NOTE TO USERS

This reproduction is the best copy available

UMI






MULTIFRACTAL CHARACTERIZATION OF
ELECTROMYOGRAM SIGNALS

By

Tina Ehtiati

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements
For the Degree of

Master of Science

Department of Electrical and Computer Engineering
University of Manitoba
Winnipeg, Manitoba, Canada

Thesis Advisor: W. Kinsner, Ph. D., P. Eng.

January, 1999



i+l

National Library
of Canada du Canada
Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliotheque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre rélérence

Qur file Notre réference

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’ auteur conserve la propréte du
droit d’auteur qui proteége cette these.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-41697-6

Canada



THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

kkekhk

COPYRIGHT PERMISSION PAGE

MULTIFRACTAL CHARACTERIZATION OF ELECTROMYOGRAM SIGNALS

BY

TINA EHTIATI

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University
of Manitoba in partial fulfillment of the requirements of the degree
of

MASTER OF SCIENCE

TINA EHTIATI ©1999

Permission has been granted to the Library of The University of Manitoba to lend or sell
copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis and
to lend or sell copies of the film, and to Dissertations Abstracts International to publish an
abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor extensive
extracts from it may be printed or otherwise reproduced without the author's written
permission.



400 1] ) T 1] ¥
300+ ]
200 T
100} -1
g i |k
! i B “: 1§ !
0 ! f, 1.‘ R ._' i
v : i
|
100} -
=200 L 1 1 . — 1
0 500 1000 1500 2000 2500 3000
original EMG signal
2.5 T
$0000600000000,., ' ' '
oO
(o]
o
2r ]
o
[o] (@] fo) o o
£ o ) ]
215 %o abduction
s e}
[+
& (o]
= o]
© o
ks o Cq
5 ¢k Oo %000 o 4
= O C0o0o0o000oO0®
O fiextion
osf oo i
0000
(eXeNeNoNoNoNoXoXo!
$00000000, 000
OOOO extension
o (o]
fe) 1 L _;_oOoCCnnnn'\mnnnmnnnm_oMAf
-20 -15 -10 -5 0 s 10 15 20

Characterization of EMG signal accerding to function of the muscle



ABSTRACT

In this thesis, we present an approach to the characterization and feature extraction
of the electromyogram (EMG) signals. This approach is based upon the chaotic behaviour
of the EMG signals and the existence of the corresponding strange attractors with low
embedding dimensions. The multifractal dimensions of the strange attractors underlying
this chaotic behaviour provide alternative features for analyzing the EMG signals. The
multifractal dimensions describe how the entropy of these strange attractors changes as
the hypervolume scales used for calculating the entropy vary.

There are several considerations associated with the reconstruction of the strange
attractors and the calculation of the multifractal dimensions from a single variable time
series. We discuss how the length and the sampling rate of the time series effect the
convergence of the multifractal dimensions. We also discuss the effect of high noise levels
in increasing the minimum embedding dimension required for the reconstruction of the
strange attractors.

The EMG signals under study have been obtained from the anterior, posterior, and
middle portions of the deltoid and upper trapezius during isometric contractions, using
surface electrodes. The mutlifractal dimensions of these EMG signals are between 0.5 to
1.5. The experimental results show that the positive moment orders of the multifractal
dimensions of the EMG signals can be used for discriminating among three functions of
deltoid, i.e. abduction, extension, and flexion. The multifractal dimensions of the EMG of

the muscle as a prime mover, are 0.3 larger on average, comparing to the muscle as

synergist.
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Chapter I: Introduction

CHAPTERI

INTRODUCTION

1.1 Motivation

Surface electromyography provides a non-invasive access to the physiological
processes that cause a muscle to generate force and movement. Since 1950, researchers
have used the elecromyogram (EMG) signals for various academic and clinical
applications. The EMG signals can be used as indicators of muscle contraction, timing of
muscle performance, force contributions of individual muscles and as a fatigue index, and
are useful in studying both normal and abnormal muscle functions.

There are many clinical applications of electromyography. For example Wolf et al.
[WoNK82] used EMG biofeedback techniques in the assessment and treatment of lower
back pain. Budzynski et a/.[BSAM73] used EMG feedback technique to treat muscle
contraction headaches. Lewit [Lewi91] detected the occurrence of upper quarter myalgias
and the reasons of their occurrence using EMG signals. More recently electromyography
has also been used in the diagnosis and treatment of neurological disorders [HGRG96].
For example, studies of Stocchi et al. [SCIM97] and Chandirama et al. [ChPF97] shows
the possibility of detection and evaluation of Parkinson’s disease and multiple system
atrophy using EMG signals. Michelangelo et al. [MiCR98] have studied the relation of
early development of fatigue in hand muscles of patients with chronic heart failure using
electromyography.

One of the most interesting applications of the electromyography is to use the
EMG signals in order to activate an artificial limb. The desired scheme is to connect the

control system of the artificial limb directly to the remaining portions of the nervous
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system of the amputated limb [GrSZ85].

The field of surface electromyography suffers from some limitations which are
inherent in the acquisition instruments and analysis methods used for studying EMG
signals. The majority of the studies of the EMG signals are based upon the analysis of
stochastic temporal characteristics and frequency domain power spectrum characteristics
of the EMG signals.

The recent experimental results have shown that EMG signals are not white
Gaussian noise but that they exhibit a chaotic behaviour and can be characterized as a
chaotic phenomenon. This discovery opens up new possibilities in the study and
quantitative analysis of EMG signals. Anmuth ef al. [AnGM94] calculated the correlation
dimension of electromyographic signals recorded from surface electrodes during
isometric contractions. Their study has shown that the fractal correlation dimension is
linearly correlated with muscle activation. Gilter and Czerniecki [GiCz95] have st;1died
the correlation dimension of the electromyogram with varying force. They show that the
correlation dimension of the EMG signals is highly correlated with force. Erfanian et al.
[ErCH97] have studied the relation of the chaotic activity of electrically stimulated
paralysed muscle and the relation of the correlation dimension with the development of
fatigue in these muscles.

In this thesis we study the chaotic characteristics of the EMG signals and examine
the capability of the multifractal measures for characterizing EMG signals. The chaotic
behaviour of the EMG signals is associated with the existence of strange attractors with
low embedding dimensions. These strange attractors bound the temporal trajectories of the

EMG in the phase spaces reconstructed from these single variable signals. The




Chapter I: Introduction

multifractal dimensions describe how the entropy of these strange attractors changes as
the hypervolume scales used for calculating the entropy vary. Such multifractal techniques
(Kins94] have proven to be successful in the examination of a wide range of noise-like but
chaotic signals such as radio signals and speech signals [Shaw97][Grie96][Lang96].
1.2 Thesis Statement and Objectives
The objective of this thesis is to show the existence of strange attractors with low
embedding dimensions in the phase spaces reconstructed from single variable temporal
EMG signals, and to calculate the multifractal dimensions of these strange attractors.
Established methods such as generalized correlation integral {PaSc87] [AtSV88]
[GrPr83a][GrPr83b], delay reconstruction of strange attractors [PCFS80], and minimum
mutual information criterion [FrSw80], are used for the calculation of the multifractal
dimension of the EMG signals.

The signals used in this thesis are recorded fr;)m isometric contractions of deltoid
and trapezius muscles in three functionalities of shoulder abduction, extension, and
flexion. We will determine how the multifractal dimensions can be used to quantify and
capture the essence of the complexity of the motor unit recruitment patterns in the three
different functions of deltoid and trapezius.

1.3 Thesis Organization

This thesis is organized in seven chapters. Chapter 2 gives a brief review on the
anatomical and physiological aspects of the muscle contraction and EMG sources.
Chapter 3 provides a general introduction to fractals, chaos, strange attractors,
morphological and complexity measures, and multifractals. Chapter 4 contains the

theoretical basis for reconstructing strange attractors from a single variable time series and
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the calculation of the multifractal dimensions from the reconstructed attractor. In Chapter
5, we describe the experiments for acquiring and analyzing the EMG signals. These
experiments deal with the problem of discriminating the EMG signals of one muscle
according to the function of the muscle. In this chapter we will describe the physical set up
of the signal acquisition, and the signal characterization and classification. In Chapter 6,
the results of the characterization and classification are presented and we discuss the
usefulness of the multifractal characterization of the EMG signals for the proposed

experiment. Conclusions, recommendations and contributions are presented in Chapter 7.
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CHAPTER II

BACKGROUND ON EMG AND MUSCLE CONTRACTION

The objective of this chapter is to give a brief study of muscle function. This
provides a background for discussing the physiological and anatomical factors involved in
the design of experiments and also the interpretation of the results of the experiments in
the future chapters.

In this chapter we discuss the important factors influencing the shape of
Electromyographic (EMG) signals recorded from a contracting muscle. The most
important of these factors is the number of the recruited motor units and their firing rate.
We explain how these factors vary in a sustained contraction. We also discuss how the
placement of the electrodes in the surface recordings influence the shape of the EMG
signals.

We finish this chapter by reviewing the known patterns of recruitment of the motor
units in different muscle functionalities. This section provides the background for

justification of the objective of the experiments presented in chapter V.

2.1 Overview

Muscles are the primary organ of the body, making 70% to 85% of the body
weight {CrKa98]. The single smallest controllable muscular unit is called a motor unit.
The motor unit consists of a single alpha-motoneuron, its neuromuscular junction and the
muscle fibres it innervates. Alpha-motoneurons are located in the anterior horn of the
spinal cord and through their relatively large diameter axon and terminal branches

innervate a group of muscle fibres. The termination of the axon at the muscle fibre is
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known as the endplate region or the neuromuscular junction and is usually located near the
middle of muscle fibres. A muscle fibre is a very fine thread, with a length between few
millimetres to 30 cm and a diameter of 10 to 100 pm [BaDe85].

There are two major sensory organs found within the muscle, the muscle spindle
and the Golgi tendon organ. The muscle spindles which are stretch receptors are scattered
among the muscle fibres in which they are hosted and they inform the nervous system
about the instantaneous length and velocity of contraction of the muscle fibres. The spin-
dle activity is at spinal level and is not projected to the ccrtex and thus not consciously
perceived. The Golgi tendon organ is found in the muscle-tendon junctions and is sensi-
tive to the tension placed on tendons and the effort given out by the muscle. The output of
the Golgi tendon organ terminates at the lower centres of the brain and does not reach the
cortex. Another source of information is found in joint receptors which are found in each
joint and inform the nervous system about the joint angle and position.

In 1950, Hunt and Kuffer first observed that we have two sensorimotor systems,
the alpha and gamma motor systems, each having their own muscles, motoneurons and
principles of organization [CrKa98]. The gamma motor system primarily emerges from
the lower centres of the brain while the alpha motor system originates from the cortex.
The gamma motor system carries out the reflexes that have been selected and passed
through generations and are fixed. The alpha motor system provides the opportunity to
adapt to the surroundings.

2.2 Source of EMG Signals
When a nerve action potential travels down the axon, it reaches the neuromuscular

synapse and releases acetylcholine, which causes the breakdown of the ionic barrier of the
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muscle membrane and sends the signal throughout the muscle fibres via the transverse
tubules which causes the muscle to contract. The movement of the ions during the depo-
larization generates an electromagnetic field which can be detected by electrodes. The var-
iation of the voltage (potential) detected by the electrodes with respect to ground during
the depolarization is called an action potential [Guyt71].

An impulse running through a motoneuron causes all the muscle fibres of the
motor unit to contract almost simultaneously. A fixed delay is introduced between the
activation time of the fibres due to the different length and diameter of the individual axon
branches innervating them. The action potential from the muscle fibres of a motor unit
separated spatially and temporally summate to form a motor unit action potential. The
extracellular recording of the depolarization and repolarization running through the
muscle fibres provide the basis for electromyography (EMG). With surface electrodes a
population of motor units are actually recorded rather than a single motor unit, since the
motor units tend to overlap their fibre territories spatially [BaDe8S5].

The amplitude of detected action potentials is dependent on the diameter of the
muscle fibre, the distance between the active muscle fibre and the detection site, and the
filtering properties of the electrode. The duration of the action potentials is inversely
related to the conduction velocity of the muscle fibre and the nerve branch [BaDe85]. The
time delay of the action potentials of different muscle fibres detected by an electrode is
also a function of the differences in distances of the muscle fibre with respect to the
electrode site. The shape and amplitude of the motor unit action potential is dependent on
the geometric arrangement of the active muscle fibres with respect to the detection point.

Since the muscle fibres of different motor units are scattered in a semi-random fashion

- 7.
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throughout the muscle, the information recorded by a surface electrode does not relate to a
specific motor unit.

The time domain and frequency domain characteristics of the EMG signal can be
used as a means for studying the muscle contractions. Several parameters of the EMG
signal such as the root mean square (RMS) of the amplitude, median power frequency,
mean power frequency, peak frequency are the ones often used for studying the behaviour
of the EMG signal
2.3 Muscle Contraction

Each muscle contains muscle fibres. The individual fibres are broken down to
myofibrils. Each myofibril consists of aggregates of myosin and actin filaments. The actin
filament is a thin fiber with two negatively charged molecules that spiral around each
other. The myosin filament, which is thicker and also negatively charged, is made up of
molecules with globular heads. In the resting state the actin and myosin filaments lie next
to each other, repelled by their negative charge. In 1950, Huxley proposed a model
describing the act of contraction. The nerve action potential causes a release of
acetylcholine at the neuromuscular junction. This sends a charge through the transverse
tubules which causes a release of calcium into the space where the myosin and actin fibres
are located. The calcium, having a strong positive charge, bonds with one of the proteins
making up the actin filament. This causes a change in configuration of the actin filament
which allows binding of myosin with actin. The movement of the myosin crossbridges
that link actin and myosin, provide the force that pushes the thin actin filaments along the
thick myosin filament. Each myosin head has two binding sites on it: one for an ATP

molecule and one that binds to actin. Myosin is a motor protein that converts the chemical
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bond energy of ATP into the mechanical energy of motion. The energy released by ATP

changes the angle between the head of the myosin molecule and the long axis of the
myosin filament. This rotation of the myosin head on its flexible neck creates the power
stroke that is the basis for muscle contraction. During the power stroke, the movement of
the myosin head, pushes the actin filaments to slide along the myosin filament. At the end
of a power stroke, the myosin releases the actin, swings back and binds to a new actin
molecule, ready to start another contractile cycle. This process repeats many times as a
muscle fibre contracts [SiOG98].

There is an element of randomness in this phenomenon due to the random
discharge of acetylcholine packets at the neuromuscular junction which ultimately
controls the release of calcium within the muscle cell [BaDe85].

To sustain a contraction the motor unit must be repeatedly activated. Successive
muscle twitches overlap in time, meaning that the first muscle twitch is not completely
over by the time the second one begins, therefore since the muscle is already in a partially
contracted state when the second twitch begins, the degree of muscle shortening is slightly
greater than before. Consequently the summation of successive contractions become
greater and greater until an optimum frequency is reached [Guyt71].

Furthermore the overlap of adjacent motor units also allows the separate motor
units to contract in support of each other rather than act individually. The force of
contraction increases progressively as the number of contracting motor units increases.
2.4 Muscle Functionality

Generally, it has been agreed that muscles controlling fine movements have the

smallest number of muscle fibres per motor unit while large coarse-acting muscles have a
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larger number of muscle fibres served by one axon [Guyt71]. This innervation ratio is not
fixed for all the motor units in a single muscle. Within a muscle there are smaller motor
units which are excited earlier during a contraction, than larger motor units which are
activated at higher force levels [Mcco96]. The longer the muscle the more and the faster it
can shorten and the thicker the muscle the more force it can develop.

The muscle fibres can be divided into the following three broad categories.

1) Type I: Slow-twitch fibres take more than 35 milliseconds to complete a
depolarization/repolarization cycle. They are dark red in appearance. These fibres twitch
less than 25 times per second, and are fatigue resistant.

2) Type II a: Fast-twitch, fatigue resistant fibres which are reddish and have a slow
rate of fatigue due to their aerobic capacity. They are classified as Type II a fast-twitch
fibres.

3) Type II b: Fast-twitch, fatiguable fibres take less than 35 milliseconds to twitch
and are whitish in appearance. These fibres are not resistant to fatigue and have a high
anaerobic capacity. These are categorized as Type II b fast-twitch fibres.

Small slow nerve fibres activate a slow-twitch muscle while large fast nerve fibres
activate fast-twitch muscles. Most muscles contain a mixture of fast and slow twitch fibres
[CrKa98].

One muscle can do work in different ways. One way of classifying the muscle
activity is according to the changes of the length of the muscle. An isometric contraction
is one during which the length of the contracting muscle remains constant. Anisometric is
one during which the length of the contracting muscle may vary [BaDe85].

Another classification of the muscle activity is according to the contribution of the
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muscle in a certain movement. Agonist muscles are the prime movers or the ones which
initiate the contraction, synergist or helper muscles are ones which their activity provides
an additive contribution. Antagonist muscle is one which actively provides a negative con-
tribution to a particular contraction [CrKa98].

2.5 Patterns of Recruitment

Force can be generated by increasing the number of new motor units or by
increasing the firing rate of the motor units. It is a common belief that at the beginning of
a contraction, recruitment of new motor units is a dominant factor with the small motor
units being recruited first while the increase of firing rate plays a secondary role. However,
for force levels ranging from 30% to 75% of maximum voluntary contraction, the
dominant factor is an increase in firing rate. The firing rate of motor units is also muscle
dependent. In general the smaller the muscle the higher the firing rate {[BaDe85].

During a constant force contraction, motor unit rotation takes place, that is the
newly recruited motor units replace previously active ones [BaDe85]. If the contraction of
a muscle is sustained with enough force for a long time, the conduction velocities of the
action potentials along the muscle fibres begin to slow down and the muscles begin to
twitch less frequently, which results a reduction of the median frequency of the muscle
energy. The decrease in the firing rate of the motor units is more evident in fast-twitch
fibres than in slow-twitch fibres [BaDe85].

The order of recruitment of the motor units during a contraction is reported to be a
function of motoneuron size, size of motor units, fibre type, size of muscle and also the
functional role of the muscles. Motor units with smaller axons are recruited first

[FDWK?73]. In a steady contraction, smaller motor units are recruited before the large
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ones [Mcco96]. The Type I fibres are recruited first followed by Type II fibres. In sudden

movements Type II fibres are recruited first [Mcco96]. Small muscles recruit all their
motor units below 50% maximum voluntary contraction and larger muscles recruit motor
units throughout the full range of voluntary force [BaDe85]. The order of motor unit
recruitment is also a function of the functional role of the muscle. McComas cited Gilen
and Denier Van Der Gon to state that “in the biceps the threshold of a motor unit depends
on whether the muscle is being used to flex the elbow, supinate the forearm, or externally
rotate humerus” [GiDe90][Mcco96].

The nervous system in fact controls pools of motoneurons rather than individual
motoneurons, this is known as common drive. Further explanation of this process can be
found in [BaDe85].

2.6 Summary

In this chapter, we gave an overview of the mechanism of muscle contraction and
the important factors involved and we discussed the sources of the EMG signals. The time
domain and frequency domain characteristics of the EMG signal are often used as a mean
for studying the muscle contractions. Since we want to investigate the possibility of using
the multifractal dimensions of the EMG signal as analysis criteria in this thesis the next

chapter will provide a background on fractals, chaos and strange attractors.
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CHAPTER III
BACKGROUND ON FRACTAL DIMENSIONS, CHAOS AND
STRANGE ATTRACTORS

The objective of this chapter is to provide the reader with an introduction to fractal
geometry and chaotic dynamics. Fractal geometry, which was popularized by Mandelbrot
in 1960, provides us with a tool for describing objects which are difficult to describe by
Euclidean geometry, such as trees, rivers, coastlines, and lightning [Kins94]. Chaotic
dynamics are used for the study of the behaviour of nonlinear dynamic systems such as
growth and decay of populations, oscillatory output of a nonlinear electrical circuit, and
thermal convection . Under certain conditions, these deterministic systems can manifest
an unpredictable and complex behaviour which can be confused with randomness. The
theory of chaos provides a tool for differentiating between noise and the chaotic behaviour
of deterministic systems.

In this chapter, we first give an introduction to fractal sets and their properties and
discuss the basic concepts of Euclidean, topological, and morphological dimensions. The
second section deals with chaotic strange attractors and how these systems are related with
the concept of fractality and fractal dimensions. This discussion is followed by the
presentation of several nonlinear dynamic systems with chaotic behaviour. In the last

section, multifractals and the generalized Rényi dimensions are introduced.

3.1 Morphological Dimensions and Fractals

3.1.1 Euclidean and Topological Dimensicns

The Euclidean dimension, D, is simply the number of coordinates required to

- 13 -



Chapter HI: Fractals and Chaos

specify an object spatially.
Y Y
Z
» X
X
Line segment Smooth curvein  Smooth curve in
the plane the space
Dp=1 Dp =2 Dp =3
D, _ Dy=1 D=1

Fig. 3.1. The topological dimension of an object does not change under

homeomorphic transformations.

The topological dimension on the other hand has its roots in a branch of
mathematics known as topology which deals with those features of objects that are more
qualitative and which do not change under proper transformations (homeomorphisms).
Homeomorphisms are functions which are one to one, onto, continuous and also have a
continuous inverse function. A hole in an object remains a hole regardless of proper
transformations such as stretching or twisting. The topological dimension derives from
the ability to cover the object with discs of small radius. A line segment may be covered
using many discs intersecting many times with each other. However, it is possible to refine
the covering using discs with only a single intersection between adjacent pairs of discs.
When the line is transformed by a homeomorphism, one can still find discs sufficiently
small to cover it with just having intersections at adjacent pairs of discs. If we try to cover
a two dimensional surface with spheres of small radius, we cannot have a complete

covering with only intersecting the pairs of adjacent spheres. A complete covering
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requires groups of three spheres intersecting with one another. The covering of an object

by elements of small radius requires intersections between a minimum of D+ 1 groups
of elements, where D is the topological dimension of the object. The topological

dimension, D 1, of an object does not change under proper transformations [Addi97].

3.1.2 Strictly Self-Similar Objects and the Self-Similarity Dimension

A strictly self-similar object is an object which is constructed from exactly self-
similar segments, under various degrees of magnification. That is to say each small part
replicates the whole structure exactly.

The Cantor set [Cant83] is one of the most frequently quoted self-similar objects
along with the Koch curve [Koch04] and the Mandelbrot set [Mand80]. The Cantor set
consists of an infinite set of points on a unit interval, but it is not a continuous one
dimensional line. Maybe the best way to describe a Cantor set is to explain the way it is
constructed. One can generate the Cantor set through an iterative process starting from an
initiator. The initiator of a Cantor set is a straight line. The generator is an algorithm
describing the transformation from the initiator to the largest scale object. In the case of
the Cantor set, the initiator is transformed to three line segments with equal lengths and
then the middle segment is eliminated as shown in step 1 of Fig. 3.2. The second step is to
begin from the results of the first step, and apply the generator to each of the remaining
segments of step 1 [Kins97]. If this process is iterated infintely, what is left is a collection
of infinitely small line segments whose individual and combined lengths approach zero.
This set of “points”, or infinite small line segments, is called the Cantor set or Cantor dust.

The process of constructing a Cantor set is illustrated in Fig. 3.2 for the first three steps.
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Initiator

Step 1

Step 2 —_— —_ —_ _

Step 3

Fig. 3.2. Construction of Cantor set, the first three steps.

Variations of the Cantor set can be constructed by changing the remaining pieces
in the process or choosing different lengths for the remaining pieces, but still the same
object with a complex structure is produced. If we zoom in any section of the Cantor set
we find a structure which resembles the whole object.

The Euclidean dimension of the Cantor set is obviously one as only one coordinate
direction is required to specify all the points in the set. It can also be seen that it is
possible to find single, non-intersecting discs of smaller and smaller radius to cover all the
sub-elements thus the topological dimension is zero. The self-similar structure of the
Cantor set and other self-similar objects motivated the introduction of the self-similarity
dimension. The concept of self-similarity dimension is associated closely with the scaling
properties of the object.

Consider a line, surface and a cube of length L,area A4, and volume ¥, all equal

to unity. If we divide the line to N smaller self-similar segments, each of length & then

L=N5=1 G.1)
If we divide the surface to N self-similar segments each with an area of 82 then
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A=NZ =1 (.2)

And finally applying the same logic to the unit volume we have
V= N83 =1 (3.3)

The exponent of 8 at each case is a measure of the dimension of the object. In gen-
eral, if the object is made of N self-similar, non-intersecting segments where each can be

covered exactly by a hypercube of side 3, then the self-similarity dimension, Dy, is

defined as

N T =1 (3.4)
where the hypercube has the same Euclidean dimension as the object [Mand83]. These
hypercubes are also referred to as vels (volume elements) as proposed by Kinsner

[Kins97]. N and § are said to have a power law relationship. Taking logarithms of both

sides gives
~ _log (V) 35
S log(1/d) 3-5)

Applying this formula to the Cantor set constructed before, and observing that the

left-hand third of the set contains an identical copy of the set, and so does the right-hand
side third, for § = 1/3 the fractal contains N = 2 self-similar segments. So according

to the equation above

- log (2) _ log(2) _
S log(l/(1/3)) log(3) 0.6309 (3.6)

The same D S results for self-similar segments of sized = 1/9 or & = 1/27 or any

§ = 173" with positive nonzero integer 7.
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3.1.3 Randomly Self-Similar Objects

The Cantor set is an example of a strictly self-similar fractal, that is the smaller
segments of the object contain exact copies of the whole structure, but there is another
group of fractals known as statistically self-similar fractals or random fractals. This means
the smaller segments have the same statistical properties of the bigger structure [Mand83].

An element of randomness can be introduced to the structure of Cantor set. For
example if in each step, instead of always deleting a fixed portion of the line segments, we
eliminate a section which is randomly chosen among the three possibilities, we will obtain
a Cantor set which is quite irregular in comparison to the one constructed before but it has
the same rich structure. An example of the random construction of a Cantor set is

illustrated in Fig. 3.3.

Initiator
Step 1
Step 2
Step 3 — . e e -

Fig. 3.3. The first three possible steps in random construction of a Cantor
set.

The self-similarity dimension is not useful in the identification of random fractals
since it depends on identifying the exactly similar segments of different scales. The

concepts of Hausdorff and box-counting dimensions are used to classify random fractals.
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3.1.4 Box~Counting Dimension
To examine an object for its box-counting dimension, the object is covered with

hypercubes or “elements” of side length §. The Euclidean dimension of the elements can

be larger than or equal to the Euclidean dimension of the fractal object. If N is the
minimum number of elements which are required for a complete covering, then the box-

counting dimension is defined as

_ log (N) —log (V)
Dy log (1/38) (3.7

where ¥ is the hypervolume of the elements with side length § [Kins97]. We can
rearrange the equation to the form

log (N) = Dglog (1/8) +log (V) (3.8)
This can be regarded as an equation for a line with log (1/8) as x-variable and log (&)

as y-variable, then the gradient of the line, D, is the box-counting dimension.

Log(N*

—
Log(1/3)

Fig. 3.3. Estimation of box-counting dimension of experimental data.
Gradient of the line is the box-counting dimension.
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Having several pairs of the x-y coordinates of this line, D g can be estimated by a linear

regression of these points.
3.1.5 Hausdorff Dimension

The calculation of the Hausdorff dimension of an object also deals with the com-
plete covering of the object, but this time the dimension of the object is estimated by find-
ing the proper dimension of the hypercubes which give an exact measurement of the
object.

If we try to measure the length of a curved line by covering the curve with ele-

ments of side length § and counting the number of elements needed for a complete cover-

ing, we get an approximation of

L = N§' (3.9)

m

where N is the number of the elements and Lm tends to the true length L only when §

tends to zero. The important observation is that this result is valid only when the Eucli-

dean dimension of the measuring element and the object are the same. Now generalizing
this concept, if N hypercubes of side length § are required to cover the object, the approx-
imate hypervolume of the object is given as

D
v =nN§ 2 (3.10)

m

For a specific choice of D, when § tends to zero, the measured hypervolume of

the object tends to the actual value. If the chosen exponent is larger than that specific
choice then the measured hypervolume tends to infinity and if the exponent is smaller than

that the measured hypervolume tends to zero. The Hausdorff dimension of the object is
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that critical exponent where the equation transits from zero limit to infinity limit. Non-
integer exponents are allowed [Mand83].

The formal definition of a fractal was given by Mandelbrot as “a set for which the
Hausdorff dimension strictly exceeds the topological dimension.” [Mand83]. These
objects are called fractals because of their non-integer fractional dimensions.

Since all dimensions mentioned in this chapter deal with the morphology of the
objects, they are all classified as morphological dimensions. Other classes of dimensions

are presented later in this chapter.

3.2 Chaos in Nonlinear Dynamic Systems

The majority of natural phenomena can only be modelled as nonlinear systems.
Since nonlinear systems are very difficult to analyze mathematically, linear systems are
usually preferred for modelling purposes. But only nonlinear systems are capable of
exhibiting a chaotic behaviour which presents a more accurate model of the natural
phenomena. Mathematical research in chaos can be traced to 1890, when Hénri Poincaré
studied the stability of the solar system. He made the first discovery of chaos in the orbital
motion of three celestial bodies which exerted gravitational forces upon each other
[PeJS92]. Edward N. Lorenz encountered chaos in the numerical studies of the set of
differential equations he used for testing weather prediction [Lore63]. David Ruelle and
Floris Takens suggested in 1970 that turbulent flow might be an example of chaos
[RuTa71].

In the following sections we first give the formal topological definitions of chaos

and attractors and then proceed to make the connection between these topological defini-
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tions and the solutions of nonlinear dynamical systems.
3.2.1 Chaos and Attractors in Topology

In this section, we give a formal definition of a chaotic behaviour of a transforma-
tion f:J — J. We also discuss the topological properties required by a bounded subset of

J to be a strange attractor of a chaotic transformation f.
In order to present the definitions of chaos and attractors clearly, we need to give
several background definitions. The objective of this section is to make a clear and unified

definition of concepts such as sensitivity to initial conditions and denseness of sets used in
this thesis. f:J— J is a function in all the definitions.

Definition 1 : / : J — J is said to be topologically transitive if for any pair of open

sets U, V < J there exists £>0 suchthat/k(U) NV#0, where/k(U) means the kth
iteration of subset U under the transformation f.

Definition 2 : f : J — J has sensitive dependence on initial conditions if there

exists € >0 such that, for any x € J and any neighborhood M of x, there exists y € M

and n =0 such that lf"(x) —f"(y)|>8
Definition 3 : Let S« R where S and R are arbitrary equations. A point x€ R is

a limit point of S if there is a sequence of points x, € S converging to x. S is a closed set

if it contains all of its limit points.
Definition 4 : The forward orbit of x is the set of points x, £(x) , £ (x), ... . If f is

a homeomorphism, we define the full orbit of x, as f” (x) , fornatural n. If f(x) =x ,

x is a fixed point of f. The point x is a periodic point of period n, if f” f(x) = x.
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Definition 5 : A subset S of R is dense in R if closure of § ( S and its limit
points) equals to R.

Definition 6 : Let J beaset, f: J— J is said to be chaotic on J if

1. f has sensitive dependence on initial condition;

2. f is topologically transitive; and

3. Periodic points are dense in J .

A chaotic map has three ingredients: unpredictability, indecomposibility, and an
element of regularity. A chaotic system is unpredictable because of the sensitive
dependence on initial conditions. It cannot be broken down or decomposed into two
subsystems which do not interact because of its topological transitivity. The element of
regularity stems from the fact that the periodic points are dense. [Deva89].

Definition 7 : Let f: J— J be a given transformation. A bounded subset 4 of J
is a chaotic and strange attractor for the tranformation f if there exists a set R with the
following properties.

1. Attractor. R is a neighborhood of 4, i.e., for each point x in A4 there is a small
disk centred at x which is contained in R. This implies in particular that 4 isin R. R isa
trapping region, i.e., each orbit started in R remains in R for all iterations. Moreover, the
orbit becomes close to 4 and stays as close to it as we desire. Thus, 4 is an attractor.

2. Sensitivity. Orbits started in R exhibit sensitive dependence on initial

conditions. This makes 4 a chaotic attractor.
3. Fractal. The attractor has a fractal structure and is therefore called a strange

attractor.
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4. Mixing. A cannot be split into two different attractors. There are initial points in

R with orbits that get arbitrarily close to any point of the attractor 4 [PeJS92].

Furthur formal topological discussion on this subject can be found in [Deva89]. It
should be noted that a final definition of an attractor is still not completely established
since the four properties above have been proven to be dependent, for example mixing and
sensitivity are interrelated.

3.2.2 Chaotic Dynamical Systems and their Attractors

To begin with, take a system of N first order ordinary differential equations

dxl
= = Fl(xl,xz, ...,xN) (3.11.2)
dxy
yr = FZ(xl’x2’ ...,xN) (3.11.b)
dx

N _
7 F3(x1,x2, ey N) (3.11.¢)

This is an example of a dynamical system, because the system evolves in time.
Time is a continuous variable in this system. Considering numerical methods such as
Runge-Kutta for numerical solutions to this kind of systems, for any initial state of the
system, the equations can be solved in principle to obtain the future states. The path
followed by the system as it evolves with time is called an orbit or a trajectory. Plotting
the evolution of two or more independent variables of the system versus each other will

give the phase spaces or the state spaces of the system in finite time intervals. Now we
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can ask this question: if we know in complete detail the past history of the process, can we
predict what will happen to it in future? Is it possible to deduce the longterm or the
asymptotic behaviour of the system? The concept of chaos arises with an attempt to
answer this question and it is closely related to the definition of “complete detail” and
precision.

The behaviour of a nonlinear dynamical system can fall into three classes: stable,
unstable, and chaotic [JoSm87]. Stable behaviour means that after some transient period
such systems settle in a periodic or a steady state motion. Unstable behaviour means that
the trajectories are aperiodic and unbounded. But the dissipative systems of differential
equations in two dimensions or more can have bounded trajectories whose behaviour does
not converge to an equilibrium point nor to a periodic or quasiperiodic orbit. They can be
attracted by an object of complicated structure which attracts the neighbour points but has
some inherent instability along it. These attracting sets or strange attractors are not simple
geometrical objects and cannot be well characterized as integer dimensional objects.
Actually the strange attractors are fractals. One system of nonlinear differential equations
can exhibit stable, unstable, or chaotic behaviour depending on the range of the
parameters involved in the definition of the equation and the value of the initial
conditions.

It is important to note that although the trajectories of chaotic dynamical systems
are neither periodic nor quasi-periodic, and the Fourier transform of them yields a broad-
band spectrum, these systems are still deterministic and not stochastic because their
behaviour is governed by a set of equations [Addi97]. However, longterm prediction of

the behaviour of chaotic dynamical systems is impossible because they are extremely
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sensitive to the initial conditions. Exact initial conditions will always create the same
trajectories but the numerical tools used for the calculations do not possess infinite
resolution, therefore, any error in specifying the initial conditions or during the iterative
calculation of the trajectories can give a result which is not be accurate for prediction
purposes [PeJs92].

The study of trajectories of differential equations can be made simple by taking the

intersection of the trajectories with a given hyperspace. Consider the autonomous system

d}, —
7 X(x,) (3.12.a)
d}; =
-d—i Y(x, y) (3'12'b)

and its phase diagram in the x,y plane. Let Z be a curve or a cross section of the plane
with the property that it cuts each phase space path transversely, that is, it is nowhere

tangential to a phase path. Consider a point 4, (x,, y,) on the cross section Z. If we
follow the phase space path through 4 in its direction of flow then it next cuts Z at

A, (x;,y,) . This point is the first return or Poincaré map of the point 4, . If such a point

exists we called it the first return. We can continue in the same fashion obtaining the rest
of the points of the mapping. This reduction of a continuous time system of dimension n
to a discrete time system of dimension » — 1 is called the Poincaré section technique
[JoSm87]. We shall now continue with the examples of some well known attractors to

investigate further the properties of these fractal objects.

3.2.3 The Hénon Attractor

The Hénon attractor is an example of an attractor of a discrete dynamical system.
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This system evolves in time with discrete steps in contrast to a continuous time system.

Both chaotic and periodic solutions can be found for Hénon set of equations depending on
the value of parameters @ and 5. The equations are defined as

xn+l = l_axi-{-yn (3.13.3.)

Yo+1 = bx, (3.13.b)
The trajectories of both variables have been plotted in Figs. 3.4 and 3.5 for two
sets of parameters. The first set whichis @ = 0.9, » = 0.3 leads to a periodic post tran-

sient behaviour. The second set of parameters, a = 1.4, 5 = 0.3, produces a chaotic

behaviour, so the trajectory is aperiodic with a broad-band spectrum. The initial values are

x(0) = y(0) = 0.8 for both experiments.

—O .45 Ye) a0 I=¥s) 80 Too

—1g =0 ao &0 =xe) Too

t
Fig. 3.4. The periodic trajectory of the Hénon attractor (a) The trajectory for the
x-variable (b) The trajectory for the y-variable.
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Fig. 3.5. The chaotic trajectory of the Hénon ;ttractor (a) The trajectory for the
x-variable. (b) The trajectory for the y-variable.

The phase space of the chaotic trajectory is plotted in Fig. 3.7. The periodic phase
space shows that the initial values of the variables converge to two periodic points and
oscillate between them. But the phase space of the chaotic solution reveals a completely
different structure. In Fig. 3.7 we can see that the outline of the structure called the Hénon
attractor. We can see that the converged trajectory lies in the boundaries of the attractor
structure. The boundaries of the attractor structure contain the boundaries of the chaotic
solutions. Any attractor has a basin of convergence for which all the initial values falling
into this basin converge to the attractor. An initial value has a distinct trajectory on the

attractor which never crosses itself since the trajectories are not periodic. A small
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difference in initial values can lead to a completely different trajectory. The Hénon

attractor is a fractal object.
1 -
o.8f o -
0.6} .
o.al i
x
0.2} .
of .
—0.2F i
M
—Oo-£75 i —o.s5 yé 0.5 = 1.5

Fig.3.6. The %hase space of the chaotic solution of the Hénon attrcator for a=1.4,
=0.3.
To show more clearly what we mean by an attracting region we perform the
following experiment. If we take a 100x100 matrix in the region —1.0 <x< 1.0 and
—0.1 <y <£0.1 and iterate every point several times through the Hénon equations we will
see that the transformed plane will converge to the Hénon attractor [Héno76]. So, we can
speak about a trapping region R from which no orbit can escape and any orbit will

converge to some limit set. The Hénon trapping region calculated by Hénon is a

quadrilateral with vertices (-1.33, 0.42) (1.32, 0.133) (1.245, -0.14) (-1.06, -0.5) [Héno76).

Having the trapping region R for the attractor we can define the attractor as the set

A= NH® (3.14)
k=0
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where H" is the kth iteration of R through the Hénon transformation A . To obtain a
picture of the attractor, it is sufficient to compute just a single orbit of an initial point
picked at random somewhere in the trapping region. Selecting a different random initial
point gives the same visual result. However, although two different orbits generate the
same limit set, typically there is no correlation between them, even if they are very close.
This is not a general rule because the second initial point might be a point on the trajectory
of the first one. If we repeat the iterations for the region used in Fig. 3.8 we can see that as
we approach infinity more and more curves will appear in the parabola shape. In fact, for

k = oo the Hénon attractor consists of infinite number of parabola layers. A cross section

of the Hénon attractor is a type of Cantor set [PeJS92].

1 0.3
0.25}
0.5¢ 1 0.2}
0.15}
0 |
0.1}
0.5 0.05
0.
1 0 1 2 9-%3 5 0.5 T 1.5
(@ (b)
0.4 0.4
0.3}
0.3 0. o
0.2 0.1}
0.
0.1}t 1 -0.1}
of -0.2}
_0_3.
~9:¢45 ) 0.5 1 1.5 —0-4; -1 0 1 2
(© (d)

Fig. 3.7. The iteration of the points between _] g <x< 1.0 and 0.1 <y < 0.1

with the Hénon equations: (a) The original matrix, (b) after the first
iteration, (c) after the second iteration, and (d) after the third iteration.
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3.2.4 The Lorenz Attractor

Lorenz equations are given as

% - 5@ -y®) (3.15.3)
%’ = —x()z(D +rx(t) —y (&) (3.15.b)
L - _x(@y® -nz(0 (3.15.0)

The value of the parameter r is the critical value which determines the stability of

the solutions. The critical range of r is between 27.74 and 100.5 between which the

equation shows a chaotic behaviour. Figures 3.9 and 3.10 show three-dimensional phase

spaces of a chaotic and a periodic solution of the equations and outlines the bounds of the
Lorenz attractor. The parameters are ¢ = 10, 1 = 2.67 and r = 16 for the periodic
solution and » = 28 for the chaotic solution. The initial values are x (0) = y (0) = 12

andz(0)) = 34 .

150

100+

—-50 -50

Fig. 3.8. The phase space of a periodic solution to the Lorenz equations.
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Fig. 3.9. The phase space of a chaotic solution to the Lorenz equations.

3.2.5 The Rossler Attractor

The Réssler attractor is given by the set of equations

& () -z(1) (3.16.)
D - 20+ ) (3.16.b)
dz _ )

7 B+x(t)z(r) +Tz(2) (3.16.¢)

This system has only one nonlinear term. Setting the parameters to A =0.2 and B =0.2 and

varying the third parameter Y', we can find a period doubling sequence to chaos.
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-15 -10
Fig. 3.10. The 3-dimensional solution of the Réssler equations for A=0.2,
B=0.2, T=5.7 the initial conditions are x (0) =-1, y (0) =0,

z (0) =0.

15 10 25
100 x 5 ﬂ 201 ,

5 0 N 15

0 u/\ -5 10
-5 -10 J 5

] ) ]
- _ 0 A 2

16, 5000 10000 1% 5000 10000 O 5000 10000

Fig. 3.11. The single dimensional trajectory of the chaotic solution of the
Réssler equations for A =0.2, B=0.2, Y'=5.7 with initial conditions
are x (0) =-1, y (0) =0, z (0) =0. The equations have been solved
using the numerical method of fourth order Runge-Kutta and
iterated 25000 times.
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Four phase space portraits are shown for different values of Y in Fig. 3.13.

10

= 5 0 5 10 X =5 0 s 10 15
(c) @

Fig. 3.12. The phase portraits for variables y and x with different values of
parameter Y and A=0=0.2: (a) Y=2.0, (b) ¥=3.5, (c) Y=4.0,
and (d) Y=5.7.

The behaviour of the variable z is of particular interest. As shown in Figs. 3.11 and 3.12,
we see the sudden firing of the z value which is the main cause of the exponential diver-
gence of the nearby trajectories, and then the attractor is again folded over and the trajec-

tories are reinjected back to the center of the attractor.
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3.3 Complexity Measures and Multifractals

The morphological dimensions of an attractor are measures for its spatial scaling
properties. We can apply the box-counting dimension, D, as defined before on the
attractors. The dimension of the hypercubes should be chosen equal to the Euclidean
dimension of the phase space, i.e., the number of degrees of freedom of the system. But
the morphological dimensions are not capable of revealing the complexity of the fractal
objects fully. In this section other measures are presented for a complete description of the
complexity of the fractal objects. We also see how to use these measures for the study of
the complexity of strange attractors.

3.3.1 Information Dimension

The information dimension, D,, is a measure of the differences in the distribution
density of the points covering the object. For the calculation of D, the object is covered

with hypercubes of side length 8 . But this time instead of only counting the number of

cubes which contain part of the object, we calculate a probability P, for each hypercube i
of side length 6. P, is the probability of part of the object occuring within the hypercube

i. Then H () is calculated as
N
H(3) = - Plog(P) (3.17)
i=1
where N is the number of covering hypercubes of side length 5.

The information dimension is estimated by repeating the above procedure for a

diminishing range of & as shown below [Kins94]
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3 H(d)
= LI S S 3.18
Dy 81 li,nolog (1/98) (3.18)

If an object is evenly distributed, an identical probability of P, = 1/N will reduce

the information dimension to the box-counting dimension since H (3) = log (N) . We
see that in this dimension calculation each hypercube is weighed according to the
probability of the object occuring in it.

H (8) isin fact the Shannon entropy of the system, that means the quantity H ()
specifies the amount of information necessary to specify a point of the fractal object to
within an accuracy of §. In other words, it is the information obtained in making a
measurement that is uncertain by an amount §.

3.3.2 Correlation Dimension

The correlation dimension is another improvement for characterizing the density
distribution of a fractal. As usual, the fractal is covered with N hypercubes of side length

6 . The probabilities, P, , are calculated as explained for the information dimension. The
correlation dimension, D, is calculated as [Kins94]
N
log Y, P?

i=1 (3.19)

D.= lim ————
¢ 5 %olog (1/9)

Similar to the self-similarity dimension, D, can be obtained from the slope of a

log-log plot of the variables 1/8 and the corresponding probability ensembles.

We now explain the concept of pair correlation function, C, and how it is related
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to the correlation dimension. Suppose that in a real experiment N5 points of a fractal has

been collected. The pair correlation function is defined as

Cs = lim -2 (3.20)
8 -
N2

where N is the total number of pairs of points in the fractal such that their distances are

smaller than §. We can estimate D . using the calculated Cy as

log (Cs)

D=~ lim ——— 3.21
¢ 5-0log(1/9) 2D

The Euclidean definition of distance is used in this thesis, although the concept of
distance is general in the definition above. For showing why D can be estimated using
Cs , we consider an overlapping or a non-overlapping covering of the fractal. Considering
the i th hypercube of side length 8, containing n, points of the object, the number of the

ordered pairs of points inside this hypercube which their distances are smaller than d is
n; X (n;—1) . Therefore, if the covering consists of N hypercubes then Np5 canbe
estimated as follows [Kins97]

Nps = § (n2 - n,.] (3:22)

i=1

Now we have

1 N N 2 n.
Co tim L3 () - z[ fm 2y 62)
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2
n; 2
N__zf_ = P (3.24)
T3
then
al 2
Cs= Y. P; (3.25)

i=1
Its important to note that we have only made an estimation of N5 in these
calculations. If the covering of the fractal object is non-overlapping then using the pair

correlation function will give an over-estimation of the probability ensemble, and if the

covering is over-lapping then using the pair correlation function will give an under-
estimation of the probability ensemble. The estimation of the D using the pair
correlation function is commonly used in literature due to its fast and easy implementation
. The pair correlation function is calculated by scanning all the points of the object one by

one. If the object contains N points, for each given point %, all the other points # ; are

tested to see if they fall into a hypercube of side length & centred at & =z According to

[GaRa92]

T I Nps
= : - - _ . P
CS = lim []Tf;_.s E I:ZVT; Z 0 (8— "ui—uj"):,:l = stll_l} oo—;s (326)

N == 18, = L7181
where 0 is the Heaviside function.
3.3.3 Natural Measure, Multifractals, and Generalized Rényi Dimensions
Consider a subset B of a space X in which an attractor lies. Orbits that are typi-

cally observed in computational studies seem to eventué.lly fill up the attractor densely. If

all orbits which start in or near the attractor fill up the attractor densely, then the systemis
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called ergodic. We can count the number of times an orbit enters the subset B, and it is
natural to assume that the percentage of all points which are in B stabilize as we perform
more and more iterations. This percentage is called the natural measure, p. (B) for the
system. The natural measure can be understood as a means of quantifying the mass of a
portion of any object.

Now consider a point # on an object and hypercubes Bg (&) of side length &
centred at &. The probability or the mass contained in this hypercube is | (B3 (%)) . o is
the exponent in the power law relationship which specifies how fast this mass decreases as

O decreases to zero.

K (Bs (7)) ad” (3.27)
. logu(Bg (7))
“= Shglo logd (3.28)

The exponent o is also called the Holder exponent at point (x, y) . If this scaling
law holds for all points on the object with the same o, then the object is a homogeneous
fractal. If o varies for different regions then the object is called an inhemogeneous fractal

or a multifractal {Kins97].

It can be easily seen that for a uniformly distributed mass of points in an object we will
have
D. =D, =D, (3.29)

While for an object with non-uniform distribution of mass we get
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D.<D;<Dy (3.30)
The values for D and D, approach D as the object becomes more uniformly

distributed. As we can see the relation of the three dimensions, i.e., their equality or their
unequality can be a measure of uniformity or non-uniformity of the mass distribution of
the object. One single dimension is inadequate for describing the distribution of different
densities in the fractal set. In fact, if an object contains two or more merged fractals, the
fractal with the larger dimension will mask the fractal with the lower dimension [Chen97].
One single value is not able to manifest the richness of the complexity of the object. Rényi

generalized the idea of one dimension to introduce the spectrum of Rényi dimensions

[GrPr84][Kins97]. Considering a covering of an object with N hypercubes of side length

d

N
=1 q
H,(8) = y—log 3 P

i=1

—0 < g<oo 3.31)

H,(8)

VL) (3-32)

D

where P, is the probability of the object occurring in the / th hypercube of side length §.
Note that P,=u (B,) . The D q is monotonic and strictly decreasing for a multifractal
object. g is areal value and D q has an infinite number of values. When g approaches oo
then the ensemble shows the contribution of the largest P,. When g approaches —o the
ensemble shows the contribution of the smallest P,. This can be proven as below

[Kins97] (3.33)
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N
lo P?

D, = lim lim —. g'; | = i (08 e

= g-wb—0g—1| log(d) §—0log (3)

where P, is the largest non-zero probability. Similarly

N
log P?
D_ = lim lim— Z‘ I = lim 08 min [Kins97]  (3.34)
™ go—=5—0g—1 log(d) 55 010g (3) '

where P_. is the lowest non-zero probability. For ¢ = 0 the Rényi dimension reduces to

the D [Kins97]
al 0
log » P,
D, = lim — 2:‘ ‘ 18Ns _im 8N __p (3.35)
0= sTg—1| Tog(®) | 550 log (8) 5o0log(1/8) S '

For g = 1 the Rényi dimension reduces to the D,. Since H, 4 (8) cannot be calculated

directly we apply L’Hopitall’s rule to get the limit

N N
H,(8) = lim ——log ¥ P! = —lim | —— [%2 Pj?]logze (3.36)
q

—9!1— g—1

i=1 2P1

i=1

X

and since —‘{5 = ¢'lnc
dx
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[S PimP, N
H, (8) = ~lim | £ J(k:z) = - Plog(P)

i=1

g—1 N q
2P
i=1

[Rif298] (3.37)

For g = 2 the Rényi dimension reduces to the D .

N N
log ) Pf log Y Pf
1

D, = lim izl __ |=lim —I=Ll =D  [kins97 3.38
2= H05TT| Tog 3y | e Tog oy Dc ms7l (338)

A comprehensive and unified presentation of the dimensions can be found in
[Kins97]. The concept of a pair correlation function can be extended to a g-tuple
correlation function, considering counting the q-tuples of different points having distances
smaller than & in the object. Therefore, we can obtain an estimation of D q with
calculating the g-tuple correlation function. The proof can be shown with a similar
assumption and procedure as for pair correlation.

The works of Grassberger and Procaccia [GrPr83a}{GrPr83b] for efficient
computation of the pair correlation function has been expanded by Pawelzik and Schuster
[PaSc87] and Atmanpacher [AtSV88] to show that higher order Rényi dimensions can be

calculated efficiently for strange attractors using the pair correlation function. Consider a
d -dimensional phase space of a system which is covered with hypercubes of side length

3 . P, is the probability that a trajectory on the attractor visits the hypercube /, and N is

the number of non-empty hypercubes. Recall the definition of the D 7 dimension
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D = _H& (3.39)
7~ §—olog (1/9) :
) N
_ z q
H, (9) 1 —qugi < lPi (3.40)
N

Since the Z P:.’ can be written in terms of the natural probability measure [ (x) we can

i=1
write
N ¢-1
> Pi = fdu(x)p(B5(x)) (3:41)

i=1

where Bj (x) stands for a hypercube of side length & around the point x on the trajec-

tory. By ergodicity of the trajectories of strange attractors we can write

g _ 1 ~g—1
2P = ]T;;Z 7 (3) (3.42)
where N is the total number of the points on the trajectory counted in the experiment.

i’;{ - (8) is the probability to find a point of the trajectory within a hypercube of side

length & around the point j of the trajectory. The change from ¢ to g — 1 is due to the
fact that we are switching from calculating the probability of finding the trajectory in one
of the homogeneously distributed boxes covering the attractor to the probability to find the
trajectory within a hypercube around one of the inhomogenously distributed points of the
trajectory. Since

Nrs
B®) = =X 05— [5-z)) (3.43)

18,7

- 43 -



Chapter III: Fractals and Chaos

where 6 is the Heaviside step function and #; and # ; are the vector representations of the
points on the trajectory, combining these equations with the definition of D g Ve derive the

final equations which are used through the rest of the thesis for calculating the Rényi

dimensions of the strange attractors.

1/(g-1)

L[ 1 & -1
o0 = ahf‘o{mzl [N_mj_;e(s-llﬂrﬁjll)] ] (3:44)

log (Cs,) (3.45)

D = lim ——
7 5—0 log (3)

3.4 Summary

In this chapter, we reviewed the basic concepts involved in the study of fractal
objects and their morphological and entropy dimensions. We also reviewed the concept of
multifractality and the spectrum of Rényi dimensions. We saw that deterministic dynami-
cal systems can behave in a complicated manner that is referred to as chaos and the phase
portraits of these chaotic systems have a fractal structure. In the next chapter we will con-
tinue the study of strange chaotic attractors and we will review the methods for recon-
struction of the attractors from experimental time series. We will also investigate further
the correlation function method for the calculation of the Rényi dimensions for strange

attractors.
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CHAPTER 1V

RECONSTRUCTION OF STRANGE ATTRACTORS
In this chapter the implementation of the correlation integral to calculate D g 1

discussed. We explain how to determine the range of size of the hypercubes in the
covering and how to calculate the dimensions by estimating the power law relationship of
the g th order ensemble of probabilities with the sizes of hypercubes. The relationship
between the number of points on the trajectory and the calculated dimensions are also
discussed. The second section of this chapter discusses the problem of reconstructing the
attractors using the trajectory of single variables and the difficulties involved in this
process. We specifically discuss the techniques used for choosing the best lag and the best
embedding dimensions for the reconstruction of the phase spaces. The third section
presents techniques for distinguishing between chaotic and non chaotic data. The
trajectory of the attractors implemented in Chapter 3 are used to investigate the techniques

presented in this chapter.

4.1 Spectrum of Rényi Dimensions for Strange Attractors
4.1.1 Calculation of the Correlation Integral

The calculation of the Rényi dimensions of attractors can be implemented using

the g th order correlation integral

Nps g-171/(g-1)
Cs, = lim [an[ 29(5—"11— .||)] ] (4.1)

60 i=1 J_[

log (Cs,) 42)

D
q Slino log (8)
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First, the trajectory of each of the independent variables of the system is produced using
the fourth order Runge-Kutta technique for numerical solution of dynamical differential
systems. The ergodicity of the system implies that a single trajectory of the system fills the

attractor densely, therefore, we can estimate the fractal dimension of the attractor using a

single orbit. In order to calculate the correlation sum, Cj 7’ for a specific value of hyper-
cube, &, we have to visit every point in the trajectory and calculate the distance of the

point to all the other points. This way, for each point 17: on the trajectory we can count the

number of points that fall into a hypercube of size 8 centred on 171 . Dividing the number

of points in each hypercube by the total number of the points in the trajectory, N5, gives

the probabilities needed for calculating the ensemble. The next step is to raise each proba-

bility to the power of ¢ — 1 and add up all the results to obtain the final value of

Ny 1 Ny q-1
S [T e-fu-np] 63

i=1 =1

Cs g is then calculated using this result.
Finally, the D g can be estimated by repeating the same process for several values
of & and calculating the Cj 4 corresponding to each of them. D_ is estimated by the power
law relationship between 6 and Cj - Therefore, we use a log-log plot of these two varia-

bles to estimate D g similar to the technique we used for the dimensions presented in

Chapter 3. Now three questions have to be answered: How to choose the best ranges for
the sizes of the hypercubes? How to distinguish the linear region of the log-log plots and

how to approximate the slope of them?
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In order to find the best range of sizes of the hypercubes we have to make sure that
the chosen range includes the upper and lower saturation levels of the probabilities. We
have to consider that in real computations we always have a limited number of points of
the attractor. If the size of the hypercubes is larger than the size of the attractor, the whole

attractor fills in the hypercubes and the value of the probabilities and consequently the
value of Cy q reaches a saturation point. We can see this effect in the log (8) - log (Cs q)
plots where the curve begins to taper off and becomes horizontal as further increases in the
hypercube size do not increase C; . This can be seen in Fig. 4.1.

For small ranges of &, the probabilities should not saturate theoretically because
the attractor has a structure similar to the Cantor dust and as we zoom in, finer and finer

structure should be revealed and we should be able to get arbitrarily close to each point.

But due to the finite resolution of the computed attractor, we actually reach a lower range
of & where passing that range the number of points in each hypercube stays fixed. The
lower range of 8 depends on the number of points we generate for the attractor and the
time step, Az, that we use for solving the differential equations numerically. We can see

the effect of the lower saturation level on the log (8) - log (Cj q) curve as the line begins

to fluctuate when the values of Cy g &reno longer accurate representatives of the structure.
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Fig. 4.1. The linear region in the log-log curve is situated between the upper sat-
uration region and a curved section at the smaller values of & resulted
from the finite resolution of the attractor on the computers.

The range of sizes of the hypercubes is best chosen as a dyadic range. Since the
approximation of the slope is performed on a logarithmic plot of base two, the values of
the & are best chosen as powers of two. The linear region of the log-log plot lies between
the upper saturation region and the lower curved section. After determining the linear
region, the dimension is approximated by calculating the slope of the line which best fits
in the points on the linear region. The best fit is performed in this thesis using the mean
squared error technique We should note that the upper saturation level is the same for the

log-log curves of all values of g . For a smooth estimation of the D q function we choose

the linear region common among the log-log curves of all values of g . The biggest hyper-
cube of the common linear region is determined by the common upper saturation point.
The smallest hypercube of the common linear region is chosen in a way to exclude the

fluctuations of all the curves.
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-1 0 1 2

Fig. 4.2. The common linear region in this log-log plot lies between the third
hypercube size and the tenth hypercube size, counting from left to
right. Each of the curves in the plot correspond to a different value of
q, which ranges from -20 to +20 (integer values).

Using the current approach for estimating the Rényi dimensions, one is faced with
the issue of repeatability. Can one consistently locate the linear region for approximating
the slope without a guide and a priori knowledge of the correct slope? We should note that
distinguishing the linear region of the log-log plots is usually done visually. The computa-
tional technique used in the experiments in this thesis is based upon the successive differ-

ences of the log (Cj q) coordinate of the log (Cj q) -log (8) plot. The successive

differences are compared with two tolerance ranges which pinpoint the onset of the linear
range and the upper saturation level. The results of this computation is, however, always

checked and sometimes modified, since the log-log plots are not always monotonically
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increasing in the linear regions, especially for the negative values of g. It is important to

note that small alterations in the choice of the linear region can effect the bounds and the

shape of the S-shaped D g Curves. Since there is no uniform and standardized technique in
the literature, in this thesis we will explicitly state the upper and lower range of the linear
region for each experiment, to ensure the repeatibility of the experiments.

It is not possible to calculate the value of D g atg=l directly from the correlation
integral. Therefore, based upon the monotonically decreasing shape of the S-curve, we
non-linearly interpolate this value by calculating the correlation integral at real g very

close to g=1. This can be compared to finding the value of D, as the limit of correlation

integral forqg — 1.
Figure 4.3 shows the results of the calculation of the Rényi dimensions for the
Hénon and Réssler attractors. The parameters of the system and the initial values for gen-

erating the trajectories stays the same for all the experiments to the end of this chapter so

we will not repeat them later.
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Fig. 4.3. (a) The Rényi dimensions of the Hénon attractor. Data size=20000 after
discarding 10000 points of the trajectories. a=1.4, b=0.3, x(0)=y(0)=0.8,
the hypercube sizes form 0.001 to 4.096 dyadic range. The linear region
hypercubes range from 0.004 to 4.096. (b) The Rényi dimensions of the
Rdossler attractor. Data size=20000 after discarding 10000 points of the
trajectories. A = B=0.2, Y'=5.7, x(0)=-1, y(0)=2(0)=0, hypercube ranges
0.001 to 512 with a dyadic range. The linear range of the hypercubes are
0.5 to 64.
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4.1.2 Length of the Time Series
In this section we compare the performance of the correlation integral technique

for trajectories of different lengths. The lengths of 2000 to 10000 points have been exam-

ined for estimation of the D g curve using the time trajectories of the Hénon attractor. The-

oretically, increasing the size of the time series fills the attractor more densely, therefore
the estimation of the Rényi dimensions becomes more accurate.

The experiments confirm the theoretical expectation. Figures 4.4 and 4.5 show the

convergence of the D g curves with an increasing point count in the x and y trajectories.

After 10000 points, the D , curves converge to almost the same values within an error

range of 0.001. Increasing the size of the trajectories can be implemented either by
increasing the observation time or by decreasing the time step used for sampling the tra-

jectories.
1.6
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Fig. 4.4. The convergence of the Rényi dimensions of the Hénon attractor by
increasing the length of the time series from 2000 points to 10000 points.
The linear range of hypercubes are from 0.004 to 4.096.
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Fig. 4.5. The convergence of the box-counting, information, and the correlation
dimension of the Hénon attractor by increasing the length of the time
series from 2000 to 10000. The linear region hypercubes range from
0.004 to 4.096. After 9000 points the errors are within a range of
+0.001 and after 10000 points the errors are within a range of +£0.0001 .

-53-



Chapter IV: Strange Attractors

4.1.3 Added Noise

In this section we investigate the effect of additive noise to the original data in the

estimation of the D g curve. This is accomplished by comparing the D g curves of the orig-

inal Rossler attractor with the curves estimated from a noisy Rdossler attractor. The noisy
attractor is generated by the superposition of white noise to the x, y and z trajectories of
Réssler attractor. The white noise is generated by a random number generator of uniform
distribution, and it is scaled by an appropriate factor in order to achieve a desired signal-
to-noise ratio (SNR). The SNR is the ratio of the energy of the noise free signal to that of

pure noise or the error of the signal and is calculated as

E
SNR = IOIog[EsJ (4.4)
E = Ys[n’ (4.5)
E, =Y (slnl -3[n])° (46)

where s [#] is the original signal and § [#] is the noisy signal. Figure 4.6 contains the
log-log plots of the signals with SNR of 5, 100 and 500. Comparing the plots together we
can discern the fact that for lower signal to noise ratios the linear region of the log-log plot
is shorter. For SNR=S the lower end of the linear regions begin at hypercubes of larger
size in comparison to SNR=500. This effect can be explained by the relationship of the
size of the hypercubes and the noise levels. For hypercubes of sizes smaller than the noise
levels the probabilities are affected by the random noise displacement of the points. For
experimentation purposes it is always important to state the SNR of the signal and keep

the probing hypercube sizes larger than the noise levels.
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Fig. 4.6. The log-log plots of the Rdssler attractor contaminated with noise. (a)
SNR=5 (b) SNR=100 (c¢) SNR=500. The linear region of the signal with
lower SNR is shorter due to the effect of the noise in probabilities of the
probing hypercubes with sizes comparable to the noise levels. These fluctu-
ations disappear at higher SNR.
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Fig. 4.7. The Dq curves calculated for (a) the original Rossler attractor, and (b)
the Rdassler attractor contaminated with noise. The curves for SNR=5,
10, 20, 30, 40, and 100 is plotted. For SNR larger than 20, the curves
fall on each other and converge to the original attractor’s dimensions.
The original attractor is from a time series of length 5000 with a dyadic
range of hypercubes from 0.001 to 512 and linear range is between 0.5

to 64.

-56-



Chapter I'V: Strange Attractors

The results of the experiments with the R6ssler, and Hénon, and Lorenz attractors

show that the D g curve is stable with signal-to-noise ratios larger than 20, i.e. the S-curve

converges to an error range of smaller than *0.001 . It is important to mention that the
adopted noise model represents a worst case because the white noise contaminates the sig-

nal across an infinite bandwidth.

4.2 The Reconstruction of Strange Attractors

In order to model a non-linear chaotic natural phenomenon, many experiments
have to be conducted to determine the set of non-linear differential equations which gov-
ern the system. But if the existence of an underlying attractor is proved we can character-
ize the phenomenon using its multifractal features. It first has to be determined whether
the underlying system is a deterministic system or a stochastic system, and whether the
measured data is random noise or chaotic data. Then knowing the trajectories of all the
independent variables of the system, the characterization can be done by calculating the
spectrum of the Rényi dimensions of the strange attractor. But the problem is that we gen-
erally do not have enough information about all the variables and often we speculate the
system using the trajectory of one measured variable.

Now the question is, are we able to estimate the Rényi dimensions of an attractor
using only the trajectory of one measured variable? Are we able to reconstruct some
meaningful picture of the attractor using the one available trajectory?

4.2.1 Reconstruction of the Phase Space
The question of reconstructing an attractor from the trajectory of one variable was

first addressed by Packard et al. [PCFS80]. They found that having a time series obtained
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by sampling a single coordinate, x (¢) , of an attractor one can obtain a variety of m inde-
pendent quantities which appear to yield a faithful phase space representation of the
dynamics in the original space.
One possible set of these quantities are
x(t),x(t—1),x(t-27), ..., x(t—m7T)
The value 7 is called the lag of the time series and m is the embedding dimension
of the reconstructed attractor. Now the points on the attractor are given as vectors

(x(£),x(t;—=1), x (¢, -27), ..., x (¢, —mT))

(x(£,),x (= 1), x (2, —21), ..., x(t, —mT))

(x (2p), x (=T, x (ty—27), ..., x (ty—mT))
where N is the size of the time series. Another set proposed by [PCFS80] is
2 m
de d x d x
x(t) ’E,d_t', ---yz't'—
To obtain a heuristic understanding of the idea of the reconstruction of the attrac-
tors we attempt to reconstruct the Hénon and Réssler attractors using trajectories of single

variables. In Fig. 4.8 and 4.9 for Hénon attractor, it can be seen that there is significant

correlation between each point in the time series and its previous sample. The phase space
of the reconstructed attractor for T=1 resembles the shape of the original Hénon attractor.
Apparently the structure contained in relationships of x, y variables are encapsulated in

the x and x — T variables. For =2 and T=3 there is still some relationship which gives a

structured appearance to the reconstructed phase space. For T=10 all structure has van-
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ished. The reconstruction has been repeated for both variables, x, and y producing the
same results. The attractor can be reconstructed using either of the two independent varia-
bles. The embedding dimension of two has been used for the reconstruction of Hénon
attractor in Figs. 4.8 and 4.9. The same experiment is performed on the Réssler attractor
with different lags and an embedding dimension of three.

The important observation made by Packard ef a/. was formally proved by Floris
Taken in 1981, known as the embedding theorem [take81][Mane81]. The embedding the-
orem establishes that when there is only a single measured quantity from a dynamical sys-
tem, it is possible to reconstruct a state space that is equivalent to the original state space
composed of all the dynamical variables. The embedding theorem states that if the system
produces orbits in the original state space that lie on a geometric object of dimension »

(which need not be an integer), then the object can be unambiguously seen without any
spurious intersections of the orbit in another space of dimension m > 2n, comprised of

coordinates that are arbitrary non-linear transformations of the original state space coordi-

nates. The absence of intersections in the second space means that the orbit is resolved
without ambiguity when m is large enough. Overlaps of the orbit may occur in lower
dimensions and the ambiguity at the intersections destroys the possibility of predicting the
evolution of the system. It is important to note that Taken’s requirement for m is a suffi-

cient but not necessary condition for dynamics reconstruction.
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Fig. 4.9. Hénon attractor reconstructed from the values of the variable y,

a=1.4, b=0.3, x(0)=y(0)=0.8, embedding dimension=2, and 100 points
are used for the reconstruction. Different T sizes have been used for the
reconstruction. (a) T=1, (b) T=2, (c) T=3, (d) and T=10.
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Fig. 4.10. Rossler attractor reconstructed from the values of the variable x,
A =B=0.2,Y=57y(0) =2(0) = 0,x(0) = -1 ,embedding
dimension=3, and 10000 points used for the reconstruction with
At=0.01, Different T sizes have been used for the reconstruction. (a)
1=3, (b) 1=17, (c) T=100, (d) T=500, (¢) T=1000, (f) and T=2000. For
=100 the structure is completely unfolded. For t=500 and higher lags
the attractor starts to lose its structure.
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The embedding theorem does not say anything about the choice of the lag. In fact,
it permits us to use any lag so long as the time series is infinitely long. In practice we work
with finite length time series therefore we have to take a proper prescription for choosing

the lag.

In 1982, Doyne Farmer showed that the reconstruction of strange attractors can be
interpreted as a change of coordinates, or in better words unfolding the attractor from its
projection onto the observation axis of measurement. Choosing the embedding dimension
of 2n + 1 guarantees that the embedding space is large enough for an injective reconstruc-
tion [Farm82]. This means that each point in the reconstructed attractor corresponds to
one and only one point in the original attractor. Therefore no part of the attractor will col-
lapse on top of another part because of projection. An injective reconstruction does not
effect the fractal dimensions of the attractor.

Formally, an autonomous system producing orbits % (#) through the dynamics is

220 = F(x(0) @.1)
and the output is
s = h(z () “.12)

% is an n -dimensional vector, and s (¢) is typically a one-dimensional output signal. The
embedding theorem states that any independent set of quantities related to s (#) can serve
as the coordinate for a state space of the system.

Time derivatives of s (#) are the natural set of independent coordinates. But when

the signal is sampled in discrete time, the derivatives act as high pass filters and emphasize

noise in the measurements. But as Packard et al had suggested there is another natural set
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of coordinates for the state space. The signal s () and its time delays are the ingredients

in the approximation of the time derivatives of s (¢) . The time delay values of s (£) are
new information that enters the approximation of each derivative. This set of coordinates
is realized by forming the vectors

s@®,s(t-1),s(t-21),...,5(t—=mT))
where m is the embedding dimension larger than 2n and 7 is the lag.

If T is too small, the points of the trajectory will have components which are
strongly correlated and very close, therefore the reconstructed attractor will be very close
to the diagonal of the space. On the other hand, if T is too large there is little correlation
and the trajectories appear to wander all around the phase space [PaSc87].

Another problem with experimental data is that we may not know the degrees of
freedom of the underlying dynamical system or the dimension of the underlying attractor.
In this case a practical technique used for finding the best embedding dimension is to cal-
culate the spectrum of the Rényi dimensions for a number of successively increasing
embedding dimensions starting from a low dimension of two or three. In the beginning, all
the values of the S-curve will increase as we increase the embedding dimension, reaching
a limiting value when the embedding space is large enough for the attractor to untangle
itself. Further increases should not increase the values of the curve from the converged
level [Addi97].

It is important to pay attention to the fact that a dense trajectory in lower dimen-
sions fills an embedding space of much higher dimension sparsely, where the calculation
of the S-curve will be inaccurate. Therefore, the size of the time series must be chosenina

way to fill the embedding dimension of largest dimension densely. This can be found by
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trial and error, i.e. by experimenting with different sizes in each embedding dimension and
studying the convergence of the S-curve for different sizes.

To examine this idea we perform an experiment with the Rdssler attractor. We
reconstruct the Rossler attractor using its x-variable time trajectory using lag=20. This lag
was chosen according to the visual inspection of the reconstructed two-dimensional phase
space for different lags. Then we calculate the spectrum of the Rényi dimensions for the
embedding dimensions of 3,4,5,6,7 and 8. According to Taken’s theorem, an embedding
dimension of eight and higher should reach the converging level and give an appropriate
reconstruction, therefore the Rényi dimensions for the reconstructed attractor for embed-
ding dimension of eight and higher converges to the Rényi dimensions of the original
attractor. The results of this experiment are shown in Fig. 4.11. The reconstruction of the
Rossler attractor by embedding dimension of eight and time length of 5000 is still not
completely matched with that of the original attractor. But with increasing the number of
the points used for reconstruction, this discrepancy disappears. For embedding dimension
of eight and time length of 20000 points, the Rényi dimensions match with a precision of
+0.001 . We can observe that we need more data points for a reconstructed attractor to
reach the same dimensions that the original attractor gives with less points.

4.2.2 False Nearest Neighbourhood Method for the Best Embedding Dimension

The method of the false nearest neighbourhoods proposed by Kennel et al. also
deals with determining the best embedding dimension of an experimental series
[KeBA92]. This method directly addresses the topological issue of the embedding proc-

€S8.
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Fig. 4.11. The convergence of the reconstruction of the Rdssler attractor
with increasing embedding dimension. The dot-curve shows the
Rényi dimensions of the original attractor. The Rényi dimensions are
calculated using 5000 points of the attractor trajectory with lag=20
and hypercube sizes 0f 0.001 to 512 and the linear region is between
hypercubes of size 0.5 to 64.

This procedure identifies the number of false nearest neighbours, i.e. the points
that appear to be the nearest neighbours because the embedding space is too small. When

the number of false nearest neighbours drop to zero we have an unfolded or embedded

attractor in an m -dimensional Euclidean space.
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The basic idea is that in the passage from dimension n to n + 1 one can differenti-
ate between points on the orbit that are true neighbours and points that are false neigh-
bours. A false neighbour is a point in a data set that is a neighbour solely because we are
viewing the orbit in too small an embedding space. When we have achieved a large
enough embedding space all neighbours of every orbit pointed in the multivariate phase
space will be true neighbours. In an embedding dimension that is too small to unfold the
attractor, not all points that lie close to one another will be neighbours because of the
dynamics. Some will actually be far from each other and simply appear as neighbours
because the geometric structure of the attractor has been projected down onto a smaller
space.

If we are in n -dimensions, working with points of an attractor reconstructed from

time series x and the rth nearest neighbour of each point _]7l of the reconstructed attractor

is denoted by 37,.(r) then
) n-1 2
Ron = Y x+iny —x (+kv)] (4.9)
k=0
is the square of the Euclidean distance between point )71 and this neighbour and T is the
lag.

In going from dimension n to n+ 1 we justadd a n + 1 coordinate to the summation
2
R, Gr =R +[xi+n1) —=x7 (i +n1)] (4.10)

A natural criterion for false neighbours is that the increase in distance between 37,

and }'z,.(r) is large when going from » ton + 1. The criterion is defined as
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R (4.11)

tol

Bt (1) -Ra (1) |% _ |Lei+n)) —x +nm]l
R:(i,r) R, (i, )

where R, , is a threshold. R, , is found by numerical experimentation, that is by fixing the
embedding dimension and testing the sensitivity of different values of R, , . It is sufficient to

consider only nearest neighbours » = 1 and interrogate every point on the attractor to

establish how many cf the nearest neighbours are false.

But this criterion by itself is not sufficient since the experiments show that even

though }'»‘.m is the nearest neighbour of }7‘ it is not necessarily close to )7, , therefore an addi-

tional criterion is proposed by Kennel et al. as

R, (1)
_"T >4, (4.12)
where they suggest
2 1 - 2
Ry =52, [x—7] (4.13)

% being the mean of the series. This criterion discards those nearest neighbours which lie in
the extremities of the attractor. This happens when we try to uniformly populate an object in
n dimensions with a fixed number of points, since the fixed number of points move further
and further as » increases. Now a nearest neighbour which fails either of the tests is

declared false.

Figure 4.12 shows the result of calculation of the percentage of false nearest neigh-

bours for the Hénon attractor with R, =2, 4, ,=2 and R, , from 1 to 20. For R, ;=18 the

percentage of nearest neighbours falls below 0.5% for embedding dimensions greater than
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four. The disadvantage of the false nearest neighbourhood method is the lack of a precise
way of determining the embedding dimension and its dependency on the value of R, .
But this method is able to identify between chaos and random noise. In this thesis we use
this method for determining the existence of low dimensional attractors. Figure 4.13

shows the calculation of the false nearest neighbourhoods percentage for white noise gen-

erated by a random number generator with uniform distribution.

Ratio of False Nearest Neighbours
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Fig. 4.12. Ratio of false nearest neighbourhoods for the Hénon attractor
for embedding dimensions one to seven.

We see that for the embedding dimension of one to seven that there is no decrease in the

percentage of false nearest neighbours for white noise. An experimental range of R, , is

chosen considering the maximum and minimum increases in the distances between the
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nearest neighbour points. The result of the experiment with white noise shows that for

embedding dimensions in the range of one to seven, no stable structure emerges for white

noise.

Ratio of False Nearest Neighbours
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Fig. 4.13. The ratio of false nearest neighbours do not reduce with
higher embedding dimensions for white noise.

4.2.3 Methods for Choosing the Best Lag for the Reconstruction of the Attractors
Different methods have been reported in the literature for calculation of the best
lag for the reconstruction of the attractors. In the past section we chose the lag by simply
considering the successively larger values of the lag, 1, and then visually inspecting the
phase portrait of the resulting attractor. This method will only produce reasonable results

for systems of relatively simple structures. In this section we will present the two methods
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which are mostly used in the literature. The autocorrelation function method looks into the
linear dependence of two variables while the minimum mutual information criterion looks
into the general dependence of two variables. The following methods are used in the
following chapters for the estimation of the best lag in the reconstructions.

4.2.3.1 The Autocorrelation Function

The covariance function, C, compares two data points in the time series separated

by the lag T and for a time series of length N is calculated as

N-1
2 ) ()
C =izl : (4.14)
Y )
i=1
—— (4.15)

where %, is the mean of the temporal signal. The lag of the reconstruction is then taken as
a specific ratio of C. Among the most popular of these thresholds are: the value of 7
which first gives C equal to one half, the value of T which first gives the C equal to zero,

and the value of T which first drops below 1 — -i: of the first value of C. It is important to

point out the values calculated by these methods are not consistent for reconstructions by
different variables of a system [RoCD93][Addi97].
4.2.3.2 The Minimum Mutual Information Criterion

The mutual information of the attractor reconstruction coordinates is defined as
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N-t(m-1)
M = z PxpXspXiioeXivt(m-1))

i=1

(4.16)

log P(Xp X0 X420 Xt (m— 1))
P(xi)P(xi+t)P(xi+2t) "‘P(xz'+1:(m-[))

where P (x;) is the probability of the occurrence of the time series variable x;,
P (XX 400X 4 agen-Xin g (m—1) ) is the joint probability of occurrence of the attractor
coordinates X; = (X; X; 4 1 X; 4 30+-¥;4 1 (m_1y) -a0d m is the embedding dimension. A
is a measure of the statistical dependence of the reconstruction variables on each other. If
the coordinates are statistically independent then

P(xpXi0Xiv20Xitg(m- n) = PP (X ) P (X500 o P (X o ($)7)
and so, M=0. M is zero for completely random processes, such as white noise. The
mutual information is a measure of general independence of two or more variables,
therefore, it provides a better criterion for the choice of lag in comparison to the
autocorrelation function, which is only a measure of linear dependence of the variables
[FrSw86][Fras89]. In this thesis, we use the first local minimum of the mutual information

of a two dimensional attractor reconstruction for determining a suitable delay for higher

dimension reconstructions. For practical implementation of the minimum mutual

information criterion a two-dimensional reconstruction of an attractor in x; and x, , ,

plane is considered. The plane is then partitioned into Nc columns and Nr rows. The
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mutual information is calculated as

N N

P (kD)
,E:U;lP(k l)log[P(k)P([)] (4.18)

where P (k) and P (/) are the probability of the occurrence of the attractor in celumn £
and row [/ respectively. P (k, I) is the joint probability of the attractor lying in the column

k and row [ grid box. The function M, (1) is plotted and the best lag is chosen as the
first minimum of this function. M, (t) shows that for a certain lag T, how much
information does a measurement of point x; give about a measurement of x; , ., orin
other words it evaluates how redundant is the x; , . axis of the phase portrait

[FrSw86][Fras89].

The drawback of this method is the dependency of the estimate on the grid boxes. For a
fixed number of data, larger boxes have more points, hence the estimate of the average
probability is more accurate, but, on the other hand, estimates of P (%, /) are too flat.
Smaller boxes allow the fluctuations due to noise to be interpreted as small scale structure
[FrSw8S]. Figure 4.14 shows the results of calculation of autocorrelation function and

mutual information for the Lorenz attractor.
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Fig. 4.14. The mutual information function and the autocorrelation function of
the Lorenz attractor. The first local minima of the mutual information
function suggests a smaller lag in comparison to the zero crossing of
the autocorrelation function.
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4.3 Distinguishing Non-Chaotic Series

Distinguishing deterministic chaos from noise is an important problem. Effective
algorithms for detecting chaos must accurately characterize both chaotic and non-chaotic
systems. In this section we further establish the utility of our approach by examining its
performance with the following non-chaotic signals: a quasi-periodic deterministic system

created by superposition of two sinusoidals with two different frequencies

x(i) = sin (21F,iAt) + sin (21F,iAr) (4.15)

where F; = J3Hz, F, = ﬁHz, and Az = 0.01 sec.

The second signal is white noise generated by a random number generator with
uniform distribution. Each system was treated as the output of a blackbox system.

The best lag for reconstruction of the attractor assumed for the sinusoidal is chosen
as T=8 where the two dimensional orbit opens up. Then the attractor was reconstructed in
a two dimensional embedding space. The result of the log-log plot and the D g curve of the
sinusoidal is shown in Fig. 4.15. The D g curve of a sinusoidal is a flat curve of dimension
one. Increasing the embedding dimension to three or four yields the same results. Since

the deterministic system is not a chaotic one, all the fractal dimensions are equal to the

Euclidean dimension of the sine curve.

The best lag for reconstruction of the attractor assumed for the white noise was
chosen as T=1 since for no increase in the value of 1, the two dimensional phase space

appears to form any structure in the distribution of the points in the space (Fig. 4.16). The

attractor was reconstructed in embedding spaces of 3, 4, 5, 7,15, and 20 dimensions. The

result of the D g curves always yield an S-curved shape if enough points are generated to
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fill the higher dimensional spaces, but no convergence is apparent up to the embedding
dimension of 20. This is shown in Fig. 4.17. The finite dimensional system exhibit a con-
vergence once the embedding dimension is large enough to accommodate the dynamics,
whereas the stochastic systems fail to show a convergence because they appear to be more
ordered in higher and higher embedding spaces. Strictly speaking, we can only distinguish
high dimensional systems from low dimensional ones, although in most applications a
high dimensional system may be considered random, i.e., infinite dimensional [RoCD93].

The calculation of dimensions gives an estimate of the system complexity and
entropies and the distinction of chaos from randomness through the calculation of dimen-
sions is in fact based upon the comparison of the low dimensional fractal structure of
strange attractors arising from a chaotic system with high dimensional semi-structures
arising from random noise.

In Section 4.2.2, we also saw that the false nearest neighbours method can distin-
guish between random noise and chaos. This method in fact recognizes the stable struc-
tures of the strange attractors from the non-stable structures of noise.

It is important to note that another path exists for achieving the same purpose and
that is the calculation of the Lyapunov exponents of the experimental data and estimating
the level of chaos or sensitivity to initial conditions in the dynamical system. A detailed

study of this method is found in [WSSV85]EKRC86][RoCD93].
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Fig. 4.15. (a) The log-log plot of a two-periodic sinusoidal. (b) The Dq
curve of the sinusoidal.
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Fig. 4.16. White noise generated by a random number generator. The time

10 for (b).

1 in (a) and with T=

series is delayed against itself with T

m=

1
-15

3.5

2.5

1.5

0.5
-20

Fig. 4.17. The Dq curves of the white noise do not converge with increasing

embedding dimension.The embedding dimension, m, of each

curve is stated.
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In this method, the trajectories of nearby initial conditions on an attractor is stud-
ied. If the dynamics are chaotic then the trajectories diverge, on average, at an exponential
rate characterized by the largest Lyapunov exponent. The largest Lyapunov exponent is
also estimated as the mean rate of separation of the nearest neighbours. Divergence and
convergence of the attractor in all orthogonal directions of the phase space is characterized
by a spectrum of Lyapunov exponents. A chaotic attractor has at least one finite, positive
Lyapunov exponent. Random data has an infinite, positive Lyapunov exponent, while peri-
odic attractors have only zero and negative exponents.

4.4 Summary

In this chapter, we presented the embedding theorem for the reconstruction of
strange attractors. We described the methods for distinguishing between random noise and
chaos in experimental time series, reviewed the methods for determining the best embed-
ding dimension and the best lag for reconstruction of the attractors, and explained further
the method of correlation integral for calculation of the Rényi dimensions of an attractor.
In the next chapter, we will report on the implementation of the methods presented in this
chapter on EMG signals and the experiments designed for evaluation of the fractal charac-

terization of EMG signals.
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CHAPTERYV

MULTIFRACTAL ANALYSIS OF THE EMG SIGNALS

In this chapter, we want to use the results of the discussions in the previous
chapters, and attempt to perform a multifractal characterization of the EMG signals. Our
primary goal is to examine the EMG for chaos. We shall see that EMG is indeed arising
from a low dimensional strange attractor. The reconstruction of this strange attractor
requires a thorough analysis of the embedding dimension and the best lag of
reconstruction. The implementation of the correlation integral and calculation of the Rényi
dimensions follows.

Although the primary focus in this thesis is on the correct and meaningful
calculation of the multifractal characterization of the EMG signals, we need to reach this
objective in the context of a specific experiment. For this purpose, we attack one of the
problems in electromyography which has been dealt with since the fifties and has not been
completely solved yet. Is it possible to characterize the EMG signals recorded from a
single muscle in different functionalities? In other words, is it possible to identify the
functionality of a single muscle by the EMG characteristics?

In this chapter, we propose an experiment to study this problem and investigate the
capability of the Rényi dimensions of the signals to perform this identification. In the first
section we explain this experiment and its objective. In the second section we examine the
signals acquired in this experiment for the presence of a low dimensional attractor in the
reconstructed phase spaces. The false nearest neighbourhood is used for this purpose. The
results of the minimum mutual information criterion are used to estimate the best lag for

the reconstruction. We perform the multifractal dimension characterization of the
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attractors using the generalized correlation integral. The best embedding dimension is
chosen by studying the convergence of the multifractal dimensions. The convergence rate
of the multifractal dimensions with the chosen time length and sampling rate of the
experimental EMG signals is examined. The effect of the noise levels in the different

stages of these calculations is also discussed.

5.1 Objectives of the Experiments

In the last section of Chapter 2, we talked about the different factors influencing
the order of the motor unit recruitment. The results of experiments of several researchers
show that recruitment order can vary if the same muscle is used for different purposes.
Schmidt & Thomas [ScTh81] have reported that in the extensor digitorum communis, the
recruitment order will depend on which of the four fingers is to be extended. Gielen and
Denier van der Gon [GiDe90] have reported that in biceps brachii, the threshold of a
motor unit depends on whether the muscle is being used to flex the elbow, supinate the
forearm, or externally rotate humerus. Hennemen et al. [HeSY76] have stated that when
the same motor task is undertaken in exactly the same way, the order in which the motor
units are recruited remains fixed. In this thesis we present an experiment in which we
attempt to discriminate among the EMG signals recorded from deltoid and trapezius
muscles, in three different functionalities of shoulder abduction, flexion, and extension.
We use the multifractal characteristics of the signals for classification. If the order of the
motor unit recruitment follows unique patterns for each of the three movements, there
should be certain characteristics of the EMG signal which fingerprint them. In these
experiments the objective is to find out if the multifractal dimensions of the EMG signals

are capable of recognizing three different functionalities of deltoid and trapezius muscles.
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It is important to note that the idea of using the signature of EMG signals for
discriminating between several limb functions was proposed in the early sixties with the
motivation of using the discriminatory methods for the control of artificial limbs. The
dominant approach used for discrimination of signals in artificial limbs proposed by
Graupe et al. [GrSZ85] uses a time series identification process, i.e. a time domain
autoregressive signature model. Graupe’s approach is specifically designed for an optimal
performance of an artificial limb and is based upon using electrode sites with heavy cross
talk from several muscles involved in a certain function. Therefore, the results of
discrimination in Graup’s approach are not comparable with the approach presented in this
thesis.

The experimental goal is to find unique signatures for EMG signals recorded from
certain muscle functionalities. But it is desired to prove that the discrimination is in fact
due to a real difference in the underlying physiological phenomenon in different
functionalities of a single muscle, therefore special care is taken to eliminate other
possible factors such as cross talk between muscles.

The most important factors influencing the shape of the EMG signal recorded by a
surface electrode, with fixed area and shape of electrode surfaces and a fixed distance
between the electrodes, are listed below:

1. The number of detected active motor units in the detection volume;

2. The firing rate of the motor units in the detection volume;

3. The fibre type composition of the active detected fibres;

4. The fibre diameters of the active detected fibres;

5. The depth and location of active detected fibres;
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6. The conduction velocity of the active detected muscle fibres;

7. The amount of cross talk at the detection volume; and

8. The amount of fatty tissue between the active detected fibres and the electrodes.

The first six factors can be varied by a relative movement of the elecirode location
and the active fibres, which may bring a new set of active fibres within the detection range
and removing some from it. This may be caused because of the fixation of the electrodes
to the skin surface which does not change length in concert with the contracting muscle
fibres. These factors can also be caused by the rotation of active motor units in the
detection volume, rather than the change of the detection volume.

In this experiment, one must show that the discrimination is not influenced by the
change in the location of the electrodes; i.e. the change of the detection volume.
Therefore, the electrode location is fixed when recording from one muscle in three
different shoulder movements of abduction, extension, and flexion. But furthermore, it is
necessary to show that the discrimination is not due to the movement of the sensors
because of the contraction of the muscle in different directions which also causes the
variation of the muscle/fat layer between the electrode and the active fibres.

The movement of the electrodes occurring due to the different directions of
contractions are in a range of a few millimetres. In order to prove that the result is
independent of this slight movement, the recordings were obtained from electrode
positions which differed in a few millimetres. If a slight dislocation of the electrode has a
strong influence in the value of the Rényi dimensions, then the data obtained from these
experiments are not classified correctly, because the samples recorded for each class (from

each function of a muscle) are a mixture of data from different electrode positions. If the

-83-



Chapter V: Multifractal Characterization of EMG

classification is still possible it can be concluded that the very slight changes of the
detection volume due to the slight movements of the electrodes are not the cause of the
differences among the Rényi dimensions calculated for the three different muscle
functionalities. It consequently follows that the variation of the spatial filtering due to the
movement of the electrodes is not also the cause of the discrimination. One can, therefore,
examine if the distinctions in the levels of the complexity measures of the EMG signals in
the three different functionalities stem from the physiological phenomenon or not.

The cross talk has been minimized using differential amplifyiers. The large size of
the deltoid and trapezius muscles also reduces the effects of cross talk. The last concern
with this experiment is the problem of the initiation and cessation time of the EMG signals
recorded. How can the timing of the signals recorded in independent experiments be
regulated? In our experiments, the recording of the signals is started not later than 20
seconds after the arm is held in the desired position. This delay is usually required so the
signal settles down in the physical recording equipment after some disruptions due to the
movement of the wires and electrodes. The length of the recorded signals is not longer
than one second. There is a resting period of two minutes between each recording.
According to the results of Moussavi [Mous97], this timing process eliminates the effects
of fatigue in the recordings.

The objectives of the proposed experiments is summarized as follows

1. Examine the EMG signal to determine if it is a chaotic signal;

2. Establish the procedure for the multifractal characterization of EMG;

3. Examine the possibility that multifractal features of the EMG signals can

discriminate the different functions of a single muscle;
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4. Examine the effect of electrode dislocation in the discrimination results; and
5. Examine the effect of cross talk in the discrimination resuits.

5.2 Data Acquisition

For EMG recording, a multi channel bank of amplifiers with high- and low-pass
filters was used with a multi channel A/D National Instrument device connected to a 586
IBM compatible computer.

The muscles under study are the middle, posterior, and anterior portions of the
deltoid (MD, PD, and AD respectively) and upper part of the trapezius (UT). Since these
muscles are all surface muscles, self-adhesive silver-silver chloride surface electrodes
were used to record EMG signals. The skin is prepared by rubbing alcohol to reduce skin
resistance and electrodes are placed on the muscle according to the electrode positioning
for MD, PD, AD, and UT presented in [CrKa98] and shown in Fig. 5.1. Reference

electrodes are not shown here.

Fig. 5.1. The electrode positions in the recordings from deltoid and trapezius
(from [Mous97]).
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The EMG electrodes are used in a bipolar configuration. The EMG signal is
amplified differentially to prevent artifacts and is filtered by a bandpass filter with 10 Hz
and 1 kHz cut off frequencies. The signals are digitized at 8000 samples per second.

The following three test positions are designed for the EMG acquisition:

Position A: The subject is asked to hold her (left/right) upper limb in 60 degree shoulder
abduction, 0 degree elbow flexion, 90 degree forearm pronation, and wrist neutral.
Position B: The subject is asked to hold her (left/right) upper limb in 60 degree shoulder
extension, 0 degree elbow flexion, and 90 degree forearm pronation, and wrist neutral.
Position C: The subject is asked to hold her (left/right) upper limb in 60 degree shoulder
flexion, 0 degree elbow flexion, and 90 degree forearm pronation, and wrist neutral.

For each muscle under study, the electrodes are fixed on the muscle and then the
subject is asked to perform each of the three test positions sequentially. The signal is
amplified and recorded at each position. Then a two minute resting period is given and the
location of the electrodes are moved within a range of a few millimeters. This sequence is
repeated for each muscle 20 times. The amplification of the signals change from one
subject to another, and also from one muscle to another. But the amplification remains the
same for the recordings of one muscle in the three different test positions.

The length of the recordings is one second. The EMG signal of an isometric
contraction recorded for one second can be considered as stationary [Mous97]. Four
subjects of the ages between 20 to 30 years participated in the experiments. None of the

subjects had any detected abnormality in the muscle.
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5.3 Characterization of the EMG Signals with the Rényi Dimensions

Having explained the different test positions and the physical recording set up of
the experiments, we now proceed to discuss the characterization of the signals. The data is
organized in four sets, one set for each subject under study. Each individual’s set contains
four groups of data corresponding to the recordings made from middle deltoid, posterior
deltoid, anterior deltoid, and trapezius. Each of these groups contain three classes of data
samples for abduction, extension, and flexion. Under each class there are 12 data samples
which are the one-second length time signals recorded independently. The classification
takes place on each group of the data, with the aim of discriminating among the three
classes of abduction, extension, and flexion.

In this section the characterization method for a sample data, a one second EMG
signal recorded from the middle deltoid of one of the subjects during abduction is
discussed. The characterization procedure explained is the same for all data samples. The
general comparison of the results is given in the next chapter.

5.3.1 Normalization of the Data

The multifractal dimension calculation is performed on unnormalized data. In the
last section it was mentioned that the amplification of the signal does not vary for the
recordings made from the three functionalities of each muscle. Therefore, in the
classification stage, the data samples of three classes in each group are amplified equally.
For this reason, there is no normalization required for the signals in each classification
experiment. Furthermore, there is no normalization required for the Rényi dimension

calculations.
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5.3.2 Choosing the Best Lag
Both the autocorrelation and the minimum mutual information method are used to
find the best lag for the reconstruction of the strange attractors of EMG signals. Fig. 5.2,

shows the result of the autocorrelation calculation on the sample EMG signal.

Autocorrelation Function

1

0.8

0.6

0.4

-0.4 - L . .
o o 100 200 Lag 300 400 500

Fig. 5.2. Autocorrelation function of a sample EMG signal.

In this experiment, the autocorrelation function dropped to 1 — é of its first value

at the lag=11, and the first zero crossing happens at the lag=33. The result of the minimum
mutual information calculation is shown in Fig. 5.3 for the sample EMG signal. As we
explained in Section 4.2.3.2, the calculation of the minimum mutual information is
dependent on the grid size used for covering the two dimensional phase space. We have
performed the calculations of the minimum mutual information criterion for grid boxes 4,

8, 16, 32, and 64.
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Mutual Information
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Fig. 5.3. The minimum mutual information criterion for the sample EMG signal.

The results of the experiments show that the change in the grid sizes in the
calculation of the minimum mutual information criterion of the EMG signals does not
effect the value of the lag where the first local minimum occurs.

The first local minimum occurs at the lag=18 for the sample signal. In all
experiments, the result of the minimum mutual information criterion stays lower than the
lag for which the first zero crossing of the autocorrelation function occurs. In the
reconstruction of the phase spaces the result from the minimum mutual information

criterion is used.
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Fig. 5.4. The minimum mutual information criterion for different grid box sizes.
The grid box sizes are 4, 8, 16, 32, and 64.

5.3.3 Examining the Existence of a Low Dimensional Strange Attractor

Recalling the discussion in Chapter 4 the false nearest neighbourhood method can
distinguish between high dimensional noise and low dimensional strange attractors. The
calculation of the percentage of the false nearest neighbours is performed on the data as
explained in Chapter 4. The increase in the distances of the nearest neighbours are

calculated for successively increasing embedding dimensions of 2 to 20. The parameter

R, is calculated according to Egs. 4.12 and 4.13 with 4, ,=2. The range of 0.5, 1, 5, 10,

15 is tested for theR tol in the calculations.
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The results of the calculation are plotted in Fig. 5.5 for the sample signal. The

results show that for very small levels of R, _,, almost all of the points are classified as

tol?

false nearest neighbours, but as R, , approaches 10 and 15 a low embedding dimension

appears. This means that there are some neighbouring points which their distances do not

increase larger than a threshold set by R, ,. This set of nearest neighbours represent the

unfolded trajectory of the strange attractor. The parameter R, discards those neighbours

which lie on the extremeties of the phase space and is neccesary for distinguishing white
noise from chaos. The experiments show that the EMG signal does in fact arise from a
low dimensional strange attractor. But the exact calculation of the embedding dimension

using the false nearest neighbourhood is not possible since there is no standard way of

choosing the best R, ;. The convergence of the Rényi dimensions for is used to choose the

best embedding dimension.

A very important result of the calculation of the false nearest neighbours of the
experimental signals was the observation that for certain classes of signals this algorithm
does not yield a low embedding dimension. These results appeared for signals with SNR
values lower than 10. In fact, we could see in Chapter 4 that no low embedding dimension
exists for pure noise. Therefore, it is acceptable that the effective embedding dimension
degrade as the SNR ratio decreases. This happens for the signals recorded from muscles
which are not highly active in the test position under study. These classes of signals are
discarded from the experiments since the SNR ratio is too low, the signal is too

contaminated by noise, and a low dimensional attractor is not conceivable for them.
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Fig. 5.5. The percentage of the false nearest neighbours in successive
embedding dimensions for the sample signal. R, =56, 4, ,=2.

SNR Abduction Extension Flexion
Middle Deltoid 28 25 12
Posterior Deltoid 20 28 4
Anterior Deltoid 20 6 26
Upper Trapezius 20 IS 14

Table 5.1. The average SNR ratios for EMG signals.
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The average SNR ratio for the different classes is given in Table 5.1. The
averaging is among the signals recorded from all the subjects in each class. Low
dimensional attractors do not appear in the range of embedding dimensions between 2 to
20 for the posterior deltoid in flexion and anterior deltoid in extension.

5.3.4 Calculation of the Rényi Dimensions and the Best Embedding Dimension

We now proceed to reconstruct the phase spaces, and calculate the spectrum of
Rényi dimensions, as explained in Chapter 4, for successively increasing embedding
dimensions from 2 to 10. An increasing dyadic range of hypercube sizes from 2 to 512 is
used for probing the strange attractors of EMG signals produced by deltoid and trapezius
muscles. This range is chosen by examining the minimum and maximum distances
between the points in the reconstructed attractors. In Chapter 4, it was stated that the
experiments with known strange attractors show that for SNR higher than 20 the effect of
noise in the values of the Rényi dimensions, drops to a level of £0.001 . There are several
classes in the experiments with SNR ratios between 10 and 20. These groups were not
discarded from the classification, but, one needs to take this fact in consideration that the
precision of the calculation of their Rényi dimensions are degraded by the effect of high
noise levels.

Examining the levels of the recording channel noise, ampilified with the highest
gain used in the experiments, shows that the smallest valid hypercube size for estimation
of the linear regressions is the hypercube size of eight. Performing the linear regression on
hypercubes larger than eight minimizes the effect of noise in the calculations. The log-log
plot of a sample EMG signal is shown in Fig. 5.7. It is seen that the higher saturation level

occurs at approximately & =64. Linear regression is performed on the lines between & =8
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to 8=64, since the probability estimates for hypercube sizes smaller than eight are

affected by the noise levels.
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Fig. 5.7. The log-log plot of a sample EMG signal for hypercube ranges of
2 to 512. The hypercube of 8 =8 is the smallest valid hypercube
for linear regression due to noise levels.

The best embedding dimension is now determined by the convergence of the
spectrum of Rényi dimensions. The best embedding dimension is chosen to be the
dimension where the successive values of Rényi dimensions converge with a precision of
+0.01 . The convergence of the Rényi dimensions is shown in Fig. 5.8 for the sample

EMG signal.

One should realize that going to high embedding dimensions may result in a sparse
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Fig. 5.8. The convergence of the Rényi dimensions for a sample EMG signal.
The embedding dimension of seven and greater results in a conver-

gence of values with a precision of +0.01.

phase space where the points of the trajectory are far from each other and the calculation
of the multifractal dimensions is not valid. The experiments show that 8000 samples per
second of the signal create enough points to result in a convergence of the multifractal
values.

The multifractal dimensions for signals with fewer points were examined. The
EMG signal is recorded with a fixed electrode location and with sampling rates of 1000,

2000, 3000, 4000, 5000, 6000, 7000, and 8000 samples per second, from each of the

-9§5 -



Chapter V: Multifractal Characterization of EMG

signal classes. The multifractal dimensions are plotted. Figure 5.9 shows the results for a
sample EMG signal. The positive order multifractal dimensions converge to an error range
of +0.001, while the negative dimensions have not yet converged. The negative orders of
multifractal dimensions are a representative of the smaller values of probabilities, of the
attractor occurring in all the covering hypercubes. The number of points for reconstructing
the attractor is limited and therefore the hypercubes corresponding to small probability
values do not represent a saturated portion of the structure. Therefore, the increase in the
number of points affects these probabilities more than it affects the hypercubes with
bigger probabilities. This result forces the classification process to be confined to positive
order multifractals calculated for the EMG signal.
5.4. Classification Method

In this thesis the distance weighted k-nearest-neighbour rule for classification is
used. The nearest-neighbour method is a sirnplé non-parametric classification method
appropriate for problems where underlying probability distributions of the classes are not
known. The algorithm is based upon the scheme proposed by Dudani [Duda76].

This decision rule assumes that observations which are close together (according
to Euclidean distance metric) will have the same classification. This is also a weighting
function which varies with the distance between the sample and the considered neighbour

in such a manner that the value decreases with increasing sample to neighbour distance.
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Fig. 5.9. The convergence of the positive orders of the multifractal
dimensions for a sample EMG signal.

Let each pattern p; in the training set be associated with a category number n;,
where 0, € {1,2,..., N} . When an unknown pattern p” is to be classified, the k-nearest-

neighbours of p’ are found among the given samples constituting the training set. Let
these k-nearest-neighbours of p’, with their associated category number, be given by

(p'j,nj) j = 1...k. The neighbours (p’j,nj) J = l...k are ordered so that p’, is the
nearest and p’, is the farthest from the unknown sample p’. Let the corresponding

distances of these neighbours from the unknown pattern p” be given by dj j=1..k
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The weight w; attributed to the j th nearest neighbour can be defined as

%% g wd

%

w, = | d-d, %4 G.1)
1 d,=d,

It should be noted that the value of w; varies from a maximum of one for a nearest

neighbour down to a minimum of zero for the most distant of the & th neighbour. The -

nearest-neighbour rule assigns the unknown pattern p’ to the class for which the weights
of the representatives among the k-nearest-neighbours sum to the greatest value.

Dudani shows that the result of weighted k-nearest-neighbours rule is comparable
to simple k-nearest-neighbours rule for large training sets but for small training sets the
weighted k-nearest-neighbours rule yields smaller probabilities of error.

In our classification experiments, the training set consists of ten samples of each
class, six other samples of each class are used for classification. A 7-nearest-neighbour
algorithm is used for the results discussed and presented in the later chapters. The samples
are 20 dimensional vectors, since we take the first 20 positive orders of the multifractal
dimensions as the feature set.

5.5. Summary

This chapter, discussed an experiment with the EMG signals recorded from
different functionalities of deltoid and trapezius muscles. The goal of this experiment is to
fingerprint the EMG signals according to their functionalities. Multifractal dimensions of
the signals are used for characterization. The calculation of the multifractal dimensions
was explained, emphasizing the effects of noise and length of time series. The next

chapter presents the results of the characterization and classification.
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CHAPTER VI

EXPERIMENTAL RESULTS AND DISCUSSION

This chapter presents the results of characterization and classification of the EMG

signals acquired in the physical experiments. This is followed by an analysis of the results.

6.1 Experimental Results

The results of the multifractal characterization of the signals are presented in Figs.
6.1 to 6.4. The multifractal dimensions of the signals from abduction, extension, and flex-
ion of middle deltoid muscle form three clusters with an average distance of 0.3 between
the centroids of the clusters, the fractal dimensions of abduction being the largest dimen-
sions and the fractal dimensions of flexion being the lowest. The average distance between
the points in each cluster is 0.05. The multifractal dimensions of the signals from flexion
and abduction of the anterior deltoid form two clusters with centroids, being 0.2 apart on
the average, with the fractal dimensions of flexion being larger than the dimensions of
abduction. The multifractal dimensions of the signals from extension and abduction of the
posterior deltoid form two clusters with centroids being 0.4 apart on average, with the
fractal dimensions of the extension being larger than the fractal dimensions of abduction.
The results for the upper trapezius does not yield an acceptable classification, with the
centroids of the clusters of abduction, extension, and flexion being only 0.02 apart on
average and the average distance of samples from the centroids being 0.04. The tables of
the classification resuits of the signals using nearest neighbourhood method also shows
that the classification between the different functionalities of anterior, posterior, and mid-

dle deltoid are successful, while there is no acceptable classification possible for the upper
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trapezius. The results of characterization and classification are in accord with the anatomi-
cal description of the function of these muscles. The anterior deltoid is active in forward
flexion and abduction of the arm. The largest recruitment of anterior deltoid is seen during
the flexion of arm. It also contributes during abduction. Simultaneous activation of the
anterior, middle, and posterior deltoid abducts the arm. Abduction is the primary function
of the middle deltoid, and this muscle is also active during flexion and extension. The pos-
terior deltoid has its largest recruitment during extension but it also contributes to abduc-
tion. The results for the trapezius muscle might be explained by the fact that although
trapezius is active in these three functions, the form of contribution to the three move-
ments is similar, i.e. a passive supporting function.

The successful discrimination of the functionalities of deltoid muscle also proves
that the slight dislocation of the electrodes, corporated into the experiments, is not a
highly influential factor in the fractal dimension values of the EMG signals. Therefore, it
is concluded that the fractal characteristics of the EMG signals are not distorted by slight
movements of electrodes due to the movement of the skin over the muscle. The timing
scheme of the recordings also yields another important conclusion about the fractal char-
acterization of the EMG signals under study. The experiments show that fractal dimen-
sions of the EMG signals of each functionality of a muscle stays stable within an error
range of 0.05 before the development of fatigue. It is emphasized once more that all these
conclusions are based upon the behaviour of the positive order fractal dimensions, since
the number of points in the reconstructed attractors is not sufficient for correct estimation

of small probabilities.
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Fig. 6.1.a. The multifractal spectrum of the middle deltoid signals for subject one.
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Fig. 6.1.b. The multifractal spectrum of the middle deltoid signals for subject two.
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Fig. 6.1.c. The multifractal spectrum of the middle deltoid signals for subject three.
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Fig. 6.1.d. The multifractal spectrum of the middle deltoid signals for subject four.
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Fig. 6.2.a. The multifractal spectrum of the anterior deltoid signals for subject one.
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Fig. 6.2.b. The multifractal spectrum of the anterior deltoid signals for subject two.
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Fig. 6.2.c. The multifractal spectrum of the anterior deltoid signals for subject three.
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Fig. 6.2.d. The multifractal spectrum of the anterior deltoid signals for subject four.
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Fig. 6.3.a. The multifractal spectrum of the posterior deltoid signals for subject one.
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Fig. 6.3.b. The multifractal spectrum of the posterior deltoid signals for subject two.
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Fig. 6.3.c. The multifractal spectrum of the posterior deltoid signals for subject three.
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Fig. 6.3.d. The multifractal spectrum of the posterior deltoid signals for subject four.
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Fig. 6.4.a. The multifractal spectrum of the upper trapezius signals for subject one.
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Fig. 6.4.b. The multifractal spectrum of the upper trapezius signals for subject two.
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Fig. 6.4.c. The multifractal spectrum of the upper trapezius signals for subject three.
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Fig. 6.4.d. The multifractal spectrum of the upper trapezius signals for subject f
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Abduction Flexion
Abduction %100 %0
Flexion %10 %90

Table 6.1. Classification for anterior deltoid.

Abduction Extension
Abduction %100 %0
Extension %0 %100

Table 6.2. Classification for posterior deltoid.

Abduction | Extension Flexion
Abduction | %100 %0 %0
Extension %10 %90 %0
Flexion %0 %0 %100

Table 6.3. Classification for middle deltoid.

Abduction Extension Flexion
Abduction | %20 %50 %30
Extension %40 %20 %40
Flexion %20 %40 %40

Table 6.4. Classification for upper trapezius.
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In the course of the characterization and classification of the signals several pre-
cautions were taken to minimize the effect of noise. Signals with very low SNR values,
were discarded and no converging embedding dimension was calculated. For the rest of
the signals the smallest hypercube well above the range affected by the noise levels was
chosen. Nevertheless the calculations are not totally free from the effect of noise levels. A
comparison of the experimental results from the middle deltoid and trapezius muscle con-
firms again that the discrimination of the different classes is not influenced by the different
SNR values of the classes. The signals from the three different classes for the trapezius
muscle have different SNR values but this alone does not cause a classifiable difference
among them. The results of the experiments also gives one an idea of the degree of the
effectiveness of cross talk between anterior, posterior, and middle deltoid. As explained
the amplitude levels of signals recorded from anterior deltoid in extension and from the
posterior deltoid in flexion are too low and a low embedding dimension is not extracted
for them. In both these movements, the middle deltoid is quite active. If an influential
cross talk existed between middle and anterior, or middle and posterior portions of deltoid,
the activity of abduction should have appeared in the signals recorded from anterior and
posterior muscles in the two movements mentioned above, which is not the case.

6.2. Summary

This chapter presented the results of characterization and classification of the
EMG signals acquired from trapezius and deltoid muscles in the three movements of
abduction, extension, and flexion. It is shown that the classification of the functionality of
the deltoid muscle is possible by the multifractal dimensions of the EMG signals. The

effect of noise and cross talk in the experimental results is also discussed.
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It is shown that the multifractal dimensions of the EMG signals can be used as
characteristic features which are related to the contribution of the muscle in the move-
ment. Signals of muscles with a supporting contribution generally have smaller fractal
dimensions in comparison to the signals of the same muscle when playing a primary role
in a movement. The multifractal feature of the EMG signals can be used for discriminat-

ing among the different functions of a muscle.
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CHAPTER VII
CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

In this thesis it is shown that the EMG signals recorded during the contraction of muscles
(specifically deltoid and trapezius) exhibit a chaotic behaviour which is associated with low
dimensional strange attractors existing in the phase spaces reconstructed from these single varia-
ble signals. A framework is developed for the analysis of the chaotic behaviour of EMG signals
using minimum mutual information and false nearest neighbourhood techniques for the recon-
struction of the strange attractors and the generalized correlation integral for the calculation of the
multifractal dimensions.

It is shown that the multifractal dimensions of the EMG signals can be used as characteris-
tic features which are related to the contribution of the muscle in the movement. Signals of mus-
cles with a supporting contribution generally have smaller fractal dimensions in comparison to the
signals of the same muscle when playing a primary role in a movement. The multifractal feature
of the EMG signals can be used for discriminating among the different functions of a muscle.

The experimental analysis also indicate that the multifractal dimensions of the EMG from
deltoid and trapezius is not effected by cross talk, that the EMG signals with SNR lower than 10
are so contaminated by noise that a strange attractor with an embedding dimension smaller than
20 is not conceivable for them, that the dislocations of the electrode which are smaller than 5 mil-
limeters do not affect the multifractal dimensions of the signals, and that the multifractal dimen-

sions of the EMG signals recorded from a muscle in a certain movement, before the development

of fatigue is stable (with a precision of £0.1).
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7.2 Contributions

This thesis has made the following contributions:

» Verification of the chaotic behaviour of the EMG signal.

= A technique for the estimation of the multifractal dimensions of the EMG signals.

A study of how the multifractal dimensions of the EMG signals are related to the
functionality of the muscle producing the signals.

» A study of the effect of noise levels, cross talk, and dislocations of electrodes during the
recordings, on the stability of the multifractal characteristics of the EMG signals.

7.3 Recommendations

The following recommendations are suggested for furthur research on this topic:

+ Calculation of multifractal dimensions for signals recorded with higher sampling rates,
in order to achieve accurate estimates of smaller probabilities.

» Examining the possibility of classification of flexion, abduction, and extension from the
signals recorded from upper trapezius, using recording schemes which minimizes the
noise levels as much as possible.

» Examining of the possibility of improving the classification by changing the cut off

frequency ranges of the signal filters.
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APPENDIX A
A_1. Structure Chart
Minimum ) False nearest
mutual information \ neighbours
Input files Multifractal Output
(Attractors) —» | dimesnion —| files
(EMG) calculation

!

Generation of the
attractors

This chart shows how the varoius functions of the program are related to each other
and how the modules in the program interact.
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/*

Program: Calculation of the percentage of the false nearest neighbours.

Program description: This program calculates the percentage of the false
nearest neighbours of the reconstructed phase space for different embedding
dimensions. The embedding dimensions, the time series and the lag are the
inputs and the threshold values for the recognition of false neighbours

are chosen by the user. The output is the file which contains the percentage

of false neighbours in each pass from one enbedding dimension to a higher one.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <malloc.h>

const int lag=l; // lag of the time series

const int R=10; // number of the Rtolerance factors
const int N=2000; // series size

const int M=7; // number of embedding dimensions

// enter the values of Rtol
// enter embedmin and embedmax and Rv and Atol

int main()

{
FILE *fin, *fout;
char infile[255];
char outfile[255];

double time[N+1];

double DI[N+1];

double D2[N+1];

double D3[N+1];

double resultfM+1][R+1];
double Rtol[R+1];

int m,n,ij,r;

double sum, mindist, minind, nextdist, distance;
double Rv ,Ra, Rb, Rt, Rr, Atol;
int embedmin;

int embedmax;

for il ;i<=M; it+)

{



for (j=1;j<=R;jtH)
{
result[i][;]=0;
}
}

Rtol[1]=0.001;
Rtol[2]=0.005;
Rtol[3]=0.01;
Rtol[4]=0.05;
Rtol[5]=0.1;
Rtol[6]=0.5;
Rtol[7]=1;
Rtol[8]=5;
Rtol[9]=10;
Rtol[10]=15;
/*Rtol[11]=;
Rtol[12]=;
Rtol[13]=;
Rtol[14]=;
Rtol[15]=;
Rtol[16]=;
Rtol[17]=;
Rtol[18]=;
Rtol[19]=;
Rtol[20]=;
Rtol[21]=;
Rtol[22]=;
Rtol[23]=;
Rtol[24]=;
Rtol[25]=*/

embedmin=1;
embedmax=7;
Rv=0.6;
Atol=0.75;

Appendix B: Source Code

fin=fopen(*/home/ee/tina/emgfiles/programs/noise.asc”,”’r+");

fout=fopen(“/home/ee/tina/emgfiles/programs/falsel.asc

for (i=1 ; i<=N ; i++)

{

fscanf(fin,”%Ilf\n”, &time[i]);

29 99,
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// printf(“%lf\n”,time[i]);
b

for ( m=embedmin ; m<=embedmax ; m++)

{

for (i=1 ; i<=N ; i++)

{
mindist=10000;

nextdist=0;

for (G=1;j<=N;j+¥)
{ if (it=j)
{ distance=0;
for (n=0 ; n<=m-1; nt++)
{distance+= (double)pow ( (time[i+(lag*n)]-timefj+(lag*n)]) , 2);
if} (distance < mindist)

{

mindist=distance;

nextdist=(double)pow ( (time[i+(lag*m)]-time[j+(lag*m)]) , 2);
}

D1[i]=mindist;
D2[i]=nextdist;
// printf(“%e’’,mindist);
}

for (i=1 ;i<=N ;i++)

{
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Rr=pow(D2[i],0.5)/pow(D1[i],0.5);
Rb=(double)pow(D1[i}+D2[i],0.5);
for (r=1 ;r<=R ;r++)
{
Rt=Rtol{r];
if (Rr>Rt || (Rb<(Rv+Atol) & Rb>(Rv-Atol)))
{

result[m][r]++;

}

}
}

} // membed

for (i=l ; i<=M ; i++)
{
for (=1 ; j<=R ; j++)
{

result[i][jI=result[i][j]/N;
fprintf(fout,”%e\n” result[i][j]);

}

fclose(fin);
fclose(fout);

} // main
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[*

Program: Calculation of the minimum mutual information.

Program description: This program calculates the minimum mutual information
of a time series. The input is the time series and the grid size for estimation

of the probabilities. The output is the mutual information for the different

lag ranges.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <malloc.h>

const int N=8000; // series size
const int [=448; /fbigger than double the size of the max value of the abs time
series

// L/2 should be integer

const int gridsize=4;  // should be integer, L/gridsize should be integer
const int dist=212; // abs of minx+1
const int m=112; // L/gridsize

int main()

{

FILE *fin, *fout;

char infile[255];

char outfile[255];

int time[N+1];

double Att[L+1][L+1];
double prow [N+1];
double pcolumn[N+1];
int i,j,k,1;

int lag;

int z;

int length;

double Grid [m+1][m+1];
double sum;

double mf[41];

z=gridsize;

// for (i=0;i<=L+1 ;i++) {
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/f Att[i] = (double *) malloc((L + 1) * sizeof(double));}

fin=fopen(‘“/home/ee/tina/emgfiles/programs/aa_ch0.asc”,’r+");
fout=fopen(*/home/ee/tina/emgfiles/programs/mmi4.asc”,”w”);

for (i=1 ; i<=N; i++)
{
fscanf(fin,”%d\n”, &time[i]);

/fprintf(“%d\n” timel[i]);
}

- for (lag=1 ; lag<=40 ; lag++)
{

for (i=l ;i<=L;i++)
{ for (j=1;j<=L;j++)

Att[i][j]=0;
}
}

for (k=1 ; k <= (N-lag) ; k++)

{
Att[time[k]+(dist)][time[k+lag]+(dist)]+=1;

// printf(*“%d\n”, time[k]+(dist));

3

for (i=1 ;i<=m;it+)
{ for (j=1;j<=m; j+t)
{
sum=0;
for (k=1; k<=gridsize ; k++)
{ for (I=1; <= gridsize ; 1++)
{
if ( Att{((-1)*2)+k][(G-1)*2)H=1)
{
sum++;

133,
Grid[i][j]=sum/8000;



/fprintf(“Y%e\n”,sum);
}
}

for (k=1 ; k<=m ; k++)
{
sum=0;
for (I=1 ; I<=m ; 1++)
{
sum=Grid{k]{1]+sum;

pcolumn[k]=sum/8000;
//printf(“%e\n”, sum);
b

for (k=1 ; k<=m ; k++)
{ sum=0;

for (1=1; I<=m ; 1++)

{
sum=Grid[k][{1]+sum

prow[k]=sum/8000;
// printf(“%e\n”,sum);
}

sum=0;
for (k=1 ; k<=m ; k++)
{ for (I=1 ; I<=m ; I++)
{
if ( Grid [k][1] !'=0){
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sum=sum+(Grid[k][1]* (double)(log(Grid[k](1]/(prow[k]*pcolumn(l]))));

/fprintf(“%e\n”,Grid{k][1]);

// printf(*%e\n”,prow[1]);

//printf(“%e\n”,pcolumn(k]);

//printf(“%e\n”,(Grid[k][1]*(double) (log(Grid[k][1]/(prow[1]*peolumn[k])))));

}
}
}

mfflag]=sum;

fprintf(fout,”%e\n”,mfllag]);
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fclose(fin);
fclose(fout);

}
[*

Program: Calculation of the multifractal dimensions of a time series.

Program description: This program is in C language, and calculates the
multifractal dimensions of an input time series. The embedding dimension and
the lag of the reconstruction are inputs along with the time series. The number
of dimensions to be calculated and the hypercube sizes are chosen by the user.
The output is the array of summation of probabilities.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <malloc.h>

const int size=2000; // size of the time series, usually for one second
// that is the number of samples per second of EMG

const int embed=2; // this is the embedding dimension
const int lag=1; // this is the lag used in reconstruction of phase space

const int vnum=13; // this is the number of vels we want to use, change vels variable
const int qmax=20; // this is the largest moment order we want to use for

// calculation of the renyi dimentions
const int M=(size-((embed-1)*(lag))); // number of points in phase space

int main()

{
FILE *fin, *fout;
float time[size+1];
double distance;

int i,j,q,v,n,k,t;

double sum,temp;

double probs[voum+1]{M+1];
double pprobs[vnum+1]{M+1];
double cql[vnum+1][(gmax*2)+2];
double vels[vnum+1];
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char infile[255];
char outfile[255];
int euc;

int vel;

double temp2;
double temp3;

euc=2;

// initializing arrays

for (i=1 ; i<=vnum ; i++)
{for (j=1;j<=M ;j++)
{ probs[i]iI=L;
pprobs[i][j]=1;

vels[1]=0.001;
vels[2]=0.002;
vels[3]=0.004;
vels[4]=0.008;
vels[5]=0.016;
vels[6]=0.032;
vels[7]=0.064;
vels[8]=0.128;
vels[9]=0.256;
vels{10]=0.512;
vels[11]=1.024;
vels[12]=2.048,;
vels[131=4.096;

// The vel ranges are defined
/* for (1=1 ; i<=vnum ; i++)

{

printf(“enter the vel size number %d\n”,i);
scanf (“%d”,&vel);
vels[i]=vel;

} ¥

// This section inputs the time series
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// printf (“please enter the time series filename\n™);
/! scanf(“%s”,infile);
fin=fopen(“/home/ee/tina/emgfiles/programs/noise.asc”,’r+”);
fout=fopen(*“/home/ee/tina/emgfiles/programs/test.asc”,”w”);
/* if (fin=fopen(infile,”’r+"))==NULL)
{
printf(“Error opening file.\n”);

atd

for (i=1 ; i<=size ; i++)

{
fscanf(fin,"%lf\n>, &time[i]);

/fprintf{“%If\n” timefi]);
}

/// printf(“please enter the name of the output file\n™);
I/ scanf(*“%s”, outfile);

/* if ((fout=fopen(outfile,”w”’))==NULL)
{
printf(“Error opening output file.\n’);
¥

// In this section every point in the phase space is visited

// The number of points which fall in a vel centered in each

// point of the phase space is calculated and enetred in prob array
/I all ranges of vel sizes are taken into account in each visit

for ( i=(((embed-1)*lag)+1) ; i<=size ;i+t)

for (=(+1) ; j<=size ; j++)
{
if (i'=9)
{
//fprintf{fout,”%d %d “.i,j);
sum=0;
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for ( n=0; n<=embed-1 ; n++ )

{
temp2=(timef[i-(n*(lag))]-time{j-(n*(lag))]);

//printf(“%f %f “time[i-(n*(lag))],time(j-(n*(lag))]);
// printf(*“%e “temp2);
sum+= (double)pow(temp2,euc);
}
/lprintf(“%e “,sum);
distance=(double)pow(sum,0.5);
printf(“%e \n”,distance);
for (k=1 ; k<=vnum ; k++)
{
if (distance>0 & distance<=vels[k])
{ probs[k][i-((embed-1)*lag)]++;
probs[k][j-((embed-1)*lag)]++;};
}

for (i=1 ; i<=vnum ; i++)
{ for (j=1;j<=M; j++)
{
probs[i][j]=(probs[i][j]/M);

}
}

/* for (i=l ; i<=vnum ; i++)
{for (j=1;j<=M ;j++)
{
printf(“%d %d %e “ij, probs[il[jl);

¥

B-12



Appendix B: Source Code

// In this section the probabilities in array probs are taken to powers
// corresponding to the moment orders and put into array cql

for (v=1 ; v<=vnum ; v++)
{ for ( g=0; g<=gmax; q++)
{
if (q!=0)
{
for (i=1 ; i<=M ; i++)

{ pprobs[v][i]=probs[v][i]*pprobs[v][i];
{//printf(**%d %d %e *, v,1,pprobs[v][i]);
}

sum=0;
for (i=1 ; i<=M ; i++)
{ sum+=pprobs{v][i];
// printf(*“%e *, pprobs[v][i]);
}

cql[v][(gmax+1)+q]=sum;
//pantf(“%e “, sum);
sum=0.0;
/fprintf(*“%e “, sum);
for (i=1 ; i<=M ; i++)
{
if ( pprobs[v]{i] I=0)
{
temp3=(1.0/(pprobs[v][i]));
// printf(“%d %d %e “,v,i,temp3);
sum=temp3+sum;
//printf(**%e “,sum);
}i
}
cql[v][(qmax+1)-q]=sum;
// printf(“%e “,sum);

}

if (==0)
{
sum=0;
for(i=1; i<=M ; i++)

{ sum=pow(probs[v][i],0)+sum;}
cql{vl[gmax+1]}=sum;
/fprintf(*“%e “,sum);

}
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}
}

/* for (i=1;i<=9 ;i++)

{

for (j=1 ; j<=41 ; j++)

{
printf(*%e %d %d “,cql[il{jlij);
1

*/

for (j=1 ;j<= ((qmax*2)+1) ; j++)
{

for (i=1 ; i<= voum ; i++)

{
cql(i][jl=cqlli]GI/M;

}

for (j=1 ;j<= ((gmax*2)+1) ;j++)
{
for (i=1 ; i<= voum ; i++)

{
fprintf(fout,”%e\n”,cql[i][i]);

}

fclose(fin);
fclose(fout);

}
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Program: Calculation of the multifractal dimension for a strange attractor.

Program description: This program is in C language. This program calculates the
multifractal dimension of a known attractor. The embedding dimension of the
attractor and the time series corresponding to the trajectory of each variable

are the inputs. The number of fractal dimensions to be calculated and the hyper
cube sizes are chosen by the user. The output is the array of summation of the
probabilities.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <malloc.h>

const int size=15000; // size of the time series,

const int embed=3; // this is the embedding dimension
const int vinum=15; // this is the number of vels we want to use, change vels variable

const int qmax=20; // this is the largest moment order we wnt to use for
/! calculation of the renyi dimentions

const int delay=10000;
int main()
{
FILE *xcoord, *ycoord, *zcoord, *fout;
double xtime[size+1];
double ytime[size+1];
double ztime[size+1];

double distance;

int i,j,q,v,;n,k t;

double sum,temp;

double probs[vnum+1][size+1];
double pprobs[vnum+1][size+1];
double cql[vnum+1][(gmax*2)+2];
double vels[vaum+1];

double xdelay,ydelay,zdelay;
char outfile[255];

int euc;

int vel;
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double temp2;
double temp3;

euc=2;

// initializing arrays

for (i=1 ; i<=vnum ; i++)
{for (j=1;j<=size;j++)
{ probs[i][j=1;
pprobs[i][]=1;

/f The vel ranges are defined
/* for (i=1 ; i<=vnum ; i++)
{
printf{*‘enter the vel size number %d\n",i);
scanf (“%d”,&vel);
vels[i]=vel;
3 *

vels[1]=128;
vels[2]=256;
vels[3]=512;
vels{4]=1024;
vels[5]=2084;
vels[6]=4096;
vels[7]=8192;
vels[8]=16384;
vels[9]=22768;
vels[10]=45536;
vels[11]=91072;
vels[12]=182144;
vels[13]=364288;
vels[14]=728576;
vels[15]=1457152;
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// This section inputs the x,y,z coordinates.

xcoord=fopen(‘“/home/ee/tina/emgfiles/programs/rosslerx.asc’,”r+);
ycoord=fopen(“/home/ee/tina/emgfiles/programs/rosslery.asc”,’r+");
zcoord=fopen(“/home/ee/tina/emgfiles/programs/lrosslerz.asc”,” ’r+7);
fout=fopen(“/home/ee/tina/emgfiles/programs/rosslerdims.asc”,”’w”);

for (=1 ; i<=delay ; i++)
{
fscanf{xcoord,”%e\n”, &xdelay);
fscanf(ycoord,”%e\n”, &ydelay);
fscanf(zcoord,”%e\n”, &zdelay);

}

for (i=1 ; i<=size ; i++)
{
fscanf(xcoord,”%e\n”, &xtime(i]);
fscanf(ycoord,”%e\n”, &ytimef[i]);
fscanf{zcoord,”%e\n”, &ztime[i});

}

// In this section every point in the attractor is visited

// The number of points which fall in a vel centered in each
// point of the attractor is calculated and enetred in prob array
// all ranges of vel sizes are taken into account in each visit

for ( i=1 ; i<=size ;i++)
{
for (=(it+1) ; j<=size ; j++)
if (i!=9)
{
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sum=0;

sum+=(double)pow(xtime[i]-xtimefj],2);
sum+=(double)pow(ytime[i]-ytime[j],2);
sum+=(double)pow(ztime[i]-ztime[j],2);

/ffprintf(fout,”%e\n",sum);
distance=(double)pow(sum,0.5);
// printf(*“%e\n”,distance);

for (k=1 ; k<=voum ; k++)

{

if (distance>= 0 & distance<=vels[k])

{ probs{k][i[++;
| probs[k][j}++;};

for (i=1 ; i<=vnum ; i++)
{ for (j=1 ; j<=size ; j++)
{
probs[i][j]1=(probs[i]{j]/size);

}
}

/* for (i=1 ; i<=vnum ; i++)
{for (j=1;j<=size;j++)
{
printf(“%d %d %e “,i,j, probs[i][j]);

}
y ¥
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// In this section the probabilities in array probs are taken to powers

// corresponding to the moment orders and put into array cql



for (v=1 ; v<=vnum ; v++)
{ for ( g=0; g<=qmax; q++)

{
if (q!=0)
{

for (i=1 ; i<=size ; i++)
{ pprobs[v][i}=probs[v][i]*pprobs[v][il;

}

sum=0;
for (i=1 ; i<=size ; i++)
{ sum+=pprobs[v][i];

}
cql[v][(gmax+1)+q}=sum;

sum=0.0;

for (i=1 ; i<=size ; i++)
{
if ( pprobs[v][i] I=0)
{

temp3=(1.0/(pprobs[v]{iD);
sum=temp3+sum;

b
}
cql[v][(gmax+1)-q]=sum;

}

if (==0)
{
sum=0;
for(i=1; i<=size ; it++)
{ sum=pow(probs[v][i],0)+sum;}
cql[v][gmax+1]=sum;
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for (j=1 ;j<= ((qmax*2)+1) ;j++)
{

for (i=1 ; i<= vnum ; i++)

{
cql(i]j]=cqlfi][j)/size;

}

for (j=1 ;j<= ((qmax*2)+1) ; j++)
{

for (i=1 ; i<= voum ; i++)

{
fprintf(fout,”%e\n”,cqli](i1);

}

fclose(xcoord);
fclose(ycoord);
fclose(zcoord);
fclose(fout);

¥
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/*
Program: Generation of the Henon attractor.

Program description: This program generates the x and y variable trajectories
of the Henon attractor. The parameters of the equation and the size of the series
are the inputs. The trajectories are saved in the output files.

#include<stdio.h>
#include<math.h>

#definea 1.4
#define b 0.3
#define N 100000

main()
{
int k;
double x[N+1],y[N+1];
double xmax,xmin,ymax,ymin;
FILE *fp;
FILE *xf;
FILE *yf,

fp=fopen(“henon.asc”,”w”);

xf=fopen(“xhenon.asc”,”w’);

yf=fopen(“yhenon.asc”,”w”);

x[0]1=0.8;

y[0]=0.8;

xmax=0;

xmin=0;

ymax=0;

ymin=0;

for(k=0;k<N;k++)

{
x[k+1]=y[k]+1.0-(a*x[k]*x[k]);
ylk+1]=b*x[k];

fprintf(fp,”%lf %lf\n” x[k],y[k]);
fprintf(xf,”%If\n”,x[k]);
fprintf(yf,"%lf\n”,y[k]);
if(x[k]>xmax)

{

xmax=x[k];
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if(}>t[k]<xmin)
{xmin=XEk];
if}&y[k]>ymaX)
{ymax=y[k];

¥
i{f(Y[k]<ymin)

imin=y[k];

¥
fclose(xf);

fclose(yf);
fclose(fp);

printf(“\n xmax=%lf xmin=%]If",xmax,xmin);

printf(*“\n ymax=%]If ymin=%lf\n",ymax,ymin);

return;
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Program: Generation of the Lorenz attractor.

Program description: This program generates the x, y, and z variable trajectories
of the Lorenz attractor. The parameters of the equation and the size of the
series are the inputs. The outputs are the files with the variable trajectories.

#include <stdio.h>
#include <math.h>

#define a 10

#define b 2.67

#define r 28

void RungKutta (double x,double y,double z,double *xnew,double *ynew,double *znew);
unsigned long int N=5000;

main()

{

double x,y,z,xnew,ynew,znew,

int i;

FILE *frx;

FILE *fry;

FILE *frz;

frx=fopen(“lorenzx.asc”,’w”);

fry=fopen(“lorenzy.asc”,”w”);
frz=fopen(“lorenzz.asc”,’w”);
x=12;

y=12;

z=34;

for (i=0;i<N;i++)

{ RungKutta(x,y,z,&xnew,&ynew,&znew);
fprintf(frx,”%e\n",x);
fprintf(fry,”%e\n",y);
fprintf(frz,”%e\n",z);

X=XNEW;
y=ynew;
Z=ZNEeW;

}

fclose(frx);
fclose(fry);
fclose(frz);

}
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void RungKutta(double x,double y,double z,double *xnew,double *ynew,double *znew)
{

double d0x,d0y,d0z,d1x,dly,d1z,d2x,d2y,d2z,d3x,d3y,d3z;

double xt,yt,zt;

double dt, dt2,dt3;

dt=0.01;

dt2=d4t/2;

dt3=0.3333333333;

dOx=-1*a*(x-y)*dt2;
dOy=(-1*x*z+r*x-y)*dt2;
dOz=(x*y-b*z)*dt2;

xt=x+d0x;

yt=y+d0y;
zt=z+d0z;

d1x=-1*a*(xt-yt)*dt2;
dly=(-1*xt*zt+r*xt-yt)*dt2;
dlz=(xt*yt-b*zt)*dt2;

xt=x+dl1x;

yt=y+dly;
zt=z+d1z;

d2x=-1*a*(xt-yt)*dt;
d2y=(-1*xt*zt+r*xt-yt)*dt;
d2z=(xt*yt-b*zt)*dt;

xt=x+d2x;;

yt=y+d2y;
zt=z+d2z;

d3x=-1*a*(xt-yt)*dt2;
d3y=(-1*xt*zt+r*xt-yt)*dt2;
d3z=(xt*yt-b*zt)*dt2;

*xnew=x-+H(d0x+d1x+d1x+d2x+d3x)*dt3;
*ynew=y+(d0y+d1y+d1y+d2y+d3y)*dt3;
*znew=z+(d0z+d1z+d1z+d2z+d3z)*dt3;

}
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Program: Generation of the Rossler attractor.

Program description: This program generates the x, y, and z variable
trajectories of the Rossler attractor. The inputs are the parameters of the
equations and the size of the series. The output is the files contaning the
variable trajectories.

#include <stdio.h>
#include <math.h>

#define a 0.2

#define b 0.2

#define ¢ 5.7

void RungKutta (double x,double y,double z,double *xnew,double *ynew,double *znew);
unsigned long int N=40000;

main()

{

double x,y,z,xnew,ynew,znew;

int1;

FILE *frx;

FILE *fry;

FILE *fiz,

frx=fopen(*“‘rosslerx.asc”,”w”);

fry=fopen(“rosslery.asc”,”w”);
frz=fopen(“rosslerz.asc”,”w”);
x=-1;

y=0;

z=0;

for (i=0;i<N;i++)

{ RungKutta(x,y,z,&xnew,&ynew,&znew);
fprintf(fix,”%e\n",x);
fprintf(fry,”%e\n”,y);
fprintf(frz,”%e\n",z);
X=Xnew,
y=ynew;

Z=zmew;

}

fclose(frx);

fclose(fry);
fclose(frz);

}
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void RungKutta(double x,double y,double z,double *xnew,double *ynew,double *znew)
{

double d0x,d0y,d0z,d1x,d1y,d1z,d2x,d2y,d2z,d3x,d3y,d3z;

double xt,yt,zt;

double dt, dt2,dt3;

dt=0.01;

dt2=dt/2;

dt3=0.3333333333;

dOx=-(y+z)*dt2;
dO0y=(x+a*y)*dt2;
d0z=(b+x*z-c*z)*dt2;

xt=x+d0x;
yt=y+dOy;
zt=z+d0z;

dlx=-(yt+zt)*dt2;
dly=(xt+a*yt)*dt2;
dlz=(b+xt*zt-c*zt)*dt2;

xt=x+dlx;

yt=y+dly;
zt=z+dlz;

d2x=-(yt+zt)*dt;
d2y=(xt+a*yt)*dt;
d2z=(b+xt*zt-c*zt)*dt;

xt=x+d2x;;
yt=y+d2y;
zt=z+d2z;

d3x=-(yt+zt)*dt2;

d3y=(xt+a*yt)*dt2;
d3z=(b+xt*zt-c*zt)*dt2;
*xnew=x+(d0x+d 1x+d1x+d2x+d3x)*dt3;

*ynew=y+(d0y+d1y+d1y+d2y+d3y)*dt3;
*mew=z+(d0z+d1z+d1z+d2z+d32)*dt3;

}
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