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Abstract

Recently, there has been a growing interest in using Generalized Autoregressive
Conditional Heteroscedastic (GARCH) models in the finance discipline. The discus-
sion will begin with an overview of the GARCH(P,Q) processes and its properties,
with an emphasis on the normal GARCH(1,1) model. The highlight of this thesis
lies in the two numerical examples investigating the usage and performance of sev-
eral GARCH models. The first example features the fitting of six GARCH models
to the returns of the Standard & Poor’s 100 daily index (January 1991-December
2000). The second example explores three GARCH models utilizing the risk-neutral
valuation of call options via Monte Carlo simulation for the Standard & Poor’s 100
daily index (January 1981-December 1993) and the Standard & Poor’s 500 weekly
index (January 1991-December 2000).



Dedicated to my parents and grandparents.



ii

Acknowledgements

First off, I would like to thank my entire family for their generous love, sup-
port and encouragement through the years. A heartfelt thanks to my advisor Dr.
Thavaneswaran for his kind and patient guidance. I would also like to extend my
gratitudes to Dr. Paseka and Mathew McLean for their time and assistance. Last
but not least, to my lovely girlfriend for her big heart, constant affection and wit

that keeps me grounded at all times. Thank you all very much!



TABLE OF CONTENTS

iii

Table of Contents

1

2

Introduction

GARCH (P,Q) Model

2.1 Kurtosis of GARCH(P,Q) . . . . . . . . o o i

2.2 Estimation of GARCH(P,Q) . . . . . . . . . . ... ... ... ....

2.3 Forecasts based on GARCH(P,Q) . . . . . ... .. ... .. .....

2.4 Forecast errors of GARCH(P,Q) . . . .« . . .« oo i ..

2.5 Normal GARCH (I,1) model . . . . . . ... ... .. ... .......
25.1 Kurtosis . . . . . ...
252 Estimation. . ... .. .. ... ... ... .
253 Forecasts. . . . .. . ... ..
2.54 Forecast errors . . . . . . ...
25,5 Simulation . . . . . ...

Other Variations of GARCH Models and the Standard Stochastic
Volatility Model

3.1 GARCH models with conditional ¢-distribution . . . .. ... .. ..
3.2 GARCH-Mmodel . . . ... .. .. ... . ... .. ... . ...

Example: Standard & Poor 100-Share Index

4.1 Dataset description . . . . . . . .. ...
4.2 Fitting a normal GARCH(1,1) model . . . . .. ... .. .. .....
4.3 Diagnostic checks and forecasts for the normal GARCH(1,1) model
4.4 Comparing the GARCH(1,1) models . . ... .............

Option Pricing with GARCH Models

5.1 Risk-neutral measure . . . ... .. ... .. ... ... ... ...,

5.2 Black-Scholes and GARCH option pricing models . . . . .. ... ..

5.3 Implied volatility and delta . . . . . ... ... ... ... .. ...,

54 Dataanalysis . . ... ... ...
5.4.1 Parameter estimation . . . . .. ... ... L. L.

24
24
25
26
27

30
30
30
32
35



LIST OF FIGURES iv

6 Appendices 74
6.1 Appendix I: ¢-weights for a stationary ARMA(p,q) process . . . . . . 74
6.2 Appendix II: Alternative proof of Corollary 2.1. . . . . . . ... ... 75
6.3 Appendix III: Lognormal asset pricing . . .. ... ... ....... 76
6.4 Appendix IV: SAS estimationissue . . . ... .. ... ... ..... 78
6.5 Appendix V: Estimating the standard errors . . . . . .. ... .. .. 79
6.6 Appendix VI: Heston’s option pricing formula . . . . ... ... ... 82
6.7 Appendix VII: SAScodes . . ... ... ... .. . ... . ...... 84

List of Figures

1
2
3
4

10

11
12
13
14
15

16

Preliminary graphs for the S&P 100 dataset . . . . . ... ... ... 3
SACF for the S&P 100 dataset . . . . .. ... ... ... ...... 4
Kurtosis values of y, for the simulated normal GARCH(1,1) model . . 19
Significant k-th lag SACF of y; for the simulated normal GARCH(1,1)
model . . .. e 20
Significant k-th lag SACF of y? for the simulated normal GARCH(1,1)
model . . . . L e 21
Sample 1’s SACF of y; and y? based on the simulated normal GARCH(1,1)
process withw =01, a=05and 8=025. ... ... ........ 22

S&P 100 volatility estimates based on the normal GARCH(1,1) model 33
Graphs of Z; for the S&P 100 based on the normal GARCH(1,1) model 34
SACF of Z, and Z2 for the S&P 100 based on the normal GARCH(1,1)

model . . ... e 36
Volatility forecasts for the S&P 100 based on the normal GARCH(1,1)

model . . .. e 37
Diagnostic graphs for the conditional ¢-distributed GARCH(1,1) model 41
Diagnostic graphs for the normal GARCH(1,1)-M model . . . . . .. 42
Diagnostic graphs for the normal GJR-GARCH(1,1) model . . . . . . 43

Diagnostic graphs for the normal GJR-MA(1)-GARCH(1,1)-M model 44
Diagnostic graphs for the conditional ¢-distributed GJR-MA(1)-GARCH(1,1)-
Mmodel . . .. ... .. 45
Estimated volatility for the normal GARCH(1,1), conditional ¢-distributed
GARCH(1,1) and normal GARCH(1,1)-M models . . . . . ... ... 46



LIST OF FIGURES ‘ v

17 Estimated volatility for the normal GJR-GARCH(1,1), normal GJR-
MA(1)-GARCH(1,1)-M and conditional t-distributed GJR-MA(1)-GARCH(1,1)-

Mmodels . . ... ... ., 47
18  Preliminary graphs for the S&P 500 dataset . . . . ... ... .. .. 55
19 SACF for the S&P 500 dataset . . . ... ... ... ......... 56

20  Simulated call prices for different maturities, excercise prices and ini-
tial conditional volatilities for the S&P 100 daily index. Biases are
as a percentage of the Black-Scholes’ prices. Prices are recorded as
10,000 times. . . . . . ... 60
21 Simulated deltas for different maturities, excercise prices and initial
conditional volatilities for the S&P 100 daily index. Biases are as a
percentage of the Black-Scholes’ deltas. . . . . . . ... ... ..... 61
22 Simulated call prices for different maturities, excercise prices and ini-
tial conditional volatilities for the S&P 500 weekly index. Biases are
as a percentage of the Black-Scholes’ prices. Prices are recorded as
10,000 times. . . . . . . . . 62
23 Simulated deltas for different maturities, excercise prices and initial
conditional volatilities for the S&P 500 weekly index. Biases are as a

percentage of the Black-Scholes’ deltas. . . . . ... ... ... .. .. 63

24 Implied volatilities based on simulated call prices for the S&P 100
daily index. . . . . . .. .. 65

25  Volatility smiles based on simulated call prices for the S&P 100 daily
index. . . . .. 66

26 Heston’s closed-form stochastic volatility pricing model for the S&P
500 weekly index. Prices are recorded as 10,000 times. . ... .. .. 67

27  Implied volatilities based on simulated call prices for the S&P 500
weekly index. . . . . ... L 68

28  Volatility smiles based on simulated call prices for the S&P 500 weekly
index. . . . .. 69

29  Observed and simulated call prices and its respective implied volatili-
ties for the S&P 100 daily index on October 27, 1993. . . . . . . . .. 71

30  Observed and simulated volatility smiles for the S&P 100 daily index
on October 27,1993, . . . . . . . . . . .. 72

31  Observed and simulated call prices and its respective implied volatili-
ties for the S&P 500 weekly index on February 17, 1993. . . .. . .. 73



LIST OF TABLES vi

32  Observed and simulated volatility smiles for the S&P 500 weekly index
on February 17, 1993. . . . . . . . . . ... 73

List of Tables

1 Basic statistical measures of y; for the S&P 100 dataset . . . . . . . . 30
2 Parameter estimates for the S&P 100 dataset based on the normal
GARCH(1,1) model. . . . ... ... .. . .. .. 31

3 Values of the estimated conditional variance izt, estimated volatility
vV fzt, and the estimated standardized residuals Zt, based on @, d; and

Bl from Table 2. . . . . . . .. ... 32
4 Volatility forecasts based on the normal GARCH(1,1) model for the

S&P 100 dataset. . . . . .. ... 35
5  Various GARCH(1,1) models’ parameter estimates and respective stan-

dard errors (in brackets) estimated from the S&P 100 dataset. . . . . 39

6 Parameter estimates under measure P. . . . . . . ... ... .. ... 58



1 INTRODUCTION 1

1 Introduction

It has been well documented in financial literature that many financial times series,

! on stocks, often exhibit interesting

such as the foreign exchange rates and returns
empirical properties. The following four properties have been the subject of extensive

studies:

1. Financial times series are often leptokurtic. This means that the distribution
of their returns have a higher probability mass around the tails (“fat tails”)

and a higher peak at the mean than that of a standard normal distribution.

2. Financial time series are often heteroscedastic. This means that volatility? is
time-varying and non-constant. In other words, the volatility of returns are

serially correlated.

3. The squared values of the returns exhibit a high level of correlation whereas

the values of the returns do not have much correlation.

4. There exists clustering of changes in returns i.e. small changes tend to be
followed by small changes and vice versa. This characteristic is also known as

volatility clustering.

In order to illustrate the aforementioned characteristics, consider the daily closing
prices for Standard & Poor’s 100-share index® (S&P 100) recorded from January 2,
1991 to December 29, 2000 and its returns for that time period.

Figure 1(a) and Figure 1(b) illustrate the dramatic price variability over time,

suggesting a heteroscedastic nature. It might also be worthwhile to note here that

1Unless specified otherwise, the return series ¥, in this thesis are calculated using y; = In (p’i) ,
t—1
where p; is the observed price at time ¢.
2Volatility is a measure of the variability in price over some period of time and is typically
described as the standard deviation of returns.
3Dividend payments are excluded here.
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the price variability seen in figures 1(a) and 1(b) tend to be grouped in periods with
low and high price fluctuations. Perhaps this indicates the existance of volatility
clustering.

Figure 1(c) exhibits leptokurtosis with the high peak at the mean, thin midrange
and “fat tails”. The leptokurtic nature is also reflected on the returns’ kurtosis value
of 8.05, a value almost thrice as large as that of a standard normal distribution. The
QQ-plot (Figure 1(d)) agrees as well.

Plots of the sample autocorrelation function (SACF) of returns y; and squared
returns y? are given in Figure 2(a) and Figure 2(b) respectively. It is evident here
that the majority of the sample autocorrelations for y? are significant, indicative of
a dependence in the data.

Presented next is another example which also clearly exhibits the stated char-
acteristics. It is a simple model y; = €2 ,¢; (&; is a Gaussian white noise with
variance ¢2) considered by Gouriéroux (1997) where the process y; is (weakly) sta-
tionary having variance Var(y;) = 305 and conditional variance, given past values,
Var(ysys—1) = o2¢;_, that are dependant on the lagged residuals. Since F(c2*) =
02"(2—71)'! and E(y}) = 31502, the kurtosis is K& =35, which is substantial in

¢ 2nn
value. As for the correlation of y; and y? processes,

py =0 for k > 0,
1 if k=0,
o =4 0114285 ifk=1,
0 if k> 1.

This clearly shows that even a simple model can generate very high peakedness,

dependency of variance with its lagged residuals and correlated y? process.
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“General time series models, such as the Autoregressive Moving Average (ARMA)
models, fail to ;:apture the above phenomena the majority of the time. Addition-
ally, general time series models have a significant limitation - the assumption of
homoscedasticity (constant volatility). In this thesis, several Generalized Autore-
gressive Conditional Heteroscedasticity (GARCH) models that have the ability to
successfully capture all the above characteristics often seen in financial time series
will be discussed. Option pricing based on GARCH processes, following in the spirit
of the papers writen by Duan (1995), Duan et al. (2006), and Hafner and Herwartz
(2001) will be explored as well.

For further insight on ARMA and GARCH models, refer to Abraham (1983),
Appadoo et al. (2005), Appadoo et al. (2006), Ghahramani and Thavaneswaran
(2007), Ruppert (2004), Tsay (2005) and Wei (2006).
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2 GARCH (P,Q) Model

In 1986, Tim Bollerslev introduced the GARCH model, which is an extension to the
ARCH model pioneered by Robert Engle (1982). The general GARCH(P,Q) model

for the time series y; is given by

yt]Yt—1 ~ (0, ht)»
e = s, (2.1)

P Q
he=w+ Y oui i+ By, (2.2)
=1 =1

where P > 0,Q >0, w >0, >0, 5 >0, Y.y = (y1,%2,---,%-1) and Z; is a
sequence of independent and identically distributed (i.i.d.) random variables with
zero mean and unit variance (i.e. Z; i (0,1)). It is easy to see that {y;} will reduce
to an ARCH(P) process when @ = 0, and {y;} is just white noise when P = Q = 0.

There is an alternative representation for the GARCH(P,Q) model as described
in equations (2.1) and (2.2). By letting u; = y2 — h; (u; is known as a martingale dif-
ference sequence?), the GARCH(P,Q) model can be interpreted as an ARMA(R,Q)

representation in y2:

P Q
Y —w =w+ Z iy + Z Bihe—;
=1 =1

P Q
=3 i — U = w+ Z @y + Zﬂj [yf-j — U]
i=1 j=1

P Q Q
R4 (1 - ZaiBi— Zﬁ]BJ)ytZ =W+ U — Zﬁijut_j
=1 j=1 j=1

& $(B)y; = w + B(B)us (2:3)

“E(uz) = 0 and Cov(us, us—j) = 0 for j > 1.
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where
R ‘ 0 ‘
B)=1-Y 6B, B(B)=1-> BB,
i=1 =1
¢ = a; + [, R = maz(P, Q).

Stationary assumptions for y? having the ARMA(R,Q) representation will be

made here, and they are as follows:

1. All zeroes of the polynomial ¢(B) lie outside the unit circle. This assumption
is needed as it ensures the wu;’s are uncorrelated with zero mean and finite

variance, and that the process 32 is weakly stationary.

[e.0]
2. There exists a sequence of constants {1);} such that Z P2 < oo, where the ;s
=0

are obtained from the relation ¢(B)¢(B) = S(B) with ¥(B) =1+ Z:«szZ
Refer to Appendix I to see how the 1-weights can be obtained for any statlonaly

process.

Consequently, the autocorrelation function (ACF) of y? will be exactly identical as
that for a stationary ARMA(R,Q) process (Thavaneswaran et al. (2005b)). This

implies that the kth lag ACF of y? can be calculated using

Z w2¢z+k

2 -
y¢ __ =0
Pr = &)
St
i
=0

2.1 Kurtosis of GARCH(P,Q)

The following theorem calculates the kurtosis for a GARCH process in terms of the

1 weights (Thavaneswaran et al. (2005a)).
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Theorem 2.1. Under the stationarity assumptions and finite fourth moment, the

kurtosis K® of the process (2.3) is given by

E(Z})

KW — -
B(ZH) - [BE(Z8) -1]) v
=0

and the variance of the y? process is

Var(y?) = o2 4

i=0
ag(K(y) -1

> wf

i=0

where o?

u =

and o} = Var(y,) = d

Cl—¢1—¢o—...— R

Proof. Let Var(u;) = 02 and recall that Z; have zero mean, unit variance and finite
forth moments. Taking expectations of (2.1) yields the following unconditional mean

and variance of returns:

E(y) = E(v/hZy) = E(vVh)E(Z) = 0,
Var(y) = E(y?) = E(hZ?) = E(h,)B(Z2) = E(hy).

From (2.3), we can see that

$(B)y; = w+ B(B)us

2 W B(B) W = .
< "B e T w®) T Z“
o Vat) =Y
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Now, observe that
o, =Var(y; — he) = E(y)) — E(R}) = E(K{Z}) — E(R}) = E(l})[E(Z]) — 1],

which results in
o0

Var(yf) = E(R)[B(Z}) - 1] ) 43 (2:4)

=0

Moreover, by the definition of a variance, equation (2.3) also leads to

Var(y;) = E(y;) — [E(y)]?
=E(RZ}) — [BE(h))?

— B)E(Z}) — [B(h)P (2.5)

Equating equations (2.4) and (2.5), we have

E(h)E(Z}) — [E(r))* = E(R))[E(Z{) — 1] Zw?
E(h?) 1
= Eh)P %
PR bz - iz - 03w
=0
Now the corresponding kurtosis is
K@ — El(y: — E(yt))4] — E(yf)
[Var(y,)]? [E(?)]?
_ _EM)E(Z)
 [B(h)PIE(Z7))?
_ B(Z})
B(Z!) - [B(Z) - 1) v}

which completes the first half of Theorem 2.1. For the proof of the second half, notice
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that from (2.3),

w
Verlw) =15 =5, = —gn =

and that, from the previous derivation,

w _ B _ E@)
= B = ot

so that
Var(y}) = E(y}) — [E@)? = 0y KY — 1] = 02> 4%,
i=0

which, in turn, produces
oa(KW — 1)

Oy =~
> y?
i=0
0

To illustrate Theorem 2.1, the K® and o2 for the ARCH(1) (or equivalantly
GARCH(1,0)) model of the form |

Y=V hiZs,
hiy =w+ alyt2—1)

3(1 —a?)

where Z, "% N (0,1) are simply K® = .
1 - 3a1

and o2 = op(K® —1)(1 — o})

respectively.

2.2 Estimation of GARCH(P,Q)

A commonly used method for estimation is the maximum likelihood estimation

(MLE) method. In this thesis, MLE will be used to provide an appropriate esti-
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mate for the GARCH parameters, namely © = (w, o, ..., ap, b1, -.-,00).

Consider the conditional density of observation ¢

f(Z)

f(yt[Yf—l) = \/E; .

The likelihood function is the product of f(y:|Y;—1) from a set of n observed values

Y1, Y2, - - -, Yn, that is
L(©) = f(1n]Y0) f (w2l Y1) - - . f (yn|Ya-1)-

Maximizing this likelihood, or equivalently, in logarithmic form,

n

L(©) =3 | -3 1) +1n(/(2)].

t=1

provides the maximum likelihood estimate of all the parameters.

2.3 Forecasts based on GARCH(P,Q)

Using methods similar to those used for the ARMA process, predicting y2 (€21
based on past observations can be easily done. Based on observations y1, ya, - - ., ¥n,
let y2(¢) be the {-steps-ahead forecast of y2_,.

The linear filter representation of the GARCH model (2.3) in terms of ¥-weights

is given by

gb(B)nyH = w + B(B)unis

w
& Yore = (B T Unt TVt o et

Hence, the {-step-ahead forecast of y?2 +¢ based on n observations can be represented
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w
yi(f) = ——— 4 €olUp + €1Unp—1 + E2Un—2 + ...

¢(B)

where ¢; (j > 0) are constants chosen to minimize the mean squared error. By

expressing the mean squared error as

E(12,, — v2(0))2] = E[({tnse + Yrtinpeer + - - + De1tinss + Yot + Per1tn_1 + ...} —
{eottn + €1tn_1 + €2un s + .. .})]
= E[({tnte + V1tnro—1 + ... + Yoortnp1 } +
{(e — €0)tn + (41 — 1)1 + ... })7]
= E(upyg) +9TE(up g 1) + -+ Eup, )+

(e — €0)?E(ul) + (o1 — €1)?E(ud_1) + ...

=ool+ Y + .. Y]+ 0l ) (e — )7,
=0

the mean squared error is minimized when ¥, ; = ¢; for 7 > 0 since v, is a martingale.
Therefore, the {-steps-ahead minimum mean squared error (MMSE) forecast of y2 4
is

w

ya(l) = +(B)

+ Yptp + Yop1Un_1 + Yoyoln_o+ . ...

Using conditional expectations, it can be further shown that

y'rzz(g) = E(y?ﬁ‘elyna ey yl)
w

= m + YeUn + YVop1Un-1 + Yepoln_o + ...



2 GARCH (P,Q) MODEL 13

following from the fact that

E(un-i-j]yn""ayl) = .
0, ifj>0

Similarly, the /-steps-ahead forecast for the conditional variances given a history

of returns, denoted by h,(¢), can be obtained with ease as
hn(f) = Var(yn+e|yn, e 7y1) = E(:U?H—K[yn) v 7y1)-

2.4 Forecast errors of GARCH(P,Q)

Based on n observations y1, ¥z, - - -, Un, let y2(£) be the {-steps-ahead MMSE forecast
of Y2, and let e,(¢) = y2(¢)—y2,, be the corresponding forecast error. The following
theorem (Thavaneswaran et al. (2005a)) formulates the ¢-steps-ahead forecast error

variance Var(e,(£)) in terms of the kurtosis K (y) and the 9 weights.

Theorem 2.2. The {-steps-ahead forecast error variance Var(e,(£)) for any GARCH(P,Q)

model is given by

2
—— w_ — (K(y)—l) -1
Var<en<£>>=(1 Bodaz ‘”’“) {HE%}
>

where ¢; = a; + B; and R = maz(P, Q).

Proof. For a stationary ARMA process, the variance of /-steps-ahead forecast error
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with error variance o2 is

Var(e,(0)) = o2

-1
1) wf} ~
j=1
Using the results of Theorem 2.1, we can clearly see that Theorem 2.2 holds. O

2.5 Normal GARCH (1,1) model

The simplest of the nontrivial GARCH processes is the normal GARCH(1,1) model,

for which

ytl}/t—l ~ N<O) ht)a

Yy = \/h_tZt7 (26)

hi = w+ Cl1yt2_1 + Bihi—a, (2.7)

where w > 0, oy > 0, 5 > 0 and Z; vk N (0,1). The strengths and weaknesses of
GARCH models can be investigated by focusing on this simple model.

By using the martingale difference equation u; = y2 — h;, equations (2.6) and

(2.7) can be interpreted as

Y2 — U = w4 oyl + Bi(yi i — u—1)

A yt2 - alyf_1 - ﬁlytz_1 =w+ U — frug—1

& (1- By =w+ (1 - 5By (2.8)
so that

(1— ¢ BY1+ 1B+ B> +...) = (1 - AB),
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from which we obtain

Yo=1, Y1 =01, t=ai(o1+B),

Vs =ay(ar+B1)% ..., i=ai(an +6)
and
o= 1+al+ad(ar+B) 4. =14 oy
=0 1

2.5.1 Kurtosis

Recall that for any random variable Y with finite fourth moments, the kurtosis
E[(Y - E(Y))"]
[Var(Y)?
following theorem provides the kurtosis of y; for a normal GARCH(1,1) process.

is defined by K® = . With stationarity conditions in place, the

Corollary 2.1. Consider the GARCH(1,1) model in equations (2.6) and (2.7). The

kurtosis of y; is given by
K 30=91)
1—¢% - 203
AED-)A-¢)
1—¢f+of vol—¢1

where ¢y =y + F1 < 1, aﬁ =

Proof. The kurtosis, according to Theorem 2.1, is

E(Z}) 3
K@ — ¢ — 5

B - B -0 3w -2 [1+ o]

31—}
-2 — 203
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which corresponds to the result found in Bollerslev (1986). Moreover,

e og(KW —1)  of(K®W —1)  oy(K® —1)(1 - ¢7)
u &) - [ a2 - 1— ¢2 + a2
1+ 1 ] 1 1

E W2 )
i 1—
— o1
2 W w
and the unconditional variance of y; is oy, . |

1-¢1 l-o-f
It can be shown that if 1 — ¢? — 202 > 0, then K® > 3. This consequently
implies that the normal GARCH(1,1) process has a heavier tail distribution than
that of a standard normal distribution. See Appendix II for an alternate proof of

Corollary 2.1.

2.5.2 Estimation

From n observed values Y, = (y1, ¥, - - - , Un), the estimates of the normal GARCH(1,1)
parameters, 6= (@, as, Bl), can be obtained by maximizing the conditional likeli-

hood function

( ) f(y be)f(yﬂyl) f(ynlyn—l)

1 (77) = (51)

or equivalently, by maximizing the log-likehood function

I

n

2
InL(O) = _';‘ Z <111(27r) + In(hy) + %—i)

t=1

= —% < In(27) + Zn:[ln(ht) + Zt2]> '

t=1

where y; and h; are as equated in (2.6) and (2.7) respectively.
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2.5.3 Forecasts

Equation (2.8) can be rewritten as y? = w+ ¢1y7; +us — B1u—1. Taking conditional
expectations, the one-step-ahead (£ = 1) forecast given past observations can be

expressed as

y2(1) = B2 y1ltn, - - 01)
= E(w+ $192 + Unt1 — B1lnlYn, - - -, Y1)

=w+¢ry2

since E(Y2|Yn,---,v1) = ¥2 and E(uni1|Yn, - -, ¥1) = E(nl¥n, .-, y1) = 0.

Similarly, the f-step-ahead forecast, for £ > 2, can be shown to satisfy

yr%(z) = E(yi+2|yn, oY) =w+ ¢1y3(1)a

Y2(3) = B(y2 3lyny - - - 41) = w + 192(2),

V2 (0) = EWarelyns - 1) = w + grya(€ — 1).
By repeated substitution, we get
ya(£) = w+ ¢1Bya(0),

implying that

. 9 . W
Jim y7.(4) = .

The conditional variance forecasts are obtained in a similar fashion.
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2.5.4 Forecast errors

Based on the unconditional variance aj, the error variance o2 and the 1-weights for
a normal GARCH(1,1) process as well as Theorem 2.2, the {-steps-ahead forecast

error variance is

Var(e,(£)) = o2

-1
1+2ﬂ4

j=1
_ oy (KW -1)(1 - ¢})
B 1—¢2+a?

-1
14 Z[m (Ofl + ,B1)j_1]2] . (29)

j=1

For |a; + 51| < 1, equation (2.9) converges to

Vor(en(e) = SEZ DO [y el ],

1—¢%+C¥% 1—(a1+,31)2
2.5.5 Simulation

Using SAS®, ten samples of the normal GARCH(1,1) model, following equations (2.6)
and (2.7), were simulated with w = 0.1 and various combinations of «; and (;
values that ranged from 0.1 to 0.9 and 0.05 to 0.9 respectively, under the additional
requirement that oy + £; < 1. Each sample was generated using 2000 observations
with an initial ‘burn’ of 500 observations to ensure stability of the process. The
kurtosis values of y;, as well as all significant k-th lag sample autocorrelations of
both y; and y? were then tabulated in Microsoft Excel (figures 3, 4 and 5).

The majority of sample autocorrelations for y? shows strong presence of signifi-
cance and an exponential decaying pattern, whereas the sample autocorrelations for
y; are mostly not significant (except when o + 3 is close to or at the nonstationary

boundary i.e. &+ [ = 1) with no obvious pattern. See Figure 6(a) and Figure 6(b)

5See Appendix VII for the full SAS code used in the simulation presented here. SAS codes for
the simulations presented in later sections are given in Appendix VII as well.
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Normal GARCH{1,1} simulation

Sample [N ay K oy K(Y) o, KM oy KM ay K(Y)
7 356753 33917 55012 78,9656 71.8030
2 33233 3.5308 47107 8.7146 14,6698
3 32018 15822 52068 §.6451 17,0817
4 21662 3.6661 55620 13,0010 17.3573
5 31724 3.4856 52007 112517 207147
6 0.05 01 aysa | 9% asses | 95 mooos | O qommas| %% eooiss
7 34319 35578 71129 21,0929 362813
8 31451 3.4551 45210 72072 13,2502
9 3.0509 3.3751 61927 27 5462 58 8962
10 3.0053 35832 7.8273 20.4985 35.0411
7 3075 34053 57566 727730 525760
2 33238 35512 4.8652 10,1798 18.0301
3 32255 3.6062 5.3744 10.6237 19.6967
4 31672 3.6005 6.7101 12,9953 27.0762
5 31703 3.4886 52798 133248 37,6479
6 01 01 sigar | %% zseag | 9% shass | %78 oose2| O° tia0206
7 31326 35779 7.3807 223403 413759
8 3.1455 34585 4.5626 79701 16,8770
9 20511 3.3083 6.5888 29 8903 £0.7106
10 3.0963 3.8074 78763 20,2988 36,6729
1 30794 34550 31611 B1.1560

2 33202 36217 5.9954 20,5280

3 32304 3.7002 5.1537 16,3982

4 3.4752 37940 7.1900 877940

5 3.1650 3.5127 58632 233133

5 025 01 gqaos | %% geom | 9% everz | 078 iproe2r

7 31354 3.6581 8.4680 20 0454

8 31503 3.4918 4.9737 16.1860 |.

g 30709 35115 8.8207 461437

10 31013 3.6831 80317 21,6362

1 31078 40449 572196

2 33567 3.9871 233757

3 32721 40180 20,5194

3 32127 41317 63,4937

5 31583 3.7440 18.6028

6 0.8 01 5o % o | %5 s70021

7 31443 3.9695 17,0697

8 3.1787 37366 222586

9 31216 4.1463 352088

10 31136 38323 86652

1 23042 339620

2 34383 382519

3 33657 11.0649

4 33139 336400

5 32011 14,5737

6 0.7 01 Sao0 | %P garer

7 3.2387 91003

8 3.3208 13.0249

9 3.3327 13.4853

10 31493 58666

y 12,7664

2 9.0866

3 5.4209

4 21.0512

5 0.4458

: 09 01 2%

7 5.4654

8 6.0175

9 5.1764

10 4.8088

Figure 3: Kurtosis values of y; for the simulated normal GARCH(1,1) model
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(b) An exponentially decaying SACF with the 1st up to the 11th significant
lags for y?

Figure 6: Sample 1’s SACF of y; and y?2 based on the simulated normal GARCH(1,1)
process with w = 0.1, a = 0.5 and 8 = 0.25
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for an example. As seen in Figure 3, the kurtosis values for all simulated processes
exhibit values larger than 3, which indicates a leptokurtic nature. Additionally, the
kurtosis values have a common theme of aquiring even larger values when « + § is
in the close proximify of 1, the nohstationary boundary value. The simulation work
done here does suggest that the normal GARCH(1,1) model possesses the character-

istics mentioned in the introductory chapter.
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3 Other Variations of GARCH Models and the

Standard Stochastic Volatility Model

The GARCH family is capable of incorporating nonnormal conditional distributions
as well as varying specifications for the conditional mean and conditional variance.

A remark by Bollerslev et al. (1994) puts this into perspective:

The richness of the family of parametric ARCH models is both a blessing
and a curse. It certainly complicates the search for the ‘true’ model, and
leaves quite a bit of arbitrariness in the model selection stage. On the
other hand, the flexibility of the ARCH class of models means that in
the analysis of structural economic models with time varying volatility,
there is a good chance that an appropriate parametric ARCH model can

be formulated that will make the analysis tractable.

In this section, three GARCH models, namely GARCH(P,Q) with conditional
t-distribution, GARCH-in-mean (GARCH-M) and GJR-GARCH, and the standard
stochastic volatility (SV) model will be briefly discussed. The inclusion of SV models
in our discussion is justified by the fact that SV and GARCH models have many

similar capabilities.

3.1 GARCH models with conditional ¢-distribution

The normality assumption, y:|Y;—1 ~ N(0, k) and thus Z; ~ N(0, 1), may not be a
viable option if the estimated standardized residuals Z; derived from observed returns
and all related parameter estimates, exhibits nonnormal behaviour (e.g. K @ 3).
If a situation like this arises, an alternative to the normal distribution could be the

standardized ¢-distribution, Z; ~ t(v), amongst others.
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Determined by the degrees-of-freedom, v > 2, the conditional density of y;, for a

standardized t-distribution, is

I‘(a)z/ % e dz.
0

Note that with the parameterization, Var(Z;) = 1 for al v > 2, justifying the
name standardized ¢ distribution. The parameter estimation for a t-distributed

GARCH(P,Q) model will now involve maximizing the log-likelihood function

(%)
InL(©)=nln
2

_ %g [m(ht) —(v+1)In (1 + uZ—t 2)]

where © = (w,v,a1,...,a0,04,--.,8p).

3.2 GARCH-M model

A GARCH-M model is being considered when the conditional mean term p; for

yt]Y;f—l ~ (Nt» ht)

Ye = e + \/EZt

60ther notable results for the gamma function are I'(1/2) = /7, I'(1) = 1, T'(a + 1) = al'(a),
and T'(b) = (b — 1)! for positive integers b.
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is a function of the conditional variance h; that follows a GARCH process. A plausible

specification of y; may take the form of

e = 7'+/\\/E

which follows an intuitive notion that expected returns relate to a positive risk-free
interest rate r and risk (measured by h;). For most assets, A should be positive to

reflect that an increase in risk increases the expected returns.

3.3 GJR-GARCH model

It is well known that future volatility of financial markets have the tendency to react
differently in the event of a rise in price versus the event of a fall in price (asymmetric
volatility phenomenon). As investigated by Nelson (1991), the impact of a fall in the
US stock market on the volatility for the following day is much larger than that of a
rise of the same magnitude. Glosten, Jagannathan, and Runkle (1993) present the
GJR-GARCH model to address this phenomenon.

The GJR-GARCH incorporates additional information at time t—: with a weighted

y? , using the indicator variable

1 ify ;<0

0 if Yt—i > 0

to describe the volatility asymmetry. For a GJR-GARCH(P,Q) model, the condi-

tional variance will take the form of

P Q
he=w+) (0t & Ls)yi i+ ) Bhey
i=1

j=1
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where the parameters are usually constrained by w > 0, o; > 0, a; +a; > 0, and

B; = 0.

3.4 The standard stochastic volatility model

Due to frequent changes in volatility, it is appropriate to model volatility by a random
variable. From discrete-time returns data, volatility cannot be observed directly as it
is a latent variable that is not traded. In order to intepret volatility as a variable that
can be modeled and predicted, SV models specify a stochastic process for volatility.
This approach differs from ARCH models, which specify a process for the conditional
variance of returns.

The growth of SV literature is less rapid than that of the comparable ARCH
literature. The greater popularity of ARCH models is simply due to its ease of
estimation via maximum likelihood, whereas the estimation of.SV models is not
trivial due to the existence of the latent volatility. Nevertheless, SV models are a
natural choice for modeling random volatility.

The most widely used SV model-is perhaps the standard SV model of Taylor

(1986) where a lognormal specification for volatility follows an AR(1) process

Yy = 012y

In(oy) = a+ Bln(o—1) +

2
o On

with 8] < 1, Z, "% N(0,1), 7 "X N(0,02), In(oy) ~ N <r:“g [y

> , and the

processes {0} and {Z;} are stochastically independent.

Using the properties of a lognormal distribution’, the second and the fourth

7See Appendix III.
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moments of y; are given by

E(y?>=E<o§>=exp< o« ])

1—-8  21-p2
2
E(y) = E(0})B(Z}) = 3exp <12_aﬂ N 12_0% 2)

With the above results, the kurtosis of y; is

v — E(y;ﬁi) = 3ex 072)
K= Ewp 3"’p<1—ﬁ2>

and the variance of 3?2 is

Var(y;) = El(o7 )" — [E(o7 Z})]?
= (Var(a?) + [E(e7)*) E(2]) — [E(o7)]*

- et o (oo 1) -]

= 5 fsew (1225) -1].

Moreover, the ACF of y2 can be obtained provided that E(Z}) < oo and |8] < 1.

Following Jacquier et al. (1994), the autocovariance of y2 can be expressed as

1— /2

0'2ﬂk
Cov(y;, yii) = Cov(of, 07_s) = [E(o7)]* |exp | ——5 | — 1.
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Hence, the ACF of y? at lag k is then

py2 o COU(ytz? y?—k)
v =
\/Var(y?)Var(yf_k)

for any positive integer k.

Sometimes the assumption of a heavy-tailed distribution for the error process
{Z;} may be more appropriate than a Gaussian assumption. For instance, if {Z;}
assumes a standardized ¢-distribution with variance 1 and degrees-of-freedom v > 4,

3(v—

1 8 opposed to E(Z}) = 3 for a normal distribution.

then E(Z}) =
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4 Example: Standard & Poor 100-Share Index

4.1 Dataset description

With its induction in 1983, the S&P 100 measures performances of 100 major U.S.
companies across diverse industry groups. As previously mentioned, the S&P 100
dataset used in this thesis covers the period of January 1991 to December 2000
inclusive. There are a total of n = 2531 price index observations, p;, with per
observation recorded at the close of each trading day over the 10 year period. The
dataset, which commences at the price of pg = 153 and terminates at pas3p = 686,
attained a minimum price of 146 in 1991 and a maximum of 833 in 2000.

As for the returns, y; = In (%), the first return is observed at y; = —0.013
and the last at y53; = —0.008. Th:elwerage return is a small positive value of 0.0006.
Table 1 summarizes some of the basic statistical measure of ;. Preliminary graphs

and SACF of y; can be reexamined in figures 1(a)- 1(c) and 2(a)- 2(b) respectively.

Values
Mean 0.0005924
Variance | 0.00009726
Skewness | -0.2855339
Kurtosis | 8.0452076
Minimum | -0.0751646
Maximum | 0.0560616

Table 1: Basic statistical measures of y; for the S&P 100 dataset

4.2 Fitting a normal GARCH(1,1) model

Recall that returns y; exhibit the characteristics outlined in the introductory chapter.
This indicates that a GARCH process may be a good candidate to model ;. In
this section, the S&P 100 dataset will be fitted following the normal GARCH(1,1)
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volatility model. By adapting methods presented in Chapter 2, the S&P 100 dataset
can be modeled with little difficulty using SAS.

Returns (y;), conditional variances (h;), and standardized residuals (Z;) are con-
nected by equations (2.6) and (2.7), where parameters® w, a; and 3, are estimated

with the MLE method. Using SAS, the estimated values are presented in Table 2.

Parameter Values Std. Error  t value Approx. Pr > [{|
w 4971 x 1077 1.2622x 1077 3.94 < .0001
o 0.0510 0.004561 11.19 < .0001
6, 0.9454 0.005066 186.59 < .0001

Table 2: Parameter estimates for the S&P 100 dataset based on the normal
GARCH(1,1) model.

Observing the t-ratios of the parameters, it suggests that all three parameters

are significant. Hence, the estimated conditional variance is
hy = 0.0000004971 + 0.051y2 | + 0.9454h,_;. (4.1)

The maximum likelihood estimates of the unconditional variance and kurtosis of y;
: . 3(1— 43
are then respectively &, = —ff——f = 0.000138 and K® = ——(—r—jzl—):— =
1-—-0!1—ﬂ1 1—¢%—2a§

10.861806, which are relatively close to what was recorded in Table 1.

Initiated by the variance of the complete sample of returns (h; = 0.00009726), A,
and Z, for ¢t = 1,...,2530 are recursively computed and then tabulated. Displayed
in the table below are some of the values.

Figure 7(a) depicts the time series of volatility estimates v/ hy from 1991 to 2000.

The plotted volatility estimates, with respective median and mean values of 0.00832

81, can be treated as an additional model parameter to be included in the estimation procedure.
In this thesis, h; will simply be assigned the value of the sample variance of returns and not be
estimated.



4 EXAMPLE: STANDARD & POOR 100-SHARE INDEX

32

Date t Uy hy \/ﬁ_t Ly

02-Jan-91 0 —0.012599

03-Jan-91 1 —0.001057 0.00009726 0.00986229 —1.2775
04-Jan-91 2 —0.018345 0.00010055 0.01002727 —0.1054
07-Jan-91 3 —0.002562 0.00009561 0.00977806 —1.8762
08-Jan-91 4 —0.014276 0.00010805 0.01039478 —0.2464
22-Dec-00 | 2526 | 0.023153 0.00030694 0.01751971 1.3215
26-Dec-00 | 2527 | 0.004026 0.00031802 0.01783303 0.2257
27-Dec-00 | 2528 | 0.006066 0.00030198 0.01737747 0.3491
28-Dec-00 | 2529 | 0.001605 0.00028786 0.01696651  0.0946
29-Dec-00 | 2530 | —0.008472 0.00027277 0.01651586 —0.5129

Table 3: Values of the estimated conditional variance ?Lt, estimated volatility / iLt,
and the estimated standardized residuals Z;, based on &, dy and B; from Table 2.

and 0.00931, range from a minumum value of 0.00468 (December 27, 1993) to a
maximum value of 0.02389 (September 14, 1998). The second half of the returns
series appears to show higher volatility than the first half. The clustering phenom-
enon is evident here with a consistently high estimated volatility for some periods
and then low for some. To further emphasize this point, Figure 7(b) shows in more
detail a year with high volatility (2000), represented by a dashed iine, and a year
with low volatility (1995), represented by a solid line. With an estimated value of
Bl = 0.9454, it is no surprise that large volatility are clustered together, and likewise

with low volatility.

4.3 Diagnostic checks and forecasts for the normal GARCH(1,1)

model

To ensure the fitted normal GARCH(1,1) model is appropriate, the examination of

the standardized residuals, Z, = %, is needed. The sample mean and variance of

Zt, calculated to be 0.0602 and 0.99671, are very close to the theoretical values of 0
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Velacility Volatility
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(a) Volatility 1991-2000 (b) Volatility in 1995 and 2000

Figure 7: S&P 100 volatility estimates based on the normal GARCH(1,1) model
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and 1 respectively. However, the skewness (—0.4596) and kurtosis (5.6012) values of
Z, indicates that the model assumption of normality here may not be ideal. This is
also reflected in the probability distribution curve and QQ-plot as seen in figures 8(a)

and 8(b). It seems that a heavy-tailed distribution would be a better choice over the

current standard normal distribution.

30 7 13
) .
25
//\
2N
I
i 1
29 ’, ‘\
B 4
§ i
{ i
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r 3 2
§ 18 \\\ i
: j \\ ;
i -2
i {
f i
/ L
19 j ‘1
/ |
/ \
5 ; _}‘\_J
\ 3
4 L
, : I\AML -5 - - -
~E.& -5.4 3.2 -3 -1.8 0.8 9.¢ 1.8 3 4.2 -4 -3 -2 -1 ¢ i z 2 4
2_hat liotmal Quantiles
(a) Probability distribution curve of Z; (b) QQ-plot of Z,

Figure 8: Graphs of Z; for the S&P 100 based on the normal GARCH(1,1) model

Figures 9(a) and 9(b) provides the SACF of the standardized residuals and its
squared counterpart. These ACFs are examined to see if there are any evidence of
serial correlation or conditional heteroscedasticity in the terms Z,. Here, the ACFs
fail to suggest any significant form of correlation or heteroscedastic nature in the
standardized residual series.

Overall, the GARCH(1,1) model with the estimated conditional variance de-

scribed in equation (4.1) appears to be an adequate fit. Aside from the visual diag-
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nostics presented thus far, other form of diagnostics such as the Ljung-Box Q-statistic
(Ljung and Box, 1978) can help to further investigate model adequacy.

To forecast the volatility of returns of the S&P 100 index, refer to the recursive
equations from Section 2.5.3. Table 4 shows the volatility forecasts for the next 5
trading days based on the GARCH(1,1) model where 32530 = (.00027277. Figure 10
shows volatility forecasts for 253 trading days into the future, assuming that hos30 to
be a low of 0.00002 and a high of 0.0006. As ¢ — oo, the volatility forecast, \/m ,
will converge to the value of 0.0117509. The rate of convergence is dependant on the

combination of & and § parameters.

Horizon (days) 1 2 3 4 5 oo

Volatility 0.0165012 0.0164865 0.0164719 0.0164574 0.0164428 0.0117509

Table 4: Volatility forecasts based on the normal GARCH(1,1) model for the S&P
100 dataset.

4.4 Comparing the GARCH(1,1) models

It is commonplace in practice to compare the forecasting performance of different
models. The choices of models used in an empirical study are largely dependant on
a number of constraints such as expertise level of researcher, the amount of time
allocated to research and software availability, just to name a few.

Table 5 lists the parameter estimates and their respective standard errors (in
brackets) for the S&P 100 dataset from five different volatility models along with the
normal GARCH(1,1) model estimates discussed earlier. The five models being con-
sidered are as follows: conditional ¢-distributed GARCH(1,1) model with a constant
mean 7; normal GARCH(1,1)-M model with conditional mean y; = 7+ Ay/hy; normal
GJR-GARCH(1,1) model with a constant mean r; and GJR-MA(1)-GARCH(1,1)-M
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(a) SACF of Z,

(b) SACF of Z2

Figure 9: SACF of Z, and Z? for the S&P 100 based on the normal GARCH(1,1)
model
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Figure 10: Volatility forecasts for the S&P 100 based on the normal GARCH(1,1)

model
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for two conditional distributions, normal and ¢.

The GJR-MA(1)-GARCH(1,1)-M model is defined by

Yel Vo1 ~ (e, ),

Y=t + e = e+ Ve Z,

He =T+ A\/h_t'*‘ e,

hi =w+ (o1 + i L_1)el | + Prhs-n,

L= 1 ife1 <0 |
0 ifeq1>0
which connects returns y; (ignoring dividends), conditional means y;, conditional
variances hy, residuals e;, and standardized residuals Z;. The GARCH(1,1)-M and
GJR-GARCH(1,1) models are as described in Chapter 3.

Due to complications with SAS?, the parameter estimates and respective stan-
dard errors!® for the normal GJR-MA(1)-GARCH(1,1)-M model were obtained using
Microsoft Excel'! as discussed in Taylor (2005). The results for the conditional t-
distributed GJR-MA(1)-GARCH(1,1)-M model estimates were directly taken from
Taylor (2005) as well. The parameter estimates for the remaining models were ob-
tained using SAS.

A commonly used method to select an appropriate model from a fixed set of
models is to compare either the Akaike information criterion (AIC) or the Schwarz

Bayesian information criterion (BIC) obtained from fitting the considered models.

9See Appendix IV.
108ee Appendix V.
11 A1l Excel files for this thesis can be obtained at http:/ /seetonglim.thesis.googlepages.com.
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The AIC and BIC are computed as follows:

AIC = —2In L(©) + 2P,

BIC = —2In L(6) + Pln(n),

where © is the value of the likelihood function evaluated at the parameter estimates,
P is the number of estimated parameters and n is the number of observations. A
model with a smaller AIC (or BIC) value indicates a better fitting model. By this
token the conditional t-distributed GJR-MA(1)-GARCH(1,1)-M model is the best
here, although the simpler conditional t-distributed GARCH(1,1) fits nearly just as
well.

The diagnostic graphs for the five GARCH models are displayed in figures 11
to 15. The diagnostic results here are similar to those previously discussed for the
normal GARCH(1,1). With the exception for the conditional heteroscedasticity of Z;
for the normal GJR-GARCH(1,1) model indicated by Figure 13(d), the other models
appear to provide an adequate fit with no sign of serial correlation. Figure 16 and
Figure 17 are the projected volatilities based on the parameter estimates from Table
5. The spikes for the three GJR models are more pronounced in comparison with the
non-GJR models. Overall, the estimated volatilities from all six models resembles

one another quite closely.
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Figure 11: Diagnostic graphs for the conditional ¢-distributed GARCH(1,1) model
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5 Option Pricing with GARCH Models

5.1 Risk-neutral measure

Following the GARCH frameworks discussed in the previous chapters, consider the

structure for the real-world measure!? P:

P
yt|Yt-1 ~ N(Mt:ht),
Yp = gy + € = iy + Ve Zs,

1
/Ltzr_iht‘}‘)‘\/—)

P Q
hy =w+ Z aief_z- + Z Bihi—j,
i=1 j=1

where y; = In(p;) — In(p,—1) are the log returns that define the information sets
Y; = {y1—j,J > 0}; r denotes the continuously compounded risk-free rate; A is the

constant market price of risk; and 7Z; = ol RN (0,1) is the standardized

Vhy idid.

residual. The typical parameter restrictions apply as well: w > 0, o5 > 0, 8; > 0

and 7 o + E?’Ll B; < 1.

Definition 1. A pricing measure Q is said to satisfy the locally risk-neutral valuation

relationship if

e measure Q is mutually absolutely continuous with respect to measure P,

De

Pi—1

|Y:_1 distributes lognormally under measure @,

o € [ﬁ‘w}—{l =¢", and

Di—1

1230metimes known as the physical measure, the real-world measure assume that a more risky
asset, on average, command a higher rate of return than a less risky asset. In contrast, the risk-
neutral measure assume that no extra compensation is required for additional risk.
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o Var® [ln <ﬂ> |Y;_1J = Var? {ln (—E—> ]Yt_l} almost surely with respect
Pt—1 Di—1 »
to measure P.

Fair option prices can be obtained in the GARCH setting using a risk-neutral
measure Q, as defined in the definition above by Duan (1995), with the following

theorem.

Theorem 5.1. The locally risk-neutral valuation relationship implies that, under

pricing Q,

Vit 2 N, be),

yt:Nt+ét:Nt+VhtZt:

1
He =T — '2'ht;
P Q
hi =w + Z 08— — A/ hyy)® + Z Bihi—j,
=1 =1

with Z, = Z, + \ '% N(0,1).

For the popular GARCH(1,1) model, the conditional variance under measure P
is

ht g w + [ath2—1 + ﬂl]ht—-l

whereas under measure Q it is
by 2, + [Oél(Zt—l - >\)2 + B1) k1.

Theorem 5.2. For a GARCH(1,1) model under pricing measure @,

w
1—(1—’—)\2)0{1—,81,

e the stationary variance of é; equals to

o ¢; is leptokurtic, and
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€t

——2/\&)0&1
Ql_*_ —
* Cov [wz—ht] 1= (1+N)ar - B

if [A] < \/(1 — o1 — f1)/oa.

Similar results can be obtained for returns with different GARCH specifications.
This simply requires replacing the residual variable, e;, in the conditional variance
under measure P by é — A\/h; with everything else unaltered. For instance, the

GJR-GARCH(1,1) model leads to

By = w+ [01Z2 | + &} max(0, — Z;)2 + Bi]he_1

he 2wt [on(Zioy — N2 + o max(0, —(Ze_y — N) + Bilhes

as seen in Duan et al. (2006). To ensure that the conditional variances remains
positive for the GJR-GARCH(1,1) specification under measure P, the parameter
restrictions are w > 0,09 > 0,a] > 0 and B; > 0. Note as well that the stationarity
conditions for the GJR-GARCH(1,1) model differs under measure P, which is o; +
a1 /2+ B < 1, from that under Q, which is (a; +ai N(A))(1+A2) + ot n(N)+5; < 1
where N(.) and n(.) stand for the standard normal distribution and density functions,
respectively.
Another noteworthy specification for pricing options is the AR(1)-GJR-GARCH(1,1)

model used in Hafner and Herwartz (2001). With returns defined as relative price

changes here, i.e. y; = 21:_}%;1’ the structure under measure P follows

Pi—1

P
Z/t|Y;t—1 ~ N(,ubht)»
Yo = e + e = g + /e 2y,
He = v+ EyY_1,

by =w+ [ Z2 | + o} max(0, —Z;)? + Bi]he1,
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where v and £ are constant parameters. Under the risk-neutral measure, the model

takes the form of

Q
Yl Yio1 ~ N (i, he),
yt=/«6t+ét=#t+\/htz~t,
:ut =T,

ht =w + [Ozl(Zt_l — )\t—l)2 -+ OZI maX(O, _(Zt—l — )\t—l))2 + Bl]ht—l,
_v +&yy 1 —1

vhe

Ay
where r is a constant risk-free interest rate and Z; = Z; + \;.

5.2 Black-Scholes and GARCH option pricing models

Developed in the early 1970s by Fischer Black, Myron Scholes, and Robert Merton,
the Black-Scholes (BS) model is influential in the valuation of option prices. The
price of a European call’® option on a stock with no dividend payments at time ¢

based on the BS formulation is

CBS = p,N(dy) — Ke "IN (dy),

_ In(pe/K) +(r + a?/2)(T —t)
ovVT —1t ’

do=dy —ovT —1t,

d; (5.1)

where p; is the price of the underlying asset at time ¢, K is the strike price, r is the
risk-free rate (continuously compounded), o is the stock price volatility, and T'— ¢ is

the time to maturity of the option.

3Generally, a European call (put) option is the right to purchase (sell) a particular asset for a
specified amount at the time of maturity. For an American option, the right can be exercised at
any time during its lifespan.
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Following GARCH processés, the terminal asset price under the measure Q spec-

ification, for log returns with maturity at time 7, is

T T
1 ~
Pr = Prexp (T—t)r—é- Z hs + Z €s

s=t-+1 s=t+1

= prexp(Yet1 + Yes2 - - - + Y1),

and for returns defined as relative price changes, the terminal asset price follows

T

DT = Py H (14+7r+é)
s=t+1

= p(1 + yer1)(1 4+ yeg2) ... (1 + 7).

With pr at hand, the discounted theoretical fair price of a European call option with

exercise price K can be obtained with
C; = D*E®[maz(pr — K,0)|Y{] (5.2)

where the discounting factor is D* = e™"T? for log returns or D* = (147)~T~% for
returns defined as relative price changes. Using Monte Carlo simulations of returns,
equation (5.2) can be approximated by

D*

N
N Z maz(p;r — K,0)

i=1

ét:

for N simulations delivering terminal asset prices {pir,1 <i< N}
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5.3 Implied volatility and delta

In practice, implied volatility and delta are two important parameters in option
pricing. This dedicated section will cover a brief overview of them.

Implied volatility is the ¢ value that determines the current market price based
on the Black-Scholes formulation, given that the exercise price, current price, risk-
free rate and expiration date are known. In a sense, implied volatility may be viewed
as the amount of volatility the market is currently observing.

There are currently no explicit formulas of o expressed as a function of K, p;,
r, T and C;. However, o™ can be obtained using iterative search procedures
such as interpolation or Newton-Raphson, among others. Plotting o®%? versus
the moneyness ratio, %, for a specified maturity date, produces a U-shaped graph
known as a volatility smile'4.

Belonging to the set of “Greek letters”!%, the delta of an option measures the
sensitivity of the option price to changes in price of the underlying asset. The
delta measurement is an important element especially in hedging, which is a risk

management strategy. In general, delta is defined as the first partial derivative of C;

with respect to p,
dCy

A = .
! dp;

For a European call option determined by the BS formula, it can be easily shown

14See Hull (2006) for a thorough description on volatility smiles.

15The Greek letters consists of delta, theta, gamma, rho and vega. Theta, vega and rho re-
spectively measures the sensitivity of C; to changes with respect to ¢, r and ¢. Gamma measure
sensitivity of delta with respect to p;.
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that the delta on a stock with no dividends is

dd dd
BS _ N 1 —r(T~t) d e
AV (dy) +ptn(d1)—dpt Ke n(ds) i,

= N<d1)a

with d; defined as in equation (5.1). Incorporating the GARCH specification under

measure Q, Duan (1995) derived the delta at time ¢ to be
_ n+Q pPr
At =D'F I:p—l(pTZK)]}/t] )
¢

where 1¢,,.> k) is an indicator function and D* is the discounting factor. As discussed
previously for equation (5.2), the GARCH delta here can be approximated via Monte

Carlo simulation.

5.4 Data analysis

The main objective here is to explore the use of GARCH processes in pricing options.
This involves parameter estimation, simulating and comparing call prices and deltas,
and evaluating the performance of various models through volatility smiles.

Three different GARCH models, specifically the GARCH(1,1), GJR-GARCH(1,1)
and the AR(1)-GJR-GARCH(1,1) as described in Section 5.1, will be used in the
analysis of two datasets: the S&P 100 daily index series from January 2, 1991 to
December 29, 2000 (as previously used) and S&P 500'® weekly index series from
January 2, 1981 to December 27, 1993. Verification of the four characteristics men-
tioned in the introductory chapter for the S&P 500 index can be visually inspected

in figures 18 and 19.

18The S&P 500 index is based on the performances of 500 major U.S. companies and widely
regarded as the best gauge of the U.S. market.
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(a) SACF of returns y;

(b) SACF of squared returns y?

Figure 19: SACF for the S&P 500 dataset
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5.4.1 Parameter estimation

Firstly, the GARCH(1,1), GJR-GARCH(1,1) and the AR(1)-GJR-GARCH(1,1) mod-
els under measure P are fitted to the indices to obtain the parameter estimates. For
simplicity, dividend payments are ignored and r assumes the value of 0%. Once
again, 1 use Microsoft Excel’s Solver tool to estimate model parameters (see the
results in Table 6). I also attempted to estimate the parameters using SAS and a
Bayesian estimation software called WinBUGS?, but with little success due to con-
vergence issues. Note that the unconditional variance 032/ for the GARCH models

under measure P are as follows:

GARCH(1,1): o2 2 #wﬂ‘
—_ 1 — 1
2 P o
GIR-GARCH(L1): 0y = y———1—r B’
— oy — U Ml

w
(1-8)(1—on—05a"—B)

AR(1)-GJR-GARCH(1,1): 02 =

Most of the estimates are similar across the three models for the S&P 100 and
for the S&P 500 dataset as well. Clearly, 3; has a large influence on the conditional
variance h;. High persistency of shocks in volatility is evident for the GARCH(1,1)
model as d; + 5, is close to 1. The same can be said for both the GJR-GARCH(1,1)
and AR(1)-GJR-GARCH(1,1) models as their respective d; + 0.5¢;* + B values
range from 0.9493 to 0.9955.

5.4.2 Monte Carlo simulation

With exercise price set at K = $1, half a million simulation runs (N = 500, 000)
corresponding to different maturities, moneyness ratios and initial conditional volatil-

ities hy are carried out to obtain GARCH call prices and deltas. The Excel tables in

17Go to http://www.mre-bsu.cam.ac.uk/bugs/ for more information on WinBUGS.
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figures 20 and 21 reflects the simulation results for the S&P 100 daily index series.
For the S&P 500 weekly index series, refer to the tables in figures 22 and 23. Prices
based on the Black-Scholes formulation are included in the tables as well.
Observing from deep out-of-the-money'® options to deep in-the-money options,
the disparity between the GARCH option prices and the BS prices generally decrease
hy
2

o
y
scale. The price disparity becomes larger in magnitude for higher valued initial

in magnitude. The same can’t be said when the comparison is done across the

conditional volatility. Moreover, the BS model almost always underprices for deep
out-of-the-money options and the underpricing is more pronounced for deep out-
of-the-money options with shorter maturity times. The comparison between the
GARCH deltas and the BS deltas exhibit similar patterns to the price comparison.

The tables in Figure 24 and Figure 27 report the implied volatilities for the
GARCH call prices seen in Figure 20 and in Figure 22 respectively. For the S&P 500
index, results obtained from a stochastic volatility pricing model by Heston (1993)
are displayed along with the GARCH models for comparison. The simulated call
prices!® and the implied volatilities for Heston’s model are tabulated in Figure 26.

Featured in Figure 25 are graphs of the implied volatilities for the S&P 100
index, and likewise, the implied volatilities for the S&P 500 index appears in Figure
28. Clearly, all plotted graphs exhibits the characteristic U-shaped smiles, or in sofne
instances smirks. The concavity of the volatility smiles flattens out considerably as
time to maturity increases in duration.

Focusing on the volatility smiles for the S&P 100 index, one can see that the GJR-
GARCH(1,1) smiles and that of the AR(1)-GJR-GARCH(1,1) are strikingly similar.

18A call option is out-of-the-money when p; < K, in-the-money when p; > K and at-the-money
when p; = K.

9T would like to thank Dr. Paseka for providing me with all the simulated call prices for Heston’s
model. See Appendix VI for an overview of Heston’s model. The parameter estimates: R = 0.1299,
¢ = 1098, ¢ = 0.4152 and a/é = 0.02253, and the volatility risk premium \ = 2.52 from Eraker
(2004) were used in the simulation exercise.
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GARCH{L1}
T K hifoy" = 0.64 hyo, = 1.00 hio, =144
(days) i c= <, % bias & % bias G % bias
08 00168 031344 1570.92% | 073823  383544% | 153722  609475%
09 10.2636 82744 -1938% | 1390203  3545% | 2169397  111.37%
30 1.0 2450151 207.52 -15.30% 2323 5.15% 259.28 5.82%
11 1016.7609 | 10145 -0.22% 1022.70 0.58% 10336 1.66%
1.2 | 20002874 | 20015 0.06% 2003.00 0.14% 20055 0.26%
08 6.1932 6.78175 9.50% 1182241 90.89% | 1914837  209.18%
0.9 855797 | 6231172 -27.19% | 8289168  :3.02% 107.73 25.88%
0 1.0 4242447 | 36866 -13.10% 405.84 4.34% 2468 5.32%
1.1 11128253 | 10906 -200% 1116.40 0.32% 1146.6 3.04%
12| 20205922 | 20238 0.16% 2035.40 0.73% 2050.8 1.49%
08 409045 | 3276411  -19.80% | 4581628  12.25% 62.8045 53E53%
09 203.5342 157.65 -2254% 1885 -7.39% 224.24 10.17%
180 1.0 599.6893 530.81 “41.48% 57341 4.38% 621 3.55%
1.1 12515987 | 12082 347% 12448 0.56% 12863 271%
12 | 20900888 | 20796 -0.50% 2103.2 0.63% 21318 2.00%
(a) Based on GARCH(1,1) estimates
GJR-GARCH(1,1}
T4 K hido/ =0.64 hyioy, = 1.00 hifoy” = 1.44
{days) i cE Cs % bias C, % bias &, % bias
08 00610 027153  2681308% | 049506  4B896.39% | 085622  0464062%
09 40777 65199 59.89% 919315 12545% | 127601  212.92%
30 10 2088430 | 21395 245% 2288 8.60% 24138 1558%
1.1 1007.4422 | 10244 1.68% 1030.10 2.25% 1037.1 2.94%
1.2 | 2000.0359 | 20048 0.24% 2006.60 0.33% 2009 0.45%
08 18328 2.9977 63.56% 357376 14955% | 682306 27231%
0.8 521250 | 4970487  -464% | SB76793  12.74% | 6975403  3382%
90 10 3616436 | 38313 5.94% 400.68 10.79% 4208 16.36%
1.1 10717836 | 11235 4.83% 1137.30 6.41% 1153.4 7.62%
1.2 | 20084919 | 20469 1.93% 2056.20 2.34% 2065.3 2.84%
08 180869 | 1633132  -13.99% | 2038518 7.36% 250252 31.80%
08 140.5957 140.7 0.07% 15318 8.95% 167.97 18.47%
180 1.0 511.2658 554.98 8.55% 573.05 12.08% 593.96 16.17%
11 11782929 | 12622 7.12% 1278.8 853% 12982 10.18%
12 ] 20480092 | 21322 4.06% 2145 4.68% 2160.1 5.42%
(b) Based on GJR-GARCH(1,1) estimates
AR(1)-GJR GARCH[L.1)
Tt Ik hife, = 0.64 hifo = 1.00 hylo,” = 1.44
{days} : cEe o % bias ¢, % bias <, % bias
08 0.0065 022203  316740% | 040725  589368% | 070858  1032747%
09 73944 641016 -17.37% | 867953 17.38% 12.0735 £3.26%
30 10 2306007 | 21278 173% 225.84 -206% 240.43 4.26%
1.1 10125494 | 10237 1.10% 1029.3 1.65% 1036.1 233%
12 | 20001390 | 20044 0.21% 2006.1 0.30% 2008.4 041%
08 30303 246677 -36.04% | 381882 535% 573234 2275%
0.9 715228 | 4672791  3467% | 5544957  -2247% | 6585524  -7.82%
S0 1.0 398.3005 | 37713 555% 30445 T A421% 41398 368%
1.1 10957429 | 11184 2.04% 1131.40 3.25% 1146.7 1.65%
12 | 2014.8425 | 20432 1.41% 2050.8 1.79% 2060.2 225%
08 371025 | 13.80487  5561% | 17.31896  -44.32% | 21.78620  -29.95%
09 177.7763 13178 -2587% 14351 -19.27% 157.18 -11.59%
180 1.0 564.4599 | 540.51 -4.24% 557.75 -1.19% 57737 229%
11 12217425 | 12473 2.09% 12629 337% 1280.8 483%
12 | 20723941 | 21196 2.28% 2131.2 2.84% 21447 3.49%

(c) Based on AR(1)-GJR-GARCH(1,1) estimates

Figure 20: Simulated call prices for different maturities, excercise prices and initial
conditional volatilities for the S&P 100 daily index. Biases are as a percentage of
the Black-Scholes’ prices. Prices are recorded as 10,000 times.
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GARCHI1,1)
Tt ik hiioy =064 hyfo,” = 1.00 hifo,” = 1.44
{days) A3 A % bias A % bias A % bias
08 00002 |0.0D0G21724  483.72% |0.001954673 1138.01% |0.003852340 2339.66%
0.9 0.0460 | 0.028062  -36.87% | 0042648  -7.38% | 0059090  28.35%
30 10 05123 051552 0.64% 0.51673 0.87% 0.51797 1.12%
1.4 0.9432 0.96167 1.96% 0.94754 0.46% 0.93182 “1.21%
12 0.9986 0.99739 -0.13% 0.99504 -0.36% 0.99157 -0.71%
08 00205 | 0015703  -2328% | 0023853  1654% | 0034438  68.25%
0.9 0.1744 012913  -2594% | 015155  -13.08% | 0.174570 0.13%
90 10 05212 052522 0.77% 0.52710 1.13% 052928 1.55%
11 0.8287 067013 5.00% 0.85243 2.86% 0.83547 0.62%
1.2 09614 0.97154 1.06% 0.95169 0.03% 0.95033 -1.15%
) 0.07% 055653  599.04% | 0.060/76  -12.33% | 0085808 781%
0.9 0.2660 022329 -18.05% | 024196 9.03% 0.26101 -1.87%
180 10 05300 0.53459 0.87% 0.53674 1271% 0.53935 1.77%
1.1 0.7607 0.79805 4.90% 0.79805 490% 0.77418 1.77%
12 0.9009 £.92533 271% 0.91339 1.38% 0.90067 -0.03%
(a) Based on GARCH(1,1) estimates
GIR-GARCH{L.7]
Tt o/ K hifoy = 0.64 fifo, = 1.00 hda/ = 1.44
{days) ) ASS A % bias A % bias A % bias
038 0.0000 |0.000731572 6324.34% |0.001231919 10719.05% | C.002014587 1/59265%
0.9 0.0235 | 0.024134 2.69% 0031169  3262% | 0039472  67.95%
30 10 0.5104 0.54235 §.25% 0.54323 6.42% 054411 6.60%
1.1 0.9676 0.95209 -1.60% 0.94519 2.32% 0.93757 -3.10%
1.2 0.9998 0.99383 -0.59% 0.99188 0.79% 0.98953 1.02%
08 00079 |0.008362448  641% 0017477  4604% | 0015638  95.95%
0.9 0.1321 0.12919 2.20% 0.14089 6.66% 0.18417 16.71%
90 1.0 0.5181 0.56494 9.04% 0.56625 9.30% 05676 9.56%
1.1 0.8635 0.86731 0.44% 0.86129 0.26% 0.85449 -1.05%
1.2 0.9801 0.95982 -207% 0.95547 2.51% 0.95061 -3.01%
08 00469 | 0041146 -12.23% | 0047127 0.53% 0084227 1587%
09 0.2244 0.24639 9.80% 0.25517 13.72% 0.26489 18.06%
180 1.0 0.5256 0.58012 10.38% 056178 10.70% 0.58357 11.04%
11 0.7903 0.80959 2.45% 0.80611 201% 0.80232 153%
1.2 0.9313 0.91535 -1.72% 0.91164 2.11% 0.90750 2.56%
(b) Based on GJR-GARCH(1,1) estimates
AR{1}-GJR-GARCH{1.1}
Tt pIK hiioy = 0.64 hya,; =1.00 hioy =144
{days) A% A % bias A % bias A % bias
08 00001 |D.000610254 BE5.95% |0.001083511 1597.13% |0.001763672 2662.50%
08 00384 | 0023303  -3605% | 0030331  -16.76% | 0.038673 8.13%
30 1.0 05115 0.54256 5.07% 0.54337 6.22% 0.64422 6.39%
.1 0.9533 0.96256 -0.08% 0.94548 -0.82% 0.93787 1.62%
1.2 0.9993 0.98411 -052% 0.99227 -0.70% 0.98989 -0.94%
08 00147 |0007358507 49.96% | 0010225  -30.38% | 0013827  B17%
09 0.1881 012531  -20.76% | 043706  -1333% | 0.15009 -5.09%
0 1.0 0.5200 0.56368 841% 0.56486 8.63% 0.56631 8.91%
1.1 0.8418 0.86901 3.23% 0.86262 247% 0.85570 1.65%
1.2 0.9693 0.96126 -0.83% 0.95704 1.27% 095218 -1.77%
08 00662 | 0036886  2405% | D.042675  -3550% | 0049128  -2575%
09 0.2504 0.23885 -461% 0.24754 1.14% 0.25721 2.72%
180 1.0 0.5282 0.57731 9.29% 0.57872 9.56% 0.58040 9.88%
1.1 0.7715 0.81091 511% 0.80708 4.61% 0.80331 4.12%
12 09128 0.91822 0.59% 0.91431 0.16% 0.91008 -0.30%

(c) Based on AR(1)-GJR-GARCH(1,1) estimates

Figure 21: Simulated deltas for different maturities, excercise prices and initial con-
ditional volatilities for the S&P 100 daily index. Biases are as a percentage of the
Black-Scholes’ deltas.
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GARCH{1.1]
Tt K _ hyay’ =064 o =1.00 _ hdo =144
(weeks} [Cad o8 % bias C % bias ¢, % bias
08 5.0600 09338 1379605.40% | 0.146652 151213137% | 016356 1686481 50%
09 1.0344 373393 260.98% | 384376  27160% | 398043  284.81%
4 10 | 1732184 | 18612 4.10% 166.72 -375% 167.45 -3.33%
11 | 10022574 | 10068 0.46% 1007.0 0.47% 1007.2 0.49%
12 | 20000014 | 20008 0.04% 2000.90 0.04% 2000.9 0.04%
08 02885 | 268275  83001% | 277538 862.43% | 289291  G0287%
08 260993 | 3031653  16.16% | 3073782  1777% | 3125204  18.74%
12 10 | 2099757 | 28835 -3.88% 289.26 -357% 290.36 321%
11 | 10384684 | 10484 0.96% 10489 1.00% 1049.6 107%
12 | 20020820 | 20110 0.45% 201120 0.46% 20115 0.47%
08 61618 | 1207085 100.12% | 1260263  103.67% | 1268945  10851%
69 855127 | 8393793  -1.84% | 8461930  -104% | 8544740  -0.08%
24 10 | 4241295 | 41032 3.26% 411.39 -3.00% 41267 270%
14| 11127845 | 19202 0.67% 11211 0.75% 1122.1 0.84%
12 | 20208631 | 20368 0.80% 2037.3 0.83% 20378 0.85%
(a) Based on GARCH(1,1) estimates
GIR.GARCH{, 1)
T K hdo, =064 hyoy =1.00 hyo, = 1.4
(weeks) O cE é, % bias g, % bias &, % bias
08 00000 | 0.10583  GOB3307.72%| 010033  G28430760% | O11385 6536131 04%
09 05359 331532 42130% | 335300  427.32% | 339997  43470%
4 1.0 | 1638231 | 16973 361% 169.94 373% 170.21 3.90%
11| 10014831 | 10084 0.69% 1008.4 0.69% 10085 0.70%
12 | 20000004 | 20011 0.05% 20011 0.05% 20012 0.06%
0.8 6.1484 160897 1045.13% | 172621  106282% | 175812  1085.00%
0.9 206285 | 2638384  27.90% | 2652619  2850% | 2669980  29.43%
12 10 | 2837009 | 29391 3.60% 29423 371% 294.62 3.85%
11 | 10311670 | 10862 243% 1056.40 2.45% 1056.6 247%
12 | 20012808 | 30143 0.65% 2014.40 0.66% 20145 0.66%
0.8 17693 | 785147 B8.31% 7.51668 89.86% 7.99730 91.81%
0.9 725204 | 7614754 499% 76.36986 5.30% 76.64079 5.67%
24 106 | 4014415 | 41740 3.98% 417.46 407% 417,89 4.18%
11| 10968729 | 11347 3.44% 11349 3.45% 11353 349%
12 | 20152208 | 204686 1.56% 2046.8 1.57% 2047.0 158%
(b) Based on GJR-GARCH(1,1) estimates
AR[11-GJR-GARCH(1.1]
T4 ol K hidoy = 064 " hio7=100 " hioy =144
(weeks) ' cE G % bias <,  bias o4 % bias
08 00600 TA3318  40461078.71% | 151862  4289439170% | 162386  A5866050.64%
09 07766 | 1336763  1621.24% | 1374283  1668.55% | 1419426  1727.66%
4 18 | 1675273 | 2153 2852% 216.38 29.16% 217.65 29.92%
1] 10017623 | 10261 243% 1026.6 248% 1027.3 255%
12 | 20000007 | 20064 0.32% 2006.7 0.33% 2007.0 0.35%
08 0.1951 10.89178  5483.07% | 11.28035  5662.25% | 11.75081  5923.40%
09 227098 | 64.36794 18344% | 6539317  167.95% | 6661052  19331%
12 10 | 2901230 | 3733 2867% 374.98 29.25% 376.95 2993%
11 | 10339630 | 11130 7.64% 11143 7.77% 11158 7.91%
12 | 20016633 | 20437 2.11% 204450 2.15% 20455 2.20%
0.8 49008 | 3267615 66.60% | 3338916 BB1A0% | 423071 598.46%
09 77.5584 14816 91.03% 149,63 92.93% 151.37 95.17%
2 18 | 4102051 | 530.88 29.42% 53285 29.90% 535,16 30.46%
11| 11039017 | 12342 11.88% 1236.0 12.05% 12380 1223%
12 | 2017.2224 | 21144 4.82% 21157 4.86% 21173 4.96%

(c) Based on AR(1)-GJR-GARCH(1,1) estimates

Figure 22: Simulated call prices for different maturities, excercise prices and initial
conditional volatilities for the S&P 500 weekly index. Biases are as a percentage of
the Black-Scholes’ prices. Prices are recorded as 10,000 times.
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GARCH{L,1}
Tt piK i hiioy =064 hyfa,” = 1.00 ho, =144
(weeks) ASS A % bias A % bias A % bias
0.8 0.0000 | 0.000426725 274580.03% |0.000453514 291604.51% | 0000467945 313986 20%
09 £.0081 0014004  73.03% | 0014240  7595% | 0014596  80.35%
4 10 05087 0.51302 0.86% 0.51303 0.86% 051308 0.87%
1.1 0.9867 0.98089 0.62% 0.98029 0.65% 097994 -0.68%
1.2 1.0000 099882 £.12% 0.99877 -0.12% 0.9987 -0,13%
08 0.0017 |0.006040384  265.62% 0006209422  26557% |0.00640911d  277.33%
09 pOS64 | 0075586  -1251% | 0076164  -11.85% | 0O7EE30  -11.07%
12 10 05150 052212 1.38% 052218 1.39% 0.52225 141%
1.1 0.9040 091612 1.34% 0.91560 1.28% 0.91505 1.22%
12 0.9931 098706 061% 0.98685 0.63% 0.98560 -0.65%
0.8 00204 | 0.023508 1500% | 0023808 T647% | 0.024149 18.15%
09 0.1743 0.1544 -11.41% 0.15499 -11.07% 0.15567 -10.68%
24 10 05212 052873 1.44% 0.52882 1.46% 052891 1.48%
1.1 0.8288 0:85014 256% 0.84372 253% 0.84924 247%
12 05614 095987 -0.16% 0.95955 -0.19% 0.95920 0.23%
(a) Based on GARCH(1,1) estimates
GIR-GARCH(1.1}
T P K i hio; = 0.64 hio, =100 hyoy =1.44
(weeks) AZS A % bias A % bias A % bias
08 G.0000 | 0000335741 1081486.78% | 0.000346678 1123163.22% | 0.000361731 1166213.35%
0.9 00055 | 0013087  139.73% | 0013210  14180% | 0013338  144.14%
4 10 05082 052013 235% 0.52014 2.35% 0.52015 235%
11 0.9904 0.97773 -1.28% 8,97763 1.29% 0.97748 -1.30%
1.2 1.0000 0.99846 0,15% 0.99844 0.16% 0.99841 -0.16%
0.8 0.0010  |0004219871  336.37% | 0004365651 ~ 343.13% | 0004334765  350.31%
0.9 0.0741 0.074229 0.13% 0.074447 0.42% 0.074704 0.77%
12 1.0 05142 0.53625 4,29% 0.53626 4.29% 053628 4.30%
11 09155 0.91095 -0.50% 0.91080 051% 091061 -0.54%
12 0.9953 0.98379 -1.16% 0.98371 1.17% 0.98364 1.17%
08 0,015 0.017926 18.87% | 0018017 1947T% | 0018122 20.17%
09 0.1594 D.15869 0.42% 0.15889 0.29% 0.15919 6.11%
24 10 0.5201 0.54602 4.99% 0.54604 5.00% 054607 5.00%
11 0.8408 0.84848 091% 084838 0.90% 0.84824 0.88%
1.2 09688 096439 -148% 0.95429 -1.49% 0.95418 -1.50%
(b) Based on GJR-GARCH(1,1) estimates
AR{1)-GJR-GARCH{11]
T4t o /K fiioy,” = 0.64 hylo,” = 1.00 hifo,” = 1.44
{weeks) A A % bias A % bias A % bias
08 D000 |0002776647 4502516.12% | 0002882328 4767314 09% | 0.003000463 4995824 55%
09 00064 | 0034463  436.30% | 0035067  44570% | 0035717  45581%
4 10 0.5084 0.52641 355% 052646 356% 052664 357%
1.4 £.9890 0.95415 -352% 0.95359 -3.58% 0.95298 3.64%
12 1,0000 0.99295 -0.70% 099277 -0.72% 0.99261 -0.74%
08 60012 | 0017674  134366% | 0018060  138360% | 0.018586  1426.81%
03 0.0790 012190 54.38% 012275 55.46% 0.12373 86.70%
12 10 05145 0.54554 6.03% 054563 6.05% D.54573 6.07%
1.1 0.9110 0.87570 -3.87% 0.87507 -3.94% 0.87448 4.00%
1.2 05945 096477 -2.99% 0.96438 -3.03% 096388 -3.08%
08 00171 | 0.048500 184.27% | 0.049176 187.69% | 0.049929 T92.04%
0.9 0.1853 021705 31.28% 0.21782 31.75% 0.21870 32.28%
24 10 0.5205 055899 7.39% 0.55910 7.41% 0.56925 7.44%
14 0.8360 0.81755 2.20% 0.81717 2.25% 0.81668 231%
12 0.9659 092527 -4.21% 0.92467 -4.25% 0.92435 -4.30%

Figure 23: Simulated deltas for different maturities, excercise prices and initial con-
ditional volatilities for the S&P 500 weekly index. Biases are as a percentage of the

{c) Based on AR(1)-GJR-GARCH(1,1) estimates

Black-Scholes’ deltas.
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Compared to the other two models, the GARCH(1,1) overprices for out-of-the-money
calls and underprices when calls are in-the-money. The overpricing (underpricing) by
the GARCH(1,1) model is much more evident for longer (shorter) maturity options.
In addition, the GARCH implied volatilities here appear to be sensitive to changes
in the initial conditional variance h;. This can be visually verified by examining the
vertical placement of the smiles for each of the three maturities.

For the S&P 500 index, the AR(1)-GJR-GARCH(1,1) and Heston smiles notably
stands out whereas the GARCH(1,1) and the GJR-GARCH(1,1) smiles holds a close
resemblance. Though the smiles of the GARCH(1,1) and the GJR-GARCH(1,1) look
similar, the GARCH(1,1) overprices for out-of-the-money calls and underprices for
in-the-money calls. The Heston model underprices almost always and the AR(1)-
GJR-GARCH(1,1) model however overprices regardless of situation. Unlike what was
observed for the S&P 100 index volatility smiles, the impact of h; on the GARCH

smiles here are marginal.

5.4.3 Simulated versus observed

To investigate the performance of the GARCH models, comparisons will be made be-
tween the GARCH volatility smiles and the observed volatility smiles for a randomly
selected day in our sample. For the S&P 100 daily index, the randomly selected
date is October 27, 1993. The random date for the S&P 500 weekly index is Feb-
ruary 17, 1993. The available observed market data are rather limited and do not
offer information on deep out-of- and in-the-money options with extended time to
maturity. Hence, the discussions here will be restricted to short maturity near the
money options, i.e. Pt As before, Heston’s model will also be included in the
evaluation only for the S&P 500 index. Keep in mind that the parameter estimates

for the GARCH models were derived only from time series information, which may
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GARCH[1,1}

T4 K hylo,” = 0.64 ndo, =100 hfo, =144
(days) P & PP & grees ¢, geied
08 631344 001353 |0.736290015  0.01500 153722 7]
0.9 82744 0.01077 | 1380203 001192 | 2169397 001314
30 10 20752 6.00950 2323 0.01063 25928 0.01187
11 10145 0.01087 1022.7 0.01201 1033.6 6.01324
1.2 20015 0.01322 2003 0.01437 20055 0.01560
08 6.78175 001137 1182241 0.01242 1914837 0.01352
09 6231172 001010 | 8299168 001110 107.73 0.01218
o0 10 36866 £.00674 405.84 001073 4468 0.01181
11 1090.6 651035 11164 0.01135 1146.6 0.01244
12 20238 0.01154 20354 0.01254 20508 0.01363
08 3276417 001067 | 45891622  DO1152 62,8045 001245
0.9 157 85 0.01002 1885 0.01083 22424 001173
180 10 530.81 0.00992 57341 0.01072 621 0.01161
1.1 1208.2 0.01025 1244.6 5.01106 1266.3 0.01196
12 20796 0.01083 21032 0.01167 2131.9 001259

(a) Based on GARCH(1,1) estimates
GJR-GARCH(1,1)

Tt K hic7 =064 hfe,” = 1.00 hifo, =144
{days) & (‘;‘ oiled Cz Greied (‘;l s
08 037193 001365 | 0.49506027  0.01442 0.85622 007523
03 £.5199 0.01032 9.19315 0.01098 12.7601 9.01171
30 1.6 213.96 0.00979 268 0.01038 241.38 6.01105
11 1024.4 001222 1030.1 0.01287 1037.1 0.01360
1.2 2004.8 0.01530 2006.5 5.01602 2009 0.01680
0.8 29577 001015 357376 001074 682376 0.01138
08 4370487 000942 | 5876793  0.00991 | 6975403  0.01047
90 1.0 38313 0.01013 400.68 0.01059 4208 001112
11 1123.5 0.01161 1137.3 0.01211 11534 8.01267
1.2 2046.9 0.01338 20552 0.01392 2065.3 0.01452
(X 1633132 000530 | 2038518  0.00969 75,0253 §.01009
0.9 1407 9.00956 153.18 0.00990 167.97 0.01030
180 1.0 £54.98 0.01038 573.05 0.01072 593.96 0.01111
11 1262,2 001145 12788 0.01180 1298.2 0.01222
1.2 21322 0.01260 2145 001298 2160.1 0.01342

{(b) Based on GJR-GARCH(1,1) estimates
AR(-GIR-GARCH{T.1)

Tt K hyio,? = 0.64 “hdo, = 1.00 hdo, =144
(days) P: A X o él e o oimied
0.3 0.22203 6.01343 0.40729 001416 0.70858 601494
0.9 6.11015 0.01021 867953 0.01087 120735 0.01158
30 18 21278 0.00974 22584 0.01634 240.43 0.01100
11 10237 0.01214 1029.3 001278 1036.1 0.01350
12 20044 0.01541 2006.1 0.01583 2008.4 0.01662
08 T 48877 0.00591 381682 301048 573234 661109
09 46.72791 0.00926 - | 5544957 000974 | 6585524  0.01028
90 1.9 377.13 0.00997 394.45 0.01043 413.98 0.01094
11 1118.1 0.01141 1131.4 0.01190 11467 0.01244
1.2 20432 0.01312 20509 001364 2060.2 0.01422
08 1360487 000502 | 1731696 000940 | 2178620  0.00881
09 131.78 0.00931 143,51 0.00964 157.18 0.01001
180 10 540.51 0.01011 557.75 0.01043 577.37 £5.01080
11 12473 0.01112 12628 0.01146 1280.8 0.01185
12 21196 0.01221 2131.2 0.01257 21447 0.01297

{c) Based on AR{1)-GJR-GARCH(1,1) estimates

Figure 24: Implied volatilities based on simulated call prices for the S&P 100 daily

index.



66

5 OPTION PRICING WITH GARCH MODELS

1

[ rinouysare iy e o (VHROUVOUT v (15 FHORYO s ] [Gmosvouretiiay e « « [ OHOM9OW O {13 JHOHYD e~ [ ACDHOUYEHrOTINY w w = (L1 HOUVOU D e (1 IHOBNS—
i A »i'd
T i i &8 a5 i3 o3 rs gt (3] ] &3 e oy §¢ t sa Py 20
&oc 2290
400 s
o S S <o AR W B 837
- —e oy vae o i1
e P¥cd P am 2 s OPY
e il ’ Pl e o b
— - 00 £ — <% 800§
ES £00 3 <t o3
©30 $98
s Pl S
930 > 209
25e0 = [8ey
{rrs = Jopu) shep gy (vw'} = oul sAep o5 i1 = oy} shepog

(4 UHOEYOU{NY = =

M HOYYS B S

L LHOYYE |

[ 00 ooV = « « (L1 HOEVO UMD e

e |

_ (8" 1HoUYO-BrO- (Y = - - (L IHOUVE HI S s £V HOUYO smarannn

» xs'd nid
o i v ae (3 ¢ iy 3 It v @ £G 3 &3 3 1 I3 T &3 'es 23

W03 §CQ0 I 030

...... 033 o0 prois

LR R By A e 150

P T mE

- gt oo = 5130 e ey
N @ &3 Bt G 3. %
= B3 Y = 3 w ass %
2 FEL IS — D30 . /.r;p wee §

EE] nae o % rzo

BEH 5530 = 2 N S0

£ $190 - aae

i3 [0 4330

{60y = o'y} shep 081 {00't = foru) shep g8 {00's = oyl shep og
VAT PO LJUY - = = U3 I OUYO H Do e {2 JHDEYD oo _ _ MOy UrO (8T = = = (YUY M B s (VOB o _ _ (P UHOMTOHIO Y = = @ (D RONYSr e Qe (L 1HONYE.
R sd srd
1 3 13 1 € 80 bt i3 ¥ &3 40 30 bl Tt i3 ot 49 0 29

= = w0r3

..... T T = o

o e i e e i

o 535 e - 92
= E L e i
e g RECIE 4

G "o

- FLE)

o9

pitp )

{90 = o4l shep oap 530 = foru) shep 05 790 = oy} ehep oc

Figure 25: Volatility smiles based on simulated call prices for the S&P 100 daily

index.
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Heston

Tt oK i _ hyfo, =064 _ hyg?=1.00 _hjoS= 144
(weeks) ) [ o) % bias & % bias o % bias
0.8 0.0800 4 5BE07 -98.35% 8.82E-06 68.08% 1.19E-04 330.64%
0.9 1.3482 0.0436 -96.88% 0.24 -82.84% 0.934 -33.20%
4 10 179.7491 114 -36.58% 142 -21.00% 170 -5.42%
11 1002.9305 | 1000627523  -0.23% 1001.89153 -0.10% 1004.53817 0.16%
12 2000.0029 °| 2000.001913 0.00% 2000.01148 0.00% 2000.051873 0.00%
08 04348 0.00528 88.78% 197E-02 9547% 6.68E-02 -8463%
0.9 30.2665 153 -64.34% 3.75 -87.61% 8.11 73.20%
12 10 311.2815 158 -49.24% 194 -37.68% 231 -25.7%%
11 1043.9386 |1007.908657  -345%  |1014592066  -281% 1024.47309 -1.86%
1.2 20028132 | 2000466747 -0.12%  [2001.090235  -0.09%  |2002309566  -0.03%
08 78577 0.0512 95.35% 0.125 9842% 0.256 -95.25%
09 94,9601 4.1 -95.68% 797 -81.61% 145 84.73%
24 16 440.1066 188 -57.28% 223 -49.33% 260 -30.92%
1.1 11241256 | 1016.20958 -960% 1025625063  -876% | 1038442685  -762%
1.2 2024.8136 {2001.875563  -1.13%  |2003.396502  -1.06%  |2005870375  -0.94%

(a) Simulated call prices
Heston
T4 K ho,” =054 hyoy = 1.00 hiof=144

(weeks) P ¢, P & ollies & gimplied

0.8 4 8BE-07 8.82E-06 0.02164 0.000119 0.02383

09 0.0436 0.01611 0.24 0.01859 0.934 0.02145

4 1.0 114 0.01429 142 0.01780 170 0.02131

1.1 1000627523 0.01855 1001.89153 002120 100453817 0.02408

12 2000001913 0.02207 | 200001148  0.02435  |2000.051873  0.02685

08 0.00528 001645 0.0157 0.01779 0.6668 0.01932

0.9 153 0.01316 375 0.01492 8.11 0.01597

12 10 158 0.01143 194 0.01404 231 0.01672

11 1007908657  0.01528 [ 1014592056  0.01721 102447309 0.01934

1.2 2000466747 0.01853 | 2001.090235  0.02018  |2002.309566  0.02199

(K] 0.0512 0.01340 0.125 0.01432 0.256 0.01539

0.9 41 0.01070 7.97 0.01196 145 0.01344

2 1.0 188 0.00962 223 0.01141 266 0.01331

1.1 1016.20958  0.01245  |1025625063 001383 |1038.442685  0.01535

12 2001.875553  0.01516 _ |2003.396502  0.01632 | 2005.870375  0.01760

(b) Implied volatilities

Figure 26: Heston’s closed-form stochastic volatility pricing model for the S&P 500

weekly index. Prices are recorded as 10,000 times.
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GARCH{1.T}
T+t Bl K _ hio =064 o, =1.00 _ byloy =144
(weeks} ' o8 gieied & givesed &, imsted
038 0.1338 003527 | 0.146552 0.63553 0.16356 0.03585
09 373393 0.02582 3.84378 0.02594 3.98043 0.02608
4 10 166.12 0.02082 166.72 0.02090 167.45 0.0209
11 1006.9 0.02583 1007 0.02590 1007.2 0.02602
1.2 - 2000.8 003425 2000.9 0.03425 2000.9 0.03425
08 268275 0.02741 2.77538 0.02753 2.89291 0.02768
0.9 30.31653 002254 | 3073782 002262 | 3125204  0.02272
12 19 288.35 0.02087 289.26 0.02094 290.36 0.02102
11 1048.4 0.02317 1048.9 0.02324 1049.6 002323
1.2 2011 0.02745 20112 0.02753 20115 0.02766
08 1237085016 002424 1260263 0.02431 1288945 0.02340
0.9 8393793 002157 8461938 002163 85.4474 0.02171
24 10 41032 0.02100 411,39 0.02106 41267 002112
1.4 1112744453 002171 11211 0.02231 1221 0.02239
1.2 2036.8 0.02449 2037.3 0.02457 2037.8 0.02464
(a) Based on GARCH(1,1) estimates
GJR-GARCH{1.1}
T+ ol K _ hdo/ =064 hio =100 _hdoy =144
(weeks) * C: o!np’aed Q c(mp&ed C‘ alm;ﬁed
] G.10583 0.03464 0.10543 0.03472 0.19385 U.03463
0.9 331532 0.02536 3353 0.02541 3.39997 002546
4 10 16873 0.02127 169.94 0.02130 170.21 0.02133
1.1 1008.4 0.02676 1008.4 0.02676 1008.5 0.02651
12 20811 0.03498 20011 0.03498 2001.2 0.03531
58 169857 0.02595 172521 0.62699 775612 0.62605
0.9 26.38384 0.02177 | 2652618  0.02180 266998 0.02183
12 10 }2837098797 002053 294,23 0.02130 29462 0.02132
1.1 1056.2 0.02422 1056.4 002425 1056.6 0.02428
12 2014.3 0.02872 2014.4 0.02875 20145 0.02879
0.8 7851470888 0.02951 731656 0.02254 79973 002257
69 7614754 002087 | 7636986  0.02089 7654079 0.02091
24 1.0 417.1 6.02135 417.48 0.02137 417.89 0.02139
1.1 11347 0.02327 1134.9 0.02329 11353 0.02331
1.2 20466 0.02586 2046.8 0.02589 2047 0.02591
(b) Based on GJR-GARCH(1,1) estimates
AR[TI-GJR-GARCH{1.1)
Tt twloy = 0.64 hifo, =1.00 fufo, =144
miK A ] A - R ’
(.‘, vecks ) C; olmpﬁe: C! Ulwm ¢, s czn'q:l:ad
0.8 143318 0.04408 151862 0.04237 162386 0.04371
09 13.36763 0.03237 13.74283 0.03255 14.19426 0.03277
4 1.8 21531 0.02699 216.38 0.02712 21765 0.02728
1.1 1026.1 0.03402 1026.6 003418 1027.3 0.03440
1.2 2006.4 0.04367 2008.7 0.04397 2007 0.04426
) 10.89178 0.03355 7128035 0.03375 T1.75081 0.63398
0.9 64.36794 0.02794 6539317 0.02808 66.61052 0.02824
12 1.0 373.31 0.02702 374.98 0.02714 376.95 0.02728
1.1 1113 0.03073 11143 0.03086 11158 0.03102
12 2043.7 0.03602 2044.5 0.03618 20455 0,03637
08 3267819 0.00921 3338916 0.02935 34.23071 0.02951
0.9 148.16 0.02675 149.63 0.02686 15137 0.02699
24 10 530.88 0.02718 532,85 0.02728 535.16 0.02740
1.1 1234.2 0.02967 1236 0.02977 1238 0.02990
12 21144 0.03297 21157 0.03308 2117.3 0.03322

(c) Based on AR(1)-GJR-GARCH(1,1) estimates

Figure 27: Implied volatilities based on simulated call prices for the S&P 500 weekly

index.
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5 OPTION PRICING WITH GARCH MODELS

Volatility smiles based on simulated call prices for the S&P 500 weekly

Figure 28
index.
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result in a poor fit between the simulated volatility smiles and the observed volatility
smile.

The simulation process to obtain call prices on a specific date will be initiated
with h; assuming the estimate h; value where ¢ is the time being considered. For
instance, hy = 3.00 x 10~° will be used to simulate the GJR-GARCH(1,1) call prices
on October 27, 1993. Refer to figures 29 and 31 for all the h; values along with the
P, K and T — t values implemented in the simulation exercise here, as well as the
resulting simulated call prices and implied volatilities for the three GARCH models.
The figures that immediately follow display the corresponding volatility smiles.

The volatility smiles in Figure 30 indicate that all three GARCH models over-
price options relative to the observed prices regardless of maturity. The disparity
between the observed values and the GARCH models generally decline as we proceed
horizontally from left to right on the % axis, with the GARCH(1,1) model being
the closest to the observed. Although graphically the disparity may seem large, the
differences of the implied volatilites are actually no larger than 0.01.

Figure 32 features volatility smiles of calls with a time to maturity of approxi-
mately 4 weeks and 8 weeks. Unlike previously seen in Figure 30, only the AR(1)-
GJR-GARCH(1,1) model have the tendency to overprice options. The GARCH(1,1)
and GJR-GARCH(1,1) models however mostly overprice out-of-the-money options
and underprice in-the-money options. The Heston model, on the other hand, under-
prices options for both stated maturities. Once again, the disparities between the

observed and GARCH implied volatilities is no larger than 0.01 in magnitude.
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AR(1)-GJR-

Observed GARCH(1,1) GJIR-GARCH(1,1) GARGH(L.1)

K P PIK TA(days) < gimted & gimetied &, P &, gimelies
395 375.73 108 34 30.75 0.0059759 | 310608 0.00900835] 315673 00111287| a15301  0.0105089
400 42573 1.06 24 2588  DOO6700 | 262992 0.008730% | 26.9817 0.0107288| 26.8992 0.0105191
405 42573 1.05 24 21 0.0062267 | 21.6977 0.00848817| 22.5388 0.0103552| 224394 0.0101545
410 42567 1.04 24 165  0.0066192 | 17.2960 0.00827973| 18.2869 0.0100075] 18.1690 0.0088128
415 32568 103 24 11.875 0005769 | 13.3235 0.00811578| 14.4230 0.0097037] 142873 00095127
420 42565 1.01 24 7.69  0.0051862| 9.81989 0.00800489] 10.9540 0.0094468| 10.8036 0.0092569
425 425.65 1.00 24 444 00049406 | 693686 0.00794839| 8.01302 0.009244%| 7.85439 0.0090532
430 42568 0.99 24 2095 0.0046282 | 470563 0.00794548| 554382 0.0091012| 548562 0.0089069
435 42565 0.98 24 078 00044374 | 305407 0.00799046| 3.80463 0.0090137| 3.65650 0.0088143
440 425.16 0.97 24 025 00045179 | 183488 0.00809434 2.37494 0.0089893| 2.24688 0.0087826
445 42478 0.95 24 0095 0.0048234 | 1.08593 0.00824122) 145660 00090395 1.35255  0.008824
450 42519 094 24 0095 00056961 | 0.59071 0.00839488| 095290 0.0091296| 0.86880 0.0089052
380 12573 112 &7 4875  0.0083756 | 47.2348 0.00022177] 48.9373 0.0115049] 48.6823  0.011201
385 42573 111 a7 42 00080473 | 427012 0.00907786| 44.5669 0.0112615| 44.2899 0.010967
350 42573 1.09 a7 37.5  0.0079667 | 3B.2034 0.00894634| 403181 0.0710286] 400194  0.010742
395 425.73 108 87 33 00077138 | 34.0614 000883074| 362102 0.0108059] 358902  0.010527
400 42573 1.06 87 285 00073283 | 30.0168 0.00872901| 322639 0.0105934| 319242  0.010322
105 42573 1.06 87 2413 00069421 26,1969 0.00864087| 28.5014 0.0103917| 28.1437  0.010126
410 42526 104 87 20,375 0.0071569 | 222972 000855994 24.6051 0.0101835] 242315  0.009924
a15 42586 103 87 16125 0006232 | 194324 0008506 | 217016 0.0100248] 21.3172  0.009769
420 42568 1.01 87 12815 0.0061734 | 16.3363 0.00845765| 18.501¢ 0.009852 | 18.1093  0.00G600
425 42542 1.00 87 9315 00057542 | 13.5387  0.0084254 | 155398 0.0096913| 15.1459  0.009442
43p 12562 099 57 6505 0005350 | 11.3069 0.00840908] 1311213 0.0095584 127300  0.009311
435 425.82 098 57 4505 0005183 | 9.36248 0.00840486| 10.9610 0.0094373| 10.5775. 0.009190
340 425,68 0.97 87 275  DO04930 | 757269 0.00841297| 892241 0.0093219| 855326  0.009075
445 42575 0.96 87 1595  0.0047325| 613385 0.00843182 7.24412 0.0092245] 6.89331  0.008976
450 42578 095 87 0.845  0.0045584 | 492417 0.00846041| 5.80455 0.0091395| 547655  0.008889
455 425.39 0.93 87 044  0.0045309 | 3.84689 0.00850372| 4.49810  0.0090617] 4.19932  0.008802
360 425.73 112 118 47.25  D.O00B0AZ | 48.1950 0.00921393] 50.4508 0.0114442| 50.0832 0.0111114
390 42573 1.09 115 3813 0.007610 | 39.6148 0008998 | 421377 0.0110257| 417238 0.0107104
400 42573 1.06 115 2938 0.0070985| 31.7069 0.008625 | 34.3838 0.0106424| 33.9297 0.010342
410 42573 1.04 115 2119  0.0065347 | 24,6558 0.00869731| 27.3197 0.0102959] 26.8351 0.0100077
420 425.41 101 115 13.675 0.0060607 | 18.4207 0.00861094| 20.8689 0.0099777| 20.3598 0.0096994
430 42563 0.99 115 8.125  0.0055524 | 13.5935 0.00857107| 156760 0.0097165] 151812 0.0094444
440 42528 oa7 115 3875 00051178 | 9.56229 0.00856527| 11.1507 0.0094795) 106821  0.009211
450 425.13 0.94 115 15 00047695 | 661162 (.00850466| 7.69526  0.009286 | 7.27129  0.0090177

Ty 2.792014E-05 3.003261E-05 2.994508E-05

Figure 29: Observed and simulated call prices and its respective implied volatilities
for the S&P 100 daily index on October 27, 1993.
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Figure 30: Observed and simulated volatility smiles for the S&P 100 daily index on
October 27, 1993.
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AR(1)-GIR-
Observed GARCH(1,1} GJIR-GARCH(1,1) GARCHI1,1} Heston
K <3 pIK Ty {weeks) C, G éx oV C. oteied él g Cx giehe

17.26 0028942 | 15,1160 0.021506 | 153031 0.022192 | 17.0188 0.028165 | 14.3413 0.018536
1325 0.026573 | 114938 0021087 | 11.6871 0.021699 | 13.5565 0.027516 | 105772 0018134
9.625 0024431 | 840653 0.020845 | 857500 0.021368 | 10.5284 0.027072 | 7.3596 0.017788
64375 0022188 | 595650 0.020783 | 6.10002 0021202 | B.03823 0.026850 | 4.8437 0.017526
3875 0020216 | 409283 0020901 | 4.18%19 0.021203 | 602770 0.026853 | 29822 0.017357
2125 0.016721 | 278845 0.021164 | 283930 0.021346 | 451771 0027054 | 17573  0.017287
0.9375 0.017291 | 182748 0.021595 | 1.83988 0.021643 | 330427 0.027464 | 09485 0.017307
156.25 0.024303 | 136088 0.020808 | 13.8878 0.021504 | 165883 0027137 | 113356 0.0158%5
"5 0.022135 | 10.8000 0.020692 | 11.0365 0.021179 | 13.7637 0.026842 | 8.318% 0.015574
85 0.021172 | 8.25347 0020661 | 8.42720 0.021021 | 111469 0.026642 | 58881 0.015324
6125 0.020264 | §$.33881 0.020728 | 644656 0.020961 | 907522 0.026571 | 38373 0.015194
41875 0019392 | 481361 0020874 | 4.85818 0.020878 | 7.34227 0026609 | 25011  0.015153
hy 2.327286E-04 2.296483E-04 2.205753E-04 2.216E-02

420 432.39 103
435 432.38 1.02
430 432.34 101
435 432.38 088
440 43239 Q.98
445 43255 0.97
450 43238 .96
425 431.46 1.02
430 43148 1.00
435 43108 0.99
440 431.08 088
445 431.08 0.97

€0 60 O o|d B dn fa oI B

Figure 31: Observed and simulated call prices and its respective implied volatilities
for the S&P 500 weekly index on February 17, 1993.
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Figure 32: Observed and simulated volatility smiles for the S&P 500 weekly index
on February 17, 1993.
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6 Appendices

6.1 Appendix I: ¢-weights for a stationary ARMA (p,q) process

Any stationary ARMA(p,q) process can be written as

Zi—p=0(Zi— )+ .. A+ p(Zp— ) Far — Oram1 — ... — Gpas

& B(B)(Z - ) = O(B)a,

< Zt — U= \I’(B)at
B
where a; is a white noise process and U(B) = EEB; (or equivalently 1+1); B4y B2+
1-6,B—60,B>—...—0,B7 . B
=TT ¢11B — Zsz E— Z(;Bp). Equating coeeficients of B? in U(B) = g—((B—i

will then yield the ¢-weights.
As an example, consider an ARMA(1,1) process (1 — ¢y B)(Z;— p) = (1— 61 B)ay.

Equating coeeficients of B’, we have

2 _1—'913
L+ B+ynB +... = =68
< 1+ B+eB*+..)1-¢,B)=1—6B

& 1+ (¥ — ¢1)B+ (Y2 — ¢1301) B2 + (b3 — ¢19p2) B3+ ... = 1 — 6, B,

will reveal the ¥-weights as

B:py—¢r=—-6 = =iyy1=¢1—-6

B2 4hy — ¢1ip = 0 = g = $19¢1 = ¢1(¢p1 — 1)

By —nthj 1 =0 = =1y = ¢ (¢1 — 61) for j > 0.
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6.2 Appendix II: Alternative proof of Corollary 2.1

First, since y? = h;Z?2, we have that
B(y}) = E(h)E(Z]) = E(h).
The mean of h; and h? are given by

E(h) = E(w + alyf_l + B1hi—1)
=w+ alE(yf—l) + i E(hi—1)

= w -+ (a1 =+ ﬂl)E(ht__l),
so that

E(hy) = (o1 + B)E(heer) =w

N P Ty

For h2, we have instead

E(h) = El(w + antiiy + Brhu—1)’]
=w’ + 2wan B(yl ) + 2wB E(hs_1) + 2E(yt ;)
+ 20001 E(y;_1he-r) + B E(R7_y)
= w? + 2w E(hs_1) + 2wB E(hs_1) + 302 E(h2))

+ 20181 E(h_,) + BLE(h;_y),



6 APPENDICES 76

so that
E(h) — (30 + 20161 + B3) E(hi_1) = w® + 2w(on + B1) E(he-1),
and, finally

o) [

1 — (304 + 2010, + 52)
w?(1+ oy + 1)
[1- 30‘% — 20161 — ﬁ%)”l — (a1 + /81)]‘

E(h;) =

Hence, the kurtosis is

K@ — El(y: — E(y))"] — E(yy) _ E(hi)E(Z) — 3E(h})
[Var(y.))? [E@))  [ER)EZD)P  [E(h))?
3w?(1+ a1 + By)

— [1 —30F — 20181 — BY)][1 — (a1 + B1)]

w :|2
[1 — (a1 + 51)
_3l+oar+ B[l — (o + B)]
1-— 30(% — 20(1ﬁ1 —_ ﬂ%
_ _3(1-¢9)
1—¢? —2a%’

where ¢; = ay + 1.

6.3 Appendix III: Lognormal asset pricing

Definition 2. X is said to have a lognormal distribution with parameters u and o,
if In(X) has a normal distribution with mean p and variance o%. In other words, X

has the distribution of e**°%, where Z is a standard normal random variable.

Let X be a lognormal variable with mean y and variance 02, Z be a standard nor-
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mal variable with cumulative distribution N(z), and K be a constant. The following

properties applies:
1. BE(X™) = B(emuto2)) = gnut(no)*/2
2. Var(X) = Var(e#to%) = e2+9° (7 — 1)
3. Elmax(X — K, 0)] = E[max(e#t°Z — K,0)] = e#+*/2N(d) — K N(d — o) where

In(#) +p + 0
- .

d=

Proof. Since X = e#™°Z and the moment generating function of Z is Myz(t) =

E(et?) = ¢**/2, the nth moment about the origin for X is

E(Xn) — E(en(u+oZ)) — en,uE<enaZ)
=e"Mz(no) = eHe(no)?/2

— gt (no)?/2
- )

and the variance for X is

Var(X) = B(X?) — [B(X)]? = ¥+27" _ (ep+o7/2)2

2 2
— e2y.+2o- _ e2p+a

= et (¢ — 1),
Now let A denote the event that X = e**t°% > K. Therefore, we can write

Elmax(e"™°? — K,0)] = E((e"*°? — K)14) = E(e*T°%1,) — KE(I,).
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However, we can calculate

E(et%],) = / e’“'oz————l e %12

A 2
1 2
— ehta?/2 e~ (z=9)/2 4,
/A Var

1
= ettt 2N (—IH(E) e + 0') = 2N (),
o

and
E(I,) = P(e*™? > K)
o
In(L
=N < n(K)+M> =N(d- o),
1 2
with d = Mg Fpt 0

g

6.4 Appendix IV: SAS estimation issue

One possibility as to why SAS fails to obtain parameter estimates could be due to
its inability to apply or recognize appropriate constraints at various local maximum

points. To illustrate this issue, see the following example:

o Let Xj,Xs,..., X, be independent identically distributed random variables

from N(u,o0?) where u = o = 6.
e Consider the estimation of # with the sample mean X and sample variance S2.

e Using results from Example 2.8 from Shao (2003)

V(X — 0,52 —6) 4 N(0,%)
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where

3=
s phg — 6

and yy, = E[(X — 0)F], k = 3,4.

Since X; <y N(6,0), thus us = 0 and py — 6% = 0(3 — ). Hence 6 = X is a better

estimate when 0 < 0 < 2, and § = S2 when 2 < 6 < 3.

6.5 Appendix V: Estimating the standard errors

Aside from obtaining the parameter estimates by maximizing the log likelihood func-
tion, it is also of interest to estimate the standard errors of the parameter estimates.
Here, © denotes the p parameters of the model so that © = (64,...,6,) isapx 1
vector; ©g denotes the true value of ©; the conditional mean and variance, u; and hy,

of the return y; are known at time ¢ — 1 from information Y;_; and are assumed to
Yt —
Viu

be differentiable; and the standardized residual Z; = are i.i.d. observations
from a distribution whose density function is f(Z|©).
The MLE, denoted by ©, maximizes In L(©) from n observations by solving the

p equations

where 5:(©) is known as the score vector (p x 1) derived from the partial derivatives

of the logarithms of the conditional densities [;(®), that is

1(©) = Wlf (wfYi-1,0)] = —3 Inftu(©)] +nl7(2(0))]
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where
L(©) = [ (3lY; 1, 0)] = —3 Infru(6)] + [ f(Z(©))].

Suppose that of the p parameters, the first m appear in y; and h;, with the remaining
parameters (if any) defining the density function f(Z|©). The general formula for

the first m terms in the score vector is

CL(Zt)Zt d,U,t G/(Zt)ZtZ -1 dht .
) = —_— t o — <71 <
silbs) = =77 <d9i> o, @, ) tsrsm

with the function a(.) determined by the density function of the standardized resid-

uals Z;. For example, when Z; is normal, a(Z;) = 1 and when Z; is the standardized
v+1

v—2+4+ 2%

The analytic standard errors for non-normal conditional distributions can be

t-distribution with v degrees-of-freedom, a(Z;) =

calculated by estimating Ao (or By in place of Ag) of
Vi(© — 60) 2 N(0, 45",
and by estimating A5 ByAg*! for normal distributions from the asymptotic result of

V(6 — Q) & N(0, Ay BoAsh)

where the elements in the p x p matrices of Ay and By can be estimated by

;o1 “\ d?1,(0) 1 <d21nL(@)>
“ n —1 d91d9] . n d&ldQJ
R 1 <&
Byj=—— > su(6:)54(05)-
t=1
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The following is an alternative estimate of Ay, given by Bollerslev and Wooldridge

(1992), that can be used in place of the above to avoid second-order derivatives:

p— dpg \ [ dus 1 (diy\ (dhy
i =3[ ) Go) v (5) (5)

For illustration, consider the GJR-MA(1)-GARCH(1,1)-M model defined and es-

timated previously with residuals e;_;. When Z; is normal and © = (r, \, 6, w, a1, o5, £1)’, -

m = p = 7, the recursive formulae for the partial derivatives are

dﬂt dprg_y A dhy
= V4 o e 1
(1 ht,et 1,0 0 O 0) 9 d@ -+ 5 h d@ (6 )
dht d,ut 1 dht 1

d@ (0 0 0 1 et 1,It 1€t 1,ht 1) —2(0&1+O[1[t 1)6t 1 ﬂl . (62)

When Z, is t-distributed, an additional parameter v defines the density of the stan-
dardized residuals. The equations (6.1) and (6.2) will suffice to define the first seven

terms of the vector as the eighth term is zero. However, the final term in the score

vector 1s
d(©) _d In(z;) (v+1)Z7
dv — dv [n.e(v)] 2 2z (v — 2)%’

where

r <1/ + 1>

o(v) = 2
v
T (5) o )

and.

=1 .
Ty +Z/—2
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6.6 Appendix VI: Heston’s option pricing formula

Heston (1993) provided a closed-form stochastic volatility option pricing formula that
can be evaluated rapidly. The fair price of a call option under Heston’s formulation
is

CtH = Se_qul - KG_TTPQ,

where S is the initial asset price, T" is the expiry time, K is the exercise price, ¢ is
the dividend yield and r is the risk-free interest rate.
The terms P, and P, are two calculations of the probability that Y7 = In(Sr)

exceeds In(K) when the state vector (Y3, V;)’ has initial value (Y5, Vp)’ and dynamics

Y;, = ].l’l(St),
Vi = 0752:
dY = (R+uV)dt + VVdW,

dV = (a — cV)dt + VVdZ,

where a, ¢, R, v and € are parameters and the correlation between dW and dZ is
p. The term P, is the probability obtained for the risk-neutral measure Q when

R=7r—¢q, u=-0.5, and ¢ = b, which gives the price dynamics

ay L (r — q—0.5V)dt + VVdW,

av 2 (a—bV)dt + eVVdZ,

while P; is the probability obtained for measure Q* when R =7 — ¢, u = 0.5, and



6 APPENDICES 83

¢ = b — pe, which gives

dy & (r — ¢+ 0.5V)dt + VVAW,

dV L (a - [b— peV)dt + eVVdZ.

The conditional probability that Y7 exceeds In(K) is given by a standard inversion

formula:

1 1 [ —ip In(K)
P(Yr 2 In(K)[Yo, Vo) = 5 + = / Re [i_.__?ﬁ(ﬂ] do,
0

with ¢ = v/—1 and Re|.] representing the real part of a complex number (see Kendall,
Stuart, and Ord (1987)). Defined for all real numbers ¢, probabilities obtained from

the conditional characteristic function of Yr, denoted by g(y), follows

g(gp) — eC+DVo+i<pYo ,

where

1 — kevT
C = RTyi + ae™? [hT— 21n (_e)] ,

1—-%
p- Mi=¢")
€(1 — kevT)

w =/ (pei — ¢)? — €(2ugpi — ¢?),

h = ¢ — pepi + w,
h
h—2w

k=
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6.7 Appendix VII: SAS codes

(/'J"S‘ whkkhkrr b kA ks b b kA b AR T A v AR LT bR Ak *’.“k’i"k"k',‘(‘}r*i')i

PROCESS */
dekok ok K K kR )

[ B (8]
[n ) .
Pt by N
O 60 S €~
&
o

Ne v

<
10 .

DATA NermalGarch 1 %s

DG sample=1 TO 10;
lag_y = &start;
lag_h = &start;
D0 = -500 TC &num obs;

= &omega + &alphal * lag y**2 + &bhetal * lag h;
= SQRT(h) * RANNOR(12345):

2 o= y**2;

a = hs

a = yi

et

bt gt b 0
=

a
g

D

IF t>0 THEN OUTPUT:

END;

RUN;

OD5 PDF FILE="D:\NormalGARCH({L,1l).pdf";
ODS GRAPHICS ON;

PROC UNIVARIATE DATA=NormalGarch_Ii_1;
VAR y;
BY sample;

RUN;

PROC AUTOREG DATA=NormalG
MODEL y = / GARCH=
BY sample;

GDS GRAPHICS OQFF;
¢S PDF CLOSE;
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PROC IMPORT DATAF
GETNAMES=YES;
RUN;

/‘ kdw Ik gk kA AT E AR e T IR ARL KK kK 3‘:*1:9:‘%7'::if‘k'ﬁ:'k"i{ﬁ:i"l(*‘ls"k‘kk*:’(‘ﬁ:*'}r/

PROC AUTOREG DATA=SF100;
MODEL Return = / GARCH=(P=1,0=1) NOI
RUN;

Z22
/*F

PROC AUTOREG DATA=3Pi Oﬁ
MODEL Return = / GARCH=(P=1,Q=1, MEAN=SQRT);

RUN:

FESE R SRR AR N ERAE R AL R SRR R TR TR E R
/* FIT © } TO GET “Y’TE\ ¥
FEEA AR S L LR EE R R R EFE T EERE S AA)er'\'LS\A

PROC MODEL DATA=SP100;

PARMS omega .01 alphal .01 beta .9 df 6;
/ * M
Return
/¥ Varian
H.Return = ocmega + alphal*XLAG(RESID.Return**2,MSE.Return}

+ bet a*KLAC(P Peturn, MSE.Return);

{ ion */

t (K.Return, 4f);

IEA A S E L RS T EE R T LS R

PROC MODEL DATA=SPL00;
PARMS omega .01 alphal .01 alphaZ .01 beta .8;

,';*' Vari
IF ZLAG{RES
E.Return

.BEeturn) > 0 THEN
cmega + alphal*XLAG{RESID.Return**2,MSE.Retu
+ beza*qub(“.Return,PSE.ﬂetarn):

ID

H.Return = omega + {alphal +
"tha )*hd G(RED‘u-RGt‘“n**Z,‘S .Return) +
i

/% Fit
FIT Return = MARDUARDT FIML:
RUN;

QUIT;
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value = 0; S = 0; callSum = 0; callPrice = 0; deltaSum=0; delta=0;
deltaPrice=0;
oo 3 = H

z=0; lz =0 h=0; y=0; sum = 0; info=0;

ih = 0.84* (somega/ (I-&alpha-&beta));

i B measurs ¢ */

DG T

z = rannor (6963386);
h = somega + (&alph
Yy = &r - 0.5%h +
l .

z = z; lh = Iy
IF i > 0 THEN sum = sum + y7
IF i > 0 THEN OUTFUT;
EKD;
: FEY rok g

=5 the call
maz{d, S - &¥}):

Sum = callSum + value;
callPrice = exp(~&r*4&7)

ates the delta */
>= &K THEN info = 1;
= info*5/&p:

Sum = deltaSum + delta;
deltaPrice = exp(-&r*&T) *deltaSum/&nchs;

PROC PRINT DATA=results;
VAR callPrice deltaPrice:;

RUN;

QUIT;
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7 £

BLE chg = BO000S; A
LE = 4; 7
LE 7 i*

R o B SRR R
]

= 1z 7%
omega = 0,0000213€5;
alpha = (.0€70385¢8;
alpha star = (.050386339;
beta = 0.83709558%;
lambda = 0.108152440;

value = 0; 5 = 0:; callSum = 0; callPrice = 0; deltaSun=0:; delta=0;
deltaPrice=0;

DG 3 = 1 IO &nobs;

z =0; 1z =0; h =0y y = 0; sur = 0; info=0;

1h = 0.64% (¢omega/ {1~&aipha~-0.5%&alpha star-&beta)):

a
=
|

/% GIR~-GARCH (L, 1} under pricing measure Q ¥/

Do i= -100 TC &T:
z = rannor (626336);
h = &omega + (&alpha*(lz - &lambda)**2
+ &alpha star*{max(0, -1z + &ilambda))**2 + &bsta)*lh:
y = &x - 0.5*h + sqgrt(h)*z;
1z = z: 1h = h;
IF 1 > 0 THEN sum = sum + ¥;
IF i > 0 THEN OUTPUT;
END;

/% Caloulat
value = ma

ta = infp*S/aps
taSum = deltaSum + delta;
taPrice = exp(-&r*&T)*deltaSum/&nobs;

DATA results;
SET sim; IF j=&nobs && i=8&T;

RUN;

PROC PRINT DATA=results;

VAR callPrice delitaPrice;
RUN;
QUIT;
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L OPTI

LE G
ZLET i
3let v = 0.002085294;
¥let xi = -0.078882487; /% AR parameter */
¥let omega = 0.000015276;
%let alpha = (.087850576:
et alph r = §,086314808;
e 839895117,

C; ¥y = 0; prod =

J% BR{1L)-GJIR-GARCH(L, 1) u
20 i= -100 TC &T:
z = rannsy (6896336);
h = &somega + {&alpha*{lz - llambda)**2
+ &alpha star*{maxz (0, -lz + llambda))+**2
y = &r + syxt{h)*z;
lambda = {(&v + &zi¥y - &x)/sqrt(h):
i

z = Z} = h; llambda = lambda;
IF i > 0 THEW prod = prod* (l+y):
IFi >0 ¥ OUTPUT;

¥ Caleulabes th
value = max (0, 5 - &K)};
callProd = callProd + value;

callPrice = (1+&rv)**{~&T)*callProd/&nobs;

% Ca e5 the delta ¥/
IF S ¥ TEEN info = 1;
delta o*S/Eps:

deltaSum = deltaSum + delta;

deltaPrice = (l+4r)**(-&7)*deltaSum/&nobs;

DATA results;
SET sim; IF 3

RUN

PROC PRINT DATA=rest
VAR caliPrice deltaPrice;

* 7
;

AR SRR TS RS PSR R TN ST

ilProd = 0; callPrice = 0; deltaSum=0:; delta=0;

+ &heta) *1lh;
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