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ABSTRACT 

Digital image analysis (DIA) algorithms were developed to facilitate classification 

of bulk sarnples of Canada Western Red Spring (CWRS) wheat, Canada Western Arnber 

D u m  (CWAD) wheat, barley, oats, and rye using t e d  and color features of the grains. 

To classi@ individual kemels of CWRS wheat, CWAD wheat, barley, oats. and rye, DIA 

a l g o r i h s  were developed based on morphological, textural, and color features of the grains. 

The textural features of bulk samples and individu1 kernels were extracted from 

different colors (e.g., red, green, or blue) and color band combinations [e.g., black&white 

{(R+G+B)/3)), (3 R+2G+ 1 B)/6, (ZR+ 1 G+3 B)/6, or ( 1 R+3G+2B)/6] of images to determine 

the color or color band combination that gave the highest classification accuracies in cereai 

grains. For bulk sarnples, the texturd features extracted fiom the red color band at maximum 

gray level value 32 gave the highest classification accuracies in cereal grains. The mean 

accuracy which was the average of the classification accuracies of the cereal grains at a 

maximum gray level value, was 100.0% when tested on an independent data set. For 

individual kernels, the texturd features extracted fiom the green color band at ma~imum 

gray level value 8 gave the highest classification accuracies in cereal grains. The mean 

accuracies were 92.0 and 92.9% when the texture mode1 with the first 15 most significant 

features was tested on an independent data set and on the training data set. respectively . 

When the original bulk images were partitioned into sub-images and textural or color 

features extracted fiom the sub-images were used, the classification accuracies of cereal 

. . 
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gains decreased compared to those based on the original images. The mean accuracy was 

100.0% when color features of buik samples were used for classification of cereal grains in 

an independent data set. 

For classification of individual kemels of cereal grains, the color model with the first 

10 most significant color features gave mean accuracies of 93.4 and 94.9% when tested on 

an independent data set and on the training data set, respectively. The morphological model 

with the %t 10 most significant morphological features gave mean accuracies of 94.2 and 

96.0% when tested on an independent data set and on the training data set, respectively. The 

mean accuracies of 98.6 and 99.3% were achieved when the morphology-texture model with 

the first 1 5 most significant features was used to test on an independent data set and on the 

training data set, respectively. When the morphology-color model (with the first 15 most 

significant features) was tested on an independent data set and on the training data set, the 

mean accuracies were 99.4 and 99.6%, respectively. Similady, using the texture-color model 

(with the first 15 most significant features) the mean accuracies were 98.4 and 98.0%. 

respectively for an independent data set and the training data set. The highest classification 

accuracies were achieved when the morphology-texture-color model was used. The mean 

accuracies using the fmt 20 most significant features in the morphology-texture-color mode1 

were 99.7 and 99.8% when tested on an independent data set and on the training data set, 

respectively . 
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CHAPTER 1: INTRODUCTION 

Canada produced an average of 55 Mt (million tonnes) of grains and oilseeds worth 

about $ 6 billion annualIy during the years fiom 1983 to 1992 (Canada Grains Council 

1994). About 70% of these grains are exported through a grain collection, handling, and 

shipping system. The producers store their grain on hrms  and usuaily deiiver it in farm- 

trucks to primary (country) elevators (grain handling facilities). The grain is graded by 

visual inspection and cornparison with standard samples (Anonymous 1 994). The standard 

samples are prepared every year to reflect the year-to-year variation in the environmental 

conditions during harvest. Grain rnoves f?om primary elevator to terminal elevator by train. 

In a terminai elevator, grain is received, graded, cleaned, binned, and shipped 

according to buyers' (importing countries') specifications. At the receiving end, it is 

necessary to rapidly identfi the grain type in a rail car so that the grain can be unloaded into 

the unloading pit. A machine vision system (MVS) cm be installed for rapid identification 

of different cereal grains (e.g., CWRS wheat, CWAD wheat, barley, oats, and rye). The 

MVS has to identiQ the principal grain type; hence bulk sarnple images of cereal grains can 

be used to solve the problem. In the cleanhg section, the grain is inspected before and f ie r  

it is passed through the cleaner or a battery of cleaners and the cleaning performance is 

determined. Such information can be used to optimize the selection and adjustment of the 

cleaning machines resulting in increased cleaning throughput and enhanced recovery of 

salvageable grains. The grain is exported (shipped) according to buyers' (importing 



countries') specifÏcations. In some cases. if the grain is over cleaned, uncleaned and over 

cleaned grains are blended to meet buyers' specifications. Both at the cleaning and the 

shipping sections, the M V S  can be installed to determine the cleaning performance of the 

cleaner (or a battery of cleaners) and the visual quality of the grain being exported. To 

monitor the cleaning performance, the MVS h a  to analyze two samples: one before the grain 

goes into the cleaner and the other &er the grain cornes out of the cleaner. The EvNS should 
Li 

correctly identi fy  al1 constituents of a grain sample in the cleaning and the shipping sections: 

thus individual kernel images can be used to solve this problem. 

At present. subjective assessrnent of grain composition and appearance determines 

the identity and grade of a given sample. The £ive principal grading factors established by 

the Canadian Grain Commission are test weighk varietal purity, soundness, vitreousness. and 

maximum limits of foreign material. Of these, only test weight is objectively determined. 

Grading decisions on grains and other agricultural products, by and large. require visual 

inspection of the product sample by trained personnel. Despite training, the grading 

decisions are ùiherently subjective and are iduenced by the individuai expenence of an 

inspector. An objective and quantitative method of measurement of grain characteristics 

would be highly desirable and beneficial. With the advance of computen and the 

irnprovements in the capabilities of computer vision technique. most of the kemels features 

employed in subjective grain inspection cm be rapidly measured with high precision and 

accuracy. 

Substantial work dealing with the use of different morphological (size and shape) 

features for classification of different cereal grains and varieties has been reported in the 
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literature (Barker et al. 1992a. 1992b. 1992~. 1992d: Draper and Travis 1984: Keefe 1992: 

Keefe and Draper 1986,1988; Lai et al. 1986; Myers and Edsail 1989; Neurnan et al. 1 987: 

Sapimein and Kohier 1995; Sapimein and Bushuk 1989; Sapirstein et ai. 1987; Symons and 

Fulcher 1988% 1988b; Travis and Draper 1985; Zayas et ai. 1985, 1986. 1989). Some 

investigations were carried out using color features (Hawk et al. 1970; Majumdar et al. 

1996a; Neuman et al. 1989% 1989b) for classification of different cereal grains and their 

varieties and for correlating vitreosity and grain hardness of C WAD wheat (discussed in 

details in Chapter III). With clean samples. high classification accuracies among cereal 

grains have been reported using morphological and reflectance features (e.g., Neurnan et al. 

l989a, l989b). The classification accuracy might change (rnost probably would be 

reduced) if tested on commercial samples. collected fiom different growing regions. The 

classification accuracy can be potentially improved by adding additional features based on 

texture (Petersen 1992). Addition of color features may also irnprove the classification 

accuracy. Figure 1.1 shows different types of cereal grains used in this study. 

The objective of the proposed research was to test the following hypotheses: 

(1) textural features of bulk samples can be used for rapid identification of different 

cereal grains, e.g.. Canada Western Red Spnng (CWRS) wheat, CWAD wheat. 

barley, oats, and rye. 

(i) reduction in the number of gray levels to a certain extent improves the 

classification accuracy and reduces computation time. 



CWRS CWAD Barley Oats R Y ~  
Wheat Wheat 

Fig. 1.1 Types of cereal grains used in this study 



(ii) teuniral features extracted from the red color band give better classification 

accuracy than other color bands (e-g., green or blue) or color band 

combinations. 

(iii) the classification accuracy improves when sub-images of an originai bulk 

image are used for classification instead of the original bulk image. 

(2) color features of bulk sarnples cm be used for rapid identification of different cereal 

grains, e-g., C WRS wheat, C WAD wheat, barley, oats, and rye. 

(3) morphological features of individual kernels can be used for classification of 

different cereal grains, e-g., CWRS wheat, CWAD wheat, barley, oats, and rye. 

(4) textural features of individual kernels can be used for classification of different cereai 

grains, e-g., CWRS wheat, CWAD wheat, barley, oats, and rye. 

(i) reduction in the number of gray levels to a certain extent improves 

classification accuracy and reduces computation time. 

(ii) textural features extracted from the red color band give better classification 

accuracy than other color bands (e.g., green or blue) or color band 

combinations. 

( 5 )  limited color features of individual kernels can be used for classification of different 

cereal grains, e-g., CWRS wheat, C WAD wheat, barley, oats, and rye, and 

(6) inclusion of textural and color features with morphological features of individual 

kernels cm improve the classification accuracy of different cereal grains, e.g., CWRS 

wheat, C WAD wheat, barley, oats, and rye. 



The matenal presented in this thesis is organized into eight chapters. The tirst 

chapter addresses the justification, importance, and the objectives of the research. Chapter 

II begins with a brief overview of the digital image processing system. It continues with an 

explmation of the principles of the machine vision technique. M e r  that, discussion is 

presented on different morphologicai, color, and texturai features. Chapter II is concluded 

with an overview of the object classification techniques, giving emphasis on the statistical 

classifier. 

Chapter III discusses the past research conducted in the area of wheat grading using 

morphologicai and color features. It also reports different works in the agncultural area 

using textural features. 

Chapter IV discusses the vision hardware, samples, and sampling and image 

acquisition techniques. 

Development of DIA algorithms for texturai, color, and morphological features is 

discussed in Chapter V. 

Chapter VI contains the procedures for anaiysis of buik sarnples and individual kemel 

images of cereal grains. 

Results are presented in Chapter VI1 with discussions. The presentation of results 

follow the flow of experirnents starting with classification of cereal grains using texturai and 

color features extracted fiom bulk samples. The classification of individual kemels of cereal 

grains using morphological, textural, and color features are discussed. Results of different 

models for classification of individual kemels of cereal grains are reported. Chapter VI1 is 



concluded with the selection of the mode1 that gives the highest classification accuracies in 

individuai kemels of cereal grains. 

Chapter VI11 includes the conclusions and some recommendations made from the 

experimentai results. 



CHAPTER II: IMAGE PROCESSING AND OBJECT 
CLASSIFICATION 

2.1 Digital image processing system 

A digital image processing system is a configuration of hardware and software 

components that c m  acquire, store, display, and process digital images, as shown in Fig. 2.1. 

Although these components may be physically separated, each is fundamentally necessary 

to complete the digital image processing cycle. 

2.1.1 Image acquisition devices The first stage in any digital image processing system 

is to acquire a digital image. This is achieved by using two separate devices: a sensor and 

a digitizer. The sensor device is sensitive to a band in the electromagnetic energy s p e c t m  

and produces an electrical signai output proportional to the level of energy sensed. The 

digitizer converts the analog electricai output of the sensor into a digital form. 

Besides x-ray based imaging systems, most cornrnon sensors deal with visible and 

infiared light. Most frequently used sensors are vidicon cameras and solid-state arrays. 

The operation of vidicon cameras is based on the principle of photo-conductivity. 

An image focussed on the tube surface produces a pattern of varying conductivity that 

matches the distribution of brightness in the optical image. An independent, fmely focussed 

electron beam scms the rear surface of the photoconductive target and by charge 

neutralization, this beam creates a potential difference that produces a signai on a collecter 



proportional to the input bnghtness pattern. A digital image is obtained by quantizing this 

signal, as well as the corresponding position of the scanning beam. ''. 

Fig. 2.1 The fundamental components of a digital image processing system 

Solid-state arrays are composed of discrete silicon imaging elements, called 

photosites, that have voltage output proportional to the intensity of the incident light. Line- 

scan and area-scan sensors are the two types of solid-state sensors. A line-scan sensor 

consists of a row of photosites and produces a 2-D image by relative motion between the 

scene and the detector. An area-scan sensor is composed of a matrix of photosites and is 

therefore capable of capturing an image in the same manner as a vidicon tube. A significant 

advantage of solid-state army sensors is that they can be electronically shuttered at very high 

speed (e.g., 1/10 000 s). This makes them ideal for applications in which fieezing of motion 

is required. 



The Iine-scan sensors have resolutions ranging from 256 to 4096 elements. The 

resolution of the area-scan sensors ranges from 32 x 32 elements at the low end to 2048 x 

2048 elements at the high end. 

2.1.2 Storage An 8-bit image of sue 1024 x 1024 pixels requires about 1 Mb (rnega byte) 

of storage. One method of providing short term storage is through computer memory. 

Another is by specialized boards, called h e  buffers, that store one or more images and c m  

be accessed rapidly, usually at video rates (30 images per s). On-line storage generally takes 

the form of magnetic disks. The magneto-optical drives allow a Gb (one billion bytes) of 

storage memory on a 5.25" optical platter. Archival storage is characterized by massive 

storage requirements but infiequent need for access. Magnetiç tapes and optical disks are 

the usual media for archival applications. 

2.1.3 Processing Processing of digital images involves procedures that are usually 

expressed in algorithrnic form. Thus, with the exception of image acquisition and display. 

most image processing functions can be implemented in software. The only reason for 

specialized image processing hardware is the need for speed in some applications or to 

overcome some fhdamental computer limitations. Image processing is characterized by 

specific solutions. Hence, techniques that work well in one area may be inadequate in 

another. The actual solution of a specific problem genedy  requires significant research and 

development. 



2.1.4 Communication Communication in digital image processing primarily involves 

local communication between components of an image processing system or between image 

processing systems and remote communication fiom one point to another, typically in 

connection with the transmission of image data. 

2.1.5 Dis play Monochrome and color TV monitors are the principal display devices used 

in modem image processing systems. Monitors are dnven by the output(s) of a hardware 

image display module in the back-plane of the host computer or as part of the hardware 

associated with an image processor. The signais at the output of the display module can also 

be fed into an image recording device that produces a hard copy (slides, photographs, or 

transparencies) of the image being viewed on the monitor screen. Other display media 

include printing devices. 

A host computer controls the entire system. It provides the interfaçe to the user dong 

with the sequencing of acquisition, storage, display, and processing. The digital image 

stored in memory is fkeely accessible for processing by the host computer. Although the host 

cornputer has the full ability to cany out any conceivable operation upon a stored image. its 

execution speed can be limited. To augment the host computer, specialized high-speed 

processors are usually a part of a digital image processing system. 

This additional processing hardware can take the form of high-speed hardware 

circuits or secondary microprocessors, optimized to handle common digital image processing 

operations. For applications that must run fast enough to keep up with real-tirne events, like 

a moving conveyer line of parts, the high-speed hardware approach is often essential. 
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2.2 Digital image 

An image is a two dimensionai. (2-D) fiinction generated by sensing the radiornetric 

information of a scene. A scene is fiequentIy a collection of three dimensional (3-D) objects 

and usually governed by the physical laws of nature. The image is represented by an image 

function f(x, y) where the arguments of the image function (the independent variables x, y) 

are spatial coordinates in the image and f is  the intensity or gray level at these locations. In 

a color image, fis a vector with three components representing hue (H), saturation (S). and 

intensity (1): or red (R), green (G), and blue (B). 

2.2.1 Image resolution The quality of a digital image is directiy related to the number 

of pixels and the range of brightness values in the image. These aspects are known as image 

resolution. The image resolution is the capability of the digital Mage to resolve the elements 

of the original scene. For digital images, the resolution characteristics can be broken into 

two ways - the spatial resolution and the brightness resolution (or color resolution for a 

color image). The number of pixels in an image is descnbed by its spatial resolution. The 

more pixels in an image, the greater is its spatial resolution. Every pixel in a digital image 

represents the intensity of the original image at the spatial location where it was sampled. 

The concept of brightness resolution addresses how accurately the digital pixel's brightness 

can represent the intensity of the original image. 

The aspect ratio is a mesure of an image's rectangular fom. It is calculated by 

dividing the image's horizontal width by its vertical height. in case of commercial broadcast 

television and comrnon video equipment, images have an aspect ratio of 1 -3 33. Cornrnonly 
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this aspect ratio is denoted as 45. This means that the horizontal dimension of the image is 

1.333 times wider than the vertical dimension. An image with a 1 : 1 aspect ratio appears as 

a square. 

2.2.2 Color image If one looks very closely at a color video display screen, whether it's 

a cathode ray  tube (CRT) or liquid crystal display @CD), one will notice individual dots of 

solid colors. These dots emit light in the colors of R, G, and B. This is cailed the additive 

color property, and it works for the mixing of primary colors that are emittïng light. When 

R, G, and B are mixed together. an entire spectnim of colors can be created and it cm be 

represented by a color space cube as s h o w  in Fig. 2.2. 

Subtractive color mixing is based on reflective colors rather than emissive colors. 

m e a d  of emitting light like a video display, subtractive colors reflect the light shined upon 

them. The subtractive colors, called secondary colors. are cyan (C), magenta (M), and 

yellow (Y). Subtractive colors are used primarily in the printing industry. 

Although RGB color space is the fundamental color space used to physically detect 

and generate color light, other derivative color spaces can be created to aid color image 

processing. The mon important derivative color space is the H, S, and 1 (HSI) space. This 

color space represents color as we perceive it. Whenever an application requires a human 

to iuterpret or control the colors of an image, HSI space is well suited. Hue indicates what 

color, such as green, dominates the reflected light. Saturation indicates how much of the 

color is there, i.e. purity of color. For example, a hue of red can have numerous saturation 



R Y 

Fig. 2.2 The red, green, and blue (RGB) color cube 

levels ranging fiom deep red ( W y  saturated) to pin.  and finally white (no saturation of red 

at ail). Intensity indicates how bright the color is, such as Iight green. 

2.3 Image analysis 

Image analysis operations are used in applications that require the measurement and 

classification of image information. They are different fiom al1 other digital image 

processing operations because they almost always produce non-pictoriai results. One 

mission of image analysis operations is to understand an Lrage by quantifying its elements. 

The quantification includes such things as measures of size, indicators of shape, and 

descriptions of outluies. Other elements of interest can include attributes such as brightness, 

color, and texture. 



n i e  first step in image analysis generally is to segment the image. Segmentation 

subdivides an image into its constituent parts or O bjects. The level to which this subdivision 

is carried depends on the problem being sofved Le., segmentation should stop when the 

objects of interest in an application have been isolated. In generai? segmentation is one of 

the most dificult tasks in image processing. This step in the process detemiines the evenrual 

success or failure of the analysis. For this reason, considerable care should be taken to 

improve the probability of rugged segmentation. In some situations, such as industrial 

inspection applications. at least some measure of control (e-g., lighting? clean environment) 

over the environment may be possible. 

Segmentation algonthms for monochrome images generally are based on one of two 

basic properties of gray-level values: discontinuity and shilarity. In the first category. the 

approach is to partition an image based on abrupt changes in gray level. The principal areas 

of interest within this category are detection of isolated points and detection of lines and 

edges in an image. The principai approaches in the second category are based on 

thresholding, region growing, and region splitting and merging. The concept of segmenting 

an image based on discontinuity or similarity of the gray-level values of its pixels is 

applicable to both static and dynamic (time varying) images. Different segmentation 

methods are described in detail in standard books of digital image processing (e.g., G o d e z  

and Woods 1992; Pratt 199 1 ; Baxes 1994). 



2.4 Feature extraction 

Once the image has k e n  cleanly segmented into discrete objects of interest. the next 

step in the image analysis is to measure the individual features of each object. Many feanires 

can be used to describe an object. These features are compared with the information fiom 

known objects to classify an object into one of many categones. Generdly. the features that 

are the simplest to measure and contribute substantiaily towards the classification are the best 

to use. 

2-41 Morphological features The most common measurements that are made on objects 

are those that describe shape. Shape features are physical dimensionai measures that 

charactenze the appearance of an object. Objects can have regular shapes, such as square. 

rectangular, circula, or elliptical but in many cases the shape of the object is arbitrary - 

twisting and turnïng in apparently random ways. The commonly measured shape features 

are briefly defined here. 

Perimeter - The pixel distance around the circumference of an object is defined as 

perimeter. It is a measure of the boundary length of the object. 

Area - The pixel area of the intenor of an object is defined as area. It is computed as the 

total number of pixels inside, and including, the object boundary. The resuit is a measuri- 

of object size. 

Area to Perimeter Ratio - It measures the roundness of the object, given as a value between 

O and 1. The greater the ratio, the rounder the object. If the ratio is equd to 1, the object is 

a perfect circle. 



Roundness = (47r x ~rea)/Perimeter 

Major Axir Length - Distance between the (x. y) end points of the longest line that can be 

drawn through the object is defbed as major axis length- The major axis endpoints (x,. y ,) 

and (x2, y,) are found by computing the pixel distance between every combination of border 

pixels in the object boundary and finding the pair with the maximum length. The result is a 

rneasure of object Iength. 

Major Axis Length = J((x2 - x,)? + (y2 - y,)?) 

where (x,, y ,) and (x?, y,J are the major avis end points. 

Minor RrrS Length - The distance between the (x, y) end points of the longest tine that can 

be drawn through the object while maintainhg perpendicularity with the major avis is 

defined as rninor axis length. nie result is a measure of object width. 

Minor Axis Length = J { ( xL  - x , ) ~  + (y2 - y,)?) 

where (x,, y,) and (x2, y:) are the minor axis endpoints. 

Minor Axis Lengll, to Major AxiF Lenglk Ratio - The ratio of the length of the minor avis 

to the length of the major axis. It is a measure of object elongation. The ratio is between O 

and 1; and if it is equai to 1, the object is generally of square, circular, or diarnond shape. 

Spatial Moments - The spatial moments of an object are statistical shape measures that do 

not characterize the object specificaily . Rather, they give statisticai measures related to an 

object's characterizations. 

The zero-order spatial moment is computed as the sum of the pixel brightness values 

in an object. For a binary image, this is simply the nurnber of pixels in the object, because 

every objec t pixel is equal to 1 (white). Therefore, the zero-order spatial moment of a binary 
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object is its area. For a gray level image. an object's zero-order spatial moment is the sum 

of the brightness of pixels and is related to the object's energy. 

Thefirst-order spatial moments of an object contain two independent components. 

x and y. They are the x and y sums of the pixel brightness in the O bject, each multiplied b y 

its respective x or y coordinate in the image. in the case of a binary image, the first-order x 

spatial moment is just the surn of the x coordinates of the object's pixels. because every 

object pixel is equal to 1. Similarly, the y spatial moment is the surn of the y coordinates of 

the object's pixels. 

Fourier Descriptors - Fourier descriptors represent the boundary of a region and obtain 

information about the shape as a penodic fünction which cm be expanded in a Fourier senes. 

The information used are the spectral information, Le., fiequencies and amplitudes of die 

waves approximating the contour. A Fourier transform is an approximation of an arbitrary 

func t ion b y trigonometric fùnctions (sine and cosine). The mathematical expression is 

dependent on the function to be approximated. If the function is periodic it will be expanded 

as a Fourier series, otherwise as a Fourier integral (Gonzalez and Woods 1992). Consider 

an object with an N-point digital boundary in the xy plane. Starting at an arbitrary point (q,. 

y,), coordinate pairs (G, y,), (x,, y,), (xZ, y3, ..... (xWt, Y ~ - ~ )  are encountered in traversing 

the boundary, Say, counter-clockwise. These coordinates c m  be expressed in the fom x(k) 

= x, and y(k) = y, Now, the boundary can be represented as the sequence of coordinates s(k) 

= [x(k), y(k)], for k = 0, 1, 2, ......, N-1. Each coordinate pair can be treated as a complex 

number so that sO<) = xO<) + j y@) for k = 0, 1,2, ...., N-1, Le., the x axis is treated as the real 



avis and the y avis as the imaginary axis of a sequence of a complex nwnbers. The discrete 

Fourier transform of s(k) is: 

for u = 0, 1,2, ..... N-1. The complex coefficients a(u) are called the Fourier descripton of 

the boundary. The inverse Fourier transform of the a(u)?s restores s(k), Le., 

for k = 0, 1, 2, .... N-1. 

2.4.2 Color features Color features of an object can be extracted by examining every 

pixel within the object's boundary. The histograrn of these pixels shows the brightness 

distribution found in the object. For color objects, R, G, and B pixel component values of 

the object can be converted to H, S, and 1 or brightness color space. Then looking at the 

histograrn of the hue-component, image will instantly show the predorninant hue of the 

object. 

Statistics of the brightness in an object can also be usehl measures. The rnean 

brightness represents the average brightness of an object. The standard deviation of 

brightness gives a measure of how much the object's bnghtness vary from the mean value. 

The mode brightness is the most common bnghtness found in the object. The sum of al1 
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pixel brightness in an object relates to the energy. or aggregate brightness. of an object. This 

measure is called an object's zero-order spatial moment. The application of these statistical 

measures to bnghtness histograms, or color-component histograms can help in classi@ing 

the brightness or color characteristics of an object. 

2-4.3 Textural features Texture is an important characteristic for the analysis of many 

types of images. It can be seen in ail multi-spectral scanner images obtained fiorn aircraft 

or satellite platfoms (which the remote sensing community analyzes) to rnicroscopic images 

of ce11 cultures or tissue samples (which the biomedicd cornmunity anaiyzes). Despite its 

importance and ubiquity in image data, a formai approach or precise definition of texture 

does not exist. The texture discrimination techniques are, for the most part, ad hoc. Visual 

texture is a dificult concept to define, but it is commonly attributed to images containing 

repetitive patterns in which "elements" or "tonal primitives" are arranged according to certain 

"placement rules". The image texture is considered as non-figurative and cellular. It has w o  

basic dimensions - the first is for describing the tonal primitives out of which the image 

texnue is composed, and the second dimension is for describing the spatial dependence or 

interaction between the primitives of an image texture. Tonal primitives are regions with 

tonal properties. The tonal primitives cm be described in terms such as the average tone. or 

maximum and minimum tone of its region. The region is a maximally connected set of 

pixels having a given tonal property. The tond region can be evaluated in terms of its area 

and shape. The tonal primitive includes both its gray tone and tonal regional properties. 



Image texture can be qualitatively evaluated as having one or more of the properties 

of fineness, coarseness, smoothness, granulation, randomness, or irregular. Each of these 

adjectives translates into some property of the tonal primitives and the spatial interaction 

between the tonal primitives. Tone and texture are not independent concepts. They bear an 

inextricable relationship to one another very much like the relationship between a particle 

and a wave. There really is nothing that is solely particle or solely wave. Whatever exists 

has both particle and wave properties and depending on the situation, the particle or wave 

properties may predominate. Similarly, in the context of an image, tone and texture are 

always there, aithough at times one property can dominate the other. The basic relationships 

in the tone-texture concept are the following. When a small-area of an image has Iittle 

variation of tonal primitives, the dominant p r o p e l  of that area is tone. When a small-area 

has wide variation of tonal primitives, the dominant property of that area is texture. Crucial 

in this distinction are the size of the smalI-area, the relative sizes and types of tonal 

primitives, and the number and placement or arrangement of the distinguishable primitives. 

As the number of distinguishable tonal primitives decreases, the tonal properties 

predominate. As the number of distinguishable tonal primitives increases, the testural 

properties predominate. 

There have been many statisticai and structural approaches to the measurement and 

characterization of image texture: autocorrelation functions, autoregressive models, optical 

transforrns, digital transforms, structural elements, spatial gray tone CO-occurrence 

probabilities, gray level run lengths, and sum and difference histograms. For classification 

of irregular texture and natural scenes, approaches like spatial gray level CO-occurrence 
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matrices, neighbouring gray level dependence matrices. gray level run lengths, and sum and 

difference histograrns gii:e good resuits (Haraiick 1979). 

2.4.3.1 Grav level CO-occurrence matrix model This model was fm described by 

Haralick et al. (1 973). Suppose an image to be anaiyzed is rectangular and has N, resolution 

cells in the horizontal direction, N, resolution cells in the vertical direction, and the gray 

level appearing in each resolution ce11 is quantized to N, levels. Let L, = {1,2, 3, ...... N,} 

* be the horizontal spatial domain, L, = {1,2,3. ......, N,} be the vertical spatial domain, and 

G = ( 1, 2,3, ..., N,,} be the set of N, quantized gray levels. The image, 1, can be represented 

as a function which assigns some gray level in G to each resolution ce11 or a pair of 

coordinates in L, x L,; I : Lx x L, - G. 

An essential component of conceptuai framework of texture is a measure of angular 

nearest-neighbor gray level CO-occurrence matrices (GLCMs). A resolution cell, excluding 

those on the periphery of an image, bas eight nearest-neighbor resolution cells (Fig. 2.3). 

Fig. 2.3 Eight nearest-neighbor resolution cells. 



It is assumed that the texture-context information can be adequately specified by the 

ma& of relative frequencies, Pij, with which two neighboring resolution cells separated by 

distance, d, occur in the image, one with gray level, i, and the other with gray levrl, j. Such 

GLCMs are a h c t i o n  of the angular relationship between the neighboring resolution cells 

as well as a tùnction of the distance between them. Figure 2.4 illustrates the set of al1 

neighboring resolution cells separated by 1 pixel distance. For angles quantized to 45 O 

intervals, the unnormal ized frequencies are de fmed by : 

P(i,j,d, 0") = # {((k, 0 ,  (m,n)) €(Lx x L,) x (L,x L,) 1 (k -m=O.  IP-nl =d). I(k. 

P) = i, I(m, n) =j) 

P(i,j,d,45")= # ( ( ( k , l ) , ( m , n ) ) ~ ( L , x L $ x ( L ~ x L ~ )  1 ( k - m = d , Q - n = - d ) o r ( k -  

m = -ci, 4 - n = d), I(k, 4) = i, I(m, n) = j)  

P(i . j ,d ,90°)= # ( ( ( k , Q ) , ( r n , n ) ) ~ @ , x L , ) x & , x L , )  1 (Ik-ml=d,P-n=O).I(k.  

4) = i, I(m, n) = j )  

P(i, j, d, 135") = # {((k, P), (m, n)) E(L,x L,) x (L,x L,) 1 ( k - m = d ,  P-n=d)or  ( k -  

m = -d, P - n=-d),  I(k, P)=i, I(m, n) = j}  

where # = number of elements in the set. 

Fig. 2.4. Coordinates of resolution cells of a 4 x 4 image. 



For a 4 x 4 image [Lx = { 1 $2,3.4) and L, = { 1,2,3,4)] (Fig. 2.4). the set of al1 dist- 

ance-1 horizontal-neighboring-resolution cells (Le., a resolution ce11 and its immediate 

of the 1 pixel-distance horizontal ma& (Pd is the total number of times two gray levels of 

value 2 and 1 occurred horizontally adjacent to each other. To determine this number. we 

count the number of pairs of resolution cells in RH such that the first resolution ce11 of the 

pair has gray level value 2 and the second resolution ce11 of the pair has gray level value 1. 

Figures Z.j(c - f) give al1 four 1 pixel-distance GLCMs. Using these matrices many textural 

features can be extracted which are described in Chapter V. 

Al1 texnval features extracted fiom the GLCMs are functions of distance and angle. 

The angular dependencies present a special problem. Suppose an image, 1, has features m, 

n, O, and p for angles O", 45", 90°, and 135", respectively; and image, J, is identical to 1 

except that J is rotated 90" with respect to 1. Then J will have features O, p, m, and n for 
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G r a y  L e v e l  1 

Fig. 2.5 (a) A 4 x 4 image with 4 gray level values O - 3; (b) General 
form of any gray level spatial-dependence matrix for image 
with gray level values O - 3; #(i, j) stands for number of 
times gray levels i and j have been neighbors; (c) - (f) 
Calculation of al1 4 distance4 GLCMs. 



angles 0". 4j0, 90". and 135". respectively. Since the texture context of 1 is the sarne as the 

texture context of JI any decision rule using the angular features rn, n, O, p mut  produce the 

same resuits for O, p, m, n. To do this, two functions of m. n, O, and p, their mean and range 

(which are invariant under rotation), can be used for classification. 

2.4.3.2 Grav level run leneth matrix mode1 This mode1 was fmt developed by Galioway 

(1 975). A gray level nui is a set of consecutive, collinear picture points haWig the same gray 

level value. The matrix element (i, j) specifies the number of times a picture contains a run 

of length j, in a given direction, consisting of points having gray level i (or lying in gmy level 

range i). The gray level run length matrices (GLRMs) are described in detail in Chapter V. 

2.5 Object classification 

There are two different ways of classifjkg objects. One way is to find relations 

among the objects with the purpose of grouping them. For example, the similarities among 

grains which are used to group them into different classes, like cered grains. oilseeds. 

speciality crops, etc. Statistical methods covering this kind of classification are called 

clustering, and the general principle is to group the observation vectors into clusters of a 

certain similarity. The second way of classification is to assign objects into defined groups. 

The statistical method for this classification is called discriminant anaiysis, and this is the 

usual kind of classification which follows image anaiysis for recognition purposes. 

The task of discriminant anaiysis is to find a decision d e  which assigns an object 

described by a number of m features to one of several groups Pi (i = 1, 2, ..., n) in a 
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population. The simplest case is discrimination by one feature (e.g.. object area) and two 

groups. If we know the probability density hct ion of this feature for each group, Say f, (x) 

and f ,  (x), the object should be assigned to the group with the higher probabiiity density, i.e.. 

assigned to group Pl if f, (x) > (x). This is cdled likelihood ratio method. 

This method may be improved if we know that a proportion n, of the total population 

belongs to Pl and the remaining 3 belongs to P2. In this case, the object is assigned to Pl 

if st, f, (x) > X? (x) which is the Bayesian classifier. 

If we assume that x is nomally distributed in each group as N(pi, ai2) then: 

If further O, = = o for the two groups then: 

Setting this expression equai to 1 (or x ,  / xz) gives the threshold for group separation. 

The corresponding expression for a rnultivariate normal distribution of feature vectors 

xi with dispersion matrices Z, = C2 = C is: 

In the univariate case a threshold is used for separation of groups, in the bivariate case a line? 

and in the rnultivariate case it is the hyperplanes which separate groups in the muiti- 



dimensionai feature space. The hyperplane for separating two groups is detined by setting 

the discriminant functions equal to log(% / x,): 

In generd, the distribution of the features is not known. One approach to estimating 

the error rate of a classifier is to compute it fiom the assumed parametnc model. However. 

there are many problems with this approach: (i) estimate is almost always overoptirnistic. 

(ü) characteristics that make the design sarnples peculiar or unrepresentative are not revealed. 

and (iii) in more general situations it is very ciifficuit io wmpuiz the error rate exactiy, even 

if the probabilistic structure is completely known (Duda and Hart 1973). 

An ernpincal approach that avoids these problems is to test the classifier 

experimentaily. For discrimination. three special cases are considered of practical 

importance: 

The Resubstitution Method - The parameters of the discriminant functions are estirnated 

frorn the same population which is classified into groups. For exarnple, one observation 

fiom n observations is used as the test data and the n observations are used as the training 

data The number of incorrectly classified observations mi of the ni observations in group 

Pi define the error rate as e, = mi / ni, and e = x ,  e, + x? + for two groups. The resubstitution 

method gives over optimistic estimation of classification accuracy; hence for real-world 

application it should not be used. 



The Cross-vaiidation Method - This method (also known as leaving-one-out method) 

estimates the discriminant fùnctions fiom the sample data minus one (n- 1) observations. The 

omitted observation is then classified as the unknown observation and this procedure is 

repeated until al1 observations (n) are classified The corresponding error rate is ei = bi / ni. 

and e = n, e, + - e2 (for two groups) where bi is the nurnber of rnisclassified observations 

in group Pi. The cross-validation method gives very conservative estimation of classification 

accuracy and it works best for a small sized sample. 

The Hold Out Method - This method uses a separate population (training data) for 

construction of the discriminant functions, and another population for testing the 

classification results. If the observations are normally distributed, the error rate may be 

estimated by calculating the area of the region where the density function is overlapped by 

a density function fiom another group. For the two group problern, the region is estirnated 

by RI = (x: f, (x ( 8 J 1 f2 (x 1 0 J > n ,/ x 3 where 0 ,are the estimated parameters of the prob- 

ability density function. The misclassification for group 1 is: 

w here : 

R2 = feature space for goup 2. The hold out method can be used in real-world applications. 

The separation of groups in the feature space depends on how weU the parameters of 

the distribution functions are estimated. For example, if no erron are made on 50 test 

sarnples, with probabiIity 0.95, the true error rate is between O - 8%. The classifier would 

29 



have to rnake no errors on more than 250 test sarnples to be reasonably sure that the uuc 

error rate is below 2% (Duda and Hart 1 973). 

The need for data to design the classifier and additionai data to evaluate it presents 

the designer with a dilemma. If one reserves most of the data for the design, s h e  cannot 

have confidence in the test. If one reserves most of the data for the test, s/he will not obtain 

a good design. The question of how best to partition a set of samples into a training set and 

a test set has received some analysis, and considerable discussion, but has no definitive 

answer (Duda and Hart 1973). 

In fact, there are more options available than just partitioning the data designing the 

classifier once, and testing it. For example, one might repeat this process severai times. 

using a different partition each tirne, and average the resdting error-rate estimates. If 

computation costs are of no concern, one can use the cross-validation method. The basic 

advantage of this approach is that vimially al1 of the samples are used in each design. which 

should lead to a good design, and al1 of the samples are ultirnately used in the tests. This 

procedure is particuiarly attractive when the number of available samples is quite small. 

When the number of samples is very large it is probably suEcient to partition the data into 

a single training set and a single test set (hold out method). Although there is no theory to 

guide the designer in intermediate situations, it is at least pleasant to have a large number of 

reasonable options. 

2.5.1 SAS For a set of observations containhg one or more quantitative variables and a 

classification variable defining groups of observations, PROC DISCRIM of SAS (1 990) 
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develops a discriminant criterion to classify each observation into one of the groups. The 

denved discriminant criterion frorn this data set can be applied to a second data set during 

the same execution of DISCRIM. The data set that DISCRIM uses to derive the discriminant 

critenon is cdled the training or calibration data set. 

When the distribution within each group is assumed to be mdtivariate normal. a 

parametric method can be used to develop a discriminant function. The discriminant 

function also known as a cluss~jication criferion, is determined by a meanire of generalized 

squared distance (Rao 1973). The classification criterion c m  be based on either the 

individual wi thin-group covariance matrices ( yielding a quadratic function) or the poo led 

covariance matrix (yielding a Iinear fùnction); it also takes into account the prior 

probabilities of the groups. The caiibration information can be stoxd iiî a special SAS data 

set and applied to other data sets. 

When no assumptions can be made about the distribution within each group, or when 

the distribution is assumed to be different from multivariate normal distribution, non- 

pararnetric methods c m  be used to estirnate the group-specific densities. These methods 

include the kernel method and k-nearest neighbor merho& (Rosenblatt 1956; Parzen 1962). 

Either Mahalanobis distance or Euclidean distance cm be used to determine 

proxirnity. Mahalanobis distance can be based on either the full covariance matrix or the 

diagonal matrix of variances. Ln the k-nearest neighbor method, the pooled covariance 

matrix is used to calculate the Mahalanobis distances. In the kernel method, either the 

individuai within-group covariance matrices or the pooled covariance matrix is used to 

calculate the Mahalanobis distances. 



The DlSCRiM procedure can produce an output data set containhg various statistics 

such as means, standard deviations, and correlations. DISCFUM evaluates the performance 

of a discriminant critenon by estimating error rates (pro babilities of misclassification) in the 

classification of fiiture observations. When the input data set is an ordinary SAS data set. 

the error rate can also be estimated by cross-validation. 

Buyes ' Tireorem - Assuming that the probabilities of group mernbership are known and the 

group-specific densities at x can be estimated, DISCRIM computes p(t 1 x), the probability 

of x belonging to group t, by applying Bayes' theorem: 

where: 

p(t 1 x) = posterior probability of an observation x belonging to group t, 

Qt = prior probability of mernbership in group t, 

f , (x )  = group-specific ciensity estimate at x fiom group t, and 

f(x) = 1, q, f ,  ( x ) ,  estimated unconditional density at x. 

DISCRIM partitions a p-dimensional vector space into regions &, where the region 

& is the subspace containhg al1 p-dimensional vecton y such that p(t 1 y) is the largest 

among ail groups. An observation is classified as comhg fiom group t if it lies in region R,. 

Paramefric methoh - Assuming that each group has a multivariate normal distribution, 

DISCRIM develops a discriminant function or classification criterion using a measure of 
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generalized squared distance. DISCRIM also cornputes the postenor probability of an 

observation belonging to each class. The squared distance fiom r to group t is: 

where : 

= Sc, if the within-group covariance matrices are used, 

= S, if the pooled CO-variance rnatrix is used, 

= a p-dimensional vector containing the quantitative variables of an observation. 

= a p-dimensional vector containing variable means in group t, 

= pooled covariance matrix, 

= covariance rnatrix within group t, and 

= a subscnpt to distinguish the groups. 

An observation is classified into group u, if setting t = u produces the largest value 

of p(t 1 x). If this largest posterior probability is less than the threshold specified, x is 

classified into group 'othcr'. 

Non-parametrie methods - Non-parametric discriminant methods are based on non- 

parametric estimates of group-specific probability densities. When the k-nearesr neighbor 

rnethod is used, the Mahalanobis distances are based on the pooled covariance matrix. The 

squared distance between two observation vectors, x and y, in group t is given by 



where : 

y = a p-dimensionai vectors containing the quantitative variables of an observation. 

The classification is based on the Bayes decision rule which classifies an entity 

(represented by its pattern vector, e-g., x) to a class for which the entity has a maximum 

postenor probability (Hand 198 1 ; Duda and Hart 1 973). An observation x is classified into 

group u. if setting t = u produces the largest value of p(t 1 x). If there is a tie for the largest 

probability or this largest probability is Less than the threshold specified, x is classified into 

group 'other' . 

Using the k-nearest neighbor rule, the k smallest distances are saved. Of these k 

distances, let k, represent the number of distances that are associated with group t. Then the 

estimated group t density at x is: 

where: 

v, (x) = volume of the ellipsoid bounded by (2 1 (z - x)' V-[ (z - x) = r,' (x) j , 

z = a p-dimensional vector, and 

4 = number of training set observations in group t. 

The nearest-neighbor method is equivaient to the uniforni-kemel method with a 

location dependent radius r, (x). Since the pooled within-group covariance matrix is used 

to calculate the distances used in the nearest-neighbor method, the volume v, (x) is a 

constant, independent of group membership. When k = 1 is used in the nearest-neighbor 
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d e .  x is classified into the group associated with the y point that yields the smallest squared 

distance &'(x, y). 

The nearest-neighbor method is best used in applications where the choice of k is not 

critical (Silverman 1986, pp 98-99). A practical approach is to try severai different values 

of k within the context of a particular application and to choose the one which gives the most 

satisfactory results. 



CHAPTER III: REVIEW OF LITERATURE 

3.1 Background 

The application of machine vision technique to the grain industry is a recent 

developrnent. A machine vision system for grain grading is not available cornmercially and 

many of the special needs and problems in applying machine vision technique to the visual 

inspection tasks have yet to be solved. The research effort in this area, however, has grown 

rapidly and substantially in the past decade. AgroVision AB (S-223 70 Lund, S weden) has 

developed a machine to classi@ wheat, barley, oats, rye, and triticale but its classification 

accuracy is not reported in the literature (to the best of my knowledge). Determining the 

potential of morphologicai and color features to classifi different grain species. classes, 

varieties, damaged grains, and irnpurities using statistical pattern recognition technique has 

been the main focus of the published research. This chapter briefly reviews the published 

researc h in appl y ing morphological, color, and textural features of the machine vision 

technique to the Agri-food industry. 

3.2 Potential for objective wheat grading 

Several researchers (Barker et al. 1 Wîa, 1 !Wb, l992c, l992d; Draper and Travis 

1984; Keefe 1992; Keefe and Draper 1986, 1988; Kohler 199 1 ; Lai et al. 1986; Myers and 

Edsall 1989; Neuman et al. 1987; Sapirstein and Bushuk 1989; Sapirstein et al. 1987; 

Symons and Fulcher 1988a, 1988b; Travis and Draper 1985; Zayas et al. 1983, 1986, 1989) 



applied DIA and pattern recognition techniques to derive characteristics of cereal grains that 

can be used for objective graciing. Sapirstein (1 995) reviewed work conducted b y different 

researchers for identification of different cereal grains and theu varieties. Most of these 

studies were conducted with limited data sets for testing. The pnmary and export grade 

determinants of C WRS wheat are given in Appendix A. In primary grade determinants, the 

maximum tolerances of foreign materials Uicluding other cereal grains are 0.75. 1.5.3.5. and 

10% for grade 1, grade 2, grade 3, and feed grade of C WRS wheat. respectively . In export 

grade, the maximum tolerances of foreign materiais including other cereal grains are 0.4. 

0.75, 1.25, and 5% for grade 1, grade 2, grade 3, and feed grade of CWRS wheat, 

respectively. The prirnary grade tolerances for wheat of other classes or varieties are 3.6. 

and IO% for grade 1, grade 2, and grade 3. respectively. For export grade, these tolerances 

are 1.5, 3, and 5%, respectively. Tolerances for damaged kemels are also low. Al1 of the 

gmding factors (except the test weight) are subjectively determined. Because of these tight 

tolerances, an objective grain grading system must achieve a near perfect classification of 

cereal grains, e.g., C WRS wheat, CWAD wheat, barley, oats, and rye. Majmdar et al. 

(1996b) discussed different applications of image processing in food industry. 

Most of the researchers conducted their studies using morphological features for 

cereal grain classification. Very limited work was reported on cereai grain classification 

using color features and no work (to the best of my knowledge) was published on the 

potentid of textutal features for classification of cereal grains. 



3.2.1 Morphological features Segerlind and Weinberg ( 1 972) fbt estirnated grain shape 

by a Fourier senes expansicn of the radial distance fiom the centre of gravity to the periphery 

of kemels. A kemel profile was traced on a grid paper to get the image. There was 1% error 

in separation of oats and barley, and wheat and rye based on extracted shape features. The 

class reg., hard red s p ~ g  (HRS), hard red winter (HRW), amber durum, sofi white spring 

(SWS), sofi white winter (SWW), Canada prairie spnng (CPS), and utility wheat are 

diEerent classes of Canadian wheat] discrimination for wheat was partially successfùi with 

1 1-25% error. 

Draper and Travis (1984) and Travis and Draper (1985) used DIA for identifjing 

seeds of cereals. fodder plants, and oil and fibre vegetables. They reponed that five of the 

crop species could be distinguished fiom their major contaminants with an overall accuracy 

of 95% and most of the weed species could be distinguished fiom each other. 

Keefe and Draper (1986, 1988) invrstigated the potential of image analysis for 

identiQing grains of 5 U.K. wheat cultivars on the b a i s  of size and shape. They used a 

commercial software and a sampte presentation device in the form of a motorized camera 

unit controlled by a computer. Individuai seeh resting honzontally, in dorsal position (Le.. 

crease down position), and embryo in a fixed position were viewed in side elevation using 

transmitted light. The time taken to measure 400 seeds of wheat varied in the range from 

330 to 5 15 S. They did not report the classification accuracies of different wheat cultivars. 

Keefe (1 992) constructed a semi-automatic image analyzer for classification of wheat 

grains. It takes 33 rneasurements for each grain and calculates an additional 36 derived 

parameters for analysis. He did not disclose most of those parameters in the paper due to 
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commercial interests. Twenty varieties of U.K. wheat were tested using the instrument. 

Each grain was placed manually in a fixed orientation for image capturing. For a sample size 

of 50 grains, the total time taken fiom receiving the sample to having the data ready for 

statistical analysis was approximately 5 min. The overall identification error was 32.9- 

65 -8%. 

Zayas et al. (1986) used some of the morphological features used by Keefe and 

Draper (1986, 1988) and some additionai features to differentiate among individual kernels 

of different American wheat classes and varieties. For different wheat classes and varieties. 

the average percentages of correctly classified kernels were 77% and 85%. respectively. 

They used mainly pair-wise discriminations. The work was limited to a single kemel per 

image h e  and it was necessary to immobilize kemels in a fixed orientation prior to 

analysis. 

Zayas et al. (1989) used mdtivariate discriminant analysis to distinguish between 

wheat and non-wheat, and between weed seeds and stones in the non-wheat part of a grain 

sample. They w d  multivariate discriminant analysis to distinguish between wheat and non- 

wheat and among weed seeds, and developed a structural prototype to distinguish between 

wheat and non-wheat using morphological features. ïhe images used for this study were 

silhouette images, captured with transmitted light. Although their system satisfactonly 

identified wheat and weed seeds, many times it failed to identiQ stones present in the 

sample. 

In a later study, Zayas et al. (1990) attempted to discriminate whole corn f?om broken 

corn kernels. To evaluate the effect of image resolution on the result of discriminant 
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analysis, they conducted experiments with different optical settings. Their system could 

correctly identify al1 of the broken and 98% of the whole kemels. But the main drawback 

was that the kernels had to be oriented manudly with the longest dimension parailel to the 

vertical axis. 

Brogan and Edison (1 974) used a pattern classification technique, based on recursive 

leaming, for classifjhg wheat, barley, oats, rye, soybeans, and corn with an overall accuracy 

of 98%. 

Chen et al. (1 989) developed a system that ssupplemented the two-dimensional(2-D) 

image with Iimited elevation information obtained by using a laser scanning device to 

capture a cross-section profile of the kemel. The use of a single cross-section measurement 

improved discrimination, but locating the midpoint accurately was somewhat arbitrary and 

difficult to control. The system suf5ered fiom the user's inability to accurately position the 

kernel and £iom the complexity associated with the system - both video image capture and 

laser scanning. In a sarnple size of 850 kemels, they reported that 16% of rye kemels were 

misclassified as wheat. There were misclassifications of 8- 12% among wheat of different 

classes and 20-26% among wheat of different varieties within a same class. 

Thomson and Pomeranz (199 1) modified the laser scanning mechanism developed 

by Chen et al. (1989) to acquire 3-D images. The system correctly classified 92994% of the 

kemels of two Arnerican wheat varieties waws (sofi winter wheat) and Tyee (club)]. The 

same system when used to identify sprout darnage in harvested wheat kemels, could 

correctly identiq 89% of the sprouted kernels and 83% of the unsprouted kemels in 

independent sets of test kemels. 



Neuman et al- (1987) studied the objective classification of Canadian wheat cuitivars 

based on kernel morphology using DIA. They used 576 kernels (sound and uniform) of 

pedigreed seed of 14 wheat varieties for analysis. Using a transmitted Iight they captured 

silhouette images of whole-wheat kemels in 'plan' (top) view and detetmined spatial size and 

shape parameters and Fourier descriptors of kemel parameters. Hard Red Sprïng and C WAD 

wheat kernels were the most easily differentiated groups while there was considerable 

overlap between HRW and SWS wheat. Discrïminating varieties within classes gave 

inconclusive results with correct classification ranging fiom 15 to 96%. Unlike earlier 

works, random orientation of kemels was not a problem in this case. 

Sapirstein et al. (1 987) used the technique of Neuman et al. (1 987) for classification 

of HRS wheat, barley, rye, and oats. Al1 cereals were disjoint with oats and wheat being 

well separated. For a sample size of 580 grains the classification error was 1%. But for a 

large sample with randomly selected kernels, the discrimination of the cereals was not 

satisfactory (Sapirstein and Bushuk 1989). For a sample size of 1400 kernels, the 

classification accuracies for HRS wheat, barley, oats, and rye were 98.4. 93.7, 78.3. and 

98.096, respectively. A substantial improvement in cereai grain discrimination was achieved 

when the morphology based discriminant modet was supplemented with rnean kernel 

reflectance. The classification accuracies of HRS wheat, barley, oats, and rye using 

reflectance and morphological features were 99.2,95.7,95.3, and 98.3%, respectively. 

Sapirstein and Kohler (1995) suggested an interesting alternative approach to 

objective wheat grading by finding a completely new set of grading factors like variabil ity 

of size, shape, and reflectance features of kemels in a sample, which can be easily 
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administered by machine vision based grading. Cargo (grain being shipped out of terminai 

elevatoa) samples of CWRS grades 1,2. and 3 were successfully classified using the mean 

and variance of the features as quantitative classification variables. On carlot (grain received 

at terminai elevatoa) samples, however, only grades 1 and 3 couid be successfulIy 

discriminated from each other. 

Symons and Fulcher (1988% 1988b) conducted studies similar to Neuman et ai- 

(1987) for Eastern Canadian wheat classes and varieties. For a sample size of 225. 94% of 

sofi white winter (SWW) and 64% of HRS originating from Europe (HRS-E) were correctly 

classified using a 4-way classification among SWW, HRW, HRSE,  and HRS originated 

from Western Canada (HM-W). About 16% of H R S W  were confused as HRW. The 

HRS-W sarnple compnsed of the cultivars 'Katepwa' and 'Columbus'. These cultivars were 

used by Neuman et aL(1987) but the HRW cultivars used in Symons and Fulcher's study 

were different fiom those used by Neuman et al. (1987). It is worth mentioning again that 

Neuman et al. (1987) found no confûsion between HRS and HRW wheat classes. Such 

contradiction in resuits points to the need for a large database to develop a robust classifier. 

Symons and Fulcher (1 988a) also experienced inadequacy of morphologicd features 

extracted £iom 'plan' view for discriminating among different varieties of a wheat class. For 

three varieties of SWW, correct classification was less than 60%. In a subsequent study. 

Symons and Fulcher (1 988b) used some additional features (i-e., bran tissue features like 

aleurone ce11 wail thickness, pencarp tissue thickness, and total bran thickness that were 

measured at 5 different locations in a wheat kemel from 'cut' transverse sections) to aid in 



classification among different varieties of SWW wheat. Classification results were not 

satisfactory with errors up to 20%. 

Barker et ai. (1 Wîa, 1992b, 1992c, and 1992d) used different sets of features for 

characterizing and discriminating among kernels of eight Australian wheat varieties. The 

features were ray (Le., radiai distance fiom the centroid) parameters, slice and aspect ratio 

parameters, Fourier descriptors, and Chebychev coefficient The overail classification error 

ranged fiom 35 to 48%. 

3.2.2 Reflectance features Hawk et al. (1970) used a Beckman DK-ZA Spectro- 

reflectometer to measure the reflectance fiom cereal grain samples in the 420 to 700 nm 

spectral range. Statistical analysis of reflectance data showed it to be impossible to separate 

expected admixture of grains fiom each other on the basis of reflectance data only. 

Neurnan et al. (1989a, l989b) examïned color attributes of individual kernels of 10 

varieties representing 6 Canadian wheat classes. They used mean red, green, and blue 

reflectance features of picture elements (pixels) for discriminant analysis and achieved about 

88% correct varietd classification for pair-wise discrimination. The correct classification 

of individual varieties varied tiom 34 to 90%. Average correct classifications for the S WS. 

Amber Dururn, and red spring classes of wheat were 76, 76. and 62%, respectively. 

Relatively lower scores of 56% and 34% were achieved for HRW and CPS wheat classes. 

respectively . 

Sapirstein and Bushuk (1989) studied the vitreosity of dururn wheat by taking the 

images of transilluminated kemels and specifying the frequency distribution of grey level. 
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They found 95% correlation between vitreosity computed by DIA and replicated official 

inspection of hard vitreous kemels. They also found a linear relationship (correlation 

coefficient = 0.88) between grain hardness (measured in Particle Size index or PSI) predicted 

by the computed vitreosity and the measured PSI value. 

3.3 Potential for textural analysis 

Al-Janobi and Kranzier (1994) used image processing technique for grading date 

fruits into quality classes on the basis of color and surface texture. They applied the co- 

occurrence matrix approach to manually classified dates according to the USDA grading 

standards. They used a total of 39 features and tested eight models, by applying a non- 

parametnc discriminant anaiysis procedure to each mode1 and by incorporating subsets of 

the features. The classification errors for al1 models ranged between 0.8 and 26.4?41. 

Bertrand et al. ( 1 992) used the DIA technique for characterization of the appearance 

of bread crumb. They prepared experimental breads by varying the nature of the surfactants 

added to the Bour to change the texturai appearance of the crwnb. They tested 142 digital 

images from seven treatments and extracted textural features fiom images by a mathematical 

procedure based on Haar transfonn (Hall 1979). They used 66 textural features from each 

digital image of bread crmb and tried to identiQ the bread treatment fiom the image of its 

cnimb by applying discriminant analysis on the matrix of textural features. The technique 

correctly classified 80% of the images, both in the training and in the testing sets. 

Gao and Tan (1993) used a set of image features based on texture, color, and 

morphology to characterize the textural properties of p a e d  extrudates of corn meal. The 
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image features were extracted using two different approaches (e.g.. edge enhancement plus 

h z y  edge detection and pixel value run length) from surface and cross-section images of 

yellow corn puffs. Scannïng electron microscopy (SEM) was employed to mesure the ce11 

size and density over a cross-section area. A correlation analysis was performed between the 

image features and the SEM measurements and the majority of the image features were 

significantly correlated to the SEM measurements. 

Gao et al. (1994) M e r  used the geometrical properties of puf5ed extrudates to 

predict a number of sensory attributes evaluated by a sensory panel. Most of the sensory 

attributes were effectively predicted by using the image features (e-g., average pixel value. 

standard deviation of pixel values, the third moments of the tiistogram, the peak value of the 

histogram (Pm& and vdue of the most occurrence which is the pixel value corresponding 

to the Pm&. with correlation coefficient values ranging fiom 0.8 ta 0.94. 

H m  and Hayes (1990) developed an interactive image processing technique to 

estimate soil cover using the textural difference between soil and residue or canopy. They 

cornpared the method with the photographic grid rnethod and found that it can measure 

percent soil cover quickly, accurately, and with less human error. The image classification 

algorithm using texturd features was able to classify residue or canopy regions even when 

the average gray level of residue or canopy was overlapping with that of the soil background. 

Kranz et al. (1994) used automatic image segmentation algotïthms based on texnuai 

features namely busyness, variance, and gradient magnitude to determine the percent water 

cover fiorn images recorded during raiddl simulations. They evaluated the performance of 

these features by comparing them with percent water cover obtained through manual tracing. 
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The approach using Prewitt gradient magnitude (Gonzalez and Wood 1992) as a measure of 

texture performed betîer than the other two (Roberts and Sobel Operators) with a mean 

absolute deviation of 6.2%. Data extracted fkorn successive fiames were used to detennine 

estirnates of surface water storage. Evaluation of the procedure indicated that computer 

generated estimates of soi1 d a c e  ponding were more likely to be greater than the manually 

traced area where large distinct ponding areas were present. 

Landord et al. (1990) carried out a textural analysis using CO-occurrence rnatrix of 

gray levels for identification of 6 dflerent types of pollen grains. They used SEM 

photographs of pollen grains for the test, and with a leave-one-out strategy and available 

selection procedure, the proportion of pollen grains correctly classified was up to 94.3%. 

The procedure required 10 s of processing time on a VAX computer for each grain- 

Murase et ai. (1 994) used a set of textural features (e-g., contrast. homogeneity). 

extracted fiom a video image of a population of growing plants (lettuce). They found that the 

t e d  features of plants varïed with their growth stage and there was an agreement between 

the estimated Ieaf size values and the actual rneasured data. The resuits indicated that the 

reflection of light over the population of plants varied with the increase in the area where 

mostly the green leaves covered. They also reported that the apparent roughness change of 

overall surface of the plant population altered the values of texnval features. They used 

neural network to relate the varying textural features to the various plant growth stage. 

Park and Chen (1994) used textural features (based on CO-occurrence matrices) of 

multi-spectral images containing visible and near-idked wavelengths for discriminating 

abnormal poultry carcasses fiom normal poultry carcasses. For statistical models, the 
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accuracy of separation of normal carcasses was 94.4% and that of abnonna1 carcasses tvas 

100% whereas with neural network models the accuracy of separation was 100% for both 

normal and abnormal carcasses. When neural network models were employed to classify 

pouitry carcasses into 3 classes (normal, septicernic, and cadaver), the accuracies of 

separation were 88.9%, 92%, and 82.6%, respectively. 

Petersen (1992) used rnorphologicai and texturai features for classification of 40 

species of weed se&, 25 seeds per species. The classification performance of various shape 

and textural anaiyses ranged fiom 26.2 to 77.0% and fiom 3 1 -7 to 6 1.3%, respectively. 

When a combination of features describing size. shape, and texture was used, with 25 

features (1 size feature, IO shape features, and 14 texturd features, selected using the 

stepwise selection procedure) a maximum classification rate of 97.7% was achieved. 

Shearer et al. (1994) developed a maturity classification algorithm for anaiysis of 

line-scan images of broccoli plants using texturai features extracted fiom gray level co- 

occurrence matrices. They reported results for 480 observations fiom three broccoli 

cultivars. They achieved the maximum accuracy of 90.0% for individual cultivars and 83.1% 

for multiple cultivars, at a gray level resolution of 64. When the gray level values were 

reduced fiom 256 to 16, image processing ùmes were reduced by a factor of 50 for vector 

processing with minimum loss of classification accuracy. 

Burks et al. (1994) conducted a study to evaluate the application of neural networks 

to the identification of  plant canopy images fiom color texturai features. They used a counter 

propagation approach to train a neural network classifier to differentiate among as many as 

seven cultivars of containerized nursery stock using up to 33 color texture features. 
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Depending on the number of species in the model, the use of CO-occurrence te.uhire statistics 

as the network parameters had a high discriminating capability with classification accuracies 

in the range of 77 to 96%. The use of statisticai analysis tools proved to be invaluable in the 

design and tuning of the network. 

Wilhoit et al. (1990) studied tire feasibility of using digital image processing 

technique for selecting mature broccoli heads based on size. They took images of 48 

broccoli plants. with a wide range of head sizes under controlled lighting conditions. and 

developed and tested a model based on the gray level run lengths for textural analysis. The 

rnodel exhibited an exponentid relaîionship between the head area and the numerical texture 

measure and had a standard error of prediction of * 1 6 cm2, which corresponds to an error of 

less than k 1 .O cm in a head diameter of 10 cm. The results indicated that the model had good 

capability for classifying broccoli heads into immature and harvestable sizes. 

Zayas (1993) investigated the potentid of DIA for bread crurnb grain assessment 

using textural features. For quality control of bread making operation, she developed a 

ranking scale for evaluating the degree of coarseness of crumb grain with visual judgement. 

She used 18 textural features fiom two commercial bread brands @RRA and BRDI) for 

mulûvariaie discriminant analysis. She reported that 100% of BRRA and 97.5% of BRDI 

sub-images (128 x 128) fiom the middle area of a slice were correctly recognized. The 

location of sub-images on a slice af5ected the textural features because cnunb grain varied 

across a slice. 

Sapirstein et ai. (1994) developed an instrumental system for direct quantitative 

assessrnent of bread crumb grain using digital image processing. They developed a software 
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for measurement of crumb p h  features like ce11 axa. ce11 density. cell-wall thickness. cell- 

total area ratio, crumb brightness. and uniformity of ce11 size. Image processing time to 

compute the crumb ceil structure for a single bread slice (307,200 pixels per image) was 

about 10 S. The precision and accuracy of the system were tested by analysis of resdts of 

experimental bread making using control and oxidant-formula loaves. Compared with 

control loaves, bread cnunb contnining oxidants was detemiined to be 6% brighter and to 

have, on average. 2 1 % more ceils/crn2, 1 7% smder cells in cross-sectional area, 13% thinner 

ce11 walls, and 16% more uniform grain. These values were consistent with the f ie r  crumb 

grain of bread containhg oxidants, as O bserved visually . 

Zhang et al. (1 994) used image processing techniques to extract structural features 

fiom SEM images of p a e d  extrudates. They extracted a nurnber of image features based 

on the gray level run length of SEM images and total edge length. They found that some 

features were highiy correlated to ce11 size and ce11 size uniformity. The average nin length 

and the total edge length appeared to be effective image features to predict ce11 sizes. They 

suggested that this approach could be used for rapid and consistent evaluation of soms 

important texture-related geometnc characteristics of expanded-food products. 

Ruan et al. (1 995) conducted a rapid analysis of scabby wheat using machine vision 

and neural networks. They used different combinations of color and color-texture feaîures 

as input and deoxynivalenol (DON) Ievels @pm) of the corresponding samples (measured 

with HPLC) as output for the training of a three layer back propagation neural networks. 

They used a total of 3 1 features (13 color features, 6 intensity texture features, 6 saturation 

texture features, and 6 hue texture features) for the development of neural network models. 
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Training set contained 1 6 typical sarnples (200 wheat kemels Pei sample) with a wide range 

of DON level (fiom O to 32.86 ppm). The ûained networks were used to estimate the DON 

levels of wheat kernels (approximately 20 additional wheat kernels per sample). The average 

difference between the predicted arid measured DON value was 1.97 ppm when al1 3 1 

features were used for network training. 

Most of the researchers used clean and pedigreed samples for classification of cereal 

grains, and different classes and varieties of wheats. Some researchers placed the grains 

manually in a specific orientation which defeats the main purpose of automation. In many 

cases. the sample size was smail and an overall classification accuracy of about 96% was 

achieved using morphological and reflectance features for classification of cereal grains. 

Because of the tight tolerances in the prirnary and export grade determinants (Appendix A). 

a near perfect classification of al1 objects in a sample should be achieved to develop an 

objective grain grading system. Use of morphological features alone cannot achieve such 

hi& classification accuraçies. Inclusion of color and texturd features with morphological 

features can improve the classification accuracies of cereal grains. The robustness of the 

classifier should also be tested with a bigger sample size, collected fiom different growing 

regions and with commercial samples (unlike clean samples). 



CHAPTER IV. MATERIALS AND METHODS 

1.1 Vision hardware 

A 3-chip CCD (charge coupled device) color camera (Model DXC-3000A, SONY) 

was used to acquire images. For image acquisition, a zoom Lens (Model VCL- 10 12 BY, 

SONY) of 10 - 120 mm focal length was fitted to the camera The camera was mounted on 

a stand (Model m3, Bencher Inc., Chicago, IL) which provided easy vertical movement and 

a stable support for the carnera. The camera was comected to a camera control unit (Model 

CCU-M3, SONY). The iris was selectable to manual or automatic mode. The option of the 

manual iris control was used to achieve repeatability in the experiments. The automatic gain 

control of the camera was disabled. The camera was white balanced before each imaging 

session. The experimentaI set up is shown in Fig. 4.1. 

The R, G, and B video signals from the camera control unit (CCU) were converted 

to a 24 bit color digital image by a firame grabber board (Model DT 287 1, Data Translation 

inc., Marlboro, MA). The frame grabber board was installed in an IBM compatible 80386 

persona1 computer. The carnera gave three parallel anaiog video signais, R, G, and B. 

corresponding to the NTSC (National Television System Cornmittee) color primaries. The 

fiame grabber could convert the R, G, and B color signals to H, S, and I signals in the real 

time. The hune grabber had three separate eight bit analog-to-digital (AD) converters and 

three 5 1 2 x 480 x 8 bit fianle buffers. The programs to control the fiame grab ber were 

written in C programming language using the aurora subroutine library (Aurora, Data 



Translation Inc,. MarIboro. MA). The image resolutions were 0.202 rnm/pixel and 0.160 

mm/pixel in the horizontal and verticai directions, respectively. Images were converted to 

square pixels with 0.202 mm/pixel resolution. Image analysis was carried out on a work 

station (Model SPARC STATION 2, Sun Mcrosystems, Inc., Mountain View, CA) and an 

IBM compatible pentium 75 personal cornputer. 

4.2 Sample illumination 

Uniform diffuse lighting was used in d l  experiments. A circular fluorescent tube 

(305 mm diameter and 32 W circular lamp; Model FClZT9/CW, Philips, Singapore) was 

placed around and just below the surface level of the sample placement planorrn of the light 

chamber (Fig. 4.2). A semi-spherical steel bowl of'approximately 0.39 m diameter, painted 

white and smoked with magnesiurn oxide on its inner side, was used as a difiser (Fig. 4.1 ). 

The steel bowl had an opening of 0.125 m diameter at its top, through which images were 

viewed by the camera. A voltage regulator (Model CVS, Sola Canada Inc.. Toronto, ON) 

controlled the voltage to the lamps within 10.5 V. A variac was used to maintain a constant 

voltage (1  20 *O. 1 V) to the light source. A light controller (Model FXO6&2/120. Mercron. 

Richardson, TX) was used with the fluorescent lamp. The photodiode light sensor of the 

light controller automatically detected the illumination level in the light charnber and 

adjusted the AC frequency of the lamp to maintain a stable level of illumination. The 

fiequency of the AC power output of the controiier varied between 140 kHz at the minimum 

light levels to 60 kHz at full power. 



4.3 Illumination standardization 

A Kodak white card with 90% reflectance (Mode1 El 52-7795, Eastman Kodak Co.. 

Rochester, NY) was used as a white reference to standardise the illumination level. The 

larnp voltage was set to the rated value of 120 V. An image of the white card was acquired 

over a small centrai area of 50 x 50 pixels, and the mean gray level values of the R G. and 

B bands were computed and used as the illumination level indicators. By manually adjusting 

the iris control and performing the white balance with the CCU, al1 three values (R, G, and 

B) were adjusted to 25Wl. 

4.4 Grain samples 

Composite grain samples (uncleaned comrnerciai sarnples) of C WRS wheat (grade 

1,2, and 3), C WAD wheat (grade 1,2, 3, and 4), barley (grade 1 and EX 1 ), oats (specific 

grades not known), and rye (grade 1) were coilected fkom 30 growing regions of the Western 

Canada for the 1994 growing year by the Industry Services Division of the Canadian Grain 

Commission, Winnipeg, MB. The CWRS wheat comprised 30 sarnples of each grade. The 

C WAD comprised 7 samples of 1 -CWAD, 10 samples each of 2-C WAD and 3-C WAD. and 

3 samples of 4-C WAD. The barley had 15 samples each of grade 1 and EX1 . The oats had 

30 samples (specific grades not known) and rye also had 30 sarnples of grade 1. A total of 

2 10 sarnples were collected. The growing regions were chosen using the climatic 

subdivisions of the Canadian Prairies (Putnacn and Putnam 1970). 

For the first set of tests (analysis of bulk samples), grains fiom al1 30 growing 

regions were used and three images were acquired for analysis from the grain sample 
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collected from each growing region. The nurnber of images used for the tirst set of tests 

were 90 (30 growing regions x 3 images per growing region) each for C WAD wheat, barley. 

oats, and rye, and 270 (30 growing region x 3 images pet growing region x 3 grades) for 

CWRS; total number of images was 630. 

For the second set of tests (analysis of individuai kemels), 300 kernels (25 kemels 

per image) fiom each growùig region were randody selected and used for each grain type 

(for C WRS wheat, it was 900 kemels: 300 kemels pet grade). Al1 three grades of C WRS 

wheat were collected fiom 20 growing regions. The CWAD wheat was collected fiom 20 

growing regions (grade 1 fiom 7, grade 2 fiom 10, and grade 3 from 3 growing regions). 

Barley was collected fkom 20 growing regions (grade 1 fiom 9 and grade EX1 from 1 I 

growing regions). Oats (specific grades not known) and rye (grade 1) were also collected 

fiom 20 growing regions. The nurnber of kemels used for each grain type was 6000 (3 00 x 

20); total number of kemels used was 42000. 

4.5 Sampling technique 

For overall sampling, each composite grain sample (1000 - 1500 g) was poured inco 

a large plastic container and mixed thoroughly. A scoop was w d  to take grains randomly 

fkom different regions of the container to give a sub-sample of 75 g. Before withdrawing the 

second sub-sampie, the remaining grains in the plastic container were re-rnixed. In th is  way 

three sub-samples were collected. 

The three sub-samptes were re-mixed to give a sample. The sarnple was mixed 

thoroughly by passing it four times through a Boerner Divider. For image acquisition of 
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bulk samples, the sample was split into three replicate samples. For image acquisition of 

individual kemel, replicate samples were remixed afier acquiring buik images and 300 

kernels were randomly picked fkom the sample for testing. 

4.6 Image acquisition 

The image acquisition system (Le., lighting system) was switched on for 30 min prior 

to acquiring any images for its stabilization. After that the gray level calibration (white 

balance) of the field of view (FOV) was done using the Kodak white card. The spatial 

calibration was done with an object of known dimension (a Canadian 25 cent coin). For 

textural caiibration a graph sheet with green lines was used. Variation in mean gray level 

value (= 60) of the graph sheet images taken over the penod of time was *2 gray level. 

For the first set of tests (imaging of bulk samples), each replicate sample (75 g mas) 

was poured into a transparent rectangular sample hoider with dimensions of 135 x 100 x 10 

mm (Fig. 4.2a). A piece of epoxy fibreglass (its length and width were litîle smdler than the 

sampie holder) was placed at the top of the sample presentation device and was manuaiiy 

pressed three times to level the top surface of the bulk sample. Then the sample hoider was 

placed in the FOV of the camera and an image of 5 12 x 480 was acquired and stored for later 

analysis. 

For the second set of tests (imaging of individud kernels), individual kernels were 

randomly placed (non-touching, 25 kernels per image) on a black background (Fig. 4.2b) and 

images were acquïred and stored for later analysis. 







C W T E R  V. ALGORITHM DEVELOPMENT 

5.1 Gray level CO-occurrence matrix (GLCM) 

Suppose an image to be analyzed is rectangular and has N, resolution cells in the 

horizontal direction, N, resolution cells in the vertical direction, and the gray levels 

appearing in resolution cells are quantized to N, levels. The texture information could be 

adequately specified by the matrix of relative frequencies, P(i, j), with which two 

neighboring resolution cells separated by distance, d, occur in the image, one with gray level. 

i, and the other with gray level, j. Such GLCM is a function of the angular relationship 

between the neighboring resolution cells as well as a hc t ion  of the distance between them. 

The unnormalized frequency when four principal directions (0 O, 45 O, 90 O, and 1 3 5 O )  were 

considered was defined by: 

P(i,j,d)= # ( ( ( k , P ) , ( m , n ) ) ~ ( L ~ x L ~ ) x ( L , x L , )  1 (k-m=O, Ibn1  = d ) o r ( k - m =  

d,P-n=-d)or(k-m=-d,P-n=d)or(lk-m[=d,P-n=O)or ( k - m = d .  

P-n=d)or(k-m=-d,Q-n=-d),I(k,P)=i,I(m,n)=j) (5.1) 

where: 

# = number of elements in the set, 

(k, P) = coordinate with gray level i, and 

(m, n) = coordinate with gray level j. 

Consider Fig. 5.1, which represents a 4 x 4 image with 4 gray levels, ranging fiom 

O to 3. Figure 5.2 shows the unnormalized GLCM. For example, the element in the (3,2) 



position of the 1 pixeldistance GLCM is the total number of tirnes 2 gray levels of value 3 

and 2 occur adjacent to each other in al1 four directions. To determine this, the number of 

pairs of resolution cells in the GLCM were counted such that the first resolution cell of the 

pair bad gray level3 and the second resolution ceii of the pair had gray level2. The GLCM 

was normalized hy dividing each entry of the matrix by a nomalizing constant, C, as: 

where: 

p(i, j) = (i, j)" entry in a normalized GLCM, 

P(i, j) = (i, j)" entry in a unnod i zed  GLCM, and 

C = the normalizing constant. 

For a square or a rectangular image, the normalizing constant, C, was defined as: 

For Fig. 5. L, the normalizing constant is 84. 

Fig. 5.1 A 4 x 4 image with 4 gray Ievel values O - 3 



G r a y  L e v e l  

Fig. 5.2 Gray level CO-occurrence matria for the image in Fig. 5.1 

Uskg the normalized GLCM, the foiiowing textural feams were extracted (Haralick 1979: 

Unser 1986): 

Variance ( d = ( i  - p)2.pci,j) 
i = l  j = l  



Maximum Probability = Max ( p ( i , j ) )  

Cluster Shade = 22 ( i  +j - 2p )3 .p ( i l j )  

N N 

c luster Prominance = 2 2 

5.2 Gray level rua Iength matrix (GLRM) 

A gray level run is a set of consecutive, collinear picture points having the same gray 

level value. The ma& element q(i, j) specifies the number of times that the picture contains 

a run of length j, in a given direction, consisting of points having gray level i (or lying in 



gray level range i). Figures 53(a - d) show the GLRMs for the image in Fig. 5. l for the four 

p ~ c i p a l  directions ( O 0 ,  45 O ,  90 O, and 135 O). 

The following features were extracted from ail four GLRMs and their mean value and 

range were calculated for analyses (Gailoway 1975). 

Shorî Run = 5 2 {q( i , j ) / j  

Long Ru* = 2 1 I~ 2 . q ( i , j ) ~ / ~  

Gray Level Non -uniforrnity = 2 (x q ( i  , j ) ) ' / ~  
1 .1  j = l  

Nr 

Run Length Non -uniformity = (2 q ( i ,  j ) ) ' / ~  
j = l  i = [  



Gray 

Level 

Run Length 1 

Gray 

Level 

1 Run Length 1 

Gray 

Level 

I Run Length 1 
1 2 3 4  

O 3 0 0 0  

Gray 1 5 0 0 0  

Level - 3 2 1 0 0  

3 4 0 0 0  
L 

6 

Fig. 5.3(a - d) Gray level run length matrices at 0°, 45 O, 90°, and 
135 O, respectively for the image in Fig. 5.1 



Run Percent = RIC 1 jmq( i , j )  

GLRM Entropy = 2 q(i,j)log(q(i,j))/R 

where: 

q(i, j) = (i, j)" entry in the GLRM, 

1 = gray level, 

j = run Iength, 

N, = maximum number of run lengths in an image, and 

5.3 Color features 

From the R, G, and B color bands of an image H, S, and 1 were caicuiated using the 

following equations (Gonzaiez and Woods 19%): 



H = Cos -' 112 [(R - G )  + (R - B)] (5.23) 
[(R - G ) ~  + ( R  - B ) ( G  - B ) ] ' ~  

Color in the HSI mode1 was defined with respect to normaiized R, G, and B. The 

original R G, and B values (camera output) were divided by a normalizing constant 

[(R+G+B)/3] to get the normaiized R, G, and B values. The normalizhg constant used was 

250 because the system was white baianced to 250. The H, S, and 1 values obtained were 

within the range [O, 11. Equation 5.23 yields values of H in the intervai O " s H s 1 80 O .  If 

(BA) > (GA), then H had to be greater than 180". So, whenever (BA) > (GA), H was 

calculated as (360" - H). Hue was divided by 180 to normalized to the range [O, 11, Le., H 

= W180°. When R = G = B, then S = O, making it meaningless to defme angle H; in this 

case H was assumed as O. When R, G, and B were O, Le., when I = O, both S and H were 

meaningless to define; in this case, S and H were assumed as O. 

From the R, G, and B, and H, S, and I values, their mean values, variances, and 

ranges were calculated in an image. 

5.4 Morphological features 

Substantiai work has been carried out by researchers using different morphological 

features for classification of different cereal grains and their varieties. But the effect of 



growing regions on ~Iassification accuracy of different cereal grains using morphological 

features was not studied. 

Algorithms were developed to extract morphological features of individual kernels. 

Individual kemel images were segmented and labelled. The following morphological 

features were extracted fiom labelled images of individuai kernels Wair 1997): 

Area - The algorithm calculated the number of pixels inside, and including the kemel 

boundary, and multiplied by the calibration factor (mm2/pixei). 

Periheîer - It was calculated by adding the Euclidean distances between al1 the successive 

pairs of pixels around the circiunference of the kernel. 

Length - It was the length of the rectangle bounding the kernel. 

Width - It was the width of the rectangle bounding the kernel. 

Major Axis Lengtli - It was the distance between the (x, y) end points of the longest line 

that could be drawn through the kernel. The major axis endpoints were found by computing 

the pixel distance between every combination of border pixels in the kernel boundary and 

finding the pair with the maximum length- 

Mifior Axis Lengîh - It was the distance between the (x, y) end points of the longest line 

that could be drawn through the object while maintaining perpendicularity with the major 

mis. 

Thinness Ratio - It measured the roundness of the kernel. 

Thinness ratio = (Perirneter)' / (471 x Area). 

Aspect Ratio - Major Axis Length / Minor Axis Length. 

Rectungular Aspect Ratio - Length / Width. 
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Area Ratio - (Length x Width) / Area. 

Mmimum Radius - It was the maximum distance between a pue1 on the boundary and the 

centroid of the kemel. 

Minimum Radius - tt was the minimum distance between a pixel on the boundary and 

the centroid of the kernel. 

Radius Ratio - Maximum Radius / Minimum Radius. 

Standard Deviation of al1 Radii - It was the standard deviation of distances of al1 pixels 

on the boundary fiom the centroid of the kemel, denoted by or. 

Harulick Ratio - p, / a, where pr was the rrean of al1 radii of the kemel region. 

Spatial Moments - They are the statistical meazures related to an O bject's chamcterizations. 

The first four invariant moments (invariant to scaiing, rotation, and translation) were used: 



The normalized central moments, q,, were calculated fiom the cenaal moment. p,: 

- 
11,, - ci,&"o (5.28) 

where : 

r =%@+q)  +1, and 

for p, q = 0, 1,2. ....., k where: 

k = user-selected value to calculate a specific order of central moment, 

Ci = m , ~  1 nbo, 

= w, / -0, and 

(ci, cj) = the centre of gravity of the kernel. 

The two-dimensional @ + q)h order moment was defined as: 

for p, q = O, 1,2, ..., Q where: 

4 = user-selected value to calculate a specific order of moment, and 

F(i, j) = gray level value at coordinate (i, j). 

F(i, j) is 1 for any binary image. 
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Fourier Descriptors - One-dimensionai distance funciion, d, was calculated for ail pixels 

on the boundary of a kernel as: 

where: 

( i  j = kh pixel coordinates on the boundary of the kemel, and 

(c,, cjJ = cenuoid of the kh kemel. 

The distance fwiction d, was converted to milirneters using the calibration factor (rnrn/pixel). 

The magnitude of the Fourier descnptors were calculated as: 

for u = 0, 1.2, ... (N-1). The reai vaiue of the descriptor was defined as: 

and the imaginary value of the descriptor was defined as: 

where: 

N = number of pixels on the boundary of the kemel. 

The first four Fourier descnptors (u = 0, 1,2. and 3) were used for analysis. 
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CHAPTER VI. IMAGE ANALYSIS 

6.1 Analysis of bulk samples using textural features 

The PROC DISCEUM (SAS 1990) was used to classifjr bulk samples of CWRS 

wheah CWAD wheat, barley, oats, and rye using texturai features. The analysis was done 

using resubstitution, cross-validation (leave-one-out), and hold out methods with normal and 

non-parametric estimations. In the non-parametrîc estimation, k-nearest neighbor method 

was used with k vaiue 5. Preliminary experiments were conducted with different k values 

(e.g., 10, I5,50, and 100) and k value 5 gave the highest classification accuracies of cereal 

grains. In the hold out method, buik sample images fiom 25 growhg regions (3 images per 

growing region) were used as the training data set and fiom 5 other growing regions were 

used as the test data set. These training and test data sets were selected randomly. For the 

cross-validation and resubstitution methods, b u k  sample images fiom 25 growing reg ions 

(used as the training data set in the hold out method) were used. Of the 25 textural features 

used in the discriminant anaiysis, 10 were GLCM features (mean, variance, unifonnity. 

entropy, maximum probability, correlation, homogeneity, inertia, cluster shade, and cluster 

prominence), 12 were GLRM features (short run, long run, gray level non-uniformity, run 

length non-uniformity, run percent, and GLRM entropy, and their ranges), and remaining 3 

were gray level features (mean, variance, and range in gray level). The textural features were 

exrtracted fiom a single color band (R, G, or B) or a color band combination black&white. 

i.e., (R+G+B)/3; (3R+2G+l B)/3; (3R-t-1 G+3B)/6; or (1 R+3G+2B)/6]. These color band 



combinations were arbitrarily chosen to determine their effect on classification accuracy 

when textural featwes extracted fiom these color band combinations were used for 

classification of cereal pins .  

6.1.1 Gray level reduction To reduce the computational time of the textural algorittun, 

the original gray level value (250) was reduced to 32, 16,8, and 4 gray levels and the texturd 

features extracted f?om each case were used for classification, and the results were compared. 

For example, when the gray level was reduced fiom 250 to 32, the gray levels were grouped 

into 32 ranges: O - 7 as 0,8 - 15 as 1, 16 - 23 as 2,24 - 31 as 3, and so on. In case of gray 

level reduction to 16 gray levels, the ranges were O - 15 as 0, 16 - 3 1 as 1,32 - 47 as 2, and 

so on. S imilarl y for reduction to 8 gray levels, the ranges were O - 3 1 as 0,3 2 - 63 as 1, and 

so on and for reduction to 4 gray levels, the ranges were O - 63 as 0,64 - 127 as 1, and so 

on. 

6.1.2 Color selection Texturd features were extracted fiom R, G, and B color bands and 

their combinations black&white, Le., (R+G+B)/3; (3R+2G+ 1 £3)/6; (ZR+ 1 G+3B)/6; and 

(1 R+3G+2B)/6] to determine if a paaicular color band or color band combination gave better 

classification accuracy than others. 

6.1.3 Effect of sub-images on classification accuracy The original image (512 x 480) 

was partitioned into different sub-images (e-g., 4,9, or 16 sub-images). Ail sub-images were 

treated as original images. Textural and color features extracted fiom the sub-images were 
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used for classification to determine whether partitioning of images can improve the 

classification accuracy. 

6.1.4 Selection of texniml features of bulk samples Ail 25 textural features used for 

classification of buik samples of cereal grains may not contribute significantly to the 

classifier. Sometimes, the classifier performance declines if there are too many redundant 

features. To optimize the nurnber of texniral features that contributed significantly to the 

classification, PROC STEPDISC (SAS 1990) was used. Textural features of bulk samples 

of cereal grains from 25 growing regions (used as the training data set in the hold out 

method) were used for the STEPDISC analysis. Also, independent rankings of al1 textural 

features were detemined using the STEPDISC analysis with one feature in the final model. 

Once the feature with the highest level of contribution (determined by r' and average 

squared canonical correlation, ASCC) was identified, it was removed from subsequent 

analysis and the second best feature was determined. The anaiysis was continued tilI the 

least important feature was identified. 

6.2 Analysis of bulk samples using color features 

The PROC DISCRJM (SAS 1990) was used to classiq buik samples of CWRS 

wheat, CWAD wheat, barley, oats, and rye using color features. The analysis was done 

using resubstitution, cross-validation (leave-one-out), and hold out methods with normal and 

non-parametric estimations. In the non-parametric estimation, k-nearesr neighbor method 

was used with k value 5. In the hold out method, bulk sample images from 25 growing 
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regions (three images per region) were used as the training data set and from t'ive other 

growing regions were used as the test data set. These training and test data sets were sarne 

as the data sets used for textural analysis. For the cross-validation and resubstitution 

methods, buik sample images fiom 25 growing regions (used as the training data set in the 

hold out method) were used. The mean, variance, and range of R, G, and B, and H. S. and 

1 were calculated from bulk images and used for classification of cereal grains. 

6.2.1 Effect of sub-images on classification accuracy As discussed in analysis of texturai 

features, original images were equaily partitioned into sub-images (e.g., 9, 16, or 25) and the 

sub-images were treated as original images. Discriminant analyses (hold out and leave-one- 

out methods) were carried out using color features extracted fiom original images and sub- 

images and the classification accuracies were compared. 

6.2.2 Selection of color features of bu& samples STEPDISC analysis was carried out 

to select the color features of bulk samples of cereal grains which conûibuted significantly 

to the classifier. Color features of cereal grains from 25 growing regions (used as the 

training data set in the hold out method) were used for the STEPDISC andysis. Independent 

rankings of al1 color features were deterrnined using the STEPDISC analysis. 

6.3 Analysis of individual kernels using morphologica1 features 

After converting the rectangular pixel images into square pixel images, the images 

were segmented using an automatic thresholding technique (Parker 1994). If there were any 
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holes inside the segmented image of individual kemels, they were fïiled with a hole tilling 

algorithm. Ail kernels in the image were labelled to give unique identification. 

Morphological features (23 features) were extracted fiom the labelled image. The 

rnorphological feature extraction aigorithms were developed on an IBM compatible pentium 

75 personal computer (Nair 1997). 

Discrixnimnt analyses were carried out using resubstitution, cross-validation (leave- 

one-out), and hold out methods. In each case, normal and non-parameûic estimations were 

used. In the non-parametric estimation, k- neurest neighbor method was used with k value 

5.  In the hold out method, individual kernel images from 15 growing regions (300 kernels 

per growing region) were used as the training data set and from five other growing regions 

as the test data set. In the cross-validation and resubstitution methods, individual kernel 

images fiom 15 growing regions (used as the training data set in the hold out method) were 

used for classification. 

To determine the level of contribution of morphological features for classificrition of 

individuai kemels of cereai grains, PROC STEPDISC (SAS 1990) was used. Morphological 

features of individual kernels fiom 15 growing regions (used as the training data set in the 

hold out method) were used for the STEPDISC analysis. IndividuaI rankings of 

morphological features were determined using the STEPDISC analysis with one feature in 

the final model. 



6.4 Analysis of individual kemels using tertural features 

M e r  converting the rectanguiar pixel images into square pixel images, the images 

were segmented manually. For C WRS wheat, C WAD wheat, barley, and rye the selected 

threshold value was 5&3, and for oats it was 7W3. To remove noise due to dust and to fi Il 

in holes inside kemel images, if there were any, the upening and closing operations 

(Gonzalez and Woods 1992) were carried out with structural elements of 3 or 4 pixeL 

diameter. Al! kernels in the image were labelled to give unique identification. The original 

gray level values of each kemel were superimposed on the labelled image to make the 

background pixel values zero. The textural and color feanires were extracted fiom each 

kernel image for classification. 

Al1 algorithm to extract textural and color features of buik samples and individual 

kernels were developed using a software, named KHOROS (Khoral Research, Inc.. New 

Mexico). The analyses were carried out on a work station (Model SPARC STATION 2. Sun 

Microsysterns, Inc., Mountain view, CA). 

Discriminant analysis was conducted using resubstitution, cross-validation (leave- 

one-out), and hold out methods. In each case, normal and non-parametric estimations were 

used. In the non-parametric estimation, k- neorest neighbor method was used with k value 

5. In the hold out method, individual kemel images fiom 15 growing regions (300 kemels 

per growing region) were used as the training data set and fiom other five growing regions 

as the test data set. In the cross-validation and resubstitution methods, individual kernel 

images fiom 15 growing regions (used as the training data set in the hold out method) were 

used for classification. 



6.4.1 Gray Ievel reduction As discussed for buik sample analysis, the gray level was 

reduced fiom 250 to 32, 16,8, and 4. The texniral features extracted fiom images at dif3erent 

maximum gray levels were used to determine whether reduced gray level improves 

classification accuracy. 

6.4.2 Color selection Sunilar to bulk sample analyses, textural features of individual 

kemeis were extracted fiom R, G, and B color bands and their combinations [blackdkwhite. 

Le., (R+G+B)B ; (3 Rt2G-t 1 8)/6; (2R+ 1-3 B)/6; and (1 Rt3G+SB)/6] to determine if a 

particulas color band or color band combination gave better classification accuracy than 

others. 

6.3.4 Selection of textural features of individual kernels STEPDISC analysiç was 

conducted to detennine the level of contribution of each feature to the classifier. Also, it was 

used to determine the independent rankings of texturai features. 

6.5 Analysis of individual kernels using color features 

Discriminant analysis was carried out using resubstitution, cross-validation (leave- 

one-out), and hold out methods to detennine classification accuracies of CWRS wheat. 

C WAD wheat, barley , oats, and rye usïng color features of individual kernels. In die non- 

pararnetric estimation, k- nearrst neighbor method was used with k value 5. In the hold out 

method, individual kemel images fiom 15 growing regions (300 kemeis per growing region) 

were used as the training data set and from other five growing regions as the test data set. 
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fn the cross-validation and resubstitution methods. individual kemel images fiom 15 growing 

regions (used as the training data set in the hold out rnethod) were used for classification. 

STEPDISC analysis was conducted to determine the level of contribution of each color 

feature to the classifier and aiso to cietennine their independent rankings. 



CHAPTER VII. RESULTS AND DISCUSSIONS 

7.1 Classification of bulk samples using texturd features 

7.1.1 Gray level reduction The cornputational tirne for extraction of textural features is 

reduced with a decrease in maximum gray level value of an image, because it reduces the 

size of the CO-occurrence and run length matrices- In reai-world applications (e-g., on- t ine 

quality monitoring of h i t s  and vegetables, grains), the computational time is very crucial. 

hence one rnay sacrifice small classification accuracy for reduced computational tirne; but 

it is very rnuch application dependent, e-g., for some application, the classification accuracy 

is very crucial and for some other application, the cornputational time is very important. The 

textural features extracted fiom red color band of original images (at maximum gray Ievel 

value 250) and images of reduced gray levels (at maximum gray level values 32, 16'8, or 

4) were used to classi@ cered grains. The classification results using the hold out and leave- 

one-out methods with the normal and non-parametric estimations are given in Appendices 

B 1 -B5 and BB 1-BBS. Oats were very distinct fkom other cereal grallis in their texture; at al1 

maximum gray level values (e.g., 250,32, 16,8, and 4) and in the hold out and leave-one-out 

methods, oats were 100.0% correctiy classified except in two cases (non-parametric 

estimation in the hold out method at maximum gray level values 8 and 4) where one oat 

image got misclassified as barley in each case (Appendices B 1 - BS and BB 1 - BBS). This 

is because the bnghmess of oats is different than other cereal grains and their packing density 

is different than that of other cereal grains as the oats kemels are elongated in shape. When 



normal estimation (in the hold out method) was used for ciassification. five barley images 

were misclassified as C WAD wheat (Appendices B la  - B5a). This may be because the 

btightness and the packing density of grains in those barley images were similar to that of 

CWAD wheat images. But fiom visual inspection no peculiarities were observed in those 

images. 

The "mean accurac y" which was the average ofthe ciassification accuracies of cereal 

grains (hereafter cereai grains will refer to one or more of CWRS wheat, CWAD wheat, 

barley, oats, and rye) at a maximum gray level value (e-g., 250, 32, 16, 8, or 4) was used to 

determine if any particular maximum gray level value gave the highest classification 

accuracy. When texturai features (ail 25 features) extracted fiom images at maximum gray 

level value 3 2 were use& the mean accuracies in the majority of the anal ysis methods [e.g ., 

hold out method (Npar), hold out method (normal), leave-one-out method (Npar), or leave- 

one-out method (normal)] were higher than that when images at other maximum gray level 

values were used (Fig. 7.1). Images at gray level value 250 had gray level values sparsely 

dimibuted. Hence, the tonal primitives, Le., the local variations (e-g., fineness, coaneness. 

granulation) on the surface texture of an image were not prominent (Haralick 1973). As the 

maximum gray level value decreased, the distinguishable tonal primitives increased; hence 

the prominence in the textural features increased which improved the classification 

accuracies. But the reduction in maximum gray levei value beyond certain level resuited in 

an image with little textural variations and the image d a c e  was transformed into a surface 

having almost same gray level value. Although images at maximum gray level value 32 

gave the highest mean accuracies, images at 16 and 8 gray level values ais0 gave comparably 
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good classification accuracies. At maximum gray level value 4. the mean accuracies in the 

rnajority of the andysis methods were poorer than when images at maximum gray level 

value 32 was used (Fig. 7.1). This suggests that at this maximum gray level value. the 

images of cereal grains started losing the distinctness in their textural features. At maximum 

gray Ievel value 32, the classification accuracies were 100.0% each for ail cereal grains when 

an independent data set was used for testing (non-parameûic estimation, Appendix BZb) and 

was chosen for M e r  andysis. The classification accuracies were poor when normal 

estimation was used on the independent data set (five barley and one rye images were 

misclassified). This suggested that textural features of bulk images did not follow normal 

distribution. 

84 ; 
250 32 16 8 4 

Maximum gray level value 
+ Hold out (Npar) + Hold out (Normal) 

+ Leave-one-out (Npar) + Leave-one-out (Normal) 

Fig. 7.1 Classification accuracies of buk samples of cereal grains using textural 
features extracteci from r d  color band at diaerent maximum gray level 
values (Note: Npar denotes non-panmetric estimation) 



7.1.2 Color selection The texturai features (GLCM, GLRM, and gray level features) were 

extracted fiom images at maximum gray level value 32 with a single color band (R G. and 

B) and a color band combination [black&white, Le., (R+G+B)/3; (3 R+2W 1 B)/6; 

(2R+IG+3B)/6; and (1R+3G+2B)/6] to determine which color band or color band 

combination gave the highest classification accuracies. Classification results for cereal 

grains using the hold out and leave-one-out methods with normal and non-pararnetric 

estimations are given in Appendices B2 and 86-8 1 1, and BB2 and BB6-BB 1 1 ,  respectively. 

The oats were very distinct fiom other cereai grains in ail color bands or color band 

combinations (Appendices B2 and B6-B 1 1 ,  and BB2 and BB6-BB 1 1). Also, the C WRS 

wheat and the C WAD wheat in the test data set were 100.0% correctly classifieci except in 

one case (when green color was used) where one CWRS wheat image got misclassified as 

rye (Appendix B6b). Texturai features extracted kom images with red color band gave the 

highest mean accuracy in the majority of the andysis methods (in three out of four methods. 

Fig. 7.2). This conforrns with the results of the studies conducted by Majurndar et al. 

(1 996a), Neuman et al. (1989b), and Hawk et al. (1 970) where they reported that the 

reflectance properties of bulk samples of cereai grains were more distinct in the red cotor 

band than in other color bands of the visual spectnim. The mean accuraçy was poor when 

an independent data set was used for teçting (hold out method) using normal estimation (Fig. 

7.2). This suggested that the data set did not follow nomai distribution. 



+ Hold out (Npar) -F Hold out (Normat) 
+ Leave-one-out (Npar) + Leave-one-out (Normal) 

Fig. 7.2 Classification accuracies of buik samples of cereal grains using textunl 
features extracted from different color bands and color band 
combimations at maximum gray kvel value 32 IR: red, G: green, B: blue, 
B&W: black&white ((R+G+B)/3), XI: (3R+ZG+lB)/6, X2: 
(2R+lG+3B)/6, and X3: (lR+3G+ZB)/6] (Note: Npar denotes non- 
parametric estimation) 

7.1.3 Effect of sub-images on classification accuracy It was hypothesized that if an 

original image was partitioned into many sub-images and were treated as onginal images. 

classification accuracies could be hproved using textural features. The original images of 

cereal grains were partitioned into 9, 16, or 25 sub-images and the classification accuracies 

are shown in Appendices B2, B 12-8 14, BB2, and BB 12-BB 14. When original images were 

used, in the majority of the analysis methods the mean accuracies were higher than when the 

sub-images were used (Fig. 7.3). As the number of sub-images increased, the classification 

accuracies of cereai grains decreased except in one case (the normal estimation of the test 

data extracted fiom nine sub-images, Fig. 7.3). 



1 9 16 25 
Number of sub-images 

+ Hold out (Npar) + Hold out (Normal) 
+ Leave-one-out (Npar) + Leave-one-out (Normal) 

Fig. 7.3 Classification accuracies of buk sample images of cereal grains, 
partitioned into different sub-images, using textuml features edracted 
from red color band at maximum gray level value 32 (Note: Npar 
denotes non-parametric estimation) 

The bulk image is not always uniform in its grain packing density along its surface 

which results in non-uniform shadowing dong the image surface. The presence of foreign 

materials (e.g., other cereal grains) in an image also makes the texture of a bulk image non- 

uniform along its surface. In a large image, these local irregularities were nullified when 

GLCM and GLRMs were calculated. As the image size is reduced (due to partitioning), 

these local variations became prominent, and the textural features extracted from the sub- 

images of one cereal grain were similar to other grains; hence resulted in increased 

misclassification. 

The textural features extracted fiom the red color band of bulk images (not 

partitioned) at maximum gray level value 32 gave the highest classification accuracies in 

cered grains and were used for M e r  analysis. Texhual features of bulk sample images can 



be used (nori-pararnetric estimation) for rapid identification of cereai grains with 100% 

classification accuracy. 

7.1.4 Selection of textural features of bulk samples Al1 25 textual features did not 

significantly contnbuted for improvement of the classification accuracy of cereal grains. 

Many textural features were highly correlated with one another; hence some of them are 

redundant features (Appendix C 1). To d e t e m e  the level of contribution, texturai features 

of cereal grains, extracted fiom the red coIor band at maximum gray level value 32, îkom 25 

growing regions (used as the training set in the hold out method) were used for the 

STEPDISC anaiysis. Table 7.1 shows the features in descendhg order of their level of 

contribution to the classifier. The STEPDISC analysis removed two features (inertia and 

GLRM entropy range) because they were not significant to the classifier. The variance is the 

rnost important textural feature (average squared canonical correlation, ASCC = 0.2 10) of 

bulk sample images. 

Discriminant analyses were carried out with the first 5, 10, 15, and 20 features ( from 

Table 7.1) and the classification accuracies were compared with that when di 25 features 

were used (Fig. 7.4). The mean accuracies using the fh five features were poor. When al1 

25 features were used, the mean accuracies were the highest in the majority of the analysis 

methods (Fig. 7.4). The first 10 features also gave similar mean accuracies. The levei of 

contribution of features (see ASCC values) beyond the fim 10 features was poor (Table 7.1 ). 

This suggested that one can use only the fint 10 features. If one uses bulk samples to 

identib the principal grain in a car lot sample, some classification accuracy (e.g., 43%) c m  
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be sacrificed to Save some cornputational tirne. Using 10 features instead of 25 features 

would Save computational time, therefore one can use the first 10 textural features for 

classimg bulk samples of cereal grains. Also, in field situation, one always uses the hold 

Table 7.1 Selection of textural featwes of bulk samples of cereal grains, extracted 
from the r d  color band at maximum gray level value 32, using the 
STEPDISC anabsis 

Number Textural features of buik samples Average squared Partial 6 
canonical correlation 

Variance (GLCM) 0.210 0.84 
Long run (GLRM) 
Short nin (GLRM) 
Gray level non-unifomiity (GLRM) 
Run length non-uniformity (GLRM) 
GLRM entropy (GLRM) 
Correlation (GLCM) 
Mean (GLCM) 
Uniformity (GLCM) 
Cluster prominence (GLCM) 
Run percent (GLRM) 
Cluster shade (GLCM) 
Entropy (GLCM) 
Mean gray level 
Gray level variance 
Long run range (GLRM) 
Gray level range 
Maximum probability (GLCM) 
Gray level non-uniformity range (GLRM) 
Run length non-uniformity range (GLRM) 
Run percent range (GLRM) 
Short run range (GLRM) 

23 Homogeneity (GLCM) 0.829 0.02 
Note: inertia and GLRM entropy were removed from the selection. 



Fig. 7.4 
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+ Hold out (Npar) + Hald out (Normal) -.- Leave-one-out (Npar) + teave-one-out (Normal) 

Cornparison of classiueatioa accuracies of bulk samples of cereal grains 
using dinerent number of textural features extracted from red color 
band at maximum gray level value 32 (Note: Npar denotes non- 
parametric estimation) 

out method to test unknown samples. The leave-one-out method was used to determine how 

well the classifier performed on the training data. The classification accuracies of CWRS 

wheat, CWAD wheat, barley, oats, and rye using the first 10 texturai features, exûacted fiom 

red color band at maximum gray level value 32, were 100.0 % in each case when tested on 

an independent data set (non-pacametric estimation, Appendix F 1 a). 

Table 7.2 shows the independent rankings of textural features of bulk sarnples. 

Although cluster prominence and cluster shade were the second and third most signi ficant 

features in tenns of their independent levels of contribution (Table 7.2), in the discriminant 

mode1 they ranked the 10m and 12" most significant features, respectively (Table 7.1). This 

was because in the STEPDISC analysis, once the most significant feature(s) was (were) 

selected (for example, here it was variance), the rest of the features were selected depending 



Table 7.2 Independent rankings of textural features (extracted from the red color 
band at maximum gray level value 32) of buk  samples of cereal grains 
on the hasis of their individual level of contribution to the classifier using 
the STEPDISC analysis 

Nmber Texttual features of bulk sarnples Average squared r' 
canonical corre tation 

Variance (GLCM) 0.2 1 O 0.84 
Cluster prominance (GLCM) 
Cluster shade (GLCM) 
Long run (GLRM) 
Mean Gray level 
Gray level variance 
Mean (GLCM) 
Run percent (GLRM) 
Inertia (GLCM) 
Run length non-uniformity (GLRM) 
Short nui (GLRM) 
Homogeneity (GLCM) 
GLRM entropy (GLRM) 
Uniformity (GLCM) 
Correlation (GLCM) 
Gray level non-uniformity (GLRM) 
Entropy (GLCM) 
Long nui range (GLRM) 
Gray level non-uniformity range (GLRM) 
Run percent range (GLRM) 
Short run range (GLRM) 
GLRM entropy range (GLRM) 
Gray level range 
Maximum probability ( G L o  

25 Run length non-uniforrnity range (GLRM) 0.0 16 0.06 

on their correlation with the feature(s) already being selected, i.e., features with the least 

correlation with the already being selected feature(s) will be selected first. Appendix Cl 

shows the between-class correlation coefficients of textural features of bulk samples. 

Because cluster shade and cluster prominence were bighly correlated with variance (= 0.99, 

Appendix Cl), once variance was selected in the STEPDISC analysis, their level of 
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contribution went down in the discriminant model (Table 7.1). Contrary to that long run 

was the fourth most independently significant feature (Table 7.2) and as its correlation with 

variance was not high (= 0.42), in the discriminant model it became the second most 

significant feature. Some feature may have a very high level of contribution when used 

independently but its levei of contribution may go down drasticaiiy when used with a group 

of other features, some of which are highly correlated with that feature. Also, fiom the 

independent ranking, one can choose an alternative set of features depending on their level 

of contribution to the discriminant model. For exarnple, instead of variance, if cluster 

prominence or long run was selected as the fust feature, the level of contribution of rest of 

the features would have changed. 

In the discriminant model, the first 10 textural features consists 5 GLCM and 5 

GLRM features (Table 7.1). These GLCM features were highly correlated (rnost of the cases 

> 0.65) with al1 primaq color features (red, green, and blue) (Appendix C 1). Also they were 

highiy correlated with intensity but their correlation with hue and saturation was very poor. 

This suggested that these GLCM features were manifestation of primary color features. But 

the correlation of all primary color features (red, green, and blue or hue, saturation, and 

intensity) and the five GLRM features were very poor (Appendix C 1) which suggested that 

these textural features were independent of prirnary color features. Also, of the I O  most 

significant textural features (on the b a i s  of their individual level of contribution, Table 7.2), 

5 were highly correlated (variance, cluster prominence, cluster shade, mean gray level, and 

mean) with primary color features but other 5 were very poorly correlated. This also 

suggested that al1 textural features were not a manifestation of primary color features. 
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7.2 Classification of bu& samples using color features 

The classification accuracies of bulk samples of cered grains using color feanires are 

given in Appendices D 1 and DD 1. M e n  an independent data set was used for testing, the 

classification accuracy was 100.0% for each cereal grain (Appendix D 1 b). Also, with the 

leave-one-out method, al1 cereal grains were correctly classified except one C WAD wheat 

image which got misclassified as oats (Appeodix DDbl). 

7.2.1 Effect of sub-images on dassification accuracy Discriminant analyses (hold out 

and Ieave-one-out methods) were carried out using color features, extracted tiom original 

images and sub-images (Appendices Dl-D4 and DD - DD4) and the classification accuracies 

were compared (Fig. 7.5). The color features extracted fiom original images (without 

partitioning) gave higher mean accuracies in the majority of the analysis methods than sub- 

images. As the number of sub-images per original image increased (e.g., 16 and 25) ,  the 

classification accuracies decreased. This was because as the image size reduced, the 

presence of foreign materials and non-unifonnity in packing density of grains became 

prominent which resulted in misclassification of cereal grains. 

7.2.2 Selection of color features of buik samples Some of the color features were highly 

correlated with one another (> 0.90) (Appendix C 1); hence their level of contribution to the 

classification of cereal grains was poor. Table 7.3 shows the color features of bulk samples 

in descending order of their level of contribution to the classifier. The STEPDISC anaiysis 



Number of sub-images 

+ Hold out (Npar) + Hold out (Normal) - Leave-one-out (Npar) + Leave-one-out (Normal) 

Fig. 7.5 Classification accuracies of bulk sample images of cereal grains, 
partitioned into dinerent sub-images, using color features (Note: Npar 
denotes non-parametrîc estimation) 

removed intensity as it was not significant to the classifier. Hue is the most significant color 

feature. The level of contribution of color features (see ASCC values, Table 7.3) beyond the 

first 10 features was very poor which suggested that one can ignore these redundant features 

in the classifier. 

Discriminant anaiyses were carried out with the first 5, 10, and 15 features (frorn 

Table 7.3) and the classification accuracies were compared with the classif7cation accuracies 

when al1 18 features were used (Fig. 7.6). The mean accuracies in the majority of the 

analysis methods were higher when the first five features were used compared to that when 

the fust 1 0, 1 5, or al1 1 8 features (Fig. 7.6). When an independent data set was used for 

testing (non-pararnetric estimation), al1 cereal grains were 1 00 .O% correctly classi fied with 



Table 7.3 Selection of color features (buk images) of cereal grains using 
STEPDISC analysis 

-- - 

Nurnber Color featms of bulk samples Average squared Partial i 
canonical correlation 

1 Hue O. 192 0.77 
2 Hue variance 0.346 0.7 1 
3 Red variance 0.508 0.69 
4 Green variance 0.582 0.68 
5 Saturation variance 0.625 0.40 
6 Saturation 0.652 0.40 
7 Red 0.675 0.45 
8 Blue 0.720 0.36 
9 Blue variance 0.740 0.16 
10 Saturation range 0,750 O. 12 
1 1  Green 0.76 1 0.14 
12 Blue range O. 764 0.09 
13 Intensity variance 0.766 0.07 
14 Intensity range 0.768 0.04 
15 Red range 0.782 O. 13 
16 Green range 0.784 0.03 
17 Hue range 0.784 0.02 

Note: intensity was removed from the selection 

Number of features 

* Hold out (Npar) - Hold out (Normal) - Leave-one-out (Npar) + Leave-one-out (Normal) 

Fig. 7.6 Cornparison of classüication accuricies of buik samples of cereal grains 
using dinorent number of color features (Note: Npar denotes non- 
parametric estimation) 



the first 3, 10, 15, or al1 18 features (Appendix F2a). The classification accuracies were 

poorer in the normal estimation than in the non-parametric estimation which suggested that 

the color features were not normaily distributed. Table 7.4 shows independent rankings of 

the color features. Although red and green were the second and the fourth mon important 

Table 7.4 Independent rankings of color features (bu& samples) of cereal grains 
on the basis of their individual level of contribution to the classifier using 
STEPDISC anaivsis 

Number Color features of bulk samples Average squared f 
canonical correlation 

t Hue O. 192 0.77 
Red 
Red variance 
Green 
Intensity variance 
Green variance 
Hue variance 
Blue variance 
intensity 
Blue 
Saturation variance 
Saturation 
Saturation range 
Blue range 
Red range 
Hue range 

17 Intensity range 0.006 0.02 

features (on the basis of independent ranking, Table 7.4), they ranked seventh and eleventh 

in the discriminant color mode1 because their correlations with hue (0.6 1 and 0.78) were very 

high (Appendix C 1). Red variance, intensity variance, green variance, and blue variance 

were pooriy correlated (< 0.38 in al1 cases) with hue as well as with one another; hence their 



independent ranking (Table 7.4) and their ranking in the discriminant color model (Table 

7.3) were sirnilar. 

For rapid identification of cereal grains, either texturd or color features of bulk 

sample images can be used with non-parametric estimation. Some of the textural feanires 

(e.g., some GLCM features) were highly correlated with some primary color features (e-g., 

red, green, blue, and intensity) but there were many texniral features which were very poorly 

correlated with color features which suggested that those textural features were very distinct 

frorn color features. 

7 3  Morphology model: classification of individual kemels 

Many researchers conducted substantial work using different morphologicai features 

for classification of cereal grains and their varieties. Using clean, pedigreed sarnple they 

achieved hi& classification accuracies. It was hypothesized that the classification accuracies 

wouid reduce if tested with commercial samples collected fiom different growing regions. 

Morphological features of individual kemels were used for classification of C WRS wheat, 

CWAD wheat, barley, oats, and rye, collected from diffèrent growing regions. M e n  an 

independent data set was used for testing (the hold out method) with non-parametric 

estimation, the classification accuracies of C WRS wheat, CWAD wheat, barley, oats, and 

rye were 99.0,95 .2,97.3,99.5, and 82.8%, respectively (Table 7.5b). Aiso, in the leave-one- 

out method with non-parametric estimation, the classification accuracies of CWRS wheat. 

CWAD wheat, barley, oats, and rye were 99.1, 92.1, 97.6, 99.7, and 90.9%, respectively 

(Table 7.5d). The classification accuracies with the normal estimation were poorer than the 
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non-pararnetric estimation. This suggested that morphoIogicai features did not follow 

normal distributions. Sapirstein et ai. (1 987) reported similar ~Iassification accuracies of 

99.2, 95.7, 95.3. and 98.3% for HRS wheat, barley, oats, and rye, respectively using 

rnorphological and reflectance features. They achieved higher classification accuracy 

(98.3%) for rye when compared with the present study where due to inclusion of the CWAD 

w-heat in the discriminant model, many rye kernels got misclassified in as the C WAD wheat 

and vice versa (Table 7.5) as they had similar length and perimeter (data not shown). Also. 

there was no significant effect of growing regions on classification accuracy of cereai grains 

as the grains used for the training and the testing of the morphology model were collected 

fiom different growing region across western Canada. 

7.3.1 Selection of rnorphological features of individual kernels Many rnorphological 

features were highly correlated with one another (Appendix CZ) and many of them did not 

contribute significantly to the morphology model. The rnorphological features were ananged 

in descending order of theu level of contribution to the morphology model (Table 7.6). The 

kernel length was the most significant (ASCC = 0.223) and the major axis length was the 

least significant (ASCC = 0.662) feature when used with other features in the model (Table 

7.6) because they were very highiy correlated (0.99, Appendix C2). In a discriminant model. 

once the most significant feature is selected, rest of the features are selected depending on 

their correlation (poorly correlated features are selected first) with the feature already being 



Table 7.5a Confusion matrix of individual kernel images of cereal grains using 
morphological features: Normal estimation (hold out method) 

Categories (to)- C WRS CWAD Barle y Oats R Y ~  
(fiom) 1 wheat wheat 

CWRS wheat 4286 1 O0 O O 114 
(n = 4500) (95.2%) 

CWAD wheat 10 1406 17 O 67 
(n = 1500) (93 -7%) 

Bariey 3 56 - 1397 O 44 
in = 1500) (93.1 %) 

Oats O 1 O 1474 25 
(n = 1500) (98.3%) 

Table 7.5b Confusion rnatrix of individual kernel images of cereal grains using 
morphological features: Non-parametric estimation (hold out method) 
with k=5 

Categories (to)- C WRS CWAD BarIey Oats R Y ~  Other 
(fiom) 1 wheat wheat 

- - - - - - - - - -- - - . -- 

CWRS wheat 4457 23 1 O 18 1 
(n = 4500) (99.0%) 

CWAD wheat O 1428 3 O 58 11 
(n = 1500) (95.2%) 

Oats 1 O O 1493 3 3 
(n = 1500) (99.5%) 



Table 7 . 5 ~  Confusion matrir of individual kemel images of cereal grains using 
morp hological features: Normal estimation (leave-one-ou t method) 

Categories (to)- CWRS CWAD Barley Oats R Y ~  
(fiorn) 1 wheat wheat 

CWRS wheat 13083 
(n = 13500) (96.9%) 

C WAD wheat 61 
(n = 4500) 

Barley O 
(n = 4500) 

Oats O 
(n = 4500) 

R Y ~  15 
(n = 4500) 

Table 7.5d Confusion matrir of individual kernel images of cereal grains using 
morpbological features: Non-parametric estimation (leave-one-out 
method) with k=5 

Categories (to)- C WRS CWAD Barley Oats Rue Other 
(fiom) 1 wheat wheat 

CWRS wheat 13380 66 1 O 5 1 - 3 

(n = 13500) (99.1 %) 

C WAD wheat 48 4145 20 O 285 2 
(n = 4500) (92.1 %) 

Bar le y O 57 4392 - 3 47 2 
(n = 4500) (97.6%) 

Oats O O O 4486 12 2 
(n = 4500) (99.7%) 

selected. The level of contribution of features to the morphology mode1 beyond the first 10 

features was poor (see ASCC values, Table 7.6). 



Table 7.6 Selectioa of morphological features of individual kemels of cereal grains 
using STEPDISC analysis 

Nurnber Morphologicai features of individual Average squared Partial i 
kemels canonical correlation 

Lengîh 0.223 0.89 
Haralick ratio 
First Fourier descriptor (when u = 0) 
Standard deviation of radii 
Area ratio 
Radius ratio 
First invariant moment, MI 
Second invariant moment, M2 
Minimum radius 
Maximum radius 
Perime ter 
Area 
Rec tang ular aspect ratio 
Thinness ratio 
Width 
Second Fourier descriptor (when u = 1) 
Minor axis length 
Fourth Fourier descriptor (when u = 3) 
Third Fourier descriptor (when u = 2) 
Third invariant moment, M, 
Fourth invariant moment, M, 
Aspect ratio 

- - Major axis length 0.662 0.00 

Discriminant analyses were carried out with the fmst 5, 10, and 15 features (tiom 

Table 7.6) and the classification accuracies were compared with that when al1 23 features 

were used (Fig. 7.7). The mean accuracy was the highest in 3 out of 4 analysis methods 

when the first 10 features were used for classification (Fig. 7.7). Beyond the first 10 

features, as the number of features increased, the mean accuracies remained constant because 

of redundancies in some features (e.g., length and major axis length (0.99)). With the Fust 



five features the mean accuracies were very poor. When the morphology mode1 with the tirst 

10 features was tested on an independent data set, the classification accuracies of CWRS 

wheat, CWAD wheat, barley, oats, and rye were 98.9, 93.7, 96.8, 99.9, and 8 1.6%. 

respectively (non-parametric estimation, Appendix F3a). When the mode1 was used on the 

training data set, the classification accuracies were 98.9, 91 -6, 97.9, 100.0, and 91.6%. 

respectively for CWRS wheat, CWAD wheat, barley, oats. and rye (non-parametnc 

estimation, Appendix F3 b). 

Number of features 

I Hold out (Npar) -F Hotd out (Normal) 
+ Leave-one-out (Npar) + Leave-one-out (Norrnal) 

Fig. 7.7 Cornparison of classification accuracies of individual kernels of cereal 
grains using different number of morphological features (Note: Npar 
denotes non-parametric estimation) 

Independent rankings of morphological features are shown in Table 7.7 and their 

between-class correlation coefficients are show in Appendix CS. The kernel length, 

maximum radius, and perirneter were the three most significant features based on 



independent rankings (Table 7.7). As the maximum radius, perimeter, and length were 

highly inter-correlated (0.99, Appendix C2), the significance level o f  maximum radius and 

perimeter were reduced in the morphology mode1 (Table 7.6). Also, as the correlation of 

Table 7.7 Independent rankings of morphological features of individual kemels of 
cereal grains on the basis of their individual level of contribution to the 
classifier using STEPDISC analysis 

Number Morphological features of individual Average squared 8 
kemels canonical correlation 

1 Length 0.223 0.89 
2 Maximum radius 0.22 1 0.88 
3 Perimeter 0.2 17 0.87 
4 First invariant moment, M, 0.212 0.85 
5 Rectangular aspect ratio 0.2 1 1 0.85 
6 First Fourier descnptor (u=O) 0.21 1 0.85 
7 Standard deviation of radii 0.21 1 0.84 
8 Thinness ratio 0.208 0.83 
9 Second invariant moment, MI 0.206 0.82 
10 Radius ratio 0.202 0.8 1 
1 1  Haralick ratio O. 196 0.78 
12 Area O. 186 0.74 
13 Area ratio 0.1 18 0.47 
14 Minor axis length 0.1 1 1  0.45 
15 Width 0.108 0.43 
16 Second Fourier descriptor (u= 1) O. t O8 0.43 
17 Minimum radius 0.104 0.42 
18 Major axis length 0.08 1 0.32 
19 Fourth Fourier descriptor (u=3) 0.060 0.24 
20 Third Fourier descriptor ( ~ 2 )  0.059 0.24 
21 Fourth invariant moment, M, 0.056 0.23 
22 Third invariant moment, M, O .O56 0.22 
23 Aspect ratio 0.002 0.0 1 



first invariant moment and rectangular aspect ratio with length was high (0.95 and 0.94. 

respectively), their ranking in the rnorphology model was lowered. As many of the 

morphological features were highly correlated with one another, using al1 the features in the 

morphology model would not Unpmve the classification accuracy; also as the nurnber of 

features is reduced, the time consumed by any classifier (specially classifier like neural 

network) is reduced. 

7.4 Texture model: classification of individual kernels 

7.4.1 Gray level reduction and color selection Textural features were extracted fiom 

GLCM and GLRMs which were computed h m  individual kemel images. If the maximum 

gray level value is mi and the run length is n, the size of GLCM and GLRMs will be m ix m , 

and mi x q, respectively for the im kemel. #en the maximum gray level is reduced. the 

sizes of the GLCM and GLRMs are also reduced resulting in the reduced computational 

time. The classification accuracies of cereal grains using t e d  features extracted fiom red 

color band at different maximum gray level values (e.g., 250,32, 16. 8, and 4) are shown in 

Appendices E 1 -E5 and EE 1 -EE5. Some C WRS and C WAD wheats were misclassified as 

rye and vice versa because some of the textural features (e-g., mean gray level, gray level 

variance, gray level range, mean, entropy, correlation) of these grains overlap one another 

(data not shown). Some of the barley kemels were rnisclassified as CWAD wheat and some 

of the oats kernels were misclassified as barley kemels. Some of the textural features (e.g., 

gray level variance, gray level range, rnean, entropy) of barley kemels were overlapped with 



that of CWAD wheat kemels and some of the textural features (e-g., entropy, short nui range. 

run percent range, entropy) of oats kernels were overlapped with that of barley kernels. 

The mean accuracies were higher in the majority of the analysis methods [e-g., hold 

out method (Npar), hold out method (normal), leave-one-out method (Npar), or leave-one- 

out method (normal)] at maximum gray level value 4 than at other maximum gray level 

values (Fig. 7.8). In an individuai kemel image, at higher gray level values (e.g., 250.32) 

the gray level values were sparsely distributed. Hence, the tonal primitives, i.e., the local 

variations (e-g., fmeness, coarseness, granulation) on the surface texture of a kemel image 

were not prominent (Haralick 1973). As the maximum gray level value decreased, the 

distinguishable tonal primitives increased; hence the prominence in the textural features 

increased which improved the classification accuracies. But the reduction in maximum gray 

level value beyond certain level would result in an image with little texturd variations and 

the image surface would be transformed into a surface having almost same gray level value. 

When the maximum gray level value was 250, the computational thne was much longer 

cornpared to other maximum gray level values (e.g., 4, 8, 16, or 32) because of the size of 

the GLCM (250 x 250) and GLRMs (250 x nJ of the i' kemel, where ni is the run length of 

i' kernel. For real-world (e.g., on-line) classification it is necessary to have short 

computation tirne. Also, at maximum gray level value 250, the classification accuracies of 

cereal grains were poor compared to other maximum gray level values (Fig. 7.8). Therefore, 

in subsequent analyses using other color bands, the maximum gray level value 250 was not 

used and the analyses were carried out at maximum gray level values 32, 16,8, and 4. 



In bulk sample images, the textural features became prominent at maximum gray 

level value 32 (Fig. 7.1) whereas in individual kemel images the texhuai features became 

prominent at maximum gray level value 4 (Fig. 7.8) when red color was used to extract the 

textural features in both the cases. There is a distinction between a bulk image texture and 

an individual kemel texture of a cereal grain. The bulk image texture is a manifestation of 

the packing density and the individual nuface texture of the grain where the packing density 

of the grain (results in shadows) plays a major role in formhg the topography of the bulk 

image texture. For individuai kcrnel image, it is oniy the surface texture which represents 

the individual kemel texture. In individual kemel image, the gray level values are distnbuted 

across a narrow gray level band whereas in bulk sample images, the gray level values are 

distributed across a wide gray level band due to the presence of shadows. Hence, the texturai 

features become prominent at different maximum gray level values for bulk sample and 

individual kernel images. 

The classification accuracies of cereai grains using texnual features of individual 

kemels, extracted fiom the green color band, are show in Appendices E6 -E9 and EE6 - 

EE9. The mean accuracies were higher in three out of four analysis methods at maximum 

gray level value 8 than other gray level values (Fig. 7.9). Similady, the classification 

accuracies of cereal grains using textural features, extracted fiom blue color, black & white 

color, (3R+îG+ 1 B)/6, (2R+lG+3B)/6, and (1 R+3G+2B)/6 are shown in Appendices E 10 - 

El3  and EElO - EEl3, Appendices E l 4  - El7  and EEl4 - EEl7, Appendices E l 8  - E21 and 

EE 18 - EE21, Appendices E22 - E25 and EE22 - EE25, and Appendices E26 - E29 and EE26 

- EES9, respectively. 
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250 32 16 8 4 

Maximum gray level value 
+ Hold out (Npar) + Hold out (Normal) 
+ Leave-one-out (Npar) + Leave-one-out (Normal) 

Fig. 7.8 Classification accuracies of individual kernels of cereal grains using 
textural features extracted from red color band at different maximum 
gray level values (Note: Npar denotes non-parametric estimation) 

When texturai features extracted fkom blue (Fig. 7.10) and black & white colors (Fig. 

7.1 1) were used, the rnean accuracies in al1 analysis methods were higher at maximum gray 

level value 4 than other maximum gray level values. When textural features extracted from 

(3R+2G+lB)/6 were used, the mean accuracies were higher in three out of four analysis 

methods at maximum gray level value 4 than other maximum gray level values (Fig. 7.12). 

When textural features exüacted from (ZR+ 1 G+3 B)/6 (Fig. 7.13) and ( 1  R+3G+ZB)/6 (Fig . 

5.14) were used, the mean accuracies in al1 analysis rnethods were higher at maximum gray 

level value 4 than other maximum gray level values. 



Fig. 7.9 

84 i I 1 
32 16 8 4 

Maximum gray level value 

+ Hold out (Npar) + Hold out (Normal) 
+ Leave-one-out (Npar) + Leave-one-out (Norrnal) 

Classification accuracies of individual kemels of cereal grains using 
texhiml features extracted from green color band at dinerent maximum 
gray Ievel values (Note: Npar denotes non-pai-ametric estimation) 

L I 
32 16 8 4 

Maximum gray level value 
+ HoId out (Npar) + Hold out (Normal) 
+ Leave-one-out (Npar) + Leave-one-out (Normal) 

Fig. 7.10 Classifîcation accuracies of individual kernels of cereal grains using 
textural features extracted from blue color band at difZerent maximum 
gray level values (Note: Npar denotes non-parametrie estimation) 



Maximum gray level value 

-, Hold out (Npar) + Hold out (Normal) 
t- Leave-one-out (N par) + Leave-one-out (Normal) 

Fig. 7.11 ClassiTication accuracies of individual kernels of cereal grains using 
textural features extracted from black & white color at different 
maximum gray level values (Note: Npar denotes nom-parnmetric 
estimation) 

Maximum gray level value 

+ Hold out (Npar) + Hold out (Normal) 
* Leave-one-out (N par) + Leave-one-out (Normal) 

Fig. 7.12 Classification accuracies of individual kernels of cereal grains using 
textural features extracted from (3R+ZG+lB)/6 ai dinerent maximum 
gray level values (Note: Npar denotes non-parametric estimation) 



Maximum gray level value 

+ Hold out (Npar) + Hold out (Normal) 
+ Leave-one-out (Npar) + Leaveone-out (Normal) 

Fig. 7.13 Classification accuracies of individual kernels of cereal grains usiog 
textural features extracted from (2R+lG+3B)/6 at diRerent maximum 
gray level values (Note: Npar denotes non-panmetric estimation) 

84 : 
i 
1 

32 16 8 4 
Maximum gray level value 

-, Hold out (Npar) + Hold out (Normal) 
+ Leave-one-out (Npar) + Leave-one-out (Normal) 

Fig. 7.14 Classification accuracies of individual kerneb of cereal grains using 
textural features extracted from (1R+3G+2B)/6 at dinerent maximum 
gray level values (Note: Npar denotes non-parametric estimation) 



Figure 7.15 shows the classification accuracies of cereai -gains using textural katures 

of individual kemels, extracted fiom different color bands and color band combinations at 

maximum gray level value 4 (for the green color band the maximum gray level value was 

8). Texturai features extracted from green color band at maximum gray level value 8 gave 

higher mean accuracies in the majority of the analysis methods than other colors or color 

band combinations. This is in contrast with bulk sample images where texturd features 

extracted fiom red color band gave higher classification accuracies than other color band or 

color band combinations because the bulk sample image and individuai kemei image textures 

are different from each other. Blue color also showed comparably good classification 

accuracies (Fig. 7.15). 

84 i l . 
R G B B&W XI  X î  X3 

Color bands 

+ Hold out (Npar) + Hold out (Normal) 

+ Leave-one-out (Npar) + Leave-one-out (Normal) 

Fig. 7.15 CIassifïcation accuracies of individual kernels of cereal grains using 
textural features extracted from different color bands and color band 
combinations at maximum gray level value 4 (for green color the 
maximum gray level value was 8) [R: red, G: green, B: blue, B&W: 
black & white, XI: (3R+2G+lB)/6, X2: (2R+lG+SB)/6, and X3: 
(1 R+3G+2B)/6] (Note: Npar deno tes non-parametrie estimation) 



When an independent data set was used for testing, the classification accuracies of 

C WRS wheat. C WAD wheat, barley, oats, and rye using textural features extracted fiom 

green color at maximum gray level value 8 were 87.7, 98.1, 100.0, 100.0, and 74.1%. 

respectively (Appendk E8b). When the training data set was used for testing, the 

classification accmies of C WRS wheat, C WAD wheat, barley, oats, and rye ushg ted& 

features were 88.2, 96.4, 100.0, 100.0, and 79.9%, respectiveiy (Appendix EE8b). The 

classification accuracies of individual kemels of cereal grains using texturai features were 

poorer than that using morphological features. 

7.4.2 Selection of textural features of individual kernels Some of the textural features 

were highly correlated (= 0.99) with one another (e-g., mean, variance, cluster shade, and 

mean gray level were highly inter-correlated with one another, Appendix C2) and they did 

not contribute significantly to the texture model. The STEPDISC analysis was carried out 

to determine the level of contribution of each textural feature of individual kernels to the 

texture model so that al1 redundant features couid be eliminated. Table 7.8 shows the 

textural features, extracted fiom the green color band at maximum gray level value 8 in the 

descending order of their level of contribution. The gray level non-uniformity range was the 

most significant feature (ASCC = 0.156) and the GLRM entropy range was the least 

significant feature (ASCC = 0.51 7) because they were highly correlated (0.96, Appendix 

C2). The level of contribution (see ASCC values) of texturai features beyond the first 15 

features was poor to the model (Table 7.8). 



Table 7.8 Selection of tertuml features of individual kemels of cereal grains, 
extracted fkom green color band at maximum gray level value 8, using 
STEPDISC analysis 

- -- 

Nurnber Textual features of îndîvidual Average squared Partial ? 
kemels canonical correlation 

Gray level non-uniformity range (GLRM) 0.156 0.62 
Long nin (GLRM) 
Run length non-unifonnity (GL RM) 
Entropy (GLCM) 
Short run (GLRM) 
Run percent (GLRM) 
Cluster prominence (GLCM) 
Gray Ievel range 
Mean (GLCM) 
GLRM entropy (GLRM) 
Run percent range (GLRM) 
Mean gray levei 
Gray level variance 
hertia (GLCM) 
Long run range (GLRM) 
Correlation (GLCM) 
Run length non-uniformity range (GLRM) 
Cluster shade (GLCM) 
Homogeneity (GLCM) 
Uniformity (GLCM) 
Gray level non-uniformity (GLRM) 
Maximum probability (GLCM) 
Short run range (GLRM) 
Variance (GLCM) 

25 GLRM entropy range (GLRM) 0.5 16 0.0 1 

Discriminant analyses were carrïed out with the first 5, 10, 15, and 20 features (fiom 

Table 7.8) and the classification accuracies were compared with that when al1 25 features 

werp used (Fig. 7.16). The mean accuracies were poor when oniy the nrst five features were 

used for classification. As the number of features increased, the mean accuracies increased 

to certain extent and then remained constant, because of redundancies (e.g., GLRM entropy 



range, variance, short run range, maximum probability. gray level non-uniformity were 

highly correlated (> 0.88) with gray Ievel non-unifomiity range) in some features (Fig. 7.16). 

Increase in mean accuracies beyond 15 features was negligible, hence one could use the fint 

15 features (Table 7.8) for classification of individual kernels of cereal grains (Fig. 7.16). 

When an independent data set was used for testing, the classification accuracies of CWRS 

wheat, CWAD wheat, barely, oats, and rye using the fkst 15 features in the texture mode1 

were 85.2,98.2,100.0,100.0, and 76.3%, respectively (non-parametric estimation, Appendix 

F4a). When used on the training data set. the classification accuracies were 87.0. 95.7. 

100.0, 100.0, and 8 1.8%, respectively (non-parametric estimation, Appendix F4b). 

5 10 15 20 25 
Number of features 

+ Hold out (Npar) + Hold out (Normal) 
+ Leave-one-out (Npar) + Leave-one-out (Normal) 

Fig. 7.16 Comparison of classification accuracies of individual kernels of cereal 
grains using dinerent number of textural features evtracted from green 
color at maximum gray Ievel value 8 (Note: Npar denotes non- 
parametric estimation) 

The independent rankings of texturd features are shown in Table 7.9. Depending on 

the correlation among different texturd features (AppendUt C2) and theu independent 

1 O9 



rankings, their level of contribution to the texture rnodel was detennined (Table 7.9). 

Although GLRM entropy, gray level non-uoiformity, long nui range, and run length non- 

uniformity range were some of the most significant texniral features on the basis of their 

Tabk 7.9 Independent rankinp of textuml featum of individual kernels of cereal 
grains, extracted from green color band at maximum gray level value 8, 
on the basis of their individual level of contribution to the classifier using 
STEPDISC analysis 

- - - - -- - 

Number Textural features of individuai Average squared r' 
kemels canonical correlation 

Gray level non-uniformity range (GLRM) O. 155 0.62 
Run length non-uniformity (GLRM) 
GLRM entropy (GLRM) 
Gray level non-uniformity (GLRM) 
Long run range (GLRM) 
Run length non-uniformity range (GLRM) 
Cluster prominence (GLCM) 
Mean gray level 
GLRM entropy range (GLRM) 
Cluster shade (GLCM) 
Variance (GLCM) 
Long nrn (GLRM) 
Run percent range (GLRM) 
Correlation (GLCM) 
Mean (GLCM) 
Gray level range 
Inertia (GLCM) 
Run percent (GLRM) 
Short nui range (GLRM) 
Gray Ievel variance 
Maximum probabiiity (GLCM) 
Short run (GLRM) 
Uniformity (GLCM) 
Homogeneity (GLCM) 

- - Entropy (GLCM) 0.004 0.0 1 
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individuai kvel of contribution (Table 7.9), their level of contribution to the texture model 

reduced significantl y (Table 7.8) because their correlations with gray Level non-uni fomity 

range were very hi& (> 0.90 in al1 cases, Appendix C2). 

7.5 Colar model: classification of individual kernels 

Eighteen color feaîures were used to classify individual kemels of cereal grains and 

the classification accuracies are s h o w  in Table 7.10. When an independent data set was 

used for testing, the classification accuracies of cereai grains were higher with the normal 

estimation thm with the non-parametric estimation (Tables 7.10a and 7. lob) and the 

classification accuracies of C WRS wheat, C WAD wheat, barley, oats, and rye using normal 

estimation were 87.9, 95.0, 92.1, 97.5, and 96.6%, respectively (Table 7.1 Oa). When the 

leave-one-out method was used, the classification accuracies were higher with the non- 

parametric estimation than with the normal estimation (Tables 7.10~ and 7.10d) and the 

classification accuracies of C WRS wheat, C WAD wheaî, barley, oats, and rye using the non- 

pararnetric estimation were 94.4,94.3,93.7,97.5, and 9 1.9%. respectively (Table 7.10d). 

The maj ority of the misclassified C WRS wheat were classified as C WAD wheat. 

oats, and rye. This was because the CWRS wheat had equal number of grade 1,2. and 3 

kemels and variability of size, shape, and reflectance features were used for successfùl 

classification of three grades of CWRS wheat (Sapirstein and Kohler 1995). Hence, some 

of the color features of CWRS wheat (ail three grades were treated as a single class) were 

confûsed with CWAD wheat, oats, and rye. The majority of the rnisclassified C WAD wheat 

were classified as barley and vice versa because they had similar reflectance characteristics. 

I l l  



Table 7.10a Confusion matrix of individual kernel images of cereal grains using color 
features: Normal estimation (hold out method) 

- - -- -. . -- 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(fiom) L wheat wheat 

CWRS wheat 3956 
(n = 4500) (87.9%) 

C WAD wheat 16 
(n = 1500) 

Barley 3 
(n = 1500) 

Oats 37 
(n = 1500) 

Table 7.10b Confusion matrix of individual keniel images of cereal grains using color 
feahires: Non-parametric estimation (hold out method) with k=5 

Categones (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

CWRS wheat 4174 194 3 1 37 30 34 
(n = 4500) (92.8%) 

CWAD wheat 17 1378 77 2 5 21 
(n = 1500) (9 1 -9%) 

Barley 1 93 1392 O O 14 
(n = 1 500) (92.8%) 

Oats 85 O O 1414 O 1 
(n = 1500) (94.3%) 



Table 7.10~ Confision matrix of i n d ~ d u a i  kernel images of cereal grnias using color 
features: Normal estimation (Ieave-one-out method) 

- -- 

Categories (to)- C WRS CWAD Barle y Oats R Y ~  
(fiom) 1 wheat wheat 

CWRS wheat 11309 513 69 689 920 
(n = 13500) (83.8%) 

CWAD wheat 71 4168 175 23 63 
(n = 4500) (92 -6%) 

Barley 11 413 4022 18 36 
(n = 4500) (89.4%) 

Oats 23 21 57 4388 11 
(n = 4500) (97.5%) 

Table 7.10d Confusion ma- of individual kernel images of cereal grains using color 
features: Non-parametric estimation (ieave-one-out method) with k=5 

-- -- 

Categories (to)- C WRS CWAD Bartey Oats R Y ~  Other 
(fiom) 1 wheat wheat 

- 

CWRS wheat 12742 317 25 147 26 1 8 
(n = 13500) (94.4%) 

C WAD wheat 94 4244 146 3 9 4 
(n = 4500) (94.3 %) 

Barley 3 255 4215 8 14 5 
(n = 4500) (93.7%) 

Oats 58 18 32 4387 2 3 
(n = 4500) (97.5%) 



Oats samples fiom some growing regions (specially from Manitoba province) were 

brownish in color and some of them were misclassified as CWRS wheat. Most of the 

rnisclassified rye kemels were classified as CWRS wheat as their reflectance characteristics 

were sirnilar (Majumdar et. al 1996) (Table 7. IO). Neuman et al. (1 98%, 1989b) examined 

color attributes of individual kemels of 10 varieties representing 6 Canadian wheat classes. 

Using red, green, and blue reflectance features, they achieved classification accuracies of 76, 

76, 62, 56, and 34% for SWS, Anber Durum, HRS, HRW, and CPS wheat classes. 

respectively. If red, green, and blue feanires were used with hue and saturation features, the 

classification accuracy of the wheat classes would have increased as hue and saturation were 

very poorly correlated with red, green, and blue features (Appendix C2). 

7.5.1 Selection of color features of individual kernels Some of the color features were 

highly correlated (> 0.90) with one another (e-g., red, green, and intensity; and red range, 

green range, blue range, and saturation range were highiy inter-correlated, Appendix C 2 ) ,  

hence they did not contribute significanlly to the color model. Table 7.1 1 shows the color 

features in the descending order of their level of contribution to the color model. The red 

color had the most contribution (ASCC = 0.122) and intensity had the least contribution 

(ASCC = 0.537) to the model as they were highly correlated to each other (0.97, Appendix 

C2). The level of contribution (see ASCC values) of color features beyond the first 10 

features was poor (Table 7.1 1); one could eliminate rest of the features fiom the color model 

without affecthg the classification accuracies of cereal grains. 



Discriminant anaiyses were conducted with the first 5, 10, and 15 features (from 

Table 7.1 1) and the classification accuracies were compared with classification accuracies 

when dl 18 features were used (Fig. 7.17). The classification accuracies of the cereal grains 

were poor when only the f k t  five features were used in the color model. As the number of 

color features increased, the mean accmcies increased to certain extent and then became 

constant because of redundancies in some features in the model. The color model with the 

first 10 features gave good classification accuracies and the increase in mean accuracies 

beyond 10 features was negligible. The classification accuracies of C WRS wheat, C WAD 

Table 7.11 Selection of color features of individual kernels of cereai grains using 
STEPDISC analysis 

- - - - - - . -- - -- 

Nwnber Color features of individual Average squared Partial 6 
kernels canonical correlation 

1 Red O. 122 0.49 
2 Blue 0.244 0.56 
3 Green 0.390 0.64 
4 Red range 0.439 0.29 
5 Saturation range 0.449 0.10 
6 Blue range 0.473 0.18 
7 Red variance 0.479 0.06 
8 Green variance 0.492 0.06 
9 Saturation variance 0.496 0.03 
10 Saturation 0.502 0.05 
11 Blue variance 0.508 0.03 
12 Green range 0.5 10 0.02 
13 Hue range 0.5 12 O .O2 
14 Hue variance 0.5 14 0.0 1 
15 Hue 0.537 O. 12 
16 Intensity variance 0.537 0.00 
17 Intensity range 0.537 0.00 
18 Intensity 0.537 0.00 



wheat, barley, oats, and rye using the fïrst 10 color features on an independent data set were 

94.1,92.3,93.1,95.2, and 92.5%, respectively (non-parametric estimation, Appendix F sa). 

When the same model was tested on the training data set, the classification accuracies were 

95.7,94.4,94.2,97.6, and 92.5%, respectively (non-parametric estimation, Appendix F5b). 

Table 7.12 shows the independent raokuigs of color feahires of individual kemels of 

cereal grains. Red and green colors, and saturation range were the three most significant 

features when chosen independently. They were also very significant features in the color 

model (Table 7.1 1 ). 

5 10 15 18 
Number of features 

+ Hold out (Npar) Hold out (Normal) 
+ Leave-one-out (Npar) + Ceave-one-out (Normal) 

Fig. 7.17 Cornparison of classification accuracies of individual kernels of cereal 
grains using daerent number of color features (Note: Npar denotes non- 
parametric estimation) 

For buk sample images, hue, hue variance, red variance, green variance, saturation 

variance, and saturation were some of the most important features to the color model (Table 



7.3) but for individual kernel images, red, green, blue, red range, saturation range. blue 

range, and red variance were sorne of the most important features to the color rnodel (Table 

7.1 1). This was because the distribution of color across a buk sample image and an 

individual kemel image was different fiom each other. 

From the morphology, texture, and color models of individual kernels of cereal 

grains, it was observed that no single model could give 100.0% correct classification (an 

ideal goal for practical implementation) for each type of cereal grain used in this study. The 

morphology model gave the highest classification accuracies when tested on an independent 

data set (mean accuracy = 94.2% when the first 10 features were used, Appendix F3a) and 

on the training data set (mean accuracy = 96.0% when the first I O  features were used, 

Appendix F3b). The color model gave the second highest classification accuracies when 

tested on an independent data set (mean accuracy = 93.4% when the frrst 10 features were 

used, Appendix F5a) and on the training data set (mean accuracy = 94.9% when the first 1 O 

features were used, Appendix F5b). The texture model gave the poorest classification 

accuracies when tested on an independent data set (mean accuracy = 92.0% when the first 

15 features were used, Appendk F4a) and on the training data set (mean accuracy = 92.9% 

when the first IS features were used, Appendix F4b). One can use any of these three models 

independently or i.n combinations depending on the requirement of classification accuracy. 

It was hypothesized that different combinations of these three models might hnprove the 

classification accuracies. 



Table 7.12 Ranking of color features of individual kernels of cereal grains on the 
basis of their individual Ievel of contribution to the classifier using 
STEPDISC analysis 

-- -- -- - - -  

Number Color features of individual Average squared ~ 
kemels canonical correlation 

1 Red 0.122 0.49 
2 Green 0.1 15 O -46 
3 Saturation range O. 105 0.42 
4 Intensi ty O. 1 03 0.4 1 
5 Blue 0.08 0.32 
6 Saturation 0.078 0.3 1 
7 Red range 0.067 0.27 
8 Green range 0.067 0.27 
9 Intensity range 0.057 0.23 
10 Hue 0.054 0.22 
11 Saturation variance 0.047 O. 19 
12 Blue variance 0.045 O. 18 
13 Green variance 0.038 O. 15 
14 Intensity variance 0.037 0.15 
15 Blue range 0.036 O. 15 
16 Red variance 0.03 1 0.12 
17 Hue variance 0.025 0.10 

7.6 Morphology-texture model: classification of individual kernels 

The STEPDISC analysis was conducted to select morphological and textural features 

based on their level of contribution to the discriminant model. Table 7.13 shows the 

morphological and textural feahires in the descending order of their level of contribution to 

the model. The fmt 4 most significant features were morphological features, kemel length 

king  the most significant feature. The number of morphological and textural features within 



Table 7.13 Selection of textural (extracted from green color band at maximum gray 
level value 8) and morphological features of individual kernels of cereal 
grains using STEPDISC analysis 

- - - - - - - -- - - - - - - - - - . . - - - - - 

Number Morphological (MF) and textural (TF) Average squared Partial i 
features of individual kemels canonical correlation 

Lensth (MF) 0.223 0.89 
Haralick ratio (MF) 
First Fourier descriptor (when u=O) (MF) 
Standard deviation of radii (MF) 
Entropy (TF) 
Area ratio (MF) 
Radius ratio (MF) 
Run length non-uniformity (TF) 
Gray level variance (TF) 
Minimum radius (MF) 
Width (MF) 
k e a  (MF) 
Short nui (TF) 
Run percent (TF) 
Homogeneity (TF) 
GLRM entropy (TF) 
Third invariant moment, M, (MF) 
Second invariant moment, M, (MF) 
First invariant moment, M, (MF) 
Maximum radius (MF) 
Run length range (TF) 
Cluster prominence (TF) 
Cluster shade (TF) 
Mean gray level (TF) 
Variance (TF) 
Uniformity (TF) 
Maximum pro bability (TF) 
Inertia (TF) 
Rectangular ratio (MF) 

30 Correlation (TF) 0.739 0.02 



Table 7.13 Selection of textuml (extracted €rom green color band at maximum gray 
Ievel value 8) and morphological features of individuai kemels of cereal 
grains using STEPDISC analysis (cont.) 

- -- - 

Number Morphotogical (MF) and textural (TF) Average squared Partial i 
features of individual kenels canonicai correlation 

31 Long run range (TF) 0.739 0.0 1 
32 Gray level non-uniformity (TF) 0.740 0.0 1 
33 Second Fourier descriptor (u= 1 ) (MF) 0.740 0.0 1 
34 Perimeter (MF) 0.74 1 0.0 1 
35 Thinness ratio (MF) 0.743 O -02 
36 Aspect ratio (MF) 0.743 0.0 1 
37 Gray level range (TF) 0.744 0.0 1 
38 Fourth Fourier descriptor (u=3) (MF) 0.744 0.0 1 
39 Third Fourier descriptor (u=2) (W) 0.745 0.0 1 
40 Long nin (TF) 0.745 0.0 1 
41 Fourth invariant moment, M, (MF) 0.745 0.00 
42 Run percent range (TF) 0.746 0.00 
43 Gray level non-unifonnity range (TF) 0.746 0.0 1 
44 Short run range (TF) 0.746 0.00 
45 GLRM entropy range (TF) O .746 O .O0 
46 Mean (TF) 0.746 0.00 
47 Minor axis length (MF) 0.746 0.00 
48 Major axis length (MF) 0.747 0.00 

the first 1 5 features were 9 and 6, respectively. The ranking of morphological and texturd 

features in the morphology-texture model (Table 7.13) was similar to the morphology mode1 

(Table 7.6). This was because the independent levels of contribution (see ASCC values) of 

many morphological features (Table 7.7) was higher than that of many textural features 

(Table 7.9) which affected the selection of features in the discriminant model. The level of 

contribution (see ASCC values) of morphological and textural features beyond the fust 15 

features was poor (Table 7.13); hence one can eliminate those features beyond the first 15 

feanires from the model without affecting the classification accuracies much. 



Discriminant analyses were carried out with the first 5, 10. 15.20.25.30.3. and 40 

features and the classification accuracies were compared with that when aii 48 features were 

used (Fig. 7.18). When the f k t  5 and 10 features were useci, the mean accuracies were poor. 

With an increase in the number of features, the mean accuracies increased to certain extent 

and then became constant. Increase in mean accuracies beyond 15 features tvas negiigible 

(Fig. 7-18), hence one could use the first 15 features (Table 7.13) for classification of 

individual kemels of cereal grains. 

+ Leave-one-out (N par) + Leave-one-out (Normal) 

- 100 - 

L 9 4 -  
3 
0 92 : 
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90 

Fig. 7.18 Cornparison of classification accutacies of individual kernels of cereal 
grains using dinerent number of morpbologica1 and textural features 
(extracted from green color band at maximum gray level value 8) (Note: 
Npar denotes non-parametric estimation) 
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When an independent data set was used for testhg, the classification accuracies of 

CWRS wheat, CWAD wheat, barely, oats, and rye using the first 15 features in the 

: 

. 

morphology-texture mode1 were 99.4, 99.1, 99.1, 100.0, and 95.2%, respective1 y (non- 

5 10 15 20 25 30 35 40 48 
Number of features 

* Hold out (Npar) + Hold out (Normal) 

parametric estimation, Appendk F6a). When used on the training data set, the classification 
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accuracies were 99.5,98.7,99.7, 100.0, and ?8.6%, respectively (non-parametric estimation. 

Appendix F6b). The classification accuracies of morphology-texture model were higher than 

that of morphology or texture model because some of the morphological and texnrral features 

were poorly correlated with one another (Appendix C2). 

7.7 Morphology-color model: classification of individual kernels 

The STEPDISC analysis was conducted to select features based on their level of 

contribution to the model. Table 7.14 shows the features in the descending order of their 

level of contribution to the model. The fm five most significant features were 

morphological features because their independent levels of contributions (see ASCC values, 

Table 7.7) were higher than that of color features (Table 7.12). Red, intensity, and green 

were the most significant color features (Tabie 7.14). Selection of features in the 

rnorphology-color model (Table 7.14) conforms with that in the morphology and color 

models (Table 7.6 and 7.1 1). The level of contribution (see ASCC values) of morphological 

and color features beyond the first 15 features was poor (Table 7.14); hence one can 

eliminate those features beyond the first 15 features fiom the model without affecting the 

classification accuracies much. 

Discriminant analyses were carried out using the first 5, 10, 15,20,25.30, and 3 5 

features and the classification accuracies were compared with that using a11 4 1 features (Fig. 

7.19). The mean accuracies using the fmt five features were poor. As the nwnber of 

features increased, the mean accuracies increased to certain extent and then remained 

constant. Beyond 1 5 features, increasing the number of features did not contribute much to 
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Table 7.14 Selection of morphologiul and color features of individual kernels of 
cereal grains ushg STEPDISC aaalysis 

Number Morphological (MF) and color (CF) Average squared Partial 6 
features of individuai kemels canonicd correlation 

Haralick ratio (MF) 
First Fourier descnptor (when u=O) (MF) 
Standard deviation of radii (MF) 
Area ratio (MF) 
Red (CF) 
Intensity (CF) 
Green (CF) 
Radius ratio (MF) 
First invariant moment, M, (MF) 
Second invariant momenf M2 (MF) 
Minimum radius (MF) 
Green range (CF) 
Green variance (CF) 
Red variance (CF) 
Saturation variance (CF) 
Saturation (CF) 
Maximum radius (MF) 
Blue variance (CF) 
Blue range (CF) 
Saturation range (CF) 
Red range (CF) 
Thinness ratio (MF) 
Area (MF) 
Rectangular aspect ratio (MF) 
Perimeter (MF) 
Width (MF) 
Second Fourier descnptor (u= 1 ) (MF) 
Hue variance (CF) 
Hue (CF) 

3 1 Aspect ratio (MF) 0.758 0.0 1 



Table 7.14 Selection of morphological and color features of individual kernels of 
cereal grains using STEPDISC analysis (cont.) 

- - 

Number Morphological (MF) and color (CF) Average squared Partial i 
features of individuai kemels canonical correlation 

32 Third Fourier descriptor (u=2) (MF) 0.758 0.0 1 
33 Fourth Fourier descnptor (u=3) (MF) 0.759 0.0 1 
34 Third invariant moment, M, (MF) 0.759 0.0 1 
35 Fourth invariant moment, M, (MF) 0.760 0.0 1 
36 Blue (CF) 0.760 0.00 
3 7 Hue range (CF) 0.760 0.00 
38 Intensity range (CF) 0.760 0.00 
39 htensity variance (CF) 0.760 0.00 
40 Minor axis length (ME) 0.760 O .O0 
41 Major f i s  Iength (MF) 0.760 0.00 

I 

5 10 15 20 25 30 35 41 
Number of features - Hold out (Npar) ~t. Hold out (Normal) - Leave-one-out (Npar) - Leave-one-out (Normal) 

Fig. 7.19 Cornparison of classification accuracies of individual kernels of cereal 
grains using dinerent number of morphological and color features (Note: 
Npar denotes non-parametric estimation) 



the rnorphology-color model (Fig. 7.19). When the model using the first 15 features was 

tested on an independent data set, the ~Iassification accuracies of CWRS wheat, C WAD 

wheat, barley, oats, and rye were 99.7, 99.7, 98.9, 99.9, and 98.9%, respectively (non- 

parametric estimation, Appench F7a). When the model was tested on the training data set, 

the classification accuracies were 99.8, 99.4, 99.7, 100.0, and 99.0%, respectively (non- 

pararnetric estimation, Appendix F7b). The classification accuraçies of morphology-color 

model were higher than that of morphology or color model because sorne of the 

morphological and color features were poorly correlated with one another (Appendix C2). 

7.8 Texture-color model: classification of individual kernels 

Table 7.15 shows the textural and color features in the descending order of their level 

of contribution to the texture-color model. The ranking of the features in this model 

confonns with the ranking of features in the texture model (Table 7.8) and the color model 

(Table 7.11). The level of contribution (see ASCC values) of texturai and color features 

beyond the first 15 features was poor (Table 7.14); hence one can eliminate those features 

beyond the first 15 features kom the model without affecting the classification accuracies 

much. Some textural (rnainly GLCM) features were highly correlated with some primary 

color features (e-g., red, green, blue, and intensity) but many were poorly correlated with 

some color features (Appendix C2) which suggested that al1 texturai features of individuai 

kemels were not direct manifestation of color features. Similar relationship between textural 

and color features was observed in bulk sample images. But with individual kemel images, 



more textural feames were highly correlated with color features than that with bulk sample 

images (Appendices C 1, C2) .  

Table 7.15 Selection of ternira1 (extracted from green color band at maximum gray 
level value 8) and color feahires of individual kernels of cerenl grains 
using STEPDISC analysis 

Number Texturai (TF) and color (CF) features Average squared Partiai 6 
of individual kemels canonici coAlation 

Gray level non-uniformity range (TF) O. 155 0.62 
Long run (TF) 
Saturation range (CF) 
Red (CF) 
gray level mean (TF) 
Blue (CF) 
Run length non-uniformity (TF) 
Inertia (TF) 
Correlation (TF) 
Short run (TF) 
Entropy (TF) 
Run percent (TF) 
Homogeneity (TF) 
GLRM entropy (TF) 
Red range (CF) 
Blue range (CF) 
Run percent range (TF) 
Long run range (TF) 
Cluster prominence (TF) 
Cluster shade (TF) 
Variance (TF) 



Table 7.15 Selection of textural (extracted from green color band at maximum gray 
level value 8) and color features of individual kernels of cereal grains 
using STEPDISC anaiysis (cont.) 

- 

Number Textural (TF) and color (CF) features Average squared Partial i 
of individual kernels caonical correlation 

22 Saturation variance (CF) 0.63 5 0.03 
23 Blue variance (CF) 0.638 0.03 
24 Saturation (CF) 0.642 0.03 
25 Short nin range (TF) 0.645 0.03 
26 Unifodty (TF) 0.648 0.02 
27 Green variance (CF) 0.649 0.02 
28 Red variance (CF) 0.652 0.04 
29 Maximum probability (TF) 0.653 0.0 1 
30 Hue variance (CF) 0.655 0.0 1 
3 1 Hue (CF) 0.668 0.09 
32 Run length non-uniformity range (TF) 0.669 0.0 1 
33 Hue range (CF) 0.669 0.0 1 
34 Mean (TF) 0.670 0.0 I 
35 Green (CF) 0.670 0.00 
36 Green range (CF) 0.670 0.00 
37 GLRM entropy range (TF) 0.67 1 0.00 
38 Gray level non-uniformity (TF) 0.67 1 0.00 
39 Intensity variance (CF) 0.670 0.00 
40 Gray level variance (TF) 0.67 1 0.00 
41 lntensity range (CF) 0.671 0.00 
42 Intensity (CF) 0.671 0.00 

Note: gray level range was removed from the selection. 

Discriminant analyses were carried out using the first 5, 10, 15,20,25, 30, and 35 

features and the classification accuracies were compared with that using al1 43 features (Fig. 

7.20). The mean accuracies were very poor when the first five features were used in the 

model. As the number of features increased, the mean accuracies increased to certain extent 

and then remained constant. The increase in mean accuracies beyond 15 features was 

negligible (Fig. 7.20). When the texture-color model using the first 15 features was tested 

on an independent data set, the classification accuracies of CWRS wheat, CWAD wheat, 



barley, oats, and rye were 98.5,99.4,99.7, 100.0, and 94.3%, respectively (non-parametric 

estimation, Appendix F8a). When the model was tested on the training data set, the 

classification accuracies were 97.6,99.4,99.5,98.7, and 95.0% respectively (non-parametric 

estimation, Appendix F8b). The classification accmies of texture-color model were higher 

than that of texture or color mode1 because some of the texture and color features were 

poorly correlated with one another (Appendix C2). 

Number of features 

-, Hold out (Npar) + Hold out (Normal) 
+ Leave-one-out (Npar) + Leave-one-out (Normal) 

Fig. 7.20 Cornparison of classification accuracies of individual kerneb of cereal 
grains using diflerent number of color and textural features (eutracted 
from green color band at maximum gray level value 8) (Note: Npar 
denotes non-parametric estimation) 

7.9 Morphology-texture-color model: classüication of individual kernels 

The STEPDISC analysis was carried out to determine the level of contribution of 

morphological, textural, and color features (Table 7.16). Some features were removed by 

the STEPDISC analysis as they were not usetùl to the model. The between-class correlation 

of morphological, textural, and color features are given in Appendix C2. The correlation 



Table 7.16 Selection of morphological, color, and textural (extracted from green 
color band at maximum gray level value 8) features of individual kernels 
of cereal grains using STEPDISC analysis 

. - - - . - . - - - 

Number Morphological (MF), color (CF), and Average squared Partial r' 
textural (TF) features of individual kemels canonical correlation 

1 L e n a  (MF) 0.223 0.89 
Haralick ratio (MF) 
First Fourier descriptor (u=O) (MF) 
Standard deviation of radii (MF) 
Entropy (TF) 
Area ratio (MF) 
Saturation (CF) 
Red (CF) 
Mean gray level (TF) 
Mean (TF) 
Radius ratio (MF) 
Inertia (TF) 
Run length non-unifonnity (TF) 
Run percent (TF) 
GLRM entropy (TF) 
Cluster prominence (TF) 
Short run (TF) 
Blue (CF) 
Minimum radius (MF) 
Third invariant moment, M3 (MF) 
Width (MF) 
Area (MF) 
Cluster shade (TF) 
Red variance (CF) 
Uniformity (TF) 
Saturation variance (CF) 
Hornogeneity (TF) 
Green variance (CF) 
Blue variance (CF) 
Fourth invariant moment, M, (MF) 
First invariant moment, M, (MF) 
Second invariant moment, M, (MF) 

33 Maximum radius (MF) 0.783 0.03 



Table 7.16 Selection of morphological, color, and textural (extracted from green 
color band at maximum gray level value 8) features of individual kernels 
of cereal p i n s  using STEPDISC analysis (cont.) 

Nurnber Morphological w), color (CF), and 
texturai (TF) features of individual kemels 
Run length non-unifonnity range (TF) 
Maximum probability (TF) 
Hue variance (CF) 
Hue (CF) 
Correlation (TF) 
Red range (CF) 
Blue range (CF) 
Saturation range (CF) 
Rectanguiar ratio (MF) 
Variance (TF) 
Long run range (TF) 
Gray level non-uniformity (TF) 
Minor f i s  length (MF) 
Second Fourier descriptor (u= 1) (MF) 
Third Fourier descriptor (u=2) (MF) 
Fourth Fourier descnptor (u=3) (MF) 
Perimeter (MF) 
Thinness ratio (MF) 
Short run range (TF) 
Gray level variance (TF) 
Run percent range (TF) 
Gray level non-uniformity range (TF) 
Green (CF) 
Hue range (CF) 
Intensity variance (CF) 
GLRM entropy range (TF) 
Long run (TF) 
Gray level range (TF) 
Intensity range (CF) 
Aspect ratio (MF) 

Average squared 
canonical correlation 

0.785 
0.786 
0.788 
0.793 
0.793 
0.794 
0.795 
0.796 
0.796 
0.797 
O. 797 
0.798 
0.798 
0.799 
0.799 
0.800 
0.800 
0.80 1 
0.80 1 
0.801 
0.80 1 
0.80 1 
0.80 1 
0.80 1 
0.80 1 
0.80 1 
0.80 1 
0.80 1 
0.802 
0.802 

Partial ? 

64 Intensitv (CF) 0.802 0.00 
Note: major axis length (MF) and green variance (CF) were removed fiom the selection 



with other features and independent level of contribution of a feature determine its 

importance in a model. The first five most significant features were morphological features: 

and among the fbst 15 features, there were 6 morphological features, 7 textural features. and 

2 color features (Table 7.16). 

Pearson correlation coefficients of morphological, textural, and color features were 

deterrnined for CWRS wheat, CWAD wheat, barley, oats, and rye using grains from 15 

growing regions (used as the training set in the hold out method). The data are available on 

a diskette and can be obtained by writïng to the Head, Department of Biosystems 

Engineering, University of Manitoba, Winnipeg, M . ,  R3T 5V6, CANADA. The data may 

be used in future studies. For exarnple, if one wants to differentiate between some of these 

cereal grains and other types of grains or between different classes of wheat, these data can 

be used to get an idea about how different features (morphological, texturai, and color) are 

correlated with one another for each grain type; from this information one can select some 

usefiil features for the discriminant model. 

Discriminant analyses were carried out using the first 5, 10, 15,20, 25, 30, 35.40. 

and 50 featwes and the classification accuracies were compared with that using al1 66 

features (Fig. 7.2 1). When the first five features were used the mean accuracies were poor. 

Beyond first 20 features, the increase in mean accuracies was negligible. When the model 

using the fust 20 features was tested on the independent data set, the classification accuracies 

of CWRS wheat, CWAD wheat, barley, oats, and rye were 100.0, 99.9, 99.5, 100.0, and 

99.1%, respectively (non-parametric estimation, Appendix F9a). Same model when tested 

on the training data set, the classification accuracies were 99.8,99.8,99.9, 1 00.0, and 99.4%. 
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respectively for CWRS wheat, CWAD wheat, barley, oats. and rye (non-parametric 

estimation, Appendix F9b). 

For al1 the models discussed, with an increase in the number of features, the increase 

in classification accuracies to certain extent and then their remaining constant or gradua1 

decrease conforms with the study conducted by Petersen (1 992) for identi@ing weed seeds 

by shape and textural analysis. 

d 8 6 i ,  , , , , , , , , , 
84 

5 10 15 20 25 30 35 40 50 66 
Number of features 

+ Hold out (Npar) + Hold out (Normal) 
+ Leave-one-out (N par) - Leave-one-out (Normal) 

Fig. 7.2 1 Comparison of classification accuracies of individual kernels of cereal 
grains using dinorent number of motphological, color, and textural 
features (exîracted €rom green color band ai maximum gray level value 
8) (Note: Npar denotes non-parametric estimation) 

Table 7.17 shows al1 the models in the descending order of their classification 

performance on both the training and the test data sets. The morphology-texture-color model 

was the best model for classification of individual kemels of cereal grains (Fig. 7.23). 



Table 7.17a Cornparison of dinerent models depending on their classification 
accuracies of individual kernels of cereal grains when tested on an 
independent data set 

Non-parametric Estimation 

% accuracy - CWRS CWAD Barley Oats R Y ~  Mean 
Models I wheat wheat accuracy 

M-T-C 
(1 Jf 20 features) 

M-C 
( 1 " 1 5 features) 

M-T 
( 1 " 1 5 features) 

T-C 
(1" 15 features) 

M 
(1" 10 features) 

C 
( 1" 10 features) 

T 
( 1 1 5 features) 

Note: M-T-C is morphology-texture-color model, M-C is morphology-color model. M-T 
is morphology-texture model, T-C is texture-color model, M is morphology model. 
C is color model, and T is texture model. 



Table 7.17b Cornparison of different models depending on their classification 
accuracies of individual kernels of cereal grains when tested on the 
training data set 

Non-parametric Estimation 

% accuracy - CWRS CWAD Barley Oats R Y ~  Mean 
Models 1 wheat wheat accurac y 

M-T-C 
( 1 " 20 features) 

M-C 
(1 " 1 5 features) 

M-T 
(ln 15 features) 

T-C 
( 1 1 5 features) 

M 
( 1 * 10 features) 

C 
(1 * 10 features) 

T 
( 1 " 1 5 features) 

Note: M-T-C is morphology-texture-color model, M-C is morphology-color model, M-T 
is morphology-texture model, T-C is texture-color model, M is morphology model. 
C is color model, and T is texture model. 



, 
M-T-C M-C M-T T-C M C T 

Models 

Test data Training data 

Fig. 7.22 Comparison of dBerent models depending on their classification 
accuracies of individual kernels of cereal grains when tested on an 
independent data set and on the training data set (M-T-C: morphology- 
texture-color model, -M€: morphology+olor model, M-T: morphology- 
texture model, T-C: texture-color model, M: morphology model, C: color 
model, and T: texture model) 



CHAPTER VIII: CONCLUSIONS AND RECOMMEINDATIONS 

The application of computer vision technique for objective classification of cereal 

grains and varieties can still be considered a very young science. While challenges remain 

in some areas like automated grain presentation and high sample throughput, considerable 

progress has been made towards grain classification using DIA. Grain samples, whether they 

are pure seed lots or commercial grade material, can be effectively characterized by DIA 

according to size, shape, color, and texture. 

Results have shown that cereal graios (e.g., CWRS wheat, CWAD wheat, barley. 

oats, and rye) codd be rapidly identified using either textural or color features of bulk 

samples. This could be implemented for rapid identification of cereal grains in a rail car at 

any terminal elevator. Textural features extracted fkom buk sample images h m  the red 

color at maximum gray level value 32 gave the highest classification accuracies in cereal 

grains. The classification accuracies reduced when the original bulk sample image was 

partïtioned into different equal size sub-images and their textural or color features were used 

for classification of cereal grains. 

TexturaI features of individual kemels extracted from the green color at maximum 

gray level value 8 gave the highest classification accuracies in cereal grains. The highest 

classification accuracies of cereai grains were achieved when morphology, texture, and color 

features were used al1 together. This could be seen as partial advancement towards cereal 

grain grading, and monitoring of cleaning machines and shipphg of grains. Study should 



be directed towards classification of damaged kemels, other foreign materials Like chatf. 

stone pieces, broken kernets, and other type of grains (e-g., oil seeds, speciality crops). 

Robustness is a basic requirement for any image processing system used in the grain 

industry because of n a d  vaxiation in grains due to growing seasons, country of origin. and 

different varieties. Aside nom the use of specinc training samples for system development, 

the decision-making methods used in research may be partially responsible for poor system 

performance. Grain inspection and grading, as performed by human inspectors, is a cornplex 

decision-making process that involves many factors such as training and expenence of the 

inspectors. This requires that an image processing system should have some human-Iike 

abilities. such as leaming and making decisions on ill-defined concepts, for the inspection 

task. Traditional decision-making methods, as used in many fields, are based on well 

defined concepts and yes-or-no logic, and implemented in programmed procedures 

(cornputer programs), which can only handle the tasks that are predefmed by the training 

samples. Neural network and fuPy logic techniques are potential solutions for this problem. 

Neural networks, the electronic simulations of the human brain, have self-leaming and self- 

organizing abilities. Fuzzy logic simulates human reasoning methodology. Applying these 

techniques in decision making will allow an image processing system to be more robust and 

human-like. 

Considerable progress has been made towards classification of cereal grains and 

varieties using DIA and the next decade should see continuhg improvements in the 

capability of the technology. However, one should not forget the common problems 

associated with any visual inspection process; i.e., the ability to distinguish individual 
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kernels c m  be undermhed by the effects of close genetic relationships and the entironmentai 

effects. While DL4 will not be able to provide absolute perfection in discrimination of p i n  

varîeties, the strengths of the technology for rhis application are clear and compelling. 
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APPENDIX A 

Primas, and Export Grade Determinants for CWRS wheat 
(Source: Anonymous 1991) 
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APPENDIX B 

CONFUSION MATRICES OF BULK SAMPLES 
FOR 

TEXTURAL ANALYSIS (HOLD OUT METHOD) 



Table Bla. Confusion matrix of bulk samples for textural analysis (features extracted from 
red color band at maximum gray level value 250): Normal estimation (hold out 
metbod) 

Categories (to)- C WRS CWAD Bar ley Oats R Y ~  
(fiom) l wheat wheat 

C WRS wheat 43 
(n = 45) (95.6%) 

CWAD wheat O 
(n = 15) 

Barley O 
(n = 15) 

Oats O 
(n = 15) 

R Y ~  3 
(n = 15) 

Table Blb. Confusion matrix of bulk samples for textural analysis (features extracted from 
red cotor band at maximum gray level value 250): Non-parametric estimation 
(hold out method) with k=5 

- - - - -  - 

Categories (to)- CWRS CWAD Barley Oats R Y ~  Other 
(from) 1 wheat wheat 

CWRS wheat 
(n = 45) 

C WAD wheat 
(n = 15) 

Oats 
(n = 15) 



Table B2a. Confusion matrix of bu& samples for textural analysis (features extracted from 
red color band at maximum gray level value 32): Normal estimation (hold out 
method) 

Categories (to)- C WRS CWAD Bariey Oats R Y ~  
(fiom) 1 wheat wheat 

CWRS wheat 45 O O O O 
(n = 45) (100.0%) 

CWAD wheat O 15 O O O 
( n =  15) (1 00.0%) 

Bar le y O 5 10 O O 
(n = 15) (66.7%) 

Oats O O O 15 O 
(n = 15) (1 00.0%) 

Table B2b. Confusion matrix of buik samples for terturd analysis (features extracted from 
red color band at maximum gray level value 32): Non-parametric estimation 
(hold out method) with k=5 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiorn) 1 wheat wheat 

C WRS wheat 45 O O O O O 
(n = 45) (1 00.0%) 

C WAD wheat O 15 O O O O 
(n = 15) (100.0%) 

Barley O O 15 O O O 
(n = 15) (1 00.0%) 

Oats O O O 15 O O 
(n = 15) (1 00.0%) 



Table B3a. Confusion rnatrix of bulk samples for textunl analysis (features extracted from 
red color band at maximum gray level value 16): Normal estimation (hotd out 
metbod) 

- 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(tiom) 1 wheat wheat 

CWRS wheat 
(n = 45) 

C WAD wheat 
(n = 15) 

Barley 
(n = 15) 

Oats 
(n = 15) 

Table B3b. Conhision matria of buk  samples for texhini analysis (features extracted from 
red color band at maximum gray level value 16): Non-parametrie estimation 
(hold out method) with k=5 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(from) l wheat wheat 

CWRS wheat 
(n = 45) 

CWAD wheat 
(n = 15) 

Barley 
(n = 15) 

Oats 
(n = 15) 



Table Bla. Confusion ma* of bulk samples for textural analysis (features extracted from 
red color band at maximum gray level value 8): Normal estimation (hold out 
method) 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(frorn) 1 wheat wheat 

C WAD wheat O 15 O O O 
(n = 15) (1 00.0%) 

Bartey O 5 10 O O 
(n = 15) (66.7%) 

Oats O O O 15 O 
(n = 15) ( 100.0%) 

Table B4b. Confusion m a t h  of bulk samples for textural analysis (features extracted from 
red color band at maximum gray level value 8): Non-parametric estimation 
(hold out method) with lr-5, 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(from) 1 wheat wheat 

C WRS wheat 45 O O O O O 
in  = 45) (1 00.0%) 

C WAD wheat O 15 O O O O 
(n = 15) (1 00.0%) 

Oats O O 1 14 O O 
(n = 15) (93.3%) 



Table B5a. Confusion mi& of bulk samples for textural analysis (features extracted from 
red color band at maximum gray level value 4): Normal estimation (hold out 
method) 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(Erom) L wheat w heat 

C WRS wheat 
(n = 45) 

CWAD wheat 
(n = 15) 

Oats 
(n= 15) 

Table B5b. Confusion matrix of b u k  samples for textural analysis (features extracted from 
red color band at maximum gray level value 4): Non-parametric estimation 
(hoid out method) with k=5 

Categories (to)- C WRS CWAD Barley Oats RYe Other 
(fiom) 1 wheat wheat 

CWRS wheat 45 O O O O O 
(n = 45) (1 00.0%) 

C WAD wheat O 15 O O O O 
(n = 15) ( 1 00.0%) 

Barley O O 15 O O O 
(n= 15) (100.0%) 

Oats O O 1 14 O O 
(n = 15) (93.3%) 



Table B6a. Confusion matrix of buk samples for textural analysis (features extracted from 
green color band at maximum gray level value 32): Normal estimation (hold out 
method) 

Categones (to)- C WRS CWAD Barley Oaîs RYe 
(korn) 1 wheat wheat 

C WRS wheat 
(n = 45) 

C WAD wheat 
(n = 15) 

Barley 
(n = 15) 

Oats 
(n = 15) 

Tabie B6b. Confision ma* of buk  samples for texturd anaiysis (features extracted from 
green color band at maximum gray level value 32): Non-parametric estimation 
(hold out method) with k=5 

Categones (to)- C WRS CWAD Barley Oats R Y ~  Other 
(from) 1 wheat wheat 

CWRS wheat 44 O O O 1 O 
(n = 45) (97.8%) 

C WAD wheat O 15 O O O O 
(n = 15) ( 1 00.0%) 

Barley O 1 14 O O O 
(n = 15) (93.3%) 

Oats O O O 15 O O 
(n = 15) (1 00.0%) 



Table B7a. Confusion matrir of buUc samples for texhiral analysis (Ceahires extracted from 
blue color band at maximum gray level value 32): Normal estimation (hold out 
method) 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(from) 1 wheat wheat 

C WRS wheat 45 O O O O 
(n = 45) (100.0%) 

C WAD wheat O 15 O O O 
(n = 15) (1 00.0%) 

Barley O - 7 13 O O 
(n = 15) (86.7%) 

Oats O O O 15 O 
(n = 15) ( 100.0%) 

Table B7b. Confusion matrùr of bu& samples for textural anaîysis (features extracted from 
blue color band at maximum gray level value 32): Non-parametric estimation 
(hold out method) with k 5  

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

C WRS wheat 
(n = 45) 

C WAD wheat 
(n = 15) 

Barley 
(n = 15) 

Oats 
(n = 15) 



Table B8a. Codusion mahU of bulk samples for textural analysis (features extracted from 
black & white color at maximum gray Ievel value 32): Normal estimation (hold 
out method) 

Categories (to)- C WRS CWAD Barle y Oats R Y ~  
(fiom) l wheat wheat 

CWRS wheat 45 O O O O 
(n = 45) ( ! 00.0%) 

CWAD wheat O 15 O O O 
(n = 15) (1 00.0"/0) 

Barley O 3 12 O O 
(n = 15) (80.0%) 

Oats O O O 15 O 
(n= 15) (1 00.0%) 

Table Bab. Confusion matrix of bulk samples for textural analysis (features extracted from 
black & white color at maximum gray Ievel value 32): Non-parametric 
estimation (hold out method) with k 5 .  

Categories (to)- CWRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

C WRS wheat 
(n = 45) 

CWAD wheat 
(n = 15) 

Barley 
(n = 15) 

Oats 
(n = 15) 



Table B9a. Confusion rnatrix of b u k  samples for textural analysis (features extracted from 
(3R+2G+lB)/6 at maximum gray level value 32): Normal estimation (hold out 
method) 

-- - . 

Categories (to)- C WRS C WAD Bariey Oats R Y ~  
(fiom) 1 wheat wheat 

C WRS wheat 
(n = 45) 

CWAD wheat 
(n = 15) 

Oats 
(n = 15) 

Table B9b. Confusion matrix of bulk samples for textuni1 analysis (features extracted from 
(3R+ZG+lB)/6 at maximum gray level value 32): Non-paramehic estimation 
(hold out metbod) with k=S 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

CWRS wheat 45 O O O O O 
(n = 45) (100.0%) 

C WAD wheat O 15 O O O O 
(n = 15) (1 00.0%) 

Barley O 1 14 O O O 
(n = 15) (93.3%) 

Oats O O O 15 O O 
(n = 15) (1 00.0%) 



Table BlOa. Conhision motrix of bulk samples for textural analysis (features extracted from 
(2R+lG+3B)/6 at maximum gray level value 32): Normal estimation (hold out 
method) 

Categories (to)- CWRS CWAE) Barley Oats R Y ~  
(fiom) 1 wheat wheat 

C WRS wheat 45 O 
(n = 45) (1 00.0%) 

C WAD wheat O 15 
(n = 15) (1 00.0%) 

Barley O 3 
(n = 15) 

Oats O O 
(n = 15) 

Table BlOb. Confusion matrix of buk samples for tentural analysis (features extracted from 
(ZR+lG+3B)/6 at maximum gray level value 32): Non-parametric estimation 
(hold out method) with IFS 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(from) 1 wheat wheat 

CWRS wheat 
(n = 45) 

C WAD wheat 
(n = 15) 

Barley 
(n = 15) 

Oats 
(n = 15) 



Table B1 la. Confusion mat* of buUr samples for textural anaiysis (features extraeted from 
(lR+3G+2B)/6 at maximum gray level value 32): Normal estimation (hold out 
method). 

- - - - - - - - - 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(from) 1 wheat wheat 

CWRS wheat 45 O O O O 
(n = 45) ( 1 00.0%) 

C WAD wheat O 15 O O O 
(n = 15) (1 00.0%) 

Barley O 3 12 O O 
(n= 15) (80.0%) 

Oats O O O 15 O 
( n =  15) (1 00.0%) 

Table B l l  b. Confusion matrix of buk samples for textural analysis (features extracted from 
(lR+3G+ZB)/6 at maximum gray level value 32): Non-parametric estimation 
(hold out method) with b5. 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) l wheat wheat 

CWRS wheat 45 O O O O O 
(n = 45) (1 00.0%) 

CWAD wheat O 15 O O O O 
(n = 15) (1 00.0%) 

Bar le y O 1 14 O O O 
(n = 15) (93 -3%) 

Oats O O O 15 O O 
(n = 15) ( 1 00.0%) 



Table Blta. Confusion matrix of bulk samples (each image partitioned into 9 sub-images) 
for textural analysis (features extracted from red color band at  maximum gray 
level value 32): Normal estimation (hold out method) 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

CWRS wheat 381 1 12 O 11 
(n=405) (94.1 %) 

C WAD wheat O 135 O O O 
(n= 1 3 5 )  (1 00.0%) 

Barley O 24 11 1 O O 
(O= 1 3 5 )  (82.2%) 

Oats O 2 2 131 O 
(n= 1 3 5 )  (97.0%) 

Table B12b. Confusion matrix of bulk samples (each image partitioned into 9 sub-images) 
for textural analysis (features extracted from red color band at maximum gray 
level value 32): Non-parametric estimation (bold out method) with k=5 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) J wheat wheat 

CWRS wheat 
(n=405) 

C WAD wheat 
(n= 1 3 5 )  

Oats 
(n= 1 3 5 )  



Table B13a. Confusion matrix of bu& samples (each image partitioned into 16 sub-images) 
for texîural analysis (features extracted from red color band a t  maximum gray 
level value 32): Normal estimation (hold out method) 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

CWRS wheat 649 
(n=720) (90.1 %) 

CWAD wheat O 
(n=240) 

Barley O 
(n=240) 

Oats O 
(n=240) 

R Y ~  27 
(n=240) 

Table B13b. Confusion ma& of b u k  samples (each image partitioned into 16 sub-images) 
for textunl analysis (features extracted from red color band at maximum gray 
Ievel value 32): Non-parametric estimation (hold out method) with k=5 

Categones (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

CWRS wheat 667 4 12 O 34 3 
(n=720) (92.6%) 

C WAD wheat O 240 O O O O 
(n=240) ( 100.0%) 

Barley O 17 223 O O O 
(n=240) (92.9%) 

Oats O 1 12 226 O 1 
(n=240) (94.2%) 



Table Blla. Confusion matrix of b u k  samples (each image partitioned into 25 sub-images) 
for textural analysis (features extracted from red color band at maximum gray 
level value 32): Normal estimation (hold out method) 

Categories (to)- CWRS CWAD Barle y Oats R Y ~  
(fiom) 1 wheat wheat 

CWRS wheat 975 35 64 O 5 1 
(n=1125) (86.7%) 

C WAD wheat O 375 O O O 
(n=3 75) (1 00.0%) 

Barley O 79 294 2 O 
(n=3 75) (78.4%) 

Oats O 11 20 344 O 
(n=3 75) (9 1.7%) 

Table B14b. Confusion matrix of bulk samples (each image partitiooed into 25 sub-images) 
for textural analysis (features extracted from red color band a t  maximum gray 
level value 32): Non-parametric estimation (hold out method) with k=5 

- 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

- - 

CWRS wheat 1 023 13 9 O 64 16 
(n=1125) (90.9%) 

CWAD wheat O 373 O 1 O 1 
(n=3 75) (99.5%) 

Bar le y O 36 339 O O O 
(n=375) (90.4%) 

Oats O 3 27 34 1 O 4 
(n=375) (90.9%) 



APPENDIX BB 

CONFUSION MATRICES OF BULK SAMPLES 
FOR 

TEXTURAL ANALYSIS (LEAVE-ONE-OUT METHOD) 



Table BBla. Confusion mahir of buk samples for textunl analysis (features extracted from 
red color band at maximum gray level value 250): Normal estimation (leave- 
one-out method) 

Categones (to)- C WRS CWAD Barle y Oats R Y ~  
(from) 1 wheat wheat 

- 

CWRS wheat 224 O O O 1 
(n = 225) (99.6%) 

CWAD wheat 4 71 O O O 
(n = 75) (94.7%) 

Oats O O O 75 O 
(n = 75) (100.0%) 

Table BBl b. Confusion matrix of buk samples for textural analysis (features extracted from 
red coolor band at maximum gray level value 250): Non-parametric estimation 
(leave-one-out method) with k=5 

Categoties (to)- CWRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

CWRS wheat 223 1 O O 1 O 
(n = 225) (99.1 %) 

CWAD wheat 1 74 O O O O 
(n = 75) (98.7%) 

Barley 1 O 74 O O O 
(n = 75) (98.7%) 

Oats O O O 75 O O 
(n = 75) (1 00.0%) 



Table BB2a. Confusion matrix of bulk samples for textural analysis (features extracted from 
red color band at maximum gray level value 32): Normal estimation (leave-one- 
out method) 

Categones (to)- C WRS CWAD Barley Oats R Y ~  
(kom) 1 wheat wheat 

- - - - - - . 

CWRS wheat 225 O O O O 
(n = 225) (1 00.0%) 

CWAD wheat O 75 O O O 
(n = 75) (1 00.0%) 

Bar le y O O 75 O O 
(n = 75) (1 00.0%) 

Oats O O O 75 O 
(n = 75) (1 00.0%) 

Table BB2b. Confusion matrix of buk  samples for textural analysis (features extracted from 
red color band at maximum gray level value 32): Non-parametric estimation 
(leave-one-out method) with k=S 

Categories (to)- C WRS CWAD Bariey Oats R Y ~  Other 
(korn) 1 wheat wheat 

CWRS wheat 224 O O O 1 O 
(n = 225) (99.6%) 

C WAD wheat O 75 O O O O 
(n = 75) (100.0%) 

Bar le y O O 75 O O O 
(n = 75) ( 1 00.0%) 

Oats O O O 75 O O 
(n = 75) (1 00.0%) 



Table BB3a. Confiision ma* of bulk samples for textural analysis (features extracted from 
red color band at maximum gray level value 16): Normal estimation (leave-one- 
out method) 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

CWRS wheat 225 O O O O 
(n = 225) (100.0%) 

C WAD wheat O 75 O O O 
(n = 75) (1 00.0%) 

Barley O O 75 O O 
(n = 75) ( i 00.0%) 

Oats O O O 75 O 
(n = 75) (100.0%) 

Table BB3b. Confusion matrix of bulk samples for texturai analysis (features extracted from 
red color band at maximum gray level value 16): Non-parametric estimation 
(leave-one-out method) with k=5 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

- - -- - - - 

CWRS wheat 223 O O O 2 O 
(n = 225) (99. I %) 

C WAD wheat O 75 O O O O 
(n = 75) ( 1 00.0%) 

Barley O O 75 O O O 
(n = 75) (1 00.0%) 

Oats O O O 75 O O 
(n = 75) (100.0%) 



Tabk BB4a. Confusion matrir of buUr samples for texturd analysis (features extracted from 
red color band at maximum gray level value 8): Normal estimation (leave-one- 
out method) 

Categories (to)- C WRS CWAD Barle y Oats RYe 
(fiom) 1 wheat wheat 

CWRS wheat 225 O O O O 
(n = 225) ( 1 00.0%) 

CWAD wheat O 75 O O O 
(n = 75) ( 100.0%) 

Barley O O 75 O O 
(n = 75) (1 00.0%) 

Oats O O O 75 O 
(n = 75) ( 1 O0 .O%) 

Table BB4b. Confusion matrix of buk samples for textural analysis (features extracted from 
red color band at maximum gray level value 8): Non-parametric estimation 
(leave-one-out method) with k=5 

- 

Categories (to)- CWRS CWAD Barley Oats RYe Other 
(from) 1 wheat wheat 

CWRS wheat 223 O O O - 3 O 
(n = 225) (99.1 %) 

CWAD wheat 1 74 O O O O 
(n = 75) (98.7%) 

Barley O O 75 O O O 
(n = 75) ( 1 00.0%) 

Oats O O O 75 O O 
(n = 75) (1 00.0%) 



Table BBSa. Confusion ma- of buk  samples for textural analysis (features extracted from 
red color band at maximum gray level value 4): Normal estimation (leave-vee- 
out method) 

Categories (to)- C WRS CWAD Barley Oats Rye 
(fiom) l wheat wheat 

CWRS wheat 225 O 
(n = 225) ( 1 00.0%) 

C WAD wheat 3 72 
(n = 75) (96.0%) 

Oats O O 
(n = 75) 

Table BBSb. Confusion matrix of buUr snmpks for textural analysis (features extracted from 
red color band at maximum gray level value 4): Non-parametric estimation 
(leave-one-out method) with k=5 

- - - - -  - - -- - - -  - 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

C WRS wheat 
(n = 225) 

C WAD wheat 
(n = 75) 

Oats 
(n = 75) 



Table BB6a. Confusion matrix of bulk samples for textural analysis (features extracted from 
green color band at gray level value 32): Normal estimation (leave-one-out 
method) 

Categories (to)- C WRS CWAD Bade y Oats R Y ~  
(£ion) l wheat wheat 

CWRS wheat 220 f O 1 3 
(n = 225) (97.8%) 

CWAD wheat 1 74 O O O 
(n = 75) (98.7%) 

Barley O O 75 O O 
(n = 75) ( 100.0%) 

Oats O O O 75 O 
(n = 75) ( 1 00.0%) 

Table BB6b. Confusion matrix of bulk samples for textural analysis (features extracted from 
green color band at mnxinium gray level value 32): Non-parametric estimation 
(leave-one-out method) with k=5 

Categoiies (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fions) 1 wheat wheat 

-- - - - - 

CWRS wheat 222 O O O 3 O 
(n = 225) (98.7%) 

CWAD wheat 1 74 O O O O 
(n = 75) (98.7%) 

Bar le y O O 75 O O O 
(n = 75) (1 00.0%) 

Oats O O O 75 O O 
(n = 75) (1 00.0%) 



Table BB7a. Confusion matrix of buik samples for textural anaiysis (featum extracted from 
blue color band at maximum gray level value 32): Normal estimation (kave-one- 
out method) 

Categories (to)- C WRS CWAD Barley Oats RYe 
(fiom) 1 wheat wheat 

CWRS wheat 216 1 1 I 6 
(n = 225) (96.0%) 

C W , .  wheat 2 73 O O O 
(n = 75) (97.3%) 

Oats O O O 75 O 
in = 75) (1 00.0%) 

Table BB7b. Confusion r n a e  of bu& samples for textural analysis (features extracted from 
blue color band at maximum gray level value 32): Non-parametric estimation 
(leave-one-out method) with k=S 

Categories (to)- C WRS CWAD Barley Oats RYe Other 
(fiom) I wheat wheat 

-- - - - - - 

C WRS wheat 215 4 O O 6 O 
(n = 325) (95.6%) 

CWAD wheat 3 72 O O O O 
(n = 75) (96 .O%) 

Barley O O 75 O O O 
(n = 75) (1 00.0%) 

Oats O O O 75 O O 
(n = 75) ( 1 00.0%) 



Table BB8a. Confusion mahix of bu& samples for textural anaiysis (features evtracted from 
black & white color at masimum gray level value 32): Normal estimation (leave- 
one-out method) 

Categories (to)- C WRS C WAD Bar le y Oats R Y ~  
(fiom) L wheat wheat 

CWRS wheat 222 1 O I 1 
(n = 225) (98.7%) 

C WAD wheat O 75 O O O 
(n = 75) (1 00.0%) 

Barley O O 75 O O 
(n = 75) ( 1 00.0%) 

Oats O O O 75 O 
(n = 75) ( 1 00.0%) 

Table BBSb. Confusion matrix of bulk samples for textural anaipis (features extracted from 
black & white color at maximum gray level value 32): Non-parametric 
estimation (leave-one-out method) with k=S 

- - -- - - 

Categories (to)- CWRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

- - 

C WRS wheat 224 O O O 1 O 
(n = 225) (99.6%) 

C WAD wheat O 75 O O O O 
(n = 75) ( 1 00.0"/0) 

Barley O O 75 O O O 
(n = 75) (1 00.0%) 

Oats O O O 75 O O 
(n = 75) (1 00.0%) 



Table BB9a. Confusion matrix of buîk sam ples for textural anaiysis (features extracted from 
(3R+2G+lB)/6 at maximum gray level value 32): Normal estimation (leave-one- 
out method) 

- - - - - - - - - -- - 

Categorïes (to)- CWRS CWAD Barley Oats R Y ~  
(fiom) i wheat wheat 

C WRS wheat 222 
(n = 225) (98.7%) 

C WAD wheat O 
(n = 75) 

Barley O 
(n = 75) 

Oats O 
(n = 75) 

R Y ~  I 
(n = 75) 

Table BB9b. Confusion matrix of bufi samples for texhiml analysis (features extracted from 
(3R+2G+lB)/6 at maximum gray level value 32): Non-parametric estimation 
(leave-one-out method) with k=5 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(from) i wheat wheat 

C WRS wheat 
(n = 225) 

C WAD wheat 
(n = 75) 

Barley 
(n = 75) 

Oats 
(n = 75) 



Table BBlOa. Confusion matrix of bulk samples for tevtural analysis (features 
extmcted from (2R+lG+3B)/6 at maximum gray level value 32): Normal 
estimation (leave-one-out method) 

Categories (to)- CWRS CWAD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

- - 

CWRS wheat 223 
(n = 225) (99.1%) 

CWAD wheat 1 
(n = 75) 

Barley O 
(n = 75) 

Oats O 
(n = 75) 

Table BBlOb. Confusion m a t h  of bulk samples for tevtural analysis (features 
extracted from (2R+lG+3B)/6 at maximum gray level value 32): Non- 
parametric estimation (leave-one-out method) with k=5 

Categones (to)- C WRS CWAD Bariey Oats R Y ~  Other 
(fiom) l wheat wheat 

CWRS wheat 
(n = 225 j 

C WAD wheat 
(n = 75) 

Barley 
(n = 75) 

Oats 
(n = 75) 



Table BBl la. Confusion matrix of bulk samples for textural anabsis (features 
extracted from (lR+3G+2B)/6 at maximum gray level value 32): Normal 
estimation (leave-one-out method) 

-- - - - -- 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

CWRS wheat 223 2 O 1 1 
(n = 225) (99.1 %) 

C WAD wheat 1 74 O O O 
(n = 75) (98.7%) 

Barley O O 75 O O 
(n = 75) ( 1 00 .0"/0) 

Oats O O O 75 O 
(n = 75) ( 100.0%) 

Table BBllb.  Confusion m a t h  of buk  samples fur texîural analysis (features 
extracted from (lR+3G+tB)/6 at maximum gray level value 32): Non- 
parametric estimation (leave-one-out method) with k=5 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

CWRS wheat 223 O O O 2 O 
(n = 225) (99.1 %) 

C WAD wheat 2 73 O O O O 
(n = 75) (97.3%) 

Oats O O O 75 O O 
(n = 75) (1 00.0%) 



Table BBl2a. Confusion matrix of bulk samples (each image partitioaed into 9 sub- 
images) for textuml analysis (features ex tracted from red color band at 
maximum gray level value 32): Normal estimation (leave-one-out 
method) 

Categories (to)- C WRS CWAD Bade y Oats R Y ~  
(fiom) 1 wheat wheat 

CWRS wheat 1960 20 
(n=2025) (96.8%) 

C WAD wheat 11 664 O O O 
(n=675) (98.4%) 

Barley 3 2 670 O O 
(n=675) (99.3%) 

Oats O 
(n=675) 

Table BB12b. Confusion mat& of bulk samples (each image partitioned into 9 sub- 
images) for textuml anaiysis (features extracted from red color band at 
maximum gray level value 32): Non-parametrie estimation (leave-one- 
out method) with k=5 

Categories (to)- CWRS CWAD Barley Oats RYe Oiher 
(from) r wheat wheat 

CWRS wheat 1974 1 3 O 46 1 
(n=2025) (97.5%) 

C WAD wheat 21 
(n=67 5) 

Barley 
(n=675) 

Oats 
(n=675) 



Table BB13a. Confusion m a t h  of bulk samples (each image partitioned into 16 sub- 
images) for textural anaiysis (features extracted from red color band at 
maximum gray level value 32): Normal estimation (leave-one-out 
method) 

- -- - - -  

Categones (to)- C WRS CWAD Barley Oats R Y ~  
(ûorn) 1 wheat wheat 

- - - - 

C WRS wheat 3382 53 55 O 110 
(n=3 600) (93 -9%) 

CWAD wheat 58 1138 4 O O 
(n= 1 200) (94.8%) 

Barley 13 10 1173 3 1 
(n=1200) (97.8%) 

Oats O 2 O 1198 O 
(n= 1200) (99.8%) 

Table BB13 b. Confusion matrix of b u k  samples (each image partitioned into 16 sub- 
images) for textural analysis (features extracted from red color band at 
maximum gray level value 32): Non-parametric estimation (leave-one- 
out method) with k=5 

- . - 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

CWRS wheat 3427 17 14 O 141 1 
(n=3 600) (95.2%) 

C WAD wheat 81 11 14 4 O 1 O 
(n=1300) (92.8%) 

Barley 11 O 1185 O 4 O 
(n= 1200) (98.8%) 

Oats O 1 5 1194 O O 
(n= 1200) (99.5%) 



Table BB14a. Confusion matrix of bulk samples (each image partitioned into 25 sub- 
images) for textural analysis (features extracted from red color band at 
maximum gray level value 32): Normal estimation (leave-one-out 
method) 

Categories (to)- C WRS CWAD Barle y Oats R Y ~  
(fiom) 1 wheat wheat 

- - - - - - - p- - 

CWRS wheat 5146 1 1 1  120 1 247 
(n=5625) (9 1.5%) 

C WAD wheat 129 1730 15 O 1 
(n= 1 875) (92.3%) 

Barley 23 18 1814 13 7 
(n=1875) (96.8%) 

Oats O 3 7 1865 O 
(n= 1875) (99.5%) 

Table BB14b. Confusion matrix of bulk samples (each image partitioned into 25 sub- 
images) for textuml anaiysis (features extracted from red color band at  
maximum gray level value 32): Non-parametric estimation (leave-one- 
out method) with k=S 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

- - -  - 

CWRS wheat 5291 58 36 O 237 3 
(n=5625) (94.1 %) 

CWAD wheat 166 1694 12 1 2 O 
(n=1875) (90.4%) 

Barley 35 6 1823 1 10 O 
(n=1875) (97 -2%) 

Oats O 3 17 1854 O 1 
(n=1875) (98.9%) 



APPENDIX C 

BETWEEN-CLASS CORRELATION COEFFICIENT MATRICES 







l'able 
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APPENDIX D 

CONFUSION MATRICES OF BULK SAMPLES 
FOR 

COLOR ANALYSE (HOLD OUT METHOD) 



Table Dla. Confusion matrix of bulk samples for color analysis : Normal estimation (hold 
out method). 

Categories (to)- C WRS CWAD Barle y Oats R Y ~  
(hom) i wheat wheat 

CWRS wheat 45 O O O O 
(n = 45) ( 1 00.0%) 

CWAD wheat O 14 O 1 O 
(n = 15) (93 3%) 

Oats O O 4 1 1  O 
(n = 15) (73 -3%) 

Table Dlb. Confusion matrix of bulk samples for color analysis : Non-parametric 
estimation (hotd out method) with k=5. 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(from) 1 wheat wheat 

CWRS wheat 
(n = 45) 

CWAD wheat 
(n = 15) 

Oats 
(n = 15) 



Table D2a. Confusion matrir of bulk samples (each image partitioned into 9 sub-images) 
for color analysis : Normal estimation (hold out method). 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

- -- - -- - - -- 

CWRS wheat 401 2 O O 2 
(n = 405) (99.0%) 

C WAD wheat O 135 O O O 
(n = 135) (1 00.0%) 

Oats O O 24 111 O 
(n = 135) (82.2%) 

Table D2b. Confusion matrix of b u k  samples (each image partitioned into 9 sub-images) 
for color analysis : Non-parametric estimation (hold out method) with k=5. 

Categories (to)- C WRS CWAD BarIey Oats R Y ~  Other 
(€rom) 1 wheat wheat 

CWRS wheat 405 O O O O O 
(n = 405) (1 00.0%) 

CWAD wheat O 134 1 O O O 
(n = 135) (99.3%) 

Bar le y O O 135 O O O 
(n = 135) ( 1 00.0%) 

Oats O O 4 130 O 1 
(n = 135) (96.3%) 



Table D3a. Confusion matrir of buUr samples (each image partitioned into 16 sub-images) 
for color anaiysis : Normal estimation (hold out method). 

Categones (to)- C WRS CWAD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

C WRS wheat 712 1 O 1 6 
(n = 720) (98.9%) 

C WAD wheat O 239 1 O O 
(n = 240) (99.6%) 

B arley O 2 234 4 O 
(n = 240) (97.5%) 

Table D3b. Confusion matrix of bulk samples (each image partitioned into 16 sub-images) 
for color analysis : Non-parametric estimation (bold out method) with k=5. 

Categories (to)- C WRS CWAD Barley Oats RYe Other 
(fiom) 1 wheat wheat 

C WRS wheat 
(n = 720) 

C WAD wheat 
(n = 240) 

Barley 
(n = 240) 

Oats 
(n = 240) 



Table D4a. Conhision mat& of buik samples (each image partitioned into 25 sub-images) 
for color analysis : Normal estimation (hold out method). 

- - - -- - - 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(from) 1 wheat wheat 

CWRS wheat 1117 O O O 8 
(n = 1125) (99.3%) 

C WAD wheat O 3 74 1 O O 
(n = 375) (99.7%) 

Barley O 12 353 10 O 
(n = 375) (94.1 %) 

Oats O O 71 302 2 
(n = 375) (80.5%) 

Table D4b. Confusion ma* of buik simples (each image partitioned into 25 sub-images) 
for color analysis : Non-parametric estimation (hold out metbod) with k=5. 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(from) 1 wheat wheat 

CWRS wheat 
(n = 1 125) 

CWAD wheat 
(n = 375) 

Barley 
(n = 375) 

Oats 
(n = 375) 



CONFUSION MATRICES OF BULK SAMPLES 
FOR 

COLOR ANALYSIS (LEAVE-ONE-OUT METHOD) 



Table DDla. Confusion matrix of bulk samples for color analysis : Normal estimation 
(Leave-one-out method). 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

CWRS wheat 224 O O 1 O 
(n = 225) (99.56%) 

C WAD wheat O 74 O 1 O 
(n = 75) (98.67%) 

Barley O O 74 1 O 
(n = 75) (98.67%) 

Oats O O 1 74 O 
(n = 75) (98.67%) 

Table DDlb. Confusion matrir of bulk samples for color anaiysis : Non-parametric 
estimation (Leave-one-out methoci) with k=5. 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fkom) 1 wheat wheat 

CWRS wheat 225 O O O O O 
(n = 225) (1 00.0%) 

CWAD wheat O 74 O 1 O O 
(n = 75) (98.67%) 

Barley O O 75 O O O 
(n = 75) (1 00.0%) 

Oats O O O 75 O O 
(n = 75) (100.0%) 



Table DD2a. Confusion matrix of bulk samples (each image partitioned into 9 sub-images) 
for color analysis : Normal estimation (Leave-one-out method). 

- - - - - - - - - -  - -- - -  - 

Categones (to)- C WRS CWAD Barley Oats R Y ~  
(from) L wheat wheat 

CWRS wheat 2013 12 O O O 
(n = 2025) (99.4 1 %) 

CWAD wheat 17 657 1 O O 
(n = 675) (97.33%) 

Barley O O 673 2 O 
(n = 675) (99.70%) 

Oats O O 6 669 O 
(n = 675) (99.1 1%) 

Table DDZb. Confusion matrir of bulk samples (each image partitioned into 9 sub-images) 
for color analysis : Non-parametric estimation (Leave-one-out method) with 
k 5 .  

-- - - 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

C WRS wheat 
(n = 2025) 

CWAD wheat 
(n = 675) 

Barley 
(n = 675) 

Oats 
(n = 675) 



Table DD3a. Conhision matrix of bulk samples (each image partitioned into 16 sui>-images) 
for color analysis : Normal estimation (Leave-one-out method). 

- 

Categones (to)- C WRS CWAD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

CWRS wheat 3596 2 
(n = 3600) (99.89%) 

C WAD wheat 47 1149 
(n = 1200) (95.75%) 

Barley O O 
(n = 1200) 

Oats O O 
(n = 1200) 

Table DD3b. Confusion matrix of bulk samples (each image partitioned into 16 sub-images) 
for color analysis : Non-parametric estimation (Leave-onesut metbod) with 
k5. 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

CWRS wheat 
(n = 3600) 

C WAD wheat 
(n = 1200) 

Oats 
(n = 1200) 



Table DD4a. Confusion matrix of bulk simples (each image partitioned into 25 sub-images) 
for color analysis : Normal estimation (Leave-one-out method). 

Categories (to)- CWRS CWAD Barle y Oats R Y ~  
(fiom) 1 wheat wheat 
-- - - - - - - -- - - 

C WRS wheat 562 1 O O 1 3 
(n = 5625) (99.93%) 

C WAD wheat 81 1785 7 2 O 
(n = 1875) (95.20%) 

Oats O O 30 1844 1 
(n = 1875) (98.35%) 

Table DD4b. Confusion rnatrirr of buk samples (each image partitioned into 25 sub-images) 
for colot analysis : Non-parametric estimation (Leave-one-out method) with 
k=5. 

Caiegones (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) i wheat wheat 

CWRS wheat 
(n = 5625) 

C WAD wheat 
(n = 1875) 

Barley 
(n = 1875) 

Oats 
(n = 1875) 



CONFUSION MATRICES OF INDIVIDUAL KERNELS 
FOR 

TEXTURAL ANALYSIS (HOLD OUT METHOD) 



Table Ela. Conhision matrix of individual kernels for texturai aoalysis (features ertracted 
from red color band at maximum gray level value 250): Normal estimation 
(hold out method) 

- 

Categories (to)- C WRS CWAD BarIey Oats R Y ~  
(fiom) 1 wheat wheat 

CWRS wheat 3010 6 O O 1484 
(n = 4500) (66.9%) 

C WAD wheat 11 1428 3 7 51 
(n = 1500) (95.2%) 

Oats O O O 1500 O 
(n = 1500) ( 1 00.0Y0) 

Table Elb. ConTusion rnatrix of individual kernels for textural anaiysis (features extracted 
from red color band at maximum gray level value 250): Non-parametric 
estimation (hold out method) with k=5 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(frorn) 1 wheat wheat 

CWRS wheat 
(n = 4500) 

C WAD wheat 
(n = 1500) 

Barley 
(n = 1500) 

Oats 
(n = 1500) 



Table E2a. Confusion ma& of individual kemels for textunl analysis (features extracted 
from red color band at maximum gray level value 32): Normal estimation (hold 
out method) 

Categones (to)- C WRS CWAD Bade y Oaîs R Y ~  
(frorn) 1 wheat wheat 

CWRS wheat 3060 4 O O 1436 
(n = 4500) (68 .O%) 

CWAD wheat 13 1405 13 3 67 
(n = 1500) (93.7%) 

Barley O 30 1463 7 O 
(n = 1500) (97.5%) 

Oats O O 1 1499 O 
(n = 1500) (99.9%) 

Table E2b. Confusion matrix of individual kemels for textural analysis (features extracted 
from red color band at maximum gray level value 32): Non-parametric 
estimation (bold out method) with k=5 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

CWRS wheat 
(n = 4500) 

C WAD wheat 
(n = 1500) 

Barley 
(n = 1500) 

Oats 
(n = 1500) 



Table E3a. Confusion matrix of individual kemels for textural analysis (features eatracted 
from red color band at maximum gray level value 16): Normal estimation (hold 
out method) 

Categories (to)- CWRS CWAD BarIey Oats R Y ~  
(from) 1 wheat wheat 

CWRS wheat 3299 11 O O 1190 
(n = 4500) (73 -3%) 

C WAD wheat 7 1417 ? 3. 66 
(n = 1500) (94.5%) 

Barley O 32 1454 14 O 
(n = 1500) (96.9%) 

Oats O O 3 1497 O 
(n = 1500) (99.8%) 

Table E3b. Confusion matrix of individual kerneis for textural analysis (features extracted 
from ted cdor band at maximum gray levei value 16): Non-parametric 
estimation (hold out method) with k=5 

-- - - - - 

Categorïes (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fkom) 1 wheat wheat 

- - -- - 

CWRS wheat 3690 3 O O 798 9 
(n = 4500) (82.0%) 

CWAD wheat 2 1474 6 O 6 12 
(n = 1500) (98.3%) 

BarIey O 28 1471 O O 1 
(n = 1500) (98.1 %) 

Oats O O 2 1497 O 1 
(n = 1500) (99.8%) 



Table E1a. Confusion mat& of individual kemels for textural analysis (features ertracted 
from red color band at maximum gray level value 8): Normal estimation (hold 
out method) 

Categones (to)- CWRS CWAD Barley Oats R Y ~  
(from) l wheat wheat 

CWRS wheat 3551 
(n = 4500) (78 -9%) 

C WAD wheat 8 
(n = 1500) 

Barley O 
(n = 1500) 

Oats O 
(n = 1500) 

Table E4b. Confusion matrix of individual kemels for textuml anaiysis (features extracted 
from red color band at maximum gray level value 8): Non-parametric 
estimation (hold out method) with k=5 

- 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fkom) l wheat wheat 

CWRS wheat 3918 6 O O 570 6 
(n = 4500) (87.1 %) 

C WAD wheat 10 1469 4 O 12 5 
(n = 1500) (97.9%) 

Oats O O - 7 1498 O O 
(n = 1500) (98.9%) 



Table ESa. Confusion matir of individual kernels for textural analysis (features ertracted 
from red color band at maximum gray level value 1): Normal estimation (ho Id 
out method) 

- - 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(from) 1 wheat wheat 

CWRS wheat 3576 10 O O 914 
(n = 4500) (79.5%) 

CWAD wheat 42 1300 3 1 3 124 
(n = 1500) (86.7%) 

Oats O O O 1500 O 
(n = 1500) (1 00.0%) 

Table ES b. Confision matrix of individual samples for textural analysis (features extracted 
from red color band at maximum gray level value 4): Non-parametric 
estimation (hold out method) with k 5  

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(from) 1 wheat wheat 

C WRS wheat 3892 10 O O 584 14 
(n = 4500) (86.5%) 

C WAD wheat 10 1449 5 O 23 13 
(n = 1500) (96.6%) 

Barley 1 43 1455 O O 1 
(n = 1500) (97 .O%) 

Oats O O O 1500 O O 
(n = 1 500) (1 00.0%) 



Table E6a. Confiasion matrir of individual kernels for textural analysis (features extracted 
from green color band at maximum gray level value 32): Normal estimation 
(hold out method) 

Categones (to)- C WRS CWAD Barley Oats R Y ~  
(fkom) L wheat wheat 

CWRS wheat 3397 8 O O 1095 
(n = 4500) (75.5%) 

C WAD wheat 8 1428 11 6 47 
(n = 1500) (95.2%) 

Oats O O O 1500 O 
(n = 1500) (1 00.0%) 

Table E6b. Confusion rnatrix of individual kemels for textural analysis (features extracted 
from green color band at maximum gray level value 32): Non-parametric 
estimation (hold out method) with k=5 

-- 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

CWRS wheat 
(n = 4500) 

C WAD wheat 
(n = 1500) 

Barley 
(n = 1500) 

Oats 
(n = 150S) 



Table E7a. Confusion m a t h  of individual kernels for textural analysis (features ertracted 
from green color band at maximum gray level value 16): Normal estimation 
(hold out metbod) 

Categones (to)- C WRS CWAD Barle y Oats R Y ~  
(fkom) 1 wheat wheat 

CWRS wheat 3598 
(n = 4500) (80.0%) 

CWAD wheat 3 
(n = 1500) 

Barley O 
(n = 1500) 

Oats O 
(n = 1500) 

Table E7b. Confusion mat& of individual kemels for textural analysis (features extracted 
from green color band at maximum gray level value 16): Non-parametric 
estimation (hold out metbod) with k=5 

Categorïes (to)- C WRS CWAD BarIey Oats R Y ~  Other 
(fiom) r wheat wheat 

CWRS wheat 3844 2 O O 646 8 
(n = 4500) (85.4%) 

CWAD wheat 5 1469 9 O 7 10 
(n = 1500) (97.9%) 

Oats O O 1 1499 O O 
(n = 1500) (99.9%) 



Table E8a. Confusion matrix of individual kernels for textural analysis (features extracted 
from green color band at maximum gray level value 8): Normal estimation (hold 
out method) 

-- 

Categories (to)- C WRS CWAD Barley Oats Rye 
(fiom) 1 wheat wheat 

CWRS wheat 3802 4 O O 694 
(n = 4500) (84.5%) 

CWAD wheat 4 1419 O 3 74 
(n = 1500) (94.6%) 

Barley O O 1500 O O 
(n = 1500) (1 00.0%) 

Oats O O O 1500 O 
(n = 1500) (1 00.0%) 

Table E8b. Confusion matrix of individual kemels for textural analysis (features extracted 
from green color band at maximum gray level value 8): Non-parametric 
estimation (hold out method) with Ir-S 

-- 

Categories (to)- C WRS CWAO Barley Oats R Y ~  Other 
(fiom) 1 wheat wfieat 

-- - 

CWRS wheat 3940 3 O O 550 7 
(n = 3500) (87.7%) 

CWAD wheat 8 1471 O O 13 8 
(n = 1 500) (98.1 %) 

Oats O O O 1500 O O 
(n = 1500) (1 00.0%) 



Table E9a. Confusion matrix of individual kemels for textural analysis (features extracted 
from green color band a t  maximum gray levet value 4): Normal estimation (hold 
out method) 

Categories (to)- CWRS CWAD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

CWRS wheat 3982 
(n = 4500) (88.5%) 

CWAD wheat 13 
(n = 1500) 

Barley O 
(n = 1500) 

Oats O 
(n = 1500) 

Table E9b. Confusion matrix of individual kemels for textural analysis (features extracted 
from green color band a t  maximum gray level value 4): Non-parametric 
estimation (hold out method) with k=S 

Categories (to)- CWRS CWAD Barley Oats R Y ~  O ther 
(from) 1 wheat wheat 

CWRS wheat 4046 8 O O 424 32 
(n = 4500) (89.9%) 

CWAD wheat 8 1454 8 O 19 11 
(n = 1 500) (96.9%) 

Barley O 40 1456 2 O 2 
(n = 1500) (97.1 %) 

Oats O O O l SC0 G O 
(n = 1500) (1 00.0%) 



Table ElOa. Confusion ma& of i n d ~ d u a l  kemels for textural analysis (features extracted 
from blue color band at maximum gray level value 32): Normal estimation (hold 
out method) 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(fi-om) 1 wheat wheat 

C WRS wheat 2485 37 6 O 1972 
(n = 4500) (55.2%) 

C WAD wheat 1 1430 20 12 37 
(n = 1500) (95.3%) 

Barley O 99 1394 6 1 
(n = 1500) (92 -9%) 

Oats O O O 1500 O 
(n = 1500) ( I 00.0%) 

Table Emba Confusion ma& of individual kernels for tertuml analysis (features extracted 
from blue color band ak maximum gray level value 32): Non-parametric 
estimation (hold out metbod) with k=5 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiorn) 1 wheat wheat 

CWRS wheat 3774 15 35 2 654 20 
(n = 4300) (83.9%) 

CWAD wheat 5 1463 10 O 11 I l  
(n = 1500) (97.5%) 

Oats O O O 1500 O O 
(n = 1500) (100.0%) 



Table E l  la. Confusion matrix of individual kerneh for textural analysis (features extncted 
from blue color band at maximum gray level value 16): Normal estimation (hold 
out method) 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(fiom) i wheat wheat 

CWRS wheat 3 104 15 O O 1381 
(n = 4500) (69.0%) 

C WAD wheat 6 1446 16 11 21 
(n = 1500) (96.4%) 

Barley O 93 1398 7 2 
(n = 1500) (93 2%) 

Oats O O O 1500 O 
(n = 1500) ( 1 00.0%) 

Table El1 b. Confusion matrix of individual kerneis for textural analysis (features extracted 
from blue color band at maximum gray level value 16): Non-parametric 
estimation (hold out method) with k=S 

. - -- -p - - 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiorn) I wheat wheat 

- - - - - - - - - - - -- - -- 

C WRS wheat 3862 12 15 4 593 14 
(n = 4500) (85.8%) 

C WAD wheat - 3 146 1 19 O 11 7 
(n = 1500) (97.4%) 

Barley O 65 1428 4 O 3 
(n = 1500) (95.2%) 

Oats O O O 1500 O O 
(n = 1500) (1 00.0%) 



Table E12a. Confusion matrix of individual kemels for textural analysis (features extracted 
from blue color band at maximum gray level value 8): Normal estimation (hold 
out method) 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

C WRS wheat 3534 I l  O 2 953 
(n = 4500) (78.5%) 

CWAD wheat 9 1438 21 10 22 
(n = 1500) (95.9%) 

Barley O 92 1392 15 1 
(n = 1500) (92.8%) 

Oats O O O 1500 O 
(n = 1500) (1 00.0%) 

Table E12b. Confusion matrix of individual kernels for textural analysis (features extracted 
from blue color band at maximum gray level value 8): Non-parametric 
estimation (hold out method) wiîh k=S 

-- - -  - -  

Categories (to)- CWRS CWAD Barley Oats R Y ~  Other 
(from) 1 wheat wheat 

CWRS wheat 3910 13 13 O 539 25 
(n = 4500) (86.9%) 

C WAD wheat 3 1467 10 O 9 1 1  
(n = 1500) (97.8%) 

Barley O 49 1445 O O 6 
(n = 1500) (96.3%) 

Oats O O 1 1499 O O 
(n = 1500) (99.9%) 



Table E13a. Confusion matrix of individual kernels for textural analysis (features extracted 
from blue color band at maximum gray level value 4): Normal estimation (hold 
out method) 

- - - - - - -- 

Categones (to)- C WRS CWAD Bar ley Oats R Y ~  
(fiom) l wheat wheat 

CWRS wheat 3883 
(n = 4500) (86.3%) 

C WAD wheat 8 
(n = 1 500) 

Bar le y O 
(n = 1500) 

Oats O 
(n = 1500) 

Table E13b. Confusion matris of individual kernels for textural analysis (features extracted 
from blue color band at maximum gray level value 1): Non-parametric 
estimation (hold out method) with k=5 

- --- -- - .  - - - - - - - - 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

CWRS wheat 
(n = 4500) 

CWAD wheat 
(n = 1500) 

Barley 
(n = 1500) 

Oats 
(n = 1500) 



Table Ella .  Confusion matrix of indmdual kernels for textural analysis (features extracted 
from black & white color at maximum gray level value 32): Normal estimation 
(bold out method) 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(from) 1 wheat wheat 

C WRS wheat 33 19 
(n = 4500) (73 -7%) 

C WAD wheat 9 
(n = 1500) 

Barley O 
(n = 1500) 

Oats O 
(n = 1500) 

R Y ~  343 
(n = 1500) 

Table El lb .  Confusion m a t e  of individual kernels for textural analysis (features extracted 
from black & white color at maximum gray level value 32): Non-parametric 
estimation (hold out method) with k=5 

Categones (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

CWRS wheat 
(n = 4300) 

C WAD wheat 
(n = 1500) 

Barley 
(n = 1500) 

Oats 
(n = 1500) 



Table E15a. Confusion ma& of i n d ~ d u a l  kernels for texhiral analysis (features extracted 
from biack & white color nt maximum gray leve1 value 16): Normal estima tioo 
(hold out method) 

Categories (to)- C WRS CWAD Badey Oats R Y ~  
(fiorn) 1 wheat wheat 

CWRS wheat 3529 2 O O 969 
(n = 4500) (78.4%) 

CWAD wheat 4 1425 14 6 5 1 
(n = 1500) (95.0%) 

Barley O 51 1437 12 O 
(n = 1500) (95.8%) 

Oats O O O 1 SOC! O 
(n = 1500) ( 1 00.0Y0) 

Table E15b. Confusion matrix of individual kernels for texturd analysis (features extracted 
from black & white color at maximum gray level value 16): Non-panmetric 
estimation (hold out method) with I r 5  

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(from) 1 wheat wheat 

CWRS wheat 3813 6 O O 674 7 
(n = 4500) (84.7%) 

C WAD wheat 2 1477 4 1 9 7 
(n = 1500) (98.5%) 

Barley O 44 1456 O O O 
(n = 1500) (97.1%) 

Oats O O 1 1499 O O 
(n = 1500) (99.9%) 



Table E16e Confusion ma& of i n d ~ d u a l  kernels for textural anabsis (features extracted 
from black & white color at maximum gray level value 8): Normal estimation 
(hold out method) 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(tiom) 1 wheat wheat 

CWRS wheat 3768 1 O O 73 1 
(n = 4500) (83.7%) 

C WAD wheat 5 1405 18 10 62 
(n = 1500) (93 -7%) 

Barley O 54 1432 14 O 
(n = 1500) (95.5%) 

Oats O O O 1500 O 
(n = 1500) ( 100.0%) 

Rye 287 27 O 1 1185 
(n = 1 500) (79.0%) 

Table E16b. Confusion ma* of individual kernels for textural analysis (features extracted 
from black & white color at maximum gray level value 8): Non-parametric 
estimation (hold out method) with Ir-5 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

CWRS wheat 3903 15 1 O 566 15 
(n = 4500) (86.7%) 

CWAD wheat 6 1461 8 O 14 11  
(n = 1500) (97.4%) 

Barley O 38 1458 O O 4 
(n = 1500) (97.2%) 

Oats O O 1 1499 O O 
(n = 1500) (99.9%) 



Table E17a. Confusion matris of i n d ~ d u a l  kemels for textuml analysis (features extncted 
from black & white color at maximum gray level value 4): Normal estimation 
(hoid out method) 

- -- - - - - - - 

Categories (to)- C WRS CWAD Barley Oaîs R Y ~  
(frorn) 1 wheat wheat 

- 

CWRS wheat 3962 19 O O 519 
(n = 4500) (88 .O%) 

C WAD wheat 8 1388 21 1 82 
(n = 1500) (92.5%) 

Barley O 67 1423 5 5 
(n = 1500) (94.9%) 

Oats O O O 1500 O 
(n = 1500) (100.0%) 

Table E 17b. Coafusion matrix of individual kemels for textural analysis (features extracted 
from black & white color at maximum gray leve1 value 4): Non-parametric 
estimation (hold out method) with k=5 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

-- 

C WRS wheat 4068 17 O O 399 16 
(n = 3500) (90 -4%) 

C WAD wheat 12 1445 8 O 26 9 
(n = 1500) (96.3%) 

Bar le y O 4C 1455 O O 5 
(n = 1500) (97.0%) 

Oats O O O 1500 O O 
(n = 1500) ( i 00.0%) 



Table Elsa, Confusion matrix of individual kernels for textural analysis (features extracted 
from (3R+2G+lB)/6 at maximum gray level value 32): Normal estimation (bold 
out method) 

- - 

Categories (to)- C WRS CWAD Bariey Oats R Y ~  
(fiom) 1 wheat wheat 

CWRS wheat 3321 9 O O 1170 
(n = 4500) (73.8%) 

CWAD wheat 10 1405 12 5 68 
(n = 1500) (93.7%) 

Barley O 33 1460 7 O 
(n = 1500) (97.3%) 

Oats O O I 1499 O 
(n = 1500) (99 -9%) 

Table E18b. Confusion matrix of individual kernels for textural analysis (features extracted 
from (3R+ZG+lB)/6 at maximum gray level value 32): Non-parametric 
estimation (hold out method) with k=S 

Categories (to)- C WRS CWAD Barley Oats RYe Other 
(fiom) 1 wheat wheat 

CWRS wheat 
(n = 4500) 

C WAD wheat 
(n = 1500) 

Barley 
(n = 1500) 

Oats 
(n = 1500) 



Table E19a Confusion ma& of individual kernels for textural analysis (features extracted 
from (3R+ZG+lB)/6 at maximum gray level value 16): Normal estimation (hold 
out method) 

Categocies (to)- C WRS CWAD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

CWRS wheat 3502 7 O O 99 1 
(n = 4500) (77.8%) 

C WAD wheat 6 140 1 15 6 72 
(n = 1500) (93 -4%) 

Barley O 47 1444 9 O 
(n = 1500) (96.3%) 

Oats O O 1 1499 O 
(n = 1500) (99.9%) 

Table E19b. ConCusion matrix of individual kernels for textural analysis (features extracted 
from (3R+2G+IC)/6 at maximum gray level value 16): Non-parametric 
estimation (hold out method) with k=5 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

C WRS wheat 3795 2 2 O 693 8 
(n = 4500) (84.3%) 

C WAD wheat 3 1472 5 1 10 9 
(n = 1500) (98.1%) 

Oats O O 2 1498 O O 
(n = 1500) (99.9%) 



Table E20a. Confusion mat* of ind~dua l  kernels for texhtral anaiysis (features extracted 
h m  (3R+2C+lB)/6 at maximum gray level value 8): Normal estimation (hold 
out method) 

- - - - - - -. - - - - . . 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

-- - - - - 

CWRS wheat 3698 12 O O 790 
(n = 4500) (82.2%) 

C WAD wheat 6 1413 O 1 80 
(n = 1500) (94.2%) 

Barley O O 1500 O O 
(n = 1500) (1 00.0%) 

Oats O O O 1500 O 
(n = 1500) (1 00.0%) 

Table E2Ob. Confusion matth of individual kemels for textural analysis (features extracted 
from (SR+ZG+lB)/6 at maximum gray level value 8): Non-parametric 
estimation (hold out method) with lr-5 

-- -- 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

C WRS wheat 3847 18 O O 618 17 
(n = 4500) (85.5%) 

CWAû wheat 3 1467 O 1 14 15 
(n = 1500) (97.8%) 

Barley O O 1500 O O O 
(n = 1500) (1 00.0%) 

Oats O O O 1500 O O 
(n = 1500) (1 00.0%) 



Table E21a. Confusion matris of i n d ~ d u a î  kernels for teatural analysis (features evtracted 
from (3R+tG+lB)/6 at maximum gray level value 4): Normal estimation (hold 
out method) 

- - -- -- - - - - - - - .. - 

Categories (to)- CWRS CWAD Barley Oats R Y ~  
(ftom) 1 wheat wheat 

- 

CWRS wheat 3848 4 O O 648 
(n = 4500) (85.5%) 

C WAD wheat 17 1378 O 2 103 
(n = 1500) (9 1.9%) 

Barley O O 1500 O O 
(n = 1500) ( 1 00.0"/0) 

Oats O O O 1500 O 
(n = 1500) (1 00.0%) 

Table E21 b. Confusion matrix of individual kernels for textuml analysis (features extracted 
from (3R+2G+lB)/6 at maximum gray level value 4): Non-parametric 
estimation (hold out method) with k=S 

- -- - - - -- . -- - - - - - 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

CWRS wheat 3980 13 O O 489 18 
(n = 4500) (8 8.4%) 

CWAD wheat 10 1444 O O 24 22 
(n = 1500) (96.3%) 

Barley O O 1500 O O O 
(n = 1500) (100.0%) 

Oats O O O 1500 O O 
(n = 1500) (1 00.0%) 



Table E22a. Confusion matris of individual kemels for textural analysis (features extracted 
from (ZR+lG+3B)/6 at maximum gray level value 32): Normal estimation (hold 
out method) 

Categories (to)- C WRS C W m  Barley Oats R Y ~  
(Fom) 1 wheat wheat 

CWRS wheat 3324 4 O O 1172 
(n = 4500) (73.9%) 

CWAD wheat 3 1419 16 10 52 
(n = 1500) (94.6%) 

Oats O O O 1500 O 
(n = 1500) (1 00.0%) 

Table E22b. Confusion matrin of individual kemels for textural anaiysis (features extracted 
from (2R+lG+JB):6 at maximum gray level value 32): Non-parametrie 
estimation (hold out method) with k=S 

- - - - -- -- 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

CWRS wheat 3737 3 3 O 74 1 16 
(n = 4500) (83 .O%) 

CWAD wheat 7 1461 12 1 8 11 
(n = 1500) (97.4%) 

Barley O 40 1452 1 O 7 
(n = 1500) (96.8%) 

Oats O O 1 1499 O O 
(n = 1500) (99.9%) 



Table E23a. Confusion matrix of individual kernels for textural analysis (features extracted 
from (2R+IG+3B)/6 at maximum gray level value 16): Normal estimation (hold 
out method) 

Categones (to)- C WRS CWAD Bade y Oats R Y ~  
(from) 1 wheat wheat 

C WRS wheat 3484 4 O O 1013 
(n = 4500) (77.4%) 

C WAD wheat 3 1421 16 10 50 
(n = 1500) (94.7%) 

Oats O O O 1500 O 
(n = 1500) (1 00.0%) 

Table E23b. Confusion matrk of individual kerneis for texhiral analysis (features extracted 
from (2R+lG+3B)/6 at maximum gray level value 16): Non-parametric 
estimation (hold out method) with k=5 

Categones (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

CWRS wheat 3806 4 14 O 666 10 
(n = 4500) (84.6%) 

C WAD wheat 4 1465 13 3 11 4 
(n = 1500) (97.7%) 

Barley O 33 1465 O O 2 
(n = 1500) (97.7%) 

Oats O O O 1500 O O 
(n = 1500) (1 00.0%) 



Table E24a. Confusion matrix of individual kernels for textural analysis (features extracted 
from (2R+lG+3B)/6 at maximum gray level value 8): Normal estimation (hold 
out method) 

Categories (to)- C WRS CWAD Barley Oats RYe 
(fiom) l wheat wheat 

- - 

CWRS wheat 3799 
(n = 4500) (84.4%) 

C WAD wheat 9 
(n = 1500) 

Barley O 
(n = 1500) 

Oats O 
(n = 1500) 

Table E24b. Confusion m a t h  of individual kernels for textural analysis (features extracted 
from (2R+lG+3B)/6 at maximum gray level value 8): Non-parametric 
estimation (hold out method) with k=S 

Categones (to)- CWRS CWAD Barley Oats RYe Other 
(from) 1 wheat wheat 

- -- - -- 

CWRS wheat 3914 11 6 O 549 20 
(n = 4500) (87.0%) 

C WAD wheat 5 1453 10 1 18 13 
(n = 1500) (96.9%) 

Barley O 30 1464 O O 6 
(n = 1500) (97.6%) 

Oats O O O 1500 O O 
(n = 1500) (1 00.0%) 



Table E25a. Confusion matrix of individual kernels for textural analysis (features extracted 
from (2R+lG+3B)/6 at maximum gray level value 4): Normal estimation (hold 
out metbod) 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

C W R S  wheat 4016 18 O O 466 
(n = 4500) (89.2%) 

CWAD wheat 3 1412 29 2 54 
(n = 1500) (94.1 %) 

Barley O 89 1401 5 5 
(n = 1500) (93 -40) 

Oats O O O 1500 O 
(n = 1500) (1 00.0%) 

Table E25b. Confusion matrix of individual kernels for textural analysis (features extracted 
from (2R+lG+3B)/6 at maximum gray level value 4): Non-parametric 
estimation (hold out method) with k=5 

Categories (to)- CWRS CWAD Barley Oats RYe Other 
(fiom) 1 wheat wheat 

CWRS wheat 4044 22 O O 415 19 
(n = 4500) (89.9%) 

C WAD wheat 5 1452 9 O 19 15 
(n = 1500) (96.8%) 

Barley O 49 1 444 3 O 4 
(n = 1500) (96.3%) 

Oats O O O 1500 O O 
(n = 1500) (1 00.0%) 



Table E26a. Confusion ma- of individual kernels for textural analysis (features extracted 
from (lR+3G+2B)/6 at maximum gray level value 32): Normal estimation (hold 
out method) 

Categories (to)- C WRS CWAD Bar le y Oats R Y ~  
(fiom) 1 wheat wheat 

CWRS wheat 3387 7 O O 1106 
(n = 4500) (75.3%) 

C WAD wheat 7 1413 20 10 50 
(n = 1500) (94 -2%) 

Barley O 40 1450 10 O 
(n = 1500) (96.7%) 

Oats O O O 1500 O 
(n = 1500) (100.0%) 

Table E26b. Confusion matrix of individual kemels for textural analysis (features extracted 
from (lR+SG+tB)/6 at maximum gray level value 32): Non-parametric 
estimation (hold out method) with k=5 

- - --  - - 

Categories (to)- C WRS CWAa Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

C WRS wheat 
(n = 4500) 

C WAD wheat 
(n = 1500) 

Barley 
(n = 1500) 

Oats 
(n = 1500) 



Table E27a. Confusion matrix of individual kernels for texhiral anaiysis (features extracted 
from (1R+3G+2)16 at maximum gray level value 16): Normal estimation (hold 
out method) 

Categones (to)- C WRS CWAD Barle y Oats R Y ~  
(fiom) i wheat wheat 

C WRS wheat 3562 6 O 1 93 1 
(n = 4500) (79.2%) 

CWAD wheat 2 1415 16 10 57 
(n = 1500) (94.3%) 

Barley O 60 1429 11 O 
(n = 1500) (95.3%) 

Oats O O O 1500 O 
(n = 1500) ( 100.0%) 

Table E27b. Confusion mat& of individual kemels for texturd analysis (features extracted 
from (lR+3G+ZB)/6 at maximum gray level value 16): Non-parametric 
estimation (hoId out method) with k=5 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) L wheat wheat 

CWRS wheat 3849 3 2 O 633 13 
(n = 4500) (85.5%) 

C WAD wheat 2 1470 9 O 10 9 
(n = 1500) (98 .O%) 

Barley O 43 1453 O O O 
(n = 1500) (97.1 %) 

Oats O O 1 1499 O O 
(n = 1500) (99.9%) 



Table E28a. Confusion matrix of individual kernels for teatural analysis (features extracted 
from (lR+3G+ZB)/6 at maximum gray Ievel value 8): Normal estimation (hold 
out method) 

(fkom) 1 wheat wheat 

CWRS wheat 3803 1 O O 696 
(n = 4500) (84.5%) 

CWAD wheat 5 1418 14 1 I 52 
(n = 1500) (94.5%) 

Oats 
(n = 1500) 

Table E28b. Confusion rnatrïx of individual kernels for textural analysis (features extracted 
from (lR+3G+2B)/6 at maximum gray level value 8): Non-parametric 
estimation (hold out method) with k=S 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(f?om) 1 wheat wheat 

CWRS wheat 3953 17 O O 5 14 16 
(n = 4500) (87.8%) 

CWAD wheat 5 1457 10 1 
(n = 1 500) (97.1 %) 

Barley O 29 1466 1 
(n = 1500) (97.7%) 

Oats O O 1 1499 O O 
(n = 1500) (99.9%) 



Table E29a. Confusion matrix of individual kernels for textural analysis (features extracted 
from (lR+3G+2B)/6 at maximum gray level value 4): Normal estimation (hold 
out method) 

- - - - - - - - - -- - - . . 

Categories (to)- CWRS CWAD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

- - 

C WRS wheat 4044 22 O O 434 
(n = 4500) (89.9%) 

CWAD wheat 5 1412 26 1 56 
(n = 1500) (94.1 %) 

Barley O 80 1409 6 5 
(n = 1500) (93.9%) 

Oats O O O 1500 O 
(n = i 500) ( 100.0%) 

Table E29b Confusion matrix of individual kernels for texturd analysis (features extracted 
from (1R+3G+2B)/6 at maximum gray level value 4): Non-parametric 
estimation (bold out method) with k=5 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(from) 1 wheat wheat 

CWRS wheat 4090 15 O O 376 19 
(n = 4500) (90.9%) 

C WAD wheat 8 1459 6 O 13 14 
(n = 1500) (97.3%) 

Barley O 41 1455 1 O 3 
(n = 1500) (97 .O%) 

Oats O O O 1500 O O 
(n = 1500) (1 00.0%) 



CONFUSION MATRICES OF INDIVIDUAL KERNELS 
FOR 

TEXTURAL ANALYSIS (LEAVE-ONE-OUT METHOD) 



Table EEla. Confusion ma& of individual kernels for textural analysis (features extracted 
from red color band at maximum gray level value 250): Normal estimation 
(leave-one-out method) 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

-- - - -- - 

CWRS wheat 10038 207 O 28 J-- '777 
(n = 13500) (74.4%) 

C WAD wheat 70 4052 40 9 329 
(n = 4500) (90.0%) 

Barley O 85 4344 61 IO 
(n = 4500) (96.5%) 

Oats O 5 40 4455 O 
(n = 4500) (99.0%) 

Table EE 1 b. Confiision matrix of individual kernels for textural analysis (features extracted 
from red color band at maximum gray level value 250): Non-parametric 
estimation (leave-one-out method) with k 5  

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) i wheat wheat 

CWRS wheat 
(n = 13500) 

C WAD wheat 
(n = 4500) 

Barley 
(n = 4500) 

Oats 
(n = 4500) 



Table EE2a. Confusion matrix of individual kernels for textural analysis (features estractcd 
from red color band at maximum gray level value 32): Normal estimation 
(leave-one-out method) 

- - - -p -- - - - - - -- - -- --  

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(f?om) 1 wheat wheat 

C WRS wheat 
(n=  13500) 

C WAD wheat 
(n = 4500) 

Barley 
(n = 4500) 

Oats 
(n = 4500) 

Table EE2b. Confusion matrix of individual kernels for textural analysis (features extracted 
from red color band at maximum gray level value 32): Non-parametric 
estimation (leave-one-out method) with k=5 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

CWRS wheat 
(n = 13500) 

C WAD wheat 
(n = 4500) 

Oats 
(n = 1500) 



Table EE3a. Confusion matrix of individual kernels for textural analysis (features extracted 
from red color band at maximum gray level value 16): Normal estimation 
(leave-onmut method) 

Categories (to)- C WRS CWAD Barley Oats RYe 
(fiom) 1 wheat wheat 

C WRS wheat 10760 
(n = 13500) (79.7%) 

C WAD wheat 86 
(n = 4500) 

Barley O 
(n = 4500) 

Oats 1 
(n = 4500) 

Table EE3b. Confusion matrix of i n d ~ d u a l  kernels for textural anaiysis (features extracted 
from red color band at maximum gray level value 16): Non-parametric 
estimation (leave-one-out method) with Ir-5 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

CWRS wheat 11757 146 O O 1589 8 
(n = 13500) (87.1 %) 

CWAD wheat 39 4360 23 2 76 O 
(n = 4500) (96.9%) 

Barley O 53 4443 4 O 0 
(n = 4500) (98.7%) 

Oats O 2 72 4426 O O 
(n = 4500) (98.4%) 



Table EEla. Confusion matrix of ind~dual  kernels for textural analysis (features ertracted 
from red color band at maximum gray level value 8): Normal estimation (leave- 
one-out method) 

Categones (to)- C WRS CWAD Barley Oats Rje 
(hm) 1 wheat wheat 

CWRS wheat 11317 107 2 24 2050 
(n = 13500) (83 3%) 

CWAD wheat 78 4027 75 8 3 12 
(n = 4500) (89.5%) 

Barley O 83 4343 64 10 
(n = 4500) (96.5%) 

Oats O O 69 443 1 O 
(n = 4500) (98.5%) 

Table EE4b. Confusion matrix of individual kernels for textural analysis (features extracted 
from red color band at maximum gray level value 8): Non-parametric 
estimation (leave-one-out method) with k=5 

-- - - -- - - - 

Categones (to)- CWRS CWAD Barley Oats Rye Other 
(fiom) l wheat w heat 

CWRS wheat 12003 199 O O 1289 9 
(n = 13500) (88.9%) 

C WAD wheat 38 435 1 36 1 74 O 
(n = 4500) (96.7%) 

Barley O 65 4434 1 O O 
(n = 4500) (98.5%) 

Oats O O 70 4430 O O 
(n = 4500) (98.4%) 



Table EESa. Confusion matrix of individual kernels for textural analysis (features eutracted 
from r d  color band at maximum gray level value 4): Normal estimation (leave- 
one-out method) 

Categories (to)- C WRS CWAD Barley Oats RYe 
( h m )  1 wheat wheat 

CWRS wheat 11349 155 O 8 1988 
(n = 13500) (84.1 %) 

CWAD wheat 140 3 770 181 6 403 
(n = 4500) (83 -8%) 

Barley O 70 4399 12 19 
(n = 4500) (97.8%) 

Oats O 4 30 4466 O 
(n = 4500) (99.2%) 

Table EE5b. Confusion mat& of individual samples for textural analysis (features extracted 
from ted color band at maximum gray level value 4): Non-parametric 
estimation (Hold out method) with k .  

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(tiorn) 1 wheat wheat 

C WRS wheat 12013 150 O O 1321 16 
(n = 13500) (89.0%) 

C WAD wheat 53 43 13 37 O 97 O 
(n = 4500) (95.8%) 

Bar le y O 67 443 1 2 O O 
(n = 4500) (98.5%) 

Oats O 2 27 447 1 O O 
(n = 4500) (99.4%) 



Table EE6a. Confusion ma& of individual kernels for textural aaalysis (features extracted 
from green color band at maximum gray level value 32): Normal estimation 
(leave-one-ou t method) 

Categories (to)- CWRS CWAD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

CWRS wheat 9717 156 1 18 3608 
(n = 13500) (72.0%) 

C WAD wheat 44 3976 66 10 404 
(n = 4500) (88.4%) 

Oats O 5 48 4447 O 
(n = 4500) (98.8%) 

Table EE6b. Coahision matrix of individual kernelo for texîural analysis (features extracted 
from green color band at maximum gray level value 32): Non-parametric 
estimation (leave-one-out method) with lr-5 

Categones (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

CWRS wheat 
(n = 13500) 

CWAD wheat 
(n = 4500) 

Barley 
(n = 4500) 

Oats 
(n = 4500) 



Table EE7a. Confusion rnatrix of individual kemels for textural analysis (features extracted 
from green color band at maximum gray level value 16): Normal estimation 
(leave-one-out method) 

- -- - - - - - . - - - 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

- -  - -  - - - - -- pp 

CWRS wheat 10310 130 O 20 3040 
(n = 13500) (76.4%) 

C WAD wheat 41 4053 69 9 328 
(n = 4500) (90.1 %) 

Barley 1 1 06 4290 95 8 
(n = 4500) (95.3%) 

Oats O t 59 4440 O 
(n = 4500) (98.7%) 

Table EE7b. Confusion matrix of individual kernels for textural analysis (features extracted 
from green color band at maximum gray level value 16): Non-parametric 
estimation (leave-one-out method) with k=5 

- - - - - - - - -- - - - - 

Categories (to)- C WRS CWAD Barley Oats RYe Other 
(fiom) 1 wheat wheat 

- - -  

CWRS wheat 1 1796 99 O O 1594 11 
(n = 13500) (8 7.4%) 

C WAD wheat 36 4338 37 2 87 O 
(n = 4500) (96.4%) 

Barley O 52 4442 6 O O 
(n = 4500) (98.7%) 

Oats 1 O 85 4413 O 1 
(n = 4500) (98.1 %) 



Table EE8a. Confiision matrix of i a d ~ d u a l  kernels for textural anaiysis (features extracted 
from green eolor band at maximum gray level value 8): Normal estimation 
(leave-oneout metbod) 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(fiom) i wheat wheat 

CWRS wheat 1 0667 93 O 34 2706 
(n = 13500) (79.0%) 

CWAD wheat 27 41 13 O 16 344 
(n = 4500) (9 1.4%) 

Barley O O 4500 O O 
(n = 4500) (1 00.0%) 

Oats O 11 O 4489 O 
(n = 4500) (99.8%) 

Table EESb. Confusion ma& of individual kernels for telrtural analysis (features extracted 
from green color band at maximum gray level value 8): Non-parametric 
estimation (leaveone-out method) with k=S 

Categones (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

- - 

C WRS wheat 11905 162 O O 142 1 12 
(n = 13500) (88.2%) 

CWAD wheat 48 4340 O 1 111 O 
(n = 4500) (96.4%) 

Bariey O O 4500 O O O 
(n = 4500) (1 00.0%) 

Oats O 1 O 4499 O O 
(n = 4500) (1 00.0%) 



Table EE9a. Confusion matria of individual kernels for textural analysis (features extracted 
from green color band at maximum gray level value 4): Normal estimation 
(leave-one-out met hod) 

- -- - 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

- 

C WRS wheat 1 1494 129 2 5 1870 
(n = 13500) (85.1%) 

CWAD wheat 57 3847 161 7 428 
(n = 4500) (85.5%) 

Barley 2 76 4305 98 19 
(n = 4500) (95.7%) 

Oats O O 1 O0 4400 O 
(n = 4500) (97.8%) 

Table EE9b. Confusion matrix of individual kemels for textural analysis (features extracted 
from green color band at maximum gray level value 4): Non-parametric 
estimation (leave-one-out method) with k35 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(from) 1 wheat wheat 

- - - - - - - - - -- - -- 

C WRS wheat 12263 137 O 1 1088 I I  
(n = 13500) (90.8%) 

C WAD wheat 48 4258 64 1 129 O 
(n = 4500) (94.6%) 

Barley O 69 442 1 9 1 O 
(n = 4500) (98.2%) 

Oats O O 80 4419 O 1 
(n = 4500) (98.2%) 



Table EElOa. Confusion matris of individual kernels for textural analysis (features 
extracted from blue color band at maximum gray level value 32): 
Normal estimation (leave-one-out method) 

- - -- - - -- 

Categories (to)- C WRS CWAD Bade y Oats RYe 
(fiom) 1 wheat wheat 

CWRS wheat 6743 
(n = 13500) (50.0%) 

C WAD wheat 3 1 
(n = 4500) 

Barley 8 
(n = 4500) 

Oats O 
(n = 4500) 

RYe 185 
(n = 4500) 

Table EElOb. Confusion matrix of individual kernels for textural analysis (features 
extracted from blue color band at maximum gray level value 32): Non- 
parametric estimation (leave-one-out method) with k=5 

Categories (to)- CWRS CWAD Barley Oats RYe Other 
(from) 1 wheat wheat 

CWRS wheat 
(n = 13500) 

CWAD wheat 
(n = 4500) 

Barley 
(n = 4500) 

Oats 
(n = 4500) 



Table EElla, Confusion matris of individual kemels for textural analysis (features 
extracted from blue coIor band at maximum gray level value 16): 
Normal estimation (leave-one-ou t method) 

Categories (to)- C WRS CWAD Bade y Oats R Y ~  
(fkom) 1 wheat wheat 

CWRS wheat 8633 190 O 27 4650 
(n = 13500) (64.0%) 

CWAD wheat 39 4195 93 24 149 
(n = 4500) (93.2%) 

Barley 7 1 64 4242 84 3 
(n = 4500) (94.3%) 

Oats O O 68 443 1 1 
(n = 4500) (98.5%) 

Table EEllb. Confusion matrix of individual kemels for textural analysis (features 
extracted €rom blue color band at maximum gray level value 16): Non- 
parametric estimation (leave-one-out method) with k=5 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(frorn) 1 wheat wheat 

-- - - - - -  -- - - -- 

CWRS wheat 11912 111 2 1 i 467 7 
(n = 13500) (88.2%) 

C WAD wheat 35 4365 43 2 53 2 
(n = 4500) (97.0%) 

Barley 1 75 4405 19 O O 
(n = 4500) (97.9%) 

Oats O 2 95 4402 O 1 
(n = 4500) (97.8%) 



Table EElta. Confusion matrix of individual kernels for textural analysis (features 
extracted from blue color band at maximum gray level value 8): Normal 
estimation (Ieave-one-out method) 

Categones (to)- C WRS CWAD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

CWRS wheat 10023 121 O 56 3300 
(n = 13500) (74.2%) 

C WAD wheat 34 4195 101 36 134 
(n = 4500) (93.2%) 

Oats O 1 80 4417 - 3 

(n = 4500) (98.2%) 

Table EE12b. Confusion matrix of individual kernels for textural analysis (features 
extracted from blue color band at maximum gray level value 8): Non- 
parametric estimation (leave-one-out method) with k=5 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

CWRS wheat 1 1994 112 O 2 1381 1 1  
(n = 13500) (88.8%) 

C WAD wheat 20 43 74 47 4 54 1 
(n = 4500) (97.2%) 

Barley 1 62 4415 22 O O 
(n = 4500) (98.1 %) 

Oats O O 113 4386 O 1 
(n = 4500) (97.5%) 



Table EE13a. Confusion matrix of individual kemels for textural analysis (features 
extracted h m  blue color band at maximum gray level value 1): Normal 
estimation (leave-one-out method) 

- . - - - - -- -- 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(from) 1 wheat wheat 

CWRS wheat 11108 202 
(n = 13500) (82.3%) 

CWAD wheat 46 4134 
(n = 4500) (9 1.9%) 

Oats O O 
(n = 4500) 

Table EE13b. Confusion matrix of individual kernels for textural analysis (features 
extracted from blue color band at maximum gray level value 1): Non- 
parametric estimation (leave-one-out method) with k=S 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

CWRS wheat 12443 139 O O 91 1 7 
(n = 13500) (92.2%) 

CWAD wheat 40 4330 51 2 75 - 3 

(n = 4500) (96.2%) 

Barley O 73 4396 27 O 4 
(n = 4500) (97.7%) 

Oats O 1 89 4410 O O 
(n = 4500) (98.0%) 



Table EE14a. Confusion matrix of individual kernels for textural analysis (features 
extracted from black & white color at maximum gray level value 32): 
Normal estimation (leave-one-out method) 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

CWRS wheat 9441 
(n = 13500) (69.9%) 

C WAD wheat 41 
(n = 4500) 

Barley 2 
(n = 4500) 

Oats 1 
(n = 4500) 

Table EE14b. Confusion matrix of individual kernels for textural analysis (features 
extracted from black & white color at maximum gray Ievel value 32): 
Non-parametric estimation (leave-one-out method) with k=5 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

CWRS wheat 1 1547 147 O O 1795 11 
(n = 13500) (85.5%) 

CWAD wheat 47 4317 45 O 91 O 
(n = 4500) (9 5.9%) 

Barley O 57 4439 3 O 1 
(n = 4500) (98.6%) 

Oats O O 5 1 4439 O O 
(n = 4500) (98.6%) 



Table EEISa. Confusion matrix of individual kemels for tertural anaîysis (features 
extracted from black & white color at maximum gray level value 16): 
Normal estimation (leave-one-ou t method) 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

CWRS wheat 10076 
(n= 13500) (74.6%) 

CWAD wheat 37 
(n = 4500) 

Oats O 
(n = 4500) 

Table EElSb. Confusion m a t e  of individual kernels for textural analysis (features 
extracted from black & white color at maximum gray level value 16): 
Non-parametric estimation (leave-one-out method) with k=5 

Categories (to)- C WRS CWAD Bariey Oats R Y ~  Other 
(fiom) 1 wheat wheat 

CWRS wheat 
(n = 13500) 

C WAD wheat 
(n = 4500) 

Barley 
(n = 4500) 

Oats 
(n = 4500) 



Table EE 16a. Confusion mat* of individual kemels for textural analysis (features 
extracted from black & white color at maximum gray level value 8): 
Normal estimation (leave-one-out method) 

- - 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(from) 1 wheat wheat 

CWRS wheat 1 OS88 
(n= 13500) (7 8 -4%) 

CWAD wheat 34  
(n = 4500) 

Barley 3 
(n = 4500) 

Oats O 
(n = 4500) 

Table EE16b. Confusion mat& of individual kemels for textural analysis (features 
extracted from black & white color at maximum gray Ievel value 8): 
Non-parametic estimation (leave-one-out method) with k=5 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

CWRS wheat 1 1948 180 O O 1361 1 1  
(n = 13 500) (88.5%) 

C WAD wheat 32 4359 32 1 76 O 
(n = 4500) (96.9%) 

Barley O 56 4439 5 O O 
(n = 4500) (98 -6%) 

Oats O O 95 4405 O O 
(n = 4500) (98.0%) 



Table EE17a. Confusion matrix of individual kernels for textural aaalysis (features 
extracted from black & white color at maximum gray level value 4): 
Normal estimation (leave-one-out method) 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(Eiorn) 1 wheat wheat 

CWRS wheat 1 1475 
(n = 13500) (85.0%) 

CWAD wheat 48 
(n = 4500) 

Barley 3 
(n = 4500) 

Oats O 
(n = 4500) 

Table EE 17b. Confusion matrix of iadividual kernels for textural analysis (features 
extracted from black & white color at maximum gray level value 4): 
Non-parametric estimation (leave-one-out method) with k=5 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(from) ! wheat wheat 

CCWS wheat 12230 125 O 1 1133 1 1  
(n = 13500) (90.6%) 

CWAD wheat 49 4284 58 2 107 O 
(n = 4500) (95.2%) 

Barley O 74 4418 7 O 1 
(n = 4500) (98 -2%) 

Oats O O 87 4413 O O 
(n = 4500) (98.1%) 



Table EEl8a. Confusion matrix of individual kemels for textunl analysis (features 
exîracted from (3R+2G+lB)/6 at maximum gray level value 32): Normal 
estimation (eave-one-out method) 

Categories (to)- C WRS CWAD Bade y Oats R Y ~  
(fiom) 1 wheat wheat 

- - - -  - - 

CWRS wheat 9795 1 74 O 19 3512 
(n = 13500) (72.6%) 

CWAD wheat 49 3886 61 13 49 1 
(n = 4500) (86 -4%) 

Bar le y O 113 43 25 47 15 
(n = 4500) (96.1 %) 

Oats 1 2 40 4457 O 
(n = 4500) (99.0%) 

Table EEl8b. Confusion ma- of individual kemels for textural analysis (features 
extracted from (3R+2G+lB)/6 nt maximum gray level value 32): Non- 
parametric estimation (leave-one-out method) with k=S 

- -- - 

Categories (to)- C WRS CWAD Barley Oats RYe Other 
(fiorn) 1 wheat wheat 

CWRS wheat 11531 108 O O 1849 12 
(11 = 13500) (85.4%) 

CWAD wheat 43 4323 36 1 97 O 
(n = 4500) (96.1%) 

Barley O 53 4446 1 O O 
(n = 4500) (98.8%) 

Oats O O 57 4442 O 1 
(n = 4500) (98.7%) 



Table EE19a. Confusion matrir of individual kernels for textural analysis (features 
extracted from (3R+2G+IBY6 at maximum gray Ievel value 16): Normal 
estimation (leave-one-ou t method) 

Categories (to)- C WRS CWAD Barle y Oats RYe 
(fiom) l wheat wheat 

CWRS wheat 10297 135 O 3 1 3037 
(n = 13500) (76.3%) 

C WAD wheat 47 3998 58 12 385 
(n = 4500) (88.8%) 

Oats O 2 53 4445 O 
(n = 4500) (98.8%) 

Table EE19b. Confusion matrix of individual kemels for textural analysis (features 
extracted from (3R+2G+lB)/6 at maximum gray level value 16): Non- 
parametric estimation (leave-one-out method) with k=5 

- - 

Categories (to)- C WRS CWAD Barkey Oats RYe Other 
(fiom) 1 wheat wheat 

CWRS wheat 
(n = 13500) 

C WAD wheat 
(n = 4500) 

Barley 
(n = 4500) 

Oats 
(n = 4500) 



Table EE20a. Confusion mat& of individual kernels for textural analysis (features 
extracted from (3R+ZG+lB)/6 at maximum gray level value 8): Normal 
estimation (leave-one-out method) 

- - - - pp - - 

Categones (to)- CWRS CWAD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

CWRS wheat 1 0666 
(n = 13500) (79.0%) 

CWAD wheat 27 
(n = 4500) 

Barley O 
(n = 4500) 

Oats O 
(n = 4500) 

Table EE2Ob. Confusion matrix of individual kerneis for textural analysis (features 
extracted €rom (3R+2G+IB)/6 at maximum gray level value 8): Non- 
parametric estimation (leave-one-out method) with k=5 

- - - - - - . - -- 

Categories (to)- CWRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

C WRS wheat 1 1856 171 O O 1457 16 
(n = 13500) (87.8%) 

C WAD wheat 36 4359 O 1 1 04 O 
(n = 4500) (96.9%) 

Oats O 1 O 4499 O O 
(n = 4500) ( 100.0%) 



Table EE2la. Confusion matrix of individual kernels for textural analysis (features 
extracted from (3R+2G+ 1 B)/6 at maximum gray level value 4): Normal 
estimation (leave-one-out method) 

Categories (to)- C WRS CWAD Bar le y Oats R Y ~  
(fiom) 1 wheat wheat 

CWRS wheat 11261 
(n = 13500) (83.4%) 

C WAD wheat 75 
(n = 4500) 

Barley O 
(n = 4500) 

Oats O 
(n = 4500) 

Table EE2 1 b. Confusion matrix of individual kemels for textural analysis (features 
extracted from (3R+2G+lB)/d at maximum gray level value 4): Non- 
parametric estimation (leave-one-out method) with k=5 

-- -- 

Categories (to)- C WRS CWAD Barley Oats RYe Other 
(fiom) 1 wheat wheat 

CWRS wheat 121 17 192 O O 1173 18 
(n = 13500) (89.8%) 

CWAD wheat 57 4316 O O 127 O 
(n = 4500) (95.9%) 

Oats 
(n = 4500) 



Table EE22a. Confusion matrix of individual kemels for textural analysis (features 
extracted fiom (2R+lG+3B)/6 at maximum gray level value 32): Normal 
estimation (ieave-one-out method) 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(fkom) 1 wheat wheat 

- - 

CWRS wheat 9190 137 O 33 4140 
(n = 13560) (68.1 %) 

C WAD wheat 46 3971 88 23 372 
(n = 4500) (88.2%) 

Barley 4 145 429 1 54 6 
(n = 4500) (95.4%) 

Oats O 1 44 4455 O 
(n = 4500) (99.0%) 

Table EE22b. Confusion matrix of individual kernels for textural analysis (features 
extracted from (2R+lG+3B)/d at maximum gray level value 32): Non- 
parametric estimation (leave-one-out method) with Ir-S 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) L wheat wheat 

C WRS wheat 11601 143 O O 1 745 I l  
(n = 13500) (85.9%) 

C WAD wheat 41 435 1 24 1 83 O 
(n = 3500) (96.7%) 

Barley O 55 4430 5 O O 
(n = 4500) (98.4%) 

Oats 1 O 60 4439 O O 
(n = 4500) (98.6%) 



Table EE23a. Confusion matrix of individual kernels for textural analysis (features 
extracteà from (2R+lG+3B)/6 at marimum gray level value 16): Normal 
estimation (leave-one-ou t method) 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(from) l wheat wheat 

CWRS wheat 9899 126 O 3 1 3444 
(n = 13500) (73 -3%) 

C WAD wheat 41 4078 64 24 293 
(n = 4500) (90.6%) 

Barley 4 129 427 1 91 5 
(n = 4500) (94,9%) 

Oats O 2 56 4442 O 
(n = 4500) (98.7%) 

Table EE23b. Confusion matrir of individual kernels for textural analysis (features 
eutracted from (2R+lG+3B)/6 at maximum gray level value 16): Non- 
parametric estimation (leave-one-out method) with k=S 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(from) 1 wheat wheat 

C WRS wheat 
(n = 13500) 

C WAD wheat 
(n = 4500) 

Oats 
(n = 4500) 



Table EE2la. Confusion matrix of individual kernels for texîural analysis (features 
extracted €rom (2R+IG+3B)/6 at maximum gray level value 8): Normal 
estimation (leave-oae-out method) 

- -  - -- -- 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

C WRS wheat 10468 118 O 5 1 2863 
(n = 13500) (77.5%) 

C WAD wheat 44 4092 90 20 254 
(n = 4500) (90.9%) 

Barley 4 97 4311 80 8 
(n = 4590) (95.8%) 

Oats O O 50 4450 O 
(n = 4500) (98.9%) 

Table EE24b. Confusion matrix of individual kernels for textural analysis (features 
extracted from (2R+lG+3B)/6 at maximum gray level value 8): Non- 
parametric estimation (leave-one-out method) with k=S 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

C WRS wheat 12032 177 O O 1271 20 
(n = 13500) (89.1 %) 

C WAD wheat 45 4372 40 O 43 O 
(n = 4500) (97.2%) 

Barley O 56 443 1 13 O O 
(n = 4500) (98.5%) 

Oats O O 89 441 1 O O 
(n = 4500) (98.0%) 



Table EE25a. Confusion mat* of individual kernels for textural analysis (features 
extracted €rom (2R+lG+3B)/6 at maximum gray level value 4): Normal 
es tirnation (leave-one-out met hod) 

Categones (to)- CWRS CWAD Barle y  Oats R Y ~  
(fiorn) 1 wheat wheat 

CWRS wheat 11422 
(n = 13500) (84.6%) 

CWAD wheat 37 
(n = 4500) 

Oats O 
(n = 4500) 

Table EE25b. Confusion matrix of individual kernels for textural analysis (features 
extracted from (ZR+lG+3B)/6 at maximum gray level value 4): Non- 
parametric estimation (Icave-one-out method) with k=5 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

- - - 

CWRS wheat 12284 147 O O 1 064 5 
(n = 13 500) (9 1 .O%) 

C WAD wheat 56 43 12 42 O 89 1 
(n = 4500) (95.8%) 

Barley O 72 4415 12 O 1 
(n = 4500) (98.1 %) 

Oats O O 82 4418 O O 
(n = 4500) (98.2%) 



Table EE26a. Confusion matrix of individual kernels for textural analysis (features 
extracted from (lR+3G+2B)/6 at maximum gray level value 32): Normal 
estimation (leave-one-out method) 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

CWRS wheat 9420 
(n = 13500) (69.8%) 

CWAD wheat 5 1 
(n = 4500) 

Barley 6 
(n = 4500) 

Oats O 
(n = 4500) 

R Y ~  371 
(n = 4500) 

Table EE26b. Confusion matrix of individual kernels for textural analysis (features 
extracted from (lR+3C+2B)/6 at maximum gray level value 32): Non- 
parametric estimation (leave-one-out method) with k=5 

- - - - - - - - -- - .  - -  - 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

CWRS wheat 1 1643 128 O O 1714 15 
(n = 13500) (86.2%) 

C WAD wheat 41 4309 49 O 101 O 
(n = 4500) (95.8%) 

Barley O 53 4446 O O 1 
(n = 4500) (98.8%) 

Oats O O 70 4430 O O 
(n = 4500) (98 -4%) 



Table EE27a. Confusion matrix of individual kernels for textural analysis (features 
extncted from (lR+3G+28)/6 at maximum gray level value 16): Normal 
estimation (leave-one-out method) 

C WRS wheat 9984 123 O 33 3360 
(n = 13500) (74.0%) 

C WAD wheat 44 4068 78 21 289 
(n = 4500) (90.4%) 

Barley 2 137 4270 86 5 
(n = 4500) (94.9%) 

Oats O 3 49 4448 O 
(n 4500)  (98.8%) 

Table EE27b. Confusion matrix of individual kernels for textural analysis 
(lR+3C+2B)/6 at maximum gray level value 16): Non-parametric 
estimation (leave-one-out method) w ith k=5 

Categories (to)- CWRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

CWRS wheat 1 1822 134 O O 1534 10 
(n = 13500) (87.6% j 

C WAD wheat 34 4356 39 2 68 1 
(n = 4500) (96.8%) 

Barley O 57 4436 7 O O 
(n = 4500) (98.6%) 

Oats O O 93 4406 O 1 
(n = 4500) (97.9%) 



Table EE28a. Confusion m a t h  of individual kernels for textural analysis (features 
extracted fmm (fR+3G+2B)/6 at maximum gray level value 8): Normal 
estimation (leave-one-out method) 

Categories (to)- C WRS CWAD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

CWRS wheat 10557 102 O 51 2790 
(n = 13500) (78.2%) 

CWAD wheat 35 4079 89 16 28 1 
(n = 4500) (90.6%) 

Oats O O 60 4440 O 
(n = 4500) (98.7%) 

Table EE28b. Confusion matrix of individual kernels for textural analysis (features 
extracted from (1R+3G+2B)/6 at maximum gray levei value 8): Noo- 
parametric estimation (leave-one-out method) with k=5 

- 

Categories (to)- C WRS CWAD Barley Oats R Y ~  Other 
(fiom) L wheat wheat 

- - - - - -- - - 

CWRS wheat 12053 175 O O 1252 20 
(n = 13500) (89.3%) 

CWAI) wheat 44 4347 50 O 59 O 
(n = 4500) (96.6%) 

Barley O 53 4443 3 1 O 
(n = 4500) (98.7%) 

Oats O O 87 4413 O O 
(n = 4500) (98.1 %) 



Table EE29a. Confusion matrix of individu31 kernels for textural analysis (features 
extracted from (lR+3G+2B)l6 at maximum gray level value 4): Normal 
estimation (leave-one-out met hod) 

-- - -- - - . - - - - - - - - - - 

Categories (to)- C WRS CWkD Barley Oats R Y ~  
(fiom) 1 wheat wheat 

CWRS wheat 1 1486 190 1 16 1807 
(n = 13500) (85.1 %) 

C WAD wheat 35 4012 146 11 296 
(n = 4500) (89.2%) 

Oats O 8 124 4368 O 
(n = 4500) (97.1 %) 

Table EE 129b. Confusion matrix of individual kernels for textural analysis (features 
extracted from (lR+3G+2B)/6 at maximum gray level value 4): Non- 
parametric estimation (leaveone-out method) with lc-5 

Categones (to)- CWRS CWAD Barley Oats R Y ~  Other 
(fiom) 1 wheat wheat 

C WRS wheat 12302 162 O O 1 026 10 
(n = 13500) (91.1%) 

C1IVA.ü wheat 65 4296 48 2 89 O 
(n = 4500) (95.5%) 

Barley O 80 4405 15 O O 
(n = 4500) (97.9%) 

Oats O O 82 4418 O O 
(n = 4500) (98.2%) 



CLASSIFICATION ACCURACIES USING DIFFERENT MODELS 
WITH 

DIFFERENT NUMBER OF FEATURES 



Table Fla Cornparison of classification accuraeies of bulk samples of cereal grains with 
different number of textuml features, extracted from red color band at 
maximum gray level value 32: Hold out method 

Non-parametric Estimation 

% accuracy - CWRS CWAD Barley Oats R Y ~  Mean 
Features 1 wheat wheat accuracy 

First 5 features 95.6 100.0 100.0 100.0 86.7 96.5 

Fust 1 O features 100.0 100.0 100.0 100.0 100.0 100.0 

First 15 features 100.0 100.0 100.0 100.0 93.3 98.7 

First 20 features 100.0 100.0 93 -3 100.0 86.7 96.0 

Al1 25 features 100.0 100.0 100.0 100.0 100.0 100.0 

Normal Estimation 

First 5 features 97.8 100.0 100.0 100.0 80.0 95.6 

First 10 features 100.0 100.0 93 -3 100.0 100.0 98.7 

Fust 15 features 100.0 100.0 86.7 100.0 93.3 96.0 

First 20 features 100.0 100.0 66.7 100.0 93.3 92.0 

Al1 25 features 100.0 100.0 66.7 100.0 93.3 92.0 



Table Flb Cornparison of classification accuracies of buk samples of cereal grains with 
different number of textural features, extracted from red color band at 
maximum gray Ievel value 32: Leave-one-out method 

Non-parametric Estimation 

% accuracy - CWRS CWAD Bariey Oats R Y ~  Mean 
Features 1 wheat wheat accwacy 

First 5 features 90.7 98.7 100.0 100.0 93.3 96.5 

First 10 features 97.3 100.0 100.0 100.0 100.0 99.5 

First 15 features 98.7 100.0 100.0 100.0 100.0 99.7 

Fùs t  20 features 99.1 100.0 100.0 100.0 100.0 99.8 

Ail 25 i'eatures 99.6 100.0 100.0 100.0 1 00.0 99.9 

Normal Estimation 
-- -- - - - - - -  

Fust 5 features 87.1 100.0 98.7 100.0 92.0 95.6 

First 10 features 98.7 100.0 100.0 100.0 98.7 99.5 

Firstl5features 98.7 100.0 100.0 1 O0 .O 98.7 99.5 

Fust 20 features 100.0 100.0 100.0 1 O0 .O 98.7 99.7 

Al125 features 100.0 100.0 100.0 100.0 100.0 100.0 



Table F2a Comparison of classification accuracies of bulk samples of cereal grains with 
different number of color features: Hold out method 

Non-parametric Estimation 
- - - 

% accuracy - CWRS CWAD Bariey Oats R Y ~  Mean 
Features 1 wheat wheat accuracy 

First 5 features 100.0 100.0 100.0 100.0 100.0 100.0 

First 10 features 100.0 100.0 iO0.0 100.0 100.0 100.0 

First 15 features 100.0 100.0 100.0 100.0 100.0 100.0 

Ail 1 8 features 100.0 100.0 100.0 100.0 100.0 100.0 

Normal Estimation 

First 5 Ièatures 100.0 93.3 93.3 86.7 100.0 94.7 

Fust 10 features 100.0 100.0 80.0 86.7 100.0 93.3 

First 15 features 100.0 93.3 80.0 80.0 100.0 90.7 

-411 18 features 100.0 93 -3 80.0 73.3 100.0 89.3 

Table F2b Comparison of classification accuracies of bulk samples of cereal grains with 
different number of color features: Leave-one-out method 

Non-parametric Estimation 
- - -  -- - - 

% accuracy - CWRS CWAD Bartey Oats R Y ~  Meau 
Features 1 wheat wheat accuracy 

First 5 features 99.6 100.0 100.0 100.0 100.0 99.9 

Firstlofeatures 100.0 100.0 100.0 100.0 100.0 100.0 

First15features 100.0 98.7 100.0 100.0 100.0 99.7 

Al1 18 features 100.0 98.7 100.0 100.0 100.0 99.7 

Normal Estimation 

First 5 features 99.6 96.0 97.3 97.3 100.0 98.0 

Fust 10 features 99.6 98.7 98.7 98.7 100.0 99.1 

First 15 features 99.6 100.0 98.7 98.7 100.0 99.4 

Ail 18 features 99.6 98.7 98.7 98.7 100.0 99.1 



Table F3a Comparison of classification accuracies of individual kernels of cereal grains 
with different num ber of morphological features: Hold out method 

Non-parametric Estimation 

% accuracy - CWRS CWAD Barley Oats R Y ~  Mean 
Features 1 wheat wheat accuracy 

First 5 features 98.9 87.7 95.9 99.9 57.5 88.0 

First 10 features 98.9 93 -7 96.8 99.9 81.6 94.2 

First 15 features 98.8 94.0 97.4 99.9 83.5 94.7 

Al1 23 features 99.0 95 -2 97.3 99.5 82.8 94.8 

Normal Estimation 

First 5 features 98.1 83.1 95.2 99.1 86.7 92.4 

First 10 features 96.1 93 -5 94.4 98.8 86.3 93.8 

First 15 features 95.7 94.0 94.5 98.5 84.3 93.4 

Al1 23 features 95.2 93 -7 93.1 98.3 83 -4 92.8 

Table F3b Comparison of classification accuracies of individual kernels of cereal grains 
with different number of morphological features: Leave-one-out method 

Non-parametric Estimation 

% accuracy - CWRS CWAD Barley Oats R Y ~  Mean 
Features 1 wheat wheat accuracy 

First 5 feanires 99.0 85.0 97.1 100.0 88.1 93.8 

First 10 features 98.9 91.6 97.9 100.0 91 -6 96.0 

First 15 features 99.0 91.5 98.2 99.8 91.2 95.9 

Al1 23 features 99.1 92.1 97.6 99.7 90.9 95.9 

Normal Estimation 
-- - - 

First 5 features 98.5 79.8 98.5 99.2 86.8 92.6 

First 10features 97.6 91.8 98.0 98.8 87.3 94.7 

First 15 features 97.3 91.5 97.1 98.6 85 -6 94.0 

Al1 23 features 96.9 91.7 95.9 98.7 85.8 93.8 



Table F4a Cornparison of chssifiîation accuracies of individual kemels of cereal grains 
with different number of textuml feahires, extracted from green color band at 
malcimum gray Ievel value 8: Hold out method 

- - -- - -  

Non-parametrie Es tirnation 

% accuracy - CWRS CWAD Barley Oats R Y ~  Mean 
Features 1 wheat wheat accurac y 

First 5 features 83 .O 91.9 99.9 i 00.0 54.9 85.9 

Fust 1 O features 84.5 95.9 100.0 100.0 68.9 89.9 

First 1 5 features 85.2 98.2 100.0 100.0 76.3 92.0 

First20features 86-7 97.8 100.0 100.0 76.6 92.2 

Al1 25 features 87-6 98.1 100.0 100.0 74.1 92.0 

Normal Estimation 

Fust 5 features 84.0 91.3 99.9 99.9 58.8 86.8 

First 10features 84.2 96.3 100.0 100.0 74.4 91.0 

First 15 features 84.2 95.8 100.0 100.0 73.3 90.7 

First 20 features 82.0 93.6 100.0 100.0 80.1 91.1 

Al1 25 features 84.5 94.6 100.0 100.0 81.3 92.1 



Table F4b Comparison of classification accuracies of individual kemeis of cereal grains 
with different number of textural features, extracted from green color band at 
maximum gray level value 8: Leave-one-out method 

Non-parametric Estimation 

- - -- - - - - - - - - - p- -- 

First 5 features 80.3 91.2 100.0 99.3 67.7 87.7 

FirstIOfeatures 84.6 93 -8 100.0 99.8 75.9 90.8 

First 15 features 87.0 95.7 100.0 100.0 81.8 92.9 

First 20 featues 87.7 96.6 100.0 100.0 8 1.4 93.1 

All25features 88.2 96 -4 100.0 100.0 79.9 92.9 

Normal Estimation 
- - - -- . 

First 5 features 79.1 87.2 99.9 99.4 69.6 87.1 

First 10 features 80.2 92.9 100.0 99.9 83.2 91.2 

First 15 features 80.5 92.2 100.0 100.0 86.8 91.9 

First 20 Ceatures 76.7 90.8 100.0 99.7 89.4 91.3 

Ail 25 features 79.0 91.4 100.0 99.8 89.2 91.9 



Table F5a Comparison of classification accuracies of individual kernels of cereal grains 
with different number of color features: Hold out method 

Non-parametric Estimation 

% accuracy - CWRS CWAD Barley Oats R Y ~  Mean 
Features 1 wheat wheat accüraç y 

First 5 features 85.8 85.6 89.7 95.1 93.3 89.9 

First 20 features 94.1 92 -3 93.1 95 -2 92.5 93.4 

First 1 5 features 93 -8 92.7 93 .O 95.3 93.1 93.5 

All18features 92.8 91.9 92.8 94.3 92.3 92.8 

Normal Estimation 

First 5 features 69.7 84.1 92.8 97.3 93.1 87.4 

First 10 features 89.6 94.7 92.5 99.2 95.7 94.3 

First 15 features 87.8 94.6 91.9 97.8 96.4 93 -7 

Al1 18 features 87.9 95 .O 92.1 97.5 96.6 93.8 

Table FSb Comparison of classification accuracies of individual kemels of cereal grains 
with different number of color features: Leave-one-out method 

-- - -- 

Non-parametric Estimation 

% accuracy - CWRS CWAD Barley Oats R Y ~  Mean 
Features 1 wheat wheat accuracy 

First 5 features 92.9 90.0 93.3 96.4 91.4 92.8 

Firstlofeatures 95.7 94.4 94.2 97.6 92.5 94.9 

First 1 5 features 95.5 94.4 94.4 97.6 92.4 94.9 

AIl18features 94.4 94.3 93.7 97.5 91 -9 94.4 

Normal Estimation 

First 5 features 87.4 85.3 91.7 95 -9 91.6 90.4 

First 10 features 80.7 93.1 89.4 97.6 94.2 91 .O 

First 15 features 83.2 92.6 89.1 97.6 93.8 91.3 

AIl18features 83.8 92.6 89.4 97.5 93.6 9 1.4 



Table F6a Cornparison of classification accuracies of individual kernels of cereal grains 
with difierent number of morphological and textural features (extracted from 
green color at maximum gray level value 8): Hold out method 

Non-parametric Estimation 

Fust 5 features 

F i s t  10 features 

First 15 features 

First 20 features 

First 25 features 

First 30 features 

First 35 features 

First 40 features 

Ail 48 features 

Normal Estimation 

First 5 features 

First 10 features 

First 15 features 

First 20 features 

First 25 features 

First 30 features 

First 35 features 

First 40 features 

Al1 48 features 



Table F6b Cornparison of classification accuircies of individual kernels of cereal grains 
with dserent number of morphological and textunl features (extracted from 
green color at maximum gray level value 8): Leave-one-out method 

Non-parametric Estimation 

% accuracy - CWRS CWAD Barley Oats R Y ~  Mean 
Features 1 wheat wheat accurac y 

First 5 features 

First 10 features 

First 15 features 

First 20 features 

First 25 features 

First 30 features 

First 3 5 features 

First 40 features 

Al1 48 features 

Normal Estimation 

First 5 features 

First 10 features 

First 15 features 

First 20 features 

First 25 features 

First 30 feanires 

First 35 features 

First 40 features 

A11 48 features 



Table F7a Cornparison of classification accuracies of individual kernels of cereal grains 
with different number of morphological and color features: Hold out method 

Non-parametric Estimation 

% accuracy - CWRS CWAD Barley Oats R Y ~  Mean 
Features 1 wheat wheat accurac y 

First 5 features 98.9 87.7 95.9 99.9 57.5 88.0 

First IO features 99.8 99.3 98.7 100.0 98.6 92.3 

First 15 features 99.7 99.7 98.9 99.9 98 -9 99.4 

First 20 features 99.6 99.7 99.1 99.9 99.1 99.5 

First 25 features 99.6 99.8 99.4 99.9 99.1 99.6 

First 30 features 99.5 99.8 99.3 99.9 98.8 99.5 

First 35 features 99.5 99.9 99.3 99.9 98 -6 99.4 

-- - 

Normal Estimation 

First 5 features 

First 10 features 

First 15 features 

First 20 features 

First 25 features 

First 30 features 

First 35 features 

Al1 4 1 features 



Table F7b Cornparison of classification accuracies of individual kernels of cereal grains 
with different number of morphological and color features: Leave-one-out 
method 

Non-parametric Estimation 

% accuracy - CWRS CWAD BarIey Oats R Y ~  Mean 
Features 1 wheat wheat accuracy 

First 5 features 

First 1 0 features 

Fust 1 5 features 

First 20 features 

First 25 features 

First 30 features 

First 35 features 

Al1 41 features 

Normal Estimation 

First 5 features 

First 10 features 

First 1 5 features 

First 20 features 

First 25 features 

First 30 features 

First 35 features 

Al1 4 1 features 



Table F8a Cornparison of classification accuracies of individual kernels of cereal grains 
with different number of color and textural(extracted from green color at 
maximum gray level value 8) features: Hold out method 

Non-parametric Estimation 

% accuracy - CWRS CWAD Barley Oats R Y ~  Mean 
Features 1 wheat wheat acc urac y 

First 5 features 

First 10 features 

First 15 features 

First 20 features 

First 25 features 

First 30 features 

Fust 35 features 

Al1 43 features 
- - - - -  -- 

Normal Estimation 

Fust 5 features 

First 10 features 

First 15 features 

First 20 features 

First 25 features 

First 30 features 

First 35 features 

Al1 43 features 



Table F8b Comparison of classi.tication accuracies of individual kernels of cereal grains 
with different number of color and textural (extracted from green color at 
maximum gray level value 8) features: Leave-one-out method 

Non-parametric Estimation 

% accuracy - CWRS CWAD Barley Oaîs R Y ~  Mean 
Features 1 wheat wheat accurac y 

First 5 features 

First 10 features 

First 15 features 

First 20 features 

First 25 features 

First 30 features 

First 35 features 

Al1 43 features 

Normal Estimation 

F h t  5 feahues 

Fust 10 features 

~ i r s t  ' 15 features 

First 20 features 

First 25 features 

First 3 0 features 

Fust 3 5 features 

Ail 43 features 



Table F9a Cornparison of classification accuracies of individual kernels of cereal grains 
with dinerent aum ber of morphological, color, and textuml features (ex trac ted 
from green color at maximum gray level value 8): Hold out method 

Non-parametric Estimation 
- - - - - - - - -- - -. . - 

% accuracy - CWRS CWAD Barley Oats R Y ~  Mean 
Features I wheat wheat accuracy 

First 5 features 

First 10 features 

First 15 features 

First 20 features 

First 25 features 

First 30 features 

First 35 features 

First 30 features 

First 50 features 

Al1 66 features 

Normal Estimation 

First 5 features 

First 1 O features 

First 15 features 

First 20 features 

First 25 features 

First 30 features 

First 35 features 

First 40 features 

First 50 features 

Ail 66 features 



Table F9b Cornparison of classification accuracies of individual kernels of cereal grains 
with difllerent number of morphological, color, and textural features (extracted 
from green color at maximum gray level value 8): Leave-one-out method 

- - - -- - pp 

Non-parametric Estimation 

% accuracy - CWRS CWAD Barley Oats R Y ~  Mean 
Features 1 wheat wheat accurac y 

first 5 features 

First 10 features 

First 15 katUres 

Fust 20 features 

First 25 features 

First 30 features 

First 35 features 

First 40 features 

Zrst 50 features 

Al1 66 features 
- .  - - -- -p -- 

Normal Estimation 
- - - - - . . - 

First 5 features 

Fust 10 features 

First 1 5 features 

First 20 features 

First 25 features 

Fust 30 features 

First 3 5 features 

First 40 features 

First 50 features 

Al1 66 features 




