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ABSTRACT 

Arctic macroalgae (kelp) are critical primary producers, contributing significantly to a wide 

variety of ecosystem services. Kelp extent has been predicted to increase due to decreasing sea 

ice cover that increases light reaching the coastal ocean. However, climate change-induced 

factors, such as increasing coastal turbidity and glacier melt, could also impact kelp growth in 

the Arctic. This thesis examines the role that light and nutrient availability play in understanding 

kelp cover and depth extent. This study used GoPro videos to determine kelp cover and depth 

extent as well as macroalgae samples to determine the nutritive state of kelp within two 

Greenlandic fjords. Results reveal significant turbidity and nutrient gradients throughout the 

fjords. Where light was limited due to glacial discharge and resuspension of sediments, kelp 

growth at depth was limited; and where there was increased light availability, kelp cover was 

greater. Additionally, kelp located nearest the marine-terminating glacier had greater nitrogen 

concentration than kelp located further from the marine-terminating glacier or the land-

terminating glacier, revealing the influence of estuarine circulation on nutrient availability. 

Where light and nutrients were abundant, kelp biomass and subsequent production was greatest. 

Additionally, we concluded that sea urchin grazing provided an additional influence with light on 

kelp depth extent and distribution in both shallow and deep waters. These results are necessary 

and important to consider when assessing kelp distribution and change, both now and into the 

future.  
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CHAPTER 1.0: INTRODUCTION  

1.1 Mo&va&on 

The current warming of the Arctic Ocean and atmosphere is causing well-documented melt and 

retreat of sea ice, glaciers, ice sheets and permafrost (Bintanja, 2018; Jansen et al., 2020; 

Rantanen et al., 2022; Walsh, 2014). This decrease in sea ice cover/glacier extent and thickness 

has implications for primary producers, including kelp, potentially increasing the length of their 

growing season due to increased light penetration and therefore photosynthesis (Krause-Jensen 

& Duarte, 2014; Leu et al., 2015; Meredith et al., 2019; Windsor et al., 2015). Kelp play a 

significant role in the Arctic marine food web, providing a food source at the base of the food 

chain (Christie et al., 2009; Schoenrock et al, 2018). Additional services include provision of 

habitat and shelter through wave reduction, refuge from ultraviolet radiation and predators, and a 

function as blue carbon, through carbon sequestration and burial within the ocean floor (Christie 

et al., 2009; Krause-Jensen et al., 2012; Krause-Jensen & Duarte, 2016; Schoenrock et al, 2018). 

The rapid reduction of sea ice cover in the Arctic has the potential to allow for kelp to expand 

their distribution laterally and vertically due to increased light availability (Goldsmit et al., 2021; 

Krause-Jensen & Duarte, 2014). However, climate change also has the effect of increasing 

turbidity near rivers and glaciers and creating unstable shoreline that could counteract some of 

the predicted kelp expansion, potentially leading to shoaling depth limits (Bartsch et al., 2016; 

Bonsell & Dunton, 2018; Filbee-Dexter et al., 2019; Szeligowska et al., 2021). 

Therefore, to improve these kelp distribution predictions under a warming climate, it is important 

to better understand their response to environmental change. Influential factors such as light, 

nutrients, substrate, temperature, salinity and urchin grazing are all known variables of kelp 
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growth (Aumack et al., 2007; Blicher et al., 2007; Henley & Dunton, 1997; Filbee-Dexter et al., 

2022; Marambio & Bischof, 2021). However, there is still a knowledge gap as to how kelp may 

be affected by changes to these variables within complex fjord environments. The research 

presented in this thesis seeks to increase our knowledge of the drivers of kelp distribution in 

Arctic fjordic environments. By considering this, we will be better equipped to understand 

changes occurring in other coastal regions around the globe to predict long term changes at the 

ecosystem level and enable more effective marine protection strategies.  

1.2 Research Objec&ve 

It is suggested that kelp represent integrators of annual light and nutrient availability. Kelp cover 

and depth extent were analyzed within the Nuuk fjord system in Greenland, in relation to light 

availability, nutrient concentration, and kelp biochemical composition. The objectives of this 

thesis with their accompanying hypotheses are as follows:  

1) To classify kelp cover and depth distribution among Nuup Kangerlua and Ameralik 

Fjords.  

H: Stations in close proximity to the glaciers will have disproportionately less kelp cover 

and extent than stations located farther from the glaciers.  

2) To relate photosynthetically active radiation (PAR) availability in relation to turbidity 

and kelp distribution.  

H: The increase in kelp extent associated with an increasing open water period with light 

will be limited to areas of low turbidity, or little change to current turbidity levels.    
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3) To relate the nutritive status of kelp (carbon and nitrogen content) to the kelp distribution.  

H: All other things being equal, under greater nutrient supply kelp will have greater 

production (via growth and lower C:N ratio).  

While it is hypothesized that stations located nearest to glacier discharge will have 

disproportionately less kelp extent and cover verses stations farther from the glacier discharge 

due to higher turbidity and therefore light attenuation in the prior; it is suggested that kelp with 

greater nutrient access through glacial estuarine circulation will have lower C:N ratios.  

1.3 Thesis Structure 

This thesis is composed of four chapters in a sandwich style format. The introductory section 

states the significance of the research, the objectives, and outline of the thesis. Chapter two 

provides the necessary background and theory to provide a foundation of knowledge to 

understand the research contained within the thesis. Chapter three focuses on the thesis 

objectives where the influence of light and nutrient availability on kelp coverage and distribution 

are analysed. Additionally, regional comparisons of kelp distribution are discussed to better 

understand implications of climate change throughout the Arctic region. Background on the 

study location and sampling methods are provided within the manuscript. This work will be 

compiled into a manuscript and submitted for peer-review to the journal, Arctic Science.   

Reimer, J., Sejr, M.K., Singh, R.K., Bélanger, S., Winding M.H.S., & Mundy, C.J. 

Macroalgae distribution among varying glacial fjords as an indicator of light and nutrient 

availability. Arctic Science (to be submitted).  
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Lastly, chapter four provides a summary of the thesis, conclusions and recommendations for 

future work. Reference to literature is appended as the final pages of each chapter.  
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CHAPTER 2.0: LITERATURE BACKGROUND  

2.1 Introduc&on 

The vast underwater kelp forests from polar to subtropical coastlines provide extensive 

ecosystem services. These influential primary producers provide an important source of energy 

for higher up trophic levels and well as provision of habitat and shelter (Christie et al., 2009; 

Norderhaug et al., 2003; Norderhaug et al., 2005). Kelp growth and expansion in the Arctic is 

largely limited due to light and nutrient availability (Castro de la Guardia et al., 2023; Chapman 

& Lindley, 1980; Chapman et al., 1978; Codispoti et al., 2013). A background literature review 

is provided to introduce the reader to the subject of this thesis. I begin with a discussion 

describing the water masses and currents of the West Greenland region as well as describe fjord 

and glacier anatomy and general influence. I then provide background on kelp anatomy, 

ecosystem services, and the primary factors influencing kelp growth and expansion including 

various acclimation strategies. Lastly, I address the current state of kelp distribution around the 

Arctic, divided into the Canadian, Nordic and Greenland regions.   

2.2 Fjords and Currents  

2.2.1 West Greenland Currents and Water Masses 

Baffin Bay is characterized by its semi-enclosed basin and cyclonic circulation with input waters 

from the Arctic Ocean and the Northwest Atlantic (Hamilton & Wu, 2013). The West Greenland 

Current (WGC) flows along the West Greenland shelf (depth of 100-500 meters) into the Nuuk 

fjord system; which includes the two fjords focused on in this thesis, Nuup Kangerlua and 

Ameralik fjords (Myers & Ribergaard, 2013; Stuart-Lee et al., 2021). The top layer within Nuup 

Kangerlua is characterized by low salinities (<5) from fresh water glacial melt and land runoff. 

The intermediate layer is composed of cold subglacial freshwater that ascends upon release at 
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depth due to its low density, while ascending, it mixes with more salty waters which halts its rise 

(Juul-Pedersen et al., 2015; Mortensen et al., 2011). Beneath this layer is the sill water region 

formed by mixing water masses in the outer sill region. Lastly, basin waters inflow during the 

winter and spring with mixtures of coastal and subpolar waters (Mortensen et al., 2011). Within 

the Ameralik Fjord the upper water mass is composed of warmer, less saline Atlantic and 

Irminger Sea waters with additional freshwater coastal inflows from the presence of a land-

terminating glacial river (Stuart-Lee et al., 2021). Bottom waters of the fjord originate from the 

WGC Polar waters and are composed of cold salty water (Myers & Ribergaard, 2013; Ren et al., 

2009). 

2.2.2 Fjord/Glacier Anatomy and Influence  

Carved by glacial ice excavation, fjords are often considered the “transition” zone between 

terrestrial ecosystems and open ocean with additional cryosphere and atmospheric interactions. 

Therefore, fjords in mid to high latitude regions have received significant attention as an Aquatic 

Critical Zone due to their high vulnerability during climate fluctuations (Bianchi et al., 2020). 

Fjords are characterized by long, narrow, steep, deep and often sinuous estuaries, where salt and 

freshwater interact (Snedden et al., 2012).  

Glaciers can be characterized into two types. (1) Tidewater or marine-terminating glaciers have a 

terminus that extend out into the fjord waters. These glaciers produce much of their meltwater 

discharge near the sea floor, this freshwater of lower density rises, resulting in mixing and 

entrainment as it makes its way higher in the water column (Figure 2.1 a). Additionally, mass 

loss can occur through subaerial melting or calving events (Bianchi et al., 2020; O’Leary & 

Christoffersen, 2013). Estuarine circulation driven by density facilitates both horizontal and 
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vertical transfer of heat, nutrients and plankton throughout the fjord (Hopwood et al., 2018). (2) 

Land-terminating glaciers in contrast lack this circulation mechanism and meltwater is generated 

through subaerial melting, and therefore are characterized by more stratified water columns due 

to meltwater and sediment release into the surface waters (Bianchi et al., 2020; Meire et al., 

2017; Ren et al., 2009) (Figure 2.1 b). It is important to note that marine-terminating glacier 

retreat will eventually result in land-terminating glaciers, as is occurring in light of increasing 

Arctic temperatures (Torsvik et al., 2019).  

 

 

 

 

 

Error! Bookmark not defined.Figure 2.1. a) A vertical salinity profile through Nuup 
Kangerlua. Lake Tasersuaq (LT) and Narsap Sermia (NS) represent points of land-terminating 
and marine-terminating glacier input, respectively. b) A vertical salinity profile through Young 
Sound. Zackenberg River (ZR) and Tyroler River (TR) represent land-terminating glacier river 
inputs (Meire et al., 2017; CC by 4.0 https://creativecommons.org/licenses/by/4.0/). 

2.3 Kelp  

2.3.1 Anatomy  

Kelp, in the order Laminariales, are a marine primary producer that most often reside in regions 

of rocky substrate where they can attach their holdfast, often along shallow coasts (Bolton, 2010; 

Schiel & Foster, 2015). They can form large dense stands referred to as kelp forests. Of interest 

are the large brown algae which include dominant pigments of fucoxanthin and chlorophyll c 

(Garcia-Perez et al., 2022). Kelp are composed of a haptera or holdfast, finger like projections, 

anchoring the kelp to the ground; as well as a stipe (stem-like structure) and blade (lamina). The 
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meristem is the stipe/blade junction where much of the kelp elongation takes place (Figure 2.2; 

Schiel & Foster, 2015). Majority of carbon fixation occurs in the blade as opposed to the 

meristem region (Wiencke et al., 2006).  

Laminaria solidungula is the only kelp species truly endemic to the Arctic environment. Other 

kelp species that may reside in the north include Agarum clathratum, Alaria elliptica, Alaria 

esculenta, Alaria oblonga, Eualaria fistulosa, Laminaria digitata, Laminaria hyperborea, 

Nereocystis luetkeana, Saccharina latissima, Saccharina longicruris, Saccharina nigripes and 

Saccorhiza dermatodea (Filbee-Dexter et al., 2019; Scheschonk et al., 2019). 

Kelp have the ability to maintain blade tissue and persist throughout winter (unlike ephemeral 

pelagic and sea ice microalgae), magnifying its importance. A common species, S. latissimas, 

also known as sugar kelp, have large thin blades and long stipe between 0.5 and 11 m, resulting 

in a high canopy, allowing it to outcompete low lying species for light and nutrient absorption 

(Bolton, 2010; Dayton, 1985; Nielsen et al., 2014; Wernberg et al., 2019). S. latissima annually 

sheds its second blade which degrades in April after new blade initiation occurs in early 

December. Majority of its growth occurs in late winter through July, fueled in part by stored 

carbohydrates as well as light as it becomes more readily available as the winter sea ice begins to 

melt (Dunton, 1985; Henley & Dunton, 1995). An average lifespan for S. latissima is between 2 

and 5 years however other kelp species may live up to 10 years (Handå et al., 2013; Schaal et al., 

2012; Zhang & Thomsen, 2019).  

Another common species, Agarum clathratum, has similar anatomy to that of S. latissima, 

however, differences include, a shorter stipe of < 1 m, wide midrib, blades that are crinkled and 

become thicker with age, and a distinctive hole pattern (Figure 2.2) (Choi & Kim, 2012; Gagnon 
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et al., 2005; Wernberg et al., 2019). Being a low-lying understory and deep growing kelp species, 

A. clathratum is more shade-tolerant than other fast growing species such as S. latissima 

(Wernberg et al., 2019). Significant winter growth for both species gives a head start and 

therefore, competitive advantage over annual species that only start their growth in summer 

(Mann, 1973).  

Kelp reproduce by releasing spores which disperse by currents and internal waves before settling 

nearby on the sea floor (Dayton, 1985). Spore survival to gametogenesis can be limited by a 

range of factors including, temperature, light intensity, photoperiod, nutrient availability, sexual 

pheromones and culture density (Bolton & Levitt, 1985; Ebbing et al., 2020; Hsiao & Druehl, 

1971; Martins et al., 2017; Morita et al., 2003; Reed, 1990). Some kelp release spores at the top 

of their blade to increase distance of dispersal, while some release nearest the substratum to 

increase potential fertilization (Dayton, 1985). The spores then become male and female 

gametophytes whose sperm can fertilize the egg. A higher density of gametophytes has a greater 

chance for successful fertilization (Dayton, 1985; Schiel & Foster, 2015; Visch et al., 2019). 
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Error! Bookmark not defined.Figure 2.2. Diagram of S. latissima (left) (Modified image from 
Rowe-Jerome, n.d.) and A. clathratum (right) (Modified image from Saunders, 2023; © Saunders 
2023, with permission). 

2.3.2 Ecosystem Services 

Understanding kelp distribution becomes of increased significance when considering the value 

and ecosystem services that kelp forests can provide. Being a primary producer at the base of the 

food chain, kelp serve as a food source for many species, which in turn provide energy to higher 

trophic levels (Hynes et al., 2021; Lorentsen et al., 2010 Norderhaug et al., 2005). Kelp grazers 

include fish, crustaceans, mollusks, echinoderms and detritovores, many of which are of 

importance to the fisheries market by providing jobs, income and food for humans (Bologna & 

Steneck, 1993; Pineiro-Corbeira et al., 2022). Additionally, kelp farming is an increasing trend 

which allows kelp to be grown as a food source for humans and agriculture, as well as used as an 
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organic fertilizer (Erickson et al., 2012; Goecke et al., 2020; Lei, 2021; Meng et al., 2020; 

Thorsen et al., 2010; Zheng et al., 2016).   

Kelp provide habitat and shelter to a wide variety of species including fish, mammals and 

invertebrates (Christie et al., 2009; Lorentsen et al., 2010). By absorbing and decreasing the 

influence of waves, kelp provide refuge from open waters and predators while also decreasing 

land erosion (Eckman et al., 1989; Loevas & Torum, 2001). Their large canopy can provide 

shade for creatures against harmful ultraviolet radiation as well as serve as important nursery 

grounds (Teagle et al., 2017).  

Kelp also play a significant role in nutrient cycling as well as bioremediation, through the 

transfer and exchange of inorganic and organic matter, which is imperative to keep ecosystems in 

equilibrium (Eger et al., 2023; Hardison et al., 2010). Furthermore, kelp have the ability to 

sequester surface ocean carbon dioxide to the benthic environment, serving an important function 

as blue carbon and regulating pH levels to benefit calcifying species (Krause-Jensen et al., 2015). 

Once dislodged from their original coastal environment due to storms and strong currents, kelp 

may float to open seas, encounter little disturbance from predators, and subside to the deep ocean 

floor (Krause-Jensen et al., 2012; Krause-Jensen & Duarte, 2016; Queiros et al., 2019).   

2.3.3 InfluenAal Factors of Kelp Growth 

Light and Turbidity  

Light availability is the main limiting factor for primary production in the Arctic (Codispoti et 

al., 2013; Henley and Dunton, 1997). This is accentuated due to sea ice cover and the extreme 

solar cycles experienced in the region, making photosynthesis near impossible throughout winter 

(Tremblay & Gagnon, 2009). As annual sea ice cover decreases with a warming environment, the 
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associated increase in open water periods with light will increase light-limited photosynthesis 

that could potentially intensify kelp production and depth extent (Clark et al., 2013; Krause‐

Jensen et al., 2014. Krause‐Jensen et al., 2019). In fact, the number of open water days was 

observed to be the best predictor of kelp distribution along an Arctic latitudinal gradient in 

Greenland (Krause-Jensen et al. 2012). Filbee-Dexter (2022) also detected increased kelp 

biomass with reduced sea ice cover. Furthermore, Castro de la Guardia et al. (2023) found that a 

longer open water period with light led to deeper growing kelp. However, these relationships do 

not consider changes to turbidity. Castro de la Guardia et al. (2023) highlighted 2 locations; 

Nuuk and Itilleq, that did not experience the same relationship with light as the other Arctic 

regions. These locations had a long open water period with light but a more shallow depth extent. 

I suggest that the dissimilar pattern detected at the Nuuk and Itilleq stations are linked to higher 

suspended sediment in these regions. For instance, decreasing sea ice cover and glacier extent 

with increased precipitation could enhance erosion and run-off, leading to greater re-suspension, 

turbidity and thus light attenuation within coastal regions. These changes will act to decrease 

light availability and therefore photosynthesis with depth due to particulate absorption and 

scattering of light. Therefore, increasing turbidity may result in decreased kelp depth 

distributions despite longer open water periods with light.  

As previously mentioned, melting marine-terminating glaciers can input freshwater at depth, 

causing buoyant plumes containing glacial discharge. These plumes can be extremely turbid in 

nature and limit light penetration at the depth of the plume once it reaches neutral buoyancy 

depth (when plume density equals ambient density) or maximum height depth (when plume 

vertical velocity equals zero) (Baines, 2002). These plumes may not always reach the surface and 

may be more spatially distributed, and therefore can limit light penetration at various depths in 



 16 

the water column (De Andrés et al., 2020; Slater et al., 2017). Land-terminating glaciers on the 

contrary release glacial discharge along the land surface (Figure 2.3), verses at depth below a 

floating ice shelf, limiting light availability even at shallow depths (Hopwood et al., 2018; Sole 

et al., 2011; Spurkland & Iken, 2011; Szeligowska et al., 2021). These plumes from both marine- 

and land-terminating glaciers can have negative effects on the benthic environment, not only 

through limitation of light, but also limiting nutrient uptake by burial, or unstable slopes that 

could limit kelp hold-fast securement (Farrow et al., 1983; Lyngby & Mortensen, 1996; 

Spurkland & Iken, 2011).  

A study by Dunton (1985) found that S. latissima undergoes significant growth from April to 

July when light availability increases, due to decreasing sea ice cover. Since light availability is 

greatest in summer, much photosynthesis occurs at this time and is stored as carbohydrate 

reserves which can be used to fuel growth throughout the year (Henley & Dunton, 1995). 

Intensified sediment discharge increasing light attenuation near glaciers may lower rates of 

photosynthesis and subsequent decrease of carbon stores, limiting growth throughout the year 

(Aumack et al., 2007; Swanson & Fox, 2007). This is likely to restrain kelp expansion near high 

turbidity areas including near sedimentary depositing glaciers (Filbee-Dexter et al., 2019; 

Holding et al., 2019; Huovinen et al., 2020; Krumhansl et al., 2014).  

Cold water kelp have an estimated minimum light requirement of growth between ~30 and 96 

mol photons m-2 yr-1 (Bartsch et al., 2016; Borum et al., 2002; Castro de la Guardia, 2023; 

Chapman & Lindley et al., 1980; Dunton, 1990). Some kelp use shade adaptation strategies to 

allow deeper penetrating kelp higher photosynthetic efficiency in negligible light conditions 

(Blain & Shears, 2019; Borum et al., 2002; Wiencke et al., 2006). Such strategies include 
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increasing the quantity of photosynthetic pigments to allow for more efficient carbon fixation 

(e.g., chlorophyll a, chlorophyll c, fucoxanthin; Blain & Shears, 2019; Gómez et al., 2009). 

Timing of growth and lowering rates of respiration during cold winter months are both useful 

strategies. Maximum growth in late winter/spring can be fueled using carbohydrate reserves 

accumulated from the preceding summer and also take advantage of more abundant nutrient 

availability during the winter (Dunton, 1985; Henley & Dunton, 1995). While the maximum rate 

of photosynthesis often decreases within light-limited conditions, the aforementioned 

photoacclimation strategies increase kelp photosynthetic efficiency by enhancing their ability to 

capture and use photons, thus, optimizing thallus growth rates and survival (Blain & Shears, 

2019).  

It must also be mentioned that shallow water kelp receive high light penetration and are 

restricted by possibility of oversaturation. These kelp can exhibit physiological strategies to 

avoid photo-inhibition through the addition of high light quenching pigments (e.g. xanthophyll; 

Borum et al., 2002; Gómez et al., 2009; Ralph & Gademann, 2005; Rodrigues et al., 2000).  
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Figure 2.3. EOSDIS NASA worldview photo (July 27, 2022) of the Nuuk Fjord region 
emphasizing sedimentary influence from land-terminating glaciers (white initials), Saqqap 
Sermersua (SS), Kangilinnguata Sermia (KS) (drains from the GrIS), Qamanaarsuup Sermia 
(QS) and Naajat Kuuat (NK). Marine-terminating glaciers (black initials) include Narsap Sermia 
(NS), Akullersuup Sermia (AS) and Kangiata Nunaata Sermia (KNS). 

 

Nutrients and Mixing 

In addition to light, nitrate is recognized as the main yield-limiting nutrient for marine primary 

production in the Arctic (Codispoti et al., 2013; Henley & Dunton, 1997; Peters et al., 2019; 

Rugiu et al., 2021; Tremblay et al., 2015). New nutrients are supplied to the Arctic from rivers 

and currents originating from bordering seas. Nutrients are further mixed into surface waters 

through internal wave mixing, storms, coastal mixing caused by variation in bathymetry (e.g. 

fjord sill/glacier upwelling), and convection which effectively disperses a strong halocline. Due 
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to increased strength and frequency of storms and reduction of sea ice beyond the shelf break, 

mixing and halocline disturbance are predicted to increase, potentially increasing nutrient supply 

to surface waters (Hopwood et al., 2018; Schiel & Foster, 2015; Tremblay & Gagnon, 2009). 

However, this may be balanced by stratification from increased melt and freshwater run off, 

impeding vertical nutrient supply (Moore et al., 2013; Sallée et al., 2021).  

Marine-terminating glaciers are found to support greater primary production within their fjord 

versus that of land-terminating glacier fjords due to freshwater glacial melt release hundreds of 

meters below the water’s surface driving fjord-wide circulation. Rising glacier freshwater melt 

drives entrainment of nutrient filled waters from the bottom ocean layer, providing access to new 

nutrients in the euphotic zone throughout the summer (Hopwood et al., 2018; Magorrian & 

Wells, 2016; Meire et al, 2017; Mortensen et al., 2011). This circulation also increases nutrient 

availability by reducing stratification in the surface layers (Cape et al., 2019; Meire et al, 2017; 

Spurkland & Iken, 2011; Szeligowska et al., 2021). In contrast, land-terminating glaciers lack 

this circulation mechanism and are more heavily influenced by river discharge where high 

turbidity and increased surface stratification can decrease vertical mixing, decreasing benthic 

algal photosynthesis via nutrient and light limitation (Ribeiro, et al., 2017; Szeligowska et al., 

2021).  

These nutrient rich waters found among marine-terminating glaciers can influence kelp 

production, and therefore, greater nutrient availability through circulation with minimal turbidity 

could result in increased kelp in these regions (Aure et al., 2007; Henley & Dunton, 1997). We 

can note the internal kelp nitrogen concentration (% dry weight) for maximum macroalgae 

growth is ~1.7%, with a critical minimum for growth at 1% (Henley & Dunton, 1997; Pedersen 
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& Borum, 1996). Increased nitrogen supply and absorption can support greater chlorophyll 

production within the kelp and therefore photosynthetic activity (Chapman et al., 1978; Rugiu et 

al., 2021). Subglacial mixing is not only expected to increase macroalgae production, but also 

phytoplankton production due to increased access to nutrients within the photic zone (Aure et al., 

2007; Juul-Pedersen et al., 2015; Meire et al., 2017). Amplified phytoplankton production could 

have negative implications for resource availability for benthic species (Krause-Jensen & Sand-

Jensen, 1998; Lorenzen, 1972; Markager & Vincent, 2001).  

Nutrient uptake by kelp can be influenced by faster water motion via minimizing the boundary 

layer between kelp and water for more efficient diffusion of nutrients (Hurd, 2017; Hurd, 2000). 

Additionally, water motion via drag forces may intensify productivity by increasing dissolved 

inorganic carbon uptake (Hurd, 2017). Water mixing in the Arctic near polynyas and tidal 

currents can indirectly increase kelp production by increasing annual light available for 

photosynthesis, in areas that otherwise would have been sea ice covered (Bluhm et al., 2022). 

Low canopy kelp species such as A. clathratum and L. digitata are better equip to experience 

wave surges than high canopy kelp which may experience breakage at high velocities 

(Kawamata, 2001; Kraemer & Chapman, 1991).  

Functioning of the kelp, including photosynthesis, acclimation strategies and growth all rely on 

the ability to acquire nitrogen, which is limited in the Arctic. Therefore, some acclimation 

strategies have been acquired. Some Arctic kelp have the ability to store nitrogen when ambient 

levels are high; often in winter, and access those reserves later on for growth, similar to the 

process of using stored carbon reserves for growth (Chapman & Lindley, 1980; Dunton & Schell, 
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1986). Additionally, kelp internal nitrate reserves can be supplemented through the use of labile 

organic nitrogen compounds (Korb & Gerard, 2000).  

Substrata 

Kelp are often found on rocky substratum, including bedrock, boulders, cobles or biogenic 

material, such as shells or muscles where they can attach their holdfast securely (Wernberg et al., 

2019). However, some kelp are able to attach to smaller pebbles and even sand; for example, S. 

latissima, L. solidungula, L. digitata, D. aculeata and A. esculenta 	were observed growing on 

both rocky and sandy substrate, an advantage over other species such as A. clathratum which 

more frequently only grow on rocky substrate (Filbee-Dexter et al., 2022; Hop et al., 2016; 

Spurkland & Iken, 2011). Therefore, substrate can limit kelp species diversity (Spurkland & 

Iken, 2011). 

However, kelp growing on sandy substrate and more sedimentary environments can face 

challenges. For example, kelp with a less secure holdfast are more prone to detachment as the 

result of unstable slopes resulting in soil creep or from storms and waves, with increased 

significance as decreasing sea ice exposes kelp to such affects (Farrow et al.,1983; Filbee-Dexter 

et al., 2022; Filbee-Dexter & Scheibling, 2012). Additional challenges of sedimentary 

environments include burial which can limit carbon and nutrient availability and limit kelp 

recruitment (Devinny & Volse, 1978; Lyngby & Mortensen, 1996; Mohr et al., 1957).  

Temperature and Salinity 

Kelp are predominantly found in cold-temperate and polar waters. L. solidungula has a  

temperature growth optimum in waters of 5 to 10°C and S. latissima in 10 to 15°C (zoospore 

germination optimum between 2 and 12°C), however Arctic kelp can be found in a wide range of 
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temperatures, between -1.5 and 20°C (Gomez et al., 2009; Müller et al., 2008; Wernberg et al., 

2019; Wiencke et al., 2006).  

To combat the cold harsh environment, evolution of cold shock and anti-freeze proteins allow the 

photosynthetic electron transport chain to function at near freezing temperatures. Accumulation 

of unsaturated fatty acids prevent stiffening of membrane lipids (Breeman, 1988; Fernández et 

al., 2020; Gómez et al., 2009; Wiencke et al., 1994). Photosynthesis in light limiting conditions 

takes advantage of low temperatures to reduce respiration to maintain net carbon gain (Henley & 

Dunton, 1997; Scheschonk et al., 2019). These adaptations have allowed kelp to photosynthesize 

similarly in 5°C and 15°C waters (Davison et al., 1991). 

Increased warming is predicted to result in a poleward migration of kelp species (Goldsmit et al., 

2021) and has already been observed (Koch et al., 2013; Wernberg et al., 2011). While species 

such as S. latissima may benefit from a small increase in temperature, endemic species such as L. 

solidungula could see a more constricted distribution. The distribution of A. clathratum appears 

to be expanding more northward due to its eurythermic and low light adaptations (Duarte et al., 

2018; Filbee-Dexter et al., 2022; Goldsmit et al., 2021; Simonson et al., 2015). Temperature may 

also indirectly affect kelp by affecting their coastal habitat through erosion, sea ice/glacial melt 

and freshwater influence, which have been shown to influence kelp distribution (Marambio & 

Bischof, 2021).  

The Arctic experiences strong salinity changes and gradients due to freshwater input from rivers, 

glaciers and increasing precipitation. Although kelp tend to have limited survival and recruitment 

in low salinity regions, they can potentially adapt. Mannitol, a product of photosynthesis, 

regulates kelp to reduce osmotic stress by maintaining intracellular homeostasis (Diehl et al., 
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2020; Iwamoto & Shiraiwa, 2005; Kirst, 1990). Goldsmit et al. (2021) suggests increasing 

temperature and decreasing salinity to be two of the three main factors regulating kelp 

distribution in the Arctic. S. latissima spore settlement was found to be greatest under cooler 

temperatures and high salinity (9°C/31) compared to warmer temperatures and low salinity 

(12°C/26) (Lind & Konar, 2017). However, S. latissima survives better under low salinity 

pressures than does A. clathratum, with peak occurrence and cover around 29 and 31, 

respectively (Goldsmit et al. 2021).  

Grazing Pressures  

Kelp supply food to a wide range of grazing species including amphipods, gastropods, 

echinoderms, decapods and fish species (Christie et al., 2009; Dayton, 1985; Harris et al., 1984; 

Leonard, 1994). Kelp experience some of the strongest grazing pressures from sea urchins, 

particularly Strongylocentrotus droebachiensis which is dominant in Arctic environments 

(Blicher et al, 2007). Intense urchin grazing has the potential to destructively graze away all kelp 

in an area, creating urchin barrens (Filbee-Dexter & Scheibling, 2017; Ling et al., 2009). Sea 

urchin abundance is associated with presence of hard substrate and food supply (Bluhm et al., 

1998; Hop & Wiencke, 2019). Their diets are composed of dominantly fresh algae or detritus. 

Blicher et al. (2007) observed a decline in growth performance of S. droebachiensis along a 

south-north gradient in Greenland, corresponding to the length of the open water period and 

subsequent food availability (Blicher et al, 2007). In addition to food and substrate, there are a 

wide range of factors that may contribute to high urchin density; for example, a decline in urchin 

predators, high recruitment during favorable environmental conditions, higher grazing in warmer 

temperatures and an increase in range expansion due to climate change (Bernstein et al., 1981; 

Himmelman & Steele, 1971; Ling et al., 2009; Mann et al., 1984; Sivertsen et al., 2006).  
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Urchins have been found to have highest densities in shallow depth limits, from 1 to 11.4 m in 

Disko Fjord as well as other areas of Greenland (Krause-Jensen et al., 2012; Krause-Jensen et al., 

2019). While off the eastern coast of Canada, urchin dominance was found between the depths of 

40 and 85 m with presence down to 140 m (Filbee-Dexter & Scheibling, 2017). An acclimation 

strategy unique to A. clathratum is their ability to produce and release phenolic compounds that 

detour urchin grazing. This gives A. clathratum a competitive advantage over other species, such 

as S. latissima, which are more susceptible to grazing (Gagnon et al., 2005; Vadas, 1977).  

2.4 Pan-Arc&c Kelp Distribu&on 

With Arctic coasts responsible for one-third of the world’s total coastline, there is considerable 

habitat for kelp growth to occur (Figure 2.4) (Filbee-Dexter et al., 2019; Lantuit et al., 2012; 

Piepenburg, 2005). Various regions of the Arctic reveal differences in kelp distribution and will 

be categorized below into sections of Canadian, Nordic (including; Denmark, Norway, Iceland) 

and Greenlandic Arctic regions according to the AMAP boundary line (observed in Figure 2.4). 
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Figure 2.4. Pan-Arctic kelp distribution within the AMAP Arctic boundary line. Kelp 
observations shown in red (Reprinted from Arctic kelp forests: Diversity, resilience and future, 
172, Filbee-Dexter, K., Wernberg, T., Fredriksen, S., Norderhaug, K. M., & Pedersen, M. F., 
page. 3, © 2019, with permission from Elsevier). 

2.4.1 Canadian ArcAc 

The Canadian Arctic holds 10% of the World’s coastline, making it a potentially significant 

contributor to Arctic kelp growing along near-shore environments (Filbee-Dexter et al., 2022). 

Eastern Canadian Arctic surveys described by Filbee-Dexter et al. (2022) revealed the most 

dominant kelp species to be A. clathratum, found frequently at more northern sites, while S. 

latissima and L. solidungula were more numerous at southern stations where light availability 

was greater due to less sea ice. Average total kelp cover was 40.4% (± 29.9% SD), with dominant 

coverage at depths 10 to 15 m. Using the dataset reported in Filbee-Dexter et al. (2022) to 

develop a predictive based model, Goldsmit et al. (2021) determined additional factors impacting 

growth and distribution including temperature and salinity. Along depth transects perpendicular 
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to shore, kelp cover around Southampton Island increased down to 20 m and decreased down to 

50 m (Castro de la Guardia et al., 2023). The Canadian Archipelago kelp distribution had similar 

species and depth extent, with greatest coverage from 10 to 30 m with a maximum depth of 40 

m. At the 10 to 15-m isobath, Filbee-Dexter et al. (2022) reported high cover of S. latissima, L. 

solidungula and A. esculenta observed among sandy or pebble substrate, whereas A. clathratum 

dominated rocky substrate. Using the depth distribution dataset, increased open water days with 

light was the strongest indicator for kelp growth (Castro de la Guardia et al., 2023).  

Kelp biomass varies regionally, as opposed to latitudinally, suggested to be because of 

convoluted coastline, variation in substrata, low saline inputs, suspended sediments and complex 

mixing. Nutrients in the surface waters are low and have been negatively correlated to kelp 

abundance (Filbee-Dexter et al., 2022). However, Bluhm et al. (2022) observed higher kelp 

density related to strong tidal currents, which was linked to greater nutrient access and therefore 

highlights the need to improve our knowledge on this aspect of growth. It is significant to note 

that the southeast coast of Canada has extensive sea urchin barrens with little vegetation present 

(Filbee-Dexter et al., 2022). 

2.4.2 Nordic ArcAc 

The most dense kelp forests of the Nordic countries are found along the coasts of Norway and 

southern Iceland; with kelp appearing on all rocky coastline including eastern Svalbard, and the 

Faroe Islands (Kvile et al, 2022). The Norwegian coast experienced a S. latissima crash in the 

1990’s likely due to the effects of heat stress. While some areas have recovered and been 

repopulated, the majority of once forested S. latissima areas have not recovered (Moy & Christie, 

2012; Sogn Andersen et al., 2019). The coasts of Kongsfjorden are composed of both hard and 
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soft bottom with the presence of glacial fjords. In glacial fjords such as Kongsfjorden, Hop et al. 

(2016) found an increase in kelp biomass gradients from inner fjord to outer fjord. Biomass was 

related to distance and depth from the inner fjord. High turbidity near glacier outlets minimized 

kelp biomass in these regions; this is similar to other fjord systems which have recorded a 

gradual shift in kelp zonation towards shallow depth limits (Bartsch et al., 2016). Only S. 

latissima was found to survive on sandy substrate deep in the fjord. At glacier sites S. latissima 

and L. digitata dominate, at non glacier sites there was additional coverage of A. esculenta 

(Ronowicz et al., 2020). Similar to other regions of the Arctic, increased kelp occurs where there 

is a decrease in sea ice with elevated temperatures (Hop et al., 2016; Filbee-Dexter et al., 2022; 

Krause-Jensen et al., 2012). In addition to these variables, Kvile et al. (2022) found kelp to 

favour depths less than 30 m and higher wave fetch.  

Sea urchins do persist around areas of the Nordic Arctic, favoring high latitude regions (67.5°N 

and further north), shallow waters and low mean summer temperatures. Additional factors for 

urchins in this area include low maximum and high minimum current speeds and low wave 

exposure. Of note, lower urchin densities can favor kelp recovery (Fagerli et al., 2013; Rinde et 

al., 2014).  

2.4.3 Greenland  

Kelp follows a decrease in biomass and extent from south to north (64°-77°N) along the 

Greenland coast due to sea ice cover and warmer waters (Krause-Jensen et al. 2012). Greenland 

is characterized by fjords and glaciers and experiences high spatial variability among glacier-

induced turbidity plumes that can limit primary production in some regions, where clearer waters 

in other areas allow for kelp growth (Hudson et al., 2014; Lund-Hansen et al., 2018; Stuart-Lee 
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et al., 2021). As mentioned previously, glacier fjords are unique in their ability to limit primary 

production through turbidity, yet can also increase it via estuarine circulation and upwelling of 

nutrients (Cape et al., 2019; Meire et al., 2017). Due to thick sea ice and ice scour throughout the 

year, Young Sound fjord has low kelp biomass with a depth extent down to 20 m (Borum et al., 

2002). Similarly, Nuup Kangerlua fjord has greatest observed kelp density from 0 to 10 m 

(39.6% average cover) and subsequently decreasing from 10 to 20 (22% average cover) and 20 

to 30 m (7.2% average cover) (Ager et al., 2023). Disko Bay, Greenland had kelp growing down 

to 61 m and even deeper further offshore. These sites are characterized by clear waters with 

rocky substrate and low urchin density (Filbee-Dexter, 2019). In addition to turbidity influence, 

urchins are also present throughout the Greenland coastline (Blicher et al., 2007). Therefore, 

some kelp growth patterns can be explained more regionally as opposed to latitudinally.  
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CHAPTER 3.0 MACROALGAE DISTRIBUTION AMONG VARYING GLACIAL 
FJORDS AS AN INDICATOR OF LIGHT AND NUTRIENT AVAILABILITY 

 
This paper was prepared for submission to peer review in Arctic Science. The work represents 

the core data chapter of my thesis and as first author, it was conducted, analysed, and reported by 

myself.  

 

Reimer, J., Sejr, M.K., Singh, R.K., Bélanger, S., Winding M.H.S., & Mundy, C.J. 
Macroalgae distribution among varying glacial fjords as an indicator of light and nutrient 
availability. Arctic Science (to be submitted).  

ABSTRACT 

Macroalgae play an important part in the coastal ecosystem as a key food source, provision of 

habitat for a wide variety of species, and sequestering carbon to the bottom of the ocean. 

Previous studies suggested that the climate change-induced decreasing sea ice cover in the Arctic 

is expected to increase kelp distribution. However, warming temperatures also can result in 

increased glacier melt, runoff, and coastal turbidity that will likely have a negative influence on 

kelp distribution. In this study we investigate how glacier-induced turbidity and nutrient 

dynamics could influence the proposed kelp expansion. We analyzed the underwater light and 

nutrient environment in relation to coverage and depth extent of kelp forests in the Nuuk, 

Greenland fjords. Reduced light intensities were observed with increasing proximity to glacier 

fronts, with large subsurface sediment plumes at > 10 m depths within a marine-terminating 

glacier fjord (Nuup Kangerlua), and at the surface of a land-terminating glacier fjord (Ameralik). 

Light availability explained up to 56% of observed kelp coverage. Nutrient availability only 

appeared to influence kelp nearest to the marine-terminating glacier front where kelp nitrogen 

content was significantly greater relative to other areas, likely due to the upwelling circulation of 

the fjord. Additionally, high urchin density near the entrance of the glacier fjords suggested an 
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influence on kelp depth, which confounded the relationship between light availability and kelp 

depth extent. We conclude that turbidity, via light limitation, and urchin grazing can counteract 

the expansion of kelp under a decreasing sea ice cover. However, areas with significant nutrient 

availability sustained by marine-terminating glacier upwelling are suggested to allow for 

significant kelp production above subsurface turbidity plumes. This greater production is likely 

to decrease with the retreat of marine glacier termini onto land.  

3.1 INTRODUCTION  

Climate warming in the Arctic is occurring two to four times faster than the global average 

(Bintanja, 2018; Jansen et al., 2020; Rantanen, et al., 2022; Walsh, 2014). Intimately linked to 

this warming is a decrease in sea ice cover, both in extent and thickness, prompting an increase 

in marine pelagic primary production (Arrigo & Van Dijken, 2015; Stroeve et al., 2014). 

However, changes will not be limited to phytoplankton, with predicted impacts on ice algae as 

well as benthic macroalgae (Krause-Jensen & Duarte, 2014; Leu et al., 2015). Though often 

overlooked, benthic macroalgae, specifically kelp, are extremely influential primary producers in 

coastal ecosystems. Kelp support a portion of the Arctic marine food web (Christie et al., 2009; 

Krause-Jensen & Duarte, 2016; Schoenrock et al, 2018), while playing a vital role for other 

organisms via provision of habitat and shelter, as well as regulation of pH levels to benefit 

calcifying species (Schoenrock et al, 2018). By decreasing wave action and providing shade 

against ultraviolet radiation, kelp forests offer refuge to a wide variety of species (Christie et al., 

2009). Through the sequestration of surface ocean carbon dioxide to the bottom ocean, kelp may 

also serve an important function as blue carbon. For example, kelp often become dislodged from 

their original coastal environment due to storms and strong currents where they can float to open 

seas, encounter little disturbance from predators, and eventually subside to the deep ocean floor 
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(Krause-Jensen et al., 2012; Krause-Jensen & Duarte, 2016). The rapid thinning and retreat of 

sea ice cover in the Arctic region has led to the prediction for kelp to expand their distribution 

laterally and vertically due to increasing light availability (Krause-Jensen & Duarte, 2014). 

However, increasing turbidity near rivers, unstable shoreline and melting glaciers may counteract 

some of this predicted kelp expansion, potentially leading to shoaling depth limits in some 

coastal environments (Bonsell & Dunton, 2018; Filbee-Dexter et al., 2019). 

It is important to recognize that not only sea ice is decreasing at an alarming rate, but so too is 

the Greenland ice sheet. Rising temperatures exacerbating glacial melt are driving coastal change 

along the west coast of Greenland (Meredith et al., 2019). This coast is crucial to Greenland’s 

export income and traditional hunting of marine mammals (Meire et al., 2017). Freshwater 

discharge by glacial melt can influence nutrient supply and turbidity of the water column that can 

influence primary productivity (Bartsch et al., 2016; Ørberg et al., 2018; Wlodarska-Kowalczuk 

& Pearson, 2004).  

Marine-terminating glaciers can exhibit strong mixing patterns due to rising freshwater plumes 

released subsurface along the glacial terminus. This density driven mixing entrains new nutrients 

brought up from deep in the water column, enhancing surface primary production within the 

fjord (Cape et al., 2019; Meire et al, 2017; Spurkland & Iken, 2011; Szeligowska et al., 2021). 

However, subsurface turbidity plumes may also be produced (Matsuno, et al., 2020; Paulsen & 

Robson, 2019; Spurkland & Iken, 2011; Szeligowska et al., 2021). Similar to marine-terminating 

glaciers, increased turbidity is also associated with land-terminating glaciers. In contrast, glacial 

melt flowing from land spreads highly stratified sediment plumes at the surface that increase 

light attenuation and impede vertical mixing of new nutrients from depth within these fjord types 



 47 

(Bartsch et al., 2016; Szeligowska et al., 2021). Therefore, with increasing melt rates and a 

retreat of glacial termini landward, light attenuation and nutrient availability may limit kelp 

distribution into the future (Bartsch et al., 2016; Huovinen et al., 2020; Szeligowska et al., 2021). 

The Greenland Ice Sheet (GrIS) has accelerated its mass loss rates by ~14% since 1985-1999 

through increased surface meltwater runoff and ablation (via calving and submarine melting) of 

marine-terminating outlet glaciers, making it the single largest contributor to sea level rise (King 

et al., 2020). An outlet for the GrIS is the Nuuk fjord system. This fjord is experiencing 

significant sea ice loss, being ice free throughout the majority of the year apart from the inner 

most region of the fjord (~7 months ice cover). Marine- and land-terminating glaciers feed into 

the system, making it a unique location to study kelp distribution and its potential response to 

ongoing change, as it represents the future of many glacial systems (Meire et al., 2016; Meire et 

al., 2017; Motyka et al., 2017). Here we investigate macroalgae distribution in two contrasting 

glacial fjords: one with a dominant marine-terminating glacier, Nuup Kangerlua fjord, and one 

with a land glacier terminus, Ameralik fjord. We demonstrate that turbidity and urchin grazing 

can impact kelp depth extent, with a strong potential for a decreased kelp distribution with 

ongoing warming of the Nuuk fjord system.  

3.2 METHODS  

3.2.1 Study Region 

The area of study is the fjordic region surrounding Nuuk, Greenland located at 64.18°N, 

51.74°W. Nuup Kangerlua fjord is one of the largest fjord systems in the world at 190 km in 

length with an estimated 2089 km2 of underlying bottom area (Meire et al., 2017; Mortensen et 

al., 2011; Storr-Paulsen et al., 2004). The Nuup Kangerlua fjord system contains three marine- 
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and three land-terminating glaciers connected to the GrIS, Kangiata Nunaata Sermia being the 

largest marine-terminating glacier in the fjord which has a grounding depth of 250 m (Mortensen 

et al., 2011; Winsor et al., 2015). Ameralik fjord, located just south of Nuuk is ~75 km long and 

receives land-terminating glacier meltwater delivered from Naajat Kuuat river from the GrIS. 

This fjord often remains ice free throughout the year and is warmer, more saline and more 

stratified in comparison to Nuup Kangerlua due to the lack of influence from marine-terminating 

glaciers (Stuart-Lee et al., 2021).  

Sampling was conducted throughout the Nuup Kangerlua and Ameralik fjords from 3 to 17 

August 2022. Greenland Institute of Natural Resources “Avataq” and “Aage V Jensen II” 

motorboats were used for sampling. Stations were selected based on bottom depth and proximity 

to shore along a gradient, and spread approximately 5 to 7 km apart into the fjord for a total of 26 

stations (Figure 3.1). Each station was composed of a perpendicular to coast transect, comprised 

of 6 sampling depths at 5, 10, 15, 20, 25 and 30 m. The minimum target depth of 5 m was set due 

to logical constraints of vessel draft and proximity to land, the maximum depth of 30 m was set 

as kelp was often not present deeper. 
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Figure 3.1. Nuuk Fjords, Greenland, containing Nuup Kangerlua (blue stations 1-18) and 
Ameralik fjords (yellow stations 19-26).  

3.2.2 Sample CollecAon  

To estimate kelp distribution, a GoPro camera (HERO6 Black) and flashlight were attached to a 

weighted fin-stabilized frame (Group B inc.) and lowered by hand to approximately 2 m above 

the ocean floor to collect 2 minutes of video at each sampling depth (Filbee-Dexter & 

Scheibling, 2017). The camera field of view was estimated at 6.19 m2 (L x W; 2.75 x 2.25 m), as 

measured when held 2 m above the seafloor. Hydrographic and light profiles were collected 

using a conductivity, temperature and depth (CTD) sonde (RBR concerto), housed with a LI-193 

spherical photosynthetically active radiation (PAR; 400-700 nm) sensor (Li-COR) and deployed 

by hand at 10 and 30 m bottom depths along each transect. Using a custom built 360° drag rake, 

2-3 S. latissima kelp were retrieved from all stations where available for collection at the 10 m 
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bottom depth. Mature intact kelp were selected and kept in a dark cooler until processing later 

that day.  

Using a Niskin bottle (5 L), water samples were collected at surface and 10-m depth increments 

from the 10 m and 30 m bottom depth sites; nutrient samples were filtered immediately. Water 

collection for total suspended solids (TSS) and chlorophyll a samples were only collected from 

the 30 m bottom depth at 10-m depth increments. These water samples were stored in a triple 

rinsed opaque Nalgene bottle and filtered at the end of the day.  

3.2.3 Light EsAmates 

Using the CTD profile from the 30-m bottom depth, euphotic depth was defined as the depth 

receiving 1% surface PAR calculated using Beer-Lambert’s law (Ryther, 1956). Removing ~1 to 

5 m from the upper water column to eliminate any artifacts from the boat, a downwelling diffuse 

attenuation coefficient, 𝐾!	#$%#&'()* , was determined as the exponential slope of PAR verses depth, 

from the CTD profiles collected in August 2022. It is noted that a distinct difference in 𝐾!	#$%#&'()*  

was observed between the upper (~0-15 m) and lower (~15-30 m) water column at stations 17 

and 26. Subsequently, an average between the upper and lower 𝐾!	#$%#&'()*  estimates were used for 

additional calculations. 

To determine incoming light throughout the year, shortwave incoming radiation data (SW) was 

retrieved from the Greenland Ecosystem Monitoring Database (GEM) – ClimateBasis Nuuk as a 

5-minute average (W m-2). SW data were converted to PAR using the following equation (1).  

𝑃𝐴𝑅+, 	= ∑ 𝑆𝑊	𝑥	0.46	𝑥	4.57	𝑥	300-.#$                    (1) 
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where PAR0+ is PAR just above the ocean’s surface. In this equation, PAR is assumed a fraction 

of SW, equal to 0.46 (Kvifte et al., 1983). W m-2 were converted to µmol photons m-2 5 min-1 

using a conversion factor of 4.57 (Sager and McFarlane, 1997), then converted from seconds to 

5-minute estimates by multiplying by 300 seconds. These 5-minute estimates were then 

integrated over one day. To take into account reflection at the atmosphere-ocean interface, we 

assumed an 8% mean loss of light (i.e., PAR0- = 0.92 x PAR0+; Bélanger et al, 2013; Morel, 

1991). To estimate light attenuation throughout the year, monthly 𝐾!	/)0()* 	estimates were acquired 

from 2018-2022 MODIS Aqua L1A satellite data using methods described in Singh et al (2022). 

Monthly averages over the 5 years were calculated. If all 5 years had missing data for a month, 

we used annual medians. If more than half the monthly values were annual medians (specifically, 

stations 17, 19, 24, 22, and 26; see Figure 3.1), 𝐾!	/)0	()* was interpolated using the 8 closest data 

points in all directions surrounding the station (2.22 x 2.22 km area). We note that 𝐾!	/)0()* 	does 

not include November-January due to negligible light conditions.  

Due to high August 2022 𝐾!	/)0()*  estimates relative to that measured in August 2022 𝐾!	#$%#&'()* , all 

𝐾!	/)0()*  values were corrected by dividing the slope of the linear regression between the two 

variables with a forced intercept of 0. The resultant relationship was 𝐾!	/)0()* 	= 1.24 𝐾!	#$%#&'()*  (i.e., 

all 𝐾!	/)0()*  estimates were divided by 1.24) (Figure 3.2). Note that station 26 was an outlier, and 

therefore, not included in the correction relationship. 
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Figure 3.2 Measured August 2022 𝐾!	#$%#&'()* verses satellite-derived August 2022 𝐾!	/)0	()* indicated 
by black open circles. The black line is a least squares linear fit (forced with a 0 intercept) used 
for the correction of the satellite estimates (see text). The open red circles indicate the corrected 
values of estimated August 2022 𝐾!	/)0	()* that were used for calculations. The red line is a 1:1 line. 
The filled black circle is station 26 and is noted as an outlier. 

Hereinafter, all reported 𝐾!	/)0()*  values provided were calibrated using the above procedure. 

Daily-integrated PAR at depth (iPARz) was then calculated using PAR0- and monthly 𝐾!	/)0()*  or 

𝐾!	#$%#&'()* to determine light throughout the year (iPARz-year) or for August 2022 (iPARz-Aug), 

respectively.  

3.2.4 GoPro and Kelp C:N Analysis  

The GoPro videos were analysed as a point observation of percent of kelp relative to the sea 

floor to determine kelp percent cover along a depth gradient (Krause-Jensen et al, 2012). Three 

still images were selected from each video and analysed in MuliSpec64 (2019.08.19). Poor 

quality GoPro videos were not included in analysis. The still images were selected first based on 

overall best representation of the entirety of the video and selecting an image from the beginning, 

middle and end of the video. Using a supervised classification scheme, images were placed in 
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one of two classes, kelp cover or sea floor to determine kelp cover as a percent (0-100%). Where 

sand was covering the kelp, extra caution was taken to ensure correct classification to eliminate 

flawed class diagnoses.  

Following methods of Castro de la Guardia et al. (2023) and Krause-Jensen et al. (2012), kelp 

depth extent for 1, 10, 50 and 80% coverage was defined as the deepest depth occurrence of 

where this percent was visible. Linear interpolation between sampled 5 m depth intervals was 

used to estimate depth extent. However, when the 30 m depth (maximum recorded depth) had 

greater than 1% kelp cover, depth extent estimates were made using linear extrapolation 

including points that allowed for the best fit of the natural progressive decrease of kelp cover at 

that station. 

In addition to kelp coverage and depth extent, videos were analysed for high and low canopy, 

kelp species, sea floor substrata and urchin density. High canopy was defined by the presence of 

a buoyant stipe, seemingly extended off the seafloor, with the strong likelihood that more kelp 

was present underneath the canopy, as per Castro de la Guardia (2023). Low canopy was defined 

by low-lying kelp species (with no stipe presence) or if stipes were present, they were not 

buoyant and kelp remained low lying on the seafloor. Substrata estimates assumed that the 

visible substratum was representative of the entire image, even when only a small percent was 

visible (<10%). Substrata was categorized as “sandy” or “rocky”, and where both types were 

present, “mixed”. Urchins were manually counted in each of the 3 selected still images following 

Ager et al. (2023) and Filbee-Dexter and Scheibling (2017). Using the assumption that the field 

view of the camera was 6.19 m2, urchin density (number m-2) was estimated. It is noted that 
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urchins could be present underneath high kelp canopy, and therefore, our density estimates are 

likely conservative.  

Measurements of length and width of collected S. latissima samples were measured at the blade’s 

longest and widest points and used to determine blade area (L x W). Using a punch (1.27 cm 

diameter), kelp blades were cored at the meristem and center of the blade. The cored kelp 

samples were placed into pre-burnt (5 h at 450 ºC) tinfoil packets and preserved in a -20ºC 

freezer. To determine carbon (C) and nitrogen (N) levels of the kelp, samples were thawed (~30 

mins) and weighed to determine wet weight (WW) of the core. Samples were then placed in the 

oven and dried at 60°C for 48 hours and weighed again to determine dry weight (DW). The dried 

kelp was then crushed and 3 replicate samples of ~300-500 µg	of kelp were placed in a tinfoil 

capsule where C and N contents were quantified on a SerCon 20-22 Stable Isotope Ratio Mass 

Spectrometer coupled with Europa EA-GSL Sample Perception System. The values of carbon 

and nitrogen were corrected based on blank values and sample weight, then averaged between 

the 3 replicates.  

To calculate S. latissima biomass (g WW m-2) at the 10 m depth, the blade area was divided by 

the kelp corer area (1.3x10-4 m2) and multiplied by the core wet weight (WW). The average WW 

of kelp per station was then multiplied by the percent S. latissima cover at the 10 m depth. To 

calculate production (g C m-2 yr-1), we used WW biomass to C conversion ratios of 0.16 

WW:DW and 0.32 DW:C, determined from our data averages. These conversion ratios were 

similar to ratios used by Filbee-Dexter et al. (2022) of 0.21 and 0.30, respectively. This 

production estimate is considered to be for one year of growth, as there was no evidence of the 

previous year’s growth.  
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3.2.4 Water Data Analysis 

To determine nutrient concentrations, 15-ml pseudo-duplicate samples were directly taken from 

the Niskin bottle and filtered through a 25-mm pre-combusted (5 h at 450 ºC) GF/F filter into 

acid washed and triple rinsed vials and frozen at -20ºC. Nutrient concentrations were determined 

at the Aarhus University in Denmark. After reduction to NO in hot vanadium chloride, 

concentrations of nitrate (NO3) and nitrite (NO2) were determined as NO on a NOx analyzer 

(Model 42C, Thermo Environmental Instruments).  

Two subsamples for chlorophyll a concentration were collected by filtering ~300-500 mL of 

sample seawater through a 25-mm GF/F, wrapped in tinfoil, and frozen at -80ºC until analysis. 

For analysis, chlorophyll a filters were placed in 20-mL scintillation vials with 90% acetone for 

extraction of pigments over 18-24 hours at 4 ºC in the dark. Florescence of the extracted sample  

was measured before and after acidification with approximately 0.2 mL of 5% HCl using a 

Turner Designs Trilogy Fluorometer (Version 1.7). Protocols and chlorophyll a concentration 

determination followed that of JGOFS (1994). 

Two subsamples for total suspended solids (TSS) determination were collected by filtering 

approximately 1000-2000 mL of seawater onto a 47-mm Whatman ProWeigh filter, which was 

air dried for ~1 hour and then frozen at -20ºC. Later, samples were dried in an oven at 75°C for 

24 hours and weighed. Initial filter weight was subtracted from the weight of the filter with 

sample and divided by the volume of filtered sample to determine the concentration of TSS (mg 

L-1; Neukermans et al., 2012).  
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3.2.6 StaAsAcal Analysis 

All analyses were performed in R (RStudio 2022.07.2), or in Excel using the data analysis tool. 

Normality of the data was assessed using a Shapiro-Wilk test. A Bartlett test was run to 

determine equal or unequal variances. Based on results from these initial assumption tests, an 

ANOVA (F-statistic) or Kruskal-Wallis test (non-parametric; H-statistic) was used to assess the 

differences in group means, where heteroscedasticity was observed, a student’s t-test (T-statistic) 

was used. Post-Hoc Tukey Kramer test or Dunn’s (Bonferroni adjusted p values) test were 

performed to compare means within groups when necessary. Paired T-test (T-statistic) or 

Wilcoxon signed ranks test (Z-statistic; non-parametric) were used to compare carbon and 

nitrogen values between meristem and blade samples of individual kelp. When comparing 

nominal variables, a Chi-squared test of independence was used. For all tests, p values ≤	0.05 

were considered significant and ns (not significant) implies a p value >0.05. Spearman Rank 

correlation was used to determine the degree of association between variables used in stepwise 

multiple linear regression analysis (Table S1). For multiple linear regression analysis, using z-

score standardization, data were rescaled onto a common scale to reduce the effects of 

multicollinearity for more equivalent comparison among variables. The stepwise linear 

regression iteratively included or excluded variables based on the models adjusted r2 improving 

by at least 0.05 while assuring the model had a p value ≤ 0.05. All values are presented as mean 

± standard deviation unless otherwise stated.  
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3.3 RESULTS  

3.3.1 Environmental CharacterisAcs 

Temperature, salinity & chlorophyll a 

Four sub-regions throughout the fjords were identified based on environmental and regional 

differences observed in the upper 30-m hydrographic profiles (Figure 3.3). Nuup Kangerlua had 

significant temperature (°C) and salinity gradients throughout its fjord, and contained three of the 

four identified sub-regions (Table 3.1 and Figure 3.4). Temperature decreased deeper into Nuup 

Kangerlua, with means of 3.84 ± 0.43°C at the entrance (EN), 2.22 ± 0.28°C in mid Nuup (MN) 

and 1.16 ± 0.27°C in deep Nuup (DN). Ameralik (AM) was the warmest of the two fjords with 

an average of 4.90 ± 0.66°C. Salinity decreased from EN towards DN with salinities of, 30.6 ± 

0.7, 28.8 ± 0.9 and 26.4 ± 1.1, respectively. Ameralik was the most saline of the four identified 

sub-regions at 31.3 ± 1.0. Significant differences in temperature and salinity were observed 

between AM and MN, as well as AM and DN. Within Nuup Kangerlua, significant differences in 

temperature and salinity were observed between EN and DN sub-regions. Chlorophyll a 

concentration averaged 1.16 ± 0.76 µg L-1 throughout the fjords and was not significantly 

different between regions (Table 3.1 and Figure 3.4). 
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Figure 3.3 The four identified sub-regions of the Nuuk fjords examined. Nuup Kangerlua 
entrance stations (EN) in blue, mid stations (MN) in green, and deep stations (DN) in red, and 
Ameralik (AM) stations in yellow. 

a)       b)       
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Distance from Nuup Kangerlua fjord entrance (km)     Distance from Ameralik fjord entrance (km) 

Figure 3.4 a) Nuup Kangerlua and b) Ameralik fjord CTD temperature (°C), salinity, and 
chlorophyll a (µg L-1) profiles from 0 – 30 m. 

Table 3.1 Average and standard deviations of water column (0-30 m) temperature, salinity, 
chlorophyll a, TSS, nitrate, euphotic depth, 𝐾!	#$%#&'()*  and 𝐾!	/)0()*   for stations in each sub-region 
(see Figure 3.3 for sub-region locations). ANOVA or Kruskal Wallis results with F or H statistics, 
respectively, and p values for differences between groupings. Statistically significant results (p 
value ≤	0.05) are bolded. EN stands for entrance to Nuup Kangerlua, MN for mid Nuup 
Kangerlua, DN for deep Nuup Kangerlua and AM for Ameralik fjord.  

Variable Group ANOVA or 
Kruskal Wallis  

Post-HOC p values 

 EN (n=7) MN 
(n=6) 

DN 
(n=5) 

AM 
(n=8) 

F or H 
test 

P-value EN vs. 
MN 

EN 
vs. 
DN 

MN 
vs. 
DN 

EN 
vs. 
AM 

MN 
vs. 
AM 

DN vs. 
AM 

Temperature(°C) 3.84 ± 
0.43 

2.22 ± 
0.28 

1.16 ± 
0.27 
 

4.90 ± 
0.66 

H-test  
𝜒23 = 
22.61 

<0.0001 ns 0.03 ns ns 0.006 <0.0001 

Salinity 30.6 ± 0.7 28.8 ± 
0.9 

26.4 ± 
1.1 

31.3 ± 
1.0 

H-test  
𝜒23 = 
19.49 

0.0002 ns 0.02 ns ns 0.03 <0.0001 

Chlorophyll a 
(µg L-1) 

1.39 ± 
0.47 

1.04 ± 
0.41 

1.07 ± 
0.40 

1.11 ± 
0.29 

F3,22 = 
1.07 

ns - - - - - - 

Total Suspended 
Solids (mg L-1) 

12.7 ± 
2.2 

11.0 ± 
1.7 

18.5 ± 
7.7 

13.2 ± 
2.9 
 

H-test  
𝜒23 = 
7.81 

0.05 ns ns 0.03 ns ns ns 

Nitrate  
(µmol L-1) 

1.98 ± 
0.42 

2.53 ± 
0.86 

3.79 ± 
0.76 

0.95 ± 
0.54 

H-test  
𝜒23 = 
18.44 

0.0004 ns ns ns ns 0.03 <0.0001 

Euphotic Depth 
(m) 

33.8 ± 3.2 30.1 ± 
1.8 

16.9 ± 
6.9 

29.9 ± 
8.2 
 

H-test  
𝜒23 = 
14.4 

0.002 ns 0.001 ns ns ns ns 

𝑲𝒅	𝒊𝒏𝒔𝒊𝒕𝒖
𝑷𝑨𝑹  (m-1) 0.138 ± 

0.015 
 

0.154 ± 
0.009 
 

0.319 ± 
0.148  

0.181 ± 
0.113 m  

H-test  
𝜒23 = 
14.39 

0.002 ns 0.001 ns ns ns ns 

𝑲𝒅	𝑺𝑨𝑻-𝒚𝒆𝒂𝒓
𝑷𝑨𝑹   

(m-1) 
0.169 ± 
0.017 
 
 

0.173 ± 
0.020 
 

0.227 ± 
0.046 
 

0.200 ± 
0.031 

H-test  
𝜒23 = 
12.53 

0.006 ns 0.003 ns 
 

ns 
 

ns 
 

ns 
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3.3.2 Light APenuaAon 

Averaged TSS estimates from EN, MN, DN, and AM were, 12.7 ± 2.2, 11.0 ± 1.7, 18.5 ± 7.7 and 

13.2 ± 2.9 mg L-1, respectively, with a significant difference only observed between MN and DN 

(Figure 3.5 and Table 3.1). In Nuup Kangerlua fjord the euphotic depths from EN, MN and DN 

were 33.8 ± 3.2, 30.1 ± 1.8 and 16.9 ± 6.9 m, respectively, while in Ameralik fjord, the euphotic 

depth averaged 29.9 ± 8.2 m. It is noted that all Ameralik stations had a euphotic depth greater 

than 30 m with the exception of station 26, nearest to the land-terminating glacier, which had a 

euphotic depth of 9.98 m. DN had a significantly shoaled euphotic depth compared to EN (Table 

3.1).   

a)       b) 

 

Distance from Nuup Kangerlua fjord entrance (km)              Distance from Ameralik fjord entrance (km) 

Figure 3.5 a) Nuup Kangerlua and b) Ameralik fjord total suspended solids (mg L-1) profiles 
sampled at surface, 10, 20 and 30 m. 

𝐾!	#$%#&'()* 	measured at each station was significantly related to TSS in the water column (r2 = 0.69, 

p < 0.0001). 𝐾!	#$%#&'()*
 was highest nearest the glacier discharge in both fjords and decreased 

towards the entrance of both fjords. The decrease in average 𝐾!	#$%#&'()*
 within Nuup Kangerlua 

from EN, MN and DN was 0.138 ± 0.015, 0.154 ± 0.009 and 0.319 ± 0.148 m-1, respectively, 

with a fjord average of 0.193 ± 0.108 m-1. Station 17 and 18 had the greatest attenuation at 0.546 

and 0.380 m-1, respectively. In Ameralik fjord, station 26 had the highest value at 0.462 m-1 with 
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other 𝐾!	#$%#&'	()*
 estimates ranging from 0.134-0.153 m-1 and a fjord average of 0.181 ± 0.113 m-1. 

DN 𝐾!	#$%#&'	()* differed significantly from EN (Table 3.1). Overall, the Nuuk fjord system had an 

average 𝐾!	#$%#&'()* 	of 0.189 ± 0.108 m-1. Light attenuation within the fjords did not show a 

significant linear relationship to chlorophyll a concentration.  

Monthly averaged (2019-2021) incoming light (iPAR0-) for the Nuuk fjord area is presented in 

Figure 3.6, which along with 𝐾!	/)0()* ,	were used to determine calculations of iPARz-year, available 

light at depth over an annual period. 𝐾!	/)0()*  from spring (March-May), summer (June-August), 

fall (Sept-Oct) and winter (Feb), averaged 0.171 ± 0.030 , 0.196 ± 0.047, 0.220 ± 0.049 and 

0.171 ± 0.033 m-1. It is noted that 𝐾!	/)0()* 	reached its maximum in fall while incoming light 

peaked in spring/summer. Overall, the Nuuk fjord system 𝐾!	/)0()* 	averaged of 0.190 ± 0.036 over 

an annual period.  
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Figure 3.6 Incoming iPAR0- for each month from 2019-2021. 

 

3.3.3 Nutrient Dynamics 

Nutrient availability throughout the two fjords varied significantly. An increasing trend was 

observed in the Nuup Kangerlua fjord with 0-30 m averaged nitrate concentrations of 1.98 ± 

0.48, 2.53 ± 0.86, and 3.79 ± 0.76 µmol L-1 from entrance to deep sites, respectively. Both DN 

and MN sub-regions had significantly greater nitrate than that of AM, which averaged 0.95 ± 

0.54 µmol L-1 (Table 3.1 and Figure 3.7). In contrast, nitrate concentration in Nuup Kangerlua 

fjord averaged 2.66 ± 2.18 µmol L-1. 
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a)               b)  

             

_               Distance from Nuup Kangerlua fjord entrance (km)                         Distance from Ameralik fjord entrance (km)       

Figure 3.7 a) Nuup Kangerlua and b) Ameralik nitrate (µmol L-1) profiles. 

3.3.4 Kelp DistribuAon 

Kelp Species Trends  

The kelp assemblages were predominantly composed of high canopy Saccharina latissimi and 

low canopy Agarum clathratum species. Other kelp species had minimal coverage (<50%) and 

were only observed at stations 1, 2, 3 and 10 at the 5 m depth. Sampling depths where S. 

latissimi dominated (greater percent cover than A. clathratum) had significantly greater percent 

kelp cover (median = 63.7%) than depths where A. clathratum dominated (i.e., A. clathratum had 

a greater percent cover than S. latissima) (median = 26.7%) (H-test 𝜒21 = 13.79; p = 0.0002). A. 

clathratum dominated at 70 sampled depths while S. latissima only dominated at 37 (Figure 3.8 

a). Nuup Kangerlua fjord had greater percent S. latissima cover with a mean of 19.3 ± 33.1% 

from 0-30 m, while Ameralik fjord had a mean of 3.23 ± 9.26% (H-test 𝜒21 = 7.61; p = 0.006). 

There was also a significant difference in A. clathratum cover between fjords with Nuup 

Kangerlua averaging 12.9 ± 22.5% and Ameralik averaging 22.9 ± 26.1% (H-test 𝜒21 = 9.65; p = 

0.001). Furthermore, the average depth of S. latissima dominance was significantly shallower 
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than the average depth of A. clathratum dominance, with averages of 9.05 ± 5.12 and 16.9 ± 7.09 

m, respectively (H-test 𝜒21 = 28.71; p < 0.0001) (Figure 3.8 b).  
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a) 

 

 S. latissima    A. clathratum 

b) 

 

S. latissima    A. clathratum 

Figure 3.8 a) Boxplot of the percent kelp cover of the dominate kelp species b) Boxplot of the 
depth of the dominate kelp species S. latissima (black) and A. clathratum (grey). Boxplots 
include the 25th and 75th percentiles, maximum and minimum, dot reveals outlier point, central 
line depicts the median (at 5 m for S.latissima figure b) and the “x” reveals the mean. Numbers 
in parenthesis show the number of samples.  
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Kelp DistribuAon Trends  

Kelp within the Nuup Kangerlua and Ameralik fjords have been characterized into 5 visually 

different trends based on percent kelp cover, kelp depth extent, and high or low canopy (Figure 

3.9). Stations 8, 9, 10, 14, and 15 formed trend 1 located in the middle of Nuup Kangerlua and 

were characterized by high canopy cover at shallow depths, with continuing dense cover of 

>40% kelp at 20 m bottom depth. Trend 2 made up of stations 1, 12, 16, 17, and 19 were more 

dispersed, with some stations near the entrance and some located more interior within Nuup 

Kangerlua fjord. These stations were characterized by a rapid decrease of ~60% kelp at 10-15 m, 

with little to no kelp past the 15 m depth. Stations 21 through 25 composed trend 3 and were all 

located within the Ameralik fjord, which had <40% kelp cover at 5 m and an increase to >60% 

cover between 10 and 20 m, followed by a rapid decrease at greater depths. Trend 4 consisted of 

stations 2 through 7 and station 20. These stations were located near the entrance of the fjords 

and were characterized by a trend of >80% cover at 5 m with steady decline, and <15% kelp at 

20 m. Trend 5, included stations 11, 13, 18 and 26 which had <40% low canopy kelp at all 

depths. These stations were spread out between the fjords.  
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Figure 3.9 Trend 1 (dark blue), Trend 2 (light blue), Trend 3 (green), Trend 4 (orange) and Trend 
5 (red) color corresponds to the station colors on the map. Black circles indicate high canopy 
cover (most often Saccharina latissima), white circles indicate low canopy cover (most often 
Agarum clathratum), grey circles indicate the presence of both high and low cover.  

Variables of Kelp Percent Cover  

Mixed substrate was the dominant substrate type accounting for 70 out of 156 images classified. 

Of the remaining images, 43 were classified as rocky, 29 as sandy and 14 as unidentified due to 

inadequate video or canopy cover masking the sea floor. There was no significant impact of 

substrate on kelp percent cover (H-test 𝜒22 = 3.07; p = 0.22). 

Simple linear regression was examined for relationships of kelp cover versus temperature, 

salinity, chlorophyll a concentration, nitrate concentration, iPARz-year and urchin density (Table 

S2). Of significance, percent kelp cover was most related to iPARz-year (r2 = 0.43, p < 0.0001). 

Relationships against salinity (r2 = -0.16, p < 0.0001), chlorophyll a (r2 = 0.15, p < 0.0001) and 

nitrate concentration (r2 = -0.11, p < 0.0001) were also observed. With respect to S. latissima, 

percent cover was most related to iPARz-year (r2 = 0.35, p < 0.0001) and salinity (r2 = -0.23, p < 

0.0001). A. clathratum cover was not strongly (r2 < 0.05) related to any of the 6 variables. 
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Stepwise linear regression was run using the same variables to see how they interact together to 

explain percent kelp cover (temperature, salinity, urchin density, iPARz-year and nitrate 

concentration). Of the 6 variables examined, iPARz-year, temperature and nitrate were significant 

in the final model which explained 54% of the variation in kelp percent cover within the Nuuk 

fjord system (Table 3.2). The same variables were significant to explain kelp cover in the final 

model specific to Nuup Kangerlua fjord, explaining 62% of the variability. Specific to S. 

latissima percent cover, the final stepwise regression model selected all variables, excluding 

salinity, to explain 57% of the variability in the Nuuk fjord (Table 3.3). When only considering 

Nuup Kangerlua fjord, the model selected iPARz-year, temperature, nitrate and urchin density to 

explain 56% of the variability in S. latissima cover. No significant findings were observed for 

kelp cover specific to A. clathratum or Ameralik fjord (model r2 < 0.50).  
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Table 3.2 Stepwise linear regression models predicting kelp cover for a) the Nuuk fjords and for 
b) Nuup Kangerlua fjord. Regression coefficients (B), standard error of B, t values and level of 
significance (p) are presented.  

a) Co-efficient (B) Std. Error of B t value p Model r2 
(Intercept) 64.1 8.85 7.25 < 0.0001 0.54 
iPARz-year 0.028 0.003 10.6 < 0.0001 

Temperature -9.47 1.58 -6.00 < 0.0001 
Nitrate -7.81 1.70 -4.60 < 0.0001 

b)  
(Intercept) 55.3 9.83 5.63 < 0.0001 0.62 
iPARz-year 0.033 0.004 9.29 < 0.0001 

Temperature -9.83 2.20 -4.47 < 0.0001 
Nitrate -6.10 1.80 -3.39 0.0001 

Table 3.3 Stepwise linear regression models predicting S. latissima cover for a) the Nuuk fjords 
and for b) Nuup Kangerlua fjord.  

a) Co-efficient (B) Std. Error of B t value p Model r2 
(Intercept) 43.7 8.16 5.36 < 0.0001 0.57 
iPARz-year 0.021 0.002 8.86 < 0.0001 

Temperature -9.63 1.35 -7.12 < 0.0001 
Chlorophyll a 7.08 3.22 2.20 0.03 

Nitrate -7.15 1.44 -4.97 < 0.0001 
Urchin Density -1.43 0.46 -3.10 0.002 

b)  
(Intercept) 41.3 9.90 4.17 < 0.0001 0.56 
iPARz-year 0.025 0.004 6.91 < 0.0001 

Temperature -7.47 2.36 -3.17 0.002 
Nitrate -6.14 1.81 -3.39 0.001 

Urchin Density -1.68 0.667 -2.52 0.01 
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Regional comparisons of kelp depth extent 

Kelp depth extent and light availability was explored on a wider spatial scale by comparing our 

data to published data from western Greenland and offshore Disko Bay from Krause-Jensen et al. 

(2012; 2019) and Southampton Island (SHI) from Castro de la Guardia et al. (2023) (Figure 

3.10). We identified that western Greenland and the Nuuk fjords had a similar depth extent and 

light availability for 1, 10 and 50% kelp cover (Table 3.4). Depth extent varied between Nuuk 

and SHI, as well as Nuuk and Disko Bay. SHI had a significantly deeper depth extent across all 

levels of kelp cover. At 10, 50 and 80%, Nuuk had greater light availability than SHI. These 4 

regions 1, 10, 50, and 80% kelp cover had a similar trend of increasing kelp cover with 

decreasing depth and increasing light availability. At the 1% kelp cover, Nuuk, west Greenland 

and SHI had similar light availabilities. While Nuuk and west Greenland had similar August light 

attenuation estimates of 0.189 ± 0.108 and 0.175 ± 0.019 m-1, respectively (T(29) = 0.644, p = 

0.5); attenuation was significantly lower around SHI at 0.138 ± 0.040 m-1 in comparison to Nuuk 

(T(35) = 2.19, p = 0.02). 
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a)       b) 

 

Figure 3.10 1, 10, 50 and 80% kelp cover against a) mean maximum depth extent (m) b) 
underwater light environment; iPARz-year (mol photons m-2 year-1) (note x-axis log scale). 
Included kelp forests; Nuuk fjords (red), western Greenland (black), Southampton Island (dark 
grey) and Offshore Disko Bay (light grey). Western Greenland did not have data for the 80% 
kelp cover. Disko Bay data was only available for 1% kelp cover, with no available light 
attenuation estimates to determine iPARz-year, data from Krause-Jensen et al. (2019). Western 
Greenland data in supplemental materials of Krause-Jensen (2012). Southampton data from 
supplemental materials Castro de la Guardia et al. (2023).  

Table 3.4 Average and standard deviations of light availability (iPARz-year; mol photons m-2 year-

1) and depth extent (m) of 1, 10, 50 and 80% kelp cover for the regions of Nuuk, West Greenland 
(WG), Southampton Island (SHI) and Disko Bay (DB). ANOVA or Kruskal Wallis results with F 
or H statistics and p values for differences between groupings. Not available values are indicated 
as N/A.  



 73 

 

3.3.5 Saccharina laAssima Biomass  

Kelp Carbon and Nitrogen Contents  

Changes in S. latissima carbon (C) and nitrogen (N) content (% DW) throughout the Nuuk fjords 

are shown in Figure 3.11. There was a significant difference between mean carbon in the center 

of the blade (33.4% ± 2.81) and the meristem (30.0% ± 2.34) (Z-test = -5.37, p <0.0001) within 

Nuup Kangerlua. A similar difference was observed in Ameralik fjord where the carbon content 

averaged 32.2% ± 3.48 in the center of the blade and 28.5% ± 2.27 at the meristem (Z-test = -

2.21, p = 0.03). There was a significant difference in meristem carbon content (F3,49 = 3.13, p = 

0.03) throughout the fjord sub-regions, where kelp in DN had a higher mean carbon content 

(31.5% ± 2.39) than kelp in Ameralik fjord (28.5% ± 2.27; Tukey post hoc; p = 0.02).  

 Region ANOVA or Kruskal 
Wallis 

Post Hoc Dunn Test 

Study 
Region; 
Nuuk  

West 
Greenland 
(WG) 

South-
ampton 
Island 
(SHI) 

Disko Bay 
(DB) 

F-test or 
H-test 

P value Nuuk 
vs. WG 

Nuuk vs. 
SHI 

Nuuk vs. 
DB 

Depth Extent (m) 

1% 27.2 ± 6.3 29.5 ± 9.1 35.9 ± 9.9 43.9 ± 10.7 H-test 𝜒23 
= 22.31 

< 0.0001 ns 0.02 <0.0001 

10% 20.5 ± 5.6 22.5 ± 7.6 35.5 ± 9.1 N/A F2,43 = 
20.05 

< 0.0001 ns <0.0001 N/A 

50% 15.0 ± 4.5 15.8 ± 5.2 29.8 ± 9.3 N/A H-test χ22 
= 17.3 

0.0002 ns 0.0001 N/A 

80% 8.89 ± 2.68 N/A 22.9 ± 9.09 N/A H-test χ21 
= 12.32 

0.0004 N/A 0.0004 N/A 

Light Availability (mol photons m-2 yr-1) 

1%  80.8 ± 72.9 29.6 ± 31.3 48.8 ± 91.4 N/A H -test χ22 
= 6.35 

0.04 ns ns N/A 

10% 284 ± 393 73.8 ± 78.1 48.3 ± 89.5 N/A H-test χ22 
= 13.305 

0.001 ns 0.001 N/A 

50%  549 ± 387 182 ± 156 116 ± 160 N/A H-test χ22 
= 13.374 

0.001 ns 0.002 N/A 

80% 1390 ± 668 N/A 236 ± 253 N/A H-test χ21 
= 12.615 

0.0004 N/A 0.0004 N/A 
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There was a significant difference between nitrogen in the center of the blade (1.18 ± 0.49) and 

that of the meristem (1.32 ± 0.44) in Nuup Kangerlua (T(41) = -2.89, p = 0.006). Ameralik fjord 

had a mean nitrogen content of 1.08% ± 0.35 in the blade and 1.16% ± 0.25 in the meristem, 

with no significant difference between core location samples (T(9) = -0.90, p = 0.39). Nitrogen 

was significantly different in the blade throughout the fjord (F3,52 = 3.36, p = 0.03), specifically 

between MN (0.964 ± 0.437) and DN (1.48 ± 0.57; p = 0.02). Nitrogen in the meristem also 

differed throughout the fjord (H-test 𝜒23 = 15.22; p = 0.002), specifically between the EN (1.33 ± 

0.28) and MN (1.00 ± 0.22; p = 0.04), and MN and DN (1.69 ± 0.58; p = 0.001). There was no 

significant linear relationship between kelp nitrogen content verses water column nitrate 

concentrations (blade r2 = 0.02, p = 0.34; meristem r2 = 0.06, p = 0.07).  

There was a significant difference between meristem and blade C:N (g:g) ratios in both Nuup 

Kangerlua (T(41) = 4.60, p < 0.0001) and Ameralik fjords (Z-test = -2.21, p  = 0.03). The 

decreasing and increasing nitrogen trend throughout Nuup Kangerlua was also reflected in the 

C:N ratio. Averaged blade C:N ratios of 35.8 ± 17.0, 46.9 ± 19.2 and 27.8 ± 15.6 were observed 

in EN, MN and DN, respectively, while that in AM was 36.6 ± 18.7. A significant difference was 

observed between sub-regions (H-test 𝜒23 = 9.12; p = 0.03), specifically between MN and DN (p 

= 0.02). Meristem C:N ratios averaged 23.4 ± 4.5, 31.4 ± 7.7 and 22.0 ± 11.8 in EN, MN and 

DN, respectively, while that in AM was 25.8 ± 7.0. The meristem ratio was found to significantly 

differ among sub-regions (H-test 𝜒23 = 13.51; p = 0.004), specifically between MN and DN (p = 

0.002).  
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c) 

 

Figure 3.11 Boxplots of S. latissima a) carbon (% DW) b) nitrogen (% DW) and c) C:N (g:g) 
content for entrance (black), middle (dark grey) and deep sub-regions of Nuup Kangerlua (grey), 
as well as Ameralik fjord (light grey). Solid lines indicate meristem samples, dashed lines 
indicate samples taken from the center of the blade.  

Biomass and ProducAon  

Averaged biomass (g WW m-2) of S. latissima at 10 m bottom depth increased throughout Nuup 

Kangerlua fjord at 80.5 ± 119 (EN), 104 ± 157 (MN) and 488 ± 217 (DN) g WW m-2. AM had a 

much lower average biomass of 28.5 ± 56.9 g WW m-2. There was a significant difference 

between the 4 sub-regions (H-test 𝜒23 = 9.57; p = 0.02), specifically, DN and AM (p = 0.03). S. 

latissima production (g C m-2 yr-1) at 10 m bottom depth also increased throughout Nuup 

Kangerlua fjord with averages of 4.12 ± 6.08 (EN), 5.30 ± 8.04 (MN) and 24.99 ± 11.1 (DN) g C 

m-2 yr-1. The production average for Ameralik fjord was 1.46 ± 2.91 g C m-2 yr-1. Similar to 

biomass estimates, production differed significantly between the 4 sub-regions (H-test 𝜒23 = 

9.57; p = 0.02), specifically between DN and Ameralik (p = 0.03).  
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3.3.6 Urchin Influence  

Environmental variables  

Urchin density was significantly different between sites with different substrates (H-test 𝜒22 = 

12.09; p = 0.002). Specifically, urchin density was higher with rocky substrate compared to 

sandy (p = 0.002). No linear relationship was found between urchin density and physical 

variables such as temperature, salinity, or depth. Furthermore, there was no difference in urchin 

density between fjords, however, there was a significant difference between mean urchin density 

and sub-region (H-test 𝜒23 = 26.55; p <0.0001), specifically between DN and all other sub-

regions (EN, p < 0.0001; MN, p = 0.004 and AM, p = 0.0004).  

Kelp  

Figure 3.12 illustrates the relationship between percent kelp cover and transmitted PAR to the 

ocean floor. The relationships revealed increasing kelp cover with increasing light availability, 

followed by a decrease at greater intensities for sites with high urchin densities (Figure S1). For 

the month of August (Figure 3.12 a), the logarithmic model explained 44% of the variability 

when urchin density was low. When urchin density was high, a polynomial fit was more 

appropriate, as kelp cover does not continue to increase despite greater light availability, this 

model explained 61% of the variability. When the same kelp cover was compared against light 

availability throughout the year, the logarithmic model explained 56% of the variability in kelp 

cover when urchin densities were low, and when urchin densities were high a polynomial fit 

explained 50% of the variability (Figure 3.12b).  
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a)       b)  

  

 

Figure 3.12 Percent kelp cover verses integrated transmitted PAR to the ocean floor a) for 
August (iPARz-Aug) and b) throughout the year (iPARz-year). Black indicate low urchin presence 
(<1 urchin m-2), blue indicate high urchin presence (>1 urchin m-2), grey indicates unknown 
urchin presence. Note: Kelp cover of 0% was not included. 

When urchin density was high (>1 urchin m-2), S. latissima cover was significantly lower at 1.51 

± 5.98% than when urchin density was low (<1 urchin m-2) at 21.5 ± 34.3% (H-test 𝜒21 = 14.51; 

p = 0.0001) (Figure 3.13 a). However, urchin density did not significantly influence A. 

clathratum which had an average of 19.9 ± 23.9% when urchin presence was high and 14.4 ± 

24.5% when urchin presence was low (H-test 𝜒21 = 2.84; p = 0.09) (Figure 3.13 b).  
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Figure 3.13 a) S. latissima b) A. clathratum percent cover plotted against depth (m). Black 
circles indicate high urchin presence (>1 urchin m-2), grey circles indicate low urchin presence 
(<1 urchin m-2). 

3.3 DISCUSSION  

3.4.1 Light Availability  

LimitaAons 

𝐾!	/)0	()* for all stations were overestimations compared to 𝐾!	#$%#&'	()* , with the exception of station 

17, 18, and 26, which were underestimated. Light attenuation measured at the surface is not 

always an accurate description of the entire water column. For example, station 17 had a 

subsurface sediment plume at 15 m depth, and therefore, the surface light attenuation was lower 

than within the plume (Figure 3.14). Satellite estimates of light attenuation were derived from 

natural light scattered back to the satellite from surface waters, a recognized limitation of using 

satellites to estimate light attenuation within highly turbid regions (Singh et al., 2022).  

Depth (m) Depth (m) 

A.
 c

la
th

ra
tu

m
 c

ov
er

 (%
) 

S.
 la

tis
sim

a 
co

ve
r (

%
) 



 80 

 

Figure 3.14 Station 17 light profile throughout the water column. Note the difference in 
𝐾!	#$%#&'	()* at the surface (open circles) and at depth (closed circles) in the water column. Note the 
log x-axis.  

Influence on Nuuk Lord kelp distribuAon 

The Nuuk fjords kelp species were dominated by Saccharina latissima and Agarum clathratum, 

similar to that of other Arctic/subarctic regions (Filbee-Dexter et al., 2019; Filbee-Dexter et al., 

2022; Goldsmit et al., 2021; Krause-Jensen et al, 2012; Krause-Jensen et al., 2019). A. 

clathratum was the deepest growing species due to its shade-tolerant adaptations while S. 

latissima was more dominate in shallow regions due to its relatively higher light requirements 

(Krause-Jensen et al., 2019; Sakanishi et al., 2022; Wernberg et al, 2019).  

Light availability strongly influenced kelp distribution patterns throughout the fjord system. High 

light attenuation with increasing proximity to glacier outlets was a function of increased total 

suspended solids. Lack of available light led to lower kelp cover and a more shallow depth limit 

in both fjord systems. However, close to the glacial terminus in Nuup Kangerlua fjord, kelp 

cover at the surface was high (despite a surface attenuation of 0.33 m-1; Figure 3.14) followed by 
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a strong drop in kelp cover below 10 m. Upwelling near marine-terminating glaciers can create 

subsurface sediment plumes (De Andrés et al., 2020), which we observed at depth (15-30 m) in 

Nuup Kangerlua, with considerably less sediments and a lower attenuation coefficient observed 

in the surface waters from 0-15 m. In contrast, greater surface light attenuation in Ameralik fjord 

led to minimal kelp cover near its land-terminating glacier sediment plume. Thus, while 

Niedzwiedz and Bischof (2023) described a reduction in the glacier plume area influence as 

marine-terminating glaciers became land-terminating, our results suggest vertical location of the 

plume could outweigh the associated impact on kelp distribution. However, iPARz-year alone 

explained only 43% of kelp cover in the Nuuk fjords, revealing that light availability can only 

partially explain kelp cover in the fjords.  

Regional comparisons  

The minimum underwater light requirement for kelp growth (expressed as 1% kelp cover) in 

Nuuk was estimated at 80.8 ± 72.9 mol photons m-1 yr-1, which was not significantly different 

from west Greenland or Southampton Island, and fell in the previously reported range of ~30-96 

mol photons m-1 yr-1 for cold water laminarians (Bartsch et al., 2016; Borum et al., 2002; Castro 

de la Guardia et al., 2023; Chapman & Lindley et al., 1980; Dunton, 1990). Furthermore, our 

average depth extent of 27.2 ± 6.3 m was similar to other areas of west Greenland (29.5 ± 9.1 m) 

and deeper compared to more northern Arctic regions ranging between 5 and 20 m (Borum et al., 

2002; Bartsch et al., 2016; Dunton 1990; Krause-Jensen et al., 2012). This finding can be 

explained in part by the more southern latitude (i.e., greater annual insolation) of Nuuk and 

decreased sea ice cover as suggested by Krause-Jensen et al. (2012). However, our depth extent 

was significantly shallower than SHI (35.9 ± 9.9 m) and offshore Disko Bay, Greenland (43.9 ± 

10.7 m). A similar comparison was made by Castro de la Guardia et al. (2023) who highlighted 2 
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stations (Nuuk and Itelleq) from Krause-Jensen et al. (2012) that had a much shallower depth 

extent despite a longer open water period with light. The difference is most likely due to 

turbidity, where we showed that 𝐾!	#$%#&'()* 	was significantly greater in Nuuk verses that of SHI. 

Similarly, Bartsch et al. (2016) conducted a study in Kongsfjorden, Svalbard and found that 

despite a decrease in sea ice cover, many kelp species did not increase their depth extent due to 

increased light attenuation. While decreasing sea ice cover has been predicted to increase kelp 

cover and extent in the Arctic, turbidity is a limiting factor, despite, and even more so as a result 

of, an increasing number of ice-free days per year (Bosnell & Dunton, 2021; Bosnell & Dunton, 

2018; Li et al., 2020; Spurkland & Iken, 2011). Therefore, turbidity and associated increased 

light attenuation has the potential to counteract the impact of decreasing sea ice cover on kelp 

depth extent. 

Light availability has a clear influence on kelp distribution, both in this study and throughout the 

Arctic. However, it is significant to note that while having a lower light attenuation, stations near 

the fjord entrances did not observe a deeper depth extent and in some cases had lower cover at 

the surface. The following explores other factors that could influence kelp distribution.  

3.4.2 Kelp Nutrient Dynamics 

Our kelp C content estimates fell within previously reported ranges of 24 to 40% (Gevaert et al., 

2001; Krause Jensen et al., 2012; Nielsen et al., 2014). It is important to note that carbon reserves 

peak in late summer, and therefore our reported mean kelp C content of 30.0% ± 2.34 (meristem) 

and 33.4% ± 2.81 (blade) are likely reflective of maximum annual levels (Gevaert et al., 2001). 

Observed greater C content within the kelp blade is commonly observed as C exceeds 32%, often 

in late summer when assimilation exceeds utilization (Gevaert et al., 2001; Henley & Dunton, 
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1995). This stored carbon can be transported to the meristem to fuel growth throughout the year 

(Gevaert et al., 2001; Henley & Dunton, 1997). Kelp N content observed in our study are similar 

to previous studies along Greenland coasts, ranging between 0.77 and 3.16% (Krause Jensen et 

al., 2012; Neilsen et al., 2014). In contrast to carbon, nitrogen in the meristem and the blade 

varied spatially throughout the sub-regions, with peak kelp N content within DN, nearest to the 

marine glacier terminus. Previous research suggests that kelp require a minimum content of 1.7% 

N to sustain maximum macroalgae growth (Pedersen & Borum, 1996), which only kelp deepest 

in Nuup Kangerlua fjord were able to attain. Stations in the middle of the fjord were closer to a 

critical minimum N content required for growth, estimated at 1% (Henley & Dunton, 1997), 

suggesting the possibility of nitrogen limitation on kelp growth in the Nuuk fjord system. These 

results are similar to those from Krause-Jensen et al. (2012), who also found higher N content in 

kelp near glacier termini.  

In line with these results, our observations also showed a significantly greater nitrate availability 

deeper in the fjord, a function of the circulation mechanism within a marine-terminating glacier 

fjord shown to enhance phytoplankton production throughout summer (Meire et al., 2017; Juul 

Pedersen et al., 2015). In contrast, nitrate concentrations in the land-terminating glacier fjord, 

Ameralik, were significantly less, where strong surface stratification minimizes mixing (Stuart-

Lee et al., 2021). Higher kelp N content near the entrance of the Nuup Kangerlua fjord was likely 

due to increased mixing near the sill (Meire et al., 2017), as evidenced by decreased temperature 

and salinity stratification of the water column, as well as increased chlorophyll a concentration.  

As carbon remained steady across the fjord system, the kelp C:N content ratio response was 

mainly a function of N content. The C:N ratios ranged between 23 and 38, consistent for kelp 
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growing in coastal waters (Henley & Dunton, 1995; Henley & Dunton, 1997; Nielsen et al., 

2014; Nielsen et al., 2016). However, it has been suggested that a C:N ratio above 15 is a 

indication of nitrogen limitation (Hanisak, 1983; Strong-Wright and Taylor, 2022), again 

suggesting that kelp throughout the Nuuk fjords were potentially nitrogen limited, including deep 

Nuup kelp, despite higher relatively nitrate availability.  

Our method to determine biomass and production was limited by the image-based estimate, not 

accounting for overlapping layers of canopy and assumed sampled blades represented an annual 

growth period. Our average production estimate of 8.06  ± 11.1 g C m-2 yr-1 fell within 

production estimates made for other Arctic regions, where Southampton Island ranged from 23.1 

– 67.8 g C m-2 yr-1 (Filbee-Dexter et al., 2022), and Young sound, Greenland averaged around 

0.1-2.0 g C m-2 yr-1 (Borum et al., 2002; Gomez et al., 2009). Biomass and subsequent production 

at 10 m were significantly greater deep in Nuup Kangerlua fjord. As mentioned earlier, fjord 

circulation was likely responsible for the greater production following evidence of lower C:N 

ratio and greater nitrate concentrations. However, the subsurface turbidity plume limited kelp 

production lower in the water column, even when nitrate concentrations were abundant. It is 

likely our multiple linear regression analysis selected against nitrate to explain kelp cover due to 

the complex trade-off between nutrient and light availability on kelp growth, evidenced deep in 

the Nuup Kangerlua fjord. 

3.4.3 Urchin Grazing 

Strong and abrupt decreases in kelp were observed at stations that had adequate light and nutrient 

availability, specifically at stations located near the entrance of the fjords. Urchin density was 

greatest with increased distance from the glaciers. High sedimentation rates near glaciers 
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resulting in sandy substrate was shown to negatively impact mobile invertebrate abundances 

(Blicher et al., 2007; Traiger & Konar, 2018), which helps to explain the decreased urchin 

presence further in the fjord. It is likely that in shallow waters, fast S. latissima growth is able to 

out compete urchin grazing; however, light-limited growth of S. latissima in deeper waters can 

result in a more noticeable sea urchin impact on kelp cover (Filbee-Dexter et al., 2022; Mann, 

1973; Norderhaug & Christie, 2009). Accordingly, Ager et al. (2023) suggested that sea urchins 

could potentially decrease the macroalgae cover in Nuup Kangerlua fjord by 15%. Therefore, 

urchin grazing provides the best explanation for the shallow depth limit (<15-20 m) of kelp near 

the entrance of both fjords.  

An  influence of urchin grazing can also help explain the trend observed throughout the Ameralik 

fjord, where kelp cover decreased at 5 m. Significantly less cover of S. latissima in Ameralik 

fjord was most likely a function of the negative relationship between S. latissima and urchin 

density. In contrast, A. clathratum was more abundant in Ameralik fjord with no discernable 

urchin impact, likely due to a combination of urchin grazing avoidance measures and less 

competition by the faster growing high canopy species, S. latissima (Filbee-Dexter et al., 2022; 

Gagnon et al., 2005). Therefore, we suggest urchin grazing impacted species composition. While 

urchin density means between the two fjord systems were similar, Filbee-Dexter et al. (2022) 

suggested increased grazing and reproduction rates of urchins were associated with increased 

temperatures. Therefore, the significantly greater temperatures observed in Ameralik fjord likely 

resulted in greater impact of urchin grazing at shallow depths in the fjord.  

Krause Jensen et al. (2012) stated that the strength of the relationship of kelp depth extent versus 

days of open water with light decreases when longer than 255 days a year, linked to an interplay 
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of local regulating factors that can influence kelp growth. Such factors included pressure from 

sea urchin grazing, which was also observed for other areas of west Greenland (Krause-Jensen et 

al., 2019). Here, we conclude that urchins provide a confounding effect with light on kelp depth 

extent and distribution, both in shallow and deep waters.  

3.4.4 AddiAonal ConsideraAons 

Kelp depth extent could also be influenced by glacial iceberg scour. Station 15 and 18 had signs 

of possible glacial scour, with scattered fragments of kelp visible on the seafloor. Increased 

marine-terminating glacier retreat can increase iceberg calving, which has the ability to scour the 

ocean floor, with potential of iceberg grounding (Borum et al., 2002; Gutt, 2001). This could 

play a role in limiting kelp extent near glacial calving zones.  

We did not consider spatial variability in currents throughout the fjords, yet kelp growth can be 

influenced by water motion. Specifically, lower kelp growth rates have been observed in areas 

where water motion is either too slow, limiting nutrient or inorganic carbon uptake, or too fast 

which can cause structural damage to the kelp thallus (Hurd, 2017; Hurd, 2000; Kraemer & 

Chapman, 1991; Kregting et al., 2015; Kvile et al., 2022).  

3.5 CONCLUSION  

Within this study of the Nuuk fjord system, we showed greater turbidity and decreased light 

availability nearest to glacier discharge, which led to limited kelp growth and cover, particularly 

below 10 m. However, increased upwelling near the Nuup Kangerlua fjord marine-terminating 

glacier likely led to increased nitrate availability, which resulted in kelp above the subsurface 

turbidity plume having greater biomass and production than other sub-regions. These results 

highlighted that both light and nutrient availability impacted kelp cover and growth in the area. A 
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third factor influencing kelp cover was sea urchin grazing that impacted species compositions 

and depth extent towards warmer and less turbid waters within the Nuuk fjord system. We note 

when urchin densities were low, iPARz-year, dependent on incident PAR, depth, and water clarity 

was able to explain up to 56% of kelp cover, which was dominated by S.latissima. 

Meire et al. (2017) showed that marine-terminating glaciers in Nuup Kangerlua fjord provided 

greater nitrate to the surface by upwelling and drove greater primary production in the form of 

phytoplankton. Our study built on this to show macroalgae are also impacted by this access to 

greater nitrate within the same fjord system. However, the benthic environment presents complex 

factors differing from the pelagic, with high turbidity limiting light at depth for photosynthesis, 

while in areas of lower turbidity, urchin grazing provided a negative influence on kelp 

accumulation.  

The IPCC states that surface temperatures in the Arctic have increased by 6ºC above the 1981-

2010 average, leading to exceptional sea ice and glacial mass loss (Meredith et al., 2019). In 

particular, marine-terminating glaciers are predicted to become land-terminating into the future 

(Torsvik et al., 2019). Although just a case study, our contrasting results from the two fjord types 

suggest that this change will likely decrease surface light and nutrient availability, while 

potentially leading to an increased urchin grazing impact associated with increased fjord 

temperatures. Ultimately, the impact on kelp distribution and growth within the Nuuk fjord 

system would be negative. These findings highlight the concept that warming of the Arctic will 

not necessarily lead to an increased kelp distribution and that we need to continually advance our 

understanding of processes controlling kelp growth to better predict the potential response for 

this critical primary producer.  
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CHAPTER 4.0 CONCLUSIONS AND RECOMMENDATIONS  

CHAPTER 4.1 CONCLUSIONS 

This thesis focuses on a study conducted in the Nuuk, Greenland fjord system. Fjords present a 

dynamic growing environment for kelp with a wide range of benefits and challenges. This region 

is characterized by glacial melt, both terrestrial runoff from land-terminating glaciers releasing 

sediment at the surface of the water, creating strong stratification, as well as deep water melt 

from marine-terminating glaciers, resulting in an upwelling of cold, fresh, nutrient rich waters 

with sediment plumes found at depth (De Andrés et al., 2020; Hopwood et al., 2018; Meire et al., 

2017; Slater et al., 2017).  

This thesis examined 26 transects throughout two differing fjord environments to observe how 

kelp cover and depth extent were impacted within varying growing conditions, such as land- and 

marine-terminating glacier influence. Light attenuation significantly increased deeper into Nuup 

Kangerlua, similarly, ambient nutrient levels also increased, presumably due to marine-

terminating glacier upwelling. The circulation mechanism in Nuup Kangerlua provides a unique 

nutrient rich growing environment. In general, kelp biomass and production increased in areas of 

overlap between lower light attenuation and higher nitrate concentration. Nearest to marine-

terminating glacier influence, kelp were able to thrive above the turbidity plume at < 15 m 

bottom depth, however below the plume, inadequate light availability limited kelp growth. 

However, nearest the land-terminating glacier in Ameralik fjord, where the turbidity plume was 

released along the surface, kelp growth was unattainable even in shallow water depths.  

We note that iPARz-year dependent on incident PAR, depth, and water clarity was able to explain 

up to 56% of kelp cover when urchin densities were low, supporting previous findings linking 
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increased light availability with increased kelp production and depth extent (Krause Jensen et al., 

2012; Castro de la Guardia et al., 2023). While Nuuk’s more limited sea ice cover, is receiving 

greater annual insolation than other Arctic regions, the analysis in this thesis revealed that Nuuk 

had a more shoaled depth extent. This thesis proposes that the reason for this observation is 

likely due to higher turbidity levels found throughout the Nuuk fjords. We suggest turbidity near 

glacier outlets, as is expected to increase with climate change, may limit kelp growth. However, 

in areas where light and nutrient availability were sufficient, kelp at times was often still limited. 

It is suggested that sea urchin grazing provides a confounding effect with light on kelp depth 

extent and distribution, both in shallow and deep waters.  

This conclusion highlights the importance of light availability, nutrient abundance and urchin 

density on kelp distribution and has application for other marine- and land- terminating glacier 

systems as well as to the greater Arctic, which is under unprecedented pressures due to warming. 

The research presented in this thesis builds upon Arctic studies showing increasing turbidity 

could counteract some of the predicted kelp expansion associated with a decreasing ice cover, 

potentially leading to shoaling depth limits by providing estimates of the minimum underwater 

light requirement for kelp growth and maximum kelp depth extent (Bartsch et al., 2016; Bonsell 

& Dunton, 2018; Filbee-Dexter et al., 2019; Szeligowska et al., 2021). The data presented in this 

thesis can be applied to understand changes occurring in other coastal regions around the globe 

experiencing increased turbidity due to factors including, but not limited to, glacial discharge, as 

well as regions of increased erosion, river run off and, or various mixing patterns. This new 

information improves our understanding of the ecosystem and will assist in more effective 

marine protection strategies that could feed into modelling efforts of kelp along Arctic coasts 

with fluctuating environments or where fieldwork may not be possible.  
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CHAPTER 4.2 RECOMMENDATIONS 

The research presented in this thesis builds upon a kelp distribution baseline for Arctic regions, 

and is an important step in understanding kelp coverage and depth extent response to physical 

variables of the water column in coastal environments. Here I present some recommendations on 

how the study presented in this thesis could be improved.  

1) The MODIS Aqua satellite data used in this research had a spatial resolution of 1 km. 

Using Sentinel 2 of higher spatial resolution of 10-60 m could allow for greater accuracy 

and fine-scale mapping when estimating water turbidity as many studies have already 

shown (Caballero et al., 2018; Caballero & Stumpf, 2020; Maimouni et al., 2022; 

Sebastiá-Frasquet et al., 2019). This would be beneficial for transitional ecosystems like 

fjords where turbidity can vary significantly spatially. However, measurements of 

turbidity at various depths will provide a more accurate description of how turbidity 

plumes are situated in the water column, unable to be measured by satellites. Often such 

measurements could be acquired through deployment of a mooring with turbidity, PAR 

and/or CTD sensors. However, fjord environments are problematic as icebergs 

continuously flow out of the fjord, scouring and crushing anything in their track. 

Therefore, I propose a community monitoring strategy to sample water for turbidity 

measurements to better determine light availability throughout the year.  

2) Shortwave radiation data acquired from the Greenland ecosystem monitoring website was 

used to determine incoming light throughout the year. However, only one station in Nuuk 

collects such data, yet it was applied to the entirety of the fjord system. It is worth 

acknowledging that the fjord system is very dynamic and has very different climatic 

conditions throughout. Anecdotal evidence reveals that deep within the fjord was often 
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sunny and warm, while the same day near the entrance of the fjord was cloudy with 

cooler temperatures. Therefore, additional climate monitoring located deep in the fjord 

could be beneficial to determine variation in incoming light.  

3) Additional suggestions for kelp sampling are proposed. The kelp in this study were only 

sampled from the 10 m bottom depth at one point in time. Kelp sampled from additional 

depths as well as different seasons of the year will allow comparison of kelp coverage, 

varying light acclimation strategies and nutritive state throughout the year based on 

carbon and nitrogen contents. Furthermore, kelp ages and stipe length could be measured 

to provide insight as to various environmental or historic events. For example, younger 

forests may be recovering from urchin grazing or ice scour. Additionally, stipe length 

could provide insights of light conditions (Gundersen et al., 2021; Pedersen et al., 2012). 

Kelp quadrat samples acquired by divers could be ideal as to provide more accurate and 

comparable biomass and production estimates, able to account for canopy cover overlap 

and direct measurements of wet weight.  

4) Lastly, trapping is suggested as a cost effective, reliable and more accurate suggestion of 

measuring urchin density in comparison to counts via video footage (James et al., 2016). 

This method could allow the size of the urchin to be determined which can provide 

helpful insight to both urchin and kelp forest health (Pearce et al., 2005; Siikavuopio et 

al., 2012). Divers could be another suitable method for urchin collection. 

To better understand the distribution of kelp throughout the Arctic as a whole, here we present 

recommendations for future studies. 
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1) As marine-terminating glaciers have the ability to both increase and decrease primary 

production, more research should be aimed at understanding the thresholds of increased 

dissolved inorganic nitrogen availability verses the influence of subsurface turbidity 

plumes. Few studies, if any, have shown the impact of subsurface turbidity plumes on 

kelp, while the study in this thesis highlighted the importance of this factor. Therefore, 

more research on this topic is needed. With marine-terminating glaciers expected to 

become land-terminating into the future, more research surrounding how limited 

upwelling and mixing and how runoff at the surface has the potential to eliminate kelp 

growth even in shallow regions is needed. Furthermore, study regions should also be 

selected based on alternative factors that can increase turbidity besides glacial discharge, 

this may include regions experiencing erosion, river runoff or various mixing patterns 

that may limit light availability by differing systems.  

2) It is important to increase insitu kelp observations and light measurements to better our 

understanding on the minimum underwater light requirements for growth. This can 

provide direct measurements to aid in understanding how the environment impacts kelp 

coverage and depth extent, and to quantify how light availably varies regionally 

throughout the Arctic to predict future changes.  

3) We suggest that studies take extra effort in not only addressing the coverage and depth 

extent of kelp, but to understand distribution based on individual kelp species to 

understand how future changes to the Arctic may affect various kelp species differently.  

4) Lastly, more study is needed to see how biological influence of sea urchin grazing as well 

as disease, which may spread from more southerly locations and influence kelp coverage 

and depth extent in a warming Arctic.  
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SUPPLEMENTARY MATERIALS 

Table S1. Spearman Rank Correlation matrix (used to determine relationships to kelp percent 
cover at each sampled depth) for temperature, salinity, nitrate, urchin density and iPARz-year. 
Showing correlation coefficient, r, with bold values when the correlation is significant (p ≤ 0.05). 
Variables were normalized to reduce the dominant effect of variables with large ranges.  

 Temperature Salinity Nitrate Urchin 
density 

Chl a iPARz-year 

Temperature x x x x x x 
Salinity 0.03 x x x x x 
Nitrate -0.79 0.28 x x x x 

Urchin density 0.12 0.31 0.13 x x x 
Chl a  0.13 -0.42 -0.18 0.03 x x 

iPARz-year 0.30 -0.64 -0.35 -0.01 0.61 x 

Table S2. Simple linear regression of explanatory variables of kelp percent cover, as well as for 
S. latissima and A. clathratum separately. Bolded values are significant (p ≤ 0.05). 

Variable Simple linear Regression 
 Kelp % cover S. latissima % cover A. clathratum % cover 
Temperature  r2 = 0.01 

p = 0.22 
r2 = 0.0002 
p = 0.86 

r2 = 0.03 
p = 0.02 

Salinity r2 = -0.16 
p < 0.0001 

r2 = -0.23 
p < 0.0001 

r2 = 0.0002 
p = 0.85 

Urchin density r2 = -0.01 
p = 0.21 

r2 = -0.05 
p = 0.01 

r2 = 0.02 
p = 0.08 

iPARz-year r2 = 0.43 
p < 0.0001 

r2 = 0.35 
p < 0.0001 

r2 = 0.02 
p = 0.10 

Nitrate  r2 = -0.11 
p < 0.0001 

r2 = -0.07 
p = 0.0009 

r2 = -0.03 
p = 0.03 

Chlorophyll a  r2 = 0.15 
p = 0.0001 

r2 = 0.12 
p = 0.002 

r2 = 0.02 
p = 0.19 
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Figure S1. Kelp cover (%) (black line) by depth and urchin density (urchins m-2) (grey line) by 
depth for a) a Nuup Kangerlua entrance station (St.1) b) and an Ameralik station (St.23).  
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