DEVELOPMENT
 OF
 A COMPUTER CONTROLLED
 SIX-PORT MICROWAVE MEASUREMENT SYSTEM

by

JAGDISH GIRIMAJI

A thesis
presented to the University of Manitoba in partial fulfillment of the requirements for the degree of Master of Science in
Electrical Engineering

Winnipeg, Manitoba, 1983
(c) JAGDISH GIRII AJ:, 1983

OF

A COMPUTER CONTROLLED

SIX-PORT MICROWAVE MEASUREMENT SYSTEM

BY

JAGDISH GIRIMAJI

A thesis submitted to the Faculty of Graduate Studies of the University of Manitoba in partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE

© 1983

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA to lend or sell copies of this thesis. to the NATIONAL LIBRARY OF CANADA to microfilm this thesis and to lend or sell copies of the film, and UNIVERSITY MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

ABSTRACT

This thesis presents a description and performance results of a computer controlled microwave six-port measurement system. In the sixport system concept a microwave circuit is synthesized in such a way that both the magnitude and phase of a load reflection coefficient is determined from four power readings generally derived from simple diode detection measurement circuitry. At present, complex reflection coefficient is measured by yery time consuming slotted line techniques or by automatic network analysers (ANA) which are based on complex hetrodyne detection methods. The appeal of the six-port system, therefore, lies in the simplicity of its amplitude detection system and its potential for use at millimeter waye frequencies where hetrodyne detection is difficult.

The six-port system used in this research has been synthesized using a symmetric five-port junction and a directional coupler. The symmetric five-port junction has optimum properties for the accurate determination of complex load reflection coefficients and has been realized on stripline in the form of a ring type circuit with simple internal structure matching. All ports of the junction are well matched at the center frequency of 1 GHZ and the junction has a useful bandwidth of at least 20%. A micro-computer, model HP-85, through an interface bus controls the experiment, acquires and processes data for the determination of the complex load reflection coefficient (Γ_{ℓ}). Using the iix-yort system Γ_{ℓ} for various test loads has been determined over a 20% bandwidth and the results obtained have been compared with the computed values as well with readings obtained from the microwave network analyzer(MNA).

ACKNOWLEDGEMENTS

The author wishes to express sincere appreciation to Professor E. Bridges, for his guidance, continuous interest, encouragement and patience through all phases of this work.

Special thanks are due to Mr. A. McKay of the Electronics shop and Mr. A. Symmons of the Machine shop. The cheerful cooperation provided by Mr. B. Tabachinick and Mr. D. Steinbach of the Antenna Laboratory is greatly appreciated.

TABLE OF CONTENTS

Page
ABSTRACT i
ACKNOWLEDGEMENTS ii
TABLE OF CONTENTS iii
LIST OF FIGURES V1
LIST OF TABLES V111
CHAPTER I INTRODUCTION 1
1.1 Background 1
1.2 Review of Existing Six-port systems 2
CHAPTER II SIX-PORT THEORY 6
2.1 The Four Port Reflectometer 6
2.2 The Six-Port Network 9
2.3 Ideal q-Point Distribution 13
2.3 a The q-Point Distribution of a 16
typical Six-Port
CHAPTER III THE SIX-PORT SYSTEM 19
3.1 Introduction
3.2 The Symmetric Five-Port Junction 19
3.3 Design of the Five-Port Junction 25
3.4 Experimental Performance of the 31
Stripline Junction

CHAPTER IV SIX-PORT IMPLEMENTATION 37
4.1 The Six-Port Measurement System 37
4.1 a System Operation 38
4.2 Calibration of the Six-Port System 40
4.3 An Expression for Determining 43

Calibration Constants
4.3 a A Closed Form Expression for the 45

Constants z and \emptyset_{z}
4.4 A Matrix Expression for $\Gamma_{\ell} 50$
4.5 System Software 51
4.5 a Calibration Program, REF - 6P 51
4.5 b The Reflection Coefficient 53

Measurement Program, REF - 6P
CHAPTER V RESULTS AND DISCUSSIONS 54
5.1 Introduction 54
5.2 Six-Port Center Frequency 54

Calibration
5.3 Return Loss Calculation at 1 GHZ 55
5.4 Measurement of Γ_{ℓ} at 1 GHZ 58
5.5 Calibration of Six-Port System over a 63

220 MHZ Bandwidth
5.6 Measurement of Γ_{ℓ} over the 70 220 MHZ Bandwidth
Page
CHAPTER VI CONCLUSIONS 76
REFERENCES 79
APPENDIX A 81
APPENDIX B 84
APPENDIX C 88

LIST OF FIGURES

Figure Page
1.1 A six-port circuit as proposed by Engen. 2Block diagram of dual six-port (Sperry ResearchCenter).4
1.3 Proposed MDL six-port configuration. 5
2.1A directional coupler scheme employed to measurereflection coefficient.7
2.2Network analyzer set-up for the measurement ofcomplex reflection coefficient.8
2.3 Detector, source and load port arrangement. 9
2.4 Locus of Γ_{l} when only two detector power measurements are used. 11
2.5 Loci of Γ_{l} with three detector power measurements. 11
2.6 Loci of Γ_{ℓ} with four detector power measurements. 12
2.7 Six-port configuration. 162.8
Illustration of the q-point distribution for the cir- cuit of figure 2.7. 17
3.1 Six-port configuration using a directional coupler and symmetric five-port junction. 20
3.2 A matched symmetric stripline five-port junction. 26
3.3 Circuit diagram of five-port junction. 27
3.4 Even-mode "half-circuit" of five-port junction. 28
3.5 Stripline symmetric five-port junction. 32
3.6 Insertion loss between ports 1-3, 1-4, 2-5, 2-4 and3-5.33

Page

3.7
Insertion loss between ports 2-3, 4-3, 4-5, 1-5 and1-2.34
3.8 Results of return loss measurements at ports 1, 2, 3, 4 and 5 of the five-port junction. 35
4.1 Schematic representation of the six-port measurement system. 39
4.2 Phase distribution of reflection standards used. 42
4.3 Flow chart of software for setting system frequency. 42
5.1 Variable reflection standard. 58
5.2 Plot of reflection coefficient with varying stublength.62
5.3 Variation of $Z \emptyset_{Z}$ with frequency (MHZ). 66
5.4 Variation of $X_{1} \bigotimes_{x]}$ with frequency (MHZ). 67
5.5 Variation of $x_{2} / \emptyset_{x 2}$ with frequency 685.6
Variation of $X_{3} / C_{x 2}$ with frequency (MHZ). 69
5.7
5.8 Plot of Γ_{ℓ} with change in frequency. 74Plot of Γ_{ℓ} with frequency.72

LIST OF TABLES

5.1 Six-Port Calibration Constants at 1GHZ 55
5.2 Return Loss Measurement Results 57
5.3 Measurement of Γ_{ℓ} at 1 GHZ 61
5.4 Calibration Constants over a 220 MHZ Bandwidth 65
5.5 Results of Γ_{ℓ} over (900-1100) MHZ 71
5.6 Results of Γ_{ℓ} over (900-1100) MHZ 75

CHAPTER I

INTRODUCTION

1.1 Background

Almost twelve years ago, Hoer and Engen at the National Bureau of Standards (NBS) began to investigate the six-port junction as the heart of a simpler and less expensive network analyzer $[1,2 \overline{7}$. Since then there has been considerable work in the analysis, design, and testing of six-port systems $1 \mathbf{3} 7$. The application of automation to the field of microwave measurements is perhaps best illustrated by the automated network analyzer (ANA). The large reduction in measurement time and in operator effort which it provides are well known. Although techniques for measuring complex microwave impedence, scattering coefficients, etc., have been known since the inception of the art, until the advent of the ANA much of the subject of microwave measurements was focussed on the more easily determined scalar parameters such as power, attenuation and voltage standing wave ratio. In the absence of phase information, it was necessary to determine "worst case" limits for certain phase interactions which were labelled "mismatch errors." Prior to the introduction of the ANA, the key to improved measurement accuracy was often an improved hardware item, e.g., a directional coupler of higher directivity. Eventually it was recognized that the hardware would always be imperfect and the emphasis :as shifted to methods for measuring these imperfections and correcting them 147. In the existing ANA the phase information is obtained with a hetrodyne detection system which requires multiple frequency conversions, local oscillators, phase detectors, etc. The need
for a costly and complex hetrodyne system has been eliminated in the proposed six-port system where simple amplitude detectors are used for determining the complex reflection coefficient.

1.2 Review of Existing Six-Port Systems

Extensive work towards realizing a six-port system has been done in the U.S.A. at the National Bureau of Standards (NBS), the Sperry Research Center and Microwave Development Laboratory (MDL). In 1977 Glenn F. Engen working at NBS proposed one of the first six-port circuits 157. The basic configuration of the six-port circuit is shown in figure 1.1.

Figure 1.1 A six-port circuit as proposed by Engen [5]

It consists of three quadrature hybrids and one 180° hybrid plus a 6 dB directional coupler. The emergent and incoming wave amplitudes at the measurement ports of this circuit are designated by ' b ' and ' a ', respectively. The wave amplitudes at other selected positions in the circuit are shown in figure 1.ו.

The ideal performance of the six-port is dependent on a set of complex parameters called q-parameters. These q-parameters shall be discussed in depth and presented in Chapter II. At this stage it will suffice to know that for an ideal q-distribution the magnitudes of the q values should lie in the neighbourhood of 0.5 or 1.5 and their arguments should differ by about $\pm 120^{\circ}$. Although the NBS circuit fails to achieve the design objectives for the ideal q-point distribution it however is closer to the design goals than any other six-port devised until then. As compared with the $\pm 120^{\circ}$ objective, the differences in the angles are $135^{\circ}, 90^{\circ}$ and -135°, respectively, with the magnitudes of the q^{\prime} s being 2,2 and $\sqrt{2}$ respectively.

Harry M. Cronson and Leon Susman 13\%, working at Sperry Research Center (SRC) extended the work done at NBS and developed a dual six-port system. The dual six-port is capable of measuring transmission coefficients in addition to reflection coefficients. The six-port junction used by Cronson and Susman is shown in figure 1.2 and consists of four quadrature hybrids and two power dividers. The SRC six-port is similar to the one used by Engen at NBS and the q-dirtribution is no closer to the design objective than that achieved by Engen at NBS.

Figure 1.2 Block diagram of dual six-port (Sperry Research Center)

Till recent years the major thrust of published research has been towards developing the dual six-port system with the six-port itself consisting of quadrature hybrids and 180° hybrids. It was only in 1981 that Gordon P. Riblet and E.R. Bertil Hansson, working at the Microwave Development Laboratories (MDL), proposed a six-port circuit ionsisting of a symmetric five-port junction and a directional coupler ! $\overline{6} \overline{\%}$. With this circuit configuration they could achieve the ideal q-point distribution. The design details of their five-port junction has not been disclosed and their proposed six-port configuration is shown in figure 1.3.

Figure 1.3 Proposed MDL six-port configuration

This was the first six-port circuit of this kind to be realized without using hybrids. Based on the concept of the symmetric five-port junction developed at MDL our six-port also consists of a symmetric five-port junction, the design details of which are given in Chapter III.

The purpose of this thesis is to design, implement and test a single six-port system for the measurement of complex reflection coefficient. In Chapter II the six-port theory is presented defining the o-parameters and determining the ideal q-point distribution. In Chapter III the design of a six-port junction is covered and the performance results of the junction is presented. In Chapter IV the operation of the six-port measurement system is explained and the closed form expressions for the calibration constants determined. Finally, in Chapter V measurement results of return loss, complex reflection coefficient at 1 GHZ and over a 200 MHZ band width are compared with theoretical results and al so with values obtained from a commercial network analyzer instrument.

CHAPTER II

SIX-PORT THEORY

2.1 The Four Port Reflectometer

The scattering parameters for a multiport network are defined as the ratio of the outgoing to the incoming wave variables. We have at the w^{\prime} th port the scattering coefficient $S_{m n}$ which relates the outgoing wave \mid at the ' th port to the power wave entering the n 'th port, expressed as

$$
\begin{equation*}
S_{m n}=\left.\frac{b_{m}}{a_{n}}\right|_{i}=0(i \neq n) \tag{2.1}
\end{equation*}
$$

Thus, the evaluation of $S_{m n}$ involves obtaining the ratio of two complex quantities, b_{m} and $a_{n} \cdot$. Network analyzers are designed so that they process signals which are proportional to b_{m} and a_{n}, in order to determine their complex ratio. Usually, a_{m}, b_{n}, etc., cannot be measured right at their port locations, but are sampled with the help of a linear measurement network, e.g., a directional coupler circuit as shown in figure 2.1. Ports 1 and 2 in this circuit are the source and load ports, respectively, while ports 3 and 4 provide the measurement signals. The power waves emerging at ports 3 and 4 are given by $[7,3]$

$$
\begin{align*}
& b_{3}=A a_{2}+B b_{2} \tag{2.2}\\
& b_{4}=C a_{2}+D b_{2}
\end{align*}
$$

where A, B, C, and D are the complex constants of the directional coupler circuit. The factors A and B give the fraction of the reflected and incident load port waves, respectively, coupled to port 3. Similarly C and

D give the fraction of the reflected and incident load port waves, respectively, coupled to port 4.

Fig. 2.1 A directional coupler scheme employed to measure reflection coefficient

In the practical four-port network analyzer A and D are made as close to zero as possible so that the measured waves b_{3} and b_{4} are essentially proportional to b_{2} and a_{2}, respectively. The basic set-up for such a microwave network analyzer utilizes a dual-directional coupler and is illustrated in figure 2.2. The constants B and C can be jetermined by applying standard loads to the load port. After having calibrated the system the ratio of a_{2} to b_{2} (reflection coefficient) for a given load can then be determined.

Fig. 2.2 Network analyser set-up for the measurement of complex reflection coefficient

If both the reflection coefficient magnitude and phase is required then frequency conversion is necessary in order to measure both the relative magnitude and the phase difference between b_{3} and b_{4}. If only the magnitude of the ratio of b_{3} to b_{4} is required only simple power detectors need be used. In present network analyzer systems the key signal operation is then the conversion of the test and reference signals to a lower frequency for the measurement of phase difference. This frequency conversion complicates the design of network analyzers and makes their cost high. It is possible, however, to eliminate the need for hetrodyning by the addition of two more mear urement ports, which makes the intervening four port network into a six-port.

2.2 The Six-Port Network

The configuration for the six-port circuit is shown in figure 2.3. The four measurement ports are terminated with power detectors. The power delivered to each of the detectors of the six-port is given by

$$
\begin{align*}
& P_{3}=\left|A a_{2}+B b_{2}\right|^{2} \tag{2.4}\\
& P_{4}=\left|C a_{2}+D b_{2}\right|^{2} \tag{2.5}\\
& P_{5}=\left|E a_{2}+F b_{2}\right|^{2} \tag{2.6}\\
& P_{6}=\left|G a_{2}+H b_{2}\right|^{2} \tag{2.7}
\end{align*}
$$

where A to H are complex constants determined by the properties of the six-port network.

Fiq. 2.3 Detector, source and load port arrangement of a six-port circuit.

In this six-port system one of the four measurement ports is essentially used only to monitor the input power. This has been selected to be port 4 and in practice, using nearly ideal components, it is possible to force the first term in equation (2.5) to zero. Thus we have $C=0$, and (2.5) reduces to

$$
\begin{equation*}
P_{4}=|D|^{2}\left|b_{2}\right|^{2} \tag{2.8}
\end{equation*}
$$

Taking the ratios of several of the constants A to H we define a new set of parameters, called the q-parameters. These are,

$$
q_{3}=-B / A, q_{5}=-F / E, q_{6}=-H / G .
$$

Appropriately substituting the above into (2.4), (2.6) and (2.7) and recognizing that $\quad \Gamma_{l}=a_{2} / b_{2}$, we obtain

$$
\begin{align*}
& P_{3}=|A|^{2}\left|b_{2}\right|^{2}\left|\Gamma_{\ell}-a_{3}\right|^{2} \tag{2.9}\\
& P_{5}=|E|^{2}\left|b_{2}\right|^{2}\left|\Gamma_{\ell}-a_{5}\right|^{2} \tag{2.10}\\
& P_{6}=|G|^{2}\left|b_{2}\right|^{2}\left|\Gamma_{\ell}-q_{6}\right|^{2} . \tag{2.11}
\end{align*}
$$

Using (2.8) to eliminate $\left|b_{2}\right|^{2}$ in these equations gives

$$
\begin{align*}
& \left|\Gamma_{\ell}-q_{3}\right|^{2}=|D / A|^{2} \times P_{3} / P_{4} \tag{2.12}\\
& \left|\Gamma_{\ell}-q_{5}\right|^{2}=|D / E|^{2} \times P_{5} / P_{4} \tag{2.13}\\
& \left|\Gamma_{\ell} \cdot q_{6}\right|^{2}=|D / G|^{2} \times P_{6} / P_{4} \tag{2.14}
\end{align*}
$$

In particular, let us examine (2.12). Given only two measurement results, P_{3} and P_{4}, and assuming q_{3} and $|D / A|^{2}$ as known, the locus of possible values of I_{ℓ} must $l i e$ on a circle with center at q_{3} and radius $\left|\Gamma_{\ell}-q_{j}\right|$
as shown in figure 2.4. Similarly, assuming P_{5}, q_{5} and $|D / E|^{2}$ to be known, the locus of Γ_{ℓ} in order to satisfy (2.13) is shown in figure 2.5.

Fig. 2.4 Locus of Γ_{ℓ} when only two detector power measurements are used

Fig. 2.5 Loci of Γ_{ℓ} with three detector power

Here, only two possible Γ_{ℓ} values can satisfy both (2.12) and (2.13) and are given by the intersection points of the two circles. In figure 2.5 one of the intersection points falls outside the $\left|\Gamma_{\ell}\right|=1$ circle and we are able to choose between the two solutions on the basis that for passive networks $\left|\Gamma_{\ell}\right| \leqslant 1$. If both points of intersection happen to fall inside the $\left|\Gamma_{\ell}\right|=1$ circle, then it is clear that the reflection coefficient can not be determined unambiguously. However, the addition of a fourth power measurement results in an explicitly determined reflection coefficient. Assuming P_{6}, q_{6} and $|D / G|^{2}$ to be known a third circle can be drawn using (2.14) with center at q_{6} and radius $\left|\Gamma_{l}-q_{6}\right|^{2}$ upon which Γ_{l} must lie. This situation is shown in figure 2.6.

Fig. 2.6 Loci of Γ_{ℓ} with four detector power measurements

For the typical q-point distribution used Γ_{ℓ} is then determined unambiguousily from the intersection of the three circles.

From inspection of (2.8) to (2.11) it is evident that $|D|,|A|$, $|E|$ and $|G|$ are scale factors, which for a given input signal level and depending upon the load at the output port determine the range of the power level at a measurement port. The dynamic range of the power measuring instrument determines the scale factors $|A|,|E|,|G|$ and $|D|$. If, for instance bolometric-type power meters are assumed then the typical performance specifications might include an upper power limit of 10 mW Hence, the values of $|A|,|E|,|G|$ and $|D|$ are chosen such that the 10 mW limit may not be exceeded for all possible values of Γ_{ℓ} where $\left|\Gamma_{\ell}\right| \leqslant 1$.

It is in addition important to know what the optimum q-point distribution of the six-port circuit should be. A major design question centers around the choice of q_{3}, q_{5}, and q_{6} and this shall be presented in the next section.

2.3 Ideal q-point distribution.

A rigorous mathematical proof for the ideal q-point distribution has not been undertaken and only a qualitative discussion followed closely along the lines provided by Engen [7] is presented. A typical q-point distribution is shown in figure 2.6. However, it is appropriate to question if a better choice wolld be to place one of the q 's, say q_{3} at the centre of the unit circle? If this is done, one has a response (P_{4}) which measures the incident wave $\left(\left|b_{2}\right|\right)$ while P_{3} now measures the reflected wave $\left(\left|a_{2}\right|\right)$. In this case the six-port incorporates the reflectometer.

There are several considerations, however, which argue against this choice for q_{3}. Assuming one could obtain the condition $q_{3}=0$, the prospect of achieving a direct measure of the reflection coefficient magnitude is indeed attractive. In actual fact, in the current state of the art, and even with this as a design goal, the expected deviations of q_{3} from zero are such as to largely negate the potential advantages. A more serious objection arises from dynamic range versus measurement precision considerations. This point is perhaps best illustrated by a specific example as given by Engen [3]:

In figure 2.6 let q_{3} be moved to the center of the diagram, let $q_{5}=2$, and $q_{6}=j 2$. Bolometric-type power meters will be assumed, for which typical performance specifications include upper power limit of 10 mW and error 0.1 percent $\pm 1 \mathrm{pW}$. Next, the values of $|A|,|E|,|G|$ and $|D|$ are so chosen that the $10-\mathrm{mW}$ limit may be approached (but not exceeded) for all possible values of Γ_{ℓ}, where $\left|\Gamma_{\ell}\right| \leqslant 1$. If one wishes to measure a termination for which $\left|\Gamma_{\ell}\right| \simeq 0.01$ (matched), P_{3} will be approximately $l \mu W$, thus the signal-to-noise ratio for this detector has dropped to unity. By contrast P_{5} and P_{6} will be operating at approximately 5 mW , and the 0.1 percent will be the dominating error term. Since this applies to power, the error in $\left|\Gamma_{l}-q_{5}\right|$ and $\left|\Gamma_{l}-q_{6}\right|$ will be half of this. On the other hand, the nominal value of $\left|\Gamma_{\ell}-q_{5}\right|$ or $\left|\Gamma_{\ell}-q_{6}\right|$ in this example is 2 , so that the uncertainty in the real and imaginary parts of a value of $\Gamma_{\mathcal{l}}$ in the neighborhood of the origin represents a 10% error. The interesting conclusion is that if one requires operation over the entire range of $\left|\Gamma_{\ell}\right|$, a point in the neighborhood of the origin should not be chosen. It is seen that the response of P_{3} contributes little or nothing to the determination of Γ_{ℓ} when $\left|\Gamma_{\ell}\right|$ is small, and it appears that a better
choice of q_{3} would be a value in the neighborhood of that shown in figure 2.6. Although the foregoing arguments do not necessarily hold for all choices of power meters, they do appear valid for the immediate candidates which include the bolometric and diode types.

Having disposed of the question of placing one of the q's at the center of the unit circle, it now appears, from symmetry considerations, that q_{3}, q_{5} and q_{6} should be located at the vertices of an equilateral triangle whose center is at the origin. This calls for $\left|a_{6}\right|=\left|q_{5}\right|=\left|a_{3}\right|$, while the arguments differ by $\pm 120^{\circ}$. Thus, the only remaining choice is the magnitude of $\left|q_{3}\right|$. It is unreasonable to choose a large value for $\left|q_{3}\right|$. In particular, since Γ_{ℓ} is determined from its distances from q_{3}, q_{5} and q_{6}, it is evident that an ill-conditioned situation will result if these distances become large in comparison with the distances between q_{3} and q_{5}, q_{3} and q_{6}, or q_{5} and q_{6}. On the basis of these considerations, it appears that an optimum value for $\left|q_{3}\right|$ might be expected to lie in the range $0.5-1.5$. An experimental study with the aid of a computer done at NBS shows a decrease in the measurement accuracy when $\left|\Gamma_{\ell}\right| \simeq\left|q_{3}\right|$. Since there is usually a substantial interest in values of Γ_{ℓ} with a nominal magnitude of unity, there is a double reason for avoiding $\left|q_{3}\right| \simeq 1$. Apart from values close to unity, the other region of primary interest is $\left|r_{\ell}\right|<0.3$. In order to provide the largest possible bandwidth, a fairly loose tolerance on the performance of the individual components from which the six-port is constructed is desirabl?. This, now reduce; the choice for $\left|q_{3}\right|$ to values in the neighborhood of 0.5 or 1.5.

Now, having determined as to what the ideal q-point distribution should be it is of interest to find the q distribution of the six-port proposed by Engen, which has already been briefly touched upon in the
first chapter.
2.3a The q-point distribution of a typical six-port.

The basic configuration of the proposed six-port circuit is shown in figure 2.7. For convenience assuming an incident power wave $2 b$ from the source and 6 dB coupling for the directional coupler, we then have

Fig. 2.7 Six-port configuration

Fig. 2.8 Illustration of the q-point distribution for the circuit of Fig. 2.7
b $\sqrt{ } 3$ as the incident power wave at the input to the hybrid 1. This hybrid, being an in-phase equal power divider, delivers $\frac{b \sqrt{ } 3}{\sqrt{2}}$ to one of the inputs of quad 2. The other input to quad 2 being a $\sqrt{3}$. Thus the output of quad 2 is

$$
\begin{equation*}
j \frac{a \downarrow 3}{2 \sqrt{ } 2}-\frac{j \underline{b} 3}{(\sqrt{ } 2)(\sqrt{ } 2)}=\frac{\sqrt{6}}{4}\left(\Gamma_{\ell}-j \sqrt{ }\right) \tag{2.15}
\end{equation*}
$$

where $\Gamma_{\ell}=a_{2} / b_{2}$

Hence P_{3} is given by

$$
\begin{equation*}
P_{3} \propto\left(\frac{\sqrt[6]{4}}{4}\right)^{2}|b|^{2}\left(\Gamma_{-} e^{-j \vee 2)^{2}}\right. \tag{2.16}
\end{equation*}
$$

comparing (2.16) with (2.9) we have

$$
\begin{equation*}
q_{3}=j \vee 2 \tag{2.17}
\end{equation*}
$$

Thus, q_{3} has a magnitude of $\sqrt{ } 2$ and the argument equals $+90^{\circ}$. In a similar manner we can determine q_{5} as $\sqrt{ } 2 L-135^{\circ}$ and q_{6} as $2 L-45^{\circ}$. for this circuit with the distribution shown in figure 2.8. As a variant to the circuit configuration of figure 2.7 , one may replace the 6dB directional coupler with a 3 dB coupler. If this is done, the power level at the measurement port is doubled, but at the expense of the power levels at $P_{3} \ldots \ldots P_{6}$. In addition, the q magnitudes are multiplied by $1 / \sqrt{ }$. Apart from a constant multiplier, the q-values are determined entirely by that portion of the circuit enclosed within the dotted lines in figure 2.7. Having determined the q-point distribution it is possible to obtain a visual display of the reflection coefficient on the oscilloscope 197. For the circuit of figure 2.7 it has been shown that the powers $P_{3}, P_{4}, P_{5}, P_{6}$ are proportional to $\left|b\left(\Gamma_{\ell}-j \sqrt{ }\right)\right|^{2},|b|^{2}$, $\mid \mathrm{b}\left(\Gamma_{\ell}+\left.(1+j) \sqrt{ } 2\right|^{2}\right.$ and $\mid \mathrm{D}\left(\Gamma_{\ell}-\left.(1-j) \sqrt{ } 2\right|^{2}\right.$, respectively. In addition to obtaining an expression for Γ_{ℓ} it is possible to get a real time display on the oscilloscope. The foregoing represents a straightforward and useful solution to the problem when measurement accuracy can be traded for computational simplicity. In order to make accurate measurements the q 's and the complex constants A, E, G and D have to be determined. An attempt to obtain A, E, G and D directly by using (2.8) - (2.11) results in numerical singularities [10$]$. However, using a calibration procedure which will be described in chapter four, the calibration constants are determined explicitly. Before proceeding to determine these constants, the design of the six-port systems which we have used is first presented, along with some performance results in the following chapter.

CHAPTER III

THE SIX-PORT SYSTEM

3.1 Introduction

A six-port network using a symmetric five-port junction and a directional coupler has been designed to operate at a center frequency of $1 G H Z$. In section 3.2 the properties of the five-port junction is briefly studied and an expression for the complex, reflection coefficient, assuming an ideal junction, is derived. In section 3.3 it is shown that the five-port junction is well matched at 1 GHZ . Finally, in the concluding section the performance of the five-port obtained from measurements with a Hewlett-Fackard model 8410s network analyzer system, is presented.

3.2 The Symmetric Five-Port Junction

The six-port configuration using a directional coupler and symmetric five-port junction is shown in figure 3.1. For a reciprocal junction, the junction scattering matrix $[S]$ is symmetric so that $S_{i j}=S_{j i}$. Also, since the junction is completely matched we have $S_{i j}=0$ for $i=1 \ldots 5$. Employing these conditions, the scattering matrix for the five-port is written as

$$
[\mathrm{s}]=\left[\begin{array}{lllll}
0 & \mathrm{~s}_{12} & \mathrm{~s}_{13} & \mathrm{~s}_{14} & \mathrm{~s}_{15} \tag{3.1}\\
\mathrm{~s}_{12} & 0 & \mathrm{~s}_{23} & \mathrm{~s}_{24} & \mathrm{~s}_{25} \\
\mathrm{~s}_{13} & \mathrm{~s}_{23} & 0 & \mathrm{~s}_{34} & \mathrm{~s}_{35} \\
\mathrm{~s}_{14} & \mathrm{~s}_{24} & \mathrm{~s}_{34} & 0 & \mathrm{~s}_{45} \\
\mathrm{~s}_{15} & \mathrm{~s}_{25} & \mathrm{~s}_{35} & \mathrm{~s}_{45} & 0
\end{array}\right]
$$

Fig. 3.1 Six-port configuration using a directional coupler and symmetric five-port junction.

Since the five-port junctionisalossless, reciprocal network the scattering matrix unitary property [1] must hold and

$$
s^{*} s=1
$$

From the junction symmetry the remaining scattering coefficients can only assume one of two possible values, thus

$$
a=S_{12}=S_{23}=S_{34}=S_{45}=S_{15}
$$

and

$$
b=S_{13}=S_{25}=S_{35}=S_{24}=S_{14}
$$

If the unitary condition is applied we get
$\left[\begin{array}{l}0 \\ a^{*} \\ b^{*} \\ b^{*} \\ a^{*}\end{array}\right.$

a
0
a
b
b

a	b
0	a
a	0
b	a
b	b

b	
a	b
a	0
b	a

$\left.\begin{array}{cc}b & a \\ b & b \\ a & b \\ 0 & a \\ a & 0\end{array}\right]$

$$
=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \tag{3.2}\\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Equation (3.2) yields

$$
\begin{align*}
& 2|a|^{2}+2|b|^{2}=1 \tag{3.3}\\
& b^{*} a^{*}+a^{*} b+|b|^{2}=0 \tag{3.4}\\
& b^{*} a+a^{*} b+|a|^{2}=0 \tag{3.5}
\end{align*}
$$

Subtracting (3.5) from (3.4) we get

$$
\begin{equation*}
|a|=|b| \tag{3.6}
\end{equation*}
$$

Substitution of (3.6) into (3.3) shows that

$$
\begin{array}{r}
|b|^{2}=|a|^{2}=1 / 4 \\
\text { or }|a|=|b|=1 / 2 \tag{3.7}
\end{array}
$$

If we select port reference planes so that

$$
a=|a|
$$

then (3.4) becomes

$$
\begin{align*}
& 1 / 2\left(b^{*}+b\right)+1 / 4=0 \\
& \text { or } \quad b^{*}+b=-1 / 2 \tag{3.8}
\end{align*}
$$

Let $b=x+j y$, then (3.8) becomes

$$
\begin{aligned}
& x-j y+x+j y=-1 / 2 \\
\text { or } \quad & x=-1 / 4
\end{aligned}
$$

Now, using the result and (3.7) we can write

$$
\begin{aligned}
& |b|^{2}=1 / 4 \\
& x^{2}+y^{2}=1 / 4
\end{aligned}
$$

$$
\begin{align*}
& y^{2}=1 / 4-1 / 16 \\
& y= \pm \sqrt{3} \tag{3.9}
\end{align*}
$$

Therefore

$$
\begin{equation*}
b=-1 / 4 \pm j \sqrt{3}=1 / 4(-1 \pm j \sqrt{4})=1 / 2 \pm 120^{\circ} \tag{3.10}
\end{equation*}
$$

Having determined the S - parameters it can be readily seen that the incident power wave at each detector in the circuit of figure 3.1 can be evaluated. From the power readings for a matched load at the test port and assuming matched detectors, the q-point distribution can be obtained. Knowing the q-parameters it is possible to obtain an expression in terms of the detector power readings for the complex reflection coefficient for any test port load, suitable for visual display. The incoming and outgoing power waves at the various ports are labelled in figure 3.1 and are related to each other through the five-port junction scattering matrix. Assuming matched detectors we have
$\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4} \\ b_{5}\end{array}\right]=\left[\begin{array}{lllll}0 & s_{12} & s_{13} & s_{13} & s_{13} \\ s_{12} & 0 & s_{12} & s_{13} & s_{13} \\ s_{13} & s_{12} & 0 & s_{12} & s_{13} \\ s_{13} & s_{13} & s_{12} & 0 & s_{12} \\ s_{12} & s_{13} & s_{12} & s_{12} & 0\end{array}\right] \quad\left[\begin{array}{l}a_{1} \\ 0 \\ a_{3} \\ 0 \\ 0\end{array}\right]$

From (3.11) we get

$$
\begin{equation*}
b_{1}=s_{13} a_{3} \tag{3.12}
\end{equation*}
$$

$$
\begin{align*}
& b_{2}=S_{12} a_{1}+S_{12} a_{3} \tag{3.13}\\
& b_{3}=S_{13} a_{1} \tag{3.14}\\
& b_{4}=S_{13} a_{1}+S_{12} a_{3} \tag{3.15}\\
& b_{5}=S_{12} a_{1}+S_{13} a_{3} \tag{3.16}
\end{align*}
$$

The power delivered to each of the three detectors (refer to figure 3.1), P_{1}, P_{2} and P_{3}, is proportional to $\left|b_{2}\right|^{2},\left|b_{4}\right|^{2}$ and $\left|b_{5}\right|^{2}$, respectively. Hence

$$
\begin{align*}
P_{1} \alpha\left|b_{2}\right|^{2} & =\left|S_{12} a_{1}+\frac{S_{12}}{S_{13}} b_{3}\right|^{2} \\
& =\left|s_{12}\right|^{2}\left|b_{3}\right|^{2}\left|\Gamma_{\ell}-\left(-1 / s_{13}\right)\right|^{2} \tag{3.17}\\
P_{2} \alpha\left|b_{4}\right|^{2} & =\left|s_{12} a_{3}+b_{3}\right|^{2} \\
& =\left|s_{12}\right|^{2}\left|b_{3}\right|^{2}\left|I_{\ell}-\left(-1 / s_{12}\right)\right|^{2} \tag{3.18}\\
P_{3} \alpha\left|b_{5}\right|^{2} & =\left\lvert\, s_{13} a_{3}+\frac{\left.S_{12} b_{3}\right|^{2}}{S_{13}}\right. \\
& =\left|S_{13}\right|^{2}\left|b_{3}\right|^{2} \left\lvert\, I_{\ell} \frac{\left.\left(-s_{12}\right)\right|^{2}}{\left(s_{13}\right)}\right. \tag{3.19}
\end{align*}
$$

Comparing equations (3.17) - (3.19) with (2.9) - (2.11) shows that

$$
\begin{equation*}
q_{1}=-1 / s_{13}, q_{2}=-1 / s_{12} \text { and } q_{3}=-s_{12} /\left(s_{13}\right)^{2} \tag{3.20}
\end{equation*}
$$

Since, $\left|S_{12}\right|=\left|S_{13}\right|=1 / 2$, from (3.7) we get

$$
\begin{equation*}
\left|q_{1}\right|=\left|q_{2}\right|=\left|a_{3}\right|=2 \tag{3.21}
\end{equation*}
$$

We thus have $|q ' s|$ in the neighborhood of 1.5 which as suggested by Engens [7] is an optimum value. Using (3.10) and (3.20) the arguments of the q's are

$$
\begin{align*}
& q_{1}=q_{2}-2 \pi / 3 \tag{3.22}\\
& q_{3}=q_{2}+2 \pi / 3 \tag{3,23}
\end{align*}
$$

Substituting these q values in (3.17) - (3.19) we obtain the power readings P_{1}, P_{2} and P_{3} as proportional to $\left|S_{12}\right|^{2}\left|b_{3}\right|^{2}\left|r_{\ell}-q_{1}\right|^{2},\left|S_{12}\right|^{2}$ $\left|b_{3}\right|^{2}\left|r_{\ell}-q_{2}\right|^{2}$ and $\left|S_{13}\right|^{2}\left|b_{3}\right|^{2}\left|r_{\ell}-q_{3}\right|^{2}$, respectively. The reference detector measures the input power P_{R} to the junction. Using (3.14) we may write

$$
\begin{equation*}
P_{R}=\left|a_{1}\right|^{2}=\frac{\left|b_{3}\right|}{\left.\right|^{S} 13 \mid} \tag{3.24}
\end{equation*}
$$

From the four power readings I_{l} can be easily determined. It is vital to note at this point that the reflection coefficient so determined is only approximate since the properties of an ideal six-port have been assumed and this is difficult to realize in practice. Hence, the system needs to be calibrated in a more exacting manner and the resulting calibration coefficients can then be used to determine Γ_{2}. A procedure for a calibration process is given in the next chapter.

3.3 Design of the five-port junction

The five-port junction is shown in figure 3.2. It has been realized by using a ring type structure along with five radial short-circuited stubs. The stubs are spaced a quarter wave length apart and are an
eighth wavelength long and provide matching for the junction. The radial lines for the stubs have a characteristic impedance which is twice that of the transmission lines forming the ring structure. The fiveport junction circuit diagram is given in figure 3.3. A brief analysis to obtain design equations for this junction follows:

Figure 3.2 A matched symmetric stripline five-port junction

Fig. 3.3 Circuit diagram of five-port junction

In figure $3.3, Z_{0}$ is the characteristic impedance of the generator and load system while Z_{0}^{\prime} and $Z_{0}^{\prime \prime}$ are the characteristic impedences of the $\lambda / 4$ lines and $\lambda / 8$ stub lines, respectively. Application of a signal to port 1 of the junction is equivalent to an even-mode excitation of the network. The even mode "half-circuit" is shown in figure 3.4 The line admittances have been normalized with respect to Z_{0} and we have chosen $Z_{0}^{\sim}=2 Z_{0}$; hence, the normalized line conductance are

$$
\begin{aligned}
& g_{0}=\frac{z_{0}}{z_{0}^{\prime}} \\
& g_{0}^{\prime}=\frac{z_{0}}{z_{0}^{\prime \prime}}
\end{aligned}
$$

Fig. 3.4 Even-mode " half-circuit " of five-port junction.

The open-circuit terminated line is $\mathcal{N} 8$ in length and has an input admittance $+\mathrm{jg}_{\mathrm{o}}$, while the $\lambda / 8$ long short-circuit terminated lines all have an input admittance $-j g_{0}^{\prime}$. We are able to write the equivalent admittance y_{1},at node - © looking towards the open circuit, as

$$
\begin{align*}
y_{1} & =1+j g_{0}-j g_{0} / 2 \\
& =1+j g_{0} / 2 \tag{3.25}
\end{align*}
$$

The $\lambda / 4$ long line between node - (a) and node - (b) acts as an impedence transformer and at its input we have

$$
r_{2}^{\prime}=g_{0}^{2} / y_{1}
$$

The admittance y_{2} at node -(b) is

$$
\begin{align*}
y_{2} & =1-\frac{j g_{0}}{2}+\frac{g_{0}^{2}}{\left(1+j g_{0} / 2\right)} \\
& =\left(1+5 / 4 g_{0}^{2}\right) /\left(1+j g_{0} / 2\right) \tag{3.26}
\end{align*}
$$

Finally, the input admittance y_{3} looking into the "half-circuit" is given by

$$
\begin{align*}
y_{3} & =g_{0}^{2} / y_{2} \\
& =g_{0}^{2}\left(1+j g_{0} / 2\right) /\left(1+5 / 4 g_{0}^{2}\right) \tag{3.27}
\end{align*}
$$

If y is the admittance of the match terminated five-port as seen from the source (refer to figure 3.3) we are able to write

$$
\begin{equation*}
y=2 y_{3}-j g_{0} / 2 \tag{3.28}
\end{equation*}
$$

When (3.27) is substituted into (3.26) we obtain

$$
\begin{align*}
y & =2 g_{0}^{2}\left(1+j g_{0} / 2\right) /\left(1+5 / 4 g_{0}^{2}\right)-j g_{0} / 2 \\
& =2 g_{0}^{2} /\left(1+5 / 4 g_{0}^{2}\right)+j\left(\frac{\left(g_{0}^{3}-\right.}{\left(1+5 / 4 g_{0}\right.}\right)^{\left.g_{0} / 2\right)} \tag{3.29}
\end{align*}
$$

Now, in order for the imaginary part of (3.29) to be zero we require that

$$
\begin{align*}
& g_{0}^{2} /\left(1-5 / 4 g_{0}^{2}\right)=1 / 2 \\
& \text { or } \quad g_{0}=2 / \sqrt{ } \tag{3.30}
\end{align*}
$$

When (3.30) is placed into (3.29) we find that the conductance part of y is of unit value. Thus, when (3.30) holds each port of the ideal five-
port circuit is perfectly matched at the design center frequency. From symmetry we see that equal powers are transmitted from port 1 towards port 2 and port 5. To establishthat there is also an equal powersplit between ports 2 and 3 (or ports 4 and 5) we proceed in the following way. Assume a normalized voltage v_{2} at node -(b) of figure 3.4 A power $v_{2}{ }_{2}$
is then delviered to the unit load at this port. The admittance looking toward node - (a) and immediately to the right of node - (b), is obtained by inspection to be

$$
\begin{align*}
y_{2}^{\prime} & =g_{0}^{2} /\left(1+j g_{0} / 2\right) \\
& =g_{0}^{2}\left(1-j g_{0} / 2\right) /\left(1+g_{0}^{2} / 4\right) \tag{3.31}
\end{align*}
$$

The power delivered to node - (a) is given by $v_{2}^{2} \operatorname{Re}\left\{y_{2}^{2}\right\}$ and clearly we require that $\operatorname{Re}\left\{y_{2}^{\prime}\right\}$ be of unit value in order for the power delivered to the unit load at node - (a) to be equal to the power delivered to the unit load at node - (b). Hence

$$
\begin{equation*}
g_{0}^{2} /\left(1+g_{0}^{2} / 4\right)=1 \tag{3.32}
\end{equation*}
$$

For $g_{0}=2 / \sqrt{ } 3$ this equality holds and the proposed five-port symmetric junction is matched at all ports and it acts as a four way power divider. Specifically, the values of Z_{0}^{\prime} and Z_{0}^{-1}, when the source and load base characteristic impedance is 50 ohms, are

$$
\begin{aligned}
& Z_{0}^{\prime}=z_{0} / g_{0}=43.3 \text { ohms } \\
& Z_{0}^{\prime}=Z_{0} / g_{0}^{\prime}=86.6 \text { ohms } .
\end{aligned}
$$

Using these line impedance values a five-port stripline circuit has
been etched onto standard polyguide substrate. The strip widths for the various line impedences have been determined from the manufacturers graphical data (see Appendix A). Photographs of the fabricated stripline five-port are shown in figure 3.5. Details of the performance of this junction is presented in the following section.

3.4 Experimental Performance of the Strip-line Junction

 Using a Hewlett-Packard model 8410 S network analyzer, insertion loss and return loss measurements were made on the stripline junction. The results are presented in figures 3.6 to 3.8. The insertion loss between any two ports of the ideal junction is 6 dB . From figure 3.6 it is seen that the measured insertion loss between the non-adjacent ports, e.g., $\mathrm{S}_{13}, \mathrm{~S}_{14}$ etc., all track very closely (within 0.5 dB) together over the entire frequency range. At the center frequency of IGHZ the insertion loss is about 6.5 dB . Below IGHZ the loss is about 6.5 dB . Below 1 GHZ the loss increases slowly to a value just over 7 dB , whereas, above $1 G H Z$ it increases more rapidly to 10 dB at 1200 MHZ and then slowly to 12 dB at 1.5 GHZ . Over a 25% bandwidth, from 875 MHZ to 1125 MHZ the insertion loss remains within about 1 dB of the ideal value of 6 dB . Similarly from figure 3.7 it is seen that the measured insertion loss between adjacent ports, e.g., S_{23}, S_{43} etc., also all track closely (within 1 dB) together over the entire frequency range from 750 MHZ to 1500 MHZ . At the cetner frequency of lGHZ the insertion loss is about 6.5 dB . Below 1 GHZ the loss steadily increases to 8 dB at 750 MHZ , whereas above 1 GHZ the loss remains constant at about 6.5 dB till 1400 MHZ before dropping down to a value of slightly under 5 dR at

Fig. 3.5 Stripline symmetric five-port junction.

Fig. 3.6 Insertion loss between ports 1-3, 1-4, 2-5, 2-4, and 3-5.

Fig. 3.7 Insertion loss between ports 2-3, 4-3, 4-5, 1-5, 1-2.

Fig. 3.8 Results of return loss measurements at ports $1,2,3,4$ and 5 of the five-port junction.

1500 MHZ . Over a 25% bandwidth from 875 MHZ to 1125 MHZ the insertion loss remains within about 1 dB of the ideal value of 6 dB . The results of the return loss measurements appear in figure 3.8. It is seen that for the frequency range $975-1050 \mathrm{MHZ}$, each port of the five-port junction has a return loss of less than -20 dB . Below 975 MHZ the return loss rapidly increases to -10 dB at a frequency of about 900 MHZ and then slowly to a value of about -7 dB at 750 MHZ , similarly, above 1050 MHZ the return loss increases to -10 dB at 1150 MHZ and stays around this value to 1500 MHZ . Hence, if we consider a -10 dB return loss as a sufficient port matching level a 25% bandwidth is readily obtainable with the junction power split remaining within 1 dB of the ideal value of 6 dB . Having designed, fabricated and tested a symmetric five-port stripline junction we are in a position to build a six-port measurement system based on this junction. The following chapter covers the development work for the six-port system.

CHAPTER IV

SIX-PORT IMPLEMENTATION

4.1 The Six -Port Measurement System

The schematic representation of the six-port measurement system is shown in figure 4.1. In addition to the symmetric five-port and a directional coupler the six-port system consists of a power splitter, a set of four amplifiers connected to rf detectors, a source locking microwave counter, a sweep generator, a four channel A/D converter and a desk top computer. The counter, sweeper and A / D converter are controlled by the computer through the IEEE-488 interface bus (IB). The A/D converter, sweeper and counter are completely compatible with the IB, thus yielding complete system control to the computer through software. A HewlettPackard model 85A, desk top computer, functions as a system controller, data acquisition and computational device. It offers a fully integrated system including alphanumeric, editing, graphic and operator interaction capabilities. This fully integrated system is used to control the entire automated microwave measurement system using the BASIC software language. The Wiltron sweep generator, a model 610D mainframe and model 62470 multiband $r f$ plug-in, supplies the measurement system with a wide range of frequency coverage (10 MHZ to 18 GHZ). The EIP model 371 source locking microwave counter is capable of automatically measuring any frequency within the range $\angle O H Z$ to $18 G H Z$. A bus controlled option of the counter enables the frequency output of the signal generator to be locked (using a feed back-loop process) at any desired frequeycy. The locking routine is capable with the aid of software to alter the sweep generator output
until the desired frequency is being generated. The advantage of the locking routine is that the generated frequency is of much higher accuracy than can be attained from the sweep generator itself. The HP model 59313 A analog to digital converter digitizes the analog outputs from the four rf detectors and transmits signals via the IB to the computer for storage. A Hewlett-Packard model 11667A power splitter is used to divide the source signal between the counter and the six-port circuit. The detectors produce a dc output approximately proportional to the rf input power. The detector outputs are at a low level and in order to use the full range of the A/D converter (± 5 volts) amplifiers are introduced between the detectors and the counter.

4. 1a System Operation

The six-port system shown in figure 4.1 operates as follows. Initially, the counter locks the sweeper at the first frequency called for by the computer. The A / D converter then takes signal samples from each of the four detectors and the digitized output is transmitted over the IB to the system controller where the data is stored for processing. It should be noted that the response characteristic of each of the four detectors has been characterized in the computer by a polynomial equation so that, from the voltage readings of the A / D converter, accurate power readings are obtained i.t the four measurement ports of the six-port circuit. Details of the detector calibration procedure and the characterizing

Fig. 4.1 Schematic representation of the six-port measurement system.
equations have been presented in Appendix B. The sweeper frequency is then incremented by the computer to the next frequency and the counter locks the sweeper and the process is repeated. After all the power readings have been collected the system controller processes the data to evaluate the complex reflection coefficient of the device under test (DUT) at each frequency. However, in order to determine these complex reflection coefficients the system needs to be calibrated. The process of calibration is necessary in order to determine all the complex constants in (4.19), (4.36) - (4.38) and (4.42).

4.2 Calibration of the Six:Port System

From Chapter Two (equations (2.2) - (2.3) the detector response at port 3 and reference port 4 are

$$
\begin{align*}
& b_{3}=A a_{2}+B b_{2} \tag{4.1}\\
& b_{4}=C a_{2}+D b_{2} \tag{4.2}
\end{align*}
$$

where A, B, C and D are complex constants. Dividing (4.1) by (4.2) and using

$$
\begin{equation*}
\Gamma_{\ell}=a_{2} / b_{2} \tag{4.3}
\end{equation*}
$$

we get

$$
\begin{equation*}
\frac{b_{3}}{b_{4}}=\frac{B\left(A / B \Gamma_{l}+1\right)}{C \Gamma_{l}+1} \tag{4.4}
\end{equation*}
$$

For convenience, the constants and Γ_{ℓ} in (4.4) are redefined as

$$
\begin{align*}
& A / B=X e^{j \phi_{x}} \tag{4.5}\\
& C=Z e^{j \phi_{Z}} \tag{4.6}\\
& \Gamma_{\ell}=\left|\Gamma_{\ell}\right| e^{j \phi_{\ell}} \tag{4.7}
\end{align*}
$$

where X and Z are real constants. In general the power emerging at a matched port is given by bb*, so

$$
\begin{equation*}
\frac{P_{3}}{P_{4}}=\frac{b_{3} b_{3}^{*}}{b_{4} b_{4}^{*}} \tag{4.8}
\end{equation*}
$$

Substituting (4.4) to (4.7) into (4.8) we have

$$
\begin{align*}
\frac{P_{3}}{P_{4}} & =B\left[\frac{x e^{j \phi_{x}}\left|\Gamma_{\ell}\right| e^{j \phi_{\ell}}+1}{z e^{j \phi_{z}}\left|\Gamma_{\ell}\right| e^{j \phi_{\ell}}+1}\right] \times B^{*}\left[\begin{array}{ll}
\frac{x e^{-j \phi_{x}}}{} \frac{\Gamma_{l} \mid e^{-j \phi_{\ell}}+1}{Z e^{-j \phi_{z}}\left|\Gamma_{\ell}\right| e^{-j \phi_{\ell}}+1}
\end{array}\right] \tag{4.9}\\
& =\frac{|B|^{2} x^{2}\left|\Gamma_{\ell}\right|^{2}+1+2 \times\left|\Gamma_{\ell}\right| \cos \left(\phi_{x}+\phi_{\ell}\right)}{Z^{2}\left|\Gamma_{\ell}\right|^{2}+1+2 Z\left|\Gamma_{\ell}\right| \cos \left(\phi_{z}+\phi_{\ell}\right)} \tag{4.10}
\end{align*}
$$

Generalizing (4.10) we can write [12]

$$
\begin{equation*}
\frac{P_{i}}{P_{R}}=\left|B_{i}\right|^{2}\left[\frac{x_{i}^{2}\left|\Gamma_{\ell}\right|^{2}+1+2 x_{i}\left|\Gamma_{l}\right| \cos \left(\phi_{x i}+\phi_{\ell}\right)}{z^{2}\left|\Gamma_{\ell}\right|^{2}+1+2 Z\left|\Gamma_{\ell}\right| \cos \left(\phi_{z}+\phi_{\ell}\right)}\right] \tag{4.11}
\end{equation*}
$$

where $P_{i}(i=1,2,3)$ is the power emerging at each detector port of the five-port and $P_{R}=P_{4}$ is the reference power delivered to the five-port junction. The purpose of the calibration procedure is to determine the constants $\left|B_{i}\right|, X_{i}, \phi_{x i}$, for $i=1,2,3$, and Z and $\phi_{z^{*}}$. An examination of equation (4.11) reveals that a matched load ($\Gamma_{\ell}=0$) will suffice to determine $\left|\mathrm{B}_{\mathrm{i}}\right|$: The remaining constants are determined usinfofdinktand
loads. These standard loads, unfortunately, can not be of any arbitrary value. D. Woods [13] has shown that by choosing arbitrary values the calibration constants cannot be determined explicitly and numerical singularities are encountered. Renato G. Bosisio and Shire Li [TO] have determined that the numerical singularities can however be avoided by carefully selecting four reflection standards $\left(I_{s}\right)$ such that $\left|\Gamma_{s}\right|=1$. We have chosen as reflection standards an open, $\Gamma_{s}=1$, a short, $\Gamma_{s}=-1$, and two offset opens, $\Gamma_{S}=j$ and $\Gamma_{S}=-j$. The phase distribution of the reflection standards used is shown in figure 4.2. Thus, to calibrate the six-port at each required frequency we need a matched load, a short, an open and two offset opens of $\pm 90^{\circ}$ phase. There is no problem at low microwave frequencies in using the same matched load, open and short standards for the different required frequencies, however, the length

Fig. 4.2 Phase distribution of reflection standards used
of the offset load standards has to be changed for each calibration frequency. Hence a method of fairly accurately obtaining these offset standards is required.

A load with a unit reflection coefficient mudulus and of varying phase is generated by terminating a length of transmission line with a sliding short. A network analyzer was used to set the phase of the reflection coefficient of this circuit.

4.3 An Expression for determining Calibration Constants

As metnioned earlier the constants $\left|B_{i}\right|$ are determined by connecting a matched load to the test port. When a matched load $\Gamma_{\ell}=0$ is used, from (4.11), we get

$$
\begin{equation*}
\left|B_{i}\right|^{2}=P_{i} / P_{R} \tag{4.12}
\end{equation*}
$$

To determine the remaining calibration constants four loads of unit reflection coefficient magnitude, but separated in phase by 90° are used. Assuming that Z and \emptyset_{Z} are known (a procedure is given in section 4.3 a for separately determining these constants) we define a normalized power ratio $\left(P_{i} / P_{R}\right)^{\prime}$ such that

$$
\begin{equation*}
\left[\frac{P_{i}}{P_{R}}\right]^{\prime}=\left[\frac{P_{i}}{P_{R}}\right] /\left|B_{i}\right|^{2}\left[1+2 z\left|\Gamma_{\ell}\right| \cos \left(\emptyset_{z}+\varphi_{\ell}\right)+z^{2}\left|\Gamma_{\ell}\right|^{2}\right] \tag{4.13}
\end{equation*}
$$

Substituting (4.13) in (4.11) we have

$$
\begin{equation*}
\left[\frac{P_{i}}{P_{R}}\right]=1+2 x_{i}\left|\Gamma_{\ell}\right| \cos \left(\theta_{x i}+\theta_{\ell}\right)+x_{i}^{2}\left|\Gamma_{\ell}\right|^{2} \tag{4.14}
\end{equation*}
$$

Using an open standard at the test port plane of reference we get

$$
\begin{equation*}
\left[\frac{P_{i}}{P_{R}}\right]_{1}^{1}=1+2 x_{i} \cos \emptyset_{x i}+x_{i}^{2} \tag{4.15}
\end{equation*}
$$

Next, we obtain for a short standard

$$
\begin{equation*}
\left[\frac{P_{i}}{P_{R}}\right]_{2}^{-}=1-2 x_{i} \cos \theta_{x i}+x_{i}^{2} \tag{4.16}
\end{equation*}
$$

For an offset open standard of 90° electrical length we get

$$
\begin{equation*}
\left[\frac{P_{i}}{P_{R}}\right]_{3}=1-2 x_{i} \sin \emptyset_{x i}+x_{i}^{2} \tag{4.17}
\end{equation*}
$$

and finally for the offset open standard of 270° electrical length,

$$
\begin{equation*}
\left[\frac{P_{i}}{P_{R}}\right]_{4}^{-}=1+2 x_{i} \sin \theta_{x i}+x_{i}^{2} \tag{4.18}
\end{equation*}
$$

Rearranging (4.15) to (4.18) in matrix form results in

$$
\left[\begin{array}{l}
x_{i} \cos \emptyset x_{i} \tag{4.19}\\
x_{i} \sin \emptyset x_{i}
\end{array}\right]=1 / 4\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
\left(P_{i} / P_{R}\right)_{1} \\
\left(P_{i} / P_{R}\right)_{2}^{\prime} \\
\left(P_{i} / P_{R}\right)_{3}^{\prime} \\
\left(P_{i} / P_{R}\right)_{4}
\end{array}\right]
$$

Hence, knowing $\frac{P_{i}^{\prime}}{P_{R}} \quad, K=1,2,3,4$, we can determine $X_{i} \cos \theta_{x i}$ and $X_{i} \operatorname{Sin} \theta_{x i}$.
4.3a A Closed Form Expression for the Constants Z and \emptyset_{z} [1.4]

Let $R_{0}(i), R_{1}(i), R_{2}(i), R_{3}(i), i=1,2,3$, be the measured normalized powers at the three detector ports for four unit magnitude offset load standards with phase angles $\emptyset_{0}, \emptyset_{1}, \phi_{2}$ and \emptyset_{3}, respectively. Writing

$$
\begin{equation*}
R_{K}(i)=\left.\left[\frac{P_{i}}{P_{R}}\right]| | B_{i}\right|^{2} ; K=0,1,2,3 \tag{4.20}
\end{equation*}
$$

and substituting (4.20) into (4.11) we have the following:

$$
\begin{align*}
R_{0}(i)\left(1+z^{2}\right) & +R_{0}(i) \cos \theta_{0} 2 z \cos \theta_{z}-R_{0}(i) \sin \theta_{0} 2 z \sin \theta_{z} \\
= & 1+x_{i}^{2}+\cos \theta_{0} 2 x_{i} \cos \theta_{x i}-\sin \theta_{0} 2 x_{i} \sin \theta_{x i} \tag{4.21}\\
R_{1}(i)(1 & \left.+z^{2}\right)+R_{1}(i) \cos \theta_{1} 2 z \cos \theta_{z}-R_{1}(i) \sin \theta_{1} 2 z \sin \theta_{z} \\
= & 1+x_{i}^{2}+\cos \theta_{1} 2 x_{i} \cos \theta_{x i}-\sin \theta_{1} 2 x_{i} \sin \theta_{x i} \tag{4.22}\\
R_{2}(i)\left(1+z^{2}\right) & +R_{2}(i) \cos \theta_{z} 2 z \cos \theta_{z}-R_{2}(i) \sin \theta_{z} 2 z \sin \theta_{z} \\
= & 1+x_{i}^{2}+\cos \theta_{2} 2 x_{i} \cos \theta_{x i}-\sin \theta_{2} 2 x_{i} \sin \theta_{x i} \tag{4.23}\\
R_{3}(i)(1 & \left.+z^{2}\right)+R_{3}(i) \cos \theta_{z} 2 z \cos \theta_{z}-R_{3}(i) \sin \theta_{z} 2 z \sin \theta_{z} \\
= & 1+x_{i}^{2}+\cos \theta_{3} 2 x_{i} \cos \theta_{x i}-\sin \theta_{3} 2 x_{i} \sin \theta_{x i} \tag{4.24}
\end{align*}
$$

Writing (4.22) to (4.24) in matrix form we get
$\left[\begin{array}{lll}R_{1}(i) & R_{1}(i) \cos \theta_{1} & -R_{1}(i) \sin \theta_{1} \\ R_{2}(i) & R_{2}(i) \cos \theta_{2} & -R_{2}(i) \sin \theta_{2} \\ R_{3}(i) & R_{3}(i) \cos \theta_{3} & -R_{3}(i) \sin \theta_{3}\end{array}\right]\left[\begin{array}{l}1+z^{2} \\ 2 z \cos \theta_{2} \\ 2 z \sin \theta_{2}\end{array}\right]$

$$
=\left[\begin{array}{lll}
1 & \cos \varphi_{1} & -\sin \phi_{1} \tag{4.25}\\
1 & \cos \varphi_{2} & -\sin \varphi_{2} \\
1 & \cos \theta_{3} & -\sin \varphi_{3}
\end{array}\right]\left[\begin{array}{l}
1+x_{i}^{2} \\
2 x_{i} \\
\cos \varphi_{x i} \\
2 x_{i}
\end{array} \sin \varphi_{x i}\right]
$$

This yields

$$
\begin{align*}
& {\left[\begin{array}{l}
1+x_{i}{ }^{2} \\
2 x_{i} \cos \emptyset_{x i} \\
2 x_{i} \sin \emptyset_{x i}
\end{array}\right]=\left[\sin \left(\theta_{1}-\phi_{2}\right)+\sin \left(\theta_{2}-\theta_{3}\right)+\sin \left(\theta_{3}-\theta_{1}\right)\right]^{-1} x} \\
& {\left[\sin \left(\theta_{2}-\theta_{3}\right) \quad \sin \left(\theta_{3}-\theta_{1}\right) \quad \sin \left(\theta_{1}-\theta_{2}\right)\right.} \\
& \sin \emptyset_{3}-\sin \emptyset_{2} \quad \sin \emptyset_{1}-\sin \emptyset_{3} \quad \sin \emptyset_{2}-\sin \emptyset_{1} \quad x \\
& {\left[\cos \emptyset_{3}-\cos \emptyset_{2} \quad \cos \emptyset_{1}-\cos \emptyset_{3} \quad \cos \emptyset_{2}-\cos \emptyset_{1}\right]} \\
& {\left[\begin{array}{lll}
R_{1}(i) & R_{1}(i) \cos \varphi_{1} & -R_{i}(i) \sin \varphi_{1} \\
R_{2}(i) & R_{2}(i) \cos \varphi_{2} & -R_{2}(i) \sin \varphi_{2} \\
R_{3}(i) & R_{3}(i) \cos \emptyset_{3} & -R_{3}(i) \sin \varphi_{3}
\end{array}\right]\left[\begin{array}{l}
1+z^{2} \\
2 z \cos \emptyset_{z} \\
2 z \sin \emptyset_{2}
\end{array}\right]} \tag{4.26}
\end{align*}
$$

From (4.26) we get expressions for $1+x_{i}{ }^{2}, 2 x_{i} \cos \emptyset_{x i}$ and $2 x_{i} \sin \emptyset_{x i}$.
There are as follows:

$$
\begin{align*}
& 1+x_{i}{ }^{2}=\left[\sin \left(\theta_{1}-\theta_{2}\right)+\sin \left(\theta_{2}-\emptyset_{3}\right)+\sin \left(\theta_{3}-\theta_{1}\right)\right]^{-1} x \\
& {\left[(1 + z ^ { 2 }) \left[\sin \left(\emptyset_{2}-\emptyset_{3}\right) R_{1}(i)+\sin \left(\theta_{3}-\emptyset_{1}\right) R_{2}(i)+\right.\right.} \\
& \left.\sin \left(\emptyset_{1}-\emptyset_{2}\right) R_{3}(i)\right]+\left(2 z \cos \emptyset_{2}\right)\left[\sin \left(\emptyset_{2}-\emptyset_{3}\right) R_{1}(i) \cos \emptyset_{1}+\right. \\
& \left.\sin \left(\emptyset_{3}-\emptyset_{1}\right) R_{2}(i) \cos \emptyset_{2}+\sin \left(\emptyset_{1}-\emptyset_{2}\right) R_{3}(i) \cos \emptyset_{3}\right]- \\
& \left(2 z \sin \theta_{2}\right)\left[\sin \left(\theta_{2}-\theta_{3}\right) R_{1}(i) \sin \theta_{1}+\sin \left(\theta_{3}-\theta_{1}\right)\right. \\
& \left.\left.R_{2}(i) \sin \emptyset_{2}+\sin \left(\emptyset_{1}-\emptyset_{2}\right) R_{3}(i) \sin \emptyset_{3}\right]\right] \tag{4.27}
\end{align*}
$$

$$
\begin{align*}
& 2 x_{i} \cos \theta_{x i}=\left[\sin \left(\theta_{1}-\theta_{2}\right)+\sin \left(\theta_{2}-\theta_{3}\right)+\sin \left(\theta_{3}-\theta_{1}\right)\right]^{-1} x \\
& {\left[(1 + z ^ { 2 }) \left[\left(\sin \emptyset_{3}-\sin \emptyset_{2}\right) R_{1}(i)+\left(\sin \emptyset_{1}-\sin \emptyset_{3}\right) R_{2}(i)+\right.\right.} \\
& \left.\left(\sin \emptyset_{2}-\sin \emptyset_{1}\right) R_{3}(i)\right]+\left(2 z \cos \emptyset_{2}\right)\left[\left(\sin \emptyset_{3}-\sin \emptyset_{2}\right)\right. \\
& R_{1}(i) \cos \emptyset_{1}+\left(\sin \emptyset_{1}-\sin \emptyset_{3}\right) R_{2}(i) \cos \emptyset_{2}+ \\
& \left.\left(\sin \emptyset_{2}-\sin \emptyset_{1}\right) R_{3}(i) \cos \emptyset_{3}\right]-\left(2 z \sin \emptyset_{z}\right) x \\
& {\left[\left(\sin \emptyset_{3}-\sin \emptyset_{2}\right) R_{1}(i) \sin \emptyset_{1}+\left(\sin \emptyset_{1}-\sin \emptyset_{3}\right)\right.} \\
& \left.R_{2}(i) \sin \emptyset_{2}+\left(\sin \emptyset_{2}-\sin \emptyset_{1}\right) R_{3}(i) \sin \emptyset_{3}\right] \tag{4.28}\\
& 2 x_{i} \sin \emptyset_{x i}=\left[\sin \left(\emptyset_{1}-\emptyset_{2}\right)+\sin \left(\emptyset_{2}-\emptyset_{3}\right)+\sin \left(\emptyset_{3}-\emptyset_{7}\right)\right]^{-1} x \\
& {\left[(1 + z ^ { 2 }) \left[\left(\cos \emptyset_{3}-\cos \emptyset_{2}\right) R_{1}(i)+\left(\cos \emptyset_{1}-\cos \emptyset_{3}\right) R_{2}(i)\right.\right.} \\
& \left.+\left(\cos \emptyset_{2}-\cos \emptyset_{1}\right) R_{3}(i)\right]+\left(2 z \cos \emptyset_{2}\right)\left[\left(\cos \emptyset_{3}-\right.\right. \\
& \left.\cos \emptyset_{2}\right) R_{1}(i) \cos \emptyset_{1}+\left(\cos \emptyset_{1}-\cos \emptyset_{3}\right) R_{2}(i) \cos \emptyset_{2} \\
& \left.+\left(\cos \emptyset_{2}-\cos \emptyset_{1}\right) R_{3}(i) \cos \emptyset_{3}\right]-\left(2 z \sin \emptyset_{z}\right) \\
& {\left[\left(\cos \emptyset_{3}-\cos \emptyset_{2}\right) R_{1}(i) \sin \emptyset_{1}+\left(\cos \emptyset_{1}-\cos \emptyset_{3}\right)\right.} \\
& \left.R_{2}(i) \sin \emptyset_{2}+\left(\cos \emptyset_{2}-\cos \emptyset_{1}\right) R_{3}(i) \sin \emptyset_{3}\right] \tag{4.29}
\end{align*}
$$

Returning to (4.21) we see that by selecting $\emptyset_{0}=0^{\circ}$ (open standard used as reference) (4.21) reduces to

$$
\begin{equation*}
R_{0}(i)\left(1+z^{2}\right)+R_{0}(i) 2 z \cos \emptyset_{z}=1+x_{i}^{2}+2 x_{i} \cos \emptyset_{x i} \tag{4.30}
\end{equation*}
$$

Substituting (4.27) and (4.28) into (4.30) and rearranging terms gives $\left(1+z^{2}\right)\left[\left(R_{0}(i)\left[\sin \left(\theta_{2}-\theta_{3}\right)+\sin \left(\theta_{3}-\emptyset_{1}\right)+\sin \left(\theta_{1}-\emptyset_{2}\right)\right]+R_{1}(i)\left[\sin \emptyset_{2}-\right.\right.\right.$ $\left.\sin \emptyset_{3}-\sin \left(\emptyset_{2}-\emptyset_{3}\right)\right]+R_{2}(i)\left[\sin \emptyset_{3}-\sin \emptyset_{1}-\sin \left(\theta_{3}-\emptyset_{1}\right)\right]+$
$R_{3}(i)\left[\sin \emptyset_{1}-\sin \emptyset_{2}-\sin \left(\varphi_{1}-\emptyset_{2}\right)\right]+\left(2 z \cos \emptyset_{z}\right)\left[R_{0}(i)\left[\sin \left(\emptyset_{2}-\emptyset_{3}\right)+\right.\right.$
$\left.\sin \left(\varphi_{3}-\varphi_{1}\right)+\sin \left(\varphi_{1}-\varphi_{2}\right)\right]+R_{1}(i) \cos \emptyset_{1}\left[\sin \emptyset_{2}-\sin \emptyset_{3}-\right.$
$\left.\sin \left(\theta_{2}-\theta_{3}\right)\right]+R_{2}(i) \cos \theta_{2}\left[\sin \theta_{3}-\sin \theta_{1}-\sin \left(\theta_{3}-\theta_{1}\right)\right]+$
$R_{3}(i) \cos \emptyset_{3}\left[\sin \theta_{1}-\sin \varphi_{2}-\sin \left(\phi_{1}-\emptyset_{2}\right)\right]-\left(2 z \sin \emptyset_{z}\right)$
$\left[R_{1}(i) \sin \emptyset_{1}\left[\sin \emptyset_{2}-\sin \emptyset_{3}-\sin \left(\theta_{2}-\emptyset_{3}\right)\right]+R_{2}(i) \sin \emptyset_{2}\left[\sin \emptyset_{3}-\right.\right.$ $\left.\sin \emptyset_{1}-\sin \left(\emptyset_{3}-\emptyset_{1}\right)\right]+R_{3}(i) \sin \emptyset_{3}\left[\sin \emptyset_{1}-\sin \emptyset_{2}-\sin \left(\varphi_{1}-\emptyset_{2}\right)\right]=0$
$\left[\begin{array}{lll}R_{1}(i)-R_{0}(i) & R_{2}(i)-R_{0}(i) & R_{3}(i)-R_{0}(i) \\ R_{1}(i) \cos \emptyset_{1}-R_{0}(i) & R_{2}(i) \cos \emptyset_{2}-R_{0}(i) & R_{3}(i) \cos \emptyset_{3}-R_{0}(i) \\ -R_{1}(i) \sin \emptyset_{1} & -R_{2}(i) \sin \phi_{2} & -R_{3}(i) \sin \phi_{3}\end{array}\right] x$

$$
\left[\begin{array}{l}
\sin \emptyset_{2}-\sin \emptyset_{3}-\sin \left(\theta_{2}-\emptyset_{3}\right) \tag{4.32}\\
\sin \emptyset_{3}-\sin \emptyset_{1}-\sin \left(\theta_{3}-\emptyset_{1}\right) \\
\sin \emptyset_{1}-\sin \emptyset_{2}-\sin \left(\theta_{1}-\emptyset_{2}\right)
\end{array}\right] \times\left[\begin{array}{l}
1+z^{2} \\
2 z \cos \emptyset_{z} \\
2 z \sin \emptyset_{2}
\end{array}\right]=0
$$

If we make the following definition

then form (4.32) we obtain

$$
\begin{align*}
& A_{11}\left(1+z^{2} L+A_{12}\left(2 z \cos \varphi_{z}\right)+A_{13}\left(2 z \sin \varphi_{z}\right)=0\right. \tag{4.33}\\
& A_{21}\left(1+z^{2}\right)+A_{22}\left(2 z \cos \varphi_{z}\right)+A_{23}\left(2 z \sin \varphi_{z}\right)=0 \tag{4.34}\\
& A_{31}\left(1+z^{2} L+A_{32}\left(2 z \cos \varphi_{z}\right)+A_{33}\left(2 z \sin \varphi_{z}\right)=0\right. \tag{4.35}
\end{align*}
$$

From (4.33) - (4.35) we get three expressions for θ_{z}

$$
\begin{align*}
& \phi_{z}=\tan ^{-1}\left[\frac{A_{21} A_{12}-A_{11} A_{22}}{A_{11} A_{23}-A_{21} A_{13}}\right] \tag{4.36}\\
& \phi_{z}=\tan ^{-1}\left[\frac{-A_{22} A_{31}+A_{32} A_{21}}{-A_{33} A_{21}+A_{23} A_{31}}\right] \tag{4.37}\\
& \phi_{z}=\tan ^{-1}\left[\frac{A_{31} A_{12}+A_{32} A_{11}}{A_{33} A_{11}-A_{31} A_{13}}\right] \tag{4.38}
\end{align*}
$$

Having determined the value of \emptyset_{z} from any of the three expressions given above, it is then substituted in (4.33) to give

$$
\begin{equation*}
A_{11}\left(1+z^{2}\right)+A_{12}\left(2 z \cos \emptyset_{z}\right)+A_{13}\left(2 z \sin \emptyset_{z}\right)=0 \tag{4.39}
\end{equation*}
$$

Dividing (4.39) by $2 z$ and re-arranging, results in

$$
\begin{equation*}
\left[\frac{1+z^{2}}{2 z}\right]=-\left[\frac{A_{12} \cos \varphi_{z}+A_{13} \sin \emptyset_{z}}{A_{11}}\right] \tag{4.40}
\end{equation*}
$$

Let

$$
\begin{equation*}
x=-\frac{\left(A_{12} \cos \theta_{2}+A_{13} \sin \theta_{2}\right)}{A_{11}} \tag{4.41}
\end{equation*}
$$

Equation (4.40) reduces to $z^{2}-2 z+1=0$, which has the solution

$$
\begin{equation*}
z=x \pm \sqrt{x^{2}-1} \tag{4.42}
\end{equation*}
$$

For z to be real we need x greater than unity. As z is the coupling coefficient (see (4.6)) we therefore have $z \leqslant 1$ (for passive devices) and must choose the - ve sign in (4.42). Having determined z and \emptyset_{z} the remaining constants, using (4.19), can now be evaluated.

Knowing all the calibration constants it is quite simple and straight forward using (4.11) to determine from the six-port power readings the complex reflection coefficient of the DUT.
4.4 A Matrix Expression for Γ_{ℓ}

Re-arranging and writing (4.11) in matrix form we have
$\left[\begin{array}{lll}s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} & s_{23} \\ s_{31} & s_{32} & s_{33}\end{array}\right]\left[\begin{array}{l}\left|\Gamma_{\ell}\right|^{2} \\ 2\left|\Gamma_{\ell}\right| \cos \theta_{\ell} \\ 2\left|\Gamma_{\ell}\right| \sin \varphi_{\ell}\end{array}\right]=\left[\begin{array}{l}1-P_{1} /\left(P_{R} \times B_{1}\right) \\ 1-P_{2} /\left(P_{R} \times B_{2}\right) \\ 1-P_{3} /\left(P_{R} \times B_{3}\right)\end{array}\right]$
where,

$$
\begin{aligned}
& S_{11}=\left[P_{1} /\left(P_{R} \times B_{1}\right)\right] z^{2}-x_{1}^{2} ; S_{21}=\left[P_{2} /\left(P_{R} \times B_{2}\right)\right] z^{2}-x_{2}^{2} ; S_{31}=\left[P_{3} /\left(P_{R} \times B_{3}\right)\right] z^{2}-x_{3}^{2} \\
& S_{12}=\left[P_{1} /\left(P_{R} \times B_{1}\right)\right] z \cos \emptyset_{z}-x_{1} \cos \emptyset_{x 1} ; S_{22}=\left[P_{2} /\left(P_{R} \times B_{2}\right)\right] z \cos \emptyset_{z}-x_{2} \cos \emptyset_{x 2} \\
& \left.S_{32}=\left[P_{3} / P_{R} \times B_{3}\right)\right] z \cos \emptyset_{1}-x_{3} \cos \emptyset_{x 3} ; S_{13}=x_{1} \sin \emptyset_{x 1}-z\left[P_{1} /\left(P_{R} \times B_{1}\right)\right] \sin \emptyset_{z} \\
& \left.S_{23}=x_{2} \sin \emptyset_{x 2}-z\left[P_{2} /\left(P_{R} \times B_{2}\right)\right] \sin \emptyset_{z} ; S_{33}=x_{3} \sin \emptyset_{x 3}-z\left[P_{3} / P_{R} \times B_{3}\right)\right] \sin \emptyset_{z}
\end{aligned}
$$

From (4.43) the values of Γ_{ℓ} and \emptyset_{ℓ} can easily be determined.

4.5 System Software

The computer software which has been developed allows automated operation of the six-port measurement system. The six-port has been calibrated for use in the frequency range $890-1110 \mathrm{MHZ}$. The calibration constants have been determined at eleven frequency points at 20 MHZ intervals. These constants are determined using the program 6PCAL which is described in the next section.

4.5a Calibration Program, 6PCAL

The program 6PCAL determines the calibration constants at all the required frequencies between 890 to 1110 MHZ and a program listing is given in Appendix C. First, the user is prompted to input the desired frequency range and the required frequency increments at which the system has to be calibrated. The counter locks the sweeper at each desired frequency as follows. A sweeper output within lOMHZ of the required frequency allows the counter locking procedure to be initiated. If the sweeper output is not within 10 MHZ of the desired frequency, then the sweep frequency is raised/lowered until the frequency output of the sweeper is within the locking range of the counter. A flow chart for this procedure is shown in figure 4.3. After having locked the sweeper the user is prompted to connect a matched load (50Ω) and then the A/D converter, s arting from channell through channel 4, samples the analog inputs and transmits the digital data to the system controller over the IB. The $\mathrm{Hp}-85$ computer stores these readings. The process is repeated for the remaining four loads namely, a short, an open and two offset opens $\left(\pm \exists 0^{\circ}\right)$. After having done this the calibration constants are calculated

Fig. 4.3 Flowchart of software for setting system frequency.
using the equations determined in the previous sections. Next, the frequency is incremented and the process is repeated. This is repeated till the calibration constants at all frequencies have been determined explicitly.

4.5b The Reflection Coefficient Measurement Program, REF-6P

The reflection coefficient for a DUT is determined using the program REF-6P, which is now briefly explained. A listing of the program is given in Appendix C. The programs REF-6P and 6PCAL are written as two separate programs because of the operator skill required to perform the calibrations and also because recalibration is not required each time the system is used. As in the calibration program the user is first prompted to input the desired frequency range and the required frequency increments. The counter locks the sweeper at each desired frequency and the A/D converter samples the signal with the DUT connected. These readings, along with the appropriate set of calibration constants and the system of equations derived in the previous sections, are used to determine the magnitude and phase of the reflection coefficient at each required frequency. It shall be shown in the following chapter that the calibration constants vary slowly with frequency and for the purposes of this thesis it has been assumed to be constant over a 20 MHZ frequency interval. Hence, the system has been calibrated at 20 MHZ frequency intervals.

Chapter V

Results and Discussion

5.1 Introduction

Employing the six-port system described in the previous chapters measurements on various test loads have been performed at the center frequency of $\mathbf{I G H Z}$ and over a bandwidth of frequencies. In section 5.2 the calibration constants determined at $1 G H Z$ are presented. Using these constants return loss measurements made at the center frequency have been reported in section 5.3. A variable reflection coefficient load standard has been used to test the six-port system at 1 GHZ and the results obtained have been compared with those obtained with a MNA and also with computed values and have been recorded in section 5.4. Next, to test the six-port system over the 900-1100 MHZ bandwidth, calibration constants have been determined at 20 MHZ frequency intervals and are tabulated in section 5.5 . Finally, in section 5.6 the load reflection coefficient has been measured over the $900-1100 \mathrm{MHZ}$ bandwidth, using the calibration constants determined in the previous section. The results obtained using the six port system have been compared with those obtained with a MNA and also with the computed values.

5.2 Six-Port Center Frequency Calibration

io esteplish some confidence in the accuracy of the six-port system return loss measurements were initially made on a short-circuit terminated attenuator (HP-model 8494 H) set at various attenuation levels and at the center frequency of 1 GHZ . In order to perform these measurements the system had to be calibrated at the center frequency. As described in

Chapter IV the load standards used for this calibration are a matched load, an open, a short, and two offset opens of $\pm 90^{\circ}$ phase. The $\pm 90^{\circ}$ offset open load standards have been obtained by properly adjusting the length of a short-circuit terminated line using the HP microwave network analyzer. The six-port calibration constants so determined are listed in table 5.1.

z / \emptyset_{z}	0.051	266.7 ${ }^{\circ}$
$x_{1} / \theta_{x 1}$	0.410	$69.7{ }^{0}$
$x_{2} / \theta_{x 2}$	0.520	197.7°
$x_{3} / \emptyset^{1} \times$	0.482	-58.6 ${ }^{\circ}$
$\left\|B_{1}\right\|$	0.273	
$\left\|B_{2}\right\|$	0.232	
$\left\|B_{3}\right\|$	0.251	

Table 5.1: Six-Port Calibration Constants at IGHZ

These calibration constants were used in the return loss measurements and as well in further measurements in order to evaluate the performance of the six-port system. These measurements are described and presented in the following two se tions.

5.3 Return Loss Calculation at 1 GHZ

A HP model 8494 H attentuator terminated with a short circuit was connected to the load port of the six-port and its input reflection co-
efficient measrued. The return loss (RL) was calculated from the measured coefficient using the relationship.

$$
R L=20 \log \left(1 /\left|\Gamma_{\ell}\right|\right)
$$

and the result then compared with the expected value based on the attenuator setting, i.e., $R L=2 A$ where A is the attenuation value. The $H P$ model 8494 H attentuator allowed the attenuation to be varied in $1-\mathrm{dB}$ steps. The load reflection coefficient for each 1 dB step of the attenuation was measured using boththe six-port system and the HP microwave network analyzer. The measurement results obtained from the network analyzer and the six-port system are tabulated in Table 5.2. From table 5.2 it is seen that the RL as measured using the MNA and six-port track closely and there is less than 5% difference between the two sets of readings for all values of attenuator settings up to 9 dB . Beyond this value the difference increases to about 10% at 11 dB . It is also seen that both sets of measured RL values compare well with the theoretical values for the attentuator settings up to 8 dB . Beyond 8 dB the readings do not agree closely. We should note that for an 8 dB attentuator setting $\left|\Gamma_{\ell}\right|$ is 0.158 . It is hence concluded that the six-port provides fairly accurate readings of reflection coefficient for $\left|\Gamma_{\ell}\right|=0.2$ It is useful to mention that $\left|\Gamma_{\ell}\right|=0.2$ corresponds to a return loss of 14 dB (a reflected power of 4%) which for many practical purposes can be considered to be a sufficientl: well m:tched load. Hence, it will suffice if the six-port can accurately measure $\left|\Gamma_{\ell}\right| \geqslant 0.2$; which it does. For $\left|\Gamma_{\ell}\right|<0.2$, the accuracy obtained using the six-port system is poor as one would generally expect.

Table 5.2 Return Loss Measurement Results

5.4 Measurement of Γ_{ℓ} at $1 G H Z$

A reflection coefficient load of controllable magnitude and phase can be generated by using the circuit arrangement shown in figure 5.1. It consists of a co-axial Tee-junction with a matched load (50Ω) connected to one arm, a variable length short-circuit stub to a second arm and a length of co-axial line to the third arm of the Tee-junction. By varying the lengths of the two co-axial lines all phase angles of the load reflection coefficient from 0° to 360° can be obtained. The magnitude of the reflection coefficient generated however depends only upon the stub length (d) as indicated in figure 5.1

Figure 5.1 Variable Reflection Standard

A method for obtaining r_{l} from the lengths ' d ' and ' d_{s} ' is shown below. The admittance right at the Tee-junction is given by

$$
\begin{equation*}
Y=Y_{0}-j Y_{0} \cot d \tag{5.1}
\end{equation*}
$$

where $Y_{0}=1 / 50 S, \beta=2 q / \lambda$ and
$\mathrm{d}=$ stub length in cm.
The corresponding reflection coefficient I_{0} is

$$
\begin{equation*}
\Gamma_{0}=\frac{Y_{0}-Y}{Y_{0}+Y} \tag{5.2}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\Gamma_{\ell}=\Gamma_{0} e^{-2 j \beta d s} \tag{5.3}
\end{equation*}
$$

This variable reflection coefficient standard is used as a load to test the performance of the six-port system at a single frequency and over the 900-1100 MHZ bandwidth. With the variable reflection coefficient standard connected to the load port of the six-port system readings of reflection coefficient for various stub length settings (of the variable reflection coefficient standard) have been taken to check the performance of the sixport system at a single frequency. To test the performance over a bandwidth of frequencies the stub length of the variable reflection coefficient standard is kept fixed and reflection coefficient readings obtzined for different frequencies.

The values of reflection coefficient obtained for different stub length settings using the six-port system and the MNA are tabulated in table 5.3 along with the computed values of reflection coefficient. From
table 5.3 it is clear that the readings of reflection coefficient obtained for both magnitude and phase using the six-port system and MNA track very closely and the difference is less than 5% for all values where $\left|r_{l}\right| \geqslant 0.2$. In comparing these readings with the computed values of Γ_{ℓ} it is seen that the discrepency is less than 5% for all values of $\left|\Gamma_{\ell}\right|>0.4$. For $0.3<\left|\Gamma_{\ell}\right|<0.4$, the difference is about 10% and for $0.2<\left|\Gamma_{\ell}\right|<0.3$ the difference is about 15%. For $\left|\Gamma_{\ell}\right|<0.2$, the accuracy is poor as one would normally expect. The computed results and the results obtained from the six-port system have been plotted on a Smith chart for comparison, see figure 5.2. The results obtained using the MNA have not been plotted separately because they track so closely with the six-port system results.

Table 5.3 Measurement of Γ_{ℓ} at $1 G H Z$

Stub length setting $(\mathrm{cm})+0.25 \mathrm{~cm}$	Reflection Coefficient $\left(T_{\ell} \nmid\right.$ Six-Port MNA Computed		
8.5	$0.099 \angle-79.7^{\circ}$	0.00	$0.13 /-73.2^{0}$
. 9.0	$0.150<-80.0^{0}$	$0.15 \angle-80^{\circ}$	$0.19 \angle-76.4^{0}$
9.5	$0.216 \angle-81.7^{0}$	$0.20 \angle-80^{\circ}$	$0.24 \angle-79.8^{\circ}$
10.0	$0.285 /-83.3^{0}$	$0.28 \angle-83^{\circ}$	$0.31 /-83.5^{0}$
10.5	$0.360<-87.9^{0}$	$0.36 /-86^{0}$	$0.37 /-87.6^{0}$
11.0	$0.440<-92.0^{0}$	$0.44 \angle-90^{\circ}$	$0.44 /-92.1^{0}$
17.5	$0.536 \angle-97.0^{\circ}$	$0.54 \angle-95^{\circ}$	$0.53 /-97.2^{0}$
12.0	$0.630 \angle-103.0^{\circ}$	$0.62 /-102^{\circ}$	$0.61 /-103.1^{0}$
12.5	$0.726 /-110.9^{0}$	$0.73<-110^{\circ}$	$0.70<-110.0^{\circ}$
13.0	$0.820<-119.8^{\circ}$	$0.82 \angle-120^{\circ}$	$0.79<-118.0^{\circ}$
13.5	$0.900<-130.2^{0}$	$0.90<-130^{\circ}$	$0.88 /-127.4^{0}$
14.0	$0.960 /-142.2^{0}$	$0.97 /-142^{\circ}$	$0.95 \angle-138.0^{\circ}$
14.5	$0.980 /-154.0^{\circ}$	$1.00 \angle-155^{\circ}$	$0.99 /-150.0^{\circ}$
15.0	$0.960 /-166^{\circ}$	$0.97 /-168^{\circ}$	$0.99 /-162.0^{\circ}$
15.5	$0.914 \angle-177.6^{0}$	$0.91 /-180^{\circ}$	$0.95<-173.1^{\circ}$
16.0	$0.840 /-172.4^{\circ}$	$0.81 / 171^{\circ}$	$0.88 \angle+776.0^{\circ}$
16.5	$0.760 / 163.9^{0}$	$0.74 / 163^{\circ}$	$0.79 \angle 167.0^{\circ}$
17.0	$0.674 / 157.0^{0}$	$0.65 / 158^{\circ}$	$0.70 / 158.9^{0}$
18.0	$0.524 / 146.6^{0}$	$0.52 / 146^{\circ}$	$0.53 / 146.1^{0}$
18.5	$0.450 / 142.0^{0}$	$0.44 / 141^{\circ}$	$0.45<141.0^{\circ}$
19.0	$0.380 \angle 138.7^{\circ}$	$0.38 / 138^{\circ}$	$0.38 / 136.5^{\circ}$
19.5	$0.330 \angle 135.6^{0}$	$0.33 \angle 135^{\circ}$	$0.31 / 132.5^{\circ}$
20.0	$0.260 \angle 133.0^{\circ}$	$0.26<_{132^{\circ}}$	$0.25 \angle 129.0^{\circ}$
20.5	$0.212 \angle 130.8^{0}$	$0.20 / 128^{\circ}$	$0.19 \angle 125.4^{0}$
21.0	$0.156 / 129.5^{\circ}$	$0.16 / 125^{\circ}$	$0.13 / 122.1^{0}$
21.5	$0.080 / 128.6^{0}$	$0.10 / 110^{\circ}$	$0.08 \angle 119.0^{\circ}$

Figure 5.2 Plot of reflection coefficient with varying stub length

5.5 Calibration of the Six-Port System over a 220MHZ bandwidth

The six-port system has been calibrated over a frequency bandwidth of $220 \mathrm{MHZ}(890-1110 \mathrm{MHZ})$ at 20 MHZ intervals. The calibration procedure has been explained in Chapter IV. The calibration constants determined at each calibration frequency point are presented in table 5.4. On examining $z \not \emptyset_{Z}$ from table 5.4 it is seen that the magnitude of z decreases slowly from a value of 0.276 at 900 MHZ to 0.049 at 1000 MHZ (center frequency) and beyond 1000 MHZ the value of Z increases to 0.257 at 1100 $M H Z$. The argument of Z however remains constant at about 170° for frequencies below 1000 MHZ and at -70° for other frequencies. Ideally, the value of z should have been zero at the design center frequency at which the five-port junction is well matched. The variation of z / \emptyset_{z} with frequency has been plotted on the polar chart of figure 5.3. The calibration constant X_{1} / θ_{x} varies slowly from a value of $0.7 / 139.5^{\circ}$ at 900 MHZ to a minimum value of $0.392 / 51.0^{\circ}$ at 1020 MHZ . Beyond 1020 MHZ the magnitude starts increasing but, the argument still keeps decreasing gradually. The variation of X_{1} / \varnothing_{x} with frequency has been plotted on the polar chart of figure 5.4. The magnitude of the calibration constant $x_{2} / \emptyset_{x 2}$ slowly decreases from a value of 0.673 at 900 MHZ to a value of 0.472 at 1100 MHZ . $\emptyset_{x 2}$ however remains steady around the value of 200°. The variation of the calibration constant X_{2} with frequency has been plotted on the graph of figure 5.5. The magnitude of the constant $x_{3} / \emptyset_{x 3}$ increases slowly from a value of 0.309 at 900 MHZ to 0.513 at 1100 MHZ and $\emptyset_{x 3}$ decreases steadily from a value of 34.5° at 900 MHZ to -93° at 1100 MHZ . The variation of $x_{3} / \emptyset_{x 3}$ with frequency has been plotted on the graph of figure 5.6. Finally, the constants $\left|B_{1}\right|$ and $\left|B_{3}\right|$ stay within 0.23 to 0.26 over the $900-1100 \mathrm{MHZ}$ bandwidth whereas $\left|\mathrm{B}_{2}\right|$ varies from
0.3 at 900 MHZ to 0.147 at 1100 MHZ . Generally if the five-port junction were to be an ideal four-way power divider then the values of $\left|B_{i}\right|$, $\mathbf{i}=1,2,3$ would have been very close to 0.25 over the entire frequency range. From the above examination of the calibration constants we can conclude that the calibration constants are continuous and slowly varying or constant; hence, amenable to interpolation.

Table 5.4 Calibration Constants over a 220 MHZ Bandwidth

Figure 5.3 Variation of z / \emptyset_{z} with frequency (MHZ)

Figure 5.4 Variation of $X_{1} / \emptyset_{x 1}$ with frequency $(M H Z)$

Figure 5.5 Variation of $x_{2} / \theta_{x 2}$ with frequency

Figure 5.6 Variation of $X_{3} / \varnothing_{x 3}$ with frequency (MHZ)
5.6 Measurement of Γ_{ℓ} over the 220 MHZ BandWidth

With the variable reflection coefficient standard shown in figure
5.1 connected to the load port of the six-port system measurements of I_{ℓ} over the 900-1100 MHZ bandwidth have been performed. The measurement procedure has been explained in Chapter IV. Measurment of $\Gamma_{\boldsymbol{\ell}}$ has been repeated for two particular stub positions of the variable reflection coefficient standard. This was necessary in order to check the performance of the six-port system for a full range of values of $\left|\Gamma_{\ell}\right|$. The results obtained using the six-port system and the MNA for the first stub setting are tabulated in table 5.5 along with the computed values of Γ_{ℓ}.

Table 5.5 Results of Γ_{ℓ} over ($900-1100$) MHZ

Frequency (MHZ)	Six-Port	Reflection Coefficient (I)	
		MNA	Computed
900	$0.570<-71.31^{\circ}$	$0.57 /-68^{0}$	$0.578 /-67.6^{0}$
910	$0.594<-71.82^{\circ}$	$0.60 \angle-72^{\circ}$	$0.600<-72.3^{0}$
920	$0.626 \angle-83.75^{0}$	$0.61 \angle-78^{\circ}$	$0.624 \angle-77.3^{0}$
930	$0.644 \angle-80.33^{0}$	$0.63 \angle-80^{\circ}$	$0.640<-82.0^{\circ}$
940	$0.681 /-90.37^{\circ}$	$0.68 /-89^{\circ}$	$0.670<-87.8^{0}$
950	$0.707 /-92.74^{\circ}$	$0.70 /-92^{\circ}$	$0.700<-92.9^{0}$
960	$0.738-100.77^{0}$	$0.73 \angle-99^{\circ}$	$0.720 \angle-98.3^{0}$
970	$0.749<-103.54^{\circ}$	$0.74<-103^{\circ}$	$0.750 /-103.7^{0}$
980	$0.781 /-109.81^{\circ}$	$0.78<-109^{\circ}$	$0.770<-109.5^{0}$
990.	$0.811 /-113.33^{\circ}$	$0.80 \angle-112^{\circ}$	$0.796<-114.9^{0}$
1000	$0.817<-120.08^{\circ}$	$0.82 \angle-121^{\circ}$	$0.820<-120.7^{\circ}$
1070	$0.862 \angle-123.75^{\circ}$	$0.85 /-125^{\circ}$	$0.845 /-126.5^{0}$
1020.	$0.857<-132.22^{\circ}$	$0.85<-132^{\circ}$	$0.860 /-132.6^{0}$
1030	$0.909 \angle-135.08^{0}$	$0.90<-136^{\circ}$	$0.890 /-138.4^{0}$
1040	$0.893 /-145.64^{\circ}$	$0.90<-144^{\circ}$	$0.91<-144.5^{\circ}$
1050	$0.925 /-148.02^{0}$	$0.92<-149^{\circ}$	$0.93 /-150.8^{0}$
1060	$0.921 /-160.14^{0}$	$0.94 /-158^{\circ}$	$0.947<-157.0^{\circ}$
1070	$0.967 \angle-160.62^{\circ}$	$0.96 \angle-161^{\circ}$	$0.963 \angle-163.9^{\circ}$
1080	$0.954 \angle-174.37^{\circ}$	$0.97 /-171^{\circ}$	$0.975<-170.0^{\circ}$
1090	$0.986<-170.49^{\circ}$	$0.98 /-174^{\circ}$	$0.987 /-177.0^{0}$
1100	$0.965<172.14^{\circ}$	$0.98 \angle+174^{\circ}$	$0.99 / 177.0^{\circ}$

-0.0. Six-port system and MNA

Figure 5.7 Plot of F_{ℓ} with change in frequency

The computed results and the results obtained from the six-port system have been plotted on the Smith Chart of figure 5.7 for comparison. From table 5.5 it is seen that the values of Γ_{ℓ} (magnitude and phase) obtained using the six-port system and the MNA track closely with the computed Γ_{k} with an error of less than 5%. Having evaluated the performance of the sixport system over the 900-1100 MHZ bandwidth for $0.6 \leqslant|\nabla l|<1.0$, the stub length on the variable reflection coefficient standard was changed and measurement for $0.0<\left|\Gamma_{\ell}\right|<0.6$ performed. The results obtained using the six-port system and MNA are tabulated in table 5.6 along with the computed values of Γ_{ℓ}. From table 5.6 it is seen that the magnitude and phase of the reflection coefficient obtained from the six-port system and the MNA track within 5% of the computed figures for all values of $\left|\Gamma_{\ell}\right|>0.2$. For values of $\left|\Gamma_{\ell}\right|<0.2$ the agreement is poor as one would expect. The results obtained using the six-port system have been plotted on the Smith chart of figure 5.8 along with the computed values of I_{ℓ} for comparison. The values obtained using the MNA have not been plotted because they track very closely with the six-port system results.

Figure 5.8 Plot of Γ_{ℓ} with change in frequency

Table 5.6 Results of Γ_{ℓ} over $(900-1100)$ MHZ

Frequency (MHZ)	Six-Port	Reflection Coefficient (Γ_{ℓ})	
		MNA	Computed
900	$0.590 /-176.26^{0}$	$0.58 /-176^{\circ}$	$0.579<-176.8^{0}$
. 920	$0.527 / 173.74^{\circ}$	$0.53 / 172^{\circ}$	$0.520 / 172.4^{0}$
940	$0.466 / 162.45{ }^{\circ}$	$0.45 / 161^{\circ}$	$0.455 / 161.6^{0}$
960	$0.415 / 152.33^{\circ}$	$0.42 \angle 152^{\circ}$	$0.400 / 151.2^{\circ}$
980	$0.360 \angle 141.74^{\circ}$	$0.36 / 141^{\circ}$	$0.340 / 141.1^{0}$
1000	$0.328 \angle 135.04^{\circ}$	$0.31 / 133^{\circ}$	$0.300 \angle 132.0^{\circ}$
1020	$0.269 / 127.12^{0}$	$0.25 / 124^{\circ}$	$0.240 / 122.0^{\circ}$
1040	$0.226 \angle 119.82^{0}$	$0.21 / 115^{\circ}$	$0.200 / 112.4^{0}$
1060	$0.144 / 111.55^{\circ}$	$0.14 / 105^{\circ}$	$0.149 / 103.0^{0}$
1080	$0.115 / 104.06^{\circ}$	$0.10 \angle 100^{\circ}$	0.110 94.1
.1100	$0.099 / 99.68^{\circ}$	0.00	$0.065 / 84.6^{0}$

Chapter VI
Conclusions

A six-port system based on a matched symmetric five-port junction and a directional coupler has been developed. The five-port junction has been realized on stripline in the form of a ring type circuit with simple internal structure matching. All ports of the junction are well matched at the center frequency of 1 GHZ and assuming a return loss of -10 dB as sufficiently well matched, a useful bandwidth of 25% has been easily realized.

Using the symmetric five-port junction, a six-port microwave system has been synthesized in such a way that both the magnitude and the phase of a load reflection coefficient can be determined.

First, to establish the accuracy of the six-port microwave measurement system calibration constants at the center frequency of 1 GHZ were determined and return loss measurements made on a short-circuit terminated attenuator. It was found from these results that the six-port accurately measured return loss down to a level of -15 dB , which corresponds to $\left|\Gamma_{l}\right|$ of about Q.2. Hence, from the return loss measurements it was established that the six-port system could not accurately measure values of $\left|r_{\ell}\right|<0.2$.

Next, to determine the system measurement accuracy for both magnitude and phase ofthe reflection coefficient at the center frequency, measurements were made using the variable reflection - ccefficient load standard. It is clear from the results obtained that for all values of $\left|r_{\ell}\right| \geqslant 0.2$, the load reflection coefficient has been determined both in magnitude and phase within an error of less than 5%. Having thus established the accuracy of the six-port microwave measurement system at the center fre-
quency measurements of Γ_{ℓ} of two load standards were made over a 20% Eandwidth (200-1100 MHZ). In order to make measurements over a bandwidth of frequencies it is necessary to know the calibration constants over the entire frequency bandwidth. Upon determining the calibration constants at equal spaced frequency points in the bandwidth it was seen that all constants were either continuous and slowly varying or nearly constant and hence they are amenable to interpolation. Since the calibration constants did not vary significantly over a 20 MHZ intervals it was decided that it would suffice if the calibration constants were determined at frequency intervals of 20 MHZ over the $900-1100 \mathrm{MHZ}$ bandwidth.

For all frequencies within a particular 20. MHZ interval the calibration constants are assumed to be constant. Using the calibration constants determined at eleven frequency points over the $900-1100 \mathrm{MHZ}$ bandwidth measurements of Γ_{ℓ} have been made and the results indicate an error ofless than 5% both in magnitude and phase for all values of $\left|\Gamma_{\ell}\right| \geqslant 0.2$. Hence, it can be concluded that the six-port system which has been developed can be successfully used to measure load reflection coefficients at any frequency over a 200 MHZ frequency bandwidth centered at 1 GHZ with an error of less than 5%.

Generally speaking, our calibration procedure has served its purpose. However, it should be recalled that in order to calibrate the six-port system a: a frequency point a matched load, a short, an open ald tio offset opens ($\pm 90 \sum$ were required. The offset open standards are different for each frequency point and have to be generated using a MNA. Hence, a total of 25 load standards were needed to calibrate the six-port at the eleyen frequency points in the frequency band $900-1100 \mathrm{MHZ}$. This is a
very laborious procedure and a more efficient procedure needs to be developed, whereby the number of load standards used to calibrate the sixport system is reduced. Additionally, the versitality of the six-port measurement system would be considerably enhanced if the five-port junction could be made broad-band over at least an octave of band-width. Finally, as an observation, the A / D converter has a dynamic input range of -5 to +5 volts and because of the linear type of amplifiers used the entire dynamic range could not be effectively used. It is hence suggested that logarithamic amplifiers be utilized to more efficiently use the full dynamic range of the A / D converter.

In summary, the major advantage of the six-port system lies in the simplicity of its amplitude detection system and its potential for use at millimeter wave frequencies where hetrodyne detection is difficult. The results from the measurement of complex reflection coefficient are very encouraging. Once an efficient calibration routine is developed the sixport shall emerge as a viable and practical alternative to the existing expensive automatic network analyzer.

REFERENCES

II C.A. Hoer, "The Six-Port Coupler: A new approach to measuring voltage, current, power, impedence, and phase," IEEE Trans. Instrum. Meas., vol. IM-21, pp. 446-470, Nov. 1982.

12/ G.F. Engen and C.A. Hoer, "Application of an arbitrary six-port junction to power-measurement problems," IEEE Trans. Instrum. Meas., Vol. IM-21, pp. 470-474. Nov. 1972.

L37 Harry M. Cronson and Leon Susman, "A Dual Six-port automatic network analyzer," IEEE Trans. on Microwave Theory and Techniques, vol. MTT-29, No. 4, pp. 372-378, April 1981.

147 Glenn F. Engen, "Determination of Microwave phase and Amplitude from power measurements," IEEE Trans. Instrum. Meas., vol. IM-25, pp. 414-418, Dec. 1976.

157 Glenn F. Engen, "An improved circuit for implementing the six-port technique of microwave measurements," IEEE Trans. on Microwave Theory and Techniques, vol. MTT-25, No. 12, pp. 1080-1083, sec. 1977.

167 Gordon P. Riblet \& E.R. Bertil Hansson, "The use of a matched Symmetrical five-port junction to make six-port measurements," 1981 IEEE MTT-S International Microwave Symposium digest; IEEE catalog No. 81, CH 1592-5, pp. 151-53. [57 Glenn F. Engen, "The Six-port Reflectometer: An Alternative Network Analyzer," IEEE Trans. on Microwaיe Theory and Techniques, vol. MTT-25, No. 12, pp. 1075-1079, Dec. 1977.

L87 Glenn F. Engen, "Advances in Microwave Measurement Science," proc.
IEEE, Yol. 66, No. 4, pp. 374-383, April 1978.
197 A.L. Samue1, "An oscilloscope method of presenting impedence on the reflection coefficient plane," Proc. IRE, vol. 35, pp. 1279-1283, Nov. 1947.
[107 Shihe L. . and Renato G. Bosisio, "Calibration of Multiport Reflectometers by Means of four open/short circuits," IEEE Trans. on Microwave Theory \& Techniques vol. MTT-30, No. 7, pp. 1085-1090, July 1982. [II] R.E. Collin, "Foundations for Microwave Engineering," McGraw-Hill Book Company, 1966, Ch. 5-6.
[127 A.L. Cullen, S.K. Judah and F. Nikravesh, "Impedence Measurement Using a Six-Port directional coupler," IEE proc. vol. 127, pF H. No. 2, pp. 92-97, April 1980.
1737 D. Woods "Analysis and Calibraiton theory of the general 6-port reflectometer employing four amplitude detectors," proc. IEEE, vol. 126, No. 2, pp. 221-228, February 1979.
1T47 E.P.Riblet and E.R. Bertil Hansson, "Aspects of the calibration of a single six-port using a load and offset reflection standards," IEEE Trans. on Microwave Theory and Techniques, vol. MTT-30, No. 12, pp. 2120-2125, Dec. 1982.

APPENDIX A

Determination of strip widths

The "Standard Polyguide" on which the five-port has been etched is a copperclad, irradiated, high-density polyolefin laminate. The following specifications have been obtained from the "POLYGUIDE SPECIFICATIONS AND DESIGN INFORMATION" data book.

Designation	Dietectric thickness	Clad Copper Thickness
$1 / 16^{\prime \prime}$ polyguide	$0.062 \pm 0.002^{\prime \prime}$	$102: 0.0014^{\prime \prime}+10 \%^{\prime}$

Electrical Properties:
Dielectric Constant: The dielectric constant at 1300 McS is 2.320 ± 0.005. Dissipation factor: 0.0002 ± 0.00005 at IMCS

Attenuation: for copper clad material $0.14 \mathrm{~dB} / \mathrm{ft}$ for 50 ohm line at 1300 McS . Design specifications

Center Frequency $=$ IGHZ
$Z_{0}=43.3$
$Z_{0}{ }^{\prime \prime}=86.6$
$\varepsilon=2.328$
We know that the velocity of propagation is given by

$$
\begin{aligned}
\nabla & =\frac{C}{\lambda} \\
& =\frac{3 \times 10^{10}}{2.328}=1.96621 \times 10^{10} \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

Thus,

$$
\lambda=\frac{1.96621 \times 10^{10}}{10^{9}}
$$

$$
\lambda=19.662 \mathrm{~cm}
$$

The line widths corresponding to $43.3,50$ and 86.6 ohms are, as obtained from the graph of figure A.1 $0.1125,0.09$ and $0.0316^{\prime \prime}$ respectively.
 LINE WIoth (INCHES)
1/16 , 10 Z Polyguide

APPENDIX B

Detector characterisation

Each of the four detectors used (model-Wiltron \#73N50) have been characeterized by taking a set of readings of the input power and the output volts making use of an arrangement similar to the one shown below. The readings have been tabulated in table B.l.

Using the results of table B. 1 each detector is characterized by a second order polynomial of the form

$$
\begin{equation*}
P=a+b v+c v^{2} \tag{B.1}
\end{equation*}
$$

where P is the input power (dBm) and V is the output voltage.

For detector \#1

$$
a=6.163 ; b=207.09 \text { and } c=19.161
$$

For detector \#2

$$
a=0.959 ; b=75.33 \text { and } c=17.88
$$

For detector \#3

$$
a=-0.027 ; b=179.45 \text { and } c=11.186
$$

For detector \#4

$$
a=-1.38 ; b=123.9 \text { and } c=13.88
$$

Detector\#1		Detector\#2		Detector\#3		Detector\#4	
Input Power (dBm)	Output Volts	Input Power (dBm)	Output Volts	Input Power (dBm)	Output Volts	Input Power (dBm)	Output Volts
-28.30	0.0	-28.15	0.0	-28.71	2.45×10^{-2}	-26.34	2.94×10^{-2}
-26.63	0.0	-26.30	9.79×10^{-3}	-26,68	2.84×10^{-2}	-25.01	3.42×10^{-2}
-24.54	4.89×10^{-3}	-26.05	1.08×10^{-2}	-25.40	2.94×10^{-2}	-24.38	3.91×10^{-2}
-23.44	9.78×10^{-3}	-24.83	1.96×10^{-2}	-23.32	3.91×10^{-2}	-23.15	4.89×10^{-2}
-22.80	1.47×10^{-2}	-23.40	3.91×10^{-2}	-22.18	4.40×10^{-2}	-22.06	5.87×10^{-2}
-21.55	1.96×10^{-2}	-22.47	5.38×10^{-2}	-21.36	5.4×10^{-2}	-21,31	0.068
-20.61	2.45×10^{-2}	-21.53	7.34×10^{-2}	-20.47	5.87×10^{-2}	-20.88	7.34×10^{-2}
-19.73	3.43×10^{-2}	-20.92	8.81×10^{-2}	-19.69	0.068	-19.19	0.107
-18.52	4.89×10^{-2}	-19.47	0.1316	-18.72	8.27×10^{-2}	-18.36	0.13
-17.74	5.87×10^{-2}	-18.23	0.1761	-17.94	9.3×10^{-2}	-17.48	0.15
-16.47	7.83×10^{-2}	-17.15	0.23	-16.50	0.122	-16.06	0.21
-15.20	0.113	-16.03	0.298	-15.31	0.157	-15.54	0.23
-14.30	0.14	-15,24	0.36	-14.47	0.19	-14.93	0.26
-12.56	0.215	-13.82	0.49	-13.48	0.235	-13.07	0.39
-11.58	0.274	12,35	0.67	-12.48	0.298	-12.78	0.416
-10,56	0.35	-11.80	0.75	-11.12	0.4	-11.41	0.56
-9.15	0.49	-10.80	0.91	-10.27	0.49	-10.32	.704

-8.57	0.57	-9.76	1.12	-9.07	0.641	-9.05	0.924
-7.41	0.75	-8.38	1.45	-8.01	0.82	-8.28	1.08
-5.99	1.05	-7.31	1.76	-7.23	0.98	-7.58	1.25
-4.60	1.43	-6.84	1.88	-6.54	1.14	-7.00	1.40
-3.38	1.86	-5.13	2.52	-5.58	1.41	-6.46	1.57
-3.24	1.90	-4.17	2.96	-4.84	1.66	-5.83	1.77
-2.87	2.05	-3.30	3.41	-4.03	1.97	-4.67	2.2
-1.63	2.63	-2.53	3.86	-3.26	2.30	-3.91	2.56
-0.20	3.46	-2.15	4.1	-2.55	2.67	-2.94	3.06
0.96	4.29	-1.67	4.41	-1.69	3.17	-2.00	3.63
1.33	4.58	-1.29	4.70	-0.24	4.19	-1.08	4.26
1.73	4.90	-0.94	4.93	0.43	4.74	-0.43	4.76

Table B. 1 Detector characteristics

```
19 [IIEF "MEHELIFEMENT GF FEF. GE
    FF. HEINE E-FGFT NW!"
    この WHIT 4EGE
    5 CLEFR.
    4 GFTIDHEHEE 1
    50 [IET
    EG FESIGHA 1 TO "EGHETI"
```



```
    , 5 ( 3 ), E (3), F ( 5 ), \(14(101), 11\) (1
    (11)
EG OUTFUTT 7 GE ; M1F゙GFG"
G日 GIUTFUT TIE USING "K゙トK": "E"
    : З: "FIYFMFOM"
180 CLEFF
110 DISF "ENTEF LO FH[I HI FFEGUE
    NEIES
1こ曰 INFUT F1.Fこ
136 F1=FごーF1
146 CLEFF
15G LISF "NUMEEF GF FFEQLENEY I:
    TEFUHLS TO EE SWEFT?"
16 G INFIIT NI
176 CLEFF
18日 N \(3=N 1+1\)
```



```
このG \(N E=1\). お ま はた
214 FGF \(I=1\) TG NS
```



```
    ETE 5104 4)
ご可 NEXT I
2EGFGF:T=1 TE NE
```



```
ぞぼと1=k1-
こGE CE=1
```



```
玉19 GUTFUT 「GE;"い";
32G WHIT 30
```



```
35日 IF FEGUC1) 《10 THEH GOTE 4ES
3EG JF E1YG THEN K1=K1-16
```



```
\(\underline{E}\)
\(390 \quad G 0 T O \quad 310\)
```



```
    ["
419 WHIT 30
42日 ENTEF F1E; F4
430 F4=F4 - 190以
44 WHIT \(3 E\)
45G ENTEF 716 ; F5
4EGFS=F5,19
\(47 \mathrm{FE}=\mathrm{FES}(F 5-F 4)\)
471 IF Fi>10 THEN GOTO 426
```



```
\(49 \mathrm{C}=1\)
5 与̄ WHIT \(3 \overline{1}\)
```

```
SIE GIITFUT PGE USING "#,F.E" : :
    H",G,"HJ":"F"
5こ@ S=4
50% FGF I=1 TO 10
5 4 5 ~ W H I T ~ 3 G ~ \$
```



```
560 S=5+4<1)
57G NEXT .1
500 U:1%=&2未5%10
590 X=W&1;
G6 F(1)=6. 162GEZ+267.0921%%+1马.
    1ヒロ7ぶッッ2
E10 C=2
EこЙ WHIT 300
GOQ DUTPUT PGG USING "#,K.K" : "
    H".E,"A.J","F"
E45 S=0
E5 FOF I=1 TG 10
6EG HHIT 30G
GTG EHTEF TGE USIHG "#s,N" ; UC%
686 5=5+46z)
GGE HENT .I
76G U(こ)=&こまE<1G
70日 心=W(2)
```



```
        877Sま%*で
700 E=4
746 WHIT 306
FSG OUTFUT PEE USIHG "#,K゙&K"; "
        H", E:"F,\""F"
70日 E=0
77G FGF:I=1 TO 15
TSN WHIT 30G
F90 EHTEFFGE USING "#,N" ; U!z%
806 S=S+4%S
G1G MEKT .I
```



```
BG X=4<3
84 F(Z)=-.02714591+179 4505%%+1
        1.18E41***
S5星 [=E
8EG WHIT 3GG
```



```
    H",E:"H.J", "F"
80 S=E
GGE FOF I=1 TO 10
G6G UFIT 304
G1E EHTEFFGE USIHG "#,N"; U!+%
926 S=5+644%
950 HEXT J
946 |(4)=F゙ご心S<10
956 %=4<4%
GEG F&Z)=-1.375ET1+123.8GE4**+13
    87日4**^こ
G7G 目TFUT 7GE USING "H"
980 0=IF((FG(T)-8SG) zG)+1
```



```
    (3),C(1),C(2),E<3),S<1),E<2)
        E(Z),E(1),E(2),E<3)
106日 阬=3
```

```
1010 M=1
1920 [IM F(3.3),W@,1%,I1%3)
1030 FGF l=1 TO 3
```



```
    "<
105G F(I, こ)=F(I)/F%E(I)*こまCGG4FG
    )-4%
```



```
    INGHE)
1070W(I,1)=1-F&I%,R&EI%
1EQG NEXT I
1G96 GOSUE 1110
1100 GOTO 1E70
1110 W1=N<=G OF M<=0
1120 IF WI=0 THEN 1150
113G FRINT "ERROF IN EUEFEIUTINE"
1140 FFIINT "N=";H:"M=";N E FHUSE
        E GOTG 1110
1150 [1M H2<3), 纪《こ)
11ER GGSIE 1540
1170 FGF .l=1 TO M
118G FOF I=1 TO H
119日 WこCI)=N(I,N)
12GG NEXT I
1210 GUSUE 12TG
12EG FGR I=1 TO H
1230 N(I,J)=x2(I)
1240 HENT I
12506 NEXT I
12E0 FETIDEN
1270 W1=N< =0
12G0 IF WI=0 THEH 1310
12g@ FFINT "EFRFGF IN SUEFDUITINE
        " E FFFINT "N=":N E FH|SE
1300 G0TG 1270
```



```
13E日 FOF C=2 TO N
13, 12=11<E, E E=0
1349 FGF [I=1 TG C-1
```



```
13EG HEST [
```



```
15EG NEST E
1396 IE=I14N`
140日 IF F(IE,N)<>G THEN 142E
141G FFIIHT "EFEDK IH SUEFGOITINE"
                # FFINT "[IDISIGH E'r ZEFG"
        Q FRIISE
142G %こ(H)=NZ(H)/F(IZ,N)
1430FGF E:N-1 TO 1 ETEF -1
1440 Iこ=11くご
1454 E=0
14G0FOF: [I=C+1 TO H
147日 S=S+F(IZ.口)*&2(口)
14BE NENT [
1490 IF F(IZ,E)<<G THEH 1510
1500 GOTO 1410
```



```
1520 NERT E
15SG FETUFN
```

```
1540 [1JM S143)
1550 FOF I=1 TO N
15EM I1<I)=I E R=6
1570 FOR J=1 TO N
15SG IF F-RESGF(I,J)\=G THEN 1E
    0.4
1590 R=AES(F(I,J)
1GGO NENT I
1G10 IF R<>Q THEH 1E3G
1G\XiG FRINT "EFERGF IN SUEFOUTINE"
        E FRINT "METEIN HITH ZEFO
    FOW" E FHUSE
163日 S1(I)=1/F
1644 MEXT I
1650 FOR K=1 TO N-1
1EEQ WE=0
10TG FOF I=K TO N
1686 IZ=I1(I) E SZ=AES@F(IZ,NO*
    S16I2%
1E9日 IF E2-W3<=0 THEH 1710
1700 屺=SE E I S=I
1719 HE&T I
172日 IF W3<> THEH 174日
1730 GOTG 18EG
1740 IF IS-K=G THEH 1TE日
1750 I=I1(K)区 II(K)=IICI3) 区 I1
    CI3==
17EG K1=I1&K) E F=F(K1,K)
1770 FOF I=K+1 TO N
17E日 I2=I1(I) E E=-F(IZ.K)%F E F
    (Iz.k)=-E
1790 FOF J=K+1 TO N
```



```
1810 NENT J
182G NE:T 1
183G HE%T K
1840 K1=11(N)
1856 IF F(K1,N)\Qg THEN EETUFH
18G日 FRINT "EFEGF: IN SUEFOUTINE"
        & FFINT "MATEI'% IS MACHINE
        EINGLILAF" E FAUSE E EETLIRN
1870 J1(T)=ATHE(W(3,1),W(2,1))
1800 J =W(z.1)<(2*C0G4N|T) )
1890 J3=W(3,1)/(2*SINGJ14T)\)
1900 JE=EUR(AESCN(1,1))
1910 14(T)=(15+ 12+ 13)<3
1920 HE%T T
1930 AESIGN# 1 TO *
194G FFEIHT "FEEG! FEF. EOEFF.
1950 FRINT
    -"
1geg FEIHT "[MHE] : MAG : FHASE"
1970 FEINT
19s0 raR I=1 T0 H3
1990 FEINT USING 2G10; FGGI:, 14
    (I), 11(I)
20日G NESTI
2010 IMAGE 50, 2%.[1.30, 2%,40.2[1,%
```

```
2@ごG FEN 1 G BCLEFF
2030 SEALE F0&1%-zwR1/H1:F0CHZy+
    ごかR1,N1,-.こ,1.2
204g %HNIS G.F1<H1,FGG1)-F1,H1,F
    G(H3)+F1)N1
2050 YH%IS FGO1)-F1/N1..1.0.1
2GEG GUSUE 2156
ZGPO FGF I=FG&1) TO FE\HE` STEF
    F:1/H1
Z030 G0SUE 2110
2090 NEXT I
21日E GOTG 22EG
2110 MIn! I, 14(K)
```



```
2130 IMEUE . 3..G1 E ILIFHN - E.G
2149 FETUFEH
2150 LIIFGG
Z1EQ FGF X=FG(1) TU FG(NS) STEF
    F1<H1
z170 MOWE x,-.19
21E日 LHEEL UHLFGS)
Z1G日 NEXT X
2こG目 L[IF:G
2こ1@ FOF '}=0=0\mathrm{ TO 1 ETEF . 1
2ここの MOUE FEG1%-1.g耒F1/\i, %
Z236 LHEEL UHL本(Y)
2こ4E NEXT Y
ここ巨园 FETUF:N
2こ60 EOFY
ZごG EHD
```

```
1E [ISF " THIG IS A EFLIEFHTIGI.
```

11 WFIT 400G
12 ELEHF:
この ロISF" THE SIM-FDFT i. AHEEE E
FLIEFATEE FT FH'G FFEE EETHEE
N 96日-110 M M C "
21 WHIT 4E日G
SG CLEFF
49 OFTION ENSE 1

8 DEG
G日 $01=18 \mathrm{EC}$
$16002=30$
$11003=-90$
120 ELEHF:
13 UIEF "EHTER LO FHD HI FFEEUIE
HEIES IH MHZ"
14G INFUT F1.FZ
15GF1=Fと一F1
16 Q CLEFF:
179 IF Fご\#F1 THEH ご2
$186 \mathrm{HI}=1$
$190 \quad N Z=1$
200 NZ: =
ご5 G ITO 276
ごQ DIEF "NUMEEF DF FFEDUEHEY IH
TEFVHLS TO EE SHEFT?"
230 IHFUT HI
240 CLEAF
250 $\mathrm{H}_{3}=\mathrm{H} 1+1$
2E日 Hz=H1 E

2E日 OUTFUT T日E; "M1FEFE"
EgG WHIT 3 G日
306 DUTFUT 7 1E UEIHE "K゙K"; "E"
: こ "F1YFMFGサ"
210 WHIT 300
320 CLEFF
$3 \mathrm{EGE} I=1$ TO NZ
$34 \mathrm{FE}(\mathrm{I})=(\mathrm{I}-1 \mathrm{y}$) $\mathrm{F} 1 \mathrm{H} 1+\mathrm{FI}$

ET5. +109.4)
उTM NEXT I
$38 \mathrm{FGF} T=1 \quad T \mathrm{I}$
NB
$396 K 1=N(T-25$
4 可 K1=K1-3
41 C に
42 K $1=\mathrm{K} 1+3$
430 IUTFUT TGE; "U";K1; "E"
446 WFIT 3610
45E ENTEF 716 ; FS
$460 \quad C 1=F 3<10 \operatorname{Cong} G-F E(T)$

4EGIFE1>0THEN K1=K1-16

```
490 IF © \(1<0\) THEN \(\mathbb{C} 1=\mathbb{k} 1+10\)
509 IF CZ<4 THEN LZ=CZ+1 ELSE 41
    6
510 GOTO 430
5201 WHIT 300
\(53 日\) guTFUT 716 "YFMFO":FEGTY; MF:
540 UNIT 309
55 ENTEF 716 ; F4
\(569 \quad \mathrm{~F} 4=\mathrm{F} 4 / 100 \mathrm{C}\)
570 WHIT 390
58 EH ENTER 716 ; F5
\(590 \mathrm{~F}=\mathrm{F}=16 \mathrm{CO}\)
6OQ FE=FES(F5-F4)
616 FOF \(L=1\) TO 5
Geg IF L\# 1 THEH 65
E3G \(\mathrm{A}=\mathrm{Z}=\mathrm{GE}\) MATCHEG LOHD"
640 GOTO 750
E50 IF L\#Z THEN 680
66日 \(\mathrm{A}=\mathrm{s}=\) "USE OFEN"
670 GOTO 750
ESQ IF L\#3 THEH 710
6gG F\% = "USE SHORT"
700 G日TO 750
71G IF L\# 4 THEN 730
```



```
730 IF L\#5 THEH 750
```



```
750 IISF H表
\(76 . \operatorname{INFUT}\) [1
77 G CLEAF:
ア80 K2=5/1022
\(796 \quad \mathrm{C}=1\)
80 CH WIT 30 E
E1G DUTFUT TGE UEING "\#, K.K": "
    H", C: "Fl": "F"
820 \(5=0\)
E3日 FOF \(\quad 1=1\) TO 1 日
84 M M IT 36
85日 EHTEF TaE UEING "\#, 月" : पく1\%
86a \(5=5+4(1)\)
8TG HENT J
88日 リ(1)=K2*
gen \(\mathrm{x}=\mathrm{b}(1)\)
```



```
\(910 \mathrm{C}=2\)
GこG HRIT 304
9S6 OUTFUT TEE USING "\#,K,K"; "
    H", C, "F.j", "F"
\(949 \quad \mathrm{~S}=0\)
950 FOR \(\quad 1=1 \quad\) T0 10
9EG WHIT 36 G
```



```
\(98.5=5+U(2)\)
990 NEXT J
16G日 V(z)=Kこま
\(1010 x=0\) ( 2\()\)
1020 R (L)=1日* \(9.9596646+75.32981\) *
        \(x+17.8778 * x \times 2\)
```

```
1030 E=4
1046 WFIT 206
1056 GUTPUT 7GE USTNG "#,k,K":
    "H",C,"H.J","F"
10EG 5=0
107% FGF 
1080 WHIT 300
10G日 ENTER TGE USING "#,W": W`
    3
11605=5+4(3)
1115 HEXT \
112% U(3)=K2憂10
1136 x=4(3)
1146F(3.L)=-.02710391+179.4563%
    Y+11.1EE41粏%
1150 E=S
11E日 HAIT 300
1170 GUTFUT FGE USING "#,K,K";
1180 E=0
1190 FGF I=1 TO 1G
12EG WHIT SW0
121G ENTEF FGE USING "#,W"; U&4
        y
12こ6 E=S+4<4%
123G NEYT I
1240 v<4)=K2*S<10
1250 X=44,4
12GG F(Z,LY=-1. 3TSET1+123. SGE4*%
        +13.8794x:%
    127日 OUTFUT PGE USIHG "H"
    1280 NENT L
12可 FOIF I=1 TO J
130日 E(I)=F&I,1)<F(1)
```



```
1320 F1(I)=F(1,3),(FCS)#E&I)
1330 RZ<I)=FCI,4)<EC4)*ECI)
```



```
1350 HEXT I
136G FGF I=1 TO 3
```



```
        3)
```



```
        1)
```



```
        $[3
    1410 H(I,Z)=(F14I)$CDS(O1)-FEGI)
```



```
142@ F(I, 3)=-F1(I)*SIN(01)*[11-F2
        (I)*SINCOZ)*[こ-FE(I)*SINCDS
        3*[?
    1430 NENT I
```



```
        Z.1)*(G(1,3))
```


$1466 \quad 27=H T H \subset F(3,1) * H 61,2-A(1,1$
 3，1）＊A（1，3））
 ）$⿻$（F（z， 2$) \times 2+(H(1: 1) * H(2,3)-$ $\vec{H}(2,1)$ 末 $H(1,3)$ ） 2 ）
 ）末 $\mathrm{A}(2,2)$ ） $2+(\mathrm{H}(3,1)$ 末 $\mathrm{A}(2,3)-$ H（2．1）来 $\mathrm{H}(3.3)$ ） 2

 $\mathrm{A}(3,1) * \mathrm{H}(1,3)$ ） 2 ）
15日旦 $\mathrm{HE}=25$
1510 IF ESVEG THEN 15.3
$1520 \mathrm{HE}=2 \mathrm{E}$
15 E IF EG E ET THEN 155.
$154 \mathrm{HB}=27$
$1550 \quad 2=H E+186$

$1580 \mathrm{HY}=\mathrm{HE}$
1596 IF U1\％UZ THEN 1玉16
1600 $\mathrm{H} 9=2 \mathrm{C}$
161G GOTO 16ご

 SIH（AG）） $\mathrm{H}(2,1)$
$164087=-(\mathrm{H}(3,2) * C 0 S(A 9)+\mathrm{A}(3, \Xi) *$ SINCAG）（AU3，1）
$165081=8$
1EE日 IF $H(1,1)>H E, 1$ THEN 1EBQ
$167 \mathrm{XX}=\mathrm{XE}$

$16.96 \quad \times 1=97$
17以日 $2=A E S(X 1)-30 F(21 \times 2-1)$
1719 OUTFU7 TEE USIHG＂H＂

 ＊2 末
17EG U4（I）$=F(1,5)-E(5), E(1) \notin 1+2$

177日 NEXT I
17B日 FGF I＝ 1 TO 3

18 旬 $6(I)=25 *(U 4(I)-6 S(I)$

18こG NEXT 1

 2）， $5(3), E(1), E(2), E(3)$
1840 NERT T
1850 END

