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In this thesis, we present an approach to the characterization and feature extraction 

of the eiectromyogram (EMG) signals. This approach is based upon the chaotic behaviour 

of the EMG signals and the existence of the correspondhg strange attractors with low 

embedding dimensions. The multifkctal dimensions of the strange attractors underlying 

this chaotic behaviour provide alternative features for analyzing the EMG signals. The 

mdtifiactal dimensions describe how the entropy of these strange attractos changes as 

the hypervolume scdes used for cdculating the entropy Vary. 

There are3everal considerations associated with the reconstruction of the strange 

attractors and the calculation of the multifiactal dimensions fiom a single variable time 

series. We discuss how the length and the sampling rate of the time series effect the 

convergence of the multifractd dimensions. We also discuss the effect of high noise levels 

in increasing the minimum embedding dimension required for the reconstnrction of the 

strange attractors. 

The EMG signds under study have been obtained from the anterior, posterior, and 

middle portions of the deltoid and upper trapezius during isometric contractions, using 

surface electrodes. The mutlifractal dimensions of these EMG signals are between 0.5 to 

1.5. The experimental results show that the positive moment orders of the multifkactd 

dimensions of the EMG signals can be used for discrirninating among three functions of 

deltoid, i.e. abduction, extension, and flexion. The multifkactal dimensions of the EMG of 

the muscle as a prime mover, are 0.3 larger on average, comparing to the muscle as 

s ynergist, 
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Chapter 1: Introduction 

CHAPTER 1 

~ O D U C T I O N  

1.1 Motivation 

Surface electromyography provides a non-invasive access to the physiological 

processes that cause a muscle to generate force and movement. Since 1950, researchers 

have used the elecromyogram (EMG) signals for various academic and clinical 

applications. The EMG signals can be used as indicators of muscle contraction, timing of 

muscle performance, force contributions of individual muscles and as a fatigue index, and 

are useful in studying both normal and abnormal muscle functions. 

There are many clinical applications of electromyography. For example Wolf et al. 

WoNK821 used EMG biofeedback techniques in the assesment and treatment of lower 

back pain. Budzynski et al.[BSAM73] used EMG feedback technique to treat muscle 

contraction headaches. Lewit pewi9 11 detected the occurrence of upper quater myalgias 

and the reasons of their occurrence using EMG signals. More recently electromyography 

has also been used in the diagnosis and treatment of neurological disorders [HGRG96]. 

For example, studies of Stocchi et al. [SCIM97] and Chandirama et al. [ChPF97] shows 

the possibility of detection and evaluation of Parkinson's disease and multiple system 

atrophy using EMG signals. MichelangeIo et al. w R 9 8 ]  have studied the relation of 

early development of fatigue in hand muscles of patients with chronic heart failure using 

electromyography. 

One of the most interesthg applications of the electromyography is to use the 

EMG signals in order to activate an artificial limb. The desired scheme is to connect the 

control system of the artificial limb directly to the remaining portions of the nervous 
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systern of the amputated Iimb [GrSZ85]. 

The field of d a c e  electromyography s u f f i  frorn some limitations which are 

inherent in the acquisition instruments and analysis methods used for studying EMG 

signals. The rnajority of the studies of the EMG signals are based upon the analysis of 

stochastic temporal characteristics and fiequency d ~ m a i .  power spectrum characteristics 

of the EMG signals. 

The recent experimental results have shown that EMG signals are not white 

Gaussian noise but that they exhibit a chaotic behaviour and can be characterized as a 

chaotic phenornenon. This discovery opens up new possibilities in the shidy and 

quantitative analysis of EMG signals. Anmuth et al. [AnGM94] calculated the correlation 

dimension of electromyographic signals recorded nom surface electrodes during 

isometric contractions. Their study has shown that the fiactal correlation dimension is 

linearly correlated with muscle activation. Gilter and Czemiecki [GiCzgS] have studied 

the correlation dimension of the electromyognun wiîh varying force. They show that the 

correlation dimension of the EMG signds is highly correlated with force. Erfanian et al. 

FrCH971 have studied the relation of the chaotic activity of electiically stimulated 

paralysed muscle and the relation of the correlation dimension with the deveiopment of 

fatigue in these muscles. 

In this thesis we study the chaotic characteristics of the EMG signals and examine 

the capability of the multifractal measures for characterizhg EMG signals. The chaotic 

behaviour of the EMG signals is associated with the existence of strange attractors with 

low embedding dimensions. These strange attractors bound the temporal trajectories of the 

EMG in the phase spaces reconstructed from these single variable signals. The 
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multifiactal dimensions describe how the entropy of these strange attractors changes as 

the hypervolume scdes used for calculating the entropy vary. Such multifiactal techniques 

m 9 4 ]  have proven to be successful in the examination of a wide range of noise-like but 

chaotic signals such as radio signals and speech signals [Shaw971 [Grieg61 Lang961. 

1.2 Thesis Statement and Objectives 

The objective of this thesis is to show the existence of strange attractors with low 

embedding dimensions in the phase spaces reconstructed fiom single variable temporal 

EMG signals, and to calculate the multifiactal dimensions of these strange attractors. 

Established methods such as generalized correlation integral PaSc871 [AtSV88] 

[GrPr83 a] [&Pr83 b], delay reconstruction of strange attractors [PCFS80 1, and minimum 

mutual information criterion [FrSw80], are used for the calculation of the multifiactal 

dimension of the EMG signals. 

The signals used in this thesis are recorded fiom isometric contractions of deltoid 

and trapezius muscles in three functionalities of shoulder abduction, extension, and 

flexion. We will deterxnine how the multifiactal dimensions can be used to quanti@ and 

capture the essence of the complexity of the motor unit recniitrnent patterns in the three 

different hc t ions  of deltoid and trapezius. 

1.3 Thesis Organization 

This thesis is organized in seven chapters. Chapter 2 gives a bnef review on the 

anatomical and physiological aspects of the muscle contraction and EMG sources. 

Chapter 3 provides a general introduction to fkactals, chaos, strange attractors, 

morphological and complexity measures, and multifractals. Chapter 4 contains the 

theoretical bais  for reconstructing strange attractors fiom a single variable time series and 
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the calculation of the multifiactal dimensions fiom the reconstructed attractor. In Chapter 

5, we describe the experiments for acquiring and analyzing the EMG signals. These 

experiments deal with the problem of discriminating the EMG signals of one muscle 

according to the hc t ion  of the muscle. In this chapter we will describe the physical set up 

of the signal acquisition, and the signal characterization and classification. In Chapter 6, 

the results of the characterization and classification are presented and we discuss the 

usefulness of the multifiactal characterization of the EMG signals for the proposed 

experiment. Conclusions, recommendations and contributions are presented in Chapter 7. 
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CHAPTER II 

BACKGROUND ON EMG AND MUSCLE CONTRACTION 

The objective of this chapter is to give a bnef study of muscle hc t ion .  This 

provides a background for discussing the physiological and anatomical factors involved in 

the design of expengients and also the interpretation of the results of the experiments in 

the fùture chapters. 

In this chapter we discuss the important factors influencing the shape of 

Electromyographic (EMG) signals recorded from a contracthg muscle. The most 

important of these factors is the number of the recruited motor uni ts  and their firing rate. 

We explain how these factors Vary in a sustained contraction. We also discuss how the 

placement of the electrodes in the surface recordings infiuence the shape of the EMG 

signals. 

We finish this chapter by reviewing the known patterns of recruitment of the motor 

units in different muscle functionalities. This section provides the background for 

justification of the objective of the experiments presented in chapter V. 

2.1 Ovewiew 

Muscles are the primary organ of the body, making 70% to 85% of the body 

weight [CrKa98]. The single smallest controllable muscular unit is called a motor unit. 

The motor unit consists of a single alpha-motonewon, its neuromuscular junction and the 

muscle fibres it innervates. Alpha-motoneurons are located in the anterior horn of the 

spinal cord and through their relatively large diarneter axon and terminal branches 

imervate a group of muscle fibres. The termination of the axon at the muscle fibre is 

- 5 -  
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known as the endplate region or the neuromuscular junction and is usually located near the 

middle ofnauscle fibres. A muscle fibre is a very fine thread, with a length between few 

millimetres to 30 cm and a diameter of 10 to 100 pn [13aDe85]. 

There are two major sensory organs found within the muscle, the muscle spindle 

and the Golgi tendon organ. The muscle spindles which are stretch receptors are scattered 

among the muscle fibres in which they are hosted and they inform the nervous systern 

about the instantaneous length and velocity of contraction of the muscle fibres. The spin- 

dle activity is at spinal level and is not projected to the ccrtex and thus not consciously 

perceived. The Golgi tendon organ is fomd in the muscle-tendon junctions and is sensi- 

tive to the tension placed on tendons and the effort given out by the muscle. The output of 

the Golgi tendon organ terminates at the lower centres of the brain and does not reach the 

cortex. Another source of information is found in joint receptors which are found in each 

joint and inforni the nervous system about the joint angle and position. 

In 1950, Hunt and KuEer fist observed that we have two sensorimotor systems, 

the alpha and gamma motor systems, each having their own muscles, motoneurons and 

principles of organization [CrKa98]. The gamma motor systern primarily emerges fkom 

the lower centres of the brair, while the alpha motor system originates f?om the cortex. 

The gamma motor system carries out the reflexes that have been selected and passed 

through generations and are fixed. The alpha motor system provides the oppominity to 

adapt to the surroun dings. 

2.2 Source of EMG Signals 

When a nerve action potential travels d o m  the mon, it reaches the neuromuscular 

synapse and releases acetylcholine, which causes the breakdown of the ionic banier of the 
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muscle membrane and sends the signal throughout the muscle fibres via the transverse 

tubules which causes the muscle to contract. The movement of the ions during the depo- 

larization generates an electromagnetic field which can be detected by electrodes. The var- 

iation of the voltage @otential) detected by the electrodes with respect to ground during 

the depolarization is called an action potential [Guyti 11. 

An impulse running through a motoneuron causes aLl the muscle fibres of the 

motor unit to contract almost simultaneously. A fixed delay is introduced between the 

activation time of the fibres due to the different length and diameter of the individual axon 

branches innervating them. The action potential fiom the muscle fibres of a rnotor unit 

separated spatially and temporally summate to form a motor unit action potential. The 

extracellular recording of the depolarization and repolarization xunning through the 

muscle fibres provide the basis for electromyography (EMG). Wïth surface electrodes a 

population of motor units are actually recorded rather than a single motor unit, since the 

motor units tend to overlap their fibre territories spatially [BaDe85]. 

The amplitude of detected action potentials is dependent on the diameter of the 

muscle fibre, the distance between the active muscle fibre and the detection site, and the 

filtering properties of the electrode. The duration of the action potentials is inversely 

related to the conduction velocity of the muscle fibre and the nerve branch [BaDeM]. The 

t h e  delay of the action potentials of different muscle fibres detected by an electrode is 

also a function of the differences in distances of the muscle fibre with respect to the 

electrode site. The shape and amplitude of the motor unit action potential is dependent on 

the geometric arrangement of the active muscle fibres with respect to the detection point. 

Since the muscle fibres of different motor units are scattered in a semi-random fashion 
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throughout the muscle, the infornation recorded by a surface electrode does not relate to a 

specific motor unit. 

The time domain and fkequency domain characteristics of the EMG signal can be 

used as a means for studying the muscle contractions. Several parameters of the EMG 

signal such as the root mean square (RMS) of the amplitude, median power fiequency, 

mean power fkequency, peak eequency are the ones often used for studying the behaviour 

of the EMG signal 

2.3 Muscle Contraction 

Each muscle contains muscle fibres. The individual fibres are broken d o m  to 

myofibrils. Each myofibril consists of aggregates of myosin and actin filaments. The actin 

filament is a thin fiber with two negatively charged molecules that spiral around each 

other. The myosin filament, which is thicker and dso negatively charged, is made up of 

molecules with globular heads. In the resting state the actin and myosin filaments lie next 

to each other, repelled by their negative charge. In 1950, Huxley proposed a mode1 

describing the act of contraction. The nerve action potentid causes a release of 

acetylcholine at the neuromuscular junction. This sends a charge through the transverse 

tubules which causes a release of calcium into the space where the myosin and actin fibres 

are located. The calcium, having a strong positive charge, bonds with one of the proteins 

making up the actin filament. This causes a change in configuration of the actin filament 

which allows binding of myosin with actin. The rnovement of the myosin crossbridges 

that link actin and myosin, provide the force that pushes the thin actin filaments dong the 

thick myosin filament. Each myosin head has two binding sites on it: one for an ATP 

molecule and one that binds to actin. Myosin is a motor protein that converts the chemical 
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bond energy of ATP into the mechanical energy of motion. The energy released by ATP 

changes the angle between the head of the myosin molecule and the long axis of the 

myosin flament This rotation of the myosin head on its flexible neck creates the power 

stroke that is the basis for muscle contraction. During the power stroke, the movernent of 

the myosin head, pushes the actin filaments to slide dong the myosin filament. At the end 

of a power stroke, the myosin releases the actin, swings back and binds to a new actin 

molecule, ready to start another contractile cycle. This process repeats many times as a 

muscle fibre contracts [SiOG98]. 

There is an element of randomness in this phenomenon due to the random 

discharge of acetylcholine packets at the neuromuscular junction which ulbately 

controls the release of calcium within the muscle ce11 PaDe851. 

To sustain a contraction the motor unit must be repeatedly activated. Successive 

muscle twitches overlap in time, meaning that the first muscle twitch is not cumpletely 

over by the time the second one begùis, therefore since the muscle is already in a pattially 

contractai state when the second twitch begins, the degree of muscle shortening is slightly 

greater than before. Consequently the summation of successive contractions become 

greater and greater until an optimum frequency is reached [Gus7 11. 

Furthemore the overlap of adjacent motor units also allows the separate motor 

units to contract in support of each other rather than act individually. The force of 

contraction increases progressively as the number of contracthg motor units increases. 

2.4 Muscle Functionality 

Generally, it has been agreed that muscles controlling fine movements have the 

smallest number of muscle fibres per motor unit while large coarse-acting muscles have a 
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larger number of muscle fibres served by one axon [Guyt'l 11. This innervation ratio is not 

fixed for al1 the motor units in a single muscle. Within a muscle there are srnaller motor 

units which are excited earlier during a contraction, than larger motor uni& which are 

activated at higher force levels wcco96]. The longer the muscle the more and the faster it 

can shorten and the thicker the muscle the more force it can develop. 

The muscle fibres can be divided into the following three broad categories. 

1) Type 1: Slow-twitch fibres take more than 35 milliseconds to complete a 

depolarization/repolarization cycle. They are dark red in appearance. These fibres twitch 

less than 25 times per second, and are fatigue resistant. 

2) Type II a: Fast-twitch, fatigue resistant fibres which are reddish and have a slow 

rate of fatigue due to their aerobic capacity. They are classified as Type II a fast-twitch 

fibres. 

3) Type II b: Fast-twitch, fatiguable fibres take less than 35 milliseconds to twitch 

and are whitish in appearance. These fibres are not resistant to fatigue and have a hi& 

anaerobic capacity. These are categorized as Type II b fast-twitch fibres. 

Small slow nerve fibres activate a slow-twitch muscle while large fast nerve fibres 

activate fast-twitch muscles. Most muscles contain a mixture of fast and slow twitch fibres 

[CrKa98]. 

One muscle can do work in different ways. One way of classifjing the muscle 

activity is according to the changes of the length of the muscle. An homehic contraction 

is one during which the length of the contracting muscle remains constant. Anisometnc is 

one during which the length of the contracting muscle may Vary @3aDe85]. 

Another classification of the muscle activity is according to the contribution of the 



Chap ter II: EMG 

muscle in a certain rnovement. Agonis? muscles are the prime rnovers or the ones which 

initiate the contraction, synergr.st or helper muscles are ones which their activity provides 

an additive contribution. AntugonLsr muscle is one which actively provides a negative con- 

tribution to a particular contraction [CrKa98]. 

2.5 Patterns of Recruitrnent 

Force cm be generated by increasing the number of new motor units or by 

increasing the firing rate of the motor units. It is a common belief that at the begllining of 

a contraction, recruitment of new motor units is a dominant factor with the small rnotor 

units being recruited £irst while the increase of firing rate plays a secondary role. However, 

for force levels ranging from 30% to 75% of maximum voluntary contraction, the 

dominant factor is an increase in firing rate. The firing rate of motor units is also muscle 

dependent. In general the smaller the muscle the higher the firing rate PaDe851. 

During a constant force contraction, motor unit rotation takes place, that is the 

newly recruited motor units replace previously active ones [BaDe85]. If the contraction of 

a muscle is sustained with enough force for a long time, the conduction velocities of the 

action potentials dong the muscle fibres begin to slow down and the muscles begin to 

twitch less fiequently, which results a reduction of the median frequency of the muscle 

energy. The decrease in the firing rate of the motor units is more evident in fast-twitch 

fibres than in slow-twitch fibres PaDe851. 

The order of recniitrnent of the motor units during a contraction is reported to be a 

function of motoneuron size, size of motor units, fibre type, size of muscle and also the 

bct ional  role of the muscles. Motor uni& with smaller axons are recniited fkst 

[FDWK73]. In a steady contraction, smaller motor units are recnllted before the Iarge 
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ones f.rcw96]. The Type 1 fibres are recmited fint followed by Type II fibres. In sudden 

movernents Type II fibres are recniited first Wcco961. Small muscles recruit al1 their 

motor units below 50% maximum voluntary contraction and larger muscles recruit motor 

units throughout the M l  range of vo1untax-y force PaDe851. The order of motor unit 

recruitment is aIso a function of the hct ional  role of the muscle. McComas cited Gilen 

and Denier Van Der Gon to state that "in the biceps the threshold of a motor unit depends 

on whether the muscle is being used to fiex the elbow, supinate the forearm, or extemally 

rotate humerus" [GiDegO] CMcc0961. 

The nervous system in fact controls pools of motoneurons rather than individual 

motoneurons, this is known as comrnon drive. Further explanation of this process can be 

found in @3aDe85]. 

2.6 Summary 

In this chapter, we gave an overview of the mechanism of muscle contraction and 

the important factors involved and we discussed the sources of the EMG signals. The t h e  

domain and fiequency domain characteristics of the EMG signal are ofien used as a mean 

for studying the muscle contractions. Since we want to investigate the possibility of using 

the multifiactal dimensions of the EMG signal as analysis criteria in this thesis the next 

chapter will provide a background on fiactals, chaos and strange attractors. 
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CHAPTER III 
BACKGROUND ON FRACTAL DIMENSIONS, CHAOS AND 

STRANGE ATTRACTORS 

Tne objective of this chapter is to provide the reader with an introduction to fkactal 

geometry and chaotic dynamics. Fracta1 geometry, which was popularized by Mandehot 

in 1960, provides us with a tool for describing objects which are difficult to describe by 

Euclidean geometry, such as trees, rivers, coastlines, and lightning ms94]. Chaotic 

dynamics are used for the study of the behaviour of nonlinear dynamic systems such as 

growth and decay of populations, oscillatory output of a nonlinear electricd circuit, and 

thermal convection . Under certain conditions, these detemiinistic systems can manifest 

an unpredictable and cornplex behaviour which can be confused with randomness. The 

theory of chaos provides a tool for differentiating between noise and the chaotic behaviour 

of deterministic systems. 

In this chapter, we first give an introduction to fiactal sets and their properties and 

discuss the basic concepts of Euclidean, topological, and morphological dimensions. nie 

second section de& with chaotic strange attractors and how these systems are related with 

the concept of nrictality and fractal dimensions. This discussion is followed by the 

presentation of several nonlinear dynamic systems with chaotic behaviour. In the last 

section, multifiactais and the generalized Rényi dimensions are ïntroduced. 

3.1 Morphological Dimensions and Fractals 

3.1.1 Euclidean and Topologieal Dimensions 

The Euclidean dimension, DE, is simply the number of coordinates required to 
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specify an object spatially. 

Fig. 3.1. The topological dimension of an object does not change under 
homeomorphic transformations- 

The topological dimension on the other hand has its roots in a branch of 

mathematics h o w n  as topology which deals with those features of objects that are more 

qualitative and which do not change under proper transformations (homeomorphisms). 

Homeomorphisms are functions which are one to one, onto, continuous and also have a 

continuous inverse hction.  A hole in an object remains a hole regardless of proper 

transformations such as stretching or twisting. The topological dimension derives fiom 

the ability to cover the object with discs of mal1 radius. A line segment rnay be covered 

using many discs intersecting many times with each other. However, it is possible to refine 

the covering using discs with only a single intersection between adjacent pairs of discs. 

When the line is transformed by a homeomorphism, one can still find discs suficiently 

small to cover it with just having intersections at adjacent pairs of discs. If we try to cover 

a two dimensional surface with spheres of small radius, we cannot have a complete 

covering with only intersecting the pairs of adjacent spheres. A complete covering 
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requires groups of three spheres intersechg with one another. The covering of an object 

b y elements of srna11 radius requires intersections between a minimum of D + 1 groups 

of elements, where DT is the topological dimension of the object. The topological 

dimension, DT, of an object does not change under proper transformations [Addi97]. 

3.1.2 Strictiy SeKSimilar Objects and the Self-Similarity Dimension 

A stricly self-similar object is an object which is constructed fiom exactly self- 

similar segments, under various degrees of magnification. That is to Say each small part 

replicates the whole structure exactly. 

The Cantor set [Cant83] is one of the most fiequently quoted self-similar objects 

dong with the Koch curve [Koch041 and the Mandelbrot set [MandgO]. The Cantor set 

consists of an infinite set of points on a unit interval, but it is not a continuous one 

dimensional line. Maybe the best way to describe a Cantor set is to explain the way it is 

constructed. One can generate the Cantor set through an iterative process starting fiom an 

initiator. The initiator of a Cantor set is a straight lke. The generator is an algorithm 

describing the transformation fiom the initiator to the largest scale object. In the case of 

the Cantor set, the initiator is transfomed to three line segments with qua i  lengths and 

then the middle segment is eliminated as shown in step 1 of Fig. 3.2. The second step is to 

begin fiom the results of the first step, and apply the generator to each of the rernaining 

segments of step 1 [Kins97]. If this process is iterated infintely, what is left is a collection 

of infinitely smd line segments whose individual and combined lengths approach zero. 

This set of "points", or infinite small line segments, is called the Cantor set or Cantor dust. 

The process of constructing a Cantor set is illustrated in Fig. 3.2 for the first three steps. 
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Step 1 

Fig. 3.2. Consîruction of Cantor set, the first three steps. 

Vanations of the Cantor set can be constructed by changing the remaining pieces 

in the process or choosing different lengths for the remaining pieces, but still the same 

object with a complex structure is produced. If we zoom in any section of the Cantor set 

we find a structure which resembles the whole object. 

The Euclidean dimension of the Cantor set is obviously one as only one coordinate 

direction is required to speci% al1 the points in the set. It can also be seen that it is 

possible to find single, non-intersecting discs of smaller and smaller radius to cover al1 the 

sub-elements thus the topological dimension is zero. The self-similar structure of the 

Cantor set and other self-similar objects motivated the introduction of the self-sirnilarity 

dimension. The concept of self-similarity dimension is associated closely with the scaling 

properties of the object. 

Consider a line, surface and a cube of length L , area A , and volume V, ail equal 

to unity. If we divide the line to N srnaller self-similar segments, each of Length 6 then 

2 
If we divide the surface to N self-similar segments each with an area of 6 then 
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And finally applying the same logic to the unit volume we have 
3 

V = M  = 1  

The exponent of 6 at each case is a measure of the dimension of the object. In gen- 

eral, if the object is made of N self-similar, non-intersecting segments where each can be 

covered exactty by a hypercube of side 6,  then the self-similarity dimension, Ds, is 

where the hypercube has the same Euclidean dimension as the object [Mand83]. These 

hypercubes are also refemed to as vels (volume elements) as proposed by Kinsner 

F;ins97]. N and 6 are said to have a power 1 aw relationship. Taking logarithms of both 

sides gives 

log ( N )  
Ds = log ( 1 / 6 )  

Applying this fonnula to the Cantor set constructed before, and observing that the 

lefi-hand third of the set contains an identical copy of the set, and so does the right-hand 

side thud, for 6 = 1 /3 the fkactal contains N = 2 self-similar segments. So according 

to the equation above 

- log (2) - - log ( 2 )  = 0.6309 
s - O ( 1  ( 1 ) )  log (3) 

The same Ds results for self-similar segments of size 6 = 1 /9 or 6 = 1 /27 or any 

n 6 = 1 /3 with positive nonzero integer n . 
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3.13 Randoiniy Self-Similar Objects 

The Cantor set is an exampIe of a stnctly self-similar hctal,  that is the smder 

segments of the object contain exact copies of the whole structure, but there is another 

group of fiactals known as statistically self-similar fiactals or random fiactals. This means 

the smaller segments have the sarne statistical properties of the bigger structure ~ a n d 8 3 J .  

An element of randomness cm be introduced to the structure of Cantor set. For 

example if in each step, instead of always deleting a fixed portion of the line segments, we 

elhinate a section which is randomly chosen among the îhree possibiiities, we will obtain 

a Cantor set which is quite irregdar in cornparison to the one constnicted before but it has 

the same rich structure. An example of the random construction of a Cantor set is 

illustrated in Fig. 3.3. 

1 Initiator 

Fig. 3.3. The first three possible steps in random construction of a Cantor 
set, 

The self-similarity dimension is not useful in the identification of random eactals 

since it depends on identifjring the exactly similar segments of different scales. The 

concepts of Hausdorff and box-countuig dimensions are used to classi@ random fiactals. 
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3.1.4 Box-Counting Dimension 

To examine an object for its box-counting dimension, the object is covered with 

hypercubes or "elements" of side length 6. The Euclidean dimension of the elements can 

be larger than or equal to the Euclidean dimension of the fiactal object If N is the 

minimum number of elements which are required for a complete covering, then the box- 

counting dimension is defined as 

where V is the hypervolume of the elements with side length 6 -971. We can 

rearrange the equation to the form 

This c m  be regarded as an equation for a line with log ( 1 / 6 )  as x-variable and log (N) 

as y-variable, then the gradient of the line, Dg, is the box-counting dimension. 

Fig. 3.3. Estimation of box-counting dimension of experimental data. 
Gradient of the line is the box-counting dimension. 
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Having several pairs of the x-y coordinates of this line, DB c m  be estimated by a linear 

regression of these points. 

3.1.5 Hausdorff Dimension 

The calculation of the Hausdorffdimension of an object also deals with the corn- 

plete covering of the object, but this time the dimension of the object is estimated by find- 

ing the proper dimension of the hypercubes which give an exact memernent of the 

object. 

If we try to measure the length of a curved line by covering the curve with ele- 

ments of side length 6 and counting the nurnber of elernents needed for a complete cover- 

hg, we get an approximation of 

where N is the number of the elements and Lm tends to the tme length L only when 6 

tends to zero. The important observation is that this result is valid only when the Eucli- 

dean dimension of the rneasuring element and the object are the same. Now generalizing 

this concept, if N hypercubes of side length 6 are required to cover the object, the approx- 

imate hypervolume of the object is given as 

For a specific choice of DH, when 6 tends to zero, the measured hypervolume of 

the object tends to the actual value. If the chosen exponent is larger than that specific 

choice then the measured hypervolume tends to infinity and if the exponent is smaller than 

that the measured hypervolume tends to zero. The Hausdorfdhension of the object is 
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that critical exponent where the equation transits f?om zero Iimit to infinity limit Non- 

integer exponents are allowed Mand83J. 

The forma1 definition of a fiactal was given by Mandelbrot as "a set for which the 

HausdorEdimension strictly exceeds the topological dimension." Wand831. These 

objects are called fi-actals because of their non-integer fi-actional dimensions. 

Since aU dimensions mentioned in this chapter deal with the morphology of the 

objects, they are ail classified as morphological dimensions. Other classes of dimensions 

are presented later in this chapter. 

3.2 Chaos in Nonlinear Dynamic Systems 

The majority of naturaI phenomena can only be modelled as nonlinear systems. 

Since nonlinear systems are very difficult to analyze mathematically, linear systems are 

usually prefmed for modelling purposes. But only nonlinear systems are capable of 

exhibithg a chaotic behaviour which presents a more accurate mode1 of the natural 

phenomena. Mathematical research in chaos can be traced to 1890, when Hénri Poincaré 

studied the stability of the solar system. He made the first discovery of chaos in the orbital 

motion of three celestial bodies which exerted gravitational forces upon each other 

PeJS92J. Edward N. Lorenz encountered chaos in the numerical studies of the set of 

differential equations he used for testing weather prediction [Lore63]. David Ruelle and 

Floris Takens suggested in 1970 that turbulent flow might be an example of chaos 

m T a 7  Il. 

In the following sections we first give the foxmal topological definitions of chaos 

and attractors and then proceed to make the connection between these topological defini- 
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tions and the solutions of nonlinear dynamicd systems. 

3.2.1 Chaos and Attractors in Topology 

In this section, we give a formal definition of a chaotic behaviour of a transforma- 

tion f :  J + J .  We also discuss the topological properties required by a bounded subset of 

J to be a strange attractor of a chaotic transformation f .  

In order to present the definitions of chaos and attlactors clearly, we need to give 

several background definitions. The objective of this section is to make a clear and unified 

definition of concepts such as sensitivity to initial conditions and denseness of sets used in 

this thesis. f :  J + J is a fuaction in all the definitions. 

Dehition 1 : f : J -t J is said to be topologically transitive if for any pair of open 

sets U, V c  J there exists k > O such that f ( U )  V #  O, where f ( U) means the kth 

iteration of subset U under the transfomation f .  

Dehition 2 : f : J + J has sensitive dependence on initial conditions if there 

exists E > O such that, for any x E J and any neighborhood M of x, there exists y E M 

and n 2 O such that [f ( x )  -y (y) 1 > E 

Definition 3 : Let S c R where S and R are arbitmy equations. A point x E R is 

a limit point of S if there is a sequence of points x, E S converging to x . S is a closed set 

if it contains al1 of its limit points. 

Definition 4 : The forward orbit of x is the set of points x, f (x) ,f2 (x) , . . . . If f is 

a homeomorphism, we define the fidl orbit of x, as f (x) , for naturd n . If f ( x )  = x , 

x is a fixed point off. The point x is a periodic point of period np if ( x )  = x . 
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Definition 5 : A subset S of R is dense in R if closure of S ( S and its limit 

points) equals to R . 

Definition 6 : Let J be a set, f : J +  J is said to be chaotic on J if 

1. f has sensitive dependence on initial condition; 

2. f is topo1ogicalIy transitive; and 

3. Periodic points are dense in J . 

A chaotic map has three ingredients: unpredictability, indecomposibility, and an 

element of regularity. A chaotic systern is unpredictable because of the sensitive 

dependence on initial conditions. It cannot be broken down or decomposed into two 

subsystems which do not interact because of its topological transitivity. The element of 

regdarisr stems fiom the fact that the periodic points are dense. Peva891. 

Dennition 7 : Let f: J -+ J be a given transformation. A bounded subset A of J 

is a chaotic and strange attractor for the trdomation f if there exists a set R with the 

following properties. 

1. Attractor. R is a neighborhood of A ,  Le., for each point x in A there is a srnall 

disk centred at x which is contained in R . This implies in particular that A is in R . R is a 

trapping region, i.e., each orbit started in R rernains in R for al1 iterations. Moreover, the 

orbit becomes close to A and stays as close to it as we desire. Thus, A is an attractor. 

2. Sensitivity. Orbits started in R exhibit sensitive dependence on initial 

conditions. This makes A a chaotic attractor. 

3. Fractal. The attractor has a fiactal structure and is therefore called a strange 

attractor. 
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4. Miring. A cannot be split into two different attractors. There are initial points in 

R with orbits that get arbitrarïly close to any point of the attractor A PeJS921. 

Furthur formai topological discussion on this subject can be found in [Deva89]. It 

shodd be noted that a final definition of an attractor is still not completely established 

since the fou. properties above have been proven to be dependent, for exarnple mixing and 

sensitivity are intmelated. 

3.2.2 Chaotic Dynamical Systems and their Attractors 

TO begin with, take a system of N first order ordinary differential equations 

This is an example of a dynarnical system, because the system evolves in t h e .  

Time is a continuous variable in this system. Considering numencal methods such as 

Runge-Kutta for numerical solutions to this kind of systerns, for any initial state of the 

system, the equations c m  be solved in principle to obtain the future States. The path 

followed by the system as it evolves with time is cdled an orbit or a trajectory. Plotting 

the evolution of two or more independent variables of the system versus each other will 

give thephase spaces or the stnte spaces of the system in finite time intervals. Now we 
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can ask this question: if we know in complete detail the past history of the process, can we 

predict what will happen to it in fbture? 1s it possible to deduce the longterm or the 

asymptotic behaviour of the system? The concept of chaos arises with an attempt to 

answer tiis question and it is closely related to the definition of bbcornplete detail" and 

precision. 

The behaviour of a nonlinear dynxnical system can fall into three classes: stable, 

unstable, and chaotic [JoSrn87]. Stable behaviour means that afier some t r a i e n t  period 

such systems settle in a periodic or a steady state motion. Unstable behaviour means that 

the traj ectories are aperiodic and unbounded. But the dissipative systems of differential 

equations in two dimensions or more c m  have bounded trajectones whose behaviour does 

not converge to an equilibrium point nor to a periodic or quasipenodic orbit. They can be 

attracted by an object of complicated structure which attracts the neighbour points but has 

some inherent instability dong it. These attracting sets or strange uttractors are no t simple 

geometrical objects and cannot be well characterïzed as integer dimensional objects. 

Actually the strange atîractors are fiactals. One system of nonlinear differential equations 

can exhibit stable, unstable, or chaotib behaviour depending on the range of the 

parameters involved in the definition of the equation and the value of the initial 

conditions. 

It is important to note that although the trajectorks of chaotic dynamical systems 

are neither periodic nor quasi-periodic, and the Fourier transfomi of them yields a broad- 

band spectrum, these systems are still deterministic and not stochastic because their 

behaviour is govemed by a set of equations [Addi97]. However, longterm prediction of 

the behaviour of chaotic dynamical systems is impossible because they are extremely 
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sensitive to the initial conditions. Exact initial conditions will always create the same 

trajectories but the numerical tools used for the calculations do not possess -te 

resolution, therefore, any error in spec img  the initial conditions or during the iterative 

calculation of the trajectones can give a result which is not be accurate for prediction 

purposes peJs92]. 

The study of trajectories of differential equations can be made simple by taking the 

intersection of the trajectories with a given hyperspace. Consider the autonomous system 

and its phase diagram in the x, y plane. Let Z be a curve or a cross section of the plane 

with the property that ît cuts each phase space path trmsversely, that is, it is nowhere 

tangentid to a phase path. Consider a point A. (x,, y,) on the cross section 2. If we 

follow the phase space path through A. in its direction of fiow then ît next cuts Z at 

A ( x l ,  y ,  ) . This point is the first r e m  or Poincaré ma. of the point A, . If such a point 

exists we called it the first r e m .  We can continue in the same fashion obtaining the rest 

of the points of the mapping. This reduction of a continuous time system of dimension n 

to a discrete tirne system of dimension n - 1 is called the Poincaré section technique 

[JoSm87]. We shall now continue with the examples of some well h o w n  attractors to 

investigate fbrther the properties of these fkactal objects. 

3.2.3 The Hénon Attractor 

The Hénon attractor is an example of an attractor of a discrete dynamical system. 
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This system evolves in time with discrete steps in contrat to a continuous time system. 

Both chaotic and periodic solutions c m  be found for Hénon set of equations depending on 

the value of parameters a and b . The equaîions are defhed as 

The trajectones of both variables have been plotted in Figs. 3.4 and 3.5 for two 

sets of parameters. The first set which is a = 0.9, b = 0.3 leads to a periodic post tran- 

sient behaviour. The second set of parameters, a = 1.4, b = 0.3 , produces a chaotic 

behaviour, so the trajectory is aperiodic with a broad-band spectnim. The initial values are 

x(0) = y ( 0 )  = 0.8 forbothexperiments. 

1 

- 4 20 40 60 80 100 

t 
Fig. 3.4. The penodic hajectory of the Hénon attractor (a) The trajectory for the 

x-variable (b) The trajectory for the y-variable. 
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t 
0) 

Fig. 3.5. The chaotic trajectory of the Hénon attractor (a) The trajectory for the 
x-variable. (b) The trajectory for the y-variable. 

The phase space of the chaotic trajectory is plotted in Fig. 3.7. The periodic phase 

space shows that the initial values of the variables converge to two penodic points and 

oscillate between thern. But the phase space of the chaotic solution reveds a completely 

different structure. In Fig. 3.7 we can see that the outline of the structure called the Hénon 

attractor. We can see that the converged trajectory lies in the boundaries of the attractor 

structure. The boundaries of the attractor structure contain the boundaries of the chaotic 

solutions. Any attractor has a basin of convergence for which al1 the initial values falling 

into this basin converge to the attractor. An initial value has a distinct trajectory on the 

attractor which never crosses itself since the trajectories are not penodic. A small 
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diffaence in initial values c m  lead to a completely different trajectory. The Hénon 

attractor is a hc t a l  object. 

Fig. 3.6. The phase space of the chaotic solution of the Hénon attrcator for a=l.4, 
b=O.3. 

To show more clearly what we mean by an attracting region we perfonn the 

following experiment. If we take a 100x100 matnx in the region -1 .O I x 5 1 .O and 

-0.1 <y  5 0.1 and iterate every point several times through the Hénon equations we will 

see that the transfonned plane will converge to the Hénon attractor [Héno76]. So, we can 

speak about a trapping region R from which no orbit can escape and any orbit will 

converge to sorne limit set. The Hénon trapping region calculated by Hénon is a 

quadrilaterd with vertices (-1.33,0.42) (1.32,0.133) (1.245, -0.14) (-1 -06, -0.5) mén0761. 

Having the trapping region R for the attractor we can define the attractor as the set 
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where if is the kth iteration of R through the Hénon tramfoxmation H . To obtain a 

picture of the attractor, it is sufficient to compute just a single orbit of an initial point 

picked at random somewhere in the trapping region. Selecting a different random initial 

point gives the same visual resdt. However, although two different orbits generate the 

same limit set, typically there is no correlation between hem, even if they are very close. 

This is not a general rule because the second initial point might be a point on the trajectory 

of the first one. If we repeat the iterations for the region used in Fig. 3.8 we can see that as 

we approach infinity more and more curves will appear in the parabola shape. In faci, for 

k = m the Hénon attractor consists of infinite number of parabola layers. A cross section 

of the Hénon attractor is a type of Cantor set [PeJS92]. 

Fig. 3.7. The iteration of the points between -1 -0 5 5 1.0 and -0.1 < y 1 0.1 

with the Hénon equations: (a) The original matrix, (b) afier the first 
iteration, (c) after the second iteration, and (d) d e r  the third iteration. 
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3.2.4 The Lorenz Attractor 

Lorenz equations are given as 

The value of the parameter r is the critical value which determines the stability of 

the solutions. The critical range of r is between 27.74 and 100.5 between which the 

equation shows a chaotic behaviour. Figures 3.9 and 3.10 show three-dimensional phase 

spaces of a chaotic and a periodic solution of the equations and outlines the bounds of the 

Lorenz attractor. The parameters are a = 10, q = 2.67 and r = 16 for the periodic 

solution and r = 28 for the chaotic solution. The initial values are x (O) = y (O) = 12 

-50 -50 

Fig. 3.8. The phase space of a periodic solution to the Lorenz equations. 
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Fig. 3.9. The phase space of a chaotic solution to the Lorenz equations. 

3.2.5 The Rossler Attractor 

The ROssler attractor is given by the set of equations 

This system has only one nonlinear term. Setting the parameters to h =0.2 and P =0.2 and 

varying the third parameter Y, we can iind a perïod doubling sequence to chaos. 
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Fig. 3.1 0. The 3-dimensional solution of the Rossler equations for h =0.2, 
p =0.2, ï =5.7 the initial conditions are x (O) =-1, y (O) =O, 
z (0) =o. 

Fig. 3.1 1. The single dimensional trajectory of the chaotic solution of the 
R6ssler equations for h =0.2, P =0.2, T =5.7 with initial conditions 
are x (O) =1, y (O) =O, z (O) =O. The equations have been solved 
using the numerical method of fourth order Runge-Kutîa and 
iterated 25000 times. 
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Four phase space portraits are shovm for different values of  ï in Fig. 3.13. 

-5 O 5 10 

Fig. 3.12. The phase portraits for variables y and x with different values of 
parameter ï and L=P=0.2: (a) T=2.0, (b) 3'=3.5, (c) F4.0, 
and (d) T=5.7. 

The behaviour of the variable z is of particular interest. As shown in Figs. 3.1 1 and 3.12, 

we see the sudden firing of the z value which is the main cause of the exponential diver- 

gence of the nearby trajectones, and then the attractor is again folded over and the trajec- 

tories are reinjected back to the center of the attractor. 
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3.3 Complexity Measures and Mdtifractals 

The morphological dimensions of an attractor are measures for its spatial scaling 

properties. We can apply the box-counting dimension, Dg y as defined before on the 

attractors. The dimension of the hypercubes should be chosen equal to the Euclidean 

dimemion of the phase space, Le., the number of degrees of fkeedorn of the system. But 

the morphologicd dimensions are not capable of revealing the cumplexity of the fiactal 

objects fully. In this section other measures are presented for a complete description of the 

complexïty of the h c t d  objects. We also see how to use these measures for the study of 

the cornplexity of strange attractors. 

33.1 Information Dimension 

The information dimension, DI, is a measure of the differences in the distribution 

density of the points covering the object For the calculation of DI, the object is covered 

with hypercubes of side length 6. But this time instead of only counting the number of 

cubes which contain part of the object, we calculate a probability Pi for each hypercube i 

of side length 6. Pi is the probability of part of the object occuring within the hypercube 

where N is the number of covering hypercubes of side length 6. 

The information dimension is estimated by repeating the above procedure for a 

diminishing range of 6 as shown below [Kim941 
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If an object is evenly distributed, an identical probability of Pi = 1 / N  wiU reduce 

the information dimension to the box-counting dimension since H ( 6 )  = log (N) . We 

see that in this dimension calculation each hypercube is weighed according to the 

probability of the object occuring in it. 

H (6) is in fact the Shannon entropy of the system, thst means the quantity H (6) 

specifies the amount of information necessary to specify a point of the fi-actal object to 

within an accuracy of 6. In other words, it is the information obtained in making a 

measurement that is uncertain by an amount 6. 

3.3.2 Correlation Dimension 

The correlation dimension is another improvement for charactenzing the density 

distribution of a fkactal. As usual, the fiactal is covered with N hypercubes of side length 

6. The probabilities, Pi, are calculated as explained for the infornation dimension. The 

correlation dimension, DC , is calculated as ms94] 

Similar to the self-similarity dimension, Dc c m  be obtained fkom the slope of a 

log-log plot of the variables 1 /6 and the correspondhg probability ensembles. 

We now explain the concept of pair correlation function, Co , and how it is related 
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to the correlation dimension. Suppose that in a real experiment points of a 5actal has 

been collected. The pair correlation funetion is deked as 

where IVpg is the total nurnber of pairs of points in the hc ta l  such that their distances are 

smaller than 6. We can estimate Dc using the cal~ulated Cb as 

The Euclidean definition of distance is used in this thesis, although the concept of 

distance is general in the definition above. For showing why Dc can be estimated using 

C, , we consider an overlapping or a non-overlapping covering of the fiactal. Considering 

the ith hypercube of side length 6 ,  containing ni points of the objecî, the number of the 

ordered pairs of points inside this hypercube which their distances are smaller than 6 is 

ni x ( n i  - 1 )  . Therefore, if the covering consists of N hypercubes then Na can be 

estimated as follows [Kins97] 

Now we have 

since the second 1 s t  of the last equation is obviously going to zero and since 
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(3.24) 

Its important to note that we have only made an estimation of NH in these 

calculations. If the covering of the fractal object is non-overlapping then using the pair 

correlation function will give an over-estimation of the probability ensemble, and if the 

covering is over-lapping then using the pair correlation function will give an under- 

estimation of the probability ensemble. The estimation of the Dc using the pair 

correlation function is commonly used in literature due to its fast and easy implementation 

. The pair correlation function is calculated by scanning al1 the points of the object one by 

one. If the object contains Nn points, for each @en point Di, a11 the other points iïj are 

tested to see if they fa11 into a hypercube of side length 6 centred at ü,. . According to 

[GaRa92] 

where 8 is the Heaviside function. 

3.3.3 Natural Measure, Multifractals, and Generalized Rényi Dimensions 

Consider a subset B of a space X in which an attractor lies. Orbits that are typi- 

cally observed in computational studies seem to eventually fil1 up the attractor densely. If  

al1 orbits which start in or near the attractor fill up the attractor densely, then the systern is 
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called ergodc. We can count the nurnber of times an orbit enters the subset B, and it is 

natural to assume that the percentage of al1 points which are in B stabilize as we perf'om 

more and more iterations. This percentage is calied the natural meusure, p (B) for the 

system. The naîural measure can be understood as a means of quantimg the mass of a 

portion o f  any object. 

Now consider a point u on an object and hypercubes Bs (ii) of side length 6 

centred at ü . The probability or the mass containe. in this hypercube is p (BS (ü) ) . a is 

the exponent in the power law relationship which specifies how fast this mass decreases as 

6 decreases to zero. 

The exponent oc is also called the Holder exponent at point (x, y) . If this scaling 

law holds for dl points on the object with the same a, then the object is a hornogeneous 

fractal. If CL varies for different regions then the object is called an inhemogeneous fiactal 

or a mu1tJ;actaZ m s 9 7 ] .  

It can be easily seen that for a un i fody  distributed mass of points in an object we will 

have 

D, = LI, = D, 

While for an object with non-unifoxm distribution of mass we get 



Chapter ID: Fractals and Chaos 

The values for Dc and DI approach Dg as the object becomes more u n i f o d y  

distributed. As we can see the relation of the three dimensions, i-e., their equality or their 

unequality c m  be a measure of unifomity or non-unifonnity of the m a s  distribution of 

the object. One single dimension is inadequate for describing the distribution of different 

densities in the fiactal set. In fact, if an object contains two or more merged fiactals, the 

h c t a l  with the larger dimension will mask the fiactal with the Iower dimension [Chen97]. 

One single value is not able to manifest the nchness of the complexity of the object. Rényi 

generalized the idea of one dimension to introduce the spectnim of Rényi dimensions 

[GrPr84][Kuis97]. Considering a covering of an object with N hypercubes of side length 

6 

where P i  is the probability of the object occurrhg in the i th hypercube of side length 6 . 

Note that P i = p  (Bi )  . The Dg is monotonie and strictly decreasing for a multifractal 

object. q is a real value and Dg has an infinite number of values. When q approaches - 
then the ensemble shows the contribution of the largest P i .  When q approaches -0 the 

ensemble shows the contribution of the smallest Pi. This can be proven as below 
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where Pm, is the largest non-zero probability. Similarly 

where Pmi, is the lowest non-zero probability. For q = O the Rényi dimension reduces to 

the Ds [Kuis97] 

For q = 1 the Rényi dimension reduces to the DI. Since H, (6) cannot be calculated 

directly we apply L'Hopitall's rule to get the limit 

and since - = cxlnc 
dx 
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For q = 2 the Rényi dimension reduces to the Dc 

A comprehensive and unified presentation of the dimensions can be found in 

F;ins97]. The concept of a pair correlation fiuiction c m  be extended to a q-tuple 

correlation function, considering counting the q-tuples of different points having distances 

smaller than 6 in the object. Therefore, we can obtain an estimation of Dq with 

calculating the q-tuple colrelation fünction. The proof can be shown with a similar 

assumption and procedure as for pair correlation. 

The works of Grasberger and Procaccia [GrPr83a][GrPr83b] for efficient 

computation of the pair correlation function has been expanded by Pawelzik and Schuster 

PaSc871 and Atmanpacher [AtSV88] to show that higher order Rényi dimensions cm be 

calculated efficiently for strange attractors using the pair correlation function. Consider a 

d-dimensiond phase space of a system which is covered with hypercubes of side length 

6 . Pi is the probability that a trajectory on the attractor visits the hypercube i , and N is 

the number of non-empty hypercubes. Recall the definition of the D, dimension 
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(3.39) 

Since the P: c m  be written in terms of the nahiral probability measure p (x) we cm 

write 

where Bg ( x )  stands for a hypercube of side length 6 around the point x on the trajec- 

tory. By ergodicity of the trajectories of strange attractors we c m  write 

where NT is the total number of the points on the trajectory counted in the experiment. 

- (6) is the probability to find a point of the trajectory withui a hypercube of side 

length 6 around the point j of the trajectory. The change nom q to q - 1 is due to the 

fact that we are switching from calculating the probability of fmding the trajectory in one 

of the homogeneously distributed boxes covering the attractor to the probability to find the 

trajectory within a hypercube around one of the ùihomogenously distributed points of the 

trajectory. Since 
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where 6 is the Heaviside step hinction and üi and üj are the vector representations of the 

points on the trajectory, cornbining these equations with the definition of D, we derive the 

final equations which are used through the rest of the thesis for cdculating the Rényi 

dimensions of the strange attractors. 

3.4 Summary 

In this chapter, we reviewed the basic concepts involved in the study of fiactal 

objects and their morphological and entropy dimensions. We also reviewed the concept of 

multifiactality and the spectrum of Rényi dimensions. We saw that detemiinistic dynami- 

cal systems can behave in a complicated manner that is referred to as chaos and the phase 

portraits of these chaotic systems have a fractai structure. In the next chapter we will con- 

tinue the study of strange chaotic attractors and we will review the methods for recon- 

struction of the attractors from experimental time series. We will also Uivestigate further 

the correlation fbnction method for the calculation of the Rényi dimensions for strange 

attractors. 
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CHAPTERTV 

RECONSTRUCTION OF STRANGE AT'TKACTORS 

In this chapter the implementation of the cordation integral to calculate Dg is 

discussed. We explain how to detemine the range of size of the hypercubes in the 

covering and how to calculate the dimensions by estimating the power law relationship of 

the q th order ensemble of probabilities with the sizes of hypercubes. The reiationship 

between the number of points on the trajectory and the calculated dimensions are also 

discussed. The second section of thie chapter discusses the problem of reconstructing the 

attractors using the trajectoiy of single variables and the difficulties involved in this 

process. We specifically discuss the techniques used for choosing the best lag and the best 

ernbedding dimensions for the reconstruction of the phase spaces. The third section 

presents techniques for distinguishing between chaotic and non chaotic data. The 

trajectory of the attractors irnplemented in Chapter 3 are used to investigate the techniques 

presented in this chapter. 

4.1 Spectrum of Rényi Dimensions for Strange Attractors 

4.1.1 Calculation of the Correlation Integr al 

The calculation of the Rényi dimensions of attractors can be irnplemented using 

the q th order correlation integral 
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First, the trajectory of each of the independent variables of the system is produced using 

the fourth order Runge-Kutta technique for numerical solution of dynamical merentid 

systems. The ergodicity of the system implies that a single trajectory of the system fills the 

attractor densely, therefore, we can estimate the hc ta l  dimension of the attractor using a 

single orbit. In order to calculate the correlation sum, Cs,, for a specific value of hyper- 

cube, 6, we have to visit every point in the trajectory and calculate the distance of the 

point to al1 the other points. This way, for each point 4 on the trajectory we can count the 

number of points that fa11 into a hypercube of size 6 centred on 5. Dividing the number 

of points in each hypercube by the total number of the points in the trajectory, Nn , gives 

the probabilities needed for calculating the ensemble. The next step is to raise each proba- 

bility to the power of q - 1 and add up all the results to obtain the final value of 

Cs, is then calcdated using this result. 

Finally, the Dq can be estimated by repeating the same process for several values 

of 6 and calculating the Caq conesponding to each of them. Dq is estimated by the power 

law relationship between 6 and Caq . Therefore, we use a log-log plot of these two varia- 

bles to estimate Dq similar to the technique we used for the dimensions presented in 

Chapter 3. Now three questions have to be answered: How to choose the best ranges for 

the sizes of the hypercubes? How to distinguish the linear region of the log-log plots and 

how to approximate the slope of them? 
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In order to find the best range of sizes of the hypercubes we have to make sure that 

the chosen range includes the upper and lower saturation levels of the probabilities. We 

have to consider that in real computations we always have a limited number of points of 

the attractor. If the size of the hypercubes is larger than the size of the attractor, the whole 

attractor fills in the hypercubes and the value of the probabilities and consequently the 

value of Cs, reaches a saturation point. We can see this effect in the log (6) - log (CS& 

plots where the curve begins to taper off and becomes horizontal as m e r  increases in the 

hypercube size do not increase C6q. This cm be seen in Fig. 4.1. 

For small ranges of 6, the probabilities should not saturate theoretically because 

the attractor has a structure similar to the Cantor dust and as we zoom in, f i e r  and b e r  

structure should be revealed and we should be able to get arbitrarily close to each point. 

But due to the finite resolution of the computed attractor, we actually reach a lower range 

of 6 where passing that range the number of points in each hypercube stays fixed. The 

lower range of 6 depends on the number of points we generate for the attractor and the 

time step, A t ,  that we use for solving the differential equations numerically. We c m  see 

the effect of the lower saturation level on the log (6) - log (C6,) curve as the line begins 

to fluctuate when the values of C8, are no longer accurate representatives of the structure. 
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Law-er Saturation 
Section 

Uppg Saturation 
Section 

Fig. 4.1. The linear region in the log-log c w e  is situated between the upper sat- . 
uration region and a cwed  section at the smdler values of 6 resulted 
fiom the finite resolution of the attractor on the cornputers. 

The range of sizes of the hypercubes is best chosen as a dyadic range. Since the 

approximation of the slope is performed on a logarithmic plot of base two, the values of 

the 6 are best chosen as powers of two. The linear region of the log-log plot lies between 

the upper saturation region and the lower curved section. After determining the linear 

region, the dimension is approximated by calculating the slope of the line which best fits 

in the points on the linear region. The best fit is perfonned in this thesis using the mean 

squared error technique We should note that the upper saturation level is the same for the 

log-log curves of d l  values of q . For a smooth estimation of the D, fiinction we choose 

the linear region common among the log-log cuves of al1 values of q . The biggest hyper- 

cube of the comrnon linear region is determined by the common upper saturation point. 

The smallest hypercube of the common linear region is chosen in a way to exclude the 

fluctuations of al l  the cwes.  
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Fig. 4.2. The common linear region in this log-log plot lies between the third 
hypercube size and the tenth hypercube size, counting fkom left to 
right. Each of the cuves in the plot correspond to a different value of 
q, which ranges fiom -20 to +20 (integer values). 

Using the current approach for estimating the Rényi dimensions, one is faced with 

the issue of repeatability. Can one consistently locate the linear region for approximating 

the dope without a guide and a prion knowledge of the correct slope? We should note that 

distinguishing the linear region of the log-log plots is usually done visually. The cornputa- 

tional technique used in the experhnents in this thesis is based upon the successive differ- 

ences of the log (Cg,) coordinate of the Log ( C5J -log (5) plot. The successive 

differences are compared with two tolerance ranges which pinpoint the onset of the linear 

range and the upper saturation level. The results of this computation is, however, always 

checked and sometimes modified, since the log-log plots are not alwziys monotonically 
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increasing in the linear regions, especially for the negative values of q . It is important to 

note that small alterations in the choice of the linear region can effect the bounds and the 

shape of the S-shaped D, curves. Since there is no uniform and standardized technique in 

the literature, in this thesis we will explicitly state the upper and lower range of the linear 

region for each experiment, to ensure the repeatibility of the experiments. 

It is not possible to calculate the value of Dq at q =1 directly nom the correlation 

integral. Therefore, based upon the monotonically decreasing shape of the S-curve, we 

non-linearly interpolate this value by calculating the correlation integral at real q very 

close to q = 1. This cm be compared to finding the value of D , as the limit of correlation 

integral for q -t 1 . 

Figure 4.3 shov~s the results of the calculation of the Rényi dimensions for the 

Hénon and R6ssler attractors. The parameters of the system and the initial values for gen- 

erating the trajectories stays the same for al1 the experiments to the end of this chapter so 

we wiil not repeat them later. 
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Fig. 4.3. (a) The Rényi dimensions of the Hénon attractor. Data size=20000 after 
discarding 10000 points of the trajectories. a=1.4, b=O.3, x(O)=y(O)=O. 8, 
the hypercube sues form 0.00 1 to 4.096 dyadic range. The linear region 
hypercubes range fiom 0.004 to 4.096. (b) The Rényi dimensions of the 
Rossler attractor. Data size=20000 after discarding 10000 points of the 
trajectories. h = p =0.2, Y =5.7, x(O)=-1, y(O)=z(O)=O, hypercube ranges 
0.001 to 5 12 with a dyadic range. The linear range of the hypercubes are 
0.5 to 64. 



4.1.2 Length of the T h e  Series 

In this section we compare the performance of the correlation integral technique 

for trajectories of different lengths. The lengths of 2000 to 10000 points have been exam- 

ined for estimation of the D, curve using the time trajectories of the Hénon attractor. The- 

oretically, increasing the size of the time series fills the attractor more densely, therefore 

the estimation of the Rényi dimensions becomes more accurate. 

The experiments cab the theoretical expectation. Figures 4.4 and 4.5 show the 

convergence of the D, c w e s  with an increasing point count in the x and y trajectories. 

After 10000 points, the D, curves converge to almost the same values within an error 

range of 0.00 1. lncreasing the size of the trajectones cm be implemented either by 

increasing the observation t h e  or by decreasing the time step used for sarnpling the tra- 

j ectories. 
1.6r 

Fig. 4.4. The convergence of the Rényi dimensions of the Hénon attractor by 
increasing the length of the time series h m  2000 points to 1 0000 points. 
The h e a r  range of hypercubes are from 0.004 to 4.096- 
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Fig. 4.5. The convergence of the box-counting, information, and the correlation 
dimension of the Hénon attractor by increasing the length of the time 
series fiom 2000 to 10000. The linear region hypercubes range fiom 
0.004 to 4.096. Afier 9000 points the mors are within a range of 
M . O O  1 and after 1 0000 points the errors are within a range of kO.000 1 . 
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4.1.3 Added Noise 

In this section we investigate the effect of additive noise to the original data in the 

estimation of the D, curve. This is accomplished by comparing the D, curves of the orig- 

inal Rôssler attractor with the curves estimated fkom a noisy R6ssIer attractor. The noisy 

attractor is generated by the superposition of white noise to the x, y and z trajectories of 

Rossler attractor. The white noise is generated by a random nurnber generator of unifonn 

distribution, and it is scaled by an appropriate factor in order to achieve a desired signal- 

to-noise ratio (SNR). The SNI2 is the ratio of the energy of the noise £kee signal to that of 

pure noise or the error of the signal and is calculated as 

where s [n] is the original signal and 3 [n] is the noisy signal. Figure 4.6 contains the 

log-log plots of the signals with SNR of 5, 100 and 500. Cornparhg the plots together we 

can discem the fact that for lower signal to noise ratios the linear region of the log-log plot 

is shorter. For SNR=5 the lower end of the linear regions begin at hypercubes of larger 

size in cornparison to SNR=500. This effect can be explained by the relationship of the 

size of the hypercubes and the noise levels. For hypercubes of sizes smaller than the noise 

levels the probabilities are affected by the random noise displacement of the points. For 

experimentation purposes it is aiways important to state the SNR of the signal and keep 

the probing hypercube sizes larger than the noise levels. 
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1 

-5 O 5 10 

Fig. 4.6. The log-log plots of the R6ssler attractor contaminated with noise. (a) 
SNR=5 (b) SNR=100 (c) SNR=500. The linear region of the signal with 
lower SNR is shorter due to the effect of the noise in probabilities of the 
probing hypercubes with sizes comparable to the noise levels. These fluctu- 
ations disappear at higher SNR. 
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Fig. '. The Dq c w e s  calculated for (a) the original R6ssler attractor, and (b) 
the Rossler attractor contaminated with noise. The c w e s  for SNR=5, 
1 0,20,30,40, and 1 00 is plotted. For SNR larger than 20, the cuves 
fall on each other and converge to the onginal attractor's dimensions. 
The original attractor is fiom a tirne series of length 5000 with a dyadic 
range of hypercubes fiom 0.00 1 to 5 12 and linear range is between 0.5 
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The results of the experiments with the RCissler, and Hénon, and Lorenz attractors 

show that the Dq c w e  is stable with signal-to-noise ratios larger than 20, i.e. the S-curve 

converges to an error range of smaller than M.OO1. It is important to mention that the 

adopted noise model represents a worst case because the white noise contaminates the sig- 

nal across an infinite bandwidth. 

4.2 The Reconstruction of Strange Attractors 

In order to model a non-linear chaotic natural phenomenon, many experiments 

have to be conducted to determine the set of non-luiear differential equations which gov- 

ern the system. But if the existence of an underlying attractor is proved we can character- 

ize the phenomenon using its multifractal feahires. It first has to be deterrnined whether 

the underlying system is a detenninistic system or a stochastic systern, and whether the 

measured data is random noise or chaotic data. Then knowing the trajectories of al1 the 

independent variables of the system, the characterization c m  be done by calculating the 

spectm of the Rényi dimensions of the strange attractor. But the problem is that we gen- 

erally do not have enough information about al1 the variables and often we speculate the 

systern using the trajectory of one measured variable. 

Now the question is, are we able to estimate the Rényi dimensions of an attractor 

using only the trajectory of one measured variable? Are we able to reconstruct some 

meaningfùl picture of the attractor using the one available trajectory? 

4.2.1 Reconstruction of the Phase Space 

The question of reconstructïng an attractor fkom the trajectory of one variable was 

first addressed by Packard et al. PCFS80J. They found that having a time series obtained 
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by sampling a single coordinate, x (t) , of an attractor one can obtain a variety of rn inde- 

pendent quantities which appear to yield a f a i m  phase space representation of the 

dynamics in the original space. 

One possible set of these quantities are 

x ( t ) , x ( t - ~ ) , x ( t - 2 ~ ) ,  ..., x ( t - m i )  

The value 7 is called the lag of the time senes and rn is the embedding dimension 

of the reconstnicted attractor. Now the points on the attnictor are given as vectors 

where N is the size of the time series. Another set proposed by PCFSIO] is 
2 

d x d x  d? 
x ( t ) ,  - Y  - - dt dt ' "" dt 

To obtain a heuristic understanding of the idea of the reconstruction of the attrac- 

tors we attempt to reconstruct the Hénon and R6ssler attractors using trajectories of single 

variables. In Fig. 4.8 and 4.9 for Hénon attractor, it can be seen that there is significant 

correlation between each point in the tirne series and its previous sample. The phase space 

of the reconstmcted attractor for z =1 resembles the shape of the original Hénon attractor. 

Apparently the structure contained in relationships of x , y variables are encapsulated in 

the x and x  - r variables. For i =2 and T =3 there is still some relationship which gives a 

structured appearance to the reconstnicted phase space. For T =10 al1 structure has van- 
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ished. The reconstruction has been repeated for both variables, x , and y producing the 

same results. The attractor can be reconstnicted using either of the two independent varia- 

bles. The embedding dimension of two has been used for the reconstruction of Hénon 

attractor in Figs. 4.8 and 4.9. The same experiment is performed on the R6ssler attractor 

with different lags and an embedding dimension of three. 

The important observation made by Packard et al. was formally proved by Floris 

Taken in 198 1, h o w n  as the embedding theorem Etalce8 Il [Mme8 11. The embedding the- 

orem establishes that when there is only a single measured quantity fiom a dynarnical sys- 

tem, it is possible to reconstruct a state space that is quivalent to the original state space 

composed of al1 the dynamical variables. The embedding theorem states that if the system 

produces orbits in the original state space that lie on a geometnc object of dimension n 

(which need not be an integer), then the object can be unambiguously seen without any 

spurious intersections of the orbit in another space of dimension m > 212, comprised of 

coordinates that are arbitrary non-linear transformations of the original state space coordi- 

nates. The absence of intersections in the second space means that the orbit is resolved 

without ambiguity when rn is large enough. Overlaps of the orbit may occur in lower 

dimensions and the ambiguity at the intersections destroys the possibility of predicting the 

evolution of the system. It is important to note that Taken's requirernent for m is a suffi- 

cient but not necessary condition for dynamics reconstruction. 
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Fig. 4.8. Hénon attractor reconstructed from the values of the variable x ,  a=1.4, 
b=0.3, x(O)=y(O)=0.8, embedding dimension=2, and 100 points are used 
for the reconstruction. Different T sizes have been used for the recon- 
struction: (a) ~=1, (b) ~ = 2 ,  (c) ~ = 3 ,  (d) and r=10. 
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Fig. 4.9. Hénon attractor reconstmcted fiom the values of the variable y ,  
a= 1 -4, b=O.3, x(O)=y(O)=O. 8, embedding dimemion=2, and 1 00 points 
are used for the reconstruction. Different r sizes have been used for the 
reconstruction. (a) 7 = 1, @) r =2, (c) r =3, (d) and T = 1 0. 



Fig. 4.10. R6ssler attractor reconstructed nom the values of the variable x , 
h = P =0.2, T=5.7, y (0) = z (0) = O ,  x (O) = -1 ,embedding 
dimension=3, and 10000 points used for the reconstruction with 
At =0.0 1, Different z sizes have been used for the reconstruction. (a) 
~ = 3 ,  @) 7=17, (c) r=100, (d) ~=500 ,  (e) T =1000, ( f )  and ~=2000.  For 
2=100 the structure is completely unfolded. For r =500 and higher lags 
the attractor starts to lose its structure. 
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The embedding theorem does not Say anything about the choice of the lag. In fact, 

it permits us to use any lag so long as the time series is infinitely long. In practice we work 

with h i t e  length time series therefore we have to take a proper prescription for choosuig 

the Iag. 

In 1982, Doyne Farmer showed that the reconstruction of strange attractors can be 

interpreted as a change of coordinates, or in better words unfolding the attractor fiom its 

projection ont0 the observation axis of measurement. Choosing the embedding dimension 

of 2n + 1 guarantees that the embedding space is large enough for an injective reconstruc- 

tion Parm821. This means that each point in the reconstmcted attractor corresponds to 

one and only one point in the original attractor. Therefore no part of the attractor will col- 

lapse on top of another part because of projection. An injective reconstruction does not 

effect the fracta1 dimensions of the attractor. 

Formally, an autonomous system producing orbits ( t )  through the dynamics is 

and the output is 

s ( t )  = h ( ~ ( t ) )  (4.12) 

x is an n -dimensional vector, and s ( t )  is typically a one-dimensional output signal. The 

embedding theorem states that any independent set of quantities related to s (t) cm serve 

as the coordinate for a state space of the system. 

Time derivatives of s (t) are the natural set of independent coordinates. But when 

the signal is sampled in discrete tirne, the derivatives act as high p a s  filters and ernphasize 

noise in the measurements. But as Packard et al had suggested there is another natural set 
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of coordinates for the state space. The signal s ( t )  and its t h e  delays are the ingredients 

in the approximation of the t h e  derivatives of s (r) . The time delay values of s ( t )  are 

new information that entas the approximation of each derivative. This set of coordinates 

is realized by fomiing the vectors 

( s ( t ) , s ( t - i ) , s ( t - 2 ~ ) ,  ..., s ( t -mi ) )  

where rn is the embedding dimension larger than 2n and T is the lag. 

If t is too small, the points of the trajectory will have components which are 

strongly correlated and very close, therefore the reconstnicted atîractor will be very close 

to the diagonal of the space. On the other hand, if T is too large there is little correlation 

and the trajectories appear to wander al1 around the phase space PaSc871. 

Another problem with experimental data is that we may not know the degrees of 

fieedom of the underlying dynamical system or the dimension of the underlying attractor. 

In this case a practical technique used for finding the best embedding dimension is to cd- 

d a t e  the spectnun of the Rényi dimensions for a number of successively increasing 

embedding dimensions starting from a low dimension of two or îhree. In the beginning, al1 

the values of the S-cuve will increase as we increase the embedding dimension, reaching 

a limiting value when the embedding space is large enough for the attractor to untangle 

itself. Further increases should not increase the values of the cunre fiom the converged 

ievel [Addi97]. 

It is important to pay attention to the fact that a dense trajectory in lower dimen- 

sions fills an embedding space of much higher dimension spanely, where the calculation 

of the S-curve will be inaccurate. Therefore, the size of the time series must be chosen in a 

way to fil1 the embedding dimension of largest dimension densely. This can be found by 
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trial and emor, i.e. by experimenting with different sizes in each embedding dimension and 

studying the convergence of the S-cuve for different sizes. 

To examine this idea we perform an experiment with the Rôssler ateractor. We 

reconshvct the Riissler attractor using its x-variable time trajectory using lag=20. This lag 

was chosen according to the visual inspection of the reconsûucted two-dimensional phase 

space for different lags. nien we calculate the spectnmi of the Rényi dimensions for the 

embedding dimensions of 3,4,5,6,7 and 8. According to Taken's theorem, an embedding 

dimension of eight and higher should reach the converging level and give an appropriate 

reconstruction, therefore the Rényi dimensions for the reconstructed attractor for embed- 

ding dimension of eight and higher converges to the Rényi dimensions of the original 

attractor. The results of this experiment are shown in Fig. 4.1 1. The reconstniction of the 

Rossler attractor by embedding dimension of eight and tirne length of 5000 is still not 

completely matched with that of the original attractor. But with increasing the number of 

the points used for reconstruction, this discrepancy disappears. For embedding dimension 

of eight and time length of 20000 points, the Rényi dimensions match with a precision of 

+0.001. We can observe that we need more data points for a reconsûucted attractor to 

reach the same dimensions that the original attractor gives with less points. 

4.2.2 False Nearest Neighbourhood Method for the Best Embedding Dimension 

The method of the false nearest neighbourhoods proposed by Kennel et al. dso 

deals with detemiining the best embedding dimension of an experimental series 

WeBA921. This method directly addresses the topological issue of the embedding proc- 

ess. 
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Fig. 4.1 1. The convergence of the reconstruction of the RSssler attractor 
with increasing embedding dimension. The dot-curve shows the 
Rényi dimensions of the original attractor. The Rényi dimensions are 
calculated using 5000 points of the attractor trajectory with lag=20 
and hypercube sizes of 0.00 1 to 5 12 and the linear region is between 
hypercubes of size 0.5 to 64. 

This procedure identifies the number of false nearest neighbours, i.e. the points 

that appear to be the nearest neighbours because the embedding space is too small. When 

the number of false nearest neighbours drop to zero we have an unfolded or embedded 

attractor in an rn -dimensional Euclidean space. 
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The basic idea is that in the passage fiom dimension n to n + 1 one can differenti- 

ate between points on the orbit that are true neighbours and points that are false neigh- 

bous. A false neighbour is a point in a data set that is a neighbour soleIy because we are 

viewing the orbit in too srnail an embedding space. When we have achieved a large 

enough embedding space dl neighbours of every orbit pointed in the multivariate phase 

space WU be tme neighbours. In an embedding dimension that is too small to unfold the 

attractor, not ail points that lie close to one another will be neighbours because of the 

dynamics. Some will actually be far fiom each other and sirnply appear as neighbours 

because the geometric structure of the attractor has been projected down ont0 a smder  

space. 

If we are in n -dimensions, working with points of an attractor reconstnicted nom 

time series x and the r th nearest neighbour of each point of the reconstnicted attractor 

is denoted by $) then 

is the square of the Euclidean distance between point and this neighbour and T is the 

lag. 

In going fkom dimension n to n + 1 we just add a n + 1 coordinate to the summation 

2 2 2 
Rn+ ( i ,  r )  = R, (i, r) + [x (i +n7) -dr) (i +n7)] 

A natural criterion for false neighbours is that the increase in distance between { 

and j f r )  is large when going fiom n ton + 1 . The criterion is defined as 



Chapter IV: Stmnge Attractors 

where Rtol is a threshold. Rm1 is found by numericd experimentation, that is by fixing the 

embedding dimension and testing the sensitivity of different values of RmI . It is sufficient to 

consider only nearest neighbours r = 1 and inte~ogate every point on the attractor to 

establish how many cf the nearest neighbours are false. 

But this criterion by itself is not d c i e n t  since the experiments show that even 

though i!') is the nearest neighbour of it is not necessady close to E, therefore an addi- 

tional criterion is proposed by Kennel et al. as 

where they suggest 

x being the mean of the series. This criterion discards those nearest neighbours which lie in 

the extremities of the attractor. This happens when we try to unifonnly populate an obj ect in 

n dimensions with a fixed number of points, since the k e d  number of points move further 

and M e r  as n increases. Now a nearest neighbour which fails either of the tests is 

declared false. 

Figure 4.12 shows the result of calculation of the percentage of false nearest neigh- 

boum for the Hénon attractor with RA =2, Atol =2 and RtOI fiom 1 to 20. For R,oI=l 8 the 

percentage of nearest neighbours falls below 0.5% for embedding dimensions greater than 



four. The disadvantage of the false nearest neighboiirhood method is the lack of a precise 

way of d e t e r d g  the embedding dimension and its dependency on the value of RtoI.  

But this method is able to identiS between chaos and randorn noise. In this thesis we use 

this method for determining the existence of low dimensional attractors. Figure 4.13 

shows the calculation of the false nearest neighbourhoods percentage for white noise gen- 

erated by a random number generator with unifoxm distribution. 

Ratio of False Nearest Neighbours 

' r 

Embedding Dimension 
Fig. 4.12. Ratio of false nearest neighbourhoods for the Hénon attractor 

for embedding dimensions one to seven. 

We see that for the embedding dimension of one to seven that there is no decrease in the 

percentage of false nearest neighbours for white noise. An experimental range of RmI is 

chosen considering the maximum and minimum increases in the distances between the 
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nearest neighbour points. The result of the experiment with white noise shows that for 

embedding dimensions in the range of one to seven, no stable structure emerges for white 

noise. 

Ratio of Fdse Nearest Neighbours 

0.9 ' 1 I # r I I 

1 2 3 4 5 6 7 

Embedding Dimension 
Fig. 4.1 3. The ratio of false nearest neighbours do not reduce with 

higher embedding dimensions for white noise. 

4.2.3 Methods for Choosing the Best Lag for the Reconstruction of the Attractors 

Different methods have been reported in the literature for calculation of the best 

lag for the reconstruction of the attractors. In the past section we chose the lag by simply 

considering the successively larger values of the lag, .t , and then visually inspecting the 

phase portrait of the resulting attractor. This method will only produce reasonable results 

for systems of relatively simplz structures. In this section we will present the two methods 
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which are mostly used in the literature. The ;iutocorrelation function method looks into the 

linear dependence of two variables while the minimum mutual information criterion looks 

into the general dependence of two variables. The following methods are used in the 

following chapters for the estimation of the best lag in the reconstructions. 

4.2.3.1 The Autocorrelation Function 

The covariance function, C, compares two data points in the time senes separated 

by the lag r and for a time senes of lengîh N is calculated as 

where Ei is the mean of the temporal signal. The lag of the reconstruction is then taken as 

a specific ratio of C. Among the most popular of these tbresholds are: the value of 7 

which e s t  gives C equal to one half, the value of T which first gives the C equal to zero, 

1 and the value of T which first drops below 1 - - of the first value of C. It is important to 
e 

point out the values calculated by these methods are not consistent for reconstructions by 

different variables of a system [RoCD93][Addi97]. 

4.2.3.2 The Minimum Mutual Information Criterion 

The mutual information of the attractor reconstruction coordinates is defined as 
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where P (xi) is the probability of the occurrence of the time series variable xi, 

+ ( ) ) is the joint probability of occurrence of the attractor P (xi, xi + xi + 2T -x- 

coordinates Xi = (xi, xi + ,, xi+ Zr.. .xi + i ( m  - ) ,and m is the embedding dimension. M 

is a measure of the statistical dependence of the reconstruction variables on each other. If 

the coordinates are statisticaliy independent then 

P ( x i , x i + r , x i + 2 r . - - ~ i + t ( m - ~ ) )  = 

and so, M=O. M is zero for cornpletely randorn processes, such as white noise. The 

mutual Miormation is a measure of general independence of two or more variables, 

therefore, it provides a better critenon for the choice oflag in cornparison to the 

autocorrelation function, which is only a measure of linear dependence of the variables 

mSw86][Fras89]. In this thesis, we use the first local minimum of the mutual information 

of a two dimensional attractor reconstruction for determining a suitable delay for higher 

dimension reconstructions. For practicai implernentation of the minimum mutual 

information criterion a two-dimensionai reconstruction of an attractor in xi and xi + , 

plane is considered. The plane is then partitioned into Nc columns and Nr rows. The 



where P (k) and P (2) are the probability of the occurrence of the attnictor in column k 

and row Z respectively. P (k, Z) is the joint probability of the attractor lyhg in the column 

k and row 2 grid box. The function M2 (7) is plotted and the best lag is chosen as the 

first minimum of this fiuiction. M, (7) shows that for a certah lag 7, how much 

information does a measmement of point xi give about a measurement of xi, ,  , or in 

other words it evaluates how redundant is the xi + , axis of the phase portrait 

@?rSw86][Fras89]. 

The drawback of this method is the dependency of the estimate on the grid boxes. For a 

fixed nurnber of data, larger boxes have more points, hence the estirnate of the average 

probability is more accurate, but, on the other han& estimates of P (k, Z) are too flat. 

Smaller boxes allow the fluctuations due to noise to be interpreted as small scale structure 

[FrSw85]. Figure 4.14 shows the results of calculation of autocorrelation fûnction and 

mutud information for the Lorenz attractor. 



Mutuai Information 

Autocorrelation Function 

Fig. 4.14. The mutual information function and the autocorrelation function of 
the Lorenz attractor. The fkst local minima of the mutual idonnation 
function suggests a smaller lag in cornparison to the zero crossing of 
the autocorrelation function. 
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4 3  Distinguishing NomChaotic Series 

Distinguishing detenninistic chaos from noise is an important problem. Effective 

algorithms for detecting chaos must accurately characterize both chaotic and non-chaotic 

systems. In this section we M e r  establish the utility of our approach by examining its 

performance with the following non-chaotic signals: a quasi-periodic deterministic system 

created by superposition of two sinusoidals with two different frequencies 

x (i) = sin (2nFliAt)  + sin (2aF2iAt) 

whereFI = f i ~ z ,  F2 = &HZ, and At = 0:01 sec. 

The second signal is white noise generated by a random number generator with 

unifolm distribution. Each system was treated as  the output of a blackbox system. 

The best lag for reconstruction of the attractor assumed for the sinusoidal is chosen 

as T =8 where the two dimensional orbit opens up. Then the attractor was reconstructed in 

a two dimensional embedding space. The result of the log-log plot and the Dg c w e  of the 

sinusoidal is shown in Fig. 4.15. The Dg cuve of a sinusoidal is a flat curve of dimension 

one. Increasing the embedding dimension to three or four yields the same results. Sirice 

the detenninistic system is not a chaotic one, al1 the fractal dimensions are equal to the 

Euclidean dimension of the sine curve. 

The best lag for reconstruction of the attractor assumed for the white noise was 

chosen as T =1 since for no increase in the value of lz: , the two dimensional phase space 

appears to form any structure in the distribution of the points in the space (Fig. 4.16). The 

attractor was reconstructed in embedding spaces of 3,4,5,7,15, and 20 dimensions. The 

result of the D, curves always yield an S-curved shape if enough points are generated to 



fill the higher dimensional spaces, but no convergence is apparent up to the embedding 

dimension of 20. This is shown in Fig. 4.17. The finite dimensional system exhibit a con- 

vergence once the embedding dimension is large enough to accommodate the dynamics, 

whereas the stochastic systems fail to show a convergence because they appear to be more 

ordered in higher and higher embedding spaces. Strictly speaking, we cm only distinguish 

hi& dimensional systems fiom low dimensional ones, although in most applications a 

high dimensional system rnay be considered random, Le., infinite dimensional [RoCD93]. 

nie cdculation of dimensions gives an estimate of the system complexity and 

entropies and the distinction of chaos fiom randomness through the calculation of dimen- 

sions is in fact based upon the cornparison of the Iow dimensional fiactal structure of 

strange attractors arising f?om a chaotic system with hi& dimensional semi-structures 

arising fiom random noise. 

In Section 4.2.2, we also saw that the false nearest neighbours method can distin- 

guish between random noise and chaos. This method in fact recognizes the stable struc- 

tures of the strange attractors fiom the non-stable structures of noise. 

It is important to note that another path exists for achieving the same purpose and 

that is the calculation of the Lyapunov exponents of the experimental data and estirnating 

the level of chaos or sensitivity to initial conditions in the dynamical system. A detailed 

study of this method is found in mSSV851EKRC86 ] BoCD931. 
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Fig. 4.15. (a) The log-log plot of a two-periodic sinusoidal. (b) The Dq 
curve of the sinusoidal. 
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Fig. 4.16. White noise generated by a random number generator. The time 
senes is delayed against itself with r =l  in (a) and with 7 =10 for (b). 

Fig. 4.17. The Dq cuves of the white noise do not converge with increasing 
embedding dimension.The embedding dimension, m, of each 
curve is stated. 
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In this method, the trajectories of nearby initial conditions on an attractor is stud- 

ied. If the dynamics are chaotic then the trajectories diverge, on average, at an exponential 

rate characterized by the largest Lyapunov exponent The largest Lyapunov exponent is 

also estimated as the mean rate of separation of the nearest neighbours. Divergence and 

convergence of the attractor in ai l  orthogonal directions of the phase space is characterized 

by a spectnun of Lyapunov exponents. A chaotic attractor has at least one finite, positive 

Lyapunov exponent. Randorn data has an infinite, positive Lyapunov exponent, while peri- 

odic attractors have only zero and negative exponents. 

4.4 Summary 

In this chapter, we presented the embedding theorem for the reconstruction of 

strange attractors. We described the methods for distinguishing between random noise and 

chaos in experimental time series, reviewed the methods for determinhg the best embed- 

ding dimension and the best lag for reconstruction of the attractors, and explained M e r  

the method of correlation integral for calculation of the Rényi dimensions of an attractor. 

In the next chapter, we will report on the implementation of the methods presented in this 

chapter on EMG signals and the experiments designed for evaluation of the fkactal charac- 

terization of EMG signals. 
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CHAPTER V 

MULTIFRACTAL ANAL,YSIS OF THE EMG SIGNALS 

In this chapter, we want to use the r d t s  of the discussions in the previous 

chapters, and attempt to perform a multifractal characterization of the EMG signals. Our 

prhary goal is to examine the EMG for chaos. We shall see that EMG is indeed arising 

f?om a low dimensional strange attractor. The reconstmction of this strange attractor 

requires a thorough analysis of the embedding dimension and the best lag of 

reconstruction. The implementation of the correlation integral and calculation of the Rényi 

dimensions follows. 

Although the primary focus in this thesis is on the correct and meaningful 

calculation of the multifractal characterization of the EMG signals, we need to reach this 

objective in the context of a specific experiment. For this purpose, we attack one of the 

problems in electromyography which has been dealt with since the fifties and has not been 

completely solved yet. 1s it possible to characterize the EMG signals recorded from a 

single muscle in different fimctionalities? In other words, is it possible to identify the 

functionality of a single muscle by the EMG characteristics? 

In this chapter, we propose an experiment to study this problem and investigate the 

capability of the Rényi dimensions of the signals to perform this identification. In the first 

section we explain this experiment and its objective. In the second section we examine the 

signals acquired in this experiment for the presence of a low dimensional attractor in the 

reconstnicted phase spaces. The fdse nearest neighbourhood is used for this purpose. The 

results of the minimum mutual information criterion are used to estimate the best lag for 

the reconstruction. We perform the multifiactal dimension characterization of the 
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attractors wing the generrilized correlation integral. The best embedding dimension is 

chosen by studying the convergence of the multifiactal dimensions. The convergence rate 

of the muitifhctal dimensions with the chosen time length and samplhg rate of the 

experimental EMG signals is examinecl. The effect of the noise levels in the different 

stages of these cdcuIations is also discussed. 

5.1 Objectives of the Experiments 

In the last section of Chapter 2, we taiked about the different factors influencing 

the order of the motor unit recruitment. The results of experiments of several researchers 

show that remitment order cm vary if the same muscle is used for different purposes. 

Schmidt & Thomas [ScTh81] have reported that in the extensor digitorum cornmunis, the 

recmitment order will depend on which of the four fingers is to be extended. Gielen and 

Denier van der Gon [GiDegO] have reported that in biceps brachii, the threshold of a 

motor unit depends on whether the muscle is being used to flex the elbow, supinate the 

forearm, or externally rotate humerus. Hennemen et al. [HeSY76] have stated that when 

the same motor task is undertaken in exactly the same way, the order in which the motor 

units are recmited remains fuced. In this thesis we present an experùnent in which we 

attempt to discriminate among the EMG signals recorded from deltoid and trapezius 

muscles, in three different functionalities of shoulder abduction, flexion, and extension. 

We use the multihctal characteristics of the signds for classification. If the order of the 

motor unit recmitment follows unique patterns for each of the three movements, there 

should be certain characteristics of the EMG signal which fingerprint them. In these 

experiments the objective is to find out if the multifiactal dimensions of the EMG signals 

are capable of recognizing three different functionalities of deltoid and trapezius muscles. 
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It is important to note that the idea of using the signature of EMG signals for 

discriminating between several limb functions was proposed in the early sixties with the 

motivation of using the discriminatory methods for the control of ariificial limbs. The 

dominant approach used for discrimination of signais in artficial limbs proposed by 

Graupe et al. [GrSZ85] uses a time series identification process, Le. a t h e  domain 

autoregressive signature model. Graupe's approach is specifically designed for an optimal 

perfomance of an artificial limb and is based upon using electrode sites with heavy cross 

talk fÏom several muscles involved in a certain function. Therefore, the results of 

discrimination in Graup's approach are not comparable with the approach presented in this 

thesis. 

The experimental goal is to find unique signatures for EMG signals recorded fkom 

certain muscle fiuictionalities. But it is desired to prove that the discrimination is in fact 

due to a real difference in the underlying physiological phenornenon in different 

functionalities of a single muscle, therefore special care is taken to eliminate other 

possible factors such as cross talk between muscles. 

The most important factors influencing the shape of the EMG signal recorded by a 

surface electrode, with fixed area and shape of electrode surfaces and a fixed distance 

between the electrodes, are Iisted below: 

1. The number of detected active motor units in the detection volume; 

2. The firing rate of the motor units in the detection volume; 

3. The fibre type composition of the active detected fibres; 

4. The fibre diameters of the active detected fibres; 

5. The depth and location of active detected fibres; 
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6. The conduction velocity of the active detected muscle fibres; 

7. The amount of cross taIk at the detection volume; and 

8. The amount of fatty tissue between the active detected fibres and the electrodes. 

The first six factors can be varied by a relative movement of the electrode location 

and the active fibres, which may bring a new set of active fibres within the detection range 

and removing some fiom i t  This may be caused because of the fixation of the electrodes 

to the skin surface which does not change lm@ in concert with the contracthg muscle 

fibres. These factors can also be caused by the rotation of active motor units in the 

detection volume, rather than the change of the detection volume. 

In this experiment, one must show that the discrimination is not inffuenced by the 

change in the location of the electrodes; i.e. the change of the detection volume. 

Therefore, the electrode location is fixed when recording fiom one muscle in three 

different shoulder movements of abduction, extension, and flexion. But fürthermore, it is 

necessary to show that the discrimination is not due to the movement of the sensors 

because of the contraction of the muscle in different directions which also causes the 

variation of the muscle/fat layer between the electrode and the active fibres. 

The movement of the electrodes occurring due to the different directions of 

contractions are in a range of a few millimetres. In order to prove that the result is 

independent of this slight movemenf the recordings were obtained fiom electrode 

positions which differed in a few millimetres. If a slight dislocation of the electrode has a 

strong influence in the value of the Rényi dimensions, then the data obtained fiom these 

experiments are not classified correctfy, because the samples recorded for each class (fiom 

each fiinction of a muscle) are a mixture of data fiom diffcrent electrode positions. If the 



classification is still possible it can be concluded that the very slight changes of the 

detection volume due to the slight movements of the electrodes are not the cause of the 

differences among the Rényi dimensions calculated for the three different muscle 

hctionalities. It consequently follows that the variation of the spatial filtering due to the 

rnovement of the electrodes is not also the cause of the discrimination. One can, therefore, 

examuie if the distinctions in the levels of the complexity measures of the EMG signals in 

the three different functionalities stem fiom the physiological phenornenon or not. 

The cross :alk has been minimized using differentid ampIiQiers. The large size of 

the deltoid and trapezius muscles also reduces the effects of cross talk. The 1 s t  concern 

with this experiment is the problem of the initiation and cessation time of the EMG signals 

recorded. How can the timing of the signds recorded in independent experiments be 

regulated? In our experiments, the recording of the signds is started not later than 20 

seconds after the ami is held in the desired position. This delay is usually required so the 

signal settles down in the physical recording equipment after some disruptions due to the 

rnovement of the wires and electrodes. The length of the recorded signals is not longer 

than one second. There is a resting period of two minutes between each recording. 

According to the results of Moussavi Wous971, this timing process eliminates the effects 

of fatigue in the recordings. 

The objectives of the proposed experiments is summarized as follows 

1. Examine the EMG signal to determine if it is a chaotic signal; 

2. Establish the procedure for the multif?actal characterization of EMG; 

3. Examine the possibility that multifiactal feahires of the EMG signals can 

discriminate the different bct ions  of a single muscle; 
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4. Examine the effect of electrode dislocation in the discrimination results; and 

5. Examine the effect of cross talk in the discrimination results. 

5.2 Data Acquisition 

For EMG recording, a multi channel bank of amplifiers with high- and low-pass 

filters was used with a multi channe1 AD National Instrument device comected to a 586 

IBM compatible cornputer. 

The muscles under shidy are the middle, postenor, and anterior portions of the 

deltoid (MD, PD, and AD respectively) and upper part of the trapezius ( U n .  Since these 

muscles are al1 surface muscles, self-adhesive silver-silver chloride surface electrodes 

were used to record EMG signals. The skin is prepared by nibbing alcohol to d u c e  skin 

resistance and electrodes are placed on the muscle according to the electrode positioning 

for MD, PD, AD, and UT presented in [CrKa98] and shown in Fig. 5.1. Reference 

dectrodes are not shown here. 

Fig. 5.1. The electrode positions in the recordings f?om deltoid and trapezius 
(fiorn Wous971). 
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The EMG electrodes are used in a bipolar contiguration. The EMG signal is 

amplified differentially to prevent artifacts and is filtered by a bandpass filter with 10 Hz 

and 1 kHz cut off fkequencies. The signals are digitized at 8000 samples per second. 

The following three test positions are designed for the EMG acquisition: 

Position A: The subject is asked to hold her (lewright) upper limb in 60 degree shoulder 

abduction, O degree elbow flexion, 90 degree foreann pronation, and wrist neutral. 

Position B: The subject is asked to hold her (lewright) upper limb in 60 degree shoulder 

extension, O degree elbow flexion, and 90 degree forearm pronation, and wrist neutral. 

Position C: The subject is asked to hold her (1eWright) upper lùnb in 60 degree shoulder 

flexion, O degree elbow flexion, and 90 degree forearm pronation, and wrist neutral. 

For each muscle under study, the electrodes are fixed on the muscle and then the 

subject is asked to perform each of the three test positions sequentially. The signal is 

amplified and recorded at each position. Then a two minute resting period is given and the 

location of the electrodes are moved within a range of a few miIlimeters. This sequence is 

repeated for each muscle 20 times. The amplification of the signals change from one 

subject to another, and dso from one muscle to another. But the amplification remains the 

same for the recordings of one muscle in the three different test positions. 

The length of the recordings is one second. The EMG signal of an isometric 

contraction recorded for one second can be considered as stationary [Mous97]. Four 

subjects of the ages between 20 to 30 years participated in the experiments. None of the 

subjects had any detected abnomality in the muscle. 
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53 Characterization of the EMG Signals with the Rényi Dimensions 

Having explained the different test positions and the physical recording set up of 

the experiments, we now proceed to discuss the characterization of the signals. The data is 

organized in four sets, one set for each subject under study. Each individual's set contains 

four groups of data corresponding to the recordings made fiom middle deltoid, postenor 

deltoid, anterior deltoid, and trapezius. Each of these groups contain three classes of data 

samples for abduction, extension, and flexion. Under each class there are 12 data samples 

which are the one-second Iength time signals recorded independently. The classification 

takes place on each group of the data, with the aim of discriminating among the three 

classes of abduction, extension, and flexion. 

In this section the characterization method for a sample data, a one second EMG 

signal recorded fiom the middle deltoid of one of the subjects during abduction is 

discussed. The characterization procedure explained is the same for d l  data samples. The 

general cornparison of the results is given in the next chapter. 

5.3.1 Normalization of the Data 

The multifiactal dimension calculation is perfomed on unnormalized data. In the 

last section it was mentioned that the amplification of the signal does not Vary for the 

recordings made eorn the thzee functionalities of each muscle. Therefore, in the 

classification stage, the data samples of three classes in each group are amplified equally. 

For this reason, there is no normalization required for the signals in each classification 

experiment. Furthexmore, there is no nomalization required for the Rényi dimension 

cdculations. 
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53.2 Choosing the Best Lag 

Bofh the autocorrelation and the minimum mutuai information method are used to 

find the best lag for the reconstruction of the strange attractors of EMG signals. Fig. 5.2, 

shows the result of the autocorrelation calculation on the sample EMG signal. 

Autocorrelation Function 

-0-4L , I 
O 100 200 Lag 300 400 500 

Fig. 5.2. Autocorrelation hc t ion  of a sample EMG signal. 

1 In this experiment, the autocorrelation function dropped to 1 - - of its first value 
e 

at the la@ 1, and the first zero crossing happens at the l a e 3 3 .  The result of the minimum 

mutual inforrnation calculation is shown in Fig. 5.3 for the sample EMG signal. As we 

explained in Section 4.2.3.2, the calculation of the minimum mutuai information is 

dependent on the grid size used for covering the two dimensional phase space. We have 

performed the calculations of the minimum muhial information criterion for grid boxes 4, 

8, 16,32, and 64. 
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Lag 
Fig. 5.3. The minimum mutual information criterion for the sample EMG signal. 

The results of the experiments show that the change in the grid sizes in the 

calculation of the minimum mutual information criterion of the EMG signals does not 

effect the value of the lag where the first local minimum occurs. 

The Grst local minimum occurs at the lag=18 for the sample signai. In al1 

experiments, the result of the minunun mutuai information criterion stays lower than the 

lag for which the first zero crossing of the autocorrelation function occurs. In the 

reconstruction of the phase spaces the result fiom the minimum mutual information 

crîterion is used. 
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Fig. 5.4. The minimum mutual information criterion for different grid box sizes. 
The grid box sizes are 4, 8, 16,32, and 64. 

5.3.3 Exarnining the Existence of a Low Dimensional Sbange Attractor 

Recalling the discussion in Chapter 4 the false nearest neighbourhood method c m  

distinguish between high dimensional noise and low dimensional strange attractors. The 

calculation of the percentage of the false nearest neighbours is perfonned on the data as 

explained in Chapter 4. The increase in the distances of the nearest neighbours are 

calculated for successively uicreasing embedding dimensions of 2 to 20. The parameter 

RA is calculated according to Eqs. 4.12 and 4.13 with Ami =2. The range of 0.5, 1,5, L O, 

15 is tested for the RtOl in the calculations. 
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The results of the calculation are plotted in Fig. 5.5 for the sample signal. The 

results show that for very small Ievels of RmI, ahos t  al1 of the points are classified as 

false nearest neighbours, but as RmI approaches 10 and 15 a low embedding dimension 

appears. This means that there are some neighbowhg points which thek distances do not 

increase larger than a threshold set by R,,/ . This set of nearest neighbours represent the 

unfolded trajectory of the strange attractor. The parameter RA discards those neighbours 

which lie on the extremeties of the phase space and is neccesary for distinguishing white 

noise from chaos. The experiments show that the EMG signal does in fact arise fiom a 

low dimensional strange attractor. But the exact calculation of the embedding dimension 

using the fdse nearest neighbourhood is not possible since there is no standard way of 

choosing the best RmI.  The convergence of the Rényi dimensions for is used to choose the 

best embedding dimension. 

A very important result of the calculation of the false nearest neighbours of the 

expenmental signals was the observation that for certain classes of signals this algorithm 

does not yield a low embedding dimension. These results appeared for signals with SNR 

values lower than 10. In fact, we could see in Chapter 4 that no low embedding dimension 

exists for pure noise. Therefore, it is acceptable that the effective embedding dimension 

degrade as the SNR ratio decreases. This happens for the signals recorded fiom muscles 

which are not highly active in the test position under study. These classes of signals are 

discarded nom the experiments since the S M (  ratio is too low, the signal is too 

contaminated by noise, and a low dimensional attractor is not conceivable for them. 
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Ratio of the False Nearest Neighbours 

3 4 5 6 7 8 9 10 

Embedding Dimension 
Fig. 5.5. The percentage of the false nearest neighbours in successive 

embedding dimensions for the sample signal. RA =56, AI,[=2. 

- 

Table S. 1 .  The average SNR ratios for EMG signals. 

S N R  

Middle Deltoid 

Posterior Deltoid 

Anterior Deltoid 

Upper Trapezius 

Abduction 

28 

20 

20 

20 

Extension 

25 

28 

6 

15 

Flexion 

12 

4 

26 

14 
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The average SNR ratio for the different classes is given in Table 5.1. The 

averaging is among the signals recorded fiom al1 the subjects in each class. Low 

dimensional attractors do not appear in the range of embedding dimensions between 2 to 

20 for the posterior deltoid in flexion and anterior deltoid in extension. 

53.4 Calculation of the Rényi Dimensions and the Best EmbeddPng Dimension 

We now proceed to reconstnict the phase spaces, and calculate the spectrum of 

Rényi dimensions, as explained in Chapter 4, for successively increasing embedding 

dimensions fiom 2 to 10. An increasing dyadic range of hypercube sizes fiom 2 to 5 12 is 

used for probing the strange attractors of EMG signals produced by deltoid and trapezïus 

muscles. This range is chosen by examining the minimum and maximum distances 

between the points in the reconstructed attractors. In Chapter 4, it was stated that the 

experiments with known strange attractors show that for SNR higher than 20 the effect of 

noise in the values of the Rényi dimensions, drops to a level of k0.001. There are several 

classes in the experiments with S N R  ratios between 1 0 and 20. These groups were no t 

discarded f?om the classification, but, one needs to take this fact in consideration that the 

precision of the calculation of their Rényi dimensions are degraded by the effect of high 

noise levels. 

Exarnining the levels of the recording channel noise, ampiified with the highest 

gain used in the experiments, shows that the smallest valid hypercube size for estimation 

of the linear regressions is the hypercube size of eight. Performing the linear regression on 

hypercubes larger than eight minimizes the effect of noise in the calculations. The log-log 

plot of a sample EMG signal is shown in Fig. 5.7. It is seen that the higher saîuration level 

occurs at approximately 6 =64. Linear regression is performed on the lines between 6 =8 
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to Ô 4 4 ,  since the probabiiity estimates for hyÿercube sizes smaller than eight are 

affecteci by the noise levels. 

Fig. 5.7. The log-log plot of a sample EMG signal for hypercube ranges of 
2 to 5 12. The hypercube of 6 =8 is the smallest valid hypercube 
for linear regression due to noise levels. 

The best embedding dimension. is now deteTDnined by the convergence of the 

spectrum of Rényi dimensions. The best embedding dimension is chosen to be the 

dimension where the successive values of Rényi dimensions converge with a precision of 

M.01. The convergence of the Rényi dimensions is shown in Fig. 5.8 for the sample 

EMG signal. 

One should realize that going to high embedding dimensions may result in a sparse 
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"30 -1 O 0 s  10 20 
Fig. 5.8. The convergence of the Rényi dimensions for a sample EMG signal. 

The embedding dimension of seven and greater results in a conver- 
gence of values with a precision of f 0.01 . 

phase space where the points of the trajectory are far fkom each other and the calculation 

of the multifiactal dimensions is not valid. The experirnents show that 8000 samples per 

second of the signal create enough points to result in a convergence of the multifiactal 

values. 

The multifiactal dimensions for signals with fewer points were examined. The 

EMG signal is recorded with a fixed electrode location and with sampling rates of 1000, 

2000,3000,4000,5000,6000,7000, and 8000 samples per second, fiom each of the 



Chapter V: MultSxctaI CharacteriZation of EMG 

signal classes. The multifkactd dimensions are plotted. Figure 5.9 shows the results for a 

sample EMG signal. The positive order multihctal dimensions converge to an error range 

of M.00 1 , while the negative dimensions have not yet converged. The negative orders of 

multifiactal dimensions are a representative of the smaller values of probabilities, of the 

attractor occurring in al1 the covering hypercubes. The number of points for reconstmcting 

the attractor is limited and therefore the hypercubes corresponding to mal1 probability 

values do not represent a saturated portion of the structure. Therefore, the increase in the 

number of points affects these probabilities more than it affects the hypercubes with 

bigger probabilities. This result forces the classification process to be codîned to positive 

order multihctals calculated for the EMG signal. 

5.4. Classification Method 

In this thesis the distance weighted k-nearest-neighbour mle for classification is 

used. The nearest-neighbour method is a simple non-parametnc classification method 

appropnate for problems where underlying probability distributions of the classes are not 

known. The algorithm is based upon the scheme proposed by Dudani Puda76J. 

This decision nile assumes that observations which are close together (according 

to Euclidean distance metric) will have the same classification. This is also a weighting 

function which varies with the distance between the sample and the considered neighbour 

in such a manner that the value decreases with increasing sample to neighbour distance. 
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Fig. 5.9. The convergence of the positive orders of the multifiactal - 

dimensions for a sample EMG signal. 

Let each pattern pi in the training set be associated with a category number q,, 

where qi E ( 1,2, . . ., N) . When an unlmown pattern p' is to be classified, the k-nearest- 

neighbours of p' are found among the given samples constituting the training set. Let 

these k-nearest-neighbours of p' , with their associated category nurnber, be given by 

(p >,qj) j = I . . . k . The neighbours (p ',,qj) f = 1 . . . k are ordered so that p 'l is the 

nearest and p'k is the faahest fiom the unknown sample p' . Let the corresponding 

distances of these neighbours from the unknown pattern p' be given by 3 j = 1 . . . k 
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The weight wj attributed to the j th nearest neighbour can be d e h d  as 

It should be noted that the value of wj varies fkom a maximum of one for a nearest 

neighbour down to a minimum of zero for the most distant of the kth neighbour. The k- 

nearest-neighbour d e  assigns the unkn0w-n pattern p' to the class for which the weights 

of the representatives among the k-nearest-neighbow sum to the greatest value. 

Dudani shows that the result of weighted k-nearest-neighbours rule is comparable 

to simple k-nearest-neighbours rule for large training sets but for small training sets the 

weighted k-nearest-neighbours nile fields smaller probabilities of error. 

In our classification experiments, the training set consists of ten samples of each 

class, six other sarnples of each class are used for classification. A 7-nearest-neighbour 

algorithm is used for the results discussed and presented in the later chapters. The samples 

are 20 dimensional vectors, since we take the first 20 positive orders of the multifractal 

dimensions as the feature set. 

5.5. Siimmary 

This chapter, discussed an experiment with the EMG signals recorded fiom 

different functionalities of deltoid and trapezius muscles. The goal of this experiment is to 

fingerprint the EMG signals according to their hctionalities. Multifiactal dimensions of 

the signals are used for characterization. The calculation of the multifractal dimensions 

was explained, emphasizing the effects of noise and length of time series. The next 

chapter presents the results of the characterization and classification. 
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This chapter presents the results of characterization and classification of the EMG 

signals acquired in the physicd experiments. This is followed by an andysis of the results. 

6.1 Experimental Results 

The results of the multifi-actal characterization of the signals are presented in Fig .  

6.1 to 6.4. The multifkactal dimensions of the signals from abduction, extension, and flex- 

ion of middle deltoid muscle form three clusters with an average distance of 0.3 between 

the centroids of the clusters, the fiactal dimensions of abduction being the largest dimen- 

sions and the fractal dimensions of flexion being the lowest. The average distance between 

the points in each cluster is 0.05. The multifiactal dimensions of the signals from flexion 

and abduction of the anterior deltoid form two clusters with centroids, being 0.2 apart on 

the average, with the fracta1 dimensions of flexion being larger than the dimensions of 

abduction. The multifractal dimensions of the signals ikom extension and abduction of the 

posterior deltoid form two clusters with centroids being 0.4 apart on average, with the 

fractal dimensions of the extension being larger than the fiactal dimensions of abduction. 

The results for the upper trapezius does not yield an acceptable classification, with the 

centroids of the clusters of abduction, extension, and flexion being only 0.02 apart on 

average and the average distance of samples fiom the centroids being 0.04. The tables of 

the classification results of the signals using nearest neighbourhood method also shows 

that the classification between the different hctionalities of anterior, posterior, and mid- 

dle deltoid are successfùl, while there is no acceptable classification possible for the upper 
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trapezius. The results of characterization and classification are in accord with the anatomi- 

cal description of the fùnction of these muscles. The anterior deltoid is active in fonvard 

flexion and abduction of the m. The largest recniitment of anterior deltoid is seen during 

the flexion of m. It also contributes during abduction. Sunultaneous activation of the 

anterior, middle, and posterior deltoid abducts the ami. Abduction is the primary fùnction 

of the middle deltoid, and this muscle is also active during flexion and extension. The pos- 

terior deltoid has its largest recruitment during extension but it also contributes to abduc- 

tion. The resuIts for the îrapezius muscle might be explained by the fact that although 

trapezius is active in these three functions, the form of contribution to the three move- 

men& is similar, Le. a passive supporting function. 

The successfûl discrimination of the functionalities of deltoid muscle also proves 

that the slight dislocation of the electrodes, corporated into the experiments, is not a 

highly influentid factor in the fracta1 dimension values of the EMG signals. Thefore, it 

is concluded that the fiactal characteristics of the EMG signals are not distorted by slight 

movements of electrodes due to the movement of the skin over the muscle. The timing 

scheme of the recordings also yields another important conclusion about the fiactal char- 

acterization of the EMG signals under study. The experiments show that fractal dimen- 

sions of the EMG signals of each functionality of a muscle stays stable within an error 

range of 0.05 before the development of fatigue. It is emphasized once more that al1 these 

conclusions are based upon the behaviour of the positive order fractal dimensions, since 

the number of points in the reconsûucted attractors is not sufficient for correct esrimation 

of small probabilities. 
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Fig. 6.1 b. The multitactd spectrum of the middle deltoid signàs for subject two. 
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+ Flexion 
: Extension 
- Abduction 

Fig. 6.1 .c. The multifkactal spectrum of the middle deltoid signals for subject three. 
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-- 

Fig. 6.1 .d. The multifkactal spectrum of the middle deltoid signal~ for subject four. 
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Fig. 6.2.a. The multihctal spectrum of the anterior deltoid sipals for subject one. 
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Fig. 6.2.b. The multifiactal spectnim of the anterior deltoid signals for subject two. 
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+ Flexion 

- Abduction 

Fig. 6.2.c. The multifiactal spectrum of the anterior deltoid signals for subject three. 

Fig. 6.2.d. The multifkactal spectrum of the anterior deltoid signals for subject four. 
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Fig. 6.3.a. The multifractal spectnim of the p t & o r  deltoid signals for subjed one. 
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Fig. 6.3.b. The multifiactal spectnun of the posterior deltoid signals for subject two. 
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3. 1 1 I 1 1 L I 
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Fig. 6.3.c. The multifractal spectnim of the posterior deltoid signals for subject three. 
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Fig. 6.3.d. The multifhctal spectnim of the post&or deltoid signals for subject four. 
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Fig. 6.4.a. The multifiactd spectnun of the upper-trapezius signals for subject one. 
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Fig. 6.4.b. The multifkactal spectnun of the uppekapezius signals for subject two. 
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Fig. 6.4.c. The multifkactd spectnim of the upper trapezius signals for subject three. 
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Fig. 6.4.d. The multifiactal spectnim of the upper trapezius signds for subj ect f 
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Abduction Flexion 

Flexion %10 %90 

Table 6.1. Classification for anterior deltoid. 

Table 6.2. Classification for posterior deltoid. 

Abduction 

-- -- 

Table 6.3. Classification for middle deltoid. 

Extension 

Flexion 

Abduction 

% t O0 

Table 6.4. Classification for upper trapezius. 

% 1 O 

%O 

Abduction 

Extension 

Flexion 

Extension 

%O 

Flexion 

%O 

%90 

%O 

Abduction 

%20 

%40 

%20 

%O 

%IO0 

Extension 

%50 

%20 

%40 

Flexion 

%30 

%40 

%40 
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In the course of the characterization and classification of the signals several pre- 

cautions were taken to minllnize the effect of noise. Signals with very low S N R  values, 

were discarded and no converging embedding dimension was calculated. For the rest of 

the signals the smallest hypercube well above the range af5ected by the noise levels was 

chosen. Nevertheless the calculations are not totally fiee from the effect of noise levels. A 

cornparison of the experimental results fiom the middle deltoid and trapezius muscle con- 

fimu again that the discrimination of the different classes is not influenced by the different 

SNR values of the classes. The signals from the three different classes for the trapezius 

muscle have different SNR values but this alone does not cause a classifiable difference 

among them. The results of the experiments also gives one an idea of the degree of the 

effectiveness of cross taIk between anterior, posterior, and middle deltoid. As explauied 

the amplitude levels of signals recorded fiom antefior deltoid in extension and fkom the 

posterior deltoid in flexion are too low and a low embedduig dimension is not extracted 

for them. In both these movements, the middle deltoid is quite active. If an influentid 

cross taJk existed between middle and anterior, or middle and posterior portions of deltoid, 

the activity of abduction should have appeared in the signds recorded fiom anterior and 

posterior muscles in the two movements mentioned above, which is not the case. 

6.2. Summary 

This chapter presented the results of characterization and classification of the 

EMG signals acquired fiom îrapezius and deltoid muscles in the three movernents of 

abduction, extension, and flexion. It is shown that the classification of the bctionality of 

the deltoid muscle is possible by the multifractal dimensions of the EMG signals. The 

effect of noise and cross talk in the experimental results is also discussed. 
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It is shown that the multifractal dimensions of the EMG signals can be used as 

characteristic features which are related to the contribution of the muscle in the move- 

ment. Signals of muscles with a supporting contriion generally have smaller fkactal 

dimensions in cornparison to the signals of the same muscle when playing a primary role 

in a movement. The multifhctal feaîure of the EMG signals can be used for discriminat- 

ing among the different functions of a muscle. 
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CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

In this thesis it is shown that the EMG signals recorded diiring the contraction of muscles 

(specifically deltoid and trapezius) exhibit a chaotic behaviour which is associated with low 

dimensional strange attractors existing in the phase spaces reconstnicted from these single varia- 

ble signals. A fiamework is developed for the analysis of the chaotic behaviour of EMG signals 

using minimum mutual information and false nearest neighbourhood techniques for the recon- 

struction of the strange attractors and the generalized correlation integral for the calculation of the 

multi fiactal dimensions. 

It is show that the multifkactal dimensions of the EMG signals can be used as charactens- 

tic features which are related to the contribution of the muscle in the movement. Signals of mus- 

cles with a supporthg contribution generally have smaller fiactai dimensions in cornparison to the 

signals of the same muscle when playing a primary role in a movement. The multifiactal feature 

of the EMG signals can be used for discriminating among the different functions of a muscle. 

The experimental analysis also indicate that the multifkactal dimensions of the EMG from 

deltoid and trapezius is not effected by cross talk, that the EMG signals with SNR lower than 10 

are so contaminated by noise that a strange attractor with an embedding dimension smaller than 

20 is not conceivable for them, that the dislocations of the electrode which are smaller than 5 mil- 

limeters do not affect the multifkactal dimensions of the signals, and that the multifkactal dimen- 

sions of the EMG signals recorded fiom a muscle in a certain movement, before the development 

of fatigue is stable (with a precision of f 0.1 ). 
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7.2 Contributions 

This thesis has made the following contributions: 

Verification of the chaotic behaviour of the EMG signal. 

A technique for the estimation of the multihctal dimensions of the EMG signals. 

A study of how the multifiactal dimensions of the EMG signals are related to the 

hctionality of the muscle producing the signals. 

A study of the effect of noise levels, cross tak, and dislocations of electrodes during the 

recordings, on the stability of the multihctal characteristics of the EMG signals. 

7.3 Recommendations 

The following recommendations are suggested for fuahur research on this topic: 

Calculation of multifiactal dimensions for signals recorded with higher sampling rates, 

in order to achieve accurate estimates of smaller probabilities. 

Examining the possibility of classification of flexion, abduction, and extension from the 

signals recorded fiom upper trapezius, using recording schemes which minimizes the 

noise levels as much as possible. 

Examining of the possibility of improving the classification by changing the cut off 

frequency ranges of the signal filters. 
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Program: Calculation of the percentage of the fdse nearest neighbours. 

Program description: This program calculates the percentage of the false 
nearest neighbours of the reconstructed phase space for different ernbedding 
dimensions. The embedding dimensions, the time series and the lag are the 
inputs and the threshold values for the recognition of false neighbours 
are chosen by the user. The output is the file which contains the percentage 
of fdse neighbours in each pass fkom one enbedding dimension to a higher one. 

const int lag=l; // lag of the time series 
const int R=10; // nurnber of the Rtolerance factors 
const int N=2000; // series size 
const int M=7; // nurnber of embedding dimensions 

// enter the values of Rtol 
// enter embedmin and embedmax and Rv and At01 
int maino 
{ 

FILE *fin, *fout; 
char infile[255]; 
char outfile[255] ; 
double timeP+l]; 
double D l w l ] ;  
double D 2 p l ] ;  
double D3 [Nt l] ; 
double result[M+l] CR-+ 11; 
double Rtol@Z+l]; 
int m,n,i j,r; 
double sum, mindist, minind, nextdist, distance; 
double Rv ,Ra, Rb, Rt, Rr, Atol; 
int embedmin; 
int embedmax; 

for (i=l ; i <= M ; i*) 
{ 
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for (j=l ; j < = R ;  j++) 

result[i] b]=O; 
} 
1 

for (i=l ; i<=N ; i++) 

f~canf(fin,'~%lf\n'~, &tïme[i]); 
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for ( rn=embedmin ; mc=embedmax ; m*) 

for ( i=l ; i<=N ; i++) 
{ 

mindist= 10000; 

for (j=1 ; j <= N ; j*) 

if ( i!=j) 
{ 

distance-0; 
for (n=O;nc=m-1 ;n*) 

distance+= (doub1e)pow ( (time[i+(lag*n)]-time~+(lag*n)]) , 2); 
1 

i f  (distance c rnindist) 

mindist==istance; 
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Rr=pow@2[i],O.5)/pow@ 1 [i],O.S); 
Rb=(double)pow@ 1 [i]+D2[i],O.S); 
for (r=l ; rc= R ; m) 
{ 
Rt-Rtol Ir] ; 
if ( Rr > Rt I I  ( Rb<(Rv+Atol) & Rb>(Rv-Atol) ) ) 

I 
resdt[m] Cr]*; 

1 

for ( i 4 ;  i<=M ; i*) 
{ 

for (j=l ; j<=R ; j*) 
{ 

fclo se(fin); 
fclose(fout); 

) // main 
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Program: Calculation of the minimum mutual information. 

Program description: This program calculates the minimum muhial information 
of a time series. The input is the time series and the grid size for estimation 
of the probabilities. The output is the mutual information for the différent 
lag ranges. 

const int N=8000; // series size 
const int L=448; //bigger than double the size of the max value of the abs tirne 
series 

// L/2 should be integer 

const int gridsize=4; // should be integer, L/gridsize should be integer 
const int dise2 12; // abs of minx+l 
const int m=112; // L/gridsize 

FILE *fin, *fout; 
char infile[255]; 
char outfile[255]; 
int t i m e w l ] ;  
double Att[L+l] [L+l]; 
double prow m+ 11; 
double pco lumn~+  11; 
int ij,k,l; 
int lag; 
int z; 
int length; 
double Grid [m+l][m+ 11; 
double surn; 
double mq4 1 1; 

// for (i = O; i <= L+l ; i*) { 
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// Attm = (double *) rnalloc((L + 1) * sizeofTdoub1e));J 

for (i=l ; ic=N ; i*) 
{ 
fscd(fin,"%d\n", &tirneci]); 

for ( lag-l ; lag<=40 ; hg++) 

for (i=l ; i<= L ; i++) 
{ for (j=l ; j<=L ;j++) 

i 
Att[i] u]=O; 

J 

for ( k1 ; k <= (N-lag) ; kti-) 

Att [timek] +(dist)] [timem+lag]+(dist)]+= 1 ; 
// prin~'%d\n'',time@cI+(dist)); 
1; 

for(i=l ; i < = m ;  i++) 
( for (j=l ; j<=m; j*) 

{ 
sLlm=O; 
for ( k= l ; k<=gridsize ; kt+) 

{ for (I=l ; le= gridsize ; l*) 
{ 
if ( Att[((i-l)*z)+k][(ü- l)*z)+l]=l) 
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for w-1 ; k<= m ; k*) 

sum=o; 
for ( 1=1 ; l<- ; l*) 

sum=GridM [I]+sum; 
1 ;  

pc01umn~]=sum/8000; 
//printf("%e\n",sum); 

1; 

for @-1 ; k<=m ; k* ) 
( sum=o; 

for ( l= 1 ; l<=m ; l*) 
{ 
sum=GridM p]+sum; 
1; 

p r o w ~ ] = d 8 0 0 0 ;  
// printfi'%eW',sum); 

1 

sum=o; 
for ( e l ;  k<=m ; k++) 
( for ( 1=1 ; l<=m ; l*) 

if ( Gnd [k] [l] !=O) { 
sum=sum+(Grid F] [l] * (double)(log(GridN [1]/(prow *pcolumn[i])))); 
//printf~'%eW7,Grid~] [Il); 
// printf("%e\n",prow~]); 
//printf("%e\n",pcolm[k]); 
//printfCG%e\n'',(Gnd@] ci] *(double) (Log(GridB] [l]/@row [l] *pcolumn[k]))))); 

1 
1 

1 
mfllag]=sum; 
fPrUitf(fo~t,~~%e\n",Mlag]); 
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Program: Calculation of the multifkactal dimensions of a time series. 

Program description: This program is in C language, and calculates the 
multifkactal dimensions of an input time series. The embedding dimension and 
the lag of the reconstruction are inputs dong with the time senes. The number 
of dimensions to be calculated and the hypercube tizes are chosen by the user. 
The output is the array of surnmation of probabilities. 

#include <stdio.h> 
#indude <stdlib.h> 
#inchde <math.h> 
#inchde <rnalloc.h> 
const int size=2000; // size of the time series, usually for one second 

// that is the nurnber of samples per second of EMG 

const int embed=2; // this is the embedding dimension 
const int lag=l; // this is the lag used in reconstruction of phase space 

const int mum=13; // this is the number of vels we want to use, change vels variable 
const int qmax=20; // this is the largest moment order we want to use for 

// caIculation of the renyi dimentions 
const int M=(size-((embed- 1) *gag))}; // number of points in phase space 

int main0 

FILE *fin, *fout; 
float time[size+ 1 1; 
double distance; 
int i j,q,v,n,k,t; 
double sum,temp; 
double probs[vnum+I]~+l]; 
double pprobs[vnum+l J[M+ 11; 
double cql[vnum+ l ] [(qmax*2)+2]; 
double vels[vnum+ l 1; 
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char idiIe[255]; 
char outfile [2 5 51; 
int euc; 
ini vel; 
double temp2; 
double temp3; 

for ( i=l ; i~=vnum ; i++) 
(for ( j=l ; jc=M ; j* ) 

{ probs[i]u]=l; 
pprobs[i] lj]= 1 ; 

// The vel ranges are defined 
/* for (i=l ; i<=vnum ; i++ ) 

printf('"enter the vel size number %dW9,i ); 
scanf CC%d",&vel); 

vels [i]=vel; 
1 */ 

// This section inputs the time series 
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// printf ("please enter the time series ftlenameW9); 
// scanfcL%s",infile) ; 
~=fopen("mome/ee/tina/emgsies/programs/noise.~c"~~"); 
fou~open("mome/ee/tina/emsfiies/pro~); 

if ((fin=fopen(infile))'r-t.''))=NZnL) 
{ 
printf("Error opening fi1e.W'); 

for (i=l ; ic=size ; i++) 

fsca . fh ,"%17,  &time[i]); 

/Il printfpblease enter the name of the output filein"); 
// scanf("%s", outfile); 

/* if ((fouHopen(oudile,"w"))=NULL) 

printf("Error opening output file.\n"); 
1 */ 

// In this section every point in the phase space is visited 
// The number of points which fa11 in a vel centered in each 
// point of the phase space îs calcuiated and enetred in prob array 
// al1 ranges of  vel sizes are taken into account in each visit 

for ( i=(((embed- 1 )*lag)+ 1) ; ie=&e ; i++) 
I 
for G=(i+l) ; j<=size ; j++) 

if (i! =j) 
{ 

//fprintf(fout, "%d %d ':i j); 
sum=o; 
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for ( n=O; nc=embed-1 ; n* ) 

/ / p ~ r % f  %f b:time[i-(n*(lag))]ytime~-(n*(lag))]); 
// p ~ @ ' % e  ",temp2); 
mm+= (double)pow(tenp2,euc); 
1 

//printf("%e ",sum); 
distance=(double)po w(sum,O.S); 
print4''??e \d',distance); 
for ( i ~ l  ; kc=vnum ; k++ ) 

if (distance0 & distance<=velsB]) 
{ probsp][i-((embed- l)*lag)]++; 
probsBJU-((ernbed- l)*lag)]*;); 

1 

for (i=I ; i<-=un ; i*) 
( for ( j=l ; j<=M ; jtt-) 

{ 
probs[i]~]=(probs[i]~]/M); 

/* for ( i=1 ; ic-mum ; ist) 
{for (j=l ; j<=M ; j*) 

{ 
printq"%d %d %e ",i j, probs[i] lj]); 
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// In this section the probabilities in array probs are taken to powers 
// corresponding to the moment orders and put into array cql 

for (FI; v<=vnum ; v*) 
( for ( q=O; q<=qmax; q*) 

if (q!=O) 

for ( i=l ; i<=M ; i t t )  
{ pprobs[v] [i]=probs [v] [il *pprobs[v] [il; 
//printf("%d %d %e ", v,i,pprobs[v][i]); 
1 

m = O ;  
for (i=l ; i<=M ; i*) 

( sum+==pprobs[v] [il ; 
// printf("%e ", pprobs[v] [il); 

1 
cql [v] [(qrnaxf 1)+4]=sum; 
//printf("%e ", surn); 
sum=o.o; 
//printTb%e ", sum); 
for (i=l ; i<= M ; i*) 

( 
if ( pprobs[v][i] != O ) 
{ 
temp3=(1 .O/@probs[v] [il)); 
// printfiic%d %d %e ",v,i,temp3); 
sum=temp3+sum; 
//printf("%e ", sum) ; 
}; 

1 
cql[v ] [(qmaxf 1)-4]=sum; 

// printf("%e ",sum); 
1 

if (q=O) 

m=o; 
for(i= 1 ; ic= M ; i++) 

{ sum=pow(probs[v] [il ,O)+sum;} 
cql [v] [qmax+ 1 ]=sum; 
//printf("%e ",sum); 
l 
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/* for (i=l ; i<=9 ; i++) 
{ 
for (j=1 ; j<= 41 ; jtt.) 
{ 

prinWL%e %d %d ",cql[i]b],ij); 
1 )  

*/ 

for ( j=l ; j e  ((qmax*2)+1) ; j++) 

for (i=l ; i<= vnum ; i++) 

for ( j=l ;jc= ((qmax*2)+1) ; j*) 
{ 

for (i=l ; i<= vnum ; i*) 
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Program: Calcdation of the rndtifiacbl dimension for a strange attractor. 

Program description: This program is in C language. This program calculates the 
multifiactal dimension of a known attractor. The embedding dimension of the 
athactor and the time series cnrresponding to the trajectory of each variable 
are the inputs. The number of fiactal dimensions to be calculated and the hyper 
cube sizes are chosen by the user. The output is the array of sununation of the 
probabilities. 

#include est dio. h> 
#inchde Cstdlib. h> 
#inchde <maîh.h> 
#inchde <malloc.h> 
const int size=15000; // size of the time series, 

const int embed=3; // this is the embedding dimension 

const int vnum=15; // this is the number of vels we want to use, change vels variable 
const int qmax=20; // this is the largest moment order we wnt to use for 

// calculation of the renyi dimentions 

const int delay=lOOOO; 
int main() 

FILE *xcoord, *ycoord, *zcoord, *fout; 
double xîime[sizet 1 ] ; 
double ytime[size+ l ] ; 
double ztime[size+ 1 1; 

double distance; 
int i j  ,q,v,n,kt; 
double sum,temp; 
double probs[vnurn+l] [size+l 1; 
double pprobs[vnum+ 1 ] [sizcH]; 
double cql [vnum+ 1 ] [(qmax* 2)+2]; 
double vels[vnum+ 1 ] ; 
double xdelay, ydelay,zdelay ; 
char outfiIe[255]; 
int euc; 
int vel; 
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double temp2; 
double temp3; 

for ( i=l ; ic=vnum ; i++) 
(for ( j= 1 ; j<=size ; j* ) 
( probs[i]b]=l; 

pprobs[i]b J=l; 

// nie vel ranges are defined 
/* for (i=l ; i<=vnum ; i++ ) 

i 
printTCenter the vel size number %d\n",i ) ; 
scanf ("%d",&vel); 
vels [il -el; 
1 */ 

vels[l]=128; 
vels [2] =2 5 6; 
vels[3]=5 1 2; 
vels[4]= 1 024; 
vels[5]=2084; 
vels[6]=4096; 
vels[7]=8 1 92; 
vels[8]= 1 63 84; 
vels[9]=22768; 
vels[ l O]=45536; 
vels[ ll]=9 1072; 
vels[12]=182 144; 
vels[13]=364288; 
vels[14]=728576; 
vels[l S]=l4Sî 152; 
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// This section inputs the x,y,z coordinates. 

for (i=l ; i<=delay ; i*) 
I 
fscanf(xcoord,"%e\n", &xdelay); 
fscanf(ycoord,"%e\n", &ydelay); 
fscanf(zcoord,"%e\n", &zdelay); 

for (i=l ; i<=size ; i*) 
{ 
fsca~xcoord,"%ein", &xtime[i]); 
fscanf(ycoord,"%e\n", &ytime[i]); 
fscanf(zcoord,"%e\n", &ztirne[i]); 

// In this section every point in the attractor is visited 
// The number of points which fdl in a vel centered in each 
// point of the attractor is calculated and enetred in prob array 
// dl ranges of vel sizes are taken into account in each visit 

for ( i=l ; i<=size ; i*) 

for (j=(i+l) ; j<=size ; j*) 
{ 
if (i!=j) 

I 



Appendix B: Source Code 

sum=o; 
sum+=(double)pow (xtime[i]-xtimeb] ,2); 
sum+=(double)pow(ytime[i]-ytimeb] ,2); 
sum+=(double)pow (aime[i]-ztimeh] ,2); 
//@rintf(fout,"%e\n", sum) ; 
distance=(double)pow(sum,O.5); 
// printf("%e\n",distance); 
for ( k=l ; kc-um ; k* ) 
t 

if (distance>= O & distmce<=vels[k]) 
I probsB1 [il++; 
probs FI Cil*; 1 ; 

1 

for (i=l ; i -==~~ium ; i*) 
( for ( j=l ; j<=size ; j*) 

{ 
probs [il b]=(probs[i] u]/size); 

/* for ( i=l ; i+vnum ; i*) 
{for ( j=l ; j<=size ; j* ) 

{ 
printf("%d %d %e ",i j, probs[i] Ci]); 

// In this section the probabilities in array probs are taken to powers 
// corresponding to the moment orders and put into array cql 
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for ( ~ 1 ;  v<=~~1um ; vtt-) 
{ for ( q 4 ;  qc=qmax; q+) 

{ 
if (q!=O) 
{ 
for ( i=l ; i<=size ; i*) 
( pprobs[v][i]=probs[v]~*pprobs[v][i]; 

sum=o; 
for (i=l ; i<=size ; i*) 

{ sum+=pprobs [VI [il; 

1 
cql [v] [(qmax+ 1)+4]=sum; 

for (i=l ; i<= size ; i*) 
{ 
if ( pprobs[v][i] != 0 ) 

{ 
ternp3=(1 .O/(pprobs [v] [il)); 

1; 
1 

cql [v] [(qmax+l )-d=sum; 

if (q=O) 
{ 
sUm=o; 
for(i= 1 ; i<= size ; i*) 
( sum=pow(probs[v][i],O)+s~m;} 
cql[v] [qmax+ 1 ]=sum; 
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for ( j=l $= ((qmax*2)+1) ; j++) 
{ 

for (i=l ; i<= vnum ; i*) 

cql [il u]=cqi[i 3 b]/size; 

for ( j=l $= ((qmax*2)+1) ; j++) 

for (i=l ; i<= vnum ; i*) 
{ 
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Program: Generation of the Henon attractor. 

Program description: This program generates the x and y variable trajectones 
of the Henon attractor. The parameters of the equation and the size of the senes 
are the inputs. The trajectories are saved in the output files. 

maino 
C 
int k; 
double x[N+l],yW+I]; 
double xmax,xmin,yrnax,ymin; 
FILE *@; 
FILE *xf; 
FILE *yf, 
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Program: Generation of the Lorenz attractor. 

Program description:This program generates the x, y, and z variable tmjectories 
of the Lorenz attractor. The parameters of the equation and the size of the 
series are the inputs. The outputs are the files with the variable trajectories. 

-*/ 

void RungKutta (double x,doubIe y7double z,double *xnew,double *ynew,double *mew); 
unsigned long int N=5000; 
maino 
( 

double x,y,z,xnew,ynew,znew; 
int i; 
FILE *k; 
FILE *w; 
FILE *h; 
frX=fopen('40re~.asc~~~"w'~; 
ny-fopen('l~renzy.asc",'~w~'); 
frz=fopen("lorenzz.ascY ',' 'wY ') ; 
x=12; 
y=12; 
~ 3 4 ;  
for (i=O;i<N;i++) 
( RungKutta(x,y,z,&xnew,&ynewy&ynew, &znew); 

~rintf(f?x,"%e\n'"',x) ; 
@rintf@y,"%eùi",y); 
fprintf(fk,"%e\n"yz); 
x=xnew; 
y=ynew; 
z-mew; 

1 
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void RungKutta(double %double y,double z,double *xnew,double *ynew,double *mew) 

double dOx,dOy,dOz,d 1 x,d 1 y,d 1 z,d2x,d2y,d2z,d3x,d3 y,d3~; 
double xt,yt,zt; 
double dt, dt2,dt3; 
dt70.0 1 ; 
dt2=d t/2; 
dt3=0.3333333333; 
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Program: Generation of the Rossler attractor. 

Program description: This program generates the x, y, and z variable 
trajectories of the Rossler attractor. The inputs are the parameters of the 
equations and the size of the series. The output is the files contaning the 
variabIe trajectories. 

#define a 0.2 
#define b 0.2 
#de£ine c 5.7 
void RungKutta (double x,double y, double z,double *xnew,double * ynew,double *znew) ; 
unsigned long int N=40000; 
maino 

double x,y,z,xnew,ynew,new; 
int i; 
FILE *fk; 
FILE *w; 
FILE *k; 
~=fopen('kossIerx.asc","w~'); 
~open('crosslery.asc","~~'); 
~open("rosslerz.asc","w"); 
x=-1; 
~ ' 0 ;  
z-O; 
for (i=O;i<N;itf-) 
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void RungKutta(doub1e %double y,double z,double *xnew,double *ynew,double *znew) 

double dOx,dOy,dOzydl x,d 1 yyd lz,d2xyd2y,~z,,d3~d3yyd3z; 
double xt,yt,zt; 
double dt, dt2,dt3; 
dt=O.O 1; 
dt2=dt/2; 
dt3=0.3333333333; 

d 1 x=-(yt+zt) *dt2; 
d 1 y=(xt+a* yt) *dt2; 
d lz=(b+xt*a-c*a)*dt2; 




