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ABSTRACT

Digital image analysis (DIA) algorithms were developed to facilitate classification
of bulk samples of Canada Western Red Spring (CWRS) wheat, Canada Western Amber
Durum (CWAD) wheat, barley, oats, and rye using textural and color features of the grains.
To classify individual kernels of CWRS wheat, CWAD wheat, barley, oats. and rye, DIA
algorithms were developed based on morphological, textural. and color features of the grains.

The textural features of bulk samples and individual kernels were extracted from
different colors (e.g., red, green, or blue) and color band combinations [e.g., black&white
{(R+G+B)/3)}, BGR+2G+1B)/6, (2R+1G+3B)/6, or (1R+3G+2B)/6] of images to determine
the color or color band combination that gave the highest classification accuracies in cereal
grains. For bulk samples, the textural features extracted from the red color band at maximum
gray level value 32 gave the highest classification accuracies in cereal grains. The mean
accuracy which was the average of the classification accuracies of the cereal grains at a
maximum gray level value, was 100.0% when tested on an independent data set. For
individual kernels, the textural features extracted from the green color band at maximum
gray level value 8 gave the highest classification accuracies in cereal grains. The mean
accuracies were 92.0 and 92.9% when the texture model with the first 15 most significant
features was tested on an independent data set and on the training data set. respectively.
When the original bulk images were partitioned into sub-images and textural or color

features extracted from the sub-images were used, the classification accuracies of cereal
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grains decreased compared to those based on the original images. The mean accuracy was
100.0% when color features of bulk samples were used for classification of cereal grains in
an independent data set.

For classification of individual kernels of cereal grains, the color model with the first
10 most significant color features gave mean accuracies of 93.4 and 94.9% when tested on
an independent data set and on the training data set, respectively. The morphological model
with the first 10 most significant morphological features gave mean accuracies of 94.2 and
96.0% when tested on an independent data set and on the training data set, respectively. The
mean accuracies of 98.6 and 99.3% were achieved when the morphology-texture model with
the first 15 most significant features was used to test on an independent data set and on the
training data set, respectively. When the morphology-color model (with the first 15 most
significant features) was tested on an independent data set and on the training data set, the
mean accuracies were 99.4 and 99.6%, respectively. Similarly, using the texture-color model
(with the first 15 most significant features) the mean accuracies were 98.4 and 98.0%.
respectively for an independent data set and the training data set. The highest classification
accuracies were achieved when the morphology-texture-color model was used. The mean
accuracies using the first 20 most significant features in the morphology-texture-color model
were 99.7 and 99.8% when tested on an independent data set and on the training data set,

respectively.
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CHAPTER I: INTRODUCTION

Canada produced an average of 55 Mt (million tonnes) of grains and oilseeds worth
about $ 6 billion annually during the years from 1983 to 1992 (Canada Grains Council
1994). About 70% of these grains are exported through a grain collection, handling, and
shipping system. The producers store their grain on farms and usually deliver it in farm-
trucks to primary (country) elevators (grain handling facilities). The grain is graded by
visual inspection and comparison with standard samples (Anonymous 1994). The standard
samples are prepared every year to reflect the year-to-year variation in the environmental
conditions during harvest. Grain moves from primary elevator to terminal elevator by train.

In a terminal elevator, grain is received, graded, cleaned, binned, and shipped
according to buyers’ (importing countries’) specifications. At the receiving end, it is
necessary to rapidly identify the grain type in a rail car so that the grain can be unloaded into
the unloading pit. A machine vision system (MVS) can be installed for rapid identification
of different cereal grains (e.g., CWRS wheat, CWAD wheat, barley, oats, and rye). The
MVS has to identify the principal grain type; hence bulk sample images of cereal grains can
be used to solve the problem. In the cleaning section, the grain is inspected before and after
it is passed through the cleaner or a battery of cleaners and the cleaning performance is
determined. Such information can be used to optimize the selection and adjustment of the
cleaning machines resulting in increased cleaning throughput and enhanced recovery of

salvageable grains. The grain is exported (shipped) according to buyers’ (importing



countries’) specifications. In some cases. if the grain is over cleaned. uncleaned and over
cleaned grains are blended to meet buyers” specifications. Both at the cleaning and the
shipping sections, the MVS can be installed to determine the cleaning performance of the
cleaner (or a battery of cleaners) and the visual quality of the grain being exported. To
monitor the cleaning performance, the MVS has to analyze two samples: one before the grain
goes into the cleaner and the other after the grain comes out of the cleaner. The MVS should
correctly identify all constituents of a grain sample in the cleaning and the shipping sections;
thus individual kernel images can be used to solve this problem.

At present, subjective assessment of grain composition and appearance determines
the identity and grade of a given sample. The five principal grading factors established by
the Canadian Grain Commission are test weight, varietal purity, soundness, vitreousness, and
maximum limits of foreign material. Of these, only test weight is objectively determined.
Grading decisions on grains and other agricultural products, by and large, require visual
inspection of the product sample by trained personnel. Despite training, the grading
decisions are inherently subjective and are influenced by the individual experience of an
inspector. An objective and quantitative method of measurement of grain characteristics
would be highly desirable and beneficial. With the advance of computers and the
improvements in the capabilities of computer vision technique. most of the kernels features
employed in subjective grain inspection can be rapidly measured with high precision and
accuracy.

Substantial work dealing with the use of different morphological (size and shape)

features for classification of different cereal grains and varieties has been reported in the
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literature (Barker et al. 1992a. 1992b. 1992c. 1992d: Draper and Travis 1984: Keete 1992:

Keefe and Draper 1986, 1988; Lai et al. 1986; Myers and Edsall 1989; Neuman et al. 1987:

Sapirstein and Kohler 1995; Sapirstein and Bushuk 1989; Sapirstein et al. 1987; Symons and

Fulcher 1988a, 1988b; Travis and Draper 1985; Zayas et al. 1985, 1986, 1989). Some

investigations were carried out using color features (Hawk et al. 1970; Majumdar et al.

1996a; Neuman et al. 1989a, 1989b) for classification of different cereal grains and their
varieties and for correlating vitreosity and grain hardness of CWAD wheat (discussed in
details in Chapter III). With clean samples, high classification accuracies among cereal
grains have been reported using morphological and reflectance features (e.g., Neuman et al.
1989a, 1989b). The classification accuracy might change (most probably would be
reduced) if tested on commercial samples, collected from different growing regions. The
classification accuracy can be potentially improved by adding additional features based on
texture (Petersen 1992). Addition of color features may also improve the classification
accuracy. Figure 1.1 shows different types of cereal grains used in this study.

The objective of the proposed research was to test the following hypotheses:

(1) textural features of bulk samples can be used for rapid identification of different
cereal grains, e.g., Canada Western Red Spring (CWRS) wheat, CWAD wheat.
barley, oats, and rye.

) reduction in the number of gray levels to a certain extent improves the

classification accuracy and reduces computation time.
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(ii) textural features extracted from the red color band give better classification
accuracy than other color bands (e.g., green or blue) or color band
combinations.

(iit)  the classification accuracy improves when sub-images of an original bulk
image are used for classification instead of the original bulk image.

2) color features of bulk samples can be used for rapid identification of different cereal
grains, e.g., CWRS wheat, CWAD wheat, barley, oats, and rye.

3) morphological features of individual kernels can be used for classification of
different cereal grains, e.g., CWRS wheat, CWAD wheat, barley, oats, and rye.

“) textural features of individual kemnels can be used for classification of different cereal
grains, e.g., CWRS wheat, CWAD wheat, barley, oats, and rye.

(1) reduction in the number of gray levels to a certain extent improves
classification accuracy and reduces computation time.

(ii) textural features extracted from the red color band give better classification
accuracy than other color bands (e.g., green or blue) or color band
combinations.

(5)  limited color features of individual kernels can be used for classification of different
cereal grains, e.g., CWRS wheat, CWAD wheat, barley, oats, and rye, and

(6)  inclusion of textural and color features with morphological features of individual
kemnels can improve the classification accuracy of different cereal grains, e.g., CWRS

wheat, CWAD wheat, barley, oats, and rye.
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The material presented in this thesis is organized into eight chapters. The first
chapter addresses the justification, importance, and the objectives of the research. Chapter
[T begins with a brief overview of the digital image processing system. It continues with an
explanation of the principles of the machine vision technique. After that, discussion is
presented on different morphological, color, and textural features. Chapter II is concluded
with an overview of the object classification techniques, giving emphasis on the statistical
classifier.

Chapter III discusses the past research conducted in the area of wheat grading using
morphological and color features. It also reports different works in the agricultural area
using textural features.

Chapter IV discusses the vision hardware, samples, and sampling and image
acquisition techniques.

Development of DIA algorithms for textural, color, and morphological features is
discussed in Chapter V.

Chapter VI contains the procedures for analysis of bulk samples and individual kemel
images of cereal grains.

Results are presented in Chapter VII with discussions. The presentation of results
follow the flow of experiments starting with classification of cereal grains using textural and
color features extracted from bulk samples. The classification of individual kernels of cereal
grains using morphological, textural, and color features are discussed. Results of different

models for classification of individual kernels of cereal grains are reported. Chapter VII is



concluded with the selection of the model that gives the highest classification accuracies in
individual kernels of cereal grains.
Chapter VIII includes the conclusions and some recommendations made from the

experimental results.



CHAPTER II: IMAGE PROCESSING AND OBJECT
CLASSIFICATION

2.1 Digital image processing system

A digital image processing system is a configuration of hardware and software
components that can acquire, store, display, and process digital images, as shown in Fig. 2.1.
Although these components may be physically separated, each is fundamentally necessary

to complete the digital image processing cycle.

2.1.1 Image acquisition devices The first stage in any digital image processing system
is to acquire a digital image. This is achieved by using two separate devices: a sensor and
a digitizer. The sensor device is sensitive to a band in the electromagnetic energy spectrum
and produces an electrical signal output proportional to the level of energy sensed. The
digitizer converts the analog electrical output of the sensor into a digital form.

Besides x-ray based imaging systems, most common sensors deal with visible and
infrared light. Most frequently used sensors are vidicon cameras and solid-state arrays.

The operation of vidicon cameras is based on the principle of photo-conductivity.
An image focussed on the tube surface produces a pattern of varying conductivity that
matches the distribution of brightness in the optical image. An independent, finely focussed
electron beam scans the rear surface of the photoconductive target and by charge

neutralization, this beam creates a potential difference that produces a signal on a collector



proportional to the input brightness pattern. A digital image is obtained by quantizing this

.

signal, as well as the corresponding position of the scanning beam.

- o

Camers [ — e J Video
—» Digitizer —» _1m%8¢ 3 .oy —>| Display
— _Memory R Monitor
Image Data
Processor

Fig. 2.1 The fundamental components of a digital image processing system

Solid-state arrays are composed of discrete silicon imaging elements, called
photosites, that have voltage output proportional to the intensity of the incident light. Line-
scan and area-scan sensors are the two types of solid-state sensors. A line-scan sensor
consists of a row of photosites and produces a 2-D image by relative motion between the
scene and the detector. An area-scan sensor is composed of a matrix of photosites and is
therefore capable of capturing an image in the same manner as a vidicon tube. A significant
advantage of solid-state array sensors is that they can be electronically shuttered at very high
speed (e.g., 1/10 000 s). This makes them ideal for applications in which freezing of motion

is required.



The line-scan sensors have resolutions ranging from 256 to 4096 elements. The
resolution of the area-scan sensors ranges from 32 x 32 elements at the low end to 2048 x

2048 elements at the high end.

2.1.2 Storage An 8-bit image of size 1024 x 1024 pixels requires about 1 Mb (mega byte)
of storage. One method of providing short term storage is through computer memory.
Another is by specialized boards, called frame buffers, that store one or more images and can
be accessed rapidly, usually at video rates (30 images per s). On-line storage generally takes
the form of magnetic disks. The magneto-optical drives allow a Gb (one billion bytes) of
storage memory on a 3.25" optical platter. Archival storage is characterized by massive
storage requirements but infrequent need for access. Magnetic tapes and optical disks are

the usual media for archival applications.

2.1.3 Processing Processing of digital images involves procedures that are usually
expressed in algorithmic form. Thus, with the exception of image acquisition and display,
most image processing functions can be implemented in software. The only reason for
specialized image processing hardware is the need for speed in some applications or to
overcome some fundamental computer limitations. Image processing is characterized by
specific solutions. Hence, techniques that work well in one area may be inadequate in
another. The actual solution of a specific problem generally requires significant research and

development.
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2.1.4 Communication Communication in digital image processing primarily involves
local communication between components of an image processing system or between image
processing systems and remote communication from one point to another, typically in

connection with the transmission of image data.

2.1.5 Display Monochrome and color TV monitors are the principal display devices used
in modern image processing systems. Monitors are driven by the output(s) of a hardware
image display module in the back-plane of the host computer or as part of the hardware
associated with an image processor. The signals at the output of the display module can also
be fed into an image recording device that produces a hard copy (slides, photographs, or
transparencies) of the image being viewed on the monitor screen. Other display media
include printing devices.

A host computer controls the entire system. It provides the interface to the user along
with the sequencing of acquisition, storage, display, and processing. The digital image
stored in memory is freely accessible for processing by the host computer. Although the host
computer has the full ability to carry out any conceivable operation upon a stored image. its
execution speed can be limited. To augment the host computer, specialized high-speed
processors are usually a part of a digital image processing system.

This additional processing hardware can take the form of high-speed hardware
circuits or secondary microprocessors, optimized to handle common digital image processing
operations. For applications that must run fast enough to keep up with real-time events, like
a moving conveyer line of parts, the high-speed hardware approach is often essential.

11



2.2 Digital image

An image is a two dimensional (2-D) function generated by sensing the radiometric
information of a scene. A scene is frequently a collection of three dimensional (3-D) objects
and usually governed by the physical laws of nature. The image is represented by an image
function f(x, y) where the arguments of the image function (the independent variables x, y)
are spatial coordinates in the image and f is the intensity or gray level at these locations. In
a color image, f'is a vector with three components representing hue (H), saturation (S). and

intensity (I), or red (R), green (G), and blue (B).

2.2.1 Image resolution The quality of a digital image is directly related to the number
of pixels and the range of brightness values in the image. These aspects are known as image
resolution. The image resolution is the capability of the digital image to resolve the elements
of the original scene. For digital images, the resolution characteristics can be broken into
two ways — the spatial resolution and the brightness resolution (or color resolution for a
color image). The number of pixels in an image is described by its spatial resolution. The
more pixels in an image, the greater is its spatial resolution. Every pixel in a digital image
represents the intensity of the original image at the spatial location where it was sampled.
The concept of brightness resolution addresses how accurately the digital pixel's brightness
can represent the intensity of the original image.

The aspect ratio is a measure of an image's rectangular form. It is calculated by
dividing the image's horizontal width by its vertical height. In case of commercial broadcast
television and common video equipment, images have an aspect ratio of 1.333. Commonly

12



this aspect ratio is denoted as 4:3. This means that the horizontal dimension of the image is
1.333 times wider than the vertical dimension. An image with a 1:1 aspect ratio appears as

a square.

2.2.2 Color image If one looks very closely at a color video display screen, whether it's
a cathode ray tube (CRT) or liquid crystal display (LCD), one will notice individual dots of
solid colors. These dots emit light in the colors of R, G, and B. This is called the additive
color property, and it works for the mixing of primary colors that are emitting light. When
R, G, and B are mixed together, an entire spectrum of colors can be created and it can be
represented by a color space cube as shown in Fig. 2.2.

Subtractive color mixing is based on reflective colors rather than emissive colors.
Instead of emitting light like a video display, subtractive colors reflect the light shined upon
them. The subtractive colors, called secondary colors, are cyan (C), magenta (M), and
yellow (Y). Subtractive colors are used primarily in the printing industry.

Although RGB color space is the fundamental color space used to physically detect
and generate color light, other derivative color spaces can be created to aid color image
processing. The most important derivative color space is the H, S, and I (HSI) space. This
color space represents color as we perceive it. Whenever an application requires a human
to interpret or control the colors of an image, HSI space is well suited. Hue indicates what
color, such as green, dominates the reflected light. Saturation indicates how much of the

color is there, i.e. purity of color. For example, a hue of red can have numerous saturation



> w

Magenta

Fig. 2.2 The red, green, and blue (RGB) color cube
levels ranging from deep red (fully saturated) to pink and finally white (no saturation of red

at all). Intensity indicates how bright the color is, such as light green.

2.3 Image analysis

Image analysis operations are used in applications that require the measurement and
classification of image information. They are different from all other digital image
processing operations because they almost always produce non-pictorial results. One
mission of image analysis operations is to understand an ncage by quantifying its elements.
The quantification includes such things as measures of size, indicators of shape, and
descriptions of outlines. Other elements of interest can include attributes such as brightness,

color, and texture.
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The first step in image analysis generally is to segment the image. Segmentation
subdivides an image into its constituent parts or objects. The level to which this subdivision
is carried depends on the problem being solved i.e., segmentation should stop when the
objects of interest in an application have been isolated. In general, segmentation is one of
the most difficult tasks in image processing. This step in the process determines the eventual
success or failure of the analysis. For this reason, considerable care should be taken to
tmprove the probability of rugged segmentation. In some situations, such as industrial
inspection applications, at least some measure of control (e.g., lighting. clean environment)
over the environment may be possible.

Segmentation algorithms for monochrome images generally are based on one of two
basic properties of gray-level values: discontinuity and similarity. In the first category. the
approach is to partition an image based on abrupt changes in gray level. The principal areas
of interest within this category are detection of isolated points and detection of lines and
edges in an image. The principal approaches in the second category are based on
thresholding, region growing, and region splitting and merging. The concept of segmenting
an image based on discontinuity or similarity of the gray-level values of its pixels is
applicable to both static and dynamic (time varying) images. Different segmentation
methods are described in detail in standard books of digital image processing (e.g., Gonzalez

and Woods 1992; Pratt 1991; Baxes 1994).



2.4 Feature extraction

Once the image has been cleanly segmented into discrete objects of interest, the next
step in the image analysis is to measure the individual features of each object. Many features
can be used to describe an object. These features are compared with the information from
known objects to classify an object into one of many categories. Generally. the features that

are the simplest to measure and contribute substantially towards the classification are the best

to use.

2.4.1 Morphological features The most common measurements that are made on objects
are those that describe shape. Shape features are physical dimensional measures that
characterize the appearance of an object. Objects can have regular shapes, such as square.
rectangular, circular, or elliptical but in many cases the shape of the object is arbitrary —
twisting and turning in apparently random ways. The commonly measured shape features
are briefly defined here.

Perimeter — The pixel distance around the circumference of an object is defined as
perimeter. It is a measure of the boundary length ot the object.

Area — The pixel area of the interior of an object is defined as area. It is computed as the
total number of pixels inside, and including, the object boundary. The result is a measure
of object size.

Area to Perimeter Ratio — It measures the roundness of the object, given as a value between
0 and 1. The greater the ratio, the rounder the object. If the ratio is equal to 1, the object is

a perfect circle.
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Roundness = (471t x Area)/Perimeter*
Major Axis Length — Distance between the (x. y) end points of the longest line that can be
drawn through the object is defined as major axis length. The major axis endpoints (X,. y,)
and (x,, y,) are found by computing the pixel distance between every combination of border
pixels in the object boundary and finding the pair with the maximum length. The result is a
measure of object length.

Major Axis Length = V{(x, - X;)* + (V> - ¥,)*}
where (x,. ¥,) and (X, y,) are the major axis end points.
Minor Axis Length — The distance between the (x, y) end points of the longest line that can
be drawn through the object while maintaining perpendicularity with the major axis is
defined as minor axis length. The result is a measure of object width.

Minor Axis Length = V{(x, - x,)* + (¥, - ¥,)*}
where (x,, ¥,) and (X,, y,) are the minor axis endpoints.
Minor Axis Length to Major Axis Length Ratio — The ratio of the length of the minor axis
to the length of the major axis. It is a measure of object elongation. The ratio is between 0
and 1; and if it is equal to 1, the object is generally of square, circular, or diamond shape.
Spatial Moments — The spatial moments of an object are statistical shape measures that do
not characterize the object specifically. Rather, they give statistical measures related to an
object's characterizations.

The zero-order spatial moment is computed as the sum of the pixel brightness values
in an object. For a binary image, this is simply the number of pixels in the object, because
every object pixel is equal to 1 (white). Therefore, the zero-order spatial moment of a binary
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object is its area. For a gray level image. an object's zero-order spatial moment is the sum
of the brightness of pixels and is related to the object’s energy.

The first-order spatial moments of an object contain two independent components.
xand y. They are the x and y sums of the pixel brightness in the object, each multiplied by
its respective x or y coordinate in the image. [n the case of a binary image, the first-order x
spatial moment is just the sum of the x coordinates of the object's pixels. because every
object pixel is equal to 1. Similarly, the y spatial moment is the sum of the y coordinates of
the object's pixels.

Fourier Descriptors — Fourier descriptors represent the boundary of a region and obtain
information about the shape as a periodic function which can be expanded in a Fourier series.
The information used are the spectral information, i.e., frequencies and amplitudes of the
waves approximating the contour. A Fourier transform is an approximation of an arbitrary
function by trigonometric functions (sine and cosine). The mathematical expression is
dependent on the function to be approximated. If the function is periodic it will be expanded
as a Fourier series, otherwise as a Fourier integral (Gonzalez and Woods 1992). Consider
an object with an N-point digital boundary in the xy plane. Starting at an arbitrary point (.
Yo), coordinate pairs (Xg, Yo), (Xp» ¥1)» (X2 ¥a)y «eee- (Xn.1> ¥Yn.1) are encountered in traversing
the boundary, say, counter-clockwise. These coordinates can be expressed in the form x(k)
=x, and y(k) =y,. Now, the boundary can be represented as the sequence of coordinates s(k)
= [x(k), y(k)], fork=0,1, 2, ...... , N-1. Each coordinate pair can be treated as a complex

number so that s(k) = x(k) +j y(k) fork=0, 1, 2, ...., N-1, i.e., the x axis is treated as the real
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axis and the y axis as the imaginary axis of a sequence of a complex numbers. The discrete

Fourier transform of s(k) is:

4

s(k)exp[-j2Tuk/N} (2.1)

=0

=1
a(u) N

L

foru=0,1,2,.... N-1. The complex coefficients a(u) are called the Fourier descriptors of
the boundary. The inverse Fourier transform of the a(u)’s restores s(k), i.e.,

N-1
s(k) = % Y acu)exp[j2 muk/N] 2.2)
u=90

fork=0,1, 2.....N-1.

2.4.2 Color features Color features of an object can be extracted by examining every
pixel within the object's boundary. The histogram of these pixels shows the brightness
distribution found in the object. For color objects, R, G, and B pixel component values of
the object can be converted to H, S, and I or brightness color space. Then looking at the
histogram of the hue-component, image will instantly show the predominant hue of the
object.

Statistics of the brightness in an object can also be useful measures. The mean
brightness represents the average brightness of an object. The standard deviation of
brightness gives a measure of how much the object's brightness vary from the mean value.
The mode brightness is the most common brightness found in the object. The sum of all
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pixel brightness in an object relates to the energy. or aggregate brightness. of an object. This
measure is called an object's zero-order spatial moment. The application of these statistical
measures to brightness histograms, or color-component histograms can help in classifying

the brightness or color characteristics of an object.

2.4.3 Textural features Texture is an important characteristic for the analysis of many
types of images. It can be seen in all multi-spectral scanner images obtained from aircraft
or satellite platforms (which the remote sensing community analyzes) to microscopic images
of cell cultures or tissue samples (which the biomedical community analyzes). Despite its
importance and ubiquity in image data, a formal approach or precise definition of texture
does not exist. The texture discrimination techniques are, for the most part, ad hoc. Visual
texture is a difficult concept to define, but it is commonly attributed to images containing
repetitive patterns in which "elements"” or "tonal primitives" are arranged according to certain
"placement rules". The image texture is considered as non-figurative and cellular. It has two
basic dimensions — the first is for describing the tonal primitives out of which the image
texture is composed, and the second dimension is for describing the spatial dependence or
interaction between the primitives of an image texture. Tonal primitives are regions with
tonal properties. The tonal primitives can be described in terms such as the average tone, or
maximum and minimum tone of its region. The region is a maximally connected set of
pixels having a given tonal property. The tonal region can be evaluated in terms of its area

and shape. The tonal primitive includes both its gray tone and tonal regional properties.



Image texture can be qualitatively evaluated as having one or more of the properties
of fineness, coarseness, smoothness, granulation, randomness, or irregular. Each of these
adjectives translates into some property of the tonal primitives and the spatial interaction
between the tonal primitives. Tone and texture are not independent concepts. They bear an
inextricable relationship to one another very much like the relationship between a particle
and a wave. There really is nothing that is solely particle or solely wave. Whatever exists
has both particle and wave properties and depending on the situation, the particle or wave
properties may predominate. Similarly, in the context of an image, tone and texture are
always there, although at times one property can dominate the other. The basic relationships
in the tone-texture concept are the following. When a small-area of an image has little
variation of tonal primitives, the dominant property of that area is tone. When a small-area
has wide variation of tonal primitives, the dominant property of that area is texture. Crucial
in this distinction are the size of the small-area, the relative sizes and types of tonal
primitives, and the number and placement or arrangement of the distinguishable primitives.
As the number of distinguishable tonal primitives decreases, the tonal properties
predominate. As the number of distinguishable tonal primitives increases, the textural
properties predominate.

There have been many statistical and structural approaches to the measurement and
characterization of image texture: autocorrelation functions, autoregressive models, optical
transforms, digital transforms, structural elements, spatial gray tone co-occurrence
probabilities, gray level run lengths, and sum and difference histograms. For classification
of irregular texture and natural scenes, approaches like spatial gray level co-occurrence
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matrices, neighbouring gray level dependence matrices, gray level run lengths, and sum and

difference histograms give good results (Haralick 1979).

2.4.3.1 Gray level co- i 1  This model was first described by

Haralick et al. (1973). Suppose an image to be analyzed is rectangular and has N, resolution
cells in the horizontal direction, N, resolution cells in the vertical direction, and the gray
level appearing in each resolution cell is quantized to N, levels. LetL = {1,2,3, ..., N .}
be the horizontal spatial domain, L, = {1, 2, 3, ...... , N,} be the vertical spatial domain, and
G= {1, 2,3, ..., N;} be the set of N, quantized gray levels. The image, I, can be represented
as a function which assigns some gray level in G to each resolution cell or a pair of
coordinatesinL, xL,;[:L <L, -~ G.

An essential component of conceptual framework of texture is a measure of angular
nearest-neighbor gray level co-occurrence matrices (GLCMs). A resolution cell, excluding

those on the periphery of an image, has eight nearest-neighbor resolution cells (Fig. 2.3).

135° 90° 45°
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Fig. 2.3 Eight nearest-neighbor resolution cells.



[t is assumed that the texture-context information can be adequately specified by the
matrix of relative frequencies, P;;, with which two neighboring resolution cells separated by
distance, d, occur in the image, one with gray level, i, and the other with gray level, j. Such
GLCMs are a function of the angular relationship between the neighboring resolution cells
as well as a function of the distance between them. Figure 2.4 illustrates the set of all
neighboring resolution cells separated by 1 pixel distance. For angles quantized to 45°
intervals, the unnormalized frequencies are defined by:

PG, j,d,0°) = #{(kk, 0, (m,n)) e (L, xL,) x (L, xL,) | (k-m=0, [¢-n| =d). (k.

0 =1, I(m, n) =j}

PG, j,d,45%) = #{((k, O, (mn)e@,xL)x(L,xLy|(k-m=d,t-n=-d)or (k-
m=-d,l-n=d), Ik, ) =i, [(m, n)=j}

P@i,},d,90°) = #{((k,0,(m,n))e (L,xL,)x(@LxLy)|(k-m|=d,t-n=0), (k.
D=1, I(m, n) =j}

PG, j, d, 135°) = #{((k,®),(m,n)eL,xL)*x(L,xL)|(k-m=d,¢-n=d)or (k-
m=-d, ¢-n=-d), [k, 8) =1, [(m,n) =j}

where # = number of elements in the set.

(nLn (1,2 (1,3) (1,4)
@1 2,2 2,3) 2.4
3. 1) 3.2) 3. 3) G, 4)
@ 1) 4,2) 4, 3) 4.4

Fig. 2.4. Coordinates of resolution cells of a 4 x 4 image.
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Fora4 x4 image [L,={1,2,3.4} and L ,= {1, 2, 3. 4}] (Fig. 2.4), the set of all dist-
ance-1 horizontal-netghboring-resolution cells (i.e., a resolution cell and its immediate
neighbor in horizontal direction) is given by:

Ry=[{k,0),(mn)}e L, xLY)xL,xLY)|k-m=0, [¢-n|=1]
Ry =[{(1. 1), (1, 2)}. {(1,2), (1, 1)}, {(1, 2), (1, 3)}, {(1. 3), (1, 2)}, {(1, 3), (1, 4)}, {(1.4).

(1,3} {2.1), (2, 2)}, {(2,2), (2, D}, {2, 2), 2, 3)}, {(2,3), (2, 2)}, {2, 3), 2. 4)}.

{2, 4). 2,3} {3, 1), G, 2}, {5, 2). G, D}, {3, 2), G, 3)}, {3, 3). B, 2)}. {G.

33,9} {BG. 4. G, 3)}. {(4.1). (4, 2)}, {(4,2), (4. D}, {(4,2), (4, 3)}, {(4.3). (4.

2)}, {4, 3), (4.4}, {(4,4),(4,3)}]

Note that these matrices are symmetric, i.e., P(i, j, d, a) = P(j, i, d, a). Consider Fig.
2.5(a), which represents a 4 x 4 image with four gray levels, ranging from 0 to 3. Figure
2.5(b) shows the general form of any GLCM. For example, the element in the (2, 1) position
of the 1 pixel-distance horizontal matrix (Py) is the total number of times two gray levels of
value 2 and | occurred horizontally adjacent to each other. To determine this number. we
count the number of pairs of resolution cells in Ry such that the first resolution cell of the
pair has gray level value 2 and the second resolution cell of the pair has gray level value 1.
Figures 2.5(c - f) give all four 1 pixel-distance GLCMs. Using these matrices many textural
features can be extracted which are described in Chapter V.

All textural features extracted from the GLCMs are functions of distance and angle.
The angular dependencies present a special problem. Suppose an image, I, has features m,
n, o, and p for angles 0°, 45°, 90°, and 135°, respectively; and image, J, is identical to [
except that J is rotated 90° with respect to I. Then J will have features o, p, m, and n for
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Fig. 2.5

(a) A 4 x 4 image with 4 gray level values 0 - 3; (b) General
form of any gray level spatial-dependence matrix for image
with gray level values 0 - 3; #(i, j) stands for number of
times gray levels i and j have been meighbors; (c) - (f)

Calculation of all 4 distance-1 GLCMs.




angles 0°, 45°,90°, and 135°, respectively. Since the texture context of I is the same as the
texture context of J, any decision rule using the angular features m, n, o, p must produce the
same results for o, p, m, n. To do this, two functions of m. n, o, and p, their mean and range

(which are invariant under rotation), can be used for classification.

2.4.3.2 Gray level run length matrix model This model was first developed by Galloway

(1975). A gray level run is a set of consecutive, collinear picture points having the same gray
level value. The matrix element (i, j) specifies the number of times a picture contains a run
of length j, in a given direction, consisting of points having gray level i (or lying in gray level

range i). The gray level run length matrices (GLRMs) are described in detail in Chapter V.

2.5 Object classification

There are two different ways of classifying objects. One way is to find relations
among the objects with the purpose of grouping them. For example, the similarities among
grains which are used to group them into different classes, like cereal grains. oilseeds.
speciality crops, etc. Statistical methods covering this kind of classification are called
clustering, and the general principle is to group the observation vectors into clusters of a
certain similarity. The second way of classification is to assign objects into defined groups.
The statistical method for this classification is called discriminant analysis, and this is the
usual kind of classification which follows image analysis for recognition purposes.

The task of discriminant analysis is to find a decision rule which assigns an object
described by a number of m features to one of several groups P, i =1, 2, .., n) in a
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population. The simplest case is discrimination by one feature (e.g., object area) and two
groups. If we know the probability density function of this feature for each group, say f; (x)
and f, (x), the object should be assigned to the group with the higher probability density, i.e..
assigned to group P, if £, (x) > f, (x). This is called likelihood ratio method.

This method may be improved if we know that a proportion =, of the total population
belongs to P, and the remaining 7, belongs to P,. In this case, the object is assigned to P,
if ¢, f; (x) > 7, £, (x) which is the Bayesian classifier.

If we assume that x is normally distributed in each group as N(u;, 6;) then:

(x —p)
exp[~————] (2.3)
‘/2 o, 20;

t

f(x) =

[f further 0, = 0, = o for the two groups then:

- 2 _ - 2
£ (x)/£,(x) = expl - ot} T X TH2Y, (2.4)
20

Setting this expression equal to 1 (or &, / m,) gives the threshold for group separation.
The corresponding expression for a multivariate normal distribution of feature vectors

x; with dispersion matrices 2, =X, = X is:
£,(x)/f,(x) = exp{(n, ~1,)' Y " x - %(u, -1y 2 iy )l (2.5)

In the univariate case a threshold is used for separation of groups, in the bivariate case a line,
and in the multivariate case it is the hyperplanes which separate groups in the multi-
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dimensional feature space. The hyperplane for separating two groups is defined by setting

the discriminant functions equal to log(®, / &,):
- 1 -
Chy =) 27 =y — ) X (o my) = log(my/m,) 2.6)

In general, the distribution of the features is not known. One approach to estimating
the error rate of a classifier is to compute it from the assumed parametric model. However,
there are many problems with this approach: (i) estimate is almost always overoptimistic.
(ii) characteristics that make the design samples peculiar or unrepresentative are not revealed,
and (ii1) in more general situations it is very difficuit o compuie the error rate exactly, even
if the probabilistic structure is completely known (Duda and Hart 1973).

An empirical approach that avoids these problems is to test the classifier
experimentally. For discrimination. three special cases are considered of practical

importance:

The Resubstitution Method — The parameters of the discriminant functions are estimated
from the same population which is classified into groups. For example, one observation
from n observations is used as the test data and the n observations are used as the training
data. The number of incorrectly classified observations m; of the n; observations in group
P, define the error rate as e, = m; / n, and e = &, e, + T, e, for two groups. The resubstitution
method gives over optimistic estimation of classification accuracy; hence for real-world

application it should not be used.



The Cross-validation Method — This method (also known as leaving-one-our method)
estimates the discriminant functions from the sample data minus one (n-1) observations. The
omitted observation is then classified as the unknown observation and this procedure is
repeated until all observations (n) are classified. The corresponding error rate is e, = b; / n,.
and e = m, e, + T, &, (for two groups) where b, is the number of misclassified observations
in group P,. The cross-validation method gives very conservative estimation of classification

accuracy and it works best for a small sized sample.

The Hold Out Method — This method uses a separate population (training data) for
construction of the discriminant functions, and another population for testing the
classification results. [f the observations are normally distributed, the error rate may be
estimated by calculating the area of the region where the density function is overlapped by
a density function from another group. For the two group problem, the region is estimated
by R, ={x:f, (x| 0)/f,(x|0,)>n,/} where 0 are the estimated parameters of the prob-

ability density function. The misclassification for group 1 is:

e, = fng{(!lel) dx 2.7

where:

R, = feature space for group 2. The hold out method can be used in real-world applications.

The separation of groups in the feature space depends on how well the parameters of
the distribution functions are estimated. For example, if no errors are made on 50 test
samples, with probability 0.95, the true error rate is between 0 - 8%. The classifier would
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have to make no errors on more than 250 test samples to be reasonably sure that the true
error rate is below 2% (Duda and Hart 1973).

The need for data to design the classifier and additional data to evaluate it presents
the designer with a dilemma. If one reserves most of the data for the design, s/he cannot
have confidence in the test. If one reserves most of the data for the test, s/he will not obtain
a good design. The question of how best to partition a set of samples into a training set and
a test set has received some analysis, and considerable discussion, but has no definitive
answer (Duda and Hart 1973).

[n fact, there are more options available than just partitioning the data, designing the
classifier once, and testing it. For example, one might repeat this process several times,
using a different partition each time, and average the resuiting error-rate estimates. [f
computation costs are of no concern, one can use the cross-validation method. The basic
advantage of this approach is that virtually all of the samples are used in each design, which
should lead to a good design, and all of the samples are uitimately used in the tests. This
procedure is particularly attractive when the number of available samples is quite small.
When the number of samples is very large it is probably sufficient to partition the data into
a single training set and a single test set (hold out method). Although there is no theory to
guide the designer in intermediate situations, it is at least pleasant to have a large number of’

reasonable options.

2.5.1 SAS For a set of observations containing one or more quantitative variables and a
classification variable defining groups of observations, PROC DISCRIM of SAS (1990)
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develops a discriminant criterion to classify each observation into one of the groups. The
derived discriminant criterion from this data set can be applied to a second data set during
the same execution of DISCRIM. The data set that DISCRIM uses to derive the discriminant
criterion is called the training or calibration data set.

When the distribution within each group is assumed to be multivariate normal. a
parametric method can be used to develop a discriminant function. The discriminant
function, also known as a classification criterion, is determined by a measure of generalized
squared distance (Rao 1973). The classification criterion can be based on either the
individual within-group covariance matrices (yielding a quadratic function) or the pooled
covariance matrix (yielding a linear function); it also takes into account the prior
probabilities of the groups. The calibration information can be stored in a special SAS data
set and applied to other data sets.

When no assumptions can be made about the distribution within each group, or when
the distribution is assumed to be different from multivariate normal distribution, non-
parametric methods can be used to estimate the group-specific densities. These methods
include the kernel method and k-nearest neighbor methods (Rosenblatt 1956; Parzen 1962).

Either Mahalanobis distance or Euclidean distance can be used to determine
proximity. Mahalanobis distance can be based on either the full covariance matrix or the
diagonal matrix of variances. In the k-nearest neighbor method, the pooled covariance
matrix is used to calculate the Mahalanobis distances. In the kernel method, either the
individual within-group covariance matrices or the pooled covariance matrix is used to

calculate the Mahalanobis distances.



The DISCRIM procedure can produce an output data set containing various statistics
such as means, standard deviations, and correlations. DISCRIM evaluates the performance
of a discriminant criterion by estimating error rates (probabilities of misclassification) in the
classification of future observations. When the input data set is an ordinary SAS data set.

the error rate can also be estimated by cross-validation.

Bayes’ Theorem — Assuming that the probabilities of group membership are known and the
group-specific densities at X can be estimated, DISCRIM computes p(t | x), the probability

of x belonging to group t, by applying Bayes’ theorem:

p(tix) = q,f(x)/f(x) Q2.7

where:

p(t| x) = posterior probability of an observation x belonging to group t,

Qe = prior probability of membership in group t,
f(x) = group-specific density estimate at x from group t, and
fix) =Y,q,f(x), estimated unconditional density at x.

DISCRIM partitions a p-dimensional vector space into regions R,, where the region
R, is the subspace containing all p-dimensional vectors y such that p(t | y) is the largest

among all groups. An observation is classified as coming from group t if it lies in region R,.

Parametric methods — Assuming that each group has a multivariate normal distribution,

DISCRIM develops a discriminant function or classification criterion using a measure of
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generalized squared distance. DISCRIM also computes the posterior probability of an

observation belonging to each class. The squared distance from x to group t is:

d'x) = (x -m)'V, '(x - m) (2.8)
where:
\A = §,, if the within-group covariance matrices are used,
Vv, = §, if the pooled co-variance matrix is used,
X = a p-dimensional vector containing the quantitative variables of an observation.
m, = a p-dimensional vector containing variable means in group t,
S = pooled covariance matrix,
S, = covariance matrix within group t, and
t = a subscript to distinguish the groups.

An observation is classified into group u, if setting t = u produces the largest value
of p(t | x). If this largest posterior probability is less than the threshold specified, x is

classified into group “other’.

Non-parametric methods — Non-parametric discriminant methods are based on non-
parametric estimates of group-specific probability densities. When the k-nearest neighbor
method is used, the Mahalanobis distances are based on the pooled covariance matrix. The

squared distance between two observation vectors, x and y, in group t is given by

dlxy) = (x - )V, '(x - y) (2.9)

W
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where:
y = a p-dimensional vectors containing the quantitative variables of an observation.

The classification is based on the Bayes decision rule which classifies an entity
(represented by its pattern vector, e.g., x) to a ciass for which the entity has a maximum
posterior probability (Hand 1981; Duda and Hart 1973). An observation x is classified into
group u. if setting t = u produces the largest value of p(t | x). If there is a tie for the largest
probability or this largest probability is less than the threshold specified, x is classified into
group ‘other’.

Using the k-nearest neighbor rule, the k smallest distances are saved. Of these k
distances, let k, represent the number of distances that are associated with group t. Then the

estimated group t density at x is:

k
f(x) = — (2.10)
n v, (x)

where:

v, (x) = volume of the ellipsoid bounded by {z | (z - x)” V''(z - x) =, (x)},
z = a p-dimensional vector, and

n, = number of training set observations in group t.

The nearest-neighbor method is equivalent to the uniform-kernel method with a
location dependent radius r, (x). Since the pooled within-group covariance matrix is used
to calculate the distances used in the nearest-neighbor method, the volume v, (x) is a
constant, independent of group membership. When k =1 is used in the nearest-neighbor
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rule. x is classified into the group associated with the y point that yields the smallest squared
distance d(x, y).

The nearest-neighbor method is best used in applications where the choice of k is not
critical (Silverman 1986, pp 98-99). A practical approach is to try several different values
of k within the context of a particular application and to choose the one which gives the most

satisfactory results.



CHAPTER III: REVIEW OF LITERATURE

3.1 Background

The application of machine vision technique to the grain industry is a recent
development. A machine vision system for grain grading is not available commercially and
many of the special needs and problems in applying machine vision technique to the visual
inspection tasks have yet to be solved. The research effort in this area, however, has grown
rapidly and substantially in the past decade. AgroVision AB (S-223 70 Lund, Sweden) has
developed a machine to classify wheat, barley, oats, rye, and triticale but its classification
accuracy is not reported in the literature (to the best of my knowledge). Determining the
potential of morphological and color features to classify different grain species. classes,
varieties, damaged grains, and impurities using statistical pattern recognition technique has
been the main focus of the published research. This chapter briefly reviews the published
research in applying morphological, color, and textural features of the machine vision

technique to the Agri-food industry.

3.2 Potential for objective wheat grading

Several researchers (Barker et al. 1992a, 1992b, 1992¢, 1992d; Draper and Travis
1984; Keefe 1992; Keefe and Draper 1986, 1988; Kohler 1991; Lai et al. 1986; Myers and
Edsall 1989; Neuman et al. 1987; Sapirstein and Bushuk 1989; Sapirstein et al. 1987;

Symons and Fulcher 1988a, 1988b; Travis and Draper 1985; Zayas et al. 1985, 1986, 1989)
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applied DIA and pattern recognition techniques to derive characteristics of cereal grains that
can be used for objective grading. Sapirstein (1995) reviewed work conducted by different
researchers for identification of different cereal grains and their varieties. Most of these
studies were conducted with limited data sets for testing. The primary and export grade
determinants of CWRS wheat are given in Appendix A. In primary grade determinants, the
maximum tolerances of foreign materials including other cereal grains are 0.75, 1.5, 3.5, and
10% for grade 1, grade 2, grade 3, and feed grade of CWRS wheat, respectively. In export
grade, the maximum tolerances of foreign materials including other cereal grains are 0.4.
0.75, 1.25, and 5% for grade 1, grade 2, grade 3, and feed grade of CWRS wheat,
respectively. The primary grade tolerances for wheat of other classes or varieties are 3. 6.
and 10% for grade 1, grade 2, and grade 3, respectively. For export grade, these tolerances
are 1.5, 3, and 5%, respectively. Tolerances for damaged kernels are also low. All of the
grading factors (except the test weight) are subjectively determined. Because of these tight
tolerances, an objective grain grading system must achieve a near perfect classification of
cereal grains, e.g., CWRS wheat, CWAD wheat, barley, oats, and rye. Majumdar et al.
(1996b) discussed different applications of image processing in food industry.

Most of the researchers conducted their studies using morphological features for
cereal grain classification. Very limited work was reported on cereal grain classification
using color features and no work (to the best of my knowledge) was published on the

potential of textural features for classification of cereal grains.



3.2.1 Morphological features Segerlind and Weinberg (1972) first estimated grain shape
by a Fourier series expansicn of the radial distance from the centre of gravity to the periphery
of kemels. A kernel profile was traced on a grid paper to get the image. There was 1% error
in separation of oats and barley, and wheat and rye based on extracted shape features. The
class [e.g., hard red spring (HRS), hard red winter (HRW), amber durum, soft white spring
(SWS), soft white winter (SWW), Canada prairie spring (CPS), and utility wheat are
different classes of Canadian wheat] discrimination for wheat was partially successful with
11-25% error.

Draper and Travis (1984) and Travis and Draper (1985) used DIA for identifying
seeds of cereals, fodder plants, and oil and fibre vegetables. They reported that five of the
crop species could be distinguished from their major contaminants with an overall accuracy
of 95% and most of the weed species could be distinguished from each other.

Keefe and Draper (1986, 1988) investigateq the potential of image analysis for
identifying grains of 5 U.K. wheat cultivars on the basis of size and shape. They used a
commercial software and a sample presentation device in the form of a motorized camera
unit controlled by a computer. Individual seeds resting horizontally, in dorsal position (i.e..
crease down position), and embryo in a fixed position were viewed in side elevation using
transmitted light. The time taken to measure 400 seeds of wheat varied in the range from
330to 515 s. They did not report the classification accuracies of different wheat cultivars.

Keefe (1992) constructed a semi-automatic image analyzer for classification of wheat
grains. [t takes 33 measurements for each grain and calculates an additional 36 derived
parameters for analysis. He did not disclose most of those parameters in the paper due to
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commercial interests. Twenty varieties of U.K. wheat were tested using the instrument.
Each grain was placed manually in a fixed orientation for image capturing. For a sample size
of 50 grains, the total time taken from receiving the sample to having the data ready for
statistical analysis was approximately 5 min. The overall identification error was 32.9-
65.8%.

Zayas et al. (1986) used some of the morphological features used by Keefe and
Draper (1986, 1988) and some additional features to differentiate among individual kernels
of different American wheat classes and varieties. For different wheat classes and varieties.
the average percentages of correctly classified kernels were 77% and 85%. respectively.
They used mainly pair-wise discriminations. The work was limited to a single kernel per
image frame and it was necessary to immobilize kernels in a fixed orientation prior to
analysis.

Zayas et al. (1989) used multivariate discriminant analysis to distinguish between
wheat and non-wheat, and between weed seeds and stones in the non-wheat part of a grain
sample. They used multivariate discriminant analysis to distinguish between wheat and non-
wheat and among weed seeds, and developed a structural prototype to distinguish between
wheat and non-wheat using morphological features. The images used for this study were
silhouette images, captured with transmitted light. Although their system satisfactorily
identified wheat and weed seeds, many times it failed to identify stones present in the
sample.

In a later study, Zayas et al. (1990) attempted to discriminate whole corn from broken
corn kernels. To evaluate the effect of image resolution on the result of discriminant
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analysis, they conducted experiments with different optical settings. Their system could
correctly identify all of the broken and 98% of the whole kernels. But the main drawback
was that the kernels had to be oriented manually with the longest dimension parallel to the
vertical axis.

Brogan and Edison (1974) used a pattern classification technique, based on recursive
learning, for classifying wheat, barley, oats, rye, soybeans, and corn with an overall accuracy
of 98%.

Chen et al. (1989) developed a system that supplemented the two-dimensional (2-D)
image with limited elevation information obtained by using a laser scanning device to
capture a cross-section profile of the kernel. The use of a single cross-section measurement
improved discrimination, but locating the midpoint accurately was somewhat arbitrary and
difficult to control. The system suffered from the user’s inability to accurately position the
kernel and from the complexity associated with the system — both video image capture and
laser scanning. In a sample size of 850 kemels, they reported that 16% of rye kernels were
misclassified as wheat. There were misclassifications of 8-12% among wheat of different
classes and 20-26% among wheat of different varieties within a same class.

Thomson and Pomeranz (1991) modified the laser scanning mechanism developed
by Chen et al. (1989) to acquire 3-D images. The system correctly classified 92-94% of the
kernels of two American wheat varieties [Daws (soft winter wheat) and Tyee (club)]. The
same system when used to identify sprout damage in harvested wheat kernels, could
correctly identify 89% of the sprouted kernels and 83% of the unsprouted kernels in
independent sets of test kernels.
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Neuman et al. (1987) studied the objective classification of Canadian wheat cultivars
based on kernel morphology using DIA. They used 576 kemnels (sound and uniform) of
pedigreed seed of 14 wheat varieties for analysis. Using a transmitted light they captured
silhouette images of whole-wheat kemels in 'plan’ (top) view and determined spatial size and
shape parameters and Fourier descriptors of kernel parameters. Hard Red Spring and CWAD
wheat kernels were the most easily differentiated groups while there was considerable
overlap between HRW and SWS wheat. Discriminating varieties within classes gave
inconclusive results with correct classification ranging from 15 to 96%. Unlike earlier
works, random orientation of kernels was not a problem in this case.

Sapirstein et al. (1987) used the technique of Neuman et al. (1987) for classification
of HRS wheat, barley, rye, and oats. All cereals were disjoint with oats and wheat being
well separated. For a sample size of 580 grains the classification error was 1%. But for a
large sample with randomly selected kernels, the discrimination of the cereals was not
satisfactory (Sapirstein and Bushuk 1989). For a sample size of 1400 kemnels, the
classification accuracies for HRS wheat, barley, oats, and rye were 98.4, 93.7, 78.3, and
98.0%, respectively. A substantial improvement in cereal grain discrimination was achieved
when the morphology based discriminant model was supplemented with mean kernel
reflectance. The classification accuracies of HRS wheat, barley, oats, and rye using
reflectance and morphological features were 99.2, 95.7, 95.3, and 98.3%, respectively.

Sapirstein and Kohler (1995) suggested an interesting alternative approach to
objective wheat grading by finding a completely new set of grading factors like variability
of size, shape, and reflectance features of kernels in a sample, which can be easily
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administered by machine vision based grading. Cargo (grain being shipped out of terminal
elevators) samples of CWRS grades 1, 2, and 3 were successfully classified using the mean
and variance of the features as quantitative classification variables. On carlot (grain received
at terminal elevators) samples, however, only grades 1 and 3 could be successfully
discriminated from each other.

Symons and Fulcher (1988a, 1988b) conducted studies similar to Neuman et al.
(1987) for Eastern Canadian wheat classes and varieties. For a sample size of 225, 94% of
soft white winter (SWW) and 64% of HRS originating from Europe (HRS_E) were correctly
classified using a 4-way classification among SWW, HRW, HRS E, and HRS originated
from Western Canada (HRS_W). About 16% of HRS W were confused as HRW. The
HRS_W sample comprised of the cultivars 'Katepwa' and '‘Columbus'. These cultivars were
used by Neuman et al.(1987) but the HRW cultivars used in Symons and Fulcher’s study
were different from those used by Neuman et al. (1987). [t is worth mentioning again that
Neuman et al. (1987) found no confusion between HRS and HRW wheat classes. Such
contradiction in results points to the need for a large database to develop a robust classifier.

Symons and Fulcher (1988a) also experienced inadequacy of morphological features
extracted from 'plan’ view for discriminating among different varieties of a wheat class. For
three varieties of SWW, correct classification was less than 60%. In a subsequent study.
Symons and Fulcher (1988b) used some additional features (i.e., bran tissue features like
aleurone cell wall thickness, pericarp tissue thickness, and total bran thickness that were

measured at 5 different locations in a wheat kernel from 'cut' transverse sections) to aid in
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classification among different varieties of SWW wheat. Classification results were not
satisfactory with errors up to 20%.

Barker et al. (1992a, 1992b, 1992¢, and 1992d) used different sets of features for
characterizing and discriminating among kernels of eight Australian wheat varieties. The
features were ray (i.e., radial distance from the centroid) parameters, slice and aspect ratio
parameters, Fourier descriptors, and Chebychev coefficient. The overall classification error

ranged from 35 to 48%.

3.2.2 Reflectance features Hawk et al. (1970) used a Beckman DK-2A Spectro-
reflectometer to measure the reflectance from cereal grain samples in the 420 to 700 nm
spectral range. Statistical analysis of reflectance data showed it to be impossible to separate
expected admixture of grains from each other on the basis of reflectance data only.

Neuman et al. (1989a, 1989b) examined color attributes of individual kernels of 10
varieties representing 6 Canadian wheat classes. They used mean red, green, and blue
reflectance features of picture elements (pixels) for discriminant analysis and achieved about
88% correct varietal classification for pair-wise discrimination. The correct classitication
of individual varieties varied trom 34 to 90%. Average correct classifications for the SWS,
Amber Durum, and red spring classes of wheat were 76, 76, and 62%, respectively.
Relatively lower scores of 56% and 34% were achieved for HRW and CPS wheat classes,
respectively.

Sapirstein and Bushuk (1989) studied the vitreosity of durum wheat by taking the
images of transilluminated kernels and specifying the frequency distribution of grey level.
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They found 95% correlation between vitreosity computed by DIA and replicated official
inspection of hard vitreous kernels. They also found a linear relationship (correlation
coefficient = 0.88) between grain hardness (measured in Particle Size Index or PSI) predicted

by the computed vitreosity and the measured PSI value.

3.3 Potential for textural analysis

Al-Janobi and Kranzler (1994) used image processing technique for grading date
fruits into quality classes on the basis of color and surface texture. They applied the co-
occurrence matrix approach to manually classified dates according to the USDA grading
standards. They used a total of 39 features and tested eight models, by applying a non-
parametric discriminant analysis procedure to each model and by incorporating subsets of
the features. The classification errors for all models ranged between 0.8 and 26.4%.

Bertrand et al. (1992) used the DIA technique for characterization of the appearance
of bread crumb. They prepared experimental breads by varying the nature of the surfactants
added to the flour to change the textural appearance of the crumb. They tested 142 digital
images from seven treatments and extracted textural features from images by a mathematical
procedure based on Haar transform (Hall 1979). They used 66 textural features from each
digital image of bread crumb and tried to identify the bread treatment from the image of its
crumb by applying discriminant analysis on the matrix of textural features. The technique
correctly classified 80% of the images, both in the training and in the testing sets.

Gao and Tan (1993) used a set of image features based on texture, color, and
morphology to characterize the textural properties of puffed extrudates of corn meal. The
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image features were extracted using two different approaches (e.g.. edge enhancement plus
fuzzy edge detection and pixel value run length) from surface and cross-section images of
yellow comn puffs. Scanning electron microscopy (SEM) was employed to measure the cell
size and density over a cross-section area. A correlation analysis was performed between the
image features and the SEM measurements and the majority of the image features were
significantly correlated to the SEM measurements.

Gao et al. (1994) further used the geometrical properties of puffed extrudates to
predict a number of sensory attributes evaluated by a sensory panel. Most of the sensory
attributes were effectively predicted by using the image features (e.g., average pixel value.
standard deviation of pixel values, the third moments of the histogram, the peak value of the
histogram (P,,..), and value of the most occurrence which is the pixel value corresponding
to the P_..) with correlation coefficient values ranging from 0.8 to 0.94.

Han and Hayes (1990) developed an interactive image processing technique to
estimate soil cover using the textural difference between soil and residue or canopy. They
compared the method with the photographic grid method and found that it can measure
percent soil cover quickly, accurately, and with less human error. The image classification
algorithm using textural features was able to classify residue or canopy regions even when
the average gray level of residue or canopy was overlapping with that of the soil background.

Kranz et al. (1994) used automatic image segmentation algorithms based on textural
features namely busyness, variance, and gradient magnitude to determine the percent water
cover from images recorded during rainfall simulations. They evaluated the performance of
these features by comparing them with percent water cover obtained through manual tracing.
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The approach using Prewitt gradient magnitude (Gonzalez and Wood 1992) as a measure of’
texture performed better than the other two (Roberts and Sobel Operators) with a mean
absolute deviation of 6.2%. Data extracted from successive frames were used to determine
estirnates of surface water storage. Evaluation of the procedure indicated that computer
generated estimates of soil surface ponding were more likely to be greater than the manually
traced area where large distinct ponding areas were present.

Langford et al. (1990) carried out a textural analysis using co-occurrence matrix ot
gray levels for identification of 6 different types of pollen grains. They used SEM
photographs of pollen grains for the test, and with a leave-one-out strategy and available
selection procedure, the proportion of pollen grains correctly classified was up to 94.3%.
The procedure required 10 s of processing time on a VAX computer for each grain.

Murase et al. (1994) used a set of textural features (e.g., contrast, homogeneity).
extracted from a video image of a population of growing plants (lettuce). They found that the
textural features of plants varied with their growth stage and there was an agreement between
the estimated leaf size values and the actual measured data. The results indicated that the
reflection of light over the population of plants varied with the increase in the area where
mostly the green leaves covered. They also reported that the apparent roughness change of
overall surface of the plant population altered the values of textural features. They used
neural network to relate the varying textural features to the various plant growth stage.

Park and Chen (1994) used textural features (based on co-occurrence matrices) of
multi-spectral images containing visible and near-infrared wavelengths for discriminating
abnormal poultry carcasses from normal poultry carcasses. For statistical models, the
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accuracy of separation of normal carcasses was 94.4% and that of abnormal carcasses was
100% whereas with neural network models the accuracy of separation was 100% for both
normal and abnormal carcasses. When neural network models were employed to classify
poultry carcasses into 3 classes (normal, septicemic, and cadaver), the accuracies of
separation were 88.9%, 92%, and 82.6%, respectively.

Petersen (1992) used morphological and textural features for classification of 40
species of weed seeds, 25 seeds per species. The classification performance of various shape
and textural analyses ranged from 26.2 to 77.0% and from 31.7 to 61.3%, respectively.
When a combination of features describing size. shape, and texture was used, with 25
features (1 size feature, 10 shape features, and 14 textural features, selected using the
stepwise selection procedure) a maximum classification rate of 97.7% was achieved.

Shearer et al. (1994) developed a maturity classification algorithm for analysis of
line-scan images of broccoli plants using textural features extracted from gray level co-
occurrence matrices. They reported results for 480 observations from three broccoli
cultivars. They achieved the maximum accuracy of 90.0% for individual cultivars and 83.1%
for multiple cultivars, at a gray level resolution of 64. When the gray level values were
reduced from 256 to 16, image processing times were reduced by a factor of 50 for vector
processing with minimum loss of classification accuracy.

Burks et al. (1994) conducted a study to evaluate the application of neural networks
to the identification of plant canopy images from color textural features. They used a counter
propagation approach to train a neural network classifier to differentiate among as many as
seven cultivars of containerized nursery stock using up to 33 color texture features.
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Depending on the number of species in the model, the use of co-occurrence texture statistics
as the network parameters had a high discriminating capability with classification accuracies
in the range of 77 to 96%. The use of statistical analysis tools proved to be invaluable in the
design and tuning of the network.

Wilhoit et al. (1990) studied the feasibility of using digital image processing
technique for selecting mature broccoli heads based on size. They took images of 48
broccoli plants, with a wide range of head sizes under controlled lighting conditions, and
developed and tested a model based on the gray level run lengths for textural analysis. The
model exhibited an exponential relationship between the head area and the numerical texture
measure and had a standard error of prediction of £16 cm?, which corresponds to an error of
less than £1.0 cm in a head diameter of 10 cm. The results indicated that the model had good
capability for classifying broccoli heads into immature and harvestable sizes.

Zayas (1993) investigated the potential of DIA for bread crumb grain assessment
using textural features. For quality control of bread making operation, she developed a
ranking scale for evaluating the degree of coarseness of crumb grain with visual judgement.
She used 18 textural features from two commercial bread brands (BRRA and BRDI) for
multivariate discriminant analysis. She reported that 100% of BRRA and 97.5% of BRDI
sub-images (128 x 128) from the middle area of a slice were correctly recognized. The
location of sub-tmages on a slice affected the textural features because crumb grain varied
across a slice.

Sapirstein et al. (1994) developed an instrumental system for direct quantitative
assessment of bread crumb grain using digital image processing. They developed a software
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for measurement of crumb grain features like cell area, cell density. cell-wall thickness. cell-
total area ratio, crumb brightness, and uniformity of cell size. Image processing time to
compute the crumb cell structure for a single bread slice (307, 200 pixels per image) was
about 10 s. The precision and accuracy of the system were tested by analysis of results of
experimental bread making using control and oxidant-formula loaves. Compared with
control loaves, bread crumb containing oxidants was determined to be 6% brighter and to
have, on average, 21% more cells/cm?, 17% smaller cells in cross-sectional area, 13% thinner
cell walls, and 16% more uniform grain. These values were consistent with the finer crumb
grain of bread containing oxidants, as observed visually.

Zhang et al. (1994) used image processing techniques to extract structural features
from SEM images of puffed extrudates. They extracted a number of image features based
on the gray level run length of SEM images and total edge length. They found that some
features were highly correlated to cell size and cell size uniformity. The average run length
and the total edge length appeared to be effective image features to predict cell sizes. They
suggested that this approach could be used for rapid and consistent evaluation of some
important texture-related geometric characteristics of expanded-food products.

Ruan et al. (1995) conducted a rapid analysis of scabby wheat using machine vision
and neural networks. They used different combinations of color and color-texture features
as input and deoxynivalenol (DON) levels (ppm) of the corresponding samples (measured
with HPLC) as output for the training of a three layer back propagation neural networks.
They used a total of 31 features (13 color features, 6 intensity texture features, 6 saturation
texture features, and 6 hue texture features) for the development of neural network models.
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Training set contained 16 typical samples (200 wheat kernels per sample) with a wide range
of DON level (from O to 32.86 ppm). The trained networks were used to estimate the DON
levels of wheat kernels (approximately 20 additional wheat kernels per sample). The average
difference between the predicted and measured DON value was 1.97 ppm when all 31
features were used for network training.

Most of the researchers used clean and pedigreed samples for classification of cereal
grains, and different classes and varieties of wheats. Some researchers placed the grains
manually in a specific orientation which defeats the main purpose of automation. In many
cases, the sample size was small and an overall classification accuracy of about 96% was
achieved using morphological and reflectance features for classification of cereal grains.
Because of the tight tolerances in the primary and export grade determinants (Appendix A),
a near perfect classification of all objects in a sample should be achieved to develop an
objective grain grading system. Use of morphological features alone cannot achieve such
high classification accuracies. Inclusion of color and textural features with morphological
features can improve the classification accuracies of cereal grains. The robustness of the
classifier should also be tested with a bigger sample size, collected from different growing

regions and with commercial samples (unlike clean samples).
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CHAPTER IV. MATERIALS AND METHODS

4.1 Vision hardware

A 3-chip CCD (charge coupled device) color camera (Model DXC-3000A, SONY)
was used to acquire images. For image acquisition, a zoom lens (Model VCL-1012 BY,
SONY) of 10 - 120 mm focal length was fitted to the camera. The camera was mounted on
a stand (Model m3, Bencher Inc., Chicago, IL) which provided easy vertical movement and
a stable support for the camera. The camera was connected to a camera control unit (Model
CCU-M3, SONY). The iris was selectable to manual or automatic mode. The option of the
manual iris control was used to achieve repeatability in the experiments. The automatic gain
control of the camera was disabled. The camera was white balanced before each imaging
session. The experimental set up is shown in Fig. 4.1.

The R, G, and B video signals from the camera control unit (CCU) were converted
to a 24 bit color digital image by a frame grabber board (Model DT 2871, Data Translation
Inc., Marlboro, MA). The frame grabber board was installed in an [BM compatible 80386
personal computer. The camera gave three parallel analog video signals, R, G, and B,
corresponding to the NTSC (National Television System Committee) color primaries. The
frame grabber could convert the R, G, and B color signals to H, S, and I signals in the real
time. The frame grabber had three separate eight bit analog-to-digital (A/D) converters and
three 512 x 480 x 8 bit frame buffers. The programs to control the frame grabber were

written in C programming language using the aurora subroutine library (Aurora, Data



Translation Inc.. Mariboro, MA). The image resolutions were 0.202 mm/pixel and 0.160
mmv/pixel in the horizontal and vertical directions, respectively. Images were converted to
square pixels with 0.202 mm/pixel resolution. Image analysis was carried out on a work
station (Model SPARC STATION 2, Sun Microsystems, Inc., Mountain View, CA) and an

IBM compatible pentium 75 personal computer.

4.2 Sample illumination

Uniform diffuse lighting was used in all experiments. A circular fluorescent tube
(305 mm diameter and 32 W circular lamp; Model FC12T9/CW, Philips, Singapore) was
placed around and just below the surface level of the sample placement platform of the light
chamber (Fig. 4.2). A semi-spherical steel bowl of approximately 0.39 m diameter, painted
white and smoked with magnesium oxide on its inner side, was used as a diffuser (Fig. 4.1).
The steel bowl had an opening of 0.125 m diameter at its top, through which images were
viewed by the camera. A voltage regulator (Model CVS, Sola Canada Inc.. Toronto, ON)
controlled the voltage to the lamps within £0.5 V. A variac was used to maintain a constant
voltage (120 £0.1 V) to the light source. A light controller (Model FX0648-2/120, Mercron.
Richardson, TX) was used with the fluorescent lamp. The photodiode light sensor of the
light controller automatically detected the illumination level in the light chamber and
adjusted the AC frequency of the lamp to maintain a stable level of illumination. The
frequency of the AC power output of the controller varied between 140 kHz at the minimum

light levels to 60 kHz at full power.

)
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4.3 lllumination standardization

A Kodak white card with 90% reflectance (Model E152-7795, Eastman Kodak Co..
Rochester, NY) was used as a white reference to standardise the illumination level. The
lamp voltage was set to the rated value of 120 V. An image of the white card was acquired
over a small central area of 50 x 50 pixels, and the mean gray level values of the R, G, and
B bands were computed and used as the illumination level indicators. By manually adjusting
the inis control and performing the white balance with the CCU, all three values (R, G, and

B) were adjusted to 250+1.

4.4 Grain samples

Composite grain samples (uncleaned commercial samples) of CWRS wheat (grade
1, 2, and 3), CWAD wheat (grade 1, 2, 3, and 4), barley (grade 1 and EX1), oats (specific
grades not known), and rye (grade 1) were collected from 30 growing regions of the Western
Canada for the 1994 growing year by the Industry Services Division of the Canadian Grain
Commission, Winnipeg, MB. The CWRS wheat comprised 30 samples of each grade. The
CWAD comprised 7 samples of 1-CWAD, 10 samples each of 2-CWAD and 3-CWAD. and
3 samples of 4-CWAD. The barley had 15 samples each of grade 1 and EX1. The oats had
30 samples (specific grades not known) and rye also had 30 samples of grade 1. A total of
210 samples were collected. The growing regions were chosen using the climatic
subdivisions of the Canadian Prairies (Putnam and Putnam 1970).

For the first set of tests (analysis of bulk samples), grains from all 30 growing
regions were used and three images were acquired for analysis from the grain sample

53



collected from each growing region. The number of images used for the first set of tests
were 90 (30 growing regions x 3 images per growing region) each for CWAD wheat, barley.
oats, and rye, and 270 (30 growing region x 3 images per growing region x 3 grades) for
CWRS; total number of images was 630.

For the second set of tests (analysis of individual kernels), 300 kernels (25 kernels
per image) from each growing region were randomliy selected and used for each grain type
(for CWRS wheat, it was 900 kernels: 300 kernels per grade). All three grades of CWRS
wheat were collected from 20 growing regions. The CWAD wheat was collected from 20
growing regions (grade 1 from 7, grade 2 from 10, and grade 3 from 3 growing regions).
Barley was collected from 20 growing regions (grade 1 from 9 and grade EX1 from 11
growing regions). QOats (specific grades not known) and rye (grade 1) were also collected
from 20 growing regions. The number of kernels used for each grain type was 6000 (300 x

20); total number of kernels used was 42000.

4.5 Sampling technique

For overall sampling, each composite grain sample (1000 - 1500 g) was poured into
a large plastic container and mixed thoroughly. A scoop was used to take grains randomly
from different regions of the container to give a sub-sample of 75 g. Before withdrawing the
second sub-sample, the remaining grains in the plastic container were re-mixed. In this way
three sub-samples were collected.

The three sub-samples were re-mixed to give a sample. The sample was mixed
thoroughly by passing it four times through a Boerner Divider. For image acquisition of

54



bulk samples, the sample was split into three replicate samples. For image acquisition of
individual kernel, replicate samples were remixed after acquiring bulk images and 300

kernels were randomly picked from the sample for testing.

4.6 Image acquisition

The image acquisition system (i.e., lighting system) was switched on for 30 min prior
to acquiring any images for its stabilization. After that the gray level calibration (white
balance) of the field of view (FOV) was done using the Kodak white card. The spatial
calibration was done with an object of known dimension (a Canadian 25 cent coin). For
textural calibration a graph sheet with green lines was used. Variation in mean gray level
value (= 60) of the graph sheet images taken over the period of time was £2 gray level.

For the first set of tests (imaging of bulk samples), each replicate sample (75 g mass)
was poured into a transparent rectangular sample holder with dimensions of 135 x 100 x 10
mm (Fig. 4.2a). A piece of epoxy fibreglass (its length and width were little smaller than the
sample holder) was placed at the top of the sample presentation device and was manuaiiy
pressed three times to level the top surface of the bulk sample. Then the sample holder was
placed in the FOV of the camera and an image of 512 x 480 was acquired and stored for later
analysis.

For the second set of tests (imaging of individual kernels), individual kernels were
randomly placed (non-touching, 25 kernels per image) on a black background (Fig. 4.2b) and

images were acquired and stored for later analysis.
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CHAPTER V. ALGORITHM DEVELOPMENT

5.1 Gray level co-occurrence matrix (GLCM)

Suppose an image to be analyzed is rectangular and has N, resolution cells in the
horizontal direction, N, resolution cells in the vertical direction, and the gray levels
appearing in resolution cells are quantized to N, levels. The texture information could be
adequately specified by the matrix of relative frequencies, P(i, j), with which two
neighboring resolution cells separated by distance, d, occur in the image, one with gray level,
i, and the other with gray level, j. Such GLCM is a function of the angular relationship
between the neighboring resolution cells as well as a function of the distance between them.
The unnormalized frequency when four principal directions (0°, 45°, 90°, and 135°) were
considered was defined by:

PGj.d)=  #{((k 0, (mn)e@,xL)x (L, xL)|(k-m=0,[¢-n] =d)or(k-m=
d,¢-n=-d)or(k-m=-d,{-n=d)or(lk-m|=d,-n=0)or (k-m=d.
t-n=d)ork-m=-d,l-n=-d), Ik, 8) =i, I(m,n)=j} (3.1)

where:

# = number of elements in the set,

(k, &) =coordinate with gray level i, and

(m, n) = coordinate with gray level j.

Consider Fig. 5.1, which represents a 4 x 4 image with 4 gray levels, ranging from

0 to 3. Figure 5.2 shows the unnormalized GLCM. For example, the element in the (3, 2)



position of the 1 pixel-distance GL.CM is the total number of times 2 gray levels of value 3
and 2 occur adjacent to each other in all four directions. To determine this, the number of
pairs of resolution cells in the GLCM were counted such that the first resolution cell of the
pair had gray level 3 and the second resolution cell of the pair had gray level 2. The GLCM

was normalized hy dividing each entry of the matrix by a normalizing constant, C, as:

p(ij) = P(i,j)/C (5.2)

where:

p(i,j) =(,j)" entry in a normalized GLCM,

P(i,j) =(i, )" entry in a unnormalized GLCM, and
C = the normalizing constant.

For a square or a rectangular image, the normalizing constant, C, was defined as:

C = RN (N, - 1) +2N (N, - 1) +4(N, - 1)(N, - 1)} (5.3)

For Fig. 5.1, the normalizing constant is 84.

0} 0 3 1
0 1 1 1
2 12 3 3
2 12 3 1

Fig. 5.1 A 4 x4 image with 4 gray level values 0 - 3
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Gray Level
0 1 2 3
0 6 4 2 1
{Gray Level| 1 4 8 3 12
2 2 3 12 4
3 1 12 4 6

Fig. 5.2 Gray level co-occurrence matrix for the image in Fig. 5.1

Using the normalized GLCM, the following textural features were extracted (Haralick 1979;

Unser 1986):
Mean (p ) = ::;V_? i.p(i.j) (5-4)
Variance ( 0% ) = 2‘:{: (i - w)lp(i.j) (5:3)
Uniformity = 22 (p(i,HP (5.6)
Entropy = - i’::‘: p(i.j) log (p(i.i)) (5.7

=1 j=1

-



Maximum Probability = Max (p(i,j)) (5.8)

N, N . .
Correlation = 22 (t =W - “).p(i,j) (5.9)
is1j-1 o?
N, N
Homogeneity = 22 ———1———.p(i,j) (3.10)

i=tj=t 1 + (i —j)2

N N
[nertia = ZS (i - j).p@i.j) (3.11)
i=1j=1
N N
Cluster Shade = 22 (i+j-2u).p(ij) (3.12)
i=1j=1
N N
Cluster Prominance = zz (i+j-2u)*p(i.j) (3-13)

i=1j=1

5.2 Gray level run length matrix (GLRM)
A gray level run is a set of consecutive, collinear picture points having the same gray
level value. The matrix element q(i, j) specifies the number of times that the picture contains

a run of length j, in a given direction, consisting of points having gray level i (or lying in
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gray level range i). Figures 5.3(a-d) show the GLRMs for the image in Fig. 3.1 for the four

principal directions (0°, 45°,90°, and 135°).

The following features were extracted from all four GLRMs and their mean value and

range were calculated for analyses (Galloway 1975).

N, N,
Short Run = zzlq(i,j)/jz}lk

i=1j=1

N

N T
Long Run = zz{jz.q(i,j)}lk

i=1j=1

N N

r

Gray Level Non-uniformity = S(Z q(i.j))?/R
Tl je1

N, N
Run Length Non-uniformity = E(Z q(i.j))*/R

j=1 i=1
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Run Length Run Length
0° 1 2 3 4 45° 1 2 3 4
0 1 1 0 0 0 1 1 0 0
Gray 1 2 0 1 0 Gray 1 3 | 0 0
Level 2 0 2 0 0 Level 2 2 I 0 0
3 2 1 0 0 3 2 1 0 0
(a) (b)
Run Length Run Length
90° 1 2 3 4 135° | 1 2 3 4
0 1 1 0 0 0 3 0 ¢ 0
Gray 1 3 1 0 0 Gray l 5 0 0 0
Level 2 0o 2 0 0 Level 2 2 1 0 O
3 2 1 0 0 3 4 0 0 O
© (d)

Fig. 5.3(a - d) Gray level run length matrices at 0°, 45°, 90°, and
135°, respectively for the image in Fig. 5.1



N r
Run Percent = Rlz j-q(i,j)
i =1

N, N,
GLRM Entropy = Y- ¥ q(i,j)log(q(i,j))/R

=1j=1

-

where:

q(i,j) =(, )" entry in the GLRM,

i = gray level,
j = run length,
N, = maximum number of run lengths in an image, and

NN,
R = ¥ atip)

i=1j=1

5.3 Color features

(3.18)

(5.19)

(5.20)

From the R, G, and B color bands of an image H, S, and I were calculated using the

following equations (Gonzalez and Woods 1992):

[=R +G + B



_ 3Min(R, G, B)
I

~~
W
8]
19
e

W
(8]
(%]
S

H = Cos ! 12[(R -G) + (R -B)] (
[(R-G)* + (R-B)(G -B)]"?

Color in the HSI model was defined with respect to normalized R, G, and B. The
original R, G, and B values (camera output) were divided by a normalizing constant
[(R+G+B)/3] to get the normalized R, G, and B values. The normalizing constant used was
250 because the system was white balanced to 250. The H, S, and I values obtained were
within the range [0, 1]. Equation 5.23 yields values of H in the interval 0° < H < 180°. If
(B/T) > (G/1), then H had to be greater than 180°. So, whenever (B/I) > (G/I), H was
calculated as (360° - H). Hue was divided by 180 to normalized to the range [0, 1], i.e., H
= H/180°. When R =G = B, then S = 0, making it meaningless to define angle H; in this
case H was assumed as 0. When R, G, and B were 0, i.e., when [ = 0, both S and H were
meaningless to define; in this case, S and H were assumed as 0.

From the R, G, and B, and H, S, and I values, their mean values, variances, and

ranges were calculated in an image.
5.4 Morphological features
Substantial work has been carried out by researchers using different morphological

features for classification of different cereal grains and their varieties. But the effect of

64



growling regions on classification accuracy of different cereal grains using morphological
features was not studied.

Algorithms were developed to extract morphological features of individual kerels.
Individual kernel images were segmented and labelled. The following morphological
features were extracted from labelled images of individual kernels (Nair 1997):
Area — The algorithm calculated the number of pixels inside, and including the kernel
boundary, and multiplied by the calibration factor (mm?/pixel).
Perimeter — It was calculated by adding the Euclidean distances between all the successive
pairs of pixels around the circumference of the kernel.
Length — It was the length of the rectangle bounding the kernel.
Width — 1t was the width of the rectangle bounding the kernel.
Major Axis Length — It was the distance between the (X, y) end points of the longest line
that could be drawn through the kernel. The major axis endpoints were found by computing
the pixel distance between every combination of border pixels in the kernel boundary and
finding the pair with the maximum length.
Minor Axis Length — It was the distance between the (x, y) end points of the longest line
that could be drawn through the object while maintaining perpendicularity with the major
axis.
Thinness Ratio — It measured the roundness of the kernel.

Thinness ratio = (Perimeter)’ / (47 X Area).
Aspect Ratio — Major Axis Length / Minor Axis Length.
Rectangular Aspect Ratio — Length / Width.
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Area Ratio — (Length x Width) / Area.

Maximum Radius — It was the maximum distance between a pixel on the boundary and the
centroid of the kernel.

Minimum Radius — It was the minimum distance between a pixel on the boundary and
the centroid of the kernel.

Radius Ratio — Maximum Radius / Minimum Radius.

Standard Deviation of all Radii — It was the standard deviation of distances of all pixels
on the boundary from the centroid of the kernel, denoted by o,.

Haralick Ratio — ./ o, where i, was the mean of all radii of the kemel region.

Spatial Moments — They are the statistical measures related to an object's characterizations.

The first four invariant moments (invariant to scaling, rotation, and translation) were used:

M, = Ty * T, (5.:24)
M, = (N, - Mg,) +4M5, (5.25)
M; = (M =31, + (30, = Ny) (5-26)
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M, = (M * Npp)* + (My, + N, )P (5.27)

The normalized central moments, 1, were calculated from the central moment, p:

npq = ppq/u;o (5.28)
where:
r =%(p+q) +1,and
oy = 20 20 (i =) —¢))" (5.29)
i
forp,q=0, 1,2, ....., k where:
k = user-selected value to calculate a specific order of central moment,
c =m,;o/ My,
C; = my, / my,, and

(ci» ¢;) = the centre of gravity of the kernel.

The two-dimensional (p + q)™ order moment was defined as:

m, =3 X i% (i) (5.30)
i

forp,q=0,1,2, ..., { where:

¢ = user-selected value to calculate a specific order of moment, and
F(i,j) = gray level value at coordinate (i, j).

F(i, j) is 1 for any binary image.
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Fourier Descriptors — One-dimensional distance function, d, was calculated for ail pixels

on the boundary of a kernel as:

d, =[Gy~ + Gy —cp)*1"? (5.31)

where:

(i j) = k™ pixel coordinates on the boundary of the kernel, and

(i ) = centroid of the k™ kernel.

The distance function d, was converted to milimeters using the calibration factor (mm/pixel).

The magnitude of the Fourier descriptors were calculated as:

FD, = [R +1]]'"? (5.32)
foru=0, 1. 2, ... (N-1). The real value of the descriptor was defined as:
R, = :E; d.cos[2TKY, (5.33)
and the imaginary value of the descriptor was defined as:
L =3 d.sin[z’:‘“] (5.34)

k=0

where:
N = number of pixels on the boundary of the kemel.
The first four Fourier descriptors (u =0, 1, 2, and 3) were used for analysis.

68



CHAPTER VI. IMAGE ANALYSIS

6.1 Analysis of bulk samples using textural features

The PROC DISCRIM (SAS 1990) was used to classify bulk samples of CWRS
wheat, CWAD wheat, barley, oats, and rye using textural features. The analysis was done
using resubstitution, cross-validation (leave-one-out), and hold out methods with normal and
non-parametric estimations. In the non-parametric estimation, k-nearest neighbor method
was used with k value 5. Preliminary experiments were conducted with different k values
(e.g., 10, 15, 50, and 100) and k value 5 gave the highest classification accuracies of cereal
grains. In the hold out method, bulk sample images from 25 growing regions (3 images per
growing region) were used as the training data set and from 5 other growing regions were
used as the test data set. These training and test data sets were selected randomly. For the
cross-validation and resubstitution methods, bulk sample images from 25 growing regions
(used as the training data set in the hold out method) were used. Of the 25 textural features
used in the discriminant analysis, 10 were GLCM features (mean, variance, uniformity.
entropy, maximum probability, correlation, homogeneity, inertia, cluster shade, and cluster
prominence), 12 were GLRM features (short run, long run, gray level non-uniformity, run
length non-uniformity, run percent, and GLRM entropy, and their ranges), and remaining 3
were gray level features (mean, variance, and range in gray level). The textural features were
extracted from a single color band (R, G, or B) or a color band combination [black&white,

i.e., R+G+B)/3; GR+2G+1B)/3; 2QR+1G+3B)/6; or (1R+3G+2B)/6]). These color band
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combinations were arbitrarily chosen to determine their effect on classification accuracy
when textural features extracted from these color band combinations were used for

classification of cereal grains.

6.1.1 Gray level reduction To reduce the computational time of the textural algorithm,
the original gray level value (250) was reduced to 32, 16, 8, and 4 gray levels and the textural
features extracted from each case were used for classification, and the results were compared.
For example, when the gray level was reduced from 250 to 32, the gray levels were grouped
into 32 ranges: 0 - 7as 0,8 - 15as 1, 16 - 23 as 2,24 - 31 as 3, and so on. In case of gray
level reduction to 16 gray levels, the ranges were 0 - 15as 0, 16 - 31 as 1,32 - 47 as 2, and
so on. Similarly for reduction to 8 gray levels, the ranges were 0 - 31 as 0, 32 - 63 as 1, and
so on and for reduction to 4 gray levels, the ranges were 0 - 63 as 0,64 - 127 as 1, and so

on.

6.1.2 Color selection  Textural features were extracted from R, G, and B color bands and
their combinations [black&white, i.e., (R+G+B)/3; (BR+2G+1B)/6; (2R+1G+3B)/6; and
(1R+3G+2B)/6] to determine if a particular color band or color band combination gave better

classification accuracy than others.

6.1.3 Effect of sub-images on classification accuracy The original image (512 x 480)
was partitioned into different sub-images (e.g., 4, 9, or 16 sub-images). All sub-images were
treated as original images. Textural and color features extracted from the sub-images were
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used for classification to determine whether partitioning of images can improve the

classification accuracy.

6.1.4 Selection of textural features of bulk samples  All 25 textural features used for
classification of bulk samples of cereal grains may not contribute significantly to the
classifier. Sometimes, the classifier performance declines if there are too many redundant
features. To optimize the number of textural features that contributed significantly to the
classification, PROC STEPDISC (SAS 1990) was used. Textural features of bulk samples
of cereal grains from 25 growing regions (used as the training data set in the hold out
method) were used for the STEPDISC analysis. Also, independent rankings of all textural
features were determined using the STEPDISC analysis with one feature in the final model.
Once the feature with the highest level of contribution (determined by r? and average
squared canonical correlation, ASCC) was identified, it was removed from subsequent
analysis and the second best feature was determined. The analysis was continued till the

least important feature was identified.

6.2 Analysis of bulk samples using color features

The PROC DISCRIM (SAS 1990) was used to classify bulk samples of CWRS
wheat, CWAD wheat, barley, oats, and rye using color features. The analysis was done
using resubstitution, cross-validation (leave-one-out), and hold out methods with normal and
non-parametric estimations. In the non-parametric estimation, k-nearest neighbor method
was used with k value 5. In the hold out method, bulk sample images from 25 growing
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regions (three images per region) were used as the training data set and from five other
growing regions were used as the test data set. These training and test data sets were same
as the data sets used for textural analysis. For the cross-validation and resubstitution
methods, bulk sample images from 25 growing regions (used as the training data set in the
hold out method) were used. The mean, variance, and range of R, G, and B, and H, S. and

[ were calculated from bulk images and used for classification of cereal grains.

6.2.1 Effect of sub-images on classification accuracy As discussed in analysis of textural
features, original images were equally partitioned into sub-images (e.g., 9, 16, or 25) and the
sub-images were treated as original images. Discriminant analyses (hold out and leave-one-
out methods) were carried out using color features extracted from original images and sub-

images and the classification accuracies were compared.

6.2.2 Selection of color features of bulk samples STEPDISC analysis was carried out
to select the color features of bulk samples of cereal grains which contributed significantly
to the classifier. Color features of cereal grains from 25 growing regions (used as the
training data set in the hold out method) were used for the STEPDISC analysis. [ndependent

rankings of all color features were determined using the STEPDISC analysis.

6.3 Analysis of individual kernels using morphological features
After converting the rectangular pixel images into square pixel images, the images
were segmented using an automatic thresholding technique (Parker 1994). If there were any
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holes inside the segmented image of individual kernels, they were filled with a hole filling
algorithm. All kernels in the image were labelled to give unique identification.
Morphological features (23 features) were extracted from the labelled image. The
morphological feature extraction algorithms were developed on an IBM compatible pentium
75 personal computer (Nair 1997).

Discriminant analyses were carried out using resubstitution, cross-validation (leave-
one-out), and hold out methods. In each case, normal and non-parametric estimations were
used. In the non-parametric estimation, k- nearest neighbor method was used with k value
5. In the hold out method, individual kernel images from 15 growing regions (300 kernels
per growing region) were used as the training data set and from five other growing regions
as the test data set. In the cross-validation and resubstitution methods, individual kernel
images from 15 growing regions (used as the training data set in the hold out method) were
used for classification.

To determine the level of contribution of morphological features for classification of
individual kemnels of cereal grains, PROC STEPDISC (SAS 1990) was used. Morphological
features of individual kernels from 15 growing regions (used as the training data set in the
hold out method) were used for the STEPDISC analysis. Individual rankings of

morphological features were determined using the STEPDISC analysis with one feature in

the final model.



6.4 Analysis of individual kernels using textural features

After converting the rectangular pixel images into square pixel images, the images
were segmented manually. For CWRS wheat, CWAD wheat, barley, and rye the selected
threshold value was 50+3, and for oats it was 70+3. To remove noise due to dust and to fill
in holes inside kernel images, if there were any, the opening and closing operations
(Gonzalez and Woods 1992) were carried out with structural elements of 3 or 4 pixel
diameter. All kemels in the image were labelled to give unique identification. The original
gray level values of each kernel were superimposed on the labelled image to make the
background pixel values zero. The textural and color features were extracted from each
kernel image for classification.

All algorithms to extract textural and color features of bulk samples and individual
kernels were developed using a software, named KHOROS (Khoral Research, Inc., New
Mexico). The analyses were carried out on a work station (Model SPARC STATION 2, Sun
Microsystems, Inc., Mountain view, CA).

Discriminant analysis was conducted using resubstitution, cross-validation (leave-
one-out), and hold out methods. In each case, normal and non-parametric estimations were
used. In the non-parametric estimation, k- nearest neighbor method was used with k value
5. In the hold out method, individual kernel images from 15 growing regions (300 kernels
per growing region) were used as the training data set and from other five growing regions
as the test data set. In the cross-validation and resubstitution methods, individual kernel
images from 15 growing regions (used as the training data set in the hold out method) were

used for classification.
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6.4.1 Gray level reduction  As discussed for bulk sample analysis, the gray level was
reduced from 250 to 32, 16, 8, and 4. The textural features extracted from images at difterent
maximum gray levels were used to determine whether reduced gray level improves

classification accuracy.

6.4.2 Color selection  Similar to bulk sample analyses, textural features of individual
kernels were extracted from R, G, and B color bands and their combinations [black&white,
1.e., (R+G+B)/3; (3R+2G+1B)/6; (2R+1G+3B)/6; and (IR+3G+2B)/6] to determine if a
particular color band or color band combination gave better classification accuracy than

others.

6.4.4 Selection of textural features of individual kernels STEPDISC analysis was
conducted to determine the level of contribution of each feature to the classifier. Also, it was

used to determine the independent rankings of textural features.

6.5 Analysis of individual kernels using color features

Discriminant analysis was carried out using resubstitution, cross-validation (leave-
one-out), and hold out methods to determine classification accuracies of CWRS wheat,
CWAD wheat, barley, oats, and rye using color features of individual kernels. In the non-
parametric estimation, k- nearest neighbor method was used with k value 5. In the hold out
method, individual kernel images from 15 growing regions (300 kernels per growing region)
were used as the training data set and from other five growing regions as the test data set.
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In the cross-validation and resubstitution methods. individual kernel images from 135 growing
regions (used as the training data set in the hold out method) were used for classification.
STEPDISC analysis was conducted to determine the level of contribution of each color

feature to the classifier and also to determine their independent rankings.

76



CHAPTER VII. RESULTS AND DISCUSSIONS

7.1 Classification of bulk samples using textural features

7.1.1 Gray level reduction The computational time for extraction of textural features is
reduced with a decrease in maximum gray level value of an image, because it reduces the
size of the co-occurrence and run length matrices. In real-world applications (e.g., on-line
quality monitoring of fruits and vegetables, grains), the computational time is very crucial.
hence one may sacrifice small classification accuracy for reduced computational time; but
it is very much application dependent, e.g., for some application, the classification accuracy
is very crucial and for some other application, the computational time is very important. The
textural features extracted from red color band of original images (at maximum gray level
value 250) and images of reduced gray levels (at maximum gray level values 32, 16, 8, or
4) were used to classify cereal grains. The classification results using the hold out and leave-
one-out methods with the normal and non-parametric estimations are given in Appendices
B1-BS5 and BB1-BBS. Oats were very distinct from other cereal grains in their texture; at all
maximum gray level values (e.g., 250, 32, 16, 8, and 4) and in the hold out and leave-one-out
methods, oats were 100.0% correctly classified except in two cases (non-parametric
estimation in the hold out method at maximum gray level values 8 and 4) where one oat
image got misclassified as barley in each case (Appendices Bl - B5 and BB1 - BB5). This
is because the brightness of oats is different than other cereal grains and their packing density

is different than that of other cereal grains as the oats kernels are elongated in shape. When
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normal estimation (in the hold out method) was used for classification. five barley images
were misclassified as CWAD wheat (Appendices Bla - B5a). This may be because the
brightness and the packing density of grains in those barley images were similar to that of
CWAD wheat images. But from visual inspection no peculiarities were observed in those
images.

The *mean accuracy” which was the average of the classification accuracies of cereal
grains (hereafter cereal grains will refer to one or more of CWRS wheat, CWAD wheat.
barley, oats, and rye) at a maximum gray level value (e.g., 250, 32, 16, 8, or 4) was used to
determine if any particular maximum gray level value gave the highest classification
accuracy. When textural features (all 25 features) extracted from images at maximum gray
level value 32 were used, the mean accuracies in the majority of the analysis methods [e.g.,
hold out method (Npar), hold out method (normal), leave-one-out method (Npar), or leave-
one-out method (normal)] were higher than that when images at other maximum gray level
values were used (Fig. 7.1). Images at gray level value 250 had gray level values sparsely
distributed. Hence, the tonal primitives, i.e., the local variations (e.g., fineness, coarseness.
granulation) on the surface texture of an image were not prominent (Haralick 1973). As the
maximum gray level value decreased, the distinguishable tonal primitives increased; hence
the prominence in the textural features increased which improved the classification
accuracies. But the reduction in maximum gray level value beyond certain level resulted in
an image with little textural variations and the image surface was transformed into a surface
having almost same gray level value. Although images at maximum gray level value 32
gave the highest mean accuracies, images at 16 and 8 gray level values also gave comparably
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good classification accuracies. At maximum gray level value 4, the mean accuracies in the
majority of the analysis methods were poorer than when images at maximum gray level
value 32 was used (Fig. 7.1). This suggests that at this maximum gray level value, the
images of cereal grains started losing the distinctness in their textural features. At maximum
gray level value 32, the classification accuracies were 100.0% each for all cereal grains when
an independent data set was used for testing (non-parametric estimation, Appendix B2b) and
was chosen for further analysis. The classification accuracies were poor when normal
estimation was used on the independent data set (five barley and one rye images were

misclassified). This suggested that textural features of bulk images did not follow normal

distribution.
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Fig. 7.1 Classification accuracies of bulk samples of cereal grains using textural

features extracted from red color band at different maximum gray level
values (Note: Npar denotes non-parametric estimation)
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7.1.2 Color selection The textural features (GLCM, GLRM, and gray level features) were
extracted from images at maximum gray level value 32 with a single color band (R. G. and
B) and a color band combination [black&white, i.e., (R+G+B)/3; (3R+2G+1B)/6;
(2R+1G+3B)/6; and (1R+3G+2B)/6] to determine which color band or color band
combination gave the highest classification accuracies. Classification results for cereal
grains using the hold out and leave-one-out methods with normal and non-parametric
estimations are given in Appendices B2 and B6-B11, and BB2 and BB6-BBI1 1, respectively.
The oats were very distinct from other cereal grains in all color bands or color band
combinations (Appendices B2 and B6-B11, and BB2 and BB6-BB11). Also, the CWRS
wheat and the CWAD wheat in the test data set were 100.0% correctly classified except in
one case (when green color was used) where one CWRS wheat image got misclassified as
rye (Appendix B6b). Textural features extracted from images with red color band gave the
highest mean accuracy in the majority of the analysis methods (in three out of four methods.
Fig. 7.2). This conforms with the results of the studies conducted by Majumdar et al.
(1996a), Neuman et al. (1989b), and Hawk et al. (1970) where they reported that the
reflectance properties of bulk samples of cereal grains were more distinct in the red color
band than in other color bands of the visual spectrum. The mean accuracy was poor when
an independent data set was used for testing (hold out method) using normal estimation (Fig.

7.2). This suggested that the data set did not follow normal distribution.
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Fig. 7.2 Classification accuracies of bulk samples of cereal grains using textural
features extracted from different color bands and color band
combinations at maximum gray level value 32 [R: red, G: green, B: blue,
B&W: black&white {(R+G+B)/3}, X1: (3R+2G+1B)6, X2:

(2R+1G+3B)/6, and X3: (1R+3G+2B)/6] (Note: Npar denotes non-
parametric estimation)

7.1.3 Effect of sub-images on classification accuracy [t was hypothesized that if an
original image was partitioned into many sub-images and were treated as original images,
classification accuracies could be improved using textural features. The original images of
cereal grains were partitioned into 9, 16, or 25 sub-images and the classification accuracies
are shown in Appendices B2, B12-B14, BB2, and BB12-BB14. When original images were
used, in the majority of the analysis methods the mean accuracies were higher than when the
sub-tmages were used (Fig. 7.3). As the number of sub-images increased, the classification
accuracies of cereal grains decreased except in one case (the normal estimation of the test
data extracted from nine sub-images, Fig. 7.3).
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Fig. 7.3 Classification accuracies of bulk sample images of cereal grains,

partitioned into different sub-images, using textural features extracted
from red color band at maximum gray level value 32 (Note: Npar
denotes non-parametric estimation)

The bulk image is not always uniform in its grain packing density along its surface
which results in non-uniform shadowing along the image surface. The presence of foreign
materials (e.g., other cereal grains) in an image also makes the texture of a bulk image non-
uniform along its surface. In a large image, these local irregularities were nullified when
GLCM and GLRMs were calculated. As the image size is reduced (due to partitioning),
these local variations became prominent, and the textural features extracted from the sub-
images of one cereal grain were similar to other grains; hence resulted in increased
misclassification.

The textural features extracted from the red color band of bulk images (not
partitioned) at maximum gray level value 32 gave the highest classification accuracies in
cereal grains and were used for further analysis. Textural features of bulk sample images can
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be used (non-parametric estimation) for rapid identification of cereal grains with 100%

classification accuracy.

7.1.4 Selection of textural features of bulk samples  All 25 textural features did not
significantly contributed for improvement of the classification accuracy of cereal grains.
Many textural features were highly correlated with one another; hence some of them are
redundant features (Appendix C1). To determine the level of contribution, textural features
of cereal grains, extracted from the red color band at maximum gray level value 32, from 25
growing regions (used as the training set in the hold out method) were used for the
STEPDISC analysis. Table 7.1 shows the features in descending order of their level of
contribution to the classifier. The STEPDISC analysis removed two features (inertia and
GLRM entropy range) because they were not significant to the classifier. The variance is the
most important textural feature (average squared canonical correlation, ASCC = 0.210) of
bulk sample images.

Discriminant analyses were carried out with the first 5, 10, 15, and 20 features (from
Table 7.1) and the classification accuracies were compared with that when all 25 features
were used (Fig. 7.4). The mean accuracies using the first five features were poor. When all
25 features were used, the mean accuracies were the highest in the majority of the analysis
methods (Fig. 7.4). The first 10 features also gave similar mean accuracies. The level of
contribution of features (see ASCC values) beyond the first 10 features was poor (Table 7.1).
This suggested that one can use only the first 10 features. If one uses bulk samples to
identify the principal grain in a car lot sample, some classification accuracy (e.g., 4-5%) can
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be sacrificed to save some computational time. Using 10 features instead of 25 features
would save computational time, therefore one can use the first 10 textural features for

classifying bulk samples of cereal grains. Also, in field situation, one always uses the hold

Table 7.1 Selection of textural features of bulk samples of cereal grains, extracted
from the red color band at maximum gray level value 32, using the
STEPDISC analysis

Number Textural features of bulk samples Average squared Partial
canonical correlation
1 Variance (GLCM) 0.210 0.84
2 Long run (GLRM) 0.374 0.70
3 Short run (GLRM) 0.508 0.69
4 Gray level non-uniformity (GLRM) 0.586 0.54
5 Run length non-uniformity (GLRM) 0.598 0.39
6 GLRM entropy (GLRM) 0.657 0.34
7 Correlation (GLCM) 0.700 0.29
8 Mean (GLCM) 0.721 0.26
9 Uniformity (GLCM) 0.729 0.18
10 Cluster prominence (GLCM) 0.769 0.13
11 Run percent (GLRM) 0.773 0.11
12 Cluster shade (GLCM) 0.776 0.08
13 Entropy (GLCM) 0.788 0.24
14 Mean gray level 0.798 0.14
15 Gray level variance 0.804 0.12
16 Long run range (GLRM) 0.806 0.06
17 Gray level range 0.809 0.05
18 Maximum probability (GLCM) 0.818 0.11
19 Gray level non-uniformity range (GLRM) 0.819 0.04
20 Run length non-uniformity range (GLRM) 0.822 0.04
21 Run percent range (GLRM) 0.827 0.07
22 Short run range (GLRM) 0.828 0.02
23 Homogeneity (GLCM) 0.829 0.02

Note: inertia and GLRM entropy were removed from the selection.
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Fig. 7.4 Comparison of classification accuracies of bulk samples of cereal grains

using different number of textural features extracted from red color
band at maximum gray level value 32 (Note: Npar denotes non-
parametric estimation)
out method to test unknown samples. The leave-one-out method was used to determine how
well the classifier performed on the training data. The classification accuracies of CWRS
wheat, CWAD wheat, barley, oats, and rye using the first 10 textural features, extracted from
red color band at maximum gray level value 32, were 100.0 % in each case when tested on
an independent data set (non-parametric estimation, Appendix Fla).

Table 7.2 shows the independent rankings of textural features of bulk samples.
Although cluster prominence and cluster shade were the second and third most significant
features in terms of their independent levels of contribution (Table 7.2), in the discriminant
model they ranked the 10" and 12" most significant features, respectively (Table 7.1). This
was because in the STEPDISC analysis, once the most significant feature(s) was (were)
selected (for example, here it was variance), the rest of the features were selected depending
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Table 7.2 Independent rankings of textural features (extracted from the red color
band at maximum gray level value 32) of bulk samples of cereal grains
on the basis of their individual level of contribution to the classifier using

the STEPDISC analysis
Number Textural features of bulk samples Average squared r
canonical correlation
1 Variance (GLCM) 0.210 0.84
2 Cluster prominance (GLCM) 0.205 0.82
3 Cluster shade (GLCM) 0.200 0.80
4 Long run (GLRM) 0.179 0.72
5 Mean Gray level 0.176 0.70
6 Gray level variance 0.174 0.70
7 Mean (GLCM) 0.173 0.69
8 Run percent (GLRM) 0.172 0.69
9 Inertia (GLCM) 0.168 0.67
10 Run length non-uniformity (GLRM) 0.167 0.67
11 Short run (GLRM) 0.166 0.66
12 Homogeneity (GLCM) 0.165 0.66
13 GLRM entropy (GLRM) 0.163 0.65
14 Uniformity (GLCM) 0.153 0.61
15 Correlation (GLCM) 0.147 0.59
16 Gray level non-uniformity (GLRM) 0.128 0.51
17 Entropy (GLCM) 0.092 0.37
18 Long run range (GLRM) 0.089 0.36
19 Gray level non-uniformity range (GLRM) 0.026 0.10
20 Run percent range (GLRM) 0.025 0.10
21 Short run range (GLRM) 0.024 0.09
22 GLRM entropy range (GLRM) 0.022 0.09
25 Gray level range 0.021 0.08
24 Maximum probability (GLCM) 0.018 0.07
25 Run length non-uniformity range (GLRM) 0.016 0.06

on their correlation with the feature(s) already being selected, i.e., features with the least
correlation with the already being selected feature(s) will be selected first. Appendix C1
shows the between-class correlation coefficients of textural features of bulk samples.
Because cluster shade and cluster prominence were highly correlated with variance (= 0.99,

Appendix Cl), once variance was selected in the STEPDISC analysis, their level of
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contribution went down in the discriminant model (Table 7.1). Contrary to that, long run
was the fourth most independently significant feature (Table 7.2) and as its correlation with
variance was not high (= 0.42), in the discriminant model it became the second most
significant feature. Some feature may have a very high level of contribution when used
independently but its level of contribution may go down drastically when used with a group
of other features, some of which are highly correlated with that feature. Also, from the
independent ranking, one can choose an alternative set of features depending on their level
of contribution to the discriminant model. For example, instead of variance, if cluster
prominence or long run was selected as the first feature, the level of contribution of rest of
the features would have changed.

[n the discriminant model, the first 10 textural features consists 5 GLCM and 3
GLRM features (Table 7.1). These GLCM features were highly correlated (most of the cases
> 0.65) with all primary color features (red, green, and blue) (Appendix C1). Also they were
highly correlated with intensity but their correlation with hue and saturation was very poor.
This suggested that these GLCM features were manifestation of primary color features. But
the correlation of all primary color features (red, green, and blue or hue, saturation, and
intensity) and the five GLRM features were very poor (Appendix C1) which suggested that
these textural features were independent of primary color features. Also, of the 10 most
significant textural features (on the basis of their individual level of contribution, Table 7.2),
5 were highly correlated (variance, cluster prominence, cluster shade, mean gray level, and
mean) with primary color features but other 5 were very poorly correlated. This also
suggested that all textural features were not a manifestation of primary color features.
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7.2 Classification of bulk samples using color features

The classification accuracies of bulk samples of cereal grains using color features are
given in Appendices D1 and DD1. When an independent data set was used for testing, the
classification accuracy was 100.0% for each cereal grain (Appendix D1b). Also, with the
leave-one-out method, all cereal grains were correctly classified except one CWAD wheat

image which got misclassified as oats (Appendix DDb1).

7.2.1 Effect of sub-images on classification accuracy Discriminant analyses (hold out
and leave-one-out methods) were carried out using color features, extracted from original
images and sub-images (Appendices D1-D4 and DD - DD4) and the classification accuracies
were compared (Fig. 7.5). The color features extracted from original images (without
partitioning) gave higher mean accuracies in the majority of the analysis methods than sub-
images. As the number of sub-images per original image increased (e.g., 16 and 23), the
classification accuracies decreased. This was because as the image size reduced, the
presence of foreign materials and non-uniformity in packing density of grains became

prominent which resulted in misclassification of cereal grains.

7.2.2 Selection of color features of bulk samples  Some of the color features were highly
correlated with one another (> 0.90) (Appendix C1); hence their level of contribution to the
classification of cereal grains was poor. Table 7.3 shows the color features of bulk samples

in descending order of their level of contribution to the classifier. The STEPDISC analysis
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Fig. 7.5 Classification accuracies of bulk sample images of cereal grains,
partitioned into different sub-images, using color features (Note: Npar
denotes non-parametric estimation)

removed intensity as it was not significant to the classifier. Hue is the most significant color

feature. The level of contribution of color features (see ASCC values, Table 7.3) beyond the

first 10 features was very poor which suggested that one can ignore these redundant features
in the classifier.
Discriminant analyses were carried out with the first 5, 10, and 15 features (from

Table 7.3) and the classification accuracies were compared with the classification accuracies

when all 18 features were used (Fig. 7.6). The mean accuracies in the majority of the

analysis methods were higher when the first five features were used compared to that when
the first 10, 15, or all 18 features (Fig. 7.6). When an independent data set was used for

testing (non-parametric estimation), all cereal grains were 100.0% correctly classified with
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Table 7.3 Selection of color features (bulk images) of cereal grains using
STEPDISC analysis

Number Color features of bulk samples Average squared Partial ’
canonical correlation

1 Hue 0.192 0.77
2 Hue variance 0.346 0.71
3 Red variance 0.508 0.69
4 Green variance 0.582 0.68
5 Saturation variance 0.625 0.40
6 Saturation 0.652 0.40
7 Red 0.675 0.45
8 Blue 0.720 0.36
9 Blue variance 0.740 0.16
10 Saturation range 0.750 0.12
1 Green 0.761 0.14
12 Blue range 0.764 0.09
13 Intensity variance 0.766 0.07
14 Intensity range 0.768 0.04
15 Red range 0.782 0.13
16 Green range 0.784 0.03
17 Hue range 0.784 0.02

Note: intensity was removed from the selection
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Fig. 7.6 Comparison of classification accuracies of bulk samples of cereal grains
using different number of color features (Note: Npar denotes non-
parametric estimation)
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the first 3, 10, 15, or all 18 features (Appendix F2a). The classification accuracies were
poorer in the normal estimation than in the non-parametric estimation which suggested that
the color features were not normally distributed. Table 7.4 shows independent rankings of
the color features. Although red and green were the second and the fourth most important

Table 7.4 Independent rankings of color features (bulk samples) of cereal grains
on the basis of their individual level of contribution to the classifier using

STEPDISC analysis
Number Color features of bulk samples Average squared r
canonical correlation
l Hue 0.192 0.77
2 Red 0.176 0.70
3 Red vanance 0.174 0.70
4 Green 0.163 0.65
5 Intensity variance 0.163 0.65
6 Green variance 0.163 0.65
7 Hue variance 0.157 0.63
8 Blue variance 0.147 0.39
9 Intensity 0.142 0.57
10 Blue 0.076 0.31
11 Saturation variance 0.060 0.24
12 Saturation 0.056 0.23
13 Saturation range 0.032 0.13
14 Blue range 0.031 0.12
15 Red range 0.021 0.09
16 Hue range 0.018 0.07
17 Intensity range 0.006 0.02

features (on the basis of independent ranking, Table 7.4), they ranked seventh and eleventh
in the discriminant color model because their correlations with hue (0.61 and 0.78) were very
high (Appendix C1). Red variance, intensity variance, green variance, and blue variance

were poorly correlated (< 0.38 in all cases) with hue as well as with one another; hence their
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independent ranking (Table 7.4) and their ranking in the discriminant color model (Table
7.3) were similar.

For rapid identification of cereal grains, either textural or color features of bulk
sample images can be used with non-parametric estimation. Some of the textural features
(e.g., some GLCM features) were highly correlated with some primary color features (e.g.,
red, green, blue, and intensity) but there were many textural features which were very poorly
correlated with color features which suggested that those textural features were very distinct

from color features.

7.3 Morphology model: classification of individual kernels

Many researchers conducted substantial work using different morphological features
for classification of cereal grains and their varieties. Using clean, pedigreed sample they
achieved high classification accuracies. It was hypothesized that the classification accuracies
would reduce if tested with commercial samples collected from different growing regions.
Morphological features of individual kernels were used for classification of CWRS wheat,
CWAD wheat, barley, oats, and rye, collected from different growing regions. When an
independent data set was used for testing (the hold out method) with non-parametric
estimation, the classification accuracies of CWRS wheat, CWAD wheat, barley, oats, and
rye were 99.0, 95.2, 97.3, 99.5, and 82.8%, respectively (Table 7.5b). Also, in the leave-one-
out method with non-parametric estimation, the classification accuracies of CWRS wheat,
CWAD wheat, barley, oats, and rye were 99.1, 92.1, 97.6, 99.7, and 90.9%, respectively
(Table 7.5d). The classification accuracies with the normal estimation were poorer than the
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non-parametric estimation. This suggested that morphological features did not follow
normal distributions. Sapirstein et al. (1987) reported similar classification accuracies ot
99.2, 95.7, 95.3, and 98.3% for HRS wheat, barley, oats, and rye, respectively using
morphological and reflectance features. They achieved higher classification accuracy
(98.3%) for rye when compared with the present study where due to inclusion of the CWAD
wheat in the discriminant model, many rye kernels got misclassified in as the CWAD wheat
and vice versa (Table 7.5) as they had similar length and perimeter (data not shown). Also.
there was no significant effect of growing regions on classification accuracy of cereal grains
as the grains used for the training and the testing of the morphology model were collected

from different growing region across western Canada.

7.3.1 Selection of morphological features of individual kernels Many morphologicai
features were highly correlated with one another (Appendix C2) and many of them did not
contribute significantly to the morphology model. The morphological features were arranged
in descending order of their level of contribution to the morphology model (Table 7.6). The
kemnel length was the most significant (ASCC = 0.223) and the major axis length was the
least significant (ASCC = 0.662) feature when used with other features in the model (Table
7.6) because they were very highly correlated (0.99, Appendix C2). In a discriminant model.
once the most significant feature is selected, rest of the features are selected depending on

their correlation (poorly correlated features are selected first) with the feature already being



Table 7.5a  Confusion matrix of individual kernel images of cereal grains using

morphological features: Normal estimation (hold out method)

Categories (to)~ CWRS CWAD Barley Oats Rye

(from) | wheat wheat

CWRS wheat 4286 100 0 0 114

(n =4500) (95.2%)

CWAD wheat 10 1406 17 0 67

(n=1500) (93.7%)

Bariey 3 56 - 1397 0 44

(n=1500) (93.1%)

Oats 0 1 0 1474 25

(n=1500) (98.3%)

Rye 1 228 19 1 1251

(n=1500) (83.4%)

Table 7.5b  Confusion matrix of individual kernel images of cereal grains using

morphological features: Non-parametric estimation (hold out method)
with k=5

Categories (to)- CWRS CWAD Barley Oats Rye Other

(from) | wheat wheat

CWRS wheat 4457 23 1 0 18 1

(n=4500) (99.0%)

CWAD wheat 0 1428 3 0 58 I1

(n=1500) (95.2%)

Barley 0 15 1460 0 20 h)

(n=1500) (97.3%)

Oats 1 0 0 1493 3 3

(n=1500) (99.5%)

Rye 14 186 18 8 1242 32

(n=1500) (82.8%)
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Table 7.5¢  Confusion matrix of individual kernel images of cereal grains using
morphological features: Normal estimation (leave-one-out method)

Categories (to)- CWRS CWAD Barley Oats Rye
(from) | wheat wheat

CWRS wheat 13083 266 0 0 15t
(n=13500) (96.9%)

CWAD wheat 61 4128 37 0 274
(n=4500) (91.7%)

Barley 0 111 4314 1 74
(n=4500) (95.9%)

Oats 0 6 0 4441 53
(n =4500) (98.7%)

Rye 15 569 51 3 3862
(n =4500) (85.8%)

Table 7.5d  Confusion matrix of individual kernel images of cereal grains using
morphological features: Non-parametric estimation (leave-one-out

method) with k=5
Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat
CWRS wheat 13380 66 1 0 51 2
(n=13500) (99.1%)
CWAD wheat 48 4145 20 0 285 2
(n =4500) (92.1%)
Barley 0 57 4392 2 47 2
(n =4500) (97.6%)
Oats 0 0 0 4486 12 2
(n =4500) (99.7%)
Rye 18 361 26 0 4092 3
(n =4500) (90.9%)

selected. The level of contribution of features to the morphology model beyond the first 10

features was poor (see ASCC values, Table 7.6).
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Table 7.6 Selection of morphological features of individual kernels of cereal grains

using STEPDISC analysis
Number Morphological features of individual Average squared Partial
kernels canonical correlation
1 Length 0.223 0.89
2 Haralick ratio 0.343 0.51
3 First Fourier descriptor (when u = 0) 0.479 0.61
4 Standard deviation of radii 0.532 0.60
5 Area ratio 0.572 0.25
6 Radius ratio 0.593 0.15
7 First invariant moment, M, 0.598 0.07
8 Second invariant moment, M, 0.624 0.25
9 Minimum radius 0.638 0.12
10 Maximum radius 0.644 0.04
11 Perimeter 0.648 0.02
12 Area 0.649 0.02
13 Rectangular aspect ratio 0.651 0.02
14 Thinness ratio 0.652 0.03
15 Width 0.655 0.02
16 Second Fourier descriptor (when u = 1) 0.657 0.01
17 Minor axis length 0.658 0.01
18 Fourth Fourier descriptor (when u = 3) 0.659 0.01
19 Third Fourier descriptor (when u = 2) 0.660 0.01
20 Third invariant moment, M; 0.661 0.01
21 Fourth invariant moment, M, 0.661 0.01
22 Aspect ratio 0.662 0.00
23 Major axis [eggth 0.662 0.00

Discriminant analyses were carried out with the first 5, 10, and 15 features (from
Table 7.6) and the classification accuracies were compared with that when all 23 features
were used (Fig. 7.7). The mean accuracy was the highest in 3 out of 4 analysis methods
when the first 10 features were used for classification (Fig. 7.7). Beyond the first 10
features, as the number of features increased, the mean accuracies remained constant because

of redundancies in some features (e.g., length and major axis length (0.99)). With the first
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five features the mean accuracies were very poor. When the morphology model with the first
10 features was tested on an independent data set, the classification accuracies of CWRS
wheat, CWAD wheat, barley, oats, and rye were 98.9, 93.7, 96.8, 99.9, and 81.6%,
respectively (non-parametric estimation, Appendix F3a). When the model was used on the
training data set, the classification accuracies were 98.9, 91.6, 97.9, 100.0, and 91.6%,
respectively for CWRS wheat, CWAD wheat, barley, oats, and rye (non-parametric

estimation, Appendix F3b).
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Fig. 7.7 Comparison of classification accuracies of individual kernels of cereal

grains using different number of morphological features (Note: Npar
denotes non-parametric estimation)

Independent rankings of morphological features are shown in Table 7.7 and their
between-class correlation coefficients are shown in Appendix C2. The kernel length,

maximum radius, and perimeter were the three most significant features based on
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independent rankings (Table 7.7). As the maximum radius, perimeter, and length were
highly inter-correlated (0.99, Appendix C2), the significance level of maximum radius and

perimeter were reduced in the morphology model (Table 7.6). Also, as the correlation of

Table 7.7 Independent rankings of morphological features of individual kernels of
cereal grains on the basis of their individual level of contribution to the
classifier using STEPDISC analysis

Number Morphological features of individual Average squared r
kernels canonical correlation
1 Length 0.223 0.89
2 Maximum radius 0.221 0.88
3 Perimeter 0.217 0.87
4 First invariant moment, M, 0.212 0.85
5 Rectangular aspect ratio 0.211 0.85
6 First Fourier descriptor (u=0) 0.211 0.85
7 Standard deviation of radii 0.211 0.84
8 Thinness ratio 0.208 0.83
9 Second invariant moment, M, 0.206 0.82
10 Radius ratio 0.202 0.81
11 Haralick ratio 0.196 0.78
12 Area 0.186 0.74
13 Area ratio 0.118 0.47
14 Minor axis length 0.111 0.45
15 Width 0.108 0.43
16 Second Fourier descriptor (u=1) 0.108 0.43
17 Minimum radius 0.104 0.42
18 Major axis length 0.081 0.32
19 Fourth Fourier descriptor (u=3) 0.060 0.24
20 Third Fourier descriptor (u=2) 0.059 0.24
21 Fourth invariant moment, M, 0.056 0.23
22 Third invariant moment, M, 0.056 0.22
23 Aspect ratio 0.002 0.01
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first invariant moment and rectangular aspect ratio with length was high (0.95 and 0.94.
respectively), their ranking in the morphology model was lowered. As many of the
morphological features were highly correlated with one another, using all the features in the
morphology model would not improve the classification accuracy; also as the number of
features is reduced, the time consumed by any classifier (specially classifier like neural

network) is reduced.

7.4 Texture model: classification of individual kernels

7.4.1 Gray level reduction and color selection Textural features were extracted from
GLCM and GLRMs which were computed from individual kemel images. [f the maximum
gray level value is m; and the run length is n, the size of GLCM and GLRMs will be m;x m,
and m; X n;, respectively for the i kernel. When the maximum gray level is reduced, the
sizes of the GLCM and GLRMs are also reduced resulting in the reduced computational
time. The classification accuracies of cereal grains using textural features extracted from red
color band at different maximum gray level values (e.g., 250, 32, 16, 8, and 4) are shown in
Appendices E1-ES5 and EE1-EES. Some CWRS and CWAD wheats were misclassified as
rye and vice versa because some of the textural features (e.g., mean gray level, gray level
variance, gray level range, mean, entropy, correlation) of these grains overlap one another
(data not shown). Some of the barley kernels were misclassified as CWAD wheat and some
of the oats kernels were misclassified as barley kernels. Some of the textural features (e.g.,

gray level variance, gray level range, mean, entropy) of barley kernels were overlapped with
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that of CWAD wheat kernels and some of the textural features (e.g., entropy, short run range.
run percent range, entropy) of oats kernels were overlapped with that of barley kernels.
The mean accuracies were higher in the majority of the analysis methods [e.g., hold
out method (Npar), hold out method (normal), leave-one-out method (Npar), or leave-one-
out method (normal)] at maximum gray level value 4 than at other maximum gray level
values (Fig. 7.8). In an individual kernel image, at higher gray level values (e.g., 250. 32)
the gray level values were sparsely distributed. Hence, the tonal primitives, i.e., the local
variations (e.g., fineness, coarseness, granulation) on the surface texture of a kernel image
were not prominent (Haralick 1973). As the maximum gray level value decreased, the
distinguishable tonal primitives increased; hence the prominence in the textural features
increased which improved the classification accuracies. But the reduction in maximum gray
level value beyond certain level would result in an image with little textural variations and
the image surface would be transformed into a surface having almost same gray level value.
When the maximum gray level value was 250, the computational time was much longer
compared to other maximum gray level values (e.g., 4, 8, 16, or 32) because of the size of
the GLCM (250 x 250) and GLRMs (250 x n,) of the i** kernel, where n; is the run length of
i™ kernel. For real-world (e.g., on-line) classification it is necessary to have short
computation time. Also, at maximum gray level value 250, the classification accuracies of
cereal grains were poor compared to other maximum gray level values (Fig. 7.8). Therefore,
in subsequent analyses using other color bands, the maximum gray level value 250 was not

used and the analyses were carried out at maximum gray level values 32, 16, 8, and 4.

100



In bulk sample images, the textural features became prominent at maximum gray
level value 32 (Fig. 7.1) whereas in individual kernel images the textural features became
prominent at maximum gray level value 4 (Fig. 7.8) when red color was used to extract the
textural features in both the cases. There is a distinction between a bulk image texture and
an individual kernel texture of a cereal grain. The bulk image texture is a manifestation of
the packing density and the individual surface texture of the grain where the packing density
of the grain (results in shadows) plays a major role in forming the topography of the bulk
image texture. For individual kernel image, it is only the surface texture which represents
the individual kernel texture. In individual kernel image, the gray level values are distributed
across a narrow gray level band whereas in bulk sample images, the gray level values are
distributed across a wide gray level band due to the presence of shadows. Hence, the textural
features become prominent at different maximum gray level values for bulk sample and
individual kernel images.

The classification accuracies of cereal grains using textural features of individual
kernels, extracted from the green color band, are shown in Appendices E6 -E9 and EEG6 -
EE9. The mean accuracies were higher in three out of four analysis methods at maximum
gray level value 8 than other gray level values (Fig. 7.9). Similarly, the classification
accuracies of cereal grains using textural features, extracted from blue color, black & white
color, BR+2G+1B)/6, 2R+1G+3B)/6, and (1R+3G+2B)/6 are shown in Appendices E10 -
E13 and EE10 - EE13, Appendices E14 - E17 and EE14 - EE17, Appendices E18 - E21 and
EEI18 - EE21, Appendices E22 - E25 and EE22 - EE2S, and Appendices E26 - E29 and EE26
- EE29, respectively.
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Fig. 7.8 Classification accuracies of individual kernels of cereal grains using

textural features extracted from red color band at different maximum

gray level values (Note: Npar denotes non-parametric estimation)
When textural features extracted from blue (Fig. 7.10) and black & white colors (Fig.
7.11) were used, the mean accuracies in all analysis methods were higher at maximum gray
level value 4 than other maximum gray level values. When textural features extracted from
(BR+2G+1B)/6 were used, the mean accuracies were higher in three out of four analysis
methods at maximum gray level value 4 than other maximum gray level values (Fig. 7.12).
When textural features extracted from (2R+1G+3B)/6 (Fig. 7.13) and (1R+3G+2B)/6 (Fig.
7.14) were used, the mean accuracies in all analysis methods were higher at maximum gray

level value 4 than other maximum gray level values.
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Fig. 7.9 Classification accuracies of individual kernels of cereal grains using
textural features extracted from green color band at different maximum
gray level values (Note: Npar denotes non-parametric estimation)
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Fig. 7.12 Classification accuracies of individual kernels of cereal grains using
textural features extracted from (3R+2G+1B)/6 at different maximum
gray level values (Note: Npar denotes non-parametric estimation)
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Figure 7.15 shows the classification accuracies of cereal grains using textural features
of individual kernels, extracted from different color bands and color band combinations at
maximum gray level value 4 (for the green color band the maximum gray level value was
8). Textural features extracted from green color band at maximum gray level value 8 gave
higher mean accuracies in the majority of the analysis methods than other colors or color
band combinations. This is in contrast with bulk sample images where textural features
extracted from red color band gave higher classification accuracies than other color band or
color band combinations because the bulk sample image and individual kernel image textures
are different from each other. Blue color also showed comparably good classification

accuracies (Fig. 7.15).
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Fig. 7.15 Classification accuracies of individual kernels of cereal grains using

textural features extracted from different color bands and color band
combinations at maximum gray level value 4 (for green color the
maximum gray level value was 8) [R: red, G: green, B: blue, B&W:
black & white, X1: (3R+2G+1B)/6, X2: (2R+1G+3B)/6, and X3:
(1R+3G+2B)/6] (Note: Npar denotes non-parametric estimation)
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When an independent data set was used for testing, the classification accuracies of
CWRS wheat, CWAD wheat, barley, oats, and rye using textural features extracted from
green color at maximum gray level value 8 were 87.7, 98.1, 100.0, 100.0, and 74.1%.
respectively (Appendix E8b). When the training data set was used for testing, the
classification accuracies of CWRS wheat, CWAD wheat, barley, oats, and rye using textural
features were 88.2, 96.4, 100.0, 100.0, and 79.9%, respectively (Appendix EE8b). The
classification accuracies of individual kernels of cereal grains using textural features were

poorer than that using morphological features.

7.4.2 Selection of textural features of individual kernels Some of the textural features
were highly correlated (= 0.99) with one another (e.g., mean, variance, cluster shade, and
mean gray level were highly inter-correlated with one another, Appendix C2) and they did
not contribute significantly to the texture model. The STEPDISC analysis was carried out
to determine the level of contribution of each textural feature of individual kernels to the
texture model so that all redundant features could be eliminated. Table 7.8 shows the
textural features, extracted from the green color band at maximum gray level value 8 in the
descending order of their level of contribution. The gray level non-uniformity range was the
most significant feature (ASCC = 0.156) and the GLRM entropy range was the least
significant feature (ASCC = 0.517) because they were highly correlated (0.96, Appendix
C2). The level of contribution (see ASCC values) of textural features beyond the first 15

features was poor to the model (Table 7.8).
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Table 7.8 Selection of textural features of individual kernels of cereal grains,
extracted from green color band at maximum gray level value 8, using
STEPDISC analysis

Number Textural features of individual Average squared Partial
kernels canonical correlation

1 Gray level non-uniformity range (GLRM) 0.156 0.62
2 Long run (GLRM) 0.223 0.44
3 Run length non-uniformity (GLRM) 0.284 0.33
4 Entropy (GLCM) 0.298 0.24
5 Short run (GLRM) 0.337 0.30
6 Run percent (GLRM) 0.356 0.20
7 Cluster prominence (GLCM) 0.387 0.18
8 Gray level range 0414 0.20
9 Mean (GLCM) 0.430 0.14
10 GLRM entropy (GLRM) 0.441 0.14
11 Run percent range (GLRM) 0.460 0.10
12 Mean gray level 0.469 0.12
13 Gray level variance 0.478 0.07
14 Inertia (GLCM) 0.485 0.06
15 Long run range (GLRM) 0.489 0.04
16 Correlation (GLCM) 0.492 0.04
17 Run length non-uniformity range (GLRM) 0.496 0.03
18 Cluster shade (GLCM) 0.501 0.03
19 Homogeneity (GLCM) 0.506 0.04
20 Uniformity (GLCM) 0.509 0.02
21 Gray level non-uniformity (GLRM) 0.510 0.02
22 Maximum probability (GLCM) 0.513 0.02
23 Short run range (GLRM) 0.514 0.01
24 Variance (GLCM) 0.516 0.01
25 GLRM entropy range (GLRM) 0.516 0.01

Discriminant analyses were carried out with the first 5, 10, 15, and 20 features (from

Table 7.8) and the classification accuracies were compared with that when all 25 features

were used (Fig. 7.16). The mean accuracies were poor when only the first five features were

used for classification. As the number of features increased, the mean accuracies increased

to certain extent and then remained constant, because of redundancies (e.g., GLRM entropy
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range. variance, short run range, maximum probability, gray level non-uniformity were
highly correlated (> 0.88) with gray level non-uniformity range) in some features (Fig. 7.16).
Increase in mean accuracies beyond 15 features was negligible, hence one could use the first
15 features (Table 7.8) for classification of individual kernels of cereal grains (Fig. 7.16).
When an independent data set was used for testing, the classification accuracies of CWRS
wheat, CWAD wheat, barely, oats, and rye using the first 15 features in the texture model
were 85.2,98.2, 100.0, 100.0, and 76.3%, respectively (non-parametric estimation, Appendix
F4a). When used on the training data set. the classification accuracies were 87.0, 95.7.

100.0, 100.0, and 81.8%, respectively (non-parametric estimation, Appendix F4b).
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Fig. 7.16 Comparison of classification accuracies of individual kernels of cereal

grains using different number of textural features extracted from green
color at maximum gray level value 8 (Note: Npar denotes non-
parametric estimation)

The independent rankings of textural features are shown in Table 7.9. Depending on

the correlation among different textural features (Appendix C2) and their independent
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rankings, their level of contribution to the texture model was determined (Table 7.9).
Although GLRM entropy, gray level non-uniformity, long run range, and run length non-

uniformity range were some of the most significant textural features on the basis of their

Table 7.9 Independent rankings of textural features of individual kernels of cereal
grains, extracted from green color band at maximum gray level value 8,
on the basis of their individual level of contribution to the classifier using

STEPDISC analysis
Number Textural features of individual Average squared r
kernels canonical correlation
1 Gray level non-uniformity range (GLRM) 0.155 0.62
2 Run length non-uniformity (GLRM) 0.152 0.61
3 GLRM entropy (GLRM) 0.144 0.57
4 Gray level non-uniformity (GLRM) 0.142 0.57
5 Long run range (GLRM) 0.135 0.54
6 Run length non-uniformity range (GLRM) 0.129 0.52
7 Cluster prominence (GLCM) 0.117 0.47
8 Mean gray level 0.115 0.46
9 GLRM entropy range (GLRM) 0.114 0.46
10 Cluster shade (GLCM) 0.112 0.45
11 Variance (GLCM) 0.099 0.40
12 Long run (GLRM) 0.089 0.36
13 Run percent range (GLRM) 0.069 0.28
14 Correlation (GLCM) 0.068 0.27
15 Mean (GLCM) 0.066 0.27
16 Gray level range 0.063 0.25
17 Inertia (GLCM) 0.055 0.22
18 Run percent (GLRM) 0.052 0.21
19 Short run range (GLRM) 0.040 0.16
20 Gray level variance 0.037 0.15
21 Maximum probability (GLCM) 0.036 0.14
22 Short run (GLRM) 0.024 0.10
23 Uniformity (GLCM) 0.023 0.09
24 Homogeneity (GLCM) 0.009 0.04
25 Entropy (GLCM) 0.004 0.01
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individual level of contribution (Table 7.9), their level of contribution to the texture model
reduced significantly (Table 7.8) because their correlations with gray level non-uniformity

range were very high (> 0.90 in all cases, Appendix C2).

7.5 Color model: classification of individual kernels

Eighteen color features were used to classify individual kernels of cereal grains and
the classification accuracies are shown in Table 7.10. When an independent data set was
used for testing, the classification accuracies of cereal grains were higher with the normal
estimation than with the non-parametric estimation (Tables 7.10a and 7.10b) and the
classification accuracies of CWRS wheat, CWAD wheat, barley, oats, and rye using normal
estimation were 87.9, 95.0, 92.1, 97.5, and 96.6%, respectively (Table 7.10a). When the
leave-one-out method was used, the classification accuracies were higher with the non-
parametric estimation than with the normal estimation (Tables 7.10¢ and 7.10d) and the
classification accuracies of CWRS wheat, CWAD wheat, barley, oats, and rye using the non-
parametric estimation were 94.4, 94.3, 93.7, 97.5, and 91.9%, respectively (Table 7.10d).

The majority of the misclassified CWRS wheat were classified as CWAD wheat,
oats, and rye. This was because the CWRS wheat had equal number of grade 1, 2. and 3
kernels and variability of size, shape, and reflectance features were used for successful
classification of three grades of CWRS wheat (Sapirstein and Kohler 1995). Hence, some
of the color features of CWRS wheat (all three grades were treated as a single class) were
confused with CWAD wheat, oats, and rye. The majority of the misclassified CWAD wheat
were classified as barley and vice versa because they had similar reflectance characteristics.
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Table 7.10a Confusion matrix of individual kernel images of cereal grains using color
features: Normal estimation (hold out method)

Categories (to)~ CWRS CWAD Barley Oats Rye
(from) | wheat wheat

CWRS wheat 3956 182 74 123
(n =4500) (87.9%)

CWAD wheat 16 1425 51 7
(n=1500) (95.0%)

Barley 3 1 1381 3 2

(n = 1500) (92.1%)

Oats 37 0 0 1
(n=1500) (97.5%)

Rye 43 2 1 5 1449
(n=1500) (96.6%)

Table 7.10b Confusion matrix of individual kernel images of cereal grains using color
features: Non-parametric estimation (hold out method) with k=5

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 4174 194 31 37 30 34
(n =4500) (92.8%)

CWAD wheat 17 1378 77 2 5 21
(n=1500) (91.9%)

Barley 1 93 1392 0 0 14
(n=1500) (92.8%)

Oats 85 0 0 1414 0 1
(n =1500) (94.3%)

Rye 98 2 0 3 1385 12
(n=1500) (92.3%)




Table 7.10c  Confusion matrix of individual kernel images of cereal grains using color

features: Normal estimation (leave-one-out method)

Categories (to)~ CWRS CWAD Barley Qats Rye
(from) | wheat wheat

CWRS wheat 11309 513 69 689 920
(n=13500) (83.8%)

CWAD wheat 71 4168 175 23 63
(n=4500) (92.6%)

Barley 11 413 4022 36
(n=4500) (89.4%)

Oats 23 21 57 4388 11
(n=4500) (97.5%)

Rye 107 132 49 2 4210
(n=4500) (93.6%)

Table 7.10d Confusion matrix of individual kernel images of cereal grains using color
features: Non-parametric estimation (leave-one-out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 12742 317 25 147 261 8
(n=13500) (94.4%)

CWAD wheat 94 4244 146 3 9 4
(n=4500) (94.3%)

Barley 3 255 4215 8 14 5
(n=4500) (93.7%)

Oats 58 18 32 4387 2 3
(n=4500) (97.5%)

Rye 245 94 21 1 4137 2
(n=4500) (91.9%)
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Oats samples from some growing regions (specially from Manitoba province) were
brownish in color and some of them were misclassified as CWRS wheat. Most of the
misclassified rye kernels were classified as CWRS wheat as their reflectance characteristics
were similar (Majumdar et. al 1996) (Table 7.10). Neuman et al. (1989a, 1989b) examined
color attributes of individual kernels of 10 varieties representing 6 Canadian wheat classes.
Using red, green, and blue reflectance features, they achieved classification accuracies of 76,
76, 62, 56, and 34% for SWS, Amber Durum, HRS, HRW, and CPS wheat classes,
respectively. Ifred, green, and blue features were used with hue and saturation features, the
classification accuracy of the wheat classes would have increased as hue and saturation were

very poorly correlated with red, green, and blue features (Appendix C2).

7.5.1 Selection of color features of individual kernels Some of the color features were
highly correlated (> 0.90) with one another (e.g., red, green, and intensity; and red range,
green range, blue range, and saturation range were highly inter-correlated, Appendix C2),
hence they did not contribute significantly to the color model. Table 7.11 shows the color
features in the descending order of their level of contribution to the color model. The red
color had the most contribution (ASCC = 0.122) and intensity had the least contribution
(ASCC = 0.537) to the model as they were highly correlated to each other (0.97, Appendix
C2). The level of contribution (see ASCC values) of color features beyond the first 10
features was poor (Table 7.11); one could eliminate rest of the features from the color model

without affecting the classification accuracies of cereal grains.
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Discriminant analyses were conducted with the first 5, 10, and 135 features (from

Table 7.11) and the classification accuracies were compared with classification accuracies

when all 18 features were used (Fig. 7.17). The classification accuracies of the cereal grains

were poor when only the first five features were used in the color model. As the number of

color features increased, the mean accuracies increased to certain extent and then became

constant because of redundancies in some features in the model. The color model with the

first 10 features gave good classification accuracies and the increase in mean accuracies

beyond 10 features was negligible. The classification accuracies of CWRS wheat, CWAD

Table 7.11  Selection of color features of individual kernels of cereal grains using
STEPDISC analysis
Number Color features of individual Average squared Partial r°
kernels canonical correlation
l Red 0.122 0.49
2 Blue 0.244 0.56
3 Green 0.390 0.64
4 Red range 0.439 0.29
5 Saturation range 0.449 0.10
6 Blue range 0.473 0.18
7 Red variance 0.479 0.06
8 Green variance 0.492 0.06
9 Saturation variance 0.496 0.03
10 Saturation 0.502 0.05
11 Blue variance 0.508 0.03
12 Green range 0.510 0.02
13 Hue range 0.512 0.02
14 Hue variance 0.514 0.01
15 Hue 0.537 0.12
16 Intensity variance 0.537 0.00
17 Intensity range 0.537 0.00
18 Intensity 0.537 0.00
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wheat, barley, oats, and rye using the first 10 color features on an independent data set were
94.1, 92.3, 93.1, 95.2, and 92.5%, respectively (non-parametric estimation, Appendix F3a).
When the same model was tested on the training data set, the classification accuracies were
95.7,94.4,94.2, 97.6, and 92.5%, respectively (non-parametric estimation, Appendix F5b).

Table 7.12 shows the independent rankings of color features of individual kernels of
cereal grains. Red and green colors, and saturation range were the three most significant
features when chosen independently. They were also very significant features in the color

model (Table 7.11).

Mean accuracy (%)
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-a Leave-one-out (Npar) _g- Leave-one-out (Normal)

Fig. 7.17 Comparison of classification accuracies of individual kernels of cereal
grains using different number of color features (Note: Npar denotes non-
parametric estimation)

For bulk sample images, hue, hue variance, red variance, green variance, saturation

variance, and saturation were some of the most important features to the color model (Table
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7.3) but for individual kernel images, red, green, blue, red range, saturation range. blue
range, and red variance were some of the most important features to the color model (Table
7.11). This was because the distribution of color across a bulk sample image and an
individual kernel image was different from each other.

From the morphology, texture, and color models of individual kernels of cereal
grains, it was observed that no single model could give 100.0% correct classification (an
ideal goal for practical implementation) for each type of cereal grain used in this study. The
morphology model gave the highest classification accuracies when tested on an independent
data set (mean accuracy = 94.2% when the first 10 features were used, Appendix F3a) and
on the training data set (mean accuracy = 96.0% when the first 10 features were used,
Appendix F3b). The color model gave the second highest classification accuracies when
tested on an independent data set (mean accuracy = 93.4% when the first 10 features were
used, Appendix F5a) and on the training data set (mean accuracy = 94.9% when the first 10
features were used, Appendix F5b). The texture model gave the poorest classification
accuracies when tested on an independent data set (mean accuracy = 92.0% when the first
15 features were used, Appendix F4a) and on the training data set (mean accuracy = 92.9%
when the first 15 features were used, Appendix F4b). One can use any of these three models
independently or in combinations depending on the requirement of classification accuracy.
It was hypothesized that different combinations of these three models might improve the

classification accuracies.
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Table 7.12  Ranking of color features of individual kernels of cereal grains on the
basis of their individual level of contribution to the classifier using

STEPDISC analysis
Number Color features of individual Average squared r
kernels canonical correlation
1 Red 0.122 0.49
2 Green 0.115 0.46
3 Saturation range 0.105 0.42
4 Intensity 0.103 0.41
5 Blue 0.08 0.32
6 Saturation 0.078 0.31
7 Red range 0.067 0.27
8 Green range 0.067 0.27
9 Intensity range 0.057 0.23
10 Hue 0.054 0.22
11 Saturation variance 0.047 0.19
12 Blue variance 0.045 0.18
13 Green variance 0.038 0.15
14 Intensity variance 0.037 0.15
15 Blue range 0.036 0.15
16 Red variance 0.031 0.12
17 Hue variance 0.025 0.10
18 Hue range 0.008 0.03

7.6 Morphology-texture model: classification of individual kernels

The STEPDISC analysis was conducted to select morphological and textural features
based on their level of contribution to the discriminant model. Table 7.13 shows the
morphological and textural features in the descending order of their level of contribution to
the model. The first 4 most significant features were morphological features, kernel length

being the most significant feature. The number of morphological and textural features within
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Table 7.13  Selection of textural (extracted from green color band at maximum gray
level value 8) and morphological features of individual kernels of cereal
grains using STEPDISC analysis

Number Morphological (MF) and textural (TF) Average squared Partial r*
features of individual kernels canonical correlation

1 Length (MF) 0.223 0.89
2 Haralick ratio (MF) 0.343 0.5t
3 First Fourier descriptor (when u=0) (MF) 0.479 0.6l
4 Standard deviation of radii (MF) 0.532 0.60
5 Entropy (TF) 0.560 0.44
6 Area ratio (MF) 0.598 0.23
7 Radius ratio (MF) 0.619 0.16
8 Run length non-uniformity (TF) 0.634 0.13
9 Gray level variance (TF) 0.646 0.09
10 Minimum radius (MF) 0.652 0.06
11 Width (MF) 0.663 0.06
12 Area (MF) 0.676 0.09
13 Short run (TF) 0.680 0.06
14 Run percent (TF) 0.686 0.08
15 Homogeneity (TF) 0.689 0.07
16 GLRM entropy (TF) 0.691 0.08
17 Third invariant moment, M; (MF) 0.695 0.05
18 Second invariant moment, M, (MF) 0.697 0.04
19 First invariant moment, M, (MF) 0.712 0.20
20 Maximum radius (MF) 0.717 0.04
21 Run length range (TF) 0.721 0.03
22 Cluster prominence (TF) 0.722 0.03
23 Cluster shade (TF) 0.726 0.06
24 Mean gray level (TF) 0.727 0.06
25 Variance (TF) 0.733 0.06
26 Uniformity (TF) 0.735 0.03
27 Maximum probability (TF) 0.736 0.02
28 Inertia (TF) 0.737 0.02
29 Rectangular ratio (MF) 0.738 0.02
30 Correlation (TF) 0.739 0.02
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Table 7.13  Selection of textural (extracted from green color band at maximum gray
level value 8) and morphological features of individual kernels of cereal
grains using STEPDISC analysis (cont.)

Number Morphological (MF) and textural (TF) Average squared Partial
features of individual kernels canonical correlation
31 Long run range (TF) 0.739 0.01
32 Gray level non-uniformity (TF) 0.740 0.01
33 Second Fourier descriptor (u=1) (MF) 0.740 0.01
34 Perimeter (MF) 0.741 0.01
35 Thinness ratio (MF) 0.743 0.02
36 Aspect ratio (MF) 0.743 0.01
37 Gray level range (TF) 0.744 0.01
38 Fourth Fourier descriptor (u=3) (MF) 0.744 0.01
39 Third Fourier descriptor (u=2) (MF) 0.745 0.01
40 Long run (TF) 0.745 0.01
41 Fourth invariant moment, M, (MF) 0.745 0.00
42 Run percent range (TF) 0.746 0.00
43 Gray level non-uniformity range (TF) 0.746 0.01
44 Short run range (TF) 0.746 0.00
45 GLRM entropy range (TF) 0.746 0.00
46 Mean (TF) 0.746 0.00
47 Minor axis length (MF) 0.746 0.00
48 Major axis length (MF) 0.747 0.00

the first 15 features were 9 and 6, respectively. The ranking of morphological and textural
features in the morphology-texture model (Table 7.13) was similar to the morphology model
(Table 7.6). This was because the independent levels of contribution (see ASCC values) of
many morphological features (Table 7.7) was higher than that of many textural features
(Table 7.9) which affected the selection of features in the discriminant model. The level of
contribution (see ASCC values) of morphological and textural features beyond the first 15
features was poor (Table 7.13); hence one can eliminate those features beyond the first 15

features from the model without affecting the classification accuracies much.
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Discriminant analyses were carried out with the first 3, 10, 15, 20, 25. 30. 35. and 40
features and the classification accuracies were compared with that when all 48 features were
used (Fig. 7.18). When the first 5 and 10 features were used, the mean accuracies were poor.
With an increase in the number of features, the mean accuracies increased to certain extent
and then became constant. Increase in mean accuracies beyond 15 features was negligible

(Fig. 7.18), hence one could use the first 15 features (Table 7.13) for classification of

individual kernels of cereal grains.
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Fig. 7.18 Comparison of classification accuracies of individual kernels of cereal
grains using different number of morphological and textural features
(extracted from green color band at maximum gray level value 8) (Note:

Npar denotes non-parametric estimation)
When an independent data set was used for testing, the classification accuracies of
CWRS wheat, CWAD wheat, barely, oats, and rye using the first 15 features in the
morphology-texture model were 99.4, 99.1, 99.1, 100.0, and 95.2%, respectively (non-

parametric estimation, Appendix F6a). When used on the training data set, the classification
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accuracies were 99.5, 98.7, 99.7, 100.0, and 98.6%, respectively (non-parametric estimation.
Appendix F6b). The classification accuracies of morphology-texture model were higher than
that of morphology or texture model because some of the morphological and textural features

were poorly correlated with one another (Appendix C2).

7.7 Morphology-color model: classification of individual kernels

The STEPDISC analysis was conducted to select features based on their level of
contribution to the model. Table 7.14 shows the features in the descending order of their
level of contribution to the model. The first five most significant features were
morphological features because their independent levels of contributions (see ASCC values,
Table 7.7) were higher than that of color features (Table 7.12). Red, intensity, and green
were the most significant color features (Table 7.14). Selection of features in the
morphology-color model (Table 7.14) conforms with that in the morphology and color
models (Table 7.6 and 7.11). The level of contribution (see ASCC values) of morphological
and color features beyond the first |5 features was poor (Table 7.14); hence one can
eliminate those features beyond the first 135 features from the model without affecting the
classification accuracies much.

Discriminant analyses were carried out using the first 5, 10, 15, 20, 25, 30, and 35
features and the classification accuracies were compared with that using all 41 features (Fig.
7.19). The mean accuracies using the first five features were poor. As the number of
features increased, the mean accuracies increased to certain extent and then remained

constant. Beyond 15 features, increasing the number of features did not contribute much to
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Table 7.14  Selection of morphological and color features of individual kernels of
cereal grains using STEPDISC analysis

Number Morphological (MF) and color (CF) Average squared Partial
features of individual kernels canonical correlation

1 Length (MF) 0.223 0.89
2 Haralick ratio (MF) 0.343 0.51
3 First Fourier descriptor (when u=0) (MF) 0.479 0.61
4 Standard deviation of radii (MF) 0.532 0.60
5 Area ratio (MF) 0.572 0.25
6 Red (CF) 0.594 0.19
7 Intensity (CF) 0.672 0.43
8 Green (CF) 0.682 0.24
9 Radius ratio (MF) 0.694 0.12
10 First invariant moment, M, (MF) 0.696 0.05
11 Second invariant moment, M, (MF) 0.709 0.22
12 Minimum radius (MF) 0.713 0.07
13 Green range (CF) 0.717 0.04
14 Green variance (CF) 0.721 0.04
15 Red variance (CF) 0.729 0.06
16 Saturation variance (CF) 0.731 0.04
17 Saturation (CF) 0.734 0.05
18 Maximum radius (MF) 0.737 0.03
19 Blue variance (CF) 0.739 0.02
20 Blue range (CF) 0.741 0.02
21 Saturation range (CF) 0.742 0.03
22 Red range (CF) 0.743 0.02
23 Thinness ratio (MF) 0.745 0.01
24 Area (MF) 0.746 0.01
25 Rectangular aspect ratio (MF) 0.746 0.02
26 Perimeter (MF) 0.747 0.02
27 Width (MF) 0.750 0.02
28 Second Fourier descriptor (u=1) (MF) 0.751 0.01
29 Hue variance (CF) 0.752 0.01
30 Hue (CF) 0.757 0.05
31 Aspect ratio (MF) 0.758 0.01




Table 7.14  Selection of merphological and color features of individual kernels of
cereal grains using STEPDISC analysis (cont.)

Number Morphological (MF) and color (CF) Average squared Partial r*
features of individual kernels canonical correlation

32 Third Fourier descriptor (u=2) (MF) 0.758 0.01
33 Fourth Fourier descriptor (u=3) (MF) 0.759 0.01
34 Third invariant moment, M; (MF) 0.759 0.01
35 Fourth invariant moment, M, (MF) 0.760 0.01
36 Blue (CF) 0.760 0.00
37 Hue range (CF) 0.760 0.00
38 Intensity range (CF) 0.760 0.00
39 Intensity variance (CF) 0.760 0.00
40 Minor axis length (MF) 0.760 0.00
41 Major axis length (MF) 0.760 0.00
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Fig. 7.19 Comparison of classification accuracies of individual kernels of cereal
grains using different number of morphological and color features (Note:
Npar denotes non-parametric estimation)



the morphology-color model (Fig. 7.19). When the model using the first 15 features was
tested on an independent data set, the classification accuracies of CWRS wheat, CWAD
wheat, barley, oats, and rye were 99.7, 99.7, 98.9, 99.9, and 98.9%, respectively (non-
parametric estimation, Appendix F7a). When the model was tested on the training data set,
the classification accuracies were 99.8, 99.4, 99.7, 100.0, and 99.0%, respectively (non-
parametric estimation, Appendix F7b). The classification accuracies of morphology-color
model were higher than that of morphology or color model because some of the

morphological and color features were poorly correlated with one another (Appendix C2).

7.8 Texture-color model: classification of individual kernels

Table 7.15 shows the textural and color features in the descending order of their level
of contribution to the texture-color model. The ranking of the features in this model
conforms with the ranking of features in the texture model (Table 7.8) and the color model
(Table 7.11). The level of contribution (see ASCC values) of textural and color features
beyond the first 15 features was poor (Table 7.14); hence one can eliminate those features
beyond the first 15 features from the model without affecting the classification accuracies
much. Some textural (mainly GLCM) features were highly correlated with some primary
color features (e.g., red, green, blue, and intensity) but many were poorly correlated with
some color features (Appendix C2) which suggested that all textural features of individual
kernels were not direct manifestation of color features. Similar relationship between textural

and color features was observed in bulk sample images. But with individual kernel images,



more textural features were highly correlated with color features than that with bulk sample

images (Appendices C1, C2).

Table 7.15  Selection of textural (extracted from green color band at maximum gray
level value 8) and color features of individual kernels of cereal grains

using STEPDISC analysis
Number Textural (TF) and color (CF) features Average squared Partial r
of individual kernels canonical correlation
I Gray level non-uniformity range (TF) 0.155 0.62
2 Long run (TF) 0.224 0.44
3 Saturation range (CF) 0.312 0.40
4 Red (CF) 0.350 0.26
5 gray level mean (TF) 0.460 0.50
6 Blue (CF) 0.498 041
7 Run length non-uniformity (TF) 0.523 0.22
8 Inertia (TF) 0.536 0.23
9 Correlation (TF) 0.549 0.15
10 Short run (TF) 0.564 0.18
11 Entropy (TF) 0.571 0.13
12 Run percent (TF) 0.577 0.15
I3 Homogeneity (TF) 0.582 0.09
14 GLRM entropy (TF) 0.599 0.12
15 Red range (CF) 0.595 0.07
16 Blue range (CF) 0.606 0.12
17 Run percent range (TF) 0.615 0.06
18 Long run range (TF) 0.619 0.04
19 Cluster prominence (TF) 0.622 0.03
20 Cluster shade (TF) 0.626 0.05
21 Variance (TF) 0.633 0.04
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Table 7.15  Selection of textural (extracted from green color band at maximum gray
level value 8) and color features of individual kernels of cereal grains
using STEPDISC analysis (cont.)

Number Textural (TF) and color (CF) features Average squared Partial r°
of individual kernels canonical correlation
22 Saturation variance (CF) 0.635 0.03
23 Blue variance (CF) 0.638 0.03
24 Saturation (CF) 0.642 0.03
25 Short run range (TF) 0.645 0.03
26 Uniformity (TF) 0.648 0.02
27 Green variance (CF) 0.649 0.02
28 Red variance (CF) 0.652 0.04
29 Maximum probability (TF) 0.653 0.01
30 Hue variance (CF) 0.655 0.01
31 Hue (CF) 0.668 0.09
32 Run length non-uniformity range (TF) 0.669 0.01
33 Hue range (CF) 0.669 0.01
34 Mean (TF) 0.670 0.01
35 Green (CF) 0.670 0.00
36 Green range (CF) 0.670 0.00
37 GLRM entropy range (TF) 0.671 0.00
38 Gray level non-uniformity (TF) 0.671 0.00
39 Intensity variance (CF) 0.670 0.00
40 Gray level variance (TF) 0.671 0.00
41 Intensity range (CF) 0.671 0.00
42 Intensity (CF) 0.671 0.00

Note: gray level range was removed from the selection.

Discriminant analyses were carried out using the first 5, 10, 15, 20, 235, 30, and 35
features and the classification accuracies were compared with that using all 43 features (Fig.
7.20). The mean accuracies were very poor when the first five features were used in the
model. As the number of features increased, the mean accuracies increased to certain extent
and then remained constant. The increase in mean accuracies beyond 15 features was
negligible (Fig. 7.20). When the texture-color model using the first 15 features was tested

on an independent data set, the classification accuracies of CWRS wheat, CWAD wheat,

127



barley, oats, and rye were 98.5, 99.4, 99.7, 100.0, and 94.3%, respectively (non-parametric
estimation, Appendix F8a). When the model was tested on the training data set. the
classification accuracies were 97.6,99.4, 99.5, 98.7, and 95.0%, respectively (non-parametric
estimation, Appendix F8b). The classification accuracies of texture-color model were higher
than that of texture or color model because some of the texture and color features were

poorly correlated with one another (Appendix C2).
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Fig. 7.20 Comparison of classification accuracies of individual kernels of cereal
grains using different number of color and textural features (extracted
from green color band at maximum gray level value 8) (Note: Npar
denotes non-parametric estimation)

7.9 Morphology-texture-color model: classification of individual kernels

The STEPDISC analysis was carried out to determine the level of contribution of
morphological, textural, and color features (Table 7.16). Some features were removed by
the STEPDISC analysis as they were not useful to the model. The between-class correlation

of morphological, textural, and color features are given in Appendix C2. The correlation
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Table 7.16  Selection of morphelogical, color, and textural (extracted from green
color band at maximum gray level value 8) features of individual kernels
of cereal grains using STEPDISC analysis

Number Morphological (MF), color (CF), and Average squared Partial r
textural (TF) features of individual kernels  canonical correlation

1 Length (MF) 0.223 0.89
2 Haralick ratio (MF) 0.343 0.51
3 First Fourier descriptor (u=0) (MF) 0.479 0.61
4 Standard deviation of radii (MF) 0.532 0.60
5 Entropy (TF) 0.560 0.44
6 Area ratio (MF) 0.598 0.23
7 Saturation (CF) 0.629 0.18
8 Red (CF) 0.666 0.31
9 Mean gray level (TF) 0.690 0.23
10 Mean (TF) 0.697 0.14
11 Radius ratio (MF) 0.711 0.14
12 Inertia (TF) 0.720 0.09
13 Run length non-uniformity (TF) 0.725 0.06
14 Run percent (TF) 0.727 0.07
15 GLRM entropy (TF) 0.731 0.10
16 Cluster prominence (TF) 0.734 0.08
17 Short run (TF) 0.738 0.08
18 Blue (CF) 0.739 0.06
19 Minimum radius (MF) 0.741 0.04
20 Third invariant moment, M; (MF) 0.743 0.04
21 Width (MF) 0.746 0.04
22 Area (MF) 0.750 0.07
23 Cluster shade (TF) 0.754 0.04
24 Red variance (CF) 0.760 0.04
25 Uniformity (TF) 0.763 0.04
26 Saturation variance (CF) 0.766 0.03
27 Homogeneity (TF) 0.768 0.03
28 Green variance (CF) 0.769 0.03
29 Blue variance (CF) 0.773 0.03
30 Fourth invariant moment, M, (MF) 0.774 0.03
31 First invariant moment, M, (MF) 0.775 0.03
32 Second invariant moment, M, (MF) 0.781 0.13
33 Maximum radius (MF) 0.783 0.03
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Table 7.16  Selection of morphological, color, and textural (extracted from green
color band at maximum gray level value 8) features of individual kernels
of cereal grains using STEPDISC analysis (cont.)

Number Morphological (MF), color (CF), and Average squared Partial r*
textural (TF) features of individual kernels  canonical correlation
34 Run length non-uniformity range (TF) 0.785 0.02
35 Maximum probability (TF) 0.786 0.02
36 Hue variance (CF) 0.788 0.02
37 Hue (CF) 0.793 0.06
38 Correlation (TF) 0.793 0.02
39 Red range (CF) 0.794 0.02
40 Blue range (CF) 0.795 0.02
41 Saturation range (CF) 0.796 0.02
42 Rectangular ratio (MF) 0.796 0.01
43 Variance (TF) 0.797 0.01
44 Long run range (TF) 0.797 0.01
45 Gray level non-uniformity (TF) 0.798 0.01
46 Minor axis length (MF) 0.798 0.01
47 Second Fourier descriptor (u=1) (MF) 0.799 0.01
48 Third Fourier descriptor (u=2) (MF) 0.799 0.01
49 Fourth Fourier descriptor (u=3) (MF) 0.800 0.01
50 Perimeter (MF) 0.800 0.00
51 Thinness ratio (MF) 0.801 0.02
52 Short run range (TF) 0.801 0.00
53 Gray level variance (TF) 0.801 0.00
54 Run percent range (TF) 0.801 0.00
55 Gray level non-uniformity range (TF) 0.801 0.00
56 Green (CF) 0.801 0.00
57 Hue range (CF) 0.801 0.00
58 Intensity variance (CF) 0.801 0.00
59 GLRM entropy range (TF) 0.801 0.00
60 Long run (TF) 0.801 0.00
61 Gray level range (TF) 0.801 0.00
62 Intensity range (CF) 0.802 0.00
63 Aspect ratio (MF) 0.802 0.00
64 Intensity (CF) 0.802 0.00

Note: major axis length (MF) and green variance (CF) were removed from the selection



with other features and independent level of contribution of a feature determine its
importance in a model. The first five most significant features were morphological features:
and among the first 15 features, there were 6 morphological features, 7 textural features, and
2 color features (Table 7.16).

Pearson correlation coefficients of morphological, textural, and color features were
determined for CWRS wheat, CWAD wheat, barley, oats, and rye using grains from 13
growing regions (used as the training set in the hold out method). The data are available on
a diskette and can be obtained by writing to the Head, Department of Biosystems
Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, CANADA. The data may
be used in future studies. For example, if one wants to differentiate between some of these
cereal grains and other types of grains or between different classes of wheat, these data can
be used to get an idea about how different features (morphological, textural, and color) are
correlated with one another for each grain type; from this information one can select some
useful features for the discriminant model.

Discriminant analyses were carried out using the first 5, 10, 15, 20, 25, 30, 35, 40.
and 50 features and the classification accuracies were compared with that using all 66
features (Fig. 7.21). When the first five features were used, the mean accuracies were poor.
Beyond first 20 features, the increase in mean accuracies was negligible. When the model
using the first 20 features was tested on the independent data set, the classification accuracies
of CWRS wheat, CWAD wheat, barley, oats, and rye were 100.0, 99.9, 99.5, 100.0, and
99.1%, respectively (non-parametric estimation, Appendix F9a). Same model when tested
on the training data set, the classification accuracies were 99.8, 99.8, 99.9, 100.0, and 99.4%.
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respectively for CWRS wheat, CWAD wheat, barley, oats, and rye (non-parametric
estimation, Appendix F9b).

For all the models discussed, with an increase in the number of features, the increase
in classification accuracies to certain extent and then their remaining constant or gradual

decrease conforms with the study conducted by Petersen (1992) for identifying weed seeds

by shape and textural analysis.
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Fig. 7.21 Comparison of classification accuracies of individual kernels of cereal
grains using different number of morphological, color, and textural
features (extracted from green color band at maximum gray level value
8) (Note: Npar denotes non-parametric estimation)

Table 7.17 shows all the models in the descending order of their classification

performance on both the training and the test data sets. The morphology-texture-color model

was the best model for classification of individual kernels of cereal grains (Fig. 7.22).
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Table 7.17a Comparison of different models depending on their classification
accuracies of individual kernels of cereal grains when tested on an
independent data set

Non-parametric Estimation

% accuracy - CWRS CWAD Barley Oats Rye Mean
Models | wheat wheat accuracy
M-T-C 100.0 99.9 99.5 100.0 99.1 99.7
(1% 20 features)

M-C 99.7 99.7 98.9 99.9 98.9 99.4
(1% 15 features)

M-T 994 99.1 99.1 100.0 95.2 98.6
(1% 15 features)

T-C 98.5 99.4 99.7 100.0 94.3 98.4
(1* 15 features)

M 98.9 93.7 96.8 99.9 81.6 94.2
(1% 10 features)

C 94.1 92.3 93.1 95.2 92.5 93.4
(1** 10 features)

T 85.2 98.2 100.0 100.0 76.3 92.0

(1* 15 features)

Note: M-T-C is morphology-texture-color model, M-C is morphology-color model. M-T
is morphology-texture model, T-C is texture-color model, M is morphology model,
C is color model, and T is texture model.
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Table 7.17b Comparison of different models depending on their classification
accuracies of individual kernels of cereal grains when tested on the

training data set

Non-parametric Estimation

% accuracy - CWRS CWAD Barley Oats Rye Mean
Models | wheat wheat accuracy
M-T-C 99.8 99.8 99.9 100.0 99.4 99.8
(1* 20 features)

M-C 99.8 974 99.7 100.0 99.0 99.6
(1% 15 features)

M-T 99.5 98.7 99.7 100.0 98.6 99.3
(1 15 features)

T-C 97.6 99.4 99.5 98.7 95.0 98.0
(1% 15 features)

M 98.9 91.6 97.9 100.0 91.6 96.0
(1** 10 features)

C 95.7 944 94.2 97.6 92.5 94.9
(1% 10 features)

T 87.0 95.7 100.0 100.0 81.8 92.9

(1% 15 features)

Note: M-T-C is morphology-texture-color model, M-C is morphology-color model, M-T
is morphology-texture model, T-C is texture-color model, M is morphology model,
C is color model, and T is texture model.
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CHAPTER VIII: CONCLUSIONS AND RECOMMENDATIONS

The application of computer vision technique for objective classification of cereal
grains and varieties can still be considered a very young science. While challenges remain
in some areas like automated grain presentation and high sample throughput, considerable
progress has been made towards grain classification using DIA. Grain samples, whether they
are pure seed lots or commercial grade material, can be effectively characterized by DIA
according to size, shape, color, and texture.

Results have shown that cereal grains (e.g., CWRS wheat, CWAD wheat, barley,
oats, and rye) could be rapidly identified using either textural or color features of bulk
samples. This could be implemented for rapid identification of cereal grains in a rail car at
any terminal elevator. Textural features extracted from bulk sample images from the red
color at maximum gray level value 32 gave the highest classification accuracies in cereal
grains. The classification accuracies reduced when the original bulk sample image was
partitioned into different equal size sub-images and their textural or color features were used
for classification of cereal grains.

Textural features of individual kernels extracted from the green color at maximum
gray level value 8 gave the highest classification accuracies in cereal grains. The highest
classification accuracies of cereal grains were achieved when morphology, texture, and color
features were used all together. This could be seen as partial advancement towards cereal

grain grading, and monitoring of cleaning machines and shipping of grains. Study should



be directed towards classification of damaged kernels, other foreign materials like chatt.
stone pieces, broken kernels, and other type of grains (e.g., oil seeds, speciality crops).

Robustness is a basic requirement for any image processing system used in the grain
industry because of natural variation in grains due to growing seasons, country of origin. and
different varieties. Aside from the use of specific training samples for system development,
the decision-making methods used in research may be partially responsible for poor system
performance. Grain inspection and grading, as performed by human inspectors, is a complex
decision-making process that involves many factors such as training and experience of the
inspectors. This requires that an image processing system should have some human-like
abilities, such as learning and making decisions on ill-defined concepts, for the inspection
task. Traditional decision-making methods, as used in many fields, are based on well
defined concepts and yes-or-no logic, and implemented in programmed procedures
(computer programs), which can only handle the tasks that are predefined by the training
samples. Neural network and fuzzy logic techniques are potential solutions for this problem.
Neural networks, the electronic simulations of the human brain, have self-learning and self-
organizing abilities. Fuzzy logic simulates human reasoning methodology. Applying these
techniques in decision making will allow an image processing system to be more robust and
human-like.

Considerable progress has been made towards classification of cereal grains and
varieties using DIA and the next decade should see continuing improvements in the
capability of the technology. However, one should not forget the common problems
associated with any visual inspection process; i.e., the ability to distinguish individual
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kernels can be undermined by the effects of close genetic relationships and the environmental
effects. While DIA will not be able to provide absolute perfection in discrimination of grain

varieties, the strengths of the technology for this application are clear and compelling.
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APPENDIX A

Primary and Export Grade Determinants for CWRS wheat
(Source: Anonymous 1994)
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AED SPRING WUEAV - PRINARY GRADE DETERNINANTS

Sprouted Blnburnt
Total Sevore Total
Incl. Hildew | lleated Smudge
Severe Rotted Incl. . and
Grade Hame Severe | Sprouted | Mouldy | Binburnt| Fireburnt Stones Ergot Sclerotinia | Smudge | Blackpolnt
o, M. Red Spring] .12 0.5% M 0.1% i 3K 3R 3K K 0,0%
flo.— 2 C.N, Red Spring| - I.5% 5K 0150 | K (14 K 1.0% 0.0%
No 3 T M. Red 3yirlng]| - 5.0% 10K .08 N 6K 2K 114 5.0% 35,04
Canada Western Feod Ho_Limit 1008 | 10.08 | 2.0 10K 0.25% Ril4 Ho Cimit| Ho Uimlt—
Final Grade Hame Canada Western Over 10,0% grade | Over Z.0X grado | Over grade tolerance up to |Over 0.25% grade| Over 0.25% Canada™ | Canada
Feed Kheat, Sample C.N.| Wheat, Sample | 2.5% grade Rojected “grade®|Wheat, Sample | grade Wheat, | Western { Western
Account lleated C.M. Account Account Stones. Over 2.5X | C.W. Account Sample C.W. Feed Feed
Fireburnt grade Wheat, Sample Ergot Account
Salvage Admixture
(11}
e Artificial Insect ODamage
Grade Shrunken and Broken b Grass | Pink Stain Natura) Sawlly ﬂrassgoppcr Dark
Name _Shrunken Broken Total Degermed | Green | Kernels ! Ho Residus |_Stain Nidge | Army Worm | Ismmature
Mo, ) C.M, Red Spring] 8.0% 6.0% 7.0% 4.0% 0.75% | 1.5% ()] 0,.5% 2.0% 1,0% 0%
o. 2 C, W, Red Spring| 10.0% 10.0% W0 17, 2,0%__|'5.0% K z. |8. 3, 2,5
Ho. 3 C.M. Red Spring| Ho LimIt 15.0% o UimiE—{13,0% 0.0% . 114 5. 0% | 25.0% . .
Providing
Broken
Canada Western Feed | No Limit 50.0% Tolerances | Ho o Ho 2.0% No No Ho No
2°t ted Limit Limit | Limit Linit Limit | Limit Limit
xceede
final Grade Hame Ho. 3 C.W. Over 80.07 Canada Tanada [ Canada | Over 2.0 grade tanada Conada | Canada Canada
Red Spring grade Sample Nestern | Westeri] Western | Wheat, Sample Western Western| Western Nestern
Broken Grain feed Feed Feed C.H. Account Feed Fead Feed feed
Stained Kernels
‘Oegermed: Tolerances apply to kernels not classed as sprouted.

*%Grass Green Kernels: Tolerances are given as a geueral guide and may be increased or reduced in the judgment of the

esaqnsect Damaget

NOTE:

Inspector after considerat

YTolerances are not absolute maximums,
conjunction with the overal) quality of the sample.
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on of tho overall quality of a sample,
Inspectors must consider the degree of damage in

YHE LETTER *K* 1N THESE TABLES REFERS TO KERNEL SIZE PLECES IN 500 GRAHS.
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APPENDIX B

CONFUSION MATRICES OF BULK SAMPLES
FOR
TEXTURAL ANALYSIS (HOLD OUT METHOD)
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Table Bla. Confusion matrix of bulk samples for textural analysis (features extracted from
red color band at maximum gray level value 250): Normal estimation (hold out
method)

Categories (to)- CWRS CWAD Barley Oats Rye

(from) | wheat wheat

CWRS wheat 43 0 0 0 2

(n=45) (95.6%)

CWAD wheat 0 15 0 0 0

(n=15) (100.0%)

Barley 0 5 10 0 0

(n=15) (66.7%)

Oats 0 0 0 15 0

(n=15) (100.0%)

Rye 3 0 0 0 12

(n=15) (80.0%)
Table Blb. Confusion matrix of bulk samples for textural analysis (features extracted from

red color band at maximum gray level value 250): Non-parametric estimation
(hold out method) with k=5

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 45 0 0 0 0 0
(n=45) (100.0%)

CWAD wheat 0 15 0 0 0 0
(n=15) (100.0%)

Barley 0 1 14 0 0 0
(n=135) (93.3%)

Oats 0 0 0 15 0 0
(n=15) (100.0%)

Rye 0 0 0 0 15 0
(n=195) (100.0%)
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Table B2a. Confusion matrix of bulk samples for textural analysis (features extracted from
red color band at maximum gray level value 32): Normal estimation (hold out
method)

Categories (to)- CWRS CWAD Barley Oats Rye

(from) ! wheat wheat

CWRS wheat 45 0 0 0 0

(n=45) (100.0%)

CWAD wheat 0 15 0 0 0

(n=15) (100.0%)

Barley 0 5 10 0 0

(n=15) (66.7%)

Oats 0 0 0 15 0

(n=15) (100.0%)

Rye 1 0 0 0 14

(n=15) (93.3%)
Table B2b. Confusion matrix of bulk samples for textural analysis (features extracted from

red color band at maximum gray level value 32): Non-parametric estimation
(hold out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 45 0 0 0 0 0
(n=45) (100.0%)

CWAD wheat 0 15 0 0 0 0
(n=15) (100.0%)

Barley 0 0 15 0 0 0
(n=15) (100.0%)

Oats 0 0 0 15 0 0
(n=15) (100.0%)

Rye 0 0 0 0 15 0
(n=15) (100.0%)
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Table B3a. Confusion matrix of bulk samples for textural analysis (features extracted from
red color band at maximum gray level value 16): Normal estimation (hold out

method)
Categories (to)- CWRS CWAD Barley Oats Rye
(from) ! wheat wheat
CWRS wheat 45 0 0 0 0
(n=45) (100.0%)
CWAD wheat 0 15 0 0 0
(n=15) (100.0%)
Barley 0 5 10 0 0
(n=15) (66.7%)
Oats 0 0 0 15 0
(n=15) (100.0%)
Rye 1 0 0 0 14
(n=15) (93.3%)

Table B3b. Confusion matrix of bulk samples for textural analysis (features extracted from
red color band at maximum gray level value 16): Non-parametric estimation
(hold out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 45 0 0 0 0 0
(n=45) (100.0%)

CWAD wheat 0 15 0 0 0 0
(n=195) (100.0%)

Barley 0 1 14 0 0 0
(n=15) (93.3%)

Oats 0 0 0 15 0 0
(n=15) (100.0%)

Rye 0 0 0 0 15 0

(n=15) (100.0%)




Table B4a. Confusion matrix of bulk samples for textural analysis (features extracted from
red color band at maximum gray level value 8): Normal estimation (hold out
method)

Categories (to)~ CWRS CWAD Barley QOats Rye

(from) | wheat wheat

CWRS wheat 45 0 0 0 0

(n=45) (100.0%)

CWAD wheat 0 15 0 0 0

(n=135) (100.0%)

Barley 0 5 10 0 0

(n=15) (66.7%)

Oats 0 0 0 15 0

(n=15) (100.0%)

Rye 0 0 0 0 15

(n=15) (100.0%)
Table B4b. Confusion matrix of bulk samples for textural analysis (features extracted from

red color band at maximum gray level value 8): Non-parametric estimation

(hold out method) with k=5.

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 45 0 0 0 0 0
(n=45) (100.0%)

CWAD wheat 0 15 0 0 0 0
(n=15) (100.0%)

Barley 0 0 15 0 0 0
(n=15) (100.0%)

Oats 0 0 1 14 0 0
(n=15) (93.3%)

Rye 0 0 0 0 15 0
(n=15) (100.0%)




Table BSa. Confusion matrix of bulk samples for textural analysis (features extracted from
red color band at maximum gray level value 4): Normal estimation (hold out
method)

Categories (to)» CWRS CWAD Barley Oats Rye

(from) ! wheat wheat

CWRS wheat 44 0 0 0 1

(n=45) (97.8%)

CWAD wheat 0 15 0 0 0

(n=15) (100.0%)

Barley 0 5 10 0 0

(n=15) (66.7%)

Oats 0 0 0 15 0

(n=13) (100.0%)

Rye 1 0 0 0 14

(n=15) (93.3%)
Table BSb. Confusion matrix of bulk samples for textural analysis (features extracted from

red color band at maximum gray level value 4): Non-parametric estimation
(hold out method) with k=5

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 45 0 0 0 0 0
(n=45) (100.0%)

CWAD wheat 0 15 0 0 0 0
(n=135) (100.0%)

Barley 0 0 15 0 0 0
(n=135) (100.0%)

Oats 0 0 1 14 0 0
(n=15) (93.3%)

Rye 0 0 0 0 15 0
(n=15) (100.0%)




Table B6a. Confusion matrix of bulk samples for textural analysis (features extracted from
green color band at maximum gray level value 32): Normal estimation (hold out

method)
Categories (to)~ CWRS CWAD Barley Oats Rye
(from) ! wheat wheat
CWRS wheat 45 0 0 0 0
(n=45) (100.0%)
CWAD wheat 0 15 0 0 0
(n=195) (100.0%)
Barley 0 3 12 0 0
(n=13) (80.0%)
Oats 0 0 0 15 0
(n=13) (100.0%)
Rye 1 0 0 0 14
(n=15) (93.3%)

Table B6b. Confusion matrix of bulk samples for textural analysis (features extracted from
green color band at maximum gray level value 32): Non-parametric estimation
(hold out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 44 0 0 0 1 0
(n=45) (97.8%)

CWAD wheat 0 15 0 0 0 0
(n=15) (100.0%)

Barley 0 1 14 0 0 0
(n=15) (93.3%)

Oats 0 0 0 15 0 0
(n=15) (100.0%)

Rye 0 0 0 0 15 0
(n=15) (100.0%)
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Table B7a. Confusion matrix of bulk samples for textural analysis (features extracted from
blue color band at maximum gray level value 32): Normal estimation (hold out

method)
Categories (to)~ CWRS CWAD Barley QOats Rye
(from) | wheat wheat
CWRS wheat 45 0 0 0 0
(n=45) (100.0%)
CWAD wheat 0 15 0 0 0
(n=15) (100.0%)
Barley 0 2 13 0 0
(n=15) (86.7%)
Oats 0 0 0 15 0
(n=15) (100.0%)
Rye 0 0 0 0 5
(n=15) (100.0%)

Table B7b. Confusion matrix of bulk samples for textural analysis (features extracted from
blue color band at maximum gray level value 32): Non-parametric estimation

(hold out method) with k=5
Categories (to)- CWRS CWAD Barley Qats Rye Other
(from) | wheat wheat
CWRS wheat 45 0 0 0 0 0
(n=43) (100.0%)
CWAD wheat 0 15 0 0 0 0
(n=15) (100.0%)
Barley 0 1 14 0 0 0
(n=15) (93.3%)
QOats 0 0 0 15 0 0
(n=135) (100.0%)
Rye 1 0 0 0 14 0
(n=15) (93.3%)




Table B8a. Confusion matrix of bulk samples for textural analysis (features extracted from
black & white color at maximum gray level value 32): Normal estimation (hold
out method)

Categories (to)~ CWRS CWAD Barley Oats Rye
(from) ! wheat wheat

CWRS wheat 45 0 0 0 0
(n=45) (100.0%)

CWAD wheat 0 15 0 0 0
(n=15) (100.0%)

Barley 0 3 12 0 0
(n=15) (80.0%)

Oats 0 0 0 15 0
(n=15) (100.0%)

Rye 0 0 0 0 15
(n=15) (100.0%)

Table B8b. Confusion matrix of bulk samples for textural analysis (features extracted from
black & white color at maximum gray level value 32): Non-parametric
estimation (hold out method) with k=5.

Categories (to)» CWRS CWAD Barley Qats Rye Other
(from) ! wheat wheat

CWRS wheat 45 0 0 0 0 0
(n=45) (100.0%)

CWAD wheat 0 15 0 0 0 0
(n=15) (100.0%)

Barley 0 1 14 0 0 0
(n=15) (93.3%)

Oats 0 0 0 15 0 0
(n=15) (100.0%)

Rye 0 0 0 0 15 0
(n=15) (100.0%)
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Table B9a. Confusion matrix of bulk samples for textural analysis (features extracted from
(BR+2G+1B)/6 at maximum gray level value 32): Normal estimation (hold out

method)
Categories (to)- CWRS CWAD Barley Oats Rye
(from) ! wheat wheat
CWRS wheat 45 0 0 0 0
(n=45) (100.0%)
CWAD wheat 0 15 0 0 0
(n=15) (100.0%)
Barley 0 4 11 0 06
(n=15) (73.3%)
Oats 0 0 0 15 0
(n=15) (100.0%)
Rye 0 0 0 0 15
(n=15) (100.0%)

Table B9b. Confusion matrix of bulk samples for textural analysis (features extracted from
(3R+2G+1B)/6 at maximum gray level value 32): Non-parametric estimation
(hold out method) with k=5

Categories (to)» CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 45 0 0 0 0 0
(n=45) (100.0%)

CWAD wheat 0 15 0 0 0 0
(n=15) (100.0%)

Barley 0 1 14 0 0 0
(n=15) (93.3%)

Oats 0 0 0 15 0 0
(n=15) (100.0%)

Rye 0 0 0 0 15 0
(n=15) (100.0%)




Table B10a. Confusion matrix of bulk samples for textural analysis (features extracted from
(2R+1G+3B)/6 at maximum gray level value 32): Normal estimation (hold out

method)
Categories (to)~ CWRS CWAD Barley QOats Rye
(from) ! wheat wheat
CWRS wheat 45 0 0 0 0
(n=45) (100.0%)
CWAD wheat 0 15 0 0 0
(n=15) (100.0%)
Barley 0 3 12 0 0
(n=13) (80.0%)
Oats 0 0 0 15 0
(n=13) (100.0%)
Rye 0 0 0 0 [5
(n=135) (100.0%)

Table B10b. Confusion matrix of bulk samples for textural analysis (features extracted from
(ZR+1G+3B)/6 at maximum gray level value 32): Non-parametric estimation
(hold out method) with k=5

Categories (to)-~ CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 45 0 0 0 0 0
(n =45) (100.0%)

CWAD wheat 0 15 0 0 0 0
(n=15) (100.0%)

Barley 0 1 14 0 0 0
(n=15) (93.3%)

Oats 0 0 0 15 0 0
(n=15) (100.0%)

Rye 0 0 0 0 15 0
(n=15) (100.0%)
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Table B11a. Confusion matrix of bulk samples for textural analysis (features extracted from
(1R+3G+2B)/6 at maximum gray level vatue 32): Normal estimation (hold out

method).
Categories (to)- CWRS CWAD Barley Oats Rye
(from) ! wheat wheat
CWRS wheat 45 0 0 0 0
(n=45) (100.0%)
CWAD wheat 0 15 0 0 0
(n=15) (100.0%)
Barley 0 3 12 0 0
(n=15) (80.0%)
Oats 0 0 0 15 0
(n=15) (100.0%)
Rye 1 0 0 0 14
(n=135) (93.3%)

Table Bl11b. Confusion matrix of bulk samples for textural analysis (features extracted from
(1R+3G+2B)/6 at maximum gray level value 32): Non-parametric estimation
(hold out method) with k=S.

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 45 0 0 0 0 0
(n=45) (100.0%)

CWAD wheat 0 15 0 0 0 0
(n=15) (100.0%)

Barley 0 1 14 0 0 0
(n=15) (93.3%)

Oats 0 0 0 15 0 0
(n=15) (100.0%)

Rye 0 0 0 0 15 0
(n=15) (100.0%)




Table B12a. Confusion matrix of bulk samples (each image partitioned into 9 sub-images)
for textural analysis (features extracted from red color band at maximum gray
level value 32): Normal estimation (hold out method)

Categories (to)- CWRS CWAD Barley Oats Rye
(from) | wheat wheat

CWRS wheat 381 1 12 0 11
(n=405) (94.1%)

CWAD wheat 0 135 0 0 0
(n=135) (100.0%)

Barley 0 24 111 0 0
(n=135) (82.2%)

Qats 0 2 2 131 0
(n=135) (97.0%)

Rye 12 0 0 0 123
(n=135) (91.1%)

Table B12b. Confusion matrix of bulk samples (each image partitioned into 9 sub-images)
for textural analysis (features extracted from red color band at maximum gray
level value 32): Non-parametric estimation (hold out method) with k=5

Categories (to)-~ CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 391 0 2 0 12 0
(n=405) (96.5)

CWAD wheat 0 135 0 0 0 0
(n=133) (100.0%)

Barley 0 3 132 0 0 0
(n=135) (97.8%)

Oats 0 0 3 132 0 0
(n=135) (97.8%)

Rye 15 0 0 0 120 0
(n=135) (88.9%)
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Table B13a. Confusion matrix of bulk samples (each image partitioned into 16 sub-images)
for textural analysis (features extracted from red color band at maximum gray
level value 32): Normal estimation (hold out method)

Categories (to)- CWRS CWAD Barley Oats Rye
(from) | wheat wheat

CWRS wheat 649 13 30 0 28
(n=720) (90.1%)

CWAD wheat 0 240 0 0 0
(n=240) (100.0%)

Barley 0 42 197 1 0
(n=240) (82.1%)

Oats 0 4 7 229 0
(n=240) (95.4%)

Rye 27 0 0 0 213
(n=240) (88.8%)

Table B13b. Confusion matrix of bulk samples (each image partitioned into 16 sub-images)
for textural analysis (features extracted from red color band at maximum gray
level value 32): Non-parametric estimation (hold out method) with k=5

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 667 4 12 0 34 3
(n=720) (92.6%)

CWAD wheat 0 240 0 0 0 0
(n=240) (100.0%)

Barley 0 17 223 0 0 0
(n=240) (92.9%)

Oats 0 1 12 226 0 1
(n=240) (94.2%)

Rye 36 0 0 0 203 1
(n=240) (84.6%)
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Table Bl4a. Confusion matrix of bulk samples (each image partitioned into 25 sub-images)
for textural analysis (features extracted from red color band at maximum gray
level value 32): Normal estimation (hold out method)

Categories (to)~ CWRS CWAD Barley Oats Rye
(from) ! wheat wheat

CWRS wheat 975 35 64 0 51
(n=1125) (86.7%)

CWAD wheat 0 375 0 0 0
(n=375) (100.0%)

Barley 0 79 294 2 0
(n=375) (78.4%)

Oats 0 11 20 344 0
(n=375) 91.7%)

Rye 46 0 0 0 329
(n=375) (87.7%)

Table B14b. Confusion matrix of bulk samples (each image partitioned into 25 sub-images)
for textural analysis (features extracted from red color band at maximum gray
level value 32): Non-parametric estimation (hold out method) with k=5

Categories (to)-~ CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 1023 15 9 0 64 16
(n=1125) (90.9%)

CWAD wheat 0 373 0 1 0 1
(n=375) (99.5%)

Barley 0 36 339 0 0 0
(n=375) (90.4%)

Oats 0 3 27 341 0 4
(n=375) (90.9%)

Rye 65 0 0 0 308 2
(n=375) (82.1%)
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APPENDIX BB

CONFUSION MATRICES OF BULK SAMPLES
FOR
TEXTURAL ANALYSIS (LEAVE-ONE-OUT METHOD)



Table BBla. Confusion matrix of bulk samples for textural analysis (features extracted from
red color band at maximum gray level value 250): Normal estimation (leave-
one-out method)

Categories (to)~ CWRS CWAD Barley Oats Rye
(from) | wheat wheat

CWRS wheat 224 0 0 0 1
(n=225) (99.6%)

CWAD wheat 4 71 0 0 0
(n=175) (94.7%)

Barley 0 0 75 0 0
(n=175) (100.0%)

QOats 0 0 0 75 0
(n=175) (100.0%)

Rye 2 0 0 0 73
(n=175) (97.3%)

Table BB1b. Confusion matrix of bulk samples for textural analysis (features extracted from
red color band at maximum gray level value 250): Non-parametric estimation
(leave-one-out method) with k=5

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 223 1 0 0 1 0
(n=225) (99.1%)

CWAD wheat 1 74 0 0 0 0
(n=175) (98.7%)

Barley 1 0 74 0 0 0
(n=75) (98.7%)

Oats 0 0 0 75 0 0
(n=75) (100.0%)

Rye 3 0 0 0 72 0
(n=75) (96.0%)

164



Table BB2a. Confusion matrix of bulk samples for textural analysis (features extracted from
red color band at maximum gray level value 32): Normal estimation (leave-one-
out method)

Categories (to)~ CWRS CwAD Barley Oats Rye
(from) | wheat wheat

CWRS wheat 225 0 0 0

(n=225) (100.0%)

CWAD wheat 0 75 0 0

(n=75) (100.0%)

Barley 0 0 75 0

(n=175) (100.0%)

Oats 0 0 0 75

(n=75) (100.0%)

Rye 0 0 0 0

(n=75) (100.0%)

Table BB2b. Confusion matrix of bulk samples for textural analysis (features extracted from
red color band at maximum gray level value 32): Non-parametric estimation
(leave-one-out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 224 0 0 0 | 0
(n=225) (99.6%)

CWAD wheat 0 75 0 0 0 0
(n = 75) (100.0%)

Barley 0 0 75 0 0 0
(n=175) (100.0%)

Oats 0 0 0 75 0 0
(n=175) (100.0%)

Rye 0 0 0 0 75 0
(n=175) (100.0%)




Table BB3a. Confusion matrix of bulk samples for textural analysis (features extracted from
red color band at maximum gray level value 16): Normal estimation (leave-one-

out metheod)
Categories (to)- CWRS CWAD Barley QOats Rye
(from) | wheat wheat
CWRS wheat 225 0 0 0 0
(n=225) (100.0%)
CWAD wheat 0 75 0 0 0
(n=175) (100.0%)
Barley 0 0 75 0 0
(n=75) (100.0%)
Qats 0 0 0 75 0
(n=175) (100.0%)
Rye I 0 0 0 74
(n=175) (98.7%)

Table BB3b. Confusion matrix of bulk samples for textural analysis (features extracted from
red color band at maximum gray level value 16): Non-parametric estimation

(leave-one-out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 223 0 0 0 2 0
(n=225) (99.1%)

CWAD wheat 0 75 0 0 0 0
(n=175) (100.0%)

Barley 0 0 75 0 0 0
(n=175) (100.0%)

Oats 0 0 0 75 0 0
(n=75) (100.0%)

Rye 0 0 0 0 75 0
(n=175) (100.0%)
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Table BB4a. Confusion matrix of bulk samples for textural analysis (features extracted from
red color band at maximum gray level value 8): Normal estimation (leave-one-
out method)

Categories (to)~ CWRS CWAD Barley Oats Rye
(from) ! wheat wheat

CWRS wheat 225 0 0 0 0
(n=225) (100.0%)

CWAD wheat 0 75 0 0 0
(n=173%) (100.0%)

Barley 0 0 75 0 0
(n=175) (100.0%)

Oats 0 0 0 75 0
(n=173) (100.0%)

Rye 0 0 0 0 75
(n=175) (100.0%)

Table BB4b. Confusion matrix of bulk samples for textural analysis (features extracted from
red color band at maximum gray level value 8): Non-parametric estimation
(leave-one-out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 223 0 0 0 2 0
(n=225) (99.1%)

CWAD wheat 1 74 0 0 0 0
(n=175) (98.7%)

Barley 0 0 75 0 0 0
(n=175) (100.0%)

Oats 0 0 0 75 0 0
(n=175) (100.0%)

Rye 0 0 0 0 75 0
(n=173) (100.0%)
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Table BBSa. Confusion matrix of bulk samples for textural analysis (features extracted from
red color band at maximum gray level value 4): Normal estimation (leave-=re-

out method)
Categories (to)- CWRS CWAD Barley Oats Rye
(from) ! wheat wheat
CWRS wheat 225 0 0 0 0
(n=225) (100.0%)
CWAD wheat 3 72 0 0 0
(n=75) (96.0%)
Barley 0 0 75 0 0
(n=175) (100.0%)
Qats 0 0 0 75 0
(n=75) (100.0%)
Rye 0 0 0 0 75
(n=75) (100.0%)

Table BBSb. Confusion matrix of bulk samples for textural analysis (features extracted from
red color band at maximum gray level value 4): Non-parametric estimation
(leave-one-out method) with k=5

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 223 0 0 0 2 0
(n=225) (99.1%)

CWAD wheat 0 74 1 0 0 0
(n=175) (98.7%)

Barley 0 0 75 0 0 0
(n=175) (100.0%)

Oats 0 0 0 75 0 0
(n=75) (100.0%)

Rye 0 0 0 0 75 0
(n=75) (100.0%)
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Table BB6a. Confusion matrix of bulk samples for textural analysis (features extracted from
green color band at gray level value 32): Normal estimation (leave-one-out

method)
Categories (to)~ CWRS CWAD Barley Oats Rye
(from) ! wheat wheat
CWRS wheat 220 | 0 1 3
(n=225) (97.8%)
CWAD wheat 1 74 0 0 0
(n=175) (98.7%)
Barley 0 0 75 0 0
(n=175) (100.0%)
Oats 0 0 0 75 0
(n=175) (100.0%)
Rye 1 0 0 0 74
(n=75) (98.7%)

Table BB6b. Confusion matrix of bulk samples for textural analysis (features extracted from
green color band at maximum gray level value 32): Non-parametric estimation
(leave-one-out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 222 0 0 0 3 0
(n=223) (98.7%)

CWAD wheat 1 74 0 0 0 0
(n=175) (98.7%)

Barley 0 0 75 0 0 0
(n=75) (100.0%)

Oats 0 0 0 75 0 0
(n=75) (100.0%)

Rye 0 0 0 0 75 0
(n=75) (100.0%)
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Table BB7a. Confusion matrix of bulk samples for textural analysis (features extracted from
blue color band at maximum gray level value 32): Normal estimation (leave-one-

out method)
Categories (to)» CWRS CWAD Barley Oats Rye
(from) ! wheat wheat
CWRS wheat 216 1 1 1 6
(n=225) (96.0%)
CWAD wheat 2 73 0 0 0
(n=175) (97.3%)
Barley 0 1 74 0 0
(n=175) (98.7%)
Oats 0 0 0 75 0
(n=75) (100.0%)
Rye 1 0 0 0 74
(n=75) (98.7%)

Table BB7b. Confusion matrix of bulk samples for textural analysis (features extracted from
blue color band at maximum gray level value 32): Non-parametric estimation
(leave-one-out method) with k=5

Categories (to)-~ CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 215 4 0 0 6 0
(n = 225) (95.6%)

CWAD wheat 3 72 0 0 0 0
(n=79%5) (96.0%)

Barley 0 0 75 0 0 0
(n=175) (100.0%)

Oats 0 0 0 75 0 0
(n=75) (100.0%)

Rye 0 0 0 0 75 0
(n=175) (100.0%)
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Table BB8a. Confusion matrix of bulk samples for textural analysis (features extracted from
black & white color at maximum gray level value 32): Normal estimation (leave-
one-out method)

Categories (to)- CWRS CWAD Barley Oats Rye
(from) | wheat wheat

CWRS wheat 222 1 0 { 1
(n=225) (98.7%)

CWAD wheat 0 75 0 0 0
(n=175) (100.0%)

Barley 0 0 75 0 0
(n=75) (100.0%)

Oats 0 0 0 75 0
(n=175) (100.0%)

Rye 2 0 0 0 73
(n=75) (97.3%)

Table BB8b. Confusion matrix of bulk samples for textural analysis (features extracted from
black & white color at maximum gray level value 32): Non-parametric
estimation (leave-one-out method) with k=5

Categories (to)» CWRS CWAD Barley QOats Rye Other
(from) | wheat wheat

CWRS wheat 224 0 0 0 1 0
(n=2235) (99.6%)

CWAD wheat 0 75 0 0 0 0
(n=75) (100.0%)

Barley 0 0 75 0 0 0
(n=7%) (100.0%)

Oats 0 0 0 75 0 0
(n=7%) (100.0%)

Rye 0 0 0 0 75 0

(n=75) (100.0%)
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Table BB9a. Confusion matrix of bulk samples for textural analysis (features extracted from
(3R+2G+1B)/6 at maximum gray level value 32): Normal estimation (leave-one-

out method)
Categories (to)~ CWRS CWAD Barley Oats Rye
(from) | wheat wheat
CWRS wheat 222 2 0 0 1
(n=225) (98.7%)
CWAD wheat 0 75 0 0 0
(n=75) (100.0%)
Barley 0 0 75 0 0
(n=175) (100.0%)
Oats 0 0 0 75 0
(n=75) (100.0%)
Rye i 0 0 0 74
(n=75) (98.7%)

Table BB9b. Confusion matrix of bulk samples for textural analysis (features extracted from
(BR+2G+1B)/6 at maximum gray level value 32): Non-parametric estimation
(leave-one-out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 223 0 0 0 2 0
(n=225) (99.1%)

CWAD wheat 0 75 0 0 0 0
(n=75) (100.0%)

Barley 0 0 75 0 0 0
(n=175) (100.0%)

QOats 0 0 0 75 0 0
(n=175) (100.0%)

Rye 0 0 0 0 75 0
(n=175) (100.0%)




Table BB10a.

Confusion matrix of bulk samples for textural analysis (features
extracted from (2R+1G+3B)/6 at maximum gray level value 32): Normal
estimation (leave-one-out method)

Categories (to)- CWRS CWAD Barley Oats Rye

(from) | wheat wheat

CWRS wheat 223 1 0 1 0

(n=225) (99.1%)

CWAD wheat 1 74 0 0 0

(n=175) (98.7%)

Barley 0 0 75 0 0

(n=175) (100.0%)

Oats 0 0 0 75 0

(n=175) (100.0%)

Rye 1 0 0 0 74

(n=175) (98.7%)
Table BB10b. Confusion matrix of bulk samples for textural analysis (features

extracted from (2R+1G+3B)/6 at maximum gray level value 32): Non-
parametric estimation (leave-one-out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 225 0 0 0 0 0
(n=225) (100.0%)

CWAD wheat 2 73 0 0 0 0
(n=175) (97.3%)

Barley 0 0 75 0 0 0
(n=175) (100.0%)

Oats 0 0 0 75 0 0
(n=75) (100.0%)

Rye 0 0 0 0 75 0
(n=175) (100.0%)




Table BB11a.

Confusion matrix of bulk samples for textural amalysis (features
extracted from (1R+3G+2B)/6 at maximum gray level value 32): Normal
estimation (leave-one-out method)

Categories (to)- CWRS CWAD Barley Oats Rye

(from) ! wheat wheat

CWRS wheat 223 2 0 1 1

(n=225) (99.1%)

CWAD wheat 1 74 0 0 0

(n=75) (98.7%)

Barley 0 0 75 0 0

(n=75) (100.0%)

Oats 0 0 0 75 0

(n=75) (100.0%)

Rye 2 0 0 0 73

(n=75) (97.3%)
Table BB11b. Confusion matrix of bulk samples for textural analysis (features

extracted from (1R+3G+2B)/6 at maximum gray level value 32): Non-
parametric estimation (leave-one-out methed) with k=5

Categories (to)» CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 223 0 0 0 2 0
(n=225) (99.1%)

CWAD wheat 2 73 0 0 0 0
(n=75) (97.3%)

Barley 0 0 75 0 0 0
(n=175) (100.0%)

Oats 0 0 0 75 0 0
(n=175) (100.0%)

Rye 0 0 0 0 75 0
(n=75) (100.0%)
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Table BB12a.

Confusion matrix of bulk samples (each image partitioned into 9 sub-
images) for textural analysis (features extracted from red color band at
maximum gray level value 32): Normal estimation (leave-one-out

method)

Categories (to)- CWRS CWAD Barley Oats Rye

(from) | wheat wheat

CWRS wheat 1960 20 16 0 29

(n=2025) (96.8%)

CWAD wheat 11 664 0 0 0

(n=675) (98.4%)

Barley 3 2 670 0 0

(n=675) (99.3%)

Oats 0 0 0 675 0

(n=675) (100.0%)

Rye 10 0 0 0 665

(n=675) (98.5%)
Table BB12b. Confusion matrix of bulk samples (each image partitioned into 9 sub-

images) for textural analysis (features extracted from red color band at
maximum gray level value 32): Non-parametric estimation (leave-one-

out method) with k=5
Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat
CWRS wheat 1974 1 3 0 46 1
(n=2025) (97.5%)
CWAD wheat 21 654 0 0 0 0
(n=675) (96.9%)
Barley 0 0 673 0 2 0
(n=675) (99.7%)
Oats 0 0 0 675 0 0
(n=675) (100.0%)
Rye 9 0 1 0 665 0
(n=675) (98.5%)




Table BB13a.

Confusion matrix of bulk samples (each image partitioned into 16 sub-
images) for textural analysis (features extracted from red color band at
maximum gray level value 32): Normal estimation (leave-one-out

method)

Categories (to)~ CWRS CWAD Barley Oats Rye

(from) | wheat wheat

CWRS wheat 3382 53 55 0 110

(n=3600) (93.9%)

CWAD wheat 58 1138 4 0 0

(n=1200) (94.8%)

Barley 13 10 1173 3 1

(n=1200) (97.8%)

Oats 0 2 0 1198 0

(n=1200) (99.8%)

Rye 32 0 0 0 1168

(n=1200) (97.3%)
Table BB13b. Confusion matrix of bulk samples (each image partitioned into 16 sub-

images) for textural analysis (features extracted from red color band at
maximum gray level value 32): Non-parametric estimation (leave-one-

out method) with k=5
Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat
CWRS wheat 3427 17 14 0 141 1
(n=3600) (95.2%)
CWAD wheat 81 1114 4 0 1 0
(n=1200) (92.8%)
Barley 11 0 1185 0 4 0
(n=1200) (98.8%)
Oats 0 1 5 1194 0 0
(n=1200) (99.5%)
Rye 36 0 1 0 1163 0
(n=1200) (96.9%)
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Table BB14a. Confusion matrix of bulk samples (each image partitioned into 25 sub-
images) for textural analysis (features extracted from red color band at
maximum gray level value 32): Normal estimation (leave-one-out

method)

Categories (to)- CWRS CWAD Barley Oats Rye

(from) | wheat wheat

CWRS wheat 5146 111 120 1 247

(n=5625) (91.5%)

CWAD wheat 129 1730 15 0 1

(n=1875) (92.3%)

Barley 23 18 1814 13 7

(n=1875) (96.8%)

Oats 0 3 7 1865 0

(n=1875) (99.5%)

Rye 70 1 1 1 1802

(n=1875) (96.1%)
Table BB14b. Confusion matrix of bulk samples (each image partitioned into 25 sub-

images) for textural analysis (features extracted from red color band at
maximum gray level value 32): Non-parametric estimation (leave-one-
out method) with k=5

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 5291 58 36 0 237 3
(n=5625) (94.1%)

CWAD wheat 166 1694 12 | 2 0
(n=1875) (90.4%)

Barley 35 6 1823 1 10 0
(n=1875) (97.2%)

Oats 0 3 17 1854 0 1
(n=1875) (98.9%)

Rye 101 0 2 0 1771 1
(n=1875) (94.5%)
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Table C)

Note:

Between-class correlation coefficient matrix of textural (extracted from the red color band at maximum gray level value 32) and color features of bulk
samples |Note: The training data set (grains from 25 growing regions) is used| (cont.)

Between-Class Correlation Coefficients
Femuresi- [ 723 | 124 | 125 | €1 c2 c3 c4 cs co c1 cB c9 cio e Joz fen few s Jee e |
T2) 100
T24 09 | 1.00
T2s 098 | -002 | 100
ci 010 ] 03 | 008 J 100
2 035 | 040 Jois ]| oas | ro0
(v 000 § 02 )01 Josd Josr | oo
C4 0121 | 013 | 025 Joor Jos2 Joes | oo
cs 040 | 050 J o2 Poss Jo9 |oss {os71 {100
c6 028 Jo3s |-047 Jow Joo |oes {027 [oeo | 100
c1 046 Jo1e | 05 foss Joar Joeo Joos Joaw Jows | 100
cs 03 | 046 Jo1 Jos4 Jo9o Joss Joss | oo Joes Joso | 100
c9 -020 0.60 -0 26 -092 -0133 049 -0 80 <046 023 -0 58 043 |00
Cl1o 051 | o3s | -0s8 Joest {o3 |o3z Joms fors Joar oo Jou Jov | 1w
ch o006 | 038 | .oos | 088 | 008 | -04i | 075 | 020 Jon | 058 § 018 | 094 ] -026 100
(W} 08 | 084 Joss ) 010 Joos Joor ]-032 Jois | 040 | 059 Joor | 022 | 080 | 016 | 100
cy 072 | 089 J 079 Jo30 Joiwe Joas Joos Jozo |.040 |02 Jo23 |06z |-0ss |-053 Joo2 | oo
Cl4 082 | o7 fot | 003 o Joas Jo0 Jom Joo |02 Jon ooz 013 Jow |oer |as2 | oo
cis 019 o033 § 035 |-022 fose Jose |-010c o4 Joso foos Jous Joas }oow o4 | 023 f-032fo3 |00
Cclé 0235 | 014 | 023 Joos Joso Joos | 998 |oss o2 oot Jose |08 |ate 018 | 030 Jooo | on |012] 00
can? 636 | 044 021 Jost | 997 Jos: Joss | 29 foee [o4e | 999 {030 Jow 014 Jooe fou Yo foss foss oo
s 023 | oss | -038 ] -060 Jo19 Jooo [|-043 Jooe {073 |-021 |00y { o83 005 [oss | -039 |-062 foo Joss [.046 Jozs Jroo
T} - Mean gray level, T2 - Gray level variance, T3 - Gray level range, T4 - Mean, T5 - Variance, 16 - Uniformity, T7 - Entropy, T8 - Maximum probability, T9 - Comelation, T10 - Homogencity,

T11 - Inertia, T12 - Cluster shade, T13 - Cluster prominence, 114 - Short run, TS5 - Short run range, T16 - Long run, T17 - Long run range, T18 - Gray level non-uniformity, T19 - Gray level
non-uniformity range, T20 - Run length non-uniformity, 1721 - Run length non-uniformity cange, 122 - Run percent, T23 - Run percent range, T24 - GLRM entropy, T25 - GLRM entropy range,
CI - Red, C2 - Red variance, C3 - Red range, C4 - Green, €5 - Green variance, C6 - Green range, C7 - Blue, C8 - Blue variance, €9 - Blue range, C10 - Hue, C1) - Hue variance, C12 - Hue
range, C13 - Saturation, C14 - Saturation variance, C135 - Saturation range, C16 - Intensity, C17 - Intensity variance, and C18 - Intensity range.
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APPENDIX D

CONFUSION MATRICES OF BULK SAMPLES
FOR
COLOR ANALYSIS (HOLD OUT METHOD)
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Table D1a. Confusion matrix of bulk samples for color analysis : Normal estimation (hold

out method).
Categories (to)- CWRS CWAD Barley Oats Rye
(from) ! wheat wheat
CWRS wheat 45 0 0 0 0
(n=45) (100.0%)
CWAD wheat 0 14 0 1 0
(n=15) (93.3%)
Barley 0 3 12 0 0
(n=195) (80.0%)
Oats 0 0 4 11 0
(n=15) (73.3%)
Rye 0 0 0 0 15
(n=15) (100.0%)

Table D1b. Confusion matrix of bulk samples for color analysis : Non-parametric
estimation (hold out method) with k=5.

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 45 0 0 0 0 0
(n=45) (100.0%)

CWAD wheat 0 15 0 0 0 0
(n=15) (100.0%)

Barley 0 0 15 0 0 0
(n=15) (100.0%)

Oats 0 0 0 15 0 0
(n=15) (100.0%)

Rye 0 0 0 0 15 0
(n=15) (100.0%)
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Table D2a.

for color analysis : Normal estimation (hold out method).

Confusion matrix of bulk samples (each image partitioned into 9 sub-images)

Categories (to)~ CWRS CWAD Barley Oats Rye

(from) ! wheat wheat

CWRS wheat 401 2 0 0 2

(n = 405) (99.0%)

CWAD wheat 0 135 0 0 0

(n=135) (100.0%)

Barley 0 0 133 2 0

(n=1395) (98.5%)

Oats 0 0 24 111 0

(n=135) (82.2%)

Rye 0 0 0 0 135

(n=139%) (100.0%)
Table D2b. Confusion matrix of bulk samples (each image partitioned into 9 sub-images)

for color analysis : Non-parametric estimation (hold out method) with k=5.

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 405 0 0 0 0 0
(n = 405) (100.0%)

CWAD wheat 0 134 1 0 0 0
(n=135) (99.3%)

Barley 0 0 135 0 0 0
(n=135) (100.0%)

Oats 0 0 4 130 0 1
(n=135) (96.3%)

Rye 0 0 0 0 135 0
(n=135) (100.0%)
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Table D3a. Confusion matrix of bulk samples (each image partitioned into 16 sub-images)
for color analysis : Normal estimation (hold out method).

Categories (to)~ CWRS CWAD Barley QOats Rye
(from) | wheat wheat

CWRS wheat 712 1 0 1 6
(n=720) (98.9%)

CWAD wheat 0 239 1 0 0

(n =240) (99.6%)

Barley 0 2 234 4 0

(n = 240) (97.5%)

Oats 0 1 46 193 0

(n =240) (80.4%)

Rye 0 0 1 0 239
(n = 240) (99.6%)

Table D3b. Confusion matrix of bulk samples (each image partitioned into 16 sub-images)
for color analysis : Non-parametric estimation (hold out method) with k=5.

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 720 0 0 0 0 0
(n=720) (100.0%)

CWAD wheat 0 239 1 0 0 0
(n=240) (99.6%)

Barley 0 | 238 1 0 0
(n=240) (99.2%)

Oats 0 0 11 226 0 3
(n=240) (94.2%)

Rye 0 0 0 0 240 0
(n=240) (100.0%)
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Table D4a. Confusion matrix of bulk samples (each image partitioned into 25 sub-images)
for color analysis : Normal estimation (hold out method).

Categories (to)- CWRS CWAD Barley Oats Rye
(from) ! wheat wheat

CWRS wheat 1117 0 0 0 8
(n=1125) (99.3%)

CWAD wheat 0 374 1 0 0
(n=375) (99.7%)

Barley 0 12 353 10 0
(n=375) (94.1%)

Oats 0 0 71 302 2
(n=375) (80.5%)

Rye 0 0 0 0 375
(n=375) (100.0%)

Table D4b. Confusion matrix of bulk samples (each image partitioned into 25 sub-images)
for color analysis : Non-parametric estimation (hold out method) with k=5.

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 1121 0 0 0 4 0
(n=1125) (99.6%)

CWAD wheat 0 374 1 0 0 0
(n=375) (99.7%)

Barley 0 3 366 5 0 1
(n=37%) (97.6%)

QOats 1 0 18 354 0 2
(n=375) (94.4%)

Rye 0 0 0 0 375 0
(n=375) (100.0%)
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APPENDIX DD

CONFUSION MATRICES OF BULK SAMPLES
FOR
COLOR ANALYSIS (LEAVE-ONE-OUT METHOD)
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Table DD1a. Confusion matrix of bulk samples for color analysis :

Normal estimation

(Leave-one-out method).

Categories (to)~ CWRS CWAD Barley Oats Rye
(from) | wheat wheat

CWRS wheat 224 0 0 1 0
(n=225) (99.56%)

CWAD wheat 0 74 0 1 0
(n=75) (98.67%)

Barley 0 0 74 1 0
(n=75) (98.67%)

Oats 0 0 1 74 0
(n=175) (98.67%)

Rye 0 0 0 0 75
(n=175) (100.0%)

Table DD1b. Confusion matrix of bulk samples for color analysis :

Non-parametric

estimation (Leave-one-out method) with k=5.

Categories (to)- CWRS CWAD Barley QOats Rye Other
(from) ! wheat wheat

CWRS wheat 225 0 0 0 0 0
(n=225) (100.0%)

CWAD wheat 0 74 0 1 0 0
(n=175) (98.67%)

Barley 0 0 75 0 0 0
(n=175) (100.0%)

Oats 0 0 0 75 0 0
(n=75) (100.0%)

Rye 0 0 0 0 75 0
(n=175) (100.0%)
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Table DD2a. Confusion matrix of bulk samples (each image partitioned into 9 sub-images)
for color analysis : Normal estimation (Leave-one-out method).

Categories (to)- CWRS CWAD Barley Oats Rye
(from) | wheat wheat

CWRS wheat 2013 12 0 0 0
(n=2029) (99.41%)

CWAD wheat 17 657 1 0 0
(n=675) (97.33%)

Barley 0 0 673 2 0
(n=675) (99.70%)

Oats 0 0 6 669 0
(n=675) (99.11%)

Rye 2 0 1 0 672
(n=675) (99.56%)

Table DD2b. Confusion matrix of bulk samples (each image partitioned into 9 sub-images)
for color analysis : Non-parametric estimation (Leave-one-out method) with

k=5.
Categories (to)» CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat
CWRS wheat 2024 0 0 0 1 0
(n =2025) (99.95%)
CWAD wheat 0 675 0 0 0 0
(n=675) (100.0%)
Barley 0 0 675 0 0 0
(n=675) (100.0%)
Oats 0 0 3 672 0 0
(n=675) (99.56%)
Rye 0 0 0 0 675 0
(n=675) (100.0%)
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Table DD3a. Confusion matrix of bulk samples (each image partitioned into 16 sub-images)
for color analysis : Normal estimation (Leave-one-out method).

Categories (to)» CWRS CWAD Barley Oats Rye
(from) ! wheat wheat

CWRS wheat 3596 2 0 0 2
(n=3600) (99.89%)

CWAD wheat 47 1149 3 1 0
(n=1200) (95.75%)

Barley 0 0 1193 7 0
(n=1200) (99.42%)

Oats 0 0 17 1183 0
(n=1200) (98.58%)

Rye 9 0 1 0 1190
(n=1200) (99.17%)

Table DD3b. Confusion matrix of bulk samples (each image partitioned into 16 sub-images)
for color analysis : Non-parametric estimation (Leave-one-out method) with

k=S.
Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat
CWRS wheat 3598 0 0 0 2 0
(n=3600) (99.94%)
CWAD wheat 4 1194 1 0 0 1
(n=1200) (99.50%)
Barley 0 0 1198 2 0 0
(n=1200) (99.83%)
Oats 0 0 1 1199 0 0
(n=1200) (99.92%)
Rye 0 0 0 0 1200 0
(n=1200) (100.0%)
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Table DD4a. Confusion matrix of bulk samples (each image partitioned into 25 sub-images)
for color analysis : Normal estimation (Leave-one-out method).

Categories (to)- CWRS CWAD Barley Oats Rye
(from) ! wheat wheat

CWRS wheat 5621 0 0 1 3
(n=15625) (99.93%)

CWAD wheat 81 1785 7 2 0
(n=1875) (95.20%)

Barley 4 0 1849 22 0
(n=1875) (98.61%)

Oats 0 0 30 1844 1
(n=1875) (98.35%)

Rye 13 0 0 0 1862
(n=1875) (99.31%)

Table DD4b. Confusion matrix of bulk samples (each image partitioned into 25 sub-images)
for color analysis : Non-parametric estimation (Leave-one-out method) with

k=5.
Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat
CWRS wheat 5621 1 0 0 3 0
(n=15625) (99.93%)
CWAD wheat 16 1859 0 0 0 0
(n=18735) (99.15%)
Barley 0 0 1865 10 0 0
(n=1875) (99.47%)
Oats 0 0 11 1864 0 0
(n=1875) (99.41%)
Rye 5 0 0 0 1870 0
(n=1875) (99.73%)
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APPENDIX E

CONFUSION MATRICES OF INDIVIDUAL KERNELS
FOR
TEXTURAL ANALYSIS (HOLD OUT METHOD)
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Table Ela. Confusion matrix of individual kernels for textural analysis (features extracted
from red color band at maximum gray level value 250): Normal estimation

(hold out method)
Categories (to)- CWRS CWAD Barley Oats Rye
(from) | wheat wheat
CWRS wheat 3010 6 0 0 1484
(n=4500) (66.9%)
CWAD wheat 11 1428 3 7 51
(n=1500) (95.2%)
Barley 0 26 1467 7 0
(n = 1500) (97.8%)
Oats 0 0 0 1500 0
(n=1500) (100.0%)
Rye 418 45 0 0 1037
(n=1500) (69.1%)

Table E1b. Confusion matrix of individual kernels for textural analysis (features extracted
from red color band at maximum gray level value 250): Non-parametric
estimation (hold out method) with k=5

Categories (to)» CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 3572 6 0 0 909 13
(n=4500) (79.4%)

CWAD wheat 5 1478 3 0 6 8
(n=1500) (98.5%)

Barley 0 19 1480 0 0 1
(n=1500) (98.7%)

Oats 0 0 | 1499 0 0
(n=1500) (99.9%)

Rye 445 65 0 0 958 32
(n=1500) (63.9%)
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Table E2a.  Confusion matrix of individual kernels for textural analysis (features extracted
from red color band at maximum gray level value 32): Normal estimation (hold

out method)
Categories (to)- CWRS CWAD Barley Oats Rye
(from) | wheat wheat
CWRS wheat 3060 4 0 0 1436
(n = 4500) (68.0%)
CWAD wheat 12 1405 13 3 67
(n=1500) (93.7%)
Barley 0 30 1463 7 0
(n=1500) (97.5%)
Oats 0 0 1 1499 0
(n=1500) (99.9%)
Rye 385 39 0 0 1076
(n=1500) (71.7%)

Table E2b. Confusion matrix of individual kernels for textural analysis (features extracted
from red color band at maximum gray level value 32): Non-parametric
estimation (hold out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 3573 4 0 0 905 18
(n=4500) (79.4%)

CWAD wheat 5 1475 3 0 6 11
(n=1500) (98.3%)

Barley 0 23 1477 0 0 0
(n=1500) (98.5%)

Oats 0 0 1 1499 0 0
(n=1500) (99.9%)

Rye 441 47 0 0 985 27
(n=1500) (65.7%)




Table E3a. Confusion matrix of individual kernels for textural analysis (features extracted
from red color band at maximum gray level value 16): Normal estimation (hold

out method)
Categories (to)~ CWRS CWAD Barley Oats Rye
(from) ! wheat wheat
CWRS wheat 3299 11 0 0 1190
(n=4500) (73.3%)
CWAD wheat 7 1417 7 3 66
(n=1500) (94.5%)
Barley 0 32 1454 14 0
(n=1500) (96.9%)
Oats 0 0 3 1497 0
(n=1500) (99.8%)
Rye 373 38 0 0 1089
(n=1500) (72.6%)

Table E3b. Confusion matrix of individual kernels for textural analysis (features extracted
from red color band at maximum gray level value 16): Non-parametric
estimation (hold out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 3690 3 0 0 798 9
(n=4500) (82.0%)

CWAD wheat 2 1474 6 0 6 12
(n=1500) (98.3%)

Barley 0 28 1471 0 0 1
(n=1500) (98.1%)

Oats 0 0 2 1497 0 1
(n=1500) (99.8%)

Rye 369 48 0 0 1041 42
(n=1500) (69.4%)




Table E4a. Confusion matrix of individual kernels for textural analysis (features extracted
from red color band at maximum gray level value 8): Normal estimation (hold

out method)
Categories (to)- CWRS CWAD Barley Oats Rye
(from) ! wheat wheat
CWRS wheat 3551 8 0 0 941
(n=4500) (78.9%)
CWAD wheat 8 1388 18 5 81
(n=1500) (92.5%)
Barley 0 23 1473 4 0
(n=1500) (98.2%)
Oats 0 0 3 1497 0
(n=1500) (99.8%)
Rye 355 39 0 0 1106
(n =1500) (73.7%)

Table E4b. Confusion matrix of individual kernels for textural analysis (features extracted
from red color band at maximum gray level value 8): Non-parametric
estimation (hold out method) with k=5

Categories (to)» CWRS CWAD Barley QOats Rye Other
(from) | wheat wheat

CWRS wheat 3918 6 0 0 570 6
(n =4500) (87.1%)

CWAD wheat 10 1469 4 0 12 5
(n=1500) (97.9%)

Barley 0 21 1478 0 0 1
(n = 1500) (98.5%)

Oats 0 0 2 1498 0 0
(n = 1500) (98.9%)

Rye 339 64 0 0 1073 24
(n = 1500) (71.5%)
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Table E5a. Confusion matrix of individual kernels for textural analysis (features extracted
from red color band at maximum gray level value 4): Normal estimation (hold
out method)

Categories (to)~ CWRS CWAD Barley Oats Rye
(from) ! wheat wheat

CWRS wheat 3576 10 0 0 914
(n =4500) (79.5%)

CWAD wheat 42 1300 31 3 124
(n=1500) (86.7%)

Barley 0 22 1475 3 0
(n=1500) (98.3%)

Oats 0 0 0 1500 0
(n=1500) (100.0%)

Rye 236 50 2 0 1212
(n=1500) (80.8%)

Table ESb. Confusion matrix of individual samples for textural analysis (features extracted
from red color band at maximum gray level value 4): Non-parametric
estimation (hold vut method) with k=5

Categories (to)- CWRS CwWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 3892 10 0 0 584 14
(n=4500) (86.5%)

CWAD wheat 10 1449 5 0 23 13
(n=1500) (96.6%)

Barley 1 43 1455 0 0 1
(n=1500) (97.0%)

Oats 0 0 0 1500 0 0
{n=1500) (100.0%)

Rye 226 70 0 0 1178 26
(n=1500) (78.5%)

[0
o
(98]



Table E6a. Confusion matrix of individual kernels for textural analysis (features extracted
from green color band at maximum gray level value 32): Normal estimation
(hold out method)
Categorics (to)~ CWRS CWAD Barley Oats Rye
(from) ! wheat wheat
CWRS wheat 3397 8 0 0 1095
(n=4500) (75.5%)
CWAD wheat 8 1428 11 6 47
(n=1500) (95.2%)
Barley 0 43 1445 12 0
(n=1500) (96.3%)
Oats 0 0 0 1500 0
(n=1500) (100.0%)
Rye 289 38 0 0 1173
(n=1500) (78.2%)
Table E6b. Confusion matrix of individual kernels for textural analysis (features extracted

from green color band at maximum gray level value 32): Non-parametric
estimation (hold out method) with k=5

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 3705 3 0 0 788 4
(n =4500) (82.3%)

CWAD wheat 4 1474 5 1 11 5
(n=1500) (98.3%)

Barley 0 32 1466 1 0 1
(n=1500) (97.7%)

Oats 0 0 0 1500 0 0
(n =15G3) (100.0%)

Rye 388 36 0 0 1060 16
(n=1500) (70.7%)




Table E7a. Confusion matrix of individual kernels for textural analysis (features extracted
from green color band at maximum gray level value 16): Normal estimation
(hold out method)
Categories (to)» CWRS CWAD Barley Oats Rye
(from) | wheat wheat
CWRS wheat 3598 5 0 0 897
(n = 4500) (80.0%)
CWAD wheat 3 1431 13 5 48
(n=1500) (95.4%)
Barley 0 39 1448 13 0
(n=1500) (96.5%)
Oats 0 0 l 1499 0
(n=1500) (99.9%)
Rye 287 45 0 0 1168
(n=1500) (77.9%)
Table E7b. Confusion matrix of individual kernels for textural analysis (features extracted

from green color band at maximum gray level value 16): Non-parametric
estimation (hold out method) with k=5

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 3844 2 0 0 646 8
(n=4500) (85.4%)

CWAD wheat 5 1469 9 0 7 10
(n=1500) (97.9%)

Barley 0 42 1458 0 0 0
(n=1500) (97.2%)

Oats 0 0 1 1499 0 0
(n=1500) (99.9%)

Rye 362 51 0 0 1056 31
(n=1500) (70.4%)




Table E8a. Confusion matrix of individual kernels for textural analysis (features extracted
from green color band at maximum gray level value 8): Normal estimation (hold

out method)
Categories (to)~ CWRS CWAD Barley Oats Rye
(from) | wheat wheat
CWRS wheat 3802 4 0 0 694
(n =4500) (84.5%)
CWAD wheat 4 1419 0 3 74
(n=1500) (94.6%)
Barley 0 0 1500 0 0
(n=1500) (100.0%)
QOats 0 0 0 1500 0
(n=1500) (100.0%)
Rye 246 35 0 0 1219
(n=1500) (81.3%)

Table E8b. Confusion matrix of individual kernels for textural analysis (features extracted
from green color band at maximum gray level value 8): Non-parametric
estimation (hold out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 3940 3 0 0 550 7
(n=4500) (87.7%)

CWAD wheat 8 1471 0 0 13 8
(n=1500) (98.1%)

Barley 0 0 1500 0 0 0
(n=1500) (100.0%)

Oats 0 0 0 1500 0 0
(n=1500) (100.0%)

Rye 278 77 0 0 1112 33
(n=1500) (74.1%)




Table E9a. Confusion matrix of individual kernels for textural analysis (features extracted
from green color band at maximum gray level value 4): Normal estimation (hold
out method)

Categories (to)- CWRS CWAD Barley Oats Rye
(from) ! wheat wheat

CWRS wheat 3982 12 0 0 506
(n=4500) (88.5%)

CWAD wheat 13 1387 25 0 75
(n=1500) (92.5%)

Barley 0 44 1443 10 3
(n=1500) (96.2%)

Oats 0 0 1 1499 0
(n=1500) (99.9%)

Rye 275 76 0 0 1149
(n=1500) (76.6%)

Table E9b. Confusion matrix of individual kernels for textural analysis (features extracted
from green color band at maximum gray level value 4): Non-parametric
estimation (hold out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 4046 8 0 0 424 22
(n=4500) (89.9%)

CWAD wheat 8 1454 8 0 19 11
(n=1500) (96.9%)

Barley 0 40 1456 2 0 2
(n=1500) (97.1%)

Oats 0 0 0 15G6 G 0
(n=1500) (100.0%)

Rye 244 61 0 0 1158 37
(n=1500) (77.2%)
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Table E10a. Confusion matrix of individual kernels for textural analysis (features extracted
from blue color band at maximum gray level value 32): Normal estimation (hold
out method)

Categories (to)~ CWRS CWAD Barley Oats Rye
(from) | wheat wheat

CWRS wheat 2485 37 6 0 1972
(n = 4500) (55.2%)

CWAD wheat 1 1430 20 12 37
(n=1500) (95.3%)

Barley 0 99 1394 6 1
(n=1500) (92.9%)

Oats 0 0 0 1500 0
(n=1500) (100.0%)

Rye 149 38 0 1 1312
(n=1500) (87.5%)

Table E10b. Confusion matrix of individual kernels for textural analysis (features extracted
from blue color band at maximum gray level value 32): Non-parametric
estimation (hold out method) with k=5

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 3774 15 35 2 654 20
(n =4500) (83.9%)

CWAD wheat 5 1463 10 0 11 11
(n=1500) (97.5%)

Barley 0 65 1434 0 0 |
(n=1500) (95.6%)

Oats 0 0 0 1500 0 0
(n=1500) (100.0%)

Rye 448 34 0 0 989 29
(n=1500) (65.9%)




Table E1la. Confusion matrix of individual kernels for textural analysis (features extracted
from blue color band at maximum gray level value 16): Normal estimation (hold
out method)

Categories (to)~ CWRS CWAD Barley Oats Rye
(from) ! wheat wheat

CWRS wheat 3104 15 0 0 1381
(n =4500) (69.0%)

CWAD wheat 6 1446 16 11 21
(n=1500) (96.4%)

Barley 0 93 1398 7 2

(n = 1500) (93.2%)

Oats 0 0 0 1500 0
(n=1500) (100.0%)

Rye 230 34 0 2 1234
(n=1500) (82.3%)

Table E11b. Confusion matrix of individual kernels for textural analysis (features extracted
from blue color band at maximum gray level value 16): Non-parametric
estimation (hold out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 3862 12 15 4 593 14
(n=4500) (85.8%)

CWAD wheat 2 1461 19 0 11 7
(n=1500) (97.4%)

Barley 0 65 1428 4 0 3
(n=1500) (95.2%)

Oats 0 0 0 1500 0 0
(n=1500) (100.0%)

Rye 429 52 0 0 988 31
(n=1500) (65.9%)




Table E12a. Confusion matrix of individual kernels for textural analysis (features extracted
from blue color band at maximum gray level value 8): Normal estimation (hold

out method)
Categories (to)~ CWRS CWAD Barley Oats Rye
(from) | wheat wheat
CWRS wheat 3534 Il 0 2 953
(n=4500) (78.5%)
CWAD wheat 9 1438 21 10 22
(n=1500) (95.9%)
Barley 0 92 1392 15 1
(n = 1500) (92.8%)
Oats 0 0 0 1500 0
(n=1500) (100.0%)
Rye 222 32 0 2 1244
(n=1500) (82.9%)

Table E12b. Confusion matrix of individual kernels for textural analysis (features extracted
from blue color band at maximum gray level value 8): Non-parametric
estimation (hold out method) with k=5

Categories (to)- CWRS CWAD Barley Qats Rye Other
(from) ! wheat wheat

CWRS wheat 3910 13 13 0 539 25
(n =4500) (86.9%)

CWAD wheat 3 1467 10 0 9 11
(n=1500) (97.8%)

Barley 0 49 1445 0 0 6
(n=1500) (96.3%)

Oats 0 0 1 1499 0 0
(n=1500) (99.9%)

Rye 362 47 0 0 1064 27
(n=1500) (70.9%)




Table E13a. Confusion matrix of individual kernels for textural analysis (features extracted
from blue color band at maximum gray level value 4): Normal estimation (hold
out method)

Categories (to)- CWRS CWAD Barley QOats Rye
(from) | wheat wheat

CWRS wheat 3883 26 1 0 590
(n =4500) (86.3%)

CWAD wheat 8 1445 16 7 24
(n=1500) (96.3%)

Barley 0 93 1397 9 1
(n=1500) (93.1%)

QOats 0 0 0 1500 0
(n=1500) (100.0%)

Rye 214 26 0 9 1251
(n=1500) (83.4%)

Table E13b. Confusion matrix of individual kernels for textural analysis (features extracted
from blue color band at maximum gray level value 4): Non-parametric
estimation (hold out method) with k=5

Categories (to)- CWRS CwWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 4100 29 8 0 331 32
(n=4500) (91.1%)

CWAD wheat 6 1457 15 1 12 9
(n=1500) (97.1%)

Barley 0 74 1419 2 0 5
(n = 1500) (94.6%)

Oats 0 0 0 1500 0 0
(n=1500) (100.0%)

Rye 300 23 0 0 11.56 21
(n=1500) (77.1%)




Table E14a. Confusion matrix of individual kernels for textural analysis (features extracted
from black & white color at maximum gray level value 32): Normal estimation

(hold out method)
Categories (to)» CWRS CWAD Barley Oats Rye
(from) ! wheat wheat
CWRS wheat 3319 5 0 0 1176
(n=4500) (73.7%)
CWAD wheat 9 1415 16 12 48
(n=1500) (94.3%)
Barley 0 50 1441 9 0
(n=1500) (96.1%)
Oats 0 0 0 1500 0
(n=1500) (100.0%)
Rye 343 47 0 0 1110
(n=1500) (74.0%)

Table E14b. Confusion matrix of individual kernels for textural analysis (features extracted
from black & white color at maximum gray level value 32): Non-parametric
estimation (hold out method) with k=5

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 3698 5 1 0 784 12
(n=4500) (82.2%)

CWAD wheat 3 1466 9 0 12 10
(n = 1500) (97.7%)

Barley 0 37 1458 0 0 5
(n=1500) (97.2%)

QOats 0 0 1 1499 0 0
(n=1500) (99.9%)

Rye 408 52 0 0 1009 31
(n=1500) (67.3%)
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Table E15a. Confusion matrix of individual kernels for textural analysis (features extracted
from black & white color at maximum gray level value 16): Normal estimation

(hold out method)
Categories (to)~ CWRS CWAD Barley Oats Rye
(from) ! wheat wheat
CWRS wheat 3529 2 0 0 969
(n=4500) (78.4%)
CWAD wheat 4 1425 14 6 51
(n=1500) (95.0%)
Barley 0 51 1437 12 0
(n=1500) (95.8%)
QOats 0 0 0 150¢C 0
(n=1500) (100.0%)
Rye 360 32 0 0 1108
(n=1500) (73.9%)

Table E15b. Confusion matrix of individual kernels for textural analysis (features extracted
from black & white color at maximum gray level value 16): Non-parametric
estimation (hold out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 3813 6 0 0 674 7
(n=4500) (84.7%)

CWAD wheat 2 1477 4 1 9 7
(n=1500) (98.5%)

Barley 0 44 1456 0 0 0
(n=1500) (97.1%)

QOats 0 0 1 1499 0 0
(n=1500) (99.9%)

Rye 409 44 0 0 1021 26
(n=1500) (68.1%)
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Table E16a. Confusion matrix of individual kernels for textural analysis (features extracted
from black & white color at maximum gray level value 8): Normal estimation

(hold out method)
Categories (to)- CWRS CWAD Barley Oats Rye
(from) ! wheat wheat
CWRS wheat 3768 1 0 0 731
(n =4500) (83.7%)
CWAD wheat 5 1405 18 10 62
(n=1500) (93.7%)
Barley 0 54 1432 14 0
(n=1500) (95.5%)
Oats 0 0 0 1500 0
(n=1500) (100.0%)
Rye 287 27 0 1 1185
(n=1500) (79.0%)

Table E16b. Confusion matrix of individual kernels for textural analysis (features extracted
from black & white color at maximum gray level value 8): Non-parametric

estimation (hold out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 3903 15 1 0 566 I5
(n=4500) (86.7%)

CWAD wheat 6 1461 8 0 14 11
(n=1500) (97.4%)

Barley 0 38 1458 0 0 4
(n=1500) (97.2%)

Oats 0 0 1 1499 0 0
(n=1500) (99.9%)

Rye 293 92 0 0 1079 36
(n=1500) (71.9%)




Table E17a. Confusion matrix of individual kernels for textural analysis (features extracted
from black & white color at maximum gray level value 4): Normal estimation

(hold out method)
Categories (to)» CWRS CWAD Barley Oats Rye
(from) | wheat wheat
CWRS wheat 3962 19 0 0 519
(n=4500) (88.0%)
CWAD wheat 8 1388 21 1 82
(n=1500) (92.5%)
Barley 0 67 1423 5 5
(n=1500) (94.9%)
Oats 0 0 0 1500 0
(n=1500) (100.0%)
Rye 270 70 0 0 1160
(n=1500) (77.3%)

Table E17b. Confusion matrix of individual kernels for textural analysis (features extracted
from black & white color at maximum gray level value 4): Non-parametric
estimation (hold out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 4068 17 0 0 399 16
(n = 4500) (90.4%)

CWAD wheat 12 1445 8 0 26 9
(n=1500) (96.3%)

Barley 0 40 1455 0 0 5
(n=1500) (97.0%)

Oats 0 0 0 1500 0 0
(n=1500) (100.0%)

Rye 261 71 0 0 1135 33
(n=1500) (75.7%)
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Table E18a. Confusion matrix of individual kernels for textural analysis (features extracted
from (3R+2G+1B)/6 at maximum gray level value 32): Normal estimation (hold

out method)
Categories (to)~ CWRS CWAD Barley Oats Rye
(from) ! wheat wheat
CWRS wheat 3321 9 0 0 1170
(n =4500) (73.8%)
CWAD wheat 10 1405 12 5 68
(n=1500) (93.7%)
Barley 0 33 1460 7 0
(n=1500) (97.3%)
Oats 0 0 1 1499 0
(n=1500) (99.9%)
Rye 342 50 0 0 1108
(n=1500) (73.9%)

Table E18b. Confusion matrix of individual kernels for textural analysis (features extracted
from (3R+2G+1B)/6 at maximum gray level value 32): Non-parametric
estimation (hold out method) with k=5

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 3634 5 0 0 851 10
(n=4500) (80.8%)

CWAD wheat 5 1472 7 1 10 5
(n=1500) (98.1%)

Barley 0 26 1471 0 0 3
(n=1500) (98.1%)

Oats 0 0 1 1499 0 0
(n=1500) (99.9%)

Rye 412 43 0 0 1010 35
(n=1500) (67.3%)




Table E19a. Confusion matrix of individual kernels for textural analysis (features extracted
from (3R+2G+1B)/6 at maximum gray level value 16): Normal estimation (hold

out method)
Categories (to)~ CWRS CWAD Barley Oats Rye
(from) ! wheat wheat
CWRS wheat 3502 7 0 0 991
(n =4500) (77.8%)
CWAD wheat 6 1401 15 6 72
(n=1500) (93.4%)
Barley 0 47 1444 9 0
(n=1500) (96.3%)
Oats 0 0 1 1499 0
(n = 1500) (99.9%)
Rye 354 40 0 0 1106
(n=1500) (73.7%)

Table E19b. Confusion matrix of individual kernels for textural analysis (features extracted
from (3R+2G+1C)/6 at maximum gray level value 16): Non-parametric
estimation (hold out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 3795 2 2 0 693 8
(n =4500) (84.3%)

CWAD wheat 3 1472 5 1 10 9
(n=1500) (98.1%)

Barley 0 22 1475 0 0 3
(n = 1500) (98.3%)

Oats 0 0 2 1498 0 0
(n = 1500) (99.9%)

Rye 414 57 0 0 994 35
(n = 1500) (66.3%)




Table E20a. Confusion matrix of individual kernels for textural analysis (features extracted
from (3R+2G+1B)/6 at maximum gray level value 8): Normal estimation (hold

out method)
Categories (to)~ CWRS CWAD Barley Oats Rye
(from) | wheat wheat
CWRS wheat 3698 12 0 0 790
(n=4500) (82.2%)
CWAD wheat 6 1413 0 \ 80
(n=1500) (94.2%)
Barley 0 0 1500 0 0
(n=1500) (100.0%)
Oats 0 0 0 1500 0
(n=1500) (100.0%)
Rye 274 53 0 0 1173
(n=1500) (78.2%)

Table E20b. Confusion matrix of individual kernels for textural analysis (features extracted
from (3R+2G+1B)/6 at maximum gray level value 8): Non-parametric
estimation (hold out method) with k=5

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 3847 18 0 0 618 17
(n =4500) (85.5%)

CWAD wheat 3 1467 0 1 14 15
(n=1500) (97.8%)

Barley 0 0 1500 0 0 0
(n=1500) (100.0%)

Qats 0 0 0 1500 0 0
(n=1500) (100.0%)

Rye 276 88 0 0 1105 31
(n=1500) (73.7%)




Table E21a. Confusion matrix of individual kernels for textural analysis (features extracted
from (3R+2G+1B)/6 at maximum gray level value 4): Normal estimation (hold

out method)
Categories (to)- CWRS CWAD Barley Oats Rye
(from) | wheat wheat
CWRS wheat 3848 4 0 0 648
(n =4500) (85.5%)
CWAD wheat 17 1378 0 2 103
(n=1500) (91.9%)
Barley 0 0 1500 0 0
(n=1500) (100.0%)
Oats 0 0 0 1500 0
(n = 1500) (100.0%)
Rye 279 66 0 0 1155
(n=1500) (77.0%)

Table E21b. Confusion matrix of individual kernels for textural analysis (features extracted
from (3R+2G+1B)/6 at maximum gray level value 4): Non-parametric
estimation (hold out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 3980 13 0 0 489 18
(n =4500) (88.4%)

CWAD wheat 10 1444 0 0 24 22
(n=1500) (96.3%)

Barley 0 0 1500 0 0 0
(n=1500) (100.0%)

Oats 0 0 0 1500 0 0
(n=1500) (100.0%)

Rye 232 99 0 0 1130 39
(n=1500) (75.3%)




Table E22a. Confusion matrix of individual kernels for textural analysis (features extracted
from (ZR+1G+3B)/6 at maximum gray level value 32): Normal estimation (hold

out method)

Categories (to)- CWRS CWAD Barley Oats Rye
(from) | wheat wheat

CWRS wheat 3324 4 0 0 1172
(n =4500) (73.9%)

CWAD wheat 3 1419 16 10 52
(n=1500) (94.6%)

Barley 0 43 1449 6 2

(n = 1500) (96.6%)

Oats 0 0 0 1500 0
(n=1500) (100.0%)

Rye 340 41 0 0 1119
(n=1500) (74.6%)

Table E22b. Confusion matrix of individual kernels for textural analysis (features extracted
from (2R+1G+3B)/6 at maximum gray level value 32): Non-parametric
estimation (hold out method) with k=5

Categories (to)- CWRS CWAD Barley QOats Rye Other
(from) ! wheat wheat

CWRS wheat 3737 3 3 0 741 16
(n = 4500) (83.0%)

CWAD wheat 7 1461 12 1 8 11
(n = 1500) (97.4%)

Barley 0 40 1452 1 0 7
(n=1500) (96.8%)

Oats 0 0 1 1499 0 0
(n=1500) (99.9%)

Rye 438 52 0 0 997 13
(n=1500) (66.5%)




Table E23a. Confusion matrix of individual kernels for textural analysis (features extracted
from (2R+1G+3B)/6 at maximum gray level value 16): Normal estimation (hold

out method)
Categories (to)- CWRS CWAD Barley Oats Rye
(from) ! wheat wheat
CWRS wheat 3484 4 0 0 1012
(n = 4500) (77.4%)
CWAD wheat 3 1421 16 10 50
(n = 1500) (94.7%)
Barley 0 55 1432 13 0
(n=1500) (95.5%)
Qats 0 0 0 1500 0
(n=1500) (100.0%)
Rye 354 27 0 1 1118
(n=1500) (74.5%)

Table E23b. Confusion matrix of individual kernels for textural analysis (features extracted
from (2R+1G+3B)/6 at maximum gray level value 16): Non-parametric
estimation (hold out method) with k=§

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 3806 4 14 0 666 10
(n=4500) (84.6%)

CWAD wheat 4 1465 13 3 11 4
(n=1500) (97.7%)

Barley 0 33 1465 0 0 2
(n=1500) (97.7%)

Oats 0 0 0 1500 0 0
(n=1500) (100.0%)

Rye 397 51 0 0 1017 35
(n=1500) (67.8%)
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Table E24a. Confusion matrix of individual kernels for textural analysis (features extracted
from (2R+1G+3B)/6 at maximum gray level value 8): Normal estimation (hold

out method)
Categories (to)- CWRS CWAD Barley Oats Rye
(from) | wheat wheat
CWRS wheat 3799 5 0 0 696
(n=4500) (84.4%)
CWAD wheat 9 1419 I8 8 46
(n=1500) (94.6%)
Barley 0 51 1439 10 0
(n=1500) (95.9%)
QOats 0 0 0 1500 0
(n=1500) (100.0%)
Rye 277 30 0 1 1192
(n=1500) (79.5%)

Table E24b. Confusion matrix of individual kernels for textural analysis (features extracted
from (2R+1G+3B)/6 at maximum gray level value 8): Non-parametric
estimation (hold out method) with k=§

Categories (to)~ CWRS CWAD Barley Qats Rye Other
(from) ! wheat wheat

CWRS wheat 3914 11 6 0 549 20
(n =4500) (87.0%)

CWAD wheat 5 1453 10 1 18 13
(n=1500) (96.9%)

Barley 0 30 1464 0 0 6
(n=1500) (97.6%)

Oats 0 0 0 1500 0 0
(n=1500) (100.0%)

Rye 279 78 0 0 1095 48
(n=1500) (73.0%)




Table E25a. Confusion matrix of individual kernels for textural analysis (features extracted
from (2R+1G+3B)/6 at maximum gray level value 4): Normal estimation (hold
out method)

Categories (to)~ CWRS CWAD Barley Oats Rye
(from) ! wheat wheat

CWRS wheat 4016 18 0 0 466
(n =4500) (89.2%)

CWAD wheat 3 1412 29 2 54
(n=1500) (94.1%)

Barley 0 89 1401 5 5
(n=1500) (93.40)

Oats 0 0 0 1500 0
(n=1500) (100.0%)

Rye 252 66 0 0 1182
(n=1500) (78.8%)

Table E25b. Confusion matrix of individual kernels for textural analysis (features extracted
from (2R+1G+3B)/6 at maximum gray level value 4): Non-parametric
estimation (hold out method) with k=5

Categories (to)~ CWRS CWAD Barley QOats Rye Other
(from) ! wheat wheat

CWRS wheat 4044 22 0 0 415 19
(n =4500) (89.9%)

CWAD wheat 5 1452 9 0 19 15
(n=1500) (96.8%)

Barley 0 49 1444 3 0 4
(n=1500) (96.3%)

Oats 0 0 0 1500 0 0
(n=1500) (100.0%)

Rye 285 61 0 0 1128 26
(n=1500) (75.2%)




Table E26a. Confusion matrix of individual kernels for textural analysis (features extracted
from (1R+3G+2B)/6 at maximum gray level value 32): Normal estimation (hold

out method)

Categories (to)» CWRS CWAD Barley Oats Rye
(from) ! wheat wheat

CWRS wheat 3387 7 0 0 1106
(n=4500) (75.3%)

CWAD wheat 7 1413 20 10 50
(n=1500) (94.2%)

Barley 0 40 1450 10 0
(n=1500) (96.7%)

Oats 0 0 0 1500 0
(n=1500) (100.0%)

Rye 321 44 0 0 1135
(n=1500) (75.7%)

Table E26b. Confusion matrix of individual kernels for textural analysis (features extracted
from (IR+3G+2B)/6 at maximum gray level value 32): Non-parametric
estimation (hold out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 3729 5 1 0 753 12
(n =4500) (82.9%)

CWAD wheat 4 1468 9 1 6 12
(n=1500) (97.9%)

Barley 0 23 1474 0 0 3
(n=1500) (98.3%)

Oats 0 0 2 1498 0 0
(n=1500) (99.9%)

Rye 413 44 0 0 1021 22
(n=1500) (68.1%)




Table E27a. Confusion matrix of individual kernels for textural analysis (features extracted
from (1R+3G+2)/6 at maximum gray level value 16): Normal estimation (hold

out method)
Categories (to)~ CWRS CWAD Barley Oats Rye
(from) ! wheat wheat
CWRS wheat 3562 6 0 1 931
(n = 4500) (79.2%)
CWAD wheat 2 1415 16 10 57
(n=1500) (94.3%)
Barley 0 60 1429 11 0
(n = 1500) (95.3%)
Oats 0 0 0 1500 0
(n=1500) (100.0%)
Rye 333 30 0 0 1137
(n=1500) (75.8%)

Table E27b. Confusion matrix of individual kernels for textural analysis (features extracted
from (1R+3G+2B)/6 at maximum gray level value 16): Non-parametric
estimation (hold out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 3849 3 2 0 633 13
(n=4500) (85.5%)

CWAD wheat 2 1470 9 0 10 9
(n=1500) (98.0%)

Barley 0 43 1453 0 0 0
(n=1500) (97.1%)

Oats 0 0 1 1499 0 0
(n=1500) (99.9%)

Rye 392 52 0 0 1024 32
(n=1500) (68.3%)




Table E28a. Confusion matrix of individual kernels for textural analysis (features extracted
from (1R+3G+2B)/6 at maximum gray level value 8): Normal estimation (hold

out method)
Categories (to)- CWRS CWAD Barley Oats Rye
(from) | wheat wheat
CWRS wheat 3803 1 0 0 696
(n =4500) (84.5%)
CWAD wheat 5 1418 14 11 52
(n = 1500) (94.5%)
Barley 0 52 1440 8 0
(n=1500) (96.0%)
Oats 0 0 0 1500 0
(n=1500) (100.0%)
Rye 262 33 0 0 1205
(n=1500) (80.3%)

Table E28b. Confusion matrix of individual kernels for textural analysis (features extracted
from (IR+3G+2B)/6 at maximum gray level value 8): Non-parametric

estimation (hold out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 3953 17 0 0 514 16
(n=4500) (87.8%)

CWAD wheat 5 1457 10 1 14 13
(n=1500) (97.1%)

Barley 0 29 1466 1 0 4
(n=1500) (97.7%)

Oats 0 0 1 1499 0 0
(n=1500) (99.9%)

Rye 286 86 0 0 1097 31
(n=1500) (73.1%)
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Table E29a. Confusion matrix of individual kernels for textural analysis (features extracted
from (1R+3G+2B)/6 at maximum gray level value 4): Normal estimation (hold
out method)

Categories (to)~ CWRS CWAD Barley Oats Rye
(from) ! wheat wheat

CWRS wheat 4044 22 0 0 434
(n=4500) (89.9%)

CWAD wheat 5 1412 26 1 56
(n=1500) (94.1%)

Barley 0 80 1409 6 5
(n=1500) (93.9%)

Oats 0 0 0 1500 0
(n=1500) (100.0%)

Rye 247 72 0 0 1181
(n=1500) (78.7%)

Table E29b. Confusion matrix of individual kernels for textural analysis (features extracted
from (IR+3G+2B)/6 at maximum gray level value 4): Non-parametric
estimation (hold out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 4090 15 0 0 376 19
(n=4500) (90.9%)

CWAD wheat 8 1459 6 0 13 14
(n=1500) (97.3%)

Barley 0 41 1455 1 0 3
(n=1500) (97.0%)

Oats 0 0 0 1500 0 0
(n=1500) (100.0%)

Rye 283 65 0 0 1124 28
(n=1500) (74.9%)




APPENDIX EE

CONFUSION MATRICES OF INDIVIDUAL KERNELS
FOR
TEXTURAL ANALYSIS (LEAVE-ONE-OUT METHOD)
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Table EEla. Confusion matrix of individual kernels for textural analysis (features extracted
from red color band at maximum gray level value 250): Normal estimation
(leave-one-out method)

Categories (to)~ CWRS CWAD Barley Oats Rye
(from) | wheat wheat

CWRS wheat 10038 207 0 28 3227
(n = 13500) (74.4%)

CWAD wheat 70 4052 40 9 329
(n=4500) (90.0%)

Barley 0 85 4344 61 10
(n=4500) (96.5%)

Oats 0 5 40 4455 0
(n=4500) (99.0%)

Rye 626 84 0 0 3790
(n=4500) (84.2%)

Table EE1lb. Confusion matrix of individual kernels for textural analysis (features extracted
from red color band at maximum gray level value 250): Non-parametric
estimation (leave-one-out method) with k=5

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 11319 140 0 0 2029 12
(n=13500) (83.8%)

CWAD wheat 30 4321 39 0 110 0
(n=4500) (96.0%)

Barley 0 36 4460 4 0 0
(n=4500) (99.1%)

Qats 0 2 48 4450 0 0
(n=4500) (98.9%)

Rye 965 88 0 0 3447 0
(n=4500) (76.6%)




Table EE2a. Confusion matrix of individual kernels for textural analysis (features extracted
from red color band at maximum gray level value 32): Normal estimation

(leave-one-out method)
Categories (to)~ CWRS CWAD Barley Oats Rye
(from) ! wheat wheat
CWRS wheat 10392 188 0 15 2905
(n=13500) (77.0%)
CWAD wheat 121 3957 48 10 364
(n = 4500) (87.9%)
Barley 0 86 4339 64 11
(n=4500) (96.4%)
Oats 1 3 47 4449 0
(n = 4500) (98.9%)
Rye 558 97 1 0 3844
(n = 4500) (85.4%)

Table EE2b. Confusion matrix of individual kernels for textural analysis (features extracted
from red color band at maximum gray level value 32): Non-parametric
estimation (leave-one-out method) with k=5

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 11545 163 0 0 1784 8
(n=13500) (85.5%)

CWAD wheat 42 4336 24 0 98 0
(n=4500) (96.4%)

Barlev 0 43 4455 2 0 0
(n=1500) (99.0%)

Oats 0 2 51 4447 0 0
(n=1500) (98.8%)

Rye 885 72 0 0 3543 0
(n=1500) (78.7%)




Table EE3a. Confusion matrix of individual kernels for textural analysis (features extracted
from red color band at maximum gray level value 16): Normal estimation
(leave-one-out method)

Categories (to)~ CWRS CWAD Barley Oats Rye
(from) | wheat wheat

CWRS wheat 10760 136 0 26 2578
(n=13500) (79.7%)

CWAD wheat 86 4020 51 11 332
(n =4500) (89.3%)

Barley 0 98 4309 82 11
(n =4500) (95.8%)

Oats 1 0 44 4455 0
(n=4500) (99.0%)

Rye 558 82 1 0 3859
(n=4500) (85.8%)

Table EE3b. Confusion matrix of individual kernels for textural analysis (features extracted
from red color band at maximum gray level value 16): Non-parametric
estimation (leave-one-out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 11757 146 0 0 1589 8
(n=13500) (87.1%)

CWAD wheat 39 4360 23 2 76 0
(n =4500) (96.9%)

Barley 0 53 4443 4 0 0
(n =4500) (98.7%)

Oats 0 2 72 4426 0 0
(n=4500) (98.4%)

Rye 889 85 0 0 3526 0
(n =4500) (78.4%)
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Table EE4a. Confusion matrix of individual kernels for textural analysis (features extracted
from red color band at maximum gray level value 8): Normal estimation (leave-
one-out method)

Categories (to)~ CWRS CWAD Barley Oats Rye
(from) | wheat wheat

CWRS wheat 11317 107 2 24 2050
(n=13500) (83.8%)

CWAD wheat 78 4027 75 8 312
(n=4500) (89.5%)

Barley 0 83 4343 64 10
(n =4500) (96.5%)

Oats 0 0 69 4431 0
(n=4500) (98.5%)

Rye 537 86 1 0 3876
(n=4500) (86.1%)

Table EE4b. Confusion matrix of individual kernels for textural analysis (features extracted
from red color band at maximum gray level value 8): Non-parametric
estimation (leave-one-out method) with k=5

Categories (to)» CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 12003 199 0 0 1289 9
(n=13500) (88.9%)

CWAD wheat 38 4351 36 1 74 0
(n =4500) (96.7%)

Barley 0 65 4434 1 0 0
(n =4500) (98.5%)

Oats 0 0 70 4430 0 0
(n=4500) (98.4%)

Rye 698 124 0 0 3682 0
(n=4500) (81.8%)




Table EESa. Confusion matrix of individual kernels for textural analysis (features extracted
from red color band at maximum gray level value 4): Normal estimation (leave-

one-out method)

Categories (to)- CWRS CWAD Barley Oats Rye
(from) ! wheat wheat

CWRS wheat 11349 155 0 8 1988
(n=13500) (84.1%)

CWAD wheat 140 3770 181 6 403
(n =4500) (83.8%)

Barley 0 70 4399 12 19
(n =4500) (97.8%)

Oats 0 4 30 4466 0

(n =4500) (99.2%)

Rye 397 84 l 1 4017
(n=4500) (89.3%)

Table EESb. Confusion matrix of individual samples for textural analysis (features extracted
from red color band at maximum gray level value 4): Non-parametric
estimation (Hold out method) with k=35

Categories (to)~ CWRS CWAD Barley Qats Rye Other
(from) | wheat wheat

CWRS wheat 12013 150 0 0 1321 16
(n = 13500) (89.0%)

CWAD wheat 53 4313 37 0 97 0
(n=4500) (95.8%)

Barley 0 67 4431 2 0 0
(n = 4500) (98.5%)

Oats 0 2 27 4471 0 0
(n = 4500) (99.4%)

Rye 563 123 1 0 3813 0
(n = 4500) (84.7%)
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Table EE6a. Confusion matrix of individual kernels for textural analysis (features extracted
from green color band at maximum gray level value 32): Normal estimation
(leave-one-out method)

Categories (to)~ CWRS CWAD Barley Oats Rye
(from) | wheat wheat

CWRS wheat 9717 156 1 18 3608
(n=13500) (72.0%)

CWAD wheat 44 3976 66 10 404
(n=4500) (88.4%)

Barley 3 108 4324 56 9
(n = 4500) (96.1%)

Oats 0 5 48 4447 0
(n=4500) (98.8%)

Rye 356 124 3 0 4017
(n = 4500) (89.3%)

Table EE6b. Confusion matrix of individual kernels for textural analysis (features extracted
from green color band at maximum gray level value 32): Non-parametric
estimation (leave-one-out method) with k=5

Categornies (to)» CWRS CWAD Barley QOats Rye Other
(from) | wheat wheat

CWRS wheat 11595 98 0 0 1793 14
(n=13500) (85.9%)

CWAD wheat 40 4339 41 1 79 0
(n =4500) (96.4%)

Barley 0 46 4454 0 0 0
(n=4500) (99.0%)

Oats 0 0 61 4439 0 0
(n=4500) (98.6%)

Rye 929 83 0 0 3488 0
(n=4500) (77.5%)




Table EE7a. Confusion matrix of individual kernels for textural analysis (features extracted
from green color band at maximum gray level value 16): Normal estimation
(leave-one-out method)

Categories (to)~ CWRS CWAD Barley Oats Rye
(from) ! wheat wheat

CWRS wheat 10310 130 0 20 3040
(n=13500) (76.4%)

CWAD wheat 41 4053 69 9 328
(n=4500) (90.1%)

Barley | 106 4290 95 8
(n=4500) (95.3%)

QOats 0 l 59 4440 0

(n =4500) (98.7%)

Rye 399 108 1 2 3990
(n = 4500) (88.7%)

Table EE7b. Confusion matrix of individual kernels for textural analysis (features extracted
from green color band at maximum gray level value 16): Non-parametric
estimation (leave-one-out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 11796 99 0 0 1594 11
(n=13500) (87.4%)

CWAD wheat 36 4338 37 2 87 0
(n=4500) (96.4%)

Barley 0 52 4442 6 0 0
(n=4500) (98.7%)

Oats 1 0 85 4413 0 1
(n=4500) (98.1%)

Rye 915 86 0 0 3499 0
(n=4500) (77.8%)




Table EE8a. Confusion matrix of individual kernels for textural analysis (features extracted
from green color band at maximum gray level value 8): Normal estimation
(leave-one-out method)

Categories (to)- CWRS CWAD Barley QOats Rye
(from) | wheat wheat

CWRS wheat 10667 93 0 34 2706
(n=13500) (79.0%)

CWAD wheat 27 4113 0 16 344
(n=4500) (91.4%)

Barley 0 0 4500 0 0

(n =4500) (100.0%)

Oats 0 11 0 4489 0

(n =4500) (99.8%)

Rye 390 91 0 3 4016
(n=4500) (89.2%)

Table EE8b. Confusion matrix of individual kernels for textural analysis (features extracted
from green color band at maximum gray level value 8): Non-parametric
estimation (leave-one-out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 11905 162 0 0 1421 12
(n=13500) (88.2%)

CWAD wheat 48 4340 0 1 111 0
(n=4500) (96.4%)

Barley 0 0 4500 0 0 0
(n=4500) (100.0%)

Oats 0 1 0 4499 0 0
(n=4500) (100.0%)

Rye 747 157 0 0 3596 0
(n =4500) (79.9%)




Table EE9a. Confusion matrix of individual kernels for textural analysis (features extracted
from green color band at maximum gray level value 4): Normal estimation
(leave-one-out method)

Categories (to)- CWRS CWAD Barley Oats Rye
(from) ! wheat wheat

CWRS wheat 11494 129 2 5 1870
(n=13500) (85.1%)

CWAD wheat 57 3847 161 7 428
(n =4500) (85.5%)

Barley 2 76 4305 98 19
(n =4500) (95.7%)

Oats 0 V] 100 4400 0

(n =4500) (97.8%)

Rye 472 99 2 0 3927
(n=4500) (87.3%)

Table EE9b. Confusion matrix of individual kernels for textural analysis (features extracted
from green color band at maximum gray level value 4): Non-parametric
estimation (leave-one-out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 12263 137 0 1 1088 11
(n=13500) (90.8%)

CWAD wheat 48 4258 64 1 129 0
(n=4500) (94.6%)

Barley 0 69 4421 9 1 0
(n=4500) (98.2%)

Oats 0 0 80 4419 0 1
(n=4500) (98.2%)

Rye 657 141 0 0 3702 0
(n=4500) (82.3%)
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Table EE10a. Confusion matrix of individual kernels for textural analysis (features
extracted from blue color band at maximum gray level value 32):
Normal estimation (leave-one-out method)

Categories (to)~ CWRS CWAD Barley Oats Rye

(from) ! wheat wheat

CWRS wheat 6743 303 | 26 6427

(n=13500) (50.0%)

CWAD wheat 31 4173 89 26 181

(n=4500) (92.7%)

Barley 8 187 4232 71 2

(n = 4500) (94.0%)

Oats 0 1 65 4433 1

(n =4500) (98.5%)

Rye 185 126 1 4 4184

(n = 4500) (93.0%)
Table EE10b. Confusion matrix of individual kernels for textural analysis (features

extracted from blue color band at maximum gray level value 32): Non-
parametric estimation (leave-one-out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 11678 131 2 1 1680 8
(n=13500) (86.5%)

CWAD wheat 40 4368 46 1 44 1
(n=4500) (97.1%)

Barley 2 89 4387 22 0 0
(n =4500) (97.5%)

Oats 0 0 105 4394 0 1
(n=4500) (97.6%)

Rye 864 122 0 0 3514 0
(n=4500) (78.1%)
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Table EE11a. Confusion matrix of individual kernels for textural analysis (features
extracted from blue color band at maximum gray level value 16):
Normal estimation (leave-one-out method)

Categories (to)- CWRS CWAD Barley Oats Rye

(from) | wheat wheat

CWRS wheat 8633 190 0 27 4650

(n=13500) (64.0%)

CWAD wheat 39 4195 93 24 149

(n=4500) (93.2%)

Barley 7 164 4242 84 3

(n=4500) (94.3%)

Oats 0 0 68 4431 1

(n=4500) (98.5%)

Rye 286 95 | 6 4112

(n=4500) (91.4%)
Table EE11b. Confusion matrix of individual kernels for textural analysis (features

extracted from blue color band at maximum gray level value 16): Non-
parametric estimation (leave-one-out method) with k=5

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 11912 111 2 1 1467 7
(n=13500) (88.2%)

CWAD wheat 35 4365 43 2 53 2
(n=4500) (97.0%)

Barley 1 75 4405 19 0 0
(n = 4500) (97.9%)

Oats 0 2 95 4402 0 1
(n=4500) (97.8%)

Rye 897 86 0 0 3517 0
(n=4500) (78.2%)




Table EE12a.

Confusion matrix of individual kernels for textural analysis (features
extracted from blue color band at maximum gray level value 8): Normal

estimation (leave-one-out method)

Categories (to)~ CWRS CWAD Barley Qats Rye

(from) ! wheat wheat

CWRS wheat 10023 121 0 56 3300

(n=13500) (74.2%)

CWAD wheat 34 4195 101 36 134

(n=4500) (93.2%)

Barley 7 144 4216 4

(n=4500) (93.7%)

Oats 0 1 80 4417 2

(n=4500) (98.2%)

Rye 344 75 1 4067

(n = 4500) (90.4%)
Table EE12b. Confusion matrix of individual kernels for textural analysis (features

extracted from blue color band at maximum gray level value 8): Non-

parametric estimation (leave-one-out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 11994 112 0 2 1381 11
(n=13500) (88.8%)

CWAD wheat 20 4374 47 4 54 1
(n =4500) (97.2%)

Barley 1 62 4415 22 0 0
(n =4500) (98.1%)

QOats 0 0 113 4386 0 1
(n=4500) (97.5%)

Rye 757 119 0 0 3624 0
(n=4500) (80.5%)




Table EE13a.

Confusion matrix of individual kernels for textural analysis (features
extracted from blue color band at maximum gray level value 4): Normal
estimation (leave-one-out method)

Categories (to)~ CWRS CWAD Barley Oats Rye

(from) | wheat wheat

CWRS wheat 11108 202 0 25 2165

(n=13500) (82.3%)

CWAD wheat 46 4134 120 45 155

(n=4500) (91.9%)

Barley 5 106 4284 103 2

(n =4500) (95.2%)

Oats 0 0 57 4443 0

(n=4500) (98.7%)

Rye 390 113 0 6 3991

(n=4500) (88.7%)
Table EE13b. Confusion matrix of individual kernels for textural analysis (features

extracted from blue color band at maximum gray level value 4): Non-
parametric estimation (leave-one-out method) with k=5

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 12443 139 0 0 911 7
(n=13500) (92.2%)

CWAD wheat 40 4330 51 2 75 2
(n=4500) (96.2%)

Barley 0 73 4396 27 0 4
(n=4500) (97.7%)

Oats 0 1 89 4410 0 0
(n=4500) (98.0%)

Rye 648 132 0 0 3720 0
(n=4500) (82.7%)




Table EE14a.

Confusion matrix of individual kernels for textural analysis (features
extracted from black & white color at maximum gray level value 32):
Normal estimation (leave-one-out method)

Categories (to)~ CWRS CWAD Barley Oats Rye

(from) | wheat wheat

CWRS wheat 9441 150 0 20 3889

(n=13500) (69.9%)

CWAD wheat 41 3940 71 20 428

(n=4500) (87.6%)

Barley 2 131 4312 45 10

(n=4500) (95.8%)

Oats 1 3 41 4455 0

(n = 4500) (99.0%)

Rye 393 114 1 1 3991

(n=4500) (88.7%)
Table EE14b. Confusion matrix of individual kernels for textural analysis (features

extracted from black & white color at maximum gray level value 32):
Non-parametric estimation (leave-one-out method) with k=5

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 11547 147 0 0 1795 11
(n = 13500) (85.5%)

CWAD wheat 47 4317 45 0 91 0
(n=4500) (95.9%)

Barley 0 57 4439 3 0 1
(n =4500) (98.6%)

Oats 0 0 51 4439 0 0
(n =4500) (98.6%)

Rye 976 123 0 0 3401 0
(1 =4500) (75.6%)




Table EE15a. Confusion matrix of individual kernels for textural analysis (features
extracted from black & white color at maximum gray level value 16):
Normal estimation (leave-one-out method)

Categories (to)- CWRS CWAD Barley Oats Rye

(from) | wheat wheat

CWRS wheat 10076 127 0 27 3270

(n=13500) (74.6%)

CWAD wheat 37 4035 68 14 346

(n=4500) (89.7%)

Barley 1 129 4273 90 7

(n =4500) (95.0%)

Oats 0 3 51 4446 0

(n=4500) (98.8%)

Rye 398 95 0 2 4005

(n = 4500) (89.0%)
Table EE15b. Confusion matrix of individual kernels for textural analysis (features

extracted from black & white color at maximum gray level value 16):
Non-parametric estimation (leave-one-out method) with k=5

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 11731 142 1 0 1611 15
(n=13500) (86.9%)

CWAD wheat 40 4350 39 I 70 0
(n=4500) (96.7%)

Barley 0 59 4438 3 0 0
(n=4500) (98.6%)

Qats 0 0 90 4410 0 0
(n=4500) (98.0%)

Rye 903 110 0 0 3487 0
(n=4500) (77.5%)




Table EE16a.

Confusion matrix of individual kernels for textural analysis (features
extracted from black & white color at maximum gray level value 8):
Normal estimation (leave-one-out method)

Categories (to)» CWRS CWAD Barley QOats Rye

(from) ! wheat wheat

CWRS wheat 10588 93 0 45 2774

(n=13500) (78.4%)

CWAD wheat 34 4003 95 353

(n=4500) (89.0%)

Barley 3 100 4278 10

(n=4500) (95.1%)

Oats 0 1 62 4437 0

(n=4500) (98.6%)

Rye 414 82 0 4003

(n=4500) (89.0%)
Table EE16b. Confusion matrix of individual kernels for textural analysis (features

extracted from black & white color at maximum gray level value 8):
Non-parametric estimation (leave-one-out method) with k=5

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 11948 180 0 0 1361 11
(n=13500) (88.5%)

CWAD wheat 32 4359 32 1 76 0
(n=4500) (96.9%)

Barley 0 56 4439 5 0 0
(n=4500) (98.6%)

Oats 0 0 95 4405 0 0
(n = 4500) (98.0%)

Rye 763 165 0 0 3572 0
(n =4500) (79.4%)




Table EE17a.

Confusion matrix of individual kernels for textural analysis (features
extracted from black & white color at maximum gray level value 4):
Normal estimation (leave-one-out method)

Categories (to)-~ CWRS CWAD Barley Oats Rye

(from) ! wheat wheat

CWRS wheat 11475 150 0 16 1859

(n=13500) (85.0%)

CWAD wheat 48 3913 144 384

(n =4500) (87.0%)

Barley 3 99 4289 93 16

(n=4500) (95.3%)

Oats 0 4 131 4365 0

(n=4500) (97.0%)

Rye 456 114 3 0 3927

(n=4500) (87.3%)
Table EE17b. Confusion matrix of individual kernels for textural analysis (features

extracted from black & white color at maximum gray level value 4):
Non-parametric estimation (leave-one-out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 12230 125 0 1 1133 11
(n=13500) (90.6%)

CWAD wheat 49 4284 58 2 107 0
(n=4500) (95.2%)

Barley 0 74 4418 7 0 1
(n =4500) (98.2%)

Oats 0 0 87 4413 0 0
(n=4500) (98.1%)

Rye 711 166 0 0 3623 0
(n=4500) (80.5%)
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Table EE18a. Confusion matrix of individual kernels for textural analysis (features
extracted from (3R+2G+1B)/6 at maximum gray level value 32): Normal
estimation (eave-one-out method)

Categories (to)~ CWRS CWAD Barley Oats Rye

(from) | wheat wheat

CWRS wheat 9795 174 0 19 3512

(n=13500) (72.6%)

CWAD wheat 49 3886 61 13 491

(n =4500) (86.4%)

Barley 0 113 4325 47 15

(n =4500) (96.1%)

Oats 1 2 40 4457 0

(n =4500) (99.0%)

Rye 442 109 0 0 3949

(n =4500) (87.8%)
Table EE18b. Confusion matrix of individual kerneis for textural analysis (features

extracted from (3R+2G+1B)/6 at maximum gray level value 32): Non-
parametric estimation (leave-one-out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 11531 108 0 0 1849 12
(n=13500) (85.4%)

CWAD wheat 43 4323 36 1 97 0
(n = 4500) (96.1%)

Barley 0 53 4446 1 0 0
(n=4500) (98.8%)

Oats 0 0 57 4442 0 1
(n=4500) (98.7%)

Rye 897 107 0 0 3496 0
(n=4500) (77.7%)




Table EE19a.

Confusion matrix of individual kernels for textural analysis (features
extracted from (3R+2G+1B)/6 at maximum gray level value 16): Normal

estimation (leave-one-out method)

Categories (to)~ CWRS CWAD Barley Oats Rye

(from) ! wheat wheat

CWRS wheat 10297 135 0 31 3037

(n=13500) (76.3%)

CWAD wheat 47 3998 58 12 385

(n = 4500) (88.8%)

Barley 0 106 4289 93 12

(n=4500) (95.3%)

Oats 0 2 53 4445 0

(n = 4500) (98.8%)

Rye 466 99 0 1 3934

(n = 4500) (87.4%)
Table EE19b. Confusion matrix of individual kernels for textural analysis (features

extracted from (3R+2G+1B)/6 at maximum gray level value 16): Non-
parametric estimation (leave-one-out method) with k=5

Categories (to)~ CWRS CwAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 11737 127 0 0 1626 10
(n=13500) (86.9%)

CWAD wheat 40 4351 37 1 71 0
(n=4500) (96.7%)

Barley 0 55 4439 6 0 0
(n =4500) (98.6%)

Oats 0 0 78 4422 0 0
(n=4500) (98.3%)

Rye 919 104 0 0 3477 0
(n =4500) (77.3%)




Table EE20a. Confusion matrix of individual kernels for textural analysis (features
extracted from (3R+2G+1B)/6 at maximum gray level value 8): Normal
estimation (leave-one-out method)

Categories (to)~ CWRS CWAD Barley Oats Rye

(from) | wheat wheat

CWRS wheat 10666 106 0 31 2697

(n=13500) (79.0%)

CWAD wheat 27 4136 0 17 320

(n=4500) (91.9%)

Barley 0 0 4500 0 0

(n=4500) (100.0%)

Oats 0 10 0 4490 0

(n=4500) (99.8%)

Rye 441 86 0 2 3971

(n=4500) (88.2%)
Table EE20b. Confusion matrix of individual kernels for textural analysis (features

extracted from (3R+2G+1B)/6 at maximum gray level value 8): Non-
parametric estimation (leave-one-out method) with k=5

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 11856 171 0 0 1457 16
(n=13500) (87.8%)

CWAD wheat 36 4359 0 1 104 0
(n=4500) (96.9%)

Bariey 0 0 4500 0 0 0
(n=4500) (100.0%)

QOats 0 1 0 4499 0 0
(n = 4500) (100.0%)

Rye 746 150 0 0 3604 0
(n=4500) (80.1%)




Table EE21a.

Confusion matrix of individual kernels for textural analysis (features
extracted from (3R+2G+1B)/6 at maximum gray level value 4): Normal

estimation (leave-one-out method)

Categories (to)- CWRS CWAD Barley Rye

(from) ! wheat wheat

CWRS wheat 11261 98 0 2132

(n=13500) (83.4%)

CWAD wheat 75 3934 0 481

(n=4500) (87.4%)

Barley 0 0 4500 0

(n=4500) (100.0%)

Oats 0 22 0 0

(n=4500) (99.5%)

Rye 475 96 0 3929

(n =4500) (87.3%)
Table EE21b. Confusion matrix of individual kernels for textural analysis (features

extracted from (3R+2G+1B)/6 at maximum gray level value 4): Non-
parametric estimation (leave-one-out method) with k=5

Categories (to)- CWRS CWAD Barley Rye Other
(from) | wheat wheat

CWRS wheat 12117 192 0 1173 18
(n=13500) (89.8%)

CWAD wheat 57 4316 0 127 0
(n =4500) (95.9%)

Barley 0 0 4500 0 0
(n =4500) (100.0%)

Qats 0 1 0 0 0
(n=4500)

Rye 643 160 0 3697 0
(n =4500) (82.2%)




Table EE22a.

Confusion matrix of individual kernels for textural analysis (features
extracted from (2R+1G+3B)/6 at maximum gray level value 32): Normal

estimation (leave-one-out method)

Categories (to)~ CWRS CWAD Barley Oats Rye

(from) ! wheat wheat

CWRS wheat 9190 137 0 33 4140

(n=13560) (68.1%)

CWAD wheat 46 3971 88 23 372

(n =4500) (88.2%)

Barley 4 145 4291 54 6

(n=4500) (95.4%)

QOats 0 1 44 4455 0

(n =4500) (99.0%)

Rye 388 110 2 1 3999

(n = 4500) (88.9%)
Table EE22b. Confusion matrix of individual kernels for textural analysis (features

extracted from (2R+1G+3B)/6 at maximum gray level value 32): Non-

parametric estimation (leave-one-out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 11601 143 0 0 1745 11
(n=13500) (85.9%)

CWAD wheat 41 4351 24 1 83 0
(n=4500) (96.7%)

Barley 0 65 4430 5 0 0
{n = 4500) (98.4%)

Oats 1 0 60 4439 0 0
(n =4500) (98.6%)

Rye 1001 132 0 0 3367 0
(n =4500) (74.8%)




Table EF23a.

Confusion matrix of individual kernels for textural analysis (features
extracted from (2R+1G+3B)/6 at maximum gray level value 16): Normal
estimation (leave-one-out method)

Categories (to)~ CWRS CWAD Barley Oats Rye

(from) | wheat wheat

CWRS wheat 9899 126 0 31 3444

(n=13500) (73.3%)

CWAD wheat 41 4078 64 24 293

(n=4500) (90.6%)

Barley 4 129 4271 91 5

(n =4500) (94.9%)

Oats 0 2 56 4442 0

(n=4500) (98.7%)

Rye 387 96 0 3 4014

(n =4500) (89.2%)
Table EE23b. Confusion matrix of individual kernels for textural analysis (features

extracted from (2R+1G+3B)/6 at maximum gray level value 16): Non-
parametric estimation (leave-one-out method) with k=5

Categories (to)-~ CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 11880 116 1 0 1493 10
(n=13500) (88.0%)

CWAD wheat 43 4358 30 0 66 3
(n =4500) (96.8%)

Barley 0 60 4430 10 0 0
(n=4500) (98.4%)

Oats 0 0 84 4416 0 0
(n =4500) (98.1%)

Rye 893 120 0 0 3487 0
(n=4500) (77.5%)
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Table EE24a. Confusion matrix of individual kernels for textural analysis (features
extracted from (2R+1G+3B)/6 at maximum gray level value 8): Normal
estimation (leave-one-out method)

Categories (to)~ CWRS CWAD Barley QOats Rye

(from) ! wheat wheat

CWRS wheat 10468 118 0 51 2863

(n=13500) (77.5%)

CWAD wheat 44 4092 90 20 254

(n=4500) (90.9%)

Barley 4 97 4311 80 8

(n=4590) (95.8%)

Oats 0 0 50 4450 0

(n=4500) (98.9%)

Rye 408 72 1 1 4018

(n=4500) (89.3%)
Table EE24b. Confusion matrix of individual kernels for textural analysis (features

extracted from (2R+1G+3B)/6 at maximum gray level value 8): Non-
parametric estimation (leave-one-out method) with k=5

Categories (to)- CWRS CWAD Barley QOats Rye Other
(from) ! wheat wheat

CWRS wheat 12032 177 0 0 1271 20
(n=13500) (89.1%)

CWAD wheat 45 4372 40 0 43 0
(n=4500) (97.2%)

Barley 0 56 4431 13 0 0
(n=4500) (98.5%)

Oats 0 0 89 4411 0 0
(n=4500) (98.0%)

Rye 775 155 0 0 3570 0
(n =4500) (79.3%)




Table EE25a.

Confusion matrix of individual kernels for textural analysis (features
extracted from (2R+1G+3B)/6 at maximum gray level value 4): Normal

estimation (leave-one-out method)

Categories (to)~ CWRS CWAD Barley Oats Rye

(from) | wheat wheat

CWRS wheat 11422 201 1 17 1859

(n=13500) (84.6%)

CWAD wheat 37 4075 120 16 252

(n =4500) (90.6%)

Barley 4 128 4270 87

(n = 4500) (94.9%)

Oats 0 8 120 4372

(n=4500) (97.2%)

Rye 450 128 2 0 3920

(n=4500) (87.1%)
Table EE25b. Confusion matrix of individual kernels for textural analysis (features

extracted from (2ZR+1G+3B)/6 at maximum gray level value 4): Non-

parametric estimation (leave-one-out method) with k=5

Categories (to)» CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 12284 147 0 0 1064 5
(n=13500) (91.0%)

CWAD wheat 56 4312 42 0 89 1
(n=4500) (95.8%)

Barley 0 72 4415 12 0 1
(n=4500) (98.1%)

Oats 0 0 82 4418 0 0
(n=4500) (98.2%)

Rye 712 151 0 0 3637 0
(n=4500) (80.8%)
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Table EE26a.

Confusion matrix of individual kernels for textural analysis (features
extracted from (1R+3G+2B)/6 at maximum gray level value 32): Normal

estimation (leave-one-out method)

Categories (to)~ CWRS CWAD Barley Oats Rye

(from) ! wheat wheat

CWRS wheat 9420 152 0 28 3900

(n=13500) (69.8%)

CWAD wheat 51 3982 81 372

(n =4500) (88.5%)

Barley 6 122 4304 62 6

(n=4500) (95.6%)

Oats 0 2 43 4455 0

(n =4500) (99.0%)

Rye 371 115 1 0 4013

(n =4500) (89.2%)
Table EE26b. Confusion matrix of individual kernels for textural analysis (features

extracted from (1R+3G+2B)/6 at maximum gray level value 32): Non-
parametric estimation (leave-one-out methed) with k=5

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) | wheat wheat

CWRS wheat 11643 128 0 0 1714 15
(n=13500) (86.2%)

CWAD wheat 41 4309 49 0 101 0
(n=4500) (95.8%)

Barley 0 53 4446 0 0 1
(n =4500) (98.8%)

Oats 0 0 70 4430 0 0
(n =4500) (98.4%)

Rye 912 115 0 0 3473 0
(n =4500) (77.2%)




Table EE27a.

Confusion matrix of individual kernels for textural analysis (features
extracted from (1R+3G+2B)/6 at maximum gray level value 16): Normal
estimation (leave-one-out method)

Categories (to)~ CWRS CWAD Barley Oats Rye

(from) ! wheat wheat

CWRS wheat 9984 123 0 33 3360

(n = 13500) (74.0%)

CWAD wheat 44 4068 78 21 289

(n =4500) (90.4%)

Barley 2 137 4270 86 5

(n =4500) (94.9%)

Oats 0 3 49 4448 0

(n =4500) (98.8%)

Rye 368 113 0 1 4018

(n=4500) (89.3%)

Table EE27b. Confusion matrix of individual kernels for textural analysis

(1R+3G+2B)/6 at maximum gray level value 16): Non-parametric
estimation (leave-one-out method) with k=5

Categories (to)~ CWRS CWAD Barley Oats Rye Other

(from) | wheat wheat

CWRS wheat 11822 134 0 0 1534 10

(n=13500) (87.6%)

CWAD wheat 34 4356 39 2 68 1

(n=4500) (96.8%)

Barley 0 57 4436 7 0 0

(n=4500) (98.6%)

Oats 0 0 93 4406 0 1

(n=4500) (97.9%)

Rye 871 130 0 0 3499 0

(n=4500) (77.8%)
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Table EE28a. Confusion matrix of individual kernels for textural analysis (features
extracted from (IR+3G+2B)/6 at maximum gray level value 8): Normal
estimation (leave-one-out method)

Categories (to)~ CWRS CWAD Barley QOats Rye

(from) | wheat wheat

CWRS wheat 10557 102 0 51 2790

(n=13500) (78.2%)

CWAD wheat 35 4079 89 16 281

(n = 4500) (90.6%)

Barley 2 109 4275 105 9

(n=4500) (95.0%)

Oats 0 0 60 4440 0

(n=4500) (98.7%)

Rye 404 73 0 1 4022

(n =4500) (89.4%)
Table EE28b. Confusion matrix of individual kernels for textural analysis (features

extracted from (1R+3G+2B)/6 at maximum gray level value 8): Non-
parametric estimation (leave-one-out method) with k=5

Categories (to)~ CWRS CWAD Barley QOats Rye Other
(from) | wheat wheat

CWRS wheat 12053 175 0 0 1252 20
(n=13500) (89.3%)

CWAD wheat 44 4347 50 0 59 0
(n=4500) (96.6%)

Barley 0 53 4443 3 1 0
(n=4500) (98.7%)

Qats 0 0 87 4413 0 0
(n=4500) (98.1%)

Rye 795 171 0 0 3534 0
(n =4500) (78.5%)




Table EE29a. Confusion matrix of individual kernels for textural analysis (features
extracted from (1R+3G+2B)/6 at maximum gray level value 4): Normal
estimation (leave-one-out method)

Categories (to)» CWRS CWAD Barley Oats Rye

(from) ! wheat wheat

CWRS wheat 11486 190 1 16 1807

(n=13500) (85.1%)

CWAD wheat 35 4012 146 11 296

(n = 4500) (89.2%)

Barley 4 127 4261 94 14

(n=4500) (94.7%)

Oats 0 8 124 4368 0

(n=4500) (97.1%)

Rye 448 131 2 0 3919

(n=4500) (87.1%)
Table EE129b. Confusion matrix of individual kernels for textural analysis (features

extracted from (1IR+3G+2B)/6 at maximum gray level value 4): Non-
parametric estimation (leave-one-out method) with k=5

Categories (to)- CWRS CWAD Barley Oats Rye Other
(from) ! wheat wheat

CWRS wheat 12302 162 0 0 1026 10
(n=13500) (91.1%)

CWAD wheat 65 4296 48 2 89 0
(n = 4500) (95.5%)

Barley 0 80 4405 15 0 0
(n=4500) (97.9%)

Oats 0 0 82 4418 0 0
(n=4500) (98.2%)

Rye 662 154 0 0 3683 1
(n=4500) (81.8%)
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Table Fla  Comparison of classification accuracies of bulk samples of cereal grains with
different number of textural features, extracted from red color band at
maximum gray level value 32: Hold out method

Non-parametric Estimation
% accuracy - CWRS CWAD Barley Oats Rye Mean
Features | wheat wheat accuracy
First 5 features 95.6 100.0 100.0 100.0 86.7 96.5
First 10 features  100.0 100.0 100.0 100.0 100.0 100.0
First 15 features  100.0 100.0 100.0 100.0 93.3 98.7
First 20 features  100.0 100.0 933 100.0 86.7 96.0
All 25 features 100.0 100.0 100.0 100.0 100.0 100.0
Normal Estimation

First 5 features 97.8 100.0 100.0 100.0 80.0 95.6
First 10 features  100.0 100.0 93.3 100.0 100.0 98.7
First 1S features  100.0 100.0 86.7 100.0 93.3 96.0
First 20 features  100.0 100.0 66.7 100.0 93.3 92.0
All 25 features 100.0 100.0 66.7 100.0 93.3 92.0




Table F1Ib  Comparison of classification accuracies of bulk samples of cereal grains with
different number of textural features, extracted from red color band at
maximum gray level value 32: Leave-one-out method

Non-parametric Estimation

% accuracy ~ CWRS CWAD Barley Oats Rye Mean
Features | wheat wheat accuracy
First 5 features 90.7 98.7 100.0 100.0 93.3 96.5
First 10 features 97.3 100.0 100.0 100.0 100.0 99.5
First 15 features  98.7 100.0 100.0 100.0 100.0 99.7
First 20 features  99.1 100.0 100.0 100.0 100.0 99.8

All 25 features 99.6 100.0 100.0 100.0 100.0 99.9

Normal Estimation

First 5 features 87.1 100.0 98.7 100.0 92.0 95.6
First 10 features  98.7 100.0 100.0 100.0 98.7 99.5
First 15 features  98.7 100.0 100.0 100.0 98.7 99.5
First 20 features  100.0 100.0 100.0 100.0 98.7 99.7
All 25 features 100.0 100.0 100.0 100.0 100.0 100.0




Table F2a

Comparison of classification accuracies of bulk samples of cereal grains with
different number of color features: Hold out method

Non-parametric Estimation

% accuracy - CWRS CWAD Barley Oats Rye Mean
Features ! wheat wheat accuracy
First 5 features 100.0 100.0 100.0 100.0 100.0 100.0
First 10 features  100.0 100.0 100.0 100.0 100.0 100.0
First 15 features  100.0 100.0 100.0 100.0 100.0 100.0
All 18 features 100.0 100.0 100.0 100.0 100.0 100.0
Normal Estimation

First 5 features 100.0 93.3 93.3 86.7 100.0 94.7
First 10 features  100.0 100.0 80.0 86.7 100.0 93.3
First 15 features  100.0 93.3 80.0 80.0 100.0 90.7
All 18 features 100.0 93.3 80.0 73.3 100.0 89.3

Table F2b

different number of color features: Leave-one-out method

Comparison of classification accuracies of bulk samples of cereal grains with

Non-parametric Estimation

% accuracy - CWRS CWAD Barley Oats Rye Mean
Features | wheat wheat accuracy
First 5 features 99.6 100.0 100.0 100.0 100.0 99.9
First 10 features  100.0 100.0 100.0 100.0 100.0 100.0
First 15 features  100.0 98.7 100.0 100.0 100.0 99.7
All 18 features 100.0 98.7 100.0 100.0 100.0 99.7
Normal Estimation

First 5 features 99.6 96.0 973 97.3 100.0 98.0
First 10 features  99.6 98.7 98.7 98.7 100.0 99.1
First 15 features  99.6 100.0 98.7 98.7 100.0 99.4
All 18 features 99.6 98.7 98.7 98.7 100.0 99.1




Table F3a  Comparison of classification accuracies of individual kernels of cereal grains
with different number of morphological features: Hold out method

Non-parametric Estimation

% accuracy — CWRS CWAD Barley Oats Rye Mean
Features | wheat wheat accuracy
First 5 features 98.9 87.7 959 99.9 57.5 88.0
First 10 features  98.9 93.7 96.8 99.9 81.6 94.2
First 15 features  98.8 94.0 97.4 99.9 83.5 94.7

All 23 features 99.0 95.2 97.3 99.5 82.8 94.8

Normal Estimation

First 5 features 98.1 83.1 95.2 99.1 86.7 924
First 10 features  96.1 93.5 94 4 98.8 86.3 93.8
First 15 features  95.7 94.0 94.5 98.5 84.3 93.4
All 23 features 95.2 93.7 93.1 98.3 83.4 92.8

Table F3b Comparison of classification accuracies of individual kernels of cereal grains
with different number of morphological features: Leave-one-out method

Non-parametric Estimation

% accuracy - CWRS CWAD Barley Oats Rye Mean
Features | wheat wheat accuracy
First 5 features 99.0 85.0 97.1 100.0 88.1 93.8
First 10 features  98.9 91.6 97.9 100.0 91.6 96.0
First 15 features  99.0 91.5 98.2 99.8 91.2 95.9

All 23 features 99.1 92.1 97.6 99.7 90.9 95.9

Normal Estimation

First 5 features 98.5 79.8 98.5 99.2 86.8 92.6
First 10 features  97.6 91.8 98.0 98.8 87.3 94.7
First 15 features  97.3 91.5 97.1 98.6 85.6 94.0
All 23 features 96.9 91.7 95.9 98.7 85.8 93.8




Table F4a  Comparison of classification accuracies of individual kernels of cereal grains
with different number of textural features, extracted from green color band at
maximum gray level value 8: Hold out method

Non-parametric Estimation

% accuracy - CWRS CWAD Barley Oats Rye Mean
Features ! wheat wheat accuracy
First 5 features 83.0 91.9 99.9 100.0 54.9 85.9
First 10 features  84.5 95.9 100.0 100.0 68.9 89.9
First 15 features  85.2 98.2 100.0 100.0 76.3 92.0
First 20 features  86.7 97.8 100.0 100.0 76.6 92.2

All 25 features 87.6 98.1 100.0 100.0 74.1 92.0

Normal Estimation

First 5 features 84.0 91.3 99.9 99.9 58.8 86.8
First 10 features  84.2 96.3 100.0 100.0 74.4 91.0
First 15 features  84.2 95.8 100.0 100.0 73.3 90.7
First 20 features  82.0 93.6 100.0 100.0 80.1 91.1
All 25 features 84.5 94.6 100.0 100.0 81.3 92.1
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Table F4b  Comparison of classification accuracies of individual kernels of cereal grains
with different number of textural features, extracted from green color band at
maximum gray level value 8: Leave-one-out method

Non-parametric Estimation

% accuracy - CWRS CWAD Barley Oats Rye Mean
Features | wheat wheat accuracy
First 5 features 80.3 91.2 100.0 99.3 67.7 87.7
First 10 features  84.6 93.8 100.0 99.8 75.9 90.8
First 15 features 87.0 95.7 100.0 100.0 81.8 92.9
First 20 features 87.7 96.6 100.0 100.0 81.4 93.1

All 25 features 88.2 96.4 100.0 100.0 79.9 92.9

Normal Estimation

First 5 features 79.1 87.2 99.9 99.4 69.6 87.1
First 10 features  80.2 929 100.0 99.9 83.2 91.2
First 15 features  80.5 92.2 100.0 100.0 86.8 91.9
First 20 features  76.7 90.8 100.0 99.7 89.4 91.3
All 25 features 79.0 91.4 100.0 99.8 89.2 91.9




Table FSa  Comparison of classification accuracies of individual kernels of cereal grains
with different number of color features: Hold out method

Non-parametric Estimation

% accuracy - CWRS CWAD Barley Oats Rye Mean
Features ! wheat wheat accuracy
First 5 features 85.8 85.6 89.7 95.1 93.3 89.9
First 10 features  94.1 92.3 93.1 95.2 92.5 93.4
First 15 features  93.8 92.7 93.0 953 93.1 93.5

All 18 features 92.8 91.9 92.8 94.3 923 92.8

Normal Estimation

First 5 features 69.7 84.1 92.8 97.3 93.1 87.4
First 10 features  89.6 94.7 92.5 99.2 95.7 943
First 15 features  87.8 94.6 91.9 97.8 96.4 93.7
All 18 features 879 95.0 92.1 97.5 96.6 93.8

Table F5b  Comparison of classification accuracies of individual kernels of cereal grains
with different number of color features: Leave-one-out method

Non-parametric Estimation

% accuracy - CWRS CWAD Barley QOats Rye Mean
Features | wheat wheat accuracy
First 5 features 92.9 90.0 93.3 96.4 914 92.8
First 10 features  95.7 94.4 94.2 97.6 92.5 94.9
First 15 features  95.5 94.4 94.4 97.6 92.4 94.9

All 18 features 9.4 943 93.7 97.5 91.9 94 .4

Normal Estimation

First 5 features 874 853 91.7 95.9 91.6 90.4
First 10 features  80.7 93.1 894 97.6 94.2 91.0
First 15 features  83.2 92.6 89.1 97.6 93.8 91.3
All 18 features 83.8 92.6 89.4 97.5 93.6 91.4
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Table F6a  Comparison of classification accuracies of individual kernels of cereal grains
with different number of morphological and textural features (extracted from
green color at maximum gray level value 8): Hold out method

Non-parametric Estimation

% accuracy —~ CWRS CWAD Barley Oats Rye Mean
Features | wheat wheat accuracy
First 5 features 99.4 90.8 97.1 100.0 76.5 92.8
First 10 features 99.4 96.4 98.7 100.0 91.7 97.2
First 15 features 99.4 99.1 99.1 100.0 95.2 98.6
First 20 features  99.6 99.5 99.1 100.0 96.6 99.0
First 25 features  99.6 99.7 994 100.0 97.4 99.2
First 30 features  99.7 99.8 99.1 100.0 96.5 99.0
First 35 features  99.6 99.7 99.6 100.0 96.4 99.1
First 40 features  99.6 99.5 99.3 100.0 95.% 98.9
All 48 features 99.6 99.7 98.9 100.0 94.4 98.5

Normal Estimation

First 5 features 99.0 87.7 95.8 99.7 90.9 94.6
First 10 features 97.7 95.7 97.9 99.8 94.1 97.0
First 15 features  98.2 974 97.8 99.9 95.6 97.8
First 20 features  97.3 97.7 974 99.8 95.3 97.5
First 25 features  98.3 97.1 98.0 99.9 96.5 98.0
First 30 features  98.5 97.3 98.6 99.9 96.2 98.1
First 35 features  98.3 97.3 98.7 99.9 96.1 98.1
First 40 features  98.2 97.3 98.7 99.9 95.3 97.9
All 48 features 98.2 97.2 98.6 99.9 94.9 97.8




Table F6b  Comparison of classification accuracies of individual kernels of cereal grains
with different number of morphological and textural features (extracted from
green color at maximum gray level value 8): Leave-one-out method

Non-parametric Estimation

% accuracy - CWRS CWAD Barley Oats Rye Mean
Features ! wheat wheat accuracy
First 5 features 99.4 91.7 98.4 100.0 93.0 96.5
First 10 features 99.4 96.2 99.4 100.0 95.9 98.2
First 15 features 99.5 98.7 99.7 100.0 98.6 99.3
First 20 features  99.6 98.9 99.8 100.0 98.4 99.3
First 25 features 99.6 99.1 99.7 100.0 98.4 99.4
First 30 features  99.6 99.1 99.8 100.0 98.4 99.4
First 35 features 99.5 98.8 99.8 100.0 98.0 99.2
First 40 features  99.6 99.0 99.8 100.0 97.7 99.2
All 48 features 99.7 99.1 99.7 100.0 97.1 99.1

Normal Estimation

First 5 features 99.2 87.6 99.2 99.7 928 95.7
First 10 features  98.7 94.1 99.7 99.7 95.3 97.5
First 15 features 98.8 96.3 99.6 99.7 97.5 98.4
First 20 features  98.5 96.4 99.5 99.8 97.3 98.3
First 25 features  98.7 96.5 99.6 100.0 97.9 98.5
First 30 features 98.6 96.2 99.6 100.0 97.8 98.4
First 35 features 98.5 96.4 99.5 100.0 97.5 98.4
First 40 features 98.6 96.4 99.5 100.0 974 98.4
All 48 features 98.5 95.8 99.5 100.0 96.9 98.1




Table F7a  Comparison of classification accuracies of individual kernels of cereal grains
with different number of morphological and color features: Hold out method

Non-parametric Estimation

% accuracy - CWRS CWAD Barley Oats Rye Mean
Features | wheat wheat accuracy
First 5 features 98.9 87.7 95.9 99.9 57.5 88.0
First 10 features  99.8 99.3 98.7 100.0 98.6 923
First 15 features  99.7 99.7 98.9 99.9 98.9 99.4
First 20 features  99.6 99.7 99.1 99.9 99.1 99.5
First 25 features  99.6 99.8 99.4 99.9 99.1 99.6
First 30 features  99.5 99.8 99.3 99.9 98.8 99.5
First 35 features  99.5 99.9 99.3 99.9 98.6 99.4

All 41 features 99.5 99.8 99.0 99.9 98.3 99.3

Normal Estimation

First § features 98.1 83.1 95.2 99.1 86.7 92.4
First 10 features  93.6 96.7 95.9 99.6 98.9 96.9
First 15 features  98.0 98.3 97.3 99.7 98.6 98.4
First 20 features  99.0 98.3 97.2 99.8 98.8 98.6
First 25 features  99.1 98.3 98.0 99.8 98.8 98.8
First 30 features  99.0 98.9 98.4 99.8 98.7 99.0
First 35 features  98.8 98.4 97.7 99.8 98.1 98.6
All 41 features 98.8 98.0 97.9 99.8 98.1 98.5
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Table F7b  Comparison of classification accuracies of individual kernels of cereal grains
with different number of morphological and color features: Leave-one-out

method
Non-parametric Estimation
% accuracy — CWRS CWAD Barley Oats Rye Mean
Features | wheat wheat accuracy
First 5 features 99.0 85.0 97.1 100.0 88.1 93.8
First 10 features  99.7 98.9 99.4 100.0 98.4 99.3
First 15 features  99.8 99.4 99.7 100.0 99.0 99.6
First 20 features  99.8 99.6 99.6 100.0 99.2 99.7
First 25 features  99.8 99.6 99.7 100.0 99.0 99.6
First 30 features 99.8 96.6 99.7 100.0 98.8 99.6
First 35 features  99.8 99.4 99.6 100.0 98.4 99.4
All 41 features 99.8 99.4 99.5 100.0 97.9 99.3
Normal Estimation

First 5 features 98.5 79.8 98.5 99.2 86.8 92.6
First 10 features  98.7 96.8 993 99.5 97.8 98.4
First 15 features  99.1 98.0 99.4 99.6 98.4 98.9
First 20 features  99.2 97.7 99.4 99.8 98.5 98.9
First 25 features  99.2 97.6 99.3 99.8 98.4 98.9
First 30 features  99.1 97.4 99.2 99.9 98.5 98.8
First 35 features  98.9 97.2 98.7 99.8 08.4 98.6
All 41 features 98.8 96.7 98.7 99.8 98.1 98.4




Table F8a  Comparison of classification accuracies of individual kernels of cereal grains
with different number of color and textural(extracted from green color at
maximum gray level value 8) features: Hold out method

Non-parametric Estimation

% accuracy - CWRS CWAD Barley Oats Rye Mean
Features ! wheat wheat accuracy
First 5 features 91.2 76.4 76.3 99.5 95.7 87.8
First 10 features  95.5 98.1 98.9 100.0 954 97.6
First 15 features  98.5 99.4 99.7 100.0 943 98.4
First 20 features 98.6 99.3 99.3 100.0 94.8 98.4
First 25 features  98.7 994 99.2 100.0 949 98.4
First 30 features  98.8 99.9 99.3 100.0 95.5 98.7
First 35 features  98.2 99.7 99.1 100.0 95.0 98.4

All 43 features 98.2 99.5 98.9 100.0 94.3 98.2

Normal Estimation

First 5 features 91.8 73.7 79.5 99.3 93.2 87.5
First 10 features  87.6 96.4 97.7 100.0 95.2 95.4
First 15 features  97.6 98.7 98.8 100.0 943 97.9
First 20 features 97.1 98.9 98.6 100.0 94.3 97.8
First 25 features  95.5 98.5 98.7 100.0 96.5 97.9
First 30 features  96.2 99.0 98.5 160.0 96.7 98.1
First 35 features  96.0 99.2 98.4 100.0 97.2 98.2
All 43 features 95.9 99.2 98.5 100.0 973 98.2




Table F8b  Comparison of classification accuracies of individual kernels of cereal grains
with different number of color and textural (extracted from green color at
maximum gray level value 8) features: Leave-one-out method

Non-parametric Estimation

% accuracy - CWRS CWAD Barley QOats Rye Mean
Features | wheat wheat accuracy
First 5 features 89.0 80.9 88.5 95.4 90.6 88.9
First 10 features  96.9 98.1 98.4 98.3 94.0 97.2
First 15 features 97.6 99.4 99.5 98.7 95.0 98.0
First 20 features 97.9 99.4 99.4 99.4 95.6 98.3
First 25 features  98.4 99.4 994 99.5 95.0 98.3
First 30 features 98.6 99.5 994 99.6 95.2 98.5
First 35 features 98.4 99.5 99.2 99.5 948 98.3

All 43 features 98.3 99.3 993 99.5 94.2 98.1

Normal Estimation

First 5 features  87.9 74.2 86.6 95.5 89.6 86.8
First 10 features  93.3 94.8 95.8 98.4 95.4 95.5
First 15 features  94.7 98.4 97.5 98.8 96.7 97.2
First 20 features  94.3 97.9 98.0 99.1 96.7 97.2
First 25 features  91.9 97.8 98.0 98.9 97.7 96.9
First 30 features 92.4 98.1 98.0 99.0 974 97.0
First 35 features  93.1 97.8 97.9 99.3 97.4 97.1
All 43 features 92.5 98.0 98.0 99.4 97.5 97.1




Table F9a  Comparison of classification accuracies of individual kernels of cereal grains
with different number of morphological, color, and textural features (extracted
from green color at maximum gray level value 8): Hold out method

Non-parametric Estimation

% accuracy - CWRS CWAD Barley Oats Rye Mean
Features | wheat wheat accuracy
First 5 features 99.4 90.8 97.1 100.0 76.5 92.8
First 10 features  99.9 99.5 99.1 100.0 98.7 99.4
First 15 features  100.0 99.6 99.2 100.0 98.9 99.5
First 20 features  100.0 99.9 99.5 100.0 99.1 99.7
First 25 features  99.9 99.9 99.7 100.0 99.5 99.8
First 30 features  99.9 99.9 99.6 100.0 99.7 99.8
First 35 features  99.8 99.9 99.7 100.0 993 99.8
First 40 features  99.9 99.9 99.7 100.0 99.5 99.8
First 50 features  99.9 99.9 99.7 100.0 99.3 99.8
All 66 features 99.7 99.9 99.7 100.0 99.1 99.7

Normal Estimation

First 5 features 99.0 87.7 95.8 99.7 90.9 94.6
First 10 features  99.3 98.8 97.9 99.9 99.3 98.9
First 15 features 99.4 98.7 97.9 99.9 99.2 99.0
First 20 features  99.4 98.8 98.9 99.9 99.3 99.3
First 25 features  99.5 99.1 98.9 99.9 99.1 993
First 30 features  99.4 99.1 98.9 99.9 99.3 99.3
First 35 features  99.3 99.0 98.9 99.9 98.9 99.2
First 40 features 99.4 98.9 98.8 99.9 99.2 99.2
First 50 features 99.4 98.8 99.3 99.9 99.2 99.3
All 66 features 99.0 98.6 99.2 99.9 99.0 99.2
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Table F9b  Comparison of classification accuracies of individual kernels of cereal grains
with different number of morphological, color, and textural features (extracted
from green color at maximum gray level value 8): Leave-one-out method

Non-parametric Estimation

% accuracy - CWRS CWAD Barley Oats Rye Mean
Features | wheat wheat accuracy
first 5 features 99.4 91.7 98.4 100.0 93.0 96.5
First 10 features  99.8 99.1 99.7 100.0 98.6 994
First !5 fcatures  99.8 99.6 99.9 100.0 99.3 99.7
First 20 features  99.8 99.8 99.9 100.0 99.4 99.8
First 25 features  99.8 99.8 100.0 100.0 99.4 99.8
First 30 features 99.8 99.9 100.0 100.0 99.6 99.9
First 35 features  99.9 99.9 100.0 100.0 99.6 99.9
First 40 features  99.9 99.9 100.0 100.0 99.6 99.9
rirst 50 features  99.4 98.8 99.3 99.9 99.2 99.3
All 66 features 99.00 98.6 99.2 99.9 99.0 99.2

Normal Estimation

First 5 features 99.2 87.6 99.2 99.7 92.84 95.7
First 10 features  99.6 98.4 99.8 99.9 98.6 99.3
First 15 features  99.4 98.8 99.8 100.0 99.0 99.4
First 20 features  99.3 98.8 99.8 100.0 99.4 99.5
First 25 features  99.2 98.6 99.9 100.0 99.4 994
First 30 features  99.2 98.5 99.9 100.0 99.4 99.4
First 35 features  99.1 98.3 99.9 100.0 994 993
First 40 features  99.2 98.5 99.9 100.0 99.5 994
First 50 features  99.1 98.3 99.9 100.0 99.4 99.3
All 66 features 99.0 97.9 99.9 100.0 99.3 99.2
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