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,4,bstract

The three magnon excitation spectra of a one climensional chain of quanturn spins

is analysecl using the recursion method. A number of different integrable models are

studied as well as a number of Hamiltonians "close" to the integrable model of L.

A' Takhtajan 110] and H. M. Babujian 111]. The bound states are stuclied across the

entire Brillouin zone ancl complete agreement is found with the known integrable

results as well as support for a conjecture put forward by F. D. M. Haldane [12, 13].
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ü&aæptæw 3-

W'at no Ca.eaË åæsa

During the last century great strides have been made in our understanding of ¡ature

and magnetism has not been an exception. Once associated with mysticism ancl the

occult, it is now understoocl as some of the residual efects of tlie electromagnetic i1-

teraction. Due to the constraints of the Pauli principle for the electrons of atoms i¡
a lattice, the wavefunction of a collection of atoms is more than the superposition of

single particle wavefunctions. Since the total wavefunction must be antisymrnetric

under particle exchange for fermions) a syrnmetric spin wavefunction ancl an anti-

symmetric spin wavefunction are associated with different spatial wavefunctions. In

general, these wavefunctions will have different energies. Tliis energy difference for

the case of two hyclrogen-like atoms can be characterized by the Harniltonian,

'Jltz: -J&.82 (1.1)

where 5, it u three component quantum spin operator and J is known as the ex-

change integral. When J > 0 parallel alignment of the spins is favourecl (ferromag-

netisrn) ancl .I < 0 favours anti-parallel alignment (anti-ferromagnetism).

A Harniltonian with the forrn above but extended to include all interactions

between all pairs in a lattice, was describecl in detail by Heisenberg in 1g28 [1].

fr: -ÐJti6¿ S)
ij

(1 .2)



This Harniltonian was proposed as a model for strongly rnagnetic phenomenon (fer-

romagnetisrn, anti-ferromagnetism and ferrimagnetism) and a number of assump-

tions were rnade to construct the simplest model that still exhibits the most signif-

icant characteristics of these rnagnetic materials. For example, it was known that

the macroscopic magnetic moments that are observecl in these types of rnaterials

were clue primarily to the magnetic moments of the electrons ancl that the magnetic

rnornent due to the orbital motion can be ignored. As only ciranges in energy clue to

rnagnetic clegrees of freeclom are significant for strong magnetic effects, the contri-

bution from factors such as the direct Coulornb force ancl the spin-orbit or spin-spin

interactions can be ignored [2].

The exchange interaction itself, So'S¡,is due to the Coulomb interaction but,

as shown by PAM Dirac (1929) [6], it is strictly a quantum mechanical effect. The

exchange interaction arises from the form the ìattice wavefunction must have due

to interchange of particles on different sites (ie. the Pauli principle) ancl although

there is a direct interaction between electrons, the symrnetry properties of the wave-

function result in a spin dependent exchange term. The rnagnitude of ihe exchange

interaction will be influenced by the amount of overlap of the electronic wavefunc-

tions.

It is also possible to obtain the Heisenberg Hamiltonian by performing a

perturbation on a lattice of non-interacting spins, using the Coulomb poteltial as

the perturbation. If higher order perturbations are considered, the Hamiltonian can

be written as a linear cornbination of powers of the pair exchange operato., ,l¿..1j,

giving

û:-ÐÐ/;tçSnSS" (1 3)
xJ 1z=7

The range of interactions will depend upon the details of the particular solid

ancl in this tliesis only insulators are considered. We will only consider the exchange

2S



integral A{P) to be non-zero for those sites, i and 7, which are within a srnall,

arbitrarily chosen, region of each other. The simplest choice is nearest neighbouls.

The lattice will be restricted further by oniy consiclering a oile dimensional lattice

with iclentical spins on each site and uniform nearest neighbour interactions. The

Hamiltonian can be expressed as

û: -t Ð ¡(ù(S;.S¿+,)" (1.4)
n=7

The n : 0 term is ornitted as it can be absorbed into the zero of energy.

A more general form for the Harniltonian can be considered by taking into

account such factors as anisotropic spin exchange (ie. replacing Sn S¡ by aSf Sf +

PS|ST + 1SiSi, a # 0 # l) or single ion effects (ie. adding term of the form

"Ð(3í)'), but these will not be considered here. However, the extensions necessary
¿

to account for these efects could be integrated into our formalisrn without serious

clifficulty.

Since the system uncler consicleration consists of a linear chain of 1ú (1/ --r co)

quantum spins with periodic boundary conditions, we have the following commuta-

tion relation

11",ûl : o (1 5)

where 7' is tlie discrete translation operator over intervals equal to the lattice spac-

ing, ø. The Hamiltonian (1.4) also has the properties

2S

ls',fr] : o

lt',fr] : o

(1.6)

(1.7)



where (1.6) follows frorn the fact that the total spin operator can be expressed as

s2:

: + Ð SnS¡
i+i,¿+1

(1 8)

ancl

lra +*s,+,.q) , (5'.s,*,)] :s (1 e)

Tlre terrn, Ð Sn' , is a constant ancl the term, Ð s, .50*, , is identical to the exchange
;

operator in fr.,, therefore botli of these commute with the Hamiltonian. Similarly,

(1.7) follows from the identity

l- sí+r) , (5,.s0*r)] : o

/N \2(fs,)
\i=r /

Ðs,'+!s,.s,+,
¿i

Itsr (1 .10)

describes the

These states

A convenie't and cornplete orthonormal set of states which

Hamiltonian is given by tlie simultaneous eigenket, of 5¿' and sf.
are represented, in the Dirac bra-ket notation, as lS,rn.)n, where

Sn'1s,*¡o

9il S,m) 
o

(1.11)

(1.12)

(1.13)

(1.14)

Ì12 S6 * 1)l .9, rn )o

h.ml S,m)n

for the i¿l' site. For convenience, the units for all subsequent equations are chosen

suclr that T'¿:7. The Hamiltoniancan be rewritten in terms of the usual ladder

operators, 5r* : 3i + i]i which have the properties

Sll S,m)n

E¿ | S,,m)o



Equations (1.13) ancl (1.1a)

onlv be raised or lowered 2^9

have tire property that the

times from its minimum or

(1.15)

z-component of a spin can

maximum value.

lso*,s, ]

lsr,s,*-]

23;6¿j

+sr 6òj

5o- I S, -S )n

5,f I S, S)¿

:0
:0

(1.16)

(1.17)

In terms of these operators, the Hamiltonian becomes

û : -Ðt tøt l+6fsÃ, + siså, ) + sisi*,]"
i n=l

(1.18)

Thevanishingcommutatorsin(1.5)-(1.7) arearesultof thesymmetrierof û. There-

fore tlre eigenstates o1û. canbe labellecl by quantum numbers corresponding to these

sytnmetries. These are the eigenvalues of the translation operator (îò, ,rlt"l angular

mornentum (S'?) and the total z-component angular rnornentum (5'). The state of

maxirnum total ^9 has the spin aligned along some arbitrary direction. If we take

tlris clirection to be the -z axis, then, an exact eigenstate of û. can be constructed

by taking a direct product of these single spin basis states.

I 0) : I,9, -^9)rl S, -S)rl S, *,9).... | ^9, -S)¡,¡ (1 .1e)

wlrere the 0 is a collective index. This is clearly an eigenstate of R. ut can be

shown from (1.16) and (1.17). The state given above, (1.19), has an extrernum in

the eigenvalue of the 5' operator and is known as the ferromagnetic state. In the

Heisenberg rnoclel (n : 1) ancl when J > 0 this is also the ground state but for

the tnore general Hamiltonian(1.4) this may not be true depending on the values

of J('). The models which we consider are restricted to those for which | 0 ) is the



grouncl state.

Tire Harniltonian is lotationally invariant in the absence of an external rnag-

netic fielcl. A very weak tlagnetic field can be assumecl in tÌre -z clirection, say, to

rerlove the rotational degeneracy and hence define a single unique ground state. The
2S

grouncl state energy per site is given by Eo: -I J@)^92". Tlie Hamiltonian(l.4)
n=7

can l¡e written as a surn of pair Harniltonians

fr, J@)Þt" (1.20)

where

s¡s,l,) + sf Eí+l

2S

-_\- /-
1L=1

ñ, : 5,'5,*t

: + (s/s;, +

A convenient choice of variables to describe the Hamiltonian is

(r.2r)

definecl as follows:

25Tì; : -f.7{')li(i+t)'-t2 n=7 L
,i:0,7,2,...,25 (1.22)- s(s+ 1)]

The lr' are the eigenvalues of each pair l{amiltonian and 7 is the total angular

mornenturn quantum nurnber of the pair. Differences between these eigenvalues and

the grouncl state eigenvalue 125 aïe defined by

a".(S) : Àzs-,n - Àzs ,¡ nL € {7,2,3,. . .25} (1.23)

ancì the corresponcling ratios of these differences are denoted by

s*(s) : "*!l^)
o(^s)

(r.24)

The quantities, cv,,(,9), represent the energy diff'erence when the total spin quanturn

6



number of a pair is decreased by nz. The ferromagnetic state, (1.1g), is stabie

proviclecl all a",(,9) ) 0.

We now consider excitations of this system. These can be labelled by the

eigenvalues of the total S, operator, 5', of the system. The smallest change i¡ S'
for tlris system occurs when the z-component of a single spin on the lattice , j say,

is raised by one quantum. This state is represented by

(i.25)

where { i, a normalization factor. The { I j )} form a complete orthonormal set\/25
of sirgle cleviation, excitation states or the m:1states. Unfortunately, these states

are not eigenstates of the Hamiltonian. A new basis can be constructed by taking

the following linear combinations of | 7 ).

ti):#tf,o,

^ik r;
l k) : Ð41¡) , r¡: ja

j \/1\
(r.26)

wlrere Æ is awavevectordefined by lt:H, ,: -{,-.T*r,...,+. By applying

the Hamiltonian to these states, it can be shown that these are eigenstates of fr. witlt
energy eigenvalues E(k) - NEo*a1(1 - cos ka). These m :7 eigenstates have real

wavevectors and are known as magnons. In the semi-classical limit, when the spins

can be treated as classical vectors, the solutions can also be interpreted as waves

propagating through the lattice of spins, hence they are also k¡ow¡ as spin waves.

Since the Hamiltonian is simply a mathematical model for magnetic materials ancl

rnany approximations have been made in its construction, it is possible that these

eigenstates are simply mathematical artifacts and not present in real materials.

However, Inagnons have been observed using such methocls as infra-recl absorption

and neutron scattering. As well they may be observed indirectly by microwave



absorption. As examples, magnons have been observed by Hoogenbeets et. al. l4l
as well as by Haines and Drumheller 15] for a ^9 

: j nearly Heisenberg quasi-one

dirnensional cornpound (C6HiiNH3)CuC13. Further, rnagnon bouncl states Ìrave

been observed by Torrace ancl Tinkharn in CoClz .2H2O [3] which is a ,9 : ] quasi-

one dirnensional compound but is more closely approximatecl by an Ising moclel.

Although the thermoclynamics of the observecl magnons do not completely agree

with theory (whicli would not be expected from such a simple rnoclel) the fit is

ernpir-ically accurate.

For other subspaces corresponcling to m ) I, we have more than one magnon

present and the solution to the Schrödinger equation is not nearly so simple or

straightforward. In fact, a general solution for a general class of Hamiltonians,

with an arbitrary nurnber of tnagnons has yet to be found. There are, however,

sorne notable exceptions: a set of rnodels which aïe grouped together because of

the form of the solution rather than the form of their Hamiltonians. These specific

Hamiltoniarts are generally known as integrable models and they can be solvecl

exactly with their solutions represented in closed form using the Bethe Ansatz i]j.
The Bethe Ansatz was a method which H. Bethe introduced in 1931 to solve

lh'e m magnon systern for the S :; Heisenberg Hamiltonian. The Harniltonian

has a sufficient nurnber of syrnmetry properties, and hence conserved quantities,

to cornpletely define the system. For the case of an infinite linear chai¡, there

rnust be an infinite nurnber of these symmetries. Some of these are global ancl

familiar, such as the total momentum, 1(, but rnost are far from obvious. In the

special Harniltonians where this property is found, it is possible to find a set of

eigenstates which are sirnultaneous eigenstates of all the conserved quantities and

completely diagonalize the Hamiltonian. These are the integrable rnodels and the

Bethe Ansatz uses one of the Harniltonian's syrnmetries, perrnutation symrnetry, to

generate a set of states which are such simultaneous eigenstates. The solutio¡s of

the integrable moclels belong to two classifications: scattering state solutions ancl



bouncl state solutions. The scattering state soiutions are associated with a real

wavevectors whereas the bound state solutions are states where all the magnons

are bouncl together as a single entity and are associated with cornplex wavevectors.

These solutions and their properties will be described in more deiail in Chapter 2.

A relatively well known integrable rnodel is the Sutherlancl-Lai rnodel [15]

wlriclrcorrespondstog^:ry.TIrismocle1includesthe,9:1H"i."nberg

rnoclel, which was considered by Bethe, but generalizes the permutation syrnmetry

to general ,9. As will be shown in Chapters 2 and 3, the effect of the Harniltonian on

a complete set of states can be represented using a small number of these d.n or !m.

Other examples of integrable models are the Parkinson model [S] and is also known as

the Ternperley-Lieb model [9]. The Temperley-Lieb model has all e^ :0 except one.

The integrable Hamiltonian which has received considerable attention is that found

by Takhtajan [10] and Babujian [11], using a method known as the qua¡tum inverse

scattering methocl. In this method, the rnagnons are treated as a scattering problern

where there are incoming beams which interact and the scattered beam is studied to

try and reconstruct the scattering potential.'These models can be characterizecl by

special values of the g-. Specifi calTy,, g* : 25 [rþ(25 + 1) - rþ(ZS + 1 - rn)], where

g(r) : 
* ritlf (")lÌ and f (z) is ttre usual garnma funcrion.

It has been observed by Haldane [12, 13] that for these integrable models, the

excitations have some special features. For example, the solution to the rrl magnon

problem has a single bound state branch which is real and continuous across the

minimum of m or 2.9 Brillouin zones when using the extended zone representation

for the total wavevector 1{. Here r¿ is the number of magnons under consideration

and ,9 is the total spin on each site. In the recluced zone representation, which

is the forrn we will use, the bound state has several branches which exactly meet

at the Brillouin zone bounclaries and are cornpletely decoupled from a continuurn

of scattering states. Halclane conjectured that the non-integrable rnodels wiil have

gaps at these boundaries and the bound states wiii couple to the continua. This



conjecture has been verified for the case of two magnon excitations by Southern et.

al. [14].

In the next chapter the current situation of known results for eiementary

excitations will be discussed. Specifically the one ancl two magnon cases will be

discussed in detail. For one ancl two magnon excitations, the problem can be solvecl

exactly, for all dirnensions, r'egardless of whether the Harniltonian is iltegrable or

not' For m > 2 excitations, this is no longer true and it will be necessary to use a

clifferent methocl to solve such a systern. Some of the possible methocls of solutio¡

are the Bethe Ansatz or the Quantum Inverse Scattering Method as mentionecl

above but these can only be used when the Hamiltonian is integrable. It is also

possible to solve the problem by using methods based on transfer rnatrix methocls

or real space rescaling techniques or by sirnply applying sheer computational power

to cliagonalize the Harniltonian. However, there is a rnethod which can provide

considerable information about the system and is more computationally convenient.

This rnethod is known as the Recursion Method. This approach was introcluced

by R. Haydock [16] for electronic problerns and does not present the solution in

closecl form (which is not possible for the non-integrable models), but rather it is a

procedure to reduce the Hamiltonian to a tridiagonal form which can then be usecl

to easily calculate other quantities of interest. Since a matrix representation of the

Harniltonian is used, the generated tridiagonal matrix is closely linked to the basis

usecl in the generation of the Harniltonian. The manipulation of the Hamiltonian

to simplify the use of this method will be treated in Chapter 3 and an explanation

of how the method is applied will be given in Cliapter 4 as well as some clifficulties

which are associated with the rnethod and their solutions. The results from this

rnethod when used on the lattices with different values of ,9 and with different

Hatniltonians will be presented in Chapter 5. Finally, a summary and co¡clusio¡s

are given in Chapter 6. The literature on a three rnagnon system is sparse but,

where possible, the results are comparecl to previously calculated results as well as

10



the exact results for the appropriate integrable cases.
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In this chapter, the solutions for the one and two magnon ferromagnetic excitations

will be describecl in detail since the initial formalism necessary for the three magnon

excitations (treated in chapter 3) follows a similar procedure.

2.3. tne-Vlagrlon Ðxcitatåons

The normalizecl single spin deviation states are

1,t;\- - .(+l 0), t:7,2,3,...,ff (2.I)t'/ - Jzs"n

The effect of the operator, ñ,, on I i ) is given by

P,l¿) : S'li.) ,i+t,I+rP_,lt) : s(s-i)l /)+.sl /+t)
Ptl I + r) : sl /) + s(^9-1)l /+1 )

(2.2)

Tlre non-diagonal equations from the set (2.2) can also be expressed in matrix form

ñ, l/) l_ls(s-l) s
l/+r)j-L ^e s(.s-l) f ,ljì,1 es)

T2



ancl hence

õ:1 l/)'t llt+i) ,r" I
L

S"
2

,g-1 1 l"l l/) II s-iJl¡l+î¡l
I s"* (s-2)" s" -(s-2)" I I
L .9" - (S -2)" ,9" + (,9- 2)" I L I

,'i
,i
,i

(2.4)

lil ,l
From (1.20) ancl (1.23) we obtain

Eol i)
Eol t)

Erl l)
fr,|;) _t-t + sPt ¿l

+ sPt¿l
ryl /+r)

ryt /-1)

I I,t+l
_t_L

: l+r
(2.5)

(2.7)

<k< a. The
-a

Therefore,

i-r) (2.6)

Tlie equation (2.6) has a tigtrt binding form and can be mapped clirectly to other

tight binding systems, such as mass-spring systems, by taking an infi¡ite one di-

mensional chain of masses and springs with N Eo * cv1 as related to the "nìass" ancl
d1

T u" the "spriug cottstant". The solution to this systern of equations can l¡e fou¡d

by taking linear cornbinations of the I j )

ûl ¿) : NEoli) + a1(.e) I i) - +l i+1)

r/-\ - -L;. "ieka)¡;1l^,l-- ,/N 7 
t r r

where k is the total wavevector and is restricted to the values

Hamiltonian, when appliecl to this set of states, gives

frlt ) : NEolk) +;Ða(^e)ei (ir"ùelj) - | j- r)
J

: U Eol,L ) + o1(^9)(1 - cos ka)l k)

o(^s),
- 2l

_1f
a

- lr+i ¡¡

13
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Hence the { | k )} cliagonalizes fr and the dispersion relation can be fould

E(k) : (h lûl k)

: N Eo I at(SX1 - cos ka) (2 s)

Tlre one-magnon excitation energy Er(k): cy(^g)(1 -cos ka)is plottecl in Fig. 2.1.

Þ)
b1c
lr.l

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Wavevector K

Figure 2.1: One magnon excitation energy. The wave-
vector is in units of { and tñe energy is in
units of a1. a

T4



The solutions to the m : 1 magnon excitations are characterized by real

wavevectors and correspond to the extended modes for a mass-spring system. Note

that the solution is inciependent of the choice of Jþ') except for changes in the value

of 41. The form of the solution is a direct consequence of translational invariance.

The analogue of this behaviour in a mass-spring system is that the extended modes

are essentially indepenclent of the size of the masses ancl the strength of the springs

(as long as they are all uniforrn). A restriction which must be applied to the rnagnon

solutions is a1 ) 0, to keep the solutions stable.

?,

¿Prl

Þ,1

2.2 ?'wo-Magm.@n Ðxcåtations

An orthonormal set of two spin deviation states can be definecl as

li,i)
I i,i)

: *sc+srtl 0 ) ,i+j
(2.10)

wlrere the labels i and j are taken such that ¿ < j. Following a similar approach to

tlrat used for the one magnon excitations, the effect of the operator, ñ,: 5,.5,*r,

on the given set of states yields

Pil i,J )

n¡;,t¡

n¡ t,;¡

l+I,i)

l,l+1)

n¡ t,t¡

s'l i,j), i + t,,t+1;j + t,t+r

szl¿,i), i+t
.91 /+1, i ) + ^9(^9- 1)l t,,i),

Slt,i) + S(S-1)l /+t,i.) ,

\Ælrs-Ð | I,I)+ | /+ r,t+1

vrszs 1)l t,t+1 ) + S(S- 2)l t,t)

+ I,t+r

+ t,t+7

)) + (1-^9)'l

(2.r1)

(2.r2)

(2.13)

(2.r4)

I,l+t ) (2.15)

(2.16)

_+sfsft
2\/s(2s-1\ L a t
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The Pt operator is syrnmetric, therefore

Prl i,l)

Þ¡ t,t+t¡

S(,9 -r)l á,1) + ,91 i,t+r) , i + t,t+l

Sli,I) + S(s-r)li,r+r), i # t,t+r

(2.r7)

(2. i 8)

The ron-diagonal equations, (2.13) - (2.16), can be written in rnatrix form as follows

I t,i.)

I l+1,i)

I t,t)

I t,l+1)

I /+1, /+1 )

.9(.9- 1) .g

s s(.9- 1)

00

This matrix

{ses -Ð
s(s- 2) + r

I I,i)

I I+r,,i)

I t,t)

I I,t+r)
I /+1, /+1)

(2.re)

the ntl'power of

(2.20)

(2.21)

0

0

s(s- 2)

ßes-Ð
0

0

0

0

0

0

is block cliagonal so to find ñ," it is sufficient to find

Is-r IA: S I

I r .9-

s(s-2)
v/sas)

1

0

,]

ancl

1

s(s-2)+1

Jses-Ð
1

0

1

s(.ç-2)

f sesal

s(2s-1)

s(s -2).9(2.9- 1)

16.



The matrix, ,4., is identical to the matrix given in (2.3) for a one mâgnon excitation.

Tlrerefore, A ltas the sameform as the matrix tn (2.a). Bn can be expressed as

Dn1
2(4s - 1)

g+rþ

p 2pl
9-1þ

p

ç+rþ

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

9-1þ

where

I

,þ

p

: s2"(2s - 1) + 25(52 - 45 + 7)"

: S"(45 - 1)(^9 - 2)

: z{SQS ) lS'," - (^g', - 45 + 1)"]

I,l+7

-ryli-t,i)

-"pIi+r,j),

_.r(^9)r; ;_i \
2 | u)J t / ¡

Then, the effect of the pair Hamiltonian, fr,, on the two magnon basis states is

given by

i<j-1,
Eoli,i),

i+l,I+1 ;jl
Eoli,i)+sli,j)

; 
- 

i-L1þ- ú I r

Eoli,j)+ryli,j)
;-T
L- L

Eoli, j) + 4Ð li, j)
; - l-L1

J -L 
I L

Tltl i,i) :

Eol i,i ) + ep 
I i,j) -*P I i,j +t),

j:I

s(2s -
p

I7



lítl i,i+1) :

'lltl i,i) :

Eol i,¿+I)

Eol i.,r+1) +

Eol i,i+1)

, i I l_r,l,l+1

-ry¡¿,i+2)
; : l-l) u-a

+ grp 
I i,i+r ¡ - a(,s) 

I i- 1,i+1 )
; - l-tI) u-v I

(2.27)

i1l lt-1) u 7- u)ú |

*p li,i+t)

Eol i,i+1 ) + ffiaz(s¡l i,¿+r ¡ - -ft:t 'l arg)l i,i)
-'45,P'{,s)l i+1,i+t ) , i: t

Eol i,i)

Eol i,i) +
_1

2

å f"(s) + ?!i#)

f",rtl -"W]
It n,o)

I i+7,

-ffio{'s)li'i+t')
t+1) ,i:l

(2.28)

Each state has two indices which labei ihe sites with spins flipped. Since the

Hamiltonian only depends upon the relative position of the spin flips, we will use
/o -L "\tlre centre of mass, 
lï), and relative coordinate r: i _ i.In addition, Bloch's

theorem allows us to perform a Fourier transform with respect to the centre of rnass

coorclinate as follows

,lN
I K:r) - -le-x";(i-t)l¡ -r,i)t , , 

1/N ¡=t

where 1l is the total wavevector and

(2.2e)
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Tlre effect of the Hamiltonian on {l I{;r )} is given by

frt K;r) : u Eol K;r) + za{S)l K;r) -

-o(.e) *" (+) I K;,+t

fr¡ x;t¡ : ¡¿Eol r{;1)+ f*,(,9) +
L

a1(5)cos
t I{ a:,
(, )lt{;r-r)
1

l1r; 1)-(2,s -
0,

l

), rl
1)ar(.9)

;0)-

45 -t
1(¿ \
T)t x

(2.3 1 )

(2.32)

l 1r;0 )

(2.33)

z^ß12s - r\ ,
äa{.9)cos(

a,(s)... (+) | r{;2)

È¡ n;o¡

For each value of If these equations are equivalent to a one dirnensional,

semi-infinite, tight-binding form and can be mapped to the equations for any other

problem with similar characteristics. Specifically, the equations of motion for a semi-

infinite linear chain of rnasses and springs has this form. However, the equations for

a uniform mass-spr-ing chain has the forrn given in (2.6). By including defects i' the

chain, a clirect analogy can be made to the m:2 spin equations, (2.81) - (2.3g).

Consider a mass-spring systern with clefects as given below (Fig. z.z).

25a.l S\+__. Yll
45-1'

I I{;I)

+ cos 1nø)]
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k

with defectsFigure 2.2: Serni-infinite mass-spring cirain

The spin equations rnapped to this chain by taking

., \ ZSalS),-
- cos tta) -l ZS=í(I f cos 1lø)

(zS - l)az(S)
45 -1

n1" =+

n'L' =>

n¿+

lc' +

can be

a(^9)(t

cv(.9) +

2a1(S)

2^ffi2g - ¡
ffa{'e)cos (+)

(2.:t4)

(2.35)

(2.36)

(2.37)

(2.38)k + o(^e) *'(+)

As there are two classes of solutions to a chain with defects, it is not surprising

that there are equivalent classes of solutions for tbem:2 spin equations. Equatio¡

(2.31)' by itself, describes the magnon scattering states which correspond to the

extended mode solutions in a rnass-spring chain. It also has the sarne form as for

two non-interacting magnons. Therefore, the energy of the scattering state solutions

must be bounded by the min/rnax of the sum of energies

Er(kt) + Et(kr) :ot(1 - cos,b1ø) * ar(1 - cosk2a) (2.3e)

wlrere k1,,k2 are the wavevectors for the first and second magnons, respectively, and

B1 is the excitation energy of a single free magnon. These wavevectors must satisfy

h * kz : K, where 1( is the total wavevector. As for the rnass-spring chai¡, the

scattering states (extended modes) forrn a continuurn of states ancl for this particular
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system the rninimum and maximum of the continuum is given by

8,,¡,(l{) : 2a1(S) - cos (+)l
g cos (+l

ii

[1

(2.40)

(2.41)8,,",(K) : 2a1(S)

The other 2-magnon equations, (2.32) anct (2.33), clescribe interactions l¡e-

tween the two magnons and are responsible for the bound state solutions, or the

localizecl modes in a mass-spring chain. The true bouncl states, ie. the soiutio¡s

which lie outsicle the scattering state continuurn, can be obtai¡ed as the solution of

the following cubic equation ([14])

IPE+ - r]tøtn) + 2a,13 -
{ tç+" - t]' * lry*L# - 4s,* b] cosz l+]} w6) * 2a112

- 4{lEÉ#?t * 2] cosa lf] * ts, -rtlpÇ+ - 1] cos2 l+]} tneq *2.,11

- nltn,- r)' + (*r*- t)'"",, (+)] .o,. (f)
-0

(2.42)

When a bound state enters a scattering state continuum, it interacts with the co¡-

tinuum to prociuce a resonance.

For a one magnon excitation, much of the variation which is possible o¡ the

Harniltonian does not affect the solution since the excitation energy only clepends on

cv(,9) hence, the solutions for integrable and non-integrable models are qualitatively

the same. However, for the two magnon excitations, there is a noticeable clifference

between the integrable and non-integrable rnodels. The primary integrable model of

interest for this systetn is the Hamiltonian due to Takhiajan ancl Babujia. or whe'
45 -1az : 
t g _ t 41. This model has two bound state branches which lie completely out-LÐ-I

sicle the scattering state continuum and rneet exactly at the Brilloui¡ zone bounclary.
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An exarnple of this case for S : I is shown Fig. 2.3. Due to the limitations on the

rnaximurn size of the graphs and the proximity of the lower bound state branch to

the rninimum eclge of the scattering state continuum, the lower b¡anch is not visible

in the cliagrarn (Fig. 2.3).

0

0.00

Figure 2.3: Two rnagnon bouncl state branches (solid
line) and scattering state continuum (silaclecl
region) for ,9 : I Integrable model. Wavevec-
tor in units of f and energy in units of cv1
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The two bound state branches can

2at
4,92 _ r

These are plottecl in Fig. 2.4 (below)

be described by the curves (See [14].)

-'] *2,ecos(+)@\
{þ,t'* 

cos2 (+)
(2.43)

The special integrable rnodel identified by Parkinson has only the o2s rìon-Z€r-o so

for,9: j, the two rnagnon equations reduce to sirnply the constant 1/86 ter-rn.

Wlren ,9 : 1 ¡ Q7 :0 ancl az # 0" This can be viewed as rernoving all the spri¡gs

witlr spring constant fr frorn the rnass-spring chain, Fig.2.2. The equations, (2.31)

- (2.33), now give exactly two solutiors

E(K) : 0

E(I{): #\þs-r+(+*r+)l
(2.44)

(2.45)

ôÐLò



tf,
(¡)
c

UJ

0

0.00 0.25 0.50

Wavevector K
0.75 1.00

Figure 2.4: Parkinson model of two magnon excitations
for ,9 : 1. Wavevector in units of a and
energy in units of a2. a

For S' : |, az: 0 and this is equivalent to gr - 0. This case is discussecl later along

with the Lai-Sutherland model, which also is characterized by this value of 92. tr'or

now, a srnall digression will be made to clescribe what occurs when the Hamiltonian

tleviates frorn integrability.

As a2 deviates frorn the integrable value, (S="r), ,h" bound state bra¡ch-'\2,9-1 ')',
es no longer meet at tlie Brillouin zone bounclary, forming a gap. This gap increases

45-r t.
.>q _ 1.r1 - nrl increases. when a2 12a1v 5 the upper branch moves entirelyLÐ-I I
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wjthin the continuurn ancl only the iower branch rernains. The Heisenberg rnoclel,

Fig. 2.5, is such an exarnple.

r0 o'zs 
*"j;fl", * o'tu 1'oo

Figure 2.5: Two magnon bound siate (solid line)
ancl continuum (shaded region) for
S : t Heisenberg model. Ènergy in
units of a1.

4q-l
Wlren o, > ffi, it is the lower branch which moves into the continuum eventu-

ally leaving only the upper branch.

Returning to the discussion of the special integrable models, (the parkinson,

s : * and the Lai-Sutherland models) recall that these models have 92: 0. Refer-

ring back to Fig' 2'2, this is equivalent to rernoving the first spring (the k, spring).

The solutions no\Ã/ consist of two parts, one solution corresponding to the main part

25



of the chain (to the right) and the solution for the site at the left. The soiutio'

for the right half is similar to the general case of the two rnagnon excitatio¡s when

gz 1 2, except that there is no resonance from the upper branch ancl tire lower

branch is the only bouncl state solution. But, if .9 > 1 (Wtren S : 1 the moclel is

equivalent to the Lai-Sutheriand model) ttre | If ; 0 ) state (or the solitary mass at

the very left of the chain) is not physically forbidden. (This site corresponds to two

nìagnons on the sarne lattice site.) The solution is given by E(K): ai(1 _ cos I{a).
Both of these bouncl state energy curves have been plotted in Fig. 2.6, beiow

(ru 0.25 0.50 0.75 t.oo
Wavevector K

Figure 2.6: Integrable modei of Lai-sutherland for
two rnagnon excitations. Wavevectors in
units of f ancl eneïgy in units of a1.
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In the integrable tnodels, the excitations have special features. Either, the

equation decouples as in the Lai-Sutherland and Parkinson models, or the 6ound

states form one branch which is continuous acloss two Brillouin zones. These branch-

es fortn gaps when the Harniltonian deviates from integrability and the gaps vary i¡
size as the Hamiltonian rnoves further from the integrable point. This is in accor-

clance with the Halclane conjecture ([12],[13]). Whether this conjecture is valid for

three magnon excitations as well as the general behaviour of the systern will l¡e in-

vestigated further in the lest of the thesis. Three magnon excitations are sornewhat

rnore clifficult than one and/or two magnon excitations and Chapter- 3 is entirely

devoted to the necessary formalism.
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ChæpËes' ffi

?&aree*&€ægøe@ffi. Ðxcå t ætåosas

There have been a number of papers which have been devoted to three magnon

excitations in the past. The first was H. Bethe (1931, [7]) who actually solvecl

a system with rn-magnon excitations, but his analysis only applies for i¡tegrable
Harniltonians. However, sorne years ago there were a series of papers which dealt
specificallv with three magnons such as c. Majumdar (1g20, fr|l; rg72, [1g]) ; s.

Mukhopadhvav and c. Majumdar (1976), [19]; and J. van Himbeïgen (rg|7) 120].

These were based on the formarism developed by L. Faddeev (1961) [21], which
treats the system as a system of magnons which can scatter off o'e another or bincl

together to fortn a stable complex. In the above references the approach to the
problem is very general but detailed solutions are given only for a one climensional

spin ] chain. Generally, the procedure used was to transform to a magnon basis

labelled by wavevectors ancl to perform all calculations within this space. In this
basis it is difficult to identify non-physical states such as those which correspond.

to raising a single spin by more than 2^9. The papers describe the various methods
which were used to find ancl elirninate these unphysical states. The techniques

involved the identification of a numl¡er of constraints based orÌ sorrre simple physical

argurnents. The problem was compouncled, in sorne of the papers, by the use of
an approximate Hamiltonian (to the Heisenberg model) which has some spurious

solutions' A paper which posed the problem in a slightly different form (but using

a similar method of solution) was trrat by p. J. Millet and H. Kapra' (rg74) 122].
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These authors also encounterecl spurious solutions but only for ,g: ]. Systems with

S , i were studieci without such ilifficulties.

The approach to solve the three magnon system in this thesis is somewhat

differ-ent. A Fourier transform of only the centre of mass is performecl, which gives a

goocl quanturn nurnber for the translationally invariant general Harniltonian, (1.4).

The other two coordinates which are required to clescribe the relative positions of

the Inagnons are kept in coorclinate space. Because of this, the unphysical states

are easily identifiecl. We usecl completely numerical rnethods to solve the systern,

whereas the papers cited al¡ove mainly atternptecl to obtain analytic expressions

of the solutions. Only the formalism needecl to describe the system is given in
this chapter' However, solutions to a restricted class of Hamiltonians which can

be obtained without the complete solution to the general set of equations are also

clescribed. The method of solution to the full interacting equations will be clescribed

in Chapter 4.

{i, i,k}
i:j:

k
of:{ the same

k

(3 1)

(3 2)

1/z+s1zs-r¡1st¡ '

( É for ihe entire set of states. The general procedure

on these states follows that useci for the one and two

Þ¡ operates on these states, above, the resulti'g rnatrix

S"3. Forrnalisma arxd Ðquations

An orthonormal set of three spin deviations are

i, i, k ) : C¿j*.S,+5rl5f 
I
o)

wlrere C¿¡¡ is a normalization constant satisfying

C¿¡*

ancl with the inclices i < j
to establish the effect of R.

rnagnon excitations. When

1/.1 7+4+
.,/8S3 t "7-J 7-

.)

-.L

\/852(25-1)'
1
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is block diagonal. The two smallest blocks are of the same form as for free rnagnons

and for two magnons which are bound together (with the rernaining mag¡on not

interacting with the others), respectively. The effect of Pi" on the states wirich

generates these submatrices are already known from previous chapters, (2.2) and

(2.13)-(2.16)' The last block to colsideï corresponds to the case when the three

rnagnons are orl the sarne or neighbouring sites. The resulting matrix, which is given

in the appenclix, is transformed to a diagonal matrix to facilitate the calculation of

raising it to the ntl' power.

The combination of all these matrices were sufficient to obtain the effect of I
on the complete set of states, in coordinate space and the cletails of these derivations

are also given in tlie appendix. The translational invariance of the Hamiltonian

enables a transfortnation to be made to a centre of mass coordinate (Ë) ancl two

relative coordinates (r, y). specifically, the transformation

i+r'¡
I i, j,k ) + I Æ, r,a), (3 3)

can beusecl. The coordinates werelabelledsuchthat ¿< j ( k so that r, a> 0.

Representing these states as linear combinations of the eigenstates of the translatio¡

operator gives,

I R : f(;+
\ ï : J-z
[. v : k- j

lR,*,,y) : *f "iRI{a¡I{;r- j- i,y:k- j)lv, 
JN g¡

(3.4)

ot'

I I{; x,,y)

centre of mass and 2rnlla: ¡/ , n€2. The

t_: --\'e,/N 7
-iRKal R,*ry) (3.5)

where 1l is the wavevector of the
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Hamiltonian can be expressed using the following quantities

c-

Õ0

c1

c4

u:

,D:

D6:

u1

3a(s)

3,9(S-1) 
| s(4s

cos 1(ø).'3(,9)(1 -

a(S)(1 - cos 1(¿)

,J)

3(^e- 1)(4,e-3)

, a{.9)(1 * cos I(a) 
,- J;-r¡a5-, *

3(1-.9) , ^,1- 4s{ o*òrl

l

(3 6)

(3 7)

(3 B)

(3.e)

(3.10)

(3.11)

(3.12)

(3.13)

1 l-3l3.g-2) 3.ç- I

tlãar(s) + *-".{'s)
o(^s) *r(H) "trt
z 

l',1s¡ * fr"xsl]
2a{s). (#=) o$)

( isa(s) , (1-s)a{^9)-rl4s1- 4s{

-l"'rst

3(1-.9)a{.9
45 -3

a{.9)(1 + (.')
45 -1

øffiÖ]r,,nr

tu{s)1þçzs -t¡
45 -1

where * represents the operation of complex conjugation a.cl (
of tlre Hamiltonian on the transformed set of kets, { I K;r,A)},

-Í {'ut, + (.' 
f*(s, - #?] } (3.15)

(3. 1 6)

: 
"o#. The effect

is as follows

frt

ût

1l;0,0) : esl I{;0,0)+ uol K;0,1)+ufil 1(; 1,0) (8.12)

K;0,1) : e1l I{;0,1)+ ul I{;1,0)+ ul K;0,2) +w*l K;t,I)
*ujl 1(;0,0 ) (3.18)
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fr1 t<;t,,0¡ : e1l I{;1,0 ) + u.l I{;0,1 ) + ,îl K;2,0) + zol K;r,r)
*o61 1f ;0,0 ) (8.19)

û1 N;t,t¡ : e2l I{;1,1) + ul I{;0,1) + u.l I{;i,0) + w.l I{;0,2)

*wl I{;2,0) + ul K;I,Z) + u"l K;2,,1) (8.20)

ancl for rry ) 7

ûl N;o,y) : 4l I{;0, y ) * uil I{;0,a-1) * ur I r{;0,y+r)

*wl I{;I,a-7 ) + r.l K;t,y ) qS.Zi;

ûl X;n,O) : ql I{;r,0) * utl K;z-1,0) + ril I{;rtI,O)

lw*l K;r-1,,7 ) +tr;| K;r,t) 
çS.ZZ¡

fr¡ X;t,s¡ : eal I{;t,a) * u"l I{;r,a_1) * u I K;r,y+1)

*u.l I{;2,a) * ul I{;2,a - 1 ) * to.l I{;0,a_lI) *
ul K;0,y) (3.23)

ûl I{;r,t) : eal I{;x,I) I ul I{;r-1,1 ) * u.l I{;rlI,t)
*ul I{;r,2) * u"l I{;ü-I,2) I w*l I{;r,,0) *
-l K;zf 1,0 ) çS.Z+¡

frl rc;r,y) : el I{;r,y) + u.l I{;xt7,y) * rl K;*- I,a)

lu*l K;r-r,!+1 ) + ul I{;r*t,u-1) + ,*l K;x:,,u -r)
*ul K;r,yll) (3.25)

Tlre quantum number, I{ - the total wavevector, is cornmon to all the equations

ancl should be understood implicitly for all that follows. Also, the ground state was

tahen as the zero of energy.

Note that equation (3.25), by itself, describes the behaviour of the system when

the rnagnotls aïe separated by more than nearest neighbours and depend solely on

"(S)' Also, when one of the magnons is further than nearest neighbours from the
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other two, (3.21)-(3.24), or when all three are exactly nearest neighbours, (3.20),

the equations depend on a(.9) and a2(S) only. When two magnons a e on the same

site and the other is also on that site, (3.17), or a nearest neighbour to the other

two, (3.18) and (3.20), the equations depend on a(.9) ,o{,5), and a{S). A1l a,(,9),

n ) 3, do not appear for this system and are only necessary when considering four

or more magnons. The equations, above, can, be represented graphically as

{\/@\^ u

,4_ W

æ> u,

Figure 3.1: Graphical representation of the effect of the general Hamil-
tonian on states of the form I K;r,y).

The grid coordinates label the values of ¿ and y in the ket I z, E ) and the lines

on the diagram represent the interaction between kets. The different types of lines

correspond to different interactions. The arro'ws point to states which are generated
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by the Hamiltonian when acting on the kets ai the base of the arrows. But the

Hamiltonian can operate on any site and, for any nearest neighbour pair of sites, if
the Hamiltonian is made to act on the state which the arrow is directed toward, the

coupling which results is related to the appropriate interaction (u, ,u),,t),,us, u1) but

the complex conjugate must be taken. In other words, the direction of all the arrows

can be reversed if the complex conjugate of u, w, u, u6 and u1 is used. The different

site markers indicate the coefficients which are associated with the self interaction

of the ket that the Hamiltonian is acting on. Finaliy, the Hamiltonian is a nearest

neighbour model so exactly one bond on the diagram can be taken in any direction

from any node.

A simple example can be read off as follows: Suppose, the effect of fr on I 0,0 )

is desired. I 0,0 ) is equivalent to (r, y) : (0,0) on the diagram so, starting at the

leftmost site, there is a line to (r,y) : (0, 1), hence the Hamiltonian produces the ket

I 0' 1 ) and the bond corresponds to us so the entire term is us | 0, 1 ) . Similariy, there

is an interaction to 11,0) but this is in the opposite direction of the arrow, so the

interaction has the form ufil 1,0). The nearest neighbour model prohibits following

two interactions to get to | 1,1) and there is no direct connection so this state

cannot be reached from 10,0). Finally, there is the symbol on the (*,a): (0,0)

site which indicates there is also a e6l 0,0) term. Therefore, the entire efect is

û10,0) : rol 0,0 ) + u6l 0, 1 ) + ,ðl 1,0 ), as given in (8.12).

In general, the Hamiltonian will generate seven terms when it acts on any state

of the form I K; ",y ) and although the resulting equation does not resemble the two-

magnon equations, (2.31)-(2.33), these equations are of a tight binding form. This

becomes more apparent by considering a tight binding two dimensional triangular

lattice, for example a net of masses and springs. The Hamiltonian of Fig. S.1 can be

mapped directly to such a net, if allowance is made for an edge in both the z and

gr directions. The mapping is accomplished by taking the site quantities (e¿, i :
0,r,2,3,4) as related to the size of the masses and the connections (u, w, u,, u6, u1)

34



as the strength of the springs. The existence of such a mapping indicates that the

formalism is not restricted to describing quantum spins on a chain. The formalism

can be applied to any system which is characterizedby two coordinates (and satisfies

the condition of nearest neighbour interactions on a semi-infinite triangular lattice)

such as multiple particles on a one dimensional chain, which is the case we are

considering, or a single particle on a two dimensional net.

This system is similar to having defects in a linear mass-spring chain in that

the outer two surface layers are inherently different from the bulk of the net and the

four sites in the corner l@,A): (0,0), (1,0), (0,1), (1,1)] are different from both

the rest of the surface and the bulk. (These are the equivalents of the defects.)

Thus, the equation can be separated into three groups and the general solution

for each grolip can be obtained independently" However, the complete solution to

the three magnon equations requires these general solutions to change smoothly

across the boundaries between the groups. Because the Hamiltonian is mapped

to a two dimensional net, some differences from the solutions to a simple system

of masses and chains are to be expected but there are still two types of solutions,

scattering and bound states. The scattering states can be further divided into two

more classifications. First, there are those scattering states which propagate in the

uniform part of the net. These are described by equation (3.25), by itself. But

there are other states described by equations (3.21)-(3.24). These are states which

form travelling modes that propagate along the surface and can couple with the

other travelling modes described above. Finally, there are solutions coïresponding

to localized modes and these states are solutions to (3.17)-(3.20). Both types of scat-

tering states are discussed in the next section (Section 3.2). While the discussion of

the bound state solutions is deferred to Chapter 4.
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&.2 Thnee l\/lagraow Comtir¿utlrrr

The scattering states which propagate in the uniform part of the net are equivalent

to three non-interacting magnons on an infinite triangular lattice. This is apparent

in the form of the equation which describes these states, (3.25). Then, the energies

of the solutions must be bounded by the min/max of

Er(k') + Er(k2) + E{h) :

h*kzIks

These extrema are given by

E^¿"(I{) :

E^""(K) :

and are plotted in Fig" 3.2.

ot(1 - cos Ë1ø) * a1(1 - cos k2a) -f or(7 - cos k3ø) ,

Yr'

- 
]{t

(3.26)

Ba(.s) (t -"",f)
Ba1(.s) fr-.o, e+31

(3.27)

(3.28)
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0.00 0.25 0.50 0.75 1.00

Wavevector K

Figure 3.2: Extent of the three free magnon scattering
state continuum. Energy in units of a1.
Wavevector in units of a.-

The above argument gives no information on the detailed form of the state. This

would depend upon the conditions which must imposed upon the equation to match

the solutions between the region which is described by (3.25) and the region de-

scribed by (3.17)-(3.24). Referring to Fig. 3.1, the boundaries to these types of

scattering states are along r :2 and/or U : 2. Each of the sites along these axes

would have two constraints imposed upon it from the equations corresponding to

the Hamiltonian acting on the sites along r,U:1. (ie. The constraints necessary

to keep the wavefunction continuous when crossing the region where the masses and

al¡



springs are uniform , r,u 2 2, and the region near the edges, r,u { 2.) The particu-

lar site at (r,a): (2,2) appears to have four constraints but, due to the syrnmetry

of the net, two are not independen'c. Further, in the equations above there are four

degrees of freedom (two for each k1, kr, lt" minus two for the constraint on the total

wavevector). With more degrees of freedom in equation (3.26) than constraints, a

solution can always be found with an energy which lies in the shaded region of Fig.

3.2. The boundary conditions which demand a smooth transition between the re-

gions are dependent upon the derivative of the functions used to enforce continuity

of the wavefunction and wouid simply double the number of degrees of freedom as

well as the constraints.

Whereas the equation for the previous continuum has the form of three free

magnons' the second scattering state continuum includes some interactions between

them. The equations which describe these scattering states, (3.21)-(3.25), define

travelling modes which can propagate aiong most of the edges but decay into the

uniform part of the net. These equations do not describe states which are represented.

by the sites at the leftmost corner in Fig. J.1. [ie. sites: (0,0), (1,0), (0,1), (1,1)].

The form of the equations for this second scattering state continuum is the same

as for a travelling two magnon bound state combined with a single free magnon.

Therefore, this continuum must be bounded by the minimum and maximum of

Er(k') + ør(lcu), kt * kø : K (3.2e)

where we define E2 as the excitation energy of a two magnon bound state and k6

is the total wavevector for the bound state. The form of E2 varies tremendously

depending upon the value or 92 : g* in the Hamiltonian. For exampì.e, in the- a(5)

specific case of n, : ffi there are two continua, one from each bound state

branch, which exactly meet over the entire Brillouin zone as shown in Fig. J.J.
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o.u) 0.25 0.50 0.75 1.00

Wavevector K

Figure 3.3: Extent of the two-bound one-free magnon
scattering state continuum. Energy in ùnits
of o1. Wavevector in units of ¿.

If 92 deviates from #,the two bands no longer meet over the whole Brillouin

zone and if. 92 is sufficiently different from this value there is only one bound state

branch and hence only one of these continua is present. For exampie the Heisenberg
4q - 1

model- o" - ì"-;', has only the lower continuum. As the analysis for these)r2 
25

continua follow a similar argument as the three free continuum, these results also

contain no information on the detailed form of the states. However, there are still

more degrees of freedom than constraints (from the conditions to match the solutions
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between regions) so a solution can always be found. To be specific, the boundaries

of ihis region are between the sites (0,1) - (0, 2), (7,1) - (0,2) and (1,1) - (1,2).

There are also boundaries between (1,0)- (2,0), (1,1)- (2,0) and (1, 1)- (2, 1) but

these do not give constraints independen-t from the first three. As for the degrees of

freedom, consider the bound state first. The component wavevectors for the bouncÌ

state, È¿1 and k62 satisfy

kn*kuz: ku (3.30)

These component wavevectors are inherently complex, so there are four degrees

of freedom for each constituent wavevector, but the total wavevector of the bound

state, È¿, is real so the number of degrees of freedom decreases from eight to six. The

constraint on the sum of the wavevectors, (3.30), further reduces this to four. Now

consider the free magnon. This contributes two more degrees of freedom but with

the constraint on the total wavevector, equation (3.29), the final total of the degrees

of freedom is four with only three remaining constraints. Therefore, a solution can

always be found with the energy of the solutions within the continua described

above.

These different continua (the two-bound one-free continua and the three free

continuum) overlap to a large degree with no gaps so that the scattering continuum

for a three magnon excitation can be taken as a single band which extends from

the continuum which attains the minimum energy to the continuum which achieves

the maximum energy. The band edges which are internal to this single continuum

band generate Van Hove singularities in the band. The scattering state continuum

is important when identifying the bound states which arise from the solutions to

the few remaining equations, (3.17)-(3.20). A method of solution for these bouncl

states is described in the next chapter, Chapter 4. However, there are a number of

models which can be considered without resorting to special methods of solution.

These are the special integrable models introduced in Chapter 1. The Hamiltonians
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for these models have certain simplifying features which enable most of the models

to be solved directly from (3.17)-(3.25). The models and solution are given in the

next section.

S"S Bourad States amd lrategrable h/fodels

Consider, initially, the Lai-Sutherland modei where dl,S) : 0 and cv(^g) : *r(,9).

This gives to : 0 : uo¡ completely decoupling the site corresponding to 10,0),

three magnons on the same site. This also has the effect of isolating the region with

r,U Þ 1 from the rest of the sites as shown in Fig. 3.4, below.

1¡@\¡
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--<--

* 
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t.
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Ê3

ê

Figure 3.4: Diagram of the Hamiltonian for the Lai-
Sutherland model.

For the latter region the equations reduce to the form of an integrable ,9 : j system

of three magnons. The solutions, therefore, have the form as those given by Bethe

and consist of two scattering state bands, as described in the previous section, and

a single bound state branch with en ot('9) '-ergy :î [i - cos(11ø)]. The former region
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has only the one site which implies the state is an eigenstate with energy €o :

o(.9) [1 - cos(Ila)]. Therefore, this state t,ehaves as a single free magnon. The

middle region, consisting of the surface layer along with the interaction between

I 1,0 ) and | 0, 1 ), contain states with two magnons on the same site combined with

one free magnon. If the part of the llamiltonian which defines the behaviour of

these states, only, is transformed to a tridiagonal form, the Hamiltonian takes the

form of a semi-infinite mass-spring chain with one defect at one end. This is the

same as was found for a two magnon excitation in Chapter 2for S: j. In Chapter

2 the system was treated generally, but if the resulting equations are restricted to

S : L* the size of ,9 prevents raising the spin of any one site by more than one, which

removes the first mass (rn") and spring (È') from Fig. 2.2. This gives a single mass

defect at the beginning, with the remaining masses and springs uniform. Therefore

the solutions must also have the same form as the two magnon equations, namely

a band of scattering states bounded by Econt:za¡(S)lt + *tfff)] ."a a bound

state of eneïsy Eø : 
"P lt - "o, (ry)] (as given by Bethe).

The other special integrable modei is the Temperley-Lieb Hamiltonian. These

models have o¿ : 0, i + 25. When "9 
: 1, €o¡ e¡us and u are all 0, decoupli'g the

first two layers, excluding I û,0), from the rest. For any of the states in the uniform

part of the net in Fig. 3.1 (ie. r,A ) 2) and 10,0), frl*,A) :0 and E : 0 is

the only solution. The remaining part (Fig. 3.5, below) is more easily treated using

a method described in the following chapter, so that the solutions to this model

will be given along with the results for the more general Hamiltonian, later. The

diagram of the Hamiltonian follow the same conventions used for the diagram of

the general Hamiitonian, Fig. 3.1.
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Figure 3.5: Diagram of the l{amiltonian for a
,9: 1 Temperley-Lieb model.

Quite different from the ,9 : 1 case, the s : Ê Temperley-Lieb model can be

treated quite simply. The ÍIamiltonian has only es, €.r.t 1)o¡ u rron-zero. Explicitly,

00

è1

uo

4

i n - cos(/tø)l

a.

4

å;ç-(,-')
-a(

(3.3 1 )

(3.32)

(3.33)

(3.34)

taking o{^9) : a. Graphically,
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Figure 3.6: Diagram of the Hamiltonian
for a,S : t Temperley_Lieb
model.

As for the ,S - 1 case, the only solution to any of the states outside the region

shown in Fig. 3.6 has E : 0" Using this restricted number of states, the Schrödinger

equation gives

u
0

(E - to)l 0,0 ) - ,*l 1,0 ) - ul 0,1 )

-ul 0,0) + (E - rt)l 1,0) - z.l 0, 1)

-r*l 0,0)-"1 1,0)+(E-e1)l 0,1)

which have solutions given by E : O, a [t - ] cos(/fø)].

0

0

0

(3.35)

(3.36)

(3.37)

These are plotted below.
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Figure 3.7: Bound state solutions of the 
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: I Temperley
-Lieb model. The energy is in units of a and
the wavevector in units of j.
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4"L Gneen's F'umction

If all the eigenvalues and eigenvectors can be found for the llamiltonian then the

complete solution to the equations (3.17)-(3.25) has been obtained. Unfortunately,

the calculation of the eigenvectors and eigenvalues for this system, requires methods

which are very complicated and/or computationally expensive. Howeve¡ a modest,

but important, amount of information can be obtained from the equations without

resorting to such complex methods. Consider the density of states for this lattice.

When the three magnons are bound together as a single entity there would be a non-

zero numt¡er of states over some infinitesimally small region of energy. Hence, these

would appear as delta functions in the density of states. Also, some configurations

may have a significant number of states over a small but finite energy range, giving

a peak rather than a delta-function. These peaks can be ïesonances or possibly

Van Hove singularities. Finally, states which are infinitesimally close to each other

in energy (as in the continuum bands) would have wide ïanges of energy where

the density of states would be non-zero. Although we would not have the precise

eigenstates, by studying the density of states we could obtain the energies which each

different type of state couid possess. Also, the formalism to this point has identified

one good quantum number, the total wavevector 1(, which can be incorporated to

further enhance the amount of knowledge about the system.
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As a brief aside, consider an arbitrary ket, lf ), i* the three-magnon basis

which can be expanded as follows

I j): Ðo^l l)
À

(4.1)

(4.2)

(4 3)

where { l À ) } is a complete orthonormal set of states such that ûl ¡) : Esl À ), and

Es are the energy eigenvalues of fr. The local Green's function is defined as

The poles of G¡ occur on the reai axis at the energy eigenvalues "E¡. The energy ,8"

is a complex quantity, but if we restrict ourselves to energies near the real axis, we

can take E": E I ie , I t l< 1. Then

"^l'l
(E - Ex)G¡:Ðl

À
-7,(E-E¡)2+e2 (E-E¡)2+e2

and in the limit

rþ[Im(Gr)] : -',Tlr l'6(E - n>,) (4.4)

(See, for example, R. M. White [23] or E. N. Economou [2a].) Thus, the imaginary

part of the iocal Green's function is proportional to a sum of delta functions and is

non-zero only at energies where eigenstates exist. The density of states local to I j )

(not an eigenstate) can be defined as

n¡:-!y^[G¡(E+ie)] (4.5)

47



and the total density of states, n, is obtained by a sum over all the kets in the basis

\-n : 2-n¡
j
'i_

: -: )_ ImlG¡(E + ze)l
/l l, .,ì

tt r)ì
(4.6)

(4.7)

The real part of the Green's function can be related to the Hilbert transform of

the density of states and gives an indication of the difficulty of exciting the system

at an energy, E 1161. If the chosen state, l7), has some special symmetries with

respect to the Hamiltonian then some of the coefficients c¡, : 0 for {À'} C {À},
and there will be no contribution from these states to the local density of states

for lj ). In practice it is very unlikely that a state would be accidentally chosen

which has a significant number of the cÀ, - 0 to be problematic. However, there are

two classes of states which may accidentally be chosen; states which are completely

symmetric or completely antisymmetric. In fact it was observed that for the ^9 
: 

å

Heisenberg case, one of the bound states has no symmetric components, but this

was not common and fortunately kets with either of these types of symmetries are

easily identified.

When using a matrix representation, the local Green's function can be taken

as a single matrix element of the operator @ -fi)*t and without loss of generality,

we can choose the Gs¡ element which gives

(;00
Mioo([ø -î])
Der ([E - ûl)

where Mirj(lÆ _ fr1) is the minor of element i,j for the matrix lE -f]. But

the Green's function would be of little value if it was difficult to calculate, and for

sorne choices of sets of bases the calculation is trivial, such as a basis where the

Hamiltonian is diagonal. In general, the appropriate basis which diagonalizes the
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Hamiltonian is difficult or impossible to find, but

of kets which transform û ø a form where it is

fr i, h.r^itian, ie.

fr:

it is always possible to find a set

tridiagonal and symmetric, given

hoo hot
hu hr1. hp

htz hzz hzz (4.8)

When the determinant

tonian in (4.8) is used,

hn-tn hnn

and cofactors in (4.7) are expanded and the form of Hamil-

the Green's function becomes

Goo(E) : n¿i"(ql-- ll)
"uu\-./ _ 

(E_hrr)

1

I
(4.e)

The factor
Mioo([E -û])

minor of 'Ì1 for the 0,0 element.

the local Green's function can be

Mioo([E - fr']\is of the form 
-'-'" 

) , í where f i, th"
Det ([E - il])

))Mioo(Mio1 (fn - ûl

This term has the same form as (4.7). Therefore,

represented by the continued fraction

Goo(E): (4.10)
hro,E-hoo-

E-hn
L2
I L12

--- L2
n t lL23
It - rL22

:

Mioo(Mio1 (tn - frl
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There is still a difficulty in that the basis which tridiagonalizes the Hamilto-

nian needs to be found. There is a method whicli can be used to easily find the

tridiagonal form of the Hamiltonian and it will also generate the basis states which

would produce the transformation as well, but it is the elements of the tridiagonal

Hamiltonian which are the useful quantities in our case. This procedure is l<nown

as the Recursion Method and it is descrit¡ed in the following section.

4.2 R eaursrrm

Although there are some standard routines for tridiagonalizing a matrix, the most

efficient method, in this case, is the Recursion Method. This procedure has been

extensively documented with the most complete treatment given by R. Ilaydock

[16] for electronic systems. The method relies extensively on a three-term recursion

relation of the form

ûrn : a¿u¿ I b¿+tu¿+t * b¿u¿-t (4.11)

where a¿, b¿ € R atd u¿ is the dth state of an arbitïary complete orthonormal set of

states. To start the procedure, define u-t :0 and some arbitrary state 26, then

define a normalized state, 21, from

ûuo:a,suslb1u1 (4.r2)

Taking u1 â,s solrr€ presently unknown state but presumed to be orthogonal to 26.

It follows that

û's : u[T{us

btut : frus-a,us

(4.13)

(4.r4)

In general, there will be a third term in (4.14), ie. (4.14) becomes b¿+tu¿+t :
fr":-a¿ui-b¿u¿-r. we can take ó1 (ón+r) as the normalizationfactor for u1 (rr*r).



By iterating this procedure, the set of states {u¿}, can be found which will transform

the Hamiltonian to the desired canonical form and the resulting tridiagonal matrix

will contain the o¿ and ó¿ as its elements. To be explicit, if a vector in the new basis

l:'\
with the a'* 

| it, | 
;, ,r."4, the Flamiltonian becomes

\i)

:l[ï)
cls bL

U d,1

b2

0

,(i,:): b2

d2 b3 (4.15)

For some choice of initial ket in the three-magnon basis, uo : I r,,y), each

successive application of the above procedure with the nearest neighbour Hamilto-

nian, represented in Fig. 3.1, can only couple to the kets in neighbouring columns.

For example, if u6 : | 0,0), then after the first iteration, u1 involves the kets I 1,0)

and | 0, 1 ). The second iteration yields a u2 which can involve some combination of

I i,0) and | 0,1), which is linearly independent from u1, âs well as terms involving

12,0),10,2) and I1,1). The new state formed at each iteration is constructed

to be orthogonal to the previous two states, thus to find the next basis state only

these two states need be known, along with the Hamiltonian which connects them.

This process will map the system onto an effective tight binding chain which is in-

homogeneous, and for any initial choice of u6, thereis a one to one correspondence

between the a¿ and ó; to the masses and strength of the springs, for a mass-spring

chain. However, the precise values will change depending upon the choice of initial

ket.

For this semi-infinite chain, the recursion process continues indefinitely, which

creates a difficulty: when and how to stop the procedure. There are a number of

important possibilities for the behaviour of the o¿ and ó¿ coefficients for large i.

The coefficients may approach constants, form some kind of periodic oscillations or
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simply vary randomly. The last case, random values of ø¿ and ó¿, correspond to a

random net of masses and springs. This would not be expected for the Hamiltonian

given in Fig" 3.1. As the number of iterations increases (ie. moving further to

the right of the diagram) the columns become longer, and locally, it more close-

ly approximates a uniform net. Therefore, we expect that the coeficients would

approach constant values.

4.& T'erymåseatiom of the Contåntåed F\^actioru

4"3.L Cor¡stant Coefficier¡ts

The easiest case to treat is when the coefficients ø¿ and ó¿ converge to constant

values. The asymptotic "tail" of the continued fraction for the Green's function can

be easily evaluated exactly. To show this, let

0'¿ : o'

b¿: b )*' 
ili^u* (4.16)

(i-,*)tl' iterationor the {r¿ and b¿ are constant for all recursive iterations after the

then

G(8.):
E.-úo-

E"- et -
:

""-*^*E
where we represent the infinite tail of the continued fraction by

G*(8.) :

(4.17)
b7

b2

L2ñu

-t'
E"-e- o"

1)
o-

E"-e-G*(8")
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1:
2 lø"_ o+ (4.18)

This is known as the square root terminator and the choice of the positive or negative

square root depends upon whether the energy was initially taken in the upper or

lower half of the complex plane, or equivalently if E - a is positive or negative. As

examples, we will consider the case of a uniform semi-infinite chain and one magnon

excitations on a uniform infinite chain, which corresponds to a semi-infinite chain

with only the first spring different. The one magnon excitations give coefficients

&¿ : a.v i and bo : { fb o.= ! so thar
f. 0 zf L

G(E) :
E-a- 2b2

E-a-G*

: E - "+ {@ - "Y - +t,

(E - ")' - 4b2 + (E - ")tl@ - o), - 4b2

+1

For single magnon excitations there cannot be any bound states, and there is a

continuum which can be found by calculating the (real) energies where G contains

an imaginary term, or when

(4.1e)

(4.20)

(L 11\

(E-")'-4b2
a-2b a*2b

Therefore, the imaginary part of G is non-zero when Et : a-21) < E 1 Ez : al\l¡.
The asymptotic values of ø¿ and b¿ are related to the minirnum energy, 81, and the

maximurn energy, Ez, by

a: |{",o"r¡

(E - ")'
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b - |tø, - ,,) (4.22)

These are merely the edges of the band and the behaviour of the density of states

within the band can only be obtained by considering the Green's function with

complex energies. The real and imaginary parts of (a.19) for complex energies are

shown below (Fig. a.1 and Fig" 4.2, respectively).

9o

-1 0f23
Eriêrgy

Figure 4.1: Real part of the Green's func-
tion for one magnon excita-
tions on an infinite chain. En-
ergy in units of a1.
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F'igure 4.2: Irnaginary part of the Green,s
function for one maqnon ex-
citations on an infinite chain.
Energy in units of a1.

For the uniform semi-infinite chain, the Green's function is

G(8.) : E.-ø-G*(8")

which has real and imaginary

and ó of 4 (units of c1) and !,

parts as shown below, for the arbitrary values of ø

respectively.

(8"#lt" - a,+ (4.23)
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Figure 4.3: Real part of the density of states
for constant coefiÊcients. The val-
ue of ø. : 4 and ó : i in units of
d.1.
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Figure 4.4: Imaginary part of the density of s-
tates for constant coefficients. The
value of a :4 and b : i in units
of a1.

4.3"2 Oscitrnating Coefficients

The asymptotic behaviour of the coefficients contain information about the general

features of the scattering state band. C. Ilodges [25] showed that internal Van Hove

singularities led to oscillations in the coefficients but they eventually decay to give

constant values of ø¿ and ó¿ if the recursion process was carried out far enough. The

coefficients will always converge to constant values when there is a single band.

IIowever, multiple bands give rise to non-decaying oscillations of the coefficients.

This has been extensively studied in the past, [26]-[29]. The analysis given below

approaches the problem somev¡hat differently than in 126]-1291 and only the specific
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case of a single gap is considered. IIowever, the references given above provide a

general analysis for multiple gaps.

Consider the asymptotic region in the continued fraction when the coefficients

osciliate between exactly two a and ö pairs, sà)t, a1, bz, az, bt, ot,, br, or,. . .. Then

the Green's function can be represented by

t7 
-

(4.24)E-q-G-

where

G*: b?¿

L2

E-az -E-E-q--:

b3

-

E_az_r#_;
:1'

2(E - aù t(E - "')(E - o') + b" - b?

+ ) tn.rrl

Now, consider only the square root term

lfu - or)(E - o") + t? - b'r]  b?(E - or)(E - or) :
(E - or)'(u - or)'-z(E - or)(E - "r)(b?+u3)+(bi-brr), (4.26)

which can be factored to (E - Àr)(E - 
^r)(E 

- Àr)(E - Àn), where

(4.27)

(4.28)
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(4.2e)

(4.30)

with À1 < À2 < Àr ( Àn. To find the regions where the density of states is non-zero,

the imaginary part of G is taken with E : E * i.e. Then the square root term

can be expanded (for e ( 1) to give an imaginary part which is proportional to e

when E < Àr, Àz 1E < À¡ or E > À4, so that in the limit of e --+ 0, the density

of statesisalso0" Ilowever,when À, 1E (À2 or À=18 ( Àathereisaterm

independent of e in the expansion which gives a non-zero density of states for these

regions. Hence, the )¿ may be identifred with the E¿ of two bands extending from

(Er, Er) : (lt, À2) and (8", En) : (Às, Àa) with a gap when À, # À". The graphical

representation of the Green's function is shown below, taking the arbitrary values

dt : 4, a2 : 6, bt : I and b2: 2 (units of ai).
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Figure 4.5: Real part of the density of states for
alternating coefficients. The value of
at: 4 ar..d a2 : 6, bt :7, bz :2 in
units of ai.
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Figure 4.6: Imaginary part of the density of states
for alternating coefficients. The value
of ø7 - 4 and &z: 6, bt: I, bz :2
in units of a1.

In general, a sequence of a¿ and ó¿ which has a more complicated pattern of

oscillations produces more gaps in the scattering state continuum, but the oscil-

lations and/or the Green's function is always characterized by an integral of the

fdt2n
form 1: I -: where X(t): ïïf¿ -l) for n scattering state bands bounded

' ,lx(t) iJ
by (Ær,Er), (E",En),..-, (Ern-r,Ezn). The integral is characteristic of a general

class of periodic functions, Abelian or hyperelliptic functions, to which the usual

trigonometric functions are but a special case.

The process of finding the periodic function from the energy spectrum is re-

lated to what is known as the Jacobi inversion problem and is treated generally by
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M. Toda 128]. The method of solution for the inversion problem can be appliecl

to extract the observed periods of the oscillations in the coefficients. This requires

taking linear combinations of integrals, 1, over various energy ranges.

There exist relations between the coefficients and the energy limits of the

bands which can be used to show that the amplitude of the oscillations are related

to the width of the gaps [29]. (Multiple gaps generate a sequence which will appear

as several different oscillations superimposed on one another with the amplitude of

each oscillation varying with the corresponding width of each gap.) For the case of

one gap the oscillations in the coefficients are related to the simplest of the Abelian

functions which are elliptic functions, and if the gaps are small, the amplitude of the

oscillations are also small and the elliptic functions can be accurately approximated

by trigonometric functions [29]. The calculation of the integrals requires knowledge

of the energies of the edges of each band and fortunately, the asymptotic behaviour

of the coefficients have little effect upon the energies of all the band edges and the

bound states. The exact form of the termination equation only influences the shape

and number of states within any bands. Therefore, the Green's function or density

of states can be calculated by first approximating the tail of the continued fraction.

Then, the energies for the band edges and bound states can be found to calculate a

more accurate tail for the continued fraction. This in turn is used to find a Green's

function which is a better representation of the density of states. The scattering

state band did not actually have any gaps for any of the cases which we consider

but the theory surrounding oscillations in the asymptotic values of the coefficients

was useful in the understanding of a peculiar numerical effect which was observed.

This is elaborated in the next section when we consider a specific example of the

S : i model.
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4.4 Spåm L /2
The spin ] case is unique since all Hamiltonians of the form (1.4) are integrable

regardless of the value of a¿, i > 7. Therefore, the solutions are well known and

can be expressed analytically. The solutions must take the form used in the Bethe

Ansatz, providing a means for a direct comparison between resuÌts obtained through

the recursion method and exact results.

The application of the recursion method to this system requires the selection

of an initial state which corresponds to a vertex on the Hamiltonian diagram, Fig.

3'1. Since the ¿ and y coordinates represent the separation of the magnons, clearly

the edges and the apex at the left are unphysical as this has r andfor g equal to

zero and corresponds to a single spin being raised by more than one. When the

parameters which describe the Hamiltonian (ro, rr, ..., €4, €, uo¡ utt u¡ u, w) are

evaluated, the unphysical layer completely decouples from the rest. Graphically,

this unphysical Hamiltonian takes the form shown below

-w''
^.d&'

e-ø*
ã*

-@.@''

ë
\. *'&-

*'@.

<::@

__@__

k€o

@e,

@t3
*-&-

w.- \-a
@..\

x

Figure 4.7: Graphical representation of the unphysical
part of the Hamiltonian for ,S : å.
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If the unphysical nature of these states are ignored and the recursion method applied

using the states uo:10,0) (asymmetricstate) and z6 : 
#((.1 

1,0)-fl 0,1))

(anti-symmetric state), then the recursion coefficients converge extremely rapidly

to constants and the Green's functions are given by

ao(E-1)-1G"r-t, :

G..ti :

ao(E -I)(E - 3) - (E - 3) + 6o

4o

(4.31)

(4.32)Ao(E-1)-1

where "--+lr-e+ (E - 4)(E - 2)l These functions have poles at E :2 and

P : I respectively. Both of which are completely independent of the wavevector, /f .

This latter energy corresponds to one of the solutions found by Millet and Kaplan

1221. For the physical states it is known that there is a single bound state below

the scattering state band which has a dispersion relation given by E : î(t -
cosl{a). There is also a single connected scattering state band bounded by E:

+ It and 'Ð : 3ar 
[r - oo' ({ffi1' rr'i' band is comprised

of two types of scattering siates as described previously. There is a iarge degree of

overlap between the two-bound one-free and the three-free continua, but the lower

edges of both continua are quite close to each other while the upper edge of the

two-bound one-free continuum (the smaller one) is far from any of the edges. This

internal edge appears as a Van ÏIove singularity in the density of states.

When the recursion method is applied to any state contained within the phys-

ical part of the Hamiltonian the resulting coefficients rapidly converge (- 20) to

nearly constant values. However, the singularities in the continuum may produce

visible oscillations which are still noticeabie after a large number of iterations. It
is therefore necessary to continue the method weli beyond 20 iterations and, as the

resulting states are normalized, the individual contribution of some of the kets will

approach machine zero. This computer limitation has significant effects on the re-
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sulting coefficients in the form of anomalously large deviations from the values to

which the coefficients converge. These deviations can be demonstrated to be strict-

1y numerical in origin by calculating the recursion coefficients at various precisions.

For example, using single precision calcuiations in Fortran 77 the anomalous devi-

ations repeat fairly regularly with a period of approximately 34 iterations and the

first appears at the 38th iteration. The a¿ are plotted below to 285 iterations at

I{:r(Fig.a.8).

1(Ð

Figure 4.8: Single
cients

heration Number

2(x)

recursion coeffi-
I{ : n.

300

precrsron d¿

for.g:$at

By changing to double precision, the first deviation does not appear until the 77iL

iteration and the period of repetition is almost exactly double at 67 (see Fig. 4.g).
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Ite¡ation NumbeÌ

Figure 4.9: Double precision øi recursion coeffi-
cients for ,S : I at I{ : r.

Performing the calculation at quaclruple precision moves the first cleviation to the

152"d iteration. But clue to lirnitations of the computer system usecl to provicle the

quadruple plecisiotl calculation, it was not possible to generate enough coefficients

to determine a period.
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Iteration Number

Figure 4.10: Quadruple precision øi ïecursion co_
efficients for ^9 

: I at K : r.

There is also a slight accumulation to the error, as can be seen in the single precisio¡

calculation. There is a slight decrease in the periods.

Asicle from the small decrease in the periocl, the periodicity in the coefÊcients

is quite consistent. It appears to be an unusual case of oscillations in the coefficients,

which inclicates a gap in the liancl. The exact solutions do not exhibit any such gap,

howeverfr'e can imagine one if the bound state is treated not as a delta function,

but as having a very ttaÌrow but finite width equal to the srnallest number that
the computer cannot clistinguish from zero for each precision. This interpretatiol is

supported by ihe appearance of the coefiÊcients in tlie graphs, above. As was given

earlier, the behaviour of the coefficients are described by hyperelliptic (or Abetian)

functions and in the limit of narrow bands these functions tend to have relatively

abrupt peaks or valleys separatecl by wide flat regions (as shown in Tocla l2g]). The

paper by Turchi et al. 129] gives an example of the analysis of a J:and with one gap.

Following the same procedure, a sirnilar analysis can be performed for this limit of a
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very narrow bancl. The oscillations are characterized by a differential equation which

contains a term of tire tor^ S, which is also characteristic of an elliptic function
\/x a)

(wlren x is quartic in Í). The function x(l) : fl*1-n- f) requires knowlecrge of
i=1

the energies of the eclges for each bancl ancl at K :n the energies for the scatterilg

state bancl is 1 and 6 (units of a1) and there is a bouncl state at l. Taking the

ciouble precision case and the machine accuracy to be approximately 10-1a, the

energy bands extend from (ð1 ,Er) : (3 - 19#,r, + $a) and (Es, Ea) : (1,6).

one of the periods for the elliptic function ca' be taken to be

rEsI{: 2l
Jnz

¡¡ø
2"2

dt

rck)

: Z"Zõ.4óIO

where K is the complete elliptic integral of trre first kind and

q-

(4.33)

(4.34)

The second periocl can be related to J : ["' -*. There are two equivalentrø lxal
choices f.or lE, E'l up to a multiple of T, ,.. (--, E1] and [Eq,æ), so ]et

r, ft' dtùr l-* x(t)

@
: 25.0985

?0t, q)

(4.35)

(En-Er)(E"-Et)
2"25.4816

(E'3-Ej2)(E4-81)
(E.4-82)(E3-Er)
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taking

Jz:

:

:

K:

f(Ð dtt_
lø, X(t)

sin(p) : ,[ffi
sirr(rz) : ,/ffi

dt
-:
I x(t)

2-2

ru1

(4.36)

(4.37)
I
4

and f is the elliptic function of the first kind.

As the two -[ and Jz are equivalent it is easier to

we shall take J - Jz. The period of the index for the

given by

lK,le Z
TI{

2-r

use small wavevectors ancl

recursion coefficients, n, is

ZnJ :

n: (4.38)

is in agree-Arrd using the smallest positive l, n:67 (for the nearest integer)which

ment with the observed period.

The calculation can be generalized to an arbitrary band width, 7 centred on

an energy E so that Et: E-ï, Ez: El I and the other two bancl energies are

E3 ancl Ea. Then

, L.,

rckr) (4.3e)

f\r,q)

0.383119

(En- Eù(E'- E)
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and

ancl

Assumirrg .l K- 83, Ea

q:ir-11,5å-ø]

To be specific we can take the smallest of -I1 or J2 to be

I- r - 
2

'. : u.! t\rrq)
1l@n-E-Ð(ø'-E+;t

(4.40)

(4.4r)

h-E+T
E4-E+;

(4.42)

(4.43)sin(z) :

Then the period of the oscillations is related to

K(q)
F(', q)

and when g - l, F(r,q) - 1rc,k) ln ran(! + î),

(4.44)

where q' is the complementary

K
2J

ft+zs:Ðl fl -r@:Ell
¡r - afia] Ll + t@f-Ð)
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moclulus, defined lryq'+q'':LThen

K
u 2lntan(i + i)K,(q,)

"K'(q)

2tntan(i + [)

As well,

lntan(! + f )

Since Ç - I -- r!' - 0 and by

(4.45) along with (a.41) and (4.a6)

K ru 
t"(å)

2r r"tã!ll)

ignoring all terms of order ,1,' o, smaller then,

gives

1

r"t"€æ f'. (4.46)

lnrane{m
c( 7-lnq'-1lnq'

, ^t{æ I
srntan (+rlffi)l

-'"{'

- l"(r)
l)

(4.47)

This shows that the period of the anomalous deviations in the coefficients vary with
the logarithm of the width of the naïrow bancl (taken to be machine zero).

Another indication that the bound state is not being treated as a delta functio¡
can be shown by studying the relations between the coefficients. This was aiso done

by Turchi et. al. [29] ancl \Mas accolnplished by comparing a series expansio¡ of the

Green's function frour its colrtinued fraction representation with a corresponding

o( 
'f'-h(\Æ=)] -r" (r[-r,

- 1+? 
|

En- Es

(En- E)(E'- E)

^, re=øtV E4-E

slntan (rlffi

ll"(¿) - l"(q')l

(4.45)
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series using the analytic expression fol Goo. A relation was founcl between cL¿, b¿ and.

the limits of the energy ba'ds. For a si.gre gap, the exact relation is

(o'* E'A+ E" +zB2)' : x(-E'- A) (4.48)

where ,4 is relatecl to the ø¿ coefficients but extendecl to a continuous variable ancl

sirnilarly B is related to lr¿. Also,

t2n
E' : -lf¿o.) zr

1E" : )7, E,E¡.) /__l
x<1

2nx(,) : II@n-*)
,i=1

-!E''2

(4.4e)

(4.50)

(4.51)

Equation (4.48) can be viewed as a relation in the phase space of ø¿ and bl and

is clependent upon the values used for the energies of the band edges. A cha.ge

to any of the energies could alter its graphical appearance significantly. A plot is
shown below for the clouble precision calculation. The solid line is (a.48), taking
fl- -Z 

10-14 D' 
-2, 

I0-r4 nnt: ã- -'1-, bz: ä + t-, l!3:1 and Eq:6 and the two types of symbols

represents (on,lt?) and (ø¿, ó¿2-r) pairs. Because of the ambiguity of the numbering
of the starting coefficient, the relation holds for both sets of pairs. The first 50

coefficients have been ignoreci as the analysis is valid only in the asymptotic region.
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Figure 4.11: Phase space relation between oo, lr? (given
lry o) and ø;, ó,2_, pairs (given bV +).

The values where the coefficients are essentially constant appear at the lower right

corner whereas the points which corresponds to a major deviation is distr-ibutecl

along the rest of the curve.

A final observation which can be obtained frorn Fig. a.8-Fig. 4.10 is that the

arnplitude of the rnajor cleviations are essentially constant at 0.33 and the asyrnptotic

value of a¿ is 3.5. This in agreement with the predicted values. The asyrnptotic

value of a¿ should be the energy which corresponds to the midctle of the continuum
1+6batrd, 2 - 3.5, and the arnplitucle should extencl acïoss the width of the gap,
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,1
i -; : l. When the bouncl state is below the continuum the cleviations, for the ø;

coefficients, extend to values less than the asymptotic ¿. But a bound state above

the bancl would generate a sharp peak rather than the valleys, as in Fig. a.8-Fig.

4'10, and although these cleviations are a numericaleffect they can be usecl to locate

the position of bound states if they are separated from the continuurn by a large

enough gap to procluce visible oscillations.

The accuracy that the phase space relation agrees with the data, along witir

the ability to calculate the period of repetition of the anomalous cleviations and

the shift of the deviations with changes in the accuracy of the calculations, are

convincing arguments for regarding the deviations as simply numerical limitations

of the computer system which was used. These limitations result in a 
'o'-zero

wiclth for the bound state but do not affect the energy of any bound state or ba¡cl

edges. The inclusion of the deviations only alters the rnagnitude of the density of

states slightly and since only the local density of states is considered, this is of little
consequence. Therefore, the constant termination can be usecl while carrying out the

recursion calculations to a large number of iterations (to ensure that the asyrnptotic

regiotl has been reachecl) without concern that the deviations are altering any results.

These oÌ:servations are presented in the next chapter for various Hamilto'ia.s and

for several values of S.
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The recursion method described in the previous chapter was irnplernented using

Fortran 77 and applied to several general systems containing three magnon excita-

tions' The size of the spins on the chain naturally divide into several classes. Whe.
S : I only the uniform part of the diagrammatic representation of the Hamiltonia'
(Figure 3'1) defines the behaviour of the system for the physical states. This was

described in the previous chapter and agrees completely with the results obtained

by Bethe l7]. When ,5 : 1, the physical part of the Hamiltonian i'cludes the

edges of the diagram (Figure 3.1) but .ot trre singre ket, I r,,u) :10,0). since
there are differences in tlie effective Hamiltonian between the two cases, qualitative
differences in the behaviour of the system is expected. Similarly if ^9: f , the ef-

fectiveHarniltonian changesoncemoreanclincluclesl0,0). However,if ^9> j,the
effective Harniltonian no longer changes ancl no significant qualitative cliffere¡ces

are expected (for three magnon excitations), in terms of the energies of the bouncl

states and continuum edges for corresponding wavevectors. Therefore, onìy systems

witlr ^9 : +,7, f *"t" studied. For each value of the spin, the Hamiltonian rnay

be changecl by altering the value of a2 or a3. These parameter-s can be clianged

continuously over all non-negative values so that an ilfinite ¡urnber of models can

be studiecl' In general, only the behaviour near the integrable models of Takhtaja'
ancl Babujian (110], [11]) are of interest ancl the values for o¿ were kept relatively
ciose to this integlable point.
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In order to observe the behaviour of any particular system, a set of 500 recur-

sion coefficients were generated for several fixed values of total wavevector, 11, over

tlre non-negative half of the first Brillouin Zone. The results are presentecl usi¡g
the reclucecl zone representation and the BrillouinZone is symmetric about I{ :0
so only one-half of the zone is needed to cletermine tlie systerns' behaviour over the

entire zone. Mostly, the values chosen for the total wavevector were (in units of

i) 0, 1, |, ! ancl 1. Occasionally, it was llecessary to use several rnore choices of
wavevectors in certain energy ranges in order to obtain a rnoïe complete picture of
the behaviour of the system.

The generatecl set of coefficients were used in calculating the Green,s functio¡
for any energy range of interest, for the particular wavevector which was usecl to
generate the set of recursìon coefficients. Any bound states were clearly identified as

such since they virtually appeared as delta functions but most reso.ant states could

not be as easily distinguished from singularities for many of the systems which were

stuclied' The method of classification of peaks into resonances and singularities

was highly subjective ancl mainly involved choosing several relatively large peaks

as possible resotìallces and observing their behaviour as the total wavevector was

changed. Since the change in wavevector was always cliscrete, it could not be certain

which peaks correspond to the same structure between different wavevector.s and this
difficulty was resolved by simply assuming the peaks would rnove smoothly across

the Brillouin Zone.

The size of any resonant peaks is <iependent upon the choice of initial ket ancl

a nurnber of different choices were triecl for a few models, but it was observed that
the structures in the density of states have eclges with energies that are esse¡tially

indepenclent of the choice of tlie initial ket. The main exception was those choices of
initial ket which have symmetries that rnirroï a symrrletr.y of the Hamiltonian such

as kets with the relative coordinates u : y (ie. kets along the central horizontal axis

of the diagram, Figure 3.1) or an antisymmetric combination of kets. This effect
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was particularly eviclent for the S :3 Heisenberg model where one bouncl state can

be removed by choosing a completely symmetric initial state (see Fig. b.2a). For

conve'ience, the initial state was almost arways chosen to be I *,u): I 1,0) ancl is

a combination of symmetric and antisymmetric kets.

In order to ol¡serve tlie differences between the general moclels and the inte-
grable ones, the mociels of Takhtajan and Babujian will be described brieflv. The

clispersio' cliagrams for the ,9: 1 and ,g: f are show. below.

Figure 5.1:

o.25 0.50 0.75 t.oo
Wa/evoctor

Behaviour of three rnagnon excitations
for an integrable model 3 : 1 spill chain.

nergy in units of a1 anci 1l iñ units of
f . The solid lines arã bouncl states, and
the,shaded region is the scattering state
contlnuum.
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r.w o.2:5 0.50 0.75 1.OO

Wavovector

Figure 5.2: Behaviour of three magnon excitations for a'
integrable model S : 3 spin chain. Energy
in units of a1 and 1l in"units of f . Tlie soñä
lines are bound states, and the ,läd"d region
is the scattering state continuum

In lioth the s : 1 and ttre ,g : f cases, the bound state branches rneet exactly at

the Brillouin zone bounclaries ancl these remain true bound states across the entir.e

Brillouin zone even for the rniddle branch. (In an extendecl zone representation it
can be seen that the branches do not actually enter the continuum and hence do not

becorne resonances.) The nurnber of branches is cletermined by the minimurn of 2,g

or the nuÛrber of magnons which are present in the system (in this case B). These
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integrable models appear when the parameters of the Hamiltonian,

, 652_6"9+1
âlìO f/t

2,92 _ 3,9 + l'

5.1- Spin 3_

45 -Itt1--
25 -1

When the spin is ], the rnoclel is inc{ependent of cv2 and a3 so that the only available

parameter simply results in a scaling of the energy (when only the energy positions

of the bound states ancl the continuum edges are consiclerecl). This was mostly

clescribed in the previous chapter so we will start with the ,9 : 1 case. Co'sicler

the Heisenberg modeì which is quite far from integrability. The density of states for

^9 
: 1 for each of the five choices of wavevector are shown below, Fig. b.3 - Fig.

5.11.
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Energy

Figure 5.3: Qensity of states for three magnon excitatio.
Heisenberg rnodel, ,9 : 1 spin ðhain at K :0.

For 1( : 0 there are two peaks (Fig. 5.3, above). The one with the lower energy

is a resonance with an energy at approximately E :2.25. The classification of the

peak as a resonance was made by observing its behaviour across the Brillouin zo¡e.

In Fig. 5.4-Fig. 5.11 the resonance d.ecreases in energy until it leaves the band ancl

becornes a bouncl state from 1l € þ.nui,å]. The second peak also decreases in

energy as 1l goes to f but remains inside the band and becomes part of the inte¡ral
structure. (The peak at E : 2 in Fig. 5.10.) There is also a bound state which
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appears to remain outsicle and below the continuum (as can be

cliagrams, Fig. 5.4 - Fig. 5.11) and this bound state is assumecl to

lower edge of the continuum) al I{ :0.

E¡,sgy

Figure 5.4:
Density of states for three rnaqnon
excita,tions, Heisenberg model Sf: 1

spin cliain at K : *.

Figure 5.5:
Density of states near the bound state
for the Heisenberg moclel ,9 : 1 spin
clrain at I{ : *.

seel in the other

be at E: 0 (the

range for 1l : å, .. . , i (units

the bound state(s) which are

The Green's function for a much smaller energy

o¡ r) is shown in Fig. 5.5, b.2, b.9 and b.11 to show

below the continuum rnore clearly.

0.0s0 0.@2 0.@4 0.0s8 0.098 o.loo o.to2 o.lo4 o.to6 0.108 o.lto
Energy
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234s6
En€Îgy

034 0,35 038 037 0.38 o.39 0.40 0.41 0.42 0.13 0.44 o,4s 0.48
En€rgy

Figure 5.7:
Density of states near the bound state
for the Heisenberg model ,g : 1 spin
chain at I{ : {r.'

Figure 5.6:
Density of states for three rnaqnon
excitations, Heisenberg rnodel "g": ispin chain at l( : #.

Figure 5.8:
Density of states for ihree rnasnon
excitations, Heisenberg rnoclel Si: 1

spin clrain ut K : *.

23458
Ensgy

o.78 0"82 0.88 o.9o
En6rgy

Figure 5.9:
Density of states near the bound state
for the Heisenberg model S : 1 spin
chainatK:*.
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1.2 1.3 ,t.4

En€rgy

Figure 5.10:
Density of states for
excitation Heisenberg
spin chain at K : L.-

Figure 5.i1:
Density of states near the bound state
for the Heisenberg model S : I spin
chain at I{ : t. -

three magnon
model ,5 : 1

Although the recursion procecluïe was carried to 500 iterations, the coefÊcie¡ts

were still not exactly constants but due to constraints with the amount of computer

resources which was available (specifically memory) the procedure was stopped ancl

the square root terminator, (4.18), was used for the tail of the Green,s fïnction.
This had the effect of introducing srnall oscillations into the density of states which

are not visible unless the Green's function is calculated over a very small range of
energies' However, the continuum edges can be founcl very accurately using knowl-

eclge of the two rlagrìon spectrum and it is evident tliat the delta function(s) show.
in tlie diagrarns, Fig. 5.4 - Fig. 5.11 are detachecl from the conti'uurn a'cl 

'ot
clue to these srnall oscillations within the continuum. This is also suggested by the

behaviour of the coefficients for the values of 1l near the Brillouin zone bounclary.

For exarnple, the K : î set of coefficients, Fig. b.i2, show two separate sets of
cleviations, both of which are due to the limitations of the cornputer system usecl to
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calcuiate the coefficients. The computer limitation enables the bound states to act

as narrow bancls, as described previously (Chapter 4). The smaller amplitucle devi-

ations correspond to the bound state which eventually crosses into the continuurn

to give a resonance, shown in Fig. b.B, 5.4, b.6 and 5.g, and the larger cleviatio.

corresponds to the bouncl state which does not enter the continuum for all values of
K.

3

Ëo
ËzÞ
o()

::
I

Figure 5.12:

1Æ ?5 975
ft6rat¡m No.

Double precision ø; coefficients
and ó¿ (dashed line)for a ^9 

: 1

model spin chain at I{ : L.

500

(solid line)
Heisenberg
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Figure 5.13: Double precision ø¿ coefficients (solicl line)
and ô¿ (dashed line) for a ,S : 1 Heisenberg
model spin chain at K : *.

3

t'
:

o 125 
**T *. 

s7s soo

Figure 5.14: Double.precision a¿ coefficienis (solid line)
and ó¿ (dashed line) for a ,g : 1 HeisenberÁ
rnoclel spin chain át tf : ;. 

u
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Figure 5.15:

12-5 250 375
tterdion No'

Double precision ø¿ coefficients
and ó¿ (dashed line) for a S : l
moclel spin chain at I{ : #.

500

(solid line)
Heisenberg

Fig. 5'13 only sliows one deviation since the second bound state is already ir the

continuum for the value of K : ff. The coeficients are also shown for I{ : #
and fr simply for cotnparison to the I{ - r and !f coefficients. The behaviour of

all these features can be summarized by plotting the bound state energies agai¡st

1l across the non-negative half of the Brillouin zone as in Fig. 5.16. The resona¡.ce

is represented by the clashed line and the bouncl states by the solid li¡es. The

continuum is indicated by the shaded region.
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u.w o.25 0.50 o.75 1.OO

Wavevector

Figure b.16: Behaviour of three rnagnon excitations for a
Heisenberg rnodel ,9 

=_ 
t spin chain. Energy

in units of a1 and 1l in-units of a. Tfr;
solicl lines are bound states, the dasfred line
are resonances and the shaded region is the
scattering state continuum.

As the value of 92 changes from 1.5 (the value for the Heisenberg model at ^g: 1) to

3 (the value for the integrable rnodel at ,9 : t), the gap between the bound states

at the Brillouin zone bou.clary shrinks until they exactly rneet whe' gz : J. The

gap appears and grows whether 92 is changed to a value greater or less than 3. A
dispersion diagram is shown in Fig. 5.17 for a value of 92 which is ilter¡recliate

between the Heise'berg rnodel a'd the integrabre model.
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.w o.25 0.50 0.75 1,OO

Wavevector

Figure 5.17: Behaviour of three magnon excitations for
gz : 2.25 on a ^9 : lìpin chain. Enersv
in units of a1 and 1( in units of ¡. TËä
solid lines are bound states, the dasfred line
are resonances and the shaded region is the
scattering state continuum.

The bound state branches are much closer at the Brillouin Zone bounclary ancl t¡e
bouncl state intersects the lower edge of the continuurn at I{ : g.g6gi. However

the shape of the continuurn, in the clispersion diagrams, Fig. b.16 and Fig. 5.rT,

cloes not change significantly. A dispersion diagram is also shown fot 92 > J in Fig.

5.18.
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o.2:5 0.50 O.7S LOg
Wavevector

Figure b.1B: Behaviour of three magnon excitations for
gz : 4.5 on a ^9 : 1 ipin chain. Enersv
in units of a1 and jf iñ units of a. TfiË
solid lines are bound states, the dasfred line
are resonances and the shaded region is the
scattering state continuum.

For this case the gap is still fairly srnall (slightly over ] the size of the gap in the

Heise'berg rnodel) and it crosses the rower continuum edge at 1(: g.9g1;.

One integrable case was rnentioned previously but the recursion procedure was

neecled to obtain any solutions for it. This was the Ternperley-Lieb model for ,9 : 1

ancl corresponds to a1 :0 and o.2: e. (a constant). When the recursion rnethocl is
applied to this system, a single delta function is seen in the density of states along
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with one continuum. Neither the delta function nor the continuum change size or
position for all 1l e 10, zr] (ie. indepenclent of If). The delta function has an energy

of 0 ancl the edges of the continuum are at f and $. The shape of the density
of states for the continuum resem-l¡les that for the one magnon case, that is, ther-e

are sharp peaks at each continuum eclge ancl there are low values in the micldle (see

Figure 4'2)' Most of the kets decouple for this model (ie. all kets with relative
coorclinates r,9 ) 2 ancl 10,0)) and all of these are degenerate with an eneÌgy
of 0 except for the unphysical state, 10,0). Further, the value of a1 is 0 for this
rnoclel so that all the single ûìagnon states are also degenerate with the decoupled

physical states. Since the initial ket chosen was not one of the clecoupled states, çre
delta functions wliich are observed represent the energy from the one magnon states

such as the three-free continuum ancl the free magrìon for the two-bound, one-free

continuurn' The band gives the energy range for the two magnon bouncl state (frorn
the two-bouncl, one-free continuum) in agreement with the results of parki'son 

[g].

5"2 Spån e /z
When the spin is increased to ! both a2 ancl a3 influence the effective Harniltonia.
so that the rnoclel can be shifted away from integrability by changing either or both.
The option of changing a2 and ca simultaneously was not studied in depth except

for a few isolated cases' The rnost notable of these was the Heisenberg model.

First consider a Harniltonian when gz (a2) is changed from the integrable

value of 2'5 for ^9 
: f but 9s (a3) is set to b.b (the integrabre varue at .g : f).

As predicted by Haldane [12], [13], gaps appear between the bound state branches

at the Brillouin zone bounclaries as the model rnoves away from integrability and
the gaps grow the further the model is from the integrable point. However, grere

are other properties which can be seen. For example, there are always at least two
bound state branches for the values of gz e [1,5] V | 1( l> 0. The disper.sion

diagrarn for the extremes of tliis range if given in Fig. 5.1g and in Fig. b.20, below.
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Figure 5.19:

o.zlt 0.50 0.75 1,00
Wavevector

Behaviour of three rnagnon excitations for
a model with 92 : 1, 9s: 5.5 (iimited in-
tegrability) on a S : Ê spin chain. Energy
in units of a1 and 1{-in units of a. The
solid lines are bound states, the dasffed line
are resonances and the shacled region is the
scattering state continuum.
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Figure 5.20: Behaviour of three magnon excitations for
a model witli 92 : 5, gs: 5.5 (lirnited in-
tegrability) on a S :3 spin chain. Energy
in units of cv1 ancl 1(-in units of a. The
solid lines are bound states, the dasflecl line
are resonances ancl the shacled region is the
scattering state continuum.

One bouncl state remains below the continuum as in the two magnon case or i¡
the ^9: 1, three magnon case for all 1( ) 0, but for the scale used in Fig. b.1g

this bound state is not visible. At 1( : 0 the bound state is coincident with the

lower eclge of the continuurn. The other bound state branch which is always prese¡t

remains above the continuum for all I{. The resonarÌces are somewhat suspect as

these models are quite far from the integrable point and when the model is pushed
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far frotn this point the resonance become more and more clifficult to distinguish from
any singularities internal to the continuum.

Now consider keeping 92 at 2.5 but varying gs. Since 92 is still at the integrable

value, the behaviour of any systern containing one or two magno¡s woulcl be indis-
tinguishable from a model using an integrable Hamilto¡ian. There has 6ee' sorne

speculation that such a Hamiltonian woulcl retain certain integrable characteristics.

(See Chubukov and Khveschenko [30]). The Harniltonian used in that paper is of
tlre sarne form as (1.a) but is only tlie most general Hamiltonian up to s :3,ie. n
in (1'a) attains the values 1,2 and 3, so that the Hamiltonian can be represented by

11- (5 1)-^ lT 
s,.s,*,+ z (s,.s,*,)' + d (snt-,)']

where the parameters ì - ¡(r) in our .otation. Similarly, 7 :
In f30] the condition for these models where gz : 2.5 and 93

represented by

d1 : l,lzs -t as21$ - 1)+ zsB6(JS2 - 6s + 4)]

d2 : s,[+s- 1 +7(gst - 1g^92 +g^g- i)+

6(rzss _b1s4+88,93 _il52 +12s_1)]

a3 : Bt i2s- 1 + .t(4st _ t4s2 +ns- 9)+

Jó(2.95 _ 13s4 + 36s3 _ J9.92 + 18s _ B)]

¡(z) ¡(s)
lÐ ana ð: lÐ'
is variable, can be

1*t [1 + 6.9(.9- 1)] : -á(15.94 -4253 + BbS2 - t0^92 + 1) (5.2)

To relate our notation to that used in [J0] it can be shown that

(5.3)

(5.4)

(5.5 )

When ^9 
: 1, a solution

(5.5) give 9z:e:J.

to equation (5.2) i. 7 - -1 and á : 0 and equations (b.3)_

This value of 92 agrees with the co.dition for integrability
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when the models of Takhtajan [i0] and Babujian [11] are written in the cvi notation.

However, for ,9 - f equation (5.2) gives ó: t6 
1=8ut and a1 : )çrnof 11167),, 
17 

*--" *r-17\!rw

30ì.- 6Àaz : 
rT 

(20 +931) a'd a3 : 7{isa + 9157). This gives 9, : ffto be 2.5 which

agïees with the expected value but 93 ;, *1 *1 . This would not be expectecl2(20 + e3r) '

to give an integrable Hamiltonian unless 7: -*. 0: -* gives the i'tegrable
moclel of Takhtajan ancl Babujian.) When the recursion procedure is performecl on

these types of Hamiltonians, (gr:2.5 and Vs € [1,11]), only when g¡ : 5.b cloes a

fully integrable Hamiltonian result. These resemble the previous case where j2 was

variable and 93 was fixed, in that when the variable parameter, 93, deviates frorn the

integrable point, gaps appear at the Brillouin zone boundaries a'd change in size

in accorclance with the magnitude of the difference between p3 and the i.tegrable
value. Also, there was always at least two bound state branches for all the value

of 93 which were used and for all /l > 0. One of the branches rernained below

the scattering state continuurn and the other above it. Below are the dispersion

diagrams for the extreme cases of gz: I and 93 : 11.
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Figure 5.21:

0.25 0.50 0.75 1.OO

Wavevector

Behaviour of three magnon excitations for
a partly integrable rnodel with 92 - 2.5,
gs :7 on a ,9 : f spin chain. Energy in
units of ai and 1l in units of r. The sol-
id lines are bound states, the äashecl line
are resonances and the shaded region is the
scattering state contiltuum.
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0.oo 0.25 0.50 0.75 1.OO

Wavevector

Figure 5.22: Behaviour of three magnon excitations for
a partly integrable mõdel with 92 - 2.5,
gz : L1 on a S : t spin chain. Energy in
units of cv1 and /(ln units of a. Thã sol_
id lines are bound states, the äashed line
are resonances and the shaded region is the
scattering state continuum.

The Heisenberg moclel is a case where both the 92 and.g3 differ from i¡tegrable

values, specifically at ,5 : 3, gz : f ancl gz : 2. For these cases, where 92 and. gs

change, the upper bound state may enter the continuum and for the Heisenberg

rnoclel this branch is entirely within the continuurn for all K. The resonance line

that represents this branch (shown in Fig. 5.23) is somewhat suspect si¡ce it has

a very peculiar property that it remains at an almost constant energy across the
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Brillouin zone.

.00 0.25 0.50 0.75 1.OO

Wavevector

Figure 5.23: Behaviour of three magnon excitations for
the Heìsenberg rnodel (g, : E, gs : 2) on
a ,9 : t spin chain. Energy in units of a1
and ,I{ in units of 1. The solid lines are
bound states, the daJhed line are resonances
and the shadecl region is the scattering state
continuum.

The midclle resorìallce eventually leaves the continuum at I{ : 0.g8î and becomes

a bouncl state frorn 0.98ä-i. This resonance/bound state was founcl to contain no

symmetric components. Below, Fig. 5.24, is the density of states using a completely
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syûlmetric initial ket, (2, y) : (0,0), at K : î. Note that the rnidclle bound state

branch is rnissing in comparison with Fig. b.25.

1.6 1.7 la
Energy

Figure 5.24: Behaviour of three magnon excita-
tions for a Heisenberg model on a
S : 3 spin chain at K - ø. using
a symmetric initial ket. Energy in
units of a1.
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Figure 5.25: Behaviour of three magnon excita-
tions for a }leisenberg model on a
S : 3 spin chain at I{ : î using an
arbitrary initial ket. Energy in units
of o1.

For this case, there is also a branch which remains below the continuum for all

I{ > 0. The upper branch does not seem to enter the continuum unless both !2 and

S3 are far enough below the integrable values. For the cases which were studied, this

branch does not enter the continuum even if the parameters are quite far above the

integrable values, for example Fig. b.26, below
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o.(Xl o.2!5 0.50 0.75 1.00
Wavevector

Figure 5.26: Behaviour of three magnon excitations for
gz : 5, gs : 77 on a ^9 : f spin chain.
Energy in units of a1 and 1l iï units of a.
The solid lines are bound states, the dashJd
line are resonances and the shaded region is
the scattering state continuum.

and the upper branch remains outside the continuum even if only one parameter is

below the integrable value Fig. 5.27 and Fig. 5.2g.
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Figure 5.27: Behaviour of three magnon excitations for
93: I, gz: 11 on a S :3 spin chain.
Energy in units of a1 and 1l ii units of a.
The solid lines are bound states, the dashJd
line are resonances and the ,h.ã"ä-;"gi;; i.
the scattering state continuum. 

-- - -(
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Figure 5.28:

o.?s 0.50 0.75 1.OO

Wavevector

Behaviour of three magnon excitations for
gz:5, gs:7 on a ^9: f spin chain.
Energy in units of c1 and 1{ in units of a.
The solid lines are bound states, the dashJd
line are resonances and the shaded region is
the scattering state continuum
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In summary, the recursion procedure \¡/as successfuily applied to study three magnon

excitations and gave results which were in agreement with the exact results found for

the integrable models of Takhtajan and Babujian, Lai-Sutherland and Temperley-

Lieb" For the integrable model of Takhtajan and Babujian, a single bound state

was found (using the extended zone representation) which was continuous across the

minimum of 25 and m Brillouin zones and it remained outside the continuum oveï

this entire region. As the models \¡/ere moved away from integrability, gaps appeared

and grew at the Brillouin zone boundaries as predicted by Haldane [12, i3]. The

numerical values for the energies of the edges and bound states agree with the results

found by Millet and Kaplan, aside from a single non-physical state for ,S : ]. eu tne

cases studied did not show any integrable properties aside from the models which

correspond to those already known. The recursion method can easily be applied

to more general Hamiltonians than the form which was used. For example, the

Hamiltonian can be extended to include the effects of an external magnetic field or

single ion anisotropic effects. Generally, these make relatively minor changes to the

Hamiltonian. The most extensive alterations would be to the equations to produce

a new set of equations to represent the Hamiltonian [ie. the equations appearing

in the appendix and (3.6)-(3.25)]. However, the alterations to the programs which

implement the recursion method are very trivial.

The extensions needed to describe m magnons systems for m > 3 is also clear.
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The effects of the Hamiltonian when the magnons are less than one lattice spacing

away from each other would be the most time consuming part to address. This is

also the information necessary for the appearance of rn-magnon bound states. The

continua of such an extended system can be obtained from the m - 1 system and

since the equations governing a system with 1,2 or 3 magnons is known, the range

of energies that the continua states can attain for a m magnon system can be easily

found. The }lamiltonian of such a system can be represented by a hyper-tetrahedron

of dimension of m - I with the origin at one apex and the edges as well as the sicles

correspond to special situations within the system (ie. 2,3,4,...,ffi - 1 magnons

on the same site with the remaining magnons greater than nearest neighbours from

each of the others. Only the apex corresponds to rn magnons oïÌ the same site). The

next layer corresponds to where each magnon is at most one lattice spacing apart

from the rest. The rest of the Hamiltonian defines the behaviour of the three free

continuum.

Extensions for models which use greater than nearest neighbours are also

possible. The recursion method itself is independent of this kind of modification and

the calculation of the equations which define the system is the most difficult part

to modify. Essentially the derivations in the appendix and equations (3.6)-(3.25)

must be recalculated without restricting the Hamiltonian to having only nearest

neighbour interactions. However, there are practical limitations to the extent which

the model can be extended. The recursion process usually is performed for a very

large number of iterations and some of these limitations can already be seen in

the anomalously large deviations from the expected average value of the recursion

coefficients. These deviations were used to assist in finding some bound states and

were converted from a hindrance to an asset. Unfortunately, there are also storage

and memory allocation limitations.

In the present implementation of the recursion method, arrays were used to

keep track of the current vectot, u¿, the next vector, u¿+t and the previous vector,
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u¿-t. The size of the vectors increased on the order O("') with the iteration number,

n and for a three dimensional Hamiltonian or four magnon excitations, the vectors

wouid increase u. Ðf n or O(r")" Therefore, assuming the maximum amount

of storage to be constant, then the maximum number of iterations is decreased by

approximately the f Po*"t of n. For the three magnon case, the maximum number

of iterations was approximately 590. Then the maximum number of iterations for a

four magnon system is roughly 70. However, the true maximumnumber of iterations

may be significantly different depending upon the machine's memory allocation

methods. It may be possible to sidestep these memory dificulties by storing the

vectors in a secondary mass storage system (ie. disk) but for a multi-user, pre-emtive

multitasking operating system such as Unix, the resulting amount of disk access

would probably make the calculation agonizingly slow. Finall¡ the calculation of

each vector element is not trivial and the modifications to the Hamiltonian would

make the calculations even more intensive but there is the consolation that the

calculations are readily amenable to systems which are able to perform the numerical

operations in parallel.

In conclusion, extending the solution to more extensive situations is not partic-

ularly difficult but very tedious and the extension to greater number of magnons soon

result in rapidly diminishing returns which require some creative solutions. How-

ever, the dififlculties are only practical implementation dependent problems which

may be solved as newer hardware becomes available.
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ß'hs"ee Våagxaoxa Ðxaåtaååom ÐqaaaËåoms

I ¿,i,k) : Cn¡n s,rsisJl o )

where C¿¡¡, is a constant satisfying

From Chapter 3, the orthonormal set of three spin deviations are taken to be

C¿¡r 6s,es-Ð,
1

(A.2)
, i: j:lc

and with the indices i < j < k for the entire set of states.

To find the effect of fr on these states, several different cases must be consid-

ered, depending upon whether the indices are equal, nearest neighbours or otherwise.

Consider first the situation where i+1 < j , j+t 1 k , ie. when the three deviations

are separated by more than nearest neighbours. By using the commutation relations

of Sl and .S,r, along with the definition of the states, I i,j,k), we find

:{

t.

../ãSs t Úf J
1

Jt^frú
2 of. {i,, j,k} the same

(A.1)

(A.3)

PJli,i,k)
Ptl i,i,l)
Ptl i, j,l + 1)

: S2li,j,k), k+t
:,9(^9- 1)li,j,/) +.91 i,j,t+I), k : I
: Sli,j,/) +.9(.9 -I)li,j,I+I), k: l* ,Ì

These equations have the same structure as for the one-magnon excitations,

(2'2) so the matrix representation of ñ," f.o, only these states must have the form
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as in (2"4). The equations must have this structure since Þ¿ commutes with 5,t

and Srt, for the states which satisfy the restrictions on the indices (above). This is

also true for states of the form I i.,i, j) and ll,i., j). Using these results, the paìr

Hamiltonian is given by

i+t<j,j+r<k
0, i.,j,k+i,l+7

*Pr t, j,k) - *Pr t + r, j,k) , i: t

û|¿,j,t ):
(A.4)

ryli,j,r+1) - ryli,j,t+1), k :t+7

where all terms involving Es are absorbed into a shift in the zero of energy. This

shift of energy is used for all that follows as well.

The full Hamiltonian gives

ryl /+1, j,k)- rylt,j,k), i:r+l
*p li,t,tc) - +li,r +r,k), j :t
ryli,t +r,k) - t$tr,t,k), j : t +I

4Ðr i,j,t)-4Ðr i,j,t), k:t

ûl ¿,i,k) : Ba(^e)l i,i,q - ryl i- 7,i,k) - ryl i+r,j,k)

-Sr i,i -t,q - ryl á,i +t,k) -fr i,i,k-r)

-Sr i,i,k+r) (4.5)

Next, consider the case when two deviations are on the same site or nearest

neighbours and the remaining deviation is further than nearest neighbours from

either of the other two. States of the form I i,I,l) and li, I,I+7), belong to this
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class and we find

i+t,,1+7

ñ,1 ;,t,t¡ : s(s-2) | ¿,t,t) + flzs- r¡ | i,t,t+r)
p,¡;,t,t+t) : {seS-nLI i,t,t) + I i, t+t,r+r )l + (1-^9)rl i,t,t+r}
n¡;,t¡1, /+1 ) : {SQS _Ðl i,r,t¡1) + ^9(.9- 2)l i,r+1, /+1 )

(A.6)

These equations form an additional bloclc in the full matrix and has the same

form as given for the two-magnon interactions, (2.15)-(2.16). Therefore, the matrix

representation of ñt fo, these states, has the form of (2.21) unð. Þt" is given by

(2.22) when using the vector

i,l,l) \
i,l,t + 7) |

i,l+7,t+t) )
(A.7)

The effect of the pair }lamiltonian on these states gives

'Htl i,i,i +t¡ :

0, ifI,l+r j+l-7,1,1+7

îl l,i,/+1) - Tl t+r,i,i +r) , 'i : t+7

Tl t+7,i,i +1) - îl t,i,i +t) , i : t+r

?l ¿,t-7,,1) - îl ¿,t-1, /+1) , j : I-7
- HÐ c,z[l i,t,t) + I i,t+r,/+1 )] +

ffio|i,I,t+I), j:I
Tl ¿,t+7,1+2) - ili,I,I+2), i : t+t

(A.B)
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0, i.,j +l1l+7

?lt,i,i) - îlr+7,i,i), i : r

îl t+7, j, j, - îl t, j, j) , i: t*7

and for the total }lamiltonian

i,l,t) - {W a2l i,l,/+t )-
ffilli,I+r,/+t), i:t
i,l+r,/+1 ) - Æ"zl i,l,t+t)
-ffi]li,,r,r), i:r+I

45 -1
o.l,S)l i, i -7, i )

'lltl i, j, j ) : å [o, * ffi]l
il"' -

*1", * ffill
-å ["'

(A.e)

(A.10)

ûl ¿,i,/+1) :zc,{s)l i,i,

al"9), .-îli,i-7,i+r

-IEQS)4s -7

) - # I i.-r,i,i+t) - # | i+r,i,i +t¡

+l i, i, i +2) + H"xs)l i, i, i +t¡

j+t

)-

^ßes 1\
i, j, j ) ols)l i, j +t, ¡ +I),

í.<j-1

frl ¿,j,j) : 2c,,(s)l i,,j, j ) - +l i- r,j,j ) - +l i+r,j,j )

.'#t i, i, i ) - ;["ur, -'#*]t n, i -r, i -r)

f"ut, -'#9]t,, i*1,r*1 ) - vrses i)1

-2

The operator, Þ¡, also generates equations

states lI,l,j),lI-I,l,j), and I I-I,I,I+t).

o{,5)l i.,j,j+1), i < j -l (4.11)

of the same form as (,A.6) for the

The pair Hamiltonian, for these
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states are given by

Ð| i-r,i, j) :

o, ;.+l-r,l,l¡L j +I,l+7

il ¿-7,i,,1) - îl ¿-1,i,1+7) ,,

?l ¿-I,i,,t+r) - il i-t,i,r) ,

ilt-7,t,i) - ilt-1,r+r,il ,

T

l+1

I (A.12)

l,l+7, j )- (A.13)

i:I

(4.14)

,l:

j:
i-

-qr I

2l

-#*rll I,t, j ) + | /+ r,,I+r,j )l +
Ho"ll,t+r,i), i:l+I

I+7,1+2,j) - il I,I+2,j ), i : t+Z

0, i,j +l,I+7

Tl ¿,¿,t) - îl,i,,i,I+7)
Tl¿,¿,/+i)- Tlð,¿,1)

j:l
j:l+1

Utl

Y,li,i,j):

i-1,i,i+7

111 i,i,i):Zat(S)li,i, j)

å [", * tun*r] | t,t, j ) - @ orl

il" - ffillt+r,t+r,i) ,

tl',+ ffillt+r,t+r,i) - Æ"2lt,t+l, j)
-å [*' - ffi]l t,t,i) , i: t+r

0, i+I-1,1,1¡7,1+2

E*,(l
+ (#+)

Æ"r(l t-7,1-r,,/+1) + I I- r,/+r, /+r ))
+ (#+) .,2l t,t¡r,t+z) , i : t+r

I-7,1,/) + I I-1,1+1,/+1 ))
orl I-7,1,1+I) , i: I

Which gives, for the total Hamiltonian,

-Sr i,i,j-r)

f",r'r -ffi1
-+li,i',i+t)
I i-r,i-r, j )

1

=2

.s(2.s-1)

.zSalS), . .+79:t lz'z'J)-
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f*,,r, -'#91 rro 1,i.+1,t, -{t-li1rt, ots)ti-7,i,j)

frl ¿-r,i,i ) :2a{s)l ¿_ 1,i,i) - ryl i-r,i, j - r) - ryl i-7,¿, j +t)

-fl i-2,i,i) - +t i-r,d+t,j) . l#],{s)] | i- r,i,jI

j>i+I

ût ;-7,i,d¡1 ) : o,(,9) I i-t,i,d+r) - # I i- r,i,i+t)

-+l i-r,i,i+21 +zl?ë-!] *,rsll i- t,i,,+1)

oEçzs-t ,ñ\,. ,ßes1- "4S{ ol,S)l i- 1, i-7,i+1 ) - r---- "l,S)¡;,1,t+t)

,lses -t ^ßIzs 1_ho{,S)li_7,i,i)_Ëol,S)li_l,i+I.,i+1)(A.17)

1_;
¿

¿,i+7,i) , i < j-r (A.15)

(A.16)

As for the two-magnon case, the Hamiltonian is block diagonal and the blocks

can be classified by the number of magnons which are nearest neighbours at one time.

The two smallest blocks were considered above and. correspond to three free non-

interacting magnons and to a system of two interacting magnons combined with a

single free magnon, respectively.

The final block of the Hamiltonian which needs to be considered is for the

states ll,l,l), l/, I,t+7) and ll,t+l,/*1) (ie. when all three magnons interact

witlr each other). The effect of Þ¿ on these states are given by

f#o4s)t
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hIT,T,T)

ñtl I,l,t+1)

ñtl l,l+7,t+r)

Pt:
v6s(s - Ð
s2 -3s +2

25 -7
0

0

25 -1
s2-3s+2
V6s(s - Ð

: .9(^9- 3)l I,t,t) a f5151 lI,I,t+7)

\Æs(sf I I,t,I) + (,9' - J^9 + 2) | r,t,t+1)
+ (25 - 1) I I,t+t,t+r)

: (zS -r)l t,I,/+1 ) + (5, -JS +z)lt,t+t,t+t)
+ /s^g(s - Ð | /+r, t+r,t+1)

p,l t+1, /+1, /+1) : V6S(S - Ð lt,t+1,t+r) + S(S - 3) I t+r,t+r, /+1)

and for the matrix representation, restricted to these four basis states is

(A.18)

(4.1e)

(4.20)

0

0

then

Þ,' : -!'2
I ptt
I p',
I p,"
L ptn

Ptz Ptz Pt+

Pzz Pzs Pts

Pzs Pzz Ptz

Pts Ptz Ptt

0

0

3.9(.9 - 1)

s(.9 - 3)
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where

ptt : J.e(.ç _ 1) i""rï;!ï,," + q#fr#ir + .ø$#]
Ptz : \Æs(sf [s€-=øSî - q - r){äfi¿#F

-3(s-r¡i$ffi1
Pts : \Æs(s J [-sqä;# (s- r¡eff¿fifl

+3(.s-t¡-*$ffi]
pt+ : -s.e(.e - 1) is'"s-(:;95j'?)" - "'i#íí.'iii," + {ä"S#]
pzz : Sz s2":F--e_)2\- + (,g _ r;, effiffir + 9(.g _ r), %S#
pzs : -sz s'"llu?3i2\" + (s - t¡, tþffiff - e(^9 _ r), "ã(;gl)¡¡.f5,"

(A.21)

and the pair Hamiltonian gives

û,t t,t+r,t+r) : -6'!:2 lgÇ + #9 - #+] | r,t,t)

_r fsa(.9) _ ts-rlaz(^9) _, s(s-r)a{^g)l , ,-z | +s-s 4s-1. - -F -l:f- 1l 
i,I'l+7)

- rsar(,S) _ ts-r)az(^9) _ ¡(s-r)a{^9)l ¡ ,+å l-Z¡-- -r 45=1- , As_B 1 r 
., /+t, /+1)

+ryf#+ +%9-#+] t/+r, r+r,t+r)

By using the above equation along with the results from equation (A.3)

ancl the results from equation (4.6),

fr,lt-t,t,t) : î[o, ! ffi] I l-1, t,t) - Æ"zlt-r,t,t+r)
-il" - ffi]l t-it+l, /+1)

f,l ¿-r,i,i)

û,1t+r,t+2,t+2)

0, i>l+2,i<I
Tl t+t,l+2,1+2) - il t,I+2,t+2)

(A.22)

(A.23)

(A.24)
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the total effect of the full Hamiltonian on a state of the form I i- 1,i,,i) is

frl ¿-r,i,i): - ''Ít,, i- z,i,,i)-

ry l* . #2- ffi] ti-r,i-r,i-1)
t f.9ai(.9) , (t-.9)a{^9) B(1-.9)als)l ,-, Lus-; +'-æÏ- - Ël l'-7'i-7'i) +

I i-7,i+1,i+1)

4 lrcä#Ð * (51i{Ð - s(r--f)g3(s)], r- r,i,i) (A 2b)

Similarly, (4.3) also gives

'H,l i,i,i+I)
f,l t-r,t_r,t)

while (4.6) gives

û,:;lo,
-il"'

and from (4.13)

fr,¡t,t,I+r)

+ ffil | /+r, t+t,t+2) -
- ffi]lI,I,t+z)

0, i+I-1,1,1+r

?l t-1,t-7,t) - il I-r,t_7,r+7)

Æ"zlt,,t¡t,t+2)

(^.26)

(A.27)

: å i;þ + %lp + {#F] lt,r,r+r) +

nÆs(s-Ð I o, (r lzft- å\ -#=] | t,t,t)- å lft- tPr+ stHP] 
I t,t+t,t+t)

fsþ-4 ¡ ,,- 2 laË¡ + å\ - tft] | t+7,1+t, /+t )

774

(4.28)



These result in

û¡ i,i,i+1) : -ry: i,i,i+z)-

-å l#9. -rHYÐ - 
s(t--ji)q{s)] 

ro,o*1,i+1)

-å ircä#Ð - qH{Ð 
- 

B(1:jUs{^e)lt;,r,;+t) 
(A ze)

Continuing this process,

y,li,d,i)-0, i+I,t+1

From (4.3). There is no relevant equations from (4.6), but (4.18) gives

û¡ t+1, /+1, /+1) :

(A.30)

(A.31)

-ås(s - 1) IBI#Ð + 6ffi:,¡ + q¡=fr,-s:o] I r+r, r+7,t+r)

-$s 
-Ð f o,- d2 _ o"lrtt

lzfu * ns-t 4s-3J I ", ", /+1) +

"És{s-Ð I o,2 tz3= - åh - zft] | t,I+r,/+1) -
ås(s - 1) lqzäÐ - @=ft=Ð + æSr.--o]lr,t,t)

fr,|t,t,l) : ås(s - 1) lsra"*-Ð + 1rs--ffs:¡ + ar¡-fr*'-:¡t]l t,t,t)

ås(s - i) ltró-Ð + r;s=ffs:¡ + EF:fk:Ð] t l+ r,t+7,t+7)

+ vÆs(s-Ð | o, _ oz
' 2 L4S-3 4S-7

vÆs(s-Ð | o, - q2 _2 L4.S-3r4.9-1 rft] | t,t+t',1+1')
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so that

û1i,i,,i,7:

s.e(.e-') fd& . s6jft_, . æjffi
T'u-') ldpÐ-tr#Ð.m+&
-l','-') f#%-c_ffir.m#
.F":= lm - #i- ffi] t i-r,i,i)
li-7,i-r,i) - lt, i+1,i+1|)

-ö
'l
l

I i,d,i) -

I i*7,¿-7,i-1)

I

J 
l;+r,,i+r,t+1)

3)

t
)

3)

+ | i,i,¿+t) -
(A.33)

the total Hamiltonian

(A.1 1), (A.15)-(A.17),

These final set of equations that specify the effect of

on the complete set of orthonormal states are (,{.5), (4.10),

(4.25), (,{.29) and (.4.33).
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