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Abstract

We introduce two online models for the vertex k-center and the vertex k-median prob-

lems. Clients (i.e., graph vertices) and their corresponding links (i.e., graph edges)

are revealed sequentially, determining the topology of a graph over time. Clients are

revealed by an adversary to an online algorithm that selects existing graph vertices

on which to open facilities; once open, a facility cannot be removed or relocated. We

define two models: an online algorithm may be restricted to open a facility only at

the location of the most recent client or at the location of any existing client. We

examine these models on three classes of graphs under two types of adversaries. We

establish lower bounds on the respective competitive ratios attainable by any online

algorithm for each combination of model, adversary, and graph class. Finally, we

describe algorithms whose competitive ratios provide corresponding upper bounds on

the best competitive ratios achievable.
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Chapter 1

Introduction

1.1 Motivation

Suppose that the shopping company X opens two new branches in a city. The

company locates the new branches such that its customers do not travel too long to

access the nearest shopping center. Due to an increase in the number of customers,

the company decides to open another third branch after the first year. Where is the

best location to open the new branch? What strategy should company X adopt to

select locations for its new branches in the future?

One approach might be to consider all customers in each year i as a static problem

instance and find optimal locations for all shopping centers that the company X

wants to have in the year i. However, in this case, we might be forced to relocate

some shopping centers opened in previous years. A typical constraint is that once

the company X opens a new branch, it cannot be moved in the future. We need a

strategy to locate future branches without relocating existing branches such that the

1



2 Chapter 1: Introduction

selected locations are close to the optimal strategy.

Motivated by such problems, we consider two new online models for the facility

location problem. We first define the offline version of the problems.

In this thesis, we study facility location problems from the theoretical point of

view and, therefore, we consider the input and output of a facility location problem

as points in the plane. However, since the most common application of facility location

problems is in communication networks, we sometimes refer to clients and facilities

as the input and the output of a facility location problem, respectively.

Suppose that we are given a set P of n points (as clients) in a metric space M .

In the k-center problem we wish to find a set F of k points in the plane (as facilities)

so as to minimize

max
p∈P

min
x∈F

distM(p, x), (1.1)

where distM(p, x) denotes the distance between points p and x under the distance

metric M . If M is Euclidean space under the Euclidean distance metric, then the

problem is called the Euclidean k-center problem. If points are restricted to be

selected only from the clients in P (i.e., F ⊆ P ), then we call the problem the discrete

Euclidean k-center problem. Otherwise, if points can be selected from anywhere in

Euclidean space, then we call the problem the continuous Euclidean k-center problem.

Now, assume that the clients model a communication network whose configuration

is determined by some (unweighted) graph GP = (V, E), where V is the set of clients

and E is a set of predefined connections between the clients. Then, if M is the

graph distance on GP and F ⊆ V , then the new problem is called the vertex k-center

problem. Recently, Durocher et al. [11] introduced the geometric k-center problem:
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suppose both the clients set P and facilities set F are points in the plane and M is

graph distance on some geometric graph induced by P and F (e.g., a unit disk graph).

The objective is the same as the two previous problems, that is, to minimize (1.1).

In the k-median problem, on the other hand, we wish to find such a set F to

minimize
n∑

i=1

min
f∈F

distM(ci, f), (1.2)

where distM(ci, f) is the distance between the client ci and the facility f based on the

distance metric M . Observe that (1.1) minimizes the maximum client-to-facility dis-

tance whereas (1.2) minimizes the sum of distances between clients and their nearest

facility, which equivalently minimizes the average client-to-facility distance.

In this thesis, we study new online models for two facility location problems,

namely the vertex k-center and the vertex k-median problems. We describe the models

and the settings under which we study them in Chapter 2.

1.2 Online Algorithms

An online algorithm is one that receives the input step by step in a number of

increments. An online algorithm does not know the entire input sequence in advance

and is required to perform its actions based on only the current partial information.

In contrast, an offline algorithm receives the entire input at first and has the complete

knowledge of the input in advance.

Since an online algorithm computes a solution using partial information about

the input, the performance of the algorithm is reduced in comparison with that of

an offline algorithm. Competitive analysis is the standard measure to analyze the
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performance of an online algorithm [4]. Let OPT (σ) denote the cost incurred by

an optimal offline algorithm on input σ (i.e., one that knows the entire input σ in

advance and performs its actions optimally). An online algorithm A is said to be

c-competitive if

A(σ) ≤ c ·OPT (σ) (1.3)

for all input sequences σ [10]. The value c is called the competitive ratio of A. For

further discussion of online algorithms see [4]. Dorrigiv [10] is a good reference for

the different measures of online algorithms and their comparisons.

1.3 Related Work

We first present a brief overview of work related to the offline k-center problem and

then will describe previous research related to the online k-center problem. Finally,

results on the offline Euclidean k-median problem are presented.

1.3.1 Vertex k-Center Problem

In the vertex k-center problem, clients are represented as a set of vertices V , the

distance metric is defined by graph distance in a graph GP = (V, E), where n = |V |

and m = |E|, and the facilities are restricted to be opened only on clients. Let

n be the number of clients (or equivalently, the number of vertices of the graph).

Frederickson [13] solves this problem for trees in O(n) using parametric search. Kariv

and Hakimi [19] define algorithms for the vertex k-center problem on general graphs.

Since the problem is NP-complete [19], they give an algorithm with running time
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O(mkn2k−1/(k − 1)!) when k is fixed.

Bespamyatnikh et al. [3] give an O(kn) time algorithm to solve the problem on

circular-arc graphs. Since the vertex k-center problem on unit interval graphs is a

special case of circular-arc graphs, therefore, we can solve the vertex k-center problem

on unit interval graph in O(kn) time. Cheng et al. [9] improve this time and design

an O(n) time algorithm to solve the vertex k-center problem on unit interval graphs.

1.3.2 Continuous Euclidean k-Center Problem

When k=1, the continuous Euclidean k-center problem is equivalent to finding

the minimum enclosing disk for n points in the plane. Megiddo [22] presents a de-

terministic Θ(n) time algorithm for the minimum enclosing disk problem. Therefore,

the Euclidean 1-center problem in the plane can be solved in linear time.

Chan [6] gives a deterministic algorithm with running time O(n log2 n log2 log n)

for the continuous Euclidean 2-center problem in the plane. Agarwal and Sharir [1]

extend the continuous Euclidean 2-center problem to higher dimensions. When k is

an input parameter, Megiddo and Supowit [23] prove that the continuous Euclidean

k-center problem is NP-hard in the plane. Feder and Greene [12] show that approx-

imating the problem in polynomial time within a factor less than (1 +
√

7)/2 is still

NP-hard. Gonzalez [14] provides a 2-approximation algorithm for the continuous

Euclidean k-center problem in the plane. His algorithm works in k iterations. In the

first iteration, an arbitrary client is chosen to own the first facility. In the subsequent

iterations, a facility is opened on the location of that client that has the maximum

distance to its nearest facility. He shows that the running time of the algorithm is
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bounded by O(nk).

1.3.3 Discrete Euclidean k-Center Problem

In the discrete Euclidean k-center problem, facilities are restricted to be opened

only on the locations of existing clients. As described in Section 1.3.2, Gonzalez’

algorithm works even if the facilities are restricted to be opened only on the locations

of clients. Therefore, we can apply his algorithm for the discrete Euclidean k-center

problem. Hsu and Nemhauser [16] show that the discrete Euclidean k-center problem

cannot be approximated within a factor of less than 2.

1.3.4 Geometric k-Center Problem

In the geometric k-center problem, the facilities can be opened anywhere in the

plane, however, the distance metric is graph distance. Durocher et al. [11] design

and analyze the first exact and approximate algorithms for the geometric k-center

problem. We denote by m and n, the number of vertices and edges of the unit disk

graph induced by P . Two vertices are adjacent in a unit disk graph if and only if

whose distance is at most one. First, they use the vertex k-center problem to solve

the proposed problem. They prove that an algorithm for the vertex 1-center problem

provides a 5-approximation algorithm for the geometric 1-center problem. Second,

they use breadth-first search and describe an O(mn2) time algorithm to find exact

solutions for the geometric 1-center problem. Then, they describe an O(n3) time

algorithm that finds approximate solutions for the geometric 1-center problem. To

generalize, they use their previous algorithm for exact solutions to design an O(mn2k)
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algorithm for the geometric k-center problem, for any fixed value k. Finally, they

prove that the geometric k-center problem is NP-hard in the plane, when k is an

input parameter.

1.3.5 Online Center Problem

There are few variations related to the online k-center problem. Sharp [24] de-

scribes the online center problem. The online center problem has the same input as

the k-center problem, however, the value of k is not known in advance. Instead, k is a

parameter that increases as time passes. Thus, the algorithm has advance knowledge

of all client positions. In fact, the online center problem is online with respect to

facilities but not clients. Therefore, the 2-approximation algorithm of Gonzalez [14]

is a 2-competitive algorithm for the online center problem.

Lin et al. [21] consider the incremental center problem in which the parameter k is

known in advance but the problem is not the same as the offline k-center problem. The

objective in the incremental center problem is to locate a sequence of k facilities such

that the radius of the underlying graph after opening the first i facilities is close to that

of the optimal i facilities, for each i ≤ k. Again, Gonzalez’ 2-approximation algorithm

is a 2-competitive incremental algorithm, which is optimal. This means that, in this

case, knowing the input sequence in advance will not improve the solution.

1.3.6 Continuous Euclidean k-Median Problem

Despite its simple description, the k-median problem is challenging. Even when

k = 1, there exists no polynomial-time exact algorithm for the Euclidean k-median
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problem in R2 and it is unknown if the problem is NP-hard [15]. Chandrasekaran

and Tamir [7] give a polynomial-time ε-approximation algorithm for the Euclidean

1-median problem. Indyk [17] presents a randomized ε-approximation algorithm with

expected linear time. Finally, Bose et al. [5] give an deterministic O(n log n)-time

ε-approximation algorithm for this problem.

For k > 1, it is natural that the k-median problem is harder than the 1-median

problem. When k is an input parameter, Megiddo and Supowit [23] show that the

Euclidean k-median problem is NP-hard in R2. Jain and Vazirani [18] give an

O(n2)-time 6-approximation algorithm and Charikar and Guha [8] give an O(n3)-

time 4-approximation algorithm for the k-median problem. Arora et al. [2] give an

O(nO(1+1/ε))-time ε-approximation algorithm, for any fixed ε > 0. Finally, Killiopou-

los and Rao [20] give a randomized approximation scheme for points in d-dimensional

space with running time O(21/εdn log n log k) for any fixed ε and d.



Chapter 2

Problem Statement

In this chapter, we first state the problem and describe our two online models.

Section 2.2 lists the settings under which we study the models of the problem. We

present an overview of the results in Section 2.3.

We remind the reader that we study two online models of the vertex k-center and

the vertex k-median problems. Throughout the thesis, we use the online k-center

and the online k-median to refer to the online version of the vertex k-center and the

vertex k-median problems, respectively.

2.1 Description of Models

Suppose a set P of n clients appears in an online fashion and let F denote a set

of k facilities to serve clients. Recall that in the vertex k-center (and similarly the

vertex k-median) problem the facilities can only be opened on the location of clients.

We introduce a discrete temporal dimension T = {1, 2, . . . , n} to the sets of clients

9
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and facilities. Let Pi, 1≤ i ≤ n, be the set of clients that exist at time i. That is

Pi =


∅, if i = 0,

Pi−1 ∪ {ci}, if i > 0,

(2.1)

where ci, 1≤ i ≤ n, is the client that arrives at time i. Let Fi, 1≤ i ≤ n, denote

the set of facilities opened for Pi, where 1 ≤ |Fi| ≤ k. Thus, for all i, Pi ⊂ Pi+1 and

Fi ⊆ Fi+1. We simply write P and F instead of Pn and Fn, respectively. Recall the

definition of GP from Section 1.1; the graph determined by the set of clients in the

network. In the online settings we generalize this notion by letting GPi
denote the

graph determined by clients in Pi. Depending on the model (see Section 2.2), the

competitive ratio is measured either every time a new facility is opened or only when

the last client arrives; let T ′ ⊆ T denote the corresponding times and let M be the

distance metric.

The objective in the online k-center problem is to minimize

max
i∈T ′

max
p∈Pi

min
f∈Fi

distM(p, f), (2.2)

where distM(p, f) is the distance between the client p and the facility f in GPi
.

For the online k-median problem, we observe that the sum of distances between

existing clients and their nearest facilities never decreases after the arrival of a new

client. Thus, the objective of the online k-median problem is analogous to that of the

offline k-median problem; that is, to minimize (1.2). Therefore, in this problem we

measure the objective after the algorithm’s execution (i.e., after the arrival of cn).

At first, there is no client in the network. As time passes, the clients appear one at

a time in some (possibly adversarial or random) order. On the arrival of each client,
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consider GPi
. While we have no knowledge of the exact location of future clients,

we assume that their appearance never makes GPi
disconnected. Moreover, on the

arrival of a client c, every edge between c and its existing neighbors are revealed to

the algorithm. Note that, there is at least one such edge because the graph GPi
must

be connected. The two online models are as follows:

Most Recent Client (MRC) : On the arrival of c, the algorithm decides whether

to open a new facility on c or c will be served by its nearest existing facility.

Any Existing Client (AEC) : On the arrival of c, the algorithm decides whether

to open a new facility on the location of an existing client. If the algorithm

opens a facility on the location of some client other than c, then c will be served

by its nearest existing facility.

Each client must be served by some facility at all times. Consequently, in both models

above, any algorithm must open the first facility on the location of the first client

because no facility is open yet. Once an algorithm opens a facility, the facility’s

location remains fixed and cannot be moved in future.

We use graph distance as the distance metric in all of our results. Consider the

graph GPi
. The radius of GPi

is defined as the maximum distance between any

client and its nearest facility. We observe that the objective in the k-center problem

(see (2.2)) is to minimize the radius of GPn . Moreover, the diameter of the graph is

the maximum distance between any two clients in the graph.
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2.2 Settings

In this section, we first describe how we measure the competitive ratio in each

model. Then, we describe the relationship between the number of clients and the

number of facilities. Finally, we describe the classes of graphs under which we study

the models.

2.2.1 Measuring the Competitive Ratio

We measure the competitive ratio for each k-center and k-median problem in a

different way. We first introduce a set P ′ ⊆ {P1, P2, . . . , Pn} of checkpoints such

that we measure the value of the objective function achieved by an algorithm on GPi

for all Pi ∈ P ′. Let Pj ∈ P ′ be the client set for which the objective function is

maximum over all client sets in P ′. Then, we compare the value of the objective

function achieved by the algorithm on GPj
with that of an optimal offline algorithm

on GPn .

In the online k-center problem, we measure the competitive ratio of an online

algorithm differently depending on the model. In the MRC model, we observe that

a good online algorithm does not postpone opening the facilities until the arrival

of the last clients because then it cannot open facilities on the location of previous

clients, resulting in a bad performance. Naturally, a good online algorithm for the

MRC model is one that opens facilities uniformly distributed among clients over time.

Thus, for the MRC model, P ′ = {Pn}; that is, it is sufficient to measure the objective

function achieved by the algorithm only at the end of the execution (i.e., after the

arrival of cn, the last client). Therefore, we do not measure the value of the objective
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function at intermediate times.

For the AEC model, P ′ = {Pi1 , Pi2 , . . . , Pik} such that {ci1 , ci2 , . . . , cik} is the set

of clients for which the algorithm opens a facility upon their arrival.

In the online k-median problem, the objective is to minimize (1.2); that is, the

sum of the client-to-facility distances. We can use the same argument as for the online

k-center problem under the MRC model to show that it is sufficient to have P ′ = {Pn}

for measuring the competitive ratio of an algorithm for the online k-median problem

under the MRC model.

2.2.2 The Number of Clients

We study the models under two settings with respect to the number of clients.

In the first setting, the number of clients is independent of the number of facilities.

This means that the adversary can provide an algorithm with an arbitrary number of

clients. We call this variant the strong adversary. In the second setting, we assume

that the number of clients is linear in the number of facilities, i.e., n ∈ O(k). We

call this variant the linear adversary. Under all models we assume that n and k are

known to the algorithm.

2.2.3 Graph Representation

As we mentioned earlier, we always assume that for all i ∈ {1, 2, . . . , n}, (i) the

graph GPi
is connected, and, (ii) GPi

is a supergraph of GPi−1
. We study the two

models under different graph representations of clients, namely:

Paths. We assume that clients arrive all on a line such that each client is located
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only to the left or to the right of the all existing clients.

Trees. In this setting, we assume that the underlying graph obtained by clients is a

tree. Each new client is added as a new leaf on the existing tree.

General Graphs. Clients arrive anywhere and there is no restriction on the config-

uration of the underlying graph. However, the graph must remain connected at

all times.

Geometric Graphs. In the following, we briefly describe another application that is

related to our models, however, we require a modification of a constraint in our models

to capture the situation. Suppose that GPi
represents a model for a wireless network

where clients join one at a time. Since there is no wired communication, assume

that each client is equipped with a transceiver, which can send or receive data. The

message sent by some client c can only be received by those clients that are within

a given distance of c, where the distance is proportional to the transmission power

of c. Geometrically, the region of transmission corresponds to a disk. It is common

to assume the all nodes have equal transmission radius (e.g., one unit). In most

applications the underlying unit disk graph must be connected. In other words, once

a new client arrives in the network, it must be able to communicate with at least one

existing client.

The above scenario motivates the study of our online models under the geometric

graphs. However, the connectivity between the vertices of a geometric graph is deter-

mined by position of the vertices of the graph while the connectivity in our models

is defined by an adversary. Thus, there might be two non-adjacent clients in the

network with distance less than a unit length. Moreover, recall that in our models we
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Table 2.1: The results of the online k-center problem under the MRC model.

Adversary: Linear Strong

Graph Lower Bound Upper Bound Lower Bound Upper Bound

Paths 2 2 2 2

Trees 2 2n
k

2k − 1 3k

General Graphs 2 2n
k

2k − 1 3k

require that Pi ⊂ Pi+1, 0 ≤ i < n. Therefore, we cannot study the online models for

all proximity graphs (e.g., Gabriel graphs, relative neighborhood graphs, nearest neigh-

bor graphs), because in many proximity graphs the existing edges may be replaced

with new edges once a new vertex is added. One possible way to enable the models

to capture this situation is to restrict the adversary to only choose the location of

clients (and not their connectivity), and then the connectivity is determined by the

definition of the geometric graph.

2.3 Organization and Overview of Results

The remainder of this thesis is organized as follows.

Chapter 3. In this Chapter we present our results for the online k-center problem

under the MRC model. We first observe the problem for paths and provide tight

bounds on the competitive ratio of any online algorithm. Then, we give the results

for trees and general graphs. Table 2.1 summarizes the results for the online k-center

problem under the MRC model.

Chapter 4. This Chapter examines the online k-center problem under the AEC

model. Similar to the MRC model, we start studying the problem for paths. Based
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Table 2.2: The results of the online k-center problem for the AEC model.

Adversary: Linear Strong

Graph Lower Bound Upper Bound Lower Bound Upper Bound

Paths 2 2 2 2

Trees 2 2n
k

2(k−1)
3

3k

General Graphs 2 2n
k

2(k−1)
3

3k

Table 2.3: The results of the online k-median problem for the MRC model.

Adversary: Linear Strong

Graph Lower Bound Upper Bound Lower Bound Upper Bound

Paths 2k
2k−1

1 + 1
k

2k
2k−1

1 + 1
k

Trees Ω(
√

m) O(n2

k
) Ω(k) ?

General Graphs Ω(
√

m) O(n2

k
) Ω(k) ?

on the simple structure, there are similarities between the MRC and AEC models for

paths. Using these similarities, we also give tight bounds under this model. Next, we

study the model using trees and general graphs. Table 2.2 describes our results for

this model.

Chapter 5. In this Chapter, we explore the online k-median problem under the

MRC model. As in the offline versions, the online k-median problem is more difficult

than the online k-center problem. Table 2.3 summarizes our results for the online

k-median problem under the MRC model.

Chapter 6. We conclude the thesis in this Chapter and discuss possible directions

for future work.



Chapter 3

The Online k-Center Problem: The

MRC Model

In this chapter, we investigate the MRC model of the online k-center problem

under both strong and linear adversaries. We begin by defining some notation. Then,

in each of the subsequent sections, we consider one of the graph representations for

both strong and linear adversaries.

3.1 Preliminaries

Recall GPi
, the graph induced by clients in Pi. Let A be an online algorithm that

has opened some facilities after the arrival of the ith client, ci. We denote the radius

achieved by A on GPi
by rad(A, GPi

). Moreover, throughout this chapter, we denote

an optimal offline algorithm by OPT . We use cr to denote the competitive ratio

achieved by a given online algorithm on any input sequence.

17
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3.2 Paths

We first consider the MRC model for paths. Note that, in this case, GPi
is a

path with i vertices. The strong and linear adversaries are similar for paths in this

model because the difference between the diameters of GPi
and GPi+1

is exactly one,

for all 0 ≤ i < n. We use a linear adversary in the following result, which implies a

corresponding lower bound for a strong adversary.

Theorem 3.2.1. There is a lower bound of 2 on the competitive ratio of any online

algorithm for the MRC model against a linear adversary.

Proof. Consider an adversarial strategy for positioning clients online. In other words,

given a value of k, we construct a path with 2k + 1 vertices such that any online

algorithm has competitive ratio of at least 2 on the path. We start by positioning

clients from left to right in an online fashion such that each two consecutive clients

are adjacent. We denote by ci the client at position i and arrival time i. Let A be an

online algorithm.

Suppose that there exist two consecutive clients ci and ci+1, for some i ∈ {2, 4, . . . , 2(k−

1)}, neither of which has a facility.1 Now, we will position ci+2 to the left of the first

client and then will position the all remaining clients to the left of ci+2 from right

to left. Note that in this case, rad(A, GPn) ≥ 2 while rad(OPT, GPn) = 1. Thus,

cr ≥ 2/1 = 2.

Now, suppose that the first case does not happen; that is, at least one of ci and

ci+1 has a facility, for all i = 2, 4, . . . , 2(k − 1). Since A has opened the first facility

at c1, we conclude that A has no more facility to open after the arrival of c2k. Now,

1Note that A must open the first facility at c0.
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we position the last client neighbor to c2k. Clearly, A has not opened any facility at

clients c2k and c2k+1. In this case, OPT opens the facilities at clients c1, c3, . . . ,

c2k−1 and, therefore, we have cr ≥ 2/1 = 2.

In the following, we present a 2-competitive algorithm for this problem.

Algorithm. The first facility is opened on the location of c1. On the arrival of the

client ci, i ≥ 2, if rad(A, GPi
) ≥ bn/kc, then we open a facility at ci. We call this

algorithm MRCPathAlgorithm, denoted by A1.

Analysis. First, note that the algorithm never runs out of facilities because the

number of times that the radius can exceed the threshold bn/kc is at most k − 1 in

the worst case.2 Second, let ci, for some 2 ≤ i ≤ n, be a client for which algorithm A1

opens a facility. Therefore, ci is the client that makes the radius of GPi
greater than

the threshold bn/kc. Therefore, the radius of Pi reduces below the threshold bn/kc by

opening a facility at ci. By these two observations, we conclude that rad(A1, GPn) ≤

n/k − 1. Since rad(OPT, GPn) ≥ b(n− k)/2kc the competitive ratio of A1 follows.

We observe that Algorithm A1 works even against a strong adversary. Therefore,

we have the following theorem.

Theorem 3.2.2. MRCPathAlgorithm is a 2-competitive algorithm for the MRC

model of the online k-center problem for paths against both linear and strong adver-

saries.

2Otherwise, the diameter of Pn will be greater than n− 1, which is impossible for a path with n
vertices.
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3.3 Trees and General Graphs

In this section, we present our results for both trees and general graphs. We

explore both classes of graphs in the same section because of the following observation.

Observation 3.3.1. Given an online algorithm A, a lower bound on the competitive

ratio of A for trees is also a lower bound on the competitive ratio of A for general

graphs. Similarly, an upper bound on the competitive ratio of A for general graphs is

also an upper bound on the competitive ratio of A for trees.

3.3.1 Strong Adversary

We first consider the MRC model against a strong adversary and provide a lower

bound of 2k − 1 on the competitive ratio of any online algorithm for trees.

Theorem 3.3.2. For any online algorithm A, there exists some sequence of clients

revealed by a strong adversary whose graph GPn is a tree, and for which the competitive

ratio of A is at least 2k − 1.

Proof. Given a fixed value of k, we construct a tree G incrementally. We divide the

arrival of clients into at most k steps. Let Ii, 1 ≤ i ≤ k, denote the sequence of

clients arrived in step i. We keep providing Ii until, depending on the decisions made

by A, the radius achieved by A on the underlying graph is at least 2k − 1. Suppose

that clients are revealed to A in an online fashion.

Step 1. First, we reveal I1, which contains 3k clients all on a line and any two clients

ci and ci+1, 1 ≤ i ≤ 3k − 1, are adjacent to each other, see Figure 3.1. We call
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c1 c2 c3 c4 c5 c6

c7
c8

c9

Figure 3.1: An example of graph G with k = 2 and n = 9.

this partial graph G.3 Note that, while the all graphs constructed in this proof

are trees, we refer to them all as graphs. There are two possibilities:

Case 1: Algorithm A does not open any other facility up to c3k. Now, we

position all remaining clients adjacent to c2 (see Figure 3.1) and we have

cr =
rad(A, GPn)

rad(OPT, GPn)
= (3k − 1)/1 = 3k − 1 > 2k − 1.

The construction stops here and does not proceed to Step 2.

Case 2: Algorithm A opens at least one more facility, in addition to the first

one, at ct1 where 2 ≤ t1 ≤ 3k. Then, we move to Step 2.

Step 2. In this step, we reveal the following sequence of clients in addition to clients

in the first step:

I2 = 〈I1, I1, . . . , I1〉,

where I2 contains 2k − 1 copies of input sequence I1. Consider the graph H

in Figure 3.2. We show each instance of the graph G by a square, called block.

Each block contains exactly 3k clients. Specifically, the first block is actually

the graph G itself.

We observe that there exists one more client after the arrival of the last client

in every odd block (i.e., first block, third block and so on) but there is no such

3Note that the graph G is different from graph GPi
, for all 0 ≤ i ≤ n.
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c7 c20

c27
c28

c29

G G G G

Figure 3.2: An example of graph H with k = 2 and n = 29.

client appeared after the arrival of the clients in an even block (second block,

forth block and so on). There are two cases:

Case 1: Algorithm A does not open a facility on some client that arrived in

this step. Then, we position the all remaining clients adjacent to c3k+1; see

Figure 3.2. Thus, we have

rad(A, GPn) ≥ 2(k − 1)3k + 3k + k − 1 = (2k − 1)3k + k − 1.

Thus,

cr ≥ rad(A, GPn)

rad(OPT, GPn)
= (3k(2k − 1) + k − 1)/3k

= 2k − 1 +
k − 1

3k
≥ 2k − 1.

The construction stops here and does not proceed to Step 3.

Case 2: Algorithm A opens at least one facility at some client that arrived in

this step; more precisely at ct2 , where 3k + 1 ≤ t2 ≤ (2k)3k + k. Then, we

proceed to the next step.

Step 3. In this step, we reveal the following sequence of clients to Algorithm A in

addition to clients in the previous steps:

I3 = 〈I2, I2, . . . , I2〉,
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c27 c80

c109
c110

c111

H H H H

Figure 3.3: An example of graph I with k = 2 and n = 111.

where I3 contains 2k − 1 copies of input sequence I2. Note that, in this step,

we have 2k − 1 instances of graph H instead of graph G. See Figure 3.3. We

show each instance of the graph H by a square, namely a block. Again, there

is a client between every odd block and its next block but there are no more

clients between any even block and its next block. There are two choices:

Case 1: Algorithm A does not open a facility at some client arrived in this

step. More precisely, Algorithm A does not open any facility at ct3 , where

6k2 + k + 1 ≤ t3 ≤ (2k)[(2k)3k + k] + k.

Then, as Figure 3.3 shows, we position all remaining clients adjacent to

c(2k)3k+k+1 and we have

rad(A, GPn) ≥ 2(k − 1)[(2k)3k + k] + (2k)3k + k − 1

= (2k − 1)[(2k)3k + k] + k − 1.

Furthermore, rad(OPT, GPn) = (2k)3k + k. Therefore,

cr ≥ rad(A, GPn)

rad(OPT, GPn)

= =
(2k − 1)[(2k)3k + k] + k − 1

(2k)3k + k

= (2k − 1) +
k − 1

(2k)3k + k
≥ 2k − 1.
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Again, the construction stops here and does not proceed to the next step.

Case 2: Algorithm A opens at leat one facility at some client arrived in this

step. Then, we move to the next step.

We continue the steps until one of the followings happen:

1. During some step i, 3 < i < k, Algorithm A does not open any new facility.

Now, to compute cr in Step i, we introduce the following recurrence relation:

T (i) =


1, if i = 0

2kT (i− 1) + k, if i > 0

(3.1)

Note, T (i) > 0 for all i ≥ 0. If no facility was opened during step i ≥ 1,

then rad(A, GPn) ≥ (2k − 1)T (i− 1) + k − 1 while rad(OPT, GPn) = T (i− 1).

Therefore,

cr =
rad(A, GPn)

rad(OPT, GPn)

≥ (2k − 1)T (i− 1) + k − 1

T (i− 1)

= 2k − 1 +
k − 1

T (i− 1)

≥ 2k − 1.

The last inequality holds because T (i) > 0 for all i ≥ 0 and, therefore, k−1
T (i−1)

≥

0.

2. We found no such i in the previous case. Then, we continue to Step i = k,

where Algorithm A has no facility to open. We position the sequence Ik =

〈Ik−1, Ik−1, . . . , Ik−1〉 of clients, where |Ik| = 2k − 1. Since Algorithm A has
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no facility to open for the clients within Step k and by the discussion in the

previous case, we conclude that cr ≥ 2k − 1. This completes the proof. �

The lower bound 2k− 1 given in Theorem 3.3.2 also applies to general graphs. Next,

we give a simple online algorithm with competitive ratio of 3k for general graphs.

Algorithm. The algorithm opens the first facility on the location of c1. Then, on

the arrival of client ci, i ≥ 2, if dist(ci, f) ≥ 2n/k, where f is the nearest facility to

client ci, then we open a new facility at ci. We call this algorithm StrongMRC,

denoted by A2.

Analysis. It is straightforward that Algorithm A2 does not run out of facilities.

Therefore, rad(A2, GPn) ≤ 2n/k. If diam(GPn) ≥ 4n/3k + k, then diam(GPn) − k ≥

4n/3k. Thus,

cr =
rad(A2, GPn)

rad(OPT, GPn)
≤ 2n/k

(diam(GPn)− k)/2k
≤ 4n

4n/3k
= 3k.

Now, suppose that diam(GPn) < 4n/3k + k. Assume that cr > 3k. Thus, there

exists an instance of the problem for which rad(A2, GPn)/ rad(OPT, GPn) > 3k. Let

rad(OPT, GPn) = t. Therefore, there is a client c whose distance to its nearest facility

opened by OPT in graph GPn is t. Moreover, we conclude that there exists a client

c′ whose distance to its nearest facility opened by Algorithm A2 in graph GPn is

greater than 3kt. Thus, there is a path of length greater than 3kt in graph GPn . This

contradicts the fact that rad(OPT, GPn) = t because, since rad(OPT, GPn) = t, the

maximum length for a path in GPn is (2t + 1)k ≤ 3kt. Therefore, cr ≤ 3k.

By Observation 3.3.1, this algorithm is also a 3k-competitive algorithm for trees.

Therefore, we obtain the following theorem:
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Theorem 3.3.3. There exists an online algorithm with competitive ratio of at most

3k against a strong adversary under the MRC model of the online k-center problem

for both trees and general graphs.

3.3.2 Linear Adversary

In this section, we consider the MRC model for trees and general graphs against a

linear adversary. Theorem 3.2.1 provides a lower bound of 2 on the competitive ratio

of any online algorithm for trees and general graphs against a linear adversary. In

the following, we present a (2M)-competitive algorithm, where M = n/k, for general

graphs against a linear adversary.

Algorithm. The algorithm opens the first facility on the location of c1. Then, on

the arrival of client ci, i ≥ 2, if dist(ci, f) ≥ n/(k − 1), where f is the nearest facility

to client ci, then we open a new facility at ci. We call this algorithm LinearMRC,

denoted by A3.

Analysis. Since the algorithm always has facilities to open, rad(A3, GPn) ≤ n/(k −

1) ≤ 2n/k = 2M . Therefore,

cr =
rad(A3, GPn)

rad(OPT, GPn)
≤ 2M

(diam(GPn)− k)/2k
=

4n

diam(GPn)− k

Case 1. If diam(GPn) ≥ 3k, then cr ≤ 4n/(diam(GPn)− k) ≤ 4n/(3k − k) = 2M .

Case 2. If diam(GPn) < 3k. Suppose, by a contradiction, that cr > 2M . Moreover,

let rad(OPT, GPn) = t; thus, there is a client c whose distance to its nearest facility

opened by OPT in graph Gn is t. Therefore, there exists a client c′ whose distance to

its nearest facility opened by A3 in graph GPn is greater than 2Mt. In the following,
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we prove that 2Mt ≥ n/(k− 1) assuming that k ≥ 2. This is a contradiction because

the algorithm had to open a facility on client c′ at the time of its arrival.

To prove the inequality, we observe that if k = 1, then the problem becomes trivial

as any algorithm has to open the facility on the location of the first client resulting

in cr ≤ 2. If k ≥ 2, then 2nk − 2n ≥ 2nk − nk. Thus, (2nk − 2n)t ≥ (2nk − nk)t as

t ≥ 1. But, (2nk − nk)t = nkt ≥ nk. Therefore, 2nt(k − 1) ≥ nk, which implies that

n/(k − 1) ≤ 2nt/k = 2Mt.

Therefore, we have the following theorem:

Theorem 3.3.4. Algorithm LinearMRC is a (2M)-competitive algorithm, where

M = n/k, for the MRC model of the online k-center problem for trees and general

graphs against a linear adversary.



 



Chapter 4

The Online k-Center Problem: The

AEC Model

In this chapter, we investigate the AEC model of the online k-center problem. In

each of the subsequent sections, we consider one of the graph representations for both

strong and linear adversaries. Throughout this chapter, we use the same notation as

defined in Section 3.1.

An algorithm for the AEC model can potentially achieve a better competitive ratio

than that of an algorithm for the MRC model. To see this, let k = 2 and consider the

sequence of clients that form the graph shown in Figure 4.1(a). Moreover, let A (resp.,

B) be an online algorithm for the MRC (resp., the AEC) model. Both A and B must

open the first facility on the location of the first client. If Algorithm A does not open

a facility on the location of any of the clients c2 through ci, then an adversary may

open all remaining clients adjacent to client ci (as shown in Figure 4.1(a)). Algorithm

A can never open a facility on clients c2 through ci. Algorithm B, however, can open

28
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c1 ci

ci+1

cn

(a) (b)

c1 cj cj+1 cn

Figure 4.1: An algorithm for the AEC model is more powerful than an algorithm for
the MRC model.

a facility on the location of any existing client at any time. Therefore, Algorithm B

can achieve a smaller radius relative to Algorithm A, resulting in a better competitive

ratio for Algorithm B. If Algorithm A opens a facility on the location of client cj,

for some 2 ≤ j ≤ i, then an adversary may open all remaining clients on a path (as

shown in Figure 4.1(b)). We also observe that in this case, Algorithm B can obtain a

better competitive ratio by opening the second facility on client ct, where t = b3n/4c.

Based on the scenario above, we conclude that an algorithm for the AEC model

can achieve better competitive ratios relative to an algorithm for the MRC model.

However, we were unable to find algorithms for the AEC model with better compet-

itive ratios and, therefore, our algorithms are adopted from the MRC model.

Remark 4.0.5. In this section, each of our algorithms decides whether to open a

facility depending on whether the most recent client causes the radius to increase

above some given threshold. Each new facility opened by the algorithm decreases the

radius below the threshold, implying that our algorithms never require opening more

than one facility at a time. The new facility can be located on any existing client,

potentially allowing a greater reduction in the radius than would have been possible

under the MRC model.
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4.1 Paths

In this section, we consider the AEC model for paths. As in Chapter 3, note that

the strong and linear adversary settings are similar for paths even in this model. We

give a lower bound of 2 for this model in which we use a linear adversary. Therefore,

the same lower bound also holds for strong adversary.

Theorem 4.1.1. There is a lower bound of 2 on the competitive ratio of any online

algorithm for paths under the AEC model of the online k-center problem.

Proof. We describe an adversarial strategy for defining client positions. Let k > 0,

the number of facilities, be an even integer and consider any online algorithm A. We

denote the client that arrives at time i by ci. In total, we locate 3k clients such that

for each i, the ith client ci is positioned adjacent to client ci+1. We first observe that

rad(OPT, GPn) = 1. Algorithm A opens the first facility at c1. Next, we locate k/2

groups of clients, where each of them contains 6 clients except the last group that has

5 clients. Note that the clients in the first group are c2, c3, · · · , c7, the clients in the

second group are c8, c9, · · · , c13 and so on. Since Algorithm A has k− 1 facilities left,

there exists some group, say g, in which the algorithm opens at most one facility. It

is easy to see that there exists a client in g whose distance to its nearest facility is 2.

This completes the proof.

Since an algorithm for the AEC model can open a facility on the location of

any existing client, we can use the algorithm MRCPathAlgorithm described in

Section 3.2 to solve the problem for the AEC model optimally for paths. Therefore,

by Theorem 3.2.2, we have the following theorem:
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Theorem 4.1.2. There exists a 2-competitive algorithm for the AEC model of the

online k-center problem for paths against both linear and strong adversaries.

4.2 Trees and General Graphs

In this section, we present our results for trees and general graphs. We first

provide a lower bound on the competitive ratio of any online algorithm against a

strong adversary. Recall the lower bound 2k − 1 on the competitive ratio of any

online algorithm against a strong adversary for trees and general graphs under the

MRC model; see Theorem 3.3.2. Since an algorithm can open a facility on the location

of any existing client in the AEC model, a broader set of algorithmic strategies is

possible, allowing for potentially improved performance. We first show a lower bound

of 2(k−1)
3

.

Theorem 4.2.1. There is a sequence of clients for which any online algorithm has a

competitive ratio of at least 2(k−1)
3

for the AEC model of the online k-center problem

on trees against a strong adversary.

Proof. The proof is similar to that of Theorem 3.3.2. The adversary constructs a tree

by locating clients in a finite number of steps. Let A be any online algorithm for this

problem. Algorithm A may open more than one facility in each step (note that, if

Algorithm A does not open any facility for the clients that arrive in some step, then

the construction stops). Consider the set of first facilities that are opened in each

step; the key is that once the algorithm opens the first facility in each step, we will

keep track of the radius immediately after such a facility was opened. Recall that
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OPT denotes an optimal offline algorithm.

Step 1 We reveal the first sequence of clients, I1, which contains 3k clients. Algo-

rithm A opens the first facility at the first client. There are two possibilities:

Case 1: Algorithm A does not open any facility at ci, 2 ≤ i ≤ 3k, be-

fore the arrival of c3k+1. Then, we position the all remaining clients

(i.e., c3k+1, c3k+2, . . . , cn) adjacent to client c3k−1. Thus, after the arrival

of cn, we have rad(OPT, GPn) = 1 and rad(A, GPn) ≥ k. Therefore,

cr ≥ k > 2(k − 1)/3. Note that the construction stops here and does

not proceed to Step 2.

Case 2: Algorithm A opens at least one facility on the location of ci, where

2 ≤ i ≤ 3k, before the adversary reveal c3k+1. Then, we proceed to the

next step.

Step 2 In addition to the clients opened in the previous step, the adversary reveals

the next sequence of clients as I2 = 〈I1, . . . , I1〉, where |I2| = k − 1. Again:

Case 1: Algorithm A does not open a facility for clients within this step. Then,

the adversary locates all remaining clients adjacent to client ck(3k)−1. Thus,

after the arrival of cn, we have rad(OPT, GPn) ≤ 3k/2. On the other hand,

rad(A, GPn) ≥ 3k(k−1)
3

= k(k − 1) because while the adversary is locating

the remaining clients, Algorithm A can open a facility for 3k(k−1) clients

(i.e., the clients that have revealed in this step) and divide the radius by

3. Therefore, cr ≥ k(k−1)
3k/2

= 2(k − 1)/3. The construction stops here and

does not proceed to Step 3.



Chapter 4: The Online k-Center Problem: The AEC Model 33

Case 2: Algorithm A opens at least one facility for clients within this step

before the adversary locates client ck(3k)+1 (i.e., the first client of the next

step). Then, we proceed to the next step.

The adversary continues following these steps, until one of the following hap-

pens:

1. For some step i, 2 < i < k, Algorithm A opens no facility for the clients

that arrived in Step i, before the adversary locates the first client of Step

i + 1. Then, the adversary positions all remaining clients (i.e., the clients

that are within the Steps i + 1, i + 2, . . . , k) adjacent to the client cj that

is within Step i such that j ≥ j′, for all clients cj′ within Step i1. Let T (i)

denote the total number of clients that have arrived up to Step i. Then:

T (i) =


3k, if i = 1

k · T (i− 1), if i > 1

(4.1)

Since Algorithm A has not opened a facility for clients within Step i, we

have rad(A, GPi
) ≥ T (i−1)·(k−1)

3
and rad(OPT, GPi

) ≤ T (i − 1)/2. There-

fore, cr ≥ (k−1)·T (i−1)
3T (i−1)/2

= 2(k − 1)/3.

2. We reach Step i = k, where Algorithm A has opened all facilities in the pre-

vious steps. Then, the adversary locates the sequence Ik = 〈Ik−1, . . . , Ik−1〉,

|Ik| = k−1, of clients as a path P such that the first client on P is adjacent

to client c, where c is the last client that the adversary has positioned before

revealing the path P . Since Algorithm A has no more facilities and by (4.1),

1In other words, cj is the last client within Step i.
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Figure 4.2: An example of the graph G in support of Theorem 4.2.3 with k = 3 and
n = 15. The label of the nodes indicates the order in which the adversary reveals the
corresponding clients.

we have rad(A, GPn) ≥ T (k−1) · (k−1) and rad(OPT, GPn) ≤ T (k−1)/2.

Therefore, cr ≥ 2(k − 1)/3. This completes the proof. �

We observe that this lower bound also applies to general graphs against a strong

adversary.

Since an algorithm for the AEC model can open a facility on the location of any

existing client, Algorithm StrongMRC described in Section 3.3.1 is also a (3k)-

competitive algorithm for the AEC model. Moreover, by Observation 3.3.1, this

algorithm also works for trees. This gives the following theorem:

Theorem 4.2.2. There exists a (3k)-competitive algorithm against a strong adversary

for the AEC model of the online k-center problem for both trees and general graphs.

For the strong adversary setting, there is a gap between the lower bound 2(k−1)
3

and the upper bound 3k for trees and general graphs. Next, we present our results

for trees and general graphs against a linear adversary.

Theorem 4.2.3. The competitive ratio of any online algorithm for trees is at least 2

for the AEC model of the online k-center problem against a linear adversary.

Proof. We construct a tree as follows. Consider a 3 × 3k grid in which any two
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adjacent grid vertices have distance 1 and let the bottom-left corner of the grid be

the point with coordinate (0, 0); see Figure 4.2. Let A be an online algorithm for this

problem. We denote by ci,j, 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3k, the client positioned at the

point with coordinate (i, j) on the grid. We define fi, where i = 0, 3, 6, . . . , to be the

following set of clients (we call each fi a block):

fi = 〈c0+i,1, c1+i,1, c1+i,2, c1+i,0, c2+i,1〉.

Now, we reveal the following sequence of clients to algorithm A, which contains n = 5k

clients

I = (f0, f3, f6, . . . , f3(k−1)).

We observe that OPT opens the facilities at clients c1+i,1, i = 0, 3, 6, . . . , 3(k − 1) in

the final graph GPn and we have rad(OPT, GPn) = 1. On the other hand, there are

two cases for Algorithm A (note that A must open the first facility at c0,1):

Case 1 A opens at least one facility at either c1,1 or c2,1. Then, since I contains

exactly k blocks, we conclude that there is at least one block, say fj, for which

A has opened no facility on its clients. So, the distance between c1+j,2 (or c1+j,0)

and its nearest facility is at least 2, and we have

cr =
rad(A, GPn)

rad(OPT, GPn)
≥ 2

1
= 2.

Case 2 A opens a facility at neither c1,1 nor c2,1. Thus, the distance between c2,1

and its nearest facility is 2, and we have

cr =
rad(A, GPn)

rad(OPT, GPn)
≥ 2

1
= 2.

�
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The lower bound of 2 also applies to general graphs. Recall that in the AEC model

an algorithm can open a facility on the location of any existing client. This means

that any online algorithm against a linear adversary for the MRC model of the online

k-center problem also works for the AEC model with the same performance when the

adversary remains linear. Therefore, Algorithm LinearMRC (see Section 3.3.2) is

a (2M)-competitive algorithm, where M = n/k, for the AEC model. Thus, we have

the following result:

Corollary 4.2.4. There exists a (2M)-competitive algorithm, where M = n/k, for

the AEC model of the online k-center problem for both trees and general graphs against

a linear adversary.



 



Chapter 5

The Online k-Median Problem:

The MRC Model

In this chapter, we investigate the MRC model of the online k-median problem

against both strong and linear adversaries. In each of the following sections, we

consider the problem for one of the graph representations. Table 2.3 summarizes the

results for the MRC model of the online k-median problem.

Throughout this chapter, we use the same notation as defined in Section 3.1.

Moreover, given an online algorithm A that has opened some facilities on graph GPi
,

the median obtained by A is the sum of distances between any client to its nearest

facility. We denote the median obtained by A on GPi
by med(A, GPi

).

37
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5.1 Paths

In this section, we consider the MRC model of the online k-median problem for

paths. It is straightforward that the strong and linear adversaries are similar for paths

in this model. We use a linear adversary in the following result, which consequently

gives the same lower bound for a strong adversary.

Theorem 5.1.1. Given that the underlying graph GPn is a path, there is a lower

bound of 2k
2k−1

on the competitive ratio of any online algorithm for the MRC model of

the online k-median problem against a linear adversary.

Proof. Let A be an online algorithm and let n = mk, for some positive constant

m. The adversary locates clients on the plane sequentially from left to right. Now,

consider each m consecutive clients in the sequence. Since Algorithm A opens the

first facility on the location of the first client, we have

med(A, GPn) ≥ (2k − 1)

n
2k−1∑
i=1

i

= (2k − 1)

( n
2k−1

( n
2k−1

+ 1)

2

)
= (2k − 1)

(
n(n + 2k − 1)

2(2k − 1)2

)
=

n(n + 2k − 1)

2(2k − 1)
.

Furthermore,

med(OPT, GPn) ≤ 2k

n
2k∑

i=1

i = 2k

( n
2k

( n
2k

+ 1)

2

)
= k

(
n(n + 2k)

4k2

)
=

n(n + 2k)

4k
.
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Therefore,

cr =
med(A, GPn)

med(OPT, GPn)

≤
(

n(n + 2k − 1)

4k − 2

)
/

(
n(n + 2k)

4k

)
=

(
n + 2k − 1

2k − 1

)
/

(
n + 2k

2k

)
≤

(
n + 2k

2k − 1

)
/

(
n + 2k

2k

)
=

2k

2k − 1
.

Next, we present a (1 + 1
k
)-competitive algorithm that we call Algorithm Path-

Median.

Algorithm. The algorithm opens the first facility on the location of the first client.

Moreover, on the arrival of client ci, i ≥ 2, if rad(PathMedian, GPi
) > n/k, then

the algorithm opens a new facility at ci.

Analysis. After the arrival of every client, the diameter of the graph increases by

exactly one. Since the algorithm opens a facility whenever the radius of the graph is

greater than n/k, it will never run out of facilities. Moreover, this implies that the

algorithm will eventually open all the facilities.

Let ci and cj be two clients on which respective facilities are open and the algorithm

has not opened a facility for any client on the path from ci to cj. We observe that

dist(ci, cj) ≤ n/k. Therefore, for every client c′ located on the path from ci to cj,

dist(c′, f) ≤ n/2k, where f is the closest facility to c′.

Let fk be the last facility. The number of remaining clients after opening fk

is at most n/k since, otherwise, we conclude that diam(GPn) > n − 1, which is a
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contradiction. Therefore, (to simplify the calculations, let m = n/k)

med(PathMedian, GPn) ≤ 2(k − 1)

m
2∑

i=1

i +
m∑

i=1

i

= 2(k − 1)

( m
2
(m+2

2
)

2

)
+

m(m + 1)

2

= (k − 1)

(
m(m + 2)

4

)
+

m(m + 1)

2

=
mk(m + 2)

4
− m(m + 2)

4
+

2m(m + 1)

4

≤ mk(m + 2)

4
+

m(m + 2)

4
.

On the other hand,

med(OPT, GPn) ≥ 2k

m
2∑

i=1

i = 2k

( m
2
(m+2

2
)

2

)
= k

(
m(m + 2)

4

)
.

Therefore, we have cr ≤ 1 + 1
k
.

5.2 Trees and General Graphs

In this section, we describe our results for trees and general graphs. Note that,

Observation 3.3.1 also applies for the online k-median problem. We first give the

results for the strong adversary setting. Then we consider the problem against a

linear adversary in Section 5.2.2.

5.2.1 Strong Adversary

In this section, we examine the online k-median problem against a strong adver-

sary. The following theorem provides a lower bound of k on the competitive ratio of

any online algorithm for this problem.
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c1 c2 c3 c4 c5 c6

c7
c8

c9

Figure 5.1: An example of graph G in support of Theorem 5.2.1 with k = 2 and
n = 9.

Theorem 5.2.1. For any online algorithm A for the MRC model of the online k-

median problem, there exists some sequence of clients for which the competitive ratio

of A is at least k against a strong adversary.

Proof. Given a fixed value of k and any online algorithm A, we construct a tree G

incrementally as follows. We divide locating clients into at most k steps. Let Ii,

1 ≤ i ≤ k, denote the sequence of clients that are revealed in Step i. We continue

locating the sequences until after some sequence Ii, where 1 ≤ i ≤ k, we have a tree

on which the median obtained by Algorithm A is at least k times that of an optimal

offline algorithm. Note that the construction then stops and does not proceed to Step

i + 1. In the following we describe the settings.

Step 1. We locate I1, which contains 3k clients, such that any two consecutive clients

are adjacent, see Figure 5.1. There are two possibilities:

Case 1 Algorithm A does not open a facility for client ci, where 2 ≤ i ≤ c3k.

Now, we locate the remaining clients all adjacent to c2 (see Figure 5.1).

Therefore, we have med(OPT, GPn) ≤ 2k and med(A, GPn) ≥ 3k(3k+1)/2.

Thus, cr ≥ k. The construction stops here and does not proceed to Step

2.

Case 2 Algorithm A opens a facility for some client ct1 , where 2 ≤ t1 ≤ 3k.
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c7 c20

c27
c28

c29

G G G G

Figure 5.2: An example of graph H with k = 2 and n = 29.

Then, we proceed to Step 2.

Step 2. In this step, we reveal the following sequence of clients in addition to the

clients in Step 1:

I2 = 〈I1, I1, . . . , I1〉,

where I2 contains 2k − 1 instances of sequence I1. Consider the graph H in

Figure 5.2. We show each instance of graph G by a square, called block. Each

block contains exactly 3k clients. Specifically, the first block is the instance of

graph G that was constructed in Step 1. Note that, we open one more client

after the arrival of the last client in block i, where i mod 2 = 1. There are two

cases for Algorithm A:

Case 1 Algorithm A does not open a facility on some client ct2 , where 3k+1 ≤

t2 ≤ 2k(3k). Then, we will locate all remaining clients adjacent to client

c3k+1 (see Figure 5.2), and we have

med(A, GPn) ≥
3k(2k−1)∑

i=1

i =
3k(2k − 1)[3k(2k − 1) + 1]

2
,

and,

med(OPT, GPn) ≤ 2k
3k∑
i=1

i = 2k

(
3k(3k + 1)

2

)
.
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c27 c80

c109
c110

c111

H H H H

Figure 5.3: An example of graph I with k = 2 and n = 111.

Therefore, cr ≥ k. Note that, the construction stops and does not proceed

to the next step.

Case 2 Algorithm A opens a facility on at least one client located in this step,

i.e., some client ct2 , where 3k + 1 ≤ t2 ≤ (2k)3k. Then, we proceed to the

next step.

Step 3. In this step, we reveal the following sequence of clients in addition to the

clients located in the previous steps:

I3 = 〈I2, I2, . . . , I2〉,

where I3 contains 2k−1 instances of the input sequence I2. In other words, we

have 2k − 1 copies of graph H instead of graph G in this step. See Figure 5.3.

We show each instance of graph H by a square, namely a block. There is a client

(which does not belong to any block) after the arrival of the last client in block

i, where i mod 2 = 1. There are two possibilities for Algorithm A to decide:

Case 1 Algorithm A does not open a facility for some client ct3 , where 6k2+1 ≤

t3 ≤ (2k)[6k2]. Then, we locate all remaining clients adjacent to client

c(2k)3k+k+1, and we have (see Figure 5.3),
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med(A, GPn) ≥
6k2(2k−1)∑

i=1

i =
6k2(2k − 1)[6k2(2k − 1) + 1]

2
∈ Ω(k6).

On the other hand,

med(OPT, GPn) ≤ 2k

2k(3k)∑
i=1

i = 2k

(
2k(3k)[6k2 + 1]

2

)
∈ O(k5).

Therefore, cr ∈ Ω(k). We stop the construction and do not proceed to

the next step.

Case 2 Algorithm A opens a facility on at least one of the clients that was

located in this step. Then, we proceed to the next step.

We continue steps in a similar way until one of the followings happen:

1. For some Step i, where 3 < i < k, Algorithm A does not open a facility on

the location of any clients that is revealed during Step i. To compute cr, we

introduce the following recurrence relation. Let T (i) denote the total number

of clients at the end of Step i. Then,

T (i) =


3k, if i = 1

2k · T (i− 1), if i > 1

(5.1)

By solving (5.1), we obtain the following closed form:

T (i) = 3k(2k)i−1, i ≥ 1. (5.2)
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Since A has opened no facility for clients in Step i > 3,

med(A, GPn) ≥
T (i−1)(2k−1)∑

j=1

j (5.3)

=
T (i− 1) · (2k − 1)[T (i− 1)(2k − 1) + 1]

2

=
3k(2k)i−2 · (2k − 1)[3k(2k)i−2(2k − 1) + 1]

2
, by (5.2)

∈ Ω(k2i),

while

med(OPT, GPn) ≤ 2k

T (i−1)∑
j=1

j (5.4)

= 2k

(
T (i− 1)(T (i− 1) + 1)

2

)
= 2k

(
3k(2k)i−2[3k(2k)i−2 + 1]

2

)
, by (5.2).

∈ O(k2i−1).

Therefore, cr ∈ Ω(k).

2. We found no such i in Part 1. Then, we reach Step i = k, where Algorithm

A has no facility to open. We reveal the sequence Ik = 〈Ik−1, Ik−1, . . . , Ik−1〉,

where |Ik| = 2k − 1. By setting i to k in (5.3) and in (5.4), we conclude that

med(A, GPn) ∈ Ω(k2k) and med(OPT, GPn) ∈ O(k2k−1). Therefore, cr ∈ Ω(k).

This completes the proof.

Remark 5.2.2. The lower bound of Ω(k) also applies to general graphs. It seems

challenging to find an algorithm with competitive ratio O(k) for this problem, matching
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the lower bound of Ω(k). Designing such an algorithm is an interesting direction for

future work.

5.2.2 Linear Adversary

In this section, we consider the MRC model of the online k-median problem for

trees and general graphs against a linear adversary. We first give a lower bound of

√
m, where m = n/k, on the competitive ratio of any online algorithm.

Theorem 5.2.3. For any online algorithm A for the MRC model of the online k-

median problem and against linear adversary, there exists a tree on which the com-

petitive ratio of A is at least
√

m, where m = n/k.

Proof. The proof proceeds by an adversarial strategy. We construct a finite set of

trees until we obtain a tree for which any online algorithm A has competitive ratio

of at least
√

m on that tree.

Let C denote the set of trees, initially empty. Let Ti denote the tree that consists

of clients c1, c2, . . . , ci. If Algorithm A opens a facility on the location of client ci,

then Ti−1 is added to C. The clients are located as follows.

The adversary first locates m/c clients in the plane as a path, for some constant

c > 0 whose value will be specified later. Then, at most ( c−1
c

)m more clients are

located all adjacent to the last client of the sequence (i.e., client cm/c). We call this

set of m clients a plant with c1 as the current root of the plant. Moreover, we call the

first m/c clients on the path a stem and the clients that are adjacent to cm/c a flower,

see Figure 5.4(a) for an illustration. Next, the adversary starts from client c1 and

constructs another similar plant in some other direction. We observe that at most
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flower

stem

c1

(a)

c1

P1

ci (the new root)

Pj+1

(b)

Figure 5.4: (a) An example of a plant. (b) The algorithm opens a facility on a client
located on the stem of plant Pj.

k plants are constructed. The construction of plants is continued until Algorithm

A opens a facility on the location of some client ci. Let Pj denote the jth plant,

1 ≤ j ≤ k, and suppose that ci is located in plant Pj.

• If ci is located on the stem of Pj, then (i) we add Ti to C and, (ii) we consider ci,

instead of c1, as the root for the next plants, see Figure 5.4(b) for an illustration.

• If ci is located on the flower of Pj, then (i) we add Ti−1 to C and, (ii) we

leave completing the current plant and start constructing a new plant from the

current root.

At the end, we add Tn to C as the last tree. It is not hard to see that Algorithm

A opens the facilities only on the location of the roots of Tn. If Algorithm A opens at

most one facility, then the theorem follows. Thus, we assume that Algorithm A opens

at least two facilities. Let distA(fi, fj) denote the distance between two facilities fi

and fj opened by Algorithm A. We first show the following result.

Lemma 5.2.4. Given two algorithms A1 and A2 running on Tn, if mini,j distA1(fi, fj) <

m/c and mini,j distA2(fi, fj) ≥ m/c, then the median obtained by A1 is greater than
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the median obtained by A2.

Proof. Based on the construction of Tn described above, whenever an algorithm opens

a facility the adversary updates the root of the plant. In other words, the algorithm

opens facilities only on the roots. Moreover, we observe that the distance between

any two facilities opened by the algorithm cannot be greater than m/c because the

length of the stem of a plant is m/c.

Since there exists two facilities opened by A1 with distance less than m/c, the

total number of clients on the flowers of plants for A1 is greater than that for A2.

Therefore, the median obtained by A1 is greater than the median obtained by A2.

By Lemma 5.2.4, we conclude that the best online algorithm, say A∗, run on Ti

is one with dist(fi, fj) = m/c for every two opened facilities fi and fj. Therefore,

Algorithm A∗ opens the facilities on the roots of Tn such that every two roots have

distance m/c, see Figure 5.5. Therefore,

med(A∗, GPn) ≥ k

 m
c∑

i=1

i +

m
2c∑

i=1

i +

[
(
c− 1

c
)m− m

2c

]
m

c

 (5.5)

= k

(
m

c

[
m + c

c

]
/2 +

m

2c

[
m + 2c

2c

]
/2 + m2(c− 1)/c2 −m2/2c2

)
= k

(
4m(m + c) + m(m + 2c) + 8m2c− 12m2

8c2

)
= mk

(
8mc + 6c− 7m

8c2

)
.
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Figure 5.5: The facilities opened by the best online algorithm are shown by blue
nodes. An optimal offline algorithm opens the facilities on the location of the red
nodes.

Furthermore, (see Figure 5.5),

med(OPT, GPn) ≤ k

 2m
c∑

i=1

i + (
c− 1

c
)m− m

c

 (5.6)

= k

(
2m

c

[
2m + c

c

]
/2 + m(c− 1)/c−m/c

)
= k

(
4m2 + 2mc + 2mc2 − 2mc− 2mc

2c2

)
= mk

(
2m + c2 − c

c2

)
.

By setting c =
√

m, we get cr ∈ Ω(
√

m). Since Algorithm A∗ is the best possible

online algorithm, we conclude that the competitive ratio obtained by Algorithm A

on Tn is Ω(
√

m). This complete the proof.

Next, we present an O(nm)-competitive algorithm, where m = n/k, for the MRC

model of the online k-median problem against a linear adversary. In fact, we show

that Algorithm LinearMRC described in Section 3.3.2 (denoted by A3) is an O(nm)-

competitive algorithm for the online k-median problem against a linear adversary.

Analysis of Algorithm LinearMRC. If k = 1, then the problem becomes trivial
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as any online algorithm has to open the facility on the location of the first client

and, therefore, cr ≤ 2. Moreover, if n ≤ k, then the algorithm opens a facility on

the location of every client that is optimal and we have cr = 1. Therefore, in the

following we assume that k ≥ 2 and n > k.

Recall from Section 3.3.2 that the radius obtained by the algorithm is at most

n/(k − 1) and rad(OPT, GPn) ≥ (diam(GPn) − k)/2k. Thus, we know that the

distance between any client to its nearest facility opened by Algorithm A3 is at most

n/(k − 1) and, therefore, med(A3, GPn) ≤ n2/(k − 1). Moreover, since an algorithm

(offline or online) can open at most k facilities, there are at least n − k clients in

graph GPn whose distances to their nearest facility opened by OPT is at least 1.

Thus, med(OPT, GPn) ≥ n− k. Therefore,

cr =
med(A3, GPn)

med(OPT, GPn)
≤ n2

(k − 1)(n− k)
.

Case 1. If n ≥ 2k, then

cr =
med(A3, GPn)

med(OPT, GPn)
≤ n2

(k − 1)(n− k)
≤ n2

(k − 1)(2k − k)
=

n2

k2 − k
≤ n2

k
= nm.

Case 2. If k < n < 2k, then dn/(k − 1)e = 2 and, hence, cr ≤ n.

Therefore, we have the following result:

Theorem 5.2.5. There exists an O(nm)-competitive algorithm against a linear ad-

versary for the MRC model of the online k-median problem for both trees and general

graphs.



 



Chapter 6

Conclusion and Future Work

In this thesis, we introduced two online models, namely the MRC and the AEC

models, for two facility location problems, namely the k-center and the k-median

problems. In the MRC model, a facility can be opened only on the location of

the newly-arrived client while in the AEC model, the facility can be opened on the

location of any existing client. We studied these models under two types of adversaries

depending on the number of clients available to the adversary; the number of clients

available to a linear adversary is linear in the number of facilities while a strong

adversary can open as many clients as it wishes.

In Chapter 3, we considered the online k-center problem under the MRC model.

We proved a lower bound of 2 on the competitive ratio of any online algorithm

against a linear adversary and gave a (2n/k)-competitive algorithm for this problem.

It remains open whether there exists an α-competitive algorithm for this problem,

where α ∈ [2, 2n/k). In case of a strong adversary, we showed a lower bound of 2k−1

on the competitive ratio, where k is the number of facilities, for trees and general

51
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graphs. We also gave a 3k-competitive algorithm for this problem. The question of

finding an α-competitive algorithm, where α ∈ [2k − 1, 3k), remains open for future

work.

In Chapter 4, we studied the online k-center problem for the AEC model. We

proved a lower bounds of 2 on the competitive ratio of any online algorithm against

a linear adversary. We then showed a lower bound of 2(k − 1)/3 on the competitive

ratio of any online algorithm against a strong adversary. Our algorithms for the

AEC model were adopted from the MRC model. Since an algorithm for the AEC

model is more powerful than an algorithm for the MRC model, algorithms with better

competitive ratios may be possible for the AEC model. Giving algorithms with better

competitive ratios is another direction for future work.

We investigated the online k-median problem under the AEC model in Chapter 5.

When the underlying graph is constrained to a path, we showed a lower bound of

2k/(2k − 1) for both linear and strong adversaries. We also gave an algorithm with

competitive ratio of 1 + 1/k for this problem. In case of trees and general graphs, we

presented an O(nm)-competitive algorithm against a linear adversary. Moreover, we

showed a lower bound of Ω(1) for this problem. For strong adversaries, we showed a

lower bound of Ω(k) on the competitive ratio of any online algorithm for the online k-

median problem under the MRC model. The question of designing an online algorithm

with competitive ratio of O(k), matching the lower bound of Ω(k), remains open.

We did not study the online k-median problem under the AEC model in this

thesis. As in the offline version of the k-median problem, solving the online k-median

problem under this model seems more challenging. Exploring the online k-median
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problem under the AEC model provides another direction for future work.
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