime} 11 & K^{\prime} 13 \\
K_{31}^{\prime} & K_{33}^{\prime}
\end{array}\right]
$$

which relates the displacements and forces at the nodes on lines 1 and 3, only, the effects at the internal nodes being suppressed. This appears in Fig. 3.9.

Next, the third row of elements is considered, and after the stiffness matrix is generated for the row, it is combined with the previous stiffness matrices as illustrated in Fig. 3.10. The resultant matrix has the form:
$\left[\begin{array}{ccc}K^{\prime} 11 & K^{\prime} 13 & 0 \\ K^{\prime}{ }_{31} & K^{\prime}{ }_{33}+K_{33}^{3} & K_{34}^{3} \\ 0 & K_{43}^{3} & K_{44}^{3}\end{array}\right]$

As explained in the previous paragraph, the terms of the above matrix can be rearranged and the reduction process repeated for this new matrix. the resulting matrix has the

FIG. 3.IO THIRD ROW OF ELEMENTS SUPERIMPOSED
form:

$$
\left[\begin{array}{cc}
K_{11}^{\prime \prime} & K_{14}^{\prime \prime} \\
K_{41}^{\prime \prime} & K_{44}^{\prime \prime}
\end{array}\right]
$$

This process is repeated for all the rows in the segment, treating one row at a time until the bottom edge of the segment is reached. Fig. 3.11 shows the nodal actions for a segment, developed in this manner. The final stiffness matrix at this step is the required segment stiffness matrix.

The shear wall stiffness matrix could be formulated by developing the stiffness matrix for each segment in turn and superimposing them along the common edges. However, there is a serious drawback in this, from the computational point of view. To illustrate, consider two segments, as shown in Fig. 3.12. For convenience, the actions at the segment corners are differentiated from those at the internal nodes on the common segment boundaries. The stiffness matrix for the two segments can be written as:

$$
\left[\begin{array}{llllll}
K_{11} & K_{12} & K_{13} & K_{14} & 0 & 0 \\
K_{21} & K_{22} & K_{23} & K_{24} & 0 & 0 \\
K_{31} & K_{32} & K_{33}^{1+2} & K_{34}^{1+2} & K_{35} & K_{36} \\
K_{41} & K_{42} & K_{43}^{1+2} & K_{44}^{1+2} & K_{45} & K_{46} \\
0 & 0 & K_{53} & K_{54} & K_{55} & K_{56} \\
0 & 0 & K_{63} & K_{64} & K_{65} & K_{66}
\end{array}\right]
$$

FIG. $3 \cdot 12$ COMBINATION OF TWO SEGMENTS

It is obtained by the combination of the two matrices for segments 1 and 2. By rearranging the terms in the above matrix and treating nodes $1,3,5$ and 6 as external and nodes 2 and 4 as internal, the reduction process, can be applied to condense off nodes 2 and 4. If this is done, the zero terms in the above matrix are replaced by non-zero terms, due to condensation. Consequently, the shear wall stiffness matrix becomes full, and unless further simplifying assumptions are made, a great deal of computational effort and large storage requirements result.

To avoid these problems, kinematic assumptions, described in the next section, are made at the shear wall segment boundaries, in order to produce a banded shear wall stiffness matrix.
3.5 LINEAR INTERPOLATION OF INTERNAL DISPLACEMENTS AND CORRESPONDING MODIFICATION TO STIFFNESS MATRIX

From classical elasticity theory, it is reasonable to assume that the plane sections of a long slender flexural member remain plane during bending. . The assumption is therefore made here that the plane transverse sections through the shear wall at all floor levels remain plane as the structure is subjected to lateral loads, as illustrated in Fig. 3.13(a).

This assumption has two useful consequences:
(i) There is linear variation of vertical and
rotational displacements along the boundary between any two segments.
(ii) The rotation of the left end of the boundary is equal to that at the right end.
3.5(i) IINEAR INTERPOLATION OF DISPLACEMENTS

In Fig. 3.13(b), D_{A} and D_{B} are the displacements at ends A and B, respectively, of a segment boundary. The displacement D_{C} at any point C, between A and B, can be represented as

$$
\begin{equation*}
D_{C}=\frac{b}{L} D_{A}+\frac{a}{L} D_{B} \tag{3.5}
\end{equation*}
$$

For the two shear wall segments shown in Fig. 3.14, it is assumed that the stiffness matrices for segments 1 and 2 are formed separately and the stiffness coefficients along boundary J are superimposed to give the following equilibrium equations for this portion of the structure:
$\left\{\begin{array}{l}P_{1} \\ P_{2} \\ P_{3} \\ P_{4} \\ P_{5}\end{array}\right\}=\left[\begin{array}{lllll}K_{11} & K_{12} & K_{13} & 0 & K_{15} \\ K_{21} & K_{22} & K_{23} & 0 & K_{25} \\ K_{31} & K_{32} & K_{33} & K_{34} & K_{35} \\ 0 & 0 & K_{43} & K_{44} & 0 \\ K_{51} & K_{52} & K_{53} & 0 & K_{55}\end{array}\right]\left\{\begin{array}{l}D_{1} \\ D_{2} \\ D_{3} \\ D_{4} \\ D_{5}\end{array}\right\}$

(a) DEFLECTED SHAPE OF SHEAR WALL

(b) GEOMETRY OF DISPLACEMENT ALONG EDGE

FIG. $3 \cdot 13$

FIG.3.14 INTERNAL AND CORNER DISPLACEMENT VECTOR.ALONG THE SEGMENT EDGES

The aim here is to relate the displacement D_{5} to displacements D_{1} and D_{3} in order to reduce the order of the matrix in (3.6). For simplicity, the displacements along boundaries J and are represented by symbolic vectors D_{3} and D_{4}, respectively.

Let $C_{1}=b / L$ and $C_{2}=a / L$ where a, b and L are as denoted in Fig. 3.14. Then from equation 3.5:

$$
\begin{equation*}
D_{5}=C_{1} \quad D_{1}+C_{2} D_{2} \tag{3.5a}
\end{equation*}
$$

Substituting Eq. 3.5a into Eq. 3.6,
$\left\{\begin{array}{l}P_{1} \\ P_{2} \\ P_{3} \\ P_{4} \\ P_{5}\end{array}\right\}=\left[\begin{array}{ccccc}K_{11} & K_{12} & K_{13} & 0 & K_{15} \\ K_{21} & K_{22} & K_{23} & 0 & K_{25} \\ K_{31} & K_{32} & K_{33} & K_{34} & K_{35} \\ 0 & 0 & K_{43} & K_{44} & 0 \\ K_{51} & K_{52} & K_{53} & 0 & K_{55}\end{array}\right] .\left\{\begin{array}{l}D_{1} \\ D_{2} \\ D_{3} \\ D_{4} \\ C_{1} D_{1}+C_{2} D_{2}\end{array}\right\}$
or
$\left\{\begin{array}{l}P_{1} \\ P_{2} \\ P_{3} \\ P_{4} \\ P_{5}\end{array}\right\}=\left[\begin{array}{cccc}\left(K_{11}+C_{1} K_{15}\right) & \left(K_{12}+C_{2} K_{15}\right) & K_{13} & 0 \\ \left(K_{21}+C_{1} K_{25}\right) & \left(K_{22}+C_{2} K_{25}\right) & K_{23} & 0 \\ \left(K_{31}+C_{1} K_{35}\right) & \left(K_{32}+C_{2} K_{35}\right) & K_{33} & K_{34} \\ 0 & 0 & K_{43} & K_{44} \\ \left(K_{51}+C_{1} K_{55}\right) & \left(K_{52}+C_{2} K_{55}\right) & K_{53} & 0\end{array}\right]\left\{\begin{array}{l}D_{1} \\ D_{2} \\ D_{3} \\ D_{4}\end{array}\right\}_{4 \times 1}^{(3.7 a)}$
5×1
5×4

The number of unknowns is thus reduced to 4. However, there are five equations, the last of which is redundant. Also, the stiffness matrix in the above equation is not -symmetrical. To achieve symmetry, the fifth equation above is expanded as follows:
$P_{5}=\left(K_{51}+C_{1} K_{55}\right) D_{1}+\left(K_{52}+C_{2} K_{55}\right) D_{2}+K_{53} D_{3}$

Multiplying both sides of Eq. 3.8 by $C_{\text {r }}$
$C_{1} P_{5}=C_{1}\left(K_{51}+C_{1} K_{55}\right) D_{1}+C_{1}\left(K_{52}+C_{2} K_{55}\right) D_{2}+C_{1} K_{53} D_{3}$
Eq. 3.8 can be multiplied by C_{2} to give:
$C_{2} P_{5}=C_{2}\left(K_{51}+C_{1} K_{55}\right) D_{1}+C_{2}\left(K_{52}+C_{2} K_{55}\right) D_{2}+C_{2} K_{53} D_{3}$

Expanding the first two of Eqs. (3.7a)
$P_{1}=\left(K_{11}+C_{1} K_{15}\right) D_{1}+\left(K_{12}+C_{2} K_{15}\right) D_{2}+K_{13} D_{3}$
$P_{2}=\left(K_{21}+C_{1} K_{25}\right) D_{1}+\left(K_{22}+C_{2} K_{25}\right) D_{2}+K_{23} D_{3}$

Adding Eqs. 3.11 and 3.9,
$P_{1}+C_{1} P_{5}=\left\{\left(K_{11}+C_{1} K_{15}\right)+C_{1}\left(K_{51}+C_{1} K_{55}\right)\right\} D_{1}+$

$$
\begin{equation*}
\left\{\left(K_{12}+C_{2} K_{15}\right)+C_{1}\left(K_{52}+C_{2} K_{55}\right)\right\} D_{2}+\left(K_{13}+C_{1} K_{53}\right) D_{3} \tag{3.13}
\end{equation*}
$$

Since, from symmetry, $K_{15}=K_{51}$, the Eq. (3.13) can be rewritten as

$$
\begin{gather*}
P_{1}+C_{1} P_{5}=\left(K_{11}+2 C_{1} K_{15}+C_{1}^{2} K_{55}\right) D_{1}+\left(K_{12}+C_{2} K_{15}+C_{1} K_{52}+C_{1} C_{2} K_{55}\right) D_{2} \\
+\left(K_{13}+C_{1} K_{53}\right) D_{3} \tag{3.13a}
\end{gather*}
$$

Similarly, addition of Eqs. 3.12, and 3.10 yields

$$
\begin{gathered}
P_{2}+C_{2} P_{5}=\left\{\left(K_{21}+C_{1} K_{25}\right)+C_{2}\left(K_{51}+C_{1} K_{55}\right)\right\} D_{1}+\left\{\left(K_{22}+C_{2} K_{25}\right)+C_{2}\right. \\
\left.\quad\left(K_{52}+C_{2} K_{55}\right)\right\} D_{2}+\left(K_{23}+C_{2} K_{53}\right) D_{3} \\
\text { or, since } K_{52}=K_{25} \\
P_{2}+C_{2} P_{5}=\left(K_{21}+C_{1} K_{25}+C_{2} K_{51}+C_{1} C_{2} K_{55}\right) D_{1}+\left(K_{22}+2 C_{2} K_{25}+C_{2}{ }^{2} K_{55}\right) D_{2} \\
+\left(K_{23}+C_{2} K_{53}\right) D_{3}
\end{gathered}
$$

' P_{5} ' is the external force vector at C, a point between A and B. Since it is assumed that the external forces are applied only at the corner nodes, P_{5} can be taken as zero. Also, the fifth of equations (3.7a) is redundant and can be omitted. The final matrix after reduction is thus:

The stiffness matrix in Eq. (3.15) is symmetrical and it can be noted that $K_{14}, \mathrm{~K}_{2} 24, \mathrm{~K}_{41}$ and K_{42} remain zero after the reduction. Also, K_{33}, K_{34}, K_{43} and K_{44} remain unaltered. In other words, only the rows and columns corresponding to the terms which are related to the displacement that is being reduced are altered. These are represented by rows $I 1$ and $I 2$ and columns $J 1$ and $J 2$ in Eq. (3.15).

In general, if ' K ' is the displacement being reduced and 'I' and 'J' are the displacements to which 'K' is related by an expression of the form

$$
D_{k}=C_{I} D_{I}+C_{2} D_{J}
$$

the terms in the Ith row and Jth row are altered as follows:

where L is any other term, related to I, J or K, that -undergoes subsequent changes. Therefore, the actions that are not directly related to I, J or K do not undergo any change during the modification.

Any number of internal nodal displacement vectors on a boundary between two segments can be related to the end displacements in turn and the size of stiffness matrix can be correspondingly reduced.

3.5(ii) REDUCTION OF END ROTATIONS OF AN EDGE

When a beam with a large bending stiffness frames into -a shear wall at any level, there is a considerable amount of local deformation at the junction. This results in artificially large values of rotational displacement, since the moment applied to the shear wall by the beam is applied as a concentrated couple at a point, rather than being distributed over the finite beam depth. The error is reduced for comparatively slender beams. To avoid this problem, the rotations at the two ends of a shear wall segment boundary are assumed equal. This assumption is consistent with that made earlier, that the plane transverse sections through the shear wall remain plane during bending. The assumption is also equivalent to assuming a rigid horizontal stiffening rib attached to the shear wall at each floor level. Consequently, the rotation at the ends of the imaginary rib can be related to the vertical displacement at its ends. This approach not only avoids the problem of local

(a) ROTATION OF SHEAR WALL

(b) GEOMETRY OF END ROTATION

FIG. 3.15
deformation, it also reduces the number of generalized coordinates by two at each segment boundary and, hence, reduces the number of equations to be solved. The corresponding modification to the shear wall stiffness is outlined here. The reduction of the beam end rotation at the junction of a beam and a shear wall is explained in the next chapter.

Fig. $3.15(a)$ shows an imaginary stiffening rib $A B$ on the boundary between two shear wall segments 1 and 2. The displacenents of the rib during loading are shown in fig. $3.15(b)$.

It can be seen from the figure that

$$
\sin \theta=d_{B} / L_{2}=-d_{A} / L_{1}=\theta
$$

(since, for small angles, $\sin \theta \simeq \theta$).
Also,

$$
L_{1}=L-L_{2}=L-\frac{d_{B}}{\theta}=-\frac{d_{A}}{\theta}
$$

Thus,

$$
\begin{align*}
& \frac{1}{\theta}\left(d_{B}-d_{A}\right)=L \tag{3.16}\\
& \theta=\left(d_{B}-d_{A}\right) / L
\end{align*}
$$

where θ is the shear wall rotation at each end of the stiffening rib. Thus, the end rotations can be related to the vertical deflections at the ends of the rib. Similarly, the force components (rotational) at the two ends can be written as.

$$
\left(m_{B}+m_{A}\right) / L=-p_{A}=p_{B}
$$

FIG. 3.16 DISPLACEMENT VECTOR FOR REDUCTION OF END ROTATIONS

The stiffness matrix for each shear wall segment can thus be modified using relationships of the form of Eqs. (3.16) and (3.17) to reflect the reduced number of degrees of freedom for the segment.

Fig. (3.16) shows the displacement vector for a typical segment. From Eqs. (3.16) and (3.17),

$$
\begin{equation*}
d_{3}=d_{5}=\frac{d_{4}-d_{2}}{L} \tag{3.16a}
\end{equation*}
$$

and

$$
\begin{equation*}
-p_{2}=p_{4}=\frac{p_{3}+p_{5}}{L} \tag{3.17a}
\end{equation*}
$$

The equilibrium equations relating displacement components d_{1} to d_{5} and force components p_{1} to p_{5}, with $E q$. (3.16a) employed to eliminate d_{3} and d_{5}, are:
$\left\{\begin{array}{l}p_{1} \\ p_{2} \\ p_{3} \\ p_{4} \\ p_{5}\end{array}\right\}=\left[\begin{array}{lllll}K_{11} & K_{12} & K_{13} & K_{14} & K_{15} \\ K_{21} & K_{22} & K_{23} & K_{24} & K_{25} \\ K_{31} & K_{32} & K_{33} & K_{34} & K_{35} \\ K_{41} & K_{42} & K_{43} & K_{44} & K_{45} \\ K_{51} & K_{52} & K_{53} & K_{54} & K_{55}\end{array}\right]\left\{\begin{array}{l}d_{1} \\ d_{2} \\ \frac{d_{4}-d_{2}}{d_{4}} \\ \frac{d_{4}-d_{2}}{L}\end{array}\right\}$

Expanding each of the Eqs. 3.18,

$$
\left.\begin{array}{l}
p_{1}=K_{11} d_{1}+\left(K_{12}-\frac{K 13}{L}-\frac{K 15}{L} d_{2}+\left(K_{14} \pm \frac{K 13}{L}+\frac{K 15}{L} d_{4}\right.\right. \\
p_{2}=K_{21} d_{1}+\left(K_{22}-\frac{K 23}{L}-\frac{K 25}{L}\right) d_{2}+\left(K 24+\frac{K 23}{L}+\frac{K 25}{L}\right) d_{4} \\
p_{3}=K_{31} d_{1}+\left(K_{32}-\frac{K 33}{L}-\frac{K 35}{L} d_{2}+\left(K_{34}+\frac{K_{33}}{L}+\frac{K_{35}}{L}\right) d_{4}\right. \\
P_{4}=K_{41} d_{1}+\left(K_{42}-\frac{K_{43}}{L}-\frac{K_{45}}{L}\right) d_{2}+\left(K_{44}+\frac{K_{43}}{L}+\frac{K_{45}}{L} d_{4}\right. \\
p_{5}=K_{51} d_{1}+\left(K_{52}-\frac{K_{53}}{L}-\frac{K_{55}}{L}\right) d_{2}+\left(K_{54}+\frac{K_{53}}{L}+\frac{K_{55}}{L}\right) d_{4}
\end{array}\right\}
$$

From these equations,

$$
\begin{aligned}
\frac{p_{3}}{L} & =K_{31} d_{1}+\frac{1}{L}\left(K_{32}-\frac{K_{33}}{L}-\frac{K_{35}}{L}\right) d_{2}+\frac{1}{L}\left(K_{34}+\frac{K_{33}}{L}+\frac{K_{35}}{L}\right) \\
\frac{p_{5}}{L}= & K_{51} d_{1}+\frac{1}{L}\left(K_{52}-\frac{K_{53}}{L}-\frac{K_{55}}{L} d_{2}+\frac{1}{L}\left(K_{54}+\frac{K_{53}}{L}+\frac{K_{55}}{L}\right) d_{4}\right. \\
p_{2}- & -\frac{p_{3}}{L}+\frac{\left.p_{5}\right)}{L}=\left(K_{21}-\frac{K_{31}}{L}-\frac{K_{51}}{L}\right) d_{1}+\left\{\left(K_{22}-\frac{K_{23}}{L}-\frac{K_{25}}{L}\right)\right. \\
& -\frac{1}{L}\left(K_{32}-\frac{K_{33}}{L}-\frac{K_{35}}{L}\right)-\frac{1}{L}\left(K_{52}-\frac{K_{53}}{L}-\frac{K_{55}}{L}\right\} d_{2} \\
& +\left\{\left(K_{24}+\frac{K_{23}}{L}+\frac{K_{25}}{L}-\frac{1}{L}\left(K_{34}+\frac{K_{33}}{L}+\frac{K_{35}}{L}-\frac{1}{L}\left(K_{54}+\frac{K_{53}}{L}+\frac{K_{55}}{L}\right\} d_{4}\right.\right.\right.
\end{aligned}
$$

$$
p_{4}+\frac{p_{3}}{L}+\frac{p_{5}}{L}=\left(K_{41}+\frac{K_{31}}{L}+\frac{K_{51}}{L}\right) d_{1}+\left\{\left(K_{42}-\frac{K_{43}}{L}-\frac{K_{45}}{L}\right.\right.
$$

$$
\left.+\frac{1}{L}\left(K_{32}-\frac{K_{33}}{L}-\frac{K_{35}}{L}\right)+\frac{1}{L}\left(K_{52}-\frac{K_{53}}{L}-\frac{K_{55}}{L}\right)\right\} d_{2}
$$

$$
+\left\{\left(K_{44}+\frac{K_{43}}{L}+\frac{K_{45}}{L}\right)+\frac{1}{L}\left(K_{34}-\frac{K_{33}}{L}+\frac{K_{35}}{L}\right)+\frac{1}{L}\left(K_{54}+\frac{K_{53}}{L}+\frac{K_{55}}{L}\right)\right\} d_{4}
$$

p_{3} and p_{5} are the external moments corresponding to displacement components d_{3} and d_{5}. Since the structure is assumed to be loaded by horizontal external forces only, moments P_{3} and P_{5} are assumed to be zero. In any event, the corresponding equilibrium equations are redundant, and the equations relating forces and displacements. at the top boundary of the segment reduce to the, Eq. (3.19) shown in the next page.

3.6 SUMMARY

In summary, the shear wall stiffness matrix is generated by subdividing the wall into segments, each segment representing the portion of the shear wall between two consecutive floors.

Then proceeding from the top segment on any wall and working toward the base of the wall, the following operations are performed for each segment:
(a) The segment is subdivided into a rectangular finite element array.
(b) Using the procedure described in Section 3.4, the interior nodes for the segment (all nodes except on the top and bottom boundaries of the segment) are condensed out of the segment stiffness matrix. That is, the matrix is modified to relate forces and displacements along .the top and bottom boundaries of the segment.
(c) The stiffness matrix for the segment is superimposed on that portion of the shear wall above it. Then employing the assumptions discussed in Section 3.5, all nodes along the upper boundary of the segment, except the end nodes, are condensed off.
(d) Finally, using the assumption that plane transverse sections of the shear wall remain plane during bending, the rows and columns of the stiffness matrix corresponding to the rotational degrees of freedom at the ends of the upper boundary of the segment, are eliminated.

When all segments have been considered, the resulting stiffness matrix relates vertical and horizontal forces applied to the shear wall at each floor level to the resulting displacements.

After the complete structure has been analyzed, the relationships described in Section 3.5 can be used to calculate the moments and rotations at the edges of the shear wall at each floor level.

ANALYSIS OF FRAME

4.1 INTRODUCTION

The generation of the stiffness matrix for the frame is easier than that for the shear wall, since the frame is already idealized as consisting of discrete elements, the elements being beams and columns. The individual stiffness matrices for the beams and columns can be calculated exactly, in closed form, using the principle of virtual work or classical theories. However, to be consistent, the stiffness matrix for the frame should be calculated with an accuracy comparable to that of shear wall stiffness matrix. For this reason, only effective lengths of beams and columns are considered for the purpose of analysis. By effective length is meant the clear length between support faces. However, the beams and columns have finite depths which result in discrepancies between the member end displacements and the corresponding joint displacements. The stiffness matrices for the various members can, however, be developed in terms of clear lengths and then modified to relate forces and displacements at the joint. The joints are considered to be rigid and as shown in Fig. 4.1, any point in the

FIG. 4.1 INTERSECTION OF COLUMNS \& BEAMS

LCB - Clear length of beam
LCC - Clear length of column
Ll - left rigid length of beam
LR - RIGHT Rigid length of beam
LT - top rigid length of column
Lb - bottom rigid length of column
hatched portion undergoes the same displacement. The reference point is taken as the intersection of the centre lines of columns and beams for any particular joint.

The member local coordinate :system is assumed as follows:

The x-axis lies along the axis of the member and axes y and Z are parallel to the principal axes of the member cross section. They are assumed to be positive according to a right hand coordinate system. "Wherever necessary, the local system is identified with primes.

4.2 STIFFNESS MATRIX FOR BEAM

Since it is assumed that all floor slabs are infinitely rigid in their own planes, there is a rigid body translation of the beam in the horizontal direction. In other words, the axial deformation of the beam is considered negligible. Hence, there are only four displacement. components to be considered in developing the stiffness matrix for the beam. They are shown in Fig. 4.2. It can be noted that the local coordinate system for the beam coincides with the global system for the structure. Hence, no rotation transformation of the beam stiffness matrix is required. With the four generalized coordinates, shown in Fig. 4.2, and ignoring shearing deformations, the stiffness matrix for the beam can
FIG. 4.2 BEAM WITH END RIGID LENGTHS
where $\beta=12 \mathrm{EI} / \mathrm{L}^{3}$

E and I are the modulus of elasticity and moment of inertia of the beam, respectively.

The transformation of the stiffness matrix to the end reference points is achieved by the following procedure.
4.2(i) STIFFNESS MATRIX FOR END 1

Member $B C$ is connected to rigid bodies $A B$ and $C D$. Let the displacements and forces at A be D_{A} and P_{A}, respectively, where

$$
\mathrm{D}_{\mathrm{A}}=\left\{\begin{array}{l}
\mathrm{dA}_{1} \\
\mathrm{dA}_{2}
\end{array}\right\} \quad \mathrm{P}_{\mathrm{A}}=\left\{\begin{array}{l}
\left.\mathrm{pA}_{1}\right\} \\
\mathrm{pA}_{2}
\end{array}\right\} \begin{aligned}
& \mathrm{dA}_{1}, \mathrm{dA}_{2} \text { and } \mathrm{pA}_{1}, \\
& \mathrm{pA}_{2} \text { are the dis } \\
& \text { placement and } \\
& \text { force components }
\end{aligned}
$$ respectively at A.

Similarly, the displacements and forces at B can be represented by the corresponding vectors, D_{B} and P_{B}., respectively.

The force transformation from B to A is achieved by the following transformation:

$$
\begin{equation*}
P_{A}=H_{A B} P_{B} \tag{4.2}
\end{equation*}
$$

where

$$
\mathrm{P}_{\mathrm{A}}=\left\{\begin{array}{l}
\mathrm{pA}_{1} \\
\mathrm{pA}_{2}
\end{array}\right\} \quad, \quad \mathrm{H}_{\mathrm{AB}}=\left[\begin{array}{ll}
1 & 0 \\
\mathrm{~L}_{\mathrm{L}} & 1 .
\end{array}\right] \quad \text { and } \quad \mathrm{P}_{\mathrm{B}}=\left\{\begin{array}{c}
\mathrm{pB}_{1} \\
\mathrm{pB}_{2}
\end{array}\right\}
$$

For the rigid body translation, the displacements at B can be expressed in terms of the displacement at A using the displacement transformation:

$$
\left\{\begin{array}{l}
\mathrm{dB}_{1} \\
\mathrm{~dB}_{2}
\end{array}\right\}=\left[\begin{array}{cc}
1 & L_{L} \\
0 & 1
\end{array}\right]\left\{\begin{array}{l}
\mathrm{dA}_{1} \\
\mathrm{dA}_{2}
\end{array}\right\}
$$

It can be seen from equation (4.2) that

$$
\begin{equation*}
D_{B}=\left(H_{A B}\right)^{T} D_{A} \tag{4.3}
\end{equation*}
$$

The displacement transformation from D to C can be written as

$$
\left\{\begin{array}{c}
\mathrm{dC}_{1} \\
\mathrm{dC}_{2}
\end{array}\right\}=\left[\begin{array}{cc}
1 & -\mathrm{L}_{\mathrm{R}} \\
0 & 1
\end{array}\right] \quad\left\{\begin{array}{c}
\mathrm{dD}_{1} \\
\mathrm{dD}_{2}
\end{array}\right\}
$$

In symbolic form,

$$
\begin{equation*}
\therefore \quad D_{C}=\left(H_{C D}^{-1}\right)^{T} \quad D_{D} \tag{4.4}
\end{equation*}
$$

where

$$
\mathrm{H}_{\mathrm{CD}}=\left[\begin{array}{ll}
1 & 0 \\
\mathrm{~L}_{\mathrm{R}} & 1
\end{array}\right]
$$

$H_{C D}$ is the force transformation matrix from D to C.
Considering member $B C$ in Figure 4.2, the force at B can be written as,

$$
\begin{equation*}
P_{B}=K_{B B} D_{B}+K_{B C} D_{C} \tag{4.5}
\end{equation*}
$$

where $K_{B B}$ relates force at B due to displacements at B, $K_{B C}$ relates force at B due to displacements at C, D_{B} is the displacement vector at B and D_{C} is the displacement vector at C.

Substituting for D_{B} and D_{C} from equations (4.3) and (4.4),

$$
\begin{equation*}
P_{B}=K_{B B} H_{A B}^{T} D_{A}+K_{B C}\left(H_{C D}^{-1}\right) \quad D_{D} \tag{4.6}
\end{equation*}
$$

But, from equation (4.2),

$$
P_{A}=H_{A B} \quad P_{B}
$$

Therefore, substituting for P_{B} from (4.6),
$P_{A}=\left(H_{A B} K_{B B} H_{A B}^{T}\right) D_{A}+\left(H_{A B} K_{B C}\left(H_{C D}^{-1}\right)^{T}\right) D_{D}$
It is clear from this equation that

$$
\therefore P_{A}=K_{A A} D_{A}+K_{A D} D_{D}
$$

where
$K_{A A}=\left(H_{A B} K_{B B} H_{A B}^{T}\right)$ is the force vector at A due -to unit
displacement at A, with $D_{B}=0$,
and
$K_{A D}=\left(H_{A B} \quad K_{B C} \quad\left(H_{C D}^{-1}\right)^{T}\right)$ is the force vector at A due to unit displacement at D, with $D_{A}=0$.

It should be noted here that :the stiffness matrix $K_{B B}$ reflects deformations of member $B C$ only. From equation (4.1),

$$
K_{B B}=\left[\begin{array}{ll}
\beta & \beta L / 2 \\
\beta L / 2 & \beta L^{2} / 3
\end{array}\right] \quad, K_{B C}=\left[\begin{array}{ll}
-\beta & \beta L / 2 \\
-\beta L / 2 & \beta L^{2} / 6
\end{array}\right]
$$

Therefore,
$K_{A A}=H_{A B} K_{B B} H_{A B}^{T}$

$$
=\left[\begin{array}{ll}
1 & 0 \\
\mathrm{~L}_{\mathrm{L}} & 0
\end{array}\right]\left[\begin{array}{ll}
\beta & \frac{\beta \mathrm{C}_{\mathrm{CB}}}{2} \\
\frac{\beta \mathrm{C}_{\mathrm{CB}}}{2} & \frac{\mathrm{BL}^{2}{ }^{2} \mathrm{CB}}{3}
\end{array}\right]\left[\begin{array}{ll}
1 & \mathrm{~L}_{\mathrm{L}} \\
0 & 1
\end{array}\right]
$$

or,

$$
K_{A A}=\left[\begin{array}{lc}
\beta & \beta\left(L_{L}+\frac{L_{C B}}{2}\right. \tag{4.8}\\
\beta\left(L_{L}+\frac{L_{C B}}{2}\right. & \beta L_{L}\left(L_{L}+L_{C B}\right)+\frac{\beta L_{C B}}{3}
\end{array}\right]
$$

Similarly,
$K_{A D}=H_{A B} \quad K_{B C}\left(H_{C D}^{-1}\right)^{T}$
$=\left[\begin{array}{cc}1 & 0 \\ L_{L} & 0\end{array}\right] \ldots\left[\begin{array}{cc}-\beta & \frac{\beta L_{C B}}{2} \\ -\beta L_{C B} & \frac{\beta L_{C B}{ }^{2}}{6}\end{array}\right]\left[\begin{array}{cc}1 & -L_{R} \\ 0 & 1\end{array}\right]$

$$
K_{A D}=\left[\begin{array}{lc}
-\beta & \beta\left(L_{R}+\frac{L_{C B}}{2}\right. \tag{4.9}\\
-\beta\left(L_{L}+\frac{L_{C B}}{2}\right) & \beta\left(L_{L} L_{R}+\frac{L_{C B}}{2}\left(L_{L}+L_{R}\right)+\frac{L_{C B}}{3}{ }^{2}\right)
\end{array}\right]
$$

4.2(ii) STIFFNESS MATRIX FOR END 2

The force transformation matrix from C to D is obtained using the following transformation.

$$
\left\{\begin{array}{l}
\phi D_{1} \\
b D_{2}
\end{array}\right\}=\left[\begin{array}{cc}
1 & 0 \\
-L_{R} & 1
\end{array}\right\}\left\{\begin{array}{l}
p C_{1} \\
p C_{2}
\end{array}\right\} \begin{aligned}
& \mathrm{pC}_{1}, \mathrm{pC}_{2} \text { and } \mathrm{pD}_{1}, \mathrm{pD}_{2} \text { are the } \\
& \text { force components at } C \& D \\
& \text { respectively. }
\end{aligned}
$$

or,

$$
P_{D}=H_{C D}{ }^{-1} P_{C}
$$

The force at C is

$$
\begin{equation*}
P_{C}=K_{C C} D_{C}+K_{C B} D_{B} \tag{4.11}
\end{equation*}
$$

where $K_{C C}$ is the force vector at C due to a unit displacement vector at C, and $K_{C B}$ is the force vector at C due to a unit displacement vector at $B . D_{C}$ and D_{B} are the
displacement vectors at C and B, respectively.
Substituting for D_{B} and D from Eqs. (4.3) and (4.4),

$$
\begin{equation*}
P_{C}=K_{C C}\left(H_{C D}^{-1}\right)^{T} D_{D}+K_{C B} \quad H A B^{T} D_{A} \tag{4.12}
\end{equation*}
$$

But from equation (4.10),
-1
$P_{D}=H_{C D} . P_{C}$

Therefore,
$P_{D}=\left(H_{C D}{ }^{-1} K_{C C}\left(H_{C D}^{-1}\right)^{T}\right) D_{D}+\left(H_{C D}^{-1} K_{C B} H_{A B}^{T}\right) D_{A}$ (4.13) It is clear from the above equation that
$K_{D D}={ }^{H} C D^{-1} K_{C C} \quad\left({ }^{H} C^{-1}\right)^{T}$ and
$K_{D A}=H_{C D}^{-1} \quad K_{C B}{ }^{H} \stackrel{T}{ }{ }^{\mathrm{T}}$
Again, $K_{C C}$ and $K_{C B}$ reflect the deformations of member $B C$ only.

From Eq. (4.1),
$K_{C C}=\left[\begin{array}{ll}\beta & -\frac{\beta L_{C B}}{2} \\ -\beta L_{C B} \\ \frac{\beta}{2} & \frac{\beta L_{C B}}{3}\end{array}\right] \quad$ and $K_{C B}=\left[\begin{array}{ll}-\beta & -\frac{\beta L_{C B}}{2} \\ \frac{\beta L_{C B}}{2} & \frac{\beta L_{C B}{ }^{2}}{6}\end{array}\right]$

Therefore,
$K_{D D}=H_{C D}^{-1} \cdot K_{C C} \quad\left(H_{C D}^{-1}\right)^{T}$

$$
=\left[\begin{array}{ll}
1 & 0 \\
-L_{R} & 0
\end{array}\right]\left[\begin{array}{cc}
\beta & \frac{-\beta L_{C B}}{2} \\
\frac{-\beta L_{C B}}{2} & \frac{\beta L_{C B}^{2}}{3}
\end{array}\right]\left[\begin{array}{cc}
1 & -L_{R} \\
0 & 1
\end{array}\right]
$$

$$
K_{D D}=\left[\begin{array}{cc}
\beta r \\
\beta & -\beta\left(L_{R}+\frac{L_{C B}}{2}\right) \tag{4.14}\\
-\beta\left(L_{R}+\frac{L_{C B}}{2}\right) & \beta L_{R}\left(L_{R}+L_{C B}\right)+\frac{\beta L_{C B}}{2}
\end{array}\right]
$$

And
$K_{D A}=H_{C D}{ }^{-1} K_{C B}{ }^{H} A B^{T}$
$=\left[\begin{array}{ll}1 & 0 \\ -I_{R} & 1\end{array}\right]\left[\begin{array}{cc}-\beta & -\beta L_{C B} \\ \frac{\beta L_{C B}}{2} & \frac{\beta L_{C B}}{2}\end{array}\right]\left[\begin{array}{cc}1 & L_{L} \\ 0 & 1\end{array}\right]$

$$
K_{D A}=\left[\begin{array}{cc}
-\beta & -\beta\left(L_{L}+\frac{L_{C B}}{2}\right. \\
\beta\left(L_{R}+\frac{L_{C B}}{2}\right) & \beta\left(L_{L L_{R}}+\frac{L_{C B}}{2}\left(L_{L}+L_{R}\right)+\frac{L_{C B}}{6}\right)
\end{array}\right]
$$

Note that $K D A=K A D$, in accordance with the Maxwell-Betti reciprocal theorem.

The final stiffness matrix for the beam can be written
$K=\left[\begin{array}{ll}K_{A A} & K_{A D} \\ K_{D A} & K_{D D}\end{array}\right]$

Substituting for $K_{A A}, K_{A D}, K_{D A}$ and $K_{D D}$ from equations (4.8);
(4.9), (4.14) and (4.15), we have the final matrix for the beam as shown in Table 4.1.
4.3 STIFFNESS MATRIX FOR COLUMN

Each column has three degrees of freedom at each of its ends, giving rise to six generalized coordinates as illustrated in Fig. 4.3. In general, the stiffness matrix for a planar member is given by,
$K^{\prime}=\left[\begin{array}{cccccc}\frac{A E}{L} & 0 & 0 & -\frac{A E}{L} & 0 & 0 \\ 0 & \beta & \frac{\beta L}{2} & 0 & \beta & \frac{\beta L}{2} \\ 0 & \frac{\beta L}{2} & \frac{\beta L^{2}}{3} & 0 & \frac{-\beta L}{2} & \frac{\beta_{L}{ }^{2}}{6} \\ \frac{-A E}{L} & 0 & 0 & \frac{A E}{L} & 0 & 0 \\ 0 & \beta & \frac{-\beta L}{2} & 0 & \beta & \frac{-\beta \beta_{2}}{2} \\ 0 & \frac{\beta L}{2} & \frac{\beta L^{2}}{6} & 0 & \frac{-\beta L}{2} & \frac{\beta_{L}^{2}}{3}\end{array}\right]$
where $\beta=12 \mathrm{EI} / \mathrm{L}^{3}$ and E and I are modulus of elasticity and moment of inertia, respectively. Shearing deformations are again considered negligible. The above stiffness matrix is expressed in terms of the local coordinate: system for the column, as shown in Fig. 4.3, where the primed axes represent the local system. It must therefore be given a rotation transformation to transform it to the global system before the translation is performed to refer the stiffness coefficients to the joints.

TABLE 4.1
STIFFNESS MATRIX FOR BEAM

where

$$
\beta=12 \mathrm{EI} / \mathrm{L}_{\mathrm{CB}}^{3}
$$

FIG. 4.3 COLUMN WITH END RIGID LENGTHS

The rotation transformation matrix is given by
$R=\left[\begin{array}{cccccc}0 & -1 & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right]$

The stiffness matrix in the global system can be obtained using $K=R K^{\prime} R^{T}$ (where the prime represents the local coordinate system). This matrix operation is shown on the next page.
4.3(i) STIFFNESS MATRIX FOR END 1

The force transformation matrix from B to A and D to C, both in the global system, are given by
$H_{A B}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -L_{B} & 0 & 1\end{array}\right] \quad$ and $H_{C D}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -L_{T} & 0 & 1\end{array}\right]$.

As shown for the beam,
$P_{A}={ }^{H} A B P_{B}$
\therefore Sid : \because
and
$D_{B}=H_{A B}{ }^{\top} D_{A}$
: : :
where P_{A} and P_{B} represent forces at A and. B, respectively, and D_{A} and D_{B} represent: the corresponding displacements.

$$
\begin{aligned}
& 0 \\
& \hline 0
\end{aligned} 0000 \mathrm{H}
$$

$$
(4.17)
$$

$$
\bigcirc \underset{\sim}{\sim} \underset{\sim}{N} \times \underset{\sim}{\sim}
$$

$$
\begin{array}{llllll}
\hline 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
H & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \| \\
& \approx \\
& \underset{\sim}{n}
\end{aligned}
$$

As before,

$$
\begin{align*}
P_{A} & =\left(H_{A B} K_{B B} H_{A B}^{T}\right) D_{A}+\left(H_{A B} K_{B C}\left(H_{C D}^{-1}\right) D_{D}\right. \\
& =K_{A A} D_{A}+K_{A D} D_{D} \cdots \because \because \because \cdots \tag{4.20}
\end{align*}
$$

$K_{B B}$ and $K_{B C}$ are taken from equation (4.17). Therefore,

$$
K_{A A}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-L_{B} & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\beta & 0 & -\beta L / 2 \\
0 & A E \Lambda & 0 \\
-\beta L / 2 & 0 & \beta L^{2} / 3
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & -L_{B} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

or.

$$
K_{A A}=\left[\begin{array}{clc}
\beta & 0 & -\beta\left(L_{B}+L_{C C} / 2\right) \tag{4.21}\\
0 & A E / L & 0 \\
-\beta\left(L_{B}+L_{C C} \prime^{2}\right) & 0 & \beta L_{B}\left(L_{B}+L_{C C}\right)+\beta \frac{L_{C C}}{3}
\end{array}\right]
$$

$$
\text { Similarly, } K_{A D}={ }_{H} A B^{K_{B C}}\left({ }^{H} C D^{-1}\right)^{T} \ldots \text { Thus, }
$$

$$
K_{A D}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-L_{B} & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
-\beta & 0 & -\beta L_{C C} / 2 \\
0 & A E / L & 0 \\
\beta L / 2 & 0 & \beta L^{2} / 6
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & L_{T} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

from which

$$
K_{A D}=\left[\begin{array}{ccc}
-\beta & 0 & -\beta\left(L_{T}+\frac{\left.L_{C C}\right)}{2}\right. \tag{4.22}\\
0 & -A E / L & 0 \\
\beta\left(L_{B}+\frac{I_{C C}}{2}\right. & 0 & \beta\left(L_{T} L_{B}+\frac{L_{B} L_{C C}}{2}+\frac{L_{T} L_{C C}}{2}+\frac{L_{C C}}{6}\right)
\end{array}\right]
$$

4.3 (ii) STIFFNESS MȦTRIX FOR END 2 Proceeding on a similar basis to that above,

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{D}}=\mathrm{H}_{\mathrm{CD}}{ }^{-1}{ }^{-1} \mathrm{P} \\
& P_{C}=K_{C C} D_{C}+K_{C B} D_{B} \\
& =K_{C C}\left(H_{C D}{ }^{-\boldsymbol{1}}\right)^{\boldsymbol{T}} D_{D}+K_{C B} H_{A B}^{T} D_{A} \\
& \text { or } \mathrm{P}_{\mathrm{D}}=\mathrm{H}_{\mathrm{CD}^{-1}} \mathrm{~K}_{\mathrm{CC}}\left(\mathrm{H}_{\mathrm{CD}}{ }^{-1}\right)^{\mathrm{T}} \mathrm{D}_{\mathrm{C}}+{ }^{H_{C D}}{ }^{-1} \mathrm{~K}_{\mathrm{CB}} \mathrm{H}_{\mathrm{AB}}{ }^{T} \mathrm{D}_{\mathrm{A}}
\end{aligned}
$$

Therefore,
$\mathrm{K}_{\mathrm{DD}}=\mathrm{H}_{\mathrm{CD}}{ }^{-1} \mathrm{~K}_{\mathrm{CC}}{ }^{\left.\left(\mathrm{H}_{\mathrm{CD}}\right)^{\mathbf{- 1}}\right)^{\mathrm{T}} \quad \because \quad \therefore \quad \therefore \quad:}$
and
$K_{D A}=H_{C D}{ }^{-1} K_{C B}{ }^{-1}{ }^{\mathrm{T}}{ }^{-1}$

Thus,
$K_{D D}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ L_{T} & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\beta & 0 & \beta L_{C C} / 2 \\ 0 & A E / L & 0 \\ \frac{\beta L_{C C}}{2} & 0 & \beta \frac{\beta L_{C C}}{3}\end{array}\right]\left[\begin{array}{lll}1 & 0 & L_{T} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
or,
$K_{D D}=\left[\begin{array}{ccc}\beta & 0 & \left(L_{T}+\frac{L_{C C}}{2} \beta\right. \\ 0 & A E / L & 0 \\ \beta\left(L_{T}+\frac{L_{C C}}{2}\right) & 0 & L_{T} \beta\left(L_{T}+L_{C C}\right)+\frac{\beta L_{C C}{ }^{2}}{3}\end{array}\right]$
(4.25)

T
By symmetry, $K_{D A}=K_{A D}$. ...Therefore, from equation (4.22),

$$
K_{D A}=\left[\begin{array}{lcc}
-\beta & 0 & \beta\left(L_{B}+\frac{L_{C C}}{2}\right. \\
0 & -A E / L & 0 \\
-\frac{\left(L_{T}+\frac{L_{C C}}{2}\right.}{} & 0 & \beta\left(L_{B} L_{T}+L_{T} \frac{L_{C C}}{2}+\frac{L_{B}}{\frac{L_{C C}}{2}}+\beta \frac{L_{C C}}{6}\right.
\end{array}\right]
$$

Combining equations (4.21), (4.22), (4.25) and (4.26), we have the stiffness matrix for the column as

$$
K=\left[\begin{array}{ll}
K_{A A} & K_{A D} \\
K_{D A} & K_{D D}
\end{array}\right]
$$

This appears in Table 4.2.
4.4 MODIFICATION TO BEAM STIFFNESS FOR BEAMS FRAMING INTO SHEAR WALL

It was pointed out in section 3.5 (ii) that large local distortions tend to occur in a :shear wall where a beam, represented as a line element, frames into it. A procedure for eliminating the rotational degree of freedom for the shear wall at the point was discussed. Since the beam has a rotational degree of freedom at its end, this cannot be directly combined with the shear wall stiffness at the wall beam junction. This section deals with the modification to the beam stiffness, if either end or both ends frame into the shear wall.

$+{ }_{\substack{+\infty \\ 0 \\ 0 \\ 0}}$

4.4 (i) LEFT END OF BEAM ERAMINS INTO SHEAR WALL

Fig. 4.4 shows the left end of a beam framing into a shear wall. The nodes are designated by A, B and C. In the overall structure, the displacement components at A, B and C are d_{1} to d_{4} as represented in the figure. But when the beam is isolated, it has four degrees of freedom, represented by the displacement vectors d_{I}, d_{J}, d_{K} and d_{L} in the figure. As can be seen from the figure, the stiffness factor corresponding to d_{J} cannot be directly combined with the shear wall stiffness. Therefore, by geometry, the rotation of the beam where it meets the shear wall can be expressed in terms of the vertical shear wall displacements as follows:

$$
\begin{equation*}
d_{J}=\left(d_{2}-d_{1}\right) / L \tag{4.27}
\end{equation*}
$$

Similarly, the beam end moment at the shear wall-beam junction can be expressed as

$$
\begin{equation*}
p_{J} / L=-p_{1}=p_{2} \tag{4.28}
\end{equation*}
$$

where $L=$ shear wall width and p stands for the force vector. With the above relations, d_{J} has to be eliminated and there is subsequent modification to stiffness at nodes A, B and C.

The stiffness matrix relating forces and displacements at A, B and C can be written as:

fig. 4.4 Left end of beam framing into shear wall

$$
\left\{\begin{array}{l}
p_{1} \tag{4.29}\\
P_{2} \\
p_{J} \\
p_{3} \\
p_{4}
\end{array}\right\}=\left[\begin{array}{ccccc}
K_{11} & \kappa_{12} & 0 & 0 & 0 \\
K_{21} & \left(K_{22}+K_{I I}\right) & K_{I J} & K_{I K} & K_{I L} \\
0 & K_{J I} & K_{J J} & K_{J K} & K_{J L} \\
0 & K_{K I} & K_{K J} & K_{K K} & K_{K L} \\
0 & K_{L I} & K_{L J} & K_{L K} & K_{I L}
\end{array}\right]\left\{\begin{array}{l}
d_{1} \\
d_{2} \\
\frac{d_{2}-d_{1}}{L} \\
d_{3} \\
d_{4}
\end{array}\right\}
$$

Substituting for p_{1}, p_{2} and p_{J},

$$
\begin{equation*}
\mathrm{pi}_{\mathrm{I}}=\mathrm{K}_{11} \mathrm{~d}_{1}+\mathrm{K}_{12} \mathrm{~d}_{2} \tag{4.29a}
\end{equation*}
$$

$p_{2}=\left(K_{21}-\frac{K_{I J}}{L}\right) d_{1}+\left(K_{22}+K_{I I} \frac{K_{I J}}{L}\right) d_{2}+K_{I K} d_{3}+K_{I L} d_{4}$

$$
\begin{equation*}
p_{J}=\frac{-K_{J J}}{L} d_{I}+\left(K_{J I}+\frac{K_{J J}}{L}\right) d_{2}+K_{J K} d_{3}+K_{J L} d_{4} \tag{4.29c}
\end{equation*}
$$

$$
\frac{p_{J}}{L}=-\frac{K_{J J}}{L^{2}} d_{I}+\frac{1}{L}\left(K_{J I}+\frac{K_{J J}}{L}\right) d_{2}+\frac{K_{J K}}{L} d_{3}+\frac{K_{J L}}{L} d_{4}
$$

Combining equations (4.29.a) and (4.29.c),

$$
\begin{equation*}
\bar{p}_{1}=\frac{p_{J}}{L}=\frac{\left(K_{I I}+K_{J J}\right)}{L^{2}} d_{1}+\left\{K_{12}-\frac{1}{L}\left(K_{J I}+\frac{K_{J J}}{L}\right)\right\} d_{2}-\frac{K_{J K}}{L} d_{3}-\frac{K_{J L}}{L} d_{4} \tag{4.30}
\end{equation*}
$$

and combining equations (4.29.b) and (4.29.c),

$$
\begin{align*}
w_{2} & +\frac{p_{J}}{L}=\left\{\frac{\left(K_{21}-K_{I J}\right)}{L}-\frac{K_{J J}}{L^{2}}\right\} d_{1}+\left\{\left(K_{22}+K_{I I}\right)+\frac{K_{I J}}{L}+\frac{1}{L}\left(K_{J I}+\frac{K_{J J}}{L}\right)\right\} d_{2} \\
& +\left(K_{I K}+\frac{K_{J K}}{L}\right) d_{3}+\left(K_{I L}+K_{J L}\right) d_{4} \tag{4.31}
\end{align*}
$$

From equation (4.29),

$$
\begin{equation*}
\Psi_{3}=-\frac{K_{K J}}{L} d_{1}+\left(K_{K I}+K_{K J}\right) d_{2}+K_{k k} d_{3}+K_{K L} d_{4} \tag{4.32}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{4}=-\frac{K_{L J}}{L} d_{1}+\left(K_{L T}+\frac{K_{U J}}{L}\right) d_{2}+K_{L K} d_{3}+K_{L L} d_{4} \tag{4.33}
\end{equation*}
$$

As before, p_{j} is the external moment applied at J and in our analysis, this is zero. Therefore, equations (4.30) to (4.33) can be combined to give the following matrix.

$\left[\begin{array}{l}p_{1} \\ p_{2}\end{array}\right]$		$\left(K_{I 2}-\frac{1}{L} \frac{\left(K_{J I}+K_{J J}\right)}{L}\right.$ $\left(K_{22}+K_{I I}+2 K_{I J}+K_{J J J}\right)$ L		$\left.\begin{array}{c}-\frac{K_{J L}}{L} \\ K_{I L}+K_{J L} \\ L\end{array}\right]$
p_{3}	$-\frac{K_{K J}}{L}$	$K_{K I}+\frac{K_{K J}}{L}$	$K_{K K}$	K_{KL}
p_{4}	$-\frac{K_{L J}}{L}$	$\mathrm{K}_{\mathrm{LI}}+\frac{\mathrm{K}_{\mathrm{L}}}{\mathrm{L}}$	K_{LK}	$K_{L L}$

Since there are only four unknowns, the equation for p_{J} in equations (4.29) is redundant and hence omitted. Thus, the rotation d_{J} at the left end of the beam is transferred to d_{1}, d_{2}, d_{3} and d_{4}, without affecting the symmetry of the stiffness matrix.

4.4(ii) RIGHT END OF BEAM FRAMING INTO SHEAR WALI

This is illustrated in Fig. 4.5 and the nomenclature is the same as for the previous case.

$$
\begin{equation*}
d_{L}=\left(d_{4}-d_{3}\right) / L \tag{4.35}
\end{equation*}
$$

(displacement relationship)
and,

$$
\begin{equation*}
p_{L} / L=-p_{3}=p_{4} \tag{4.36}
\end{equation*}
$$

(force relationship)
Proceeding on a similar basis as for the previous case, the stiffness matrix for nodes A, B and C can be written. P_{L},
being the external moment, is taken as zero for our analysis and writing out the expression for
$P_{3}-P_{L} / L$ and $P_{4}+P_{3} / L$,
the final stiffness matrix can be obtained as follows:

4.4 (iii) BOTH ENDS OF BEAM FRAMING INTO SHEAR WALL

Fig. 4.6 shows an arrangement :of both ends of beam framing into shear wall. The two rotational degrees of freedom, namely d_{J} and d_{L}, have to be modified. These end rotations can be expressed as follows:

$$
\begin{align*}
& \therefore d_{J}=\left(d_{2}-d_{1}\right) / L 1 \tag{4.38}\\
& \therefore d_{L}=\left(d_{4}-d_{3}\right) / L 2 \tag{4.39}
\end{align*}
$$

where L1 and L2 are widths of shear walls.
Writing equilibrium equation for this set-up, we have, after substituting for $d J$ and d from (4.38) and (4.39),
$\left\{\begin{array}{l}p_{1} \\ p_{2} \\ p_{J} \\ p_{3} \\ p_{L} \\ p_{4}\end{array}\right\}=\left[\begin{array}{cccccc}K_{11} & K_{12} & 0 & 0 & 0 & 0 \\ K_{21} & \left(K_{22}+K_{I I}\right) & K_{2 J} & K_{23} & K_{2 L} & 0 \\ 0 & K_{J 2} & K_{J J} & K_{J 3} & K_{J L} & 0 \\ 0 & K_{32} & K_{3 J}\left(K_{33}+K_{K K}\right) & K_{3 L} & K_{34} \\ 0 & K_{L 2} & K_{L J} & K_{L 3} & K_{L L} & 0 \\ 0 & 0 & 0 & K_{43} & 0 & K_{44}\end{array}\right]\left\{\begin{array}{l}d_{1} \\ d_{2} \\ \frac{d_{2}-d_{1}}{L_{1}} \\ d_{3} \\ \frac{d_{4}-d_{3}}{L 2} \\ d_{4}\end{array}\right\}$

There are four unknowns and six equations. Equations for p_{J} and p_{L} may be treated as redundant. : Accordingly, the stiffness matrix has to be modified.

Substituting for p_{J},

$$
P_{J}=-\frac{K_{J J}}{L I} d_{1}+\left(K_{J 2}+\frac{K_{J J}}{L I}\right) d_{2}+\frac{\left(K_{J 3}-\frac{K_{J L}}{L 2}\right)}{} d_{3}+\frac{K_{J L}}{L 2} d_{4}
$$

or dividing throughout by L 1 ,
$\frac{p_{J}}{L_{I}}=-\frac{K_{J J}}{L_{1}{ }^{2}} d_{1}+\frac{\left(K_{J 2}+K_{J J}\right)}{L_{1}} \frac{d_{2}}{L_{1}}+\frac{\left(K_{J 3}-K_{J I}\right)}{L_{1}} \frac{d_{3}}{L_{1} L_{2}}+\frac{K_{J L}}{L_{1} L_{2}} d_{4}$

Similarly, substituting for p_{L},
$p_{L}=-\frac{K_{L J}}{L 1} d_{I}+\left(K_{L 2}+\frac{K_{L J}}{L_{1}}\right) d_{2}+\left(K_{L 3}-\frac{K_{L L}}{L_{2}}\right) d_{3}+\frac{K_{L L}}{L_{2}} d_{4}$

Dividing throughout by L2, we have
$\frac{p_{L}}{L_{2}}=-\frac{K_{L J}}{L_{L} L_{2}} d_{1}+\frac{\left(K_{L 2}\right.}{L_{2}}+\frac{K_{L J}}{L_{1} L_{2}} d_{2}+\frac{\left(K_{L 3}-K_{L L}\right)}{L_{2}} d_{3}+\frac{K_{L L}}{L_{2}^{2}} d_{4}$

Since by geometry the beam end moments can be expressed as

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{J}} / \mathrm{L} 1=-\mathrm{p}_{1}=\mathrm{p}_{2} \quad \text { and } \\
& \mathrm{p}_{\mathrm{L}} / \mathrm{L} 2=-\mathrm{p}_{3}=\mathrm{p}_{4}
\end{aligned}
$$

Combining equations (4.41) and the first of (4.40),

and combining equations (4.41) and the second of (4.40),

$$
\left.-\frac{K_{J L}}{L_{1} L_{2}} d_{3}+\frac{\left(K_{2 L}\right.}{L_{2}} \frac{K_{J I}}{L_{I L}}\right) d_{4}
$$

Similarly, working on $\mathrm{P}_{\mathrm{L}^{\prime}} \mathrm{P}_{3}$ and P_{4},

$$
\begin{align*}
D_{3}-P_{L} & =\frac{\left(-K_{3 J}+K_{L J}\right)}{L_{1}} \frac{d_{1}}{L_{1} L_{2}}+\left(K_{32}+\frac{K_{3 J}}{L_{1}} \frac{K_{L 2}}{L_{2}}-K_{I J}\right) \\
L_{1} L_{2} & d_{2}+\left(K_{33}+K_{K K}-\frac{K_{3 L}}{L_{2}}-\frac{K_{L}}{L_{2}}-\frac{K_{L L}}{L_{2}}\right) d_{3} \tag{4.45}\\
& \left.+\frac{\left(K_{3 L}\right.}{L_{2}}+K_{34}-\frac{K_{L L}}{L_{2}}\right) d_{4}
\end{align*}
$$

and

Combining (4.43) to (4.46) and treating $P L$ and $p J$ as zero, we have the final matrix as shown below.

EXAMPIFSS

Four examples are presented in this chapter to demonstrate the analysis procedure. The results of the first three examples are compared with those obtained in previous work and the percentage deviations are presented in tables for each case. Before proceeding with different examples it is necessary to predict approxinately the number of elements required to produce a realistic stiffness for a shear wall. Therefore, this has been studied in the first examnle and the results are presented in graphs. Due to the unavailability of relevant exnerimental results for the problem, the results are comnared with the work carried out by other classical methors.
 OPENINGS TN GFARAR TAAIT

The structure shown in Fig. 5.1 is analvsed for the loading shown in the figure. The structure and the loading are identical to those considered bv.R.G. Oakberg (18) who solved the problem bv stiffness method using sub-structure analysis and also bv a deep column method, in which the shear wall is represented as a deen column.

FIG. 5.I FOUR STOREY SHEAR WALL-FRAME

TABLE 5.1

PROPERTIES OF SHEAR WALL

Story	Height	Width W	H_{0}	B_{0}	B_{1}	H_{B}	H_{T}	B_{E}	Thick- ness Edge Element	Thick- ness Remai- nder
1	$12^{\prime} 0^{\prime \prime}$	$18^{\prime} 0^{\prime \prime}$	$6^{\prime} 6^{\prime \prime}$	$6^{\prime} 0^{\prime \prime}$	$4^{\prime} 0^{\prime \prime}$	$3^{\prime} 0^{\prime \prime}$	$2^{\prime} 6^{\prime \prime}$	$24^{\prime \prime}$	$1^{\prime \prime}$	$8^{\prime \prime}$
2	$12^{\prime} 0^{\prime \prime}$	$18^{\prime} 0^{\prime \prime}$	$6^{\prime} 6^{\prime \prime}$	$6^{\prime} 0^{\prime \prime}$	$4^{\prime} 0^{\prime \prime}$	$3^{\prime} 0^{\prime \prime}$	$2^{\prime} 6^{\prime \prime}$	$24^{\prime \prime}$	$1^{\prime \prime}$	$8^{\prime \prime}$
3	$12^{\prime} 0^{\prime \prime}$	$18^{\prime} 0^{\prime \prime}$	$6^{\prime} 6^{\prime \prime}$	$6^{\prime} 0^{\prime \prime}$	$4^{\prime} 0^{\prime \prime}$	$3^{\prime} 0^{\prime \prime}$	$2^{\prime} 6^{\prime \prime}$	$24^{\prime \prime}$	$16^{\prime \prime}$	$8^{\prime \prime}$
4	$12^{\prime} 0^{\prime \prime}$	$18^{\prime} 0^{\prime \prime}$	$6^{\prime} 6^{\prime \prime}$	$6^{\prime} 0^{\prime \prime}$	$4^{\prime} 0^{\prime \prime}$	$3^{\prime} 0^{\prime \prime}$	$2^{\prime} 6^{\prime \prime}$	$24^{\prime \prime}$	$16^{\prime \prime}$	$8^{\prime \prime}$

Modulus of Elasticity For All Storeys $=3,000 \mathrm{ksi}$
Poisson's Ratio For All Storeys $=0.25$

TABLE 5.2

PROPERTIES OF BEAMS

Beam No.	Clear Length	Left Rigid Length	Right Rigid Length	Modulus of Elasticity	Moment of Inertia in	Cross Sectional Area in
B1	$22^{\prime} 0^{\prime \prime}$	0	$12^{\prime \prime}$	3000 ksi	69675	656
B2	$22^{\prime \prime} 0^{\prime \prime}$	$12^{\prime \prime}$	$12^{\prime \prime}$	3000 ksi	69675	656

TABLE 5.3

PROPERTIES OF COLUMNS

Column No.	Clear Length	Top Rigid Length	Bottom Rigid Length	```Modulus of Elasticity ksi```	$\begin{aligned} & \text { Moment } \\ & \text { of } \\ & \text { Inertia } \\ & \text { in }^{4} \end{aligned}$	```Cross Sectional Area in \(^{2}\)```
C1	10'9'	15"	0	3000	26112	384
C2	$9^{\prime} 6^{\prime \prime}$	15"	15"	3000	26112	384

The suh-structure analvsis is based on the stiffness methor and uses finite elements for generating the shear wall stiffness matrix. The deen column method is also based on the stiffness analvsis but idealizes the shear wall as a deep column. The pronerties of the shear wall, beams and columns are qiven in Tahles 5.1, 5.2 and 5.3, respectivelv. No openincs in the shear wall are considered for this example.

The structure was analvsed using $20,48,80,120$ and 180 elements ner shear wall seoment and the results were compared with those ohtained by the suh-structure method (also with varving numbers of elements) and with those obtained by the deen column method.

Figs. 5.2, 5.3 and 5.4 show plots of lateral displacements at the ton floor level for the three trpes of analysis. The variation in displacement with numper of elements is more nronounced for the sub-structure analvsis than for the analvsis procedure descrihed in this studv. The rotational comonent in the sub-structure analvsis was verv inconsistent due to local deformation at the wall beam connection points. In the present analvsis all the displacement comnonents converge from a lower value to a higher value indicating that the model becomes more flexible as the number of elements is increased. Comnarison of the plots for the three cases shows that the model emplored in this study and that nsed in the sub-structure analvsis which

FIG. 5.3 CONVERGENCE OF VERTICAL DEFLECTION AT
WALI - BEAM COWNECMTN POIMT AT EIPSS FLOOR LYYEL

also smplovs a finite element model, are more rigic than that used in the deen column methor. It should be exnected that the finite element model deveoped in this study will be stiffer than that describer by Oakberg. For the latter model, the unrealisticallv large local distortions at the shear wall beam junctions (these local distortions have been noted in other investiqations (10,14)), will significantlv increase the flexihility. On the other hand the kinematic constraint applied at the floor levels will cause the former model to be sliqhtly stiffer than it should be.

It is difficult to determine whether or not the shear wall model used in this stucr should be stiffer than the deep colum model. While in general, any finite element model over estimates the stiffness of the structure, the deep column model assumes nlane transverse sections at aly shear vall cross-sentions. Fence, it too over estinates the shear wall stiffnese.

Fics. $5.5,5.6$ and 5.7 show plots of force comnonents obtained by the three methods. The rates of convergence with increasing numbers of elements per shear wall secment, are approximatelv the same for the tro methods emploving finite element idealizations. The results of the present analvsis are in close agreement with those of the deep column method rather than with those of the suh-structure analvsis. This suggests that local shear wall deformations have a significant bearino on the final results.

FIG. 5.5 CONVERGENCE OF SHEAR FORCE IN SHEAR WALL AT FIRST FLOOR LEVEL, EYAMMTF - 1

FIG. 5.7 CONVERGENCE OF BENDING MOMENT IN SHEAR WALL AT BASE, FXARDIAF - 1

TABLE 5.4

LATERAL DEFLECTIONS (IN)

Framing Leve1 To Ground	Finite Element Method	Sub- Struct- ure Method	Difference
5	0.082	0.084	2.4%
4	0.0592	0.0601	1.52%
3	0.0349	0.0351	0.575%
2	0.0132	0.0131	0.76%

TABLE 5.5

CONNECTION POINTS VERTICAL DEFLECTIONS (IN)

Framing Level Top Ground	Finite Element Method	Sub- Struct- ure Method	Difference
5	-0.0149	-0.0154	3.35%
4	-0.0151	-0.0156	3.3%
3	-0.0139	-0.0141	1.44%
2	-0.0094	-0.0095	1.06%

TABLE 5.6

CONNECTION POINTS ROTATIONS (RADIANS $\times 10$			
Framing Level Top To Ground	Finite Element Method	Sub- Struct- ure Method	Difference
5	-0.149	-0.101	32.2%
4	-0.149	-0.117	21.5%
3	-0.136	-0.114	16.2%
2	-0.091	-0.086	5.5%

L° S $3 T \& V I$

Framing Level Top To Ground	Shear Force (Kins)			Bending Moment$\therefore\left(K i n-F t_{e}\right)$		
	Finite	Sub-		Finite	Sub-	
	Element	struct-	Differ-	Element	Strucm	Differ-
	Method	ure	ence	Method	ture	ence
		Method			Method	
5	4.66	3.86	17\%	60.24	47.6	21\%
4	5.98	5.13	. 14.2%	70.59	59.3	15.8\%
3	5.49	4.8	12.6\%	64.82	55.9	14.0\%
2	3.82	3.45	9.7\%	44.59	40.5	9.10\%

TABLE 5.8
since the suh-structure analvsis was made on finite element idealizations the final results are comnared with this method and thev are presented in Tahles 5.4, 5.5 and 5.6. The lateral and vertical deflections are in excellent agreement, the maximum deviation being only 3.3\%. The discrepancies in connection point rotations, however, ranced up to 32.2%. The hiofl percentage variation is primarilv due to the local distortions at the connection points. The effect of this can be well understood from the connection point forces where the deviation ranged un to 21%. The values of shear force in shear wall, calculated by the two methods are in good agreement.

The structure show in Fig. 5.1, with a shear wall width, W, of 14'-0", was analysed firstly with a solid shear wall, and then with a shear wall with the onenings, indicated dotted in the fiqure. Other pronerties of the structure were as listed in Tanle 5.1.

The results obtained were compared with corressonding values reported br Oakberg and Weaver (13). The plots of the lateral deflections of the shear wall with and without openings are shown in Fig. 5.8. The shear wall lateral deflection and bending moments at various levels are presented in Tahle 5.9. It can be seen that the oneninas in the shear wall tend to make the model more flexible, as ther

Framing Level Ton to Base	Lateral Deflection (In)						Bending Moment ($\mathrm{K}-\mathrm{Ft}$)					
	Without onenings Tn Shear Wall			With Openings In Shear Wall			Without Onenings In Shear Wall			With nneninas Tn Shear Wall		
	$\begin{aligned} & \text { F.E } \\ & \text { Method } \end{aligned}$	Sub-Structure Method	Difference	$\begin{aligned} & \text { F.E } \\ & \text { Method } \end{aligned}$	sub-Structure Method	Diffe- rence	F. F Method	Sub-Structure Methor	Difference	Methor	cub-structure Methor	Difference
5	0.118	0.123	4.2\%	0.15	0.165	10.0\%	122.6	102.0	17.2\%	117.7	95.7	18.8\%
4	0.086	0.089	3.5\%	0.117	0.129	9.3\%	156.7	102.0	34.0\%	141.8	90.0	36.0\%
3	0.051	0.052	2.0\%	0.076	0.083	9.1\%	-197.4	-285.4	45.4\%	-174.5	-283.7	62.2\%
2	0.019	0.019	M1	0.034	0.035	3.0\%	-838.4	-957.1	15.5\%	-757.9	-809.4	6.9\%
Base	---	----	---	---		---	-1809.0	-1933.1	6.6\%	-1635.0	-1681.7	2.8\%

increasc the deflections by anproximatelv 30%. The comparison of the results by the two methors shows that the percentage deviation increases if there are onenings in the shear wall. This is predominantlv due to the constraint that was provided at shear wall seament boundaries. As the depth of the lintel beams betmeen the openings becomes smaller, the assumption that plane transverse sections through the shear wall at the floor levels remain plane after bending, will no more be valic. Therefore, for small onenings in the shear wall and when the denths of lintel beams between the openings are large, the method outlined in this study mav be employed. For larde onenings, the shear wall mar be treated as two walls connected by lintel beams as illustrated in the next example.
5.3 EXAMPLF 3 - CIX STORFY GPFAR WAIL

As a third example, shear walls connected by link beams only, is analvsed and a study on the effect Poisson's ratio on the final results is made. Fig. 5.9 shows the structure and loading which are identical to those analvsed by German Gurfintel (12) and the final results are comnared with his solution which mas based on the cantilever moment distribution method. The mronerties of the shear walls and beams are presented in mahles 5.10 and 5.11.

The plots of lateral deflection versus height for both the methods is shown in Fig. 5.10. Tahle 5.12 shows the lateral deflections obtained by both the methods and the percentage deviation. The difference in results ranged unto 15.2% at the first floor level. The discrepancy reduced with increasing height. As can be seen from the plot of lateral deflection, the model analvsed by the oresent method is more flexible than the cantilever moment distribution method. A study was performed to see the variation in deflection and force components with different values of Poisson's ratio. It is onserved that deflection and force commonents varied from higher value to lower value with increasing values of Poisson's ratio. The values of Poisson's ratio used for this purpose were $0.2,0.25,0.3,0.35,0.4$ and 0.45 . The difference for the two extreme cases was never more than 5\%. Whe forces calculated ber the two methods are in good agreement. The maximum percentage deviation for axial force

FIG. 5.9 SIX STOREY FRAME, EXAMPLE-3

PROPERTIES OF BOTH SHEAR WALLS

Storey	Height	Width	Modulus of Elasticity (KS1)	Poisson's Ratio	Thickness
1	$30^{\prime} 0^{\prime \prime}$	$20^{\prime} 0^{\prime \prime}$	5000	0.3	$12^{\prime \prime}$
2	$10^{\prime} 0^{\prime \prime}$	$20^{\prime} 0^{\prime \prime}$	5000	0.3	$12^{\prime \prime}$
3	$10^{\prime} 0^{\prime \prime}$	$20^{\prime} 0^{\prime \prime}$	4000	0.3	$12^{\prime \prime}$
4	$10^{\prime} 0^{\prime \prime}$	$20^{\prime} 0^{\prime \prime}$	4000	0.3	$12^{\prime \prime}$
5	$10^{\prime} 0^{\prime \prime}$	$20^{\prime} 0^{\prime \prime}$	3000	0.3	$12^{\prime \prime}$
6	$10^{\prime} 0^{\prime \prime}$	$20^{\prime} 0^{\prime \prime}$	3000	0.3	$12^{\prime \prime}$

TABLE 5.11

PROPERTIES OF BEAMS

Beam No.	Clear Length	Modulus of Elasticity (KS1)	Moment of Inertia (in4)
B1	$20^{\prime} 0^{\prime \prime}$	5000	13824
B2	$20^{\prime} 0^{\prime \prime}$	4000	13824
B3	$20^{\prime} 0^{\prime \prime}$	3000	13824

is 1.44 and for bending moment is 5.9. The variation of results with respect to shear force we nil, however. There is a good agreement on the bending moment of the lintel beams as well. For the purpose of comnarison the results of the force comnonents by both methods are presented in Tables 5.13 to 5.16. From symmetry considerations, the results are presented only for shear wall s1. Forces on shear wall s2 are exactly the same as that for $s 1$ excent that the signs are reversed for axial force alone. Fig. 5.11 shows the shear force, axial force and hending moment for left hand shear wall and Fig. 5.12 shows the deflected shape of the whole structure. As can be seen from this ficure, the shortening and the elongation of the shear wall enges causen vertical deffections at the connection points between shear wall and beams which in turn caused bending moments on the beam as the load was transformed from left to right. This gives a clear picture of the interaction of shear wall and beams. These bending moments and shear forces on beam ends in turn act on the surfaces of wall due to which there is local deformation at the connection point betreen wall and beam. This is another important reason for transferring the connection point rotational stiffness to two ends of the wall at anv narticular level, bv relating them to vertical displacements, therby avoiding any local deformation. It is the moment, rather than the shear at the end of the beam, that causes the local distortion of the wall.

FIG. 5.10

TABLE 5.12

COMPARISON OF LATERAL DEFLECTION

Framing Level	Lateral Deflection (in)		Difference
	Finite Element Method	Cantilever Moment Dist'n	
7	0.230	0.213	+7.4\%
6	0.195	0.179	+8.21\%
5	0.159	0.145	+8.8\%
4	0.124	0.111	+10.5\%
3	0.089	0.078	+12.4\%
2	0.058	0.049	+15.2\%
Ground	0.000	0.000	--

TABLE 5.13

COMPARISON OF SHEAR FORCE ON LEFT HAND SHEAR WALL

Framing Leve1	$\mid 2$ Finite E1ement Method 7Cantilever Moment Dist'n	Difference	
	10		Nil
5	30	30	Nil
4	50	50	Nil
3	90	70	Nil
2	130	130	Nil
Ground	130	130	Nil

TABLE 5.14

COMPARISON OF AXIAL FORCE ON LEFT HAND SHEAR WALL

	Axial Force (KIPS)		Framing Leve1
Finite Element Method	Cantilever Moment Dist'n	Difference	
7	4.84	4.91	-1.44%
6	9.72	9.85	-1.34%
5	16.19	26.41	-1.36%
4	22.48	30.21	-1.42%
3	29.79	36.78	-1.41%
2	36.28	36.78	-1.375%
Ground	36.28		-1.375%

TABLE 5.15

Framing Level	Bending Moment (Kip. Ft)		Difference
	Finite Element Method	Cantilever Moment Dist'n	
7	96.85	98.17	-1.36\%
6	94.34	97.02	-2.73\%
5	-76.29	-71.77	-5.9\%
4	-450.42	-444.09	-1.41\%
3	-1004.22	-995.84	-1.76\%
2	-1774.42	-1764.33	-0.562\%
Ground	-5674.42	-5664.33	-0.176\%

TABLE 5: 16

Beam At Framing Leve1	Bending Moment (Kip. Ft.)				Difference
	Left End		Right End		
	Fem	Cmd	Fem	Cmd	
7	-48.43	-49.09	-48.43	-49.09	1.36\%
6	-48.75	-49.43	-48.75	-49.43	1.40\%
5	-64.68	-65.61	-64.68	-65.61	1.44\%
4	-62.93	-63.84	-62.93	-63.84	1.44\%
3	-73.10	-74.13	-73.10	-74.13	1.40\%
2	-64.90	-65.76	-64.90	-65.76	1.33\%

FIG. 5.12 Final deflected shape of structure

5.4 EXAMPLE 4 - THIRTEEN STOREY SHEAR WALL-FRAME

A practical example is given to illustrate the efficiency of the program in analysing large structures. :A typical floor plan of the building considered is shown in Fig. 5.13. For the purpose of illustration, only one lateral section, that on column line (N), is chosen and other similar sections can be analysed in the same manner. Since this is only an illustration of the analysis procedure, the wind pressure and other material properties are assumed to be constant throughout the height of the building. Fig. 5.14 shows the transverse section of the building on column line (N) .

The building has a flat plate floor system and hence, portions of the slab are treated as beam elements in the transverse frame. The equivalent width of slab that can be treated as a beam, calculated using a procedure outlined by Khan and Sbaroụnis (8), is 10 feet. Other properties of the equivalent link beams and columns are given in Tables 5.17, 5.18 and 5.19 .

The basic wind pressure assumed is 26 psf.
Therefore,

Wind force at each floor level upto 13 th $=26 \times(8+11.17) \times 11.17$

$$
=5500 \mathrm{lbs}=5.5 \mathrm{~K}
$$

FIG. 5.I4 SECTION ON COLUMN LINE (N) -

TABLE 5.17

PROPERTIES OF SHEAR WALL

Storey	Height (Ft)	Width (Ft)	Modulus Of Elasticity (Ksi)	Poisson's Ratio	Thickness
$1-5$	11.167	16.0	4000	0.3	$8.0^{\prime \prime}$
$5-12$	11.167	16.0	3500	0.3	$8.0^{\prime \prime}$
13	12.500	16.0	3500	0.3	$8.0^{\prime \prime}$

TABLE 5.18

PROPERTIES OF BEAMS

Beam Type	Clear Length	Left Rigid Length (Right Rigid Length	Modulus 0f Elasticity (Ksi)	I_{4} (in $)$
B1	$15^{\prime} 3^{\prime \prime}$	$18^{\prime \prime}$	$0^{\prime \prime}$	4000	5200
B2	$7^{\prime} 3^{\prime \prime}$	$0^{\prime \prime}$	$18^{\prime \prime}$	4000	5200
B3	$22^{\prime} 6^{\prime \prime}$	$18^{\prime \prime}$	$18^{\prime \prime}$	4000	5200
B4	$15^{\prime} 3^{\prime \prime}$	$18^{\prime \prime}$	$0^{\prime \prime}$	3500	5200
B5	$7^{\prime} 3^{\prime \prime}$	$0^{\prime \prime}$	$18^{\prime \prime}$	3500	5200
B6	$22^{\prime} 6^{\prime \prime}$	$18^{\prime \prime}$	$18^{\prime \prime}$	3500	5200

TABLE 5.19

PROPERTIES OF COLUMNS

Column Type	Clear Length	Top Rigid Length	Bottom Rigid Length	Modulus of E1asticity (Ksi)	```Moment of Inertia (in4)```	C. S. Area (in ${ }^{2}$)
Cl	10'8'	12"	$0^{\prime \prime}$	4000	10,000	346
C2	10'10'	8'	0"	4000	10,000	340
C3	$10^{\prime} 2^{\prime \prime}$	12"	12"	4000	10,000	340
C4	$10^{\prime} 6^{\prime \prime}$	8'	8"	4000	10,000	340
C5	$10^{\prime} 2$.	12'	12'	3500	10,000	340
C6	$10^{\prime} 6^{\prime \prime}$	8'	8'1	3500	10,000	340
C7	$11^{\prime \prime} 8^{\prime \prime}$	12"	12"	3500	10,000	340
C8	11'10'	8"	8'	3500	10,000	340

For the top most floor level, wind force $=26 \times(8+11.17) \times 6.25$

$$
=3000 \mathrm{lbs}=3.0 \mathrm{~K}
$$

The values of lateral deflection at each floor level are shown in Fig. 5.15. The force components in the shear wall at different levels are given in Figs. 5.16, 5.17 and 5.18 .

The maximum half band width for this structure was 18 and the maximum number of equations to be solved was 126 . The storage requirement was : approximately 176 K and the example was run on double precision. The execution time was observed to be 0.53 M . In commercial terms the cost of running the program was approximately $\$ 15$.

5.5 COMPARISON OF THE COMPUTER REQUIREMENT FOR THE THREE

EXAMPLES

As an illustration, Table 5.20 is presented to show the different requirements from the computer point of view for the three examples solved in this Chapter.

TABLE 5.20
COMPARISON OF COMPUTER REQUIREMENT

Example	No. of elements per segment of shear wall	storage requirement	Execution time	Cost Factor
$\left(\begin{array}{c} 1 \\ \left(\begin{array}{c} 4 \\ 3 \\ 3 \end{array} \text { Bays }\right) \end{array}\right.$	48	- 176K	0.24 M	3.03
$\left(\begin{array}{c} 3 \\ \left(\begin{array}{ll} 6 & \text { storeys } \\ 3 & \text { Bays } \end{array}\right) \end{array}\right.$	48	176K	0.41 M	3.91
$\left(\begin{array}{cc} 4 \\ 13 & \text { store- } \\ 4 & \text { Bays })^{y s} \end{array}\right.$	54	176K	0.53 M	5.00

CONCLUSIONS AND RECOMMFNDATIONS

6.1 CONCTUSTON

A procedure for an efficient and economical analvsis of shear wall-frame structures suhjected to lateral load has been presenter in this studv. Four examples were given to demonstrate the analvsis procedure and the efficiency and economy of the computer progran. Despite the fact that the program āoes not use auxiliary storage, fairlv larae problems can be run economically with a reasonable amount of computer time.

Comparisons were made with another finite element method and two different methods which involved idealizing the shear wall as a deep column. These commarisons show that most of the disnlacements and forces calculated by the various methods aqree within anproximatelv 5%. Unfortunately, exact results are not available for comparison purnoses.

The comparisons sucfoest that large local rotational deformations at shear vall-heam junctions occured when usina a conventional finite element remresentation for the shear wall. The assumption emploved in this studv, that the plane
transverse sections of the shear wall at the floor levels remain plane during loading, eliminates the large local deformations. Unfortunatelv, this assumntion imposes a notentiallv significant constraint on the shear wall displacerents, particularly for shear walls with oneninas. However, the comparisons suggest that the effect of the constraint on the calculated displacements and forces is minor, both for structures with solid shear walls and those with openinas. Nevertheless, it does raise the question of the fustification for the representation of the shear wall by a finite element morel, when the constraint is subseauentlv imposer. As would be expected, the results further indicate that onenings in the shear wall produced significantly increased horizontal deflections.

It was ohserved that changes in Poisson's ratio did not have a significant effect either on the deflection components or the force comnnents.

The plots of deflection and force comnonents with varying numbers of elements per shear wall seoment indicate that any shear wall segment having 50 to 60 finite elements should produce a reasonably realistic stiffness for the wall.

6.2 PECOMAFMAAMTMTS FOR EURTHMR TMRK

Because of the lack of an "exact" analvtical procedure, it is recommended that an experimental studv of shear wall
frame structures be undertaken to corelate with the various approximate analytical procedures.

Since the assumption of a linear variation of displacements at the floor levels of the shear wall imposes a potentially significant constraint on the shear wall displacements, a study should be performed to find an alternate approach to the suppressing of excessive local deformations at the wall-beam connection points.

Instead of assuming a linear variation of displacements along the shear wall segment boundaries, a cubic variation in the displacement pattern, as show in Fig. 6.1, should be tried.

FIG. 6.1

This would definitely increase the accuracy of the results without much of an alteration to the storage recuirement in the computer program. But this would not avoid the problem of local deformation. This approach would greatly increase the accuracy of the results for shear walls with onenings. This kind of displacement pattern would rēnire the
modification of the RFDN subroutine in the computer program and the incornoration of the modified stiffness in the structure stiffness matrix of the MAIN proaram.

The rectanaular finite element nuts severe restriction on mesh refinement. As a further studv, a quadrilateral element for shear walls should be tried. Recentlv, more refined rectanqular elements have been developed $(13,15)$. I.A. Macleod's element (15) is one of them. These elements could be incorporated inco the model outlined in this study.

The program is limited to lateral load analvsis. The same progran could he modified to take account of more than one load vector. This will permit any suitahle combination of loading for design purnoses. In the present program, the rearranging of the equations after develoning segment stiffness matrices can be avoided to save a considerable amount of execution time.

\because LIST OF REFERENCES

1.....Rosenblueth, E., and Holtz, J., "Elastic Analysis :of Shear Walls in Tall Buildings", ACI Journal Proceedings, Vol. 56, June 1960.
2.....Cardon, B., "Concrete Shear Walls Combined with Rigid Frames in Multistory Buildings Subjected to Lateral Loads", ACI Journal Proceedings, Vol. 58, September 1961.
3.....Gould, P. L., "Interaction of shear wall frame systems in Multistory Buildings", ACI Journal Proceedings, Vol. 62, January 1962.
4.....Beck, Hubert, "Contribution to the Analysis of Coupled Shear Wall", ACI Journal Proceedings, Vol 59, August 1962.
5..... Bandel, H., "Frames Combined with Shear Frames under Lateral Loads", ASCE Proceedings, Vol. 88, 576, December 1962.
6.....Rosman, Riko, "Approximate Method of Analysis of Shear Walls Subjected to Lateral Loads", ACI Proceedings, Vol. 61, June 1964.
7.....Clough, King and Wilson, ". "Structural Analysis of Multistory Buildings", ASCE Proceedings, Vo1. 90, ST3, June 1964.
8.....Khan and Sbarounis, "Interaction of Shear Walls and Frames", ASCE Proceedings, Vol. 90, No. ST3, June 1964.
9.....Parme, A. L., "Design of Combined Frames and Shear Walls", PCA, Adv. Engg. Bulletin, No. 14, 1965.
10....Coull and Smith, "Tall Buildings", Proceedings of a Symposium Held at the University of Southampton, April 1966. 11....Macleod, I. A., "Lateral Stiffness of Shear Wall with Openings", Tall Buildings - Proceedings of a Symposium held at the University of Southampton, April 1966.
12....German Gurfinkel, "Simple Method of Analysis :of Vierendeel Structures", ASCE Proceedings, Vol. 93, No. .ST3, June 1967, p. 273.
13....Oakberg, Robert G., William Weaver, Jr., "Analysis of Frames with Shear Walls : by Finite Elements", ASCE Proceedings on "Application of Finite Element : Methods in Civil Engineering", November 13 - 14, 1969.
14....Girijavallabhan Chiyyarath ::V., "Analysis of Shear Walls with Openings", ASCE Proceedings, Vol. 95 , No. ST10, October 1969.
15....Macleod, I.A., "New Rectangular Finite Element for Shear Wall Analysis", ASCE Proceedings, Vol. 95, No. ST3, March 1969 .
16.... Melosh, Robert J., "Basis for Derivation of Matrices for the Direct Stiffness Method", AIAA Journal, Vol. 1, No. 7, July 1963.
17....Fox, L., "An Introduction : to Numerical Inear Algebra", Oxford University Press, 1965.
18....Oakberg, R.G.," Analysis of Frames with Shear walls by Finite Elements," dissertation presented to stanford University, at Stanford, California, in 1967
19....Majumdar S.N.G., MacGregar J.G., Adams : P.F., "Experimental and Analytical study of the behavior of Steel Frame-Shear wall structures", Structural Engineering report No. 27, Department of Civil Engineering, University of Alberta, Edmonton, Canada
20....Przemieniecki $\because J . S ., \quad$ Theory .of Matrix Structural Analysis ", MacGrew-Hill Book company, 1968
21....Newmark,N.M., " Numerical procedure for Computing

Deflections, Moments and Buckling Loads ", Transactions A.S.C.E

Vol. 108, 1943, pp. 1161 - 1234.
22....Michael, D., "The Effect of Local Wall Deformations on the Elastic Interaction of Cross Walls Coupled by Beams ", Proceedings of a Symposium on"Tall Buildings" held in the Department of Civil Engineering, University of Southampton April 1966.
$\because \quad \because$ APPENDIX A

AITKEN'S METHOD

In a structural analysis by the stiffness method it is often necessary to reduce the order of a structure stiffness matrix,

$$
K_{S}=\left[\begin{array}{c:c}
K_{E E} & K_{E I} \tag{A.1}\\
\hdashline K_{I E} & K_{I I}
\end{array}\right]
$$

('where $K_{E E}$; $K_{E I}, K_{I I}$ and $K_{I E}$ are sub-matrices and E and I represent the order of these matrices)

This can be accomplished by the relationship,

$$
K=K_{E E}-K_{E I} K_{I I}^{-1} K_{I E}
$$

Normally, the matrix $K_{I I}$ is of very high order.A direct evaluation of matrix K_{S} involves an inverse of this high order matrix,two multiplications and a subtraction, which becomes uneconomical from the computer point of view. : Aitken developed an expression $\left(Y=C A^{-1} B\right)$ similar to that contained in Eq. (A.2), from a general matrix of the form,

$$
\left[\begin{array}{c:c}
A_{m m} & B_{m} \tag{A.3}\\
\hdashline & : \\
\hdashline C_{p m} & O_{p n}
\end{array}\right]
$$

by a simplified Gauss elimination technique in which O is a null matrix

This method can be used as a powerful tool in the static condensation. This needs, only rearranging of the terms in Eq. (A.1) as per Eq. (A.3). The null matrix can be replaced by $K_{E E}$.

By perfoming Gauss elimination of the matrix (A.3) till A becomes an upper triangular matrix, the null matrix 0 is replaced by a new matrix of the form $-C A^{-1} B$ which is the required expression for the stiffness analysis.

Proof

-1
Let $Y=C A B$
where C, A and B are submatrices as in (A.3).
The Matrix (A.4) can be expressed by the two equations,

$$
\left.\begin{array}{l}
A X=B \tag{A.5}\\
C X=Y
\end{array}\right\}
$$

Performing Gauss elimination - for the first of Eqs. (A.5), matrix A is replaced by an upper triangular matrix (say 'U').

The equation can thus be rewritten as

$$
\begin{equation*}
\mathrm{E} U=\mathrm{X} \tag{A.6}
\end{equation*}
$$

Now consider the array

$$
\left.\begin{array}{ll:l}
\therefore & \therefore & :\left[\begin{array}{l:l}
U & F \\
\because C & \therefore
\end{array}: \because O\right.
\end{array}\right]
$$

Performing Gauss elimination once again to make C a null matrix, O is replaced by another matrix Q. That is multiples of the first row of U are added to successive rows of C so that elements in the first column of C are replaced by zeros. Further addition of second row of U to the rows of C can produce zeros in the second column of C without affecting its first column since U is upper triangular. A similar operation with F added to rows of O is performed. This operation is equivalent to the following expression

$$
\left[\begin{array}{ccc}
I & 0 & 0 \\
\hdashline & 1 & - \\
\hdashline & I & I
\end{array}\right]\left[\begin{array}{c:c}
U & F \\
\hdashline C & O
\end{array}\right]:\left[\begin{array}{c:c}
U & F \\
\hdashline M & 1
\end{array}\right]
$$

from which

$$
\begin{aligned}
M=L U+C=0 & \text { since } M \cdot \text { is a null matrix } \\
& \text { from the previous operation. }
\end{aligned}
$$

Therefore,

$$
L=-C U{ }^{-1}
$$

and

$$
\begin{equation*}
Q=L F=-C U-l_{F} \tag{A.7}
\end{equation*}
$$

From the first of equations (A.5) we have

$$
X=A^{-1} B
$$

and from (A.6)

$$
\mathrm{X}=\mathrm{U} \begin{aligned}
& -1 \\
& \ldots \mathrm{~F} \\
& -1
\end{aligned}
$$

Therefore, $\quad U-1 F=A \cdot B$

Equation (A.7) now becomes

$$
Q=-C A^{-1} B
$$

Hence the proof.
The reduction of A to U, followed by that of C to O can be performed simultaneously, treating the rows of C for the purposes of elimination as if they belonged to A, pivots being chosen only from A. The relevent matrix operation is then,

where, 'J' is a unit lower triangular matrix which when multiplied by 'A' is nothing but 'U' and

$$
\because I A+C=0
$$

Thus,

$$
\because \cdots \cdot L=-C A-1
$$

and

$$
\because: \angle B=-C A-1 B
$$

which is the required expression.

COMPUTER ORGANIZATION

B. 1 PURPOSE

The program performs a linear elastic analysis of shear wall-frame structures from the known material properties and over-all dimensions of the structure. The results consist of joint displacements, forces in the shear wall(s), beam and column end forces and reactions. The shear wall is analysed by finite element idealizations.

B. 2 PROGRAMMING INFORMATION

The program is written in FOTRAN IV (version) for the IBM360 computer.

B. 3 CAPACITY

The storage capacity is dependant on the following varibles:

NSH - Number of shear walls
NS - Number of storeys
NN - Number of joints
NBM - Number of beams
NC - Number of columns

$$
\begin{aligned}
\text { MAXX - } & \text { Maximum number of vertical rows of finite } \\
& \text { elements in any shear wall and } \\
\text { MAXY - } & \text { Maximum number of horizontal rows of finite } \\
& \text { elements for a segment of any shear wall. }
\end{aligned}
$$

The dynamic storage allocation is used and the array area for this purpose can be determined from the known values of the above variables. By numbering the joints in a particular sequence the maximum half band width MBAND of the structure stiffness matrix is given by,

$$
\begin{equation*}
\text { MBAND }=(\mathrm{N} 1 * 2+1-\mathrm{NSH} * 2) * 2 \tag{B.1}
\end{equation*}
$$

where $\mathrm{N} 1=\mathrm{NN} /(\mathrm{NS}+1)$
The number of equations NEQN to be solved for the structure is given by,

$$
\begin{equation*}
\mathrm{NEQN}=2 * \mathrm{NN}+(\mathrm{NS}+1)-2 *(\mathrm{NS}+1) * \mathrm{NSH} \tag{B,2}
\end{equation*}
$$

Denoting the storage pool as Z, the equation that decides the storage area is, $Z=6 * N N+37 M A X X+(N S H * N S+N S H+308) M A X X+(N S H * N S+N S) M A X Y$ $+\mathrm{NSH}(31 \mathrm{NS}+21)+4 \mathrm{NS}+7(\mathrm{NBM}+\mathrm{NC})+\mathrm{NEQN} *(\mathrm{MBAND}+1)+674$

As explained in Chapter V, any segment having 50 to 60 finite elements produces a reasonably accurate stiffness matrix for the shear wall. In this case, the values of MAXX and MAXY may be tentatively restricted to 8 . With the above simplification and denoting by 21 the storage required for equation solver and $z 2$ the rest of the storage,

$$
\begin{equation*}
\mathrm{Z1}=\mathrm{NEQN} *(\mathrm{MBAND}+1) \tag{B.4}
\end{equation*}
$$

$\mathrm{Z} 2=6 \mathrm{NN}+47 \mathrm{NSH} * \mathrm{NS}+29 \mathrm{NSH}+12 \mathrm{NS}+7(\mathrm{NBM}+\mathrm{NC})+5506$
and

$$
z^{i}=z 1+z 2
$$

where MBAND and NEQN are as given by Eq. (B.1) and Eq. (B.2) respectively. Z ' gives the storage required if MAXX and MAXY do not exceed 8. Otherwise the value of z given by Eq. (B.3) should be used.

An indication of the size of the problem that can be handled is given in Table B. 1.

TABLE B. 1
SIZE OF PROBLEM FOR VARIOUS VALUES OF Z '

z^{\prime}	10000		20000		30000	40000
Number of Bays	2	10	2	10	10	10
Number of Storeys	30	4	98	17	30	42

Number of shear walls considered for 2 bays is one and that for 10 bays is 4.

Approximate core requirements are:

z^{\prime}	Single Precision	Doub1e Precision
10000	134 K	174 K
20000	174 K	254 K
30000	214 K	334 K
40000	254 K	414 K

B. 4 BASIC MESH UNITS FOR SHEAR WALL

The basic mesh unit for the shear wall is a rectangular element. The program generates the mesh automatically if the X coordinates of the nodal points of the elements in X-direction and Y-coordinates of the nodal points of the elements in Y-direction for a shear wall are given.

In Fig. B. 1 if the values of $X_{1}, X_{2} \ldots X_{M}$ and Y_{1}, Y_{2}, \ldots Y_{N} are given the mesh is automatically generated for the shear wall under consideration. m and n are the number of the element nodal points in the X and Y directions respectively.

B. 5 PROGRAM STRUCTURE

The flow chart for the complete program is given at the end of this section.

MAIN
Reads the input required for allocating the storage area. It allocates storage for the various arrays and calls subroutine SWF.

SWF
Reads all input data, forms the structure stiffness matrix by calling subroutines SEGMT, REDN, STBEAM and STCOLM. It stores the stiffness matrix ::and the load vector in one dimensional arrays. If a joint is constrained to move in a particular direction (support condition - fixed

FIG. B.I BASIC MESH UNIT FOR SHEAR WALL
or pinned), a very large number is inserted :in the main diagonal of the corresponding row in the structure stiffness matrix and the corresponding external force component is set to zero. The equation is solved by calling equation solver INSOL and the joint displacements are printed. Then it calls the subroutine FORCE, which calculates the force in the shear walls and the reactions on the shear : wall base. The subroutine MMULT is called to calculate and print the forces on the beam and column ends. Finally, the reactions at other support joints are calculated and printed.

SEGMT
Generates :stiffness matrix for a segment and condenses off the internal nodes starting from top row to bottom row of elements :using the condensation process explained in Article 2.4. The procedure is explained in Chapter III. This subroutine : in turn :calls one of :the following subroutines STEDGE, STINT, STLTR and STRTR depending on the type of element under consideration while developing the stiffness matrix for any row. The matrix is returned as $S T$ in two dimensional array.

REDN
Suppresses the internal displacement vector along any edge and the rotation at the two ends of the edge and returns the modified stiffness matrix as AK.

Generates stiffness matrix for a beam

STCOLM

Generates stiffness matrix for a column.

FORCE

Calculates forces in shear wall and prints them. The stiffness matrix for shear wall for this purpose is stored as STSH in a two dimensional array. The first subscript in the array denotes the shear wall number and the second denotes the position of the coefficient in the stiffness matrix for the shear wall. This is, incidentally, stored as a banded matrix in the form STSH (I, K) where $I:=$ 1, $2,3 .$. number of shear walls and $K=K_{11}, K_{22}, K_{33}, K_{44}$, $K_{55} \ldots K_{n n}, K_{12}, K_{23}, \ldots . K_{n},{ }_{n}+M B S-1$; and K is given by nif

n is the number of equations for shear wall and MBS is the half band width for shear wall.

INSOL
Symmetric banded in core matrix equation
solver used for the displacement solution. A is the stiffness matrix stored in one dimensional array stored in the same manner as explained for the second subscript of STSH. Here band width is the maximum half band width of the structure stiffness matrix and number of equations is the total number of equations for the structure. The load vector stored as B is used for back substitution and returns the displacement vector as B.

MMULT
Performs matrix multiplication and is made use
of in calculating beam and column end forces.

STEDGE
Generates r:stiffness matrix :for an edge element.

STLTR
Generates stiffness : matrix for a left
transition element.

STRTR
Generates \because stiffness matrix for a right transition element.

STINT
Generates stiffness matrix : for an :interior element.

CNVRT
Converts input data to real numbers.

FLOW CHART FOR MAIN PROGRAM

APPENDIX C

\because USER'S MANUAL

C. 1 PROGRAM IDENTIFICATION

SWALFRME - This program :performs a linear elastic analysis of laterally loaded shear wall-frame structures.

C. 2 DESCRIPTION OF STRUCTURE

In describing the structure all joints are numbered in sequence starting from the base and numbering them from left to right as shown in Fig. C.1. The shear walls, beams : and columns are also numbered in sequence from left to right starting from the base. The shear wall is divided into segments with boundaries at the various levels as shown by dotted lines in Fig. C.1. The coordinates of the joints are expressed in a global coordinate system, the origin of which may lie anywhere.

Each shear wall segment is subdivided into rectangular finite elements. The vertical rows of elements should extend the full height of shear wall with constant width. If a segment has an opening, there should be atleast one horizontal row of elements in the segment, above and below the opening. The segments of each shear wall are numbered
independantly from bottom to top.
A shear wall is similar to another one in the same structure only if all the properties and dimensions are identical, except that the thickness and modulus of elasticity can vary in the same proportion at corresponding points of the two shear walls.

A segment is similar to one above it only if all the properties and dimensions are identical, except that the thickness and modulus of elasticity can be proportional at corresponding points for the two segments.
C. 3 INPUT

Except for descriptive heading cards, each data card is divided into 10 column fields unless otherwise mentioned.

DATA CARDS:
(a) Job description - one card - to contain a job description which is printed out as a title over the output.
(b) Structure information - one card

Field 1 number of shear walls
Field 2 number of storyes
Field 3 number of beams
Field 4 number of colums
Field 5 number of joints
Field 6 number of laterally loaded joints
Field 7 maximum number of vertical rows of elements encountered in any shear wall.

Field 8 maximum number of horizontal rows of elements encountered in a segment of any shear wall
(c) Joint Information - one card for each joint

Field 1 joint number
Field 2 joint x - coordinate (ft)
Field 3 joint y - coordinate (ft)
Field 4 support condition
Blank - Non support joint
F - Fixed support
R - Rotation release (pinned support)
If field 1 is left blank on nth joint information card, joint number is taken as n.
(d) Shear Wall Properties and Segment Incidence Table One set of cards for each shear wall One card for number of vertical rows of elements in the shear wall followed by two cards for each segment of shear wall.

1st CARD Field 1 - shear wall number
Field 2 - number of vertical rows of elements
Field 3 - If the shear wall is similar to any previous one, the shear wall number to which it is similar should be given here.

2 cards for each segment of the shear wall.
Card 1 Field 1 - segment number
Field 2 - number of horizontal rows of elements
Field 3 - modulus of elasticity. If left blank, it is taken as the value for the previous segment. Default value if first card is blank $=3000 \mathrm{ksi}$.

Field 4 - Poisson's ratio
If left blank it is taken as the value for the previous segment. Default value $=0.3$.

Column 41 If the segment is similar to the one above, it may be entered here as T otherwise blank.

Card 2 Field 1 - joint number of node I
Field 2 - joint number of node J (Segment

Field 3 - joint number of node K incidence tab1e)

Joints I to L for a given segment occupy the postitions shown in Fig. C-2

FIG. C2
Field 5 - are used only if there is an opening
to 8 in the segment under consideration.)
Field 5 - bottom row line number of opening (The first row line of a segment is its bottom edge increasing with horizontal rows of elements.)

Field 6 - top row line number of opening.
Field 7 - left column line of the opening. (The first colum line for a segment is its left vertical edge increasing with vertical rows of elements.)

Field 8 - right column line of the opening.
(e) Coordinates of Element Nodes in X and Y Directions

The input format for this 8 F 10.3
Either case (i) or case (ii), which ever is applicable, should be used.

CASE (i) shear wall is similar to any previous one.
ONE CARD:
Field $1 \quad$ thickness of first element of the first segment of the shear wall under consideration (FT)

CASE (ii) shear wall is not similar to any previous one. 3-sets of cards for each shear wall

SET 1 - Field 1 to n
where n - number
of vertical rows of elements in the shear wall +1

SET 2 - Field 1 to m where $\mathrm{m}=$ total number of horizontal rows of elements in the shear wall +1
x-coordinates of boundaries of vertical rows of elements starting from left vertical edge of shear wall (FT)-use as many cards as necessary.

Y-coordinates of boundaries of horizontal rows of elements, starting from base line proceeding toward top (FT)-use as many cards as necessary.

SET 3-1 sub set for each segment of shear wall number of subsets $=$ number of storeys

Field 1 to p
where $p=$ number of

Thickness of elements (FT)-use as many cards as necessary.
vertical rows of
elements in each
segment of the shear
wall under considera-
tion +1
vertical rows of . elements in each segment of the shear wall under consideration +1 new segment.
(f) Beam information - one card for each beam (proceed in sequence from 1st beam)

Field 1 beam number
Field 2 joint number at left end of beam
Field 3 .joint number at right end of beam
Field 4 supporting colum width at left end of beam
(FT) If the beam left end into shear wall, width $=0$

Field 5 supporting column width at right end of beam (FT) If beam right end into shear wall, width $=0$

Field 6 Modulus of elasticity of beam (ksi) If this field left blank, value of E is taken same as preceding beam. Default value $=3000 \mathrm{ksi}$
Field 7 Moment of inertia (in ${ }^{4}$) If this field left blank, value of I is taken same as for preceding beam. Default value $=1000$ in 4
(g) Colurn Information - one card for each column (proceed in sequence from 1st column)

Field 1 column number
Field 2 joint number of the top of colum
Field 3 joint number of the bottom of column
Field 4 top supported beam depth (FT)
Field 5 bottom supported beam depth (FT)
Field 6 . Modulus of elasticity 'E' (ksi) If this
field left blank E taken same as for preceding column. Default value $=3000 \mathrm{ksi}$

Field 7 Moment of inertia 'I' (in 4) If this field left blank, I is taken same as for preceding colurm. Default value $=1000$ in 4

Field $8 \quad$ Cross-sectional area 'A' (in ${ }^{2}$) If field left blank, value is taken same as for preceding column. Default value $=100 \mathrm{in}^{2}$
(h) Loading Information - one card for each lateralily loaded joint Field 1 joint number

Field 2 horizontal load

C. 4 Example Problem

The input data for the structure shown in Fig.C.1. are listed below. The two shear walls are identical and the finite element mesh for one of the walls is shown in Fig. C3.

FIG. C.I EXAMPLE PROBLEM

FIG. C. 3 SHEAR WALL MKD SI DIVIDED INTO FINITE ELEMENTS (.TYPICAL FOR S2)

APPENDIX D

PROGRAM LISTING

응ㅇㅇㅇㅇㅇㅇㅇㅇㅇ응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇNㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ
 MAIN03
MAIN03
MAIN039
MAIN04
MAIN04
MAIN04
MAIN04
MAIN04
MAIN04
MAIN04
TMAIN04
MAIN04
MAIN04
MAIN05
MAIN06
MAIN070
MAIN07
MAIN07

s000 wivis

nomononomononomonononononomononomomo Ю下Nの心の

	READ ($\mathrm{JRD}, 260, \mathrm{END}=1900$) (CX (I, J) , $\mathrm{J}=1, \mathrm{~K}$)
260	FORMAT (8F10.3)
	WRITE (JWT,270)
270	FORMAT (' X - COORDINATES OF SEGMT. SUBNODES IN X-DIRN.'/20X'NODE'
	E,20X'X COORD. (FT)'/) :
	DO $290 \mathrm{~J}=1, \mathrm{~K}$
	WRITE (JWT,280) J,CX (I, J)
280	FORMAT (20XI3,21XF 10.3)
	$C X(I, J)=C X(I, J) * 12$.
290	CONTINUE
	LNY $=0$
	DO $300 \mathrm{~J}=1$, NS
300	LNY $=$ LNY+NY (I,J)
	LNY $=$ LNY +1
C	***
C	* READ
C	**
	READ (JRD, $260, E N D=1900$) (YY (5) , L = 1,LNY)
	$L=1$
	WRITE (JWT,310)
310	FORMAT (//' Y - COORDINATES OF SUBNODES OF SEGMTS. ${ }^{\text {c }} / 20 \mathrm{X}^{\prime}$ SEGMT',19X
	E^{\prime} NODE',21X'Y COORD. (FT) '/)
	DO $340 \mathrm{~J}=1$, NS
	$\mathrm{N}=\mathrm{NY}(\mathrm{I}, \mathrm{J})+1$
	DO $330 \mathrm{~K}=1, \mathrm{~N}$
	$\mathrm{L}=\mathrm{L}+1$
	IF (K . EQ. 1) $L=L-1$
	$C Y(I, J, K)=Y Y(L)$
	WRITE (JWT,320) J,K,CY(I,J,K)
	$C Y(I, J, K)=C Y(I, J, K) * 12$.
320	FORMAT (20XI3,21XI3,21XF10.3)
330	CONTINUE
340	CONTINUE
	WRITE (JWT, 350)
350	FORMAT (//' THICKNESS OF ELEMENTS IN SEGMTS.'/20X'SEGMT.',18X'ELEM
	EENT' , 19X'THICKNESS (FT)'/)

$D(1)$
$V O I=I D(1)$
B(NOI) $=\mathrm{B}(N O I)+P(1)$
CONTINUF
CONTINUE
550

[^0]
no nonounonounonomonomonomonomonomonomo

860
870
070

$\begin{array}{ll}\circ & 0 \\ \infty & 0 \\ \infty & \infty\end{array}$

 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

$$
\begin{array}{ll}
0 & 0 \\
\therefore \infty & \infty \\
0 & \infty \\
0 & 0 \\
0 & 0
\end{array}
$$

品 HO

$$
\begin{array}{ll}
0 \\
0 \\
0 & 0 \\
0 & 0
\end{array}
$$

$$
1060
$$

$$
\begin{aligned}
& N O K=(I D(J L)-I D(J K)) * I N E Q S+I D(J K) \\
& S T S H(I, N O K)=S T S H(I, N O K)+A K(J K, J L) \\
& C O N T I N U E \\
& C O N T I N U E \\
& \text { IF (JT, EQ. NS) LOOP }=\text { LOOP+1 } \\
& \text { IF (LOOP.EQ. 1) GO TO } 870
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{L} 3 * 2+\mathrm{L} 3+1-2 * N S H * L 3 \\
& 1)-(\mathrm{N} 1 * \mathrm{~L} 1+1)
\end{aligned}
$$

$$
+1
$$

$$
\begin{aligned}
& -(N 1 * L 1+1) \\
& +K * 2-(I-1) * 2+1 \\
& +1
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{ID}(3)=\operatorname{ID}(2)+1 \\
& \mathrm{~K}=\operatorname{IP}(\operatorname{I}, \mathrm{J}, 3)-(\mathrm{N} 1 * \operatorname{I} 3+1) \\
& \operatorname{ID}(5)=\operatorname{ID}(4)+\mathrm{K} * 2-(I-1) * 2+1 \\
& \operatorname{ID}(6)=\operatorname{ID}(5)+1 \\
& G O T O 1080
\end{aligned}
$$

$$
\begin{array}{ll}
\text { TO } & 1020 \\
\text { TO } & 1010
\end{array}
$$

$\begin{aligned} & 1140 \\ & 1150 \\ & 1160\end{aligned}$
1170
$\begin{array}{ll}\circ & \circ \\ \infty & \circ \\ \sim & \circ \\ \sim & \sim\end{array}$
$\begin{aligned} & \text { SL1 }=\operatorname{CJ}(1, \mathrm{~K} 1+1)-\mathrm{CJ}(1, \mathrm{~K} 1) \\ & \mathrm{GO} \operatorname{TO} 1200 \\ & \operatorname{IF}((\operatorname{IB}(1, \mathrm{I})-\mathrm{K} 1) \text {.EO. -1) GO TO } 1190 \\ & \text { GO TO } 1200 \\ & \mathrm{~J} 2=1 \\ & \operatorname{SL2}=\operatorname{CJ}(1, \mathrm{~K} 1+1)-\mathrm{CT}(1, \mathrm{~K} 1) \\ & \operatorname{CONTINUE} \\ & \text { DO } 1310 \mathrm{~L}=1,4 \\ & \text { NOJ }=\operatorname{ID}(\mathrm{L}) \\ & \text { IF (LOOPB .EQ. } 0) \text { GO TO } 1260\end{aligned}$
$\begin{aligned} & \operatorname{ID}(1)=\mathrm{N} 1 * \mathrm{~L} 1 * 2+\mathrm{L} 1+1-2 * \mathrm{NSH} * \mathrm{~L} 1+\mathrm{K} * 2+1 \\ & \operatorname{ID}(2)=\operatorname{ID}(1)+1 \\ & \operatorname{ID}(3)=\operatorname{ID}(2)+1 \\ & \operatorname{ID}(4)=\operatorname{ID}(3)+1 \\ & \mathrm{~J} 1=0 \\ & \mathrm{~J} 2=0 \\ & \text { DO } 1200 \operatorname{II}=1, \mathrm{NSH} \\ & \mathrm{J}=\mathrm{I} 1 \\ & \operatorname{IF}(\mathrm{~J} . \text { E } \Omega .0) \text { GO TO } 1140\end{aligned}$

$\begin{array}{llll}0 & 0 & 0 & 0 \\ m & m & 1 & 0 \\ m & m & m & m\end{array}$

(LOOPC .EQ. O) GO TO 1510 $=$
ALL
(3)
(6)
RITE

1470

\circ

옹
\ddagger

1500
1510

[^1]

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

000000000000000000000000000000000000
 - ∞

u

[^2]

$\cup \cup$

0100山は

－

－

은

$$
\begin{aligned}
& S(4,4)=\text { BEETA*DLR* }(D L R+C L)+4 . * E * B I / C L \\
& D O 10 I=1,4 \\
& I=I \\
& D O 10 J=I, 4 \\
& S(J, I)=S(I, J) \\
& R E T U R N \\
& \text { END }
\end{aligned}
$$

은

[^0]:

[^1]:

[^2]: OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO ベ』

