HEAT TRANSFER, PRESSURE DROP AND VOID FRACTION IN TWO-PHASE, TWO-COMPONENT FLOW IN A VERTICAL TUBE

By

Manit Sujumnong

A Thesis

Submitted to the Faculty of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

Department of Mechanical and Industrial Engineering

The University of Manitoba

Winnipeg, Manitoba, Canada

National Library of Canada

Acquisitions and Bibliographic Services

395 Wellington Street Ottawa ON K1A 0N4 Canada Bibliothèque nationale du Canada

Acquisitions et services bibliographiques

395, rue Wellington Ottawa ON K1A 0N4 Canada

Your file Votre référence

Our file Notre référence

The author has granted a nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission. L'auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

0-612-32023-5

Canadä

THE UNIVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES ***** COPYRIGHT PERMISSION PAGE

HEAT TRANSFER, PRESSURE DROP AND VOID FRACTION IN TWO-PHASE, TWO-COMPONENT FLOW IN A VERTICAL TUBE

BY

MANIT SUJUMNONG

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University

of Manitoba in partial fulfillment of the requirements of the degree

of

DOCTOR OF PHILOSOPHY

Manit Sujumnong ©1998

.

Permission has been granted to the Library of The University of Manitoba to lend or sell copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film, and to Dissertations Abstracts International to publish an abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

Abstract

There are very few data existing in two-phase, two-component flow where heat transfer, pressure drop and void fraction have all been measured under the same conditions. Such data are very valuable for two-phase heat-transfer model development and for testing existing heat-transfer models or correlations requiring frictional pressure drop (or wall shear stress) and/or void fraction. An experiment was performed which adds markedly to the available data of the type described in terms of the range of gas and liquid flow rates and liquid Prandtl number. Heat transfer and pressure drop measurements were taken in a vertical 11.68-mm i.d. tube for two-phase (gas-liquid) flows covering a wide range of conditions. Mean void fraction measurements were taken, using quick-closing valves, in a 12.7-mm i.d. tube matching very closely pressures, temperatures, gas-phase superficial velocities and liquid-phase superficial velocities to those used in the heat-transfer and pressure-drop experiments. The gas phase was air while water and two aqueous solutions of glycerine (59 and 82% by mass) were used as the liquid phase. In the two-phase experiments the liquid Prandtl number varied from 6 to 766, the superficial liquid velocity from 0.05 to 8.5 m/s, and the superficial gas velocity from 0.02 to 119 m/s. The measured two-phase heat-transfer coefficients varied by a factor of approximately 1000, the two-phase frictional pressure drop ranged from small negative values (in slug flow) to 93 kPa and the void fraction ranged from 0.01 to 0.99; the flow patterns observed included bubble, slug, churn, annular, froth, the various transitions and annular-mist. Existing heat-transfer models or correlations requiring frictional pressure drop (or wall shear stress) and/or void fraction were tested against the present data for mean heat-transfer coefficients. It was found

that the methods with more restrictions (in terms of the applicable range of void fraction, liquid Prandtl number or liquid superficial Reynolds number) give better predictions. Among the most restrictive methods, the method of Drucker et al. is recommended. A method less restrictive, but still giving good predictions, is the Liquid Acceleration Model for superficial liquid Reynolds numbers greater than 2000. For local heat-transfer coefficients, a method proposed by Vijay, where Spalding's single-phase boundary-layer theory was adapted to the two-phase case, was tested considering the flow patterns individually and various methods of calculating two-phase properties. Good predictions were obtained for the case of bubble and froth flows when liquid properties were used as the two-phase mixture properties.

Acknowledgements

During the course of the study, Dr. G. E. Sims (the author's advisor) has provided the author the endlessly consistent indispensable academic guidance and caring. Without all of his support, it would be impossible to withstand all the past difficulties. The author would like to express his gratitude and appreciation to his advisor. Special thanks are due to Dr. H. M. Soliman and Dr. W. E Muir for their helpful suggestions during all the progress-report meetings. The author would like to thank Dr. V. S. Krishnan for taking his valuable time to be part of the examination.

Special thanks to Mr. John Finken for his tireless help on the technical works and his friendship. Thank to Mr. Kim Marjury for his help on electronic works. For Mr. Casey Van Gorp, the author would like to express his sincere appreciation on his help for all computer related problems. Thanks to Ms. R. Trestrail for her great help on typing this thesis. Good friends like; the Coyle family, the Piamsalee family, G. Tanner, I. Frigui, C. Van Gorp, G. Johnston, Z. Teclemariam, M. Sukkaboon and many more in Winnipeg who always make the author feel great when they are around; the author's warmest regards go to them.

Special thanks are expressed to the author's father, mother, sister and brother for their endless love and support. For Promsiri, the author's wife, who all this while provides very good care to their family. The author would like to thank her from his heart. For the two angels "Nong Ham and Nong Bambam" who may have thought their daddy lived in the telephone; they are the true driving force of his study.

The author appreciates the financial supports made by the Natural Science and Engineering Research Council of Canada (NSERC) and the government of Thailand.

VI

Table of Contents

. . .

	Page
Abstract	
Acknowledgements	vi
Table of Contents	vii
List of Figures	X
List of Tables	xiv
Nomenclature	x vi
Chapter 1 Introduction	1
1.1 Background and Purpose of Present Study	1
1.2 Layout of the Thesis	2
•	
Chapter 2 Literature Review	5
2.1 Introductory Remarks	
2.2 Criteria for Selection of the Reviewed Materials	5
2.3 Two-Phase Two-Component Heat Transfer in Vertical Tubes	6
2.4 Summary	
Chapter 3 Description of the Apparatus	25
3.1 Introductory Remarks	
3.2 Flow Circuitry	
3.2.1 Liquid Flow Loop	
3.2.2 Air Flow Circuit	
3.3 Heat-Transfer and Pressure-Drop Test Section Design	
3.3.1 Gas-Liquid Mixing Chamber	
3.3.2 Heat-Transfer Test Section	
3.3.3 Observation Section	
3.4 Void-Fraction Measuring Section	
3.5 Temperature Measurements	
3.5.1 Fluid-Temperature Measurements	
3.5.2 Wall-Temperature Measurements	
3.5.3 Temperature-Measuring Systems	
3.6 Power Supply Circuit	
3.7 Equipment for Photography	
5.7 Equipment for Photography	·····
Chapter 4 Experimental Procedure	45
4.1 General Remarks	
4.2 Start-Up and Shut-Down Procedures	
4.2.1 Start-Up Procedure for Heat-Transfer and Pressure-Drop	E 1
Tests	
4.2.2 Start-Up Procedure for Void-Fraction Measurement	
4.2.3 Shut-Down Procedures	
4.3 Acquisition of Data on Heat Transfer and Pressure Drop	

4.3.1	Establishing Steady-State Conditions	53
4.3.2	Taking of Data	55
4.4 Acquisition	of Data on Void Fraction	57
4.4.1	Establishing Steady-State Conditions	57
4.4.2	Taking of Data	58
4.5 Flow Pattern	n Observation	
Chapter 5 Results a	and Discussion of Single-Phase Liquid Flow	61
-	/ Remarks	
	e Pressure Drop	
5.3 Single-Phase	e Heat Transfer	
5.3.1		
5.3.2	Mean Heat-Transfer Results	71
5.4 Summary		73
	ttern, Void Fraction and Pressure Drop in Two-Phase Flow	
6.1 Introductory	Remarks	75
6.2 Description	of Flow Patterns	78
6.3 Presentation	of Data on Flow-Pattern Maps	80
6.4 Mean Void I	Fraction	94
6.5 Pressure-Dro	op Results and Discussion	101
6.6 Summary		121
	tion and Discussion of Heat-Transfer Data	
7.1 Introductory	Remarks	126
7.2 Local Heat-1	Fransfer Coefficients	127
7.3 Mean Heat-7	Fransfer Coefficients	151
7.4 Summary		156
Chapter 8 Predictiv	ve Methods for Two-Phase Two-Component Heat Transfer	157
	Remarks	
8.2 Assessment	of Mean Heat-Transfer Correlations Using the Present Data	158
8.3 Testing a Pro	oposed Method to Predict Two-Phase Local Heat-Transfer	
Coefficients	-	172
Chapter 9 Summar	y and Conclusions	191
References		194
	d Information on the Components Used in the Experimental	
Facility	r	202
* *	tion of Instruments	
	Remarks	
B.2 Calibrati	ion of Power-Measuring Devices	208

		B.2.1 Ammeter	208
		B.2.2 Digital Voltmeter	210
Е	3.3	Calibration of Temperature-Measuring Devices	210
E	3.4	Calibration of Liquid Rotameters	
В	3.5	Calibration of Pressure Transmitters	210
В	3.6	Calibration of Orifice Plates and Gas Rotameter	212
В	3.7	The Quick-Closing and Quick-Opening Valves	217
Append	dix C	Physical Properties of Fluid Used in the Present Investigation	
		References for Appendix C	224
A	dir D	Calculation Procedure	225
••	0.1	Definitions of the Heat-Transfer Coefficients	
_			
-		Calculation of the Local Heat Flux	
L).5	Calculation of the Inner Wall Temperature from the Measured	220
г	0.4	Outer Wall Temperature	
_		Calculation of the Mixture Inlet Temperature	
L).5	Calculation of the Local Bulk Temperature	
		D.5.1 Calculation of T_B for Two-Phase Tests	
–	16	D.5.2 Calculation of T _B for Single-Phase Tests	
L		Summary of the Calculation Procedure for the Heat-Transfer	220
		Coefficients	
		Calculation of the Frictional Pressure Drop Calculation of the Mean Pressure and Temperature in the Test	
L		•	240
F		Section	
-			241
Ľ	D .10	Calculation of the Liquid and Gas Flow Rates and Superficial Velocities	241
		D.10.1 Liquid Flow Rate and Superficial Velocity	
מ		D.10.2 Gas Flow Rate and Superficial Velocity	
ĸ	leiele	nces for Appendix D	
Append	dix E	Uncertainty Analysis and Repeatability	247
••		General Remarks	
E		Uncertainty Analysis	
E		Repeatability	
Append	dix F	Adapted Spalding Theory	261
			0/-
Append	aix G	Tabulated Data	265

List of Figures

Figure		Page
3.1	Schematic of Two-Phase Apparatus	26
3.2	Detailed Schematic of Air Flow Circuit	30
3.3	The Mixer	32
3.4	The Heated Test Section	33
3.5	Location of Wall Thermocouples	38
3.6	Thermocouple emf Measuring Circuit	39
3.7	Power Supply Circuit	42
3.8	Set-Up of the Photographic Section	44
4.1	Measured Variables	46
4.2	Measured Variables for Void Fraction	47
5.1	Comparison of the Single-Phase Friction Coefficient with	
	Correlations	63
5.2	Single-Phase Water Local Heat-Transfer Results	66
5.3	Single-Phase G1 Local Heat-Transfer Results	67
5.4	Single-Phase G2 Local Heat-Transfer Results	68
5.5	Comparison of Experimental Data for Laminar Flow	70
5.6	Comparison of Single-Phase Mean Heat-Transfer Data	
	with the Correlations of Sieder and Tate	72
6.1	Flow Patterns in Co-Current Vertical Flow	76
6.2	Present Air-Water Flow-Pattern Data	82
6.3	Present Air-G1 Flow-Pattern Data	83
6.4	Present Air-G2 Flow-Pattern Data	64
6.5	Present Air-Water Data on a Govier and Aziz Map (29)	87
6.6	Present Air-G1 Data on a Govier and Aziz Map (29)	88
6.7	Present Air-G2 Data on a Govier and Aziz Map (29)	89
6.8	Present Air-Water Data with Taitel et al. (86)Boundaries	90
6.9	Present Air-G1 Data with Taitel et al. (86) Boundaries	91
6.10	Present Air-G2 Data with Taitel et al. (86) Boundaries	92
6.11	Measured Mean Void Fraction for Air-Water	95
6.12	Measured Mean Void Fraction for Air-Gl	96
6.13	Measured Mean Void Fraction for Air-G2	97
6.14	Comparison of Mean Void Fraction for Air-Water with Correlations	98
6.15	Comparison of Mean Void Fraction for Air-G1 with Correlations	99
6.16	Comparison of Mean Void Fraction for Air-G2 with Correlations	100
6.17a	Comparison of Measured Void Fraction with Chisholm's	
	Correlation (13) for Air-Water	102
6.17b	Comparison of Measured Void Fraction with Chisholm's	
	Correlation (13) for Air-G1	103

6.17c	Comparison of Measured Void Fraction with Chisholm's	
	Correlation (13) for Air-G2	104
6.18	Comparison of Measured Void Fraction with CISE (15)	
	for Air-Water	105
6.19	Two-Phase Total Pressure Gradient for Air-Water	106
6.20	Two-Phase Total Pressure Gradient for Air-G1	107
6.21	Two-Phase Total Pressure Gradient for Air-G2	108
6.22	Comparison of Total Pressure-Gradient Data for Air-Water	
	at $V_{SL} = 0.055$ m/s (approx.)	110
6.23	Comparison of Total Pressure-Gradient Data for Air-Water	
	at $V_{SL} = 0.311$ m/s (approx.)	111
6.24	Comparison of Total Pressure-Gradient Data for Air-Water	
	at $V_{SL} = 3.17$ m/s (approx.)	112
6.25	Comparison of Total Pressure-Gradient Data for Air-G1	113
6.26	Two-Phase Frictional Pressure-Gradient Data for Air-Water	114
6.27	Two-Phase Frictional Pressure-Gradient Data for Air-G1	115
6.28	Two-Phase Frictional Pressure-Gradient Data for Air-G2	116
6.29	Comparison of Two-Phase Frictional Pressure Drop for Air-Water	
	Data with the Lockhart-Martinelli Correlation (55)	118
6.30	Comparison of Two-Phase Frictional Pressure Drop for Air-G1	
	Data with the Lockhart-Martinelli Correlation (55)	119
6.31	Comparison of Two-Phase Frictional Pressure Drop for Air-G2	
	Data with the Lockhart-Martinelli Correlation (55)	120
6.32	Comparison of Two-Phase Frictional Pressure-Drop Data	
	of Air-Water with Friedel's Correlation (28)	122
6.33	Comparison of Two-Phase Frictional Pressure-Drop Data of Air-G1	
	with Friedel's Correlation (28)	123
6.34	Comparison of Two-Phase Frictional Pressure-Drop Data of Air-G2	
	with Friedel's Correlation (28)	124
7.1a	Comparison of Experimental Data for Air-Water with Others at	
7.1a	$V_{sL} = 0.311 \text{ m/s} \text{ (approx.)}$	128
7.1b	Comparison of Experimental Data for Air-Water with Others at	
7.10	$V_{sL} = 6.346 \text{ m/s} \text{ (approx.)}$	129
7.1c	Comparison of Experimental Data for Air-Water with Rite and	
7.10	Rezkallah (73)	130
7.2a	Comparison of Experimental Data for Air-G1 with Rezkallah at	-
	$V_{sL} = 1.033 \text{ m/s} \text{ (approx.)}$	131
7.2b	Comparison of Heat-Transfer Data for Air-G1 with Rite (72)	132
7.3a	Two-Phase Air-Water Local Heat-Transfer Results at $V_{SL} = 0.055$ m/s	133
7.3b	Two-Phase Air-Water Local Heat-Transfer Results at $V_{SL} = 0.116$ m/s	134
7.3c	Two-Phase Air-Water Local Heat-Transfer Results at $V_{SL} = 0.311$ m/s	135
7.3d	Two-Phase Air-Water Local Heat-Transfer Results at $V_{SL} = 1.042$ m/s	136
7.3e	Two-Phase Air-Water Local Heat-Transfer Results at $V_{SL} = 3.17$ m/s	137
7.3f	Two-Phase Air-Water Local Heat-Transfer Results at $V_{SL} = 6.346$ m/s	138

7.3g	Two-Phase Air-Water Local Heat-Transfer Results at $V_{SL} = 8.464$ m/s	139
7.4a	Two-Phase Air-G1 Local Heat-Transfer Results at $V_{SL} = 0.046$ m/s	140
7.4b	Two-Phase Air-G1 Local Heat-Transfer Results at $V_{SL} = 0.418$ m/s	141
7.4c	Two-Phase Air-G1 Local Heat-Transfer Results at $V_{SL} = 1.033$ m/s	142
7.4d	Two-Phase Air-G1 Local Heat-Transfer Results at $V_{SL} = 2.682$ m/s	143
7.4e	Two-Phase Air-G1 Local Heat-Transfer Results at $V_{SL} = 6.081$ m/s	144
7.5a	Two-Phase Air-G2 Local Heat-Transfer Results at $V_{SL} = 0.099$ m/s	145
7.5b	Two-Phase Air-G2 Local Heat-Transfer Results at $V_{SL} = 0.366$ m/s	146
7.5c	Two-Phase Air-G2 Local Heat-Transfer Results at $V_{SL} = 2.877$ m/s	147
7.5d	Two-Phase Air-G2 Local Heat-Transfer Results at $V_{SL} = 4.32$ m/s	148
7.6	Influence of Pr on Nu in Thermal Entry Length	150
7.7	Mean Heat-Transfer Coefficients for Air-Water	152
7.8	Mean Heat-Transfer Coefficients for Air-G1	153
7.9	Mean Heat-Transfer Coefficients for Air-G2	154
8.1	Comparison of Present Heat-Transfer Data with Katsuhara	
	and Kazama Predictions (45)	159
8.2	Comparison of Present Heat-Transfer Data with Ueda and	
_	Hanaoka Predictions (89)	160
8.3a	Comparison of Present Heat-Transfer Data with the	
_	Liquid Acceleration Model	161
8.3b	Comparison of Present Heat-Transfer Data (Without	
	Annular-Mist Data) with the Liquid Acceleration Model	162
8.4a	Comparison of Present Heat-Transfer Data with Vijay et al. (94)	
• ••	for Bubble Flow	163
8.4b	Comparison of Present Heat-Transfer Data with Vijay et al. (94)	
~ .	for Froth Flow	164
8.4c	Comparison of Present Heat-Transfer Data with Vijay et al. (94)	
	for Annular Flow	165
8.4d	Comparison of Present Heat-Transfer Data with Vijay et al. (94) f-	
	or All Flow Patterns (excluding Slug, Churn, Their Transitions and	1.00
	Annular-Mist)	166
8.5	Comparison of Present Heat-Transfer Data with Drucker et al. (23)	
	Predictions	167
8.6	Comparison of Present Heat-Transfer Data with Marie (57) Predictions	168
8.7a	Typical Profile of S _{q.TP} for Air-Water	177
8.7b	Typical Profile of $S_{q,TP}$ for Air-G1	178
8.7c	Typical Profile of S _{q.TP} for Air-G2	179
8.8a	Comparison of Present Heat-Transfer Data with Equation 8.10	
	for Air-Water Bubble Flow	180
8.8b	Comparison of Present Heat-Transfer Data with Equation 8.10	
0.0	for Air-Water Froth Flow	181
8.8c	Comparison of Present Heat-Transfer Data with Equation 8.10	100
	for Air-Water Annular Flow	182
8.9a	Comparison of Present Heat-Transfer Data with Equation 8.10	

	for Air-G1 Bubble Flow	183
8.9b	Comparison of Present Heat-Transfer Data with Equation 8.10 for Air-G1 Froth Flow	184
8.9c	Comparison of Present Heat-Transfer Data with Equation 8.10	
0.70	for Air-G1 Annular Flow	185
8.10a	Comparison of Present Heat-Transfer Data with Equation 8.10	
	for Air-G2 Bubble Flow	186
8.10b	L –	
	for Air-G2 Annular Flow	187
B .1	Results of the Ammeter Calibration	209
B.2	Calibration of Liquid Flow Meters	211
B.3	Calibration of Differential Pressure Transmitter No. 1	
	(-25 to +5 in. of water)	213
B.4	Calibration of Differential Pressure Transmitter No. 2	-
	(0 to 100 in. of water)	214
B.5	Calibration of Differential Pressure Transmitter No. 3	015
	(0 to 750 in. of water)	215
B. 6	Calibration of Gauge Pressure Transmitter (0 to 100 psig)	216
B.7	Calibration of Brooks Rotameter for Gas Flow	218
D.1	Local Heat-Transfer Planes	226
D.2	Heat Flux on the Tube	227
D.3	The Temperature Drop Across the Tube	229
D.4	Heat Balance Control Volume	233
D.5	Diagram of a Typical Orifice	244
E.1	Heat-Transfer Repeatability Results for Air-Water	251
E.2	Heat-Transfer Repeatability Results for Air-G1	252
E.3	Heat-Transfer Repeatability Results for Air-G2	253
E.4	Pressure-Drop Repeatability Results for Air-Water	254
E.5	Pressure-Drop Repeatability Results for Air-G1	255
E.6	Pressure-Drop Repeatability Results for Air-G2	256
E.7	Repeatability of Void-Fraction Measurement for Air-Water	257
E.8	Repeatability of Void-Fraction Measurement for Air-G1	258
E.9	Repeatability of Void-Fraction Measurement for Air-G2	259
F.1	Comparison of Present Single-Phase Water Data with Adapted	
	Spalding Theory (Equation F.1)	263
F.2	Comparison of Present Single-Phase G1 Data with Adapted	
	Spalding Theory (Equation F.1)	264

List of Tables

Table		Page
2.1 2.2	Details of Experimental Works Summary of the Correlations for Predicting Heat Transfer	13 20
2.2	Summary of the Conference of Predicting Heat Transfer	20
3.1	Correspondence Between the Data Logger Inputs and the Multi-Point Selector Switch	41
4.1	List of Variables Measured in the Present Experiments	48
4.2	Range of Variables in the Present Two-Phase Study	49
4.3	The Matrix of the Experiment	56
4.4	Number of Samples Taken in Void-Fraction Measurement	60
5.1 5.2	Summary of Comparison of the Single-Phase Pressure-Drop Tests Summary of Comparison of the Single-Phase Local Heat-Transfer	64
	in Laminar Flow	71
5.3	Summary of the Mean Heat-Transfer Data in Turbulent Flow	73
6.1	Summary of the Flow-Pattern Observations in the Present Study	77
8.1	Assessment of Mean Heat-Transfer Correlations Using the Present Experimental Data	169
8.2	Deviations Between the Present Data and the Predictions of Vijay's Proposed Method (Equation 8.10)	189
A.1	Information on the Components of the Experimental Facility	202
B.1	The Equations of the Pressure Transmitters	212
B .2	Coefficient of Discharge (C) of the Orifice Plates	217
C .1	Liquids Used in the Present Investigation	220
C.2	Physical Properties of Fluids Used in the Present Investigation	221
E.1	Summary of Estimated Uncertainties in the Main	
	Measured Variables	248
E.2	Uncertainties in the Variables Affecting the Heat-Transfer Coefficients and Frictional Pressure Drop	249
F.1	Summary of Comparison of the Local Heat-Transfer Data	
	in Turbulent Flow Compared with Spalding Theory (Equation F.1)	262
G .1	Mean Horizontal Bubble Diameter for Bubble Flow	268

G.2	Tabulated Data for Void-Fraction Measurement	270
G.3	Tabulated Data for Measurements Other Than Void Fraction	275

Nomenclature

		Units
Ac	Cross-sectional area of tube wall	(m ²)
A _T	Flow area of the tube	(m ²)
B ₀ , B ₁		
B ₂ , B ₃	Constants appearing in Equation D.8	
С	Discharge coefficient for flow through an orifice plate	(-)
Cp	Specific heat	(J/kg·K)
d	Diameter of orifice throat	(m)
D	Inside diameter of the tube	(m)
D。 D _p	Outside diameter of the tube Diameter of the pipe connected to the orifice plate	(m) (m)
ē	Mean deviation defined in Equation 5.1	
erms	Root-mean-square deviation, Equation 5.2	
Е	Total voltage drop across the heated tube	(V)
f	Friction coefficient defined in Equations 5.3 to 5.5	(-)
g	Acceleration due to gravity	(m/s ²)
G	Mass velocity	$(kg/m^2 \cdot s)$
h	Enthalpy per unit mass of fluid	(J/kg)
h, h(z)	Local heat-transfer coefficient	$(W/m^2 \cdot K)$
ħ	Length-mean heat-transfer coefficient	$(W/m^2 \cdot K)$
Ι	Current flowing through the tube	(A)
k	Thermal conductivity	(W/m.K)
kt	Thermal conductivity of tube material	(W/m.K)
L	Length of the heated test section	(m)
ΔL	Length used to calculate the length-mean heat-transfer	
	coefficient	(m)
m	Mass flow rate	(kg/s)
N	Number of variables	(-)
Nu	Local Nusselt number = hD/k_L	(-)
Nu	Mean Nusselt number = $\overline{h}D/k_L$	(-)

Ρ	Pressure	(Pa)
P.	Partial pressure of dry air	(Pa)
P _{FN}	P-function, Equation F.2	(-)
P _v	Partial pressure of vapor	(Pa)
Pr	Prandtl number	(-)
Pr _T	Turbulent Prandtl number	(-)
ΔΡ	Pressure drop (total without subscripts)	(Pa)
ΔP_{TPF}	Two-phase frictional pressure drop	(Pa)
ΔP/ L	Total pressure drop per unit length	(N/m ³)
q″	Heat flux	(W/m ²)
q_v'''	Heat generated per unit volume of the heated tube	(W/m ³)
q''_w	Heat flux at the wall	(W/m ²)
Q	Volumetric flow rate	(m ³ /s)
r	Radial coordinate measured from the axis of the tube	(m)
R	Gas constant	(kJ/kg·K)
R,	Total resistance of test tube	(ohm)
Re	Reynolds number	(-)
Re₄	Reynolds number based on orifice throat diameter	(-)
Resg	Superficial gas Reynolds number = $\rho_G \cdot V_{sG} \cdot D/\mu_G$	(-)
Re _{sl}	Superficial liquid Reynolds number = $\rho_L \cdot V_{SL} \cdot D/\mu_L$	(-)
Sq	Spalding function, Equation F.1	(-)
St	Stanton number = Nu/Re·Pr	(-)
t	Wall thickness of the tube	(m)
Т	Temperature	(°C)
T _{avg}	Mean temperature of tube wall	(°C)
TL	Temperature of the liquid at the inlet to the mixer	(°C)
T.	Temperature as measured by the thermocouples on the	
	heated tube	(°C)
$\Delta T_{\mathbf{w}}$	Temperature drop across the tube wall	(°C)

v	Velocity	(m/s)
VEXP	Experimental value of a variable, Equation 5.1	
VPRED	Predicted value of a variable, Equation 5.1	
V_{SG}	Superficial gas velocity	(m/s)
V _{SL}	Superficial liquid velocity	(m/s)
x	Flow quality = $\frac{m_G}{m_G + m_L}$	(-)
x	Martinelli parameter	(-)
у	Coordinate measured from the tube wall	(m)
Y	Expansion factor, Equation D.38	
z	Axial coordinate measured from the commencement of	
	heated section	(m)
Z⁺	Variable defined in Equation F.3	(-)
Z	Variable defined in Equation 5.8	(-)

Greek Symbols

α	Void fraction	
α'	Temperature coefficient of thermal conductivity of tube material	(°C) ⁻¹
β′	Temperature coefficient of electrical resistivity of tube material	(°C) ⁻¹
ρ	Density	(kg/m ³)
ρ,	Resistivity defined in Appendix D	(ohm.m)
μ	Dynamic viscosity	(kg/m.s)
v	Kinematic viscosity	(m²/s)
τ	Shear stress	(Pa)
ω	Uncertainty interval in a variable, Appendix E	
Ψ^2	$\overline{\mathbf{h}}_{TP}$ / $\overline{\mathbf{h}}_{SP}$	(-)

Subscripts

a	Dry air
abs	Absolute
ave	Average
В	Bulk, liquid or mixture
G	Gas
i	Location at which a thermocouple is attached to the wall
IN, OUT	At the inlet and outlet of heated tube
L	Liquid
MIX	Gas-liquid mixture
0	Outside
Pred	Predicted
SG	Superficial gas
SL	Superficial liquid
SP	Single-phase (generally, liquid)
Т	Turbulent
TP	Two-phase
TPF	Two-phase frictional
v	Vapor
W	At the wall
Z	Axial component (in the direction of flow)

Superscripts

GL	Glycerine
H ₂ O	Water
L	Liquid

_

Chapter 1

INTRODUCTION

1.1 BACKGROUND AND PURPOSE OF PRESENT STUDY

Two-phase gas-liquid flow has been studied extensively due to its occurrence and numerous applications in industry. These occurrences and applications range from straight-forward transfer systems such as in pumping processes to those involving heat transfer such as in power generation, refrigeration, distillation and chemical processes. The flow of a liquid and a permanent gas (usually referred to as two-phase, twocomponent flow) is also involved in several engineering processes. Examples are in oil and natural-gas pipe lines, oil wells, bubble columns, and petro-chemical processes. Knowledge of the heat-transfer characteristics in heat-exchange systems is necessary for design, operation and safety considerations; this heat-exchange process often involves two-phase gas-liquid flow. In recent years, then, much research effort has been expended in the area of two-phase gas-liquid flow and other related fields due to the demand for a better understanding of the nature of the flows.

Papers in the literature (e.g., 2, 6, 8, 16, 22, 40, 48, 51 to 54, 56, 63, 65, 66, 69, 76 to 80, 88, 91, 97) on two-phase, two-component flow in tubes show that the majority of the research has focused on hydrodynamic aspects of the flow, namely, pressure drop, void fraction, flow pattern, and phase distribution. There have also been a number of papers involving heat transfer in two-phase, two-component flow; some have dealt with heat transfer only (e.g., 10, 57, 81), some with heat transfer and pressure drop (e.g., 1, 71, 94) and a very few with heat transfer, pressure drop and void fraction (57, 79, 80, 88, 89).

The purpose of the present work is to perform experiments which add significantly to the data where all of heat-transfer coefficient (h_{TP}), pressure drop (ΔP_{TP}) and void fraction (α) are measured under the same conditions (the conditions of interest here are of a two-phase, gas-liquid, two-component, non-boiling, co-current vertically upward flow in a tube). Such data are very valuable for testing and developing predictive methods for heat transfer; a number of correlations are available, where, in order to test them requires all of the parameters mentioned. It is therefore a secondary purpose of the present work to test those correlations.

Since heat transfer and pressure drop depend upon liquid viscosity, three liquids were chosen for this study in order to cover a wide range of liquid viscosities. Prandtl numbers varied from approximately 6 to 766. The three liquids were distilled water, 59% glycerine and water, and 82% glycerine and water by weight solutions. For ease in reading this thesis, henceforth the two aqueous solutions of glycerine, namely 59% and 82% glycerine by weight, will be referred to as G1 and G2, respectively. The glycerine concentrations in G1 and G2 were chosen such that there was a factor of approximately 10 in the liquid-phase Prandtl number Pr_L from water to G1 and a further factor of approximately 10 in Pr_L from G1 to G2.

1.2 LAYOUT OF THE THESIS

The results of the literature survey done on the research area of forced-convective heat transfer in two-phase, two-component, gas-liquid flow in vertical tubes are reported

in Chapter 2. Different works are described briefly and the conclusions drawn by the authors are summarized.

The experimental apparatus and systems used for measuring key variables are described in Chapter 3. Also, detailed information on various components of the experimental rig is given in Appendix A. Appendix B gives details on calibrations of the measuring devices used during the course of the investigation.

Chapter 4 describes the procedures which were used in conducting the experimental work. All calculation procedures involved in this thesis are given in Appendix D. Appendix C gives the fluid properties used in data reduction.

Heat-transfer and pressure-drop results of liquid single-phase tests which were conducted on the experimental rig are shown and discussed in Chapter 5. The results of two-phase pressure drop and two-phase flow-pattern observation are presented in Chapter.6. The two-phase pressure-drop data were compared with some of the existing correlations.

Chapter 7 shows the results of the two-phase heat-transfer tests. In this chapter, local and mean heat-transfer coefficients are presented. These results are later compared with existing correlations and shown in Chapter 8. An uncertainty analysis and repeatability tests were performed in order to check the accuracy and consistency of the collected data and experimental facility. The results are shown in Appendix E. Appendix G gives the complete set of tabulated data for all gas-liquid mixtures used in this investigation. Chapter 9 contains the conclusions that were drawn from the present study.

The number of each figure, equation and table in this thesis begins with the number of the chapter or the letter of the appendix in which it appears. The "Nomenclature" lists all the variables appearing in the body, and the most important of those in the appendices, of the thesis. The units of these variables are also given in this section.

Chapter 2

LITERATURE REVIEW

2.1 INTRODUCTORY REMARKS

In the past few decades, the field of two-phase flow has received a great deal of attention from research scientists and engineers. A large number of publications, in both research and development are to be found in the open literature. Many studies have dealt with two-phase hydrodynamics (i.e., pressure drop, flow pattern, and void fraction) such as (5, 6, 9, 30, 41, 42, 58, 61, 67, 68, 86) and the results of some of those studies are used later in the present work. There are major reviews of works which were done on the subject of forced-convective boiling heat transfer in two-phase flows such as (59 and 60) including books (7, 18, 34). However, the situation of forced-convective heat transfer where no boiling occurs has received much less attention. In this chapter, the relevant literature as defined in Section 2.2 is reviewed.

2.2 CRITERIA FOR SELECTION OF THE REVIEWED MATERIALS

The studies reviewed here were selected based on the following criteria:

- The flows must be in vertical tubes; this is because the flow patterns, to a greater or lesser degree, are dependent upon the orientation of the flow channel.
- 2) The flow must be forced-convective.
- 3) The flow must be co-current and vertically upward.

 The flow must be non-boiling, the two phases being a liquid and noncondensable gas.

2.3 TWO-PHASE TWO-COMPONENT HEAT TRANSFER IN VERTICAL TUBES

Table 2.1 summarizes the details of the experimental investigations, in chronological order, of two-phase two-component heat transfer which were conducted in the past. Table 2.2 summarizes, and presents in chronological order, the heat-transfer predictive methods which have been proposed by different authors, with the definitions of terms and range of applicability as stated by the original authors. Because of the focus of this thesis, following is a review, in chronological order, of works where heat transfer, pressure drop and/or void fraction were studied under the same flow conditions.

Kudirka et al. (50) measured local heat-transfer coefficients at the distance z = 14.3 D of his test section. Air was introduced into the liquid stream through a porous tube located upstream of the heated section. Water and ethylene glycol were used for the liquid phase. Flow patterns were observed at a section following the test section.

Ueda and Nose (90) focused on two-phase air-water upflow in the annular and annular-mist flows. The local heat transfer was measured at z/D = 32. Also, data on pressure drop, mean liquid film thickness, state of the gas-liquid interface, and droplet entrainment were taken. On the heat-transfer aspect, the data were analysed theoretically on the assumption that the liquid film consisted of a laminar sublayer and a turbulent layer. Details are shown in Table 2.2.

Vijay et al. (94) conducted an investigation on heat transfer and pressure drop using three gas-liquid mixtures, i.e., air-water, air-75% glycerine by weight solution, and air-glycerine. The liquid Prandtl number covered the range from 5 to 7,125. In general, the authors observed an increase of mean heat-transfer coefficient \overline{h}_{TP} with air flow rate. However, the \overline{h}_{TP} decreased when the flow pattern changed from annular to annular-mist flow and kept on decreasing as the air flow rate increased. The authors proposed a correlation expressing the relationship between two-phase frictional pressure drop and mean heat-transfer coefficients, as shown in Table 2.2.

Aggour (1) studied the effect of gas-phase density on heat transfer, pressure drop and flow pattern. Three gases (air, helium, and Freon-12 vapour) were used allowing a change in gas-phase density by a factor of approximately 30. Water was the only liquid used. For heat transfer, the \overline{h}_{TP} was enhanced by approximately 25 percent (when the gas density was increased by a factor of 7) in the region where $V_{SL} \leq 1.04$ m/s and $V_{SG} \geq$ 1.52 m/s. Also in his study, generally, the two-phase frictional pressure drop ΔP_{TPF} is insensitve to gas density except in the range of $V_{SL} \leq 1.04$ m/s and $V_{SG} \geq 1.52$ m/s, where the frictional pressure drop increases approximately 60 % (when the gas density increases by the factor of 7) in the most extreme case.

Chu and Jones (14) conducted their experiment (with $0.1 \le \alpha \le 0.85$) on air-water in both upward and downward flows. They observed that heat transfer did not affect void fraction. However, the flow orientation did have some influence on void fraction; that is, at the same V_{SG}/V_{SL} , void fraction in downflow cases was greater than that in upward flow. Due to this orientation effect, the heat-transfer coefficient in downflow was higher than that in upward flow at the same V_{SG}/V_{SL} . Two independent techniques, namely a conducting probe and radiation beam attenuation, were employed for void fraction measurement during the investigation.

The Ueda and Hanaoka (89) investigation consisted of three parts. In the first part, void fraction and frictional pressure drop were measured in the slug and annular flow regimes. A mathematical expression was presented to predict interfacial shear stress, the flow state of the liquid film and the liquid film thickness. The velocity distribution in the liquid film was calculated in the second part, and an expression was derived to predict the frictional pressure drop. In the third part, a heat-transfer experiment for two-phase, twocomponent flow was conducted using air-water and air-(water-Salton). A correlation was presented, the details of which are shown in Table 2.2.

Domanskii et al. (20) conducted a heat-transfer investigation using air-water, airalcohol and air-glycerine solutions. The experimental data were then used to test their correlation which is described in Table 2.2. Their theory assumed that the heat-transfer process in the bubble-flow regime is similar to isotropic turbulence. The authors correlated their data within ± 12 percent.

Dobran (19) proposed an analytical model such that, in annular-dispersed twophase flow, the liquid film consists of two liquid layers, namely a continuous liquid layer and a wavy layer. The theory showed a significant influence of entrained liquid droplets in the gas core on both hydrodynamics and heat transfer.

Rezkallah (71) studied the effect of surface tension on heat transfer, pressure drop and flow pattern. Void fraction, where needed, was calculated using Chrisholm's correlation (13). Air was used for the gas phase. Three liquids, namely, water, 58% by weight glycerine-water solution, and silicone (5cs viscosity grade), were

used for the liquid phase. The authors drew conclusions as follows: The effect of lowering the surface tension on the flow pattern was most pronounced on the bubble-slug boundary, expanding the bubble-flow region in the air-silicone (lowest surface tension) system. The frictional pressure-drop data for the air-silicone were slightly lower than those for the air-glycerine and water solution. The behaviour and shape of the local heattransfer coefficient along the test section length remained unchanged in most cases with trends that varied according to the combination of the gas-liquid flow rates. The author also proposed two heat-transfer correlations for mean heat-transfer coefficients, one for each of laminar and turbulent flows.

Drucker et al. (23) studied heat transfer of air-water mixtures flowing inside tubes and over rod bundles. For the case of a two-phase mixture flowing inside tubes, the authors proposed a correlation (based on existing heat-transfer data for air-water with liquid Reynolds numbers in the range of 2,000 to 150,000 and void fractions up to 0.4) for heat-transfer coefficients as a function of Gr / Re^2 where Gr is a Grashof number defined in Table 2.2 and Re is the Reynolds number of the continuous phase.

Marié (57) was one of the recent works that treated theoretically the effect of void fraction on heat transfer and pressure drop in the bubble-flow regime. The modelling was based on two main arguments. First, the persistence of the logarithmic velocity and temperature profiles near the wall for low values of void fraction; second, the similarity of the modification caused by the bubbles on the profiles and those created by a grid in a single-phase turbulent boundary layer. Two theoretical models for heat transfer and

pressure drop were proposed and tested against the data of Souhar (85) and Bobkov (10). The author stated that the models worked well for void fractions up to 0.2-0.3.

Sekoguchi et al. (81) investigated the dependence of heat transfer on the crosssectional distribution of void fraction which takes place in bubble flow. Two different types of gas injectors were employed to realize flows with different distributions of void fraction at the same gas-liquid flow rates. It was found that the two types of gas injection gave different void fraction distributions, resulting in different heat-transfer coefficients. The authors showed that increasing void fraction near the tube wall caused higher heattransfer coefficients. The investigation was done using an air-water mixture.

Sato et al. (79, 80) presented a theoretical model to predict both pressure drop and heat-transfer coefficients in bubble flow. The model needs information on void-fraction distribution for the calculation procedures. Their theory was based on the idea that the eddy diffusivity to express the turbulent structure of the liquid phase was subdivided into two components, one from the inherent wall turbulence independent of bubble agitation, and the other from the additional turbulence caused by bubbles. The models were tested against the data of Hinata (38) and Sekoguchi (81). The results show good agreement between calculated values and those from experimental data.

Rite and Rezkallah (73) conducted an experiment on both normal (earth) and reduced gravity conditions. The values of mean void fraction and heat-transfer coefficients were collected for $0.04 < V_{SL} < 3.70$ m/s, $0.09 < V_{SG} < 26.00$ m/s, $466 < Re_{SL} < 61,333$ and $43 < Re_{SG} < 12,932$. A 9.53-mm i.d. circular tube was used. Air and water

were used for gas and liquid phases, respectively. A heat-transfer correlation was proposed for the case of reduced gravity.

Wadekar et al. (95) conducted an experimental investigation using a 15.7 i.d.-mm. stainless steel tube. The authors used air and water as gas and liquid phases, respectively and worked in slug flow. The authors proposed a theoretical method to predict the mean heat-transfer coefficient based on the assumption that the two-phase heat transfer in slug flow consisted of two parts, namely one from falling liquid film (at the gas plug) and another one from liquid slug. The authors included the effect of sensible heating of the gas phase (gas plug) into the heat-transfer process over the falling liquid film. The equations describing their model are given in Table 2.2.

From the works reviewed in this section, it can be seen that some investigations focused on heat transfer and pressure drop (e.g., 1, 90 and 94) while some focused on heat transfer and void fraction (e.g., 14, 50, 73 and 95). For the investigations where the key variables of heat transfer, pressure drop and void fraction (including flow pattern) are studied under the same conditions, the work in the open literature is very limited (e.g., 81). These key variables (under the same flow conditions) are very useful for modelling. It is, therefore, the primary purpose of this investigation to study this group of key variables for a wide range of flow conditions and Prandtl number.

2.4 SUMMARY

The studies in which heat transfer was measured in two-phase two-component (gas-liquid) flow are described in Table 2.1 according to test section details, method of heating, flow pattern, etc. An examination of Table 2.1 would show that both local (1, 26,

50, 71, 87, 89, 90, 93, 100) and mean (1, 14, 20, 25, 33, 45, 47, 70, 71, 81, 92, 93, 95, 100) heat-transfer coefficients were measured. The size of the test-section tube varied from 10-mm to 70-mm i.d. and the heated length varied from 1.68 to 113.6 D. Heating was by steam condensing on the outside of the tube (70, 89, 92); electrical heating was either by heating tape (20, 45) or by the tube itself acting as a resistance heater (1, 14, 21, 25, 49, 50, 71, 81, 90, 93, 95, 100). The liquids used were water (1, 14, 20, 25, 33, 44, 45, 50, 70, 71, 81, 87, 89, 90, 92, 93, 95, 100), aqueous solutions of glycerine (20, 25, 71, 93), pure glycerine (93), ethylene glycol (50), petroleum oil (21, 47), toluene (70), and silicone (71). The flow patterns observed have included those from bubble to annularmist. For heat-transfer prediction, Table 2.2 shows that some predictive methods require just independent variables, such as fluid properties, flow rates and tube size (e.g., 25, 33, 47, 50, 71). Some methods require the knowledge of pressure drop or wall shear stress (e.g., 20, 81, 90, 94). Other methods require void fraction explicitly (e.g., 20, 23, 45, 57, 89 and the Liquid Acceleration Model: L.A.M.). Even though it appears that a wide range of parameters (such as fluid properties, superficial velocity of both phases, and test-section diameter) were investigated, it is rare to find experimental investigations where the parameters of two-phase heat-transfer coefficient, pressure drop and void fraction are studied at the same time (57, 80). This group of key parameters is important for both practice and modelling in two-phase heat transfer. The present work markedly extends the range of results for which heat transfer, pressure drop and void fraction are reported for the same conditions.

Reference	Test Section Details	Method of Heating	Method of Temp. Measurement	Liquid Phase	Gas Phase	Range of m _L and m _G (kg/s)	Range of Re _{sL} Min. Max.	Range of V _{sL} (m/s) Min. Max.	Range of V _{3C} /V _{5L} Min. Max.	h _{TP} Basis	Flow Pattern Observed
Verschoor and Stemerding (92)	Ambraloy-927 D = 14 mm L = 40 cm L/D = 28.6	Steam at atmospheric pressure	Thermocouples soldered on the tube wall	Water	Air	0.02154 - 0.06867 Not given	2960 - 9460	0.140 - 0.448	0.02 - 225.0	Mean	Bubble Siug Annular
Ueda (87)	Steel D = 51 mm L = 10 cm L/D = 1.96	D.C. electrical heating by means of external resistance wire	Thermocouples inserted to the mid point of the tube wall thickness	Water	Air	0.0555 - 1.3981 0 - 0.0124	138 - 3460	0.02743 - 0.6797	0.17 - 1.29	Local	Bubble Slug Annular
Katsuhara and Kazama (45)	Copper D = 30 mm L = 27 cm L/D = 9	Electric (Nichrome wire wound around the tube)	4 thermocouples attached on the outer surface	Water	Air	0.11528 - 0.525 Not given	Not given	0.15849 - 0.762	0.04 - 3.43	Mean	Not reported
Groothuis and Hendal (33)	Copper D = 14 mm L = 20 cm L/D = 14.3	Steam	Constantan wires were buried inside the wall to form together with the tube material 8 cu- con thermocouples	1) Water 2) Gas-oil	Air Air	(1) 0.0307 - 0.1231 (2) 0.0339 - 0.0646 m _q not given	(1) 3182 - 16550 (2) 1853 - 3538	(1) 0.149 - 0.783 (2) 0.265 - 0.505	(1)1.0 - 210.0 (2) 0.7 - 70.0	Mcan	Not observed

Table 2.1 Details of Experimental Works

Reference	Test Section Details	Method of Heating	Method of Temp. Measurement	Liquid Phase	Gas Phase	Range of m _L and m _G (kg/s)	Range of Re _{sL} Min. Max.	Range of V _{sL} (m/s) Min. Max.	Range of V _{SC} /V _{SL} Min. Max.	h _{TP} Basis	Flow Pattern Observed
Knott et al. (47)	Type 304 stainless steel D = 12.8 mm L = 1.524 m L/D = 113.6	A.C. electric heating, using the tube as a resistor	6 of no. 22 Cu-con. thermocouples soldered onto the tube wall	Paraffin- base petroleum oil	Nitrogen	0.0007307 - 0.01764 2.772 × 10 ⁻³ - 8.694 × 10 ⁻⁴	6.7 - 162.0	0.03353 - 1.722	0.11 - 39,4	Mean	Bubble
Kudirka et al. (S0)	Bronze D = 15.8 mm L = 27.9 cm L/D = 113.6	A.C. electric heating, using the tube as a resistor	8 Cu-con. thermocouples attached to the inner surface of the wall	 Water Ethylene glycol 	Air Air	(1) 0.0604 - 0.544 0.0001 - 0.00863 (2) 0.068 - 0.3024 0.0001 - 0.00686	(1) 5440 - 44825 (2) 380 - 1700	(1) 0.3048 - 2.7432 (2) 0.3048 - 1.3716	(1) 0.16 - 71.0 (2) 0.25 - 65.0	Local at Z/D = 14.3	Bubble, Slug, Annular
Ueda and Hanaoka (89)	Brass D = 19.4 mm L = 1.3 m L/D = 66.8	Hot water circulated through a jacket around the tube	3 pairs of thermocouples soldered on the outer surface of the tube	1) Water 2) Mixture of water & Salton	Air Air	(1) 0.0288 - 0.19404 0.000138 - 0.001688 (2) 0.08756 - 0.1474 0.000138 - 0.001499	(1) 2800 - 16,000 (2) 680 - 5,000	(1) 0.09753 - 0.6583 (2) 0.30175 - 0.51512	(1) 0.58 - 50.3 (2) 0.72 - 12.9	Local and Mean	Bubble, Slug, Annular

Reference	Test Section Details	Method of Heating	Method of Temp. Measurement	Liquid Phase	Gas Phase	Range of m _L and m _G (kg/s)	Range of Re _{sL} Min. Max.	Range of V _{st.} (m/s) Min. Max.	Range of V ₃₀ /V _{51.} Min. Max.	h _{TP} Basis	Flow Pattern Observed
Domanskii et al. (20)	Copper D = 32 mm L = 1 m L/D = 31.25	Electrically by winding a Nichrome strip around the tube	6 Cu-con. thermocouples	 Water Alcohoi 87% Glycerol (54, 65, 71, 77, 85%) 	Air Air Air	Not given	Not given	0.1 2.2 For all liquids used	Range of V _{so} is 0.025 - 1.5 m/s	Mean	Bubble
Fedoikin and Zarudner (26)	D = 10 mm 21.5 mm 30.0 mm L = 1 m 2.5 m	Not given	Measured the wall temp. at 3 points in each chamber	Water and solutions of different $\mu_L \cdot 0.3 \times 10^9 < \mu_L < 28 \times 10^4$ Pa · s	Air	Not given	700 - 11,400	l, 1.5, and 2 m/s	Not given	Local	Bubble, Slug, Annular
Dorresteijn (21)	D = 70 mm L = 1.1 m L/D = 15.7	A.C. electric heating, using the tube as a resistor	Cu-con. thermocouples	Gas-oil	Air	0.064 - 14.867 0.0000453 - 0.45733	300 - 66,000	0.02 - -4.633	0.004 - 4730	Not given	Bubble, Slug, Froth, Annular- Mist
Ueda and Nose (90)	D = 29.9 mm L = 1.3 m L/D = 43.5	A.C. electric heating of the tube, using the tube as a resistor	12 thermocouples attached on the outer surface at equal intervals	Water	Air	0.00448 - 0.3156 0.0103 - 0.01945	Re _{LF} = liquid film Reynolds number at 190 to 13,700	0.064 - 0.450	Range of V _{so} is 10.0 - 50.0	Local at z/D = 32	Annular, Mist

.

Reference	Test Section Details	Method of Heating	Method of Temp. Measurement	Liquid Phase	Gas Phase	Range of m _L and m _G (kg/s)	Range of Re _{st.} Min. Max.	Range of V _{sL} (m/s) Min. Max.	Range of V ₃₀ /V _{3L} Min. Max.	h _{TP} Basis	Flow Pattern Observed
Kapinos et al. (44)	L/D = 1.68 to 59.1	Not given	Not given	Water	Air	Not given	3,7 × 10 ⁴ 23.8 × 10 ⁴	not given	Range of V _{so} is 40.0 to 150 m/s	Mean and Local	Annular, Mist (fog)
Ravipudi and Godbold (70)	Copper D = 19 mm L = 1.52 m L/D = 80	Steam	24 Cu-con. thermocouples 9 of which were placed inside the tube to measure the mixture temp. along the tube	1) Water 2)Toluene	Air Air	(1) 0.0869 - 0.698 0.00131 - 0.023 (2) 0.1323 0.001436 - 0.00756	(1) 10,100 - 52,540 (2) 2,022 -	(1) 0.3048 - 2.45367 (2) 0.5486 -	(1) 1.3 - 88.0 (2) 7.7 - 40.4	Mean	Bubble, Slug, Churn, Annular, Annular- Mist
Vijay (93)	Stainless Steel-304 D = 11.68 mm L = 0.6096 m L/D = 52.2	A.C. electric heating using the tube as a resistor	47 Cu-con. (D = 0.005") thermocouples were attached onto the outer surface of the tube	1) Water 2) Glycerol 75% by weight 3) Glycerine	Air Air Air	1)0.002104 - 1.1334 0.000094 - 0.02721 2) 0.001713 - 1.1491 0.0000405 - 0.0191 3) 0.0126 - 0.15623 0.0000239 - 0.01251	(1) 250 - 126,000 (2) 8.0 - 4,500 (3) 1.8 - 21.0	(1) 0.01981 - 10.6 (2) 0.0134 - 8.96 (3) 0.0945 - 1.1583	(1) 0.03 - 6,700 (2) 0.01 - 6,700 (3) 0.05 - 330	Local and Mean	Bubble, Slug, Froth, Annular, Mist

.

Reference	Test Section Details	Method of Heating	Method of Temp. Measurement	Liquid Phase	Gas Phase	Range of m _{i,} and m _G (kg/s)	Range of Re _{st.} Min. Max.	Range of V _{si.} (m/s) Min. Max.	Range of V _{SC} /V _{SL} Min. Max.	h _{TP} Basis	Flow Pattern Observed
Aggour (1)	Stainless Steel-304 D = 11.68 mm L = 0.6096 m L/D = 52.2	A.C. electric heating using the tube as a resistor	47 Cu-con. (D = 0.005") thermocouples were attached onto the outer surface of the tube	1) Water 2) Water 3) Water	Air Helium Freon-12 vapour	1) 0.03364 - 1.1334 0.0000945 - 0.0252 2) 0.03364 - 1.1334 0.00000252 - 0.004246 3) 0.03364 - 0.45359 0.000105 - 0.025956	(1) 4,150 - 128,000 (2) 3,995 - 126,000 (3) 4,230 - 55,200	(1) 0.3139 - 10.57 (2) 0.3139 - 10.57 (3) 0.3139 - 10.57	(1) 0.02 - 305.8 (2) 0.042 - 196.0 (3) 0.035 - 114.0	Locai and Mean	Bubble, Slug, Froth, Annular, Annular- Mist
Chu and Jones (14)	Stainless Steel D = 26.67 mm L = 0.91 m L/D = 34.3	A.C. electric heating using 12 heating wires wound around the stainless steel tube	Three Chr-Alum TC were soldered in a recessed hole in a test section wall (at same axial location 120° apart azimuthally	Water	Air	0.2337 - 1.8036 0.0002645 - 0.001285	16,000 112,000	0.421 3.24	0.13 2.12	Mean	Bubble, Slug, Froth
Zaidi (100)	Stainless Steel-304 D = 11.68 mm L = 0.6096 m L/D = 52.2	A.C. electric heating using the tube as a resistor	47 Cu-con. (D = 0.005") thermocouples were attached onto the outer surface of the tube	 Water Surfacetant water solution 	Air Air	(1) 0.006048 - 1.1334 0.0000126 - 0.02495 (2) 0.006048 - 0.68 0.00001764 - 0.024696	(1) 710 - 153,000 (2) 818 - 81,500	(1) 0.0579 - 10.607 (2) 0.0579 - 6.34	(1) 0.02 - 2,033 (2) 0.05 - 1,682	Local and Mean	Bubble, Slug, Churn, Froth, Annular, Annular- Mist

Reference	Test Section Details	Method of Heating	Method of Temp. Measurement	Liquid Phase	Gas Phase	Range of m _L and m _G (kg/s)	Range of Re _{st.} Min. Max.	Range of V _{st.} (m/s) Min. Max.	Range of V ₃₀ /V ₃₁ Min. Max.	h _{te} Basis	Flow Pattern Observed
Elamvaluthi and Srinivas (25)	Brass D = 10 mm L = 86.1 cm L/D = 86	A.C. electric heating using a Nichrome wire wound around the test section	Four Cu-con. thermocouples were fixed to the wall at equidistance to measure wall temperature	 Water 2) Aqueous glycerine 	Air Air	(1) 0.02356 - 0.12562 m _g not given (2) 0.01575 - 0.1178 m _g not given	(1) 4.3 - 22.9 (2) 0.15 - 1.15	Not given	(1) 0.3 - 2.5 (2) 0.6 - 4.6	Mean	Bubble, Slug
Rezkallah (71)	Stainless Steel-304 D = 11.68 mm L = 0.6096 m L/D = 52.2	A.C. electric heating using the tube as a resistor	47 Cu-con. (D = 0.005") thermocouples were attached onto the outer surface of the tube	 Water 58% glycerol Silicone SCS Viscous grade 	Air Air Air	(1) 0.00605 - 1.1335 0.00005292 - 0.019656 (2) 0.00265 - 0.90668 0.00000756 - 0.0209 (3) 0.002179 - 0.9067 0.0000882 - 0.01978	(1) 845 - 127,000 (2) 42 - 13,000 (3) 51 20,700	(1) 0.056 - 10.6 (2) 0.022 - 7.38 (3) 0.022 - 9.20	(1) 0.021 - 2,298 (2) 0.00784 - 9,716 (3) 0.00894 - 5,050	Local and Mean	Bubble, Slug, Churn, Froth, Annular, Annular- Mist
Sekoguchi et al. (81)	Stainless Steel -304 D = 16.9 mm L = 0.97 m L/D = 57.4	A.C. electric heating using the tube as a resistor	14 thermocouples were located every 50 mm along the tube axis to measure the outer wall temperature	Water	Air	Not given	Not given	0.3 2.0	Range of V ₃₀ 0.08 to 8.0 m/s	Mean	Bubble

Reference	Test Section Details	Method of Heating	Method of Temp. Measurement	Liquid Phase	Gas Phase	Range of m _L and m _G (kg/s)	Range of Re _{sL} Min, Max.	Range of V _{sL} (m/s) Min. Max.	Range of V ₈₀ /V ₈₁ Min. Max.	h _{TP} Basis	Flow Pattern Observed
al. (95)		A.C. electric heating using the tube as a resistor	13 thermocouples along the axial length	Water	Air	Total mas 45.51, 5 85.73, 10 (kg/m	1.81, 01.38	Not given	Not given	Mean	Slug

.

Author	Statement of Correlations and Definition of Terms	Range of Applicability and Comments
Katsuhara and Kazama (45)	$ \overline{Nu}_{TP} = \$.7 (1 - \alpha)^{0.125} (Re_{MIX})^{0.25} (Pr_{MIX})^{0.4} $ where $ \overline{Nu}_{TP} = \overline{h}_{TP} D/k_{MIX} $ $ k_{MIX} = \alpha (\rho_G / \rho_{MIX}) k_G + (1 - \alpha) (\rho_L / \rho_{MIX}) k_L $ $ \rho_{MIX} = \alpha \rho_G + (1 - \alpha) \rho_L $ $ Pr_{MIX} = \alpha (\rho_G / \rho_{MIX}) Pr_G + (1 - \alpha) (\rho_L / \rho_{MIX}) Pr_L $ $ Re_{MIX} = V_{MEX} D/v_{MEX} $ $ V_{MIX} = (\overline{m}_G + \overline{m}_L) / A_T \rho_{MIX} $ $ v_{MIX} = \alpha (\rho_G / \rho_{MIX}) v_G + (1 - \alpha) (\rho_L / \rho_{MIX}) v_L $	0.08 < α < 0.6
Groothuis and Hendal (33)	(1) Air-Water NuTP = 0.029 (Re2)0.87 (Pr1)1/4 (µB/µW)0.14 (2) Air- (Gas - oil) NuTP = 2.6 (Re2)0.39 (Pr1)1/4 (µB/µW)0.14	(1) $\text{Re}_{\text{SL}} > 5,000$ $\text{Re}_{\text{SG}} > 0, \frac{\text{V}_{\text{SG}}}{\text{V}_{\text{SL}}} \ge 1$ (2) $1,400 \le \text{Re}_{\text{SL}} \le 3,500$
•	where $Re_2 = Re_{SL} + Re_{SG}$	$\text{Re}_{\text{SG}} > 0, \text{V}_{\text{SG}}/\text{V}_{\text{SL}} \ge 1$
Knott et al. (47)	$\frac{\overline{h}_{TP}}{\overline{h}_{L}} = \begin{bmatrix} 1 + \frac{V_{SG}}{V_{SL}} \end{bmatrix}^{\frac{1}{2}}$ where \overline{h}_{L} was calculated from the Sieder-Tate correlation	$Re_{SL} ≤ 1,500,$ 0.1 ≤ $V_{SO}/V_{SL} ≤ 40$
Kudirka et al. (50)	$Nu_{TP} = 125 \left(\frac{\nabla_{SG}}{V_{SL}}\right)^{\frac{1}{6}} (\operatorname{Re}_{SL})^{\frac{1}{4}} (\operatorname{Pr}_{L})^{\frac{1}{4}} \left(\frac{\mu_{G}}{\mu_{L}}\right)^{\frac{0.6}{4}} \left(\frac{\mu_{B}}{\mu_{W}}\right)^{0.14}$	$2.5 \times 10^{-4} \le x \le 0.092$ where $x = \text{quality.}$ $\equiv \dot{\mathbf{m}}_G / (\dot{\mathbf{m}}_L + \dot{\mathbf{m}}_G)$
Ueda.and Hanaoka (89)	$\begin{aligned} Nu_{TP} &= 0.075 (Re_{M})^{0.6} \frac{Pr_{L}}{1 + 0.035 (Pr_{L} - 1)} \\ \text{where} \\ Re_{M} &= \rho_{L} U_{M}^{*} D/\mu_{L}, \\ U_{M}^{*} &= V_{L} + 1.2 Re_{S}^{-0.25} V_{S} - 12 Fr_{ED} V_{ED} + 16 Fr_{S}^{1.25} V_{S}, \\ V_{L} &= V_{SL}/(1 - \alpha), V_{G} = V_{SG} \alpha \\ V_{S} &= V_{G} - V_{L}. \\ Re_{S} &= V_{S} D(1 - \sqrt{\alpha})/v_{L}, V_{ED} = V_{SL} + V_{SG} \\ Fr_{ED} &= g \alpha D(1 - \sqrt{\alpha})/V_{S}^{2} \end{aligned}$	$1.5 \times 10^3 \le \text{Re}_{M} \le 6 \times 10^4$

 Table 2.2 Summary of the Correlations for Predicting^{1,2}

¹Fluid properties are evaluated at bulk temperature unless otherwise specified.

²The meaning of symbols appears in Nomenclature.

Author	Statement of Correlations and Definition of Terms	Range of Applicability and Comments
Domanskii et al . (2 0)	$\frac{\overline{h}_{TP} v_L}{k_L U^*} = \frac{Pr_L}{\overline{Y}} \text{where}$ $\overline{Y} = \text{dimensionless temperature difference,}$ $U^* = \text{friction velocity}$ $[4.52]^{0.25}$	
	\vec{Y} = dimensionless temperature difference, U [*] = friction velocity	
	$= \left[\left(\frac{\tau_{w}}{\rho_{L}} \right)^{2} + \xi^{4} v_{L} g V_{S} \alpha (1 - \alpha)^{2} \right]^{0.25}$ $\tau_{w} = \text{ wall shear stress and}$ $\xi = a \text{ proportionality constant}$	
Fedotkin and	(p.) 0.25	1 < Pr ₁ < 200
Zarudner (26)	$Nu_{TP} = C_3 Re_2^{n} Pr_L^{0.43} \left(\frac{Pr_L}{Pr_W} \right) $ where	700 < Re _{SL} < 11,400
	C_3 , n = constants Pr_W = Prandtl number of liquid at the tube wall Re_2 = $Re_{SL} + Re_{SG}$	
Ueda and Nose (90)	(1) Laminar liquid film flow: $\frac{h_{TP}}{k_L} \left(\frac{v_L^2}{g}\right)^{\frac{1}{4}} = X^{\circ} = \frac{Re_L^{\circ}}{T^{\circ}} \text{ where}$ $Re_L = -\frac{4}{3} (Y_t^{\circ})^3 + 2r_t (Y_t^{\circ})^2$	
	$T^{\bullet} = \frac{4}{3} (\tau_{i}^{\bullet} - Y_{i}^{\bullet}) (Y_{i}^{\bullet})^{3} + (Y_{i}^{\bullet})^{4},$ $Y_{i}^{\bullet} = Y_{i} (g/v_{E}^{2})^{1/4}, \tau_{i}^{\bullet} = \frac{\tau_{i}}{\rho_{L}g} (g/v_{E}^{2})^{1/4},$ $\tau_{i} = -\frac{r_{i}}{2} \left[\frac{\Delta P}{\Delta L} \right] - \frac{1}{2\pi r_{i}} \left[\frac{\Delta M_{D}}{\Delta L} \right]$	
	$r_i = R - Y_i, \frac{\Delta M_D}{\Delta L} = V_G (\Delta m_{ED} / \Delta L)g$	
	m _{ED} = mass flow rate of the entrained droplets (2) Turbulent liquid film flow:	
	$q = -\rho_L g C_{PL} \left[\frac{v_L}{Pr_L} + e_h \right] \frac{dT}{dY}$ and	
[[$h_{TP} = q_W / (T_W - T_{BE})$ where $T_{BF} =$ bulk mean temperature of the liquid film and $\varepsilon_h =$ eddy diffusivity for heat transfer	

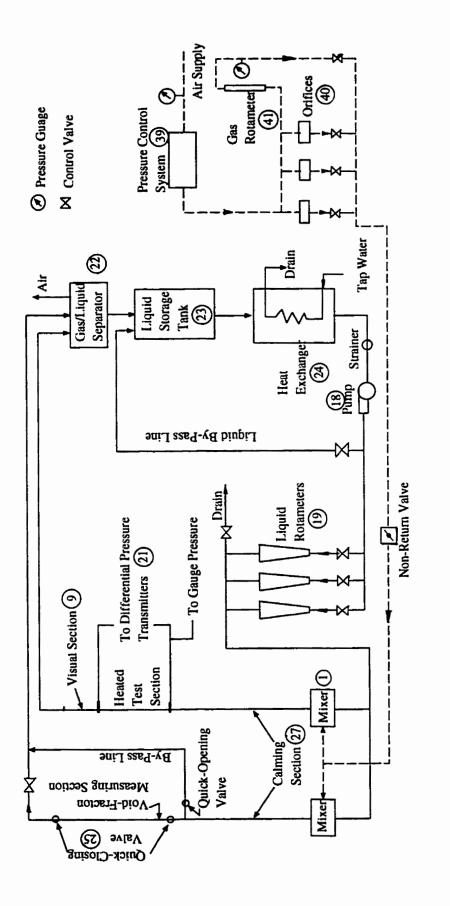
Author	Statement of Correlations and Definition of Terms	Range of Applicability and Comments
Kapinos et al. (44)	$Nu_{TP} = \frac{h_{TP}D}{k_{G}}$ = 340 Re ^{0.3} _{SG} G ^{-0.15} k ^{0.36} ₀ q ^{-0.82} For L/D < 30, the above correlation should be multiplied by ξ_{I} given by $\xi_{I} = 1 + 10.2/(L/D)^{1.74}$	The terms appearing in the correlation were not defined in (44).
Liquid. Acceleration Model (L.A.M.)	$\frac{\overline{\mathbf{h}}_{\mathrm{TP}}}{\overline{\mathbf{h}}_{\mathrm{L}}} = \left(\frac{1}{1-\alpha}\right)^{n}$	Collier (78) suggested that in the bubble flow regime, $n = \frac{1}{2}$ and 0.8 for laminar and turbulent, respectively
Ravipudi and Godbold (70)	$\overline{Nu}_{TP} = 0.56 \left(\frac{V_{SG}}{V_{SL}} \right)^{0.3} \left(\frac{\mu_G}{\mu_L} \right)^{0.2} (Re_{SL})^{0.6} Pr_L^{1/6} \left(\frac{\mu_B}{\mu_W} \right)^{0.14}$	8,554 < Re _{SL} < 89,626 1 < V _{SC} /V _{SL} < 90
Sekoguchi et al. (81)	The author proposed the following method to calculate ε_{H} (the eddy diffusivity of heat) as: $\varepsilon_{H_{TP}} = \varepsilon'_{H} + \varepsilon''_{H}$ where $\varepsilon_{H_{TP}} = the eddy diffusivity of two-phase flow \varepsilon'_{H} = the eddy diffusivity for heat evaluated as single-phase turbulent flow. \varepsilon'_{H} = the additional eddy diffusivity for heat yielded by the existence of bubbles. (For laminar flow, \varepsilon'_{H} = 0 but \varepsilon''_{H} \neq 0)\varepsilon'_{H} = 0.4 \left[1 - \exp\left(\frac{-Y^{-}}{15}\right)\right]^{2} Y \cdot \left[1 - \frac{11}{6}\left(\frac{Y^{-}}{R^{-}}\right) + \frac{4}{3}\left(\frac{Y^{-}}{R^{-}}\right)^{2} - \frac{1}{3}\left(\frac{Y^{-}}{R^{-}}\right)^{3}\right]_{V_{L}}whereY^{*} = dimensionless distance= U_{1}^{*} Y/v_{L}U^{*} = the frictional velocity= \sqrt{\tau_{W}/\rho_{L}}\tau_{W} = the wall shear stressR^{+} = the dimensionless radius= U_{1}^{*} R/v_{L}d_{B} = the bubble diameterU_{B} = the terminal velocity of a bubble rising in still liquid$	Only for bubble flow regime

Author	Statement of Correlations and Definition of Terms	Range of Applicability and Comments
Vijay et al. (94)	$\Psi^{2} = (\Phi^{2})^{n}$ where $n = 0.427$ for bubble flow n = 0.489 for slug flow n = 0.269 for froth flow n = 0.455 for annular flow and n = 0.451 for all flow regimes including transitions	The correlation does not apply to annular-mist transition. In addition, it does not work well for slug flow and slug- annular transition with frictional pressure drops less than 1,000 Pa/m.
	The following equation was also recommended: $\Psi^2 = A (\phi^2)^P (\text{Re}_{SL})^q$ where A, P, q are constants depending on the flow regime. $\Psi^2 = \frac{\overline{h}_{TP}}{\overline{h}_L}$, $\phi^2 = \frac{\Delta P_{TPF}}{\Delta P_L}$	
Elamvaluthi and Srinivas (25)	$\overline{Nu}_{TP} = 0.5 \left(\frac{\mu_G}{\mu_L}\right)^{0.25} (Re_2)^{0.7} Pr_L^{\sqrt{6}} \left(\frac{\mu_B}{\mu_W}\right)^{0.14}$ where $Re_2 = Re_{SL} + Re_{SG}$	$300 < \text{Re}_2 < 16,500$ $V_{\text{SG}}/V_{\text{SL}} = 0.3 - 4.6$
Marié (57)	$\frac{\overline{h}_{TP}}{\overline{h}_{L}} = 1 + \frac{10}{3(1-\alpha)} \left[\frac{1 + \frac{Pr}{2}\sqrt{\frac{C_{F}}{2}}}{1 + Pr}\sqrt{\frac{C_{F}}{2}} \right] \cdot \sqrt{1.1\alpha(1-\alpha)} \frac{U_{\alpha}}{V_{SL}}$ where $\frac{C_{F}}{2} = 0.0395 \left(\frac{V_{SL}D}{v_{L}} \right)^{-1/4},$ $\frac{Pr}{K} = \frac{C_{\theta}K_{\theta} - CK + 2\Pi_{\theta} - 2\Pi}{K},$ $K = 0.4I, K_{\theta} = 0.47$ $\frac{2\Pi}{K} = \frac{2\Pi_{\theta}}{K_{\theta}} = 0.65$ $C = 4.9 \text{ and } C_{\theta} = 12.5 Pr_{L}^{-1/4} + \ln Pr_{L} - 5.3$ where $Pr_{L} = \text{liquid Prandtl number}$	Only for bubble flow regime 0 < α ≤ 0.3 U ₀ = bubble rise velocity.
Drucker et al. (23)	$\Psi^{2} = 1 + 2.5 (\alpha \text{ Gr} / \text{Re}^{2})^{0.50}$ where $\Psi^{2} = \overline{h}_{TP} / \overline{h}_{L}$ Gr = Grashof number,	$2,000 \le Re_{sl} \le 150,000$ $\alpha \le 0.4$
	Gr = Grashor humber, = [($\rho_L - \rho_{\bar{G}}$)gD ⁻³]/ $\rho_L v_L^2$ D = Tube diameter	1.77 < Pr < 130

Statement of Correlations and Definition of Terms	Range of Applicability and Comments
$\frac{\overline{h}_{TP}}{\overline{h}_{L}} = 1 + 4.0 \left(\frac{V_{SG}}{V_{SL}} \right)^{0.25} Pr_{L}^{-0.23}$ where Rear < 2.000	
$\frac{\overline{\mathbf{h}}_{\mathrm{TP}}}{\overline{\mathbf{h}}_{\mathrm{L}}} = \left(\frac{1}{1-\alpha}\right)^{0.9}$	
$Nu_{\delta} = \frac{q_{W}\delta}{(T_{W} - T_{\delta})k_{L}}$	The theory only applies to annular-flow.
$= \frac{\Pr_L \delta^+}{T^+(\delta^-)}$ where $\Pr_L = \text{liquid Prandtl number}$ $T^+ = C_{PL} \rho_L U^+ (T_W - T)/q_W$ $U^+ = (\tau_W / \rho_L)^{\frac{1}{2}}$ $\delta^+ = \text{dimension film thickness}$ $= \rho_L \delta U^+/\mu_L$ $\delta = \text{film thickness}$	
h = $\beta h_{f,c} + (I - \beta) h_s$ where β = length fraction = $L_p/(L_p + L_s)$ L_p = length of the gas plug L_s = length of the liquid slug h_{f,c} = heat transfer coefficient for falling film h = heat transfer coefficient for liquid slug	The theory applies to slug flow only.
	$\begin{split} \frac{\bar{h}_{TP}}{\bar{h}_{L}} &= 1 + 4.0 \left(\frac{V_{SG}}{V_{SL}} \right)^{0.25} Pr_{L}^{-0.23} \\ & \text{where } Re_{SL} \leq 2,000 \\ \frac{\bar{h}_{TP}}{\bar{h}_{L}} &= \left(\frac{1}{1 - \alpha} \right)^{0.9} \\ & \text{where } Re_{SL} > 2,000 \\ \hline Nu_{\delta} &= \frac{q_{W}\delta}{(T_{W} - T_{\delta})k_{L}} \\ &= \frac{Pr_{L}\delta^{-}}{T^{-}(\delta^{-})} \\ & \text{where } Pr_{L} = \text{liquid Prandtl number} \\ T^{-} &= C_{PL}\rho_{L}U^{*}(T_{W} - T)/q_{W} \\ U^{*} &= (\tau_{W} /\rho_{L})^{b_{2}} \\ \delta^{+} &= \text{dimension film thickness} \\ &= \rho_{L}\delta U^{*}/\mu_{L} \\ \delta &= \text{film thickness} \\ \hline h &= \beta h_{F,c} + (I - \beta) h_{s} \\ & \text{where } \beta &= \text{length fraction} \\ &= L_{p}/(L_{p} + L_{w}) \\ & L_{p} &= \text{kength of the gas plug} \\ & L_{s} &= \text{length of the liquid slug} \end{split}$

Chapter 3

DESCRIPTION OF THE APPARATUS


3.1 INTRODUCTORY REMARKS

In this chapter, details of the experimental apparatus are described. This experimental facility was first built and used by Vijay (93). Subsequently, this experimental rig was modified to include some new instrumentation and control devices. In the present study, some modifications were done on the apparatus in order to achieve better stability of air flow. Further, a new test section was built for mean void-fraction measurement which then allowed the collection of data on heat transfer, pressure drop and mean void fraction at the same flow conditions. Other than the modifications mentioned above, the material presented in this chapter is essentially the same as that in (71) and is presented here for the sake of completeness. The circled numbers appearing in the figures correspond to components used in the systems which are described in more detail in Appendix A. It will be noticed that some figures have been taken from other sources, and where the dimensions or sizes were given in Imperial units, these have been retained here.

3.2 FLOW CIRCUITRY

Figure 3.1 shows a simplified flow diagram of the overall system. Starting from the liquid storage tank, the working liquids flow through a heat exchanger (in order to keep liquid temperatures at inlet to the gas-liquid mixing chamber at a desired value). After the heat exchanger, the liquids were pumped by a positive-displacement gear pump

25

to the gas-liquid mixing chamber through a selected flowmeter; for control some liquid flow was by-passed to the storage tank. The air flowed through an air filter and a feedback pressure controller unit to a set of orifice meters or a rotameter before entering the gas-liquid mixing chamber. To prevent the back-flow of liquid into the air supply line, a check-valve was installed on the air feed line prior to the mixing chamber. The gasliquid mixture then flowed through the calming section, heated test section, and observation section in that order. The two-phase flow then exited to the separation tank where the air escaped to the atmosphere and liquid was returned to the storage tank. For the mean-void-fraction measurement, this flow circuitry remained the same except that the flow was routed through the void-fraction-measuring section instead of the heat-transfer test section (see Figure 3.1). The same mixer was used for the void-fraction measurement (but at a new location) as for the heat-transfer test section. Details of liquid flow and the air flow circuits are given in the following sections.

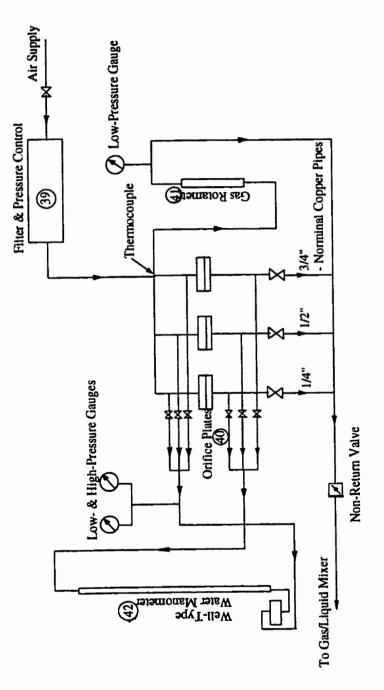
3.2.1 Liquid Flow Loop

Figure 3.1 also shows the details of the liquid flow loop which consisted of the following elements:

- 1) A 0.15-m³ liquid storage tank made from stainless steel.
- 2) A liquid-to-liquid shell-and-tube heat exchanger.
- A 5-hp Waukesha positive-displacement gear pump with a 24-USGPM maximum flow rate.

- 4) Three Fischer & Porter variable-area flowmeters of varying ranges with control valves, in parallel.
- 5a) Then either (for heat transfer and pressure-drop studies) the gas-liquid mixing chamber, followed by a 1.52-m calming section of 11.68-mm i.d., or
- 5b) For mean-void-fraction measurement, the gas-liquid mixing chamber (same as in 5a) followed by a 1.52-m calming section of 12.7-mm i.d.
- 6a) The heated test section of 11.68-mm i.d. and 61.0-cm long followed by a30.5-cm observation section, or
- 6b) For mean-void-fraction measurement, a system of 12.7-mm i.d.quick-closing valves (5-ms closing time) pneumatically driven by actuators (QUADRA-POWR, series B605, Jamesbury Corp., Worcester, Mass., USA) located upstream and downstream of a clear polycarbonate tube of 12.7-mm i.d.
- 7) A stainless-steel gas-liquid separation tank.
- 8) The heat-exchanger cooling-water system consisted of two parallel flowmeters of different ranges and valves to control the cooling tap-water flow rates.
- 9) Three Rosemount differential pressure transmitters of different ranges in parallel to measure the total pressure drop across the heated test section. The high-pressure side was also connected to a Rosemount gauge-pressure transmitter.

 Other elements such as pressure gauges, a pressure relief valve, a strainer, etc. are also shown in Figure 3.1.

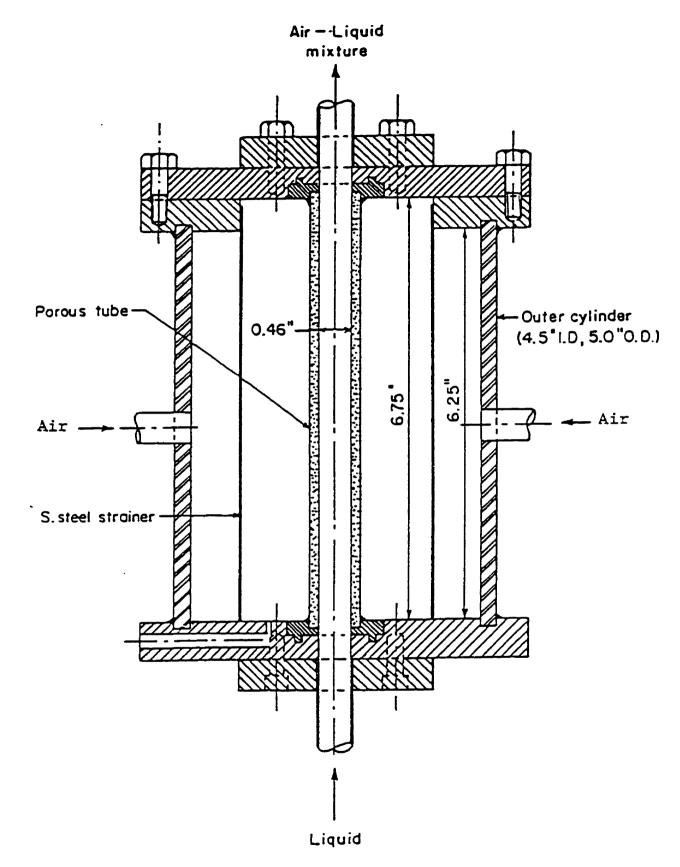

3.2.2 Air Flow Circuit

As shown in Figure 3.2, this air flow circuit consisted of the following:

- 1) A main air supply line (campus supply) with a shut-off valve.
- 2) Two pressure regulators (ARO, 200 psi max) and a ball valve all connected in parallel to set air pressure at an appropriate value before flowing through an air filter and feedback pressure controller, (Fisher Control Inc., Canada, 3/8 inch type GS/513 actuator together with control panel type 4160K), respectively.
- 3) A set of three orifices of different sizes and a rotameter (Brooks), all connected in parallel through four needle valves to control air flow rates.
- A 254-cm well-type water manometer to measure the pressure drop across the orifices.
- 5) A check-valve prior to the gas-liquid mixing chamber to prevent any backflow of working liquid into the air supply system.

3.3 HEAT-TRANSFER AND PRESSURE-DROP TEST-SECTION DESIGN

This test section consisted of the gas-liquid mixing chamber, a 1.52 m long calming length, a 61.0-cm heated tube, and the 30.5-cm transparent flow-observation section. All


of these sections had the same inside diameter of 11.68 mm. Details of the gas-liquid mixing chamber and heated section are given below.

3.3.1 Gas-Liquid Mixing Chamber

In the mixing chamber, the liquid stream flows upwards inside the porous tube (see Figure 3.3). This porous tube was a Grade E "Porosint" bronze tube (supplied by Sintered Products Limited, Sutton-in-Ashfield, Notts, England); the arrangement allowed air to flow through the porous tube, radially inwards. The two-phase mixture then was created inside the porous tube and proceeded upwards to the calming section.

3.3.2 <u>Heat-Transfer Test Section</u>

Figure 3.4 illustrates the details of the heated test section. The heated test section was made of type 304 stainless steel tubing, 11.68-mm i.d., 12.7-mm o.d., and 61.0 cm long. The tube-wall thickness and the average roughness were measured (93) to be 0.51 ± 0.025 mm (or 0.020 ± 0.001 in.) and $1.02 \times 10^{-3} \pm 1.2 \times 10^{-4}$ mm (or $40 \pm 5 \mu$ in.), respectively. The tube was used as an electrical resistor to generate A.C. Joulean heating. Electrical heating allows for ease of measuring and controlling the heat flux, and gives a constant-heat-flux boundary condition. Two bus bars for power supply were silver-soldered to the tube. A $2.54 \times 2.54 \times 61.0$ cm Permali (a highly electrically insulating material, supplied by Permali Canada Ltd.) bar was firmly attached between the bus bars in order to avoid buckling of the heated tube due to the weight of the bus bars and power

!

Figure 3.3 The Mixer, From (93)

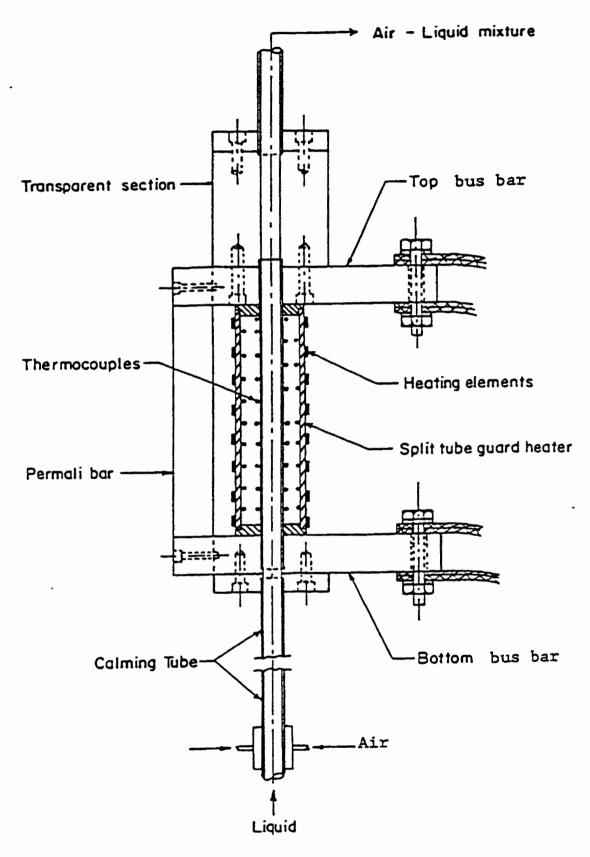


Figure 3.4 The Heated Test Section, From (93)

cables. For temperature measurement along the heated tube, thermocouples were mounted to the outside surface of the tube as detailed later.

To minimize heat losses from the heated tube to the surroundings, a split-tube guard heater, consisting of lower and upper guard heaters, was installed around the heated test tube. The annular space between the heated tube and the guard heaters was loosely filled with fibreglass insulating material. These two guard heaters were wrapped with Briskeat silicon-rubber-embedded heating tape 1.27 cm wide. The whole assembly was then wrapped around by the same insulating material and was secured by Scotch electrical tape (93). Each guard heater was heated independently by DC power-supply units. The guard heaters established a near-zero temperature-gradient condition at the outer surface of the heated-tube wall. This condition was achieved by adjusting the power supply of each guard heater until the temperature of the inner surface of each guard heater at midpoint position was very close (within 0.1 °C) to the temperatures of the outer surface of the heated tube at the corresponding position.

3.3.3 Observation Section

The observation section allowed for both visual observations and photography of the flow patterns. Since this section had the same internal diameter as, and was placed immediately downstream of, the heated test section, it was believed that the flow patterns observed were the same as those occurring in the heated test section. In order to minimize the distortion of the visualization, an externally rectangular prismatic body, 76.2 mm \times

76.2 mm \times 30.5 cm, of which the hole-side surface was highly polished, made of transparent cast acrylic was used.

3.4 VOID-FRACTION MEASURING SECTION

This measuring section, shown in Figure 3.1, was built in order to measure actual mean void fraction, using the "holdup" technique, of any two-phase flow condition corresponding to those flowing in the heated test section. On constructing the void-fraction test section, it was not possible with commercially available materials to match precisely the internal diameter of the void-fraction test section with the heated test section (11.68-mm i.d.), although a reasonably close match was achieved. A polycarbonate tube of 12.7-mm i.d. was used for the calming length (1.52-m long) and the void-fraction measuring section itself (91.2-cm long); the internal diameter of the quick-closing valves was 12.7 mm. The procedure for matching flow conditions in the heated section and the void-fraction section is given in Section 4.4.

Since the bodies of the upstream and downstream quick-closing valves could block the view of the gas-liquid interface when the void-fraction values were very high or very low, a simple technique of adding (or withdrawing) liquid was used in order to be able to measure the void fraction.

3.5 TEMPERATURE MEASUREMENTS

This section describes the details of the following:

1) Fluid-temperature measurements,

- 2) Wall-temperature measurements, and
- 3) Temperature-measuring systems.

3.5.1 Fluid-Temperature Measurements

Five copper-constantan 0.457-mm (0.018-in.) diameter thermocouples (OMEGA PR-T-24) which were calibrated in the laboratory before installation were newly installed by the present author at the following locations: two for the liquid temperature at the inlet to the mixing chamber (one for the heat-transfer test section and one for the void-fraction test section), two at the outlet of the transparent observation section, and one for the air temperature at the inlet to the mixing chamber (for the void-measurement test section).

Also one copper-constantan 0.254-mm (0.010-in.) diameter size (T/G-30-DT thermocouple supplied by Thermoelectric Canada Ltd.) was previously installed by Vijay (93) to measure the air temperature at the inlet of the orifices.

3.5.2 Wall-Temperature Measurements

During the course of experiments, outer-wall temperatures of the heated test section were measured using thermocouples. Together with the information such as tube wall thickness, tube physical properties, the electrical current and the calculation method given by Kreith and Summerfield (49), the inner-wall temperatures were calculated. The details on this method are given in Appendix D. The inner-wall temperatures were then used in the calculation of the local heat-transfer coefficients.

On the outer surface of the heated test tube, copper-constantan 0.0127-mm (0.005-in.) diameter thermocouples were installed. Also, copper-constantan 0.254-mm (0.010-in.) diameter thermocouples were installed on the inner surface of the guard heaters. These thermocouple wires were calibrated in the laboratory at the time of installation, and over the temperature range involved in the present study (93). Figure 3.5 depicts the locations of thermocouples on the outer wall of the heated tube and the inner wall of the guard heaters. Forty-three thermocouples (nos. 5-47) measured the outer wall temperatures at 16 axial locations of the heated test tube, of which those at plane nos. 2, 4, 6, 8, 11, 14, and 15 were used (93) to calculate the local heat-transfer coefficients (see Appendix D). To install these thermocouples Scotch electrical tape no. 27 was used to electrically insulate the thermocouples from the tube and also to attach them to the tube wall. At the desired location, a layer of the tape was wrapped around the tube, the thermocouple bead was placed in position, 2-3 turns of the wire were wrapped around the tube to minimize the possible conduction error due to the temperature gradient along the wire. More details are given in Appendix D. Eighteen thermocouples (nos. 48-65) were located at nine elevations along the guard heaters (93). However, only thermocouples nos. 52, 53, 56, 57, 62, and 63 were chosen to represent three elevations along the guard heaters. Thermocouples nos. 1-4 read the temperatures of lower and upper bus bars.

3.5.3 Temperature-Measuring Systems

Figure 3.6 shows the system used for measuring the emf output of the thermocouples. The emf of thermocouples mentioned in the previous sections was read or recorded by any one or a combination of the following devices:

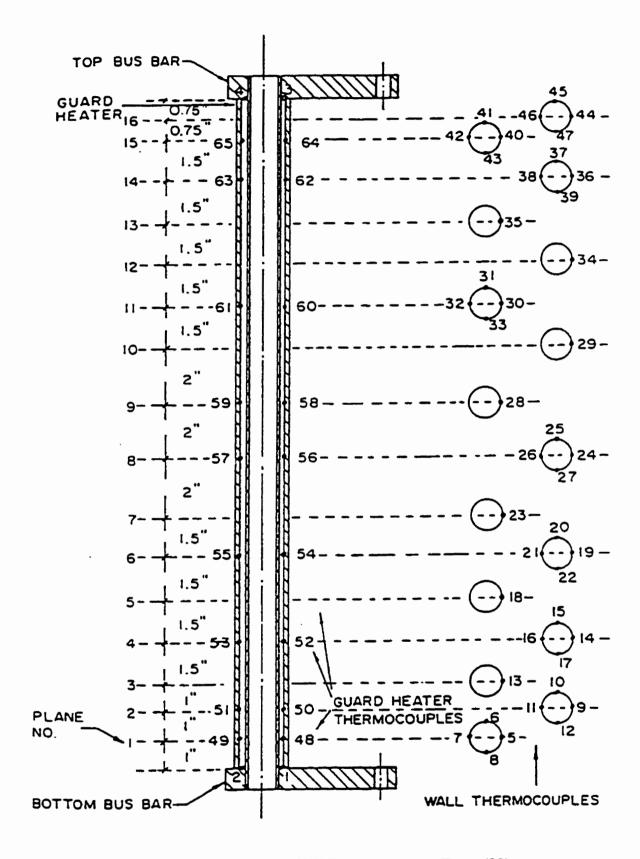


Figure 3.5 Location of Wall Thermocouples. From (93)

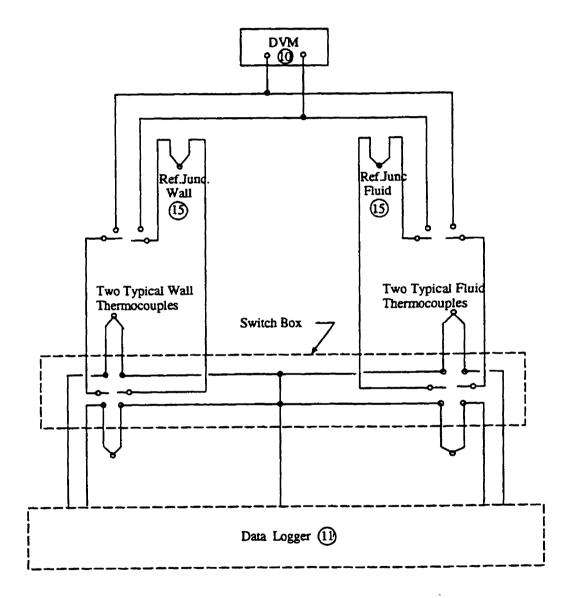


Figure 3.6 Thermocouple emf Measuring Circuit

- 1) A Fluke 2240A data logger, and
- 2) A Keithley 181 multimeter capable of measuring potentials.

The Fluke data logger, with a scanning speed up to 15 channels per second, had 50 analog inputs. The first channel (no. 0) was connected to a 1-mV standard potential source. The remaining 49 channels recorded the emf of all the wall thermocouples and those of the bus bars. The Keithley 181 multimeter was used to indicate the emf of fluid thermocouples and guard-heater thermocouples, and could be used to indicate the emf of wall and bus bar thermocouples.

The correspondence between the data-logger inputs and inputs of the multiplepoint selector switch is given in Table 3.1.

3.6 POWER SUPPLY CIRCUIT

Figure 3.7 shows the power-supply system. This system was used to supply, control and measure the electric power to the heated test section. The components of this system consisted of the following:

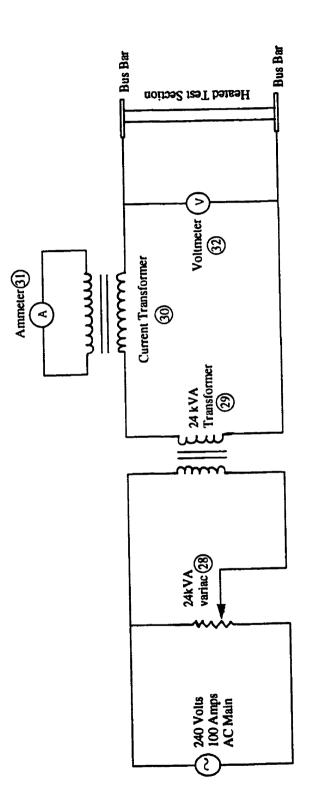

- 1) A 240 V, 100 A, AC main power source.
- 2) A variac to control electrical power to the heated test section.
- 3) A power-measuring circuit consisting of a calibrated current transformer, ammeter and voltmeter. The ammeter readings were used to calculate the local heat flux (details in Appendix D). The combination of voltmeter and ammeter readings gave a check.
- 4) The type 304 stainless-steel test tube acting as an electrical resistor.

Table 3.1

TC No.	To Measure the Temperature of	Fluke Data Logger Channel No.	DVM Selector Switch No.
1-4	lower & upper bus bars*	- 1-4	1-4
5-47 [.]	the outer wall of the heated test tube*	5-47	5-47
52	the inner wall of the guard heater*	-	52
53	the inner wall of the guard heater*	-	53
56.	the inner wall of the guard heater*	-	56
57	the inner wall of the guard heater*	-	57
62	the inner wall of the guard heater*	-	62
63	the inner wall of the guard heater*	-	63

Correspondence Between the Data Logger Inputs and the Multi-Point Selector Switch

* Location of the thermocouples given in Figure 3.5.

5) A 24 kVA transformer.

3.7 EQUIPMENT FOR PHOTOGRAPHY

Figure 3.8 shows the arrangement for photography; this was used earlier by Zaidi (100). The equipment consisted of the following:

- A Pentax Spotmatic camera with Super Takumar 50 mm f/4.0 close-up lens.
- 2) A light tunnel made of cardboard. A glass diffuser screen was placed inside the tunnel to obtain uniform illumination of the visual section.
- 3) An EG&G Microflash electronic flash unit (flash duration of 0.5 μs) with the driver unit producing a 2-kV pulse to trigger the flash. The front panel of this flash unit was covered with a mylar diffuser.
- 4) The observation section as described in Section 3.3.3.
- 5) A parabolic reflector to focus light on the flow channel.
- 6) A General Radio type 1538-A Strobotac electronic stroboscope.

The lamp light shown in Figure 3.8 and the Strobotac were used to observe and help to identify (together with the high-speed photographs) the flow patterns. The film used was Kodak Plus-X Pan (ISO 125).

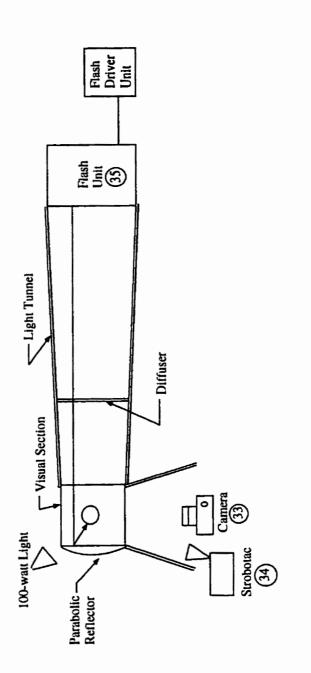


Figure 3.8 Set-Up of the Photographic Section

•

Chapter 4

EXPERIMENTAL PROCEDURE

4.1 GENERAL REMARKS

The details of the procedures performed for data collection are described in this chapter. Figures 4.1 and 4.2 show the measurements taken in connection with the experiments conducted in the heat-transfer and pressure-drop section, and void-fraction test section, respectively; Table 4.1 lists these measurements. The range of variables obtained during the course of experiments are presented in Table 4.2. It can be seen in Table 4.2 that, during the course of the experiment, the system pressure was not kept constant. This was done because (i) as demonstrated by Aggour (1) that heat-transfer coefficient and pressure drop are, for the most part, insensitive to the system pressure (details discussed later) and (ii) it was desirable to obtain a wide range of air flow rates, and hence, a wide range of flow patterns.

The experiments were conducted in such a way that, at a fixed liquid flow rate, the air flow rate was started from the minimum and gradually increased to the maximum, which throughout this thesis is referred to as a "run".

For each air-liquid system, the experiments on (i) heat transfer and pressure drop and (ii) void-fraction measurement were conducted separately. Therefore, the following procedures were employed for the data collection:

- 1) For Heat-Transfer and Pressure-Drop Tests.
 - (i) Start-up and shut-down procedures (Sections 4.2.1 and 4.2.3).

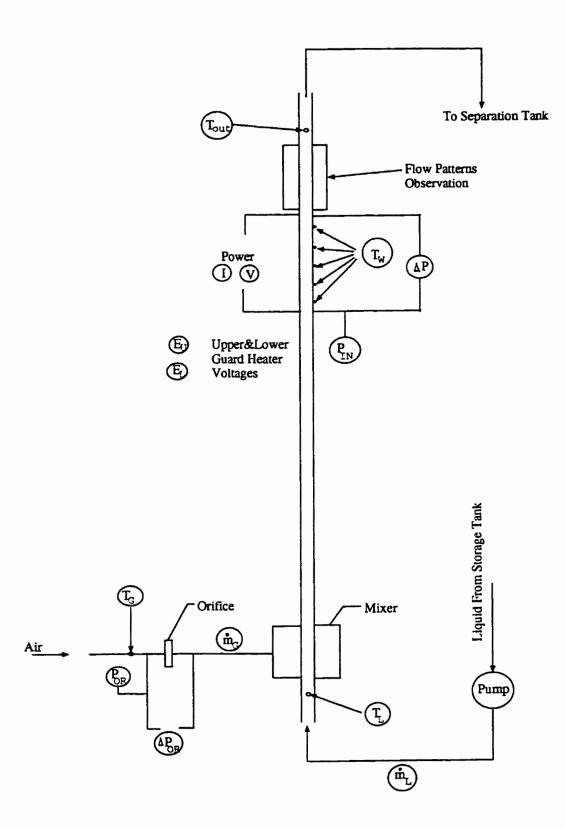


Figure 4.1 Measured Variables

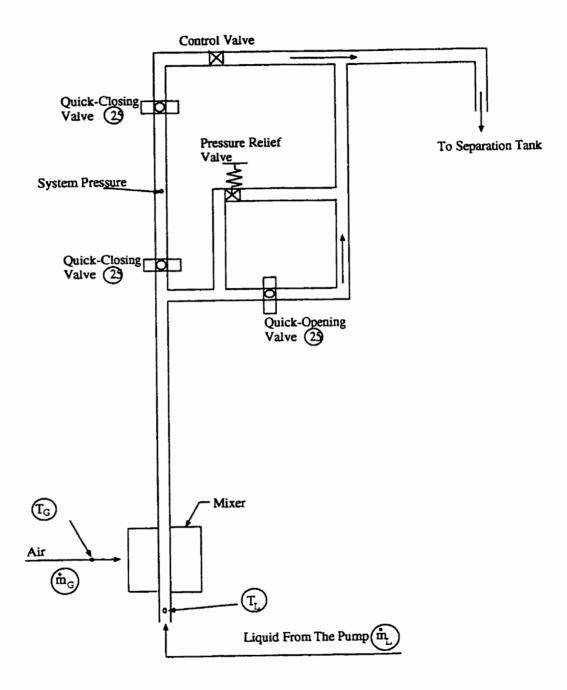


Figure 4.2 Measured Variables For Void Fraction

Power t	o Test Se	ection	Gu	iard	Heater	Liquid	Flow Rate	Test Section Pressure	
(I) Ammeter Reading			TC No & No.		TC No.60 & No. 61	Meter No.	Reading (%)	P _{IN}	△P _{total}
Used to calculate the local heat flux	VI was used to check the power input to the test section				Used wit calibratic calculate	on curves to	Pressure at inlet to the test section	Total pressure drop across the test section	
Gas Line Data						Т	hermocouple l	Readings	
O.P.N.	Po	з — — — — — — — — — — — — — — — — — — —	ΔP _{OR}		P _{GI}		TC No.	To measure the temperature of	
Orifice plate or	Press. at	1	ress. drop acr				1-4	Top and bottom bus bars	
1 1		•	rifice plate or supply line neter reading			5-47	The outer wall of the heated to tube (T_o)		
used, together w assembly (T _{G.}), t	-	-			ne orifice plat	e	52-63	The inner wal heater	l of the guard
Barometric press	sure	Measured	at beginning	and 1	the end of eac	ch run		The mixture a test section (T	t the outlet of the Γ_{out})
Flow pattern Observed visually and photographed for each test					each test		The water at the inlet to the mixer (T_1)		
Void Fraction (¤)							The gas at the plate assembly	the inlet to the orifice $y(T_{G1})$	
Identifying the lo occupied by the		gas-liquid	interface in o	rder t	o obtain the	volume			

 Table 4.1
 List of Variables Measured in the Present Experiments

Variable	Air -	Water	Air	- G1	Air - G2		
	min.	max.	min.	max.	min.	max.	
m _{l.} (kg/hr)	21.54	3,297.71	21.08	2,718.83	22.92	2,043.71	
m _G (kg/hr)	0.00916	88.88	0.02292	60.92	0.02292	47.89	
V _{SL} (m/s)	0.055	8.462	0.0458	6.091	0.0488	4.328	
V _{sq} (m/s)	0.0214	118.879	0.0458	62.3628	0.0336	72.23	
q [*] (kW/m ²)	14.578	258.18	2.694	46.988	2.426	8,588	
T _{MIX} (C)	17.81	31.77	18.67	32.94	16.05	23.97	
Re _{sl} (-)	621	1.068 × 10 ⁵	69.3	9,406	10.4	672	
Re _{sg} (-)	16.5	1.484 × 10 ⁵	36.4	9,94 × 10 ⁴	39.2	7.935 × 10 ⁴	
Pr _{1.} (-)	5.5	7.2	49.3	79.5	499	766	
Pr _G (-)	0.801	0.812	0.802	0.814	0.793	0.813	
α(-)	0.05845	0.9858	0.0107	0.9845	0,0066	0.9040	
$\overline{h}_{TP}(W/m^2.K)$	2,080	38,196	433	5,794	177	1,970	
P _{mean} (abs) kPa	101.35	342.66	106.18	306.81	110,31	281.99	
flow pattern	Bubble to	Annular-Mist	Bubble to A	Annular-Mist	Bubble	o Annular	

 Table 4.2
 Range of Variables in the Present Two-Phase Study

- (ii) Acquisition of Data (Section 4.3.1 and 4.3.2).
- (iii) Flow-Pattern Observation (Section 4.5).
- 2) For Void-Fraction Measurement.
 - (i) Start-up and shut-down procedures (Section 4.2.2 and 4.2.3).
 - (ii) Acquisition of Data (Section 4.4.1 and 4.4.2).
 - (iii) Flow-Pattern Observation (Section 4.5).

For each particular air-liquid system, step 1 was used to conduct the experiment on heat transfer and pressure drop until the air-liquid system was completed. After that, the same air-liquid system was used for void-fraction measurements where step 2 procedures were used.

4.2 START-UP AND SHUT-DOWN PROCEDURES

In order to obtain proper experimental data and to avoid any damage to the equipment, the following steps of preparation were taken:

- (i) Cooling water was fed to the heat exchanger.
- (ii) The temperature-measuring instruments (i.e., data logger, DVM, ice-point reference unit) were switched on approximately one hour prior to the tests to obtain an adequate warm-up time.
- (iii) A check was made that the air lines from orifice plates to the well-type manometer were clear by bleeding air through them.
- (iv) The water level in the well-type manometer was checked and, if necessary, adjusted.

After the above preparation procedures, air was supplied to the mixing chamber before any liquid in order that the mixer always started with a dry condition for the twophase tests; this also ensured that no liquid could leak into the air line.

4.2.1 Start-Up Procedure for Heat-Transfer and Pressure-Drop Tests

The following procedures were taken to start-up the heat-transfer and pressuredrop tests:

- The air flow rate through an orifice plate (or rotameter) was adjusted using the pressure controller and needle valve downstream of the orifices (or rotameter).
- The pump was turned on with the by-pass valve to the liquid storage tank fully open.
- 3) All pressure transmitter leads containing liquid were checked for the presence of air and purged if necessary. This step was repeated as often as required during the course of the experiments.
- 4) The liquid flow rate was set to the desired value by a combination of closing the by-pass value at the liquid pump discharge and adjusting the control value on the appropriate liquid flowmeter. To obtain stable liquid flow rates, a large pressure difference across the control value upstream of the liquid flowmeter was maintained. The liquid flowmeter was monitored regularly during the experiment and adjusted if necessary.

51

- 5) Simultaneously with step 4, the air flow rate was monitored closely and readjusted to the desired value.
- 6) The power supply to the heated test section was turned on with the powercontrol variac setting at zero. Then, the power supply was slowly increased to the desired value (criterion discussed later).
- 7) The power supplies to the upper and lower guard heaters were turned on with their setting at zero input value.

In single-phase flow tests, the same steps described above were taken, excluding steps 1 and 5.

4.2.2 Start-Up Procedure for Void-Fraction Measurement

For void-fraction measurement, the start-up procedures in Section 4.2.1 were used excluding steps 3, 6, and 7. As mentioned in Section 3.4, the inner diameter of the tube used as the void-fraction measuring section and its calming section were 12.7-mm (0.5 in.), while the heated test section diameter was 11.68-mm (0.46 in.). However, it has been demonstrated by Chrisholm (13) that the controlling parameter of void fraction, for fixed fluid properties, is the two-phase quality, x. Therefore, the superficial velocities of both phases, temperature and pressure, at the mid-way point of the void-fraction measuring section were kept as close as possible to those of the corresponding datum point of heattransfer and pressure-drop tests. More details are given in Section 4.4.1.

4.2.3 Shut-Down Procedures

After each run was completed, the rig was shut down in the following steps:

- The power sources to the heated test section and guard heaters were switched off. This step was only for the heat-transfer and pressure-drop runs.
- After some time (when the wall temperature had closely approached the liquid temperature), the by-pass valve on the liquid pump discharge was opened fully.
- 3) The control valve on the liquid flowmeter was closed.
- 4) The liquid pump was shut off.
- 5) The cooling water to the heat exchanger was shut off.
- 6) The liquid in the test section and calming section was drained out.
- 7) The air flow rate was adjusted to a high value and left running through the mixing chamber for some time to dry the mixing chamber and test section. Then, the air supply was shut off.

4.3 ACQUISITION OF DATA ON HEAT TRANSFER AND PRESSURE DROP

4.3.1 Establishing Steady-State Conditions

During the course of experiments, it was of course important to establish steadystate conditions before taking data. The following variables were continuously monitored and adjusted until desired steady conditions were reached before taking any data.

- 1) The liquid inlet temperature to the mixing chamber.
- 2) The wall temperature at seven elevations along the heated test section tube.
- 3) The guard-heater temperature at two elevations.
- 4) The power supply to the test section.

The liquid inlet temperature (T_L) was maintained at approximately 21 °C. This was done by controlling the cooling water rate to the heat exchanger. This was then monitored and the fluctuations kept in the range of ± 0.05 °C (0.1 °F).

The electrical power to the heated test section was supplied based on the following considerations: $(T_w - T_B)$ should be small enough so as to keep radial variations in fluid properties small, but large enough so as to obtain accurate values of the heat-transfer coefficient (here T_w is inner wall temperature and T_B is fluid bulk temperature). A temperature difference ($T_w - T_B$) of about 7.5 °C was considered to be suitable for these requirements.

In order to obtain steady-state conditions, temperatures and flow rates were monitored and adjustments were made until they were steady for ten minutes. The steady-state conditions were deemed to prevail when the difference between the readings (for both wall temperatures and the liquid temperature at the inlet (to the mixer, T_L)) of two successive recorded emf's (the time interval was 5 to 7 minutes) was within ± 0.05 °C (± 0.1 °F).

During the course of all the experiments, it was attempted to keep approximately the same temperature difference $(T_w - T_B)$ at mid-point of the test section. The spread in $(T_w - T_B)$ for the entire series of the tests was as follows:

Air-Water	8.1 ±2.5 °C
Air-Gl	7.9 ± 2.5 °C
Air-G2	7.2 ± 2.0 °C

The guard-heater temperatures at two elevations (no. 54-55 and no. 60-61) at approximately 0.3 and 0.7 of the heated length were checked regularly and, if necessary, the power supply level, for each guard heater, was independently adjusted to bring the guard heater temperatures as close as possible to the wall temperatures at corresponding elevations. An attempt was made in such a way that the temperature difference, between guard heaters and outer surface of the heated tube, did not differ by more than approximately ± 0.15 °C (± 0.3 °F).

For conditions where slug flow prevailed, the wall temperatures fluctuated considerably. Only T_L was used to check whether otherwise steady-state conditions prevailed.

4.3.2 Taking of Data

After steady-state conditions were established, all variables listed in Table 4.1 (except the part for void-fraction measurement) were read and recorded to determine heat-transfer and pressure-drop results. Among these variables, the thermocouple readings were collected last. Normally, six samples of thermocouple readings were taken; however, 10 samples of such reading were taken in the case of slug flow. Table 4.2 gives the range of variable obtained in the present study. Table 4.3 shows the matrix of the whole experiment in terms of superficial velocities.

		Range of V _{SG} m/s
Gas-Liquid	V _{SL} m/s	(MinMax.)
	0.055	0.540 - 113.048
	0.116	0.987 - 118.264
	0.311	0.591 - 107.406
Air - Water	1.042	0.021 - 68.958
	3.170	0.043 - 31.699
	6.346	0.277 - 18.288
	8.464	0.463 - 9.339
	0.046	0.079 - 81.574
	0.418	0.046 - 76.322
Air - Gl	1.033	0.046 - 62.225
	2.682	0.040 - 31.200
	6.081	0.034 - 9.147
	0.049	0.052 - 81.879
	0.366	0.046 - 57.693
Air - G2	2.877	0.034 - 10.763
	4.319	0.027 - 0.923

Table 4.3 The Matrix of the Experiment

4.4 ACQUISITION OF DATA ON VOID FRACTION

4.4.1 Establishing Steady-State Conditions

As mentioned earlier, the void-fraction measurements were conducted after the heat-transfer and pressure-drop tests for each liquid. The following steps were taken to establish steady-state conditions:

- 1) The superficial velocities of both air and liquid were adjusted until they approached (within ± 3 %) those of the corresponding datum point in the heat-transfer and pressure-drop tests.
- 2) The temperature of the two-phase mixture at the mid-way point of the measuring section was determined and, if necessary, adjusted to be as close as possible (within ± 0.1 °C) to the mean bulk temperature of the corresponding datum point in the heat-transfer tests.
- 3) The system pressure at mid-way point of the measuring section was kept as close as possible (within 0.7kPa or 0.1 psi) to the system pressure of the corresponding heat-transfer datum point.

Steady-state conditions were deemed to prevail when the pressure and temperature of the mid-way point between the two quick-closing valves had been steady for approximately 7 minutes.

4.4.2 Taking of Data

After steady-state conditions were established, the two-phase mixture was flowing through the measuring section, and the following steps were taken:

- The two quick-closing valves were snapped to the closed position while the quick-opening by-pass valve opened to let the mixture flow through the bypass section to the separation tank.
- 2) The gas-liquid interface was located and air-volume fraction (void fraction) was then calculated. This step was taken several minutes after step 1 to ensure that the liquid had drained off the wall above the gas-liquid interface line. At the upper and lower ends of this measuring section, the gas-liquid interface could not be seen due to part of the body of the quick-closing valves. If this happened, liquid of a measured amount was either withdrawn from, or fed into, the section until the gas-liquid interface was seen.
- 3) In preparation for the next test, the quick-closing valves were switched to the open position and at the same time the quick-opening by-pass valve was switched to the closed position.

For each datum point, several samples of void fraction were collected by repeating steps 1 to 3. The arithmetic mean of samples was then obtained to represent the value of mean void fraction of each datum point. Due to the high viscosity of G2, which required a long time to have a dry-wall condition above the gas-liquid interface, the number of samples taken was reduced. However, in the case of slug flow, the number of samples was increased in order to obtain an adequate representation of the mean value. Table 4.4 shows the numbers of samples taken for each setting of the gas and liquid flow rate for the three air-liquid systems.

4.5 FLOW PATTERN OBSERVATION

For the heat-transfer and pressure-drop tests, after the air and liquid flow rates were set and the flow reached steady-state conditions, the flow patterns were first observed by naked eye with a 100-watt incandescent light providing back lighting. A stroboscope was also used to identify the flow pattern. The flow pattern observations were then recorded on the data sheet. A photograph was taken for each test using the photographic set-up shown in Figure 3.8. The photograph was later used together with the corresponding record on the data sheet for final flow-pattern identification.

At each datum point of void-fraction measurement, after the flow reached steadystate conditions, the flow was observed by naked eye using the 100-watt incandescent lamp light and stroboscope. It was found that each observed flow pattern was the same as the one observed in the corresponding heat-transfer and pressure-drop test.

Table 4.4 Number of Samples Taken in Void-Fraction Measurement for Each

Mixture	Flow Pattern	No. of Samples
A !- 11/- 4	Slug	12
Air-Water	Others	7
	Slug	6
Air-G1	Others	5
4: 20	Slug	4
Air-G2	Others	3

Setting of Gas and Liquid Flow Rates

Chapter 5

RESULTS AND DISCUSSION OF SINGLE-PHASE LIQUID FLOW

5.1 INTRODUCTORY REMARKS

This chapter presents the results and a discussion of single-phase liquid tests using the three liquids of the two-phase experiments. The purpose of conducting single-phase tests was to check the performance and reliability of the experimental facility; as well, the single-phase data appear in a number of two-phase correlations. If the single-phase results for pressure drop and heat transfer agree with well-established theories or empirical results, then it is fair to assume that the facility is suitable for two-phase study. The single-phase experimental results are discussed according to:

- 1) Frictional pressure drop, and
- 2) Local and mean heat-transfer coefficients.

Two parameters, as defined by Equations 5.1 and 5.2, are employed to indicate the deviations between the experimental results and the predictions using correlations or theoretical expressions. These same parameters are used throughout the thesis wherever needed.

$$\bar{e} =$$
 the mean algebraic deviation
 $\bar{e} = \left\{ \frac{1}{N} \sum \frac{V_{exp} - V_{pred}}{V_{pred}} \right\} \times 100$ (%) (5.1)

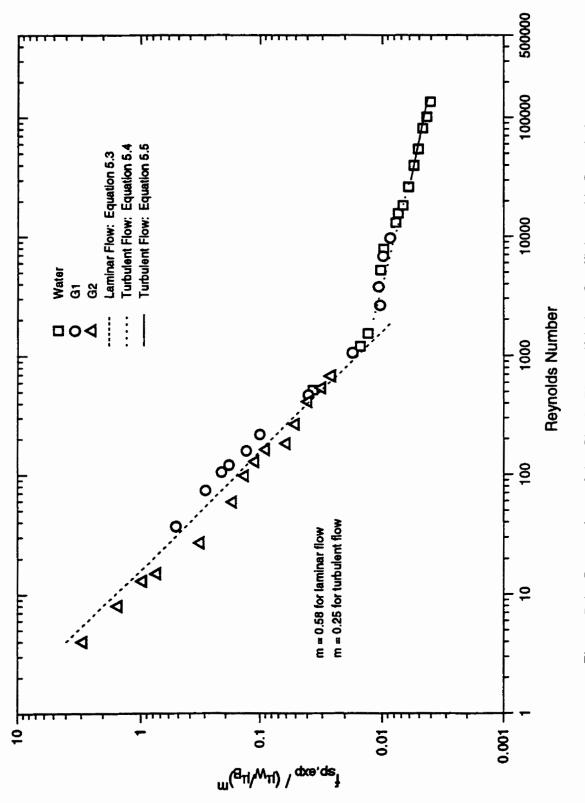
 $\bar{e}_{rms} =$ the r.m.s. deviation

$$\bar{e}_{\rm rms} = \left\{ \frac{1}{N} \sum \left[\frac{V_{\rm exp} - V_{\rm pred}}{V_{\rm pred}} \right]^2 \right\}^{1/2} \times 100 \quad (\%)$$
 (5.2)

where

- N = the number of experimental data points used in the comparison,
- V_{exp} = the experimental value of the variable, and
- V_{pred} = the predicted value of the same variable.

5.2 SINGLE-PHASE PRESSURE DROP


The experimental frictional pressure drop was calculated using measured total pressure drop (taken simultaneously with heat-transfer results) and the method described in Appendix D. This frictional pressure drop was then converted to a single-phase friction coefficient, f_{sp} , a dimensionless variable, and compared with the corresponding predicted value from the equations given below:

$$f_{sp} = 16 \text{ Re}_{SL}^{-1}$$
; $\text{Re}_{SL} \le 2000$ (5.3)

$$f_{sp} = 0.079 \text{ Re}_{sL}^{-0.25}$$
; 2000 < Re_{sL} < 30,000 (5.4)

$$f_{sp} = 0.046 \text{ Re}_{sL}^{-0.2} ; \text{ Re}_{sL} \ge 30,000$$
 (5.5)

Figure 5.1 shows the comparison between the experimental and predicted values of the friction coefficient, f_{sp} , for all liquids used in the experiments. The experimental friction coefficients were corrected to constant-property values as recommended in Kays

and Crawford (46). Table 5.1 shows the deviations between the predictions and the corrected values in both laminar and turbulent flows.

]	Laminar Flo	W	ו)W.	
Liquid	N	ē (%)	e _{rmes} (%)	N	ē (%)	e _{rms} (%)
Water	3	17.7	18.3	11	1.8	6.3
G1	8	30.5	32.2	4	4.4	7.9
G2	14	-18.6	23.6	-	-	

 Table 5.1
 Summary of Comparison of the Single-Phase Pressure-Drop Tests

In the turbulent region, the experimental results for water and G1 (no G2 results) show excellent agreement with the predictions. In the laminar region, the results in Table 5.1 indicate reasonable agreement between the experimental data and the predictions. The deviations in this region are greater than those in the turbulent region which may be caused by some combination of the following: (i) for water and some of the G1 data, the frictional pressure drops are very small (less than 2.5 cm of water) where the measurement errors are larger than for the higher pressure drops, (ii) some vibration may be introduced into the system by the pump, and (iii) the correction for fluid properties (wall to bulk) may not be entirely correct.

5.3 SINGLE-PHASE HEAT TRANSFER

This section presents the experimental results of both local and mean heat transfer. The experimental local heat-transfer coefficients were calculated from:

$$h_{ap} = q_{W}^{-}/(T_{W} - T_{B})$$
 (5.6)

where

 h_{sp} = the local single-phase heat-transfer coefficient,

 $q_w =$ the wall heat flux,

- T_w = the wall temperature, and
- T_B = the bulk temperature of the liquid.

Then, the mean heat-transfer coefficient was obtained through:

$$\bar{\mathbf{h}}_{sp} = \frac{1}{\Delta z} \int_{z_1}^{z_2} \mathbf{h}_{sp} dz \qquad (5.7)$$

where

- h_{SP} = the mean single-phase heat-transfer coefficient,
- z = the axial distance,
- z_1, z_2 = the axial distances the first and the last temperature-measuring locations used,

$$\Delta z = z_2 - z_1.$$

The results for both local and mean heat transfer are presented and discussed below.

5.3.1 Local Heat-Transfer Results

Figures 5.2 to 5.4 show plots of local heat-transfer coefficients, for the three liquids, as a function of axial distance z along the heated tube. These experimental data were compared quantitatively with predictive methods in laminar flow. Although not

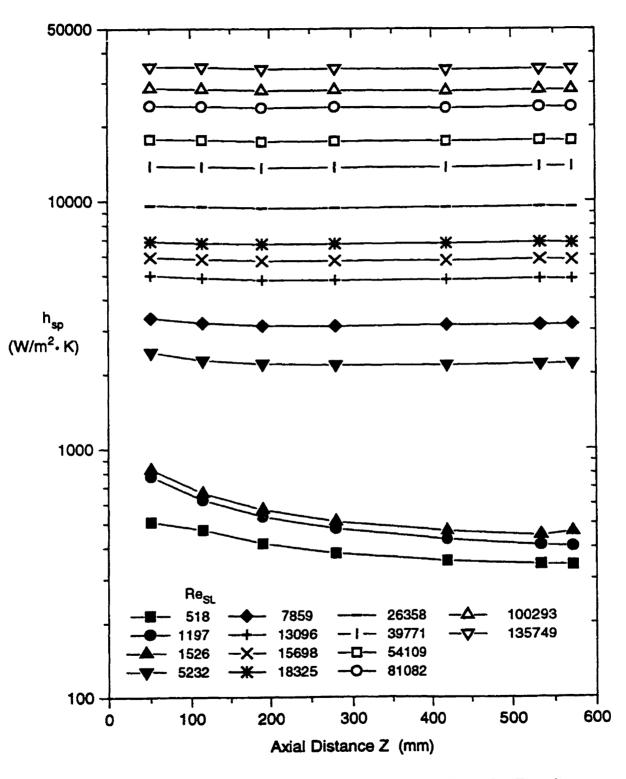


Figure 5.2 Single-Phase Water Local Heat-Transfer Results

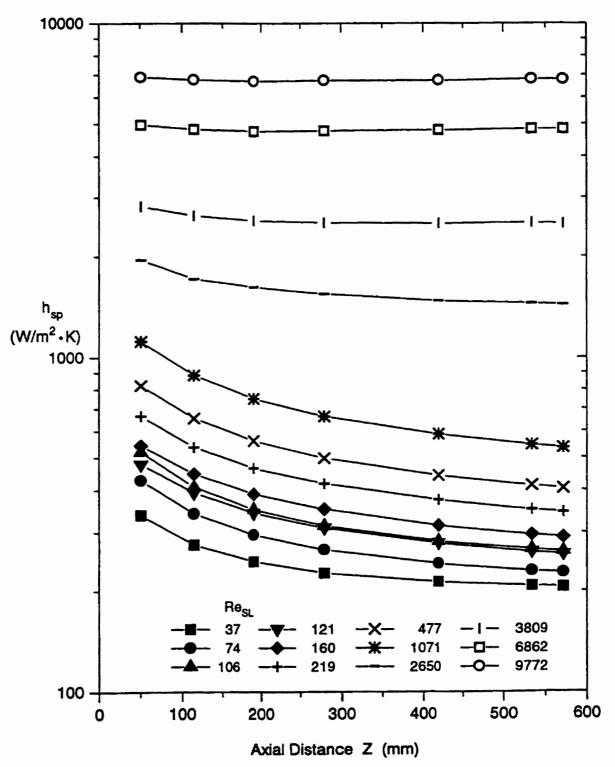


Figure 5.3 Single-Phase G1 Local Heat-Transfer Results

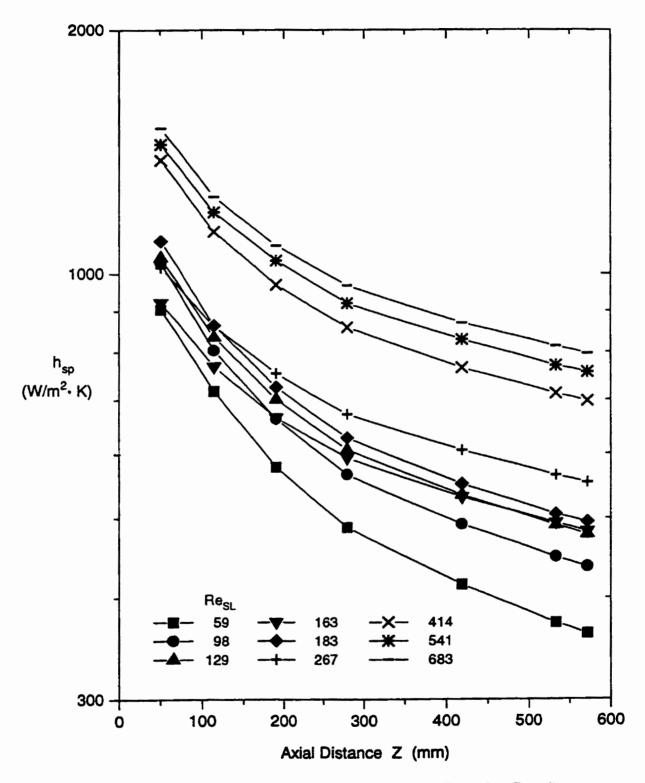
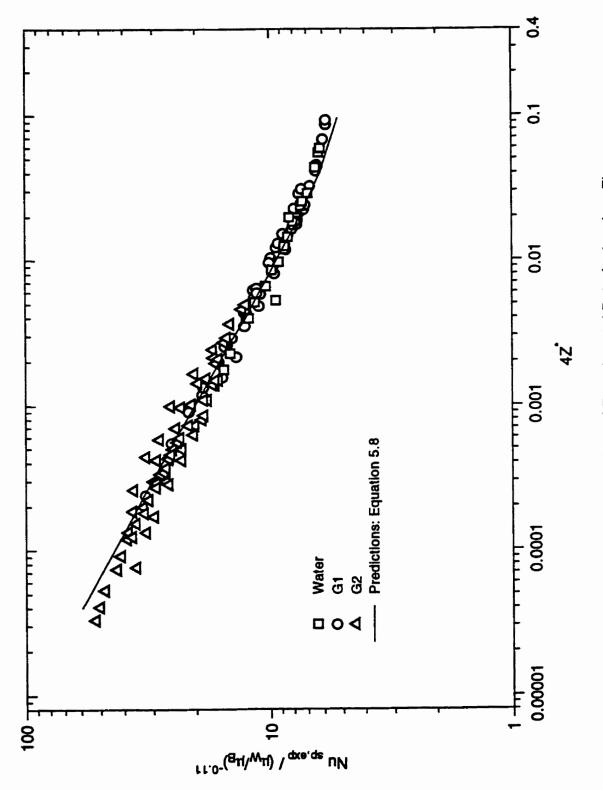


Figure 5.4 Single-Phase G2 Local Heat-Transfer Results

meant to be a test of the single-phase data, some material dealing with local heat-transfer coefficients in turbulent flow appears in Appendix F.

The experimental heat-transfer data for laminar flow ($Re_{SL} \leq 2000$) were compared with the predictions of the following expression as recommended by Kakac et al. (43).


$$Nu_{p} = \begin{cases} 1.302 \ (Z^{*-\frac{1}{3}}) - 1 & \text{for } Z^{*} \le 0.00005 \\ 1.302 \ (Z^{*-\frac{1}{3}}) - 0.5 & \text{for } 0.00005 \le Z^{*} \le 0.0015 \\ 4.364 + 8.68 \ (10^{3}Z^{*})^{-0.506} e^{-41Z^{*}} & \text{for } Z^{*} \ge 0.0015 \end{cases}$$
(5.8)

where

Z*	=	$(z/D)/(\text{Re}_{\text{SL}}\cdot\text{Pr}_{\text{L}}),$
Z	=	the axial distance.
D	=	the tube diameter.
Re _{sl}	=	the liquid Reynolds number, and
PrL	=	the liquid Prandtl number

Figure 5.5 shows the comparison of experimental data (after corrections for variations in fluid properties, as recommended by Kays and Crawford (46)), against the predictions using Equation 5.8. Table 5.2 summarizes the deviation of the experimental data from the predictions. In general, the results show excellent agreement between experiments and predictions in laminar flow for all three liquids.

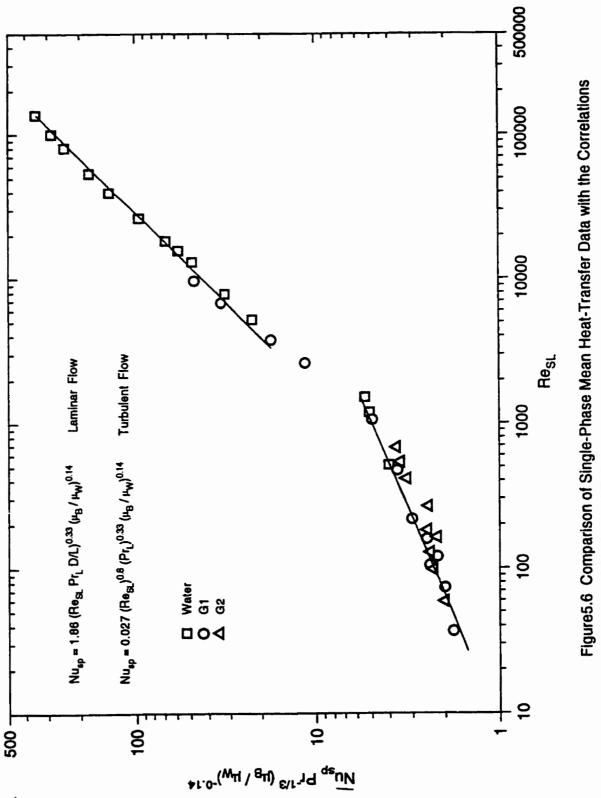
An examination of Figures 5.2 to 5.4 would show that, for turbulent flow (Re_{SL} > 2000), the fully developed conditions cover practically the whole length of the tube.

Therefore, it would appear that an adequate test for turbulent flow would be comparison against a well-accepted correlation for mean heat-transfer coefficients which is done below.

Table 5.2	Summary of Comparison of Single-Phase Local Heat-Transfer in
	Laminar Flow

Liquid	No. of points	· ē (%)	ē _{rms} (%)
Water	21	Q.85	6.37
Gl	56	2.41	5.81
G2	63	-2.92	11.04

5.3.2 Mean Heat-Transfer Results


The experimental mean heat-transfer coefficients were obtained using Equation (5.7). These experimental data were compared with the well-known correlations recommended by Sieder and Tate (82) for laminar and turbulent flows. The details are as follows:

1. Laminar Flow ($\text{Re}_{\text{SL}} \leq 2000$)

The following expression was used to predict mean heat-transfer coefficients in the laminar region:

$$\overline{Nu}_{sp} = 1.86 \left(\operatorname{Re}_{SL} \operatorname{Pr}_{L} D/L \right)^{1/3} (\mu_{B}/\mu_{W})^{0.14}$$
(5.9)

Figure 5.6 shows the plot of experimental data compared with the predictions. As shown in Table 5.3, there is generally excellent agreement between the experimental data and the predictions (\tilde{e}_{rms} of 3.7, 6.4 and 14.1% for water, G1 and G2, respectively).

of Sleder and Tate

2. Turbulent Flow ($Re_{sL} > 2000$)

The Sieder-Tate correlation, as recommended by Incropera and DeWitt (39), for turbulent flow is given by

$$\overline{Nu}_{sp} = 0.027 (Re_{SL})^{0.8} (Pr_L)^{1/3} (\mu_B/\mu_W)^{0.14}$$
(5.10)

This correlation is applicable over a wide range of Pr, i.e., $0.7 < Pr_L < 16,700$. Figure 5.6 indicates very good agreement between the experimental data and the predictions for Re_{SL} > 3800 (the authors recommended the correlation for Re_{SL} \ge 10,000).

 Table 5.3
 Summary of the Mean Heat-Transfer Data

		Laminar	•		Turbulent	*
Liquid	N	ē (%)	ē _{yms} (%)	N*	ē (%)	$\bar{e}_{\gamma ms}$ (%)
Water	3	-3.0	3.7	11	-0.6	6.9
Gl	8	-3.7	6.4	3	2.1	10.0
G2	9	-10.8	14.1	-	-	-

Re_{SI} ≥ 3800

5.4 SUMMARY

According to the material presented in this chapter, the results for both pressure drop and heat transfer lead to the following conclusions:

- The experimental results for local and mean heat-transfer coefficients agree well with those predicted by well-established single-phase predictions.
- 2) The experimental results for friction coefficients show good agreement when compared with predictions, especially in the turbulent flow region.

In general, the experimental facility continues to perform satisfactorily.
 Therefore, the two-phase-flow data, presented in the next chapter, should be reliable.

Chapter 6

FLOW PATTERN, VOID FRACTION AND PRESSURE DROP IN TWO-PHASE FLOW

6.1 INTRODUCTORY REMARKS

This chapter presents the hydrodynamic results of the two-phase flow investigated in the present study. The two-phase hydrodynamics includes flow pattern, void fraction and pressure drop. The two-phase flow pattern is an important feature in any two-phase gas-liquid flow study. In different flow patterns, the gas and liquid phases interact with each other in a unique manner leading to unique two-phase pressure-drop and heattransfer behaviour. The purpose of the flow-pattern observations here is to provide information so that pressure drop, heat-transfer and void-fraction data can be discussed in terms of flow pattern when needed. The descriptions of the two-phase gas-liquid flow patterns in a vertical tube are given together with example photographs, Figure 6.1, of the basic flow patterns. Table 6.1 gives information on the number of tests where the various flow patterns were observed in this study. The same flow pattern codes in Table 6.1 are also used throughout the thesis. Flow-pattern maps for each gas-liquid system are presented. The flow-pattern data are then compared with some existing flow maps from The actual mean void-fraction data measured during the course of the literature. experiment are then given and compared with some predictive methods. The final section presents the total and frictional pressure-drop data of all three air-liquid systems. The present frictional pressure drop data are compared with some existing correlations.

Bubble	Slug	Churn	Froth	Annular

Figure 6.1 Flow Patterns in Co-Current Vertical Flow

Flow Pattern	Flow-Pattern Code	Number of Tests (where the indicated flow pattern was observed)		Total	
		Air-Water-	A ir- G1	Air-G2	
Bubble	BO	13	15	2	30
Slug	SΔ	ŀ 6	9 .	15	40
Churn	€⊽	7	6	· 5-	18
Annular	A 🗆	12	20	· 18	50
Froth	FÒ	łł	8	-	19
Bubble-Slug	B-50	4	1	4-	9
Bubble-Froth	B-F 0	7	3.	4	łO
- Slug-Churn	S-€ ∆	5.	5	· 3	1:3
Slug-Annular	S-AA	-	-	3	3
Slug-Froth	S-FA	3-	4	1	8
Churn-Annular	€-A V	4	2:	-	6
Froth-Annular	A-F 🗞	7	2	-	9.
Annular-Mist	A-M-Q	15	2	-	1-7

 Table 6.1
 Summary of the Flow Pattern Observations in the Present Study

•

.

6.2 DESCRIPTION OF FLOW PATTERNS

In vertical two-phase gas-liquid flow in a channel, the gas and liquid phases distribute themselves in a variety of flow patterns depending upon the flow rates of both phases, tube size, and fluid properties. These two-phase flow patterns have been studied by a number of investigators such as (9, 32, 35, 58, 61, 86, 96, 99). There is a large volume of literature in which the terminology and description of the flow patterns often varies from one study to another. Among these, the characterization and description proposed by Hewitt and Hall-Taylor (35), Taitel et al. (86) and Wallis (96) appear to be the best. Their descriptions were used to classify the flow patterns involved in the present study. To classify the two-phase gas-liquid flow patterns, the following definitions were used:

Bubble Flow: The liquid phase is the continuous phase. Typically, two types of bubble flow can be found in this flow regime. They are termed as "independent bubble" in which discrete bubbles are spaced one from the other and "packed bubbles" where bubbles touch each other. These two types of bubble flow were observed by Roumy (74).

Slug Flow: As the gas flow rate increases, bubble coalescence takes place and eventually the bubble diameter approaches the diameter of the tube. These large bubbles are typically "bullet-shaped" and are often termed "Taylor bubbles". These Taylor bubbles are separated by liquid slugs which may contain a dispersion of small bubbles. In slug flow, while the Taylor bubbles move up, the liquid phase flows down outside the Taylor bubbles in the form of a falling liquid film on the tube wall, even though the net flow of

both gas and liquid phases is upward. Some investigators (e.g., 58 and 99) refer to the slug flow as "plug flow".

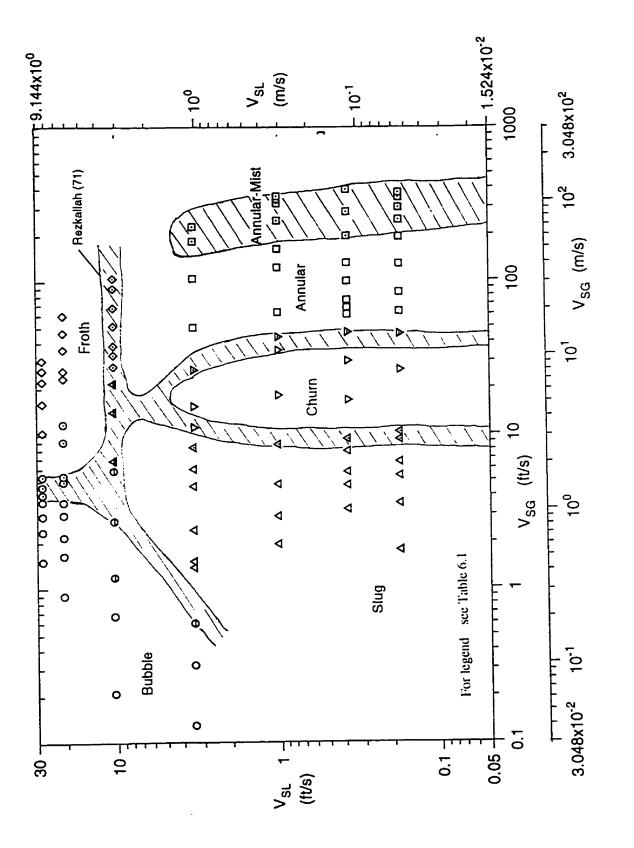
Churn Flow: With higher gas velocity, a breakdown of the Taylor bubbles leads to an unstable flow regime in which there is an oscillatory motion of liquid upwards and downwards in the tube. This oscillatory motion is found in wide-bore tubes, but may not take place in narrow-bore tubes in which case a smoother transition between slug and annular flows may be observed (36). During the course of the present experiment, churn flow was observed.

Annular Flow: With the increase of gas flow rate, the liquid phase flows along the wall as a wavy film and the gas phase flows in the centre of the tube. The liquid may contain fine gas bubbles and the gas core may contain entrained liquid droplets.

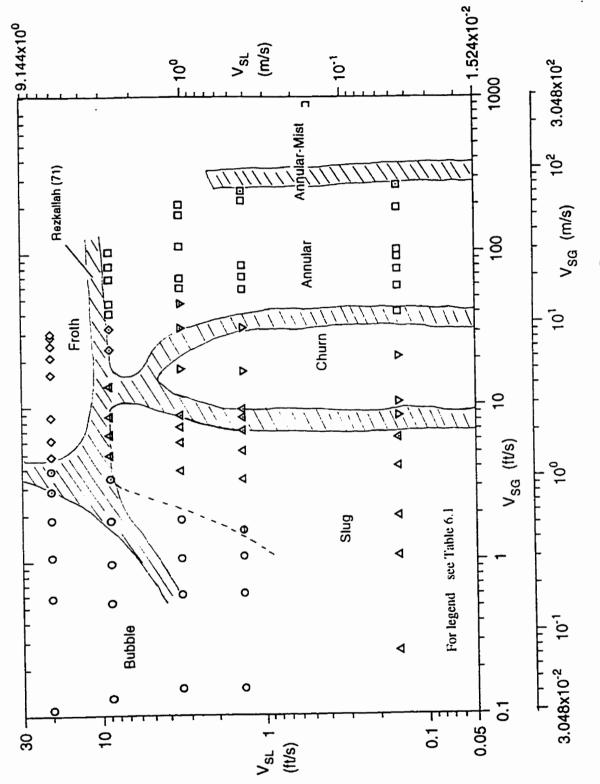
Mist Flow: When the gas velocity becomes greater, the liquid film along the tube wall becomes thinner and thinner and eventually the liquid film is swept away by the gas phase. The liquid phase is then entrained as very fine droplets in a continuous gas phase. In this present investigation, genuine mist flow did not occur. However, the transition pattern, annular-mist flow, was observed.

Froth Flow: Zaidi (100) gives a good description of this flow regime as "This flow pattern is mainly characterized by the existence of tiny bubbles in a packed form; these bubbles are practically indistinguishable individually. One gets the impression of a homogeneous flow and the mixture has a milky appearance". Froth flow occurs at high liquid and gas flow rates.

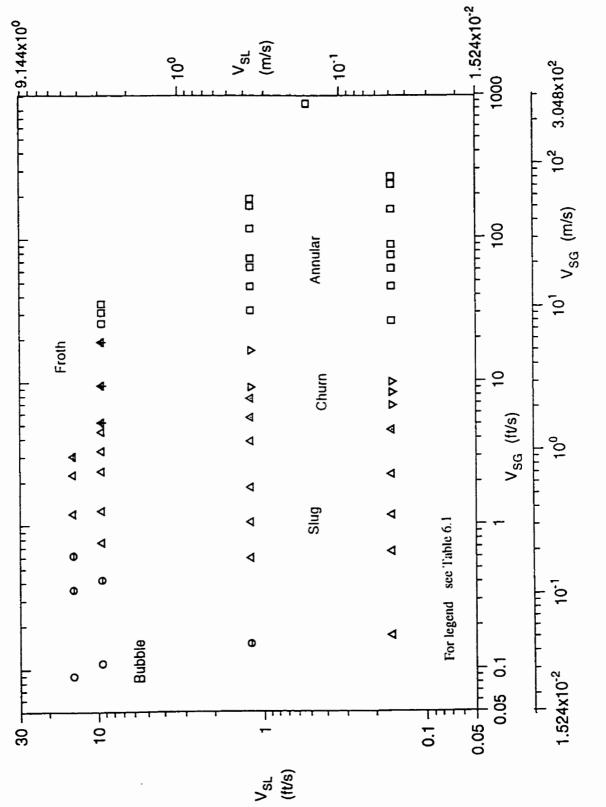
The preceding flow patterns are the basic flow patterns observed in the present study. In practice, often a two-phase flow does not clearly fall into one of these basic flow patterns. Instead, the two-phase flow contains elements of two basic flow patterns. Such a flow is classified as a "transition flow pattern". An example of a transition flow pattern is bubble-slug where one can observe big bubbles but not enough to be classified as Taylor bubbles. Other examples of transition flow patterns would be bubble-froth, slug-churn, churn-annular, annular-mist and annular-froth. For annular-mist, when one observes the flow by unaided eye the flow is somewhat transparent and gives the impression of mist flow. However, when a stroboscope is used to illuminate the flow, a thin film of liquid is observed along the tube wall. For the case of annular-froth, without the help of the stroboscope one has the impression of froth flow; however, a thin liquid film can be seen along the tube wall when the stroboscope is used. This liquid film can be observed in the annular-mist and froth-annular transitions from the photographs as well.


6.3 PRESENTATION OF DATA ON FLOW PATTERN MAPS

A two-phase gas-liquid flow pattern map is a plot of flow patterns together with transition boundaries using a co-ordinate system. In the literature there are mainly two basic types of co-ordinates which appear in the literature. With the first type, some investigators (9, 58, 61, 86, 99) used dimensional co-ordinates such as superficial velocities or mass flow rates of both phases. In the second type, investigators such as Griffith and Wallis (32) used dimensionless co-ordinates for the flow pattern map. Some authors such as Taitel et al. (86), McQuillan and Whalley (58) and Mishima and Ishii (61)


attempted to generalize the presentation of the map using analytical expressions that determine the conditions necessary for the existence of each of the flow patterns.

In the present study, superficial velocities of both gas and liquid phases were used as co-ordinates for the flow-pattern maps to present the data. Figure 6.2 gives the present air-water data compared with transition boundaries constructed by Rezkallah (71), who used all previous air-water data taken independently from the same experimental rig to establish the boundaries. The present air-water data show good agreement with the transition boundaries of Rezkallah's map. Figure 6.3 shows the present air-G1 data when plotted on Rezkallah's map based on his air-58% glycerine data. In general, the present data agree reasonably well with Rezkallah's map. The present data suggest that the bubble-slug transition boundary should occur at higher superficial gas velocities (see the dashed line in Figure 6.3). In the region of the discrepancy between Rezkallah's boundary and the present dashed line, Rezkallah has only one datum point, this being bubble-slug and lying to the left of the present line suggesting bubble-slug transition. Figure 6.4 presents the flow regimes of the present air-G2 experiment.


All boundaries appear to be insensitive to liquid viscosity. For the bubble-slug boundary, it appears to move slightly to the right for air-G1, where for air-G2 it is roughly the same as for air-water; in total, though, considering the amount of data on which this observation is made and the difficulty of flow-regime determination, this boundary is reasonably insensitive to viscosity; this would be consistent with others' observations.

To examine how closely the present data agree with some other studies in the literature, the present flow-pattern data were plotted on the maps of Govier and Aziz (29) and Taitel et al. (86). The Govier and Aziz map is based on data of Govier et al. (30), and correlations of Brown et al. (11) and Duns and Ross (24). The co-ordinate system of the maps includes the effect of velocities, densities and surface tension. The comparison of the present air-water data with the Govier and Aziz map is shown in Figure 6.5. The parameters Y^{*} and X^{*} are defined as

$$Y = \left[\frac{\rho_L \sigma_{WA}}{\rho_W \sigma_{LG}}\right]^{1/4} \quad \text{and} \quad X = Y \left[\frac{\rho_G}{\rho_A}\right]^{1/3}$$

where,

- σ_{wA} = the surface tension of the air-water system at standard atmospheric conditions (taken as 15.5 °C and 101.3 kPa),
- σ_{LG} = the surface tension of a given gas-liquid system under flow conditions,

$$\rho_L$$
 = the density of the liquid under flow conditions,

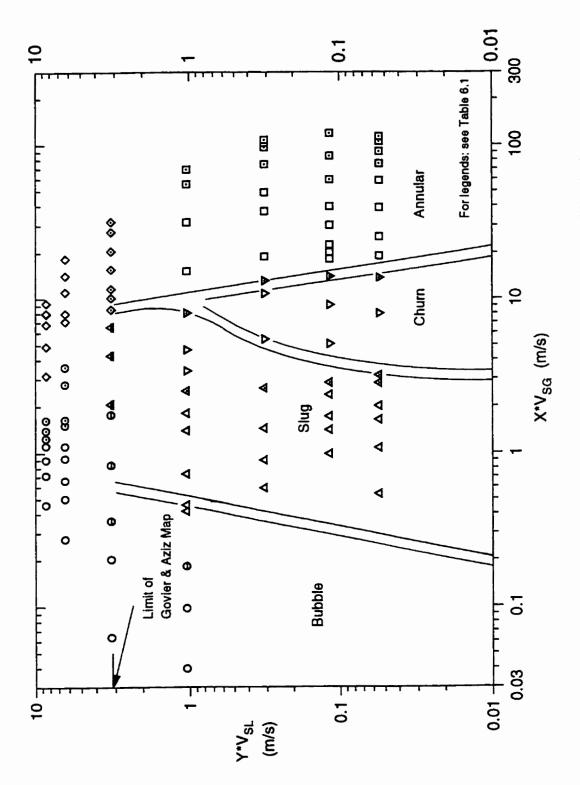
 ρ_w = the density of water at standard atmospheric conditions,

$$\rho_{\rm G}$$
 = the density of the gas under the flow conditions, and

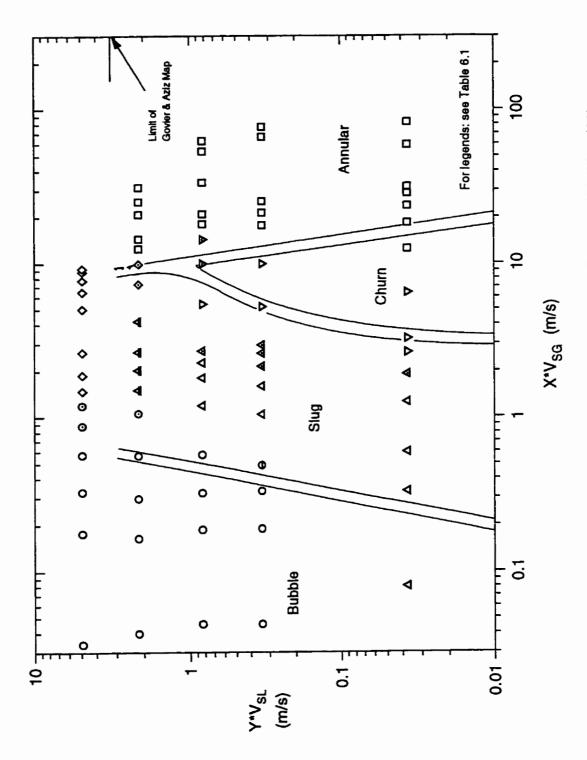
$$\rho_A$$
 = the density of air at standard atmospheric conditions.

The original map of Govier and Aziz delineated four basic regions, namely, bubble, slug, churn (the original authors used the term "froth" for the present "churn") and the region that covers both annular and annular-mist in the present investigation, which the original authors termed as "annular mist". The map was restricted to a modified liquid velocity of $Y^*V_{SL} = 3.05$ m/s (10 ft/s). Figure 6.5 shows good agreement between the

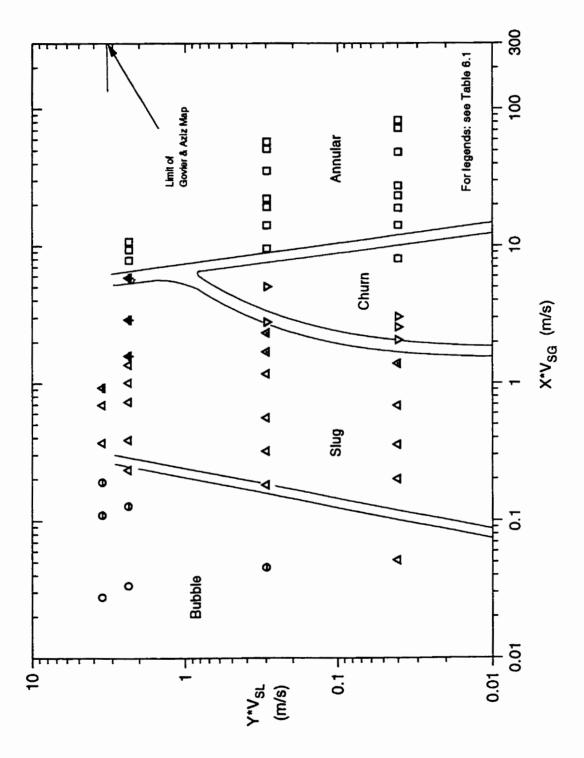
present air-water data and the Govier and Aziz map. Since the parameters X^*V_{sG} and Y^*V_{sL} are meant to be universal parameters, it is then interesting to examine the other gasliquid flow-pattern data from the present investigation on Govier and Aziz's map. Figure 6.6 and 6.7 are the plots of the air-G1 and air-G2 systems on the map of Govier and Aziz, respectively. The results show that the transitions are essentially insensitive to liquid viscosity.

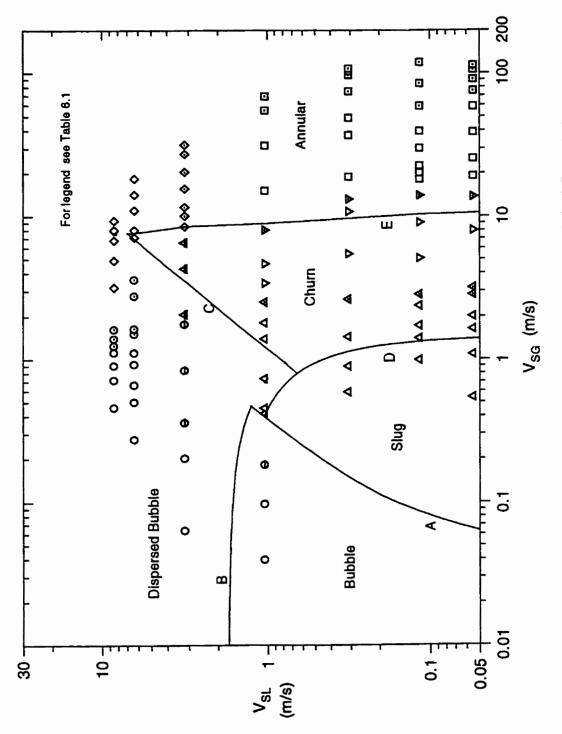

Another comparison was made between the present data and the analytical transition boundaries proposed by Taitel et al. (86). The superficial velocities of both phases were used as co-ordinates in the comparison here. The analytical transition boundaries are functions of gas and liquid densities. superficial velocities, surface tension, tube diameter and hydrodynamic entry length (not all boundaries depend on each of the foregoing). The following analytical expressions were proposed by the authors (86) and the transition boundaries were plotted in Figure 6.8 to 6.10 for air-water, air-G1 and air-G2, respectively:

Bubble-Slug Transition (Curve A)

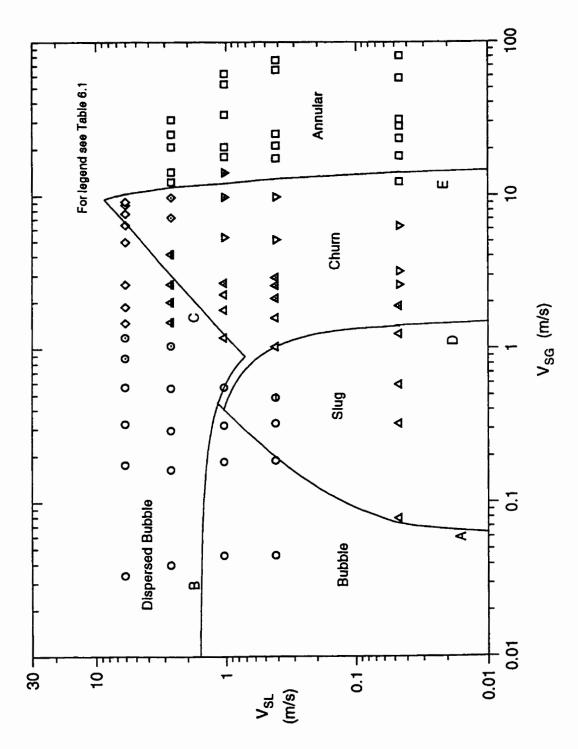

$$V_{SL} + V_{SG} = 4.0 \left\{ \left[\frac{D^{0.429}}{\nu_{L}^{0.072}} \frac{\sigma^{0.089}}{\rho_{L}} \right] \left[\frac{g(\rho_{L} - \rho_{G})}{\rho_{L}} \right]^{0.446} \right\}$$

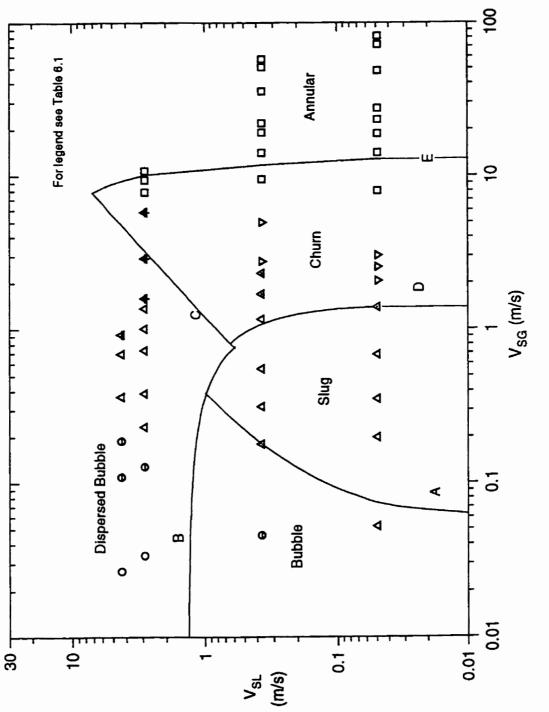
Dispersed¹ Bubble - Bubble Transition (Curve B)


¹"Dispersed bubble" was defined in (86) as fine and independent bubble flow.









$$V_{SL} = 3.0V_{SG} - 1.15 \left\{ \frac{g(\rho_L - \rho_G)\sigma}{\rho_L^2} \right\}^{1/4}$$

Bubble-Churn Transition (Curve C)

$$V_{SL} = 0.923 V_{SG} - 0.734 \left\{ \frac{g(\rho_L - \rho_G) \sigma}{\rho_L^2} \right\}^{1/4}$$

Slug-Churn Transition (Curve D)

$$k_{\rm E}/{\rm D} = 40.6 \left\{ \frac{({\rm V}_{\rm sG} + {\rm V}_{\rm sL})}{\sqrt{{\rm gD}}} + 0.22 \right\}$$

where l_E is the hydrodynamic entry length. In this present study, $l_E/D = 182.6$ at the beginning of the visualization section.

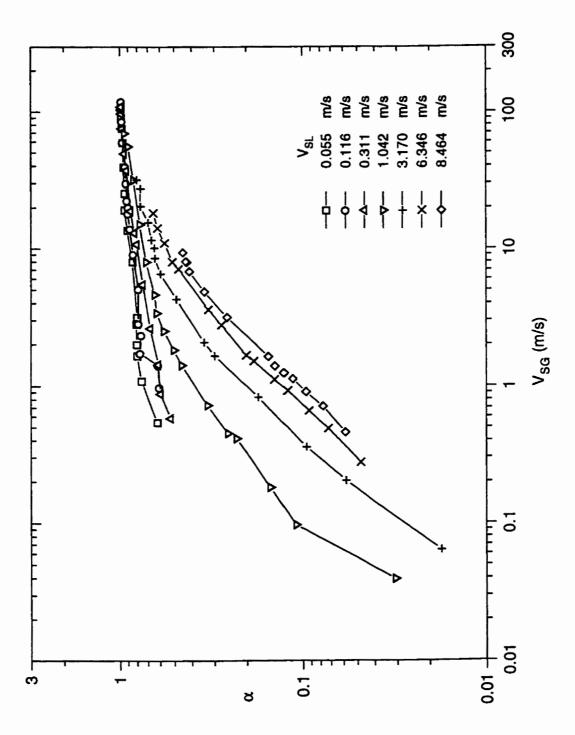
Churn-Annular Transition (Curve E)

$$\frac{V_{SG} \rho_G^{0.5}}{[\sigma g (\rho_L - \rho_G)]^{0.25}} = 3.1$$

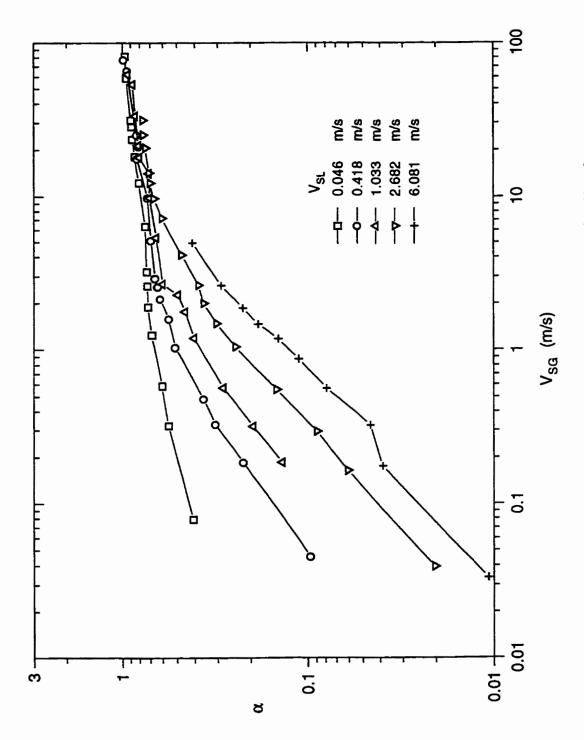
The results in Figures 6.8 to 6.10 indicate that the theory of Taitel et al. agrees fairly well with the present data. It should be noted that "froth flow" was not mentioned in the Taitel et al. work (86). The analytical slug-churn transition of Taitel et al. generally predicts transition to churn flow at lower V_{SG} than observed with the present data. According to Taitel et al., bubble flow cannot exist under Curve B in systems having small-diameter tubes, the criterion for a "small-diameter tube" being that

$$\left[\frac{\rho_{\rm L}^2 \, g \, {\rm D}^2}{\left(\rho_{\rm L} - \rho_{\rm G}\right) \, \sigma}\right]^{0.25} \leq 4.36$$

According to this criterion, the tube used in the present investigation is considered to be a "small-diameter tube". However, bubble flow did exist under the "Curve B" during the course of experiments as seen in Figure 6.8 and 6.9 and for this reason, Curve A (bubble-slug boundary) has been drawn in the figures.


6.4 MEAN VOID FRACTION

The void fraction is defined as "the fraction of channel volume that is occupied by the gas phase". There are a number of works on mean-void-fraction prediction in the literature such as Chisholm (13), CISE (15) and the ones (correlations of Zivi, Thom, Turner and Wallis, Lockhart and Martinelli, Baroczy, and the Homogeneous Model) summarized in Butterworth (12). In this section, the measured void fraction data of the present investigation are presented. In addition, comparisons between the present data and some predictions are made in order to examine how closely the methods predict the data.


Figures 6.11 to 6.13 show the present data for air-water, air-G1 and air-G2 systems, respectively. As expected, at a fixed liquid superficial velocity, the void fraction increases with gas superficial velocity. The measured void fraction approaches the value of unity when the ratio of V_{sc}/V_{sL} is sufficiently high.

Figures 6.14 to 6.16 show typical results when the present data are compared with some predictive methods in the literature. It can be seen that the present data fall in the

94

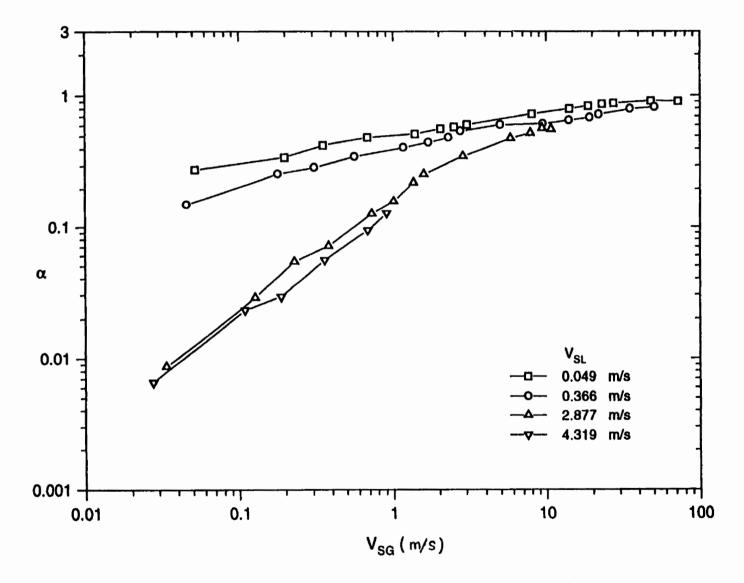
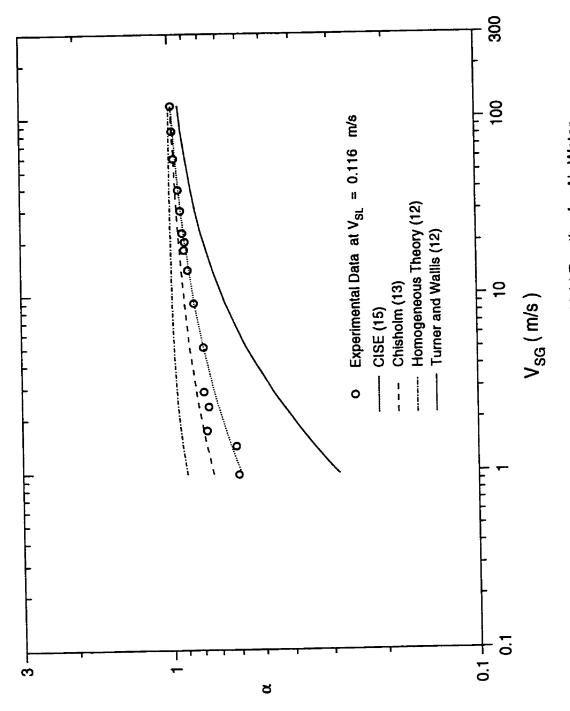



Figure 6.13 Measured Mean Void Fraction for Air-G2

97

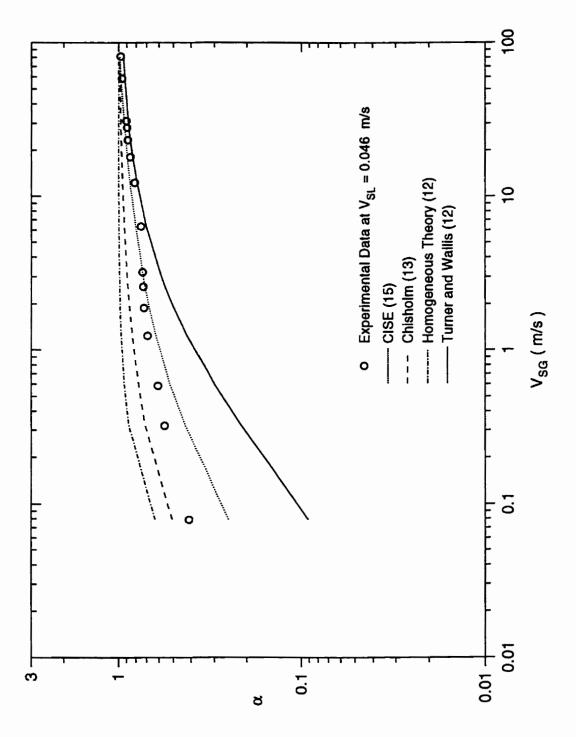


Figure 6.15 Comparison of Mean Void Fraction for Air-G1

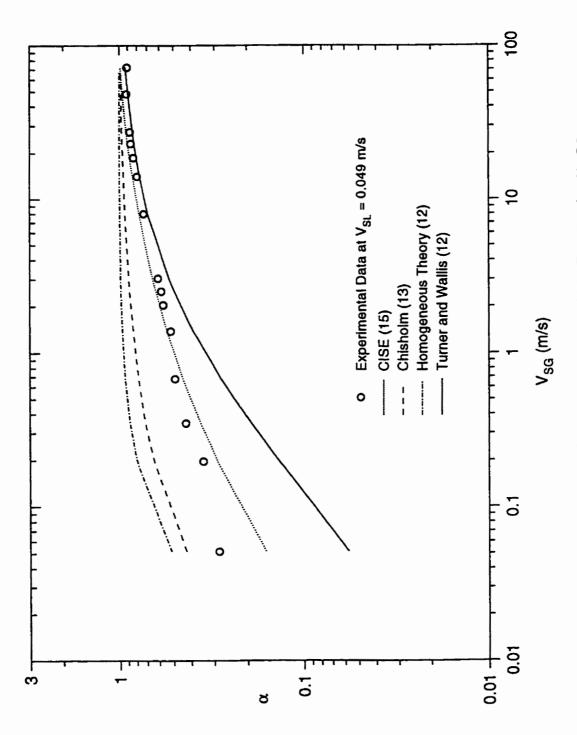
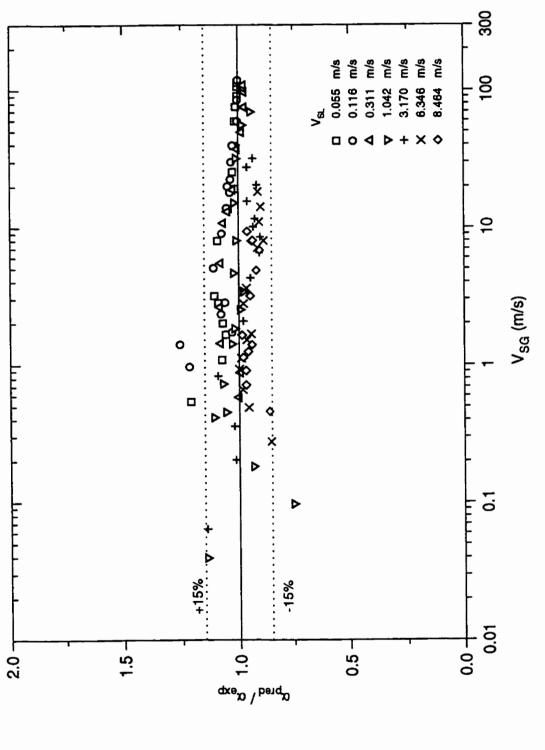


Figure 6.16 Comparison of Mean Void Fraction for Air-G2

middle of predictions. The present data of all air-liquid systems show good agreement with two well-known correlations, namely, CISE (15) and Chisholm (13). The majority of present data for air-water agree with Chisholm's correlation within 15% as shown in Figure 6.17a. For the more viscous liquids, the majority of the data agree with Chisholm's prediction within 25 and 50 percents for air-G1 and air-G2, respectively, as the results are shown in Figures 6.17b and c.

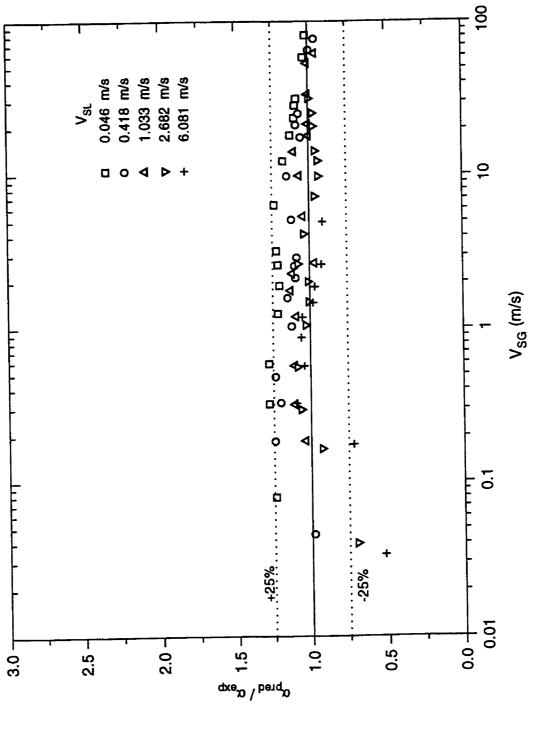
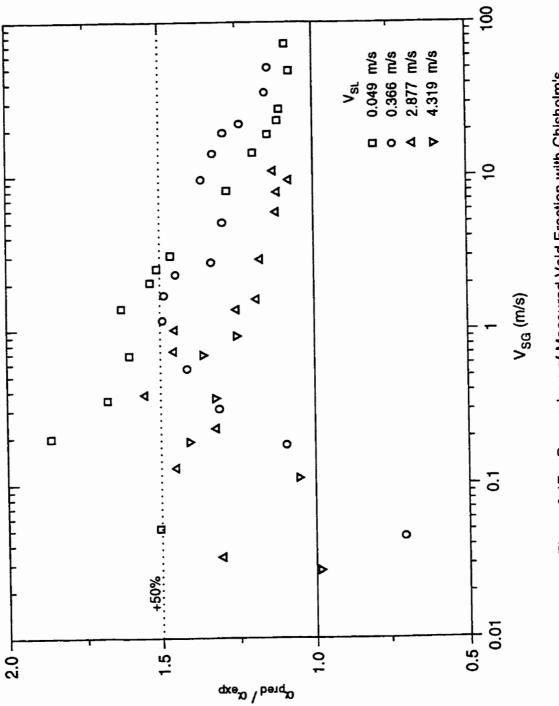
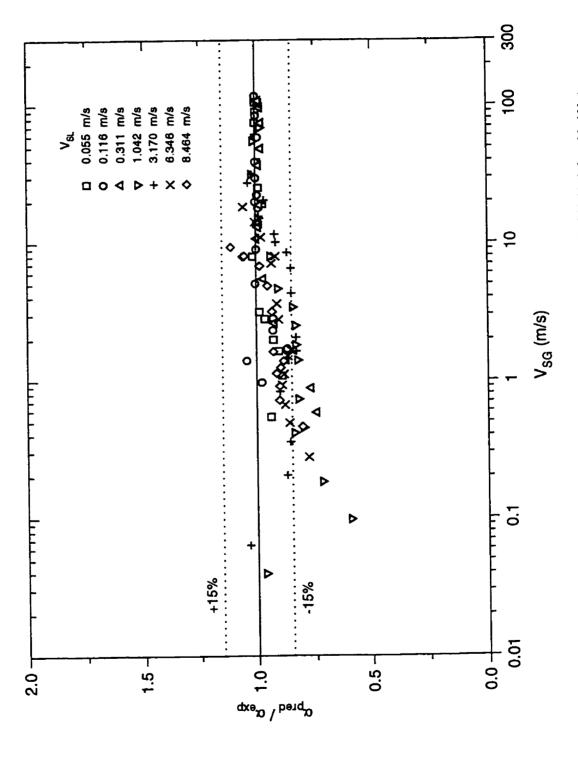

For the CISE correlation, since this method is for steam-water systems, it is reasonable to compare this method with the present air-water data only. Figure 6.18 shows that the method generally gives good prediction for the present data. Table G.1 gives details of the void fraction measured in the present investigation.

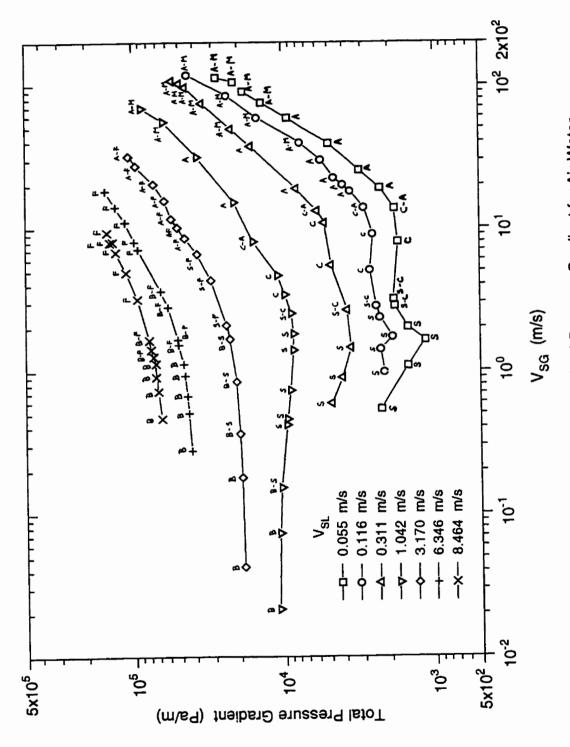
6.5 PRESSURE-DROP RESULTS AND DISCUSSION

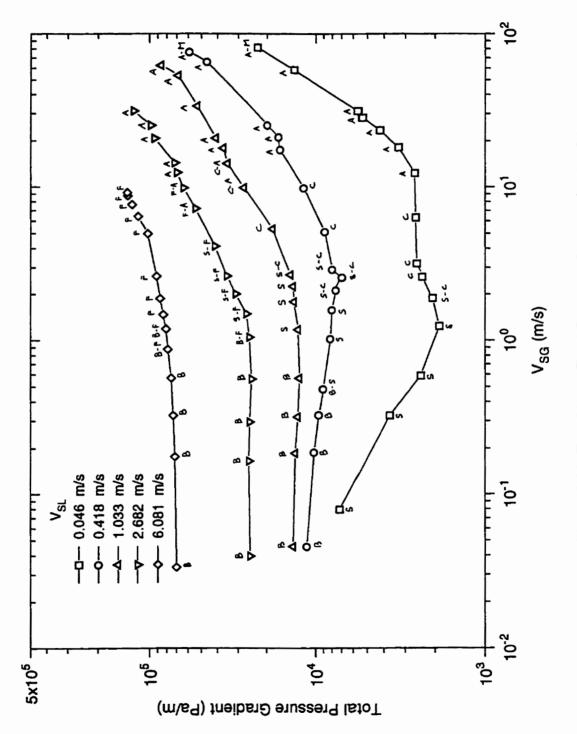
This section presents both the two-phase total and frictional pressure-drop data² of the present investigation. The method of calculating the two-phase frictional pressure drop from the measured total pressure drop is given in Appendix D.

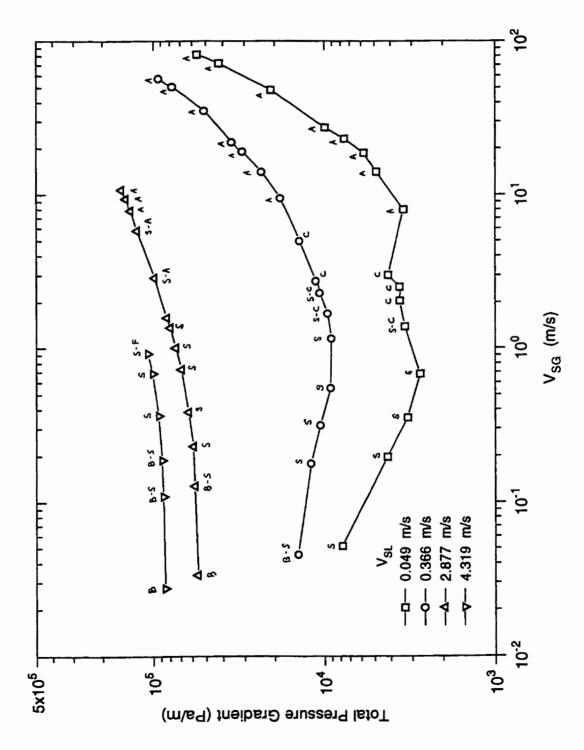
Figures 6.19 to 6.21 show the two-phase total pressure gradient data for air-water, air-G1 and air-G2 systems, respectively. It is useful to have a letter (indicating the flow pattern) beside each datum point, as then, one can use this flow pattern information as needed in the pressure-gradient analysis. In general, at any fixed V_{SL} , the two-phase total pressure drop increases with V_{SG} . However, the experimental data consistently show that the total pressure drop decreases when the flow is in the form of slug flow and at low V_{SL}

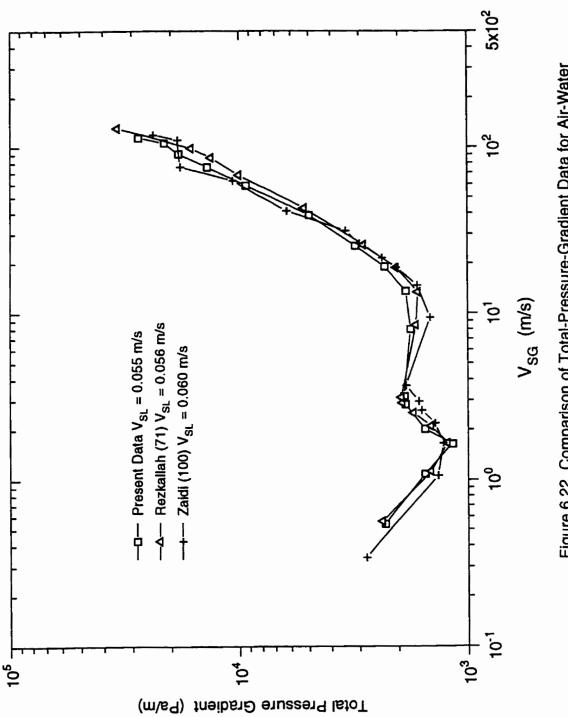
² Pressure drop was defined as $\Delta P = (P_{IN} - P_{OUT})$.

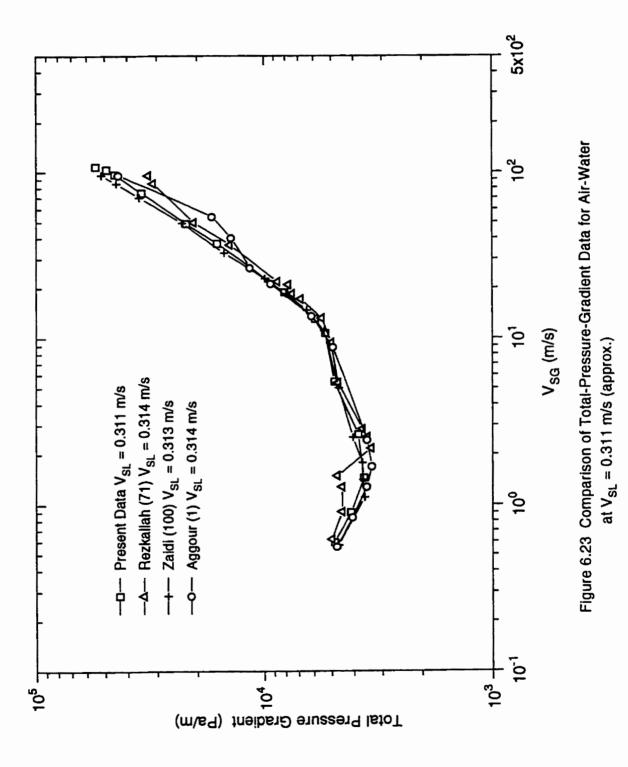

Figure 6.17b Comparison of Measured Void Fraction with Chisholm's Correlation (13) for Air-G1

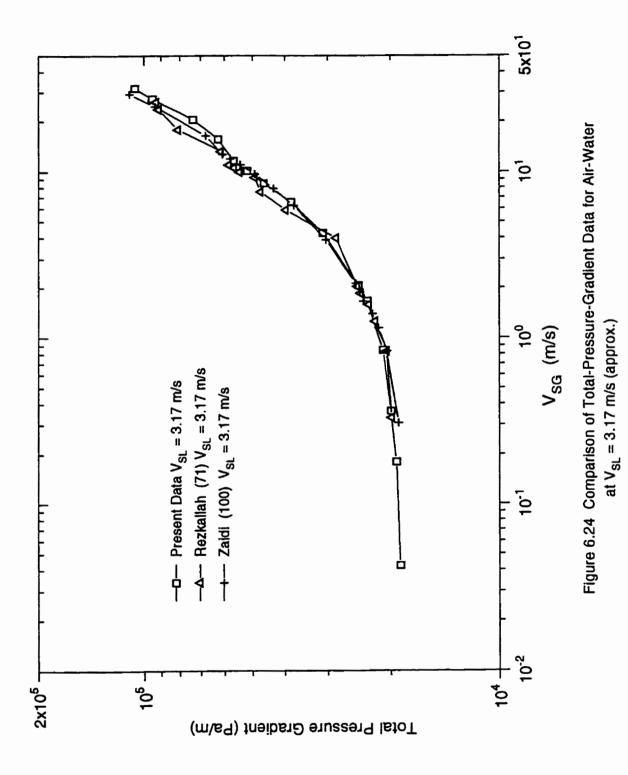




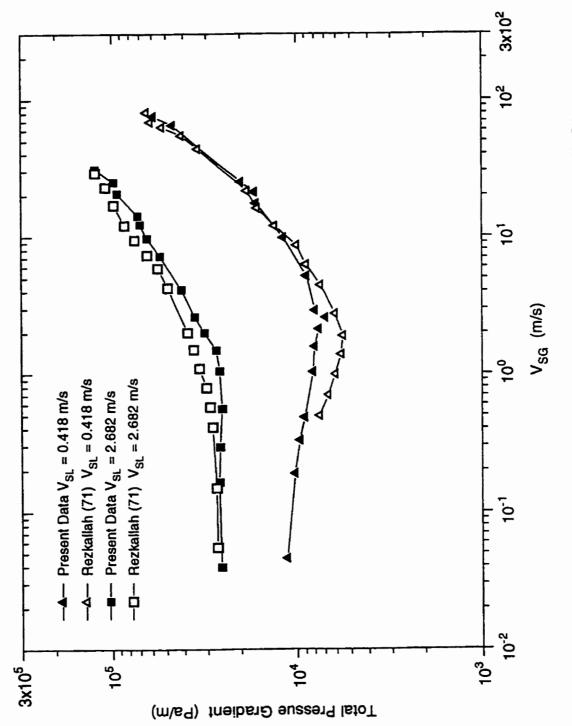


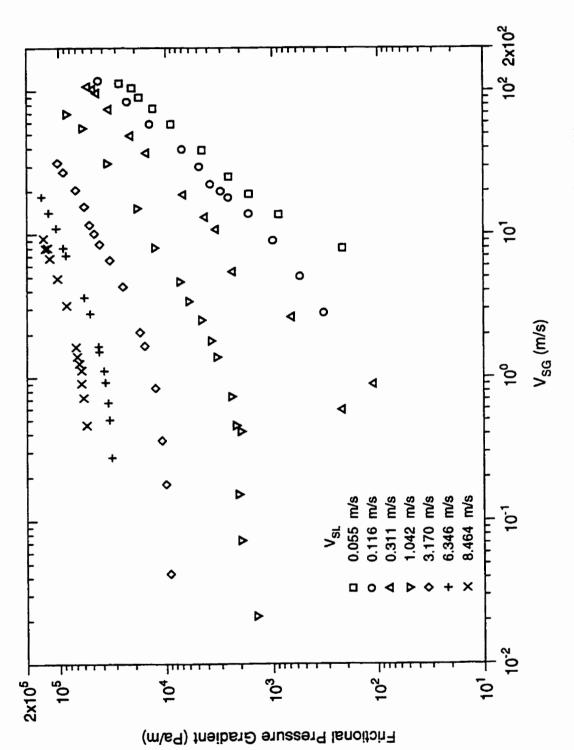
as seen in Figures 6.19 to 6.21. The decreasing trend stops when the flow pattern changes to churn flow (including slug-churn). This decrease of the total pressure drop in slug flow may be caused by the liquid flowing down the tube wall.


Figures 6.22 to 6.25 show the present total-pressure-gradient data of the air-water and air-G1 systems compared with the previous data from independent works using the same experimental facility. The results show excellent agreement among these data.


Figures 6.26 to 6.28 show the results of two-phase frictional pressure drop for airwater, air-G1 and air-G2, respectively, in the present investigation. The relevant equations for obtaining the frictional pressure drop from the total pressure drop are Equations D.26 to D.29 in Appendix D, where the measured void fraction had been used in the determination of the head term. At low V_{SL}, when the flow is associated with the bubbleslug transition and slug flow regimes, the two-phase frictional pressure drop had negative values. The negative-value data cannot be plotted on a logarithmic scale and, therefore, are excluded from the graphs. These data points which have been excluded from Figures 6.26 to 6.28 are as follows:

For air-water:	6 points at	$V_{SL} =$	0.055	m/s
		V _{sg} ≤	3.17	m/s
	4 points at	V _{SL} =	0.116	m/s
		V _{SG} ≤	2.35	m/s
	1 point at	V _{SL} =	0.311	m/s
		V _{sG} ≤	1.44	m/s
For air-G1:	7 points at	V _{SL} =	0.0457	m/s





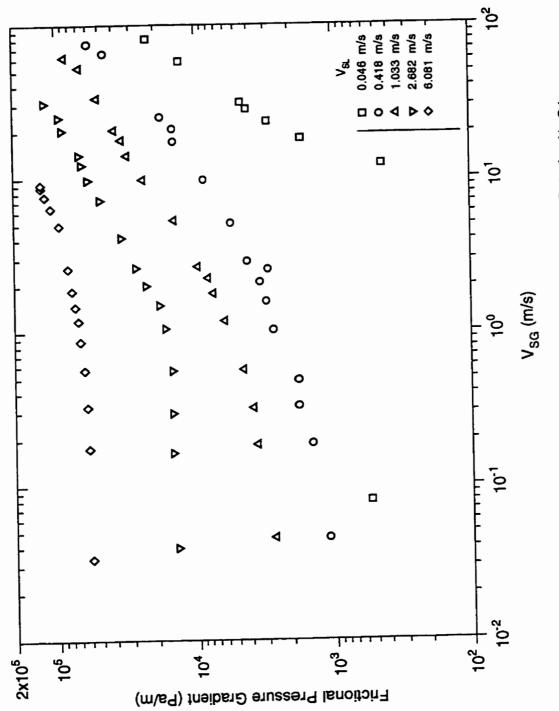
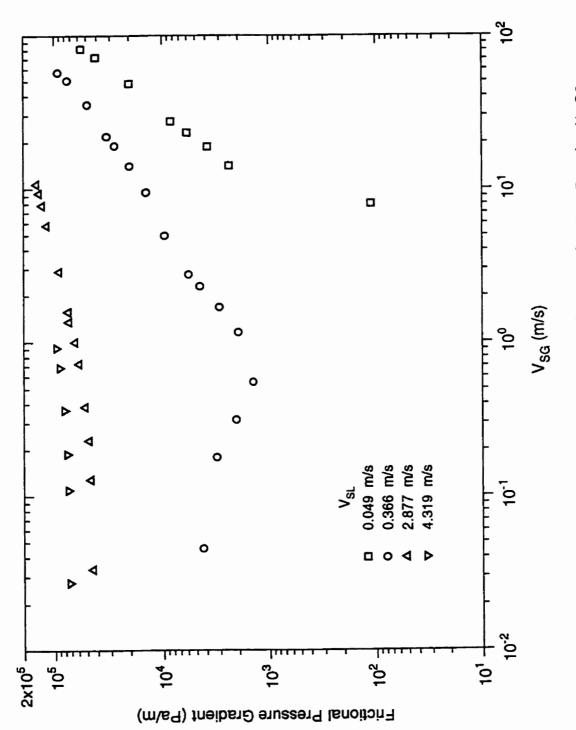
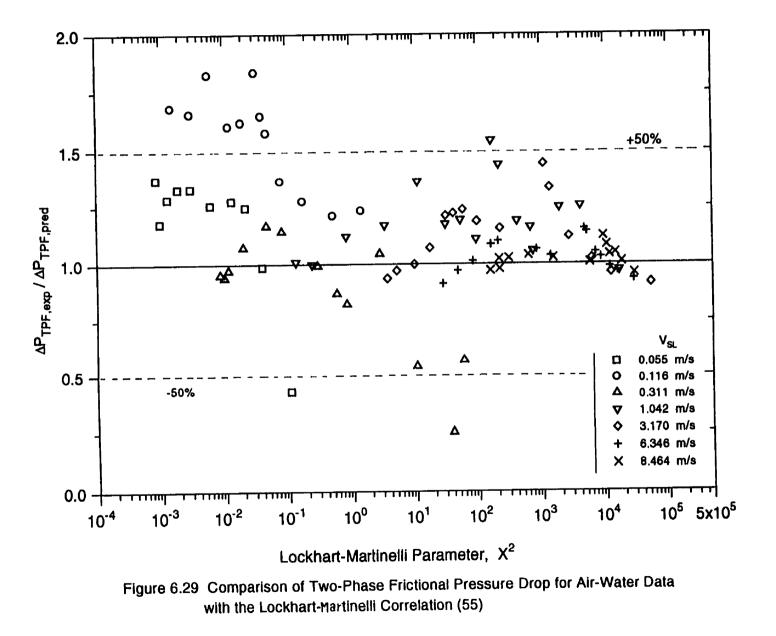
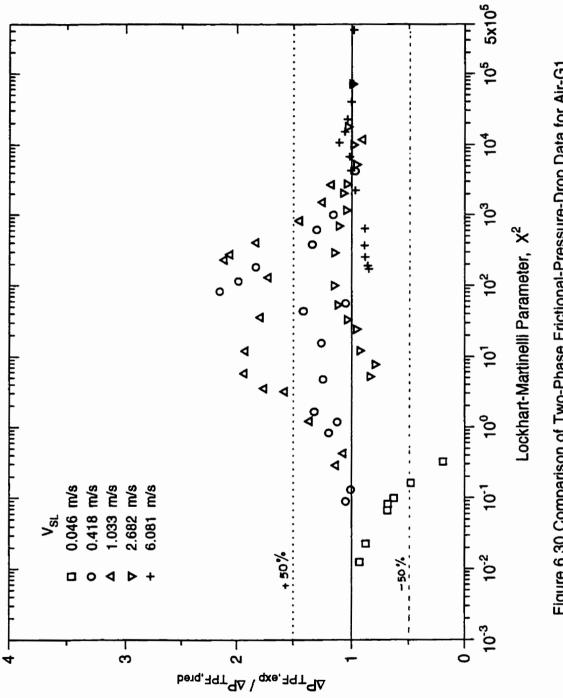



Figure 6.27 Two-Phase Frictional-Pressure-Gradient Data for Air-G1




$$0.33 \leq V_{SG} \leq 6.33 \text{ m/s}$$

For air-G2:
$$8 \text{ points at } V_{SL} = 0.0487 \text{ m/s}$$
$$V_{SG} \leq 3.02 \text{ m/s}$$

Without the negative data, the results from Figure 6.26 to 6.28 indicate that, in general, the frictional pressure drop increases with V_{SG} . For the cases of decreasing and the case of negative frictional pressure gradient, these two behaviours were also found in the experimental investigation of Cognet et al. (17). The authors observed these behaviours in the bubble-slug transition and slug flow.

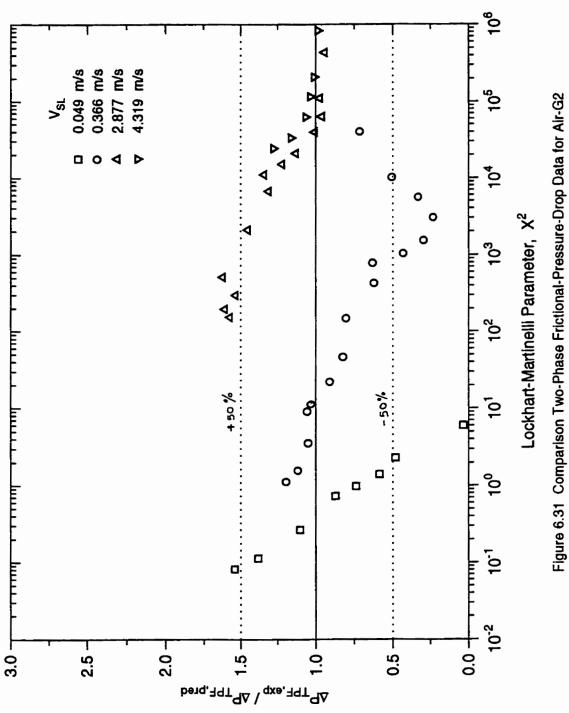
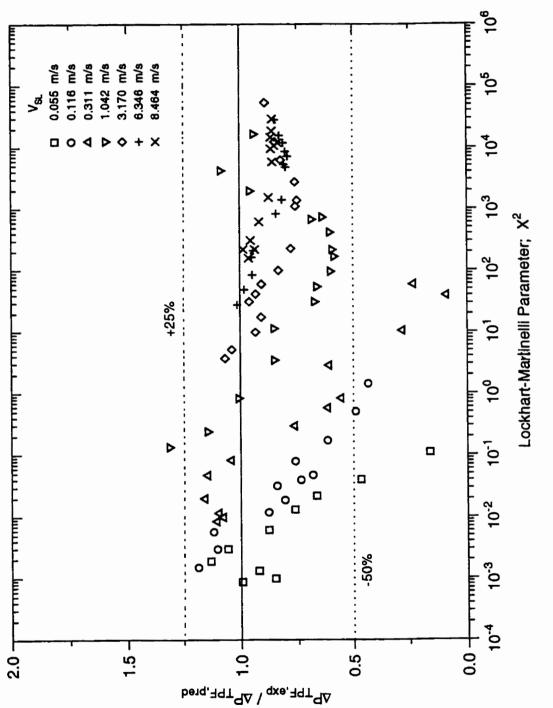
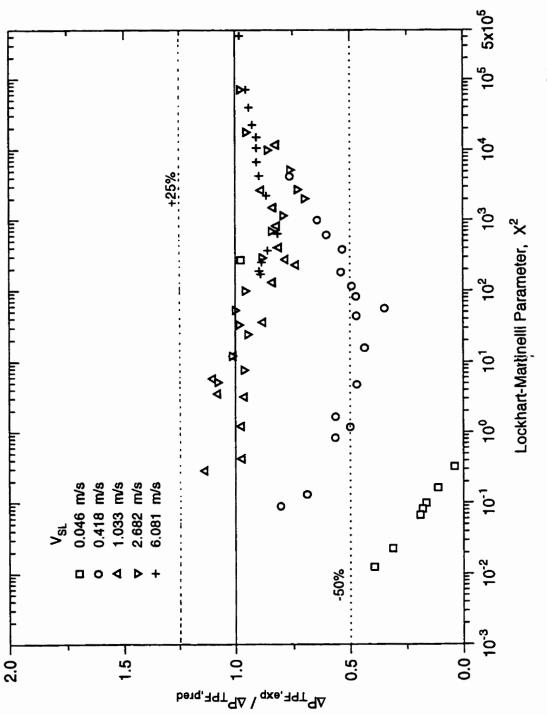

The two-phase frictional pressure drop data for all three air-liquid systems were compared with two well-known correlations, namely, Lockhart and Martinelli (55) and Friedel (28). These two predictive methods (28 and 55) were chosen because the Lockhart-Martinelli correlation (55) is classic while the correlation of Friedel (28) was recommended by Whalley (98). It should be noted that all the data where the negative values of frictional pressure drop occurred were excluded from this comparison. This is because the correlations never give negative values of ΔP_{TPF} .

Figure 6.29 to 6.31 show the results when the present data are compared with Lockhart and Martinelli's correlation. The results are plotted on graphs using the Lockhart-Martinelli parameter, X^2 , which is a non-dimensional parameter proposed by the authors (55). The appropriate regimes in terms of turbulent-turbulent, turbulent-viscous, etc. were used in the prediction. The data for the air-water system show fair agreement with the correlation. At high liquid velocities, the correlation of Lockhart and Martinelli gives excellent agreement with the present data. However, at low V_{SL} the correlation gives poor agreement, but the prediction was relatively improved when V_{SG} is increased

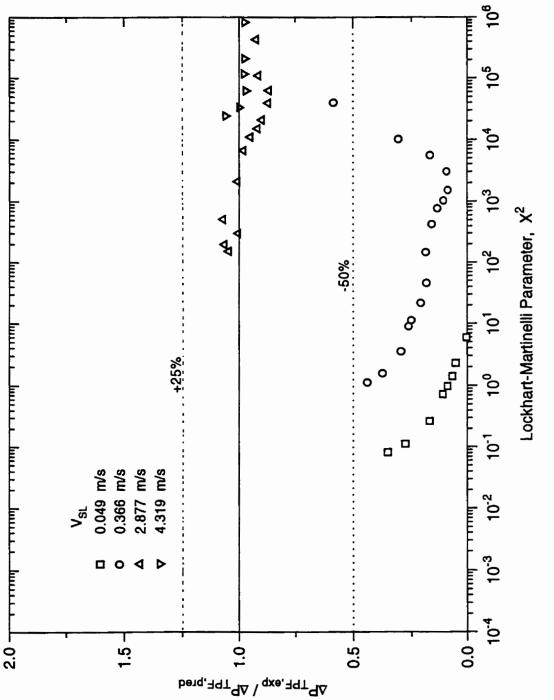
(at fixed V_{SL}). The poor predictions are normally associated with unsteady flow conditions such as bubble-slug, slug, slug-churn and churn flows. The same is for the case of air-G1 and air-G2, where the method generally gives good agreement at high V_{SL} (i.e., $V_{SL} \ge 2.682$ and $V_{SL} = 4.319$ m/s for air-G1 and air-G2, respectively).


Friedel (28) gave an empirical expression for a two-phase multiplier, Φ_{LO}^2 , which is applicable to any gas-liquid system, except when $(\mu_L/\mu_G) > 1000$. The two-phase multiplier was defined as

$$\Phi_{\rm LO}^2 = \frac{(-dp/dz)_{\rm TPF}}{(-dp/dz)_{\rm LO}}$$


where $(-dp/dz)_{LO}$ is the frictional pressure gradient in single-phase liquid flow with the same mass flow rate as the total two-phase flow rate. Figures 6.32 to 6.34 show a comparison of the present data with the prediction of Friedel. Good agreement can be seen for all liquids at $V_{SL} \ge 2.682$ m/s. At the lowest values of V_{SL} , the correlation markedly overpredicts the values of frictional pressure drop.

6.6 SUMMARY


It has been demonstrated in this chapter that flow pattern in two-phase gas-liquid flow is an important factor in frictional pressure drop. As shown in Appendix D, in order to determine an accurate value of two-phase frictional pressure drop, the value of mean void fraction is needed. Repeatability tests for two-phase pressure drop for all air-liquid systems in the present study were performed. The results show excellent repeatability and are presented in Appendix E. For predictions, Whalley (98) commented that "Substantial

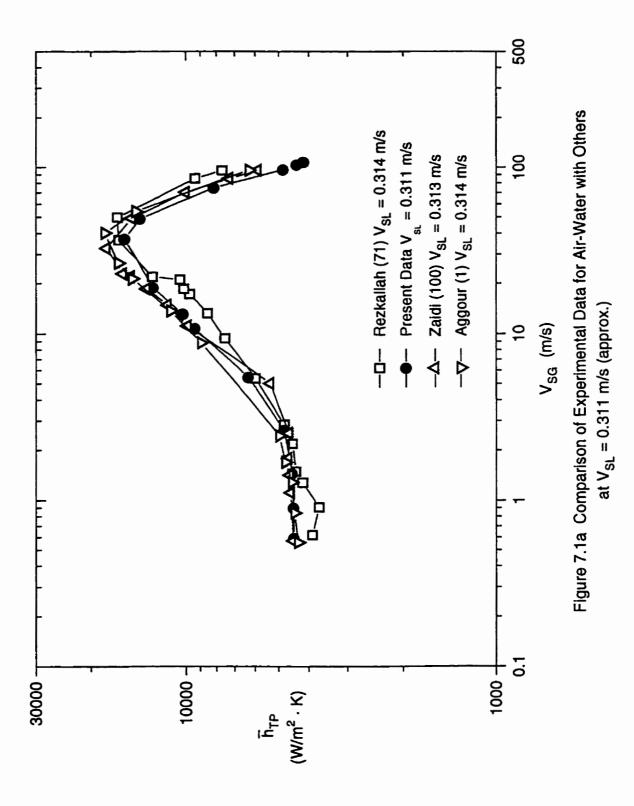
improvement in the accuracy will not be made until modelling methods based on individual flow patterns and their characteristics are used".

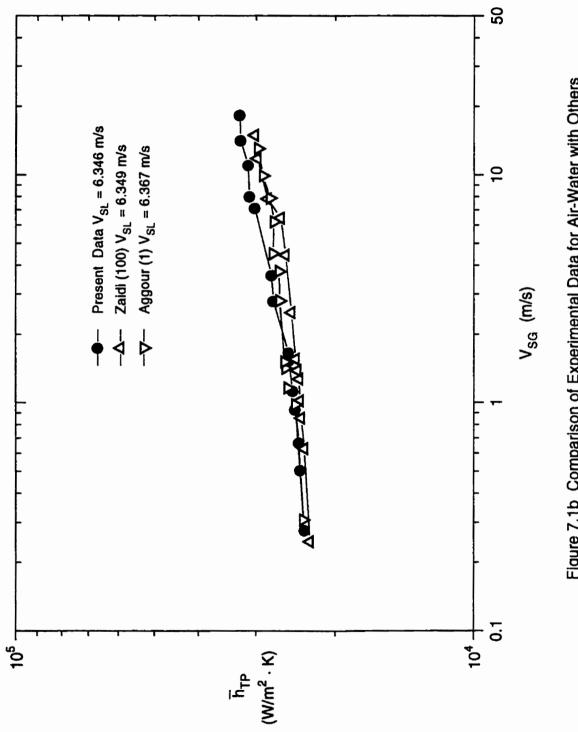
Chapter 7

PRESENTATION AND DISCUSSION OF HEAT-TRANSFER DATA

7.1 INTRODUCTORY REMARKS

This chapter presents and discusses the results of the two-phase heat-transfer tests conducted in the present investigation. During the course of experiments, both local and mean heat-transfer coefficients of all three air-liquid systems were obtained. The results of these local heat-transfer coefficients are shown in the next section. This is followed by the presentation and discussion of mean heat-transfer coefficients. Repeatability tests for heat transfer were done for all three air-liquid systems during the experiment of which the results are presented in Appendix E.


As pointed out in Chapter 4, during the course of the experiment, the system pressure varied from datum point to datum point at each run. These system pressures varied from 110.3 to 227.5 kPa for the case of $V_{SL} < 4.23$ m/s and 158.6 to 344.7 kPa for the case of $V_{SL} > 4.23$ m/s. However, the effect of gas density on heat transfer was investigated by Aggour (1) who found that for the flow where $V_{SL} > 4.23$ m/s the effect of gas density on heat transfer is negligible. For the case of lower V_{SL} (i.e., $V_{SL} < 4.23$ m/s), the heat-transfer coefficient increases by approximately 20 percent when gas-phase density increases by a factor of 7. The results of Aggour (1) indicate that, for the range of variation of the system pressure change involved in the present investigation, the heat-transfer coefficient was affected approximately by 5 percent in the case of $V_{SL} < 4.23$ m/s


and the variation of system pressure has almost no effect on h_{TP} for the case of $V_{SL} > 4.23$ m/s.

The argument was made earlier that because of the good agreement between the present single-phase data and well-accepted correlations, one would expect the two-phase data to be reliable. Still, where comparisons can be made with other studies for reasonably similar conditions, and the agreement between the present and other data is good, then confidence should be further enhanced. Therefore, some of the present air-water and air-G1 data were compared with data (at very similar flow conditions) of independent previous studies (1, 71, 100) using the same experimental facility and with more recent data (where a different experimental facility, of 9.53-mm i.d., was used) of Rite and Rezkallah (73) and Rite (72). The results in Figures 7.1a to c indicate good agreement between the present data of air-water systems and others which were independently taken. Figures 7.2a and 7.2b also indicate good agreement, for the air-G1 system, between the present data and those of Rezkallah (71) and Rite (72).

7.2 LOCAL HEAT-TRANSFER COEFFICIENTS

The procedure for calculating the two-phase local heat-transfer coefficient is similar to that of liquid single-phase flow, and is given in detail in Appendix D. Figures 7.3 (a to g), 7.4 (a to e) and 7.5 (a to d) show local heat-transfer coefficients for air-water, air-G1 and air-G2 systems, respectively. To avoid too much data on individual figures, thereby showing more clearly the effect of the addition of gas phase on h_{TP} , only selected data (approximately 80% of all the data, including the extreme cases) of the tests are

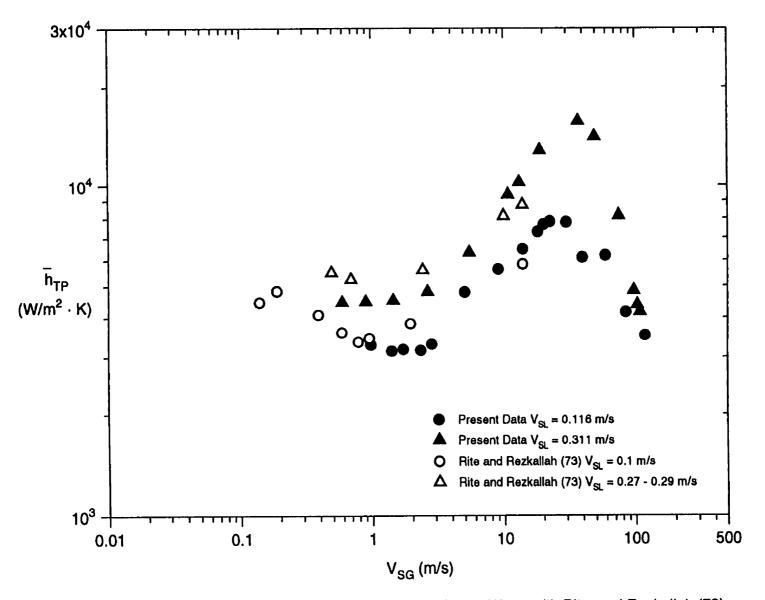
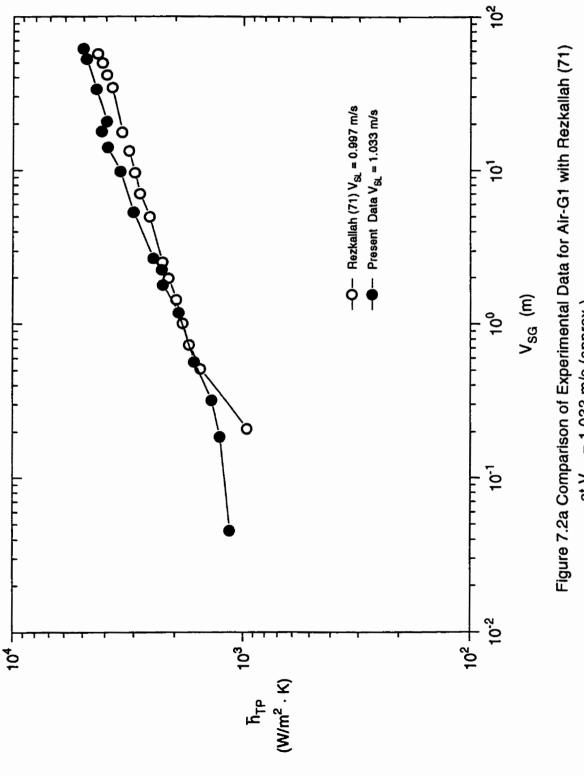
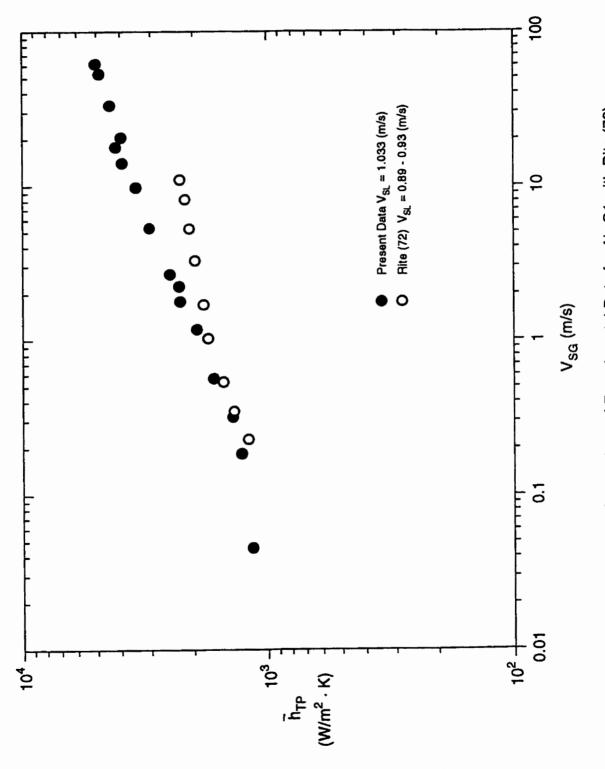
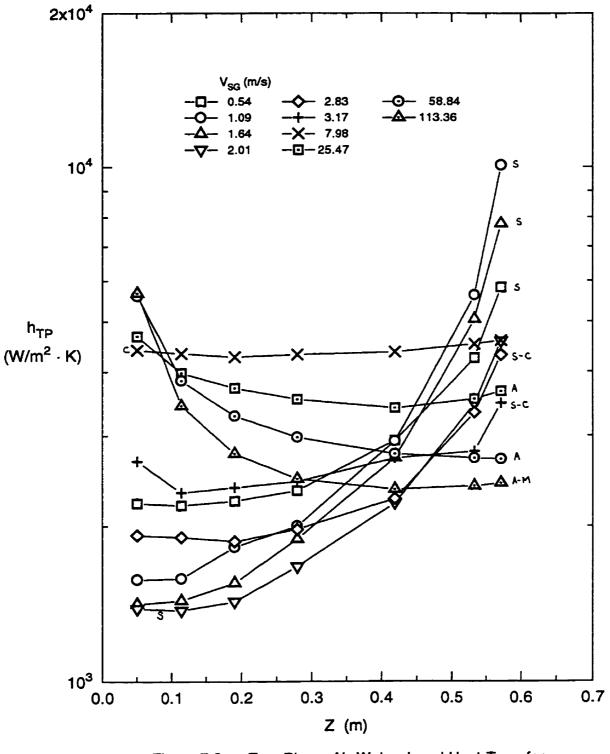
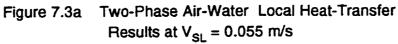




Figure 7.1c Comparison of Experimental Data for Air-Water with Rite and Rezkallah (73)


130



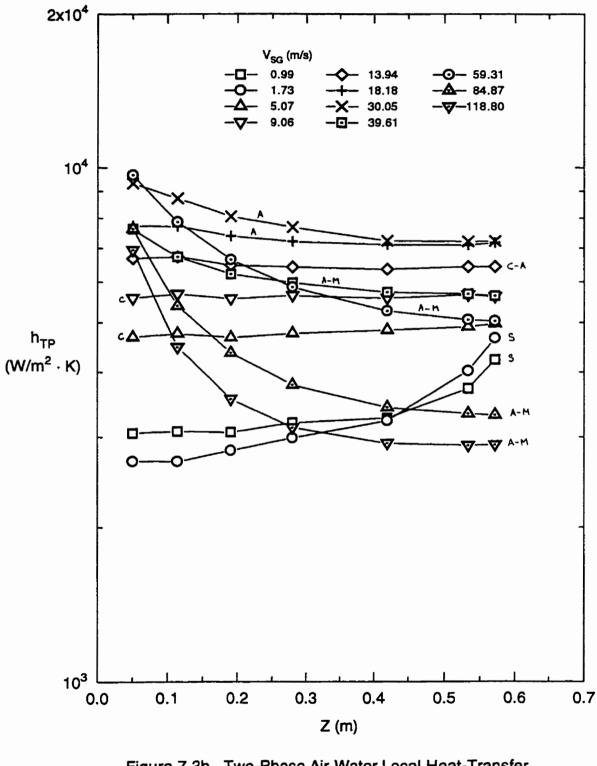
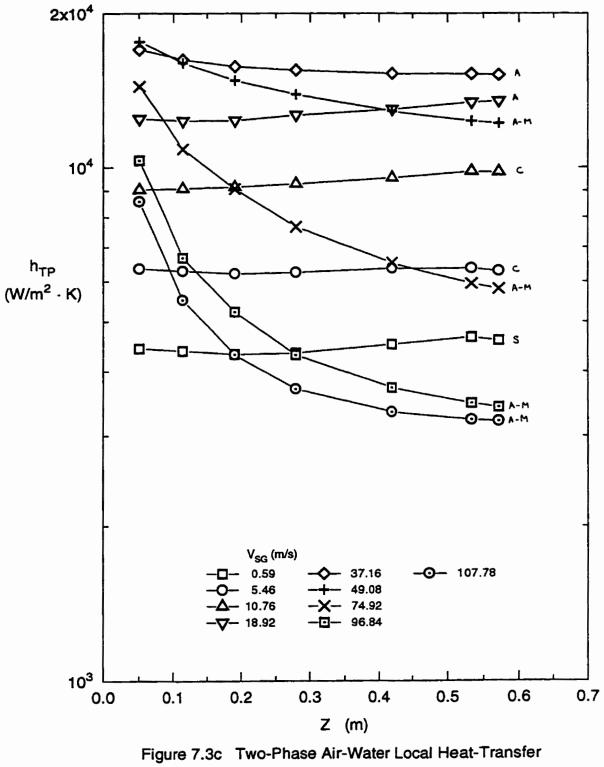
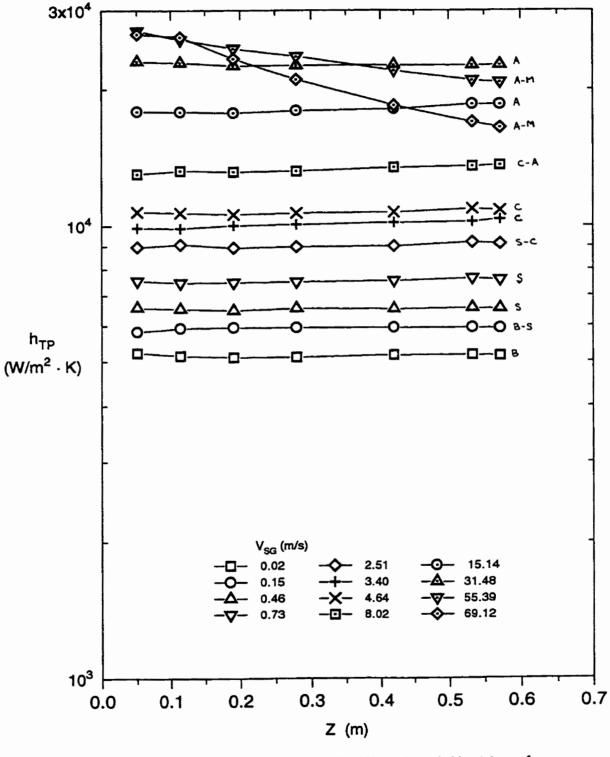
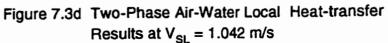
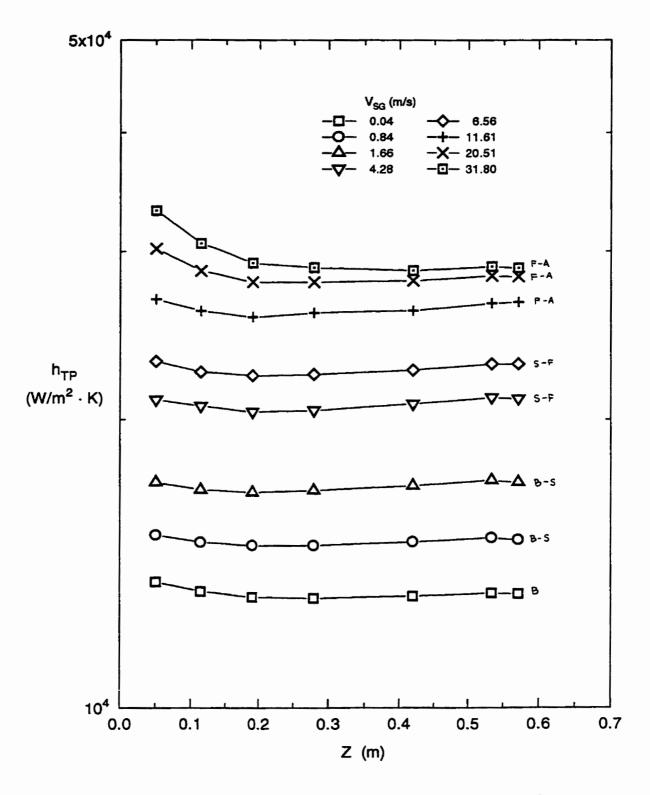
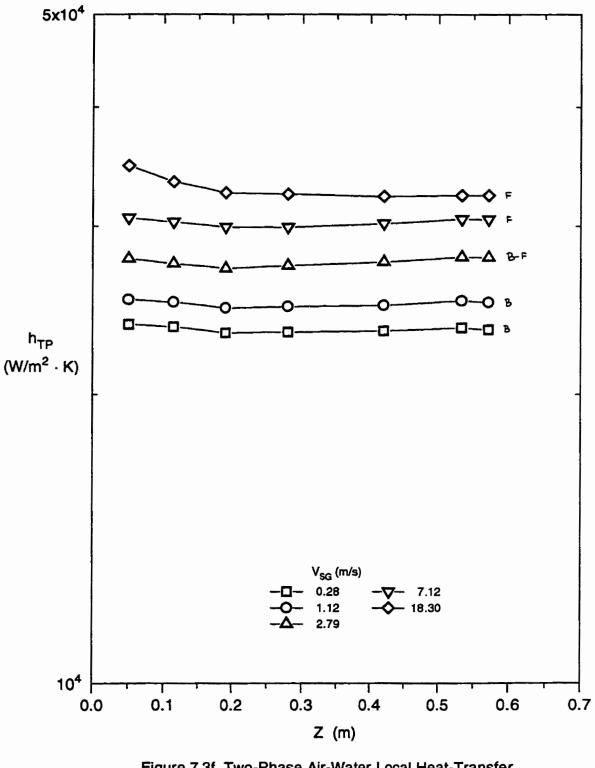
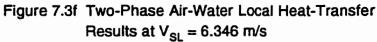
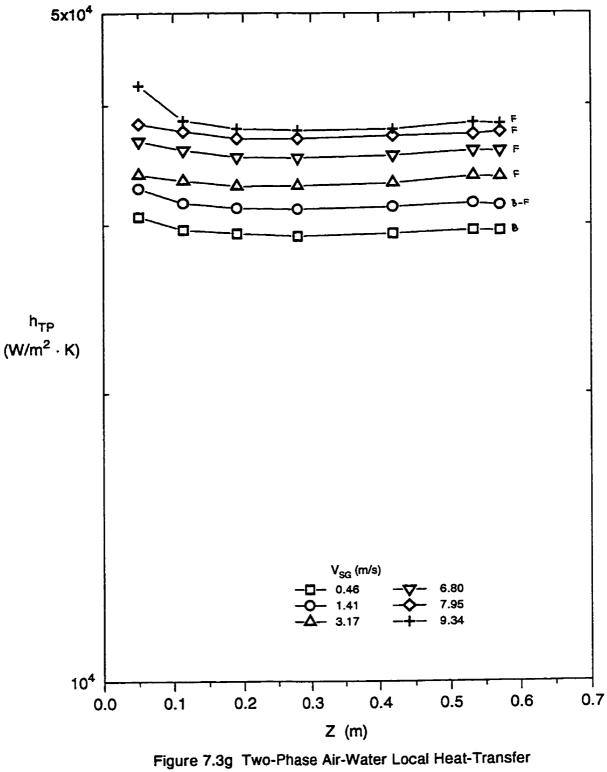
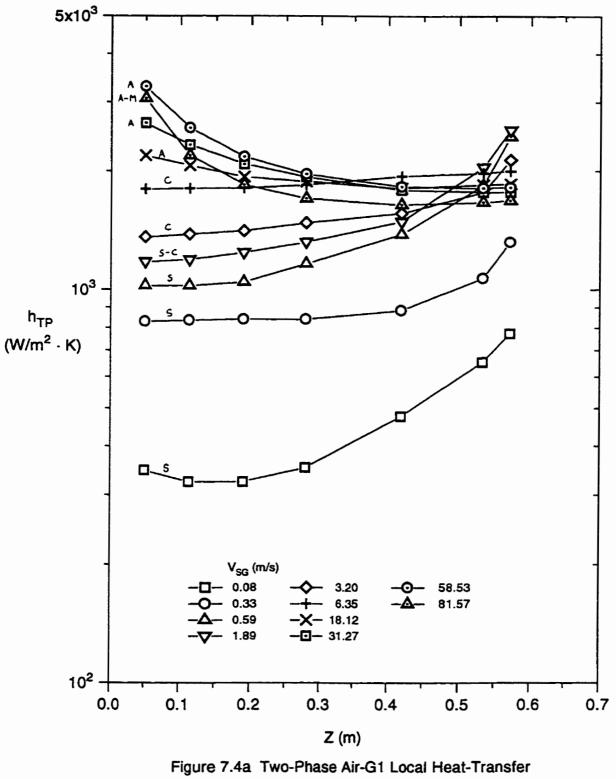
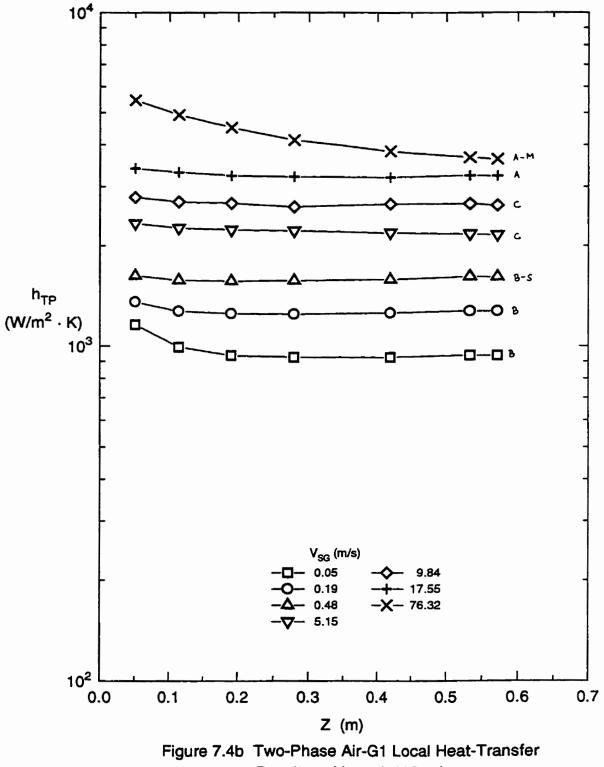





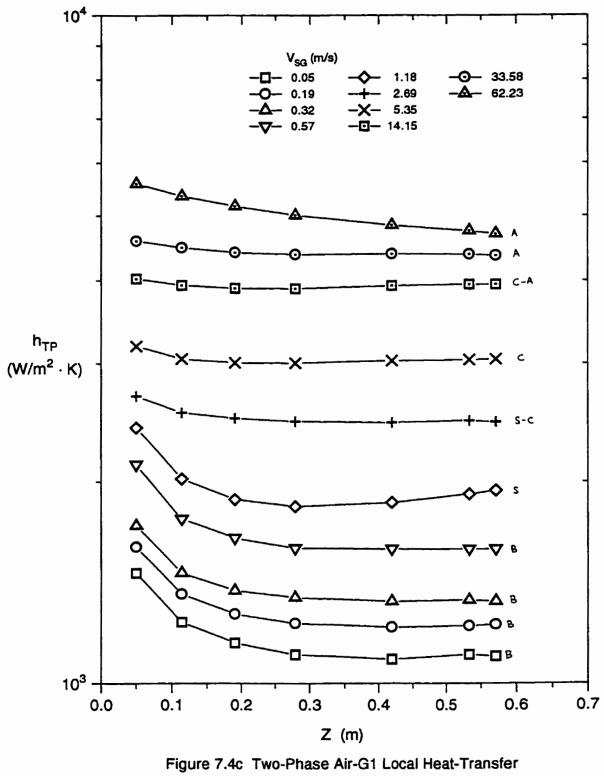
Figure 7.3b Two-Phase Air-Water Local Heat-Transfer Results at $V_{SL} = 0.116$ m/s

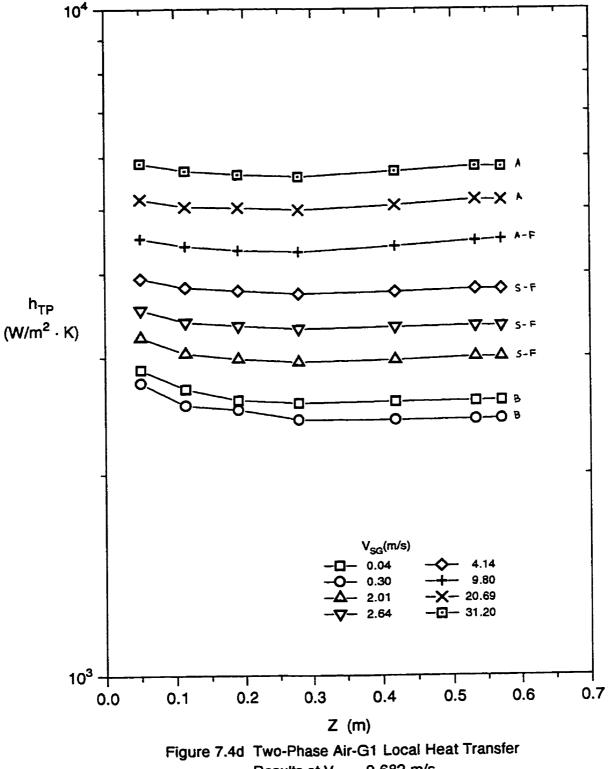
Results at V_{SL} = 0.311 m/s

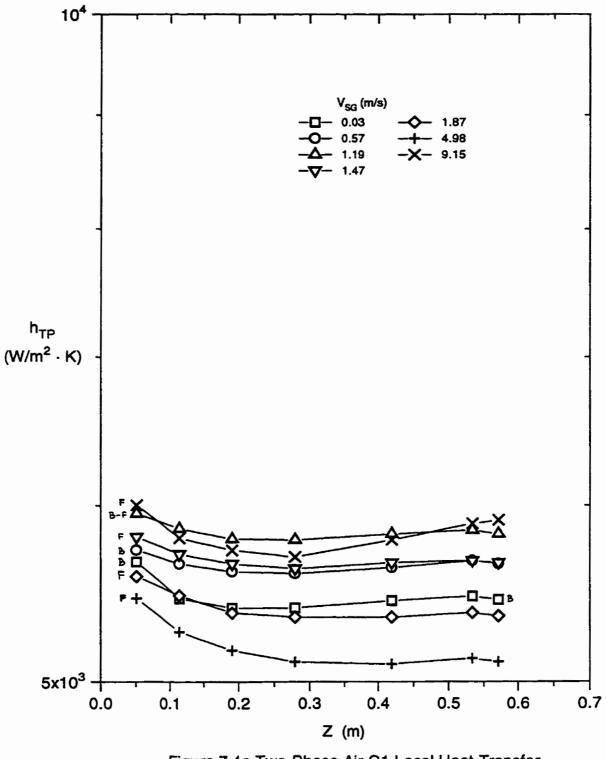





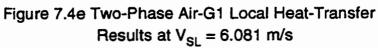

Figure 7.3e Two-Phase Air-Water Local Heat-Transfer Results at $V_{SL} = 3.17$ m/s




Results at V_{SL} = 8.464 m/s

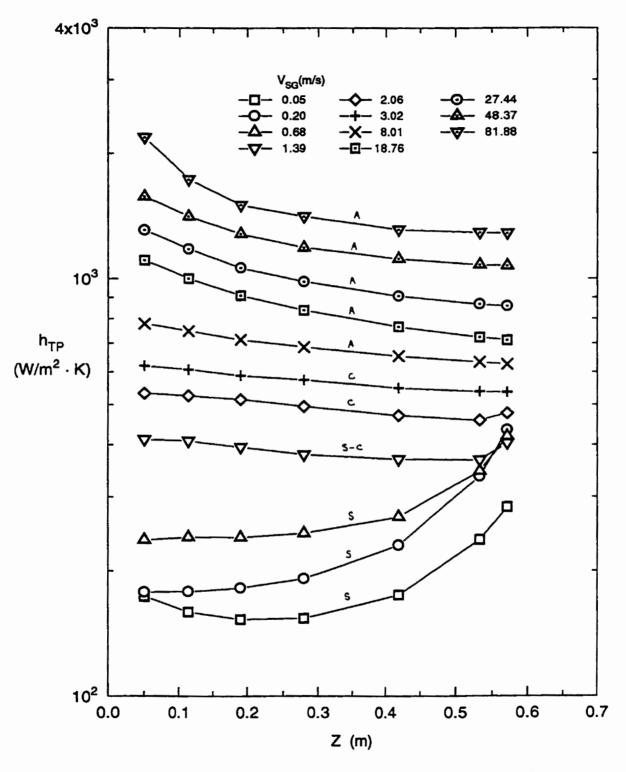
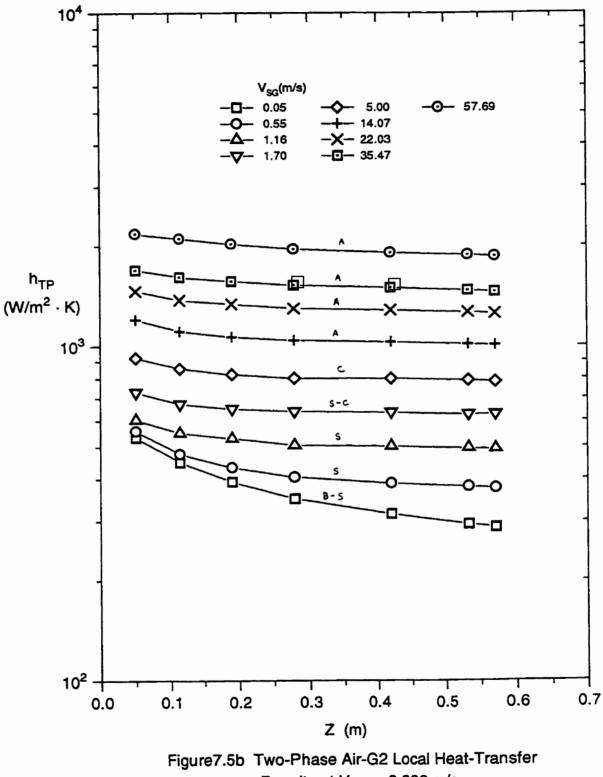
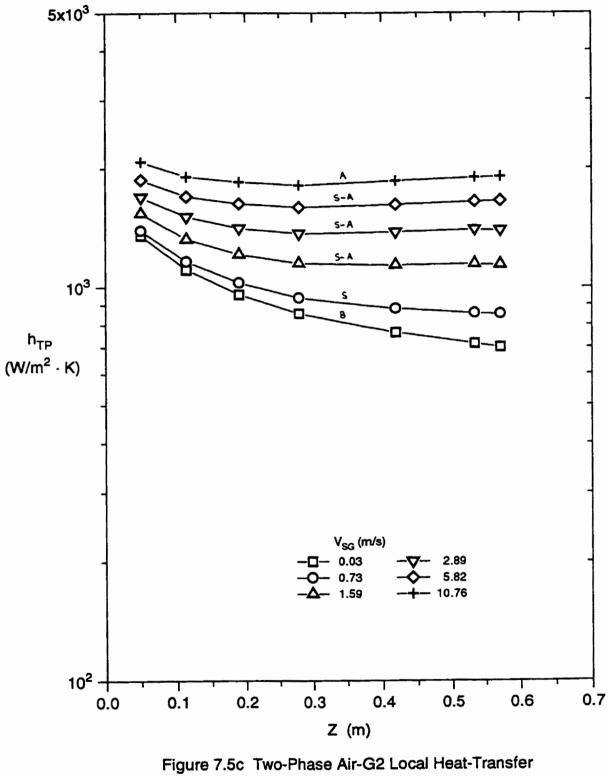

Results at V_{SL} = 0.046 m/s

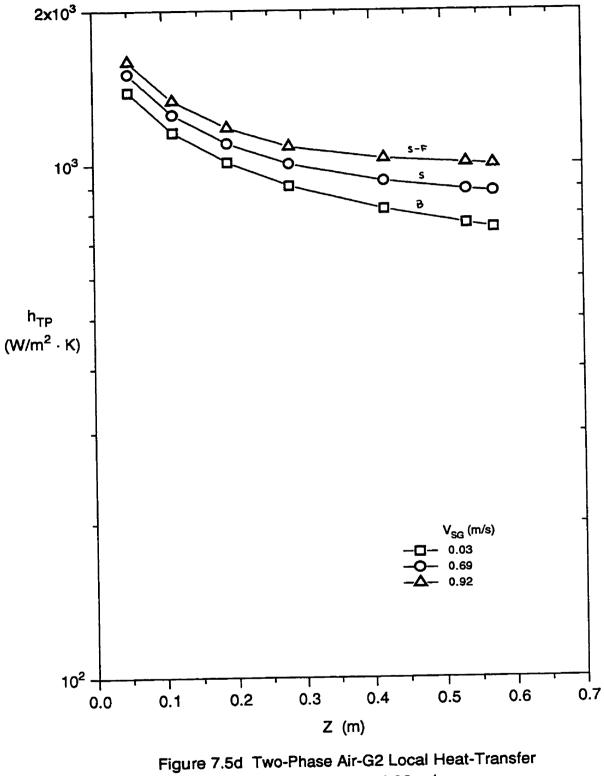

Results at V_{SL} = 0.418 m/s



Results at V_{SL} = 1.033 m/s

Results at V_{SL} = 2.682 m/s


Figure 7.5a Two-Phase Air-G2 Local Heat-Transfer Results at $V_{SL} = 0.049$ m/s

Results at V_{SL} = 0.366 m/s

Results at V_{SL} = 2.877 m/s

Results at V_{SL} = 4.32 m/s

shown. However, the complete set of data of all tests can be found in tabulated form in Appendix G.

In each individual figure, h_{TP} was plotted against the axial distance (z) along the heated test section for a given liquid superficial velocity, with the gas superficial velocity as a parameter. It is quite useful to have the letter code for the observed flow pattern appearing beside the data points. Hence, the results can be discussed in terms of flow pattern when needed. The letter code is the same as that appearing in Table 6.1. After analysis of the results, the following remarks can be made.

1) At very low V_{SL} ($V_{SL} \le 0.311$ m/s) and low gas flow rates, h_{TP} increases along the heated test section. This heat-transfer trend is contradictory to that of singlephase flow. However, this peculiar trend is always associated with slug flow. This increasing trend was also observed in the previous studies of Vijay (93), Aggour (1), Zaidi (100), and Rezkallah (71). This h_{TP} -profile is likely caused by the influence of the liquid falling film on the tube wall. In this range of V_{SL} , as gas flow rate increases, the h_{TP} profile becomes flatter and then tips downwards along the test section; these profiles are observed when the two-phase flow is churn or annular flow. When V_{SG} is higher yet, the flow becomes annular-mist flow, and the h_{TP} -profile decreases more steeply with z. One explanation might be that in annular mist flow, as V_{SG} increases, more and more gas occupies the flow channel space (higher and higher values of void fraction) giving lower and lower effective Prandtl numbers of the two-phase mixture. In other words, the gasliquid mixture was moving toward single-phase flow can be made. Figure 7.6, taken from Kays and Crawford (46), shows the effect of Prandtl number on local Nusselt numbers in the thermal entry region of a circular tube in single-phase flow.

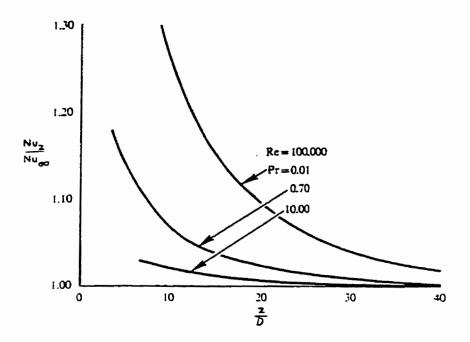
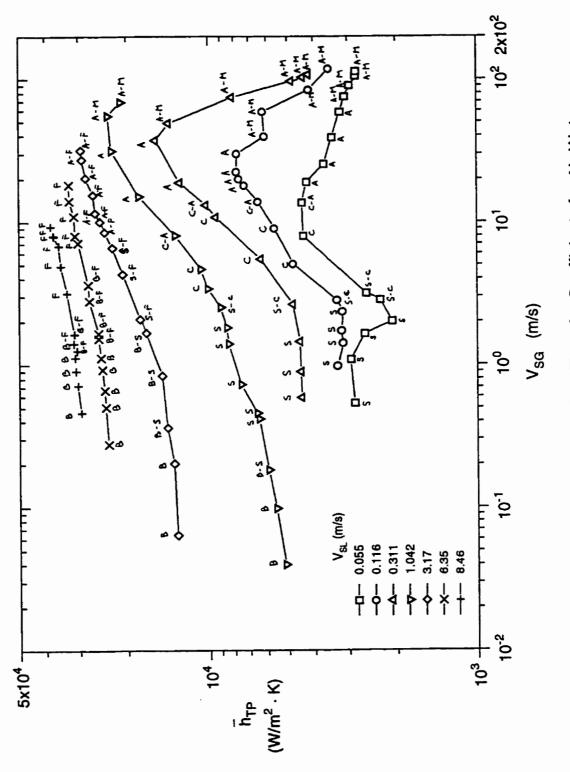


Figure 7.6 Influence of Pr on Nu in Thermal Entry Length, taken from (46)

2) At medium liquid velocity (0.311 < $V_{SL} \le 3.170$ m/s), starting with low V_{SG} , the h_{TP}-profile decreases with z, slightly for air-water (or not at all for $V_{SL} = 1.042$ m/s), but in a more pronounced fashion for the more viscous liquids. Further, some data in this range of V_{SL} and V_{SG} are associated with slug flow; however, the peculiar increasing trend of h_{TP} with respect to z observed in 1) was not observed here. Possibly the upward liquid flow rate is great enough so that the downflow of the falling liquid film does not dominate the flow any longer. When the gas flow rate is increased, the h_{TP}-profile decreases

with z, this being associated with annular-mist (this occurred in air-water and air-G1 systems only), some annular and annular-froth conditions.


3) At high V_{SL} ($V_{SL} > 3.170$ m/s), the h_{TP}-profiles essentially all decrease with z, the associated flow patterns being bubble and froth except for two profiles shown for slug and slug-froth in air-G2.

7.3 MEAN HEAT-TRANSFER COEFFICIENTS

The mean heat-transfer coefficients, h_{TP} , in this section were calculated using the method described in Chapter 5 (length integration of local h_{TP}). Figures 7.7 to 7.9 show the results for two-phase mean heat-transfer coefficients of air-water, air-G1 and air-G2 obtained in this investigation, respectively. In general, for fixed V_{SG} , the h_{TP} increases with V_{SL} for all air-liquid systems. The letter code given beside each datum point is to identify the flow regime. This is useful since one can analyze the mean heat-transfer coefficients in terms of flow pattern if needed. After analysis of the data, the following remarks can be made:

For the Air-Water System (Figure 7.7):

At low V_{SL} ($V_{SL} \le 0.311$ m/s), with low V_{SG} , the mean heat-transfer coefficient drops at first. This dropping trend was associated with slug flow. It is interesting that this dropping trend not only occurs in \bar{h}_{TP} but also occurs in the case of pressure drop (see Figure 6.20). Likely the drop in both mean heat-transfer coefficient and pressure drop is caused by the liquid falling film on the tube wall. When V_{SG} increases further, the \bar{h}_{TP} increases continuously through annular flow to an unmistakable maximum (for each V_{SL})

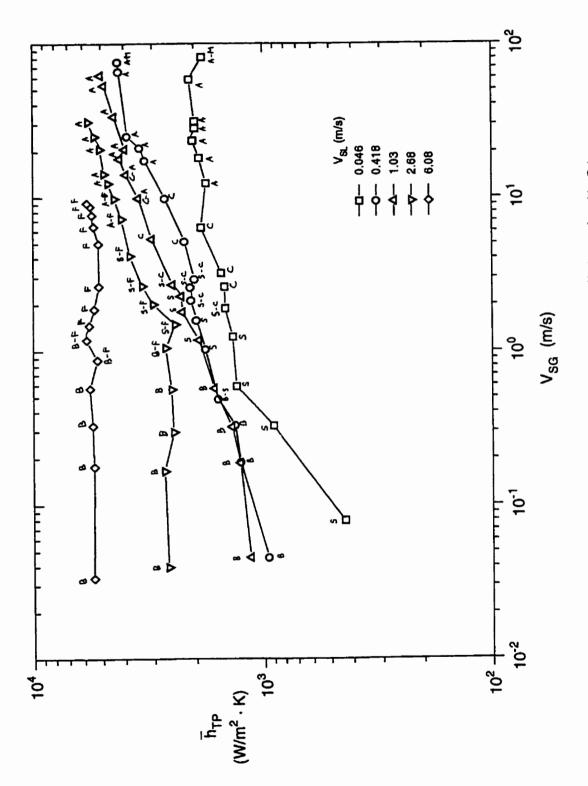
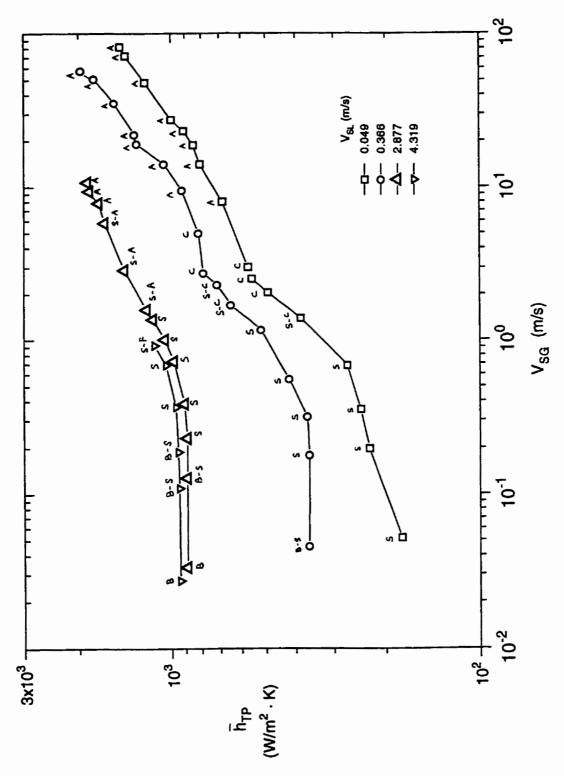



Figure 7.8 Mean Heat-Transfer Coefficients for Air-G1

and begins to drop when the flow becomes annular-mist. The h_{TP} keeps on dropping with increasing V_{SG}, which behavior might be explained by considering that in annular-mist flow the liquid film must be very thin (indeed, by naked eye one has the impression that there is no liquid film at all on the wall). The heat-transfer process associated with conditions near the wall (where the major resistance to heat transfer occurs) becomes more and more gas-like, with an associated reduction in the heat-transfer coefficient. At medium-to-high V_{SL} (V_{SL} > 0.311 m/s), the \bar{h}_{TP} increases with V_{SG}, in general. However, when the flow becomes annular-mist, the \bar{h}_{TP} starts to drop (as with lowerV_{SL}). This can be seen for V_{SL} = 1.04 m/s. For the case of V_{SL} ≥ 3.17 m/s where annular-mist flow was not observed, \bar{h}_{TP} increased monotonically with V_{SG}, for fixed V_{SL}. The enhancement of \bar{h}_{TP} with V_{SG} (at fixed V_{SL}) became less pronounced as the V_{SL} increased.

For the Air-G1 and Air-G2 Systems (Figures 7.8 and 7.9):

In general, \tilde{h}_{TP} increases as V_{SG} increases. This increase of \tilde{h}_{TP} with V_{SG} is more pronounced at lower liquid superficial velocities. The effect of gas on \tilde{h}_{TP} enhancement is almost not noticeable when V_{SL} is very high, such as in the case of air-G1 at $V_{SL} = 6.081$ m/s. Considering air-G1 and air-G2, the annular-mist flow pattern was observed only in the air-G1 system, and then only for two data points in Figure 7.8. One does not therefore see the dramatic decrease of \tilde{h}_{TP} with V_{SG} in annular-mist flow, which was seen with the air-water system at low V_{SL} . So far as the author is aware, the air-G2 heat-transfer data are new.

7.4 SUMMARY

The combination of the single-phase results (Chapter 5) and the material presented in this chapter (comparison with other studies on this apparatus and another) indicate that the results are reliable. Further, the air-G2 data have not appeared before in the literature. The advantage of having this combination of measured quantities (h_{TP} , α , and ΔP) will be demonstrated in the next chapter where heat-transfer correlations with pressure drop (or wall shear stress) and/or mean void fraction are assessed. The existence of these data should prove valuable for future modelling or correlation development.

Chapter 8

PREDICTIVE METHODS FOR TWO-PHASE TWO-COMPONENT HEAT TRANSFER

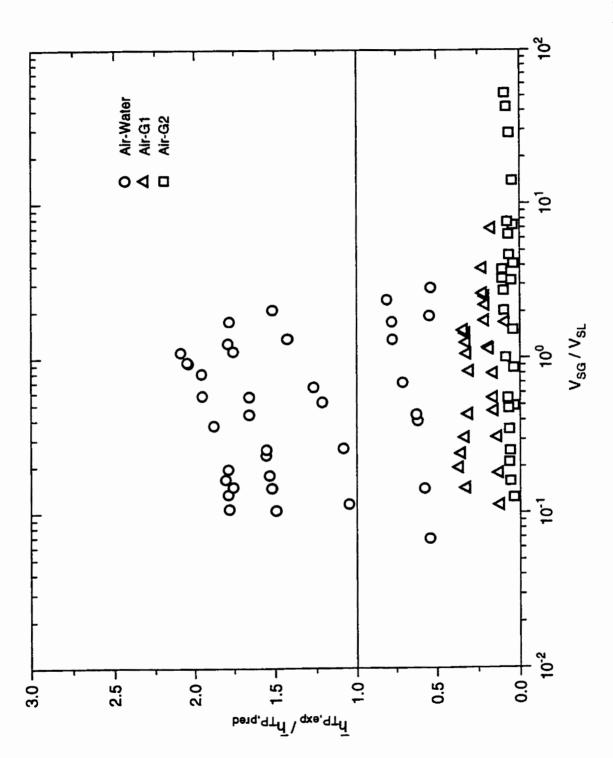
8.1 INTRODUCTORY REMARKS

A number of predictive methods for mean heat-transfer coefficients h_{TP} in twophase flow in vertical tubes appear in the literature. While some of these methods are purely empirical, others are based on theoretical or semi-theoretical models. Rezkallah (71) made a thorough assessment of the methods for mean heat-transfer coefficients covering a very wide range of conditions. In his work, for the predictive methods which required void fraction α , predicted values of α using the Chisholm (13) correlation were used. In the present study α was measured, as was ΔP_{TOT} and heat-transfer coefficients. Having accurate values of α allowed for accurate values of ΔP_{TPF} to be determined, and in turn accurate values of wall shear stress, τ_w . The focus in this chapter is the assessment of heat-transfer predictive methods which require ΔP_{TPF} , or τ_w and/or α . The assessed methods (their restrictions can be found in Table 2.2) are as follows:

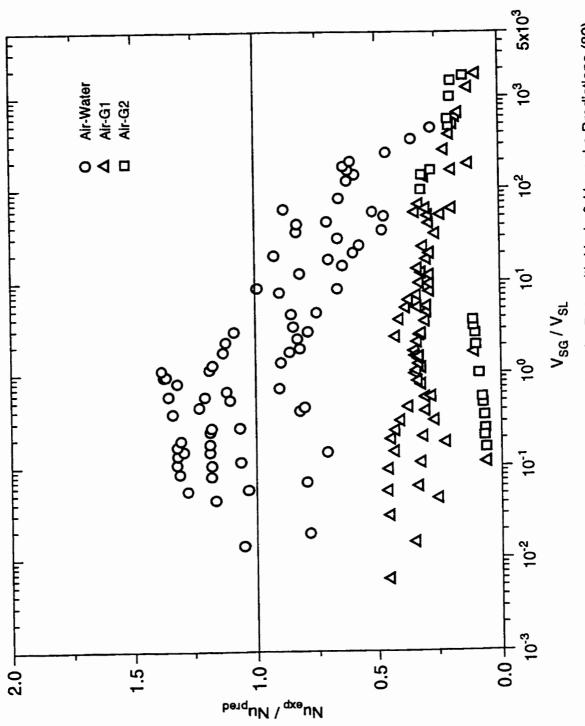
> Katsuhara and Kazama (45), Ueda and Hanaoka (89), Liquid Acceleration Model (L.A.M.) Vijay et al. (94),

> > 157

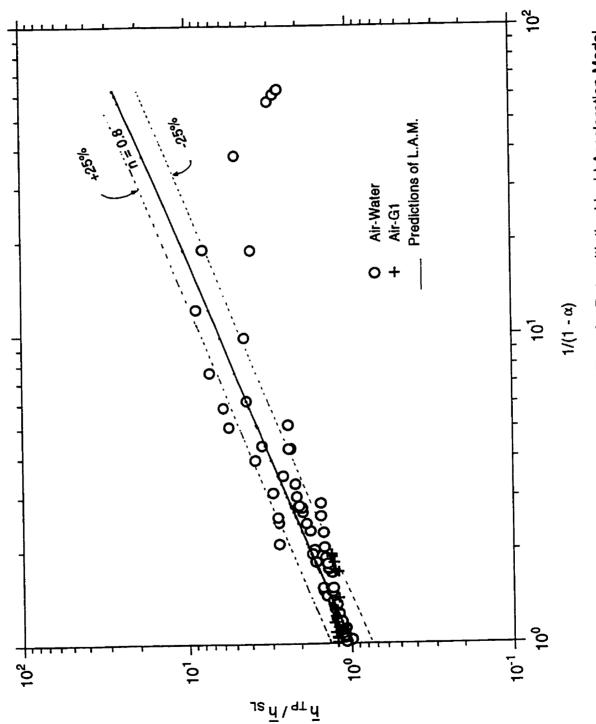
Drucker et al. (23),

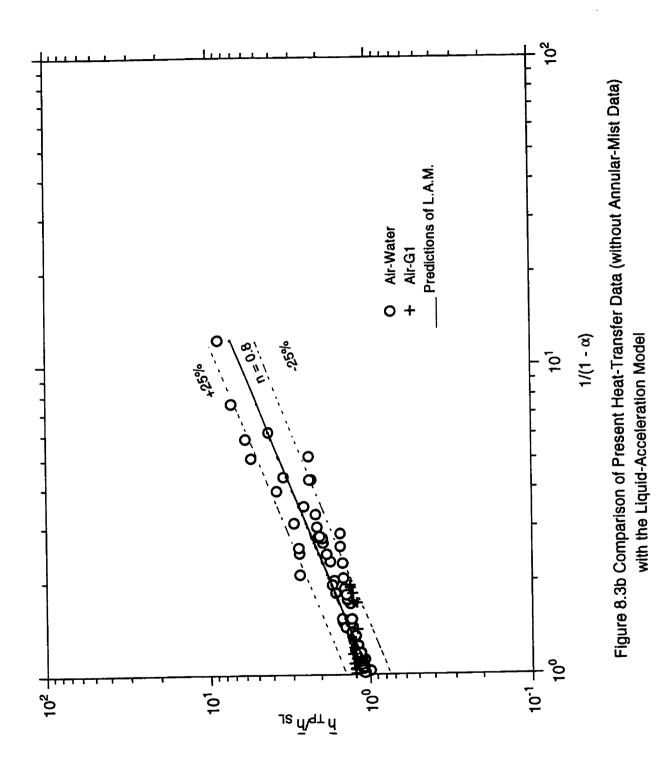

Marié (57).

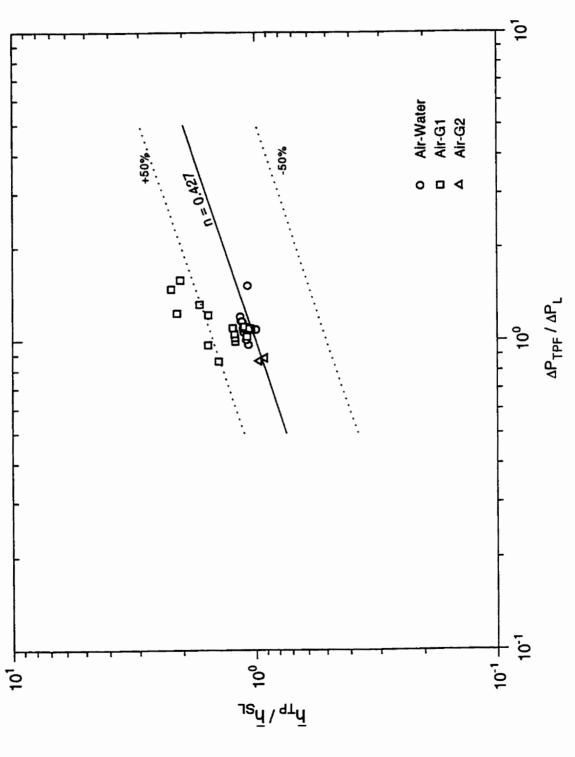
In addition to the methods tested here, there are others which appear in the literature, for example, Ueda and Nose (90), in which the interfacial shear stress is required. Others like Dobran (19) proposed a theoretical model to predict \bar{h}_{TP} in annular flow; however, the value of the temperature at the gas-liquid interface is needed.

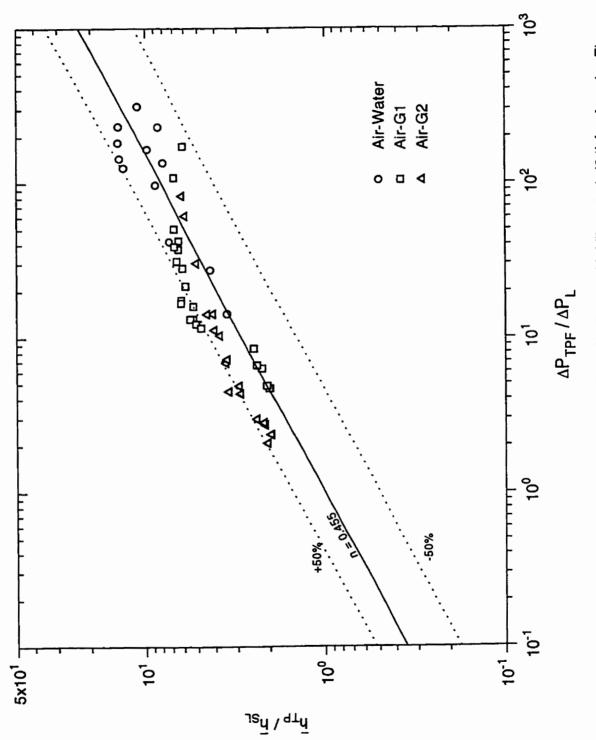

For the prediction of local heat-transfer coefficients, Vijay (93) proposed a predictive method based on an analytical single-phase boundary-layer solution by Spalding (83), but adapted to the tube case. The method requires knowledge of the ΔP_{TPF} , and therefore the present results are very useful in assessing the method. Further, a number of new aspects, such as new mixture properties and flow patterns are explored and compared with Vijay's original method. The method is discussed in Section 8.3.

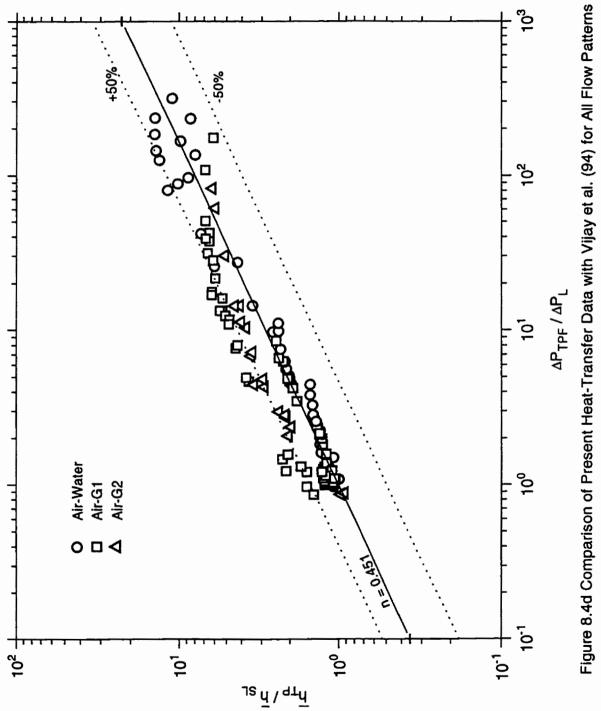
8.2 ASSESSMENT OF MEAN HEAT-TRANSFER CORRELATIONS USING THE PRESENT DATA

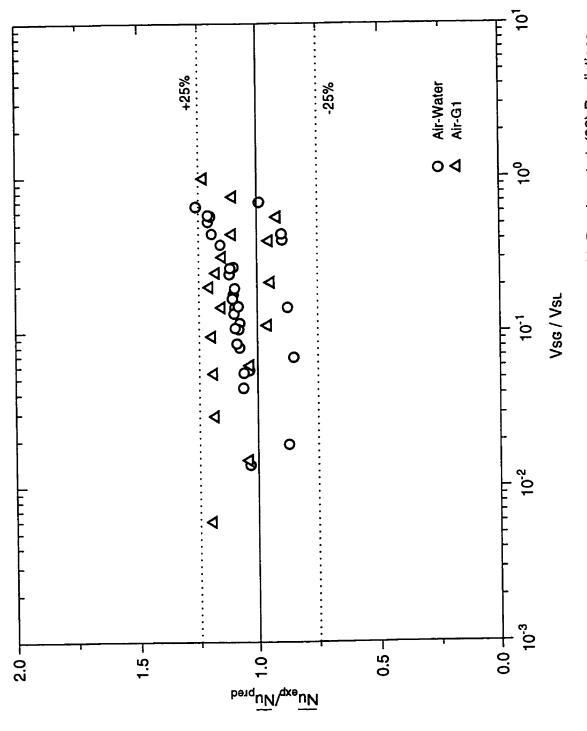

In this section, the results of the comparison between the predictive methods listed in Section 8.1 and the present heat-transfer data are presented. The data used for each method were strictly within the applicability range as stated by the original authors. The results of comparisons between the experimental data and the predictions are shown in Figures 8.1 to 8.6. Also, percentage deviations are shown in Table 8.1. Details and discussion for each comparison are given below.

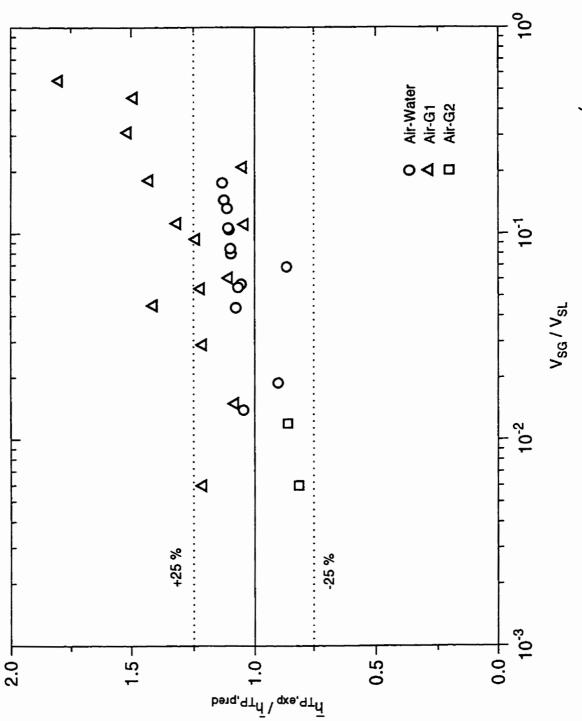


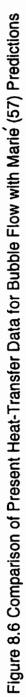












(excluding Slug, Churn, their Transitions and Annular-Mist)

	Air-Water			Air-G1			Air-G2			
Works	N	ē	e _{rms}	N	ē	ē	N	e	e _{rms}	
Katsuhara & Kazama (45)	38	38.28	63.56	25	-76.99	77.44	25	-93.42	93.44	
Ueda & Hanaoka (89)	73	-6.24	29.23	70	-70.38	70.93	19	-85.99	86.30	
L.A.M. (Re _{SL} ≥ 2000)	72	-6.8	27.92	30	-7.37	16.90	-	-	-	
L.A.M. ⁺ ($\text{Re}_{\text{SL}} \ge 2000$)	65	-0.48	18.13	25	-3.81	14.68	-	-	-	
Drucker et al. (23)	30	6.83	12.39	17	9.92	14.30	-	-	•	
Vijay (94)				•			-			
Bubble $n = 0.429$	13	4.94	7.22	15	3 6 .95	47.52	· 2·	-0.25	3.19	
Froth $n = 0.269$	- 11	5.83	6.2 6 -	- 8-	8.74	9.58		-	•	
Annular $n = 0.455$	12	8.70	25.66	21	27.25	41.28	. 17	30.67	36.71	
*Overall. n = 0.451	. 54	2.61	18.59	54	28.56	43.13	19	28.36	35.45	
Marié (57)	13	5.96	10.08	15	29.32	35.89	2	-16.85	16.70	

Assessment of Mean Heat-Transfer Correlations Using the Present Table 8.1 **Experimental Data**

* All data excluding slug, slug and churn (and transitions) and annular-mist flows.
 * Excluding annular-mist data.

The Katsuhara and Kazama correlation (45) was one of the earliest works to predict mean heat-transfer coefficients. The method requires the knowledge of α in order to obtain mixture properties. The results in Figure 8.1 show that a wide range of deviations between the present data and the predictions occurred in general. The correlation highly overpredicts for the more viscous liquids.

The Ueda and Hanaoka correlation (89) needs α to calculate the actual velocities. The method gives predictions similar to those of Katsuhara and Kazama (45), namely the method predicts much higher heat-transfer coefficients for the more viscous liquids. The results are shown in Figure 8.2.

The Liquid-Acceleration Model (L.A.M.) with the constant n = 0.8 as recommended by Collier (18) was tested against the present data where $\text{Re}_{SL} \ge 2000$. The model is based on the idea that the liquid phase in the two-phase mixture is accelerated because of the reduction of its own cross-sectional flow area. Dorresteijn (21), Aggour (1), and Rezkallah (71) used the constant n as 0.9, -0.83, and 0.9 respectively. Figure 8.3(a) shows a plot of the quantity $\bar{h}_{TP}/\bar{h}_{SP}$ against $1/(1 - \alpha)$. Some data points in annular-mist flow had large deviations from the predictions. This can be explained because, as shown in Chapter 7, the two-phase heat-transfer coefficient in the annular-mist regime decreases as the void fraction increases while the liquid-acceleration model mechanically gives values of higher \bar{h}_{TP} as α increases. Figure 8.3(b) shows the plot of experimental data (excluding the annular-mist data) against predictions of the Liquid-Acceleration Model. Vijay et al. (94) proposed a prediction method for bubble, slug, froth, and annular flows. However, due to the fact that many data points of slug flow had negative values of ΔP_{TPF} , the data in slug-flow regime were not used for this correlation. The results of comparison are shown in Figure 8.4(a to c). Also, Figure 8.4(d) shows the overall comparison of experimental data in bubble, froth and annular flow with the correlation where n = 0.451 was used. The proposed method of Vijay et al. works very well in froth flow and fairly well in annular flow (see Table 8.1). In bubble flow, the correlation works well with the present air-water and air-G2 (\tilde{e}_{rms} of 7.22 and 3.19%, respectively) data but not so well for the air-G1 data (\tilde{e}_{rms} of 47.5%).

Drucker et al. (23) included the effect of the buoyancy force in the form of a Grashof number in their correlation. The method is recommended for the flow when $\alpha \leq$ 0.4 and 1.77 < Pr_L < 130. This method gives good agreement between the present data and predictions ($\bar{e}_{rms} = 12.4$ and 14.3 for air-water and air-G1, respectively) as shown in Figure 8.5.

Marié's method (57) is for bubble flow. In the derivation, a bubble diameter appears. For the comparison, as a rough measure of the present bubble diameters, a mean horizontal diameter was obtained from measurement using the photograph for each datum point in bubble flow (see Table G.1). The comparison of predictions against data is shown in Figure 8.6. The model works well for air-water (\bar{e}_{rms} 10.1%), not so well for air-G1 (\bar{e}_{rms} 35.9%) where it generally underpredicts, and well for the two air-G2 points (\bar{e}_{rms} 16.7%). From the material presented in this section, Table 8.1 shows that progress in the field of prediction modelling has been made over a period of years. More recent methods such as Drucker et al. (23) and Marié (57) give good predictions, in general. However, for these methods, many restrictions apply (e.g., Marié (57) is strictly used for bubble flow and Drucker et al. (23) is recommended for $\alpha \leq 0.4$ and $1.77 < Pr_L < 130$). The method proposed by Vijay et al. (94) gives reasonable agreement to the present data for bubble and froth flows. The Liquid-Acceleration Model is one of the methods that has few restrictions (compared to those assessed here) and still gives good prediction with $\bar{e}_{rms} = 18.5\%$ when the method is tested without annular-mist data.

8.3 TESTING A PROPOSED METHOD TO PREDICT TWO-PHASE LOCAL HEAT-TRANSFER COEFFICIENTS

Vijay (93) examined the possibility of applying Spalding's (83) single-phase turbulent boundary-layer solution to the prediction of two-phase local heat-transfer coefficients. As demonstrated in Appendix F, the method (93) gives excellent agreement when it was used for liquid single-phase flow in a tube. An implication was that the twophase flow would have certain mixture properties and the question then became one of determining whether one could find appropriate properties which would allow for good prediction. The method requires a knowledge of the two-phase wall shear stress; since the present experiment gives measured values of this quantity, the present data allow for a good testing of the idea.

In single-phase terms, the solution takes the form of

$$S_q = S_q(Pr, Z^*, Pr_T)$$
(8.1)

and
$$S_q = \frac{PrSt}{(f/2)^{1/2}}$$
 (8.2)

The quantity St is the Stanton number. With f defined as

$$f = \frac{\tau_w}{(\rho V^2)/2}$$

and the usual definitions of St and Pr, the $S_{\mathbf{q}}$ becomes

$$S_{q} = \frac{h \mu}{k(\tau_{w} \rho)^{\frac{1}{2}}}$$
(8.3)

The quantity Z^* in Equation 8.1 is defined as

$$Z^{-} = \int_{0}^{Z} \frac{(\tau_{w} \cdot \rho)^{z}}{\mu} dz$$
 (8.4)

If the variations of τ_w, ρ and μ along z are considered to be small, then

$$Z^{*} = \frac{(\tau_{W} \rho)^{\frac{1}{2}}}{\mu} \cdot z \qquad (8.5)$$

To predict the quantity S_q , the following expression by Spalding (83) is valid for the entire range of Z^+ :

$$S_{q} = \left\{ \left[\frac{Pr_{L}/Pr_{T}}{6.64 (Z^{*}/Pr_{T})^{1/9} + P_{FN}} \right]^{4} + [0.651 (Z^{*}/Pr_{L})^{-1/6}]^{4} \right\}^{1/4}$$
(8.6)

where P_{FN} is called the P-function and given by

$$P_{FN} = 11.570 \left[\left(Pr_{T} / Pr_{T} \right)^{\frac{1}{2}} - 1 \right]$$
(8.7)

For the two-phase situation, S_q and Z^+ become, in parallel with Equation 8.3 and 8.5, respectively

$$S_{q,TP} = \frac{h_{TP} \mu_{MIX}}{k_{MIX} (\tau_{W} \rho_{MIX})^{\frac{1}{2}}}$$
(8.8)

$$Z_{\rm TP} = \frac{(\tau_{\rm W} \,\rho_{\rm MIN})^{\frac{1}{2}} z}{\mu_{\rm MIN}}$$
(8.9)

The predicted value of two-phase S_q can be calculated from the following expression:

$$S_{q,TP} = \left\{ \left[\frac{Pr_{MEN}/Pr_{T}}{6.64 (Z_{TP}^{*}/Pr_{T})^{+} + P_{FN}} \right]^{4} + \left[0.651 (Z_{TP}^{*}/Pr_{MEN}^{*})^{-1/2} \right]^{4} \right\}^{1}$$
(8.10)

where
$$P_{FN} = 11.570 \left[(Pr_{MIN}/Pr_T)^3 - 1 \right]$$
 (8.11)

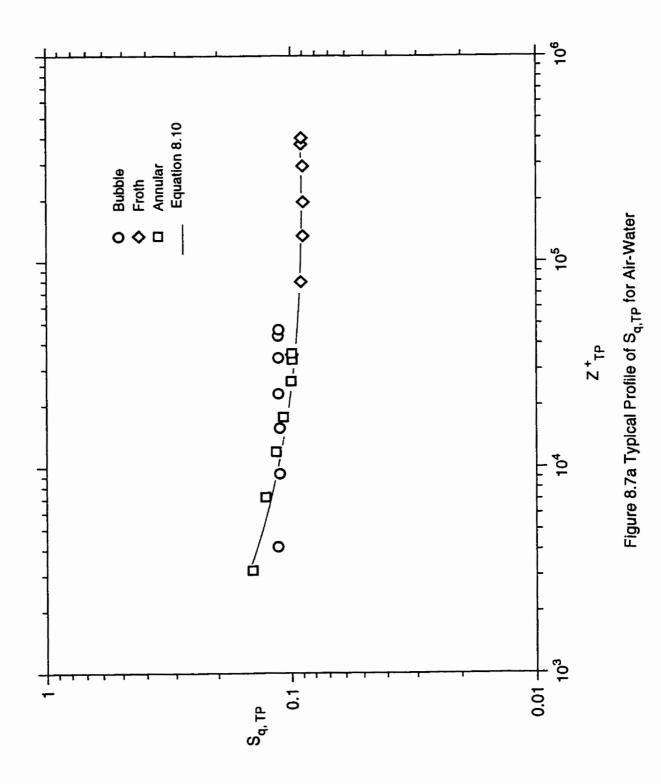
The subscript "MIX" refers to the properties of the two-phase mixture. Vijay (93) used a value of 0.887 for Pr_T as recommended by Spalding for the single-phase case. However, for the present assessment, since we are dealing with the two-phase case, and the proposal

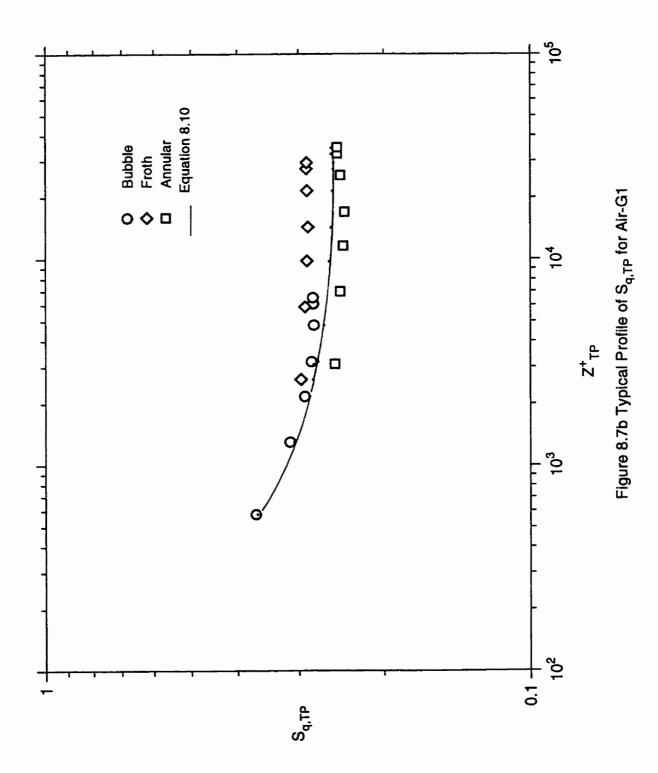
is still tentative, a value of $Pr_T = 1$ was used (in any case, predictions are not very sensitive to Pr_T).

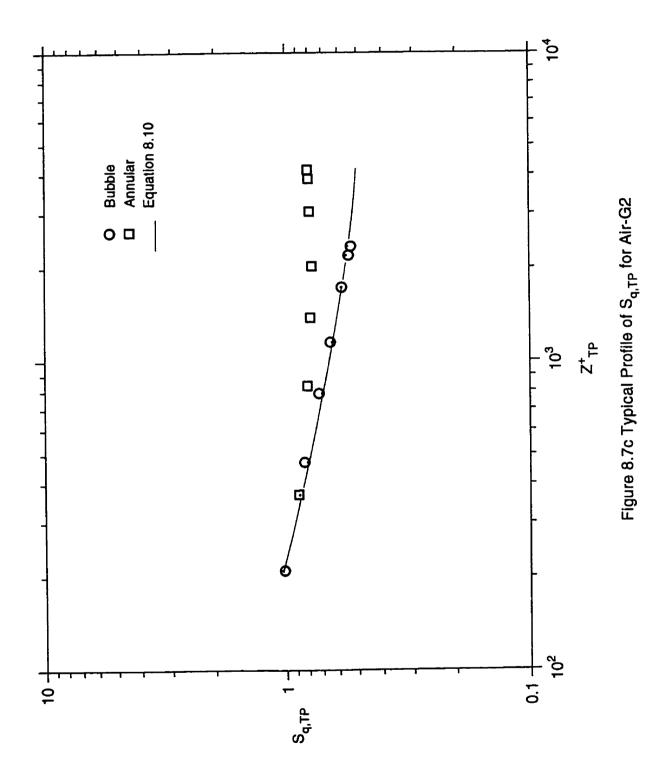
Vijay (93) pointed out that the evaluation of the mixture properties had to be resolved. Vijay (93) examined some possible groups of mixture properties. In his investigation (93), the results showed that when the liquid properties were used as the mixture properties, the best agreement between the experimental data and the predictions were obtained. In the present investigation, the author attempted to examine five groups of mixture properties, namely:

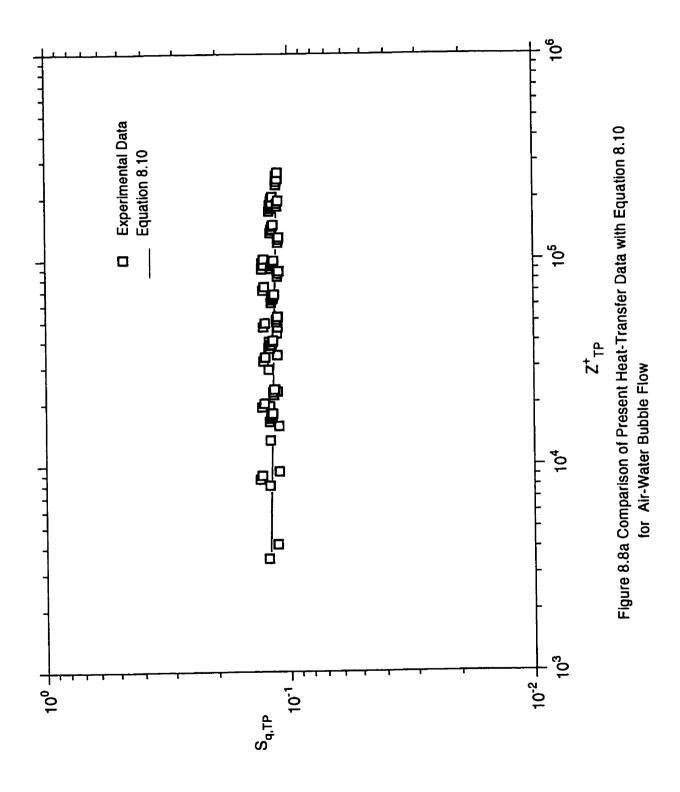
Group 1:
$$\zeta_{MIX} = x \zeta_G + (1 - x) \zeta_L$$
 (8.12a)

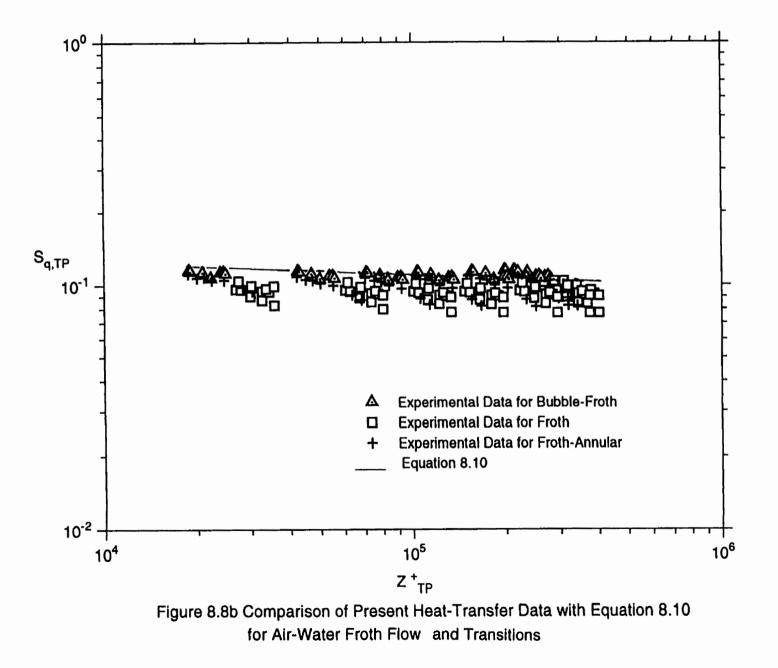
- Group 2: $\zeta_{MEN} = \alpha \zeta_G + (1 \alpha) \zeta_L$ (8.12b)
- Group 3: $1/\zeta_{MEV} = x/\zeta_G + (1-x)/\zeta_L$ (8.12c)
- Group 4: $1/\zeta_{MIX} = \alpha/\zeta_G + (1 \alpha)/\zeta_L$ (8.12d)
- Group 5: $\zeta_{MIX} = \zeta_L$ (8.12e)

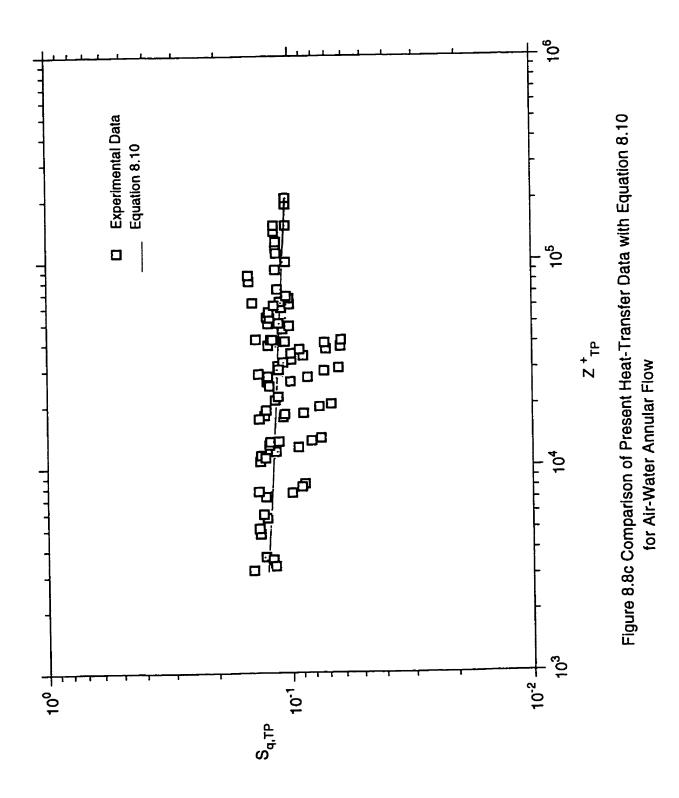

The quantity ζ refers to fluid properties (i.e., density, viscosity, thermal conductivity, specific heat). The subscripts G and L refer to the gas and liquid-phase, respectively. For the mixture Prandtl number appearing in Equations (8.10) and (8.11), the following expression was used:

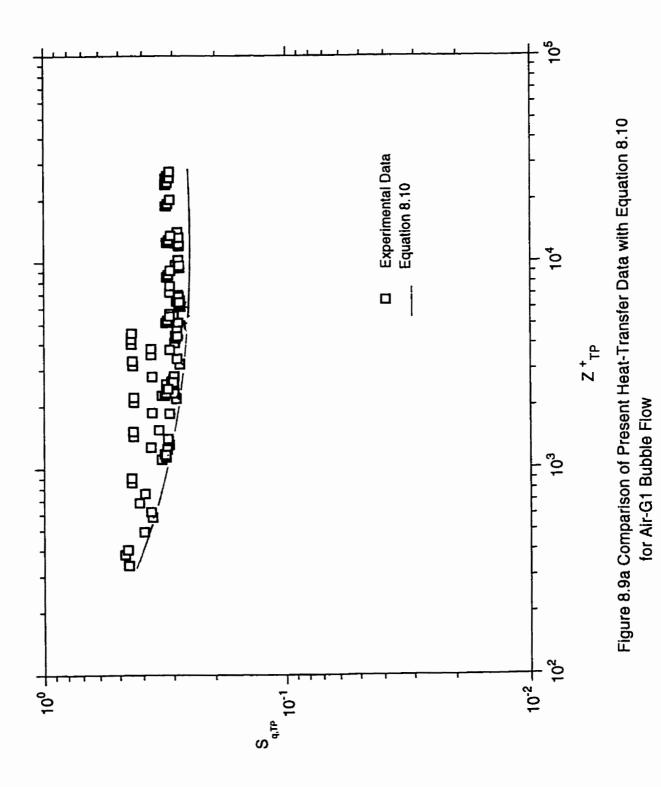

$$Pr_{MIX} = \frac{\mu_{MIX} C_{P, MIX}}{k_{MIX}}$$
(8.13)

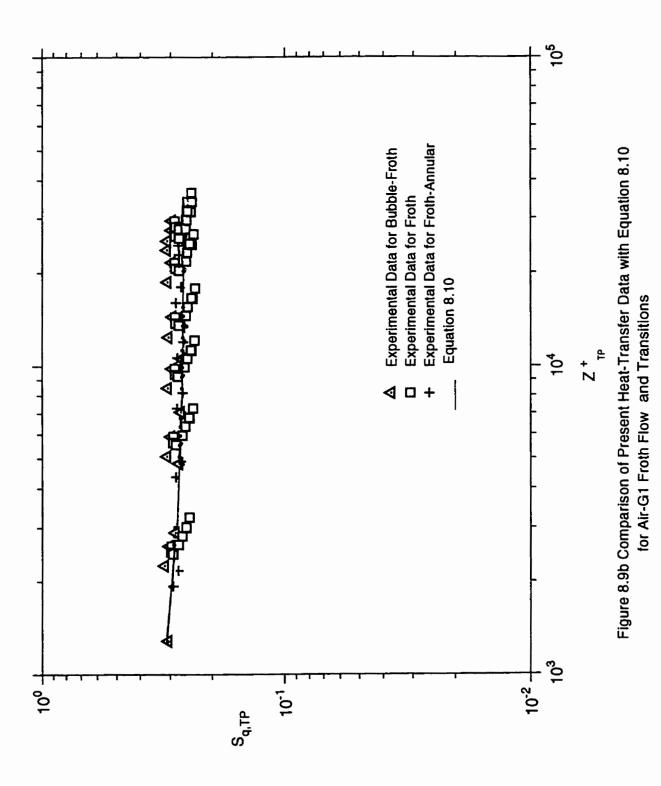

Due to the fact that two-phase slug and churn flows are highly unsteady, the experimental data of slug, churn and their transitions were not used to test this method. The data analysis for annular-mist flow shows that the deviation between the data and the prediction varied from $\bar{e}_{rms} = 47$ to 98% for the best mixture property group. Therefore, annular-mist flow is not of further interest here. Thus, only the data belonging to bubble, bubble-froth, froth, froth-annular, and annular flows were used to test this method. The test of Vijay's proposed method (i.e., Equation 8.10) was done for each gas-liquid system and for the individual flow regimes of bubble, froth (including bubble-froth and froth-annular), and annular.

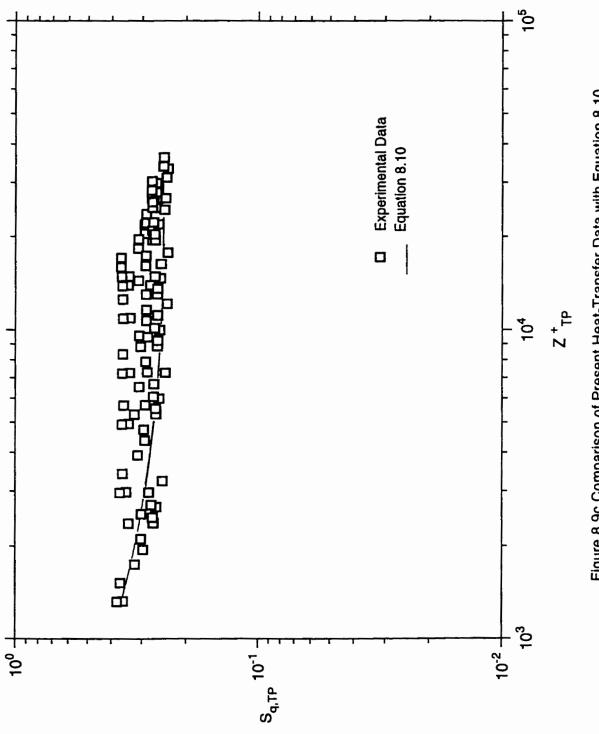

After an examination of the mixture properties groups 1 to 5, the results showed that the best agreement between the data and the predictions was obtained when the properties of group 1 and group 5 were used (for all considered flow patterns). Therefore, the results of mixture properties group 5 are chosen to show the results of comparison between the present data and the predictions. Figures 8.7(a to c) show typical values of experimental $S_{q,TP}$ and the predictions when plotted against Z_{TP}^+ for air-water, air-G1 and air-G2 systems, respectively. The values of experimental $S_{q,TP}$ were obtained by Equation 8.8 (with the measured value of τ_w). The value of Z_{TP}^+ was obtained by Equation 8.9 with the measured value of the two-phase wall shear stress. The value of predicted $S_{q,TP}$ was calculated by Equation 8.10.

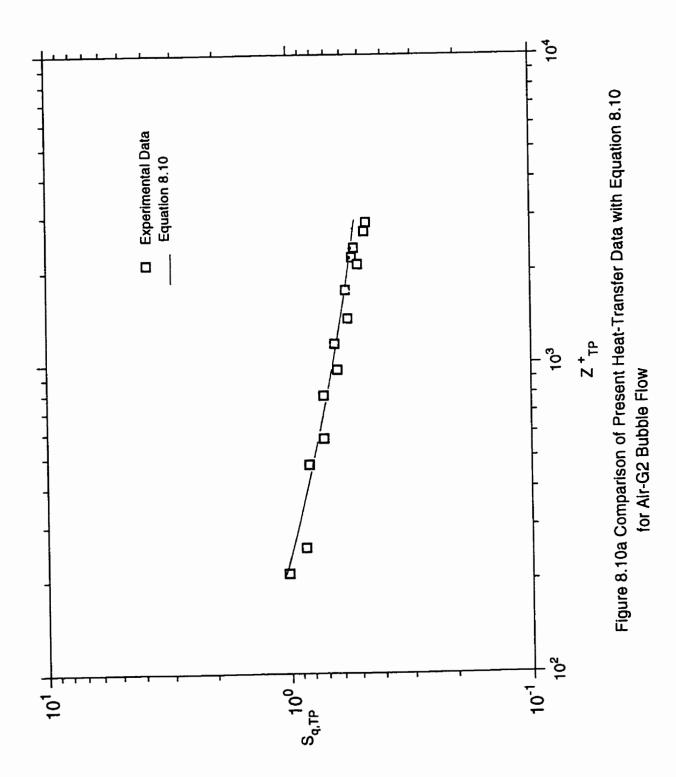

Figures 8.7a to c, show that the present data cover a wide range of Z_{TP}^+ from approximately 100 to 500,000. It should be noted that, for froth and annular flows, the fully developed condition takes place over almost the whole length of the test section

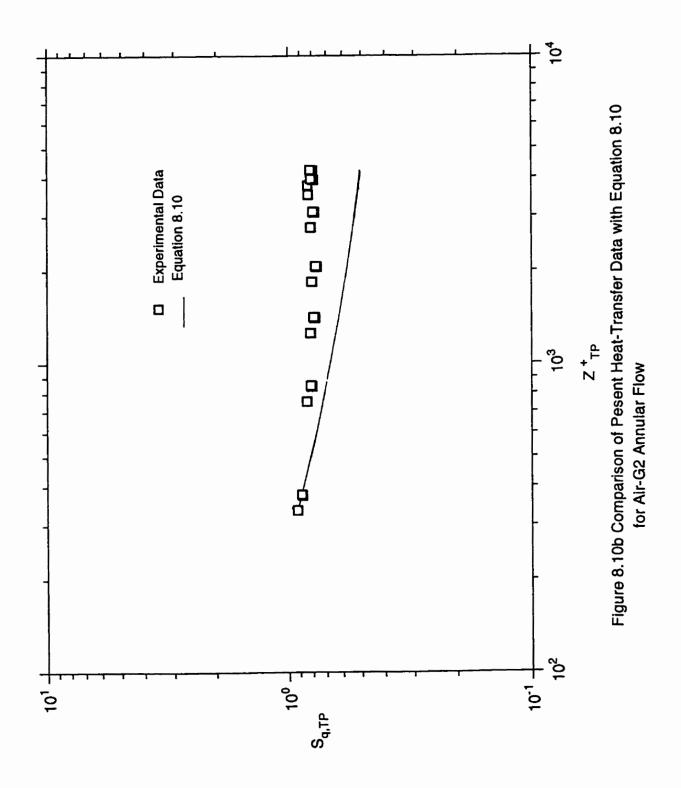












regardless of the liquid viscosity. For bubble flow, the fully developed condition establishes earlier with the lighter liquid. During data analysis, it was found that the deviations between the present data and the predictions were large for liquid superficial Reynolds number $\text{Re}_{\text{SL}} < 400$. This included six data points in annular flow of the air-G1 system ($\text{Re}_{\text{SL}} = 70$) and 15 data points in annular flow for the air-G2 system ($\text{Re}_{\text{SL}} = 10$ and 53). Since the original theory of Spalding (83) was meant for a turbulent boundary layer, a lower limit on Re_{SL} would not be surprising. Here, any datum point with $\text{Re}_{\text{SL}} <$ 400 was excluded from this testing method, which, of course, amounts to a restriction on the method.

Figures 8.8(a to c) to 8.10(a to b) show the results when all the data (of each gasliquid system and particular flow regime) are plotted against predictions using group 5 properties. Table 8.2 shows the deviations between the experimental data and the predictions. For this table, it appears that the deviations for groups 1 and 5 are very close. This may be explained by the fact that the value of the quality, x, involved in the tested data, is generally small (see Equations 8.12a and 8.12e).

For air-water, Figures 8.8(a to c) show that the model gives excellent prediction for bubble flow, overprediction but fair for froth (including bubble-froth and frothannular), and fair prediction for annular flow, respectively.

For air-G1, Figures 8.9(a to c) show that the prediction gives lower values of $S_{q,TP}$ than the data for bubble flow, good agreement with experimental data for froth (including bubble-froth and froth-annular), and fair agreement for annular flow. However, in general, the majority of the experimental data agree well with the prediction.

188

Gas-Liquid	Mixture Properties	Flow Regimes									
		Bubble			Froth*			Annular			
		N	ē	ē _{rms}	N	ē	ē	N	ē	ē _{rms}	
Air-Water	Group 1	91	4,5	6.9	175	-9.3	12.5	84	-2.9	20.3	
	Group 5	91	4.5	6.9	175	-9.3	12.5	84	-0.4	19.0	
Air-G1	Group 1	105	18.6	24.3	91	2.8	8.7	98	13.4	21.1	
	Group 5	105	18.6	24.3	91	2.8	8.7	98	14.9	22.5	
Air-G2	Group 1	14	-5.3	7.9	-	-	-	21	35.2	40.3	
	Group 5	14	-5.3	7.9	-	-	-	21	35.2	40.3	

Table 8.2Deviations Between the Present Data and the Predictions of Vijay's Proposed Method (Equation 8.10)

* Froth and Transitions (Bubble – Froth and Froth-Annular).

For air-G2, Figure 8.10(a and b) show excellent agreement between predictions and experimental data of bubble flow. However, for annular flow, the experimental values of $S_{p,TP}$ are somewhat greater than the predictions at the end of the heated test section. These greater values of experimental $S_{q,TP}$ may be explained qualitatively as follows. In annular flow, usually the heat supply to the test section was high (compared with bubble flow) causing a larger bulk temperature rise along the Z_{TP}^+ ; for a high-viscosity liquid like G2, the viscosity is quite sensitive to the temperature. This may cause the liquid viscosity near the downstream end of the test section to become lower, leading to higher values of $S_{q,TP}$.

In general, the proposed method (Equation 8.10) gives good prediction of the tested data with groups 1 and 5 (where $\text{Re}_{SL} > 400$) as can be seen in Table 8.2. The method works well for two-phase froth flow where the \bar{e}_{rms} is within 12.5 %, and for bubble flow the maximum \bar{e}_{rms} is within 24.5 % for all air-liquid mixtures. The method also gives reasonable agreement with the tested data in annular flow. The great advantage of this method is that the model is convenient to use and still gives good predictions for bubble, froth (including bubble-froth and froth-annular) and annular flows. The fluid properties obtained by groups 1 and 5 give the best prediction (among five groups used in the present study).

Chapter 9

SUMMARY AND CONCLUSION

In the present investigation, a group of key variables, namely local and mean heattransfer coefficients, pressure drop and mean void fraction have been measured over a wide range of Re_{SL} , Re_{SG} , and Pr_L ; flow patterns were observed as well. The two-phase flow patterns encountered during the investigation ranged from bubble to annular-mist. Air was used as the gas phase. Three liquids, namely distilled water and two solutions of glycerine and water (59% and 82% by weight) were used for the liquid phase. The range of two-phase heat-transfer coefficients varied by a factor of approximately 1,000. The two-phase frictional pressure drop over the heated test section ranged from -1.03 Pa (in slug flow) to 92.5 kPa. The present investigation added markedly to the available data where heat-transfer coefficients, pressure drop and void fraction were measured under the same conditions.

The present experimental facility was used to perform liquid single-phase flow tests where the results on heat transfer and pressure drop were checked against wellaccepted correlations and found to have excellent agreement with these. In addition, during the two-phase experiment some of the two-phase heat-transfer and pressure-drop data were checked against independent works using the same facility and another facility; good agreement was found. This suggests a good measure of confidence in the data. The hold-up method, using quick-closing valves, was employed for the mean void-fraction measurement. This method is classic and accurate. Having measured void fractions made for an accurate determination of two-phase frictional pressure drop, especially for conditions where the head term is comparable to the frictional term. The results showed that negative frictional pressure drops can be experienced in slug flow. This confirms the findings of Cognet et al. (17). The results of pressure drop were tested against Lockhart and Martinelli (55) and Friedel (28) where fairly good agreement was observed.

The flow patterns observed during the course of the experiment were compared with Govier and Aziz's map (29) and the method of Taitel et al. (86). The present observed flow patterns agreed well with Govier and Aziz over the range of the map. In general, the results show that the flow pattern is insensitive to the liquid viscosity, which agrees with the results from other works.

The results of measured void fraction were compared with predictive methods and it was found that the Chrisholm (13) and CISE (15) correlations give the best predictions among the tested correlations. As mentioned above, the combination of measured pressure drop and void fraction allows accurate determination of the frictional pressure drop and wall shear stress. This allows a good assessment of the heat-transfer predictive methods which require these variables.

For the testing of the correlations for mean heat-transfer coefficients, which require void fraction or wall shear stress, it was found that the methods with more restrictions give better prediction. Among the most restrictive methods, that of Drucker et al. (2000 < $\text{Re}_{\text{SL}} \leq 150000$, $\alpha \leq 0.4$ and $1.77 \leq \text{Pr}_{\text{L}} \leq 130$) is recommended; for the relevant data this method gives $\overline{e}_{\text{rms}} \leq 14.5\%$. A method less restrictive but still giving good

192

prediction is the L.A.M. for $\text{Re}_{\text{SL}} > 2000$ and without annular-mist data; this method gives $\overline{e}_{\text{rms}} \leq 18 \%$.

A predictive method, proposed by Vijay (93) which adapted Spalding's singlephase turbulent boundary-layer solution to the prediction of two-phase local heat-transfer coefficients, was tested against the present data according to flow patterns (considering bubble, froth and annular) and different groups of fluid properties. It was found that among the tested groups of fluid properties, using the liquid-phase properties (group 5) or group 1 (see Equation 8.12a) for the two-phase mixture, gives the best prediction over the range of the present data. The method works well for froth flow.

References

- 1. Aggour, M.A., "Hydrodynamics and Heat Transfer in Two-Phase Two-Component Flows," Ph.D. Thesis, University of Manitoba, Canada, 1978.
- 2. Ausari, A.M. and Sylvester, N.D., "A Mechanistic Model for Two-Phase Bubble Flow in Vertical Pipes," AIChE J., Vol. 34, pp. 1392-1394, 1988.
- 3. Banerjee, S., Hewitt, G.F., Hetsroni, G. and Yadigaroglu, G., Lecture Notes; Workshop on Computation and Modelling of Multiphase Flows, University of California, Santa Barbara, January 1995.
- 4. Bankoff, S.G., "A Variable Density Fluid Model for Two-Phase Flow with Particular Reference to Steam-Water Flow," Trans. of the ASME, J. of Heat Transfer, Vol. 82, pp. 265-272, 1960.
- 5. Barnea, D., "A Unified Model for Predicting Flow-Pattern Transitions for the Whole Range of Pipe Inclinations," Int. J. Multiphase Flow, Vol. 13, pp. 1-12, 1987.
- 6. Beattie, D.R.H. and Whalley, P.B., "A Simple Two-Phase Frictional Pressure Drop Calculation Method," Int. J. Multiphase Flow, Vol. 8, pp. 83-87, 1982.
- 7. Bergles, A.E., Collier, J.G., Delhaye, J.M., Hewitt, G.F. and Mayinger, F., "Two-Phase Flow and Heat Transfer in the Power and Process Industries" Chapter 6, Hemisphere Pub. Corp., 1981.
- 8. Beyerlein, S.W., Cossmann, R.K. and Richter, H.J., "Prediction of Bubble Concentration Profiles in Vertical Turbulent Two-Phase Flow," Int. J. Multiphase Flow, Vol. 11, pp. 629-641, 1985.
- 9. Bilicki, Z. and Kestin, J., "Transition Criteria for Two-Phase Flow Patterns in Vertical Upward Flow," Int. J. Multiphase Flow, Vol. 13, pp. 283-294, 1987.
- Bobkov, V.P., Ibragimov, M.Kh., Tychinskii, N.A. and Fedotovskii, V.S., "Thermal Diffusion in a Turbulent Water Stream with Gas Bubbles," Int. Chem. Eng., Vol. 13, pp. 687-692, 1973.
- Brown, R.A.S., Sullivan, G.A. and Govier, G.W., "The Upward Vertical Flow of Air-Water Mixtures; III, Effect of Gas Phase Density on Flow Pattern, Holdup and Pressure Drop", Can. J. Chem. Eng., Vol. 38, pp. 62-66, 1960.
- 12. Butterworth, D., "A Comparison of Some Void-Fraction Relationships for Co-Current Gas-Liquid Flow," Int. J. Multiphase Flow, Vol. 1, pp. 845-850, 1975.
- 13. Chisholm, D., "Void Fraction During Two-Phase Flow," J. Mech. Eng. Sci., Vol. 15,

pp. 235-236, 1973.

- Chu, Y-C. and Jones, B.G., "Convective Heat Transfer Coefficient Studies in Upward and Downward Vertical Two-Phase Non-Boiling Flows," AIChE Symposium Series, Vol. 76, No. 199, pp. 79-90, Orlando, 1980.
- CISE Correlation for Void Fraction: Premoli, A., Francesco, D. and Prina, A., "An Empirical Correlation for Evaluating Two-Phase Mixture Density Under Adiabatic Conditions," European Two-Phase Flow Group Meeting, Milan [as reported in Whalley (98)].
- Clark, N. and Elemmer, R., "The Effects of Varying Gas Voidage Distributions on Average Holdup in Vertical Bubbly Flow," Int. J. Multiphase Flow, Vol. 12, pp. 299-302, 1986.
- Cognet, G., Lebouche, M. and Souhar, M., "Wall Shear Measurements by Electrochemical Probe for Gas-Liquid Two-Phase Flow in Vertical Duct," AIChE J., Vol. 30, pp. 338-341, 1984.
- 18. Collier, J.G., "Convective Boiling and Condensation," McGraw-Hill Book Company Ltd., p. 382, 1972.
- 19. Dobran, F., "Heat Transfer in an Annular Two-Phase Flow," Trans. of the ASME, J. of Heat Transfer, Vol. 107, pp. 472-476, 1985.
- Domanskii, I.V., Tishin, V.B. and Sokolov, V.N., "Heat Transfer During Motion of Gas-Liquid Mixtures in Vertical Pipes," J. Appl. Chem. of the USSR, Vol. 42, pp. 809-813, 1969.
- 21. Dorresteijn, W.R., "Experimental Study of Heat Transfer in Upward and Downward Two-Phase Flow of Air and Oil Through 70 mm Tubes," Proc. of the 4th Int. Heat Transfer Conf., Paris, Vol. 5, 1970.
- 22. Drew, D.A. and Lahey, R.T., "Phase-Distribution Mechanisms in Turbulent Low-Quality Two-Phase Flow in a Circular Pipe," J. Fluid Mechanics, Vol. 117, pp. 91-106, 1982.
- 23. Drucker, M.I., Dhir, V.K. and Duffey, R.B., "Two-Phase Heat Transfer for Flow in Tubes and Over Rod Bundles with Blockages," Trans. of the ASME, J. of Heat Transfer, Vol. 106, pp. 856-864, 1984.
- 24. Duns, H. Jr. and Ros, N.C.J., Sixth World Petroleum Congress, Frankfurt, Germany, Section 2, Paper No. 22, 1963 [as reported in (29)].
- 25. Elamvaluthi, G. and Srinivas, N.S., "Two-Phase Heat Transfer in Two-Component Vertical Flows," Int. J. Multiphase Flow, Vol. 10, pp. 237-242, 1984.

- - -

- 26. Fedotkin, I.M. and Zarudnev, L.P., "Correlation of Experimental Data on Local Heat Transfer in Heating Air-Liquid Mixtures in Pipes," Heat Transfer Soviet Research, Vol. 2, pp. 175-181, 1970.
- 27. Fried, L., "Pressure Drop and Heat Transfer for Two-Phase, Two-Component Flow," Chem. Eng. Prog. Symp. Ser., Vol. 50, pp. 47-51, 1954.
- 28. Friedel, L., "Improved Friction Pressure Drop Correlations for Horizontal and Vertical Two-Phase Flow," European Two-Phase Flow Group Meeting, Ispra, Italy [as reported in Whalley (98)].
- 29. Govier, G.W. and Aziz, K., "The Flow of Complex Mixtures in Pipes," Robert E. Krieger Publishing Company, Inc., pp.335-337, 1972.
- Govier, G.W., Radford, B.A. and Dunn, J.S.C., "The Upward Vertical Flow of Air-Water Mixtures, Effect of Air and Water Rates on Flow Pattern, Holdup and Pressure Drop," Can. J. Chem. Eng., Vol.35, pp. 58-70, 1957.
- 31. Govier, G.W. and Short, W.L., "The Upward Vertical Flow of Air-Water Mixtures, Effect of Tubing Diameter on Flow Pattern, Holdup and Pressure Drop," Can. J. Chem. Eng., Vol. 36, pp. 195-202, 1958.
- 32. Griffith, P. and Wallis, G.B., "Two-Phase Slug Flow," Trans. of the ASME, J. of Heat Transfer, Ser. C, Vol. 83, pp. 307-320, 1958.
- 33. Groothuis, H. and Hendal, W.B., "Heat Transfer in Two-Phase Flow," Chem. Eng. Sci., Vol. 11, pp. 212-220, 1959.
- 34. Hetsroni, G. (Editor), "Handbook of Multiphase Systems," Hemisphere Pub. Corp., McGraw-Hill Book Company, 1982.
- 35. Hewitt, G.F. and Hall-Taylor, N.S., "Annular Two-Phase Flow," Pergamon Press Ltd., Oxford, 1970.
- 36. Hewitt, G.F., "Liquid-Gas Systems," pp. 2-15 to 2-16 [Chapter 2 in Ref. (34)].
- 37. Ibid., p. 2-76 [Chapter 2 in Ref. (34)].
- Hinata, S., "The Measurement of Temperature Distribution in Vertical Two-Phase Air-Water Flow," 16th Symp. Heat Transfer Society of Japan, pp. 85-87, 1979 [as reported in (80)].
- 39. Incropera, F.P. and DeWitt, D.P., "Fundamentals of Heat and Mass Transfer 3rd Edition," John Wiley & Sons, p.496, 1990.
- 40. Ishii, M. and Zuber, N., "Drag Coefficient and Relative Velocity in Bubbly, Droplet

or Particulate Flows," AIChE J., Vol. 25, pp. 843-855, 1979.

- 41. Jayanti, S. and Hewitt, G.F., "Prediction of the Slug-to-Churn Flow Transition in Vertical Two-Phase Flow," Int. J. Multiphase Flow, Vol. 18, pp. 847-860, 1992.
- 42. Kadambi, V., "Prediction of Pressure Drop and Void Fraction in Annular Two-Phase Flows," The Canadian J. of Chemical Engineering, Vol. 63, pp. 728-734, 1985.
- 43. Kakac, S., Shah, R.K., and Aung, W., "Handbook of Single-Phase Convective Heat Transfer," Wiley-Interscience, p.3-24, 1987.
- 44. Kapinos, V.M., Slitenko, A.F., Chirkin, N.B. and Povolotskiy, L.V., "Heat Transfer in the Entrance Section of a Pipe with a Two-Phase Flow," Heat Transfer Soviet Research, Vol. 7, pp. 126-128, 1975.
- 45. Katasuhara, T. and Kazama, T., "Heat Transfer in Two-Phase Flow of Mixtures of Air and Water, 2nd Report - Vertical Channel," Trans. of JSME, Vol. 24, pp. 552-558, 1958.
- 46. Kays, W.M. and Crawford, M.E., "Convective Heat and Mass Transfer," McGraw-Hill Book Company, 1966.
- 47. Knott, R.F., Anderson, R.N., Acrivos, A. and Petersen, E.E., "Experimental Study of Heat Transfer to Nitrogen-Oil Mixtures," Ind. Eng. Chem., Vol. 51, pp. 1369-1372, 1959.
- 48. Kobayashi, K., Iida, Y. and Kanegae, N., "Distribution of Local Void Fraction of Air-Water Two-Phase Flow in a Vertical Channel," Bulletin of the JSME, Vol. 13, pp. 1005-1012, 1970.
- 49. Kreith, F. and Summerfield, M., "Investigation of Heat Transfer at High Heat-Flux Densities: Experimental Study with Water of Friction Drop and Forced Convection With and Without Surface Boiling in Tubes," Progress Report No. 4-68, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 1948.
- 50. Kudirka, A.A., Grosh, R.J. and McFadden, P.W., "Two-Phase Heat Transfer in a Tube with Gas Injection from the Walls," I & EC Fundamentals, Vol. 4, pp. 339-344, 1965.
- 51. Lahey, R.T., Jr., Lopez de Bertonado, M. and Jones, O.C., Jr., "Phase Distribution in Complex Geometry Conduits," Nuclear Eng. and Design, Vol. 141, pp. 177-201, 1993.
- 52. Lance, M., Marié, J.L. and Bataille, J., "Homogeneous Turbulence in Bubbly Flows," J. of Fluids Engineering, Vol. 113, pp. 295-300, 1991.

- 53. Liu, T.J., "The Effect of Bubble Size on Void Fraction Distribution in a Vertical Channel," Proceedings of the International Conference on Multiphase Flows, '91-Tsukuba, Tsukuba, Japan, September, pp.453-457, 1991.
- 54. Liu, T.J., "Bubble Size and Entrance Length Effects on Void Development in a Vertical Channel," Int. J. Multiphase Flow, Vol. 19, pp. 99-113, 1993.
- 55. Lockhart, R.W. and Martinelli, R.C., "Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes," Chemical Eng. Prog., Vol. 45, pp. 39-49, 1949.
- 56. Lopez de Bertonado, M., Lee, S-J., Lahey, Jr. R.T. and Drew, D.A., "The Prediction of Two-Phase Turbulence and Phase Distribution Phenomena Using a Reynolds Stress Model," Trans. of ASME, J. of Fluids Eng., Vol. 112, pp. 107-113, 1990.
- 57. Marié, J.L., "Modelling of the Skin Fraction and Heat Transfer in Turbulent Two-Component Bubbly Flow in Pipes," Int. J. Multiphase Flow, Vol. 13, pp. 309-325, 1987.
- 58. McQuillan, K.W. and Whalley, P.B., "Flow Patterns in Vertical Two-Phase Flow," Int. J. Multiphase Flow, Vol. 11, pp. 161-175, 1985.
- 59. Michiyoshi, I., "Two-Phase Two-Component Heat Transfer," Proc. of the Sixth International Heat Transfer Conference, Toronto, Canada, Vol. 6, pp. 219-233, 1978.
- 60. Michiyoshi, I. and Serizawa, A., "Two-Phase Flow Studied in Japan," Int. J. Multiphase Flow, Vol. 15, pp. 679-733, 1989.
- 61. Mishima, K. and Ishii, M., "Flow Regime Transition Criteria for Upward Two-Phase Flow in Vertical Tubes," Int. J. Heat Mass Transfer, Vol. 27, pp. 723-737, 1984.
- 62. Monjaes, S. and Dougall, R.S., "Two-Phase Upflow in Rectangular Channels," Int. J. Multiphase Flow, Vol. 11, pp. 503-513, 1985.
- 63. Monji, H. and Matsui, G., "Effect of Bubble Size on Structure of Vertical Bubble Flow," Proceedings of the International Conference on Multiphase Flows, '91-Tsukuba, Tsukuba, Japan, September 1991.
- 64. Monde, M. and Mitsutake, Y., "Enhancement of Heat Transfer Due to Bubble Passing Through a Narrow Vertical Rectangular Channel," Int. J. Multiphase Flow, Vol. 15, pp. 803-814, 1989.
- 65. Nakoryakov, V.E., Kashinsky, O.N., Burdukov, A.P. and Odnoral, V.P., "Local Characteristics of Upward Gas-Liquid Flows," Int. J. Multiphase Flow, Vol. 7, pp. 63-81, 1981.

- 66. Navarro-Valenti, S., Clausse, A., Drew, D.A. and Lahey, Jr. R.T., "A Contribution to the Mathematical Modelling of Bubbly/Slug Flow Regime Transition," Chem. Eng. Comm., Vol. 102, pp. 69-85, 1991.
- 67. Oshinowo, T. and Charles, M.E., "Vertical Two-Phase Flow Part I: Flow Pattern Correlations," The Canadian J. of Chem. Eng., Vol. 52, pp. 25-35, 1974.
- 68. Oshinowo, T. and Charles, M.E., "Vertical Two-Phase Flow Part II: Holdup and Pressure Drop," The Canadian J. of Chem. Eng., Vol. 52, pp. 438-448, 1974.
- 69. Qazi, M.K., Guido Lavalle, G. and Clausse, A., "Axial Development of Void Fraction Profiles in Vertical Two-Phase Flow," Int. J. Multiphase Flow, Vol. 19, pp. 385-389, 1993.
- 70. Ravipudi, S.R. and Godbold, T.M., "The Effect of Mass Transfer on Heat Transfer Rates for Two-Phase Flow in a Vertical Pipe," Proc. 6th Int. Heat Transfer Conference, Toronto, Canada, Vol. 1, pp. 505-510, 1978.
- 71. Rezkallah, K.S., "Heat Transfer and Hydrodynamics in Two-Phase Two-Component Flow in a Vertical Tube," Ph.D. Thesis, University of Manitoba, Canada, 1986.
- 72. Rite, R.W., "Heat Transfer in Gas-Liquid Flows Through a Vertical, Circular Tube Under Microgravity Conditions," Ph.D. Thesis, University of Saskatchewan, Canada, 1995.
- 73. Rite, R.W. and Rezkallah, K.S., "Local and Mean Heat-Transfer Coefficient in Bubble and Slug Flows Under Microgravity Conditions," Int. J. Multiphase Flow, Vol. 23, pp. 37-54, 1997.
- Roumy, R., "Structure des écoulments dihasiques eau-air. Etude de la fraction de vide moyenne et des configurations d'écoulement," CEA-R-3892 [as reported in (7), pp. 8].
- 75. Sadatomi, M., Sato, Y. and Saruwatari, S., "Two-Phase Flow in Vertical Non-circular Channels," Int. J. Multiphase Flow, Vol. 8, pp. 641-655, 1982.
- Serizawa, A., Kataoka, I. and Michiyoshi, I., "Turbulence Structure of Air-Water Bubbly Flow - II: Local Properties," Int. J. Multiphase Flow, Vol. 2, pp. 235-246, 1975.
- Serizawa, A., Kataoka, I. and Michiyoshi, I., "Turbulence Structure of Air-Water Bubbly Flow - III: Transport Properties," Int. J. Multiphase Flow, Vol. 2, pp. 247-259, 1975.
- 78. Sato, Y. and Sekoguchi, K., "Liquid Velocity Distribution in Two-Phase Bubble Flow," Int. J. Multiphase Flow, Vol. 2, pp. 79-95, 1975.

- 79. Sato, Y., Sadatomi, M., and Sekoguchi, K., "Momentum and Heat Transfer in Two-Phase Bubble Flow - I: Theory," Int. J. Multiphase Flow, Vol. 7, pp. 167-177. 1981.
- Sato, Y., Sadatomi, M., and Sekoguchi, K., "Momentum and Heat Transfer in Two-Phase Bubble Flow - II: A Comparison Between Experimental Data and Theoretical Calculations," Int. J. Multiphase Flow, Vol. 7, pp. 179-190, 1981.
- Sekoguchi, K., Nakazatomi, M., Sato, Y. And Tanaka, O., "Forced Convective Heat Transfer in Vertical Air-Water Bubble Flow," Bull. of the JSME, Vol. 23, pp. 1625-1631, 1980.
- 82. Sieder, E.N. and Tate, G.E., "Heat Transfer and Pressure Drop for Liquids in Tubes," Ind. Eng. Chem., Vol. 28, pp. 1429-1435, 1936.
- 83. Spalding, D.B., "Contribution to the Theory of Heat Transfer Across a Turbulent Boundary Layer," Int. J. Heat Mass Transfer, Vol. 7, pp. 743-761, 1964.
- 84. Spedding, P.L. et al., "Pressure Drop in Two-Phase Gas-Liquid Flow in Inclined Pipes," Int. J. Multiphase Flow, Vol. 8, pp. 407-431, 1982.
- 85. Souhar, M., "Etude des Frottement Parietal dans les Ecoulements Diphasiques en Conduite Verticale, Cas des Régimes à Beulles et à Poches," Thesis de Docteur-Ingénieur, Institute Nationale Polytechnique de Lorraine, France, 1979 [as reported in (87)].
- Taitel, Y., Barnea, D. and Dukler, A.E., "Modelling Flow Pattern Transitions for Steady Upward Gas-Liquid Flow in Vertical Tubes," AIChE J., Vol. 26, pp. 345-354, 1980.
- 87. Ueda, T., "Studies on the Flow of Air-Water Mixtures: Upward Flow in a Vertical Tube," Bull. of JSME, Vol. 1, pp. 139-145, 1958.
- 88. Ueda, T., "On Upward Flow of Gas-Liquid Mixtures in Vertical Tubes, 1" Report, Experiment and Analysis of the Flow State, 2nd Report, Consideration of Frictional Pressure Drop and Void Fraction," Bull. JSME, Vol. 10, pp. 989-1007, 1967.
- 89. Ueda, T. and Hanaoka, M., "On Upward Flow of Gas-Liquid Mixtures in Vertical Tubes, 3rd Report, Heat Transfer Results and Analysis," Bull. JSME, Vol. 10, pp. 1008-1015, 1967.
- 90. Ueda, T. and Nose, S., "Studies of Liquid Film Flow in Two-Phase Annular and Annular-Mist Flow Regions," Bull. JSME, Vol. 17, pp. 614-624, 1974.
- 91. Van Der Welle, R., "Void Fraction, Bubble Velocity and Bubble Size in Two-Phase Flow," Int. J. Multiphase Flow, Vol. 11, pp. 317-345, 1985.

- 92. Verschoor, H. and Stemerding, S., "Heat Transfer in Two-Phase Flow, General Discussion on Heat Transfer," 1951 ASME/I. Mech. E. Heat Transfer Conf., pp. 201-203, 1951.
- 93. Vijay, M.M., "A Study of Heat Transfer in Two-Phase Two-Component Flow in a Vertical Tube," Ph.D. Thesis, University of Manitoba, Canada, 1978.
- 94. Vijay, M.M., Aggour, M.A. and Sims, G.E., "A Correlation of Mean Heat-Transfer Coefficients for Two-Phase Two-Component Flow in a Vertical Tube," Proc. 7th Int. Heat Transfer Conference, Munich, Germany, Vol. 5, pp. 367-372, 1982.
- 95. Wadekar, V.V., Tuzla, K., and Chen, J.C., "Heat Transfer to Air-Water Two-Phase Flow In Slug/Churn Region," ASME HTD-Vol. 326, National Heat Transfer Conf., Vol. 4, pp. 219-225, 1996.
- 96. Wallis, G.B., "One-Dimensional Two-Phase Flow," McGraw-Hill Book Company, 1969.
- 97. Wang, S.K., Lee, S.J., Jones, Jr., O.C. and Lahey, Jr., R.T., "3-D Turbulence Structure and Phase Distribution Measurement in Bubbly Two-Phase Flow," Int. J. Multiphase Flow, Vol. 13, pp. 327-343, 1987.
- 98. Whalley, P.B., "Boiling, Condensation and Gas-Liquid Flow," Oxford Science Publications, 1987.
- 99. Wiseman, J. and Kang, S.Y., "Flow Pattern Transitions in Vertical and Upwardly Inclined Lines," Int. J. Multiphase Flow, Vol. 7, pp. 271-291, 1981.
- 100. Zaidi, A.J., "Hydrodynamics and Heat Transfer in Two-Phase Two-Component Flow in a Vertical Tube," M.Sc. Thesis, University of Manitoba, Canada, 1981.

Appendix A

DETAILED INFORMATION ON THE COMPONENTS USED IN THE EXPERIMENTAL FACILITY

In this appendix, detailed information on the measuring devices and other equipment is listed. Even though the void-fraction measuring facility and other equipment (such as the air pressure control system) were added to the experimental rig, the main facility was essentially the same as that built by Vijay (93) and used most recently by Rezkallah (71). Therefore, some of the material presented in this appendix was taken from these references and is given here for the sake of completeness.

Table A.1 lists all the important details such as the manufacturers, model number, etc., of the equipment used. The numbers appearing under the category of "Part Number" correspond with those circled numbers in Figures 3.2 to 3.9. Where the original specifications, etc. were given in Imperial units, these units have been retained here.

Table A.1

Part No. in Figs. 3.2 to 3.9	Name of the Component	Description
MIXING CH	AMBER	
1	Stainless steel strainer	3.0-in. dia., 1/32 in. perforated stainless steel type 304 Sarco Strainer; Sarco Canada Limited, Agincourt, Ontario, Canada.

Information on the Components of the Experimental Facility

Part No. in Figs. 3.2 to 3.9	Name of the Component	Description					
2	Porosint bronze tube	0.460-in. i.d. × 0.740-in. o.d. × 8.0 in. grade E; Sintered Products Limited, Sutton-in-Ashfield, Notts, England, U.K.					
HEATED TE	ST SECTION						
3	Heated test tube	Stainless steel type 304; 0.460-in. i.d. \times 0.020 in. thick; Atlas Alloys, L = 2 ft.; Atlas Steels Limited, Welland, Ontario, Canada.					
4	Bus bars	Brass, 6.75 × 3.0 × 0.94 in.					
5	Supporting bar	1.0 × 1.0 in. Permali insulating material; Permali (Canada) Limited, Toronto, Ontario, Canada.					
6	Guard heater tube	1.5-in. i.d \times 0.0625 in. thick split copper tube retained by Permali rings.					
7	Heating elements	Two Briskeat silicone rubber-embedded heating tape (0.3 in. wide × 8 ft. & 0.5 in. × 10 ft.); Brisco Manufacturing Co., Columbus, Ohio, U.S.A.					
8	Calming section	Stainless steel type 304; 0.406-in. i.d. with 0.020 in. thickness, Atlas Alloys, 5 ft. in length; Atlas Steel Limited, Welland, Ontario, Canada.					
OBSERVATI	ON SECTION						
9	Visual section	3.0×3.0 in. $\times 1$ ft. cast acrylic rectangular prism with 0.460 in. precision-bored hole.					
TEMPERAT	URE MEASURIN	G INSTRUMENTS					
10	Digital voltmeter	Keithley 191 digital multimeter, model 191, 5-1/2 digit, 0.0005% resolution, accuracy 0.007% + 3 digits; Keithley Instruments, Inc., Cleveland, Ohio, U.S.A.					
11	Data logger	Fluke data logger model 2240A, 60 channel capacity, scanning speed up to 15 channel/sec., accuracy ± 2 μ V programmable, equipped with a digital display and printer, displays and prints date, time (hour, min., sec.), channel no., reading (mV or °C) and units; John Fluke Mfg. Co., Inc., Mountlake Terrace, Washington, U.S.A.					

.. ____

Part No. in Figs. 3.2 to 3.9	Name of the Component	Description
12	Thermocouples on heated test section	Copper-constantan thermocouples AWG no. 36 0.005- in. (0.012- mm) diameter T/G-36-DT, Thermoelectric (Canada) Ltd.
13	Thermocouples on guard heater	Copper-constantan thermocouples AWG no. 30 0.0- in. (0.0254-mm) diameter T/G-30-DT, Thermoelectric (Canada) Ltd.
14	Thermocouples for fluid temperatures	Copper-constantan thermocouples no. PR-T-24, Omega Engineering Inc., Stanford, Connecticut, U.S.A.
15	Ice bath	Omega ice point cell (model TRC III); OMEGA Engineering Inc., Stanford, Conn., U.S.A. Accuracy: 0 to 0.1° C. Stability $\pm 0.04^{\circ}$ C for any constant ambient.
16	Selector switch	Thermo-Electric selector switch; 96 points, 48 switches, custom key palladium contact switches, model no. 33212. Double pole, double throw, centre OFF type.
17	Constant- temperature bath	Gebruder Haake model FS/FT constant temperature bath; specified accuracy: ± 0.02 °C; Gebruder Haake, Karlsruhe, W. Germany.
LIQUID FLO	W LOOP	
18	Pump	Waukesha positive displacementpPump, model no. 25 1½ ino.d. All nickel-bronze construction (Waukesha Metal). Complete assembly supplied with a 5 hp (220 volt, DP) motor and a V-belt drive. max. flow = 24 USGPM (water); max. pressure = 150 psi and max. temp. = 225° F. Buna-N seals; Waukesha Foundry Company, Waukesha, Wisconsin, U.S.A.
19	Flowmeters	Fischer & Porter indicating type flowmetors (variable area flowmeters "rotameters").
	A	Model no. 10A3537A, 316 stainless steel float ($\frac{1}{2}$ - GUSVT-40), tube: FP = $\frac{1}{2}$ -21-G-10/83, percent scale. flowrate: max. = 0.328 USGPM liquid sp. gr. = 1.0

Part No. in Figs. 3.2 to 3.9	Name of the Component	Description
	В	Model no. 10A3537A, 316 stainless steel float $(3/4)$ 27-G-10/83), percent scale, flowrate: max. = 3.55 USGPM liquid sp. gr. = 1.0.
	С	Model no. 10A3537A, 316 stainless steel float (2-GSVGT-98). Tube: FP-2-27-G-10/83, percent scale, flowrate: max. = 30 USGPM liquid sp. gr. = 1.0.
	D	Model no. 10A3537P, 316 stainless steel float (NSVT-622). Tube: PP-1-60-P 8/83, percent scale, flowrate: max. = 20 USGPM liquid sp. gr. = 1.0. (Used for controlling the cooling water rate in the heat exchanger.) All flow rates were calibrated in laboratory for water for the present investigation. Fischer and Porter (Canada) Ltd., Downsview, Ontario.
20	Differential pressure transmitters	Three Rosemount differential pressure transmitters with ranges $0.0 - 30.0$, $0.0 - 100.0$ and $0.0 - 750.0$ in. of water. Output: 4-20 mA DC; stability: $\pm 0.2\%$ of upper range limit; linearity: $\pm 0.1\%$ of calibrated range; accuracy: $\pm 0.2\%$ of calibrated span; Rosemount Inc., Minneapolis, Minn., U.S.A.
21	Gauge pressure transmitter	One Rosemount gauge pressure transmitter. Range $0.0 - 100.0$ psig. Accuracy: $\pm 0.25\%$ of calibrated span; includes combined effects of linearity, hysteresis and repeatability. Other features are the same as in 20.
22	Gas-liquid separator tank	$1\frac{1}{2} \times 1.0$ ft. stainless steel tank with 3 in. outlet in the cover plate and $1\frac{1}{2}$ in. drain; Greensteel Industries Ltd., Winnipeg, Manitoba, Canada.
23	Liquid storage tank	$1\frac{1}{2} \times 3$ ft. stainless steel tank with 3 holes in the cover plate (3 in. diameter). 1 $\frac{1}{2}$ in. drain and a side mounted $\frac{1}{2}$ -in. i.d glass level indicator; Greensteel Industries Ltd.
24	Heat exchanger	Liquid-to-liquid shell-and-tube type exchanger. All copper 0.625-in. i.d. tubes by 4 ft. long, shell diameter 2 ft.; Automedic Instruments Ltd., Winnipeg, Manitoba, Canada.

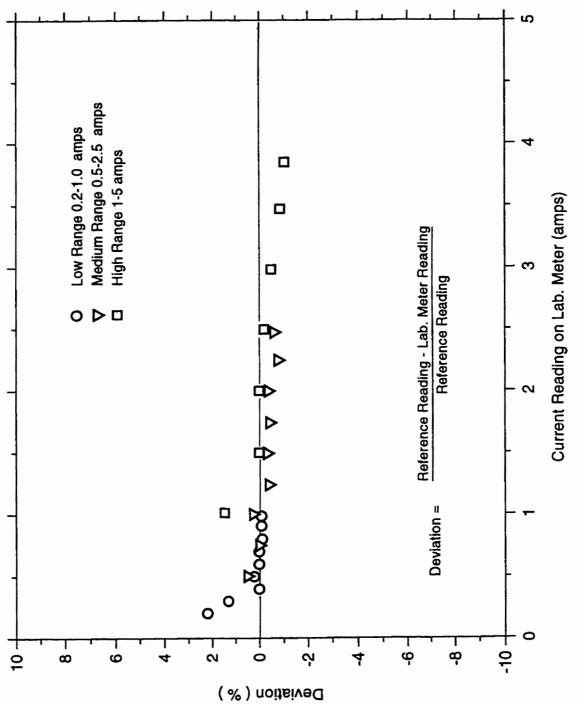
Part No. in Figs. 3.2 to 3.9	Name of the Component	Description
VOID-FRAC	TION MEASURI	NG SECTION
25	Quick-closing or opening valves	0.5 in. 316 stainless steel ball valve; Jamesbury Corp., Worcester, Mass., U.S.A. Driven by QUADRA- POWR Actuator series B605, Jamesbury Corp., Worcester, Mass., U.S.A. Operating time 0.005 second (measured).
26	Void-fraction measuring tube	0.5 in. i.d., 0.75 in. o.d., $L = 1.06$ m; extruded polycarbonate tube catalog no. 1130-048-08 Johnston Plastics, Winnipeg, Manitoba, Canada.
27	Calming section	0.5-in. i.d., 0.75-in. o.d., $L = 5$ ft.; extruded acrylic tube catalog no. 1130-048-08 Johnston Plastics, Winnipeg, Manitoba, Canada.
POWER SUP	PLY CIRCUIT	
28	Variac	Powerstat variable auto-transformer, model no. P1156-4PS. Single-phase, 240 volt-100 amps-24 kVA; American Superior Electric Company, U.S.A.
29	Transformer	Single-Phase Dry Type Distribution Transformer. Open-ventilated, class-F. Primary: 240 volt-100 amps, secondary: 1,200 amps. Pioneer Electric Manitoba Ltd., Winnipeg, Manitoba, Canada.
30	Current transformer	Weston model 327, type 2. Primary: 100 amps, secondary: 5 amps, Weston Electrical Instrument Corp., Newark, N.J., U.S.A.
31	Ammeter	Weston A.C. Ammeter, model 433 (25-500 cycles). Range: 5/2.5/1 amp.
32	Voltmeter	Keithley 179A true rms Digital Voltmeter.
PHOTOGRA	PHIC SECTION	
33	Camera	Pentax Spotmatic Single-Lens Reflex Camera equipped with Super-Takumar 50 mm f/4 Macro (close up) lens.
34	Strobotac	General Radio type 1538-A Strobotac Electronic Stroboscope. Flashing-rate range: 110 to 150,000 flashes per minute, flash duration: 0.5 to 3 µs; General Radio Company, West Concord, Mass., U.S.A.

Part No. in Figs. 3.2 to 3.9	Name of the Component	Description
35	Flash unit	EG&G 549 Microflash system consisting of the model 549-11 Flash Unit and the model 549-21 Driver Unit. Flash duration 0.5 s; peak light: 50 × 10 ⁶ beam candle power, Edgerton, Germeshausen & Grier, Inc., Boston, Mass., U.S.A.
AIR FLOW I	<u>.00P</u>	
36	Pressure regulator	Watts 0.25 in., 0 - 100 psi pressure regulator.
37	Pressure regulator	0.5 in., 200 psi max., ARO-pressure regulator.
38	Air filter	Watts Fluidair Inc., Series 03904, 250 psi (max).
39	Pressure control unit	3/6 in. port size feedback pressure controller; Type 4160 K controller 0-100 psig., Fisher Controls Inc., Canada.
40	Orifice plates	Three sharp-edged plates of 0.418, 0.141, and 0.046 in. diameter, designed and manufactured in the laboratory generally according to ASME Power Test Code. All orifice plates were calibrated in the laboratory.
41	Gas rotameter	Tube no. 3-15-4; Glass Float; Brooks Instrument Co. Inc., Hatfield, Penn., U.S.A.
42	Manometer	Meriam model 30EB25TM, Range 100", well-type manometer. Equipped with standard scale and stainless steel wetted parts.
FLUID-PRO	PERTY MEASUR	RING EQUIPMENT
43	Hydrometers	Certified hydrometers (calibrated to meet or exceed the tolerances of accuracy and physical specifications by NIST Circular 555) to measure the density of glycerine & water solution, range of specific gravity from 1.000 to 1.300, ERTCO PRECISION, Ever Ready Thermometer Co., West Preston, N.J., U.S.A.

Appendix B

CALIBRATION OF INSTRUMENTS

B.1 GENERAL REMARKS


This appendix shows the results of the calibrations of the measuring devices used in the present experiment. As mentioned in Appendix A, some devices such as thermocouples in heated the tube, the resistivity of the heated tube, the current and potential transformers were calibrated only once by Vijay (93) before installation into the facility. Other measuring devices such as liquid flowmeter, orifice plates, gas flowmeter, pressure transducers, etc. were calibrated by the present author. The results of the calibrations were used in the data reduction procedure. The following sections show the results of the calibrations.

B.2 CALIBRATION OF POWER-MEASURING DEVICES

B.2.1 Ammeter

The ammeter was calibrated against a high-precision reference meter (Electrodynamic; A.C. test set). The results are shown in the table below and Figure B.1.

Range (amps)	Max. Deviation Between Reference and Lab Readings (%)
1.0-5.0	1.47
0.5 - 2.5	0.77
0.2 - 1.0	2.2

B.2.2 Digital Voltmeter

The voltmeter readings were not used for heat-transfer data reduction. However, this reading together with the reading of the ammeter was used as a check on power input to the heated test section. The maximum deviation obtained between the voltmeter and a standard was less than 1.0%.

B.3 CALIBRATION OF TEMPERATURE-MEASURING DEVICES

There were some newly installed thermocouples in the facility other than those on the heated test section. These new thermocouples were calibrated against high-accuracy certified thermometers (Brooklyn Thermometer Co. Inc.). The deviation between the thermocouples and the standard thermometers was excellent with the maximum deviation being less than 0.05 °C.

B.4 CALIBRATION OF LIQUID ROTAMETERS

Three Fischer & Porter liquid rotameters were used in the experiment and were calibrated in situ in the laboratory. The calibration was done by collecting and weighing a certain amount of the liquid over a period of time. The results of the calibrations are shown in Figure B.2 for all the liquid used. The solid lines in Figure B.2 are the calibration curves for water provided by the manufacturer. The agreement between the manufacturer's curve and the present calibration is excellent for the case of water.

B.5 CALIBRATION OF THE PRESSURE TRANSMITTERS

Three differential and one gauge pressure transmitters were used in the present

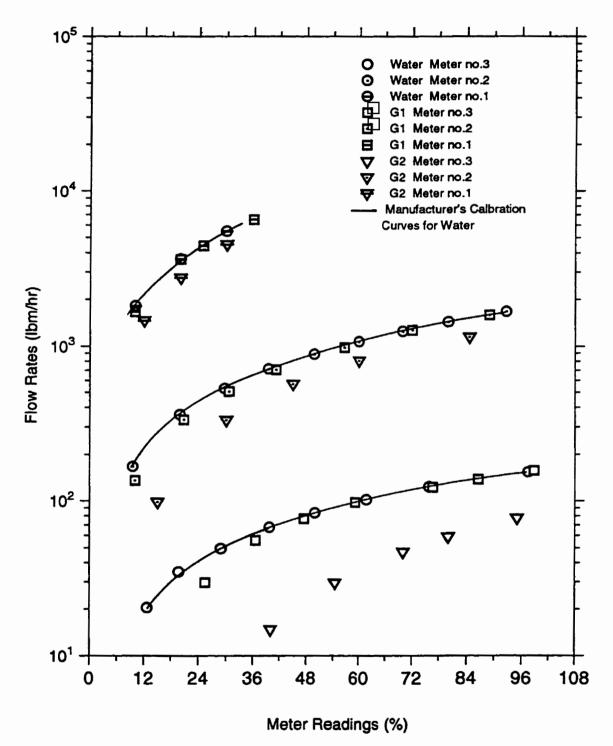


Figure B.2 Calibration of Liquid Flow Meters

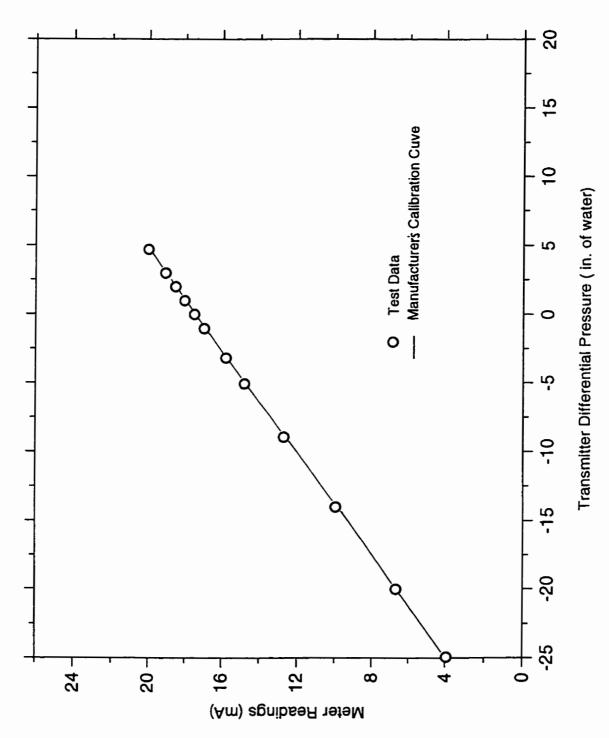
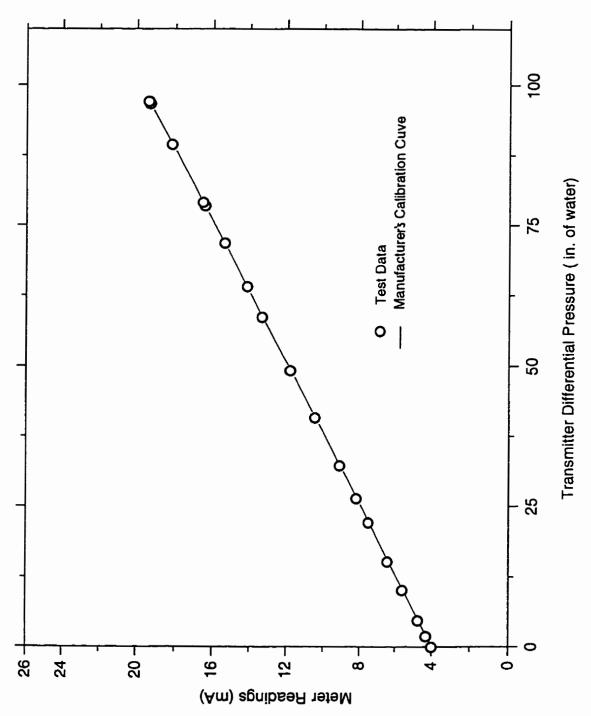

investigation. They were calibrated over their ranges in the laboratory and compared against the manufacturer's curves. Two differential pressure transmitters ranges, -25 to 5 and 0.0 to 100 in. of water, were calibrated using a water manometer, while another differential pressure transmitter range, 0.0 to 750 in. of water, was calibrated using a mercury manometer. The gauge pressure transmitter, range 0.0 to 100 psig, was calibrated against a calibrated pressure gauge. Figure B.3 to B.6 show excellent agreements between the present and manufacturer's calibrations. Table B.1 gives the equations for obtaining ΔP as function of voltage (V) measured across a 500 Ω resistor.

 Table B.1
 The Equations of the Pressure Transmitters


Transmitter No.	Range of Applicability	ΔP			
1	-25 to +5 in H_2O	7.392V - 32.285			
2	0 to 100 in H ₂ O	25.279V - 25.153			
3	0 to 750 in H ₂ O	185.43V - 183.62			
4	0 to 100 psig	25.358V - 25.358			

B.6 CALIBRATION OF ORIFICE PLATES AND GAS ROTAMETER

Three orifice plates constructed by Vijay (93) essentiallyaccording to ASME Power Test Codes (Ref. B.1) were calibrated in situ in the laboratory using (i) a certified venturi (accuracy \pm 0.5%) and (ii) a certified wet-test meter (accuracy \pm 0.25%). The results of calibration for the three orifice plates are shown in Table B.2. The method of using these orifice plates and the gas rotameter to calculate the air flow rates is shown in Appendix C. The quantity C is the coefficient of the discharge of orifices. The quantity Re_d represents the

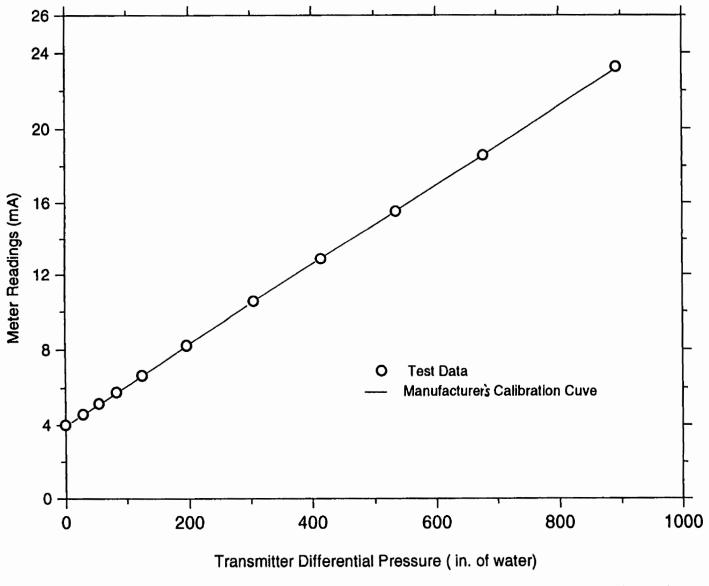
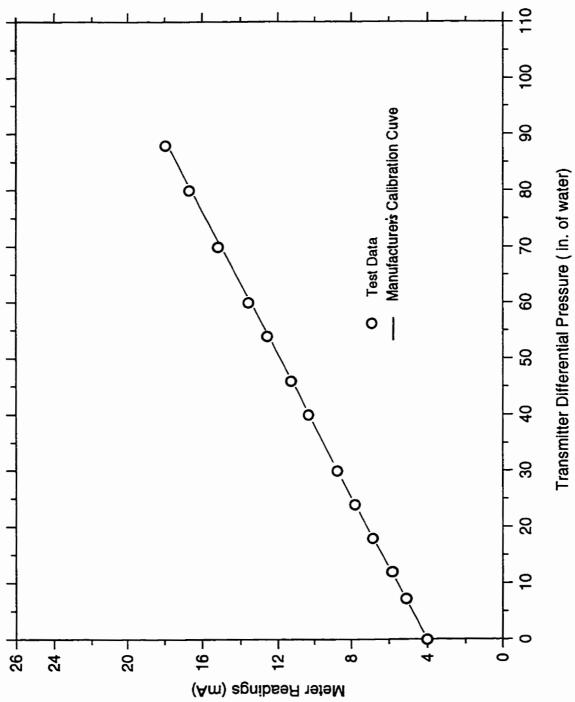



Figure B.5 Calibration of Differential Pressure Transmitter No.3 (0 to 750 in. of water)

Reynolds number of the air based on the diameter of the orifices.

Orifice No.	Diameter (in.)	С
1	0.418	$0.7357 \exp(-2.195 \times 10^{-6} \text{ Re}_{d})$
2	0.141	$0.7036 \exp(-1.941 \times 10^{-6} \text{Re}_{d})$
3	0.046	$0.6811 \exp(-3.2507 \times 10^{-6} \text{Re}_{d})$

 Table B.2
 Coefficient of Discharge (C) of the Orifice Plates

Also, a gas rotameter (Brooks) for the very low air flow rate was calibrated in situ in the laboratory (at 14.84, 69.9 and 75.4 psia) using a low flow rate wet test meter Elsteo-Handel (accuracy $\pm 0.25\%$). The comparison between present calibrations at 14.84 psia and the calibration curve supplied by the Brook's manufacturer (see Figure B.7) shows good agreement.

B.7 THE QUICK-CLOSING AND QUICK-OPENING VALVES

Two quick-closing valves and one quick-opening valve (which were used used for void measurement) were tested for the operating time. It was found that their operating time was approximately 0.005 seconds.

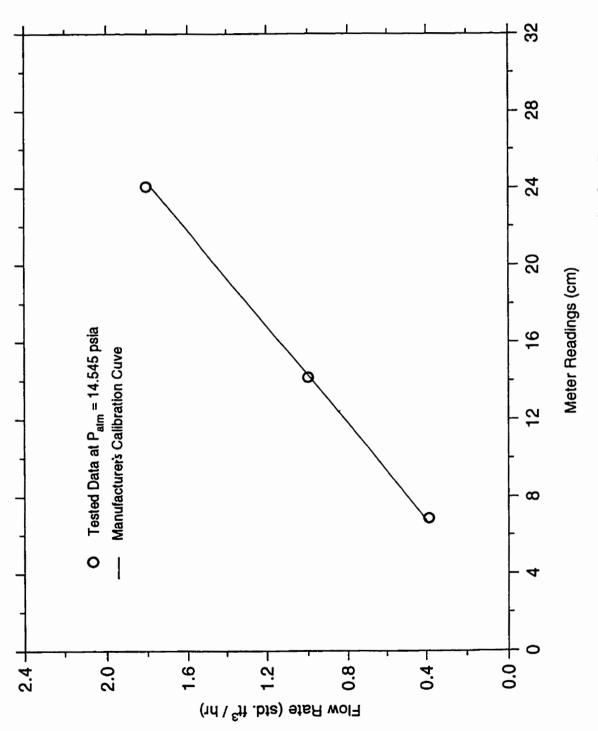


Figure B.7 Calibration of Brooks Rotameter for Gas Flow

218

Appendix C

PHYSICAL PROPERTIES OF FLUIDS USED IN THE PRESENT INVESTIGATION

The gas and liquid physical properties are necessary for the reduction of heattransfer and pressure-drop data presented in this thesis. This appendix gives the physical properties of both gas and liquid phases used during the course of the experiments. While using air-G1 and air-G2, there was some preferential evaporation of the water into the air, so changing the concentration of the solution slightly. During the experiments, over all the runs and from the beginning of the first run to the end of the last run with air-G1, the range of the concentration was 58 to 60%. The corresponding range for air-G2 was 81.25 to 82.25%. The range for each run for both air-G1 and air-G2 is given in Table C.1. Nominal values of glycerine concentration for G1 and G2 were 59% and 82%, respectively.

Air was assumed to be an ideal gas with properties taken from (C.1). The properties of water were taken from (C.2). The physical properties of G1 and G2 were obtained directly from (C.3, C.4). Since the reduction of data was performed by computer, the physical properties were obtained from the equations describing them; these equations were obtained by curve-fitting techniques from the tabulated values.

Table C.2 shows the equations for gas and liquid physical properties (although the units appearing in the table are Imperial units, anywhere in the body of the thesis units are either SI or SI and Imperial appearing together, and in the tabulated data, SI units are used).

Liquid	Run No.	% of glycerine/water by weight
G1	R1	58.5 ± 0.5
	R2	59.25 ± 0.5
	R3	59.5 ± 0.5
	R4	59.5 ± 0.5
	R5	59.5 ± 0.5
G2	R1	81.50 ± 0.25
	R2	81.85 ± 0.25
	R3	81.85 ± 0.25
	R4	82.00 ± 0.25
Water	R1-R7	100 % distilled water

 Table C.1
 Liquids Used in the Present Investigation

Surface tension (lb _f /ft)	Density (lb_n/ft^3)	Pressure (ID ₄ /IL ⁻)	Viscosity (lbm/ft·hr)	Range of Validity*	Accurate in the	range of pressures	investigated	-10 ≤ T ≤ 242	-10 ≤ T ≤ 242	-10 ≤ T ≤ 242	$32 \le T \le 212$	$32 \le T \le 212$	32 ≤ T ≤ 176	$32 \le T \le 212$	68 ≤ T ≤ 150		59 ≤ T ≤ 86	59 ≤ T ≤ 89.6	$50 \le T \le 140$	$50 \le T \le 140$	68 ≤ T ≤ 140
Surfa	Dens	Press	Visco																		
II	[]	u	11												St					- ⁵ ۲3	
onstant = 53.34 (ft·lb/lbm R) σ	Specific heat at constant pressure (Btu/lbm.°F)	nal conductivity (Btu/hr·ft. [°] F)	nperature (°F) μ	Equation for Physical Properties*	$\rho = P/RT$, T = absolute temperature (R)	-		$C_p = 7.54 \times 10^{-6} + 0.2401T$	$k = -6.154 \times 10^{9}T^{2} + 2.591 \times 10^{-5} + 0.01313$	$\mu = -2.673 \times 10^{-8} T^2 + 6.819 \times 10^{-5} T + 0.03936$	$p = (2.101 \times 10^{-8}T^{2} - 1.303 \times 10^{-6}T + 0.01602)^{-1}$	$C_{\rm P} = 1.337 \times 10^{6} T^2 - 3.374 \times 10^{4} T + 1.018$	$k = 4.722 \times 10^{4}T + 0.3149$	$\mu = (1.207 \times 10^{-5}T^{2} + 3.863 \times 10^{-3}T + 0.09461)^{-1}$	$\sigma = 5.52288 \times 10^{-12} T^3 - 8.05936 \times 10^{-9} T^2$ against	-4.75886 × 10 ⁻⁶ T + 5.346 × 10 ⁻³ air	D = 73.04095 - 0.0187T		$\mathbf{k} = 0.21396 + 0.00012T$	$ \mu = 124.086 - 2.549T + 0.01955T^2 - 5.2466 \times 10^{-5}T^3$	$\sigma = 0.00492 - 3.9556 \times 10^{-6}T$
R = Gas c	11			Substance	Air						Water						58.5% Glycerine and 41.5%	water by weight			

Table C.2 Physical Properties of Fluids Used in the Present Investigation

Definitions and Units

	particular and an and a second s	
59.0% Glycerine and 41.0%	$\rho = 73.1303 - 0.0188T$	$59 \le T \le 86$
water by weight	$C_P = 0.78274 - 0.00024T$	59 ≤ T ≤ 89.6
	$\mathbf{k} = 0.16787 + 0.002394\text{T} - 4.0015 \times 10^{-5}\text{T}^2 + $	$50 \le T \le 140$
	$2.9415 \times 10^{-3} T^3 - 7.7 \times 10^{-10} T^4$	
	$\mu = 127.734 - 2.6292T + 0.0202T^2 - 5.422 \times 10^{-5}T^3$	$50 \le T \le 140$
	$\sigma = 0.00492 - 3.939 \times 10^{-6} T$	$68 \le T \le 140$
59.25% Glycerine and	$\rho = 73.226 - 0.01886T$	$59 \le T \le 86$
40.75% water by weight	$C_{\rm P} = 0.7805 - 0.00024 {\rm T}$	59 ≤ T ≤ 89.6
1	k = 0.21272 + 0.00011T	$50 \le T \le 140$
1	$\mu = 131.383 - 2.7095T + 0.0208T^2 - 5.5974 \times 10^{-5}T^3$	$50 \le T \le 140$
	$\sigma = 0.00491 - 3.9156 \times 10^{-6} T$	$68 \le T \le 140$
81.5% Glycerine and 18.5%	$\rho = 77.1320 - 0.02117T$	$59 \le T \le 86$
water by weight	$C_P = 0.65283 - 0.00012T$	$59 \le T \le 89.6$
}	k = 0.1856	$68 \le T \le 104$
	$\mu = 1,483.74 - 34.8668T + 0.2864T^2 - 7.9856 \times 10^{-4}T^3$	$50 \le T \le 140$
	$\sigma = 0.00462 - 3.0339 \times 10^{-6} T$	$68 \le T \le 140$
81.85% Glycerine and	$\rho = 77.189 - 0.02117T$	$59 \le T \le 86$
18.15% water by weight	$C_{\rm P} = 0.65018 - 0.00014 {\rm T}$	$59 \le T \le 89.6$
	k = 0.18487	$68 \le T \le 104$
	$\mu = 1,566.105 - 36.876T + 0.3032T^2 - 8.4598 \times 10^{-4}T^3$	$50 \le T \le 140$
	$\sigma = 0.004556 - 3.4496 \times 10^{-7} \text{T} - 1.2852 \times 10^{-8} \text{T}^2$	68 ≤ T ≤ 140

82.0% Glycerine and 18.0%	$\rho = 77.2144 - 0.02117T$	59 ≤ T ≤ 86
water by weight	$C_{\rm P} = 0.6491 - 0.00014 {\rm T}$	59 ≤ T ≤ 89.6
	k = 0.1846	$68 \le T \le 104$
	$\mu = 1,601.4 - 37.738T + 0.31045T^2 - 8.6631 \times 10^{-4}T^3$	$50 \le T \le 140$
	$\sigma = 0.004554 - 3.304 \times 10^{-7} \text{T} - 1.2859 \times 10^{-8} \text{T}^2$	$62.6 \le T \le 140$

*T = temperature, (°F)

REFERENCES FOR APPENDIX C

- C.1 Gambill, W.R., "Estimating Engineering Properties, Parts I to VI," Chemical Engineering 1957, 1958, 1959, 1960.
- C.2 Greenland, R., Ph.D. Thesis, Mechanical Engineering Department, Imperial
 College of Science & Technology, University of London, London, England,
 U.K., 1963. As reported by Vijay (93).
- C.3 Anon, "Physical Properties of Glycerine and its Solutions," Glycerine Producers' Association, 295 Madison Avenue, New York, N.Y., U.S.A.
- C.4 "International Critical Tables of Numerical Data, Physics, Chemistry and Technology," Volume V, p. 116, McGraw-Hill Company Inc., 1924.

Appendix D

CALCULATION PROCEDURE

This appendix gives the definitions and calculation procedures for obtaining the heat-transfer coefficients and hydrodynamic quantities used in this investigation. Most of the calculation procedures given in this appendix are presented in Imperial units. This was done as it was desired to check the present results, where possible, against earlier results from the same experimental facility, which results were reported in Imperial units. The results were finally converted into SI units and presented in Appendix G. Much of the presentation that appears in this appendix follows closely that of Rezkallah (71).

D.1 DEFINITIONS OF THE HEAT-TRANSFER COEFFICIENTS

The local heat-transfer coefficients were calculated by the following equation:

$$h(z) = q_w / (T_w - T_B)$$
 (D.1)

where h, q_w , T_w and T_B are heat-transfer coefficient, heat flux, wall temperature and bulk fluid temperature at the location z, from the start of the heated section. The mean heattransfer coefficients were then calculated from the local values by applying a length-mean integration, as follows:

$$\bar{\mathbf{h}} = \frac{1}{\Delta L} \int_{L_1}^{L_2} \mathbf{h}(z) dz \tag{D.2}$$

where h(z)'s were obtained from Equation D.1 at 16 horizontal planes along the heated test section, as shown in Figure D.1. However, only the values at seven planes (denoted by circles) were used to calculate the \bar{h} ; this was done for the following reasons:

- Planes 1 and 16 were close to the bus bars (which act as heat sinks or sources) which were silver soldered to the heated test section.
- 2) There were planes such as 3, 5, 7, 9, 10, 12, and 13 where there was just one thermocouple representing each of them, this in contrast to the points denoted by circles, where there were four thermocouples placed around the circumference on the same plane. Vijay (93) reported that the values of the h around the heated tube at a certain plane varied by as much as 10%, which was attributed to the nonuniformity of the tube thickness (the maximum deviation measured by Vijay (93) was approximately 5.0%). In order to be well represented, therefore, only the values at points denoted by circles were used to calculate the overall mean values. The value of the mean heat-transfer coefficient was then calculated using Equation D.2 and the trapezoidal rule of integration.

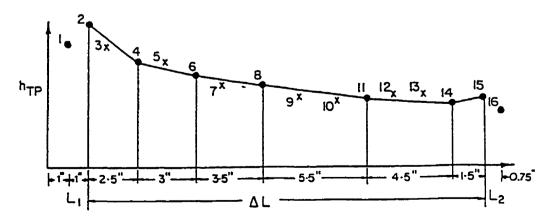


Figure D.1 Local Heat-Transfer Planes

D.2 CALCULATION OF THE LOCAL HEAT FLUX (q_w)

The heated tube acted as the heat source for the heat-transfer experiment. The local heat flux at the tube wall at location z along the test section was calculated from the knowledge of the local electrical resistivity and the electrical current flowing through the tube in the following manner.

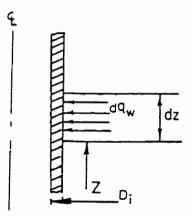


Figure D.2 Heat Flux on the Tube

Consider the elemental length dz of the heated tube at location z (see Figure D.2). Due to the fact that the heated tube was wrapped in insulation outside of which was a guard heater, it is assumed that all the heat generated was transferred to the flowing fluid inside the tube. The heat generated in this element is given by

$$dq_w = GI^2 dR, (D.3)$$

where dR_t is the resistance of elemental length dz of the tube and is given by

$$dR_{t} = \vec{\rho} \frac{dz}{A_{c}}$$
 (D.4)

and $\bar{\rho}' =$ the average resistivity of the tube at location z,

 A_c = the cross-sectional area of the tube wall,

$$G =$$
the conversion factor = 3.413 Btu/Watt.hr.

Therefore,

$$\dot{q_w} = \frac{dq_w}{dA_s} = \frac{GI^2 \,\tilde{\rho} \, dz}{A_c (\pi D_i) dz} \tag{D.5}$$

where $dA_s = \pi D_i dz$, is the elemental inside surface area of the tube. Hence,

$$q_{w}^{-} = \frac{GI^{2} \bar{\rho}^{\prime}}{A_{c}(\pi D_{i})}$$
(D.6)

Equation D.6 represents the net heat flux transferred to the fluid.

D.3 CALCULATION OF THE INNER WALL TEMPERATURE FROM THE MEASURED OUTER WALL TEMPERATURE

In order to obtain the local heat-transfer coefficient, the temperature at the fluidwall interface (inner wall temperature) T_w (see Figure D.3) is required for use in Equation D.1. During the course of the experiment, the outer wall temperature T_0 was measured, then the inner wall temperature was calculated from the following relation:

$$T_{w} = T_{o} - \Delta T_{w} \tag{D.7}$$

where ΔT_w = the temperature drop across the tube wall.

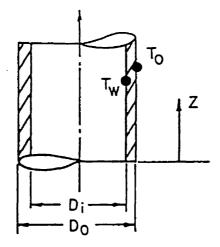


Figure D.3 The Temperature Drop Across the Tube

To obtain this temperature drop ΔT_w , the method developed by Kreith and Summerfield (D.1) was used. The expression for ΔT_w as given by the authors (D.1) is as follows:

$$\Delta T_{w} = B_{o}t^{2} + B_{1}t^{3} + (B_{2} + B_{3})t^{4}$$
(D.8)

where

t = the wall thickness,

$$\begin{split} B_{o} &= m / [(1 + \beta' T_{o})(1 + \alpha' T_{o})], \\ B_{1} &= 2m / [3D_{o}(1 + \beta' T_{o})(1 + \alpha' T_{o})], \\ B_{2} &= m^{2}(3\alpha' + 4\alpha' \beta' T_{o} + \beta') / [6(1 + \beta' T_{o})^{3}(1 + \alpha' T_{o})^{3}], \\ B_{3} &= m / [D_{o}^{2}(1 + \beta' T_{o})(1 + \alpha' T_{o})], \end{split}$$

 D_o = the outer diameter of the tube,

 D_i = the inner diameter of the tube,

 β' = the temperature coefficient of resistivity of the tube material, defined through,

$$\dot{\rho} = \dot{\rho}_{o} (1 + \beta T) \tag{D.9}$$

 ρ' = the electrical resistivity of the tube material,

p'= the electrical resistivity of the tube material at 0°F.

 α' = the temperature coefficient of thermal conductivity of the tube material defined through,

$$\mathbf{k}' = \mathbf{k}_{\alpha}(1 + \alpha' T) \tag{D.10}$$

 \mathbf{k} = the thermal conductivity of the tube material,

 $\dot{k_o}$ = the thermal conductivity of the tube material at 0 °F,

de/dz = the voltage gradient in the tube, and

$$m = G(de/dz)^2 / 2\rho_0 k_0$$
 (D.11)

For the elemental length dz, the voltage gradient can be expressed by

$$\frac{de}{dz} = -\rho' i = -\rho' \frac{I}{A_e}, \qquad (D.12)$$

where i = the electrical current flux. Hence,

$$m = \frac{G}{2\rho_{o}k_{o}}\rho^{2} \left(\frac{I}{A_{c}}\right)^{2}$$
(D.13)

where,

$$A_{c} = \frac{\pi}{4} (D_{o}^{2} - D_{i}^{2})$$

In order to obtain m, it was assumed that ρ' could be replaced by $\overline{\rho'}$ evaluated at T_{AVG} for the location of interest, i.e.,

$$\rho' = \overline{\rho'} = \rho_o(1 + \beta' T_{AVG}) \tag{D.14}$$

$$T_{AVG} = (T_0 + T_W)/2$$
 (D.15)

Therefore,

$$m = \frac{G\overline{\rho'}^2}{2\rho_o k_o} \left(\frac{I}{A_c}\right)^2$$
(D.16)

The electrical resistivity of the tube was measured by Vijay (93) in the laboratory and the following equation was used to calculate ρ' (where T is in °F):

$$\rho' = 0.21658 \times 10^{-5} (1 + 0.6504 \times 10^{-3} \text{ T}) \text{ ohm-ft } 65 < T < 220 \text{ °F}$$
 (D.17)

It is seen, then, that $\dot{\rho_o} = 0.216581 \times 10^{-5} \text{ ohm} \cdot \text{ft/}^{\circ}\text{F}.$

The thermal conductivity of the heated tube material (type-304 stainless steel) was calculated from the equation reported by Bergles and Rohsenow (D.2) which agreed within $\pm 2\%$ with the manufacturer's data [Vijay (93)]. The expression for k['] is given by,

$$k' = 8.46(1 + 5.26 \times 10^{-4} \text{ T})$$
 Btu/hr·ft·°F 75

where T is in °F, i.e., \mathbf{k}_{\circ} = 8.46 Btu/hr·ft·°F.

Up to this point, Equation D.8 now contains two unknowns, ΔT_w and implicitly Tw. In order to obtain ΔT_w , the following iteration method was applied.

- 1) At the beginning, T_w was assumed to be equal to T_0 .
- 2) $\overline{\rho}$ and m were calculated from Equations D.14 and D.16, respectively.
- 3) ΔT_w was calculated from Equation D.8 and T_w from Equation D.7.
- 4) This new value of T_w was then used to obtain the new value of T_{AvG}, and then steps 2 and 3 were repeated until two successive values of ΔT_w agreed within ± 0.0005 °F.

D.4 CALCULATION OF THE MIXTURE INLET TEMPERATURE (T_{IN})

As reported and used in Rezkallah (71), a general equation for the inlet temperature T_{IN} of gas-liquid mixture was derived by Vijay (93) for air-glycerine and water solution systems by performing a conservation of mass and energy on the control volume indicated by the dashed lines in Figure D.4. The general equation is

$$T_{IN} = \frac{\frac{\dot{m}_{LI}}{\dot{m}_{a2}} C_{PL}T_{LL} + C_{Pa}T_{G2} + (\omega_{3}^{H_{2}O} - \omega_{2}^{H_{2}O})h_{L3}^{L} + \omega_{2}^{H_{2}O}h_{v2}^{H_{2}O}}{\frac{\dot{m}_{L1}}{\dot{m}_{a2}} C_{PL} + C_{PG}}$$

$$\frac{-\omega_{3}^{H_{2}O}h_{v3}^{H_{2}O} - \omega_{3}^{GL}(h_{v3}^{GL} - h_{L3}^{L})}{\frac{\dot{m}_{L1}}{\dot{m}_{a2}} C_{PL} + C_{Pa}}$$
(D.19)

where

 m_{L1} = the liquid flow rate at the inlet to the mixer,

$$m_{a2}$$
 = the flow rate of dry air = m_{a3} = m_{c} (appears in Figure D.4),

 T_{L1} = the liquid-phase temperature at the inlet to the mixer,

 T_{G2} = the gas-phase temperature at the inlet to the mixer,

C_{PL}, C_{Pa} are the specific heats at constant pressure for the liquid and dry air, respectively,

- h = the enthalpy per unit mass of fluid,
- ω = the mass of liquid vapour per unit mass of dry air.

The superscripts H_2O , L and GL refer to water, water/glycerine solution and pure glycerine, respectively. The subscript v refers to the vapour of the fluid indicated by the superscript.

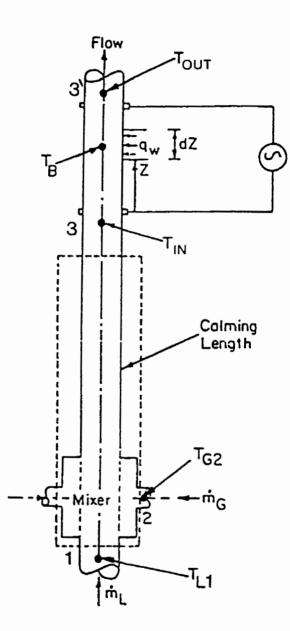


Figure D.4 Heat Balance Control Volume, From Ref.(100)

The quantities T_{L1} , T_{G2} , m_{L1} and m_{a2} in Equation D.19 are known from measurements while C_{PL} and C_{Pa} can be obtained from properly tables. The terms in the numerator of Equation D.19 beginning with $(\omega_3^{H_2O} - \omega_2^{H_2O})$ h_{L3} may be manipulated into

$$(\omega_{3}^{H_{2}O} - \omega_{2}^{H_{2}O})[-h_{fg,3}^{H_{2}O} + (h_{L3}^{L} - h_{L3}^{H_{2}O})] - \omega_{2}^{H_{2}O}(h_{v3}^{H_{2}O} - h_{v2}^{H_{2}O}) - \omega_{3}^{GL}(h_{v3}^{GL} - h_{L3}^{L})$$

The only significant term here is

$$(\omega_3^{\rm H_2O} - \omega_2^{\rm H_2O}) h_{\rm fg,3}^{\rm H_2O}$$

where $h_{fg,3}^{H_2O}$ is the latent heat of vaporization for water at T₃. Equation D.19 therefore becomes

$$T_{\rm IN} = \frac{\frac{m_{L1}}{M_{a2}}C_{\rm PL}T_{L1} + C_{\rm Pa}T_{G2} - (\omega_3^{\rm H_2O} - \omega_2^{\rm H_2O})h_{\rm fg,3}^{\rm H_2O}}{\frac{m_{L1}}{M_{a2}}C_{\rm PL} + C_{\rm Pa}}$$
(D.19a)

The campus air supply system, which was used here, has air driers after the compressors. In this case $\omega_2 \equiv 0$ and the above equation becomes

$$T_{IN} = \frac{\frac{m_{L1}}{L_{L1}} C_{PL} T_{L1} + C_{Pa} T_{G2} - \omega_{3}^{H_{2}O} h_{fg,3}^{H_{2}O}}{\frac{m_{L1}}{L_{L1}} C_{PL} + C_{Pa}}$$
(D.20)

In the gas phase at location 3, for ony dry air and water vapor present (even with a glycerine and water liquid phase solution, there would be essentially no glycerine vapor in the gas phase), ω_3^{H2O} would be given by

$$\omega_3^{\rm H_2O} = 0.622 \frac{P_{\rm V3}^{\rm H_2O}}{P_{\rm a3}}$$

where

 $P_{v3}^{H_2O}$ = the partial pressure of water vapor at location 3,

 P_{a3} = the partial pressure of air at location 3, and

= (actual static pressure at 3) - $P_{V3}^{H_2O}$.

The constant 0.622 is the ratio of molecular weights of water and air. When the liquid phase is pure water and the gas phase is saturated with water vapor

$$P_{V3}^{H_2O} = P_{sat,T_3}^{H_2O}$$

where $P_{sat,T_3}^{H_2O}$ is the saturation pressure for water at T₃. When the liquid phase is a solution of glycerine and water

$$P_{V3}^{H_2O} = K P_{sat,T_3}^{H_2O}$$

where K depends on the concentration and is essentially independent of temperature in the temperature range of interest. From information in Reference D.4,

$$K \cong 0.77$$
 for air-G1, and
 $K \cong 0.45$ for air-G2.

D.5 CALCULATION OF THE LOCAL BULK TEMPERATURE (T_B)

During the course of the heat-transfer experiment, it is assumed that the gas-liquid mixture enters the heat-transfer test section fully saturated. This means that the saturation process is completed in the calming section. Calculations and experiments were done by Sims (D.5) showing that this assumption is valid.

When a gas-liquid mixture flows in the heated tube section, with the temperature rise and the pressure drop along the test section, the saturation vapour content of the gas phase changes along the test section. Therefore, part of the liquid phase evaporates keeping the gas-liquid mixture saturated (the implied assumption here is that the gas phase remains saturated with vapor). The effect on $T_{\mathfrak{B}}$ is significant only for the combination of high gas flow rates and low liquid flow rates. However, the effect of evaporation was taken into account in the calculation procedure for $T_{\mathfrak{B}}$ for all conditions.

D.5.1 <u>Calculation of T_B for Two-Phase Tests</u>

In order to obtain the values of T_B along the heated test section, the mixture temperature at the outlet of the heated test section T_{OUT} was first calculated from the procedure given below. Then, after knowing the values of T_{IN} and T_{OUT} , the values of T_B were obtained by assuming that a linear temperature rise along the heated test section (any deviations from linearity would be extremely small).

The expression for T_{OUT} of the air-liquid systems used in the present investigation can be obtained in a similar manner to that for T_{IN} (given in the previous section). In this case, the term which describes the heat supply at the wall will appear in the expression for T_{OUT} (where q_w is the average of local value of heat flux). The control volume, for this case, surrounds the system from the point the liquid and gas enter the mixer [points 1 and 2 in Figure D.4] to the point where the gas-liquid mixture leaves the heated test section (point 3). Equation D.20, modified to accommodate a heat-flux term, would be

$$T_{OUT} = \frac{\frac{q_{w}A_{s}}{m_{a2}} + \frac{m_{L1}}{m_{a2}}C_{pL}T_{L1} + C_{pa}T_{G2} - \omega_{3}^{H_{2}O}h_{fg,3}^{H_{2}O}}{\frac{m_{L1}}{m_{a2}}C_{pL} + C_{pa}}$$
(D.21)

where A_s = inner surface area of the heated test section.

D.5.2 Calculation of T_B for Single-Phase Tests

This method is to obtain the values of T_B along the heated test section for liquid single-phase experiments. Consider a elemental volume of the heated test section, having an internal surface area dA_s (Figure D.2). The amount of heat transferred to the flowing fluid in the section is given by,

$$dq_w = q_w dA_s \tag{D.22}$$

where

$$dA_s = pdz = \pi D_i dz$$

The quantities D_i and p are the inside diameter and perimeter of the tube, respectively. Let dT be the temperature rise of the liquid in this length dz. Applying the principal of energy conservation on this elemental volume, with the assumption of the steady state conditions, the following expression is obtained:

$$q_w(pdz) = m_L C_{pL} dT_B$$
 (D.23)

Hence,

$$dT_{\rm B} = \frac{q_{\rm w}(pdz)}{m_{\rm L} C_{\rm PL}}$$
(D.24)

Integrating Equation (D.24) between Z_i and Z_{i+1} with the assumption that q_w and C_{PL} are constant throughout the interval dz gives:

$$\int_{(T_B)_i}^{(T_B)_{i+1}} dT_B = \frac{q_w p}{m_L C_{PL}} \int_{z_i}^{z_{i+1}} dz$$

Therefore,

$$(T_B)_{i+1} = (T_B)_i + \frac{q_w p}{m_L C_{PL}} (z_{i+1} - z_i)$$
 (D.25)

To calculate values of T_B along the heated section, the initial value of T_B is required. The value of T_{IN} (obtained from the previous section) is used for this initial value of T_B .

D.6 SUMMARY OF THE CALCULATION PROCEDURE FOR THE HEAT-TRANSFER COEFFICIENTS

For the calculation of the heat-transfer coefficients in the two-phase experiment, the following quantities were measured:

- I the electrical current flowing through the tube,
- T_o the temperatures at the outer wall surface at various locations along the tube,
- T_{L1} liquid temperature at the inlet to the mixing chamber,
- T_{G2} gas temperature at the inlet to the mixing chamber,
- mLi liquid flow rate at the inlet to the mixing chamber,
- m_{G2} gas flow rate at the inlet to the mixing chamber (in the present case

$$\dot{m}_{62} = \dot{m}_{22}$$
 , and

 P_{IN} pressure at the inlet to the test section.

The calculation procedure for the heat-transfer coefficients was as follows:

- 1) The local values of inner wall temperature T_w were calculated from Equation D.8, using the iteration procedure described in Section D.3.
- 2) The local values of the heat flux q_w were calculated from equation D.6,
- 3) The mixture inlet temperature T_{IN} was calculated from the procedure in Section D.5,
- 4) The mixture outlet temperature T_{OUT} was calculated from the procedure in Section D.5. Then the values of T_B were calculated from the knowledge of T_{IN} and T_{OUT} , with the assumption that the bulk temperature rise was linear in the heated test section, and
- 5) Finally, the local and mean heat-transfer coefficient were calculated using Equations D.1 and D.2.

D.7 CALCULATION OF THE FRICTIONAL PRESSURE DROP

The two-phase frictional pressure drop was calculated from the measured void fraction and total pressure drop across the test section. The following method was used to calculate the frictional pressure drop.

The total pressure drop includes three terms, as seen in

$$\Delta P_{\text{TOTAL}} = P_{\text{IN}} - P_{\text{OUT}} = \Delta P_{\text{H}} + \Delta P_{\text{A}} + \Delta P_{\text{F}}$$
(D.26)

where

or

 P_{IN} is the pressure at the inlet of the test section,

POUT is the pressure at the outlet of the test section,

 $\Delta P_{\rm H}$ is the hydraulic pressure drop,

 ΔP_A is the accelerational pressure drop, and

 ΔP_F is the frictional pressure drop.

The hydraulic pressure drop or " head term" is given by

$$\Delta P_{\rm H} = \rho Lg \tag{D.27}$$

where $\rho = \rho_L$ and ρ_{MIX} for liquid single-phase and two-phase flow, respectively. The mixture density ρ_{MIX} is obtained from

$$\rho_{MIX} = (1 - \alpha)\rho_L + \alpha\rho_G \tag{D.28}$$

where α is the measured void fraction.

Vijay (93) has demonstrated that the accelerational pressure drop is negligible in cases similar to the present situation. Therefore, Equation D.26 becomes

$$\Delta P_{\text{TOTAL}} = \Delta P_{\text{H}} + \Delta P_{\text{F}}$$
$$\Delta P_{\text{F}} = \Delta P_{\text{TOTAL}} - \Delta P_{\text{H}} \qquad (D.29)$$

D.8 CALCULATION OF THE MEAN PRESSURE AND TEMPERATURE IN THE TEST SECTION

The average or system temperature was obtained from the following expression:

$$T_{MEAN} = (T_{IN} + T_{OUT})/2$$
 (D.30)

where the calculated value of T_{OUT} was used.

or

In a similar manner, for mean or system pressure, the following equation was used:

$$P_{MEAN} = (P_{IN} + P_{OUT})/2$$

$$P_{MEAN} = P_{IN} - (\Delta P_{TOTAL})/2 \qquad (D.31)$$

D.9 CALCULATION OF VOID FRACTION (α)

The knowledge of void fraction was needed in order to calculate the two-phase frictional pressure drop (ΔP_{TPF}) appearing in Section D.7 as well as in the comparisons with the correlations that appear in this thesis. The experimental facility was arranged in such a way that both gas and liquid fractions of the two-phase mixture could be measured with the use of two quick-closing and one quick-opening valves with an operating time (measured) of approximately within five milliseconds. The value of the void fraction was calculated from

$$\alpha = \frac{V_G}{V_T}$$
(D.32)

where, $V_T = \text{total volume} = V_G + V_L$,

 V_G = the volume of the section occupied by gas phase,

 V_L = the volume of the section occupied by liquid phase.

D.10 CALCULATION OF THE LIQUID AND GAS FLOW RATES AND SUPERFICIAL VELOCITIES

D.10.1 Liquid Flow Rate and Superficial Velocity

(i) FLOW RATE mL

The three flowmeters were calibrated "in situ" in the laboratory for each liquid used in this investigation. The equation for the liquid flow rate is in the form of,

$$\mathbf{m}_{\mathrm{L}} = \mathbf{A}_{\mathrm{0}} + \mathbf{A}_{\mathrm{1}}\mathbf{R} \tag{D.33}$$

where,

 $m_L = mass flow rate (lbm/hr),$

 A_0, A_1 = are constants for each rotameter and each liquid,

and

- R = the percentage of the meter reading.
- (ii) SUPERFICIAL VELOCITY, V_{SL}

By definition, including the effect of evaporation in the test section, the liquid superficial velocity was calculated from the following equation,

$$V_{SL} = m_L / \rho_L A_T \tag{D.34}$$

where the tube cross-sectional area, $A_T = (\pi/4)D_i^2$.

D.10.2 Gas Flow Rates and Superficial Velocity

(i) FLOW RATE, m_G

For very low flow rates, the air flow was measured by means of a gas rotameter. The following equations were used to obtain the air flow rate.

$$m_G = 0.27364(\rho_{G1})^{0.5}Q_{o}$$
 (D.35)

where,

 m_G = the actual mass flow rate (lbm/hr)

- ρ_{G1} = the air density at the rotameter (lbm/ft³)
- Q_o = the volume flow rate (ft³/hr) obtained by Equation D.36 (at 69.9 psia and 70 F),
- R is the gas-rotameter reading (cm).

$$Q_{p} = 0.0943R - 0.0627 \tag{D.36}$$

For higher air mass flow rates, air was supplied through one of three orifice plates. The orifice calculations were performed according to the ASME Power Test Code (D.6). The value of the discharge coefficient, C, in Equation D.37 was determined by calibration. Equation D.37 was used to determine the air flow rates passing through the orifices.

$$m_G = YCMA_2[2g_o\rho_1(P_1 - P_2)]^{0.5}$$
 (D.37)

where,

A₂ is throat area =
$$\frac{\pi}{4} d_i^2$$
 (ft²),

C is the discharge coefficient,

$$\mathbf{M} = \left[1 - \left(\frac{\mathbf{A}_2}{\mathbf{A}_1}\right)^2\right]^{-0.5}$$

A₁ is the tube cross-sectional area $= \frac{\pi}{4} d_o^2$ (ft²),

 ρ_1 gas density at position 1 (see Figure D.5), lbm/ft³,

 g_{0} is the conversion factor (32.2 lbm·ft/lbf·s²)

P1, P2 are pressure at position 1 and 2 respectively,

Y is the adiabatic expansion factor, or

$$Y = \left[\gamma^{2/k} \left(\frac{k}{k-1}\right) \left(\frac{1-\gamma^{\frac{k-1}{k}}}{1-\gamma}\right) \left(\frac{1-\beta^4}{1-\beta^4\gamma^{2/k}}\right)\right]^{0.5}$$
(D.38)

where,

$$k = 1.4 \text{ for air,}$$

$$\gamma = P_2/P_1$$

 β = the diameter ratio = d_i/D_o

d_i = orifice diameter

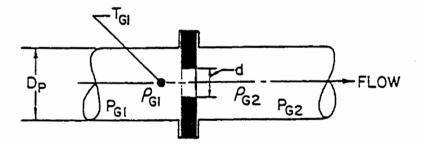


Figure D.5 Diagram of a Typical Orifice

The discharge coefficient C of the three orifices were obtained from Table B.1 in Appendix B. There are two unknown variables in the Equation D.37, namely m_G and C. Therefore, the value of the quantity m_G was solved by an iteration method.

(ii) SUPERFICIAL VELOCITY (V_{SG})

The gas superficial velocity was calculated by the following relation:

$$V_{sg} = m_G / (\rho_G A_T)$$
(D.39)

The value of m_G was corrected due to the effect of evaporation taking place in the mixer and along the heated test section. The gas-phase density also changed along the heated test section due to the change in temperature and pressure of the two-phase mixture. For these reasons, the mean gas superficial velocity was determined by,

$$V_{SG,MEAN} = (V_{SG,INLET} + V_{SG,OUTLET})/2$$
(D.40)

REFERENCES FOR APPENDIX D

- D.1 Kreith, F. and Summerfield, M., "Investigation of Heat Transfer at High Heat-Flux Densities: Experimental Study with Water of Friction Drop and Forced Convection With and Without Surface Boiling in Tubes," Progress Report No. 4-68, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, April, 1948.
- D.2 Bergles, A.E. and Rohsenow, W.M., "Forced Convection Surface Boiling Heat Transfer and Burnout in Tubes of Small Diameter," Technical Report No. 8767-21, MIT, 1962.
- D.3 VanWylen, G.J. and Sonntag, R.E., "Fundamentals of Thermodynamics", 3rd edition, John Wiley & Sons, 1985.
- D.4 Anon, "Physical Properties of Glycerine and Its Solutions," Glycerine Producers Association, 295 Madison Ave., New York, N.Y., U.S.A.
- D.5 Sims, G.E., "Forced Convection Heat Transfer to Water with Air Injection Through One Porous Heated Wall of A Rectangular Duct," Ph.D. Thesis, Imperial College of Science and Technology, University of London, London, U.K., p. 239, 1969.
- D.6 ASME Power Test Codes, Instruments and Apparatus, Chater 4, Flow Measurement, Part 5, Measurement of Quantity of Materials, February, 1959.

Appendix E

UNCERTAINTY ANALYSIS AND REPEATABILITY

E.1 GENERAL REMARKS

It is important in any experimental investigation to estimate the degree of uncertainty in the collected data and the experimental results. This appendix presents the uncertainty analysis of the independent and dependent variables involved in the present investigation. Also, repeatability tests on the main investigated variables, namely heat-transfer coefficients, pressure drop and void fraction, were performed in order to show the consistency of the experimental data.

E.2 UNCERTAINTY ANALYSIS

The accuracy of the measured quantities and of the calculated dependent (in the mathematical sense) variables was estimated by using the method of Kline and McClintock (E.1) and Moffat (E.2). The accuracy is represented by the value or "uncertainty" of each variable. It should be noted that the "error" in a measurement is usually defined as the difference between its true value and the measured value. The term "Uncertainty" is used to refer to "a possible value that an error may have." According to their method, if R (a dependent variable) is a function of independent variables, V_1 , V_2 ,, V_n where each of these independent variables is normally distributed, then the relation between the uncertainty interval of the independent variable ω_a and the uncertainty interval of the dependent variable ω_R is expressed as:

$$\omega_{R} = \left[\left(\omega_{1} \frac{\partial R}{\partial V_{1}} \right)^{2} + \left(\omega_{2} \frac{\partial R}{\partial V_{2}} \right)^{2} + \dots + \left(\omega_{n} \frac{\partial R}{\partial V_{n}} \right)^{2} \right]^{0.5}$$
(E.1)

If the function is in the form of $R = V_1^a V_2^b V_3^c$ The fraction uncertainty of R is denoted as $\frac{\omega_R}{R}$ and the value can be calculated as follows:

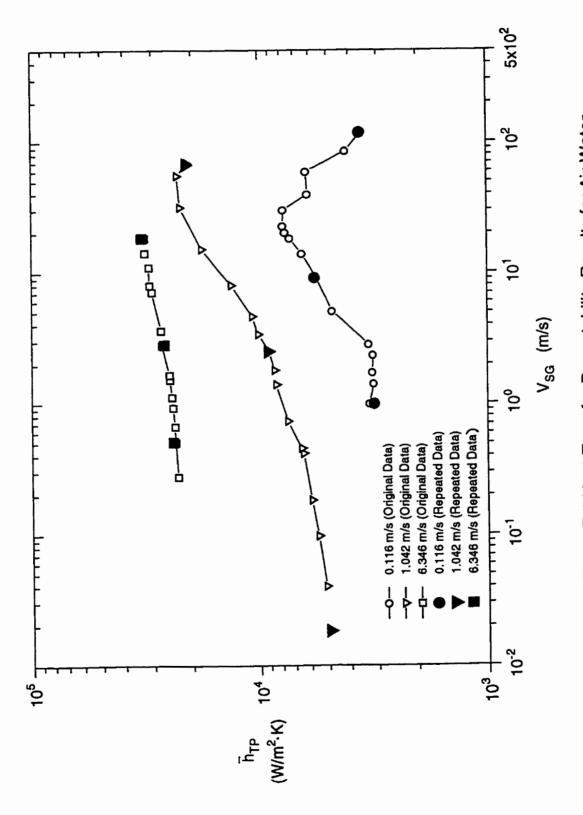
$$\frac{\omega_{\rm R}}{\rm R} = \left[\left(\omega_{\rm 1} \frac{\partial(\ln R)}{\partial V_{\rm 1}} \right)^2 + \left(\omega_{\rm 2} \frac{\partial(\ln R)}{\partial V_{\rm 2}} \right)^2 + \dots + \left(\omega_{\rm n} \frac{\partial(\ln R)}{\partial V_{\rm n}} \right)^2 \right]^{0.5}$$
(E.2)

The uncertainty interval of ω_i is normally known from measurement or estimation based on certain "odds" or "confidence" that the experimenter is willing to wager that any given reading lies within $\pm \omega_i$ of the true value. In the present work, the odds 20-to-1 were used. The estimated uncertainty in the main measured variables are summarized in Table E.1. Table E.2 gives the uncertainties in the variables, which affect the heat-transfer coefficient, void fraction and pressure drop.

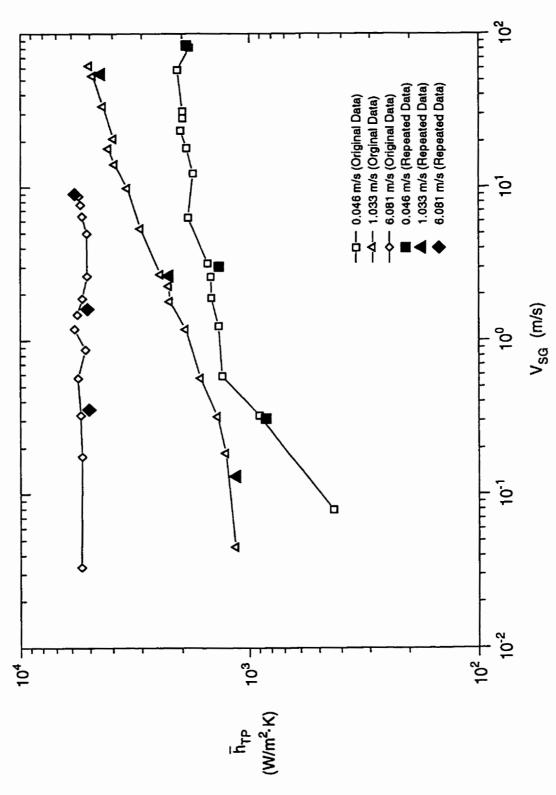
Variables	Fractional Uncertainties, ± %	
Local Heat-Transfer Coefficient (h)	5.5 - 11.0	Air-Water
	5.1 - 12.5	Air-Gl
	5.2 - 13.3	Air-G2
Mean Heat-Transfer Coefficient (\overline{h})	5.8 - 10.6	Air-Water
	5.5 - 10.7	Air-G1
	5.4 - 11.5	Air-G2
Liquid Superficial Velocity (V _{SL})	3.6 - 6.1	
Gas Superficial Velocity (V _{sG})	3.2 - 7.7	
Mean Void Fraction (α)	0.2 - 8.0	$(\cong 20\% \text{ for slug flow})$
Total Pressure Drop across the heated test section	0.53 - 5.4	

Table E.1Summary of Estimated Uncertainties in the Main MeasuredVariables

Variables	Uncertainty Interval Based on Approximately 20 to 1 odds.	Comments	
Do	0.2%	Measured by Vijay (93)	
t	5.0%	Measured by Vijay (93)	
L	0.1%	Measured by Vijay (93)	
Z	0.2 - 1.0%	Measured by Vijay (93)	
D	0.5%	Equation E.1 applied to $D = D_o - 2t$	
Ac	5.5%	Equation E.1 applied to:	
		$A_{c} = \frac{\pi}{4} (D_{o}^{2} - D^{2})$	
A	0.8%	Equation E.1 applied to	
		$A = \frac{\pi}{4}D^2$	
I	0.6 - 5.0%	The largest error associated with the low value of reading namely at about 0.2 amps. The majority of data was taken where the error averaged ± 1.5%	
T。	0.2 °F	Calibrated by Vijay (93)	
ΔTw	0.002 °F	Since Equation D.7 is complicated, Equation E.1 applied to the following, used by Heineman (E.3) $\Delta T_{w} = \frac{q_{w}}{2k_{t}} \left[\frac{D_{o}^{2}}{4} \ln \frac{D_{o}}{D} - \frac{D_{o}^{2} - D^{2}}{8} \right]$	
Tw	0.2 °F	Equation E.1 applied to: $T_w = T_o - T_w$	
q _w	5.5 - 10.2%	Equation E.2 applied to Equation D.5. The high error associated with low liquid flow rate. For the majority of data, the error in q_w averaged $\pm 6.8\%$	
Tin	0.2 - 0.88 °F	Equation E.1 applied to Equation D.15	
Тв	0.2 - 1.3 °F	Equation E.1 applied to Equation D.25	


Table E.2Uncertainties in the Variables Affecting the Heat-Transfer
Coefficients and Frictional Pressure Drop

α	0.2 - 8.0%	For non-slug flow. The error in measured void fraction associated with slug flow was approximately 20%
ΔP _{TOT}	0.5 - 5.0%	Pressure transducers were calibrated in the lab.


E.3 REPEATABILITY

Air-water, air-G1 and air-G2 repeatability tests were performed at the end of each air-liquid investigation to check the consistency of the experimental facility on three main variables, namely, mean heat-transfer coefficient, total pressure drop and measured void fraction. Figures E.1 to E.9 show the results of the repeatability tests which indicate the excellent consistency between the original data and the repeated data.

In general, the deviations between the base data and the repeated data were less than 5 percent except when slug flow took place. In this case, slug flow, the deviation was about 8 percent, as can be seen (Figure E.1) from air-water system (V_{SL} = 0.116 m/s and V_{SG} = 3.00 m/s).

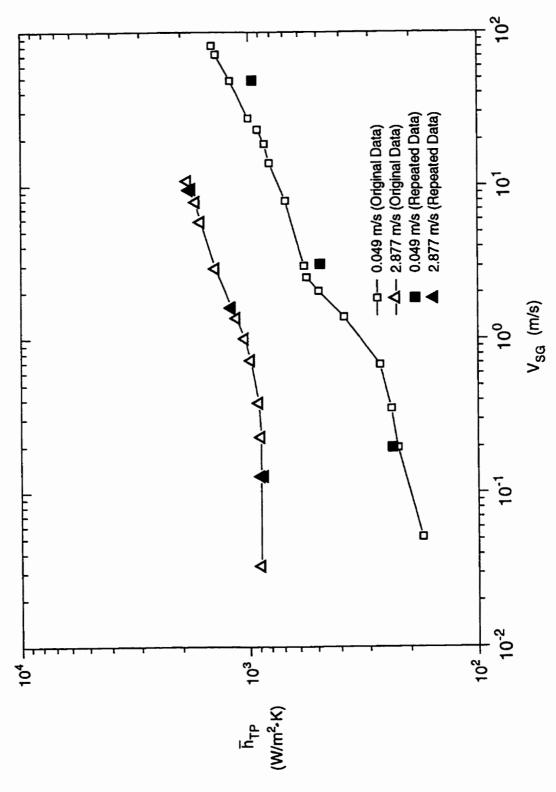


Figure E.3 Heat-Transfer Repeatability Results for Air-G2

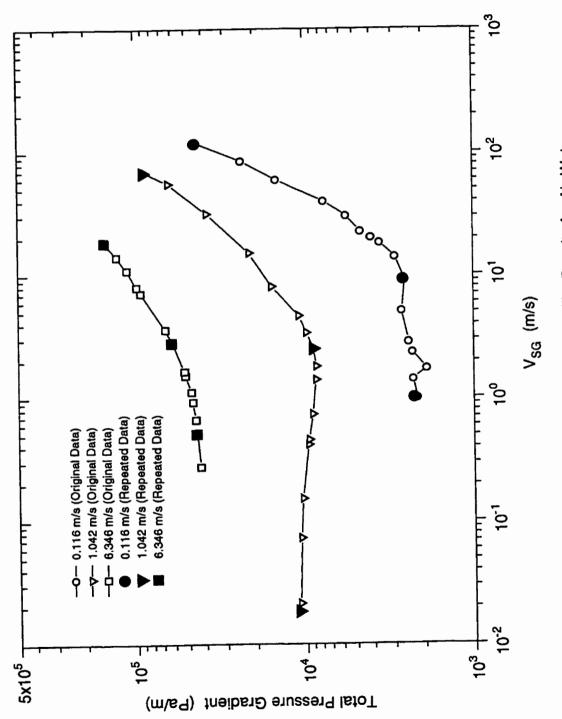
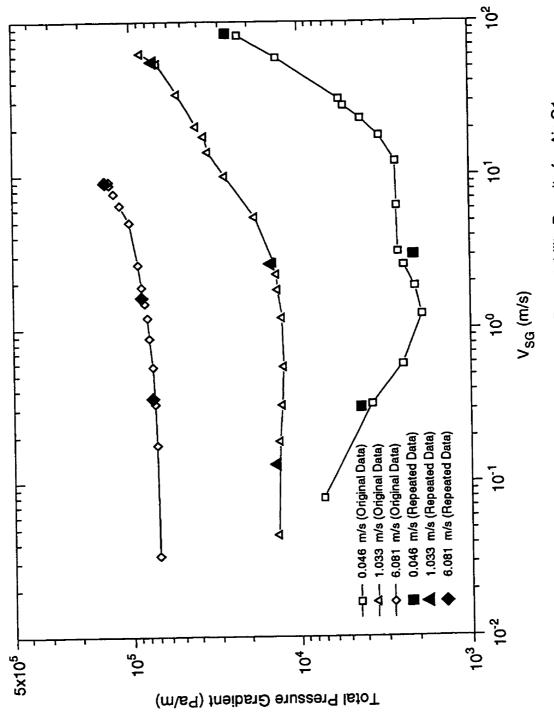
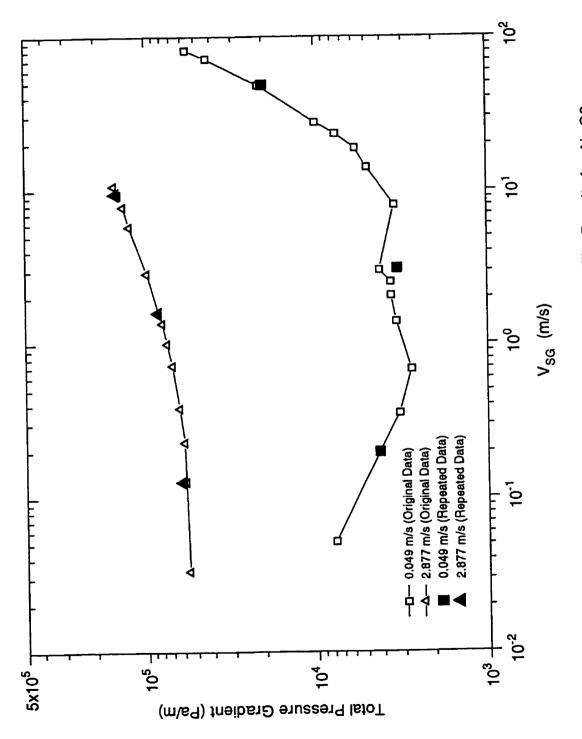
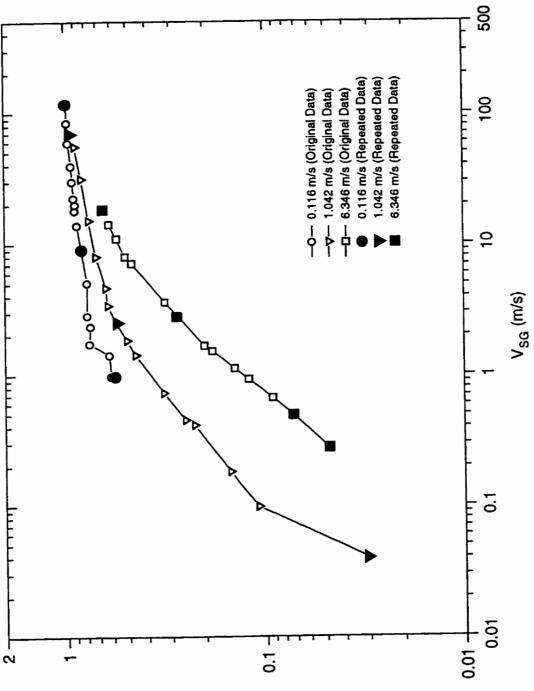
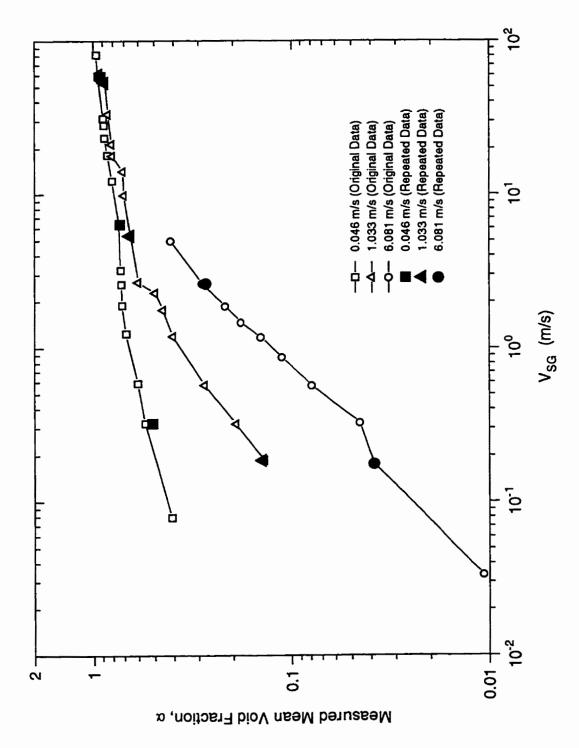
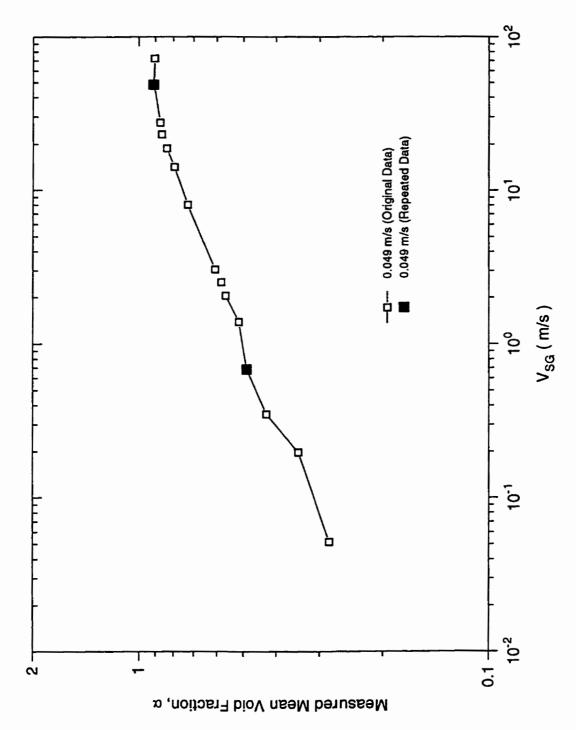


Figure E.4 Pressure-Drop Repeatability Results for Air-Water


Figure E.5 Pressure-Drop Repeatability Results for Air-G1



REFERENCES FOR APPENDIX E

- E.1 Kline, S.J. and McClintock, F. A., "Describing Uncertainties in Single-Sample Experiments," Mechanical Engineering, Vol. 75, pp.3-8, 1953.
- E.2 Moffat, R. J., "Describing the Uncertainties in Experimental Results,"Experimental Thermal and Fluid Science, pp.3-17, 1988.
- E.3 Heineman, J. B., "An Experimental Investigation of Heat Rectangular Channels, "ANL-6213, U.S.A., 1960. As reported in Vijay (93).

Appendix F

ADAPTED SPALDING THEORY

In Chapter 8, the present two-phase results are used in a predictive method which was adapted by Vijay (93) from an original work proposed by Spalding (83) for single-phase boundary-layer flow. Although not considered a test of the single-phase data, it is nonetheless interesting to determine how well heat-transfer coefficients would be predicted in the limiting case of single-phase liquid flow.

The following equation proposed by Spalding (83) was used to predict local heattransfer coefficients in the turbulent boundary layer.

$$S_{q} = \left\{ \left[\frac{Pr_{L} / Pr_{T}}{6.64 (Z^{-} / Pr_{T})^{1/9} + P_{FN}} \right]^{4} + \left[0.651 (Z^{-} / Pr_{L})^{-1/3} \right]^{4} \right\}^{1/4}$$
(F.1)

where \mathbf{P}_{FN} is the "P-Function" and is given by

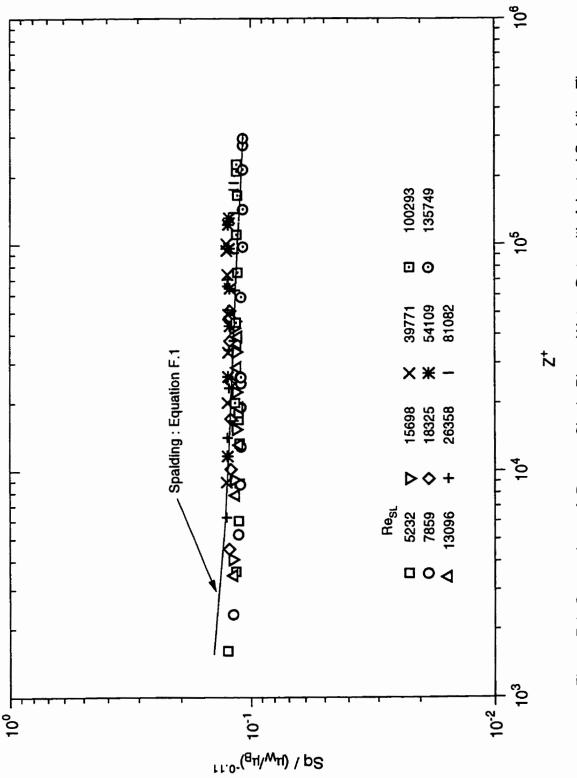
$$\mathbf{P}_{\mathbf{FN}} = 11.57 \left[\left(\frac{\mathbf{P}_{\mathbf{r}_{L}}}{\mathbf{P}_{\mathbf{r}_{T}}} \right)^{0.75} - 1 \right]$$
(F.2)

 Pr_T is the turbulent Prandtl number which was given the value of 0.887 as recommended in the original work. The quantity Z^+ is defined by

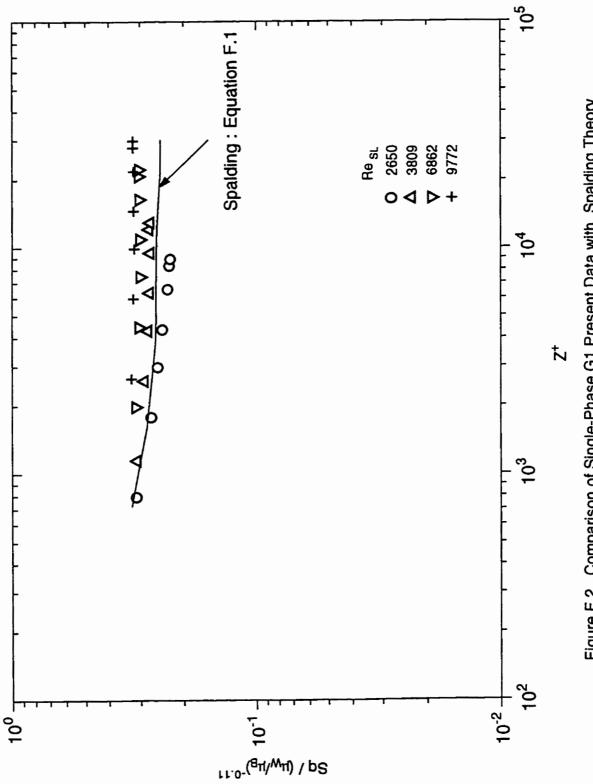
$$Z^{+} = \int_{O}^{Z} (\tau_{W} \rho)^{\frac{1}{2}} \mu^{-1} dz \qquad (F.3)$$

which for a constant friction coefficient and fluid properties (present case) the Z^+ becomes,

$$Z = (Z/D) \operatorname{Re}_{SL} (f_{sp}/2)^{\frac{1}{2}}$$
 (F.4)


$$Sq = \frac{Nu_{sp}}{Re_{SL} (f_{sp}/2)^{\frac{1}{2}}}$$
 (F.5)

The quantity S_q is called the "Spalding Function". The value of f_{sp} in Equations (F.4) and (F.5) was calculated from Equations (5.3), (5.4) or (5.5). Due to the viscosity of G2, all test conditions of this liquid fell only in laminar flow. Figures F.1 and F.2 show the results of water and G1, with the correction of variation of fluid properties, as recommended by Kays and Crawford (46). Table F.1 summarizes the deviation of experimental data from the predictions; very good agreement is noted.


Table F.1Summary of Comparison of the Local Heat-Transfer Data in Turbulent
Flow Compared with Spalding Theory (Equation F.1)

Liquid	No. of points	ē (%)	ē _{yms} (%)
Water	77	-1.2	7.1
G1	28	11.3	16.7
G2	-	-	-

From the material presented in this appendix, it can be seen that the experimental data agree well with the predictions.

Appendix G

TABULATED DATA

This appendix presents the two-phase experimental data of the present investigation. Table G.1 gives the information of the bubble diameter for bubble flow. Table G.2 gives the data of mean void-fraction measurement which was done separately from the heat-transfer and pressure-drop test. The "Test No." appearing in all tables indicates the corresponding test data conducted under the same flow condition. Table G.3 presents the two-phase heat-transfer and hydrodynamic data of the present investigation. The data of a air-liquid mixture are given in the order of increasing air flow rate at each fixed liquid flow rate. For Table G.3, for each test, the data are tabulated in the following order:

The first line indicates the test no. and the flow pattern (in the bracket) which is using the same code as shown in Table 6.1.

The next two lines give the values of the following quantities:

ML	=	liquid mass flow rate	(kg/s)
MG	=	air mass flow rate	(kg/s)
QFLUX	=	average heat flux	(W/m ²)
НТР	=	average two-phase heat-transfer coefficient	(W/m²·K)
PDT	=	total pressure drop across the heated test section	(Pa)
PDF	=	frictional pressure drop across the heated test section	(Pa)
ALFA	=	measured void fraction	(-)
TOUT	=	measured outlet temperature of the mixture leaving the l	heated test

section at centre line and wall locations (°C)

The next three lines give respectively the inlet, outlet and mean values [(inlet + outlet)/2] of the following quantities:

TMIX	=	mixture temperature [T _o (calculated)]	(°C)
RESL	=	superficial liquid Reynolds number	(-)
RESG	=	superficial gas Reynolds number	(-)
Р	=	system pressure (absolute)	(Pa)
PRL	=	liquid Prandtl number	(-)
VSL	=	superficial liquid velocity	(m/s)
VSG	=	superficial gas velocity	(m/s)

All properties were taken at mean bulk temperature. Next, the local values of the quantities listed below are given at seven locations (Z cm) along the heated test section.

RESL	=	superficial liquid Reynolds number	(-)
VSG	=	superficial gas velocity	(m/s)
TBULK	=	bulk temperature of the mixture	(°C)
TWALL	=	wall temperature	(°C)
HTP	=	two-phase heat-transfer coefficient	(W/m ² ·K)

Due to the effect of evaporation at high V_{SG} and low V_{SL} the temperature of the mixture dropped slightly between the outlet of the heated test section and the temperature measuring station; this was due to the pressure drop between the two locations mentioned (a lower pressure allows for a larger vapour content in the air). The order of magnitude of this effect for water (largest effects with water) data with high V_{SL} and low V_{SG} (e.g.,

WR1.14, WR1.15, WR1.16, WR2.16) is in the range of 0.2 to 0.3 °C (meaning that the actual measured temperature right at the outlet from the heated section would have been 0.2 to 0.3 °C higher than the TOUT listed in the tables for these data).

Table G.1 Mean Horizontal Bubble Diameter for Bubble Flow

Test No.	Range of Diameter (mm)	No. of Samples (-)	Mean Diameter (mm)
WR4.01	0.42 - 4.98	26	0.94
WR4.02	0.30 - 7.00	52	1.04
WR5.01	0.17 - 2.71	97	<u>0.83</u>
WR5.02	0.30 - 7.21	52	2.11
WR6.01	0.14 - 1.23	80	0.61
WR6.02	0.37 - 1.15	64	₀.ć4
WR6.03	0.27 - 1.39	70	0.55
WR6.04	0.30 - 1.00	54	<i>е</i> .53
WR6.05	0.20 - 1.16	60	0.55
WR7.01	0.10 - 0.51	92	0.19
WR7.02	0.10 - 0.60	84	0.25
WR7.03	0.10 - 0.72	82	0 .25
WR7.04	0.10 - 0.80	72	0.28
G1R2.01	0.51 - 2.23	57	1.52
G1R2.02	0.88 - 3.51	33	1.80
G1R2.03	1.10 ~ 2.89	31	1.71
G1R3.01	0.20 - 1.51	104	0.75
G1R3.02	0.45 - 2.54	48	1.59
G1R3.03	1.07 - 2.58	32	1.57
G1R3.04	0.97 - 2.10	45	1.39
G1R4.01	0.21 - 1.09	100	0.46
G1R4.02	0.21 - 1.61	158	0.54
G1R4.03	0.19 - 1.39	129	0.40
G1R4.04	0.26 - 1.34	63	0.58

Table	G.1	Mean	Horizontal	Bubble

Test No.	Range of Diameter (mm)	No. of Samples (-)	Mean Diameter (mm)
G1R5.01	0.68 - 1.52	38	0.68
G1R5.02	0.38 - 0.72	27	0.56
G1R5.03	0.37 - 0.99	27	0.57
G1R5.04	0.16 - 0.99	23	0.48
G2R3.01	0.46 - 2.19	73	0.68
G2R4.01	0.24 - 1.27	70	0.42

Test No.	VSL (m/s)	VSG (m/s)	P (Pa)	Т (С)	ALPHA No (-)	o. of Samples (-)
WR1.01 WR1.02 WR1.03 WR1.04 WR1.05 WR1.06 WR1.07 WR1.08 WR1.09 WR1.09 WR1.10 WR1.11 WR1.12 WR1.12 WR1.13 WR1.14 WR1.15 WR1.16	0.0545	0.546 1.091 1.652 2.003 2.816 3.164 7.986 13.692 19.193 25.393 39.122 58.937 75.366 90.792 105.304 113.104	101351.35 102027.03 102371.76 103281.85 103075.01 103075.01 101351.35 101351.35 101351.35 105419.20 108246.00 113037.78 118546.61 127551.02 130274.41 131687.81	28.19 30.09 29.77 29.60 26.71 28.78 27.02 28.23 28.52 27.29 24.58 22.04 20.63 19.86 19.23 19.13	0.6195 0.7575 0.7993 0.8018 0.8063 0.7993 0.8487 0.9051 0.9417 0.9399 0.9542 0.9542 0.9552 0.9740 0.9830 0.9852 0.9858	12 12 12 12 12 12 12 7 7 7 7 7 7 7 7 7 7
WR2.01 WR2.02 WR2.03 WR2.04 WR2.05 WR2.06 WR2.07 WR2.09 WR2.09 WR2.10 WR2.11 WR2.12 WR2.12 WR2.13 WR2.14 WR2.15 WR2.16	0.1158	$\begin{array}{c} 0.978\\ 1.414\\ 1.725\\ 2.344\\ 2.844\\ 5.081\\ 9.071\\ 13.945\\ 18.108\\ 20.105\\ 22.559\\ 30.066\\ 39.564\\ 59.330\\ 84.833\\ 118.358\end{array}$	101351.35 101351.35 101351.35 102385.55 102730.28 102730.28 102730.28 102730.28 103419.75 104109.21 104798.68 105488.14 107556.54 115140.65 125482.63 146166.58	26.26 26.01 25.99 26.43 26.63 26.09 28.55 28.48 29.76 30.27 32.13 30.47 28.15 26.02 23.46 23.46	0.6049 0.6150 0.7697 0.7593 0.7855 0.7859 0.8410 0.8775 0.8997 0.8948 0.9098 0.9211 0.9343 0.9696 0.9736 0.9820	12 12 12 12 12 7 7 7 7 7 7 7 7 7 7 7
WR3.01 WR3.02 WR3.03 WR3.04 WR3.05 WR3.06 WR3.07 WR3.08 WR3.09 WR3.10 WR3.11 WR3.12 WR3.13 WR3.14	0.311	0.585 0.884 1.433 2.621 5.465 10.769 13.097 18.910 37.073 49.022 75.046 96.775 103.353 108.123	103419.75 102730.28 102040.82 102040.82 102040.82 102730.28 104109.21 106177.61 115140.65 122724.77 138582.46 154440.15 164782.13 179260.89	22.27 22.01 21.99 21.90 21.84 22.56 23.87 24.00 27.28 26.51 21.13 19.47 19.02 18.97	0.5250 0.5950 0.6110 0.6767 0.7460 0.8013 0.8280 0.8675 0.9176 0.9470 0.9470 0.9738 0.9825 0.9834 0.9840	12 12 12 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Table G.2 Tabulated Data for Void Measurement

WR4.01 WR4.02 WR4.03 WR4.04 WR4.05 WR4.06 WR4.07 WR4.08 WR4.09 WR4.10 WR4.11 WR4.12 WR4.13 WR4.14 WR4.15 WR4.16	1.04	0.040 0.098 0.183 0.415 0.454 0.732 1.414 1.823 2.505 3.399 4.642 8.013 15.134 31.611 55.368 69.136	110314.40 110314.40 109624.93 109624.93 109624.93 109280.20 109280.20 108935.47 11003.86 111693.33 113761.72 122724.77 138582.46 184776.61 233039.16	22.73 22.80 22.58 22.92 22.99 23.22 23.33 23.33 23.76 24.72 24.66 25.31 25.25 25.15	0.0308 0.1088 0.1493 0.2272 0.2526 0.3278 0.4560 0.5038 0.5694 0.6256 0.6408 0.7151 0.7718 0.8364 0.8981 0.9467	7 7 12 12 12 12 12 12 12 7 7 7 7 7 7 7
WR5.01 WR5.02 WR5.03 WR5.04 WR5.05 WR5.06 WR5.07 WR5.08 WR5.09 WR5.10 WR5.11 WR5.12 WR5.12 WR5.13 WR5.14 WR5.15	3.17	0.064 0.204 0.360 0.835 1.658 2.082 4.282 6.559 8.516 10.132 11.644 15.664 20.510 27.445 31.879	117484.83 118725.87 119346.39 120656.37 123690.02 125551.57 134859.35 146166.58 154550.47 163403.20 172297.30 182018.75 202013.24 240623.28 259928.30	21.67 21.26 21.13 21.01 21.42 21.53 21.59 21.42 21.58 22.51 22.06 22.04 22.07 22.62	0.0174 0.0581 0.0954 0.1738 0.2996 0.3420 0.4878 0.5930 0.6385 0.6430 0.6674 0.6971 0.7663 0.7665 0.8044	7 7 12 12 12 12 12 12 7 7 7 7 7 7 7
WR6.01 WR6.02 WR6.03 WR6.04 WR6.05 WR6.06 WR6.07 WR6.08 WR6.09 WR6.10 WR6.11 WR6.12 WR6.13 WR6.14	6.34	0.277 0.491 0.668 0.930 1.122 1.515 1.670 2.786 3.615 7.114 7.995 11.031 14.173 18.313	137203.53 141340.32 144787.65 148234.97 150303.37 155129.62 160645.34 176503.03 187534.47 233039.16 244070.60 268891.34 304054.06 342664.09	22.61 21.87 21.94 22.37 21.64 21.64 21.74 21.81 21.74 21.61 21.61 21.51 22.58 23.20	0.0573 0.0725 0.0922 0.1204 0.1414 0.1829 0.2007 0.2736 0.3232 0.4743 0.5137 0.5647 0.6160 0.6509	7 7 7 7 7 7 7 7 7 7 7 7 7 7

WR7.01 WR7.02 WR7.03 WR7.04 WR7.05 WR7.06 WR7.07 WR7.08 WR7.09 WR7.10 WR7.11 WR7.12 WR7.13	8.46	0.460 0.716 0.911 1.131 1.250 1.402 1.637 3.164 4.862 6.797 7.968 8.044 9.339	162024.27 168229.45 175124.10 178571.43 182018.75 186845.01 190981.80 227523.44 266822.95 306122.45 330943.19 318532.82 342664.09	$\begin{array}{c} 22.93\\ 21.64\\ 22.12\\ 22.61\\ 22.02\\ 22.75\\ 22.78\\ 22.72\\ 22.79\\ 22.84\\ 22.26\\ 22.50\\ 23.51 \end{array}$	0.0258 0.0775 0.0957 0.1134 0.1262 0.1409 0.1527 0.2546 0.3403 0.4128 0.4276 0.4314 0.4314	7 7 7 7 7 7 7 7 7 7 7 7
G1R1.01 G1R1.02 G1R1.03 G1R1.04 G1R1.05 G1R1.06 G1R1.07 G1R1.08 G1R1.09 G1R1.10 G1R1.11 G1R1.12 G1R1.13 G1R1.14 G1R1.15	0.0457	0.079 0.323 0.588 1.247 1.896 2.606 3.222 6.380 12.323 18.133 23.458 28.216 31.373 58.617 81.562	106177.61 104109.21 103419.75 102040.82 103419.75 102730.28 102385.55 102040.82 102040.82 102040.82 104798.68 104109.21 104798.68 112382.79 123414.23	24.14 24.08 29.43 30.95 31.64 31.34 31.64 30.69 28.42 28.28 27.98 24.44 24.64 22.36 20.83	0.4101 0.5547 0.6039 0.6877 0.7187 0.7265 0.7312 0.7476 0.8084 0.8547 0.8827 0.8901 0.8987 0.9524 0.9703	66666555555555555
G1R2.01 G1R2.02 G1R2.03 G1R2.04 G1R2.05 G1R2.06 G1R2.07 G1R2.08 G1R2.09 G1R2.10 G1R2.11 G1R2.12 G1R2.13 G1R2.14 G1R2.15 G1R2.16	0.418	0.046 0.186 0.329 0.485 1.039 1.588 2.146 2.582 2.923 5.154 9.836 17.566 21.187 25.067 65.722 77.344	111693.33 110314.40 109624.93 109624.93 107556.54 107556.54 105488.14 107556.54 108246.00 113072.26 113761.72 114451.19 115140.65 117898.51 153061.23 175124.10	24.47 23.96 22.72 24.26 24.90 25.38 24.56 24.86 23.82 23.69 24.20 24.37 24.21 22.22 22.48	0.0967 0.2189 0.3093 0.3579 0.5109 0.5538 0.6186 0.6369 0.6586 0.6929 0.7237 0.8271 0.8139 0.8352 0.9406 0.9845	א ש ש א א א א א א א א א א א א א א א א א

G1R3.01 G1R3.02 G1R3.03 G1R3.04 G1R3.05 G1R3.06 G1R3.07 G1R3.08 G1R3.09 G1R3.10 G1R3.11 G1R3.12 G1R3.13 G1R3.14 G1R3.15 G1R3.16	1.033	0.046 0.186 0.320 0.573 1.192 1.768 2.280 2.679 5.377 9.857 14.125 17.922 21.318 33.391 53.460 62.332	115140.65 114726.97 113761.72 113761.72 114451.19 113761.72 114451.19 115140.65 119277.44 124793.16 130308.88 137893.00 153061.23 150992.83 192360.73 216629.90		0.8479 0.8775	5 5 5 5 6 6 6 6 5 5 5 5 5 5 5 5
G1R4.01 G1R4.02 G1R4.03 G1R4.04 G1R4.05 G1R4.06 G1R4.07 G1R4.08 G1R4.09 G1R4.10 G1R4.11 G1R4.12 G1R4.13 G1R4.14 G1R4.15 G1R4.16	2.68	0.040 0.165 0.296 0.558 1.045 1.484 2.015 2.649 4.133 7.224 9.763 12.323 14.292 20.675 25.070 31.230	124103.70 124793.16 124793.16 125482.63 126861.56 128240.49 133066.74 137893.00 153750.69 163403.20 181329.29 193739.66 202013.24 214423.61 243381.14 254412.58	22.71 22.68 21.74 21.49 22.14 21.01 21.01 21.71 20.99 21.25 21.10 21.24 21.00 21.02 21.66	0.0204 0.0608 0.0891 0.1469 0.2417 0.3059 0.3587 0.3826 0.4744 0.6059 0.6695 0.7017 0.7104 0.7458 0.7659 0.7692	5 5 5 5 6 6 6 6 5 5 5 5 5 5 5 5
G1R5.01 G1R5.02 G1R5.03 G1R5.05 G1R5.06 G1R5.07 G1R5.08 G1R5.09 G1R5.10 G1R5.11 G1R5.12 G1R5.13 G1R5.14	6.08	0.034 0.177 0.326 0.570 0.875 1.180 1.469 1.868 2.621 4.977 6.460 7.680 8.720 9.151	163403.20 163403.20 166161.06 172366.24 178571.43 184087.15 190292.33 197186.98 208907.89 236486.49 262686.20 283370.10 304054.10 306812.00	21.99 21.52 21.54 22.02 21.06 22.21 22.29 21.30 21.01 21.01 19.30 19.54 18.95 20.45	0.0107 0.0386 0.0455 0.0791 0.1119 0.1435 0.1825 0.2199 0.2879 0.4145 0.4220 0.4531 0.4773 0.4854	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

G2R1.01 G2R1.02 G2R1.03 G2R1.04 G2R1.05 G2R1.06 G2R1.07 G2R1.09 G2R1.10 G2R1.10 G2R1.11 G2R1.11 G2R1.13 G2R1.14 G2R1.15 G2R1.16	0.0487	0.052 0.198 0.351 0.683 1.390 2.051 2.512 3.048 8.025 14.146 18.730 23.061 27.512 48.430 72.153 81.879	110314.40 103764.48 102040.82 101351.35 102040.82 102040.82 102040.82 102040.82 101351.35 102730.28 103419.75 105488.14 107556.54 119277.44 145477.11 167264.20	22.24 22.22 22.23 22.07 22.10 22.00 23.02 23.07 22.69 21.95 21.28 21.20 21.15 19.58 19.32 19.85	0.2820 0.3452 0.4272 0.4844 0.5169 0.5664 0.5826 0.6076 0.7277 0.7946 0.8351 0.8635 0.8725 0.9089 0.9040 0.9870	4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
$\begin{array}{c} G2R2.01\\ G2R2.02\\ G2R2.03\\ G2R2.04\\ G2R2.05\\ G2R2.06\\ G2R2.07\\ G2R2.09\\ G2R2.10\\ G2R2.11\\ G2R2.11\\ G2R2.12\\ G2R2.13\\ G2R2.13\\ G2R2.15\\ G2R2.16\\ \end{array}$	0.366	0.046 0.180 0.564 1.170 1.710 2.310 2.774 5.005 9.537 14.051 19.160 22.025 35.409 51.125 57.693	120518.48 111693.33 110314.40 108935.47 108935.47 108935.47 110314.40 111003.86 113761.72 117898.51 123414.23 130998.35 135824.60 153061.23 186845.01 210976.30	19.77 19.77 19.77 19.74 19.76 19.72 19.72 19.72 19.63 19.58 19.55 19.45 19.39 17.35	0.1503 0.2609 0.2915 0.3496 0.4088 0.4463 0.4842 0.5427 0.6046 0.6140 0.6519 0.6829 0.7186 0.7906 0.8120 0.9340	4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3
G2R3.01 G2R3.02 G2R3.03 G2R3.04 G2R3.05 G2R3.06 G2R3.07 G2R3.08 G2R3.09 G2R3.10 G2R3.11 G2R3.12 G2R3.13	2.877	0.034 0.128 0.229 0.381 0.728 1.006 1.362 1.585 2.868 5.822 7.827 9.361 10.747	155129.62 157198.01 158576.94 164092.66 172366.24 178571.43 185466.08 190981.80 210976.28 244760.07 261307.23 274407.06 281991.18	19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77	0.0087 0.0287 0.0540 0.1265 0.1591 0.2239 0.2583 0.3521 0.4799 0.5245 0.5679 0.5606	3 4 4 4 4 4 4 4 3 3 3 3
G2R4.01 G2R4.02 G2R4.03 G2R4.04 G2R4.05 G2R4.06	4.319	0.027 0.110 0.189 0.360 0.689 0.911	184776.61 186845.01 188223.94 194429.12 207528.96 217181.47	19.77 19.77 19.77 19.77 19.77 19.77	0.0066 0.0233 0.0292 0.0557 0.0945 0.1282	3 4 4 4 4 4

- ----

Table G.3 Tabulated Data

WR1.01 (S) ML= 0.00592 MG= 0.0 PDT= 1.427 PDF=	0000655 QFLUX -0.896 ALF#	(= 19076 (=0.620	HTP= 2850.3 TOUT= 37.05,	37.22	
TMIXRESLINLET21.5674.3OUTLET38.3957.0MEAN29.9815.3	3 394.1 0 393.9		6.7	VSL 0.0548 0.0548 0.0548	VSG 0.51 0.57 0.54
11.4 724.6	0.52 22.86 0.52 24.61 0.53 26.71 0.54 29.17 0.55 33.02 0.56 36.17	39.53 40.68	2217.2 2191.7 2237.7 2342.7 2936.6 4253.4		
WR1.02 (S) ML= 0.00592 MG= 0.0 PDT= 0.951 PDF=	000133 QFLUX= -0.552 ALFA	= 19111 A=0.758	HTP= 2945.2 TOUT= 37.34,	37.22	
TMIXRESLINLET22.0682.3OUTLET38.6962.3MEAN30.3822.3	3798.0 1798.4	102.73	6.6 4.5	VSL 0.0548 0.0548 0.0548	1.03 1.14
11.4 732.0 19.1 766.0 19.1 19.1 10.1	1.05 23.35 1.06 25.08 1.07 27.16	39.91	1580.7 1587.6 1822.6 2000.9 2927.5 5634.8		
WR1.03 (S) ML= 0.00592 MG= 0.0 PDT= 0.724 PDF=	000202 QFLUX: -0.483 ALF/	= 17553 A=0.799	HTP= 2626.6 TOUT= 37.03,	37.03	
TMIXRESLINLET22.6693.1OUTLET37.7946.1MEAN30.2819.1	1 1209.4 2 1212.2		PRL 6.5 4.5 5.5	VSL 0.0548 0.0548 0.0548	VSG 1.56 1.72 1.64
11.4738.219.1769.027.9805.541.9864.153.3913.0		TWALL 36.25 37.68 38.63 38.86 39.48 39.31 39.03	HTP 1417.8 1436.5 1556.3 1887.9 2714.1 5055.1 7769.7		

ML= 0.					HTP= 2079.8 TOUT= 32.39,	32.39	
INLET OUTLET MEAN	TMIXRES19.464231.984425.7743	L .2 .7 .5	RESG 1537.4 1532.4 1534.9	P 103.42 102.73 103.42	PRL 7.1 5.2 6.1	VSL 0.0548 0.0548 0.0548	VSG 1.93 2.09 2.01
27.9 41.9	658.0 678.5	2.00 2.01 2.05	23.31 25.13 27.98	33.46 33.84 34.56	1434.8 1671.6 2216.7		
ML = 0	(S-C) .00592 MG= 0 1.158 PDF=	.00039	59 QFLUX= .000 ALFA	= 14595 A=0.806	HTP= 2300.7 TOUT= 31.71,	31.71	
INLET OUTLET MEAN	TMIXRES19.664431.984425.7744	L .8 .2 .5	RESG 2159.6 2153.8 2156.7	P 103.42 102.73 102.73	PRL 7.0 5.2 6.1	VSL 0.0548 0.0548 0.0548	VSG 2.72 2.94 2.83
5.1 11.4 19.1 27.9 41.9 53.3	680.4 704.8 733.7 779.8	2.77 2.79 2.81 2.84 2.88 2.92	20.61 21.89 23.42 25.22 28.04 30.34	28.16 29.53 31.22 32.62 34.50	1924.3 1903.2 1870.9 1974.2 2263.8 3336.4		
ML = 0	(S-C) .00592 MG= 0 1.172 PDF=	.00039	98 QFLUX: .069 ALF/	= 16840 A=0.799	HTP= 2586.9 TOUT= 34.08,	34.08	
INLET OUTLET MEAN	20.866434.8894	.0 .4	RESG 2385.6 2382.4 2384.0	103.42	4.9	VSL 0.0548 0.0548 0.0548	VSG 3.02 3.31 3.17
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	704.9 733.1 766.4 819.7 864.2	3.11 3.14 3.17 3.23 3.28	21.97 23.43 25.18 27.23 30.44 33.07	28.22 30.66 32.25 34.12 36.67	2323.4 2379.1 2443.2 2712.9 2797.0		

WR1.07 (C) ML= 0.00592 MG= 0.000993 QFLUX= 16834 PDT= 1.096 PDF= 0.138 ALFA=0.849	HTP= 4368.0 TOUT= 32.80, 32.92
TMIXRESLRESGPINLET20.4657.35958.0102.04OUTLET33.2863.35951.1100.66MEAN26.8760.35954.5101.35	4 6.9 0.0548 7.64 5 5.0 0.0548 8.32
5.1 672.3 7.80 21.44 25.24	4314.7 4361.2 4522.5
WR1.08 (C-A) ML= 0.00592 MG= 0.00167 QFLUX= 33746 PDT= 1.151 PDF= 0.552 ALFA=0.905	HTP= 4419.7 5 TOUT= 40.44, 40.37
TMIXRESLRESGPINLET18.4626.910074.6102.04OUTLET40.9990.69991.1100.66MEAN29.7808.710032.8101.35	PRLVSLVSG47.30.054812.7754.20.054814.6155.80.054813.69
ZRESLVSGTBULKTWALL5.1653.313.0520.2926.9811.4689.613.2122.6329.7319.1734.013.3925.4432.8927.9786.713.6228.7236.5141.9871.414.0233.8741.9053.3942.314.3738.0845.9957.2966.014.5039.4847.36	4994.9 4714.4 4508.9 4327.7 4221.6
WR1.09 (A) ML= 0.00592 MG= 0.00233 QFLUX= 36616 PDT= 1.427 PDF= 1.034 ALFA=0.942	
TMIXRESLRESGPINLET18.6630.214062.4102.04OUTLET40.8982.613955.5100.66MEAN29.7806.414009.0101.35	5 4.3 0.0548 20.44
ZRESLVSGTBULKTWALL5.1655.018.2520.4827.0111.4690.618.4722.7830.1919.1733.918.7325.5533.7427.9785.319.0628.7737.5941.9867.619.6133.8443.3753.3936.120.1137.9947.6657.2958.920.2939.3749.04	

M	VR1.10 4L= 0. PDT=	00592					HTP= 3670.2 TOUT= 36.43,	36.43	
C	OUTLET	36.7	909.6	19555	.2	104.11	PRL 7.5 4.6 6.1	0.0548 0.0548	27.00
	11.4 19.1 27.9	659 696 740	SL V .3 24. .1 24. .4 25. .7 25. .2 26. .6 26. .2 26.	68 20 00 23 39 26	.84 .27 .12	29.40 32.45 35.80	3724.7 3541.9		
M	4L= 0.						HTP= 3418.1 TOUT= 33.94,	33.94	
I C M	INLET DUTLET MEAN	TMIX 17.4 33.7 25.6	RESL 611.8 853.5 732.6	RES 31449 31097 31273	G .4 .5 .4	P 109.62 106.87 108.25	5.0	VSL 0.0548 0.0548 0.0548	41.30
	5.1 11.4 19.1 27.9 41.9	625 651 681 717 774	.6 38. .5 39. .5 39.	57 18 96 20 43 22 01 24 95 28	.80 .49 .53 .91 .64	25.29 29.13 32.07 35.22 39.53	HTP 5118.7 3864.4 -3512.9 3258.0 3101.9 3049.6 3082.0		
М	VR1.12 4L= 0. PDT=	00592	MG= 0.00 PDF=	828 QF 5.585	LUX≈ ALFA	33803 1=0.965	HTP= 3200.7 TOUT= 29.73,	29.88	
С		TMIX 15.8 29.6 22.7	586.4	49698	.0 .7	P 115.83 110.31 113.07	5.5		VSG 55.27 62.41 58.84
	Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	615 640 670 716 754	.9 56. .6 56. .8 57. .1 58. .4 60. .2 61.	32 16 96 18 74 20 67 22 21 25 53 27	.26	22.87 27.08	2709.5		

~--

ML = 0	(A-M) .00592 MG= 8.598 PD	0.01124 F= 8.43	QFLUX= 11 ALF?	32324 A=0.974	HTP= 3078.0 TOUT= 26.18,	26.33	
OUTLET	TMIX Ri 15.2 5 26.8 7 21.0 6	33.4 67	646.0	114.45	PRL 8.0 5.8 6.9	VSL 0.0548 0.0548 0.0548	80.54
27.9	RESL 581.4 598.5 619.2 643.4 681.2 712.1 722.5	75.27	18.82 20.52	29.08 32.14	3138.8 2782.2		
ML= 0.	(A-M) .00592 MG= 11.473 PD	0.01462 F= 11.3	QFLUX= 76 ALF#	28612 A=0.983	HTP= 2955.9 TOUT= 23.03,	23.21	
INLET	TMIX R 15.3 5 24.4 6 19.8 6	79.4 88	973.2	133.07	PRL 7.9 6.2 7.1	VSL 0.0548 0.0548 0.0548	84.66 97.05
5.1 11.4 19.1 27.9 41.9	606.8 625.2 653.9 676.9	86.24 87.37 88.76 90.41 93.13	16.06 17.00 18.13 19.46 21.53 23.23	20.73 24.52 27.64 30.49 33.36 35.20	6057.8 3783.2 3004.8 2595.4 2429.0		
ML = 0	(A-M) .00592 MG= 13.362 PD	0.01727 F= 13.2	QFLUX= 38 ALF/	34711 A=0.985	HTP= 2807.2 TOUT= 23.28,	23.38	
INLET OUTLET MEAN	TMIX R 15.0 5 24.9 6 19.9 6	95.3 104	180.4 109.1	136.51	8.0 6.1	VSL 0.0548 0.0548 0.0548	97.34 113.37
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	586.9 603.7 623.4 654.0 678.4	99.24 100.70 102.50 104.65	15.82 16.85 18.09 19.53 21.79 23.65	26.91 30.72 33.63 36.46	5696.7 3430.6 2741.9 2465.9 2378.5 2420.5		

_ _

ML= 0. PDT=	17.457	IG= 0.018 PDF= 1	.375 ALF	A=0.986	HTP= 2803.8 TOUT= 22.68,		
INLET OUTLET MEAN	TMIX 15.1 24.3 19.7	RESL 575.7 683.8 629.7	RESG 14327.6 13310.7 113819.2	P 140.65 122.72 131.69	8.0 6.2	VSL 0.0548 0.0548 0.0548	VSG 103.21 123.52 113.37
10 1	572 585	.0 107.2	2 15.82 5 16.78	26.82 30.46	5686.5 3438.6 2765.2		
ML = 0	(S) .01222 1.358	MG= 0.000 PDF= -	122 QFLUX 1.034 ALF	= 28928 A=0.605	HTP= 3279.0 TOUT= 33.19,	33.4	
INLET OUTLET MEAN	TMIX 20.4 32.9 26.6	RESL 1345.6 1765.2 1555.4	RESG 737.2 736.6 736.9			VSL 0.113 0.112 0.112	0.94 1.03
5.1 11.4 19.1 27.9 41.9	1378 1421 1472 1533 1629	.9 0.9 .1 0.9 .4 0.9 .0 0.9 .8 1.0	7 71 47	30.87 32.10 33.72 35.17 37.87	3049.6 3076.9 3063.3 3192.1 3261.4		
WR2.02 ML= 0 PDT=	.01222	MG= 0.000 PDF= -	175 QFLUX 0.896 ALF	= 29193 A=0.615	HTP= 3132.5 TOUT= 33.34,	33.31	
INLET OUTLET MEAN	20.4 33.0	RESL 1347.3 1768.9 1558.1	1052.9	102.04 100.66	6.9 5.1	VSL 0.113 0.112 0.112	VSG 1.35 1.48 1.41
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	1380 1423 1474 1535 1632 1714	.7 1.3 .1 1.3 .6 1.4 .5 1.4 .8 1.4 .0 1.4	8 21.48 9 22.79 1 24.36 2 26.19 4 29.07 6 31.42	39.04	2611.9 2657.8 2757.8 2920.7 3305.1		

WR2.03 (S) ML= 0.01222 M PDT= 1.193	4G= 0.00021 PDF= -0	L5 QFLUX: 207 ALF	= 29104 A=0.770	HTP= 3172.3 TOUT= 33.34,	33.32	
TMIX INLET 20.4 OUTLET 32.9 MEAN 26.7	1346.6 1765.2	RESG 1289.5 1288.3 1288.9	102.04 100.66	6.9 5.1	VSL 0.113 0.112 0.112	VSG 1.65 1.80 1.73
ZRESL5.1137911.4142119.1147327.9153341.9163053.3171057.21737	.7 1.69 .8 1.70 .0 1.71 .5 1.73	22.76 24.31 26.13	35.89	2684.5 2820.8 2980.9		
WR2.04 (S) ML= 0.01222 P PDT= 1.448	MG= 0.0002 PDF= 0	92 QFLUX .000 ALF	= 29026 A=0.759	HTP= 3149.0 TOUT= 33.38,	33.38	
TMIX INLET 20.4 OUTLET 32.7 MEAN 26.6	RESL 1345.6 1759.7 1552.7	RESG 1755.5 1754.1 1754.8	P 102.04 100.66 101.35	PRL 6.9 5.1 6.0	VSL 0.113 0.112 0.112	VSG 2.25 2.45 2.35
53.3 1705	.2 2.30 .9 2.31 .6 2.33	21.42 22.70 24.24 26.05 28.88 31.19	33.86 34.84 36.13 38.07	2624.3 2596.0 2736.2 2881.0 3165.5 4259.0		
WR2.05 (S-C) ML= 0.01222 PDT= 1.524	MG = 0.0003	59 QFLUX .207 ALF	= 28603 A=0.786	HTP= 3290.4 TOUT= 33.19,	33.19	
INLET 20.4 OUTLET 32.5	RESL 1344.5 1749.9 1547.2	2153.9 2151.4	$103.42 \\ 102.04$	6.9 5.1	VSL 0.113 0.112 0.112	VSG 2.72 2.96 2.84
Z RESL 5.1 1376 11.4 1417 19.1 1466 27.9 1525 41.9 1619 53.3 1697 57.2 1723	.4 2.77 .3 2.80 .9 2.82 .5 2.85 .1 2.90 .1 2.94	21.36 22.62 24.14 25.91 28.68 30.95	31.89 33.63 35.49 37.39 38.11	3059.3 3076.3 3007.0 2986.6 3293.8 4013.2		

ML= 0					HTP= 4784.8 TOUT= 32.68		
INLET OUTLET MEAN	TMIX 20.1 32.1 26.1	RESL 1336.2 1737.2 1536.7	RESG 3848.0 3842.3 3845.2	P 103.42 102.04 102.73	PRL 7.0 5.2 6.1	VSL 0.113 0.112 0.112	5.29
27.9 41.9	1367. 1407. 1457. 1515. 1607.	VSG 4 4.95 9 4.98 0 5.03 1 5.08 8 5.16 0 5.24 0 5.26	21.10 22.35 23.86 25.62 28.37	30.07 31.72 34.41	4683.2 4751.3 4666.1 4756.4 4833.6		
ML= 0	(C) .01222 M 1.593	4G= 0.00113 PDF= 0	3 QFLUX= .621 ALF.	45591 A=0.841	HTP= 5611.5 TOUT= 38.50	38.50	
INLET OUTLET MEAN	TMIX 19.9 37.9 28.9	RESL 1329.0 1937.1 1633.0	RESG 6782.9 6747.5 6765.2	P 103.42 102.04 102.73	PRL 7.0 4.5 5.8	VSL 0.113 0.112 0.112	VSG 8.53 9.58 9.06
41.9	1375. 1435. 1509. 1597. 1738. 1856.	VSG 8.72 8.81 7 8.92 4 9.05 5 9.27 6 9.46 6 9.53	21.37 23.24 25.49 28.11 32.24 35.61	31.22 33.67 36.20 40.44 43.73	5573.5 5676.8 5549.6 5634.8 5575.2 5659.8		
WR2.08 ML= 0 PDT=					HTP= 6463.2 TOUT= 39.88	39.88	
	19.7 39.3	RESL 1324.1 1986.0 1655.1	10391.2	103.42 102.04	7.0 4.4	VSL 0.113 0.112 0.112	14.83
11.4 19.1 27.9 41.9	1373. 1439. 1520. 1615. 1769. 1898.	VSG .6 13.36 .5 13.51 .0 13.69 .5 13.91 .3 14.28 .2 14.62 .8 14.73	21.35 23.39 25.84 28.71 33.21 36.89	31.18 33.95 36.91 41.52	6674.4 6707.9 6465.5 6405.9 6354.2 6422.9		

- --

WR2.09 ML= 0 PDT=	(A) .01222 MG= 2.234 PDE						42.22	
OUTLET	TMIX RE 19.5 131 42.0 207 30.8 169	8.1 13	456.9	P 104.80 102.04 103.42	PRL 7.1 4.1 5.6		VSL 0.113 0.112 0.112	19.52
27.9 41.9	1449.5 1541.9 1651.6	17.48 17.75 18.09 18.66	23.73 26.55 29.83 34.98	35.13 38.66 43.98	HTP 7720.9 7702.1 7375.1 7193.4 7100.8 7092.9 7162.2			
WR2.10 ML= 0 PDT=	(A) .01222 MG= 2.503 PDE	0.00250 S= 1.8	QFLUX= 62 ALF	65030 A=0.895	HTP= 76 TOUT=	43.7 41.96,	41.92	
INLET OUTLET MEAN	TMIX RE 19.5 133 42.0 207 30.7 169	ESL 16.3 15 15.9 14 16.1 14	RESG 044.3 953.1 998.7	P 104.80 102.73 104.11	PRL 7.1 4.1 5.6		VSL 0.113 0.112 0.112	VSG 18.63 21.63 20.13
	1372.2 1447.8 1540.1 1649.8 1826.6 1974.7	19.64 20.02 20.67 21.25	21.35 23.69 26.52 29.80 34.97 39.19	31.64 34.88 38.38 43.84 48.02	HTP 8313.6 8116.6 7732.2 7576.7 7366.0 7438.7 7477.9			
WR2.11 ML= 0 PDT=	.01222 MG=						44.21	
	19.3 130 44.3 215	9.8 16 4.8 16	859.9 756.0	P 106.18 102.73 104.80	7.1		VSL 0.113 0.112 0.112	
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	1371.8 1455.5 1558.1 1680.2 1877.0 2041.8	VSG 21.21 21.53 21.91 22.38 23.20 23.96 24.23	21.35 23.96 27.08 30.73 36.46 41.16	32.74 36.40 40.38 46.59 51.24	HTP 8677.0 8432.3 7983.8 7744.2 7431.3 7496.6 7574.9			

	(A) .01222 MG 3.468 P	= 0.00378 DF= 2.9				43.48	
INLET OUTLET MEAN	TMIX 19.0 1 43.0 2 31.0 1	RESL 300.3 22 101.0 22 700.7 22	RESG 2780.8 2602.6 2691.7	P 106.87 103.42 105.49	PRL 7.2 4.1 5.6	VSL 0.113 0.112 0.112	27.58 32.53
11.4 19.1 27.9	RESL 1358.2 1438.2 1536.0 1652.1 1838.7 1994.4 2046.8	28.67 29.18 29.81	23.48 26.49 30.00	32.22 35.99 40.01	NUTP 9318.1 8707.1 8042.2 7668.6 7233.1 7204.2 7218.9		
ML= 0	(A-M) .01235 MG 4.723 P					37.42	
INLET OUTLET MEAN	TMIX 18.6 1 37.0 1 27.8 1	RESL 297.4 31 897.3 30 597.4 31	RESG 212.0 913.7 062.9	P 109.62 104.80 107.56	PRL 7.2 4.6 5.9	VSL 0.114 0.113 0.113	36.79 42.44
5.1 11.4 19.1 27.9 41.9 53.3	RESL 1338.9 1399.9 1474.0 1561.7 1701.7 1817.9 1857.0	37.62 38.11 38.72 39.44 40.66 41.74	20.09 22.01 24.31 27.01 31.23 34.69	28.13 31.17 34.26 37.37 42.09 45.68	5729.0 5681.9		
ML = 0	(A-M) .01222 MG 9.204 Pi					32.92	
	TMIX 1 17.8 1 32.6 1 25.2 1	721.3 50	665.3 133.8	119.28 110.31	7.4 5.1	VSL 0.114 0.112 0.113	54.65 63.98
11.4 19.1 27.9 41.9	1291.4 1339.0 1396.5 1464.2 1571.8 1660.6	56.71 57.74 58.97 61.02	19.02 20.56 22.41 24.56 27.95 30.72	27.61 30.79 34.11 38.61 41.83	HTP 9686.6 7850.3 6626.7 5844.3 5261.8 5063.0 5031.8		

WR2.15 ML= 0 PDT=	(A-M) .01222 N 14.810	MG= 0.01328 PDF= 14	9 QFLUX= 617 ALF	40558 A=0.974	HTP= 4147.7 TOUT= 26.14,	25.99	
INLET OUTLET MEAN	TMIX 17.2 26.5 21.9	RESL 1244.1 8 1516.5 7 1380.3 8	RESG 30391.6 79891.5 30141.6	P 133.07 117.90 125.48	PRL 7.5 5.9 6.7	0.112	VSG 77.75 92.00 84.87
27 9	1319	VSG .8 79.47 .2 80.75 .6 82.32 .1 84.22 .3 87.39 .0 90.13 .9 91.07	20.11 21.47	29.40 32.22	4352.1 3774.7		
ML = 0	(A-M) .01222 M 27.213	MG= 0.02169 PDF= 27	9 QFLUX= .096 ALF	3978 9 A=0.982	HTP= 3509.0 TOUT= 21.99,	21.99	
INLET OUTLET MEAN	TMIX 16.9 24.1 20.5	RESL 1236.0 1 1429.8 1 1332.9 1	RESG 31374.6 30746.7 31060.7	P 159.96 132.38 146.17	PRL 7.5 6.3 6.9	VSL 0.114 0.112 0.113	
19.1 27.9 41.9 53.3	1236 1258 1285 1315 1364 1403	VSG .7 108.07 .6 110.39 .0 113.30 .9 116.88 .1 122.93 .1 128.34 .1 130.23	17.52 18.27 19.17 20.22 21.87 23.22	27.13 30.38 32.96 35.58 37.09	4465.1 3544.7 3128.5 2913.4 2885.5		
WR3.01 ML= 0 PDT=	.03352 1	MG= 0.0000 PDF= 0	768 QFLU .138 ALF	X= 40763 A=0.525	HTP= 4452.6 TOUT= 24.54,	5 24.54	
INLET OUTLET MEAN	17.6 24.1	RESL 3440.0 4010.8 3725.4	464.9 465.7	104.80 102.04	7.4	VSL 0.311 0.311 0.311	0.61
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	3544 3615 3697 3829 3937	.3 0.58 .7 0.59 .2 0.59 .9 0.59 .2 0.60	18.18 18.86 19.67 20.61 22.10 23.32	29.09 29.99 31.12 32.08	4431.6 4387.3 4323.2 4348.2 4523.1 4663.9		

ML = 0					HTP= 4471.4 TOUT= 24.44,		
INLET OUTLET MEAN	TMIX 17.7 23.8 20.7	RESL 3441.6 3984.0 3712.8	RESG 701.5 703.1 702.3	101.35	PRL 7.4 6.3 6.9		0.93
19.1 27.9 41.9	3608 3686 3811	VSG .6 0.88 .1 0.89 .1 0.89 .8 0.90 .6 0.91 .7 0.92 .3 0.92	19.59 20.49 21.90	28.38 29.19 30.51	4408.9 4459.5 4516.2		
ML = 0	(S) .03352 1 2.248	MG= 0.0001 PDF= -0	85 QFLUX .138 ALF	= 38732 A=0.611	HTP= 4517.9 TOUT= 24.44,	24.44	
INLET	17.8	RESL 3455.7 3996.4 3726.0	1121.2	103.42	7.4	VSL 0.31 0.31 0.31	1.49
5.1 11.4 19.1 27.9 41.9 53.3	3499 3554 3621 3700 3824 3927	VSG .5 1.42 .9 1.43 .7 1.44 .2 1.45 .6 1.47 .4 1.48 .8 1.48	18.33 18.98 19.74 20.64 22.05 23.20	30.54 31.61	4400.4 4426.0 4454.3 4507.7 4566.2 4617.9		
WR3.04 ML= 0 PDT=	(S-C) .03352 1 2.379	MG= 0.0003 PDF= 0	37 QFLUX .414 ALF	= 38698 A=0.677	HTP= 4795.0 TOUT= 24.22,	24.22	
INLET OUTLET MEAN	17.6 23.8	RESL 3440.6 3977.6 3709.1	2044.3 2049.1	103.42	7.4 6.3	VSL 0.311 0.311 0.311	VSG 2.55 2.71 2.63
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	3539 3605 3683 3806 3909	.9 2.59 .0 2.61 .3 2.62 .3 2.64 .9 2.67 .0 2.70	18.16 18.79 19.56 20.45 21.86 23.00	TWALL 26.26 26.87 27.72 28.62 30.01 30.83 30.96	4764.4 4783.1 4736.5 4738.2 4751.9 4956.8		

ML= 0 PDT=	(C) .03352 MG= 3.020 PE	F= 1.4	48 ALF	A=0.746	TOUT= 2	5.82,	26.82	
INLET OUTLET MEAN	TMIXF17.93426.34222.138	ESL 59.0 4 02.0 4 30.5 4	RESG 223.2 220.2 221.7	P 104.11 100.66 102.04	PRL 7.4 5.9 6.6		VSL 0.311 0.311 0.311	VSG 5.25 5.68 5.46
5.1 11.4 19.1 27.9 41.9	RESL 3518.2 3593.9 3685.4 3793.1 3964.4 4106.4 4154.1	5.34 5.38 5.42 5.47 5.56	18.56 19.43 20.48 21.71 23.63	30.27 32.05	6358.2 6290.0 6222.5 6250.9 6370.1			
ML= 0	(C) .03352 MG= 3.316 PE	0.00138 F= 2.0	QFLUX= 068 ALFA	76383 A=0.801	HTP= 9380 TOUT= 29).5 9.42,	29.42	
INLET	TMIX F 17.6 34 29.3 44 23.4 39	32.6 8	330.3	104.80	7.4		VSL 0.311 0.311 0.311	10.24
5.1 11.4 19.1 27.9 41.9 53.3	RESL 3514.8 3620.7 3749.1 3900.7 4142.9 4344.6 4412.6	10.44 10.53 10.64 10.77 10.99 11.17	18.53 19.76 21.22 22.93 25.62 27.82	28.13 29.55 31.15 33.64 35.63	9029.1 9082.4 9151.7 9287.4 9539.5 9821.7			
ML = 0	(C-A) .03352 MG= 3.682 PD	0.00169 F= 2.6	QFLUX= 20 ALF/	83491 A=0.828	HTP= 10223 TOUT= 30	3.7).48,	30.48	
OUTLET	TMIX R 17.5 34 30.2 45 23.9 40	69.5 10	147.8	102.04	PRL 7.4 5.4 6.4		VSL 0.311 0.311 0.311	13.81
19.1 27.9	3519.5 3634.2 3773.5	12.80 12.94 13.12	19.92 21.50 23.36	28.28 29.84 31.57	9936.4 9993.8 10157.3			

	(A) .03352 MG= 5.026 PD	0.00247 F= 4.2	QFLUX= 206 ALF	106402 A=0.868	HTP= 127 TOUT=	772.0 33.43,	33.43	
INLET OUTLET MEAN	TMIX F 17.7 34 33.5 48 25.6 41	ESL 40.8 14 71.4 14 56.1 14	RESG 1943.6 1799.7 1871.7	P 108.94 104.11 106.18	PRL 7.4 5.0 6.2		VSL 0.311 0.311 0.311	20.16
27.9 41.9	RESL 3551.0 3694.1 3868.2 4074.6 4405.8 4683.1 4776.8	18.86 19.39	18.97 20.61 22.59 24.89 28.52	31.18 33.29 36.74	12438.7 12334.8 12352.9 12656.1 12979.8			
WR3.09 ML= 0 PDT=	(A) .03352 MG= 10.177 PD	0.00521 F= 9.6	QFLUX= 53 ALF	139700 A=0.918	HTP= 156 TOUT=	543.9 36.28,	36.76	
INLET OUTLET	TMIX R 17.4 34 36.6 51 27.0 42	21.3 31 64.4 31	546.2	120.66 110.31	PRL 7.5 4.6 6.0		VSL 0.311 0.311 0.311	33.69
53.3	3552.7 3726.4 3937.9	35.12 35.88 36.79 38.34 39.71	19.02 21.02 23.42 26.23 30.63 34.23	39.81	16994.7 16271.9 15781.3 15525.8 15278.2 15256.1			
ML = 0	(A-M) .03352 MG= 13.927 PD	0.00734 F= 13.5	QFLUX=3 82 ALF	131835 A=0.947	HTP= 140 TOUT=	18.9 34.30,	35.00	
INLET OUTLET MEAN	TMIX R 17.5 34 34.9 49 26.2 42	31.1 44 87.5 43	415.4 779.5		7.4 4.8		VSL 0.311 0.311 0.311	
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	RESL 3547.1 3703.4 3893.4 4118.8 4480.1 4782.2 4883.9	46.10 47.19 48.50 50.72 52.67	18.98 20.79 22.96 25.48 29.46 32.71	26.39 28.94 31.82 34.96 39.74 43.51	17610.7 16038.5 14820.0 13901.3 12887.2 12320.0			

WR3.11 ML= 0 PDT=	(A-M) .03352 1 21.739	MG = 0.0129	6 QFLUX= .580 ALFA	80243 A=0.974	HTP= 8130.3 TOUT= 25.92	, 26.55	
INLET OUTLET MEAN	TMIX 16.6 26.4 21.5	RESL 3350.9 4191.9 3771.4	RESG 78570.2 77858.5 78214.3	P 149.61 127.55 138.58	PRL 7.6 5.9 6.8	VSL 0.311 0.311 0.311	VSG 67.19 82.65 74.92
19.1	3600	VSG .4 68.79 .0 70.16 .9 71.86 .3 73.93 .0 77.43 .2 80.51 .7 81.58	19.67 21.10	28.48	9075.6 7660.1		
ML= 0 PDT=	28.227	MG= 0.0188 PDF= 28	.130 ALF	A=0.983	HTP= 4836.5 TOUT= 20.56	, 20.66	
INLET OUTLET MEAN	TMIX 16.6 21.4 19.0	RESL 3350.8 1 3744.0 1 3547.4 1	RESG 14256.1 14082.7 14169.4	P 168.92 140.65 154.44	PRL 7.6 6.7 7.2	VSL 0.311 0.311 0.311	VSG 86.66 107.01 96.84
5.1 11.4 19.1 27.9 41.9	3370 3412 3463 3522 3615	VSG .8 88.66 .8 90.45 .2 92.68 .3 95.42 .6 100.03 .4 104.12 .0 105.55	16.99 17.50 18.10 18.80 19.91	21.17 23.97 26.37 28.86 31.61	10314.0 6666.5 5226.6 4310.1 3716.8		
ML = 0	(A-M) .03352 30.681	MG= 0.0215 PDF= 30	0 QFLUX= .543 ALF	32485 A=0.983	HTP= 4374.9 TOUT= 18.33	, 18.43	
INLET OUTLET MEAN	16.1 19.5	RESL 3308.9 1 3580.8 1 3444.8 1	30555.2 30606.9	179.95 148.92	7.7 7.1	VSL 0.311 0.311 0.311	114.03
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	3318 3348 3383 3425 3490 3544	.6 110.9/	16.39 16.74 17.17 17.67 18.46 19.10	22.19 24.17 26.11 28.06	4633.8 3856.5 3392.0 3191.0		

WR3.14 ML= 0. PDT=	(A-M) 03352 34.260	MG = 0	.02443 34.12	QFLUX= 29 ALF/	42277 H A=0.984	HTP= 41 TOUT=	161.4 18.53,	18.55	
INLET OUTLET MEAN	TMIX 16.0 20.5 18.3	3304 3662	2 148	363.7 975.2	P 196.50 162.02 179.26	7.8 6.9			
10 1	3359	9.2 10	0.37	16.88	TWALL 21.31 24.52 27.22 29.52 31.83 33.12 33.47	5512.2 4315.8			
ML = 0	(B) .11163 6.819	MG= 0 PDF=	.0000025 0.85	52 QFL 96 ALF	UX= 4281 A=0.031	0 HTP= TOUT=	5147. 23.82	1	
INLET OUTLET MEAN	TMIX 21.6 23.7 22.7	RESI 12646 13255 12950	L I . 0 . 8 . 9	RESG 16.4 16.6 16.5	P 113.76 106.87 110.31	PRL 6.7 6.3 6.5		VSL 1.04 1.04 1.04	
27.9 41.9 53.3	12696 12759 12839 12924 13064	5.4 9.6 5.5 1.3	0.02 0.02 0.02 0.02	21.81 22.03 22.28 22.58 23.05	TWALL 30.01 30.34 30.66 30.95 31.34 31.72 31.89	5 107.3 5117.5 5166.4			
WR4.02 ML= 0 PDT=	(B) .11163 6.702			1 QFLU 41 ALF	X= 43456 A=0.109	HTP= TOUT=	5550.8 23.79		
INLET OUTLET MEAN	TMIX 21.5 23.6 22.6	RES 12610 13228 12919	.1 .6	RESG 59.7 60.4 60.0	P 113.76 106.87 110.31	PRL 6.7 6.3 6.5		VSL 1.04 1.04 1.04	VSG 0.07 0.08 0.07
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	12729 12802 12892 13034 13150	1.3 5.3 2.3 2.4 4.3 0.8	VSG 0.07 0.07 0.07 0.07 0.07 0.08 0.08	TBULK 21.69 21.91 22.17 22.47 22.95 23.34 23.47	TWALL 29.44 29.80 30.07 30.29 30.76 31.14 31.31	HTP 5607.0 5506.5 5499.7 5561.5 5567.2 5578.6 5553.6			

WR4.03 (B-S) ML= 0.11163 MG= 0.00002 PDT= 6.515 PDF= 1.	14 QFLUX= 43835 310 ALFA=0.149	HTP= 5927.8 TOUT= 23.96	l	
TMIX RESL INLET 21.7 12667.7 OUTLET 23.8 13292.5 MEAN 22.8 12980.1	RESGP124.5113.07126.0106.87125.3109.62	6.6	VSL 1.04 1.04 1.04	0.15
ZRESLVSG5.112719.30.1511.412784.00.1519.112861.80.1527.912952.80.1541.913096.10.1653.313213.80.1657.213253.10.16	22.11 29.51 22.37 29.75 22.68 30.06 23.16 30.54	5818.2 5919.3 5940.3 5934.6 5939.7 5941.4		
WR4.04 (S) ML= 0.11163 MG= 0.00005 PDT= 5.964 PDF= 1.	566 QFLUX= 51290 241 ALFA=0.227	HTP= 6428.0 TOUT= 24.22)	
TMIX RESL INLET 21.6 12623.5 OUTLET 24.0 13354.4 MEAN 22.8 12988.9	RESG P 339.7 112.38 343.6 106.18 341.6 108.94	PRL 6.7 6.3 6.5	VSL 1.04 1.04 1.04	0.40 0.43
27.9 12956.7 0.42 41.9 13124.4 0.42	21.77 29.66 22.03 29.98 22.33 30.35 22.69 30.72 23.25 31.21 23.71 31.67	6445.0 6392.8 6387.1 6449.0 6453.0		
WR4.05 (S) ML= 0.11163 MG= 0.00000 PDT= 5.909 PDF= 1	617 QFLUX= 52182 .379 ALFA=0.253	2 HTP= 6538. TOUT= 24.24	7	
TMIX RESL INLET 21.5 12616.3 OUTLET 24.0 13359.8 MEAN 22.8 12988.0	RESG P 372.5 111.69 376.8 106.18 374.6 108.94	6.3	VSL 1.04 1.04 1.04	VSG 0.44 0.48 0.46
ZRESLVSG5.112677.60.4511.412754.50.4519.112847.00.4527.912955.20.4641.913125.90.4753.313266.00.4757.213312.90.47	21.75 29.67 22.01 29.99 22.32 30.37 22.68 30.64 23.26 31.24 23.72 31.68	HTP 6577.9 6535.3 6478.0 6554.6 6537.6 6567.7 6543.3		

WR4.06 ML= 0 PDT=	.11163					HTP= 7527.8 TOUT= 24.54		
	21.6 24.5	12644 13504	.1 .6	RESG 593.2 599.7 596.5	111.69 105.49	6.7 6.2	VSL 1.04 1.04 1.04	0.70 0.76
11.4 19.1 27.9 41.9 53.3	12714 12803 12910 13030 13233 13390	1.9 3.8).8 5.0 3.6 5.0	0.72 0.73 0.73 0.75 0.76	21.88 22.18	29.86 30.25 30.59 30.99 31.61 32.06	7539.2 7462.0 7479.6 7502.8 7543.7 7636.8		
ML= 0						HTP= 8410.2 TOUT= 24.95		
OUTLET	21.6 24.9	12660 13650	.6 .3	RESG 1129.1 1140.9 1135.0	111.00 105.49	6.7 6.1	VSL 1.05 1.05 1.05	1.34 1.46
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	12741 12844 12966 13110 13338	5.9	1.37 1.38 1.39 1.41 1.43	21.88 22.22 22.64 23.12	30.21 30.50 30.92 31.39 32.12	8309.1 8366.5 8360.2 8381.8 8415.3		
WR4.08 ML= 0 PDT=	(S) .11163 5.336	MG= 0 PDF=				HTP= 8539.6 TOUT= 25.08		
INLET OUTLET MEAN	TMIX 21.6 24.9 23.3	RESI 12633 13633 13133	. 8 . 2	RESG 1452.9 1468.1 1460.5	P 110.31 104.80 107.56	PRL 6.7 6.1 6.4	VSL 1.04 1.04 1.04	VSG 1.74 1.88 1.81
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	RESI 12715 12818 12943 13088 13318 13506 13570	5.7 3.9 3.1 3.5 3.0 5.8	VSG 1.77 1.79 1.80 1.82 1.84 1.87 1.87	TBULK 21.88 22.23 22.64 23.13 23.90 24.52 24.73	TWALL 30.08 30.46 30.97 31.41 32.05 32.57 32.83	HTP 8531.1 8497.0 8406.8 8465.8 8598.7 8710.5 8658.3		

WR4.09 ML= 0. PDT=	(S-C) 11163 5.523	MG = 0	.00033 2	38 QFLUX: .896 ALF/	= 70101 A=0.569	HTP= 9022.8 TOUT= 25.03		
OUTLET	21 5	13616	.6 .7	204/.4	111.00 105.49	6.7 6.1	VSL 1.04 1.04 1.04	2.41 2.61
27.9 41.9	12699 12802 12920 13072 13302	9.4 2.5 5.7 2.0 L.5	2.50 2.52 2.56	21.82 22.17	29.88 30.44 30.89 31.63	8965.5 9079.6 8926.9 8972.9 9006.9		
WR4.10 ML= 0. PDT=	.11163	MG= 0 PDF=	. 00046 3	67 QFLUX: .792 ALF/	= 78925 A=0.626	HTP= 10077.2 TOUT= 25.56		
INLET OUTLET MEAN	TMIX 21.7 25.5 23.6	12673	. 2	RESG 2795.1 2821.7 2808.4	113.76	6.6	VSL 1.04 1.04 1.04	3.25
5.1 11.4 19.1 27.9 41.9	12881 13023 13185 13444 13653	5.2 L.4 L.3 5.2 4.2	3.32 3.34 3.37 3.41 3.47	22.05 22.44 22.91 23.46 24.32 25.02	30.42 30.78 31.30 32.09 32.77	HTP 9880.8 9876.8 10015.9 10065.9 10166.4 10211.8 10341.8		
WR4.11 ML= 0. PDT=	.11163					HTP= 10720.5 TOUT= 25.45		
INLET OUTLET MEAN	TMIX 21.6 25.3 23.5	13747	.3 .6	RESG 3810.1 3846.7 3828.4	113.76 106.87	6.7 6.1	VSL 1.04 1.04 1.04	4.43
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	12844 12982 13142 13397 13607).4 1.6 2.2 3.3 7.9	VSG 4.52 4.56 4.60 4.65 4.74 4.81 4.83	21.93 22.32 22.78 23.32 24.17 24.86	29.17 29.59 30.11 30.60 31.44 32.00	HTP 10731.9 10682.5 10602.4 10688.7 10711.4 10915.3 10829.5		

WR4.12 ML= 0 PDT=	(C-A) 11151 9.901	MG= (0.00113 = 8.	QFLUX= 136 ALF	97521 A=0.715	HTP= 13287.5 TOUT= 26.30		
INLET OUTLET MEAN	21.7 26.3	14014	3.0 4.2	5779.6 5832.5	P 118.59 108.94 113.76	6.7 5.9	VSL 1.04 1.04 1.04	8.51
27.9 41.9	12882 13054 13256 13575	.1 .8 .7 .3 .2	8.02	22.06 22.53 23.11 23.79 24.85	29.92 30.53 31.18 32.12	HTP 12985.5 13195.5 13143.3 13183.1 13421.5 13512.9 13586.8		
WR4.13 ML= 0 PDT=	.11151	MG= (PDF:	0.00229 = 11.	QFLUX= 997 ALF	135355 A=0.772	HTP= 18025.2 TOUT= 27.95		
INLET OUTLET MEAN	TMIX 21.6 28.0 24.8	RES 12608 14522 13569	SL 3.6 1 2.8 1 5.7 1	RESG 3721.0 3776.6 3748.8	P 128.93 115.83 122.72	PRL 6.7 5.7 6.2	VSL 1.04 1.04 1.04	16.28
41.9	12761 12957 13194 13472 13913 14278	6 8 7 8 8 8	15.57	22.13 22.79 23.59 24.52 25.97 27.16	29.69 30.38 31.22 32.06 33.47 34.48	HTP 17850.3 17803.2 17729.4 17938.9 18087.1 18532.3 18491.9		
WR4.14 ML= 0 PDT=	.11163	MG= (PDF:	0.00534 = 22.	QFLUX= 752 ALF	175229 A=0.836	HTP= 22652.7 TOUT= 29.12		
INLET OUTLET MEAN	21.5 29.5	12593 15012	1.8 3 2.6 3	1975.5 1968.6	P 150.30 126.17 138.58	6.7 5.5	VSL 1.04 1.04 1.04	VSG 28.04 34.92 31.48
11.4 19.1 27.9 41.9	13328 13680 14238 14701	2.1 9.5 9.5 9.2 9.9	29.40 30.15 31.06 32.59 33.96	22.13 22.96 23.96 25.13 26.96	30.60 31.72 32.89 34.72 36.23	HTP 23020.7 22869.6 22532.9 22568.7 22618.7 22622.1 22620.4		

WR4.15 ML= 0. PDT=	(A-M) 11151 39.327	MG = 0.	.01251 38.6	QFLU 579 P	JX=2 ALFA	04664 =0.898	HTP= 233 TOUT=	88.0 29.54		
INLET OUTLET MEAN	21.2	12492. 15197.	.5 74 .9 74	1955.2 1432.7	2 7	204.77 164.78	PRL 6.7 5.4 6.1		VSL 1.04 1.04 1.04	48.23 62.55
11.4	12701 12977 13311	L.3 4 7.7 5	50.78	21.9	96 89 02	30.79	HTP 27024.2 25804.0 24644.0 23641.3 21973.7 20940.3 20725.1			
ML = 0	(A-M) 11151 54.109	MG = 0	.01972 53.3	QFL(778 /	UX=1 ALFA	90164 =0.947	HTP= 210 TOUT=	09.0 28.07		
INLET OUTLET MEAN	TMIX 21.2 29.3 25.2	RESI 12480 14901 13691	L .4 110 .7 11 .0 11	RESG 3150.3 7129.8 7640.0	3 8 0	P 259.93 206.15 233.04	PRL 6.7 5.5 6.1		VSL 1.04 1.04 1.04	78.49
27.9 41.9	12664 12913 13213 13560 14120	4.6 3.0 3.1 6.0 6.4	67.46 71.76	21.0 22.0 23.0 24.0 26.7	84 68 69 88 73	29.93 31.82 33.93 37.09	HTP 26531.3 26133.3 23359.6 21004.4 18421.5 16925.4 16439.4			
WR5.01 ML= 0 PDT=	(B) .33957 11.707					X=101094 A=0.017		3122.3 21.62,		
INLET OUTLET MEAN	TMIX 19.9 21.5 20.7	RES 36908 38326 37617	.6 .5	RESG 39.4 39.4 39.2	0 4	P 124.10 112.38 117.90			VSL 3.17 3.17 3.17	VSG 0.04 0.05 0.04
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	3814	6.1 3.1 9.8 6.3 1.5 8.3	VSG 0.04 0.04 0.04 0.04 0.05 0.05 0.05	TBU 20. 20. 20. 20. 21. 21.	06 22 42 65 02 32	TWALL 27.52 27.87 28.17 28.42 28.76 28.99 29.11	HTP 13535.7 13221.7 13046.2 13016.1 13072.3 13176.2 13155.8			

WR5.02 ML= 0. PDT=	.33957	MG= 0. PDF=	000027	7 QFLUX 274 ALFA	K=101435 A=0.058	5 HTP= 13460. TOUT= 21.38	1 2, 21.38	
INLET OUTLET MEAN	TMIX 19.7 21.3 20.5	RESI 36751 38172 37462	8 2 0	RESG 163.1 164.7 163.9	P 125.48 113.07 119.28	PRL 7.0 6.7 6.9	VSL 3.17 3.17 3.17	0.19
27.9 41.9	36869 37016 37193 37400 37726	.4 .7 .7 .6 .4	0.18	19.88 20.04 20.24 20.48 20.84	27.55 27.84 28.08 28.39	HTP 13825.8 13513.5 13349.4 13345.4 13451.1 13558.4 13493.1		
ML = 0	(B-S) .33957 12.417	MG = 0	.000055 6.8	54 QFLUX 395 ALFA	K=10141(A=0.095) HTP= 14242. TOUT= 21.57	6 7, 21.57	
INLET OUTLET MEAN	TMIX 20.0 21.5 20.7	RESI 36930 38352 37641	, 3 , 5 , 4	RESG 329.6 332.9 331.2	P 126.17 113.76 119.97	PRL 7.0 6.7 6.8	VSL 3.17 3.17 3.17	0.34 0.39
5.1 11.4 19.1 27.9 41.9	37048 37195 37372 37579 37906 38173	.0 .5 .8 .9 .1 .8	0.35 0.35 0.36 0.36 0.37	TBULK 20.08 20.25 20.44 20.68 21.04 21.34 21.44	27.04 27.34 27.64 27.87 28.16 28.41	HTP 14548.0 14282.9 14094.4 14103.5 14270.4 14372.0 14355.6		
ML = 0		MG = 0				HTP= 14892.7 TOUT= 21.18		
INLET OUTLET MEAN	19.5 21.1		. 3 . 0	RESG 775.0 782.4 778.7	127.55 114.45	7.1 6.8	VSL 3.17 3.17 3.17	VSG 0.79 0.90 0.84
11.4 19.1 27.9 41.9	37520 37787	5.5 .3 .7 5.9).6	VSG 0.81 0.82 0.83 0.84 0.87 0.88 0.89		26.62 26.87 27.11 27.42 27.64	HTP 15156.1 14891.6 14777.4 14774.6 14898.9 15053.9 14975.6		

WR5.05 ML= 0. PDT=	(B-S) 33957 MG 14.403 P	= 0.00026 PDF= 10.	1 QFLUX= 135 ALFA	123715 =0.300	HTP= 17014.0 TOUT= 21.67,	21.67	
	TMIX 19.7 36 21.7 38 20.7 37	481.5	1566.6 1580.4	P 131.69 117.21 124.79	7.0 6.7	VSL 3.17 3.17 3.17	VSG 1.55 1.78 1.66
53.3	RESL 36891.5 37071.1 37286.9 37539.3 37937.0 38263.4 38372.4	5 1.58 1.60 1.63 1.66 1.71 1.75	19.91 20.11 20.35 20.63 21.08 21.44	27.96 28.33 28.60	HTP 17216.1 16919.1 16809.6 16882.8 17062.2 17303.5 17213.8		
WR5.06 ML= 0 PDT=	(S~F) .33957 MC 15.251 F	G= 0.00033 PDF= 11.	1 QFLUX= 238 ALFA	=133869 A=0.342	HTP= 17886.7 TOUT= 21.72,	21.72	
INLET OUTLET MEAN	TMIX 19.6 36 21.7 38 20.7 37	5635.8 3510.0	RESG 1994.4 2010.7 2002.5	134.45 119.28	7.0 6.6	VSL 3.17 3.17 3.17 3.17	VSG 1.93 2.22 2.08
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	36984.6 37217.9 37490.8 37920.9 38274.0	5 2.00 9 2.03 8 2.07 9 2.13	TBULK 19.79 20.01 20.27 20.58 21.06 21.46 21.59	27.17 27.52 27.86 28.13 28.52 28.83	HTP 18116.6 17808.9 17639.1 17740.2 17965.6 18158.6 18133.1		
WR5.07 ML= 0 PDT=	(S-F) .33957 MC 19.284 B	G= 0.00073 PDF= 16.	34 QFLUX= 133 ALF/	=157698 A=0.488	HTP= 20688.7 TOUT= 22.10,	22.10	
INLET OUTLET MEAN	19.6 36 22.1 38	RESL 5631.1 3838.8 7735.0	4418.1 4447.6	P 146.17 126.86 136.51	7.0 6.6	VSL 3.17 3.17 3.17	
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	37041.2 37315.9 37637.3 38144.2 38560.4	7 4.02 2 4.08 9 4.16 3 4.26 1 4.41 4 4.54	20.74 21.31 21.78	27.32 27.70 28.12 28.46 28.91 29.26	HTP 20980.6 20656.9 20370.8 20448.6 20766.5 21089.0 21027.1		

ML= 0. PDT=	23.876	MG= 0. PDF=	21.3	73 ALFA	\=0.593	HTP= 22514.8 TOUT= 22.49,	22.49	
INLET OUTLET MEAN	TMIX 19.9 22.5 21.2	RESI 36849. 39210. 38030.	.37 .97 .17	RESG 254.1 296.1 275.1	P 158.58 135.14 146.86	PRL 7.0 6.5 6.8	VSL 3.17 3.17 3.17 3.17	VSG 5.96 7.17 6.57
19 1	37581	.3	6.34	20.68	28.26	HTP 23015.6 22438.1 22234.8 22305.8 22538.0 22867.4 22868.5		
ML= 0. PDT=	28.792	MG= 0 PDF=	26.6	13 ALFA	A=0.639	HTP= 24081.3 TOUT= 22.66,		
INLET OUTLET MEAN	TMIX 19.9 22.7 21.3	RESI 36845 39371 38108	59 .599 .799	RESG 900.7 949.2 925.0	P 169.61 140.65 155.13	PRL 7.0 6.5 6.7	VSL 3.17 3.17 3.17	VSG 7.62 9.39 8.50
5.1 11.4 19.1 27.9 41.9 53.3	37052 37313 37628 37999 38576 39052	2.5 3.7 3.0 5.7 5.0 2.9	7.81 7.96 8.15 8.39 8.78 9.14	20.38 20.73 21.14 21.79 22.32	27.42 27.92 28.37 28.72 29.24 29.68	HTP 24575.3 23901.3 23614.0 23826.9 24236.9 24549.2 24566.8		
ML = 0	(A-F) .33957 32.177	MG = 0	.00207 29.9	QFLUX=1 92 ALF/	195333 A=0.643	HTP= 25025.6 TOUT= 23.08,	23.08	
INLET OUTLET MEAN	20.1 23.1	37018 39756	.1 12 .6 12	RESG 2447.5 2496.9 2472.2	180.64 148.23	7.0 6.4	VSL 3.17 3.17 3.17	VSG 9.01 11.21 10.11
19.1 27.9 41 9	37525 37865 38264 38893 39410	2.1 5.6 4.2 3.3	9.95	20.30 20.62 21.00 21.44 22.14 22.72	28.46 28.92 29.29 29.94 30.42	25264.0 24906.3 24659.9 24891.6 25084.0		

_ __

		MG= (HTP= 260 TOUT=	23.03	
INLET OUTLET MEAN	TMIX 20.0 23.1 21.6	37019	5.4	14901 14953	.0	P 188.91 153.75 171.68	7.0 6.4	VSL 3.17 3.17 3.17	VSG 10.30 12.93 11.61
41.9	37238 37520 37860 38257 38884 39400).7).3 7.7 1.9).6	11.41	20 20 20 21 21 22	.44 .14 .71	27.57 28.11 28.61 28.98 29.63 30.08	HTP 26758.5 26016.4 25618.9 25875.5 26032.8 26493.3 26572.8		
		MG= (HTP= 264 TOUT=	23.11	
	20.1 23.1	37071 39794	L.4 L.0	21218 21281	.6		6.9 6.4	VSL 3.17 3.17 3.17	VSG 13.76 17.42 15.59
5.1 11.4 19.1 27.9 41.9	37574 37913 38309 38935 39449	3.2 4.7 3.4 9.8 5.4 9.8	14.11 14.42 14.82 15.30 16.14	20 20 21 21 21 22 22	.36 .68 .06 .50	27.98 28.50 28.94 29.62 30.04	HTP 27610.7 26672.2 26185.0 26197.5 26268.5 26845.9 26899.3		
ML = 0		MG = (HTP= 282 TOUT=	23.23	
INLET OUTLET MEAN		39971	3.3	31004	.8	P 224.77 179.26 202.01	6.9 6.4	VSL 3.17 3.17 3.17	
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	37975 38396 39059 39605	7.8 5.3 5.5 5.0 9.8 5.7	VSG 18.43 18.86 19.41 20.08 21.24 22.29 22.67	20 20 21 21 21 22 22	.39 .72 .13 .59 .33	27.24 27.96 28.56 29.03 29.76 30.28	HTP 30211.8 28641.3 27901.4 27904.8 27987.2 28301.2 28259.7		

		MG= 0.008			HTP= 29159 TOUT= 23	9.1 3.18, 23.45	
INLET OUTLET MEAN	23.6	RESL 37198.8 40220.0 38709.4	49027.0	211.67	6.3	VSL 3.17 3.17 3.17	VSG 23.71 30.97 27.33
27.9 41.9	3744 3775 3813 3857 39260	L VSG 3.1 24.3 5.4 24.9 1.3 25.7 1.3 26.6 5.0 28.3 7.5 29.8 3.5 30.4	1 20.53 2 20.88 0 21.30 7 21.79 4 22.57	28.16 28.83 29.41 30.18	32276.3 29952.9 28957.0 28638.4 28673.6		
ML = 0		MG= 0.010			HTP= 29367 TOUT=23		
INLET OUTLET MEAN	20.7	RESL 37560.4 40577.9 39069.2	61411.6	293.02	6.8	VSL 3.17 3.17 3.17	VSG 27.46 36.15 31.80
41.9 53.3	37803 38119 38491 38930 39624 40195	VSG 28.6 28.1 5.6 28.8 1 29.8 0.7 30.9 1.8 32.9 5.7 34.8 5.6 35.4	6 20.94 9 21.28 2 21.71 8 22.19 9 22.96 2 23.59	28.41 29.17 29.75 30.58 31.14	33101.3 30576.9 29192.0 28872.4		
WR6.01 ML= 0 PDT=	67964				3 HTP= 233 TOUT= 21	889.7 87, 21.87	
	21.8	RESL 74875.8 77243.5 76059.7	286.9	150.30	6.9 6.6	VSL 6.34 6.35 6.35	
2 5.1 11.4 19.1 27.9 41.9 53.3 57.2	RESI 75072 75317 75613 75957 76501 76946 77094	2.1 0.2 3.8 0.2 3.1 0.2 7.9 0.2 0 0.2	5 20.59 5 20.73 7 20.89 7 21.09 9 21.39 0 21.64	27.69 27.87 28.13 28.32 28.60 28.80	23555.5 23237.6 23272.2 23343.7		

WR6.02 ML= 0 PDT=	. 67964	MG= 0 PDF=	.00008 21.	94 Q 787 .	FLUX ALF/	<=164128 A=0.073	8	HTP= 2 TOUT=	23914.4 21.99,	21.99	
INLET OUTLET MEAN	TMIX 20.6 21.9 21.3	75139	. 6	RESG 536. 541. 538.	0 2	P 155.13 127.55 141.34	(6.8		VSL 6.34 6.35 6.35	VSG 0.45 0.56 0.51
41.9	75331 75571 75859 76196 76726 77161	3 2 5 3 5 2	0.52	20. 20. 21. 21. 21. 21. 21.	74 87 03 22 52 76	27.68 27.92 28.12 28.40	24 22 22 22 22 22 22	4152.9 4093.8 3815.6 3782.6 3851.4 4055.8			
	(B) .67964 27.972									21.99	
	TMIX 20.6 21.9 21.2	75004 77427	. 2 . 3	723. 730.	5 1	P 158.58 130.31 144.79	i	6.9		VSL 6.34 6.35 6.35	
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	75456 75758 76111 76667 77123	5.0 5.5 7.6 7.3	0.61 0.62 0.64 0.66 0.69	20. 20. 20. 21. 21. 21.	67 81 98 17 48	27.91 28.17 28.36 28.64 28.83	24 22 22 24 24	4281.2 4215.9 3938.2 3964.9 4037.6			
WR6.04 ML= 0 PDT=	(B) .67964 29.082	MG= 0. PDF=	.00017 23.	1 QF 718	LUX= ALF#	=178546 \=0.120	î	HTP= 24 TOUT=	580.4 21.97,	21.97	
INLET OUTLET MEAN	21.9	77430	. 6 . 5	1029.	2 2	133.07	(6.6		VSL 6.34 6.35 6.35	VSG 0.83 1.03 0.93
	75386 75699 76065 76642 77114	.8 .5 .8 .8	VSG 0.85 0.87 0.89 0.91 0.96 1.00 1.01	20. 20. 20. 21. 21. 21.	62 77 94 15 47	28.46 28.74 28.94	2022	4782.5 4665.6 4414.6 4446.4 4566.8 4793.3			

WR6.05 ML= 0. PDT=	.67964	MG= 0 PDF=	.00020 24.	9 QFLUX= 407 ALFF	=186298 A=0.141	HTP= 24869. TOUT= 22.2	.4 22, 22.22	
INLET OUTLET MEAN		75183 77809	.4 .1	RESG 1257.2 1268.0 1262.6	P 164.78 135.14 150.30	6.8 6.6	VSL 6.34 6.35 6.35	VSG 1.00 1.24 1.12
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	75400 75673 76000 76383 76989 77479).9 3.3).6 3.0 5.3	1.21	20.78 20.93 21.11 21.33 21.66 21.93	28.18 28.38 28.67 28.86 29.17 29.36	HTP 25149.3 25002.8 24665.0 24734.8 24822.3 25099.4 25004.0		
WR6.06 ML= 0 PDT=	(B-F) .67964 32.039	MG = 0	.00029 27.	4 QFLUX: 027 ALF	=186247 A=0.183	HTP= 25377 TOUT= 22.3	.0 12, 22.12	
INLET OUTLET MEAN		77670	.6 .2	RESG 1767.2 1781.6 1774.4	170.99	6.9 6.6	VSL 6.34 6.35 6.35	VSG 1.35 1.69 1.52
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	75264 7553 75863 7624 7624 7684 7734	5.8 3.7 5.7	1.39 1.42 1.45 1.50 1.58 1.64	20.70 20.86 21.04 21.25 21.58 21.86	27.95 28.16 28.46 28.64 28.92 29.12	HTP 25667.2 25474.7 25107.9 25202.1 25385.0 25654.7 25586.5		
WR6.07 ML= 0 PDT=	(B-F .67964 32.315	MG = 0	.00033	33 QFLUX 441 ALF	=186263 A=0.201	HTP= 25415 TOUT= 22.1	.6 25, 22.25	
INLET OUTLET MEAN		RES 75205 77829 76517	.0 .6	RESG 1999.0 2014.5 2006.7	P 177.19 144.79 160.65	6.6	VSL 6.34 6.35 6.35	VSG 1.48 1.84 1.66
2 5.1 11.4 19.1 27.9 41.9 53.3 57.2	7569 7602 7640 7700 7749	2.2 4.5 1.7 4.0 6.1 9.8	VSG 1.52 1.55 1.59 1.64 1.72 1.79 1.82	20.79 20.94 21.12 21.34 21.67 21.94	28.06 28.26 28.53 28.71 29.01 29.19	HTP 25603.0 25446.9 25143.1 25290.7 25414.5 25725.6 25676.2		

ML = 0	(B-F) 67964 37.486	MG= 0.0006	13 QFLUX: .025 ALF/	=189436 A=0.274	HTP= 27455.7 TOUT= 22.20,	22.20	
INLET OUTLET MEAN	TMIX 20.6 22.1 21.4	RESL 75135.4 77802.4 76468.9	RESG 3682.2 3706.9 3694.6	P 195.12 157.89 176.50	PRL 6.8 6.6 6.7	VSL 6.34 6.35 6.35	VSG 2.47 3.11 2.79
11.4 19.1 27 9	75965	VSG 2.54 2.7 2.59 5.1 2.66 3.6 2.74 5.5 2.89 7.3 3.02 4.8 3.06	21.09 21.31	28.08	27101.4 27260.4		
ML= 0	(B-F) .67964 41.506	MG = 0.0008	44 QFLUX .369 ALF	=186121 A=0.323	HTP= 27694.8 TOUT= 22.20,	22.20	
INLET OUTLET MEAN	TMIX 20.6 22.1 21.3	RESL 75089.0 77707.1 76398.0	RESG 5066.5 5097.7 5082.1	P 208.22 166.85 187.53	PRL 6.9 6.6 6.7	VSL 6.34 6.35 6.35	VSG 3.19 4.04 3.61
5.1 11.4 19.1 27.9 41.9 53.3	75305 75577 75903 76284 76885	VSG 5.4 3.27 7.0 3.34 3.5 3.43 4.9 3.55 5.5 3.74 3.1 3.92 2.6 3.98	20.72 20.88 21.06 21.27 21.61 21.88	27.58 27.84 28.05 28.34	28040.5 27749.3 27435.3 27465.4 27632.9 28133.1		
WR6.10 ML= 0 PDT=	.67964	MG= 0.0020 PDF= 54	6 QFLUX= .606 ALF	204648 A=0.474	HTP= 30190.8 TOUT= 22.25,	22.25	
INLET OUTLET MEAN	22.2	RESL 74993.9 77867.1 76430.5	12350.4 12399.5	204.08	6.9 6.6	VSL 6.34 6.35 6.35	VSG 6.18 8.05 7.12
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	75528 75887 76309 76969 77509	0.8 6.34 8.9 6.50 7.1 6.70 5.7 6.95 5.0 7.38 5.8 7.77	20.68 20.85 21.05 21.28 21.65 21.95	27.37 27.61 27.88 28.13 28.43 28.66	30599.6 30289.6 29937.5 29912.0		

WR6.11 ML= 0 PDT=	. 679.64	MG= (PDF=	0.0024 = 58	3 QFLU .053 A	UX=217884 ALFA=0.514	HTP= 30990.2 TOUT= 22.54,	22.54	
INLET OUTLET MEAN	TMIX 20.8 22.5 21.6	RES 75352 78416 76884	SL 2.7 5.4 4.5	RESG 14560.2 14610.8 14585.9	P 2 275.10 3 213.73 5 244.07	PRL 6.8 6.5 6.7	VSL 6.34 6.35 6.35	VSG 6.95 9.06 8.00
5.1 11.4 19.1 27.9 41.9 53.3	75605 75922 76304 76753 77454 78033	5.1 2.8 1.7 1.0 1.2	7.12 7.30 7.53 7.81 8.29 8.73	20.8 21.0 21.2 21.9 21.9 22.2	LK TWALL 39 27.78 07 28.07 28 28.38 53 28.62 92 28.96 24 29.21 35 29.33	HTP 31614.2 31094.1 30690.4 30727.9 30997.0 31284.9		
	. 67964					HTP= 31216.8 TOUT= 22.44,	22.44	
OUTLET	20.7	75238	5.2	22117.3 22178.3	3 234.42	6.8 6.5	VSL 6.34 6.35 6.35	9.54 12.54
11.4 19.1 27.9 41.9 53.3	76180 76623 77321	5.1 .5 .5 .5 .3	9.78 10.03 10.35 10.75	20.8 21.0 21.2 21.4 21.8 22.1	33 27.63 00 27.91	31827.2 31387.1 30819.3 30920.4 31236.1 31583.0		
WR6.13 ML= 0 PDT=	(F) .67964 80.440	MG= (PDF=	0.0053 = 78	3 QFLU .116 #	JX=231457 ALFA=0.616	HTP= 32486.4 TOUT= 22.88,	22.88	
	TMIX 21.0 22.8 21.9	79104	3.9 1.2	RESG 31945.2 32004.3 31974.7	2 344.04 3 264.07	6.8 6.5	VSL 6.34 6.35 6.35	
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	76863 77336 78082 78695).6 7.7 3.0 5.6 2.8	VSG 12.50 12.83 13.25 13.77 14.68 15.51 15.81	21.1 21.2 21.8 21.8 22.2 22.6	18 28.09 37 28.41 59 28.78 36 29.04 27 29.41 51 29.72	32860.0 32213.3 32205.3 32424.5 32578.9		

	.67964					HTP= 32624.9 TOUT= 23.18,	23.18	
INLET OUTLET MEAN	21.4 23.2	RESI 76501 79775 78138	.1 40 .9 40	5400.5 5458.6	Р 389.55 295.78 342.66	6.7 6.4	VSL 6.35 6.35 6.35	VSG 15.70 20.91 18.30
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	77108 77517 77994	.0	17.77	21.96	TWALL 28.26 28.72 29.13 29.42 29.88 30.21 30.32	32504.5 32391.6		
WR7.01 ML= 0 PDT=	.90656 N	MG= 0 PDF=	.00009: 35.:	19 QFL 370 AL	UX=165244 FA=0.059	HTP= 29487.8 TOUT= 22.78,	22.78	
INLET	TMIX 21.7 10 22.7 10 22.2 10	02872 05218	.6 .2	552.5 557.9	141.34	6.6	VSL 8.46 8.46 8.46	VSG 0.40 0.52 0.46
11.4 19.1 27.9 41.9	103067 103311 103603 103945 104483 104924	.3 .0 .6 .4 .3 .0	0.42 0.44 0.45 0.48	21.82 21.92 22.04 22.19 22.41 22.59		30609.8 29648.0 29356.7 29175.6 29396.4 29619.0		
WR7.02 ML= 0 PDT=	.90656 1	MG= 0 PDF=	.000150 37.2) QFLU 714 AL	X=166664 FA=0.078	HTP= 30387.8 TOUT= 22.73,	22.73	
INLET OUTLET MEAN	21.7 10 22.7 10	05054	. 3	RESG 899.1 907.5 903.3	146.86	6.5	VSL 8.46 8.46 8.46	VSG 0.62 0.82 0.72
27.9 41.9 53.3	103132 103427	.5 .1 .0 .5 .6 .8	VSG 0.64 0.66 0.68 0.70 0.75 0.79 0.80	TBULK 21.75 21.85 21.97 22.12 22.34 22.53 22.59	27.00 27.29 27.50 27.67 27.84 27.99	30637.6 30167.5 30029.5 30311.2 30476.9		

	(B) .90946 MG= 0.0001 44.877 PDF= 39				
INLET OUTLET MEAN	TMIX RESL 22.0 103880.4 23.0 106258.3 22.5 105069.3	1176.4 197.19	6.6	8.49 8.49	VSG 0.79 1.03 0.91
5.1 11.4 19.1 27.9 41.9 53.3		22.10 27.30 22.21 27.58 22.33 27.78 22.47 27.93 22.69 28.13 22.88 28.27	32136.6 31056.1 30651.8 30623.4 30796.0 31004.4		
	(B) .90883 MG= 0.0002 44.919 PDF= 39				
OUTLET	TMIX RESL 22.0 103740.3 23.0 106193.6 22.5 104967.0	1486.2 201.32 1499.1 156.51	6.6 6.4		
11.4 19.1 27.9 41 9	104862.21.10105424.81.17105885.91.23	22.08 27.41 22.18 27.69 22.31 27.91 22.46 28.07 22.69 28.28 22.88 28.43	32373.4 31288.3 30843.2 30745.5 30888.6 31125.4		
	(B-F) 90719 MG= 0.0002 46.587 PDF= 41			22.98	
INLET OUTLET MEAN	TMIX RESL 21.8 103192.0 22.9 105722.1 22.4 104457.1	RESG P 1687.2 205.46 1701.3 158.58 1694.2 182.02	6.5	8.47 8.47	VSG 1.09 1.43 1.26
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	103664.61.14103980.31.18104349.01.23104929.21.30105404.71.37	21.93 27.51 22.04 27.82 22.17 28.04 22.32 28.21 22.56 28.42 22.76 28.58	30806.3 30317.4 30274.2 30421.9		

W	R7.06	(B-1	F)						
	L= 0. DT=	90946 48.20	MG= 0 D PDF=	.00032 42.	6 QFLUX= 954 ALF/	=194396 A=0.141	HTP= 31452.4 TOUT= 23.16,	23.16	
0	NLET UTLET EAN	21.9 23.1	RESI 103696 106460 105078	. 6 . 8	RESG 1947.7 1963.2 1955.4	Р 210.98 162.71 186.85	6.4	VSL 8.49 8.49 8.49	VSG 1.22 1.61 1.41
	Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	10459 10490 10559 10613	25.8 12.8 57.6 50.4 94.3	VSG 1.25 1.29 1.33 1.38 1.47 1.55 1.58	22.04 22.16 22.30 22.47 22.73 22.94		32778.8 31619.4 31229.3 31153.8 31344.0		
М	R7.07 L= 0. DT=	(B-1 90719 49.331	MG = 0	.00038 44.	6 QFLUX: 195 ALF	=203444. A=0.153	NUTP= 603.2 TOUT= 23.21,	HTP= 312 23.21	197.5
0	NLET UTLET EAN	23.1	103434 106327	.2 .3	RESG 2315.9 2333.5 2324.7	166.85	6.4	VSL 8.47 8.47 8.47	VSG 1.42 1.86 1.64
	Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	1039 1043 1047 1054 1054	73.9 74.3 35.2 56.7 20.2 64.1	VSG 1.46 1.49 1.54 1.60 1.70 1.80 1.83	TBULK 22.04 22.17 22.32 22.49 22.77 22.99 23.07	TWALL 28.24 28.66 28.88 29.07 29.33 29.49 29.59	HTP 32800.4 31355.3 30997.0 30947.1 30989.7 31331.5 31170.2		
М	7R7.08 (L= 0. PDT=		MG= 0 5 PDF=		92 QFLUX 847 ALF	=206392 A=0.255	HTP= 33275.6 TOUT= 23.26,	23.26	
С	NLET OUTLET IEAN		RES 103370 106302 104836	.7 .8	RESG 5335.8 5366.7 5351.3	Р 257.17 198.57 227.52	PRL 6.6 6.4 6.5	VSL 8.47 8.47 8.47 8.47	VSG 2.74 3.60 3.17
	Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	1036 1039 1042 1047 1053 1059	13.4 17.9 83.6 10.8 83.4 34.7	VSG 2.82 2.89 2.98 3.09 3.29 3.47 3.53	22.02 22.14 22.29 22.47 22.75	TWALL 28.11 28.32 28.56 28.73 28.97 29.10 29.18	HTP 33895.1 33394.8 32954.2 32961.6 33197.3 33748.6 33714.5		

WR7.09 (F) ML= 0.90719 MG= 0.00162 QFLUX=207130 HTP= 35067.6 69.195 PDF= 65.154 ALFA=0.340 TOUT= 23.28, 23.28 PDT= VSG PRL VSL Ρ TMIX RESL RESG 8.47 4.23 9662.5 21.9 103428.9 301.30 6.6 INLET 5.56 8.47 OUTLET 23.2 106369.0 232.35 6.4 9705.8 4.90 22.6 104898.9 266.82 6.5 8.47 9684.2 MEAN TBULK TWALL HTP VSG Z RESL 35635.4 4.34 22.04 27.85 5.1 103671.9 28.05 35193.6 103977.2 4.45 22.17 11.4 22.32 28.29 34712.1 104344.0 4.59 19.1 22.50 34687.7 4.77 28.47 27.9 104772.5 28.68 35079.5 5.07 22.78 41.9 105446.9 28.84 35524.6 5.36 23.01 105999.8 53.3 5.45 35575.7 23.08 28.91 57.2 106184.3 WR7.10 (F) ML= 0.90719 MG= 0.00257 QFLUX=229199 HTP= 35608.1 79.978 PDF= 76.393 ALFA=0.413 TOUT= 23.10, 23.10 PDT= VSL VSG Р PRL RESG TMIX RESL 346.11 6.6 8.47 5.87 15391.8 INLET 21.9 103304.9 266.13 6.4 8.47 7.73 OUTLET 23.2 106555.4 15440.9 306.12 6.5 8.47 6.80 22.6 104930.1 15416.3 MEAN VSG TBULK TWALL HTP RESL z 103573.2 6.02 22.00 28.24 36674.4 5.1 6.18 22.14 28.52 35929.5 103910.7 11.4 6.38 22.31 28.80 35318.5 19.1 104316.1 27.9 104789.8 6.62 22.51 29.01 35261.2 35473.0 41.9 105535.6 7.05 22.82 29.28 23.07 35875.5 29.46 53.3 106147.1 7.44 35826.1 57.2 106351.2 7.58 23.15 29.56 WR7.11 (F) ML= 0.90719 MG= 0.00325 QFLUX=245213 HTP= 37212.7 87.362 PDF= 83.839 ALFA=0.428 TOUT= 23.60, 23.60 PDT= VSG VSL PRL TMIX RESL RESG Р 6.86 8.47 375.07 6.6 22.0 103545.9 19441.2 INLET 8.47 9.04 287.51 6.4 107025.6 19490.1 OUTLET 23.4 8.47 7.95 22.7 105285.7 19465.6 330.94 6.5 MEAN TWALL HTP TBULK RESL VSG Z 38212.6 28.52 5.1 103832.9 7.03 22.11 28.79 37547.1 11.4 22.26 104194.0 7.21 29.08 36904.4 19.1 104628.0 7.44 22.44 7.74 22.65 29.29 36905.5 105135.1 27.9 29.58 37175.2 8.24 22.98 41.9 105933.5 23.25 29.83 37278.0 106588.3 8.70 53.3 23.34 29.88 37483.5 8.87 57.2 106806.9

WR7.12 ML= 0 PDT=	.90719 MG=	0.00317 = 80.1	QFLUX= .85 ALF	256121 A=0.431	HTP= 37355.2 TOUT= 23.60,	23.53	
OUTLET	TMIX RE 22.0 10345 23.5 10708 22.7 10527	4.2 18 8.9 18	1938.3 1987.5	360.59 277.16	6.6 6.4	VSL 8.47 8.47 8.47	6.94 9.14
19.1 27.9 41.9 53.3		7.11 7.30 7.53 7.83 8.34 8.80	22.08 22.23 22.42 22.64 22.98 23.27	29.03 29.33 29.57 29.87 30.09	38451.1 37643.1 37067.9 36991.3 37233.1 37561.9		
WR7.13 ML= 0 PDT=	.90719 MG=	0.00395 = 87.4	QFLUX= 93 ALF	257758 A=0.450	HTP= 38195.5 TOUT= 24.24,	24.24	
OUTLET	TMIX RE 22.6 10499 24.1 10866 23.3 10682	2.5 23 5.9 23	567.2 623.1	388.17 297.16	6.5 6.3	VSL 8.47 8.47 8.47	8.05 10.63
5.1 11.4 19.1 27.9 41.9	105295.1 105676.4 106134.5 106669.8 107512.8 108204.2	8.47 8.74 9.09 9.68 10.23	22.72 22.87 23.06 23.28 23.63	28.86 29.56 29.88 30.13 30.46 30.64	41941.3 38531.1 37772.0 37633.4 37760.6 38343.2		

ML = 0	1 (S) .00580 MG= 4.482 PD	= 0.000010 DF= 0.1	01 QFLUX 345 ALFA	X= 2690 A=0.410) NUTP= 12. TOUT= 24.90	7 HTP= , 24.90	420.7
INLET OUTLET MEAN	TMIX F 22.2 25.4 23.8	ESL 68.2 78.5 73.4	RESG 63.4 63.9 63.7	P 108.25 104.11 106.18	PRL 77.3 66.8 72.0	VSL 0.0457 0.0457 0.0457	VSG 0.08 0.08 0.08
27.9	69.0	0.09 0.09 0.09	22.42 22.76 23.16 23.63	31.12 31.55 31.46	345.0 322.2 321.3 344.6		
ML= 0 PDT=	2.303 PC	F = -0.8	327 ALF	A=0.555	5 NUTP= 26. TOUT= 25.70	, 25.70	
INLET OUTLET MEAN	TMIX F 22.5 25.7 24.1	RESL 69.2 79.6 74.4	RESG 254.1 256.0 255.0	P 105.49 103.42 104.11	PRL 76.1 65.8 70.9	VSL 0.0457 0.0457 0.0457	VSG 0.32 0.34 0.33
5.1 11.4 19.1 27.9 41.9	71.1	0.34 0.34 0.34 0.34 0.34	22.76 23.09 23.50 23.97 24.71	26.03 26.38 26.78 27.29 27.94	826.0 824.2 823.5 814.9 839.1		
G1R1.03 ML= 0. PDT=	.00580 MG=	: 0.000074)F= -1.2	43 QFLUX 241 ALF/	K= 9877 A=0.604	. NUTP= 36. TOUT= 33.96	7 HTP= , 33.96	1219.1
	TMIX F 23.1 34.8 1 28.9	71.1 13.1	441.2	104.11 102.73	74.1 45.7	VSL 0.0457 0.0457 0.0457	
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	74.1 78.1 83.1 89.1 99.0	0.58 0.58 0.61 0.61	24.05 25.27 26.73	33.75 35.07 36.42 37.34 38.91	1014.8 1006.1 1018.6 1108.8 1271.0 1597.6		

G1R1.04 ML= 0. PDT=	4 (S) .00580 MG 1.179 P		52 QFLUX= .034 ALFA					270.7
INLET OUTLET MEAN	TMIX 23.4 38.5 31.0	RESL 72.2 127.7 100.0	RESG 908.4 904.0 906.2	P 102.73 101.35 102.04	PRL 72.9 40.2 56.5		VSL 0.0457 0.0457 0.0457	VSG 1.18 1.30 1.24
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	RESL 76.2 81.5 88.1 96.2 109.3 120.4 124.1	1.22	26.27 28.16	39.48	1120.5 1128.4 1143.8			
ML= 0. PDT=	5 (S-C) .00580 MG 1.289 P	DF= -0.	.689 ALFA	A=0.719	TOUT=	39.20,	39.20	
INLET OUTLET MEAN	TMIX 23.7 39.7 31.7	RESL 73.0 132.3 102.6	RESG 1399.9 1392.5 1396.2	P 104.11 102.73 103.42	PRL 72.1 38.7 55.4		VSL 0.0457 0.0457 0.0457	VSG 1.80 1.98 1.89
5.1 11.4 19.1 27.9 41.9	RESL 77.3 82.9 90.0 98.7 112.8 124.5 128.4	1.83 1.86 1.86 1.89 1.92	25.02 26.69 28.69 31.03 34.71	40.30 42.17 44.93	1168.5 1174.3 1209.9 1263.9 1379.6			
ML= 0.	5 (C) .00580 MG 1.489 P	= 0.00032 DF= -0	23 QFLUX: .414 ALFA	= 14065. A=0.727	NUTP= TOUT=	41.9 39.81,	HTP= 1 39.71	394.5
INLET OUTLET MEAN	TMIX 23.9 39.6 31.7	73.6 131.8	RESG 1927.3 1918.4 1922.9	104.11	71.4 38.9		VSL 0.0457 0.0457 0.0457	2.47 2.74
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	77.8 83.4 90.4 98.9 112.7	2.56 2.56 2.62 2.65 2.71	25.19 26.83 28.79 31.09 34.69 37.63	37.72 39.53 41.81 44.92	1307.5 1311.5 1380.2 1634.8			

PDT=	0580 MG= 0 1.600 PDF:	= -0.	276 ALF	A=0.731	TOUT=	41.35,	41.35	
INLET 2 OUTLET 4 MEAN 3	TMIX RES 23.8 7 41.0 13 32.4 105	SL 3.2 7.2 5.2	RESG 2337.1 2325.0 2331.0	P 103.42 102.04 102.73	PRL 71.8 37.2 54.5		VSL 0.0457 0.0457 0.0457	VSG 3.02 3.37 3.19
41.9	77.8 83.9	3.08 3.11 3.14 3.20 3.26	25.20 26.99 29.15 31.67 35.62	36.69 38.43 40.57 42.79 46.48	1358.3 1368.4 1373.9 1413.2 1453.9			
G1R1.08 ML= 0.0 PDT=	(C) 00580 MG= (1.620 PDF=).00077 = -0.	7 QFLUX= 138 ALFA	= 18846. A=0.748	NUTP= TOUT=	53.6 41.35,	HTP= 17 41.35	82.9
INLET 2 OUTLET 4 MEAN 3	TMIX RES 21.4 65 10.5 134 10.9 100	5L 5.8 1.9).4	RESG 4655.6 4603.7 4629.7	P 102.73 101.35 102.04	PRL 80.1 37.8 59.0		VSL 0.0457 0.0457 0.0457	VSG 5.97 6.70 6.33
5.1 11.4	95.1 111.8 125.7	6.10 6.16 6.22 6.31 6.46 6.61	22.96	35.45 38.01 40.80 45.01 48.73	1799.3 1782.5 1760.1 1765.6 1803.7 1788.9			
	(A) 00580 MG≖ (1.641 PDF=							8.6
INLET 2 OUTLET 3	TMIX RES 0.8 64 7.9 124 9.3 94	.2		102.73 100.66	82.2		VSL 0.0457 0.0457 0.0457	VSG 11.67 12.96 12.31
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	80.7 89.4 103.8 116.0	12.01 12.13 12.31 12.56	24.01 26.14 28.63 32.54 35.73	47.16	1765.6 1723.8 1666.0 1666.6			

ML = 0) (A) .00580 MG≠ 2.048 PDI	0.00225 F= 1.03	QFLUX= 34 ALFA	21839. A=0.855	NUTP= TOUT=	56.5 HT 38.79, 3	P= 1876 8.70	.0
INLET OUTLET MEAN	TMIX Ri 20.4 0 38.1 1 29.3 0	ESL E 63.1 134 24.5 133 93.8 133	RESG 183.3 312.7 398.0	P 103.42 101.35 102.04	PRL 83.7 40.8 62.2	0 0 0	VSL .0457 .0457 .0457	VSG 17.09 19.09 18.09
27 9	RESL 67.1 72.7 79.9 88.8 103.6 116.1 120.3	18.07	25.94 28.51	37.23	1927.3 1850.5			
ML= 0 PDT=	1 (A) .00580 MG= 2.627 PD	F = 1.79	93 ALFA	4=0.883	TOUT=	39.81, 3	9.71	
INLET OUTLET MEAN	TMIX R 20.0 39.1 1 29.5	ESL 1 61.8 179 27.7 170 94.8 17	RESG 929.7 656.4 793.0	P 106.18 103.42 104.80	PRL 85.5 39.5 62.5	0 0 0	VSL).0457).0457).0457	VSG 22.03 24.88 23.45
5.1 11.4 19.1 27.9 41.9	RESL 66.0 72.0 79.7 89.3 105.3 118.7 123.2	22.46 22.71 23.01 23.38 23.99	21.55 23.54 25.93 28.71 33.09	31.80 34.89 38.48 42.08 47.36	2524.9 2287.6 2076.8 1958.7 1845.5			
G1R1.1: ML≈ 0 PDT=	2 (A) .00580 MG= 3.309 PD	0.00364 F= 2.5	QFLUX= 51 ALF	22763. A=0.890	NUTP= TOUT=	59.5 HT 34.78, 3	FP= 1966 34.78	5.8
INLET OUTLET MEAN	TMIX R 17.1 33.5 1 25.3	54.3 22 06.4 21		106.18 102.73	97.7 47.9	C	VSL).0457).0457).0457	29.81
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	62.0 67.9 75.3 87.8 98.8	VSG 27.13 27.43 27.77 28.16 28.86 29.41 29.63	18.48 20.18 22.23 24.61 28.36 31.43	29.93 33.21 36.52 41.32				

G1R1.1 ML= 0 PDT=	3 (A) .00580 MG 3.516 PI	= 0.00402 DF= 2.8	QFLUX= 27 ALF	25153. A=0.899	NUTP= 59 TOUT= 36	.6 HTP= 197 .28, 36.28	1.4
OUTLET	34.4	109.8 23	903.9	102.73	46.2	VSL 0.0457 0.0457 0.0457	33.07
19.1 27.9	RESL 58.0 62.9 69.1 76.9 90.2 101.8 105.8	30.66 31.15	22.64 25.14	34.69 38.28	2077.2 1912.9		
ML= 0 PDT=	8.453 PI	OF= 8.1	36 ALF	A=0.952	TOUT = 31	.7 HTP= 210 .35, 31.35	
INLET OUTLET MEAN	TMIX 1 16.3 29.9 23.1	RESL 52.5 49 92.1 49 72.3 49	RESG 823.0 005.1 414.1	P 117.211 108.25 112.38	PRL .01.4 55.0 78.2	VSL 0.0457 0.0457 0.0457	VSG 54.43 62.60 58.52
5.1 11.4 19.1 27.9 41.9	RESL 54.6 58.1 62.7 68.3 77.9 86.3 89.1	55.44 56.18 57.09 58.19 60.02	17.48 18.89 20.59 22.58 25.69	25.41 29.13 32.87 36.28 40.60	3351.5 2606.2 2183.3 1962.4 1813.1		
ML = 0	5 (A-M) .00580 MG: 14.334 PI	= 0.01265 DF= 14.1	QFLUX= 34 ALF/	25954. A=0.970	NUTP= 56 TOUT= 26	.6 HTP= 186 .97, 27.05	5.8
	16.1	RESL 51.8 76 80.4 75 66.1 76	797.8 762.9	131.001 116.52	.02.8 63.0	VSL 0.0457 0.0457 0.0457	88.36
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	53.1 55.7 59.1 63.2 70.1 76.2	VSG 76.26 77.51 79.04 80.86 83.91 86.56 87.45	16.94 18.05 19.38 20.94 23.38 25.37	25.16 29.68 33.32 36.12 39.18	3126.2 2217.9 1859.2 1711.2 1649.1 1663.5		

ML= 0					5. NUTP= 29.1 TOUT= 23.52,		
OUTLET	22.558423.7615	.9 .2	38.9 39.3	115.83 108.25	PRL 79.8 75.7 77.8	$0.417 \\ 0.417$	0.05 0.05
11.4 19.1 27.9 41.9 53 3	RESL 587.4 590.5 594.2 598.6 605.6 611.3 613.3	0.03 0.06 0.06 0.06 0.06 0.06	22.61 22.72 22.87 23.03 23.29 23.51	29.77 31.09 31.76 32.04 32.32 32.49	1160.3 994.9 937.7 925.2 924.1 929.0		
ML = 0	2 (B) .05116 MG= 0 6.378 PDF=	.000026 0.8	4 QFLUX 96 ALFA	K= 8493 A=0.219	3. NUTP= 38.5 TOUT= 23.41,	HTP= 23.41	1257.7
INLET OUTLET MEAN	TMIX RES 22.3 578 23.4 609 22.8 593	L .5 .1 .8	RESG 156.6 158.2 157.4	P 113.76 107.56 110.31	PRL 80.7 76.5 78.6	0.417	VSG 0.18 0.20 0.19
41.9	581.0 584 2	0.18 0.18 0.18 0.18 0.18 0.18	22.63 22.80 23.07	29.45 29.66 29.87	1238.2 1249.1		
G1R2.03 ML= 0 PDT=	.05116 MG= 0	.000045	3 QFLUX 03 ALFA	K= 8524 A=0.309	1. NUTP= 40.5 TOUT= 22.39,	HTP= 22.39	1324.1
	21.154922.3578	.1	RESG 273.0 275.5 274.2	113.07	85.2 80.7	VSL 0.417 0.417 0.417	
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	554.5 558.2 562.4 569.2 574.8	0.34	21.20 21.32 21.47 21.64 21.91 22.12	TWALL 27.32 27.68 27.93 28.17 28.37 28.56 28.65	1340.9 1318.1 1304.7 1318.1 1325.6		

. . . .

G1R2.04 ML= 0.051 PDT= 5.	16 MG= 0	.00006	67 QFLUX 103 ALFA	K= 15036 A=0.358	5. NUTP= 48.2 TOUT= 24.44,	HTP= 24.44	1575.1
TM INLET 22. OUTLET 24. MEAN 23.	IX RES 2 577 3 632 3 605	L .7 .6 .2	RESG 396.3 399.8 398.0	P 112.38 106.18 109.62	PRL 80.8 73.6 77.2	VSL 0.417 0.417 0.417	VSG 0.47 0.50 0.48
5.1 11.4 19.1 27.9 41.9	RESL 582.1 587.7 594.5 602.4 615.1 625.6 629.1	0.49 0.49 0.49 0.49 0.49	22.41 22.62 22.88 23.18 23.64	31.63 32.14 32.49 32.78 33.24	1628.2 1577.7 1563.6 1565.7 1569.0		
G1R2.05 ML= 0.051 PDT= 5.	(S) 16 MG= 0 088 PDF=	.00013	8 QFLUX= 655 ALF#	= 20063. A=0.511	. NUTP= 54.9 TOUT≃ 25.03,	HTP= 25.03	1794.2
TM INLET 21. OUTLET 24. MEAN 23.	IX RES 7 563 4 636 1 600	L .9 .5 .2	RESG 830.6 836.6 833.6	P 109.62 104.80 107.56	PRL 82.9 73.1 78.0	VSL 0.417 0.417 0.417	VSG 1.00 1.07 1.03
5.1 11.4 19.1 27.9 41.9	627.1	1.01 1.01 1.04 1.04 1.04 1.04	21.92 22.21 22.55 22.95 23.57 24.09	33.23 33.68 34.19 34.88 35.38	1883.5 1818.5 1801.2 1784.6 1776.5 1778.7		
G1R2.06 ML= 0.051 PDT= 4.	16 MG= 0	.00021	1 QFLUX= 862 ALFA	= 21378 A=0.554	. NUTP= 59.7 TOUT= 25.43,	HTP= 25.49	1954.3
TM INLET 22. OUTLET 25. MEAN 23.	3 661	.1	1266.6 1276.2	109.62 104.80	80.2 70.3	VSL 0.417 0.417 0.417	1.53 1.64
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	596.3	1.55 1.58 1.58 1.62 1.62	TBULK 22.64 22.95 23.31 23.74 24.41 24.95 25.13	33.68 34.24 34.74 35.49 35.98	1989.7 1956.1 1943.2 1929.8 1941.8		

--

PDT = 4.7	L6 MG= 0. /16 PDF=	2.0	068 ALFA	4=0.619	NUTP= 62.8 TOUT= 26.16,	26.16	
TMI INLET 23.2 OUTLET 26.1 MEAN 24.6	IX RESI 2 602 683 6 643	5 .7 .1	RESG 1670.0 1684.3 1677.1	P 108.25 103.42 105.49	PRL 77.4 67.9 72.6	VSL 0.417 0.417 0.417	VSG 2.06 2.21 2.13
5.1 11.4 19.1 27.9 41.9	RESL 609.0 617.1 627.1 638.8 657.5 673.2 678.4	2.10 2.10 2.13 2.13 2.13 2.16	23.42 23.72 24.09 24.51 25.18	33.59 34.11 34.56 35.00 35.63	2038.9 2048.7		
PDT= 4.3	L6 MG= 0. 316 PDF=	1.7	793 ALF#	4=0.637	NUTP= 63.4 TOUT= 24.78,	24.78	
TM INLET 21.9 OUTLET 24.0 MEAN 23.3	IX RESI 9 569 5 642 3 606	.4 .5 .0	RESG 2075.3 2090.8 2083.1	P 109.62 105.49 107.56	PRL 82.0 72.4 77.2	VSL 0.417 0.417 0.417	VSG 2.50 2.67 2.59
5.1 11.4 19.1 27.9 41.9 53.3	RESL 575.2 582.6 591.5 602.1 618.9 633.0 637.7	2.53 2.56 2.56 2.59 2.62 2.65	22.14 22.42 22.77 23.17 23.79 24.31	31.53 32.04 32.48 32.88 33.59 34.06	2139.7 2090.6 2071.2 2070.2 2055.6 2064.6		
G1R2.09 ML= 0.051 PDT= 4.9	16 MG= 0.	.000394	4 QFLUX= 551 ALF#	= 20555. A=0.659	NUTP= 60.9 TOUT= 25.10,	HTP= 25.10	1992.4
TM INLET 22.4 OUTLET 25.2 MEAN 23.0	IX RESI 4 582 2 658 8 620	.5	2374.7	111.00 105.49	80.1 70.6	VSL 0.41 0.41 0.41	3.03
11.4 19.1 27.9 41.9 53.3	588.5 596.2 605.5 616.4	2.90 2.93 2.96 3.02	22.65 22.94	32.84 33.38 34.08 34.89 35.53	2110.8 2073.8 2035.4 1980.2 1949.2 1929.0		

317

ML= 0 PDT=	5.509	PDF= 3	.378 ALF	A=0.693	TOUT=	66.9 HTP= 24.73, 24.81	
INLET OUTLET MEAN	TMIX 21.7 24.7 23.2	RESL 564.3 642.5 603.4	RESG 4360.6 4387.6 4374.1	P 115.83 110.31 113.07	PRL 82.8 72.4 77.6	VSL 0.417 0.417 0.417	VSG 4.96 5.33 5.15
27.9	599.3	VSG 4 5.03 3 5.06 3 5.12 1 5.15 2 5.24 3 5.30 4 5.30	23.06	33.03	2188.1		
ML= 0 PDT=	7.350 1	PDF= 5.	.378 ALF	A=0.724	TOUT=	80.5 HTP= 2 24.98, 25.00	
INLET OUTLET MEAN	TMIX 22.0 24.9 23.5	RESL 572.5 650.8 611.6	RESG 8372.8 8427.4 8400.1	P 117.90 110.31 113.76	PRL 81.6 71.4 76.5	VSL 0.417 0.417 0.417	VSG 9.40 10.27 9.84
5.1 11.4 19.1 27.9 41.9 53.3	578. 586. 596. 607. 625. 640.	VSG 9.57 9.63 9.72 9.85 4 10.03 5 10.18 5 10.21	22.27 22.58 22.94 23.37 24.03 24.58	30.14 30.73 31.22 31.88 32.44 33.01	2789.5 2691.4 2653.4 2582.6 2615.8 2611.7	1 1 5 3 7	
G1R2.12 ML= 0 PDT=	.05116 MG	G= 0.00249 PDF= 9.	9 QFLUX= .032 ALF/	26783. A=0.827	NUTP= TOUT=	98.0 HTP= 2 26.04, 26.14	3207.5
INLET OUTLET MEAN	22.6	RESL 586.7 J 682.0 J 634.4 J	4880.6	119.28 108.94	79.5 68.0	0.417	VSG 16.52 18.57 17.54
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	593.9 603.9 615.3 628.9 651.0 669.9	VSG 9 16.86 5 17.04 1 17.25 9 17.53 0 17.95 5 18.32 7 18.44	22.87 23.23 23.66 24.17 24.96 25.61	30.69 31.33 31.97 32.59 33.49 34.07	3415.1 3304.0 3222.3 3181.4 3145.3 3173.6		

ML= 0 PDT=	10.507 PD	F= 9.17	70 ALFA	A=0.814	NUTP= 102.9 TOUT= 26.9	55, 26.62	
INLET OUTLET MEAN	TMIX R 21.6 5 26.1 6 23.9 6	ESL 6 62.5 181 83.8 182 23.1 181	RESG L57.9 220.2 L89.0	P 120.66 109.62 115.14	PRL 83.1 67.8 75.5	VSL 0.417 0.417 0.417	VSG 19.90 22.47 21.19
10 1	RESL 571.6 583.6 598.3 615.8 643.9 667.7 675.7	20 82	23 04	77 72	7 187 2		
ML= 0 PDT=	12.397 PD	F= 11.23	38 ALF	A=0.835	NUTP= 116.9 TOUT= 27.4	49, 27.71	
INLET OUTLET MEAN	TMIXR22.1527.3724.76	ESL 1 73.7 219 17.9 219 45.8 219	RESG 905.5 958.0 931.8	P 124.10 111.69 117.90	PRL 81.4 64.5 72.9	VSL 0.417 0.417 0.417	VSG 23.39 26.87 25.13
5.1 11.4 19.1 27 9	RESL 584.4 598.6 616.0 636.7 670.3 698.6 708.2	23.90 24.20 24.57 25.02	22.51 23.05 23.70 24 46	32.90 33.69 34.48 35.22	3936.8 3847.3 3799.9 3810.4		
G1R2.1 ML= 0 PDT=	5 (A) .05116 MG= 28.771 PD	0.01256 F= 28.3	QFLUX= 37 ALFA	43781. A=0.941	NUTP= 127. TOUT= 25.	5 HTP= 41 18, 25.56	67.6
INLET OUTLET MEAN	20.2 5 25.0 6	26.1 754	RESG 454.4 342.3 398.4		89.0	VSL 0.417 0.417 0.417	VSG 58.87 73.04 65.96
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	547.0 561.9 579.7 608.5 632.9	60.23 61.48 63.03 64.92 68.15		29.38 30.41 31.61			

G1R2.16 ML= 0. PDT=	5 (A-M) 05116 MG= 36.659 PDF	0.01659 = 36.5	QFLUX= 542 ALFA	46913. A=0.985	NUTP= 128.3 TOUT= 25.18,	HTP= 4 , 24.93	196.0
INLET OUTLET MEAN	20.4 53	1.8 99	9553.0	P 193.74 157.20 175.12	88.0	VSL 0.417 0.417 0.417	VSG 67.32 85.27 76.30
53.3	553.2 568.6	68.92 70.47 72.42 74.86 78.94 82.63	20.81 21.32 21.93 22.64 23.77 24.69	30.78 32.34 34.07 36.19 37.71	5486.0 4938.8 4500.8 4108.7 3787.5 3617.7		
G1R3.01 ML= 0. PDT=	.12701 MG=	0.000006 = 1.6	53 QFLUX 555 ALFA	K= 7487 A=0.020	. NUTP= 35. TOUT= 21.99	0 HTP= , 21.99	1144.1
INLET OUTLET MEAN	21.513821.9141	7.4	39.8 40.2	P 119.28 111.00 115.14	83.5 82.0	VSL 1.03 1.03 1.03	VSG 0.04 0.05 0.05
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	1389.6 1392.3 1395.5 1399.3 1405.3 1410.1	VSG 0.03 0.03 0.06 0.06 0.06 0.06	TBULK 21.56 21.60 21.65 21.71 21.81 21.88 21.91	26.67 27.66 28.18 28.51 28.71 28.71	1462.8 1234.8 1146.6 1101.7 1086.4 1098.1		
G1R3.02 ML= 0 PDT=	2 (B) .12701 MG= 8.294 PDF	0.00002	65 QFLU 206 ALF	X= 8713 A=0.137	. NUTP= 38. TOUT= 22.49	7 HTP= , 22.49	1266.2
INLET OUTLET MEAN	22.5 144	SL 5.6 6.3 0.9	159.8	р 118.59 110.31 114.45	81.8 80.0	VSL 1.03 1.03 1.03	
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	1421.3 1425.1 1429.6 1436.6		TBULK 22.01 22.06 22.12 22.19 22.30 22.39 22.42	27.46 28.48 28.99 29.31 29.50	HTP 1595.8 1356.1 1267.1 1224.5 1210.6 1213.2 1215.7		

G1R3.03 ML= 0.127 PDT= 8.	01 MG = 0.	0000453 2.34	QFLUX 4 ALFA	= 9896. =0.193	NUTP= 42.1 TOUT= 23.18,	HTP= 23.18	1376.3
TM INLET 22. OUTLET 23. MEAN 22.	IX RESL 7 1459. 2 1495. 9 1477.	6 2 4 2 5 2	ESG 72.3 75.4 73.8	P 117.90 7 109.62 7 113.76 7	PRL 79.3 77.3 78.3	VSL 1.03 1.03 1.03	0.31 0.34
19.1	RESL 1462.6 1466.3 1470.7 1475.9 1484.1 1490.9 1493.1	0.30	22.82	30.03	1374.2		
PDT = 7.	01 MG= 0. 825 PDF=	2.75	8 ALFA	=0.279	. NUTP= 50.4 TOUT= 23.77,	HTP= 23.72	1648.3
TM INLET 23. OUTLET 23. MEAN 23.	IX RESI 0 1483. 7 1527. 4 1505.	8 4 3 4 6 4	ESG 82.5 88.0 85.2	P 117.21 109.62 113.76	PRL 77.9 75.6 76.8	VSL 1.03 1.03 1.03	VSG 0.55 0.59 0.57
5.1 11.4 19.1 27.9 41.9 53.3	RESL 1487.4 1491.9 1497.3 1503.7 1513.6 1521.9 1524.6	0.55 0.55 0.58 0.58 0.58 0.58 0.58	23.08 23.15 23.23 23.32 23.47 23.59	28.66 29.87 30.44 30.81 30.99 31.13	2123.2 1762.8 1644.1 1586.2 1579.0 1577.2		
G1R3.05 ML= 0.127 PDT= 7.	MG = 0	.000168 3.79	QFLUX= 2 ALF	= 11980. A=0.404	NUTP= 58.8 TOUT= 23.23,	HTP= 23.26	1922.6
INLET 22. OUTLET 23.	IIX RESI 5 1449 2 1492 8 1471	.7 10 .8 10	07.3		79.8 77.5	VSL 1.03 1.03 1.03	1.23
27.9 41.9	1453.2 1457.7 1463.0 1469.3	1.16 1.16 1.16 1.19 1.19	22.62 22.71 22.81 22.96	28.54 29.07 29.32	2022.7 1884.6 1838.4 1856.0 1906.7		

				. NUTP= 69.0 TOUT= 22.51,		2253.6
OUTLET 22.4	1442.0	1555.3	109.62	PRL 83.0 80.3 81.7	1.03	1.87
Z RESL 5.1 1399 11.4 1404 19.1 1409 27.9 1416 41.9 1427 53.3 1436 57.2 1439	.2 1.77 .9 1.77	21.79 21.88	27.08 27.53 27.74	2269.5		
PDT= 8.563	PDF= 5	.033 ALF	A=0.495	. NUTP= 69.6 TOUT= 21.87,	21.87	
TMIX INLET 20.7 OUTLET 21.7 MEAN 21.2	RESL 1334.8 1399.8 1367.3	RESG 1949.0 1966.2 1957.6	P 118.59 110.31 114.45	PRL 86.9 82.8 84.9	VSL 1.03 1.03 1.03	VSG 2.15 2.36 2.26
Z RESL 5.1 1340 11.4 1346 19.1 1354 27.9 1364 41.9 1379 53.3 1391 57.2 1395	.2 2.29 .5 2.35	20.75 20.86 20.99 21.15 21.39 21.59	28.46 29.14 29.48 29.69 29.93 30.12	2246.5 2248.2		
G1R3.08 (S-C) ML= 0.12701 M PDT= 8.880	G= 0.0003	38 QFLUX .067 ALF	= 22015 A=0.599	. NUTP= 75.7 TOUT= 22.71,	HTP= 22.71	2473.9
INLET 21.4 OUTLET 22.6		2342.5	119.28 110.31	84.1 79.5	VSL 1.03 1.03 1.03	VSG 2.56 2.81 2.69
11.4 1392 19.1 1402 27.9 1413	.8 2.59 .7 2.62 .2 2.65 .3 2.68 .9 2.74 .5 2.77	21.48 21.61 21.76 21.93 22.21 22.44	29.67 30.30 30.63 30.93 31.27 31.44	2531.6 2480.4 2448.2 2430.4 2445.6		

ML = 0	9 (C) .12701 11.459	MG= 0.00080 PDF= 9	00 QFLUX: .032 ALF	= 22056 A=0.651	. NUTP= 92.3 TOUT= 23.43,	HTP= 3019.0 23.43
INLET OUTLET MEAN	TMIX 22.1 23.3 22.7	RESL 1424.0 1502.3 1463.1	RESG 4780.0 4824.6 4802.3	P 124.79 113.76 119.28	PRL 81.3 76.9 79.1	VSL VSG 1.03 5.06 1.03 5.66 1.03 5.36
41.9 53.3	1430 1438 1448 1459 1477 1492	VSG .3 5.15 .3 5.21 .0 5.27 .4 5.33 .4 5.49 .3 5.58 .3 5.61	22.20 22.33 22.48 22.65 22.93 23.16	29.12 29.56 29.83 30.03 30.27 30.50	3047.9 3000.8 2991.1 3006.0 3006.0	
ML= 0		MG= 0.00154			NUTP= 105.3 TOUT= 22.56,	
INLET	21.1	1358.3	9223.0	133.76	PRL 85.4 80.1 82.7	1.03 9.09
5.1 11.4 19.1 27.9 41.9	1365 1374 1384 1397 1417 1433	L VSG .2 9.27 .1 9.42 .7 9.57 .3 9.78 .1 10.12 .6 10.39 .1 10.52	21.17 21.31 21.48 21.68 21.99 22.26	28.33 28.67 28.94 29.18 29.39 29.59	3470.5	
ML= 0		MG= 0.00230			NUTP= 119.3 TOUT= 23.62,	
OUTLET	22.1 23.6	RESL 1423.5 1522.3 1472.9	13730.5 13841.0	141.34 119.97	PRL 81.4 75.9 78.6	VSL VSG 1.03 12.85 1.03 15.44 1.03 14.15
11.4 19.1 27.9 41.9 53.3	1431 1441 1453 1468 1490 1509	L VSG .3 13.14 .5 13.38 .7 13.66 .0 13.99 .8 14.57 .6 15.09 .0 15.27	22.22 22.38 22.57 22.79 23.13 23.42	29.26 29.59 29.86 30.11 30.42 30.69	3927.9 3882.2 3868.8 3892.9 3900.7	

ML = 0	2 (A) .12701 1 22.911	MG= 0.0030 PDF= 23	06 QFLUX= 1.511 ALF	32113. A=0.804	NUTP= 126.4 TOUT= 24.4	HTP= 4 2, 24.49	137.0
INLET OUTLET MEAN	TMIX 22.7 24.4 23.5	RESL 1462.0 1575.8 1518.9	RESG 18260.3 18396.6 18328.4	P 148.92 126.17 137.89	PRL 79.1 73.2 76.2	VSL 1.03 1.03 1.03	VSG 16.25 19.54 17.90
27.9	1471 1482 1496 1513	.7 17.28 .2 17.72	TBULK 22.83 23.01 32.22 123.47 423.86 24.18 22.4.29	31.07 31.27	4261.1 4180.3 4091.0 4119.8		
ML= 0 PDT=	25.441	PDF= 24	1.131 ALF.	A=0.813	NUTP= 120.6 TOUT= 20.8	1, 21.04	
INLET OUTLET MEAN	TMIX 18.7 20.7 19.7	RESL 1223.0 1338.0 1280.5	RESG 21886.4 21977.1 21931.7	P 151.68 126.17 139.27	PRL 95.2 86.7 90.9	VSL 1.03 1.03 1.03	VSG 18.69 22.82 20.75
5.1 11.4 19.1 27.9 41.9 53.3	1232 1243 1257 1274 1301 1323	.0 21.40 .1 22.22	L 18.91	28.49 28.88 29.18 29.61 30.01	4085.9 3969.3 3913.4 3907.5 3922.0 3911.7		
ML = 0	4 (A) .12701 1 32.874	MG= 0.0063 PDF= 31	34 QFLUX= 1.784 ALF.	43661. A=0.848	NUTP= 133.9 TOUT= 22.7	HTP= 4 7, 23.00	370.3
	19.5 21.8	1266.7		167.54 134.45	91.8 82.6	VSL 1.03 1.03 1.03	
2 5.1 11.4 19.1 27.9 41.9 53.3 57.2	1277 1290 1307 1327 1358 1384	.3 32.95 .7 34.72 .9 36.36	5 19.70 3 19.94 8 20.22 5 20.55 2 21.07 5 21.49	29.72 30.19 30.61	4580.2 4460.3 4378.3 4340.6 4335.1 4314.4		

PDT= 42	2701 MG= 2.574 PDF	'= 41.7	13 ALF	A=0.878	NUTP= 147.7 TOUT= 22.22	, 22.37	
INLET 20 OUTLET 22 MEAN 22	FMIX RE 0.1 130 2.3 143 1.2 136	SL 0.1 77 5.3 77 7.7 77	RESG 073.9 212.6 143.3	P 213.73 170.99 192.36	PRL 89.3 80.6 85.0	VSL 1.03 1.03 1.03	VSG 47.09 59.70 53.40
5.1 11.4 19.1 27.9 41.9	RESL 1310.3 1324.1 1340.7 1360.3 1391.7 1417.7 1426.5	48.19 49.26 50.63 52.33 55.23	20.27 20.50 20.78 21.10 21.61	28.77 29.32 29.83 30.41 31.13	5245.8 5057.3 4928.7 4797.5 4693.5		
G1R3.16 ML= 0.12 PDT= 53	2701 MG=	0.01675 `= 53.1	QFLUX= 58 ALF.	44872. A=0.934	NUTP= 152.8 TOUT= 22.63	HTP= 4 , 22.63	992.1
INLET 20 OUTLET 22 MEAN 23	TMIX RE 0.6 133 2.8 146 1.7 140	SL 3.1 100 6.9 100 0.0 100	RESG 457.1 600.9 529.0	P 243.38 189.60 216.49	PRL 87.1 78.8 82.9	VSL 1.03 1.03 1.03	VSG 54.07 70.35 62.21
5.1 11.4 19.1 27.9 41.9 53.3	RESL 1343.1 1356.7 1373.2 1392.7 1423.7 1449.5 1458.1	55.38 56.78 58.52 60.69 64.44 67.88	20.82 21.04 21.31 21.62 22.12 22.52	28.83 29.43 30.02 30.63 31.49 32.10	5591.4 5342.3 5149.8 4979.4 4793.4 4690.2		
G1R4.01 ML= 0.33 PDT= 1	2949 MG=	0.000006 '= 8.9	3 QFLU 63 ALF	X= 18190 A=0.020	5. NUTP= 79.0 TOUT= 22.51	6 HTP= , 22.51	2601.6
INLET 2: OUTLET 2:	TMIX RE 2.1 369 2.5 375 2.3 372	4.5	36.2 36.6	P 132.38 116.52 124.10	81.3	VSL 2.67 2.67 2.67	
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2		0.03 0.03 0.03 0.03	22.13 22.17 22.22 22.27 22.36 22.43	TWALL 28.46 28.94 29.27 29.41 29.45 29.52 29.52	2552.0 2568.6 2568.4		

G1R4.02 ML= 0.32 PDT= 16	949 MG= 0	.0000252 QF 9.584 A	LUX= 1816 LFA=0.061	1. NUTP= 82.3 TOUT= 23.01,	HTP= 23.01	2690.2
INLET 22 OUTLET 23	MIX RES .6 3775 .0 3841 .8 3808	L RESG .9 152.5 .3 154.2 .6 153.3	P 133.07 116.52 124.79		VSL 2.67 2.67 2.67	
27.9 41.9	RESL 3781.3 3788.1 3796.2 3805.8 3820.8 3833.1 3837.2	0.15 22.6 0.15 22.6 0.15 22.7 0.15 22.7 0.15 22.7 0.15 22.8	2 28.76 5 29.22 1 29.46 5 29.63 5 29.72	2954.5 2766.1 2689.2 2643.4 2642.9		
G1R4.03 ML= 0.32 PDT= 15	949 MG = 0	.0000466 QF 9.584 A	UX= 2220 JFA=0.089	1. NUTP= 75.5 TOUT≈ 21.14,	HTP= 21.16	2463.1
INLET 20 OUTLET 21		L RESG .5 280.3 .9 282.9 .7 281.6		07 0	VSL 2.67 2.67 2.67	0.32
5.1 11.4 19.1 27.9 41.9	3458.7 3466.4 3475.6 3486.5 3503.6 3517.6	VSG TBUL 0.27 20.6 0.27 20.6 0.30 20.7 0.30 20.8 0.30 20.9 0.30 21.0	K TWALL 3 28.72 3 29.42 4 29.63 1 30.02 2 30.13 1 30.21	HTP 2742.5 2541.2 2498.1 2411.7 2410.1 2412.8		
G1R4.04 ML= 0.32 PDT= 15	949 MG= 0	.0000882 QF1 9.584 AJ	JUX= 2228 JFA=0.147	0. NUTP= 77.0 TOUT= 21.74,	HTP= 21.74	2515.9
INLET 21 OUTLET 21	MIX RES .1 3540 .6 3616 .4 3578	.0 529.2 .2 534.2		85.0	VSL 2.67 2.67 2.67	
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	RESL 3546.3 3554.2 3563.7 3574.8 3592.3 3606.6 3611.4	0.55 21.2 0.55 21.3 0.58 21.4 0.58 21.5	3 29.11 3 29.77 9 30.15 5 30.41 7 30.50 5 30.58	2810.8 2609.1 2516.5 2464.8 2468.8 2470.1		

-- --

ML= 0.		MG = 0.				. NUTP= 81.1 TOUT= 22.54,		
INLET OUTLET MEAN	TMIX 22.0 22.5 22.3	RESI 3683. 3762. 3722.	5 1 8	RESG 996.2 1006.3 1001.2	P 134.45 118.59 126.86	PRL 81.6 79.8 80.7	VSL 2.67 2.67 2.67	VSG 0.98 1.12 1.05
19 1	3707	9	1.04	22.18	30.57	HTP 2945.4 2746.7 2654.7 2612.3 2592.7 2595.8 2599.3		
ML= 0. PDT=	16.761	MG= 0. PDF=	11.	.859 ALF	A=0.306	. NUTP= 74.4 TOUT= 18.96,	18.96	
INLET OUTLET MEAN	TMIX 18.4 18.9 18.7	RESI 3126. 3194. 3160.	0 3 1	RESG 1462.6 1473.8 1468.2	P 136.51 119.97 128.24	PRL 96.7 94.5 95.6	VSL 2.66 2.66 2.66	VSG 1.38 1.59 1.49
5.1 11.4 19.1 27.9 41.9	3131 3138 3147 3157 3172	.6 .7 .2 .1 .8	1.40 1.43 1.46 1.49 1.52	18.74	26.51 27.27 27.74 28.03 28.18	HTP 2761.6 2538.8 2427.8 2371.4 2361.3 2373.0 2363.9		
ML = 0	7 (S-F .32949 19.339	MG = 0	.00033 14.	37 QFLUX 823 ALF	= 22400 A=0.359	. NUTP= 91.8 TOUT= 20.17,	HTP= 20.17	2993.4
INLET OUTLET MEAN	19.6	3302. 3374.	.6 .7	RESG 2034.5 2051.0 2042.7	142.72 123.41	91.3 89.3	VSL 2.67 2.67 2.67	VSG 1.86 2.17 2.01
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	3316 3325 3335	.6 .0 .5 .0	VSG 1.89 1.92 1.95 2.01 2.07 2.13 2.16	19.66 19.71 19.77 19.83 19.94 20.03	27.28 27.44 27.51 27.52	3039.5 2981.1 2944.8 2963.8 2993.1		

ML = 0	3 (S-F) 32949 1 21.856	1G= 0.00046	51 QFLUX: 512 ALF/	= 25383. A=0.383	. NUTP= 102.5 TOUT= 19.87,	HTP= 3340.3 19.87
OUTLET	19.8	3328.3	2796.2	127.55	PRL 92.9 90.6 91.8	VSL VSG 2.67 2.42 2.67 2.87 2.67 2.64
11.4 19 1	3254 3262 3272	VSG 4 2.47 7 2.50 7 2.56 4 2.62 9 2.71 1 2.80 2 2.83	19.29 19.35 19.42	26.48 26.85 27.03	3384.5 3334.4	
ML= 0. PDT=	25.758	4G= 0.00076 PDF= 22	.063 ALFA	A=0.474	. NUTP= 115.4 TOUT= 20.86,	20.86
INLET OUTLET MEAN	TMIX 20.2 20.8 20.5	RESL 3396.4 3480.1 3438.3	RESG 4574.3 4608.7 4591.5	P 159.27 133.76 146.86	PRL 88.7 86.5 87.6	VSL VSG 2.67 3.75 2.67 4.52 2.67 4.14
5.1 11.4 19.1 27.9 41.9	3403 3411 3422 3434 3453	VSG .3 3.84 .9 3.90 .4 3.99 .5 4.08 .8 4.27 .6 4.42 .8 4.48	20.28 20.33 20.40 20.48 20.60	26.76 27.01 27.17 27.33 27.41	3929.8 3811.2 3761.3 3717.5 3741.2	
G1R4.10 ML= 0 PDT=) (A-F) .32949 1 33.804	G= 0.00148	3 QFLUX= .026 ALF	28565. A=0.606	NUTP= 125.7 TOUT= 19.97,	HTP= 4098.3 19.97
	19.3	3248.4	RESG 8938.0 8992.7 8965.3	180.64	92.9	VSL VSG 2.67 6.43 2.67 8.00 2.67 7.21
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	3255 3265 3276 3289 3310 3327	.3 7.10 .0 7.44 .0 7.77	19.31 19.37 19.44 19.53 19.67 19.78	26.08 26.34 26.47 26.59 26.63 26.63	HTP 4212.0 4096.9 4062.9 4043.3 4105.2 4145.7 4161.1	

ML= 0	1 (A-F .32949) 39.810	MG= 0.00	223 QFLUX 37.507 AL	= 28565. FA=0.670	NUTP= 134.2 TOUT= 20.3	HTP= 4 6, 20.36	377.7
OUTLET	20.4	3414.6	13470.4	161.33	PRL 90.7 88.2 89.5	2.67	10.92
19.1 27 9	3351 3364	.5 9.3	33 19.94 50 20.03	26.54 26.67	HTP 4514.0 4392.7 4324.3 4301.8 4376.7 4453.4 4479.4		
ML= 0 PDT=	43.498	PDF= 4	11.368 AL	FA=0.702	NUTP= 142.8 TOUT= 21.1	4, 21.21	
INLET OUTLET MEAN	TMIX 20.4 21.1 20.8	RESL 3425.6 3536.7 3481.2	RESG 17941.8 18034.5 17988.1	P 215.80 172.37 193.74	PRL 87.9 85.1 86.5	VSL 2.67 2.67 2.67	VSG 10.90 13.78 12.34
5.1 11.4 19.1 27.9 41.9 53.3	3434 3446 3459 3476 3501 3522	.6 11.3 .1 11.4 .9 11.5 .1 12.5 .6 12.5 .7 13.5	TBULK 20.48 20.55 70 20.64 10 20.74 10 20.74 77 20.91 35 21.04 56 21.08	27.62 27.84 28.03 28.14 28.18 28.13	4750.9 4652.1 4591.9 4584.1 4660.9 4779.3		
G1R4.13 ML= 0 PDT=	.32949 1	MG= 0.003 PDF= 4	360 QFLUX 12.816 AL	= 35840. FA=0.710	NUTP= 148.6 TOUT= 21.5	HTP= 4 0, 21.62	854.1
	20.9	3505.1	RESG 21578.5 21687.3 21632.9	224.08	85.9	VSL 2.67 2.67 2.67	VSG 12.63 15.95 14.29
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	3514 3527 3541 3559 3586 3609	VSG .7 12.9 .0 13.2 .9 13.5 .2 14.0 .7 14.7 .3 15.4 .8 15.7	22 20.99 20 21.07 56 21.16 52 21.27 78 21.44 15 21.58	28.44 28.68 28.80 28.81 28.78	HTP 4989.3 4862.4 4767.5 4759.4 4861.9 4975.5 4996.4		

· _ · _ ___

G1R4.14 ML= 0.32 PDT= 58	2949 MG=	0.00553 = 56.4	QFLUX= 67 ALF	41362. A=0.746	NUTP= 154.6 TOUT= 19.97,	HTP= 5 20.24	043.2
INLET 19 OUTLET 20 MEAN 19	CMIX RE 9.4 327 9.3 340 9.8 333	SL 1.9 33 0.9 33 6.4 33	RESG 283.6 415.1 349.3	P 243.38 185.47 214.42	PRL 92.2 88.6 90.4	VSL 2.67 2.67 2.67	VSG 17.79 23.59 20.69
19 1	RESL 3282.3 3295.6 3311.6 3330.4 3360.1 3384.5 3392.7	19.32	19.68	27.93	5010.6		
PDT= 61	2949 MG= .052 PDF	= 59.3	63 ALF	A=0.766	NUTP= 163.7 TOUT= 19.32,	19.82	
INLET 19 OUTLET 20 MEAN 19	CMIX RE 0.1 322 0.0 335 0.5 329	SL 6.9 46 4.1 46 0.5 46	RESG 042.5 182.6 112.6	P 274.41 213.04 243.38	PRL 93.5 89.9 91.7	VSL 2.67 2.67 2.67	VSG 21.82 28.30 25.06
5.1 11.4 19.1 27.9 41.9 53.3	RESL 3237.1 3250.2 3266.0 3284.5 3313.8 3338.0 3346.0	22.31 22.86 23.56 24.45 25.94 27.31	19.18 19.27 19.37 19.50 19.69 19.85	26.78 27.03 27.22 27.38 27.48 27.53	5461.2 5349.5 5293.8 5268.5 5335.5 5410.1		
G1R4.16 ML= 0.32 PDT= 76	949 MG=	0.00981 = 75.0	QFLUX= 83 ALF	44677. A=0.769	NUTP= 174.0 TOUT= 20.63,	HTP= 5 21.07	679.7
INLET 20 OUTLET 21	MIX RE 0.4 341 3 356 0.8 349	9.4 58 1.1 59	883.6 075.1	292.33 215.80	88.1 84.5	2.67	VSG 26.35 36.04 31.20
11.4 19.1	RESL 3430.7 3445.3 3462.9 3483.6 3516.2 3543.1 3552.1	27.07 27.86 28.86	20.46 20.55 20.66 20.79 21.00 21.17	28.37 28.61 28.81 28.87 28.93	5866.6 5710.1 5626.4		

G1R5.01 ML= 0. PDT=	.74742	MG = 0	.00000 36.	63 QFLUX 748 ALFA	K= 43261 A=0.011	NUTP= 167.0 TOUT= 21.45,	HTP= 21.45	5436.1
INLET OUTLET MEAN	21.4	7782 7927	.7 .3	41 5	184.78 141.34	87.8 86.2	VSL 6.04 6.05 6.04	0.04
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	779 780 782	94.7 99.7 27.7	0.03	21.02 21.07 21.13	TWALL 28.62 28.96 29.09 29.16 29.19 29.25 29.29	5450.7 5397.3		
G1R5.02 ML= 0. PDT=	74742	MG = 0	. 00003 37 . 9	65 QFLUX 921 ALF/	K= 43441 A=0.039	. NUTP= 166.0 TOUT= 21.11,	HTP= 21.11	5403.1
	20.6	RESI 7658 7801 7730	. 6	RESG 216.7 218.3 217.5	186.16 141.34	89.2 87.6	VSL 6.04 6.04 6.04	VSG 0.15 0.20 0.18
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	763 768 770 772 772 775	SL 70.4 35.3 03.1 23.9 56.8 33.8 92.8	0.15 0.15 0.15 0.18 0.18	20.63 20.67 20.72 20.78 20.87 20.95	28.79	5510.8 5418.7 5381.6 5370.6 5402.6 5414.1		
G1R5.03 ML= 0 PDT=	74742	MG = 0	.00006	68 QFLUX 886 ALFA	X= 43683 A=0.046	8. NUTP= 168.0 TOUT= 21.38,	HTP= 21.38	5469.6
INLET OUTLET MEAN	21.3	RESI 7760 7905 7833	.3 .9	RESG 403.3 406.3 404.8	188.91 143.41	88.1 86.4	VSL 6.04 6.05 6.04	VSG 0.28 0.37 0.33
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	777 778 780 780 780 780	SL 72.4 87.5 05.6 26.8 60.2 87.6 96.8	0.34	20.92 20.96 21.01 21.07 21.17 21.24	28.90 29.03 29.12 29.16	5580.8 5502.7 5445.0 5432.4 5462.9 5481.9		

ML = 0	4 (B) .74742 N 46.856	1G= 0.00012 PDF= 40	22 QFLUX 403 ALF	= 43510 A=0.079	. NUTP= 172.7 TOUT= 22.05,	HTP= 22.05	5622.9
OUTLET	21.5 21.9	7987.8	727.7 733.2	195.81 148.92	PRL 85.5 83.9 84.7	6.05 6.05	0.49
5.1 11.4 19.1 27.9 41.9 53 3	8000. 8015. 8034. 8055. 8089. 8117.	VSG 1 0.52 5 0.52 0 0.55 6 0.55 7 0.58 6 0.64 0 0.64	21.56 21.60 21.65 21.71 21.80 21.88	29.30 29.42 29.50 29.55 29.58	5728.1 5649.7 5600.2 5584.0 5615.2 5647.5		
ML= 0. PDT=	49.193	4G= 0.00019 PDF= 42	.954 ALF	A=0.112	. NUTP= 160.2 TOUT= 19.77,	19.77	
INLET OUTLET MEAN	19.4	7255.1	1174.7	P 202.70 153.75 178.57	PRL 95.2 93.4 94.3	VSL 6.04 6.04 6.04	VSG 0.75 1.00 0.87
27.9	7229. 7249.	VSG 4 0.76 4 0.79 4 0.82 1 0.85 3 0.91 9 0.98 5 0.98	19.33 19.39	27.61 27.73 27.84	5346.5 5237.8 5197.3 5164.0		
G1R5.00 ML= 0 PDT=	5 (B-F) .74742 M 50.200	$MG = 0.0002^{\circ}$	70 QFLUX 195 ALF	= 44652 A=0.144	. NUTP= 178.7 TOUT= 22.68,	HTP= 22.68	5819.3
INLET OUTLET MEAN	TMIX 22.2 22.6 22.4	RESL 8225.0 8380.9 8302.9	RESG 1616.9 1628.7 1622.8	P 209.60 159.27 184.09	81.4	VSL 6.05 6.05 6.05	VSG 1.02 1.36 1.19
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	8331	.91.04.01.07.51.10.21.16.91.22.31.31	TBULK 22.21 22.25 22.30 22.36 22.46 22.54 22.56	29.71 29.87 30.01 30.09 30.14	HTP 5950.4 5859.6 5791.6 5780.8 5814.3 5828.0 5805.6		

ML = 0	7 (F) .74742 MG 52.048 F	S= 0.00034 PDF= 46.	15 QFLUX: 263 ALFI	= 44828. A=0.183	NUTP= TOUT=	173.7 22.20,	HTP= 22.20	5654.7
INLET OUTLET MEAN	TMIX 21.6 8 22.0 9 21.8 8	RESL 3022.4 3175.7 3099.1	RESG 2066.3 2080.2 2073.3	P 215.80 164.09 190.29	PRL 85.1 83.5 84.3		VSL 6.05 6.05 6.05	VSG 1.26 1.68 1.47
27.9	RESL 8035.1 8050.9 8070.0 8092.4 8127.6 8156.4 8166.1	1.43	21.65 21.69 21.75 21.81	29.36 29.56 29.69 29.79	5811.4 5704.0 5642.8 5613.8			
ML= 0 PDT=	3 (F) .74742 MG 54.364 P	PDF= 48.	883 ALF	A=0.220	TOUT=	20.58,	20.58	
INLET OUTLET MEAN	TMIX 20.0 7 20.4 7 20.2 7	RESL 457.6 7602.2 7529.9	RESG 2756.9 2772.8 2764.8	P 224.08 169.61 197.19	PRL 91.7 89.9 90.8		VSL 6.04 6.04 6.04	VSG 1.61 2.14 1.87
5.1 11.4 19.1 27.9 41.9 53.3	RESL 7469.6 7484.6 7502.6 7523.6 7556.8 7556.8 7584.0 7593.1	5 1.65 5 1.71 5 1.74 5 1.83 8 1.95 9 2.04	20.04 20.09 20.14 20.21 20.30 20.38	28.11 28.32 28.52 28.63 28.72 28.77	5576.1 5466.5 5369.0 5339.5 5339.7 5358.3			
ML = 0	9 (F) .74742 MG 56.860 F	S= 0.00068 PDF= 51.	4 QFLUX= 848 ALF/	= 45036. A=0.288	NUTP= TOUT=	157.8 19.62,	HTP= 19.62	5132.9
INLET OUTLET MEAN		267.7	4124.0 4144.5	237.18 179.95	96.0 94.1		VSL 6.04 6.04 6.04	2.26 2.99
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	7154.5 7171.8 7192.0 7224.0 7250.2	2.32 2.38 2.47 2.56 2.71 2.87	19.06 19.11 19.16 19.22 19.32 19.39	27.41 27.70 27.91 28.06 28.19 28.28	HTP 5391.1 5238.5 5147.2 5098.3 5076.9 5072.4 5067.5	5 2 3 9		

G1R5.10 (F) ML= 0.74742 MG= PDT= 63.789 PD	0.00147 QFLUX= F= 59.639 ALF	43617. NUTP= 158 A=0.415 TOUT= 19	.3 HTP= 5151.0 .65, 19.67
OUTLET 19.5 72	70.8 8898.6	P PRL 268.20 95.9 204.77 94.1 236.49 95.0	VSL VSG 6.04 4.29 6.04 5.66 6.04 4.98
11.4 7161.4 19.1 7178.2 27.9 7197.7 41.9 7228.6 53.3 7253.9	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	TWALLHTP27.085453.827.415268.527.635162.227.795098.727.915086.227.955105.628.015088.6	
PDT= 72.380 PD	F= 68.326 ALF	43595. NUTP= 165 A=0.422 TOUT= 19	.55, 19.55
TMIX R INLET 19.0 71 OUTLET 19.4 72 MEAN 19.2 71	ESL RESG 23.9 12731.3 57.7 12779.1 90.8 12755.2	P PRL 298.54 96.1 226.14 94.3 262.69 95.2	VSL VSG 6.04 5.53 6.04 7.35 6.04 6.44
27.9 7184.9 41.9 7215.6 53.3 7240.9	VSG TBULK 5.67 19.04 5.82 19.09 6.00 19.14 6.25 19.20 6.68 19.29 7.07 19.37 7.19 19.39	27.36 5344.7 27.41 5370.0 27.45 5395.5	
G1R5.12 (F) ML= 0.74742 MG= PDT= 78.613 PD	0.00271 QFLUX= F= 74.738 ALF	43605. NUTP= 168 A=0.453 TOUT= 19	.5 HTP= 5482.1 .85, 19.85
INLET 19.3 72 OUTLET 19.7 73	ESL RESG 23.5 16298.6 58.7 16355.3 91.1 16326.9	P PRL 322.67 94.7 244.07 92.9 283.37 93.8	VSL VSG 6.04 6.57 6.04 8.73 6.04 7.65
Z RESL 5.1 7234.6 11.4 7248.6 19.1 7265.5 27.9 7285.2 41.9 7316.2 53.3 7341.7 57.2 7350.2	7.13 19.44 7.44 19.50 7.92 19.59		

ML = 0	3 (F) .74742 83.322	MG= 0.003 PDF= 7	32 QFLUX= 9.633 ALF	44292. A=0.477	NUTP= 171 TOUT= 19	.8 HTP= 5 .27, 19.27	589.9
OUTLET	18.7 19.1	7031.8 7165.8	20026.0 20086.1	346.11 262.69	PRL 97.4 95.5 96.4	6.04 6.04	7.50 9.93
11.4 19.1 27.9 41.9 53.3	7042 7056 7073 7092 7123 7148	.6 7.8 .3 8.1 .9 8.4 .6 9.0	TBULK 8 18.76 9 18.81 4 18.86 7 18.92 2 19.01 4 19.09 2 19.11	26.70 26.88 27.01 26.94 26.85	5777.9 5611.2 5519.1 5479.5 5587.6 5706.3		
ML= 0	4 (F) .74742 83.508	MG= 0.003 PDF= 7	49 QFLUX= 9.840 ALF	44453. A=0.485	NUTP= 177 TOUT= 20	.7 HTP= 5 .81, 20.80	783.0
INLET OUTLET	20.3 20.7	7542.8 7685.7	20981.8 21051.8	348.18 264.75	PRL 90.6 88.9 89.8	6.04 6.04	7.88 10.42
5.1 11.4 19.1 27.9 41.9	7554 7569 7587 7607 7640 7667	.5 8.0 .3 8.2 .1 8.5 .9 8.9 .7 9.4	920.34320.39020.45820.54320.62	27.69 27.99 28.16 28.27 28.24	6003.5 5804.3 5724.7 5681.9 5776.6 5870.4		

ML = 0	1 (S) .00630 MG 4.868 P	= 0.000007 DF= -0.4	56 QFLU 14 ALF	JX= 249 A=0.282	53 NUTP= 6 TOUT= 22.83	.5 HTP= , 23.01	177.7
INLET OUTLET MEAN	TMIX 20.2 23.3 21.8	RESL 9.1 11.3 10.2	RESG 42.2 42.2 42.2	P 113.07 108.25 110.31	PRL 653.2 528.5 590.9	VSL 0.0487 0.0487 0.0487	VSG 0.05 0.05 0.05
5.1 11.4 19.1 27.9	RESL 9.3 9.5 9.7 10.0 10.5 11.0 11.1	0.06 0.06 0.06 0.06	20.47 20.80 21.19 21.65	34.62 36.23 37.28 37.68	173.3 159.3 152.9 153.5		
G2R1.03 ML= 0 PDT=	2 (S) .00630 MG 2.606 P	= 0.000026 DF= -2.2	54 QFLUX 206 ALFA	X= 244 A=0.345	7 NUTP= 8. TOUT= 22.83	2 HTP= , 23.38	226.6
INLET OUTLET MEAN	TMIX 19.8 22.9 21.3	RESL 8.8 10.9 9.9	RESG 155.8 155.7 155.7	P 104.11 102.04 103.42	PRL 673.7 545.8 609.8	VSL 0.0487 0.0487 0.0487	VSG 0.20 0.20 0.20
5.1 11.4 19.1 27.9	RESL 9.0 9.2 9.4 9.7 10.2 10.6 10.7	0.18 0.18 0.18 0.21	20.01 20.34 20.73 21.18	33.82 34.09 34.22 33.98	HTP 177.5 178.2 181.7 191.5 230.1 336.0 434.6		
G2R1.0 ML= 0 PDT=	3 (S) .00630 MG 1.979 P	= 0.000049 DF= -2.2	53 QFLU 275 ALF	X= 246 A=0.427	9 NUTP= 8. TOUT= 22.61	8 HTP= , 23.70	241.9

INLET OUTLET MEAN	19.7	RESL 8.8 10.9 9.8	RESG 275.2 275.1 275.2	P 103.42 101.35 102.04	546.5	VSL 0.0487 0.0487 0.0487	VSG 0.35 0.36 0.35
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	RESL 8.9 9.1 9.4 9.7 10.2 10.6 10.7	0.37 0.37 0.37 0.37 0.37	TBULK 19.97 20.30 20.69 21.15 21.87 22.46 22.66	TWALL 33.54 33.56 33.54 33.13 31.71 29.35 28.11	HTP 182.3 186.6 192.6 206.5 251.0 357.3 451.1		

G2R1.04 ML= 0. PDT=	.00630 MG:	= 0.0000 DF= -2	882 QFLU .137 ALF	X= 2460 A=0.484	5 NUTP= 9.8 TOUT= 22.44,	HTP= 23.84	270.3
INLET OUTLET MEAN	TMIX 19.6 22.7 21.2	RESL 8.7 10.8 9.8	RESG 528.0 527.9 528.0	P 102.73 100.66 101.35	PRL 679.4 550.4 614.9	VSL 0.0487 0.0487 0.0487	VSG 0.67 0.69 0.68
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	8.9 9.1 9.3 9.6 10.1	0.67 0.67 0.67 0.67 0.70	TBULK 19.89 20.21 20.60 21.06 21.77 22.36 22.55	30.31 30.45 30.88 31.11 30.95	236.7 240.9 240.0 245.5 268.7		
ML = 0.	5 (S-C) 00630 MG= 2.055 PI	= 0.0001 DF= -1	79 QFLUX .517 ALF	= 2457 A=0.517	NUTP= 14.0 TOUT= 22.71,	HTP= 23.91	385.0
INLET OUTLET MEAN	TMIX F 19.7 22.8 21.2	RESL 8.8 10.8 9.8	RESG 1076.4 1076.3 1076.3	P 102.73 100.66 102.04	PRL 675.6 549.0 612.3	VSL 0.0487 0.0487 0.0487	1.42
5.1 11.4 19.1 27.9 41.9	10.1 10.5	1.37 1.37 1.40 1.40 1.40	19.97 20.29 20.67 21.12 21.82	25.93 26.29 26.89 27.60 28.48 29.08	409.0 395.2 379.3 369.7 368.2		
G2R1.06 ML= 0. PDT=	00630 MG	= 0.0002 DF= -1	64 QFLUX .034 ALF	= 3510 A=0.566	NUTP= 17.9 TOUT= 24.17,	HTP= 24.73	492.8
OUTLET	TMIX 1 19.7 24.1 21.9	8.8 11.8	1592.4 1588.0	102.73 100.66	674.0	VSL 0.0487 0.0487 0.0487	2.01 2.11
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	9.0 9.3 9.7	2.04 2.04 2.04 2.07 2.07 2.07	TBULK 20.11 20.56 21.10 21.73 22.73 23.54 23.81	26.69 27.22 27.91 28.82 30.18 31.21	532.1 525.7 514.9 495.2 471.6 459.1		

	00630 MG:				. NUTP= 20.3 TOUT= 26.77		57.0
INLET 1 OUTLET 2 MEAN 2	TMIX 1 19.7 26.4 23.1	RESL 8.8 13.8 11.3	RESG 1947.9 1933.1 1940.5	P 102.73 100.66 102.04	PRL 674.9 430.8 552.9	VSL 0.0487 0.0487 0.0487	VSG 2.47 2.61 2.54
5.1 11.4 19.1 27.9 41.9	10.8 12.0	2.50 2.50 2.53 2.53 2.53	20.28 20.98 21.81 22.78 24.31	29.38 30.12 31.33 32.38 34.41	594.9 593.0 570.5 566.4		
G2R1.08 ML= 0.0 PDT=	(C) 00630 MG= 2.579 PI	= 0.00038 DF= -0	86 QFLUX .345 ALF	= 6676 A=0.608	NUTP= 20.8 TOUT= 27.34	8 HTP= 57 4, 28.45	1.2
INLET 1	19.3	8.6	2330.0	103.42	PRL 693.6 402.0 547.8	0.0487	2.92
5.1 11.4 19.1 27.9 41.9 53.3	RESL 9.0 9.5 10.2 11.0 12.5 13.8 14.3	2.96 2.99 2.99 3.02 3.05 3.08	20.00 20.84 21.86 23.04 24.91 26.43	30.73 31.78 33.17 34.67 37.10 38.87	619.0 608.4 589.1 574.0 548.8 539.2		
G2R1.09 ML= 0.0 PDT=	00630 MG=	= 0.00102 DF= 0	2 QFLUX= .069 ALF	8467 A=0.728	NUTP= 25.0 TOUT= 28.36	HTP= 687 5, 29.64	.0
INLET 1 OUTLET 2	TMIX F L9.2 28.8 24.0	8.5 16.1	6123.6	102.73 100.66	PRL 697.9 369.4 533.7	VSL 0.0487 0.0487 0.0487	8.27
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	9.0 9.6 10.4 11.4	7.83 7.89 7.96 8.02 8.11 8.20	TBULK 20.02 21.01 22.21 23.59 25.78 27.56 28.16	30.84 32.28 34.02 35.93 38.75	778.1 748.4 714.9 685.8 654.3 633.3		

G2R1.10 (A) ML= 0.00630 MG= PDT= 3.041 PD			29.4 HTP= 809.1 27.54, 27.95
TMIX R INLET 18.4 OUTLET 27.3 MEAN 22.9	ESL RESG 8.1 10970.8 14.7 10829.2 11.4 10900.0	P PRL 104.11 735.7 101.35 405.2 102.73 570.5	VSL VSG 0.0487 13.59 0.0487 14.58 0.0487 14.08
ZRESL5.18.511.49.019.19.727.910.641.912.253.313.657.214.1	17 96 21 22	31 28 850 2	
G2R1.11 (A) ML= 0.00630 MG= PDT= 3.606 PD	0.00244 QFLUX= F= 2.413 ALF	9748 NUTP= A=0.835 TOUT=	30.9 HTP= 848.9 27.37, 28.2
TMIX R INLET 17.7 OUTLET 27.2 MEAN 22.4	ESL RESG 7.7 14778.5 14.5 14560.4 11.1 14669.5	P PRL 105.49 774.5 102.04 409.0 103.42 591.7	VSL VSG 0.0487 18.04 0.0487 19.48 0.0487 18.76
ZRESL5.18.111.48.619.19.327.910.341.911.953.313.457.213.9	18.75 22.03 19.05 24.21	33.64 838.9 36.98 765.7	
PDT= 4.730 PDI TMIX RI INLET 17.5 OUTLET 26.6	F= 3.723 ALF. ESL RESG 7.6 18567.3	A=0.864 TOUT= P PRL 107.56 785.4 102.73 425.2	33.2 HTP= 913.0 26.56, 27.56 VSL VSG 0.0487 22.15 0.0487 24.13 0.0487 23.14
11.48.519.19.127.910.041.911.5	VSGTBULK22.4318.2222.6219.1722.8320.3123.1021.6423.5323.7423.9025.4524.0226.02	26.32 1211.0 28.22 1086.5 30.39 977.5 32.64 897.9 35.86 817.7	

ML= 0 PDT=	6.191 PI	DF= 5.2	40 ALF	A=0.873	TOUT=	36.4 HTP= 1001 26.37, 27.27	
INLET OUTLET MEAN	TMIX F 16.9 26.4 21.7	RESL 7.3 22 13.8 22 10.5 22	RESG 525.8 176.2 351.0	P 111.00 104.80 107.56	PRL 815.4 430.5 623.0	VSL 0.0487 0.0487 0.0487	VSG 26.08 28.80 27.44
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	RESL 7.6 8.2 8.9 9.7 11.3 12.7 13.2	VSG 26.40 26.67 26.98 27.34 27.95 28.47 28.62	TBULK 17.68 18.67 19.87 21.25 23.43 25.22 25.81	TWALL 25.96 27.86 30.07 32.29 35.42 37.78 38.53	HTP 1303.4 1176.4 1061.6 983.6 908.8 869.3 859.4		
ML = 0	4 (A) .00630 MG= 13.121 PI	= 0.00728 DF= 12.4	QFLUX= 10 ALFA	10874 A=0.909	NUTP= TOUT=	44.3 HTP= 1217 24.52, 24.61	. 4
INLET OUTLET MEAN	TMIX F 16.5 23.9 20.2	RESL 1 7.1 44 11.5 43 9.3 43	RESG 165.2 636.9 901.1	P 125.48 112.38 119.28	PRL 838.6 510.7 674.7	VSL 0.0487 0.0487 0.0487	VSG 44.91 51.82 48.37
5.1 11.4 19.1 27.9 41.9 53.3	RESL 7.3 7.7 8.2 8.8 9.9 10.8 11.2	45.60 46.24 47.03 47.98 49.56 50.90	17.08 17.85 18.77 19.85 21.54 22.93	23.96 25.54 27.26 29.03 31.31 33.05	1571.9 1408.5 1279.0 1185.1 1116.2 1079.5		
ML= 0	5 (A) .00630 MG= 26.310 PI	= 0.01316 DF= 25.5	QFLUX= 79 ALF/	12822 A=0.904	NUTP= TOUT=	51.2 HTP= 1407 23.13, 23.08	.6
INLET OUTLET MEAN	TMIX E 16.8 23.2 20.0	7.2 79 11.0 78	780.7 916.8	158.58 131.69	821.1 533.3	VSL 0.0487 0.0487 0.0487	64.54
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	7.4 7.8 8.2 8.7 9.6 10.4		17.32 17.99 18.79 19.73 21.21 22.41	23.54 25.59 27.54 29.32 31.42 32.90	2048.7 1681.0 1462.8 1337.6 1259.2 1227.8		

ML= 0 PDT=	35.094 P	DF= 34.9	956 ALFA	A=0.987	NUTP= 53.4 TOUT= 22.22	, 22.20	
INLET OUTLET MEAN	TMIX 16.9 22.8 19.9	RESL 7.3 103 10.7 102 9.0 103	RESG 3770.9 2721.3 3246.1	P 184.09 148.92 166.85	PRL 812.9 549.9 681.4	VSL 0.0487 0.0487 0.0487	VSG 72.24 91.52 81.88
11.4 19.1 27.9 41.9	8.6	75.44 77.57 80.19 84.64	18.03 18.76 19.61 20.94	25.77 27.69 29.16 31.22	1731.3 1503.0 1407.5 1311.1		
ML = 0	1 (B-S) .04750 MG 9.011 P	= 0.000006 DF= 2.6	53 QFLU 589 ALFA	X= 2425 A=0.150	5 NUTP= 13. TOUT= 17.07	2 HTP= , 18.01	361.7
INLET OUTLET MEAN	TMIX 17.1 17.5 17.3	RESL 52.9 54.4 53.6	RESG 40.3 40.5 40.4	P 118.59 109.62 113.76	PRL 844.4 821.4 832.9	VSL 0.365 0.365 0.365	VSG 0.04 0.05 0.05
5.1 11.4 19.1 27.9 41.9	RESL 53.0 53.2 53.4 53.6 53.9 54.2 54.3	0.03 0.03 0.03 0.03 0.03 0.06	17.13 17.17 17.22 17.28 17.38	21.66 22.57 23.39 24.23 25.09	533.4 448.6 392.5 349.1 314.6		
ML = 0	2 (S) .04750 MG 7.488 P	= 0.000029 DF= 1.9	52 QFLUX 999 ALFA	X= 2422 A=0.261	2 NUTP= 13. TOUT= 16.79	2 HTP= , 17.27	360.5
	TMIX 16.6 17.1 16.8		156.2	115.14 107.56	PRL 870.3 846.8 858.5	VSL 0.365 0.365 0.365	0.17 0.19
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	51.4 51.6 51.8 52.0 52.3 52.6	$0.18 \\ 0.18 \\ 0.18 \\ 0.18$	16.67 16.72 16.77 16.83	21.35 22.22 23.00 23.78	517.0 440.0 388.4 348.7 317.3 298.1		

ML= 0. PDT=	3 (S) .04750 MG: 6.584 PI	DF = 1.1	310 ALF#	4=0.292	TOUT=	17.05,	17.60	
INLET OUTLET MEAN	TMIX 1 17.0 17.4 17.2	RESL 52.6 54.1 53.4	RESG 269.5 270.7 270.1	P 113.07 106.87 110.31	PRL 848.8 825.7 837.3		VSL 0.3 0.3 0.3	VSG 0.30 0.33 0.32
27.9	RESL 52.8 52.9 53.1 53.3 53.6 53.9 54.0	0.30	17.21	24.07	353.1			
ML= 0 PDT=	1 (S) .04750 MG 5.709 PI	DF = 0.	896 ALF/	A=0.350	TOUT=	17.88,	18.48	
INLET OUTLET MEAN	TMIX 1 17.5 18.1 17.8	RESL 54.3 56.8 55.5	RESG 467.6 469.4 468.5	P 111.69 106.18 108.94	PRL 822.2 787.4 804.8		VSL 0.365 0.365 0.365	VSG 0.54 0.57 0.55
5.1 11.4 19.1 27.9 41.9 53.3	RESL 54.5 54.8 55.1 55.4 56.0 56.4 56.6	0.55 0.55 0.55 0.55 0.55 0.55	17.55 17.62 17.69 17.79 17.94 18.06	24.32 25.57 26.46 27.16 27.71 28.07	558.4 476.0 432.7 405.0 388.6 379.3			
G2R2.09 ML= 0 PDT=	5 (S) .04750 MG 5.647 P	= 0.00016 DF= 1.	3 QFLUX 241 ALF	= 3781 A=0.409	NUTP= TOUT=	18.9 17.05,	HTP= 17.78	518.4
INLET OUTLET MEAN	TMIX 16.7 17.3 17.0	51.5 53.7	983.4 987.0	111.69 105.49	867.8		VSL 0.365 0.365 0.365	1.13 1.20
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	51.7 51.9 52.2 52.5 53.0 53.4	1.16 1.19 1.19	16.74 16.81 16.88 16.98 17.12 17.24	22.99 23.67 24.02 24.46 24.55	603.3 550.4 529.9 505.5 502.0 495.1			

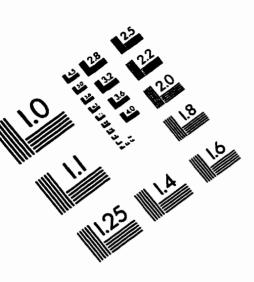
ML = 0.	5 (S-C) .04750 MG= 5.957 PE	= 0.00023 DF= 1.	36 QFLUX= .862 ALFA	= 5393 A=0.446	NUTP= TOUT=	23.6 17.63,	HTP= 18.13	647.3
INLET OUTLET MEAN	TMIX F 16.6 17.5 17.1	RESL 51.3 54.5 52.9	RESG 1438.6 1442.9 1440.7	P 111.69 106.18 108.94	PRL 871.0 819.5 845.2		VSL 0.365 0.365 0.365	VSG 1.65 1.75 1.70
19.1 27 9	RESL 51.5 51.9 52.3 52.7 53.5 54.1 54.3	1.68	16.92 17.05	25.21	650.0 638.7			
ML= 0. PDT=	7 (S-C) .04750 MG= 6.619 PI	DF= 2.	.827 ALFA	4=0.484	TOUT=	17.50,	17.78	713.7
INLET OUTLET MEAN	TMIX 1 16.3 17.2 16.8	RESL 50.2 53.3 51.7	RESG 1985.5 1991.1 1988.3	P 113.07 106.87 110.31	PRL 890.3 837.9 864.1		VSL 0.365 0.365 0.365	2.40
Z 5.1 11.4 19.1 27.9 41.9	RESL 50.4 50.7 51.1	VSG 2.26 2.29 2.29 2.32 2.32	TBULK 16.37 16.47 16.58 16.72 16.93	TWALL 23.17 23.75 24.02 24.43 24.56	HTP 792.1 739.3 724.5 698.3 706.0			
G2R2.08 ML= 0 PDT=	8 (C) .04750 MG 6.991 Pi	= 0.00039 DF= 3	94 QFLUX: .585 ALF?	= 6112 A=0.543	NUTP= TOUT=	28.8 17.98,	HTP= 18.16	788.1
INLET OUTLET MEAN	TMIX 16.8 17.8 17.3	51.9	RESG 2390.8 2397.3 2394.1	114.45	861.3		VSL 0.365 0.365 0.365	2.67
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	52.2 52.5 53.0 53.5 54.4 55.1	2.71 2.71 2.74 2.77 2.80 2.83	17.12 17.27 17.51 17.71	23.81 24.48 24.80 25.12 25.40	881.8 815.6 795.7 778.8 774.9			

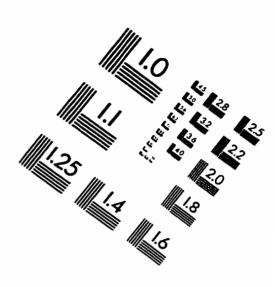
ML= 0 PDT=	9 (C) .04750 MG 8.846 PI	OF= 5	.929 ALF	A=0.605	TOUT=	17.80,	18.08	815.9
INLET OUTLET MEAN	TMIX 1 16.6 17.6 17.1	RESL 51.2 54.8 53.0	RESG 4419.0 4430.5 4424.8	P 117.90 108.94 113.76	PRL 872.2 815.3 843.8		VSL 0.365 0.365 0.365	VSG 4.79 5.22 5.00
5.1 11.4 19.1 27.9 41.9	RESL 51.5 51.9 52.3 52.8 53.6 54.3 54.6	4.85 4.88 4.94 5.00 5.09	16.69 16.79 16.92 17.07 17.31	23.23 23.84 24.27 24.62 24.86	921.0 855.9 821.8 799.7 799.5			
ML= 0	0 (A) .04750 MG 11.521 P	= 0.00144 DF= 8.	l QFLUX= .687 ALF/	7748 A=0.614	NUTP= TOUT=	33.7 17.80,	HTP= 9 18.03	921.5
INLET OUTLET MEAN	TMIX 16.1 17.4 16.8	RESL 49.6 54.1 51.8	RESG 8734.6 8749.0 8741.8	P 123.41 111.69 117.90	PRL 899.9 826.4 863.2		VSL 0.365 0.365 0.365	VSG 9.02 10.04 9.53
5.1 11.4 19.1 27.9 41.9 53.3	RESL 50.0 50.4 51.0 51.6 52.6 53.5 53.8	9.14 9.24 9.33 9.48 9.72 9.91	16.24 16.37 16.53 16.72 17.02 17.26	23.55 24.38 24.83 25.29 25.66 26.02	1058.6 967.3 933.5 905.0 897.6 885.4			
ML = 0	1 (A) .04750 MG 14.858 Pi	= 0.00222 DF= 12	2 QFLUX= 272 ALFI	8149 A=0.652	NUTP= TOUT=	38.5 17.88,	HTP= 10 18.03)54.4
INLET OUTLET MEAN	17.6	50.1 1 54.8 1	L3475.7 L3495.0	131.00 115.83	890.9 815.6		0.365	VSG 13.16 14.99 14.08
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	51.0 51.5 52.2 53.3 54.2	13.50 13.72 13.99 14.39 14.75	TBULK 16.40 16.54 16.70 16.89 17.20 17.45 17.53	23.91 24.35 24.73 25.14 25.51	1105.6 1065.3 1040.1 1026.9 1012.2			

ML= 0	2 (A) .04750 MG 19.188 PI	= 0.00318 DF= 16.8	QFLUX= 23 ALF/	9382 A=0.683	NUTP= TOUT=	47.2 HTP= 12 18.91, 18.99	292.3	
INLET OUTLET MEAN	TMIX H 17.1 18.6 17.9	RESL 193 53.1 193 58.7 193 55.9 193	RESG 274.0 295.0 284.5	P 139.96 121.35 131.00	PRL 841.6 761.3 801.4	VSL 0.365 0.365 0.365	VSG 17.64 20.64 19.14	
10 1	RESL 53.5 54.1 54.8 55.6 56.9 58.0 58.3	18 53	17 61	24 79	1307.1			
G2R2.13 (A) ML= 0.04750 MG= 0.00381 QFLUX= 9372 NUTP= 47.9 HTP= 1312.7 PDT= 22.118 PDF= 19.994 ALFA=0.719 TOUT= 18.26, 18.33								
INLET OUTLET MEAN	TMIX 1 16.2 17.7 17.0	RESL 50.0 23 55.1 23 52.6 23	RESG 129.7 145.9 137.8	P 146.86 124.79 135.82	PRL 893.6 810.0 851.8	VSL 0.365 0.365 0.365	VSG 20.13 23.94 22.03	
27.9 41.9 53.3	RESL 50.4 50.9 51.5 52.3 53.5 54.5 54.8	21.76 22.65 23.41	16.92 17.26 17.53	24.16 24.57 24.96	1295.9 1282.4 1264.6			
ML = 0	4 (A) .04750 MG 31.777 P	= 0.00690 DF= 30.1	QFLUX= 99 ALFA	10773 A=0.791	NUTP= TOUT=	55.9 HTP= 1 18.13, 18.18	531.9	
INLET OUTLET MEAN	16.0	RESL 49.2 41 54.7 41 51.9 41	935.6	168.92	908.3	VSL 0.365 0.365 0.365	31.62 39.32	
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	49.6 50.1 50.8 51.6 52.9 54.0	33.77 34.81 36.58 38.19	16.13 16.29 16.49 16.73 17.09	22.99 23.39 23.82 24.32	1685.7			

G2R2.15 (A) ML= 0.04750 MG= 0.01206 PDT= 48.180 PDF= 46.74	QFLUX= 10896 46 ALFA=0.812	NUTP= 65.3 TOUT= 17.95	HTP= 1788.6 , 17.95					
TMIXRESLINLET16.149.773OUTLET17.654.873MEAN16.952.273	189.9 210.98 157.4 162.71	815.2	VSL VSG 0.365 44.27 0.365 57.88 0.365 51.08					
ZRESLVSG5.150.045.2611.450.546.4219.151.247.8827.951.949.7141.953.152.8853.354.155.7857.254.456.82	16 61 22.53	1839.1						
G2R2.16 (A) ML= 0.04750 MG= 0.01532 QFLUX= 12529 NUTP= 72.0 HTP= 1970.8 PDT= 57.887 PDF= 57.363 ALFA=0.934 TOUT= 18.45, 18.43								
TMIXRESLINLET16.551.092OUTLET18.256.892MEAN17.453.992	RESGP878.9239.93773.3182.02826.1210.98	PRL 876.5 785.7 831.1	VSL VSG 0.365 49.52 0.365 65.87 0.365 57.70					
ZRESLVSG5.151.450.6911.452.052.0619.152.753.8027.953.555.9941.954.959.7753.356.063.3157.256.464.56	TBULK TWALL 16.67 22.42 16.84 22.80 17.04 23.23 17.28 23.71 17.66 24.24 17.97 24.65 18.07 24.82	HTP 2176.7 2099.7 2023.3 1950.7 1906.4 1876.9 1858.3						
G2R3.01 (B) ML= 0.37409 MG= 0.000006 PDT= 34.715 PDF= 27.3	53 QFLUX= 9413 372 ALFA=0.009	3 NUTP= 32. TOUT= 17.32	4 HTP= 887.5 , 17.98					
INLET 17.2 419.9	RESGP40.8172.3740.9137.8940.9155.13	837.3 826.0	VSL VSG 2.87 0.03 2.87 0.04 2.87 0.03					
ZRESLVSG5.1420.30.0311.4420.90.0319.1421.70.0327.9422.50.0341.9423.80.0353.3424.90.0357.2425.30.03		1350.2 1104.6 956.8 856.2 765.7						

G2R3.02 (B-S) ML= 0.37409 MG= 0.00 PDT= 35.928 PDF=	0252 QFLUX 28.751 ALF#	<= 9413 NUTP A=0.029 TOUT=	= 32.4 HTP= 17.02, 17.70	888.0
TMIXRESLINLET17.0414.9OUTLET17.3420.6MEAN17.2417.8	RESG 153.6 154.1 153.8	P PRL 175.12 847.2 139.27 835.8 157.20 841.5	VSL 2.87 2.87 2.87 2.87	VSG 0.11 0.14 0.13
ZRESLVSG5.1415.40.11.4416.00.19.1416.70.27.9417.50.41.9418.80.53.3419.90.57.2420.30.	12 17.11	26.94 956.5		
G2R3.03 (S) ML= 0.37409 MG= 0.00 PDT= 36.680 PDF=	29.647 ALF	A=0.054 TOUT=	16.64, 17.15	
TMIX RESL INLET 16.5 399.1 OUTLET 16.7 404.6 MEAN 16.6 401.9	RESG 282.6 283.6 283.1	P PRL 177.19 880.5 140.65 868.6 158.58 874.5	VSL 2.87 2.87 2.87	VSG 0.20 0.26 0.23
Z RESL VSG 5.1 399.6 0. 11.4 400.2 0. 19.1 400.8 0. 27.9 401.6 0. 41.9 402.9 0. 53.3 403.9 0. 57.2 404.3 0.	74 10.01	20.03 110.1		
G2R3.04 (S) ML= 0.37409 MG= 0.00 PDT= 39.093 PDF=	00794 QFLU 32.198 ALF	X= 9445 NUTH A=0.071 TOUT=	P= 33.0 HTP= = 15.82, 16.62	905.1
TMIXRESLINLET16.0387.4OUTLET16.2392.7MEAN16.1390.0	484.1	183.40 907.1	VSL 2.87 2.87 2.87	0.34 0.43
5.1387.8011.4388.4019.1389.0027.9389.8041.9391.0053.3392.00	3716.063716.08	23.04 1343.0 24.57 1106.8 25.84 967.2 26.94 872.0 28.11 791.2 28.82 749.3	B 2 0 7 8	


ML= 0	5 (S) .37409 MG: 43.105 PI	= 0.00015 DF= 36.	611 ALF	= 8489 A=0.127	NUTP= TOUT=	35.8 16.01,	HTP= 16.41	980.6
OUTLET	TMIX 16.0 16.2 16.1	390.9	970.1	150.99	899.0		2.87	VSG 0.63 0.82 0.73
11.4 19.1 27.9 41.9 53.3	RESL 386.5 387.0 387.6 388.3 389.4 390.3 390.6	0.67 0.67 0.70 0.76 0.79	16.00 16.02 16.05 16.09 16.13	23.33 24.31 25.09 25.72 26.04	1157.4 1024.5 939.5 882.8 857.8			
ML= 0 PDT=	5 (S) .37409 MG 46.173 P	DF= 39	.920 ALF	A=0.159	TOUT=	15.89,	16.31	
MEAN	TMIX 15.9 16.1 16.0	387.3	1387.0	178.57	90/.4		VSL 2.87 2.87 2.87 2.87	VSG 0.87 1.14 1.01
27.9	RESL 385.3 385.8 386.4 387.1 388.1 389.0 389.3	0.98	16.00	24.48	1001.4			
G2R3.0 ML= 0 PDT=	7 (S) .37409 MG 49.614 P	= 0.00032 DF= 43	21 QFLUX .850 ALF	= 8616 A=0.224	NUTP= TOUT=	41.8 16.04,	HTP= 16.41	1145.2
INLET OUTLET MEAN	16.0 16.2	RESL 386.8 391.6 389.2	RESG 1951.2 1956.5 1953.8	P 210.29 160.65 185.47	908.5 897.4		VSL 2.87 2.87 2.87	1.18 1.55
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	387.7 388.3 389.0 390.1 391.0	1.22 1.25 1.28 1.34 1.40 1.49	16.01 16.03 16.05 16.08 16.12 16.16	TWALL 21.76 22.78 23.47 23.94 24.16 24.16 24.17		5 5 3 2 8		


ML = 0	8 (S-A) .37409 MG= 51.910 PC	0.00038 F= 46	33 QFLUX: .401 ALF/	= 8612 A=0.258	NUTP= 43.9 TOUT= 16.39,	HTP= 16.62	1200.9
INLET OUTLET MEAN	TMIX F 16.2 3 16.4 3 16.3 3	ESL 91.8 96.7 94.3	RESG 2322.8 2329.0 2325.9	P 216.49 164.78 190.98	PRL 896.8 885.8 891.3	VSL 2.87 2.87 2.87	VSG 1.37 1.80 1.59
19.1 27 9	RESL 392.2 392.7 393.4 394.1 395.2 396.1 396.4	1.49	16.24 16.27	23.38	1207.4 1147.6		
ML= 0. PDT=					NUTP= 51.9 TOUT= 16.64,		
INLET OUTLET MEAN	TMIX F 16.2 3 16.4 3 16.3 3	ESL 91.2 96.8 94.0	RESG 4672.7 4683.6 4678.2	P 242.00 180.64 210.98	PRL 898.3 885.7 892.0	VSL 2.87 2.87 2.87	VSG 2.46 3.31 2.89
5.1 11.4 19.1 27.9 41.9	RESL 391.7 392.2 392.9 393.7 395.0 396.1 396.4	2.53 2.59 2.68 2.80 2.99 3.17	16.18 16.20 16.23 16.26 16.31	21.99 22.74 23.24 23.48 23.46 23.40	1694.5 1507.0 1407.4 1366.6 1379.0 1398.5		
ML = 0) (S−A) .37409 MG= 77.834 PD	0.00179 F= 73	9 QFLUX= .980 ALF/	9953 A=0.480	NUTP= 60.2 TOUT= 17.02,	HTP= 1 17.17	L648.3
INLET OUTLET MEAN	TMIX F 16.7 4 16.9 4 16.8 4	06.0 1 11.7 1	L0828.9 L0851.4	283.37 206.15	865.8	2.87	VSG 4.89 6.75 5.82
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	406.4 407.0 407.8 408.6 409.9 411.0	5.00 5.15 5.36 5.61 6.04 6.46	TBULK 16.74 16.76 16.82 16.87 16.91 16.92	22.04 22.62 22.90 23.06 23.01 22.93	1874.4 1697.0 1628.8 1596.4 1621.6 1651.3		

G2R3.11 (A) ML= 0.37409 M PDT= 84.990						726.1
TMIX INLET 16.0 OUTLET 16.2 MEAN 16.1	392.4 15	647.9	218.56	895.5	2.87	9.13
Z RESL 5.1 386. 11.4 386. 19.1 387. 27.9 388. 41.9 390. 53.3 391. 57.2 392.	2 6.71 9 6.92	15.97 15.99	22.31	1936.4 1763 7		
G2R3.12 (A) ML= 0.37409 M PDT= 90.534	PDF= 87.2	86 ALFA	\=0.568	TOUT = 17	7.60, 17.68	
TMIX INLET 17.1 OUTLET 17.3 MEAN 17.2	RESL 415.7 19 423.1 19 419.4 19	RESG 452.0 485.9 469.0	P 319.91 229.59 274.41	PRL 845.6 830.9 838.3	VSL 2.87 2.87 2.87 2.87	VSG 7.80 10.92 9.36
ZRESL5.1416.11.4417.19.1418.27.9419.41.9420.53.3422.57.2422.	0 8.56 1 8.99	17.16 17.19	23.95 24.10	-1824.4 1795.3		
G2R3.13 (A) ML= 0.37409 M PDT= 95.843	G= 0.00379 PDF= 92.5	QFLUX= 95 ALFA	12491 A=0.561	NUTP= 68 TOUT= 17	8.5 HTP= 1 7.17, 17.27	876.0
INLET 16.7		989.2	P 330.25 234.42 281.99	865.6	VSL 2.87 2.87 2.87	
ZRESL5.1406.11.4407.19.1408.27.9409.41.9411.53.3412.57.2412.	6 9.14 4 9.45 3 9.81 3 10.30 0 11.19 3 11.98	16.74 16.77 16.81 16.84 16.90 16.95	TWALL 22.73 23.33 23.57 23.73 23.61 23.53 23.51	HTP 2083.4 1904.7 1847.1 1815.4 1864.4 1898.1 1910.3		

ML= 0	1 (B) .56183 MG 53.151 P	= 0.00000 DF= 45.	63 QFLUX 780 ALFA	X= 7701 A=0.007	NUTP= 34. TOUT= 16.04	3 HTP= , 17.05	938.0	
INLET OUTLET MEAN	TMIX 16.3 16.4 16.3	RESL 580.1 584.5 582.3	RESG 39.1 39.2 39.2	P 211.67 157.89 184.78	PRL 909.6 902.9 906.2	VSL 4.31 4.31 4.31	VSG 0.02 0.03 0.03	
10 1	RESL 580.5 580.9 581.5 582.1 583.1 583.9 584.2	0 03	16 30	23.91	1011.2			
ML= 0 PDT=	54.282 P	DF= 47.	022 ALF	A=0.023	L NUTP= 34. TOUT= 16.34	, 16.77		
INLET OUTLET MEAN	TMIX 16.3 16.4 16.4	RESL 582.1 586.4 584.3	RESG 154.9 155.4 155.2	P 213.73 159.27 186.85	PRL 906.5 899.9 903.2	VSL 4.31 4.31 4.31	VSG 0.09 0.12 0.11	
5.1 11.4 19.1 27.9 41.9	RESL 582.4 582.9 583.4 584.1 585.1 585.9 586.2	0.09 0.09 0.09 0.09 0.12	16.32 16.33 16.35 16.37 16.39	21.79 22.92 23.92 24.83 25.79	1404.6 1167.8 1016.9 909.4 819.7			
ML = 0	G2R4P03 (B-S) ML= 0.56183 MG= 0.0000453 QFLUX= 7701. NUTP= 34.7 HTP= 949.4 PDT= 55.323 PDF= 48.125 ALFA=0.029 TOUT= 16.39, 16.77							
OUTLET	16.4 16.5		271.9	216.49 160.65	903.5 896.9	VSL 4.31 4.31 4.31	0.16 0.22	
11.4 19.1 27.9 41.9 53.3	584.4 584.9	0.18 0.18 0.18 0.18 0.21	16.37 16.38 16.40 16.42 16.44 16.46	21.78 22.92 23.91 24.83 25.79	1418.4 1176.1 1024.9 915.1 824.5 771.2			

G2R4.04 ML= 0 PDT=	4 (S) .56183 MG= 57.743 PDF	0.00008 = 50.	94 QFLU 745 ALF	X= 7739 A=0.056	NUTP= TOUT=	= 35.3 16.01,	HTP= 16.46	965.3
INLET	TMIX RE 16.1 57 16.2 57 16.2 57	SL 4.3 8.6	RESG 542.9 544.4	P 223.39 165.47	PRL 918.7 912.0		VSL 4.31 4.31 4.31	VSG 0.31 0.42 0.37
5.1 11.4 19.1 27 9	575.1 575.6	0.30 0.34 0.34 0.37	16.12 16.13 16.14 16.16	22.63 23.58 24.48	1429.5 1189.9 1040.0 931.1			
ML = 0	5 (S) .56183 MG= 62.914 PDF	0.00018 = 56.	0 QFLUX 191 ALF	= 8486 A=0.095	NUTP= TOUT=	38.1 15.94,	HTP= 16.31	1042.5
INLET OUTLET MEAN	TMIX RE 16.0 56 16.1 57 16.1 57	SL 9.7 4.4 2.0	RESG 1092.3 1095.2 1093.8	238.55 175.81	926.1 918.6		4.31	0.79
Z 5.1 11.4 19.1 27 9	RESL 570.1 570.6	VSG 0.61 0.61 0.64 0.67	TBULK 16.00 16.01 16.03 16.04	22.79 23.74 24.53	1502.5 1250.6 1100.0 1001.4			
G2R4.0 ML= 0 PDT=	6 (S-F) .56183 MG= 67.230 PDF	0.00025 `= 60.	53 QFLUX 742 ALF	= 8575 A=0.128	NUTP= TOUT=	41.5 16.21,	HTP= 16.64	1135.0
INLET OUTLET MEAN	16.3 58 16.4 58	CSL 12.1 16.9 14.5	RESG 1533.4 1537.3 1535.3	р 250.97 184.09 217.18	899.1		VSL 4.31 4.31 4.31	
Z 5.1 11.4 19.1 27.9 41.9 53.3 57.2	583.0 583.6 584.3 585.4 586.3	VSG 0.79 0.82 0.85 0.88 0.94 1.04 1.04	TBULK 16.32 16.34 16.35 16.37 16.40 16.42 16.43	21.70 22.77 23.62 24.29 24.75 24.95	HTP 1591.0 1330.3 1178.7 1083.6 1027.8 1006.8 1000.2			

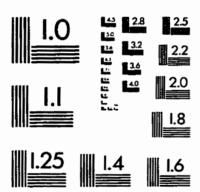
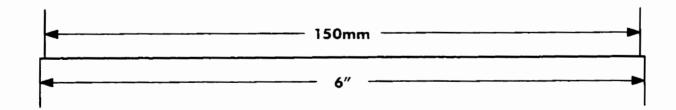
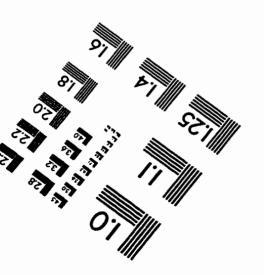





IMAGE EVALUATION TEST TARGET (QA-3)

APPLIED IMAGE . Inc 1653 East Main Street Rochester, NY 14609 USA Phone: 716/482-0300 Fax: 716/288-5989

© '993. Applied Image, Inc., All Rights Reserved

