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ABSTRACT

This thesis is concerned with an approach to record, process, and classify radio
transmitter transients. A radio transmitter transient is emitted by the transmitter when the
transmitter’s push-to-talk button is depressed. This action engages the transmitter’s
frequency synthesizer which generates the carrier frequency. The generation of the carrier
frequency by the frequency synthesizer is not instantaneous, thus a transient behaviour is
exhibited during the carrier frequency acquisition. The capturing of such transient events is
achieved by recording the discriminator output of an ICOM R7100 communication receiver.
The recording is performed by a Sound Blaster sound card at a sampling rate of 44,100
samples per second and 16 bits per sample accuracy. The recording contains a noise
component followed by a transient. The transient is separated from noise by a variance fractal
dimension trajectory analysis. Once the transient has been localized, multiresolution wavelet
analysis and genetic algorithms select the critical features of the transient used to classify the
transient. Multiresolution analysis provides a set of wavelet coefficients that represents the
transient features independently, allowing the genetic algorithm to select those that are most
critical. The features are classified by a muitilayer neural network with 64 inputs and 12
hidden neurons. The average classification rate achieved is 96% for an experimental set of
6 transmitters consisting of four Kenwood transmitters and two Yaesu transmitters. For this
experimental transmitter set, the results show that this system classifies transients generated
by transmitters of the same manufacturer and model, as well as transients generated by
transmitters from different manufacturers.
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CHAPTER 1
INTRODUCTION

1.1 Background and Motivation

As with humans, it is claimed that low power radio transmitters have unique
fingerprints. The collection and classification of radio transmitter fingerprints are important
for ensuring the appropriate use of the radio frequency spectrum. If an operator is using a
particular frequency inappropriately, the system developed for this thesis could identify the
operator’s transmitter by its transient fingerprint and the necessary action to restore proper
use of the frequency can be taken. The fingerprints take the form of unique features
contained in the transient generated by the radio transmitter as it attempts to lock upon the
selected carrier frequency. This uniqueness is due to the differing designs and tolerances of
components used in the construction of the transmitters. The signal to be communicated by
the transmitter is modulated upon the carrier frequency, and thus a transient is generated each
time the transmitter is engaged. To engage a transmitter, the user usually has to push a
button called the push-to-talk button that informs the transmitter a transmission is to occur.
Once the transmitter is aware of the fact that a transmission is to occur, its phase-locked loop
(PLL) begins to generate the carrier frequency and in the process, a transient is generated and
transmitted. To generate the carrier, a voltage controlled oscillator (VCO), a phase
comparator, and a lowpass filter are used, forming the phase-locked loop. Figure 1.1 shows
the configuration of the components to construct a PLL. The reference carrier signal

frequency is compared to the current output of the VCO. If the frequency generated by the
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VCO is greater than the desired carrier frequency, the phase comparator generates a negative
voitage. Ifthe generated frequency is less than the carrier, the phase comparator feeds the
VCO a positive voltage. If the VCO sees a negative voltage from the phase comparator it
drops the frequency it generates, while if a positive voltage is detected, the VCO increases
the frequency it is generating. If the frequency generated by the VCO matches the carrier,

the phase detector’s output is zero volts, and thus the desired carrier has been reached.

Phase Comparator

Reference Lowpass -
Signal Filter
vCO -~

Fig. 1.1. A phase-locked loop.

The PLL described above is not quite what is needed to generate the carrier since the
carrier is already required as a reference for the phase comparator. By implementing two
frequency dividers as shown in Fig. 1.2, a frequency synthesizer [Couc93] is constructed.
This allows a variety of carrier frequencies by adjusting A and N. The output frequency is
described by

f;=(-N—)fr (.n

where f, is the reference frequency. By implementing frequency dividers, the reference

frequency does not need to be the carrier frequency.
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Phase Comparator
Lowpass
Filter

Frequency |

Divider /N i V C O
Frequency cference

Divider /M Signal Outtu ¢

Fig. 1.2. A frequency synthesizer.

In order to analyze and classify the transients, a means of recording the transients is

reqmrecL This thesis addresses the collection issue by developing a system that is based upon

Creative Lab's Sound Blaster. The transients are recorded with a sampling rate of 44,100
samples per second and 16 bits per sample accuracy. The AM bandwidth of the receiver is
6 kHz which requires a minimum sampling rate of 12,000 samples per second by Nyquist’s
Theorem. Thus, with a sampling rate of 44,100 samples per second, it is ensured that all the
transient’s frequency components are recorded. The high sampling frequency (over 7 times
the speech bandwidth) is required to accommodate larger bandwidth receivers, as well as
provide high quality recordings that could stand in a court of law. The high frequency
sampling eliminates the need for separate analog recordings of the transient.

Once the transients have been collected, the significant features of the transients are
selected using wavelet analysis and genetic algorithms. The selected features are used to
determine which transmitter is responsible for the transient generation. The classification is

performed by a neural network trained on transients previously collected. We shall show that
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the neural network is able to distinguish between transients generated by transmitters built by
different manufacturers as well as transmitters built by the same manufacturer. Beyond
distinguishing transmitters of differing manufacturers, we shall also show that the neural
network is able to correctly classify transients generated by transmitters of the same model
type. This level of classification requires that transients generated by transmitters of the same
model type be unique, just as each person has their own fingerprint. This thesis will show that
given a set of transients, this level of classification is possible.

MoTron Electronics has developed and manufactured the TXiD transmitter
fingerprinting system. However, the TXiD has a maximum sampling rate of 10,000 samples
per second, requiring a separate stereo cassette recorder to record the transients that are to
be used in a court of law. Classification by the TXiD system involves visual comparison of
the features between transients to determine which class the transient belongs to. The system
developed by this thesis uses feature selection and neural networks to objectively classify the
transients that eliminates the visual comparison of the transient features.

This concept of transmitter transient analysis and implementation has been proposed
by Kinsner in 12 internal reports, starting from 1993, and different parts of the system have
been studied by his students [Ande95], [Diet94], [Khan95], [Kwok95], [Ruda94], {Shaw94],
[Toon95). There is also another implementation of the system being completed in his

research group.

1.2 Thesis Overview
This thesis is organized in a fashion that represents the order in which each technique
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is applied to analyze the transients. Chapters 2 through 6 end with a discussion of the
computer implementation of the technique described in the chapter. The computer code for
each component written in the C computer language is contained in Appendix A.

Chapter 2 provides a discussion on how the transients are recorded using the Sound
Blaster. The concepts of how the acquisition system works is described along with the Sound
Blaster recording initialization procedure.

Chapter 3 describes how the noise is separated from the transient using fractal
analysis. The separation is required since the acquisition system writes a noise component
as well as the transient component to the acquisition output file.

Chapter 4 describes the wavelet analysis technique called multiresolutional signal
decomposition which generates a set of wavelet coeflicients that represent the independent
features of the transient.

A genetic algorithm is implemented to select the critical features represented by the
wavelet coefficients. Chapter 5 covers the implementation and discusses the components of
the genetic algorithm. The selected wavelet coefficients are used to classify the transient.

The classification of the transient is performed by a neural network. Chapter 6
describes the neural network and the training procedure used in this study.

Chapter 7 covers the resuits obtained in the experimental portion of this thesis. The
effects of the number of features selected and the classification accuracy is studied in this
chapter.

Finally, Chapter 8 completes the thesis with conclusions, recommendations and

contributions.



CHAPTER 2
TRANSIENT ACQUISITION

2.1 Introduction

In order to analyze radio transmitter transients, a means of recording the transient
behaviour is required. For such a system to be useful, it must have a high sampling rate and
should have 16 bit resolution. A good candidate for recording the transients is the Sound
Blaster 16 audio board developed by Creative Labs. The maximum sampling rate of the
Sound Blaster is 44,100 samples per second and contains a 16 bit analog to digital converter.
However, amdm«&rdaewmmmmumﬁm is not known to exist. This
chapter will discuss such a driver based on the software developed by Ethan Brodsky
[Brod95] for 16 bit stereo recording. Two key modifications need to be added to enable
efficient and accurate recording of radio transmitter transients. These modifications include
implementation of a circular buffer [Kins87] to store the recorded samples and a means of
detecting when a transient has occurred. These modifications require that the original
recording procedure be completely removed and replaced with the new transient recording
procedure. The result is a high speed and accurate means of recording radio transmitter

transients.

2.2 Receiver Requirements
To record the transmitter transients for legal purposes, the output of a receiver’s

discriminator is usually recorded on an analog audio or video tape. Our system eliminates the
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analog taping by providing a high-quality digital recording. The signal from the discriminator
required for the analog or digital recording is nonstandard, requiring a modification to the
receiver. The receiver used in the acquisition of all the transients used in this study was an
ICOM R7100 wideband receiver. The discriminator output access point is pin 1 on a 15 pin
connector, located at the back of the receiver. The discriminator output is a voltage
proportional to the frequency deviation from the carrier frequency. The ICOM R7100
discriminator characteristics were measured by Robyn Jackmann and Kerry Ellis of the
Communication Research Center in Ottawa, Ontario. A frequency generator was used to
generate a carrier frequency of 150 MHz. The voltage at the output of the discriminator was
measured using a Fluke 23 digital voltage meter. The frequency was swept from 137 to 165
MHz with the voltage at the discriminator’s output measured at appropriate intervals. Figure
2.1 shows the plot obtained with the x axis labels being offsets relative to 150 MHz.

9

Discriminator Qutput Voltage (Volis)
~
]

5 T T T ] T j
-15 -10 -5 o L1 10 15 20
Frequency Offset (kHz)

Fig. 2.1. Discriminator output voltage vs. frequency offset.
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It is noted that the voltage fluctuation from peak to peak is about 1.75 volts which is within
the Sound Blaster’s input sensitivity of 2 volts peak to peak. Deviations exceeding the above
range are not useful since they are outside the receiver’s passband filter. A squeich level
control and speaker output jack used to detect when a transient has occurred is also required
by the acquisition system. The ICOM R7100 has such facilities making it a good candidate

for use in recording radio transmitter transients.

2.3 Overview of Recording Technique

Since a transient is a short duration event (approximately 10 to 50 ms), all the
information recorded before the transient need not be stored. However, the Sound Blaster
needs to be set up and the recording must start before the transient event occurs. This is
required because initialization of the Sound Blaster takes a few seconds, and the transient
would be missed due to the time requirements of the setup. Thus, to limit the amount of
memory used to record this short duration event and have the Sound Blaster continually
recording, a circular buffer is implemented [Kins87]. To implement a circular buffer, a block
of memory is allocated, and data is written to this block. When the end of the block is met,
the pointer indicating the next location to be written to is repositioned at the beginning of the
buffer. The data currently in the buffer location is overwritten by the new data.

Figure 2.2 pictorially shows the operation of a circular buffer. However, to ensure
that the transient is not overwritten, a means of detecting the transient needs to be
implemented. A good approach is to monitor the speaker output of the receiver with the

squelch level set to suppress the noise. When a transmitter engages in a communication, the



receiver’s squelch circuit opens and permits the signal to pass to the receiver’s output to be

heard by the user. Thus, by instructing the Sound Blaster to discontinue recording after a

e Empty Location
Circular Buffer |\ - ooy K :

A Containing T sun| |4
\:\ 16,384 Samples / / (o
o ' , * Current Sample
Overwritten by
New Sample

Filled Locations

Fig. 2.2. Operation of circular buffer.

certain number of samples once the receiver’s output becomes active, prevents the transient

from being overwritten.
Figure 2.3 shows how this is achieved. Once the transient has be detected, the Sound

Blaster shuts down and the transient is written to a file. A more detailed description of the

recording process is provided next.
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Acquisition System Terminates Sampling Here
e e e Enlarging the Buffer Space

i Allows Late Detection of the
\, Transient Without Overwriting
22\ the Transient Ssmples

Latest Possibie Detection & Transient Occurs Here
\ Point Before Overwriting
:\Occurs

Final 8,192
Samples

Recorded
€ Transient Detected Here

Fig. 2.3. Transient detection and its effect on recording.

2.4 Recording Details

With a preliminary understanding of how the acquisition is to occur, the details can
be described. The Sound Blaster allows for two channels to be recorded simultaneously at
44,100 samples per second with 16 bit accuracy. We have selected the left channel to record
the receiver’s discriminator output, and the right channel to record the receiver’s speaker
output. Both the left and the right channels are written to a temporary buffer where the
signals are analyzed. The discriminator samples are written to the circular buffer, while the
speaker output samples are analyzed for activity. If the speaker output samples deviate from
their default values of zero, a transient event is said to have occurred and the search is

terminated.
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The circular buffer is 16,384 samples in size which translates into 32,768 bytes of
memory. The size of the transients written to the output file is 8,192 samples, allowing a
maximum of 8,192 samples of noise to be recorded. Including a large number of samples of
noise allows for a delay in the detecting activity on the speaker output. The squelch circuit
was found to a have a delay exceeding the transient duration, thus requiring extra samples to
be included in the buffer to ensure the transient is not over written as shown in Fig. 2.3.
Including the extra samples allows for the squelch circuit’s delayed reaction to the incoming
communication. However, the squelch circuit must react within 185 milliseconds of the
recording of the transient’s first sample. The ICOM R7100's squelch circuit does react within
this time constraint ensuring accurate transient acquisition. Once the noise and the transient
have been acquired, they are written to a file in unsigned integer format ranging from 0 to
65,536 and with the value 32,768, denoting the signal’s D.C. voltage. This file is passed on
to the noise separation procedure to extract the transient for analysis and classification.

The connectivity between the Sound Blaster and the receiver consists of a 15 pin
connector, a mono 1/8 inch jack and a 1/8 inch stereo jack. Pin 1 on the 15 pin connector is
connected to the left channel connection on the stereo jack while the right channel connection
is connected to the mono jack. The stereo jack is inserted into the Sound Blaster’s line-in
input while the mono jack is inserted in the speaker output and the 15 pin connector is
connected to the receiver’s disciminator output access point. Figure 2.4 shows the correct

connection configuration.
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Fig. 2.4. Connections to receiver.

2.5 Sound Blaster Programming

The first step in recording a source using the Sound Blaster is initialization. To begin,
the correct installation of the Sound Blaster and base I/O address selection must be verified
by resetting the Sound Blaster’s digital signal processor (DSP). The reset port is offset by
the base /O address whose default value is 0x220h. To reset the Sound Blaster, the reset
port, offset by the base I/O address is written a reset sequence. If the DSP does not respond
within 100 microseconds after being reset, the Sound Blaster could be installed incorrectly.
However, if the DSP does respond, the initialization can continue by passing the interrupt
request number (IRQ) and the direct memory access (DMA) controller channel number to the

initialization subroutine for use in setting up the Sound Blaster for recording. The default
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setting for the IRQ is 7 and the DMA channel for 16 bit recordings is set to 5. The IRQ
determines which interrupt service routine (ISR) is called when the Sound Blaster issues an
interrupt. The DMA controls the transfers of large amounts of data between the I/O devices
and memory by bypassing the CPU [Kins87]. With these parameters in hand, an interrupt
service routine can be installed and the DMA can be programmed for the transfer of data from
the Sound Blaster to memory. The interrupt service routine contains instructions on how to
handle the incoming data and controls the remaining number of samples to be recorded. The
ISR also is responsible for the detection of a transient using the data recorded on the right
channel containing the receiver’s speaker output. To install an ISR, all interrupts are
temporarily disabled with the exception of the non-maskable interrupts (NMI). To change
the pointer to the ISR to be used for acquisition system, the priority interrupt controller (PIC)
[Kins87] is accessed. A mask is constructed from the IRQ defined above to disable the
current interrupt that is to call the new acquisition ISR. Once the interrupt is disabled, a copy
of the current ISR pointer is made for reinstallation when the acquisition ISR is no longer
needed. Next, the pointer to the acquistion ISR is moved into the location previously held
by the old ISR and a new mask is constructed to enable the interrupt corresponding to the
acquisition ISR.

With the interrupt service routine in place, the DMA controller is programmed to
transfer the recorded signals from the Sound Blaster to a memory location. The type of DMA
transfer used by the Sound Blaster is the single byte transfer mode. A first in-first out (FIFO)
buffer is used by the Sound Blaster to store the recorded samples in the event the DMA
transfer is delayed [Brod95]. The first requirement in the programming of the DMA
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controller is allocating memory for the transfer that does not cross the 64 Kbyte physical page
boundary. The size of this buffer that the DMA will write to is 256 samples or 512 bytes,
since each sample requires two bytes. Once this memory has been allocated, the DMA
channel selected for use by the Sound Blaster is disabled by writing a mask constructed from
the channel number to the DMA’s mask port. The next step in the programming is the
resetting of the DMA’s byte pointer by writing any value to the DMA’s byte pointer port.
Resetting the byte pointer clears the way for setting the transfer mode to be implemented by
the DMA controller. The transfer mode selected is the auto-initialized recording mode which
is written to the DMA’s mode port. This mode allows the DMA controller to use the transfer
memory as a circular buffer. If the transfer mode is not auto-initialized, samples will be lost
due to the fact that the controller ends the transfer once the end of the transfer memory is
encountered. The ISR can start the next transfer. However, there will be numerous samples
missed between the last sample transferred and the next sample to be transferred which will
compromise the quality of the recording. By implementing auto-initialized transfers, the
DMA when it encounters the end of the transfer memory, continues the transfer by writing
the samples to the beginning of the transfer memory. Thus, the DMA when in auto-initialized
mode does not stop at the end of the transfer and does not require restarting by the ISR. The
use of auto-initialized transfers requires that the two interrupts be issued by the Sound Blaster
for each DMA transfer. One interrupt occurs at the midpoint of the transfer and the other at
the end of the transfer. This allows the ISR to recover the samples in one half of the transfer
memory while the DMA controller is transferring data into the other. If only one interrupt
were issued by the Sound Blaster at the end of the transfer, the samples would be lost, since
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the DMA controller treats the transfer memory as a circular buffer and begins writing to the
beginning of the block once the end of the block is encountered. Figure 2.5 shows when the
interrupts are issued and the responsibilities of the ISR. The next step in the programming
is informing the DMA controller where the offset from the page boundary, the first location
of the transfer buffer resides.

ISR Copies This Half Of The Transfer Memory To Transient Buffer

, DMA Writing Here

A A

Interrupt Issued Here Interrupt Issued Here

Circular Transient Buffer

Fig. 2.5. Issuing of interrupts and ISR responsibilities.

The computer’s memory is mapped into pages that reduces the effects of memory
fragmentation [SiPG92]. The page number and page offset are combined to determine the
physical address of a memory location. The offset is measured in words, thus requiring the
low byte to be written first, followed by the high byte. Once the offset has been written to

the controller, the transfer length is communicated to the controller by writing to the DMA’s
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count port. The low byte of the transfer length is written first, followed by the high byte as
was done for the transfer memory offset. Since the transfer memory is 256 samples in size,
255 in hexadecimal is written to the low byte and O is written to the high byte. The
hexadecimal equivalent of 255 is used since the transfer length is measured in the number of
samples, minus one. The next programming step is the programming of the transfer
memory’s page location. Again, as before, the low byte is written first, followed by the high
byte into the DMA’s page port. Once the transfer memory’s page has been written to the
DMA, the DMA programming is complete and the channel is enabled by clearing the mask
bit assigned to the channel.

With the DMA controller programmed, the sampling rate to be used by the Sound
Blaster can be set along with the play or record mode selection. These selections are written
to the Sound Blaster’s DSP. The sampling rate is set to 44,100 samples per second by
writing the high byte of the sampling rate followed by the low byte. The record mode is
selected as being an unsigned 16 bit stereo which is encoded into a single byte and written to
the DSP. The final parameter to be passed to the DSP is the number of samples to be
collected before an interrupt is called. As required by the auto-initialized DMA transfers, the
number of samples required before an interrupt is issued is one- half the number held by the
transfer memory. The number of samples between interrupts is written to the DSP with the
low byte first, followed by the high byte. Once the high byte is written, the recording begins.

2.6 The Acquisition Interrupt Service Routine

The acquisition interrupt service routine is responsible for copying the contents of the

-16-



transfer memory to the transient buffer and detecting whether a transient has occurred. Once
the ISR has been called, a determination of which half of the transfer memory is to be
operated on is made, since the DMA’s auto-initialized transfer mode is implemented. After
the determination is made, the ISR looks at the right channel samples to determine whether
or not there is any activity at the speaker output. If activity is detected, a variable is set to
indicate that the final 8,192 samples should be collected, and the Sound Blaster be shut down.
Whether or not activity has been detected, the samples recorded from the output of the
receiver’s discriminator are written to the transient buffer. A buffer pointer points to the
current location in which to write the samples being copied from the transfer memory. As
was mentioned previously, when the end of the buffer is encountered, the pointer is
repositioned at the beginning of the buffer and the previous samples are overwritten. If a
transient has been detected, the number of samples that remain to be recorded, 8,192 is
decremented by the number of samples just written to the transient buffer. The next time the
ISR is entered, the search for activity on the right channel is bypassed since the transient has
already been detected and the number of samples remaining further decremented. If the
decrement has left the number of samples remaining equal to zero, the ISR issues a command
to the Sound Blaster to discontinue collecting samples. If a transient was not detected, the
number of samples remaining is left unchanged and the Sound Blaster continues its recording.
The final responsibility of the acquisition ISR is to acknowiedge the interrupt to both the
interrupt controller and the Sound Blaster. Once the interrupts have been acknowledged, the

ISR is exited until the next interrupt is issued.
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2.7 Sound Blaster Shut Down

The first step in the shut down of the Sound Blaster is the final acknowledgment of
any hanging interrupts. Once the acknowiedgment has been completed, the DMA channel
is disabled by writing a mask to the DMA’s mask port. This terminates the ongoing DMA
transfers and releases the channel for other devices to use. Finally, the old interrupt is
reinstalled, replacing the acquisition interrupt by the same method described for replacing the
old interrupt. With the shutdown complete, the file supplied by the user for writing the
transient to is opened and the transient buffer contents are written to the file. Within the file

the transient along with the noise occurring prior to the transient is stored.

2.8 Summary

This chapter described a system for recording radio transmitter transients using the
Sound Blaster. The sampling rate achieved by the system is 44,100 samples per second with
16 bits per sample accuracy. The initialization of the Sound Blaster and the interrupt service
routine implemented to record the transient were described. A file consisting of 16,384
samples is written containing the transient and the noise occurring prior to the transient, once

the recording by the Sound Blaster is complete.
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CHAPTER 3
NOISE SEPARATION

3.1 Introduction

Once the transient has been captured using the acquisition system, the transient and
noise need to be separated. Separation is required since the noise portion of the signal does
not contain unique information that can be used in classifying the transient. In order to
separate the noise from the transient, the variance fractal dimension [Kins95] is implemented.
The use of fractality allows for the characterization of the complexity of the noise-transient
signal. To measure the fractality of an object, the concept of fractal dimensions is employed.
A fractal dimension characterizes the self similarity and the irregularity of an object in
question. If the object is highly regular, non-fractal, the fractal dimension equals its
topological dimension. For example, if the object is a line, its fractal dimension is 1 and if the
object is a surface, its fractal dimension is two. However, as the object becomes more
irregular, the fractal dimension increases passed its topological dimension to some non-integer
value. These objects with non-integer values can be characterized as being fractal. The
fractal dimension for an object has a limit; the dimension of an object cannot exceed the
object’s embedding dimension equal to the topological dimension plus one. The topological
dimension (or Euclidean dimension) is the integer dimension of natural objects such as a
surface. Therefore, a fractal surface cannot exceed its embedding dimension of three. In total
there are over 19 fractal dimensions that are described in a unified framework by Kinsner
[Kins94]. These fractal dimensions can be characterized as being morphological, entropy,
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variance, or spectral. Of these dimensions, the variance dimension is an approach that
produces reasonable results. However, since it is based on heuristics, it will require additional

work to establish the bounds for optimum separation of the transient from the noise.

3.2 Variance Fractal Dimension
The variance dimension calculates the spread of signal amplitudes between two
samples separated by some increment. If B(z) denotes the samples of a signal, the variance

between samples can be expressed by

Var{B(t,)-B(1,)] (ERY)

Let us assume that the following power law relationship holds
Var[B(tg) -B(tl)]"ltz' jlw 3-2)

where the parameter H, is the Hurst exponent. In general, the power law relationship

between variables is of the form

t=ch* 3.3)

where dis an exponent of 4 and c is a constant. Ifthe log of each side of Eq. 3.3 is taken, the

following is the result

log(?)=log(c) +dlog(h) (3.4

Thus, to determine d, the slope of the line generated by drawing 7 on a log-log plot is found.
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For notational convenience, set

At=t,-1,| (3.5)

(8B),=B(t)-B(1) (3.6)

Using the same procedure used in 3 4, and equating Eqs. 3.1 and 3.2, the following is found

3.7

where dis equal to 2H, his equal to Eq. 3.5 and ¢ represents Eq. 3.6. The Hurst exponent’s
range is between zero and one. When the Hurst exponent is closer to 1, the signal is smooth
without a lot of detail. However, when the Hurst exponent is closer to 0, the signal is very

coarse with lots of detail. To compute the variance dimension, the following formula is used

D =E+1-H (3.8)

where H is the Hurst exponent and E is the Euclidean dimension. For the noise separation,
E is equal to 1. Therefore, to find the variance dimension, the slope found by Eq. 3.7 is

computed and used in dimension calculation described by Eq. 3.8.

3.3 Computation of the Hurst Exponent

The computation of the Hurst exponent can be efficiently calculated using the above
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described power law. A real time analysis extension has also been developed by Kinsner
[Kins94] however, the requirement for real time analysis by this system is not an issue. The
first step in the analysis is determination of several important parameters. The first of these
parameters is the number of samples to be analyzed. Since the signals being analyzed are
discrete, the number of samples is finite and defined as N;. The next parameter to be found
is the maximum number of intervals used to determine the Hurst exponent. The maximum
number of intervals defined by a b-adyic sequence (b°, b', b%,...) is denoted by K, and is
found by

log(V,)
log(d)

K itoor| 2220 3.9)

However, to ensure a good covering of the signal by the intervals, the size of the intervals
should be reduced such that more than 30 intervals will fit within the signal. If this is
achieved, the variance is statistically valid. To find the largest number of intervals under this

criterion, the following is used

L S (3.10)

where

b¥9>30 (G.11)

To select the value of 5, the type of analysis must be known. If a high degree of detail about

the fractality of a signal is required, the dyadic sequence is best suited. By selecting b equal
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to 2, the above process is called fractal amplification [Kins94]. However, we only require the
fractal dimension to determine a point at which the noise ends and the signal begins. By
selecting b equal to 1, those portions of the signal corresponding to noise will have a higher
fractal dimension and the portions corresponding to the transient will have a lower fractal
dimension. This phenomenon is due to the fact that by having the intervals with smaller
values, the correlation between these samples is more significant than if the intervals were
larger. Thus when the signal is highly uncorrelated, the dimension is higher than if the signal
were more correlated. However, when 5 is equal to 1, the parameter calculation for X, is
indeterminate. To combat this situation, the parameter calculations should proceed with

equal to 2 and K, found using

K, =2Kmax-kbf) (3.12)

The variance dimension operates in a loop from K, to K, where the variance between
samples is computed for varying intervals governed by the loop index, £. K, is defined as
an integer greater than one to avoid calculating the variance between adjacent samples. Once
in the loop structure, two new parameters are computed with each decrement of the loop
index. The first of these parameters is the size of intervals, n2,, where the subscript £ is the

loop index. The following is used to compute 7,

n=b* (3.13)

If b is set to 1, m, is equal to &. Now that the interval size has been defined, the number of

intervals required for complete or near complete coverage of the signal is found by dividing
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the number of signal samples by #,. The number of intervals is denoted by N,. A complete
coverage is obtained if the interval size exactly divides the number of signal samples. A near
complete coverage results if the interval size does not exactly divide the number of samples.
If a near complete coverage occurs, the last interval is ignored. In the worst case, 8 samples
are ignored for signals with samples sizes of 512 when b is equal to one. This represents a
total of 1.56 percent of the samples being ignored. Thus, the error due to ignoring the last
interval is negligible.

Once these loop parameters have been computed, the actual variance calculation can
be performed. The variance is found using

Ny Ny 2
Var(AB)FNl_l ,):{ (AB)fz’"NL( Yy (AB)J,,) ] (.19)
k = k

=

Once the variance for n, is calculated, the logarithms (logs) of the interval size and variance

are calculated as

X, =log(n,)
Y,=log(Var(A B),)

(3.15)

The logs are taken in accordance to equation 3.4 as required for the log-log plot to determine
the power law. This completes the loop for a particular value of & The value of £ is
decremented by b in order to determine the new loop parameters. Once the parameters have
been found, the variance is calculated and the logs are taken. This procedure is continued

until k reaches K.
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To find the slope of the line found in the log-log plot, the method of least squares is
employed. The formula for the computation of the method of least squares is

i=1 i=1

i=1

K K K
KX X T XYY,
g=icl G.16)

where X and ¥, are defined above in Eq 3.15. To obtain the Hurst exponent, the slope
computed in Eq. 3.16 is divided by 2 since the power law’s exponent is 2H. With the Hurst

exponent in hand, the variance dimension is found by

D,=2-H (.17

for the signals operated upon in this study.

3.4 Implementation of the Variance Fractal Dimension Trajectory

Using the technique for computing the variance dimension above, a software
implementation for noise separation can be developed. The variance dimension is well suited
for discriminating between noise and signal since the noise component is very uncorrelated
whereas the transient portion is highly correlated. However, to find this junction, the variance
dimension cannot be applied to the input signal as a whole. In order to find the noise-
transient location, the variance dimension must be measured within windows containing a
piece of the signal consisting of both the transient and noise. When the window contains

mostly noise, the variance dimension is high, near 2. If the window contains both the
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transient and noise, the variance dimension is usually between 1.3 and 1.8 and if the window
contains only the transient, the variance dimension is below 1.3. It is important that the
window is not too large nor too small. If the window is too large, the noise-transient
transition point cannot be localized efficiently since the window could contain a small section
of the noise and a large piece of the transient. The variance dimension will indicate that the
transition point has been reached when in fact the window contains noise. If the window is
too small, the statical validity of the variance calculations is brought into question. As was
mentioned above in the previous section, the number of intervals covering a signal should
exceed 30. This study utilizes a window size of 512 samples. This ensures that the variance
calculations are valid by having all interval coverings consisting of 30 or more intervals.
Using a window size of 512 also allows for accurate noise-transient transition localization.
Another consideration for good transition localization is window overlap. If the windows do
not overlap, the transition point may occur within one of the windows but the variance
dimension will not indicate this unless the window size is very small. However, since the
window size has been chosen to be 512, the transition localization will be very poor if the
transition point occurs in the middle of a window. With this in mind, it is clear that the
windows should heavily overlap one another. In fact, the variance dimension window is only
incremented one sample to guarantee good transition localization.

With the window size and window increment size set, the noise separation utilizing
the variance dimension can begin. The first step in the implementation is the reading in of the
file generated by the acquisition system. Once the file has been read in, the size of the file is

reduced from 16,384 samples to 4,096 samples. The reduction is achieved by averaging four
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adjacent samples. This averaging is justified by the fact that further averaging will take place
once the transient has been localized. By reducing the size of the signal, the separation
process is accelerated by having less samples to analyze. With 4,096 samples, the detail
contained in the signal is not significantly affected and the transition point localization remains
accurate. Figure 3.1 shows the contents of the circular buffer and the variance fractal
dimension of the transient and noise components. It should be noted that the noise occurring
after the transient in Fig. 3.1 is actually a part of the noise recorded prior to the onset of the
transient. The location of the noise occurring after the transient is due to the fact that the

circular buffer is written without realigning the noise to its proper position before the
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Fig. 3.1. Variance fractal dimension of a recorded transient.
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The variance dimension is calculated in a separate function that is passed a window
containing 512 samples of the signal. The variance dimension function returns the variance
dimension which is stored in an array. The value of 5 is set to 1 with K__ equal to 16 and
K., set to 2. The loop index £ is set to the value of X__ and is decremented after each
variance calculation. The variance calculation used in the implementation is identical to Eq.
3.14. To compute the variance dimension, the method of least squares is used to find the
slope of a line that best fits the points representing the log of the variance that is computed
in each loop iteration. Once the slope has been found, it is divided by 2. The slope divided
by 2 equals the Hurst exponent which is then subtracted from 2 to determine the variance
dimension. Once the variance dimension has been returned for the current window, the next
window is constructed from the current window by incrementing its position by one sample.
This new window is passed to the variance dimension function for analysis. This process is
repeated until the window has incremented through every sample. However, when the
window reaches the 3,585® sample, the window’s size exceeds the size of the signal. To
remedy this situation, a wraparound procedure is put in place. Thus, when the window
exceeds the signal size, those samples in excess are filled with the signal samples starting at
the first sample. Figure 3.2 gives a visual interpretation of this procedure. This procedure
is valid due to the fact that a circular buffer is used in acquiring the signal. By implementing
a wraparound policy, a complete coverage of the variance dimension is assured.

With the variance dimension measured for each window, the noise separation can
proceed. The first step in the noise separation is the localization of the minimum dimension.

For most signals, the minimum dimension indicates the transition from noise to transient. The
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localization of the minimum dimension consists of a complete search of the array containing

the variance dimensions for each window.

Signal = L il
4,096 Samples & i;ggfll-?qmper
Wrapped Around Portion
Signal v

Fig. 3.2. Wraparound procedure.

When a local minimum dimension is located, the minimum’s position within the array is
stored. With each new local minimum found, the previous minimum is overwritten and the
new location is stored. When the search is complete, the minimum currently stored becomes
the global minimum representing the transition point. However, the minimum dimension does
not always indicate the transition from noise to transient, thus requiring additional analysis.
It is known that as the window passes over the noise and into the transient, the dimension
begins to drop. By taking the derivative of the slope of the drop, another indicator results

which can be used to detect the beginning of all transients. However, the drop in the variance
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dimension is not monotonically decreasing. In fact, there are many subtle changes in the
direction of the slope. To smooth out these subtle changes a lowpass filter is passed over the
variance dimension array. The filter takes 101 samples and averages these points. The
sample upon which the filter is centered is replaced with the average value. Each sample
contained in the variance dimension array is filtered to smooth out the subtle details. A
wraparound policy is again implemented when the filter exceeds the dimensions of the
variance dimension array. To calculate the derivative, a search is initiated to locate where the
dimension begins to indicate the onset of a transient. This is achieved by locating the point
in which the dimension drops below 1.8. When this point is found, the derivative is calculated
tomuwetilechangehthevaﬁmdinmsion. The derivative is calculated for 532 samples
past the point at which the dimension drops below 1.8. In order to emphasize the derivatives
most likely to indicate a transition point, a weighting of the derivatives is put into place.
Since derivatives between 1.3 and 1.0 are most likely to indicate the beginning of the
transient, these are derivatives that are emphasized the most. The weighting of the derivatives
is defined by

weighted derivative[i]=50@vnance dmennionli]) o dorjvative[i] (3.18)

where i ranges between 1 and 532. Weighting the derivatives as they near 1.0, ensures that
more negative changes occurring between higher dimensions does not lessen the accuracy of
localizing the transition point.

There are two cases when the maximum negative slope is used to indicate a transition
from noise to transient: (i) when the distance in samples between the minimum dimension and
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maximum negative derivative is exceedingly large (greater than 532 samples), and (ii) when
the transient does not begin at the minimum dimension. The first case occurs when the
minimum dimension reaches a minimum but continues to drop at a rate much slower than the
rate found when the variance dimension drops from approximately 2.0 as shown in Fig. 3.3.

2.0
Transient Begins Here
£
e
S
a Minimum Dimension
k4
=
=
-
1.0 Variaﬁce Dimension Continues to Drop

Fig. 3.3. Slow monotonic decrease in variance dimension.

The second case is indicated by a plateau as the variance dimension drops as shown in Fig.

/\ / Transient Begins Here
—\ 7~ Minimum Dimension

34

2.

(~]

Variance Dimension

1.0

Fig. 3.4. Plateau indicating the onset of the transient.
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The first case is easy to detect, if the minimum dimension location is found after the slope
changes from being negative to positive or zero, the minimum dimension occurs too late to
indicate a transition point. Therefore, the maximum negative derivative should be used as the
indicator. The second case requires that the positive derivatives be monitored and used in
finding the transition point. To locate the plateau, the zero crossing point of the derivative
is recorded. If the maximum negative derivative occurs after this point, the maximum
negative derivative before the zero crossing is taken as the transition point between the noise

and the transient. Figure 3.5 gives a visual description of this second case.

Zero Crossing Point
Maximum Negative
Derivative Before
Zero Crossing Maximum Negative Derivative

—— ————————— . — — . —— e~ ————— ——|

Sélected As Indicator

Fig 3.5. Selected indicator for the onset of the transient.

Since the window in which the variance dimension is calculated is incremented by only
one sample for the next calculation, the locations of the dimension or the derivatives recorded
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represent the transition point. To extract the signal from the noise, 2,048 samples beginning
at the recorded location are placed in a new array. This array now contains the transient
which is further processed for the feature selection procedure discussed later. The feature
selection procedure requires further reduction in the transient’s size, to a total of 64 samples.
Each of these 64 samples are super-samples constructed from averaging 32 consecutive
samples from the transient array. Figure 3.6 shows this procedure. On completion of the
generation of the super-samples, the software implementation writes the super-samples to

disk for use by the feature selection procedure.

——— ————— o —— ——— — ———— ————

2,048 Samples >

32 Samples

/Supet-sample

------ 64 Samples --—----

Fig. 3.6. Creation of the super-samples.

3.5 Summary
This chapter has described a technique for separating in time the noise component
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from the transient by implementing the variance dimension. The variance dimension is
computed within a window which is passed over the noise and transient. A minimum in the
variance dimension or a large negative derivative indicates that the transient has been located.
The offset of the window in which the minimum variance dimension or negative derivative

occurs, localizes the beginning of the transient.

-34-



CHAPTER 4
MULTIRESOLUTION ANALYSIS

4.1 Intoduction

This chapter will deal with the issue of feature selection. Feature selection is
responsible for selecting the features of the transient that best represent it. These features in
turn, are used to identify the transmitter responsible for the transient’s generation. In order
for efficient feature selection, a means of representing the features is required. The
representation should be compact, and must include the reconstruction of the signal from the
representation. A further restriction on the representation is that it must handle the non-
stationary nature of the transients. An excellent candidate is wavelet analysis, [Chui92]
[Daub94] [Youn93], and in particular, the multiresolution analysis [Mall89]. In the time
domain, a wavelet is a signal with two special properties: it must be oscillatory and have
compact support, meaning the time duration of the wavelet is limited. The wavelet analysis
is similar to Fourier analysis in its function and operation. As with Fourier analysis, wavelet
analysis transforms a signal in both continuous and discrete contexts. However, unlike the
Fourier domain, the wavelet domain is two dimensional with a time and scale axis. The two
dimensions are required to accommodate the compact support of the wavelet. Wavelets are
scaled and translated to transform a signal from the time to the wavelet domain. As the
wavelet is scaled, wavelet analysis measures increasingly more detail in the signal. The
translations of the wavelet ensure a complete coverage of the signal due to its compact

support. This is in comparison to the one dimensional Fourier frequency domain which
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represents the frequency composition of a signal. Thus, wavelet analysis allows the
localization of both time and scale in representing a signal.

4.2 Mulitiresolution Analysis

Several techniques exist for transforming signals from the time domain to the wavelet
domain in both continuous and discrete applications. However, a particularly useful technique
for generating a compact representation of a signal for feature selection is multiresolution
analysis. The basic idea behind multiresolution analysis is assuming there exists a set of

spaces such that

VeV VeV V.. @.1)

with the following property, if

Sfx)eV, (4.2)

where f(x) is some function, then

fx-27K)eV, “4.3)

and

A2x)eV, (4.4)

Also required in the analysis, is an orthogonal complement of V; in V¥, called ¥,. Thus,
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which indicates that W, contains the added detail to get from 7 to V;,. By expanding Eq. 4.5,
the following results

Via=WAW,..0W, ,0W, 3. 4.6)

Thus, any resolution can be constructed from the sum of added details. By calling the
complement space the wavelet space, and having a wavelet function defined as the orthogonal
basis that adheres to the properties listed above, the multiresolution analysis technique is
somewhat intuitive. If a signal is projected on both the ¥, and W, spaces, ¥, will contain the
signal at a lower resolution while #, will contain the detail removed from the signal due to
its projection on ¥;. With V;in hand, V is projected on V,,, and W,,,. This time V,,, contains
the signal at even a lower resolution while V,,, contains the detail corresponding to this
projection. This decomposition is continued until the minimum resolution is met, usually the
D.C. component of the signal. Once the decomposition is complete, Eq. 4.6 has been
satisfied by the generating of all the added detail components and hence the contribution of
each scaled and translated wavelet function to the signal has been determined. The wavelet
function’s contribution is represented by a wavelet coefficient. The larger the coefficients
value, the greater the contribution while smaller coefficients denote lower contributions.
However, one issue is left unresolved, the means of getting from one resolution to the next.
To achieve this, a scaling function, ¢, is implemented to remove the detail from the signal

making it more and more coarse as the decomposition progresses. Both wavelet and scaling
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functions remain unchanged throughout the entire decomposition with the exception of their
scale. The functions are scaled to analyze the signal as its resolution is decreased.

With the discussion focusing on the detail of a signal and the reduction in resolution
of a signal, it seems natural to implement filters to perform these actions. A lowpass filter
could smooth a signal and remove the detail, while a highpass filter could be used to retain
the detail. The application of filters in multiresolution analysis is based on the formation of
a series of perfect half-band filters. The first filter application operates on the entire signal
bandwidth. The signal’s bandwidth is split into two, a low frequency and a high frequency
band. The low frequency band is split again while the high frequency band is placed aside.
The splitting of the low frequency band at each stage is continued until the D.C. component
is reached just as was described above. At each stage, the signal at the output of the lowpass
filter contains less and less detail, thus the lowpass filter can be considered the scaling
function. While on the other hand, the highpass filter output contains the detail of the signal
at the corresponding resolution, thus it can be considered the wavelet function.

Figure 4.1 shows how the bandwidth is split at each stage. Figure 4.1 shows an
important property of wavelet analysis, that is, both scale and time localization cannot be
simultaneously achieved. From Fig. 4.1, the initial splitting of the signal’s entire bandwidth
yields large high and low frequency bands. At this stage the wavelet analysis is looking at the
signal’s most detailed components. In other words, these are the highest frequency
components of the signal which have a very compact duration. As the resolution decreases,
the signal’s detailed components become less compact and are composed of lower

frequencies. It is also noticed that the bandwidth of the components is becoming increasingly
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Fig. 4.1. Bandwidth of filters used in the signal decomposition.

narrow. As the bandwidth of the filters become increasingly narrow as the analysis
progresses, the accuracy of determining the spectral components of the signal is greater due
to the fact that the narrow bandwidth filters pass smaller numbers of possible spectral
components as compared to the larger bandwidth filters. Thus, there exists a correlation
between the bandwidth of the filters used at a particular scale in the analysis and the accuracy
of determining the spectral components of the signal at that scale as shown in Fig. 4.2.

Of utmost importance for feature selection is that the signal representation must be
orthogonal. By choosing an orthogonal wavelet basis function, the projections on the wavelet
space provide coefficients that represent a single component of the signal. Thus, by removing
wavelet coeflicients, that feature of the signal is effectively removed. Therefore, to select the
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Fig. 4.2. The wavelet time-frequency domain.

critical features of a signal, the corresponding wavelet coefficients are chosen to represent the
signal. By using the wavelet coefficients, a very efficient and compact means of representing
the features has been acquired. The analysis implemented in this study used the Daub 4-tap
filter pair which is orthogonal in both scale and translation. In addition to orthogonality, it
is necessary that the signal representation be reversible. That is, it is possible to transform the
representation back to the original signal. This is required to ensure that the features selected
accurately represent the signal. To test the accuracy, the selected features are transformed
back to the time domain and compared to the original signal. If the representation’s accuracy
is too low, further coefficients need to be added. To have perfect reconstruction, a set of four

filters are needed. Two filters are used to decompose the signal while the second pair are
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responsible for the reconstruction of the signal. Figure 4.3 shows a single stage
decomposition/reconstruction system. The filter pair used in decomposing the signal are
labeled G and H while the reconstruction pair are labeled G* and H*. The lowpass filters, G
and G* and the highpass filters H and H* must possess two important properties. The first
of these properties requires that the decomposition/reconstruction system be an identity

system or that

GG*+ HH"=I X))

In addition to the above property, the filters must be orthogonal

GH*=0 (3.8)

and

HG*=0 (3.9)

If these conditions are met, perfect reconstruction is attainable.

g—

.....................................................................

Decomposition Reconstruction
Fig. 4.3. Single stage decomposition and reconstruction.
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The reconstruction phase is similar to decomposition stage except that the analysis
begins at the D.C. component. The wavelet coefficients corresponding with the lowest
resolution are passed to G* and H*. The signals are summed together and passed to the next
stage. The resultant signal is passed through the next pair of G* and H* filters and summed
together. This analysis is continued until the signal is reconstructed. Figures 4.4 and 4.5
summarize the decomposition and reconstruction of a signal. The down-sampling or up-
sampling is required to scale the signal appropriately for the next stage. The down-sampling
is used in the decomposition while the reconstruction phase requires up-sampling. To down-
sample a signal, every second sample is thrown away while up-sampling is achieved by

interleaving a zero between each sample. Figures 4.4 and 4.5 can be performed by a

W avelet Coefficients

A A AA
H (2
—{H @
G @ H @
G @ H @)
Input G @)}
G @+

Fig. 44. Signal decomposition.
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computer as described in the next section.

Wavelet Coefficients
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Fig. 4.5. Signal reconstruction.

4.3 Software Implementation

The software implementation of the wavelet transform is developed in the book
Numerical Recipes in C [PTVF92]. The code developed is extremely efficient in terms of
memory use and execution time. To decompose a signal into its corresponding wavelet
coefficients, the impulse responses of the low and highpass filters are convolved with the
signal. The output of the highpass filter are the wavelet coefficients at the analysis scale. The
output of the lowpass filter is scaled by down-sampling and passed onto the next stage. The

impulse response of the Daubechies 4-tap filter contains 4 coefficients defined as
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"o=4‘/.2. (3.10)
cl=34ﬁ3 @.11)
c,=34'f2.3 (3.12)
and finally,
1-/3
3.13
o2 (3.13)

For the lowpass filter, all the coefficients are positive and when a highpass filter is desired,
c,and c, are negative. To perform the convolution between the signal and the filter impulse
response, a matrix is constructed consisting of the filter coefficients. The first row contains
the filter coefficients in their lowpass configuration as does the third, fifth and all odd rows.
However, each odd row entry is offset two positions from the previous odd row entry’s
location. All other matrix entries are set to zero. Figure 4.6 shows this configuration.
Inspection of Fig. 4.6 indicates the highpass filter coeflicients are contained in the even rows
of the matrix with a similar offset pattern. This interleaving of filter coefficients is permitted

since every second row of separate low and highpass filter convolution matrices would be
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empty. The same type of convolution matrix is used for the reconstruction of the signal
except the matrix shown in Fig. 4.6 is inverted. With the constraint of orthogonality placed
on the matrix, the inverted matrix is equal to the transpose of Fig. 4.6. To guarantee
orthogonality, the following two constraints must be satisfied

e+ cf* c:*» cl=1 (3.14)

and

€6+ €46,=0 (3.15)

" Using the coefficient values given above, it is noted that both of these constraints are met

allowing the transposition of the matrix.

C, C, C, C,
C,-C, C, -C,
C, C, C, C,
3 'Cz C1 ‘Co\
"C, G, €, G
C3 'Cz Cl -CO
C, G Co C,
C3 ‘Cz C3 'C2

Fig. 4.6. Matrix used to decompose the signal.
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To decompose a signal of vector length N, the vector is muitiplied by the convolution
matrix. The result is a second vector of length N containing N72 wavelet coefficients and N/2
smooth data. The two data types are interleaved and require sorting. The odd vector
elements contain the smooth information while the even elements contain the wavelet
coefficients. The vector is sorted with the smooth information residing in the first N/2
locations and the wavelet coefficients placed in the remaining N/2 locations. The convolution
matrix is reapplied to smooth information resulting in N/4 new wavelet coeflicients and N/
smooth elements. Once again the data is interleaved and requires sorting in the same fashion
used above. The application of the convolution matrix is continued until only two smooth
components remain, at which time the vector contains all the wavelet coefficients for the

signal. Figure 4.7 shows the interleaving and sorting procedure for an input vector of size 8.

)

X $; Sy S S,

X, d, S, D, S,

X3 S, S3 S, D,
X, d, Ss D, D,
Xs [_—:\‘> s; |52 d, :> d, [So=e| d,

X¢ d, d, d, d,

X, S, d, d, d,

| Xg | | d, | d, d, | | d, |
Application of Fig. 3.6 Application of Fig. 3.6

Fig. 4.7. Coefficient ordering as a result of applying the matrix found in Fig. 4.6.
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The algorithm requires inputs of power 2, but does not restrict the size of the exponent. The
maximum size vector is restricted by the computer’s memory. The inverse transform is
similar except that the transpose of the matrix shown in Fig. 4.6 is used.

Multiresolution analysis provides an excellent framework for representing the features
of a signal in a compact manner. The transient input to the above described software
implementation is the output of the noise separation component described in the previous
chapter. The vector size of the input is 64 samples and output of the wavelet analysis
component is 64 coefficients. If reconstruction of a transient is required, the input is 64

coefficients and the output is a 64 sample signal.

4.4 Summary

This chapter provides a description of multiresolution analysis. Multiresolution
analysis provides an excellent means of independently representing the features of the
transients. To select the critical features of the transient, the corresponding wavelet
coefficients are selected. The process is completely reversible allowing the reconstruction of

the transient from the selected coefficients.
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CHAPTER 5
GENETIC ALGORITHMS

5.1 Introduction

By using multiresolution analysis to transform a transient into a set of independent
coefficients, a compact means of representing the features of the transient is obtained.
However, not all of these features are significant and can be removed, leaving only those
features that are most representative of the signal. One possible technique for feature
selection is the genetic algorithm [Davi91] since it looks at many permutations of selected
features and- selects the best model of the original transient based on a selected measure of
fitness. Genetic algorithms mimic natural evolution of species by the implementation of
crossover, mutation, and selection of the fittest operations. It would be most desirable for
the genetic algorithm to operate realistically like natural evolution, however, the computer
has finite limitations. These limitations include, limited memory to hold a very large number
of species and processing speed to operate on these large number of species in a finite amount
of time. In the following sections, each of the operators will be described along with some

heuristical features that ensure correct operation.

5.2 Terminology

Before the genetic algorithm is discussed in detail, some terminology is described to
aid in the understanding of the genetic algorithms operators. The genetic algorithm operates
on chromosomes which store the selected wavelet coefficients for a particular evolving
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solution. Genes represent the individual wavelet coefficients which make up the
chromosome. The gene is a binary operand since it contains a one if the wavelet coefficient
is selected and a zero if it does not. The chromosomes are stored in an array called the
genetic pool. The genetic pool is passed between genetic modules, modified according to the
function of the module. After each application of the genetic modules, a new generation of
evolving solutions is created. The number of generations allows for a means in determining
when to terminate evolution. When the genetic algorithm is complete, a genetic solution is
returned. This is the best solution found in the genetic pool when the genetic algorithm is

terminated.

5.3 Genetic Pool Initialization
The genetic pool is the foundation upon which the genetic algorithm is built and is
where the evolving solutions reside and are operated on. The dimensions of the genetic pool

are 20 chromosomes by 64 genes. Figure 5.1 pictorially shows the genetic pool.

° 1 2 1 ° 1 ° A B Chromosome 1 ------- ° -
AL L1210 A Chromosome 2 ------- °
o1 01 01 °, ------- Chromosome 3 ------- 0l
iy 1 AL 1] T Chromosome 20 ------- °
- 64 Genes +

Fig. 5.1. The genetic pool.
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The first step in the initialization is performing the wavelet transform on the input signal and
storing the coefficients in a vector equal in size to the number of coefficients. It has been
observed from the study of transients that the first eight wavelet coefficients contribute a
significant amount of information to the signal. Therefore they should always be included in
all evolving solutions. These coefficients describe the D.C. and low frequency information
of the signal which is required for proper feature selection. To accommodate this
requirement, the genetic pool initialization procedure adds these eight coefficients to the
chromosomes by placing a one in each of the first 8 genes. Once this is complete, a random
placement of the remaining allocated coefficients is performed. The remaining number of
coefficients for allocation is equal to the total number of coefficients provided to represent
the features to be selected, subtracted by 8. The random placement is required since the
crossover and mutation operators do not add coefficients but just move coefficients to new
locations that improve the fitness of the evolving solution. In order to perform the random
placement, the chromosomes are split into two pieces for reasons discussed in the crossover
section. The first section contains 24 genes (8® to 32™ genes) while the second section
contains 32 genes (33" to 64® genes). Each section is assigned a certain number of
coefficients from the remaining allocated coefficients. The number of assigned coefficients
in each section remains constant throughout the entire evolutionary process. The assignment
of the coefficients is determined by the total energy of all the coefficients contained in each
portion, the more energy, the more coefficients are allocated to the section to represent the

features of the transient. The formula used for the section coefficient allocation is:
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Section Coefficient Allocation=

7 oefficient Energy 5.1
Section Coefficient > «(Remaining Allocated Coefficients) G-
Total Energy
where
Total Energy=First Section Coefficient Energy+
2)

Second Section Coefficient Energy

The section coefficient allocation is performed for both the first and second sections. Once

the allocation has been determined, the genes are modified accordingly. The modification is

" performed in.the following manner and is shown in Fig. 5.2:

i. A random number in the appropriate section range is generated.
ii. The gene that corresponds to the random number is set to one.
iii. The above two steps are repeated n-/ times where n represents the section
allocation.
iv. The above steps are repeated for the second section.
After performing these procedures, the genetic pool has been initialized and the genetic

algorithm can begin evolution.

§.4 Crossover
As in nature, the genetic algorithm attempts to take the best attributes of the previous
generation and passes these attributes to the next generation. The task of this operation is

performed by the genetic algorithm’s crossover module. As the name implies, crossover takes

-51-



Chromosome

olol11lo0lo|

Section Partition

n random numbers are
generated between first gene
and section partition

Random
Number
Generator

Fig. 5.2. Initialization of the genetic pool.

two portions of separate chromosomes and combines the portions into a new chromosome
as shown in Fig. 5.3. The hope is by taking the components of the previous generation
(parents) and combining them together (child), a better evolving solution will resuit.

This implementation of the genetic algorithm requires that the total number of
coefficients selected does not exceed 32. For this to occur, the crossover point must remain
fixed and the number of coefficients contained in each section must also remain fixed. As was
mentioned in the previous section, the partition point between the two sections was between
the 32™ and 33" genes. This partition point is in fact the crossover point. If the crossover
point is not fixed, the number of coefficients will increase past the limit imposed by the

genetic algorithm. For example, consider the scenario analyzed in Table 5.1.
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Fig. 5.3. Crossover.

Table 5.1. Two chromosomes are selected for crossover and the crossover point is set at 32.

Chromosome 1 24 CoefTicients are contained 4 Coeflicients are
in this first section contained in this second
section
Chromosome 2 16 Coefficients are contained 10 Coeflicients are
in this first section contained in this second
section

Now using the crossover scheme shown in Fig. 5.3, the total number of coefficients selected

and contained in the child chromosome is 34, exceeding the limit by 2 coefficients. Hence,

by fixing the crossover point and the number of coefficients contained in the sections, the

coefficient limit can never be exceeded.

Now that the requirements for the crossover procedure have been defined, the
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operation of the crossover procedure can be described. The first stage of crossover is the
random selection of two chromosomes which become the parents. The random numbers used
by this genetic algorithm implementation are generated by the built in multiplicative
congruential random number generator provided in the C programming language. To
perform crossover, the first coefficient section of the first parent is copied to a vector while
the second section of the second parent is also copied to this vector. This vector is called the
child and randomly replaces one of the parent chromosomes. This copy and replacement
operation is repeated 20 times before the crossover procedure is complete. The crossover

procedure is performed once every generation.

5.5 Mutation

To further evolve a solution, mutation is performed on the genetic pool. When
mutation is performed on a chromosome, it is hoped that the chromosome being mutated will
further evolve the chromosome. To perform mutation, a chromosome is selected at random
and with this chromosome two randomly selected genes are also selected. The value of each
gene is evaluated and if it is found they are complementary, their values are switched. Ifit
is found that their values are not complementary; i.e., both are zeros or ones, no switching
is performed. This implementation is used to ensure that the number of selected wavelet
coefficients does not exceed 32 as was the case in the crossover procedure. Figure 5.4 shows
the randomly selected chromosome and one of the genes being mutated. It is assumed that
in Fig. 5.4 the other gene being mutated contained a one. The arrows show that a zero is

taken from the randomly selected gene’s location, complemented, and replaced. It should
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also be noted that mutation can only take place within crossover ranges defined in the
previous section to keep the number of selected coefficients constant in each range

throughout the genetic algorithm implementation. The maximum number of mutations

performed per generation is set at 8.
Randomly Selected Gene\
Chromosome

~ v C

0 |1

Fig. 5.4. Mutation.

It is important not to disturb the chromosomes by over mutating the genes. If too many genes
are mutated, it is possible to degrade the evolving solutions instead of enhancing it, thus
increasing the generations required to find a satisfactory solution. Therefore, it is advisable
to keep a number of mutations performed per generation to a very limited number. In this
study, only a hittle over half a percent of the genes are mutated per generation, thus allowing

for a smooth evolution of the chromosomes.
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5.6 Selection

The final module performed during each generation is selection. Selection is
responsible for selecting the most fit evolving solutions and passing them on to the next
generation. Those evolving solutions not fit enough are not included and are disposed of.
To determine the fitness of a solution, the energy of the selected coefficients are compared
to the energy of all the coefficients. The result of this comparison is a number between zero
and one. To determine the energy of the evolving solutions represented by the chromosomes,
a weighting scheme is used. It has been observed from the study of transients that different
regions of wavelet coefficients typically have different effects on the quality of the model
being generated. Table 5.2 summarizes these observations.

Table 5.2. Effect of inclusion of wavelet coefficients on model quality.

Coefficient Range Effect of Inclusion on Model
8*to 16" Great
16® to 32 Large
32 to0 64* Small

Using the information found in Table 5.2, the following formula has been derived:

Table 5.3. Contribution made to total energy by each coefficient range.

Coeflicient Range Contribution To Total Energy
8% to 16*E, 100%
16*to 32¥E, 90%
3240 64* E, 50%
Total Energy = E,+0.90*E,+0.50*E,

Once the total energy of the selected coefficients has been determined for each chromosome,
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it is divided by the total energy of all the coefficients. These normalized fitness values are

again normalized to the total of the normalized fitness values. A genetic roulette wheel is

constructed from the normalized values:
4
Roulette{i)=Y , Normalized-Normalized Fitness i=1,..,20 (5.3)
=1
where
20
3" Roulette[i]=1 5.9

i=1

A random number between zero and one is generated and compared to Rowlette[i] for each
i. When the random number is greater than Roulette[i], i points to the chromosome to be
selected for the next generation. The selected chromosome is copied to a temporary genetic
pool and another random number is generated for the next selection. The random number
generation and comparison is performed 20 times in total in order to fill the temporary genetic
pool. Once the selection is complete, the temporary pool replaces the original genetic pool
and the next generation has been established. The whole idea behind the roulette selection
is that the greater the fitness of an evolving solution, the greater the chance of selection and
being passed on to the next generation.

Since the number of selected coefficients is limited by the coefficient allocation
provided to represent the transient features, the energy of a model’s selected coefficients

never reaches that of the original transient represented by all the coefficients. It is the

-57-



responsibility of the genetic algorithm to select those coefficients that maximize the energy
of the allocated number of coefficients provided. Models with a greater level of maximization
tend to proceed to the next generation for possible further evolution.

Once the selection is complete, the whole process of crossover, mutation, and
selection is repeated until the termination signal is given. The termination signal is given once
the 100® generation has been completed. By the 100* generation, no further evolution was
exhibited by the chromosomes, thus new generations will not enhance a solution any further.
Once the termination signal has been received, the chromosome with the highest fitness is
selected as the genetic model and is prepared for classification. The preparation for
classification involves the normalization of the selected coefficients between zero and one by
dividing the coefficient by the total energy of its wavelet scale. These normalized wavelet
coefficients are written to a file and used by the neural network for training or classification.
If a wavelet coefficient is not included in the model, its value is set to zero which is also

written to the file.

5.7 Summary

This chapter describes the genetic algorithm which is a very powerful feature selection
tool. Selection is achieved by implementing the four modules of a genetic algorithm. The
first module is the initialization of the genetic pool followed by the repeated application of
crossover, mutation, and selection of the fittest. The genetically evolved solution containing
the most significant features at the end of the evolutionary process is selected as the output.
This output is either used to a train neural network or to be classified by a neural network.
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CHAPTER 6
NEURAL NETWORKS

6.1 Introduction

In the realm of computing, it would be desirable to have a computer learn in a similar
way that our brain leamns. A computer cannot learn through experience, nor can it generalize
as the human brain can. The brain is highly complex, nonlinear and has a parallel structure.
It is made up of in the order of 10 billion neurons and 60 trillion connections (synapses)
[Hayk94). To mimic this structure, a software implementation of a greatly simplified brain
called a neural network has been developed. The software implementation uses neurons
constructed from linear or nonlinear elements, connections called weights and the means of
training the network to learn. Neural networks range in complexity from the very simple to
the very large with a complicated topology. However, since this thesis does not focus on
neural networks, one of the simplest and well known neural networks has been selected to

perform the required transient classification.

6.2 Neurons

To begin with, the neuron is described in terms of its components and inputs. The
neuron is a simple device that has a variable number of inputs which depends on the network
topology. The neuron sums together these inputs and passes the total through some transfer
function called the activation function. The transfer function can be both linear or nonlinear

depending on the network application. In mathematical terms, the summing component of
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the neuron is described by

"ff: WX 6.1

J=l

where u is the input to the activation function of the neuron, w denotes the weights
connecting the neuron to other neurons or inputs, and x is the output of that neuron or input.

The output of the neuron is described by

Y=, -6y (6.2)

where ¢ represents the activation function and & denotes the threshold term. The threshold
allows greater learning potential by allowing the decision boundary to leave the origin. By

assigning the threshold a weight and input, Egs. 6.1 and 6.2 can be rewritten as

vk=£ WX, (6.3)
j=0
and
Ye=b(v) 6.4
where
xp=-1 (6.5)
and
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Wio=0; (6.6)

The activation function can be linear such as

d(v)=av ©.7)

where a is some constant or it may be nonlinear such as the logistic function

1
1 +exp(-av)

d()= (6.8)

where a is the slope parameter. As a increases, the slope of the logistic function becomes
steeper and in the limiting case, when a goes to infinity, the logistic function resembles a step

function.

6.3 Network Architecture

The architecture of a neural network refers to the configuration of neurons and the
connections between them. The neurons in a network are ordered in layers. The number of
neurons in layer is not restricted nor are the number of rows. As the number of layers
increases, the greater the capacity of the network. The first layer of the network is referred
to as the input layer. This layer accepts the inputs to the network and passes them to the next
layer. The connection between layers are referred to as weights. The weights are numbers
that correspond to the strength of the connection between neurons. The input is propagated
through the neuron via the weights to the output layer. The output layer consists of a number
of neurons whose outputs represent the classes the input data has been separated into. If one
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output is much larger than the others, the data is considered to be classified to the class
represented by that output. If the network consists of only two layers, the input and output
layers, the network is referred to as a single-layer feedforward network. The term
feedforward denotes that the input is propagated forward through the network. If the
network contains more that two layers, the network is called a multilayer feedforward
network. The layer between the input and output layers are called the hidden layers. Figure
6.1 gives a pictorial representation of a single layer network while Fig 6.2 shows a multilayer

network.

OutFut

Output Layer

cights

Fig. 6.1. Single layer neural network.
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Fig. 6.2. Multilayer neural network.

It is noticed that every neuron contained in each layer is connected to every neuron in the next
layer, this type of network is said to be fully connected. If some of these connections are
removed, the network is then a partially connected network. Only fully connected multilayer

networks are used in this study to classify the transients collected.

6.4 Learning
A neural network learns by showing it an input pattern and the desired output for the
particular pattern and adjusting the network weights appropriately. The error between the

desired output and actual output that the network computes determines the amount of change
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required in the network’s weights. This type of learning is termed supervised learning since
the desired output is provided, giving the network clues as to the right response. However,
a means of adjusting the weights from the computed error must be found. The back-
propagation training algorithm is the technique for propagating the error back from the output
layer to the input layer, adjusting the weights as it progresses. The back-propagation
algorithm begins by propagating an input to the output and recording the network output.
The error between the output and desired output is measured by

E:-;-lz el (6.9)

where

e=y,~d, (6.10)

where y is the actuat output and d denotes the desired output. The factor of a half is included
for computational convenience while the square term ensures that the errors do not cancel one
another out. With the error known, the network weights can be adjusted to minimize the
error. If the error is differentiated with respect to the weight being adjusted, the gradient of
the error curve at that weight is found. Figure 6.3 gives an example of such a curve. If the
gradient is negative, the weight must be adjusted in the positive direction. On the other hand,
if the efror gradient is positive, the weight must be reduced. This technique is known as the

gradient descent. The adjustment in the weight is proportional to the error gradient given by

oE
AW,.]; ‘ﬂ; (6.11)

i
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where 7 is the learning rate which is described later. The negative sign in the equation is

related to the above discussion on how to adjust the weight.

Positive Slope -
Modify w, By Reducing It

w(n) w,

Fig. 6.3. Weight modification with respect to the error.

To evaluate the gradient, the chain rule must be employed since the gradient cannot be

evaluated directly. The gradient is given by

E _OE 9, v,

(6.12)
aw, dy,dv,ow,

To evaluate the first derivative, the error is differentiated with respect to the network output

i

-65-



TRNPRTFRAT e T T v R T

a";‘E 0, —df)z
i
Y,

(6.13)

=y,~d,

The second derivative is evaluated by differentiating the network output by the input to the

logistic activation function with a equal to 1.

a—1
1+exp(v)
dv

i

=y(1-y) (6.14)

The third derivative is found by differentiating the input to the activation function by the
weight being adjusted
E) xW,
J

ow,

=x, (6.15)

where x is an input if the network is single-layered and an output of the neuron one layer
down if the network is multilayered. When the thresholds are being updated, the value of x
is equal to -1 and the threshold is treated as a regular weight and updated accordingly. The
above procedure only operates on the output layer and weights directly connected to output
neurons. If the weights are connected to a hidden layer, the procedure must be modified since
the error is propagated through all the neurons in the layer above. In other words, there are
no desired responses for the hidden neurons, thus requiring the error to be determined
recursively in terms of the errors of all the neurons in the layer above. The gradient given in
this case is defined by
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oE __E AE 9y, ov, ayj a"j 6.16)
ny 7 9,50, 30w, '

where the first and second derivatives are calculated as above with the third derivative found
by

82 wY;
-Laxf_zwij 6.17)

where y is the output of the neuron connected by w to the neuron in the layer above. The
forth and fifth derivatives are found in the same fashion as derivatives found in Eqs. 6.14 and
6.15, except that the weight being modified is connected to neurons in the hidden layer, not
the output. As before, when dealing with thresholds, Eq. 6.16 is used with the input being
-1. Now summarizing, the error gradient at an output neuron is found by

2 - 1Y) (6.18)

¥

and the gradient at a hidden neuron is

:w_5=2 -y (1-y )W) 01-y))x) (6.19)
f 3 i

Once the gradient has been found for the appropriate weight, the weight modification can

proceed. The weight adjustment is made by the following
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w,(n+1)=w (n)+Aw (n) (6.20)

With the technique for modifying the weights complete, the rate at which the network learns
is still at issue. The learning rate, 7 controls how quickly the network converges on the
minimal error. It should be noted that a high learning rate does not guarantee accelerated
learning due to the large changes made to the weights and may in fact prolong the training
time. A more appropriate approach is to set the learning rate at a more conservative level to
ensure satisfactory training is achieved. If the learning rate is too small, training will occur
but at the expense of training time. Another approach to accelerate leamning is the application
of momentum. Momentum uses the previous weight adjustment and adds it to the current

adjustment. The mathematical expression of momentum is

Aw,(n)=alw,(n-1)+Aw,(n) ©21)

where a is the momentum parameter. As the momentum parameter is increased, the effect
of momentum is greater while decreasing it reduces the effect. If the signs of the weight
adjustments are the same, the momentum from the previous adjustment increases the current

weight adjustment.

6.5 Network Training
To train a neural network using supervised learning, a set of inputs and desired
network response to these inputs must be generated. This set is referred to as the training set.

Each input is presented to the network and is propagated through the network to the output.
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The error is measured, and the weight and threshold corrections are made. However, a single
pass through all the inputs usually does not constitute a complete training. The inputs must
be presented to the network many times before training is complete. To test the quality of
the training being performed, a separate set of input data is set aside to test the network. The
testing set is usually very small, roughly 10 percent of the total inputs used for training. This
data is used exclusively for testing the network and is never included in the training set. As
with the training data, the testing data has the desired outputs determined in order to measure
the network error. Since this testing data is not included in the training of the network, the
use of the testing data is an objective means of measuring the network’s ability of generalize.
* The testing data can also be used to terminate training. When the average output error of the

training data falls below a certain point, the training is discontinued.

6.6 Software Implementation

Before the actual training can begin, the weight matrices, threshold vectors, and
neuron output vectors must be allocated. The weight matrix dimensions are governed by the
number of neurons directly connected by the weights. The number of rows of the weight
matrix are equal to the number of neurons above the weights while the number of columns
is equal to the number of neurons below the weights. The threshold vector sizes are equal
to number of neurons contained in their respective layer. The same goes for the neuron
output vectors which record the output computed by each neuron. Once the memory for the
data structures have been allocated, the software reads an input file to determine whether it

is to train or classify data. If the network is to classify data, the network weights and
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threshold are read from a file and loaded in their appropriate location. However, if the
training mode is selected, the weight matrices and threshold vectors are loaded with small
random numbers. Propagation of an input to the hidden layer requires the application of Egs.
6.1 and 6.2. The inputs are read from a file and stored in a matrix. The size of the matrix is
dependent on the network’s mode. If the network is in a training mode, the matrix only has
one row, if the network is in classification mode, the number of rows corresponds to the size
of the training and testing sets combined. Each neuron and its corresponding row of weights
in the weight matrix are multiplied with appropriate input. The neuron’s threshold is then
subtracted from the sum computed by applying Eq. 6.1. Equation 6.2 is evaluated using the
logistic function as the activation function. Each neuron output is stored in the hidden layer
output vector. The propagation continues by evaluating the output layer’s outputs by the
above technique with the inputs to the output layer being the outputs of the hidden layer. The
outputs of the output neurons are recorded in the output layer’s output vector. If the
network is in a classification mode, the outputs of the output neurons are reported to the user
and written to a file for later analysis. Ifthe network is in a training mode, the propagation
of the inputs works in conjunction with the back-propagation training algorithm. The input
propagation is responsible for determining the network errors used by the training algorithm
to modify the weights. The back-propagation training algorithm with momentum is used to
modify the weights according to the error found. Training is continued until the average error
of each output is found to be about S to 8 percent. If this error reduction target cannot be
met, the algorithm will be suspended after 25,000 iterations. Once the training algorithm has

been terminated, all the weights and thresholds are written to a file for later use in
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classification.

The format of input files required by the software depends on whether the network
is to classify data or to be trained. If the network is to be trained, the first line of the input
file contains a 1, followed by the network parameters such as the number of inputs, number
of hidden layers and outputs, size of training set, and size of testing set. Following the
network parameters, the training set is defined by listing the file name and desired outputs of
the entire set. To complete the file, the testing set is defined in the same manner as the
training set. If the network is to classify data, the first line contains a 2, followed by the
network size parameters and the number of inputs to be classified. Following the parameter

list, the file names of the data to be classified are listed.

6.7 Summary

This chapter described the neural network used to classify the radio transmitter
transients. The topology of the neural network implemented for this study was discussed as
well as the back-propagation training algorithm used to train the network. The back-
propagation training algorithm uses the error between the desired output and the network
computed output to determine the modifications made to the network’s weights and
thresholds. The next chapter describes the results obtained that show that the neural network
can be a usefiil tool in classifying radio transmitter transient features constructed and selected
by wavelet analysis and genetic algorithms. There are other neural networks that may also
be good candidates for classification. For example, a probabilistic neural network is being

implemented by Kinsner’s research group.
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CHAPTER 7
EXPERIMENTAL RESULTS

By combining the techniques described in the previous chapters, a means of identifying
radio transmitter transients is achieved. The process begins by acquiring the radio transmitter
transient, using a radio receiver and Sound Blaster, followed by separating the transient from
the noise by using the variance dimension. Once the transient has been separated, the genetic
algorithm in combination with multiresolution analysis selects the critical features of the
transient to be used in classifying the transient or training a neural network. If training is
required, the transient features are added to a training or testing file to “teach” the network
to identify the transient’s features. If the transient is to be classified, a trained neural network
is shown the transient’s features and the neural network indicates which transmitter it believes

generated the transient based on the features presented to it.

7.1 Transient Acquisition

Initially, we have performed transient acquisition of slow transmitters, including
Yaesu, Kenwood, and Radio Shack. Later, the transients used in this study were acquired
by the Communication Research Centre (CRC) in Ottawa. Qur acquisition software was
provided to the CRC, and used to record transients generated by six low power transmitters
in a controlled environment. A ICOM R7100 communication receiver was connected to a
Sound Blaster in the fashion described in Chapter 2. The transmitters were connected to the
receiver via an 89 foot length of RG-58U coaxial cable with a system of variable attenuators
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inserted in series within the length of the transmission line. The attenuators were used to keep
the input signal to the receiver at approximately -70dBm. With the connections made at the
receiver and transmitter, the transmission line was routed along an outside wall of a room to
diminish the effects of coupling between the transmitters and the measuring equipment. To
activate the transmitter’s push-to-talk button, each transmitter was modified to enable an
operator to remotely operate the push-to-talk button without physically touching the
transmitter. The push-to-talk control line was routed beside the coaxial cable connecting the
transmitter to the receiver. To initiate the acquisition, the squelch level on the receiver is set
to a point such that the speaker output is quiet and the receiver is set to the appropriate
transmitter frequency, followed by the acquisition software being started. Next, the
acquisition software waits until a transient event occurs which would be triggered by the
operator remotely activating the push-to-talk button. When the transient has been detected,
the circular transient buffer is written to the disk to be operated on by the next stage. In all,
50 transients were collected from each transmitter, bringing the total transient collection to
300. Table 7.1 lists the transmitters and their designated transmission frequency.

Table 7.1. Transmitters used to collect transients.

Transmitter Moded Frequency (MHz)
Kenwood 1 TH2SAT 147.000
Kenwood 2 TH2SAT 147.000
Kenwood 3 TH2SAT 147.000
Kenwood 4 TH21AT 147.000
Yaesu 1l Unknown Unknown
Yaesu 2 FT208R 147.600
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An example of each transient is presented in the next section describing the noise separation

technique.

7.2 Noise Separation

Since the transient buffer contains a significant number of noise samples, a means of
separating the noise from the transient is required. The variance dimension described in
Chapter 3 is employed to determine the point at which the transient begins. A window size

of 512 samples and a window offset of 1 is used to localize the beginning of the transient.

7.2.1 Kenwood 1 Transmitter

Figure 7.1 shows the recorded transient buffer for the Kenwood 1 transmitter.
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Fig. 7.1. Recorded Kenwood 1 transient and noise.
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Fig. 7.2. Variance dimension for Fig 7.1.

It is noticed that the transient begins at about the 1,000* sample and continues until about the
8,400" sample. Figure 7.2 shows the variance dimension found for the signal in Fig. 7.1. The
x axis is the number of samples the window in which the variance dimension calculated is
offset from the first sample in Fig. 7.1. It should be noted that the number of samples used
for the variance dimension is reduced to 4,096 by averaging each group of 4 samples, thus
the offset ranges from 0 to 4,096. The first variance dimension calculation yields a result of
approximately 1.57. This is due to the fact that the variance dimension window contains both
noise and transient samples. As the window is further offset, the dimension beings to drop
to a minimum value. The minimum value is found when the window is offset by

approximately 250 samples. Multiplying the offset of 250 by 4, taking the averaging into
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account, localizes the transient at about the 1,000® sample. This corresponds to the location
of the transient found in Fig 7.1. As the offset continues to increase, the variance dimension
continues to increase until the window contains all noise at a window offset of 2,100 samples.
Again, multiplying 2,100 by 4 localizes the noise at 8,400* sample in Fig. 7.1. The dimension
begins to drop once again near the offset of 3,500 as the windows wraps around to the
beginning of the samples. By wrapping the window, a complete picture of the variance
dimension of the noise-transient signal is constructed. It is also noted that the transient
contained in Fig. 7.1 does not contain 8,192 samples. In fact, it contains only 7,400 samples.
This phenomenon is due to the operator not completely depressing the push-to-talk button.
By momentarily pressing the push-to-talk button, the transient event occurs, however, the
transmitter quickly discontinues communication and releases the channel. This leads to a
larger noise component as shown in Fig. 7.1. In normal operation, the user holds down the
push-to-talk button long enough (186 milliseconds) to collect the 8,192 samples used to
analyze the transient. However, most transients collected for the Kenwood 1 transmitter do

not exhibit this type of phenomenon.

7.2.2 Kenwood 2 Transmitter

The next transient of interest is generated by the Kenwood 2 transmitter. Figure 7.3
shows the transient and noise components as recorded by the acquisition software. The
transient contained in Fig. 7.3 exceeds the 8,192 samples required to analyze the transient and
begins at roughly the 7,600 sample. Figure 7.4 shows the variance dimension for the signal

inFig. 7.3.
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Fig. 7.3. Recorded Kenwood 2 transient and noise.
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Fig. 7.4. Variance dimension for Fig 7.3.

In Fig 7.4 the variance dimension drops significantly at the window offset of 1,850 with the
minimum dimension found at about 1,900. The dimension begins to climb after the beginning
of the transient has been localized since the transient itself contains a significant noise
component superimposed upon it. When the window reaches an offset of 8,000, the variance
dimension calculation begins to measure the superimposed noise and the dimension increases.
However, between the beginning of the transient and the offset of 8,000, the changes between
samples is greater, giving the impression of improved correlation between samples. It should
be noted that there still exists a superimposed noise component in this region but its effect on
the variance dimension is diminished. Figure 7.5 shows the transient separated from the

noise.
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Fig. 7.5. Kenwood 2 transient separated from noise.

The transient separated from the noise begins at the top of the second peak in Fig. 7.3. Since
there is a heavy noise component between the two peaks, the variance dimension does not

drop at the location of the first peak.

7.2.3 Kenwood 3 and 4 Transmitters
In order to confirm the operation of the variance dimension noise separation, a third
transmitter transient is analyzed. Figure 7.6 shows the recorded noise and transient when the

Kenwood 3 transmitter is activated.
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Fig. 7.6. Recorded Kenwood 3 transient and noise.

The separated transient is shown in Fig. 7.7. Again, the minimum dimension is used to
localize the onset of the transient. At about the 5,000* sample in Fig. 7.5, the signal begins
to look somewhat correlated. However, the dimension is slow to drop before it reaches a
minimum at approximately the 6,100* sample. It is also noticed that the Kenwood 2 and
Kenwood 3 transmitters are the same model type with very distinct transients. The variability
of transients between the same model types is exactly what is required to accurately classify
the transients. The variability also exists between different model types as shown in Fig. 7.8.
Figure 7.8 contains the transient generated by the Kenwood 4 transmitter with the model
designation TH21AT as opposed to the Kenwood 2 and Kenwood 3 which are TH25AT

models.
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Fig. 7.7. Kenwood 3 transient separated from noise.
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Fig. 7.8. Kenwood 4 transient separated from noise.
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7.2.4 Yaesu Transmitters

It is also noticed that transients generated by transmitters of different manufacturers have
unique transient features as shown in Fig. 7.9. Figure 7.9 is a transient generated by a Yaesu

FT208R designated as Yaesu 2.
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Fig. 7.9. Yaesu 2 transient separated from noise.

26900

The transient generated by the Yaesu 2 requires a different means of localizing the transient.
Since the variance dimension analysis does not have a definite minimum dimension, the
maximum negative slope is used. If the minimum dimension is selected, the first 250 samples
in Fig. 7.9 are truncated which eliminates a significant feature for use in classifying the
transient. Figure 7.10 shows the variance dimension plotted versus the window offset. Since

a plateau exists, the slope before the plateau is used to localize the transient. By using this
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Figure 7.10. Variance dimension used to localize Yaesu 2 transient.

analysis, the transient in Fig. 7.9 is localized containing all the significant features. The lack
of a definite minimum dimension is due to the fact that the transient contains a quasi-periodic
component starting at the 1,000® sample. Since this portion is highly correlated and
dominates the superimposed noise, the variance dimension remains low unlike the Kenwood

generated transients that do not contain the correlated portion.

7.3 Transient Classification
With the transients separated from the noise, the transients are passed to the genetic
algorithm for feature selection. The wavelet coefficients that represent the significant features

are selected by the genetic algorithm and written to a file. These files containing the selected
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features are used to either train a neural network or classify the transient. The neural network
topology used to classify the transients consists of 64 inputs, 12 hidden neurons and »
outputs, where n is the number of classes the transient can be classified to. Each class is
labeled with a transmitter name, indicating which transmitter was responsible for the
generation of the input transient. The first network trained contained 6 outputs to classify the
four Kenwood and two Yaesu generated transients. The number of coefficients selected by
the genetic algorithm is 32. The use of more than 32 coefficients does not improve
classification due to the fact that it has been observed that wavelet coefficients representing
insignificant features tend to be selected in this case. Therefore, of the 64 neural network
inputs, 32 have non-zero coefficient inputs while the others are zero due to the fact that the
feature represented by that coefficient was not selected. Six transients from each class are
selected to be representative of the entire class. A transient is said to be representative of the
entire class if it contains transient features that are consistent with the significant features
observed within the class. It is also desired that transients with features that are not
consistent with the features of the class be classified as well. Therefore it is necessary to
include examples of transients that contain features that are not consistent with the class. An
additional two transients are selected to test the network’s ability to generalize. The training
is terminated when the average error per output is less than 0.05 for the testing patterns. For
the set of transients with 32 selected coefficients, 2,000 modifications to the weights were
required to train the network. It was noted that all the training patterns and testing patterns
were correctly classified by neural network. However, as described in the first section of this

chapter, some transients are not correctly generated and must be discarded. Table 7.2 lists
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the number of discarded transients per class.

Table 7.2. Number of discarded transients per class.

Class

Transients Discarded

Kenwood 1

Kenwood 2

Kenwood 3

Kenwood 4

Yaesul

Yaesu 2

ClO & ]jW]O ]VO

The transients which are not discarded are presented to the trained network for classification

to determine the performance of the network. Table 7.3 summarizes the results. A transient

is said to be correctly classified if the output corresponding to the transmitter that generated

the transient is greater than 0.50 and the rest of the outputs are below 0.20. The output

excitation thresholds for correct classification are based on heuristics and it will require

additional study to determine whether these values are optimal. The closer the output

excitation value is to 1.0, the greater confidence the network has in its classification.

Table 7.3. Classification results.

Class Transient Presented | Correctly Classified | Percentage Correct
Kenwood 1 35 29 83%
Kenwood 2 4 40 91%
Kenwood 3 41 38 93%
Keawood 4 40 40 100%

Yaesul 4 43 98%
Yaesu 2 4 44 100%
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It is noticed in Table 7.3 that the neural network performed quite well. The average
percentage correct is 94% with the only class significantly lower than the average being the
Kenwood 1 class. This difficulty is due to the variability in the transients that the Kenwood
1 transmitter provided. To combat this situation, an additional two transients were added to
the training set for the Kenwood 1 transmitter. By including two additional training
examples, it is hoped that the network will be able to improve upon the number it correctly
classifies. The network was trained as before with the training set for the Kenwood 1
transmitter modified. As before, about 2,000 modifications to the weights were required to
trainthenetworktothesame error tolerance as before. Once the network has been trained,
the remammg transients are presented to the network to assess the network’s classification
performance. Table 7.4 summarizes the results.

Table 7.4. Classification results.

Class Transient Presented | Correctly Classified | Percentage Correct
Kenwood 1 33 30 91%
Kenwood 2 4 42 95%
Kenwood 3 41 36 89%
Kenwood 4 40 40 100%

Yaesu 1 44 43 98%
Yaesu 2 44 4 100%

The results presented in Table 7.4 indicate that the number of correctly classified transients
has increased in two classes while decreasing in one. The average percentage correct has
increased to 96% from 94% by increasing the number of training examples for the Kenwood

1 class. Thus, by ensuring that the training set is representative of the class, the accuracy of

-86-



the network can be increased.

From Table 7.3 and 7.4 it is noticed that the neural network is able to classify
transients generated by different manufacturers, different models, and transients generated by
the same manufacturer and model. The Kenwood 1 through Kenwood 3 transmitters are all
the same model type while the Kenwood 4 is made from the same manufacturer, but is a
different model. The neural network in each case is able to distinguish between each
Kenwood class with a great deal of accuracy. This indicates that the transients generated by
each of the Kenwood transmitters are unique. This is necessary to be able to pinpoint
individual transmitters that may be operating in an inappropriate manner. It is also noted that
the neural network is able to distinguish between different manufacturers (Kenwood and
Yaesu) with a high level of accuracy. This is expected since different manufacturers use
differing designs of frequency synthesizers to generate the carrier frequency. Thus, using 32
coefficients to describe the transients significant features, the network is able to distinguish
between transients generated by different manufacturers, same manufacturer but different
models, and same manufacturer and model type.

It is also of interest to determine whether fewer wavelet coefficients can be used to
classify the transients. The previous experiments used a total of 32 coefficients with good
classification results. The next experiment determines whether a total of 24 coefficients will
yield the same results. Again, as with the previous experiments, a neural network is trained.
However, this time, the training and testing sets consist of the Kenwood transients with 24
selected wavelet coefficients. The network was trained to the same tolerance as the first two

networks with each training and testing pattern correctly classified by the neural network.
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The classification results are extremely poor as compared to previous networks trained with
32 transient features. The Kenwood 1 class of transients were classified correctly less than
50% of the time. The Kenwood 2 class was classified correctly with about 50% accuracy
with the other two classes performing better. The Kenwood 3 and Kenwood 4 classes were
classified correctly more than 50% of the time but not near the 90% the previous networks
performed at. Figure 7.11 shows the average network outputs for the networks trained on

24 wavelet coefficients and 32 when the remaining Kenwood 1 transients were presented to

the network.
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Fig. 7.11. Network outputs when presented Kenwood 1 transients.

Figure 7.11 shows the poor separation between the Kenwood 1 and Kenwood 2 classes when

using 24 wavelet coefficients. The average outputs corresponding to the Kenwood 1 and
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Kenwood 2 are near equal, indicating that the network is unable to correctly classify the
Kenwood 1 transients. Figure 7.12 shows the network outputs when the Kenwood 2
transients are presented to the network. It is noticed that the Kenwood 2 output is greater
than the rest but confusion between the Kenwood 2 and Kenwood 3 classes did exist. As
with the Kenwood 1 transients, more than 24 wavelet coefficients are needed to classify the
transients correctly. Figure 7.13 shows the outputs of the networks when the Kenwood 3

transients are presented.
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Fig. 7.12. Network outputs when presented Kenwood 2 transients.
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Fig. 7.13. Network outputs when presented Kenwood 3 transients.

Figure 7.13 is quite similar to Fig. 7.12, the correct output is significantly higher than the rest.
However, the network trained on 32 coefficients correctly classified more transients than did
the network trained on 24. The network trained on 24 coefficients tended to classify the
Kenwood 3 transients as either Kenwood 1 or Kenwood 2 when an error in classification was
made. This phenomenon indicates that the Kenwood 1, Kenwood 2, and Kenwood 3 share
common characteristics, thus requiring more features to separate the classes. Finally, Fig.
7.14 shows the network outputs when the Kenwood 4 transients are presented.
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Fig. 7.14. Network outputs when presented Kenwood 4 transients.

Figure 7.14 indicates that the network had difficulties distinguishing between the Kenwood
1 and Kenwood 4 classes. Again, this indicates that the Kenwood 1 and Kenwood 4 classes
have similar features and require more wavelet coefficients to separate the classes.

In order to classify the transients accurately, a network should be trained on 32
wavelet coefficients, as the smaller number of coefficients (24) does not provide enough
features to separate the classes. When 32 coefficients are used, the classification of the

transient classes are very accurate.
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CHAPTER 8
CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

This thesis presented a means of recording, processing, and classifying low power
radio transmitter transients. The acquisition portion of the system provided excellent
recordings of the transients as shown in the figures contained in Chapter 7. The noise
separation performed by the variance dimension technique separated the transients with good
accuracy as.shown again in the figures in Chapter 7. The consistency of the separation can
also be wnﬁmd by the average correct classification rate of 96%. It also can be concluded
that at least 32 wavelet coefficients representing the signal features are required to accurately
classify the transients. When 32 coefficients are used, the maximum classification rate
achieved by the neural network was 96%. The average classification rate also depended on
the size of the training set. A training set of transients per class provided a classification rate
of 94%, while expanding the Kenwood 1 training set to 8 transients to better represent the
transients contained in the class provided a classification rate of 96%. It also can be said that
the network was able to distinguish between transients generated by transmitters built by
differing manufacturers as well as the same manufacturer. The neural network was also able
to distinguish between transients generated by the same manufacturer and model type. The
network was very accurate in classifying the Keawood 1, Kenwood 2, and Kenwood 3
transients generated by transmitters of the Kenwood TH25AT model type. If the number of
wavelet coefficients is reduced to 24, the neural network lost its ability to distinguish between
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the Kenwood classes of transients. When the number of coefficients is dropped to 24, the
average neural network outputs corresponding to the correct class dropped to output levels

of incorrect classes.

8.2 Contributions
The following is a list of contributions believed to be made during the completion
of this thesis.
a. A system for recording transients at a sampling rate of 44,100 samples per second and
16 bits per sample accuracy.
b. The implementation of the variance fractal dimension trajectory in transient-noise
separation.
¢. The use of genetic algorithms for transient feature extraction from wavelet coefficients.
d. Classification of transients generated by low power transmitters built by different
manufacturers.
e. Classification of transients generated by low power transmitters built by the same
manufacturer.

f. Classification of transients generated by low power transmitters of the same model

type.

8.3 Recommendations
Based upon the work completed for this thesis, the following recommendations are

made.
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a. Obtain more transient recordings to expand the database of transients.

b. Expand the number of transients classified to further test the system.

c. Expand the study to include high power transients.

d. Develop a window based user interface.

e. Test newer versions of the Sound Blaster to determine compatibility with software
developed.

f. Study different neural network topologies and training methods to expand the

capabilities of the system.
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APPENDIX A

SOURCE CODE
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/* Based on Ethan Brodsky 1995 code. All rights reserved */
/* Transient capture developed by J. Toonstra and W. Kinsner, 1995 */

+ Il ssio.c IR
/* I Tomertace

#define TRUE 1
#define FALSE 0

typedef enum {input, output} mode;

/* Interface procedures and functions */
int init_sb
(
int baseio,
char irq,
char dmalé,
mode io,
unsigned int rate
)
void shutdown_sb(void);

void startio(unsigned long length);
void sethandler(void far *proc);

/I void getbuffer(int far **bufptr, unsigned int length);
/I void freebuffer(int far **bufptr);

/* Interface variables that can be changed in the background */
volatile long intcount;
volatile int done;
volatile char curblock;
volatile long samplesremaining;

/* Ml implementation [N

#include <alloc.h>
#include <conio.h>
#include <dos.h>
#include <mem.h>
#include <stdlib.h>
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#include <stdio.h>

#define lo(value) (unsigned char)((value) & 0x00FF)
#define hi(value) (unsigned char)((value) >> 8)

int resetport;
int readport;
int writeport;
int poflport;
int polll6port;

int pic_rotateport,;
int pic_maskport;

int dma_maskport;
int dma_clrptrport,
int dma_modeport;
int dma_baseaddrport;
int dma_countport;
int dma_pageport;

char irq_startmask;
char irq_stopmask;

char irq_intvector,
char int_controller;

char dma_startmask;
char dma_stopmask;
char dma_mode;

void interrupt (*oldintvector)() = NULL;
int handlerinstalled;

// void far *memarea = NULL; /* Twice the size of the output buffer */
// int memareasize;

void far *MemoryArea =NULL;
int MemoryAreaSize;

unsigned char far *Buffer;
unsigned char far *BufferPointer;
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unsigned long buf_addr; /* 16-bit addressing */
unsigned char buf_page;
unsigned int buf_ofs;

int buf_length; /* In words */
int block_length; /* In words */

unsigned int samplingrate;

unsigned long Samplelndex;
unsigned long SampleLimit;

unsigned char TransientBuffer[32768];
int Transient;
unsigned int NoiseLocation;

mode iomode;
void far (*handler)(void) = NULL,

/* == Low level sound card /'O
void write_dsp(unsigned char value)
{

while (inp(writeport) & 0x80); /* Wait for bit 7 to be cleared */

outp(writeport, value),
}

unsigned char read_dsp(void)
{

unsigned int value;

while (!(inp(pollport) & 0x80)); /* Wait for bit 7 to be set */

value = inp(readport);

return value;
}
int reset_dsp(void)
{
int i,
outp(resetport, 1);
outp(resetport, 0);
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i=100;

while ((read_dsp() = 0xAA) && i-);
return i;
}

/* == Initialization and shutdown
void installhandler(void); /* Prototypes for private functions */
void uninstallhandler(void);
void sb_exitproc(void);

int init_sb(int baseio, char irq, char dmal6, mode io, unsigned int rate)

{

/* Sound card IO ports */
resetport = baseio + 0x006;
readport = baseio + 0x00A;
writeport = baseio + 0x00C;
pollport = baseio + 0x00E;

" . polll6port = baseio + 0x00F;

/* Reset DSP */
if (!reset_dsp()) return FALSE;

/* Compute interrupt ports and parameters */
if (irq < 8)
{
int_controller = 1,
pic_rotateport = 0x20;
pic_maskport =0x2l;
irq_intvector =0x08 + irq;

else
{
int_controller =2,
pic_rotateport = 0xA0;
pic_maskport =0x21;
irq_intvector = 0x70 + irq-8;
}

irq_stopmask =1 << (irq % 8);
irg_startmask = ~irq_stopmask;

/* Compute DMA ports and parameters */
dma_maskport =0xD4;
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dma_cirptrport = 0xD8;

dma_modeport =0xD6;
dma_baseaddrport = 0xC0 + 4*(dmal16-4);
dma_countport =0xC2 + 4*(dmal6-4);

switch(dma16)
{
case 5: dma_pageport = 0x8B; break;
case 6: dma_pageport = 0x89; break;
case 7: dma_pageport = 0x8A; break;
}

dma_stopmask =dmal6-4 +0x04; /* 000001xx */
dma_startmask = dmal6-4 + 0x00; /* 000000xx */

/* Other initialization */
samplingrate = rate;
iomode = io;
switch (iomode)
{
case input: dma_mode = dmal6-4 + 0x54; break; /* 010101xx */
case output: dma_mode = dmal6-4 + 0x58; break; /* 010110xx */
}
installhandler(); /* Install interrupt handler */

return TRUE;

/t

void shutdown_sb(void)

if (handlerinstalled) uninstallhandler();
reset_ X
}
/t
void startio(unsigned long length)
{
done = FALSE;

samplesremaining = length;
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curblock =0;

Transient = 0;

SampleLimit =block_length;
Samplelndex = 0;

samplesremaining -= (block_length/2);

/* Program DMA controller */

printf{"\n");
printf{"Programming the dma controller. \n");

outp(dma_maskport, dma_stopmask);
printf("1. Reseting the dma mask for programming. \n"),

outp(dma_clrptrport, 0x00);
printf{"2. Clearing the dma flip-flop. \n");

outp(dma_modeport, dma_mode);
printf{"3. Setting the dma mode. \n");

outp(dma_baseaddrport, lo(buf_ofs)); /* Low byte of offset

outp(dma_baseaddrport, hi(buf_ofs)); /* High word of offset */
printf{"4. Setting the buffer offset. \n");

outp(dma_countport, lo(buf_length-1)); /* Low byte of count */
outp(dma_countport, hi(buf length-1));  /* High byte of count */
printf{"5. Setting the buffer length in the counter. \n");

outp(dma_pageport, buf page);
printf{"6. Setting the buffer page in the dma controller. \n"),

outp(dma_maskport, dma_startmask),
primtf("7. Reseting the dma mask port to complete programming. \n");

/* Program sound card */

printR"\n");

A-6



printf{"Programming the soundblaster. \n");
iomode = input;

switch (iomode)
{
case input: write_dsp(0x42); break; /* Set input sampling rate */
case output: write_dsp(0x41); break; /* Set output sampling rate
*/
}
write_dsp(hi(samplingrate)); /* High byte of sampling rate */
write_dsp(lo(samplingrate)); /* Low byte of sampling rate */
printf{"1. Setting the input sampling rate. \n");

switch (iomode)
{

case output: write_dsp(0xB6); break; /* 16-bit D->A, A/1, FIFO
*/
case input: write_dsp(OxBE); break; /* 16-bit A->D, A/, FIFO
*/
}
write_dsp(0x20); /* DMA Mode: 16-bit unsigned stereo */
printf("2. Setting the 16 bit transfer. \n");

printf{"3. Writting the block length the soundblaster. \n");

printf{"\n"),

printf{"Transfer has begun ... \n \n");

write_dsp(lo(block_length-1));  /* Low byte of block length  */

write_dsp(hi(block_length-1));  /* High byte of block length  */
}

/* == Interrupt handling */

void sethandler(void far *proc)
{

}

handler = proc;

/*

void interrupt inthandler()
{ /* CurBlock -> Block that just finished */
intcount++;
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if{lcurblock = 0)

BufferPointer = Buffer;

BufferPointer = Buffer + (2*block_length);

%

ifl((*(BufferPointer+(2*255)) >= 128) &&
((*(BufferPointer+(2*255)+1)) = 128))
&& (!Transient)) /* If the right channel sample (squelch) is not

to unsigned zero,
finish transfer to
array. */

{

}

while(SampleIndex < SampleLimit)
{

Transient = !Transient;

TransientBuffer[((Ox7FFF)&Samplelndex)] = *BufferPointer; /*
Copy low byte of discriminator sample. */

Samplelndex++;
BufferPointer++;

TransientBuffer[((Ox7FFF)& SampleIlndex)] = *BufferPointer; /*
Copy high byte of discriminator sample. */

Samplelndex++;
BufferPointer++;

BufferPointer++; /* Increment past low byte of sqelch sample. */

BufferPointer++; /* Increment past high byte of squelch sample. */
}

NoiseLocation=((0x7FFF)&Samplelndex);

SampleLimit += block_length;



if{ Transient)

{
samplesremaining -= (block_length/2);
}
curblock = !curblock; /* Toggle current block */
if (samplesremaining < 0)
{
done = TRUE;
write_dsp(0xD9);
}
inp(poll16port),
outp(0x20, 0x20);
outp(0xA0, 0x20);
} /* CurBlock -> Block that just started */
/t
void installhandler(void)
{
disable(); /* Disable interrupts */
outp(pic_maskport, (inp(pic_maskport)|irq_stopmask)); /* Mask IRQ */
oldintvector = getvect(irq_intvector), /* Save old vector */
setvect(irq_intvector, inthandler); /* Install new handler */
outp(pic_maskport, (inp(pic_maskport)&irq_startmask)); /* Unmask IRQ
*/
enable(); /* Reenable interupts */
handlerinstalled = TRUE;
}
/t
void uninstallhandler(void)
{

disable(); /* Disable interrupts */
outp(pic_maskport, (inp(pic_maskport)|irq_stopmask)); /* Mask [IRQ */
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setvect(irq_intvector, oldintvector); /* Restore old vector */

enable(); /* Enable interrupts */
handlerinstalled = FALSE;
}
/% == Memory management
unsigned long getlinearaddr(unsigned char far *p)
{
unsigned long addr;
addr = (unsigned long)FP_SEG(p)*16 + (unsigned long)FP_OFF(p);
return(addr);
}
void getbuffer(unsigned int length)
{
/* Find a block of memory that does not cross a page boundary */
MemoryAreaSize = 16 ® length;
if ((MemoryArea = malloc(MemoryAreaSize)) = NULL) /* Can't allocate
mem? */
exit(EXIT_FAILURE); /* error */
Buffer = (unsigned char far *)MemoryArea; /* Pick first half
¥/
if (((getlinearaddr(Buffer) >> 1) % 65536) + length*8 > 65536)
Buffer += 8*length; /* Pick second half to avoid crossing boundary */
/* DMA parameters */
buf_addr = getlinearaddr(Buffer);
buf_page =buf _addr >> 16;
buf_ofs = (buf_addr >> 1) % 65536;
buf_length = length*2; block_length = length; /* In samples */
}
/#
void freebuffer(void)
{

Buffer =NULL;
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free((void *)MemoryArea);

void sb_exitproc(void)
{
outp(0x20, 0x20); outp(0xA0, 0x20); /* Acknowledge any hanging ints */
write_dsp(0xDO0); /* Pause digitized sound output */

outp(dma_maskport, dma_stopmask); /* Mask DMA channel */
if (bandlerinstalled) uninstallhandler(); /* Uninstall int handler */
reset_dsp(); /* Reset SB DSP */

#define SizeOfBlock 256
int main(int argc,char *argv([])
{ FILE *FilePointer;
unsigned int FileIndex=0;
_ unsigned int X;
, unsigned char FileBuffer[17408];
if{arge '=2)
{ printf{"No file name \n");
exit(1);

}
printf{"Opening file %s ...",argv[1]);

FilePointer = fopen(argv{1],"w");
ifiFilePointer != NULL)
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{
printR" opened. \n \n");
- else
{
printf{" file cannot be opened. \n");
exit(1);
}
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printf{"Getting buffer ...");
getbuffer(SizeOfBlock);
printf{" done. \n \n");

printf{* nitializing the soundblaster ...");
init_sb(0x220,7,5,input,44100); /* Modify this for changing irq */

Address,irq,dma */

printf{" done. \n \n");

printf{"Starting procedure for the soundblaster transfer: \n");

startio(8192);

while(!(done]lkbhit()));

ifldone)

{

printf{"Writting to file ...");

printf{"Noise location: %u. \n",NoiseLocation);

getc(stdin);

FileIndex=0;

while(FileIndex <(2*(16384U)))

{ .
TransientBuffer[((0x7FFF)&(NoiseLocation+F; ileIndex))];
FileIndex++;
X=X+

}

(TransientBuﬂ‘er[((Ox7FFF)&(NoiseLocation+FiIeIndex))]*
259),

FileIndex++;

fprintf{FilePointer,"%u \n" X);

FileIndex =0;

while(FileIndex < (2*8704))
{

FileBuffer{FileIndex] =
TransientBuffer{((SampleIndex+15360)&0x TFFF)];

SampleIndex++;
FileIndex++;
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}
printf{(" done. \n \n");

printf"Closing file ...");
fclose(FilePointer);
printf{" done. \n \n");

}
i{f(kbhit())
printf{" Termination of search. \n");

getch();
}

printf{"Shutting down the soundblaster ...");
shutdown_sb();
printR{" done. \n"),

I/ sethandler(NULL);
printf{"Free buffer memory ...");
freebuffer();
printf{" done. \n");

return(EXIT_SUCCESS);
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/* variance dimension calculator */
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <values.h>

#define FileSize 16384U

#define NumberOfSuperSamples 4096
#define SuperSampleSize 4

#define maxValue 65536L

#define maximumDelay 10

/* values for variance dimension calculations */
#define b 2.0

#define ¢ 30

int dyadic=1;

float VarianceDimensionXX(float *data,unsigned windowSize)

{
int kHi;
int kLow;

int kMax;
int kMin;

int kindex;
int windowIndex;

int delta;
float *variance;

float sumSquare;
float squareSum;

float sumX;
float sumY;,
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float sumXY;
float squareSumX;
float sumSquareX;

float slope;

kHi=((int) (log(((float) windowSize))/log(2.0)))-5;
kLow=l;

kMax=pow(2,kHi),
kMir=kLow;

primt("k High: %d. \n"kHi);
printf{"k Low: %d. \n" kLow);
printf{"k Maximum: %d. \n",kMax);
printf{"k Minimum: %d. \n",kMin); */

variance=((float *) malloc(sizeof{float)*(kMax+1)));
if(!variance)
{ printf{"Cannot allocate memory for variances. \n");
printR "Exitting to dos... \n");
exit(1);

for(kIndex=kMax;kIndex>=kMin;kIndex--)
{

sumSquare=0.0;
squareSum=0.0;
windowIndex=0;
delta=kindex;
printf("k index: %d. \n" kindex); */
while((windowIndex+delta)<windowSize)

{
sumSquare+=(((data[windowIndex+deita])-

(datafwindowIndex]))*
((data[windowIndex+delta])-
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}

(data[windowIndex])));

squareSum+<=((data[windowIndex-+delta])-
(datafwindowiIndex]));

windowIndex++;
}

squareSum=((1.0/((float) windowIndex))*(squareSum®*squareSum));

variance{kIndex]=((1.0/((float)
} (windowIndex-1)))*(sumSquare-squareSum));

sumX=0.0;
sumY=0.0;
sumXY=0.0;

sumSquareX=0.0;

“for(kIndex=kMin;kIndex<=kMaxkIndex++)

{
sumXY-+=log(variance{kIndex])*log(((float) kindex));
sumX+=log(((float) kindex));
sumY-+=log(variance[kIndex]);

} sumSquareX+=log(((float) kindex))*log(((float) kindex));

squareSumX=sumX*sumX;

slope=(((((float) kMax)*sumXY)-(sumX*sumY))/((((loat)
kMax)*sumSquareX)-squareSumX));

free(variance);
printf{"Dimension: %f. \n",2-(0.5*slope)); */
return(2-(0.5*slope));

void main(int argc,char *argv(])

{

unsigned uData;

unsigned index;
unsigned superSamplelndex;
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unsigned windowIndex;
unsigned filterindex;

unsigned minimumDirivativeLocation;
unsigned maximumDirivativeLocation;

unsigned filterSize;
unsigned filterSplit;

unsigned transientLocation;
unsigned noiseLocation;
unsigned searchStart;

int windowSize;
int windowIncrement;

float *data;

float *window;

float *dimension;

float *filteredDimension;
float *tempDimension,;
float *switchPointer;

float minimumDirivative;
float maximumbDirivative;

float minimumDimension;
float superSample;

float *dirivative;

FILE ‘ﬂel’ointer,

if{argc!=9)
{
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printf{"Incorrect number of arguments. \n");
printf{"Exitting to dos... \n");

exit(1);
}

filePointer=fopen(argv{1],"r");
if(filePointer)
{
printf{"File does not exist. \n");
printf{"Exitting to dos... \n");

exit(1);
}

windowSize=atoi(argv{4]);
windowIncrement=atoi(argv[5]);

data=((float *) malloc(sizeof{float)*NumberOfSuperSamples));
if{!data)
{
printR"Data memory cannot be allocated. \n");
printf{"Exitting to dos... \n");

exit(1);
}

window=((float *) malloc(sizeoffloat)*windowSize));
if{!window)

{
printR"Window memory cannot be allocated. \n");
printf{"Exitting to dos... \n");
exit(1);

}

dimension=((float *) malloc(sizeof{float)*((unsigned) (((float)
NumberOfSuperSamples)/((float) windowIncrement)))));
if{!dimension)
{

printf{"Dimension memory cannot be allocated. \n");

printf{"Exitting to dos... \n");
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exit(1);
}
filteredDimension=((float *) malloc(sizeof{float)*((unsigned) (((float)

NumberOfSuperSamples)/((float) windowIncrement)))));
if(!filteredDimension)

{
printf{"Dimension filter memory cannot be allocated. \n");
printf{"Exitting to dos... \n");
exit(1);
}
superSampleIndex=1;
superSample=0.0;
for(index=0;index<=FileSize;index++)
{
- fscanf{filePointer,"%u\n",&uData);
if{index<(SuperSampleSize*superSamplelndex))
{
superSample+=((float) uData),
}
else
{
printf{"supersample: %f. \n",superSample); */
data[superSampleIndex-1]=((superSample/((float)
SuperSampleSize)));
superSampleIndex++;
superSample=((float) uData);
}
}
fclose(filePointer),
for(index=0;index<((unsigned) (((float) NumberOfSuperSamples)/((float)
windowIncrement)));index++)
{

for(windowIndex=0;windowIndex<windowSize;windowIndex++)

{
if{(windowIndex+(windowIncrement*(index)))>=NumberOfSuperS

amples)
{
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window{windowIndex]=data[(windowIndex+(windowIncre
ment*(index)))-NumberOfSuperSamples];

}

eise

{
window[windowIndex]=data{windowIndex+(windowIncre
ment*(index))];

}

printf{"%u -- ",windowIncrement*index); */
dimension{index]=VarianceDimensionXX(window,windowSize);
}

free(window);

transientLocation=0;

filterSize=101;

filterSplit=((unsigned) floor(filterSize/2.0));
printf{"Filter size: %u. \n" filterSize);
printf"Filter split: %u. \n" filterSplit);

for(index=filterSplit;index<(((unsigned) (((float) NumberOfSuperSamples)/((float)
windowIncrement)))-filterSplit);index++)

{
filteredDimension[index]=dimension[index];
for(filterindex=1 filterIndex<=filterSplit;filterIndex++)
{
filteredDimension[index]+=
(dimension[index-+filterIndex}H+dimension[index-filte
rindex]));
}
filteredDimension[index]=filteredDimension{index]/filterSize;
}
for(index=0;index<filterSplit;index++)
{

filteredDimension[index]=dimension[index];
for(filterIndex=1filterIndex<=filterSplit;filterindex++)
{

filteredDimension[index]+=dimension[index-+filterIndex];
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iindex<filterIndex)

{
filteredDimension{index}+=

dimension([((unsigned) (((float)
NumberOfSuperSamples)/((float)
windowIncrement)))+(index-filterIndex)];

}

else

{

filteredDimension(index}+=dimension[index-filterIndex];

}
}
filteredDimension[index]=filteredDimension[index)/filterSize;
filteredDimension[((unsigned) (((float) NumberOfSuperSamples)/((float)
windowIncrement)))-1-index]=
dimension[((unsigned) (((float) NumberOfSuperSamples)/((float)
windowIncrement)))-1-index];
for(filterIndex=1 filterIndex<=filterSplit;filterIndex-++)
{
filteredDimension[((unsigned) (((float)
NumberOfSuperSamples)/((float) windowIncrement)))-1-index}+=
dimension[((unsigned) (((float)
NumberOfSuperSamples)/((float)
windowIncrement)))-1-(index-+HilterIndex)];
i{index<filterIndex)
{
filteredDimension[((unsigned) (((float)
NumberOfSuperSamples)/
((float) windowIncrement)))-1-index}+=
dimension[(filterIndex-index)-1];

filteredDimension[((unsigned) (((float)
NumberOfSuperSamples)/
((float) windowIncrement)))-1-index}+=
dimension[(((unsigned) (((float) NumberOfSuperSamples)/
((float) windowIncrement)))-(index+1))+Hiiterindex];
}
}
filteredDimension[((unsigned) (((float) NumberOfSuperSamples)/((float)
windowIncrement)))-1-index]=
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filteredDimension[((unsigned) (((float) NumberOfSuperSamples)/((float)
windowIncrement)))-1-index}/filterSize;
}

free(dimension); */

tempDimension=((float *) malloc(sizeof{float)*((unsigned) (((float)
NumberOfSuperSamples)/((float) windowIncrement)))));
i{'tempDimension)
{
print{"Dirivative memory cannot be allocated. \n");
printf{"Exitting to dos... \n");

exit(1);
}
noiseLocation=0,
_ for(index=0;index<((unsigned) (((float) NumberOfSuperSamples)/((float)
“windowIncrement)));index++)
{
if{('noiseLocation)&&(filteredDimension[index]>1.950))
{
noiseLocation=index;
}

}

for(index=0;index<((unsigned) (((float) NumberOfSuperSamples)/((float)
windowIncrement)));index++)
{
if{(index-+noiseLocation)<((unsigned) (((float)
NumberOfSuperSamples)/((float) windowIncrement))))

{
tempDimension[index]=filteredDimensionfnoiseLocation+index};
}
else
{
tempDimension[index]=
filteredDimension[(noiseL ocation+index)-((unsigned) (((float)
NumberOfSuperSamples)/((float) windowIncrement)))];
}
}
switchPointer=filteredDimension;
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filteredDimension~tempDimension;
tempDimension=switchPointer,

for(index=0;index<((unsigned) (((float) NumberOfSuperSamples)/((float)
windowlIncrement)));index-++)

{
ifi(index+noiseLocation)<((unsigned) (((float)
NumberOfSuperSamples)/((float) windowiIncrement))))
{
tempDimension[index]}=dimension{noiseLocation+index];
}
else
{
tempDimension[index]=
dimension[(noiseLocation+index)-((unsigned) (((float)
NumberOfSuperSamples)/((float) windowIncrement)))];
}
}
dimension—tempDimension;
filePointer=fopen(argv{2],"w"),
if{!filePointer)
{
printf{"Cannot write file. \n"),
printf{"Exitting to dos... \n");
exit(1),
}
for(index=0;index<((unsigned) (((float) NumberOfSuperSamples)/((float)
windowIncrement)));index++)
{
fprintf{filePointer,"%u %f\n",indexfilteredDimension[index]);
}
fclose(filePointer);
filePointer=fopen(argv{7],"w");
if(!filePointer)
{
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printf{"Cannot write file. \n");
printf{"Exitting to dos... \n");

exit(1);
}
searchStart=0,

for(index=0;index<((unsigned) (((float) NumberOfSuperSamples)/((float)
windowIncrement)));index-++)

{
if{('searchStart)&& (filteredDimension{index]<1.800))
{
searchStart=index;
}
}

minimumDimension=MAXFLOAT;
for(index=0;index<((unsigned) (((float) NumberOfSuperSamples)/((float)
windowIncrement)));index++)

{
iflminimumDimension>dimension{index])
{
minimumDimension=dimension{index];
minimumDimensionLocation=index;
}
}

dirivative=((float *) malloc(sizeof{float)*((unsigned) (((float)
NumberOfSuperSamples)/((float) windowIncrement)))));
if{ ! dirivative)

{
printf{"Dirivative memory cannot be allocated. \n");
printR"Exitting to dos... \n");
exit(1);

}

for(index=searchStart;(index<searchStart+532);index++)

{
dirivative[index]=pow(50.0,(2.0-filteredDimension[index]))*
(filteredDimension[index+20]-filteredDimension{index]);
fprintR filePointer,"%u
%f\n",index,(pow(50.0,(2.0-filteredDimension[index]))*
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(filteredDimension{index+20]-
filteredDimension[index])));

}
fclose(filePointer);

inimumDirivative=0.0;
for(index=searchStart;index<(searchStart+532);index++)

{
ifldirivative[index]<minimumDirivative)

{
minimumDirivative=dirivative[index];
} inimumDirivativeLocatiom=ind

}

imumDirivative=0.0;
for(index=searchStart;index<(searchStart+532);index++)
{ -

if{dirivative{index]>maximumDirivative)

{
maximumbDirivative=dirivative[index];
. Dirivativel ion=index:
}

}

printf{"Minimum dirivative: %u. \n",minimumDirivativel.ocation);
printf{"Maximum dirivative: %u. \n",maximumbDirivativeL.ocation),

iflmaximumDirivativeL ocation<minimumDirivativeLocation)

{
printR"Doing a second search... \n"),

inimumDirivative=0.0;
for(index=searchStart;index<maximumbDirivativeL ocation;index++)
{
if{dirivative[index]<minimumDirivative)
{
. . Dirivati irivative[index];
inimumDirivati elclmua’aotue.[ lex:
}
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filePointer=fopen(argv{8],"w");
if(!filePointer)
{
printf{"Cannot write file. \n");
printf{"Exitting to dos... \n");

exit(1);
}
for(index=searchStart;index<(searchStart+512);index++)
{
dirivative{index]=(dirivative[index+20]-dirivative[index]);
fprintf{filePointer,"%u %f\n",index,dirivative[index]);
}
fclose(filePointer);
filePointer=fopen(argv[6],"w");
if(filePointer)
{
printf{"Cannot write file. \n");
printf{"Exitting to dos... \n"),
exit(1);
}

printf{"Minimum dimension: %f >> %u.
\n",minimumDimension, minimumDimensionLocation);
printf{"Minimum dirivative: %f >> %u.

\n" mini Dirivative.mini Dirivativel ion);
printf{"Noise location: %u. \n",noiseLocation);

i minimumDimensionLocation>(maximumDirivativeLocation+64))

{ transientLocation=minimumDirivativeLocation;
printf{"Took the minimum dirivative as transient indicator. \n"),
zlse
{ transientLocation=minimumDimensionLocation;
} printf{"Took the minimum dimension as transient indicator. \n");
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ifi(noiseLocation+transientLocation)<((unsigned) (((float)
NumberOfSuperSamples)/((float) windowIncrement))))

{
transientLocation=transientLocation+noiseLocation;

}

else

{
transientLocation=(transientLocation+noiseLocation)-((unsigned) (((float)
NumberOfSuperSamples)/((float) windowIncrement)));

}

printf{"Transient location: %u. \n" transientLocation);
transientLocation—=transientLocation*windowIncrement;
for(index=0;index<((unsigned) (((float) NumberOfSuperSamples)/2.0));index++)

{
if{lindex-+transientLocation>=NumberOfSuperSamples)

{
fprintffilePointer,"%u\n",((unsigned)
datafindex-+transientLocation-NumberOfSuperSamples]));
}
else
{
fprintf{filePointer,"%u\n",((unsigned)
data[index-+transientLocation]));
} .
}
fclose(filePointer);
filePointer=fopen(argv{3],"w");
if{'filePointer)
{
printR"Cannot write file. \n");
printf{"Exitting to dos... \n");
exit(1);
}

transientLocation=transientLocation*windowIncrement;

superSamplelndex=0,
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superSample=0.0;

for(index=0;index<((unsigned) (((float) NumberOfSuperSamples)/2.0));index++)

{

/O

iflindex-+transientLocation>=NumberOfSuperSamples)

{

if{superSamplelndex<32)

{
superSample+=data[index-+transientLocation-
NumberOfSuperSamples];
superSampleIndex++;

printf{"Super sample: %u %f.
\n",superSampleIndex,superSample); */

fprintf{filePointer,"%u\n",((unsigned) (superSample/32.0)));

superSamplelndex=1;
superSample=data[index+
transientLocation-NumberOfSuperSamples];

if{superSampleIindex<32)

{

superSample+=data[index-+transientLocation];
superSampleIndex++;

printf{"Super sample: %u %f.
\n",superSamplelndex,superSample); */

forintRfilePointer,"%u\n",((unsigned) (superSample/32.0)));

superSamplelndex=1;
superSample=data[index-+transientLocation];
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fclose(filePointer),

free(dirivative),
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/* Genetic algorithm source code */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define CO 0.4829629131445341
#define C1 0.8365163037378079
#define C2 0.2241438680420134
#define C3 -0.1294095225512604

#define ForwardTransform 1
#define InverseTransform -1

#defineNR_END 1
#define FREE_ARG char*

#define NumberOfGenes 64
#define NumberOfChromosomes 20

#define NumberOfGenerations 100
#define InitialRandomization 24

#define LocationOfLowerCoefficients 8
#define LocationOfUpperCoefficients 32

#define NumberOfL owerCoefficients 24
#define NumberOfUpperCoefficients 32

#define MaximumCrossOvers 20
#define MaximumMutations 8

void nrerror(char error_text[])
/* Numerical Recipes standard error handler */
{
fprintRstderr, "Numerical Recipes run-time error...\n"),
fprintf{stderr,"%s\n" error_text);
fprintf{stderr,"...now exiting to system...\n");
exit(1);
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float *vector(long nl, long nh)
/* allocate a float vector with subscript range v{nl..nh] */

{
float *v;
v=(float *)malloc((size_t) ((nh-nH1+NR_END)*sizeof(float)));
if ('v) nrerror("allocation failure in vector()");
return v-n+NR_END;
}

void free_vector(float *v, long nl, long nh)
/* free a float vector allocated with vector() */
{
free((FREE_ARG) (v+nl-NR_END));
nh =nh + 0; // Just included to quiet warning reports
}

float **matrix(long nrl, long nrh, long ncl, long nch)
/* allocate a float matrix with subscript rage m[mrl. .nrh][ncl..nch] */
{

long i, nrow=nrh-nri+1, ncol=nch-nch+1;

float **m;

/* allocate pointers to rows */

m=(float **) malloc((size_t)((nrow+NR_END)*sizeof{float*)));
if{'m) nrerror("allocation failure 1 in matrix()");

m +=NR_END;

m -=nel;

/* allocate rows and set pointers to them */

m{[nrij=(float *) malloc((size_t)}(nrow*ncol+NR_END)*sizeof{float)));
if{!m{nrl]) nrerror("allocation failure 2 in matrix()");

m[nrl] += NR_END;

minrl] = ncl;

for(i=nrH1;i<=nrh;i++) m[i}=m[i-1]}+ncol;
/* return pointer to array of pointers to rows */
return m;

}

void free_matrix(float **m, long arl, long nrh, long ncl, long nch)
/* free a float matrix allocated by matrix() */
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}

free((FREE_ARG) (m[nri}+ncl-NR_END));
free((FREE_ARG) (m+nrl-NR_END));

nrh +=0;
nch+=0;

void daub4(float a[], unsigned long n, int isign)

{

}

float *wksp;
unsigned long nh,nh1.i,j;

if (n < 4) return;
wksp=vector(L,n);
nhl=(nh=n >> 1)+1;
if (isign >= 0)
for (i=1,j=1;j<=n-3;j+=2,i++)
wksp[i]=C0*a[j][+C1*a[j+1 +C2*a[j+2]+C3*afj+3];
wksp[i+nh] = C3*a[j]-C2*a[j+1]+C1*a[j+2]-C0*a[j+3],
}
wkspfi]=C0*a[n-1]+C1*a[n]+C2*a[1]+C3*a[2];
wksp[i+nh] = C3*a[n-1]-C2*a[n}+C1*a[1]-C0*a[2];
} else {
wksp[1}=C2*a[nh]+C1*a[n]+-C0*a[1H+C3*a[nhl];
wksp[2] = C3*a[nh]-CO*a[n]+C1*a[1]-C2*a[nhl];
for (i=1,j=3;i<nh;i++) {
wksp[j++]=C2*a[i]+C1*a[i+nh]+C0*a[i+1]+C3*a[i+nhl];
wksp[j++] = C3*a[i]-CO*a[i+nh[+-C1*a[i+1]-C2*a[i+nh1];
}
}
for (i=1;i<=n;i++) afi]=wksp[i];
free_vector(wksp, 1,n);

/* (C) Copr. 1986-92 Numerical Recipes Software v)280Y°4. */

void wtl(float a[], unsigned long n, int isign,

{

void (*wistep)(float [], unsigned long, int))
unsigned long nn;

if (n <4) return;
if (isign >= 0) {
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J e for (nn=n;nn>=4;nn>>=1) (*wtstep)(a,nn,isign);
{

} for (nn=4;nn<=n;nn<<<1) (*wistep)(a,nn,isign);
}
/* (C) Copr. 1986-92 Numerical Recipes Software v)2$0Y 4. */
float *GeneticAlgorithm(float **geneticPool, unsigned chromosomes, unsigned genes)
{

unsigned cindex;

unsigned gindex;

unsigned scalelndex;

unsigned generationlndex;

unsigned crossOverIndex;

unsigned selectionIndex;

unsigned bestSolutionIndex;

unsigned parentA;
unsigned parentB;

unsigned numberOfMutations;

unsigned mutationGeneA;
unsigned mutationGeneB,;

unsigned totalCoefficients;
float **temporaryGeneticPool,
float *child;

float *selectionVector;

float *bestSolution;

float scaleNormalizationTotal;
float scaleCoefficientTotal;

float selectionNormalization;

float selectionCriterion;
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float totalSelectionVector;
float chromosomeFitness;
float selection;

float bestSolutionFitness;

/* get the selection of the fittest criterion */
selectionCriterion=0.0;
for(scaleIndex=3;scaleIndex<=5;scaleIndex++)
{
scaleCoefficientTotal=0.0;
for(gIndex=(pow(2,scaleIndex)+1);gIndex<=pow(2,(scaleIndex+1));gInde
x++)
{
scaleCoeflicient Total+=fabs(geneticPool[chromosomes+1][gIndex]
)
-}

if{scaleIndex—=3)
{

}

else

{

selectionCriterion+=scaleCoefficientTotal;

if{scaleIndex=—=4)

{
selectionCriterion+=0.90*scaleCoeffictentTotal;

selectionCriterion+=0.50*scaleCoefficientTotal,

/* start the genetic algorithm */

/* get memory for child of each generation */
child=vector(1,genes);
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/* get the memory for the selection vector */
selectionVector=vector(1,chromosomes);

/* get the memory for the temporary genetic pool */
temporaryGeneticPool=matrix(1,chromosomes, 1,genes);

/* get the memory for the best solution */
bestSolution—=vector(1,genes);

for(generationindex=1;generationindex<=NumberOfGenerations;generationlndex

++)

{

/* crossover */
for(crossOverlndex=1;crossOverIndex<=MaximumCrossOvers;crossOverl
ndex++)

{

/* get parents of child for next generation */
parentA=(rand()%chromosomes)+1;
parentB=(rand()%chromosomes)+1;

/* generate child */
for(gindex=1;gIndex<=LocationOfLowerCoefficients;gIndex++)

{

child[gIindex]=geneticPool[parentA][gindex];
}
for(gIndex=(LocationOfLowerCoefficients+1);gIndex<=genes;glnd
ex++)

{
child[gIndex]=geneticPool[parentB]{glndex];
}
/* enter child in genetic pool */
i{rand()%2)
{
for(gindex=1;gIndex<=genes;gIndex++)
{
geneticPool[parentA][gIndex]=child[gIndex];
}
}
else
{
for(gIndex=1;gIndex<=genes;gIndex++)
{
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}

geneticPool[parentB][gIndex]=child{gIndex];

/* selection of the fittest */
for(cindex=1;cIndex<=chromosomes;cIndex++)

{

chromosomeFitness=0.0;
for(scaleIndex=3;scalelndex<=5;scalelndex++)

{

scaleCoefficientTotal=0.0;
for(gIndex=(pow(2, scaleIndex)+1);gIndex<=pow(2,(scaleln
dex+1));gindex++)

{
if{(geneticPool[cIndex][gIndex])
{

scaleCoefficientTotal+=fabs(geneticPool[chr
omosomes+1][gIndex]);

}

if{scaleIndex=—=3)
{

}

else

{

chromosomeFitness+=scaleCoefficientTotal;

if{scaleIndex=—=4)

{
chromosomeFitness+=0.90*scaleCoefficient

Total;

chromosomeFitness+=0.50*scaleCoefficient
Total;

}

selectionVector[cIndex]~chromosomeFitness/selectionCriterion;
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bestSolutionFitness=0.0;
for(cIndex=1;cIndex<=chromosomes;cIndex++)

{
if{selectionVector{cIndex]>bestSolutionFitness)
{
bestSolutionFitness—=selectionVector{cIndex];
bestSolutionIndex=cIndex;
}
}
for(gIndex=1;gIndex<=genes;gindex++)
{
bestSolution[gindex]=geneticPool[bestSolutionIndex][gIndex];
}
selectionNormalization=0.0;
for(cIndex=1;cIndex<=chromosomes;cIndex++)
{
selectionNormalization+=selectionVector[cIndex];
}
totalSelectionVector=0.0,
for(cIndex=1;cIndex<=chromosomes;cIndex++)
{
printi{"Sv: %f ",selectionVector{cIndex]); */
totalSelectionVector+=selectionVector{cIndex)/selectionNormaliza
tion;
selectionVector[cIndex]=totalSelectionVector;
printf{"%f. \n",selectionVector{cIndex]); */
}

/* move the genetic pool to a temporary location for selection */
for(cIndex=1;cIndex<=chromosomes;cIndex++)

{

for(gIndex=1;gIndex<=genes;gindex++)

{
temporaryGeneticPool[cIndex][gIndex]=geneticPool[cInde
x](gIndex],
printf{"%u",((unsigned)
temporaryGeneticPool[cIndex][gIndex])); */

}

printR"\n"); */
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}

/* perform selection */

for(cIndex=1;cIndex<=chromosomes;cIndex++)

{
selection=((float) rand())/((float) RAND_MAX);,
selectionlndex=1;
while(selection>selectionVector{selectionIndex])
{

}
if{(selectionIndex+1)>chromosomes)
selectionindex=chromosomes-1;

selectionIndex++;

printf{"Selected chromosome: %u. \n",selectionlndex+1); */

for(gIndex=1;gIndex<=genes;gindex++)

{
geneticPool[cIndex][gIndex]=temporaryGeneticPool[selecti
onindex+1][gindex];
}
}
/* mutation */

numberOfMutations=rand()%MaximumMutations;
for(mutationIndex=0;mutationIndex<=numberOfMutations,;mutatio
nindex++)

/* select chromosome for mutation */
cIndex=(rand()%chromosomes)+1;

iflrand()%2)

{
/* select genes for mutation, lower half */
mutationGeneA=(rand()%(NumberOfLowerCoefficients))+

LocationOfLowerCoefficients+1;
mutationGeneB=(rand()%(NumberOfLowerCoefficients))+
LocationOfLowerCoefficients+1;

}

else

{

/* select gene for mutation, upper half */
mutationGeneA=(rand()%(NumberOfUpperCoefficients))+
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LocationOfUpperCoeflicients+1;

mutationGeneB=(rand()%(NumberOfUpperCoefficients))+

LocationOfUpperCoeflicients+1;
}
imutationGeneA)
{
if{!mutationGeneB)
{
geneticPool[cIndex][mutationGeneA]=0.0;
geneticPool[cIndex][mutationGeneB]=1.0;
}
}
else
{
ifilmutationGeneB)
{
geneticPool[cIndex][mutationGeneA]=1.0;
geneticPool[cIndex][mutationGeneB]=0.0;
}
}
}
for(cIndex=1;cIndex<=chromosomes;cIndex++)
{
totalCoefficients=0,
for(gIindex=1;gIndex<=genes;gindex++)
{
totalCoefficients+=((unsigned)
geneticPool[cIndex][gIndex]);
}
if{totalCoefficients!=32)
{
printf{"Error, more or less than 32 coefficients >> %u.
\n",totalCoefficients);
getc(stdin);
}
}

}
/* transform the best solution back to the wavelet coefficients */
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for(gIndex=1;gIndex<=genes;gindex++)

{
primtf{("%u" ,((unsigned) bestSolution[gIndex]));
if{bestSolution[gIndex])
{
bestSolution[gindex]=geneticPool[chromosomes+1][gIndex];
}
else
{
bestSolution[gindex}=0.0;
}
}
printf{"\n");
for(gindex=1;gIndex<=genes;gindex++)
{
printf{"%f %f
\n",bestSolution[gIndex],geneticPool[chromosomes+1][gIndex]);
S

wtl(bestSolution,genes, InverseTransform,daub4); */

return(bestSolution);

float **InitializeGeneticAlgorithm(unsigned chromosomes, unsigned genes,

{

char *inputSignal)
unsigned cIndex;
unsigned gindex;
unsigned scalelndex;
unsigned superSamplelndex;
unsigned superSampleSize=32;
unsigned unsignedinput;

unsigned lowerCoefficientTotal;
unsigned upperCoefficientTotal;

unsigned totalCoefficients;
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unsigned randomLocation;
float **geneticPool;

float *input;

float superSample;

float scaleEnergy,

float lowerCoeflicientEnergy;
float upperCoeflicientEnergy;

FILE *filePointer;

/* get the pool's memory */
geneticPool=matrix(1,(chromosomes+2),1,genes);

/* initialize the pool to zeros */
for(cIndex=1;cIndex<=chromosomes;cIndex++)

for(gindex=1;gIndex<=genes;gindex++)
{

}

geneticPool[cIndex]{gIndex]=0.0;

}

/* get the input signal */
filePointer=fopen(inputSignal,"r"),
if{filePointer)

{
printf{"Exitting to dos... \n");

printf{"Cannot open input file. \n");

exit(1);
}

/* get memory for input file */
input=vector(1,genes);

for(glndex=1;gIndex<=genes;gIndex++)

{
superSample=0.0;
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for(superSampleIndex=1;superSamplelndex<=superSampleSize;superSamp
leIndex++)

{
fscanf{filePointer,"%u\n",&unsignedInput);
superSample+=((float) unsignedinput);

}
input[gIndex]=(superSample/((float) superSampleSize));
}

fclose(filePointer);

filePointer=fopen("z.dat","w");
for(gIndex=1;gIndex<=genes;gindex++)
{

fprintf{filePointer,"%f\n" input{gindex]);
}

fclose(filePointer);

/* perform the wavelet transform */
wtl(input,genes,ForwardTransform,daub4);

/* place the input file's wavelet coefficients into the first extra space
in the genetic pool */
for(gIndex=1;gIndex<=genes;gIndex++)
{
geneticPool{chromosomes+1][gIndex]=input[gindex];
printf{"%f. \n",geneticPool[chromosomes+1][gindex]);
}

/* add the first 8 coefficients automatically to each chromosome */
/* (the dc component of the signal and the first 2 scales) */
for(cIndex=1;cIndex<=chromosomes;cIndex++)

{
for(gIndex=1;gIndex<=8;gindex++)

{
geneticPool[cIndex]{gIndex]=1.0;
}
}
/* show the genetic pool */

for(cindex=1;cIndex<=chromosomes;cIndex++)
{
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for(glndex=1;gIndex<=genes;gindex++)

{
} printf{"%u",((unsigned) geneticPool[cIndex][gIndex]));
printf{"\n");

}
printf("\n"); */

/* calculated the energy for the remaining scales */

/* and put normalized coefficient values in the second extra space */
/* in the genetic pool */
for(scaleIndex=3;scaleIndex<=5;scaleIndex++)

{
scaleEnergy=0.0;
for(gIndex=(pow(2,scaleIndex)+1);gIndex<=pow(2,(scaleIndex+1));gInde
x++)
{

}
for(gindex=(pow(2,scaleIndex)+1);gIndex<=pow(2,(scaleIndex+1));glnde

x++)
{

scaleEnergy-+=fabs(geneticPool[chromosomes+1][gindex]);

geneticPool[chromosomes+2][gIndex]=fabs(geneticPool{ch
romosomes+1][gIndex])/scaleEnergy;

}

randomize();

/* randomly initialize the genetic pool */

/* number of genes selected via InitialRandomization */

lowerCoefficientEnergy=0.0;
for(gIndex=(LocationOfLowerCoefficients+1);gIndex<=<LocationOfUpperCoeffici
ents;gindex++)

{

}

upperCoefficientEnergy=0.0;
for(gIndex=(LocationOfUpperCoefficients+1);gIndex<=genes;gIndex++)
{

lowerCoefficientEnergy-+=fabs(geneticPool[chromosomes+1][gIndex]);
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upperCoefficientEnergy+=fabs(geneticPool[chromosomes+1]{gIndex]),
}

lowerCoefficientTotal=((unsigned)
ceil((lowerCoefficientEnergy/(lowerCoeflicientEnergy+upperCoefficientEnergy))*
InitialRandomization));

upperCoefficientTotal=((unsigned)
floor((upperCoeflicientEnergy/(lowerCoefficientEnergytupperCoeflicientEnergy))
*InitialRandomization));

printf{"Lower coefficients: %u. \n",JowerCoefficientTotal);
printf{"Upper coefficients: %u. \n",upperCoeflicientTotal),

for(cIndex=1;cIndex<=chromosomes;cIndex++)
{
for(gIndex=1;gIndex<=lowerCoefficientTotal;gIndex++)
{
randomLocation=(rand()% (NumberOfLowerCoefficients))+Locatio
nOfLowerCoeflicients+1 ;
while(geneticPool[cIndex][randomLocation])
{
randomLocation++;
if{randomLocation>genes)
{

}

}
geneticPool[cIndex][randomLocation]=1.0;

randomL ocation=LocationOfLowerCoefficients;

printf{"Random location: %u. \n",randomLocation); */
}

for(gindex=1;gIndex<=upperCoeflicientTotal;gIndex++)
{
randomLocation=(rand()%(NumberOfUpperCoefficients))+
LocationOfUpperCoefficients+1;
while(geneticPool[cIndex][randomLocation])
{
randomLocation++;
iflrandomLocation>genes)
{

}

randomLocation=LocationOfLowerCoefficients;
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}

}
geneticPool{cIndex]{randoml ocation}=1.0;

printf{"Random location: %u. \n",randomLocation); */
}

totalCoefficients=0;
t{’or(slndwl;slnww;glndw)

totalCoefficients+=((unsigned) geneticPool[cIndex](gIndex]);
}

printf{"Total coefficients for chromosome: %u >> %u.
\n",cIndex totalCoeflicients);

}

/* show the genetic pool */
for(cIndex=1;cIndex<=chromosomes;cIndex++)

{ for(gindex=1;gIndex<=genes;gIndex-++)
{ printf{"%u",((unsigned) geneticPool[cIndex][gIndex]));
;rintf("\n");

:’rintf("\n"); *

return(geneticPool);

void main(int argc, char *argv(])

{

float **geneticPool,;

float *output;
float *signal;

FILE *filePointer;

ifargc!=4)
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printf{"Exitting to dos... \n");
printR "Incorrect number of input arguments. \n");

exit(1);

}

/* initialize the genetic algorithm */
geneticPool=InitializeGeneticAlgorithm(NumberOfChromosomes,Number
OfGenes,argv[1]);

/* start the genetic algorithm */
output=GeneticAlgorithm(geneticPool, NumberOfChromosomes,NumberOfGenes)

filePointer=fopen(argv{2],"w");
if{filePointer)
{
~ - print{"Exitting to dos... \n");
printR{"Cannot open output file >> %s. \n",argv{2]);

exit(1);
}

/* get some memory for the signal */
signal=vector(1,NumberOfGenes);

for(index=1;index<=NumberOfGenes;index++)
signal[index]=output[index];

printf{"Signal %u %f. \n",index,signal[index]);
}

wti(signal NumberOfGenes,InverseTransform,daub4);
for(index=1;index<=NumberOfGenes;index++)

fprintf{filePointer,"%f\n",signal[index]);
}

fclose(filePointer);
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filePointer=fopen(argv([3],"w");
if(!filePointer)

{
printfR{"Exitting to dos... \n");
printf{"Cannot open output file >> %s. \n",argv{3]);

exit(1);
}

for(index=1;index<=NumberOfGenes;index-++)

{
output[index]=fabs(output[index]);
geneticPool[NumberOfChromosomes+1][index]}=fabs(geneticPool[Number
OfChromosomes+1][index]);

}

fprintf{filePointer,"%f\n",output([1]/(geneticPool[NumberOfChromosomes+1]{ 1]+
geneticPool[NumberOfChromosomes+1][2]));

fprintf{filePointer,"%f\n",output[2]/(geneticPool[NumberOfChromosomes+1][1]+
geneticPool[NumberOfChromosomes+1][2]));

fprintf{filePointer,"%f\n",output[3}/(geneticPool[NumberOfChromosomes+1}[3]+
geneticPool[NumberOfChromosomes+1][4]));

fprintf{filePointer,"%f\n",output[4]/(geneticPool[NumberOfChromosomes+1][3]+
geneticPool[NumberOfChromosomes+1][{4]));

for(index=5;index<=8;index++)

{
fprintf{filePointer,"%f\n",(output[index]y/
(geneticPool[NumberOfChromosomes+1][5HgeneticPool[NumberOfChro
mosomes+1]{6}+geneticPool[NumberOfChromosomes+1][ 7]+geneticPool[
NumberOfChromosomes+1][8]));

}

for(index=9;index<=16;index++)

{ )
fprintf{filePointer,"%f\n",(output[index]y/
(geneticPool[NumberOfChromosomes+1][9]+geneticPool[NumberOfChro

mosomes+1][10}+geneticPool[NumberOfChromosomes+1][11]+geneticPo
ol[NumberOfChromosomes+1][12]+geneticPool[NumberOfChromosomes
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+1]J[13}+geneticPool[NumberOfChromosomes+1][14]+geneticPool[Numb
erOfChromosomes+1]{15]+geneticPool[NumberOfChromosomes+1][16]))

L4

}
for(index=17;index<=32;index++)

fprintf{filePointer,"%f\n",(output{index]y/

(geneticPool[NumberOfChromosomes+1][17}+
geneticPool{NumberOfChromosomes+1][18HgeneticPool[NumberOfChromosom
es+1][19]+geneticPool[NumberOfChromosomes+1][20]+
geneticPool[NumberOfChromosomes+1][21]+geneticPool[NumberOfChromosom
es+1][22]+geneticPool[NumberOfChromosomes+1][23 ]+ geneticPool[NumberOfC
hromosomes+1][24}+geneticPool[NumberOfChromosomes+1][25]+geneticPool[
NumberOfChromosomes+1][26]+geneticPool[NumberOfChromosomes+1)[27}+g
eneticPool[NumberOfChromosomes+1][28]+
geneticPool[NumberOfChromosomes+1][29]+geneticPool[NumberOfChromosom
es+1][30]+geneticPool[NumberOfChromosomes+1][31]+geneticPool[NumberOfC
hromosomes+1][32]));

}

for(index=33;index<=64;index++)
{
~ fprintf{filePointer,"%f\n",(output[index]V

(geneticPool[NumberOfChromosomes+1][33}HgeneticPool[NumberOfChr
omosomes+1][34}+geneticPool[NumberOfChromosomes+1][35]+geneticP
0ol[NumberOfChromosomes+1][36]+
geneticPool[NumberOfChromosomes+1][37]+geneticPool[NumberOfChro
mosomes+]1][38]+geneticPool[NumberOfChromosomes+1]{39]+geneticPo
ol{NumberOfChromosomes+1][{40]+
geneticPool[NumberOfChromosomes+1][41}+geneticPool[NumberOfChro
mosomes+1][42]+geneticPool[NumberOfChromosomes+1}{43]+geneticPo
ol[NumberOfChromosomes+1][44
geneticPool[NumberOfChromosomes+1][45]+geneticPool[NumberOfChro
mosomes+1][46}+geneticPool[NumberOfChromosomes+1][{47]+geneticPo
ol{NumberOfChromosomes+1][48]+
geneticPool[NumberOfChromosomes+1)[49}+geneticPool[NumberOfChro
mosomes+1][50]+geneticPool[NumberOfChromosomes+1][51}+geneticPo
ol[NumberOfChromosomes+1][52}+
geneticPool[NumberOfChromosomes+1][53 }+geneticPool[NumberOfChro
mosomes+1][54]+geneticPool[NumberOfChromosomes+1][55}+geneticPo
ol[NumberOfChromosomes+1][56]+
geneticPool[NumberOfChromosomes+1][57]+geneticPool[NumberOfChro
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mosomes+1][58]+geneticPool[NumberOfChromosomes+1][59]+geneticPo
ol[NumberOfChromosomes+1][60]+
geneticPool[NumberOfChromosomes+1][61]+geneticPool[NumberOfChro
mosomes-+1][62}HgeneticPool[NumberOfChromosomes+1]{63]+geneticPo
ol[NumberOfChromosomes+1][64]));

}

fclose(filePointer);

/* free the gene pool */
free_matrix(geneticPool, 1, NumberOfChromosomes, 1, NumberOfGenes);
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/* backpropagation neural network. */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#define StringLength 128
#define LearningRate 0.3

#define momentum 0.80
#define endThreshold 0.3

#define NR_END 1
#define FREE_ARG char*

int momentumControl=1;
int linearOutput=0;

struct neuralNetwork
{

unsigned inputs;
unsigned testInputs;
unsigned selectedInput;
unsigned inputNodes;
unsigned hiddenNodes;
unsigned outputNodes;

float **inputs2Network;
float **trainingPattemns;

float **input2HiddenLayerWeights;
float **hidden2OutputLayerWeights;

float **previousinput2HiddenLayerWeights;
float **previousHidden2OutputLayerWeights;

float *hiddenLayerThresholds;
float *outputLayerThresholds;
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float *hiddenLayer;
float *outputLayer;
b

void nrerror(char error_text([])
/* Numerical Recipes standard error handler */

{
fprintf{stderr,"Numerical Recipes run-time error...\n");
fprintfR{stderr,"%s\n" error_text);
fprintf{stderr,"...now exiting to system...\n"),
exit(1);

}

float *vector(long nl, long nh)

/* allocate a float vector with subscript range v{nl..nh] */

{
float *v;

v=(float *)malloc((size_t) ((nh-nl+1+NR_END)*sizeof{float)));
if ('v) nrerror("allocation failure in vector()");
return v-niH+NR_END;

}

void free_vector(float *v, long nl, long nh)
/* free a float vector allocated with vector() */
{
free((FREE_ARG) (v+nl-NR_END));
nh = ph + 0; // Just included to quiet waming reports
}

float **matrix(long nrl, long nrh, long ncl, long nch)
/* allocate a float matrix with subscript rage m[mrl..nrh][ncl..nch] */
{

long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;

float **m;

/* allocate pointers to rows */

m—=(float **) malloc((size_t)(nrow+NR_END)*sizeof{float*)));
if{!m) nrerror("allocation failure 1 in matrix()");

m +=NR_END;

m -=nrl;
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/* allocate rows and set pointers to them */

m[nrl}=(float *) malloc((size_t)(nrow*ncol+NR_END)*sizeof{float)));
if{!m{nri]) nrerror("allocation failure 2 in matrix(Q)");

m{nri] +=NR_END;

mnrl] -= ncl;

for(i=nrl+1;i<=nrh;i++) m[i}=mfi-1}Hncol;
/* return pointer to array of pointers to rows */
return m,

}

void free_matrix(float **m, long nrl, long nrh, long ncl, long nch)
/* free a float matrix allocated by matrix() */

{
free((FREE_ARG) (m[nri}+ncl-NR_END));
free((FREE_ARG) (m+nrl-NR_END));
" ‘nrh+=0;
nch +=0;
}
char *DeleteNewline(char *input)
{
char *inputPointer;
/* delete the newline from the string */
inputPointer=input;
while(*inputPointer) inputPointer++;
*(inputPointer-1)=NULL;
\ return(input),
void ShowVector(float *vector, unsigned elements)
{
unsigned i;
for(i=1;i<=elements;i++)
{
printf{"Element %u > %f\n",i,vector(i]);
}
}
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void ShowMatrix(float **matrix, unsigned rows, unsigned columns)

{
unsigned i;
unsigned j;
for(=1;i<=rows;i++)

{
for(=1;j<=columns;j++)
{

printf{"Row %u Column %u > %f\n",i,j,matrix[i]j]);

}
void RandomizeThresholds(float *thresholdVector,unsigned elements)

{
unsigned i;

/* randomize the thresholds */
for(i=1;i<=elements;i++)
{

thresholdVector{i}=0.1*

} (((float) rand(Q)/((float) RAND_MAX));

/* show the vector to ensure proper operation */
/* printf{"Threshold vector: \n"),
ShowVector(thresholdVector,elements); */
}

void RandomizeWeights(float **weightMatrix,unsigned inputs, unsigned outputs)
{

unsigned i;

unsigned j;

/* randomize the weights */

for(i=1;i<=outputs;i++)

{
- for(=1;j<=inputs;j++)

{
weightMatrix[i][j}=0.1°
(((float) rand())/((float) RAND_MAX)),
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}
/* show the matrix to ensure proper operation */

* printf"Weight Matrix: \n");
ShowMatrix(weightMatrix,outputs,inputs); */
}
void InitializePreviousWeights(float **previousWeightMatrix, unsigned inputs, unsigned
t{»utpm)
wsigned i
unsigned j;
/* initialize all weights to zero */
for(i=1;i<=outputs;i++)
{
forG=1;j<=inputs;j++)
{
previousWeightMatrix{i][j}=0.0;
}
}
}

void propagatelnput2QOutput(struct neuralNetwork network)
{

/#

unsigned i;
unsigned j;

/* propagate input to hidden layer */
for(i=1;i<=network.hiddenNodes;i++)
{
network. hiddenLayer{i]=0.0;
for(j=1;j<=network.inputNodes;j++)

{
network.hiddenLayer{i]=network hiddenLayer{i]+

(network.input2HiddenLayerWeights{i][j]*
network.inputs2Network[network selectedInput][j]);

printf{"Input %f. Weight %f.
\n",network inputs2Network[network selectedInput][j],
network input2HiddenLayerWeights{i][j]); */
}
network hiddenLayer{i}=network hiddenLayer][i]-network.hiddenLayer Thr
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/*

*

}

}

esholds{i];

printf{"Threshold: %f. Qutput %f.

\n",network hiddenL ayer Thresholds{i],network hiddenLayerf{i]); */
network _hiddenLayer{i]=(1.0/(1.0+exp(-network. hiddenLayer{i])));
printf{"Hidden layer output %f. \n",network hiddenL ayer{i]); */

/* propagate hidden to output layer */
for(=1;i<=network.outputNodes;i++)

{

*

/*

network.outputLayer[i}=0.0;
for(j=1;j<=network.hiddenNodes;j++)

{
network.outputLayer[iJ-network.outputLayer{i}+
(network hidden2OutputLayerWeights[i][j]*networ

k hiddenLayer(j]);

printf{"Input %f. Weight %f.

\n",network.hiddenLayer{j],

network.hidden2OutputLayerWeights[i][j]);

printf{"Acc %f. \n",network.outputLayerfi]); */
}

network.outputLayer{i]=network.outputLayer[i]}-network.outputLayer Thre
sholds[i];

printf{"Threshold: %f. Qutput %f.

\n",network.outputLayer Thresholds{i],network.outputLayer([i]); */
if{!linearOutput)

{

}
printf"Output output %f. \n",network.outputLayer(i]); */

network outputLayer{i}=(1.0/(1.0+exp(-network.outputLayer{i])));

void UpdateWeightsAndThresholds(struct neuralNetwork network)
unsigned i;

unsigned j;

unsigned k;

{

float **temporaryWeights;

float *deriavative;
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float summation;

/* get some memory for the temporary weights */
temporaryWeights=matrix(1,network_outputNodes, 1 ,network.hiddenNodes);

/* memory for deriavative calculation */

deriavative=vector(1,network outputNodes);
/* copy the hidden2Output weights to a temporary location */
for(i=1;i<=network.outputNodes;i++)
{
for(j=1;j<=network.hiddenNodes;j++)
{
temporaryWeights[i][j]=network hidden2OutputLayerWeights[i][j];
printf{"%f %f.
\n",temporaryWeights[i][j],

network.hidden2OutputLayerWeights[il[j]); */

}

/* update output-hidden weights and thresholds */
for(i=1;i<=network outputNodes;i++)

{
i{f(!linearOutput)
deriavative[i]=(({(network trainingPatterns{network selectedInput][
i}-
network.outputLayer[i]))*((network.outputLayer{i])*
(1.0-network.outputLayer(i])));
}
else
{
deriavative[i]=((-(network trainingPatterns[network selectedInput][
i}-
network.outputLayer{i])));
}
printf{"%u Deriavative: %f. \n",i,deriavative[i]); */
}
for(i=1;i<=network.outputNodes;i++)
{

for(j=1;j<=network.hiddenNodes;j++)
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}

}

ilmomentumControl)

{
network.hidden2OutputLayerWeights[i][j]=
network hidden2OutputLayer Weights[i](j]+((-Learn
ingRate)*

(deriavative[i] *network.hiddenLayer{j]))+
(momentum*network previousHidden2OutputLayer
Weights(i](j]);

}

else

{

network.hidden20utputLayerWeights[i][j]=

network hidden20utputLayerWeights[i][j]+((-Leamn
ingRate)*
(deriavativefi]*network hiddenLayer{j]));

}

network.previousHidden2OutputL ayer Weights[i][jl=((-LearningRa
te)*(deriavative{i]*network hiddenLayer{j]));

printf{"%u %u. Weight - hidden->output: %f.
\n",i,j,network_hidden2OutputLayerWeights(i](i]); */

network.outputLayerThresholds{i}=network.outputLayer Thresholds[i]+

((-LearningRate)*(deriavative[i]*(-1.0)));

for(j=1,j<=network.hiddenNodes;j++)

{

}

summation=0.0;
for(i=1;i<=network.outputNodes;i++)
{

summation=summation-+deriavative[i]*temporaryWeights[i][j};

for(k=1;k<=network inputNodes;k++)
{

ilmomentumControl)
{
network.input2HiddenLayerWeights[j][k]=

network.input2HiddenLayerWeights[j][k]+
((-LearningRate)*summation®
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/*

(network.hiddenL ayer{j]*(1.0-network.hiddenLayer[

1)) 2
(network inputs2Network[network selectedInput][k

D+
(momentum*network previousInput2Hidden
} LayerWeights[j][k]);
else
{
network input2HiddenLayerWeights[j][k]—=
network input2HiddenLayerWeights[jl(k]+
((-LearningRate)* summation*
(network hiddenLayer{j]*(1.0-network hidde
nLayer(j]))*
(network.inputs2Network[network.selectedInput][k

DX
}

network.previousInput2HiddenL ayerWeights{j][k]=
((-LearningRate)*summation*
(network hiddenL ayer{j]*(1.0-network.hiddenLayer[j]))*
(network.inputs2Network[network_selectedInput]{k]));

printf"%u %u. Weight - input->hidden: %f.
\n",i,j,network.input2HiddenLayerWeights[i][j]); */

}

network.hiddenLayer Thresholds[j]=
network.hiddenLayerThresholds{j]+
((-LearningRate)*summation*
(network_hiddenLayer{j]*(1.0-network hiddenLayer(j]))*
(-1.0));

/* free the deriavative vector */
free_vector(deriavative, 1, network.outputNodes);

/* free the temporary weight matrix */
free_matrix(temporaryWeights, l,network.outputNod&s 1,network.hiddenNodes);

void Rearrangelnputs(struct neuralNetwork network)
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}

unsigned index;
unsigned rearrangelndex;

unsigned selectedInputA;
unsigned selectedInputB;

float temporary;
printf{"%u. \n",((unsigned) (network.inputs/2.0))); */

/* rearrange */
for(rearrangelndex=1;rearrangeIndex<=((unsigned)
(network.inputs/2.0));rearrangelndex++)
{
/* select the two inputs to swap */
selectedInputA=(rand()%((unsigned) network inputs))+1;
selectedInputB=(rand()%((unsigned) network inputs))+1;

printf{"Swap %u to %u and back. \n",selectedInputA,selectedInputB);
getc(stdin); */

/* swap the data */
for(index=1;index<network.inputNodes;index++)
{
temporary=network.inputs2Network[selectedInputA]{index];
network inputs2Network[selectedInputA][index]=
network.inputs2Network[selectedInputB]{index];
network.inputs2Network[selectedInputB]{index]=temporary;

void main(int argc, char *argv[])

{

unsigned index;

unsigned inputIndex;
unsigned outputindex;
unsigned fileIndex;
unsigned testIndex;
unsigned showIndex=1000;

unsigned i;
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unsigned j;

unsigned mode;

unsigned inputFiles;
unsigned testFiles;
unsigned networkInputs;
unsigned networkQOutputs;
unsigned hiddenNodes;

float **input2HiddenLayerWeights;
float **hidden2OutputLayerWeights;

float **previousinput2HiddenLayerWeights;
float **previousHidden2OutputLayerWeights;

float ®*inputData;
float **trainingPatterns,

float *outputLayer;
float *hiddenLayer;

float *hiddenLayer Thresholds;
float *outputLayerThresholds;

float *randomizationCheck;
float fData,

float error;
float testError;

char *input;

FILE *dataFilePointer;
FILE *inputFilePointer;
FILE *errorFilePointer;
FILE *networkFilePointer;
FILE *progressFilePointer;
FILE *checkFilePointer;

struct neuralNetwork network;



/* check input arguments */

iflarge!=4)
{
printf{"Number of input arguments is incorrect. \n"),
printf{"Require a input data file. \n");
printf{"Exitting to dos... \n");
exit(1);
}
/*open the data file */
dataFilePointer=fopen(argv[1],"r");
if{!dataFilePointer)
{
printf{"Data file not found. \n");
printf{"Exitting to dos... \n");
- exit(l);
}

/* get a string of length StringLength for input */
input=((char *) malloc(sizeof{char)*StringLength));
if{(!input)
{
printf{"Cannot allocate enough memory. \n"),
printf{ "Exitting to dos... \n");

exit(1);

}

/* read the mode type: 1 - train, 2 - classify */
mode=atoi(fgets(input, StringLength, dataFilePointer));
printf{"Network Mode: ");

switch(mode)

{
case 1: printf{"Training mode. \n"); break;
case 2: printf{"Classify mode. \n"); break;
default: printR"No mode selected. \n");
printf{"Exitting to dos... \n");
exit(1);
}
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/* get the number of input files */
inputFiles=atoi(fgets(input,StringLength, dataFilePointer));

/* get the number of testing files */
testFiles=atoi(fgets(input,StringLength,dataFilePointer));

/* get the number of network inputs */
networkInputs=atoi(fgets(input,StringLength, dataFilePointer));

/* get the number of hidden layer nodes */
hiddenNodes=atoi(fgets(input, StringLength,dataFilePointer));

/* get the number of network outputs */
networkOutputs=atoi(fgets(input,StringLength,dataFilePointer));

/* report new inputs to screen */

printf{"Number of input files: %u. \n",inputFiles);
printf{"Number of test files: %u. \n" testFiles);

printf{"Number of network inputs: %u. \n" networklInputs);
printf{"Number of hidden layer nodes: %u. \n",hiddenNodes);
printf{"Number of network outputs: %u. \n",networkOutputs);

/* get necessary memory for the network */
/* memory for each layer */
hiddenLayer=vector(1,hiddenNodes);
outputLayer=vector(1,networkOutputs),

/* memory for thresholds */
hiddenLayerThresholds=vector(1,hiddenNodes);
outputLayerThresholds=vector(1,networkOutputs);

/* memory for input data */

inputData=matrix(1,inputFiles+testFiles, 1, networkInputs);

/* memory for weights */

input2HiddenLayerWeights=matrix(1,hiddenNodes, I ,networkInputs);
hidden2OutputLayerWeights=matrix(1,networkOutputs, 1 hiddenNodes);

/* memory for the previous weights for momentum calculation */
previousinput2HiddenL ayer Weights=matrix(1,hiddenNodes, 1 ,networkInputs);
previousHidden2QutputLayerWeights=matrix(1,networkOutputs, 1 ,hiddenNodes);

/* memory for training patterns if necessary */
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ilmode=1)
{

}

/* load the neural network structure */
/* parameters */
network.inputs=inputFiles;

network testInputs=testFiles;

network selectedInput=1;

network inputNodes—networkInputs;
network.hiddenNodes=hiddenNodes;
network._outputNodes=networkOutputs;

trainingPatterns—matrix(1,inputFiles+testFiles, 1 networkOutputs);

/* input data */
network inputs2Network=inputData,

/* traing data */
network trainingPatterns=trainingPatterns;

/* weights */
network.input2HiddenL ayer Weights=input2HiddenLayerWeights;
network hidden2OutputLayerWeights=hidden2OutputLayerWeights;

/* previous weights for the calculation of momentum */
network previousInput2HiddenLayerWeights=previousInput2HiddenL ayerWeights

;etworkpreviousl-liddenZOutputLayerWeightFpreviousHidden20utputLayerWei
ghts;

/* thresholds */
network.hiddenLayerThresholds=hiddenLayerThresholds;
network.outputLayer Thresholds=outputLayer Thresholds;

/* layers */ _
network.hiddenLayer=hiddenLayer;
network. outputLayer=outputLayer;

/* open progress file if in classification mode */
ilmode==2)

{
progressFilePointer=fopen(argv[3],"w");
if{!progressFilePointer)
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}

printf{"Cannot write to file. \n");
printf{"Exitting to dos... \n");

exit(1),

/* get the data from the files and put it in memory */
for(inputIndex=1;inputIndex<=inputFiles+testFiles;inputindex++)

{

input=DeleteNewline(fgets(input, StringLength, dataFilePointer));

inputFilePointer=fopen(input,"r");
if(!inputFilePointer)
{
printf{"Could not open file: %s. \n", input);
printf{ "Exitting to dos... \n");

exit(1);

printf{"Filename: %s. File %u of %u.
\n",input,inputIndex,inputFiles);

/* read the data from the file */
for(fileIndex=1;fileIndex<=networkInputs;fileIndex++)
{
fscanf{inputFilePointer,"%f\n",&fData);
inputData[inputIndex][fileIndex]=fData;
printf{"%u %u %f. \n",inputindex fileIndex,
inputData[inputindex][fileIndex]); */
}

/* close the input file */
fclose(inputFilePointer);

/* use a trained network */

iflmode!=1)

{
/* open the file */
networkFilePointer=fopen(argv{2],"r");
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if{'networkFilePointer)

{
printf{"Could not open file: %s. \n", input);
printf{"Exitting to dos... \n");
exit(1);
}
for(i=1;i<=hiddenNodes;i++)
{
for(=1;j<=networkInputs;j++)
{
fscanf{networkFilePointer,"%f\n",&fData),
input2HiddenL ayerWeights[i][j]=fData;
}
}
/* hidden to output weights */
for(i=1;i<=networkOutputs;i++)
for(j=1;j<=hiddenNodes;j++)
{
fscanf{networkFilePointer,"%f\n",&fData);
hidden2OutputLayer Weights[i][j]=fData;
}
}
/* hidden thresholds */
for(i=1;i<=hiddenNodes;i++)
{
fscanfinetworkFilePointer,"%f\n",&fData);
hiddenLayerThresholds[i]=fData;
}
/* output thresholds */
for(=1;i<=networkOutputs;i++)
{
fscanf{networkFilePointer,"%f\n",&fData);
outputLayerThresholds[i]=fData;
}
/* close the file */
fclose(networkFilePointer);
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/* select the input */
network_selectedInput=inputindex;

/* propagate the input */
propagateInput2Qutput(network),

/* show the output */
fprintRprogressFilePointer,"%s %u/%u
" input,inputIndex,inputFiles);
for(=1;i<=networkOutputs;i++)

{ printf{"1%d - %f ".i,outputLayer{i]);
fprintf{progressFilePointer,"%f ",outputLayer{i]);

!})ﬁntf("\n");

fprintf{progressFilePointer,"\n"),

/* increment the current input counter */
network selectedInput=Inputindex; */

/* read the training pattern */
for(outputindex=1;outputindex<=networkOutputs;outputIndex-++)
{
fscanf{dataFilePointer,"%f\n" & fData);
trainingPatterns[inputindex][outputindex]}=fData,

/* if not training, the program is done, so terminate it */
if{lmode=2)

fclose(progressFilePointer);

exit(1);

/* display for debugging */
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/*

printf{"Input data matrix: \n");
ShowMatrix(inputData, inputFiles,networkInputs); */

iflmode=1)
{
printf{" Training data matrix: \n");
ShowMatrix(trainingPatterns, inputFiles, networkOutputs);
| Bl

/* start the training if necessary */

imode=1)

{
/* initialize the weights and thresholds */
/* set the random number generator once */
randomize();

/* randomize the weights */

Randomize Weights(input2HiddenLayerWeights,networkInputs,hiddenNod
es);
RandomizeWeights(hidden2OutputLayerWeights,hiddenNodes,networkOu
tputs);

/* initialize the previous weights for momentum calculation */
InitializePreviousWeights(previousinput2HiddenLayerWeights,networkInp
uts,hiddenNodes);
InitializePreviousWeights(previousHidden2OutputLayerWeights hiddenNo
des,networkQOutputs);

/* randomize the thresholds */ .
RandomizeThresholds(hiddenLayerThresholds, hiddenNodes);
RandomizeThresholds(outputLayerThresholds,networkOutputs);

/* open a file for reporting the errors */
errorFilePointer=fopen(argv{3],"w");
if(!errorFilePointer)

{
printf{"Cannot open file. \n");
printf{"Exitting to dos... \n");

exit(1);
}

/* allocate and initialize the randomization check */

A-67



MR ket Lk o S R

A A e el £ AL AR A (R~ A

/#

/t

/.

randomizationCheck=vector(1,inputFiles);

for(index=1;index<=inputFiles;index++)
{
randomizationCheck[index]=0.0;
}
/* train the network */
for(index=1;index<=25000;index++)
{
error=0.0;
for(inputindex=1;inputindex<<inputFiles;inputindex++)
{
/* rearrange inputs */
Rearrangelnputs(network); */
/* set the input file selector */
network.selectedInput=inputindex;
/* ((rand()%inputFiles)+1); */

/* increment the randomization check */
randomizationCheck[network selectedinput]++;

/* propagate the input to the output */
propagatelnput2QOutput(network);

/* update the weights and thresholds */
UpdateWeightsAndThresholds(network);

/* show the calculated output and etc. */
printR"Epoch index: %u, Input index: %u.
\n",index,inputindex); */
for(outputindex=1;outputindex<=networkOutputs;outputin
dex++)
{
if{index==showIndex)
{
printf{"Calculated output: %f
",outputLayer{outputIndex]);
printf{"target output: %f for output: %u.
\n",trainingPatterns[inputindex]
[outputIndex],
outputindex); */
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}
error+=pow((trainingPatterns[inputIndex][outputind
} ex]-outputLayer{outputindex]),2);

/* show and write the errors associated with this network */
printf{"Error this epoch: %u--> %f. \n",index,error); */
printi"Inputs: %f %f. \n \n",inputDatafinputIndex][1],

inputData[inputindex][2]); */
gete(stdin); */

}

if{index=—=showIndex)

{
/* test the data */
printf{"Testing the data... ");
testError=0.0;

for(testindex=(inputFiles+1);testindex<=(inputFiles+testFile
s);testindex++)
{

/* select the file */

network selectedInput=testindex;

/* propagate input to the output */
propagatelnput2Output(network);

printf{"Input Number: %u. \n",testindex);

/* calculate the error */
for(outputIndex=1;outputIndex<=network.outputN
odes;outputindex++)
{
printR"Output: %u > Error: %f >> Actual:
%f.
\n",outputIndex,network.outputLayer[output
Index],
network trainingPatterns{network.sel
ectedInput]{outputindex]);
testError+=fabs(network.outputLayer{outpu
tindex]-
network trainingPatterns{network.sel
ectedInput][outputindex]);
}
printf{"\n");
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}
printf{"Error: %f, average error: %f >>>%u >> %f. \n",

testError,testError/((float)
testFiles),index, LeamningRate);
/* stop if less than threshold */
if{(testError/((float) testFiles))<(endThreshold))
index=100000;
fprintf{errorFilePointer, "%f\n" (testError/((float)
testFiles)));
showIndex+=1000;
}
}
fclose(errorFilePointer);
checkFilePointer=fopen("randchk.dat","w");
if{!checkFilePointer)

-

printf{"Could not open file. \n"),
printf{"Exitting to dos... \n");

exit(1);
}
for(index=1;index<=inputFiles;index++)
{
fprintf{checkFilePointer,"%u %u\n",index,((unsigned)
randomizationCheck[index])),
}
fclose(checkFilePointer),
}
/* save the network */
/* open the file */
networkFilePointer=fopen(argv{2],"w");
if!networkFilePointer)
{

printf{"Could not open file: %s. \n",argv{2]);
printf{"Exitting to dos... \n");

exit(1);
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}

/* input to hidden weights */
for(i=1;i<=hiddenNodes;i++)

{
for(j=1;j<=networkInputs;j++)
{
fprintf{networkFilePointer,"%f\n",input2HiddenLayer Weights[i][i])

E4

}
}
printf{"Hidden weights have been saved. \n");

/* hidden to output weights */

for(i=1;i<=networkOQutputs;i++)

{ for(j=1;j<=hiddenNodes;j++)
{ fprintfnetworkFilePointer,"%f\n",hidden2OutputLayer Weights[i][j]
} )

}

printf{"Output weights have been saved. \n");
/* hidden thresholds */
for(i=1;i<=hiddenNodes;i++)

{

}
printf{"Hidden thresholds have been saved. \n"),

fprintfnetworkFilePointer,"%f\n",hiddenLayerThresholds[i]);

/* output thresholds */
for(i=1;i<=networkOutputs;i++)
{

}
printf{"Output thresholds have been saved. \n");

fprintfnetworkFilePointer,"%f\n",outputLayer Thresholds{i]);

/* close the file */
fclose(networkFilePointer);

/* free the memory */
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free_vector(hiddenLayer, 1, hiddenNodes);
free_vector(outputLayer, 1,networkQutputs);

free_vector(hiddenLayerThresholds, 1,hiddenNodes);
free_vector(outputLayerThresholds, 1, networkOutputs);

free_matrix(inputData, 1 ,networkInputs, 1inputFiles+testFiles),

free_matrix(input2HiddenLayerWeights, I, hiddenNodes, 1 networkInputs);
free_matrix(hidden2OutputLayerWeights, 1,networkOutputs, 1, hiddenNodes);

free_matrix(previousinput2HiddenLayerWeights, 1, hiddenNodes, 1 ,networkInputs);
free_matrix(previousHidden2OutputLayerWeights, 1, networkOutputs, 1, hiddenNod
es);

ilmode==1)
{

}

/* close the data file */
fclose(dataFilePointer),

free_matrix(trainingPatterns, 1 inputFiles+testFiles, 1, networkOutputs),

A-72





