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Abstract

The three magnon excitation spectra of a one dimensional chain of quantum spins
is analysed using the recursion method. A number of different integrable models are
studied as well as a number of Hamiltonians “close” to the integrable model of L.
A. Takhtajan [10] and H. M. Babujian [11]. The bound states are studied across the
entire Brillouin zone and complete agreement is found with the known integrable

results as well as support for a conjecture put forward by F. D. M. Haldane [12, 13].
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Chapter 1

Introduction

During the last century great strides have been made in our understanding of nature
and magnetism has not been an exception. Once associated with mysticism and the
occult, it is now understood as some of the residual effects of the electromagnetic in-
teraction. Due to the constraints of the Pauli principle for the electrons of atoms in
a lattice, the wavefunction of a collection of atoms is more than the superposition of
single particle wavefunctions. Since the total wavefunction must be antisymmetric
under particle exchange for fermions, a symmetric spin wavefunction and an anti-
symmetric spin wavefunction are associated with different spatial wavefunctions. In
general, these wavefunctions will have different energies. This energy difference for

the case of two hydrogen-like atoms can be characterized by the Hamiltonian,
7/'(\12—_—7 —ng'gg (11)

where S; is a three component quantum spin operator and J is known as the ex-
change integral. When J > 0 parallel alignment of the spins is favoured (ferromag-
netism) and J < 0 favours anti-parallel alignment (anti-ferromagnetism).

A Hamiltonian with the form above but extended to include all interactions

between all pairs in a lattice, was described in detail by Heisenberg in 1928 [1].

H==374(5:-5)) (1.2)

i



This Hamiltonian was proposed as a model for strongly magnetic phenomenon (fer-
romagnetism, anti-ferromagnetism and ferrimagnetism) and a number of assump-
tions were made to construct the simplest model that still exhibits the most signif-
icant characteristics of these magnetic materials. For example, it was known that
the macroscopic magnetic moments that are observed in these types of materials
were due primarily to the magnetic moments of the electrons and that the magnetic
moment due to the orbital motion can be ignored. As only changes in energy due to
magnetic degrees of freedom are significant for strong magnetic effects, the contri-
bution from factors such as the direct Coulomb force and the spin-orbit or spin-spin
interactions can be ignored [2].

The exchange interaction itself, gzg}, is due to the Coulomb interaction but,
as shown by PAM Dirac (1929) [6], it is strictly a quantum mechanical effect. The
exchange interaction arises from the form the lattice wavefunction must have due
to interchange of particles on different sites (ie. the Pauli principle) and although
there is a direct interaction between electrons, the symmetry properties of the wave-
function result in a spin dependent exchange term. The magnitude of the exchange
interaction will be influenced by the amount of overlap of the electronic wavefunc-
tions.

It is also possible to obtain the Heisenberg Hamiltonian by performing a
perturbation on a lattice of non-interacting spins, using the Coulomb potential as
the perturbation. If higher order perturbations are considered, the Hamiltonian can

be written as a linear combination of powers of the pair exchange operator, S;-S;,
giving

ZZJ<“ Si-8;)" (1.3)

i n=1

The range of interactions will depend upon the details of the particular solid

and in this thesis only insulators are considered. We will only consider the exchange



integral (Jz-(f)) to be non-zero for those sites, ¢ and j, which are within a small,
arbitrarily chosen, region of each other. The simplest choice is nearest neighbours.
The lattice will be restricted further by only considering a one dimensional lattice
with identical spins on each site and uniform nearest neighbour interactions. The

Hamiltonian can be expressed as

sz(n) S;- S" (1.4)

7 n=1

The n = 0 term is omitted as it can be absorbed into the zero of energy.

A more general form for the Hamiltonian can be considered by taking into
account such factors as anisotropic spin exchange (ie. replacing g}g by aSFST +
BSIS! +4S;Si, a # B # ) or single ion effects (ie. adding term of the form

o> (S7)%), but these will not be considered here. However, the extensions necessary

to account for these effects could be integrated into our formalism without serious
difficulty.

Since the system under consideration consists of a linear chain of N (N — o)
quantum spins with periodic boundary conditions, we have the following commuta-

tion relation

5)
=)
I
()

(1.5)

where 7, is the discrete translation operator over intervals equal to the lattice spac-

ing, a. The Hamiltonian (1.4) also has the properties

527 = o (1.6)

——~

(s H] = 0 (1.7)



where (1.6) follows from the fact that the total spin operator can be expressed as

= Zgiz-l“zgi‘gﬂ-l'{- > 8-S, (1.8)
: i 4,41

and

[(8:-8) + 8- 8)), (8:-8ign)| =0 (1.9)

The term, Z <S~'1-2, is a constant and the term, Z g} -giﬂ, is identical to the exchange
B B

operator in 7/-2, therefore both of these commute with the Hamiltonian. Similarly,

(1.7) follows from the identity

(87 + 8284), (8::8ia)] = 0 (1.10)

A convenient and complete orthonormal set of states which describes the
Hamiltonian is given by the simultaneous eigenkets of g}z and S7. These states
are represented, in the Dirac bra-ket notation, as | S, m );» where

51 8,m), = KS(S+1)|S,m)

3

(1.11)

7

SflS,m) = ﬁm]S,m)

7

i (1.12)
for the ¢ site. For convenience, the units for all subsequent equations are chosen

such that 2 = 1. The Hamiltonian can be rewritten in terms of the usual ladder

operators, S = 87 £ iSY which have the properties

ST S,m); = /S(S+1) —m(m+1) | S,m+1), (1.13)

S718,m); = \/S(S+1) —m(m—1) | §,m—1), (1.14)

2



[571— S-_} = 28;5ij

i 1%
87,85 = Ls*s, H19)
5058 = 25 |

Equations (1.13) and (1.14) have the property that the z-component of a spin can

only be raised or lowered 25 times from its minimum or maximum value.

St S8,5), = 0 (1.17)

In terms of these operators, the Hamiltonian becomes

H= _Zf:J(n) [%(S;-Si:-l + 878k + 87 f+1]n (1.18)
i n=1

The vanishing commutators in (1.5)-(1.7) are a result of the symmetries of 7. There-
fore the eigenstates of H can be labelled by quantum numbers corresponding to these
symmetries. These are the eigenvalues of the translation operator (YA;), total angular
momentum (S$?) and the total z-component angular momentum (§%). The state of
maximum total S has the spin aligned along some arbitrary direction. If we take
this direction to be the —z axis, then, an exact eigenstate of H can be constructed

by taking a direct product of these single spin basis states.
]0>2157_S>1|57—S)2, Sa_‘9>3"'|57"S>N (119)

where the 0 is a collective index. This is clearly an eigenstate of 7{ as can be
shown from (1.16) and (1.17). The state given above, (1.19), has an extremum in
the eigenvalue of the S* operator and is known as the ferromagnetic state. In the
Heisenberg model (n = 1) and when J > 0 this is also the ground state but for
the more general Hamiltonian(1.4) this may not be true depending on the values

of J™). The models which we consider are restricted to those for which |0) is the

(&7



ground state.
The Hamilfonian is rotationally invariant in the absence of an external mag-
netic field. A very weak magnetic field can be assumed in the —z direction, say, to

remove the rotational degeneracy and hence define a single unique ground state. The

25
ground state energy per site is given by Ey = — Z J™5%  The Hamiltonian(1.4)

n=1
can be written as a sum of pair Hamiltonians
. 25 .
Hy=-> J™p (1.20)
n=1
where
o= 88
= 3 (8F S + 878} + S8t (1.21)

A convenient choice of variables to describe the Hamiltonian is defined as follows:
25 N 1 n
A= =g []—(i—;—)—S(SJrl)} ,7=0,1,2,---,25 (1.22)
n=1

The A; are the eigenvalues of each pair Hamiltonian and j is the total angular
momentum quantum number of the pair. Differences between these eigenvalues and

the ground state eigenvalue Ays are defined by
O!m(S):)\gS_m—)\zg, m e {1,2,3,...25} (123)

and the corresponding ratios of these differences are denoted by

gm(S) = (1.24)

The quantities, a,,(.5), represent the energy difference when the total spin quantum



number of a pair is decreased by m. The ferromagnetic state, (1.19), is stable
provided all a,(S) > 0.

We now consider excitations of this system. These can be labelled by the
eigenvalues of the total .S, operator, S?, of the system. The smallest change in &%
for this system occurs when the z-component of a single spin on the lattice, j say,

is raised by one quantum. This state is represented by

. 1 }
IJ>=\/T$;,*IO) (1.25)

where NoXs is a normalization factor. The {| j )} form a complete orthonormal set

of single deviation, excitation states or the m = 1 states. Unfortunately, these states
are not eigenstates of the Hamiltonian. A new basis can be constructed by taking
the following linear combinations of | j ).

etkr;

lk>=2\/ﬁlj>, ri=ja (1.26)

J

2 N N N
where k is a wavevector defined by k = 7\[@ , n= — 3 ——2-——|—1, S By applying
a

the Hamiltonian to these states, it can be shown that these are eigenstates of H with
energy eigenvalues E(k) = NEo+a1(1 —coska). These m = 1 eigenstates have real
wavevectors and are known as magnons. In the semi-classical limit, when the spins
can be treated as classical vectors, the solutions can also be interpreted as waves
propagating through the lattice of spins, hence they are also known as spin waves.
Since the Hamiltonian is simply a mathematical model for magnetic materials and
many approximations have been made in its construction, it is possible that these
eigenstates are simply mathematical artifacts and not present in real materials.
However, magnons have been observed using such methods as infra-red absorption

and neutron scattering. As well they may be observed indirectly by microwave



absorption. As examples, magnons have been observed by Hoogenbeets et. al. [4]
as well as by Haines and Drumbheller [5] for a S = % nearly Heisenberg quasi-one
dimensional compound (CeHllNHg)CUCl3. Further, magnon bound states have
been observed by Torrace and Tinkham in CoCly - 2H,0 [3] which is a § = < quasi-
one dimensional compound but is more closely approximated by an Ising model.
Although the thermodynamics of the observed magnons do not completely agree
with theory (which would not be expected from such a simple model) the fit is
empirically accurate.

For other subspaces corresponding to m > 1, we have more than one magnon
present and the solution to the Schrodinger equation is not nearly so simple or
straightforward. In fact, a general solution for a general class of Hamiltonians,
with an arbitrary number of magnons has yet to be found. There are, however,
some notable exceptions: a set of models which are grouped together because of
the form of the solution rather than the form of their Hamiltonians. These specific
Hamiltonians are generally known as integrable models and they can be solved
exactly with their solutions represented in closed form using the Bethe Ansatz [7].

The Bethe Ansatz was a method which H. Bethe introduced in 1931 to solve
the m magnon system for the S = % Heisenberg Hamiltonian. The Hamiltonian
has a sufficient number of symmetry properties, and hence conserved quantities,
to completely define the system. For the case of an infinite linear chain, there
must be an infinite number of these symmetries. Some of these are global and
familiar, such as the total momentum, K, but most are far from obvious. In the
special Hamiltonians where this property is found, it is possible to find a set of
eigenstates which are simultaneous eigenstates of all the conserved quantities and
completely diagonalize the Hamiltonian. These are the integrable models and the
Bethe Ansatz uses one of the Hamiltonian’s symmetries, permutation symmetry, to
generate a set of states which are such simultaneous eigenstates. The solutions of

the integrable models belong to two classifications: scattering state solutions and



bound state solutions. The scattering state solutions are associated with a real
wavevectors whereas the bound state solutions are states where all the magnons
are bound together as a single entity and are associated with complex wavevectors.
These solutions and their properties will be described in more detail in Chapter 2.

A relatively well known integrable model is the Sutherland-Lai model [15]

- (=1)™
2

model, which was considered by Bethe, but generalizes the permutation symmetry

which corresponds to g, = . This model includes the S = —;— Heisenberg
to general S. As will be shown in Chapters 2 and 3, the effect of the Hamiltonian on
a complete set of states can be represented using a small number of these a,, or g,,.
Other examples of integrable models are the Parkinson model [8] and is also known as
the Temperley-Lieb model [9]. The Temperley-Lieb model has all a,, = 0 except one.
The integrable Hamiltonian which has received considerable attention is that found
by Takhtajan [10] and Babujian [11], using a method known as the quantum inverse
scattering method. In this method, the magnons are treated as a scattering problem
where there are incoming beams which interact and the scattered beam is studied to
try and reconstruct the scattering potential. These models can be characterized by
special values of the g,,. Specifically, g, = 25 [1)(25 + 1) — (25 +1 — m)], where
P(z) = % {ln[['(z)]} and I'(z) is the usual gamma function.

It has been observed by Haldane [12, 13] that for these integrable models, the
excitations have some special features. For example, the solution to the m magnon
problem has a single bound state branch which is real and continuous across the
minimum of m or 25 Brillouin zones when using the extended zone representation
for the total wavevector K. Here m is the number of magnons under consideration
and S is the total spin on each site. In the reduced zone representation, which
is the form we will use, the bound state has several branches which exactly meet
at the Brillouin zone boundaries and are completely decoupled from a continuum
of scattering states. Haldane conjectured that the non-integrable models will have

gaps at these boundaries and the bound states will couple to the continua. This



conjecture has been verified for the case of two magnon excitations by Southern et.
al. [14].

In the next chapter the current situation of known results for elementary
excitations will be discussed. Specifically the one and two magnon cases will be
discussed in detail. For one and two magnon excitations, the problem can be solved
exactly, for all dimensions, regardless of whether the Hamiltonian is integrable or
not. For m > 2 excitations, this is no longer true and it will be necessary to use a
different method to solve such a system. Some of the possible methods of solution
are the Bethe Ansatz or the Quantum Inverse Scattering Method as mentioned
above but these can only be used when the Hamiltonian is integrable. It is also
possible to solve the problem by using methods based on transfer matrix methods
or real space rescaling techniques or by simply applying sheer computational power
to diagonalize the Hamiltonian. However, there is a method which can provide
considerable information about the system and is more computationally convenient.
This method is known as the Recursion Method. This approach was introduced
by R. Haydock [16] for electronic problems and does not present the solution in
closed form (which is not possible for the non-integrable models), but rather it is a
procedure to reduce the Hamiltonian to a tridiagonal form which can then be used
to easily calculate other quantities of interest. Since a matrix representation of the
Hamiltonian is used, the generated tridiagonal matrix is closely linked to the basis
used in the generation of the Hamiltonian. The manipulation of the Hamiltonian
to simplify the use of this method will be treated in Chapter 3 and an explanation
of how the method is applied will be given in Chapter 4 as well as some difficulties
which are associated with the method and their solutions. The results from this
method when used on the lattices with different values of S and with different
Hamiltonians will be presented in Chapter 5. Finally, a summary and conclusions
are given in Chapter 6. The literature on a three magnon system is sparse but,

where possible, the results are compared to previously calculated results as well as

10



the exact results for the appropriate integrable cases.
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Chapter 2

Magnetic Excitations

In this chapter, the solutions for the one and two magnon ferromagnetic excitations
will be described in detail since the initial formalism necessary for the three magnon

excitations (treated in Chapter 3) follows a similar procedure.

2.1 One-Magnon Excitations

The normalized single spin deviation states are

1
H):\/_ngﬂo), i=1,2,3,---,N (2.1)

The effect of the operator, P}, on | 7) is given by

Pili) = 5?4) CiE LI+
Pif 1) S(S=1)I1) + 5] 1+1) (2.2)
Pll+1) = S|I)+S(S=1)]1+1)

i

The non-diagonal equations from the set (2.2) can also be expressed in matrix form

75,[‘)31)}:[5(55—1) 5(55;1)Hllli>l>} (2.3)

12



and hence

7] - e s i

2.4
- (R ]
From (1.20) and (1.23) we obtain
Eol4) i) ) i1+
g Fide e TR
Therefore,
Hi) = NE| i)+ a(s) i) - Dy igny - 9 gy g

The equation (2.6) has a tight binding form and can be mapped directly to other
tight binding systems, such as mass-spring systems, by taking an infinite one di-
mensional chain of masses and springs with NV Eg + oy as related to the “mass” and
X a5 the “spring constant”. The solution to this system of equations can be found

by taking linear combinations of the | 5)
'] 5 ) (2.7)

where k is the total wavevector and is restricted to the values —Z <k < Z. The

Hamiltonian, when applied to this set of states, gives

HIk) = NE|F)+3 S a($)e 02 i)~ | j-1) = | j+1)

= NEy| k) + as(S)(1 - coska)| k) (2.8)

13



Hence the {| k)} diagonalizes 7 and the dispersion relation can be found

E(k) = (k[H| k)

= NEy+ oy(S)(1 — coska)

(2.9)

The one-magnon excitation energy F1(k) = ay(.S)(1 — cos ka) is plotted in Fig. 2.1.

Energy

0.0 0.1 02 03 04 05 06 07 08 098 1.0
Wavevector K

Figure 2.1: One magnon excitation energy. The wave-
vector is in units of Z and the energy is in
units of «;.
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The solutions to the m = 1 magnon excitations are characterized by real
wavevectors and correspond to the extended modes for a mass-spring system. Note
that the solution is independent of the choice of J(™ except for changes in the value
of a;. The form of the solution is a direct consequence of translational invariance.
The analogue of this behaviour in a mass-spring system is that the extended modes
are essentially independent of the size of the masses and the strength of the springs
(as long as they are all uniform). A restriction which must be applied to the magnon

solutions is «; > 0, to keep the solutions stable.

2.2 Two-Magnon Excitations

An orthonormal set of two spin deviation states can be defined as

[,5) = 35S7S}]0) , 1F ]

1) = — L gtgt
IZ’Z> - 2 /5(25—1)82 SZ |0>

(2.10)

where the labels ¢ and j are taken such that ¢ < j. Following a similar approach to
that used for the one magnon excitations, the effect of the operator, P, = <S~’1-5~'1+1,

on the given set of states yields

o
ot
ok

TN N N e~ e~
[N
ot
[VN]

et e e e e

= S*a,g), i ELI+L # LI+
= 5?4,4), i £

[\
[
[\

|SW)
pot
s

= SILi)+SS—1) 1+1,5), i #1141

)
)
Plli) = S[I4+1,8)+S(S=1)|1Li), i #1,1+1
)
) S@S=-D (L) +]1+1,141)) + (1-89)? I,1+1)

2.1

(@74

PlLT) = /S2S—1)|L1+1) + S(S—2)| 1,1) (2.16)
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The P, operator is symmetric, therefore

Plil)y = S(S=1)|4,0)+ 8| 4,1+1), i £1,1+1 (2.17)
Plii41) = S|6,0)+S(S=1)|i,141), i1 1+1 (2.18)

The non-diagonal equations, (2.13) ~ (2.16), can be written in matrix form as follows

[4i)

| 14+1,1)
AR -

| 1,141)

| 1+1,1+1)
FS(5-1) S 0 0 N

S 5(5-1) 0 0 0 141,1)

0 0 S(S-2)  4/S(25-1) 0 11,1

0 0 /S(25-1) S(S-2)+1 /5(25-1) || [1,1+1)
.0 0 0 S@5-1)  S(S-2) |\ [+LI+1)

(2.19)

This matrix is block diagonal so to find P, it is sufficient to find the nt: power of

S—1 1
A=S L ey (2.20)
and
S!S—Z! T
i \/S(25-1) L 0
S{(§-2)+1
B=1/S(25 1) 1 ﬁ 1 (2.21)
O 1 S(S5~-2
| \/5(25-1) |
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The matrix, A, is identical to the matrix given in (2.3) for a one magnon excitation.

Therefore, A™ has the same form as the matrix in (2.4). B" can be expressed as

where

e+ p o —1p
n 1 92 S
b= 2(45 — 1) oo ses—1 ' (222)
-1 p o+
S¥2S — 1) +25(S* — 45 +1)" (2.23)
= (48 —1)(S —2)" (2.24)
po= 2/5(25 —1) [§% = (87 — 45 +1)"] (2.25)

Then, the effect of the pair Hamiltonian, 7/'21, on the two magnon basis states is

given by

Hi1,7) =

e < g—1,

Eoli,5),
iE LI+ § A I+1
.. Sy, .. S), . .
EOI%]?'I_;X—%;)IZ)])—%_ZIZ—L]))
1= {4+
Boli,j )+ 5 jy - @lS)y iy gy (2.26)
1=1
.. S), . . S), . .
EO]Z7]>+9%J|Z>]>_%_ZIZ>]_1>7
j=1+1
Boli,j) +24S8)); 5y a8y oy
( 7=1
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Eol 7,04+1) s e #EI—1,0114+1

Eol 4, z—{—l)—i————)lz i+1) — —éﬁzli,i—iﬂ}
=11
Hiliyit1) = $ Boli,it1) + 2200 S)] 4, i1) — B 5915 1y

—@aw)lwl,ww Li=1

Boliyit1)+ 25 pypy _ealS)5 g gy

,i=1+1
(2.27)
Eol 1,1) L1t LI+
Eo]i,z')+—;-[a1(5)+2_i9gl§l 4,4) @S; L) 4,i+1)
—~ [ ST . . )
Tl 6,4) = —%_al(S)J—S%;l_le,zH) i=1
Eoli,i) + 1 [al(S) 1 2505 15 4y - VSGSY 6y i—1,i)
— 1 [aa(s) - ZSN im1icty i =g
(2.28)

Each state has two indices which label the sites with spins flipped. Since the
Hamiltonian only depends upon the relative position of the spin flips, we will use
the centre of mass, (%), and relative coordinate r = j — . In addition, Bloch’s
theorem allows us to perform a Fourier transform with respect to the centre of mass

coordinate as follows

| Kr) = ~Ka(i=5)[ 5~ p,5) (2.29)

mEe

where K is the total wavevector and

[1,7) T; “”zuu) (2.30)



The effect of the Hamiltonian on {| K;r)} is given by

HIK;r) = NEo| Kir)+2a(9)] K; T)—al(S)cos<K )i[( r—1)

—ay(.S) cos (%) | K;r+1), r#£0,1 (2.31)
HIK;1) = NEo| K;1)+ [al(S’)—i—Q—S;—;—l_lof(—S)-J | K;1) —
2,/5(25 — 1
4;_1 )a cos(i)]]( 0)—
) cos ([_2_) | K;2) (2.32)
H|K;0) = NEo| K;0) [al (1 — cos Ka) + %‘iﬁ‘f—‘?u +cos Ka)| | K;0)
—_ 45' — az(S ) cos <Ka> | K;1) (2.33)

For each value of K these equations are equivalent to a one dimensional,
semi-infinite, tight-binding form and can be mapped to the equations for any other
problem with similar characteristics. Specifically, the equations of motion for a semi-
infinite linear chain of masses and springs has this form. However, the equations for
a uniform mass-spring chain has the form given in (2.6). By including defects in the

chain, a direct analogy can be made to the m = 2 spin equations, (2.31) - (2.33).

Consider a mass-spring system with defects as given below (Fig. 2.2).
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Figure 2.2: Semi-infinite mass-spring chain with defects

The spin equations can be mapped to this chain by taking

2505)

m” = ayS)(1 — cos Ka) + —45—__1—(1 + cos Ka) (2.34)

m = on(S) + W (2.35)

m = 2ayS5) (2.36)
) 2¢/5(25 —1) Ka ‘

K = '—E—‘—l‘—az(S) COos <‘2—) (237)

E = o4(S5)cos (%) (2.38)

As there are two classes of solutions to a chain with defects, it is not surprising
that there are equivalent classes of solutions for the m = 2 spin equations. Equation
(2.31), by itself, describes the magnon scattering states which correspond to the
extended mode solutions in a mass-spring chain. It also has the same form as for
two non-interacting magnons. Therefore, the energy of the scattering state solutions

must be bounded by the min/max of the sum of energies

Ey (k) + Ei(ky) = aq(1 — cos kia) + a1(1 — cos kqa) (2.39)

where ki, ky are the wavevectors for the first and second magnons, respectively, and
E4 is the excitation energy of a single free magnon. These wavevectors must satisfy
ki + ky = K, where K is the total wavevector. As for the mass-spring chain, the

scattering states (extended modes) form a continuum of states and for this particular

20



system the minimum and maximum of the continuum is given by

Enim(K) = 2ayS5) [1 — cos ([gaﬂ (2.40)
Enac(K) = 204(5) [1 + cos (%EH (2.41)

The other 2-magnon equations, (2.32) and (2.33), describe interactions be-
tween the two magnons and are responsible for the bound state solutions, or the
localized modes in a mass-spring chain. The true bound states, ie. the solutions
which lie outside the scattering state continuum, can be obtained as the solution of
the following cubic equation ([14])

(@50 1] [B(K) + 200]° —

45-1
{5t )7y [88a50gt g, 4 5] cos? [T} B(K) + 20u”
— 4 { [P 2] cos® [£2] + [g — 1] [(25-0ez _ 1] cos? [52] }[B(K) + 2a4]
— 4[(g2 —-1)%+ (435‘591 — 1) cos" (K“)] cos (Ig")
=0
(2.42)
When a bound state enters a scattering state continuum, it interacts with the con-
tinuum to produce a resonance.

For a one magnon excitation, much of the variation which is possible on the
Hamiltonian does not affect the solution since the excitation energy only depends on
ay(.5) hence, the solutions for integrable and non-integrable models are qualitatively
the same. However, for the two magnon excitations, there is a noticeable difference
between the integrable and non-integrable models. The primary integrable model of

interest for this system is the Hamiltonian due to Takhtajan and Babujian or when
45 —1
25 -1
side the scattering state continuum and meet exactly at the Brillouin zone boundary.

g = a1. This model has two bound state branches which lie completely out-
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An example of this case for S = 2 is shown Fig. 2.3. Due to the limitations on the
maximum size of the graphs and the proximity of the lower bound state branch to
the minimum edge of the scattering state continuum, the lower branch is not visible

in the diagram (Fig. 2.3).

Energy

0.00 0.25 0.50 0.75 1.00
Wavevector K

Figure 2.3: Two magnon bound state branches (solid
line) and scattering state continuum (shaded
region) for S = —‘;3 Integrable model. Wavevec-
tor in units of Z and energy in units of oy
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The two bound state branches can be described by the curves (See [14].)

_ 2o 4 cost (K0) ] ({f_fw ' comt (K0
E = 152 1 {[45 + cos 5 1| & 25 cos 5 452 1+ cos 5 1

(2.43)

The special integrable model identified by Parkinson has only the asg non-zero so
for S = %, the two magnon equations reduce to simply the constant NE, term.
When S =1, oy = 0 and «y # 0. This can be viewed as removing all the springs
with spring constant k from the mass-spring chain, Fig. 2.2. The equations, (2.31)

- (2.33), now give exactly two solutions

E(K) = 0 (2.44)

E(K) = 4;‘: [45—1+ (4c0s2 %C’-)J (2.45)

These are plotted in Fig. 2.4 (below)
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Energy

0.00 0.25 0.50 0.75 1.00
Wavevector K

Figure 2.4: Parkinson model of two magnon excitations
for S = 1. Wavevector in units of I and

energy in units of .

For §' = %, oy = 0 and this is equivalent to g, = 0. This case is discussed later along
with the Lai-Sutherland model, which also is characterized by this value of g,. For
now, a small digression will be made to describe what occurs when the Hamiltonian
deviates from integrability.

45 —1
As o deviates from the integrable value, <‘ ) , the bound state branch-

25— 1"
es no longer meet at the Brillouin zone boundary, forming a gap. This gap increases
45 -1
25 -1

a1 — | increases. When oy < 2a; V S the upper branch moves entirely

as
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within the continuum and only the lower branch remains. The Heisenberg model,

Fig. 2.5, is such an example.

4~
3 o
g,
1 A
0 - = =
0.00 0.25 0.50 0.75 1.00

Wavevector K

Figure 2.5: Two magnon bound state (solid line)
and continuum (shaded region) for
S = % Heisenberg model. Energy in
units of ajy.

4
Wi
Nen oy > 55 _ 1

ally leaving only the upper branch.

it is the lower branch which moves into the continuum eventu-

Returning to the discussion of the special integrable models, (the Parkinson,
S = and the Lai-Sutherland models) recall that these models have g, = 0. Refer-
ring back to Fig. 2.2, this is equivalent to removing the first spring (the &’ spring).

The solutions now consist of two parts, one solution corresponding to the main part
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of the chain (to the right) and the solution for the site at the left. The solution
for the right half is similar to the general case of the two magnon excitations when
g2 < 2, except that there is no resonance from the upper branch and the lower
branch is the only bound state solution. But, if § > 1 (When S = 1 the model is
equivalent to the Lai-Sutherland model) the | K;0) state (or the solitary mass at
the very left of the chain) is not physically forbidden. (This site corresponds to two
magnons on the same lattice site.) The solution is given by E(K) = ay(1 — cos Ka).

Both of these bound state energy curves have been plotted in Fig. 2.6, below

Energy
»

0.00 0.25 0.50 0.75 1.00
Wavevector K

Figure 2.6: Integrable model of Lai-Sutherland for
two magnon excitations. Wavevectors in
units of = and energy in units of oy.
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In the integrable models, the excitations have special features. Either, the
equation decouples as in the Lai-Sutherland and Parkinson models, or the bound
states form one branch which is continuous across two Brillouin zones. These branch-
es form gaps when the Hamiltonian deviates from integrability and the gaps vary in
size as the Hamiltonian moves further from the integrable point. This is in accor-
dance with the Haldane conjecture ([12],[13]). Whether this conjecture is valid for
three magnon excitations as well as the general behaviour of the system will be in-
vestigated further in the rest of the thesis. Three magnon excitations are somewhat
more difficult than one and/or two magnon excitations and Chapter 3 is entirely

devoted to the necessary formalism.
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Chapter 3

Three-Magnon Excitations

There have been a number of papers which have been devoted to three magnon
excitations in the past. The first was H. Bethe (1931, [7]) who actually solved
a system with m-magnon excitations, but his analysis only applies for integrable
Hamiltonians. However, some years ago there were a series of papers which dealt
specifically with three magnons such as C. Majumdar (1970, [17]; 1972, [18]) ; S.
Mukhopadhyay and C. Majumdar (1976), [19]; and J. Van Himbergen (1977) [20].
These were based on the formalism developed by L. Faddeev (1961) [21], which
treats the system as a system of magnons which can scatter off one another or bind
together to form a stable complex. In the above references the approach to the
problem is very general but detailed solutions are given only for a one dimensional
spin é— chain. Generally, the procedure used was to transform to a magnon basis
labelled by wavevectors and to perform all calculations within this space. In this
basis it is difficult to identify non-physical states such as those which correspond
to raising a single spin by more than 25. The papers describe the various methods
which were used to find and eliminate these unphysical states. The techniques
involved the identification of a number of constraints based on some simple physical
arguments. The problem was compounded, in some of the papers, by the use of
an approximate Hamiltonian (to the Heisenberg model) which has some spurious

solutions. A paper which posed the problem in a slightly different form (but using
a similar method of solution) was that by P. J. Millet and H. Kaplan (1974) [22].
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These authors also encountered spurious solutions but only for § = % Systems with
S > % were studied without such difficulties.

The approach to solve the three magnon system in this thesis is somewhat
different. A Fourier transform of only the centre of mass is performed, which gives a
good quantum number for the translationally invariant general Hamiltonian, (1.4).
The other two coordinates which are required to describe the relative positions of
the magnons are kept in coordinate space. Because of this, the unphysical states
are easily identified. We used completely numerical methods to solve the system,
whereas the papers cited above mainly attempted to obtain analytic expressions
of the solutions. Only the formalism needed to describe the system is given in
this chapter. However, solutions to a restricted class of Hamiltonians which can
be obtained without the complete solution to the general set of equations are also
described. The method of solution to the full interacting equations will be described

in Chapter 4.
3.1 Formalism and Equations
An orthonormal set of three spin deviations are
[ 4,7,k) = Ci, SFSEsi|o) (3.1)
where Cjji is a normalization constant satisfying

S iFith
1 S s L
Ciji = /—-—-—852(251_1) , 2of {7,7,k} the same (3.2)
i=j=tk

\/245(25-1)(S=1) ’

and with the indices ¢ < j < k for the entire set of states. The general procedure
to establish the effect of 7/ on these states follows that used for the one and two

magnon excitations. When P, operates on these states, above, the resulting matrix
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is block diagonal. The two smallest blocks are of the same form as for free magnons
and for two magnons which are bound together (with the remaining magnon not
interacting with the others), respectively. The effect of P, on the states which
generates these submatrices are already known from previous chapters, (2.2) and
(2.13)~(2.16). The last block to consider corresponds to the case when the three
magnons are on the same or neighbouring sites. The resulting matrix, which is given
in the appendix, is transformed to a diagonal matrix to facilitate the calculation of
raising it to the n'" power.

The combination of all these matrices were sufficient to obtain the effect of H
on the complete set of states, in coordinate space and the details of these derivations
are also given in the appendix. The translational invariance of the Hamiltonian
enables a transformation to be made to a centre of mass coordinate (R) and two

relative coordinates (z, y). Specifically, the transformation

R = Yitj+k)
li,j,k)#]R,x,y), o= j—1 (3.3)
y = k-3

can be used. The coordinates were labelled such that ; <7 <k so that z,y > 0.
Representing these states as linear combinations of the eigenstates of the translation

operator gives,

1 o
| Byz,y) = —=> e Kio=j—iy=k—j) (3.4)
VN {5y

or

1 .
| K2,y) = TNZ@“’R’“IR,MN -~ (3)
R

2
where K is the wavevector of the centre of mass and Ka = —;;—n , n &€ Z. The
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Hamiltonian can be expressed using the following quantities

e = 3ay5) (3.6)

ai(S)(1 —cos Ka) = aAS)(1 + cos Ka)
S(45-3) (S—-1)(45-1)

g0 = 35(S—1) [

e a7)
a = 3 [P+ 5oy - oSy (5.5)
e = a1(5)+2<2§j>a2(5) (3.9)
s = 2[a1(5)+ 455_ 10@(5)} (3.10)
e = 2a1(5)+(zgj)a2(5) (3.11)
[ e,
v = ~Sas) (3.13)
o = G (ML) AN+ k=g,
o = —g{al(S)H*S [al(S)_zfgf)]} (3.15)
_ teds)/Ss—1) -

45—-1

where * represents the operation of complex conjugation and ¢ = e’s". The effect

of the Hamiltonian on the transformed set of kets, {| K;z,y)}, is as follows

H| K;0,0) = eo] K;0,0) +vo| K;0,1) +v3| K;1,0) (3.17)
H| K;0,1) = e K50,1) +u| K51,0) +vi| K;0,2) + w*] K;1,1)

+ug] K;0,0) (3.13)
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H| K;1,0) = el K51,0) +u™| K50,1) + 05| K;2,0) +w| K;1,1)
+uvo| K;0,0) (3.19)
H K;1,1) = & K1,1) +w| K;0,1) +w*| K;1,0) +w*| K;0,2)

+w| £;2,0) + 0] K;1,2) + 0| K;2,1) (3.20)
and for z,y > 1

HIK;0,y) = 5] K;0,y) + o7 K;0,y~1) + 0y K;0,y+1)

tw| K;1Ly—1) + w*| K;1,y) (3.21)
H| K;z,0) = el K;2,0) +v1| K;2-1,0) + o} K;2+1,0)

+w'| K52—1,1) + w| K;z,1) (3.22)
H K;ly) = el K Ly) + 0| K5 1y—1) + 0| K;1,y+1)

T K52,y ) + o] K;2,y—1) + w*| K;0,y+1) +

w| K;0,y) (3.23)
H K;z,1) = eo| Kia,1) +v| K;o—1,1) + 0% K;2+1,1)

+v]K;x,Z)—}—v*]]{;m—1,2)+w*][(;$,0)+

w| K;z+1,0) (3.24)
’}/-Z]K;x,y) = e]K;x,y)—{-v*lK;x—l—l,y)—{—v][{;m—l,y)

+v*| K;:c—l,y-{-l)-{—v][(;:v—}—l,y—l)—l—v*ll{;z,y-—l)

+o| K;z,y+1) (3.25)

The quantum number, K - the total wavevector, is common to all the equations
and should be understood implicitly for all that follows. Also, the ground state was
taken as the zero of energy.

Note that equation (3.25), by itself, describes the behaviour of the system when
the magnons are separated by more than nearest neighbours and depend solely on

ay(S). Also, when one of the magnons is further than nearest neighbours from the
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other two, (3.21)~(3.24), or when all three are exactly nearest neighbours, (3.20),
the equations depend on o4(.S) and ayS) only. When two magnons are on the same
site and the other is also on that site, (3.17), or a nearest neighbour to the other
two, (3.18) and (3.20), the equations depend on ay(S), aS), and aS). All ayS),
n > 3, do not appear for this system and are only necessary when considering four

or more magnons. The equations, above, can be represented graphically as

,\ S =
. e
- V -
e
. {g o
E iy °
, .
A 0 =
x
g

Figure 3.1: Graphical representation of the effect of the general Hamil-
tonian on states of the form | K;z,y ).

The grid coordinates label the values of z and y in the ket | z,y) and the lines
on the diagram represent the interaction between kets. The different types of lines

correspond to different interactions. The arrows point to states which are generated
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by the Hamiltonian when acting on the kets at the base of the arrows. But the
Hamiltonian can operate on any site and, for any nearest neighbour pair of sites, if
the Hamiltonian is made to act on the state which the arrow is directed toward, the
coupling which results is related to the appropriate interaction (u, w, v, vy, v1) but
the complex conjugate must be taken. In other words, the direction of all the arrows
can be reversed if the complex conjugate of u, w, v, vy and v; is used. The different
site markers indicate the coefficients which are associated with the self interaction
of the ket that the Hamiltonian is acting on. Finally, the Hamiltonian is a nearest
neighbour model so exactly one bond on the diagram can be taken in any direction
from any node.

A simple example can be read off as follows: Suppose, the effect of 2 on |0,0)
is desired. | 0,0) is equivalent to (z,y) = (0,0) on the diagram so, starting at the
leftmost site, there is a line to (z,y) = (0, 1), hence the Hamiltonian produces the ket
| 0,1) and the bond corresponds to vy so the entire term is vo] 0,1). Similarly, there
is an interaction to | 1,0) but this is in the opposite direction of the arrow, so the
interaction has the form vg| 1,0). The nearest neighbour model prohibits following
two interactions to get to |1,1) and there is no direct connection so this state
cannot be reached from | 0,0). Finally, there is the symbol on the (z,y) = (0,0)
site which indicates there is also a ] 0,0) term. Therefore, the entire effect is
H| 0,0) = 0] 0,0) +vo| 0,1) + v 1,0), as given in (3.17).

In general, the Hamiltonian will generate seven terms when it acts on any state
of the form | K 2,y ) and although the resulting equation does not resemble the two-
magnon equations, (2.31)~(2.33), these equations are of a tight binding form. This
becomes more apparent by considering a tight binding two dimensional triangular
lattice, for example a net of masses and springs. The Hamiltonian of F ig. 3.1 can be
mapped directly to such a net, if allowance is made for an edge in both the z and
y directions. The mapping is accomplished by taking the site quantities (g;, 7 =

0,1,2,3,4) as related to the size of the masses and the connections (u, w, v, vo, v1)
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as the strength of the springs. The existence of such a mapping indicates that the
formalism is not restricted to describing quantum spins on a chain. The formalism
can be applied to any system which is characterized by two coordinates (and satisfies
the condition of nearest neighbour interactions on a semi-infinite triangular lattice)
such as multiple particles on a one dimensional chain, which is the case we are
considering, or a single particle on a two dimensional net.

This system is similar to having defects in a linear mass-spring chain in that
the outer two surface layers are inherently different from the bulk of the net and the
four sites in the corner [(z,y) = (0,0), (1,0), (0,1), (1,1)] are different from both
the rest of the surface and the bulk. (These are the equivalents of the defects.)
Thus, the equation can be separated into three groups and the general solution
for each group can be obtained independently. However, the complete solution to
the three magnon equations requires these general solutions to change smoothly
across the boundaries between the groups. Because the Hamiltonian is mapped
to a two dimensional net, some differences from the solutions to a simple system
of masses and chains are to be expected but there are still two types of solutions,
scattering and bound states. The scattering states can be further divided into two
more classifications. First, there are those scattering states which propagate in the
uniform part of the net. These are described by equation (3.25), by itself. But
there are other states described by equations (3.21)(3.24). These are states which
form travelling modes that propagate along the surface and can couple with the
other travelling modes described above. Finally, there are solutions corresponding
to localized modes and these states are solutions to (3.17)—(3.20). Both types of scat-
tering states are discussed in the next section (Section 3.2). While the discussion of

the bound state solutions is deferred to Chapter 4.
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3.2 Three Magnon Continuum

The scattering states which propagate in the uniform part of the net are equivalent
to three non-interacting magnons on an infinite triangular lattice. This is apparent
in the form of the equation which describes these states, (3.25). Then, the energies

of the solutions must be bounded by the min/max of

Ey(ky) + Ei(ks) + Ey(ks) = e (1 — cos kya) + o (1 — cos kya) + oq(1 — cos ksa) ,
ki +ky+ ks = K

(3.26)

These extrema are given by
Emin(K) = 304(S) (1 — cos %) (3.27)
Emes(K) = 3a(S) [1 _ cos (@-—gﬁ)] (3.28)

and are plotted in Fig. 3.2.
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Figure 3.2: Extent of the three free magnon scattering
state continuum. Energy in units of aj.
Wavevector in units of Z.
The above argument gives no information on the detailed form of the state. This
would depend upon the conditions which must imposed upon the equation to match
the solutions between the region which is described by (3.25) and the region de-
scribed by (3.17)—(3.24). Referring to Fig. 3.1, the boundaries to these types of
scattering states are along = 2 and/or y = 2. Each of the sites along these axes
would have two constraints imposed upon it from the equations corresponding to

the Hamiltonian acting on the sites along z,y = 1. (ie. The constraints necessary

to keep the wavefunction continuous when crossing the region where the masses and
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springs are uniform, z,y > 2, and the region near the edges, z,y < 2.) The particu-
lar site at (z,y) = (2,2) appears to have four constraints but, due to the symmetry
of the net, two are not independent. Further, in the equations above there are four
degrees of freedom (two for each k;, ks, ks minus two for the constraint on the total
wavevector). With more degrees of freedom in equation (3.26) than constraints, a
solution can always be found with an energy which lies in the shaded region of Fig.
3.2. The boundary conditions which demand a smooth transition between the re-
gions are dependent upon the derivative of the functions used to enforce continuity
of the wavefunction and would simply double the number of degrees of freedom as
well as the constraints.

Whereas the equation for the previous continuum has the form of three free
magnons, the second scattering state continuum includes some interactions between
them. The equations which describe these scattering states, (3.21)~(3.25), define
travelling modes which can propagate along most of the edges but decay into the
uniform part of the net. These equations do not describe states which are represented
by the sites at the leftmost corner in Fig. 3.1. [ie. sites: (0,0), (1,0), (0,1), (1, ]
The form of the equations for this second scattering state continuum is the same
as for a travelling two magnon bound state combined with a single free magnon.

Therefore, this continuum must be bounded by the minimum and maximum of
E1(k1) + Eg(kb) , ki +k = K (329)

where we define E, as the excitation energy of a two magnon bound state and kj

is the total wavevector for the bound state. The form of E, varies tremendously

. S) . o :
depending upon the value of g, = gg((-s% in the Hamiltonian. For example, in the
841
45 —
25 -1
branch, which exactly meet over the entire Brillouin zone as shown in F 1g. 3.3.

there are two continua, one from each bound state

specific case of g, =
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Figure 3.3: Extent of the two-bound one-free magnon
scattering state continuum. Energy in units
of a;. Wavevector in units of =

If g, deviates from gg—:%, the two bands no longer meet over the whole Brillouin
zone and if g, is sufficiently different from this value there is only one bound state
branch and hence only one of these continua is present. For example the Heisenberg
model, g = 15— 1, has only the lower continuum. As the analysis for these

28

continua follow a similar argument as the three free continuum, these results also

contain no information on the detailed form of the states. However, there are still

more degrees of freedom than constraints (from the conditions to match the solutions
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between regions) so a solution can always be found. To be specific, the boundaries
of this region are between the sites (0,1) — (0,2), (1,1) — (0,2) and (1,1) — (1,2).
There are also boundaries between (1,0) —(2,0), (1,1)—(2,0) and (1,1)—(2,1) but
these do not give constraints independent from the first three. As for the degrees of
freedom, consider the bound state first. The component wavevectors for the bound

state, ky1 and ko satisfy
kbl + kbz - kl, (330)

These component wavevectors are inherently complex, so there are four degrees
of freedom for each constituent wavevector, but the total wavevector of the bound
state, ks, is real so the number of degrees of freedom decreases from eight to six. The
constraint on the sum of the wavevectors, (3.30), further reduces this to four. Now
consider the free magnon. This contributes two more degrees of freedom but with
the constraint on the total wavevector, equation (3.29), the final total of the degrees
of freedom is four with only three remaining constraints. Therefore, a solution can
always be found with the energy of the solutions within the continua described
above.

These different continua (the two-bound one-free continua and the three free
continuum) overlap to a large degree with no gaps so that the scattering continuum
for a three magnon excitation can be taken as a single band which extends from
the continuum which attains the minimum energy to the continuum which achieves
the maximum energy. The band edges which are internal to this single continuum
band generate Van Hove singularities in the band. The scattering state continuum
is important when identifying the bound states which arise from the solutions to
the few remaining equations, (3.17)—(3.20). A method of solution for these bound
states is described in the next chapter, Chapter 4. However, there are a number of
models which can be considered without resorting to special methods of solution.

These are the special integrable models introduced in Chapter 1. The Hamiltonians
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for these models have certain simplifying features which enable most of the models
to be solved directly from (3.17)—(3.25). The models and solution are given in the

next section.

3.3 DBound States and Integrable Models

Consider, initially, the Lai-Sutherland model where ayS) = 0 and ay(5) = ay9).
This gives w = 0 = vo, completely decoupling the site corresponding to | 0,0),
three magnons on the same site. This also has the effect of isolating the region with

z,y > 1 from the rest of the sites as shown in Fig. 3.4, below.
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Figure 3.4: Diagram of the Hamiltonian for the Lai-
Sutherland model.
For the latter region the equations reduce to the form of an integrable S = % system
of three magnons. The solutions, therefore, have the form as those given by Bethe
and consist of two scattering state bands, as described in the previous section, and

ay(S)

a single bound state branch with energy —5 [1 —cos(Ka)]. The former region
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has only the one site which implies the state is an eigenstate with energy &o =
aq(S) [I — cos(Ka)]. Therefore, this state behaves as a single free magnon. The
middle region, consisting of the surface layer along with the interaction between
| 1,0) and | 0,1), contain states with two magnons on the same site combined with
one free magnon. If the part of the Hamiltonian which defines the behaviour of
these states, only, is transformed to a tridiagonal form, the Hamiltonian takes the
form of a semi-infinite mass-spring chain with one defect at one end. This is the
same as was found for a two magnon excitation in Chapter 2 for S = % In Chapter
2 the system was treated generally, but if the resulting equations are restricted to
S = %, the size of S prevents raising the spin of any one site by more than one, which
removes the first mass (m”) and spring (&) from Fig. 2.2. This gives a single mass
defect at the beginning, with the remaining masses and springs uniform. Therefore

the solutions must also have the same form as the two magnon equations, namely

K
a band of scattering states bounded by Econs = 201(5) [1 + cos(Ta)] and a bound

state of energy Fp = Eﬂzﬁz [1 — cos (KZ—@)} (as given by Bethe).

The other special integrable model is the Temperley-Lieb Hamiltonian. These
models have o; =0, ¢ # 25. When S =1, €q, €, vo and v are all 0, decoupling the
first two layers, excluding | 0,0), from the rest. For any of the states in the uniform
part of the net in Fig. 3.1 (ie. z,y > 2) and | 0,0), 7/"2] z,y) =0and F =0 is
the only solution. The remaining part (Fig. 3.5, below) is more easily treated using
a method described in the following chapter, so that the solutions to this model
will be given along with the results for the more general Hamiltonian, later. The
diagram of the Hamiltonian follow the same conventions used for the diagram of

the general Hamiltonian, Fig. 3.1.
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Figure 3.5: Diagram of the Hamiltonian
S =1 Temperley-Lieb model.

for a

Quite different from the S = 1 case, the S = g Temperley-Lieb model can be

treated quite simply. The Hamiltonian has only &q, &1, vo, u

g = %[l-wos(](a)]
&1 = %
v = )
v = ¢

4

taking ay.S) = «. Graphically,
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non-zero. Explicitly,

(3.31)

(3.32)
(3.33)

(3.34)



Figure 3.6: Diagram of the Hamiltonian
for a § = £ Temperley-Lieb
model.

As for the S = 1 case, the only solution to any of the states outside the region

shown in Fig. 3.6 has £ = 0. Using this restricted number of states, the Schrodinger

equation gives

(E —€0)]0,0) —v*[1,0) — | 0,1) = 0 (3.35)
—0]0,0) + (E —&1)] 1,0) —u*] 0,1) = 0 (3.36)
—0*0,0) —u| 1,0) + (E—&)]0,1) = 0 (3.37)

which have solutions given by £ =0, « [1 — 3 cos(K a)]. These are plotted below.
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Figure 3.7: Bound state solutions of the S = % Temperley

-Lieb model. The energy is in units of o and
the wavevector in units of Z.
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Chapter 4
[ethod

The

4.1 Green’s Function

If all the eigenvalues and eigenvectors can be found for the Hamiltonian then the
complete solution to the equations (3.17)-(3.25) has been obtained. Unfortunately,
the calculation of the eigenvectors and eigenvalues for this system, requires methods
which are very complicated and/or computationally expensive. However a modest,
but important, amount of information can be obtained from the equations without
resorting to such complex methods. Consider the density of states for this lattice.
When the three magnons are bound together as a single entity there would be a non-
zero number of states over some infinitesimally small region of energy. Hence, these
would appear as delta functions in the density of states. Also, some configurations
may have a significant number of states over a small but finite energy range, giving
a peak rather than a delta-function. These peaks can be resonances or possibly
Van Hove singularities. Finally, states which are infinitesimally close to each other
in energy (as in the continuum bands) would have wide ranges of energy where
the density of states would be non-zero. Although we would not have the precise
eigenstates, by studying the density of states we could obtain the energies which each
different type of state could possess. Also, the formalism to this point has identified
one good quantum number, the total wavevector K, which can be incorporated to

further enhance the amount of knowledge about the system.
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As a brief aside, consider an arbitrary ket, | 7), in the three-magnon basis

which can be expanded as follows
[i)=2_alX) (4.1)
A

where {| A)} is a complete orthonormal set of states such that 7| A) = E,| A ), and

E) are the energy eigenvalues of H. The local Green’s function is defined as

Gj(Ec) = (JI(Ec_ﬁ)—‘l!]}? E.eC

| |?
4.2
E;"Ec—EA (#2)

The poles of G; occur on the real axis at the energy eigenvalues F). The energy E,

is a complex quantity, but if we restrict ourselves to energies near the real axis, we

can take B, = F+ie, |e|< 1. Then

o 2 (£ —E,) o €
G=Llol G gyre ‘Eonyse (43)
and in the limit
limg [Im(G5)] = == 3 | s [* 8(B ~ ) (4.4)

(See, for example, R. M. White [23] or E. N. Economou [24].) Thus, the imaginary
part of the local Green’s function is proportional to a sum of delta functions and is
non-zero only at energies where eigenstates exist. The density of states local to | j)

(not an eigenstate) can be defined as

n; = -—%Im G (E +ie)] (4.5)
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and the total density of states, n, is obtained by a sum over all the kets in the basis

n:an
J

= LS mieE+ie) (4.6)

)

The real part of the Green’s function can be related to the Hilbert transform of
the density of states and gives an indication of the difficulty of exciting the system
at an energy, E [16]. If the chosen state, | j), has some special symmetries with
respect to the Hamiltonian then some of the coefficients ¢y = 0 for {N'} C {}},
and there will be no contribution from these states to the local density of states
for | 7). In practice it is very unlikely that a state would be accidentally chosen
which has a significant number of the cys = 0 to be problematic. However, there are
two classes of states which may accidentally be chosen; states which are completely
symmetric or completely antisymmetric. In fact it was observed that for the S = 3’2—
Heisenberg case, one of the bound states has no symmetric components, but this
was not common and fortunately kets with either of these types of symmetries are
easily identified.

When using a matrix representation, the local Green’s function can be taken
as a single matrix element of the operator (F — 7/‘2)”1 and without loss of generality,
we can choose the Gog element which gives

Migg

2~ H))

_ 47
[E—H]) (1)

Det

——~

where Mi; ([E - 77]) is the minor of element ¢,j for the matrix [E — H]. But
the Green’s function would be of little value if it was difficult to calculate, and for
some choices of sets of bases the calculation is trivial, such as a basis where the

Hamiltonian is diagonal. In general, the appropriate basis which diagonalizes the
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Hamiltonian is difficult or impossible to find, but it is always possible to find a set
of kets which transform H to a form where it is tridiagonal and symmetric, given

‘H is hermitian, ie.

hoo  ho
hor hi1 hip 0
H = hiz haa has (4.8)
0 h

hn—l n hn n

When the determinant and cofactors in (4.7) are expanded and the form of Hamil-

tonian in (4.8) is used, the Green’s function becomes

Mioo (|2 - H])

Goo(E) = (E — hoo) Mioo([E - 7'\(]) — ho1 Mig; ([E — ﬁ])
1
B oy — o Mer (12— 7)
00 — o1 o ([E - ’ﬁ])
1
) mn 4.9
E—he — Mioo(Miol([E_H])) (4.9)
00 — gy 100 ([E — 7/-[])

Mioo (Mi01 <[E _ 7/—2])) 1s of the form Mioo ([E — 7/—[\/]

Migo ([E — 7’7]) Det ([E ~ 7/_{\/]) where H is the

The factor

minor of 7 for the 0,0 element. This term has the same form as (4.7). Therefore,

the local Green’s function can be represented by the continued fraction

(4.10)

Goo(E) =
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There is still a difficulty in that the basis which tridiagonalizes the Hamilto-
nian needs to be found. There is a method which can be used to easily find the
tridiagonal form of the Hamiltonian and it will also generate the basis states which
would produce the transformation as well, but it is the elements of the tridiagonal
Hamiltonian which are the useful quantities in our case. This procedure is known

as the Recursion Method and it is described in the following section.

4.2 Recursion

Although there are some standard routines for tridiagonalizing a matrix, the most
efficient method, in this case, is the Recursion Method. This procedure has been
extensively documented with the most complete treatment given by R. Haydock

[16] for electronic systems. The method relies extensively on a three-term recursion

relation of the form

ﬁui = a;u; + bipqusyr + bju;_y (4.11)

where a;, b; € R and u; is the " state of an arbitrary complete orthonormal set of
states. To start the procedure, define u_; = 0 and some arbitrary state uo, then

define a normalized state, u;, from
7/"ZUQ = QgUg -+ blul (412)

Taking u; as some presently unknown state but presumed to be orthogonal to uq.

1t follows that

ag == u;’;’ﬁuo (413)

blul == ﬁuO—aolto (414)

In general, there will be a third term in (4.14), ie. (4.14) becomes bipquiy; =

Hu; — a;u; — biui_y. We can take by (bi+1) as the normalization factor for uy (u;y).
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By iterating this procedure, the set of states {u;}, can be found which will transform
the Hamiltonian to the desired canonical form and the resulting tridiagonal matrix

will contain the a; and b; as its elements. To be explicit, if a vector in the new basis

Uo
. U |, o
with the form u, | 19 used, the Hamiltonian becomes

Ug ag b]_ Up

N TH bi a; by 0 Uy
H uy | = by ay b g (4.15)

0 .
For some choice of initial ket in the three-magnon basis, ug = | z,y), each

successive application of the above procedure with the nearest neighbour Hamilto-
nian, represented in Fig. 3.1, can only couple to the kets in neighbouring columns.
For example, if ug = | 0,0), then after the first iteration, u; involves the kets | 1,0)
and | 0,1). The second iteration yields a uy which can involve some combination of
|1,0) and | 0,1), which is linearly independent from u;, as well as terms involving
|2,0),10,2) and | 1,1). The new state formed at each iteration is constructed
to be orthogonal to the previous two states, thus to find the next basis state only
these two states need be known, along with the Hamiltonian which connects them.
This process will map the system onto an effective tight binding chain which is in-
homogeneous, and for any initial choice of ug, there is a one to one correspondence
between the a; and b; to the masses and strength of the springs, for a mass-spring
chain. However, the precise values will change depending upon the choice of initial
ket.

For this semi-infinite chain, the recursion process continues indefinitely, which
creates a difficulty: when and how to stop the procedure. There are a number of
important possibilities for the behaviour of the a; and b; coefficients for large 1.

The coefficients may approach constants, form some kind of periodic oscillations or
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simply vary randomly. The last case, random values of a; and b;, correspond to a
random net of masses and springs. This would not be expected for the Hamiltonian
given in Fig. 3.1. As the number of iterations increases (ie. moving further to
the right of the diagram) the columns become longer, and locally, it more close-
ly approximates a uniform net. Therefore, we expect that the coefficients would

approach constant values.

4.3 Termination of the Continued Fraction
4.3.1 Constant Coefficients

The easiest case to treat is when the coefficients a; and b; converge to constant

values. The asymptotic “tail” of the continued fraction for the Green’s function can

be easily evaluated exactly. To show this, let

a; a . .
bi b } fOI‘ 1> tmax (4—16)
or the a; and b; are constant for all recursive iterations after the (imax)th iteration
then
1
G(E.) = - (417)
Ec — Qg — ! b2
Ec — a1 — 2
—
EC - a’ima.x — Hmax

Goo

where we represent the infinite tail of the continued fraction by

B2
GOO(EC) = B2
E.—a— 7
E.—aq— —
b2
T E.—a- Gu(E.)
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[Ec ~at /(B —a)? - 462] (4.18)

DN

This is known as the square root terminator and the choice of the positive or negative
square root depends upon whether the energy was initially taken in the upper or
lower half of the complex plane, or equivalently if £ — a is positive or negative. As
examples, we will consider the case of a uniform semi-infinite chain and one magnon
excitations on a uniform infinite chain, which corresponds to a semi-infinite chain

with only the first spring different. The one magnon excitations give coefficients

Ry V20 i=1
az—a‘t/zandbz-—{b P41 so that

E—a—Gy

E—aF/(E - a)? - 407

(E—a)?— 40> T (E — a)y/(E — a)? — 41?2
+1

- NG (4.19)

FE—qa—

For single magnon excitations there cannot be any bound states, and there is a
continuum which can be found by calculating the (real) energies where G' contains

an imaginary term, or when

(E—a) -4 < 0

(4.20)
a—2b < E < a+2b

Therefore, the imaginary part of G is non-zero when By = a—2b< E < E, = a+2b.
The asymptotic values of a; and b; are related to the minimum energy, F;, and the

maximum energy, F,, by

1

a3



1
These are merely the edges of the band and the behaviour of the density of states
within the band can only be obtained by considering the Green’s function with

complex energies. The real and imaginary parts of (4.19) for complex energies are

shown below (Fig. 4.1 and Fig. 4.2, respectively).

20

10

Rs(G)
(=2

._.10..

=20+ - . . T
~1 0 1 2 3
Energy

Figure 4.1: Real part of the Green’s func-
tion for one magnon excita-
tions on an infinite chain. En-

ergy in units of o;.
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15+

Im(@)
<]

=1 0 1 2 3
Energy

Figure 4.2: Imaginary part of the Green’s
function for one magnon ex-
citations on an infinite chain.

Energy in units of «j.

For the uniform semi-infinite chain, the Green’s function is

1
G(Ee) = E.—a— Gy(E.)
- % [Ec ~aF/(E.—a)? — 462] (4.23)

which has real and imaginary parts as shown below, for the arbitrary values of a

and b of 4 (units of ;) and £, respectively.
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Figure 4.3: Real part of the density of states

for constant coefficients. The val-

ueofa:élandb:%inunits of
5.
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Im(G)
~

1 2 3 4 5 (3] 7
ENERGY

Figure 4.4: Imaginary part of the density of s-
tates for constant coefficients. The

a

value of ¢ = 4 and b = $ in units
of 7.

4.3.2 Oscillating Coefficients

The asymptotic behaviour of the coefficients contain information about the general
features of the scattering state band. C. Hodges [25] showed that internal Van Hove
singularities led to oscillations in the coefficients but they eventually decay to give
constant values of a; and b; if the recursion process was carried out far enough. The
coeflicients will always converge to constant values when there is a single band.
However, multiple bands give rise to non-decaying oscillations of the coefficients.
This has been extensively studied in the past, [26]-[29]. The analysis given below

approaches the problem somewhat differently than in [26]-[29] and only the specific
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case of a single gap is considered. However, the references given above provide a

general analysis for multiple gaps.

Consider the asymptotic region in the continued fraction when the coefficients
oscillate between exactly two a and b pairs, say, a1, bs, ag, by, ay, by, ay, ---. Then

the Green’s function can be represented by

1

where
62
Goo = 2 b2
E— ayg — L 3
E— ay — bz
_ b3
- 2
E — ag — 61

E*dl—Goo

- g(E—l_a—z—j{(E—~a1)(E-—a2)+b§—bf

£V[(E — a1)(E — ) + 0% — b]* — 403(E — a1)(E — az)} (4.25)
Now, consider only the square root term

(B~ a1)(E — a2) + 8 — 8] — 4b3(E — a1)(E — a3) =
(B = a1)"(E — as)* = 2(E — a1)(E — a2)(b; + b3) + (b — b3)*  (4.26)

which can be factored to (£ — A )(E — X\2)(E — \3)(E — A4), where

A o= [al + ay — \/(al —az)? 4+ 4(b; + bz)z] (4.27)

Ay =

DO B b

[a1 + a2 — /(a1 — a2)? + 4(br — 52)2} (4.28)
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[a]_ +ag + /(a1 — ag)? + 4(b; — 62)2] (4.29)

/\4:

S R S

[al +az+ yf(ar — az)? + 4By + WJ (4.30)

with A1 < Ay < A3 < Ay To find the regions where the density of states is non-zero,
the imaginary part of G is taken with £ = F + ie. Then the square root term
can be expanded (for ¢ < 1) to give an imaginary part which is proportional to €
when £ < A, Ay < E < A3 or E > Ay, so that in the limit of € — 0, the density
of states is also 0. However, when \; < E < Xy or A3 < E < ), there is a term
independent of ¢ in the expansion which gives a non-zero density of states for these
regions. Hence, the A\; may be identified with the E; of two bands extending from
(Br, E3) = (A1, A2) and (Es, Ey) = (A3, As) with a gap when )y # X5. The graphical
representation of the Green’s function is shown below, taking the arbitrary values

a1 =4, a3 =6, by =1 and by = 2 (units of &y).
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Figure 4.5: Real part of the density of states for
alternating coefficients. The value of

ay =4and a3 =6,b; =1, b6, =21n
units of aj.
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Im(G)
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0.5

0.0+

Energy

Figure 4.6: Imaginary part of the density of states
for alternating coeflicients. The value
of a3 =4 and ay = 6,0, =1, by = 2
in units of o;.
In general, a sequence of a; and b; which has a more complicated pattern of

oscillations produces more gaps in the scattering state continuum, but the oscil-

lations and/or the Green’s function is always characterized by an integral of the

dt 2n
form I = / \/m where X (t) = [[(B: — t) for n scattering state bands bounded
t i=1

by (E1, Ez), (Esy E4), -+, (Ezn-1, E2,). The integral is characteristic of a general
class of periodic functions, Abelian or hyperelliptic functions, to which the usual

trigonometric functions are but a special case.

The process of finding the periodic function from the energy spectrum is re-

lated to what is known as the Jacobi inversion problem and is treated generally by

61



M. Toda [28]. The method of solution for the inversion problem can be applied
to extract the observed periods of the oscillations in the coefficients. This requires
taking linear combinations of integrals, /, over various energy ranges.

There exist relations between the coefficients and the energy limits of the
bands which can be used to show that the amplitude of the oscillations are related
to the width of the gaps [29]. (Multiple gaps generate a sequence which will appear
as several different oscillations superimposed on one another with the amplitude of
each oscillation varying with the corresponding width of each gap.) For the case of
one gap the oscillations in the coeflicients are related to the simplest of the Abelian
functions which are elliptic functions, and if the gaps are small, the amplitude of the
oscillations are also small and the elliptic functions can be accurately approximated
by trigonometric functions [29]. The calculation of the integrals requires knowledge
of the energies of the edges of each band and fortunately, the asymptotic behaviour
of the coeflicients have little effect upon the energies of all the band edges and the
bound states. The exact form of the termination equation only influences the shape
and number of states within any bands. Therefore, the Green’s function or density
of states can be calculated by first approximating the tail of the continued fraction.
Then, the energies for the band edges and bound states can be found to calculate a
more accurate tail for the continued fraction. This in turn is used to find a Green’s
function which is a better representation of the density of states. The scattering
state band did not actually have any gaps for any of the cases which we consider
but the theory surrounding oscillations in the asymptotic values of the coefficients
was useful in the understanding of a peculiar numerical effect which was observed.
This is elaborated in the next section when we consider a specific example of the

S = % model.
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4.4 Spin 1/2

The spin 3 case is unique since all Hamiltonians of the form (1.4) are integrable
regardless of the value of ¢;, 7 > 1. Therefore, the solutions are well known and
can be expressed analytically. The solutions must take the form used in the Bethe
Ansatz, providing a means for a direct comparison between results obtained through
the recursion method and exact results.

The application of the recursion method to this system requires the selection
of an initial state which corresponds to a vertex on the Hamiltonian diagram, Fig.
3.1. Since the z and y coordinates represent the separation of the magnons, clearly
the edges and the apex at the left are unphysical as this has z and/or y equal to
zero and corresponds to a single spin being raised by more than one. When the
parameters which describe the Hamiltonian (o, €1, -+ -, €4, €, vo, vq, v, u, w) are
evaluated, the unphysical layer completely decouples from the rest. Graphically,

this unphysical Hamiltonian takes the form shown below

<> y

1

- T - v

* &
¢ &

Figure 4.7: Graphical representation of the unphysical
part of the Hamiltonian for S = %
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If the unphysical nature of these states are ignored and the recursion method applied
. 1

using the states up = | 0,0) (a symmetric state) and uy = 7 (¢*11,0) —¢|0,1))

(anti-symmetric state), then the recursion coefficients converge extremely rapidly

to constants and the Green’s functions are given by

4o(FE—-1)—1
Comm = (B 1) =3 (B3] + 6 (+:31)
4o
Glanti (BT =1 (4.32)

where o = % [E -3+ \/(E —4(E - 2)] These functions have poles at £ = 2 and
E = g respectively. Both of which are completely independent of the wavevector, K.
This latter energy corresponds to one of the solutions found by Millet and Kaplan
[22]. For the physical states it is known that there is a single bound state below

S yG -

3

cos Ka). There is also a single connected scattering state band bounded by E =

{ +2
2—;; [3 — /4 cos(Ka) + 5] and F = 3¢y [1 — €Os (I —I{; W)] This band is comprised

of two types of scattering states as described previously. There is a large degree of

the scattering state band which has a dispersion relation given by E =

overlap between the two-bound one-free and the three-free continua, but the lower
edges of both continua are quite close to each other while the upper edge of the
two-bound one-free continuum (the smaller one) is far from any of the edges. This
internal edge appears as a Van Hove singularity in the density of states.

When the recursion method is applied to any state contained within the phys-
ical part of the Hamiltonian the resulting coeflicients rapidly converge (~ 20) to
nearly constant values. However, the singularities in the continuum may produce
visible oscillations which are still noticeable after a large number of iterations. It
is therefore necessary to continue the method well beyond 20 iterations and, as the
resulting states are normalized, the individual contribution of some of the kets will

approach machine zero. This computer limitation has significant effects on the re-
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sulting coefficients in the form of anomalously large deviations from the values to
which the coeflicients converge. These deviations can be demonstrated to be strict-
ly numerical in origin by calculating the recursion coefficients at various precisions.
For example, using single precision calculations in Fortran 77 the anomalous devi-
ations repeat fairly regularly with a period of approximately 34 iterations and the

first appears at the 38™ iteration. The a; are plotted below to 285 iterations at

K = (Fig. 4.8).

Yy

iteration Number

Figure 4.8: Single precision a; recursion coeffi-
cients for § = —% at K = .

By changing to double precision, the first deviation does not appear until the 77

iteration and the period of repetition is almost exactly double at 67 (see Fig. 4.9).
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v vy

lteration Number

Figure 4.9: Double precision a; recursion coeffi-
cients for S =1 at K = .

Performing the calculation at quadruple precision moves the first deviation to the
15274 jteration. But due to limitations of the computer system used to provide the
quadruple precision calculation, it was not possible to generate enough coefficients

to determine a period.
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lteration Number

Figure 4.10: Quadruple precision a; recursion co-
efficients for S = 1 at K = .

There is also a slight accumulation to the error, as can be seen in the single precision
calculation. There is a slight decrease in the periods.

Aside from the small decrease in the period, the periodicity in the coefficients
is quite consistent. It appears to be an unusual case of oscillations in the coefficients,
which indicates a gap in the band. The exact solutions do not exhibit any such gap,
however we can imagine one if the bound state is treated not as a delta function,
but as having a very narrow but finite width equal to the smallest number that
the computer cannot distinguish from zero for each precision. This interpretation is
supported by the appearance of the coefficients in the graphs, above. As was given
earlier, the behaviour of the coefficients are described by hyperelliptic (or Abelian)
functions and in the limit of narrow bands these functions tend to have relatively
abrupt peaks or valleys separated by wide flat regions (as shown in Toda [28]). The
paper by Turchi et al. [29] gives an example of the analysis of a band with one gap.

Following the same procedure, a similar analysis can be performed for this limit of a
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very narrow band. The oscillations are characterized by a differential equation which

dt
VX (@)

(when X is quartic in #). The function X(t) = J](E; — ) requires knowledge of
i=1

the energies of the edges for each band and at K = 7 the energies for the scattering

contains a term of the form , which is also characteristic of an elliptic function

state band is 1 and 6 (units of o) and there is a bound state at 2. Taking the

double precision case and the machine accuracy to be approximately 10714, the

energy bands extend from (B, B,) = (2 — 182 2 4 1077y g Es, Ey) = (1,86).
g 3

3 2 2

One of the periods for the elliptic function can be taken to be

B gt
K = 2 /E T

2.2
N \/(E4 — Ey)(E3 — Ey) e
= 2-25.4816 (4.33)

where K is the complete elliptic integral of the first kind and

E3—Ep)(Es—E;
qg = (Ez—Ez)(Ea~E1) ~ 1 (4.34)
. B dt i
The second period can be related to J = /E X ) There are two equivalent
t

choices for [£, E'] up to a multiple of £, ie. (—o0, By] and [Ey, 00), so let

B dt
J1 = ~r

oo X (1)

2
- \/(E4——E2)(E3——E1) f(:“aQ)

= 25.0985 (4.35)
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o dt
J2:

B X(t)
2
= F(v,q)
V(Bs— B;)(Es — Ey)
= 0.383119 (4.36)
taking
sin(p) = —4—254:51 1
(4.37)
sin(v) = —3—L§‘4”E %

and F is the elliptic function of the first kind.
As the two J; and J, are equivalent it is easier to use small wavevectors and
we shall take J = J,. The period of the index for the recursion coeflicients, n, is

given by

mJ = IK, leZ

1K
- = (4.38)

And using the smallest positive [, n = 67 (for the nearest integer)which is in agree-
ment with the observed period.

The calculation can be generalized to an arbitrary band width, v centred on
an energy F so that By = E -2, Fy, = E + 3 and the other two band energies are
E3 and E4. Then

K = /+1\/_.

= \/(E4 = EZ)(E3 ) K(q) (4.39)
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and

_ | (B = By)(By— E)
= \ (Bs— E,)(Es — Ey)

_ F*d@ﬁEJ{L‘mﬁ%q
1

T 2(Es-E) 1+ 2(E4—E)

2 3
g 2 2
_ 1
“+E4—E+2<E4—E>2+4<E4—E>3+ |
2 3 %
¥ v g
- _ .. 4
[ &-E+%&—EP WB—Bp ” 40
Assuming v < Es, Fy
Ey— E;
=.,|1- A4
d \J dleeremr) )

To be specific we can take the smallest of Ji or J; to be

2
J=J,= \/(E4 Ty ey Fv,q) (4.42)

. ’ Es —E+7
sin(v) = —E—4—_—ET§— (4.43)
2

Then the period of the oscillations is related to

and

8 (4.44)

and when ¢ ~ 1, F(v,q) ~ 2K'(g) In tan(% + %), where ¢’ is the complementary
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modulus, defined by ¢ + ¢ = 1. Then

K 7K (q)
2J 2Intan(s 4 £)K'(¢")
In(£)+L(In2 —1)¢" + ...
5 U (q)?r 1 il )q (4.45)
As well,
1 Ea:E

. o~ —— [1+ ! E4§~E} (4.46)
n an(§ + Z) Intan (5 5% 8In tan ( E“i—_E>

Since ¢ ~ 1 — ¢’ ~ 0 and by ignoring all terms of order ¢" or smaller then
q q g g

(4.45) along with (4.41) and (4.46) gives

9

).
2J 1ntan(§+§)
: WE=
) In(4) — In q’]
Intan (3,/B=E { 81n tan (1,/2=E [In(4) — In(q")

- _111{1—1+7[(34_E_:J)_(£3—E)”

o —In(y) (4.47)

This shows that the period of the anomalous deviations in the coefficients vary with
the logarithm of the width of the narrow band (taken to be machine zero).
Another indication that the bound state is not being treated as a delta function
can be shown by studying the relations between the coefficients. This was also done
by Turchi et. al. [29] and was accomplished by comparing a series expansion of the

Green’s function from its continued fraction representation with a corresponding
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series using the analytic expression for Goo. A relation was found between a;, b; and

the limits of the energy bands. For a single gap, the exact relation is
(A +EA+ B 12B°) = X(—F - 4) (4.48)

where A is related to the a; coefficients but extended to a continuous variable and

similarly B is related to b;. Also,

2n
B = - 3F (4.49)
=1
" 1 | R
E' = >N EBE - -E (4.50)
2i<j 2
2n
X(@) = [(E -2 | (4.51)
=1

Equation (4.48) can be viewed as a relation in the phase space of a; and b? and
1s dependent upon the values used for the energies of the band edges. A change
to any of the energies could alter its graphical appearance significantly. A plot is
shown below for the double precision calculation. The solid line is (4.48), taking

Ey=2— 10;14, By, =2+ LZ_M, E3 =1 and E4 = 6 and the two types of symbols

represents (a;, b7) and (a;, b?_,) pairs. Because of the ambiguity of the numbering
of the starting coefficient, the relation holds for both sets of pairs. The first 50

coeflicients have been ignored as the analysis is valid only in the asymptotic region.
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Figure 4.11: Phase space relation between q;, b2 (given
by ©) and a;, b7, pairs (given by +).

The values where the coefficients are essentially constant appear at the lower right
corner whereas the points which corresponds to a major deviation is distributed
along the rest of the curve.

A final observation which can be obtained from F ig. 4.8-Fig. 4.10 is that the
amplitude of the major deviations are essentially constant at 0.33 and the asymptotic
value of a; is 3.5. This in agreement with the predicted values. The asymptotic
value of a; should be the energy which corresponds to the middle of the continuum

1
band, —;—-6 = 3.5, and the amplitude should extend across the width of the gap,
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2 : : .
1—-=-= 3 When the bound state is below the continuum the deviations, for the q;

coefgcients, extend to values less than the asymptotic a. But a bound state above
the band would generate a sharp peak rather than the valleys, as in Fig. 4.8-Fig.
4.10, and although these deviations are a numerical effect they can be used to locate
the position of bound states if they are separated from the continuum by a large
enough gap to produce visible oscillations.

The accuracy that the phase space relation agrees with the data, along with
the ability to calculate the period of repetition of the anomalous deviations and
the shift of the deviations with changes in the accuracy of the calculations, are
convincing arguments for regarding the deviations as simply numerical limitations
of the computer system which was used. These limitations result in a 1ON-Zero
width for the bound state but do not affect the energy of any bound state or band
edges. The inclusion of the deviations only alters the magnitude of the density of
states slightly and since only the local density of states is considered, this is of little
consequence. Therefore, the constant termination can be used while carrying out the
recursion calculations to a large number of iterations (to ensure that the asymptotic
region has been reached) without concern that the deviations are altering any results.

These observations are presented in the next chapter for various Hamiltonians and

for several values of S.
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Chapter 5

Non-Integrable Models

The recursion method described in the previous chapter was implemented using
Fortran 77 and applied to several general systems containing three magnon excita-
tions. The size of the spins on the chain naturally divide into several classes. When
S = % only the uniform part of the diagrammatic representation of the Hamiltonian
(Figure 3.1) defines the behaviour of the system for the physical states. This was
described in the previous chapter and agrees completely with the results obtained
by Bethe [7]. When S = 1, the physical part of the Hamiltonian includes the
edges of the diagram (Figure 3.1) but not the single ket, | z,y) = ]0,0). Since
there are differences in the effective Hamiltonian between the two cases, qualitative
differences in the behaviour of the system is expected. Similarly if S = g’-, the ef-
fective Hamiltonian changes once more and includes | 0,0). However, if S > 3. the
effective Hamiltonian no longer changes and no significant qualitative differences
are expected (for three magnon excitations), in terms of the energies of the bound
states and continuum edges for corresponding wavevectors. Therefore, only systems
with § = %, 1, g were studied. For each value of the spin, the Hamiltonian may
be changed by altering the value of ay or 3. These parameters can be changed
continuously over all non-negative values so that an infinite number of models can
be studied. In general, only the behaviour near the integrable models of Takhtajan
and Babujian ([10], [11]) are of interest and the values for a; were kept relatively

close to this integrable point.

75



In order to observe the behaviour of any particular system, a set of 500 recur-
sion coefficients were generated for several fixed values of total wavevector, K, over
the non-negative half of the first Brillouin Zone. The results are presented using
the reduced zone representation and the Brillouin Zone is symmetric about K = 0
so only one-half of the zone is needed to determine the systems’ behaviour over the
entire zone. Mostly, the values chosen for the total wavevector were (in units of
2) 0, %, %, % and 1. Occasionally, it was necessary to use several more choices of
wavevectors in certain energy ranges in order to obtain a more complete picture of
the behaviour of the system.

The generated set of coefficients were used in calculating the Green’s function
for any energy range of interest, for the particular wavevector which was used to
generate the set of recursion coefficients. Any bound states were clearly identified as
such since they virtually appeared as delta functions but most resonant states could
not be as easily distinguished from singularities for many of the systems which were
studied. The method of classification of peaks into resonances and singularities
was highly subjective and mainly involved choosing several relatively large peaks
as possible resonances and observing their behaviour as the total wavevector was
changed. Since the change in wavevector was always discrete, it could not be certain
which peaks correspond to the same structure between different wavevectors and this
difficulty was resolved by simply assuming the peaks would move smoothly across
the Brillouin Zone.

The size of any resonant peaks is dependent upon the choice of initial ket and
a number of different choices were tried for a few models, but it was observed that
the structures in the density of states have edges with energies that are essentially
independent of the choice of the initial ket. The main exception was those choices of
initial ket which have symmetries that mirror a symmetry of the Hamiltonian such
as kets with the relative coordinates z = y (ie. kets along the central horizontal axis

of the diagram, Figure 3.1) or an antisymmetric combination of kets. This effect
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was particularly evident for the S = % Heisenberg model where one bound state can
be removed by choosing a completely symmetric initial state (see Fig. 5.24). For
convenience, the initial state was almost always chosen to be |z,y)=11,0) and is
a combination of symmetric and antisymmetric kets.

In order to observe the differences between the general models and the inte-
grable ones, the models of Takhtajan and Babujian will be described briefly. The

dispersion diagrams for the S =1 and § = % are shown below.
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Figure 5.1: Behaviour of three magnon excitations
for an integrable model S = 1 spin chain.
Energy in units of o4 and K in units of
Z. The solid lines are bound states, and
the shaded region is the scattering state
continuum.
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Figure 5.2: Behaviour of three magnon excitations for an
integrable model S = % spin chain. Energy
in units of oy and K in units of 2. The solid

lines are bound states, and the shaded region
is the scattering state continuum.

In both the S =1 and the § = —g cases, the bound state branches meet exactly at
the Brillouin zone boundaries and these remain true bound states across the entire
Brillouin zone even for the middle branch. (In an extended zone representation it
can be seen that the branches do not actually enter the continuum and hence do not
become resonances.) The number of branches is determined by the minimum of 25

or the number of magnons which are present in the system (in this case 3). These
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. — 45 —1
integrable models appear when the parameters of the Hamiltonian, g, =

25 — 1
L. 67 —65 41
M=o 3501
5.1 Spin 1

When the spin is %, the model is independent of a; and a3 so that the only available
parameter simply results in a scaling of the energy (when only the energy positions
of the bound states and the continuum edges are considered). This was mostly
described in the previous chapter so we will start with the S = 1 case. Consider
the Heisenberg model which is quite far from integrability. The density of states for

S =1 for each of the five choices of wavevector are shown below, Fig. 5.3 - Fig.

K"

5.11.
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Im(G)

Energy

Figure 5.3: Density of states for three magnon excitation
Heisenberg model, S = 1 spin chain at K = 0.

For K = 0 there are two peaks (Fig. 5.3, above). The one with the lower energy
is a resonance with an energy at approximately £ = 2.25. The classification of the
peak as a resonance was made by observing its behaviour across the Brillouin zone.
In Fig. 5.4-Fig. 5.11 the resonance decreases in energy until it leaves the band and
becomes a bound state from K ¢ [0.96%, f] The second peak also decreases in
energy as K goes to T but remains inside the band and becomes part of the internal

structure. (The peak at £ = 2 in Fig. 5.10.) There is also a bound state which
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appears to remain outside and below the continuum (as can be seen in the other
diagrams, Fig. 5.4 — Fig. 5.11) and this bound state is assumed to be at £ — 0 (the

lower edge of the continuum) at K = 0.

Im(Q)
Im(Q)

o I

[¢] 1 2 3 4 5 0.030 0.092 0.094 0.098 0.098 0.100 0.102 004 0.108 0.108 0.110
Ensrgy Energy
Figure 5.4: Figure 5.5:
Density of states for three magnon Density of states near the bound state
excitations, Heisenberg model S = 1 for the Heisenberg model S = 1 spin
spin chain at K = T chain at K = To
The Green’s function for a much smaller energy range for K = %, -++, 1 (units

of 2) is shown in Fig. 5.5, 5.7, 5.9 and 5.11 to show the bound state(s) which are

below the continuum more clearly.
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Figure 5.6: Figure 5.7:

Density of states for three magnon Density of states near the bound state

excitations, Heisenberg model S = 1 for the Heisenberg model S = 1 spin

spin chain at K = . chain at K = I.
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Figure 5.8: Figure 5.9:
Density of states for three magnon Density of states near the bound state
excitations, Heisenberg model S = 1 for the Heisenberg model S = 1 spin
spin chain at K = %. chain at K = —i—f.
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Figure 5.10: Figure 5.11:
Density of states for three magnon Density of states near the bound state
excitation Heisenberg model S = 1 for the Heisenberg model S = 1 spin
spin chain at K = = chain at K = .

Although the recursion procedure was carried to 500 iterations, the coefficients
were still not exactly constants but due to constraints with the amount of computer
resources which was available (specifically memory) the procedure was stopped and
the square root terminator, (4.18), was used for the tail of the Green’s function.
This had the effect of introducing small oscillations into the density of states which
are not visible unless the Green’s function is calculated over a very small range of
energies. However, the continuum edges can be found very accurately using knowl-
edge of the two magnon spectrum and it is evident that the delta, function(s) shown
in the diagrams, Fig. 5.4 - Fig. 5.11 are detached from the continuum and not
due to these small oscillations within the continuum. This is also suggested by the
behaviour of the coefficients for the values of K near the Brillouin zone boundary.
For example, the K = o set of coeflicients, Fig. 5.12, show two separate sets of

deviations, both of which are due to the limitations of the computer system used to
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calculate the coefficients. The computer limitation enables the bound states to act
as narrow bands, as described previously (Chapter 4). The smaller amplitude devi-
ations correspond to the bound state which eventually crosses into the continuum
to give a resonance, shown in Fig. 5.3, 5.4, 5.6 and 5.8, and the larger deviation

corresponds to the bound state which does not enter the continuum for all values of

K.
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Figure 5.12: Double precision a; coefficients (solid line)
and b; (dashed line) for a S = 1 Heisenberg
model spin chain at K = z.
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Figure 5.13: Double precision a; coefficients (solid line)
and b; (dashed line) for a S = 1 Heisenberg

model spin chain at K = %.
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Figure 5.14: Double precision a; coefficients (solid line)

and b; (dashed line) for a S = 1 Heisenberg
model spin chain at K = o

85



Cosfficient

0 125 250 375 500
Heration No.

Figure 5.15: Double precision a; coefficients (solid line)
and b; (dashed line) for a S = 1 Heisenberg
model spin chain at K = =

Fig. 5.13 only shows one deviation since the second bound state is already in the

continuum for the value of K = 3—2. The coefficients are also shown for K = o
and - simply for comparison to the K = Z and 2—2 coefficients. The behaviour of
all these features can be summarized by plotting the bound state energies against
K across the non-negative half of the Brillouin zone as in Fig. 5.16. The resonance
is represented by the dashed line and the bound states by the solid lines. The

continuum is indicated by the shaded region.
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Wavevector

Figure 5.16: Behaviour of three magnon excitations for a
Heisenberg model S =1 spin chain. Energy
in units of oy and K in units of 2. The

solid lines are bound states, the dashed line
are resonances and the shaded region is the
scattering state continuum.

As the value of g, changes from 1.5 (the value for the Heisenberg model at S = 1) to
3 (the value for the integrable model at § = 1), the gap between the bound states
at the Brillouin zone boundary shrinks until they exactly meet when g, = 3. The
gap appears and grows whether g, is changed to a value greater or less than 3. A
dispersion diagram is shown in Fig. 5.17 for a value of g2 which is intermediate

between the Heisenberg model and the integrable model.
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Figure 5.17: Behaviour of three magnon excitations for
g2 = 2.25 on a S = 1 spin chain. Energy
in units of a; and K in units of 2. The

solid lines are bound states, the dashed line
are resonances and the shaded region is the
scattering state continuum.

The bound state branches are much closer at the Brillouin Zone boundary and the
bound state intersects the lower edge of the continuum at K = 0.969Z. However
the shape of the continuum, in the dispersion diagrams, Fig. 5.16 and Fig. 5.17,
does not change significantly. A dispersion diagram is also shown for g, > 3 in Fig.

5.18.

88



10

Energy

0.00 0.25 0.50 0.75 1.00
Wavevector

Figure 5.18: Behaviour of three magnon excitations for
g2 = 45 on a S = 1 spin chain. Energy
in units of o; and K in units of Z. The

solid lines are bound states, the dashed line
are resonances and the shaded region is the
scattering state continuum.

For this case the gap is still fairly small (slightly over % the size of the gap in the
Heisenberg model) and it crosses the lower continuum edge at K = 0.981%.

One integrable case was mentioned previously but the recursion procedure was
needed to obtain any solutions for it. This was the Temperley-Lieb model for S = 1
and corresponds to oy = 0 and ay = o (a constant). When the recursion method is

applied to this system, a single delta function is seen in the density of states along
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with one continuum. Neither the delta function nor the continuum change size or
position for all K € [0, 7] (ie. independent of K). The delta function has an energy
of 0 and the edges of the continuum are at % and 5—3‘1 The shape of the density
of states for the continuum resembles that for the one magnon case, that is, there
are sharp peaks at each continuum edge and there are low values in the middle (see
Figure 4.2). Most of the kets decouple for this model (ie. all kets with relative
coordinates x,y > 2 and 10,0)) and all of these are degenerate with an energy
of 0 except for the unphysical state, | 0,0). Further, the value of o is 0 for this
model so that all the single magnon states are also degenerate with the decoupled
physical states. Since the initial ket chosen was not one of the decoupled states, the
delta functions which are observed represent the energy from the one magnon states
such as the three-free continuum and the free magnon for the two-bound, one-free
continuum. The band gives the energy range for the two magnon bound state (from

the two-bound, one-free continuum) in agreement with the results of Parkinson (8]

5.2 Spin 3/2

When the spin is increased to g both a, and as influence the effective Hamiltonian
so that the model can be shifted away from integrability by changing either or both.
The option of changing a; and s simultaneously was not studied in depth except
for a few isolated cases. The most notable of these was the Heisenberg model.
First consider a Hamiltonian when g, (a2) is changed from the integrable
value of 2.5 for 5 = 2 but g3 (as) is set to 5.5 (the integrable value at § = 3).
As predicted by Haldane [12], [13], gaps appear between the bound state branches
at the Brillouin zone boundaries as the model moves away from integrability and
the gaps grow the further the model is from the integrable point. However, there
are other properties which can be seen. For example, there are always at least two
bound state branches for the values of g, € [1,5] ¥V | K |> 0. The dispersion

diagram for the extremes of this range if given in Fig. 5.19 and in Fig. 5.20, below.
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Figure 5.19: Behaviour of three magnon excitations for
a model with g, = 1, g3 = 5.5 (limited in-
tegrablhty) onas = 5 spin chain. Energy
in units of a; and K in units of = 2. The

solid lines are bound states, the dashed line
are resonances and the shaded region is the
scattering state continuum.
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Figure 5.20: Behaviour of three magnon excitations for
a model with g, = 5, g3 = 5.5 (limited in-
?egral')ility) onal = %spin chain. Energy
in units of «; and K in units of 2. The

solid lines are bound states, the dashed line
are resonances and the shaded region is the
scattering state continuum.

One bound state remains below the continuum as in the two magnon case or in
the S = 1, three magnon case for all K > 0, but for the scale used in Fig. 5.18
this bound state is not visible. At K = 0 the bound state is coincident with the
lower edge of the continuum. The other bound state branch which is always present
remains above the continuum for all K. The resonances are somewhat suspect as

these models are quite far from the integrable point and when the model is pushed
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far from this point the resonance become more and more difficult to distinguish from
any singularities internal to the continuum.

Now consider keeping ¢, at 2.5 but varying gs. Since g, is still at the integrable
value, the behaviour of any system containing one or two magnons would be indis-
tinguishable from a model using an integrable Hamiltonian. There has been some
speculation that such a Hamiltonian would retain certain integrable characteristics.
(See Chubukov and Khveschenko [30]). The Hamiltonian used in that paper is of

3

the same form as (1.4) but is only the most general Hamiltonian up to S = £, le. n

in (1.4) attains the values 1,2 and 3, so that the Hamiltonian can be represented by

—~ o~ o~ o~ o~ N2 5 ~ \3
H=—) [z&-&ﬂ + (Sz--sm) +6 (si-sm) J (5.1)
J@ J®
where the parameters A = JO) in our notation. Similarly, v = NiE) and 6 = T

In [30] the condition for these models where g2 = 2.5 and g3 is variable, can be

represented by
L+ [1+65(5 —1)] = —6(155* — 425° 4 3557 — 1052 + 1) (5.2)
To relate our notation to that used in [30] it can be shown that

ar = A28 +48%y(S — 1) + 25%6(35% — 65 + 4)] (5.3)
ay = A[45 —1+47(85° — 1857 + 85 — 1)+

6(125° - 515% +885° — 5152 + 125 — 1) (5.4)
a3 = 3X[28 — 1+ 4(45° — 1452 + 125 — 9)4

36(25° — 135 + 365% — 3952 + 185 — 3)] (5.5)

When S = 1, a solution to equation (5.2) is vy = —1 and § = 0 and equations (5.3)-

(5.5) give g, = 5% = 3. This value of g, agrees with the condition for integrability
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when the models of Takhtajan [10] and Babujian [11] are written in the o; notation.

16 + 8 A
However, for .S = 2 equation (5.2) gives § = —6——;{@ and oy = 1—7—(240 + 1116+),
30X 6A L :
ay = 1—7—(20 +937) and a3 = 1—7—(188 + 915v). This gives ¢, = o2 to be 2.5 which
11 15
agrees with the expected value but g5 is 5(—2%9% This would not be expected
to give an integrable Hamiltonian unless v = —%. (v = —% gives the integrable

model of Takhtajan and Babujian.) When the recursion procedure is performed on
these types of Hamiltonians, (g, = 2.5 and g3 € [1,11]), only when ¢35 = 5.5 does a
fully integrable Hamiltonian result. These resemble the previous case where g, was
variable and g3 was fixed, in that when the variable parameter, g3, deviates from the
integrable point, gaps appear at the Brillouin zone boundaries and change in size
in accordance with the magnitude of the difference between g3 and the integrable
value. Also, there was always at least two bound state branches for all the value
of g3 which were used and for all K > 0. One of the branches remained below
the scattering state continuum and the other above it. Below are the dispersion

diagrams for the extreme cases of g3 =1 and g3 = 11.
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Figure 5.21: Behaviour of three magnon excitations for
a partly integrable model with g, = 2.5,
gs=1lonas = % spin chain. Energy in
units of o; and K in units of Z. The sol-
id lines are bound states, the dashed line

are resonances and the shaded region is the
scattering state continuum.
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Figure 5.22: Behaviour of three magnon excitations for
a partly integrable model with g, = 2.5,
gg=1lona S = % spin chain. Energy in
units of oy and K in units of Z. The sol-

id lines are bound states, the dashed line
are resonances and the shaded region is the
scattering state continuum.

The Heisenberg model is a case where both the g2 and gz differ from integrable
values, specifically at § = %, go = g and gs = 2. For these cases, where g, and g3
change, the upper bound state may enter the continuum and for the Heisenberg
model this branch is entirely within the continuum for all X. The resonance line
that represents this branch (shown in Fig. 5.23) is somewhat suspect since it has

a very peculiar property that it remains at an almost constant energy across the
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Brillouin zone.
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Wavevector

Figure 5.23: Behaviour of three magnon excitations for
the Heisenberg model (g = 3, g5 = 2) on
a S = % spin chain. Energy in units of a4
and K in units of Z. The solid lines are

bound states, the dashed line are resonances
and the shaded region is the scattering state
continuum.

The middle resonance eventually leaves the continuum at K = 0.98% and becomes
a bound state from 0.98Z-Z. This resonance/bound state was found to contain no

a a’

symmetric components. Below, Fig. 5.24, is the density of states using a completely
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symumetric initial ket, (z,y) = (0,0), at K = Z. Note that the middle bound state

P

branch is missing in comparison with Fig. 5.25.
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Figure 5.24: Behaviour of three magnon excita-

tions for a Heisenberg model on a
S = 2 spin chain at K = 7 using
a symmetric initial ket. Energy in

units of ay.
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Figure 5.25: Behaviour of three magnon excita-
tions for a Heisenberg model on a

S = 2 spin chain at K = 7 using an

arbitrary initial ket. Energy in units

of .
For this case, there is also a branch which remains below the continuum for all
K > 0. The upper branch does not seem to enter the continuum unless both g2 and
g3 are far enough below the integrable values. For the cases which were studied, this

branch does not enter the continuum even if the parameters are quite far above the

integrable values, for example Fig. 5.26, below
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Figure 5.26: Behaviour of three magnon excitations for
g2 =9, gs =1l ona S = % spin chain.
Energy in units of oy and K in units of Z.

The solid lines are bound states, the dashed
line are resonances and the shaded region is
the scattering state continuum.

and the upper branch remains outside the continuum even if only one parameter is

below the integrable value Fig. 5.27 and Fig. 5.28.
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Figure 5.27:
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Behaviour of three magnon excitations for
92 =1, gs =1l ona § = g spin chain.
Energy in units of a; and K in units of Z.

The solid lines are bound states, the dashed
line are resonances and the shaded region is
the scattering state continuum.
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Figure 5.28: Behaviour of three magnon excitations for
g2 =95, g3 =1on aS = 2 spin chain.
Energy in units of oy and K in units of z.
The solid lines are bound states, the dashed
line are resonances and the shaded region is
the scattering state continuum.
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Chapter 6

Summary

In summary, the recursion procedure was successfully applied to study three magnon
excitations and gave results which were in agreement with the exact results found for
the integrable models of Takhtajan and Babujian, Lai-Sutherland and Temperley-
Lieb. For the integrable model of Takhtajan and Babujian, a single bound state
was found (using the extended zone representation) which was continuous across the
minimum of 25 and m Brillouin zones and it remained outside the continuum over
this entire region. As the models were moved away from integrability, gaps appeared
and grew at the Brillouin zone boundaries as predicted by Haldane [12, 13]. The
numerical values for the energies of the edges and bound states agree with the results
found by Millet and Kaplan, aside from a single non-physical state for § = % All the
cases studied did not show any integrable properties aside from the models which
correspond to those already known. The recursion method can easily be applied
to more general Hamiltonians than the form which was used. For example, the
Hamiltonian can be extended to include the effects of an external magnetic field or
single ion anisotropic effects. Generally, these make relatively minor changes to the
Hamiltonian. The most extensive alterations would be to the equations to produce
a new set of equations to represent the Hamiltonian [ie. the equations appearing
in the appendix and (3.6)—(3.25)]. However, the alterations to the programs which
implement the recursion method are very trivial.

The extensions needed to describe m magnons systems for m > 3 is also clear.
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The effects of the Hamiltonian when the magnons are less than one lattice spacing
away from each other would be the most time consuming part to address. This is
also the information necessary for the appearance of m-magnon bound states. The
continua of such an extended system can be obtained from the m — 1 system and
since the equations governing a system with 1,2 or 3 magnons is known, the range
of energies that the continua states can attain for a m magnon system can be easily
found. The Hamiltonian of such a system can be represented by a hyper-tetrahedron
of dimension of m — 1 with the origin at one apex and the edges as well as the sides
correspond to special situations within the system (ie. 2,3,4,...,m — 1 magnons
on the same site with the remaining magnons greater than nearest neighbours from
each of the others. Only the apex corresponds to m magnons on the same site). The
next layer corresponds to where each magnon is at most one lattice spacing apart
from the rest. The rest of the Hamiltonian defines the behaviour of the three free
continuum.

Extensions for models which use greater than nearest neighbours are also
possible. The recursion method itself is independent of this kind of modification and
the calculation of the equations which define the system is the most difficult part
to modify. Essentially the derivations in the appendix and equations (3.6)—(3.25)
must be recalculated without restricting the Hamiltonian to having only nearest
neighbour interactions. However, there are practical limitations to the extent which
the model can be extended. The recursion process usually is performed for a very
large number of iterations and some of these limitations can already be seen in
the anomalously large deviations from the expected average value of the recursion
coeflicients. These deviations were used to assist in finding some bound states and
were converted from a hindrance to an asset. Unfortunately, there are also storage
and memory allocation limitations.

In the present implementation of the recursion method, arrays were used to

keep track of the current vector, u;, the next vector, u;4+1 and the previous vector,
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u;—1. The size of the vectors increased on the order O(n?) with the iteration number,
n and for a three dimensional Hamiltonian or four magnon excitations, the vectors
would increase as » Y n or O(n®). Therefore, assuming the maximum amount
of storage to be constant, then the maximum number of iterations is decreased by
approximately the % power of n. For the three magnon case, the maximum number
of iterations was approximately 590. Then the maximum number of iterations for a
four magnon system is roughly 70. However, the true maximum number of iterations
may be significantly different depending upon the machine’s memory allocation
methods. It may be possible to sidestep these memory difficulties by storing the
vectors in a secondary mass storage system (ie. disk) but for a multi-user, pre-emtive
multitasking operating system such as Unix, the resulting amount of disk access
would probably make the calculation agonizingly slow. Finally, the calculation of
each vector element is not trivial and the modifications to the Hamiltonian would
make the calculations even more intensive but there is the consolation that the
calculations are readily amenable to systems which are able to perform the numerical
operations in parallel.

In conclusion, extending the solution to more extensive situations is not partic-
ularly difficult but very tedious and the extension to greater number of Imagnons soon
result in rapidly diminishing returns which require some creative solutions. How-
ever, the difficulties are only practical implementation dependent problems which

may be solved as newer hardware becomes available.
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Appendix

Three Magnon Excitation Equations
From Chapter 3, the orthonormal set of three spin deviations are taken to be
|4,5,k) = Cije SFS7 St 0) (A1)
where Cigy is a constant satisfying
o itk

Cipr = { JomGe” 2 of {i,7,k} the same (A.2)
L t=j=k

\/248(25-1)(5-1) ’

and with the indices 1 < j < k for the entire set of states.

To find the effect of 7 on these states, several different cases must be consid-
ered, depending upon whether the indices are equal, nearest neighbours or otherwise.
Consider first the situation where i+1 < 5, j41 < k , ie. when the three deviations
are separated by more than nearest neighbours. By using the commutation relations

of §F and S7, along with the definition of the states, | ,7,k), we find

?l!ivjvl> = S(S—l)]z,y,l)—{—S[z,y,l-{—l), k=1

7Ellia.jak) = S2Ii’jak>’ k#l
(A.3)
Bligi41) = S|i,4,0)+ 85— D] ig 141}, k=l+1

These equations have the same structure as for the one-magnon excitations,

(2.2) so the matrix representation of ;" for only these states must have the form
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as in (2.4). The equations must have this structure since ’51 commutes with S{"
and SF, for the states which satisfy the restrictions on the indices (above). This is
also true for states of the form |z,/,7) and | l,7,7). Using these results, the pair

Hamiltonian is given by

+ 1<y, +1<k
0, i kA1141
S g k)~ A8 11k =
ﬂgﬁluﬂ,j,k) A8 15 k), i=141
Hyli,5,k) = g%ﬂyi,z,k)—ﬂlz_lu,HLk), j=1 (A-4)
SCHPY IS N I TN A
@By g1y — 28N i g0y, k=1

o) i1y -8 i1y, k=t

where all terms involving Ey are absorbed into a shift in the zero of energy. This
shift of energy is used for all that follows as well.
The full Hamiltonian gives

1(5)

~ . S), . .
le,],k):3061(S)|Z,j,k>-—ﬂ(—~‘)-lz—1,], ) l +1a.77k>

Otl(S)

A1,y )y ;%,j,k-u

(S
2
(S

)l 2,7, k+1) (A.5)

Next, consider the case when two deviations are on the same site or nearest
neighbours and the remaining deviation is further than nearest neighbours from

either of the other two. States of the form |i,7,1) and |4,1,1+ 1), belong to this
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class and we find

e #1141

Pl 4,1,1) =
Pl 4, 0,1+1)
Pl i, 14+1,14+1) =

S(S=2)]4,0,1) +/S(2S—1)| 1,1,14+1)

S@S-1)4,L1) +] 4,1+, I1+1)] + (1~9)% i,1,1+1)

VS(2S=1)] 6,0, 141) + S(S—2)] 4, 1+1,1+1)

(A.6)

These equations form an additional block in the full matrix and has the same

form as given for the two-magnon interactions, (2.15)~(2.16). Therefore, the matrix

representation of P, for these states, has the form of (2.21) and P is given by

(2.22) when using the vector

| 2,0,1)
|é,0,0+1)
[ 4,04+ 1,14+1)

The effect of the pair Hamiltonian on these states gives

Hili,5,j+1) =

(0, i LI+1 j#£1-1,1,1+1

4L, +1) =2 141, 5,54+1), =141
S I+1,5,+1) — %] 17,54+1), i=1+1
@l 1-1,1) — &5, 1—-1,141), j=-1

_NBRE) 1 0) 4 6,14+, 141 )] +

451

Zg:iaﬂ Zalal+1) ’ J:l

S l+1,142) — &) 4,1 1+2), j=1+1
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(A.8)



0, 2,7 #LI+1
%ll Z?]’j) - %ll Z+17.77]

Y, i=1
%, l+17.77.7> ”%Ll Z)j)j)v Z:Z+1

Hil 6,5,5) = 4 Lo + 2822] [ 4,0,1) — Y5250 g 15,1, 141)— (A.9)
%[al_az‘gg‘g%}liaz+1al+1>9 ]:l
Uon + 2822] i, 041,04 1) — VG50 1 g g4
~3loa = 2e2] 14,0,1), G =141
and for the total Hamiltonian
N S S), . . S), . .
Hlisjoj+1) = 20(8)] 3 +1) = 4 i, 1) - A8y
a(S), . . . a(S), . .. 25—-1 S
- —~ - 1
5 | B Li+1) === 1i,4,i+2) + 7o e S)] 4,4, +1)
y9(25-1) Y 5(25-1) PRI
““—4§T02( )I%J,J)“WOZZ( N4 i+1,5+1),
i< j—1 (A.10)

e o S), . . S), . .
H! 7’7]7]):2051(5”27.7).7)'—%')‘]Z_laja]>_a_1g_—)lz+17]7]>

+25§2_(f)! %J57) —-;t [al(S) - 25;%‘?} |4,5—1,5-1)

« S(25—
5 o) - 2288 gy - BT sy

2

VS@STD) o
——‘;lm—%( Nig,7+1), i<j— (A.11)

The operator, P}, also generates equations of the same form as (A.6) for the

states | 1,0,7), |1 —1,1,7), and |1 ~1,[,I+1). The pair Hamiltonian, for these
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states are given by

0, i#I=1,0,1+1 j#£1,1+1
Qli-1,4,0) - 2|i-1,4,0+1), j=1
Q| i—1,0,04+1) — & | i—1,i,1), j=I+1
Hili=1,4,5) ={ S[1-1,1,5) = &[1-1,I+1,5), i=1 (A.12)
Vel 05) + 1411+ )4

Lo, 1,I41,5), i=1+1

(S I42,5) — 8 1142,5), i=1+2

0, o5 £L1+1
i) — 26,6, l+1), j=1
S d, I41) — & 4,4,0), j=1+1

. .. . S(25- .
ol iind) = 3 3o+ 2822] | 1,0,5) - B o114y (A.13)
oo — ozl |141,141,5), i=1
o+ 2828 | 14 1,141,5) — YSED 011100 )
\ ~3Jon = Be2]|1,0,5), i=1+1

SVSCSD (1=, 1,0) 4 | 1=1, 141, 141))

451
Hili—1,5,i+1) = +(B2) nl I-1,0,141) , i =1 (A.14)
S (|11, =1, 1) 4 | =1, 41, 141)

+(22L) gl 1,141,142), i=1+1

\

Which gives, for the total Hamiltonian,

1(5)

—~ . L SY ...
Hliyi,5) = 20()] iy ) — S a5 o1y = 28) 0y

2
+%“§—flli,i,j>—§[al<s> ng‘?(f)]l ~1,i-1,5)
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N S(25—1 o
5 [os) - 2 i) - i)
S(25-1) o
——Tgil——az(S’)] te+l,7), i<j—1 (A.15)
7/_(\] i_laiaj> = 20{1(5'” i"17i7j> - Engs_)l i_laiaj_]-) - ﬁlé:g_)[ i—17i7j+1>
A iy - B iy 4 o jed9)] 1i-14)
Yyo@s-1y o 5(25-1) L
e ayf.9)] 2—1,1-—1,]) — _ZIS——T_OZZ(S), 42,7 ),
J >+l (A.16)

iﬂi~L@i+1>=ax5ni~L@i+1)~9%§%i—L@é+1)

Coa(S) . L [25—1] L

—5 |i—1,4,242) + 2 157 afS)| i—1,4,:+1)
5’(25’—15,1_1,1 5(25—15"_1

~io—7 )l i-Li-1i+ )= g edS) 4,41
VoSl oty VIS ) i=1,i+1,i+1)  (A.17

“—43—_1‘—042( ) 1= ,Zal,>“wa2( i=1i4+1,4+1) (A7)

As for the two-magnon case, the Hamiltonian is block diagonal and the blocks
can be classified by the number of magnons which are nearest neighbours at one time.
The two smallest blocks were considered above and correspond to three free non-
interacting magnons and to a system of two interacting magnons combined with a
single free magnon, respectively.

The final block of the Hamiltonian which needs to be considered is for the
states | (,0,1), | [,1,141) and | I,{+1,14+1) (ie. when all three magnons interact

with each other). The effect of P, on these states are given by
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Pl 1,1,1) -

ZIRRNES Y =

S(S—3)]1,1,1) +\/35(5—1)|z,z,z+1>
J3S(S—1)[1,1,1) +

—35+2)[1,1,14+1)

25—1);zz+1 z+1)

Pl Li+1,141) =

(28 = 1) ,1,141) +

(52 =35 +2)| L I4+1,14+1)

+/35(8 = 1) | 14+1,141,1+1)

Pl l+1,1+1,1+1) =

V3S(S = 1) [ LI41,141) + S(S = 3) | I+1,1+1,1+1)

(A.18)

and for the matrix representation, restricted to these four basis states is

S(S—3) /35(5S—-1)
. 35(S—1) S?—35+2
P =
0 25 —1
0 0
then
P11
x5 1 P12
Pr= 21 p13
Pis

25 -1
S2—35+2

0

0
0

Y (A.19)

J35(S—1)  S(S—3)

P12
P22
P23
P13
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P13
P23
P22
P12

P14
P13
P12
P11

(A.20)



where

S2n_Sn(S—2)% | S§2n_(§2-4541) | S2h_(S2-8543)"

pui = 35(5 — 1) [ 5(43(_3) ) + (S~1)(4S—1)) + 3(5(—1)(45—3)) ]
§2n_.gn(g_o\n 827 _(82_4841)"
pro = \f35(S 1) [SEIELSAT _ (5 - 1) S lEas

N _1\5%—(S2—6543)"
3(5—-1) 3(5-1)(45-3) }

_ _ i 2n _ n( _ )n _ _ 2n_( 2 . )n
piz = 4/35(S 1){ 5% S(iS»SB): 2(5 1>S(s—f)(4§ﬁ)l
_ 1\52 (8% -88+3)"
+3(5 = 1) 5 hyass) ]
SER_ST(S—)" S (S2_4541)" | S2n—(S2—-6543)"
pra = —35(5- 1)[ 5(45(—3) L— (S—(l)(4S—1)) 3(521)(45-3)) }

_ §%n_gn(S—2)» 2 §2"—(5%-45+1)" 2 827 —(52-65+3)"
p = 57 5(43—3)2 +(5-1) (5—1)(45_1-) +9(5-1) 3(8-1)(45-3)

— _g2 52'»—5"(5-;2)" 1 (5 —1)2 52n_(82—45+1)" 9(S — 1) 52— (52 —-65+3)"

P23 = 5(45-3 (5-1)(35-1) 3(5-1)(45-3)
(A.21)
and the pair Hamiltonian gives
Fil 1141, 141) = =50 [2dS) o, dS) o8]y g
San(S (s-1afS) | s(s-1)ad S
_% [ 451(—3) - 4s—§( ) + 45—:5( ) | 1,1,1+1) (A.22)
+ [ + ) ¢ a1 1, )
2 [Sl8) dS) ol 1 1,00
By using the above equation along with the results from equation (A.3)
Hl i—1,4,4) =0, i>0l4+2,i<l
. (A.23)
Hi| 141,142,142) = S| 141,0+2,142) — 2| [, 14+2,1+2)
and the results from equation (A.6),
1=t =3+ 28] o000 - STl t-L1041)
—1Jon — Ze2] | 1-1,141,141)
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the total effect of the full Hamiltonian on a state of the form | i—1,3, i) is

_a(S)
2

\/m [QI(S) N ayS) B 03(5)} [i—1,6—1,5—1)

2 45-3  45-1 45-3

11Saa(S) | (1=8)aofS) 3(1-%ayS)],. . . .
_{45—3+ 45-1 7 45-3 }'Z“l’Z“I’ZH

H|i—1,4,4) = |i—2,i,8)—

35(S—1) [al(S) _ofS) aa(S)J i)
2 45-3 4S—-1 45-3 Y

\/S(TT)QZ(S)I C1iit1) — & [al(S) - -21&2(—5)} [i=1,i+1,i41)

15°1 5 15-1
1[3(35=2)au(S) | (35—1)aS) 3(1—-S)adS)] .. . . .
+§[ 153 T 45-1 " 45-3 ]'z"l’“) (4.25)

Similarly, (A.3) also gives

Hild,d,i4+1) = 0, i£I-1,01+1
- (A.26)
Hil1=1,01-1,1) = 2|1-1,1-1,1) — &|1-1,1-1,1+1)
while (A.6) gives
7/{,:%[a1+§%§ll]{Z+1,Z+1,Z+2)—ﬁszgi;”a2|l,l+1,l+2) (A7)
A27

—1 e — 222 1,1,142)

and from (A.18)

Fol 40,04 1) = 4 [ e 4 (Sllas A8 Naa] 7 7 747 4

x/m[al -3 - sl - 1[Sal-<§*1)“2+i“a3]]lz+1 I[4+1)

2 45-3 45-~1 2 [45-3 45-1 45-3

\/35(5-1)
o 2 {45 3 +4S- 45— 3] | 141,141, I+1)

(A.28)
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These result in

H|i,0,0+1) = — |4,4,6+2)—

a1@9)
2

2 S—3 45-1 45-3

1 [Sal(S) N (1-S5)afS)  3(1=5)edS)
453 451 45-3

35(5—1) [21(5) N afS) 0‘3(5)} |3,541,i41)

] |i,i+1,i4+1) +

35(5-1) [al(S) S adS)

) 45-3 " 45-1 "~ 45—3} i,6,4) =

S(25-1) . 1 25ayS) ], . . .
157 Ty 5)] ¢ 1,z,z+1)—-2—[a1(5)~ 151 }[z—l,z—l,z—i—l)

%[3(35*2)011(5) L (3S=1)od$) 3(1*5)013(5)} liiit1)  (A.29)

45-3 451 45-3
Continuing this process,
Hili,5,6) =0, i£11+1 (A.30)
From (A.3). There is no relevant equations from (A.6), but (A.18) gives

Hol 141,141, 1+1) =
—28(8 -1) [S(fsl~3) + @ nEen T 3(5—1‘3{?45—3)} | 1+1,141,141)

V/3S(S-1) [ 4, o
- 2 [45—3 + aS-1 = 45- 3} f L1 H‘l) (A-31)
V/3S(S-1) [ 4, o
2 [45—3 T 45-1 T 45— 3] | 1,141, l+1)

S(§-1) {5(4?—3) B (45-—1)2(5—1) + 3(5—10)1?45—3)] |4,1,1)

v

Hil1,1,1) = 25(5 - 1) [5(4?—3) tamyEn T 3(5“13[(345_3)] I551)
+m[ o — g — | 400 —

2 45-3 45—-1

(A.32)

2 45-3 45~1

39(5-1) {5(405—3) + @yE 3(5-13[?45-3)] | 1+1,1+1,1+1)

\/zaTsKT)[a1 + 382 — 555] 1 4141, 141
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so that

H|4,i,8) =
a(9) A S) adS) L
35(5-1) {2(45—3) SG-nEs—1) Tt 3(5—1)(45—3)} l4,6,8) =
3 o) ay5) ayS) S
5551 [5(45—3) T (SS1)([AS—1) 3(3—1)(45-—3)] [i=1Li=1,i-1)

oq(S) ay5) oA S) e s
—39(5=1) [5(45—3) Ton@s— T 3(5—1)(45—3)} li+Li+],041)

LV/3S(5-1) [al(S) _afS)  ayS)
2 45-3 45-1 45-3

|i=1,i—1,i) — | 4,i+1,5+1)) (A.33)

These final set of equations that specify the effect of the total Hamiltonian
on the complete set of orthonormal states are (A.5), (A.10), (A.11), (A.15)-(A.17),
(A.25), (A.29) and (A.33).
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