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Abstract 

Services rendered by legacy systems that have evolued over decades are vital to 

many industries. Thmefore, reengineering of these s y s t e m  mwt ensure that the 

new systems prowide the same ~nct ionakt ies  as thezr ancestors, while explozting 

new technologies. Reengineering involves reverse engineering an applzcation h m  

code to a hzgher level abstraction, and then reimplernenting on a new platfonn. 

Ability to obtain the abstraction ut requzrements level enables maximum use of new 

deuelopment techniques and took in rezmplementotzon. Use of forma1 methods in 

specifiing requirernents helps eliminatzng unambitpity while enhancing confidence 

in consistency and correctness. This thesis presents a f o n d  approach to reverse a 

program wi t t en  in a C subset into a functzonal specifiatzon in  Z notatzon, inchd- 

zng (2) a desmiptzon of the abstractions used in the reverse engineering process? 

(iz) a method to obtain these abstractions from a program vnitten in a C subset: 

(izi) a method to derive the forma1 requirernents specifcatzon fmm the a bst~actions. 

and (iu) a compaRson of the logical strength of three sets of conditions to justzfg 

the comectness of the dm-ued specifcation, as  well as thezr application in revwse 

engineering. 
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1 Introduction 

For many organizations, legacy systems (system developed more than a decade 

eaxlier) have become large and inflexible towards changes. Yet, many applications 

stül rely on s e ~ c e s  rendered by those systerns, and therefore, those systems are 

vital to businesse& p.2731. Often, changes to legacy systems are made on an ad 

hoc basis. However, such patching process will eventudy become to complex so 

that organization must replace the legacy system[30, p. 191. One way to approach 

such replacement is reengzneering. One of the important requirements of reengi- 

neering is to preserve the hinctionalities of the old code[7]. While definitions vary 

[2, 11, for the purpose of this thesis, software reengineering is defined as a two- 

phase process. The first phase recovers the abstract model of the application from 

code; this phase is cded reverse engineering. The second phase reimplements the 

derived abstract model using new technology. This thesis adopts the definition for 

reverse-engineering from [l5, p.51; Accordingly, reverse-engineering reverse engi- 

neering "[is] the process of transforming or moving kom one level of description 

of a system to a level which is regarded as more abstract or 'eariier' in terms of 

the standard [software developrnent] Me cycle". In the context of reengineering, a 

reverse engineering methodology that is able to recover higher level (i. e., require- 

ments specification) abstractions has the advantage of enabling reimplementation 

process to take Ml advantages of modern development systems and approaches at 

various levels of abstractions. 

A good software requirements specification must correctly define al1 the require- 

ments of the software product under consideration [18, p. 111. It must, however, not 

be inclined towards design, implementation, or project management details. The 

IEEE Standard for Requirernents Specification[l8] discuçses severai qualities of a 

requirements specincation document. Among these, the qualities "unambiguity" . 



L'consistencf', "correctness" , and 'traceabilitf' can be best captuceci by writing 

the requirements using a formai notation. Recently, severd software development 

projects have justifieci the claim that formal approaches used in these projects lead 

to uncovering many errors early in the development stage and also prove them- 

selves to be useful in reasoning about interesting properties of the application[25]. 

It is for the same reason that this thesis attempts to use a formal approach to 

reverse engineering. In particular, if the code for ao application is reversed into 

its formai requirements specification, the traceabiüty, modifications and benefits 

of new technology during reimplementation process can a l l  be justitied. 

From the above discussions, it is clear that for a reverse engineering approach to 

work best with reengineering, the target of the reverse engineering process should 

be a formal SRS. This thesis contributes to this goal by presenting a formal a p  

proach for extractkg a functional specification (suitable for inclusion under the 

section, 'Specific Requirements2[18, p.231 in an SRS) from a program written in a 

C subset. 

1.1 Reverse Engineering Technology 

Gannod and Betty[6] advocated a two-phase approach to reverse engineering us- 

ing forma1 methods. Detail description of the approach is presented in [12]. In 

order to benefit from recent advances in object-orientation and formal methods[6, 

p.3351, their approach was aimed at  produchg an object-oriented design from an 

existing software. The design is expressed in a formal Ianguage based on predicate 

logic[6, p.3451. The first phase consists of obtaining a specification from a pro- 

gram, consisting of pre and post-conditions of each procedure. In the second phase 

classes and ob jects are identified hom obsenring the interface (the parameter lists) 

between the procedures The 6rst phase had been specified using a procedual lan- 



guage with basic imperative programming constructs, assignments, dtemations, 

iterations, and (non-recursive) procedures. A tool for assisting in phase one had 

been developed for a subset of Pascal. Specific guidelines[6, p-344 were also given 

for performing identification of classes (phase two) . In particular, each structured 

datatype become the attnbute of a certain class, and each procedure is assigned 

as a operation to a class based on the types of the structured variable(s) in its 

paramet ers List. 

The Maintainer 's Assistant [23] was a tool developed at University of Durham. 

U.KI that was aimed at assisting modification of an u n f d a r  software given only 

its source code [23, p.3081. The major features[23, p.3101 of the tool, apart from 

allowing direct editing of source code, is the inclusion of a large library of seman- 

tics preserving program transformation which may either be invoked by the user 

directly, or by a knowledge base. The validity of a l l  available transformation has 

been established in [39]. Any editing or transformation (in case the transformation 

requires a condition that may not be proven automatically) that may change the 

semantics of the program is recorded separately. The tool supports prograns writ- 

ten in a wide-spectnun language[23, p.3091 (WSL), which was designed to have a 

simple semant ics, and was able to seamlessly include specifications as stat ements . 

The use of such language enabled a transformation approach to be used in both 

translating between programming languages and obtaining a specïfication from 

code[23, p.3121. 

Spencer Rugaber proposed a reverse engineering methodology t hat was targeted 

towards reversing data processing applications[28]. The methodology features a 

topdown approach, which he claims had the advantage of providing more confi- 

dence in obt aining architectural information earlier, comparing to starting wit h 

understanding the implernentation completely[28, p.21. The methodology consists 



of four phases[28, p.31. In the first phase, a review of &ing system documenta- 

tion produces a textual system description formatted in a topdown fashion. The 

second phase consists of constructing a nested data flow diagram x by an analysis of 

the entire system's input-output behaviors. Consistency check may be performed 

among the nested layers of the diagram, and against the source code. The third 

phase involves analyzing and presenting the structure of the mes that the system 

uses. ln the forth phase, a program analysis technique inventeci by the author, 

called 'synchronized refïnement', is used to obtain detailed description of certain 

functionaiities based on incrementally arinotating their functional description with 

deszgn d e d i o n s  detected fkom code. 

In the RED0 project[36], a general approach was developed for reverse en- 

gineering towards a formal specification[3]. They viewed reverse engineering as 

an iterative process among t hree phases[3, p.2131: 'clean' , 'specify ' , and 'sim- 

pli&'. The ârst phase involves restrzlctwing of the program into a fonn which, in 

the second phase, may be tramlateci into a sequence of equations. These equa- 

tions relate the initial and &al d u e s  of program variables in executing the pro- 

gram. A highly automated[3, p.222]normalization process[3, p.202-1 l] iovented 

during the development of REDO is applied to present the equations in a nor- 

mal form. The 1st phase is simpüfication of the sequence of equations. Among 

other mat hematical simplifications[3, p.2161, the use of data equivalence[3, p.216- 

221 is advocated for obtaining higher level abstraction. A data equzvalence specifies 

niles for transforming a set of equations based on one data structure to another. 

When ths general approach was applied to extracthg object-oriented designs from 

COBOL programs[l6], the three phases were specialized as foilows. In the 'clean' 

phase, the COBOL program is translated to a semantically equivalent program in 

U NIFORM [a], which was designed t O serve as a language-independent represen- 
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description is constructed, which comists of a set of object classes identifid from 

the program. Speciticaliy, a class is created for each file, indexed array or report 

being the chief attribute. For each chef attribute, dataflow analysis is then used 

to collect its aiuoliary variables (such as counters), and included in the respective 

object class as attributes. Meanwhile, or süces that implement candidate 

operations for these object classes are identifieci. Sequences of normalized equations 

are used to describe the candidate operatiom. In the 'simplify' phase, the ob ject 

classes specifications are translatecl into Z++, an ob ject-oriented extension of the 

Z specification laquage. Findy7 Lano, Breuer, and Haughton(l61 also described a 

method to derive COBOL code back fÎom a sequence of equations, and therefore, 

enables a form of reengineering[lô, p.2471. Lano and Haughton[l5, p.16@6] de- 

scribed how a similar approach may be appiied to obtain an object-oriented design 

from a C program. 

Müiler et a4351 described an approach towards reverse engineering that was 

aimed at obtaining an architectural understanding of a large software system by 

identifying its subsystems, and studying the relationships among these subsys- 

tems. Both tasks, along with documentation of the results, were all supported 

by an integrated tool, Rigi. In the first step of the approach, a parser parses the 

subject program to create a directed weighted resource-Jow graph (RFG) among 

entities of the program such as files, functions, and variables. In particular, the 

RFG documents the exchange of resources among these entities. In a provision 

relationship an entity is supplzed by one entiv ( c d  the supplier) to another entity 

(called the client). For example, when a C structure of type a has a component of 

another structure type i, then a is a client of i in a provision relatioaship in which 

2defined to be "maximal logically-connecteci piece of code which contains no [statements for 
opening or closing files]" 



i supplies itself to i. Requisition relationship is simply the converse of provision 

relationship. In the second step, subgraphs of the original resource-flow graph are 

aggregated to form a hierarchy of a new W of entities cded subsystems. Each 

subsystem consists of another RFG in which the nodes are either entities fiom the 

onginal RFG, or subsystems at the next level down the hierarchy. Between two 

entities, we may calculate their exact interface, which lists separately (i) those re- 

sources exchanged between the entities, and (5) those resources exchanged among 

the entities within each of these entities. 

COBOL System Renovat ion Environment [l9] (COBOL/SRE) irnplements an 

approach to reengineerïng based on recovery of reusable components Erom the sub- 

ject software [19, p.641. In a source browser, the analysis may select a segment 

(defined to be a set of statements, possibiy non-contagious in the source text [lg, 

p.871) fiom a program which is deemed to be cooperating in performing a cer- 

tain hinctionality. Program slicing is then used to select other relevant segments. 

When the analyst is convuiced that a l l  the code that irnplement the functionality 

is inchdeci, he rnay instruct the tool to pack the selected segments either into a 

subprogram , an independent program, or simply a source file containhg the state- 

ments. The tool takes care of making all the necessary laquage-specinc changes 

to the program necessary when packing subprograms or p rogrm.  

In surnmary, the essential ingredients of a reverse engineering approach are the 

following: 

human intelligence Human intelligence remains a major ingredient to most re- 

verse engineering approaches. For example, when usuig the Rigi tool, the analyst 

ultimately has to decide on how software entities shovld be aggregated into appro- 

priate subsystems. The same thing happens when subprograms are extracted fkom 

COBOL programs in COBOL/SRE. However, the virtue of a reverse engineering 



approach, as pointed out in [Xi, p.3-41, is not to be automated completely, but 

rather, provides support for unintefigent tasks as  much as  possible. For example, 

based on recognition of human cognitive abilities[lO, p.q, Rigi, in addition to pro- 

viding gaph editing comrnands, also provides an interpretive script ing language 

to offer flexible end-user programming[lO, p.51. Two cognitive models of program 

comprehension are discussed in [Ml. Mental representation of software and hints 

on improving program comprehension are discwed in [37]. 

artificial intelligence Numerous tools for reverse engineering are supported 

by some form of artincial intelligence. For example, when performing program 

transformation in Maintainer's Assistant, the analyst may ask a knowledge base for 

the appropnate transformation sequence[23, p.3101. There was &O an attempt at 

University of Aberdeen, U.K. [ll] in training artificid neural networks to recognize 

standard aigonthms fÎom COBOL programs. The problem of associating human- 

oriented concepts with their implementation in a program is known as concept 

asszgnment problem[40, p.721. The DESIRE tool[40] attempts to alleviate this 

problem by having an intelligent agent to perform three relatecl tasks[40, p.801: 

search for a.il occurrences of any concept known by the agent, search for a concept 

specified by the user, or assign a concept to a given segment of code. 

program slicing In general, a slice of a program may be defined to be a "corn- 

plete program which contains a subset of the statements of the original pro- 

gram, and which perform a subset of the computations performed by the origi- 

nal program" (9, p.55I3 Two kinds of program slicing that are Erequently referred 

to[26, 32, 19) are forward and backward slicing. The forward slice[l9, p.681 of a 

sequence of statements with respect to a variable are those statements whose be- 

in other hterature[32, p.21 siïces need not form an executable program 
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havior (including flow of control and efkct on values of variables) depends on the 

initial d u e  of that variable. Similady, the backwatd slice[l9 p.681 of a sequence 

of statements with respect to a variable are those statements whae behavior (in- 

cluding flow of control and effect on values of variables) may affect the final value 

of that variable. In the context of program understanding, one application of for- 

ward slice is to study how the inputs are processed[l9, p.681 (by forward sücing 

with respect to those variables that hold the inputs). Similady, backward slicing 

is useful for tracing back how a particular output at a particular statement of 

a program is evaluated [19, p.681. Among the reverse engineering approaches de- 

scribed previously, program slicing is used for identifying functionalities of CO BOL 

code segments using COBOL/SRE[19] or the approach described in [16]. Program 

slicing may also occur at a dinerent gr mu la ri^ than statements. An example is 

interface slzcing[9], in which the slicing extracts a set of type and global variable 

definitions and subprograrns that a given set of subprograms require in order to 

operate[9, p.591. In addition, program slicing may ease analysis of a loop by en- 

abling one to analyze the effect of executing the loop on each variable separately(l7, 

p.601. 

program rest ruct uring Program restmcturing is a valuable tool for restruc- 

turing code so as to reduce the number of control structures to ease program 

understanding. Breuer, Lano, and Bowen[3] described a method of transforming 

an unstructured program into a structured one based on its representation as a 

set of equations. Ward[39] provided an extensive library of transformation for a 

wide-spectrum language which may be used for[39, p.41 transforming unstructured 

programs into structured programs, traosforming recursive procedures into itera- 

tions. Inclusion of general specifications[39, p. l?] in the wide-spectrum language 

enable the same program transformation framework to describe transformation 



between a prograrn and a specification[23, p.3121. 

denotation semantics The denotational semantics of the programming lan- 

guage used for implementation &O plays a crucial role in reverse engineering. The 

denotational sernantics[21] of a language consists of a set of semantic hinctions 

boom the states of the prograrn to denotations in the semantic domain[21, p.1061. 

The semantic hinction for a given kind of constmct of the language is defined as 

some composition of the semantic hinctions of its syntactic components[l3, p.211. 

In fvnction abstractzon[l7][15, Ch.5],[22, Ch.51, the same technique is applied in 

order to specify the functionality of a segment of code in terms of the relationship 

between the pre and post conditions in executing the code. However, hinction 

abstraction is different fiom denotational semantics in handling recursive and iter- 

ative constructs. In particular, a loop may be presented in Function abstraction as 

a recursive hinetion (for example, [I?, p.59]), while the denotationai semantics of 

a loop must be represented non-recursively (as a fized point4 of some function(l3, 

p.231). Peter Baumann et aL[27] advocated the use of program analysis techniques 

baseci on denotational semantics for several reasons[27, p. 101. One of those reasons 

is that it enables abshact znterpretatzoon[27, p.161, a program andysis technique 

that supports such analysis as control and data 0ow analysis, which are in turn 

essential ingredients[26] of program slicing. The fimction abstraction procedure 

employed by REDO[15, Ch.51 also uses the notion of translational semantzcs[l5, 

p.971, which defines the semantics of a language by first defining the semantics of a 

small subset of the language (for example, wit h denotational semantics) , and t hen 

extend that subset to the entire lsnguage by defining translation d e s  between 

the rest of the language with that subset. The semantics of the wide-spectrurn 

language[39] supported by Maintenance Assistant was also defined in a similar 

"more discussions on fixeci points is given on page 121. 



1.2 Reverse Engineering Using a Formal Approach 

Wordsworth[42] described an idea of using Z schemas to speci& the function of 

procedural program. In particular, this b c t i o n  may be represented by the rela- 

tionship between the values of program variables before and alter the execution of 

a construct [42, p.1981. The function of an entire program may be deduced by a 

process cailed stepwise abstraction [42, p. lg8j. In stepwise abstraction[42, p. 1981, 

the hinctions of individual statements in a program are obtained. From these the 

functions of the control structures are obtained. The function of the entire pro- 

gram is formed by combining the huictions of its control structures. In this thesis. 

Wordsworth's idea is applied to a subset of the C programming language[l4]. The 

goal is to provide a thorough theoreticai account ranging from obtaining abstrac- 

tions of a single construct in the program, up to extraction of an abstract hinetional 

specification. In particular, the foliowing points sumrnarize the findings reported 

in this thesis: 

Five abstractions were identifieci that describe various aspects of a C con- 

struct (Section 3). 

6 Abstraction rules for finding the abstractions of any construct €rom a subset 

of C (described in Section 5.1) kom the smaller constructs that it contains. 

These des are introduced in two steps: A set of basic formulas that aggre- 

gate various kinds of abstractions are identifieci (Section 4); The abstraction 

rules for each kind of C construct in the specified subset of C are derived, 

making extensive use of the basic formulas (Section 5). 



The steps that one may take in order to obtain a functiond specification in 

Z notation from a program written in the specified subset of C using the five 

abstractions (Section 6). 

A theoretical account on how to obtain a more abstract specification from 

one t hat is created using the previous steps (Section 7). 

Wordsworth himself has pointed out a major difficulty with this approacb, that 

a specification obtained in this manner is iikely to s p e c e  uninteresting behaviors 

of a program in addition to the interesting ones [42, p.2361. For example, since 

a binary searcb procedure is unlikely to fail even if the list to be searched is 

unsorted, much of the abstraction of such procedure wouid describe the behavior 

of the procedure when the List is unsorted. In fact, by considering that procedure 

in isolation, it is impossible to deduce the precondition that the procedure is not 

applicable to an unsorted list. Either human or artificial intelligence is necessary to 

distinguish between interesting and uninteresting behaviors. This thesis fomalizes 

the assertion of such distinction in tenns of specifying boundaries of the abstract 

operations within the program text, and the state invariants that the program 

variables must observe at t hese boundaries. 

2 Elements of a Z Specification 

This section describes the subset of Z notation[33, 42, 241 that is used in this 

thesis. The exposition assumes familiarity with predicate logic and set theory. 

A Z specification consists of a sequence of declarations interleaving with infor- 

mal descriptions. Each declaration declares a variable, or a set of -ables to have 

certain type(s) and value(s). Each variable in a specification must be declared 

before use. Recursive definition is permissible in axiomatic and generic definitions, 



but mutuaily recursive definitions are forbidden. A type in Z is dehed  to be 

e q W e n t  to its cawier set, that is, the set of aU values belonging to that type [33, 

p.241. For the purpose of this thesis, we only consider the value that a variable 

may hold as the variable is introduced via one of the fouowing five kinds of declara- 

tions: variable declarations, syntactic equidences, axiomatic definitions, generic 

definitions, and schema declarations. We Grst explain the notation for synt actic 

equivalence, axiomatic definit ions and generic definit ions. Sc hema declarat ions will 

be introduced after notations for forrning expressions and predicates are described. 

Finally, we discuss how a Z specification may be used to document the hinctional 

requirements of a software. 

2.1 Variable Declarations 

The foilowing variable declaration 

Var : Set (1) 

introduces the variable Var to be an element of the set Set, with the value of Var 

further constrained by the context in which the declaration is in effect, ie., the 

scope of the declaration. For example, the declaration 

by itself specifies i to be a natural nmber (i-e. ,  a non-negative integer). The 

predicate i < 10 within the scope of the declaration would additionally constrain i 

to be les  than ten. A variable declaration of form (1) is fiequently used in other 

declarations, expressions, and predicates. 



2.2 Syntactic Equivalence 

Syntactic equivalences are used in this thesis to define sets. A syntactic equiualence 

has the following notation: 

Var == Eqression (3) 

It declares Var to be equal to the d u e  specified by Eqresszon. Var becomes a 

global variable, which may be used in place of E ~ s i o n  as a free variable of any 

subsequent declarations. 

A syntactic equivdence may &O be pammeterized. For example, in the foiiow- 

ing syntactic equivalence 

X and Y are the fornaal parameters of the declaration. Given this declaration, the 

e4qression Z t, N may be interpreted as 

2.3 Axiomatic Definition 

The notation for an axiomatic definition is: 

D consists of a set of variable declarations- Predicate P further constrains the 

values of the variables declared in D. The variables declared in D are global, and 

therefore may be used as free variables in P, and in subsequeut declarations. 



2.4 Generic Definition 

A generic definition is very simüar to an axiomatic definition, except that the 

dehition is parameterized. For example, 

declares NonEmpty to be the power set of some set; X is the f oma l  parameter of 

the generic definition. For example, if x is of type Z (set of integers), the predicate 

is valid, with formal parameter X in the above generic definition instantz'ated with 

actuul parameter 2. The expression NonEmpty[Z] in (6) may simply be written 

as NonErnpty. This is because, fiom the context in which the expression occurs, 

NonEmpty [ Z ]  must have type 2. Therefore the respective formal parameter must 

be 2 .  Generic debitions are most usefd for defining polymorphic operators (that 

is, operators that may take multiple types of arguments), as used frequently in 

t his thesis. For example, the following generic definition 

r 7 : s e q - X  x N c X  

defines an operator ( [] ) that is a partial function with two arguments. The function 

may then be used in subsequent declarations with the syntax elle2] , where el 

and 4 are expressions of compatible types according the declaration above. The 

underscores (-) in the above declaration act as place-holders for the arguments. 

By using such place-holden, infix, postfix and prefk operators may be defined at 

ease. If there is no place-holder for arguments, the operator is by default prefix. 



2 ELEMENTS OF A Z SPECXFICAîTOn' 

2.5 Expressions and Pwdicates 

Z notation is based on typed set theory and first order predicnte logic In Z notation, 

expressions specify atoms (values that are not sets themselves) a d  sets. Predicates 

are used to assert statements about expressions. 

2.5.1 Expressions 

The kinds of expressions in Z notation used in this thesis may be classified into the 

following categories: variables, tuples, sets, definite descriptions, hinction applica- 

tions, sequences, and schema component selection expressions. Tuples are always 

atoms. Even t hough variables, dehi te  descriptions, and function applications may 

specw sets, they are considered separately kom sets because they may also specify 

atoms. Although sequences are sets in Z notation, it is worthwhile to discuss them 

separately fiom sets because of their distinct role as specïf'ying ordered Lists of val- 

ues in a specification. We concem ourselves only with the value of an expression 

rather than its type. 

variables When a variable occurs in an expression, its value is abtained frum 

its declaration. We have considered how this value is obtained h m  a variable 

declaration, syntactic equivaience, axiomatic defmition, or generic definition. The 

remaining case is when the variable is declared using a schema, which we shdl 

consider in Section 2-7.1. 

tuples A tuple is an ordered collection of values, enclosed by brackets, and sepa- 

rated by commas. For example, (el, 4) is a tuple whose first component is expres- 

sion el, and whose second component is expression e2. Two projection operators 

are avaiiable in Z for ordered pairs (tuples with two components): hst  p gives the 
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h t  component of an ordered pair p, and secondp gives the second component 

of an ordered pair p. 

sets The foiIowing notations in Z are used in this thesis for definhg sets: prede- 

fined set, set operators (power set, cross product , relation, hinctions, union, inter- 

section, and minus) set enurneration, and set comprehension. These notations are 

described as follows: 

predefined sets Z notation provides a number of predefined sets, including 

integers (2) , and empty set (0). The set of naturd number (N ) is not a predefined 

set arcording to the Standard[24], but is included as part of the mathematical 

tookit associated with the 2[33, p.108]. 

power sets The power set of a set S is denoted in Z notation by P S. 

cross products The m s s  prodvct of expressions el, e ~ ,  . . . , g, each of them 

specifies a set, is the set of ail tuples whose first component is ao element of el, 

and whose second component is an element of e*, and so on. This is denoted in Z 

by the notation el x e2 x x &. 

relations and functions A relation is a mapping from one set to another. 

For sets X and Y, the notation X t, Y represents the set of al1 dations from 

X to Y. Every relation from X to Y corresponds to a subset of X x Y, and vice 

versa. Therefore, the set of all relations fcom X to Y would be the set B(X x Y). 

This may be captured by the following syntactic equivalence: 
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Several operators are available in Z for relations. The prefk functions dom and 

ran evaluates the domain and range of a relation. They may be defined by the 

following generic definition: 

In addition, there are intùc Functions available for performing operators sucb as 

domain restriction (a), domaln subtnzctzon (d), range restriction (D), and range 

subtractzon (B). Each of these operators takes a pair of relations as arguments 

and evaluates to another relation. They may be defined by the foiiowing generic 

definit ions: 

Functions in Z are special forms of relations. Specificdly, a functzon is a relation 

in wbich each element of its domain is mapped to a single element of its range. 



The notation X -» Y denotes the set of a l l  partial fundzons from X to Y ,  that 

is, the set of ail relations fiom X to Y which are functions. This may be specified 

hl z by 

X - H  Y = = { r : X w  YI(Vx:X;yl,y~: Y I x ~ d o m r e  

((x, YI) E r A (x, 32) E r )  e+ Yi = Y*} (8) 

The notation X * Y denotes the set of ad total jvnctions hom X to Y, that 

is, the set of all partial functions fÎom X to Y whose domain is X .  This may be 

specified in Z by 

There is an important infix operator known a s  overridzng, denoted by @. Given 

two functions of the same type as its (lefi and right) operands, this operator 

constmcts another function by overriding each ordered pair in the k t  operand by 

the ordered pair in the second operand that has common h-st cornponent, if there 

is any. The resulting hinction may fomally be specified as 

other set operators Usual set operators, union (u), intersection (n), and 

minw (\), are available in Z as i& operators. 

set enurnerations A set enurneration dehes a set by explicitly listing the 

elements of the set. This is denoted in Z by the foiiowing notation: 
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which denotes a set whose elements are the values of the expressions el, 4,  . . . 
and e,.,- 

set  comprehensions A set comprehension defines a set by the property that 

all elements of the set must satisfy. This is denoted in Z by the foiIowùig notation: 

D is a set of variable declarations. P is a predicate. E is an expression. The set 

(11) is constructed in the following fashion: For every sets of values of the variables 

declared in D such that P is satisfied, The conesponding value of E becornes an 

element of the set being constructed. A special f o m  of set comprehension is 

{v : T 1 P), which is equitdent to {v : T 1 P a v). 

integer subranges A special kind of set comprehension is one that specifies 

a subrange of integers. In particular, the set of integers ranging from a to b may 

be denoted in Z by the foilowing set comprehension: 

definite descriptions A definite description has the following fom. 

where D is a set of variable declarations. E is an expression. PD is the constraining 

predicate that gives values to the variables declared in D (denoted by ü in (El)), 

by specï&ing the relationship among these variables and the free variables of the 

description (denoted by in (13)). The corresponding value of E (usually in tenns 



of ü) becomes the vaiue of the definite description. The use of the variable narnes 

ü is arbitrary because these variables are bounded within the definite description. 

Ree variables 3 must be declared in the context in which the deibition description 

occurs in a specification. If PD does not constraint E to a unique vaiue, the value 

of the dehite description is taken as being one of the alternatives, but the selection 

of alternative is indeterminate[42, p.881. If PD does not constrain E to any value 

at d, the value of the definite description is still taken as being some value of its 

type, but is completely indeterminate. A special form of dehite descriptions that 

is used throughout this thesis is 

which is equivalent to 

funct ion application The prefiz f o m  of function applicotzon used in this thesis 

is ei(e2), where expression el is a hinction and e2, the argument of the fuoction 

application, is another expression By definition, the Ewiciion application el ( e2 ) 

may evaluate to at most one value (none if e2 is not in the domain of el). Therefore 

function application rnay be specitied using definite description, using the following 

generic definition: 

-(-) : ((X -Çt Y) x X) -t y 

(Vf :x+ Y ; z : X .  f(x) = (put : Y 1 (x,y) €f)) F- 



sequences A sequence of X may be repraented in Z by a partial hinction from 

natural numbers to X [33]. In particular, the set of aN sequences whose elements 

are drawn hom the set X (the formal parameter in the following declaration) may 

be declared as 

seqX== (j: N +  X 1 domf = L#f) ( 16) 

To index an item from a sequence, hinction appiication may be used. For example. 

the ith element of a seguence s rnay be referenced by the huiction application s(i). 

The following prefix operators are dehed for sequences: For a sequence s, head s 

gives the Grst element of s, last s gives the Iast element of S .  fiont s gives a 

sequence that is the same as s except with its 1 s t  element truncated, and tails 

gives a sequence that is the same as s except with its h t  element removed. These 

operators may be declared by the foliowing generic definition: 

head : seqX + X 
last :seqX + X 
h n t  : seq X -, seq X 
tail : seq X -, seq X 

(Ys : seq X heads = s(1) 
A last s = s(#s) 
A fronts = {#s) 4 s 
/\ tails = (1) e s 

-lote that since a sequence is a hinction in 2, cardinality operator (#) applies 

equally to sequences, yielding their lengths. 

A setpence enurneration specses a sequence by listing its elements, as shown 

below: 



2.5.2 Predicates 

There are four ways of forming predicates: using relational operators smong expres- 

sions, using logical connec t ives, quantifications, and schemas expressions. Schema 

expressions as predicates will be introduced in Section 2.7.3. 

relational operators Z does not have an explicit booleaa type, So there is no 

simple predicate which equates a variable or an expression to a boolean constant. 

Instead, d relationai expressions which evduate to tmth values are treated as 

predicates. For example, the equality operator applied to two operands of the 

same type such as 

is a predicate. The tmth value of such a predicate depends on the semantics of the 

relational expression (in the above example, the predicate evaluates to true when 

the expression X is equai to Y). Almost ail the conventional relational operators 

are available in 2. Some of them are: set membership (E), subset operators (c? 

Ç), and comparative operators (<, 5, >, 2, =, #). 

logical connectives Compound predicates can be created using logical con- 

nectives: negation (- ), disjunction (v) , conjunction (A); implication (+), and 

equivdence ( H )  . 

quantification Both existential and universal quantifications are used in this 

thesis. In Z notation, an existentid quantification is denoted by 



where D is a set of variable declsrations. Pi and Pz are predicates. Let s , w, . . . , 
un be the variables declared in D. Predicate (19) asserts that 'there exists a set of 

values for Q, s, . . . , s, constrained by PI, such that Pa is satisfieci'. Therefore, 

predicate (19) is equivalent to 

A univend quantification is denoted in Z by 

where D is a set of variable declarations of form (1). PI and PÎ are predicates. 

Let VI, w, . . . , un be the variables declared in D. Predicate (21) asserts that 'for 

al1 sets of values for q , w, . . . , un S U C ~  that Pl is tme, PZ is satisfied'. Therefore, 

predicate (21) is equident to 

2.6 Schemas Declarations 

A schema dedaration has the following lonn: 

Schema Var f[D 1 P] (23) 

which declares Schema Var to be the name of the schema whose definition is given 

on the right hand side of the definition symbol ('s'). The vertical bar (1) divides 

the schema into two parts. The signature part, D, is a set of declarations, each 

of them is either a variable declaration or a schema reference. The variables de- 

clared in D are known as the components of the schema. These variables are local 



to Schema Var, but are availabie to subsequent schemas declarations by schema 

inclusion or schema references. The predicate part P is a predicate that constrains 

the values of the cornponents of the schema. Presence of a schema rekrence in the 

signature part of another schema is known as schema inclusion. Schema inclusion 

may be defined as  foiIows: Inclusion of schema A in schema B results in another 

schema whose signature part is the union of the signature parts of A and B, and 

whose predicate part is the logical conjunction between the predicate parts of A 

and B. 

Three kinds of schema declarations are used in this thesis: state schemus, 

operatzon schemas, and initial state schemas. 

2.6.1 State Schemas 

In a model-based specïiication, a system is modeled by a persistent data store, 

with each operation specified in terms of a change of state, that is, a change in 

the values of the data store. A schema, in this case known as a state schema, may 

be used to speci& the form of the data store (that is, the model) for the system. 

Specifically, for a schema that specities a model, its components represent the state 

of the system at some point during execution of the system. The predicate part 

represents the state invariant that must be held by the values of the persistent 

data at the beginning and at the end of every operation. 

2.6.2 Operation Schemas 

A schema, when used to speci& an operation, is known as an operation schema. 

Syntacticdy, an operation schema has the same stmcture as that of any other 

schema. However, the declaration part of an operation schema must include the 

state space(s) on which the operation will be performed. Typically, the predicate 

of an operation schema describes the state changes. FoUowing Oxford's convention 



of writing Z specifications, primed components (components whose names are dec- 

orated with a prime) represent the final state after the operation. The unprimed 

counterparts of these variables represent the initial state before the operation. 

The predicate part of the operation schema represents the relationship between 

the initial and h a 1  state of the operation. For the purpases of this thesis, we may 

define precondition operutor pre, which gives ai l  initial states of an operation that 

have corresponding fina3 states, and postcondition operator post .  which gives al l  

final states of an operation that have corresponding initial states. Fomdy,  for 

the following operation schema 

pre Op is a schema whose components are those of Op that are unprimed, and 

predicate part being 

pre e[C] -S (3 v' P,(T, ü')) (25) 

Similarly, post Op is a schema whase components are those of Op that are primed, 

and predicate part being 

delta convention Consider the following schema 

An operation Op may be defined on SI by the following declmation: 

Sfor example, n', whose unprimeci counterpart is n, is a variable decorated with a prime. 



which, by schema ioclusion, is equident to 

O ~ G [ Z , ~ : N ;  y , y ' : ~ I ~ <  y - ~ ~ i = ~ + ~ ~ y ' = y ]  (29) 

We may use A-convention to abbreviate (28) by 

O ~ ~ [ A & I X <  y - l h x ' = z + l ~ y ~ = y ]  

n 

xi convention When an operation does not resuit in a state change, =-conuentzon 

may be used to abbreviate the operating schema. Once again, consider the schema 

Si in (27): 

SiG[x:N; y:ZI y > X I  

An operation Op2 rnay be defined on SI by the following declaration: 

which, by schema inclusion, is equivalent to 

O p 2 ~ [ x , ~ ' : N ; y , y ' : Z I x  < y - Z A Z ' = X A I J ' = ~ ]  (33) 

We may use 5-convention to abbreviate (32) by 

Note that the predicate x' = x A y' = y, which indicates that there is no state 

change, is implied by 3-convention. 



2.6.3 Initial State Schemas 

An operation schema specifies the change of state during execution. However, we 

also need to specify the conditions during initiaikation process. This is speci£ied by 

an initid state schema which is considered to be a specid operation on the state. 

In particular, the initial state of a system may be represented by an operation that 

specifies only its hnal state. 

Suppose S specifies the mode1 of a system. The initiai state of the system may 

then be specified by the following initial state schema: 

This schema looks very similar to an operation schema that specifies an operation 

on S, with the exception that S is absent fkom the declaration part. This is because 

the state before initialization is irrelevant to the result of initialization. 

2.7 Schema References 

A schema ~ e f e ~ e n c e  is either a single schema name, or an 'expression' formed by 

applying schema operators to one or more schemas. A schema reference may either 

speci& a set, a predicate, or an atom. 

2.7.1 Schemas as Sets 

We s h d  describe how schemas specify sets by an example. Consider the schema 

in (27): 

The expression Sl specifies the set of d values for x and y such that y > z: 



The notation ( name1 er valuel, nome* H valuez,.. . ) denotes a value with 

multiple components, similar to a tuple, except that (i) each component is named, 

and (ii) the ordering of the components is insignificant. For example, ( x  H 

1, y w 2 )  is exactiy the same as ( y  O+ 2,s H l), while ( a - 1 )  is merent  

fkom ( b k  1). 

If Sl specifies the mode1 of a system, then the expression Si would specify the 

set of all states that the system can possibly attain before and after executing any 

operation. Note that specific operations may fixther constrain the set of possible 

states before andior after their execution. 

Since the expression Si specifies a set, the variable declaration 

is vaiid, which declares s to be an element of the set specified by SI.  Then s would 

be a value with two components named x and y. To refer to the values of these 

components, we use the schema component selection expresszons s.x and s.y. 

2.7.2 Schema Component Select ion Expressions 

Let s be a variable of a schema type. Then, the value of a component of s, Say c; 

is referenced by the schema component selectzon eqression s.c. 

2.7.3 Schemas as Predicates 

When a schema occurs in a specification where a predicate is required, the pred- 

icate part of the schema is substituted in place of the schema. The free variables 

introduced must have been declared in the context in which the schema occurs. 

A number of schema operators are used in this thesis. We have seen two of 

them, namely pre and post operators. EZvcept for theta convention, which specifies 



an atom, all of these operators yield schemas as resdts. Now, we shall include 

the definitions for other schema operators that are used in this thesis: decoration, 

conjunction, disjunction, theta convention, renaming, systematic renaming, hiding, 

and composition. 

2- 7.4 Scherna Decoration 

For a schema A, A' is a schema which has the same declaration and predicate 

parts, except that the components of the schema, as weU as their fkee occurrences 

in the predicate part, are decorated with a prime. 

2.7.5 Logical Connect ives Applied to Schemas 

Ail the five logical operators can be appiied to schemas as operands. In d cases. 

the declmations of the operands are merged and their respective predicate parts 

are c o ~ e c t e d  using the logicai comectives. For example, if SI [Dl 1 PI] and 

& 2 [4 1 P2], then SI * & " [Dl; 1 Pl * Pz]. 

2.7.6 Theta Convention 

For any schema A, if cl, c . ~ ,  . . . , c, are the components of A, then BA denotes the 

following: 

with the constraint that cl, q, . . . , Cn must satisfy the predicate part of A. The 

notation 0 A' denotes the following quantity: 

with the constraint that ci, 4, . . . , c', must satisfy the predicate part of A. The 

application of theta operator to a schema resdts in an unnamed instance of the 



schema whose bindings satisfy the constraints of the predicate part. More about 

bindings can be found in [33, p.261. 

2.7.7 schema components renaming 

For a schema A, renamiog of components nl to ml, % to m, . . . nk to mk is denoted 

by 

2.7.8 systernat ic renaming 

In another form of renaming, rather than supplying the names of ail the compe 

nents to be renamed, only the common decorator of them are supplied. In effect, 

al1 components that bave a certain decorator, are renamed to components of the 

same name except having another decorator. For a schema A, the notation 

denotes renaming of dl components of A that has subscript to their primed 

counterparts. 

The hidzng of a List of components ni, %, . . . , nc from a schema A is denoted by 

The result is another schema whose cornponents are those of A, with nl, w, - - - 
nk removed, and declarat ion part becomes the foLlowing predicate 



where D represents those variable declarations in A that correspond to the hidden 

components, and P is the predicate part of A. 

2.7.10 composition 

For any two schernas A and B such that the declarations for primed variables 

in A match exactly with the declarations for their unprimed counterparts in B. 

schema composition of A and B results in snother schema whose components are 

the unprimed components of A and primed components of Bo and predicate part 

is 

where Do are the matching declarations between A and B, wit h variables decorated 

with another decorator '0'. 

2.8 Part i d  Systematic Renaming 

Certain abstraction Riles in t his thesis require a renaming operator somewhat 

different lrom the systernatic renaming that has just been introduced. In that case, 

we use a partial systematic renaming operator. This operator may be applied to any 

predicate and any expression within the predicate part of a schema. Specificcally. 

for each fkee variable in the predicate, the renaming is performed if and oniy if 

both its old name and its corresponding new name are declared identically in the 

signature part of the schema in which the renaming occurs. The result of partial 

systematic renaming is a schema with the same signature. For example, 

would be the schema 



Note that k, not declared in the signature of (46), is not renamed. 

2.9 Writing F'unctional Specifications in Z 

A mùdel-based jbnctional specificatzon of a software system describes an abstract 

mode1 of the software and the set of fwrctionalities that the software is required to 

implement. In general, the functional specification shouid exkt as part of the soft- 

ware requirements specification (SRS) of the systern. In [42, p.148-91 Wordsworth 

provided a good introduction on how to use Z notation to mite a functional spec- 

ificat ions. 

The specification should begin with an informal description of its purpose, 

explanation on the functionalities of the system being speciiied. assumptions made 

and so on. This section should establish meaningfd terminologies relating to those 

functionalities, which is to be made precise in the forma1 specification. 

The second part of the specification should include declarat ions (synt act ic 

equivaiences, axiomat ic or generic definit ions) of global variables and operat ors 

that are used throughout the remainder of the specification. Each variable or o p  

erator should be accompanied by informa1 text explaining its rationaie (such as 

the application domain element the variable or operator corresponds to) and its 

use in subsequent declarations. 

The third part of the specïfication would consist of a sequence of declarations 

that specifies the model as well as  the operations. Each declaration in the third 

part should be accompanied with informal text explaining the aspect(s) of the 

system modeled by the declaration, and its relationship to the system as a whole. 

In our approach for deriving a specification Erom code (Section 6), the resulting 

specilication would have a hierarchically organized model. The folIowing table 

shows an example format of such specification. 



Part One: 
Problem Description 

Part Two: 
Global variables, 

Part T b :  
Partial Model A 
Initial State A 
Operations on A 

Partial Model B 
Initiai State B 
Operations on B 

PaztialModel C 

operators 

Part 1 

Part 11 
Partial Modet A 
Initiai State A 

/ Operatioris on A 

(includes A and B) / PartiaiModelB 
Initial State C Initial State B 
Operations on C P- m 

\ 
Operations on B 

Partial Model D 
Initial State D 
Operations on D 

Partial Model C 
(includes A & B) 

Initial State C 

Partiai Modei E 
Initial State E 
Operations on E 

Partial Model F 
(includes D and E) 

Initial State F 
Operations on F 

\ P d a i  Model G 
(includes C & F) 

Initial State G 
Operations on G 

Complete Mode1 G 
(includes C and F) 

Initial State G 
Operations on G 

Figure 1: A hnctional specification wit h hierarchîcdy organized model 

For a hierarchically organized model, it is a good idea to justify the organization 
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of the mode1 at  the beginning of the third part of the specification. 

3 Overview of the Abstractions 

This thesis describes a reverse engineering process in which a hinctiond require- 

ments spe~ification~ including a m d  and a set of functionalities, is recovered 

from the code of a software. This section introduces a set of abstractions which 

are useful for such recovery fiom a C program. These abstractions capture the pre 

and postconditions in executing a program, or the constmcts that the program 

containS. 

We shall define C constructs to be certain syntactzc elements in the C language6. 

One constmct may syntscticdy enclose another. In this case we Say that a prim- 

itive constmct is enclosed by an encloszng conshct .  Two constructs may &O in- 

terleave with one another, when they shae cornmon code but neither one encloses 

the other. In this case these constructs are referred to as interleaving constmcts. 

Five abstractions, defined below, are used in the reverse engheering process 

described in t his thesis: 

3.1 Abstract Type 

The abstract type of a construct C, denoted by r[C], is an abstraction of the type 

that rnay be associated with the construct in a program. Let us consider the 

following four kinds of association between a construct and a type: 

type expressions A type ezpresszon is a construct that specifies a type in C 

language. We shali define the abstract type of a type expression in C to be the 

set, in Z notation, that corresponds to a l l  the d u e s  represented by that type. For 

=For the List of constmcts in the subset of C considered in this thesis please refer to Section 5.1. 



example, the type int in C may be represented by the set Min..Mm in 2, with 

Min and &fa being the minimum and maximum integers represented by Frit. We 

specify this as 

r[int] == Mzn .. Ma2 

which is an abbreviation for 

r(int] == {n : 2 1 Min < n 5 Max)  

variable definition A variable definition in C is a constnict in which a mriable 

is associated with a type. We s h d  define the abstract type of a tariable definition 

to be the abstract type of the type expression in the variable definition that specifies 

the type of the variable being dehed. 

object designated by an expression An expression rnay designate an object, 

defined to be a memory storage that contains a value of a certain type . In tbis 

case, we shall define the abstract S p e  of the expression to be the abstract type of 

the type associated with the object that it designates. 

result value of an expression We s h d  define the result type of an expression 

to be the type of the value obtained from evaluating the expression as if it is on the 

right hand side of an assignment expression. The result type of an expression will 

be captured by its abstîact value (to be defined in Section 3.4). Therefore we shail 

not define the abstract type of an expression that does not designate an object. It 

should be noted that the type of the object designated by an expression needs not 

be the same as its result type. For example, if variable a is defined to be an array 



of int, then the result type of the expression a wouid be pointer to int,  while the 

expression designates an object of type amay of int. 

Following the above analysis, abstract mes are defineci only for types expres- 

sions, variable definitions, and expressions that d e s i p t e  objects. The purpose of 

this abstraction is to assign types to all variables throughout the specification that 

is being recovered. 

3.2 Abstract State 

The abstract state of a construct C, denoted by (r[C], is an abstraction of the 

collection of variables on which the conçtruct operates. These variables are referred 

in this thesis to as 'the variables of the constntct'. For example, to evaluate the 

expression a Cil , we first retrieve the address of a and then index this address 

by the resdt value of evaluating i. We Say that the construct aCiJ operates on 

variables a and i. 

Abstract state is applicable to any executable constnict (that is, any construct 

other than type expressions, since they do not operate on variables). Variables 

aod function definitions may be classified as executable because they both imply 

initialization of variables. For uniformify, we shall d e h e  the abstract state of 

a constant in an expression to be an empty schema, that is, a schema whose 

signature part is empty and predicate part the predicate tme. Let VI, v*, . . . , v,, 

be the -ables of a constmct C, with their types defined in the program to be 

TV,, Tv2, . . . , and TV, respectively. In other words, each variable vi, where 1 5 

i 5 n, represents an ob ject of type T, . These variables may be represented in a Z 

specïfication by the variables7 VI, Q, . . . , un. Each variable vi, for 1 5 i 5 n, must 

be a member of the set r[T,]. The abstract state of C may then be represented 

7variab~e names that are r e d  in a C program at different scopes are required to be repre- 
sented by unique names in the specification 
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in Z by a state schema of the followuig fom: 

The signature part of the schema represents the variables of the constmct and 

their respective types. The predicate part of the schema represents the invariant 

that must be tme among the variables of the construct throughout the program. 

Since one may not define a state i nMan t  for any construct in C (other than type 

constraints on program variables), we may assign the predicate true to the state 

invariant of any construct. Definition (50) may be abbreviated by 

Note here that we have overioaded the abbreviation to denote both a set of 

declarations and a List of variables in a schema. Abstract states are usefui for 

building an abstract mode1 of a software fiorn its code. 

3.3 Abstract Effect 

The effect of executing a construct may be dehed  in terms of the pre and post- 

conditions of its variables under normal execution. This precisely captures the 

functionality of the construct. We shall d e h e  the initiai state and final state 

of the construct respectively to be consist of the values of the variables of the 

constnict at the beginning and the end of its execution. The precondztzon of a 

construct is d e h e d  to be the condition that must hold in its initial state for the 

construct to execute normdy ( 2 .  e., the construct terminates without error). The 

postcondztzon of a construct is defined to be the relationship between the initial 

and final states of the construct, provided that the precondition is satisfied. 

The abstract effect of a constnict C, denoted by E(CP, is an abstraction of the 

effect of executing the constmct. The abstract effect of C may be represented in 



Z by an operation schema of the form: 

which is eqWvalent to 

ln the signature part of (53), ü aad V' respectively represents the initial and final 

states of the construct. The predicate part represents the pre and postconditions 

on the state of the construct. The predicate Inv(ü) A Inv (3') asserts that both 

the initial and ha1 states must sath& the state invariant. We may disregard its 

presence because both Inv(ü) and Inv(v') are the predicate tme. Abstract effects 

are useful for building specificat ions for the functionalit ies (or abstract operations ) 

implemented by the program. 

3.4 Abstract Value 

The abstract value of a construct is an abstraction of the result value of the 

constmct. This abstraction is applicable only to expressions. Since, in C, the 

values of the vaxiables of an expression may change as the expression is being 

evaluated, we rnay distinguish between the abstract value of C expressed in tems 

of its initial state (denoted by u[Cj),  and that expressed in t ems  of its final state 

(denoted by d[C]).  If the result of a constmct is a constant, it may be represented 

in Z as it is, though in any case, a definite description may be used. 

The form of u[C] is 

where ü represents the initial state of C. r[T] is the abstract type of the result type 

of C. pre €[CI represents the precondition of evaluation that must be satisfied in 
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order for the result value of the constmct to be me&gN. When this condition 

is satisfied, the predicate P, represents the relationship between the initial state 

of C and the abstract value of C by specifying the relationship between and ul. 

As stated in Section 2, if Pvdue does not constrain to a unique value, the value 

of (54) is taken as being one of the alternatives, but the selection of alternative 

is indeterminate. This corresponds to the case when evaluation of the C is non- 

detenninistic. Recall that when PVorue does not constrain VI to any value, the 

value of (54) is indeterminate. This represents the case in which either an error 

has occurred or the abstract value of C cannot be determined £rom its initial state. 

The form of J [ C ]  is 

where v' represents the final state of C. post €[Cl represents the condition that 

must hold in the b a l  state of C given normal execution of C. When this condition 

is true, the predicate P, represents the relationship between the bal  state and 

the result value of C by the relationship between V and VI. Once again, r [T )  is 

the abstract type of the result type of C. hterpretatioo of (55) when P, does not 

constrain y uniquely is similar to that for (54). 

The abstract value of a construct always occurs as pazts of the predicates in 

the abstractions of its enclosing constructs. 

3.5 Abstract Object 

The abstract object of a coostruct is an abstraction of the ob ject designated by the 

construct . This abstraction is applicable only to t hose expressions t hat designate 

objects. We s h d  refer to such expressions as 'object designatzon qresszon' .  For 

example, the construct a Ci] designates the object which is the (i+i) th element 

of the array a. The object designated by any construct, if there is one, must either 
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be a variable, or part of a variable (in this c e  the variable must be of composite 

type such as array or stmcture). In both cases, we Say that the variable is the 

parent of the object. 

The object designated by an ob ject designation expression depends not only 

on the kind of construct it is, but &O on the values of its variables. Recall that, 

as an expression is evaluated, the values of its variables may change. For any 

construct C that designates an object, w[C] s h d  denote the abstract object of C 

expressed in terms of its initial state, while d [ C ]  shall denote the abstract object 

of C expressed in terms of its ha1 state. 

In thts thesis, we shall only consider the subset of C for wbich the parent of 

the object designated by an object designation expression C is ûxed regardles 

of the values of its variables. Let v be that variable, represented by v in the 

specification. Simiiar to abstract value, w[C] and J [ C ]  may dso be stated as 

definite descriptions, as follows. 

where ü and 3' represent the initial and final state of C respectively. The difference 

between the general form of abstract object and abstract value is the presence of 

vo in both (56) and (57). In both (56) and (57), v, represents the current value 

held by the storage for v, which rnay be renamed to either v' or u, depending on 

context, in order to abstract the retrieval of the value of the variable v from its 

storage at the begînning or at the end of executing C. A distinct subscript ( ' 0 ' )  

is used on vo to indicate its dinerent meaning From both v, which also occurs in 

(56): and v', which &O occurs in (57). 



4 AGGREGA27ON OF ABSTRACTIONS 

Similar to abstract value, the abstract object of a construct always occurs as 

parts of the predicates in the abstractions of its enclosing constmcts. 

Among the five abstractions introduced in t his section the abstractions that are 

of utmost importance are abstract state, whkh is useful for building an abstract 

model, and abstract effect, which is useful for specifying abstract operatiom. These 

two abstractions iorm the elements of a model-based fwictional specification. In 

this thesis, we shaU derive a set of abstraction rules by which the abstract state 

and effect of any constmct, may be obtained recursively fkom the five abstractions 

of its primitive constructs. 

4 Aggregation of Abstractions 

In this thesis we demonstrate that, using the abstractions introduced in the 

previous section, the abstractions for any constmct in the subset of C descnbed 

in Section 5 may be obtained by aggregating the abstractions of its primitive 

constmcts according to a set of abstraction d e s ,  excepts for the following cases: 

O The abstract type and abstract state of an identifier in an expression must be 

retrieved fiom the correspondhg abstractions of the definition of the identi- 

fier. 

0 When substituting the body of a hinction in place of its invocation, the 

hinction body must be retrieved £tom the definition of the lunction. 

This section identifies and defines a set of basic aggregation operations in Z 

that will be used throughout subsequent derivat ion of the abstraction rules. 



4.1 Conjunction of Abstract States 

For a construct C that consists of constructs Ci and C2, the variables of C must be 

the variables of either Cl and Cz, or both. Therefore, we may form the abstract 

state of C by conjoining the abstract states of Cl and C2: 

The conjunction implies that the state invariant of o[C] is the conjunction of those 

of Ci and C2. However, since the state invariant for both Ci and Cz is the predicate 

t m e ,  the state invariant of C is also the predicate h e ,  as one would expect. 

4.2 Sequential Composition between Operation Schemas 

Whenever N o  constmcts are executed sequentidy, an abstraction of the cornbineci 

effect rnay be sought by sequentidy composing their abstract effects. Since we are 

representhg abstract effect of a construct by an operation schema in 2, such com- 

position may be represented using a method very similar to schema composition. 

Recd that schema composition requires the primed variables declared in the 

first schema to match the unprimed variables declared in the second, We rnay not 

simply use schema composition because such matching is not satisfied in generd. 

For exampie, if a sequence of two statements have different sets of variables (which 

is generally the case), then the operation schernas which represent the abstract 

effect of these statements will certainly have incompatible signatures. 

Therefore, we need to define a slightly dinerent form of schema composition 

that overrides the requirement of signature compatibility. 

Consider t hese two operation schemas 



where 5 and are the variables declared in both schemas. SI and & are not sig- 

nature compatible due to the absence of 5 in the signature part of & - If we intend 

use schema composition, we must force these schemas to be signature compatible 

by modifying & such that all primed variables declared in & have their unprimed 

counterpart declared in S. However, if we simply add the necessary declarations 

to &, i .  e., rewriting & as 

the result would be unacceptable because, according to the semantics of 2, since PZ 

makes no provisions on the postcondition on Z (note the absence of 2' in P2),  they 

may be changed by 52 in any way (subject only to type constraints). Rather, we 

waot the rewritten schema to specify that  z remains constant after the operation. 

This rnay be achieved by rewriting & as 

which may be abbreviated using schema conjunctzon in Z as 

The declarations for Z and z;' in SF corne from the signature of SI. Based on 

these discussions, we may define sequentzal composition between two schemas by 

Qtendzng schema composition wit h following debit  ion: 

where 3 are those mriables that are declared only in SI. 
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We may obtain a simpler deîmïtion for sequential composition between two 

operation schemas by expanding (64) as foIiows: 

If d variables d e c l a d  in S are also declared in &, i- e., both I and Z are empty, 

and in that case sequential composition reduces to ordinary schema composition. 

Now, let SI be the abstract effect of a constmct Cr, & be the abstract effect 

of another construct C2. The abstract effect of sequential execution of these con- 

structs is Si ; &. The term 5 in (65) represents those &ables that are common 

between Ci and C2. The case when sequential composition reduces to ordinary 

schema composition corresponds to a situation where both constmcts have the 

same set of variables. 

associativity of sequential composition among operation schemas Se- 

quentid composition among operation schemas is associative, that is, for any o p  

eration schemas SI Y &, &, 

Proo f The identity is obvious from expanding both sides by (65). 

4.3 Sequential Composition between an Operation Schema 
and a Definite Description 

We shall introduce another kind of sequential composition by an example. 



Example 1 Let E be the expression El-E2 8 ,  where El is i++ and Ez is i--, 

i is a variable of type int. Following out principle of derking abstractions for 

a constmct by aggregating the abstractions of its primitive constnicts, one rnay 

attempt to find the abstract value of E expresseci in terms of its initial state, i-e., 

v[E] ,  by k t  finding the abstract values of E's subeqmssions in tems of their 

respective initial States, i-e., u[Ex] and v[Ez], and then subtract v[Ez] Erom v[E1]. 

By observation we may write 

441 = v[i++] = (pu1 : Min..Max 1 y = i A i < Max) (67) 

v[Ezl = v[i--1 = (p  y : Mzn..Max 1 ul = i A Min < 2 )  (68 

Bot h descriptions looks very simüar when t hey are observed independently, i. e., 

they both assert that the abstract value of the expression is i, except that while 

v[El] is undefined at i 2 Maz (where increment operation is invalid), u[E2] is 

defined everywhere except at i = Min (where the decrement operation is invalid). 

Since both descriptions have value i where they axe definecl, subtracting VIE*] from 

v[E2] would result in zero wherever both descriptions are defined. Therefore, we 

have 

u[Ei] - 4E2] = (p  VI : Min..Mm 1 y = i A Min < i < Max) (69) 

whose d u e  is zero for Min < i < M a  and is undefined for both i = Min and 

i = Ma. One may notice that, in this particular case, the value of the definite 

description does not seem to be related to i .  However, the presence of the inequality 

Min < i < M m  is important here because it specifies the condition under which 

the definite description is applicable. Before going ahead to conclude that V I E ]  is 

8Although the resuits ofevaluatuig Ci++)-(i--1 is undefined according to the semantics of C, 
for its result value depends on the order of evaiuation, the example serves to illustrate the same 
issue for expressions whose order of evaiuation among their operands is fked (e.g., conditional 
and Iogical expressions). 



the definite description in (69), we s h d  vaüdate our conclusion in (69) against the 

results that we may obtain lrom manually executing the expression. Assuming a 

Left to right order of evaiuation, the foiiowing table shows the steps in executing 

E, dong with initial and bal  values of i in each step, and the resdt d u e s  of E 

and its subexpressions. 

1 step 1 instruction [ initial value 1 finai value 1 result value of E 1 
1 

Table 1: Manual Execution of Ci++) - (i--) 

2 
3 

where & denotes the initial value of i in eduating E. 

evaiuate El (i++) 

We may observe fiom the table that the result value of E is -1, and is valid for 

al1 & < Max, because the value of i alternates between and & + 1 throughout 

evaiuate E2 (i--) 
subtract 2nd value from lSt 

evaluation of E. Therefore we may conclude t hat the abstract value of E expressed 

of i 
4  

in terms of its initial state, 

& + l  
4  

The conclusion in (69) is wrong for two reasons: u[E] should be -1, rather than 

zero wherever it is defined, and should be undefined only for i = Max, rather than 

of i 
& + l  

for both i = Min and i = Max- Such apparent inconsistency in this case is due 

to the fact that by subtracting v[Ez] from v[E& one implicitly assumes that the 

initial states of both El and E2 are identical, wbich in this case is not true. 

and its expressions 
€1 1 i, 

ii 
ii 

A remedy for this situation is described as follows: When we write the abstract 

value of E in terms of its initial state, by definition, we are writing it in terms of 4, 

because i is the only variable of E. Since €1 is evsluated first in a left to right order 

of evaluation, & serves as the initial value of i for 4 as well. However, for E2, ive 

€2 

E 
i i f l  
-1 



4 AGGREGAZ7ON OF ABSTRACTIONS 47 

&O need to consider the effwt of evaiuating El in order to enforce sequentialiQ 

between El and E2. In particular, the initiai value of i in u[E2] must be + 1 (i. e., 

initid value of i in step two in Table 1) , rather than G. Substitute & + 1 into (68) 

we obtain 

We may rewrite u[Ez] such that i denotes 4 by substituting i in place of & in (71). 

This produces 

correctedu[E2] = (p  y : Mzn..Maz 1 VI = (2  + 1) A Min < ( i  + 1)) 

= ( p h :  Min..MuxI ut = i + l A z <  Max) (72) 

d o s e  value is i - 1 except for i = Maz where the definite description is undefined. 

Now we may subtract corrected u[E2] h m  v[EiJ to obtain the proper abstract 

value of E. Since both definite descriptions in (72) and (67) are defined for i < Max, 

the subtraction would give i  - (i + 1) = -1, for i < Mm. Therefore, 

u[E] = v[El] - corrected v[E2j 

- ( p v l  :Min..MaxIy = Z A Z <  MU) 

- (puL:  M i n . . M a x ( u l = i + l A i c M a x )  

= ( p  vl : Mzn..Maz 1 vl = -1 A i < Mm) (73) 

which agrees with (70) exactly. 

In Example 1, the need for correcting u[E2] cornes fiom the fart that, before E2 

is evaluated, i bas been incremented in evaluating El. Therefore, the correction 

we have just performed may be thought as somehow appendzng the result value of 

€2 to the effect of El. This may be formalized by defining composition between an 



operation schema and a definite description. Consider an operation schema S and 

a definite description D: 

where Y are the variables common to both S and D, PD is the constraining pred- 

icate of D and Ps is the predicate part of S. 

If 7 is not empty, we may define sequential composition between an  operation 

schema and a definite description as the following: 

Equation (76), in effect, substitutes the h a 1  values of the variables that are com- 

mon between S and D, in performing S, as the values of these variables for D (The 

substituted quantity is denoted by in (76)). The result of the composition is 

still a debite description of the same type (as the declaration for y îs the same 

between (75) and (76) Note here that we have overloaded the operator i that is 

used for sequential composition between two operation schemas. 

If y is empty, (76) reduces to 

which is the same as D in (75) except that it is undefined where preS is not 

satisfied. 

Let us return to Example 1. We may calculate the abstract value of E, expressed 

in terms of its initial state, using the abstract values of El and E2, both expressed 
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also in tenns of the same initial state, using the sequentiai composition we have just 

defined. El increments i, proMded that i is not already equal to Max. Therefore 

its abstract effect is 

Now, perform sequentid composition between €[El] and u[Ez] using equation (76): 

e [ h ]  ; u[E2] = [i, if 1 i < Max A if = i + 11 g (pu1 : Min..Mux 1 y = i A Min < i) 

= ( p v l :  Mzn..MaxI ( 3 i r :  Min..MaxI i <  M ~ X A  i ' = i + l  

A v1 = if A Min < 2')) 

=(pl : Mzn..Maxl i < M U A Y  = i + 1 ~  Min < i + l )  

=(pul  : Mzn..MazI i < M a z ~  y = i + l )  (79) 

Note that (79) is exactly the same as (72), which means that e[Ei] ; v[Ez] in fact 

calculates corrected v[E2]. FinaUy, we may properly conclude t hat 

associativity of sequential composition of a sequence of operat ion schemas 

and a defmite description Sequential composition between a sequence of o p  

eration schemas and a definite description is associative in the sense that, for any 

operation schemas Si, 4, and dehite description LI, 

Proo f The identity is obvious by expanding both sides with (76) and (65). 



Conjecture 1 (distîi*butzuity over sequential ezecutzon) Ln general, if an expres- 

sion E contains subexpressions El, Et, . . . , En such that the effect of evaiuating E 

is that of sequential evaluat ion of the subexpressions €1, Ez, . . . , En, in that order, 

then the abstract value of E in terms of its initiai state may be obtained fiom those 

of its subexpressions, if and only if, the abstract value of each subexpression Ej, 

where 2 < j < n: expressed in terms of its initial state, is appended to the abstract 

effects of El, E2, . . . and Ej-1- This may be formdy stated as 

4.4 Sequential Composition between a Definite Descrip- 
tion and an Operation Schema 

Let us now consider appending an abstract effect to an abstract value. 

Example 2 Consider the previous example (Example 1). Let E be El -Et, where 

El is i++ and €2 is i--. Again, we want to tlid the abstract value of E, but this 

tirne we want to express it in terms of the final state of E. We first express the 

abstract values of El and h in terms of t heir respective finai states. By obsenatioo 

we have 

Note that J(Ei]  is defined for Min < i', while u'[EZ] is defined for i' < Max. Then 

we subtract J[E2j kom to obtain v'[E]: 



= (pu, : Min..Max 1 y = 2 ' -  I A Min < ir) 

- ( p u l :  Min..MaxI y = z r + i h i r <  Max) 

= (pu1 : Min..Max ( VI = (if - 1) - ( z r +  1) A Min < if < Mm) 

= ( p h  : Mzn..Maz 1 ui = -2 A Min < z' < Mm) (85) 

which asserts that the abstract value of E is -2 and must result in a final value of 

i sa t i smg  Min < i < Max. 

In this particuiar example, we know that when order of evaluation to left to 

right, the result value of E is -1 (fkom Table 1) , wbich is a constant. Therefore, 

the abstract value of E must be -1 no matter whether we express it in terms of its 

initial or ha1 state. Additiondy, we may observe kom Table 1 that the initiai 

and &al values of i in evaluating E happen to be both I$. From this observation 

the coostraint on the fuial value of i for the evaluation to be valid must be exactly 

the same as before, i. e., the final value of i must be l e s  than M a .  Hence, we 

rnay condude that the abstract value of E expressed in terms of its Enal state must 

have exactly the same form as that expressed in terms of its initial state (?O), that 

is : 

The conclusion we have in (85) is wrong for two reasons: Firstly, d[E] should be -1 

rather than -2. Secondly, the constraint on the h a 1  value of i should be i < Mm 

rather than Min < i < Max. Similar to Example 1, sucb apparent inconsistency 

is due to the implicit assumption that the final states of El and E2 are identical, 

which is not tme. 

A remedy for this situation is described as foilows: Since E2 is evaluated last 

in a left to nght order of evaluation, the h a 1  value of i as seen by E2 must be 

the same as that For E. However, for El, we also need to consider the effect of 
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subsequent evaluation of E2 in order to enforce sequentiality between El and E2. 

In particular, let ij be the ha1 value of i as seen by E; then the final value of i 

as seen by El must be + 1 to offset the effect of subsequent decrementation of 

i performed in evaluating E2. Therefore, i' in (83) may be thought as denoting 

if t 1, rather than if. In other words, 

We may rewrite J[Ei] such that i denotes if by substituting i in place of if in 

(87). This results in 

The value of correctedJIE1] is i' except for i' = M m  where the definite descrip- 

tion is undefined- 

Now we may subtract J[E2] fkom corrected J[E2] to obtain the proper ab- 

stract value of €. Since the definite descriptions in both (84) and (88) are defined 

for i' < M m ,  the subtraction would give à' - ( i f  + 1 )  = - 1, defined for i' < Ma. 

Therefore, 

J[EI = corrected JIEl]  - r/[Ez] 

= (pu1 : Mzn..Max 1 ul = z' A if < Max) 

- (pui : Min..Max 1 y = if + 1 A i' < Mm) 

= (pu1 : Min..Max 1 VI = -1 A i f  < Mu) (89) 

which agrees with (86) exactly. 

The correction process done in Example 2 rnay be thought as appending the 

effect of Ez to the result value of El. This may be formalized by defining sequential 

composition between a definite description and an operation schema. 



Consider the foUowing operation schema S and definite description D: 

where 3 are the only variables that are common between S and D. If g is not 

ernpty, we may define the sequentiai composition between a definite description 

and an operation schema as follows. 

Equatian (92), in effect, substitutes the initial values of the variables that are 

common between S and D in performing S as the values of these variables for D 

(The substituted quantity is denoted by in (92)). The tesuit of the composition 

is stiU a definite description of the same type, as indicated by identical declarations 

for vl between (92) and (91). If g is empty, (92) reduces to 

D ; S = (pul : T 1 PD(ul,-i') A post S) (93) 

which is the same as D (91) except that it is undefined where post S is violated. 

For Exampie 2, the abstract value of E expressed terms of its final state may 

be rewritten as 

associativity of sequential composition of a definite description ami a 

sequence of operation schemas Sequential composition between a definite 

description and a sequence of operation schemas is associative in the sense that, 

for any operation schemas SI, &, and definite description D, 

The identity is obvious when both sides are expanded with (65) and (92). 
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Conjecture 2 (distributivity over sequential evaluation) In general, if an expres- 

sion E contains subexpressions El, Et, . . . , En such that effect of evaluathg E is 

that of sequential evaluation of the subexpressions El, E2, - . . , En, in that order, 

then the abstract value of E in te- of its ha i  state may be obtained kom those 

of its subexpressions, if and only if, for each subexpression Ej, where 1 < j 5 n - 1, 

the abstract effects of the subexpressions Ejci, E2, - - . , and En are appended to its 

abstract value, expressed in terms of its final state. This may be formdy stated 

as 

4.5 Sequent i d  Composition between an Abstract Ob ject 
and an Operation Schema 

Let us now consider appending an operation schema to an abstract object. The 

following example illustrates such necessity. 

Example 3 Consider the foilowing assignment expression: 

Let zj  be the final value of i after the assignment expression is evaluated. As- 

suming a left to nght order of evaluation, the object that is being assigned in the 

assignment expression, expressed in terms of the ha1 value of i, is a[ir - 11. The 

'-1' here is needed to offset the effect of the increment operation on the nght side 

of the assignment. The augmentation performed in the above example may be 

Forrnaiized by defining sequential composition between an abstract object and an 

operation schema. 
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Since abstract object is represented by a definite description, sequential compe 

sition between the abstract ob ject of an ob ject designation expression and another 

operation schema, may be evaluated using (92), the same formula for composi- 

tion between a definite description and an operation scherna- However, for the 

limited varieties of ob ject designation expression considered in this t hesis, namely, 

variables, array subscripting expressions, and structure component selection ex- 

pressions, we may &O develop formulas for each of these cases. 

Let us consider sequential composition between the abstract object of an object 

designation expression E and an operation schema S. 

variable If E is a variable v, kom ( d e  24), we have J [ v l  = B. Since the address 

of a variable may not change throughout its WetMe, 

array subscripting expression If E is an array subscripting expression of form 

El CE2 J , t hen from (rule 31), JIEl  CE2] 1 is ( J I E 1 ]  g e[E2] ) [J[E2]] . To evaluate the 

the sequentid composition wr[E]  i S, we may distribute the composition (proof 

below) between (wf(E1] ; &[E21) and J[E2] to obtain the following definition: 

Formula (99) may be justified by the following identity: For any definite descrip- 

tions Di and D2, and operation schema S', 
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Proo f Expansion of both sides of the identity would show that a sdicient condi- 

tion for the identity to hold is that the operation schema & specifies a deterministic 

operation. 

structure component selection expression Let E be a structure component 

selectioa expression of form 4 . fi, where fi is a component of the type of the ob ject 

designated by El. From (rule 38), J[Ei. fi] is wr[Ei].~. Since the composition 

between JIEl].h and S may not change a schema component n m e  V; in this 

-9, 

associativity of sequential composition of a definite description and a 

sequence of operation schemas The compositions between an abstract ob ject 

and a sequence of abstract effects are associative, just as an abstract value and a 

sequence of abstract effects do. 

4.6 Sequential Composition between an Operation Schema 
and an Abstract Object 

Appending an abstract object to an operation schema may be defined similarly as 

appending an operation schema to an abstract object. 

Consider the sequential composition between the operation schema S and the 

abstract object of an object designation expression E. We may denve formulas for 

each kind of ob ject designation expressions. 
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variable If E is a variable v, then from (rule 24), w[vl = ù. Since the address of 

a variable rnay not change, 

array subscripting expression If E is an array subscripting expression of form 

El CE2], then from ( d e  30), w[El CE211 is u [ € L ] [ E ( E ~ ]  ; v[E2]] . If S specifies a 

deterministic operation, we may distributive the sequential composition in S ; w (El 

between J[Eij and €[El] ; v[Q1 to obtain the foliowing definition: 

structure component selection expression If E is a structure component 

selection expression of form El . fi, where fi is a component of the type of the 

object designated by El, then hom (rule 37), w[&. fi] is w[E&f,. The composition 

w [ i  . fi] i e[C] is then 

associativity of sequential composition of a definite description and a 

sequence of operation schemas The compositions between an abstract object 

and a sequence of abstract effects are associative, just as an abstract value and a 

sequence of abstract effects do. 
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5 Abstractions for a C subset 

For the purposes of this thesis, we consider only programs written using a subset 

of the C language that inchdes the foilowing features: 

a Every program must contain a pacameterless non-recursive function, c d  

'main', 

0 The oniy data types supporteci are int,  arrays (any dimension) of int and 

structures, and structures whose components have type as one of the above 

three types or structures by themselves. 

0 AU functions are pararneterless hinctions and do not return any value (2. e., 

the retum type is void). 

0 A function invocation may occur as an expression statement only. 

Pointers are not included. 

a Every program is assumed to be preprocessed, that is, it does not contain 

any preprocessor directives[l4, p.391. 

The main simplifying assumption that gives rise to the chosen subset is that the 

parent of the object designated by an object designation expression is 6xed . 

5.1 Extended BNF Grammar for the C Subset 

The grammar presented below is ambiguous in the sense that operator precedence 

and associativity niles are not irnplied by the gritmmar. Therefore, a tool must 

use this grammar in conjunction with Table 2, which presents operator precedence 

and associativity d e s .  The gramnar has been written so that the classification 

of certain syntactic elements as constmcts, as well as the enclosure relationship 



5 ABSTRACTIONS FOR A C SUBSET 59 

among these constnict , is evident- Spec5cdyt each non-terminal on the left hand 

side of each production represents a category of constmcts. The construct 'type 

expression', which may be enclosed by a variable definition, is the exception (note 

its absence in the grarnmar). This is because the type expression in the definition 

a array variable is lexicdy spüt into two parts (element type precedes the variable 

name, while the size specification proceeds the variable name). In the grsmmar, 

'aop' stands for an arithmetic operator, and 'rop' stsnds for a relational operator. 

Shere is one grammatical d e  that is invisible fiom the grammar: A 'variable def- 

inition' enclosed withîn another 'variable definition' may neither have the keyword 

'static' at its beginning nor an '=' 'initializer' at its end. 

Here is the extended BNF gritmmar for our C subset: 

program + { (variable-definition 1 hinction-definition) ) 

variable-definition + [ ' s ta t ic '  ] ( 'int' 1 'stmct' 'C' { variable-definition ) ')? ) 

identiner [ { ' C' integer-constant '1 ' ) ] 

[ '.;' 'initialj& ] ; ; ' 

fwiction-definition f- 'void' 'function-name' ' O ' biock 

block + '{' [ { variable-definition ) ] [ sequence-of-statements ] ')' 

sequence-of-statements + { statement ) 

s tat ement c- expression-statemeat; 

1 block 

1 if-statement 

1 if-then-else-statement 

1 while-statement 
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1 d*whilestatement 

1 for-statement 

expression-statement + expression ' ; ' 

1 'function-narne' 'O ;' 

expression c- înteger-constant 

( parent hesized-expression 

1 ob ject-designation-expression 

( unary-arithmetic-expression 

1 binary-&thmet ic-expression 

1 relationaCexpression 

1 conditional-expression 

1 logical-expression 

1 simple-assignment-expression 
1 compound-assignment expression 

1 post-increment-expression 
1 post-decrement-expression 

1 pre-increment-expression 
1 pre-decrement-expression 

puent hesized-expression - ' ( ' expression ' ' 

ob ject-designat ion-expression + 'varia ble-name' 

1 array-subscripting-expression 
1 structure-component-selection-expression 

hteger-constant + ' integer-constant ' 
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identifier + 'varia ble-name' 

/ 'structure-cornponent-name' 

structure-component-selection-expression + 

ob ject-designation-expression ' . ' 'structurecorn ponent-name> 

array-subscription-expression + object-designation-expression ' [' expression ' 

parenthesized-expression + ' (' expression '1 ' 

unary-arit hmetic-expression + '+' expression 

1 '-' expression 

binary-arit hmet ic-expression + expression 'ao p ' expression 

relat ional-expression + expression ' rop ' expression 

conditional-expression + expression '?' expression ' : ' expression 

logical-expression t expression '%&' expression 

1 expression ' I I ' expression 

1 '! ' expression 

simple-assivent-expression + expression '=' expression 

compound-assignment-expression + expression 'aop=' expression 

post-increment-expression t expression '++' 

post-decrement-expression + expression '--' 

pre-increment-expression + ' ++ ' expression 
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pre-decrement-expression + ' --' exprwion 

if-statement c- 'if' ' ( ' expression '1 ' statement 

if-t ben-elsestatement + 'if ' (' expression ' ) ' statement 'else' statement 

while-staternent +- 'vhile7 ' (' expression '1 ' statement 

do-while-statement - 'do' statement 'while' ' (' expression ') ' ' ; ' 

for-statement t 'for' ' (' expression ' ; ' expression ' ; ' expression '1 statement 

5.2 Precedence and Associativity of Operators 

The foilowing table shows the associativity of the operators adable  in the C 

subset described in the above grammar in descendhg order of their precedence: 

I 1 ponent selection, postincrement ( I 

Operator 
[J . ++ -- 

1 1 logicd negation, unary arïthmetic ( 1 

Description 
array subscripting, structure com- 

++ -- ! + - 

Associativity 
left 

Table 2: Precedence and Associativity Rules for Operators in a C subset 

and postdecrement 
preincrement and predecrement, 

* / %  
+ - 
> < <= >= - -- ! = 

&& 
I I 
? :  
- - += -= 
*= /= %= 

right 

operators 
multiplication, division (ao p) 
addition, subtraction (aop) 
relational (rop) 
equal, not equal (rop) 
conjunc t ion 
disj unc tion 
condit ional expression 
assignment expression 

left 
Ieft 
le ft 
left 
left 
left 

right 
right 
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We now consider the abstractions for each category of constmcts available in 

the C subset that we have just presented. 

5.3 Variable Definitions 

In our C subset, we consider a variable as a named storage of a certain type. The 

storage class[l4, p.751 of a variable rnay be eit her static or local. Static van'ables[l4. 

p.751 are those variables for which storage is allocated before the program starts, 

and persists throughout the execution of the program. Static variables rnay be 

dehed outside any function (in which case they are global variables) or at the 

beginning of a block. Local variables[l4, p.751 may be defined only at the beginning 

of a block. The storage for local variables are allocated every time the block in 

which they are defined is entered, and is deailocated when exiting the block. 

With some exceptions[l4, p.931, each variable definition may be accompanied 

by an optional znztialzzer, which assigns a value to the variable when the storage 

for the variable is allocated[l4, p.921. Hence, for static variables, initializations 

may be assumed to be done only once, before the main function is invoked. For 

local &ables, initializations are assumed to be done every time the block in which 

these variables are defined is entered. Our C subset assumes that initializers must 

be literal constants. 

Default znitzalizations are permitted, which is assumed to obey the following 

rule 9: Every local variable is initiaiized to an arbitrary value of its type (for 

example, Min and Max are both possible initial value of an integer local variables 

defined without an initializer) . For a static variable, the default initiaüzation when 

the variable has integer type is to assign it with zero. For an array, it would be to 

'This foiiows the same d e  as stated in [p.93]C, except that a Iocd variable without initializer 
is assumed to holds a valid value at the b-g, rather than a possibly invalid value 
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apply defadt initialization recursively to ail its elements. For a structure, it would 

be to apply default initiaüzation recursively to all its components. 

For each vaxiable definition, we may define its abstract state, which abstracts 

the storage for the variable, and the abstract effect, which abstracts the initisliza- 

tion of the variable. Abstract value and abstract object are Ieft undefined because 

a variable definition may not appear in an expression. 

We shall k t  d e b e  the abstractions for a general variable definition, identa  

the parameters, and then denve the values for these parameters for the vaxious 

types avaiiable in C. 

5.3.1 General Form 

We s h d  use the notation V(v)  to denote the definition of an identifier (either a 

variable name, or a structure component name) v in a program. 

abstract type Suppose v is defined by D(v) to have type T. By definition, its 

abstract type would belo 

abstract state V ( v )  specifies Uiitialization of v when its storage is ailocate. 

Therefore it operates on the variable v. The abstract state of D(v) is denved as 

where v represents the variable name in the Z specification 

is the specification. 

( d e  2) 

that correspond to v. 

loeach equation with equation nwnber of fonn ( d e  number) shaii 
straction rule 

indicate that it is an ab- 
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abstract effect The effect of 'executing' a variable definition is taken as that 

of the initialization of the variable. When an optiond initializer I is present, the 

effect wodd be the same as assigning the initiaüzer to the variable. In which case, 

the abstract effect of V(v) is 

where I is the specification of initiaüzer 1. In ( d e  3), e [ V ( v ) l  is an initial state 

schema. This is because we do not concem ourselves with the d u e  of v before 

it is initialized. When I is not present, we foilow the default initialization d e s  

described earlier. The particular rule to be applied depends on the storage class 

of the variable. If v  is a local variable, the default initialization asserts that v has 

an arbitrary value of type T, the abstract effect of V(v) would be, 

If v is a static variable, then In this case the abstract effect of V(v)  wodd be 

where Z(T] represents a value of type T that a static variable of type T would 

hold when default initialization is applied. 

We may summarize the abstract effect for various combinations of storage 

classes and the presence or absence of initializer in the following table: 

1 - 1  
- - . - - - - - - 

storage class 

- - 

Table 3: Abstract Effect of a Variable Definition 

initializer is present 
initiaiizer is absent 

static 
[ a p ( v ) ]  1 vr  = I ]  

[o[D(v)Rf 1 vf = Z[T]] 

- - -  

local 

[ o [ V ( v ) l r  1 v' = I ]  
b m v )  1'1 
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identify the parameters For a variable definition, the general form of its ab- 

s trac t ions may be characterized by three parameters: 

1. r [T ] ,  a representation of the type T in Z 

2. 1, representation of an initiaker of type T 

3. Z[T], representing the value of a static variable of type T when defauit 

initialization is applied to it. 

Since both the second and third parameters in turn depend on T, the type of 

the vanable in the program, we rnay instantiate these parameters for each types 

available in our C subset. 

In this case, the parameter T is int. 

abstract type We may represent T in Z by a subrange of integers. Specifically, 

we shall define the abstract type of int to be 

where Min and Max are the minimum and maximum integers representable by 

the type int. The quantities Max and Min may be declared in Z by the following 

axiomat ic de finit ion: 

Min : 2 

M i n < M a x ~ M i n < O A M a x > O  
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initialization An initializer for a variable of type iat is an integer constant, 

which may be represented in Z as it is. Zm in this case is the integer zero. The 

axïomatic definition for Min and M m  that we have just presented ensures that 

zero is a valid value of type int. 

5.3.3 Arrays 

In this case, the parameter T is 

where B is an integer constant that specifies the size of the array, and dement type 

Tl is type of the elements in the array. 

sequence representations and operations AR array may be represented in 

Z by a sequence. Recd that A sequence of type X in Z rnay be represented a 

fwiction from naturd number to X: 

seq X == {f : N -, X 1 dom f = l..#f) (106) 

Definition (106) implies that the indices of any sequence start from one. In contrast, 

al1 arrays in C have indices start Fom zero. To account for this ciifference, we need 

to declare a couple of operators: one for indexhg an element of a sequence; the 

other is a special case of the ovemicihg operator (8) that is useful for fixed length 

sequences. Here are the declarations for these operators: 
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Here explains the normal use of the operator in this thesis: The left operand 

of EB is a sequence. The right operand is a set of pairs ( indez ,  element), with 

index of each pair unique over the set. The ciifference between the use of and 

$ on a sequence is that the M c e s  in the right operand are specified as if the 

sequence indices begin at zero, rather than one. For example, the pair (O: a) in the 

right operand would make a the fùst element of the sequence resulted from the 

operator (provided that the left operand is not an empty sequence). The constraint 

dom g (dom f u (O) \ {#f 1)) ensures that the sequence resulted from ~8 operstor 

must have the same length as the left operand. Note that the declaration of a, as 

aven above, does not forbids its use in other contexts, in which the left operand 

is not a sequence. However, we shall not encounter such use in this thesis. 

abstract type We may represent an amay type T by a sequence of its element 

type T [ T ~ ~  (i.e., seq r[T1]), with the constraint that the length of the sequence is 

B, the size of the array declsred in the program. Therefore the abstract type of T 

is given by 

Due to such representation, we have the following identities: 
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Identity (107) gives the element type of an array type, and identity (108) gives the 

bounds of the array as  a set of integers. We may abbreviate ran r[T] by r,[T] and 

dom r[T1 by BIT]. 

initialization An initializer for a one dimensional array has the following fonn: 

where II is the initializer for the first element, l2 is the initializer for the second 

eiement and so on. All of I l ,  12, . . . , and le are of type Ti. An initiaüzer for an 

array must initialize all elements of the array. The initializer may be represented 

by a sequence enurneration in Z as 

where I l ,  12, . . . In, are representations of initializers I l ?  12, . . . 1.. We may apply 

the d e s  for representing initializers recursively. 

Recd that default initialization of a static array is to apply default initializa- 

tion to a,il of its elements[l4, p.931. S[T], therefore, should be a value of type r[T]  

with the values of al1 elements being S[T& This may be represented in Z by a 

definite descript ion: 

which may alternatively be written as 
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mult i-dimensional arrays 

TL CBJ CB2I 

C SUBSET 

Consider the following type expression: 

(113) 

where Bi and B2 are integer constants spec-g the bovnds of the array. Due to 

1eRassociat ivity of subscrip t expressions, the type expression may be interpret ed 

as a one-dimensional array of length BI that has elernent type Tl CBz1. We may 

then apply the same results as for one-dimension arrays. Multi-dimensional array 

types of any dimension may be analyzed similady. 

5.3.4 Structure 

When the variable definition define a structure variable, the parameter T is 

where fi, f2, ff, . - - , fn are the components of the structure, and Ti. Tl, Tl, . . . , T, 
are their respective types. The type of each component rnay either be an integer, 

an array, or another structure. 

abstract type We may represent T in Z by a schema type. In particular, the 

abstract type of T is 

The schema components fi, f2, . . . , f, represent the structure components fl , fi, Q, 
. . . , fn, and therefore must respectively be members of the sets have types r[Tl], 

T&], . . . , and T[T.]. The predicate part of the schema is empty because ail the 

type constraints have been included withïn the declarations of the components. 
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initialization The initiaiber for a structure variable must initialize all compe 

nents of the structure. Let the initializer I consists of ll,I2,- - . , In, which initialize 

the structure components fi, fi,. . . , f respectively. Then I may be represented in 

Z by the foIiowing definite descript ion. 

where Il, Iz,. . . , 1, are corresponding specincations of l&,. . . , In. 

Recall that the type of each structure component is either an integer, an may. 

or another structure. Each of I l ,  12, . . . , 1, must therefore have its form either 

as an inïtializer for integer, an array, or another structure. Therefore we may 

apply the rules for representing initializers recursively until we have the desired 

represent at ion. 

R e c d  that the default initialization for a static structure variable is to apply 

default initialization to all its components. We have 

Once again, the identity is recursive. 

5.4 Integer Constants 

In our C subset, the only constants that may appear in an expression are integer 

constants[l l, p.251 of type int. 

abstract state Since no variable occurs in C,  its abstract state is 

where represents the empty schema, which has no components and predicate 

part being the predicate tme. 
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abstract effect Since evaluating C has no effect, the abstract effect of C is 

€[Cl $ ( d e  

abstract value Since the result value of C is the constant C, we may either 

express the abstract value by the constant C itself: 

v [C]  = J [ C ]  = C 

or we may use a definite description 

abstract object The abstract object of C is left undefined because a constant 

does not designate any ob ject. 

5.5 Parent hesized Expressions 

The general form of a parentheszzed qresszon[l4, p.1851 is (El. Since the only 

function of the parentheses is to override operator precedence in C, we simply 

&op them when deriving abstractions. This leah to the foilowing niles. 
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( d e  18) 

( d e  19) 

Each of these rules is vaüd if and only if the respective abstraction is defhed for 

E. 

5.6 Ob ject Designation Expression 

An object designation expression designates an object. For our C subset there 

are t hree kinds of ob jec t designation expressions: vatiables, array subscrip ting 

expressions, and structure component selection expressions. 

5.6.1 Variable Name 

An expression may consist of a single identifier v. 

abstract type The type of the object designated by the expression v is the type 

of the variable as defined in its definition. Therefore, the abstract type of the 

e,upression v is 

abstract state The expression v operates on the variable v. Therefore, we may 

define the abstract state of the expression v to be 
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abstract effect Evaluating v has no effect. Therefore, its abstract effect is 

E[V] [Au[v] 1 ur = v] ( d e  22) 

This abstraction d e  may be abbreviated by xi convention as 

€[VI [2+/]] ( d e  23) 

abstract ob ject The ob ject t hat the expression designates is dways the variable 

v regardless of the value of v. Recd from the definition of abstract object that 

in the abstract object of an expression, the parent of the object designated by an 

object designation expression is represented by a variable subscripted with ' 0 ' .  Let 

v, be that variable. The abstract ob ject of v is then the followhg: 

( d e  24) 

abstract value The result value of the expression v when the variable v has a 

scalar type has the same type as the object that it designates. Therefore, in this 

case, the abstract value of v, expressed in term of its initial and final states, areo 

respect ively, 

The abstract value of v is left undefined when v designates an object of a 

composite type. 
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5.6.2 Array Subscripting Expressions 

The general form of an array subsmpting qress ion [14, p. 1861 for our C subset 

is 

E must designate an object of an array type. El is a subsmpt expression whose 

resdt type is int. 

abstract type E [El] designates an ob ject of its element type. Therefore. its 

abstract type is 

( d e  27) 

abstract state The variables of E CE1] are the combination of those of E and 

those of Er. Therefore, the abstract state of E [El] is 

abstract effect The effect of evaluating E CEi] is that of sequentid evaluation 

of E and El in some order. Therefore, assuming a left to right order of evaluation, 

the abstract effect of ECEJ is 
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abstract object The object designated by E [EJ is the object designated by E 

indexed according to the subscript expression El. Suice r [ E ]  is a sequence, the 

object designated by E [El] corresponds to an element in a sequence the specinca- 

tion. In particular, assuming a left to rïght order of evaluation, the abstract ob ject 

of E CEi] expressed in t e m  of its initial and final states are respectively 

abstract value The type of the result value of the expression E CEi J is the same 

as that of the object that it designates whenever the object that it designates has 

a scalar type. In this case, the abstract value of v expressed in term of its initial 

and ha1  states are respectively: 

The partial systematic renamings [-/-O] and [-'/-O] respectively abstract the re- 

trieval of the value stored at the parent of the object that E CEl] designates at the 

beginning and at the end of evaluating the expression. 

5.6.3 Structure Component Selection Expressions 

The general form of a structure component selection expression may be stated as 

where the object designated by the object designation expression E must be of a 

structure type, with fi being one of its components. 
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abstract type The type of E . fi is retrieved fiom the definition for the structure 

component fi in the program. Therefore, the abstract type of E . fi is 

abstract date The variables of E . fi are the same as those of E. Therefore the 

abstract state of E -fi; is 

abstract effect The effect of evaluating E .fi is that of evaluating E Therefore, 

the abstract effect E. fi is 

abstract object The ob ject designated by the expression E . fi is the structure 

component fi witàin the object (which is a structure) designated by E. Recall that 

a structure is represented by a variable of schema type. The abstract object of 

E . fi would be the following schema component selection expressions: 

where J is the schema component of T [ E ]  that represents the structure component 

fi. 
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abstract value When the structure component fi has a scalar type, the result 

value of the expression E .fi will the value stored at the object designateci by the 

expression. Therefore 

The partial systematic renamings [-/-O] and [-'/-O] abstract the retrieval of the 

value stored at the parent of the object that E designates, at the beguining and at 

the end of evaluat h g  the expression respect ively. 

5.7 Unary Arithrnetic Expressions 

The unary arithmetic operators a d a b l e  in our C subset are plus (+) and minus 

(-1 - 

5.7.1 Unary Plus 

The fonn of a unary plus expression is 

For our C subset E must be an eaxpression of type int. +E is defined to be equivalent 

to (0) +E (14, p. 1961. Therefore, we have the folIowing abstractions. 

Abstract object is not defined for +E because the expression +E does not designate 

an object. 



5 ABSTRACTlONS FOR A C SUBSET 

5.7.2 Unary Minus 

The form of a unary minus expression is 

-E 

For our C subset E must be an expression of type int. As one would expect, this 

MU have very similar abstractions as El 

abstract state The abstract state of -E is the same as that of E. Therefore, 

abstract effect The effect of -E is the same as that of E, with an additional pre- 

condition that the unary minus operation must not result in overfiow. Therefore, 

the abstract effect of -E, 

u[E] is used here rather than d[E] because we are speci&ing a precondition. 

abstract value The result type of -E is the same as that of E, which is int. 

The result of evaluating -E is the arithrnetic negation of the result of evaluating 

E, provided that arithmetic overflow does not occur. Therefore, the abstract value 

of -E, expressed in terrns of its initial state, 

We may omit the coostraint -u[E] E ~ ( i n t ]  because it is implied by ul = -v[E], 

in which -u[E] is equated with y, which has been declareci to be a member of 
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the set r[int]. Therefore? 

Similady, the abstract value of -E expressed in terms of its final state. 

JI-€1 = (pr : ~(intl ( VI = -J [E ] )  (rule 49) 

in which the constraint - J[E] E r[int] is irnplicit. 

abstract object As with +E, abstract object is not defhed for -E, 

5.8 Binary Arithmetic Expressions 

The general form of a binary arithmetic expression E in our C subset is 

where both operands El and EÎ are expressions of type int. aop denotes one of 

the following arit hmetic operators: addition(+), subtraction(-) , multiplication(*), 

division(/), remahder(%). 

representing arithmetic operators in Z First, we need to represent each 

arithmetic operator in C by a corresponding arithmetic operator in 2. Here is a 

mapping between the arithmetic operators in C and those in 2. 

Table 4: Mapping between Arithmetic Operators of C and Z 

C (aop) 
Z (aop )  

+ - * /  % 
+ - * div mod 
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abstrad state The variables of E are the those of El and Ez. Therefore, the 

abstract state of E is 

( d e  50) 

abstract effect The effect of E is equiualent to sequential evaluation of its 

operands in some order, in conjunction with the precondition that the arithmetic 

operation does not result in overflow. Therefore, assuming left to right order of 

evaluation, the abstract effect of E is 

where aop is the corresponding representation of the arithmetic operator aop in 

2. Note that u[E2] is appended to e(Ell to ensure that both operands of aop are 

expressed in terms of the initiai state of E- 

abstract value Suice both operands are of type int, the resuit type would also 

be int. The result value of E is the value obtained Erom appiying aop to the 

result values of evaluating El and €2, provided that the arïthmetic operation does 

not result in overflow. Therefore, assuming left to right order of evduation, the 

abstract d u e  of E expressed in terms of its initial state is 

In (rule 52), u[E4 is appended to €[El] to ensure that both operands of aop are 

expressed in terms of the initial state of E. Since .[El) aop (4E1] ; u[E2]) is 
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equated with y, which is of type int, We rnay remove the constraint u[Ei] aop 

(ciEl] ; v[E2]) E .[=nt] Eiom (Nie 52) and mite 

Similady, the abstract value of E expressed in terms of its the final state is 

Here, e[E2] is appended to d[Elj to ensure that both operands of aop are expressed 

in terms of the final state of E. The constraint (J[Ei] ; 4E4) aop L/[E2j E ~[intl 

is implicit. 

5.9 Relational Expressions 

The form of a relational expression E is 

where El and E2 are expressions. In our C subset both expressions are assumed to 

be of type int. The symbol rop represents one of the following relational operators: 

less than (<) , less than or equal to (<=) , greater than(>), greater thao or equal to 

O=), equal (==) , and not equal( ! =). A relational expression is a boolean expression 

returning either tnre or false. However, C does not define a boolean type and 

the results of evaluating such expressions are expressed as an integer of type int 

instead. Under normal executioo, the result value of a relational expression is 

eit her zero (stands for false) or one (stands for true) . 

representing relational operators in Z Similar to b i n q  arithmetic expres- 

sions, we need to represent the relational operators in C by corresponding relational 

operators in 2. We also define the complement operator of a relational operator 
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rop as foilows: For any two integers a and b,  if a rop b is tme, then a b is 

false, and vice versa. The mapping between relational operators in C and those in 

Z is given in the folIowing table. 

Tabie 5: Mapping between Relational Operators of C and Z 

- - .  1 

b o p )  
Complement in Z (rap) 

abstract state The variables of E are those of El and E2. Therefore, the abstract 

state of E is 

< < > > = #  
> 5 < # = 

abstract effect Unlike the case for arîthmetic expressions in which arithmetic 

overflow may occur, a relational expression executes normally if and only if both 

operands evaluates wit hout errors. Therefore, the effect of evaluating a relational 

expression is simply the effect of evaluating its operands in some order. Therefore, 

assurning le& to right order of evaluation, the abstract effect of E is given by 

abstract value The result type of a relationai expression is int. The abstract 

value of E expressed in terms of its initial state is 
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where rop is the Z relational operator that represents rop, rop represents the com- 

plement operator of rop. The 6tst disjunct in ( d e  57) asserts that the result 

value of E is zero whenever the relation between the result values of the operands 

holds. The second disjunct indicates that the result value of E is one whenever 

the complement of the relation between the result values of the operands holds 

(i. e.. the relation between them does not hold) . Note that for any two expressions 

El and EZ, due to the definition of complement operator. at most one of the two 

disjuncts, v[El] rop ( E [ E ~ ]  ; u[E21), and v[El] (e[Ei] 8 v[E& may be tme 

(none is tme if at least one of the operands does not execute nonnaily). Similarly, 

the abstract value of E expressed in terms of its final state is 

5.10 Condit ional Expressions 

A conditional expression E in our C subset has this form: 

Ei?Eâ : E3 

where the subexpressions El, E2, and Ej are expressions of type int. 

abstract state The abstract state of E is the conjunction of the abstract states 

of its subexpressions. In other words, 
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abstra& effect In executing E, El is h t  evaluated. If the resuit is non-zero, 

then Ez is evaluated and its result value becomes the result value of E. Otherwise, 

E3 is evduated and its result value becomes the resdt value of E. Therefore, the 

abstract effect of E, 

where represent those variables that occur only in EZ, Z represent those variables 

that occur ody in E3. The h t  disjunct corresponds to the case when €1 evduates 

to true, and the second disjunct corresponds to the other case. The predicates 

3 = z and Z' = Z asserts that the variables that appear only in one of E2 and E3 

should remain constant whenever the corresponding subexpression in which they 

occur is not evaluated. 

abstract value The resuit type of E depends on the type of E2 and ES [14, p.2181. 

since both of them has type int in our C subset, The result type of E is int, too. 

The abstract value of E in terms of its initial state is given by 

The first disjunct assert that the result of E should be that of Ez if El is evaluated to 

true, and be that of E3 otherwise. The compositions e(E1] ; v [ E ~ ~  and €[El] ; v[Ej] 

ensure that alI variables in the definite description represent the initial state of E. 

Similarly, The abstract value of E expressed in terms of its final state is given 

by 
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The compositions JIE1] ; e[E2] and J[Ei] ; e[E3J ensure that aii variables in the 

dehite description represent the &al stace of E. 

The Merence between u[E] ( d e  61) and J[E] ( d e  62) is that, while u[E] 

is dways defined under normal execution, J [ E ]  is undefineci when the foliowing 

conditions occur simultaneously: 

The foilowing example would iliustrate the situation: 

Example 4 Let E be a conditionai expression 

where El is i, E2 is i and €3 is i++. Vitriable i is of type int. This expression is 

well-behaved in the sense that lint (a C program checker) does not cornplain. The 

abstractions for the subexpressions El, E2, and 4 are 
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To find v[E] using ( d e  61), we need to pedorm these compositions: 

where P, is the predicate part of c[Eil (lX!), P,, is the constrainhg predicate of 

u[E2] (128) with i substituted by if. Therefore, 

where P, is the predicate part of €[El1 (132), P, is the constraining predicate of 

v[E3] (130) with i substituted by i f .  Therefore, 

Then the abstract value of E in terms of initial value of i, lrom (nile 61), is 
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To find J[E] using ( d e  62), we need to perform these compositions: 

Using (92) we obtain 

where P, is the constraining predicate of d[&] (129), with i f  substituted by i, P, 

is the predicate part of e[E2] (133). Therefore, 

Using (92) we obtain 

where P, is the constraining predicate of d[&] (129), with i' substituted by i, P, 

is the predicate part of c[E3] (1%). Therefore, 
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Using (rule 62), the abdract value of E expresseci in terms of its h a i  state, 

For i f  = 1, 

Eliminating the reduodant inequaiities 1 # O and 1 = 1 reduces (147) to 

The definite description in this case is undefined. This represents a case in which 

the result value of an expression may not be determined from its h a 1  state done. 

In this example, given the h a 1  value of i is one, it is uncertain whether the result 

of the expression is zero or one. The following table shows the resdts of evecuting 

E for dl possible initial values of i. 
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initial value of i II ha1 value of i 
RI 

Min Min 

Max 1 1 1 

result value of E 
Min 

Table 6: Resuits of Evduating i?i: i++ 

We may observe from the table that for initial value of zero or one for il the h a J  

value of i in both cases is one, but the result values of E are different between 

these cases. This observation is accurately recorded in our expression for J[E]. 

R e c d  the conditions (124, 125, 126) that causes J[E] to be undefined despite 

of normal execution- In this case 

d[E1] i é[E2] f O * (pu1 : ~ [ i n t l  1 VI = ir)  # O 

e i f # 0  

v'E] ;e(E3] = O -  (py :r[int] 1 Y = i r - 1  A Min < i f )  = O  

e M . i n < i r ~ i ' - l = O e + i = l  

d[E4 # dl&] u (p VI : +nt] 1 ul = i r )  

# (put : ~ [ i n t ]  1 Min < i f  A ul = i r -  1) 

H M2n < 2 (151) 

The three conditions are simultaneously tme if and only if i' = 1. Therefore we 

may conclude that given that the final value of i is one, the result value of E may 

not be determined. 
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5.11 Logical Expressions 

We s h d  consider these binary logical operators in C: conjunction (&&) and disjunc- 

tion ( 1 I ). They must be deait with separateiy fiom binary arithmetic operators or 

relational operators due to difference in t heir semantics. U&e a binary arithmetic 

or relational expression, the order of evaluation of a logical expression is always 

fkom left to right. In addition, the right operand of a logicd operator is evaluated 

baseci on the result of evaluating the Ieft operand. Under normal execution, the 

result of a logical expression is either zero (representing fabe) or one (representing 

t r ue )  . 

5.1 1.1 Conjunct ion 

An expression with conjunction operator has the following form 

Our C subset assumes that both expressions El and E2 are of type int. El is 

evaluated k s t .  E2 would be executed only if the result value is non-zero (tnre). 

This is because, if one of the operands of a conjunction evaluates to false, the result 

of conjunction must be false. 

abstract state The abstract state of a conjunction expression is the conjunction 

of the abstract states of both operands: 

abstract effect The abstract effect of E is 

€[El [ W E I  1 (€[El] i 4E21) A ~[E11 # 0) 
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where 3 represents those variables of E that appear only in EZ- The first dkjunct 

in rule (64) asserts that the effkct of Ei&&E2 is equident to sequential execution 

of El foilowed by E2 whenever El evaluates to non-zero (true). The other disjunct 

asserts that in case El evaluates to zero (folse), those variables that appear only in 

EZ m u t  conserve their values, while the effect is equivalent to executing El alone. 

abstract value A conjunction expression evaluates to either zero (for false) or 

one (for tme).  Only one of the following three cases may occur under normal 

execut ion: 

El evaluates ta zero. In tbis case the result value of E is zero. 

El evaluates to non-zero but EZ evaluates to zero- In this case the result 

value of E is also zero. 

both El and E2 evduates to non-zero. In this case the resuit value of E is 

one. 

In addition, the type of the result value of a conjunction expression is aiways int. 

Therefore, the abstract value of E, in tenns of its initial state, 

and that in terms of its final state, 
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Similar to the case for conditional expressions, di€] is undefined if the foUowing 

conditions are sïmultaneously true: 

5.11.2 Disjunction 

In our C subset, an expression using the disjunction operator WU be of the form 

E = €11 IE2 (155) 

where El and E2 are expressions of type int. 

abstract state The abstract state of a disjunction expression is the conjunction 

of the abstract states of its operancis: 

abstract effect While evduating E, El is evaluated hst. E2 w d d  be evaluated 

only if the result value is zero (false) This is because a disjunction is true if either 

of its operands evaluates to true. Therefore the abstract effect of E is 
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where 3 represents those variables of E that appear only in Ez. The ôrst disjunct 

in ruie (rule 68) asserts that both El and E2 are executed whenever El evaluates 

to zero (false). The second disjunct asserts that if El evaluates to non-zero (trzle),  

only El wodd be evaluated. Therefore, the values of those variables that appear 

only in €2 must be conserveci. 

abstract value The only case in which a disjunction expression evaluates to zero 

is when both operands evaluates to zero. In addition, if the first operand evaluates 

to non-zero, the whole expression evaluates to one without evaluating the second 

operand at  ail. The the result of a disjunction expression is always of type int. 

Therefore, the abstract value of E, expressecl in terms of its initiai state is given 

by 

The same quantity expressed in terms of the final state of E is 

The conditions under which $[El is undefined are very sirnilar to those for con- 

j unction expressions: 
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4E1] ; €[Et]  = 0 

5.11.3 Logical Negat ion 

The third logical operator is logical negation, denoted by ! . The result value of 

logical negation is either zero (fuke) or one(trcle). h our C subset, the fom of a 

logical negation expression E is 

where El is an expression of type int. 

abstract state The abstract date of E is the same as the expression being 

negated, that is El. Therefore, 

( d e  71) 

abstract effect The operand of Iogical negation ( i-e . ,  El) is always evaluated. 

There is no other effect. Therefore 

abstract value The result value of a logicai negation is always of type int. 

The result value of a logical negation is zero if the operand evaluates to non-zero 

(represented by the ûrst disjunct in (rule 73), and is one if the operand evaluates 



5 ABSTRACTIONS FOR A C SUBSET 96 

to zero (represented by the second disjunct in ( d e  73). Therefore, the abstract 

value of E expressed in terms of its initial state, 

Similady, the abstract value of E expressed in terms of its ha1  state is 

( d e  74) 

5.12 Assignment Expressions 
5.12.1 Simple Assignment Expressions 

We cornider simple assignment expressions fîrst. A simple assignment expression 

has the following fom: 

where El and E2 are expressions. El must designate an object of a scalar type T. 

which is assumed to be the same as the result type of E2. 

abstract state The abstract state of an assignment expression is the conjunction 

of the abstract states of its operands. Therefore, 
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abstract effect The effect of the assignment expression stems kom edua t ing  

E, which rnay be thought of being performed in two steps: 

1- First, evaluate separately the left operand to obtah the object that it desig- 

nates, and the right operand to obtain its result value. 

2. Assign the result value obtained in step one to the object obtained in step 

one. 

Assuming a left to right order of evaluation, the abstract effect of the fkst step is 

Let At[E1=E2] be the operation schema that represents the abstract effect of the 

second step. First, we need an abstraction for the resuit of the right operand 

expressed in terms of the ha1  state of step one, that is J[E2]. We also need an 

abstraction for the object that the left operand designates, expressed ais0 in tems 

of the final state of step one, that is (L/[E1] ; E [ E ~ ] -  The composition J[Ei] 8 c[E2] 

is necessary because evaluation of El is only an intermediate step within step one 

so that the variables of El may be hirther changed by subsequent evaluation of E2 

(Example 3 contains an instance whese such composition is needed). F indy  we 

may define Ar[El=E2] to be 

The purpose of the additional declaration o[El=E2]. in the signature of d'[Ei=E2j 

is to assign types to those variables in the predicate part that are subscripted with 

O They are hidden so that the effect of the assignment is specified only by the 

relat ionship between initiai and final states. The partial systematic renaming [-/-'1 
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abstracts the equivalence between the hd state of step one and the initial state 

of step two. The partial systematic renaming [-'/-O] abstracts the re t r ied of the 

hal value of the parent of the object that is assigned in step two of the assignment 

expression; In this abstraction nile, and Z' denotes the initial and final values of 

the variables of the essignment expression other than the parent of the object that 

is assigned in step two of the assignment. The syntactic transformation (':'=') will 

be described shortly. 

Using (rule 76), the abstract effect of E is the sequential composition between 

the abstract effects of the two steps, that is, 

definhg the syntactic transformation k'=' The operator ':'=' takes two 

expressions (in 2) of particular forms as operancis, and evaluates to a predicate. 

In general, the left operand will be an abstract ob ject sequentially composed to an 

operation schema, and the right operand wiil be a definite description. Applying 

:'=, foilowed with the partial systematic renamings [-/LI [-'/-O], must resuit in a 

predicate that specifies the final value of the parent of the object being assigned 

in step two in the assignment expression. Formal description of this syntsctic 

transformation requires an extension to notation. 

We shall define :'= base on the form of the abstract object within its left 

operand, as foUows. 

variable In the simplest case, the abstract object in the left operand of :'= 

is that of a variable, Say v. In this case, we may define 
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for any sequence of operation schemas S, composed sequentidy, and deânite de- 

scription D. Definition (161) is justined for the fact that J [ v ]  is v,, which, due to 

the absent of no primed variables, must remain constant regardes of the operation 

schema appended to it . 

array subscripting expression When the the abstract object in the left 

operand of :'= is that of an array subscripting expression, we may defhe 

By associativity (JIEIJ ; CIE*]) ; S is the same as wf[El] ; (e[E2] ; S), which is 

composition between an abstract object and an operation schema. In addition, 

the function application[42, p.831 in (162) due to the @ operator Mplies a definite 

description as its result . Therefore, we may apply our definition for :'= recursively 

to the right side of definition (162). The partial systematic renaming [-'/-O] cor- 

responds to retrieval of the value of the parent of the object being assigned at the 

end of the £kt step of the assignment. 

structure component select ion expression When the the abstract ob ject 

in the left operand of :'= is that of a structure component selection expression, we 

may define 
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We may apply our definition for :'= recursively to the right hand side of definition 

(163). 

Let us r e c d  fiom Exampie 4 that an abstract value expresseci in tenns of 

the hai state of a constmct may be undefineci despite nomai execution of the 

construct. In addition, an abstract object expressed in terms the final state of a 

coastruct may contain terms which are abstract values expressed in terms of the 

final state of some constructs. Hence, a disadvantage of (rule 77) is that whenever 

J [ E J  or J[E2] is undefined, df[Ei=E2] would &O be undefined. The foliowing 

example illustrates the situation, 

Example 5 Consider the following assignment expression: 

where i is of type int . Although the abstract value of i?i : i++ expressed in terms 

of its finai state is undefined, the abstract effect of the assignment expression is 

still defmed. In particular, assuming a left to right evaluation, 

~[i=(i?i: i++)] [i, if : Mh..Mnz 1 if = i A i # O 

v z ' = l ~ i = o ]  (165) 

To eliminate such undefinedness, we may define the abstract effect of step two 

of a simple assignment, not only in terms of the initial and fina state of step two, 

but also partially in terms of the initial state of the assignment expression itself. In 

particular, we s h d  express the following quantities in step two of the assignment 

in terms of the initial state of step one: (i) the value being assigned, and (ii) the 

object being assigneci. Al1 other quantities must stiU be expressed in terms of the 

final state of the first step. 
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Let u s  assume a Ieft to right order of evaluation. Let A[Ei=E2] be the abstract 

effect of step two derived using the alternative approach. First, we need an ab- 

straction of the abstract object of El expressed in terms of the initial state of the 

assignment expression, that is w[El]. We also need an abstraction of the abstract 

value of E expressed &O in terms of the initial state of the assignment expression, 

that is €[hl ; v[Ez]. 
We may then define A[Ei=E2] to be 

The purpose of the additional declarations o[Ei=E& and a(E1=E21" in the signa- 

ture of A[Ei=Ç2] is to assign types to the variables in the predicate patt that are 

subscnpted wit h 'O '  or double-primed. Specificaily, 4El=E2]" denotes the initial 

state of the assignment expression, which we s h d  use in speciwng step two of 

the assignrnent in the alternative approach. The declaration u[E1=E2], is hidden 

so that the effect of the assignmeot is specified only by the relationship between 

initial and final states of step two, as well as  the initial state of the assignment 

expression. The partial systernatic renaming [-'/-O] abstracts the retrieval of the 

final value of the parent of the object that is assigned in step two of the assign- 

ment expression. 2 and 3 denote the initial and final values of the variables of the 

assignment expression other than the parent of the object that is assigned in step 

two of the assignment. The partial systematic renaming [-"1-] in ( W [ E ~ ] ~ - ~ I / ~  and 

(e[Er] ; v[EZ]) [ - M ~ ~  correspond to our technique of expressing both the object and 

the value being assigned in terms of the initial state of the k s t  step. The syntactic 

transformation : = will be described shortly. 
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Using ( d e  78), we define the abstract effect of E to be the sequential compo- 

sition between the abstract effects of the two steps: 

The predicate 00[EI=E2] = t90[E1=E2]" in (rule 79) is due to our notation of usina, 

double-primed variables to denote the init id state of the a s s i v e n t  expression. 

definllig the syntactic transformation ':=' 
The operator ':=' takes two expressions (in 2) of particular forms as operands, 

and evaluates to a predicate. In general, the left operand will be an abstract 

object renamed by [-"/-1, and the right operand will be a defmite description. 

Applying ':='? followed with the partial systematic renaming [-'/-O], must result 

in a predicate that specifies the final value of the parent of the object being assigned 

in step two of an assignment expression, expressed in terms of both the initiai and 

final state of the fust step of the assignment. This sptactic transformation may 

not be defined witbin the Z notation. 

We may define ':=' based on the form of its left operand, as follows. 

variable The simplest case is when the abstract object in the left hand side 

of the ':=' operator is that of a variable, Say v. Since w[v] contains no unprimed 

miables, we have 
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array subscnpting expression Another case we s h d  consider is when the 

left operand of ':=' is the abstract object of an may subscnpting expression. In 

this case, we may define 

def 
~ ( € 1  CE21]vI_I := D = w [ E i ] p t / _ ~  :=w[EiIp/~[-/-ol  

The function application in (167) due to the a operator implies a deh i t e  descrip- 

tion as its result . Therefore we rnay apply our definition for ':=? recursively to the 

nght side of definition (167). The partial systematic renaming [-/-O] corresponds 

to retrieval of the value of the parent of the object being assigned at the end of 

the Grst step of the assignment. It is here because, all ob jects of the parent of the 

object being assigned, except the object being assigned, must stiU be expressed in 

terms of the final state of the h t  step of the assignment. 

structure component selection expression Another case we shall con- 

sider is when the the abstract object on the left hand side of the := operator is 

that of a structure component selection expression. In this case, we may define 

We may then apply our definition for := recursively to the right hand side of 

definition (168). 
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abstract value The result of evaluating an assignment expression is the value 

being assigneci, that is, the result value of the right operand (E2)- Therefore, the 

abstract value of Ei=E2, 

It is impossible to derive v'[&=Ez] using AIEl=W because, by definition, J[Ei=E2] 

may contain no knowledge of the initial state of the assignment expression. For 

example, t hough the abstract effect of 

is well defined, its abstract value, coincidentaiiy being equal to t hat of Ci? i : i++) 

is not always defined despite normal execution. 

Example 6 This example illustrates the application of (mie 79) and the syntactic 

transformation ':=' on the following assignment expression: 

For brevity we only show the predicate parts of the schemas involved. Assuming 

left to right order of evaluation, the effect of the first step of the assignment is 

i' = i + 1 A a' = a ffl {(i ,  afi] +1)) (171) 

Consider step two of the assignment. The term ~ [ E ~ ] [ - r r / ~  := (e[Ez] i v[E2J)ptl4 

in ( d e  78) would be 
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which is 

w [a [a Cil ++ J 11-11/4 := (af' ffl {(i", a"[i"] + l )  ) ) [Pl (173) 

Let D be (a f f  {(i", af'[iff] + l ) ) )  [in] , which is equal to a"[i') +1, Using (167) 

(173) becomes 

Since u(a[i++I] = a[z] , (173) would be equivalent to 

which, fiom (166), is equivalent to 

a. = a a { ( ~ " [ i " ]  , a"[i"] +l)) (176) 

Substitute (176) into (rule 78). The predicate part would be 

According to (rule 79), we perform sequential composition between the two steps 

(that is, (171) and (177)). This yields 

a' = a a {(i, a[z] +1)) 8 {(~"[z" ]  , a"[i"] +l)) A if  = i + 1 (178) 

Finally, substituting double-primed variables with unprimed counterparts produces 

the following: 

af = a { ( i ,  a[z] +l)) { ( a [ - ]  , a [ ~ ]  +1)) A i f  = i c 1 (179) 

which would be the abstract effect of the assignment expression (170). 
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5.12.2 Compound Assignment Expressions 

The general form of a compound a s s i v e n t  expression E is 

where aop is an arithmetic operator (+, -, *. /, or X ) ,  El and EZ are expressions, 

which, in our C subset, are assumed to be of type int. 

abstract state The abstract state of a compound assignment expression is the 

conjunction of the abstract states of its operands: 

( d e  82) 

abstract effect The meaning of E is exactly the same as 

with the constraint that El is evaluated only once [14, p.2221. Once again, this 

may be thought of being performed in two steps: 

1. Obtain both the result value of, and the object designated by, the left 

operand, and obtain separately the resdt value of the right operand. 

2. Apply aop to the result values obtsined in step one, and assign the resulting 

value to the object that we have obtained in step one. 

The effect of the first step is exactly the same as that of simple assignment expres- 

sion, with the additional constraint that the arithmetic operation must not result 
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in ovedow. Therefore, assuming a lefi to right order of evduation, the abstract 

effect of step one is 

where aop is the operator in Z that corresponds the the operator aop in C, as 

stated in Table 4- 

Let At[E] be the operation schema that represents the abstract effect of step 

two. As for the case of simple assignment expressions, we need an abstraction 

for the object designated by El and an abstraction for the result value of E2, both 

expressed in t e m  of the final state of step one. In addition, we need an abstraction 

for the result value of El, expressed &O in te- of the final state of step one, that 

is J[El) f E[E& Then, assumïng a left to right order of evaiuation, d'[El may be 

defined to be 

where z a d  9 respectively represent the initial and final d u e s  of the variables 

of E other than the parent of the object being assigned in step two. Finally, the 

abstract effect of E is sequential composition of the abstract effect of the two steps: 

Using the alternative way to specify the abstract effect of step two (that is, specib 

it partially in terms of the initial state of E), the abstract effect of E is 
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with A[€] dehed as foilows: 

where Z and 2' respectively represents the initial and hai values of ail variables 

of E other than the parent of the object being assigned in step two. 

abstract value The abstract value of E, evpressed in terms of its initial state. 

is: 

with the constraint that the arithmetic operation does not produce overfiow, that 

is, u[El] aop (&] 8 u[E& E ~[int], being implicit. Similady, the abstract value 

of E, expressed in terms of its hal state, is, 

The composition J[Ei] ; 4E2] ; d'[El is needed because evaluation of El precedes 

both the evaluation of E2 and step two (whose abstract effect is Ar[EI). The 

constraint u[El] i e[E2] A'[E]) aop (J[E21 ; d'[El) E r[intl is implicit in ( d e  

88). Once again, it is impossible to denve d[E] using AIE]. 
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5.13 Preincrement and Predecrement Expressions 

The general form of a preincrement or ptedecrement expression E is 

where the expression El is of type int. The increment/decrement operator idop is 

either ++ or --. El must designate an ob ject. 

abstract state The abstract date of E is that of El. Therefore, 

abstract effect The expression E is equivalent to El+=l. Let I and 3 represents 

the initial and final values of all variables of E other than the parent of the object 

designated by E respectively. Then the abstract effect of EI applying ( d e  84), is 

with A'[EI defined accordingly as 

Alternatively, the abstract effect of E, using (rule 85), is 
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abstract value Applying (rule 87) we obtain 

v[E] = ( p  y : r[int] 

= (pu1 : ~ [ i n t l  

Applying ( d e  88) we obtain 

5.14 Postincrement and Postdecrement Expressions 

The generd form of a preincrement or predecrement expression E is 

where expression El has type int. The increment/decrement operator idop is either 

++ or --. 
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abstract date and effect The abstract states and abstract effects of El idop 

and idop El are the same. Therefore, we have the foUowing abstraction rules: 

o[E] e 0[4] (rule 96) 

€[El [Ao[E) 1 (e[E1] ; AILE]) A u[Er] aop 1 E ~[int]] ( d e  97) 

€[El ' [Ao[E]; O[€]" 1 

(e[El] ; A[E]) A v[E1] aop 1 E ~[intl] \ (-") ( d e  98) 

with df[E] and A H  defined respectively as 

abstract value The result value of E is the result value of El, with the constraint 

that the arithmetic operation must not produce an overflow. Therefore, 

Unlike (rule 94), the constraint for the arithmetic operation to be valid, that is 

v[E1] aop 1 E ~ [ i n t l ,  must be explicitly stated in (rde 101), because this is not 

implied by ul = u[EII. Similarly, the abstract value of E, expressed in terms its 

final state, is, 

d[E] = ( p  VI : r[int] 1 VI = @'[El] ; Ar[€]) 

A (J[Ei] i d'[El) aop 1 E ~ [ i n t j )  
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5.15 Sequential Control Structures 

We have dealt with techniques for finding abstractions of definitions and expres- 

sions. We now proceed to find abstractions of control structures. For the purpose 

of this thesis, control structures are classifieci into 

statements statements inchde expression statements, if-statements, if-then-eIse 

statements, and blocks. 

sequences of statements sequential execution of statements is expressed in C 

by a sequence of statements. 

function definitions A function definition has the form T f O B. where f is the 

name of the function, T is the return type of the hinction, and 6 is a block 

which is the body of the hinction. For our C subset, T is always void, that 

is, functions do not retum any d u e .  

program A program consists of a sequence of variable and function definitions. 

One of the definitions must be a hinction named main. A C program is 

executed by invoking the main function. 

The only abstractions dehed  for sequential control structures are abstract 

effect and abstract state. Other abstractions are left undefmed. 

5.15.1 Expression Statement 

An expression may be made into a statement by appending to it the statement 

terrninator, semicolon ( ; ). For example, i++ is an expression, while i++ ; is an 

expression statement. The expression is evaluated but the value is discarded; only 

its effect remains. Therefore, for an expression statement E ; , its abstract effect is 
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the same as t hat of the expression E, that is, 

€[E; ] [AD[€; 1 [ ( d e  103) 

Since E ; operates on exactly the set of variables as E, its abstract state is 

O[€;  1 a [ E ]  ( d e  104) 

5.15.2 hnction Invocation 

Our C subset assumes that a function invocation must occur on its own as an 

expression statement, that is: 

where f is the name of the function invoked. If f is non-recurszve: that is, its body 

may only cal1 non-recursive fùnctions, we may substitute the body of f in place of 

f () ; . Therefore, the abstract state and abstract effect of f O ; are respectively 

and 

~ [ f (  1 ; 1 [Aa[f O ; 1 1 €[body of f)] ( d e  106) 

Since the body of a function is a block, its abstractions may be calcdated using 

(ruie 108) and (rde 107). 

Any statement in C is written within a block, delimited by braces (C)). A block 

consists of a sequence of variable definitions followed by a sequence of statements: 
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Consider a block that has form 

where D, a sequence of variable definitions, consists of local definitions Dloa, and 

static definitions Dmtic- S is a sequence of statements. We may define the effect 

of the block as the effect of executing S appended to the effect of initializations 

performed by D, with static variables definitions skipped and local variables hidden. 

Therefore the abstract effect of the block is 

where and v& represents the initial and h a 1  states values of the local 

variables of the block in its execution. The operator (\) is the hiding operator in 

2. 

The abstract state of the block is 

Hiding of local variables fiom the abstractions of a block is necessary because, 

Since the values of the local variables defined in a block are not retained when 

control exits from the block, these variables should not be considered as part of 

the states of enclosing constmcts. 

Static variable definitions are skipped (note the absence of Deatic in ( d e  107)) 

because we want to separate the effect of executing the block that applies every 

time the block is entered, from the initialization of static variables, which only 

occurs once before the very first entry into the block. 

The effect of initializing static variables is included as the effect of function 

definitions, discussed below. 
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5.15.4 Ehction Definition 

In general, the abstract effect of a hinction definition (as opposed to the hinction 

body, which is a block) may be dehed  as the sequential composition of the abstract 

effect of d the static variable definitions throughout the body of the function. 

Consider a bc t ion  f defined to be 

where Dl, Cl2 ,  . . . , 0. are sequences of declarations. Let Dl consists of local variable 

definitions Di,, and static variables definitions Dl,, D2 consists of D2-, and 

Oh,,, and so on. The abstract effect of the function definition is then 

The variables of the function definit ion are the stat ic variables defined therein. 

Therefore its abstract state is 

Cornparhg these abstractions against those of a variable definition, we may view a 

hinction definition as a global variable of a structure type, with components being 

the static variables defined anywhere within the function body. Then the (defadt 

or explicit) initializers for these static variables may be viewed as the initiaüzers 

for the components of the global &able. 

5.15.5 Sequence of Statements 

Sequential execution of statements is represented in C simply by writing these 

statements in sequence. Let S be the following sequence of n statements 
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Its abstract effect is therefore the sequential composition of the abstract effect of 

the statements, Le-, 

€151 [Ao(S] 1 4511 j 4521 ; - - - i ~ ( s n ] ]  ( d e  111) 

Similarly, the abstract state of S wouid be the conjunction of the abstract states 

of aU the statements in the sequence: 

o(S] o[Sij A a[Sz] A - A a[S.)] 

A program consists of a sequence of variable debitions and function definitions. 

The abstract effect of a program P is an abstraction of initializations fallowed 

by invocation of the main bction.  Therefore the abstract effect of P is sequen- 

tial composition of all the global declarations and the effect of invoking the main 

function: 

If main is non-recursive (which is the case for our C subset) we may substitute the 

body of main into m a i n  O ; . In other words, 

€[Pl [Au[P] 1 E [ D ~ ~ ~ ~ ]  j c(body of main] (rule 114) 

Since the body of main is a block, we may use (nile 108) and ( d e  107) to calculate 

€[body of main]. Similarly, the abstract state of the program, when the main 

function is non-recursive, is 

c[P] o [ D ~ I ~ ~ ~ ]  A a[body of main] (rule 115) 

that is, the conjunction of the abstract states for ail the variables that the program 

may operate on. 
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5.15.7 If-Statements 

Conditional statements in C rnay be represented either by an if-statement or an 

if-then-else statement - For an if-statement S of form 

where E is any expression of integer type, Si is any staternent, the abstract state 

of S is the aggregation of the abstract state of the condition expression (E) and 

the body (SI): 

In executing S , E is first evaluated. Si is then executed only if the resdt value 

is non-zero (true). Therefore the abstract effect of S, 

where z represent those variables of the if-statement that occur only in SI. The 

first disjunction in (1 17) corresponds to the case when the condition expression is 

evaluated to tme (non-zero) and therefore the body also gets executed. In this case 

the effect is the composition of the effect of the condition expression and the body. 

The second disjunct corresponds to the case in which the condition expression 

evaluates to fabe. In this case the body is not executed and therefore the abstract 

effect is just the abstract effect of the condition expression and the assertion that 

those variables that appear only in the body may not be changed. 

5.15.8 If-then-else Statements 

For an if-then-eise statement S of form 
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where the condition expression (E) is any expression of integer type, both the then- 

part (Si) and the else-part (54 may be any statements. The abstract state of S in 

this case is the conjunction of the abstract states of the condition expression, and 

that of then-part and that of else-part: 

In executing S, E is first executed. If the resdt is non-zero ( true) then the 

t hen-part (Si) would be executed. Otherwise the else-part (S2) would be executed. 

Therefore the abstract effect of S, 

where I represent those variables of the if-then-eise statement that occur only in Si, 

5 represent those variables that appear only in Sz. The 6rst disjunct corresponds to 

the case when the condition is satisfied and then-part of the if-then-else statement 

is executed. The abstract effect in this case is the sequential composition of the 

abstract effect of the condition expression and the t hen-part , and the const raint 

that the values of the those variables that appeaz only in 52  remah constant. The 

second disjunct corresponds to the case when the condition is not satisfied and the 

else-part of the if-then-else statement is executed. The abstract effect in this case 

is the sequential composition of the abstract effect of the condition expression and 

the else-part, in conjunction the constraint that those variables that occur only in 

SI may not be altered. Note that the (rule 119) is exactly the same as that for 

conditional expressions (see ( d e  60)). 
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5.16 Iterative Statements 

There are three kinds of iterative statements in C[14, p.2411: while-statement, 

dewhile statement, and for-statement. We s h d  first derive abstractions for a 

while-statement, then use the results to derive the abstractions for the other two. 

Let us consider a simplijied while-statement W of form 

where E, an expression of type int, is the condition eqression of the while- 

statement; B, a statement, is the loop body of the whilestatement. For the simpli- 

fied while-statement the condition expression has null effect . 

abstract state The abstract state of W is the conjunction of those of B and E. 

T herefore, 

o[W) a[€] o[B] ( d e  120) 

abstract effect Let 5 represents the variables of W, and represents those 

variables that occur in E but not in B. We may write the abstract effect of W as 

where ü and v' respectively represents the initial and final state (if the loop ter- 

minates normally) of the whïie-statement. The first disjunct represents the case 
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in which the condition expression is evaiuated to false and therefore the loop is 

not entered and no change is dowed on the state. The second disjunct repre- 

sents the complementary case, that is, the condition expression is satidied. In this 

case, the effect must be the same as executing the loop body once, then uses the 

intermediate state, represented by v", as the initial state to execute W. 

The clifference between ( d e  121) and al1 previous des is the recurrence of the 

abstraction behg dehed (that is, E[W~) on the right hand side of its definition. 

( d e  121) may be mit ten equivalently as 

proving a proposed predicate part for r[W] Since Z does not d o w  recursive 

schema declarations, (rule 122), as it is, may not be used to specify the effect of 

the while-statement. However, for a sufnciently short or clearly written while- 

statement, a domain expert may be able to propose the predicate part of e[Wl 

and verify it agahst (rule 122) by checking whether the following predicate is a 

tautology: 

when the proposed predicate part of e[W] is substituted. 

Mili[22] discussed several approaches to verifyiag an iterative statement by 

induction. The approach closest to ( d e  122) is s u b g d  induction theorem[22, 

~.165], which may be paraphrased in our notations as 
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A v[E] # O A E(B] ; c[W] + e[W]] ( d e  123) 

( d e  122) and ( d e  123) aze logically different because ( d e  123) is satisfied when- 

ever E does not executes nomally, due to the implications in the d e ,  which is 

not the case for ( d e  122). 

recursive charaderization of o[W] Recail that ( d e  122) is not a valid decla- 

ration in 2. To work around the problem one may rewrite (rule 122) in forrn of an 

axiomatic definition that define the relation between initial and final states under 

normal execution of the while-statement . 

Note that in the above axiomatic description, r is dehed  recursiveiy. 

We rnay then use l? to specify the abstract effect of W to be 

This approach is direct but it neither asserts whether l? exists, nor any possibility 

of obtaining a non-recursive definit ion for ï. 

k e d  point characterization of c[W] Another approach to characterize the 

effect of a (simplified) while loop is as a k e d  point of a function [13, p.120][41, 

p.611. Comparing to the use of an recursive axiomatic definition in (rule 124), this 

approach trades a recursive definition for a union of iizfinite number of sets. We 

shall examine a construction of o w ]  using the techniques given in ([a]). 

iked point theorem [41, p-531 We Say that x E dom f is a fized point of a 

function f if f (x) = x. Let R be a hinction between sets that takes the following 
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where P ( X ,  y) is a predicate. The essence of the result is that, if for each of every 

elements of R(B) ,  there exïsts a finite set X such that P ( X ,  y) is true, that is, the 

presence of a corresponding finite subset in B is sufncient to establish the presence 

of any element in R(B) ,  then R has least fized point, defined to be 

Let specification variables 5 represent the program variables of the simplified 

while-statement, and specification variables represent those program variables 

that occur in the condition expression but not in the loop body. Let u s  define the 

function W as follow: 

Then, accorduig to [41, p.591, the least fixed point of W, that is, £i.x W, represents 

the relationship between initial and final state of the simplified while-statement 

under normal execution. Therefore, we may represent the abstract state of W as 

an operation schema using W: 
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Consider a general while statement with condition expression E and loop body 

6: 

For our C subset the condition expression E is assumed to be of type int, but may 

have arbitrary effect. This may be rewritten conceptually as 

where Eu is an expression that has no effect but has the same result value as that 

of E. E, is another expression that has the same effect as E. Ev, Et and E have the 

folIowing relationships: 

Asserting v[E,] and J[E,] to be equal to v[E] rather than JI€] is justified as 

follows: We have conceptually divided the expression E into two expressions, Eu 

and E, that must execute sequentiaily, with E, always precedes E,. This means 

that the initial values of the variables as seen by E, must dways be the same as 

those seen by E. Therefore v[Ev] = v[E].  In addition, since Eu has no effect, 

v[EJ = J[E,P. Therefore i / [Eu )  = v[E] as well. Since the condition expression 

of the rewritten while Ioop has null effect, we may use the results Erom sirnpiïfied 

while-statement to perform the abstractions. We need not have explicit forms for 

E, or E, in order to derive abstractions. Specifically, we may use (rule 125) to 

obtain the following with EW] replaced by 

and W correspondingly declared as the following: 
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Unlike the previous dehition for W for a simplifiecl while-statement, Fr = 

Z no longer occur in the above axiomatic definition. This is because, in the 

above axiomatic definition, 9' = 3 has been implied by the composition (€[El ; 

431 [-YI - 

5.16.2 Do-While Statement 

The general fonn for a do-whi'le statement W is 

where 8 is a statement that is the body of the loop. E is the condition expression 

of type int. 

abstract state The abstract state of a dewhile statement is the aggregation of 

the abstract states of the condition expression and the loop body. Therefore, 

o[W] a [ B ]  ; a [ E ]  ( d e  127) 

abstract effect W may be transfomed conceptudy into the following sequence 

of statements that contains a while-statement: 
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This look almost exactly the same as a while-statement except for additional 

instance of B at the very beginnllig. Therefore, if we choose to use a fured point 

characterization of cw], we may use the same dedaration for W as for a general 

whilestatement, with t(W1 de- to be 

5.16.3 For-Statement 

The general form for a for-statement W is 

where 6 is a statement that is the body of the loop. El is executed first. Then 

the condition expression EZ, that is of type int, is evaluated. If it is non-zero, 

6 is executed, folIowed by the execution of E3. The process is repeated until EZ 

evaluates to false. 

abstract state The abstract state of a for-statement is the aggregation of the 

abstract states of El, E2, E3, and the loop body. Therefore, 

abstract effect W rnay be transformed conceptuaily into the followîng sequence 

of statements containhg a whzle-statement: 



5 ABSTRACTIONS FOR A C SUBSET 

where 

and E2y has n d  effect. We rnay use ( d e  126) to characterize r[W] by a fked 

point of a function. Then the abstract effect wodd be 

with W declared to be 

where F represents those variables of W that occur only in El. 

5.17 Break and Continue Statements 

Ward[39] used a variable to hold the depth of iteration at al1 times in order to 

analyze programs that may break from iterations of arbitras. depth. 

Since both break and continue statements concern only with the innermost 

enclosing iterative statement, we only need to d e h e  two local variables for every 

iterative statement. Here is how the three kinds of iterative statements may be 

rewritten to include these variables: 

while-statement A while-statement of form 

while (E) B 
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may be trdormed into the following block: 

The flag ,û t e k  the while-statement whether a break statement has been executed. 

The flag K teils the while-statement whether a continue statement has been ex- 

ecuted. At mast one of them may be set at any tirne. guard(B) is a syntactic 

transformation of 6 such that the flags are tested and set properly. 

do-while statement Similady, a do-tuhile statement of form 

may be transformed into the foilowing block: 

for-statement A for-statement of form 

for CEi ; E2 ; E3) 8 
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may be transformed into the foL10wing block: 

characterizing guard We need not attempt to specify guard completely. In- 

stead, depending on the kind of constmct B , we s h d  derive the abstract state and 

effect for guard(B). 

break statement Unless the continue flag bas been set, the break flag should 

be set at this point. This would prevent further effect until the end of the Ioop 

body Therefore, 

c[guard(break; )] [ P ,  : ~ [ i n t l ]  ( d e  131) 

continue statement Unless the break flag has been set, the continue flag should 

be set at this point. This would prevent further etfect until the end of the loop 
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body- 

o[guard(cont inue; )] & [/3, n : ~[intl]  

sequence of staternents For every statement in a sequence of statements, we 

need to check whether a break or continue has been executed. Therefore, 

where Si, S2, . . . Sn are stateme~ts in the sequence of statements. 

block Let B be a block of form 

If neither flags have been set, al1 local variables of the block must be initialized, and 

control passed to the first statement in the block. In this case, for every statement 

in the block we need to check whether a break or continue bas been executed. 

Therefore, in the first disjunct in ( d e  5.17) we apply guard recursively to these 
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statements. The second disjunct in (rule 5.17) specifies that if either flags have 

been set before the block is entered, the effkct must be nd. Therefore. 

(z[ward(B)] a[B] A [O, n : ~[int]] ( d e  137) 

ert expression statement The effect of an expression statement is ass 

when none of the 0ags have been set. Therefore, 

if-statement Let B be an if-statement of the foilowing form: 

The effect of an if-statement is asserted only if no flags have been set. In addition, 

guard must be applied to the body of the if-statement. Therefore, 

( d e  141) 
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~[guard(B)] [Aa(guard(B)] / P = 0' A K = d A B = O h n = O 

A 0o[B]' = Bc[B]] 8 [~[guard(S)] 1 u[E] # O] 

v [Eo[guard(B)l 1 ,O = 1 V 6 = 11 ( d e  142) 

if-then-else statement Let B be an if-then-else statement of the following form: 

if (El SI else S2 (212) 

The effect of an if-then-else statement is aserted only if no flags have been set. 

In addition, guard must be applied to both the then-part and the else-part of the 

if-t hen-else statement. Therefore, 

iterative statement For an iterative statement B, we ody need to make sure 

that it does not execute when one or both ftags have been set. We do not need to 

apply guard to the loop body because the break and continue statements within 

the Loop body do not apply to the encloshg iterative statement. 
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e[guard(B)] [Au(guard(B)] ( 0 = O A tc = O A €[SI A 80[6]' = Ba[BI] i E[S] 

v [Sr[gaard(B)1 1 f l =  1 V K = 11 ( d e  146) 

6 Deriving a Specification fkom Code 

This section describes how the five abstractions described in Section 5 may be 

used for to derive a specification from code. 

6.1 Significant Points of Execution 

Every abstract operation defined on an abstract model in a model-based specsca- 

tion must respect the abstract state invariant. This means that the abstract state 

invariant asserted on the abstract model must be true before and after each oper- 

ation. However, as these operations are broken down into prograJTlllZiDg language 

constmcts during implementation, it is unnecessary to assert that each atomic 

operation (a non-divisible operation as defhed by a particular programming lan- 

guage) in the program respects the abstract state invariant. This is because an 

abstract operation in the specification might have been implernented by several 

atomic operations in the program, none of them required to satisfy the abstract 

state invariant individudy. In fact, the only times when a particular variable is 

required to satisfy the abstract state invariant are at  points immediately preceding 

an atomic operation or a sequence of atomic operations that exhibits an externdy 

observable behavior that depend on the value of that variable being 'consistent' 

(according to the application domain). For our purposes, we define a szgnzjicant 

point of ezecvtion to be a point in the program at  which some set of objects satisfy 
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the abstract state invariant. This means that the code that implements an abstract 

operation in the specification must reside between si-cant points of execution. 

GenerdIy speaking, a significant point of execution may be characterized by 

two attributes: a point in the program, and an associated set of tuples of, each has 

the form (predzcate , object ) . For each tuple, p ~ e d d t e ,  a predicate in te- of the 

values of some set of the objects whose parents are active (according to scope d e s )  

at that point, is satisfied when control reaches that point during execution, the 

value of object, which designate an object whae parent is also active at that point, 

must satisfy the abstract state invariant. We shalI make the following assmptions 

for simplification: 

0 A signiticant point of execution may oniy occur either between two state- 

ments, right before the fist statement in a block, or right after the last 

statement in a block. 

For any tuple (predicate, object) associated with any significaot point of ex- 

ecution, object must be a variable, and predicate must be tme. 

The first assumption implies that any abstract operation must have been imple- 

mented either as a statement or as a sequence of statements. The second assump 

tion implies that, at any significant point of execution, a fixed set of variables 

satisfy the abstract state invariant. 

6.2 Representing Abstract Models and Operations 

representing abstract model An abstract model of a program rnay be r e p  

resented by a single state schema, or organized as a set of state schemas (each 
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represents a sub-model) non-recursively related by schema inclusion. If the pr* 

gram implements multiple independent sets of abstract operations, there may be 

separate schemas or sets of schemas for the models correspondhg to each sets of 

operations. Here is an example of an abstract model C organized hierarchicdy, 

consisting of two sub-models 

XI [a, b : ~[int] 1 iny (a ,  b)]  

C2 P [c : ~[ int j  1 z n ~ ( c ) ]  

E [Cl; Ca 1 z n ~ ( a ,  b,  c) ]  

The predicate inq (a, b),  inw(c) and znv(a, b, c) each represents a part  of the 

abstract state invariant (denoted by Inv). The abstract state invariant of an 

abstract model is the conjunction of them, that is, 

Sirice each schema is interpreted as a part or the whole of the same model, the 

abstract state invariant is applicable to aU the submodels as well as the abstract 

model. Therefore, any operation defined on any of the sub-mode1 would be sub ject 

to the same state invariant Inu. In general, the 'effective' state invariant for a sub- 

model Ci is given by 

where Fi axe the components of the abstract model that are not declared in sub 

mode1 Ci.  This state invariant must be used later when we attempt to prove that a 

set of abstract operations, defined on the abstract model, are indeed implemented 

by the program. On the other hand, the state invariants in the sub-models rnay 

be useful for the purpose of reuse, in which those abstract operations that are 
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candidates for reuse may be considered quite separately fiom other operations 

implemented by the program. 

representing abstract operations Consider an abstract model of a program 

that consists of n submodels CI, C p ,  . . . , and En. Let Ri be an abstract operation, 

which operates on some sub-models of the abstract model, Say Ci,, Ci,, - . . , C L ,  

where 1 5 ij 5 n for each 1 5 j 5 m. Let the construct Si (which must either be 

a statement or a sequence of statements) in the program be the implernentation of 

Ri. The abstract operation may be specified with the following operation scherna: 

where ai and üi represents the initial and final values of the auxiliary variables 

that occm in Si. We s h d  define am*liary vanables of a construct C to be the sub- 

set of the variables of C that occur ody for progrnmming convenience, and do not 

correspond to any variables in the abstract model. Awàliary variabies are not in- 

cluded in the abstract model. We s h d  define the opposite of auxiliary variables to 

be essential variablesJ1, which correspond to some variables in the abstrart model. 

The relationship between significant points of execution and essential variables is 

that, at both significant points of execution that encloses S , the essential variabIes 

of S must satisQ the state invariant. We emphasize at this point that the classifi- 

cation of program variables as eit her essential or a W a x y  is arbitrary in the sense 

that the classification may not be iaferred boom the program alone. The hiding of 

auxîliary variables in (218) implies the foilowing assumption on the relationship 

between S and the rest of the program: 

0 Awiliary variables, which are usehil only for intermediate computation in 

an implementation, have not been included in the abstract model (ü and a' 

''or main uariables plus associateci flags and counters, etc[l5] 
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are supposecl not to be components of Qi) -  

Initial values of aiuriliary variables in executing an implementation O 

abstract operation should be immaterid to the result of the operation. 

Final values of awciüary variables in perforrning an abstract operation must 

have no consequence on the behavior of the program for the rest of its exe- 

cution, 

These assumptions imply t hat auxiliaxy variable may not carry any persistent data 

(with respect to the abstract operations), that may be shared among abstract 

operations. 

These assumptions carry with them certain limitations on the kinds of abstract 

operations that may be forrnalized. For example, it is impossible to use (218) to 

formalize a set of fine-grained (in the sense that they perform subtasks of other 

abstract operations) abstract operations that need to communicate through aux- 

iliary variables. In effect, we choose to omit those operations that perform part 

of an abstract operations because they concern with how the abstract operations 

are implemented. Such omission is essential in extracting the essence of a program 

from its implement ation details. 

6.3 A Procedure for Deriving a Specification fkom Code 

We have examined the formaiism that we rnay use to represent a specification 

derived fiom a program. Now, we need a procedure that enables us to use that 

formalism to derive specifications fiom particulax programs. Given a program, the 

procedure calls for the following tasks which may be performed in the following 

order: 
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0 classifjr the variables defined throughout the program as either essentid or 

allxiliary. 

form the preliminary abstract model, consisting of one submodel for each 

essential variable, aU included by a single ssub-model. 

identib significant points of execution, where essential variables are deemed 

to sati* the abstract state invariant. 

a identify abatract operations and specify them on the preliminary abstract 

model. 

organize the abstract model, and edit the signatures of the abstract opera- 

tions so that they operate on parts of the organized abstract model. 

assert the abstract state invariant. 

write the specification, include documentation of the procedure performed. 

6.4 Proof Obligations for Derivation of Specification from 
a Program 

In deriving from a program a specScation in the form described above, there are 

a number of pieces of information in the specification about the program that is 

absent in the program itself: 

0 The distinction between essential and aux i l iq  variables. They M e r  in two 

important ways: 

- Essential variables must be properly initiaüzed (refer to 'Abstract Initial 

State' to see how th% may be captured). 
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- Each essentid variable must sat- the abstract state invariant at re- 

spective significant points of execution. 

a %y aserting certain constructs in the program as implementing abstract 

operations, process bomdaries[201 are artificially imposed on to the program, 

due to the assumptions made about the relationship between the constmct 

that implement the abstract operation and the rest of the program. 

When a non-trivial abstract state invariant (that is. a predicate other than 

t rue )  is asserted on the abstract model, hirther restriction is imposed on the 

validity of the program relative t O the specification. S pecificdy, termination 

of the prograrn may no longer guarantee its logical validity (with respect 

to its specification) because the program may fail to establish the required 

invariants at significant points of execution. 

On the other hand, the following information, that is avdable kom the program, 

are absent in the specification: 

0 the context in which the an abstract operation is actually invoked (only the 

precondition remains) . 

0 the order of invocation of the abstract operations. 

Proper cornparison between a prograrn and a specification derived fiom it requires 

us to establish a refinement relation between them. The general criteria for es- 

tablishing refinement relation is that the program may not exhibit any behavior 

contradictory to its specification. For our purposes, we rnay use a similar conditions 

as stated by Wordsworth in [42, p.1691: 

safety condition: 
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liveness condition: 

The notation [C&/E[S~]] means syntactic substitution of ni for €[Si). ni, R2, 
Rn are abstract operations identified in program P that are not enclosed by any 

ot her abstract operations. Abstract operat ions t hat are enclosed by ot her abstract 

operations wodd appear in the declaration of t heic enclosing abstract operations. 

It is imperative that (219) and (220) may be used only when, for any pairs of 

abstract operations, the constructs that implement them are not interleaving. 

6.4.1 Sufncient Proof Obligations 

The proof obligations presented in (219) and (220) involves evaluating the abstract 

effect of the entire program. In certain cases we may use a stronger proof obligation 

so that we may restnct our effort to smder constmcts. 

rendering an implicit st ate invariant explicit When we c lassify al1 variables 

of a program to be essential, and only assert the abstract state invariant, we may 

omit application of conditions (219) and (220) if the following is tme for euery 

abstract operation Ri : 

where Si is the code that implements Ri, invi is state invariant applicable to Ri 

according to equation (21 7). (221) asserts t hat wheoever precondition of operation 

is satisfied, the asserted state invariant is automaticdy satisfied. In effect, an 

irnplicit state invariant is rendered explicit. 
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reinitialization of a d a r y  variables If the code for every abstract operation 

initializes a l l  the aiu0liary variables that it usa, the second and third assumpt ions 

made about the relationship between the code that implements an abstract o p  

eration and the program (p.135) would always be t ~ e .  Therefore, in such cases, 

(221) is applicable even if not aU variables are classified as essential. 

6.5 Abstract Initial State 

We rnay identify the h t  significant point of execution, with respect to control 

flow, that all I2 essential variables sirnultaneously satisfy the abstract state invari- 

ant as  the point of znitiai2zatzon. For a program that has the point of initialization, 

we may develop an abstract initial state based on the effect of execution between 

the beginning (or entry point) of the program (including initiaüzations of static 

variables) and the point of initialization. Unfortunately, the execution path be- 

tween the entry point and the point of initiahzation, in general, is not a construct 

according to our classification. For example, the point of initialization may reside 

within an if-then-else statement, as shown in the following program: (This exampie 

also illustrates a case in which the 'point' of initialization is distnbuted between 

two points): 

void main 0 < 
D /* local declarations */ 
SI /* some initializations */ 
if (€1 € 

S2 /*additionalinitializationsdepending 

on the input */ 
/* - initialization done at this point */ 

12a generai program does no t need to have any significant points of execution where all essential 
variables satisb the abstract date invariant 
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S3 /* rest of the processing */ 
3 else ( 

54 /* addit ional init  ializations depending 

on the input */ 
/* - initiaïization done at this point */ 

S5 /* rest of the processing */ 
3 

s6 /* rest of the processing */ 
1 

To handle this, we may derive an abstraction rule particuiarly for the problem at 

hand: 

In ( d e  6.5) ü represents the essential variables that are of E, Sz, or Se, and 

ü represents the auxiiiary variables. Note that we do not need to hide a, initial 

values of the alutiüaxy variables, because they are not declared in the above schema 

at ail. Similarly, in the ürst disjunct in the predicate part, we do not need to specify 

that those variables of S4 that are not of E or S2 must remain constants, nor do 

we need to specify in the second disjunct that those variables of S2 that are not of 

E or S4 mmt cernain constants. 
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7 Obtaining Higher Level Abstractions 

The specification obtained fiom ushg the steps outiined in Section 6.3 is restricted 

in the sense that the representation of the model is dictateci by data structures em- 

ployed by the program. To make the specification more understandable, sometimes 

a different representation is desirable. An approach to obtain a different represen- 

tation for the model is data refinement[33, 8 ,  421. Data refinement specifies the 

relationship between two specifications which may have dinerent representations 

for their modek. In particular, a set of conditions may be used to prove whether 

one specitication is a correct irnplementation (or refinement) of another[33, p.1361. 

In this section, we s h d  compare three such difFerent sets of conditions to identib 

theu significance in deriving higher level abstractions in reverse engineering. 

7.1 Operation Refinement 

Operation refnement[33, p.13561 is a iimited form of data refinement in which the 

models of the specification and its refinement must be the same. 

7.1.1 Per-Operation Criteria 

For a concrete opwation Cop to be a refinement of an abstract operation Aop, two 

conditions must be satisfied: 

safety condit ion: 

pre Aop e pre Cop 

liveness condition: 

pre Aop A Cop =t Aop (224) 

One way to prove that one specikation is a rehement of another is to prove that 

every abstract operation in the abstract specifïcation and its corresponding con- 



crete operation in the concrete specification satisfy (223) and (224)- This criteria 

is useful in development, in which a specification is divided into components, im- 

plemented by several teams. Every team rnust ensure that it produces a correct 

implementation of its portion of the specification. 

7.1.2 Cornplete Programs Criteria 

A weaker rehement criteria is to establish the refinement conditions between 

every pairs of progrum[8, p-2411, rather than pairs of operations, derived from 

the two specifications. For our purpoaes, a complete program consists of sequential 

compositions of any sequence of operations, appended to the abstract initial state 

(by sequential composition). Let CInit and AIn2t be the abstract initial states of 

a concrete and an abstract specifications respectively, For every complete program 

Pc, derived Erom a concrete specification that includes n operatioas: 

where il, &, . . . , i, are indices between I and n, to be a refinement of the corre- 

sponding complete program Pa,  derived from an abstract specification: 

Pa AInit i Aop,, ; Aopi2 i i Aop, 

the following conditions must be satisfied: 

safety condition: 

pre Pa * pre Pc 

liveness condit ion: 



7.1.3 Specification Substitution Criteria 

Yet another criteria for operation refinement is to prove that the operations in two 

specifications are extracted from the same program. For any program P, in order 

for statements Si ,  S2, - . . , Sn to be implementations of both abstract operations 

Aop,, Aop,, - . . , Aop,, and more concrete operations Cop,, Cop,, . -. , Cop,, the 

refinement conditions wodd be 

safety condit ion: 

liveness condition: 

Here is an example to illustrates that complete programs criteria is weaker 

than per-operation criteria: Let specification C includes two operations. Operation 

CAdd specifies addition of an item to a list if the item has not already exist in the 

List. Operation CDel specifies deletion of the first occurrence of an item from the 

list- No state invariant is asserted on the k t .  At the abstract initial state the list 

is ernpty. Let specification A includes two operations. Operation AAdd is exactly 

the same as CAdd. Operation ADel specifies deletion of a l l  occurrences of an item 

ftom the list. Using the per-operation criteria, since CDel is not an acceptable 

implementation of ADel, specification C would not be a refinement of A. However, 

according to complete programs criteria, C is a refinement of A. 



The specification substitution criteria is a yet weaker critena than the others. 

This is because this criteria may be seen as restricting the conditions required for 

complete prograns cntena o d y  to certain sequences of operations (rather than to 

any sequences of operations) . 
All the three criteria described above may be used in reverse to obtain higher 

level abstractions in reverse engineering. Per-operation criteria provides a easy 

to prove but strong proof obligation. Complete programs criteria is useful for 

v e m g  the use of an abstract data type in a program. Specification substitution 

criteria provides a difncult to prove but weak proof obligation in justifying higher 

level unders t anding of a program. 

7.2 DataRefinement 

Unlike operation refinement , data rehement may occur between specifications t hat 

have dinerent models 133, p.1371. Hence, in data refinement, we need to establish 

a relationship between the modeis of the two specifications. Such relationship 

may be represented by a fonuard szmulatzon[42, p. 1631 (or abstraction schema[33, 

p.1371) Let FSim be the forward simulation between AS, the model of the abstract 

specification, and CS, the model of the concrete specification. Then FSlm is a 

schema of the following fom: 

FSzm [AS; CS 1 Pl (231) 

The signature includes both the concrete and abstract models. The predicate part 

of the schema, P, specifies the relationship between the concrete and abstract 

models. 

If both specifications are organized hierarchically in the form described in Sec- 

tion 6.2, and every submodel in one specification has a corresponding submodel 



in the other, the forward simulation may be d e W  on each pair of corresponding 

submodels- 

7.2.1 Per-Operation Criteria 

For concrete operation Copi, defineci on submodel k in the concrete specification, 

to be a refinement of abstract operation Aop,, defmed on corresponding submodel 

k in the abstract specification, the refmement conditions would be[33, p.1381 

safety condition: 

pre Aop, A FSimk =+ pre Copi (232) 

liveness condit ion: 

where FSimk is the forward simdation between submodel k in the abstract and 

the concrete specification. Let CInzt and Alnit be the initid states of concrete 

and abstract specifications. An additional refinement condition is t hat the abstract 

initial states between the specincations must &O be consistent[33, p.1381, that is, 

7.2.2 Complete Programs Criteria 

Let Pa and Pc be corresponding programs from the abstract and the concrete 

specifications respectively. The conditions for refinement would be 

safety condition: 

pre Pa A FSim => pre P, 
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liveness condit ion: 

wbere FSzm is the forward simulation between the abstract and concrete models- 

We do not need to prove the condition on consistency between initial states because 

this is implied by the safety condition. 

7.2.3 Specification Substitution Criteria 

To derive the specification substitution criteria for data refinement, we may de- 

fine the forward simulation between the two specification on the program, ïnstead 

of between the specifications. Let the notation FSzm, denotes a schema of the 

following form: 

which is the forward simulation between the abstract state of Si, and the submodel 

ASi on which the abstract operation Aopi is defined. Similady, let the notation 

FSim, denotes a schema of the foilowing form: 

which is the forward simulation between the abstract state of Si, and the submodel 

CSi on which the more concrete operation Copi is deked. 

For my program Pl in order for statements Si, S2, . . . , Sn to be implementations 

of both abstract operations Aop, , Aop,, . . . , Aop, , and more concrete operations 

Cop , , Cop,, . . . , Cop,, the refinement conditions would be 

safety condition: 
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iiveness condit ion: 

8 Conclusions and Future Work 

The objective of this thesis is to present a formal approach for reverse engineering. 

The thesis (i) provides a de tded  description of the abstractions used in the reverse 

engineering process, (ii) describes in detail the method to obtain these abstractions 

Fkom a program written in a C subset, (iii) enurnerates the method to aggregate 

the abstractions into a forma1 functional specincation of the software system being 

implemented by the C subset, and f indy (iv) provides adequate justifications for 

the co~ectness of the extracted specification (In particular, we have compared the 

(logical) strength of three sets of such conditions and their application in reverse 

engineering). Subsequent paragraphs in t his section discuss our experience and 

findings during the reverse engineering process. 



However. this thesis represents only a prelimuiary work in this area. Although 

this thesis provides a method to derive a specification fkom code, a lot more are 

needed to be done on how one develops a specification that is usefd for under- 

standing or reimplementation. Nevertheless, the thesis advocates the use of fonnal 

rnethods in reverse engineering and may senre as a motivation or even basis for 

research in the this direction. 

The abstraction d e s  for assignment expressions appear to be much more com- 

plicated than those found in the iiterature. For example, in [3l, p.1191, the precon- 

dition for an assignment statement x := E is Q [ E / x ]  , where Q is the postcondition. 

The precondition refers to the syntactic substitution of E into ail free occurrences 

of x in Q .  This technique is not applicable to our approach because the object 

being assigned to in an expression is assumed to be implicit in the sense that it 

may not occur as an identifier in the assignment expression. In fact, this is always 

the case when anything other than a variable name occurs on the left side of the 

assignrnent. This problem is a naturai consequence of attempting to deal with 

composite variables without reducing them into simple mriables. For example, 

REDO'S approach to reverse engineering using forma1 method[3], due to one of the 

normaüzation d e s ,  requires components of a composite variable to be separated 

into simple Vanables[3, p.2041. 

Recall ( d e  76) for step two of a simple assignment expression: 

Although the object being assigned is made implicit in this d e ,  its parent is not, 

due to the predicate Z' = Z, where z represents those variables of the assignment 

expression other than the parent of the object being assigned. Therefore, this rule 

may stiil represent dEculties if the assumption (page 58) that the parent of the 
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object designatecl by an object designation expression is not fked is üfted (the iift 

is required for arbitrary pointer axithmetics to be covered) . 
A major extension required for this thesis is to handle pointer variables, and 

arbitrary pointer arithmetics. M e a d  of using a huge array to represent the mem- 

ory, as proposed in [23, p.3131, we may use a def'inite description. The form of the 

abstract object of an expression E would then be the following: 

in which more than one variable would have subscript 'O'  (denoted by sO). It is 

not obvious at t his stage how the syntactic transformation ':'=' (page 98) and ' :=' 

(page 102) rnay be modified to han& the situation. 

Among the three sets of refinement conditions discussed in Section 7, non- 

trivial examples of usage oniy eest for per-operation critena (t here is an example 

for a fom of complete program criteria in [8, p.242-41 where the two specifications 

differ only in one operation)[42, Ch.61. It seems that ve-ng complete program 

criteria and specification substitution criteria are both very diûicult . 
Case studies are needed, both for vaüdating the methodology, assessing ciiffi- 

culty in proving refinement conditions, and accumulating heuristics in classimg 

variables between being essential and awciüary. 

The abstractions d e s  may be extended to handle integer types other than 

int quite easily. A new kind of abstraction, say p[T1, T& may define a relation 

between r[T1] and T[T& that specifies the type conversion between types Tl and 

Tt However, pointer arithmetics will likely to complicate the d e s  for such simple 

constructs as addition and subtraction. 

FinaUy, tool support is essential, as with any formal approach. Possible di- 

rections on tool development includes theorem proving (for example, [29]), and 



browsing of specification and program text, preferably in an integrated environ- 

ment. A tool has been developed for representing a vast subset of ANS1 C as 

SGML[38, p.1861. As pointed out in [38, p. 1891, Z may also be represented in a 

sirnilar way. 
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