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CHAPTER 1T

BASTC DEFINITIONS OF CATEGORY THEORY

1‘.\

Definition 1. L category C is a class of objects £, B, - - -

together with a family of disjoint sets Homc (4£,B) one for each
ordered pair (£,B) of objects. Write f: 4=%B for f€ Hom,(A,B)

and call ¥ a morphism of C with domain A and codomain B. Lssume a
rule which assigns to each pair of morphisms f: A=»B, pg: B == C

a unicue morphism gof: A=P»C called the product morphism with gof
defined only if the codomain of f is the domain of g. In addition we

have two axioms:

A1 If f: /=3B, g: B=»C and h: C=»D, then h(gf) = (he)

o

i~y

2.2 To each object B there exists a morphism lB:IB->B such that
J

lgf = £ eond ng = g for f: A=>»B, g: B =>C,

Remarks. The objects of C will be denoted by Ob(C) and the family of

disjoint sets by Hom(C).

L category may be completely described by its morphisms, ignoring

the objects.

Let C be 2 class of "morphisms," f, g, h, in which a composite

=5

7Q
o
o

is sometimes defined, call a morphism u an identity of C if

Ve

=

)

ey
it

f whenever uof is defined end gou = g whenever gou is defined.
The axioms are:

B.1  The product h(gf) is defined iff the product (gh)f is defined.
When either is defined they are equal, * This triple product will

be written hgf.



B

s}
[

However

tions are eouivalent,
categories we usuallv use

of abstract ca

1

an invertible

[-Je
=y

@]

W

object L there is exactly one worphism h: £ —T,
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identity morphism. Furthermore, any two terminal objects in C are

2

equivalent, since we then have a unicue e : T=>T! (T,T' both

terminal) and a unique ,43 : Tt=y» T, Then/Bd : T =>» T andf?cﬂ must
necessarily be the identity morphism on T. Simj.larlyﬂﬁ is then

the identity morphism on T' and hence e and /3 gre invertible with

Dually if T is an initial object of C then the identity morphism

is the only morphism taking T—>1I. Inalogously two initial obJects of

Q

are equivalent.

Sxamples of Categories

1. The category Ins of sets has ss objects all sets T,5, - -
and as morphisms all functions from S to T, In this category the
monics are the injections and the epics are t
Stromrs will be proved at a later stage.

2. The category Gr of groups has as objects all groups and
morphisms all group homomorphisms. The monic morphisms are the mono-
morphisme and the epics are the epimorphisms.

3, The category /b of all abelisn groups has as objects all
sbelian groups and morphisms all abelisan group homomorphisms. Again the

monics are monomorphisms and the epics are group epimorphisms.

4. The categorv iMon of all monoids has as objects all monoids

4,B - -~ and as morphisms all monoid homomorphisms. Again monics are
monomorphisms and epics are epimorphisms,
5. The category Ensy of pointed sets. By a pointed set we mean

a non-empty set P with a selected element x called the "base point! of

P. & morphism f£; P=¥»0 of pointed sets is a function on the set P to

he surjections. Thig asseér-



the set § which carries base peints to hase points.

Tony denotes the 1

6. The catecory

zory of nointed tonolog-
ical speces. The objects are topological spaces with a designated

base point x and the morphisms are continuous mans f: {—Y which send

the base noint of X into the base noint of V.

the category P° with the set Hom, (a,b) either CWOUJ

exactly one element (when a & b)

Definition 8. For any category C, the cetegory Morrh (C) has as objects

the morphisms f: & —» B of C and as morphisms m: f—>f +the pairs

) Lt : ] o
of morphisms a: A—%7 and b: B—>B of O such that the souare

janct
=
i
—~~
(‘J
,_1
\/

commutes,

The composition of two morphisms is formed by nasting the first squsare

on ton of the second and era

L functor is a map of categories. More explicitly a

covarisnt functor ¥: C —=( consists of an object function F and

o

a

jo¥}
)
o

function assigns to eas

function assirne to

) et e ! -
each mornhism f: B—>B of (C') a mornhism F(£f): F(B)——T(B') of (C )

v (‘Ot’)

ca

i
"D
3
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'he objects of cO%P are the same objects as C while the morphisms

% B=3 5 of G°F are in one-one correspondence with mornhisms

f: A=dB of 0, £ = (of)¥ 15 defined in COP when of is defined
~ . 3% 3%

k_l
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Nefinition 11. 4 covariant functor G: B®Y =3 C is cealled a contra-

variant functor on the catesory B to C. We have G(1z) = lg(w)
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Definition 13, i subcategory D of C consists of a subclass of Ob(c)

and a subclass of Hom(C) denoted hy Ob(D) and Hom(D) respectively, such

1) if 4@ 0n(D), then L, € Hom(D).

2) ife, @ €Fon(D) and Se/3 is defined in C, then

Vﬁ €

Hom(D) and ¢ : £ =3B, then 4,B € Ob(D),

ition 1h. The subcategory D of C dis said o be full if

) for any 4,B € 0Ob(D).

»

sbelian group homomorphisms form a full

srouns and homomorphisms.

M = morphism=z et P

O SHNG « = -

[.
1

obiects in P when these are considered as being in C, Then <7 N>is
a full subcategory of C.

Proof: Follows trivially from the definitions.




MONO AND EPT IN CERTAIN CATEGORIES

We now wish to investigate the equivalence of mono and one-one
and also the equivalence of epic and onto. That is, we wish to

establish in which categories these are equivalent concepts.

Definition 1. 4 concrete category is one whose objects are sets and

whose maps are a subclass of the class of set functions.
Theorem 1. In every concrete category one to one implies onto.

£

Proof: Let f:4=>B be one to one and g,h: C—>4 be such that
fog = foh., If #( x)# h(x) for some x & C then (fog)(x) =
flg(x)) #£(h(x)) = (foh)(x) by definition of one-one. 0.FE.D.

Theorem 2. In the category of sets mono implies one-one.

Proof: We prove the contra-positive. Let g be a map which is not

ong-owe. Let g: S; =>S, where 57 and Sp are sebs, and g(s;) = g(so)
but sl;‘ So. Now let h, k: T=—% 5, be two maps which map T onto s1

and so respectively. Then goh = gok but h?‘ k. Q.E.D.
Theorem 3. 1In the category of pointed sets mono implies one-one,

Proof: ALgain we prove the contra-positive. Let g be a map which

.

is not one-one and let g: (Sy,%3)=3(Sy, Xp) be such that g(xy) = o
end g(s1) = 2(sp) with s1# sp. Let h,k: (T,t)=>(Sy,x%)) such that

h(t) = k(1) = x; and h(T-t) = sy and k(T-t) = sp. Then goh = gok

Theorem Ii. In the category of topological spaces mono implies one-one.

Propf: Let 37 and Sp be two topelogical spaces and assume f: Sl‘ﬁ>82



7,

is a continuous map such that

I~

(s) = f(s') and s ;(s’, Let T
t

be any topological space from the category and le

be the constant maps onto s and s' respectively. Then g

f—
o

certainly continuous and fog = foh but ggh. Q.E.!

o7 <

Definition 2. Let S be an arbitrarily given set. By a free object

on the set S in a particulaer algebraic system we mean an object F in
that system together with a morphism f: S=>»F such that for every

morphisn

=

g: S =»X from the set S into another object X of the system
there exists a unique morphism h: F=> X satisfying the commutativity

relation hof = g for the following triangle:

b}
0Q

_f

(See €63 pages 30)

Definition 3. #n algebraic system is called equationally defined if

its structure is defined by a family of identities or equations, =

Consider a particular equationally defined class of algebraic

systems called @ -systems which are defined by the operations fj, fo - -

(not necessarily countzble) such that f _ is an.n(/a) - ary operation,

Y

n{/?) finite, and some set of identities invelving these operstions.

Given a set of symbols {‘ﬂ,q} o } a free G -gystem may be

ck

ors. The process is to consider

constructed with these syvmbols as genera

all expressions built from the generators and the operations and then

ck
o]
=



[N

make only the identifications require

by the given set of identities.

Theorem 5. In the category of all @ -systems with @ -homomorphisms
as maps, mono is eguivalent to one-one.
Proof: Let £,B be @ -systems and f: £—>B a G -homomorphism,
Then if £(a) = f(a!) and a # a' we cen proceed as follows:

Denote by F the free @ -system on one generator x. Define

{

g,h : F=>4 by g(x) = 2, h(x) = a'. Since g and h are defined on
the generator of F they can be extended uniguely to @ -homo-

morphisms. Then fog = foh but z# h, 0.7.D.

Some examples of equationally defined systems are groups, rings,

R-modules and monoids.

Theorem 6. In a concrete category a map is epl if it is onto.
Proof: Let f: 4 =?B be onto., Let g,h : B—>C be such that
gof = hof, Now suppose there exists b€ B such that g(b) # h(b).
Then since f is onto take & pre-image of b. Let it be a. Then
gf(a) = ¢(f (a)) #n(f(a)) =h £(a). Contradiction!
Therefore onto implies epi,

Theorem 7. In the category of sets epi lsequivalemt to onto.

Proof: Let g:51~2 Sy be no

[l
@]
5
ol
O
°
gl
®
-+
5

:5,~® 53 such that
h(s) = sy for all s€ Sp,

ki S,=2 Sy such that k(s) = s, ' for all sﬂg(ﬁl) and k(s) = 83

\US)

for all sé€gz(Sy) with 53';4 S

AS]
o

Then hog = kog but fr)r-‘I Q.E.D,



Then hog

Theoren 9,

Proof:

tonology.
h(t) = a

h # Ik,

Theorem 10,

h manping G onto the second copy of G in

- 10 -

1) —=> (So,%5) be not onto.

h
O
3
jAb]
P,
=

) be such that his) = s

3

70} =—=>(83,73) such thet k(s) = sy for all s e =(S1)-xp

rd

s € 9 - g(81) - xp and k(xp) = x3.

= koz but h #+ k.

eni

21l topologiczl snaces eni

not onto. TLet U = {2,b} with the trivial

et o h: U—>U' be siven by o(t) = a for all t € U &nd

=

if t e f(8) and h(t) = b if Then gof = hof but

t ¢ £(3).

gory of all groups epl implies onto.

In the cate

orm the

[®)

b

(B and G aroups) is not onto and

" with the subgroup f(H) amalgamated

ning G onto the first cony of G in K and

17
IS

. By construction of the

amalgamated product these mzaps coincide on f(H). Then gof = hof

here are apparently some categories where the

category of rings,)

implies onto.



CHAPTER T

<!

FRODUCTS /N0 CO-PRODUCTS IN CATEGORIES

We now wish to formalize the concepts of direct products,
cartesisan products, sum of spaces, direct sum, and free products. Along

with various constructions we shall examine 2lso certzin characteriza-~

tions of monic and epic morphisms.

Definition 1. Let C be any category. Define the category W C as

heaving objects 4 = < I, { i V€ € I} > where T is any indexing set
end ‘{ Lil 5 7 is a collection of objects from C indexed by I, and

7 [}
morphisms @ = € @ { e, e € T}) : L =>B where @’ is a set

mep taking I=%>J (both indexin

{“’t} . - din Cwhere ¢@,: 4~>B , | Define a composition of
(- - ¢ @ )

I3 o - / 4 *
morphisms as @ ¢ @y = < . ° (p?: ,{ Q\ca'(c') 692 JVe¢ I} >

Q

)

sets) and a collection of morphisms

~

Definition 2. WNow define the sub-category C

as objects all those objects of W ( which have the same indexing set

I, and as morphisms all admissible morphisms between such objects i

W C having the identity mep on I, Then O is a subcateg

n
=]
=

b

<
o}
h
-
-
Q

by lemma 1 of chapter II.

Definition 3. Then define the sub-category C' of (7 which has as

LSS

objects all those objects of C' where the collection Ll}' ;e Is such

n

that each 4; is equal to a fixed object £ of C, and as morphisms all

o, T

admissible morphisms between such objects Then C! is & full sub-

Ha

, I . , —
category of €70 by lemma 1 of Chapter IT.



Remarks. We can consider C as being imbedded in C', for let F be the

covariant functor taking C~w§>c' where F is define& by

F(o)—><I, 140 ie ID wﬁere A = 4 for all i € I. T4 A8 eC and Puqa—8,
F( @ B) 7', {@; | i< I¥y where @' is the identity map on

T and Ri= 5=+ for all i and J. A

We will often denote objects in categories ¢l ang cl by { Ai& ie T

when it is understood that we are using a fixed indexing set 1 and only

the identity maps on 1,

Definition L. Let D" denote the sub-category of Morph ( 7r C) which has

as objects those objects of Morph ( 7 C) which when considered as
morphisms in TrC have as their domain an object in ¢' and as their co-
domain an object in CI, and morphisms the ordered pair of morphisms in

¢' and ¢l respectively which make the following diagram commute.

¢
CI, {43 tie 1> — <K I, {B;viec I§>

" L¥

QI {C tieIt> Y. CI, ADjV i e Ig>

This clearly forms a - sub-category of Morph ( T C).

Definition 5. Define the sub~-category Dy of D*to consist of those

objects which as morphisms in ® C have a fixed element A of ¢l as
their co-domain, and as morphisms those pairs{\@, Id > € D"where Id is
the identity map on A and ¥ = < I,AWQilie I\ is such that @ i = @¥

(fixed) for all i € I.

Definition 6. Dually define the category G to be the sub-category of

Morph ( T C) which has objects those morphisms in 71 C having domain in

¢! and co-domain in C', Define the sub-category GA* of G© analogously



morphisme in W C having domain

5]

to D,” which now has objects tho

fixed in C7 and co-domeain in C!'. The morphisms of these categories

Definition 8, Define a categorical co-product to be an initial object

Theorem 1, 4ny two co-products are equivalent.
l{ . —
. . . . | \
Proof: Consider two co-products & = ) '€ —}>and
’ . - .
PV IR IAREE b >
ﬂ ﬂ M ¢

l\{”‘-'t‘ez}>—————-——>< E’{_PC"(G I‘}>_

A
]
~
ol
A
N
™
o
Sy
v
-)
~ -
A
fome
~
—
i:h
o~
[~
f—
b 2
v
t

certainly sn admissible morphism in the large scuezre. Therefore

Similarly @ 27 = 1 Therefore 2 = ot g

7(<o=1?,

o and /3 ere vivalent., #Q.E.I

Theorem 2. 4Any two products are equivalent,

Proof: Dual argument to proof of theorem L.

N

Lemma 1. TIf o¢ ,p are morphisms and O(ﬂ is defined and monic,

then ﬂ is monic.



- lL‘- -

Proof: Consj..der/gaq =/3° ¢ . UYe wish to show that this implies
N =
AR =3 @ then w (a7) = = (B0O);
i.e., (wﬁ ) = (%3 )@ . But by assumption x/3 was
monic. Hence 20 =@, J.E.D.
Lepma 2. If % , 43 eare morphismes and g3 is defined and epic

then < is epic,

iy

Proof: Consider e = @&, Ve wish to show thet this implies

©eo then (X )3 = (©¥)3 since

X
6
o
X
R

%/3 is defined. Therefore 27 (w¢3) = ¢t (43 ) but =3 is
re [ =< , O.E.D.

epic by assumption., Theref

.}
mn
._i
—y~
v
1
v
[y
—
-t
@
‘_I
|_J
N
—
~
\Vg

>

o
Theorem 3. Let  : < T, { LN |

A 2 1 .
be initial in G.” where @© =< @ ){Cﬂi } 1€ I} ® . Then each

Prooﬁ: Consider

‘s«i‘ \L':(

< I {A l¢c1}>—L+<r{c1¢eI}>

where C; = L. for 211 1 € T and some fixed j &

! . =
¥ =< lp){ Wole€ !})is a morphism such that W 5: £5=>Cy is the

L%

identity morphism on %5 and W 4 is any other admissible morphism

for 3 #'i. Then there exists a unicue morphism ¥ = €Id, > 0 > W

such that the &bove diasgram commites. Then we must have?qp @ = @

which implies that?7.--@." ., But Y.~ 1 .and since Vg
; GG % 7 4, /
is certainly monic then by lemma 1 we have <0J,‘ monic, Q.E.D.



Remerks. In the categories of sets, pointed sets, and topological

spaces the consgtant maps guarantee that Homc(/;jB)# @. In algebraic

systems the © Thomomorphisms guarantee this,

Theorem L. If each &5 is monic in C and ¢ ' is monic in the

category of sets then ¢ is monic in w C.

© Proof: Letlp:‘(I,{Cj_’iC'I}>“><J.,’i Dy ;e g >

! . - g e
where @ =<"){'°‘_' c“ Du,"(-)’ ¢ € .\.} >

I
x
&5
2
o
D]

We wish to show that @*q = @ ¥ implies that 3
’

x - <, {n 1 xe K>

¥ = < r"{%k\ké*d>

4 /
Now since @® = @® ¥ by assumption then ®® 3 = ¢ o ¥

[} /

/
but ¢  is monic by assumption, Hence 2T = &

ilso w’(,‘x)’(k i "g’m)rk

kJ ! - ! x by - - r
but ')( (x) v ( ) Therefore w’l'(‘\’)?tk ‘anl(k) X

and gince assumed to be monic, then 9 " 3‘)(

o Was
2 'tx)
for 211 k € K.

Therefore 20 = ¥ i.e., &p is monic.
Theorem 5., If ¢ is monic in " C, then each & . is monic in C.
Iy 3 . " .
Proof: Suppose that A ¢ - B,‘

such that ¢ o7 = .
7 7

Now consider 1 as

’

cardinality one,. That is, we extend 2 +to a morphism in g C
L4 ’ k] 0

by letting 2 =€ %, 9 >where 2¢ : I-® J oand card I = 1

?

t
and s AL o= A.=® B, Similarly extend ®  to a morphism in
] Y i

' 0, We then have:



!
31—
e

i

; (
SO N, | y ¥
V=8 Qv =h
%

Then certainly WM, = QY . But @ is monic by assumption which

. . . . N . . 1 1
implies that N = vhich in turn implies that W~ = ¥ | i.o.,

Q3 ig monic. /& similer arcument works for any

Q nmonic in TG does not imply that

category of sets. For consider:
C T e J

y! . T > J where J is of cerdinality 2., and

!

Q

IS

J e X whers caord X = 1,
Tet the objects of C being indexed he sets with the following structure:

T > J > K

R R I e .
\ 19Ul (PisTaintT VAN

each W+ = ¥i. Hence { is monic but certainly @ is not monic

7 of sets monic is ecuivalent to one-~one and

is epic in the category of sets and each @ 5 is

epic in C then & is enic in T C,

ily U= ¥ . Wow M'-@'= ' @l oen

m

Froof: Supnose W@ = ¥ Q@ . We wish to show that then necessar-

W
>
[oN
O
[
<

e 1
assunmpTion Q_?

=]

herefore " - Y -
. . ) At  ie meanmed ] .
Also ‘Y(@‘CO Q: = @il @, . But each @ i 1s assumec to be enic,

herefore %Qz'(t) =Ygy fLor all i, Hence W = ¥ aomd Q is eric.



Theorem 7. If ¢ is epic in @ C then each %, is epic in C.

Proof: Suppose that ¢ "o v, = ¥ to @ in C where @ ':1 —>J,
Then extend 22" and ¥ " to morphisms in "W C as follows.

N ': J —*= J is the identity map on J and each

: B —? B .

L '(1)  e'(i) w' (i)

i ween: it whic kog E i e Gxtend 1
Blo ' (5) exeent T T which takes B ()77 Cgt(y) ond ¥

is the identity map on each

to W C similarly, Then clearly % @ = ¥ ¢ @ and therefore
o

1
Y
n
j+
5
Q
D
o’

N

2N =y ", ie., @

We now give actual constructions of products and co-products in
certein categories.

(a) Partially ordered sets.

Consider the category D,  where {f-‘.j} is a collection of

[l

. * S . - .
objects from the category P defined in Chapter I1. Then consider a

terminal object in this category.

— - l —

weewm, {w, }>
> <

<1,{B;1ceTh> T, iA 0 ce T

' ’
Let 0 =<, {""}Wbe any other object in this category. Then by

—

definition there exists a unicue morphism 3¢ : ¢ = W such that the
following diagram is commutative._
<T YB3 lcc Y}>——L—> < r){ A, Ve l} s
3 Ti4
ciie, rvéielt > ——> <D {4161} >
Now since we have a map V% . : By =>1; for all i€ T where By is

fixed, then B; must be such that By € by for &ll 1 € I. Similarly

)

; & i, for all i € T, But since ¥ : C;—® B; then C; € Bj.

]
-

Hence By is the or the collection { £; }.

Duglly the co-product is the unigue map into the least upper bound of




i

of 4 for all i e T,

ause of the unicueness

)

[P A o P! - -
an product of the [y




_19..

Theorem 9. »p :<I/.f,4%i\ i GI}> - < I:* Pi Vi € I} > where

1 Ysend Py = P for 211 1 €T is the product.

other object.
Define @ as L@ (s) = (™ (s), & 5(5), X 3(s), - - Xi(s) - - )
Then clearly o is an admissible morphism and further P\-.'_“P = 3
for all i& TI. Also,4 1is unique for suppose there exists a
% : B ~3 P satisfying the conditions. Then p 4% = fj for
all 1€ T,
Therefore 7] (s) =(® (s), = o(s), - - ¥ .(s), - - )
for 211 s € S. i.e., @ =237 . Q.E.D.
(¢) Category of pointed sets.
Let {(Si, Xi‘}i ¢ I be an object in ¢!, where each (S35, x3 )

is a pointed set. Let T = L!I (Sy - %)W (x,) end define the injection
B (G

f5 (sy) = 51 s;# x
£5 (x1) = %

Theorem 10. £ : €T,9 S5, x| 1€ I}r->e1, § T, | i €I}>
}

® and T3 = T for all i &€ T is the co-product

S

where f = € Id, {§ 3
in this category.

Proof: Let (U,u )} be any other pointed set and consider
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H
Pean)
i~h
{Jq
e
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|
e

d

e
b

hecoucse of the proverties of T and the £

t X %, & unioue i
Y by
Q (%)
@

% o amd W (g

(T, to)

i

il

1231

ble morn

b SF thers evia
L€ 5 A4 LT el

1 € ]
T oAt T o
pRICRVI he

~ r}\

N

mmiocvue becsuse of the wnicueness of

then (v) = % 5 (54,

1

tne Ca

N

S
i

P.I.
1
2

h
2
-3

Therofore

ohject in { where esch (Si, =) is

S

the cartesion product of the collection

vie I}V

nreoduct in

TOTY .

=



P={f’i}
>

(T, tg) >- ‘i (85, Xi\)} i€l

where @ 1s defined by

w (t) = (st&y, 08, - - £ 0E), - - )
Then certainly @ is an admissible morphism and also p; @ = 15,

i
=

conditions that & is en admissible morphism and p3# = f5 fo
all 1 € T,

Then ps? (t) = fi (t) for all i€ I.

ies, 2 (1)

ie., & (t)

1t

Cnae)s £ale), == o). == )

il

© () for all t & T.
Therefore  is unigue, Cf,E,ETJ.
(d) Category of Toplogical Spaces.

Let ‘f Ti} 3 €T be an object in CI where each T3 is a topological
space.

Let U= v T; where each T4 is considered as a set and then define
the finest topology on \J which makes each injection map P4 : Ty —? )
continuous.,

Theoren 12. p :<€T,d Tl 1 €1} <1, 3 s bie T} > where
Us = U for all 1€ I and p =< T o, { pii' » is the co-product in
this category.

Proof: Let f: <I,1 7y} 1€ 1> =><7,{ s;13 €T} > where

£ =<1l 5 { fi} ? be any other object in & %, Then consider



P

. . T -
it 1 €T > U
dal W
» £ =tesh
{ril s e > 3
where @ i1s defined as
. Becausze of the
rroperties of U there exists a unique i and t3 for each u € U,
such that P3(t3) = u. Then cleerly @ Pi = 3 ond since each I

is continuous by assumption, then o is continuous (see N.
Bourbaki, Tonologie Generale, Chapters I & II, page 31 proposition
6)., Now & is unique, for suppose there exists another admissible
morphisn 7( exhibiting these properties, Then A py = £35 for all
i €& I. Then because of the uniqueness of the pre-image of any
u & U,7Z must be defined exactly as (p . Therefore (@ is
uniaue., Q.5.D,
Now let <71, {T; Vi €T }'>be an object in G where each T; is
a topological snace., Tet T = 11 T: be the cartesian product of
i ‘ ) €T — i

the spaces with the product topology defined on ™, Then each of
the projection mans pi: T T; is continuous.

Theoren 13. pr T {TFpieTpyd<T f il i o€ I} > where

n =4 Ia { pj_} > ond each Ti—x' = T is the product.
proof: Let £: <T, § Sj1 4 €¢Tid-> <, T; 11 € I} > where
S5 = S for all i is a topological space, be another object of D;t;*,
Then consider:




® EA
T >(Tnﬁ_§ ie T

iy
il
Pl
i
e
—

5 for sll i e 1 and since ezach i

continuous, then (@ is continuous (see N, Rourbaki, Topologie

28-29, nroposition ). Then @

mon

Generale, . C

is also unicue, for supnose there exists an admissible mornhis

the condi

for all x e S, Therefore ie unione, Q.71

s

rory of srouns.

-
Tet (I,¢{ G; v ie Tt) be an object in O where each O

T a d i T " .
Let FP be the free rroduct of the Gi =. Let ps be the

groun, homomorphism taling Gy —> FP

defined hy nila;) =

ag the unicue entry end

rd of lencth one with i

e 131

4
W
R
i
]
O
3
o
2,
=
.
n
o

Proof: Leb £ T, L0 v ie IVD>—>(T, {H; 1+ i e TIuhere

f= (TA . {fslp and Hy =H (s ioe T

be another obiject in G,

is a co-nroduct.
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e
1
wd
N
1
1
2
<
()
]
i
]
o
e
1t
b
o
fal
o
-5
N
~~
W
%
~r
[N
A
~
2
S
e
{
|
(>
-]
o~
2
™
—

Then & is a group homomorphism since

il
iy

L (null word) 1 (1ay) fo (1pn) = = fpn (12)

=lge lgely -- oly

= ]B

0 " (% - - xn}(?fl' w! - - xm’) =0 (x] - - %' - - fz.:m')

= £10y) folxp) = = flx,) £100Y) - - Pnogn ")

(£1(x1) = = £alzy)) ( £10c1") - - fulxm) )

P - - m) o (' - =)

Further, A@ is unicue for if 7( is another group homomorphism

setisfying 3 p; = fi for all 1€ I, then 9 (1) = £5(x1)

1)
3
joN
iy
D
o3
Q
€]
N
K
at
1
1
—
N
!
e
»
}._.I
g
i
i
N
A
[
=3
p—g

1
-ty
N

]
—
~—

i

!
-ty
PN

4
S
3
~—

i.e., @ is unigue. Q.E.D.

Wow let €1 )'f o) 1€ T} % be an object in CT where each G4 is

2 oroun. Let G° = V1 (Os be the direct nroduct of the Gi.

Define ps to be the nrojection homomorphism taking G7

Theorem 15. »n: €T, 1 PR I C Tis=><1, f Gs 1€ I}' > where

p=elel , {

and each Gi* = G% | is the |

Pi}>
Tet ot € T,% Hili € Tho-><T, { G313 €T} > where

Proof:

~

g=¢lat , §{gi}>endH

= H (fixed group) for all i & I, be



another object of

en consider:

H

where is

©
Q (1)
@ ()

Then

and @ (hk)

Now s unioue,

@

moyrnhigm

re
Y
(-

!

Then niM (3

N () = (z9(h), eoln]
= @)

herefore

e .

fhelieon

“h

o]

) Yoy e - o
) Category

1743

et e
Let 5= M 75 be

Froup.

the injective

Ailas

o

2

ﬁ
3
)
-
iy
N
—
o
!
i
4
N
-~
=y

groun homomorphism,
a1l i € T,
suppose there ewxdists another croun homo-

28 that

) which impli

Lee

grouns,

an object in O~ gach £ is =n abhelian

the direct sum of the ‘3's. Tet A J be



LAY et e fosi i€ T > where
and S5 = 5 for all i€ T, is

T.{a11 e TH=>CT, {Hi1ie TYY where

g an abelisan oroup homomorphism for all i,

g5 ’i > 25

511 i be another object in G,

A=

= > H

'm
I
\

- - a3, 0,0 ==} = gi(a1) + golan) -

Then @ is an ahelian group homomorrhism since @ (o,0,- -

ts an gbelian group homo-

Further @ is
= g3 Tor all i€ I.

mornhism

Then

3




= %’1(81) + 9:2(3.9) + - ;tj(ei)

s unique. Q.E.D,

i
r - A - ] RO "11 P
Now let & I, { Ay 1 1 611}>be en object in C- where each

ks is an abelian group. Let P = Wiy

3 & i “J

be the direct product
of the &i's. Then let pj : P =>i; be the projection homo-
morphisms of P onto A 1.

Theorem 17. n: < I, 1P 0 1 € T1>=> <1, § 45 Li €If>where

D =<Idj{ pi} > snd Ps =P for all 1& I is the product.

=

roof: Similar proof as to that for groups.

Remarks. The construction of the co-product for groups involved

I~

the free product while that for sbelian groups involved the direct

n

swn. This is because the free product of abeliangroups is itself
no longer an abelian group.
(g) Category of monoids.
The construdion of the product and co-product are icentical

with that for

i

TOUDS.

We now wish to examine further epic and monic maps for

products and co-products.

Theorem 18, Consider two co-products, one in the category Gi

S
W

a4
<

and the other in Gp”, and consider a morphism © Dbetween these
two objects where © =<{ ei‘,\e ®»and each é 3 is epic. Then @

is epic,

Proof: Diagrametically we have:

o



|
/

where T is any other object in C and where 7l = & (P,
Ve wish to show that =% . Note that the sousre above
. H
must be commutative in the sense that P‘.f- Fq-' ej}_ because

each object is a co-product. Now define the mep from 43 into

) _ Vs - e - PR

T to belfw@ . =¥ @, sincep ¥@ , Then because of the
!

commutetivity defined above we have 7¢ @ e. =7 P =8 (’c.=

’
V("~ 6‘. Wow by assuption each @ ; is enic, There

’ ’

Tl =%p, -

Hence we have a unicue set of maps from the collection { B\' ie

we must have a unicque map B"=% T for the collection of maps

i
&
l_)

L]
o)
]_J
w
D
o
}_Jn
[e]

1 1 * . .
= . §. Therefore Q.E.D,
f‘ { Ps reLor ’( - i
Dually for two products one in category D,” and one in DR™ and
a morphism O between these two obie

1
£ ¥

and each 97- is monic, then M@ is monic.,



concepts of direct limit categorically.

limit con be cat-

characterize Jertain cuestions regarding monic and epic

u
®
O

will also he answer

Pl Rt

s a set having a relation & defined

»]
]
H
D
[
ot
©]
0
N
B)
o
E
1

on it, such that

where M is a directed set and L4 dis an object in C for all <A e I

with the added condition that if L €@ in M then there is & unigue

9]

mornhism AL in C such that Ty Ly’ ® end morphism

Q=< ‘Qlu 1@l e l"&k> where @ " is an order nreserving men betveen

)

=

32 3 : W 3 gt . PO R kS
Yrected s Moar ¢ ¢ [ ce—— 2l ¥ ot i
directed sets M and I and @, + 1 - Bg'(et ) such that i

in M then the foll

wwram commutes:

~

Q
% @) @,
W (a)

" ng’ce)



- 30 -

The collection of *ﬂﬂ*‘c{‘ﬂ‘ﬂ}
: o

«%3 € ¥ ini then W W =77

¥
73 ® °c
Define a composition of mans as
’ / 4 /
0w tcwhie’{w , ° uawlqem,cp(.()em b >
upacu)

j)
3
=
i
>

5

he category Mornh (WGC) enalogously to Morph (WO),

=3
-y
@
e
(o3
o]
e
!_[
o
[
o

Theorem 1. Tf ' 55 monic in the category of sets and each @ is

monic in C then s is monic in W C,

We wish to show that ey = @ @ ¥ inplies that 0= & .
~ 1 1 . . . ! H
SinceweX =@ ¢ ¥ then w ’r(' =t ¥ vhich implies that 7 =¥
since tp' was assumed to be monic.
LElso , )7( ='~‘"_:( )Kq but T "(ov) = ¥ '"(ev). Therefore
N(r) R -
e, N s w , ¥ o but was assumed to be monic for cachew € /47
Y (o) X ) R “s
- . 1 /
Hence ’YN = 3"& for all & & 7"/, Therefore since 27 = &
and 7‘(‘,: 3"“ we have H = X . Therefore WY is monic. Q.E.D.
Theorem 2. If @ is monic in g then each @ is monic in C.
renm . -
" 4 7 o d
Proof: Suppose @ * I = W o ¥ We wish to show that = ¥ .
- -
£root DY - ,
11
i — B
Let ?( H ﬂ =
{1 ;
P -—> B
¥ y o
i — . -
We extend 727" and ¥ o to ||>Ce de do this as follows. Suppose
w | M —=> M. Thenlet 2' and ¥ ' both be the identity
v ' 1 q . Lo o it
maps on M, and let each 7Z°( be the identity map on B - for 4#7x .

w2

e
=
i
3—t
5]

arly define each @ . Thenwwed =@ ¥ which implies that

fore is monic,
@er

& dual tvpe of argument shows that g is epic in W C if @ ' and



each Py are monic, and if @ 1is epic in U C then each \@.
—>
is monic in C.

We now construct a new subcategory of W__Q)

Definition i, Let C™ be the subcategory of ”\_\;S consisting of

those objects of W_C)l indexed by the same directed set M, and all
morphisms in between such objects which congist partly of the identity
maps on the directed set M.

Let F be the covariant functor where

F: ¢ —C" defined by

F(A) > <M, LA VAemd where A, = A for all %e™M

F(@ 4 ) —> W M, A A, \RemD>{M, (B lweMm)>
Note that F is a one-one functor in the sense that there is a one-one

correspondence between objects and a one-one correspondence between

morphisns.

Definition 5. Define the image of C under the functor F to be c*,
Then C* is a subéategory of C™ .
Remarks. Note that for any object in C¥ each W. is the identity

morphism on A, .

Definition 6. Let D¥ be the subcategory of Morph ( Ti7C) which has as

objects all those objects of Morph ( ?\_9) which when considered as
morphisms in T _C have domain in C™ and codomain in C’\‘L, and as morph-

isms all admissible morphisms between such objects in Morph (T1C).

Definition 7. Define the subcategory Ds* of D° to consist of those ob-

jects of D* which as morphisms in Tf_g have as their domain a fixed

object & of CY and as morphisms those pairs < Id,@> & D where Id is




the identity morphism on A and where @ = I 4iW \*re MY

is such that Y« = @ % (fixed) for all « & M,

Definition 8. Define the direct limit written lim to be an object
{M, {BoVvae MI> in C* which makes the morphism

Wi (M, AA b e MY (M, Bl \ete MY> in Dy initial

Theorem 3. Any two direct limits are equivalent.

Proof: Consider two initial objects of Dp* which contain these

direct limits.

<M, LA 1l ae MY > M, {Bylde MID

|- g

<M, LA Vvae MYS > (M, {C, txe MYD

g r

<M, LA vae MYD> ——s (M, {Bulae M)

where <M, {B,lde MY> and <M, 4C_)12ec M}¥D> are both direct
limits, say li\rg)l and liin_>2, Since both objects are initial then
there exists unique morphisms <@ and "_ which make the diagrams
commutative, .Hence in the large square M@ is the unique
morphism making this commute, But certainly the identity morphism
is an admissible morphism. Therefore MvW = identity morphism on
li_rL JS' Similarly @-w_ = idéntity morphism on lim : g. Therefore
n = @ -1 and l:ﬂ% and l:‘:m’>2 are equivalent., Q.E.D.

We now construct the direct limit in some familiar categories.

(a) Category of Sets.
Let {S*\déﬁ be a collection of sets indexed by a directed

set M and let T be the map from S, —= S, if X ¢ @ in M, Let




T=wus and define an eouivalence relation on T as follows.
o~ ]
e ™ 2 iff there exists a¥ €7 such that
3 - N
D s Y = W =
o Y ,/5 ¥ and 'w‘su) /’(fﬁ) fx

This is certainly an enuivalence relation;

a2

1) o~ g implies gz~ g

T e 8 - ) et

2) s~ g

/ w S 4

3 g~ o g N g = g™~ g

/5) Sext \;ﬁ s r S &y, © ¥y
Now consider T modulo this equivalence relation( ) . Denote this
by T/ =,
Then define W : S =2 T/35 by w :g—> (¢ ] where

o o L L w
{gq} is the ecquivalence class of g*., W is certainly a set
map. 1WO maps I and ! agree in the sense that if T'/J: S=2 3
°( 3 o % 3
then — 3
)
S = >» S
o r
-‘i/s
Ilu
T/= commutes

Thaorem L, Mt > where T
Theoren | b5 shero T_

direct limit.

* .
= T for alle & I is the

Proof: We wish to show that
o< o s Jo ¢ > —> < 4 T 1€ u} >
where i = €4 d,{To‘} > ig dinitial in D/F,
Consider _
e <Ta,int> ,
W ¢ ! G ] [ D —— M ~ M >
1y < f s N <1){Tq)ﬂ€l“
ot \L . L 5
¢ =< la {12
& 7 . ™ € M \ o & 1] -]
i, {s) e Mp > — 1T b



T ig such that 1t must a2eree witl

2w
M
(V2]

Set > S

U commnutes.

el

Then define as follows:
S 4
efle ] =% (2)
> ey
Because of the commutativity in (2) @ is e

and also

Now e is unique, for suppose that there exists a morrhism (¢

5
{

e equivelence class will contein all th

0
b
-
=
6]
o
R
0]
Q.
jon
(9]
0]

by this equivalence relation and set

where by corresponds to [x } o
i o




Then define Vi (Sg . v, ) —— (T, t,) o7

Ty (zg) = U)o Certainly Ty ic 2 well defined wman,

o I L @ / N ' —— 5
urther i Wy ¢ (8« . 7 ) m—— ﬂS@ s T ) then 7 and

=i

Theorem 5. M, L (T, t,) lebe MYD> where (T. o), = (T, &)

for evervy A g M ic the direct limit,
Proof:  Let £ =T, {8 s M, LS . g ) vRe M
L. ) Ved e 1) >
vhere (P, p,) = (P, no) (a fixed directed set) for every « & I,

s
<

e any other ohject in D7,

necegsarily
commuites.

Now consider

W= 47aq}

i, (8, 0wy ) men) >, AT, v Nken } >

1d Q

I o= "]tu\}
CHy L0800 e ) welTpy —— i, { (P, p)_tae )

where A\Q is defined as




Then the proof follows through as for sets. Q.E.D,

(c) Cetegory of Tonological Spaces.

Let { XJ{("M be a collection of topological spaces with

continuous maps W (’: X =% X if e¢ € 8 in M, such
- —
o = ifwS S s X in M,

It o L4

Now let u X be the disjoint union of the sets I and de
- Qv
equivalence relation as in sets. Let T = VU X /3. Define H
: o ¢
as before., Now define the finest topology on T which mskes each of
the W continuous where W and Wﬁ agree in the previously
o I

oy

described sense. Now if P ig any other tonological spnsce then if
oS kS L) ih

et

4, then the diagram

— 3
S
l,,r_‘ﬁ
P

f ¢+ S => P for allewé&
o« o

1
J —
—

w

~h

commutes

[

FR Y
L
IA
1
3
=

Theorem 6. < M, { T leé I‘JI})where Te( = T for alled€ I is the
o

direct limit,

Proof: Let £ =<lal, {£ §>:<u, § tjweul> > <, {Plewe u}>
o/ 4 o »

e

'

her object in D.",

ot

vhere &g, = P for ecacheC Il be any o
Consider

" ={W¢v}

<, { ppee upy —— s < {106 u}>

L l L&o
=721
<u,fxlwenl>y — T <y friveunts
o o

where Y is defined as follows:



Then clearly @ 1, = f.( for 2ll ¢ € I,
Hence @ 1is on
Page 22.)
Now by an argument snalogous to that for sets we see that « 1s
unicue. G.E.D.
(d) Category of Groups.
Let { G & w be a collection of groups and let T?(Sbe a
¢ AEH T o
homomorphism from G =2 G provided °?~/4 in M, such that
§ 4 g d
—-.K-—- /’ — U - < . o
nw_n = 4 ]_fo{-/‘3 S in M.
A = Y]
We define an equivalence relation as follows:
We say g € G 1is equivalent to g E (G , if there exists a
oo e a_e
-3 .
¥ 2 -J,/3 such thet W = (g ) = (g ) = g_ . This
™2 e /3 ¥
relation divides the elements g € (}ﬂv for all e¢ into digjoint
C

eguivalence classes. The product of two equivalence classes is
found by taking the eguivalence class of the product of two repres-

ntatives of these classes in the same group. This is always

]

- -~ w 3
noagible becsuse of the directedness of M, Then let G be this

3

of eguivalence classes. These classes clearly form a group. We

(a3

se
define the injection homomorphism W by Ty (g, ) = [=1.
h -4 o
- . . — —

Certainly W  is a2 homomorphism and further n and n agree

ol o
in the sense previously described.
Now let H be any other group and let f g t: G = H be a collec-

«

o¢

tion of homomorphisms such tha I

o

e

H commutes if=’=/3 in M,




—

!
()
W

i

Sy~
\"2

heo vaJC-
=< ' !
Yot l lq?.
a’ : <M H l~€ Mp>
d 2 °( j‘
where & 1s defined as follows:

[ -]
@ : & —> H ouch thet @[e ]

i
_—
—~~

i
—

e

Then certainly W is

t
5
~
-

€LY = o 0,) =

€le, /g] = ‘P[f”f*,’ z-‘ shere ¥y ¥ 5 €0

=f (g ,e_ ) =1_(g. )% (z)
LA A A A
e

:“’[5‘31‘-‘“{5523

ele,lwlel
= ¥;’ for o€ 1,

o
4
@ is unicue by arguments similer to those for sets.

{e) Category of Monoids.

Construction and proof of theorem follows exactly as in the case

‘or groups.

£) Categorv of Abelisn Groups.

Let {.(Le w be a collection of sbelien grouns indexed by ¥ and
" be the sdmiszgible homomornhism from £ =% L 4if o fk!in M,

Now define an ecuivalence relation on the elements of



2s was done in the case for groups. The sum of two equivalence

classes is defined to be [g.<3+ [0:,,] = [z V| + gfe 1 £w,
and gy sre representatives of [ s “] ax_d{zﬂj in the same

gbelian group Ly . This is possible because of the cirectedness of

M, Then clearly the set of equivalence classes form an abelian group.

w R 03 - 3 v
Denote the set of equivalence classes by & . Define the injection
m— - - “. S—— N . .
maps W ¢ £ <> i by T (z_)=[a_]. Clearly this is s
- [-Y) o/ o (- Qs

homomorphism for 1 (Z ) =121 } and
T » .

W (g, vea) = ley vz, ) =le,)+le
> T, ~a A L%] * "2) .......
=N (g, ) + ua (e o )
1 2 /’
Fupther W and 1 agree in the sense that if W s A =P A

1)
b i > L
o¢ 73
— w
n e
o
<L .
A cominuves.

w - ,” ’w - -
Theoren 8, <M { Llew € J?Ji})*v.-zhere 1«_‘( = A for alle€ M is a
Ltagorem O ) o

direct limit.

proof: Let £ =<Tet, { .fw}>:<1‘{ {1 1eve up-v<u foleeny >

g

I

)

where G , = G (fixed sbelien group) for a2ll1= € M be any other




"LLO -

Note that agein esch f is an

homomorphism such

that ¢ /5 in M then

Define w

‘Piau\ =

a
homomorphism.
e (1}
el gre )
8
Further (o TQ/ = fo/ for aller€ I from the manner in which w wasg

defined.

@ is unigue by arguments similar to those for sets. L.E.D.

i~

We shall now examine

o
EN

urther the cuestion of monic and epic maps in

1im.
-

Theorem 9. Considers:

°‘T,-l3/3‘;7’r ¥ -

o
If each T{ﬁ is epic then each U is epic.

Proof:  Suppose #° W = bew, , e wish fo show that then =@ .
o’ 4

Congider any other object § from the same category and let

A @ : lim —> S be
) —->

in the sense that 1 = 1 Iﬂ ® Then since each 3] is GQiC by
fa
o



narticular construcition of the

S
!
P
£f
:
=
%]
=
=1
4 o
il
6
A
%

fq ¢ Lg=—pS by £, = « = Q@ Wq

Tor all & contained in the chain. Then since W = ATu]

Rl
&)

is initisl in D7 then there exists unicue man 3 lim —> S

tn

comrutes,

Therefore @ = W s 1eEs, T\"* is epic,

and in which mono is equivalent to one-

monic implies that ecch My  is monic.

= é s
T, we

o

Suppose that s1 and sp are two
). Then

W (s1) = T (s

"

ol
O o
o

!

—

then s1 = so: id.e., Ve 15 one-one, 0O.E,D,

aikened by

If the hvpothesis of the nrevious theorem is w

requiring thalt each morphisn H, 1is monic only and/or that the




Qheorem 11, Suppose that . n({e,(‘xl ¢y 1is an admissable morphism
in Morph (T )c); such that the domain and co-domain are both initial
objects for subcategories D¥:and: D ¥ of Morph (1T 8). Then if each
O is epic then ¢ = lim (le.) is epic, where Y = lin (‘e.), is de-
fined to be the unique map from Lim ((S,) —> Lim ({ \(K)} such that
T, Q= @ T

Proofs Consider

ST —lin (5, ),

& % I /_,_.T'—@\ I Y= lim) (@“)
~ N ' .
; > Koo —»lin (K )

R <

Ln.y

o
where each 9. is epie.
Let T'be any other object in.C such that: | and ¥ are two
admissable morphisms from lim (K. ) into T'such that. T, = ¥, ,
Note that' the above diagram must be commutative, Now define the map:
from S, into T'to be MW T, =¥@T, since N = ¥ By the
characterization of lim (8, )s Because of the commutativity of the
above diagram we have M T, ®, = Vel = §QT, =¥T 0, .
Since is epic by assumption we have M\T, = ¥ T‘:’é for all

8 € Mi Hénce we:have a unique set of morphisms from {K,| inte

T, Then because W = {w,}is an initial object in D* we.must:

have: ¥ = s Lies, W is epic for all < ¢ M, Q,E.D.
" <

Remarks. Whether ¢ is memic if each 9, is monic seems to be:an
open question, a lthough dually from examples which will be referred to

in the next cha pter it seems safe to assume that this is not the case,



CHAPTER VI

THNVER

The concept of an inverse limit written lim

various topolozical and

give a categorical de

inition to lim and cive the constructio

L

vearious categories,

maps will be answered,

rin certain questions regarding monic

known

well in

<L —

We shall now proceed to

Definition 1. We now construct a new category W C from C which has
5 <
. -1 o S . , .
objects <M { Llve }> where M 1s a directed set and each ,-!‘.q/ is an
7 of
.. . ot

object from C with the added condition that if < B An [ then there
exists a unique morphism TwI = —> £ such that if =g in U

ﬂ

o’

S o

¥ . ¥
then TF(S 1 = , and having morphisms =<’ {o | swv& 7Y >
A o g morr 7 e’ {ve b

/ _ R
where e : M —> M
and each w A o—= B

[

(both directed sets) is an order

such that if =5 /3 in '

orese

rving map

then the

i
ey l

¢
Tr(e‘(d,/)

v
¥

w

73

y

B
e (ps)

Define a composgition of maps
{
o e to T < o

4
i 2 0 l"e ," m\/wzl(

Then form the category morph (W C).
<

o
-~)

B, commutes.,

I ¢ 21
-] E I (&) o) G 7 >
s e ) ?

il — s

Definition 2. Define C° +to be the subcategory ofl ( which has as objects

all those objects of 7T C which are indéxed by a fixed directed indexing
<—

set M' and as morphisms 211 admissible morrhisms between such objects in




C which consist partly of the identity map on M',

H
Definition 3., Define C° to be the subcategory of ¢ which has as

objects all those objects of CM' < M', (A lke My > for which
Ay =4, for all «,@¢M' and all admissible morphisms between
such objects in CM", such that if @ = < Id, {w«}> has W.= <3
for all «,3 e u'
Let F be the one-one covariant functor where

F: C —>C° defined by

F(B) —><N', 4B,V «c M}

F (e p) —uw = (Id, Al tae M'VD> where

@,: A —=>B for all aeM',

.
FE

Then we can consider C as being naturally imbedded in T C.

Definition L. Let K be the subcategory of Morph ( 1T C) which has as

objects those objects of Morph ( W C) which when considered as morph-
=]

1
isms in T¢ C have their domain in C® and co-domain in A,

Definition 5. Define the subcategory K, of K to consist of those

objects of K which as morphisms in W C have as their co-domain a

1
fixed object A of CM> and morphisms those pairs <@ ,14> where Id =
identity on A and ¥ = <K I,4Aet =e M'%D is such that

QYo = @ * (fixed) for all « e M',

Definition 6. Define the inverse limit written lim to be an object

| <M', LA tote M'}S>  of C° which makes the object
T o= (I, ATAY> ¢+ (MY, KA lde M'ID>KM 4B 12e M$dof Ky
terminal .

Theorem 1. Any two 1(2[1 are equivalent,

Proof: Dual argument for theorem 6, chapter 5.




construction of the Some

{a) Categorv of Setbs.

Tet {?;‘kv‘e;ﬁ' be a collection of sets index
set M' with unicue morphisms T2 . ¥ 57
Pl A wha bl WL D Lt )L Laohiho ol PY S @ ‘"9«

Let X be the subset of the direct product
of those functions X =4x} such that

¥ we have Tﬂf (r@ ) =%« . The projection

defined by T, : i > X such that T (
€ @ 1

each W, is certainly an admissible mornhism.

L9
hd
e

where each
Wwnere eacn . o

We wish to show that

is an the caterory K..

- . | o
Tet £ = <Id . 47.3Y 0, 4T veel W =0
be anv other object in the category ¥, where each

w$

[

-

ot for each relation &£ =@3

maps W are

¥) =

S

L)

X 3

= A 1S oan

CTA ATl > * KM AXT laeM E> — (M AXglete M >

f

JAX N ke WY D>

f

is such that

o

= ac in M,

Then consider:
T = ‘—ﬁ&} '
Cu',{ kL vwe MY —— s ' { X ld e YO
A
o] ”
Cu', fr e wA> 2!, {r txen ¥ >
and define @ : ( T.‘*‘I'; ﬂT,‘\d&M! > =<, J].X:\“b 'Y by




o : T —~> X such that

(Z) = = = { %, Y} vwhere %_=f (1)

e o

e

I}

Then @ is certainly zn admissible morphism since @ ¢€)is a unique

p= =]
element of ¥ Decause of the commutativity of 1). Also
= o ‘rrt . -
e = f for allee& M , Clearly (p is unicue for suppose

{
oy e
there exists a morphism 27 satisfying the condition that ﬁ;?( =f__

for all=& ', thenv (t) = x = { x_ } such that « =1 (1),

o =

ie., 27 (t) = {£ (D} = w(t). GQ.ED.

(b) Category of Pointed Sets.

Construction and nroof of theorem similar to those for the

(c) Bategory of Tonological Spaces,
Let { EJlJé m! be a collection of topological spaces indexed

by the directed set M! 1with morphisms consisting of continuous maps

— . sl . —_ ¥ —
atoe T o=> T if e 5(4 in M and such that 1115 T = 35
o) = =] .
Then define T as for sets. T is a subspace of the direct prod-

uct heving the topology induced on it as a subspace of the direct

o
nroduct. Then each projection map TE(: T —> X _ defined ss in
sets is continuous.
. oo ‘ 0 =

Theorem 3. <M' { T} 6 M {> where T_ =T for all~& ' is a
——— et S 3y o o
lim,

Proof: Tet f =<lA {¥ t: <! S slevey}>—> < u! § T1ee M'f>

e L ' e 1t e

where S5 = 8 (fixed topolosical space} for all «~ & ¥', and the

- i I / 3



commutes ifk £ @ in M .
Consider:
"= &ﬁo‘
Cu', {1 1 e u > >}<»w'o { Tyl%e 1y >
Q IA
1 = 4iu} 1
< ™ ‘)B(l* e M S> > <I£ R &T.( Il e M k >
where \Q is defined as
m& i) )
Q: S —T by @ (s) = x = AXy} such that
T‘;(?’- = f\g( <S),
ie., @ (s) = = = (fx(s}y
Then T @ = Ty for all ® €& ' and since each f o is

ontinuous by assumption then (@ is continuous (see reference

o

to M. Bourbaki, nege @3 ).

Again \@  is uniaue by arguments similer fto the one for sets. Q.E.D.

(d) Category of Groups.
Let JlG"]I"(&N' be a collection of grouns indexed by a directed
i 1 OUL :
L ! : —a . -+ . . a
set M such that g is the unicue group homomornhism from

! 5 -@ id = T:

Ga—>G it K e 3 in M M \ . Deiine G
@ « i ¢ i and o s i 3

to be a subset of the direct product consisting of those functions

¥ o= ¥y such that for each relation w23 in H T\'S ("b ) = Ko o
Lo () 3 .

G is then a groupn, Define the projection homomorphisms

-

1 > 1 'Y = 3

Tig: C Ga Dbr . () Xa -
ar ) 1 \ -3 -~ - I

Theorem L, L M', 4 G Ve M Y uwhere G ) =G for all&Xe M is



sn inverse limit.

Proof: Let £ =<Tet ff_Y>: <) {1 H loei't>-> LHL 1 G Ixen'} >

where H_, = H (fixed group) for be any other object in
K 1l again ‘{ £ dlegr am
Ko where again 1 f 12gran

commutes.

© Tt

<! {H Jweu'}> ——< 10 1ol } >

o/

D
where (@ 1s defined as @ : H—-> G by
¢ (h) = x = {'fd(f‘n)s

Then  is certainly a group homomorphism since

L=

—~
[G]
-
[&1e
N
g
i il
- Ay
e —
~ —~
“ g
— —
— Q
N
e
TN ~
i
h
s~
0Q
Y
g
=t
—~
iqQ
N
j—g
‘-—Yul

i
-
Q
=
33
|
LAY

Tt he T
further, IL/LQ

Now @ is unioue, for suppose there eviste a homomorphism ?Z

. |
. . e v = s o el
satisfying the condition that "0/7( = f for gller€E M.
Then 7 (h) = x = ) f;((_h,) }‘ because of the way T, was defined.
But { f (h\,} = @ (h) , i.e., w (h) = 7 (h)  true for all



The construction of the lim and preoof of the theorems for monoids
i
and zbelian arouns are S imilar.

We now wish to answer a few questions regarding epic and monic

mans in the inverse limit.

Theorem 5.  Suppose that © = 4L {0«%,Q> is an admissible morphisnm

in Moroh ( T C) such that the domain and co-domain are both initial

objects for subcategories K; and Kp. Then if sach © iz monic

i

then @ = lim ( ex ) is monic, where lim ( 8;) is dual to lig( ©. ).

Proof: Degremmatically we have

Lim (B ) % B B B e

- = @ r
Then the proof is a dusl srgument to the proof of theorem 11,
chapter V.
Iy
= ~@
S Nag
Theoren 6. Congider lim (S, ) S, <— S =—
iheorem O @
—Q . . e .
Then if each “é is monic then esch Ty is monic.
Proof: Mial argument to theorem 9, chapter V.
Remarks. In theorem 5 each &, being epic does not imply that
e = linm ( 9,() is eric. e refer the reader to N, Bourbaki, Theorie Jes
(4—.

Tnsembles, Livre 1, Chapitre TIT, pp, 27, exercise 32

[

a counter example., Further, each T, being enic in theorem & does not imply



~

It seems safe to

theorem 11, chepter V ¢

s

]

H0

= 1lim ( @y ) i
——i>
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Remerks. We can consider C as being imbedded in C', for let F be the
. : . : ? P .
covariant functor teking C —>C  where I is defined by

F(£) {I, {31 ieI%? where 3 =4 for all ie I. 16 ABcC and @0 A8,

Y p) ~>(q;33 AR ie 1Y) vwhere LQ' is the identity map on
Iand Wi= @Y= Q for all:‘.and{;(°

We will often denote objects in categories ¢l ang ¢t by {f3% 1 ¢ 1
when it is understood that we ere using & fixed indexing set I and only

the identity maps on I,

Definition L. Let DX denote the sub-category of Morph ( 17 C) which has

as objects those objects of Morph ( 77 C) which when considered as
morphisms in TWC have as their domain an object in ¢' and as their co-
domain an object in cl , and morphisms the ordered pair of morphisms in

§

¢' ang of respectively which make the following disgram commute.

LU

{I, {a3VieIV? > (I, {Byy i e It

) | ¥

(I, {01 ieI}> —F—>(I, Dy 1ie I}>

This clearly forms a : sub-category of Morph ( W Q).

Definition 5. Define the sub-category D; of D¥to consist of those

objects which as morphisms in T C have a fixed element & of ¢l as

their co-domain, and as morphisms those peirs <\, Id? € J*where Id is
the identity map on 4 and Y = < I,49ilie I\> is such that Wi = @
(fixed) for all ie I,

Definition 6. Dually define the category F* 4o be the sub-category of
¥orph {( T C) which has objects those morphisms in T C having domain in

) h) . . 1 P . 3 3
¢l ané co-domain in C'.  Define the sub-category G,  of G¥ analogously



