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CHAPTER 1

" INTRODUCTION

1.1 INTRODUCTION

In recent years, construction of tall buildings has
increased enormously., The trend in modern tall buildings is
to have .rigidly connected frames7providin§ spacious interior
areas, and stiff interior shear walls for the elevator core
and stair wells. In addition, shear walls are sometimes
prdvided on shorter .exterior faces of buildings. These
walls, in conjunction with frames, provide additional
stiffness to resist.lateral movements caused by wind or

v
earthquakes, hence@ séfving structural and non=structural
functions. The increasing number of shear wall-frame
structures has produced a need for a better knowledge of the
interaction forces between the wall and the frame in order
to permit more economical désigns.

The shear wall is uéually considered to be the
principal lateral 1load—resisting element in tall shear
wall-~frame structures. At one time it was common practice
to consider the shear wall to be a vertical cantilever beam

resisting all of the lateral load. This resulted in very

uneconomical designs. It has since been recognized that the




frame substantiaily enhances the lateral stiffness in two
ways. Firstly, the beams framing into the shear wall
provide resisting moments which tend to reduce the shear
wall deflection. Secondly, toward the top of the ' structure
the frame rather than the shear wall tends to resist the
major portion of the lateral shear. If the shear wéll alone
resisted the lateral loads, it would deflect as a free
cantilever as shown in Fig, 1.1(b), while if the frame alone
were to resist the lateral load, it would deflect in a shear
mode as shown in Fig, 1.1(c). Since the shear wall and
frame éré‘intércdnnected at each floor 1level, interaction
forces are developed between them. Thus, the combined

action results in the deflected shape shown in Fig. 1.1(4d).

1.2 REVIEW OF THE PREVIOUS WORK

Many investigations have been carried out on shear
wall-frame structures in the elasﬁic range, 'They can be
classified as frame analogy methods and finite element
methods. Work carried out on these two methods is briefly

reviewed here.

1.2(i) FRAME ANALOGY METHQODS

In this method the wall is idealized as a series of
bending elements which approximate the structural
characteristics of the wall. Fig. 1.2 shows a typical frame

analogy for a structure.
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Rosenblueth and Holtz (1) presented an approximate
method of analysis for a rigidly jointed frame which
includes .a single shear wall. They assumed that the drift
of a frame in any storey was proportional to the shear
acting on the given frame in that storey and the moments and
shears in girders supported by a shear wall were
pfoportional to the flexural slopes of the deflected wall,
In their study the wall was idealized as a beam on an
elastic foundation, in which the reactions were proportional
to the wall rotations rather than to its displacements. The
pfoblembbould then be treated followiné the prdcedure' of.
~successive approximations described by Newmark (21) for
beams on eiastic foundations. Two methods were given for a
"~ suitable first configuration which could then be improved by
successive approximations. Column shortening and foundation
deformations were neglected in the analysis.

Cardon (2) developed expressions for the- lateral
stiffness of various types of beam and column arrangements.
He expressed the angular deflection at all points with a
second degree differential equation, taking into account the
effect of bending and shear. The main assumptions in this
approach were that the properties of the wall were constant
throughout and that the forces acting on the wall were
continuously distributed over the height of the building.

Gould (3) replaced the frame with rotational and

translational springs, linked to the centre line of the



shear wall with rigid bars concentrated at frame levels. He
used the finite difference technique in solving the problemn.
The interaction moments at each storey level were included
in the beam. equation by replacing them by statically
equivalent equalw and opposite forces at floors above and
below. The assumptions were the same as those in Caxdon's
(2) paper.

Shear wall-frame structures have also been analysed by
replacing the beams with a continuous lamina of equivalent
stiffness.

‘Hubert Beck (4) proceeded on tﬁis basis énd presented
an approximate method which furnished simple formulae for
the determination of statically redundant values. All
redundant values were combined to form only one single
unknown function. Hence, only one differential eguation had
to be solved in calculating the unknown function, instead of
having a system of linear functions. The assumptions made
were that all connecting beams had the same distance from
each other and that the stiffness of all beams, except the
-end one, were the same. The end beam_had one-half the cross
section and one-half the moment of inertia of a normal
connecting beam. The wind load was assumed distributed
uniformly throughout the height of the building.

Bandel (5) introduced an energy method in which he
replaced the shear wall by an equivalent truss, as shown in

Fig. 1.3. He used a power series to represent the applied
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loading and the minimization of potential energy yielded a
set of linear simultaneous equations, The axial
deformations were neglected and only rigid foundations were
considered.

Riko Rosman (6) used the same continuous system method
as that used by Hubert Beck. The integral shear forces in
the continuous connections of individual piers were chosen
as the redundant functions. He dealt with only a single
concentrated lateral load at the top of the wall. The
.assumptions were exactly the same as‘Bandel's as‘far as the-
properties of the beams and the stiffnesses were cohcerned.

A. L. ‘Parme (9) published a paper on shear wall-frame
structures where the procedure consisted of relating the
total 1load at éach floor level to the displacement of that
floor and the two floors above and beléw. By writing an
equation in terms of the relative stiffnesses of the
different eleménts -at any level, a set of simultaneous
equations was  obtained which could then be solved easily.
The assumption was made that the lateral displacement at
‘each ievel was the same for the sheaf'wall and all columns.
The axial deformations of the columns and the elongation and
‘contraction of the outer fibres of the shear wall were
neglected.

An iterative analysis procedure was presented by Khan
and Sbarounis (8). The shear wall-frame structure was

analysed as an analytical model consisting of a shear wall



system and a frame system. An initial deflection of the
shear wall alone was computed either directly orwith a set of
curves that was presented. By forcing the link beams
between the frame and shear wall system to be constrained to
follow the distortéd form of the wall, as shown in Fig. 1.4
the = bending moments throughout the frame could be
determined, either by moment distribution oxr by an
iterative, modified slope—deflectioh‘procedure. Hence the
interaction forces on the wall for over all equilibrium at
each floor level were obtained. = An iteration technique
- employing-initial .and final deflections and rotations at the
end of any cycle in conjunction with free wall deflections,
as a starting point for the next cycle of iteration,was used
to determine the final mode of the deformation of the
combined system. Cpnsideration was given to the effects of
foundation deformations, local yielding of the wall, axial
and shear deformations, torsion of the frame, shear walls
which do not run the full height of the building, and to the
problem of the determination of the effective widths of
floor slabs which can be taken to act as beams. For design
purposeé, a set of influence curves was given, which showed
the distribution of storeyv shears between shear wall and
frame members for a range of wall-column and column-beam
stiffness ratios and for several different forms of applied
lateral loading.

Clough, King and Wilson (7) developed a computer
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program for shear walls acting in conjunction with a frame;
The stiffness method employed inclﬁded flexural, shear and .
axial distortions of the members. However, the floor slab
was considered to be rigid in its own plane, so that axial
deformations of beams were neglected. The assumption was
made that the 'building was laid out in a regular grid
pattern with each floor level constrained to translate but
not to rotate under the action of lateral loads. It was
furthur assumed that the shear walls were of uniform width
throughout the entire height -although variations in

séiffness were allowed.

1.2(ii) FINITE ELEMENT METHODS

In these methods the wall is idealized as a system of
elements, the behavior of which is similar to that of the
real, continuous structure. The structure is then analysed
by evaluating the prbperties of these interacdnnécting;
elements., Fig. 1.5 shows a typical shear wall structure
divided into finite elements.

C. V. Girijavallabhan (14) dealt with a shear wall with
openings, by finite element method. He discussed the stress
distribution in the shear wall with openings and predicted
more accurate values for the bending moments, shear and
axial forces which act upon the lintel beams when the shear
walls are subjected to lateral loads. He also discussed the

effects of changes in material properties such as Poisson's
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ratio upon the stresses in shear walls and bending moments
and axial forces in the connecting 1lintel beams. He
developed a program which employed the conventional
procedures of matrix structural analysis. He observed that
the stress distribution in the medium depends upon: (1)
external load distribution, (2) relative stiffnesses of
lintel beams and shear wall, and (3) the value of Poisson's
ratio of the material used.

The linearly elastic piane stress analysis of a shear
wall may be carried out using finite element idealizations.
'HoweVer, Qhen ﬁhe connecfing 'beamé aré slender, existing-
types of elements are not suitable since they can not be
connected with line elements in bending. I. A. Macleod (15)
developed a new rectangular element which has a rotational
degree of freedom at each node. This element overcomes the
difficulty of combining line elements in bending with plane
stress elements. He discussed ' the types of displacement
functions used and the derivation of the element stiffness
matrix.' He developed a program which can include thése new
‘elements together with 1line elements in bending. The
program is written in Algoi and usesb.the ~direct stiffness
method of solution. Some guidance in the proportioning of
finite elements for shear wall analysis -was’ given and
comparison of finite element solutions with a frame solution
was made for a wall with two different patterns of openings.

This technique shows promise of being most useful in the
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analysis of shear walls with openings.

Recently, R. G. Oakberg and William Weaﬁer (13)
analyséd a shear wall-frame structure by finite element
technique. The finite element model included rectangular
openings in the shear wall, and edge pilasters. They
employed the method of substructures in the matrix stiffness
analysis. The method took account of the effects of shearing
and local distortions. The authors developed special
elements which were used to combine with elements in
bending. A program was written in Algol and the method of
'substructures allowéd the solution of .a fairly large‘problem'
in. a reasonable amount of computer tihe. Using the
substructure analysis, only the displacements at the
connection points and the corresponding actions were
retained and the lateral loads were applied only at the
floor levels. The base was assumed to be fixed. The
results were compared with thosé obtained wusing the deep
column method and the discrepancies in the calculated
rotations at the connection poihts were considerable. For
larger shear wall height to width ratios, the discrepancies
-between the two sets of rotations were reduced. Therefore,
this method would be suitable for lower ratios of height to
widﬁh and the deep column method would be more econcomical

for higher ratios.
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1.3 OBJECTIVE OF STUDY

Computer methods areindispensable for the analysis of
large structures, particularly in dealing with the finite
element technique and most of the methods, as discussed in
the previous section, lean heavily on a digital computer.
The choice of a method depends on whether the most accurate
method is sought regardless of the arithmatic labour
involved or whether a practicél method with a minimum amount
of calculation or input data is desired.

In many instances, a series of openings are provided
either for architectural or environmeﬁtal reasoné,'thefebyi
ieducing the efficiency of the shear wall and altering its
deformationr characteristics. Other factors affecting the
" shear wall stiffness are thickness, material properties,
height to width ratio, stiffness of beams framing into shear
wall, width of openings and position of openings relative to
the edges of the wall.

A completely rigerous analysis of a shear wall-frame
structure generally requires extensive computation. In view
of the approximate nature of the design wind, earthquake or
blast loading assumed in the analysis and because the
material properties can usually be estimated only
approximately it is often felt that a completely rigorous
solution is not warranted.

Several authors (11,13,14,15) have indicated that the

finite element method gives better results than other
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methods. Unfortunately this method often gives rise to
sforage problems in the computer and becomes very
uneconomical for large structures. However, 1if .certain
kinematic aséumptions and other approximations are used,
this problem can be overcore. It will be shown here that
fairly large structures can be treated on finite element
idealizations making the best use of the available computer
storage. |

Hence, the object of this dissertation is to develop a

 method of analysis éf;sheé:'wall—framg'Sbyuctures'Subjected

to-léteral ‘loaas.w“ with an ultimate aim of deVelbping a

fully automatic solution technique with a minimum

combutational effort. Shear walls with or without openings

are considered’  and the study is limited to linear elastic
analysis only.

The analysis presenfed herein uses the matrix stiffness
method. While treating the wall on finite element
idealizations, a special kind of element with a rotational
degree of freedom " at each node is required to combine the
-shear wall stiffness with'those of beams framing.into shear
wall. Such an element is given by R. G. Oakberg and William
Weaver (13) and also by I.A. Macleod (15). The element
presented by the former authors has been used in this
analysis. The matrix reduction process has been intensively
used here, utilizing the "fact that the loads are applied

only at the framing levels or at Joints. A systematic
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procedure is adoptéd in the analysis and finally, a computer
program is presented wherein the input consists of the joint
coordinates, material properties, coordinates of the element
divisions in the shear wall, beam and column properties and
other general information.

Certain kinematic assumptions are made which will
simplify the problem without much affecting the accuracy of
the results, However, due consideration is given to the
following points.

(i) When the thickness of the shear wall of +the lower
level differsv ffom that at the top in a real shear wall
problem, the element stiffness properties at the lowér
levels are changed linearly in reiation to the thickness.

(ii) If the value of the elastic modulus is different
at different levels it is possible to easily incorporate the
different moduli into the computer program.

(iii) The stiffness matrix ibeing symmetriéal, only
one~-half of the banded matrix is stored in order to save
storage space in the computer.

(iv) As much advantage as possible is taken. from
symmetry, and identity of substructures in particular, in
generating elements, nodal coordinates and the stiffness

matrices.
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1.3 ASSUMPTIONS AND LIMITATIONS

The assumptions made in the analysis are briefly
outlined below. Certain kinematic assumptions reduce the
number of generalized coordinates and in a few cases reduce
the band width of the stiffness matrix. Wherever necessary
these assumptions are explained in detail with mathematical
derivations in subsequent chapters.

(i) The shear wall is assumed to run the full height of
the building and the floor slab at each framing level
divides the wall _into segments, Hence, the number of
lsegments ‘in a.sheér wall is équal to‘thé number of étoreys.-
The middle surface of the slab 1is assumed to coincide
exactly with the framing level.

(ii) Each floor slab is assumed to be infinitely rigid
in its own plane., Hence, there is only one transverse degree
of freedom at each floor level. Consequently, the axial
deformations of the beams are neglected.

- (iii) It is assumed that plane transverse sections
through the shear wall at all floor levels remain plaﬁe.

{iv) The force-displacement relationship at any level
of a shear wall is related.to those éﬁ adjacent levels only.

(v) The shear wall and the columns of finite elements
comprising it are of uniform width throughout the height of
the structure. However, the thickness can be varied.

(vi) The frame has the same number of bays at each

framing level.
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(vii) The structure is assumed to have either fixed or
pinned bases and all connections are assumed to be rigid.

(viii) External forces are assumed to be applied only
at the corner nodes of a shear wall segment, or at joints.

(ix) The coordinate system used in the analysis is

shown in Fig. 1.6.

" FIG. 1.6 POSITIVE COORDINATE DIRECTIONS
The directions shown are assumed positive for both forces
and displacements. |
(x) The structure is assumed to be linearly elastic.
(xi) oOnly rectangular paﬁels are coﬁsidered and no
inclined members can be treated in the program.
(xii) Only rectangular finite elements are considered

in the shear wall analysis.




CHAPTER IT

GENERAL ANALYSIS OF STRUCTURE

2.1 INTRODUCTION

The use of "Numerical Methods" 1is inevitable in
analysing complex structures which require reasonébly
- accurate results in a short time. The numerical methods can
"be divided into two types, (i) numerical .soiutions of
differential equations for displacements or stresses and
(ii) matrix methods based on discrete-element idealizations.
In the former case, for any particular structural
configuration, the equations of elasticity are solved either
by finite difference technicue or by direct numerical
integration. in this approach the analysis is based ‘on
mathematical approximation of differential equations and
applications of these methods are restricted, due to
‘praétical limitations, to simple Sﬁructures. In the second
case, however, the structure 1is first idealized into an
assembly of discrete structural elements with assumed forms
of displacement or stress distribution and then the complete
solution is obtained by combination of these distributions
in a manner which satisfies equilibrium and compatibility at

different joints, Methods based on this approach have

20
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proven to be most suitable for the analysis of complex
structures.

The two possible approaches in the matrix analysis are
(i) the stiffness method (or displacement method) and (ii)
the flexibility method (or force method). In both cases the
conditions of equilibrium and compatibility are satisfied.
The flexibility method involves fewer equations to be solved
than stiffness method. For large structures, however, the
difference is insignificant. The main advantage in stiffness
method 1is its systematic approach which is well suited to
'?rogrammihg. The fiexibiiity method réqﬁires the exercisiné
of judgement in the selection of suitable "redundant” force
components and this choice has a significant bearing on
the accuracy of the results obtained from a computer
analysis. Hence, the flexibilty method is best suited to
hand calculations. Present day matrix structural analysis
using the computer is based mainly on the stiffness method

and this method has been adopted in this study.

2.2 ANALYTICAL MODEL (STRUCTURAL IDEALIZATION)

The first step in matfix structural analysis 1is the
formulation of a discrete element mathematical model which
is equivalent to the actual continuous structure. The model
is necessary since it establishes the finite number of
degrees of freedom upon which matrix algebra operations can

be performed. This is accomplished by equating energies of
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the continuous and discrete element systems. A typical
analytical model for a shear wall frame structure is shown
in Fig. 2.1. The model essentially consists of rectangular
panels with .shear walls and columns connected by means of
beams. The shear walls may have openings in them or there
may be shear walls connected by lintel beams only.

The frame portion of the structure is composed of
columns and beams which present no. difficulty in the
formulation of their discrete models. With this discrete
system, the energy‘equivalence leads to exact representation.
of. £he frame .system. However, for the sheér'wall it is
necessary to use approximations. The shear wall is
subdivided into a number of smaller elements with fictitious
boundaries and’ with assumed displacement distributions
within the elements. As the number of elements is . increased
the solutions for the structural displacements and stress
resultants should =~ tend to the exact values for the
continuous system. The ﬁodal points are considered to be the
segment corners, intersections of the centre lines of beams
-and ‘columns and intersections of the centre lines of beams
and edges of shear walls. The shear wall is assumed to be
divided into segments with boundaries at fhe various levels.
This is shown by the dotted lines in Fig. 2.1(a).
Althoughﬂthe beam depths may vary and centre lines of
_adjacent beams and the centre lines of floor slab at any

level may not coincide, this discripancy is considerd to be
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minor. Fig. 2.1(b) shows the idealized structure.

In the stiffness method it 1is necessary first to
ascertain the degrees of freedom at each Jjoint; i.e. the
generalized coordinate system. A sample shear wall frame
structure is shown in Fig. 2.2. All degrees of freedom are
referred to a global system of axes as represented in Fig.
2.2(b). It is evident that each node'has three degrees of
freedom. But with some useful assumptions the total number
of degrees of freedom for the whole structure can be reduced
considerably. Since the floor slabs are assumed to be
infihiteiy riéid bin their own planés;.a singie'horizontai
degree of freedom at each 1level can be considered. This
means that all nodal points at any particular level undergo
the same displécement in the horizontal direction. Each node
has a degree of freedom in the vertical - direction. ‘If the
assumption from classical slastic theory, that plane
sections remain plane before and after bénding, can " be
applied to the shear wall, the left hand and right hand node
points of a shear wall at any particular level undergo the
_same -rotation. Further, this can be»gsometrically related to
the corresponding vertical. displaceﬁents of these nodes.
Therefore the rotational degree of freedom can be suppressed
at these nodes and the stiffness properties accordingly
modified. This also leads to the fact that any beam end
framing into the shear wall has only a vertical degree of

freedom at the junction node. In the subsequent chapters
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these modifications are presented in mathematical terms. 211l
other nodes namely those at the beam column junctions, have
a rotational dégree of freedom. These are represented in
Fig. 2.2 as H, V and R. In the sample frame considered,
there are 30 nodes and if there are 3-degrees of freedom at
each node, the total number of degrees of freedom is 90. With
the assumption described above, the number is reduced to 5i4.
This will be the number of equations to be solved in the
stiffness analysis. The lateral loads are assumed to be
applied as a series of concentrated loads, P, at the floor

lévels..

2.3 STIFFNESS METHOD OF ANALYSIS

Havingvidealized the structure as a system of discrete
elements and ascertained the degrees of freedom at the
different nodes, the next step in the analysis ié to
determine the  stiffness characterstics - of individual
structural elements. For this purpose, the structure is
subdivided into a shear wall system and a frame system.

In the shear wall system, the shear wall is subdivided
into a number of finite elements. The stiffness of each
element is computed first and the element stiffness matrices
are superimposed to give the overall stiffness matrix for
the shear wall. In this process of developing the stiffness
matrix for the shear wall, certain internal nodes can be

suppressed as will be explained in article 2.4 of this



27

chapter. A further reduction is done, as will be explained
in chapter III, to give the shear Wall force—displacement‘
relationships relating fofces and displacements at the shear
wall segment corners only. However, in the frame system, the
frame is already divided into discrete elements consisting
of beams and columns connected by rigid Jjoints. The
stiffness properties of these members are evaluated
individually and then they are superimposed at the common
joints. Furhur, the stiffnesses at the nodes common to the
shear wall and frame are superimposed to give the overall
séiffnesé matrix of the structure. | | |
| “The functional relationship between the nodal forces P
(forces écting at the nodes) and their corresponding
diéplacemenis D (nodal displacements) forms the basis of ﬁhe
stiffness approach. In its generalized. form -this can be

represented as,

I L P e e R I
Bl %1 K2 By hi Ky |5

(2.1)

By Ky K o K g=--K j-=mn K 5 D,
P K | S— K. .---—K D
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Or, in symbolic form this can be written as,

¢ P$=[K] §D} (2.1a)

where P is the nodal force vector and D is ‘the nodal
displacement vector These are related by the structure
stiffness matrix K. P, K and D are expressed in generalized
coordinates. The order of [K], .as explained earlier,is
dictated by the total number of degrees of freedom for the
structure. The main diagonal stiffness coefficients Kii are
alwaysv positive. The subscripts 'i' and 'j' represent
generalized coerdinates and 'Kij ' 1is the stiffness
coefficient which represents +the force in generalized
coordinate direction i, due to a unit displacement in
generalized coordinate direction 3, with all other
displacements zero. Therefore, the off diagonel elements in
the stiffness matrix namely K

Reciprocal theorem, are symmetrical (

ij for i#j, by Maxwell's

=Ky for i#j).

Kij

Since by definition, the stiffness coefficient is the
force developed in generalized coordinate direction i due to
a unit displacement in generalized coordinate direction‘j,
the problem of deriving the element stiffness matrix is
handled systematically by giving the jth coordinate a unit |
displacement, holding all other coordinates at zero
displacements. The resulting forces at all other coordinates

due to this unit displacement form the coefficients of the

jth column of the stiffness matrix K . The formulation of
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the complete stiffness matrix can be achieved by giving each
coordinate a unit displacement (treating one at a time)
holding all others zero and evaluating the.resulting forces
at all coordinates.

The purpose of dividing the structure into discrete
elements can now be more clearly understood. Because of the
complexity of the structure, the amount of work involved in
deriving directly the overall stiffness matrix becomes too
involved, if not impossible. Therefore it is necessary to
have individual stiffness matrices and then by superposing
" these matriceé, the over éll stiffﬁess matrix. for tﬁe
structure can be obtained. As a demonstration the beam in
Fig. 2.3, which has two degrees of freedom at each end, is
considered. The force-displacement relationship for this

beam can be written as,

-~

(p (K19 K19 K12 Kag] 1)
1 11 K12 K13 K14} [D4q

P K Ks9 K K D
2 21 22 1723 B24 J 2 (2.2)

P3| |K31 K32 K33 K34} (D3

{Puj |Ru1 Ky2 Ky3 Kyy) (Dy)

Now considering the two-beam structure assembly Fig. 2.4(a),
connected at node 2, it is desired to arrive at the overall

structure stiffness matrix for nodes 1,2 and 3,
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FIG-2:3 BEAM WITH FOUR DEGREES OF
FREEDOM
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The equilibrium equations for the +two can now be

written as ,

(2] [®1 %, K3 5 2] [B] (%5 K4 &5 &g [

41’2?: Ky1 K2 K3 Ky 12, fP4?= Ka3 Kuq %45 Fyq <D4?

Pt | K3y K3y K3 By | D Bl %53 K54 K55 K4 15

(B LRyy Kgp Koz K (D) LB [Kg3 Koy Kes Kig LD
Beam -~ B1 Beam - B2

Superposition of these two equations yields the structure

stiffness matrix,

Bl [R1 K, K3 Ky K K El
Sl [fer B2 B3 Be  Bs Bl |3
Bl K31 K3p (K3¥K3) Bs K5 Ke| )3
ﬁ }: L i > (2.3)
Bl %1 ¥a2 Kyz (B Ky ) Ks Kl |D
Bl %51 Xsp K53 K5 K5 Ke| |B
) K61 Be2 Koz Kea  Fe5 el LR

Because of the common node for the two coordinates, the
order -of +the matrix is only 6X6. This structure stiffness

can be symbolically put as 2.1(a)

{Pj=1x1{p} -

where K is a square matrix. By introduction of joint
constraints (support conditions), the stiffness matrix can be
made non-singular. Then, by confirming to the law of

matrices, the joint displacements can be found by solving

Eg. (2.1a)
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i.e. | | {D}=[I§]" o (2.4)

To satisfy compatibility, all member ends framing into
any particular joint undergo the same displacement as does
the joint. Therefore, once the - displacement vector D has
been determined from Eg. 2.4, the member end displacements
(which are the same as - the corresponding joint
displacements) can be incorporated into the individual
member force-displacement relationship to ‘calculate .the

member end forces.
ie. 19 T=1x1p) T | (2.5)

where I'represents any member.

In this study all element stiffness matrices are
expressed directly in the global system to avoid
transformation' of stiffness matrices and force and
displacement vectors. This is convenient because the study
is limited to Struétdrés .;with rectangulér frames and
shear walls which can be subdivided into rectangular
segments. Three kinds of element stiffness matrices are
required for the analysis -of this type of structure: (i)
finite element stiffness matrix, (ii) beam stiffness matrix
and (iii) column stiffness matrix. The finite element
stiffness' matrix 1is wused for the shear wall and beam and
column stiffness matrices are employed for the frame system.
They are treated separately 'in Chapters III and IV

respectively.
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2.4 CONDENSATION PROCESS

The lateral loads due to wind or earthgquake are assumed
to act only at the joints or at segment corner nodeg. Also,
since the shear wall is primarily designed to resist lateral
loads it is furthur safe to assume that no external load is
ever applied to any interior point of a shear wall.v Since
the shear wall.in the present analysis is treated by finite
element idealizations, there is always a problem of storage
and additional computational work. The purpose herein is to
demonstrate how the storage problem can be avoided making
use of the assumption that internal nodes are not loaded
externally.

Consider a segment of the shear wall, as shown in Fig.
2.5(b). Assume, for the purpose of analysis that the segment
ié subdivided into a number of finite elements having 'n'
external nodes and 'm' internal nodes. The nodes marked 'E'
are external nodes and those markea 'I' are internal nodes.
In order that continuity between the segments should not be
broken,. the nodes on the :ﬁop and bottom edges of each
segment are considered as ‘ekternal nodes and all other
nodes, where no external loads are applied, are considered
as internal nodes. The equation of equilibrium . can now be
_Qritten as

P =[K] D
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fode
*
o

P_[KEEKE {DE .
s |
where P denotes the external force,
K denotes the stiffness matrix

and D denotes the displacement vector.

The subscripts E and I denote the external and internal
nodal actions respectively. For the sake of simplicity, let
each node have 'C' dégrees of freedom, the stiffness matrix
'K' will then be of the order (n+m)c X (n+m)c.

Then since the internal nodes are not loaded, Py is'
éero} and | ‘
Pl [Kgg Xg D%

0 Kig K13 (D

Therefore without violating the law of matrices, the

above expression can be expressed by the two matrix

equations
PE = EE DE+KEI DI | (2.7a)
0 = IE DE+KII DI _ (2.7Db)
From the second equation,
-1
= ~K o
DI 1T KIE DE

Substituting for DI in equation (2.7a),

Pp = Kgp DptKeql II K1g Dy
-1
e~ Reg¥p¥rr ¥ig) Pg

or P

which relates the external nodal forces to external

nodal displacements only. This reduces the resultant

stiffness matrix to the order of (nc X nc).
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:Therefore,

-1
Keducea = Teg~fe1krr K

Thus the internal nodes are suppressed: with a

subsequent saving in storage.

2.5 METHOD OF ELIMINATION

The elimination phase and the subsequent expressioh of
the stiffness matrix in terms of the external nodal forces
and external nodal displacements follows "The Method of
Aitken"(1§) which is reproduced in Appendix A. Referring to

this appendix the following correspondence of symbols will

be used.
A B] [K;; Kig (2.8)
C 0 |7k 0
EI
and -calp = -x _x 1k
EI II 1E

" With 'n' external nodes and 'm' internal nodes , the

over all stiffness matrix can be written as,

YRS Kin T8 1) K] (ntm)
K I
nl nn | n (nt+m)
T — = === == (2.9)
Knt1)1 :K(n+1) (n+1)  X(n+1) (n+m)
|
|
K (ntm)1 : " X (atm) (atm)
i | il
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Rearranging the terms as per equation (2.8), we have

-

| -
K
(n+1) (n+1) Rt
|
@ ! @ (2.10)
I
— === -K,; 7% —x~+-——— - —— —F--———1-—~-—1st pivotal
(n+m)(nfm) | (ntm)n row and K
e e e e is first
Kl(n+l) : 0 pivotal
| element
(:::) | null matrix
|
l .
Kn(n+m) | 0

Thé.aim is to reduce the RﬁI matrix in the éxpreséion
k2.10) to a null matrix. The process as we see in Aitken's
methed, proauces the required matrix on the bottom right
corner to réplace the existing nﬁll matrix. To achieve this,
the ordinary Gaussian ‘elimination technique is used. To
faeilitate easy programming, the backward decompositionv is
adopted. Let the final matrix on the bottom right corner of-
expression (2.10), be represented, after reduction by [Q].
In the backward decomposition, the first pivotal row is the
last row of KII' as indicated in expression (2.10). The

first pivotal element 1is the last element of %1

[4

in the above expression and the column below

K
(n+m) (n+m)
this is to be made zero. In general this process can be

written in a simplified form as follws:

(ntm) (n+m)
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where,

'l1' is the pivotal row and K is the pivotal element.

it and 'S are any typical row and columnn,
respectively, that undergo subsequent changes.

The matrix [Q], which replaces the null matrix,

-1

rgpresents the expression —KEI:KII KIE .

interested in the expression (%m:—Q), the null matrix in

Since we are

equation (2.10) can be replaced by ﬁﬂgwhich gives directly
the required expression. The flow chart of the above process
'is,presenfed ih " Fig, 2;6 ‘ |

For the purpose of comparison it is interesting to note
here that the direct procedure to obtain the expression,

%E—%IKIEl%E

involves an inverse of a matrix of very high order, two
multplications and a subtraction. This is very uneconomical
from the computer point of view. On‘ the other hand, the
reduction process explained in this chapter involves only a
single operation which takes care of everything relating to

‘matrix operations in the above expression.

2.6 SUMMARY

The general analysis -procedure is summarised in the
following steps:

(i) The shear wall is subdivided into a  number of
finite elements and individual element stiffness matrices

are evaluated from the element properties.



FLOW CHART FOR CONDENSATION OF INTERNAI NODES
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DO N = 1, NUMBER OF INTERNAL
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|
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ol ‘
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)
K(L,J) = K(L,J)/K(L,L) = C
t
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FIG. 2.6
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(ii) The stiffness matrices for the elements in a given
shear wall segment are superimposed to obtain the stiffness
matrix for the segment. The internal nodes for the segment
are then  condensed  off, using force and kinematic
assumptions. This gives the force-displacement relationship
forithe shear wall segment corners.

(iii) Beam and column stiffness matrices are evaluated
individually from their respective properties and they are
superposed at their common Jjoints to give the frame
stiffness matrix.

(i#)'The frame stiffness and the shear wall stiffness
are combined (the stiffnesses .of the two systems are
superimposed at the connection péints between them) to give
the over all stiffness matrix.

(v) The support condition is incorporated in  the
stiffness matrix formulated in step (iv).

(vi) With known applied 1pags at the nods 'points, the
equations of equilibrium for the whole structure are solved
for the unknown displacements at the joints.

(vii) Knowing the segment corner displacements found
from step (vi), the forces in the shear wall are calculated
from direct multiplication of dindividual shear wall
stiffness matrices and their corresponding segment corner
displacements.

(viii) The beam end forces and column end forces are

calculated in a ‘'similar manner, knowing their end
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displacements and the individual stiffness matrices.

(ix) Finally, the reactions arevcalculated.



CHAPTER III

SHEAR WALL ANALYSIS

3.1 INTRODUCTION

In most practical cases, the shear wall properties do
not change for any particular storey, that is, between
adjacent framing levels. Therefore, it is most convenient
to calculate the stiffness matrix for each shear wall
segment separately and then to combine the matrices to
obtain the stiffness matrix for the overall shear wall. 1In
the finite element analysis of the shear wall, it is obvious
that conventional pléne stress elements, which have two
translational degrees of freedom at each node, are
unsuitable to take intovaccount fhe interaction‘between the
shear wall and frame, or to combine with line elements in
bending. Therefore, a third degree of freedom, namely the
rotation at each node, bécomes absolutely necessary. Tﬁe
guestion still remains as to whether all the interior nodes
should also have the three degrees of freedom. The third
degree of freedom, namely the rotational degree of freedom
at the internal nodes, can be suppressed, or simple plane
stress elements for the internal ones can be considered.

This type of approach obviously tends to reduce the accuracy

42
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6f results, However, the three degrees of freedom at each
node involve increased computational work and increased
storage regquirements. A compromise can be struck between
the two approaches. A number of papers, the most recent of
which is by R. G. Oakberg and William Weaver (13), point out
the above facts. Oakberg .and Weaver separated the edge
elements and interior elements and introduced a new element
called the  transition element. The stiffness matrices for
these elements are presented later in this chapter.

C. V. Girijavallabhan (14) has done :considerable work

‘on eélement shape. - He subdivided a model shear wall into
discrete elements. Triangular elements were used for
discretization, and later, rectangular elements were

adopted. To obtain accurate results, he subdivided the
structdre into 1,568 triangular elements with 918 nodal
points. Employing the direct stiffneés method, the nodal
displacement vector for the given boundary forces was
determined for the complete assemblage of finite elements.
The same model problem was again solved using 264 discrete
rectangular elements with 334 nodal points, without altering
the other properties of‘the wall.The nodal displacements
obtained by the +two analyses were :compared and it was
observed that the overall displacement patterns were the
same. Strains and stresses in each element ' were computed
from nodal displacements in both cases and the results

agreed very well. The solution obtained was -sufficiently
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accurate for design purposes when 264 rectangular elements
instead of 1,568 triangular elements; were used with about
one-third the total number of nodal points. Consequently,
further analysis of the shear wall was made with rectangular
elements only.

Additional advantages of wusing rectangular elements
are:

(i) ease of forming the element mesh and generating
nodal coordinates. Only coordinates of one horizontal row
and one vertical row need be included among the input data.
Iﬁ addition, the divisions in the X-~direction are éons£ant
throughout the height of the wall.

(ii) increased flexibility and decreased - number - of
eléments when coarser elements are used.

(iii) since, in the shear wall problem, more degrees
have to be considered at some of the nodal points, the
smaller the number df elements, the smaller the amount of
computational work and storage requirements while forming
the nodal egquilibrium equation.

(iv) ease of systematic generation of element
stiffness matrices in the global axes system £for the
structure. Hence, no transformation of the matrices is
required.

If the existing stiffness matrix for any'element has a
coordinate system other than the ~global coordinate system

then it is taken as the local system for the element which
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then is transformed to global system using the

transformation matrix.

3.2 ELEMENT MESH AND ELEMENT TYPES

Following the method adopted by Oakberg and Weaver, the
element mesh for a typical panel 1is shown :in Fig. 3.1.
Since, on either edge of the panel, there may be beams
framing into the shear wall, the two extreme vertical rows
of elements are considered as edge elements to combine with
beams in bending. These edge elements have three degrees of
freedom'at-each of their nodes; two translational and one
rotation. The interior nodes néed not have the rotational
degree of freedom since they are not directly connected to
bending elements. But to satisfy compatibility at the nodes
between edge elements and interior elements, a new element
called the transition element is introduced between the two
element types. That is, in the two vertical rows of
elements adjacent to edge elements. They are further
classified as left transition elements and right transition
elements. A typical action of the combination of the three
types of elements is shown in Fig. 3.2. It is clear from
this figure that the two nodes of the transition element
which are common to edge elements as well have three degrees
of freedom, whereas the nodes that are common with interior
elements need have only two degrees of freedom. Therefore,

for a transition element, there are altogether 10 degrees of
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freedom. Thevstiffness matrix as given :by Oakberg and
Weaver (13) for these two types of elements are employed

here.

3.3 ELEMENT STIFFNESS MATRICES

(i) EDGE ELEMENT

An edge element has three degreés of freedom at each of
its nodes; two translations and one rotation. It +thus has
twelve generalized displacements, as shown in Fig. 3.3. The
symbols 'a' and 'b' denote the width and the depth of the
element. The displacement - functions for this element are
the prodﬁcts of linear and cubic polynomials in the
dimehsionless variables &= x/a and n = y/b as follows:

5 (Emd) = -(-0) @n° - 3194 - b A -5 ¢ - n)e,
~£(2n” - 374, - bEn® - n))a,
+ (-9 @ -3+ e, -bA - 00 - 20 + mag

' ‘ 2
+ g(2n3 - 3n2 + 1)d10 - bt (n3 - 2n° + n)d12 (3.1.a.)

u, (50,0 = (8 - 3 + 1)d, + a (&> - 26” + £)d,
-n@2e® - 3% g, - an@ - £ g

+ - E -3+ g+ al - m &0 - 267 + 04
- - weed - 3ha - al -0 (& - e, (3.Lb)

where d is the element displacement vector and w and u, are
the two displacement functions.

These functions provide identical rotation for adjacent
edges at each corner of the element. Since the adjacent

element edges experience the same rotation at each corner,
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TABLE 3.1

STIFFNESS MATRIX FOR EDGE ELEMENT

p -0 -p P =P -p o P ~p b -
1 2 3 4 5 6 7 5 9 16 2 12
-p B B o B B —-p B R o) B B
2 2 3 5 5 6 5 8 9 2 11 12
-p B Y -p_-B Y P B Y -8
3 3 3 6 6 6 9 9 9 12 12 le
P P -p p p-p - - P -p_ =p
L 5 6 1 2 3 10 2 12 7 5 9
-p 8 -8 p B -B -p B -8 p B -B
5 5 6 2 2 3 2 11 12 5 8 9
-p B Y -p -8 Y p 8 Y o -8 Y
Et 6 6 6 3 3 3 12 12 12 9 .9 g9
¢ -p p P -p o o p p o 0 p
(1-u2) 7 5 9 10 2 12 1 2 3 Y 5 6
0 B8 8 -0 B B8 p B B -p 8 B
5 8 9 2 11 12 2 2 3 5 5 6
-p B8 Y =-p B o B Y p =B Y
9 9 3 12 12 12 3 3 3 6 6 6
o p P p p P =P o p -p o
10 2 12 7 5 9 I 5 6 1 2 3
o] B -8 -p B =B p B =B -p B -B
2 11 12 5 8 9 5 5 6 2 2 3
-p B - -8By e B ¥ o =B ¥
12 12 12 9 9 9 6 6 6 3 3 3

where,
o, = 13b + 2)a P, = ()
35a 5b 4
P, = -11b% + pa - Ia p, = 13 +)a
210a 24 40 352 5b
o, = L) o, = 1b’ - ya+)a
4 210a 24 40
D7 = 9 =~ 22a 09 = l3b2 - pa - 3}a
70a 5b 420a 24 40
p = -9b - Aa p = -13b2 + pya + Aa

70a 5b 420a 24 40
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and

13a + 2Xb

35b 5a

9a ~ 2)b

70b 5a
-13a + AE

35b S5a
=% - b

70b 5a

b3 + a3 - uab + 3Xab
105a  105b 72 40
—b3 - a3 + uab -+ Aab
105a 140b 72 40
—b3 _ a3 + uab + lab
140a 105b 72 40

b3 + a3 - pab - Aab
140a 140b 72 40
l1-u

12

11la™ -
210b

—13a2 +

420b

-11a" +

210b

420b

1b +
24

¥b +
24

¥b -
24

pb -
24
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40
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40
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the shear strain is zero at four points on the element. The
stiffness matrix for an edge element is presented in Table
3.1. In the stiffness matrix, E 1is the modulus of
elasticity, yb' is the Poisson's ratio, and 't' is the

thickness of the element.

(ii) LEFT TRANSITION ELEMENT

Oakberg (18) introduced a transition element between an
edge element and an interior element to assure displacement
continuity. There are a total of ten -generalized
‘displacements for this element as shown - in Fig. 37“' The’

displacement functions for this element are as follows:

u (€n,) = =(1-5) (2 = 3n)) a4 -~ BA-E) (n° - nD)d, + £nd, + (1-D)
(0% = 3% + Dy - bA-D (0 - 2% + mydg + EA-M, (3.2.2)
uz(E,n,é) = n(1-£)d, + gndy + (1-8) (I-n)d, + £(1-n)d,, (3.2.b)

The symbols are the same as for the edge element and
the stiffness matrix for this element is presented in Table

3.2,
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(1-n2)

TABLE 3.2

STIFFNESS MATRIX FOR LEFT HAND

TRANSITION ELEMENT

6 -6 8 -8
2 3
-9 -6
¢2 ¢3
0 ¢ o -0
3 3
~0 -6 -0 c
5 u
6 ~0l 0
¢5 5
3] 8 ) -8
5 8
-8 - - -6
¢7 ¢3
-6 -b -0 o
3 8
-0 0 o c
2 9
6 -9 o ]
10 5
where,
0 13b + 2)a
35a 5b
S 11b2 + Aa
210a 30
0 A-U
4
§) 13b2 - Aa
420a 30
$,= a + 2
3b 3a

6 . 8 -0
5 6
) -
¢5 5 ¢
—-a 6] -G
5 8
6 -6 -0
2 9
4. -8 -
2 2
-6 ] ]
2 1
- )
10 2 ¢
o -6 ¢
5 3
-6 -0 ]
5 4
-¢ -6 ¢
7 5

Atu

7b - la
20a 6b

9b - 2)a
70a 5b

3b_+ la
20a  6b

(A-wb
- 24
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(iii) RIGHT TRANSITION ELEMENT

The right transition element -is actually the mirror
image of the left hand element with the axes rotated through
180 degrees.  Therefore, the stiffness matrix for this
element can be derived from that for the left transition
element by rearranging the terms and using the
transformation matrix. First, the left transition element
is rotated through 180 degrees about the Z-axis, as shown in
Fig. 3.5(a) where the element displacement vector has

components ordered from 1 ~to 10. Considering this as the

iocal system for the right transition ‘element, the stiffness

matrix is the same as for the 1left transition element.
Since the stiffness matrix in the global system is desired
components 1 to 10 of the element displacement -vector are
first rearranged as shown in Fig 3.5(b). Accordingly, the
stiffness coefficients in the local system are rearranged to
give the revised stiffness matrix for the right transition
element, again in the local system. This matrix appears in
Table 3.3. To identify the two coordinate systems used,
.local system has primes in them. _

The transformation té the global system is through 180
degrees about the Z-axis of the translational displacement
vectors only. This transformation matrix is presented in
Table 3.4. There 1is no sign change ' for the rotation
transformation. Finally, the following :matrix operation

produces the required stiffness matrix : for the :right
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(1-p2)

TABLE 3.3

STIFFNESS MATRIX OF RIGHT TRANSITION
ELEMENT IN THE LOCAL SYSTEM 'Sr'




-1

TABLE 3.4

TRANSFORMATION MATRIX 'T'
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transition element.

-8 =T 8' TT
r Tr

where Sr is the stiffness matrix in the global  systen,
S'ris the stiffness matrix in the local system, and T is the
transformation matrix.

The final stiffness matrix for r}ght transitioh element

-appears in Table 3.5.

(iv) INTERIOR ELEMENT

An . interior element has two translational degrees of
freedom at each of its nodes; - giving eight -generalized
displacements. The stiffness matrix for this element was
presented-by R. J. Melosh (16)}. The element, and the
assumed generalized coordinates. are shown in Fig. 3.6(a).
The origin is choseh at the  centre of gravity of the
element. The displacement functions (obtained from Lagrange

interpolation formulae in two dimensions) are as follows:

uy (abd)=(x-a/2) (y-b/2)d - (x-a/2) (y+b/2)§ +(x+a/2) (y+b/2)d;

= (x+a/2) (y-b/2)d;, (3.4a)

u, Gm§)=(x—a/2)(y—b/2)dé—(x—a/2)(Y+b/2)d2+(x+a/2)(Y+b/2)d;

- (x+a/2) (y-b/2)dy - = : (3.4D)

where v and U2 are displacement functions

and d is the element displacement vector.
The sides of the element are parallel to the x and y

axes and are of length a and b, respectively.
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TABLE 3.5

STIFFNESS MATRIX FOR RIGHT TRANSITION
ELEMENT IN THE GLOBAL SYSTEM

5 S 2 2 3 2 10 5 7 3

~C o ] -4 o -0 =0 8 $ -
L 5 3 3 3 9 5 8 3 8

Et

— | o 6 -6 -0 -0, o] 0 -8 -0 o
(1-u2) -9 5 .9 2 9 4 2 4 5 4
-6 - -6 - -0 9 ¢ 0 ) o
5 7 2 10 5 2 2 5 5 5

-6 6 3] -6 6 -8 6 0 -8 -0
9 2 6 S 8 L 5 1 2 3

6 - 0 - -0 -8 -
2 10 5 ¢7 ¢3 5 ¢’5 2 ¢2 ¢3

-0 -0 -8 ¢ -0 o o -6 -¢ o

S =T8S8' T
r o
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(b) ELEMENT DISPLACEMENTS IN GLOBAL SYSTEM

FIG-3-6 INTERIOR ELEMENT _
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The stiffness matrix as given by R. J. Melosh (16)

appears below.

where,

2317 + 23y,
all - 2ayy
-ay] - ayy

-2ay) + ayy

a2 + auy
-al2 - ayy
K21 = -a312 = auy

@12 = Ayy

Kip K
K21 K
2811 + 2éuq
-2a1] + auy
-al] -~ auy
a2 - ayy

- =al2 - ayy
-a]12 + auy
ay * ayy

SYMVETRIC
2a3 + 2ayy

ajj - 2544

-a12 = ayy
al2 - ayy
a2 + ayy

-ajp * ayy

2a11 + 2ayy

-aj2 + auy |

cayz +oayy

a12 = ayy

-aj2 = ayy

-
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and
[ 2a,, + 23, 7
22 , ‘ SYMMETRIC
-2ap7 + ayy 2a59 + Qauu
K22 = -7 = Ay ayp = 23y, 2ayy + 24y,
| a2 - 2ay, -agp = ayy =2ap) + ayy 2apy + 24y,
in which
aqq = Et b a,, = Et a
11
(152 ¥ 5a 2 (152 X5
ajp = Et &, = Et (-PMa
(=) X% I G S TR v
E.um = Et (l-P)b ayy = Et (1-4)
1:};2 X 178 and a2 & T8

'E' and 'M' are the modulus of elasticity and Poisson's

ratio, respectively, and 't' is the thickness of the

element.

Substituting these values in the stiffness matrix, the

matrix expressed in the local system as represented in Table

3.6, is obtained.
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In the expanded form, the equilibrium equations for the

interior element can be written as follows:

3 - 1
[Py K11 Kiz Kis K37 Kip Kyy Kyg Kyg [d'ﬂ
- - a
Py e — 3
d'
Psl p--—---~-=—-"== - —— — - - 5
1]
P7}_ I it ) d7>
Pol [¥21 Koz Kpg Ko7 Kpp Ky Kopg Kyg d's
p e a
y Y
p e ar
6 6
LPSJ Kg1 Kgz Kgg Kg7 Kgy Kgy Kgg Kgg Ld'sj

The terms are rearranged according to Fig. 3.6(b) . to
" give the stiffness matrix for the interior element in the

global system. This appears in Table 3.7.

3.4 SEGMENT STIFFNESS MATRIX

As mentioned earlier, the shear wall stiffness matrix
is generated 'segment—Wise and then the combination of the'
segmental matrices yields the required shear wall stiffness
matrix. After the segment is subdivided into a number of
rectangular finite'elements, it is desired to develop the
stiffness matrix that will relate the nodal displacements
and the corresponding actions of the nodes - that .lie along
the top and bottom edges of the segments. As was discussed
in article 2.4, the nodes that lie along the edge are termed
external nodes, while the remaining nodes in the segment are

designated internal nodes.
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TABLE 3.7

STIFFNESS MATRIX FOR INTERIOR ELEMENT
IN GLOBAL SYSTEM

a - o o a -0 -0 a
1 2 3 L 5 L 7 2
-0 B -a B a B a B
2 2 Y 4 y 6 2 8
o - [»3 a -0l ¢ o o
3 L 1 2 7 2 5 L
o B o B - -B -0, B
L L 2 2 2 8 L 6
Et
— o a -0 -0 a a a -
(1'112 ) 5 4 7 2 1 2 3 L
-0 B -a- -B o B a B
4 6 2 8 2 2 M 4
- o a -0 o a a -0
7 2 5 L 3 L 1 2
o -8 o B - B -0 3]
2 8 L 6 L L 2 2

where,
o = b + Aa o = X4 qu
1 - - 2
3a 3b 4
o = b <+ Aa a = X ~-u
3 - L
3a 6b 4
o, = b - Aa o = b 4+ la
) - 7 — -
6a 3b 6a 6b
B = g + Ab B = a = 2Ab
2 - - L - —
3b 3a 6b 3a
66 = —-a <+ \Ab B = a + Ab
a T Ab 8 g_T 20
3b 6a 6b 6a
and
A= 1-p
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:Generation of the stiffness matrix starts from the topmost
segment and the topmost row of elements. If all the
elements in the segment are to be considered in one step to
form the segment stiffness matrix, there is a problem of
storage. To avoid this, the elements are considered
row-wise starting from the top most row.

The top most row of elements, along with their nodal
actions are shown in Fig. 3.7. Considering each element in
this row in turn, the corresponding element stiffness matrix
.is generated. The stiffness matrix for - the whole row Iis
formed by superimposing the stiffnesses at common nodes.
Since the top row of elements is pictured in Fig. 3.7, there
is only one lateral displacement along 1line 1, which
coincides with tﬁe centre line of the floor slab and is
considered as the framing level. The matrix for this top

row can be written as

where subscripts 1 and 2 denote the nodes on 1lines 1
and 2, respectively.

As a second step, the next row of elements is
considered and the stiffness matrix for this row is
generated in a similar>manner. Once again, the :stiffnesses

at the nodes along line 2 are obtained by superimposing the
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values for the elements 1in the adjacent two rows. The
procedure 1is illustrated in Fig 3.8 and the corresponding .

stiffness matrix is as follows:

Kn  Knp 0
Ko (Kpa"™h Kpp™™2)  Ko3
1° K32 K33

Considering the nodes on line 2 as internal nodes, 'I‘',
and the rest as external nodes, 'E', the previous stiffness

matrix can be rewritten as

0 0 .

) )EI (2) (2)
(1 I -

=
s

{2)
Keq

A
(=)
He
)

t

where the'superscript denotes the rows.

The terms can then be rearranged and partitioned as

follows.
[ kQ 0 : KE(]I) ]
I B
SN
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The previous matrix has the form:

Kep Ket

K K

IE II.

from which the matrix can be reduced to the form:

-1
(Kgp - Kgr Kpr™™ Kpp)

as explained in article 2.4, This gives the reduced matrix:

K'1 K'ys

' '
K 31 K

33
thch relates the displacements and forces at the nodes on
lines 1 and.3, only, the effects ;t the internal nodes being
suppressed. This appears in Fig. 3.9.

Next, the third row of elements is considered, and
after the stiffness matrix is generated for the row, it 1is

combined with the previous stiffness matrices as illustrated

in Fig. 3.10. The resultant matrix has the form:

e ' '
k', K" 0
t ' 3 3
K3y Kigg ¥ Ky Kay
3 3
|0 K3 Kiy

As explained in .the previous paragraph, the terms of
the above matrix can be rearranged and the reduction process

repeated for this new matrix. the resulting matrix _has the
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form: r -
K”?' Kll
11 14
“ "
| Kui Ky ]

?his process 1s repeated for all the rows in the
segment, treating one row at a time until the bottom edge of
the segment is reached. Fig. 3.11 shows the :nodal actions
for a segment, developed 'in this manner. The final
stiffness matrix at this step is the required segment
stiffness matrix.’

The éhearvwail stiffness matrix could be formulated by
developing the stiffness matrix for each segment in turn and
superimposing them along the commoﬁ edges. However, there
is a serious drawback in this, from the computational point-
of view. To illustfate, consider two segments, as shown in
Fig. 3.12. For convenience, the -actions at the segment
corners are differentiated from those at the internal nodes
on the common segment boundaries. -The stiffness matrix for

the two segments can be written as:

(K, K Kz Ky 0 0]
Kpy Ky, Kp3 Koy OO
Ky Ky KHZ KHZ o Ko Ky
Ky Ko Kaw Ko Ko Kig
0 0 Kz Koo Ky K

0 0 Kez "Kgy  Kgs Kgg
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It is obtained by the combination of the two matrices
for segments 1 and 2. By rearranging the terms in the above
matrix and treating nodes 1, 3, 5 and 6 as external and
nodes 2 and 4 as internal, the reduction process can be
applied to condense off nodes 2 and 4. If this is done, the
zero térms in the above matrix are replaced by non-zero
terms, due to condensation. Consequently, the shear wall
stiffness matrix becomes full, and unless further
simplifying assumptions are made, a great deal of
computational effort and large storage requirements result.

To avoid these - problems, kinematic assumptions,
described in the next section,_aré made at the shear wall
segment boundaries, in order to produce a banded shear wall

stiffness matrix.

3.5 LINEAR INTERPOLATION OF INTERNAL DISPLACEMENTS AND

CORRESPONDING MODIFICATION TO STIFFNESS MATRIX

From classical elasticity theory, it is reasonable to
assume that the plane sections of a long slender flexural
member remain plane during bending. * The .assumption is
therefore made here that the plane transverse sections
through the shear wali at all floor levels remain plane . as
the structure is subjected to lateral loads, as illust;atéd
in Fig. 3.13(a).

This assumption has two useful consequences:

(i) There is linear variation of vertical and
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rotational displacements along the boundary between any two
segments.
(ii) The rotation of the left end of the boundary is

equal to that at the right end.

3.5(i) LINEAR INTERPOLATION OF DISPLACEMENTS

In Fig. 3.13(b), DA and DB are the displacements at
ends A and B, respecfively, of a segment boundary. The
‘dispiacement D, at any point C, between A and B, can .be

" represented as

D S O (3.5)

For the two shear wall segments shown in fig. 3.14, it
is assumed that,thé stiffness matrices for segments 1 and 2
are formed separately and the stiffness coefficients along
boundary J are superimposed to give the following

equilibrium equations for this portion of the structure:

P) [ o K 0 K6 | [p]

P, Ky K, Kyg 0 Kps | |,

{Poy = |Kyy K3, Kig Kqy, Keg | {D3p | (3.6)
P, 0 0 Kyg Ky O D,

~P5 Joofs1 M2 ¥y 0 Ko | |Dg )
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~~-lB ¢ FLOOR SLAB

DEFLECTED SHAPE

‘U

(a) DEFLECTED SHAPE OF SHEAR WALL

A / "

(b) GEOMETRY OF DISPLACEMENT ALONG EDGE

FIG- 313
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T

FIG-3-14 INTERNAL AND CORNER DISPLACEMENT
VECTOR .ALONG THE SEGMENT EDGES
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The aim here 1is to relate the displacement Dg to
displacements Dy and D3 in order to reduce the‘order of the
matrix in (3.6). Fof simplicity, the displacements along
boundaries J and are represented by symbolic vectors D3
and Dy, respectively.

Let Cl=b/L and C,=a/L where a, b and L are as denoted

2
in Fig. 3.14. Then from equation 3.5:

Dg =G D+C, D, (3.5a)
Substituting Eg. 3.5a into Eg. 3.6, \
o , h .
P Kin  Xp Kig O Kig | - rDl
Py K1 Koo Ky O K2s D,
(Pl - K33 K32 Kyy Kiy Kye { Dy (3.7
P o0 SVERLVE Py
LPSJ ’K51 K, K g 0 KSSJ C,D*C,D, |
or
c - i 4
Pl Ky *+ CKgg)  (Kpp + GKggd Ky 0 1Dy
P, (Kyp + CKps)  (Kgp + CyKpe)  Kpy O D,
pbe g +oka g rox Ky X o @
P, 0 0 Kyz K| | D) -
Ps | (Kgy + GKgg) (K, + CKgs)  Kgz O
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The number of unknowns is thus reduced to 4. However, there
are five equations, the last of which is redundant. Also,‘
the stiffness matrix in the above egquation is not
~symmetrical. To achieve symmetry, the fifth equation above

is expanded as follows:

Multiplying both sides of Eq. 3.8 by C

CiPg = Cy(Kgy + CiKgg) Dy + Cp (Ksp + CpKgg) Dy + CiKgaDy - (3.9)
Eg. 3.8 can be multiplied by C5 to give:

CpPg = Cp (Kg + C1Kgg) Dy + Cp (Kgp + CpKgg) Dy + CyKggDs (3.10)

Expanding the first two of Egs. (3.7a)

= (Ky7 + C3K15) D1 + (K3 + CpKyg) Dy + Kq3D3 (3,11)

o
o
t

(Kp1 + CiKps) Dy + (Kpp + GyKpg) Dy + KpgDg S Ga)

o
N
1]

Adding Egs. 3.1 and 3.9,
P+ CiPg = § (K3p + CiKyg) + Cp (Kgy + C1Kgg) § Dy +

§ (K1p * CKyg) + Cp (Kgp + CRgg) § Dy + (K3 + CiKgg) D3 (3.13)
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Since, from symmetry, K15 = KSl’ the Eq. (3.13) can be

rewritten as
P; ¢ C1P5 = (K31 + 2C1K15+C12K55) Dl + (K12 + CéKls + C1K52 + C1C2K55) Dé

+ (K13 + CyKg3) D3 (3,13a)

Similarly, addition of Egs. 3.12 and 3.10 yields

Py + GpP; = 2(}(21 + CKye) + G (Kop + C1K55.)} Dy + SL (Kyy + Cps) + G,

‘KSQ + CZKSS)_§ Dy + (K23 + CyKg3) Dg | (3.14)

or, since K52:=_K25,
- 2
Py + CPg = (Kpp + CiKpg + CKgq + Ci0Kgg) Dy + (Kpp + 2CKpg + C)°Kgg) Dy

+ (Kp3 + GKgg) D3

'Pg' is the external force vector at C, a point between
A and B. Since it is assumed that the external forces are
applied only at the corner nodes, Py can be taken as: zero.
Also, the fifth of equations (3.7a) is redundant and can be

omitted. The final matrix after reduction is thus:
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The stiffness matrix in Eg. (3.15) is symmetrical and
it can be noted that Kl{??U’ Klu_and.K uzremain zero after .
the reduction. Also, K33 v K3y o jKu3 and Ky remain
unaltered. In other words, only the rows and columns
corresponding to the terms which are related to the
displacement that is being reduced are altered. These are
represented by rows I1 and I2 and columns J1 and J2 in Eq.
(3.15).

In general, if 'K' is the displacement being reduced
and 'I' and 'J' are the displacemgnts :to which 'K' is
related by an expression of the form

D =C Dp +(§ Dy

the terms in the Ith row and Jth row are altered as follows:

Ith | oo (K + 20Kp + C2Kg) o 0 v W (Kt CoKpet CIK i Cr oK)

. 02. (KIL+C1KKL)
Jth |« o o o (Kgg + CiKpe + CKpye + C10Kige) + o (Kgg+2CK p# G Kyg)

Lt‘h- Q'-.KLI+C1KB<--—— -—— - b T e B e e B S

— e e e me e e e e meemes e - e n s v —_— —— R — e e e
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where L is any other term, related to I, J or K, that
-undergoes subsequent changes. Therefore, the actions that
are not directly related to I, J or K do not undergo any
change during the modification.
- Any number of internal nodal displacement vectors on a
boundary between two segments can be related -to the end
displacements in turn and the size of stiffness matrix can

be correspondingly reduced.

3.5(ii) REDUCTION OF END ROTATIONS OF AN EDGE

When. a beam with a large bending stiffness frames into
-a shear wall at any level, there is a considerable amount of
local deformation at the Jjunction. This results in
artificially 1arge values of rotational displacement, since
the moment applied to the shear wall by the beam is applied
as a concentrated couple at a point, rather than being
distributed over the finite beam depth. The error is reduced
" for comparatively slender beams. To avoid this problem, the
rotations at the two ends of a shear wall segment boundary
are assuméd equal. This assumption is consistent with - that
made eaflier, that the plane transverse sections through the
shear wall remain plane during bending. The assumption is
also equivalent to assuming a rigid horizontal stiffening
rib attached to the shear wall at each floor level.
Consequently, the rotation at the ends of the imaginary rib
can be related to the vertical displacement . at its ends.

This approach not only avoids the problem of local
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deformation, it also reduces the number of generalized
coordinates by two at ‘each segmént boundary and, hence,
reduces the number -0of eguations to be solved. The
corresponding modification to the shear wall stiffness is
outlined here, The reduction of the beam end rotation at
the junction of a beam and a shear wall is explained in the
next chapter. |

Fig. 3.15(a) shows an imaginary stiffening rib AB on
the boundary between two shear wall segments 1 and 2. The

displacements of the rib during loading are shown in Fig.

3.15(b).

It can be seen from the figure that
Sin & = dg/L, = ~dp/Ly = 8.

(since, for small angles,sin 6~ 8 ).

Also,
Ly = 1,—17 = L.—'dB = -dA
8 8
Thus,
_]; (dB - dA) = L or.
8

(3.16)
6 = @B - dA)/L

where 6 is the shear wall rotation at each end of the
stiffening rib. Thus, ' the end rotations can be related to
the vertical deflections at the ends of the rib. Similarly,

the force components (rotational) at the +two ends can be

written as.

(mg + m)/L = =-py = pp
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FIG. 3.16 DISPLACEMENT VECTOR FOR
REDUCTION OF END ROTATIONS
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The stiffness matrix for each shear wall segment can
thus be modified using relationships of the form of Egs.
(3.16) and (3.17) to reflect the reduced number of degrees
of freedom for the segment.

Fig. (3.19) sths the displacement vector for a typical

segment. From Egs. (3.16) and (3.17),

d = d = dy -~ d
5 4 2
and ‘
~-P, = Dy = D3+ Dg _ - (3.17a)
-~ _

The equilibrium equations relating . displacement

to p_, with Eq.

components d [ to d . and force components p 1 5

1 5

(3.16a) employed to eliminate d3‘and d5' are:
(0] 1. Kow Kia Koy Kee] [ )
1 11 K12 Kyz Ky Ky 1 |
P2| Ko Ko Xpz Ky Kyl | D
{P3g) = K3l K3y Kjg Kyy Kool dy = dp » . . (3,18)
Pyl 1Rg1 Ryp Kyg Ky Kol | Ny g
’5| fs1 Ks2 Ks3 Key Kes| | duy - B
) ) b L

Expanding each of the Egs. 3.18,
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pp =Ky & +(K12-§i_3_-5%_5_)d2+(}<14*1%1:§+§%§)du
p2=K21d1+(K22-1_<_%_3_-§I2:5_)d2+(K21++'_K_:!2:3_+%)du
p3 = K3 d; + (K3, = K33 -~ K35) dy + (Kgy + K33 + K35) 4, (3.18a)
37717 Va2 T m T S R (

L L L L
Pg = Kgy dy + (Kgp = K53 - Kgg) dp + (Kgy + Kgg3 + Kgg) dy
L L L L ’
From these equations,
P3=K31d1*_1_(K32‘_}_<__3§_'K_§i) d2+-1_'“}€3u+5§_-3-+5§) dy
T L L L L T T |
'p5=K51d1+l(K52—K53-K55) d2+}_(K5u+l_<_§_3_+K_§5_)dul
< 1 T T L L L
P2 = (D3 + pg) = (Kp3 = Kz = Ks1) &y + § (Kpp = Kp3 = Ko)
L L T- L L L
-1(K32~K33-K35)-1(K52-K53-K55>} dp
L T T L
H(Kgy + Kyg + Kog) = 1 (Kgy + Kgg + Kg5) = 1 (Kgy + Koz + Kgs))
L L L. L L L L L
Py *P3* Py (Kup*Kg +Kpp) a1+ § (Kyp - Kyg = Kyg)
L L T L L T T
+‘l(K32-K33-K35)+_];('K52~K53-K55)} do
L L L L T T

(K3y - K33 + K35) + 1 (Kgy + K53 + K55) ) dy
L L L T T
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Pj and Pg afe the external moments corresponding to
displacement compgpents d3gand dS‘ Since the structure is
assumed to be loaded by horizontal external forces only,
moments p 3 and pg are assumed to be zero. 1In any event, the
corresponding equilibrium equations are redundant, and the
equations relating forces and displacements. at - the top
boundary of the segment reduce to the Eg. (3.19) -shown in

the next page.
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3.6 SUMMARY

In summary, the shear wali stiffness - matrix 1is .
generated by subdividing the wall into segments, each
segment representing the portion of the shear wall between
two consecutive floors.

Then proceeding from the top segment on any wall and
working toward the Dbase of the wall, the following
operations are performed for each segment:

(a) The segment is subdivided into a rectangular finite
element array.

(b) Using the procedure described in Section. 3;4, the
interior nodes for the segment (all nodes except on the top
and bottom boundaries of the segment) are condensed out . of
thé segment stiffness matrix. That is, the matrix is
modified to relate forces‘and displacements along ..the top
and bottom boundaries of the segment. |

(c) The stiffress matrix for the segmeﬁt isf
superimposed on that portion of the  shear wall above it,.
Then employing the assumptions discussed in Section 3.5, all
nodes along the wupper boundary of the segment, except the
end nodes, are condensed off.

(d) Finally, using the assumption that plane transverse
sections of the shear wall remain plane during bending, the
rows and columns of the stiffness matrix corresponding to
the rotational degrees of freedom at the ends of the upper

boundary of the segment, are eliminated.
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When all segments have been considered, the resulting
stiffness matrix relates vertical and horizontal forces
applied to the shear wall at each floor 1level to the
resulting displacements. |

After the complete structure has been analyzed, the
relationships described in Section 3.5 can be wused to
calculate the moments and rotations at the edges of the

shear wall at each floor level.




CHAPTER IV

ANALYSIS OF FRAME

4.1 INTRODUCTION

The generation of the stiffnesé matrix for the frame is
easier than that for the shear wall, since the frame .is
. already idealized as consisting of discrete elements, the
elements being begms and columns. The individual étiffness
matrices for the beams and columns can be calculated
exactly, in closed form, using the principle of virtual work
or classical theories. However, to be consistent, the
stiffness matrix for the frame should be calculated with an
accuracy comparable to that of shear wall stiffness matrix.
For this reason; only effective lengths of béams and colunmns
are éonsidered for the purpose of analysis. By effective
length .is meant the clear 1length between support faces.
'waeQer, the beams and columns havé‘ finite depths which
result in discrepancies between the member end displacements
and the corresponding Jjoint displacements. The stiffness
matrices for the various members can, however, be developed
in terms of clear lengths and then modified to relate forces
and displacements at the joint. The joints are considered

to be rigid and as shown in Fig. 4.1, any point in the
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4.| INTERSECTION OF COLUMNS & BEAMS

FIG.
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hatched portion undergoes . the same displacement. The
reference point is taken as the intersection of the centre
lines of columns and beams for any particular joint.

The member local coordinate :system .is assumed as
follows:

The X;axis lies along the axis of the member and axes y

and Z are parallel to the principal axes of the member cross

section. They are assumed to be positive according to a right

hand coordinate system. ~Wherever necessary, the local

system is identified with primes.

u.2 STIFFNESS MATRIX FOR BEAM

Since it is assumed that all floor slabs are infinitely
rigid in theéir own planes, there‘is a rigid body translation
of the beam in the horizontal direction. In other words,
the axial deformation of the beam is considered negligible.
Hence, there are only four displacement_components.td be
considered in developing the stiffness matrix for the beamn.
They are shown in Fig. 4.2. It can be noted that the local
coordinate system for the beam coincides with - the global
system for the structure. Hence, no rotation transformation
of the beam stiffness matrix is required. With the four
generalized coordinates, shown in Fig. 4.2, and ignoring

shearing deformations, the stiffness matrix for the beam can
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be written as follows:

B gL | -8 8L
2 ‘l 2
|
|
I Y
2 3 ] 2 6
-_— = “r “““““ (4.1)
-8 -8L B -gL
7 7
(e
- zl 2
8L BL” | -BL 8L
2 6 i 2 3

where 8 =12EI/I}

E and I are the modulus of elasticity and moment of inertia
of the beam, respectively.
The transformation of the stiffness matrix to the end

reference points is achieved by the following procedure.

4,2 (i)STIFFNESS MATRIX FOR .END 1

Member BC is connected to rigid bodies AB and CD. Let
the displacements and forces rat A Dbe Dj and Pp .,

respectively, where

da, ,dA, and pA..,
1 2 : 1
dA PA . )
1 1 pPA, are the dis-
D = P =
A A placement = and
dA2 PA, force components

féspectiVely at A.

Similarly, the displacements and forces at B can be
represented by the corresponding vectors, Dg and Pg.,

respectively.
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The force transformation from B to A is achieved by the

following transformation:

A AB B
where
pAl 1 0 pB1
PA = N HAB = and PB =
pA2 LL 1 sz

For the rigid body translation, the displacements at B
can be expressed in terms of the displacement at A using the

 displacemént transformation:

¥ b (8.3
The displacement transformation from D to C can be

written as

In symbolic form,

Yy D oL (4.4)
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where : -

CD

HCD is the force transformation matrix from D to C.

Considering member BC in Figure 4.2, the force at B can

be written as,

P =K D + K D (4.5)
B BB B BC C

where Kgp relates force at B due to displacements at B,
Kéc relétes force at B due to displaceﬁents at C,.DB is the
aisplacement vector at B and D, is the displacement vector
at C. |

Substituting for DB and DC from equations (4.3) and

(4.4),

_ T -1 '
Py = Kpp Hyp D, + Kpo (Hyy ™) D (4.6)

But, from equation- (4.2),

. P

A = H

ABP

B

Therefore, substituting for Pg from (4.6),

T -1.,T
= + .
PA (HAB KBBHAB) DA (HAB KBC (HCD ™) DD (4.7)
It is clear from this equation that
= +
PA KAADA KAD DD
where
K = (H K H T) is the force vector at A due _to unit
AA AB BB AB




displacement at A, with Dg = 0,

and

Kap = Hyp Ky

-1
H
( CD
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)T) is the force vector at A due to

unit displacement at D, with D, = 0.

It should be noted here that :the stiffness matrix K

BB

reflects deformations :of member BC only. From eqguation

(4.1),

Keg =

BL/2

Therefore, .

o . T
Koaa =B ap Kop HAB

1 0
L OJ
or,
Kap =

BL/2 -8 BL/2
» ¢ 7
2 2
BL"/3 | —gL/2 BL”/6
8 BL o 1o,
| >
L aL? 0 1
CB CB
. 2 3
B B(L, *+ “CB)
2
(4.8)
B(L, + CCB) 8L (L. + 1) + gL 2
L T L L CB CB

3
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Similarly,

Kpap = Hpg Kpe (Hep )

2
L, 0 Bl Pl 0 1
which reduces to- 2 6 N
- p P (Lp + Lep)
KAD = 2
-PUy + Leg) Prlp + Leg (Lp, + Lp) + LegD) | (4.9)
2 7 3

4,2(ii) STIFFNESS MATRIX FOR END 2

The force transformation matrix from C to D is obtained

using the following transformation.

bDy 1 o] 104 pCy s pC, anq pD, pDz_are the
force components at C & D
blp =Ip 1 bCy _
respectively.
or,.
-1

The force at C is

Pc = Koo Dg + Keg Dp (4.11)

where Koo is the force vector at C due to a unit

displacement vector at C, and K is the force vector at C.

CB
due to a unit displacement vector at B. DC and D are the
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displacement vectors at C and B, respectively.
Substituting for DB and D cfrom Egs. (4.3) and (4.4),
-1 T
Pc = Kec(Hep ) Dp+ K H apT Da o (B12)
But from equation (4.10),
=1
Pp= Hep . Po
Therefore,

T
-1 -1} T -1 ' :
Pp= (ep” Kee (Hep ) ) Dy + {Hep o Kgg Hpp ) By (8.13)

It is clear from the above equation that

o “1 T
Kpp=Hep™ Ko (Hep-l? and
-1 T
Kpa=Hep K Hpp
Again, Ko and K g reflect the deformations of member
BC only.

From Eq. (4.1),

e Pl | -p - pLcs)
Kee = 2 and Kep = 2
P I pres P Pl
L 2 3 ] | 2 6
Therefore,
-1 -1

_ ST
Kpp = H ¢op -Kee (Hepo )

1 o] [p -Pleg 1 - Ly
2
7T -3 | _




Or

-

"

Or

p-

DA T

Note
Maxwell-Betti reciprocal theorem.

The final stiffness matrix for the beam can be

as,

o
it

-p (Lp +

HB)
z

P

2

that

- F(LL + LCB)

2

K aAD

-P(LR + EQ_B.)

2

pLp (Lg + Lep) + PLCBZ

P (L + Leg) B(ILIR + Leg (LL + Lp) + Leg?)

3

accordance

104

(4.14)

(4.15)

with the

written

Substituting for K, Kapr Kpp and K pp from equations (4.8),
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(4.9), (4.14) and (4.15), we have the final matrix for’the

beam as shown in Table 4.1.

4.3 STIFFNESS MATRIX FOR COLUMN

Each column has three degrees of freedom at each of its
ends, giving rise to six generalized coordinates as
illustrated in Fig. 4.3. 1In general, the stiffness matrix

for a planar member is given by,

[ AE 0 0 - A 0 0
L L
0 P BL o P pL
2 2
k'=lo pL. p2 o -pr pi?
7 3 2 6
-AE 0 0 E 0 0
L , L
o P -PLo o p o -Pr
2 2
o Pr P2 o B . P12
: 2, 6 2 3

where ﬁ = 12EI/L" and E and I are modulus of elasticity and
moment of inertia, respectively. Shearing deformations are
again considefed negligible. The above stiffness matrix is
expressed in terms ofvthe local coordinate :system - for the
column, as shown in Fig. 4.3, where the primed axes
represent the local system. It must therefore be given a
rotation transformation to transform it to the global system
before the translation is performed to refer the ,stiffnéss

coefficients to the joints.
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TABLE 4.1

STIFFNESS MATRIX FOR BEAM

] L . } L 7
l
B B(L, + —) -8 By D)
2 2
e
BL, .2 L | L ‘
c3” | CB CB 2
| BL (L, + Log) + X ‘—B(LL + , | L LB+ 8 ) (L, + L) + 8L,
e O
! ' Leg
Symmetric . B |-8 Ly + —)
' 2
o S S
{
o ' BL _2 -
CB
| BLp(Ly + Lop) + ———
, 3
| -
where

_ 3
B = 12EI/LCB
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108

The rotation transformation matrix is given by

ey

) -1 0o 0 -1 0
1 0 0 1 0 0
0 0 1 0 0 1
R =
0 -1 0 0 -1 0
1 0 0 1 0 0
0 0 1 0 0 1]

The stiffness matrix in the global system can be
obtained using K = RK' RT (where the prime represents the
local coordinate system). This matrix operétién is shown on the
next page; . |

4,3(1) STIFFNESS MATRIX FOR END 1

The force transformation matfix from B to A and D to C,

both in the global system, 'are given by

1 0 o] (1 0 o0

Hpg=| 0 1 0 and Hp= | 0 1 0
-Ig 0 1 : S l-L 0 1

~ T -

As shown for the beam,

P = H,gP Cowma onmo : S o (4.18)

AB"B
and
= T L _ : i
Dp = Hpp' Dy Lo , : (4.19)
where EA and E’B represent - forces at ‘A and B,
respectively, and DA and I)B represent : the corresponding

displacements.
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T | =1 T
Pp= (Hpg Kpg g ) Dp + (Hpg Kge (Hep ) ) Dp
=KAA DA'*‘KAD DD (4.20)
Kpgg and Kpe are taken from equation (4.17). Therefore,
1 0 0 P -pL/2 1 0 -lg
Kag = |0 2 0 AL 0 0 1 ©
g 0 1| |-p2 o p1?/3 0 0 1
or,
g 0 - p (Lg + Loe/2)
Kap = 0 AE/L 0
| - ' 2
Py + Lpe/2) O pls (g * Lo + PLS
4 T
similarly, Kap = H pgKpe (Hep™t) --  Thus,
1 0 0 -B -BLlec/2 1 0 Iy
Kap = |0 1 0 AE/L O 0 1 0
g 0 1| |pLs, pLiss | 0 0 1
from which
-P 0 -F Ur + Leo)
2
= - 0
Kap 0 AE/L

2

Pl * Lalcc * Lrlcc * Lac)

e

2 2 6

(4,21)

(4,22)
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4.3 (ii) STIFFNESS MATRIX FOR END 2
Proceeding on a similar basis to that above,
PD = HCD"PC
Pc = Kee De + Keg Dp

-1 7 T
Ree (Hep ) Dp + Keg Hppl Dy

-1 ¢ b=l
or Pp=Heyl Koo (Hey ) Do+ Hyp K Hpp! Dy
Therefore,
, -1 -1 T
Kpp = Hep  Kee (Hep ) s (4.23)
and
-1 T
Kpa = HEcop K Hpp : (4.24)
Thus,
[ 1 . -
1 0 0 p 0 plees? 1 0 Ly
Kpp = |0 1 0 0 AE/L O 0 1 o0
Ip 0 1 |pLee O Bled? 0o 0 1
2 3 -
or,
B 0 (I + Lco) B
KDD = 0 AE/L 0 (q'zs)

-

By symmetry,

(4.22),

P(I—’I““_L_C_(_:_) 0 I.Tﬂ(LT+LCC)+ PEQQ_Z_
2 3 ]

Kpa

T
= Kap - .

.Therefore, from equation
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.
-lﬂ 0 }S(LB"EEE?
2
Kpa = | O - AE/L 0
- Ap+led 0 Blgly+ Iy Lec+ LBE‘EE)"IBEC_C_Z
L 7 2 2 6 -

(4,26)

Combining equations (4.21), (4.22), (4.25) and (4.26),

we have the stiffness matrix for the column as

Kaa Kap

Kpa Kpp

- This appears in Table 4.2.

4.4 MODIFICATION TO BEAM STIFFNESS FOR BEAMS FRAMING INTO

SHEAR WALL

1

It was pointed out in Section 3.5 (ii) that large local
distortions tend to occur in a :shear wall where a beamnm,
represented as a line element, frames into it. A procedufe
for eliminating the rotational degree of freedom for the
shear wall.at the point was discussed. Since the beam has a
‘rotational degree of freedom at 'its end, this cannot be
directly combined with the shear wall stiffness at the wall
beam junction. This section deals with the modification to
the beam stiffness, if either end or both .ends .frame into

the shear wall.
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4.4 (i) LEFT END OF BEAM FRAMINC INTO SHEAR WALL

Fig., 4.4 shows the left end of a beam framing into a
shear wall. The nodes are designated by A, B and C. In the
overall structure, the displacement components at 2, B and C
are d1 to dq as ‘represented in the fiéure. But when the

beamn is isolated, it has four degrees of freedom,

represented by the displacement vectors dI, d d, and dL in

J’" “K

the figure., As can be seen from the figure, the stiffness
factbr corresponding to QJ cannot be difectly combined with
the sheér wall stiffness. Therefore, bLv geoﬁetry, 'thé
rotation of the beam where it meets the shear wall can be

expressed in terms of the vertical shear wall displacements

as follows:

& =(dy - dq)/L (4.27)

Similarly, the beam end moment at the shear wall-beam

junction can be expressed as
p./L = -p, = p h,28
"J/ =1 2 ( )

where L = shear wall width and p stands for the force
vector. With the above relations, ?; has to be eliminated
and there 1is subsequent modification to stiffness at nodes
A, B and C.

The stiffness matrix relatina forces and displacements

at A, B and C can be written as: -
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. - ) 1
D, | K13 Ky 0o 0 0 (dl
127 Kol (Koo#Kpp) Kpgp Keg  Kpp &
: L
P3 0 K Kka Kk Kgp d3
oy |0 K Ky Ko K| ey
Substituting for Pyr Py and‘pJ, _ _ ' _
P2 = (Kpy=Kpg) dp + (Ko+Kpp#Kpy) d, + Ky d3 + Kp, dy (4,29b)
L T
Py = =Kz dy *+ (Kgr#Kpp) dp + Ky dg + Ky d, ' (4.29¢)
kN T
orxr
pJ Z - KJJ dy + l (KJI+KJJ_) d2 + E_J_K_ d3 + 5]‘_]__‘- dl‘
T 17 L T L L

Combining equations (4.29.a) and (4.29.c),

Dy = -{ (K11#Kgg3) dp + $ Kyp = 1 (KJI+1<JJ)} dp = K 93 = Xy1, dy
L 17 L L I L

(4.30)
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and combining equations (4.29.b) and (4.2%.c),

Py * Py = § KarKyy) - EJ_{} a * i (Kyp¥pp) + Kpg+ 1 (KJI"'&I_J_)} 9
L T

From equation (4.29),

P3 T = Ky 1+ (Kgr#Kyq) dy + Ko dg + Kgp, 4 (4.32)
T T
and
B, = - Ky di + (Kpp¥Kyg) dp + Ky d3 + Xy, dy (4.33)

As before, pJ is the external moment applied at. J and
in our analysis, this is zero. Therefore, equations (4.30)

to (4.33) can be .combined to give the following matrix.

'P]j ( Kll""KJJ) (Klz—l ( KJI+KJJ) - KJK - K JL ] rd_{
= A — T |
Pyl (Ko 1-5&-5:]"_]-) (Kop#KyT+ 2§I_LI+KIJ ) KI}(*‘K_J}_(‘ KI I_,+KJL dp
L 12 L 17 4 L T

{ s 1 L

1P3 - ﬁ(i KKI + KKJ ’ _‘ , KKK Kgi, d3
L L

le - &J_ KI_I + _K__IJ_J. KL-K KLL J Ldl‘b
L L L
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Since there are only four unknowns, the equation for - PJ
in equations (4.29) is redundant and hence omitted. Thus,
the rotation dj at the left end of the beam is transferred
to dj, dp, d3 and dy, without affectingAthe symmetry of the

stiffness matrix.

4.4 (4i1) RIGHT END OF BEAM FRAMING INTO SHEAR WALL

This is illustrated in Fig. 4.5 and the nomenclature is

the same as for the previous case.

dp= (dy=-d9/L . L . (4.35)-
(displacement relationship)

and,

. p,/L = “P3 = Py . (4.36)

(force relationship)
Proceeding on a similar basis as for the previous case,
the stiffness matrix for nodes A, B and C can be written. P,

being the external moment, is taken as zero for our

analysis and writing out the expression for
P3 - Pp/L  and  p,+ py/L,

the final stiffness matrix can be obtained as follows:
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4.4 (iii) BOTH ENDS OF BEAM FRAMING INTO SHEAR WALL

Fig. 4.6 shows an arrangement :.0of both ends of beam
framing into shear wall. The two rotational degrees - of
freedom, namely dgjand dj, have to be modified. These end

rotations can be expressed as follows:

. dJ

(dy - dq)/L1 : (4.38)

cdy = (dy - d3) /12 Lt (4.39)
where L1 and L2 are widths of shear walls.
Writing equilibrium equation for this set-up, we have,

4éfter substituting for dj and d i, from (4.38) and (4.39),

(0;] K11 Kp O o o o (o, ]
P2 Koy (Kop#K11) X2y  Kp3 Kpp, O d,
!l ¢ L (4,40)
P3| |0 K2 Kay (Kgg+li) Kap Kgy d3
P, 0 Kio KLy Ki3 Kpp, O dy - d3
| L2
oy | |0 0 0 Kys3 0 Ky dy

There are four unknowns and six equations. ..Equations
for py and p may be treated as redundant. :Accordingly, the
stiffness matrix has to be modified.

Substituting for py,

Py = = Kyg a1 + (Kg2#Kgg) dp + (Kya-KJL) dg + Ky, dy
. TIT 11 12 12 -
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or dividing throughout by L1,

Py Kgg dp + (Kyo+Kgg) dp + (Ky3-Kj1) d3 + Kj1, 4, (4,41)
-— = -7 —— —— —— e
Ll Ly - L1 Ll2 Ly Lil, Lilp
Similarly, substituting for P1,»
Py = - KLJ dy + (KL2+KLJ) dy + (KL3-KLL) d3 + Ky dy e
T1 Ll L2 L2
Dividing throughout by L2, we have
D= = Ky dy + (Kp#Kpp) dy + (KpgKpp) dy + Kpp dy B ('R
— — e a—— _ = 7
I Ll Lz Ljlg Iy Lp? L2
Since by geometry the beam end moments can be expressed
as

va/L1

pL/LZ = - Py =Py
>Combining equations (4.41) and the first of (4.40),

- Py =Py and

B3 -0y T (0D )+ KK & - (3L & - Kot oy
51 L12 L1 Ly 17 Lil2 L1L2
(4,u43)

and -combining . equations (4.41) and the . second of

(4.40),

p2+PJ = (Kzl-.}igi-KJJ) dl + (K22+KII+52_\_J_+_}S_I_2_+KJJ) dz + (K2_3-K_2__I:+.}.<.J.,_3.
5} L1 T2 I T L7 Ly 11
- Kg1) d3 + (Kpp#Kyp) dy

I, T, Lil (4, 44)
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Similarly, working on P Pj3 and Py

D3-pL, = ('K3J+KLJ) dp + (K324‘K3J-KL2-K]_J) dy + (K33+KKK'K3L"'KL3'KLL) dg

7 Ly LiL2 L1 "I 111 lp L2 1p°

+ (Kgp#K,,=K11) d
_:i_ 34 - Y (4. 45)
Lo Lo -

and

D +DL S - KLJ dl + (KL2+KLJ) d2 + (KL]_3+KL3-KLL) d3 + (K”L¥+KLL) dq

= TYa
p Lk 2 i B2 (4,46)

Combining (4.43) to (4.46) and treating pp and .p g as

zero, we have the final matrix as shown below,

®1 (K11‘”_K_gg) (Ky2-K p=K3) KKy - Ky 4
Ly T 12 11 Il L1l2

7, (K21-K25-K37) (K, z"KII+2K2J"KJJ) (Kp3-KortKys-Kgp)  (pu#Kgn) 1l
LT L2 ST ? L 11 Ll 2 4oL

) <
P3| |(Kgg*yp) (K32+‘<31-KL2-‘<LJ) (K33#Ky=2K,3-Kpr)  (KaL#Kay=Kpp )| 1ds
L1 ILiL2 Ll 12 L1L2 Ly L2¢ | #7) 7
P | K %1z * Xy (gl ) ®uwtq) %
L LiLp Ly L4, L2 12 L2

(4.47)



CHAPTER V
EXAMPI.ES

Four .examples are presented . in this :chapter +to
demonstrate the analvsis procedure. The results of the first
three examples are compared with those obtained in previous
-work and the percentage deviations are presented in tables
for each case. Before proceeding with different examples it
is ﬁecessary to predict approxinatelv the number of elements
required to produce a realistic stiffness for a shear wall.
Therefore, this'has been studied in the first examnle and
the resulits are presented in éraphs. Due to the
unavailabilitv.of relevant e#nerimental results for the
problem, the results are comnared with the work carried out

by other classical methods,

5.1 EXAMPLE - 1" = ' POUR *~ STORFY ' SHFAR - ¥ATT FRAME - 0TmROUm

" OPENINGS TN SHFAR WATLT,

The structure shown in Fiag, 5.1 is analvsed for the
loading shown in the figure., The structure and the loading
are identical +to those considered bv .R.G. Oakberg (18) who
solved the problem bwv stiffness.method using sub-structure
analysis and also bv a deep column method, in which the

shear wall is represented as a deer column.
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TABLE 5.1

PROPERTIES OF SHEAR WALL

127

Story | Height | Width | H B B HB HT BE Thick- | Thick-
© ness ness
W Edge Remai=-
Element| nder
l 12’0" '18'0' 6'6” 6'0” 4'0” 3'0" 2'6” 24" 16" 8"
2 12'0" .18'0' 6'6" 6’0" 4'0" 3'0" 2vl6|1 24" 16" 8"
3 12'0" 18'0" 6'6" 6'0" 4'0" 310" 2'6" 24" 16" 8"
4 12’0" 18'0" 6'6" 6’0" 4'0” 3'0" 2'6" 24" 16" 8"
‘Modulus of Elasticity For ALl Storeys = 3,000 kei
?oisson's Ratio For All Storeys = 0,25
TABLE 5,2
PROPERTIES OF BEAMS
Left Right Modulus Moment Cross
Beam - Clear Rigid . Rigid of of Sectional
No. Length Length Length Elasticity Inertia " Area
’ in in
B1 22'0" 0 12" 3000 ksi 69675 656
B2 220" 12" 12" 3000 ksi 69675 656
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TABLE 5. 3

PROPERTIES OF COLUMNS

Modulus Moment Cross
Top Bottom of of Sectional
Column Clear | Rigid Rigid | Elasticity Inerzia Area
No. Length | Length | Length ksi in in
Cl 10'9" 15" 0 3000 26112 384
c2 9'6" | 15" 15" 3000 26112 384
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The sub-structure analveis is based on the stiffness method
and uses finite elements for generating the shear wall
stiffness matrizx., The deev column method is also based on
the stiffness analvsis hut idealizes the shear wall as a
deep column, The proverties of the shear wall, beams and
columns are given in Tabhles 5.1, 5.2 and 5,3, respectivelw,
No openinas in the shear wall are considered for this
example, |

The structure was analvsed using 20, 48, 80, 120 and
180 elements ner. shear wall seaqment and the results were
:combared with those obtained bv the suh—strﬁctufe method
(also with wvarving numbers of elements) and with those
ohtained bv the deen column method.

Figs. 5.2, 5.3 and 5.4 show plots of lateral
displacements at the ton floor level for the three tvpes oOF
analvsis, The variation in displacement with numher of
elements is more mronounced for the sub-structure analveis
than for the analvsis procedure descrihed in this studv, The
rotational component in the sub-structure anal&sis was verwv
inconsistent due *o local deformation at the wall beam
connection points. In the present analvsgis all the
displacement comnonents converge from a lower value to a
higher value indicating that the model hecomes more filexible
as the number of elements is increased. Commarison of the
plots for the three cases shows that the model emnloved in

this studv and that used in the sub-structure analvsis which
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also emplovs a firnite element rmodel, are more rigid than
that used in the deer column method. It should be expected
that the finite element model deveorned jin this studv will be
stiffer thaﬁ that described bv Oakberg., For the latter
model, the unrealisticallv large local distortions at +he
shear wall beam -§unctions (thesevlocal distortions have been
neted in other investigations (10,1&)), will s8ignificantlv
increase the flexihility. On the cther hand the kinematic
constraint applied at the floor levels will cauze the forﬁer
model to be slightlv stiffer .than it should ba.

It is difficult to determine whether or not fhe shear
wall model used in this stuvdyv should be stiffer than the
deep column model, While in general, anv finite element
model over estimates the stiffness of the structure, the
deer column model assumes nlane transverse secticns at+ all
shear wall cress-sz2otions, Kence, it too over estimates the
shear wall stiffnesé; | | |

Fige, 5.5, 5,6 and 5.7 show plots of force components
obtained bv thz three methods, The rates of convercence with
increasing numhers of elements per éhear wall segment, are
approximatelv the same for the two methods emploving finite
element idealizations, The results of the present analvsis
are in close agreement with those of the deep column method
rather than with those of the suh-structure analvsis. This
suggests that local shear wall deformations have. a

significant bearinc on the final results.
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TABLE 5.4

LATERAL DEFLECTIONS (IN)

Framing. Finite Sub-
Level Element Struct-
Top To Ground Method ure Difference
Method
5 0,682 0,084 2,0%
4 0.0592 0,0601 1.52%
3 0,0349 0,0351 0.575%
2 0.0132 0,0131 0,76%
TABLE 5.5
CONNECTION POINTS VERTICAL DEFLECTIONS (IN)
Framing Finite Sub-
Level Element |Struct-
Top To Ground Method ure - |Difference
Method
5 -0,0149 ~0,0154 3.35%
4 -0,0151 -3,0156 3.3%
3 ~-0,0139 -0,0141 1.44%
2 -0,0094 [-0,0095| 1,06%




CONNECTION POINTS ROTATIONS (RADIANS x 10—3)

TABLE 5.6

Framing Finite Sub-
Level Element Struct-
Top To Ground Method ure Difference
Method
5 -=0,149 -3,101 32,2%
4 ~0,149 -0,117 21.5%
3 -0,136 -0,114 16.2%
2 -0,091 -0,086 5.5%
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Since the suh-structure analvsis was made on finite
element idealizations the £final results are comnared with
this method and thev are presented in Tahles 5.4, 5.5 and
5.6, The lateral and vertical deflections are in excellent
agreerent, the maximum deviation beina onlv 3,3%. The
discrepancies in conneqtiqn point rotations, however, ranaed
up *o 32.2%, The hich percentage variation is primarilv due
to the local distorticns at the connection points. The
effect of this can be well understood from the connection
~point forces where the deviaticn ranged up to 21%. The
" values of shear force in shear wall, calculated by. the two

methods are in good agreement.

The structure shown in Fig, 5.1, with a shear wall
width, W, of 14'-0", was analvsed firstlv with a solid shear
wall, and tﬁen with a sheér wall witﬁ the Oneninés,
indicated dotted in the figure., Other proverties  of the
structure were as iisted in Tahle 5.1,

The results obtained were coﬁnared with corresronding
values reported bv Oakberg and Weaver (13), The plots of the
lateral deflections of the shear wall with and without
cpenings are shown in Fig, 5.8. The ghear wall lateral
deflection ahd bending moments at various levels are
bresentea in Tahle 5.9, It can be seen that the Oneninas' in

the shear wall tend to make the model more flexible, as thev
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increase the deflections b anproximatelv 30%, The
comparison of the results bv the two methods shows that the
vercentage deviation increases if there are openincgs in the
shéar wall. This is nredominantlv due to the constraint that
was provided at shear wall seament boundaries, As the depth
of +the 1lintel beams between the ovnenings becoﬁes smaller,
the assumption that plane transverse Sections through the
.shear wall at the floor levels remain plane after bending,
will no more be valid. Therefore, for small orenings in the
shear wall and when the denths of lintel beams between the
openings are large, the method outlined in this studv mav be
emplbyed. For larace onenings, the shear wall mav be treated
as two walls connected by lintel heams as illustrated in the

next exanple,
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5.3 EXAMPLE 3 = ©IX STHORFY SHFAR WALL

As a third example, shear walls connected bv 1link
beams only, is analvsed and a studv on the effect Poisson's
ratio on the final results is made, Fig, 5.9 shows the
structure and loading which are identical to those analvsed
by German Gurfinkel (12) and the final results are comnared
with his sblution which was based on the cantilever moment
distribution method. The nrorerties of the shear walls and
beams are presented in Tahles 5.10 and 5,11,

The plots ofblateral deflection versus height for both
.the methods.is shown in Fig, 5,70, Taﬂle 5.12 shows the
lateral deflections obtained bv bhoth the methods and the
percentage deviation, The difference in results ranged unto
15.2% at the first floor level, The discrepancv reduceé with
increasing height. As can be seen from the plot-of lateral
deflection, the model analvsed by the present method is moreé
flexible than the cantilever moment distributioﬂ' method, A
study was vperformed to see the variation in deflection and
force components with different values of Poisson's ratio.
Tt is ohserved that deflection and force Comnonents varied
from higher value to lower value with increasing values of
Poisson's ratio. The values of Poisson's ratio used for this
purpose were 0,2, 0,25, 0,3, 0,35, 0,4 and 0,45, The
difference for the two extreme cases was hever more than 5%,

The forces calculated hv the two methods are in good

agreement, The maximum percentage deviation for axial force
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TABLE 5. 10 147

PROPERTIES OF BOTH SHEAR WALLS

Modulus of
_ Elasticity | Poisson's
Storey | Height | Width (RS1) Ratio Thickness
1 300" 20'0" 5000 0.3 12"
2 ioon 20'0" 5000 0.3 WAL
3 10'0" 200" 4000 0.3 12"'
4 10'0" | 20'0" 4000 0.3 12"
5 10'o" 20'0" 3000 0.3 2"
6 10'o" 20'Q" 3000 0.3 12"
TABLE 5. 11

PROPERTIES OF BEAMS

Modulus of | Moment of
Beam Clear Elasticity | Inertia
No. Length |  (KS1) (in%)
Bl 200" 5000 13824
B2 200" 4000 13824
B3 200" 3000 13824
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is 1,44 and for bending moment is 5.9. The variation of
results with respect to shear force w &e nil, however. There
is a good» agreement on the bending moment of the lintel
beams as well, For the purpose of commarison the results of
the force commonents bv both methods are presented in Tables
5.13 to 5,16, From svmmetrv considerations, the results are
presented onlv for shear wall S1, Forces on shear wall 82
are exactlvy the same as that for 81 excernt that the signs
are reversed for axial force alone. Fig, 5.11 shows .the
Ashear force, axial force and bendinq monent for lef+ hand
‘shear wall and Fig, 5.12 shows the defléctéd shape‘ of the
whole structure. As can be Seen from this ficure, the
shortening and the elongation of the shear wall edges caused
vertical def]ecﬁions at the connection noints between shear
wall and beams which in turn caused béndinq moments on the
beam as the load was transformed from left to .riqht. This
gives a cleaf picfure of the interaction of shear wall and
beams, These bhending moments and shear forces on beam ends
in turn act on the surfaces of wall due to which there is
local deformation at the cqnnectiOnfpoint between wall and
beam, This is another important reason for transferring the
connection point rotational stiffness to two ends of the
wall at anv marticular level, bv relatina them to vertical
displacements, therhv avoiding anv local deformation., Tt is
the moment, rather than the shear at the end of the beam,

that causes the local distortion of the wall, -
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TABLE 5,12

COMPARISON OF LATERAL DEFLECTION

Lateral Deflection (in)

Framing Finite Element Cantilever
Level Method Moment Dist'n Difference

7 0.230 0.213 +7.4%

6 0.195 0.179 +8.21%

5 0.159 0.145 +8.8%

4 0.124 . 0.111 +10.5%

3 0.089 0.078 +12.,4%

2 0.058 0.049 +15.2%
Ground 0.000 0.000 -

150
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TABLE 5. 13

COMPARISON OF SHEAR FORCE ON LEFT HAND SHEAR WALL

Shear Force (KIPS)
Framing Finite Element Cantilever
Level Method Moment Dist'n Difference
7 . 10 : 10 Nil
6 30 30 Nil
R 5 50 , 50 Nil
4 . 70 , 70 Nil
3 ' 90 90 . Nil
2 130 130 Nil
Ground 130 130 Nil
TABLE 5. 14

COMPARISON OF AXIAL FORCE ON LEFT HAND SHEAR WALL

_Axial Force (KIPS)
Framing Finite Element Cantilever
Level Method Moment Dist'n Difference
7 4.84 4,91 -1.447%
6 9.72 9.85 -1.34%
5 16.19 16.41 -1.36%
4 22,48 22.80 -1.427
3 29.79 30.21 -1.41%
2 36.28 36.78 -1.375%
Ground 36.28 36.78 -1.375%




TABLE 5.15
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COMPARISON OF BENDING MOMENT ON LEFT HAND SHEAR WALL

Bending Moment (Kip. Ft)

Framing Finite Element Cantilever
Level Method Moment Dist'n Difference
7 96.85 98.17 -1.36%
6 94 .34 97.02 -2.73%
5 -76.29 -71.77 -5.9%
4 ~450.,42 -444,09 ~-1.41%
3 1004.22 ~995.84 ~1.76%
2 ~1774 .42 - -1764.33 -0.562%
Ground -5674 .42 -5664 .33 -0.176%




COMPARISON OF BEAM END MOMENTS

TABLE 5. 16

Bending Moment (Kip. Ft.)

Left End |[Right End Difference

Beam At
Framing
Level Fem Cmd Fem Cmd

7 ~-48.431-49,09-48.43|~-49.09 1.36%

6 ~-48.751-49.431-48.,75}-49.43 1.40%

5 -64,68 |~65.61 —64.68 -65.61 1.44%

4 -62.93|-63.84|-62.93|-63.84 1.44%

3 ~-73.10}-74.13{~73.10|-74.13 1.40%

2 -64 .90 |-65,76|-64,90] 65,76 1.33%

153
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5.4 EXAMPLE 4 - THIRTEEN STOREY SHEAR WALL~FRAME

A practical example is 'given to illustrate the
efficiehcy of the pfpgram in analysing large structures. A
typical floor plan of the building considered is shown in
Fig. 5.13. For the purpose of illustration, only one lateral
section, that on column 1line (N), is chosen and other
similar sections can be analysed in the same manner. Since
this is only én illustration of the analysis procedure, the
wind pressure and other material properties are assumed to
be constant throughout the height of the building. Fig. 5.14
‘Shows the'tranSversé section of the building on column 1line
(ﬁj. .

The building has a flat plate floor system and hence,
-portions of the slab afe treated as beam elementé .in the
transverse frame. The equivalent width of slab that can be
treated as a beam, calculated using a procedure ouflined by
Khan and Sbarounis (8), is 10 féet. Other properties of the
equivalent link beams and columns are given in Tables 5.17,
5.18 and 5.19.

The basic wind pressure assumed is 26psf.

Therefore,

Wind force at each floor level upto 13th =26X(8+11.17)X11.17

-=5500" 1bs =5.5K
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TABLE 5.17

PROPERTIES OF SHEAR WALL
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, Modulus Of
Height Width Elasticity Poisson's Thickness
Storey (Ft) (Ft) (Ksi) Ratio
1-5 11.167 16.0 4000 0.3 8.0"
5-12 11.167 16.0 3500 0.3 8.0"
13 12.500 16.0 3500 0.3 8.0"
TABLE 5,18
PROPERTIES OF BEAMS
Modulus Of

Beam | Clear | Left Rigid | Right Rigid | Elasticity 14

Type | Length Length Length © (Ksi) (in")

BL | 15'3"| 18" 0" 4000 5200

B2 7'3" o" 18" 4000 5200

B3 226" 18" 18" 4000 5200

B4 153" 8" 0" 3500 5200

B5 7'3" o" 8" 3500 5200

B6 22'6" 8" 8" 3500 5200




TABLE 5.19

PROPERTIES OF COLUMNS
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Bottom | Modulus Moment
Rigid of of C. S,
Column| Clear | Top Rigid | Length | Elasticity| Inertia | Area
Type Length | Length (Ksi) (in%) (in2)
C1 10'8" 12" o" 4000 10,000 346
C2 10'10" 8" o" 4000 10,000 340
Cc3 102" VA 12" 4000 10,000 340
C4 10'6" 8" 8" 4000 10,000 340
c5 102" | 12" 12" .| 3500 © | 10,000 | 340
C6 10'6" 8" 8" 3500 10,000 340
c7 11'8" 12" 12" 3500 10,000 340
C8 8" 8" 3500 10,000 340

110"




lel
For the top most floor level, wind force =26X(8+11.17)X6.25
=3000 1bs =3.0 K

The values of lateral deflection at each floor level
are shown in Fig. 5.15. The force components in the shear
wall at different levels are given in Figs. 5.16, 5.17 and
5.18.

The maximum half band width for this structure was .18
and the maximum number of equations to be solved Was 126.
The storage requirement was :approximately 176K and - the
'éxample Was rﬁn on double preéision. Thé.execution time was
observed to be 0.53M. In commercial terms the cost of

running the program was approximately $ 15.
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5.5 COMPARISON OF 'ITIE COMPUTER REQUIREMENT FOR THE THREE

EXAMPLES
As an illustration, Table 5.20 is presented to show the
different requirements from the computer point of view for

the three examples solved in this Chapter.

TABLE 5.20
‘COMPARISON OF COMPUTER REQUIREMENT

Example No. of elements storage Execution .Cost'
| per segment of requirement time Factor
shear wall
(b Broreys 48 . 176K 0.24M 3,03
3 Bays) - )
3
(6 storevs| 48 176K 0.41M 3.91
3 Bays)
4 | ,
(13 store- 54 176K 0.53M 5,00
ys
4 Bays)




CHAPTFR VI

CONCLUSIONS AND RFECOMMFNDATIONS

6,1 CONCLUSINON

A procedure for an efficient and economical analvsis of
shear wall-frame structures suhjected to lateral 1load has
been presented in this studv, Four examples were given to
" demonstrate the analvsis procedure and the efficiencv and
economy of the comnuter nrogram, Despite the fact that the
program does not use auxiliarv storage, fairlv larce
problems can be run economicallwv Qith a reasonahle amount of
computer time,

Comparisons were. made with another finite element
method and two different methods which involved idealizing
the shear wall as a deep column. These comnarisons show that
most of the displacements and forces calculated bv the
vafious methods agree within anproximatelvy 5%,
Unfortunatelv, exXact results are not available for
comparigon purnoses.

The comparisons sugaest that large local rotational
deformationg at shear wall-heam junctions occured when usina
a conventional 'finite element revresentation for the shear

wall. The assumption emploved in this studv , tha¥ the plane
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transverse sections of the shear wall at the floor levels
remain oplane during loading, eliminates the large local
deformations. Unfortunatelv, this assumption imposes a
potentiallvw significant constraint on the shear wall
displacerents, particularlv for shear walls with Oreninas,
However, +the comparisons suggest that the effect of the
constraint on the calculated displacements and forces is
minor, hoth for structures with solid shear walls and those

with openinas.  wevertheless, it does raise the guestion of

.. the justification for +he representation of the shear wall

‘by a finite element model, when the constraint is

subSeauentlv imposed, As would be expected, the results
further indicate that omenings in the shear wall produced
significantly iﬁcreaseﬁ horizontal deflections.

Tt was observed that chanaes inr Poisson's ratio did not
have a significant effecf either on the deflection
Components or.fhe férce comrnents,

| The plots of deflection and force comnonents with
varying numbers of elements per shear wall seament indicate
that anv shear wall segment having'$o to 60 finite elements
should produce a reasonablv realistic stiffness for the

wall,

6.2 RECOMMENTATIONS FOR FURTHPR TNRY

Because of the lack of an "exact" analvtical procedure,

it is recommended that+ an experimental studv of shear wall
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frame structures be undertaken to corelate with the various
approximate analviical procedures,

Since the assumption of a linear variation of
displacements at the floor levels of the shear wall immoses
a vpotentiallv significant constraint on the shear wall
displacements, a studv should be performed to find an
alternate approach to the suppressing of excessive local
deformations at the wall-beam connection points.

Instead of assumiﬁq a linear variation of displacements
- alona the shear wall seament’ boundaries, a cubic variation
in the displacement pattern, as shown in Fig, 6.1, should be

tried,

4ﬁé_FLnoa STAB

X0
/4jv_~h\\\ 7 i_

Y o T
43 -~ ORICTNAL POSITION
e E————— sHAPR .

rIC, 6,1

This would definitelv increase the accuracy of the results
without much of an alteration to the storage resuirement in
the computer proaram, But this would not avoid the problem
of local deformation, This apnrocach would greatlv increase
the accuracv of the results for shear walls with orenings.,

This kind of displacement pattern would ré&ouire the
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modification of the RFDN subroutine in the comnﬁter program
and the incorvoration of the modified stiffness in the
structure stiffness matrix of the MAIN proaram,

The rectanaular finite element nuts Severe restriction
on mnesh refinement, As a further studv, a cuadrilateral
element for shear walls should be tried. Recentlv, more
refined - rectanqular elements have been developed (13,15),
T.A. Macleod's element (15) is one of them., These elements
could be incorporated into the model oﬁtlined in this study.

The program is 1limited to lateral load analvsis., The
. same program could he modified to take account of more than
one load  vector. This will permit anv Suitable combination
of 1oadinq‘for design purnoses, - In the present proqram, the
reérranginq of- the edquations after develoring segment
stiffness matrices can be avoided to save a considerahle

amount of execution time.
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. APPENDIX A

AITKEN'S METHOD

In a structural analysis by the stiffness method it is

often necessary to reduce the order of a structure stiffness

matrix,

i

Kee | KEr
|

Kg = [-~=94-——- : (A1)

|

Kig |, K11

(" where KEE ,'KEI , KIr:and KIE are sub-matrices and E and

I represent the order of these matrices)

This can be accomplished by the relationship,

-1
K = Kgg - KT K11'. KIE ; . (A.2)

Normally, the matrix Kyt is of very high order.a direct
evaluation of matrix Kginvolves an inverse of this high order
matrix,two multiplications and a subtraction which becomes
uneconomical from the computer point of view. :Aitken

-1

developed an expression (Y = CA B) similar to that

contained in Eqg. (A.2), from a general matrix of the form,
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———gm | (2.3)

by a simplified Gauss elimination technique in which O is a
null matrix

This method cén be used as a powerful tool in the
static condensation. This needs, only rearranging of the
terms in Eq. (A.1) as per Eg. (a.3). The null matrix can be
replaced by Kep s

By perfoming Gauss elimination of the matrix (A.3) till
A becomes an upper triangular matrix, the null matrix O is

1

replaced by a new matrix of the form -CA™*B which is the

required expression for the stiffness analysis.

Proof
-1
Let Y=CA B ‘ : - _,(A.Ll) :
where C, A and B are submatrices as in (A.3).
The Matrix (A.4) can be expressed by the two equations,
. A X =B’

(A.5)

Performing Gauss elimination -for the first of Egs.
(A.5), matrix A is replaced by an upper triangular matrix
(say 'uU').

The equation can thus be rewritten as
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n UX=PF , oo (A.6)

Now consider the array

o b F

——————
=C ;3 0

Performing Gauss elimination once again to make C a
null matrix, O is replaced by another matrix Q. That is
multiples of the first row of U are added to successive rows
of C so that elements in the first column of C are replaced
by zeros. Further addition of second row of U to the rows of
C can producé zéros ~in -the second ‘column'of C'without.
affecting its first column since U is upper ' triangular. A

similar operation with F added to rows of 0O is performed.

This operation is equivalent to the following expression

I 1 0 U i F U | F
! I
———— - ___L_- = | m— b e
A I bl

! {
L ! 1 c ! o My Q

from which

z-,
I

LU+C:z0 since M'is a null matrix
from the previous operation.

Therefore,

and

Q =LF = -cU~F . : o (AT




From the first of equations (A.5) we have

-1
X = A- B
and from (A.6)
-1
X=1U_F
-1

Therefore, U-lF = A B
Equation (A.7) now becomes
0= -calp

Hence the proof.
The reduction of A to U ,followed by

be performed simultaneously, treating the
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that of C to O can

rows of C for the

purposes of elimination as if they belonged to A, pivots

being chosen only from A. The relevent matrix - operation is

then,
gt olfa ! B faa 1 JB
! ' !
————— DU SRV (NP P
| | o
. 1
L I C 1 O LA+C1 LB
where, 'J' is a unit lower triangular matrix which when

multiplied by 'A' is nothing but 'U' and
“LA+C = 0

Thus, cn L = =CA-1
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and oz uLB = -CA-1B

which is the required expression.



APPENDIX B

COMPUTER ORGANIZATION

B.1 PURPOSE

The program performs a linear elastic analysis of shear
wall-frame structures from the known material properties and
‘over—all}diﬁensions of thé structure. The results consist of
joint displacements, forces in theAshear wall(s), beam and
column end forces and reactions. The shear wall is analysed

by finite element idealizations.

B.2 PROGRAMMING INFORMATION

The program is written in FOTRAN IV (version ) for

the IBM360 computer.

B.3 CAPACITY

The storage capacity is .dependant on the following

varibles:
NSH - Number of shear walls
NS - Number of storeys
NN - Number of joints
NBM - Number of beams
NC - Number of columns B
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MAXX - Maximum number of vertical rows of finite
elements in any shear wall and
MAXY - Maximum number of horizontal rows of finite

elements for a segment of any shear wall.

The dynamic storage allocation is used and the array
area for this purpose can be determined from the known
values of the above variables. By numbering the joints in a
particular sequence the maximum half band width MBAND of the

structure stiffness matrix is given by,

MBAND = (N1#%2+1-NSH*2) *2 o - (B.1)
where "N1 = NN/ (NS+1)
The number of equations " NEQN to be solved for the

structure is given by,

NEQN = 2*NN+ (NS+1)-2% (NS+1) *NSH (B.2)
Denoting the storaée pool as Z, the 'equatibn"that-
decides the storage area is,

7 = 6*NN+37MAXX + (NSH*NS+NSH+308)MAXX+ (NSH*NS+NS) MAXY

- +NSH (31NS+21) +4NS+7 (NBM+NC) +NEQN* (MBAND+1) +6 74 (B.3)

As explained in Chapter V, any segment having 50 to 60

finite elements produces a . reasonably accurate . stiffness

matrix for the shear wall., In this case, the values of MAXX

and MAXY may be tentatively restricted to 8. With the - above

simplification and denoting by 21 the storage required for

equation solver and z2 the rest of the storage,
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71 = NEQN* (MBAND+1) ‘ (B.4)
Z2 = GNN+U7NSH*NS+29NSH+12NS+7 (NBM4NC) +5506 (B.5)
and
z! = 21+22

- where MBAND and NEQN are as given by Eg. (B.1) and Eq.
(B.2) respectively. 2' gives the storage required if MAXX
and MAXY do not exceed 8. Otherwise the value of Z given by
Eg. (B.3) should be used.

An indication of the size of the problem that can be

- handled is given in Table B.1.

'TABLE B.1 :
SIZE OF PROBLEM FOR VARIOUS VALUES OF Z'

z' 18000 20000 30000 - 40000
Number of : _
Bays 210 2 |10 10 10
Number of
Storeys 30) 4 98 {17 30 42

Number of shear walls considered for 2 bays is one and that for 10 bays
is 4.

Approximate core requirements are:

z' Single Precision Double Precision
10000 134K 174K
20000 174K | 254K
30000 214K | 334K

40000 254K 414K



B.4 BASIC MESH UNITS FOR SHEAR WALL

The basic mesh unit for the shear wall is a rectangular
element. The program generates the mesh automatically if
the X coordinates of the nodal points of the elements in
X-direction and Y-coordinates ‘of the nodal points of the
elements in Y-direction for a shear wall are given.

In Fig. B.1 if thg values of Xl’ XZ....XMand Yl’ Yz,...

YN are given the mesh is automatically generated for the

shear wall wunder consideration. m and n are the number - of
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the element nodal points in the X and Y directions

respectively.

B.5 PROGRAM STRUCTURE

The flow chart for the complete program is given at the

end of this section.

MAIN
Reads the input required for allocating the
storage area. It allocates storage'for the various arrays

and calls subroutine SWF.

SWF

Reads all input :data, forms - the  structure
stiffness matrix by calling subroutines SEGMT, REDN, STBEAM
and STCOLM. It stores the  stiffness matrix ::and the 1load

vector in one dimensional arrays. If a joint is constrained

to move in a particular direction (support condition - fixed
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or pinned), a very large number ' is :inserted -in ' the main
diagonal of the corresponding row in the structure stiffness
matrix and the corresponding external force éomponent is set
to zero. The equation is solved by calling equation solver
INSOL and the Jjoint -displacements are printed. Then it
calls the subroutine . FORCE, which calculates the force in
tﬁe shear walls and the reactions on‘the . shear :wall base.
The subroutine MMULT is called to calculate and print the
forces on the beam and column ends. ~finally, the .reactions

at other support joints are calculated and printed.

SEGMT

Generates :stiffness matrix for a segment and
condenses offvthe internal nodes starting from top row :to
bottom row of elements ‘using the  condensation : process
explained in Article '2.4. The procedure is explained in
Chapter III. This subroutine :in ‘turn calls ‘one :.of :the
following subroutineé STEDGE,  STINT, STLTR and STRTR
depending on the type of element under consideration while
developing thé stiffness matrix for any row. The matrix is

returned as ST in two dimensional array.

REDN

' Suppresses the internal displacement vector
along any edge and the rotation at the two ends of the edge

and returns the modified stiffness matrix as AK.
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STBEAM

Generates stiffness matrix for a beam
STCOLM

Generates stiffness matrix for a column.
FORCE

' Calculates forces in shear wall and . prints

. them, The stiffness matrix for shear wall for this purpose

is stored as STSH in a two dimensional array. :The first
subscfipt in the array denotes the shear wall number and the
second denotes the position of the coefficient in the
stiffness matrixvfor the shear wall. This ié, incidentally,
stored as a banded matrix in the form STSH (I,R) where I .=

i, 2, 3...numb§r of shear walls and K = Kllf K22’ K33, K44,

K55"'Knn’ KlZ’ KZS’ cve e} Kn 'n + MBS _]_; and K is given by
"MV
K X 7T K s
- ~N
%22 BN
T~ - - \Additional storage
=~ . _involved.
~ :;>(////;?
~
N ~
X =" —~Fn,n ¥ MBS -1

n is the number of equatlons for shear wall and MBS is

the half band width for shear wall.

INSOL

Symmetric banded in core matrix = equation
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solver used for the displacement solution. .A is the
stiffness matrix stored in one dimensional array 'stored in
the same manner as explained for the second subscript of
STSH. Here band width is the maximum half band width of the
structure stiffness matrix and number of equations 'is the
total number of equations for . the structure. The load vector
stored as B -is used for back substitution and returns the

displacement vector as B.

MMULT
Performs matrix multiplication and is made use

of in calculating beam and column end forces.

STEDGE
Generates =: stiffness matrix ~for an edge

element.

STLTR

..Generates stiffness - matrix for a 1left

transition element.

STRTR

Generates = stiffness -matrix for a right

transition element.
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STINT

Generates stiffness matrix -for an :interior

element.

CNVRT

Converts input data to real numbers.




FLOW CHART FOR MAIN PROGRAM



< START >

'/READ STRUCTURE INFORMATION

1
ALLOCATE STORAGE

Y
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READ GEOMETRY OF STRUCTURE , SHEAR WALL , BEAM
AND COLUMN PROPERTIES AND LOADING INFORMATION

i
PRINT ALL INPUT

IS I>1
&
SIMILAR TO ANY PREVIOUS
ONE

NO

DO JJ =1, NUMBER

OF STOREYS
J=NS =-JJ +1

SYMMETRIC TO PREVIOUS ONE

FORM STIFFNESS FOR
SEGMENT

YES

FORM STIFFNESS FOR 1

FROM LINEAR PROPORTION

OF THICKNESS AND
ELASTIC MODULUS

INCORPORATE IN STRUCTURE

STIFFNESS MATRIX

FORM STIFFNESS FOR J

FROM LINEAR PROPORTION
OF THICKNESS AND

ELASTIC MODULUS

v
ADD STIFFNESS ALONG

SEGMT

COMMON'EDGE , RE— |=
ARRANGE EQUATIONS




REDUCE INTERNAL DISPLACEMENTS

ALONG TOP EDGE OF J

Y

INCORPORATE MODIFIED STIFFNESS

MATRIX IN SHEAR WALL STIFFNESS

MATRIX AND STRUCTURE STIFFNESS
MATRIX -

REDN

. DOI= | , NUMBER
OF BEAMS

FORM BEAM STIFFNESS

MATRIX B T

STBEAM

DOES EITHER YES
END OR DO BOTH ENDS FRAMEw»—— o

INTO SHEAR WALL ?—"

MODIFY STIFFNESS
AND INCORPORATE
IN STRUCTURE STIFF-
NESS MATRIX

NO

INCORPORATE IN STRUCTURE
STIFFNESS MATRIX

N v
\{



DO I = | , NUMBER
OF COLUMNS

j
FORM COLUMN STIFFNESS
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MATRIX

1

INCORPORATE IN STRUCTURE
STIFFNESS MATRIX

INTRODUCE SUPPORT CONDITIONS

=1 STCOLM

SOLVE =

)
PRINT JOINT DISPLACEMENTS

DO I = |, NUMBER
OF SHEAR WALLS

]

= INSOL

CALCULATE FORCE

&= FORCE

}

PRINT FORCES AND RE-
ACTIONS IN SHEAR

WALL

DO I = |, NUMBER
OF BEAMS ’

©




/ STBEAM
CALCULATE FORCES
IN BEAMS :
\
PRINT BEAM END
FORCES
DO I =1 , NUMBER
OF COLUMNS
/ STCOLM
CALCULATE FORCES
IN COLUMNS
MMULT

PRINT COLUMN END
FORCES

CALCULATE REACTIONS AT
OTHER JOINTS IF ANY

PRINT REACTIONS

END
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FLOW CHART FOR SUBROUTINE SEGMT




< START )

)

DO M = |, NUMBER
OF ROWS

DO K =1,NUMBER OF
ELEMENTS IN M
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YES STEDGE
YES
STLTR
YES STINT
STRTR
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APPENDIX C

= USER'S MANUAL

C.1 PROGRAM IDENTIFICATION

SWALFRME - This program -performs a linear elastic

analysis of laterally loaded shear wall-frame structures.

C.2. DESCRIPTION OF STRUCTURE

‘In describing the structure all joints are numbered in
sequence starting from the base and numbering them from 1left
to right as shown in Fig. C.1. The shear walls, beams ' and
columns are also numbered in sequence from left to right
starting from the base. The shear wall is divided into
segments with boundaries at the various levels as shown by
dotted lines in Fig. C.1. The coordinates of the joints  are
expressed in a global coordinate system, the origin of which
-may lie anywhere.

Each shear wall segment is subdivided into rectangular
finite élements. The vertical rows of elements should extend
the full height of shear wall with —-constant width. If a
segment has an opening, there should be atleast one
hbrizontal row of elements in the segment, above and below

the opening. The segments of each shear wall are numbered
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independantly from bottom to top.

A shear wall is similaf to another one in the same
structure only if all the ' properties and dimensions are
identical, except that ' the thickness and modulus of
elasticity can vary in the same proportion at corresponding
points of the two shear walls,

A segment is similar to one above it only if all the
properties and dimensions are identical, except .that the
thickness and modulus of elasticity can be proportional at

corresponding points for the two segments.

C.3 INPUT
Except for descriptive heading cards, each data card is

divided into 10 column fields unless otherwise mentioned.



DATA CARDS:

(@) Job description - one card - to contain a job description

which is printéd out as a title over the output.

(b) Structure information - one card

Field 1
Field 2
Field 3
Field 4
Field 5
Field 6
Field 7

Field 8

number of shear walls

number of storyes

nunber of beams

number of columns

nunber of joints

number of laterally loaded joints

maximm number of vertical rows of elements

encountered in any shear wall.

maximun number of horizontal rows of elements

encountered in a segment of any shear wall

(c) Joint Information - one card for each joint

Field 1
Field 2
Field 3
Field 4

joint number

joint x - coordinate (ft)
joint y - coordinate (ft)
support cbndition

Blank - Noﬁ support joiht :
F - Fixed support

R - Rotation release (pinned support) 

If field 1 is left blank on nth joint information card, joint

number is taken as n.
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(d) Shear Wall Properties and Segment Incidence Table

One set of cards for each shear wall
One card for number of vertical rows of elements in the
shear wall followed by two cards for each segment of shear
wall.
1st CARD Field 1 - shear wall number
Field 2 - number of vertical rows of elements
Field 3 - If the shear wall is similar to any
previous one, the shear wall number
to which it is similar should be givén
here.

2 cards for each segment of the shear wall.

Card 1 Field 1 - segment number
Field 2 - number of horizontal rows of elements
' Field 3 - modulus of elasticity.
If left blank, it is taken as the
value for the previous segment. Default
value if first card is blank = 3000 ksi.
Field 4 - Poisson's ratio

If left blank it is taken as the value
- for the pfévious segment. Default
value = 0.3.
Colum 41 If the segment is similar to the one

above, it may be entered here as T -

otherwise blank.
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Card 2 Field 1 - joint number of node I
Field 2 - joint number of node J
(Segment
Field 3 - joint number of node X
incidence _
: Field 4 - joint number of node L
table) ‘
Joints I to L for a given segment occupy the
postitions shown in Fig. C-2
Node I - Node J
Node X Node L
FiG- C2
(Field 5 - are used only if there is an opening
to 8 ' '

in the segment under consideration.)
Field 5 - bottom row line mumber of opening
(The first row line of a segment is
its bottom edge increasing with horizontal
TOWS of elements.)
Field 6 - top row line number of opening.
Field 7 - 1left colum line of the opening.
(The first colum line for a segment .
is its left vertical edge increasing
with vertical rows of elements.)

Field 8 - right colum line of the opening.
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(e) Coordinates of Element Nodes in X and Y Directions

The input format for this 8F 10.3

Either case (i) or case (ii), which ever is applicable, should

be used.

CASE (i) shear wall is similaf to any previous one.

ONE CARD:

Field 1 thickness of first element of the first segment
of the shear wall under consideration (FT)

CASE (ii) shear wall is not similar to any previous one.

3-sets of cards for each shear wall

SET 1 - fieldll to'n 'x—coordinates of boundaries of -
where n - number vertical rows of elements starting
of vertical rows from left vertical edge of shear
of elements in the - wall (FT)-use as many cards as
shear wall +1 ’ necessary.

SET 2 - Field 1 tom . Y-coordinateé of boundaries of
where m = total o | horizontal rows 6f elements, starting
number of horizon- from base line proceeding toward
tal rows of elements top (FT)-use as many cards as
in the shear wall +1 necessary. |

SET 3 - 1 sub set for each segment of shear wall
nunber of subsets = number of storeys
Field 1 top . Thickness of elements (FT)-use

where p = number of as many cards as necessary.
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vertical rows of (NOTE: thickness of any vertical
elements in each Tow of elements for any segmént
segment of the shear is constant for that segment)
wallvunder considera- Start with a fresh card for the
tion +1 new segment.

(f) Beam information - one card for each beam (proceed in sequence

from 1st beam)
Field 1
Field 2
Field 3
Field 4

Field 5

Field 6

Field 7

beam number

joint number at left end of beam

~joint number at right end of beam

supporting colum width at left end of beam
(FT) 1If the beam left end into shear
wall, width = 0

supporting colum width at right end of beam
(FT) If beam right end into shear wall,
width = 0 |

Modulus of elasticity of beam (ksi) If this
field left blank, value of E is taken same as
preceding beam. Default value = 3000 ksi
Moment of inertia (in%) If this field left
blank, value of I is taken same as for preceding

beam. Default value = 1000 in4
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(g) Colum Information - one card for each column (proceed in

(h)

sequence from 1st column)

Field 1
Field 2
Field 3
Field 4
Field 5
Field 6

Field 7

Field 8

column number

joint number'of the top of column
joint number of the bottom of column
top supported beam depth (FT)

bottom supported beam depth (FT)

. Modulus of elasticity 'E' (ksi) If this

field left blank E taken same as for pre-
ceding colum. Default value = 3000 ksi
Moment of inertia 'I’ (in4) If this.fiéld
left blank, I is taken same as for preceding
colurm. Default value = 1000 in4
Croés—sectional area 'A' (inz) If field left
blank, value is taken same as for preceding -

colum. Default value = 100 in2

Loading Information - one card for each laterally loaded joint

Field 1
Field 2

joint number

horizontal load
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~ C.4 Example Problem
The input data for the structure shown in Fig.C.1. are listed below. The two
shear walls are identical and the finite element mesh for one of

the walls is shown in Fig. C3.

10 20f 30 40 50 60 70 80

EXAMPLE PROBLEM
2 3 6 3 20 3 5 6
1 0 0 F
2 10 0 F

20 0 F
30 0 F
40 0 F
0 12
10 12
20 12
30 12
40 12
0 24
10 24
20 24
30 24
40 24
0 36
10 36
20 36 _
30 36
40 36




12

17

14

19
10.

16,
32.

=

10

20

13

18

10

15

20
12.
2.
18-
34+
1.5
1.0
1.0

11
13

16

3000

2800
12

3000
3000

2800
14
14-
4.0
20«
36
1.5
1.0
1.0

12
14
17

30

0.25

13

0.25

10

15

16-
6.0

223.

1.5
1.0

1.0

1.0

1.0

40/41

50

18-
8.0

24.0

1.5
1.0
1.0

o O

20

60

100

26

3000

2800

12¢

28e

5000

4500

70
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11

30
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0.75
0.75
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2800
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