From Code to Requirements
Specification — Reverse Engineering
Using a Formal Approach

Nga Ting Alex Wan

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Department of Computer Science
University of Manitoba
Winnipeg, Manitoba, Canada R3T 2N2

(©Copyright by Nga Ting Alex Wan, 1997

i+l

National Library

of Canada
Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale

du Canada

Acquisitions et X
services bibliographiques
395, rye Wellington

Onawa ON K1A ON4

Canada Canada
Your g Votre référence
Qur e Notre référence
The author has granted a non- L’ auteur a accordé une licence non
exclusive licence allowing the exclusive permettant 3 la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-23544-0

Canadi

THE UNTVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES
COPYRIGHT PERMISSION

FROM CODE TO REQUIREMENIYS SPECIFICATION -
REVERSE ERCINEERING USING A FORMAL APPROACH

by

NGA TING ALEX WAM

A Thesis submitted to the Faculty of Graduate Studies of the University of Manitoba
in partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE

NGA TING ALEX WAN ¢ 1997

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA
to lend or sell copies of this thesis, to the NATIONAL LIBRARY OF CANADA to microfilm this
thesis and to lend or sell copies of the film, and to UNIVERSITY MICROFILMS to publish an

abstract of this thesis.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpase of private study and research, and may only be reproduced and
copied as permitted by copyright laws or with express written authorization from the copyright
owner.

Abstract

Services rendered by legacy systems that have evolved over decades are vital to
many industries. Therefore, reengineering of these systems must ensure that the
new systems provide the same functionalities as their ancestors, while ezploiting
new technologies. Reengineering involves reverse engineering an application from
code to a higher level abstraction, and then reimplementing on a new platform.
Ability to obtain the abstraction at requirements level enables mazimum use of new
development techniques and tools in reimplementation. Use of formal methods in
specifying requirements helps eliminating unambiguity while enhancing confidence
in consistency and correctness. This thesis presents a formal approach to reverse a
program written in a C subset into a functional specification in Z notation, includ-
ing (i) a description of the abstractions used in the reverse engineering process,
(it) a method to obtain these abstractions from a program written in a C subset,
(#i) a method to derive the formal requirements specification from the abstractions,
and (iv) a comparison of the logical strength of three sets of conditions to justify
the correctness of the derived specification, as well as their application in reverse

engineering.

Acknowledgment

First of all I have to express my greatest gratitude to Dr. Kasilingam Periyasamy,
my Advisor, for his guidance, advice, and appreciation of this work.

I also need to thank Dr. Dekang Lin, and Dr. George Gratzer (Examiners) for
their valuable suggestions on improving this work, as well as Dr. Dereck Meek, for
chairing my thesis defense.

This work was partly supported by University of Manitoba Graduate Fellowship
(1995) and University of Manitoba Faculty of Science Fellowship (1994).

I am also obligated to give thanks to the following people:

Millie Man If you didn’t cook for me, I would have starved to death long time
ago. Thanks for everything you do, and tireless listening to all my complains.

Deborah Loh Thanks for your prayers. You are my best friend! Thanks for
listening to all my sorrow (and the bits of joy, too).

Christine Man Thanks for bringing out my inner maternal instinct by introduc-

ing me to Tamagotchi'. We have shared really neat jokes, haven’t we?

Dad & Mom [am so proud of you. You have given me such a great home to

grow up in.
Eddy Wan Take heart! Finish your thesis.

Adrian & Grace Man Thanks for your prayers. You two have given me such a

warm family here.

Hon-Kee & Kathy Man Thanks for the delicious food that you have shared.

Joyce Man One fine cousin!

!Trademark of Bandai

Grandpa & Grandma I know. I won’t get too anxious about things. Thank

you for all your support and concern.
Finally, I wish to thank the following people for their support:

Capary Chow, Maggie Cheung, Tim Chan, Polly Choi, Keith Tang,
Peggy So, Paddison and Mary Wong, ... (there are too many of them)

Alex Wan
August 8, 1997

e-mail: awan@cs.umanitoba.ca
Jump to ‘alex secret’ at http://www.cs.umanitoba. ca/~awan before it moves!

Contents
1 Introduction
1.1 Reverse Engineering Technology
1.2 Reverse Engineering Using a Formal Approach
2 Elements of a Z Specification
2.1 Variable Declarations
2.2 SyntacticEquivalence. oL
2.3 Axiomatic Definitiono
2.4 Generic Definition 0oL
2.5 Expressions and Predicates
251 Expressions
252 Predicates
2.6 Schemas Declarations,
26.1 StateSchemas.
2.6.2 OperationSchemas
2.6.3 Initial State Schemas
2.7 SchemaReferences
2.71 SchemasasSets.
2.7.2 Schema Component Selection Expressions
2.7.3 Schemas as Predicates_.....
2.74 Schema Decoration
2.7.5 Logical Connectives Applied to Schemas
2.76 ThetaConvention.
2.7.7 schema components renaming

2.7.8

systematicrenaming

iv

2.8
29

2.7.10 compositiono
Partial Systematic Renaming
Writing Functional SpecificationsinZ

Overview of the Abstractions

3.1
3.2
3.3
3.4
3.5
3.6

Abstract Type.
Abstract Stateo L oL
Abstract Effect oL,
Abstract Value,

Aggregation of Abstractions

4.1

4.2

4.3

4.4

4.5

4.6

Conjunction of Abstract States
Sequential Composition between Operation Schemas
Sequential Composition between an Operation Schema and a Defi-
nite Description
Sequential Composition between a Definite Description and an Op-
eration Schema
Sequential Composition between an Abstract Object and an Oper-
ationSchema,
Sequential Composition between an Operation Schema and an Ab-

stract Object

Abstractions for a C subset

5.1
5.2

Extended BNF Grammar for the CSubset

Precedence and Associativity of Operators

30
31
31
32

36
37
38
39
41

5.3

5.4
3.5
5.6

5.7

5.8
5.9
5.10
5.11

5.12

5.13
5.14

Variable Definitions 63
531 GeneralForm _ 64
53.2 Imteger L. 66
533 Arrays e e e e e e e e e e e e e e 67
5.3.4 Structure L. o 70
Integer Constants 71
Parenthesized Expressions 72
Object Designation Expression 73
56.1 VariableName_......0.. 73
5.6.2 Array Subscripting Expressions 75
5.6.3 Structure Component Selection Expressions 76
Unary Arithmetic Expressions_... 78
571 UparyPlus 78
572 UnaryMinus 79
Binary Arithmetic Expressions 80
Relational Expressions 82
Conditional Expressions 84
Logical Expressions, 91
5.11.1 Conjunction 91
5.11.2 Disjunction 93
5.11.3 Logical Negation 95
Assignment Expressions L. 96
5.12.1 Simple Assignment Expressions 96
5.12.2 Compound Assignment Expressions 106
Preincrement and Predecrement Expressions 109
Postincrement and Postdecrement Expressions 110

5.15 Sequential Control Structures

5.16

5.15.1 Expression Statement
5.15.2 Function Invocation
5153 Block L
5.15.4 Function Definition
5.15.5 Sequence of Statements.
5.15.6 Program
5.15.7 If-Statements,
5.15.8 If-then-else Statements

Iterative Statements

5.16.2 Do-While Statement
5.16.3 For-Statement

Deriving a Specification from Code

6.1
6.2
6.3
6.4

6.5

Significant Points of Execution
Representing Abstract Models and Operations
A Procedure for Deriving a Specification from Code
Proof Obligations for Derivation of Specification from a Program . .
6.4.1 Sufficient Proof Obligations
Abstract Initial State oL

Obtaining Higher Level Abstractions

7.1

Operation Refinement
7.1.1 Per-Operation Criteria
7.1.2 Complete Programs Criteria

112
112
113
113
115
115
116
117
117
119
119
124
125
126

132
132
133
136
137
139
140

7.1.3 Specification Substitution Criteria 144
7.2 Data Refinement _, 145
7.2.1 Per-Operation Criteria_.. 146
7.2.2 Complete Programs Criteria 146
7.2.3 Specification Substitution Criteria 147

8 Conclusions and Future Work 148

1 INTRODUCTION 1

1 Introduction

For many organizations, legacy systems (systems developed more than a decade
earlier) have become large and inflexible towards changes. Yet, many applications
still rely on services rendered by those systems, and therefore, those systems are
vital to businesses[4, p.273]. Often, changes to legacy systems are made on an ad
hoc basis. However, such patching process will eventually become to complex so
that organization must replace the legacy system[30, p.19]. One way to approach
such replacement is reengineering. One of the important requirements of reengi-
neering is to preserve the functionalities of the old code[7]. While definitions vary
(2, 1], for the purpose of this thesis, software reengineering is defined as a two-
phase process. The first phase recovers the abstract model of the application from
code; this phase is called reverse engineering. The second phase reimplements the
derived abstract model using new technology. This thesis adopts the definition for
reverse-engineering from [15, p.5]; Accordingly, reverse-engineering reverse engi-
neering “[is] the process of transforming or moving from one level of description
of a system to a level which is regarded as more abstract or ‘earlier’ in terms of
the standard [software development] life cycle”. In the context of reengineering, a
reverse engineering methodology that is able to recover higher level (i.e., require-
ments specification) abstractions has the advantage of enabling reimplementation
process to take full advantages of modern development systems and approaches at
various levels of abstractions.

A good software requirements specification must correctly define all the require-
ments of the software product under consideration [18, p.11]. It must, however, not
be inclined towards design, implementation, or project management details. The
IEEE Standard for Requirements Specification{18] discusses several qualities of a

requirements specification document. Among these, the qualities “unambiguity”,

n

1 INTRODUCTION

“consistency”, “correctness”, and ‘traceability” can be best captured by writing
the requirements using a formal notation. Recently, several software development
projects have justified the claim that formal approaches used in these projects lead
to uncovering many errors early in the development stage and also prove them-
selves to be useful in reasoning about interesting properties of the application[25].
It is for the same reason that this thesis attempts to use a formal approach to
reverse engineering. In particular, if the code for an application is reversed into
its formal requirements specification, the traceability, modifications and benefits
of new technology during reimplementation process can all be justified.

From the above discussions, it is clear that for a reverse engineering approach to
work best with reengineering, the target of the reverse engineering process should
be a formal SRS. This thesis contributes to this goal by presenting a formal ap-
proach for extracting a functional specification (suitable for inclusion under the
section, ‘Specific Requirements’{18, p.23] in an SRS) from a program written in a

C subset.

1.1 Reverse Engineering Technology

Gannod and Betty[6] advocated a two-phase approach to reverse engineering us-
ing formal methods. Detail description of the approach is presented in [12]. In
order to benefit from recent advances in object-orientation and formal methods[6,
p.335], their approach was aimed at producing an object-oriented design from an
existing software. The design is expressed in a formal language based on predicate
logic[6, p.345]. The first phase consists of obtaining a specification from a pro-
gram, consisting of pre and post-conditions of each procedure. In the second phase
classes and objects are identified from observing the interface (the parameter lists)

between the procedures The first phase had been specified using a procedural lan-

1 INTRODUCTION 3

guage with basic imperative programming constructs, assignments, alternations,
iterations, and (non-recursive) procedures. A tool for assisting in phase one had
been developed for a subset of Pascal. Specific guidelines[6, p.344] were also given
for performing identification of classes (phase two). In particular, each structured
datatype become the attribute of a certain class, and each procedure is assigned
as a operation to a class based on the types of the structured variable(s) in its
parameters list.

The Maintainer’s Assistant[23] was a tool developed at University of Durham.
U.K, that was aimed at assisting modification of an unfamiliar software given only
its source code [23, p.308]. The major features[23, p.310] of the tool, apart from
allowing direct editing of source code, is the inclusion of a large library of seman-
tics preserving program transformation which may either be invoked by the user
directly, or by a knowledge base. The validity of all available transformation has
been established in [39]. Any editing or transformation (in case the transformation
requires a condition that may not be proven automatically) that may change the
semantics of the program is recorded separately. The tool supports programs writ-
ten in a wide-spectrum language(23, p.309] (WSL), which was designed to have a
simple semantics, and was able to seamlessly include specifications as statements.
The use of such language enabled a transformation approach to be used in both
translating between programming languages and obtaining a specification from
code[23, p.312].

Spencer Rugaber proposed a reverse engineering methodology that was targeted
towards reversing data processing applications[28]. The methodology features a
top-down approach, which he claims had the advantage of providing more confi-
dence in obtaining architectural information earlier, comparing to starting with

understanding the implementation completely[28, p.2]. The methodology consists

1 INTRODUCTION 4

of four phases[28, p.3]. In the first phase, a review of existing system documenta-
tion produces a textual system description formatted in a top-down fashion. The
second phase consists of constructing a nested data flow diagram x by an analysis of
the entire system’s input-output behaviors. Consistency check may be performed
among the nested layers of the diagram, and against the source code. The third
phase involves analyzing and presenting the structure of the files that the system
uses. In the forth phase, a program analysis technique invented by the author,
called ‘synchronized refinement’, is used to obtain detailed description of certain
functionalities based on incrementally annotating their functional description with
design decisions detected from code.

In the REDO project[36], a general approach was developed for reverse en-
gineering towards a formal specification[3]. They viewed reverse engineering as
an iterative process among three phases[3, p.213]: ‘clean’, ‘specify’, and ‘sim-
plify’. The first phase involves restructuring of the program into a form which, in
the second phase, may be translated into a sequence of equations. These equa-
tions relate the initial and final values of program variables in executing the pro-
gram. A highly automated[3, p.222|normalization process[3, p.202-11] invented
during the development of REDO is applied to present the equations in a nor-
mal form. The last phase is simplification of the sequence of equations. Among
other mathematical simplifications[3, p.216], the use of data equivalence[3, p.216-
22] is advocated for obtaining higher level abstraction. A data equivalence specifies
rules for transforming a set of equations based on one data structure to another.
When this general approach was applied to extracting object-oriented designs from
COBOL programs[16], the three phases were specialized as follows. In the ‘clean’
phase, the COBOL program is translated to a semaatically equivalent program in
UNIFORM][5], which was designed to serve as a language-independent represen-

1 INTRODUCTION 5

tation for tools development(5, p.124]. In the ‘specify’ phase, the mathematical
description is constructed, which counsists of a set of object classes identified from
the program. Specifically, a class is created for each file, indexed array or report
being the chief attribute. For each chief attribute, dataflow analysis is then used
to collect its auxiliary variables (such as counters), and included in the respective
object class as attributes. Meanwhile, phases® or slices that implement candidate
operations for these object classes are identified. Sequences of normalized equations
are used to describe the candidate operations. In the ‘simplify’ phase, the object
classes specifications are translated into Z++, an object-oriented extension of the
Z specification language. Finally, Lano, Breuer, and Haughton(16] also described a
method to derive COBOL code back from a sequence of equations, and therefore,
enables a form of reengineering[16, p.247]. Lano and Haughton[15, p.160-6] de-
scribed how a similar approach may be applied to obtain an object-oriented design
from a C program.

Miiller et af[35] described an approach towards reverse engineering that was
aimed at obtaining an architectural understanding of a large software system by
identifying its subsystems, and studying the relationships among these subsys-
tems. Both tasks, along with documentation of the results, were all supported
by an integrated tool, Rigi. In the first step of the approach, a parser parses the
subject program to create a directed weighted resource-flow graph (RFG) among
entities of the program such as files, functions, and variables. In particular, the
RFG documents the exchange of resources among these entities. In a provision
relationship an entity is supplied by one entity (call the supplier) to another entity
(called the client). For example, when a C structure of type a has a component of

another structure type i, then a is a client of i in a provision relationship in which

%defined to be “maximal logically-connected piece of code which contains no [statements for
opening or closing files|”

I INTRODUCTION 6

i supplies itself to i. Requisition relationship is simply the converse of provision
relationship. In the second step, subgraphs of the original resource-flow graph are
aggregated to form a hierarchy of a new kind of entities called subsystems. Each
subsystem consists of another RFG in which the nodes are either entities from the
original RFG, or subsystems at the next level down the hierarchy. Between two
entities, we may calculate their ezact interface, which lists separately (i) those re-
sources exchanged between the entities, and (ii) those resources exchanged among
the entities within each of these entities.

COBOL System Renovation Environment{19] (COBOL/SRE) implements an
approach to reengineering based on recovery of reusable components from the sub-
ject software [19, p.64]. In a source browser, the analysis may select a segment
(defined to be a set of statements, possibly non-contagious in the source text[19,
p-87]) from a program which is deemed to be cooperating in performing a cer-
tain functionality. Program slicing is then used to select other relevant segments.
When the analyst is convinced that all the code that implement the functionality
is included, he may instruct the tool to pack the selected segments either into a
subprogram , an independent program, or simply a source file containing the state-
ments. The tool takes care of making all the necessary language-specific changes
to the program necessary when packing subprograms or programs.

In summary, the essential ingredients of a reverse engineering approach are the

following:

human intelligence Human intelligence remains a major ingredient to most re-
verse engineering approaches. For example, when using the Rigi tool, the analyst
ultimately has to decide on how software entities should be aggregated into appro-
priate subsystems. The same thing happens when subprograms are extracted from

COBOL programs in COBOL/SRE. However, the virtue of a reverse engineering

1 INTRODUCTION 7

approach, as pointed out in [35, p.3-4], is not to be automated completely, but
rather, provides support for unintelligent tasks as much as possible. For example,
based on recognition of human cognitive abilities[10, p.5], Rigi, in addition to pro~
viding graph editing commands, also provides an interpretive scripting language
to offer flexible end-user programming[10, p.5]. Two cognitive models of program
comprehension are discussed in [34]. Mental representation of software and hints

on improving program comprehension are discussed in {37].

artificial intelligence Numerous tools for reverse engineering are supported
by some form of artificial intelligence. For example, when performing program
transformation in Maintainer’s Assistant, the analyst may ask a knowledge base for
the appropriate transformation sequence[23, p.310]. There was also an attempt at
University of Aberdeen, U.K.[1]] in training artificial neural networks to recognize
standard algorithms from COBOL programs. The problem of associating human-
oriented concepts with their implementation in a program is known as concept
assignment problem{40, p.72]. The DESIRE tool{40] attempts to alleviate this
problem by having an intelligent agent to perform three related tasks[40, p.80]:
search for all occurrences of any concept known by the agent, search for a concept

specified by the user, or assign a concept to a given segment of code.

program slicing In general, a slice of a program may be defined to be a “com-
plete program which contains a subset of the statements of the original pro-
gram, and which perform a subset of the computations performed by the origi-
nal program”[9, p.55]® Two kinds of program slicing that are frequently referred
to[26, 32, 19} are forward and backward slicing. The forward slice[19, p.68] of a

sequence of statements with respect to a variable are those statements whose be-

3in other literature[32, p.2] slices need not form an executable program

1 INTRODUCTION 8

havior (including flow of control and effect on values of variables) depends on the
initial value of that variable. Similarly, the backward slice[19, p.68] of a sequence
of statements with respect to a variable are those statements whose behavior (in-
cluding flow of control and effect on values of variables) may affect the final value
of that variable. In the context of program understanding, one application of for-
ward slice is to study how the inputs are processed[19, p.68] (by forward slicing
with respect to those variables that hold the inputs). Similarly, backward slicing
is useful for tracing back how a particular output at a particular statement of
a program is evaluated [19, p.68]. Among the reverse engineering approaches de-
scribed previously, program slicing is used for identifying functionalities of COBOL
code segments using COBOL/SRE[19] or the approach described in [16]. Program
slicing may also occur at a different granularity than statements. An example is
interface slicing[9], in which the slicing extracts a set of type and global variable
definitions and subprograms that a given set of subprograms require in order to
operate[9, p.59]. In addition, program slicing may ease analysis of a loop by en-
abling one to analyze the effect of executing the loop on each variable separately{17,
p.60).

program restructuring Program restructuring is a valuable tool for restruc-
turing code so as to reduce the number of control structures to ease program
understanding. Breuer, Lano, and Bowen(3] described a method of transforming
an unstructured program into a structured one based on its representation as a
set of equations. Ward[39] provided an extensive library of transformation for a
wide-spectrum language which may be used for[39, p.4] transforming unstructured
programs into structured programs, transforming recursive procedures into itera-
tions. Inclusion of general specifications(39, p.17] in the wide-spectrum language

enable the same program transformation framework to describe transformation

1 INTRODUCTION 9
between a program and a specification[23, p.312].

denotation semantics The denotational semantics of the programming lan-
guage used for implementation also plays a crucial role in reverse engineering. The
denotational semantics|21] of a language consists of a set of semantic functions
from the states of the program to denotations in the semantic domain[21, p.106].
The semantic function for a given kind of construct of the language is defined as
some composition of the semantic functions of its syntactic components(13, p.21].
In function aebstraction[17](15, Ch.5],[22, Ch.5], the same technique is applied in
order to specify the functionality of a segment of code in terms of the relationship
between the pre and post conditions in executing the code. However, function
abstraction is different from denotational semantics in handling recursive and iter-
ative constructs. In particular, a loop may be presented in function abstraction as
a recursive function (for example, [17, p.59]), while the denotational semantics of
a loop must be represented non-recursively (as a fized point* of some function{13,
p.23]). Peter Baumann et al[27] advocated the use of program analysis techniques
based on denotational semantics for several reasons[27, p.10]. One of those reasons
is that it enables abstract interpretation{27, p.16], a program analysis technique
that supports such analysis as control and data flow analysis, which are in turn
essential ingredients(26] of program slicing. The function abstraction procedure
employed by REDO(15, Ch.5] also uses the notion of translational semantics[15,
p.97}, which defines the semantics of a language by first defining the semantics of a
small subset of the language (for example, with denotational semantics), and then
extend that subset to the entire language by defining translation rules between
the rest of the language with that subset. The semantics of the wide-spectrum

language[39] supported by Maintenance Assistant was also defined in a similar

*more discussions on fixed points is given on page 121.

1 INTRODUCTION 10

fashion[23, p.308-9].

1.2 Reverse Engineering Using a Formal Approach

Wordsworth[42] described an idea of using Z schemas to specify the function of
procedural program. In particular, this function may be represented by the rela-
tionship between the values of program variables before and after the execution of
a construct[42, p.198]. The function of an entire program may be deduced by a
process called stepwise abstraction [42, p.198]. In stepwise abstraction[42, p.198],
the functions of individual statements in a program are obtained. From these the
functions of the control structures are obtained. The function of the entire pro-
gram is formed by combining the functions of its control structures. In this thesis,
Wordsworth'’s idea is applied to a subset of the C programming language[14]. The
goal is to provide a thorough theoretical account ranging from obtaining abstrac-
tions of a single construct in the program, up to extraction of an abstract functional
specification. In particular, the following points summarize the findings reported
in this thesis:

e Five abstractions were identified that describe various aspects of a C con-

struct (Section 3).

¢ Abstraction rules for finding the abstractions of any construct from a subset
of C (described in Section 5.1} from the smaller constructs that it contains.
These rules are introduced in two steps: A set of basic formulas that aggre-
gate various kinds of abstractions are identified (Section 4); The abstraction
rules for each kind of C construct in the specified subset of C are derived,

making extensive use of the basic formulas (Section 5).

2 ELEMENTS OF A Z SPECIFICATION 11

e The steps that one may take in order to obtain a functional specification in
Z notation from a program written in the specified subset of C using the five

abstractions (Section 6).

e A theoretical account on how to obtain a more abstract specification from

one that is created using the previous steps (Section 7).

Wordsworth himself has pointed out a major difficulty with this approach, that
a specification obtained in this manner is likely to specify uninteresting behaviors
of a program in addition to the interesting ones [42, p.236]. For example, since
a binary search procedure is unlikely to fail even if the list to be searched is
unsorted, much of the abstraction of such procedure would describe the behavior
of the procedure when the list is unsorted. In fact, by considering that procedure
in isolation, it is impossible to deduce the precondition that the procedure is not
applicable to an unsorted list. Either human or artificial intelligence is necessary to
distinguish between interesting and uninteresting behaviors. This thesis formalizes
the assertion of such distinction in terms of specifying boundaries of the abstract
operations within the program text, and the state invariants that the program

variables must observe at these boundaries.

2 Elements of a Z Specification

This section describes the subset of Z notation[33, 42, 24] that is used in this
thesis. The exposition assumes familiarity with predicate logic and set theory.
A Z specification consists of a sequence of declarations interleaving with infor-
mal descriptions. Each declaration declares a variable, or a set of variables to have
certain type(s) and value(s). Each variable in a specification must be declared

before use. Recursive definition is permissible in axiomatic and generic definitions,

2 ELEMENTS OF A Z SPECIFICATION 12

but mutually recursive definitions are forbidden. A type in Z is defined to be
equivalent to its carrier set, that is, the set of all values belonging to that type [33,
p-24]. For the purpose of this thesis, we only consider the value that a variable
may hold as the variable is introduced via one of the following five kinds of declara-
tions: variable declarations, syntactic equivalences, axiomatic definitions, generic
definitions, and schema declarations. We first explain the notation for syntactic
equivalence, axiomatic definitions and generic definitions. Schema declarations will
be introduced after notations for forming expressions and predicates are described.
Finally, we discuss how a Z specification may be used to document the functional

requirements of a software.

2.1 Variable Declarations

The following variable declaration

Var : Set (1)

introduces the variable Var to be an element of the set Set, with the value of Var
further constrained by the context in which the declaration is in effect, z.e., the

scope of the declaration. For example, the declaration
i:N (2)

by itself specifies 7 to be a natural number (i.e., a non-negative integer). The
predicate ¢ < 10 within the scope of the declaration would additionally constrain i
to be less than ten. A variable declaration of form (1) is frequently used in other

declarations, expressions, and predicates.

2 ELEMENTS OF A Z SPECIFICATION 13

2.2 Syntactic Equivalence
Syntactic equivalences are used in this thesis to define sets. A syntactic equivalence
has the following notation:

Var == Eazpression (3)

It declares Var to be equal to the value specified by Ezpression. Var becomes a
global variable, which may be used in place of Ezpression as a free variable of any
subsequent declarations.

A syntactic equivalence may also be parameterized. For example, in the follow-

ing syntactic equivalence
X YV==PXxY) (4)

X and Y are the formal parameters of the declaration. Given this declaration, the

expression Z «— N may be interpreted as

2 N ==P(Z xN) (5)

2.3 Axiomatic Definition

The notation for an axiomatic definition is:
' D
| P

D consists of a set of variable declarations. Predicate P further constrains the
values of the variables declared in D. The variables declared in D are global, and

therefore may be used as free variables in P, and in subsequent declarations.

2 ELEMENTS OF A Z SPECIFICATION 14

2.4 Generic Definition

A generic definition is very similar to an axiomatic definition, except that the

definition is parameterized. For example,

—[X]
NonEmpty : P X
Vs:PXes#0D

declares NonEmpty to be the power set of some set; X is the formal parameter of

the generic definition. For example, if z is of type Z (set of integers), the predicate

z € NonEmpty(2] (6)

is valid, with formal parameter X in the above generic definition instantiated with
actual parameter 2. The expression NonEmpty[2] in (6) may simply be written
as NonEmpty. This is because, from the context in which the expression occurs,
NonEmpty[2] must have type 2. Therefore the respective formal parameter must
be Z. Generic definitions are most useful for defining polymorphic operators (that
is, operators that may take multiple types of arguments), as used frequently in

this thesis. For example, the following generic definition

X
{:_[_L_%:sequN—HX

Vs:seqX;i:Nesli]=s(i+1)

defines an operator ([}) that is a partial function with two arguments. The function
may then be used in subsequent declarations with the syntax e;(e;], where ¢
and e, are expressions of compatible types according the declaration above. The
underscores (—) in the above declaration act as place-holders for the arguments.
By using such place-holders, infix, postfix and prefix operators may be defined at
ease. If there is no place-holder for arguments, the operator is by default prefix.

2 ELEMENTS OF A Z SPECIFICATION 15

2.5 Expressions and Predicates

Z notation is based on typed set theory and first order predicate logic. In Z notation,
expressions specify atoms (values that are not sets themselves) and sets. Predicates

are used to assert statements about expressions.

2.5.1 Expressions

The kinds of ezpressions in Z notation used in this thesis may be classified into the
following categories: variables, tuples, sets, definite descriptions, function applica-
tions, sequences, and schema component selection expressions. Tuples are always
atoms. Even though variables, definite descriptions, and function applications may
specify sets, they are considered separately from sets because they may also specify
atoms. Although sequences are sets in Z notation, it is worthwhile to discuss them
separately from sets because of their distinct role as specifying ordered lists of val-
ues in a specification. We concern ourselves only with the value of an expression

rather than its type.

variables When a variable occurs in an expression, its value is obtained from
its declaration. We have considered how this value is obtained from a variable
declaration, syntactic equivalence, axiomatic definition, or generic definition. The
remaining case is when the variable is declared using a schema, which we shall

consider in Section 2.7.1.

tuples A tuple is an ordered collection of values, enclosed by brackets, and sepa-
rated by commas. For example, (e, €;) is a tuple whose first component is expres-
sion e}, and whose second component is expression ¢;. Two projection operators

are available in Z for ordered pairs (tuples with two components): first p gives the

2 ELEMENTS OF A Z SPECIFICATION 16

first component of an ordered pair p, and second p gives the second component

of an ordered pair p.

sets The following notations in Z are used in this thesis for defining sets: prede-
fined set, set operators (power set, cross product, relation, functions, union, inter-
section, and minus) set enumeration, and set comprehension. These notations are

described as follows:

predefined sets Z notation provides a number of predefined sets, including
integers (2), and empty set (). The set of natural number (N) is not a predefined
set according to the Standard[24], but is included as part of the mathematical
toolkit associated with the Z[33, p.108].

power sets The power set of a set § is denoted in Z notation by P S.

cross products The cross product of expressions ey, e, ..., e,, each of them
specifies a set, is the set of all tuples whose first component is an element of e,
and whose second component is an element of e;, and so on. This is denoted in Z

by the notation e; X ez X --- X ep.

relations and functions A relation is a mapping from one set to another.
For sets X and Y, the notation X <> Y represents the set of all relations from
X to Y. Every relation from X to Y corresponds to a subset of X x Y, and vice
versa. Therefore, the set of all relations from X to Y would be the set P(X x Y).
This may be captured by the following syntactic equivalence:

XY ==P(XxY))

2 ELEMENTS OF A Z SPECIFICATION 17

Several operators are available in Z for relations. The prefix functions dom and
ran evaluates the domain and range of a relation. They may be defined by the

following generic definition:

~[X, Y]
dom: (X Y)—PX
ran : (X e Y)—PY

Vr: X Yedomr={z:X;y:Y|(z,y) €rez}
AVr:Xe— Yeranr={z:X;y:Y|(z,y) €Erey}

In addition, there are infix functions available for performing operators such as
domain restriction (), domain subtraction (<), range restriction (>), and range
subtraction (p). Each of these operators takes a pair of relations as arguments
and evaluates to another relation. They may be defined by the following generic

definitions:

—[X, Y]
A PXx(X Y)—>(X—Y)
A PXx(XeY) > (XY)

(Vz:PX;r:X¢>Ye
(z<ar={p:X;y:Y|pezA(py)ere(py)})
Nzar={p:X;y:Y|pézA(p,y)ere(py})

_[X, Y]
b (X V)X ¥Y) = (X > Y)
p_ (X Y)x V)= (X > Y)

VMy:PY;r: X Yo
(roy={z:X;p:Y|p€yA(z,p)ere(z,p)})
ANreoy={z:X;p:Y|péyAn(z,p)ere(z,p)})

Functions in Z are special forms of relations. Specifically, a function is a relation

in which each element of its domain is mapped to a single element of its range.

2 ELEMENTS OF A Z SPECIFICATION 18

The notation X -+ Y denotes the set of all partial functions from X to Y, that
is, the set of all relations from X to Y which are functions. This may be specified
in Z by

X+ Y={r: XY |Vz:X;y,p:Y]|zcdomre
((z,;) €rA(z.) €T) & th = 12} (8)

The notation X — Y denotes the set of all total functions from X to Y, that
is, the set of all partial functions from X to Y whose domain is X. This may be
specified in Z by

X+»Y=={r:X—Y|domr=X} (9)

There is an important infix operator known as overriding, denoted by &. Given
two functions of the same type as its (left and right) operands, this operator
constructs another function by overriding each ordered pair in the first operand by
the ordered pair in the second operand that has common first component, if there
is any. The resulting function may formally be specified as

—[X, Y]
(X Y)X(X YY) (X+Y)

Vf,g: X+ Yefdg=(domg<af)ug

other set operators Usual set operators, union (U), intersection (N), and

minus (\), are available in Z as infix operators.

set enumerations A set enumeration defines a set by explicitly listing the

elements of the set. This is denoted in Z by the following notation:

{er,e2,...,en} (10)

2 ELEMENTS OF A Z SPECIFICATION 19

which denotes a set whose elements are the values of the expressions e, ey, ...,

and e,

set comprehensions A set comprehension defines a set by the property that

all elements of the set must satisfy. This is denoted in Z by the following notation:
{D|PeE} (11)

D is a set of variable declarations. P is a predicate. E is an expression. The set
(11) is constructed in the following fashion: For every sets of values of the variables
declared in D such that P is satisfied, The corresponding value of E becomes an
element of the set being constructed. A special form of set comprehension is

{v: T | P}, which is equivalent to {v: T | P e v}.

integer subranges A special kind of set comprehension is one that specifies
a subrange of integers. In particular, the set of integers ranging from a to b may

be denoted in Z by the following set comprehension:

a.b=={n:2|a<n<b} (12)

definite descriptions A definite description has the following form.
(uD | Pp(v,T) e E) (13)

where D is a set of variable declarations. E is an expression. Pp is the constraining
predicate that gives values to the variables declared in D (denoted by 7 in (13)),
by specifying the relationship among these variables and the free variables of the
description (denoted by Z in (13)). The corresponding value of E (usually in terms

2 ELEMENTS OF A Z SPECIFICATION 20

of U) becomes the value of the definite description. The use of the variable names
7 is arbitrary because these variables are bounded within the definite description.
Free variables T must be declared in the context in which the definition description
occurs in a specification. If Pp does not constraint E to a unique value, the value
of the definite description is taken as being one of the alternatives, but the selection
of alternative is indeterminate[42, p.88]. If Pp does not constrain E to any value
at all, the value of the definite description is still taken as being some value of its
type, but is completely indeterminate. A special form of definite descriptions that
is used throughout this thesis is

(pn: T | Pp(11,7)) (14)
which is equivalent to

(pn = T | PD(VI,f) ® U1) (15)

function application The prefiz form of function application used in this thesis
is e1(e2), where expression ¢, is a function and ey, the argument of the function
application, is another expression By definition, the function application e;(e;)
may evaluate to at most one value (none if e; is not in the domain of e;). Therefore
function application may be specified using definite description, using the following

generic definition:

X, Y]
(X Y)xX)— Y

Vf: X+ Y, z:Xeof(z)=(unn:Y]|(z,y) €F))

2 ELEMENTS OF A Z SPECIFICATION 21

sequences A sequence of X may be represented in Z by a partial function from
natural numbers to X [33]. In particular, the set of all sequences whose elements
are drawn from the set X (the formal parameter in the following declaration) may

be declared as

seq X == {f :N—+> X |dom f = 1..#f} (16)

To index an item from a sequence, function application may be used. For example,
the i*2 element of a sequence s may be referenced by the function application s(i).
The following prefix operators are defined for sequences: For a sequence s, head s
gives the first element of s, last s gives the last element of s, front s gives a
sequence that is the same as s except with its last element truncated, and tail s
gives a sequence that is the same as s except with its first element removed. These

operators may be declared by the following generic definition:

~{X]
head : seq X — X
last :seq X — X
front : seq X — seq X
tail : seq X — seq X

(Vs :seq X @ heads = s(1)
A lasts = s(#s)
A fronts = {#s} g
Atails = {1} € s

Note that since a sequence is a function in Z, cardinality operator (#) applies
equally to sequences, yielding their lengths.
A sequence enumeration specifies a sequence by listing its elements, as shown

below:

<81, €2, €3,..., 6’1) (17)

2 ELEMENTS OF A Z SPECIFICATION 22

2.5.2 Predicates

There are four ways of forming predicates: using relational operators among expres-
sions, using logical connectives, quantifications, and schemas expressions. Schema

expressions as predicates will be introduced in Section 2.7.3.

relational operators Z does not have an explicit boolean type. So there is no
simple predicate which equates a variable or an expression to a boolean constant.
Instead, all relational expressions which evaluate to truth values are treated as
predicates. For example, the equality operator applied to two operands of the

same type such as
X=Y (18)

is a predicate. The truth value of such a predicate depends on the semantics of the
relational expression (in the above example, the predicate evaluates to true when
the expression X is equal to Y). Almost all the conventional relational operators
are available in Z. Some of them are: set membership (€), subset operators (C,

C), and comparative operators (<, <, >, 2, =, #).

logical connectives Compound predicates can be created using logical con-
nectives: negation (-), disjunction (V), conjunction (A), implication (=), and

equivalence (<).

quantification Both existential and universal quantifications are used in this

thesis. In Z notation, an existential quantification is denoted by

(3D | P, e Py) (19)

2 ELEMENTS OF A Z SPECIFICATION 23

where D is a set of variable declarations. P; and P; are predicates. Let v, o, ...,
vn be the variables declared in D. Predicate (19) asserts that ‘there exists a set of
values for v, %, ..., vn, constrained by Py, such that P, is satisfied’. Therefore,

predicate (19) is equivalent to

(3D e P, APy) (20)
A universal quantification is denoted in Z by

(VD | P, e Py) (21)

where D is a set of variable declarations of form (1). P, and P, are predicates.
Let v, w, ..., vn be the variables declared in D. Predicate (21) asserts that ‘for
all sets of values for v, w, ..., v, such that P, is true, P is satisfied’. Therefore,

predicate (21) is equivalent to

(VDe P, = Py) (22)

2.6 Schemas Declarations

A schema declaration has the following form:

SchemaVar =[D | P] (23)

which declares Schema Var to be the name of the schema whose definition is given
on the right hand side of the definition symbol (‘=’). The vertical bar (|) divides
the schema into two parts. The signature part, D, is a set of declarations, each
of them is either a variable declaration or a schema reference. The variables de-

clared in D are known as the components of the schema. These variables are local

2 ELEMENTS OF A Z SPECIFICATION 24

to SchemeaVar, but are available to subsequent schemas declarations by schema
inclusion or schema references. The predicate part P is a predicate that constrains
the values of the components of the schema. Presence of a schema reference in the
signature part of another schema is known as schema inclusion. Schema inclusion
may be defined as follows: Inclusion of schema A in schema B results in another
schema whose signature part is the union of the signature parts of A and B, and
whose predicate part is the logical conjunction between the predicate parts of A
and B.

Three kinds of schema declarations are used in this thesis: state schemas,

operation schemas, and initial state schemas.

2.6.1 State Schemas

In a model-based specification, a system is modeled by a persistent data store,
with each operation specified in terms of a change of state, that is, a change in
the values of the data store. A schema, in this case known as a state schema, may
be used to specify the form of the data store (that is, the model) for the system.
Specifically, for a schema that specifies a model, its components represent the state
of the system at some point during execution of the system. The predicate part
represents the state invariant that must be held by the values of the persistent

data at the beginning and at the end of every operation.

2.6.2 Operation Schemas

A schema, when used to specify an operation, is known as an operation schema.
Syntactically, an operation schema has the same structure as that of any other
schema. However, the declaration part of an operation schema must include the
state space(s) on which the operation will be performed. Typically, the predicate

of an operation schema describes the state changes. Following Oxford’s convention

2 ELEMENTS OF A Z SPECIFICATION 25

of writing Z specifications, primed components (components whose names are dec-
orated ® with a prime) represent the final state after the operation. The unprimed
counterparts of these variables represent the initial state before the operation.
The predicate part of the operation schema represents the relationship between
the initial and final state of the operation. For the purposes of this thesis, we may
define precondition operator pre, which gives all initial states of an operation that
have corresponding final states, and postcondition operator post, which gives all
final states of an operation that have corresponding initial states. Formally, for

the following operation schema.
Op = [0,7 | P(7,7)] (24)

pre Op is a schema whose components are those of Up that are unprimed, and

predicate part being
prec[C] < (37 o P.(7, 7)) (25)

Similarly, post Op is a schema whose components are those of Op that are primed,

and predicate part being
poste[C] < (T e P.(7,7)) (26)
delta convention Consider the following schema
Si=[z:Ny:2)y>1] (27)
An operation Op may be defined on S; by the following declaration:

Op2[S;Sllz<y—-1AZ=z+1AY =y] (28)

Sfor example, n’, whose unprimed counterpart is =, is a variable decorated with a prime.

2 ELEMENTS OF A Z SPECIFICATION 26
which, by schema inclusion, is equivalent to

Opzlz,7 :N;y,y:2|z<y—1AZ=z+1Ay =y] (29)
We may use A-convention to abbreviate (28) by

Op=[AS |z<y—-1AZ=z+1AY =1y (30)

xi convention When an operation does not result in a state change, =-convention

may be used to abbreviate the operating schema. Once again, consider the schema

S in (27):
Si2[z:N;y:2]y> 1] (31)
An operation Op2 may be defined on §; by the following declaration:
0p2=(S;; S| |lz<y—1AZ=zAYy =y (32)
which, by schema inclusion, is equivalent to
Op2=[z,2 :N; 4, : 2|z <y—1AZ =z Ay =y (33)
We may use =-convention to abbreviate (32) by
Op2=(ZS |z <y—1] (34)

Note that the predicate ' = z A y' = y, which indicates that there is no state

change, is implied by =-convention.

2 ELEMENTS OF A Z SPECIFICATION 27

2.6.3 Initial State Schemas

An operation schema specifies the change of state during execution. However, we
also need to specify the conditions during initialization process. This is specified by
an initial state schema which is considered to be a special operation on the state.
In particular, the initial state of a system may be represented by an operation that
specifies only its final state.

Suppose S specifies the model of a system. The initial state of the system may
then be specified by the following initial state schema:

Mit_S =[S | P] (35)

This schema looks very similar to an operation schema that specifies an operation
on S, with the exception that S is absent from the declaration part. This is because

the state before initialization is irrelevant to the result of initialization.

2.7 Schema References

A schema reference is either a single schema name, or an ‘expression’ formed by
applying schema operators to one or more schemas. A schema reference may either

specify a set, a predicate, or an atom.

2.7.1 Schemas as Sets

We shall describe how schemas specify sets by an example. Consider the schema

in (27):
Si=[z:N;y:2]|y>1z] (36)
The ezpression S, specifies the set of all values for z and y such that y > z:

{(ze—0,ye—1),(ze> 0,y e— 2),

2 ELEMENTS OF A Z SPECIFICATION 28

cees{ze=21,ye>2) (ze—>1,ye~3),...} (37)

The notation (name; e— value;, name, e— wvaluey,...) denotes a value with
multiple components, similar to a tuple, except that (i) each component is named,
and (ii) the ordering of the components is insignificant. For example, (z o—
1,y e— 2) is exactly the same as (y e— 2,z e— 1), while (¢ e— 1) is different
from (b e— 1).

If S; specifies the model of a system, then the expression S; would specify the
set of all states that the system can possibly attain before and after executing any
operation. Note that specific operations may further constrain the set of possible
states before and/or after their execution.

Since the expression S specifies a set, the variable declaration
s:85 (38)

is valid, which declares s to be an element of the set specified by S;. Then s would
be a value with two components named = and y. To refer to the values of these

components, we use the schema component selection ezpressions s.z and s.y.
2.7.2 Schema Component Selection Expressions

Let s be a variable of a schema type. Then, the value of a component of s, say c,

is referenced by the schema component selection expression s.c.

2.7.3 Schemas as Predicates

When a schema occurs in a specification where a predicate is required, the pred-

icate part of the schema is substituted in place of the schema. The free variables

introduced must have been declared in the context in which the schema occurs.
A number of schema operators are used in this thesis. We have seen two of

them, namely pre and post operators. Except for theta convention, which specifies

2 ELEMENTS OF A Z SPECIFICATION 29

an atom, all of these operators yield schemas as results. Now, we shall include
the definitions for other schema operators that are used in this thesis: decoration,
conjunction, disjunction, theta convention, renaming, systematic renaming, hiding,

and composition.
2.7.4 Schema Decoration

For a schema A, A’ is a schema which has the same declaration and predicate
parts, except that the components of the schema, as well as their free occurrences

in the predicate part. are decorated with a prime.
2.7.5 Logical Connectives Applied to Schemas

All the five logical operators can be applied to schemas as operands. In all cases,

the declarations of the operands are merged and their respective predicate parts

are connected using the logical connectives. For example, if S; = [D, | P,] and

S = [D2 ' Pz], then S; = Sz = [D]_; Dy | P = Pz].
2.7.6 Theta Convention

For any schema A, if ¢;, ¢, ..., ¢, are the components of A, then § A denotes the

following:
(ce—sci,co0> 0,5 -Cn @) (39)

with the constraint that c;, ¢, ..., ¢, must satisfy the predicate part of A. The

notation # A’ denotes the following quantity:
(oo o0 ¢,--cr 0o) (40)

with the constraint that cj, ¢, ..., ¢/ must satisfy the predicate part of A. The
1 62 n

application of theta operator to a schema results in an unnamed instance of the

2 ELEMENTS OF A Z SPECIFICATION 30
schema whose bindings satisfy the constraints of the predicate part. More about
bindings can be found in [33, p.26].

2.7.7 schema components renaming

For a schema A, renaming of components n; to my, ng to mp, . .. ng to my is denoted

by

Almy/ny, ma/mg, . .. my /] (41)

2.7.8 systematic renaming

In another form of renaming, rather than supplying the names of all the compo-
nents to be renamed, only the common decorator of them are supplied. In effect,
all components that have a certain decorator, are renamed to components of the

same name except having another decorator. For a schema 4, the notation

Al /-l (42)

denotes renaming of all components of A that has subscript ‘p’ to their primed

counterparts.

2.7.9 hiding

The hiding of a list of components n;, ny, ..., nx from a schema A is denoted by
AN\ (n, g, ...,) (43)

The result is another schema whose components are those of A, with n, ng, ...

nx removed, and declaration part becomes the following predicate

(3DePAI) (44)

2 ELEMENTS OF A Z SPECIFICATION 31

where D represents those variable declarations in A that correspond to the hidden

components, and P is the predicate part of A.

2.7.10 composition

For any two schemas A and B such that the declarations for primed variables
in A match exactly with the declarations for their unprimed counterparts in B,
schema composition of A and B results in another schema whose components are
the unprimed components of A and primed components of B, and predicate part

is
(3Dg @ A[o/] A Blo/-]) (45)

where Dy are the matching declarations between A and B, with variables decorated

with another decorator ‘0.

2.8 Partial Systematic Renaming

Certain abstraction rules in this thesis require a renaming operator somewhat
different from the systematic renaming that has just been introduced. In that case,
we use a partial systematic renaming operator. This operator may be applied to any
predicate and any expression within the predicate part of a schema. Specifically,
for each free variable in the predicate, the renaming is performed if and only if
both its old name and its corresponding new name are declared identically in the
signature part of the schema in which the renaming occurs. The result of partial

systematic renaming is a schema with the same signature. For example,
[6,¢,7,5" : rlint] | (i' = &; 7" = k(4)) /] (46)
would be the schema

(6,7, 3,7" = rlint] | (¢ = 5 5" = k(")) /4] (47)

2 ELEMENTS OF A Z SPECIFICATION 32

Note that k&, not declared in the signature of (46), is not renamed.

2.9 Writing Functional Specifications in Z

A model-based functional specification of a software system describes an abstract
model of the software and the set of functionalities that the software is required to
implement. In general, the functional specification should exist as part of the soft-
ware requirements specification (SRS) of the system. In [42, p.148-9] Wordsworth
provided a good introduction on how to use Z notation to write a functional spec-
ifications.

The specification should begin with an informal description of its purpose,
explanation on the functionalities of the system being specified, assumptions made
and so on. This section should establish meaningful terminologies relating to those
functionalities, which is to be made precise in the formal specification.

The second part of the specification should include declarations (syntactic
equivalences, axiomatic or generic definitions) of global variables and operators
that are used throughout the remainder of the specification. Each variable or op-
erator should be accompanied by informal text explaining its rationale (such as
the application domain element the variable or operator corresponds to) and its
use in subsequent declarations.

The third part of the specification would consist of a sequence of declarations
that specifies the model as well as the operations. Each declaration in the third
part should be accompanied with informal text explaining the aspect(s) of the
system modeled by the declaration, and its relationship to the system as a whole.

In our approach for deriving a specification from code (Section 6), the resulting
specification would have a hierarchically organized model. The following table

shows an example format of such specification.

2 ELEMENTS OF A Z SPECIFICATION

PartOne:

Problem Description

Part Two:

Global variables, operators

Part Three:
Partial Model A
Initial State A
Operations on A

Partial Model B
Initial State B
Operations on B

PartialModel C

(includes A and B)

I[nitial State C
Operations on C

Partial Model D
I[nitial State D
Operations on D

Partial Model E
Initial State E
Operations on E

Partial Model F

(includes D and E)

Initial State F
Operations on F

Complete Model G
(includes C and F)

Initial State G
Operations on G

Figure 1: A functional specification with hierarchically organized model

PartI

Part II
Partial Model A
Initial State A
Operations on A
Partial Model B
Initial State B

Part II——

Operations on B

Partial Model C
(includes A & B)
Initial State C

Operations on C

Partial Model G
(includes C & F)

Initial State G

Operations on G

33

For a hierarchically organized model, it is a good idea to justify the organization

3 OVERVIEW OF THE ABSTRACTIONS 34

of the model at the beginning of the third part of the specification.

3 Overview of the Abstractions

This thesis describes a reverse engineering process in which a functional require-

ments specification, including a model and a set of functionalities, is recovered
from the code of a software. This section introduces a set of abstractions which
are useful for such recovery from a C program. These abstractions capture the pre
and postconditions in executing a program, or the constructs that the program
contains.

We shall define C constructs to be certain syntactic elements in the C language®.
One construct may syntactically enclose another. In this case we say that a prim-
itive construct is enclosed by an enclosing construct. Two constructs may also in-
terleave with one another, when they share common code but neither one encloses
the other. In this case these constructs are referred to as interleaving constructs.

Five abstractions, defined below, are used in the reverse engineering process

described in this thesis:

3.1 Abstract Type

The abstract type of a construct C, denoted by 7[C], is an abstraction of the type
that may be associated with the construct in a program. Let us consider the

following four kinds of association between a construct and a type:

type expressions A type erpression is a construct that specifies a type in C
language. We shall define the abstract type of a type expression in C to be the
set, in Z notation, that corresponds to all the values represented by that type. For

SFor the list of constructs in the subset of C considered in this thesis please refer to Section 5.1.

3 OVERVIEW OF THE ABSTRACTIONS 35

example, the type int in C may be represented by the set Min..Maz tn Z, with
Min and Maz being the minimum and maximum integers represented by int. We

specify this as
r{int] == Min..Maz (48)
which is an abbreviation for

rlint] == {n:2 | Min < n < Maz} (49)

variable definition A variable definition in C is a construct in which a variable
is associated with a type. We shall define the abstract type of a variable definition
to be the abstract type of the type expression in the variable definition that specifies
the type of the variable being defined.

object designated by an expression An expression may designate an object,
defined to be a memory storage that contains a value of a certain type . In this
case, we shall define the abstract type of the expression to be the abstract type of
the type associated with the object that it designates.

result value of an expression We shall define the result type of an expression
to be the type of the value obtained from evaluating the expression as if it is on the
right hand side of an assignment expression. The result type of an expression will
be captured by its abstract value (to be defined in Section 3.4). Therefore we shall
not define the abstract type of an expression that does not designate an object. It
should be noted that the type of the object designated by an expression needs not

be the same as its result type. For example, if variable a is defined to be an array

3 OVERVIEW OF THE ABSTRACTIONS 36

of int, then the result type of the expression a would be pointer to int, while the
expression designates an object of type array of int.

Following the above analysis, abstract types are defined only for types expres-
sions, variable definitions, and expressions that designate objects. The purpose of
this abstraction is to assign types to all variables throughout the specification that

is being recovered.

3.2 Abstract State

The abstract state of a construct C, denoted by o[C], is an abstraction of the
collection of variables on which the construct operates. These variables are referred
in this thesis to as ‘the variables of the construct’. For example, to evaluate the
expression a[i], we first retrieve the address of a and then index this address
by the result value of evaluating i. We say that the construct ali] operates on
variables a and i.

Abstract state is applicable to any executable construct (that is, any construct
other than type expressions, since they do not operate on variables). Variables
and function definitions may be classified as executable because they both imply
initialization of variables. For uniformity, we shall define the abstract state of
a constant in an expression to be an empty schema, that is, a schema whose
signature part is empty and predicate part the predicate true. Let vi, va, ..., vy
be the variables of a construct C, with their types defined in the program to be
Ty,s Twpy -.., and T, respectively. In other words, each variable vi, where 1 <
¢ < n, represents an object of type T,.. These variables may be represented in a Z
specification by the variables” vy, w, ..., v,. Each variable v;, for 1 < ¢ < n, must

be a member of the set 7[T,,]. The abstract state of C may then be represented

7variable names that are reused in a C program at different scopes are required to be repre-
sented by unique names in the specification

3 OVERVIEW OF THE ABSTRACTIONS 37

in Z by a state schema of the following form:

ofCl = [v : [T]; m: 7[TWl; -5 v s T[T] [Inv(on, w2, -, m)] (50)

The signature part of the schema represents the variables of the construct and
their respective types. The predicate part of the schema represents the invariant
that must be true among the variables of the construct throughout the program.
Since one may not define a state invariant for any construct in C (other than type
constraints on program variables), we may assign the predicate ¢{rue to the state

invariant of any construct. Definition (50) may be abbreviated by
ofC] = [v | Inu(7)] (51)

Note here that we have overloaded the abbreviation 7 to denote both a set of
declarations and a list of variables in a schema. Abstract states are useful for

building an abstract model of a software from its code.

3.3 Abstract Effect

The effect of executing a construct may be defined in terms of the pre and post-
conditions of its variables under normal execution. This precisely captures the
functionality of the construct. We shall define the initial state and final state
of the construct respectively to be consist of the values of the variables of the
construct at the beginning and the end of its execution. The precondition of a
construct is defined to be the condition that must hold in its initial state for the
construct to execute normally (i.e., the construct terminates without error). The
postcondition of a construct is defined to be the relationship between the initial
and final states of the construct, provided that the precondition is satisfied.

The abstract effect of a construct C, denoted by €[C], is an abstraction of the

effect of executing the construct. The abstract effect of C may be represented in

3 OVERVIEW OF THE ABSTRACTIONS 38

Z by an operation schema of the form:
€] = [Ac{C] | P.(7.7)] (52)
which is equivalent to
€[C] = [7; 7' | Inu(T) A Inv(T) A P(7,7)] (53)

In the signature part of (53}, 7 and 7 respectively represents the initial and final
states of the construct. The predicate part represents the pre and postconditions
on the state of the construct. The predicate Inu(7) A Inu(7’) asserts that both
the initial and final states must satisfy the state invariant. We may disregard its
presence because both Inv(7) and Inu(7’) are the predicate true. Abstract effects
are useful for building specifications for the functionalities (or abstract operations)
implemented by the program.

3.4 Abstract Value

The abstract value of a comstruct is an abstraction of the result value of the
construct. This abstraction is applicable only to expressions. Since, in C, the
values of the variables of an expression may change as the expression is being
evaluated, we may distinguish between the abstract value of C expressed in terms
of its initial state (denoted by [C]), and that expressed in terms of its final state
(denoted by /[C]). If the result of a construct is a constant, it may be represented
in Z as it is, though in any case, a definite description may be used.

The form of v[C] is

v[C] = (v : T[T] | pree[C] A P,(11,7)) (54)

where T represents the initial state of C. 7[T] is the abstract type of the result type

of C. pree[C] represents the precondition of evaluation that must be satisfied in

3 OVERVIEW OF THE ABSTRACTIONS 39

order for the result value of the construct to be meaningful. When this condition
is satisfied, the predicate P, represents the relationship between the initial state
of C and the abstract value of C by specifying the relationship between 7 and v;.
As stated in Section 2, if Pyare does not constrain v; to a unique value, the value
of (54) is taken as being one of the alternatives, but the selection of alternative
is indeterminate. This corresponds to the case when evaluation of the C is non-
deterministic. Recall that when Py, does not constrain v; to any value, the
value of (54) is indeterminate. This represents the case in which either an error
has occurred or the abstract value of C cannot be determined from its initial state.

The form of V/[C} is
VIC] = (puw - 7[C] | post [C] A P.(1, 7)) (55)

where 7’ represents the final state of C. post ¢fC] represents the condition that
must hold in the final state of C given normal execution of C. When this condition
is true, the predicate P, represents the relationship between the final state and
the result value of C by the relationship between 7’ and v;. Once again, 7[T] is
the abstract type of the result type of C. Interpretation of (55) when P, does not
constrain v, uniquely is similar to that for (54).

The abstract value of a construct always occurs as parts of the predicates in

the abstractions of its enclosing constructs.

3.5 Abstract Object

The abstract object of a construct is an abstraction of the object designated by the
construct. This abstraction is applicable only to those expressions that designate
objects. We shall refer to such expressions as ‘object designation expression’. For
example, the construct ali] designates the object which is the (i+1)th element

of the array a. The object designated by any construct, if there is one, must either

3 OVERVIEW OF THE ABSTRACTIONS 40

be a variable, or part of a variable (in this case the variable must be of composite
type such as array or structure). In both cases, we say that the variable is the
parent of the object.

The object designated by an object designation expression depends not only
on the kind of construct it is, but also on the values of its variables. Recall that,
as an expression is evaluated, the values of its variables may change. For any
construct C that designates an object, w[C] shall denote the abstract object of C
expressed in terms of its initjal state, while «/[C] shall denote the abstract object
of C expressed in terms of its final state.

In this thesis, we shall only consider the subset of C for which the parent of
the object designated by an object designation expression C is fixed regardless
of the values of its variables. Let v be that variable, represented by v in the
specification. Similar to abstract value, w[C] and «/[C] may also be stated as

definite descriptions, as follows.

WfC] = (pv1 = 7[T] | pre€[C] A Pu(v1,7,v,)) (56)

W'[C] = (uvy : 7[T] | poste[C] A Po(v1, 7', u)) (57)

where 7 and ¥’ represent the initial and final state of C respectively. The difference
between the general form of abstract object and abstract value is the presence of
v, in both (56) and (57). In both (56) and (57), v, represents the current value
held by the storage for v, which may be renamed to either v’ or v, depending on
context, in order to abstract the retrieval of the value of the variable v from its
storage at the beginning or at the end of executing C. A distinct subscript (‘o’)
is used on v, to indicate its different meaning from both v, which also occurs in

(56), and v, which also occurs in (57).

4 AGGREGATION OF ABSTRACTIONS 41

Similar to abstract value, the abstract object of a construct always occurs as

parts of the predicates in the abstractions of its enclosing constructs.

3.6 Remarks

Among the five abstractions introduced in this section the abstractions that are
of utmost importance are abstract state, which is useful for building an abstract
model, and abstract effect, which is useful for specifying abstract operations. These
two abstractions form the elements of a model-based functional specification. In
this thesis, we shall derive a set of abstraction rules by which the abstract state
and effect of any construct, may be obtained recursively from the five abstractions

of its primitive constructs.

4 Aggregation of Abstractions

In this thesis we demonstrate that, using the abstractions introduced in the
previous section, the abstractions for any construct in the subset of C described
in Section 5 may be obtained by aggregating the abstractions of its primitive

constructs according to a set of abstraction rules, excepts for the following cases:

e The abstract type and abstract state of an identifier in an expression must be
retrieved from the corresponding abstractions of the definition of the identi-

fier.

¢ When substituting the body of a function in place of its invocation, the
function body must be retrieved from the definition of the function.

This section identifies and defines a set of basic aggregation operations in 2

that will be used throughout subsequent derivation of the abstraction rules.

4 AGGREGATION OF ABSTRACTIONS 42

4.1 Conjunction of Abstract States

For a construct C that consists of constructs C; and C,, the variables of C must be
the variables of either C; and C;, or both. Therefore, we may form the abstract

state of C by conjoining the abstract states of C; and Cj:

G'[C] = O’[C],l A U[Cz] (58)

The conjunction implies that the state invariant of o[C] is the conjunction of those
of C; and C,. However, since the state invariant for both C; and G, is the predicate

true, the state invariant of C is also the predicate true, as one would expect.

4.2 Sequential Composition between Operation Schemas

Whenever two constructs are executed sequentially, an abstraction of the combined
effect may be sought by sequentially composing their abstract effects. Since we are
representing abstract effect of a construct by an operation schema in Z, such com-
position may be represented using a method very similar to schema composition.

Recall that schema composition requires the primed variables declared in the
first schema to match the unprimed variables declared in the second, We may not
simply use schema composition because such matching is not satisfied in general.
For example, if a sequence of two statements have different sets of variables (which
is generally the case), then the operation schemas which represent the abstract
effect of these statements will certainly have incompatible signatures.

Therefore, we need to define a slightly different form of schema composition
that overrides the requirement of signature compatibility.

Consider these two operation schemas

$ =777 | A(Z,7.7.7)] (59)

4 AGGREGATION OF ABSTRACTIONS 43
S =[7%57:7 | P7.2.7,%)) (60)

where 7 and 7 are the variables declared in both schemas. S; and S, are not sig-
nature compatible due to the absence of T in the signature part of S,. If we intend
use schema composition, we must force these schemas to be signature compatible
by modifying $ such that all primed variables declared in §; have their unprimed
counterpart declared in S;. However, if we simply add the necessary declarations

to S, i.e., rewriting S, as
S =ETTnT V7| Pv.2.7.7) (61)

the result would be unacceptable because, according to the semantics of Z, since P,
makes no provisions on the postcondition on Z (note the absence of T’ in P,), they
may be changed by Sy in any way (subject only to type constraints). Rather, we
want the rewritten schema to specify that T remains constant after the operation.

This may be achieved by rewriting S, as
52T Y5777 | P(T.27,7)ANT=T] (62)
which may be abbreviated using schema conjunction in Z as
=S AT T | T =7 (63)

The declarations for T and T’ in)" come from the signature of §;. Based on
these discussions, we may define sequential composition between two schemas by

extending schema composition with following definition:
515283 (SA[ET(T=T]) (64)

where Z are those variables that are declared only in S;.

4 AGGREGATION OF ABSTRACTIONS 44

We may obtain a simpler definition for sequential composition between two

operation schemas by expanding (64) as follows:

S$138=2[T;05T: 2 |37 e
Pz, 7.7, 7)A P(T". 2.7, Z) AT =T")]
=777, 7 | (37

Pz, 9.7,7) A P, 2,7.7))] (65)

If all variables declared in S; are also declared in 5, i.e., both T and Z are empty,
and in that case sequential composition reduces to ordinary schema composition.

Now, let S| be the abstract effect of a construct C;, S» be the abstract effect
of another construct C;. The abstract effect of sequential execution of these con-
structs is Sy § S2. The term ¥ in (65) represents those variables that are common
between C; and C;. The case when sequential composition reduces to ordinary
schema composition corresponds to a situation where both constructs have the

same set of variables.

associativity of sequential composition among operation schemas Se-
quential composition among operation schemas is associative, that is, for any op-

eration schemas S;, S, 53,
($15%):85=535(53 %) (66)
Proof The identity is obvious from expanding both sides by (65).

4.3 Sequential Composition between an Operation Schema
and a Definite Description

We shall introduce another kind of sequential composition by an example.

4 AGGREGATION OF ABSTRACTIONS 45

Example 1 Let E be the expression E;-E, 8, where E; is i++ and E; is i--,
i is a variable of type int. Following our principle of deriving abstractions for
a construct by aggregating the abstractions of its primitive constructs, one may
attempt to find the abstract value of E expressed in terms of its initial state, i.e.,
v[E], by first finding the abstract values of E’s subezpressions in terms of their
respective initial states, i.e., v[E;] and v[E;], and then subtract v{E;] from v[E,}.

By observation we may write

v[E1] = v[i++] = (v : Min..Maz | vy =i A i < Maz) (67)
V[Ez]) = v[i~-] = (pv1 : Min..Maz | vy =i A Min < i) (68)

Both descriptions looks very similar when they are observed independently, i.e.,
they both assert that the abstract value of the expression is i, except that while
v[E,] is undefined at ¢ > Maxz (where increment operation is invalid), V[E,] is
defined everywhere except at i = Min (where the decrement operation is invalid).
Since both descriptions have value : where they are defined, subtracting v[E;] from
v[Ez] would result in zero wherever both descriptions are defined. Therefore, we

have
V[E1]) — v[E2] = (p w1 - Min.Maz | vi =i A Min < i < Maz) (69)

whose value is zero for Min < ¢ < Maz and is undefined for both ¢ = Min and
i = Maz. One may notice that, in this particular case, the value of the definite
description does not seem to be related to . However, the presence of the inequality
Min < i < Maxz is important here because it specifies the condition under which

the definite description is applicable. Before going ahead to conclude that v{E] is

8 Although the results of evaluating (i++)-(i--) is undefined according to the semantics of C,
for its result value depends on the order of evaluation, the example serves to illustrate the same
issue for expressions whose order of evaluation among their operands is fixed (e.g., conditional
and logical expressions).

4 AGGREGATION OF ABSTRACTIONS 46

the definite description in (69), we shall validate our conclusion in (69) against the
results that we may obtain from manually executing the expression. Assuming a
left to right order of evaluation, the following table shows the steps in executing
E, along with initial and final values of i in each step, and the result values of E

and its subexpressions.

step | instruction initial value | final value | result value of E
of i of i and its expressions

1 evaluate E; (i++) 4 L+ 1 Eil

2 evaluate E; (i--) L +1 % Ex|4+1

3 subtract 279 value from 15t % % E (-1

Table 1: Manual Execution of (i++)-(i--)

where i; denotes the initial value of i in evaluating E.

We may observe from the table that the result value of E is -1, and is valid for
all 4; < Mazx, because the value of i alternates between 7; and ¢, + 1 throughout
evaluation of E. Therefore we may conclude that the abstract value of E expressed

in terms of its initial state,
VIE] = (pv : Min..Maz | i = —1 A i < Maz) (70)

The conclusion in (69) is wrong for two reasons: v[E] should be -1, rather than
zero wherever it is defined, and should be undefined only for i = Maz, rather than
for both i = Min and ¢ = Maz. Such apparent inconsistency in this case is due
to the fact that by subtracting v[E;] from v[E;], one implicitly assumes that the
initial states of both E; and E, are identical, which in this case is not true.

A remedy for this situation is described as follows: When we write the abstract
value of E in terms of its initial state, by definition, we are writing it in terms of 2,
because i is the only variable of E. Since E; is evaluated first in a left to right order

of evaluation, ¢; serves as the initial value of i for E; as well. However, for E;, we

4 AGGREGATION OF ABSTRACTIONS 47

also need to consider the effect of evaluating E, in order to enforce sequentiality
between E; and E;. In particular, the initial value of i in /[E;] must be #;+1 (i.e.,
initial value of i in step two in Table 1), rather than . Substitute i; + 1 into (68)

we obtain
V[E2] = (uv1 : Min..Maz | v = (i; + 1) A Min < (i; + 1)) (71)

We may rewrite v[E;] such that : denotes 7 by substituting in place of 4 in (71).

This produces

corrected v[E;] = (uvy : Min..Maz | vy = (i + 1) A Min < (i +1))

= (v : Min.Maz | vy =i+1Ai< Maz) (72)

whose value is i — 1 except for ¢ = Max where the definite description is undefined.
Now we may subtract corrected v[E;] from v[E;] to obtain the proper abstract
value of E. Since both definite descriptions in (72) and (67) are defined for i < Maz,

the subtraction would give ¢ — (¢ + 1) = —1, for ¢ < Maz. Therefore,

V[E] = v[E1] ~ corrected v[E,]
= (pv, : Min.Maz |1 =1 A i< Maz)
—(pvy: Min..Maz | vy =i+ 1A 1< Maz)

= (pwv : Min.Maz | 1h = —1 A i < Maz) (73)

which agrees with (70) exactly.

In Example 1, the need for correcting v{E;] comes from the fact that, before E;
is evaluated, i has been incremented in evaluating E;. Therefore, the correction
we have just performed may be thought as somehow appending the result value of

E> to the effect of E;. This may be formalized by defining composition between an

4 AGGREGATION OF ABSTRACTIONS 48

operation schema and a definite description. Consider an operation schema S and

a definite description D:

S=[z5 77 | Ps(Z,9.7,7)] (74)

D=(uv,:T|Pp(n,7,7)) (75)
where 7 are the variables common to both S and D, Pp is the constraining pred-
icate of D and Ps is the predicate part of S.

If 7 is not empty, we may define sequential composition between an operation

schema and a definite description as the following:

§3D=(un:T|(3T;7 e Ps(Z.3.7.7) A Po(n.[7}2)) (76)

Equation (76), in effect, substitutes the final values of the variables that are com-

mon between § and D, in performing §, as the values of these variables for D (The

substituted quantity is denoted by |7 [|in (76)). The result of the composition is

still a definite description of the same type (as the declaration for v, is the same
between (75) and (76) Note here that we have overloaded the operator 3 that is
used for sequential composition between two operation schemas.

If 7 is empty, (76) reduces to

S3D=(uv: T| 37 e Ps(T,T) A Pp(11,2)))
=(pwv:T| (3T e Ps(Z,7')) A Pp(1n,%))
= (uv,: T | preS A Pp(1n,z)) (77)

which is the same as D in (75) except that it is undefined where pre S is not
satisfied.
Let us return to Example 1. We may calculate the abstract value of E, expressed

in terms of its initial state, using the abstract values of E; and E;, both expressed

4 AGGREGATION OF ABSTRACTIONS 49

also in terms of the same initial state, using the sequential composition we have just
defined. E; increments i, provided that i is not already equal to Maz. Therefore

its abstract effect is
B =[i,i i< Maz A ¥ =i+1] (78)
Now, perform sequential composition between €fE,] and v[E;] using equation (76):

Bl sv[B] =i, | i< Maz A ¥ =i+ 1] (pn - Min..Maz | vy = i A Min < i)
= (pvy : Min. Moz | (37 : Min.Maz | i < Maz A ¥ =i +1
A vy =1 A Min <7'))
=(pnn:MinMaz|i<MazAvy=i+1AMn<i+1)

=(pn : Min.Maz |i < Maz Avy =i+1) (79)

Note that (79) is exactly the same as (72), which means that, [E;] 5 v[E;] in fact
calculates corrected v[E;]. Finally, we may properly conclude that

AE] = v[E] - (e[&4] 5 v[E2]) (80)

associativity of sequential composition of a sequence of operation schemas
and a definite description Sequential composition between a sequence of op-
eration schemas and a definite description is associative in the sense that, for any

operation schemas S;, S, and definite description D,
($158)iD=535(%3D) (81)

Proof The identity is obvious by expanding both sides with (76) and (65).

4 AGGREGATION OF ABSTRACTIONS 50

Conjecture 1 (distributivity over sequential ezecution) In general, if an expres-
sion E contains subexpressions E;, Ej, ..., E, such that the effect of evaluating E
is that of sequential evaluation of the subexpressions E;, E,, ..., E,, in that order,
then the abstract value of E in terms of its initial state may be obtained from those
of its subexpressions, if and only if, the abstract value of each subexpression E;,
where 2 < 7 < n, expressed in terms of its initial state, is appended to the abstract

effects of E;, E3, ..., and E;_;. This may be formally stated as

corrected V[E;] = (e[E.] 5 efE2] 5 - - - § €[E-1] 5 V[Ei]) (82)

4.4 Sequential Composition between a Definite Descrip-
tion and an Operation Schema

Let us now consider appending an abstract effect to an abstract value.

Example 2 Consider the previous example (Example 1). Let E be E;-E,, where
E; is i++ and E; is i--. Again, we want to find the abstract value of E, but this
time we want to express it in terms of the final state of E. We first express the
abstract values of E; and E; in terms of their respective final states. By observation

we have

VB = Vi) = (v Min.Maz | vy = ¢ — 1 A Min < 1) (83)
VIE] =V[i--]=(pwn : Min.Maz | 1 = ¢ + 1 A i’ < Max) (84)

Note that /[E,] is defined for Min < ¢’, while V/[E,] is defined for i’ < Maz. Then
we subtract ¢/[E;] from /[E,] to obtain /[E}:

V[E] = V[&] ~ V[E]

4 AGGREGATION OF ABSTRACTIONS 51

=(pn :Min.Maz |y=1¢~1AMin<1)

—(pwn : Min. Maz | vy =17 +1A ¥ < Maz)

=(pun : Min.Maz |y = (' —1) - (7 + 1) A Min < i’ < Maz)

= (pv : Min.Maz | 1y = =2 A Min < i’ < Maz) (85)

which asserts that the abstract value of E is -2 and must result in a final value of
i satisfying Min < i < Maz.

In this particular example, we know that when order of evaluation to left to
right, the result value of E is -1 (from Table 1), which is a constant. Therefore,
the abstract value of E must be -1 no matter whether we express it in terms of its
initial or final state. Additionally, we may observe from Table 1 that the initial
and final values of i in evaluating E happen to be both #. From this observation
the constraint on the final value of i for the evaluation to be valid must be exactly
the same as before, i.e., the final value of i must be less than Maz. Hence, we
may conclude that the abstract value of E expressed in terms of its final state must
have exactly the same form as that expressed in terms of its initial state (70), that

is:
VIE] = (pvy - Min.Maz | vy = =1 A i’ < Maz) (86)

The conclusion we have in (85) is wrong for two reasons: Firstly, v/[E] should be -1
rather than -2. Secondly, the constraint on the final value of i should be i < Maz
rather than Min < i < Maz. Similar to Example 1, such apparent inconsistency
is due to the implicit assumption that the final states of E; and E, are identical,
which is not true.

A remedy for this situation is described as follows: Since E; is evaluated last
in a left to right order of evaluation, the final value of i as seen by E; must be

the same as that for E. However, for E;, we also need to consider the effect of

4 AGGREGATION OF ABSTRACTIONS 52

subsequent evaluation of E, in order to enforce sequentiality between E; and E,.
In particular, let i be the final value of i as seen by E; then the final value of i
as seen by E; must be 7 + 1 to offset the effect of subsequent decrementation of
i performed in evaluating E;. Therefore, i’ in (83) may be thought as denoting

ir + 1, rather than i;. In other words,

VIE]l = (v - Min. Maz |y = (4 + 1) — 1 A Min < (35 + 1))
= (pvy - Min. Max | vy = i A i < Maz) (87)

We may rewrite /[E;] such that i denotes i by substituting 7 in place of i in
(87). This results in

corrected V'[E;] = (uvy : Min.. Maz | 1y =i A ' < Maxz) (88)

The value of corrected /[E;] is ¢’ except for i’ = Maz where the definite descrip-
tion is undefined.

Now we may subtract /[E;] from corrected v/[E;] to obtain the proper ab-
stract value of E. Since the definite descriptions in both (84) and (88) are defined
for i’ < Maz, the subtraction would give i’ — (¢ + 1) = —1, defined for i’ < Maz.

Therefore,

V'[E] = corrected V'[E,] — V[E;]
= (v : Min. Maz | 11 =i A ¥ < Maz)
— (v : Min. Maz | 1y =i +1 A i < Maz)
= (puvy : Min. Maz | v; = -1 A i’ < Maz) (89)
which agrees with (86) exactly.
The correction process done in Example 2 may be thought as appending the

effect of E> to the result value of E;. This may be formalized by defining sequential

composition between a definite description and an operation schema.

4 AGGREGATION OF ABSTRACTIONS 53

Consider the following operation schema S and definite description D:

S=[%5:7:7 | Ps(Z.3,7,7)] (90)
D= (pv,:T|Pp(h,¥.7)) (91)
where ¥’ are the only variables that are common between S and D. If 7 is not

empty, we may define the sequential composition between a definite description

and an operation schema as follows.

D38 =(uwv:T| (3T, 7 Pp(vi,[7},7) A P5(Z.9.7.7))) (92)
Equation (92), in effect, substitutes the initial values of the variables that are
common between S and D in performing S as the values of these variables for D
(The substituted quantity is denoted by |7 |in (92)). The result of the composition
is still a definite description of the same type, as indicated by identical declarations

for v; between (92) and (91). If ¥ is empty, (92) reduces to
D3S=(uw:T| Pp(r,Z) ApostS) (93)

which is the same as D (91) except that it is undefined where post S is violated.
For Example 2, the abstract value of E expressed terms of its final state may

be rewritten as

U’[E] = U’[El] ? ElEzl - I/[Eﬂ (94)

associativity of sequential composition of a definite description and a
sequence of operation schemas Sequential composition between a definite
description and a sequence of operation schemas is associative in the sense that,

for any operation schemas S;, S», and definite description D,

(D3 S1)s&H=D35(5 %) (95)

The identity is obvious when both sides are expanded with (65) and (92).

4 AGGREGATION OF ABSTRACTIONS 54

Conjecture 2 (distributivity over sequential evaluation) In general, if an expres-
sion E contains subexpressions E;, E;, ..., E, such that effect of evaluating E is
that of sequential evaluation of the subexpressions E;, E,, ..., E,, in that order,
then the abstract value of E in terms of its final state may be obtained from those
of its subexpressions, if and only if, for each subexpression E;, where 1 < j < n—1,
the abstract effects of the subexpressions Eji1, Es, ..., and E, are appended to its
abstract value, expressed in terms of its final state. This may be formally stated

as

corrected /[E;] = (V[E;] 5 €[Ej+1] ¢ €[Ejv2] § - - - § €[Enl) (96)

4.5 Sequential Composition between an Abstract Object
and an Operation Schema

Let us now consider appending an operation schema to an abstract object. The

following example illustrates such necessity.

Example 3 Couosider the following assignment expression:
alil=i++ (97)

Let ir be the final value of i after the assignment expression is evaluated. As-
suming a left to right order of evaluation, the object that is being assigned in the
assignment expression, expressed in terms of the final value of i, is alé¢ —1]. The
‘—1’ here is needed to offset the effect of the increment operation on the right side
of the assignment. The augmentation performed in the above example may be
formalized by defining sequential composition between an abstract object and an

operation schema.

4 AGGREGATION OF ABSTRACTIONS : 55

Since abstract object is represented by a definite description, sequential compo-
sition between the abstract object of an object designation expression and another
operation schema, may be evaluated using (92), the same formula for composi-
tion between a definite description and an operation schema. However, for the
limited varieties of object designation expression considered in this thesis, namely,
variables, array subscripting expressions, and structure component selection ex-
pressions, we may also develop formulas for each of these cases.

Let us consider sequential composition between the abstract object of an object

designation expression E and an operation schema S.

variable If E is a variable v, from (rule 24), we have w’fv] = 7. Since the address

of a variable may not change throughout its lifetime,

IVl 3 § = w'[v] (98)

array subscripting expression If E is an array subscripting expression of form
E; [(E2], then from (rule 31), '[E; [E;]] is ('[E4] 5 [E2]) [V[E2]] - To evaluate the
the sequential composition '[E] 3 S, we may distribute the composition (proof

below) between (w'[E;] 3 €[Ez]) and /[E;] to obtain the following definition:
JEL[ED] 5 § = ([E] 5 e[E2] 5 S)IVIE] 5 5] (99)

Formula (99) may be justified by the following identity: For any definite descrip-

tions D; and D,, and operation schema Ss,

(Di[D2)) 5 S = (D1 5 $3)[D2 5 S3 (100)

4 AGGREGATION OF ABSTRACTIONS 56

Proof Expansion of both sides of the identity would show that a sufficient condi-
tion for the identity to hold is that the operation schema S; specifies a deterministic

operation.

structure component selection expression Let E be a structure component
selection expression of form E, .f;, where f; is a component of the type of the object
designated by E;. From (rule 38), «/[E;.f] is '[E1].f;- Since the composition
between «/'[E;].f; and S may not change a schema component name (f; in this

case),

'[E; .f] 5 €[C] = (W'[E1] ;5 €[C]).f: (101)

associativity of sequential composition of a definite description and a
sequence of operation schemas The compositions between an abstract object
and a sequence of abstract effects are associative, just as an abstract value and a

sequence of abstract effects do.

4.6 Sequential Composition between an Operation Schema
and an Abstract Object

Appending an abstract object to an operation schema may be defined similarly as
appending an operation schema to an abstract object.

Consider the sequential composition between the operation schema S and the
abstract object of an object designation expression E. We may derive formulas for

each kind of object designation expressions.

4 AGGREGATION OF ABSTRACTIONS 57

variable If E is a variable v, then from (rule 24), w{v] = 7. Since the address of

a variable may not change,

S 5 wiv] = wlv] (102)

array subscripting expression If E is an array subscripting expression of form
E: [E.], then from (rule 30), w[E; [E;]] is wEi][e[E.] 5 v[E2]] . If S specifies a
deterministic operation, we may distributive the sequential composition in S ; w{E]

between o/[E;] and €[E;] ; v[E.] to obtain the following definition:

S s wlE; [Ex1] = (S 5 w[E1])(S 5 €[Ed] 5 v[E2]) (103)

structure component selection expression If E is a structure component
selection expression of form E;.f;, where f; is a component of the type of the
object designated by E;, then from (rule 37), w{E; .f] is w[E1].fi. The composition
wlE; .f] 5 €[C] is then

€[C] 5 wiE: .f] = (e[C] 5 wlEL]).£i (104)

assaciativity of sequential composition of a definite description and a
sequence of operation schemas The compositions between an abstract object
and a sequence of abstract effects are associative, just as an abstract value and a

sequence of abstract effects do.

5 ABSTRACTIONS FOR A C SUBSET 58

5 Abstractions for a C subset

For the purposes of this thesis, we consider only programs written using a subset

of the C language that includes the following features:
e Every program must contain a parameterless non-recursive function, call
‘main’,

e The only data types supported are int, arrays (any dimension) of int and
structures, and structures whose components have type as one of the above

three types or structures by themselves.

o All functions are parameterless functions and do not return any value (i.e.,

the return type is void).
e A function invocation may occur as an expression statement only.
e Pointers are not included.

e Every program is assumed to be preprocessed, that is, it does not contain

any preprocessor directives(14, p.39].

The main simplifying assumption that gives rise to the chosen subset is that the

parent of the object designated by an object designation expression is fixed .

5.1 Extended BNF Grammar for the C Subset

The grammar presented below is ambiguous in the sense that operator precedence
and associativity rules are not implied by the grammar. Therefore, a tool must
use this grammar in conjunction with Table 2, which presents operator precedence
and associativity rules. The grammar has been written so that the classification

of certain syntactic elements as constructs, as well as the enclosure relationship

5 ABSTRACTIONS FOR A C SUBSET 59

among these construct, is evident. Specifically, each non-terminal on the left hand
side of each production represents a category of constructs. The construct ‘type
expression’, which may be enclosed by a variable definition, is the exception (note
its absence in the grammar). This is because the type expression in the definition
a array variable is lexically split into two parts (element type precedes the variable
name, while the size specification proceeds the variable name). In the grammar,
‘aop’ stands for an arithmetic operator, and ‘rop’ stands for a relational operator.
There is one grammatical rule that is invisible from the grammar: A ‘variable def-
inition’ enclosed within another ‘variable definition’ may neither have the keyword
‘static’ at its beginning nor an ‘=’ ‘initializer’ at its end.

Here is the extended BNF grammar for our C subset:
program « { (variable-definition | function-definition) }

variable-definition « [‘static’] (‘int’ | ‘struct’ ‘{’ { variable-definition } ‘}*)
identifier [{ ‘[’ integer-constant]’ } |

[*= ‘initializer’] ¢;”
function-definition « ‘void’ ‘function-name’ ()’ block
block « *{’ [{ variable-definition } | [sequence-of-statements | ‘}’
sequence-of-statements « { statement }

statement < expression-statement
| block
| if-statement
| if-then-else-statement

| while-statement

5 ABSTRACTIONS FOR A C SUBSET

| do-while-statement

| for-statement

expression-statement « expression *;’

| ‘function-name’ ‘() ;’

expression « integer-constant
| parenthesized-expression
| object-designation-expression
| unary-arithmetic-expression
| binary-arithmetic-expression
| relational-expression
| conditional-expression
| logical-expression
| simple-assignment-expression
| compound-assignment-expression
| post-increment-expression
| post-decrement-expression
| pre-increment-expression

| pre-decrement-expression
parenthesized-expression — ¢(’ expression ‘)’

object-designation-expression « ‘variable-name’
| array-subscripting-expression

| structure-component-selection-expression

integer-constant < ‘integer-constant’

60

5 ABSTRACTIONS FOR A C SUBSET 61

identifier «— ‘variable-name’

| ‘structure-component-name’

structure-component-selection-expression «—

object-designation-expression ¢.’ ‘structure-component-name’
array-subscription-expression « object-designation-expression ‘[’ expression ‘]’
parenthesized-expression «— ‘(' expression ¢)’

unary-arithmetic-expression «— ‘+’ expression

| ‘=" expression
binary-arithmetic-expression «— expression ‘aop’ expression
relational-expression «— expression ‘rop’ expression
conditional-expression «— expression ‘?’ expression ‘:’ expression

logical-expression «— expression ‘&&’ expression
| expression ‘||’ expression

| ¢V’ expression
simple-assignment-expression « expression ‘=’ expression
compound-assignment-expression «— expression ‘aop=' expression
post-increment-expression « expression ‘++’
post-decrement-expression «— expression ‘—~’

pre-increment-expression «— ‘++’ expression

5 ABSTRACTIONS FOR A C SUBSET 62

pre-decrement-expression « ‘~=’ expression

if-statement — ‘if’ ‘(’ expression ‘)’ statement

if-then-else-statement «— ‘if’ ‘(’ expression ‘)’ statement ‘else’ statement
while-statement «— ‘while’ ‘(" expression ‘)’ statement

do-while-statement «— ‘do’ statement ‘while’ ‘(’ expression)’ ¢;’
for-statement «— ‘for’ ‘(" expression ‘;’ expression ‘;’ expression ‘)’ statement

5.2 Precedence and Associativity of Operators

The following table shows the associativity of the operators available in the C

subset described in the above grammar in descending order of their precedence:

Operator Description Associativity
0. ++-- array subscripting, structure com- left
ponent selection, postincrement
and postdecrement
++ =1 + - preincrement and predecrement, right
logical negation, unary arithmetic
operators
* /% multiplication, division (aop) left
+ - addition, subtraction (aop) left
> < <=>= relational (rop) left
== = equal, not equal (rop) left
k& conjunction left
H disjunction left
? conditional expression right
= += -= assignment expression right
*¥= /==

Table 2: Precedence and Associativity Rules for Operators in a C subset

5 ABSTRACTIONS FOR A C SUBSET 63

We now consider the abstractions for each category of constructs available in

the C subset that we have just presented.

5.3 Variable Definitions

In our C subset, we consider a variable as a named storage of a certain type. The
storage class(14, p.75] of a variable may be either static or local. Static variables|14,
p.75] are those variables for which storage is allocated before the program starts,
and persists throughout the execution of the program. Static variables may be
defined outside any function (in which case they are global variables) or at the
beginning of a block. Local variables[14, p.75] may be defined only at the beginning
of a block. The storage for local variables are allocated every time the block in
which they are defined is entered, and is deallocated when exiting the block.

With some exceptions[14, p.93|, each variable definition may be accompanied
by an optional initializer, which assigns a value to the variable when the storage
for the variable is allocated[14, p.92]. Hence, for static variables, initializations
may be assumed to be done only once, before the main function is invoked. For
local variables, initializations are assumed to be done every time the block in which
these variables are defined is entered. Qur C subset assumes that initializers must
be literal constants.

Default initializations are permitted, which is assumed to obey the following
rule °: Every local variable is initialized to an arbitrary value of its type (for
example, Min and Maz are both possible initial value of an integer local variables
defined without an initializer). For a static variable, the default initialization when

the variable has integer type is to assign it with zero. For an array, it would be to

9This follows the same rule as stated in [p.93]C, except that a local variable without initializer
is assumed to holds a valid value at the beginning, rather than a possibly invalid value

5 ABSTRACTIONS FOR A C SUBSET 64

apply default initialization recursively to all its elements. For a structure, it would
be to apply default initialization recursively to all its components.

For each variable definition, we may define its abstract state, which abstracts
the storage for the variable, and the abstract effect, which abstracts the initializa-
tion of the variable. Abstract value and abstract object are left undefined because
a variable definition may not appear in an expression.

We shall first define the abstractions for a general variable definition, identify
the parameters, and then derive the values for these parameters for the various

types available in C.

5.3.1 General Form

We shall use the notation D(v) to denote the definition of an identifier (either a

variable name, or a structure component name) v in a program.

abstract type Suppose v is defined by D(v) to have type T. By definition, its
abstract type would be!?

T[D(V)] == 7[T] (rule 1)

abstract state D(v) specifies initialization of v when its storage is allocate.

Therefore it operates on the variable v. The abstract state of D(v) is derived as
o[DV)] = [v: 7[T]] (rule 2)

where v represents the variable name in the Z specification that correspond to v.

is the specification.

1%ach equation with equation number of form (rule number) shall indicate that it is an ab-
straction rule

5 ABSTRACTIONS FOR A C SUBSET 65

abstract effect The effect of ‘executing’ a variable definition is taken as that
of the initialization of the variable. When an optional initializer | is present, the
effect would be the same as assigning the initializer to the variable. In which case,

the abstract effect of D(v) is
e[DW)] = [o[DM]' | v = 1] (rule 3)

where I is the specification of initializer |. In (rule 3), e[D(v)] is an initial state
schema. This is because we do not concern ourselves with the value of v before
it is initialized. When | is not present, we follow the default initialization rules
described earlier. The particular rule to be applied depends on the storage class
of the variable. If v is a local variable, the default initialization asserts that v has

an arbitrary value of type T, the abstract effect of D(v) would be,
e[D] = [o[D(v)]] (rule 4)
If v is a static variable, then In this case the abstract effect of D(v) would be
e[D] = [o[D(WV)I' | v = Z2[T]] (rule 5)

where Z[T] represents a value of type T that a static variable of type T would
bold when default initialization is applied.

We may summarize the abstract effect for various combinations of storage

classes and the presence or absence of initializer in the following table:

storage class
static local
initializer is present | [o[D(V)]' | v =1] |[c[DWV)Y | o' =]
initializer is absent | [o[D(v)]' | v' = Z[T]] [e[D(v)}]

Table 3: Abstract Effect of a Variable Definition

5 ABSTRACTIONS FOR A C SUBSET 66

identify the parameters For a variable definition, the general form of its ab-

stractions may be characterized by three parameters:
1. 7[T], a representation of the type T in Z
2. I, representation of an initializer of type T

3. Z[T], representing the value of a static variable of type T when default
initialization is applied to it.

Since both the second and third parameters in turn depend on T, the type of
the variable in the program, we may instantiate these parameters for each types

available in our C subset.
5.3.2 Integer

In this case, the parameter T is int.

abstract type We may represent T in Z by a subrange of integers. Specifically,
we shall define the abstract type of int to be

t[int] == Min..Maz (rule 6)

where Min and Maz are the minimum and maximum integers representable by
the type int. The quantities Maz and Min may be declared in Z by the following
axiomatic definition:
Min: 2
Maz : 2
| Min < Maz A Min < 0 A Maz >0

5 ABSTRACTIONS FOR A C SUBSET 67

initialization An initializer for a variable of type int is an integer constant,
which may be represented in Z as it is. Z[T] in this case is the integer zero. The
axiomatic definition for Min and Maz that we have just presented ensures that

zero is a valid value of type int.
5.3.3 Arrays

In this case, the parameter T is
T [B] (105)

where B is an integer constant that specifies the size of the array, and element type

T; is type of the elements in the array.

sequence representations and operations An array may be represented in
Z by a sequence. Recall that A sequence of type X in Z may be represented a

function from natural number to X:

seq X == {f:N— X |dom f = 1..#f} (106)

Definition (106) implies that the indices of any sequence start from one. In contrast,
all arrays in C have indices start from zero. To account for this difference, we need
to declare a couple of operators: one for indexing an element of a sequence; the
other is a special case of the overriding operator (@) that is useful for fixed length

sequences. Here are the declarations for these operators:

(X
f_[_]] :seq X XN - X

Vs:seqX;i:Ne sfi] =s(i+1)

5 ABSTRACTIONS FOR A C SUBSET 68

~[X]
~B_:(N+>X)x(N+ X)— N+ X)

Vf,g.h:N-+> X e f8Bg=~hedomg C (domfU {0}\ {#f}))
Ah={n:N|n€domgen+1} g fuU
{n:N|nedomge(n+1,g(n])}

Here explains the normal use of the B operator in this thesis: The left operand
of B is a sequence. The right operand is a set of pairs (indez, element), with
indez of each pair unique over the set. The difference between the use of B and
@® on a sequence is that the indices in the right operand are specified as if the
sequence indices begin at zero, rather than one. For example, the pair (0, a) in the
right operand would make a the first element of the sequence resulted from the &
operator (provided that the left operand is not an empty sequence). The constraint
dom g C (dom fU {0} \ {#f})) ensures that the sequence resulted from & operator
must have the same length as the left operand. Note that the declaration of B, as
given above, does not forbids its use in other contexts, in which the left operand

is not a sequence. However, we shall not encounter such use in this thesis.

abstract type We may represent an array type T by a sequence of its element
type T[T1] (i.e., seqT[T1]), with the constraint that the length of the sequence is
B, the size of the array declared in the program. Therefore the abstract type of T

is given by
T[T} == {s :seq7{T1] | #s =B} (rule 7)
Due to such representation, we have the following identities:

ran7[T] = [T} (107)
dom [T} =1.8B (108)

5 ABSTRACTIONS FOR A C SUBSET 69

Identity (107) gives the element type of an array type, and identity (108) gives the
bounds of the array as a set of integers. We may abbreviate ran 7{T] by 7.[T] and

dom 7[T] by B[T].
initialization An initializer for a one dimensional array has the following form:

{ ll! l2) I3s s lB } (109)

where |, is the initializer for the first element, |, is the initializer for the second
element and so on. All of Iy, I, ..., and Ig are of type T;. An initializer for an
array must initialize all elements of the array. The initializer may be represented

by a sequence enumeration in Z as

(I, b, Ly, - .., L) (110)

where I, L, ..., I, are representations of initializers I, I,, ..., |,. We may apply
the rules for representing initializers recursively.

Recall that default initialization of a static array is to apply default initializa-
tion to all of its elements{14, p.93]. Z[T], therefore, should be a value of type 7[T]
with the values of all elements being Z[T;]. This may be represented in Z by a

definite description:
Z[T] = (pvi: [T} (V5 : 1.B e 1 (5) = Z[T1])) (111)
which may alternatively be written as

Z[T] = (uva: [T (V] : B[T] & 1 (4) = 2[T]) (112)

5 ABSTRACTIONS FOR A C SUBSET 70

multi-dimensional arrays Consider the following type expression:
T, [B1]1[B:] (113)

where B; and B, are integer constants specifying the bounds of the array. Due to
left-associativity of subscript expressions, the type expression may be interpreted
as a one-dimensional array of length B; that has element type T;[B;]. We may
then apply the same results as for one-dimension arrays. Multi-dimensional array

types of any dimension may be analyzed similarly.
5.3.4 Structure

When the variable definition define a structure variable, the parameter T is
struct { T; fl; T, 6; T3 f3; oo T fu; 3 (114)

where fy, f5, f3, ..., f, are the components of the structure, and T;. Ty, Ty, ..., Ta
are their respective types. The type of each component may either be an integer,

an array, or another structure.

abstract type We may represent T in Z by a schema type. In particular, the
abstract type of T is

Ty 27T o 7[T2k; -+ fo s 7[Tal] (rule 8)

The schema components fi, f, ..., f; represent the structure components f;, f, f3,
..., fn, and therefore must respectively be members of the sets have types 7[T;],
7[T2], ..., and 7[T,]. The predicate part of the schema is empty because all the

type constraints have been included within the declarations of the components.

5 ABSTRACTIONS FOR A C SUBSET 71

initialization The initializer for a structure variable must initialize all compo-
nents of the structure. Let the initializer | consists of Ij,l,. .., l,, which initialize
the structure components fi, fi,. .., f, respectively. Then | may be represented in

Z by the following definite description.
I=(uu:r[Tjlnhi=hAnp=bEA---Anf,=1) (115)

where I}, b,. .., I, are corresponding specifications of l,ls,. .., .

Recall that the type of each structure component is either an integer, an array.
or another structure. Each of Iy, I, ..., |, must therefore have its form either
as an initializer for integer, an array, or another structure. Therefore we may
apply the rules for representing initializers recursively until we have the desired
representation.

Recall that the default initialization for a static structure variable is to apply

default initialization to all its components. We have
Z[T] = (po - r[T] |

vih =Z[Ti) A o= Z[T] A --- Avfy = Z[Ta]) (116)
Once again, the identity is recursive.
5.4 Integer Constants
In our C subset, the only constants that may appear in an expression are integer
constants[14, p.25] of type int.
abstract state Since no variable occurs in C, its abstract state is

oCj=0 (rule 9)

where (2 represents the empty schema, which has no components and predicate

part being the predicate true.

5 ABSTRACTIONS FOR A C SUBSET 72

abstract effect Since evaluating C has no effect, the abstract effect of C is

fcl=m (rule 10)

abstract value Since the result value of C is the constant C, we may either
express the abstract value by the constant C itself:

v[C] =V[C] =C (rule 11)
or we may use a definite description

v[C] =/[C] = (pwv1 : r[int] | 1 = C) (rule 12)

abstract object The abstract object of C is left undefined because a constant

does not designate any object.

5.5 Parenthesized Expressions

The general form of a parenthesized expressionl4, p.185] is (E). Since the only
function of the parentheses is to override operator precedence in C, we simply

drop them when deriving abstractions. This leads to the following rules.

T[(E)] == T[E] (rule 13)
o[(E)] = o[E] (rule 14)
e[(E)] = €[E] (rule 15)
v[(E)] = vE] (rule 16)

V[(E)] = V[E] (rule 17)

5 ABSTRACTIONS FOR A C SUBSET 73
w[(E)] = w[E] (rule 18)
JIEY] =[E] (rule 19)

Each of these rules is valid if and only if the respective abstraction is defined for
E.

5.6 Object Designation Expression

An object designation expression designates an object. For our C subset there
are three kinds of object designation expressions: variables, array subscripting

expressions, and structure component selection expressions.

5.6.1 Variable Name

An expression may consist of a single identifier v.

abstract type The type of the object designated by the expression v is the type
of the variable as defined in its definition. Therefore, the abstract type of the

expression v is

Tiv] = [D(Vv)] (rule 20)

abstract state The expression v operates on the variable v. Therefore, we may

define the abstract state of the expression v to be

olv] = o[D(v)] (rule 21)

5 ABSTRACTIONS FOR A C SUBSET 74
abstract effect Evaluating v has no effect. Therefore, its abstract effect is

efvl = [Acolv] | v =] (rule 22)
This abstraction rule may be abbreviated by xi convention as

elvl = [Eo{v]] (rule 23)

abstract object The object that the expression designates is always the variable
v regardless of the value of v. Recall from the definition of abstract object that,
in the abstract object of an expression, the parent of the object designated by an
object designation expression is represented by a variable subscripted with ‘o’. Let

v, be that variable. The abstract object of v is then the following:

wivl =v] = (pwy : Tlv] | w1 = v,) (rule 24)

abstract value The result value of the expression v when the variable v has a
scalar type has the same type as the object that it designates. Therefore, in this
case, the abstract value of v, expressed in term of its initial and final states, are,

respectively,

vivl = (uvr : T[DW)] | 11 = v) (rule 25)
Vivl = (pu : 7[DV)] | 11 =) (rule 26)

The abstract value of v is left undefined when v designates an object of a

composite type.

5 ABSTRACTIONS FOR A C SUBSET 75

5.6.2 Array Subscripting Expressions

The general form of an array subscripting expression [14, p.186] for our C subset

18
E[E,] (117)

E must designate an object of an array type. E, is a subscript ezpression whose

result type is int.

abstract type EI[E;] designates an object of its element type. Therefore, its
abstract type is

T[ELE]] == T.[E] (rule 27)

abstract state The variables of E(E;] are the combination of those of E and

those of E;. Therefore, the abstract state of E[E;] is

o{E(E;1] = o[E] A ofE:] (rule 28)

abstract effect The effect of evaluating E[E;] is that of sequential evaluation
of E and E; in some order. Therefore, assuming a left to right order of evaluation,

the abstract effect of E[E;] is

e[E[E,1] = [AC[E(E,]] | [E] 5 €[E1]] (rule 29)

5 ABSTRACTIONS FOR A C SUBSET 76

abstract object The object designated by E[E,;] is the object designated by E
indexed according to the subscript expression E;. Since 7[E] is a sequence, the
object designated by E[E;] corresponds to an element in a sequence the specifica-
tion. In particular, assuming a left to right order of evaluation, the abstract object
of E[E;] expressed in terms of its initial and final states are respectively

[E[E 1] = w[E][€[E] v[E1]] (rule 30)
W'[ELE1]] = (V[E] 5 e[EL]) [V [EL]] (rule 31)

abstract value The type of the result value of the expression E [E;] is the same
as that of the object that it designates whenever the object that it designates has
a scalar type. In this case, the abstract value of v expressed in term of its initial

and final states are respectively:

V[E[E]] = (uw : T[ELEL]] | vy = W[E](_/_oj[e[E] 5 VIEL])) (rule 32)
l/'[E [El]] = ([.L | 74 e T[E [E1]] l mn = (w’[E][_'/_o] ? EEE]_E)[I/[E]J])(rule 33)

’

The partial systematic renamings [_/_o] and [.//_o] respectively abstract the re-
trieval of the value stored at the parent of the object that E[E;] designates at the

beginning and at the end of evaluating the expression.

5.6.3 Structure Component Selection Expressions

The general form of a structure component selection expression may be stated as
E.f; (118)

where the object designated by the object designation expression E must be of a

structure type, with f; being one of its components.

5 ABSTRACTIONS FOR A C SUBSET 77

abstract type The type of E.f; is retrieved from the definition for the structure
component f; in the program. Therefore, the abstract type of E .f; is

[E.f] == r{D(f)] (rule 34)

abstract state The variables of E.f; are the same as those of E. Therefore the

abstract state of E.f; is

olE.f]} = o[E] (rule 35)

abstract effect The effect of evaluating E.f; is that of evaluating E Therefore,

the abstract effect E.f; is

e[E£] = [E] (rule 36)

abstract object The object designated by the expression E.f; is the structure
component f; within the object (which is a structure) designated by E. Recall that
a structure is represented by a variable of schema type. The abstract object of

E.f; would be the following schema component selection expressions:

w[E.fi] == w[E].£; (rule 37)
[E.f] == [E}Ai (rule 38)

where f; is the schema component of 7[E] that represents the structure component

f;.

5 ABSTRACTIONS FOR A C SUBSET 78

abstract value When the structure component f; has a scalar type, the result
value of the expression E.f; will the value stored at the object designated by the

expression. Therefore
V[ER] = (por - T[Ef] | v = w[E]/_0]) (rule 39)
VIER] = (o :T[Ef] i = [E][../_o[) (rule 40)

The partial systematic renamings |_/_o] and [//_o] abstract the retrieval of the
value stored at the parent of the object that E designates, at the beginning and at
the end of evaluating the expression respectively.

5.7 Unary Arithmetic Expressions

The unary arithmetic operators available in our C subset are plus (+) and minus
(=)-

5.7.1 Unary Plus

The form of a unary plus expression is

+£ (119)

For our C subset E must be an expression of type int. +E is defined to be equivalent

to (0)+E {14, p.196]. Therefore, we have the following abstractions.

o[+E] = ofE] (rule 41)
e[+E] = €[E] (rule 42)
V[+E] = v[E] (rule 43)
V[+E] = V[E] (rule 44)

Abstract object is not defined for +E because the expression +E does not designate

an object.

3 ABSTRACTIONS FOR A C SUBSET 79

5.7.2 Unary Minus

The form of a unary minus expression is
-E (120)

For our C subset E must be an expression of type int. As one would expect, this

will have very similar abstractions as E.

abstract state The abstract state of -E is the same as that of E. Therefore,

a[-E] = ofE] (rule 45)

abstract effect The effect of -E is the same as that of E, with an additional pre-
condition that the unary minus operation must not result in overflow. Therefore,

the abstract effect of -E,
€[-E] = [Ac[-E] | [E] A Min < —V[E] < Maz] (rule 46)

v[E] is used here rather than /[E] because we are specifying a precondition.

abstract value The result type of -E is the same as that of E, which is int.
The result of evaluating -E is the arithmetic negation of the result of evaluating
E, provided that arithmetic overflow does not occur. Therefore, the abstract value

of -E, expressed in terms of its initial state,
V[-E} = (puvy : T[int] | 1 = —V[E] A —V[E] € T[int]) (rule 47)

We may omit the constraint ~v{E] € 7[int] because it is implied by vy, = —v[E],

in which —v[E] is equated with 1y, which has been declared to be a member of

5 ABSTRACTIONS FOR A C SUBSET 80

the set 7[int]. Therefore,

VI-E] = (o < rfint] | 1 = —v[E]) (rule 48)
Similarly, the abstract value of ~E expressed in terms of its final state,

VI-E] = (v : 7{int] | 11 = —V/[E]) (rule 49)
in which the constraint —//[E] € r[int] is implicit.
abstract object As with +E, abstract object is not defined for -E,

5.8 Binary Arithmetic Expressions

The general form of a binary arithmetic expression E in our C subset is
E; aop E> (121)

where both operands E; and E; are expressions of type int. aop denotes one of
the following arithmetic operators: addition(+), subtraction(-), multiplication(*),

division(/), remainder(%).

representing arithmetic operators in Z First, we need to represent each
arithmetic operator in C by a corresponding arithmetic operator in Z. Here is a

mapping between the arithmetic operators in C and those in Z.

C@p)ll+ — =« / %
Z (aop) |+ — =* div mod

Table 4: Mapping between Arithmetic Operators of C and Z

5 ABSTRACTIONS FOR A C SUBSET 81

abstract state The variables of E are the those of E; and E;. Therefore, the
abstract state of E is

o[E] = o[E4] A o[E2] (rule 50)

abstract effect The effect of E is equivalent to sequential evaluation of its
operands in some order, in conjunction with the precondition that the arithmetic
operation does not result in overflow. Therefore, assuming left to right order of

evaluation, the abstract effect of E is

e[E] = [Ac[E] | (e[Es] 5 €[E2]) A
VlE:] aop (e[Ei] 5 v[E2]) € T[E]] (rule 51)

where aop is the corresponding representation of the arithmetic operator aop in
Z. Note that v[E,] is appended to €[E;] to ensure that both operands of aop are

expressed in terms of the initial state of E.

abstract value Since both operands are of type int, the result type would also
be int. The result value of E is the value obtained from applying aop to the
result values of evaluating E; and E;, provided that the arithmetic operation does
not result in overflow. Therefore, assuming left to right order of evaluation, the

abstract value of E expressed in terms of its initial state is

V[E] = (pv1 : lint] [1 = v[E1] aop (]E41] 5 v[E2])
A V[E] aop (efE41] 5 v[E2])) € T[int] (rule 52)

In (rule 52), v[E;] is appended to €[E;] to ensure that both operands of aop are
expressed in terms of the initial state of E. Since v[E;] aop (e[E:] 5 v[E2]) is

5 ABSTRACTIONS FOR A C SUBSET 82

equated with 24, which is of type int, We may remove the constraint v[E;] aop

(e{E1] 5 v[E2]) € 7[int] from (rule 52) and write

V[E] = (uo : Tlint] | vy = v[E1] aop (e[E1] 5 v E2])) (rule 53)
Similarly, the abstract value of E expressed in terms of its the final state is

VIE} = (uvy - Tlint] | 1y = (V[Ei] 5 €[E2]) aop V[E2]) (rule 54)

Here, €[E;] is appended to v/[E;] to ensure that both operands of aop are expressed
in terms of the final state of E. The constraint (V'[E,] 5 €[E>]) aop V[E2] € 7[int]

is implicit.
5.9 Relational Expressions

The form of a relational expression E is
E: rop E2 (122)

where E; and E; are expressions. In our C subset both expressions are assumed to
be of type int. The symbol rop represents one of the following relational operators:
less than (<), less than or equal to (<=), greater than(>), greater than or equal to
(>=), equal (==), and not equal(!=). A relational expression is a boolean expression
returning either true or false. However, C does not define a boolean type and
the results of evaluating such expressions are expressed as an integer of type int
instead. Under normal execution, the result value of a relational expression is

either zero (stands for false) or one (stands for frue).

representing relational operators in Z Similar to binary arithmetic expres-
sions, we need to represent the relational operators in C by corresponding relational

operators in Z. We also define the complement operator 7op of a relational operator

5 ABSTRACTIONS FOR A C SUBSET 83

rop as follows: For any two integers a and b, if a rop b is true, then a 70p b is
false, and vice versa. The mapping between relational operators in C and those in

Z is given in the following table.

C (rop) < <= > >= == I=
Z (rop) < < > > = #
Complement inZ (70p) | > > < < # =

Table 5: Mapping between Relational Operators of C and Z

abstract state The variables of E are those of E; and E;. Therefore, the abstract

state of E is

o[E} = ¢[E/] A o[E2] (rule 55)

abstract effect Unlike the case for arithmetic expressions in which arithmetic
overflow may occur, a relational expression executes normally if and only if both
operands evaluates without errors. Therefore, the effect of evaluating a relational
expression is simply the effect of evaluating its operands in some order. Therefore,

assuming left to right order of evaluation, the abstract effect of E is given by

e[E] = [AcfE] | [E1] 5 [E2]] (rule 56)

abstract value The result type of a relational expression is int. The abstract

value of E expressed in terms of its initial state is

V[E] = (pw : T[int] | v[E;] rop (e[E1] ¢ VIE2]) A vy =11

5 ABSTRACTIONS FOR A C SUBSET 84

v v[E;1] 707 (e[E1] § v[E2]) A 11 =0) (rule 57)

where rop is the Z relational operator that represents rop, 70p represents the com-
plement operator of rop. The first disjunct in (rule 57) asserts that the result
value of E is zero whenever the relation between the result values of the operands
holds. The second disjunct indicates that the result value of E is one whenever
the complement of the relation between the result values of the operands holds
(i.e., the relation between them does not hold). Note that for any two expressions
E; and E;, due to the definition of complement operator. at most one of the two
disjuncts, v{E;] rop (e[E.] 5 v[E:]), and v[E;] 7op (e[Ei] 5 V[E2]). may be true
(none is true if at least one of the operands does not execute normally). Similarly,

the abstract value of E expressed in terms of its final state is
VIEY] = (uv - tlint] | (V[E1] 5 €]E2]) rop VIE]) A =1
Vv (V’[ELB 3 €[E2]) TOp V’[Ez]) Ay = 0) (rule 58)

Once again, (V'[E1] €[Ea]) rop V'[E2] and (V[E;] § €fE2]) 76P /[E2] are mutually
exclusive.
5.10 Conditional Expressions
A conditional expression E in our C subset has this form:

E1?E2 : E3 (123)

where the subexpressions E;, E,, and E; are expressions of type int.

abstract state The abstract state of E is the conjunction of the abstract states

of its subexpressions. In other words,

o[E] = o[E1] A ofE;] A o[Es] (rule 59)

5 ABSTRACTIONS FOR A C SUBSET 85

abstract effect In executing E, E, is first evaluated. If the result is non-zero,
then E; is evaluated and its result value becomes the result value of E. Otherwise,
E; is evaluated and its result value becomes the result value of E. Therefore, the
abstract effect of E,

e[E] = [AdE] | (e[Er] 5 e[E2]) A vfE1] £ 0 A2 =7]
vV [Ac[E] | (e[E1] 5 e[Es]) A v[E1] =0AZ' =7Z] (rule 60)

where Z represent those variables that occur only in E;, Z represent those variables
that occur only in E3. The first disjunct corresponds to the case when E; evaluates
to true, and the second disjunct corresponds to the other case. The predicates
7' = T and Z’ = Z asserts that the variables that appear only in one of E; and E;
should remain constant whenever the corresponding subexpression in which they

occur is not evaluated.

abstract value The result type of E depends on the type of E; and E; [14, p.218].
since both of them has type int in our C subset, The result type of E is int, too.

The abstract value of E in terms of its initial state is given by

VIE] = (v : Tlint] | v1 = (e]E1] 5 vI[E2]) A vfE1] #0
vV = (e[E1] 5 V[E3]) A V[E:] = 0) (rule 61)

The first disjunct assert that the result of E should be that of E; if E; is evaluated to
true, and be that of E3 otherwise. The compositions €[E;] ; v[E>] and ¢[E;] 5 v[Es]
ensure that all variables in the definite description represent the initial state of E.

Similarly, The abstract value of E expressed in terms of its final state is given
by

VIE] = (puv - t[int] | vy = V[E] A (V[E1] 5 €[Ea]) #0

5 ABSTRACTIONS FOR A C SUBSET 86

Vi =V[E] A (V[E] ; €[Es]) = 0) (rule 62)

The compositions /[E,] ; €[E;] and V/[E,] 5 €[E3] ensure that all variables in the
definite description represent the final state of E.

The difference between V[E]} (rule 61) and V/[E] (rule 62) is that, while +[E]
is always defined under normal execution, /[E] is undefined when the following

conditions occur simultaneously:

VIEi] 5 e[E2] #0 (124)
VIEi] ; e[Es] =0 (125)
V[E2] # V[Es] (126)

The foliowing example would illustrate the situation:

Example 4 Let E be a conditional expression
E]_?Ez : E3 (127)

where E; is i, E; is 1 and Ej3 is i++. Variable i is of type int. This expression is
well-behaved in the sense that lint (a C program checker) does not complain. The

abstractions for the subexpressions E,, E;, and Ej are

{1} = V[Ea} = (uv : T{int] | vy = i) (128)
V[E] = V[Es] = (uwn : r{int] | vy =) (129)
V[Es} = (uw1 : T{int] | i < Maz A v, = 1) (130)
VIEs]=(puvi:mlint] [Min < i’ Avy =i ~ 1) (131)

] = [AclE] | ¢ = i] (132)

e[E2] = [Ac[Er] | ' = 1] (133)

€[E3] = [AO’[E3] I V=i4+1Ai< Max] (134)

5 ABSTRACTIONS FOR A C SUBSET 87
To find v[E] using (rule 61), we need to perform these compositions:

6[51] ? I/[Ezl
e[E:] 5 V[Es] (135)

Applying (76),
e[E1] s v[E2] = (pvn - 7lint] | (37 : [int] @ P.(i, ') A P,(11,7))) (136)

where P, is the predicate part of €[€;] (132), P, is the constraining predicate of
v[E>] (128) with 7 substituted by #’. Therefore,

elE1] s vE2) = (uvy - rlint] | (3¢ : 7[int] @ i’ = i A vy = i)

= (uuv :rlint] | 1y = 1) (137)
Applying (76),
€[E1] 5 V[Es] = (uvy : T[int] | (37" : 7[int] P.(i,i') A P.(v1, 7)) (138)

where P, is the predicate part of e[E;] (132), P, is the constraining predicate of
v[E3] (130) with 7 substituted by i’. Therefore,

€lEs] 5 VIEs) = (pvy : 7fint] | (37 : T[int] @ ' =i A i < Maz A vy = 7))
= (py : 7[int] | i < Maz A 1y = 1) (139)
Then the abstract value of E in terms of initial value of i, from (rule 61), is
V[E] = (pv1 = Tlint] | 1 = (e[E1] 5 V[E2]) A v[E:] #0

Vuy = (6[51]] 9 V[E3]) A V[Ed = 0)

= (pv:7lint] | vy = (pvy :7lint]) | i =) A (uor rfint] oy, = 4) #£0

5 ABSTRACTIONS FOR A C SUBSET 88

V= (uw :tlint] | i < Maz A vy = i) A (pvy : Tlint] | vy = i) =0)
=(@pun:tlint] [=i Ai#0V i, =i A i< Maz A i=0)

=(pu:7Tlint] [y =iAi#0Vy, =0Ai=0) (140)

To find //[E] using (rule 62), we need to perform these compositions:

V[Ei] 5 €[E2]
VI[EII 9 6[53] (141)

Using (92) we obtain
VIE] 5 elE2] = (uvy - T[int] | (37 : r[int] @ P,(v1, 1) A Pc(3,7))) (142)

where P, is the constraining predicate of v/[E;] (129), with i’ substituted by i, P.
is the predicate part of €[E;] (133). Therefore,

VIE] s e[E2] = (poy - 7{int] | 37 : r[int] e vy =i A &/ = 4))

= (g : Tlint] [v, =) (143)
Using (92) we obtain
VIE] 5 e[Es] = (uvy - 7fint] | (3¢ : 7[int] @ P,(v1,4) A Pe(i,) (144)

where P, is the constraining predicate of /[E;] (129), with i’ substituted by i, P,
is the predicate part of e[Es] (134). Therefore,

VIE1] 5 e[Es] = (pvy - Tlint] | (3i: r{intj e vy =i A ' =i+ 1 A i < Maz))
= (pvy:7int] |y =7 -1 A ¥ -1 < Mazx)

= (uv, :7lint] |1y =7 — 1 A Min < ?') (145)

5 ABSTRACTIONS FOR A C SUBSET 89
Using (rule 62), the abstract value of E expressed in terms of its final state,

V[EL = (u : 7lint] | 1 = V[E2] A (VIEi] 5 [Es]) #0
Vi =V[Es] A (V[Ei] 5 e[Es]) = 0)
= (pv1 : 7[int] |
v = (puy - T[int] [1 = i) A (g : rfint] | v = ') #0
Vin=(pu:rlint] | Min< i Ay =1 ~1)
Apwn crlint] vy = — 1A Min < i) =0)
=(pn:mlint] | ="AT#0Vn=9"-1AMn<i' Ai~-1=0)

=(pv:Tlint] | =Y AT #OV L =0A7d =1) (146)
Fori =1,
VIEl =(pvh:lint] i =1A1#0V ey =0A1=1) (147)
Eliminating the redundant inequalities 1 # 0 and 1 = 1 reduces (147) to
(pvy:7lint] |1 =0V Yy = 1) (148)

The definite description in this case is undefined. This represents a case in which
the result value of an expression may not be determined from its final state alone.
In this example, given the final value of i is one, it is uncertain whether the result
of the expression is zero or one. The following table shows the results of executing

E for all possible initial values of i.

5 ABSTRACTIONS FOR A C SUBSET

initial value of i || final value of i | result value of E
Min Min Min
-1 -1 -1
0 1 0
1 1 1
2 2 2
Maz Maz Mazx

90

Table 6: Results of Evaluating i?i:i++

We may observe from the table that for initial value of zero or one for i, the final
value of i in both cases is one, but the result values of E are different between
these cases. This observation is accurately recorded in our expression for J/[E].

Recall the conditions (124, 125, 126) that causes +’[E] to be undefined despite

of normal execution. In this case

VIE] s €e[E2] #0 < (pvy - rlint] |y =4) #0
&P £0 (149)
VIEl]3€e[Es]l =0 (uuy :rlint] |y =7 -1 A Min< i) =0

eMn<iAi'-1=0&i=1 (150)

VIE;] # V[E3] & (uwn : T[int] | v, = 7')
#@pun:rlint] | Min< i Ay, =1 -1)

< Min < i (151)

The three conditions are simultaneously true if and only if i’ = 1. Therefore we

may conclude that given that the final value of i is one, the result value of E may

not be determined.

5 ABSTRACTIONS FOR A C SUBSET 91

5.11 Logical Expressions

We shall consider these binary logical operators in C: conjunction (&&) and disjunc-
tion (11). They must be dealt with separately from binary arithmetic operators or
relational operators due to difference in their semantics. Unlike a binary arithmetic
or relational expression, the order of evaluation of a logical expression is always
from left to right. In addition, the right operand of a logical operator is evaluated
based on the result of evaluating the left operand. Under normal execution, the
result of a logical expression is either zero (representing false) or one (representing

true).
5.11.1 Conjunction
An expression with conjunction operator has the following form
E=E & E; (152)

Our C subset assumes that both expressions E; and E; are of type int. E; is
evaluated first. E; would be executed only if the result value is non-zero (true).
This is because, if one of the operands of a conjunction evaluates to false, the result

of conjunction must be false.

abstract state The abstract state of a conjunction expression is the conjunction

of the abstract states of both operands:

o[E] = ofE,] A o[E>] (rule 63)

abstract effect The abstract effect of E is

e[E] = [AcfE] | (¢[Ei] 5 elE2]) A v]E1] # O]

5 ABSTRACTIONS FOR A C SUBSET 92
\ [AU[E] l G[EII A U[E1] =0AT = f] (rule 64)

where T represents those variables of E that appear only in E;. The first disjunct
in rule (64) asserts that the effect of E;&&E; is equivalent to sequential execution
of E; followed by E; whenever E; evaluates to non-zero (¢rue). The other disjunct
asserts that in case E; evaluates to zero (false), those variables that appear only in

E> must conserve their values, while the effect is equivalent to executing E; alone.

abstract value A conjunction expression evaluates to either zero (for false) or
one (for true). Only one of the following three cases may occur under normal

execution:
e E; evaluates to zero. In this case the result value of E is zero.

e E; evaluates to non-zero but E; evaluates to zero. In this case the result

value of E is also zero.

e both E; and E, evaluates to non-zero. In this case the result value of E is

one.

In addition, the type of the result value of a conjunction expression is always int.

Therefore, the abstract value of E, in terms of its initial state,

VIE] = (uv, : [int] | v[E1] =0A 4, =0
VV[EL] #0 A (e[E1] 5 V[E2]) =0 A1 =0
VU[EL] #0 A (e[Ey] s viE2]) #0 A1y =1) (rule 65)

and that in terms of its final state,

VIE] =(uwy : tlint] | V[E1] =0A v, =0

5 ABSTRACTIONS FOR A C SUBSET 93

V(V’[Ed;é[Ez])%O/\l/[Eg]=0/\U]_ =0
V(V[E] s elE]) #0AV[E] #0A 1 =1) (rule 66)

Similar to the case for conditional expressions, /[E] is undefined if the following

conditions are simultaneously true:

V[E] =0 (153)
VIEi] 5 €[E2] #£0 (154)

5.11.2 Disjunction

In our C subset, an expression using the disjunction operator will be of the form
E=E6IIE (155)

where E; and E; are expressions of type int.

abstract state The abstract state of a disjunction expression is the conjunction

of the abstract states of its operands:

ofE] = o[E\] A ofE2} (rule 67)

abstract effect While evaluating E, E, is evaluated first. E; would be evaluated
only if the result value is zero (false) This is because a disjunction is true if either

of its operands evaluates to true. Therefore the abstract effect of E is

e[E] = [Ac{E] | ([Ei] 5 e[E2]) A vfE1] = 0]

5 ABSTRACTIONS FOR A C SUBSET 94

V [Ac[E] | elEx] A V[E1] #0A T =T (rule 68)

where T represents those variables of E that appear only in E;. The first disjunct
in rule (rule 68) asserts that both E; and E; are executed whenever E; evaluates
to zero (false). The second disjunct asserts that if E; evaluates to non-zero (true),
only E; would be evaluated. Therefore, the values of those variables that appear

only in E; must be conserved.

abstract value The only case in which a disjunction expression evaluates to zero
is when both operands evaluates to zero. In addition, if the first operand evaluates
to non-zero, the whole expression evaluates to one without evaluating the second
operand at all. The the result of a disjunction expression is always of type int.

Therefore, the abstract value of E, expressed in terms of its initial state is given

by

V[E] = (pvy - Tlint] | V[E]] #0A 1y =1
VVUE] =0A (e]E1] s V[E2]) #0A 1y =1
V U[E] =0 A (e]E1] 5 V[E2]) =0 A vy =0) (rule 69)

The same quantity expressed in terms of the final state of E is

I/[EH = ([.LI/1 :T[intﬂ l V'[E]J #F0Ay =1
V(/E];dE]) =0AV[E] #0Ar =1
V (V[E1] ¢ €[E2]) =0A V[E] =0 A v, =0) (rule 70)

The conditions under which '[E]} is undefined are very similar to those for con-

junction expressions:

VIEi] #£0 (156)

5 ABSTRACTIONS FOR A C SUBSET 95

V[Ei] ;5 elE2] =0 (157)

5.11.3 Logical Negation

The third logical operator is logical negation, denoted by !. The result value of
logical negation is either zero (false) or one(true). In our C subset, the form of a

logical negation expression E is
1E; (158)

where E; is an expression of type int.

abstract state The abstract state of E is the same as the expression being

negated, that is E;. Therefore,

o[E] = ofE] (rule 71)

abstract effect The operand of logical negation (i.e., E;) is always evaluated.

There is no other effect. Therefore

e[E] = [Ac[E] | €[Ei]] (rule 72)

abstract value The result value of a logical negation is always of type int.
The result value of a logical negation is zero if the operand evaluates to non-zero

(represented by the first disjunct in (rule 73), and is one if the operand evaluates

5 ABSTRACTIONS FOR A C SUBSET 96

to zero (represented by the second disjunct in (rule 73). Therefore, the abstract
value of E expressed in terms of its initial state,

V[E] = (pvy : [int] | V[Ei] =0A v =1
\"4 V[Ell #0Ay =0) (rule 73)
Similarly, the abstract value of E expressed in terms of its final state is

VIE] = (g, : r[int] | /[E1] =0A 1 =1
VV’[E],E #0A v =0) (rule 74)

5.12 Assignment Expressions
5.12.1 Simple Assignment Expressions

We consider simple assignment expressions first. A simple assignment expression

has the following form:
E;=E> (159)

where E; and E; are expressions. E; must designate an object of a scalar type T.

which is assumed to be the same as the result type of E;.

abstract state The abstract state of an assignment expression is the conjunction

of the abstract states of its operands. Therefore,

olEi=E>] = ofEi] A ofE2] (rule 75)

5 ABSTRACTIONS FOR A C SUBSET 97

abstract effect The effect of the assignment expression stems from evaluating
E, which may be thought of being performed in two steps:

1. First, evaluate separately the left operand to obtain the object that it desig-
nates, and the right operand to obtain its result value.

2. Assign the result value obtained in step one to the object obtained in step

one.

Assuming a left to right order of evaluation, the abstract effect of the first step is

[AO’[E1=52] [E[Ell ? 6[52]] (160)

Let A’[E,=E,] be the operation schema that represents the abstract effect of the
second step. First, we need an abstraction for the result of the right operand
expressed in terms of the final state of step one, that is /[E;]. We also need an
abstraction for the object that the left operand designates, expressed also in terms
of the final state of step one, that is «/[E;] 5 €[E2]. The composition «/[E;] § €[E2]
is necessary because evaluation of E; is only an intermediate step within step one
so that the variables of E; may be further changed by subsequent evaluation of E>
(Example 3 contains an instance where such composition is needed). Finally we

may define A'[E;=E;] to be

A’[E1=E2] = [AO‘ [E],’-'Ez]; o [E1=E2]o |
(W[E1] 5 elE2]) /= V[E2])/rir/o} AT =] \ (o) (rule 76)

The purpose of the additional declaration o{E,=E;], in the signature of A'[E,=E;}
is to assign types to those variables in the predicate part that are subscripted with
‘0’. They are hidden so that the effect of the assignment is specified only by the

relationship between initial and final states. The partial systematic renaming [_/_']

5 ABSTRACTIONS FOR A C SUBSET 98

abstracts the equivalence between the final state of step one and the initial state
of step two. The partial systematic renaming [//_o] abstracts the retrieval of the
final value of the parent of the object that is assigned in step two of the assignment
expression; In this abstraction rule, Z and T’ denotes the initial and final values of
the variables of the assignment expression other than the parent of the object that
is assigned in step two of the assignment. The syntactic transformation (*:'=") will
be described shortly.

Using (rule 76), the abstract effect of E is the sequential composition between

the abstract effects of the two steps, that is,
e[lE1=E>] = [Ac{E =] | (¢[E:] 5 €[Ea]) 5 A'[E1=E2]] (rule 77)

defining the syntactic transformation ‘=’ The operator ‘/=’ takes two
expressions (in Z) of particular forms as operands, and evaluates to a predicate.
In general, the left operand will be an abstract object sequentially composed to an
operation schema, and the right operand will be a definite description. Applying
’=, followed with the partial systematic renamings [_/_'][_//—o], must result in a
predicate that specifies the final value of the parent of the object being assigned
in step two in the assignment expression. Formal description of this syntactic
transformation requires an extension to Z notation.

We shall define ‘= base on the form of the abstract object within its left

operand, as follows.

variable In the simplest case, the abstract object in the left operand of /=

is that of a variable, say v. In this case, we may define

i3S =D%y, =D (161)

5 ABSTRACTIONS FOR A C SUBSET 99

for any sequence of operation schemas S, composed sequentially, and definite de-
scription D. Definition (161) is justified for the fact that «’[v] is v,, which, due to
the absent of no primed variables, must remain constant regardless of the operation

schema appended to it.

array subscripting expression When the the abstract object in the left

operand of = is that of an array subscripting expression, we may define

W’[El [E2]] 3 S =D dgf ((w’[EJ.B ? E[Ez]) 3 S) d= (&JI[EJ H E[Ez] 3 S) /o]
B {((V[E] 5 5), D)} (162)

By associativity (w'[E1] 5 €]E2]) 5 S is the same as /'[E;] § (€[E.] § S), which is
composition between an abstract object and an operation schema. In addition,
the function application[42, p.83] in (162) due to the B operator implies a definite
description as its result. Therefore, we may apply our definition for :'= recursively
to the right side of definition (162). The partial systematic renaming [//_o] cor-
responds to retrieval of the value of the parent of the object being assigned at the

end of the first step of the assignment.

structure component selection expression When the the abstract object
in the left operand of :'= is that of a structure component selection expression, we

may define

EL13 8 /= D B WIEL 3 8) v= (uon : rlEL] | inofy = (WIELD 5 S))
Avifo=((W[E] 5 S)-fo)r/ 0]
A---Aun.fi=D

A Avifm = ((WEL] 5 8)-Fm)ir/—al) (163)

5 ABSTRACTIONS FOR A C SUBSET 100

We may apply our definition for :’= recursively to the right hand side of definition
(163).

Let us recall from Example 4 that an abstract value expressed in terms of
the final state of a construct may be undefined despite normal execution of the
construct. In addition, an abstract object expressed in terms the final state of a
construct may contain terms which are abstract values expressed in terms of the
final state of some constructs. Hence, a disadvantage of (rule 77) is that whenever
W'fE1] or /{E>] is undefined, A’[E;=E;] would also be undefined. The following

example illustrates the situation.

Example 5 Consider the following assignment expression:
1=(i%i:144) (164)

where i is of type int. Although the abstract value of i?i:i++ expressed in terms
of its final state is undefined, the abstract effect of the assignment expression is

still defined. In particular, assuming a left to right evaluation,

eli=(i?i:i+)) = [, : Min.Max | =i ANi #0

Vii=1A1=0] (165)

To eliminate such undefinedness, we may define the abstract effect of step two
of a simple assignment, not only in terms of the initial and final state of step two,
but also partially in terms of the initial state of the assignment expression itself. In
particular, we shall express the following quantities in step two of the assignment
in terms of the initial state of step one: (i) the value being assigned, and (ii) the
object being assigned. All other quantities must still be expressed in terms of the

final state of the first step.

5 ABSTRACTIONS FOR A C SUBSET 101

Let us assume a left to right order of evaluation. Let A[E,;=E,] be the abstract
effect of step two derived using the alternative approach. First, we need an ab-
straction of the abstract object of E; expressed in terms of the initial state of the
assignment expression, that is w{E;]. We also need an abstraction of the abstract
value of E expressed also in terms of the initial state of the assignment expression,
that is e[E;] 5 V[E.]-

We may then define A[E,=E;] to be

A[El"Ez] = [AO‘ [E)FE;]; U[E]FEz]o; (e [Eﬁ*Ez]” |

(Wil = (elExl 5 viED)Lw)/ d
AT =7\ () (rule 78)

The purpose of the additional declarations o[E;=E;], and ofE;=E;]” in the signa-
ture of A[E;=E>] is to assign types to the variables in the predicate part that are
subscripted with ‘o’ or double-primed. Specifically, o[E;=E>]” denotes the initial
state of the assignment expression, which we shall use in specifying step two of
the assignment in the alternative approach. The declaration o[E;=E;], is hidden
so that the effect of the assignment is specified only by the relationship between
initial and final states of step two, as well as the initial state of the assignment
expression. The partial systematic renaming [//-o] abstracts the retrieval of the
final value of the parent of the object that is assigned in step two of the assign-
ment expression. Z and T’ denote the initial and final values of the variables of the
assignment expression other than the parent of the object that is assigned in step
two of the assignment. The partial systematic renaming ["/_] in (w[E;];_~,_j and
(¢e[E2] 5 v[E2])/ correspond to our technique of expressing both the object and
the value being assigned in terms of the initial state of the first step. The syntactic

transformation := will be described shortly.

5 ABSTRACTIONS FOR A C SUBSET 102

Using (rule 78), we define the abstract effect of E to be the sequential compo-
sition between the abstract effects of the two steps:

6[El=E2] = [AO’ [E1=E2]; U[El=E2]” l (E[EI] 9 E[Ezl q A[Ep‘-Ez])
A 80[E=E;] = 8o{E=Ea}"] \ () (rule 79)

The predicate §o[E;=E>], = fo[E1=E>]” in (rule 79) is due to our notation of using

double-primed variables to denote the initial state of the assignment expression.

defining the syntactic transformation ‘:=’

The operator ‘:=’ takes two expressions (in Z) of particular forms as operands,
and evaluates to a predicate. In general, the left operand will be an abstract
object renamed by [”/_], and the right operand will be a definite description.
Applying ‘:=’, followed with the partial systematic renaming [//_o], must result
in a predicate that specifies the final value of the parent of the object being assigned
in step two of an assignment expression, expressed in terms of both the initial and
final state of the first step of the assignment. This syntactic transformation may
not be defined within the Z notation.

We may define *:=’ based on the form of its left operand, as follows.

variable The simplest case is when the abstract object in the left hand side
of the ‘:=' operator is that of a variable, say v. Since w{v] contains no unprimed

variables, we have

wivlyy =D v, =D (166)

5 ABSTRACTIONS FOR A C SUBSET 103

array subscripting expression Another case we shall consider is when the
left operand of ‘:=' is the abstract object of an array subscripting expression. In

this case, we may define

wlE [Exl}i /g =D def wlEi]/ = wlE] /s o]

B {((e[E1] 5 v[E2])»/1, D)} (167)

The function application in (167) due to the B operator implies a definite descrip-
tion as its result. Therefore we may apply our definition for ‘:=" recursively to the
right side of definition (167). The partial systematic renaming [/ o] corresponds
to retrieval of the value of the parent of the object being assigned at the end of
the first step of the assignment. It is here because, all objects of the parent of the
object being assigned, except the object being assigned, must still be expressed in

terms of the final state of the first step of the assignment.

structure component selection expression Another case we shall con-
sider is when the the abstract object on the left hand side of the := operator is

that of a structure component selection expression. In this case, we may define

w[Ei.f]:==D dgfw[&][__u/ = (pn :r[E1] |

vi-h = (WlBi1] A/ /—d
A vi-fo = (W[E1).o) (/)]
AN--An f; =D

A= Avyfo = (WIEL]-) /g1 /—o)) (168)

We may then apply our definition for := recursively to the right hand side of
definition (168).

5 ABSTRACTIONS FOR A C SUBSET 104

abstract value The result of evaluating an assignment expression is the value
being assigned, that is, the result value of the right operand (E;). Therefore, the
abstract value of E;=E;,

v[E =E;] = ¢[E\] § v{E3] (rule 80)
V[E=E;] = V[E;] ; A'[E1=E;] (rule 81)

It is impossible to derive /[E;=E;] using A[E;=E;] because, by definition, ./[E;=E;]
may contain no knowledge of the initial state of the assignment expression. For

example, though the abstract effect of
i=(i?i:i++) (169)

is well defined, its abstract value, coincidentally being equal to that of (i7i:i++)

is not always defined despite normal execution.

Example 6 This example illustrates the application of (rule 79) and the syntactic

transformation ‘:=" on the following assignment expression:
alali]++] = a[i++] (170)

For brevity we only show the predicate parts of the schemas involved. Assuming

left to right order of evaluation, the effect of the first step of the assignment is
i'=i+1Ad =a8{(iafi] +1)} (171)

Consider step two of the assignment. The term w{E;](_»/_j := (¢[E2] 5 Y[E2])i_/y
in (rule 78) would be

wlalalil++]]_»/ := (e[alalil++]] § v[ali++]])v/y (172)

5 ABSTRACTIONS FOR A C SUBSET 105
which is

wlalalil++ 1] = (a” B {(i", a"[i") +1)})[i"] (173)

Let D be (" 8 {(¢", a"[z"] +1)})[i"] , which is equal to a”[i"] +1, Using (167)
(173) becomes

wla)i_v g =wla) /0
B {((efa] 5 vfali++1])i_n/g. a"[i"] +1)} (174)

Since v[al[i++]] = aff] , (173) would be equivalent to
wlalL /= a @ (@[], ") +1)} (175)
which, from (166), is equivalent to
@, = a B {(a"[t"] , a"["] +1)} (176)
Substitute (176) into (rule 78). The predicate part would be
o' =a 8 {(a"i"],d"[I") + 1)} AV =i (177)

According to (rule 79), we perform sequential composition between the two steps
(that is, (171) and (177)). This yields

o' = a B {(s,aff] +1)} B{(a"[i"] ,a"[i") +1)} AT =i +1 (178)

Finally, substituting double-primed variables with unprimed counterparts produces

the following:
a’ =a8{(i,a[d] +1)} B {(afi] ,afi] +1)} A’ =i+ 1 (179)

which would be the abstract effect of the assignment expression (170).

5 ABSTRACTIONS FOR A C SUBSET 106

5.12.2 Compound Assignment Expressions
The general form of a compound assignment expression E is
E; aop= E; (180)

where aop is an arithmetic operator (+, -, *, /, or %), E; and E, are expressions,

which, in our C subset, are assumed to be of type int.

abstract state The abstract state of a compound assignment expression is the

conjunction of the abstract states of its operands:

o[E] = o[Ei] A o[E2] (rule 82)

abstract effect The meaning of E is exactly the same as
E; = E; aop E; (181)

with the constraint that E; is evaluated only once {14, p.222]. Once again, this
may be thought of being performed in two steps:

1. Obtain both the result value of, and the object designated by, the left
operand, and obtain separately the result value of the right operand.

2. Apply aop to the result values obtained in step one, and assign the resulting

value to the object that we have obtained in step one.

The effect of the first step is exactly the same as that of simple assignment expres-

sion, with the additional constraint that the arithmetic operation must not result

5 ABSTRACTIONS FOR A C SUBSET 107

in overflow. Therefore, assuming a left to right order of evaluation, the abstract

effect of step one is
[Ac{E] | e[Ex] 5 e[E2] A v[E1] aop (]Eq] 5 v[E2]) € rlint]] (182)

where aop is the operator in Z that corresponds the the operator aop in C, as
stated in Table 4.

Let A'[E] be the operation schema that represents the abstract effect of step
two. As for the case of simple assignment expressions, we need an abstraction
for the object designated by E; and an abstraction for the result value of E,, both
expressed in terms of the final state of step one. In addition, we need an abstraction
for the result value of E,, expressed also in terms of the final state of step one, that
is [E1]} 5 ¢[E2]. Then, assuming a left to right order of evaluation, A’[E] may be
defined to be

ATE] = [80[E); ofEl, | (WIEiD 5 dE2l) #= (VIEd] 5 e[Eal) aop VIEaD) s/l
AT =7\ (<o) (rule 83)

where T and T’ respectively represent the initial and final values of the variables
of E other than the parent of the object being assigned in step two. Finally, the
abstract effect of E is sequential composition of the abstract effect of the two steps:

e[E] = [Ac[E] [€[E1] 5 e[E2] 5 A[E]
A v[E,] aop (e[Ei] 5 v[E3]) € 7[int]] (rule 84)

Using the alternative way to specify the abstract effect of step two (that is, specify
it partially in terms of the initial state of E), the abstract effect of E is

¢[E] = [Ac[E]; oE)" | (e[l 5 €[Eo] 5 A[E]) A O0[E] = 6o[E]”

5 ABSTRACTIONS FOR A C SUBSET 108

A v[E.] aop (¢[E1] 5 v[E2]) € [int]] \ (.7) (rule 85)
with A[E] defined as follows:

A[E] = [Ac[E]; o[E],; ofE]” |

(WiE1) /g = (V[E1] aop (e[Ea] 5 Y[Ea])) v/ p)i/—al
ANT =Z]\ () (rule 86)

where T and 7’ respectively represents the initial and final values of all variables

of E other than the parent of the object being assigned in step two.

abstract value The abstract value of E, expressed in terms of its initial state.

is,

V[E] = (kw1 : T[int] |
v = v[E:] aop (e[Ei] 5 v[E2])) (rule 87)

with the constraint that the arithmetic operation does not produce overflow, that
is, [E1] aop (¢[E:1] 5 ¥[E;]) € T[int], being implicit. Similarly, the abstract value
of E, expressed in terms of its final state, is,

VIE] = (por : rlint] |
v = (V[E4] 5 e[€2] 5 A'[E]) aop (V[E2] 5 A'[E])) (rule 88)

The composition V/[E;] 3 ¢[E>] ; A'[E] is needed because evaluation of E; precedes
both the evaluation of E; and step two (whose abstract effect is A’[E}). The
constraint v[E;] ; €[Ez] ¢ A'[E]) aop (V[E;] ; A’[E]) € [int] is implicit in (rule
88). Once again, it is impossible to derive v/[E] using A[E].

5 ABSTRACTIONS FOR A C SUBSET 109

5.13 Preincrement and Predecrement Expressions

The general form of a preincrement or predecrement expression E is
idop E; (183)

where the expression E, is of type int. The increment/decrement operator idop is

either ++ or --. E; must designate an object.

abstract state The abstract state of E is that of E;. Therefore,

o[E] = ofE:] (rule 89)

abstract effect The expression E is equivalent to E;+=1. Let T and 7’ represents
the initial and final values of all variables of E other than the parent of the object
designated by E respectively. Then the abstract effect of E, applying (rule 84), is

e[E] = [Ac[E] | (e[Er] 5 e[1] 5 A'[E]) A v[Ei] aop (e[Er] 5 v[1]) € T]int]]
= [Ac{E] | (e[E.r] ¢ A'[E]) A v[E1] aop 1 € r[int]] (rule 90)

with A'{E] defined accordingly as

A'[E] = [Ac[E]; o[E], | (W'[Eil 5 f1]) = (V[Ed] 5 €]1]) aop V[1]))/

AT =T
= [Ao[E]; of€), | (W'[E:] /= V[Ei] aop V1] r/a
AT =T (rule 91)

Alternatively, the abstract effect of E, using (rule 85), is

e[E] = [AsfE]; ofE}" |

5 ABSTRACTIONS FOR A C SUBSET 110

(e[E1] 5 €[1] s A[E]) A v[E1] cop (elEi] 5 v[1]) € w[int]] \ ()
= [AofE]; ofE]" |
(e[E1] 5 A[E]) A V[E1] aop 1 € T[int]] \ (/) (rule 92)

where A[E] is defined accordingly to be

A[E] = [A[E]; ofE],; ofE)" | (w[Bi_r/g := VIEa]i_»/y aop 1)/
AT =T (rule 93)

abstract value Applying (rule 87) we obtain

V[E] = (uv : Tlint] | tn = vE,] aop (¢[Ei] 5 v[1]))
= (puvr : lint] | 11 = v[E1] aop 1) (rule 94)

Applying (rule 88) we obtain

VIE] = (pu : rfint] | v = ((V[E] 5 €f1]) 5 A'[E]) aop (V[1] 5 A'[E]))
= (puvy : Tfint] | i = (V[E4] § A'[E]) aop 1) (rule 95)

5.14 Postincrement and Postdecrement Expressions
The general form of a preincrement or predecrement expression E is

where expression E; has type int. The increment/decrement operator idop is either

++ or —-.

5 ABSTRACTIONS FOR A C SUBSET 111

abstract state and effect The abstract states and abstract effects of E; idop
and idop E; are the same. Therefore, we have the following abstraction rules:
o[E] = ofEi] (rule 96)
eflE] = [A0[E] | ([Ei] 5 A'[E]) A V[E1] aop 1 € 7{int]] (rule 97)
e[E] = [Ac[E]; o[E}" |
(e[Ei] 5 A[E]) A v{E1] aop 1 € T{int]] \ () (rule 98)
with A’'[E] and A{E] defined respectively as

A'E] = [Ao[E]; o[E]. [(W[E:] 7= V[E1] aop 1)/ it/ 0

AT =T (rule 99)
A[E] = [Ac{E]; o[E].; ofE]" | (wlEi] [/ =V [Ell[—”/—l aop 1)(_+/_o]
AT =T (rule 100)

abstract value The result value of E is the result value of E;, with the constraint

that the arithmetic operation must not produce an overflow. Therefore,
V[E]} = (pv : T[int] | vy = v[E1] A V{[E:1] aop 1 € [int]) (rule 101)

Unlike (rule 94), the constraint for the arithmetic operation to be valid, that is
v[Ei] aop 1 € T[int], must be explicitly stated in (rule 101), because this is not
implied by v; = v[E;]. Similarly, the abstract value of E, expressed in terms its

final state, is,

VIE] = (pw : 7[int] | vy = (V[E] 5 A[E])
A (V[E1] § A'[E]) aop 1 € T[int]) (rule 102)

5 ABSTRACTIONS FOR A C SUBSET 112

5.15 Sequential Control Structures

We have dealt with techniques for finding abstractions of definitions and expres-
sions. We now proceed to find abstractions of control structures. For the purpose

of this thesis, control structures are classified into

statements statements include expression statements, if-statements, if-then-else

statements, and blocks.

sequences of statements sequential execution of statements is expressed in C

by a sequence of statements.

function definitions A function definition has the form T f() B, where f is the
name of the function, T is the return type of the function, and B is a block
which is the body of the function. For our C subset, T is always void, that

is, functions do not return any value.

program A program consists of a sequence of variable and function definitions.
One of the definitions must be a function named main. A C program is

executed by invoking the main function.

The only abstractions defined for sequential control structures are abstract

effect and abstract state. Other abstractions are left undefined.

5.15.1 Expression Statement

An expression may be made into a statement by appending to it the statement
terminator, semicolon (;). For example, i++ is an expression, while i++; is an
ezpression statement. The expression is evaluated but the value is discarded; only

its effect remains. Therefore, for an expression statement E;, its abstract effect is

5 ABSTRACTIONS FOR A C SUBSET 113

the same as that of the expression E, that is,
efE;] = [Ac[E;] |]E]] (rule 103)
Since E; operates on exactly the set of variables as E, its abstract state is

ofE; | = ofE] (rule 104)

5.15.2 Function Invocation

Our C subset assumes that a function invocation must occur on its own as an

expression statement, that is:
fO; (185)

where f is the name of the function invoked. If f is non-recursive, that is, its body
may only call non-recursive functions, we may substitute the body of f in place of

f(Q) ;. Therefore, the abstract state and abstract effect of f() ; are respectively
aff ;] = ofbody of f] (rule 105)
and
e[fO ;] = [Aa[fO ;] | elbody of f]] (rule 106)

Since the body of a function is a block, its abstractions may be calculated using

(rule 108) and (rule 107).

5.15.3 Block

Any statement in C is written within a block, delimited by braces ({}). A block

consists of a sequence of variable definitions followed by a sequence of statements:

5 ABSTRACTIONS FOR A C SUBSET 114

Consider a block that has form
{DS} (186)

where D, a sequence of variable definitions, consists of local definitions Djocy and
static definitions Deparic. S is a sequence of statements. We may define the effect
of the block as the effect of executing S appended to the effect of initializations
performed by D, with static variables definitions skipped and local variables hidden.
Therefore the abstract effect of the block is

€[DS] = [Ao[DS] | (e[Droca] 5 €[ST) \ (Vtocat, Viacat)] (rule 107)

where Vit and vj,, represents the initial and final states values of the local
variables of the block in its execution. The operator (\) is the hiding operator in
Z.

The abstract state of the block is

o[DS] = oS] \ (Viscats Vipeqs) (rule 108)

Hiding of local variables from the abstractions of a block is necessary because,
Since the values of the local variables defined in a block are not retained when
control exits from the block, these variables should not be considered as part of
the states of enclosing constructs.

Static variable definitions are skipped (note the absence of Dgyatic in (rule 107))
because we want to separate the effect of executing the block that applies every
time the block is entered, from the initialization of static variables, which only
occurs once before the very first entry into the block.

The effect of initializing static variables is included as the effect of function

definitions, discussed below.

5 ABSTRACTIONS FOR A C SUBSET 115

5.15.4 Function Definition

In general, the abstract effect of a function definition (as opposed to the function
body, which is a block) may be defined as the sequential composition of the abstract
effect of all the static variable definitions throughout the body of the function.
Consider a function f defined to be

voidf(){Dy---{Da---{---{Da---}---}---}---} (187)

where Dy, D3, ..., D, are sequences of declarations. Let D; consists of local variable
definitions Dy, and static variables definitions D, , D2 consists of D, and

D2,..., and so on. The abstract effect of the function definition is then

effl = [Ao[f] | elD1ouc] 5 €[Dail 5 -+ - 5 €D]l (rule 109)

The variables of the function definition are the static variables defined therein.
Therefore its abstract state is

off] = oD} A o[D2i] A -+ A 0D,] (rule 110)

Comparing these abstractions against those of a variable definition, we may view a
function definition as a global variable of a structure type, with components being
the static variables defined anywhere within the function body. Then the (default
or explicit) initializers for these static variables may be viewed as the initializers

for the components of the global variable.

5.15.5 Sequence of Statements

Sequential execution of statements is represented in C simply by writing these

statements in sequence. Let S be the following sequence of n statements

$1:52;S3:++;5n; (188)

5 ABSTRACTIONS FOR A C SUBSET 116

Its abstract effect is therefore the sequential composition of the abstract effect of

the statements, i.e.,

e[S] = [A0[S] | €fSu] 5 €S2l 5 -+ - 5 efSul] (cule 111)

Similarly, the abstract state of S would be the conjunction of the abstract states

of all the statements in the sequence:

o[S] = o[S1] A ofS2] A -+ - A o[Su] (rule 112)

5.15.6 Program

A program consists of a sequence of variable definitions and function definitions.
The abstract effect of a program P is an abstraction of initializations followed
by invocation of the main function. Therefore the abstract effect of P is sequen-
tial composition of all the global declarations and the effect of invoking the main

function:
€[P] = [Ao{P] | [Dgioar] 5 efmain();] (rule 113)

If main is non-recursive (which is the case for our C subset) we may substitute the

body of main into main() ;. In other words,
€[P] = [Ac{P] | e[Dgioba] 5 e[body of main] (rule 114)
Since the body of main is a block, we may use (rule 108) and (rule 107) to calculate
e[body of main]. Similarly, the abstract state of the program, when the main
function is non-recursive, is
o[P] = o[Dgiobai] A afbody of main] (rule 115)

that is, the conjunction of the abstract states for all the variables that the program

may operate on.

5 ABSTRACTIONS FOR A C SUBSET 117

5.15.7 If-Statements

Conditional statements in C may be represented either by an if-statement or an

if-then-else statement. For an if-statement S of form
if (E) S; (189)

where E is any expression of integer type, S; is any statement, the abstract state
of S is the aggregation of the abstract state of the condition ezpression (E) and
the body (Si):

ofS] = ofE] A oS4] (rule 116)

In executing S, E is first evaluated. S; is then executed only if the result value

is non-zero (true). Therefore the abstract effect of S,

e[S] = [Ac[S] | €[E] 5 €[S1] A v[E] # (]
V [AcfS] | [E} A V[E] =0 AT =7 (rule 117)

where T represent those variables of the if-statement that occur only in S;. The
first disjunction in (117) corresponds to the case when the condition expression is
evaluated to true (non-zero) and therefore the body also gets executed. In this case
the effect is the composition of the effect of the condition expression and the body.
The second disjunct corresponds to the case in which the condition expression
evaluates to false. In this case the body is not executed and therefore the abstract
effect is just the abstract effect of the condition expression and the assertion that

those variables that appear only in the body may not be changed.
5.15.8 If-then-else Statements
For an if-then-else statement S of form

if (E) S5, else S; (190)

5 ABSTRACTIONS FOR A C SUBSET 118

where the condition expression (E) is any expression of integer type, both the then-
part (S1) and the else-part (S;) may be any statements. The abstract state of S in
this case is the conjunction of the abstract states of the condition expression, and

that of then-part and that of else-part:
afS] = o[E] A ofSi] A o[S2] (rule 118)

In executing S, E is first executed. If the result is non-zero (true) then the
then-part (S1) would be executed. Otherwise the else-part (S;) would be executed.
Therefore the abstract effect of S,

€[S] = [Aa[S] | (e][E] 5 e[S1]) A V[E1] #O A Z =3Z]
V [Ac[S] | (e[E] 5 €[S2]) A V[EL] =0 A T =7 (rule 119)

where T represent those variables of the if-then-else statement that occur only in S,
Z represent those variables that appear only in S;. The first disjunct corresponds to
the case when the condition is satisfied and then-part of the if-then-else statement
is executed. The abstract effect in this case is the sequential composition of the
abstract effect of the condition expression and the then-part, and the constraint
that the values of the those variables that appear only in S, remains constant. The
second disjunct corresponds to the case when the condition is not satisfied and the
else-part of the if-then-else statement is executed. The abstract effect in this case
is the sequential composition of the abstract effect of the condition expression and
the else-part, in conjunction the constraint that those variables that occur only in
S; may not be altered. Note that the (rule 119) is exactly the same as that for

conditional expressions (see (rule 60)).

5 ABSTRACTIONS FOR A C SUBSET 119

5.16 Iterative Statements

There are three kinds of iterative statements in C[14, p.241]: while-statement,
do-while statement, and for-statement. We shall first derive abstractions for a

while-statement, then use the results to derive the abstractions for the other two.
5.16.1 While-Statement
Let us counsider a simplified while-statement W of form

while (E) B (191)

where E, an expression of type int, is the condition erpression of the while-
statement; B, a statement, is the loop body of the while-statement. For the simpli-

fied while-statement the condition expression has null effect.

abstract state The abstract state of W is the conjunction of those of B and E.

Therefore,

afW] = o[E]} A o[B] (rule 120)

abstract effect Let ¥ represents the variables of W, and T represents those

variables that occur in E but not in B. We may write the abstract effect of W as
IW] = [Zo{W] | v{E] =0
V [Ac[W] | V[E] #0 A (37" 0 T" =T A €[B][."/]

A W]L"/-])] (rule 121)

where 7 and 7’ respectively represents the initial and final state (if the loop ter-

minates normally) of the while-statement. The first disjunct represents the case

5 ABSTRACTIONS FOR A C SUBSET 120

in which the condition expression is evaluated to false and therefore the loop is
not entered and no change is allowed on the state. The second disjunct repre-
sents the complementary case, that is, the condition expression is satisfied. In this
case, the effect must be the same as executing the loop body once, then uses the
intermediate state, represented by 7”, as the initial state to execute W.

The difference between (rule 121) and all previous rules is the recurrence of the
abstraction being defined (that is, e{W]) on the right hand side of its definition.

(rule 121) may be written equivalently as

efW] = [Zo[W] | [E] =0
v [Ac[W] | v[E] # 0 A €[B] 5 [W]I (rule 122)

proving a proposed predicate part for ¢fW] Since Z does not allow recursive
schema declarations, (rule 122), as it is, may not be used to specify the effect of
the while-statement. However, for a sufficiently short or clearly written while-
statement, a domain expert may be able to propose the predicate part of e{W]
and verify it against (rule 122) by checking whether the following predicate is a
tautology:

e[W] & V[E] =0 A 80[W] = o[W]'
v v[E] # 0 A €[B] ; e[W] (192)
when the proposed predicate part of e[W] is substituted.
Mili[22] discussed several approaches to verifying an iterative statement by

induction. The approach closest to (rule 122) is subgoal induction theorem|22,

p.165], which may be paraphrased in our notations as

(W] = [Ac[W] | v[E] =0 = W],

5 ABSTRACTIONS FOR A C SUBSET 121

A V[E] # 0 A €[B] 5 W] = €[W]] (rule 123)

(rule 122) and (rule 123) are logically different because (rule 123) is satisfied when-
ever E does not executes normally, due to the implications in the rule, which is

not the case for (rule 122).

recursive characterization of o{W] Recall that (rule 122) is not a valid decla-
ration in Z. To work around the problem one may rewrite (rule 122) in form of an
axiomatic definition that define the relation between initial and final states under
normal execution of the while-statement.

I T :ojW] <= o[W]

V7; 7 o [(00[W], 00[W]') & (V[E] = 0 A 80[W] = o [W])
V (V[E] # 0 A (37" 0 T% =T A e[B][-"/_'] A T(6c{W]", 6o {W]')

Note that in the above axiomatic description, I' is defined recursively.

We may then use I to specify the abstract effect of W to be
W] = [AcW] | T(0eW], 6o TW]')] (rule 124)

This approach is direct but it neither asserts whether I exists, nor any possibility

of obtaining a non-recursive definition for I.

fixed point characterization of ¢fW] Another approach to characterize the
effect of a (simplified) while loop is as a fixed point of a function [13, p.120][41,
p.61]. Comparing to the use of an recursive axiomatic definition in (rule 124), this
approach trades a recursive definition for a union of infinite number of sets. We

shall examine a construction of c{W] using the techniques given in ([41]).

fixed point theorem [41, p.53] We say that z € dom f is a fized point of a
function f if f(z) = z. Let R be a function between sets that takes the following

5 ABSTRACTIONS FOR A C SUBSET 122

form in Z:

—[Y]
R:PY PY

VB:PYeR(B)={y:Y|(3X:PY|X C BeP(X,y)}

where P(X,y) is a predicate. The essence of the result is that, if for each of every
elements of R(B), there exists a finite set X such that P(X,y) is true, that is, the
presence of a corresponding finite subset in B is sufficient to establish the presence

of any element in R(B), then R has least fired point, defined to be

fix R ==U{n :N| R*(D)} (193)

Let specification variables 7 represent the program variables of the simplified
while-statement, and specification variables 7 represent those program variables
that occur in the condition expression but not in the loop body. Let us define the

function W as follow:
W : (a[W] <> o[W]}) + (o[W] « o[W])

VB :oW] < o[W] e
W(B) = {77 | V[E] =0 A 80[W] = 0o[W}’
VET'|(OW",0W)e BANeBI /AT =7)
AV[EL #0e (0W,0W")}

Then, according to [41, p.59], the least fixed point of W, that is, fix W, represents
the relationship between initial and final state of the simplified while-statement
under normal execution. Therefore, we may represent the abstract state of W as

an operation schema using W:

efW] = [Ac[W] | (fix W)(6W, OW")] (rule 125)

5 ABSTRACTIONS FOR A C SUBSET 123

Consider a general while statement with condition expression E and loop body

vhile (E) B (194)

For our C subset the condition expression E is assumed to be of type int, but may

have arbitrary effect. This may be rewritten conceptually as
while (E,) { Ec B } E (195)

where E, is an expression that has no effect but has the same result value as that
of E. E. is another expression that has the same effect as E. E,, E. and E have the

following relationships:

[E = e[E] (196)
WE.] = V[E,] = v{E] (197)

Asserting v[E,] and /[E.] to be equal to v[E] rather than //[E] is justified as
follows: We have conceptually divided the expression E into two expressions, E,
and E. that must execute sequentially, with E, always precedes E.. This means
that the initial values of the variables as seen by E, must always be the same as
those seen by E. Therefore /[E,] = v[E]. In addition, since E, has no effect,
v[E.] = V[E,]. Therefore //[E.] = V[E] as well. Since the condition expression
of the rewritten while loop has null effect, we may use the results from simplified
while-statement to perform the abstractions. We need not have explicit forms for
E. or E, in order to derive abstractions. Specifically, we may use (rule 125) to

obtain the following with efW] replaced by
e[W] = [Ac[W] | (fix W)(60[W], a]W]')] 5 €[E] (rule 126)

and W correspondingly declared as the following:

5 ABSTRACTIONS FOR A C SUBSET 124

W : (ofW] < ofW]) - (o[W] > o[W])

VB :o[W] <> o[W] e
W(B) = {77 | V[E] =0 A 00[W] = oW}’
V(37| (OW",0W’) € B AN (¢[B] 5 e[E])[-"/-])
AV[E] #0e (6W,0W")}

Unlike the previous definition for W for a simplified while-statement, "% =
7 no longer occur in the above axiomatic definition. This is because, in the

above axiomatic definition, T” = T has been implied by the composition (e[E] 3
e[8D /-1

5.16.2 Do-While Statement

The general form for a do-while statement W is

do B while (E); (198)

where B is a statement that is the body of the loop. E is the condition expression

of type int.

abstract state The abstract state of a do-while statement is the aggregation of

the abstract states of the condition expression and the loop body. Therefore,

o[W] = o[B] ; o[E] (rule 127)

abstract effect W may be transformed conceptually into the following sequence

of statements that contains a while-statement:

B while (E.) { Ec B } E. (199)

5 ABSTRACTIONS FOR A C SUBSET 125

This looks almost exactly the same as a while-statement except for additional
instance of B at the very beginning. Therefore, if we choose to use a fixed point
characterization of e[W}, we may use the same declaration for W as for a general

while-statement, with e[W] defined to be

e[W] = €[B] 5 [Ac[W] | (fix W)(6o[W], 0o{W]')] 5 €[E] (rule 128)

5.16.3 For-Statement
The general form for a for-statement W is
for (E ; E; ; E3) B (200)

where B is a statement that is the body of the loop. E; is executed first. Then
the condition expression E;, that is of type int, is evaluated. If it is non-zero,
B is executed, followed by the execution of E;. The process is repeated until E,

evaluates to false.

abstract state The abstract state of a for-statement is the aggregation of the

abstract states of E;, E;, E3, and the loop body. Therefore,

o[W] = o[E1] A o[E2] A o[E3] A o[B] (rule 129)

abstract effect W may be transformed conceptually into the following sequence

of statements containing a while-statement:

Ey; while (Ezu) { E2<; B E3; } Ezel (201)

5 ABSTRACTIONS FOR A C SUBSET 126

where

e[E2] = ¢[EJ] (202)
v[E;,] = v[E;] (203)

and E;, has null effect. We may use (rule 126) to characterize e[W] by a fixed
point of a function. Then the abstract effect would be

e[W] = €[E,] 5 [Ac]W] | (fix R)(0[W]. 60{W]')] 5 €[E2] (rule 130)

with W declared to be
W : (c[W] — o[W]) + (ofW] — ofW])

VB :o[W] s o[W]e
W(B)={v7 |Z =z A (V[E2] =0 A 00[W] = [W]'
v (37| (OW",8W') € B AA (e[E:] 5 €]B] 5 [Es])[-"/-])
AV[E)] #0)e W6 W)}

where Z represents those variables of W that occur only in E;.

5.17 Break and Continue Statements

Ward[39] used a variable to hold the depth of iteration at all times in order to
analyze programs that may break from iterations of arbitrary depth.

Since both break and continue statements concern only with the innermost
enclosing iterative statement, we only need to define two local variables for every
iterative statement. Here is how the three kinds of iterative statements may be

rewritten to include these variables:

while-statement A while-statement of form

vhile (E) B (204)

5 ABSTRACTIONS FOR A C SUBSET 127

may be transformed into the following block:

{ int (3=0;
while ((B==0) && E) {
int k=0;

guard(B)

} (205)

The flag 3 tells the while-statement whether a break statement has been executed.
The flag & tells the while-statement whether a continue statement has been ex-
ecuted. At most one of them may be set at any time. guard(B) is a syntactic

transformation of B such that the flags are tested and set properly.

do-while statement Similarly, a do-while statement of form
do B while (E) (206)

may be transformed into the following block:

{ int §=0;
do {
int k=0;
guard(B)
} while ((8==0) && E)
} (207)

for-statement A for-statement of form

for (E; ; E; ; E3) B (208)

5 ABSTRACTIONS FOR A C SUBSET 128

may be transformed into the following block:

{ int (=0;
for (E; ; (B==0) && E, ; (B==0) &k E3) {
int x=0;

guard(B)

} (209)

characterizing guard We need not attempt to specify guard completely. In-
stead, depending on the kind of construct B, we shall derive the abstract state and

effect for guard(B).

break statement Unless the continue flag has been set, the break flag should
be set at this point. This would prevent further effect until the end of the loop
body. Therefore,

o[guard(break;)] = (8, : T[int]] (rule 131)

e[guard(break;)] = [Acfguard(break;)] | (« =0A 3 =1)
Vik=1ApB =p6)] (rule 132)

continue statement Unless the break flag has been set, the continue flag should

be set at this point. This would prevent further effect until the end of the loop

5 ABSTRACTIONS FOR A C SUBSET 129

body.

o[guard(continue;)] = 8, & : T[int]] (rule 133)

e[guard(continue;)] = [Ac[guard(continue;)] | (B =0A K =1)
V(B=1AK =k&) (rule 134)

sequence of statements For every statement in a sequence of statements, we

need to check whether a break or continue has been executed. Therefore,

o[guard(51S2 - - - Sn)l = olguard(S:)] A ofguard(S)] A ---
A olguard(S,)] (rule 135)

e[guard($:Sz - - - Sn)] = e[guard(5,)] 5 e[guard(S)] 5 ---
5 elguard(S,)] (rule 136)

where S;, Sa, S, are statements in the sequence of statements.

block Let B be a block of form
{ Diocat UDgtric S } (210)

If neither flags have been set, all local variables of the block must be initialized, and
control passed to the first statement in the block. In this case, for every statement
in the block we need to check whether a break or continue has been executed.

Therefore, in the first disjunct in (rule 5.17) we apply guard recursively to these

5 ABSTRACTIONS FOR A C SUBSET 130

statements. The second disjunct in (rule 5.17) specifies that if either flags have
been set before the block is entered, the effect must be null. Therefore,

olguard(B)] = oB] A [G, £ : T[int]] (rule 137)

efguard(B)l = [Ac[B} |k =0AB=0AK =0A 3 =0A 85[B] =00[B]] 3
(el Dtocar] 5 el guard(S)]) \ (Diat, Dloeas))
V [Sofguard(B] |k =1V B8 =1]) (rule 138)

expression statement The effect of an expression statement is asserted only

when none of the flags have been set. Therefore,

lguard(E;)] = [o[E]; 5.5, &, &' : T[int]] (rule 139)

efguard(E;)] = [Aofquard(E;)] | B=8 A=FK
AB=0Ak=0A0c[E}) = 6c]E]] ; [E]
V [Eofguard(E)] | B=1V&=1] (rule 140)

if-statement Let B be an if-statement of the following form:

if (E) S (211)

The effect of an if-statement is asserted only if no flags have been set. In addition,
guard must be applied to the body of the if-statement. Therefore,

olguard(B)] = [0[B]; 8,0'. k. & : T[int}]] (rule 141)

5 ABSTRACTIONS FOR A C SUBSET 131

efguard(B)] = [AofguardB)] | 8= A=K AB=0AK=0
A 09[B)’ = 60[B]] 5 [e[guard(S)] | /[E] # 0]
V [EofguardB)] [B =1V =1] (rule 142)

if-then-else statement Let B be an if-then-else statement of the following form:
if (E) Sy else S, (212)

The effect of an if-then-else statement is asserted only if no flags have been set.
In addition, guard must be applied to both the then-part and the else-part of the

if-then-else statement. Therefore,

olguard(B)] = [¢[B]; 8,8, k, &' : T{int]] (rule 143)

e[guard(B)] = [Ac[guard(B)] | =0 A=K AB=0AKk=0
A 0o[B]' = 60[B]] 5 ([[guard(S1)] | ~[E] # O]
V [e[guard(S2)] | v[E] = 0])
V [Eo{guard(B)] | B =1V k =1] (rule 144)

iterative statement For an iterative statement B, we only need to make sure
that it does not execute when one or both flags have been set. We do not need to
apply guard to the loop body because the break and continue statements within

the loop body do not apply to the enclosing iterative statement.

ofguard(B)] = [¢[B]; 8,8, k, &’ : T[int]] (rule 145)

6 DERIVING A SPECIFICATION FROM CODE 132

e[guard(B)] = [Ao{guard(B)] | 8 =0 A & =0 A €[S] A 8o[B} = 0o[B]] 5 €[5]
V [Eofguard(B)] [B=1Vk=1] (rule 146)

6 Deriving a Specification from Code

This section describes how the five abstractions described in Section 5 may be

used for to derive a specification from code.

6.1 Significant Points of Execution

Every abstract operation defined on an abstract model in a model-based specifica-
tion must respect the abstract state invariant. This means that the abstract state
invariant asserted on the abstract model must be true before and after each oper-
ation. However, as these operations are broken down into programming language
constructs during implementation, it is unnecessary to assert that each atomic
operation (a non-divisible operation as defined by a particular programming lan-
guage) in the program respects the abstract state invariant. This is because an
abstract operation in the specification might have been implemented by several
atomic operations in the program, none of them required to satisfy the abstract
state invariant individually. In fact, the only times when a particular variable is
required to satisfy the abstract state invariant are at points immediately preceding
an atomic operation or a sequence of atomic operations that exhibits an externally
observable behavior that depend on the value of that variable being ‘consistent’
(according to the application domain). For our purposes, we define a significant

point of ezecution to be a point in the program at which some set of objects satisfy

6 DERIVING A SPECIFICATION FROM CODE 133

the abstract state invariant. This means that the code that implements an abstract
operation in the specification must reside between significant points of execution.
Generally speaking, a significant point of execution may be characterized by
two attributes: a point in the program, and an associated set of tuples of, each has
the form (predicate, object). For each tuple, predicate, a predicate in terms of the
values of some set of the objects whose parents are active (according to scope rules)
at that point, is satisfied when control reaches that point during execution, the
value of object, which designate an object whose parent is also active at that point,
must satisfy the abstract state invariant. We shall make the following assumptions

for simplification:

e A significant point of execution may only occur either between two state-
ments, right before the first statement in a block, or right after the last

statement in a block.

e For any tuple (predicate, object) associated with any significant point of ex-

ecution, object must be a variable, and predicate must be true.

The first assumption implies that any abstract operation must have been imple-
mented either as a statement or as a sequence of statements. The second assump-
tion implies that, at any significant point of execution, a fixed set of variables

satisfy the abstract state invariant.

6.2 Representing Abstract Models and Operations

representing abstract model An abstract model of a program may be rep-

resented by a single state schema, or organized as a set of state schemas (each

6 DERIVING A SPECIFICATION FROM CODE 134

represents a sub-model) non-recursively related by schema inclusion. If the pro-
gram implements multiple independent sets of abstract operations, there may be
separate schemas or sets of schemas for the models corresponding to each sets of
operations. Here is an example of an abstract model ¥ organized hierarchically,

consisting of two sub-models

¥, = [a, b : fint] | invi(a, b)] (213)
2, = [e : T{int] | inw(c)] (214)
L =2[X%); %, | inn(a, b, ¢)] (215)

The predicate inv;(a,b), inwe(c) and inv(a, b, c) each represents a part of the
abstract state invariant (denoted by Inv). The abstract state invariant of an

abstract model is the conjunction of them, that is,
Inv = inv; (a, b) A inn(c) A inn(a, b, c) (216)

Since each schema is interpreted as a part or the whole of the same model, the
abstract state invariant is applicable to all the sub-models as well as the abstract
model. Therefore, any operation defined on any of the sub-model would be subject
to the same state invariant Inv. In general, the ‘effective’ state invariant for a sub-

model ¥; is given by
iny; = (37; e Inv) (217)

where ¥; are the components of the abstract model that are not declared in sub-
model 3;. This state invariant must be used later when we attempt to prove that a
set of abstract operations, defined on the abstract model, are indeed implemented
by the program. On the other hand, the state invariants in the sub-models may

be useful for the purpose of reuse, in which those abstract operations that are

6 DERIVING A SPECIFICATION FROM CODE 135

candidates for reuse may be considered quite separately from other operations

implemented by the program.

representing abstract operations Consider an abstract model of a program
that consists of n sub-models £;, ¥,, ..., and X,,. Let £; be an abstract operation,
which operates on some sub-models of the abstract model, say ¥;,, ¥4, ..., ¥;.,
where 1 < 4 < n for each 1 < j < m. Let the construct S; (which must either be
a statement or a sequence of statements) in the program be the implementation of

;. The abstract operation may be specified with the following operation schema:
Qi = [Azil; AZ,-Q; sty AZ,n I E[Si] \ (Ei, ?i:)] (218)

where @; and @; represents the initial and final values of the auziliary variables
that occur in S;. We shall define auziliary variables of a construct C to be the sub-
set of the variables of C that occur only for programming convenience, and do not
correspond to any variables in the abstract model. Auxiliary variables are not in-
cluded in the abstract model. We shall define the opposite of auxiliary variables to
be essential variables'!, which correspond to some variables in the abstract model.
The relationship between significant points of execution and essential variables is
that, at both significant points of execution that encloses S, the essential variables
of S must satisfy the state invariant. We emphasize at this point that the classifi-
cation of program variables as either essential or auxiliary is arbitrary in the sense
that the classification may not be inferred from the program alone. The hiding of
auxiliary variables in (218) implies the following assumption on the relationship

between S and the rest of the program:

e Auxiliary variables, which are useful only for intermediate computation in

an implementation, have not been included in the abstract model (@ and @

'lor main variables plus associated flags and counters, etc.[15]

6 DERIVING A SPECIFICATION FROM CODE 136

are supposed not to be components of €2;).

e Initial values of auxiliary variables in executing an implementation of an

abstract operation should be immaterial to the result of the operation.

e Final values of auxiliary variables in performing an abstract operation must
have no consequence on the behavior of the program for the rest of its exe-

cution.

These assumptions imply that auxiliary variable may not carry any persistent data
(with respect to the abstract operations), that may be shared among abstract
operations.

These assumptions carry with them certain limitations on the kinds of abstract
operations that may be formalized. For example, it is impossible to use (218) to
formalize a set of fine-grained (in the sense that they perform subtasks of other
abstract operations) abstract operations that need to communicate through aux-
iliary variables. In effect, we choose to omit those operations that perform part
of an abstract operations because they concern with how the abstract operations
are implemented. Such omission is essential in extracting the essence of a program

from its implementation details.

6.3 A Procedure for Deriving a Specification from Code

We have examined the formalism that we may use to represent a specification
derived from a program. Now, we need a procedure that enables us to use that
formalism to derive specifications from particular programs. Given a program, the
procedure calls for the following tasks which may be performed in the following

order:

6 DERIVING A SPECIFICATION FROM CODE 137
e classify the variables defined throughout the program as either essential or
auxiliary.

e form the preliminary abstract model, consisting of one sub-model for each
essential variable, all included by a single sub-model.

e identify significant points of execution, where essential variables are deemed

to satisfy the abstract state invariant.

o identify abstract operations and specify them on the preliminary abstract
model.

e organize the abstract model, and edit the signatures of the abstract opera-

tions so that they operate on parts of the organized abstract model.
e assert the abstract state invariant.

e write the specification, include documentation of the procedure performed.

6.4 Proof Obligations for Derivation of Specification from
a Program

In deriving from a program a specification in the form described above, there are

a number of pieces of information in the specification about the program that is

absent in the program itself:

o The distinction between essential and auxiliary variables. They differ in two

important ways:

— Essential variables must be properly initialized (refer to ‘Abstract Initial

State’ to see how this may be captured).

6 DERIVING A SPECIFICATION FROM CODE 138

— Each essential variable must satisfy the abstract state invariant at re-

spective significant points of execution.

e By asserting certain constructs in the program as implementing abstract
operations, process boundaries(20] are artificially imposed on to the program,
due to the assumptions made about the relationship between the construct

that implement the abstract operation and the rest of the program.

e When a non-trivial abstract state invariant (that is. a predicate other than
true) is asserted on the abstract model, further restriction is imposed on the
validity of the program relative to the specification. Specifically, termination
of the program may no longer guarantee its logical validity (with respect
to its specification) because the program may fail to establish the required

invariants at significant points of execution.

On the other hand, the following information, that is available from the program,

are absent in the specification:

e the context in which the an abstract operation is actually invoked (only the

precondition remains).

e the order of invocation of the abstract operations.

Proper comparison between a program and a specification derived from it requires
us to establish a refinement relation between them. The general criteria for es-
tablishing refinement relation is that the program may not exhibit any behavior
contradictory to its specification. For our purposes, we may use a similar conditions
as stated by Wordsworth in [42, p.169]:

safety condition:

pre e[P{Q:/e[$1]][Q2/e[S2]] - - - [2n/e[Sall] = pre€[P] (219)

6 DERIVING A SPECIFICATION FROM CODE 139
liveness condition:

pre [P /e[S1]1[Q:/e[S2]] - - - [2a/€[Sal]] A €[P]
= €[P[2:/e[S1]][Q2/efS2]] - - - [/€[Snl]] (220)

The notation [Q;/e[Si]] means syntactic substitution of ; for €[Si}. Qi, Qo,
{2, are abstract operations identified in program P that are not enclosed by any
other abstract operations. Abstract operations that are enclosed by other abstract
operations would appear in the declaration of their enclosing abstract operations.
It is imperative that (219) and (220) may be used only when, for any pairs of

abstract operations, the constructs that implement them are not interleaving.

6.4.1 Sufficient Proof Obligations

The proof obligations presented in (219) and (220) involves evaluating the abstract
effect of the entire program. In certain cases we may use a stronger proof obligation

so that we may restrict our effort to smaller constructs.

rendering an implicit state invariant explicit When we classify all variables
of a program to be essential, and only assert the abstract state invariant, we may
omit application of conditions (219) and (220) if the following is true for every

abstract operation (2;:
efSi] A iny; = inv] (221)

where S; is the code that implements Q;, inv; is state invariant applicable to €;
according to equation (217). (221) asserts that whenever precondition of operation
is satisfied, the asserted state invariant is automatically satisfied. In effect, an

implicit state invariant is rendered explicit.

6 DERIVING A SPECIFICATION FROM CODE 140

reinitialization of auxiliary variables If the code for every abstract operation
initializes all the auxiliary variables that it uses, the second and third assumptions
made about the relationship between the code that implements an abstract op-
eration and the program (p.135) would always be true. Therefore, in such cases,

(221) is applicable even if not all variables are classified as essential.

6.5 Abstract Initial State

We may identify the first significant point of execution, with respect to control
flow, that all '2 essential variables simultaneously satisfy the abstract state invari-
ant as the point of initialization. For a program that has the point of initialization,
we may develop an abstract initial state based on the effect of execution between
the beginning (or entry point) of the program (including initializations of static
variables) and the point of initialization. Unfortunately, the execution path be-
tween the entry point and the point of initialization, in general, is not a construct
according to our classification. For example, the point of initialization may reside
within an if-then-else statement, as shown in the following program: (This example
also illustrates a case in which the ‘point’ of initialization is distributed between

two points):

void main () {

Diocal /* local declarations */
S: /* some initializations */
if (E) {

S2 /* additional initializations depending
on the input */

/* « initialization done at this point */

12, general program does not need to have any significant points of execution where all essential
variables satisfy the abstract state invariant

6 DERIVING A SPECIFICATION FROM CODE 141

S3 /* rest of the processing */
} else {
Ss /* additional initializations depending

on the input */
/* — initialization done at this point */
Ss /* rest of the processing */
}

Se /* rest of the processing */

(222)

To handle this, we may derive an abstraction rule particularly for the problem at
hand:

2 2 [ofE] A oS2] A o[Ss]) | inu(T)]
Qinie = [27 | e[S1] 5 [(0[E] A ofSo] A oSa]) | VIE] # 0 A €]E] 5 €]S2]
V V[E] =0 A €[E] 5 €fSs]] \ (2')] (rule 147)

In (rule 6.5) 7 represents the essential variables that are of E, S,, or Ss, and
a represents the auxiliary variables. Note that we do not need to hide @, initial
values of the auxiliary variables, because they are not declared in the above schema
at all. Similarly, in the first disjunct in the predicate part, we do not need to specify
that those variables of S, that are not of E or S; must remain constants, nor do
we need to specify in the second disjunct that those variables of S; that are not of

E or S;4 must remain constants.

7 OBTAINING HIGHER LEVEL ABSTRACTIONS 142

7 Obtaining Higher Level Abstractions

The specification obtained from using the steps outlined in Section 6.3 is restricted
in the sense that the representation of the model is dictated by data structures em-
ployed by the program. To make the specification more understandable, sometimes
a different representation is desirable. An approach to obtain a different represen-
tation for the model is data refinement{33, 8, 42|. Data refinement specifies the
relationship between two specifications which may have different representations
for their models. In particular, a set of conditions may be used to prove whether
one specification is a correct implementation (or refinement) of another(33, p.136].
In this section, we shall compare three such different sets of conditions to identify

their significance in deriving higher level abstractions in reverse engineering.

7.1 Operation Refinement

Operation refinement[33, p.135-6] is a limited form of data refinement in which the

models of the specification and its refinement must be the same.
7.1.1 Per-Operation Criteria

For a concrete operation Cop to be a refinement of an abstract operation Aop, two
conditions must be satisfied:

safety condition:
pre Aop = pre Cop (223)
liveness condition:

pre Aop A Cop = Aop (224)

One way to prove that one specification is a refinement of another is to prove that

every abstract operation in the abstract specification and its corresponding con-

7 OBTAINING HIGHER LEVEL ABSTRACTIONS 143

crete operation in the concrete specification satisfy (223) and (224). This criteria
is useful in development, in which a specification is divided into components, im-
plemented by several teams. Every team must ensure that it produces a correct

implementation of its portion of the specification.

7.1.2 Complete Programs Criteria

A weaker refinement criteria is to establish the refinement conditions between
every pairs of programs(8, p.241], rather than pairs of operations, derived from
the two specifications. For our purposes, a complete program consists of sequential
compositions of any sequence of operations, appended to the abstract initial state
(by sequential composition). Let CInit and AInit be the abstract initial states of
a concrete and an abstract specifications respectively, For every complete program

P., derived from a concrete specification that includes n operations:
P. = Clnit 5 Cop;, 5 Cop,, 5--- 3 Cop,, (225)

where %;, 4, ..., i, are indices between 1 and n, to be a refinement of the corre-

sponding complete program P,, derived from an abstract specification:
P. = Alnit § Aop, 5 Aop,, 5 --- 5 Aop,, (226)

the following conditions must be satisfied:

safety condition:
pre P, = pre P. (227)
liveness condition:

preP; AP. = P, (228)

7 OBTAINING HIGHER LEVEL ABSTRACTIONS 144

7.1.3 Specification Substitution Criteria

Yet another criteria for operation refinement is to prove that the operations in two
specifications are extracted from the same program. For any program P, in order
for statements S;, Ss, ..., Sa to be implementations of both abstract operations
Aop,, Aop,, ..., Aop,, and more concrete operations Cop,, Cop,, ..., Cop,, the
refinement conditions would be

safety condition:

pre e[P[Aop, /€[S:1]][Aop,/e[S:]] - - - [Aop,/e[Sa]]]
= pree[P[Cop, /[S:1]][Cop,/e[S2]] - - - [Cop, /e[Sl (229)

liveness condition:

pree[P[Aop, /€[S1]][Aop,/e[S2]] - - - [Aop,/€[Sa]]]
A e[P[Cop, /e[S1]][Cop,/€[Sa]] - - - [Copn /€[Sl
= e[P[Aop, /e[S1]][Aop,/e[S2]] - - - [Aop,/€[Sa]l] (230)

Here is an example to illustrates that complete programs criteria is weaker
than per-operation criteria: Let specification C includes two operations. Operation
CAdd specifies addition of an item to a list if the item has not already exist in the
list. Operation CDel specifies deletion of the first occurrence of an item from the
list. No state invariant is asserted on the list. At the abstract initial state the list
is empty. Let specification A includes two operations. Operation AAdd is exactly
the same as CAdd. Operation ADel specifies deletion of all occurrences of an item
from the list. Using the per-operation criteria, since CDel is not an acceptable
implementation of ADel, specification C would not be a refinement of A. However,

according to complete programs criteria, C is a refinement of A.

7 OBTAINING HIGHER LEVEL ABSTRACTIONS 145

The specification substitution criteria is a yet weaker criteria than the others.
This is because this criteria may be seen as restricting the conditions required for
complete programs criteria only to certain sequences of operations (rather than to
any sequences of operations).

All the three criteria described above may be used in reverse to obtain higher
level abstractions in reverse engineering. Per-operation criteria provides a easy
to prove but strong proof obligation. Complete programs criteria is useful for
verifying the use of an abstract data type in a program. Specification substitution
criteria provides a difficult to prove but weak proof obligation in justifying higher

level understanding of a program.

7.2 Data Refinement

Unlike operation refinement, data refinement may occur between specifications that
have different models [33, p.137]. Hence, in data refinement, we need to establish
a relationship between the models of the two specifications. Such relationship
may be represented by a forward simulation[42, p.163] (or abstraction schema[33,
p.137]) Let FSim be the forward simulation between AS, the model of the abstract
specification, and CS, the model of the concrete specification. Then FSim is a

schema of the following form:
FSim = [AS; CS | P] (231)

The signature includes both the concrete and abstract models. The predicate part
of the schema, P, specifies the relationship between the concrete and abstract
models.

If both specifications are organized hierarchically in the form described in Sec-

tion 6.2, and every submodel in one specification has a corresponding submodel

7 OBTAINING HIGHER LEVEL ABSTRACTIONS 146

in the other, the forward simulation may be defined on each pair of corresponding

submodels.
7.2.1 Per-Operation Criteria

For concrete operation Cop,, defined on submodel k in the concrete specification,

to be a refinement of abstract operation Aop;, defined on corresponding submodel

k in the abstract specification, the refinement conditions would be[33, p.138]
safety condition:

pre Aop; A FSim; = pre Cop; (232)
liveness condition:
pre Aop; A FSim; A Cop; = Aop; (233)

where FSimg is the forward simulation between submodel k in the abstract and
the concrete specification. Let CInit and AInit be the initial states of concrete
and abstract specifications. An additional refinement condition is that the abstract

initial states between the specifications must also be consistent[33, p.138], that is,

CInit[-/-] = (3 AS e Alnit[_/_'] A FSim) (234)

7.2.2 Complete Programs Criteria

Let P, and P. be corresponding programs from the abstract and the concrete
specifications respectively. The conditions for refinement would be

safety condition:

pre P, A FSim = preP. (235)

7 OBTAINING HIGHER LEVEL ABSTRACTIONS 147

liveness condition:
preP, A FSim A P. = P, (236)

where FSim is the forward simulation between the abstract and concrete models.
We do not need to prove the condition on consistency between initial states because

this is implied by the safety condition.
7.2.3 Specification Substitution Criteria

To derive the specification substitution criteria for data refinement, we may de-
fine the forward simulation between the two specification on the program, instead
of between the specifications. Let the notation FSim,, denotes a schema of the

following form:
FSim, = [oSi]; AS:| -] (237)

which is the forward simulation between the abstract state of S;, and the submodel
AS; on which the abstract operation Aop; is defined. Similarly, let the notation

FSim, denotes a schema of the following form:
FSim., = [o[Si]; CSi|--] (238)

which is the forward simulation between the abstract state of S;, and the submodel
CS; on which the more concrete operation Cop;, is defined.

For any program P, in order for statements S;, S5, . .., Sn to be implementations
of both abstract operations Aop,, Aop,, -.., Aop,, and more concrete operations
Cop,, Cop,, ..., Cop,, the refinement conditions would be

safety condition:

pre e[P[FSim,, 5 Aop, § FSimg, [/ _]/€[S1]][FSima, § Aop, § FSimga, [/ _]/€[S2]]

8 CONCLUSIONS AND FUTURE WORK 148

-+ - [FSimg, 5 Aop, 5 FSim,,[-!/_]/e[Sa]l]
= pree[P[FSim,, ; Cop, 3 FSim.[-/-1/e[S1]][FSime, 3 Cop, 5 FSimq,[-/]/€[S2]]
---[FSim,, 3 Cop, 3 FSim. [//_]/€[Su]]] (239)

liveness condition:

pree[P(FSim,, 5 Aop, 5 FSim, [/-]/e[S1]1[FSima, 5 Aop, 5 FSima,[-/-]/€[S:]]
-~ [FSimg, § Aop, 3 FSimg,[-!/-]/€[Sal]]

N elP[FSime, 5 Cop, § FSime, [/)/e[S1])[FSim, 5 Cop, § FSimc,['/-/€[S:]]
--- [FSim,, 5 Cop, 3 FSim.,[-'/-]/€[Sn]l]

= €[P[FSimg, 5 Aop, § FSima, [/]/e[S1]][FSima, 5 Aop, § FSima,[-'/-]/€[S2]]
-+~ [FSimg, 5 Aop, 5 FSima,[!/-]/€[Sul]] (240)

8 Conclusions and Future Work

The objective of this thesis is to present a formal approach for reverse engineering.
The thesis (i) provides a detailed description of the abstractions used in the reverse
engineering process, (ii) describes in detail the method to obtain these abstractions
from a program written in a C subset, (iii) enumerates the method to aggregate
the abstractions into a formal functional specification of the software system being
implemented by the C subset, and finally (iv) provides adequate justifications for
the correctness of the extracted specification (In particular, we have compared the
(logical) strength of three sets of such conditions and their application in reverse
engineering). Subsequent paragraphs in this section discuss our experience and

findings during the reverse engineering process.

8 CONCLUSIONS AND FUTURE WORK 149

However, this thesis represents only a preliminary work in this area. Although
this thesis provides a method to derive a specification from code, a lot more are
needed to be done on how one develops a specification that is useful for under-
standing or reimplementation. Nevertheless, the thesis advocates the use of formal
methods in reverse engineering and may serve as a motivation or even basis for
research in the this direction.

The abstraction rules for assignment expressions appear to be much more com-
plicated than those found in the literature. For example, in [31, p.119], the precon-
dition for an assignment statement z := E is Q[E/z], where Q is the postcondition.
The precondition refers to the syntactic substitution of E into all free occurrences
of z in @. This technique is not applicable to our approach because the object
being assigned to in an expression is assumed to be implicit in the sense that it
may not occur as an identifier in the assignment expression. In fact, this is always
the case when anything other than a variable name occurs on the left side of the
assignment. This problem is a natural consequence of attempting to deal with
composite variables without reducing them into simple variables. For example,
REDO’s approach to reverse engineering using formal method[3], due to one of the
normalization rules, requires components of a compaosite variable to be separated
into simple variables[3, p.204].

Recall (rule 76) for step two of a simple assignment expression:

A'[E1=E;] = [Ac[E;1=E;]; o[E1=E;], |
(W'Ei] 3 e[€2]) "= V[BD)/pr/af AT =Z]\ (o) (241)
Although the object being assigned is made implicit in this rule, its parent is not,
due to the predicate T' = T, where T represents those variables of the assignment

expression other than the parent of the object being assigned. Therefore, this rule
may still represent difficulties if the assumption (page 58) that the parent of the

8 CONCLUSIONS AND FUTURE WORK 150

object designated by an object designation expression is not fixed is lifted (the lift
is required for arbitrary pointer arithmetics to be covered).

A major extension required for this thesis is to handle pointer variables, and
arbitrary pointer arithmetics. Instead of using a huge array to represent the mem-
ory, as proposed in [23, p.313], we may use a definite description. The form of the
abstract object of an expression E would then be the following:

(pwy : T{E] | P(w1,7,7%,)) (242)

in which more than one variable would have subscript ‘o’ (denoted by w,). It is
not obvious at this stage how the syntactic transformation ‘=’ (page 98) and ‘.=’
(page 102) may be modified to handle the situation.

Among the three sets of refinement conditions discussed in Section 7, non-
trivial examples of usage only exist for per-operation criteria (there is an example
for a form of complete program criteria in [8, p.242-4] where the two specifications
differ only in one operation)[42, Ch.6]. It seems that verifying complete program
criteria and specification substitution criteria are both very difficult.

Case studies are needed, both for validating the methodology, assessing diffi-
culty in proving refinement conditions, and accumulating heuristics in classifying
variables between being essential and auxiliary.

The abstractions rules may be extended to handle integer types other than
int quite easily. A new kind of abstraction, say p{T;, T,], may define a relation
between 7[T1] and 7[T,], that specifies the type conversion between types T; and
T,. However, pointer arithmetics will likely to complicate the rules for such simple
constructs as addition and subtraction.

Finally, tool support is essential, as with any formal approach. Possible di-

rections on tool development includes theorem proving (for example, [29]), and

8 CONCLUSIONS AND FUTURE WORK 151

browsing of specification and program text, preferably in an integrated environ-
ment. A tool has been developed for representing a vast subset of ANSI C as
SGML(38, p.186]. As pointed out in [38, p.189], Z may also be represented in a
similar way.

REFERENCES 152

References

(1]
[2]

[6]

71

(8]
9

R.S. Arnold. Software Reegineering. IEEE Computer Society Press, 1993.

K. Bennett, M.M. Cornelius, and D. Robson. Software Maintenance. In
J.A. McDermid, editor, Software Engineer’s Reference Book, chapter 20.
Butterworth-Heinemann Ltd., 1991.

P.T. Breuer; K. Lano; J. Bowen. Understanding Programs through Formal
Methods. In REDO Compendium, pages 195-223. John Wiley & Sons Ltd.,
UK., 1993.

M.L. Brodie. The Promise of Distributed Computing and the Challenges
of Legacy Information Systems. In Advances in Qbject-Oriented Database

Systems. Springer-Verlag, 1994.

T. Cahill. UNIFORM. In REDQO Compendium, pages 123-9. John Wiley &
Sons Ltd., UK., 1993.

Gerald C. Gannod; Betty H.C. Cheung. A Two-Phase Approach to Reverse
Engineering Using Formal Methods. In International Conference on Formal
Methods in Programming and Their Applications, (Novosibivsk, Russia; Jun
28 - Jul 8, 1993), pages 33648, 1993.

Guide Int’l Corp. Application Reengineering. Guide Pub GPP-208, Guide
Int’l Corp., Chicago, 1989.

J. Woodcock; J. Davis. Using Z. Prentice Hall Europe, 1996.

J. Beck; D. Eichmann. Program and Interface Slicing for Reverse Engineering.
In Proceedings of Working Conference on Reverse Engineering, (Baltimore,

MD, U.S.A.; May 21 - 23, 1993), pages 5463, 1993.

REFERENCES 153

[10]

11

[12]

[13]

[14]

[15]

[16]

J. Mylopoulos et al. Towards an Integrated Toolset for Program Under-
standing. In Proceedings of the 1994 IBM CAS Conference (CASCON ’94),
(Toronto, Ontario; October 31 - November 3, 1994), pages 19-31. Interna-
tional Business Machines, 1994.

J. MacRae G. Whittington, C.T. Spracklen. Applications of Artificial Neural
Networks to Reverse Software Engineering. In L.I. Burke C.H. Dagli and
Y. C. Shin, editors, Proceedings of Intelligent Engineering Systems through
Artificial Neural Networks, (St. Louis, Missouri, USA; Nov 10 - 12, 1991).
ASME Press, 1991.

Gerald Catolico Gannod. The Application of Formal Methods to the Reverse
Engineering of Imperative Program Code. Master’s thesis, Computer Science

Department, Michigan State University, 1994.

Carl A. Gunter. Semantics of Programming Languages: Structures and Tech-
nigues. Foundations of Computing Series. MIT Press, Cambridge, Mas-
sachusetts London, England, 1992.

Samuel P. Harbison. C: A Reference Manual. Prentice-Hall, Inc., 4th edition,

1995.

K. Lano; H. Haughton. Reverse Engineering and Software Maintenance: a

Practical Approach. McGraw-Hill International (UK) Ltd., 1994.

K.C. Lano; P.T. Breuer; H. Haughton. Reverse Engineering COBOL via
Formal Methods. In REDO Compendium, pages 225-47. John Wiley & Sons
Ltd., U.K., 1993.

REFERENCES 154

[17] Philip A. Hausler; Mark G. Pleszkoch; Richard C. Linger; Alan R. Hevner. Us-
ing Function Abstraction to Understand Program Behavior. IEEE Software,
pages 55-63, Jan 1990.

(18] IEEE. [EEE Guide to Software Requirements Specifications, IEEE Std 830-
1984 edition, 1984.

[19] J.Q. Ning; A. Engberts; W. Kozaczynski. Recovering Reusable Components
from Legacy Systems by Program Segmentation. In Proceedings of Working
Conference on Reverse Engineering, (Baltimore, MD, U.S.A.; May 21 - 23,
1993), pages 64-72, 1993.

[20] P.T. Breuer; K. Lano. Creating Specification from Code: Reverse-Engineering

Techniques. Journal of Software Maintenance: Research and Practice,

3(3):145-62, Sep 1991.

(21} Bertrand Meyer. Introduction to the Theory of Programming Languages. Pren-
tice Hall International (U.K.), 1990.

[22] Mili. Introduction to Program Verification. Van Nostrand Reinhold Company
Inc., 1985.

(23] M. Ward; F.W. Calllss; M. Munro. The Maintainer’s Assistant. In Proceedings
of Conference on 1989 Software Maintenance, (Miami, FL, U.S.A.; Oct 16 -
19, 1989), pages 307-15, New York, 1989. IEEE Computer Society Press.

[24] Stephen Brien; John Nicholls. Z Base Standard. Oxford University Computing

Laboratory, Programming Research Group, version 1.0 edition, Nov 1992.

[25] D. Craigen; S. L. Gerhart; T. J. Ralston. An International Survey of Industrial
Applications of Formal Methods. Technical Report NIST GCR 93/626-V1 & 2,

REFERENCES 155

Atomic Energy Control Board of Canada, US National Institute of Standards
and Technology, and US Naval Research Laboratories, 1993.

[26] Susan Horwitz; Thomas Reps. The Use of Program Dependence Graphs in
Software Engineering. In Proceedings of 1992 International Conference of
Software Engineering, (Melbourne, Vic., Australia; May 11 - 15, 1992), pages
392411, 1992.

[27] Peter Baumann; Jiirg Fissler; Markus Kiser; Zafer Oztiirk; Lutz Richter.
Semantics-Based Reverse Engineering. Technical Report ifi-94.08, Institut fiir
Informatik der Universitat Ziirich, Winterthurerstr, Ziirich, Switz, 1994.

[28] Kit Kamper; Spencer Rugaber. A Reverse Engineering Methodology for Data
Processing Applications. Technical Report GIT-SERC-90/02, College of Com-
puting, Georgia Institute of Technology, Mar 1990.

[29] Mark Saaltink. The Z/EVES System. ORA Canada, Sep 1995.

[30] Steve Westlund; Jim Gehringer; Dennis Sandstedt. Software Maintenance.
Technical Report Vol. 5, No. 2 (WP 88-37), Washington University, St. Louis,
Missouri, 1991.

[31] Robert W. Sebesta. Concepts of Programming Languages. The Ben-
jamin/Cummings Publishing Company, Inc., 2nd edition, 1993.

[32] C.M. Overstreet; R. Cherinka; R.. Sparks. Using bidirection data flow analysis
to support software reuse. Technical Report TR-97-28, Computer Science
Department, Old Dominion University, Norfolk, VA, Jan 1994.

(33] J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 2nd edition,
1992.

REFERENCES 156

[34]

(35]

[36]

[37]

[38]

(39]

[40]

[41]

[42]

Tim Tiemens. Cognitive models of program comprehension. Dec 1989.

H.A. Miiller; M.A. Orgun; S.R. Tilley; J.S. Uhl. A Reverse Engineering Ap-
proach to Subsystem Structure Identification. Software Maintenance: Re-
search and Practice, 5(4):181-204, Dec 1993.

H.J. van Zuylen. REDO Compendium. John Wiley & Sons Ltd., U.K., 1993.

H.J. van Zuylen. Understanding in reverse engineering. In REDO Com-
pendium, pages 81-92. John Wiley & Sons Ltd., U.K., 1993.

D.D. Cowan; D.M. Germaén; C.J.P. Lucena; A. von Staa. Enhancing code for
readability and comprehension using SGML. In Proceedings of 1994 IEEF In-
ternational Conference on Software Maintenance, (Vancouver, B.C., Canada;

May 11 - 15, 1992), pages 181-90, 1992.

Martin Ward. Proving Program Refinements and Transformations. PhD the-
sis, St. Annes College, Oxford, June 1989.

Ted J. Biggerstaff; Bharat G. Mitbander; Dallas E. Webster. Program under-
standing and the concept assignment problem. Communications of the ACM,
37(5):72-83, May 1994.

Glynn Winskel. The formal semantics of programming languages: an intro-
duction. Foundations of computing. Massachusetts Institute of Technology
Press, 1993.

J.B. Wordsworth. Software Development with Z: A Practical Approach to
Formal Methods in Software Engineering. Int’l computer science. Addison-

Wesley, 1992.

