PDP-11 SIMULATION

by

JOEN L. YAFFE

] a thesis
presented to the Faculty of Graduate Studies
at the University of HManitoba in partial

fulfilment of the degree Master of Science

November 1971

ABSTRACT

A PDP-11 Assembler and ioader is written in IBY System/360
Assembier Language. When linked to a FDFP-11 machine-code Ilnter-
preter, this effectively becomes a simulation of Digital Equip-
ment Corporation's PDP-11 computer. As such, 1ts purpose is to

be a teaching ald for computer sclence students.

ACKNOWLEDGEMENTS

Thisg document along with the actugl PDF-11 Simulator
is being presentéd as a master's thesis to the Department
éf Computer Sclence at the University of Manitoba.

- I would 1like to thank my thesls supervisor Dr. Carol
Abraham for his encouragement_and guldance throughout this
project, and for his helpful'suggestions'and advice on many
technicgl problems. Also, I gratefully acknowledge the
criticisms offered by thé,tWO’referees Dr. J. C. Muzio and

Prof. R. B. Pinkney, both of the University of Manitoba.

~ . John L. Yaffe

November, 1971

CONTENTS

INTRODUCTION « o o o o o o o o o o o o o o o o o o 1
PDP-11 ASSEMBLER USER'S GUIDE « + « « o o« o « ¢« o 5
' PDP-11 ASSEMBLER LOGIC MANUAL .« « « « « « « « o » 115
GONGLUSION .« = = v o o o o o e e e e e e e e o o 147
REFERENCES « + o o o o o o o o o o o o o o o o o o 148

INTRODUCTION

At most universitles today, computer science is becoming a
major field of study. Aside from the mere programming aspects,
students of computer scilence are taught the structure and oper-
ation of computers, the principles that underlie their design,
and Important applications of computers to soclety. N

To a lesser extent are students actually exposed to various
computer hardwares and architectures. There are obvious con-
straints on these educational objectives. Curriculums depénd
heévily_upon the compulter services avallable at the particular
Institution. Due to the large capital investment involved,
universlties rarely possess more thén one large-scale computer
system. Unlversity computing centres seek finencial support from
the business communlty and local government. The interests of
the faculty members determine areas of spéciaIiZation,,aﬁd thus
affect research grants. Rapld technlcal growth tends to make
equipment obsolete within a few years. In the end, it becomes an
administrative decision as to what particular computer system is
installed. | |

It ig not a desirable practice to restrict Computer Scilence
students to one particular computer, immaterial of the manufac-
turer.A It 1s more appropriate for Computer Science depariments to
provide an environment where students can be exposed to a number
of different computer hardwares, each one representing different
characteristic concepts of computer hardware design. In this way,

a student is not limited or influenced by one specific'hardwafe;

rather, he is trained to make comparisons and evaluations ofb
various designs, and thus is better equipped to make decisions
“which may be part of his future responsibility.

Simuletion is g means of providing extra computing facilitiés
which could not othgrwise be afforded. Since purchase of addi-
tional'machines Tor strictly educational purposes is economically
out of the question, universities have successfully simulated both
real and hypothetlical computers. For example, SPECTEE from the
Universiﬂy of Waterloo and PRISM from Massachusetts Institute of
Technology are hypothetlical computers. Real machlines currently
being simulated at the University of Manitoba are the UNIVAC-1108,
the CDC-6600, on-line SPECTRE, and now the PDP-11.
| The PDP-11 illustrates the sdvanced state of the art of
computing today. Although classes as a 'mini-computer', it has
several powerful features not avallable on many larger machlines.
Liké the Burroughs 5000/6000/7000 series, 'the PDP-11 has hardware
stack processing which allows automatic subroutine nesting and
interrupt handling, and dynamic list structures for program data.
The PDP-11 has a wide range of'éddressing capaéilities'—— list
sequential addressing, fuil address indexing, stack addressing,
and direct addressing Qf all core memory =-- which lend a unique
generality to its instruction repertolre. Instructions have a
varigble length férmat, depending upon which of the elght possible
addressing modes 1s specified. Any memory location can act as an
accunulator, thus eliminsting needless 'load' and ‘'store' instruc-
tions. It also includes g full set of instchtions for character

megnipulation. Further, there is no all-powerfull operating system

whiqh controls the computer's supervisory functions. Thus,
through the simulator, a prégramner may create his own servicing
routines to handle hardware interrupts, to control input and out-
put, and to program peripherals. In other words, students will
be able to develop dperating systeﬁs on the simulated machine.

Consequently, ﬁhe PDP-11 simulator will become g valuable
teaching aid. Students Will be exposed to new hardware and:soft;
ware features which provide an intéresting contrast with the
familiar concepts of non-stack computers; The PDP-~11 simulator
may also be used by programmers who-Want to produce real PDP-Tf
progrwms to be run later on a real PDP-11 computer. All the
debugging can be done on the simulatér, thus speeding up program
development. .

The following documentation is directed to readers who have
some understanding of computers and computer software. The Table
of Contents provides a general outline of each major section.

- The PDP-11 Assembler Uéer's Guide is written for programmeré
who are unfamiliar witﬁ the PDP-11 computer. It contalns o
general discussion of the hardware structure, detailed descrip-
iions of the instructlon set and programming techniques, and an
eiplanation.of.the assenbly process. Examples and program llstings
are presented. Several useful Appendices are glso included.

With 1ts Table of Contents, the User's Guide is g useful refer-
ence text. ‘

The PDP-11 Assembler Loglc Manuagl describes how the actual
simulation is designed, and in particular, how the Assembler

1tself 1s organized. Certain maintenance problems are discussed,

and severgl suggestions are made for modifying or creating
assembler features.
The conclusion discusses the role of the simulated PDP-11

system, and points out some improvements which could be made.

PDP-11 ASSEMBLER USER'S GUIDE

TABLE OF CONTENTS

SECTION A GENERAL INFORHMATION
THE PDP-11 ASSEMBLER PROGRAM .
SIMULATED PDP-11 SYSTEM .
HARDWARE FEATURES . .
CORE MEMORY » o o o
GENERAL REGISTERS .
STACK PROCESSING .
SUBROUTINES . . «
PROCESSOR STATUS REG
INTERRUPT HANDLING
ASSEMBLER FEATURES « « « &
PAL-11R ASSEMBLER LANGUA
PROGRAM SECTIONING AND L
RELOCATABILITY . . .
PROGRAM LOADING . . .
INPUT AND OUTPUT . .
ERROR MESSAGES . . &

°

o o o ° ° o ° ° ° L]

IS

T

=

-cnng‘)oo
&=

° ° o °
° o ° 9

SECTION B PAL-11R LANGUAGE
C HARAAC T ER S ET o o ° L] o ° L]
STATEMENTS .

LABEL ¢ ¢ ¢ o o o o o o o o o
OPERATOR v ¢« & o o o o o o o o
OPERAND .+ o &+ « & o o e o o
- COMMENT o ¢ o o o o o o o o o o
SYMBOLS ¢ o ¢ o s o o o o o o o
NUMBERS ¢ ¢ o ¢ o o s o o o o o
DATA FORMATS « ¢ o o o & o o o o
DIRECT ASSIGNMENT .+ o o o » o o
REGISTER SYMBOLS ¢ o ¢ & o o o &
ASSEMBLY LOCATION COUNTER . o &
EXPRESSIONS ¢ o o ¢ o o o o o o
MODE OF EXPRESSIONS o o o o o &
SECTION C ADDRESSING HODES
REGISTER MODE &+ o o ¢ o o o o o
DEFERRED REGISTER MODE ¢« o « o &
AUTOINCREMENT HMODE . + o o o o o
- DEFERRED AUTOINCREMENT MODE . .
AUTODECREMENT MODE ¢« o o o o o o
DEFERRED AUTODECREMENT ¥ODE . .
INDEX HMODIE o o o o o s o o o o =
DEFERRED INDEX MODE B
IMMEDIATE MODE ¢ ¢ o o o o o o
ABSOLUTE MODE o o ¢ o o o o o @
RELATIVE MODE ¢ s o o o 2 o o o
DEFERRID RELATIVE MODE . o « « &
ADDRESSING SUMHMARY o ¢ o o o o @

NKT

L L] ° o L] °] ° o o L

g

e o 2

° [

&)]
|
o e I
3
(@)

° *® o L) [] ° o ° ° o ® L °

1
1

-

°
°
]
L]
L
°
[
°
e
©
L]

L] ° ° [

© © © © © e e o © 6 e e o o (.

° L4 o L) L L] o °) L] ® ° o

v}
- B

‘e ° ° L L o L] L] © o ° L] (] o o o

e e o e 8 o e o e o

L3 o L] o o e L1 L] L ° [o o L] ° o

o ® L L] ° ° ® L] ° °

e @« o © o0 o° e e e o © o

L} o ° ° L] L) ° o ° L) ° ° ° e 9 L

e o o© o ® o e o

® o o e o .

® L4 o a L) ° L] o ° ® ° o 3

L3 o ° o o L] ° ° L) Q L] °® o e e

o L] e ° °® L] L] L) o L] L) °

° e o e ®» o @& © o ° s e o

L] ° L3 L] ° ° o L] o ° L] [° L] L L]

° ° ° o ° ° L] ° o ° ° ° o ° o ° L o ® ° °

° L] ° & ° o

° e e o o e e 3 ° e e o @ ° e o o ® o e o© ° e o ° o o

L] L] o L] ° L] 2 ° o L L] L o

. e L ° o L] -] L e ° o L3 e L] L] °

e L o ° ° °* L]

° o ° ® ° ° ° L] L) e L] ° L]

. ° e o e o o e e o o o e o o

® © ° ¢ o o @ e o o ¢ e o °

o L] ° L) L] ° L) o o ° L)] °©

e e © o o e & o o

e ° o o °

L ° ° L] ° 3 ° L] e ° L) L] o

. L ° ® o o a ° - ® o - L) L4 L) L]

° L] L) L] ® o] L) ° o L] ° ° o o °

L] L] ° o ° L d °

L] ° ° L] L]

® ® o ® o L] ® L] L ° [] ° ®

(telooRo BN ENENENINEE SN\ NORORIORTC Ao R0y

20
20
21
21
22
22
25
24
25
26
27
28
29
30

32
33
33

34
25
35

36

37
37
38
38
39

SECTION D PAL—11R LANGUAGE STATEMEN
INSTRUCTION MNEMONICS o o o o o o o
SYMBOLIC FORMnTS e o o e o o
DOUBLE OPERAND INSLRUCLIOWS .
ARTTHMETIC OPERATIONS .
BOOLEAN OPERATIONS . . .
SINGLE OPERAND INSTRUCTIONS .
GENERAL OPERATIONS . . .
MULTIPLE PRECISION OPERATI
ROTATES ¢ ¢ o o ¢ o o o o
SHIFTS . o o ¢ o o o o o
JUMP ¢ ¢ ¢ ¢ ¢ o6 o o
BRANCH INSTRUCTIONS . « « . &
UNCONDITIONAL BRANCH . .
CONDITIONAL BRANCHES .
OPERATE INSTRUCTIONS . «. ¢ « &

CONDITION CODE OPERATORS
.CONTROL OPERATORS
SUBROUTINES .+ o« . « &
ISR ¢ ¢ o ¢ o o @

RTS « « « & .
TRAP INSTRUCLIOAS o o
MONITOR REQUESTS o o o o =
: WEXIT o 6 6 o o o o
LDUMP & & o & . e

° L3 °
°
°
°
o
°
°
°
e

INPUT/OUTPUT MAGROS
MUL AND DIV
ASSEMBLER DIRECTIVES .

: « END .
DATA GENERATING DIRECTIVES
PROGRAM SEOTIONING DIRECTIVES
CONDITIONAL ASSEMBLY DIRECTIVES

° .
. . . e o o e o o ® o L]

. ° * o o L] L] ® ° ° °

SECTION E OPERATING PROCEDURE
CONTROL CARDS . « « « « + & &
ASSEMBLER OPTIONS . .
STACK ADDRESSABILITY
THE PROGRAM LISTING .
SAMPLE PROGRAMS . . .

o o o o

e o s &

o o o e

e o o o

e o o o o
s ®

L] ® o ° o

o o o o o

APPENDICES
APPENDIX A:
APPENDIX B:
APPENDIX C:
APPENDIX D:
APPENDIX E:
APPENDIX F:
APPENDIX G:
APPENDIX H:

CHARACTER CODES
ADDRESS MODE SYNTAX . .
INSTRUCTION FORMATS . .
INSTRUCTION MNEHMONICS

E:?.RO?. 31‘ SS I;,\.T.;.:b ° ° @ ° °
STORAGE ADDRESS MAP .

e e o o 6 o o o 6 s 6 o ¢ ¢ © o & ()o © o © o o o

=3
n

N

=
- o ° ® L] L] © ° o L [.] L2 L] L] m. ° L3 9 e L) o

L] ° L © L]

°

a L] o ° L] L] L4 L] a ° o 9 L] o o

° o o o ° ° °

L d

e

L] L] L] L] L] e L] °

° L] o < ° ° ° o L]] o ° o ° L]

° . . ° ® ° ® ° ° e o o e o e o

L) ° L] a °

@

°

* [e ©° &

°©

° o o . L] ®° ° o o ° s e e o e o e ° 3 o e e© o o o L] o o e o o

° ® ° ° o

°

e

° L] L3 ° ? * ° ° ° o ® L] L3 L] o o ° o ° © e ° e o o ° o L] °© ° o

o @ ¢ o o o e o© ° e @ °

° ° ° ®

SmPARATI\G OR TERMINATING CHARnCTdRS

*

°

ASSEMBLER DIRECTIVES AND MOYITOR PEQU

L]

o ° ° 9 L) - ° ° ° L] o ® L] L3 o o o L] L] L) ° o L] ° ° L] L) o ° ® o

L] * ° ° L

ES

o o L] ° L] o © ° o o o L] o ® L) L] ° © L ° L L ° o o L] o o °

L]
L 4
®
o
o
s

° ° L L) o * ° o o L] L L) o L] L] o o L] L ° ° ° o o e ° L) L4 ® ° [3

° e o o o

° e o o °

e ° ° ® ° L] ° o L] L o L ° o L)] ° o ° © o ° o ® L] o L) ° ° o]

° L) L] L L]

88
88
89
90
93

101
103
104
106
107
110
113
114

SECTION A -~ GENERAL INFORMATION

THE PDP-11 ASSEMBLER PROGRAM

Computer programs may be expressed in machine language,
using numeric codes directly intérpreted by the computer, or in
symbolic lénguage, using letters, numbers, and symbols mesningful

to a progrsmmer. A symbolic language, however, must be trans-

lated into machine language before the computer can execute the

progrem. This 1s the function'of an assembler. '

PAL~-11R (Erogram Assembly Language for the PDP-11, Reloca-
table version) is the symbolic language designed by Digital
Equipment Gorporstion for the FDP-11 computer. The PDP-11
Assembler, then, translates PAL-=11 séurce statements into
PDP-11 machine code. "

However, PAL-~-11R 1s not a conventional assembly language.
Due to the hardware features of the PDP-11 computer, the assembly
process 1s not a simple line-by-line translation of source state-
ments. Processing involves the detection and identification of
addressing modes, the generation of index words, the asslgnment
of storage locatlons to iﬁstrﬁctions, index words and program
data, the performsnce of auxiliary functions requested by the
programmer, and the loading of thebmachine code into main storage.
Further, the assembler furnishes a printed listing of the source
statements and the machlne code, with addltiongl information such

as symbol tables, error disgnostics, and assembly parameters.

SIMULATED PDP-11 SYSTEH

The processing of any given PAL-11R program involves three
Phases occurring at distinct times in the following sequence:

1. Assembly: AL assenbly time, a PAL-11R source progran is
read and translated into PDP-11 machine language by the Assembler.
2. Loading: At load time, the machine language instructions

are placed into the PDP-11 core memory.

3. Executién: At execution time, the PDP-11 Intérpreter
automaticelly identifies and carries out the machine instructions.
A small supervisory program called a monitor initiates these
procedures, thus forming a systemn able to batch-process PAL-11R
source programs.

This software constitutes a simﬁlator of o PDP-11 systenm.
That 1s, although the University of Manitoba does not possess an
actusl PDP-11 computer, by ﬁeans of this softwére, the IR System/
360 Model 65 appears in structure, iﬁ capabllity, and in operation
to be a PDP-11. (Note that any PDP-11 program may become part of
the operating system under this simulation.) g

Interested readers are directed to the Assembler Logic
Manugl for Specific techniques used in the simulation. Throughout
this User's Guide, no distinctions will be made between the

simulatioﬁ and the actual FDP-11 computer.

HARDWARE FEATUREZS®

CORE MEMORY

A menory location is an 8-bit informgtion unit called a byte.

The normal processing unlt, called a word, 1s 16 bits long, and

consists of two consecutive bytes.

HIGH BYTE LOW BYT
15 87 0

PDP-11 WORD

(£3]

Byte locations in core memory afe nunbered consecutively using
octal notation starting with 000000. & word in storage is

aligned on an even byte boundary, and is addressed by 1ts low-
order byte. The PDP-11 processor can directly access up to 32,768
words or 65,536 bytes. The maximum core memory size is 32K words,
but any individual user may requést the system to consider less
core for running his job. (This is indicated on the 3JOB card

as discussed in Section‘E.)v

GENERAL REGISTERS

The PDP-11 contains elght 16-bit registers, usually reférred
t§ as RO, R1, R2, ... R7. Each reglister may bé used a8 an arith-
metic accumulator, as a pointer to a mémbry location, or as an
Index register. The seventh register, R7, 1s used by the pro-
cessor as the progresm counter (PC) register. The PC contalns
the address of the next instruction to be executed. Register R6
is known as the processor stack pointer (SP), and is used auto-

matically in PDP-11 processor stack operatiéns.

STACK PROCESSING

A stack is a dynamically increasing/decreasing sequential

list of data which is maintained by a stack pointer (= register)

10

which at any time points to the beginning of the list. Such a
stack 1s often calied a 'push-down' stack or a Last-In-First-Out
(LIFO) 1ist. The following terminology is used:

1. The 'top of the stack' is the beginning of the list.

2. A 'stack pointer' alwéys contalns the address which is
the curreht top of the étack. The stack 1s controllied by manip-
ulating thié pointer. The pointer is located iIn a reglster --

S the processor stack pointer is R6 -- although a user may select
. any register as a stack polnter for a user-defined stack.

3. The brocessor stack' is used by the system in conjunction
with subroutine calls and interrupts. The processor stack may
also be used by a user. The user and the processor will take
control of the stack at different times, thus avolding any
possible conflict.

4, To 'push-down' the stack means to enter data at the top

of the stack.

SP—> Y n-X%
SP—> X n X N
SP—> n+k n+k n+Xk
an empty stack pushédown X push-down Y

(8P)=n+k (sP)=n : (8P)=n-k
k=1 for byte _ , v
k=2 for word

A 'push-down' involves stepping the stack pointef to the next

lower memory word (or byte), and physically entering a data

word (byte) at that zddress. This address becomes the new top

of the stack.

11

5. To ‘'pop-up' the stack means to remove an entry from the

top of the stack.

SP—> Y n-Xk L
- X In sP>[X -
n-+X n+k @ SP—> n+%k
X and ¥ pop-up Y - pop-up X
on the stack -~ (SP)=n (8P)=n+k
(sP)=n-Xk : - '

- & ‘'pop-up’ involﬁes recovering the data pointed to by the stack
pointef and}increasing_the stack pointer to the next higher word
or byte. This address becomes the new top of the stack. Data is
not physically erased; only the contents of the stack pointer are

changed.

SUBROUTINE NESTING

Subroutine nesting to any depth is easily accomplished by
using the stack mechanlsm. A user-defined stack may be generated
as an argunent list. Tﬁe special inétructions JSR.(Jump to Sub-
Routine) and RTS (ReTurn from Subroutine) effectively reserve
and restore registers for use as stack pointers both for passing
arguments and for deternining the subroutine return addfess.

These Instructions are explained in Section D.

CENTRAL PROCESSOR STATUS REGISTER
The central processor status register, denoted PS, indicates
the status of a program before the current instruction is executed.

The PS 1s a reserved word in core menory with the following format:

12

PROCESSOR
o UNUSID priorizy | T N[2|V |C
15 8 7 6 5 & 3 2 1 0

Central Processor Status Reglster

Processor Priority:‘ The current priority of the_processor‘cah be
set by a programmer to any one of eight levels. This priority,
indiéated by bits 5, 6 and 7 of the PS, is used by the hardware
interrupt system in determining whether ezternal device interrupts

gain control of the processor.

T-Bit: This is'the trace bilt whlich is usefulifor program
debugging. If the T-bit 1s set, a progran interrupt occurs after
the execution of the current instruction using the interrupt
vector at location 14 (octal). Normally an installation service
foutine will print ouﬁ~usefu1 information about the ﬁrogram's
‘statué,'élthough the user is,free to write his own trace-handling

-routine,

Céndition Codes: These four bits provide information about the
result of the prévious opergtion. The'bits are set after the
execution of every inétruétion as tabulaﬁed in Appendix E,
where each bit indicates the following:

Z: set if the4reéult was zero; cleared otherwlse

N: set if the result was negative; cleared otherwise

C: set 1If tﬁe operafion resulted in'a carry from the most

signifiCant'bit; cleared,othérﬁise
A% sef if the operation resulted in an arithmetic

overflow; cleared otherwlse

13

INTERRUPT HANDLING

The PDP-11 makes a logical distinctioh between méchine
instruction errors, inpﬁt and output requests, installation serﬁice
routines;»and user-defined trap routines. They are all claésed |
as 1nterfupts, sand they a1l use the samelinterrupt mechanisﬁ.
But each cause of interrupt is associated wilth a fixed memofy
location (called a trap vector) thus eliminating the need to
Adetermine‘by gsoftware what was the cause of the interrupt. The
“interrupt system permits the processor to shift executlon from
any glven routine to another one, and later return to the inter-
rupted routine exactly as it left it.

A progran interfupt may be caused in any of the following
ways:

‘1. External Device Interrupt: Each peripheral device is
; assigned a priority level fof interrupting the processor. When
an external>device needs the processor, é hardware interrupt
occurs and control is given to the servicing routine of that
device. (References to external devices have not yet been
implementéd in the.Interpreter; conSequently, no priority
interrupts exist in this simulation.)

2, Meachine Instruction Errors: Whenever an instruction
error 1g detected)‘an interrupt is automaticélly generated to
terminate the user progrem and print an octal ddmp of core
memory.

3. User-Invoked Inﬁerrupt: A user may-code an interrupt
directly into his progrem in much the ssme manner as a subroutine

call. The 'trap' inmstructions EMT (Eulator Trap) and TRAP are

14

uéed for this purpose.
'A trap vector (or interrupt vector) Comprises‘two congecutive
werds of memory. The first word contaihs the starting addreés of
‘an interrupt-handling routine; the second contalns a new processor
status word. Each type of interrupt 1s assoclated with its own
particular interrupt vector, as outlined in Appendix H. Locations
000000g to 000400g of core memory are reserved for theéeAinterrupt
. Vvectors, |
The interrupt operstion may be summarized as follows:
1. The contents of the program counter (PC) and the processor
status reglster (PS) are pushed onto the proceésor'stack.
2. A new PC and PS are losded from the appropriate location
of the interrupt vector, thereby sen&ing control to an interrupt-
handling routine, with the brocessor set to a new priority level.
3. The interrupt-handling routine is terminated by the instruc-
tion RTI (ReTurn from Interrupt) which pops the top two words off
the processor stack back into the PC and PS, returning control
to the interrupted program.
An interrupt—handling roufine may itself be interrupted, and
this nesting of interrupté may g£o on to any 1e€el, limited only
by the core gvallable for the processor stack. Further, a service
routine may use the processor stack for temporary dats or dynamic.
lists provided thé return mechanism is not destroyed. Filgure 1
illustrates how the processor stack operates during nested
interrupts. Note that the stack pointer (SP) is automatically

ad justed.

15

FIGURE 1 INTERRUPT OPERATIONS

0
400
0
400
sP—>[01
PS1
SP—>
PROGRAM PROGRAM

1. Routiné‘f'eXécutes 2. Interrupt Routine 1 by

(SP)=n Routine 2
‘ ' (SP)=n+4
0
- 400
0
400
sp—> PC2
Pse
8P —> TE P2 TEMP2
TEIP1 TEMP1
PC1 PC1
PS1 P31
PROGRAM PROGRAM
3. Routine 2 generates 4, Interrupt Routine 2 by
temporary storage Routine 3
(S8P)=n+8 (sP)=n+12
0 0
400 400
SP—> TEME2 SP —> PC1 403
TEIP1 PSi
PC1
PSS PROGRAM
Sp—>
PROGRAM PROGRAM
6. Release temporary :
, storage
5. Routine 3 terminates, (SP)=n+4 7. Return to Foutine 1

return to Routilne 2

(8P)=n
(SP)=n+8 _

16

ASSEMBLER FEATURES

PATL-11R ASSEMBLER LANGUAGE

PAL-11R Assembler Langusge provides a collection of'mnemonic
symbols composed of: |
| <1, Instruction mnemonics which correspond to the PDP-11
machine language commands ﬁsgd at execution timé;
2. Ass;mbler‘directives which répresent au£iliar§ functions"

to be performed by the Assembler at assembly time.

PROGRAMgSECTIONING AND LINKING
o The Aééémblér provides facillties for organizing a program

into one or more parts called controi sections. Control sections
are assembled»independently and the Assembler maintains a separate
‘location counter and symbol'table for each section. | |

Symbols defined in one control section may be referenced in
another control section by using the .GLOBL directive. (See Section
D.) Thus, a program written with different control sections may

share data and transfer control among sections.

‘, RELOCATABILITY

| Program relocation is the loading of an object program into

, étorage 1ocations.other than those originally assumed by the user,
A program section is classed as relocatable or absolute respec-
tively depending on whether it does or does not undergo program
relocation. A user may'specify'an absolute séction by means of

an ASECT directive, or a relocatable sectlon by a .CSECT

17

directive. (Sée Section D: Program Sectibning Directives.)

VControl sectiohs are relocatable unless explicitly defined
as abéolute. Relocation is automatic, and in general invisible
to the user. Actually, however, the Assembler will add the base
address (hereafter_relocatable zero) of the gppropriate relcca—y
kﬁéble section to any address constahts appearing in the program;
=

PROGRAM LOADING

In this'version of the PDP-11 Assembler, the load phase is
1ncorporatedAinto the assembly phase. Thls restricts some of the
capabilities of the PDP-11 simulation in that object modules
cannot be loaded from auxiliary storaﬂe and relocgted for execu-
tion. Such problems are discussed more fully 1ln the Assembler
Logic Manual. |

All relocatable control sectlions are loaded contiguously at
the highestblocations of core memory. Any absolute sectlons are

loaded at the locations specified by the user.

INPUT AND OUTPUT

The PDP-11 instructién set has no explicit input or output
Instructions. in an actusl PDP-11 sysﬁem, each peripheral device
1s asslgned unique memory addresses for what are termed device
statusArégisters, control registers, and data registers. Under
certain conditions, I/0 hardware devices will interrupt the pro-
ceésor and direct its control to an appropriate input/output
service routine. There is no need for device polling.

- This hardware appronch for I/0 creates no additional problems‘

18

for the Assembler. However, at the present (1971) stage of
development of thé simulation, the Interpreter_doés not have the
‘code to cope with peripheral devices.

in order to free the user from the detalls of programming
peripheral devices, and to postpone the interpretastion of such
instructions,; a set of service routlnes were made avgllable in
the form of extended assémbly language instructions caglled monitor

requests. JAmong these are the input and output macrbs:

1. ~ READC - Read Character

2. READO - Read Octal

3. PRINTC - Print Character
4, PRINTO - Print Octal

ERROR MESSAGES

When a source progren ls assembled, it is analyzed for errors
in the use of PAL-11R language. Detected errors are flagged, and

e summary of the errors appears at the end of the program listing.

19

SECTION B PAL~11R LANGUAGE STRUCTURE

CHARACTER SET

A PAI-11R symbolic program is composed of instruction mnemonics,
symbols,vnumbers, and separating characters (delimiters) using £he
fo;lowing ASCII% characters:

1. the letters A through Z;
2. ‘the digits O through 9;
3. the characters . and &;

"4, the separating or terminating characters

s =%#@ (), ; "'+~ & ! and blank.

STATFMENTS

A statement may be composed of up to four fields which are
identified by their order of appearance or by special terminating
characters as explained below and summarized in Appendix B.

These four fields are:

LABEL OPERATOR OPERAND COMMENT

where the LABEL and COMMENT fields are optional, and the OPERAND
field depends upon the OPERATOR being used.

A symbolic program 1s submitted in the form of punched cards.
Each source stateient nust be contained in columns 1 through 72
of 2 card, with one statement per cérd, and no continuations
allowed. The statement filelds are ﬁot assoclated with fixed

locgtions on the data card.

* ASCII stands for American Standard Code for Informatlion
Interchange.

20

LABEL

A label is a»symbolic name for a particular location within
a progrem. The label field 1s optiongl. If a label is present,
1t always occurs first in g statement, and must be terminated by
a colon (:). A label is a user-defined symbol which is assigned
the current value of the location counter. (The location counter
contains the address of the memory location where the machine
code for the next instruction will be stored.) This.value will
be absolute or relocatable according to wﬁéthér that program
section is absolute or relocatable.

For example, if the current location counter is (relocatable)
408, the statenent .

ABC: ADD A,B

will assign the value (relocatable) 408 to the label ABC, =o that
all references to ABC will become references to location (reloca-
table) 40g.

More than one label may appear within the same label fleld;
and each label will be assigned the ssme value.

XYZ: DDj: AT76: ADD A,B

In the gbove, the samé value willl be assigned to each of the
labels XY¥Z, DD3,A76.

If the same label appears on any other statement within the
same program section, the error M (Eultiple definition of a label)

will be generated.

OPERATOR

An operator 1s an instruction mnenonic or an assembler direc-

21

tive, as tabulated in Appendices E and F. An instruction mnemonic
specifies what action will be performed at execution time. An
assembler directive specifies a certain actlion to be performed
during assembly time.

An dperator mgy be preceded by one or more labels, and
followed by one or more operands end/or o comment. An operator
is terminated by a blank or any of the followlng characters:

e (% +«+ - & U " ', |
' The use of the above characters Willmbevexﬁlained in subsequent

sections.

OPERAND

Operand entries identify data t5 be acted upon by the operator.
Operands may be symbols, expressioﬁs, or numbers. Depending on the
type of instruction, one, two, or no overands may be written in'the
operénd field. When moré than one operand appears within a state-
ment, each i1s separated from the next by & comma. An operand may
be preceded by an operator and/or a label, and followed by a com-
ment. Operands may represent storaze locagtions, general registers,

immediate data, or constant values.

COMMENT

Comments 4o not affect the assenbly or the execution of a
program; however, they are useful as documentation for the program
listing. A comment must begin with a semi-colon (;). The comment
field is optional and may contaln any characters.v It may‘be

preceded by none, any or all of the other three flelds.

22

The following are examples of comments:

LABEL: MOV X,V ; THIS IS A COMMENT

; THIS IS A COMHENT CARD

‘A symbol is a character or combination of characters used to
represent storage locations or agrbitrary integers. Symbols, by
their use as lakels and operands, provide a convenieﬁt way to
name and reference program data. There are two types of symbols,
each with its own symbol table:

1. ©permanent symbols

2. user-defined symbols

PERMANENT SYMBOLS

Permanent symbols consist of the instruction mnemonics and
assenbler directives which represent the instruction capabilities
of PAL-11R. These symbols reside in a permanent part of the
Assembler celled the Permanent Symbol Table, and need not be defined

by the programmer before belng used in an Assembler source program.

USER-DEFINED SYMBOLS

User-defined Sjmbols are created by the programmer to be used
as labels and operands. These symbols are entered by the Assembler
into the User Symbol Table as they ére encountered during the first
pass of the assembly. A string of characters 1s a legal user-
defined symbol only if the following rules apply:

1. The first character in a symbol must not be a digit.

23

2. No blanks or separating charscters may be ilncluded.

3 Each symbol must be unique within the first six characters.
Symbols of more than six characters will be accepted; the seventh
‘and subsequent characters will be checked for legality, but other-
wise iznored by the Assembler.

A user-defined symbol may duplicate a permanent symbol
without confusion:

1. When a symbol is detected in the operstor field, it is
assigned its'corresponding machine operation code as tabulated
in the Permanent Symbol Table. If no such instruction (symbol)
exists, the .WORD directive is assumed (see Section D: Assembler
Directives) and the symbol 1s consldered as an operand.

2. If a2 symbol is detected in the operand field, it 1is
associated with its user-defined value, 1f any, as found in the
User Symbol Table. Fgiling this, the symbol 1s assumed permanent
and 1is assigned an absolute value corresponding to its machine
operation code. If a symbol ‘is found to be nelther user-defined
nor permanent, it is assigned the value {(relocatable) zero, and

is flagged as undefined.

GLOBAL SYMBOLS

Global symbols are user-defined symbols which also appear in

the .GLOBL assembler directive. (See Section D.)
NUMBERS

Numbers agre self-defining terms which provide g means of

specifying values without using symbolic names. A number is

24

classified as ébsolute since its value does not change during
relocation. A number is transformed during the flrst pass of the
assenbly into its 16;bit binary equivalent. If that number re-
guires more than 16_bits, it is trunceted on the left, that is,
i1ts high order bits are iznored, and flagged with the error T
(Truncation error.) Each aumber is calculated as soon as it is
encountered, and no symbol table entry is associated with it.

The Assembler recognizes two different types (number.base) of

nunbers, octal and decimal.

OCTAL NUMBER

An octal number consists of the digits O through 7 only.

Each octal digit 1s assembled as a 3-bit binary code:

0 - 000 . 4 - 100
1 - 001 5 - 101
2 - 010 6 - 110
3 - 011 7

- 111

DECIMAL NUMBER

A decimal nunber 1s written as a signed or unsigned sequence
of decimal digits followed by a decimal point (.). A number con-
taining the digits 8 or 9 but not‘tenninated by a decimagl polnt
is still interprete@ as decimgl, but the error message XN (ﬁumber

error) is generated. ‘ ‘

DATA FORMAT

1. All numbers are treated as word quantities including a

sign bit and 15 binary integer bits.

25

8] INTEGER

!
15 0

Positive nunbers are stored in true binary form with a sign-bit
of 0. Nezative numbers are stored in two's complement Torm with
g sien bit of 1. The‘two’s complement of a binary number is
obtained by inverting each bit of the binary represeﬁiation and
adding one to 1t. In byte operations, a full word value 1s cal-
culated, bub bruncabted to the low-order byte.

2, All 2ddresses are assumed to be positive integers and

are stored as 16-bit true binary numbers with no sign bit.

| ADDRESS J
15 0

3. Loglcal and character data is stored as unstructured

bytes.

DIRECT ASSIGNMENT

A direct assigmment statement defines s symbol by assigning
to 1t the value and relocatability attributes of an expression
in the operand field. _
| SYMBOL= EXPRESSION
where the following rules apply:-

1., An equal sign (=) must terminate the symbol neme.

2. A direct assignment statement may be preceded by a
label and/or follo&éq by a comment.

3, Only one symbol may be defined by any one direct
assignment statement.

4, Only one level of forward referencing is allowed. An

26

 An example.of‘two 1eveis of-forward refefenoing ié:
Xy
Y=z
Z=5
At the end of Pass 1, X and Y are undefined, although Z is defined
as 5. Consequently, in Pass 2, 'X=Y' cannot be evaluated. This
causes the error message U (Undefined symbol.)

A symbol may be redefined by another direct assignment state-
ment; However, a symbol may not be definéd'both by.direct asslign-
ment and as a label. Such action will be flagged as a D-error
(Doubly defined symbol,)

It should be understéod that direct assignment statements
are non-executable instruétions. The symbols are defined at
assembly time only. No machine insﬁructions are genergted for

exXecution time.

REGISTER SYMBOLS

A register symbol is a symbolic name‘for a reglister and is
defined by direct assignment. The eight general registers of the
PDP-11'afe idenﬁified»by the nunbers O to 7. Thus, the defining
expression fof a registef symbol must be absolute and 1in the range
0 to 7. In addition, at least one term in the expression must
either be preceded by a2 % sign, or be a previously defined
register symbol.k

RO=%0 ; DEFINE RO AS REGISTER O

R1=RO + 1 ; DEFINE R1 AS REGISTER 1

R5= 3 + %2 ; DEFINE R5 AS REGISTER 5
The percent sign, %, indicates a reference to a register. In

fact, the % may appear 1n any expression 1n any instruction,

27

where a register symbol is required.

CLR %4 ;CLEAR REGISTER 4
CLR 4 ;CLEAR MTHMORY LOCATION 4

A register symbol must be defined before it is referenced.
Otherwise, the Assembler may interpret the statement in a way

- not intended by the programmer.

ASSEMBLY LOCATION COUNTER

- The location counter is used by the Assembler during assenbly
of a prdgram to assign storage addressesvto program statements.
It is the Assembler's equivalent to the program counter at execu-
tion time. As each instruction is assembled, the location counter
- 1s incremented by the length of the assembled item. Thus, it
always points to the next available storage location. 4ny label
that is encouﬁtered, then,vis assigned the value of the locagtion
counter before this incrementing occurs. In this way, a label 1is
seernl a8 a symbolic address whose numerical equivalent (the value
of - the location counter) is the sddress of the first byte of the-
mgchine instruction being assembled.

The period (.) is the permanent symbol for the location

counter and may be used in any exﬁression in PAL-11R. For example,
storage locations meay be reserved in a progrém by advancing the

location counter.

o= o + 20, s RESERVE 20 BYTES OF MEMORY
MOV «sR5 s LOAD TEE MOV INSTRUCTION INTO R5

The locagtion counter has a mode associatéd'with it: it is gbsolute

if it appears in an absolute program section (see Frogran Sectilon-

28

ing Directives); otherwise, it is relocatable.

EXPRESSIONS

An expression is composed of g single term, or an aritimetic
or logical combinapion of terms. A term may be a permanent symbol,
a user-defined symbol, s number, or the locastion counter. An
expression is evaluated term by term from left to right and reduced
to a single word quantity by the Assembler. Parenthéses are not

allowed within an expression.

ARITHMETIC AND LOGICAL OPERATORS

The arithmetlic operztors are:

+ addition or z positive number
- subtraction or a negative number

The logicegl operators sre:

& logical AND
! logical inclusive OR

AND OR
0&0=0 0!l 0=0
0&1 =0 ol 1 =1
1&0=0 110=1
1 &1 =1 111 =1

A missing term or‘expressioh ls interpreted as s zero. A missing
operator is interpreted zs a plus. The error code Q (guestionable

syntax) 1s generated for a missing operator. B

=

MISSING OPERAND

)

X + - 100 H

is evaluated zs X plus O minus 100g.

29

ASCII CONVERSION

' ASCII byte
" ASCII word

1. The apostrophe (') assizns the 7-bit ASCII value (Appendix A)
of the character following it.
'A' ;EVALUATED AS 101g
2. The quotétion mark (") forms a word quantity from the two
charactérs following it“éé shown below:‘
a. The low byte 1s the ASCII value of the filrst character.

b. The high order byte is the ASCII value of the second
cheracter.

c. Any additionagl characters are ilgnored.

"BC ; EVALUATED AS 041502g
where high byte low byte
01000011 01000010
¢ B

MODE OF EXPRESSIONS

A term 1s elther absolute, relocatable.in the current program
gection, or relocatable in another program section. ©Note that
there are no external symbols since previously assemnbled prograné
can not be loaded into core from guxiliery storagze. Numbers,
permanent symbole, and generated data are treated as absolute
terms.

Similarly, expressions are absolute or relocatable according
to the following rules: |

Absolute: 1. absolute term preceded optionally by a plus or
minus sign

2. relocatable expression minus a relocatable term
belonging to the same program section .

30

3. any combination of absolute terms

Relocagtable: 1« a relocstable term

2. a relocatable expression plus or minus an
absolute expression

3. an absolute expression plus a relocatable
expression
Relocatable terms from different program sectlions may not appear
in the same expression. Also, logical operations involving two
relocatable terms sre illegal. These errors are flagged by the

message A (Addressing error.)

31

SECTION C ADDRESSING MODES

PDP-~-11 machine instruction words contain a six-bit address
field divided into two 3-bit subflelds which specify the general

register and the mode of calculating the operand address.

MODE |REGISTER
5 4 3 2 1 0.

Address Field

The register subfield identifies which of the elight general
registers is to be used in the address calculstion. The mode
subfield indicates how this register is to be used.
The following conventions are used throughout this section:
a; E represents any expression.
b. R represents a register expression.
c. ER represents a régister expression or an absolute
expression in the range O to 7.
d. A 1s g six-blt address field as described agbove.
e. Examples are provided using the clear instruction CLR
which zeroes out the operand location. (operation code
0050004) | |

REGISTER MODE

Address Field: [0 ; 7|

Format: ' R
Description: The reglister contains therperand. The FDP-11

general registers are located in 'fast' memory,

32

hence operations involving reglsters as operands have a definite
speed advantage.
Example:

000001 Ri= %1 sDEFINE REGISTER 1 AS RI
005001 . CLR RI1 ;s CLEAR REGISTER 1

DEFERRED REGISTER MODE

Address Field: L 1 | R |
Format : @ or (ER)
Description: The reglster contains the address of the

operand. The separating character '@'
indicates to the Assenbler that the following eXpressidn is a
pointer to an operand eddress. In this case, 1t is the program-
mer's responsibility to ensure that the register involved
actually wlll contaln the require@ address at execution time.

Example:

CLR €R1 CLEAR THE WORD AT THE

H
or ; ADDRESS CONTAINED IN
005011 CLR (R1Y) ; REGISTER 1.
or
CILR (1)

AUTOINCREMENT MODE
Address Field: | 2 | R |
Formab: (ER)+
Description: | The contents of the reglster are incremented

Immedliately after being used as the address
of the operand. Autoincrement addressing provides automatic
increasing of a pointer through a sequentisl list or table of

operands, and therefore it facllitsates the hardware stack pro-

33

cessing. For both increment modes, the registers will normally
be incremented by two, which is the implied léngth of the operand.
However, for byte manipulation (see Section D) the increment will
be one. Registers 6 and 7 are incremented or decremented always
by two.
Example:
005021 CLR (R1)+ sCLEAR WORDS AT THE ADDRESSES
005024 CLR (R143)+ ; INDICATED BY THE CONTENTS OF

; REGISTERS 1 AND 4 AND INCREMENT
;s THESE REGISTERS BY 2

DEFERRED AUTOINCREMENT MODE

Address Fileld: { 3 | R]
Format: @(ER)+
Description: The reglister contains a pointer to the address

of the operand. The contents of the register
are incremented after being used. Thisg mode is mogt useful 1In
subroutines where arguments are typlcally passed In the form of

a2Gdéress constants.

Exanple:
005032 CLR @(2)+ s REGISTER 2 POINTS TO A MEVORY
. or. ;LOCATION WHICE CONTAINS TEE
CLR @(R2)+ s ALDEESS OF THE WORD TO BE
© ;CLEARED
AUTODECREMENT MODE |
Address Fleld: | 4 | R |
Format: -(=R)
Description: The contents of the register are first

decreaced by two (for byte operations, they

are decreased by one); then the register contents are used as

34

the address of the operand. This mode is used to push datg

onto a stack.

Example:
- 005041
005043
005044

CLR -(R1) ;DECREMENT CONTENTS OF REGISTERS
CLR -(R1+2) 31, 3 AND 4 BY TWO BEFORE USING
CLR ~(4) ;s THEM AS ADDRESSES OF WORDS TO

: ; CLEAR

DEFERRED AUTODECREMENT MODE

Address Field:
Format:

Description:

of the operand.

Example:
005052

INDEX MODE

Address Field:
Format:

Description:

@-(E=R)
Thé contents of the register are decremented

before being used as a pointer to the address

CLR &-(2) sDECREASE REGISTER 2 BY TWO
I : ; BEFORE USE AS A POINTER TO
;A WORD TO BE CLEARED

5 T 5]
E(ER)

The operand gddress is calculated as the sum

of the value E plus the contents of the

register ER. The value of the expression E 1s calculated by the

Assembler and stored as an index word in the instruction streom

at the next location.

Instruction

Index word

L

address field

L | &6 T r |

=
]

35

The value E 1s called the base, and the contents of register ER
are called the index. At execution time, the base is fixed, and
the index may vary under program control. Any register (0 to 7)
: ﬁay be used as an lndex register. This mode permits random

access of dats in tables or stacks.

Exgmple: Suppose X is location 1268.
005061 CLR X-4(R1) ;CLEAR THE WORD AT ADDRESS
000122 ;X-4 PLUS THE CONTENTS OF

s REGISTER 1

DEFERRED INDEX MODE

Address Fileld: | 7 | R }
Format: @E(ER)
Description: A poihter to the address of the operand is

calculated as the sum of the exXpression E and
the contents of the register ER. The Asseanbler generates an
index word containing the value E as above. This mode can gccess
data from stacks of address constants.

Example: Suppose R2 contalins 600g and location 600g
contains 7148. y

005072 CLR @24(R2) ; LOCATION 7408 IS CLEARED

The program counter (PC} may be used with any of the above
addressing modes. There are four speciél formats assoclated
with the FC. The double operand inmstruction MOV (which moves
the first operand to the second operand location, operation

code 010000g) will be used in the examples.

36

IMMEDIATE MODE

Address Field:] 2] 7 J
Format: ‘ #B
Description: The operand 1tself is stored a8 an index word

and 1is accessed by sutoincrement addressing
through the program counter. At execution time,whenever an
instruction is fetched, the PC points to the word followiné that
instruction. In this case, the word following the instruction

is the operand.

{ INSTRUCTION |

[IMIEDIATE DATA |

When the operand 1s fetched, the PC is again incremented by two,

and will point to the next instruction. Even in byte instructions,

a full word is assembled for immediate operands so that instruc-
tlons are always fetched from even byte locations.
Example:

012702 MOV #120,R2 ;LOAD 120g INTO R2
000120

ABSOLUTE MODE

Address Field: [3 [7 |
Format: . @FE
Description: This is deferred autoincrenent using the PC.

The word following the instruction is used as
the address of the operand. As in immediate mode, the Assembler
stores the value of the expression as an lndex word in the

instruction stream.

37

Exemple: . Suppose A 1s stored in location 4128.
013704 MOV @#A,R4 ;1LOAD A INTO R4

RELATIVE MODE

Address Field: | 6 I 7]
Format: B
Description: This is index mode using the PC. An index

word is generated containing the displacement

between the operand address and the program counter.

L INSTRUCTION |

L E-.-2 |

But at execution time, after the indéx word ls fetched, the PC
contalns the address of the word following the index word. Thus
Vthe displacement 1s calculated by the Assembler as:

E- . -2
'This is called relative mode since the address is calculated

relative to the current FC.

Example: Suppose .=100 (octal), A is location 120g, and’
B is location 124g.
100: 016767 MOV A,B ;MOVE LOCATION 120
102: 000014 ~ ;TO LOCATION 124g

104: 000016

DEFERRED RELATIVE MODE

Address Field: 7 [7 |

Format: @R
Descriotion: This is deferred index mode using the PC.

38

The Assembler cglculates and stores an index word as in relative

mode. Location E 1s a pointer to the operand address.

Example: Suppose .=36g and BCD is location 648.
36: 005077 CLR @BCD :CLEAR THE WORD WHOSE ADDRESS

40: 000022 ' ;15 IN LOCATION BCD

ADDRESSING SUMMARY?
The following modes do not increasse the instructionilength:

- FORMAT MODE NAME

R Or reglster
@R or (FER) 1r deferred register
(ER)+ 2r autoincrement
@(ER)+ 3r deferred autoincrement
~(ER) 4r autodecrement

@-(ER) S5r deferred gutodecrement

The following modes add one word to the instruction length:

FORMAT MODER NAME

E(ER) 6r index
E@r(ER) 7r deferred index
#E 27 immediate

@FE 37 - absolute

E 67 - relative

@E 77 deferred relative

39

SECTION D PAL~11R LANGUAGE STATEMENTS

INSTRUCTION MNEMONICS

SYMBOLIC FORMATS

The set bf machine instructions for the PDP-11 computer are
expressed by symbolic (mnemonic) instructions. Symbolic instruc-
tions encountered during assenbly are translated into executable
machline commands. The Assembler groups these instruction mnemonics
into seven classes according to their symbolic format.

The following notation 1s used in this section:

. OP represents a PAL-11R instruction mnemonic.
is a register expression.

is an expression.

g o

is a register expression or an absolute expression in the
range O to 7.

A 18 any operand specifying an address mode as described in
the preceding section and summarized in Appendix C.

Listed below are the instruction classes and symbolic formats:

Instruction Class Opersnd Field

double operand | 0P A,A

single operand OP A

operate : 0}

branch | OF E where -128 ¢ E-.-2 , 127
subroutine call JSR ER,A °
subroutine return RTS ER

trap OP or OP E where O :‘—EsB?’?B

40

The symbolic instruction formats are closely related to the

machine instruction formats of the FDP-11 as shown in Appendix D.

In the following sectlons, each instruction will be discussed
in terms of its symbolic mnemonic, its English equivalent, its
. 4 '
machine code, and its operation. In most cases, eXanples will

also be included.

DOUBLE OPERAND INSTRUCTIONS

Double operand instructions‘are represented as follows:

OPeration 0P src,dst
oF | OP COD®m] SRC I DST I
15 12 11 6 5 0

where src - the source operand of the mnemonic
dst - the destination operand of the mnemonic

SRC - the source operand address fleld of the
mgchine code

DST - the destination operand azddress field of
the machkine code

Instructions of this class include:

1. Arithmetic opersgtions: MOV(B) MOVe (Byte)
\ CMP(B) CoMPare (Byte)
ADD . ADD
SUB SUBtract

2. Boolezn operations: BIC(B) BIt Clear (Byte)

BIS(B) BIt Set (Byte)
BIT(B) BIt Test (Byte)

ARITHMETIC OPERATIONS

The following instructions perform fixed point binary

arithmetic on their operands, which may be addresses, constants,

41

or Immedigte data. A fixed-point number or integer consists of

2 sign bit and a 15-bit binary intemer field.

B INTEGER |
15 0

Negative numbers are stored in two's complement form. For byte-
operations in register mode, only the low order byte of the

specified register is used.

MQVe MOV src,dst
MOV | Ol 1 | SRC | DST i
15 12 6 5 0

Description: The source opersnd is placed in the destingtion

location. The previous contents of the destination are lost.

The contents of the source are not affected.

Z - set if the source operand 1s zero,
cleared otherwlse
N - set if the source operand is negative,
cleared otherwlse
C - not affected
V - cleared

Condition GCodes:

Exanples: The MOV instruction typifies the capabilities of all
double operand instructions by ité generality. Depending on the
addressing modes chosen, MOV may be used to load or store a
register, push or pop a stack, and transfer data register-to

register or menory-to-memory.

MOV B, Rt s LOAD REGISTER 1 WITHE THE CONTENTS OF B
MOV R1,C ;s STORE REGISTER 1 IN LOCATION C

MOV #10,R2 ; LOAD TMMEDIATE DATA INTO REGISTER 2
MOV #123,X ; OR INTO A HMEMORY LOCATION

MOV B,-{SP) ; PUSH E ONTO THER STACK
¥OV (SE)+,C ; POP G OFF THE STACK

MOV . R2,R3 ; LOAD REGISTZR 2 INTO REZISTZR 3

MOV " X,Y ; MOVE C FlfVib OF LOCATION X INTO
5 LOCATION B

MOVe Byte MOVB src,dst

MOVB K] 1 1 SRC | DST |
15 12 6 5 0

Description: MOVB operstes on bytes exactly as MOV operates on

words. However, with a destination in register mode, MOVB moves
the source byte into the low order byte (bits 7-0) of the indicated
reglster and extends the sign bit (bit 7) through the ‘kigh order

byte {bits 15-8). This is known a8 sign extension.,

Condition Codes: set on the byte result as in MOV

Example:: MOVB #7,RI1 ; LOAD REGISTER 1 WITH 7

CoMPare CMP src,dst
CMP (ol 2 1 SEC | DST 1
‘ 15 12 6 5 0

Description: The soubce operand is compared with the destination

operand and the result determines the condition code. Neither
operand 1s changed. Internally, the destination is subtracted

from the source, a2nd the result is compared to zero.

Conditlon Codes: Z - set if the opernads are equal, cleared
otherwise

N - set if the source operand is lower than
“the destlnation operand, clesred otherwise

- set 1If there was a carry, cleared otherwise

set 1f there was arithmetic overflow,

cleared otherwise

‘40
i

43

Examples: CHMP RO,R1 ;COMPARE REGISTER TO REGISTER
CMP #100,R1 ;COMPARE TMMEDIATE TO REGISTER

cMP B,C - sCOMPARE MEMORY T0 MEMORY
CMP R1,B ;COMPARE REGISTER TO MEMORY
CoMPare Evie ~ CMPB src,dst
CMPB 1 2] SRC 1 DST |
15 12 6 5 0

‘Description: Same as CMP

Condition Codes: BSet on the byte result as CMP

ADD (ol 6] SRC__ [Dst]
| 15 12 | 65 0

Description: The source operand 1s added to the destination

operand and the result is stored at the destination address.
The original contents of the destination are lost. The contents

of the source are not affected.

Conditlon Codes: Z ~ set if the result is zero, cleared
. otherwise
N - get if the result is nezative,
" ¢leared otherwise
C - set if there was a carry from the most
- significent bit of the result, cleared
otherwise
V - set if there was arithmetic overflow,
clegred otherwise

Exsmples: ADD X,Ri :ADD X TO REGISTER 1
ADD R2,Y ADD REGISTER 2 TO LOCATION Y
ADD R3.R4 ;ADD REGISTER 3 TO REGISTER 4

Arithmetic operations cen be performed directly in memory
locations, thereby saving needlesg loading and storing of
accunulgtors. :

ADD A,B ;ADD LOCATION A TO LOCATION B

Immediate addition may be used elther in registers or in memory
whenever a constant ls required.

44

ADD #25,,R1 s ADD 25 TO REGISTER 1
ADD #10.,C s ADD 10 TO LOCATION C

Addition may be useful in processing stacks.
ADD (8P)+,(SP) ;REPLACE THE TOP TWO ELELENTS
v - ; OF THE STACK BY THEIR SUM

SUBtract - SUB src,dst

SUB L1 6 i SRC | DST |
‘ 15 12 6 5 0

Description: The source opefand is subtracted from.the desting-

tlon operand and the result is stored zt the destination sddress.
The original contents of the destination are lost. The contents R

of the source are not affected.

- get 1f the result is zero, cleared
otherwise

- set 1f the result is negative, cleared
otherwise

Condition Codes: Z
N
C = cleared if there was g carry in the
v

result, set otherwise
- set 1f there was arithmnetic overflow,
cleagred otherwise

Examples: SUB @R1,@R2 ;SUBTRACT THE WORD WHOSE ADDRESS
: ;I8 IN REGISTER 1 FROM THE WORD
;s WHOSE ADDRESS IS IN REGISTER O

sUB (sP)+,(SP) ;REPLACE THE TOP TWO ENTRIES ON

. ;THE STACK BY THEIR DIFFERENCE

N

BOCLEAN OPERATORS

The following.instructions perform operatlions on data at
the bit level. The source operand is.used as a 16-bit or 8-bit
mesk when used in the word or byte instruction respectively.
The same mask may be used to set, clear or test the state of

particular bits in a word (byte).

45

BIt Clear BIC src,dst
BIC fol 4 | SRC | D37]
i5 . 12 6 5 0

Description: The BIC instruction clears each bit in the destin-

ation that corresponds to a set bit in the source. The original
contents of the destination are lost. The contents of the source
are not affected.

- gset 1if the result is zero, cleéred

otherwise

Condition Codes: 2
N - set 1f the high-order bit of the result
c
v

1s 1, cleared otherwise
- not affected
- cleared

Examples: Suppose the word X contains 177777q.
' BIC #123456,X ;s X BECOMES 0543218

BIC X,X ; X IS REPLACED BY ~ZEROS
BIt Clear Byte BIGB src,dst
BICB (] % | SRC | DET |
: 15 12 6 5 0

Description: Same as BIC

Condition Codes: Set on the byte result as in BIC

BIt Set BIS src,dst
BIS ol 5 1| SRC | DST |
15 12 6 5 0

Descrintion: The BIS instruction sets each bit in the destination

that corresponds to a bit set in the source. The original contents
of the destlnation are lost. The source is not affected; This 1is

the boolean 'OR' operation.

46

Condition Codes: Z - set 1f the result is zero, cleared
otherwise

N - set 1f the high-order blt of the result
i1s set, c¢lezsred otherwlse

C = not affected

\

- cleared

Example: BIS 1s used to setl particular bilts to one.
Suppose the word X contains 0001028.
- MASK= 100001

BIS #MASK,X ; X BECOMES 1001034
BIt Set Byte BISB src,dst
 BISB L1l 5 | SRC i DAT]
15 12 6 5 0

Description: Same as BIS

Condition Codes: Set on the byte result as in BIS

BIt Test BIT src,dst
BIT Lol 3 | SRC | DsT }
15 12 6 5 0

Descrivption: The state of the destination operand blts as

selected by the mask (source operand) determines the condition

code. A mask bit of one indicates that the correspondiﬁg desting-

tion bit is to be tested. When a mask bit is zero, that destina-

tion bit is ignored. Neither the source nor the destination

operand 1s changed.

Condition Codes: Z - set iIf the result is zero, cleared
otherwise

- set if the high-order bit of the result.

is set, cleared otherwise

not affected
- cleared

<o =
!

&7

Exgmple: BIT checks whether specific bits in a destinetion
vord are set. ‘ '
BIT #177400,71 ; Z2-BIT SET ONLY IF R1 EAS
s A HIGH EBYTE OF ZERCS
EIT #100C01,B ; B IS AW LVIN FOSITIVE
; INTEGER IF Z-BIT IS SET

BIt Test RByte BITB src,dst

BITB i 31 SBC I DST]

15 12 6 5 0

Descrintion: Same as BIT

Condition Codeg: Sebt on the byte result as in 3IT

Exgmple: Suppose storaze locatlon 24000g contalns 3738 and
rezglster 5 contains 37728. :

BITB #303,6(R5)
where the operand 1s 37%q Or 111110112

and the test mask 1s 3038 or 110000112
wlth the result 11====11

ol
-
1o
ol

SINGLE OPERAND INSTRUCTIONS

Single operand instructions are represented as follows:

. QPergtion 0P dst
oP =N 0P GCODE | DST |
15 6 5 0

Instructions of this class include:

1. Genergl operations: CLR(B) CLeaR (Byte)
ING(B) INCrement (Byte)
DEC(B) DECrement (Byte)
NEG(B) NEGate (Byte)
COM(B) COMplement (RByte)
TsT(B) TeST (Byte)

2. Multiple precision operations:

ADG(B) ADA Carry (Byte)
SBC(B) SuBtract Carry (Byte)

48

3. Rotates: ROR(B) ROtate Right (Byte)
ROL(B) ROtate Left (Byte)
SWAB SWADP Bytes
4, shifts: ASR(B) Arithmetic Shift Right (Byte)

ASL(B) Arithmetic Shift Left (Byte)

5. Jump Instruction: JUP JuMP

GENERAL, OPERATIONS

General operations may perform their arithmetic calculations
on either g word or a byte operand. Henceforth, the corresponding

word and byte mnemonic will be presented together. However, a

word Instruction regqulres a word operand, and in deferred modes
must specify an even-byte word address. A byte instruction uses

a byte operand, and any address (even/odd) is suitable.

: CLear CLR dst
CLR { Of 0 | 5 | o | DT |
15 12 9 6 5 0
CLear Byte bLRB dst
CLRB {1l _ o | 5 1 o 1 DST]
15 12 9 6 5 0
Description: A word (byte) of zeros 1s inserted at the operand
address. The previous contents of the operand are lost.

Condition Codeg: Z - set

N - cleared

. C = cleared

V - cleared
INCrement INC dsit
- INC | Ol 0 | 5 | 2 | DST |
15 12 9 6 5 0
INCrement 2Byvte INCB dst
INCB T4 0o | 5 | 2 | DST K
15 12 9 6 5 0

49

Description: The word (byte) at the destination address ig

incremented by one. For INCB, the carry from s byte does not
affect any other byte. Thus, in rezister mode, only the low-

order byte of the register is incremented.

Condition Codes: - set if the result is zero, cleared

otherwise

Z

N - set if the result is negative, cleared
otherwise

C - not affected ‘

A

- set 1f the operand was 07777 8? cleared

Ootherwise

Example: An instruction of the form
INC TABLE(R4)
may be used to generate an array of sums (TABLE)
where entries to be incremented are selected by
the index register R4,

<

' DECrement _DEC _dst

DEC - [O[_ 0 T 5 1 37 DST l
- 15 12 9 6 5)

. DECrement Byte DECE dst

DECB o T 51T 7377 DT i

15 12 9 6-5 0

Description: The word (byte) at the destination address is
decremeﬁted by one. For DECB in register mode, only the low-
order byte of the register Ls decrémented, but if necessary,
the bits 15-8 may be changed to represeht the sign extention

of the result in bits 7-0.

Condition Codes: Z - set if the result is zero, cleared
' otherwise
N - set 1f the result is negative, cleared
otherwise '
- not agffected
set 1f the operand was 1000008, cleared
othervwlse

< Q
!

50

"Example: INC and DEC are commonly used to control program

looping. See the examples under BRANCH instructions.
NEGate NEG dst
NEG (O _ o0 [5 1 & DST |
15 12 9 6 5 0
NEdate Byte NEGB dst
NEGB M o 1 5 1 4 | DST |
: 15 12 9 6 5 0

Description: The two's complement of the destination word (byte)

replaces the operand. For NEG, the value 100000, is replaced b
8 ¥

itself since there 1s

negative number.

Condition Codes:

no positive coﬁnterpart for the most

set if the
otherwise
set 1If the
otherwise
¢clegred if
otherwise
set 1f the
otherwvise

result is zero, cleared
result 1ls negative, cleared
the result is zero, set

result is 100000g, cleared

COMplement COM dst

c oM [0 o I 5 | 1t | DST 1
15 12 9 6 5 0
COMplement Byte COMB dst

COMB i o 1 5 1 1 1 DST]
15 12 9 6 5 0

Description: COM(B) replaces the word (byte) contents of the

destingtion address by its logicel complement.

That is, each

bit equal to O is set, and each bit equal to 1 is cleared.

Condition Codes:

otherwise

51

7Z - set 1f the result is zero, cleared

N - set 1f the most significant blit of the
result is set,; clegred otherwlse

C - set

V - cleared
TeST ' " TST dst
TST fof o 1T 5 T 7 1 DST |
' 15 12 9 6 5 0
i TeST Byte TSTB dst
TSTB t1l_o | 5 1 7 1 DST 1
15 12 9 65 0

Description: The condition codes are set agccording to the

contents of the destinstion address;

- get if the result is zero, cleared
otherwise

Condition Codes: 2
N - set if the result 1s negative, cleared
C
v

otherwise
- cleared
- cleared

Exgmple: The TST instruction is equivalent to
CMP dst,#0
It may be used to set up a three-way branch by testing
the result of previous calculations, or comparing
elenents in an array to zero.

Suppose the array TABLE is stored in location 1448.

012702 MOV- #TABLE,R2 ; GET THEE ARRAY ADDRESS
000144 :
005722 TST (R2)+ ;COMPARE AN ARRAY ENTRY TO

sZERO AND RESET R2 TO THE
sNEXT ENTRY

MULTIPLE PRECISION OPERATIONS

Often it is necessary to do arithmetic on operands considered
as multiple words. Suppose A2 and Al are assigned to consecutive
PDP-11 word locations. These two words mey be consldered logically

as a double precision integer with two sign blts and 30 binary

52

integer bits as follows:

sl INTEGER 1] INTEGER |

AR ‘ Al

where A1 is the low-order word, and A2 1s the high-order word.
“Although there are no explicit instructions for double precision
arithmetic (as in the IBY/360), PDP-11 facilitates such operations

by means of the following instructions:

ADd Carry ADC dst
ADC tol o 1 5 1T 570 DST]
15 12 9 6 5 0
ADA Carry Byte ADCB dst
ADCB tH_o | 5 T 5 17 DT]
15 12 9 6 5 0

Description: The contents of the C-bit in the processor status

register i1s added to the destingtion. In this way, the carry

from an addition may be recovered in a subsequent addition.

Condition Codes: Z - set if the result is zero, cleared
, , otherwise '
"N - set if the result ig negative, cleared
otherwise
C - set if the operand was 1777778 and (C)
wag 1, cleared otherwise
V.- set if the operand was 0777778 and (C)
was 1, cleared otherwise

Example: Double precislon addition mey be accomplished by the
following sequence of instructions where A1, A2 and
B1, B2 are consecutive words as described gbove:

ADD A1,B1 ;ADD LOW ORDIR WORDS
ADC B2 ;ADD CARRY INTO HIGH ORDER
'ADD A2,B2 ;ADD HIGH OFDER WORDS

SuBtract Carry SBC dst

SBC [ol o 1| |6 1 DST]
15 12 9 6 5 0
SuBtract Carry Byte SBCHB dst

SBOB (1o] 6 1 DST___ |
15 12

9 6 5 0

Descriptions The contents of the C-bit in the central processor

status register are subtracted from the destination. Thus, the

carry from a subtraction may be recovered for a multiple precision

result.

Condition Codes:

Examples: Touble

Double

ROTATES

Z
N

set if the result is zero, cleared
otherwise

set if the result is negative, cleared
otherwise '

cleared if the result is zero and (C) is 1,
set otherwise .

set if the result is 1000008, cleared
otherwise

precision subtraction may be done 2= follows:
SUB At1,3t ; SUBTRACT LOW ORDER PARTS

5BC B2 s SUBTRACT CARRY FPRO¥ HIGH ORDER
SUB A2,B2 s SUBTRACT HIGE ORDER PARTS

precigion negation is accompiished by:
NEG A1 sNEGATE LOW ORDER WORD
SBC A2 s ADJUST FOR CARRY

NEG A2 s NEGATE HICGH ORDER WORD

Rotate operastions are useful for eXgmining and testing the

bit structure of a word or byte. The C-bit of the processor

status reglster is apprended to the destination operand by

circular bit-shifting.

— A WOXD F—
15

54

[l [BYTE }—
7 0

 ROtate Right ROR dst
ROR o o | 6 1 o] DST |
| 15 12 9 6 5)
| ROtate Right Byte RORB dst
'RORB O o T &1 o1 DST |
15 12 9 65 0

Description: All bits of the destlnation are rotated right one

place. Bit 0 is loaded into the C-bit of the processor status
register, and the previous contents of the C-bit are loaded into

bit 15 (bit 7) of the destination word (byte).

Condition Codes: Z - set 1f all bits of the result are zero,

cleared otherwise

N - set if the high-order bit of the result
is 1, cleared otherwlise

C - loaded with the low-order bit of the
destingtion

V - set if either the new N-bit or C-bit is 1,
but not both (viz 'Exclusive OR' of N and
C), cleared otherwise

- . ROtate Left ' ROL dst

ROL o] o | 6 1 11 DST]
15 12 9 65 0

ROtate Left Byte ROLB dst

ROLB {1 o |1 6 1. 11 DST |
15 12 - 9 6 5 s)

Description: All bilts of the destinstion are rotated left one

place. Bit 15 (bit 7) is loaded into the C-bit of the processor
status reglster, and the previous contents of the C-bit are

loaded into bit O of the destinagtion.

55

- get 1f 211 bits of the result are zero,
clegred otherwise

Condition Codes: Z
N - set if the high-order bit of the result
C
v

is 1, clegred otherwise

~ loaded with the high-order bit of the
destination ‘

- gset g5 the Exclusive OR of N and C

SWAD Bytes SWAB dst
WAB io] o | o | 31 DST |
15 12 9 6 5 0

Description: The low-order byte and the high-order byte of the

destination word are interchanged. Note that SWAB 1s a word

instruction, so the destination must be a word (even) address.

Condition Codes: Z - set if the low-order byte of the result
is zero, cleared otherwise
N - set if bit 7 of the result is 1 (viz the
high-order bit of the low-order byte is 1),
cleared otherwise
C - cleared
V - cleared

Example:! Suppose %ocation A conﬁgins 2L25038° _
SWAB A s SUAP BYTES AT LOCATION A
;s RESULT IS 0414258

012503 0001 010 101 000 O11
8 2

1

(swap) 0100 001 100 010 101, = 0414258

SHIFTS
Shift instructions may be used to multipiy or divide any

register or memory location by a factor of two.

Arithmetic Shift Right ASR dst

ASR o] o | &6 1T 21 DST |
5 12 9 65 0
Arithmetic Shift Rizht EByte ‘

AsRe [1_O0 [6 1. 2 1 st)
15 12 .9 & 5 0

56

Description: All bits of the destination are shifted right one

place. The slgn bit remains unchanged. The C-bit 1s loadéd from

bit O of the destinsgtion.

‘- get 1f the result is zero, cleared
otherwvise

Condition Codes: 2
N - set if the high-order bit of the result
c
v

is 1, cleared otherwise

- loagded with the low-order bit of the
destingtion

- set a2s the Exclusive OR of K and C

Examples: A right shift is equivalent to division by two with
roundin downward.

012701 MOV #15.,R1 ;s LOAD R1 WITH 15.
000017 ;3 INTEGER DIVISION
106301 ASRB RI1 _ ;5 RESULTS IN 7.

Double precision right ShiLtS may be accomnllsked

by the following:
ASR A2 ; LOW ORDER OF A2 INTO C-BIT
ROR Al 'C BIT IALO EIGH C=DER OF At

Arithmetic Shift Left ASL dst

ASL fofl o] &6 1T 3 1 DST |
15 12 9 6 5 0
Arithmetic Shift Left Byte

ASLB 11 o 1T 6 I 3 1] DST |

15 12 9 6 5 -0

Description: All bits of the destination are shifted left one

place. Bit 0 is loaded with 2 zero. The C-bit in the processor
status register is loaded with the most slgnificant bit of the

destination.

~ set 1f the result is zero, cleared
otherwise

Céndition Codes: Z
N - set if the high-order bit of the result
C
v

is 1, clesred otherwise

- loaded with the high-order bit of the
destingtion

- set as the Exclusive OR of N and C

57

Examples: A left shift is equivalent to multiplication by two,
but arithmetic overflow may affect the result.

012705 MOV #16710.,R5 ; 16710 DECIMAL IS
040506 ;) 040506 OCTAL
006305 ASL RS ; MULTIPLY BY 2

The result 1s 101214 octal or -32116 decimal due to
arithmetic overflow.

Double precision left ghifts are programmed ss follows:

ASL A1 sHIGH OEDER BIT OF A1 INTO C-BIT
ROL A2 ; C-BIT INTO LOW BIT OF A2

JUMP INSTRUCTIOCON

The Jump instruction transfers processor control to any
word in mémory using any of the PDP-11 addressing modes except
register mode. Register mode is 1llegzl because contrql cennot
be sent to a rezister. Unlike the general ERANCE instructions,

JMP may have a variable-length format.

JuMP JUP dst
4P 1ol o 1 o T 177 DST |
15 12 9 6 5 0

Descrivtion: Control is transferred to the destinastion address.

Since 211 instructions must be sligned on a word boundary, the
destination address must specify an even-byte location. A
'boundary error' results when the processor attempts to fetch

an instruction from an odd =2ddress.

Condition Codes: not gffected

Example: Using the deferred index mode, control may be sent to
a location chosen from z table of addresses.
JMP @TABLE(RO)
Here the register RO 1s used ag an index register into
the array TABLE whose entries must be legal (even)
program zddresses. '

58

BRANCH INSTRUCTIONS

Branch instructions are one word in length with the

following machine formatv:

Branch XX BXX loc
BXX [0P COD®E i OFF SET |

15 ° 8 7 _ 0
where .BXX 1s a branch instruction mnemonic

loc is & symbolic branch sddress located up to
127 words before or 128 words after the
brgnch instruction
offset is an B-bit signed dlsplacement of the
branch address relative to the PC
An instruction word 1s always fetched by the processor from the
memory address contained in the PC. ‘Whenever a. vord i1s fetched,
the PC is aﬁtomatically Incremented by two to point to the next
available word. Brench Instructlions can provide a change in
this normal seguential operation of the processor by loading
the branch address into the PC.
The éffset is calculated automagtically by the Assembler as
a slgned two's complement displacement to be multiplied by two
and a2dded to.thé PC. But.the PC points to the word followlng
the branch instruction, consequently
offset = (E-PC)/2 = (E-.-2)/2
whére E is the actual branch address.
The branch address must be within a limited range and does not
use any of the PDP-11 addressing modes. Under this restriction,
2ll branch addresses are calculated easlly and efficlently at

execution time in the following way:

59

1. The sign of the offset 1s extended through bits 8 to 15
to form a full word value.

2. This vaiue is multipliedvby two to yleld the number of
bytes 1n the displagement.

5. This result_is added to the PC to form the ulﬁimate
branch gddress. |

vBranch Instructions are classified as follows:

1. Unconditional branch: BR BRanch

2. Conditional branches:

Simple: - BEQ Brench on EQual
- BNE Branch on Not Equal
BPL Branch on PLus
BMI Brgnch on MInus
BCS Branch on Carry Set
BCC Branch on Carry Clear
BVS Branch on oVerflow Set
BVC Branch on oVerflow Clear

Slgned: BLT Branch on Less Than
BGEL Brench on Greater or Equal
BLE Branch on Less or Egual
BGT Branch on Greater Than

Unsigned: BHI Branch on HIgher
BLOS Branch on LOwer or Same
BHIS Branch on HIgher or Same
BLO Branch on LOwer

UNCONDITIONAL BRANCH

The unconditional branch loads the branch address into the
PC as described. There is no effect on the condition codes.

Control is sent to the branch address.

BRanch BR 1loc
BR fol O | 0O T4 offset]
15 ' 87 0

60

CONDITIONAL BRANCHES

Conditional branches are used for decision-making. FWhether

a branch 1s successful or unsuccessful depends on the result of
Operations preceding the branch instruction as reflected by the
condition codes. In elther case, the condition codes are
inspected but remnain unchanged.

'The following instructions are grouped in pairs according
" to which condition code bits will initiate the branch. These
instructions are mutually exclusive in that if one branch is
successful, the other branch must be unsuccessful. In esch

cgse, the mnenonlec is self-explanatory.

SIMPLE COMDITIONALS

With each condition éode bit are assoclated two simple

conditional branches as follows:

Branch on FJusl BEQ loc .
BEQ O] 0 1 1 T4 offset |
15 87 0
Branch on Not Egual BNE 1loc
BNE - [o] o | 1 { 0] offset]
15

87 0

Description: The value of the Z-bit in the processor status
reglster determines whether the branch is taken. If Z is 1,

BEQ 1s successful; 1f Z 1is 0, BNE is successful.

Examples: To test for equality after o comparison:

CMP XY ; COMPARE X AND Y
BEQ "~ 'SAME ;5 BRANCH IF THEY ARE EQUAL

61

Branqhes may be set up to control program looping:

ARRAY s

LOOP:

s ZERO OUT AN ARRAY OF 50 ELEMENTS
0: °+1OOQ
#-50. s R1

MOV
MOV
CLR
ING
BNE

#ARRAY , B2
(R2)+

R1
LOOP

;s RESERVE SPACE FOR 50 WORDS
s INITIALIZE A COUNTER
; GET ARRAY ADDRESS IN R2
$ZERO AN ARRAY ELEMENT
sDONE? v
;NO, CONTINUE IF NOT ZERO

Branch on PLus BPL, loc
BPL [T 0 1T 0 7109 offset]
15 ‘ 8 7 0
Branch on MInus BMI 1loc
BMI L1l o0 | o T4 offset]
15 87 0
Description: The value of the N-bit determines whether the

branch is teken. If N is O, BPL is successful; if N is 1,

BMI is successful,

Examples: To test the sign of an arithmetic result:
SUB A,B s SUBTRACT A FROM B
BMI NEG ;s BRANCH IF NEGATIVE
To control iterations:
MOV #20.,NCOUNT s SET THE ITERATION COUNTER
LOOP:
DEC NCOUNT s DECREASE THE COUNTER
BPL LOOP s REPEAT IF POSITIVE
Branch on Carry Set BCS 1loc
BCS 10 1 3 14 offset]
15 8 7 0
: Branch on Carry Clear BCC 1loc
BCC 11 o T 3 710] offset |
15 8 7 0
Description: The value of the C-bit determines whether the

62

branch is taken. If ¢ is 1, BCS is successful; if C is 0O,

!’

BCC is successful.

Branch on oVerflow Set BVS loc

"BVS {1l 0 | 2 T4 offset]
15 ‘ 8 7 0
Branch on oVerflow Clear BVC loc
BVC (1l o |1 2 Tol offset |
' : 15 87 0

Description: The value of the V-bit determines whether the branch

‘1s taken. If V=1, BVS is successful; if V=0, BVC is successful.

Example: To normallze an integer with 1 as its most significant

bit:

NORM: ASL X s SHIFT LEFT INSERTING A LOW-ORDER O
BEQ ZERO ;s ST0P IF RESULT IS ZERO
BVC NORM sCONTINUE IF NO SIGN CHEANGE
ROR X s RESTORE THE SIGN

ZERO:

SIGNED (ARITHHETIC) CONDITIONALS

Particular combinations of the condition code may be inspected
by signed conditionsal branohés. The results of opergtions are
tested where the value is treated as a sizned two's complementary
integer. The hierarchy of values for signed intesers is as
follows: | |

positive , oTT7777
- 077776‘

L]

® & 0o 0

000001
zero 000000
Ty

e © & o

100001
negative ‘ 100000

63

Bragnch on Less Than BLT loc

BLT tol o | 2 T4] offset !
15 8 7 0
Branch on Greater or Fgusl BGE loc
BGE [Ol 0 | 2 |0l offset |
15 8 7 0

Description: The value of N 'eXclusive OR' V determines which

branch is taken. If N 'XOR' V is 1, BLT is successful; if N 'XOR'

V is 0, BGE is successful.

Branch on Less or Egual BLET loc

BLE {o] o | 3 T4 offset |
15 87 0
Branch on Grester Than BET loc
BGT {of O | 3 10i offset]

15 87 0

Description: The value of Z OR (N 'eXclusive OR' V) determines

which branch is tgken. If Z OR (N 'XOR' V) is 1, BLE is successg-

ful; if 2 OR (N 'XOR' V) is O, BGT is successful.

Example: For checking the result of a comparison:
CiP A, B ;COMPARE A AND B
BGT HIGH ;s BRANCH IF A IS GREATER THAN B

UNSIGNED (LOGICAL) CONDITIONALS

Results treated as unsigned lozicagl vglues may be tested
using unsigned conditional braﬁches. The hiersrchy of logical

values 1s:

highest 177777
177776
000002
000001
lowest 000000

64

Branch on HIgher BHI 1loc

BHI 1 o 1 1 o offset |
. 15 8 7 0
Branch on LOwer or Ssme 3LOS loc

‘BLOS {1 0 ' 1 rAl offset |
5 87]

Description: The carry bit and the zero bit determine whether

the branch is taken. If C and Z are both O, BHI is successful;

if either C or Z2 1s 1, BLOS 1s successful.

Branch on HIgher or Same BHIS loc¢

BHIS Pl 0 | 3 10§ offset |
15 87 0

Branch on LOw BLO loc

BLO L1 0 | 3 14l ofTset]

: 15 8 7 : 0

Description: The value of the C-bit determines the branch.

BHIS is equivalent to BCC; BLO 1s equlivalent to BCS.

Exanple: For sorting of character data:

C¥EB @(R1)+,R2 s COMPARE TWO CHARACTERS
BHIS NOTLOW s BRANCH IF TEST BYTE NOT LOWER

OFPERATE INSTRUCTIONS

Operate Instructions perform specific functions for the
PDP-11 hardware. They 4o not require any operands.
OPeration

oP { OP-CODE |
15 0

Instructlions of this class include the following:

65

1. Condition Code operators:
: CCC Clear Condition Codes

CLC CLear Carry bit
CLN CLear Negative bit
CLV Clear oVerflow bit
CLZ CLear Zero bit
CNz Clear Negative and Zero bits
NOP No OPeration
SCC Set Condition Codes
SEC SEt Carry bit
SEN SEt Negative bit
SEV SEL oVerflow bit
SEZ SEtL Zero bit

2. Control operstors: RTI ReTurn from Intefrupt

HALT HALT
WAIT WALt for InTerrupt
RESET RESET

10T Input/Output Trap

CONDITION CODE OPERATORS

Condition code operators are uséd to set or clear various
bits in the condition code. All instructions have the following

foraat:

Condition Code Operator
[0l o 1 o 1 2 T& Tufzivid
15 6543210

where bits 0-3 of the condition code are set or cleared sccord-

ing to the set/clear bit -- bit 4 -- of the instruction.

The following instructions clear the condition code bits as

specified by the mnemonic:

. CLear Carry bit CLC
CLC (ol o 1T o T 2 1T & 1]

CLear oVerflow bit CLV
cLV ol _o T o T 21 %4 2 |

- 66

Clear Zero bit cLZ

CLZ [O O 01 o b1 271 & 71T &
CLlear Negative bit CLN
CLN {0 ol o 271 57T 01

Clear Nezgtive and Zero bits CNZ

CNZ [O] o] o1 2 1T 5T &
Clear Condition Codes CCC
cce [l o1 o1 21T 5 71T 71

The foilowing instructions set the condition code bits:

N

SEt Carry bit SEC
SEC ol _ o 1 o 1 2 T 617 1
SEL oVerflow bit - BEV
SEV (ol o 1T o1 2 T 6 1T 271
SEL Zero bit SEZ
SEZ [0 O | 0O | 2 | 56 | 4
SBEt Negative bit SEN
SEN (ol o 1T o1 =2 1T 7 1 o]
Set Condition Codes SCC
8CC [o 1T O 1 21T 71T 71

If none of the bits 0-3 in the instruction are set; no operation

wlll result.

, No OPergtion NOP
NOP tof 0 | 0 1 2 | 4 o |}

Although mnemonlcs do not exist, new instructions may be created
atl executlon time to affect different combinations of bits. Sup-

pose the following coding is gssenbled in menory at address 6308:

67

63 152767 BISB #31,CCODE+1 ;HODIFY. THE NOP

632 000031 ; INSTRUCTION
634 000051
706 000240 CCODE: NOP ;sNOP TO BE MODIFIED TO

‘ :FORM A NEW INSTRUCTION
At execution time: = 630: 152767
. 632: 000031
634 000051

o e 00

706: 000271 ;VIZ SET NEGATIVE AND CARRY
; BITS -
CONTROL OPERATORS
ReTurn from Interrupt RTT
RTI (0l _ 0 | o1 o 1 0o 2 1

15 0

Description: The PC and PS are popped from the processor stack,

and the SP 1s adjusted gccordingly. RTI is used to exit from an
Interrupt or a user service routine using the stack mechsnism as

described in Section A.

Condition Codes: 1loaded from the processor stack

HALT » HALT
HALT [o_ 01T 0 1 01 0.1 0]
| 5 0

Descriptioni All processing stops. The PC contalns the address

of the next instruction to be executed. If the HALT instruction
1s encountered, a user will reoeive.an octal dump of his progrem,
including information about the machine status when the EALT was

detected., (See the .=ZXIT command uader Monltor Requests.)

68

The Tollowingz instructions are not interpreted by this
simulation since they involve recovering control of the communi-
cations 'bus' from external devices. They are presented here

for the sgke of completeness.

, WALt for InTerrupt WAIT
WAIT tol o I o 1 o | o7 1 |
15 0

Description: The processdr goes into o Twait! state, that 1s, 1t

stops fetching instructions from memory. The PC points to the
instruction following the WAIT. When an external device interrupt
occurs, the PC and PS are pushed onto the processor stack. The
ensuing RTI instruction will end the 'wait' and resume processing

at the next instruction.

Condition Codes: not affected

RESET : RESET
RESET [0l 01T o 1T o011 o1 51

15 . 0

Description: All external devices are reset by sending a clearing

signal through the 'bus'. Condition codes are not affected.

Input/Output Trap I0T

107 [0 o T o [o1 o1 %7
15 | 0

" Description: The PC and PS are pushed onto the processor stack.

An input/output routine is given control using the interrupt

vector at location 208 (cf Trap Instructions.) A system-defined

69

input/output packagze would provide real-time interaction with
external devices, but i1s not included in this simulation. (See

Monitor Requests.)

SUBROUTINES

- A subroutine 1s g sequence of instructions designed to
perform some specific task. These iInstructions are assembled
and stored in menory only once, but may be executed any number
of times by using the JSR (Jump to SubRoutine) and RTS (ReTurn
T rom Subroutine) instructions. For example, to invoke g sub-

routine nemed SURR, the following coding might appear:

JSR R5,SUBR sLINK TO THE SUBROUTINE
SUBR: e s o o e ;s SUBROUTINE ENTRY POINT
RTS R5 s RETURN TO INSTRUCTION FOLLOWING
3 JSR

Subroutine hendling in the FDP-11 uses the stack mechaniem
to dynamically allocate storage for linkage reglsters. Linkage
registers are automaticaglly saved and restored. Consequently,
subroutines may be nested (viz. invoke other subroutines),
recursive (viz invoké themselVes);,or have multiple entry points
even 1f using the same linkage reglster without special program-

ming considerations.

Junp to SubRoutine JSR REG,dst

JSR ol 0 T & T ®=G | DST]
15 12 98 65 0
where REG is the linksge register

70 .

Description: The PC already contains the return address, namely

the address of the word following the JSR instruction. The
linkage register is pushed onto the processor stack and is re—r
placed by the PC. Now the linkage reglster contains the retumm
address. Then the PC is loaded with the destination address,

thereby sending control to that location.

Condition Codes: not gffected

Examples: A subroutine call may transfer grguments through the
generagl registers. For exgmple:

MOV X, R1 s ARGUMENT IN REGISTER 1
JSR R4,SIN ; LINK TO SIN SUBROUTINE

Care must be taken that the return address is not lost by
destroying the linkage resister. |
Typiceally, arzuments are passed to subroutines as word data
1ocated'immediately following the JSR instruction.q (The .WORD
directive defines a word of memory equél to the value of its
expression.) The subroutine may access these érguments by auto-
increment or indexed addressing using the linkage register.
These addressing modes may be deferred if the arguments gre ad-

dresses rgther than the operands themselves. For example:

JSR R5,S0RT sCALLING SEQUENCE FOR SORT
+WORD ARRAY ; ADDRESS OF ARRAY TO BE SORTED
+WORD SIZE ;SIZE OF THE ARRAY

SORT: MOV @(R5)+,R1 ; GET ARRAY ADDRESS
MOV (R5)+,R2 ;GET ITS SIZE

RTS RS s "ETURN

Two routines may swap program control and then resume

71

operation vhere they left off. Such routines zre cglled ‘'co-

~routines' The PC is exchanged with the top element of the stack:

JSR PG, (SP) :LINK TO CO-ROUTINE

ReTurn from Subroutine RTS
RTS 10 O | 0 | 2 1| O |REG
: 15 12 9 6 3 2

Description: The contents of the linksze register (the return

address) are loaded into the PC. The top element is popped off
the proéessor stack into the linkage reglster, thus restoring

it to its original value.

Conditlion Codes: not affected

Exemplet A subroutline may need to save all the rezisters on the
stack, then do its processing, snd then restore the registers
before returming.

JSR Rb5,S8UBR ;CALLING SEQUENCE

SUBR: MOV R4,-(S ;Rb PUSHED BY THE JSR
’ MOV R3,-(S sRb AT THE BOTTOM FOLLOWED
MOV R2,-(S

MOV R1,-(S

P)

P)

?) ;BY R4,R3,R2,R1, AND RO IS
P) sAT TEE TOP

MOV RO,-(SP) '

; PROCESSING FOR SUBROUTINE

P)+,RO sRESTORE REGISTERS IN REVERSE
- ;ORDER TO ECW TERXY WERE SAVED

MOV (SP)+,R3

MOV (SP)+,R4
RTS R5

;RS IS RESTORED BY THE RTS
s RETURN

TRAP INSTRUCTIONS

Trap Instructions are programmed interrupts used as subrou-
tine calls to user or installation defined routines. As in all
interrupts, the current PC and PS are pushed onto the stack, and
the new PC and PS gre loaded from an appropriate interrupt (trap)
vector. In addition, the low order byte of the instruction may
be used to transmit information to the trap-handling routine.

With the expansion of this PDP-11 simulation, these trap
instructions might become requests to an opersting system for
some user services such as input or output, debugging aids, or

6
system library functions. (See Monitor Requests.)

EMulator Trap BT XXX

EMT Lo T 4 T10] XXX |
15 12 987 0

Description: An interrupt occurs using the trap vector at

location 30g. The low-order byte of the EMT instruction,
bits 0-7, contains informatlon for the emulating routine --'a
total of 256 different codes, 0 to 255. The new PC is taken

from the word at location'308, the new PS from location 328.

Condition Codes: loaded from the trap vector

TRAP TRAP XXX

TRAP Lt o 1T 4 14 XXX |

15 12 987 _ 0

Description: An interrupt occurs using the trap vector at
o]

location 348, Otherwise, TRAP and EMT are identical.

Condition Codes: 1loaded from the trap vector

[,

MONITOR REQUESTS

In order to implement a batch-processing FPDP-11 facility
in the absence of g full-scale operating system monitor, certasin
manggenent and use;'services had to be provided. This was accom-
plished within the FDP-11 hardware environment by imbedding these
services into the interrupt systen as extentlons to PAL-11R
Assembly Language. Extended mnemonlcs were developed for ﬁhe
Assembler so that these monitor requests could be assembled into
a user program as special trap instructions. At execution time,
the processor stack and an interrupt vector are invoked exactly
as for any regular trap instruction. In fact, a programmer may
code the monitor request by its PAL-11R equivalent instead of
the extended mnemonic and obtain the ssme results.

The basic support services avallable as monitor requests
are as follows:

«EXIT EXIT to the system
«DUHP memory DUMP

Input/Output Macros: PRINTC PRINT Character
PRINTO PRINT Octal

READC READ Character
READO READ Octal
MUL MULtiply
DIV DIVide
+EXIT to the system « EXIT
«EXIT {1 o 1 4 1 o1 o1 2
15 12 9 6 3 0

Equivalent: EMT 2

Descrivtion: EXIT must'be the last executasble statement‘in a

T4

user progrém, It terminates processing of that job end returns
control to the 'system'. This enables all parsueters to be

| re-initialized for the next job in the batch. The HALT instruc-
tion, on the other hand, 1s interpreted as an 1llegsl instruction,

and will bring about a memory dump in order to return to the

system.

, menory DUMP .DUMP

DouMP [0 [& 17T 0 1 0 1 3]
15 12 9 6 3 0

Eguivalent: EMT 3

Description: .DUMP prints on the‘output listing an absolute copy
in octal notation of all core allocaﬁed to that program. This .
LDUMP will terminate all processing of that job, and exit to the

system.

INPUT/OUTPUT MACROS

A macro instruction is a source statement. The Assembler
generates a sequence of PAL-11R assembler language statements for
each occurrence of a macré. These generalted statements are then
processed like any other agssenbler language statement. Each time
a glven macro appears, 1t is replaced by the same sequence of
instructions. | |

The use of these macros simpiifies the coding of programs
by standardizing all requests for input and output. However; 2
progrgmmer may code the macro expansion stétements by himself,

instead of calling the macro by its mnemonic name.

75

The format for these I/0 macros is the same:
MACRO SOURCE, LENGTH
ﬁhere SOURCE is the address of the data to be printed or read:
LENGTH 1s the number of words (octal mode) or bytes (char-
acter mode) to be printed from or read into that
source. |
There are two modes of data transfer: octal and character. In
octal mode, a word source is required. Each word is treated as
a 6—digit octal number. In character mode, any byte address may
be specified. Each byte is treated as a binary 8-bit ASCII
character as tabulated in Appendix A.
Macros differ only in thelr EMT codes. The macro expansion
is asvfollows: ”

MACRO SOURCE,LENGTH

+ MOV #LENGTH,-(SP) ;PUSH LENGTH ON STACK
+ . MOV #SOURCE,-(SP) ;PUSH ADDRESS ON STACK
+ EMT N . s EMT CALL FOR I/0

where the plus sign (+) in coiumn 1 of the output listing indi-
cates a macro expansion. Note that the macro requires 5 words
(10 bytes) of memory. None of the various addfessing modes may
be used fdr either afgumeﬁt. Programming errors in monitor
request macros are discovered after the macro expansions havé

been created.

PRINTC PRINT Character

Expansion: PRINTC SOURCE,LENGTH
+ MOV #LENGTH,-(SP)
+ MOV #SOURCE,-(SP)
+ EMT 4 _

76

Description: The number of characters specified are printed onto
the output listing. Up to 80 characters may be printed on any
one line, (viz., 1 <LENGTE£80.) If no ASCII code exists for the

data, blanks are inserted.

PRINTO PRINT Octal

Expansion: PRINTO SOURCE,LENGTH
+ MOV #LENGTH,-(SP)
+ MOV #SOURCE,-(SP)
+ EMT 0 -

Description: The number of words specified are printed on the

output listing as 6-digit octal numbers, with up to eight words

per line, (viz., 1< LENGTH<«8.)

READC READ Character
Expansion: © READC SOURCE, LENGTH
+ . MOV #LENGTH,-(SP)
+ MOV #SOURCE,-(SP)
+ EMT 5 .

Description: The number of characters speciflied are read from g
data card and stored into successive bytes at the source address.
A1l 80 columns of a data card are read -- one character per column
-- until the reduired number of characters are read. The parame-~

ter LENGTH must be between 1 gnd 80,

READO READ Octal

Expansions READO SOURCE, LENGTH
+ - MOV #LINGTH,-(SP)
+ MOV #SOURCE,-(SP)
+ EMT 1

77

Description: The numnber of words specifled are read from a

data card and stored into successive words starting at the
source address. Each word is 6 octagl digits long and is taken
»"from the data cafd_as a 6-column field. Up to eight words may
appear contiguously on any one data card.

WORD1 WORD2 WORD3 WORD4 WORDS5 WORD6 WORD7 WORDS
column: 1 7 13 19 25 31 37 43

MUL AND DIV

The‘FDP—11‘has no hardware instructions for multiplicagtion
or diﬁisioﬁ. These operations may be carried out by a series of
shifts, additions and rotates. The monitor requests MUL (MULtiply)
and DIV (DIVide) were included to free the user from this'resﬁric—
tion by providing system-defined routines avsilable as TRAP
Instructions.

Arguments are passed to the multiplicétion and division
routines in the following way:

1. Reéister 0 must contain the address of the first operand,
(the multiplicand or the dividend.)

2. Reglster 1 must contain the address of the second operand,
(the multiplier or the divisor.) | |
| 3. The results_are stored as two words_at the first operand
location.
The programmer must ensure that the proper addresses hgve been
placed into the registers. No operands may be specified in the

actual MUL or DIV request.

78

MULtiply ‘ MUL
MUL Lo 1 & 1T 4717 061 01
15 12 9 6 3 0

Equivalent: TRAP O

Description: The address of the multiplicend is in Resister O.

The address of the multiplier is in Register 1. A double-word
product 1is calculated and stored at the multiplicand address,
the high-order word first, the low-crder second. The original

values of the multiplicand and the following word are lost.

Ixample: MOV #MCAND, RO sMULTIPLICAND ADDRESS IN RO
: MOV #MPLIER,RI s MULTIPLIER ADDRESS IN R
MUL ;s TRAP TO MULTIPLY ROUTINE
DIVide DIV
DIV L1 o 1 & 17 477707 1]
15 12 9 6 3)

Equlvalent: TRAP 1

Description: The address of the dividend is in Register 0. The

addresg of the divisor is in Reglster 1. After the division, a
word remainder and g word quotient are stored in successive words
at the dividend address; the original values of the dividend and

the following word are lost.

Exgmple: MOV #DIVEND, RO sDIVIDEND ADDRESS IN RO
MOV #DIVOR,RT sDIVISOR ADDRESS IN RI1
DIV - s TRAP TO DIVIDE ROUTINE

79

ASSEMBLER DIRECTIVES

Assembler directives are requests to the Assembler to'perform
certaln operstions at assembly time.f5 These directives may gene-
rate data, cause storasge areas to be reserved for working space,
or alter the location counter. Assembler directives form the
operator field of a statement; hence only one directive may
appear in any one statement. The directive may be preceded by

a label or followed by = comment. The number of operands (if

-

any) varies from directive to directive.
The assenbler directives, summarized in Appendix F, are
presented as follows:
» BEND END of program

Data generating directives:
JWORD WORD generator
.BYTEH BYTE generstor
«RADS0 RADix 50
JASCIT ASCII characters
«LIMIT progregm core LIMITs
+EVEN =~ EVEN the location counter
- WTITLE .module TITLE

Progrem sectioning directives:
< ASECT Absolute SECTion
.CSECT reloCatable SECTion
+GLOBL GLOBaL symbol

Conditional assembly directives:
« IFDF IF DeFined
« IFNDF IF Not DeFined

+IFZ IF Zero

-« IFNZ IF Not Zero

« IFL IF Less than zero

«IFLE IF Less or Equal to zero
«1FG IF Greater than zero

. IFGE IF Greater or Egual to zero

o ENDC END of Conditional

80

o END +END E

Description: The .END directive indicates the physical end of

a source program. It must be the last stgtement of any job.
The .END directive is followed by one operand which specifies
the starting address for execution of that program. This

address 1s passed to the Interpreter at execution time.

DATA GENERATING DIRECTIVES

JWORD JWORD E1,E2,E3, ...

Description: The .WORD directive generates successive words of

data equal to the values of its operands. There may be one or
more operands separated by commas. Each’operand-generates one
data word. An operand may be any lezal expression. Values
exceeding 16-bits are flagged and truncated from the left to
word quantities. In addition, in any statement where no legsl
Instruction is specified, or there 1s a leading arithmetic or
loglcal operator, the .WORD directive is sssumed by default.
Examples:
Suppose .=2160 (octal) and X=15, (0017 octal)

2160: 104567 LABEL: LHORD 104567 ,X,LABEL+10

2162: 000017 ' ‘

2164: 002170

- Mlssing operands are stored as zeros:
000000 .WORD ,25,

000025

000000

Instruction mnemonics may appear as word data:
100000 <WORD MOV, INC s OV=100000 OCTAL

. 005200 s INC=005200 OCTAL

JWORD is default for missing instructions:

000000 VALUE:. 0,5,10

000005 -

000010

81

«BYTE +BYTE E1,E2,E3;, ...

Degceription: The .BYTE directive generates bytes of data ‘equal

to the values of its operands. Each coperand generates one byte.

‘Values exceeding 8-bilts are flagged and truncated to a byte

capaclty. _
Example: VAL= 32, ;040 OCTAL
000 . BYTE O0O,VAL, ,1
040 ‘
000
001
«RAD50 .RAD50 /CGG/

Description: The RADSO directive generates the RADiIX 50 repre-

sentation of up to three ASCII charscters within the delimiters.
The general form of the directive is:
| +RAD50 /ccoc/

where the slash (or any ASCII character except = or :).is the
delimitér, and CCC represents the éharacters to be converted,
chosen among A to Z, O t0 9, 5, . and blank. Redix 50 notation
engbles three characters to Ee packed into one 16-bit word
(called & triad) as follows:

| 1. Each charactér is translated into a'radix 50 code as

tabulated below:

Character Radix 50 Code (octal)
blank 0
A-Z o 1-32
33
. 34
0-9 36-47

2., If there are Tewer than 3 characters, they are considered

to be left-justified and trailing blanks are inserted. Characters

82

beyond the third pléce are lgnored.

3. The radix 50 triad for C1,02,C3 is formed from the above

codes gs follows:

TRIAD = ((c1 % 50) - ¢c2) % 50 - C3)

Example: All stbql naﬁes used-by thé Assembler are stored as

two packed trisds in radix 50 notation.

<RAD50O ?ADC? ; GENERATES 003343 OCTAL
: : ; 2 IS TEE DELIMITER.

<ASCII

ﬁescrintion: The +ASCII directive generates strings of ASCII

characters as tabulated in Appendix A. Each character fills

one byte of memory. The general form is as follows: |
CJASCIT /... text'..... /

where the text 1s any string of charascters, and the delimiter

may be any ASCII charascter (except = or :) that is not used

in the text.

Example: 040 JASCGII / WHAT®/
127 .
110
101
124

o7

.TITLE .TITLE symbol

Description: The .TITLE directive is used to neme the object

module. Otherwise, by default, the name '.MAIN' is used.

The following directives do not require argunents, and any

present are lgnored.

83

«LIMIT memory LIMITs

Description: The .LIYMIT directive generates two words of data

indicating the absolute memory locations of the machine code as
relocated for execqtion, The first word 1s the address of the
first byte of code; the second 1s the address of the byte after
the last byte of code. These addresses are always even since

all programs are allocated core in word quantities.

« BVEN

Descrivption: The .EVEN directive ensures that the assembly

location counter is even by adding 1 if it is odd.

PROGRAYM SECTIONING DIRECTIVES

The Assembler allows eight program sections: an absolute
section declared by .ASECT, an unnémed relocatable section
declared by .CSECT, and sixrnamed relocatable sections declared
by .CSECT SYMBOL where SYMBOL is any legel symbpl name.

. The Assembier maintains separate location counters for
each section. Consequently, séctions may be interrupted gnd
later resume where they left off,‘so that lnstructions not coded
contiguously may still be assembled into contiguous memnory
locations. Any labels appearing on the .ASECT or .GSECT direc-
tive are aséigned the value of the locagtion counter before that

directive takes effect.

< ASECT Absolute SECTion

Descripiiont JASECT declares the beginning or the resuaption

84

of an absolute section. The first appearance of an ASECT
assumes the location counter 1s absolute zero. .Subsequent
appearances load the locagtion counter with the gddress of the
next available location for that section. All labels in an
absolute section are absolute. The .ASECT directive remsins

in effect until another program sectioning directive 1s issued.
Absolute sections are loaded into core at the locations specified
by the programmer. For exagmple:

cASECT s START AN ABSOLUTE SECTION

+= 500 ; AT MEMORY ADDRZSS 500g
«GSECT reloCatable SECTions

.CSECT SYMBOL

Description: .CSECT identifies the‘beginning or the resuaption

of a relocatable section. If a symbol names the .CSECT directive,
that symbol is established as the name of the section; otherwise
the section is considered to be unnamed. The Assembler automa-
vicelly begins assembly with an uangmned relocatable section
unless instructed otherwise. The firét appearénce of the .CSECT
directive assumes the location counter is reldcatable Zero.,

All statements following;the .GSECT are assembled gs part of
that section until a directive to the contrary is encountered.
Further .CSECTs resume assenbly where that section left off.

All labels in a felocatable section are relocatable. For execu~-
tion, all relocatsble sections are loaded contlguously into the
highest avallable core locations. This leaves mgximum unused

core avallable for the processor stack.

85

Egch section 1s assembled lndependently into contiguous
areas of core, and symbols defined in one section have no rela-
tionshlip to symbols defined in another unless specifically

equated by a .GLOBL directive.

. GLOBL .GLOBL SYM1,SYH2,SYN3, ...

Description: The .GLOBL directive agllows various program

sections to communicate with each other by declariné symbols

as global. A global symbol may be an entry point -- that is,
defined in the current program section -- or an external symbol
-- that is, defined in another program section. A symbol is
not global unless it appears in a .GLOBL directive. Thus, a
symbol does not become global by apﬁearing in a direct assign-

ment statement with a global symbol.

CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly dlrectives allow the programmer to
include or delete a sequence of instructions from the assembly

process depending upon certain conditions.

Directive Condition
LIFZ E if E equals zero
«IFNZ B if E is not zero
JIFL E if E is less than zero
. «IFLE E if E is less or equal to zero
JIFG B . if E is greater than zero
LIFGE E - | if‘E is greater or egual to zero

86

Directiﬁe _ Condition
.IFDF EL . if EL is Aefined

. IFNDF EL - 1f EL is not defined

where E represents any expression
EL 1s a logical expression of symbolic names and logical
operators & or !

Expressions are evaluated from left to right. .If the
condition is met, all statements up to the matching .ENDC (END
of Conditional) are assembled. Otherwise, these statements are
ignored. Conditionals may be nested to a depth of 127. Syntax
errors (flaszed 'Q') will result from missing or extra .ENDC
directives. Labels may appear on conditional statements, but
are ignored 1f the condition 1is not met.

JIFDFR XIY&Z ;ASSEMBLE IF (EITHER X OR Y IS
. sDEFINED) AND (Z IS DEFINED)

87

SECTION E OPERATING PROCEDURE

The following sections explain how to submit a program to be

executed by the FDP-11 simulator.

CONTROL CARDS

Control cards are used to delimit a job as shown. Esch

control card must begin in column 1.
$JOB

PAL-11R source program

data cards

*/

ASSEMBLER OPTIONS
| If no options are coded, 2 j05 will be assembled, loaded,
and executed using 2K words of memory, and allowing 5 seconds
of executlion time.

These default Options may be‘overridden-by specifying the
following parameters on the $JOB card:

1. Execution Option: (EXEC=0)

Execution of a job can be omitted by specifying EXEC=0.
In this case, the job ls assembled and an assembly listing is

producedf Otherwise, execution will be assumed.

88

2. Time Option: (TIM=nn)

An execution time of up to 35 seconds may be requested,
If a user program has not completed within this time, a DUMP
is initiated. Default is 5 seconds.

-—

3. Maximum Core Option: (MAX=nn)

The PDP-11 may address up to 32K words of memory. The user
mgy obtain any size of core from 2X to 32K for the execution of

his program. Default is 2K words.

Job options must be placed on the $JOB card starting in
column 16. The entire option keywofd or only the first letter
may be coded. Each keyword must be followed by an equal sign (=)
followed by one or two digits. Options mgy be specified in any
order, but must be separated by commas, with no blanks allowed;
for example: |

' $J0B MAX=16 ,TI¥=10, EXEC=1
Assemble, load and execute using 16K words
of memory and 10 seconds execution time.
Comments or user identification may be included on the $JOB card

by leaving one blank after the option field.

STACK ADDRESSABILITY

In order to ﬁse the procéssor stack -~ énd therefore any
trap or I/O instructions <~ g programmer must first initialize
the stack pointer, rezister 6. Since a program is loaded into
the highest memory locations, all core above the physical begin-

ning of the machine code is unus=d. Thus the stack pointer may

89

be set by writing the first instructions as follows:

SP=76 _ ;DEFINE SP AS REGISTER 6
 START: nov #START, SP ; SET THE STACK POINTER

@ © °© ° ®

_.END START

THE PROGRAM LISTING

A prograﬁ listing contains the following informgtion:

1. ASSEMBLY PARAMETERS

The first page of output serves to separate the various
Jobs in the batch. Iﬁ addition, it includes a copy of the $JOB
card, g summary of the assemblér options 1in effect, and the
~absolute memory address of thefstarﬁ of the machine code,

For exemple:

RiHRRER20% PDP~11 ASSEMBLER OPTIONS %iedeseddsdssisis
| | ASSEMBLE, LOAD, EXECUTE
MAXIMUM EXECUTION TIME 5 Sﬁcowvs
MAXIMUM CORE 2K WORDS'

" ORIGIN AT 007746

2, SOURCE PROGRAM

A side-by-side copy of the source statements and the machlne
code equivalent ig printed out with 55 lines per page, and sub-
titles explaining the various entries. (See}the Sample Programs.)>
The listing appears in the Tollowing format:

E LLLLLL OOOOOOA NNNN S838588838S. .. ceeS

000000
000000

90

l

(a) E represents an error flag as tabulated in Appendix G,

(b) The L-fleld representéla 6-digit octal address of the
menory locatlion in which the machine code is assumed to exist.
In most cases, this is an 'apparent' address since all réloca—
table sections are.léaded into the.highest avallable memory
locgtions. The Assenbler parameter ORIGIN specifies the
absolute location of 'relocatable zero'.

(c¢) The O—field.répresents the machine code in octél notation.
Any index words (a maximum of two) generated by the Assembler
are listed directly under the machine instruction. No address
locations precede theée index words since the gddress order is
sequential. For a direct assignment,statement, the value of

' the defining expression is printed in the object code field
although it 1s not actuslly part of the generated machine
instructions. For a .BYTE directive and an .ASCII directive,
the object code Tield is 3 octal digits.

(d) The 'A' is a relocation flag -- represented on the listing
by-an apostfophe (') == which indicates that the second or third
word of the machine code is a relocated eddress constant. When-
ever an absolute memory reference is made, the Assembler ensures
that the corresponding machine code specifies the relocated
absolute address. However, since this value is meaningless to
the programmer, ﬁhe unrelocated symbol table value is printed
on the listing.

(e) ZEach source statement is asslgned a statement number by

the Assembler. The N-field contains this statement number as

a 4-digit decimal integer.

91

(f) The S-field represents the 80-character source statement.

3. SYMBOL TABLES
The User Symbol Table is printed out in alphabetical order

with three symbols per line in the following fonnatz

SYMBOL =%_ _ _ _ _ _ RG _ _ _
e e A B e e
direct l value .CSECT identifier
assignment
o relocatable
register
global

The identifying characters indicate the attributes of the
symbol -- a label, direct assignment, register symbol,
relocatablé, ébsolute, or globgl. If a symbol 1is undefined,
six asterisks replace its value. The .GSECT identifier is
left blank for symbols defined in an .ASECT or an unngmed
.CSECT since they can be identified by the absence or presence
of the 'R' respectively. Symbols belonging to named .CSECT's
have thé ID's 002 through 007, where the n'th named .CSECT is
assigned the ID n+1.

‘Immnediately following the symbol table listing is a
summagry of the'fCSEET names with>their corresponding origin,
length, and ID numbers.

- . CBECT ORIGIN LENGTH ID

4. ERROR DIAGNOSTICS

As noted, an error flag appears on the line where that

error occurred. More than one error may be detected in any

that statement. However, at the end of the listing is tabu-

lated a complete summary of all the errors in the program.
This summary appears in logical order by statement number and
includes an explanatory dlagnostic message for each error. For

example:

3 STATEMENTS FLAGGED IN THIS ASSEMBLY
STMT TYPE MESSAGE
17 R REGISTER-TYPE ERROR -~ EXPRESSION NOT IN THE
: RANGE O TO 7 '
21 U UNDEFINED SYMBOL -- ASSIGNED THE VALUE ZERO
28 Q QUESTIONABLE SYNTAX -- ILLEGAL SEQUENCE OF
OPERATORS OR SCAN INCOMPLETE
In addition, certasin conditions may terminate the assembly
of a user program. If this happens, no program listing is
created, and one of the following error messazes is printed:

TsRR SYSTEM ERROR ##%#%% SCRATCH AREA BUFFER HAS OVERFLOWED
JOB CANNOT BE PROCESSED S

¥t SYSTEM ERROR %% SYMBOL TABLE OVERFLOW

If the end-of-program delimiter %/ is encountered before an
+END directive 18 read, an .END card is genersted and assembly
continues. However, if a new $JOB card 1ls encountered, the old

Job 1g abandoned with the message:

%% MISSING CONTROL CARD %% JOB ABANDONED

SAMPLE PROGRAMS

The following are progran listings for three sample problems

using the PDP-11 simulator:

93

NO STATEMENTS FLAGGED IN THIS ASSEMBLY

94

EXAMPLE 1: Program to compute the factorisl of an integer
LOC CODE STMT SOURCE STATEMENT
000000 1 RO=%0 ;DEFINE REGISTER SYMBOLS
000001 2 R1=%1
000006 Z _ SP=%6
9
000000 012706 5 START: MOV #START,SP ; SET STACK POINTER
000000
6 READO NUMBER, 1 ; READ A NUMBER
000004 012746 7 o+ MOV #1,-(6)
000001 ‘
000010 012746" 8 + MOV #NUMBER,-(6)
000074)
000014 104005 9 + EMT 5 ;sTRAP FOR I/0 REQUEST
000016 005767 10 TST NUMBER
000052
‘000022 003414 11 BLE OUT sEXIT IF NEGATIVE
000024 012700 12 FACT: MOV #RESULT,RO s MULTIPLICAND ADDRESS
000070 ,
000030 012701! 13 MOV #NUMBER, R1 sMULTIPLIER ADDRESS
000074 : o
000034 104400 14 MUL ~ s MULTIPLY
000036 102413 15 BVS OUT1 . ;EXIT FOR OVERFLOW
000040 016767 16 MOV RESULT+2,RESULT '
000026
000022
000046 005367 17 DEC NUMBER ;DECREMENT INTEGER
000022 :
000052 001364 18 BNE FACT ;CONTINUE IF NON-ZERO
19 OUT: PRINTO RESULT,1 ;PRINT THE FACTORIAL
000054 012746 20 + MOV #1,-(6)
000001
000080 012746! 21 + MOV #RESULT,-(6)
000070 , .
000064 104000 22 4+ EMT O ; TRAP FOR I/0 REQUEST
000066 104002 23 OUT1: EXIT ; EXIT
‘000070 000001 24 RESULT: 1,1
- 000001
000074 000000 25 NUMBER: O
000000 26 JEND START
SYMBOL TABLE
FACT 000024R NUMBER OOOOT74R OUT 000054R
OUT1 000066R RESULT OOOOTOR RO =%000000
R1 =%000001 SP =%000006 START O00000R
CSECT ORIGIN LENGTH ID
«MAIN 000000 000076 001

EXAMPLE 2:

Frogram to generate a histogram

LOG CODE STMT
000000
000001
000002
000004
000006
000000 012706' 1
' 000000 |
000004 012700' 11
000062
000010 012701 12
177634
000014 005020 13
000016 005201 14
000020 001375 15
000022 012700 16
000372
000026 012701 17
176030
000032 012702 18
000 144
000036 012004 19
000040 003405 20
000042 020402 21
000044 002403 22
000046 006304 23
000050 0052641 24
000062
000054 005201 25
000056 001367 26
000060 104002 27
000372 28
, 002342 29
000000 -30
CLOOP 000014R
ITABLE 000372R
RO =7%000000
R4 =%000004
. = 002342R
~ CSECT ORIGIN
- JMAIN 000000

we Wwo wp

OO 0~ C\UT UL) =

;FIND THE FREQUENCY OF OCCURENCE OF
OUTPUT TABLE
INFUT TABLE

START:

HIST:

CLOOP:

HLOOP:

NOCNT:

OTABLE:
ITABLE:

SOURCE STATEMENT

OTABLE:
ITABLE:

RO=%0
R1=%1
R2=%2 .
R4=%4
SP=%6
MOV #START, SP
MOV

MOV #-100.,R1
CLR (RO)+
INC RI

BNE CLOOP
MOV

MOV
MOV #100,,R2

MOV
BLE

(RO)+,R4
NOCNT
CMP R4,R2
BGT NOCNT
ASL R4

ING

INC Ri1

BNE HLOOP

« EXIT
«=.+200,
«=.+1000.

+END START

SYMBOL TABLE

#O0TABLE, RO

#ITABLE, RO

#-1000. ,R1

OTABLE(R4)

HIST 000004R
NOCNT OOOO0S54R
R1 =%00000 1
SP =%000006
LENGTH ID
002342

95

001

GIVEN VALUES

; SEI THE STACK POINTER
;s OUTPUT TABLE ADDRESS
; 100 ENTRIES

; ZERO NEXT ENTRY

; CHECK IF DONE

; IF NOT, GO BACK

; SET INFUT POINTER

s LENGTH OF INPUT
sMAXTUUM INPUT VALUE

;GET AN INPUT VALUR

;s IGNORE ZEZRO OR LESS
;COMPARE TO UPPER LIMIT
; IGNORE IF GREATER

; 2 BYTES FPER ENTRY

; INCREMENT PROPER ENTRY

;s INPUT DONE?

sNO, REPEAT -

;s COMPLETE

; RESERVE FOR OUTPUT
s RESERVE FOR INPUT

HLOOP 000036R
OTABLE 0O0062R
R2 =%000002
START

O0O0COO0R

EXAMPLE 3:

L.OC

000000

000004
000010
000014
000016
000022

000026
000030

000034
000040
000044

000050
000052

000056

000200
000202
. 000204

CODE

000000
000001
000002
000003
000004
000005
000006
012706"
000000

012746
000120
012746
000060
104001

012746
000120
012746
000080
104004
012703
0000850
004567
000432
010267
000204
122713
000040
001453
004567
000202
000771

000200

005002

005202

012700"
000250

Program to simplify arithmetic expressions

STMT

FUIND = OO O~ OV £ BN —

no N) w=b —n — — b
— oCWwm aum

n N N
£ W

N
Ul

26

27
28

29
30
31
32
33

35
36
37

Vo Wo Ve WO We WO

SOURCE STATEMENT

PROGRAM TO

SIMPLIFY EXPRESSIONS

RITHMRETIC

INPUT: LEST JUSTIFIED CHARACTER STRING
NO BLANKS ALLOWED
OPERANDS ARE INTEGTRS
OPERATORS INCLULE + - % /
RO=%0
R1=%1
R2=%2
R3=%3
R4:%4
R5=%
SP=%6
BEGIN: MOV #BEGIN,SP ;SET STACK POINTER
READ: READC INPUT,80. ;READ A DATA CARD
+ MOV #80.,-(6)
+ MOV #INPUT,-(6)
+ EMT 1 ;TRAP FOR I/0 REQUEST
PRINTC INPUT,80.
+ MOV #80. ,-(6)
+ MOV #INPUT,-(6)
+ EMT 4
MOV #INPUT,R3 ;DATA STARTING ADDRESS
JSR R5,NSCAN ;GET FIRST INTEGER
MOV R2,0PND1 ; SAVE AS OPND1
LOOP: CMPB #040,8R3 ;BLANK NEXT?
BEQ WRITE. ;YES, PRINT RESULT
JSR R5,0PSCAN ;NO, FIND OPERATOR
BR LOOP s CONTINUE
INPUT: .=.+80. ;RESERVE FOR INPUT
;
;CONVERT RESULT TO ASCIT CHARAGTERS AND PRINT
;
WRITE: CLR R2- ;LENGTH OF RESULT
WRITE1: INC R2 ; INCREMENT GOUNTER
: ZOPND1,R0 3 ADDRESS OF RESULT

MOV

96

LOG
000210

000214
000216

000224
000230

000234
000236
000240
000242
000244
000246
000250
000252

000254 -

000256

000260
000264

000270
000272
000274

000300

000304
000306

000312
000314

000316
000317
000320
000321
000322
000324
000326
000330

000%32

CODE

ota27o1!
000256
104401
052767
000060
000026
116743
000023
005767
000014
001362
010246
010346
104004
000657
000000
000000
000000
000000
000012

012704
000003
121364
000316
001057
005203
004567
000172
010267
177742
006304
004574
000322
102433
000205

057
052
055
053
000366
000352!
000342
000332!

066767
177710
177710

STMT
38

39
10

41
42

43
44
45
46
47
48
49
50

51
52
53
55
56
57
58
59
60

61
62

63
64
65
66

67

68 -
69"

SOURCE STATEMENT

OPND2:
OPND1:
TEVP:

TEN:

]

MOV #TEN,RI1

DIV

; ADDRESS OF DIVISOR

sDIVIDE BY 10

BIS #060,TE4P s CONVERT REMAINDER

MOVB TEMP+1,-(R3) ;SAVE CHARACTER

TST OPND1 3 ZERO QUOTIENT?

BNE WRITE1 ;NO, GO BACK

MOV R2,-(SP) ; LENGTH ON STACK
MOV R3,-(SP) ; ADDRESS ON STACK
EMT 4 ;s TRAP FOR PRINTC

BR READ ;s RETURN

0 : SECOND OPERAND

0 ~ 3FIRST OPERAND

0,0 " 3 TEMPORARY WORK AREA
10. ;DECIMAL CONSTANT

; SCAN FOR LEGAL OPERAND AND SIMPLIFY

’
OPSCAN:

SCAN1:

OPTAB:

ADDTAB:

5
PLUS:

MOV #3,R4 ; SET OFTAR BYTE INDEX
CMPB &R3,0PTAB(R4) ;IDENTIFY OPERATOR?

BNE SCAN2 ;NO, CONTINUE

ING R3 ; INCREMENT SCAN INDEX
JSR R5,NSCAN ; GET SECOND OPERAND
MOV R2,0PND2

ASL R4 ;FORM WORD INDEX

JSR R5,@ADDTAB(R4) ;G0 TO SIMPLIFY
BVS OVER ; OVERFLOW?

RTS R5 ;s RETURN

JASCII ' /#-4! ;s TABLE OF OPERATORS

+WORD DIVIS,MULT,MINUS,PLUS

ADD OPND2,0PND1 ;ADD THE OPERANDS

97

LOC

000340
- 000342

000350
000352

000356

000362
000364
- 000366

000372

000376
000400

000402
000406

000412
000414

000420
000421
000422
000423
000424
000425
000426
000427

000430
000432

000434
000440

000444
000446

000452
000453
000454
000455
000456
000457

CODE

000205
166767
177700
177700
000205
012700
000246
012701"
000250
104400
00205
012700
000250
012701"
000246
104401
000205

012746
000010
012746
000420
104004
000167
177364
117
126
105
122
106
114
17
127

105704
002314

012746
000020
ot12746"
000452.
104004
000167
177322
111
114
114
105
107
101

79
80
81
82
83

84

85
86

87

88
89
90
91
92

93

94
95

g6

SOURCE STATEMENT

MINUS:

MULT ¢

DIVIS:

ERRS:

ERR1:

RTS R5

SUB OPND2,0PND1
RTS RS

MOV #OPND2, RO
MOV #OPND1,R1
MUL

RTS R5 :
MOV #OPND1, RO
MOV #OPND2,R1
DIV

RTS R5

PRINTC ERR3,8.
MOV #8.,-(6)
MOV #BRR3,~-(6)
EMT 4

JMP READ

s RETURN
s SUBTRACT THE OPERANDS

s RETURN
s MULTIPLICAND ADDRESS

s MULTIPLIER ADDRESS

3 MULTIPLY

sDIVIDEND ADDRESS

sDIVISOR ADDRESS

. sDIVIDE

; TRAP FOR I/0 REQUEST

JASCII /OVERFLOW/

TSTB -(R4)

BGE

SCAN1

PRINTC ERR1,16.

MOV
MOV

BEMT
JMP

#16.,~(6)
#ERR1,-(6)

4
READ

sDECREMENT AND TEST
; CONTINUE?

; TRAP FOR I/0 REQUEST
; GET NEXT CARD

<ASCII /ILLEGAL OPERATOR/

o8

LOC CODE STHT SOURCE STATEMENT

000460 114
000461 040
000462 117 3
000463 120
000464 105
000465 122
000466 101
000467 124
000470 117
000471 122
9g ; TRANSFORM CHARACTER DATA INTO BINARY - INTEGER
9 5 '
000472 ooser 99 NSCAN: CLR T=EMP ;CLEAR WORK AREA
17755
000476 122713 100 NSCAN1: CMPB #071,@R3 ; GREATER THAN 97
000071 v .
000502 003020 101 BGT OUTI ;YES STOP
000504 122713 102 CMPB #060,@R3 ; LESS THAN ZERO?
000060
000510 002415 103 BLT OUT1 ;YES STOP
000512 113302 104 MOVB @(R3)+,R2 ;SAVE CHARACGTER
000514 042722 105 BIC #177760,R2 ;CONVERT TO RINARY
177760
000520 012700' 106 MOV #TEVMP,RO sDIGIT ATDRESS
000252
000524 012701 107 MOV #TEN,RI1 sMULTIPLIER
000256
000530 104400 108 MUL sMULTIPLY
000532 066702 109 ADD TEMP+2,R2 ;CUMULATIVE SUM
177516
000536 010267 110 MOV R2,TEMP s ADJUST MULTIPLICAND
177510
000542 000755 111 BR NSCAN1 ; CONTINUE
000544 005767 112 OUT1: TST TEJP ;s INTEGER FOUND?
177502 ' ‘
000550 001401 113 BEQ OUT2 ;NO, ERROR
000552 000205 114 RTS R5 ;YES, RETURN
115 OUT2: PRINTG ERR2,15.
000554 012746 116 + MOV #15.,-(6)
000017 v
000560 012746 117 + MOV #ERR2,-(6)
000572
000564 104004 118 + EMT 4 ;TRAP FOR I/0 REQUEST
000566 000167 119 JMP READ
177212
000572 115 120 ERR2: JASCII /MISSING OPERAND/
000573 111
000574 123
000575 123
000576 111
- 000577 116

99

LOC

000600
000601
000602
000603
000604
000605
000606
000607
000610
000000

ADDTAB
ERR1
INPUT
MULT
OFND T
OPTAB
OVER
RO

R3
SCAN1
TEMP
WRITE1

CSECT
«MAIN

CODE

107
040
117
120
105
122
101
116
104

000322R
000452R
O00060R
000352k
000250R
000316R
000402R

=%000000
=%000003

000264R
000252R
000202R

STHT

i21

ORIGIN

000000

SOURCE STATEMENT

-END BEGIN

SYMBOL TABLE

BRGIN
ERR2
LOOP
NSCAN
QPND2
OUT1
PLUS
R1

R
SCANZ2
TEN

LENGTH

000612

000000R
000572R
000044R
000472R
000246R
O00544R
_000332R
=4000001
=%000004
000430R
000256R

ID
001

NO STATEMENTS FLAGGED IN THIS ASSEMBLY

100

DIVIS
ERR3
MINUS
NSCAN1
OPSCAN
ouT2
READ
R2

R5

SP
WRITE

000366R
000420R
000342R
000476R
000260R
000554R
000004R

=%000002
-7,

5000005
=%000006

000200R

Charscter Code

blank

!

H

N o= ke

&

o~

LS - AN N)

040
041
042
043
044
045
046
o47
050
051
052
053
054
055

056
057
060

061
062
063
064
065

APPENDIX A

“

CHARACTER CODES

Chaoracter Code

R g H o @ 9 i Y o w =

t

b
=

< d B un w o W o =

101

101
102
103
104
105
106
107
110
111

Character Code

H R e 3 m M

B

141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166

Character Code

6

® «©o W U I~

066
067
070
071
o072
073

074
075

076
o717
100

Character Code

Character Code

W 127
X - 130
131
122

102

w

X

167
170
171
172

APPENDIX B

PAT-11R SEPARATING OR TERMINATING CHARACTERS

Character

Function

" 1lgbel terminator

direct assignment delimiter
register term delinestor

item terminator, field terminstor
Immediate expression field indicator
deferred addressing indicator
initial register field indicator
terminai register field indicstor
operand field separastor

comment field delineator
arithmetic addition operator
arithmeiic subpraction operator
logical AND opérator

logical OR operator

double ASCII text indicator
single ASCII texﬁ indicator

103

APPENDIX G

Register R contalns the
Register R contains the

Regiéter ER 1s incremented
after use as the operand

Register ER is incremented

~after use as a pointer to

the address of the operand.

.Register ER is decremented

before use as the operand

Register ER 1s decremented
before use as a pointer to
the address of the operand.

E plus the contents of
register ER 1s the operand

E plus the contents of

ADDRESS MODE SYNTAX
Notation: r is an integer from O to 7.
R is a register expression.
E is an expression.
ER is an absolute expression in the range 0 to7
or a register expression.
Octal
Value Mode Name Syntax Explanation
Or register R
operand.
ir deferred register @R or
(R) operand address.
2r autoincrement (ER)+
address
3r deferred @(ER)+
autoincrement :
4y autodecrement -{ER)
address.
5r deferred @-(ER)
autodecrement :
6r index E(ER)
| eddress.
Tr deferred index @E(ER)

104

register ER 1s a pointer
to the address of the
operand.

Octal

Value Mode Name

27 immedigte

37 absolute

67 relative

77 deferred relative

E 18 the operand asddress.

E 1s the gddress of the

Syntax Explangtion
#E E is the operand.
@FE
E
“operand.

GE

105

L E is g polnter to the szddress

of the operand.

-Instruction

Class

double
operand

single
. operand

operate

brsnch .

trap

subroutine
call

subroutine
return

APPENDIX D

INSTRUCTION FORMATS

Syvmbolic
Format

0P 44

or A

OoP

B .

OF

oFr E

JSR ER,A

RTS ER

Mgchine Format

OP-CODE SRG DST
15 12 11 6 5)
OP-CODE DST
15 6 5 0
4 OP-CODE
15 o)
OP-CODE OFF SET
15 87 0
128 E-.-2 127
Eams
OP-CODE E
15 87)
0 E 3778
OP-CODE REG _ DST
15 9 8 65 o
OP-CODE REG
5 3 2 0

This appendix contalns an alphabeticsl 1list of all the machine

APPENDIX E

INSTRUCTION MNEMONICS

instructions in PAL-11R.

‘Instruction

ADd
Abd

ADD

Carry
Carry Byte

Arithmetic Shift Left
~Arithmetic Shift Left Byte

Arithmetic Shift Right
Arithmetic Shift Right Byte

Branch on Carry Clear

Branch on Carry Set

Branéh on EQual (zero)

Branch on Greater or Equzal

Branch on Grester Than

Branch on HIgher

Branch on HIgher or Same

BIt
BIt

BIt
BIt

BIt
BIt

Clear
Clear Byte

Set
Set Byte

Test
Test Byte

Branch on Less or Equal

Branch on LOw

Branch on LOw or Same

Mnemonic Machine
Op-Code Op-Code
ADG 0055DD
ADCB 1055DD
ADD 068SDD
ASL 0063DD
ASLB 1063DD
ASR 0062DD
ASRB 1062DD
BCGC 1030XX
BCGS 1034%X
BEQ 0014XX
BGE 0020XX
BGT - 0030XX
BHI 1010XX
BHIS 1030XX
BIC 043SDD
BICB 14S8DD
BIS 05SSDD
BISB 1538DD
BIT 0333DD
BITB 1388DD
BLE 003%4XX
BLO 1034XX
BLOS 1014XX

107

Page Condition Code

Z N ¢ V
53 X X X x
53 X X X X
44 X X X X
57 X X X X
57 X X X X
56 X X X X
56 X X X X
62 - - - -
62 - - - -
61 - - = -
64 - - - -
64 - - - -
65 - - - -
65 - - - -
46 X X - 0
46 X x - 0
46 X X - 0
47 X x - 0
47 X X - 0
48 X X - 0
64 - - m -
65 - - = -
65 - - -

Instruction) - Mnemonic Machine Paze Condition Code

Op-Code Op-Code Z N C V

Branch on Less Than BLT 0024%X 64 - - - -

" Branch on MInus _ BMI 1004XX 62 - - - -
Branch on Not Equal BNE 0010X 61 - - - .—4

‘Branch on PLus BPL 1000XX 62 - - - -
BRanch | BR 0004XX 60 - - - -

Branch on oVerflow Glear BVC 1020XX 63 - - - -

Braﬁch on oVerflow Set BVS 1024XX 63 - - - -

Clear Condition Codes CCC 000257 67 O 0 0 0

CLesr Carry bit CLC 000241 66 - - 0 -

CLear Negzative bit CLN. 000250 67 - 0 - -

CLeaR CLR 0050DD 49 1 0 0 O

CLeaR Byte CLRB 1050DD 49 1 0 0 0

CLear oVerflow bit CLV 000242 66 - - -0

CLear Zero bit CLZ 000244 67 0 - - -

ColMPare ’ CMP 0238DD 43 X X X X

- CoMPare Byte ‘ CMPB 12SSDD. 44 X X X X
Clear Negative and Zero bits CNZ 000254 67 0 0 - -

COMplement cou 0051DD 51 X X 0 0

COMplement Byte ' COMB 10510D 51 X x 0 O

DECrement : DEC OCBBDD 52 X X - x

DECrement Byte DECB 1053DD 52 X X - X

EMulstor Trap | BT 104000 73 x x % x

: to 104377

HALT HALT 000000 68 - - - -

INCrement | ING 005200 49 x x - x

INCrement Byte ' INCB 1052DD 49 X X - X

Input/Output Trap 10T 000004 69 X X X X

JUMP JUMP 0001DD 58 - - - -

108

Instruction . , Mnemonic Machine Page Condition Code

Op-Code Op-Code Z N C V

Jump to SubRoutine JSR O04RDD 70 - - - -
MOVe MOV 0138DD 42 X x -~ 0
MOVe Byte ' MOVB 1188DD 43 X x - 0
NEGate ' . NEG 0054DD 51 x x x x
NEGate Byte NEGB 1054DD 51 X X X X
No OPeration NOP 000240 67 - - - -
RESET RESET 000005 69 - - = -
ROtate Left ROL 0061DD 55 X X X X
ROtate Left Byte ROLB 1061DD 55 X X X X
ROtate Right ROR 0060DD 55 X X X X
‘ROtate Right Byte RORB 1060DD 55 X X X X
ReTurn from Interrupt RTI 000002 68 X X X X
ReTuran from Subroutine RTS 00020R T2 - - - -
SuBtract Corry SBC 0056DD 54 X X X X
SuBtract Carry Byte SBCB 1056DD 54 X X X X
Set Condition Codes SCC 000277 67 T 1 1 1
SEt Carry bit SEC 000261 67 - - 1 -
SEL Negative bit SEN 000270 &7 - '1 - -
SEt oVerflow bit SEV 000262 67 - - - 1
SEL Zero bit T SEZ 000264 67 . 1 - - -
SUBtract SUB 16SSDD 45 X X x x
SWAp Bytes) . BWAB 0003DD 56 X x 0 0
TRAP : TRAP 104400 73 X X X X
' to 104777 .

T eST | T8T 0057DD 52 X x 0 0
TeST Byte T8TB 1057DD 52 x x 0 O
WALt for InTerrupt WAIT 000001 69 - - - -

109

_ APPENDIX F

ASSEMBLER DIRECTIVES

Directive Operands Operation
<ASCII /eotext../ generates 7-bit ASCII characters

for text enclosed by delimiters

+ASECT none the start or continuation of an
absolute progrsm section

. BYTE EsEseoo generates bytes of data equgl to
. the values of the expressions

«CSECT SYMBOL the start or continustion of 2
‘ ‘relocatable program section (un-
ngned if no operand)

« END E indicates the physicgl end of g
symbolic program and optionally
specifies the start of execution

« ENDC none terminates the range of g
conditional directive

« BVEN none forces the assenbly location
counter to be even by adding 1 if
it is odd.

» GLOBL S51,82540. specifies each name to be a global
symbol

« IFDF EL - assemble up to the matching .ENDC

’ if the (loglcal) expression is

defined

LIFG E assenble if E is grester than zero

.IFGE E assemble if E is greater than or

‘ ' equal to zero

+IFL E essenble if E is less than zero

«IFLE . E assemble if E is less than or edual
to zero

« IFNDF EL assenble if EL is not defined

110

Directive

« IFNZ
cIFZ
" LIMIT

~ «RADSO

cTITLE

«WORD

Request

Operands

E
E

none

/ccé/

SYMBOL

E,E’ono

Operation

assemble 1f E 1is not zero
assemble if E is zero

generates two words containing the
low and high address limits of the
relocgtable sections

generates the radix-50 representation
of up to three characters within the
delimiters :

generates g neme for the object
module

generates words of data equal to
the values of the expressions

MONITOR REQUEST MACROS

PRINTC ADDR,LNGTH

PRINTO ADDR,LNGTH

READC ADDR,LNGTH

'READO ADDR,LNGTH -

111

5

Macro Expansion Function
MOV #LNGTH,-(6) print ASCII
MOV #ADDR,-(6) characters
EMT 4

MOV #LNGTH,-(6) print octal
MOV #ADDR,-(6) numbers

EMT O

MOV %LNGTH,—(6) read ASCII
MOV #ADDR,-(6) characters
BT v

MOV #LNGTH,-(6) read octal
MOV #ADDR,-(6) numbers
BMT :

~Instruction

DIV

MUL

DUMP

« EXIT

EXTENDED MNEMONICS

‘Ecuivalent

TRAP 1

TRaP O

EMT 2

Function

RO points to g dividend.

R1 points to g divisor.
After division, the quotient
replaces the dividend.

RO points to a multiplicegnd.

R1 points to a multiplier.

After multiplication, the product
replaces the multiplicand.

all of core is printed out in
octal notatlon

all processing of the program 1is
terminated, and control returns
to the systenm.

112

Error

N

Explanagtion

Addressing error. 4An address within the instruction
1s incorrect, or an illegal expression was formed.

- Boundary error. Datg or instructions are being

assembled at an odd address in memory.-

Doubly-defined symbol. A symbol is defined both
a8 a label and by direct assignment.

Illegal character. An 1llegal character was
encountered within a symbol name.

Multiple definition of 2 label. A symbol is defined
as a label more than once in the same program section.

Number error. 4n illegsal number wss detected, or
a decimal number was not terminated by a decimal
point,

Questionable syntax. This includes such errors as
unmatched harentheses, too many arhuments, illegal
sequences of termlinating characters, etc.

Reglster~type error. A register expression is out
of range or used improperly.

Truncation error. lore than the zgllowsble number
of bits are in a result, and it was truncated on
the left, '

Undefined symbol. An undefined symbol was

encountered in an expression, and was asslgned
the vglue zero.

113

APPENDIX H

STORAGE ADDRESS M

0 interrupt
: vectors
400
user
core
157777
760000
'"fast!
memory
177777

up to 32K words

4K periphersl storage: _
including general registers, progranm
status reglster, and externgl device
registers to be gssigned gt s later
date ' :

The interrupt vectors are assigned as follows:

Tocation

4
10
14
20
24
30
34

Function

instruction errors
reserved instructions
trace

I0T

povwer failure trap
BT

TRAP

'Fast' memory assignment is as follows:

Location

777700 -
177707

TT7776 -
T

Function
RO’ R1, R2, ©o oo 9 R?

processor status rezister

114

PDP-11 ASSEMBLER LOGIC MANUAL

TABLE OF CONTENTS

IDITRODUCTI ON ° © ° ¢ ° L] ° e e ° © ° ° s o ° ° ° ° ° L] ° 1 17

SECTION A GENERAL STRUCTURZE 118

SYSTEY SIMULATION "o ¢ o o o o o o o o o s o o o s o o « 118
ASSEMBLER STRUCTURE . e o o o o o o s o & = o o s s o 120
SCRATCH AREA- BUUﬁEP e s o 6 o o o o o o o e s & o o 120
PDP-11 CORE & o ¢ o 5 o o o « o s s o o o o o o s » 122
PERMANENT SYHMBOL TABLE ¢« 6 o o o o o o o o- 6 o o o 122
USER SYMBOL T ABLE,...,.‘,...,..._,...123
GLOBAL SYHMEOL DIRECTORY ¢ o o o o o o o o o o.0 o o 124
170\:110*—2.....‘..,..............124
PASS 1 & ¢ ¢ o ¢ o o o o o o o o o o o« o o o o o & 125
PASS 2 & ¢« & 6 o o o o o o o s 6 o 8 6 o 6 o o o 126
PHASE? . . . e e o o o 4 o o e o s s o o e o o & 126
MACRO GTVARATOR e o o 8 s o 6 6 & e o & o o s o o & 128
BINARY SEARCH o ¢ ¢ o ¢ o o o o o o o o o o o o o o 127
ADDRESS MODE IDENTIFICATION v o o s o o o o o o « o 127
SECTION B PROGRAMMING TECHNIQUES « o e o o o o o o o e 128
PDE-11 ASSEUBLY o o o o o o o o oo o o o o o o = o o e 128
TRANSLATE TABLE + « o o o o o o o o o o o o o o o o o 129
JUMP TABLES ¢ ¢ o o o o o o o o o o o o o s o o o o o o 129
SCANNING & 4 v v v v v v s v o o 0 o o o o o o o o 130
INSTRUCTION TYPE IDENTIFICATION o o o o o o o o o o 132
ASSEMBLER DIRECTIVES o v o o « o o o o 5 o o o o o 132
USER SYMBOL TABLE ¢ o o« o o o o o o o o o o o o o o o . 133
ATTRIBUTES & ¢ ¢ v v v o v o o o v o o o o o v o o 134
LINKED-LIST & o o o o o o o o o o o o o o o o o o o 134
S“AhC;IAG e o e e s s o o 4 s o s 6 e s e e s « o 135
SCRATCH AREA & v v ¢ o o o o o o o o o o o o o o o o o« 137
INSTRUCTION TYPES 4 o v« v o o o o o o o o o o o o . 138

PASS 2 OPERATORS ¢ v ¢ 4 o o « o o o o o o o o o @ 138
ERRCR MESSAGHE © e 4 s s s 6 o s s 4 e e e s e o o 138
SCRATCH AREA FORMAT o o o o o o o o o o o o o o o o 139
BRANCH MASKS ¢ ¢ o o o o o o e s e s s o e o o e « o 141
SECTION C MATNTENANGCE & & o o o o o o o o o o o o o o 143
R“S”?IClLO\u « o s © o o s o e o o s o s e o o o . 143
Y INSTRUCTION '“ELOKICD e 5 o & & s o o 6 o o e o o o 144
ADDIPIOV\L ERFOR MESSAGES ¢ o o o o o o o o o o o o o o 144
HMONITOR ““U;SYS © o s & e o o o a2 s o s s o = & s o o « 145
OPERATING SYSTEL « o v o o o o o o o o o o o . e o o o e 140

116

INTRODUCTION

This manual describes the organization of the PDP-11
Assembler and its Implementation in the PDP-11 System Simula-
tion at the University of Manitoba. It is assumed that the
. realder understands the assembly proceés‘és discussed in the
PDP-11 Assembler User's Guide and is also familiar with I3M
System/360 Asseabler Languaze. The prozram iogic of the
Assembler is presented here in increasing levels of detall
inciuding adfice on maintenance and suggesﬁipns for future
modification.

Section A describes the simulation environment and gives
a genersl overview of the processiné performed by the various

routines in the FDP-11 Assembler. By studying this section,

a system programmer may locate precisely the section of coding

which should be modified to correct or introduce a particular

feature. Section B describes many of the programming techniques

used in designing the Assembler, and pointé out some 6f the
constraints encountered. Section G descrives how to change
the Assembler parameters, and suggests some possible improve-
ments.

A listing of the FDP-11 Assembler may be obtained by
‘permission of Dr. Cafol Abrahgm of the Department of Computer

Science at the University of Manitoba.

117

SECTION A . GENERAL STRUCTURE

SYSTEM SIMULATION

The simulated PDP-11 System is able to batch-process PAL-11R

source programs, providing program listings and error diagnostics.

The System is written in IBM/360 Assembler Languagé and consists
of the following:

1. PDP-11 simulated memory (65K bytes)

2. a two-pass FDP-11 Assembler (13X bytes)

3. a PDP-11 machine-code Interpreter (8K bytes)

4. a scratch area on disk.

A user gpecifies the amount of PDP—11 core he wishes for
his job. The Assecubler assembles and loads the source program
into that core. The Interpreter executes the program. The
scrétch area 1ls used internslly by the Assembler. There is no
operating system as such, although az small part of the Assembler
acts as a monltor by co-ordinating the assembly and interpretg-
tion phases for each job. This ié a batch-processing systém
since one job is gssembled, loaded, and executed before the
next job may begin. Figure 1 illustrates the overall structure
of the simulator. |

The PDP-11 simulator normally executes in a 96K region
(with disk space sllocated dynamically as a scratch area) on an
IBM/360 Model 65 under 0.8. (IBM Operating System.) The entire
package forms o relocateble object module on disk and may be

invoked by the following JCL (Job Control Lensuage):

118

)

FIGURE 1 SIMULATION STRUdTU

o
=]

SCRATCH
AREA
DISK

INTERNAL
TABLES

PDP-11
CORE

| LisTING

NTERPRETEE

119

JOB
// EXEC ASMGLG, SIZE=96X

LKED.SYSLIB DD DSN=YAF.A0299.CIA,UNIT=DISK;DISP=SHR,
VOL=SER=UM1405
LXKED.SYSIN DD #
//GO.SYSUDUMP DD SYSOUT=A

GO, STORE DD DSN=JY,VOL=REF=ONE.MONTH,DISP=(NZV,DELETE),

SPACE=(TRX, (20,5)) V '

//GO.PRINTOUT DD SYSOUT=
/GO.READIN DD #

-

NN

"PAL-11R Programs (batch)
/% |
where STORE is the DCB (Data Control Block) for the scratch
ares on disk
PRINTOUT 1s the DCB for the assenbly listing

READIN is the DCB for the card resder

 ASSEMBLER STRUGTURE

The Assembler program is organized gs several distinct
sections as shown in Figure 2. Some sections are data areas:
some are single subroutines; and some are collectiong of

related routines. They are summarized as follows:

SCRATCH AREA BUFFER

The scratch area buffer (SCRAICH) is used to store PAL-11R
card images and a corresvonding ‘'intermediate' text of numeric
codes which are generated during Paés 1. These éodes represent
the instruction, the operands, and the addressing modes as

encountered on that source card. The buffer has been arbitrarily

120

FIGURE 2 - ASSEMBLER STRUCTURE

SCRATCH _ Scratch Area Buffer
TEXT 52K PDP-11 memory words
PST Permanent Symbol Table
MISG Jump Tables, Address Constants,
Translate Tables, and switches
usT User Symbol Table, Global Symbol
Directory
MONITOR Simulation XMonitor
PASS1 First Pass of the Assembly
PASS2 Second Pass of the Assenbly
MONREQ Macro Generstor
BINSRCH | Binary Search Routine
ADDHODE Address Mode Identification
PHASE? Symbol Table Printout Routine

121

defined as 1280 (IBM/360) bytes in lensth. After tﬁelve card
images and thelr codes héve been stored, the entire buffer is
transferred to disk where 1t remains until re-examined durinz
Pass 2. The scratgh area buffer may be filled and saved on disk
gseveral times duripg the course of an assexbly. By lundinzg data
into 1280-byte sections in this manner, a scratch srea is gener-

ated on disk with reduced I/0 activity.

PDP-11 CORE

Up to 32K PDP-11 words of 16-bits each may be requested by
2 user job. The mgximum area (called TEXT) is set aside as g
permanent part of the Assembler. The PDP-11 machine code is
loaded into this area during Pass é; The Interpreter executes

a Job from this simulsted core.

PERVANENT SYBOL TABLE

The Permanent Symbol Table (PST) is an alphabetically
ordered 1list contzining the instruction mnemonics, asseunbler
directives, and monitor requests avallsble for the PDP-11

simulation. The format of each entry is as follows:

PNAME]
PNAMEZ -
PVALUE

PID FFLAGS

O 0O

where PNAME!, PNAME2 are two radix-50 packed triads representing

e mnemonic;

122

PVALUE is a machine opératicn code (for instruction
mnemonics) or a Glsplacement into an address
table (for assembler directives);

PID is the section identification which is zero for all
permanent symbols;

PFLAGS represents the instruction class of that entry.

USER SYMBOL TABLE

The User Symbol Teble (UST) contains all the symbols used
in a program. A symbol 1s entered as soon as it is encountered
‘during Pess 1. The UST is link-listed into alphabetical order,
with each symbol appearing only once. Each entry is ten bytes

long with the following format:

UNAME

UVALUE
UID UFLAGS
ULINK

O O 0 O

where UNAME is two packed trisds in radix-50 notstion representing
the symbol name;
UVALUE is the value associasted with that symbolj;

UID 1is the section identification assigned as follows:

JASECT 000
unnsmed .CSECT 001
named .CSECT 002 - 007

UFLAGS indicate the attributes of that symbol,

viz. relocastable, absolute, undefined, reszister
symbol, etc.-

ULINK is a pointer to the next higher symbol in alpha-

betical order.

" GLOBAL SYMBOL DIRITCTORY

The Global Symbol Directory (GSD) 1s perhaps a misnomer
because 1t contains not all zlobal symbols, but only those
appearing’in 2 .CSZECT or ,TITLE directive. The GSD 1s used by
the Assembler to store information about the Varioﬁs program
sections defined in a Jjob. EFEach entry is ten byltes long with

the following format:

0

2 GNAME

4 GVALUEI

6 GVALUE?2

8 GID GFPLAGS

where GNAME is two radix-50 packed trieds representing the
section name; ‘
GVALUE1 is the entry address;
GVALUE2 1s the section length;
'GID is the section identification;

GFLAGS is the section attribute (relocatable or absolute.)

MONITOR
The Monitor 1s a subprogram which permits batch-processing
by coordinating the Assembler and the Interpreter. The monitor

performs the followlng functlons:

124

1. Initializes the bstch by opening files znd determining
the date for the Job header page;

2. Scans for control cardé;

3. Determines and initializes the Assembler options,
including clearing the memory requested for that job;

4., Prints the header page;

5. invpkes the Assembler;

6. Calculates and prints the assembly time;

7; Invokes the Interpreter;

8. Calculates and prints the execution time;

9. Repeats steps 2 - 8;

10. Terminates the bastch and cloges gll files.

PASS 1

During Pass 1, labels and thelr relstive addresses are
entered into the User Symbol Table. Also, symbols defined by
direct asslignment are evaluated and placed in the UST. All
instfuotions are identiflied and their addressing modes are
determined so that space may be reservedvfor any index words.
An Intermedlate text of speclal code numbers is generated and
stored in a scratch area on disk for use in Pass 2. In gddition,
many syntax errors are detected. After encountering the .ED
statement, an absolute address (ORIGIN) is cdlculated specifying
exactly where the machine instructions will be loaded into PDP |

memory during Pass 2.

125

PASS 2

The intermediate text in the scratch area is examined
and FDP-11 machine code i1s generated. All exvressions are
simp;ified, and all index words are calculated. A program
listing is created.line—by-line including card images from
the dlsk, and any error messages detected in elther pass.
As a statement 1s so processed, its machine code is loaded

into memory using the ORIGIN calculated in Pass 1.

PHASE?S

The User Symbol Table, the Global Symbol Directory, and
a summary of all error messages 1s printed out in the format
described in the PDP-11 Assembler ﬁéer's Guide. This ends

the assenbly phase, and control returns to the Monitor.

MACRO GENERATOR

-

The subroutine MONREQ is invoked during Pass 1 to
generate PAL-11R source statements for a monitor request

macro. The subroutine creates PAL-11R text in a special

macro buffer (MACLIB) and effectively overrides the card
reader so that the macro expsnsion created may be read from
the buffér. The arguments from the monitor reguest are
scanned and inserted as IBM hexadecimal characters into the
buffer, without error checking. In this way, MONREQ acts as
a DPre-processor for monitor request macros. The genersted

statenents are then processed normally by Pass 1.

126

BINARY SEARCH

The Binary Search Routine (BINSECH) is used to detect a
valid instruction and identify its type; During Pass 1, the
radix-50 representation of a mnemonic 1s cglculated, and passed'
to the BINSRCH routine. This ValueAis compared to the mid-point
of the Permanent Symbol Table, and half of the table is elimin-
ated with successive searches until that entry is either found,
or shownknot to exist. In this way, any one of 105.possible

instructions is detected within seven comparisons.

ADDRESS MODE IDENTIFICATION

For each operand in single- and double-operand instructions,
the address mode must be identified'during Pgss 1. As an oper-
and igs scanned, certain logical 'switches' are set to indicate
the syntax and gttributes of that operand. These switches are
exgmined by the routine AUDMODE, and using the syntax formats
described in Chapter 3 of the PDP-11 Assenbler User's Guilde,
the appropriate address mode 1s generated into the scragtch area.
No error checking is done here, since illegzal syntax is detected

before ADDHMODE is invoked.

127

SECTION B ' PROGRAMMING TECHNIQUES

PDP-11 ASSEMBLY

The PDP-11 Assembler is called a 'two-pass' assembler
because it exomines the contents of each source card twice as
it.assembles the progrem. In this case, the second pass is
somewhat simplified by utilizing the intermediate text created
by Pass 1, rather than re-scanning the source.

The basic steps in the assembly phase may be summarized

as follows:

PASS 1: | 2et a source card |
A identify instruction type
scen the statement and
generate intermediate text
PASS 23 get a card image

ldentify instruction type

simplify expressions

generate machnine code

In order to understand the details of the Assembler logic,
it is convenient to examine some of the pProgranming techniques

used.

128

TRANSLATE TABLE

A PDP-11 user expects data as T-bit ASCII charascters.
However, with the IZH equipment at Univirsity of Manitoba, input
" to the computer is as EBCDIC characters. Consequently, the As-
sembler includes g translation table (HEX20CT) for coaverting
all 1nput into ASCII characters. In drder to cut down simulation
. overhead, the EBCDIC source is first saved in the scrétch-area

so that the program-listing may be crested without re~-translating

the card images. Thus:

PASS 1: [read : card |

‘save EEBCDIC source

translate to ASCII

©c o000
Effectively, then, all scanning and processing by the Assembler

uses ASCII characters.

JUMP TABLES

A jump‘table is a list whose entries represent addresses,
where the position of an entry within the Junp table indicates
the purpose of tha£ address. Jump tables csn provide automatic
decision-making by providing branch addresses without a series
of comparisons and condition-checking. In the PDP-11 Assembler,
Junp tables control branching for instruction initializagtion,

delimiter-nandling, and assenbler directive srocessing.

32,
"It is possible to specify 8-bit ASCII input for the I1=1/360,
but this too needs to be trensformed into 7-bit characters.

129

Each element in a2 jump table is a halfword (IBY) displace-
ment from s pre-defined memofy location (BESE) to a specific
routine. This is a two-byte-per-entry savinz over the normsl
full word address constant. Halfword S-constants could have
been used instead{ but displacements gseened more flexible. An
S-constant requires address modification and reserved 8pace in
the instruction stresgm. Displaoements, on the other hagnd,
allow indexed addressing, while the tables may be sfored as a
distinct CSECT. In order to minimize the base register alloca-
tion, thls space consideration was en important factor.

Altogether, there are seven jump tables as follows:

PASS 13 INSTYP1 identify instruction type
' DIRTAB identify assembler directives
ADDRTAB scan single- and double-operand

instructions (with addressing modes)

ADDADIR scan assembler direciives and other

instructions without addressing modes

PASS 2: INSTYP2 ldentify instruction type
DIRTAB2 ldentify assembler directives
"OPTAB simplify and evaluate expressions
SCANNING

PAI~11R Assenbler Language has a well-defined syntax struc-

ture which relies on special terminating and separsting charac-
ters. Thus scanning in Pass 1 is accomplished by means of g
TRanslate and Test (TRT) instruction on the ASCII source. The

delimiters are assigned the followingz values from the translste

120

table TESTTAB:

Charscter Byte Code (hexadecimal)

02
04
06
08
OA
o]¢
OE
10
12
14
16
18
1A
1C
1E
20

o
= . .
2 =~Fh@®® s et Yo v e o | 4

2

These hexadecimal codes represent a disolscenent into a Jump
table. BSuccessive delimiters point to successive halfwords
in the table.

Several Jjuap tables exist which specify different braanch
'addfesses for the same delimiters depending on the pass, or
which type of instruction is being processed. For exemple, in
branch instructions, the delimiter # is 1illegal 2nd will gener-
ate a 'Q' flag (Questionable syntax error.) In single operand
instructions, however, the # indicates immedigte addressing.
Similarly, Q-errors are generated whenever address mode syntax
1s encountered illegally.

. The scanning uses the result of the TRT instraction (in

Register 2) as follows:

BRTAB LH R14, ADDRTAR(R2) GET DISPLACEIENT
B B2sE(R14)

131

As soon as the instruction type is identified, the appropriste
Junp table i1s inserted into the instruction to complete the
scan. Jump tables are 'swapped' by address modification using

S-constants:

MVC BRTAB+2(2),ADD2 SWAP JUMP TABLES
ADD1 DC S(ADDRTAB)
ADD2 DC S(ADDADIR)

INSTRUCTION TYPE IDENTIFICATION

In a similar way, Jjump tables are used to identify the
Instruction type. Here the displecement is taken from the
Permanent Symbol Table as the PFLAG for that mnemonic. They

are summarized gs follows:

Instruction Type Byte Code (hexadecimsgl)
operate 00
assemnbler directive 02
sinzgle operand o4
monitor request 06
double operand ' 08
regserved for comment 0A
RTS _ oC
reserved for error (0}
branch 10
reserved for direct assigmnment 12
JSR ’ 14
unused 16
trap 18

ASSEMBLER DIRECTIVES

Since each of the Asseabler directives performs a unique
function, agnother jump table is used to locate the branch
address for the gppropriste directive-handling subroutine.

This displacenent 1s also taken from the PST ags the PVALUE

132

entry as follows:

Directive Displacenent
« WORD 00
SIITLE 02
oR.ADBO 04
dLIMIT 06
«GLOBL 08
« EVEN OA
+« END ' 0C
o ENDC 0E
«CSECT 10
.BYTE 12
<ASCIT 16
cIFZ 18
+IFNZ 1A
« IFNDF 1C
JIFLE 18
L IFL 20
LIFGE 22
JIFG 24
« IFDF 26

This enables different subroutines to be called in Pass 1 and

In Pass 2 for the same assembler directive.

USER SYMBOL TABLE

A symbol table is required for seversgl reasons. It pro-
vides the Information which ensbles the Assembler to replace
Operands by storage addresses. Simplifying expressions and
error-checking involve exemining g symbol's attributes as
stored in the UST. Regzister symbols must-be ldentified to help
determine the addressing mode. Relocatable Symbols muét be de-
tected in creating the machine code. In sddition, throughout
the asseﬁbly, a symbol is referred to by its symbol table 1océ—

tion rather then the character string which makes up its nsme.

ATTRIBUTES

Bothh the UST and the GSD use the following format for the
symbol attributes. These 'flags' each occupy one bit of the

8-bit field: (UFLAGS, GFLAGS)

FLAGS C[ETZIGIRT [[.147]

= |
7 6 5 & 3 2 1 0

Blt Name Function

= ABSFLG indicates direct asslgnment

% REGFLG indicates a register symbol

G GLBFLG indicates a global symbol

R RELFLG indicates a relocatable symbol

. PCFLG indicates the program counter (.)
U UNDF indicates an undefined symbol

These 'flags' are set or cleared as the conditions dictate
whenever a syambol 1s first encountered, or appears as a label,

or is defined by direct assignment.

LINKED-LIST

The UST 1s link-listed into elphabetical order. At the
expense of increasing the size of each symbol table entry to
include a link field, two major advantages resulted:

1. Searching time 1s reduced since only those entries whose
name field is alphabetically lower than the 'test symbol' need
be compared. As soon as g higher namevis detected, searching
ends.

2. The User Symbol Table can be sglphabetically printed without

134

further sorting.

Other symbol table structures were considered bub rejected.
for the following reasons:
1. A simple sequential 1list, although adequate for smagll
programs, is inefficient for large programs.
2. Since variable names are encountered in e random order, the
use of a tree structure will not necessarily form a 'balanced
, treeégwhich will minimize sesrch time. Further, a.tree struc-
ture requires two link fields rather than the one used.
5. A bilnary ordered symbol table is wasteful of time since
whenever an entry is made, all symbols locagted hizher in the
table must be moved to preserve the orderlo Moreover,Athe
expected symbol table size is too éﬁall to make g binary

search fegsible.

The subroutine SEARCH, part of Pass 1, 1s used to place
a symbol into the User Symbol Table and/or return its symbol
table address in Register 9.‘ This operation, described below,
is depicted in Figure 3.

The link field (ULINK) in each symbol table entry is a
halfword displacement from the beginning of the symbol table
to the nekt highér entry. Assoéiated with the UST are three

" pointers:

HIGHSYH points to the highest entry
LOWSY# points to the lowest entry
EOTAB points to the next aveilable locstion

125

FIGURE 3 . SEARCHING EBY LINKED-LIST

HIGHSYH

LOWSYM

SYMTAB

RO

R1

A

B

1. Before sesrch

EIGHSYH

SYUTAB

RO

A\

2. Place new entry at the end

HIGHSYM

of the \table.

SYIHTAS

LOWSYH

AR

3¢ Link alphebetically and reset pointers.

136

A éymbol.is previously transformed into its radix-50
equivalent. fhe "test symbol' is always entered at the physical
end of the table (as provided by EOTAB) snd linked from the
current highest entry. Thus, during the ensuing ordered search
- which,proceeds_alphabetically oy means of the links -~ one
of the following must occur:

1. The table is empty, in which case the given symbol is
the Tirst entry, and the pointers are initialized..

2. The test symbol is found before the end of the list.
Then, that symbol already appears in alphabetical order, so
no changes result. |

3. The test symbol is found at the end of the list. That
symbol ié therefore a new symbol, éhd In fact the new highest
symbol. |

4. A value hidher then the test symbol is deteéted. Then
the test symbol is g new entry, and must be linked appropristely.

It may be the new lowest entry.

'SCRATCH AREA

The scratch area contains a summary of everything encoun-
tered on the source cards. Xach originsl source card is repre-
sented by a card image followed by a sequence of code words
which are in fact displacements (into jump tables or the UST)
or other bytes of information. Pass 2, then, selects the
correct Jjump table and uses these displacenents to locate the
brench address for the required processing. In this way,

information detected during Pass 1 is recovered during Pass 2

137

with 2 minimum of overhesd.

INSTRUCTION TYPES

The instruction type code in the scratch ares is the same
as described for Pass 1. It is used as s displacement into

the Jjump table INSTYP2.

PASS 2 OPERATORS

Note that not a2ll delimiters in g statement will appear as
code words in the scratch area. Several characters are only
needed in Pess 1 to describe the addressing mode (for exsmple #
and @ and %) or to zenerate words of absolute data (such as '
and "). Consequently, an abridged code of operstors which repre-

sent displacements into the jump table OPTAB is as follows:

. Operator Name Byte Code (hexadecimal)
EOF end of file 00
+ rlus 02
- minus o4
& AND 06
i OR 08
R commg 0A
(left bracket o]¢
) right bracket Ok
ERR error 10

HROR MESSAGES

The error Ooperator indicates that the next byte in the
scrgtch area specifies which type of error was detected. This
i1s the means by which all errors identified in FPass 1 are

transmitted to Pgss 2.

138

Error lMessagze ' Bvyte Code

A Addressing error 00
B Boundary error 01
D Doubly defined symbol o2
I Illegel character 03
M Multiple lsgbel 04
N DNumber error 05
Q Questionable syntax 06
R Register error - 07
T Truncation error 08
U

Undefined symbol 09

Whenever an error is encountered, the approprigte error flag
is inserted onto the program listing, and a message code 1is

stored in a special array ERRFILE as follows:

(&R | STMT |

where ERR 1s a one-byte error code from above,
STHMT is the statement number in a 3-byte packed decimal
format. ’
This error table is printed out at the end of each Job to

provide s summary of gll the errors.

SCRATCH AREA FORMAT

The scratch aresg has a variable length férmat since the
number of code words depends upon the type of instruction, the
nunber bf operands, the number of terms in the operands, and
the number of érrors detected. The genersl format of the

scratch ares is as follows:

CARD INMAGE TYPE | ARG1 | ARG2 | *<-+ | ADDR

129

1. The card image is 80 bytes of EBCDIC characters.

2. The instruction type is g four-byte field:

TYPE | IC - 0oP-cODE |

where IC is the instruction type code;
- 1s an unused byte to preserve halfword alignment;
OP-CODE is the machine operation code, or s disvlacement

which identifies an assembler directive.

3. The arzuments are each normally a four-byte field:

ARG [o &7 VALUE |

where OP 1is g Pass 2 operator;
W 1s a logical switch as follows:
00 - 1if the operand is a symbol
FF - 1f the operand is absolute datsa;

VALUE 1s a displacement into the UST, or an actusl value
of the operand depending on SW. '

If the operator is the error operator, the field is two bytes

as described previously.

4. The address field is present only in single- or double-

opersnd instructions.

ADDR [orT a [v] - |

where OP i1s either 00 (EOF) or QA (comma)
A 1s the address mode for that operand;
SW indicates the nature of zny index words
00 - no index words

OF - relative index word
FF - absolute index word

140

Where no addressing modes are involved, the operstors 00
and OA use two-byte flelds where the second byte ig unused.
Double operand instructions have another set of arguments
" followed by an address field. TFigure 4 illustrates three

possible scratch ares representations.

BRANCH MASKS
| Throughout the Assembler, instruction modificgtion is used
- to change the masks controlling varlous brench instructions of

the form:
BC 0,DER3T

Here the coded branch masks agre dummy parameters and are reset
perlodically by certain subroutines according to the type of
Instruction being processed. Branches become successful or
unsuccessful by inserting one of the following values into the

second byte of the instruction.

Name Value - Result
NOP 00 BC 0,DEST
BRA PO BC 15,DEST
For exemple: v
COMMA BC 0, STXERR ’
MVI COMMA+1,BRA DISABLE FURTHER COMAS

In single operand instructions, no commas are zllowed; thus
the above 1s initialized by

MVI COMMA+1,BRA NO COMMAS ALLOWED
‘In double operand instructions, one commg 1s expected:

MVI COMMA+1T ,NOF COMiA ALLOWED

141

FIGURE 4

SCRATCH AREA FORMATS

- 142

SYHTAR
1 RO
R1
deferred register mode
op-code no index words
[CLR @RI [04]-[oa00[02]00[0004[00[08] 00] - |
[ENSTEED OPTLE
EOF
UNARY +
data
op—rode '.value
| =T & [18] -| 8800] 02[FF[0004 [00]~ |
INSTYP Y OPTAB
EOF
TRAP +
ST
RO
R1
B
date
value
| .WOomD B-3 lo2]-]oooo]02 [oofoo14[ok7F[0003] 00] - |
INSTYPe OETAH
| , EOF
ASS DIR DIRTABS ~ +
.WORD -

SECTION C MAINTENANCE

RESTRICTIONS

This system is still under g étate of developement, and,
needless to say, there are certain restfictions imposed:
. Up to 256 user symbols allowéd;
2. Up to 8 control sections;
3. Approximately 1200 cards per program maximum}
4. No'external devices. Reading and printing must be done
by the monitor request macros.

The first three restrictions may be altered as follows:

1. The User Symbol Table size is defined by the parameter
SYMLGTH which agppears in an EQU statement at the beginning of
the Assembler. Any other desired size may be substituted here
to enlarge the table without any other programming consider-
ations.

2, Additional control sections may be allowed by defining
attributes Tor named control sections in the 2SD. For eXample:

DG 4H'0',X'0810" |
would define a ninth CSECT with the ID number 008, and g
relocatable attribute.

3. A program of over 1200 cards will overflow the scratch
area on disk. vMore disk space gy be obtained by alteriag
the scratch area DD card. |

4. No external devices were implemented in order to limit

the scope of this thesis at the master's level.

143

NEW INSTRUCTION MNEMONICS
Additionsl instruction mnenonics may be. added t0 the

Permgnent Symbol Table by insertin:

€3

4

th

o

appropriste hexzdecimal
" data and preserving the table's alphabetical order. The format

is described in Section A.

For example, to insert a new operate instruction CCV:
| Clear Garry and oVerflow bits
eV (o o T 0T 2T &7 3]
‘ 15 12 9 6 5 0

where the radix-50 eguivalent of CCV is 0117068 or 136616’
‘insert the following between the instructions GGC and GLC:

DC X'13G6000000420000"

ADDITIONAL ERROR MESSAGES

The'error tessazZes glven are somewhat general in nature.
More sﬁecific diasnostics may be printed by increasing the
number of error-coae'bytes'(as described in Section R) gnd
inserting a corresponding meésage into the array ERRNOTE.

Each messaze 1s currently 60 characters long. - For exXample,

the Q-errors might be subdivided as follows:

Code Error lMessazx

OA Q Syntax Error: Unmatched parenthesls
0B Q Syntax Error: Unexpected # detected
etec.

where the code indicates which message is to be orinted; and

the error messaze would be defined as part of the array EXRNOTE

Lliy

N

with the gppropriate disolacerent.

144

MONITOR REQUESTS

Currently the four monitor request macros are processed
ldentically by zenerating three PAL-11R instructions. If new
monitor requests were invented (perhaps .OPEN and .CLOSE for
files) a differen@ type ofbmacro expansion might be required.
In fact, the entire macro feature could be enlarzed to handle
‘all the extended mnemonics. Monitor requests then could be
handled in much thé sgme wWay as asseunbler directivés. That 1s:

1. The inétruction type would still be identified by the
Jump table INSTYPI.
2. Specific monitor requests would be distinguished by

defining a new jump table, say MONTAB, as follows:

Regquest Displacemnent Trap
PRINTO 00 EMT O
- READC 02 BT 1
« BXIT 04 BT 2
+DUMP . 06 BMT 3
PRINTC 08 CEMT 4
READO - OA EMT 5
. OPEN oC EMT 6
.CLOSE OE BT 7
MUL : 10 TRAP O
DIV 12 ' TRAP 1
SIN 14 TRAP 2
SQRT 16 TRAP 3

Thus, new management facilities and perhaps a system library
rcould be included by simply enlarging the scope of the monitor
requests. Naturally, new software would have to be added to
the Assembler (and the Interpreter) to implement these new

features.

145

OPERATING SYSTEM

The monitor requests attempt to perform the functions of
an operating éystem in an artificigl maﬁner. There 1s no real
operating system software in the PDP-11 core. Rather the onus
1s on the Interpreter to provide these features through IBM's
0.S. However, this is still feasible, and can remain invisible
-to a user of the simulation.

Thus, such things as external devices, formatfed I/0, and
even asynchroﬁous operations may be successfully simulated.
The chief problem is In designing and interpreting such features.
The Assembler must provide the Interpreter with whatever infor-
magtion 1s required. Thus, formats for control blocks, and system
tables must be rigorously defined. ‘Since the Assembler and the
kInterpreter Wwere written more or less independently, a full-

scale operating systenm was not implemented.

146

CONCLUSION
The PDP-11 Simulator is currently being used in conjunc-
© tion with 2o graduate level course on computer hardwgres at the
University of Manitobé. Students are notlonly explained the
architecture of the FDP-11, and the principles of stack-pro-
cessing, but are encouraged to apply this knowledge by creating
and testing programs on the EDP-11 Simulator. Thus students
afe allowed td develop sophisticated software for the PDP-11,
and even to design thelr own operating systems. In this way,
the simulator 1s a valuable teaching aid and, as s supplemnent
to formal lectures, can provide a better insight intolthe |
capabllities of the PDP-11 COmputef;

Certainly, due to this exposure to the PDP-11 simulsgtion,
students may urge that additional fegtures become availsble.
It 1is expected that external devices and pribrity interrupts
will be implemented in the nmear future. Other possibilities
include formatted input and output,»floating-point arithmetic,
and a system library of common user subroutines.

| Information on procedures concerning the use of this
simulation, including any revisions which may be made in the
future, may be obtained from Dr. Carol Abrahasm of the Depart-

ment of Computer Science at the University of Manitoba.

147

10.

Digital Egquipment Corporation, PAL-11R Assembler Progzrgmmer's
Manual, (DEC-11-ASDA-D), 1971, HMaynard, Hassacnusetts,
Chapter 1, p. 1-1.

Digitael Equipment Corporation, PDP-11 Handbook, 1969, Maynard,
Massachusetts, Chapter 2, pp. 5-10.

PAL~-11R Assembler Progrgmumer's Masnusl, op. cit., Chapter 7,
p. 7"6.) -

FDP-11 Handbook, op. cit., Chapter 4, pp. 17-43.

PAL-11R Assemnbler Programmer's Manual, op. cit., Chapter 8,
Pp. 8-1 - 8-10.

Digital Zguipment Corporation, PDP-11 Disgk Opversting System,
(DEC-11-SERA-D), 1971, HMaynard, Massachusetts, Chapter 2,
po 2"1;

PAL~-11R Assembler Prozrammer's Xenusl, op. ¢lt., Chapter 9,
po 9"40

PAL-11R Ascembler Prozrgnuner's Manusl, op. cit., Appendix G,
ro. C~1 -~ C-10.

Lee, J. A. N., The Anatomy of s Compller, Reinhold Publishing

- Corporsgtion, 1867, New York, Chapter &, pp. 86-97.

Barron, D. W., Assemblers and Losders, MacDongld & Company,
London, 1969, Chepter 2, pp. 15-17.

148

