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RESUME

On considére le probléme inverse de la diffusion par des objets parfaite-
ment conducteurs 3 géometrie rotationnelie (cylindre circulaire, ellip-
tique, sphére et ellipsoide prolongé). Toutes les informations relatives
& la géometrie de ces diffuseurs sont emmagasinnées dans les coéfficients
du développement qui entre dans la représentation du champ diffusé€.

Cette propriété est 3 la base de la théorie présentée ici. On accede a
ces coéfficients par une technique d'inversion en utilisant les compo-
santes transversales du champ diffusé supposées connues en amplitude,
phase et polarisation pour un nombre fini de direction de mesures. Afin
d'obtenir le maximum de précision lors de cette inversion, on optimise

le déterminant associé & la matrice du champ diffusé et exprimé sous
forme analytique en fonction de ses singularités. Toute technique de
mesure appropriée devra tenir compte des contraintes fondamentales
résultant de cette optimisation. En supposant qu'une partie finie du
développement soit connue avec une p%écision suffisante, il est possible
de déterminer la configuration géometrique des différents diffuseurs en
exprimant leurs rayons de courbure en fonction d'un nombre fini de co-
éfficients contigus du développement. Ceci peut se faire d'une facon
exacte dans les cas du cylindre circulaire et de la sphére. On trouve
aussi des relations entre coéfficients contigus de type électrique ou mag-
netique rel#tives au probléme inverse de la diffusion. Ces mémes con-
cepts sont alors employés pour approcher les rayons de courbure du cy-

lindre elliptique et de l'ellipsoide prolongé. On n'a pas trouvé de re-



sultats exacts pour ces géometries, les relations existant entre les co-
éfficients du développement et ces diffuseurs &tant ici beaucoup plus
complexes que dans les cas précédents. Une méthode, statistique et
iterative, utilisant les propriétés des sections éfficaces mono-statiques
est alors présentée. On recommande son emploi dans les cas ol la pré-
cision obtenue sur les coéfficients est insuffisante. Cela arrive
notamment d'une part, lorsque le rayon de courbure électrique est beau-
coup plus grand que l'unité, ce qui augmente l'ordre de la matrice;
d'autre part lorsque l'angle solide d'observation est petit,ce qui rend
la matrice du champ diffusé quasi-singuliére. Ce probléme de la pré-
cision étant considéré comme trés important, la deuxiéme partie de la
thése décrit une nouvelle méthode d'optimisation qui prévoie la locali-
sation exacte des directions de mesures pour lesquelles 1'inversion de
la matrice du champ diffusé est possible. Cette nouvelle méthode est
particuliérement bien adaptée pour optimiser des déterminants du type

de Vandermonde impliquant des fonctions bornées.
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ABSTRACT

The approach considered in this study of the inverse problem of
scattering will be based on the assumption that all information pertain-
ing to the scattering geometry is contained in the expansion coefficients
representing the scattered field. This approach will be applied to ro-
tationally symmetrical perfectly conducting scatterers, namely, the cir-
cular and elliptic cylinders, spheres and prolate spheroids. These ex-
paunsion coefficients are recovered via a matrix inversion procedure from
the transverse scattered field, which is known in amplitude, phase and
polarization, for a limited number of non-identical aspect angles. To
achieve maximum zccuracy in the inversion, the closed form root factor-
ized representation of the determinants associated with the particular
scattered field matrix are optimized with emphasis placed on the basic
constraints for any suitable technique limiting the measurements to a
finite observation domain. Assuming that the required truncated set of
expansion coefficients is found with a sufficient degree of accuracy,

it is then shown that the geometrical configuration of the various bodies
can be determined by expressing the main radii of curvature in terms of
a finite set of contiguous expansion coefficients. For the particularly
simple cases of the circular cylinder and the sphere, exact formulae are
attainable in order to retrieve the associated electrical radius. Fur-—
thermore, it was found that in these cases, unique relationships exist
between contiguous expansion coefficients of both electrical and/or mag-

netic types. The same concepts are applied to obtain approximate re-



sults for the recovery of the main radii of curvature of the elliptic
cylinder and the prolate spheroid. Exact formulae have not yet been
developed for these more complicated geometries, due to the complex
inter-relationship between the associated expansion coefficients and
the geometry. An averaging iterative method is presented employing
the relationship between the magnitude of the scattered field and the
illuminated area of the scatterer. This alternative is recommended
whenever there is an insufficient degree of accuracy in the recovery
of the expansion coefficients. This usually occurs when the electrical
radius of curvature is larger than unity, which increases the size of
the scattered field matrix and/or when the observation domain is re-
stricted to a small solid angle, which produces pseudo-singular be-
haviour of the matrix. Since these aspects of accuracy are considered
highly important, a separate section puts forward in detail a novel
optimization procedure, in order to alleviate this problem. The
theorems resulting from the optimizati;n procedure determine the exact
values of the bistatic aspect angles at which measurement data must be
compiled in order to obtain maximum accuracy in the inversion of the
scattered field matrix., This novel method is anticipated to be well

suited to optimize determinants of the Vandermonde type whose elements

are band-limited functions.
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ZUZAMMENFASSUNG

Ein besonderer Angriff des inversen Streuungsproblems fur rotationssym-
metrische, unendlich leitende Streukdrper (kreisformiger und elliptischer
Zylinder, Kugel und verlangertes Rotations-Ellipsoid) wird untersucht,
Die Behandlung stutzt sich auf die Annahme, dass alle notwendigen Daten,
die die Geometrie des Streukorpers beschreiben in den Koeffizienten der
Reihenentwicklung des betreffenden Streufelds enthalten sind. Diese
Entwicklungskoeffizienten werden durch eine Matrixinversionsmethode vom
transversalen Streufeld bestimmt, das in Amplitude, Phase und Polarisation
fur eine beschrankte Anzahl verschiedener Messrichtungspunkte als gegeben
angenommen wird. Um hochste Genauigkeit der Matrixinversion zu guaran-
tieren, wird die geschlossene analytische Wurzeldarstellung,der fur das
behandelte Streuungsproblems zutreffenden Determinante optimisiert, und
grundlegende Zwangsbedingungen der Messpunktverteilung, die fur geeignete
Messverfahren zutreffend sind, wurden besonders klargestellt. Mit der
Annahme ,die notwendige, beschrankte Anzahl von Entwicklungskoeffizienten
mit hinreichender Genauigkeit gefunden zu haben, wird dann gezeigt, dass
die Geometrie der behandelten Streukorper so bestimmt werden kann, dass
die Hauptkrummungsradien durch eine eéndliche Anzahl kontiguenter Entwick-
lungskoeffizienten ausgédrﬁckt werden konnen. Fur die besonders einfachen
Falle des kreisformiger Zylinders und der Kugel konnten exakte, geschlos-
sene Ausdrucke fur die zutreffenden elektrischen Krummungsradien
formuliert werden. Weiterhin hat sich herausgestellt, dass eindeutige

Beziehungen zwischen kontiguenten Entwicklungskoeffizienten des elek-
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trischen und oder auch des magnetischen Types fur diese beiden besonderen
Falle existieren. Die gleichen Hypothesen wurden auf die Inversions-
probleme des Ellipsoids angewandt um angenaherte Kriterien fur die
Bestimmung der elektrischen Hauptkrummungsradien zu erhalten, Exakte,
geschlossene Formulierungen konnten fur diese komplizierteren Geometrien
jedoch, wegen der komplexen Abhangigkeit der assozierteren Entwicklungs-
koeffizienten von der Geometrie, nicht gefunden werden. Deshalb wird
eine statistische iterative Methode eingefuhrt wobei von bekannten
Beziehungen des monostatischen Streuungsquerschnitts Gebrauch gemacht
wird um die elektrischen Hauptkrummungsradien zu bestimmen. Dieses
Annaherungsverfahren wird besonders fur jene Fille empfohlen, in denen
die Genauigkeit nicht hinreichend ist. Solches is gewchnlich der Fall,
wenn der elektrische Krummungsradius sehr gross ist und damit eben die
Ordnung der Matrix rasch zunimmt, und oder auch wenn der Beobachtungs-
bereich recht begrenzt ist, wodurch pseudo--singuliares Matrixverhalten
auftritt. Weil diese Gesichtspunkte der Genauigkeit als besonders
wichtig betrachtet werden miussen, wurde Teil B dem Hauptkorper der
Dissertation hinzugefugt. Das Resultat dieses Optimisationsverfahren
wurde in zwei Lehrsatze zusammengefasst, die die genauen Werte jener
Messrichtungspunkte bestimmen flir die genaue Messwerte notig sind um
hochste Genauigkeit in der Inversion der Streuungsmatrix zu erhalten.

In dieser algebraischen Analyse wird ein neuer Optimisationsprozess

fur Determinanten, die sich als Vandermondsche von Funktionen begrenzten

Gultigkeitbereiches ausdriicken lassen, in Einzelheiten behandelt.
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INTRODUCTION

The goal of science is to extend our human faculties to limitless
horizons. Researchers have been endeavouring since the turn of the
century to devise equipment specially designed to identify objects
that we cannot see with the naked eye. Visual identification of ob-
jects by scattered light is an everyday experience and the mechanism
whereby the eye perceives shapes is relatively well understood. With
the appearance of Doppler-radar, sonar-operated systems, Fourier op-
tics and aperture synthesis, it is now possible to localize and attain
a good resolution of otherwise remote objects. These systems are em-—
ployed extensively in the fields of air traffic contrel, oceanography,

telemetry, satellite tracking, remote sensing, etc.

However, no-one has yet succeeded in displaying actual configuration
of objects illuminated by radar, although several attempts were ini-
tiated in the last few decades. Numerous techniques were developed

and tested in order to increase the ability of radar-operated systems
to portray remote objects. These techniques organised the accumulation
of radar data to reach its full potential, comparable in its develop-
ment to that of software techniques for the computer. These techniques
are the epitomy of radar information as the most powerful extension of

visual perception.

Research in the field of inverse scattering is directed towards this



goal of target identification. The following survey of the literature
puts in evidence the lack of a general method of target identification.
Presuming the existence of such an overall technique, there is also no
indication of its development in the near future despite prodigious

efforts devoted to this end.

In practical applications, various radar signatures are simultaneously
considered for any specific case encountered. Correlation of these sig-
natures usually allows a significant reduction of ambiguity in the ob-
jectification of the body shape. In the light of the previous remarks,

any contribution to this extreﬁely complicated problem will bring sub-
stantial insight into the problem of scattering and aid to define the ulti-

mate goal of defining the shape of remote objects.

Within this framework, then, the present thesis will be strictly con-
cerned with the objectification of the shape of rotationally symmetrical
bodies of revolution, for which separation into orthogonal functions has
been well-established. The shapes we will consider are: the circular
cylinder, the elliptic cylinder, the sphere and the prolate spheroid,

. which we will assume to be perfectly conducting bodies. Various factors
dictate the choice of these particular geometries: the circular cylinder
and the sphere have important applications in radar and antenna theories,
and the elliptic cylinder and the spheroid are often used as models for
the development and testing of approximate methods. Fin§1ly, since the

exterior form of these scatterers is a level surface in a system of



orthogonal co-ordinates, this investigation will be confined within the

realm of classical electromagnetic theory.



chapter one

SURVEY OF THE LITERATURE

1.1 SYNOPSIS

The theory of diffraction and scattering was developed for the express
purpose of gaining insight into the interaction of propagating waves
with known obstacles. In its most general implications, this theory
compares the behaviour of a non-stationary system as time tends towards
zero with its asymptotic behaviour, as time tends towards infinity via
a scattering matrix. This scattering matrix; which relates the prop-
erties of the system to the nature of the scatterer, constitutes the
sole observable data when the scatterer is remote, or otherwise in-
accessible to direct observation, Lately; with the advent of radar
tracking and identification, it has become essential to extract that
inforﬁation pertaining to the shape and material constituents of the
scatterer directly from the scattering matrix. This incentive has
opened up an entirely new area of research: that of the inverse theory

and technique of diffraction and scattering in the field of electromagnetics.

The inverse theory deais with the problem of recovering the shape of
the scatterer from bistatic data for a given incident field, both of
which are compiled in the scattering matrix, However, the delineation
of the shape of the scatterer can be accomplished only if the scattered

field data is related to a given co-ordinate system. This data will



then be expressed in terms of its co-ordinate variables, and the asso-

ciated vector wave functions suitable for the problem at hand.

Though the inverse scattering field has generated an intense amount

of interest in the past few years, the demand for new basic model
techniques is as strong as ever, since the formulation of a general
overall model technique seems increasingly unfeasible, owing to ex-
tensive mathematical complications. For this reason, only those shapes
easily amenable to rigorous mathematical treatment will be considered
within the scope of this thesis: namely, the circular and elliptic eyl-
inders, the sphere and the prclate spheroid, for which the direct prob-
lem of scattering has been resolved. While none of these shapes repres-
ent the elaborate geometries one encounters in practice, the results of
the present investigation of the inverse scattering field will prove
highly encouraging to all those engaged in areas of target identifica-

tion and structural pattern recognitiom.

As an initial approach to the inverse problem of scattering, the far
scattered field will be expanded in terms of the associated vector wave
functions. The transverse far scattered field components for non-iden-
tical aspect angles wili then be related by means -of the far scattered
field matrix to the truncated set of the unknown expansion coefficients,
which we assume to be extractible from the scattering matrix. The asso-

ciated expansion coefficients are further determined by a matrix inver-

sion technique which imposes severe restrictions on the distribution of



aspect angles. The matrix inversion procedure is inherently unstable,
however, due to the particular properties of the wave functions employed;
these instabilities can be examined from the properties of the deter-
minant associated with the scattered field matrix. To avoid these in-
stabilities, a novel determinate optimization procedure has been developed
to deal with the closed-form solution of these determinants. (This op-
timization procedure and its relevance to any suitable measurement
fechnique is presented in Part B. 1In particular, it is shown that when
the derived 0ptimizati6n constraints are satisfied, the expansion coef-
ficients can be recovered with maximum accuracy.) Assuming, therefore,
that the scattered field matrix can be inverted, the prime objective of
this thesis is to demonstrate the recovery of the electrical radii of
curvature of that particular perfectly conducting scatterer under con-
sideration, from a limited set of contiguous expansion coefficients

(as analysed in Part A). In addition, within the course of the analysis,
unique relationships between contiguous expansion coefficients of the
magnetic and/or the electric type, and fundamental properties of vector
wave expansions have been derived. These may be favourably employed

for improving the accuracy of the recovered expansion coefficientsland
are, therefore, considered highly relevant to the inverse problem of

scattering.

However, this approach does not ascertain total accuracy in all cases.
For example, when the electrical radius is very much greater than unity,

or, when the domain of observation is restricted to a small solid angle,



the inversion of the matrix remains a very long and involved operation.
Therefore, an alternative approach had to be put forward; the concept
implied in this alternative will base itself upon the fact that the
backscattered field depends on the radius of curvature of the illumin-
ated area of the scatterer. When the associated expansion coefficients
cannot be reduced to a simple form, as was possible in the cases of the
circular cylinder and the sphere, this alternative method will be ex-

pressly employed, in order to obtain a reasonable degree of accuracy.

This thesis will be divided up into two major sections. Part A will

be mainly concerned with the retrieval of the radii of curvature of the
various scatterers; Part B will be reserved for the optimization pro-

cedure.

Part A is further divided into four chapters, each of which deals with

a different scattering geometry.

Chapter one consists of a selective critical survey of the latest articles
on the problem of inverse scattering. However, due to the large amount
of research in this area still considered classified information, this

survey makes no claim to completely exhaust the field.

Chapten fwo devotes itself to the problem of the perfectly con-
ducting circular cylinder. In dealing with this problem, we will in-

clude:



(i) The formulation of the far scattered field in terms of circular
wave functions

(ii) The recovery of the electrical radius for the TE, TM and mixed
polarization cases

(iii) A detailed discussion of optimum locations of bistatic angles,
in order to avoid the instabilities inherent in the matrix
inversion procedure.

There arises a definite problem in obtaining good accuracy here, due

to the truncation of tﬂe infinite series representing the scattered

field, and the matrix inversion procedure. This problem will be re-

viewed in detail. A description of the iteraéive averaging method

is also presented, in order to obtain the degree of accuracy necessary

to retrieve the shape of the circular cylinder.

Chapter Zhree applies the theory developed at length in chapien Awe to

the cése of the elliptic cylinder. In particular, the difficulty of re-—
covering the contour of the eylinder utilizing the first method is demon-
strated. This is due to the complexity of the Mathieu functions involved
in the formulation of the far scattered field. Therefore, the alternative

method is also applied in this case of the elliptic cylinder.

A further application of the inverse scattering model to the three di-
mensional case is reviewed in chapten gowr, This chapter points out the
similarity existing between the far scattered field and the associated

expansion coefficients in both the spherical and the cylindrical cases.



Once again, in order to recover the associated coefficients, we must
avoid the inherent instability in the matrix inversion procedure by
employing the optimization procedure for the mth degree of multipole
geometries. This is invaluable in determining the location of the op-

timum directions of measurement.

The method of shape recovery for the prolate spheroid is proposed in
chapten f§ive. This will be predominantly based on the representation
(45)

of the far field as given by Stevenson . However, this study will

be limited by a lack of tabulated data, to a purely theoretical analysis.

Part B is strictly concerned with the optimization procedure essential °
to accurately recover the scatterer shapes examined in Part A. As it

is not, strictly speaking, included in the field of inverse scattering,
it has been thought to reserve its development to a separate section
of the thesis. This optimization procedure deals with the closed-form
representation of the determinants associated with the various scattered
field matrices. Of tantamount importance is the derivation of this
novel detérminate method, which can be used to optimize any analytical
and band-limited expression written in terms of a factorized root ex-

pansion of its singularities.

Part B is followed by five appendices. Appendix A.1 presents a method
to recover the polarization angle from the expansion coefficients in

the case of the circular cylinder.
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Appendix A.? is a brief reminder of the properties of the Vandermonde

determinant.

Appendix A.3 formulates the expansion coefficients associated with the
TM case, in terms of the expansion coefficients associated with the TE

case, for the circular cylinder.

Appendix A.4 formulates the TM coefficients in terms of the first five

coefficients for the circular case.

Appendix A.5 derives the far field scattered by the elliﬁtic cylinder

in terms of the Mathieu functions.

1.2 CRITICAL EVALUATION OF THE LITERATURE -

The classical problem of scattering and diffraction of electromagnetic
waves by an object originates within the field of optics. Research
carried out so far on this problem primarily concerns itself with the
formulation of the scattered and diffracted field when the scatterer
and the sources (i.e. the incident field) are known. To detérmine the
field scattered by the object, we must find the difference between the
total field which exists when the object is present and the field ex-
isting in the object's absence. We then add the s;attered field to the

incident field to find the diffracted field.



The inverse scattering problem arises naturally as the situation is
reversed, that is, when the. nature of the scattéring b0d§ is unknown,
and the only information available is the incident and scattered fields.
These fields are given in terms of a fixed co-ordinate system whose

origin lies within the scatterer.

A variety of problems fall under the general heading of inverse scatter—
ing and diffraction, dﬁe to the diverse interests of those engaged in
this field. Therefore, we will divide our review into three major ap-
proaches: The first approach will be largely theoretical; the second
numerical; and the third mainly concerned with those practical applica-
tions and experimental work of the type usually conducted under the

supervision of the Departments of Defense.

The purely theoretical approach endeavours to acquire the maximum data
about the distribution of sources of finite extent from the far scattered

field, which originated from those very same sources.

The second approach attempts to discover methods of resolving simpler
problems of inverse scattering, such as identification of boﬁies of
revolution by employing certain approximations, which then lead to
numerical results. These methods also specify the conditions adequate
in order to determine techniques of measurement, thus eliminating re-

dundant data, and cutting down on computation time.

11
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The last approach deals essentially with estimating from radar data
the size, configuration and characteristics of target motion, such as
the generalized vector of motion, which encompasses angular velocities
of axial rotation and tumbling, and the inclination of the target axis

relative to its mass-center trajectory.

Although there is a lack of precise terminology about what exactly is
inferred by the inversé scattering problem (I.S.P.), the two latter
approaches cénter on the common problem of determining.the shape and
material constituents of unknown scatterers from far field data when

tﬂe transmitted field is given and the received far scattered quantities
are known in amplitude,phase and polarization. The problem is usually
investigated by resorﬁing to two techniques often found in the litera-
ture: continuous wave inverse scattering (C.W.I.S.) and pulse wave in-

verse scattering (P.W.I.S.).

However, when the scattering geometry is mon-stationary, the problem
also involves the description of the orbital vector of target motion.

The orbital vector of motion includes:

(1) ‘the translatory vector, giving direction of spinning;
(ii) the spin vector, determining spinning rate; and
(iii) a third vector, outlining the direction and rate of tumbling;

all three of which are specified in terms of a stationary fixed time-
space reference system. The translatory vector of motion is usually

determined by monostatic wave-operated Doppler radar systems, whereas
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the spin vector and the vector describing the direction and time rate

of tumbling must be determined from inverse scattering.

These three approaches will be covered in sequence, emphasizing the
problem of ascertaining target shape. However, the last approach will

only be briefly sketched as most of the work in this area is unavailable,

The last few decades héve seen an important development in the theoret-
ical analysis to the inverse scattering problem. Studies on the far
field produced by a known scatterer have led to research on the inverse
problem: to what extent does a knowledge of the far field arising from
finite sources determine the distribution of these same sources? This

(40) (59)

and Weyl , was further in-

(60)

problem, first examined by Saunders

(36,37)

vestigated by Muller and Wilcox in the scalar and vector

cases. They discovered that the far scattered field determines the
radiué of the minimum sphere enclosing the sources generating this same
field. However, the extension of these sources within this minimum
sphere is not uniquely specified; for insﬁance, if the sources are dis-—
tributed over a certain volume in such a manner that the far field can
be expreséed in a finite number of surface harmonics, as in the case of
the sphere, an identical far field can be obtained from sources inside

an infinitesimal sphere around the origin. These results also follow

(60)

from an expansion theorem given by Wilcox for the vector case.

(3)

They are also verified by Atkinson while an equivalent expansion

(19)

theorem was propounded by Karp for the scalar case. The one-to-one
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relationship between the far field and the sources is nevertheless est-
ablished by assuming that the integral:

fffljlz dv

source '
is minimal. In this formula, "j" represents the currents originating

from dipole densities on lines, surfaces, or domains within the mini-

mum sphere,

It is worthwhile ,at this stage,to note that the inverse scattering
problem for the scalar case is well known in non-relativistiec quantum
mechanics. The time-independent Schroedinger equatioﬁ:

?zu + kz(l -Vu=20
which describes the quantum mechanical scattering has the same form

as the Helmoltz equation:

2
Vzu + 52 u=0
n

In these formulae, "u'" represents the wave function or probability
amplitude of particles moving in a potential "V", "k" being the wave
number and '"n" the relative iﬁpedance. The problems resolved so far in
quantum mechanics are one-dimensional. They can be treated by the per-
turbation theory in which "V'" must always be smaller than unity. This
method could be carried over into electromagnetic theory, for the one-
dimensional case, by replacing (1 - V) by l/nz. However, in scattering
from remote objects, N = 1 everywhere outside the object and zero inside
the object, implying that "V" would be by no means smaller everywhere

as compared to unity. Consequently, these methods are in general in-

appropriate.
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However, using a slightly modified technique, a group of one-dimensional

problems has been successfully treated by Moses and de Ridder(35) and

Kay‘zl). In his paper, Kay considers the feasibility of recovering
for all x a function potential V(x) associated with the following dif-

ferential equation:

2 |
4066k 4 1 [1 - o] ulx,k) = 0
dx

from the reflection coefficient r(k) known for all real k., He demon-—
strates that this is indeed possible whenever r(k) is a rational function
of k. Bargmann(é) found in addition that potentials for the radial
Schroedinger equation of quantum mechanics, as well as for the radial
corre5poﬁding wave equation, can be explicitly determined under identical

(13)

conditions. 'Faddeyev also presented an extensive bibliography of

the quantum mechanics inverse scattering problem.

A three-dimensional scalar problem is similarly treated by ?etrina(as).
The scattering body is assumed to be homggeneous and isotropic; so that
the Helmoltz equation is satisfied with a wave number kl inside the
body, and with a wave number ko outside the body. Petrina indicates

further that the relation between the scattering amplitude and the

shape of the scattering body is:

jt.s
af(ko’kl,T) _ __l' fff s CEa £a
) o

kz i} k2 body
0 1

The integration is to be performed over the volume of the scattering

body using:
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k
T =k _TTO R
— — R ==
with “EU" being the wave vector of the incident plane wave and R being
in the direction of observation. The integral on the right-hand side can
be considered as the Fourier transform of a function which is equal to
unity inside the scatterer and vanishes outside., Thus, knowledge of

the left hand side for all T determines the shape of the scatterer.

Some properties for two-dimensional , acoustically soft and hard obstacles

are given by Karp(zo)

8 &e forps determinants with elements fij’ where
fij=f(ei,8j) represents the far diffracted field at infinity, at an
angle of observation Bi for an angle of incidence Bj. He deduces the
necessary and sufficient geometrical conditions relative to the shape
of the scatterer for the vanishing of such determinants, when the
boundary conditions are fulfilled. Furthermore, he proves that if

f(ei,Bj) depends only upon the difference (ei - Sj), the scatterer must

be a circle.

Whenever the target under investigation is stationary but not of a
simple form, like the infinite circular cylinder or the sphere, approx-
imations must be made to obtain actual numerical solutions. These ap-
proximations result from the fact that the shape of the body is either
not a level surface in any co-ordinate system, or that the formulation
of the solution to the direct problem is too complex to be exploited
for the inverse study. This has been reviewed from the standpoint of

(2)

the inverse scattering problem by Altman, Bates and Fowle . In parti-
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cular, they show that for good conductors, the direct solution is given

through the following integral equations of the second kind:

" iy 7 . e+ij
5 - d/l nx (gi 4 gs) x V R ds
scatterer
E = —— - 3 gl - -
], ok [l @ en)
scatterer
1 2 é%ij
jﬁ [ n.V x ('I.—i‘i e o _l‘is) ] Vv R }'Q_S

where ES assumes its value on the surface § inside the integral sign,
"R" being the distance from the point of observation to the vector surface
element ds, n being the normal vector pointing outward from S, with

y and € being the characteristic constants of the medium.

In a numerical approach, if one is given the far field Es and Hs

at a sufficient number of bistatic receiver locations, themproblem is
reversed and becomes that of determining the shape of the scatterer.
Various techniques have been proposed employing the method of continuous
wave inverse scattering (C.W.I.S.), in order to approximate the overall
structure of the unknown target. For instance, the inversiﬁns of E_
and gs can be carried out in some restricted cases under physical or
geometrical optics approximations.

(2)

In particular, Altman et al demonstrate that, if the body is a flat
plate of arbitrary shape, and if the scattered field falls within a small

solid angle, the shape of this plate can be recovered. This is done



using the two-dimensional Fourier transform of the scattered field as a
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function of aspect angles and using physical optics or the Kirchhoff approx-

imations. These approximat{ons assume that the body dimensions and the
wavelength are smaller than the range and that the total H field equals
2H on the body surface in the illuminated region and equals zero in the

shadow region.

The inverse scattering problem associated with the geometrical optics
approximations (k* ®) has been investigated bf Lewis(za) and Keller(ZB)
for doubly curved convex bodies of revolution whose axis of symmetry isl
known. From a given scattering amplitude and reflection cqefficient

at the specular point, the specular point being that region perpendi-
cular to the radar line of sight, Altman’ et al(z) have obtained explicit
formulae to determine the illuminated surface area of two-dimensional
geometries. In the three-dimensional case, the bistatic radar cross
section is propoftional to the reflection coefficient and the product

of the principal radii of curvature R, and R,. When the Gaussian cur-

1 2

of a particular surface is given for all directions of

1
B2 ,
the normal to the surface, the shape recovery is entitled Minkowski's

vature G =

problem, and has a unique solution for smooth convex bodies. For a
singly curved body of revolution (i.e. cone, cylinder, etc.) whose axis
of symmetry has been determined, the geometrical optics method no longer
applies, since one principal radius of curvature becomes infinite. 1In
this case, an épproximate method originated by Blasberg, is described

in Altman et al(z).' Using the geometrical optics approximations, they
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demonstrate that the backscattering is proportional to the Fourier
transform of a function vr(x) e2jkr(x). In this expression r(x) is

the radius of the cross section as a function of x along the axis of
revolution. This function is valid only for small values of that angle
formed by the direction of propagation of the incident plane wave and
the direction perpendicular to the axis of revolution, the three di-
rections being coplanar. Using this modified technique, they prove

2jkr (%) for

the inverse Fourier transform to be a function of Yr(x) e
X inside the body and zero outside, provided that the backscattering
field falls within a small solid angle, as in the case of flat bodies.

(28)

Recently,using Kirchhoff approximations, Lewis found a general method
for solving the inverse diffraction problem, when the backscattering
field is known at all aspect angles and frequencies. His method, based

(9)

on Bojarski's identity "/, states that the characteristic function y(x)
defining the target where y(x) = 1 inside and zero elsewhere, is a Fourier
transform of that gamma function PC%E5 related to the backscattering
field. He shows that only partial recognition is possible, when data

is restricted to a frequency band and a limited cone of aspects. How-

ever, his results are somewhat limited in their application since

P(%ga-must be meésurgd near the front and the rear of the target.

The site of intense involvement in inverse scattering since 1965 has
been the University of Michigan Radiation Laboratory where V. H. Weston

and his research associates have developed a good variety of inverse
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scattering techniques. As regards the one-to-one source field relation-
ship, they first of all examined the interdependence of the shape and
material characteristics of the scattering body with the radius of the
minimum sphere. The equivalent sources are enclosed by this minimum
sphere, whose radius is given as the radius of convergence of the far

(60). It is shown in particular that

field expansion in Wilcox's paper
one can obtain different minimum spheres enveloping the target by chang-
ing the origin of the co-ordinate system, This report éssentially con-—
tributes a unique theoret%dal explanation of the recovery of scatterer
shapes of convex configuration, under specific boundary conditions.
These conditions require that the total E field vanishes on the surface
if the body is a perfect conductor or that E and H are related by the
equation of the Lecntovich type:

£ d] ven /B pa

0

where fi is the unit outward normal to the surface and 1 is the relative

impedance of the body.

In the light of the foregoing results, and in order to apply boundary

(56) have developed a technique for the

conditions, Weston and Bowman
recovery of the near field in terms of the far field data. This tech-
nique bases itself upon the representation of the far scattered field

in terms of plane waves. An integral representation of the near field

over a complex unit sphere has been derived for this purpose. The ex-

pression of the field in the far zone is then extended by analytical



continuation into the complex polar angle plane. The solution is best
suited for the high frequency case since the integral may then be ev-
aluated by the stationary phase method. Weston, Bowman and Ar(57) ex-
amine the possibility of recovering the near field into cavity regions,
using an analytical continuation procedure in order to define the con-
tour of the scattering geometry. They derive further the necessary
boundary condition §{3 Eg valid for perfect conductors. This condition
correctly portrays the scattering surface when expressed at two differ-

449

ent frequencies, as is demonstrate for a perfectly conducting

- sphere. This necessary boundary condition E x E¥ though not sufficient

===
7 . e s %
is superior to the condition |§i[ - |§s| = 0 since ETX ET is applicable
far into the shadow region, whereas |§i| - ]Es] represents the geomet-

rical optics approximations usually restricted to a narrow cone around
the specular point. Both conditions also yield maximum accuracy when

the incident polarization is parallel to the generatrix of the scatterer,

In a more recent publication dealing with the three-dimensional vector
problem, Weston and Boerner(SS) show that the total field produced by

a plane wavé incident on a scattering body can be expressed as the sum
of two contributions: the incident field and the Fourier transform of a

[ =4
(35) the follow-

quantity related to the scattering matrix. They deduce
ing equation which is valid for all points in space, including the in-

terior of the scattering body.

<21
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jptx
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where =< p < m,"jg‘ is the direction of the incident wave and+%(gjk}
is a measurable function proportional to the far scattered field in
the direction p related to the scattering matrix. They also examine
what can be recovered about the body, when the measurements of the far
field can only be carried out within a limited domain of aspect angles.
In particular, they show that the near field representation can be de-
términed by a matrix inversion for rotationally éymmet;ic scatterers
and end-on incidence. In this case, the far scattered field components
are represented by a series expansion into spherical vector wave functions.
These components are best displayed as the matrix formulation:

[e] = [a] - [X]
where X represents the unknown expansion coefficients. The matrix [A]
is inverted in order to recover these coefficients and the near
field is deduced accordingly. Unfortunately, this process involves
instability and definite loss of accuracy. Following this line of
thought, the direct problem is studied in detail by Waterman and
McCarthy(49). They have gone so far as to develop a documented com-
puter program to evaluate the scattered field originating from per-
fectly conducting symmetric bodies. The method is based on the gener-
ation of elements of an N x N matrix, followed by subsequent inversion

to solve for the unknown surface currents on the scatterer which are

obtained via an integro-differential equation.
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In a recent paper, Imbriale and Mittra

(55)

applied a technique similar
to that of Weston and Boerner They employ a process of analytical
continuation with translations of the co-ordinate origin to obtain the
near field representation; and geometrical optics boundary conditions
to define the body shape contour. In particular, they demonstrate

that the knowledge of the incident and scattered field at only one
frequency was indeed sufficient to recover the size, shape and location

of the scatterer. They limited their study to elliptic, circular cyl-

inders and conducting strip geometries.

When the overall structure of the scatterer is kmown, the subsequent
problem consists in defining the material characteristics of the body.
Although the P.W.I.S. method is more suitable fér this purpose, some
important details about those characteristics are acquired by using
the monostatic-bistatic cross section theorem. This theorem states

(22)

that for bodies of sufficient smoothness , the bistatic cross-section

for transmitter direction k and receiver direction is equal to the

1,
monostatic cross section for the transmitter-receiver direction (k + EO)
with k # 0 in the limit of vanishing wavelengths. It is then demonstrated
in (58) that for pﬁor conductors, or perfect conductors coated with a
material of a high refraction index, the impedance of the coating, apart
from the sign of the imaginary part, can be determined from the know-
ledge of the bistatic cross sections U_L(E,EO) and U“ (5,1_10). This is

possible when both transmitting and receiving antennae are linearly

polarized, perpendicular or parallel to the plane defined by the vectors

23
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(14)

Freedman describes a convenient method for the identification of
uniformly coated scatterers, using pulse waves, which requires only
one or two mono-/bistatic receivers. In this method, for an incoming
modulated pulse wave, the scattered field in any arbitrary direction
in the 1lit region results in the superposition of image pulses. These
pulses are generated at the scatterer discontinuities, with pulse mag-

nitude being proportional to generating discontinuity size and pulse

phase depending on the total associated path.

The echoes or image pulses for various shapes are then considered for

(24)

the high frequency case with Kennaugh and Moffat who give a more

(33)

sophisticated treatment. Mitzner approaches the transient problem
by subdividing the scattering surface of a smooth target into incre-
mental belts. These belts are aligned ;n such a way with the incoming
wave front that the pulse response can be analysed in terms of the body
shape so decomposed. This is performed using an integral equation
coupled with a general set of boundary conditions describing the local
scattering surface. In general, this analysis of the pulse returned
from a target does yield more information pertaining to the properties
of the scatterer than the pure C.W.I.S. method as was demonstrated in
(5) for the dielectric strip. It is especially shown here that the
leading wave front indicates some properties about the composition of
the strip, as the trailing returned pulse is related to its thickness.

(39)

However, in the last few years, it has been demonstrated that the
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C.W.I.S. method could feedback as much information as the P.W.I.S. method as
to the direct problem of scattering when the C.W.I.S. method operates

at high frequency and bases itself on scattering centers (i.e. local-

ized sources). Models for the inverse solution are presently investi-

gated in order to identify the various scattering centers from the far
scattered field. These centers, when compared to a catalogue of direct

problem solutions, should lead to target recognition,

Although it is difficult to separate the numerical approach from that ap-
proach used by the Departments of Defence, since both make reccurse to
computerized solutions, it is still possible to point out salient features
which characterize the latter. In this area, information on space vehicles
is of top priority. This information can be limited to a simple signature,
such as a cross section obtained at a single polarization, frequency or
bistatic angle, or to more complex signatures such as cross sections
measured under various conditions of polarization, frequency, bistatic
angles, etc....This information is then used to identify the.space object.
Based on the assumption that physically similar vehicles exhibit equivalent
signatures, the size and shape of those vehicles are estimated via compara-
tive studies with known results contained in catalogues constructed under
geometrical optics approximations. Of course, these hypotheses all predi-
cate the meaningfulness of the signature representation. A more reliable
degree of recognition is attained by increasing the resolution of the radar
system. The practical solution often displays a choice between the

better equipped ground radar stations or more sophisticated signatures



requiring either highly trained cross section analysts or sophisticated

computerized decision-making processes.

Experimentally, technicians are dealing with scattering matrix measure-
ments of various vehicle models, representing a vast spectrum of géo—
metrical complexity. These techniques could have been part of our re-
view of the numerical approach as they use the scattering phase centers
concept to identify objects and as they necessitate retrieval of cross
sections at various polarizations. The purpose of most of the invest-—
igation in this area is to determine adequate signatures of space ob-
jects. The simpler signatures are used as this makes for significant
reduction in computer storage and analysis time; if the sophisticated
signatures were used, this would result in heavy computer storage,
lengthy decision-making and complicated comparative programs, though
eliminating ambiguity in target recognition., However, studies in this
area are for the most classified information; we can only speculate
that more than one signature is employed for better discrimination
with subsequent theoretical verification.

Both of these aspects are introduced and explained by Crispin et al(lo)
who determine the complete scattering matrix for several aspects for
Jupiter C, with or without the tail fins, and also for the Jupiter C
nose cone. They observed that reasonably adequate matrix data could
be obtained in the laboratory by measuring o(AA), o(A,B), 0(B,B) and

any two of the three phases associated with these amplitudes where

26
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0(L,J) denotes the cross section measured when the transmitted energy has
the polarization J, and the receiver polarization is along I. The symbols
A and B designate two mutually orthogonal directions. A representative
list of classified papers on the measurement of scattering matrices of
laboratory models is given along with a display of the block-diagram of

the measurement equipment.

In conclusion, there is obviously much to be gained by orientating research
towards additional theoretical and experimental work relative to various
scattering geometries. TFurther investigation would be advantageous, to
optimize the methods used in reducing the measured data necessary to ob-
jectify the scatterer. Analysis should also.be carried out to estimate

the accuracy, particular to any employed techniques, needed to predict with
sufficient reliability the shape of the target. Finally, experimental
methods should be developed in accordance with the requirements im-—

posed by the various theoretical methods. Those primary aims have been

the cancern of many authors and experimenters; however, it is felt that

a continued effort towards providing more and more reliable information

along these lines is still highly desirable.

1.3 FORMULATION OF THE PROBLEM

This thesis presents a solution to the inverse scattering problem as
applied to axially symmetric conducting hodies of revolution embedded
in a uniform homogeneous and isotropic medium of electric permittivity

€,magnetic permeability H,and zero conductivity. It is assumed that
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for a given transmitted field, the measured far scattered field compon-
ents can be accurately obtained in amplitude, phase and polarization,

for a sufficient number of bistatic receiver locations. If the scatterer
possesses only one axis of revolution, then the incident plane wave will
be propagated along the larger dimension of the body, in a direction
perpendicular to its axis of revclution. In this case, the three-di-
mensional problem is then reduced to the two-dimensional scalar prob-
lem. In the general vector problem case, we consider the incident

plane wave as propagating along the negative Z-axis of a spherical co-
ordinate system, whose origin lies at the center of the unknown scatterer.
The choice of time harmonic fields, with time dependence factor omitted
throughout, is justified by the fact that this is a typical practical
condition; and by the fact that an arbitrary field can always be de-
composed into the sum of mono-chromatic waves by Fourier analysis.

(60)

In addition, we know from Wilcox's expansion that the scattered
field can arise from a set of equivalent sources located inside the
scatterer. Hence, the scattered field can be represented in terms of
orthogonal functions outside the sphere o6f minimum radius enclosing

the scattering object. Therefore, the origin of any co-ordinate system
used in this problem must be identical with the center of this sphere
outside which the representation of the fields is convergent. The in-
finite series representing thé scattered fields as a sum of orthogonal

functions multiplied by associated expansion coefficients are then

truncated to some order whose lower bound depends upon the larger di-
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mension of the body. These coefficients are related to the shape of

the scatterer.

The interdependence between these coefficients and the salient features
of the scatterer has been acknowledged for many years; nonetheless, it
has not been exploited to the extent that it deserves in its ability
to portray the body shape. To resume, all the information concerning
the séattering geometry is contained in these coefficients and this
cogniz;nce constitutes the basic concept underlying the method de-

_ scribed in this thesis and applied throughout. The problem consists,
then, in recovering these coefficients and to extract from their know-

ledge the desirable information.

Therefore, in order to have access to the geometrical features of the
scatterer, these coefficients are first recovered via a matrix inversion
procedure. Relationships between the wave functions used in the formu-
lation of the scattered field are next exploited in order to relate them

analytically with the radius of curvature of the object.

However, if the analytical expression of these coefficients is too
sophisticated to extract that radius of curvature or if the coefficients
are inaccurately retrieved due to the inversion procedure, another

method must be developed to alleviate numerical difficulties.

An iterative averaging method is thus presented which bases itself
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upon the dependency of the backscattered field magnitude with the im-
pact area that is the vicinity of the specular point. In this new
approach, the inverse scattering problem is considered as the synthesis
of a system which includes the obstacle and the backscattered field and
whose parameter "ka" is unknown. This perspective was apparently ig-
nored in the literature, yet it could result in the practical imple-

mentation of system of target identification.

This purely numerical method gives this dissertation the counter-poise
to its purely theoretical aspects. They are both complementary and
any initial work on this problem of target recognition ought to include

them with their respective contribution to unity and thoroughness.
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chapiten two

THE CIRCULAR CYLINDER

21 INTRODUCTION

The selection of this particular geometry among many others results

from various considerations. First, there is a large amount of theor-
etical and experimental data published on the scattering by a cylinder,
which will be necessary at a later stage in this investigation since no
experimental work could be carried out as yet. Secondly, the circular
cylinder constitutes a practical model for the testing of methods of
more general applicability. 1In the field of inverse scattering, its
analysis generated an incentive to undertake and develop similar studies
on other geometries. Finally, it is a shape of considerable interest in

practical applications such as the portrayal of missiles, shells, etc.

Therefore, the inverse problem of scattering for a circular cylindrical
scattering geometry is first considered, namely, the shape of an unknown,
perfectly conducting, cylindrical scatterer must be determined from bi-
static field data for a given incident plane wave. This choice of a
pléne wave incidence as a primary field results from a practical con-
sideration; in radar scattering, the target is usually illuminated by

a source located at infinity. Although measurements are usually per-—
formed strictly within the Fraunhofer region, the present analysis is

valid in all spatial regions.



The transverse electric field components are first related to a prop-
erly truncated number of expansion coefficients in matrix formulation.
These coefficients are then obtained from the scattered field components
and the inverted scattered field matrix. To avoid instability in this
inversion procedure, a novel optimization technique is derived, which

maximizesd the determinant associated with the scattered field matrix.

The equivalent electrical radius of curvature "ka" of the cylinder is
next recovered from a set of contiguous expansion coefficients, Simple
formulae exist in all polarization cases where only four coefficients
are necessary in the TM as well as the mixed TM-TE cases and five in
the TE case. Such recurrence expressions for "ka'" result from the de-
finition of the expansion coefficienls and the recurrence relationships

between three contiguous Bessel functions as shown in (7).

Although the expressions derived for the retrieval of "ka" are restricted

only to circular cylindrical scatterers, the technique developed in this

(7 @)

may be extended to other scattering geometries without

(52)

chapter

requiring inverse boundary conditions or methods of analytical

continuation 31, 54).

The problem of accuracy is reviewed next, in connection with both the
order of truncation of the infinite series expressing the far scattered

field and the matrix inversion procedure. An iterative statistical
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method is presented which is based on the dependence of the magnitude

of the far scattered field with the local geometry of the illuminated
area. Within the framework of this new method, the inverse scattering
problem is counsidered as a synthesis of a system which includes the
scatterer, the back scattered field and the connection between that
field and the curvature of the scatterer., The terminology of system
synthesis is hence used throughout. This alternative technique enables
the recovery of the circular cylinder with excellent accuracy and there-
fore is recommended whenever the measurement bistatic angles are con-

fined within a small wedge angle.

22 MATRIX FORMULATION OF THE FAR SCATTERED FIELD COMPONENTS

We will now consider the case of a plane electromagnetic wave which
is normally incident on a smooth, perfectly conducting circular cylinder
of electrical radius ka, with "k" being the wave number (%g) and "a"
the radius of the cylinder. The three-8imensional vector problem is

hence reduced to the two-dimensional scalar problem.

The transmitted field expressed in the (x,y,z) cartesian co-ordinate
system, whose origin is on the axis of the cylinder, as shown in Fig. 1,
is given with exp(-jwt) time-dependence by

Et = Eo(sin () ?0 + cos § 20) exp (ij? (2.2.1)

B ™ E XX, : (2.2.2)

33



%
/“\Q

Fig. | Geometry for Plane Wave Incidence
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where § is the polarization angle, R the range, and (Eo, uo) the char-

acteristics of the propagation medium,

For the perfectly conducting circular cylinder, the scattered field
components (gs’ Es) can be expressed in terms of circular cylindrical
wave functions using the (R,$) polar co-ordinate system(As). The
scattered field may be considered as the superposition of a TM and a

TE field which are proportional to cos § and sin §, respectively.

The transverse electrical field components are given by Einarsson,

Kleinman, Laurin, and Uslenghi(ll).
. .
E?‘ = cosé E, n-Z-O - a;{ cos (nd) (2.2.3)
z
E'E & gind E. 5, €. b" cos(nd) (2.2.4)
g 0400 Sa 580 *nn i
Z .
where
1, n=20
E =
Z2, a2 1
i sl (1) —
all = j a Hn (kR) (2.2.5a)
J_(ka)
a = o — ; (2.2.5b)
B Hil)(ka)
R ! -
B = §° b B (kR) (2.2.6a)
J' (ka)
R . e (2.2.6b)

5 1
= Hil) (ka)
where Jn(ka) represents the Bessel function of the first kind, Hél) (ka)

the Hankel function of the first kind. In equations (2.2) the deriva-

tives are with respect to the argument (kR) or (ka). The polarization
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angle 8, assumed as known, is removed by normalizing Es and Hs, although
it will be shown in Appendix A.1, how § can be theoretically recovered.

Therefore, the normalized field components are expressed as:

e:M = nzo €, ag cos(n¢) (2.2.7)
€5 = Lo €, bl cos(nd) (2.2.8)

These infinite series can be truncated to the order M, whose lower
bound depends directly on "ka" as given in Einarsson, Kleinman, Laurin,
Uslenghi, 1966(11) by the relation

M > 2ka; ka > 4 ) (2.2.9)
This problem of truncation is reviewed in detail in section (2.6.2).
In order that equations (2.2.7) and (2.2.8) may be expressed in the
matrix form

[e] = [9G)]+[X] (2.2.10)
N =M+ 1 values of ezM or of eTE must at least be known for nonidenti-

¢
cal aspect angles (¢r; r = 0 k5 «eivs N<1)

The transpose, [e]T, of the column vector [e] is expressed as

T
Bﬂ [eo, s serenns eN—l]
and the column vector [X] representing either the unknown a; or b;

(7)

coefficients is written as

7
[X]" = [Xgs X;s ceveees X o]
which determines the arrangement of the matrix elements as

[1 2cos 9o 2 €08 2¢5.eese.a2 cos (N-1)¢

1 2cos ¢, 2 ¢08 20 vvuesn..2 cos (N-1)¢. (2.2.11)
[¢(N)] _ 1 1 1

2 cos (Nél)¢N_l

N_lloollo

1 2cos ¢N—l cos 2¢
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To recover the unknown Xv’ the matrix must be inverted. The upper limit
on N is determined by stability criteria inhereat in the matrix inver-

(53)

sion procedure and is investigated in section (2.6.2), in connection

with the problem of accuracy.

243 CLOSED-FORM SOLUTION AND OPTIMIZATION OF THE-DETERMINANT

ASSOCTATED WITH THE MATRIX [¢(N)]

D3 CLOSED FORM SOLUTION OF THE DETERMINANT [¢(N) |

Employing the Tchebyscheff expansion of cos n¢ for a1l
n
o n n-2k Lo 2K n-1 n n ,n-3 n-2
cos nd = k§0 (ZK) cos ¢ sin” ¢ ‘ 2 cos ¢ 1 2 cos ¢

+ %{n13) 283 cosn—4¢ - %(ngé) P cosn—6¢ 2 st (2.3.1) -

the determinant [¢(N)[ associated with (2.2.11) is evaluated in closed
form. Using general properties of the Vandermonde determinant as re-

ported in Appendix A.Z2, l¢(N)I feduces to(7)

2.2 N-1 N-1
1 Zxo 2 Xgeeeoenns i.2 xo (2.3.2)
1 2%, 22x‘l°‘ ..... .....z“‘lx‘;“l —““5‘1’
[6a0] - - o
gty
N-1>r>5>0
2.9 N-1_N-1
1 sz—l 2 X 1" vee XN-1 |

where x_ = cos ¢_.
r r

37



2:3:2 OPTIMIZATION PROCEDURE

To ensure most stable inversion, it is necessary(?) to.optimize the
closed-form solution of (2.3.2) which in turn affects the practical
design of measurement techniques. Namely, the optimal distribution of
aspect angles spread over some limited measurement wedge of half-angle
¢8, as shown in Fig. 2, is sought for which [¢(N)[ becomes maximum.

In addition to the mirror symmetry about ¢ = O resulting from the cyl-
indrical scattering geometry, it is observed that the value of the
associated determinant increases for larger half—aﬁgle |¢a| < m/2.
Since the two wedge-limiting aspect angles 0 and B may be fixed a priond,
the number of unknown aspect angles ¢r’ which must be optimized, is re-
duced to (N-2). To obtain the closed form solution of the optimal

distribution of aspect angles, it is necessary to introduce ¢r' in

such a way that

cos ¢; = cos ¢r - cos ¢0 (2.3.3a)
where .
cos_¢0 = w (2.3.3'))

The associated quantity u; = cos ¢; is normalized with respect to its

maximum value, namely luélmax = |cosg:—~ ( 252 ; cosB )| =
|C°53 o ¢ EEEE—%*QEEE )l = iEEEE_%_EEEE_I so that
it
Y T |cosa —rcosB[ 3 Clsu <1) (2.3.3c)
2
This leads to:
x_ = cos ¢r = [cosa ; cosBl + (coso ; cosf) (2.3.3d)
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Therefore, with the cosines u symmetrical about cos ¢0, equation

(2.3.2) results in

N(N-1)
[¢(N)I (coso, - cosB) 2 H(ur - us) (2.3.4)
rtaaly
N-1>x>s>0)

In Part B, it is shown that the roots of

2,1/2 l

- ur) n+l

) =0 (2.3.5)
represent the optimum distribution of the normalized cosines U
where P (u ) represents, with N n + 2, the associated Legendre
function of the first kind and first degree and order n + 1 as defined
in Jahnke (16). Hence, assuming that the measurements are compiled

within an arbitrary polar wedge over the unit circle of directions,

as shown in Fig. 2, the optimization procedure is:

a) Choose the measurement wedge to lie within the ranges of
either 0 < ¢ < mor m < ¢ < 27 to ensure maximum retrieval of infor-
mation from the scattered field data.

b) Normalize all non-identical aspect angles ¢r with respect
to the wedge-limiting aspect angles o éné 8 shown in Fig. 3, so that
with (2.3.3d)

2 cos ¢r - (coso + cosR)

u‘_“

r |cosa - cosB|
¢) Then the zeros of (1 - §)1f2 i+1(u ) are the desired nor-

namlized cosines of the determinant ]@(N)I which, for a given half
o+

angle ¢» BZ ct, is maximum if the centre wedge angle ¢ == in

Fig. 2 is m/2 or 37m/2, since in these cases (coso - cosf) in (2.3.4)

is maximum for a given ¢a'
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2.3.3 COMPUTATTIONAL RESULTS

Computational results are given in Table 1, proving that an optimum
distribution can be found for any ¢w'and ¢a. These results are pres-
ented in relation to uniform distribution of angles ¢r as well as their
cos ¢r and sin ¢r distribution. Comparing these distributions,it is
observed that in all cases the optimum distribution satisfying (2.3.5)
is the best clioice, although the uniform aspect angle distribution
(column [4]) for large N, approximates the optimum distribution (col-
umn [1]) most closely for o and B symmetrical about 90°. However, if
good accuracy is desired from the values of the coefficients, the large
values of N are disregarded since in that casé, the matrix inversion
would be exceedingly difficult to perform. This is the object of

study of a subsequent paragraph (2.6.2) related to truncation accuracy

problems.
2.4 DERIVATION OF THE ELECTRICAL RADIUS "ka"
2.4.1 INTRODUCTION

(54)

Up to the present, inverse scattering boundary conditions or

(54" 32)’ were employ&d to recover

methods of analytical continuation
the shape of the unknown, perfectly conducting, scatterer. However,
in the case of a circular cylindrical scatterer, all information re-

quired to retrieve "ka'" is explicitly contained in the set of expansion
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TABLE 1: VERIFICATION OF THE OPTIMIZATION PROCEDURE
N(N-1)
2
[$)| = (cosa - cosB) I (u -u)
N-1 >r>s>0

Optimization Procedure: Column [l]; uniform cosing distribution cos¢r:
column [2]; uniform sine distribution sind)r: column [3]; uniform aspect

angle distribution: column [_4]

o = 180°, B = 0°, |cosa - cosB| = 2
N [1] [2] (3] [4]
3 | 0.1600 x 102 0.1600 x 10° 0.0000 | 0.1600 x 10°
4 | 0.7327 x 10% 0.6742 x 10° 0.0000 | 0.7199 x 10°
s | 0.3752 x 10°, 0.2880 x 10° 0.0000 | 0.3620 x 10°
6 | 0.2108 x 10* 0.1215 x 10° 0.0000 | 0.2000 % 10%
7 | 0.1281 x 10° 0.4988 x 10" < 0.0000 | 0.1197 x 10°
8 | 0.8339 x 10° 0.1964 x 10° 0.0000 | 0.7863 x 10°
9 | 0.5762 x 10° 0.7358 x 10° 0.0000 | 0.5242 x 10°
10 | 0.2201 x 10 0.2602 x 10° 0.0000 | 0.3779 x 10’
11 | 0.3216 x 10° 0.8643 x 10° 0.0000 | 0.2862 x 10°
12 | 0.2572 x 10° 0.2682 x 10’ 0.0000 | 0.2267 x 10°
13 | 0.2143 x 10'° 0.7751 x 10’ 0.0000 | 0.1872 x 10%°
14 | 0.1854 x 10*t 0.2078 x 10° 0.0000 | 0.1606 x 10t




TABLE 1: (continued)

a=9"° g=0°, [ccsa - cosB] =1
[1] (2] (3] [4]
0.2499 0.2499 0.1160 0.2071
0.1788 x 107 | 0.1646 x 107> | 0.2020 x 1072 | 0.1061 x
0.3578 x 107> | 0.2746 x 107> | 0.5125 x 10> | 0.1309 x
0.1963 x 107> | 0.1132 x 107 | 0.1853 x 1070 | 0.3800 x
0.2913 x 1078 | 0.1134 x 10 | 0.9418 x 10713 | 0.2555 x
0.1157 x 107 | 0.2726 x 10712 | 0.6651 x 10°% | 0.3932 x
0.1220 x 10 | 0.1557 x 107° | 0.6475 x 107%* | 0.1373 x
0.3393 x 10729 | 0.2101 x 1072} | 0.8653 x 1071 | 0.1081 x
0.2476 x 1072 | 0.6656 x 1072/ | 0.1569 x 107°° | 0.1907 x
0.4724 x 10731 | 0.4925 x 10733 | 0.3869 x 107 | 0.7507 x
0.2346 x 1037 | 0.8483 x 10740 | 0.1290 x 10™° | 0.6568 x
0.3024 x 10744 | 0.3389 x 107 | 0.5798 x 1077 | 0.1273 x :
0.1009 x 107F | 0.3132 x 107> | 0.0000 0.5451 x




coefficients {a;, b;; 0 < n < N} for either polarization case. This
cognizance is the foundation of the method presented here. This method

will be later applied to other geometries as well.

For the problem at hand, the expansion coefficients a; and b; are first
obtained from the non-singular matrix inversion procedure previously
mentioned. Furthermore, since measurements are made on a circular

arc of known radius, the radial functions in (2.2.5a) and(2.2.6a) are
computed for each mode n and the corresponding values of a, and bn
calculated. To show how the procedure leads to the retrieval of "ka",

we consider the three polarization cases in detail,

2.4,2 ° TMCASE: § = 0

e

Let (2.2.5b) be rewritten in the alternative form Jn plead © where the
arguments are omitted and p = ka. Employing the recurrence relations
of cylindrical radial functions

) (2.4.1)
(7)

= b
Zu 2V (Zv—l ® zv+1

for v=n and v = n + 1, the square of the electrical radius may then

be expressed as .
Z

&iifn 1)2‘"+l
2 -
o< = 5 n-l 5 (2.4.2)
[} + n+l }[l + n+2]
Z Z
n-1 n

An expression for (Z / Zv—l) in terms of the expansion coefficients

V1
a is obtained from (2.2.5b) and (2.4.1) where for Zv = Hél) in (2.4.1)



W, , B ), xd

ooy 9y MG T s

+ H
av Y] v 2V

and for Zv = J\‘l in (2.4.1) and with (2.2.5b)

N5 S BV s I a5

T AN 2V V-1 © A+l L

B

which, when combined, result for general v in

(1) = _
T Y Jorr 3y (Byg — 3

L R or 3 o~ & S (2.4.3)
H \Y) v+l v-1 v-1 v Vi1

V=1
Substituting either expression for the chosen Vv = n, v = n + 1 into

(2.4.2) yields the desired recurrence relationship for the TM case

(an~1 B an) (an+l 5 an+2)

2
(ka)” = 4n(n + 1) (2.4.4)
(Bg = Bay) 8y —2549)
requiring only four contiguous expansion coefficients; a 15 @
a 1 and a 1o for any n > 1.
2.4.3 MIXED TM-TE CASE: 0 < § < 7/2

Assuming that § = 60 and both the a and the bn coefficients are avail-
able, the recurrence relationship for p is obtained from the definition

of a  given by (2.2.5b) and that of bn given by (2.2.6b) rewritten as

T
J; = = anﬁl) . Employing the recurrence relationship
1 .
' = w— —_—
Z8 =l q = Bl (2.4.5)

together with (2.2.5b) and (2.2.6b), another relationship for

Pyt )

(Z ) results in the following“ ’:

V-1



I = %'(J -1 " T
== %'(av-lnéii." 3, 1“5%31) ‘ (Buibu)
e %bu(“\gﬂ - H\Eﬂ) (2.4.6b)

Comparing (2.4.6a) and (2.4.6b) leads to

(1)
Hon B By = By el . M1 Py - A
. Hv~1 v V1 v-1 v-1 v W1

Since (2.4.3) and (2.4.7) hold in general, a nonlinear relationship(?)

is obtained between one bv and three contiguous a, coefficients,

-2
)

ay(a, ) +a,,)-2a,,a,,

% (2.4.8)

v 2a - (a + a
v v=1

w1
which indicates that an inverse relationship between one a, and a
finite number of contiguous bv coefficients, similar to (2.4.8), does

not exist for general v.

Employing (2.2.5b), (2.2.6b), (2.4.5) and

2} =2 ) - —:- zZ,, (2.4.9a)
or ' z) = %-zv & B (2.4.9b)
yields for general v

VvZ VZ
V \Y 2
p = 7 — = B > (2.‘0.103)
v=1 Y] v-1 w1
1+ >
v-1

or
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VZ VZ
R et z?‘ (2.4.10b)
w17 Fen |, Ba
L

Z
Z

v+l) in (2.4.103) by its value as given in (2.4.3)
v-1
or (2.4.7) results in

Substitution of (

(1)
Vv H
0 = —ro 2(by, - ayyy) (2.4.11a)
g1 B A =&
v-1 V) vl v-1
or
(1)
N Z(av - av+l)
5 = st [t (2.4.11b)
B v-1 = %uil

Equating (2.4.11a) with (2.4.11b) leads to

2(b, - a,,) _ z(av - av+l) _ by = & (2.4.12)
Sy =By 8oy fun T Bgm %y T By
which gives 1)
Hy (b, - a)
0=V s (2.4.13a)
H(l)'(b -a_ .)
v=1 “v V-1

Similarly, if (2.4.10b) is employed with (2.4.3) or (2.4.7), another

formulation is obtained, namely 1)
Hy " o by - ay)
(2.4.13b)

A 1 T
By o (b = ayyy)

p=%

Multiplying (2.4.13a) for v = n + 1 by the same expression for v = n,

or similarly (2.4.13b) for V =n - 1 and Vv = n, yields

48

(1) (1)
2 _ Hn+l (bn—an) (bn+l_an+l) 2 Hn~l (bn_an) (bn—l_an—l)
p~ = n(ntl) &) or p- = (n-1)n o)
Hn-l (bn_an—l) (bn+l—an) Hn-i-l (bn_an+l) (bn—l*an)
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which together with (2.4.7) becomes

(b. =& ) (b = & e
(ka)? = n(otl) e L “*1) (2 Tl
t n an+l) ( o+l ~ Zn
or '
(b ~a_ .) (b -a)
2 _ e n-1 n—1 n n
(ka)” = (n-1)n B, 50 G - ° (2.4.14b)

respectively. Here (2.4.14b) can be directly obtained from (2.4.14a)
by changing V = n into V = n - 1, which again requires only four con-
tiguous expansion coefficients for n > 1 in (2.4.14) -—— which re-

duces to (2.4.4) if (2.4.8) is properly substituted.

2.4.4 TE CASE: & = m/2

We wish to recover "ka'" solely from the given set of {bv} coefficients,

Since no recurrence relationship between three contiguous derivatives

(7)

of cylindrical functions exists'' ', no expression can result for

1/25_1 in terms of only three contiguous bv coefficients, similar
to (2.4.3) or (2.4.7). This can be observed from the recurrence re-

lationship between four derivatives of cylindrical functions

(v+2) z! 5. (v—2)_z¢_1 = p/2(zé+2 - Zé £2.4.15)

v+ -2)

which involves non-contiguous Bessel functions and results, for v = n

and V = n + 1, in

7! z!
2 1

[(E+2) z?+ l]£(n+3 z' oL

= 4(n-2) (n+3) T e

[ ( n+3 '1+l

2

zf
- 1][( ZT )(z, )—1]
n-1 n+

(2.4.16)
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1
or ZG = - bUH(l) . Equation (2.4.16) cannot

(ot _ ey
v

" with either Z
w1l xr v v

be expressed, similar to (2.4.4) and (2.4.14), explicitly in terms of
a limited number of contiguous bv coefficients for any n, since from

(2.6.5), (2.4.3) and (2.4.7) it follows that(?)

(1)
.
(1)’ (1)
a1 _ B _ (2an+1 T 8n T an+2) (an—Z B an-—l)
g gl (23, 5 -8, =3, 9) (a g = ay,)
n-1 n-2
T ‘
H
n
(bn—l - an-Z) (an+2# an)
T e (2.4.17)
n+l n+2 n- n-2

which is not expressable in terms of the bn coefficients. From
(2.4.3) and (2.4.7),

= b, =8y or & = 2ba,, - a, (b, +a,)
e 0 bv - A, V1 (av + bv) - 2a

(2.4.18)

v=-1

results which demonstrates that no relation exists giving the a co-
efficients in terms of three bn contiguous coeff&cients, in contrast
with (2.4.8). It ﬁay now be argued that if the complete set {bv,N}
is given, an expression for "ka", explicit in bv, must exist as well
as for the other two polarizations. To attain this, two contiguous
a, coefficients must be determined in terms of a finite number of bv
coefficients. This is shown in Appendix A.3 where a, and a, are for-
mulated in terms of only 5 contiguous coefficients as given by the
equations (A.3.16) and (A,.3.17). All higher order a, coefficients

required in either (2.4.4), (2.4.14) or (A.3.17) for the retrieval of
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"ka" in the TE-case are then obtained using (A.3.16) and (A.3.17) and

iteration of (2.4.8). Nevertheless, in contrast to the other two

-

polarization cases, where any four contiguous expansion coefficients
are necessary and sufficient to recover "ka), in the TE-case the first
five TE coefficients are necessary and sufficient only for n = 1, and
n=2in (2.4.4), n =1, 2 and 3 in (2.4.14), and n = 3 in (2.4.16).
For any higher order n in (2.4.4), (2.4.14) or (2.4.16) the entire

set of {bv} coefficients is required.

In the high frequency TE-case (i.e. for ka > 5) it is valuable to note

that the zero-order TM coefficients a, may be approximated by

a, =~ (1+ al) == (1l+bDb (2.4.19)

0 0)

This result together with the identity a; = b0 are important in as

much as they may be employed fa;ourably instead of the lengthy soph-
isticated equations derived in Appendix A.3 to shorten the computation
time of the retrieval. In chapter §ive, it will be demonstrated that
this approximation becomes a true identity for the case of the coeffi-
cients associated with the spherical Bessel functions. Equation (2.4.19)
results f}om the comparison of the numerical values of JO’ Yi, Jl, and

(16, 1)

Y In particular, it is shown that for argument p > 3

0-

14

Jo@) = = Y, (p) (2.4.20)
3,(0) = ¥y (p)

which implies that



Jo(@) Yl(p)
a = - = 4 = =
(§] Jo(p) . JYO(D) Yl(p) + JJl(D)
J. (p)
~-1-J()}HY() (2.4.21)
1 p o 1 p
which is identical with the relation (2.4.19).
235 COMPUTATION OF ka FROM THE EXACT VALUES OF THE an AND bn

COEFFICIENTS

To verify and interpret the theoretical results already obtained, com-
putations are presented in Tables 2 to 5 for the three particular
values ka = 1.0, 5.0, 10.0, representing the’resonance and higher
frequency cases. The coefficients a and bn are presented in Table 2.
The values of 2y, computed for(A.3.17)in terms of the required set of
coefficients {bn}' is identical with the value resulting from (2.2.5b)
and presented in Table 3. It is shown in Table 4 that "ka" can be re-
covered for all three polarization cases, where Py corresponds to the

TM-case as given by (2.4.4), to the mixed TM-TE case as given

PTM-TE
by (2.4.14) and ppp to the TE-case computed from (2.4.14), (2.4.18)

and (A.3.17). The accuracy of the results based on (2.4.4), (2.4.14)
and (A.3.17) depends exclusively on the accuracy of the expansion co-
efficients a, and bn’ which have been calculated with 6 digit accuracy.
In practice, the overall'accuracy would also be dictated by the resol-
ution of any suitable measurement technique for compiling amplitude,

phase and polarization of the scattered field. The computed results

in Table 3 for the high-frequency TE-case, ka = 10, demonstrate that
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TABLE 2:

TABULATION OF a, AND bn COEFFICIENTS

ka = 1.000

AN(0)
AN(1)
AN(2)
AN(3)
AN (4)
AN(5)
AN (6)
AN(7)
AN(8)
AN(9)
AN(10)
AN(11)
AN(12)
AN(13)
AN(14)
AN (15)
AN(16)
AN(17)
AN (18)
AN(19)
AN(20)

-0.986913E 00
-0.240880E 00
-0.482235E-02
-0.112935E-04
-0.553886E-08
-0.919887E-12
-0.663354E-16
-0.241210E-20
-0.489961E-25

-0.599390E-30

-0.467864F-35
-0.243944E-40
-0.881861E-46
-0,227971E-51
-0.432561E-57
-0.616015E-63
=0.671254E-69
-0.569174E~75
0.0

0.0
0.0

0.113829E 00
-0.427630E 00
-0.692770E-01
-0.336064E-02
-0.744250E-04
-0.959103E-06
-0,814455E-08
-0.491127E-10
-0.221350E-12
-0.774200E-15
-0.216301E-17
-0.493907E-20
-0.939075E-23
-0.150985E-25
-0.207981E-28
=-0,248196E-31
-0.259086E-34
-0.238573E-37
-0.195235E-40
-0.142927E-43
=0.941561E=47

BN(0)
BN (1)
BN(2)
BN(3)
BN(4)
BN(5)
BN(6)
BN(7)
BN (8)
BN(9)
BN (10)
BN(11)
BN(12)
BN(13)
BN(14)
BN(15)
BN (16)
BN(17)
BN (18)
BN(19)
BN (20)

-0.240880E 00
~0.122694E 00
-0.691193E-02
-0.126362E-04
-0,575551E-08
-0.936609E~12
-0.670027E-16
-0.242697E-20
-0.491955E-25
-0.601089E-30
-0.468825E-35
-0.244317E~40
-0.882904E-46
-0.228181E-51
-0.432882E-57
-0.616384E~63
-0.671581E-69
-0.569410E~75
0.0

0.0
0.0

-0.427630E 00
0.328094E QO
0.828519E-01
0.355480E-02
0.758667E-04
0.967806E-06
0.818548E-08
0.492636E-10
0.221799E-12
0.775295E-15
0.216523E-17
0.494284E-20
0.939629E-23
0.151057E-25
0.208058E~-28
0.248271E-31
0.259149E~34
0.238623E-37
0.195269E-40
0.142948E~43
0.941677E-47
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* TABLE 2: (continued)

ka = 5.000

AN(0)
AN(1)
AN(2)
AN(3)
AN (4)
AN(5)
AN(6)
AN(7)
AN(8)
AN(9)
AN(10)
AN(11)
AN(12)
AN(13)
AN (14)
AN (15)
AN(16)
AN(17)
AN(18)
AN(19)
AN (20)

-0.248892E 00
-0.830741E 00
-0.157870E-01
-0.861524E 00
-0.805672E 00
~0.248855E 00
-0.324799E-01
-0.178316E-02
-0.425699E-04
=0,505556E-06
-0.341183E-08
-0.143149E-10
-0.396690E-13
-0.759029E-16
-0.103823E-18

. =0.104424E-21

-0.790682E-25
-0.459783E-28
-0.208892E-31
-0.752699E-35
~0.217964E-38

0.432371E 00
-0.374981E 00
0.124650E 00
0.345400E 00
-0.395682E 00
=0.432350E 00
-0.177271E 00
-0.421898E-01
-0.652442E-02
-0.711025E-03
-0.584108E-04
-0.378350E-05
-0.199171E-06
-0.871222E-08
-0.322215E-09
-0.102187E-10
-0.281189E~-12
-0.678070E-14
-0.144531E-15
=-0.274353E~17
~0.466867E~19

BN(0)
BN(1)
BN(2)
BN(3)
BN (4)
BN(5)
BN(6)
BN(7)
BN(8)
BN(9)
BN(10)
BN(11)
BN(12)
BN(13)
BN(14)
BN(15)
BN(16)
BN(17)
BN(18)
BN(19)
BN (20)

-0.830741E 00
-0.990171E~01
-0.999995E 00
-0.274878E 00
-0.290032E-01
-0.198326E 00
-0.618447E-01
-0.285374E-02
-0.541874E-04
-0.576459E~-06
-0.369961E~08
-0.151210E-10
-0.412587E-13
-0.781640E~16
-0.106197E-18
-0.106304E-21
-0.802100E-25
-0.465204E-28
-0.210932E-31
~0,758859E-35
-0.219476E-38

-0,374981E 00

0.298685E 00
~0.230529E-02
-0.446453E 00

0.167815E 00

0.398739E 00

0.240874E 00

0.533442E-01

0.736101E-02
0.759249E-03
0.608244E-04
0.388857E~05
0.203122E-06
0.884104E-08
0.325878E-09
0.103104E-10
0.283211E-12
0.682054E-14
0.145234E-15
0.275473E-17
0.468482E-19
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TABLE 2: (continued)

ka = 10.000

AN(0)
AN(1)
AN(2)
AN(3)
AN(4)
AN(5)
AN(6)
AN(7)
AN(8)
AN(9)
AN (10)
AN(11)
AN(12)
AN(13)
AN (14)
AN(15)
AN(16)
AN(17)
AN (18)
AN(19)
AN(20)

~0.951574E 00

-0,295855E-01
-0.999804E 00
-0,511981E-01
-0.696771E 00
-0.749508E 00
-0.265382E-02
~-0.537689E 00
-0.100032E 01
~-0.682211E 00
=0.249627E 00
~0.530354E-01
-0,647825E~-02
-0.451472E-03
-0.187737E-04
~0.501759E-06
-0.920020E-08
-0.121334E-09
=0.119004E-11
-0.890730E-14
-0.519445E-16

-0.215403E 00
0.169470E 00
-0.230413E-01
-0.220440E 00
0.459906E 00
-0.433585E 00
~0.514554E-01
-0.498758E 00
0.338324E-02
-0.465861E 00
-0.432894E 00
-0.224143E 00
-0.802399E~01
-0.212466E-01
-0.433350E~02
-0.708421E-03
-0.959153E-04
-0.110151E-04
-0.109087E-05
-0.943777E-07
-0.720722E-08

BN (0)
BN(1)
BN(2)
BN(3)
BN (4)
BN(5)
BN(6)
BN(7)
BN(8)
BN(9)
BN(10)
BN (11)
BN(12)
BN (13)
BN (14)
BN(15)
BN (16)
BN(17)
BN(18)
BN(19)
BN(20)

-0,295855E-01
-0.985440E 00
-0.887116E-03
-0.921109E 00
-0.363875E 00
-0.188809E 00
-0.979578E 00
-0.586266E 00
~0.340482E-01
~-0.855564E-01
-0.216543E 00
-0.103121E 00
-0.123189E-01
-0.677331E-03
—-0.239356E~-04
-0.586153E-06

© =0.102486E-07

-0.131340E-09
-0.126471E-11
-0.934630E~14
-0.540054E-16

0.169470E 00
-0.121149E 00
~0.297763E-01

0.270139E 00
~0.481240E 00

0.391437E 00

0.142592E 00
-0.492701E 00
-0.181384E 00

0.279759E 00

0.411976E 00

0.304174E 00

0.110323E 00

0.260211E-01

0.489321E-02
0.765747E-03
0.101247E-03
0.114601E-04
0.112458E-05
0.266749E-07
0.734877E-08

sS



TABLE 3: EXPANSION COEFFICIENT a, AS GLVEN BY (2.2.5b) AND BY (A.3.17)

@
L Jp(ka) by big L= by by ¥
e Hél)(ka) Byg W= g, B
ka az{Real} az{Im.}
16 -0.004822 -0.06921
50 -0.01578 -0.12465
10.0 -0.99980 -0.02304




ka = 1.

ka = 5.

ka = 10.

TABLE 4: DETERMINATION OF ka FOR THE TM, TM-TE AND TE CASES
Py = 4n(n+l) E:“ : : :n) ) ; (?:+1_-aan+§) H
n-1 o+l n n+2
brypp ® AEHL) ::n : :n) . E:n-z-l : :n-i-li
n n+l nt+l n+2
Prg = PrM-TE where a, is computed from (2.4.18) and Table 1.
Py fne-TE Prg
n Real Im Real Im Real Im
2| 1.000 | -0.14 x 107® | 1.000| 0.88 x 1077 | 0.999| 0.11 x 107®
3| 1.000 | 0.0 0.999| -0.29 x 1077 | 0.999 | 0.47 x 107®
0.999 0.23 x 1077 | 0.999| -0.35 x 10| 0.999 | 0.13 x 107
s| 0.999 | 0.29 x 1072%] 1.000| -0.35 x 1079 0.982 | 0.56 x 1073
4| 5.000 | 0.0 5.000| -0.56 x 1078 | 5.000 | -0.47 x 1078
5| 4.999 | -0.20 x 10™° | 5.000| -0.44 x 10> | 5.000 | 0.0
6| 5.000 | 0.16 x 10 | 5.000 0.81 x 1078 | 5.000 | 0.66 x 107°
7| 5.000 | 0.18 x 107 | 5.000| -0.47 x 107 | 5.000 | 0.26 x 107
8| 5.000 | 0.95 x 1077 |s.000] 0.35 x 207 | s5.000| 0.19 x 107
7| 10.000 | -0.73 x 107 f10.000| -0.12 x 1077 |10.000 |-0.72 x 107®
8| 10.000 | 0.0 10.000| 0.26 x 107> | 10.000 | -0.57 x 107>
9| 10.000 | 0.22 x 107 |10.000| -0.11 x 107> | 10.000 | -0.34 x 107>
10| 10.000 | -0.21 x 107> 10.000| -0.76 x 10~ [ 10.000 [ 0.21 x 107>
11| 10.000 | 0.87 x 10°® |10.000| -0.69 x 107 |10.000 | 0.12 x 107
12| 10.000 | -0.27 x 10 [10.000| -0.94 x 107 | 10.000 | 0.55 x 107
13| 10.000 | 0.0 9.999 0.95 x 1077 | 10.000 | 0.25 x 1072
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TABLE 5: DETERMINATION OF ka FOR THE TE-CASE EMPLOYING THE APPROX-
IMATION aj = = (1 + bg)
b - b -
[pTE] approximate = n(ntl) Ebn - A 8 ((Eﬂ' _a2+;_) s B =by
n "~ ®n+l o+l n
ag = - 1+ bo}
[pTEl approximate
[pTE] approximate with selection routine
n Real Im Real Im
ka = 5. 3 4.850 | -0.35 x 107> 0.0 0.0
4 4.803 0.71 x 107° 0.0 0.0
s | 4.958 | 0.30x10°® | s.004 | 0.87 x 107
6 | 5.03 | 0.93x107 | 5.003 | 0.10 x 107°
7 | si286 | <0.18 x 1072 | 0.0 0.0
8| 6.239 | -0.53x 10 | 0.0 0.0
ka =10. | 7 | 10.070 | -0.46 x 107 [ 0.0 0.0
8 | 9.895 | 0.65x 107 | 0.0 0.0
9 9,992 0.46 x 10™> | 10.018 | -0.34 x 1072
10 | 9.980 0.11 x 107> | 10.001 | -0.49 x 1077
11 | 10,018 | -0.11 x 1072 | 10.000 0.58 ¥ 107"
12 | 10.012 | -0.66 x 1072 | 0.0 0.0
13 | 10.469 | -0.24 x 1072 0.0 0.0
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the approximation (2.4.19) may be applied with reasonable confidence,
provided a selective subroutine is employed. This subroutine uses
the a_ coefficients oﬁtained from (2.4.8) and (2.4.9) and the known
set {bn} to recover "ka" from (2.4.14). Employing the obtained value
of "ka" in (2.2.6b), the resulting bn coefficients are then compared
with the original ones, and if a difference in the third digit of bn

is found, they are rejected.

2.6 COMPUTATION OF ka FROM THE COEFFICIENTS VALUES OBTAINED

AFTER INVERSION OF [¢(N)]

2.6.1 INTRODUCTION

Results in Table 4 and 5 clearly illustrate that the electrical radius
of curvature of a perfectly conducting cylinder can be recovered ac-
cording to the scattering model technique developed in section (2.4),
whenever the coefficients a and bn are known accurately up to the 6th
digit. However, in practice, the accuracy and the resolution of any
measurement technique used to compile the amplitude, phase and polari-
zation information about the scattered field is not likely to be of
this magnitude. Finally, whenever the electrical radius of curvature
is relatively high, the order of truncation M increases, the size of
_thé matrix [¢(N)] increases, and the results of its inversion are bound
to be partially erroneous. This situation deteriorates further in the

case where the bistatic angles are confined within a relatively small
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domain of observation, even when the optimizational method presented

in Part B is employed. Though this whole accuracy problem may seem
alien to those unfamiliar with practical calculations, it is to our con-
cern, an essential part of this investigation. The aim of the follow-
ing sections is hence to. analyse the parameters involved in the deter-
mination of the finmal accuracy. In the light of the previous remarks,
there are two main parameters: the order of truncation M and the avail-
able domain of observation. The first is connected with the size of

the circular cylinder and the second with the importance of the re-

cording station.

2.6.2 ACCURACY DEPENDENCE UPON THE ORDER OF TRUNCATION M

The infinite series representing the far scattered field components
are truncated to the order M, whose lower bound depends on ka, as re-
called in section (2.2), namely M = 2ka; ka > 4. This order of trumn-
cation corresponds to a difference between aM(ka) and bM(ka) less
than 10_4 and to the ratio

aM(ka) bM(ka)

ay (ka) = by (ka)
less than l{)_'4 which insures sufficient convergence. For ka < 4, M
must be greater than 2ka, to accurately represent the far scattered

field components:

In a situation where ka > 4, the inversion of the matrix becomes labor=



ious and very little accuracy can be expected, Since the system of
equations formulated in the concise form (2.2,10) is to some extent
overdetermined, To gain insight into this matter, one must only re-
call that, theoretically, the electrical radius can be recovered from

4 to 5 contiguous expansion coefficients. Therefore, the other co-
efficients expressed as a function of "ka" depend implicitly upon the
first four, and consequentl&; the system of N > 4 equations is over-
determined. Hence, the first objective is to implement the formulation

of these coefficients as bn in terms of the first four.

2.6.3 FORMULATION OF (an; n > 4) IN TERMS OF a4>3753,, AND ay

Only the case of the a coefficients is carried out, since the con-
clusion of this section does not justify another lengthy derivation
of limited interest. It is also conjectured that the conclusions

drawn from the {an} set are also valid for the {bn} set.

Employing equation (2:&.4) for v=n+1and v=n+ 2, the coefficient

a for n > 0 will be expressed as
a T - a U ;
a, = n+3 Tn+4 Un+2 n+4 (2.6.1)
Bl at+h | nth
with
Tn+6 e (n+3)'(an+2,n+l)‘(an+2,n)
and (2.6.2)
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; i = ~ is ed.
where the notation auv au a, us

Equations (2.6.1) and (2.6.2) as applied to the case n = 0, gives

a. T. — a. 1}
a = 3 ; . 5 4 (2.6.3)
- 4 " Y%
with
T, = 3a..a
4 21220 B
U, = 232859

In Appendix A.4, an expression for the higher coefficients a3 443

n>0 is derived in terms of (ao,al,az,a3). It is demonstrated that

for any n

a, A - a, B
a,, = 3A n+4_ 5 2 nté4 (2.6.5)
n+4 “ntb
with
_ ) _
Bovh 7 3318043 T AnBy
; nodd > 1 (2.6.,6)
- (n+3) _
Bt 7 23183 = Boeo®
and
Aoy = (3)a50A 15 = A 408y
; neven > 0 (2.6.7)
Bn+4 = (n+3)aUBn+3 - Bn+234

together with the following definitions, namely

Ay =05 Ay = ay;
By==-1; By = 0 (2.6.8)
B, =U

4= "4 T %32%0
Equations (2.6.5) to (2.6.8) represent a closed-form solution of the



coefficients a4 0 > 0 in terms of the set {ho The de-

)al!aziaaf .

pendency of a in terms of this set is highly nonlinear and there is

n+é4
no possible reduction of the system (2.2.10) into a system of four un-
known variables. However, for ka = 4, the values of a, to ag, as
calculated from (2.6.5), can be used as additional constraints to the

9 simultaneous equations system, to gain higher accuracy. For a larger
electrical radius,(M+1-4) additional constraints can be theoretically
employed, but the relations involving (30’31’32’33} are so complex

that they cannot improve the final accuracy. Hence, some other means

must be developed to circumvent this handicap in the retrieval of the

coefficients,

2.6.4 ACCURACY DEPENDENCE UPON THE DOMAIN OF OBSERVATION

Although the formulation of the far field components as given by (2.2.7)
and (2.2.8) is correct for any bistatic angle ¢r’ the cylindrical wave
functions used in the expansion are orthogonal within the interval

(¢ = 0,m). The highest level of accuracy in the recovery of the

a or bncoefficients thus occurs when data is available within this
interval. In other cases, results must be approximative. This is
amplified by the fact that, when the domain of observation is limited

to a sﬁall wedge angle, the bistatic angles are extremely closely-
packed, and the matrix [¢(N)] becomes quasi-singular. The worst event-
uality occurs under the simultaneous presence of a large electrical

radius (ka > 4), which requires many terms in the formulation of the
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scattered field components, and a finite small domain of observation
whose center wedge angle ¢w is far from 7/2 or 3w/2. 1In this case,
the cumulative error is so great that the calculated coefficients are

meaningless.

In conclusion to these remarks, the theory developed in section (2.4)
must be appreciably modified for practical use, though remaining of
tantamount importance to its theoretical results. All the pertinent
information regarding the circular cylinder is included in (2.2.5b),
(2.2.6b); however, a method is lacking for the actuai precise retrieval
of its electrical radius. The feollowing section provides a practical

. means to portray various rotationally symmetric bodies, when it is con-
jectured that all information concerning their shape is indeed included

in the far scattered field components.

247 ITERATIVE AVERAGING METHOD DEVELOPED TO RETRIEVE THE

ELECTRICAL RADIUS OF CURVATURE OF THE CYLINDER

2,57 INTRODUCTION

The lack of accuracy inherent in the theoretical method derived in the
previous éection results from

i) the truncation order M of the far scattered field matrix

ii) the restricted domain of observation

iii) the matrix inversion procedure.



In connection with the practical aspects of the "inverse scattering
problem', an alternative technique is presented which can accurately
recover the shape of the circular cylinder. In practical situations,

as it is well-known(zz’ 32)

, determination of average characteristics
in the form of cross-sections proved to be valuable in the study of
the general problem of scattering. Such quantities relating the mag-
nitude of the back-scattered field to the illuminated area of the
scatterer should also be of practical interest in the case of the in-
verse problem, inasmuch as they could provide means to describe the

obstacle fairly accurately. Although not analytically satisfying, this

aspect is examined in this section.

The fact that scattering geometries of identical curvature when illum-
inated by the same wave incidence, gi?e rise on the average to back-
scattered fields of identical magnitudes has been acknowledged for many
years. This forms the foundation of the following method since a
knowledge of the field's magnitude necessarily reflects some informa-
tion on the curvature of the obstacle. Although there are no analytical
formulae relating these two quantities, the larger the radius of curva-
ture the larger the magnitude of the back-scattered field is. Notwith-
standing this general overall behaviour small amplitude oscillations
occasionally arise; for example, a slight decrease in the magnitude

of the back-scattered field may occur due to a small increase in the
body radius of curvature and vice versa. This, however, is not the

case for larger variations and in the following analysis, these oscil-
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lations are ignored at first. They will be retconsidered later in a

refinement procedure.

It is also valuable to note that the phase information contained in

the far scattered field has been disregarded since it consists usually
of a fast varying function of the overall configuration of the obstacle
and is therefore not representative of the illuminated area of the

scatterer.

The aforementioned dependency being valid on an average statistical
basis, any method based on this concept implies the measurement of the
back-scattered field at various aspect angles. Since these angles can
be arbitrarily chosen within a given domain of observation, the dis-
tribution obtained via the optimization procedure is selected as a

typical set of measurement locations.

Obviously then, any alternative attempt to retrieve the local radius

of curvature of the obstacle requires an iterative method. To illustrate
the operating mechanism of this method, "the inverse scattering problem"
is reviewed in an entirely different light. The association of the un-
known remote scatterer with the back-scattered field for a given incid-
ent plane wave can be considered as a system. From this perspective,

the objective of the "inverse scattering problem'" is then reduced to a
synthesis of this system, in other words, the recovery of the radius

of curvature of the body around the illuminated area. The basic steps



involved in a system synthesis are then briefly described in order to
introduce and explain the function of the iterative averaging method.
In order, they are: .

i) the identification of the parameters which are significant to

the system.

ii) the attribution of particular numerical values to these parameters.
iii) the evaluation of the system performance corresponding to that
particular choice of parameters.

These operations are then repeated if the desired results are not ob-
tained. As this iteration is proceeding, the quality of the selection
of the parameters is estimated by comparing the actual results with

the desired performance of the system. This quality is usually eval-
uvated by a merit factor or quality function which must be optimized.
That particular method of optimization chosen generally is conditioned

by the time allotted to the synthesis; however, it does not affect the

quality of the system.

2.7.2 ITERATIVE AVERAGING METHOD

In following operational sequence usually adopted in system synthesis
as described in (2.7.1), the system relative to the "inverse scattering

problem" is first presented and the influent parameters identified.

Since no measurements were carried out, the far scattered fields for

a given plane wave incidence are first calculated at "n" aspect angles
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via an integral equation for the numerical solution of two dimensional
diffraction problems as repérted in (43). The sum of the magnitudes

of the fields at these aspects is then compute& and denoted as Sz where
"e" stands for exact values. This summation depends upon the curvature
of the inobservable body; therefore, the electrical radius '"ka" of the
impact area is selected as the important parameter in this synthesis;
i.e. the recovery of the obstacle.

The transfer function "T" calculates the far field scattered by a cir-

cular cylinder whose electrical radius is given by a particular value

of the parameter.

The initialization "kal“ is obtained employing equations (2.4.4) or
(2.4.14) which are relative to ﬁhe theoretical method developed through-
out this chapter. To avoid instabilities and inaccuracy in the inversion
procedure, only five terms are considered in the expansion of the far
scattered field components. This particular choice results from the
compromise between the two alternatives of

i) a gdod representation of the field components resulting in poor
accuracy in the recovery of the associated coefficients.

ii) a misrepresentation of the field coaponents with no inversion

accuracy problem.

For the particular case of a circular cylinder another method may also

be considered employing the additional constraints as defined in (2.6.5).



This option can be of interest only if 2 < ka < 4. Nevertheless,
even for ka < 4, "kal" will be approximate because we assume the data
to be available only within a small domain of observation. Consequently,

even in the case of the circular cylinder a more general technique must

be implemented.

In this technique, the far scattered field originating from a hypothet-
ical cylinder of electrical radius "kal" is first calculated using "T".
The magnitudes of the fields at the '"n'" aspects considered earlier are

added and the result is denoted by s:ppr., where"appr! stands for ap-

g@PPT.
n

proximate. A merit factor "F" is then defined as Sz - . From

its value and according to its sign, "kal" is modified to "kaz“ and

the process repeats itself.

This process is best visualized by considering the symbolic block-
diagram of the system as shown in Fig. 4 and the associated flow-thart

as shown in Fig. 5.

e
ka s2PPT- sn
—p [ INITIALIZATION L T B
MODIFICATION
OF kal

FIG. 4 BLOCK-DIAGRAM OF THE ITERATIVE AVERAGING METHOD
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Computation of the back-scattered field
by the obstacle at "n'" aspect angles
1

v

Calculation of Si

v

First evaluation of the electrical radius '"ka"
of the obstacle employing the theoretical method

P[4

Calculation of S:ppr. via the transfer function "T"

v

Numerical evaluation of the merit factor Fn = Sippr- - Se

Evaluation of the new
merit factor F__, cal-
culated from data

new value of "ka"
according to Fn

available on (n-1) as-

pect angles chosen a-

mong the '"n" selected
angles.

7

"ka" is changed by .01
according to the values
and respective signs of
F and F

n n-1

The last value of "ka" is retained
as the correct value of the elec-
yes trical radius of the scatterer.

this var-
iation the oppo-
ite of the pre-
vious one?

FIG. 5 FLOW-CHART OF THE ITERATIVE AVERAGING METHOD
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2.7.3 FLOW-CHART AND COMPUTATIONAL RESULTS

The flow-chart as it is shown in Fig. 5 is self-explanatory except

for the refinement branch which leaves the logical statement (is Fn
greater than 17?) when the decision is "no". At this junction a new.
merit factor Fn—l is introduced. Although this branch may seem re-
dundant at first, it has the purpose to refine the proposed method

Ly taking into account the small oscillations which exist in connection
with the magnitude of the back-scattered field and the curvature of

the obstacle at hand. Since the magnitude of the back-scattered field
ié only calculated at five aspect angles, the refinement branch con-
sists in comparing at least one of the values of that magnitude of a
field which would then be given off by a hypothetical circular cyl-
inder. If the sum of the magnitudes of the scattered field over five
aspects and that of any one particular aspect almost coincide with the
similar quantities evaluated for the hypothetical circular cylinder,
the electrical radius of curvature of that cylinder gives the electri-
cal radius of curvature of the illuminated area of the obstacle with

a high dégree of confidence. A careful examination of the ﬁerit factors

Fn and Fn— is directed towards this goal. The final value of this

1

electrical radius is selected when the change in "ka" initiated by

F

=1 is equal to the negative value of the last change ordered by Fn—

l-

This method has been applied to the recovery of the electrical radius

of the circular cylinder ranging from 0.5 to 15 when the observation



wedge angle varies from m to a limited value chosen arbitrarily to be
m/36. The results correspond with the original values and are illu-

strated in Table 6.

2.8 CONCLUSIONS

An electromagnetic inverse scattering model technique has been pres-

ented for the perfectly conducting cylinder. Although the approach
(28)

is not the most general, as compared to those of Lewis

Bowman and Ergun Ar(57); Weston and Boerner(SQ); Millar

(3L

and Imbriale , some rather fundamental relations have been derived

; Weston,

(30)

; or Mittra
and shown to be relevant to the problem of inverse scattering.

In order to employ this technique, the transverse field components
must be obtained in amplitude, phase and polarization using relative
phase measurement techniques with tﬁé incident field as phase refer-
ence. Such measurement techniques are not discussed here nor are
measurement results given. However, with the resulting closed-form
solﬁtion of the determinant (2.3.4) associated with the scattered
field matrix (2.2.10) and the novel optimization procedure described
in Part B, one may reliably predict the proper distribution of the
measurement aspect angles for most stable inversion procedures. In
particular, it is observed from (2.3.4) and (2.3.5) that the deter-
minant [@(N)| is symmetric about ¢ = 0 and therefore measurements

must be compiled only within the range 0 < ¢ < Tor m < ¢ < 2m.
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TABLE 6: RETRIEVAL OF THE ELECTRICAL RADIUS OF THE

CYLINDER FROM

THE ITERATIVE AVERAGING METHCD

Domain of Observation: %E

Domain of Observation:

Original Value 1 5 10
Resulting Value 0.980 | 4.998 | 10.40
T
36
Original Value L 5 10
Resulting Value 0.963 | 4.96 10.37
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Optimum results are obtained if the measurement domain is centered

about the 90° bistatic angle, which is consistent with the mono-bistatic

(22)

equivalence theorem The optimization procedure is verified by
computational results given in Table 1. If the measurement aspect
angles are such that the optimization constraints of (2.3.5) are sat-
isfied, the unknown coefficients {a;} and {b;} are obtained from
standard precision matrix inversion techniques to the degree of ac-

curacy dictated only by the employed measurement technique(sa).

Since the ultimate aim is to recover the electrical radius of the cyl-
inder, it is evident from (2.4.4), (2.4.14) and (A.3.17) that "ka"
may be retrieved directly for all three polarizations using a and bn
but without any recourse to inverse scattering boundary conditions or
methods of analytical continuation. The results are valid for any
value of "kR", although measurement data are usually obtained in the
far field (i.e. kR - «), Furthermore, the relations (2.4.8), (A.3.2),
(A.3.16) and (A.3.17) may be used to recover the unknown polarization

angle as shown in Appendix A.l.

It is also valuable to note that a relationship exists between the

sets of coefficients {an} and {bn}TE which could indicate a similar

™
relation between the two associated types of vector wave functions.
If such a relation could be found, the problem of electromagnetic

inverse scattering would be resolved in terms of one unique set of

vector wave functions.
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The theoretical study presented here lacks accurate results whenever
the order of the far scattered field matrix is higher than five or
whenever the finite domain of observation is small and centers far
from the bistatic angle /2 or 3m/2. This accuracy problem remains
of prime importance in any practical approach and imposes a modifica-

tion on this study in order to include this exigency.

In order to reduce the size of the far scattered field matrix higher
order associated expansion coefficients have been expressed in terms
of the first coefficients. A general formulation has been developed
for the TM case; nevertheless, the iterative formulae obtained are

too sophisticated to be of interest for any circular geometry.

A new iterative averaging . method has been next presented which is
based on a different concept. In this alternative, the "inverse
scattering problem' has been re-examined as the synthesis of a system
which includes the remote scatterer and the back-scattered field at
various aspects. The synthesis of this system (i.e. the recovery of
the electrical radius of curvature of the circular cylinder) has been
completed and computational results are in agreement with the desired
performance of the system. This alternative method proved to be in-
valuable in objectifying the obstacle and its applicability has not
yet been completely explored although it will be successfully em-

ployed in the next chapter.



chapter three

THE ELLIPTIC CYLINDER

3.1 INTRODUCTION

The analysis of the elliptic cylinder in light of the inverse scatter-
ing problem follows logically from the previous examination of the
circular cylinder in chapfer fwo. This particular geometry is in-
teresting in many respects: its boundary surface is a level surface

in the elliptic co-ordinate system (n, &, z) in which.the separation
of the scalar wave equation related to the direct problem of scatter-
ing is possible; secondly, computer subroutines already exist for the
calculation of the far scattered field components when a plane wave im-
pinges on its surface. Finally, by changing the eccentricity value,

we are able to cover an entire range of shapes from the circular cyl-

inder to the strip.

The method used in this investigation is that developed for the cir-
cular cylinder, when we assume that the scattered field components
contain all information pertaining to the shape of the body. The far
scattered field components are first expanded in terms of Mathieu
wave functions. The associated expansion coefficients are expressed
here as an infinite series of these functions. This is in direct con-
trast to the circular cylinder case, where their formulation was re-

duced to a one term series involving cylindrical Bessel functions.
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Due to this increased complexity, it is impossible to extricate any
tangible information relative to the geometry of the scatterer from

the analytical expression of these coefficients.

For large values of EO which defines the generating ellipse of the cyl-

inder, these coefficients are expressed in terms of the Bessel functions.

This could then lead to a simplified solution. However, these expansions

are very difficult to obtain in practice, since the employment of the
1

Watson transform is necessary as a preliminary step to replace the

series into a contour integral. Assuming that sucﬂ a derivation would

be carried out, the elliptic cylinder would then be viewed as a circu-

lar cylinder of large radius of curvature, and no information would be

gained as the relative magnitudes of the principle axes of the cylinder.

Such a solution is therefore not pursued here.

The iterative averaging method examined in section (2.7) is then suc-
cessfully applied to recover the electrical radii of the generating
ellipse. This method was first developed for the analysis of this
problem and was to conétitute the core of this particular chapter;

however, it has been included in chapfer fwe for the sake of convenience.

32 FORMULATION OF THE FAR FIELD

Consider a perfectly conducting elliptic cylinder of major and minor

axes a and b, with its invariant axis along the zZ-direction of an
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(x, y, z) rectangular co-ordinate system. Its interfocal distance will
be equal to d (Fig, 6). If k is the wave propagation constant, the
scattering problem for vertical propagation is two-dimensional and
consists in finding a solution to the Helmoltz equation

P+ u=i (3.2.1)
which satisfies the Sommerfeld radiation condition at « and the pre-

scribed boundary condition u = 0 on the cylinder.

Let us now introduce the eliiptical co-ordinates £ and 1 on the plane
(x, y) according to the transformation
d
x =3 coshg
y =5+ sinhg (3.2.2)
The wave equation (3.2.1) in the co-ordinate system (&, n, z) is de-

composed into

2
a—§+ e (8% = cosn) = 0
an
32 5 8
2% - m® (2% - cosh2)y = 0 (3.2.3)
g

where u(g,n) = ®(n) .U(£), 4h equals kd and % is an arbitrary comstant.
If 50 defines the generating ellipse of the cylinder, the Y(£) function
must satisfy the boundary condition
V(gy) =0 (3.2.4)
The system of equations,as expressed in (3.2.2) and (3.2.3), has been
(26, 50, 17, 29)

extensively studied and the solutions are known . For

a Z polarized incident plane wave,
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Fig. 6 Coordinates used for the
Elliptic Cylinder

79



80

i k. k e+ i
El - g ofE-R . g oIk(xeosd + ysin) (3.2.5)
. . ‘
= @ 1 * Ce, (E) * ce, (n) = ce, (0) + = * Se (&)
=2E. L {[-— 2n 2n 2n s 2n+2
= n=0 L P2p 2n+2
y 3 l . - .
S€ont2 (M sezn+2(e)]+‘3[5én+l Cerns1 () * coypy (M) = cey (O
1
+ - Se2n+l(g) se2n+l(n) sezn+l(6)]} (3.2.6)
2n+1

where 6 gives the direction of the plane wave as shown in Fig. 6, the

scattered field EZ for large values of £ is expressed as

s_/ 8 J(KR+3D) . @ . . : .
E,~ 7ix Fo © VO Vo) " a8y, () % 08, () * Gy0ip B

seyt1 (M) ¢ sey 1 (®) + 7y 1 Eg) v cep (M) = cey ,(8) 4

Bonsa €g) * Sey (M) * se2n;|_2(6)} | (3.2.7)

This is derived in Appendix A.5 , where the notations are explicitly
defined. They are not reported here for the sake of brevity. As it

was asserted earlier, all pertinent information regarding the generating
ellipse of the scatterer is contained in the coefficients Oy an+2,

§ appearing in equation (3.2.7). However, it is virtually

j2n+l’ 2n+1

impossible to analytically extract 50 from (A.5.8), due to the complex-—
ity of the Mathieu functions involved in describing the far scattered
field. The problem is hence presented for the reduced cases 6 = 0
(i.e. propagation along the X direction) and 6 = %—(i.e. propagation

in the § direction), for which (3.2.7) can be simplified.
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Plane wave incident along 6 = 0

In this case, it is shown in (29) that

se2n+l(0) = sezn+2(0) =0 (3.2.8)
Dividing (3.2.7) by the normalization constant defined as
T .
_ / 2  j(kR+)
,EO TR © 4 (3.2.9)
the normalized far scattered field results in
. = cezn(n) . cezn(O) 0 aZn(go)
e(o)(n) “w2® &
n=0 :
0 cCont1 M * Ce5n | | Yons1 (B
(3.2.10)
where the subscript (0) refers to the case 6 = 0.
Plane wave incident along 0 = %
Since for 6 = g
T m i
ce2n+l(§) = sezn+2(-2-) = 0 {32,311

the normalized far scattered field is written in this case as

: . Lk
e _(Mm=-2 % e * ) ° | [P
&) n=0
m
2 “Seoni1 (M * 5804 QI 18504 (&)
(3.2.12)

where the subscript (-121) refers to the case 0 = % .
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3.3 INVERSION PROCEDURE

Equations (3.2.10) and (3.2.12) express the Far scattered field, in
terms of the Fourier coefficients azn(go), Y2n+l(;0)’ and 62n+l(£0}
associated with the elliptic wave functions for the two cases § = Q

X, The procedure developed in chapter wo to retrieve the

and 9§ = 2

Fourier coefficients consists in inverting those matrices implicitly

’ éefined in (3.2.10) and (3.2.12), However, in contrast with the case
of the circular cylinder, the elliptic wave functions depend critically
on the interfocal distance d, which is not a palonl known, and cannot
be generally formulated. Therefore, we must take recourse to further
approximations to mitigate these extra complications. The following

sections will be devoted to this analysis.

3.4 REDUCTIONS OF EQUATION (3.2.10) AND (3.2.12)

3.4.1 REVIEW OF THE NOTATIONS

In order to proceed, the notations are reviewed for the sake of clarity.
The direction of the bistatic receiverlis assumed to be in the vicinity
of that of the transmitter and located at an angle ¢ with respect to the
R axis. Since we are in the far field region, the angle ¢ is equivalent
to the angle n. The parameter q, used in the Mathieu functions as in-

troduced in (A.5.4) and (A.5.5), is equal to

I

T 16

The electric major and minor axes of the generating ellipse are equal to

h (3.4.1)
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ka = (kd/2) * coshg = 2/§coshgo ' (3.4.2)
kb = (kd/2) + sinhg, = 2/Esinh5,0 (3.4.3)
3.4.2 REDUCTION OF EQUATION (3.2.12)

Equation (3.2.12) can be reduced if the far field quantities are known
in the directions ¢ and (-¢) with respect to the X axis as shown in

Fig. 7, namely,
e () - e (-9

D(¢) = (g) 3 (Eﬁ = - n§0 {cezn(%) . a2n(E0) ¢ [Agn + A;n cos2¢ + ...]
+ sezn+l(g) . 62n+l(€0) [Bfn+151n¢ + ...]}- ; {cezn(ED *
=0
Gyl = [8g" - 837e0s20 + L] + sy G ¢ 8y (5
[B:%Mlsinq; + B§n+lsiu3¢ % voa]d (3.4.4)
Mg EO se041 @ * S2ne1 B0 * Seppn (O
Substituting sezn+1(¢) by its expression as given in (A.5.12) leadé to
D($) = - 2sinp § BI™ee, @)+ 6, . (g) - 2sin3p T B§“+1 .
n=0 _ n=0
se) 1@ 8, 1 (E)) = weernes = 25in(20H1)d £ Biiﬁ ‘
s (3.4.5)

sey41 @) * Soni1 (€g)

which can be written in matrix form as



A i :
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¢ . receiver
I~ch A directions
X
o]
, 1 ﬁ

Fig. 7 Receiver Directions for the
Reduction of Equation

3.2.12




(3.4.6)
Similarly, the sum of the far scattered field in the direction ¢ and

(-¢) can be taken instead, which results in:

e (9) +e (-9)
(EO IEQ

S(9) = 5 2 nEO ce, )+ a, (E)) * ce, ($)

(3.4.7)

and in matrix formulation

5(9,)] [2 2cos29, 2cosh, 2cos6é, ...][- fo Aé" cce, () ¢y (€0

n=
2n i

S(¢2) = |2 2cos2¢2 2cos4g, 2cos6¢2 cadl] J= n§0 Ay e cezn(io . uZn(EO)
(3.4.8)

3.4.3 REDUCTION OF EQUATION (3.2.10)

There is a formulation similar to equations (3.4.6) and (3.4.8) in this

case, namely:

- - s - b = " @ 2n+l m 1
9 m - ) o ] —_ . g
D(¢1) 2sing, 251n3¢l 251.n5¢1 ST n n;o Bl Se2n+1(2) 62n+l(:ﬁ)
®  _2nt+l M
D(¢2) = 251n¢2 251n3¢2 231n5¢2 cen| |- ZO B3 e se2n+l(§9 . 62n+l(50)
n= :
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eo(d:l) 2 2cosp; 2c0S29; ... f-r:éo Ayt ce, (0) - azn(}:',o)

(4.) 2 2 2cos2 2 F b e T g
¢, Bty ety wes 2 “®n+1 Y2041 &0
L . i L' * . 1L - . . .

(3.4.9) -~



3.4.4 PRELIMINARY CONCLUSIONS

In both cases, 6§ = 0 and 0 = g3 the formulation of the far scattered
field is expressed in a matrix form similar to equation (2.2.10), rela-
tive to the circular case. waever, in contrast with the latter, it is
still not possible to extract €0 when the last members of the equations
(3.4.6), (3.4.8) and (3.4.9) are known. This arises essentially because
of the complexity of the coefficients A: and Bz introduced in the ex-
pansion of the Mathieu functions.  One of the terms appearing in the
second member of (3.4.9) is analysed in detail; it is demonstrated that
(3.4.9) is identical to (2.2.11) in the limiting case, where the eccen-
tricity of the generating ellipse goes to zero.

Zu+l

3.4.5 ANALYSIS OF - ¥ A

o *ceyn1(0 t Yony €p)

The only way to make Eo accessible is to extract Y2n+l(£0) from the
summation sign in (3.4.9). This is best achieved by considering the
high frequency case, when Y2n+1(£0) is independent of (2n+1). The ex-
pansion of Y2n+1(€0) in terms of the Bessel functions is thus appropri-
ate. However, proceeding with this high frequency hypothesis, ka and
kb must take large values and very little information is then gained as
to their relative values, since the elliptic cylinder is hence viewed
as a circular cylinder with a radius of curvature approximately equal to
ka and kb. In order to bring more insight in this analysis, the co-
efficients Y2n+1(E‘0) are expressed in terms 'of Bessel and Hankel

functions as:
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Yonr1(80) = D

o1 39 j20+1
—mr b CDT AT 3 (ka)
Cerns1 (590 VahA; r=0
M ]
*2041(gy,0) 20+l (3,0) £ ey a2 L 5D e
= A . ka
2n+l 2r+l 2 +
/gy =2 o
(3.4.10)

where the derivative of ce "

is taken with respect to the argument.

However, another expression also exists for Y2n+1(50) if Ce2n+l and

(1)
Me2n+1 are expanded differently, ?amely
ce (0,q)
2n+l "’ 5 . A2DFL
prs) cothg, ? (2r+l) © Ay py * Topg (kD)
Vqﬁl r=0
¥ (E,) =
2n+1 *~0 ce (0,q)
2n+l " ® 2n+l (1)
——————— « cothf, + ¥ (2r+l) - A . (kb)
.Jahiu+1 0 r=0 2r+1 2 +1
(3.4.12)

For the large argument,

ka = kb = x, and

which corresponds to the high frequency case,

2500 = /1—1;2; (-1)F sin(x - P (3.4.13)
3
(1) o 473 2 T ix
Hy 0 () = 572/== (-1)Te (3.4.14)
Substituting (3.4.13) and (3.4.14) in (3.4.10) results in
/7 @ 2r | 2n+l T,
Tha ;o (B Agpyy o sinlka =)
Y2n+l(ED) a 2r 2n+l jka (3:8:13)
j-3/2/" : D e
mka r=0
ks
N - e-j(ka * ZJ sin(ka - %9 (3.4.16)

Similarly, substituting (3.4.13) and (3.4.14) in (3.4.12) leads to

i
i Y2n+1(€0) & e'j(kb ® 4? sin(kb - %) §3.4.17)
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In proceeding with this analysis, it has been assumed that the infinite

series appearing in the numerator and the denominator of equations (3.4.10)

and (3.4.12) could be rigorously calculated. However, in order to do this,
2n+l

the asymptotic behaviour of the coefficients A2r+l

which is not the case. The procedure commonly adopted in order to obtain

would have to be known,

rigorous asymptotic expansions of (3.4.10) and (3.4.12) consists in the
employment of thg Watson transform to replace these infinite series into
contour integrals, which may then be evaluated asymptotically. Such an
analysis is not pursued here, as it exceeds the scope of our goal. Never-
theless, some conclusions can be noted as regards the validity of the re-
sults (3.4.16) and (3.5.175. For example, if the values of Y2n+l(£0) as
given by (3.4.16) and the analogous result for azn(gﬂ) are substituted in

{3.4.10), the far scattered normalized field can be written as

(v

e (9 =232 D gin(ka - 1/8) « I {ee, (§) * ce, (1/2)
0

(Tz—r) n=

+sey 1 (8) ¢ se, L, (1/2)) : (3.4.18)

In this formulation, the phase term corresponding to the backscattering

direction § = 1/2, is equal to ka, which is in direct contradiction with

the known result 2ka, obtained from physical optics for the circular cyl-
inder(ll). This is the best example of the asymptotic results given by

(3.4.16) and (3.4.17) being in general questionable, and of their incompatibility
with the study of the inverse problem of scattering. Therefore, only the tech-
nique presented in section (2.7), and based on average properties related to

the far scattered field, seems to be suitable for this elliptic cylinder

problem. However, before applying this iterative averaging method, the

limiting case of the circular cylinder is rederived for the sake of completeness.
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3.4.6 LIMITING CASE OF THE CIRCULAR CYLINDER

When the eccentricity of the generating ellipse goes to zero, q = hz goes

to zero and the following holds:

i l, r=m
A (q) -—- m>1
0, r#m
(3.4.19)
= l, r=m
B (q) —----- m> 1
& O, r#m
with (3.4.10), the coefficient Y2n+1(£0) reqults in
J (ka)
2n+1
anﬂ(&o) W (3.4.20)
20+l V<2
o 201
I
and: = nio A ey (0t Yo,y () dn
1 , ( cos{0) Jl(ka}
- Ay ce_ (0) -* ¥ ) = -
1 1 1 EU H](_l) (ka)
Jl(ka)
B - "T‘i‘j_ (3 14-21)
Hl (ka)

which are identical to the coefficient a, shown for the circular cylinder.

-

For r = 0,

0 0
A ceu(ﬂ) = AO AO =

0 (3.4.22)

I
o=

W
3l

and
J.(ka)
0 170
- A, ce (0) . (E.) = - 5 ———— (3.4.23)
0 0 070 2 I_lc()l) (ka)

which is identical to the coefficient 2, for the circular cylinder, since

the % in (3.4.23) cancels the 2 in the first column of the matrix defined

in (3.4.9.



3.5 RETRIEVAL OF THE AXES OF THE CYLINDER BY EMPLOYING AN ITERATIVE

AVERAGING METHOD

In contrast with the case qf the circular cylinder, there is no direct
technique available to retrieve the axes of the elliptic cylinder. A
method, duplicated from that demonstrated in section (2.7), and essen-
tially based on average properties of the backscattered field is pres-
ented here to enable us to recover the local radius of curvature of the
illuminated area. This techniqﬁe consists in imagining a hypothetical
cylinder, which if illuminated by a plane wave, woﬁld originate a back-
scattered field, whose magnitude in a small wedgé angle of observation
would be identical to that given off by the obstacle at hand. We then
conjecture that the local radius of curvature within this region of
impact is that of the hypothetical cylinder. This technique is essen-
tially of practical value and based on statistical average properties
of the magnitude of the backscattered field, rather than on calculations

shown to be inextricable.

The far scattered field, for a given plane wave incidence, is calculated
at varicus aspect angles, via an integral equation, for the numerical
solution of two dimensional diffraction problems, as reported in (43).
In Fig. 8a, 8b, 8c and 8d, the magnitude of this field, and that ob-
tained from a circular cylinder of identical curvature, are plotted
versus the bistatic angle ¢. One may notice that within a wedge angle
‘less than 7/12 from the specular point, ¢ = 1807, both curves coalesce;

thus demonstrating the validity of our hypothesis,
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The.technique'consists,‘tﬁeﬁ, of selecting, at random, points within
Athat domain of observation, and to compare the magnitude af thé known
scattered field, given éff by the elliptic cylinder, and that of a
hypothetical circular cylinder. Thisktechnique is described in de-
tail in chapten Awo, section (2.7.2), Wherevit is shown to be one of
system analysis, where the system is constituted of the incident
field, the scattered field and the scatterer. A‘merit factor has.
been defined as the difference between the sum of the magnitudes of
the scattered field, evaluated ét"n"aspect angles, and the éum of
the magnitudes of the scattered fields, given off b& the circular
cylinder at the same aspects. Althougﬁ the set of 'n' aspect'angles
can be chosen at random, it has been though most convenient to use
those obtained via the optimization procedure, as applied to a cir-
cular geometry. It is to be noted that only five aspect angles have
been retained during this analysis, in order to have a number of
points small endugh to make the comparison and large enough to avoid
the cancellation process in the averaging technique. With the know-
ledge of the merit factor, we can now proceed to use a refined sub;
routine in order to approximate more precisely the exact value of

the radius of curvature (see section (2.7.2)).
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This technique has been applied to retrieve the radius of curvature

of elliptic cylinders of various sizes, whose electric axes ranged
from 4 to 11. The results are presented in Table 7, where the first
row gives the values of the larger radius of curvature of the gener-
ating ellipse as (ka)zlkb énd the second row gives the values obtained
with the iterative averaging technique. For this complete range,
the exact values and our results are fairly consistent. It is also
interesting to note that our values are always smaller than the exact
values, and that this discrepanéy seems to vary in the same way as
does the eccentricity. This may be purely coincidéntal due to the
technique employed in calculating thelmagnitudes of the various fields.
However, the following point could be put forward as well: Since we
have made use of a knowledge of the sca£tered field amplitude at various
aspects about the specular point, at aspects where the radii of curva-
ture are smaller, their contributions may slightly decrease the radius
of curvature at the specular point. If such is the case, this dis-
crepancy would be due to the scheme of the averaging technique. It is
énticipated that this practical approach would then be adequate in

order to recover the shape of smooth-curved bodies of revolution.
3.6 CONCLUSIONS
The inverse scattering model developed in chapter fwo is applied to the

perfectly conducting elliptic cylinder whenever the scattered field

components are known in amplitude, phase and polarization. However,
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The technique consists, then, of selecting, at random, points within
that domain of observation, and to compare the magnitude af the known
scattered field, given off by the elliptic cylinder, and that of a
hypothetical circular cylinder, This technique is described in de-
tail in chapter fwo, section (2.7.2), where it is shown to be one of
system analysis, where the system is constituted of the incident
field, the scattered field and the scatterer. A merit factor has
been defined as the difference between the sum of the magnitudes of
the scattered field, evaluated at 'n' aspect angles, and the sum of
the magnitudes of the scattered fields, given off b§ the circular
cylinder at the same aspects. Althougﬁ the set of 'n' aspect angles
can be chosen at random, it has been though most convenient to use
those obtained via the optimization proéedure, as applied to a cir-
cular geometry. It is to be noted that only five aspect angles have
been retained during this analysis, in order to have a number of
points small enough to make the comparison and large enough to avoid
the cancellation process in the averaging technique. With the know-
ledge of the merit factor, we can now proceed to use a refined sub-
routine in order to approximate more precisely the exact value of

the radius of curvature (see section (2.7.2)).



TABLE 73

DETERMINATION OF THE ELECTRICAI AXES OF AN ELLIPTIC CYLINDER EMPLOYING THE

ITERATIVE AVERAGING METHOD

Domain of Observation: %
ka=3, kb=2 ka=4, kb=2 ka=5, kb=2 ka=6, kb=5 [ka=10, kb=9
Larger Radius s 4.5 58~ 8 L 1255 35 & Jisd a0 = 11.1
2 2 2 5 9
of Curvature
Result 4,1 6.9 10,3 7.054 11,33

L6



in contrast ﬁith the case of the perfectly conducting circular cylinder,
it has not been possible to extract the parameters determining the
geometrical features of the cylinder, due t; the extreme sophistication
of the Mathieu functions. The case of the circular cylinder has been
rederived as a limiting case of the elliptic cylinder, when the eccen-

tricity tends to zero, and found to be identical with the equation

(2.2.10).

L

The analysis is then undertaken. when the electrical axes ka and kb
take large values. However, in this case, it is emphasized that the
expansions of the associated expansion coefficients a2n’ Y2n+l’ etc.,
in terms of the Bessel functions, necessary to simplify the problem ére
extremely difficult to obtain., Even in the perspective where these
asymptotic expansions were known, no information would be gained as
regards the relative values of the electrical axes of the cylinder,
because of the high frequency hypothesis. Therefore, such a deriva-
_tive is not presented here, as it exceeds the scope of this disserta-

tion.

Finally, the iterative averaging metho?, based on the dependence of

the magnitude of the far scattered field upon the geometry of the

local illuminated region of the scatterer, is employed. It gives
excellent results for eccentricities varying from 0.08 to 0.98. This
alternative method, independent of the phase information is anticipated
to be well adapted for the retrieval of geometries of smooth convex

shapes.
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chapten four

THE SPHERE

4.1 INTRODUCTION

The sphere comes second only to the circular cylinder insofar as the
simplicity of the relationship of the co-ordinate system to its bound-
ary conditions is concerned. It is hence natural to study the "inverse
scattering problem" of a sphere in a similar manner taken for the cir-
cular cylinder. Therefore, the principal method of attack for the
mathematical solution of this inverse problem is a duplication of that
developed at length for the cylinder. It is assumed, for instance,

that all information relative to the salient features of the sphere

is included in the associated expansion coefficiéuts when the scattered
field is formulated in terms of a series expansion in spherical wave
functions. The only major difference between the study of the sphere
and that of the circular cylinder results in the fact that the former

is three-dimensional in nature while the latter is of the two-dimensional
type. As for the circular cylinder, the prime objective of this chapter
lies in the recovery of the electrical radius of the sphere, from bi-

static measurement data for a given incidence plane wave.

This is carried out by calculating the associated expansion coefficients
via the scattered field matrix inversion procedure. The instabilities

inherent in this calculation are analysed in detail from the properties



(8)

of the determinant associated with the scattered field matrix .

An optimization procedure, similar to that derived for the.circular
cylinder,is employed to avoid these singularities and to determine
the direction of the bistatic angles for which the accuracy of the

retrieval of the associated coefficients is optimum.

4.2 MATRIX FORMULATION OF THE SCATTERED FIELD

It is assumed that for a given tfansmitted field, the measured far
scattered field can be accurately obtained in ampliﬁude, phase, and
polarization for a sufficiently large number N of properly distributed
bistatic angles (ﬁc, ¢c; &= Ay 2y e H). The incident wave E (of

amplitude E., and phase §) is chosen to propagate in the direction of

0

the negative Z-axis of a spherical co-ordinate system, whose origin
is located at the center of the unknown scatterer. The polarization

vector € of the transmitted wave is parallel to the positive X-axis.

(Fig. 9) Eliminating the time dependence exp-(jwt),

Et = Eo[sinﬁ cos8 R + cosB cosp 6 - sing ¢] expj(§ - kRcosf)

(4.2.1)

For E, = 1 and 6 = 0, the scattered field of the cth receiver located

0

at (Rc’ g ¢c) may be represented by a series expansion in spherical

¢
vector wave functions

n
s _ = Antl
E (Rc, 8. ¢c) =z I {3 a, M, (Rc. B> ¢c)
n=1 m=0 omn omn

+ @'y, X,

mn mn
o (o]

R,» 8., ¢c)} (4.2.2a)
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direction -
towards
receiver, C

>

o>

Fig. © Scattering Geometry for the Sphere.
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The subscripts e and o respectively designate the even (cosine) and

odd (sine) dependence on ¢ of the Mie series. Hansen's spherical

(34)

vector wave functions as derived from the Mie series are defined by

M ®,8,4) = F (D () TP (coso) 5 mg)} 6

-'Em cos
[0}
- 0 o) 26T (coso) 9% @e)} ¢ (4.2.2b)

n(n + 1) (1) m cos oy
Eem (R,6,¢) = {—a&-)—h (kR) p (cosB) _ - (m$)} R
o

+ 1 Ry %" (cost) % o)} 6

sin
COos

F B ar) 168 (cosd) @)} (4.2.2¢)

P (cos®) = (-1 ?EE 2z i; P (cos8) = (1 - cos’0)™

den (cos8)

. q } (4.2.3a)

d(cose)m
represent the associated Legendre's functions of the first-kind and of de-
gree m and order n, while Pn(cose) = Pﬁ(cosﬂ) are the ordinary Legendre's

polynomials of order n given by

n 2 n
n1 d (cos S-Ii (4.2.3b)
2'n! d(cosf)

Pn(cose) =

le (cosB) and ZG: (cosB) are abbreviations for

1@: (cosfB) = s;ie Pz (cosB) = {1/2 cosh [(u -m+ 1)(n + m) Pz-l(cose)

+ P2+1(c058)] + m sinf PE (cosB)} (4.2.3c)



Q{PE (cos6)}
30

zﬁﬁ (cosB) =

- r‘:ﬂ(cose)} (4.2.3d)

= 1/2 {(a -m+ 1)(n + m) P:_l(cbse)

Eﬁ?)(kk) denotes the Spheriéal Hankel function of the first kind given

in terms of the cylindrical Hankel function by

1/2
(1) R 1)
h " (kR) = (57) H

ar1 /2 (KR) . (4.2.4a)

and kt'(xl) in (4.2.2¢) is given by

@, s _ 1 d o (1) |
ko (kR) = G0 - @) R h (kRr) } i (4.2.4D)

For a rotationally symmetric scattering body, the expansion coefficients

a, be bear the following relationship with the expansion coeffi-
mn mn
o o

cients az, bz given by Stratton for the special case of end-on incid-

ence on a perfectly conducting sphere for which m = 1:

ip(ka)

o (3l (@ntl) r S
s, =307 ommy 4 af —hél)(ka) (4.2.5a)
s (2n+l) . r T [ka jn (ka)]
b = (-7 ==l p b = - «(4.2.5b)
®1n n(ntl) “» 2 [ka hil) (ka)]

The ultimate aim is to recover a truncated number of the unknown
expansion coefficients a, and be employing matrix inversion tech-
mn mn
o o
niques. This is accomplished by considering only the transverse el-
ectric field components of the scattered field, where the quantities
E- (R ,0 ¢ ) and ES (R ,6 ¢ ), in practice, are obtained from far
] e et te ] e etter? 2

c
field measurements. Therefore, the radial dependence in (4.2.2b) and

(4.2.2c) could be extracted by employing the asymptotic approximations
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of the spherical Hankel functions

lim (1) . ¢_s\0tl exp(ikR)
(KR {hn (kR)} = (-3) (<R)

and % D) my) = (o) SRUKR)

(kR.)“"m (kR) (4 o a8 63)

‘resulting in
M n

s = 1 2 X
Bg (8s0) = I X {a, "6, (8,,0.) +b, G, (8,,9.)}
c n=1 m=0 mn mn mn mn
-0 0 o o
exp (FkR)
(kR) (4.2.6Db)
s . x 2 1
E (Oc, ¢c)= r I {- a, Ge (Bc’¢c) + be Ge (ec,fbc)} ¢
c n=1 m=0 mn mn mn mn
o o o 0
exp (jkR)
(<R) (4.2.6c)
where the spherical vector surface harmonics 2Ge (6,¢) and 2Ge (8,0)
mn mn
are defined by . i
: _ =1.m sin
lGe (6,,9,) =+ "G (cosb)) ___ G (4.2.7a)
mn
(8]
%6 (O = 2P Coosb 3 9% Gug ) (4.2.7b)
e ey n ¢’ sin c e
o

The order of truncation M is approximately determined by the electrical

radius ka of the minimum sphere of radius a, enclosing the equivalent

sourcescﬁo) of the scatterer in question. In particular, it was

(54)

found that form = 1

B M SR ey

(4.2.8)
Although the commonly employed far field approximation yields rather
accurate results in practice, its application is not required to for-

mulate the scattered field matrix, which is expressed only in terms of



the vector surface harmonics. Namely, instead of employing (4.2.6a),
the radial dependence of the vector wave functions of (4.4.2b) and

(4.4.2c) is combined with the expansion coefficients, where

a, =M™ P ) a (4.2.92)
Dmn ) omn E

Bl = (" kP aw) b, (4.2.9b)
omn Omn

The accuracy of the transverse scattered field components will thus
be limited only by the accuracy of measurement and truncation and
not by having neglected terms of relative order (kR)_l. Employing
(4.2.9a) and (4.2.9b), the transverse scattered field is

s - 1 B L,
E. (0,59 =8 Ey (8,,0.) +¢Ey (8.,0)) (4.2.9¢)

8
c c
with '
s % & 1
EG (sc’¢c} ® L E {aé Ge (ac’¢c) * bé Ge {Bc’¢c)J
c =1 m=0 mn mn mn _mn
0 0 o o
(4.2.9d)
s 5 B 1
P S5 1
E¢ (ecl¢c) = E § { E GE (8c3¢c) + b& Ge (ecs¢c)}
c n=1 m=0 mn mn mn _mn
o ) o 0
(4.2.9e)
These equations can be expressed in matrix form
[E] = [Fl.[x] (4.2.10a)
where the transpose [ET] of the column matrix [E] is given by
T
e E¢N(8N,¢N)] (4.2.10b)

which consists of 2N complex elements, and so does the transpose EX]T
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of the column matrix EX] which represents the unknown expansion co-

efficients. Since both {lGo (8,6)} = 0 and {ZGo 9,¢)} = 0, the

on on
corresponding expansion coefficients a and bo must be eliminated,
OO'ﬂ on
thus
T
Pq - [? F. AW SR R S W M Y oahe R W
€1 %11 %1 o2 %12 %12 %22 ©22 M %M
b, sB, sb, b, b, sB sb, 4 oeerd, 2B, 5 eeab, -3 b ]
o1 %11 %02 %2 %22 .®%22 %gs oM 1M St O

(4.2.10c)
The relationship between N, the total number of non-identical aspect
angles, and M, the order of truncation (n = M), thefefore, is given
for general m by
N=M+1)% -1 =M+ 2) (4.2.104)
Equation (4.2.10d) states that if all N existing expansion coefficients

of the electric type a, and all N existing expansion coefficients of
mn
o

the magnetic type be up to the order of truncation n = M are to be
mn
o

determined, then N aspect angles are required with the associated set
of N scattered field vectors Ez (Sc,¢c, c=1, 2, ... N). With the
chosen arrangements of the elements of column matrices ﬁﬂ and @ﬂ,

the arrangement of the elements of the scattered field matrix is deter-—
mined as well. From inspection of (4.2.9d) and (4.2.9¢c), the scattered

field matrix is represented by
(el [2]

(] = {ZG] [1.:;] (4.2.11a)

[F] is a matrix of order 2N = 2M(M + 2), whose submatrices [1G] and
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2G are of order N = M(M + 2) with elements defined by

1 X
By " (Eemn) (eu'd’u) u
i
v
2 2
= “G
Suv (emn)

LS

v
and v = (zmn)' as determined by (4.2.10c).

]
n
i
—
(3]
-
=

(4.2.11b)

(eU'¢H) g p=c=1, 2, .eo N (4.2.11c)

Furthermore, since the spherical vector surface harmonics lGe (8,9)
, : : mn
and 2Ge _(B,¢) are purely real quantities for real aspect

mn
o

angles, so is [Fﬂ a purely real matrix for real aspect angles. Since
for computational purposes the objective was to formulate a real matrix
ﬁﬂ, the expansion coefficients a and bE are re-normalized in

mn mn

o o(&ﬁ}

accordance with the definition of Stratton » which was shown by

(4.2.5a) and (4.2.5b).

4.3 CLOSED FORM SOLUTION AND OPTIMIZATION OF THE DETERMINANT

ASSOCIATED WITH THE MATRIX [F ]

4.3.1 DECOMPOSITION OF THE DETERMINANT ASSOCIATED WITH [Fm] INTO

ITS POLAR AND AZIMUTHAL PARTS

A

The scattered field matrix [Fﬂ for m = constant and with %t =X, is

given by the equation:
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b 1 B

[Fﬁ] = om

{6 1 [

- -

(4.3.1)

where the elements of the various submatrices are defined together

with equations (4.2.7) and (4.2.10) by

lgﬁﬁ o le ®,,¢) fl : um__l - le\,(Bu) cos mdal_l (4.3.2)
ter = oy 00 |S T = - Yo, (0 sinme,  (4.3.3)
zgﬁﬁ =% (0.4 = 2Gm\)(eu) cos mp, | (4.3.4)
2850 = 20omn (68,00 (S T Yy = %60 sin mg, (4.3.5)

insgeetion of (4.3.2) to (4.3.5) shows that the far scattered field
matrix can be decomposed into the product of two matrices

[£] = [¢m(¢u)] . [@m(eu,v)] (4.3.6)
where the premultiplied matrix [¢m(¢ﬂ)J incorporates solely the azi-
muthal ¢-dependence, and the post-multiplied matrix [Qm(¢u,v)] the

polar O-dependence expressed in terms of associated Legendre's functions.

4.3.2 DET [¢,(9)] = [¢,(0))|

(8)

It is demonstrated in Boerner and Vandemberghe that the determinant

of [¢m(¢u)] is given by:
(_)N N

ENCPI o L edn 2y (4.3.7)




4.9.3 DET [em(eu’v)] ¥ | em(e“’vﬂ

The derivation of a closed-form solution for the determinant ]Cin(eu v)l

representing the polar dependence of the various multipole cases (m =

(8)

constant 3_1) is also derived in Boerner and Vandenberghe . It is

given by:
N (N-1) 2
. N2 wiasd —— N
lo.ce, )] = [¢1) 2 1 —‘-‘%\%{3’—’ ¢ T sin’™g
-H> v=m>1 - . U=
I (cosd_ - cost )’ (4.3.8)
Loy
N>r>s>1
4.3.4 SUMMARY AND INTERPRETATION OF THE CLOSED-FORM SOLUTION OF

THE DETERMINANT |F (B ,
[E_( . ¢u)|

The singular behaviour of these determinants can be formulated accord-—

ing to the following theorem,
THEOREM ‘1

The determinant |Fﬁ| of the far scattered field matrice [rm] associ-
ated with a vector scattering geometry representing the mth degree

multipole case becomes singular for

i) P

sing 2m

p=0,+l, +2; m > 1

and attain its maximum value for

11) ¢max(—2%:‘l—)n:p=0,il,i2;mzl
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Furthermore, increasing pseudo-singular behaviour is encountered for
multipole degree m if the aspect angles lie closely packed within

narrow cones about the Z-axis, whose relative half angle BMC increases

with increasing degree m > 1.

In general, the optimum distribution of the aspect angles (Bc,¢c) de—
pends on the given number N of receiver locations, where the distri-
bution of the polar dependence must be determined by employing pptimi—
zation techniques for each separ;te case (N = constant, M = constant).
Employing a novel optimization procedure for determinants of the type
(4.3.8), the optimum distribution of aspect angles for general N and m

will be derived and proved in the following section.

4.4 OPTIMIZATION PROCEDURE

The objeetive is to optimize the distribution of measurement angles,
to ensﬁre maximum value of the determinant ]Fm(eu,¢u; N)l,thus assur-—
ing the most stable inversion of the associated scattered field matrix
[ﬁn(ﬁu,éu; N)j given by (4.2.11a). From inspection of (4.5.2), it is
found that, for any of the mth degree multipole cases, the azimuthal

¢ and the polar 6 dependeﬁce are independent of one another, thus
greatly simplifying the optimization procedure. Whereas the optimiza-
tion of the azimuthal ¢ dependence follows directly from inspection of

4m

requires further detailed analysis.

(4.3.2) as ¢0pt - 2L, T, the optimization of the polar 6 dependence
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Neglecting multiplicative constants in (4.3.8), the polar part of the

determinant which needs to be optimized may then be formulated as:

. m

lo_au| = I -xd® I —x)2=[g @-25° T G -3
m et =% » r s gl t R - s
N>r>s>1 , N>r>s>1

(4.4.1)
with x_ = cosd_.
r Y
It suffices to optimize the expression in square brackets which is

mirror symmetric about x = 0, and may, therefore, be reduced to

m
q -—
o= Nevem)| = [T @ -xD%2 1 o2 - D] (4.4.2a)
t=1 —
. - q>r>s>1
N-1 2.2.1/2 2 244 ;
lo (a = == N odd)]| = [tEl(l ~x el 1 (-] (4.4.2b)
q>r>s>1

Since in practice measurements may have to be compiled within a finite

polar sector of limiting aspect angles Qm , and . > Bm , as shown in
a a
Fig. 10, |6  (q)| must be normalized if the optimal distribution of as-

pect angles within this range is sought. However, in contrast with the
cylindrical case treated in chapfer fwo, the two limiting measurement

aspect angles Bm and §_ do not represent the limiting computational
a -

aspect angles Ga and Bb, since for 3ma = 0 and me =Ty lem (q)] is

singular. This results from the fact that the weighting factor

N

na- xi)m is encountered in (4.4.1) which was not the case for

t=1

the cylindrical scattering geometry. However, to make optimal use of

the given polar sector of measurement aspect angles, a computational

co-ordinate system must now be introduced. This is achieved by en-



Fig. 10 Measurement Polar Angle used for the Geometries
Representing the mth Degree Multipole Cases

ZT1
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larging the measurement polar sector to the limiting computational
aspect angles o and B, where by introducing the optimization angles
,;r=1, 2, 3, ... N) such that

€O. < vee <B. < 10a<B. =8 <8 (4.4.32)
0 9 0. O ™

and neither o nor B belong to the set of N optimization angles

®, 3 r=1, 2, 3, ... N). The two exterior optimization angles 90

0’
r 1
and 60 "may then be associated with the two limiting measurement
N
aspect angles Bm and 8 as:
a
e =6, > 6 =06, <B (4.4.3b)
B, 9 m, o Oy

which is shown in Fig. 10, illustrating the computational co-ordinate
system. This co-ordinate system is the same as that employed for the
cylindrical case, where the limiting computational cosines are defined
by:

cosa > cosﬁm " cosf < cosf . (4.4.3c)
a

The given cosines X - cosBr of (4.4.2) are then normalized so that

_ (cosa + cosB)

x
r 2 5 ost - cos
e of X m |c Q Bl % (cosa + cosB)
T |cosa - cosBl T T 2 2

2
(4.4.3d)

which results in a symmetrical set of computational aspect angles.

Therefore,

m
N 3 2.2 1/2 2 _ 2.4
]qﬂ (q = 7 N even)| = | I (1 - u:) u Il (ur - us)l (4.4.4a)

t=1 t ’——M\
q>r>s>1



m
le, ( =¥, N odd)| = |jl - u§)2 ui’z ol - u§)|4 (4.4 .4b)
Qr>s>1
where uo(xo = cos0) = +1 and uN+1(xN+l=COSB) = -1,The u_ are arranged
so that u_ > usl > usz > san 2 us_-i, where the relationship between
cos, cosB, cos&m , cosf u agd u  is derived from interpretation
a a

of the solution.

In Part B, it is demonstrated that the roots of

m i m—-1
Oy (v = S T

a-u)?

(ur) (4.4.5)

m—1

represent the optimum distribution of us where PN+m—l

represents the
associated Legendre function of the first kind and (m - 1) degree and

aY
(l”’. It is to be

order (N + m - 1) as defined in Jahnke and Emde
noted that for m = 2, equation (4.4.5) is identical with the expression
obtained for the circular case (see equation (2.3.5)). Furthermore, it
is observed that for the higher order multipole case, i.e. m > 2, the
optimization cosines u = +1 are removed in (4.4.5) which complies
with (4.4.3a). Although the two limiting computational cosines cosg

> cosBlma - cosBO1 and cosf < cosﬂmb = coseON were not known a priord,
it is possible to_Specify those for the given limiting measurement as-

pect angles Gm and 6 . Namely, assuming that m and N, the total

a
number of measurement aspect angles em » is given, then the two exterior
p
optimization cosines, uo' and Uy = - uy can be obtained from (4.4.5).
1 N 1 :

Since by definition of (4.4.3c), the associated measurement aspect

angles of uol and u, are the limiting measurement aspect angles Bm =
N - a
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6. and 6 = 0. , the unknown normalization factors can be defined as
0y my, Oy

x = cosf
m m

X =-x
m a a
Icosa ; COSBI __ a ™ . (4.4.6a)
2u0 X = cosB
1
and
=%
jeosa + cos) _ " ™ - (4.4.6b)
2u0
1

= L0

2

to unity and therefore (4.4.6a) cannot be satisfied in all cases, i.e.

It is to be noted that Icosa ?BI must always be less than or equal

for example if X = 4+l and x = -1, which indicates that the optimum
a

distribution of aspect angles within a limited polar sector of measure-

ment may not employ the total range given, The optimization procedure

is summarized in the fcllowing theorem:
THEOREM 2
The optimum distribution for the polar‘e dependence of the N measure-

ment aspect angles involved in the formulation (4.3.8) of the detef—

minant |Fﬁ(N)| is given by the N zeros of the optimization function

m _ 1 m-1
ON(ur) S T PN+m-l(ur) (4.4.5)
' 2
(1 -u)
(cosa + cosf)
e ~ 2
Vo™ lcosa - cosP | » Xp T cosBr
2

If measurements are confined to a finite range of the polar 8-dependence,

the limiting computational aspect angles Ba and Bb are defined by (4.4.6).
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These properties are illustrated in Figs. 11 and 12, representing a
vector scattering geometry associated with the first multipole case,

for transmitter-receiver configurations which may occur in practice

most frequently. For both considered cases, the N receiver aspect angles
are assumed to be distributed within a narrow cone whose invariant axis

4 is oriented in Fig. 1l along and in the same direction as the positive
2-axis and in Fig. 12 perpendicular to the back scattering direction.

For simplicity, it is assumed that ¢r = (2p + 1)%-; p=+1l, +2 and

main attention will be concentrated on the polar f-dependence.

The determinant associated with the configuration of Fig. 11l tends to
become pseudo-singular if a large number of aspect angles are involved;
whereas, the second configuration constitutes the optimum choice as
regards the orientation of the invariant axis &. Computational results
employing (4.4.5) are not given here since detailed analysis is presented

for the similar cylindrical case in chapter iwo.

Therefore, it is anticipated that the unknown expansion coefficients
a, and bn can be obtained with standard double precision matrix inver-
sion techniques, if the half angle GMC of the measurement cone is suf-
ficiently large and the distribution of aspect angles satisfies the

conditions of Theorems 1 and 2.



117

Unit Sphere S

8, =6, 8, 6, 8,6,=8
O Mg 0 03700y ™M

Fig. 11" Pseudo-Singular" Distribution of Aspect
Angles
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Unit Sphere

Fig. 12 Stable Distribution of Aspect Angies
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4.5 DETERMINATION OF THE EQUIVALENT RADIUS OF CURVATURE OF THE

SPHERE

&.5.1 INTRODUCTION

In the previous sections, it has been shown how the sufficient sets of
expansion coefficients-an and bn are recovered via a matrix inversion
procedure from the optimal measured set of far scattered field data, If
these sets are sufficient to expgess the far scattered field, they should

regenerate the near field to some approximation if the initial expansions

of (4.2.2) are employed(ss). We could then proceed to recover the shape

of the unknown, perfectly conducting, scatterer by employing inverse

(55)

scattering boundary conditions or methods of analytical continu-

ation(ss’ oy, 30y 31). However, it may be argued that all the informa-

tion required for the retrieval of "ka'" is explicitly contained in the
set of expansion coefficients for m = const = 1 {an, bn; 0 <nx< N},

implying that "ka" could be directly recovered from {an, b ; 0<cna <N}

n
without requiring any other information. This follows from the defini-
tion of a, and bn and from the recurrence relationships between three

contiguous radial functions. Since such recurrence expressions for the
determination of ka are derived in detail in chapfer fwo for the cyl-

indrical case, relationships for the spherical case will now be pres-

ented in a comprehensive manner.
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4.5.2 DERIVATION

Instead of employing the definitions of a, and bo given in (4.2.5),

(46) In 1n
we will use those of Strattomn , for convenience
jn
o [pil' ey -mi] [ 3 - eagy]
1)+, ;1 1 1 1
I e R e s B (R e

(4.5.1b)
where arguments are omitted and p = ka is the electrical radius of the
sphere. The two alternapive representations of (4.5.1b) are then ob-
tained from the existing recurrence relations of spherical radial

(1)

functions &

) s
zn 2n + 1 (zn—l ad zn+1) (4.5.2a)
N
2 T r T %y - @+ D)z ,] (4.5.2b)
[pzn] : .= (n + l) zn = pzn+l = pz‘n_l e nzn (4 '5 .2(:)

An expression is obtained for the determination of "ka" employing both
a, and bn by substituting (4.5.1a) into (4.5.1b), where

(1)
n(bn - an) hn

pz (4.503&)
by = 8,53 401
n-1
(1)
(n+tl) (b - a ) h
or p= 8 LA (4.5.3b)

(1)
by - an4) By

and therefore
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(D

(b_-a_ .)
o+l _ (o+l) “n  “n-l
_ (4.5.4a)
b(l) n (bn - a:'l.+:|.:J
n-1
or 3 _ 3n+l EZn " *n-p) (n+l) (4.5.4Db)
jn-l an..]_ n __ al‘H‘l) "

Multiplying the expression of (4.5.3a) for n = v with that of (4.5.3b)
for n = v - 1 yields

2 _ 28 -a)by, -2y,
p .

- (4.5.5)
-ay )y, -8

which, except for the multiplier vz, is identical in form to the deter-
minate expression obtained for the cylindrical mixed TE-TM case, which

requires only two contiguous expansion coefficients of each kind and of

the same corder.

Similarly to the cylindrical case, it is also possible to recover "ka"
exclusively from the a and/or the bn coefficients in the spherical
case. The expression associated with the a, coefficients results

from (4.5.2a) énd (4.5.1a), since

R ¢ 5 U LY 6 b SN ¢ ) IS 1) (1)
3n a b = m ot M th)) T - o g Bayn YA Paop)
(4.5.6a)
thus
1) )
hn+l _ an—l an (4.5.6b)
h(1) a - a ik
n n+1
n-1

and



(1)
n

-@ =) (1)
=l hwhl

(a - a ) h
p=(2m+1) = Bk
an+l

(4.5.6c)

Multiplying the expression of (4.5.6c), which results for n =y, n =

v - 1, and substituting (4.5.6b) yields

(a ., -a)(a -a_ )
02 = (2v -1)(2v + 1) c Vil — )¥—1 S u_g)
Bl T 8y-12'8y T B0

(4.5.7)

which, except for the multiplier (2v - 1) (2v + 1), is again identical
in form to the expression obtained for the cylindrical TM case, requir-

ing only four contiguous expansion coefficients v > 2 in (4.5.7).

However, as in the cylindrical case, no expression similar to (4.5.5)
and (4.5.7) exists for expressing p = ka in terms of a limited number
of contiguous coefficients bn' This reéults from the fact that no re-
currence relationship between three contiguous derivatives of the form
|o zn(p)|' exists. This can be verified by equating (4.5.4b) and

(4.5.6b) leading to

| (an B an-l) - (ntl) ah-1 (an+1 - an)
bn "o (a - ) = (otl) (a - a ) (4.5.8a)
n n-1 n+l n
or
& - = bn (an - an—l) + (oHl) 2n (bn 4z an--l) (4.5.8b)
n+l (otl) (b -a ) +n(a -a ;)

In other words, one bn coefficient can be expressed in terms of three
contiguous a, coefficients for any order of n, whereas a similar in-
verse relationship of one coefficient a cannot possibly be expressed

in terms of a limited number of contiguous bv for any n. Thus, to

122
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determine exc¢lusively "ka" from (4.5.5) or (4.5.7) in terms of l:)\J
coefficients, at least two contiguous av coefficients, i.e: a, and ;>
must be independently related to a finite number of bu employing de-

generate relations of spherical radial functions not used up until

this point. The first relationship is given for the degenerate case

n = 0 which follows from the definitions(l) of

_sin p - _Ccosp _sinp cos p
3gle) = 5 Yo (P B i (@ p2 >

__cosp sinp
p

where -
s o A8 1 Tl . S 1
0 (1) j cot p-1 0 (D a kL) 1+ 3 tan p

By By = PRy
and therefore
L Eads a+ bo) (4.+5.9)

It is to be noted that it was shown in chapfer fwo that this expression
can be employed, in terms of cylindrical functions in the cylindrical
case as an approximation if p > 3, whereas in the spherical case, it

is an exact relationship. The second degenerate relationship, required
for a;» involves the resolution of two quadratic equations in a; which
can be obtained simply from (4.5.5). The first equation is obtained

by equating (4.5.5) for v=1and v = 2,

(b; - a;) (b, - a) (b, - a,)(b, - a,)
(bl - al)(b0 — ao) i (b2 = 32)(bl = al) (4.5.10)
1 0 0 1 2 1 1 2

Adopting the notation buv = bp - bv which satisfies the transformation

identity

b b =b b +b b (4.5.11)
rs uv rua sv v us By
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and employing (4.5.8b) and (4.5.9), (4.5.10a) can be'arranged as

2 .
{(d; -2 [2b21 = Bygt 3 (b # by + 137 %

0

(b, - ap) [éblo = Sby = 3b21b10J +6 (b, + by + 1) [p21bloJ} -

*

g2 (4.5.10b)

(b, —a) L + (b, -a) M +N

1 1

The second expression results from equating (4.5.5) for v= 2 and y = 3

(b, - ay) (b - a;) B n(bs - a3) (b, - a,)

4“’2 - a))(by - ay) (b - ay)(b, - a,)

(4.5.12a)

which with successive application of (4.5.8a), (4.5.9) and (4.5.11)

reduces to

2 2
{(bl - al) [10 (bl + b0 + 1) - (bl + b0 + l)(10b32 + b31) - 2b31b21]
+ (b - a;) by (by + Dby + 1) [21(b; + by + 1) + 3b,,] +
2
Q \ D
9 (bl + b0 % 1) bzlb31J C
2
= (b1 - al) L2 + (bl - al) M2 + N2 =0 : (4.5.12b)
The system of two quadratic equations (4.5.10b) and (4.5.12b) in a;
has the unique solution
L.N, - N.L
12 12 :
I3 1 L1M2 Mle

where the constant multipliers in bv of (4.5.10b) and (4.5.12b) are

abbreviated for the sake of convenient representation.

Thus, it is found that the electrical radius can be determined from
either a mixed set of four contiguous coefficients a, and bn with
(4.5.5); exclusively from any four contiguous coefficients a_ with

(4.5.9), or with (4.5.8b) and (4.5.13) from the entire set of coeffi-
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cients bn required for the particular order of n used in either (4.5.5)

or (4.5.9).

4.5.3 COMPUTATION OF ka FROM THE EXACT VALUES OF THE a, AND bn

COEFFICIENTS

In Table 9, computed results are presented for the determination of
the electrical radius in the particular spherical cases ka = 1.00,

5.00 and 10.00 employing the relétionships for either the mixed an/bn,
the a and the bn cases. The accuracy of the results based on (4.5.9),
(4.5.13) and (4.5.8b) depends exclusively on the accuracy of the ex-
pansion coefficients a, and bn which have been calculated with six
digit accuracy. In Table 8 , the coefficients a, and a, are calculated

0 1

from the required set of bn coéfficients as given by (4.5.9) and (4.5.13).
4.6 CONCLUSIONS

An electromagnetic iﬁverse scattering model technique has been presented
for the case of perfectly conducting spherical scatterers employing an
expansion of the scattered field in spherical vector wave functions.
Although the approach is not as generaliy applicable as compared to

(57) (31)

those of Weston, Bowman and Ar , or Mittra and Imbriale , some

quite fundamental relations have been derived.

The determinant associated with the scattered field matrix, which re-

lates a finite set of transverse scattered field components to the



TABLE 8:

EXPANSION COEFFICIENT a, AND a; AS GIVEN BY (4.5.9)
AND BY (4.5.13) |
k -
3y = - [1+1by] = - j_%i()_a)_ 8= By ® iliz = Zliz o j%f;a)
hy " (ka) 1 172 h, ™ (ka)
ka a, [Real] a, [1mag.] a; [Real] al[ Imag. |
1.0 -0.708073 | -0.454649 -0.453516 -0.208074
5.0 -0.919536 =0,272011 -0.217355 -0.4124406
10.0 ~=0.295959 | =0.456473 -0.609610 | -0.487838
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ka = 1.0

TABLE 9: DETERMINATION OF ka FOR THE TM, TM-TE AND TE CASES
arg =2 -1 (2 +1) E:“+1 : :“) :a?zl = z“'zi .
n+l n-.-l n n-2 '
Pry-1e = n’ E:n : :n) :b?gl - ingli
n n=-1 n=1 n
Pre = Pry_tTE where a  is computed from (4.5.9), (4.5.13) and (4.5.8b).
n Py PrM-TE Pre
2| 1.000f -0.84 x 107 | 1.000 | 0.18 x 10™® | 1.000 | 0.18 x 1078
3 | 1.000] -0.11 x 1077 1.000 | 0.18 x 10°° 1.000 | 0.18 x 1078
4} 1.000 -0.34 x 10 | 1.000 | 0.36 x 102°| 1.000 | -0.36 x 10720
5| 1.000] 0.0 1.000 | 0.0 1.000 | 0.0
41 s.000] -0.31 x 107 | s5.000 | 0.91x107 | s.000 | 0.97 x 1077
5 | 5.000] 0.67 x207° | s.000 | -0.25 x 107 | 5.000 | -0.25 x 107
6 | 5.000| -0.62 x 107° 5.000 | 0.96 x 107° 5.000 |- 0.96 x 107°
7| s.000| -0.94 x 1077 | s.000 | 0.94x 1077 | 5.000 | 0.94 x 10”7
8 5.000| -0.11 x 107/ 5.000 | -0.59 x 107° 5.000 | -0.59 x 107°
7 | 10.000| 0.66 x 107® | 10.000 | 0.32 x 10~ | 10.000 | 0.32 x 10>
8 | 10.000 -0.62 x 107® | 10.000 | -0.13 x 10 | 10.000 | -0.13 x 10>
9 | 10.000] ©0.47 x 1077 | 10.000 | -0.13 x 10~ | 10.000 —0.13-x io"5
10 | 10.000| -0.13 x 10~ | 10.000 | 0.19 x 107 | 10.000 | 0.19 x 107®
11 | 10.000| 0.11 x 107 | 10.000 | 0.14 x 10~ |10.000 | 0.14 x 107>
12 | 10.000| 0.73 x 107® | 10.000 0.37 x 10°° | 10.000 0.37 x 107°
13 | 10.000 | -0.95 x 107 | 10.000 | -0.14 x 107 | 10.000 | -0.14 x 107°
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truncated set of unknown expansion coefficients has been analysed in
terms of its singularitieé. The analysis then proceeds in employing
the optimization procedure as derived at lenéth in chapter A4x. 1In
particular, the proper distribution of the aspect angles is derived

for which the degree of accuracy on the recovery of the expansion co-
efficients is only dictated by the order of truncation of the scattered
field series expansion and the employed measurement technique. This is
summarized in Theorems 1 and 2 which establish basic measurement re-
quirements. For example, in order to oﬁtain optimum accuracy in the
recovered expansion coefficients, the scattered field must be measured
in a finite equatorial belt over the unit sphere of direction as re-
gards the computational co-ordinate system. This is illustrated in
Fig. 12. This also agrees with the mono-bistatic equivalence theorem(zz).
An expansion of the scattered field in vector spherical wave functions

is then justified within this belt. This is not true, however, if the
measurement aspect angles lie within a narrow cone of the unit sphere

of directions which centers around the Z-axis as shown in Fig. 11.

Finally, the electrical radius "ka" of the sphere has been directly

recovered from either the magnetic and/or the electric type expansion
coefficients. The results presented heée are valid for any region of
space although measurement data are usually obtained in the far field.

(55)

This retrieval does not apply inverse boundary conditions or methods

(30)

of analytical continuation and should be valuable to anyone inter- .

ested in this area.



chaptern five

THE PROLATE SPHEROID

2.1 INTRODUCTION

The problem of recovering the salient features of a perfectly conducting
prolate spheroid illuminated by a plane wave is considered to illustrate
Ehe inverse scattering model theory as previously developed for the cir-
cular cylinder and the sphere. IA this model theory, the transverse
scattered field is expressed in terms of a truncated series expansion

of the associated wave functions. Then the unknown expansion coeffic-
ients are recovered from the bistatic scattered field data by employiné

a matrix inversion procedure.

Although the direct problem has received rigorous treatment by classi-

cal methodSCAl’ 18, 127)

, there is, to our understanding, no numerical
data on the total scattered field (amplitude, phase and polarization)
because of a shortage of tables of spheroidal functions. Therefore,

for this geometry, the following analysis is purely theoretical and no

computation is carried out.

Instead of directly employing an expansion in spheroidal wave functions,
the following development is based upon an alternative expansion of
the scattered field as given by Senior(éz). That representation was

first introduced by Stevenson(qs), who expanded the scattered field

129
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as a power series in the propagation constant k using a formulation in
wector spherical wave functions. Employing these results, it is shown
that the characteristic features of the prolate spheroid can be recov-
ered from Senior's coefficients providing the leading term in a low-
frequency expansion of the scattered field. These coefficients are
related to the transverse far scattered field via a matrix which is
identical to that encountered in chapfer four for the non-symmetrical
spherical cases. Using the same optimization and ﬁatrix inversion pro-—
cedures, these coefficients are recovered from the far scattered field
to an accuracy only dictated by any suitable measurement technique.
Expressions for the interfocal distance d and the eccentricity € =

1/50 of the ellipse, generating the prolate spheroid, are then derived
from these coefficients employing properties of the associated Legendre's

functions of the first and the second kind.

5.2 MATRIX FORMULATION OF THE SCATTERED FIELD

In the course of examining Senior's results(éz) for a prolate spheroid,
a form of presentation was discovered which relates the far scattered
field with the associated expansion coefficients, which depend implic-
itly on the principal axes of the prolate spheroid. In order to
formulate the scattered field matrix, Senior's solution is briefly re-
viewed. He considered plane wave incidence, given by

Ei = (Ll, m, nl).exp[jk(ﬁx + my + nz)] (5.2.1a)

1 i

and H, = ¢ EU‘(EZs m,, nz) . exp[jk(ﬁx + my + nz)] (5.2.1b)
M
0 .



where the three orthogonal set of direction cosines (ﬂl, m nl),

(22, my nz) and (£, m, n) express the directions of the incident

electric and magnetic fields and the propagation vector k, respectively.

The perfectly conducting prolate spheroid is defined by the equation

uvd 2 4
EJ gt wy (5.2.2)
T !

0 0

where d represents the interfocal distance and € = l/F,'0 defines the
eccentricity ellipse of the 5pherbid. This is shown in Fig. 13 illu-
strating the case of nose-on incidence on a perfectly conducting pro-

late spheroid.

Senior then showed that the transverse far scattered field components

can be expressed as

- kR
) aP 1 ap ej
EG = (§§'+ sinf 5@0 R ! (5.2.3a)
= kR
1 op _ B, e
By = Gingag ~ 90 X (Radih

where (R, 06, ¢) are the spherical co-ordinate parameters of the ob-
servation point. Retaining only the leading term in a low frequency
expansion, P and P are given by

P = k?[(K cosp + Kysinp)sin + Kcos®)] + 0(k")  (5.2.42)

P = k& [(R cos¢ + K,sin$)sind + Kcos8] + o(k®)  (5.2.4b)

3

where K, and K (j =1, 2, 3) are implicit functions of the geometrical

| k|

parameters d and EO of the spheroid. This aforementioned formulation

is valid only in a low frequency range, or equivalently for large

131



-

by
\
1
e
I'\);{CI-
-

P4
-
%

/
I
A
\

Fig. 13 Prolate Spheroid Scattering Geometry
for Nose-On Incidence
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(42)

dimension bodies. Following Senior , the coefficients K, and Ej

3

can be expressed in terms of the Legendre polynomials as

-

1 : J.
= - .2_d3 . 2' . —Pl (EO) E - -g d3 . R' . —.-___.Pl (50)
o 3 1 g 1 3 2 o
o, (& Q, (&
1 1, .,
2.3 P (5 = 2 .3 Py &y
Kz"':id'ml'“_lz_)' G St oy empy
o, " (g, Q, ()
0 0
2R a P, (E)!
K3= %d3cnl-10—0 K3= -]3—'-d30n2-..-.1'_6__9__..-
o,%gy) Q, (5"
(5.2.5)

where prscgo) and Qrs(ﬁo) are the associated Legendre's functions of
order r and degree s of the first and the second kind, respectively,
and the primed expressions represent its first order partial deriva-

tives with respect to Eo.

Neglecting the higher order terms of O(ké), the transverse far scattered
field components can be expressed in matrix form. Extracting the radial
components, according to (5.2.3) and (5.2.4), the normalized field

components are related to the unknown coefficients Kj and K; by

|
[e] = [s(e,9)] [K] (5.2.6a)

where the transpose of the column matrix [e] is given by

] (5.2.6b)
3

[e]T=[ee,ee,ee,e 3 €y 5 8
1 ‘g O3 9 9 9
and that of [K] by

[K]T = [Kl’ Ky» Ky, Kl- Ezs l_{-3] (5.2.6¢)

Since only the coefficients K,, K, for j =1, 2, 3 are retained in

3
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this low-frequency expansion, measured data are required for only three

bistatic angles which results in the following far scattered field matrix:

-coselcos¢l coselsin¢1 *sinql —sin¢1 cos¢l 0 ]
cosﬁzcos¢2 cosﬁzsin¢2 -sin92 —sin¢2 cos¢2 0
[S(G,¢)] = c0583cos¢3 cosessin¢3 —sineg ~sin¢3 cos¢3 0
-sin¢l cos¢l 0 ~cosBlcos¢1 —coselsin¢1 sinﬁl
-sin¢2 cos¢2 0 -cosBzcos¢2 wcosﬁzsin¢2 sinez
! -sin¢3 cos¢3 0 -c0383c05¢3 -coseasin¢3 sin83‘
(5.2.7)

Inspecting the properties of (5.2.7), it is valuable to note that the
obtained far scattered field matrix is identical in form to that obtained

for a nonsymmetrical spherical scattering geometry as given in eq.

(8)

[III-l] in Boerner and Vandenberghe , for the particular case m = 1(N = 3).

53 RETRIEVAL OF THE PARAMETERS OF THE GENERATING ELLIPSE
5.3.1 COMPUTATION OF THE Kj AND Ej COEFFICIENTS

The coefficients Kj and Ej are recovered by a standard matrix inversion
procedure. The degree of accuracy is dictated only by the measurement
technique employed to evaluate the far field components. To guarantee

most stable inversion, an optimum distribution of aspect angles is ob-



tained by optimizing the determinant associated with the scattered field

matrix defined in (5.2.7). This has been derived in Boerner and Van-

(8)

denberghe in context with a purely nonsymmetrical spherical scatter-

ing geometry. The closed-form solution for the determinant was given

in eq. [ITI-3] as \ . ,
[s(8,0)] = 4° sin® % sin® 22 sin® 3L (5.3.1a)

where &pv is the geodesical distance between two points on the unit
sphere of directions, with

cos&uv = cos@u cosﬁv + sinel_I .-s.irme\J cos(cbu -9 (5.3.1b)

*;
Equation (5.3.1la) states that no two aspect angles can be alike for
the inversion to be possible. To obtain the maximum accuracy on the

retrieval of the coefficients K, and K '|S(B,¢)| needs to be maximum.

] g
This results for an equidistant distribution of the three aspect angles

0

over the unit sphere of directions, i.e. |A |A |45, ] = 1207,

_12| = 23| =

for which case |S(B,¢)| = %}.

5.3.2 RETRIEVAL OF THE PARAMETERS OF THE GENERATING ELLIPSE

The incentive of this development results from the fact that all the
descriptive ﬁarameters of the prolate spheroid are contained in the
coefficients Kj and Rj' Thus employing the same argumentation which

in the cases of circular cylindrical and spherical scattering geometries

did lead to unique expressions of recovering the radii of curvature of

those scatterers, we conjecture that the geometrical features of the

135



prolate spheroid can be retrieved from a knowledge of these coefficients.

Senior's approach is aléo employed for the reason that it is our aim

to merely use an expansion in spherical wave functions and to avoid the
cumbersome formulations in terms of prolate spheroidal functions for
which only rather limited tables seem to exist. Furthermore, and in
line with the order of truncation of O(ka) in (5.2.4), only the case

of nose-on incidence is treated which is satisfactory to demonstrate

our model technique as previously‘described for the circular cylindrical
and the spherical cases.

=1, n

For nose-on incidence 21 =1, m = 0 and thus only K, and K

1 1. 1 2

are non-vanishing identically which, however, does not affect the matrix
inversion procedure for the truncated case M = 1(N = 3), considered in
(5.2.7), since the direction cosines do not enter the formulation

of the far scattered field matrix. Senior's coefficients Kl and EZ as

defined in (5.2.5) are explicitly expressed in terms of d and 50 em—

ploying standard series expansions of the associated Legendre's functions

of the first and the second kind(16), resulting in
1 ; -1
2 381 Gy 5, 3 |1 Etl &
Klu-a-d —_l-(g_-_)- gd . Eln(ﬁo—l)*gz,_l'
Q (& 0
1 (5.3.2a)
' —
- 2 3P (&) 2.3 (1., 5%%: 1 A
by mogé o3 vl et —

(5.3.2b)
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Equations (5.3.2a) and (5.332b) represent the set of two transcendental

. K
equations involving the two unknowns, d and EQ' The ratio :£ is in-
K
dependent of d, resulting in 2
&t 1
S 0 % -1 (5.3.3)
g 50 L 250

}n Fig. 14, the right-hand side of (5.2.3) is plotted versus € = l/-‘:’,0
within the limits of definition 0 < € < 1, From inspection of Fig. 14,

it is observed that a unique solution of (5.3.3) can be obtained since

the right-hand side of (5.3.3) is monotonically increasing and therefore
€ can always be uniquely recovered. The value of d may then be determined

from

- 3

1 1
- T T XY P

which leads to
N 1/3
K
d = 3 - 2

(5.3.4)

Therefore, both of the a priori unknown parameters d and € = 1/50,
describing the generating ellipse of the prolate spheroid, can be re-

(42)

covered if Senior's expansion is employed.

5.4 CONCLUSIONS

The presented study clearly demonstrates the merits of the inverse



138

-1.00F

. =L20F

-1.40F

KI/K2

-1.60

-1.80

1 1 | = |

O 020 040 060 080 100
ECCENTRICITY

Fig.14 Characteristic Equation for the Evaluation of
the Eccentricity



139

scattering model technique developed in chap{éné fwo and foun to re-
cover the salient features of a prolate spheroidal scatterer, Based on
the hypothesis that all information pertaining to.simple shapes are im-
plicitly contained in the Fourier coefficients, the method provides
analytical expressions defining the geometrical parameters of the
scatterer's shape in terms of a limited number of these expansion co-
efficients. Therefore, this model technique does not require methods of

{55} I5)

analytical continuation and neither the application of inverse

(55)

boundary conditions -- two techniques requiring extensive computa-

tion time.

In treating the inverse problem of scattering from a prolate spheroid,

(42)

it was found advantageous to employ Senior's alternative formulation
g y

of the far scattered field. This power series expansion in k has the

(45)

merit of being related to spherical wawve functions instead of the
complicated prolate spheroidal functions. This expansion, valid for

the low-frequency case, is truncated at the oréer 0(k4). It is thus
possible to relate the normalized transverse scattered field components
of only three aspect angles with Senior's coefficients via a scattered
field matrix. These coefficients representing the leading terms of the
low-frequency expansion are then recovered by inverting the matrix.

It is valuable to note that this matrix is identical to that encount-
ered for the nonsymmetrical spherical case in Boerner and Vandenberghe(s),

eqs. [III-l] and [III—B]. This cognizance also underlines the simpli-

city of Stevenson's and Senior's formulations of the field scattered



by a prolate spheroid. Finall&, the characteristic geometrical para-
meters d and EO are recovered from the expressions of Senior's coeffi-
cients. This simple method of retrieving these characteristic para-
meters uniquely defines the shape of the prolate spheroid which was

the ultimate aim of this report.

This shape has been presented mainly as an illustration of the applic-
ability of the inverse scattering model, derived for the circular cyl-

inder and the sphere in chapters o and four.



PART B
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chapien s4x

OPTIMIZATION PROCEDURE

6.1 INTRODUCTION

In the last few years, an enormous amount of data has been compiled

from satellites and space probes, contributing extensively to such
varied disciplines as meteorology, atmospheric studies, outer space

and planetary exploration. Howevér, the possibility of actually using
this data is quite another matter, depending upon the ability of the
associated decision-making processes to correctly interpret this data.
In the field of inverse scattering, where a knowledge of the far-scat-’
tered field at various aspect angles confined within a finite cone of
observation constitutes the onl& available data, techniques must be
accordingly developed in order to assimilate and digest this information

so0 as to accurately portray the inobservable body.

In addition, although it is desirable to utilize as much information
as possible to objectify the scatterer, it is ultimately essential to
develop and implement some kind of computerized technique to compress
this information in order to rapidly stréamline the measured data to

the particular decision under consideration. This is especially import-

(10)

ant whenever we employ continuous measurement techniques or when

discrete measurements are performed(ag).



The search for radar data which provides unique representation of any

space object however remote has led to the use of multiple frequency

and multistatic angle data. For example, applying physical optics or us-

ing Kirchhoff's approximations, it has been demonstrated that one can
determine the size and shape of a scattering target for a restricted
bistatic aspect angle range from the backscattered field measured at

(28)

all angles . This general theory has been modified further to show

that one can gain partial information from the measured data if fre-

quencies are limited to a given band.

However, the problem of data selection remains a thorny one and comput-—
erized techniques must still be developed for this end. The amount of
crude data necessary for the case of the rotationally symmetrical body

has been drastically reduced(Sl’ 52, 53, 54)

. It is now possible to
recover the shape of this geometry by an inversion of the matrix pro-
cedure, which requires the far field scattered by such bodies to be
known in amplitude phase and polarization at various bistatic angles
for a given incident plane wave; and also requires the far scattered
field to.be expressed in a series of expansions of the orthégonal scalar
or vector wave functions with respect to some co-ordinate system whose
origin must lie within the scatterer. Nevertheless, the problem is

not completely resolved, as special attention must be focused on the
distribution of the bistatic angles within a given measurement domain

of observation to avoid instabilities in the matrix inversion procedure

as to attain a modicum of certainty in this area.
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In this part, we will examine this specific problem for scattering
geometries representing the "mth" degree multipole cases with special
attention being given to the circular cylinder and the sphere. A gen-

eral technique is established which can be employed for maximum accur-

acy in the retrieval of these shapes.

This theory will not be limited to the field of electromagnetics, since
it could contribute in the optimization of any polynomials, when they
are expressed in terms of their réot products with all roots playing
identical roles. This theory greatly reduces computation time, thus
making an invaluable contribution to the decision-making processes of
rapidly assimilating and interpreting the vast compilation of data nec-

essary in pattern recognition.

6.2 FORMULATION OF THE PROBLEM

It is assumed that for a given transmitted field, we can accurately ob-
tain the field scattered from rotationally symmetrical bodies in ampli-
tude, in phase and in polarization for a sufficiently large number 'N'

of different bistatic angles {¢c’ Bc’ e om Lo By aney Nk

It is further assumed that the scattered field components can be ex-
pressed in a series expansion, in orthogonal scalar or in vector wave

functions. In chaptens fwo, thhee and founr, such expansions have been

derived employing cylindrical scalar or spherical vector wave functions,
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for the circular cylinder,(2.2.1), for the elliptic cylinder, (3.4.9),

and for geometries representing the 'mth' degree multipole cases,(4.2.1Q).
With the radial part dependence extracted by normalization, the scattered
field components have been related to associated expansion coefficients

{Xx ,v=1, 2, ... N}, via a scattered field matrix,

vV

- o
,81 1

E X
0, 2

B :
Oy .

= [s@,4] | : (6.2.1)

%) ;

E :
2 :

E. X.

— ¢DI_ _ZN_

In particular, it has been demonstrated that the electrical radius of
the cylinder and of the sphere could be recovered from these expansion
coefficients,(2.4.4), (2.4.14), (4.5.5) and (4.5.7). In the case of

the elliptic cylinder, the associated coefficients characterize the
body's main features. Still, due to the complexity of the Mathieu wave
functions, it has not been possible to derive a simple expression
directly relating the electrical axes of the cylinder in terms of these

coefficients.

In this analysis, the matrix [5(8,¢)] must be inverted to retrieve the

electrical radius of the cylinder and of the sphere from the associated



coefficients {KU’ v=1l, 2, ... 2N}. However, to ensure a stable in-
version, we are compelled éo optimize the determinant |S(6,$)| associ-
ated with [S(B,¢)]. In other words, the optiﬁal distribution of aspect
angles which spreads over some limited region of space, is sought, for
which |S(8,$)| becomes maximum. This is indeed an obligatory procedure,
if any degree of accuracy is desired in the retrieval of the coefficients
{Xv, v=1, 2, ... 2N}. 1In addition, it is further assumed that the
. "associated determinant |S(B,¢)| can be written in a closed-form-solution
where the 6 and ¢ dependence are separated and factorized as:

|se,9)| = o] + |¢| (6.2.2)

where ’9[ and/or 1¢| represent a product of trigonometric functions,

of the aspect angles 6 and/or ¢, which is symmetrical in {¢c, c =1, 2,

«es N} or {Bc, &= 1o & wan N}(?’ 8). Only determinants of the form:
b 2m 2
I sin= 8 +« I (cosB_ - cosh ) . (4.3.8)
i u % s :

N>r>s>1

are subsequently optimized, since they represent the most general for-
mulation of those determinants associated with geometries representing

the 'mth' degree multipole cases.

6.3 OPTIMIZATION PROCEDURE

For the sake of demonstration, consider'.a product involving 'N' vari-
ables U (k =1, 2, ..N), which play identical roles as in the pro-
duct given by:

il (ur - us) (6.3.1)

N>r>s2l
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where each W varies within the limits (-1, +1). The optimal variables,
consisting of specific values for which (6.3.1) is eoptimal, are found in
solving the set of 'N'’ simﬁltaneous equations. These equations express
the vanishing derivatives of (6.3.1) with respect to any variable U - By

taking the derivatives, we shall find the optimum values u., for which

Ok

(6.3.1) is either maximum or minimum. A comparison between the final value

of (6.3.1), when u, is employed,and a value obtained from any other
k

distribution will remove the ambiguity.

Nevertheless, before carrying out a detailed study of the polynomials ex-

pressing the vanishing derivatives, Gauss's fundamental lemma on the

(44)

root expansion of polynomials will be reviewed with the intention
of introducing the notations:
N
Let f(u) = uio amui'l have the N zeros Ups Upy wee Uy then
£(u) = Ay( )(u - u,) (w-u) = A, D (LFa N
u) = AN u-u)lu=-u,)) ... (u=uy AN b dN,u

{6.3.2)
where d,. ‘,which represents the sum of (N) SR ) - products of
N,u’ H THECIERT
different roots of (3.2),is equal to
dN,u = g (ul, Upy woee uu)
() s _

= (¥ —;N'-“— (6.3.3)
with

dN,-Z = 0; dN,—l = 03 dN,O =1 (6.3.4)

- . . L
Slmllarly,lthe iterator dN,u(uk) is defined as
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dﬁ’u (v,) = d.N’u - dl:l,p—-l(uk) _ (6.3.5)
where
dﬁ’_z(uk) = 03 d&,-l(uk) = 0; dﬁ’o(uk) =1 and dﬁ,N(uk) =0
(6.3.6)

This iterator, presently introduced for convenience, will later be used

to further the development of the presentation.

The set of 'N' equations, expressing the derivatives of (6.3.1), is then

used to build a polynomial in descending power of any variable u, as:
£ B, u =0 (6.3.7)

in such a manner that the coefficients BN "
b ]

In other words, the polynomial as de- .

contain a symmetric expres-—

sion of the desired solutions uy .
k
fined in (6.,3.7) is constructed in such a way that every coefficient

B depends only upon a linear combination of d The result of this

N,u N,u°
algorithm is the removal of the subscript (k) in (6.3.7) which is a poly-

nomial of degree N, the roots of which are the desired solutions uy -
k

According to Gauss's lemma, the polynomial ‘(6.3.7) must be identical to

(6.3.2). This implies that....

.55 RN (6.3.8)

Ay By

Since by construction, the B

N,u coefficients depend upon the d co-

N,u

efficients, (6.3.8) thus represents a recurrence-relationship between the

dN " coefficients. Therefore, with (6.3.6) each dN i coefficient can be
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explicitly found and the given polynomial (6.3.7) completely defined.
Subsequently, the last step consists in having a zero finding subroutine

for polynomials and in obtaining the precise values of the roots uy
k

the object of the original search.

The theory is then largely illustrated within the following important
problems, namely:
(i) What is the best distribution of bistatic angles within a wedge

angle of half-angle BMC for which (2.3.2)

N(N-1)

2 2 Mx_ -x) is maximum?
r s

N=1>r>s>0
(ii) What is the best distribution of bistatic angles within a polar

sector of half-angie §,. for which (4.3.8)

MC
N
2m 2 ;
II sin Gu . H(coser - cosﬁs) is maximum?
p=1 =
N>r>s>1

Further on in section (6.6.5),it will be seen that the optimization of
the determinant associated with the circular cylinder is a special case
encountered in the optimization of the polar part |9| of the determinant
associated with geometries representing the 'mth' degree multipole
cases. For the present, however, the formér is derived primarily

for better illustration purposes. The recognition of the inherent
symmetrical properties within this analysis will then be assumed for

the more general case.

It is interesting to note that the resolution of this problem is by no

means restricted to the study of inverse scattering. . Indeed, it could
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be appropriate to optimize any analytical expression, written in the
form of a product of band-limited functions, such as: trigonometrical,
Legendre and Tchebyscheff functions of 'N' variables, as they all play
identical roles. Hence the scope of its applicability widely overruns
that of our specific problem; it could very well be applied in other
domains of studies or in other disciplines where such expressions are

encountered.

6.4 OPTIMIZATION OF THE DETERMINANT |é(N)| AS GIVEN BY (2.3.2)

The optimal distribution of aspect angles spread over some limited
wedge of the unit circle of direction is derived for which the deter-

minant |¢(N)| becomes maximum.

By introducing the co-ordinates defined in equations (2.3.3a) to (2.3.3d)
and illustrated in Fig. 3, it is shown in equation (2.3.4) that this

determinant can be written in the form

N(N-1)
|6 | = (cosa - cosB) * @ -u) C o (6.4.1)
N-1>r>s>0

which represents a distribution of cosines:

(cosu + cosﬂ)

cos¢ X -
= r - 2
u = =
r Icosa - cosBl lcosa - cosB[
2 2

symmetrical about cos¢0 as defined in (2.3.3b).

Since the two cosines, cosa and cosf, which correspond to the wedge

limiting aspect angles a and B, are known, the number of unknowns in
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equation (6.4.1) is reduced to n = N-2. The general situation is

first considered for which no a palorl symmetries can be assumed,

so that -1 < u - where; for convenience's sake, u is chosen
larger than u_. To find the optimal distribdtion of cosines for which
(6.4.1) is maximum, that set of simultaneous equations, which expresses
the vanishing derivatives of (6.4.1) with respect to all Variableslur,

-

is solved.

"First, the derivatives of |$(N) | with respect to any u_, are formulated
in a closed form solution. The cases N = 4 and N = 5 are presented to
illustrate the more general case.

EXAMPLE: - N=4, n=2, r=1, u, =1, u, = -1

0
|¢(4)] = (ul + 1)(u2 +:1) 2 (u2 = ul)(l = ul)(l = uz)

-2 (L - ui)(l - ug)(uz - uy)

2 u .
s, fL = ui)(l - ul) (- ) - e
1 I -u 2 T

9| (4)
au

EXAMPLE: - N=5,n=3,r=2, u, = Ly ug = -1

|¢(5)| = (ul + l)(u2 - 1)(u3 + 1) 2 (u2 - ul)(u3 - ul)(l - ul)
. (u3 - uz)(l - uz) (1 - u3)

w 3 e ui)(l _ u%)(l » ui)(uz - up) (uy = up)Cuy = up)

3|e(5) 2 2 o i = =
—l%E;—L =2 (1 - ul)(l - u3)(u3 - ul) { 2u2 (u2 ul)(u3 u2)
+ (1 -'ug)(u3 - u2) - (1 - ui)(u2 - ul)}

2u
=_I¢(5)l.{ 22+uiu+uiu}
1 - u, 1 2 3 2

In the general case,



3
ﬁgﬁ—“)i = [0 * 50— {Log |60 ]} (6.4.2a)
r r
where .
N-2 2
)| =2 T @ -ud e [ (o, -u) (6.4.2b)
i=1 —
N-2>i>s>1
Equation (6.4.32) is then equal to
N-2 N-2
3 a(N) = |o@)] - 5%—-{L032 + L Log (1 - ui) + I Log (ui - us)}
Yy r i=1 s=1
| 20, N2 ire
=~ [o@)|  { il e TR (6.4.3)
l-u s=1l r s
T r#s

The constant multiplier [¢(N)| is the value of the determinant

and can be ignored in the subsequent derivations.

Employing the notations defined in (6.3.3), (6.3.4), (6.3.5), and

in (6.3.6), the procedure used to construct the polynomial, as given

by (6.3.7), is illustrated in the next example: for n = 4 where

U = u,.
EXAMPLE:- n==éb, w =y,
4 3 2
- Su4 + 4u4 (ul -+ u, + u3) - 3u4 (u
ugu; - 1) + 2“& (uluzu3 -y -

(ulu2 + uguy + u3u2) =0

According to (6.3.3) and to (6.3.5)

lu2 + u2u3 +

- u3) *
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and

l = . 1 =
d,-2(8) =03 4 ()

) - .
dj oluy) =15 d', 1(u) = u

+ u + u,u

u.u %y

1%2 B

L]
d;,2%) 2.

] - - =
d;,3(8,) = uyuyug; dg (u) =0

Therefore, for n
5

4,

4 1 !
(17 5u, [4) o) - d; ()] + (-1)

+ -1 3u] [a] L) -

+ DT L[4 ) - 4 (] =0

= u, +
u 1.12

+ u

3

(6.4.3) can be rewritten as:
4 3 .
44[:14

d%,o(ué)] 4 (=1 20, [a]
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gl = dz:,-l(“4)j

aw) - dg )]

+++..by inspection of the given example, it follows that (6.4.3) can be

expressed in the form:
n
z
=0

GOV @ v - [a)

1
Substituting d n, V-2
(6.3.5), the equation (6.4.4) is reduced to

n
n-=v

(u) -d}

s V=

(u ) by its value given in terms of d

vio OV - v+ D) u [dn’v Sued g
which can be written as
n v=1
w1 n-y
I DT vy, udy ) G %) - D

5 )]=0
(6.4.4)

n,v-1 in

2, o
=@ - dn,v—z(ur)l}

(6.4.5)

t-1 t=1
u

r d }

n,v-t-1 =0

(6.4.6)
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v
by expressing dn,v-Z(ur) in terms of dn,v'

This expression can then be ordered in u by adding the different

contribution of each terms at the ui_v power.

The coefficient - of u:—v is given by

[(a -v+1) d o y-@=-v+Dd .,
+ (n -v) dn,v # (n - v) dn’u_2
+....ll.ll.’

* dn,v - dn,v-Z]

B=v+l) (a-v+2)
5 (dn’v = d; y-2) (6.4.7)

Therefore, (6.4.6) can be re-ordered as
n

I (-1)
v=0

V1 n-v [(n-v+2) (n-v+1)] |
Yy [ 2 (dn,u - dn,v-2

) =0 (6.4.8)

which is the proper form as given by (6.3.7)..except for the two
known roots +1 and -1, which we have extracted from the beginning..
The subscript r may now be removed, since (6.4.8) is absolutely sym-

metric in terms of uy -
r

According to Gauss's lemma, (6.4.8) must be identical to

n
W1l n-v w
A vEO D7 e d =0 - (6.4.9)

Therefore, a unique relationship results between factor dn » and
]

| PO
factor dn,v—Z’ and that, for general 'n' ....
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(n=v#2) (n=v+1) | | 1
[ 2 :I (dn,u dn,v—z)

n,v _
== (n+2)(n+l) . (6.4.10&)
2,0 2 (dn,O dn,—Z)
Since dn o 0 and dn g = 1, (6.4.10a) is rearranged to give a recurring

connection between dn,v and dn,v—Z in the form

_ (=-v+2)n-v+1) .
n,v V(2o - v + 3) dn,u-z_ (6.4.10b)

Furthermore, according to (6l4.10b) starting from dn,-l’ all coeffi-
cients for odd values of v are zero; this, in turn, implies that the roots
of the polynomial (6.4.9) appear in symmetrical pair about g, 0,
with the constraint -1 < u < + 1. Also, the fact follows straightforward-

ly that (6.4.6) has only one set of solutions Y, and that if the

y o=
ug takes symmetrical values with respect to zero, then the coefficients
r
dn 9 for odd values of 'v' are zero. If another set of solutions was
3

found, where the coefficients dn % for odd values of 'v' were again
3

zero, for unsymmetrical ug s two different sets of solutions would then
T
satisfy (6.4.6). Such an hypothesis is hence rejected. The present

demonstration is readily self-explicited in the following example:-

Let us consider the polynomial f(u) defined by
f(u) = (u-ul)(u—uz)(u—uB)(u-u4)

where

d = u u,u, + u,u,u, + U uau, - uyuau, = 0 (6.4.11)

In the first place, it is obvious that the symmetrical pair of u,

with respect to zero, satisfied equation (6.4.11). Nevertheless, let us
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consider the existence of another set of solutions which would meet

the requirements of equation (6.4.11). From-(6.4.11), we have

uy + uy = - (u2 + u4)
(ulu3 - u2u4) . (u2 + uﬁ) = 0

Since u, = u,, we must have - U Uy = uyu, and - uy + uy = (- u, + u4)

order to satisfy equation (6.4.11). This leads to ~ui + ul(u2 + u4) +
uu, = 0 and to

=1

- M

which were rejected by hypothesis and therefore proves the aforementioned

- U
2 (6.4.12)

conclusion. Taking this symmetry into consideration, it appears con-

venient to introduce the new variable u, so that v = 2u. With dn 0= X,
»

all the coefficients dn 2 can be determined by successive iteration

3

of (6.4.10b) as

M
I (n-2t+ 2)(n -2t +1)
p t=1 .
d = (-1
n,2y (-1) U
I 2t (2n - 2t + 3)
t=1

It

1) [bn-2) ... -2+ 2]l -D@-3) ... (0 -2+1)]
Mut[(2n + 1)(2n - 1) ... (20 - 24 + 3)]

o oyl _ni(2n ~ 2 +1)32 . 6.4.13
-1 (W) iin - 2p)I(2n + 1)1 e )

and therefore, (6.4.3) with v = 2U, becomes
n/2

B L (-1

B+l n-2 n!(2n - 2y +1)!! _
Y BTG S DI F DT S0 (6.4.14)

Before going further into the presentation, a similar derivation is
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undertaken by assuming an a palord symmet:ry. which could have been
rendered feasible directly from (6.4.1). The determinant, as given by
(6.4.1) represents a distribution of cosines us symmetrical about cos¢0
as defined by:

cosp, = M (2.3.3b)
Because of the assumed symmetry and due to the fact that two or three
solutions have already been put forward (+1 and -1 for the 'N' even
case; three +1, 0, -1 for the 'N' odd case), the number of unknowns in
equation (6.4.1) can be reduced ﬁo
N-2

P Neven

p =22, N odd (6.4.15)

Considering the range 0 < u < 1, where u, is chosen greater than uj

i

for convenience, (6.4.1) thus takes on the following form:

=

(N-1)N r

> 2

P
|¢ (Neven) | = 2% (cos ~ 6o8R) n @- uﬁ)vﬁz Tl = o
| t=1 r—"%l E

p>i>i>l (6.4.16)

and

N-1 G-LN [ 5
160F 0dd)|= 2 2 (eosa = cos®) 2 |1 Q-2 pe? - ud)
tal LS Ao 1 ]
) p2i>3>1

The derivatives of (6.4.10), with respect to v, - ui, can be rearranged

as polynomials of degree 'p':

by
r

1-v
r

n

sy OE 4 )
v
e (vi - vj)

j#i (6.4.17)

- 6@ = al@F 1) - 0
r

where A stands for a front-end constant multiplier. The upper and

lower signs refer to even and odd values of p respectively. The



following derivations are presented for the case p even, since the

odd case is easily derived with the definition of (6.4.16). Employing
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the same procedure which led to (6.4.4), equation (6.4.16) may be expressed

in the form
ﬁgl- £-2v-1 £-2v-1
DD 2 @ewv-bv, 2[4y ) +d) (v)] =0
v=0 ' ' :
p=even, £=2p+l =N -1 (6.4.17)

With the substitution of dk v—l(vr) by its value given in terms of

dﬁ,v’ equation (6.4.17) reduces to

-‘%5— £-2v-1 £-2v-1 .
2 7 o
uio (-1) (28-4v-1)v_ (g ooy @) + (L= v) tz—-:l (-1)
g1 |
Vg dpyg) =0 (6.4.18)

which can be ordered in v_ as

&L 2v-1  £-2v-1 &1
2 2 N _
T D v_ (dp g * dp ) E.(u -4t =1) = 0
v=0 t=v

(6.4.19)

However, according to Gauss's lemma, equation (6.4.19) must be identical

to
3-"-;-1- L2v-1  L-2v-1
2 2 )
vio (-1) e dﬁ;v =0

and, therefore, a unique relationship, between the factors dﬂ.u and

df;v—l’ results for general £,

t-1



£-1

2
d (dz,v—l + dﬂ,v) - E (28 - 4t -1) _
L5 Ll (6.4.20)
d £—1 e
£,0 2

d . 2P - =
My 8 * B (3= e 4]

Since d =0 and d =1, (6.4.20) is rearranged in the form
4?.’_1 42-,0

£=1
2
I (22 - 4t - 1)
d = d t=v ~d (L-2v)(L+ 1 - 2v)
2,V £,v-1 v-1 £,v-1 2v(2L - 2v +1)
2 ; ]
L (2L -4t - 1) (6.4,21)
t=0 '
With d£’0 = 1, all the coefficients d.ﬂ,\) can be determined by successive
iteration of (6.4.21) as
£-1
v 2 v
I I (22- 4t -1) I (£-2r)(L- 2r +1)
d _r=1 t=r _r=1l
Lv  v-1  r oy vl
I I (2£ - 4t -1) 27 I (r+1)(2L - 2r - 1)
r=0 t=0 r=0

_Le-2ce-4) ..o (2-20][(2-1)(L-3) ... (£+1-20)] _

9% v Ml B8~ IXUEE = 8 suvwmsnsniis 22+ 1 - 2v) |

_(2-1) ! -2y -1) !!
"W T (2Z-v-D ' @I-n ¢ (6.4.22)

and, therefore, (6.4.16) becomes for even 'p'

£=2v-1
T F (= 1N - By 1)
VT - 3V - 1122 = 1) Y%

£-1
2 £-2v=1
E (-1) 2 =0
v=0

(6.4.23)
which is identical to (6.4.14) whep (£-1) is replaced by 'n' in

(6.4.24), to balance with the definition of 'n', given in the earlier
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derivations; namely,

n=N-2=(N=-1)-1=4 -1
This derivation analytically proves that the roots u
al values with respect to zero and it has been presZnted for the
sake of completeness. It also shows that, if an a palonl symmetry

can be detected, the derivation of a polynomial, of the type given in

(6.3.7) is appreciably facilitated.

While including the known roots,--l and +1, (6.4.14) or (6.4.23) are
multiplied by the factor (1 - uz); and multiplying each side of equa-

tion (6.4.14) or of equation (6.4.23), by the chosen constant:

(2n + 2)! (6.4.24)
Pty rmy
the following optimization function ensues:
Q12 1 9, 1/2 (2n+2)'(1-—u2)1/2 7
(l_ur) Pn+1(ur) - ON (ur) =.(l-ur) o) e z (-l)v .
2" nl(n+l)!  v=0
() (2n-2v+1) !! 0-2v
V) T (n=2v) T (2ot ) 77 Yr (6.4.25)

where (6.4.25) is identical to (2.3.5).

The expression in the square brackets represents the associated
Legendre function Pi+1(ur) of the first kind and of the first degree,
as well as order (n + 1) with n = N - 2 ; where the explicit formu-

lation of P;(u) follows from the definition given in Jahnke and Emde

0 take on symmetric-

(16)
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6.5 OPTIMIZATION OF THE DETERMINANT ASSOCIATED WITH THE GEOMETRIES

REPRESENTING THE 'mTH' DEGREE MULTIPOLE CASES

Let us proceed now with the derivation of the optimal distribution of
the aspect angles (eu; p=1, 2, ... N), which are spread over some
limited polar angle of the unit sphere of directions and for which the
polar part 19[ of the determinant [SN(B,¢)| becomes maximum. This is
permi;sible since, as found in (4.3.8), the polar part 6§ and the azimuth
¢ part are independent from éach other. Neglecting the‘multiplicative

constant in (4.3.8), the polar part |@|, which needs to be optimized

may be formulated as (4.4.4a): / 4
P 2.m/2 112 - N
[eN even’pl - E @ -u) b Oy - uj)
pri>j>l (4.4.42a)

where only the case 'N even' is considered. The 'odd case' results

from the definition of (4.4.4b).

The set of derivatives of part (4.4.4a), with respect to all'p' variables,

is then solved as outlined in section (6.3).

IS P . TR
3Vk N even l—Vk k j=l v—i—-_Tj- =0 (6.5.1)
j#i

where v, = 2
k- Yk

With £ = N - 1, (6.5.1) may be written as
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E-;_l £-21+1 £-2u+1

I 1) 4 v ¢ {L+ 2 & Im - hy 1) d (v,) +
120 M

(22+ 2+ 1 = 4p) di,u—l("k) =0 (6.5.2)

Employing the relationship between the d/ ]J(vk) and the dZ coeffi-
3 ]

cients, equation (6.5.2) can be written as

s £-2v1
2 '
\,EQ (--vk) -F(Z.E + 2m - 4‘\3 -1)d o (22 + 2m - 4p - 1) Vi d.ﬁ,p—l(vk)
+ (22 - 4v + 3) d:{,v—l(vk)} . (6.5.3)
and further reduces to
£ £-2v+1 %fl_
2
E (-v,) {d 224+ 2m - 4v + 1) + I (22 + 2m = 4t - 1)
=0 % Ly : t=v+l ]
AL
2
+ d.E,v—l tiv (2£ - 4t + 3)} =0 ' (6.5.4)

But, according to Gauss's lemma, (6.5.4) must be identical to

ﬁ_‘%i £2v 1 o
Ry .

I (-v) d, =0 (6.5.5)

v=0 k Zv

Equating (6.5.4) and (6.5.5) results in a unique relationship between

factor d&v and factor dz,\)-l with
£+1
2

I (2£- 4t 3)
£ £=v

dev = 9gv-1 T
‘ [4v T 22+ 2m - 4t - 1)]
t=1

-d £ - 2v+2)& - 2y +3) ,
£,v-1 2v(2C + 2m - 2v + 1) . (6.5.6)
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Since d =0,d = 1, an analytical expression of d in terms
. %0 L,y

£! -1

of f,m and V results, namely

v
I (L-2r+ 2)(£-2r + 3)
r=1
d.e,v i (6.5.7)
Z (2r)(22+ 2m - 2r + 1)
r=1

[ -2) .. (L-20+ DL+ DR -1) ... (£ =2y + 3)]
(2v)TI[(22+ 2m -1) (2L + 2m - 3) ... (2€+ 2m - 2v +1)]

(6.5.8)
_(2+ DL+ 2m - 2v - 1!
(2W)1T(Z-2v+ Di(2Z+ 2m - 1)!!
4. mi(etm) - m-1)12(L+m) - 2v - 1] (6.5.9)
Ly @YTIA +m) - @m-1) - 2v]T[2(Z+m) - 1] 1T
and hence, (6.5.5) is equal to
“:;1 £-2u 1
5 (v) 2 [(£+m)-(m - DI![2(L+m) - 2u + 1]!!
ety | & )I@ +m)-(m - 1) - 2u]'[2(L+m) - 1]}
(6.5.10)

Comparing the resulting expression with the expansion of the associated

Legendre function of the first kind, of the degree 'm' and of the crder

@ T.e,
L-n .
= 20! 9 %T " (ﬂ—m)!(Z-ﬁ-Zt-—l)!ﬁui Rt
P,ﬁ(uk) — 3 — (l"'uk) r (-1) 2oyt («’i—m-—Zt) '(Z'E"l) T
2 v :('E.“m): t=0 .. . .

(6.5.11)
it follows that the optimization function given by (6.5.11), when
multiplied by the constant

2(L + m)
2B o L e+ 1)

(6.5.12)
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equals: _
1 m-1 3
0y (u) = —-———1551*-Pn+m (u )3 n=N-1 (6.5.13)
(1-ud) 2

whose 'N' zeros representing the 'N' optimization cosines being sought,

It is to be noted that, for m = 2, (6.5.13) is iQentical with the expres-
sion obtained for the cylindrical case; except for the factor.(l - ui)

in the denominator which appears in equation (6.5.13). This results be-
cause in this more general derivation both roots -1 and +1 needed to

be removed.

6.6 RELEVANCE TO THE MEASUREMENT TECHNIQUE

Although no measurements have been carried out, the optimization tech-
nique derived here gives basic constraints upon the location of the
bistatic measurement angles. These locations are important in obtain-
ing maximum accuracy on the retrieval of the associated coefficients
representing the field scattered by the various shapes considered.
These constraints are summarized in Theorem I (section (4.3.4)) and in
Theorem II (section (4.4)) for the spherical case; section (2.3.2) for

the circular case.

Such theorems are of great importance to those engaged in the measure-
ment of the scattered field since they simplify the compilation of the
data by providing the exact locations where the measurements will be

meaningful.



chapten seven

SUMMARY AND CONCLUSIONS

This thesis has been only concerned with the establishment of an elasc-
tromagnetic inverse scatteriﬁg model, applicable to simple bodies of
revolution. The incentive was not to unravel the extremely complex
inverse scattering problem in its general formulations, but rather to
bring some insight into the existing relationships between the shape
of the scatterer and the far scattered field as observed for a known

incident field.

Whereas most of the classical approaches to the problem, relying on in-

(53)

verse scattering boundary conditions or on a method of analytical

(35, 31), require the retrieval of the near field to re-

continuations
cover the shape of the scatterers, it is emphasized and demonstrated
that this procedure is not necessarily standard since all pertinent
information concerning the geometry of the scatterers is implicitly
contained within éhe far scattered field components. For simple shapes,
the inverse scattering problem can then be solved much more directly.
This particular aspect seems to have been neglected in the current lit-—
erature and we have thus attempted here to present a serviceable theory
and practical technique to fill this gap. The scope of this field has

a vast range and the reader should remember that what is provided here

is no more than the formulation of a particular method and some of its

applications (for example, only perfectly conductive bodies, the sur=-
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face of which are describable by complete geoﬁetric co-ordinate surfaces
have been discussed.) They are, in order: the circular cylinder, the
elliptic cylinder, the sphere and the prolate spheroid. The analysis
has been confined to these geometries because they are the simplest
forms amenable to direct solutions and, therefore, they best exemplify
the relevance of our theory. They are also commonly considered as the
basic shapes to test methods of more general applicability; and it was
hence natural to choose them in this presentation. Of course, it must
be assumed at all times that the total scattered field is known in am-
plitude, phase and polarization at all points - with respect to a given

co-ordinate system whose origin lies at:-the centre of the scatterer.

The development has been divided into two parts. The first part deals
-primarily with the recovery of the various shapes from far scattered
field data. The second part comes, naturally, as a complement to the
first one, insofar as it determines the location of the receiver's di-
rection. Its main purpose is to obtain the best possible degree of
accuracy in the portrayal of the scatterers. Although no measureménts
have been carried out, this part constitutes an important contribution
to the field of inverse scattering, since it gives reliable information,
thus ensuring a reasonable amount of certainty in prediction of the de-
lineation of the object. Therefore, it deserves to be singled out into
a separate section.

-

The investigation of the circular cylinder far exceeds the analysis of



the other geometric shapes, both in scale and in value. The reason for

this is that it has been the subject of extensive research in earlier

decades, due to its two-dimensional nature and to the simplicity of its -

shape, as well as to the fact that the spherical case can be traced

back to the simple circular cylindrical case.....as shown in section
(4.5). To say, finally, that the inverse scattering model, presented
in this thesis, has originated from the careful investigation of this

geometry, readily justifies the extent of the analysis.

Primarily, the scattered field has been expressed in a series expansion
of circular wave functions. The truncated set of the unknown expansion
coefficients has been related via the far scattered field matrix to the
far scattered field components for non-identical aspect angles. The
associated coefficients have been recovered by a matrix inversion pro-
cedure. The instabilities inherent in this procedure have been studied
from the properties of the closed-form representation of the associated
scattered field determinant. The location of the receiver's directions
has been discriminated to obtain maximum accuracy in this procedure.
This follows a novel, determinate optimization procedure derived in
part B. Employing the results of this optimization procedure, it has
been demonstrated that the electrical radius of the cylinder could be
recovered from the associated expansion coefficients, for all polari-

zation cases.

In the case where the domain of observation is restricted to a small

wedge angle, a rather tedious derivation has been initiated to palliate
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the decrease in accuracy of_the obtained expansion coefficients. This
also applies when the electrical.radius of the cylinder is much larger
than unity. Finally, when it becomes almost impossible to determine

the expansion coefficients accurately due to the unstable nature of

the far scattered field matrix, an iterative averaging. method has been
introduced in section (2.7). Such a method is essentially based upon the
dependence of the back scattering cross—section of the scatterer with

the magnitude of the scattered electric field. ihis technique gives

good results to all of the cases encountered, i.e. ka varying between

1 and 15.

The study of the elliptic cylinder is carried out in the same manner

as that of the circular cylinder. However, in contrast with the former
instance, no simple relations exist between the two electrical axes and
the associated wave function coefficients. This follows from the des-
cription of the far scattered field, in terms of Mathieu functions,
which are much more difficult to manipulate. For this geometry, which
covers a wider latitude of interest than that of the circular cylinder,
only the iterative averaging method is conclusive, namely that the
radius of curvature can be recovered via a comparative study with a
circular cylinder of identical curvature. It is then anticipated that
this technique éould be successfully applied to retrieve the main radii

of curvature of smooth-convex shapes.

The three-dimensional problem is then approached with a study of the
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spherical case. It is shown, in particular, that the electrical radius
can be recovered again from the associated expansion coefficients. The
formulae here obtained are quite similar to those obtained for a circu-
lar geometry. The reason for this is that the Hansen's wave functions,
employed in the case of the sphere, depend upon the spherical Bessel
functions, while the circular wave functions depend upon the cylindrical
Bessel functions....the latter being simply related to the former. The
determinant associated with the scattered field matrix which relates a
finite set of transverse field coﬁponents to the truncated set of ex-—

pansion coefficients, has also been optimized in part B.

Finally, the problem of the prolate spheroid is broached using a new
formulation of the scattered field, in terms of Legendre polynomials

as given by Stevenson(és). Due to the lack of tables, no computations
can be presented...although the inverse scattering model used for the
other geometries is successfully applicable. Much more research should
be devoted to the study of the direct, as well as the inverse, problem
concerning the prolate spheroid, but it would exceed the scope of this

thesis. It has been of interest to show how our model could be applied

to various shapes; this example is hence only illustrative.

In conclusion, the electromagnetic inverse scattering model presented
here relates the shape of the scatterer to the expansion coefficients
employed in the formulation of the far scattered fields, in terms of

orthogonal wave functions. Although it is not as general a conclusion



(57)

as those of: Weston, Bowman and Ar ; Weston'and Boerner

Millar(30); and Imbriale and Mittra(ls)

(55), Lewis (),

; Lewi
«+s..1it does, however, bring some
fundamental relationships which could be applied to other sophisti-
cated inverse scattering models and techniques..Those relations could
prove to be of great importance, for example, in the formulation of the
direct problem of scattering -- where one coefficient could be expressed
in terms of the others; or again, it might be possible to relate the
various creeping waves, which originate in the formulation of the direct
problem of scattering by simple sﬁapes, since each of these depend upon
such expansion coefficients. It may turn out to be of some interest

in the convergence problem, where the higher order creeping waves could
be expressed in terms of the lower order creeping waves. Moreover,
magnetic and electric expansion coefficients are also related to one
another. It is thereby anticipated that the scattered field could be
uniquely expressed in terms of only one set of expansion coefficients,
associated with either the electric type wave functions or with the
magnetic type wave functions if such a similar relationship could be
foond among these wave functions. This particular aspect requires,

further investigation.

In addition, while none of the geometries encountered in this thesis
duplicate practical shapes, the inverse scattering model, developed
here, could be applied to obstacles, for which the formulation of the
scattered field can be expressed in terms of "surface harmonic wave

functions multiplied by appropriate expansion coefficients". 1In the

169



170

same line of thought...dielectric coated objects should be investigated
as well, since all information relative to these objects is indeed in-
cluded in the far scattered field. For instance, it is conjectured

that one can retrieve the electrical radius, the electrical depth of the
layer and the dielectric constant of a dielectric coated cylinder or
sphere by employing our inverse scattering model. In these cases, more
" expansion coefficients would be necessary in comparison to the above
mentioned cases, to recover, uniquely, both information. However, it

is anticipated that relationships similar to (2.4.4), (2.4.14), (4.5.5),

and (4.5.7) should exist.

Finally, the optimization procedure, as developed in part B, can be
applied to many other areas of research. It should, in particular, be
profitable to these dealing with matrix inversion procedure since it
permits the elimination of instabilities in the inversion, and that,
whenever the matrix elements are following a Vandermonde type pattern.
Its applicability is therefore not restricted to the electromagnetic
theory. It could prove to be a very efficient tool in optimizing de-
terminants whose elements are trigonometric, Legendre, Tschebycheff or

other band-limited functions.

To conclude, extensive research is still required in this field of
"inverse scattering", if a comprehensive understanding of its acfual
mechanism is desired, and especially since the vast majority of objects
encountered in practice are not the simple shapes we have examined.

It is, however, cur hope that this contribution, partial as it may be,



will bring some insight into this extremely coﬁplex field and contribute
to the ultimate goal of defining the shape of any obstacle. Indeed,
this model could be employed as an additional radar signature which
would allow significant reduction of ambiguity in the portrayal of
simple shapes....when correlated with other models. It is also our

hope that this technique will open up new avenues in this area, and

hasten the eventual resolution of this problem in its entirety.

171



2.

10.

11.

REFERENCES

Abramowitz, M. and Stegun, I. A., "Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables'", Dover
Publications, Inc., New York, 1954.

Altman, J. L., Bates, R. H. T. and Fowle, E. N., "Introductory
Notes Related to Electromagnetic Inverse Scattering', The MITRE
Corporation Contract No. AF 19(628)-2390, Project No. 496.0,
1964, pp. 1 - 203.

Atkinson, F. V., "On Sommerfeld's 'Radiation Condition'', Philos.
Mag., vol. XL, 1949, pp. 645 - 651.

Bargmann, V. A., "On the Connection between Phase Shifts and
Scattering Potential', Rev. Modern Physics, vol. 21, 1949,

Boerner, W. M. and Antar, Y. M., "Aspects of E.M. Pulse Scattering
from a Grounded Dielectric Slab", to be published in Archiv der
Elecktrischen {jbertragung, 1972.

Boerner, W. M., Aboul-Atta, 0. A. and Vandenberghe, F. H., "Gen-
eral Properties of tha Scattered Ficld Matrix in Spherical Co-
ordinates", to be published in Applied Mathematical Journal.

Boerner, W. M., Vandenberghe, F. H. and Hamid, M. A. K., "Deter-
mination of the Electrical Radius ka of a Circular Cylindrical
Scatterer from the Scattered Field", Can. Journal of Physics, vol.
49, No. 7, 1971, pp. 804 - 819.

Boerner, W. M. and Vandenberghe, F. H., "Determination of the
Electrical Radius ka of a Spherical Scatterer from the Scattered
Field", Can. Journal of Physics, wvol. 49, No. 11, 1971, pp. 1507 -
1535 '

Bojarski, N, N., "Three-dimensional Electromagnetic Short Pulse
Inverse Scattering', Syracuse University, Res. Corp., Syracuse,
New York, 1967.

Crispin, J. W., Hiatt, Jr. R. E., Sleator, F. B. and Siegel, K. M.,
"The Measurement and Use of Scattering Matrices'", University of
Michigan, 1961, purchase order No. S5C-11334.

Einarson, 0., Kleinman, R. E., Laurin, P. and Uslenhi, P, L. E.,
"Studies in Radar Cross Section L-Diffraction and Scattering by
Regular Bodies IV: The Circular Cylinder", University of Michigan
Radiation Laboratory, Report No. 7133-3T, 1966.

172



12,

13.

14-

15.

16.

17.

18.

19.

20'

21.

22,

23.

24,

Erma, V. A., "An Exact Solution for the Scattering of Electro-
magnetic Waves from Conductors of Arbitrary Shape. I. Case of
Cylindrical Symmetry'", The Physical Review, Vol. 173, No. 5, 1968,
pp. 1243 - 1257.

Faddeyev, L. D., "On Inverse Problem in Quantum Theory of Scatter—
ing", J. Math. Phys., Vol. 4, 1963, pp. 72 -

Freedman, A., "The Portrayal of Body Shape by a Sonar or Radar
System", The British Institution of Radio Engineers, Vol. 25,
1963, pp. 51 - 64.

Imbriale, W. A. and Mittra, R., '"'The Two-dimensional Inverse
Scattering Problem", Antenna Lab., University of Illinois, Report
No. 69-6, 1969.

Jahnke, E. and Emde, F., "Tables of Functions with Formulae and
Curves'", (Dover Publications, New York).

Kazarinoff, N. D. and Ritt, R. K., "Scalar Diffraction by an Ellip-
tic Cylinder", IRE Trans., AP-7, 1959, pp. 521 - 527.

Kazarinoff, N. D. and Ritt, R. K., "On the Theory of Scalar Dif-
fraction and Its Application to the Prolate Spheroid", Annals of
Physics, Vol. 6, 1959, pp. 277 = 299,

Karp, S. N., "A Convergent 'Farfield' Expansion for Two-dimensional
Radiation Functions', Comm. Pure Appl. Math., Vol. XIV, 1961,

Karp, S. N., "Far Field Amplitude and Inverse Diffraction Theory"
appearing in "Electromagnetic Waves'", Proc. of a Symposium at the
University of Wisconsin , April, 1961, pp. 291 - 300.

Kay; J., "The Inverse Scattering Problem when the Reflection Co-
efficient is a Rational Function', Comm. Pure Appl. Math., Vol. 13,
1960, pp. 375 - 393.

Kell, R. E., "On the Derivation of Bistatic Cross-Section from
Monostatic Measurements", Proc. of the IEEE, Vol. 53, Part I,
1965, pp. 983 - 992.

Keller, J. B., "The Inverse Scattering Problem in Geometrical
Optics and the Design of Reflectors", IRE Trans., AP-7, 1959,
pp. 146 - 149.

Kennaugh, E. M. and Moffat, D, L., "Transient and Impulse Response.

173

Approximation", IEEE Trans., AP-17, Vol. 53, No. 8, 1965, pp. 893 - 901.



25‘

26.

27,

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

174

Kowalewski, G., "Einfuhrung in die Determinanten Theorie (Chelsea
Publ. Co., New York, 1948).

Levy, B. R., "Diffraction by an Elliptic Cylinder", Jour, of Math.
and Mech., Vol. 9, 1960, pp. 147 - 165.

Levy, B. R, and Keller, J. B., "Diffraction by a Spheroid", Can. Jour.
of Physics, Vol. 38, 1960, pp. 28 - 144.

Lewis, R. M., "Physical Optics Inverse Diffraction", IEEE Trans.,
AP-17, No. 3, 1969, pp. 308 - 314.

McLahlan, N. W., "Theory and Application of Mathieu Functions",
(Dover Publications, Inc., New York, 1963).

Millar, R. F., "Rayleigh Hypothesis in Scattering Problems', Elec-
tronic Letters, Vol. 5, No. 17, 1969, pp. 416 - 417,

Mittra, R. and Imbriale, W. A., "The Two-dimensional Inverse Scat-
tering Problem", Laboratory Report No. 69-6, Department of Electri-
cal Engineering, University of Illinois, Urbana, Illinois, 1969.

Mittra, R. and Wilton, D. R., "A Numerical Approach to the Deter-
mination of Electromagnetic Scattering Characteristics of Perfect
Conductors', Proceedings of the IEEE, 1969, pp. 2064 - 2065.

Mitzner, H. M., "An Integral Equation Approach to Scattering From
a Body of Finite Conductivity", Radio Science, Vol. 2, (New Series),
No. 12, 1967, pp. 1459 - 1470.

Morse, P. M. and Feshbach, H., "Methods of Theoretical Physics,
Vol. I and Vol. II", McGraw-Hill Book Co., Inc., New York, 1953).

Moses, H. E. and de Ridder, C. M., "Properties of Dielectrics from
Reflection Coefficients in One Dimension", Technical Report No. 322,
Lincoln Laboratory, M.I.T., 1965.

Miller, C., "Radiation Patterns and Radiation Fields", Jour. Rat.
Mech. and Anal., Vol. 4, 1955, pp. 235 - 246.

Miller, C., "Electromagnetic Radiation Patterns and Sources", IRE
Trans., AP- 4, No. 3, 1956, pp. 224 -232.

Petrina, D. Ia., "Solution of the Inverse Scattering Problem",
Ukrainakii Mathematischeskii Zhurnal (U.S.S.R.), Vol. 12, No. 2,
1960, pp. 476 - 479 (Translation: OTS 62-11505; AD 255678).

Ross, R, A., "Scattering by a Finite Cylinder", Proc. IEEE, Vol. 114,
NO. ?, 1967, ppl 86“ = 8680



_40-

41,

42,

43,

4b.,

45,

46.

47-

48.

49.

50.

51.

52,

53.

175

Saunders, W. K., "On Solutions of Maxwell's Equations in an Ex-
terior Region", Proc. Nat. Acad. Sci. U.S.A., Vol. 38, 1952, pp. 342
- 348. '

Schultz, F. V., "Scattering by a Prolate Spheroid'", Report UMM-42,
Willow Run Research Center, University of Michigan, 1950.

Senior, T. B. A.,"The Scattering of an Electromagnetic Wave by a
Spheroid", Can. Jour. of Physics, Vol. 44, No. 7, 1966, pp. 1353 -
1359.

Shafai, L., "An Improved Integral Equation for the Numerical Solu-
tion of Two-dimensional Diffraction Problems'", Can. Jour. of

. Physics, Vol. 48, No. 8, 1970, pp. 954 - 963.

Smirnow, W. I.,"Lehrgang der Hoheren Mathematik, Teil I", (VEB
Deutscher Verlag der Wissenschaften, Berlin).

Stevenson, A. F., "Solution of Electromagnetic Scattering Problems
as Power Series in the Ratio (Dimension of Scatterer)/Wave-Length',
Journal of Applied Physics, Vol. 24, No. 9, 1953, pp. 1134 - 1151.

Stratton, J., "Electromagnetic Theory", McGraw-Hill Book Co., Inc;,
New York, 1941.

Vandenberghe, F. and Boerner, W. M., "On the Inverse Problem of
Scattering from a Perfectly Conducting Prolate Spheroid", to be
published in Can. Jour. of Physics, 1972. /
Waterman, J. C., "New Formulation of Acoustic Scattering", Jour,
of the Acoustical Society of America, Vol. 45, No. 6, 1969, pp. 1417

Waterman, P. C. and McCarthy, C. V., "Numerical Solution of Elec-
tromagnetic Scattering Problems", The MITRE Corp., 1968.

Weinstein, L. A. and Fedorov, A. A., "Scattering of Plane and
Cylindrical Waves on an Elliptical Cylinder and Conception of
Diffraction Rays', Radiotecknica i Electronika 6, No. 1, 1961,
pp. 31 - 46. z

Weston, V. H., Boerner, W. M. and Dolph, C. H., "Inverse Scatter—
ing Investigation', University of Michigan, 1967, Contract AF 19(628)-
67-C-0190.

Weston, V. H. and Boerner, W. M., "Inverse Scattering Investigation",
University of Michigan, 1968, Contract AF 19(628)-67-C-0190.

Weston, V. H. and Boerner, W. M., "University of Michigan Radiation
Laboratory Report", No. 8579-~I-F, ESD-TR-67-517 (see also ESD-TR-
67-517 Reports, Vols. 1 - 4), 1968. .



54.

55.

56.

57.

58.

59.

60.

176

Weston, V. H. and Boerner, W. M., "Inverse Scattering Investigation
Final Report", University of Michigan Radiation Laboratory Report
No. 8579-1-F, ESD-TR-67-517, 1968.

Weston, V. H. and Boerner, W. M., "An Inverse Scattering Technique
for Electromagnetic Bistatic Scattering", Can. Jour. of Physics,
Vol. 47, 1969, pp. 1177 - 1133.

Weston, V. H. and Bowman, J. J., "Inverse Investigation', 1 April -
30 June, 1966, University of Michigan, 1966, Contract AF 19(628)-4884,

Weston, V. H., Bowman, J. J. and Ergun, Ar., "Inverse Scattering
Investigation", Final Report, 10 October, 1965 - 30 September, 1966,
University of Michigan, 1966, Contract AF 19(628)-4884.

Weston, V. H. and Einarsson, 0., '"Inverse Scattering Investigation",
1 October - 31 December, University of Michigan, 1966, Contract
AF(628)-4884.

Weyl, H., "Die Naturlichen Randwertaufgaben im Aussenraum fur
Strahlungsfelder Beliebiger Dimension und Beliebigen Ranges",
Math. 2., Vol. 56, No. 12, 1952, pp. 105 — 119.

Wilcox, C. H., "An Expansion Theorem for Electromagnetic Fields",
Comm. Pure Appl. Math., Vol. 9, 1956, pp. 115 - 134,



177

appendix A.1l

RETRIEVAL OF THE POLARIZATION ANGLE §

Assuming normal incidence with respect to the cylinder axis, then the
ambiguity still exists in the proper recovery of the polarization aﬁgle
8§, defined in (2.2.1) and illustrated in Fig. 1. If § # 0 or %-both
*(2.2.3) and (2.2.4) must be used for recovering "ka'". The cases for
which § is known, have been treated in section 2.4 and here it is shown

that § can be uniquely recovered although it may not be known with pre-

cision.

Thus, instead of employing (2.2.5b) and (2.2.6b), the unknown expansion

coefficients may now be defined as

'
n

bl’
n

a a cos 4} Ch.1:1)

bn sin § (A:142)
such that (2.2.5b) and (2.2.6b) are replaced by
]

a" =a'H (1)(kR) and b" =b'H (1) (kR)

n n n n n n
resulting in no changes in the matrix formulation of (2.2.11) or in
the inversion procedure of section 2,3. Thus, for a fixed computational
co-ordinate system and a non-singular distribution of aspect angles, the
coefficients aé and bé can be obtained to the degree of accuracy dictated
only by the measurement and the inversion techniques. If the recovered
coefficients a& are inserted in (2.2.4), the resulting expression for

"ka" is identical with that using the coefficient a . This is so, since



a; = a cos § and therefore the constant multiplier cos § cancels in

(2.2.4). Assuming that the proper value of "ka" is found, then a_ can
be recalculated from the cylindrical radial functions as

Jn(ka)
R - M. (2.2.5b)
n Hél)(ka)

and therefore

8'

cos § = ;E (A.l.s)
n

.

To determine § uniquely, the three dégenerate cases, defined by (A.3.2),
(A.3.16) and {A.3.17), may be employed if the coefficients aé, ai, aé,

b6, bi, by bé, and bg are known to the aforementioned degree of accuracy.

From (A.1.1), (A.1.2), (2.2.5b), (2.2.6b), and (A.3.2), another relation-
ship for the polarization angle-d is found

b

0=

|

tan 6 = (A.1.4)

(i)
= -

Similar relationships are obtained from (A.3.16) and (A.3.17) where in
(A.3.16) the expression on the left hand side is related to that on the

right hand side by

a (bv)
tan 6 = — . (A.l.S)
X a
- 70
and similarly for (A.3.17)
a'l(b ) :
tan § = —}.—"— (A.1.6)
2

Similar expressions can obviously be obtained for all higher order a&
employing (n + 1)th order iterations of (2.4.8) in terms of the known

b; coefficients.
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Since (A.1.3) to (A.1.6) are determinate relationships, it may be of

practical interest to note that § can be uniquely recovered using only

two sets of measurements.



appendix A.2

PROPERTIES OF THE VANDERMONDE DETERMINANT

It is to be shown that the determinant [¢(N)| of a matrix [¢(N)]

which is generated from a Vandermonde matrix [H(wuv = x:_l, ve=1,

25 ses N)], by adding to consecutive column vectors, preceding col-

umn vectors times some constant multipliers 9y 38 follows

[o] = [MsW; + qyoWy oWy + gl + qygWys ovennnns Wy 4 oone + qp W) ]

(&.201)
is given by
|6] = pet « [¢] = [W Wy, Wasuuenn, W[ = [W] (A.2.2)
where in particular
(N=1)N
V=1 2
IH(wuv = xu s e (B 000 DO —— N)[ = (-1) Il (xr - xs)
Sy
N>r>s>1
(A.2.3)

The statement (A.2.2) can easily be proven from the following prop-

erty of determinants(zs).

The determinant |¢[ of a matrix [¢] which is generated from a matrix
[w] of non-identical column vectors wv, by adding to consecutive column
vectors, preceding column vectors times some constant multiplier Pye

as follows

[0] = Topoy + pig¥ys Y3+ Ppgly + Ryglys oo ¥+ oee + o]
(A.2.4)
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is given by
6] = Dete[o] = [0y, Wy, Vg0 eues ¥ | = [¥] (A.2.5)

which follows directly from the expansion of the determinant.

Statement (A.2.3) follows from the properties of the Vandermonde deter-

minant associated with the Vandermonde matrix(zs), where
xN—l XN-—Z xN—\) x0
l 1 - a l - . 1
N-1 xN-Z ; xN-u 0
x2 2 LI 2 L xz
N-1 N-2 N-v 0
x x - 8. x - x
H H H H
N-1 N-2 N-y 0
Xy Xy oiuie Xy cos Xy
KO xl v-1 N-1
l l LI xl - a xl
x0 xl x\)--l xN-—l
2 2 L 2 .. 2
(N-1)N
2 . . - -
o ¥ : : : ; § T
0 1 v-1 N-1
X X " X .o X
H H H H
0 1 v-1 N-1
ﬁ ﬁ - x-N - " a :{N
N(N-1)
> .
(-1) (xr - xs) (A.2.6)



appendix A.3

FORMULATION OF THE a., a, AND a, COEFFICIENTS IN TERMS OF THE bn

a> "l 2

COEFFICIENTS

It is now demonstrated that the three contiguous coefficients a

/

a; and a, can be determined in terms of a finite number of bv coeffi-

0’

cients. Using the well-known properties of cylindrical wave functions

L = e RY 1 - e AY )
Z_v (-1) ZU’ Z 9 (-1) 2\J (A.3.1)
gives B, ®a, and b_n = bn' This may be employed to relate a;
and bO’ since from (2.4.5), (A.3.1), (2.2.5b) and (2.2.6b), 26 = - Zl,
therefore,
a; = b0 (A.3.2)

This represents the single degenerate case in which one bv coefficient
is related to one a, coefficient. Employing either (2.4.4), (2.4.14)

or (2.4.16), a, and a, must be related to a finite number of bv coeffi-

2
cients. Otherwise, the higher order a coefficients cannot be obtained
in terms of the hv coefficients from higher iterations of (2.4.18).
One additional degenerate relationship results from (2.4.15) with
v =2, i.e,.
f _ =zt
42y = p/2 [z, - 2] (A.3.3)

which yields with (2.2.6b)

i i)
6. 4z} _ 4113
2 &Y = 4" 0" Y
4 0 H, - Hy
43! ARG
J! 2 J7 = (i)? 0" (A-3-4)
4~ 0 b,H - b.H

474 00
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and
(' _
H"' by -by by,
@'~ "5 -5, b (4.3:3)
H, 37 % 04

where in the following the notation pr = bu - bv is used, thus satis-
fying the identity transformation
brsbuv = brubsv ¥ brvbus (A.3.6)

On the other hand, the ratio of (A.3.5) can be expressed, with further

algebraic transformations, as

(' (1)* (1)
B . B ~bysles =ay) &5
Tl R

which, with successive applications of (2.4.8), can be expressed in

terms of a, and a finite number of bv coefficients as

! a b ( 1 fg. = b
A [a) -~ Blbyy = (ay - B)byy] (2y - by

183

S (a, - bg)(a, - by)b,, - (s, - bé)%az = b3)byy = (a5 = Byl (a,
(A.3.8)
Equating (A.3.5) and (A.3.8) yields
f+ (ay - bp)(a; = bydbgyby, = (3, = bplay = by)bysby, +
(a, = by (a, = )by byy = (@) = by)(ay= by)byybyy +
(32 - bo)(a2 - bz)b03b34} =0 (A.3.9)
With gy = (a, - by) and a, = (ag - b)) and further application of

(2.4.18), equation (A.3.9) is reduced to an expression explicit in

a

0 and a finite number of b\J coefficients:

- B

2 2 2
[ogl; + ogoyMy + aiN;] = oy {# by by byabs, + by booby by, + by booby 5b

1 4 vl

+ b b b..b., +b

02203°13%14 * Po1P03P12P34} *+ %% {Pg1b0oPosP, *+ PorPoabosbay *

01702703 34 0170270334

2 _
b01P03P03P24 * Po2b03P03P14 * Po2PosbosP13? + %1Posbosbosbosl = O

(A.3.10)

01701723734 01702713734 01703713724

o’

b
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However, to find a relationship for a, or a, in terms of bv, another

2 0

relationship is found by equating (2.4.14a) and (2.4.14b) for n = 2

bo1(a8; = P3) 5 (ag = by)

(A.3.11)

bOZ(aZ - bl) - (33 - bz)

which, with repeated application of (2.4.18) results in

[boy (@, = byda, = by) = 3by,(a, = by)(a, = by) + 3byg(ay = by)(a, = b)) = 0

(A.3.12)
or
[azL + 00, M +a2N]=[a2b b, + 0.0, {b, b, = 3b b - 2b..b.,} -
02 012 12 0712713 071712703 23701 13702
o?2b_b..] = 0 (A.3.13)
17702703 ; Y

Since ao, o, # 0, a relationship for a, results from (A.3.10) and

0

(A.3.13) by eliminating the quadratic term ai:

1

]
o

o, {a. (2L, + b b, L.) + o, (2M, + b, b, M)} = (A.3.14)
0 (0] L Ul ua & i L 030472

By employing (A.3.6), the constant multipliers in (A.3.14) reduce to

(2L + byabg,Ly) = bygl = byg {+ 8 byybosby, =

4 by,bosbis = bosbosPis) (A.3.153)
and

(&) + bygboMy) = byM = byy 1+ 8 bozboablal‘

7 boobosPis F 2 PoaPosbia oo (A.3.15b)

Therefore, the desired relationships for a 1> and a, are given by

o @

[boby 4L + bybyqM

1°03

a (b ) = . (A.3.16)

0 v [by4L + bysH]

ay = bU’ [ (A.3.2)
b.b,.L = b.b_ M]

a,(b ) = 0 13 L 82 (A.3.17)

[by3L - Boatl]
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where the denominators in (A.3.16) and (A.3.17) will only vanish

simultaneously if b0 = b3 and bl = b3. For that particular case,

it is found that L = M, a, = b0 = bl’ and a

ence of two contiguous coefficients (i.e. a

o) 0. Thus, the exist-
T aO(bU) and a; = al(bU)

or a, = al(bv) and a, = az(hv)) is guaranteed in all cases.
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appendix A.4

FORMULATION OF {a_,,, n > 0} IN TERMS OF {aj, 2;, a,, a,}

To decrease the size of the matrix [cp(N)], the coefficient a_,,, n > 0

n+4

has to be expressed as a linear combination of the set {ao, a;, 2y, 33}.
It is shown that this is not the case, but that a ., can be related

to that set in a very sophisticated manner.

With the definitions given in (2.6.8), A, and 34 are written as

4
A =T, =3 .a A, - A_. B, =3 a a
% = T4 20 23 ~ 82 B, 21 220 s
B, mUy =385, B3 =By By =2, ty

In order to obtain a more specific description of the iterative formula
(2.6.5), and to induct a formation law for the ccoefficient Aa¢4 and
Bn+4’ the case n = 1 is treated separately. For n = 1, equations
(2.6.1) and (2.6.2) result in

8, Ty -ay U a3, [4ay) ay,] - ay [2a,52);]

a. = - = = (A.4.2)
3 =¥y hagy ag) = 23,4 ay)

After substitution of a, by its walue as given in (2.6.3), with

a, A, — a, B a B

3 74 2 74 32 V4
a,,=a, —a, = - R e (A.4.3)
43 4 3 A& B4 3 A4 B4

the coefficient 35‘15 expressed as:

[ a; A, - a, B, ]
N L4a
g =By

2a3, B,

3253 T 33[ A - 34] 291

4
839 By ]
4

"oy iy * Kepy [a4 =B
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%[22y 84 -2y B] -8y 225 ]

[223; &, - 25 B,] - [2ay 8]

(A.4.4)

According to (2.6.5), 2y formulated as
3y [2ay &, -4, 8,] - a, [2a5 B, -3, 8]

(225, &, - 85 8,] - [2a5, B, - By B]

a5 (A.4.5)

is identical with
a AS - 32 B

L (A.4.6)
s = Bs

(A.4.5) and (A.4.6) verify that

Ag = 2a3; A, - Ay A,

(A.4.7)

Bg = 2a5, B, - By B,

which is in accordance with the general law as stated in (2.6.6).

Assuming that a ins n > 0 can always be written in the form (2.6.5),
the coefficient amp for m > p > 2 can be expressed as

33 Am - a, Bm 33 Ap — a2 B

o P
a =8, = g = =
mp m 2] Am = Bm Ap - BP
A Bm - B Am
5 @ P 12 (A.4.8)

and for any n, (2.6.1) can be formulated as:

83 Mg = 83 Bpeq - Aol Boio ™ Aoin Boar [ [0 Bava ~ Ane2 Ba
A .. -8B " A .. -8B A . -8B A . -8B A -B
n+3 n+3 L[ n+l n+l][ n+2 n+2] h[ +2 n+2J n n]‘
(t3) A Bot2 ~ A B A B2 ~ Ao By
| Po+1 ™ Boea] Pav2 ~ Bos2] || [Aas2 - B2] [*aBa] |
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F3 An+2 = Sy Bn+2:| [n-I-l] An-{*l Bn+3 B An+3 l3'n+2 An Bn-i-l a Bn An+l
_ An+2 - Bn+2 LEAn+3 B Bn+3][An+2 » Bn+214-lﬁh-5n]ﬁ&n+l_ Bn+I.I
An+3 Bn+2 An Bn+l - Bn An+l

I:n +l] AI‘H"]. Bn+3 B

(A.4.9)

which is written more concisely as

g [Anys 2ys — Ay Yauo] - 2 [Brys 24 - Boyp Yool
B

Bnth

[An+3 73 ~ Pr yn+2] - I:Bm+3 Za+3 T Pnt2 yn+2]
(A.4.10)

where z and y are defined comprehensively.

Since equation (A.4.10) is valid for n = l,and n = 2, it is first

concluded that (A.4.10) is valid for any n.

From (A.4.10), it is further evident that any common multiplier to

z and Yoep C21 be extracted and removed. In order to deduct the

n+3
formation law for An+4 and Bn+4’ we examine the specific cases n = 2

and n = 3 separately.

For n = 2, Zg and y, are respectively equal to
2z, = 5 [4,8, - A,B,][AB, - A;B,]
v4 = 3 [AB5 - A1 [a;85 - ByA,]
Substituting A& and B&
in (A.4.1) results in:
zg = 5 [ABB!» - &,8.] [3a,;8,,] =5 [AB, - 4,B,] 33,5 [A,B, - '32A3]
(A.4.12)

(A.5.11)

in zg by their respective expressions given

_[An+3 " Bn+3J [An+2 - Bn+2]j h[Ar_lHBn_'l [_An+l" Bn+l;1
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Similarly, Y4 is given by

v, =3 [8, agy B, - BsB) - (225 A, - 438,) B,][A)B, - Byay]

=38, [A4B, - 4,B.][AB, - ByA,] (A.4.13)
and therefore, after reduction of the common factor in ZS and Yys the
coefficient Aﬁ and BG are found to be equal to

A =5a, AL - AB
6 20 75 474 (A.4.14)
Bg = 854 By = ByBy

The coefficients ¢ and yg are also derived comprehensively
6 = 6 [4;B5 - AB,1[A;B5 - AB,]
6 |aB; - AB,][A; (225, B, - BjB,) - (2a5, A, - A3B,) B,]

6 [4,Bs - AB,][2a,,][4;B, — AB,] (A.4.15)

z

and
= 4 [AB, - ABS][AB, - AB,]
4 [A; (53,9 Bg - B,B,) - (5a,, A, - A,B,) B.][A;B, - A,B,]

=4 8, [oB, - AB][A,B, - A;B,] (A.4.16)

-
wn
|

]

which after proper reduction of the common factors, leads to

By = Ragy Bg = AgBy

oy ™ 38y, Be ~ BBy

(A.4.17)

The general case is.derived by induction of (A.4.1), (A.4.7), (A.4.14)

and (A.4.17) and is given in (2.6.6), (2.6.7), and (2.6.8).
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append{x A.5

FORMULATION OF THE FAR SCATTERED FIELD FROM AN ELLIPTIC CYLINDER

For an incident plane wave given by

s jk.R
E =E, el= (A.5.1)

s .
the far scattered field Ez is expressed as

= @ 1) gy & . me (1) ‘ i
E = nEU [c, Me, “(E) < ce, (n) = ce, (B) +C, Me, ‘. (E) * ce, . (n)
Cenp1 (@) + Sy Vst (B) < sey (1) < sey,, (8) &8, Ne ehtn @ °
se, ,(N) * se, ,(0)] | (A.5+2)
(29)

following McLahlan notation

In (A:3s2)5

Me (£) = Ce (£) + jFey_(E)

(A.5.3)

Ney () = Se_(£) + jGey_ ()

and in this formulation, ce and se are the even and odd solutions

of order m of the regular Mathieu differential equation,

2
E—% + (m2 - 2qcos2x)y = 0 (A.5.4)
dx

and Py and s, are constant multipliers defined in (29). Cqm(E) and
Sem(E), [Feym(g) and Geym(g)], are the even and odd solutions of the
first kind, [}econd kind], of order m of the modified Mathieu differ-

ential equation,
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d2 2
—% - (m~ - 2qecoshx)y = 0 (A.5.5)
dx

The coefficients CIn and Sm_are determined from the boundary condition

for the total field E , i.e.,
—z .

E - gi +ES=0atg=Eg (A.5.6)
(29)

It is shown in McLahlan that the scattered field §: under the

condition (A.5.6) results in:

(l)
. ®)
E=-22 I {0, (5 - —;——— « cey (M) ¢ ce, (8) + B, (&)
n=0 2n
(1) (1)
(&) (&)
Ne)nt2 ; Mookl
Ty, Sf2ne2 (W 7 Seanp (O * Yo, (B —p
velH (&)
Ne, 1
ce e (M * cey 1 (8) + 8, 11(8p)° s ©sey (M o Sezn+1(e)-t}
2n+1
(A.5.7)
where
.. I £y = o2&
%0 (%) = ) " Bo+2 (%) = D) &
en (& Ne, +2€0
(E.) Se (&)
2n+1 0 2n+1 70
Y2n+1(50) = —-(T)—'(—E“-)- : 62n+l(€0) —(—]'_")-E")— (A.5.8)
€2n+1 %0 €2+l '50

In the far field, i.e. for large values of &, the confocal ellipses

are approximately concentric circles and the following relations hold:

P2n 2n+1 TR

which results with (A.5.7) in (3.2.7).

1 Ne (L)
-2Me, (&) o B 2n+l(E') /2 _3(kR+3/4) (A.5.9)
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The expansion of the Mathieu functions of the first kind which appear
in (3.2.9) and (3.2.11) are given next in terms of their coefficients
A; and BE. Although they are not entering directly in the derivation
' of the far scattered field, they will be referred to in section (3.4.2)

and are presented here for convenience. The functions

@

3 A2: cos2r, n=i0y L 2y ave  (Ae5.10)

c€on{te0) = 2
r=0

are periodical, modulo T, even in the angle ¢, and hence have a constant

term in the series expansion which is function of q. The functions

_ 0= 2n+l .
ceonty (P21 = IEU a0y cos(2rtl)g, n =0, 1,2, ... (A.5.11)

are periodical, modulo 27, and even in the angle ¢. The functions

(d.}:iQ) = "f B-2n+l

2o Parn ein(2r+l)¢, n =10, 1, 2, ... (A.5.12)

S8, ..
Zn+1l

are periodical, modulo 27, and odd in ¢, and the functions

2n+2 B
sey 1o ($:0) = r§0 By o sin(2r+2)¢, n =0, 1, 2, ... (A.5.13)

are periodical, modulo 27 and odd in ¢. The employed notation is that

of McLahlan and is such that ce, s Cey 1> SE have n zeros

2n+1° %2n+2
in 0 < ¢ < m/2.
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