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ABSTRACT

A methodology used for identifying the optimal operating policy has been
presented. The technique used to develop this methodology incorporates the optimization,
simulation, and multiobjective selection techniques. The optimization technique is invoked
in generating optimal policies, the simulation technique is invoked in evaluating policies,

and the multiobjective selection technique is invoked in selecting the most suitable policy.

This methodology has been applied to a real-world reservoir system. The utility of
the methodology has been demonstrated. The generated optimal policies are evaluated
under various hydrological conditions and assumptions of forecasting accuracy. The final

results show that the policy derived from this procedure is quite reasonable.
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Chapter 1. Introduction

1.1 Statement of the Problem

Natural river flow has a seasonality and stochasticity in both its occurrence and
magnitude. Flow may be very small, corresponding to dry conditions, or very large
resulting in flooding. Flow may occur in the time period in which there is no significant
demand and may not occur in the time period in which many demands exist. In other
words, the availability of water and demands for water may not be identical.

To alleviate these problems, a storage reservoir is necessary. A reservoir alters the
natural flow regime and stores some of the water, and then releases water from storage in a
controlled manner. Flood waters can be released over a longer time period and thus at a
smaller flow rate so that downstream flooding can be avoided or reduced. Surplus water
from a wet period can be stored and released in a dry period to alleviate the impacts of
water shortage. In addition, the water level can be raised or lowered to alter generation of
hydro-electric power. In short, a reservoir is a manner of controlling and altering the spatial
and temporal distribution of natural flow in order to protect the downstream regime from
flooding and more closely match the availability of water to the demands for water. As a
result, a reservoir improves the efficiency of using natural water.

Water resources engineers usually face two types of problems associated with
reservoirs: reservoir sizing and reservoir operation. The former deals with the
determination of the capacity a planned reservoir should have, considering certain or
uncertain water demands and water availability. A series of parameters such as the height of
the dam, the flooded area, the discharge capacity and associated spillway structure, and the
storage capacity (including dead storage, flood control pool, and conservation storage),
should be chosen. The latter problem addresses the manner of operating an existing

reservoir, This is the issue which is discussed in this thesis.



Reservoir system operation, in comparison with some other kind of systems operation,
is generally more complex in terms of its multiple purposes, competitive demands, and
seasonal and stochastic operating conditions. As mentioned above, a reservoir could be
built for multiple purposes including water supply, power generation, water quality
control, etc.. These purposes are often conflicting. Storage level in the reservoir versus
release from the reservoir is a good example of this conflict. For generating more energy
(or for some other reason), one often wishes to store more water in the reservoir to raise
the water levels. However, it may not be possible to maintain such water levels if
downstream users (i.e., cities, factories, farmers,etc.) request increased releases, which
will lower the storage level. A conflict also exists in the temporal re-distribution of water. If
a predicted dry season is coming, the reservoir operator may reduce the current water

supply and save water for more important demands in the coming dry season.

Stochasticity of a reservoir system is another factor adding to the difficulty of making
operating decisions. Inflow is a random variable which implies that forecasting techniques
will often have to be incorporated into the decision procedure. A reservoir's purpose is to
best satisfy various demands over a longer time frame and on a stochastic basis through re-
regulating or re-distributing natural water supply. The problem is to determine how this can
best be done or in other words what are the optimal operating policies for the reservoir that
will lead to the greatest satisfaction of the goals of reservoir operation?

To answer this question, optimization theory and techniques are the most powerful and
effective tools. Since they were introduced into the water resources field, various optimal
management problems have been solved. For example, optimization models have been
used to solve the management problems of a single reservoir with only downstream
demands, a single reservoir with both downstream demands and reservoir water level goals

(for recreation, fishery, power generation, etc.), or a multi-reservoir system (either in



parallel or in series) of multipurpose reservoirs.

Optimization, as can be inferred from the name, is aimed at identifying the optimal
solution to a problem. Optimization can determine (i) if an optimal solution exists and (ii) if
such a solution does exist, how to find it. The ways of seeking optimal solution(s) depend
on the characteristics of the problem to be solved, the limits imposed on the solution, and
the computational burden. It is the second problem that is addressed in this work.

The focus of this study is seasonal operating policies of a multipurpose reservoir.
Generally, an operating policy refers to either a set of release guidelines or a set of storage
level guidelines. A release operating policy explicitly addresses water supply purposes
while a storage level operating policy can reflect flood contro! and reservoir recreation
purposes. This work deals with the development of a storage level policy.

Seasonal operating policies provide the guideline for real time operation. From this
point of view, seasonal policies are the principle of the reservoir's operation while real time
rules elaborate and implement the principle. There are many possible seasonal operating
policies for a given season. An example is keeping the reservoir either empty or full all of
the time. The former makes the reservoir useless from the point of view of water supply
while the latter places the reservoir at high risk. Neither of these policies is desirable.
Between the limits of empty and full, there must be a level which ensures that the reservoir
will be able to provide as much water as possible to its users while providing adequate
flood protection. This policy can be referred to as the optimal policy. Generally speaking,
the optimal policy makes it possible for a multipurpose reservoir to have the greatest
operating efficiency.

The purpose of the work described in this thesis is to develop a methodology for
identifying optimal seasonal operating policies for a multipurpose reservoir. After this, a
real world reservoir, the Shellmouth Reservoir, which has the functions of flood

protection, water supply, and reservoir recreation, is used as an application of the



methodology developed.

1.2 The Scope of the Investigation

This investigation will focus on the development of a methodology for seasonal
operating policies, using Linear Programming techniques, and the application of this
methodology to a case study reservoir system. The treatment of stochastic water availability
in this work is different from the manner extensively employed in previous applications.
The derived operating policies from different optimization models are then evaluated by

simulation models and ranked according to evaluating results.

Chapter 2 gives a literature review of related research. Some of the most popular
optimization models are reviewed, in terms of their capability of incorporating the

linear/non-linear problems, stochasticity, and inherent computational burden.

Chapter 3 presents the development of models produced in this research. This chapter
discusses the general modelling framework developed for identifying seasonal reservoir

operating policies.

Chapter 4 is the application of the developed methodology to the Shellmouth Reservoir
in Southwest Manitoba. Details of the Shellmouth's problems are presented and threshold
values for the constraints are determined. Three optimization models are discussed

separately. With the use of realistic data, optimal operating policies are derived.

Chapter 5 discusses the criteria used to evaluate the reservoir operating policies
developed. Two simulation models are presented as the tools of evaluation. The operation
decision incorporated in the simulation models, the purpose of using such models, the

structure of the models, the simulation input arrangement, and the results of the evaluation
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are also presented. Some observations about the simulation results are made.
Chapter 6 presents a two-step screening procedure for multiobjective selection purpose,
according to simulation results. A variation of the Compromise Programming model is

developed and used. A preferred policy is finally selected using this model.

Chapter 7 presents conclusions and identifies areas for further research.



Chapter 2. Literature Review

Due to the level of importance of water resources in both economic development and
environmental protection, water resources engineering systems have attracted considerable
attention. Identifying techniques to design and operate a reservoir, especially a
multipurpose reservoir, becomes a very interesting task. Many traditional management
techniques failed to demonstrate their usefulness for this purpose. In the late 1950's, the
principle and techniques of optimization were introduced into the water resources field.
Since then, optimization techniques have been extensively used in planning and
management of water resources systems. Hundreds of research projects have been done
and this number is still increasing. The most attractive advantage of optimization techniques
that fascinates professional workers is that they allow the determination of the optimal
performance value that a system could have, under various constraints. So far, there are
three basic kinds of optimization techniques being introduced and used in the field of water
resources systems analysis: (1) linear programming; (2) dynamic programming; and (3)
non-linear programming. In terms of the popularity, linear and dynamic programming are
much more prevalent than non-linear programming. In this chapter, only the first two
programming techniques are reviewed. Since the case study deals with a linear problem and

therefore the development of the methodology will only focus on linear optimization.

2.1. Linear Programming (LP)

Linear programming techniques address linear systems. In a linear model, both
objective function and constraints are linear. In dealing with this kind of problem, LP is
advantageous in terms of the following aspects: (1) straightforward concept; (2) the
solution algorithm is well established and a multitude of computer codes exist to solve the

algorithm; and (3) the technique is well documented.



A typical LP model has the form of

min Z = CTX (2.1)
X
subject to
AX2b (2.2)
X220 (2.3)
in which

C is an n-dimensional vector of objective function coefficients;

X is an n-dimensional vector of decision variables;

b is an m-dimensional vector of right-hand sides;

A is an [m x n] matrix of constraint coefficients; and

T is the transpose operation,

LP can be very effective for planning and management problems, as long as the
linearity requirement is satisfied. ReVelle and Gundelach (1975) used an LP model to
determine the size of a reservoir. The system had only one reservoir and the objective
function was to minimize the capacity of the reservoir while meeting all of the demands.
Dagli and Miles (1980) demonstrated how LP could be used for a hydro-power generation
problem of a multireservoir system (in series). The non-linear elevation-storage curve was

piecewise linearized.

2.2 Dynamic Programming (DP)
2.2.1 Dynamic Programming Technique

Dynamic programming is another popular optimization technique used in water
resources systems analysis. Unlike the LP technique, DP divides a problem into several

stages, and solves it stage by stage. Therefore, it does not need to solve simultaneous



functions regarding stages as an LP model does. DP is able to solve both linear and non-
linear problems.

A typical recurrence relation of the DP procedure is

f(x)=max [r(x,d)+f 1] 2.4)
dIl

f,(x;) = max [ r,(x;, dy) + fy(xp)] (2.5)
d

in which

x is the state variable;

d is the decision variable;

r is the return function;

and n is the stage.

A DP problem can be solved using forward or backward recurrence procedure. Yeh
(1985) indicated that backward recurrence was essential in stochastic DP problems since
each stage depends on the former stage while forward recurrence was advantageous for a
deterministic problem since it had to be solved several times in different planning horizons.

DP has the ability of handling not only linear but also non-linear problems. Most kinds
of problems arising in water resources systems can be solved by it.

Collins (1977) reported his work using a monthly deterministic DP model to find the
least cost withdrawal and release patterns for a multiple reservoir system; Marino and
Loaiciga (1985) applied a dynamic programming model to a hydro-power plant monthly

operation problem. Some examples of DP models will be introduced later.

2.2.2 Improvement in Computational Burden
Decomposing the decision space is a key feature of DP and it reduces a complex

problem into a series of simpler sub-problems. However, it also quickly increases the
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requirement on computer capacity and computation time, or in other words, curses heavy
dimensionality burden. To overcome this shortcoming, several improvements have been
suggested. One of these improvements is called incremental DP (IDP). IDP starts with an
initial feasible solution and then checks the neighbor states of the initial points. If any of the
neighbor points give a better value of the objective function, the initial point is replaced by
this new one. New neighbors are then examined again. This process is executed until a
convergent optimal solution is found.

A generalization of IDP is called Discrete Differential DP (DDDP). Nopmongcol and
Askew (1976) indicated that IDP and DDDP were essentially the same. "The confusion
between these terms is most unfortunate". In their paper, the terms IDP and DDDP were
used interchangeably.

Since IDP and DDDP search for the optimal solution from a part of the solution space,
instead of from the whole solution space, as traditional DP does, the choice of the initial
point could be significant. Convergence to the global optimum is not guaranteed.
Furthermore, the increments of the variables are also important not only for finding the
optimal solution, but for guaranteeing convergency of the solution algorithm. Hall et al.
(1969) suggested two ways for defining the increments of the variables. One way is to
keep the increments small but constant throughout the whole iteration process; another is to
make the increments a function of the iteration. Generally, increments become finer and
finer as the iterations proceed. In an application, Paudyal et al. (1990) reported their work
of selecting the optimal hydropower system configuration using IDP and Stochastic DP,
SDP. The IDP was invoked to optimize the monthly power generation of each potential
configuration, and then the SDP was applied to the three best configurations derived by
IDP to optimize annual power generation.

Another method designed to alleviate the curse of dimensionality is called Incremental

DP with Successive Approximations (IDPSA). The basic idea is to first discretize the



multidimensional problem into several one-dimensional subproblems, and then these
subproblems are converged toward the optimal solution of the original problem.

Karamouz and Houck (1987) compared monthly reservoir operating rules generated by
stochastic DP and deterministic DP respectively. They found that DDP was better than SDP
in 9 of 12 cases, in terms of the efficiency of the derived rules, the consistency of the rules,
and the effect and adequacy of the number of characteristic inflows and the number of
characteristic storages.

Besides the methods reviewed above, some other similar efforts also exist. Wasimi and
Kitamidis (1983) developed a methodology called Linear Quadratic Gausian Programming
(LQG). Georgakakos and Marks (1987) extended LQG and called it extended LQG. Both
LQG and the extended LQG employed a set of linear differential equations and a quadratic
penalty objective function.

Other progressive methods include the Progressive Optimal Algorithm (Marino et al.
1985; Lucas et al. 1985), the Progressive Optimality (Zessler and Shamir, 1989), and the

Discrete Maximum Principle (Papageorgion 1985).

2.3 Stochastic Considerations

Water resources problems are complex due to the uncertainty of flows. Several
methods have been developed to deal with the uncertainty or stochasticity that is a distinct
characteristic of water resources problem. Some of the main methods are reviewed, namely
deterministic programming, chance-constrained programming, stochastic programming,

and reliability programming.

2.3.1 Deterministic Programming.
In a deterministic model, a set of inflow sample based on historical or other data is

chosen as a representative of the possible future conditions. Once this sample data is input,
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the model generates the output associated with this certain (known) sample.

Windsor (1981) developed a methodology using deterministic mixed integer
programming for the planning and design of flood control systems. Turgeon (1987)
reported on an application of a monthly deterministic LP model for selecting the sites at
which reservoirs and hydro-power plants should be built. Goulter and Castensson(1988)
utilized a deterministic goal programming model of the Sommen Reservoir to alleviate the

competition between downstream water supply and lake boating and fishing,

2.3.2 Chance-Constrained Programming (CCP)
Chance-Constrained Programming reflects the probability conditions on constraints.
Typically, the probability of satisfying a constraint (e.g., in supplying promised water, or

in protecting against flooding, etc.) is required to be greater than a threshold value:
P{AX>B,} 29 (2.6)

in which
0 is a probability vector;
B, is a vector of known threshold values;
other terms are as previously defined.
As long as the distribution function (DF) of X is available, and 0 vector is known, the

constraint can be converted to
-1
XZ=F ((9)

. R I .
in which F 4 is the inverse of F(X) at X = By,
Since the right hand side is a constant value now, the constraint is deterministic. By

converting probabilistic constraints to deterministic ones, CCP converts a stochastic-type

11



model to a deterministic-type one, and then solves this deterministic equivalent.

ReVelle et al. (1969) employed a CCP model to a reservoir sizing problem when they
demonstrated Linear Decision Rules (LDR), which is discussed in Section 2.3.3. In this
straightforward example, release and storage were simply bounded by upper and lower
bounds with certain probability. This was the first time that the CCP model appeared in
water system optimization. Following this application, many other researchers used this
technique extensively. Eised (1972) applied a CCP model to derive the optimal policy for
an irrigation reservoir; Curry et al. (1973) extended the work of ReVelle et al. by omitting
the LDR from the model. They showed the advantages of doing so were the ability to
include the release in the objective function and to adequately account for stochastic inflow.
Askew (1974) introduced chance-constraints (C-C) into a DP model. The objective
function maximized the net benefit of pursuing the target release. C-C were set to control
the probability of system failure. He illustrated that CCP could be well combined with the
DP technique. Takeuchi (1986) invoked a CCP model to solve a real-time reservoir
operating problem. The chance constraints were set on the probability of the reservoir
becoming empty. Changchit et al. (1989) combined CCP with Goal Programming to

operate a multiple reservoir system,

2.3.3 Linear Decision Rules (LDR)

ReVelle et al. (1969) introduced a special technique called Linear Decision Rules (LDR)
into an LP model. Since then, LDR has been frequently cited, discussed, and verified
(ReVelle et al., 1970, Loucks, 1970, Loucks and Dorfman, 1975, Joeres et al., 1981, and
Stedinger, 1984).

The original LDR has the simple form of

X, =S, +b, 2.7)

12



in which

X, is the release in period t;

S, is the ending storage in the same period; and

b, is a decision constant.

This formula denotes the release as a linear function of storage. Loucks (1970)
commented that LDRs led to an easy to solve model because of the simplistic nature of the
formulation and the objective function. Generally, a model with LDR leads to conservative
results. Recognizing this, Loucks defined a new rule in which the release is a linear
function of beginning storage, decision constant, and inflow, He also indicated that
introducing the inflow term reduced the conservative nature of the results. Because of the
introduction of the inflow term, release is no longer a commitment at the beginning of the
time period, but rather a decision at the end of the period. Loucks and Dorfman (1975)
compared the required capacity of a reservoir resulting from a model using the original
LDR with that resulting from a simulation model, and they also found that the former was
overestimated, i.e., original LDRs yielded conservative results. Houck (1979) developed a
multiple LDR in order to improve the estimation of reservoir capacity. His multiple LDR
has the same form as ReVelle's s-type (which only has a storage term) and Loucks' sq-type
(which has both storage and inflow terms) LDR, but each term is associated with a certain
interval of inflow. Houck et al. (1981) demonstrated that multi-LDR models are less
conservative than single LDR models. However, Stedinger (1984) commented, after
examining the performance of LDR models for preliminary design and reservoir operation,
that "s-type LDRs substantially overestimate required capacities if an efficient operating
policy is used to operate the reservoir system. In some cases and for some problem
formulations, simple sg-type LDR screening models may provide satisfactory results".

Another factor influencing the conservative nature of the models with LDR is the

13



consideration of proceeding streamflow (Loucks and Dorfman, 1975; Houck, 1979; Houck
et al., 1981; and Joeres et al., 1981). Houck (1979) stated that the cause of the
conservative nature of the LDR model is that only an unconditional CDF was used instead
of conditional CDF. He said that using conditional CDF was a remedy to the conservative

nature of the results.

2.3.4 Reliability Programming (RP)

CCP fixes the probability of stochastic constraints prior to solving the model. This is a
restriction because it limits the solution space. On the other hand, sometimes people may
hope to know the "best choice" of the given probability. In order to address this question,
models are developed in such a way that the probability is a decision variable and therefore
incorporated into the objective function. Reliability Programming (RP) is an application of

this idea. Its form is:

Max f(X,9) (2.8)
subject to

ATX > P(@d) (2.9)

X0 (2.10)

in which X, 9, A are the control variable, decision variable, and parameter vectors,
respectively.

Colorni and Fronza (1976) initiated the application of RP to the reservoir management
problem. In their model, the objective was to maximize the benefit from releasing water.
Risk is accounted for by choosing different probability values which constrain the degree
of satisfying the contracted release. Simonovic and Marino (1980) presented a RP model
for a similar case. The objective function maximized the benefit from release minus the risk

losses associated with probabilities on the constraints of storage. A two-stage solution
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algorithm was used to solve the problem. First, a search for the probability values was
conducted. Then, with the selected values, the resulting problem was solved as a CCP.
Noticing that the loss function is a key factor in applying RP, Simonovic and Marino
(1981) presented a methodology for building loss functions associated with several kinds
of system failures. Marino and Mohammudi (1983) developed a new RP model based on
C-C LP and DP. The probabilities were discretized from the lower bound to the upper
bound. With given levels of incremental probability values, the C-C LP model was solved.
The probability values were then changed and the C-C LP model was solved again.
Finally, the best solution was derived by using a DP algorithm. This method avoided the

risk losses functions greatly increased the size and complexity of the model.

2.3.5 Stochastic Dynamic Programming (SDP)

Stochastic dynamic programming is another popular method of handling the
stochasticity of inflow. While C-C programming is more common in LP models,
Stochastic Programming is more common in DP models. In a stochastic model, usually a
Markov probability transition matrix is invoked which describes the time series process of
the inflows and then the expected values of random variables are dealt with.

A typical discretized stochastic dynamic programming model has the following form

(Yeh, 1985):
It,max
ft (St, I,;) =max { > Pl /It+1]*{B(R[)+ft-l(St-1’ It-l)]} 2.1
R, I=0
Il,max
fl (Sv 12) =max { 2, P[I1 /12]*{B(R])} (2.12)
R, ;=0

15



in which
f, Sy L,y) expresses return from the optimal operation of the system which has

t time periods to the end of the planning period,;

S, is storage at the beginning of time period,;
I is inflow during time period t;

B is the return obtained consequent to releasing a quantity of water
"R," during time period t. B can also be a function of the storage as
in the case of hydropower connecting productions.

P[L /T.,] transition probabilities connecting inflow 1, in the tth time period
with inflow I, in time period t + 1;
t time period index.

Trezos and Yeh (1987) applied SDP to solve a real-time hydropower operation
problem. The objective was to maximize the expected value of deliverable on-peak energy
or total benefit from hydropower operation. To aveid uncontrollable computational burden,
the authors used an algorithm similar to DDP. Tai and Goulter (1987) applied a similar
model for a monthly operating policy. Stedinger et al. (1984) suggested the use of the
expected value of the state variable (inflow) in the objective function instead of using
predicted ones. The purpose of doing this was, as they stated, to reduce the dimensionality
problem. Huang et al. (1991) tested SDP models with different stochastic considerations:
using forecasted and observed inflow data and coping with a conditional and an
unconditional distribution function, When forecasted inflow is used, the decision variable
is the final storage state, otherwise, it is the release. They concluded that using observed

inflow has more efficient than using forecasted flow.
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2.4 Comments on Various Optimization Models
2.4.1 LP Models

For linear problem formulations, LP models have the advantage of a smaller
computational burden than DP models. This advantage is significant in dealing with large
scale problems such as multiple reservoirs or multiple purpose systems, as we are facing
more and more today. By means of chance-constraints or reliability-constraints, LP is able

to easily incorporate the stochasticity.

2.4.2 DP Models
The greatest advantage of the DP technique is its capability of handling both linear and
non-linear problems, as long as the problem is stage discretizable. Stochasticity can be

incorporated into DP models, but it usually increases the computational burden.

2.4.3 Deterministic Models

Deterministic models have several computational advantages over stochastic models,
because they simplify the system. However, such models can introduce bias because the
hydrologic pattern of the future may differ from that of the past which has been used as the

input of the optimization models (Huang et al., 1991; Loucks et al., 1981).

2.4.4 CCP Models

CCP incorporates the stochastic nature of the inflows explicitly but has the same
advantage as a deterministic solution algorithm. Unlike Reliability Programming, it
alleviates the burden of developing loss functions. These are the major merits which have
made CCP so attractive. However, Hogan et al. (1981) warned that CCP is seriously
limited because it neither penalizes explicitly the constraint violations nor provides recourse
action to correct the realized constraint violation as a penalty, and should not be regarded as

a substitute for stochastic programming with recourse.
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2.4.5 RP Models

The RP technique deviates from the fixed probabilities which could be considered as
extra constraints and searches for optimal solutions in a larger solution space in comparison
with CCP.

The loss function is a key component in an RP model. In some cases, the building of
this function could be difficult. On the other hand, Strycharczyk and Stedinger (1987) have
commented that the RP approach still could not capture all reservoir operating issues in its
loss functions, and reliabilities of minimum and maximum storage target did not directly
relate to the frequency with which minimum and maximum release bounds would be
violated. The RP method, without employing LDR, was very conservative in identifying

the capacity of a reservoir,

2.4.6 SDP Models
SDP lets a DP model incorporate stochasticity explicitly, but it also increases the

dimensional burden that a DP has. Therefore, its use in practice is greatly limited.

As mentioned in the beginning of this chapter, the case study reservoir system used in
this research is formulated as a linear problem. To address a linear problem, various L.P
models could be very effective. To lighten the computational burden, deterministic type
models have advantages over stochastic type models. Considering these reasons, this work
focuses on deterministic LP models. But, as will be discussed in chapter 4, the handling of

stochasticity will differ from the traditional methods.
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Chapter 3 Development of Modelling Approach

The focus of this work is the development of a procedure which will be used in
identifying optimal operating policies for a multipurpose reservoir. It should be indicated
that the optimal operating policy for a reservoir varies with hydrologic conditions and
hydrologically dependent demands, i.e., the policy is conditional. On the other hand, since
these hydrological variables are not able to be perfectly forecasted, and they will not
precisely re-appear, a "perfectly accurate” policy which is derived based on a specific
year's conditions is of limited use. What is required is a policy which will be specific to a
certain category of hydrological conditions. In this work, hydrological conditions are
classified into three classes: wet, average, and dry. For each of them, a corresponding
policy is developed or in other words, a conditional policy is obtained.

The procedure includes three steps, as shown in Figure 3.1:

1. Optimal Policy Generation. Optimization models are formulated and solved.
Different models emphasize different aspects of the reservoir management problem. Since it
is not able to foresee the relative advantages and disadvantages of the model formulations
before they are actually solved and the resulted operating policies are subsequently
evaluated, we generate the models first, then evaluate the policies, and finally select one

policy for implementation.

2. Optimal Policy Evaluation. The measure of a policy is whether or not it allows the
reservoir to perform well. The performance of a reservoir, when following a given
operating policy, can be determined by simulation models. The generated optimal policies
identified in the first step are therefore evaluated in this step. The criteria of evaluation are
risk, resilience, and vulnerability of the reservoir system.

Risk is a measure of the probability that a reservoir system is in a failure state. Here we

19



OPTIMAL POLICY GENERATION:
CPTIMIZATION MODELS

OPTIMAL POLICY EVALUATION:
SIMULATICON MODELS

OPTIMAL POLICY SELECTION:

MULTIOBJECTIVE SELECTION
MODEL

L
CONCLUSIONS

Fig. 3.1 The Procedure of the Methodology
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a failure is defined as a state when the reservoir does not meet one or more of its goals
(such as contracted water supply or preferred storage level). This index will be a
description of how frequently a reservoir will not perform successfully. Resilience
measures the ability of a reservoir system to recover from a failure. Since it is not expect
that the reservoir always is in a satisfactory state, it is hoped that it is able to recover from
the failures easily. Vulnerability describes the severity of the consequences of a failure.
With these three indices, it is possible to characterize the reservoir performance in terms of

the frequency, duration, and severity of failures.

3. Optimal Policy Selection. Generally, none of the policies is expected to dominate all
other policies in terms of all of the objectives. For identifying the most suitable policy
among non-dominated options for a given reservoir, multiobjective selection techniques are
invoked. Two of the techniques commonly used for discrete problems of this type are the
Electre technique and Compromise Programming.

The Electre technique is recursive. With the given judgement criteria, a set of non-
dominated options, or so called "cores", are screened out. Then, given more refined
criteria, a smaller group of cores are generated from the previous cores. This procedure is
continued until the best option is screened out.

The Compromise Programming technique is a one-step ranking procedure. Instead of
only screening out the best single option, it ranks all of the options according to a given
evaluation measure. The evaluation measure is a function of the values of the various model
objectives. It reflects the deviation from the ideal status of each objective. There are two
parameters included in the evaluation measure. One is a weight which reflects the
importance of a given objective while the other is an exponent which reflects the importance
of the degree of deviation from the ideal status. In this work, a variation of the

Compromise Programming technique is used.
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3.1 Optimization Modelling

Generally, in a given solution space (limited by constraints), if there are a finite number
of feasible solutions to a given objective function, (i.e., solutions which do not violate any
constraints), one or more solutions can be found among the options at which the objective
function will obtain its optimal value. In many cases, these are the solutions to the problem
at hand that must be identified. The techniques and procedures for searching for these

solutions are collectively termed optimization.

Typically, an optimization model has the form of

Max F(X) 3.1
Subject to
ATX =B (3.2)
X220 (3.3)
where

F(X) is the objective function;

X is the control variable vector;

A is a parameter matrix; and

B is a parameter vector.

The formulae (3.2) and (3.3) are constraints.

The reservoir management problem can be formulated as an optimization model. The
essential goal of the operation of a multipurpose reservoir is to satisfy as many of the users'
demands as possible, while ensuring reservoir (dam) safety and meeting other limits such
as engineering, societal, and environmental considerations, that may be of concern. If the

satisfaction of users' demands is formulated as the objective function, and reservoir safety
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and other limits on reservoir operation are incorporated into the constraints, then the
optimization model can be used to determine an operating policy to approach this essential
goal. The solution of the optimization model is an optimal policy.

The reservoir operating problem has two decision variables, the storage level and the
release. Generally, either of these can be chosen as the primary decision variable. If the
release is the primary decision variable, the policy is a release trace; if storage level is the
primary decision variable, the policy is a trace of the storage levels. Conventionally,
reservoir operators choose the storage level as the decision variable because it makes it
easier to ensure the dam's safety. In the remainder of this thesis, an operating policy will
automatically mean the trace of storage levels unless indicated otherwise.

In this work, optimization models are developed to generate optimal reservoir operating
policies. In an optimization model, goals are formulated as the objective function, while
constraints, which express the limitation on solving the objective function, define the
feasible solution space. By emphasizing different purposes, different objective functions or
constraint sets can be built, which would then give rise to different optimization models.
The solutions resulting from the models will reflect the different concerns built into the
models and will be oriented towards those concerns.

In this thesis, two types of optimization models are developed. The first type of model,
the Maximize Release Model (MAXR), emphasizes downstream water supply demands,
while the second type of model, the Minimize Storage and Release Deviation Model
(MINSR), is a Goal Programming model and places greater emphasis on meeting reservoir

storage level targets. The general form of the MAXR model is
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Max 2; ; release
Subject to

maintain dam safety

eliminate flooding

meet releases demands

maintain storage level higher than dead storage level

while the general form of MINSR model is

Min X2, ; deviation from storage and release goals
Subject to
same as above

definitions of storage and release deviations

in which
i and j denote the month and year; and
n is the number of goals.

The details of these models will be discussed in Chapter 4.

3.2 Simulation Evaluation

For selecting the most suitable policy generated by the different models, it is needed to
evaluate them according to relevant criteria. For this purpose, simulation is the technique
which is most frequently invoked because it is the best way to display the performance of a
system in detail under various operating conditions. In this work, two simulation models
were developed. One is a monthly model which examines the reservoir's monthly

performance, following a particular operating policy, in terms of risk, resiliency, and
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vulnerability. The other one is a daily model which examines the details of a policy's flood
protection function.

An operating policy is a guideline for reservoir operation. The simulation models
display the results when the reservoir is under this guideline. If the policy cannot be exactly
executed in some time periods (this happens when the hydrologic conditions are too
different from those under which the policy was derived), or if the policy is not reasonable,
the reservoir should be operated by certain contingent rules. These rules should be reflected
in the simulation process. The specific rules used herein can be summarized as:

1. the basic water demands (municipal and industrial demands, irrigation) should be

met if possible; and

2. during summer, the storage target for recreation has a higher priority than the cooling

water withdrawal and water quality control demands.

3.3 Multiobjective Selection

Usually one optimal policy is not able to dominate all others in all concerned objectives.
In one objective, some policies may have advantages over others; but in other objectives,
the situation may be reversed. In such a situation, the multiple objective decision techniques
are necessary. The general concept of any multiobjective selection method is to mix or
combine non-dominated objectives into one parameter and then select the policies which
have the best parameter value. In this work, the objectives are water supply, flooding
control, and storage targets. All the deviations of each objectives are expressed in terms of
the magnitude and the number of the occurrences of them. A method called "Discrete
Compromise Programming"”, which will be described in detail in Chapter 6, is developed
for multiobjective selection. The main idea of this method is to discretize the deviations into
several classes, use conventional Compromise Programming for each of the classes, and

finally summarize the results of each classes together. The deviations located in each class
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give the magnitude and distribution of the deviations.
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Chapter 4. Application - Shellmouth Reservoir's Study

4.1. The Shellmouth Reservoir
The Shellmouth reservoir is located in Southwest Manitoba, 18 km north of the
Russell, Manitoba (see Figure 4.1). The Assiniboine River and the Shell River flow into
Reservoir. Its drainage area is 17,801 km?, its full supply level is 429.42 m, and its storage
at this level is 477.36 x 10 m3, conduit invert elevation is 417.32 m, with corresponding
storage (dead storage) of 12.33 x 10% m>. The maximum capacity of gate-controlled outlet
is 198.1 m%/s. The reservoir is about 1.28 km wide and 56.5 km long and at its full supply
level, the flood area is 61.5 km?. Downstream channel capacity in the vicinity of the
Shellmouth Dam is 42.45 - 50.94 m%/s.
The Shellmouth Dam, built in 1969 - 1971, was initially designed for flood control.
“After it was built, some water usage purposes were added. Now the reservoir is required to
satisfy following demands:
a. municipal water supply for the Cities of Portage La Prairie and Brandon, Manitoba;
b. irrigation and farm water supply for users downstream of the reservoir on the
Assiniboine River;
¢. dilution of the waste effluent from the Cities of Portage La Prairie, Brandon, and
Winnipeg, Manitoba;
d. dilution of the heated effluent and wastewater effluent from Manitoba Hydro's
thermal generating plant located in Brandon, Manitoba;
e. Maintenance of a sport fishery in the Shellmouth reservoir and in the downstream
reaches of the Assiniboine River;
f. dilution of industrial waste effluent from various facilities;
g. water supply source for industrial processes and food processing at various
locations; and

h. recreation.
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Usually, these demands cannot be entirely satisfied at same time. For example, during
summer, reservoir manager hopes to have a higher storage level for lake recreation
purposes, while downstream users (eg., farmers) want more water for their purposes too;
during dry years, thermal power generation plant at Brandon operates more since other
hydro-electrical plants may have less water to work. That produces more thermal sewage
eject and need more fresh water released from reservoir to dilute it. This increases the water
supply load of the reservoir. The purpose of the optimization models developed in this
thesis is to identify an optimal policy which enables the Shellmouth Reservoir to best fulfil

its varied and conflicting tasks.

4.2. Mathematical Formulation

Two linear programming models, as essentially discussed in Chapter 3, are developed
for Shellmouth reservoir's case. But before presenting detail discussions of the models,
some of the basic and common constraints are discussed and formulated first.

A reservoir releases water from its effective pool (active pool plus flooding control
pool) as shown in Figure 4.2. The active pool is above the dead pool which is usually
under the elevation of outlet. At any level lower than this elevation no water can be released
unless it is pumped. The flooding control pool can be up to either top elevation of dam or
the bottom elevation of spillway. Water levels higher than this upbound result in a great
risk collapsing the dam. Denoting these lower and upper bounds on storage level by SL:q

and SL ... respectively, results in

SLyyin SSLESL, . (4.1

'min =
or

Smin < S < Spax 4.1)

min ~
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Fig. 4.2 Operating Zones of A Reservoir

30



where

SL is storage level at any time;

S is the expression of SL in storage volume; and

Sin and S, are the translated expressions in storage volume of SL,;  and SL ..,

respectively.

To avoid flooding in the downstream vicinity of the dam, the release from reservoir
should not be greater than the full channel discharge capacity, otherwise flood occurs. This
limit could be taken as the upper bound of release, denoted by R.,,,,. On the other hand,
for some environmental reasons a minimum release should be kept in the channel all the

time. Denoting this minimum value as R . . results in

min?

Ry SRER (4.2)

min =
where R is the release from reservoir.

Another constraint always being imposed to a management problem is

ini = Send (4.3)
where S;,; is the starting storage of the whole operating period while S, 4 is the ending
storage of that period. Setting this constraint protects the reservoir from emptying at the end
of the operating period. If there is no such limit, the water storage in the reservoir could be
totally exhausted at the end of this operation period because all of the water could be used
for the demands in that period.

A basic relation which should be obeyed if one is dealing with a reservoir system

problem is the continuity function
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S 1= S_],l + Ij,l - Evj,i -R.. (4.4)

Joi+ ol
where
Sj,i +1 i8 the ending storage of time period i in year j;

Sj,i is the initial storage of time period i in year j; and

I.. Ev.

i BV and Rj,i are inflow, evaporation, and release during time period i in year j,

respectively.

The decision variable S could be single or double dimensional variable. If S is a one
dimensional variable, i.e., if the storage is only allowed to change from month to month,
but the storage for each month is fixed from year to year, the obtained policy will be
suitable for all kind of years (or all kinds of hydrological conditions). In such cases the
storage levels identical over years is a very restrictive constraint, and consequently such a
policy might not exist. Moreover, if such a policy does exist, it is of limited utility since the
hydrological conditions could vary greatly from those used to devise the policy. In other
words, this policy is too general to be useful.

If S is a two dimensional variable, i.e., if S is allowed to change from month to month
and from year to year, then what is obtained is a group of policies which have a specific
policy for each year of record accounted for in the models. Because these hydrological
conditions will never repeat again, there is no specific policy for a coming new year since
the new conditions are different from past results. In this case, the resulting policy is too
specific.

The goal in such analyses is the policy which is neither too specialized nor too
generalized. A compromise is to classify each year (hydrological conditions) into one of
several kinds of hydrological conditions and to seek policies for each of these kinds.

In this work, all historic records are classified into three kinds, namely wet, average,

and dry, mainly according to the inflows during April through August. For the resulting
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operation policies, storage for all years which are "wet" would be same, and say the same

thing for average years, so on. Therefore, there are some additional constraints:

Sii=Ski j-k are wet years; (4.5)
S1i=Sn 1,n are average years (4.6)
Sm.i = Sg,i m,g are dry years 4.7)

Besides constraint Equations 4.1 - 4.7, there are others varying in different models.
They will be formulated later.

Next, three optimization models are developed. One is called Maximize Release model,
or MAXR model, the rest are called Minimize Deviations of Storage and Release model
version A, or MINSRA model, and Minimize Deviations of Storage and Release model

version B, or MINSRB model. All of them are linear and deterministic type.

Model 1: Maximum Release Model (MAXR)

In the MAXR model, the main objective is to satisfy downstream demands while
maintaining dam safety and eliminating flooding. No direct consideration on summer
storage targets is expressed in the model.

Based on a simple assumption that more release results in higher downstream benefits
providing no flood occurs, it can be rationally expect that the release should be as large as

possible. Thus the objective function is

Max R_],l (4.8)

The variables are as defined before.

To take account of the demands and tributaries along the Assiniboine River after the
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Shellmouth Dam, the whole channel from Shellmouth to City of Winnipeg is divided into
three reaches in this work. The first reach is from the Shellmouth Dam to Brandon, the
second is from Brandon to Portage La Prairies, and the last is from Portage La Prairies to
the City of Winnipeg. All water supply demands and tributary inflows are summarized
respectively in three reaches and abstracted into three representative points as shown in
Figure 4.3

It is assumed that tributaries in each reach come into main channel at the endpoint of
each reach so that they only contribute to the water supply of succeeding reach.

Denoting

TRI1, TRI2 and TRI3 as the flow volumes of the tributaries of reach 1, reach 2, and
reach 3, respectively;

WMI1, WM2, and WM3 as the municipal and industrial demands of reach 1, 2, and 3,

respectively;

WI1,WI2, and WI3 as the irrigation demands of reach 1, 2, and 3, respectively;

WQTI as the net cooling water withdrawal at Brandan, subtracting the contribution from

runoff;

WQ3 as the demand of water quality control for City of Winnipeg;

R1, R2, and R3 as the releases for reach 1, 2, and 3, respectively; and

R as the total release from the reservoir.

The first set of constraints are:

R1j; > WML, + WIT; + WQI;; 4.9)

R2;; 2 WM2; + WI2; - TRI1 (4.10)
R3;; 2 WQ3; - TRI2;; (4.11)
Rj; = R1;; + R2;; + R3;; (4.12)
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The cooling water withdrawal of the thermal power plant at Brandon is a special
demand. Certainly TRI1 can be used for this purpose, and since the cooling system of the
thermal power plant ejects all withdrawn water after it is used, it is reasonable to assume
that from the point of view of second reaches' demands, the plant (almost) does not
consume the water quantity. Therefore, the water coming from tributaries of reach 1 that is
available for reach 2 is still TRI1. Since each tributary flow is only available for a
succeeding reach's demands, TRI1 and TRI2 only appear in the formula of R2 and R3
respectively and TRI3 does not appear. Obviously this leads to a conservative result. But
since demands along the Assiniboine River aggregated mainly in 1st and 2nd reach, the
effects of this conservative assumption should not be significant. The rest of constraints

include those defined by Equations (4.1) through (4.7).
The entire MAXR model is as below:

Max 2 Rj,l

subject to

R1;; > WML, + WIL; + WQl;;
R2;; 2 WM2,; + WI; - TRIL
R3;;2 WQ3; - TRI2;;

R_],l = RI],] + sz,l "}‘RS}.I

Smin = Sj,i s Smax

Ruin SRR .,

Sini = Send

Siie1 =S5 + L - By - Ry

Sh,i = Sk,i h,k are wet years;
Sii=Sai 1,n are average years
Sm,i=Sgi m,g are dry years
R1;;, R2::)R3.., R.:,S.. 20

FH Lot L N L B I B S
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where the storage is the ending storage of each time period.

An obvious argument is that the MAXR model "wastes water" because it does not save
spared water in storage. It is not always true. Suppose the total monthly volume of
downstream water demands is much smaller than that of the active pool, MAXR will waste
some water because extras water beyond the demands could have been used to raise the
storage level when the reservoir has more capacity to accept this water. But if two volumes
are close enough, when the reservoir has stored water for downstream demands, the active
pool could be mostly occupied. Therefore, it does not have much more volume for
additional water. Instead, the additional water should be released to lower down the storage
level for the safety of the dam since the full active pool might result in a very high storage
level. In this case, there is no significant waste at all.

The MAXR model will answer the question, if all of the water supply demands must be

met, what will the reservoir operating policy look like?

Model 2: Goal Programming (GP) Model : Minimize Storage and Release Deviations
Model, Version A (MINSRA)

MAXR model emphasizes water supply, but water supply is not the sole purpose for
the Shellmouth reservoir. The Shellmouth Reservoir should also have a storage level at a
preferred high level during summer. To be successful in this task, the storage targets
should be explicitly incorporated in the objective function. That means, besides the release
target, there is storage level target.

For incorporating targets on decision variables, Goal Programming (GP) is effective.

The basic form of a (GP) model is
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Min X, X (A *deviations from target m)
subject to
Definitions of deviations;

Other constraints,

where

A, are weight parameters;

m denotes the number of goals; and

t denotes time.

For the Shellmouth Reservoir, the preferred storage target is a range instead of one
fixed value. The range is bounded by an upper level STH1 and a lower level STH2. It is
hoped that the storage level could be kept in this range. The storage targets are only active
in summer while the release target lasts whole year.

Define

surplus deviation from storage target (preferred range) as

SUj,i P Sj,i - STH1 (4.13)
SU;;20 (4.14)

deficit deviation from storage target (preferred range) as
SLj’iZ STH2 - Sj,i (4.15)
SLj 20 (4.16)
where SU and SL are deficit and surplus deviations from the storage target, respectively.
When Sj,i is higher than STHI, SUj,i positive while Slei is 0 (STH2 - Sj’i is negative
but, constrained by SLj_i 2 0, the SL;; is 0), vice versa. When S, is in the preferred

range, both SUj’i and SLj’i are (.
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Similarly, there are the definitions of deviations from release targets:

deficit deviations from release targets are

FLlj,i 2 (WML, + WIL, + WQlj,i) - le,i inreach 1 “.17)
FL2;; 2 (WM2; + WI2; - TRI1; ;) - R2;; in reach 2 (4.18)
FL3;; 2(WQ3,; - TRI2; ) - R1;; in reach 3 (4.19)
FL;; =FLL;; + FL2; ; + FL3; (4.20)
FL1;;, FL2;;, FL3;;20 (4.21)
where FL1;; , FL2;;, FL3;; , and FL;; are the deficit deviations from the release targets

of reach 1, 2, 3, and entire river, respectively.

From the water supply demands (see Table 4.1), it can be observed that cooling water
withdrawal is the largest demand for water from the reservoir. In comparison with it,
municipal, industrial, and irrigation demands are insignificant terms. In terms of
importance, municipal, industrial, and irrigation demands can be considered basic.
Considering this, the entire demands are divided into two kinds: basic demands and target
demands. Basic demands are those which must be met at first priority and guaranteed by

constraints of

Ry 2 basic demands, k=1,2,3 (4.22)
where k denotes the reaches. In reach 1, the basic demands are WM and WI. The target
demands are those which the reservoir may not be able to meet all the time but it is desired

to meet in as many time intervals as possible. In reach 1, it is the sum of WM1 plus W11

plus WQ1. Therefore, a new set of constraints on release in reach 1 is

39



Table 4.1 Water supply demands (unit: 103 m3)

Mand I*  Irri.** M and I* Irri.**  Cool# for Cool# for dilution for

reach 1 reach 1  reach2 reach2 wfa. yrs dryyrs  Winnipeg
Jan. 881.35 0.0 1145.39 0.0 11156.4 14875.2 7437.6
Feb. 933.42 0.0 1123.08 0.0 14875.2 14875.2 7437.6
Mar. 933.42 0.0 1145.39 0.0 11156.4 14875.2 7437.6
Apr. 963.17 0.0 1145.39 0.0 0.0 14875.2 7437.6
May 1097.05 81.81 1249.5 3205.6 0.0 7437.6  7437.6
Jun. 1521.00 238.04 1204.9 62773 0.0 7437.6  7437.6
Jul.  1201.17 788.39 11603 6277.3 0.0 7437.6  7437.6
Aug. 1201.17 394.19 1160.3 6277.3 0.0 7437.6  7437.6
Sept. 1015.23 81.81 1190.0 3205.6 0.0 7437.6  7437.6
Oct. 93342 0.0 1197.5 2975.0 0.0 7437.6  7437.6
Nov. 903.67 0.0 1137.95 0.0 11156.4 14875.2 7437.6
Dec. 881.35 0.0 1093.32 0.0 11156.4 14875.2 7437.6

* M and I: municipal and industrial

** Irri. : irrigation

# Cool : Cooling withdrawal
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R1;; 2 WML, + WIL (4.23)
FLIJ- ;2 (WML, + WIL + WQlj,i) - le,i (4.24)
FLlji >0 (4.25)
In reach 2 and 3, since the demands are much smaller than WQ1, there is no need to

divide them further, i.e., the basic demands are equal to target's. So the FL.2 and FL.3 are

redundant and can be eliminated.

The definitions of excess flow deviations are similar. But it will not be incorporated in
the model. As long as no downstream flooding occurs, releases higher than the target are
acceptable.

Then the objective is simply formulated as

Min Dev = Min Ej,i (SU;; + SLj’i) in summer
+ Min Zj,i FL1;; (4.26)

Combining this new objective function and definitions with the constraints described in

MAXR model results in a GP model as below:
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Min Dev = Min Ej,i (SU}-,]- + SLj,i) in summer

+Min 3 FL1;;
subject to

SU;; 2 §;; - STHI

SL;;2 STH2 - ;

FL1;; 2 (WML, + WIL; + WQ1;) - R1j;

Rl 2 WML, + WI1,

R2;; 2 WM2; + WI2; - TRIL;

R3;; 2 WQ3,; - TRI2;;
Ry =R1;; + R2; +R3;;

S min ~ S_] i< Smax

Riin € R (SR,

Sini = Send

Sjiet = Sji + I - By - Ry

Sh,i = Sk,i» h,k are wet years;
S1,i= Snis l,n are average years;
Sm,i=Sgi, m,g are dry years
FL1;;, SU;;, SL;;20

R1j; R, R3; Ri;20

$;;20

All of the symbols are as defined before.

GP has the advantage of considering multiple targets, and considering targets according
to the priorities assigned to targets (by weights in this case). In this model, each of the
variables are weighted equally. During the non-summer months, there is no storage target.
Therefore the sole target is water supply, and the water supply demands in different months

of the non-summer seasons are considered equal (there is no reason to think that the water
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supply of for example, November, is more important than that of December). During the
summer months, the storage target should have higher priority in comparison with water
supply. Since the magnitude of the storage variable S is generally about one order larger
than that of release variable R, the objective function automatically assigns a higher weight

to S so that the storage concern obtains higher priority.

Model 3: Goal Programming (GP) Model : Minimize Storage and Release Deviation
Model, Version B (MINSRB)

The MINSRB model is a variation of MINSRA model. In the MINSRA model, the
storage level targets are effective only in summer months; in the MINSRB model, the
storage level targets are extended to whole year. The storage targets for the summer are
same as in the MINSRA model; the target for all non-summer month is chosen as 200
million m? (423.83 m high), which is the target for March 31, the start date of the flooding
season, chosen by the reservoir's operator. Since the storage targets are set equally for each
hydrologic scenario, if the policies corresponding to each scenarios could be sufficiently
close to the target levels, it is possible to obtain a generic policy which is suitable for all
kinds of hydrologic patterns. This is the motivation for the MINSRB model.

To generate this new model, it is only necessary to prolong the effective time period of
storage targets:

Min Dev = Min [Ej,i (SUj,i + SLj,i) + Ej,i FL1;; 4.27)

J

and the constraints are the same as those for the MINSRA model.

4.3 Solutions of the Models
All of the three models (MAXR, MINSRA, and MINSRB) are deterministic models.

The time interval of the models is month. For solving the models, two kinds of input data
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are needed. They are hydrologic data (inflow, evaporation) and demand data.

4.3.1 Hydrologic Data Arrangement
Monthly evaporation data

The Water Resources Branch of the Natural Resources of Manitoba provided 68 years
evaporation data (1921 - 1988). The lake evaporation has been derived from two
evaporation gauging stations, Yorkton and Dauphin. The average value of these two

stations' records were used as the evaporation estimate.

Monthly inflow data

The inflow data are used and prepared for two purposes: identifying three kinds of
hydrologic years (wet, average, and dry) for the optimization models, and arranging an
input series (mainly for evaluation) for the simulation model.

There are more than 30 inflow gauging stations on the Assiniboine River and its
tributaries, upperstream and downstream of the Shellmouth Dam. Table 4.2 shows all of
these stations. Considering the record length, the length of the river the stations monitor,
and the geographic location (a downstream station is preferred if there is more than one
station on same tributary) of the stations, 18 stations were selected (these stations are
marked with * in Table 4.2). The remaining stations either have too short records, only
gauge a small segment of the stream, or are covered by a more downstream station.

Above the Shellmouth Dam, in addition to the tributaries contributing to the reservoir
inflow, the local surface run inflow is also of significant. Comparing the total inflow value
from stations MD004, MDO0S5, and MDOO7 which control a very large percentage of the
tributaries to the reservoir, and the inflow value of station MEQO1 which is immediately
downstream of the Shellmouth Dam, the difference in inflow value can be obtained. This

difference is attributable to local inflow. To re-generate local inflow, monthly regression
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Table 4.2 The Gauging Stations Connected

Above the

Shellmouth Dam:

Below the

Shellmouth Dam:

Station No.

05SMD004*
05MDO005*
05MDOQ7*
05MDO10

05IM003
05IMO013*
05IM015*
0O5LLO019
05SMEOQO1*
05SMEQ03*
05MEQQS*
05MEQ06
OSMEQ08*
05MEQ09*
05MF001
05MFO018*
05SMGO01*
05MGO003*
05MG004*
05SMGO06*
05MHO001
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River and Location

Assiniboine at Kamsack
Shell near Inglis
Shell near Roblin

Stony near Kamsack

Qu' Appelle at Tantallon

Qu' Appelle at Hyde

Caterm near Spy Hill

Portage Diversion
Assiniboine near Russell
Birdtail Creek Birtle
Conjuring Creek near Russell
Assiniboine near Miniota
Minnewasta Creek near Beulah
Scissor Creek near Kellde
Little Saska near Minnesoda
Little Saska near Rivers
Arrow near Arrow

Gopher Creek near Virden
Dak near Rivers

Kenton Creek at Kenton

Willow at Brandon



Station No.
05MHO004*
05MHQ05
05SMHO006*
05MHO007*
05MJ001
05MJ003
05MJ004*
05MJ008
05MJ010
O5SNGO01*
05NGO003
05NGO007
05NGO10*
(05NGO12
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Table 4.2 The Gauging Stations Connected (continued)

River and Location

Cypress near Cypress River
Assinoboine near Holland

Little Souris near Brandon

Epinette near Carberry

Assiniboine at Headingley
Assiniboine near Portage La Prairie
Sturgeon at St. James

Omands near Brookside Cemetery
Truro near Assiniboine Golf course
Souris at Wawanesa

Pipestone near Pipestone

Plum near souris

Oak Creek near Stockton

Elgin near Souris



equations are built. These equations have the form of:
LINFE;; = a;*INF4;; + b*INF5; + d, (4.28)

where
LINFE; is estimated local inflow in year j and month i;
INF4ij and INFS5;; are the inflows in year j and month i recorded by station MD004,
and MDO0OS, respectively;
a, bi' and d, are regressive parameters associated with INF4ij, INFSi}., and a constant,
respectively;
i denotes the month; i=1,........ , 12.
The derivation of the regressive parameters is presented in Appendix A. Given inflow
data of station MD(004 and MDO0OS3, the local inflow values are obtained.
The total inflow discharging into the Shellmouth Reservoir can be obtained by

summarizing the local and recorded inflow data.

4.3.2 Users' Demands

All kinds of demands have been mentioned in Section 4.1. Essentially, they are either
storage level demands or water supply demands. The former is the demand for the storage
level during the summer season. The preferred storage level ranges from 426.83 - 428.35
m high. Summer is from May 01 to August 31, The latter demand includes the water
volume demands such as industrial and municipal, irrigation, and cooling withdrawal and
water quality control. The Water Resources Branch of the DNR of MB provided all this
information (see Table 4.1). Subtracting the downstream tributaries inflow from demands

gives the net demands.
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4.3.3 Stochasticity Considerations.

A Deterministic model has a simpler model structure compared with stochastical models
because it uses known long term data. Theoretically, the entire historical data record could
be included in the optimization models. However, this may make the model size too large.
In this case, 30 years of data under the MINSR models would result in 3666 variables and
6120 constraints. This is quite a heavy load even for a workstation. To avoid this problem
while including enough historical and stochastical information in the input data, a new
method is used to arrange the historical data. The method identifies three kinds of
hydrologic year, namely wet, average, and dry year. The identification is based on
inspection of the historical records of station MD004 and MDQO05 (from 1957 -1984) for
these stations gauge the two largest tributaries to the reservoir. Since MDO010 is
comparatively much smaller in terms of the inflows, it is ignored. Then, add MD004 and
MD005 together, and use the sum inflow values to identify each kind of year. The years in
which the sum of the inflow shows a high Spring peak flow are assumed to be wet years;
the years in which the sum of the inflow shows a low Spring peak flow are assumed to be
dry years; and any year in which the Spring peak flow is neither high nor low is considered
to be an average year. The years 1975, 1976, and 1979 were chosen to represent wet years;
1967, 1970, and 1983 represent average years, and 1961, 1963, and 1968 represent dry
years. The graphs of inflow values for these years demonstrate the approach used in
identifying wet, average, and dry years and are included in Appendix B.

The recorded inflow, evaporation, and tributary discharge for each of these years
compose the data set used in the model. Combinations of these years are then compiled to
produce scenarios which represent a possible history of record. These scenarios consist of
one of the following combinations of wet, dry, and average years:

1. Three wet years followed by three average and three dry years.

2. Three dry years followed by three average and three wet years.
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3. Nine years in which the series one dry, one average, and one wet year is repeat

three times.

4. Similar to 3, but the series of one wet one average, and one dry year is repeated

three times.

There are several merits to the approach taken herein. Firstly, stochastic information
can be incorporated since each of the scenarios reflects a possible hydrological pattern.
Secondly, the size of the models is kept to a reasonable size. Finally, models are still of

deterministic type.

4.4 Optimization Results

Input all the hydrological data and demands data, above three models generate
corresponding policies for each of the hydrological scenarios, as shown in Graph 4.4, 4.5,
and 4.6.
1. Policies of MAXR Model

Figure 4.4 shows that the storage levels in most of the time periods are high (except for
dry years of scenario 1 and 2). That result occurs because the MAXR model is constrained
to have releases greater than the total water supply demands so the reservoir has to store
enough water. The second phenomenon that can be seen is that the scenario 1 and 2 result
in similar policies and so do the scenario 3 and 4. This similarity arises from the similarity
of the inflow sequence construction. Scenarios 1 and 2 have more restrictive combinations
of hydrological conditions (e.g., 3 wet or dry years come together consequently), while
scenarios 3 and 4 present less severe hydrological conditions (wet, average, and dry year
come alternatively). This phenomenon can also be seen in Figure 4.5 and 4.6,

The high levels of storage under the MAXR policies are neither good for reservoir
safety nor for recreation. In the Figure 4.4, the storage level in most of the summer months

is higher than the upper bound of preferred range (333 - 413 million cubic meters). Another
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disadvantage of high level policies is the larger evaporation losses since increased storage
implies increased reservoir surface area and resulting increased evaporation loss.
2. Policies of MINSRA Model

An apparent characteristic of the MINSRA policies (Fig. 4.5) is the large amplitude of
the operating policy trace curves (except for scenario 4). The storage level is high only in
summer season. In the rest of the times it is lower. These policies are more reasonable
because they only keep the storage level high in the summer season, which satisfies
recreation demands, and then release water to downstream users. In scenario 4, the storage
level for average years are high through out the whole year because the following year will
be dry year, so that the water is stored for next year. The storage level is lowered down
before early spring for coming flood season. This decreases the risk of flood and collapse
of the dam.
3.Policies of MINSRB Model

The policies for the MINSRB (shown in Figure 4.6) have the very similar
characteristics to the policies of MINSRA except for the dry years. It is understandable
because the only difference of the two models is that MINSRB model has storage targets
for whole year instead of only for the summer. The MINSRB model generates a very good
uniformity in the storage level, but obtaining this uniformity sacrifices the benefit for a dry
year. Any wetter year has a very limited ability to supply water for a subsequent dry year
since the water is released to lower storage level down to the target. That is why dry years

always have very lower storage levels. This certainly aggravates the shortage of water

supply.
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Chapter 5. Evaluation Of Operating Policies

Twelve policies have been generated arising from the combination of three models with
four scenarios. Each of the operating policies presents a specific consideration of the
objectives (defined by the objective function), the limits on the feasible space (defined by
the constraints), and the hydrologic condition (defined by the hydrologic scenario). From
the analyses of Section 4.4, some of the characteristics of each of the generated policies
could be determined, but these analyses are mainly qualitative. A more clear quantitative
analysis is still needed. For this purpose, a set of evaluation criteria must be selected, and
then based on these criteria, each of the policies must be evaluated in accordance with the
various aspects of the problem (such as water supply, flooding control, and meeting
recreational storage targets). The results of this evaluation will form the basis for final

policy selection.

5.1The Criteria of Evaluation
Before discussing the criteria, the definition of a violation should be established. The
target or threshold values for the three aspects (i.e., water supply, flooding control, and

meeting recreational storage requirement) can be summarized as:

target of water supply: WM+ WI+WQ-TR]

target of flooding control: flooding threshold flow;

target of storage (1): upper bound of preferred storage range for summer
season;

target of storage (2): lower bound of preferred storage range for summer
season.
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where
WM are municipal and industrial demands;
WI are irrigation demands;
WQ are water quality control (dilution) demands and cooling water withdrawal; and
TRI are the tributary inflows.
Define:
water supply violation (WS) as the deficit of the release relative to the water supply
target, or
WS = target of water supply - release (5.1)
flood control violation (FLD) as the excess of the release relative to the flood control
target, or
FLD = release - flood control target (5.2)

upper storage target violation (SU) as the excess of the storage level relative to the

upper storage target {storage target 1), or
SU = storage level - storage target 1 (5.3)
lower storage target violation (SL) as the deficit of the storage level relative to the lower
storage target (storage target 2), or
SL = storage target 2 - storage level 5.4)
The units of variables in Equation (5.1) through (5.4) are million m3. When any violation
occurs, the reservoir is in a failure state; otherwise it is in a satisfactory state.
For evaluating a policy, the relevant factors are (1) how frequent a year the violations

occur under that policy; (2) how large the violations occur under that policy; and (3) how

quick the reservoir recovers from the failures under the selected policy.
In this work three criteria are invoked to address these concerns. The first criterion,

Risk, measures the probability or the frequency of the reservoir being in a failure state.
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Risk = number of time periods during which violations occur (5.5)

total number of time periods in record

The second criterion is called Resilience which measures the ability of a system to
recover from failures. Resilience will be measured using a modified version of the

definition that Burn et al. (1991) used, resulting in:

Resilience =number of time periods during which violations occur (5.6)

the number of times the reservoir went into failure

The slight difference is, Burn et al. (1991) used inverse value of that used here, i.e.,
their Resilience is equal to 1/ Resilience of Equation (5.6). The physical information
included in both Resiliencies are equivalent.

The last criterion is vulnerability. It is a measure of the severity of violations. The sum

of the maximum violations of each failure sojourn forms the definition of this index giving:
Vulnerability = 3, maximum violation (5.7)

where n denotes the ith failure state.
When compared, the smaller the index values the better. In the ideal situation, no

violation would appear. Therefore, all of the criteria have optimal values of zero.

5.2 The Manner of Evaluation

The first step of the evaluation is to identify the violations or failures a policy causes,
and then to characterize and evaluate this policy by the violations or failures it causes. For
identifying failures, it is necessary to keep track of the performance of a reservoir system

which is following the policy being evaluated. Simulation is the most appropriate technique
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for doing this because it is able to reproduce a system's performance in detail. In this
work, two simulation models were developed. A monthly time step simulation model is
built as the main evaluation tool. This model calculates the values of the Risk, the
Resiliency, and the Vulnerability, and records the violations respectively, in terms of
meeting the water supply, the flooding control, and the storage target needs. The second
model is a daily time step model which examines the flooding situation in greater detail.
The daily model strengthens the evaluation function for the flooding control item of the
monthly time step model. This is necessary because the flooding is more a daily issue. In a
monthly time step model, daily floods are very likely being hidden by monthly flood
control index values. There could be some daily floods in a given month, but on the
monthly average level, no flood may appear. To expose the daily floods, a daily time step
simulation model is necessary.

Since the optimal operating policies generated from the optimization models are the
guidelines of reservoir operation, as opposed to real-time rules that the reservoir has to
obey, the storage level in any given month is not restricted to being exactly equal to the
policy storage level. Instead, the reservoir will be run in a reasonable manner under the
guidelines. To ensure reasonable operation of the reservoir, the following rules were built
into the simulation model.

1. Simulation rules for the summer season

During the summer, the storage level targets have higher priority than non-basic water
demands (i.e., water quality control and cooling water withdrawal). Therefore, when the
policy level is above the upper bound of the preferred storage range, the rules try to lower
the real storage level back into the range under the conditions of causing no downstream
channel flooding. When the policy level is beneath the lower bound of the preferred range,
the rules try to raise the actual level up into the preferred range while continuing to meet the
basic water supply demands (irrigation, municipal and industrial demands). When the

policy level is in the preferred range, the rules try to keep the storage at the policy level
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unless it causes either flooding or cannot meet water supply demands. In the case that
flooding occurs, the storage is allowed to go up to the upper bound of the preferred range.
In the case that water supply shortage happens, the storage is allowed to go down to the
lower bound of the preferred range.

2. Simulation rules for non-summer seasons

The water supply demands have the priority during this time of the year. After all of
these demands are satisfied, any remaining flexibility can be used to reach the policy level.
It should be noticed that in order to avoid emergency situations (e.g., dam may be
overtopped, or storage level may be lowered down to the dead storage level, or the basic
demands may not be met), these rules can be broken.

Since the daily model is used only for testing the flooding control performance of the
operating policies, it is only run during the flooding season comprising the late spring and
early summer (in Assiniboine River basin, this is April and May). The operation rules are
simply defined as (1) meet all water supply demands (because there is no storage target
during that time) and (2) minimize flooding.

The structures of monthly time step simulation model is described in Figure 5.1. For
the elaboration of Step 3, refer to Appendix C. The flow chart of the daily time step

simulation model is in Appendix D.

5.3 The Data Used in Simulation

The hydrological data used in the monthly time step model are the same type as those
used in the optimization models. However, in this case, the continuous series record is
input into the model instead of the record for selected representative years. The available
record is from 1971 (corresponding to the time the Shellmouth Reservoir was completed)
to 1987, giving a 17-year record.

A 17-year period is generally not considered to be a sufficiently lengthy time period for

38



Step | Hydrologic and demands data input

Step 2 Policy input

Step 3 Violation or failure identification

Step 4 Indices value calculation

Step 5 Indices value normalization

b

Step 6 Output violation and indices value

Figure 5.1 The structure of monthly time step simulation model
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examining a reservoir's performance under stochastic hydrological conditions.
Conventionally, the minimum record length is 30 years. If the actual record is not long
enough, an extension of the historic record may be necessary. There are many methods to
do this extension with random extension being one example. This method extends the
record in a totally random way. When the historic data record is too short to fit a stochastic
model, this is an attractive approach.

To extend historic records, a random generation model is used in this work to first
generate the type for each of the extended years (i.e., wet, average, or dry). The order of
these extended years is also randomly determined. Finally, samples from the actual historic
record are selected and allocated to the corresponding extended years. To avoid bias
associated with the particular generated record, seven sets of randomly generated data were
input to the simulation model and the median result, in terms of the performance measures,
was taken as the final result for this version.

On average, a random extended series has the same stochastic parameters as its parent-
sample does. For testing the robustness of the policies under different meteorological
patterns, another two input versions were prepared. These two new versions assume that
the meteorological patterns will be either wetter or drier than the historic period. The wetter
pattern is structured by taking two extreme dry years' records away from the historic record
and randomly extending the rest into 51 years; the drier pattern is structured by taking two
extreme wet years' records away from the historic record and randomly extending the rest
into 51 years.

These considerations result in four different arrangements of input data as following:

using actual historical record (the 17-year record);

using extended historical record (historical record is randomly extended into 51 years);

using extended historical record after two recorded extreme wet years are taken away;

using extended historical record after two recorded extreme dry years are taken away.
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5.4 The Identification of the Policies

All of the optimal policies obtained from the optimization models have three storage
traces; one for wet years, one for average years, and one for dry years. The input
hydrological record (historical or extended) is a mixture of all kinds of years. Therefore,
before the start of the simulation, a storage trace should be allocated to each year.
Obviously, this allocation depends on the forecasting for each year. Four forecasting
methods are designed to allocate policies:

1. Perfect forecasting. The steps involved are to first classify each of the historical years as
wet, average, or dry, using the same technique that was used in defining the three kinds of
hydrologically representative years (see Section 4.3.3). It is then necessary to assign
corresponding storage traces for each of the years (i.e., assign storage trace for wet year to
wet years and so on). This is equivalent to having a perfect forecast of the hydrologic
conditions. Each of the storage traces operates in the hydrological environment for which
the storage trace has been generated. Under this set of conditions, the policy should be able

to obtain its best performance.

2. Forecasting provided by the Water Resources Branch (WRB). Since this method is
currently used by the reservoir operator, it is a more realistic method. This method
forecasts the inflow from October up to early summer. (Early summer, according to WRB,
has no fixed definition. Generally, it means early May). From a rough study of the
hydrological record, it could be found that in the Shellmouth region, the hydrological type
of each year has an obvious relation with the spring and early summer inflow
characteristics (mainly the volume of the inflow). Therefore, at a satisfactory acceptance
level, it allows us to forecast the type of year according to the inflow volume for spring and
early summer. However, since only 10 years of forecasting information was obtained

(1980 - 1989), and since the other input data are available up to 1987, only eight years
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could be used. (i.e., 1980 to 1987).

3. Random forecasting. A random generation model is used to identify the hydrologic type
for a coming year, and then allocate storage traces according to the random identification.

4., Totally incorrect forecasting. In this approach, it is assumed that the forecast for the
extreme types of year is totally wrong (for instance, if the coming year is a wet year then
the forecast will assume dry year, or vice versa). An incorrect storage trace is therefore
allocated to each of the extreme years. This type of situation could occur if the forecasting
technique was not particularly good. By this way, the flexibility, or robustness, of the

policies is examined with respect to mis-specification of the type of hydrologic year.

Combined with the input data versions outlined above, a total of seven versions are

prepared for the simulation model:

1. using actual historical record (the 17-year record), and perfect forecasting;

2. using extended historical record after two recorded extreme dry years are taken
away, and perfect forecasting; the extended length is 51 years.

3. using extended historical record after two recorded extreme wet years are taken
away, and perfect forecasting; the extended length is 51 years.

4. using actual historical record (the 8-year record), and forecasting method of WRB;
5. using actual historical record, and random forecasting;

6. using extended historical record (historical record is randomly extended into 51
years), and perfect forecasting;

7. using actual historical record (the 17-year record), and totally incorrect forecasting,

5.5 The Results of Simulation
The simulation model gives two kinds of results, for all of the seven versions of input

arrangement, which are called the violation record and the indices values. The violation
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record is a record of the time the violations happened and the magnitude of violations. The
indices values are the calculated values of the Risk, the Resiliency, and the Vulnerability,
(defined as RK, RE, and VN in related graphs).

Figures 5.2 (a) - (d) show the comparisons of the indices values for Version 1 for the
three kinds of policies under the four hydrological scenarios, in terms of water supply
(WS), flood control (FLLD), and storage targets (STG, upper and lower). The results of the
remaining versions are in the Appendix E. From the physical meanings of these three
indices (Section 5.1), the smaller these indices values, or the shorter the bars, the better.

From Figures 5.2 (a) - (d) and Figures in Appendix E, the constancy of the results
among seven versions can be seen. For example, if one policy is better in one version than
others with respect to a certain aspect with a given scenario, it is better than others in all
seven versions under the same conditions. (The significance of this point will be discussed
later). This makes it possible to summarize the results using an example version. The actual
historical data and perfect forecasting version is chosen as the analysis base.

Figures 5.2 (a) - (d) display the characteristics of each of the policies in twelve aspects,
that is: four functions (water supply, flood control, upper and lower storage targets,
respectively) times three criteria (risk, resilience, vulnerability).

Figure 5.2 (a) displays the three criteria associated with water supply function (WS),
Figure 5.2 (b) displays the three criteria associated with flood control function (FLD), and
Figure 5.2 (¢) and 5.2 (d) display the three criteria associated with upper and lower storage
targets (STG), respectively. In each of the graphs, the results of each of the aspects are
ranked scenario by scenario. In each scenario, the policies derived from three optimization
models are displayed from left to right. Based on these three graphs, the following
observations are made.

(1). MAXR policies. These policies have better performance in water supply and lower
storage target violations because of the high policy storage levels which result in more

water available to meet the demands. This is indicated by the shorter Risk (RK), Resilience
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(RS), and Vulnerability (VN) bars under the MAXR model for water supply and storage.
But in return the policies of the MAXR model have almost exclusively the highest
violations in flood control and upper storage target.

(2). MINSRA policies. These policies seem to be the median of the MINSRB and the
MAXR models. Compared with the MAXR policies, they are better in flood control and in
meeting upper storage target; compared with the MINSRB policies, they are better in
meeting the lower storage target and in meeting water supply. The MINSRB model is
sometimes better than the MINSRA model in terms of Resilience of water supply. From the
definitions of Risk and Resilience, it is known that RK reflects the number of violations
that happened and RS can reflect the number and length of discrete failure states.
Therefore, a shorter RK bar and a longer RS bar here implies fewer but more concentrated
failures and vice versa.

(3). MINSRB policies. These policies have comparatively the lowest storage levels so
that they have the best characteristics in flood control and upper storage target violation.
But this advantage is obtained by sacrificing performance on the water supply function and
the goal of meeting the lower storage level target in summer.

Figure 5.3 summarizes the results of the daily time step model. As indicated before,
daily floods could be concealed by monthly flooding indices. Therefore, it is necessary to
examine the flood control characteristics by the results of daily time step model. The graph
shows that the MINSRB policies are still better according to the daily flooding and
accumulated excess deviations about upper storage target which is defined as the sum of all
of the daily excess deviations about the upper storage target. The MINSRA policies are
somewhat poorer, followed by the MAXR policies. This outcome agrees with the ranking
from the monthly time step model.

All of these observations coincide with the appearance of policy curves and the analyses

made in Section 4.4,
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Fig. 5.3 The results of daily simulation model.




5.6 The Stability of the Policies

The simulation results also tell us some other characteristics of the policies.

1. Climate condition change does not greatly affect the number and distribution of the
violations. This can be observed by comparing the results of version 2 (wetter), 3 (drier),
and 6 (historic). The magnitude of the bars of RK and RS are not significantly changed.
However, the magnitude of the water shortage should be smaller in wetter weather (water
supply bars of VN are obviously shorter under wetter climate condition). This results
implies that the policies are hydrologically stable, (i.e., the characteristics of policies,
shown through the performance of the reservoir, do not greatly vary with the change of the
hydrologic conditions).

2. The forecasting methods affect the performance of the policies. Table 5.1 displays
the relative accuracy of the various forecasting methods (assuming version 1 has the perfect
forecasting). In the Table 5.1, the extreme mis-forecasting means forecasting a wet year to
be a dry years, or vice versa; the common mis-forecasting means forecasting a wet or dry
year as an average year, or vice versa. This table indicates that the order of the relative
accuracy of various forecasting methods referring to version 1 is version 5, 4, and then 7.

3. Generally, different input versions (implies different operating conditions) result in
different violation magnitudes. However, the distribution of relative performance among
the policies of each versions are identical. This is the constancy observed in Section 5.5.
This indicates that the relative performance is inherent and true, or in other words, the
simulation model does explore the inherent characteristics of the policies.

It is still not possible, however, to tell which policy is best because of the obvious
trade-offs among the policies in connection with the twelve aspects. Therefore, the

multiobjective selection approach is necessary.
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Table 5.1 The Relative Accuracy of Forecasting Methods

number of
extreme mis-forecasting common mis-forecasting
version 1 0 0
version 4 0 8.5%
version 5 <2 (average) 0.5 (average)
version 7 12 (**

* The results of version 4 are based on ¢ight years data and prorated to the 17-year scale.
** Version 7 only relates the accuracy of the forecasting about wet or dry years. The forecasting about

average years is assumed always correct.
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Chapter 6. The Multiobjective Selection

In Chapter 5, twelve evaluation aspects were developed and the policies were evaluated
according to these twelve aspects. From these twelve aspects, it can be seen that the aspects
can be divided into two groups: (1) flooding and violation about the upper bound of
preferred storage range; and (2) violations about the water supply target and about the
lower bound of preferred storage range. The aspects in the first group imply the impacts
related to safety (i.e., safety of the dam and safety with respect to downstream flooding).
The aspects in the second group represent the impacts related to water supply and
recreation. Since the reservoir was initially built for flood control, it is reasonable to give
the aspects in the first group a higher priority and according to them, screen out those
policies which have the poorest index values. This is called the first screening step. From
the remaining policies, the best policy will then be identified. This is the second screening
step.

From Figures 5.2 and Appendix E, an almost dominated phenomena can be observed,
that is the policies of the MAXR model are inferior to the others, in terms of all of the
index values related with flooding and upper storage target. From the Figure 4.4 and
Section 4.4, the high violations about flood targets (both in the reservoir and downstream
channel) of the MAXR policies arise from the high storage levels. The high storage levels
arise from constraint Equation (4.9), which requires that the release meet all of the
downstream net demands. To achieve this, a large amount of water must be stored in the
reservoir, resulting in high storage levels. Since a high risk of flooding is not acceptable,
the MAXR policies are eliminated from further consideration.

This leaves the MINSRA and MINSRB policies. Figures 4.5 and 4.6 show that the
MINSRA and MINSRB models generate similar policies except in dry years. In addition,

Figure 5.2 and Appendix E show the trade-offs in terms of all of the twelve evaluation
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aspects. For further screening, a multiobjective model was developed.

6.1 Multiobjective Modelling

The second screening procedure employs a mathematic model called Discrete
Compromise Programming model.

Compromise Programming ranks the options according to their "distances" to the "ideal
situation”. For problem in this work, the "ideal situation" corresponds to the case of no
violations, and the "distance" to the "ideal situation" is measured by the recorded
violations. The common form of a Compromise Programming model is:

Ls = [Zl Ai*(Xi - Xoi)p](lfp)

(6.1)
where

Ls is the compromise distance measure;

X is the vector of violations;

X0 is the vector presenting ideal situation;

A is a parameter vector which presents the relative importance of different violations.

(Larger weights are assigned to the more important types of violations), and

p is an exponent parameter representing the preference of decision maker regarding the

magnitude of the deviations from the ideal situation.

Ls reflects all of the relevant characteristics of the evaluated polices. All of the options
are ranked according to the magnitudes of Ls, with a smaller value of Ls implying better
performance.

In this work, X is the deviation from the ideal situation, and therefore the X0 should be
zero. The Equation (6.1) reduces to

(t/p}

Ls = [, A7*X,; "] (6.2)
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To rank policies, not only the largest violations, but also the distribution of violations
and also the number of times the violations occurred should be considered. To do this, the
records of violations are used. The first step is to divide the violations into five classes and
place each of the violations into one of the resulting classes. For example, divide all
violations with respect to the water supply goal into five classes, from zero violation
through the maximum violation that occurred. Each class possesses an equal portion of the
maximum violation (20%, in this work). The next step is to locate all real violations into
these five classes and record the number of violations in each class. Only those numbers
are used to calculate the Ls values. By doing this, it is able to address the number of times
violations appeared (this is the numbers in all classes), the distribution of violations (the
five classes give discrete distribution of the violations), and the largest violations (the
violations in the top class). An additional merit of doing this is avoiding the difficulty
arising from the discrepancy of units of different kinds of violations. For instance,
violation about storage target could be an order of magnitude different from the violation
about water supply. In such a case, it is difficult to balance the violations' magnitudes and
the effect of the one which has smaller magnitude will be diminished when calculating the
Ls value.

Each of the five classes selected indicates a kind of deviations from the ideal situation.
To represent this discrepancy, different p values are assigned to each of the classes. The
larger the deviations, the larger the p values. The classes and corresponding p values are

shown below:
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Class violation range p value

1 0 - 20% of maximum violation 1
2 20% - 40% of maximum violation 2
3 40% - 60% of maximum violation 3
4 60% - 80% of maximum violation 4
b} 80% - 100% of maximum violation §

The parameter vector of weights, A, must also be determined. As mentioned above,
this weight reflects the relative importance of different kinds of violations. If the order of
relative importance associated with each aspect cannot be pre-determined, a sensitivity
analysis should be made, (i.e., change the weights assigned to each of the aspects and
determine a reasonable distribution of the weights). Five options for the weights were
designed for the sensitive analysis:

(1) assign a 70% weight to the water supply and 10% to the rest;

(2) assign a 70% weight to the flood control and 10% to the rest;

(3) assign a 70% weight to the upper storage target and 10% to the rest;

(4) assign a 70% weight to the lower storage target and 10% to the rest; and

(5) assign equal a weights to water supply, flood control, upper and lower storage

target goals.

These five designs have covered four extreme cases, (i.e., when the water supply
aspect, the flood control aspect, the upper storage target, or lower storage target,
respectively, are primarily concerned), and a median case, (i.e., when all of them are

equally concerned).
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Finally, the Compromise Programming model of this work becomes:

. k), (1/p(k)}
Ls = X, (% AFX p( )] P

} (6.3)
where

k denotes the violation classes.

6.2 Discussion of Results

Corresponding to each weighting vector, the model ranks the policies according to the
Ls values. The results are tabulated in Table 6.1. The policy ranked first has the smallest Ls
value, and so on.

The ranks can be seen to vary with changes to the weights. However, the
recommendation with four of the five weightings remains the same, that is the policy
derived from MINSRA model under scenario 3. With weighting vector 4, the
recommendation is MINSRA under scenario 2. It is reasonable to conclude that the
MINSRA policy under scenario 3 is the most robust one and should be recommended for
implementation.

An interesting observation from this table is that the policies generated under hydrologic
scenarios 3 or 4 occur more frequently in the top three ranks. The multiobjective selection
process compares not only the policies derived from different models, but also the
hydrologic scenarios under which those policies were derived. If a scenario is closer to the
real world hydrologic condition, the policies derived from this scenario should exhibit
better performance. Since the historic data record, or its extension, is used in the evaluation
process, this phenomenon infers that scenarios 3 and 4 are more realistic compared to
scenarios 1 and 2. This conclusion can be understood from the arrangement of the data of

these four scenarios. Three extreme years (that is scenario 1 or 2) appearing sequentially is
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Table 6.1 The Results of the Multiobjective Selection

Policy of
MINSRA

MINSRB

Scenario

—_— AW N

A W

1
1.77
1.84
1.28
1.78
2.05
2.06
2.05
2.05

Weight version
2 3
0.63 0.70
0.56 0.56
0.41 0.42
0.62 0.62
0.64 0.70
0.65 0.77
0.64 0.70
0.64 0.70

77

4
0.95
0.90
1.14
0.91
1.05
1.11
1.10
1.05

0.57
0.56
0.41
0.56
0.64
0.65
0.64
0.64



rare. A more frequent situation might be the alternative occurrence of wet, average, and dry
years.

Figure 6.1 displays the storage and release traces when the reservoir is operated
following the policy MINSRA under scenario 3, using historic data and perfect forecasting.
Observations from this graph include:

1. The actual storage trace follows the policy trace well except in a dry period (1980
through 1984). According to the definition of hydrologic years, this period corresponds to
average, dry, dry, average, and dry years. The storage trace comparison implies that the
policy is reasonable over the period of record.

2. The summer storage targets are satisfied in most years. Even during the dry period,
the preferred summer range is not obtained during only two dry years. In the remaining
three years, it is either met or very close to being met. In three wet years, the summer
storage levels are kept in the preferred range instead of above the range as dictated by the
policy.

3. In the whole operating period, there are only three flood events. These floods appear
during extremely wet years (1975, 1976, and 1979). From the storage trace, it can be seen
that in these years the summer storage levels are higher than the upper storage target,
implying that the reservoir does not have sufficient capacity to handle such a large event. In
other years, flooding has been effectively controlled.

4. The releases from the reservoir satisfy the water demands quite well. Most of these
demands are easily satisfied. Large releases only occur in early spring, or in the time
periods when a high storage level has to be lowered, as happens in the summer. The period
for high channel water level is from spring through to summer. For the rest of the time, the
releases are kept at a lower level. Water shortage is observed to occur only in dry years,

where most of the shortages occur during the dry period of 1980 through 1984,
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Chapter 7. Conclusions and Recommendations

This thesis has presented the development of a methodology for identifying operating
policies for a multipurpose reservoir. An application of this developed methodology to a
case study, based on the Shellmouth Reservoir, is also provided.

The methodology includes three steps:

1. The generation of optimal policies. Optimization models were formulated and solved
to determine operating policies. The operating policies for reservoir operation were
generated under various hydrological scenarios, by altering the input flow data to the
models.

2. The evaluation of the optimal policies. The generated policies were evaluated by
simulation, in terms of the risk, the resilience, and the vulnerability to violations of the
policies.

3. The selection of the best policy. A multiobjective model, the modified Compromise

Programming model, was used to fulfill this task. The selection was based on the
performance of allocating water to the users, preventing flooding, and maintaining storage
levels.

The first optimization model examined was a linear deterministic model (MAXR) which
had the objective function of maximizing the total release from the reservoir. This model
had the most restrictive constraints on the releases.

The second optimization model, the MINSRA model, was a linear Goal Programming
model. This model had explicit storage targets, besides the release targets, in its objective
function. Unlike MAXR model, it allowed the occurrence of the deficit deviations from the
release targets. But these deficits were minimized.

The third model (MINSRB) was a variation on MINSRA in which storage targets were

set for the whole year.
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All of three models were demonstrated to be able to generate long term optimal
operating policies for a multipurpose reservoir. The requirements of the reservoir system
can be efficiently incorporated in both objective function and constraints. From the analysis
conducted, the generated policies can be said to reflect the requirements of the reservoir
system.

Comparing Maximize Release model (MAXR) with Minimizing storage and release
deviation models (MINSRs), the former is inferior to the latter because of its higher risk of
both flooding and endangering the safety of the dam. This disadvantage comes from the
strictness of its constraints. Therefore, in similar application, the Goal Programming
approach is recommended.

The policies of MINSRB model for wet and average years are as good as those of
MINSRA model. But for dry years, MINSRB' policies are unreasonable.

According to the multipurpose selection results, the best policy for the given reservoir
is the policy generated from MINSRA model under scenario 3.

This thesis has demonstrated that a deterministic type model can also handle
hydrological uncertainty well. In this work, each hydrological scenario presents a possible
hydrological condition. Theoretically, many more scenarios can be constructed in order to
check all of the effects of hydrological uncertainty on the generation of the optimal policy.
But realistically, some of the reasonable conditions may be enough. In this methodology,
the reality of the scenarios are not judged by frequency analysis, but more
straightforwardly by their agreement with real world conditions. This judgement is carried
out in the multiobjective selection step. According to the results of the judgement, the most

realistic and efficient scenario is identified.

Recommendations

Hydrological scenarios were used to reflect the hydrological uncertainty. This improves
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the ability of handling stochasticity of a deterministic model. To examine the efficiency of
this approach, it would be desirable to compare these results with results from stochastic

optimization models.
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APPENDIX A. THE DERIVATION OF REGRESSIVE PARAMETERS FOR THE
GENERATION OF THE LOCAL INFLOWS
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APPENDIX A. THE DERIVATION OF REGRESSIVE PARAMETERS FOR THE
GENERATION OF THE LOCAL INFLOWS

To estimate the regressive parameters, a least square model is built:

Min %; (LINFE;; - LINF;)?

subject to
LINFE; = a;*INF4;; + b*INF5;; + d;
LINFE; > 0

where

LINFij is the real local inflow calculated by

LINF;; = INFE; - INF4;, - INF5;  (A.Q)

where

IN’FEij is the inflows recorded by station MEOO1 which is immediately downstream of
the Shellmouth Dam.

Others are as defined in Chapter 5.

The records of MDO010 are ignored because they are much smaller than that of station

MD004 and MDQOS.

Form this model, the regressive parameters are obtained as listed in Table A.1:
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Table A.1 Regressive Parameters

Month a b
Jan. 1.162

Feb. 2.01 0.03
Mar. 0.03 0.03
Apr. 0.03
May 0.255 0.964
Jun. 0.077 0.03
Jul. 0.265 0.235
Aug. 0.03 0.742
Spe. 0.03 0.169
Oct. 0.03 0.03
Nov. 0.03 0.2
Dec. 0.128
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1932.4
1174.2
4169.2
9658.7

4826.1
2629.2
088.9

1455.3
2237.4
1733.3
2228.1



APPENDIX B. THE IDENTIFICATION OF WET, AVERAGE, AND DRY YEARS
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APPENDIX C. THE FLOW CHART OF THE MONTHLY TIME STEP
SIMULATION MODEL: STEP 3
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RECORD WATER SHORTAGE
1000
§1=S0+F-R=~-E
N y
S sSU\P
R = R+S-SUP
@CAP N
Y COLLAPSE

ERFLD N |

Y

R = RFLD

S=50+F-R-E

RECORD FLOGD

S=S0+F-R-E

S0=S

CONTINUE THE CALCULATION

SUMMER:
R = Max {0, Min[ DM,
SO-SLO+F-E ]};

NON-SUMMER:
R = Max { 0, Min [D,
SO-SLO+F-E ]}

S=50+F-R-E

/ T ——
CR2D D
N

RECORD WATER SHORTAGE
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APPENDIX D. THE FLOW CHART OF THE DAILY TIME STEP SIMULATION
MODEL.
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INPUT DATA

| RPM = SO-SLO + F—Ev}-

0
N12 RPM>07

¥ 1190
R=0 ——
R=0]  mmeooytuss

S —— e
- N250 | GO RECURSIVE
v 130 S0 <SUP T E
RECORD
LR = RPIM | Y 150

SHOlRTAGE [ s1= F-EV-D+50 | SO=st
60 TO 100 @ 100:
v 180 S1=560 + F-R-EV
R=D RP=S1+D-5T6
GO TO 100
N210
RP > RFLD
Y 220
{R = RP | | S1= RP-RFLD+5TG J
l

GO TO 100

RP = RFLD

Y 240

] R = RFLD S| = RP+STG-RCAP
l o N2s0
GoTo foo  C_S1>SWP? >
v 260 R = RClAP
COLLAPSE RECORD FLOOD
 e—
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APPENDIX E. THE RESULTS OF SIMULATION: VERSION 2 THROUGH
VERSION 7.
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Version 7: use historic data and incorrect forecasting



