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Abstract

Michotte's theory of ampliation suggests that causal relationships are perceived

by objects animated under appropriate spatiotemporal conditions. In this thesis I ex-

tend the theory of ampliation and propose that the immediate perception of complex

causal relations is also dependent upon a set of structural and temporal rules. The

thesis aims at achieving two main goals. The �rst goal is to de�ne a taxonomy of

semantics that describe di�erent causal events in the environment. Ten semantics are

de�ned in this thesis and divided into two main groups; simple causal semantics and

complex causal semantics. Simple causal semantics describe basic semantics, which

form the building blocks for more complex information and include causal ampli�-

cation, causal dampening, causal strength, and causal multiplicity. Complex causal

semantics are built by enhancing or combining one or more simple semantics and

include additive causality, contradictive causality, fully-mediated causality, partially-

mediated causality, threshold causality, and bidirectional causality. The second goal

of this thesis is to design simple visual representations to describe the causal infor-

mation. Three representation types were designed during the course of this research;

static-graph, static-sequence, and animation. Nine experiments were also conducted
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to test the e�ectiveness of these representations. The �rst �ve experiments compared

the static-graph and the animated representations through Memory Recall and Intu-

itiveness Evaluations tests. Results of these experiments suggest that animations were

∼8% more accurate and performed ∼9% faster than the static-graph representations.

The last four experiments compared an enhanced static representation, called static-

sequence, to the animations to test if sequential animation of causal relations had

any in�uence on the superior performance of the animations in the previous experi-

ments. Results of these experiments suggest that there was no signi�cant di�erence in

the performance of the static-sequence representations when compared to the static-

graph representations. The results also suggest that the animations performed more

accurately than their static counterparts mainly due to their intuitiveness. Overall

our results show that animated diagrams that are designed based on perceptual rules

such as those proposed by Michotte have the potential to facilitate comprehension of

complex causal relations.
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Chapter 1

Introduction

Causal relations are deeply rooted in human reasoning and appear in many con-

texts. Cause-and-e�ect relationships are used for explaining natural phenomena (the

iron will become red under the in�uence of �re), for describing common events (�ip-

ping the switch will turn on the lights), and for specifying and resolving research

questions (do horror movies lead to aggressive behavior?). In most cases such rela-

tionships are intermeshed in the collection of information and data available to the

user. To better comprehend cause-and-e�ect relationships, many visual representa-

tions, typically in the form of diagrams, have been developed and are being used

extensively.

Causal graphs constitute the most common representation of cause-and-e�ect re-

lationships. These are directed acyclic graphs, in which vertices denote variable fea-

tures of a phenomenon and edges denote a direct causal claim between these features

(Figure 1.1). These graphs have appeared in many forms: Feynman diagrams in

physics [Veltman, 2001], Lombardi diagrams to explain secret deals and suspect rela-

1
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tions [Lombardi et al., 2003], �owcharts to describe process �ows within a system, and

in�uence diagrams to represent the essential elements of a decision problem such as

decisions, uncertainties, and objectives, and how they in�uence each other [Tweedie

et al., 1995]. In all these variations, the causal graphs replace long verbose descrip-

tions or complex mathematical formulations that describe events with their causes

and e�ects.

Although node-link causal graphs provide information about cause-and-e�ect, in

certain cases it can be very di�cult to make credible causal inferences from linking

lines and arrows [Zapata-Rivera et al., 1999]. They may produce many implicit and

powerful assumptions, but they cannot convey the entire structure of the information

to �nd out what is actually going on. In some instances, it is essential that the

meaning or the semantic of the causal relationship be clearly revealed. For example,

car manufacturers could understand better the quality of the tires being produced if

a causal graph indicated that glass had a stronger in�uence than thorns in causing a

�at tire; or that a �at tire has a larger impact on steering problems than it does on

noise (Figure 1.1).

What seems to be lacking in the traditional forms of graphs is the capacity to

convey di�erent types of complex causal relations or semantics. Very little knowledge

exists for properly visualizing complex causal relationships. Therefore the central

question I address in my research is, �How do we make causal graphs more informative

and carry precise meanings?� In an e�ort to answer this question, my research is

divided into four components:

• Component I (Creating a taxonomy of causal relations): In the �rst
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Figure 1.1: Causal graph describing causes and e�ects of a �at tire. Note that it is

unclear whether there is positive or negative correlation between the in�uences and

the target (�at tire), and also whether an in�uence is stronger or weaker than another.

component of my research, I have characterized causal semantics that exist with

various types of data based on their occurrence, such as causes, e�ects, types

of e�ect, and existence of mediators. These include semantics that are simple

(such as causal ampli�cation, causal dampening, causal strength, and causal

multiplicity) and complex (such as additive causality, contradictive causality,

fully-mediated causality, partially-mediated causality, threshold causality, and

bidirectional causality).

• Component II (Representing simple causal semantics): In the second

component of my research, I have conducted experiments to determine if there

was any improvement in comprehension when causal relations were represented

using static-graph images or animations based on theories of perception. In this
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component, I have analyzed the simple semantics I de�ned in Component I.

• Component III (Representing and evaluating complex causal seman-

tics): In the third component of my research, I have conducted experiments,

similar to those in Component II, to analyze the e�ect of static-graph and ani-

mations on the complex causal semantics de�ned in Component I.

• Component IV (Comparing static-graph to static-sequence represen-

tations of causal semantics): One of the main di�erences between the static-

graph and animated representations tested in Components I and II was the

method of representing the relations. The static-graph displayed all the causal

relations in a scenario simultaneously, while in the animated representations,

causal relations were isolated, shown one-at-a-time, and in sequence. Therefore,

I was concerned whether animations performed di�erently from the static-graph

representation because of this sequential presentation of relations, or because

the animations themselves were superior. I decided to address this concern

by enhancing the static-graph representation to sequentially present the static

glyphs and renamed it the static-sequence representation. In this component,

I focused on comparing the static-sequence representation to animations and

to the older static-graph representation in order to determine if there was any

di�erence in performance.

My thesis is laid out as follows. Chapters 2 and 3 describe previous research related

to my thesis. These sections describes studies that have detailed the perceptual issues

with using static and animated visualizations, studies that have focused on comparing



Chapter 1: Introduction 5

static and animated techniques to elucidate complex information, and studies that

have focused on developing techniques to e�ciently perceive and visualize causal

relations. Chapters 4 and 5 de�ne the taxonomy of causal semantics that have been

derived from this research, along with the structure of the causal relations, and visual

representations of the causal events. Chapters 6, 7, 8, and 9 describe the experimental

studies conducted during my research, followed by the conclusion in Chapter 10, which

describes the inferences drawn from my studies and future work in the area of causal

visualization.



Chapter 2

Related work on perceptual theories

Causality is de�ned as an event wherein one object (called the factor) in�uences

a change in another object (called the target). For example, a person applies force,

in the forward direction, to a stationary table and causes it to move. Causality is not

constrained to Newton's laws of motion, and can be seen in every facet of life, such

as in philosophy, medicine (Figure 2.1), law, chemistry, and computer science.

However, as my research focuses on employing static and animated representations

to represent causal semantics, it is critical to understand the various issues that were

Figure 2.1: A simple causal graph showing factor (pollen), target (allergic reaction),

and relation (directed line from factor to target).

6
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considered during the course of my studies. As described in the next section, several

researchers have suggested guidelines that can be followed while creating static or

animated representations. Theories of perception can also enhance the e�ectiveness

of new visualization and I will report on this related literature that supports, to a

large extent, the research done here.

2.1 Issues in static perception

Our visual system has evolved to recognize complex objects e�ortlessly. Object

recognition is achieved through a three stage process, each stage adds to the details

collected in the previous stage, which �nally combine to recognize the object accu-

rately. This section describes issues encountered in the perception of static objects

and the three-stage process of recognizing them.

2.1.1 Stage I - Feature processing

The �rst stage in object recognition constitutes feature processing, which is con-

cerned with recognizing the primitive features of the objects such as contours, edges,

and textures. These are the simple features that cause an object to stand out from

its surrounding. Colors are distinguished by the color receptors in the eye and span

the entire color spectrum. Features such as edges are recognized in order to distin-

guish between di�erent faces; such as vertical, horizontal, and oblique faces of the

object. Texture distinguishes the surface quality of the object, such as smooth, shiny,

grainy, coarse, and rough. Figure 2.2 shows how a lamp is de-constructed to its basic

attributes in the �rst stage of visual processing.
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Figure 2.2: Image of a lamp showing color, edges, and texture information that is

assimilated in the �rst stage of feature processing.

The feature processing stage also distinguishes objects through a general theory of

the human visual system known as pre-attentive processing [Ware, 2003]. This theory

states that certain features of the object are distinguished more easily than others

because they �pop-out� from the background. Some of the pre-attentive features of an

object include color, shape, orientation, length/size, grouping, and curvature variance.

Studies [Ware, 2003] have shown that pre-attentive processing occurs unconsciously

and subjects usually perform well in dense and sparse scenes.
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Figure 2.3: Second stage processing distinguishes features such as proximity, similar-

ity, common state, and symmetry.

2.1.2 Stage II - Pattern matching

The second stage in object recognition constitutes pattern recognition, where ob-

jects are grouped together based on similarities and closeness in physical appear-

ance [Ware, 2003]. This phenomenon of pattern matching is commonly explained by

Gestalt's Laws of pattern perception. These laws describe features based on their

closeness to one another (proximity), same shape (similarity), symmetrical along any

of the axes (symmetry), and existence in the same state of rest or motion (common

state). These laws are useful when attempting to create several groups of represen-
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tations that retain their uniqueness, while being part of the whole.

2.1.3 Stage III - Object recognition

The third and �nal stage of object recognition is involved with categorizing the ob-

jects into recognizable classes, such as chair and table, in order to aid �nal recognition.

Another important component of this stage is the recognition of three-dimensional

properties of an object which help us provide depth to the image we currently have

in our minds. Biederman [Biederman, 1987] proposed that simple three-dimensional

glyphs can be used to visually represent complex constructs; he called this the Geon

Theory.

Biederman [Biederman, 1987] generated a set of 36 glyphs or primitives that could

be used individually or in combination to generate any complex object. The design

of this objects were based on the concepts of collinearity, curvature, symmetry, par-

allelism, and co-termination of two-dimensional objects (Figure 2.4). In addition,

Biedermann compared the e�ectiveness of the above concepts and suggested that

collinearity is easily distinguishable when compared to curvature as it is easy for the

human eye to assimilate linear and non-linear lines rather than lines with varying

degrees of curvature. Beidermann also suggested that symmetry is a stronger dis-

tinguishing feature than parallelism as it retains its shape under both re�ection and

rotation and does not require changes in the view angle of the human eye. Finally,

co-termination, which is concerned with the terminating edges of an object, is crucial

as edges de�ne the boundaries and shape, and thereby facilitate in object recognition.

The results of these studies have been very useful in developing my causal visualiza-
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Figure 2.4: Beiderman's Geon Theory describing features of an object that improve

recognition such as (a) collinearity vs. (b) curvature, (c) symmetry vs. (d) parallelism,

and (e) co-termination (redrawn based on [Biederman, 1987]).

tions. In particular, based on these results, the nodes and glyphs displayed in my

causal graphs are symmetrical, with strong co-termination (no missing components),

and connected by collinear lines, for easy comprehension.

Sekuler et al. [1988] conducted an extensive study into the perception of visual

motion in dynamic scenarios. The �ndings of this and other studies are summarized

below.

2.2 Issues in motion perception

2.2.1 Factors that e�ect the perception of motion

Several studies have also analyzed factors relating to motion perception such as

motion detection, trajectory, direction, speed, and coherence. Some of these factors

have been described below:

Detection of motion

Motion is normally perceived as the movement or displacement of an object over

a period of time. Sekuler et al. [1988] state that motion can be described through a

space-time graph, where the space-axis represents the distance that an object moved
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over the time-axis. More commonly, motion, according to the study by Lappin et al.

[2001], is distinguished in terms of relativeness, i.e. the movement of one object

with respect to the stationary nature of another, e.g. a train is viewed as moving

relative to a person standing on the stationary railway platform. The authors state

that human beings can recognize relative motion more accurately than pure visual

motion, and in some cases cannot distinguish motion at all unless it is relative, e.g. a

person in a moving train does not recognize the motion of another person sitting in

an adjacent train moving at the same speed and in the same direction. Robson [1966]

states that in many cases motion can bring the objects that are previously invisible

into the line of sight. Therefore in order to categorize the amount of motion that

is required to visually detect it, studies employ the usefulness of the lower envelope

principle [Watson and Turano, 1995], which estimates the smallest number of neurons

that are required to distinguish motion. Using computer technology, a more modern

technique called the random dot cinematogram (RDC) is also popular in motion

perception estimations. In the RDC technique, subjects are asked to distinguish the

overall motion of a given set of dots. The percentage of dots moving in a particular

direction is controlled and the remaining dots in the scene move in random directions

(causing noise). Studies showed that subjects were able to recognize motion with as

low as 5% of the dots moving in one direction [Blake and Aiba, 1998], which shows that

human beings are able to distinguish object movements even in small degrees. Some

studies also state that the detection of motion can be improved with the addition of

visual cues, such as color, hue, and orientation, and by aiding visual attention [Croner

and Albright, 1997; Raymon, 2000]. As suggested by these researches, the causal
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graphs in my studies are stationary, in order to provide a high contrast and maximize

detection of the moving bullets that depict the causal information.

Detection of trajectory

Trajectory detection focuses on perceiving the direction of motion of a single object

among several distractors. According to studies by Watamaniuk and McKee [1995],

the visual system is quite adept at distinguishing single object movement, and an

RDC testing of this ability showed that subjects were able to visually track motion

even when only 0.4% of the dots were moving in the same direction. As mentioned

in the previous subsection, in my visualizations, only the bullets describing causal

information move. All other components of the causal graph are stationary, which

reduces the number of distractions in the scene.

Discriminating direction, coherence, and speed of motion

Motion discrimination deals with recognizing the motion of an object along with

discriminating changes in speed, direction or coherence of the motion. Studies byWata-

maniuk et al. [1989] have shown that subjects are adept at discriminating changes in

the direction of motion, even when in some cases the motion change is as small as

1° and a study by Gros et al. [1998] showed that directions such as up, down, left,

and right were more easily assimilated when compared to directions such as oblique.

Other studies [Bravo and Watamaniuk, 1995] state that motion as a whole can be

used to aid object coherence, i.e. when several objects move in the same direction,

perceptual grouping occurs and the moving objects are grouped into a coherent shape.

The study states that speed of an object is normally perceived by measuring the dis-
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tance an object traveled over a period of time. The study employs the use of Weber

fractions (ratio of smallest increment in speed that can be reliably detected to the

current speed of the body) to determine the smallest proportion of change of speed

that can be perceived and states the range as low as 0.04−0.08. In addition, research

has also shown that discrimination of speed is reduced when the object is far away

from the eye [Johnston and Wright, 1986] and also when the available light is less

or dim [Gegenfurtner et al., 2000]. In my studies, the animated bullets mostly move

in the same direction, either horizontally, vertically, or obliquely. In bidirectional

causality, bullets move in one direction and then move in the opposite direction. In

this case, the two motions are separated by a few seconds, in order to be able to

discriminate between them easily. Perceptual grouping plays an important role in

causal multiplicity, as information travels from more than one factor simultaneously,

towards the target. In this situation, the motion is slow and easy to distinguish.

Finally, the illumination is bright in order to enhance motion comprehension.

2.2.2 Analyzing motion

Several studies that test the e�ectiveness of visual systems employ the use of

a basis model called the ideal observer model [Meeteren and Barlow, 1981]. This

model can be used to design an ideal subject who knows all about the environment

and is trained to perform accurately under the base conditions. When Watamaniuk

[1993] applied this model in order to determine the e�ectiveness of the human eye in

discerning visual motion, the ideal observer was designed as an observer who perceived

the direction of the dots in an RDC by discerning the global direction of the display.
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The ideal observer performed more accurately than humans when all the dots were

moving in the same direction. This performance improved as the duration of the

display increased, but stayed constant between durations of 100 − 500 milliseconds.

However, as the amount of randomness in the display was increased, the human

observer performed more accurately (e�ciency = 0.35, 70% accuracy) than the ideal

observer. Studies into the limitations that e�ect motion perception attributed the

ideal observer's inferior performance to the fact that it considers the entire display

before making a decision, while the human observer views only parts of the display

and hence is less distracted by the randomness in the rest of the display [Baddeley

and Tripathy, 1998].

2.2.3 Recognizing object structures through motion

Koenderink [1986] has suggested that visual motion forms an important part

in discerning the structures of objects. This visual motion is seen in the form of

spatiotemporal changes in bodies and is termed optic �ow. Optic �ow helps the

human body to distinguish between stationary and moving objects and also helps to

make decisions with regard to speed, direction, and obstacles. Koenderink [1986]

also states that movement can be broken down into four basic types: translation,

isotropic expansion, rigid rotation, and shear, and any complex movement of the

body is broken into combinations of these four components, each of which produce a

unique optic �ow.

A study by Kirschen et al. [2000] suggested that optic �ow allows a subject to

learn directions in a complex environment. However, for optic �ow to be useful to
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the visual system, it should be smooth and easily perceptible. Kirschen et al. [2000]

showed that when optic �ow was limited, subjects took longer to learn their way

around complex paths, than when optic �ow was smooth and non-choppy. Another

study by Lee and Kalmus [1980] stated that optic �ow helps in avoiding collisions and

is crucial to many species, such as birds, as errors due to irregular optic �ow could be

life-threatening (for example, when hunting or diving into water). The study of optic

�ow is of particular importance to my research, as I depend upon the intuitiveness of

my animations in depicting the causal information. As a results, my animations are

smooth, non-choppy, simple, and follow the principles of good optic �ow.

2.2.4 Motion perception by the visual system

Sekuler et al. [1988] state that for a visual system to discern motion, the motion

is broken down into its basic components such as direction, speed, and coherence.

However, several issues arise when motion of an object becomes complex and requires

further processing by the receptors in order to be accurately distinguished, e.g. when

an object moves in a right-top oblique direction (combination of the basic directions of

right and top). This section describes such issues as addressed by the authors [Sekuler

et al., 1988]:

Sensitivity of direction

One common problem encountered by the visual system is the complex move-

ments of an object in motion. According to Sekuler et al. [1988], receptors in the

eye are tuned in speci�c directions. However, the question arises as to how these
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receptors distinguish and determine the direction of a moving object. Several models

have been designed to describe the steps taken by the receptors to recognize motion.

The Hassenstein-Reichardt model [Borst, 2000] suggests that the receptors use object

displacement over small periods of time to perceive motion. Based on a mathemati-

cal calculation of the displacement, a positive di�erence means that the object is in

motion in the same direction in which the receptor is tuned, and vice versa. Sekuler

et al. [1988] state that, though very useful, this model is inadequate as it is unable to

distinguish between smooth motion and motion that is shown as a sequence of still

images (apparent motion). Another model by Watson et al. [1986] uses the concept

of window of visibility to specify a limit to the amount of information that can be

processed by a receptor. According to this model, object motion generates energy in

the form of spectra, and only spectra that fall within the window of visibility can be

processed by the receptor; any spectra falling outside the window is ignored. There-

fore, based on this model, motion of two objects will appear identical if both of them

generate the same spectra within the window. In order to address this problem, the

animations I use in my causal visualizations are smooth, simple, and shows only what

is necessary, without unnecessary distractions.

The correspondence problem

The second problem arises when the visual system encounters more than one

object moving at the same time. Perception of motion states that each step in the

motion of an object is perceived as a displacement of the object over a small period of

time. Therefore, it can also be said that the visual system recognizes that a particular
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object has moved, by matching its new location (at the end of the time frame) to its

old location (from the beginning of the time frame); which is quite simple when there

is only one object under consideration. However, when two or more objects move at

the same time, the visual system has to then match each object to their corresponding

positions at the end of the time frame. The problem can increase exponentially as the

number of objects increase (n objects −→ n! matches) [Sekuler et al., 1988]. Dawson

[1991] states that the visual system overcomes this problem by following three global

principles that aid in matching the relocated objects accurately; the nearest neighbor

principle that focuses on reducing the distance between successive displacements, the

smoothness principle that focuses on reducing the abrupt changes in speed of the

object over successive time frames in order to create smooth motion, and the element

integrity principle that prevents objects from degenerating, appearing or splitting into

several objects unnaturally. Another type of correspondence problem encountered by

the visual system is what is termed as bistable motion sequences [Sekuler et al.,

1988]. Such sequences occur when the visual system is confused by the interaction

of intermingled moving patterns, for example two superimposed diagonally moving

gratings (in opposite directions) can be seen as a series of superimposed moving

diamond shapes. Hence, the visual system has to decide if the motion is of two

gratings or of one diamond patterned grating. In this case the motion is bistable as

the visual system shifts between the two ideas based on which image is dominating

at that time [Kramer and Yantis, 1997]. As my causal relations sometimes show the

in�uence of multiple factors on a target, I have tried to minimize the correspondence

problem by making sure that the casual graph does not have overlapping nodes or
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causal paths, the animations are smooth and proceed in small steps, and the bullets

are whole, do not change in shape or size, and do not split or degenerate unnaturally

during movement.

The aperture problem

The third problem is encountered by the visual system when the size of the object

in motion is larger than the size of the receptive �eld (also called the window or

aperture), for example looking at a large object through a slit such that only a

part of the object is visible at any given time. In this situation, depending on the

direction of that particular visible piece of the object, the perception of the direction

of motion could change [Wueger et al., 1996]. Wueger et al. [1996] also state that the

shape of the aperture could have an impact on the perceived direction of motion,

for example, an oblique line moving behind an L-shaped aperture is seen �rst to be

moving down (along the vertical rib of the aperture) and then moving to the right

(along the horizontal rib of the aperture). The main problem here is how the visual

system discerns the correct type of motion from the small pieces of information that

are presented to it. This is accomplished by perceiving the movements of the entire

object as a whole and not by looking at the individual pieces of information collected

by the receptors. Wueger et al. [1996] infer that the visual system seems to have a

mechanism to integrate all the local pieces of information to form a global picture of

motion. Therefore, if some receptors provide contradicting or incomplete information,

the visual system is able to ignore them without much issue. Although this problem is

currently not an issue in my research, I do realize that as the size of the causal graphs
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increase, it might not be possible to �t the entire graph within a given viewport. In

such situations, additional interactive techniques such as zooming, re-ordering, and

node selection might be useful and have been mentioned as part of my future work.

2.2.5 The aftere�ects of motion

Sekuler et al. [1988] state a common example of motion aftere�ects when a sub-

ject views a moving scene for a prolonged length of time and then views a stationary

scene. The stationary scene is now perceived to be moving in the opposite direc-

tion, although it is in fact not moving at all! This phenomenon is termed motion

aftere�ect. Several models have again been designed to explain motion aftere�ect.

Some studies [Barlow and Hill, 1963; Sekuler and Ganz, 1963] have attributed this

phenomenon to an imbalance in the use of receptors tuned to the direction of the

object's motion. According to these studies, when viewing motion for a prolonged

period of time, receptors in the direction of motion are overused and become tired.

Therefore when the stimulus is removed, the receptors in the opposite direction (which

are less used) provide stronger signals to the brain which in turn perceive motion in

the opposite direction (called the ratio model). The distribution shift model [Mather,

1980] expands the ratio model to include a range of receptors (instead of only one)

which work together to perceive direction of motion. According to the distribution

shift model, motion aftere�ects include all receptors in the general direction of motion

and not only those that are tuned to that particular direction. Finally, newer mod-

els [Barlow, 1990] relate mutual inhibition properties of the receptors that in�uence

the perception of direction in the visual system. According to the mutual inhibition



Chapter 2: Related work on perceptual theories 21

models, receptors in opposite directions tend to inhibit each other and this inhibition

builds up as the scene is viewed for a longer period of time. When the display is

then removed the inhibition is still active and therefore motion is perceived in the

opposite direction. Motion aftere�ects have to be considered when designing anima-

tion sequences as they can counteract the detection of minute or quick changes in an

event. For example, in my causal graphs nodes are placed as close as possible to each

other such that the bullets travel short distances between them and motion afteref-

fects are reduced, while making sure that the information contained in the bullets is

still clearly visible.

2.2.6 Retention qualities of motion

Remembering motion

Several studies have analyzed participants' e�ciency in remembering the motion

of displayed objects. The study by Magnussen and Greenlee [1992] tested the ability

of the participants to remember the velocity of a moving grating (grid of horizontal

and vertical bars). In this study, the authors compared the ability of the subjects to

match the velocity of a reference grating to a test grating by manipulating the time

di�erence between the displays. Results of this study showed that subjects were able

to retain the properties of the initial stimulus for up to 30 seconds. Another study

by Blake et al. [1997] tested the ability of subjects to remember the direction of a

given motion. Results of this study stated that subjects could remember the direction

of motion for around 8 seconds of time and were not disturbed by the insertion of

noise in the display. However, the studies also showed that increasing the number of
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directions in the display had adverse e�ects on the subjects' performance. The results

of these studies are important to my research as my Memory Recall experiments test

the retention and recall qualities of causal motion using animations.

Multiple object tracking

The retention qualities of motion are particularly important as the number of

objects in the display increase and as the di�culty in matching the initial positions

of objects to their respective �nal positions also increases. Pylyshyn and Storm [1998]

suggested the FINST model that describes how participants track multiple objects.

According to this model, the eyes of a person generally focus on one area of the

scene, called the locus of visual attention. However, without moving their eyes,

the authors state that it is possible to shift the locus of visual attention such that

the eye can distinguish regions which were not visible previously. This is called

pre-attentive processing and this is used very commonly to track multiple moving

targets simultaneously. According to authors, FINST can be described as references

to certain features of objects such that they stand out and can be tracked by the

eye pre-attentively, independent of the position of the objects in the scene. A study

by Allen et al. [2004] compared the ability of experts (radar controllers) and novices

(undergraduate students) to track multiple moving objects in a scene. Overall, the

experts were more accurate than the novices in the experiment, since the experts

were trained in object tracking. The results of the experiment showed that both

experts and participants could keep track of up to six targets, above which the error

rate drastically increased. However, when an additional vocal task was added to
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the experiment, the performance of the novices (up to 2 objects) degraded more

rapidly than the experts (up to 4 objects). A second theory proposed by Yantis

[1992] states that subjects create perceptual groups, in the shape of virtual polygons,

and use the relative positions with respect to the rest of the group to keep track of the

moving targets. Yantis [1992]'s studies supported this theory and also showed that

any breakage (crossing two edges of the virtual polygon) in this perceptual group had

an adverse e�ect on the participant's performance. The results of the above studies

are relevant to my research as my visualizations can be used to display multiple

simultaneous causal e�ects. However, as the focus of my thesis is on creating the

visual representations and testing their e�ectiveness, I have not focused on multiple

object tracking in my studies and have limited the number of simultaneous animations

to at most two items.

Uncertainty in direction

In situations where motion is not unambiguously visible, for example in low lumi-

nance, studies have shown that visual cues play an important role in in�uencing the

perception of motion. Studies by Ball and Sekuler [1981] show that motion cues, such

as oriented lines showing direction of motion, improved the performance of perceiv-

ing motion, when they directed the gaze of participant towards the same direction

as that of the displayed objects. However, when the cues provided incorrect infor-

mation (directed the gaze to a di�erent direction than that of the displayed motion),

then the performance of the subjects degraded to a greater degree than when no

cues were given at all. In addition, the studies stated that the degradation in per-
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formance increased with increase in the di�erence between the actual and the cued

direction. However, Ball and Sekuler [1981] also stated that the motion cues were

useful only if they were presented at least 500 milliseconds before the actual display

was shown. This showed that subjects need some time to process and comprehend

the direction before being able to observe it in the display. Finally, studies by Alais

and Blake [1999] tested the in�uence of attention in perceiving motion. Results of

this study showed that as the participants were able to detect motion 3 times more

accurately when paying attention than when they were distracted by other events in

the scene. In my studies, I have tried to avoid uncertainly in direction of motion by

using contrasting colors and by avoiding any lighting e�ects in the scene.

2.2.7 Information retrieval through motion

In order to evaluate the e�ciency of motion in providing people with informa-

tion, Bartram et al. [2003] analyzed the various advantages and disadvantages of

motion cues in dynamic scenarios. In this study, the authors conducted a series of

experiments to evaluate their hypotheses. In the �rst experiment, motion cues were

compared against cues such as color and shape (as separate experiments), to deter-

mine the most e�ective among them. In these experiments, the participants were

given a simple task to perform, which was replacing all the 0s by 1s, in a table con-

taining the numbers 0 to 9. While the participant was concentrating on the given

task, the rest of the screen outside of the table, which contained many objects, either

moved or changed color or shape at sometime. The participant was asked to inform

the system immediately when they saw any of the symbols outside the table area
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move. The error rates and response times were analyzed. The results of the experi-

ment suggest that color and shape cues are not as e�ective as motion cues in providing

dynamic information. Also the experimental results suggested that as the distance of

the dynamic object moves away from the center of the eye, perception through color

and shape reduces. I have extended these studies in my research by comparing the

color and shape information presented in my static graphs to the motion information

presented by the animated causal graphs.

2.2.8 Lessons learned from research on motion perception

In my causal designs I have endeavored to avoid the problems associated with

motion perception, based on the above literature. For this reason, my animations are

smooth, travel at constant speed, move with small displacements, do not appear or

disappear without reason, and are fully visible within the same view port in order

to ensure smooth optic �ow, enhance sensitivity to direction of motion, and reduce

correspondence and aperture problems. In addition, the suggestions on object mag-

ni�cation and optimum light requirements encourage accurate perception of motion

direction and have been considered while creating my animated designs [Borst, 2000;

Gegenfurtner et al., 2000; Kirschen et al., 2000; Watson et al., 1986; Wueger et al.,

1996].The retention qualities of motion are also useful when designing dynamic dis-

plays as it provides us with the user's perspective of the animations [Magnussen and

Greenlee, 1992; Blake et al., 1997]. Therefore, in order to enhance comprehension, in-

tuitiveness and memory retention, each causal animation is repeated 3 times. Within

a scenario, the causal relations are shown in sequence to reduce the number of simul-
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taneous movements and thereby reduce visual overload. Rules for the animations are

also strictly controlled, i.e. in�uence bullets move only from the factor to the target,

so as to prevent uncertainty in the direction of movement that could have an adverse

in�uence on user performance [Ball and Sekuler, 1981]. Table 2.1 below summarizes

the lessons learned and their in�uence on the animations I have designed to represent

my set of identi�ed causal semantics.

# Suggestions from back-

ground research on mo-

tion perception

In�uence of background

work on my research

Reference

chapter/

section

1. Relative motion and tra-

jectory of objects is dis-

cernible easily when distrac-

tions/randomness in a scene

are minimized

Nodes in the causal graphs are

stationary in order to provide

high contrast to the animated

bullets, and to minimize un-

necessary distractions

2.2.1



Chapter 2: Related work on perceptual theories 27

2. Perceptual grouping will occur

when several objects move si-

multaneously

This principle is employed

in causal multiplicity scenar-

ios, where objects move si-

multaneously from the factors

to show combined e�ects on

the target. In bidirectional

causality, the motion of the

bullet from the factor to the

target is seperated by a few

seconds before the return jour-

ney of the bullet, in order to

enable discrimination between

opposite directions of motion

2.2.1, 2.2.6

3. Motion discrimination is re-

duced when the object is fur-

ther away from the eye, and in

poorly lit conditions

The causal graphs in my re-

search are displayed clearly on

a light background, with con-

trasting colors, and by avoid-

ing any lighting e�ects in the

scene

2.2.1, 2.2.6
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4. Smooth optic �ow enhances

the perception of motion and

sensitivity to direction of mo-

tion

The causal animations are

smooth, non-choppy, simple,

and fully visible within the

same viewport to ensure

smooth optic �ow

2.2.3

5. Motion perception is reduced

when objects move randomly,

with abrupt speed variations,

degenerate or overlap other

objects in motion (The Corre-

spondence Problem)

Causal graphs do not have

overlapping nodes, animated

bullets are whole and do not

change shape, size, split, de-

generate, appear or disappear

without reason, or overlap

other bullets during motion

2.2.4

6. Motion perception is reduced

if the objects are not fully vis-

ible within the viewport (The

Aperture Problem)

In my research, the entire

causal graph has been de-

signed to �t within the given

viewport. However, as the size

of the graph increases, incor-

poration of additional interac-

tive techniques such as zoom-

ing, re-ordering, and node se-

lection will be required to help

reduce the aperture problem

2.2.4
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7. Prolonged viewing and re-

moval of an object in motion

can cause perception of oppo-

site directions of motion (af-

tere�ects of motion)

The nodes in the causal

graphs are placed as close as

possible so that bullets travel

short distances thereby reduc-

ing prolonged exposure to mo-

tion and motion aftere�ects

2.2.5

8. Retention qualities of motion

are reduced as the number of

animations in the scene in-

crease

Since some scenarios can show

multiple simultaneous anima-

tions, the animations are re-

peated 3 times to enable re-

tention. In addition, the

Memory Recall Experiments

in my research test the reten-

tion qualities of motion.

2.2.6

Table 2.1: Summary of lessons learned from background research on motion percep-

tion and their application to my research.

Although this section provides useful suggestions for building my static and ani-

mated representations, it is also important to understand how a user perceives causal

events, so that the representations I design are e�ective and describe these events

accurately. Therefore the next section focuses on research that has studied causal

perception in human beings and suggests general temporal rules for e�cient identi�-

cation of causality.
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2.3 Guidelines for perceiving causality

David Hume [Nuttin, 1966] (18th century philosopher) described the Problem of

Causation as the existence of relations between time and space, which generate causal

e�ects. In philosophy, causality is de�ned based on the actions of human beings.

Human beings are the cause of actions, deeds, and thoughts, the results of which

help shape their lives. God, on the other hand shapes the environment, by causing

birth, death, and natural disasters. In chemistry, two chemicals when mixed can

cause predicted (or unprecedented) reactions, for example hydrochloric acid reacts

with the dyes in blue litmus paper and causes it to turn red. Sometimes, causality is

unconsciously employed while determining the solution to a problem, such as heating

water to create water vapor. In law, causality is critical to pronouncing fair judgment.

For example, while determining why a person committed a crime, the causes, �it was

in self-defense� or �it was premeditated� can result is very di�erent legal outcomes.

Most questions in the practice of law investigate why certain events occurred and

what conclusions can be drawn from these investigations. Therefore, it is imperative

to fully comprehend the true cause of events in order to dispense justice. In physics,

gravity is held responsible for causing the apple to fall, or for causing tides in the

oceans. In computer science, causality is transparent but is used to understand and

debug process �ows, for example the value in variable A causes an action on variable

B. Consequently, causality is encountered in every �eld of information science.

Albert Michotte, a pioneer in the research on causality conducted a series of exper-

iments to analyze the sensitivity of human beings to causal occurrences. Through his

experiments he suggested a set of temporal guidelines that would enhance perception
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Figure 2.5: A simple causal event where an object (L) moves towards another object

(T), hits it, and causes it to move (reproduced from [Michotte and Thinés, 1963])

and aid the comprehension of causal information, as described in the next section.

Michotte's temporal rules for perceiving causality

Michotte's theory of ampliation suggests that we perceive or infer causality when

a moving object strikes another and sets the latter into motion [Michotte and Thinés,

1963]. The causal inference is immediate upon presentation to our visual system.

The experiments developed by Michotte initially concentrated on mechanical causal-

ity. In the basic experiment, referred to as launching, subjects see two immobile rect-

angles (L and T) of di�erent colors on a uniform white background. The experiment

begins when the launcher (L) moves at a constant speed toward the target (T). When

L reaches T, it stands still and the latter starts moving (Figure 2.5). Subjects, even

though unaware of the purpose of the experiment, responded with descriptions, such

as �L pushes T�, �L launches T�, or �L projects T�, which were endowed with causal

meaning.

Michotte carefully controlled various factors to determine the conditions under

which causal inferences would be produced. Temporal conditions were one of the

most contributing elements for appropriately perceiving launching. One such guide-

line suggests that the time between impact and movement of the target should be

constrained to a maximum of 100 milliseconds. For delays beyond 150 milliseconds,
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the objects L and T appear to move independently [Michotte and Thinés, 1963].

Another guideline suggests that the size and shape of objects can vary signi�-

cantly without depreciating causal inferences, as long as the objects are perceived as

independent upon the point of impact. Thinés [1962] used triangular arrays of light

spots and found that subject responses were not a�ected by a change in shape. Also

when L and T are perceived to be created from di�erent types of material (i.e. L is a

light spot and T is a solid object) launching responses were still obtained [Michotte

and Thinés, 1963].

Absolute speed restrictions on the launcher and target are also necessary for ob-

serving proper launching e�ects [Michotte and Thinés, 1963]. Velocities beyond 110

cm/sec are perceived as the launcher passing through the target (tunnel e�ect). On

the lower limit, velocities of either launcher or target below 3 cm/sec weakens the

launching e�ect.

The relative ratio of velocities between L and T is considered important in main-

taining causal inferences. The character of the causal structure is considered best

when the movement of the target is slower than that of the launcher [Michotte and

Thinés, 1963]. When the reverse is applied, very di�erent responses are provided, in

particular that of the target being autonomous in its movement.

Spatial information such as the length of the paths traveled by L and T should

also be carefully manipulated. In essence the causal responses start to degrade once

the path of the target extends beyond its radius of action, i.e. naively related to

the velocity of both objects [Boyle, 1961; Yela, 1954]. After a certain length of path,

which can be empirically determined, the target appears to be autonomous. Also,
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Figure 2.6: (a) A causal event showing a black `caterpillar' hitting and causing a grey

caterpillar to move and (b) a non-causal event showing the grey caterpillar moving

before the black caterpillar hits it (redrawn based on [Schlottmann and Surian, 1999]).

the direction of movement of the launcher-target couple is critical in inferring the

relations. Best results are achieved when the target's path follows the line of action

created by the launcher.

In addition to determining the basic guidelines that contribute to causal percep-

tibility, researchers also studied the inherent behavioral characteristics of causality.

Some such studies have tested the presence of causal perception in children as young

as 9 months while others have tested the in�uence that a contextual causal event can

have on non-causal events, as described below in the next two sub-sections.

Perception of causality in infants

Several studies show that causality is an innate quality of human beings and can

be seen even in young children and infants [Schlottmann et al., 2002; Schlottmann and

Surian, 1999]. One study tested the perception of causality in children as young as 9

months [Schlottmann and Surian, 1999]. In the �rst phase this study, one group of

infants was shown a causal event consisting of a red square (the factor) hitting a green

square (the target) and causing it to move (Figure 2.6.a). A second group of infants

was shown a non-causal version of the same, wherein a delay was incorporated between

the factor and target movement (Figure 2.6.b). In order to assist the infants in relating
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Figure 2.7: Visual depictions of (a) physical causality, (b) non-causal event, and (c)

psychological causality (redrawn based on [Schlottmann et al., 2002].

the images to real-life objects, the squares expanded and contracted, resembling a

caterpillar in motion. In the second phase, the order of the events was reversed; the

green square became the factor and the red square the target. The study compared

attention spans of the infants in both phases. Analysis of �looking time� data showed

that 78% of the infants looked longer at a reversed causal event than the 53% who

looked longer at a reversed non-causal event. The study concluded that infants were

able to perceive causality, which in turn enabled them to adapt to the reversed causal

event.

Another study [Schlottmann et al., 2002] tested the ability of children between

the ages of 3 to 9 years in perceiving causality. Two types of causal events were

shown; physical and psychological. The physical causal event was visibly described

by a ball (A) moving towards another ball (B), and B moving away after A touched it,

generating the impression that �A caused B to move� (Figure 2.7.a). The psychological

causal event was abstractly implied when a man (M1) ran towards another man (M2),

and M2 starting running before M1 touched him, generating the impression that �M2

was running away from M1� or �M1 was chasing M2� (Figure 2.7.c). The non-causal

event consisted of an image of a man walking alone to depict an independent event

without any preceding causes or proceeding events (Figure 2.7.b). Schlottmann et al.

[2002] stated that animated images and pictures were used to avoid the necessity
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of verbal reports, as prior experience showed that children were inconsistent and

sometimes unable to provide descriptive reports of their thoughts due to undeveloped

verbal skills [Schlottmann et al., 2002]. Participants were shown the three events and

were asked to group them into causal and non-causal categories. The results of the

study showed that all participants were able to comprehend psychological causality as

they could relate it to real life events. Most of the participants also perceived physical

causality, and predicted that the factor was going to cause movement in the target.

Overall the results of this experiment showed that children were able to recognize

causal events and were able to comprehend causal relationships between the factors

and the targets.

Although these studies are not directly related to my research, several lessons can

be learned from them. The studies show that causality can be recognized at a very

young age and is used consistently in making judgements. The studies also show

that visual cues are e�ective in showing the causal information. Finally, these studies

show that di�erent types of causality can be perceived using e�ective visualizations,

such as a reversal event Schlottmann and Surian [1999], which inspires bidirectional

causality in my taxonomy.

Perceiving causality through context

Several studies have extended Michotte's work to analyze the e�ect of a context

environment in perceiving causality. Scholl and Nakayama [2001] tested the ability of

a causal (context) event to in�uence participants' perception of a non-causal (test)

event. The context event demonstrated an unambiguous causal event with A striking
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Figure 2.8: Evaluating the in�uence of contextual causal events on non-causal events.

(a) Launch event (causal), (b) pass event (non-causal), (c) pass event in the context

of a launch event, and (d) pass event in the context of another non-causal event

(redrawn from [Scholl and Nakayama, 2001].

B and causing B to move. The test event was similar but comprised of A overlapping

B before B started moving and was mostly perceived as a passing event (A passes over

B). Results of this study showed that participants were 100% accurate in recognizing

the causal event and 10.7% accurate in perceiving the non-causal event as causal,

when both the events were shown separately. However, when the test and context

events were shown together, perception of the non-causal event as causal increased to

92.1%, which showed that the insertion of a causal event into the environment had a

signi�cant in�uence on the perception of causality (Figure 2.8).

Additional experiments by Scholl and Nakayama in this study manipulated the

characteristics of the context event and tested the perception of causality in the test

event. Some of the manipulated characteristics included changing the duration of

display of the context event, including temporal asynchrony between the two events,

and changing the direction of movement of the reference event. Results of the exper-

iments showed that the context event should be shown at least 50 milliseconds before

the test event for it to have any in�uence on the perception of causality. The results

also stated that temporal asynchrony of more than 50 milliseconds between the points

of impact (A hits/passes over B) of both events also had a signi�cant in�uence on



Chapter 2: Related work on perceptual theories 37

Figure 2.9: Evaluating the in�uence of connected lines in the perception of causality.

(a) Ambiguous causal event (above: test event, below: context event), (b) test and

context events connected by a solid line, (c) gap between connecting line and events,

and (d) removal of line as objects make contact (redrawn from [Choi and Scholl,

2004]).

reducing the perception of causality in the test event. Finally, the studies showed

that directional phase has a large impact on the in�uence of the context event as the

performance reduced by 50% when the direction of movement of the context event

was exactly opposite to the direction of movement of the test event.

Another study by Choi and Scholl [2004] discussed the e�ectiveness of perceptual

grouping in in�uencing causality. In this study, the authors analyzed the properties

of connectedness, proximity, attention, and competing causal events in perceiving

causality in non-causal events. The experimental design was similar to the one used

by Scholl and Nakayama [2001] with the di�erence that the objects in the context

event moved in the opposite direction to the objects in the test event, to reduce the

perception of apparent causality. In the �rst experiment (e�ect of connectedness),

the objects B of the test and context event were connected in three ways: (i) a line

connecting the two `B' objects, (ii) a line connecting, but not touching the two `B'

objects, and (iii) a line connecting the two `B' objects, but disappears when each

object A touches its respective object B. Participants showed the best performance

(perceived causality) of 57.1% when a line connected the two objects (condition (i))
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as shown in Figure 2.9.b. Preventing the connecting line from touching the objects

(condition (ii)), as in Figure 2.9.c, slightly lowered the performance to 54.6% but this

was considered insigni�cant. However, the study showed that performance was sig-

ni�cantly reduced to 29.6% when the connecting line disappeared during the causal

contact, as in condition (iii) (Figure 2.9.d). This experiment showed that perceptual

grouping plays a signi�cant role in improving the perception of causality; the stronger

the grouping (such as a connecting line) the stronger the perception of causality. Choi

and Scholl [2004] further tested their perceptual grouping theory by using proximity

to create perceptual groups in the display. In the second experiment, a non-causal

event was displayed in context with a group of causal events. Results of this study

showed that when the context group moved along with the test event, the perfor-

mance improved to 51.3% than when the context group remained stationary (9.2%).

However, a change in the directional phase of the context caused a signi�cant reduc-

tion in performance to 20.8%. This experiment showed that perceptual grouping can

have an in�uence on the perception of causality in the test event, but similar to the

previous study, a change in discrepancy in the direction of motion between the con-

text and test events can reduce that perception. A follow up study also showed that

varying the number of causal events in the context group did not have any signi�cant

in�uence, but varying the proximity of the context to the test event did a�ect the

performance. The authors reasoned that the improvement in performance when the

context is closer is attributed to the ease of comparisons, and therefore to the stronger

in�uence of the causal event on the visual system. The results of this study are es-

pecially useful and have some implications on my research as my causal graphs use
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connected lines to show perceptual grouping between causal events and to indicate

direction of causal information �ow.

The above studies suggest that the identi�cation of causal events are inherent in

human understanding and certain temporal rules enhance the perception of causal

relations. One of the main advantages of a causal relation is that is allows us to make

experienced judgments and predictions on future events. The results of these studies

are particularly useful as they show that visual cues, such as connecting lines, help

establish context within the relation and improve the perception of causal events.

Therefore, my causal graphs use connecting lines to establish the causal relationship

between the factor and target, and the animated bullets move along these lines to

show the in�uence of the factor on the target.

However, before representing a causal relation, it is also important to understand

its true nature. This includes understanding the agents involved in the event and

their physical and psychological connections with each other, without which errors in

judgment are inevitable. Therefore the �rst step and e�cient mode of perceiving and

understanding a causal relation is by using a causal model, as described in the next

section.

2.4 Perceiving causality through causal models

Causal models de�ne the agents in a causal relationship as they are considered to

be constant in nature as long as the causal relationship exists. In a real-life scenario,

the causes and the outcomes form the agents of a causal relationship.

Causes are agents that instigate a causal event, called a factual event (in Fig-
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Figure 2.10: (a) Factual event - A causes an outcome in B and (b) Counterfactual

event - Absence of in�uence in A results in an absence of outcome in B.

ure 2.10.a, A is a cause of the event). In addition to satisfying a factual event, Slo-

man [2005] suggests that causes should also satisfy a counterfactual de�nition, which

states that a cause is an agent such that without it, the outcome would not have

occurred (Figure 2.10.b). The importance of factual and counterfactual adequacy in

a causal event can be demonstrated by a simple variant of a decision problem that

we encounter in daily life. In this problem, Bob, a manager in Company A, is not

happy with his employee Susan and decides to �re her. On the other hand Edward,

who is the manager of company B, likes Susan's work and wants to hire her, with

a higher pay and more employee bene�ts. Bob sets up a meeting with Susan in the

evening (to break the sad news), but before the day is done, Susan receives a call

from Edward o�ering her a job in his company. She accepts, and submits her resig-

nation immediately. The question now is, �Who truly caused Susan to leave her job

at Company A?� Did Bob �re her? Or did Edward o�er her the better job? The

obvious answer might be �Edward! That's what the problem statement declares!�

However, on closer analysis we notice that there are actually two potential causes for

this event, `Bob �ring Susan' and `Edward hiring Susan'. The counterfactual argu-
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ment would suggest that if Bob had not �red Susan, she would have still moved to

a better job that Edward o�ered. So we can reason that Bob is not a true cause for

this event, as he does not satisfy the counterfactual condition. However, Edward also

does not satisfy this condition, because if he had not o�ered Susan a job, she would

still have left Company A because Bob would have �red her. So, who then is the

true cause? Either one or the other's in�uence was su�cient for Susan to leave her

position with Company A, but unless we de�ne the relationships between the three

agents in this event, it is di�cult to determine who might have been the true cause

of the outcome. Mackie [1980] points out that it is not enough to simply look at the

immediate cause for the event as there are relationships that exist, which might not

be currently used but could e�ect the overall outcome. He therefore de�ned a cause

as one that belongs to a larger set of su�cient conditions for the event to take place,

called INUS (Insu�cient itself for e�ect, but a Necessary part of an Unnecessary but

Su�cient set of conditions) Sloman [2005].

In Susan's case, Edward's phone call is an existing condition (I), which is necessary

(N) and is one of the set of conditions (U, S) for Susan to be �red. Therefore, we can

say that Edward is a cause in this causal event. However, we cannot say the same

for Bob, because he did not actually talk to Susan, so his conversation with Susan in

not existing (∼I). Therefore, by process of elimination we can say that Edward was

the true cause for Susan to leave her position in Company A.

Sloman [2005] suggests that causal models are useful because, in addition to

providing a generic method of displaying these invariants, they allow us to assign

values and view the outcome. Figure 2.11 describes Susan's problem. The advantage
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Figure 2.11: Causal model showing the decision problem of Susan leaving Company

A; (i) Bob �res Susan, (ii) Edward o�ers job and prevents Bob from �ring Susan, (iii)

Edward o�ers Susan a job, (iv) Susan is �red and leaves Company A, and (v) Susan

accepts new job and leaves Company A (words in italics indicate causal in�uence).

Figure 2.12: The three main components of a causal model (redrawn from [Sloman,

2005])

of a causal model can be seen here because it shows that in addition to Edward's

phone call's relationship to Susan accepting the new job, his phone call is also related

to Susan being �red. This is surprising, but logical because Edward calling Susan

prevented her from being �red, hence the relation (Figure 2.11(ii)).

Sloman de�ned three critical parts to a causal model; the world, the probability

distribution, and the graph. The world represents all the components of the causal

system. For example, in Susan's case, the world consists of components such as Bob,

Edward, Susan, phone calls, conversation, Susan leaving Company A, and Susan
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accepting a new job. The second part is the probability distribution, which pro-

vides information on the relationship between the invariants. For example, �Would

Edward's o�ering a job have had any in�uence on Susan accepting it?� or �What

remuneration would Edward have to o�er for Susan to except his job?� Probability

distributions are important in a causal model, as we cannot specify the exact value of

a certain agent, but if we de�ne the relation between the agents we can determine the

outcome when we provide the input values. The third part of this model is the graph,

which visually describes the components of the causal system and their interactions.

Sloman also de�ned several basic types of causal relations that are encountered in

the environment:

• Basic relation: consists of one factor and one target. The factor in�uences

and has an e�ect on the target. For example, cold virus (factor) causes cold in

human beings (target) (Figure 2.13).

Figure 2.13: A basic causal relation showing cold virus causing a cold infection in

human beings.

• Causal chain: represents indirect relations between the factor and target, with

the presence of mediators. For example, cold virus (factor) is carried by one

human (mediator) and infects another (target) (Figure 2.14).

• Causal fork: represents a relation of one factor to more than one target. For
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Figure 2.14: A causal chain showing the indirect in�uence of a factor on the �nal

target.

example, cold virus (factor) causes fever (target 1) and headache (target 2)

(Figure 2.15).

Figure 2.15: A causal fork showing the multiple in�uences of the cold virus.

• Inverted fork: represents a combination of more than one in�uence in a par-

ticular outcome. For example, cold virus (factor 1) and low immunity (factor

2) together cause cold in human beings (target) (Figure 2.16).

Causal models also help determine the outcome of a causal event. Every com-

ponent has a state (or a set of states/values) and setting a component to a prede-

termined state is called intervention. Sloman suggests that in addition to displaying

the relationships between components, causal models also help us understand how

relationships change when a factor's state is intervened. Sloman explains that when

a factor is given a pre-determined value, then all other relationships to its targets are
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Figure 2.16: An inverted fork showing combined in�uences of multiple factors on the

�nal target.

erased. For example, the problem statement declares that Edward does call Susan,

so we set its value to `YES'. In doing so, we see that Bob's relationship to the causal

model is removed and can con�dently say that Bob's setting up a meeting with Susan

(or not) would have had no in�uence on Susan leaving Company A (Figure 2.17).

Therefore Edward calling Susan is the only event that satis�es both the factual and

the counterfactual conditions and must have been the true cause for Susan leaving

the company.

In addition to determining the correct answer, causal models also help us eliminate

the inaccurate options, such as Bob's involvement in the event. We can determine if

Bob could have been the cause of Susan leaving Company A by setting Bob's values

to `YES'. Although now Edward cannot prevent Bob from �ring Susan, he is still con-

nected to the model and can exercise his in�uence by o�ering her a job (Figure 2.18).

Therefore, we can infer that, although Bob satis�es the factual condition, he does not

satisfy the counterfactual condition and cannot be considered a true cause.

The above example illustrates that causal models help us determine the main
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Figure 2.17: Relationship between `Bob's meeting' and the causal model is removed

when Edward intervenes by calling Susan.

components of a causal event by taking the environment and the context into con-

sideration. The next step now is to visualize them such that they can communicate

dynamic information and can be utilized to make causal predictions. Two common

methods of representing such complex information are by using detailed images or

by animating the information. However, the debate on which mode is better is long

standing and has been described in the next section.

2.4.1 Lessons learned from studies on causal models

This section described studies on causal models, which is highly relevant to my

current research. One of the most useful lessons that I learned is the importance of

visualizing causal events as, along with describing obvious relationships between the

factors, it also brings to light the hidden relations that in�uence the outcome of the
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Figure 2.18: Although Bob intervenes and �res Susan, Edward's relationship to the

causal model still exists.

event. The models also explain the theory behind causal judgements and explain the

concept of factual (outcome is seen due to the existence of a factor's in�uence) and

counterfactual (outcome is not seen due to the non-existence of the factor's in�uence)

events, which are critical to distinguishing causal from non-causal events. The causal

models also form the basis for several of the causal semantics used in my study,

such as causal multiplicity and mediated causality. Finally, The studies describe the

concept of intervention (speci�c input values that determine the value of the �nal

outcome), which is critical to making judgements in real-life scenarios, and forms a

major component of the graphs used in my experimental section.
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2.5 Chapter Summary

This chapter focused on the perceptual issues in describing causal relations. The

�rst section of this chapter described research on the perception of static and ani-

mated information. Studies show that static perception occurs in three steps starting

with recognition of the basic features such as color, edges, texture, and pre-attentive

ability [Ware, 2003], in the �rst step. The second step groups objects based on prox-

imity, similarity, common state, and symmetry. Finally, the third step distinguishes

the 3-dimensional properties of an object. Objects are also considered to be cre-

ated from combinations of 36 geons, which aid in object conception and recognition

through critical features such as collinearity, curvature, symmetry, parallelism, and

co-termination [Biederman, 1987].

Several studies have also analyzed the features of motion that e�ect perception

such as direction, coherence, speed, trajectory, transparency, sensitivity, retention,

and aftere�ects [Sekuler et al., 1988].

The second section of this chapter addresses causal representations and guidelines

that enable the perception of causality. Studies have analyzed features such as speed,

direction of movement, distance traveled, and relative ratio of velocities that distin-

guish a causal relation from a non-causal one [Michotte and Thinés, 1963]. Studies

have shown that human beings use causal reasoning unconsciously when making de-

cisions. This quality is inherent in children as young as 9 months [Schlottmann and

Surian, 1999] and can in�uence the perception of non-causal events in the contextual

environment [Scholl and Nakayama, 2001].

Finally, in order to harness the advantages of the extensive research that has been
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conducted in the area of visual perception, the last section of this chapter goes back

to the basics and uses the concept of causal models to describe causal semantics that

are inherent in the environment. In my research, I have identi�ed a set of causal

semantics and described the relationships using causal graphs. Some of my causal

semantics include semantics described by Sloman [2005], such as causal chain and

causal fork. However, Sloman has only de�ned these semantics to describe their

causal structure and has not focused on their visual representation. My research goes

into detail about the type and nature of the causal semantics, design details, and

modes of construction.

This chapter mainly focussed on the basic concepts required to improve human

perception of causal events. In addition, there are several studies that have de-

signed visual representations for dynamic events and have analyzed them through

user-experiments. However, before describing these studies it is also important to

discuss a long-standing debate between research that supports the usage of anima-

tions for representing dynamic events and research that prefers the traditional format

of static pictures and images. This debate is important to my research because my hy-

pothesis supports the usage of animations to describe causal events and will compare

these animations to equivalent static representations. Therefore, the next chapter will

describe studies that support and refute the usage of animations followed by studies

that have devised innovative methods of using animations to represent causal events.



Chapter 3

Related work on visualization

techniques

3.1 Which is better: static or animation?

Several studies in the areas of information visualization and cognitive science have

focused on determining which of the two basic visualization techniques, static dia-

grams or animations, are more e�cient at displaying dynamic information. However,

the results of these studies have not aided researchers in reaching a common con-

sensus, as some state that static diagrams are less expensive and more descriptive

while the others state that animations are more intuitive and therefore easier to com-

prehend. Nonetheless, surveying this debate is very interesting and provides useful

guidelines for producing e�ective visualizations of complex information.

50
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Figure 3.1: Sorting techniques were shown in the form of dynamic visualizations

(a) insertion sort, (b) exchange sort, and (c) selection sort techniques (reproduced

from [Baecker, 1998])

3.1.1 Studies reporting the bene�ts of animation

Intuitively, animations seem to be the most natural means of conveying dynamic

information. Animations have been used e�ectively in several areas of information

science such as in learning aids [Baecker and Marcus, 1998], to describe causal con-

cepts [Ware et al., 1999; Elmqvist and Tsigas, 2003; Kadaba et al., 2007], to show

real-time data [Ware et al., 2001], to display network �ows [Jones and Yean, 1994],

and to visualize audio data [Cosker et al., 2007]. While not many applications use

visualizations for depicting temporal data, the ones that do, show positive results.

In the �eld of education, animations have frequently been used to describe general

and complex computing concepts to students. Several studies have been employed

to describe dynamic concepts such as algorithm design [Bryne et al., 1999], data

structures [Becker and Beacham, 2001], and programming techniques [Stasko, 1997].

Analysis of such studies have shown that performance and response times improved

signi�cantly as the animations augmented students' interest and appreciation towards

these di�cult concepts. Several such studies have been described below.

Sorting out Sorting, by Baecker [1998] has been a very popular example of the e�-

ciency of animations in describing complex dynamic concepts to students. The study
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focused on describing 9 basic sorting algorithms through a 30 minute video, by em-

ploying simple animated glyphs such as bars, nodes, connecting lines, and audio cues.

The sorting algorithms in this study were divided into three categories; insertion sort,

exchange sort, and selection sort. The insertion sort category consisted of the Linear

Insertion Sort, Binary Insertion Sort, and Shell Sort techniques, which were animated

using upright bars to represent the set of numbers being sorted (Figure 3.1.a). The

height of the bar was proportional to the value of the number being represented and

the student viewed a smooth animation of the bars being sorted according to the

sorting technique being described. Baecker used animated glyphs as it was visually

pleasing and easy for the students to match the heights of the bars to the numbers

on the numerical scale. The exchange sort category consisted of Bubblesort, Shaker-

sort, and Quicksort techniques. In this category, the animated glyphs were similar to

the ones used to represent the insertion sort category, with the exception that they

utilized horizontal bars instead of vertical ones in the animation (Figure 3.1.b). The

selection sort category consisted of Straight Selection Sort, Tree Selection Sort, and

Heap Sort techniques. The sorting techniques in this category were described using

smooth animation of the nodes in a tree data structure (Figure 3.1.c). In all the ani-

mations, the bars and nodes smoothly changed position as the animation progressed,

to represent the sorting of the numbers within the given set. Color schemes were also

used to distinguish between di�erent states of the simulation, objects were dimmed

when they were not in context, and the speed of the animation was modi�ed according

to the complexity of the concept that was being described. An evaluation was con-

ducted into the e�ciency of the animation to improve comprehension, performance,
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and interest. Two groups of participants were tested; the �rst group received a clear

textual description of the algorithms while the second group viewed the 30 minute

sound �lm. Results of this study showed that both groups were able to understand

the algorithms equally well, but the improvement in performance was more signi�cant

in the group that learnt the algorithms through their animated narratives.

A study by Stasko [1997], evaluated the e�ciency of animations in teaching stu-

dents to design computer algorithms. Stasko identi�ed two main requirements for

animations to be an e�ective learning aid. The �rst requirement was that the anima-

tions should be easy to create so that the students can build them without extensive

training and the second requirement was that along with the �nal animation, the

development process should also aid in learning the algorithm. Therefore, Stasko

created the Samba system [Stasko, 1997], which is an interactive animation system

with the main belief that students will be able to understand complex algorithms

more accurately if they created them from the basics. Samba also allowed students

to visualize their algorithms using animations, thereby giving them the opportunity

to understand and correct their mistakes. Samba used a programming language con-

sisting of ASCII commands that were text-based and simple to learn and implement.

The primary mode of visualization was through animations of simple lines and poly-

gons. The students were required to choose the representation that matched their

algorithm from a list of bars, lines, circles, and tree structures. An additional feature

of Samba was that the students were supplied with a series of �print� statements that

gave them step-by-step descriptions of the execution during the animations. Another

useful feature was that the students were allowed to interact with the animations and



Chapter 3: Related work on visualization techniques 54

Figure 3.2: Screenshot of a plane moving through a conical section to create hyper-

bolic curves (redrawn from [Sonnier and Hutton, 2004; Hutton, 2004])

control its speed so as to maximize the e�cacy of the learning process. Stasko [1997]

conducted a study to evaluate the Samba system. As part of the study, students were

asked to use the Samba system to design animations for commonly taught algorithms

such as quicksort and minimum spanning tree. In a post-course survey, over 80% of

the students claimed that the animations were very valuable, fun, and helped them

learn the concepts easily.

A similar study focused on teaching concepts in physics, mathematics, and com-

puter science to undergraduate students. Sonnier and Hutton [2004] created anima-

tions with two goals in mind; to evaluate the e�ciency of animations to complement

textual or verbal descriptions, and to design a simple technique for developing an-

imations for classroom use by students without a prior knowledge of programming

concepts. The study consisted of animations to represent concepts in physics such as

static and dynamic equilibrium, in mathematics such as algebraic equations, and in

computer science such as sorting algorithms and digital logic. In the mathematical

exercises, the animations consisted of numbers that smoothly ��oated� to their re-

spective positions in the algebraic equations. Simple animations such as moving boxes

were used to show concepts of velocity and acceleration, while complex animations,

with color, texture, and shading, were employed to show concepts such as movement

of a plane through a conical section (Figure 3.2). Similar animations were also used
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to illustrate physics concepts such as projectile motion. In computer science, anima-

tions were used to elucidate concepts such as sorting algorithms and digital logic. A

study was conducted where one group of students was given clear textual description

of the problem and the other group was shown a visual representation of the same.

Results of the study showed that high aptitude participants in both groups performed

equally well. However, participants with low aptitude performed with signi�cantly

higher accuracies when the concepts were described using animations. Hence, the

study concluded that, dynamic visualization helps in providing introductory informa-

tion about complex concepts, especially as an online resource in distance education

and to students with low spatial ability.

3.1.2 Studies reporting the negative e�ects of animation

Animations have become very popular for depicting dynamic information in the

�eld of information science. While studies on animations have shown a signi�cant

improvement in comprehension and performance, several studies have also shown

that static representations can be as useful, and in many cases less expensive, than

animations in displaying the same information. Studies claiming the e�ciency of

static images have stated that animations can be broken down into a series of static

images. If the static images are placed such that they show the critical events in

the animation, then these images are as easy to comprehend as the animations. For

example, if changes in an animation take place at large time intervals, static images

might be more e�cient in eliminating the uneventful parts of the animation and

displaying only the critical events.
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Figure 3.3: Usage of static lines to provide information, (a) Lines and objects to

show geographical information, (b) bars to show quantitative values, and (c) arrows

to show direction of motion (redrawn from [Tversky et al., 2000]).

Tversky et al. [2000] designed a set of schematic �gures that intuitively repre-

sent complex information. The schema consisted of drawings such as lines, circles,

and boxes which when taken in context could e�ciently represent complex informa-

tion without the need of a textual description. Tversky et al. [2000] stated that the

main advantage of these �gures lies in their simplicity, which make them e�ortless to

construct and combine into more complex shapes. The ambiguity of these �gures is

also an advantage as they could be reused multiple times and interpreted di�erently

depending upon the context. For example, a single line could depict a path on a map

or a trend in a graph depending upon the context of representation. Similarly, four

lines joined at the ends could represent an enclosed area or, if they overlap, could

represent an intersection (Figure 3.3 (a) & (b)). Arrows are also important modes of

representation as they enhance structural representations of an object and its func-

tional properties. Results of a study showed that students preferred using arrows to

reproduce the functional properties of a machine, given its textual description [Tver-

sky et al., 2000]. This study provides insight into the usability of static glyphs and

in my study I have used lines to show connectivity and relation between nodes in a

causal graph.

Through their studies, Tversky et al. [2002] de�ned the Congruence Principle
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which states that the structure of the graphic being used should directly correspond to

the structure of the information being represented. Animations can be said to conform

to this principle as they are dynamic and therefore are the best choice to represent

dynamic information. However, several studies [Reiber and Hanna�n, 1988; Pane

et al., 1996] refute this assumption as animations have not helped or in some cases even

deterred information acquisition. Tversky et al. [2002] state that the reason animations

are sometimes not as e�ective as their static counterparts is because they do not satisfy

a second principle, called the Apprehension Principle. The Apprehension Principle

states that, for a graphic to be e�ective, it should be easy to perceive and assimilate.

Therefore, a highly complex animation, which requires a high degree of aptitude to be

comprehended, might be as ine�ective as a graphic that does not show the required

information at all.

Morrison and Tversky [2001] de�ned the Conceptual Congruence Hypothesis

which states that some types of media are speci�cally suited for displaying certain

types of information. According to this hypothesis static information should be best

represented by still images and motion information should be best represented by an-

imations. Morrison and Tversky [2001] conducted a study to compare the static and

dynamic versions of this theory. The study consisted of experiments which compared

text, text+static, and text+animated representations of seven rules of movement.

Results of the experiments showed that although there was signi�cant improvement

of visualization over textual descriptions, there was no signi�cant di�erence between

static and animated representations over performance, for participants of low and

high spatial ability. The researchers concluded that the lack of signi�cance could be
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attributed to the causal reasoning that was provided to the participants when the

rules were explained. This reasoning holds for participants of low spatial ability in

the second experiment who performed with higher accuracies in the text+static con-

dition when compared the text-only condition. Participants with high spatial ability

did not show any change in performance from the �rst experiment as they had the

ability to visualize the rules without the help of static or animated displays.

Although animations are the more popular choice in pedagogy for depicting tem-

poral data, a study by Lowe [2003] tried to understand why animations are not more

accurate than static images in depicting complex information to novices. The study

focused on teaching dynamic weather mapping to students and testing their ability

to retain and utilize the information to make future predictions. The study consisted

of two conditions; the control condition consisting of paper and verbal instructions

and the animation condition consisting of interactive instructional animations. The

results suggested that although in�uence of animations on a participant's predictions

did provide more meteorologically accurate results, they did not show any signi�cant

improvement in performance between the control and animated instructions. This

showed that the dynamics of complex animations may not be e�ciently extracted

and retained for integration into the participant's knowledge structure. Researchers

theorized that this might be because the participants were only able to assimilate the

major changes in the animation and neglected the minor but equally critical move-

ments. Overall consensus of the study determined that animations should be created

with the user in mind. Complex animations may be able to display all the informa-

tion that being depicted, however, when such animations are used in the educational
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�eld, they should be tailored down so as to be instructional and bene�cent.

Brogacz and Trafton [2005] conducted a study to determine, which of three rep-

resentation types, a static picture, a sequence of static images or an animation, was

preferred by meteorologists when making weather predictions. Participants were al-

lowed to choose the display of choice which making their predictions. Each static

picture described information regarding weather conditions using text, lines, and col-

ors. The sequence of images consisted of these static pictures shown sequentially over

a period of time. Finally, participants were also allowed to view an animation of

a weather map showing weather changes over a given period of time. Participants'

were asked to refer to their preferred weather models in order to generate �ight in-

formation, such as departures and arrivals, using the information provided to them.

Results of the study showed that the participants preferred looking at a sequence

of images rather than the corresponding animation. However, results also showed

that the forecasters used their expertise to convert these images into animations in

their mind for the purpose of extracting dynamic information. This study concluded

that animations are only useful if they provided more information than what was

contained in the static images. However, this study was tested using experts and

therefore cannot be generalized to users with low spatial ability.

The studies mentioned in this section infer that the e�ciency of static and ani-

mated representations depends upon the scenario and the type of information being

represented. As my causal semantics are dynamic, I hypothesize that animations

would be more suited to the information that I will represent. However, due to the

long-standing argument of static vs. animation, I have also designed static represen-
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tations for the semantics and will be comparing them to the animated representations

to determine which of them are more intuitive and improve participant accuracy rates

and response times under user-testing.

Innovative research suggests that causality is an inherent behavior and can signif-

icantly in�uence human judgment, irrespective of age. However, as the complexities

of causality are being understood, another area of main concern is in representing this

information in order to augment comprehension. A number of visual representations

have been designed to e�ectively visualize and display causal occurrences. While

some studies utilize static images, lines, and glyphs to depict the information, others

use colors and animation to highlight the causal events. The next section describes

some of these traditional and modern forms of causal illustrations.

3.2 Visualizing causal relations

Causal graphs denote the most common and traditional representations of causal

relationships. These are acyclic graphs comprised of vertices, which denote the fac-

tors and targets, and directed lines that denote the causal relationships between

them. One major drawback with causal graphs is that it only shows basic informa-

tion about the causal event and does not provide additional information about the

agents involved in the relation. Therefore, it does not satisfactorily answer complex

questions that can be asked about the nature or reason for the causal occurrence.

Hasse diagrams also constitute one of the earlier systems for showing causal con-

cepts. They have been used for representing distributed systems [Rehn, 2004], parallel

processes [Viennot, 1997], or any other type of information structure that consists of
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Figure 3.4: A simple Hasse diagrams showing processes p1 � p4 interacting with each

other over a time frame.

causal events. In Hasse diagrams, processes are represented by parallel lines, while

interactions between the processes are displayed by connecting lines and the time-

line is represented from left-to-right (Figure 3.4). Hasse diagrams can be di�cult to

comprehend as the layout of the graph creates a large number of intersecting lines.

Furthermore, to view the causal chain the user has to backtrack along the various

edges. As with causal graphs, Hasse diagrams are not equipped to show causal se-

mantics. The Hasse display also works on the principle that one factor is e�ecting

one target and does not recognize multiple factors, targets, and mediators. Addition-

ally, expanding a Hasse diagram would result in more clutter and make it di�cult to

visualize the causal relationships.

Another popular method of cause-e�ect analysis in project management scenarios

are the Ishikawa or �sh-bone diagrams [Ishikawa, 1991], which employ a static method

of representing causal semantics. In Ishikawa diagrams the target is written at the

right end of the �main bone� of the diagram, main causes are written as side bones
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Figure 3.5: A sample Ishikawa �sh-bone diagram showing factors and their relations

to the �nal target.

o� the main bone, indirect causes are written o� of their respective side bones, and

so on until the entire scenario is mapped out (Figure 3.5). This diagram allows for

categorization of the factors and for describing indirect in�uences on the �nal target.

However, it does not incorporate multiple targets or shared factors (factors directly or

indirectly connected to more than one bone in the diagram) and is spatially limited

in the number of events it can represent.

Flowcharts have also been popular for representing causal �ows in information

science. They have been used to show interactions between processes or to show

a project management schedule [Bauer et al., 2006]. For example, Figure 3.6(a)

shows a project development schedule, starting from client meetings to discuss project

requirements and ending at packaging and delivering the �nished product. Flowcharts

utilize nodes of di�erent shapes to show information such as start and end points,

decision points, and input/output information. Directed lines show the sequence of
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Figure 3.6: A product development process represented by (a) a �owchart and (b) a

Nassi-Schneidermann diagram.

information �ow. Although �owcharts allow multiple factors and targets and can

be used to provide quantitative information, they are static and do not distinguish

between various types of causal semantics, such as contradictive or mediated, and

therefore are not a preferred choice when representing dynamic causal information.

Nassi-Schneidermann diagrams have also been used to graphically represent pro-

cess �ows in a system [Nassi and Shneiderman, 1973]. In this technique, the sys-
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Figure 3.7: Newton's Cradle demonstration in�uence of a factor (the �rst ball) trans-

ferred through mediators (the intermidiate balls) and causing a change in the target

(the last ball) (redrawn based on [Nassi and Shneiderman, 1973]).

tem is considered as a box with contains process interactions and decisions. Nassi-

Schneidermann diagrams enable representation of information �ows from factors to

targets, single or multiple decision points, and start and end of process (Figure 3.6(b)).

However, these diagrams also do not distinguish between di�erent causal semantics

or multiple factors and are inadequate in representing dynamic causal information.

Newton's Cradle also shows a nice representation of a causal relationship between

a factor and a �nal target [Herrmann and Seitz, 1982]. In this setup, a series of

pendulums are hung adjacent to each other, such that the ball of each pendulum just

touches the ball of the adjacent pendulums. When the ball of the �rst pendulum is

pulled away and released, it hits the ball of the adjacent pendulum, and transfers

its momentum to the second ball. In this manner, the momentum of the �rst ball is

passed through the pendulum series, until it is transferred to the �nal ball, causing it

to swing outward, thus giving the impression that the �rst ball caused the last one to

swing (as shown in Figure 3.7). This study is particularly interesting as it portrays

a good example of mediated causality (described in 4.1.2), where causal information

is transferred from the factor to the target through mediators.

Recent studies have used smooth animations to visualize causal events. Ware et al.

[1999] designed a number of visual representations for showing causal information in
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Figure 3.8: Representing causal relations using VCV metaphors; (a) Pin-ball

metaphor, (b) Prod metaphor, and (c) Wave metaphor (reproduced from [Ware et al.,

1999]).

node-link diagrams. They de�ned a visual causal vector (VCV) that represented a

causal relation between two entities. The VCV was tested using several metaphors

(pin-ball, prod, and wave) that were designed with a number of spatiotemporal rules

that are necessary for perceptually inferring causal e�ects [Ware et al., 1999]. In

the pin-ball metaphor, a ball is released from an object and strikes another object

and sets the latter into oscillatory motion (Figure 3.8 (a)). In the prod metaphor, a

rod extends from the �rst object and sets the second object into oscillatory motion

(Figure 3.8 (b)). Thirdly, in the wave metaphor a wave emerges from the �rst object

and sets the second object into a �bobbing� motion, like a ball �oating on the surface

of water (Figure 3.8 (c)). Results from their study showed that the nature of the

metaphor is less critical than the spatiotemporal rules that were used for showing the

causal relations. Their results inspired some of the work presented in this research.

In particular, I extended their results for depicting semantics that can provide rich

descriptions of naturally occurring causal relationships.

Elmqvist and Tsigas [2004] designed the Growing-squares technique to depict

causal dependencies between processes in a system. With Growing-squares, each

process is given a unique color. When processes in�uence one another, their colors

intermix in a checkered fashion over a time frame (Figure 3.9.a). Growing-squares
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Figure 3.9: (a) Visualizing causality using Growing-squares technique; (i) Process P0

in�uences P1 (color of P0 (light grey) �ows into P1 (white) in a checkered fashion)

and (ii) Process P1 in�uences P2 (color of P1 (white and light grey) �ows into P2

(dark grey)). (b) Visualization of a 3-process system using Growing-polygons; (i)

P0 (black) in�uences P1 (dark grey) and (ii) P1 (black and dark grey) in�uences P2

(light grey). (Images redrawn from [Elmqvist and Tsigas, 2003, 2004]).

takes advantage of animation to show gradual increase and decrease of in�uences in

a system. A user evaluation showed that users were signi�cantly faster (∼25%) in

answering questions related to causal events using Growing-squares in comparison

to Hasse diagrams [Elmqvist and Tsigas, 2004]. The evaluation also showed that

users preferred the Growing-squares technique to Hasse diagrams. However, a signi�-

cant redesign of the Growing-squares visualization would be necessary to incorporate

additional causal semantics into the system.

Growing-polygons are an enhancement to the growing-squares technique [Elmqvist

and Tsigas, 2003]. In this approach, each causal factor is represented by an n-sided

polygon, having a color. Each polygon is further divided into sectors for each of the

factors in the system. As one factor in�uences another, the color of the �rst �ows

into its respective sector of the second, representing the e�ect (Figure 3.9.b). The

causal �ow takes place over a timeframe. A user evaluation by [Elmqvist and Tsigas,

2003] showed that users were 58% faster and 21% more accurate in answering causal

questions with Growing-polygons than with Hasse diagrams. Additionally, Growing-
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polygons is capable of showing certain types of semantics such as depicting two factors

that have a simultaneous e�ect on one another. Similarly, Growing-polygons can

depict properly the semantic of transitive/mediated causality, i.e. if A in�uences B

and B in�uences C, then A in�uences C. However, signi�cant modi�cations to the

visualization is necessary in order to include semantics such as strong or weak causal

factors, large or small causal outcomes, or threshold causality (�At least a certain

amount of in�uence of A is needed to cause an outcome in B�; e.g. at least a certain

amount of stress is needed to increase Flu symptoms).

While the representations described above have facilitated viewing causal relation-

ships in a passive way, a number of systems have relied on some form of interactivity

for showing causality. Spence and Tweedie [1998] designed the Attribute Explorer

which allows users to adjust attribute values of objects in a scenario and incorporate

responsive interaction to quickly provide results of user queries (within 0.1 seconds).

The In�uence Explorer [Tweedie et al., 1995] allows users to interactively inspect

the in�uence of factors on di�erent outcomes. The interaction is provided by means

of slider bars that control the amount or range of in�uence of one factor on the ef-

fect. Neufeld et al. [2005] used a variation of the in�uence explorer in which the user is

allowed to dynamically vary the values of the factors to show the amount of in�uence

on the target. Such systems can be successfully used in situations that necessitate

causal reasoning for making decisions. However, as neither method is equipped with

the ability to depict various forms of causal semantics, these techniques cannot be

used to distinguish between di�erent types of causal events.

Yao's master's thesis constitutes a recent study of causal visualization [Yao, 2008].
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This study aimed at testing the e�ectiveness of animations and motion cues in elu-

cidating casual information in real-time scenarios, e.g. in maps. Yao also tested

the e�ectiveness of mapping these visualizations onto existing displays. The study

focused on testing temporal conditions, velocity, and target changes to generate the

perception of causality. Results of their study concluded that animations are e�ective

in describing the information and also suggested guidelines for e�ective perception of

the causal events. Although this study is similar in context to my study, Yao has fo-

cussed on di�erent aspects of causal visualization such as details of the animations. In

contrast, my study focuses on the de�ning a taxonomy of causal semantics and then

visualizing them using simple animations. Another di�erence between our studies is

that Yao's study focuses on the general representation of the causal relation, while

my study focuses on providing additional information such as type and quantity of

in�uence and type and degree of e�ect. Notwithstanding these di�erences, this study

suggests interesting guidelines which can be utilized while incorporating interactions

into my visualizations and extending them for professional use.

3.3 Chapter Summary

This chapter describes two main categories of related research that has been the

source of inspiration for my work: comparison of static and animated representations

and visualizing causal relations.

Studies that have compared static and animated representations suggest that an-

imations are useful in presenting dynamic information and have been successfully

utilized in the areas of pedagogy [Baecker and Marcus, 1998; Bryne et al., 1999;
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Dann et al., 2001], information science [Cosker et al., 2007], to describe complex in-

formation [Bodner and MacKenzie, 1997], and to design interactive graphical user

interfaces [Harrison et al., 2011]. However, animations can quickly become complex

and ine�ective if they do not conform to the two design principles of Congruence

and Apprehension [Tversky et al., 2002]. Researchers have compared static and ani-

mated representations in describing pedagogical concepts such as Newton's Laws of

Motion [Reiber and Hanna�n, 1988], programming languages [Pane et al., 1996], and

computer algorithms [Bryne et al., 1999]. Results of these experiments have shown

that carefully selected static images are as e�ective as animations in elucidating com-

plex concepts. The studies have also suggested that the display medium should be

chosen based on the spatial ability of the person viewing the information. However,

these studies are not conclusive as they have focused on changes that are slow or far

apart and can be adequately replaced by static images showing the critical moments.

Therefore, since the debate has not yet been resolved on which representation type

(static or animation) is more e�ective in describing dynamic information, I have de-

signed and compared both static and animated representations for the set of causal

semantics identi�ed in my study.

Several studies have also designed animated techniques to describe interactions

between causal components and have compared these techniques to traditional repre-

sentations of causal relations [Elmqvist and Tsigas, 2004]. Although these techniques

provide interesting and dynamic visualizations, they do not support categorization of

the causal semantics and are inadequate in representing complex causal information.

In the next chapter I will apply the knowledge gained from the studies in chapters 2
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and 3 to de�ne the causal semantics that have been tested in my research. I will also

describe the static and animated representations of these semantics and the steps

that have been taken to construct them.



Chapter 4

Component I: De�ning the basic

structure of a causal relation

The work of Michotte and others suggests that certain spatiotemporal conditions

favor the perception of causal phenomena. Hence, I reason that if I could map the

semantics of causal systems onto a set of perceptual semantics, I could create visual

diagrams that are more informative and descriptive. In addition, I could test the

e�ectiveness of my visualizations by analyzing the accuracy rates and response times

of viewers through perceptual user studies.

In order to achieve my goal, my research has been divided into four components:

• Component I: In this component I categorize the causal semantics based on

their reasons for occurrence, the agents involved in the causal equation, and

the outcomes they produce. This component concludes with perceptive visual

designs to depict these semantics, as described in this chapter and in chapter 5.

71
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• Component II: In addition to designing the causal representations it is crucial

to test their e�ectiveness and usefulness in practice. Therefore, in this compo-

nent, I test the intuitiveness of my representations in depicting simple causal

semantics, using user studies. Chapter 6 describes the experiments conducted

in this component of the research.

• Component III: In the third component I extend the user studies in Compo-

nent II to test visual representations of more complex variations of the causal

semantics, as described in chapter 7.

• Component IV: In the fourth, and last, component of my research, I endeav-

ored to test the e�ectiveness of the animated representation by comparing it

with an enhanced version of the static representation, as described in chapter 8.

Also, as an aid to understanding the various causal descriptions I now describe a

simple scenario, which I will refer to, where needed, during the course of this chapter.

NOTE: The examples used here and throughout the thesis are not based on factual

data. They have been used solely to de�ne a theme for describing the di�erent causal

semantics.

The scenario is as follows:

An ailment commonly a�ecting human beings is In�uenza and can be described

using the following Flu scenario. For instance, Cold Weather and Low Immunity

together can cause an increase in the Flu. Medication can reduce Flu symptoms,

and Medication and Taking Rest together also relieve the Flu. In the latter case,

Medication has a stronger in�uence than Taking Rest on relieving Flu. Finally, Stress

can cause Flu, which in turn can increase Stress.
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Figure 4.1: A causal-graph representation of the `Flu' scenario. Arrows represent the

direction of causal in�uence. Please note that the causal representations shown in

this thesis are used only as an illustration of something that is understandable, and

are not based on any scienti�c studies.

This scenario can be represented using a simple causal graph, as shown in Fig-

ure 4.1. However, this graph is inadequate in providing additional help when making

medical judgments, such as �How much of medication do we need to cause a large

decrease in Flu?� or �Is a small amount of Low Immunity enough to cause an increase

in Flu Infection?� In order to answer such questions it is important to de�ne di�erent

types of causal semantics and categorize them based on their behaviors.
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4.1 De�ning the causal semantics

As the focus of my research is to generate e�ective visual depictions of causal

semantics, in this component I will describe the steps taken to de�ne the semantics,

create a taxonomy, and design the representations based on Michotte's temporal

guidelines.

4.1.1 Step 1: Elementary units of a causal relation

The �rst step in designing visual representations for causal semantics is to connect

them together to form causal relations. To achieve this goal it is important that the

structure of a causal relation and the components that make up this relation are

clearly de�ned. Hence I will now de�ne a set of keywords that describe the main

components of a causal relation:

• Factor: A factor is the cause in a relationship, and is displayed as a labeled

circle. In the Flu scenario of Figure 4.1, Cold Weather, Medication, Taking Rest,

Stress, and Low Immunity are all factors. In a directed causal graph, factors are

distinguished as the nodes placed at the origin of their respective directed lines.

As my causal graphs are undirected, in my static representation, the factor is

the node surrounded by the in�uence glyphs and in the animation the factor is

the node from which the bullet originates.

• Target: A target (or outcome) is the variable acted upon by a factor or by a

combination of factors. In a directed causal graph, targets are placed as nodes

at the destination of the connecting arrows, as shown in Figure 4.1. In this
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example, Flu is the target which is acted upon by the factors mentioned above.

In my static representation, targets are the nodes by the side of the e�ect bars

and in the animation the targets are the nodes at the destinations of the bullets.

• Relation: A relation signi�es a causal action occurring between a factor(s)

and the target and is represented as a directed line emerging from the factor

to the target. However, my visual designs use undirected lines to depict causal

relations in order to provide each node the option of switching between the

status of factor or target based on the semantic being represented.

• In�uence: A factor(s) can have a positive or negative and a weak or strong in-

�uence on the target. A positive in�uence is one that aims at causing an increase

in the outcome and a negative in�uence is one that tries to decrease the out-

come. For example, Cold Weather can have weak/strong and positive/negative

in�uence on the Flu. However, this cannot be perceived from Figure 4.1, with-

out extra textual descriptions. My representations use descriptive glyphs and

bullets to depict a factor's in�uence.

• E�ect: A target that is acted upon by a factor(s) can show a weak or strong

and a positive or negative e�ect. A positive e�ect is inferred when an increase

in the target seen and a negative e�ect is inferred when a decrease in the target

is seen. As with depicting in�uence, type and quantity of e�ect are not depicted

in a traditional causal graph. As with the in�uence, my representations utilize

glyphs and target transformations to describe e�ects on a target.
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The above keywords de�ne the characteristics of a basic causal relation. Various

combinations of one or more of the above can be made to generate causal semantics

of di�erent complexities, as described in the next subsection.

4.1.2 Step 2: Taxonomy of causal semantics

In order to consolidate the di�erent varieties of causal semantics commonly per-

ceived, it is necessary to organize these semantics based on their behavior in di�erent

scenarios. Therefore the second step of this phase focuses on de�ning a taxonomy

of causal semantics that are inherent in the environment. These semantics can be

grouped into two categories, simple and complex, based on the di�culty in represent-

ing and comprehending the causal relations (Figure 4.2).

Simple causal semantics

Simple causal semantics represent the building blocks of most causal relations.

Four semantics fall under this category: Causal Ampli�cation, Causal Dampening,

Causal Strength, and Causal Multiplicity.

Causal Ampli�cation

In abstract terms, causal ampli�cation occurs when a factor is causing an in-

crease in the target. For example, Cold Weather causes an increase in Flu Infection

(Figure 4.3 (a)).
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Figure 4.2: Classi�cation of the causal semantics into groups based on their behavior.
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Figure 4.3: (a) Factor (Cold Weather) causes an increase in target (Flu Infection)

- Causal Ampli�cation and (b) Factor (Medication) causes a decrease in the target

(Flu Infection) - Causal Dampening.

Causal Dampening

Causal dampening means that a factor is having an overall negative e�ect on a

target. For example, causal dampening can explain physical phenomena such as lack

of sunlight �decreases or dampens� the environmental temperature or, as shown in

Figure 4.3 (b), taking Medication �reduces or decreases� Flu Infection.

Causal Strength

We talk about causal strength when a one factor is contributing more or less

signi�cantly to an outcome, when compared to another factor. As causal strength

is de�ned in relative terms, it therefore exists only when there is more than one

contributing factor, i.e. �stronger than� or �weaker than�. For example, Medication

has a stronger in�uence than Taking Rest on Flu Infection (Figure 4.4 (a)).

Causal Multiplicity

When two or more factors are contributing to the causal e�ect it is referred to

as causal multiplicity. In this de�nition it is implicit that the e�ect is only present

when all the factors are simultaneously in�uencing the target. In more concrete

terms, causal multiplicity appears in many contexts such as Medication and Taking
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Figure 4.4: Factor (Medication) and factor (Taking Rest) have positive in�uences

on the target (Flu Infection) - Additive Causality ; One factor (Medication) has a

stronger in�uence than another factor (Taking Rest) on the target (Flu Infection) -

Causal Strength and (b) Factor (Stress) has a positive in�uence while factor (Taking

Rest) has a negative in�uence on the target (Flu Infection) - Contradictive Causality.

Rest together have a combined e�ect on Flu Infection (Figure 4.4 (a)), two processes

causing a deadlock in distributed systems or the opinions of two people having a

combined in�uence on the �nal decision.

Complex causal semantics

Complex causal semantics are combinations or modi�cations of the simple seman-

tics. Six semantics fall under this group: Additive Causality, Contradictive Causal-

ity, Fully-mediated Causality, Partially-mediated Causality, Threshold Causality, and

Bidirectional Causality.

Additive and Contradictive Causality

Based on the type of in�uences of the factors (positive or negative), Causal Mul-

tiplicity can be further divided into two sub-categories:



Chapter 4: Component I: De�ning the basic structure of a causal relation 80

Figure 4.5: (a) Factor (Flu Virus) is carried by mediator (Food) and causes change

in the target (Flu Infection); the mediator (Food) is not a�ected during this transfer

- Fully-mediated Causality and (b) Factor (Flu Virus) infects the mediator (Human

Being 1) who in turn passes it on to the target (Human Being 2) - Partially-mediated

Causality.

Additive Causality

Additive causality occurs when every factor has the same type of in�uence (posi-

tive or negative) and the �nal e�ect is a summation of these in�uences. For example,

both Medication and Taking Rest have negative in�uences and will �sum up� to cause

a decrease in Flu Infection (Figure 4.4 (a)).

Contradictive Causality

Contradictive causality occurs when factors have opposing in�uences on the target.

In this event the �nal e�ect will depend upon the strongest in�uence. For example,

Stress increases Flu Infection (positive in�uence) while Taking Rest decreases Flu

Infection (negative in�uence) and the remaining outcome of the Flu Infection depends

upon which factor is stronger (Figure 4.4 (b)).

Fully-mediated and Partially-mediated causality

Mediated Causality is said to occur when a factor indirectly in�uences the target.

In this type of causality, there is no direct contact between the initial factor and the

�nal target; nonetheless, in�uence of the factor on the outcome is perceived. Based
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on the behavior of the mediator two types of mediated causality can be de�ned:

Fully-mediated causality

Fully-mediated causality is perceived when the mediator acts purely as an inter-

mediate agent to pass on the in�uence of the main agent to the target, without itself

being a�ected in any way. For instance, Flu Virus is carried by Food, which when

ingested causes Flu Infection. The mediator (Food) is not a�ected by the factor and

simply passes on the factor's in�uence to the target, thereby depicting fully-mediated

causality (Figure 4.5 (a)).

Partially-mediated causality

In partially-mediated causality, the mediator is a�ected by the main agent in

addition to passing on the in�uence to the target. As traditional causal graphs do

not show changes in the components of a causal relation, therefore it is di�cult

to distinguish this type of causality from fully-mediated causality using traditional

techniques. For example, the Flu Virus infects a Human Being who in turn transmits

the virus to another Human Being (Figure 4.5 (b)). Along with transmitting the virus,

the �rst human being is also a�ected by the virus, which is perceived as partially-

mediated causality. In addition, in this type of causality, there is also a possibility that

the in�uence is modi�ed (ampli�ed or dampened) before it is eventually transmitted

to the target.

Threshold causality

Many cases exist where the strength of a causal in�uence is not adequate to

generate a signi�cant change in the outcome. Threshold causality is seen when an

agent requires equal to or more than a given minimum strength in order to in�uence
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Figure 4.6: Medication causes a change in Infection and in turn Infection causes a

change in Medication - Bidirectional Causality.

the outcome. For example, only a large amount of Stress can in�uence a change in

Flu Infection, while a small in�uence of Stress is inadequate to show a causal e�ect.

Traditional causal graphs do not show changes in the factors or targets and therefore

cannot represent threshold causality.

Bidirectional causality

In abstract terms, bidirectional causality is perceived when the agent and the

outcome in�uence each other. For example, Medication can reduce Flu Infection, and

as Flu Infection reduces the Medication intake is also reduced (Figure 4.6).

The above 10 semantics represent many of the general causal events that we

experience in our lives. Now that these semantics have been de�ned the next step is to

determine the manner of representing these relations along with the information they

would display. In order to achieve this goal it is important to de�ne the composition,

or structure, of a causal relation; as has been described in the next subsection.

4.1.3 Step 3: De�ne the structure of a causal relation

A causal relation can be de�ned in terms of categories, component types, seman-

tics, and quanti�ers.

As shown in Figure 4.7, each causal relation is composed of three main categories;
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antecedents, intermediates, and consequents.

Antecedents are the intimidators of the causal relation and consist of one compo-

nent type, the factor. Each factor in turn is described using two semantics - quantity

and type. Quantity is the amount of in�uence present in the relationship and contains

two pieces of quanti�er information (small or large). Type describes the nature of the

in�uence and also contains two pieces of quanti�er information (positive or negative).

Intermediates are the auxiliary components that are seen only in certain types

of causal relations. Two component types of intermediates are commonly seen - me-

diators and thresholds. Mediators are encountered in fully-mediated and partially-

mediated causal relationships and can have di�erent types of semantic information

connected to them depending upon their current role in the relation. When a me-

diator is involved in a fully-mediated causal relation, it is dormant and does not

take an active part in the event; therefore it does not have any semantic informa-

tion attached to it. However, in a partially-mediated causal relation, the mediator is

initially the intermediate target (in�uenced by the factor), containing the semantic

information, quantity (quanti�er information: large or small) and degree (quanti�er

information: increase or decrease), and later becomes the intermediate factor (passes

on in�uence to target), containing the semantic information, quantity (quanti�er in-

formation: large or small) and type (quanti�er information: positive or negative).

The other type of intermediate component type is threshold, which is used to control

a factor's in�uence in the causal relation. A threshold is attached to a factor and

contains two pieces of semantic information, quantity (quanti�er information: small

or large) and type (quanti�er information: positive or negative). In�uence of a factor
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must equal or surpass the threshold in order to a�ect the outcome.

Consequents are the outcomes of a causal relation and consist of one type of

component, the target. Although a causal relation can have one or more targets, in

my research, each causal relation consists of only one target containing two pieces

of semantic information, quantity (quanti�er information: small or large) and degree

(quanti�er information: increase or decrease).

Based on the structure in Figure 4.7 causal relations can now be built and visually

designed. These causal relations may be constructed as causal statements, where

the path of the statement consists of one or more components in the three sections

(antecedents, intermediates, and consequents) of the causal structure. It is also not

necessary for each causal statement to consist of all the semantic information in every

section, i.e. the causal statement can be constructed based on any of the paths shown

in Figure 4.8. The following are examples of the di�erent types of causal relations

represented using causal paths:

• Causal Ampli�cation: �Cold Weather causes a large increase in Flu Infection�

is constructed as START −→ 4 (No in�uence quanti�ers) −→ 10 (Factor: Cold

Weather) −→ 21 (No Intermediates) −→ 22 (Target: Flu Infection) −→ 32

(Quantity : large) −→ 33 (Degree: increase) −→ 37 (END).

• Causal Dampening: �Medication causes a large decrease in Flu Infection� is

constructed as START −→ 4 (No In�uence quanti�ers) −→ 10 (Factor: Medica-

tion) −→ 21 (No Intermediates) −→ 22 (Target: Flu Infection) −→ 32 (Quan-

tity: large) −→ 33 (Degree: decrease) −→ 37 (END).

• Causal Strength: �Medication has a large in�uence while Taking Rest has
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a small in�uence on Flu Infection� is constructed as START −→ 2, 2 (Quan-

tity (commas separate information from multiple factors): large, small) −→ 8,

8 (Factor: Medication, Taking Rest) −→ 21, 21 (No Intermediates for either

factor) −→ 22 (Target: Flu Infection) −→ 38 (No e�ect quanti�ers) −→ 39

(END).

• Causal Multiplicity: �Medication and Taking Rest together in�uence Flu

Infection� is constructed as START −→ 4, 4 −→ 10, 10 (Factor: Medication,

Taking Rest) −→ 21, 21 −→ 22 (Target: Flu Infection) −→ 38 −→ 39 (END).

• Additive causality: �The negative in�uence of Medication and the negative

in�uence of Taking Rest combine to decrease Flu Infection� is constructed as

START −→ 1, 1 (Type: negative, negative) −→ 7, 7 (Factor: Medication,

Taking Rest) −→ 21, 21 (No intermediates) −→ 22 (Target: Flu Infection) −→

36 (Degree: decrease) −→ 37 (END).

• Contradictive causality: �The positive in�uence of Stress and the negative

in�uence of Taking Rest together combine to increase Flu Infection� is con-

structed as START −→ 1, 1 (Type: positive, negative) −→ 7, 7 (Factor: Stress,

Taking Rest) −→ 21, 21 (No intermediates) −→ 22 (Target: Flu Infection) −→

36 (Degree: increase) −→ 37 (END).

• Fully-mediated causality: �Flu Virus is carried through Food and causes

Flu Infection� is constructed as START −→ 4 (No in�uence quanti�ers) −→ 10

(Factor: Flu Virus) −→ 11 (Mediator: Food) −→ 12 (No mediator quanti�ers)

−→ 22 (Target: Flu Infection) −→ 38 (No e�ect quanti�ers) −→ 39 (END).
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• Partially-mediated causality: �A small positive amount of Flu Virus causes

a small increase of Flu Infection in Human Being 1 and consequently a large

positive amount of Flu Virus transmitted by Human Being 1 causes a large

increase in Flu Infection in Human Being 2� is constructed as START −→

2 (Quantity: small) −→ 5 (Type: positive) −→ 7 (Factor: Flu Virus) −→

11 (Mediator: Human Being 1 ) −→ 14 (Quantity: small) −→ 17 (Degree:

increase) −→ 15 (Mediator: Human Being 1 ) −→ 14 (Quantity: large) −→ 16

(Type: positive) −→ 18 (Target: Human Being 2 ) −→ 32 (Quantity: large)

−→ 33 (Degree: increase) −→ 37 (END).

• Threshold causality: �At least a large positive amount of Stress is needed

for in�uence, therefore a small positive in�uence of Stress causes no change

in Flu Infection� is constructed as START −→ 2 (Quantity: small) −→ 5

(Type: positive)−→ 7 (Factor: Stress)−→ 23 (Threshold factor: Stress)−→ 25

(Threshold quantity: large) −→ 27 (Threshold type: positive) −→ 29 (Target:

Flu Infection) −→ 32 (No change in quantity) −→ 33 (No change in degree)

−→ 37 (END).

• Bidirectional causality: �Medication causes a small decrease in Flu Infection

and in turn Flu Infection causes a large decrease in Medication� is constructed

as START −→ 4 (No in�uence quanti�ers) −→ 10 (Factor: Medication) −→

21 (No intermediates) −→ 22 (Target: Flu Infection) −→ 32 (Quantity: small)

−→ 33 (Degree: decrease) −→ 37 (END) −→ 39 (No in�uence quanti�ers) −→

38 (Factor: Flu Infection) −→ 22 (No Intermediates) −→ 21 (Target: Stress)

−→ 8 (Quantity: large) −→ 6 (Degree: decrease) −→ 3 (START).
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With the de�nition of the structure of a causal statement and the causal semantics

that are encountered in the environment, it is now possible to capture these semantics

using a variety of representations, as described below. The next chapter will focus

on applying this design to generate simple static and animated representations of the

causal semantics, which constitute the �nal step of Component I of my research.
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Figure 4.7: Structure of a causal relation showing categories, component types, semantics, and quanti�er information.
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Figure 4.8: Path of a causal relation. Nodes depict the components of a relation and connecting lines represent the

paths that can be taken to construct the relation.
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4.2 Chapter Summary

This chapter focuses on the de�nition and representation of causal semantics com-

monly encountered in the environment, which constitutes half of the �rst component

of my research.

At the beginning of this chapter, I de�ned the terms factor, target, relation,

in�uence, and e�ect, which will be utilized throughout the rest of the study to describe

various constituents of a causal relation. These constituents are the building blocks

of any causal relation and can exist in di�erent combinations depending upon the

behavior of the causal semantic and its environment.

Upon de�ning the basic terms that describe a causal relation, the next step fo-

cused on de�ning the causal semantics. I categorized the semantics into two main

groups. The �rst group is called simple causal semantics and comprises of basic causal

information such as ampli�cation, dampening, strength, and multiplicity. The second

group is called complex causal semantics and consists of causal information created

by enhancing, modifying or combining the simple semantics. This group includes

additive and contradictive causality, which are enhancements of causal multiplicity,

fully-mediated and threshold causality, which are modi�cations of causal ampli�ca-

tion and/or dampening, and partially-mediated and bidirectional causality, which are

combinations of two or more causal events. I feel that the above semantics represent

many of the causal events that we come across regularly. In addition, several of these

semantics have been inspired (though not always explicitly identi�ed) from back-

ground research on causal models (described in section 2.4) and causal animations

(described in section 3.2), as summarized in table 4.1 below.
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# Causal Se-

mantic

Related research on causal

models

Related research on causal visualizations

1. Causal Ampli�-

cation

A type of basic relation where a

factor has an e�ect on an outcome

The VCV metaphors have been a main source of in-

spiration for some of the basic representations of my

research. The property of a ball, a prod, or a wave set-

ting the target into motion by hitting it has inspired

my use of bullets originating from the factor and hitting

the target to show in�uence of the factor on the target.

Also, in the VCV metaphors, the target is set in motion

to show an e�ect. In my representations, the target is

set into motion (expansion/contraction) to show e�ect,

and in some cases (e.g. threshold causality) the target

remains stationary to show that the factor's in�uence

was not strong enough to cause an e�ect

2. Causal Dampen-

ing

A type of basic relation where a

factor has an e�ect on an outcome

-
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3. Causal Strength Comparing two basic relations

where in�uence of one factor is

compared to the in�uence of an-

other factor, on the outcome

-

4. Causal Multi-

plicity

Inverted fork where an outcome is

in�uenced by more than one fac-

tor

This is inspired from the Growing Squares and Growing

Polygons technique, where the color of the factor �ows

into and inter-mixes with the target. In the next step

the two colors (from both factors) �ow into the third,

thus showing causal multiplicity. Although I do not use

the technique of color inter-mixing, in�uences from my

factor �intermix� and have a combined e�ect on the out-

come
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5. Additive Causal-

ity

A type of inverted fork where an

outcome is in�uenced by more

than one factor, but both fac-

tors have similar type of in�u-

ences (positive or negative)

-

6. Contradictive

Causality

A type of inverted fork where an

outcome is in�uenced by more

than one factor, but both factors

have contradicting type of in�u-

ences (one has a positive in�u-

ence and other has a negative in-

�uence)

-
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7. Fully-mediated

Causality

A type of causal chain where in-

�uence of the factor is transferred

wholly through the mediator to

the outcome

Fish-bone diagrams intuitively represent mediated

causality by the structuring auxiliary e�ects as branches

of the main e�ect. I have used the same principle in con-

necting nodes that would have only a mediated e�ect on

the �nal outcome

8. Partially-

mediated

Causality

A type of causal chain where in-

�uence of the factor is transferred

partially through the mediator to

the outcome

Similar to above, I have used the Fish-bone diagram's

principle in connecting nodes that would only have in-

direct in�uences on the �nal outcome

9. Threshold

Causality

A type of basic relation where a

factor needs a certain minimum

amount of in�uence to have an ef-

fect on the outcome

The wave metaphor of the VCV metaphors inspired my

design for Threshold causality, where the only the pres-

ence of a wave (or in my case a certain minimum value)

causes a bobbing e�ect on the outcome, otherwise the

target is not in�uenced by the factor
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10. Bidirectional

Causality

A combination of two basic rela-

tions wherein the factor and tar-

get interchange roles

In Newton's Cradle, the �rst pendulum (initial factor)

swings and passes on the in�uence (through mediators)

to the last pendulum (outcome), which swings outward.

However, since the outcome is also a pendulum, it will

eventually swing back and hit its adjacent pendulum

thus passing back the in�uence to the �rst pendulum,

inspiring bidirectional causality

Table 4.1: Table summarizing inspiration drawn from background research on causal models and causal visualizations

in identifying my taxonomy of causal semantics.
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In order to determine a standard for creating the causal relation I also de�ned

its structure as consisting of three main categories; antecedents, intermediates, and

consequents. Each causal relation is made up of at least one antecedent and one con-

sequent which represent the cause and outcome of any event. Intermediates, on the

other hand, are optional and are seen in only certain types of relations. In addition

to describing these three main categories, each part can also be given additional se-

mantic information and quanti�er information, such as quantity or type, which aid in

answering more complex and detailed questions about the event. Also, this structure

can be clearly de�ned using a causal path, which details the di�erent options available

in each part of the causal relation. Each path represents a unique causal equation and

eventually, the combination of the antecedents, intermediates, and consequents, along

with the additional information attached to them, determines the �nal structure of

the causal relation.

The next chapter focuses on the second half of this component of my research,

applies knowledge gained from prior research in this area, and also utilizes the causal

structure and paths described in this chapter to generate designs that are intuitive

and can be easily comprehended.



Chapter 5

Designing the visual representations

In Section 3.1, I described several studies that have been conducted to determine

which representation (static or animated) is more suited for representing dynamic in-

formation. The common consensus of these studies is that the type of representation

should be chosen based on the type of information being displayed and the type of

people trying to access this information. In addition, Tversky et al. [2002] suggest

that adherence to the two design principles of Congruence and Apprehension will

enhance comprehension of the information being displayed. As my research involves

describing dynamic causal information, I hypothesized that this type of information

would be more accurately represented and perceived faster using simple and e�ective

animations. However, in order to be fair to prior research comparing static and ani-

mated techniques, I have also designed static representations for my causal semantics

and have compared them to animations of the same.

This section describes my static and animated designs along with their detailed

depictions of the causal semantics.

97
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Figure 5.1: Static glyphs representing semantic information such as (a) small and

large positive in�uence, (b) small and large negative in�uence, (c) small and large

increase in e�ect, and (d) small and large decrease in e�ect.

5.1 Static design using node-link diagrams and glyphs

The static design enhances traditional causal graphs with additional visual en-

codings. Factors and targets are denoted using nodes and connected using lines, in

order to create perceptual groups between the factor and target, which in turn will

help improve the perception of causality [Choi and Scholl, 2004]. A positive in�uence

is denoted by a plus glyph (+) (Figure 5.1 (a)) and a negative in�uence is denoted

by a minus glyph (−) (Figure 5.1 (b)), attached to its respective factor. The size of

the glyph depicts the strength of the in�uence. Near the target, a series of bars are

placed to show type and degree of e�ect. Bars along the positive y-axis depict an

increase in the e�ect (Figure 5.1 (c)) while bars along the negative y-axis depict a
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Figure 5.2: Static representation of the Flu scenario using nodes (factors, targets),

connecting lines (relations), and glyphs (in�uences, e�ects). Three causal relations

are represented here distinguished by their unique colors (black, grey, and white).

decrease in the e�ect (Figure 5.1 (d)). The sizes of bars depict small or large degree

of e�ect. Finally, in a scenario containing more than one causal relation the order of

the bars depicts the order in which the causal events take place and the events are

distinguished from one another through their unique colors i.e. glyphs of the same

color (in�uences and e�ect) belong to the same causal relation.

Some causal relations from the Flu scenario are depicted in Figure 5.2 using the

static representation. As the order of the target bars denote the order the causal

events, we can state the scenario in the following manner; Cold Weather and Low

Immunity have positive in�uences on the Flu and a large positive amount of Cold
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Weather together with a small positive amount of Low Immunity cause a large increase

in the Flu (glyph color: black). Medication has a negative in�uence on the Flu and a

large negative amount of Medication causes a large decrease in the Flu (glyph color:

grey). Taking Rest also has a negative in�uence on the Flu and a large negative

amount of Medication together with a small negative amount of Taking Rest cause a

small decrease in the Flu (glyph color: white).

5.2 Animated design using moving bullets and smooth

target transformations

The animated design uses simple animations and Michotte's Theory of Ampli-

ation [Michotte and Thinés, 1963] to generate the sensation of causal interactions

between the factors and the target. This design is also an extension of the traditional

causal graph and depicts factors and the target using nodes that are connected by

undirected lines. In�uences on the target are displayed by the smooth movement of

bullets from their respective factors to the target, along their connecting lines. Plus

(+) and minus (−) glyphs within each bullet depict the type of in�uence (positive

or negative) and the size of the bullet denotes the quantity of in�uence currently

involved in the causal equation (Figure 5.3 (a) and (b)). Also, the bullets travel at

a speed of ∼5 cm/sec, which is in keeping with Michotte's absolute speed of the

factor guideline that suggests that causality is perceived only when an object's speed

is between the range of 3 cm/sec and 110 cm/sec (Figure 5.4 (a)).

The type of e�ect is depicted by a change in target size. An increase in size
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Figure 5.3: Animated glyphs representing semantic information such as (a) small and

large positive in�uence, (b) small and large negative in�uence, (c) small and large

increase in outcome, and (d) small and large decrease in outcome (concentric circles

were displayed to aid in judging the magnitude of target change, arrows were not

shown in the experiment).

denotes an increase in the outcome while a decrease in size denotes a decrease in

the outcome. In addition, the degree of e�ect is depicted by the size to which the

target transforms. Although the target does not �move� as described in Michotte's

experiment, its transformation in size is also a type of movement. Therefore I fol-

lowed Michotte's relative ratio of velocities guideline which suggests that the target

should move slower than its factor and constricted my target transformation speed

to ∼1.7 cm/sec (Figure 5.4 (b)). Although the speed of the target falls below the

absolute speed of factor range suggested by Michotte, through an informal evaluation,

I determined that target transformations at speeds larger than ∼1.7 cm/sec hindered
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Figure 5.4: Description of the spatiotemporal guidelines that were employed to build

the animated representations.

information acquisition.

Finally, Michotte also suggested that that time between impact and movement

should be below 110 milliseconds. In order to retain a strong causal context in

the visualizations, I have not incorporated any delay (0 milliseconds) between the

bullets hitting the target and the target transformation (Figure 5.4 (c)).

Figure 5.5 describes one causal event in the Flu scenario using my animated de-

sign. In this event, factors Cold Weather and Low Immunity together in�uence the

outcome (the Flu) as bullets from these nodes travel simultaneously towards the tar-

get. Secondly, both factors have positive in�uences on the Flu, which is depicted by

the plus (+) signs within their respective bullets and thirdly, the sizes of the bullets

suggest that Cold Weather has a large in�uence (Figure 5.5 (a)) while Low Immunity

has a small in�uence on the Flu (Figure 5.5 (b)). When these bullets hit the target,
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Figure 5.5: Animated representation of the Flu scenario using nodes (factors, targets),

connecting lines (relations), animated bullets (in�uences), and target transformations

(outcomes).

the target is smoothly transformed to show the outcome. Concentric circles have been

placed as guides around the target node to aid in distinguishing between small and

large changes in the target. In this scenario, the above factors cause a large increase
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Figure 5.6: A large positive in�uence of factor (Cold Weather) causes a large increase

in outcome (Flu Infection) - Causal Ampli�cation (arrows were not shown during

experiment).

in the outcome depicted by the large increase in the size of the Flu node (Figure 5.5

(c)).

In this subsection I focused on designing simple static and animated representa-

tions for general causal events. In the next subsection, I have utilized these designs

to generate visual representations for each of my complex causal semantics.
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5.3 Static and animated representations of causal se-

mantics

5.3.1 Causal Ampli�cation

Causal ampli�cation is seen when the factor in�uences an increase in the outcome.

The in�uence is depicted by a plus glyph (+) next to the factor in the static represen-

tation and by a bullet (containing a + glyph) moving from the factor to the target in

the animated representation. The e�ect in the static representation is described by

upright bars next to the target and in the animated representation is depicted by an

increase in the size of the target at a constant speed of ∼1.17 cm/sec. For example,

in Figure 5.6, Cold Weather causes an increase in Flu Infection, thus denoting causal

ampli�cation.

5.3.2 Causal Dampening

Causal Dampening is perceived when a factor causes a decrease in the outcome.

The in�uence is depicted by a minus glyph (−) next to the factor in the static repre-

sentation and by a bullet (containing a − glyph) moving from the factor to the target

in the animated representation. The e�ect in the static representation is suggested

by an inverted bar next to the target and depicted in the animated representation by

a decrease in the size of the target node at a constant speed of ∼1.17 cm/sec. For

example, in Figure 5.7, Medication causes a decrease in Flu Infection, thus denoting

causal dampening.
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Figure 5.7: A large negative in�uence factor (Medication) causes a large decrease in

outcome (Flu Infection) - Causal Dampening.

5.3.3 Causal Strength

Causal strength distinguishes between strong and weak factors in the relation and

is depicted by the size of the corresponding glyphs. The small and large in�uences are

depicted by the size of the plus (+) and minus (−) glyphs in the static representation

and by the size of the bullets in the animated representation. In addition, in the

animated representation, the bullets travel from the factors to the target at a speed

of ∼5 cm/sec and the target transforms at the rate of ∼1.17 cm/sec. For example, in

Figure 5.8, Medication has a large in�uence, which is stronger than the small in�uence

of Taking Rest, on Flu Infection thus showing causal strength.

5.3.4 Additive Causality

Additive causality is a type of causal multiplicity in which all the factors in the

causal relation have the same type of in�uence, and the outcome is simply the sum of



Chapter 5: Designing the visual representations 107

Figure 5.8: Factor (Medication) has a large negative in�uence and factor (Taking

Rest) has a small negative in�uence and together they cause a large decrease in the

outcome (Flu Infection) - Additive causality. Factor (Medication) has a stronger

in�uence than factor (Taking Rest) on the outcome (Flu Infection) - Causal Strength.

all these in�uences. In the static representation all the factors have the same glyphs

next to their respective nodes (all positive or all negative) while in the animated

representation each factor sends a bullet with the same sign (+ or −) towards the

target at a speed of ∼5 cm/sec. For example, in Figure 5.8, Medication and Taking

Rest are both positive in�uences and have a combined in�uence on Flu Infection, thus

depicting additive causality.
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Figure 5.9: Factor (Stress) has a large positive in�uence and factor (Taking Rest) has

a large negative in�uence and together they cause a small increase in the outcome

(Flu Infection) - Contradictive Causality.

5.3.5 Contradictive Causality

Contradictive causality is also a type of causal multiplicity wherein factors have

opposing in�uences and the �nal outcome depends on the strongest of these in�uences.

In the static representation, the type of glyph (+ and −) and the size of these glyphs

(small or large) determine the in�uences, while the size of the upright or inverted

bars next to the target determine the type and degree of e�ect. In the animated

representation, bullets of di�erent sizes (small or large) and of opposing types (positive

and negative) travel at a speed of ∼5 cm/sec towards the target, and the target
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Figure 5.10: Large positive in�uence of factor (Flu Virus) is carried through a me-

diator (Food) and causes an large increase in the outcome (Flu Infection) - Fully

Mediated Causality.

transforms (increases or decreases) based on the stronger of the in�uence at a speed

of ∼1.17 cm/sec. For example, in Figure 5.9, Stress has a positive in�uence while

Taking Rest has a negative in�uence on Flu Infection. However, the positive in�uence

of Stress is stronger than the negative in�uence of Taking Rest and therefore the �nal

outcome (Flu Infection) is slightly increased, depicting contradictive causality.

5.3.6 Fully-mediated Causality

Fully-mediated causality is the �rst type of mediated causality where the mediator

simply passes the in�uence from the factor to the target without itself getting involved

in the event. In the static representation, the mediator does not show any change (no
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bars next to the mediator) and passes on the factor's in�uence glyph to the target,

where e�ect is shown using upright or inverted bars. In the animated representation,

the in�uence bullet travels from the factor and passes through the mediator to the

target, at a constant speed of ∼5 cm/sec. Target transformation occurs at the rate

of ∼1.17 cm/sec to show the e�ect. For example, in Figure 5.10, the in�uence of the

Flu Virus is passed through Food to cause a change in Flu Infection, thus depicting

fully mediated causality.

5.3.7 Partially-mediated Causality

Partially-mediated causality is the second type of mediated causality where the

mediator is a�ected by the main agent in addition to passing on the in�uence to the

target. In this semantic the mediator can assume one of two states: the intermediate

target when it is a�ected by the factor's in�uence and the intermediate factor when

it passes on the in�uence to the target. In the static representation, change in the

intermediate target is represented by upright (increase) or inverted (decrease) bars

and in�uence of the intermediate factor is represented by positive (+) or negative (−)

glyphs. In addition, the bars and glyphs next to the mediator are connected with

dotted lines to show that they are part of the same causal event and also to reinforce

their order of occurrence within the event. In the animated representation, bullets

of di�erent sizes (small or large) containing type information (positive or negative)

travel from the factors to the intermediate target at a speed of ∼5 cm/sec. Upon

reaching the intermediate target, this target is transformed (increase or decrease) at

a speed of ∼1.17 cm/sec to small or large degrees, based on the factor's in�uence.
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Figure 5.11: Small positive in�uence of factor (Flu Virus) causes a small increase in

the mediator (Human Being 1) and a large positive in�uence of the mediator (Human

Being 1) causes a large increase in outcome (Human Being 2) - Partially-mediated

Causality.

The intermediate target then becomes the intermediate factor and sends positive or

negative in�uence bullets, of small or large size, to the �nal target at a speed of ∼5

cm/sec and transforms the �nal target at a speed of ∼1.17 cm/sec. For example, in

Figure 5.11, in�uence of the Flu Virus is causes a change in Human Being 1, and in

turn the in�uence of Human Being 1 causes a change in Human Being 2.
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Figure 5.12: At least a large amount of factor (Stress) is needed to cause a change

in the outcome (Flu Infection), therefore a small amount of Stress does not cause a

change in Flu Infection but a large amount of Stress causes a small increase in Flu

Infection.

5.3.8 Threshold Causality

Threshold causality allows constraints to be placed on factors that are trying to

in�uence an outcome. In the static representation, the threshold in�uence is depicted

by a dotted glyph superimposed upon the in�uence glyph. Shape and size of the

dotted glyph denote the type and amount of in�uence required to cause a change in

the target. When a factor(s) in�uence reaches or surpasses the threshold, the e�ect is

seen by upright or inverted bars next to the target. However, if the factor's in�uence

is less than the threshold, then a cross glyph next to the target depicts that there is no
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change in the outcome. In the animated representation, the threshold is depicted by a

concentric dotted circle around the factor's node. The size of the dotted circle depicts

the threshold in�uence. Initially, the factor increases in size equal to its amount of

in�uence, at a rate of ∼1.17 cm/sec, i.e. for a small in�uence the factor size increases

by small amount and for a large in�uence the factor size increases by a large amount.

During this increase, if the factor size equals or surpasses the dotted threshold, then

a bullet (with the size and glyph of the factor's in�uence) is sent, at a speed of ∼5

cm/sec, towards the target (transformation rate = ∼1.17 cm/sec), showing that the

factor is in�uencing the outcome. However, if the factor does not touch the dotted

line when it transforms, then no outcome is seen in the target and a cross glyph (on

the target node) depicts the absence of a causal action. For example, in Figure 5.12,

at least a large positive amount of in�uence of Stress is required to cause a change in

Flu Infection; therefore a small positive amount of Stress does not cause any change

in Flu Infection (without change), but a large amount of Stress causes a small increase

in Flu Infection (with change).

5.3.9 Bidirectional Causality

Bidirectional causality illustrates the dual-state property of factors and targets

in some causal scenarios. In this semantic, a factor in�uences the target and in

return, the target causes a change in the factor. The static representation utilizes

connected bars and glyphs to show in�uences and e�ects belonging to the same causal

event. These glyphs are dotted lines and are placed from left to right, in the order

of occurrence within the event. In the animated representation, the in�uence bullet
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Figure 5.13: A small negative amount of factor (Medication) causes a small decrease

in the outcome (Flu Infection) and in reverse; a small negative amount of Flu Infection

causes a large reduction in Medication.

travels from the factor and causes a change in the target, depicting the �rst half of

the bidirectional causal event. On completing the �rst half, the target now becomes

the new factor and sends its in�uence bullet to the old factor (now the new target)

causing a change and completing the second half of the bidirectional causal event.

For example, in Figure 5.13, Medication has a small negative in�uence and causes a

small decrease in Flu Infection, and in turn a small negative in�uence of Flu Infection

causes a large decrease in Medication.

The above sections outline my static and animated representations for the causal
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semantics. I will now conclude this chapter with a short summary.

5.4 Chapter Summary

This chapter focuses on the second half of Component I of my research and is

aimed at applying my background research on causal visualizations to design static

and animated representations for the two groups of causal semantics. I adhered

to Tversky et al. [2002]'s Congruence and Apprehension guidelines in order to create

visual illustrations that are simple and relevant to the information being described.

My causal relations are represented using traditional graphs, wherein the factors and

targets are displayed as nodes and the relation is de�ned by connecting lines. In

the static representation additional information is provided through simple glyphs

that depict the in�uences and e�ects. In the animated representation, the same

information is displayed using animated bullets (in�uence) and target node distortions

(e�ect). Finally, the causal semantics are distinguished from each other by their

unique structure and combination of the glyphs or animations.

In the remaining components of my research, I have focused on evaluating my

casual visualizations in a user-environment, through a series of experiments. In these

experiments I have provided users with my causal representations and have asked

them to perform simple and speci�c tasks or answer questions based on the informa-

tion given to them. The next section provides detailed descriptions along with the

analysis of the data collected during these experiments.
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Figure 5.14: Division of the semantics into groups for experimental purposes.



Chapter 6

Component II: Analyzing visual

representations of simple causal

semantics - Experiments 1 and 2

Chapters 4 and 5 short listed 10 causal semantics that we encounter in everyday

life. In order to limit the amount of information presented to the participants and

to simplify the experimental evaluations, these semantics have been divided into two

groups, simple causal semantics and complex causal semantics. This chapter focuses

on analyzing the simple causal semantics, which consist of basic causal information

such as causal ampli�cation, causal dampening, causal strength, and causal multiplic-

ity. Chapter 7 will focus on analyzing the complex causal semantics, containing causal

information that have been constructed using combinations of the simple semantics

and divided into two sub-groups; design group 1 consisting of additive causality,

contradictive causality, and fully-mediated causality, and design group 2 consisting

117
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of partially-mediated causality, threshold causality, and bidirectional causality. Fig-

ure 5.14 outlines the semantic groups along with their respective experiments.

6.1 Experiment 1 - Comparing the e�ectiveness of

text, static-graph, and animated visualizations

of causal semantics (published in Infovis'07)

The goal of this experiment is to evaluate the two di�erent types of visualizations

designed to depict causal semantics. My hypotheses are as follows:

• Hypothesis 1: Participants will perform the recall tasks with higher accuracy

rates when the causal relations are enhanced with visualizations, when compared

to a textual description of the information.

• Hypothesis 2: Participants will perform more accurately and with faster re-

sponse times when the causal relations are enhanced with animated (vs. static-

graph) visualizations.

6.1.1 Method

Participants

Forty-four undergraduate psychology students of a local university participated

in this experiment. The age of the students varied from 23 � 30 years. None of the

students had any formal training with computers, perceptual visualizations and/or

causal relations. The participants also had good English language skills, normal to
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corrected vision, and did not su�er from a history of color blindness (established

through Ishihara's color blindness test [Ishihara, 1917]), which was required to dis-

tinguish between the various colors displayed during the experiment.

Materials

The experiment comprised of three methods for representing simple causal rela-

tions. These relations were displayed as text, static-graphs, and animations. The text

representation was provided in the form of an English passage, printed on an 8" ×

11" paper. The static-graph representation displayed the causal relations as still

images, created using Microsoft Visio®, while the animations were created using

Macromedia Flash�. The static-graphs and the animations were run on a Windows

XP computer and projected onto a 60" × 60" screen. The visualizations were pro-

jected with a 1024 × 768 pixel screen resolution.

Design

The experiment consisted of a 3 × 2 within-subject design. The two independent

variables were: Representation Type and Statement Type.

Representation type

Three types of representations were shown to the participants: Text, Static-graph,

and Animation.

• Text: In this representation type, the participants were provided with passages,

based on randomly selected topics, to read for a limited amount of time. Each

passage consisted of 10 relations in total; 5 positive and 5 negative. The positive
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and negative relations were separated from each other in separate paragraphs

with distinct titles. Each sentence in a paragraph described one causal relation.

• Static-graph: In this representation type, the participants were shown the

static description of the semantics, projected onto a screen. The graphs de-

scribed causal relations using + and − glyphs, bars, and connecting lines. Col-

ors were used to connect the in�uences with the e�ects. Upright or inverted

bars of varying sizes, near the target, depicted the type and magnitude of e�ect

and varying sizes of + and − signs, near the factors, were used to describe the

strength and quantity of in�uence. The causal relations depicted were identical

to the relations described in the text representation and all 10 causal relations

were shown simultaneously for a limited amount of time.

• Animation: In this representation type, the participants were shown an an-

imation, projected onto a screen. The quantity of in�uence was depicted by

animated bullets of di�erent sizes, while the magnitude of e�ect was depicted

by the expanding and shrinking of the targets to varying sizes. The causal

relations depicted were identical to the relations described in the text represen-

tation. In addition, each causal relation was isolated, displayed in sequence,

and clearly de�ned by a 3 second gap.

Statement type

At the completion of each trial, the participants were given a set of causal relations

and were asked to identify whether they had seen these relations during the trial. The

statements that the participants were asked to match were of two types:
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• Correct: A correct statement was one where all the components of the given

relation matched a relation visualized during the trial. For this statement the

participant would need to enter a �Correct� response to get a point.

• Incorrect: An incorrect statement was one that partially matched a relation

that was displayed during the trial. The participant would need to select �Incor-

rect� and provide the accurate statement, as recalled from the visualization, to

get a point. Partially correct responses were awarded partial scores (maximum

score = 1).

The representation types were fully counterbalanced using a Latin square design.

Each participant viewed three of six passages, with one passage per condition. Each

questionnaire consisted of 14 questions, with 7 questions of each statement type. The

statement types were randomly distributed within the questionnaire. Overall, with

44 participants, 3 experimental conditions (text-only, text + static-graph, text +

animation), and 14 questions per condition, a total of 1848 responses were collected

for analysis.

Tasks

The experiment consisted of three conditions; text-only, text + static-graph and

text + animation. The participants were given two tasks to perform. The �rst task

was the memorization task where the participants read and/or viewed the causal

relations, and memorized as many as they could within a given time period. Depend-

ing upon the condition, the memorization task of the participant varied slightly. In

the text-only condition, the participants read the given passage for 4 minutes and
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then �lled the next 4 minutes by performing simple �ller tasks such as connecting

a sequence of dots. This was chie�y done to standardize the length of each condi-

tion of the experiment. In the text + static-graph condition, the participants �rst

read the given passage for 4 minutes to memorize the causal relations. They then

viewed the static representation for the next 4 minutes to support what was read

previously. Similarly, in the text + animated condition, the participants �rst read

the given passage for 4 minutes and then viewed the corresponding animation for the

next 4 minutes. As the length of the animation was only 60 seconds, it was repeated

four times to �ll the 4 minute slot.

The second task was the recall task wherein the participants determined if a given

set of relations were Correct or Incorrect (as described above), within a 5 minute

timeframe.

Procedure

The experiment was conducted in three stages. The �rst stage comprised of a

color blindness test [Ishihara, 1917] to ensure that the participants could distinguish

the colors in the static-graph. The second stage consisted of a 20 minute training

session, which included a detailed description of the representation and statement

types to the participants. The participants were also shown examples of the text,

static-graph, and animated representations and quizzed in order to ensure that they

had understood the representations accurately. They were also shown a sample ques-

tionnaire and instructed on how to record their responses. The third stage comprised

of the �nal experiment wherein the experimental conditions were randomly assigned
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and time constraints were strictly enforced. Upon completing the viewing task of each

condition, the participants were given 5 minutes to answer a questionnaire. At the

end of 5 minutes, the participants were asked to stop answering and move on to the

next condition. On completing all three conditions, the participants were asked to

record their individual opinions of the representations and the experimental procedure

in an informal questionnaire.

The study captured the number of correct responses that the participants gave in

each of the conditions. They were given a maximum score of 1 for each correct answer

they provided. If the participants answered only parts of the answer correctly, they

were awarded a corresponding fraction of the maximum score. As this experiment

was a paper-based study, response times were not recorded or analyzed.

6.1.2 Results and Discussion

Following the procedure described in the Method (6.1.1) section, I �rst computed

the proportion of accurate responses made by each participant in each of the exper-

imental conditions. These data were then submitted to a 3 × 2 repeated-measures

Analysis of Variance (ANOVA), treating representation type (text-only vs. text +

static-graph vs. text + animated) and statement type (correct vs. incorrect-with-

corrections) as within-participant factors. Table 6.1 summarizes the overall analysis

of the results, along with a summarization of the mean values for the factors showing

signi�cance in Table 6.2.

This analysis revealed a main e�ect of representation type, F (2, 86) = 6.76, MSe =

.035, p < .005. The basis for this main e�ect was that participants were more accu-
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Figure 6.1: Accuracy rate for `Correct' and `Incorrect' statements of representation

types: (a) text-only, (b) text + static-graph, (c) text + animation (the ±5% error

bars represent the 95% con�dence intervals for the mean).

rate in making judgments about causal relationships in the text + animated condition

than in the other two conditions. Speci�cally, participants made ∼8% more accurate

responses in the text + animated condition than in the text-only condition (.64 vs.

.56), F (1, 43) = 7.79, MSe = .031, p < .01, and they made ∼10% more accurate

responses in the text + animated condition than in the text + static-graph condition

(.64 vs. .54), F (1, 43) = 11.01, MSe = .040, p < .005 (Figure 6.1).

There was no reliable di�erence in response accuracy between the text-only and
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Factor Accuracy rate Response time

Representation type

(F1)

Signi�cance Not tested

Response type (F2) No signi�cance Not tested

F1 × F2 interaction No signi�cance Not tested

Table 6.1: Summary of analysis of accuracy rates showing signi�cant results (in bold),

for Experiment 1: Simple causal semantics, Representation type(F1): Text-only vs.

Text+Static-graph vs. Text+Animation, Response type(F2): Correct vs. Incorrect-

with-corrections, Memory Recall Experiment.

Factor Accuracy rate (↓ = %

less accuracy than high-

est accuracy value for fac-

tor(in bold)

Representation type

(F1)

Text-only .562 (∼13% ↓)

Text + Static-graph .537 (∼18% ↓)

Text + Animation .637

Table 6.2: Summary of accuracy rates for factors showing signi�cance in the analysis

of Experiment 1 results. NOTE: Highest accuracy rate for each factor is highlighted

in bold and ↓ shows reduction in accuracy rate when compared to the highest accuracy

rate for the factor.
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text + static-graph conditions, F < 1. Moreover, the main e�ect of statement type

was not reliable (p > .05), which suggests that participants were able to identify cor-

rect and incorrect statements with similar accuracy, with both representation types.

Finally, the e�ect of presenting an animated diagram on response accuracy did not

depend on whether the test statement was correct or incorrect (representation type

× statement type interaction, F < 1).

An analysis of the informal questionnaires also showed interesting results. More

participants (∼67%) agreed that visual enhancements do improve memory and help

in recall tasks. However, a considerable number (∼33%) of participants did not

agree and were quite content with reading the passages only; this can be attributed

to their superior memorizing abilities or to their inexperience in viewing computer

visualizations. When asked to compare between the static and animated images, the

participants were noncommittal as to which technique was preferred. Based on the

task, they claimed either the static images or the animations to be more accurate

and interesting. More participants (∼60%) agreed that the animations were useful in

the memorization task, when compared to the static images. However, many claimed

(∼59%) that it was easier to view the strengths of the in�uences with the static

images. Finally, a major observation during the experiment was that pure animation

constrained the participants to a �xed order and did not give any room for intellectual

exploration.
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Summary of Experiment 1 analysis

• Participants performed with ∼8% higher accuracy in comprehending the causal

information in the text + animated condition, compared to the text-only condi-

tion, and with ∼10% more accuracy when compared to the text + static-graph

condition.

• Informal questionnaires suggested that participants were divided in their prefer-

ence of the representation types, based on the given task. ∼60% of participants

agreed that animations improved comprehension and memory retention, while

∼59% preferred the glyphs of the static representation for understanding a fac-

tor's in�uence.

The results of this experiment partially concur with both my hypotheses and show

that visualizations do help in improving recall of causal passages (Hypothesis 1 ).

However this improvement was shown only by the animations. I think the reason the

static-graph representations did not prove very e�ective was because it is quite di�cult

to adequately distinguish between the di�erent colors displayed. On-screen clutter

was another problem adversely a�ecting this representation. Finally, even though

the e�ects (bars next to the target) described the timeline of the causal relations, on-

screen clutter reduced any semblance of order in the in�uences (+ and − signs) which

made the task extremely tedious. Figure 6.1 shows a decrease (albeit insigni�cant)

in the accuracy rate when the causal relations were enhanced using static images.

The results also show that my animations performed with higher accuracy rates

than the static images (Hypothesis 2 ). I think this is because the animations did not

depend on colors and showed only one relation at a time. I also infer that designing
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my representations based on Michotte's guidelines contributed to the higher accuracy

rates with the animations. The results also showed that the participants were able

to distinguish correct and incorrect relations more accurately in this condition. Two

drawbacks of this representation were noticed during the evaluation. One drawback

was that the sequential nature of the animation did not allow skipping to a required

relation, which can be overcome by allowing interactions with the animations. A

second drawback was that the absolute sizes of the in�uences (bullet size) or the

e�ects (degree of expansion or shrinking of the target) were not easily distinguish-

able and only relative judgments were possible. This problem can be overcome by

adding legends as guides to compare the given information in order to determine its

magnitude.

Overall, the results of this experiment showed that participants were able to per-

ceive the causal relations more accurately when the textual passages were comple-

mented with static-graph and animated representations. However, I was unable to

conclude from the experiment whether the static-graph and animated representations

can naturally and intuitively elicit comprehension of causal relations. Furthermore, I

could not infer from my results whether one type of representation is more accurate

than the other for showing the selected set of semantics. As a result, Experiment

2 (section 6.2) aimed at directly comparing the e�ectiveness of the static-graph and

animated representations in describing causal relations, without the aid of textual

descriptions.
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6.2 Experiment 2 - Comparing static-graph and ani-

mated representations of simple causal semantics

(published in Infovis'07)

The goal of this experiment was to compare the e�ectiveness of my static-graph

and animated representations in describing causal relations. I was interested in iden-

tifying whether representations for complex semantics based on Michotte's rules of

perceiving causality would elicit accurate and rapid responses. My hypotheses for

this experiment were as follows:

• Hypothesis 1: Participants will perform the recall tasks more accurately when

the causal relations are depicted using animations, when compared to a textual

description of the information.

• Hypothesis 2: Participants will be able to respond faster when the causal

relations are depicted using animations.

6.2.1 Method

Participants

108 undergraduate psychology students of a local university participated in this

experiment. None of the participants had performed the previous experiment and

were not familiar with the objectives of this study. The participants satis�ed the

same selection criteria as in Experiment 1 (section 6.1.1) (age, no color blindness,

normal to corrected vision, no prior experience with causal graphs).
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Materials

The experiment consisted of two major conditions for representing the relations;

static-graph and animations. The experiment was generated as a .NET program with

the embedded static-graph and animated Macromedia Flash� �les. Individual copies

of the program were executed on a Windows XP computer and displayed on a 17" Dell

monitor with a 1024 × 768 pixel screen resolution.

Design

The experiment consisted of a 2 × 4 within subject design, with two independent

variables: Representation Type and Statement Type.

Representation type

Two types of representations were shown to the participants: Static-graph and

Animation.

• Static-graph: In this representation type, the participants were shown a static

graph that contained about 1 � 2 causal relations. The graphs were kept simple

in order to identify whether subjects were able to intuitively capture the con-

cepts presented in the atomic relationships. The main di�erence between the

static-graphs used in this experiment and in Experiment 1 was that the + and

− symbols were replaced by square (n) glyphs as the factor's in�uence type was

not tested in this study. However, the size of the square glyph represented the

strength of the in�uence and colors were used to distinguish between di�erent

causal relations.
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• Animation: In this representation type, the participants were shown an an-

imation which contained about 1 � 2 causal relations. The features of the

animation were similar to the previous experiment. Also, the animated syntax

was maintained on a comparable level to the static-graph syntax with the ex-

ception of applying Michotte's rule in the animated case, and replacing those

with descriptive glyphs and symbols in the static-graph case.

Statement type

At the end of each trial, the participants were shown a statement based on the

relation(s) they viewed. In order to isolate and test the e�ectiveness of various com-

ponents of my representations, the participants were asked to correctly match four

types of statements that were created from my initial set of semantics:

• Type of outcome(S1): Statement type S1 tested the ability of the participant

to distinguish between positive and negative outcomes in the causal relation.

During the experiment, the outcome of the causal relation was represented

by upright/inverted bars near the target in the static-graph and by expan-

sion/shrinking of the target in the animations.

• Strength of in�uence(S2): Statement type S2 tested the ability of the par-

ticipants to comprehend the amount of in�uence a factor had on the target.

In the experiment, the strength of in�uence was depicted as varying sizes of

the square (n) glyphs in the static-graph representation and as small and large

bullets in the animations.

• Magnitude of outcome(S3): Statement type S3 tested the ability of the
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participant to comprehend the magnitude of the outcome when a factor in�u-

ences a target. The magnitude of the outcome was displayed as varying sizes

of upright or inverted bars in the static-graph condition and in the animated

representations the targets would expand or shrink to varying to sizes.

• Combination of components(S4): Statement type S4 tested the ability of

the participant to identify all the constituent elements of a causal relation, such

as strength of the in�uence and type and magnitude of outcome. This type of

statement was the most complex and evaluated the overall e�ectiveness of the

static-graph and animated representations in displaying the causal information.

Tasks

The experiment consisted of multiple random trials of the static-graph and an-

imated relations. As in the previous experiment, the experiment comprised of two

tasks; memorization and recall. In the memorization task the participant was shown

the causal relations for a pre-determined length of time (9 seconds per causal relation).

Within this period the subject was asked to carefully view all the possible relation-

ships that existed. In the recall task, the participant was shown a statement, based

on the relations that were just viewed. For example, they would be presented with a

relation (concerning Malaria Infection) and a statement such as �Female mosquitoes

have a positive e�ect on malaria�. The participant was asked to hit one of two keys

on the keyboard (B = `Yes' or N = `No'; the `B' key was taped with a `Y') depending

on whether the given statement exactly matched the displayed relation or not. The

participants were asked to respond as quickly and accurately as possible and, upon
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providing an answer, were automatically directed to the next trial.

The trials were fully counterbalanced using a Latin square design. Each trial

was based on a random selection of 1 of 12 topics, with one statement per trial.

The experiment consisted of 96 trials in total, divided into 6 sessions. Overall, with

108 participants, 6 sessions, 2 representation types (static-graph and animations) per

session, 4 statement types per representation (S1, S2, S3, and S4), and 2 response

types (Yes and No) per statement, a total of 10368 responses were collected for

analysis.

Procedure

The experiment was conducted in two phases. In the training phase the partic-

ipants were asked to self-train themselves by running a sample program consisting

of the static-graph, animations, and statements that were similar to what would be

displayed during the experiment. The participant was given the opportunity to run

the sample program as many times as desired, with only technical help from the

experimenter.

After completing the training phase, the participants were asked to commence the

experiment phase. Each trial was timed and at the end of each session, the timers

were paused to allow the participant to take a break if preferred.

6.2.2 Results and Discussion

The main variables of interest in this experiment were the accuracy of the users'

responses and the completion times in responding to a given statement. Each accurate
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Figure 6.2: Response times for static-graph and animated representations of state-

ment types: S1(type of outcome), S2(strength of in�uence), S3(magnitude of out-

come), S4(combination of components) and response types: Y(yes), N(no) (±5%

error bars depict the 95% con�dence intervals for the means).

response of the participant was awarded 1 point. The analysis for response times only

considered accurate responses.

The participants' data was analyzed using a 2 × 4 × 2 repeated-measures Anal-

ysis of Variance (ANOVA), treating representation type (static-graph vs. animated),

statement type (type of e�ect(S1) vs. strength of in�uence(S2) vs. magnitude of

outcome(S3) vs. combination of components(S4)), and response type (`Yes' vs. `No')

as within-participant factors. Table 6.3 summarizes the overall analysis of the results,

along with a summarization of the mean values for the factors showing signi�cance
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in Table 6.4.

Factor Accuracy rate Response time

Representation type

(F1)

No signi�cance Signi�cance

Semantic type (F2) Signi�cance Signi�cance

Response type (F3) No signi�cance No signi�cance

F1 × F2 interaction No signi�cance Signi�cance

F1 × F3 interaction No signi�cance No signi�cance

F2 × F3 interaction Signi�cance No signi�cance

F1 × F2 × F3 interac-

tion

Signi�cance No signi�cance

Table 6.3: Summary of analysis showing signi�cant results (in bold), for Experiment

2: Simple causal semantics, Representation type(F1): Static-graph vs. Animation,

Semantic type(F2): Type of e�ect(S1) vs. Strength of in�uence(S2) vs. Magnitude of

outcome(S3) vs. Combination of components(S4) , Response type(F3): Yes vs. No,

Intuitiveness Evaluation Experiment.

Analysis of the response times revealed a main e�ect of representation condition,

F (1, 107) = 107.529, MSe = 1.219, p < .001. The basis for this main e�ect was that

participants were ∼9% quicker in making judgments about causal semantics in the

animated condition than in the static-graph condition (5.37 seconds vs. 5.92 seconds).

This improvement in response times using animations suggests that the intuitiveness

of the animated representations enabled the participants to comprehend the causal
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information described, and quickly identify matches or discrepancies between the

relation and statement during the recall task.

This analysis also revealed a main e�ect of statement type, F (3, 321) = 273.543, MSe =

2.212, p < .001. The basis for this main e�ect was that participants were faster in

responding to statement type S1 (4.28 seconds) than to statements S4 (5.11 seconds),

S2 (6.22 seconds), and S3 (6.95 seconds), as shown in Figure 6.2. This suggests that

statement type S1 (type of e�ect) was easiest to recall, as the method of representing

the semantic information using increase/decrease of the target size was intuitive and

could be easily related by the participants to the type of e�ect.

Finally, the analysis revealed signi�cant interaction between representation and

statement types, F (3, 321) = 11.431, MSe = 1.225, p < 0.001. A detailed analysis

suggests that participants were ∼6%, F (1, 107) = 27.706, MSe = .954, p < 0.001,

faster with the static-graph representation than with the animations for statement

type S1, ∼5%, F (1, 107) = 10.848, MSe = 1.037, p < .005 and ∼14%, F (1, 107) =

62.667, MSe = 1.995, p < 0.001 faster with animations than with the static-graph

representation for statement types S2 and S3 respectively, and ∼10%, F (1, 107) =

17.481, MSe = .869, p < .001 faster with the animations for statement type S4 (`Yes'

responses only). These results suggest that participants were generally faster with

the animations than with the static-graph representation and that this di�erence was

more prominent as the complexity of the causal statement increased.

A repeated-measures ANOVA on the accuracy rates did not reveal any signi�cant

di�erence between representation types F (1, 107) = 3.044, MSe = 0.025, p > 0.05,

∼82.8% for static-graph and ∼84.3% for animations. This high accuracy rate, along
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Figure 6.3: Accuracy rate for static-graph and animated representations of statement

types: S1(type of outcome), S2(strength of in�uence), S3(magnitude of outcome),

S4(combination of components) and response types: Y(yes), N(no) (±5% error bars

depict the 95% con�dence intervals for the means).

with no di�erence between the major conditions is particularly noteworthy as it sug-

gests that both representations captured or represented the semantics with equiv-

alent e�ciency. However, the analysis revealed a main e�ect of statement type

F (3, 321) = 22.644, MSe = 0.028, p < 0.001. The means suggest that accuracy

rates were lower on statements of type S3 (∼81.2%) and S4 (∼79.8%) in comparison

to S1 (∼88.3%) and S2 (∼84.8%), which in turn suggests that participant perfor-

mance might improve if legends are provided for comparison (Figure 6.3). The anal-

ysis also showed signi�cant interaction between statement type and response type
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F (3, 321) = 14.540, MSe = 0.025, p < 0.001 and between all three factors (represen-

tation, statement, and response types) F (3, 321) = 7.260, MSe = 0.019, p < 0.001,

which suggests that participant accuracy was dependant upon the condition that was

presented. A more detailed analysis of these interactions showed that animations per-

formed with ∼8%, F (1, 107) = 6.821, MSe = 0.029, p < 0.05, higher accuracy rates in

displaying the magnitude of outcome (S3) and with ∼6%, F (1, 107) = 4.810, MSe =

.022, p < .05, higher accuracy rates in displaying the overall causal statement (S4),

than the static-graph representation, in recognizing correct matches between rela-

tion and statement (response type `Yes'). Animations also performed with ∼8%,

F (1, 107) = 11.620, MSe = .023, p < .005, higher accuracy rates than the static-

graph representation in recognizing mismatches between the relation and statement,

when displaying type of outcome (S1).

Summary of Experiment 2

Summarizing the results of this experiment:

• Participants made ∼9% quicker judgments when the causal information was

presented using animations and took longest to comprehend the magnitude of

outcome (S3).

• Participants were ∼5% (S2), ∼14% (S3), and ∼10% (S4, `Yes' responses only)

faster with animations than with the static-graph representation.

• Participants performed with ∼8% higher accuracy rates with animations in

displaying the magnitude of outcome (S3), the overall causal statement (S4),

and type of outcome (S1, `No' responses only).
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• Participants were more accurate in recognizing type of outcome (accuracy rate

= ∼88.3%) and magnitude of in�uence (accuracy rate = ∼84.8%) than in rec-

ognizing the magnitude of outcome (accuracy rate = ∼81.2%). However, this

performance can be improved by the addition of legends.

Overall, the results of this experiment partially concurred with my hypotheses and

showed that the static-graph and animated visualizations can be used to e�ciently

describe the simple causal semantics. An analysis of the accuracy rates showed that

although participants performed equally well with both representations, animations

performed with signi�cantly higher accuracy rates than the static-graph representa-

tion in representing statements S1, S3, and S4 (partial concurrence with Hypothesis

1 ). Overall response times were also signi�cantly lower when the causal semantics

were represented using animations, fully concurring with Hypothesis 2.

Experiments 1 and 2 comprise my analysis of the visualizations representing sim-

ple causal semantics. This concludes the second component of my research. The

next component focuses on conducting similar analysis on the set of complex causal

semantics, as described in the next chapter.
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Factor Accuracy rate

(↓ = % less accu-

racy than highest

accuracy value for

factor(in bold)

Response time

(↑ = % more time

than lowest re-

sponse time value

for factor(in bold)

Representation

type (F1)

Static-graph - 5.924 seconds

(∼9% ↑)

Animation - 5.373 seconds

Semantic type

(F2)

Type of e�ect

(S1)

.883 4.284 seconds

Strength of in�u-

ence (S2)

.848 (∼4% ↓) 6.244 seconds

(∼31% ↑)

Magnitude of out-

come (S3)

.812 (∼8% ↓) 6.953 seconds

(∼38% ↑)

Combination of

components (S4)

.798 (∼9% ↓) 5.113 seconds

(∼16% ↑)

Table 6.4: Summary of accuracy rates and response times for factors showing sig-

ni�cance in the analysis of Experiment 2 results. NOTE: Highest accuracy rate and

lowest response time for each factor are highlighted in bold. The ↓ arrow shows reduc-

tion in accuracy rate when compared to the highest accuracy rate for the factor and

the ↑ arrow shows increase in response time when compared to the lowest response

time for the factor.



Chapter 7

Component III: Analyzing visual

representations of complex causal

semantics - Experiments 3, 4, and 5

In the previous chapter, I tested the e�cacy of the static and animated visual-

izations in representing simple causal semantics. Results of those experiments deter-

mined that the comprehension of simple causal relations improved when they were

depicted using animations. Therefore, I decided to extend the same techniques to the

rest of the identi�ed causal semantics, from Chapter 5.

In order to limit the amount of information displayed to the participant, the

complex causal semantics were divided into two groups, with three semantics per

group:

• Design-Group 1 (DG1): This group consisted of causal semantics such as

additive causality, contradictive causality, and fully-mediated causality. The

141
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semantics of this group extended the concept of causal multiplicity by increasing

the complexity of the simple causal relations, such as �one factor in�uences the

target� to �one or more factors in�uence the target� and by providing additional

information such as the type of in�uence and mediators.

• Design-Group 2 (DG2): This second group of semantics pushed the bound-

aries of causal relations to include complex notions such as multiple targets

(partially-mediated causality), triggered factors (threshold causality), and bi-

state nodes (bidirectional causality).

The complex semantics of DG1 and DG2 were analyzed separately in experiments

3 and 4 respectively, using a Memory Recall test. Finally, Experiment 5 combined

the two design groups and tested the semantics through an Intuitiveness analysis of

the visual representations. These experiments have been described below.

7.1 Experiment 3 - Comparing text, static-graph,

and animated representations of Design-group 1

causal semantics

The goal of this experiment was to evaluate the e�ectiveness of the static-graph

and animated visualizations, over text-only representations of the complex causal

semantics. The causal semantics that I tested in this experiment were additive, con-

tradictive, and partially-mediated causalities. As in Experiment 1 (section 6.1), my

hypotheses were as follows:
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• Hypothesis 1: Participants will perform the recall tasks with higher accuracy

rates and lower response times when the causal relations are enhanced with

visual representations, when compared to a textual description of the informa-

tion.

• Hypothesis 2: Participants will perform more accurately and with faster re-

sponse times when the causal relations are enhanced with animated (vs. static-

graph) visualizations.

7.1.1 Method

Participants

27 undergraduate psychology students of a local university, between the ages of

20 � 30 years, participated in this experiment. None of the students had any formal

training with computers, perceptual visualizations or causal relations. The partici-

pants also had good English language skills, normal to corrected vision, and did not

su�er from a history of color blindness (as established by Ishihara's color blindness

test [Ishihara, 1917]).

Materials

As in Experiment 1, the causal relations were displayed as text, static graphs, and

animations. The text representation consisted of a series of one-line statements of

the causal relations, while the static graphs and animated visualizations were created

using Macromedia Flash�. Contrary to the materials used in Experiment 1, all three

representations were embedded as �ash movies in a .NET program and executed on a
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Windows XP computer, chie�y to record response times in addition to the accuracies.

The visualizations were displayed on a 17" monitor with a 1024 × 768 pixel screen

resolution.

Design

The experiment consisted of a 3 × 2 within subject design. Two independent

variables were identi�ed: Representation Type and Statement Type.

Representation type

• Text: In the text representation, the participants were provided with passages

consisting of 3 positive and 3 negative causal relations, which they were asked

to read for a given amount of time.

• Static-graph: In the static-graph representation, the causal relations were

represented using + and − glyphs, bars, connecting lines, and colors. All the

causal relations were displayed simultaneously. Sizes of the glyphs and bars

were changed to depict di�ering magnitudes of in�uences and outcomes.

• Animation: In the animated representation, the participants were shown an-

imations consisting of nodes, moving bullets (containing + and − glyphs to

depict type of in�uence), and target transformations. Bullet and target sizes

were smoothly modi�ed to depict type and magnitude of in�uences and out-

comes.

Statement type
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As in Experiment 1, at the completion of each trial, the participants were given

a set of causal statements and asked to match the statements to the relations shown

during the trial. Two types of causal statements were presented:

• Correct: A correct statement was one where all the components (strength

and direction of in�uences and strength and direction of e�ects) of the given

statement exactly matched a relation provided during the current trial. For this

statement the participant had to enter a �Correct� response to get a point.

• Incorrect: An incorrect statement is one where the given statement partially

matched a relation that was presented during to the trial. For this statement,

the participant had to select �Incorrect� and, in addition, correct the statement

by recalling the original statement from memory, to get the full score. Fractional

scores were also awarded to participants who were able to partially correct this

type of statement.

Tasks

The experiment tested three conditions; text-only, text + static-graph and text

+ animation. The participants were given two tasks to perform: Memorization and

Recall.

• Memorization: In this task, the participants were asked to read/view the

causal relations and to memorize as many of them as possible within the given

time. In the text-only condition, the participants were asked to read the given

passage for 11/2 minutes and then were asked to �ll the next 11/2 minutes with
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simple tasks that were not related to the experiment, such as connecting a

sequence of dots. The tasks in the text + static-graph and text + animation

condition were similar wherein the participants were asked to view the text for

11/2 minutes and then view a corresponding graph (in the text + static-graph

condition) or animation (in the text + animation condition) for the next 11/2

minutes. As the length of the animation was only 30 seconds, the animation

was repeated 3 times to �ll the 11/2 minute slot.

• Recall task: In the recall task, the participants were asked to respond to

questions based on the relations they just read/viewed. Participant responses

were limited to �Correct� or �Incorrect� (with corrections) and were required to

answer all questions within an 8 minute timeframe.

The representation types were fully counterbalanced using a Latin square design.

Each participant viewed 3 of 12 topics, with one topic per condition. The question-

naire for each condition consisted of 6 questions, with 3 questions of each statement

type (i.e. 3 correct and 3 incorrect statements). The statements were randomly dis-

tributed within the questionnaire. Overall, with 27 participants, 3 conditions, and 6

questions per condition, a total of 486 responses were collected for analysis.

Procedure

The experiment was conducted in two stages. The �rst stage consisted of a training

session that explained the concept of causal relations and their modes of represen-

tation. The participants were also allowed to practice on a sample version of the

experiment. The second stage consisted of the main experiment wherein experimen-
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tal conditions were randomly assigned and time constraints strictly enforced. At the

completion of each condition, the participants were asked to answer a questionnaire

within a time limit of 8 minutes. The program captured the responses and response

times for each of the questions. The participants were given a maximum score of 1

for a correct response and a minimum score of 0 for an incorrect response. If a partic-

ipant answered only parts of a question correctly, they were awarded a corresponding

fraction of the maximum score.

7.1.2 Results and Discussion

Following the procedure described in the Method section, two values were recorded

for each answer given by a participant: accuracy and response times. These data were

then submitted to a 3 × 2 × 3 repeated-measures ANOVA treating semantic type

(fully-mediated vs. additive vs. contradictive), statement type (correct vs. incorrect-

with-corrections), and representation type (text-only vs. text + static vs. text +

animation) as within-subject factors. Table 7.1 summarizes the overall analysis of

the results, along with a summarization of the mean values for the factors showing

signi�cance in Table 7.2.

The analysis of the accuracy points showed a main e�ect of response type with

F (1, 26) = 34.464, MSe = .177p < 0.001. A comparison of the means showed that

participants were ∼31% (.720 vs. .496) more e�ective in recognizing that a given

statement accurately described the displayed causal relation than in determining that

the given statement and relation did not match. The reason for this signi�cance can to

attributed to the fact that participants were able to recall a statement that matched,
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Figure 7.1: Accuracy rate for text-only, text + static-graph, and text + animated

representations of DG1 complex semantics: fully-mediated causality, additive causal-

ity, contradictive causality and statement types: correct, incorrect (±5% error bars

depict the 95% con�dence intervals for the means).

but were less accurate in providing the correct causal information when there was a

discrepancy between the given relations and statement.

The analysis did not show a main e�ect of semantic type (p > .05), which could

be attributed to the number of relations that were presented during the memoriza-

tion task (2 relations per semantic = 6 in total were presented in each experimental

condition).

Also the analysis did not show reliable signi�cance between representation types

(p > 0.05), which suggests that the semantics were equally depicted by each of the
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Factor Accuracy rate Response time

Representation type

(F1)

No signi�cance No signi�cance

Semantic type (F2) No signi�cance Signi�cance

Response type (F3) Signi�cance Signi�cance

F1 × F2 interaction No signi�cance No signi�cance

F1 × F3 interaction No signi�cance No signi�cance

F2 × F3 interaction No signi�cance No signi�cance

F1 × F2 × F3 interac-

tion

No signi�cance No signi�cance

Table 7.1: Summary of analysis showing signi�cant results (in bold), for Experi-

ment 3: Complex causal semantics, DG1, Representation type(F1): Text-only vs.

Text+Static-graph vs. Text+Animation, Semantic type(F2): Additive causality vs.

Contradictive causality vs. Fully-mediated causality, Response type(F3): Correct vs.

Incorrect-with-corrections, Memory Recall Experiment.

three representations. This inference is logical because additive and contradictive

causality are essentially a modi�cation of causal multiplicity and show similar factor

and target information (see section 4). Fully-mediated causality is also similar and

only shows factor and target information, as there is no change in the mediator when

it is in�uenced by the factor. Figure 7.1 compares the accuracy rates for `Correct'

and `Incorrect' statements for DG1 of the complex causal semantics.

An analysis of the response times showed a main e�ect of semantic type F (2, 52) =
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Factor Accuracy rate

(↓ = % less accu-

racy than highest

accuracy value for

factor(in bold)

Response time

(↑ = % more time

than lowest re-

sponse time value

for factor(in bold)

Semantic type

(F2)

Additive causality - 12.752 seconds

(∼24% ↑)

Contradictive

causality

- 12.822 seconds

( ∼25% ↑)

Fully-mediated

causality

- 9.636 seconds

Response type

(F3)

Correct .720 10.097 seconds

Incorrect-with-

corrections

.496 (∼27% ↓) 13.376 seconds

(∼24% ↑)

Table 7.2: Summary of accuracy rates and response times for factors showing sig-

ni�cance in the analysis of Experiment 3 results. NOTE: Highest accuracy rate and

lowest response time for each factor are highlighted in bold. The ↓ arrow shows reduc-

tion in accuracy rate when compared to the highest accuracy rate for the factor and

the ↑ arrow shows increase in response time when compared to the lowest response

time for the factor.

11.152, MSe = 48.098, p < .001. A comparison of the means showed that participants

were ∼25% faster in responding to questions about fully-mediated causality (9.636
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Figure 7.2: Response times for text-only, text + static-graph, and text + animated

representations of DG1 complex semantics: fully-mediated causality, additive causal-

ity, contradictive causality and statement types: correct, incorrect (±5% error bars

depict the 95% con�dence intervals for the means).

seconds) than additive (12.752 seconds) or contradictive causality (12.822 seconds).

The reason for this might be related to the number of factors that a�ected the target

in each of these relations; fully-mediated = 1 factor + 1 mediator (inactive), additive

= 2 factors, contradictive = 2 factors. The analysis also showed a main e�ect of

response type F (1, 26) = 62.490, MSe = 20.901, p < 0.001 and a comparison of the

means showed that participants were faster (10.097 seconds vs. 13.376 seconds) in

recognizing a match between the given relation and the statement, than in recognizing

a mismatch, which again is expected as it was easier to recall the correct statement

than to rectify an incorrect one by providing the correct causal information. The
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analysis did not show a reliable e�ect of representation type F (2, 52) = .485, MSe =

45.244, p > 0.5, which suggested that all three representations required the similar

amount of attention and recall while matching the statements (Figure 7.2).

Summary of Experiment 3

The above results aid in the following inferences:

• Participants were more∼31% accurate and took less time in recognizing a match

between the given statement and relation rather than in correcting a mismatch.

This can be attributed to the memory power of the participant itself and to

the di�culty in providing the correct causal information, when the relation and

statement did not match.

• Fully-mediated causality was recalled faster than additive (∼24%) or contradic-

tive causality (∼25%). The faster response time could be attributed to the fact

that even though fully-mediated causality had two factors, one of them was an

inactive mediator and did not contribute to the information described in the

relation and hence, must have been generally ignored.

• Signi�cance was not seen between the accuracy rates or response times for

the three representation types, which suggests that the causal semantics were

equally depicted by each of the representations.

The static and animated representations did not show signi�cant improvement in

accuracy rates or response times than their textual counterparts, and hence do not

concur with Hypothesis 1. One reason for this could be attributed to the method
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of presenting the statements for comparison. The statements were presented in text

form and therefore might be easier to match to a textual representation of the causal

relations. The fact that the static and animated representations did not perform any

worse than the text-only representation could be noted as encouraging as participants

viewed the visual representation after they read the textual representation, which

should have caused a distraction and decrease in performance.

Also, animations did not show signi�cant improvement in accuracy rates or re-

sponse times when compared to the static-graph representations, which shows non-

concurrence with Hypothesis 2. The insigni�cant improvement in performance that

was seen with the animations could be attributed to: (a) simplicity of the seman-

tics presented in this experiment or (b) di�culty in remembering large amounts of

information. If cause (a) had in�uence on the results of this experiment, it would

interesting to test if the visual representations show any improvement in accuracy

rates or response times when the complexity of the semantics is increased, as studied

in Experiment 4 section 7.2 below, while cause (b) has been tested in Experiment 5

(section 7.3), by reducing the number of relations to be memorized and testing the

intuitiveness of the static-graph and animated representations.
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7.2 Experiment 4 - Comparing text, static-graph,

and animated representations of Design-Group

2 causal semantics

The goal of this experiment was to evaluate the e�ciency of static and animated

visualizations, over text-only representations of DG2 complex causal semantics. The

causal semantics that I tested in this experiment were partially-mediated causality,

threshold causality, and bidirectional causality. As in Experiment 1 (section 6.1), my

hypotheses were as follows:

• Hypothesis 1: Participants will perform the recall tasks with higher accuracy

rates when the causal relations are enhanced with visualizations, when compared

to a textual description of the information.

• Hypothesis 2: Participants will perform more accurately and with faster re-

sponse times when the causal relations are enhanced with animated (vs. static-

graph) visualizations.

7.2.1 Method

Participants

40 undergraduate psychology students, between the ages of 20 and 30 years, par-

ticipated in this experiment. Participants satis�ed the required criteria of good En-

glish language skills, normal to corrected vision, and passed Ishihara's test for color

blindness [Ishihara, 1917].
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Materials

As in the previous experiment, the visualizations were displayed through a .NET

program with embedded Macromedia Flash� �les, in a Windows XP environment.

The visualizations were displayed on a 17" monitor with a 1024 × 768 pixel screen

resolution.

Design

The experiment was conducted using a 3 × 2 within subject design. Two inde-

pendent variables were identi�ed: Representation Type and Statement Type.

• Representation type: Three types of representations were shown to the par-

ticipants; Text (lines of textual descriptions), Static-graph (graphical repre-

sentation), and Animation (smooth animation and sequential display of causal

relation).

• Statement type: At the end of each trial, the participants were asked to

respond to a set of questions, divided equally into two categories; Correct (where

all the components of the statement matched a given causal relation), and

Incorrect (where only some of the components of the statement matched the

given causal relation).

Tasks

The experiment tested three conditions; text-only, text + static-graph and text

+ animation. The participants were given two tasks to perform: Memorization and

Recall.
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• Memorization: In this task, the participant was initially asked to read the

given passage of causal relations for 11/2 minutes and was then asked to view

the corresponding visualization for the next 11/2 minute, except in the text-only

condition where they performed a �ller task (connect-the-dots) to supplement

the lack of visualization. As in the other experiments, the 30 second long

animation was repeated 3 times to �ll the 11/2 minute timeslot.

• Recall: In this task, the participants were asked to recognize relations that

they read/viewed. Participant responses were limited to �Correct� or �Incor-

rect� (with corrections in case they deemed a relation to be incorrectly stated)

responses within an 8 minute timeframe.

The representation types were fully counterbalanced using a Latin square design.

Three topics were randomly picked from a list of twelve and each questionnaire con-

sisted of 6 questions (3 correct and 3 incorrect). Overall with 40 participants, 3

conditions, and 6 questions per condition, a total of 720 responses were collected for

analysis.

Procedure

Participants were allowed to practice on a sample version of the experiment until

they were comfortable with the tasks. During the experiment, participant responses

and response times were recorded. The participant was given a score of 1 for a correct

response, a score of 0 for each completely incorrect response, and a fraction of the

maximum score for a partially correct response.
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Figure 7.3: Accuracy rates for text-only, text + static-graph, and text + animated

representations of DG1 complex semantics: partially-mediated causality, threshold

causality, bidirectional causality and statement types: correct, incorrect (±5% error

bars depict the 95% con�dence intervals for the means).

7.2.2 Results and Discussion

As in Experiment 3 (section 7.1), two values were recorded for each answer given

by a participant: accuracy and response time. The data were then submitted to

a 3 × 2 × 3 repeated-measures Analysis Of Variance (ANOVA) treating semantic

type (partially-mediated vs. threshold vs. bidirectional), statement type (correct

vs. incorrect-with-corrections), and representation type (text-only vs. text + static-

graph vs. text + animation) as within-subject factors. Table 7.3 summarizes the

overall analysis of the results, along with a summarization of the mean values for the
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factors showing signi�cance in Table 7.4.

Factor Accuracy rate Response time

Representation type

(F1)

No signi�cance No signi�cance

Semantic type (F2) No signi�cance Signi�cance

Response type (F3) Signi�cance Signi�cance

F1 × F2 interaction No signi�cance No signi�cance

F1 × F3 interaction No signi�cance No signi�cance

F2 × F3 interaction Signi�cance No signi�cance

F1 × F2 × F3 interac-

tion

No signi�cance No signi�cance

Table 7.3: Summary of analysis showing signi�cant results (in bold), for Exper-

iment 4: Complex causal semantics, DG2, Representation type(F1): Text-only

vs. Text+Static-graph vs. Text+Animation, Semantic type(F2): Partially-mediated

causality vs. Threshold causality vs. Bidirectional causality, Response type(F3): Cor-

rect vs. Incorrect-with-corrections, Memory Recall Experiment.

An analysis of the accuracy points showed a main e�ect of response type F (1, 39) =

40.394, MSe = 8.8, p < 0.001 and a comparison of the means showed that participants

were ∼31% more e�ective in matching relations to statements than in recognizing a

mismatch. This di�erence can be attributed to the memory power of the participants

and also to the number of relations that the participants were asked to memorize (6

relations) and recall while providing the correct causal information for the incorrect
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Factor Accuracy rate

(↓ = % less accu-

racy than highest

accuracy value for

factor(in bold)

Response time

(↑ = % more time

than lowest re-

sponse time value

for factor(in bold)

Semantic type

(F2)

Partially-

mediated causal-

ity

- 14.760 seconds

(∼14% ↑)

Threshold causal-

ity

- 12.703 seconds

Bidirectional

causality

- 15.721 seconds

(∼19% ↑)

Response type

(F3)

Correct .725 11.790 seconds

Incorrect-with-

corrections

.504 (∼30% ↓) 16.999 seconds

(∼30% ↑)

Table 7.4: Summary of accuracy rates and response times for factors showing sig-

ni�cance in the analysis of Experiment 4 results. NOTE: Highest accuracy rate and

lowest response time for each factor are highlighted in bold. The ↓ arrow shows reduc-

tion in accuracy rate when compared to the highest accuracy rate for the factor and

the ↑ arrow shows increase in response time when compared to the lowest response

time for the factor.
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statements.

The analysis did not show a signi�cance in representation type (p > 0.05), which

suggests that the semantics were equally depicted in all three representation condi-

tions (Figure 7.3). The analysis also showed signi�cant interaction between semantic

and statement types. A 3 × 3 repeated-measures ANOVA for each response type

treating semantic type and representation type as within-subject factors suggests

that there is no signi�cance between the performances of the semantics for the `Incor-

rect' responses. However, analysis of the results for the `Correct' responses suggests a

main e�ect of semantic type, F (2, 78) = 3.440, MSe = .162, p < .05. Comparison of

the means reveal that participants were most accurate in responding to bidirectional

causality statements (mean = .783), ∼5% less accurate with threshold causality, and

∼17% less accurate with partially-mediated causality. These results suggest that

the reason participants were able to comprehend bidirectional causality best could

be attributed to the change in direction of the causal action (factor→target and

factor←target); a unique feature that causes it to stand out from the other seman-

tics. Figure 7.3 compares accuracy rates for the `Correct' and `Incorrect' responses

across the three representation types.

An analysis of the response times showed a main e�ect of semantic F (2, 78) =

7.539, MSe = 570.55, p < 0.005 and statement type F (1, 39) = 53.132, MSe =

91.898, p < 0.001. A comparison of the means of the semantic showed that partici-

pants were able to recall threshold relations ∼19% faster than bidirectional relations

and ∼13% faster than partially-mediated relations, since the threshold relation had

less information (one factor and one target) to memorize and recall than the partially-
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Figure 7.4: Response times for text-only, text + static-graph, and text + animated

representations of DG1 complex semantics: partially-mediated causality, threshold

causality, bidirectional causality and statement types: correct, incorrect (±5% error

bars depict the 95% con�dence level intervals for the means).

mediated and bidirectional causality relations. A comparison of the means for the

statement type showed that participants took ∼31% less time to recall and respond

to correct matches between the relations and the statements than in recognizing and

correcting a mismatch, which as with Experiment 3 can be attributed to the number

of relations provided and the di�culty in providing the correct information in case of

a mismatch between the given relation and statement. Figure 7.4 shows the response

times for `Correct' and `Incorrect' statements for DG2 complex causal semantics.
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Summary of Experiment 4

From the above results, I can infer the following:

• Participants were more accurate (∼31%) and responded faster (∼31%) when

recognizing that a given statement matched the displayed relation than in rec-

ognizing a mismatch.

• Results also reveal that participants were more accurate in responding to bidi-

rectional causality statements, but also took the most time in providing an-

swers to these statements. This suggests that bidirectional causality was easier

to comprehend due to its uniqueness (two-way �ow of information), but also

consumed more time as it contradicted Michotte's rules of linearity in causal

motion (described in 2.3).

The analysis did not show a main e�ect of representation type, which shows non-

concurrence with Hypothesis 1. The lack of signi�cance can be attributed to the man-

ner of presenting the statements (using text representation) which closely matched

the manner of representing the causal relation in the text-only condition. The analysis

also did not show any signi�cance between the static-graph and animated visualiza-

tions (non-concurrence with Hypothesis 2 ) which could be attributed to the large

number of relations that the participant was asked to view and memorize each time

(6 per condition). Therefore, a direct comparison of the static-graph and animated

representations might be necessary to determine their intuitiveness in describing the

causal semantics, which has been conducted in the next section (Experiment 5).
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7.3 Experiment 5 - Comparing static-graph and ani-

mated representations of complex causal seman-

tics (published in APGV'09)

The goal of this experiment was to compare the e�ectiveness of my static-graph

and animated representations in describing complex causal relations. Contrary to the

previous experiments in this subsection, the two design groups were combined and all

six complex causal semantics were incorporated in this experiment: additive causality,

contradictive causality, fully-mediated causality, partially-mediated causality, thresh-

old causality, and bidirectional causality. As a follow up to the previous experiments,

this experiment aimed at testing the intuitiveness of the static-graph and animations

in describing the causal information, in the absence of a textual description. The

hypotheses for this experiment were as follows:

• Hypothesis 1: Participants will perform the recall tasks more accurately when

the causal relations are described using animations, when compared to a textual

description of the information.

• Hypothesis 2: Participants will respond faster when the causal relations are

depicted as animations.
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7.3.1 Method

Participants

49 undergraduate psychology students of a local university, between the ages of

20 and 30 years, participated in this experiment. The participants satis�ed the same

selection criteria as in the previous experiments (age, no color blindness, normal to

corrected vision, no prior experience with causal graphs).

Materials

As in the previous experiments, this experiment was executed as a .NET program

with embedded static-graph and animated Macromedia Flash� �les. Individual copies

of the program were executed on a Windows XP computer and displayed on a 17" Dell

monitor with a 1024 × 768 pixel screen resolution.

Design

The experiment comprised of a 2 × 6 within subject design. Two independent

variables were identi�ed: Representation Type and Semantic Type.

Representation type

Two types of representations were shown to the participants: Static-graph and

Animation.

• Static-graph: In this representation type, the participants were shown a static

graph with 1 � 2 causal relations. In the case where 2 causal relations were

shown, both the relations were shown simultaneously and colors were used to

di�erentiate between the relations. In addition, color and +/− glyphs were
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used to depict in�uences, and upright and inverted bars were used to depict

outcomes. Size of the glyphs and the bars were varied to show small and large

amounts of in�uence or outcome.

• Animation: In this representation type, the participants were shown an ani-

mation which contained about 1 or 2 causal relations, ordered sequentially. As

in the animated representations of the previous experiments, the causal relations

were visualized using animated factors, bullets, and targets.

Statement type

At the completion of each trial, the participants were shown a statement based on

the relation(s) they viewed and were asked to correctly match six types of statements,

with each statement depicting one type of complex causal semantic; additive causality

(S1), contradictive causality (S2), fully-mediated causality (S3), partially-mediated

causality (S4), threshold causality (S5), and bidirectional causality (S6).

Tasks

This experiment consisted of two main tasks:

• Memorization: In this task, the participants were shown and asked to mem-

orize either a static or an animated causal relation for 9 seconds.

• Recall: In this task, the participants were presented with a statement and

asked to match it to one of the relations shown in the memorization task. If

the statement exactly matched the information provided in the memorization

task the participants were required to respond `Yes' (`B' key on the keyboard)
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in order to score a point. Similarly, if the statement did not exactly match the

previously given information the participant was required to respond `No' (`N'

key on the keyboard), in order to score the point.

The trials were fully counterbalanced using a Latin square design. Each trial was

based on a random selection of 1 of 12 topics, with one statement per trial. The

experiment consisted of 120 trials in total, divided into 5 sessions. Overall, with

49 participants, 5 sessions, 2 representation types (static-graph and animations) per

session, 6 statement types per representation (additive, contradictive, fully-mediated,

partially-mediated, threshold, and bidirectional), and 2 response types (Yes and No)

per statement type, a total of 5880 responses were collected for analysis.

Procedure

The experiment was divided into two phases. In the training phase, the participant

was asked to practice on a sample version of the program, while in the experiment

phase, participant responses and response times were recorded for each trial. At the

end of each session, timers were paused and the participants were allowed to take a

break if required.

7.3.2 Results and Discussion

Following the procedure described in the method section, two values were recorded

for each answer provided by the participant; accuracy points and response time. These

data were then submitted to a 2 × 6 × 2 repeated-measures Analysis of Variance

(ANOVA) treating representation type (static-graph vs. animation), semantic type
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Figure 7.5: Accuracy rates for static-graph and animated representations of state-

ment types: S1(additive causality), S2(contradictive causality), S3(fully-mediated

causality), S4(partially-mediated causality), S5(threshold causality), S6(bidirectional

causality) and response types: Y(yes), N(no) (±5% error bars depict 95% con�dence

intervals for the means).

(additive vs. contradictive vs. fully-mediated vs. partially-mediated vs. threshold

vs. bidirectional), and response type (yes vs. no) as within-subject factors. Table 7.5

summarizes the overall analysis of the results, along with a summarization of the

mean values for the factors showing signi�cance in Table 7.6.
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Factor Accuracy rate (↓

= % less accuracy

than highest accu-

racy value for fac-

tor(in bold)

Response time

(↑ = % more time

than lowest re-

sponse time value

for factor(in bold)

Representation

type (F1)

Static-graph .753 (∼5% ↓) 8.115 seconds

(∼8% ↑)

Animation .795 7.441 seconds

Semantic type

(F2)

Additive causal-

ity (Q1)

.804 7.054 seconds

(∼5% ↑)

Contradictive

causality (Q2)

.770 (∼4% ↓) 7.623 seconds

(∼12% ↑)

Fully-mediated

causality (Q3)

.801 6.670 seconds

Partially-

mediated causal-

ity (Q4)

.775 (∼3% ↓) 8.847 seconds

(∼25% ↑)

Threshold

causality (Q5)

.752 (∼6% ↓) 8.257 seconds

(∼19% ↑)

Bidirectional

causality (Q6)

.745 (∼7% ↓) 8.217 seconds

(∼18% ↑)
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Response type

(F3)

Yes - 8.102 seconds

(∼8% ↑)

No - 7.454 seconds

Table 7.6: Summary of accuracy rates and response times for factors showing sig-

ni�cance in the analysis of Experiment 5 results. NOTE: Highest accuracy rate and

lowest response time for each factor are highlighted in bold. The ↓ arrow shows reduc-

tion in accuracy rate when compared to the highest accuracy rate for the factor and

the ↑ arrow shows increase in response time when compared to the lowest response

time for the factor.

An analysis of the accuracy points showed a main e�ect of representation type

F (1, 48) = 20.339, MSe = .025, p < 0.001. A comparison of the means showed that

participants were ∼5% more accurate when causal relations were presented using

animations. The results suggest that participants were able to comprehend and recall

the causal information more accurately with the animations, compared to the static-

graph representation.

The analysis also showed a main e�ect of semantic type F (5, 240) = 4.267, MSe =

.028, p < 0.005 and a comparison of the means showed that participants were most

accurate with fully-mediated causality and least accurate in recognizing bidirectional

causality (Figure 7.5).Finally, the analysis showed signi�cant interaction between se-

mantic and response types, F (5, 240) = 2.656, MSe = .032, p < .05. Detailed anal-

ysis revealed a main e�ect of semantic type for the `Yes' responses, F (5, 240) =

4.559, MSe = .033, p < .001, as shown in Figure 7.5. These results are expected
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Factor Accuracy rate Response time

Representation type

(F1)

Signi�cance Signi�cance

Semantic type (F2) Signi�cance Signi�cance

Response type (F3) No signi�cance Signi�cance

F1 × F2 interaction No signi�cance Signi�cance

F1 × F3 interaction No signi�cance No signi�cance

F2 × F3 interaction Signi�cance Signi�cance

F1 × F2 × F3 interac-

tion

No signi�cance Signi�cance

Table 7.5: Summary of analysis showing signi�cant results (in bold), for Experiment

5: Complex causal semantics, DG1 & DG2, Representation type(F1): Static-graph

vs. Animation, Semantic type(F2): Additive causality vs. Contradictive causality

vs. Fully-mediated causality vs. Partially-mediated causality vs. Threshold causality

vs. Bidirectional causality, Response type(F3): Yes vs. No, Intuitiveness Evaluation

Experiment.

because fully-mediated causality contains the least amount of causal information as

the mediator is not active, and bidirectional causality contains the most amount of

causal information as it is a two way relationship between the factor and the target.

An analysis of the response times showed a main e�ect of representation type

F (1, 43) = 12.118, MSe = 9.906, p < 0.005. The basis for this main e�ect was that

participants responded faster when the causal relations were visualized using anima-
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Figure 7.6: Response times for static-graph and animated representations of state-

ment types: S1(additive causality), S2(contradictive causality), S3(fully-mediated

causality), S4(partially-mediated causality), S5(threshold causality), S6(bidirectional

causality) and response types: Y(yes), N(no) (±5% error bars depict 95% con�dence

intervals for the means).

tions. Speci�cally, participants were ∼8% faster with animations than static graphs

(7.441 seconds vs. 8.115 seconds), which suggests that the animations were more

intuitive and could be comprehended faster. The analysis also showed a main e�ect

of semantic type F(5, 215) = 15.266, MSe = 7.705, p < 0.001, which suggests that

participant performance was dependent upon the type of semantic that was displayed.

Speci�cally, participants took the longest to respond to partially-mediated causality
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statements (mean = 8.847 seconds), while they were ∼6% faster in responding to

threshold causality statements, ∼7% faster in responding to bidirectional causality

statements, ∼14% faster in responding to contradictive causality statements, ∼20%

faster in responding to additive causality statements, and ∼25% in responding to

fully-mediated causality statements (Figure 13). Again, the results suggest that par-

ticipants responded to fully-mediated causality statements fastest as it contained the

least amount of information to memorize and recall.

The analysis also showed a main e�ect of response type F (1, 43) = 10.564, MSe =

10.500, p < 0.005. Surprisingly, a comparison of the means showed that participants

were ∼8% faster in recognizing a mismatch between the displayed relation and the

given statement than in recognizing a match. This is in contrast to the previous

experiments and suggests that as the participants had fewer relations to remember,

they were quickly able to recognize the mismatch, but in cases where the relations and

statement matched, feedback from the participants suggested that they took longer

to double-check in order to ensure that they were providing the correct response.

The analysis of the response times also showed signi�cant interaction between

representation type and semantic type F (5, 215) = 5.495, MSe = 4.850, p < 0.001,

between semantic type and response type F (5, 215) = 9.182, MSe = 5.159, p < 0.001,

and between all three variable groups; representation type, semantic type, and re-

sponse type F (5, 215) = 2.469, MSe = 4.363, p < 0.05. These interactions suggest

that participant response times were signi�cantly in�uenced by the condition (repre-

sentation type vs. semantic type vs. response type) that was presented. The analysis

was broken down into simpler 2 × 2 and one-way ANOVA's to examine individual
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e�ects. Results of these analysis showed that for semantic type Q1 (additive causal-

ity), although there was no signi�cant di�erence in recognizing correct matches (`Y'

response type), for both representation types, participants had signi�cantly lower re-

sponse times (∼17%) with animations, F (1, 43) = 9.431, MSe = 3.727, p < 0.005,

when asked to recognize a mismatch between the given statement and visualiza-

tion (`N' response type). The analysis of participant performance for semantic type

Q2 showed signi�cant reduction in response times with the animated representa-

tion when compared to the static representation, both for response type `Y': ∼11%

faster, F (1, 43) = 4.398, MSe = 3.546, p < 0.05, and response type `N': ∼17% faster,

F (1, 43) = 8.096, MSe = 5.749, p < 0.01. With semantic type Q3 participants were

again signi�cantly faster with animations than static representations for both re-

sponse type `Y': ∼37.6% faster, F (1, 43) = 29.920, MSe = 3.717, p < 0.001 and

response type `N': ∼16.8% faster, F (1, 43) = 9.095, MSe = 3.161, p < 0.005.

Summary of Experiment 5

Summarizing the results of this analysis:

• Overall, participants were ∼5% more accurate and ∼8% faster when the causal

relations were represented using animations.

• Participants were ∼8% faster in recognizing a mismatch between relation and

statement as they took longer to verify that they were providing the correct

answer when they recognized a match.

• Participant performance depended upon the combination of representation type,

semantic type, and response type that was presented during each trial of the
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experiment. Animations in general had higher accuracy rates and lower response

times than the static-graph representation. This di�erence in performance was

signi�cant with the simple causal notations such as additive, contradictive, and

fully-mediated causalities. However, as the complexity of the causal information

increased, the di�erence between the representations reduced; although this can

be attributed to the inexperience of the participants and the limited training

that was provided to them before the start of the experiment.

The analysis of my experimental results concurs with Hypothesis 1 as the partic-

ipant accuracy improved when animations were employed to depict the causal infor-

mation. The results also concurred with Hypothesis 2 as response times signi�cantly

reduced with animations when compared to the static-graph representation. The

results also suggest that the combination of representation, semantic, and response

types uniquely in�uence participant performance and that the representation should

be chosen based on the type of causal information presented to the viewer.

A point to note in the above studies is the di�erence between the methods of

displaying the relations using the two representations. In the static-graph representa-

tion, all the causal relations in a scenario were presented simultaneously (using unique

colors), while in the animated representation the relations were shown sequentially.

It would be interesting to determine if the improvement in participants' performance

was seen because of the animation of the bullets and the nodes or because of the

isolation of information when the relations were displayed in sequence. Therefore, in

order to establish the e�ectiveness and intuitiveness of the animations, I also tested

a comparable and dynamic version of the static graphs to the animated representa-
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tion. Two types of static representations were therefore identi�ed in the course of this

study; static-graph and static-sequence. The next chapter describes experiments that

were designed to compare the intuitiveness of the animations to their corresponding

static-sequence representations.



Chapter 8

Component IV: Isolating the

e�ciency of the animated

visualizations: animation vs.

static-sequence representations -

Experiments 6, 7, 8, and 9

Previous research [Tversky et al., 2000] states that animations are costly and

should be used only when necessary. Such studies have also concluded that where

static representations can convey the same information as that of animation, the

former are preferable to the latter.

The results of Chapter 7 determined that participants performed more accurately

when causal descriptions were enhanced with animations rather than with static rep-

176
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Figure 8.1: (a) Static-graph representation of a Flu scenario showing simultane-

ous presentation of causal relations, which are distinguished from one another using

unique colors, and (b) static-sequence representation of the Flu scenario showing the

isolation and sequential presentation of causal information, eliminating the need for

color coding.

resentations. However, it can be argued that the main reason for this improved per-

formance can be attributed to the reduction in clutter, when the causal relations were

animated in sequence, and not to the animation itself. Therefore, this experiment

focuses on determining which component of the animation causes the improvement

in performance over the static-graph representations. For purposes of analysis the

animation can be divided into two major components:
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• Smooth animation of the graph: The animation of the graph includes move-

ment of the bullets between the factors and the targets, describing in�uence,

and the smooth deformation of the target, describing e�ect (Figure 8.1.(a)).

• Sequential animation of the causal relations: The second component

of the animated visualization is the method of displaying the causal relations

in sequence. By separating and clearly identifying one causal relation from

another, the animated representation reduces clutter and removes the partici-

pant's dependency on color, which was a main characteristic of the static-graph

representation (Figure 8.1.(b)).

The experiments conducted in Chapters 6 and 7 visualized the causal semantics

using the static-graph representation. The main di�erences of this representation

(from the animations) were (a) representation of information using static glyphs,

(b) simultaneous presentation of causal relations, and (c) color coding to distinguish

between the relations. As I was trying to determine the e�ectiveness of the smooth

animation of the graph in the animated representation, the static-graph was enhanced

with the sequential animation of the causal relations (vs. feature (c) of the static-

graph representation) and renamed as the static-sequence representation:

• Static-graph representation: In the older static-graph representation, all

the causal relations in the scenario were displayed simultaneously and the par-

ticipants were asked to use color codes to group glyphs into their respective

causal relations.

• Static-sequence representation: In the static-sequence version, the causal
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relations were isolated and shown one at a time, in sequence, thus reducing

clutter and also removing the participants' dependence upon color codes.

The goal of the experiments in this chapter was to compare the e�ectiveness of

static-sequence representations to animated representations of the causal semantics.

8.1 Experiment 6 - Comparing static-sequence to smooth

animation of simple causal relations

This experiment focused on testing static-sequence, and animated representations

of the simple causal semantics and comparing the static-sequence results to the per-

formance of the static-graph representation in Experiment 2 (section 6.2).

My hypotheses for this experiment were as follows:

• Hypothesis 1: Participants will perform the recall tasks with higher accuracy

rates when the causal relations are enhanced with animations, when compared

to a textual description of the information.

• Hypothesis 2: Participants will be able to perform the recall tasks with faster

response times when the causal relations are enhanced with animations.

• Hypothesis 3: Sequential presentation of information will not improve perfor-

mance (accuracy rates and response times) of the static representation.
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8.1.1 Method

Participants

41 undergraduate psychology students of a local university participated in this

experiment. The participants satis�ed the same selection criteria as in Experiment

2 (age, normal to corrected vision, no prior experience with causal graphs). Color

blindness tests were not conducted in this experiment, as color codes were unnecessary

due to the sequential (vs. simultaneous) representation of the relations.

Materials

The experiment consisted of two major conditions for representing the relations;

static-sequence and animations. The experiment was generated as a .NET program

with the embedded static-sequence and animated Macromedia Flash� �les. Individ-

ual copies of the program were executed on a Windows XP computer and displayed

on a 17" Dell monitor with a 1024 × 768 pixel screen resolution.

Design

The experiment was based on a 2 × 4 within-subject design, similar to Experiment

2 (section 6.2.1). The two independent variables were: Representation Type and

Statement Type.

Representation type

Two types of representations were shown to the participants: Static-sequence and

Animation.

• Static-sequence: The static-sequence representation was similar to the static-
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graph representation in Experiment 2, with the only di�erence that in the static-

sequence representation the relations were isolated and shown sequentially using

monochromatic glyphs.

• Animation: This representation type was the same as that tested in Experi-

ment 2. The participants were shown an animation, which contained about 1 -

2 causal relations, repeated 3 times.

Statement type

At the completion of each trial, the participants were shown a statement based

on the relation(s) they viewed. The statement types were similar to the ones used in

Experiment 2:

• Type of outcome (S1): tested the ability of the participant to distinguish

between positive and negative outcomes in the causal relation.

• Strength of in�uence (S2): tested the ability of the participant to compre-

hend the amount of in�uence a factor had on the target.

• Magnitude of the outcome (S3): tested the ability of the participant to

comprehend the magnitude of the outcome.

• Combination of components (S4): tested the ability of the participant to

identify all the constituent elements of a causal relation, such as the type and

magnitude of outcome and strength of the in�uence.
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Tasks

As in Experiment 2, the experiment consisted of two tasks; memorization and

recall. In the memorization task the participants were shown the causal relations for

a pre-determined length of time (9 seconds per causal relation) and asked to carefully

view all the possible relationships that existed in the scenario. In the recall task, the

participants were shown a statement and asked to determine if it matched one of the

displayed relations (B = `Yes' or N = `No'). Participants were instructed to respond

as accurately and quickly as possible.

The trials were fully counterbalanced using a Latin square design and each trial

was based on a random selection of 1 of 12 topics, with one statement per trial. The

experiment consisted of 96 trials in total, divided into 6 sessions. Overall, with 41

participants, 6 sessions, 2 representation types (static-sequence and animations) per

session, 4 statement types per representation (S1, S2, S3, and S4), and 2 response

types (Yes and No) per statement, a total of 3936 responses were collected for analysis.

Procedure

The experiment was conducted in two phases. In the training phase, the par-

ticipants practiced on a sample version of the experiment, without help from the

experimenter. In the experiment phase, each trial recorded the participants' response

accuracy and time. At the end of each session, timers were paused and the partici-

pants were allowed to take a break if desired.
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Figure 8.2: Response times for static-sequence and animated representations of state-

ment types: S1(type of outcome), S2(strength of in�uence), S3(magnitude of out-

come), S4(combination of components) and response types: Y(yes), N(no) (±5%

error bars depict 95% con�dence intervals for the means).

8.1.2 Results and Discussion

Following the description provided in the Method section, two values were recorded

for each answer provided by the participant: accuracy and response time. These

values were then submitted to a 2 × 4 × 2 repeated-measures Analysis of Variance

(ANOVA) treating representation type (static-sequence vs. animation), semantic type
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(S1 vs. S2 vs. S3 vs. S4), and response type (`Y' vs. `N') as within subject factors.

Table 8.1 summarizes the overall analysis of the results, along with a summarization

of the mean values for the factors showing signi�cance in Table 8.2.

Factor Accuracy rate Response time

Representation type

(F1)

No signi�cance Signi�cance

Semantic type (F2) Signi�cance Signi�cance

Response type (F3) Signi�cance No signi�cance

F1 × F2 interaction No signi�cance No signi�cance

F1 × F3 interaction No signi�cance No signi�cance

F2 × F3 interaction Signi�cance No signi�cance

F1 × F2 × F3 interac-

tion

No signi�cance No signi�cance

Table 8.1: Summary of analysis showing signi�cant results (in bold), for Experiment

6: Simple causal semantics, Representation type(F1): Static-sequence vs. Animation,

Semantic type(F2): Type of e�ect (S1) vs. Strength of in�uence (S2) vs. Magnitude

of outcome (S3) vs. Combination of components (S4), Response type(F3): Yes vs.

No, Intuitiveness Evaluation Experiment.
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Factor Accuracy rate

(↓ = % less accu-

racy than highest

accuracy value for

factor(in bold)

Response time

(↑ = % more time

than lowest re-

sponse time value

for factor(in bold)

Representation

type (F1)

Static-sequence - 5.4 seconds (∼3%

↑)

Animation - 5.2 seconds

Semantic type

(F2)

Type of e�ect

(S1)

.902 4.042 seconds

Strength of in�u-

ence (S2)

.825 (∼8% ↓) 5.988 seconds

(∼32% ↑)

Magnitude of out-

come (S3)

.818 (∼9% ↓) 6.379 seconds

(∼36% ↑)

Combination of

components (S4)

.835 (∼7% ↓) 4.791 seconds

(∼15% ↑)

Response type

(F3)

Yes .874 -

No .816 (∼7% ↓) -

Table 8.2: Summary of accuracy rates and response times for factors showing sig-

ni�cance in the analysis of Experiment 6 results. NOTE: Highest accuracy rate and

lowest response time for each factor are highlighted in bold. The ↓ arrow shows reduc-

tion in accuracy rate when compared to the highest accuracy rate for the factor and

the ↑ arrow shows increase in response time when compared to the lowest response

time for the factor.
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An analysis of the response times showed a reliable main e�ect of representation

type F (1, 40) = 4.577, MSe = 1.425, p < .05. Speci�cally, participants were ∼4%

faster in responding to questions when the causal relations was visualized using the

animations, than the static-sequence graphs. This could be credited to the intuitive-

ness of the animations which allows for transitioning from the beginning to the end.

The results also showed a main e�ect of semantic type F (3, 120) = 69.245, MSe =

2.748, p < 0.005. A comparison of the means showed that participants were fastest

in responding to questions about the type of outcome (S1), and took about ∼19%,

∼48%, ∼58% more time in responding to statement types S4, S2, and S3 respectively.

Figure 8.2 compares the response times for `Yes' and `No' responses, for statement

types S1 � S4.

An analysis of the accuracy rates did not show a main e�ect of representation

type F (1, 40) = .106, MSe = .022, p > 0.5. Speci�cally, a comparison of the means

for the static and animated representations (.847 vs. .843 respectively) showed that

participants were equally e�cient with both modes of visualization. These results

concur with the results in Experiment 2 and can be attributed to the simplicity

of the semantics being illustrated. However, the analysis showed a main e�ect of

semantic type F (3, 120) = 11.364, MSe = 0.22, p < 0.005 and a comparison of the

means showed that participants were most e�cient in comprehending the type of

outcome (S1, mean = .902) as the glyphs (static-sequence) and the changes to the

target (animation) were highly intuitive. Although accuracy rates were quite high,

participants had most di�culty in determining the strength of the in�uence (S2,

mean = .825) and magnitude of the outcome (S3, mean = .818). The deterioration
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Figure 8.3: Accuracy rates for static-sequence and animated representations of state-

ment types: S1(type of outcome), S2(strength of in�uence), S3(magnitude of out-

come), S4(combination of components) and response types: Y(yes), N(no) (±5%

error bars depict 95% con�dence intervals for the means).

in performance can be attributed to the lack of legends for comparison, which would

have helped in determining the size of the in�uences and outcomes (small or large).

This issue has been addressed in the remaining experiments.

The analysis also showed a main e�ect of response type, F (1, 40) = 19.732, MSe =

.028, p < 0.001, which suggest that participants were ∼7% more accurate in rec-

ognizing correct matches than incorrect matches between visual representation and
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statement. With respect to recognizing mismatches, participants were most e�ective

with statement type S1 and least e�ective with statement type S2, mostly due to

lack of legends (Figure 8.3). The analysis also showed interaction between seman-

tic and response type, F (3, 120) = 2.926, MSe = .024, p < .05. Detailed analysis

of the `Yes' responses also showed interaction between representation and statement

type, F (3, 120) = 5.033, MSe = .014, p < .005, and a breakdown comparison of

representation types for each semantic type suggests that the static-sequence rep-

resentation performed with ∼6% higher accuracy rates, F (1, 40) = 7.234, MSe =

.008, p < .05, in comprehending the type of outcome and ∼8% higher accuracy rates,

F (1, 40) = 10.730, MSe = .009, p < .005, in understanding the overall causal state-

ment, than animations. Animations, however, performed with ∼8% higher accuracy

rates, F (1, 40) = 6.359, MSe = .012, p < .05, than static-sequence in comprehending

the strength of the factor's in�uence, which suggests that response times using static-

sequence were comparable when the relation matched the given statement attributing

it again to the simplicity of the causal information being represented.

As this experiment replicated the design of Experiment 2, the lack of legends again

showed to be a major concern here as participants were signi�cantly delayed because

they are not able to distinguish between small and large amounts of in�uences and

outcomes. However, this problem has been addressed in the remaining experiments.
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Comparison of static-graph (Experiment 1) and static-sequence (Experi-

ment 6) representation of simple causal semantics

In order to compare the e�ciencies of the static-graph and static-sequence rep-

resentations, I also conducted a between-subjects ANOVA on the accuracy rates

and response times collected in Experiments 2 (section 6.2) and 6 (current), us-

ing Type III sum of squares, due to the vast di�erence in sample sizes between

the factors (static-sequence: N = 42, static-graph: N = 108). ANOVA analy-

sis on the accuracy rates suggest that there is no signi�cant di�erence in static-

sequence and static-graph representations except in statement type S4 (combina-

tion of components) `Y' responses, where the static-sequence representation per-

formed ∼22%, F (1, 148) = 31.363, MSe = .026, p < .01, more accurately than

the static-graph representation. Similarly, ANOVA analysis on the response times

did not show any signi�cant di�erence between the two factors, except for state-

ment type S3 (magnitude of outcome) `N' responses, where participants were ∼13%,

F (1, 148) = 4.587, MSe = 6.791, p < .05, faster with the static-sequence represen-

tation than with the static-graph representation. These results suggest that static-

sequence might improve performance in some conditions, however as this di�erence

was not seen in the individual components of the causal relation (i.e. S1, S2, and S3),

we can infer that the improvement in performance could be due to the participants'

comprehension capability. Therefore this analysis cannot con�rm that sequential iso-

lation of the causal relations has signi�cant impact on participant performance and

concludes that both the static-graph and static-sequence representations can be used

as alternatives while using glyphs to describe the causal information. These results
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are encouraging as it supports my hypothesis that animations are intuitive and also

that the sequential presentation of information in the animated representation does

not have an in�uence on the lower response times of the participants, when compared

to the static-sequence or static-graph representations (concurrence with Hypothesis

3 ).

Experiment 2 Experiment 6

Accuracy rate .843 .843

Response time 5.373 seconds 5.2 seconds

Table 8.3: Comparison of accuracy rates and response times in the animated condition

for Experiment 2 and Experiment 6.

Another interesting comparison can be conducted here between the results for the

animated representation between Experiments 2 and 6, since the experiment designs

were exactly the same (with the exception of the type of static representation) to

determine if the intuitiveness of the animated representation was carried across a

larger population of subjects. As seen in Table 8.3, the accuracy rates and response

times in both experiments are very similar which suggests that the performance of

participants with the animated representation was independent of the type of partic-

ipants and could be replicated over larger populations of subjects. These results are

very encouraging and further support my hypothesis that my animations are more

intuitive than the corresponding static representations.
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Summary of Experiment 6

The following inferences were made from the results of this experiment:

Statement type Accuracy rate (↓ = %

less accuracy than high-

est accuracy value for fac-

tor(in bold)

Response time (↑ = %

more time than lowest re-

sponse time value for fac-

tor(in bold)

Type of outcome (S1) .902 4.402

Strength of in�uence

(S2)

∼ 8% ↓ ∼ 48% ↑

Magnitude of outcome

(S3)

∼ 9% ↓ ∼ 58% ↑

Combination of com-

ponents (S4)

∼ 7% ↓ ∼ 19% ↑

Table 8.4: Comparison of accuracy rates and response times for Experiment 6 state-

ment types S1, S2, S3, and S4.

• An analysis of response times showed that participants were signi�cantly (p <

.05, ∼4%) faster with animations than with the static-sequence representation.

Participant accuracy rate did not di�er signi�cantly (p > 0.5) between the

static-sequence and animated representation.

• Participant performance depended signi�cantly (p < .005) upon the type of

semantic that was presented. Participants were most accurate and fastest in
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comprehending the type of outcome (S1), and were least accurate and slowest

in comprehending the magnitude of the outcome (S3). Figure 8.4 compares the

accuracy rates and response times for the four statement types.

• Participants were ∼7% (p < .001) more accurate in recognizing a matched

visualization � statement pair, than in recognizing a mismatch. This could be

attributed to the ability of the participant to translate the given visualization

into a textual statement.

• Results also suggested that participant performance was dependant upon the

combination of semantic type � response type presented. Participants performed

with higher accuracy rates using static-sequence in statement types S1 and S4,

for `Yes' responses only, and with higher accuracy rates with the animations in

statement type S2.

• Comparison of the static-sequence to the static-graph representation did not

show signi�cant di�erence in accuracy rates or response times, except in some

in statement types where static-sequence showed higher accuracy rates; ∼22%

in S4 (`Y' response, Accuracy rate) and ∼13% in S3 (`N' response, Response

time). However, this signi�cance is not supported by the other conditions and

therefore cannot claim the superiority of the static-sequence representation.

The results of this experiment did not satisfy Hypothesis 1 as no signi�cant di�er-

ence was seen in accuracy rates between the two representations. However, response

time data satis�es Hypothesis 2 as participants were signi�cantly faster with ani-

mations than with the static-sequence representation. Finally, comparison of the
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static-sequence to the static-graph representation did not show any di�erence, which

conformed with Hypothesis 3.

As the results of this experiment suggests that participant performance was not

in�uenced by isolating the relations and presenting them sequentially, it would be

interesting to see how the static-sequence representation in�uences the comprehension

of the complex causal semantics, as described in the next set of experiments.

8.2 Experiment 7 - Comparing text, static-sequence,

and animated representations of Design-group 1

causal semantics

The main focus of this experiment was to compare text, static-sequence, and ani-

mated representations of DG1 group of complex causal semantics, which comprised of

additive causality, contradictive causality, and fully-mediated causality. In addition,

this experiment replicated the methodology of Experiment 3 (section 7.1) in an e�ort

to compare the e�ciency of the static-sequence representations to their static-graph

counterparts.

My hypotheses for this experiment were as follows:

• Hypothesis 1: Participants will perform the recall tasks with higher accuracy

rates and faster response times when the causal relations are enhanced with

visualizations, when compared to a textual description of the information.

• Hypothesis 2: Participants will perform more accurately and with faster re-
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sponse times when the causal relations are enhanced with animated (vs. static-

sequence) visualizations.

• Hypothesis 3: Participant performance (accuracy rates and response times)

will not be in�uenced by the sequential animation of the static representation.

8.2.1 Method

Participants

41 undergraduate psychology students of a local university, between the ages of

20 to 30 years, participated in this experiment. As in the previous experiments, none

of the students had any formal computer training, had good English language skills,

and had normal to corrected vision. Color coding was not used in this experiment as

the relations were shown in isolation.

Materials

As in Experiment 3 (section 7.1), the visualizations were embedded as Flash

movies in a .NET program and run in a Windows XP environment. The display

consisted of a 17" monitor with a 1024 × 768 pixel screen resolution.

Design

This experiment comprised of a 3 × 2 within subject design with two independent

variables: Representation Type and Statement Type.

Representation type
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Three types of representations were shown to the participants; Text, Static-

sequence, and Animation.

• Text: The text representation consisted of a list of single-line descriptions of

the causal relations.

• Static-sequence: The static-sequence representation was similar to the static-

graph representation of Experiment 3; the only di�erence being the sequential

animation of the causal relations, in the case of the static-sequence representa-

tion. Other features such as the design and function of the nodes, connections,

+ and − signs, and upright and inverted bars were retained.

• Animation: The animated representation consisted of animated nodes, bullets,

and targets, describing the causal relations.

Statement type

As in the previous experiments, two types of statements were presented to the

participant:

• Correct: A correct statement was one where all the components of the given

statement matched one of the relations provided during the trial, and would

require a �True� response from the participant.

• Incorrect: An incorrect statement was one that only partially matched a re-

lation presented during to the trial and would require a �False� response, along

with corrections, from the participant.
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Tasks

As before, the experiment consisted of three conditions (text-only, text + static-

sequence, and text + animated) and the participants were given two tasks to perform:

memorization and recall.

• Memorization task: This task consisted of two steps. In the �rst step, the

participant was asked to read and memorize the passage for 11/2 minutes. In

the second step, they were asked to either connect a sequence of dots (text-only

condition) or view the static-sequence visualization (text + static-sequence con-

dition) or the animation for the next 11/2 minutes (text + animation condition).

As the length of the animated visualization was 30 seconds, it was repeated 3

times to �ll the 11/2 minute timeslot.

• Recall task: In this task the participants were asked to answer a set of 6

questions based on the relations they just viewed.

The representation types were fully counterbalanced using a Latin square design.

Overall, with 41 participants, 3 visual conditions (text-only, text + static-sequence,

text + animation), 3 semantic types per condition (additive, contradictive, fully-

mediated), and 2 statement types per semantic (correct, incorrect), a total of 738

responses were collected for analysis.

Procedure

The experiment was conducted in three phases. In the �rst phase, a training

session was conducted to describe the causal relations and their representations to
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the participants, which was followed by a self-training phase wherein the participants

interacted with a demo version of the experiment until they were comfortable start

the third, and �nal, experimental phase. As in the other experiments, experimental

conditions were randomly assigned and time constraints were strictly enforced. At

the end of each condition, the participants were given 8 minutes to answer the cor-

responding questionnaire. The experiment captured the number of correct responses

that the participant gave in each of the phases along with their response times. Par-

ticipants were given a maximum score of 1 for each correct answer, a corresponding

fraction of the maximum score for each partially correct answer, and a minimum score

of 0 for each incorrect answer they provided.

8.2.2 Results and Discussion

Following the procedure described in the Method section and in the non-sequence

experiments, two values were recorded for each answer provided by the participant:

accuracy and response time. These data were then submitted to a 3 × 2 × 3 repeated-

measures Analysis Of Variance (ANOVA) treating semantic type (fully-mediated vs.

additive vs. contradictive), statement type (yes vs. no-with-corrections), and repre-

sentation type (text-only vs. text + static-sequence vs. text + animation) as within-

subject factors. Table 8.5 summarizes the overall analysis of the results, along with

a summarization of the mean values for the factors showing signi�cance in Table 8.6.
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Figure 8.4: Accuracy rates for text-only, text + static-sequence, and text + animated

representations of DG1 complex semantics: partially-mediated causality, threshold

causality, bidirectional causality and statement types: correct, incorrect (±5% error

bars depict 95% con�dence intervals for the means).



Chapter 8: Component IV: Isolating the e�ciency of the animated visualizations:
animation vs. static-sequence representations - Experiments 6, 7, 8, and 9 199

Factor Accuracy rate Response time

Representation type

(F1)

No signi�cance No signi�cance

Semantic type (F2) No signi�cance Signi�cance

Response type (F3) Signi�cance Signi�cance

F1 × F2 interaction No signi�cance No signi�cance

F1 × F3 interaction No signi�cance Signi�cance

F2 × F3 interaction No signi�cance No signi�cance

F1 × F2 × F3 interac-

tion

No signi�cance Signi�cance

Table 8.5: Summary of analysis showing signi�cant results (in bold), for Experi-

ment 7: Complex causal semantics, DG1, Representation type(F1): Text-only vs.

Text+Static-sequence vs. Text+Animation, Semantic type(F2): Additive causality vs.

Contradictive causality vs. Fully-mediated causality, Response type(F3): Correct vs.

Incorrect-with-corrections, Memory Recall Experiment.
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Factor Accuracy rate

(↓ = % less accu-

racy than highest

accuracy value for

factor(in bold)

Response time

(↑ = % more time

than lowest re-

sponse time value

for factor(in bold)

Semantic type

(F2)

Additive causality - 11.725 seconds

(∼19% ↑)

Contradictive

causality

- 11.062 seconds

( ∼14% ↑)

Fully-mediated

causality

- 9.429 seconds

Response type

(F3)

Correct .748 9.198 seconds

Incorrect-with-

corrections

.425 (∼43% ↓) 12.279 seconds

(∼25% ↑)

Table 8.6: Summary of accuracy rates and response times for factors showing sig-

ni�cance in the analysis of Experiment 7 results. NOTE: Highest accuracy rate and

lowest response time for each factor are highlighted in bold. The ↓ arrow shows reduc-

tion in accuracy rate when compared to the highest accuracy rate for the factor and

the ↑ arrow shows increase in response time when compared to the lowest response

time for the factor.
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An analysis of the accuracy points showed a main e�ect of statement type F (1, 40) =

51.403, MSe = .375, p < 0.001, which showed that participants were ∼43% more ac-

curate in recognizing matches between given statements and displayed relations than

in recognizing mismatches. The analysis did not show signi�cance between semantic

types (p > 0.5), in keeping with the results of Experiment 3. The analysis also did

not show a main e�ect of representation type (p > 0.5) (Figure 8.4). This suggests

that sequencing of the relations is most likely �tted for animations and not for static

representations. The main reason for this preference is that sequencing eliminated a

strong of feature of the static representation, the simultaneous presentation of infor-

mation, which was �exible and did not constrain the participant to follow a preset

order while viewing the information.

Response times (seconds) were also recorded for each accurate response provided

by the participant and a similar 3 × 2 × 3 repeated-measures ANOVA analysis was

conducted on this data. Results of the analysis revealed a main e�ect of semantic

type F (2, 80) = 6.966, MSe = 49.298, p < 0.005, which showed that participants were

fastest in comprehending fully-mediated causality relations when compared to addi-

tive and contradictive causality relations. Speci�cally participants comprehended

fully-mediated relations ∼17% faster than contradictive relations and ∼24% faster

than additive relations (Figure 8.5). Results of the analysis also showed a main e�ect

of statement type F (1, 40) = 50.042, MSe = 35.008, p < 0.001, which showed that

as in the other experiments, participants were able to accurately recognize a match

between the statement and the relations ∼33% faster than a mismatch. The anal-

ysis did not show a main e�ect of representation type, from which I can infer that
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Figure 8.5: Response times for text-only, text + static-sequence, and text + animated

representations of DG1 complex semantics: partially-mediated causality, threshold

causality, bidirectional causality and statement types: correct, incorrect (±5% error

bars depict 95% con�dence intervals for the means).

participants were able to comprehend the relations more-or-less equally using the

three representation types. Finally, the analysis showed a main e�ect of interaction

between all three dependent variables (semantic type, statement type, and represen-

tation type) F (4, 160) = 2.763, MSe = 62.022, p < 0.05. Speci�cally, participants

were signi�cantly faster with the text representation than with the static-sequence

(∼34%) and the animated (∼70%) representations in representing additive causality

statements, F (2, 80) = 7.861, MSe = 80.181, p < 0.01, when asked to recognize in-

correct matches between the displayed relation and given statement. No signi�cance

was seen in the other combinations of the within-subject factors.
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Comparison of static-graph (Experiment 3) and static-sequence (Experi-

ment 7) representation of DG1 semantics

An additional analysis of the accuracy and response times was conducted in order

to compare the e�ciency of the static-sequence representation (data collected from

the current experiment) to the static-graph representation (data collected from Ex-

periment 3) of the same set of semantics. As this analysis compared the two versions

of the static representation, it did not include data concerning the text or animated

representations. Due to di�ering sample sizes, a between-subjects ANOVA was con-

ducted using Sum of Squares type III analysis. The analysis did not show signi�cant

di�erences in participant performance between the static-graph and static-sequence

in any of the combinations of semantic vs. statement, except in the case of con-

tradictive causality, where participants were ∼26% faster with the static-sequence

representation, F (1, 66) = 5.013, MSe = 54.519, p < .05, in recognizing incorrect

matches between statement and relation. Therefore, this analysis satis�es Hypothesis

3 and suggests that sequential animation of the relations does not have signi�cant

in�uence on the e�ciency of the representation.

Since the experiment designs for Experiments 3 and 7 were identical, with the

exception of the static representation, we can compare the accuracy rates and response

times for the text-only and text+animated condition between the two experiments

to determine if the results can be applied to a larger population (Table 8.7). The

accuracy rates for the text-only representation are very similar which suggests that

the participants performance was consistent between the two groups. However, the

response times for the text-only condition are quite lower in Experiment 7. Since,
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Experiment 3 Experiment 7

Accuracy rate
Text-only .562 .587

Text+animation .626 .595

Response time
Text-only 11.349 seconds 9.850 seconds

Text+animation 11.779 seconds 11.630 seconds

Table 8.7: Comparison of accuracy rates and response times in the text-only and

text+animation conditions for Experiment 3 and Experiment 7.

the design of the experiments were identical, I can only infer from this di�erence in

response times that the participants were either recalling the information faster or

they were overwhelmed with the amount of information shown to them and guessed

the answers. However, the accuracy rates and response times for the text+animated

condition were very similar, which suggests that the performance was consistent over

the di�erent groups.

Summary of Experiment 7

The following inferences can be made from this experiment:

• The analysis showed that participants were ∼43% more accurate and responded

∼33% faster when asked to recognize a correct match, than an incorrect one,

between a given causal relation and statement.

• The analysis did not show a main e�ect of representation type, which can be

attributed to the complexity of the information, the number of causal relations

that had to be memorized, and need to convert visual information into text
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before matching it to the given statement (which was not required in the text-

only condition).

• Participants responded fastest to fully-mediated causality relations, which shows

that this relation is the simplest of the three, as the participant was required

only to focus on the factor and the target while ignoring the inactive mediator.

• Comparison of the static-sequence results from this experiment to the static-

graph results from Experiment 3 did no show signi�cant change in participant

accuracy rates and response times. The results suggest that sequential presen-

tation of information did not improve the static representation, and also does

not bias the performance of the animated representation.

The overall analysis of the data collected in this experiment did not concur with

Hypothesis 1 or Hypothesis 2 as no signi�cant improvement was seen in accuracy

rates or response times with the textual representation was enhanced using my visu-

alizations, which could be attributed to the complexity and amount of information

presented during the experiments. Finally, comparison of performances in Experi-

ment 4 and 7 did not show any improvement in accuracy rates or response times

when the static-graph was enhanced by sequential animation of the relations, which

shows concurrence with Hypothesis 3.

The next step is to check whether the static-sequence representation shows higher

accuracy rates or lower response times while visualizing DG2 group of semantics

(Experiment 8), and �nally to directly compare the static-sequence to the animated

representation, without the aid of a textual representation (Experiment 9).
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8.3 Experiment 8 - Comparing text, static-sequence,

and animated representations of Design-Group 2

causal semantics

As in the previous static-sequence experiments, the main aim of this experiment

was to compare the improvement in performance when textual representations of

causal information are enhanced by static-sequence and animated representations.

The experiment mainly focussed on DG2 group of complex semantics comprising

of partially-mediated causality, threshold causality, and bidirectional causality. The

second aim of this experiment was to compare the static-sequence representation to

the static-graph representation of Experiment 4 (section 7.2). Therefore, for purposes

of analysis the animation was divided into two major components; smooth animation

of the graph and sequential animation of the causal relations.

My hypotheses for this experiment were as follows:

• Hypothesis 1: Participants will perform the recall tasks with higher accuracy

rates and faster response times when the causal relations are enhanced with

visualizations, when compared to a textual description of the information.

• Hypothesis 2: Participants will perform more accurately and with faster re-

sponse times when the causal relations are enhanced with animated (vs. static-

sequence) visualizations.

• Hypothesis 3: Participant performance (accuracy rates and response times)

will not improve with sequential animation of the causal relations in the static-
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sequence representation.

8.3.1 Method

Participants

18 undergraduate psychology students of a local university, between 20 to 30 years

of age, with no formal computer training, good English language skills, and normal

to corrected vision participated in this experiment.

Materials

The visualizations were embedded as Flash movies in a .NET program and run in

a Windows XP environment. The display consisted of a 17" monitor with a 1024 ×

768 pixel screen resolution.

Design

This experiment consisted of a 3 × 2 within-subject design, with two independent

variables: Representation Type and Statement Type.

• Representation type: Three types of representations were shown to the par-

ticipants; text (passage with relations described in English), static-sequence

(sequential animation of a static representation), and animation (smooth ani-

mation of nodes and sequential animation of relations).

• Statement type: Two types of statements were shown to the participant at the

end of each trial; Correct (all components of the given statement matched one of
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the previously viewed causal relations) and Incorrect (some of the components

of the given statement matched one of the previously viewed causal relations).

Participants responded True (statement was Correct) or False-with-corrections

(statement was Incorrect).

Tasks

As before, the experiment consisted of three conditions (text-only, text + static-

sequence, and text + animated) and the participants were given two tasks to perform:

Memorization and Recall per condition.

• Memorization task: In this task the participants were asked to read a passage

for 11/2 minutes and view a visualization (or perform �ller tasks such as connect-

the-dots in the text-only condition) for the next 11/2 minutes.

• Recall task: In the recall task, the participants were asked to answer questions

based on the relations they just viewed, within an 8 minute timeframe.

The trials were fully counterbalanced using a Latin square design. Overall, with 18

participants, 3 visual conditions (text-only, text + static-sequence, text + animation),

3 semantic types per condition (partially-mediated, threshold, bidirectional), and

2 statement types per semantic (correct, incorrect), a total of 324 responses were

collected for analysis.

Procedure

The experiment was conducted in three phases; training, self-training, and ex-

periment. In the training phase the participants were given brief descriptions of the



Chapter 8: Component IV: Isolating the e�ciency of the animated visualizations:
animation vs. static-sequence representations - Experiments 6, 7, 8, and 9 209

Figure 8.6: Response times text-only, text + static-sequence, and text + animated

representations of DG2 complex semantics: partially-mediated causality, threshold

causality, bidirectional causality, and response types: correct, incorrect (±5% error

bars depict 95% con�dence intervals for the means).

semantics, representations, and experimental layout. In the self-training phase the

participants were asked to practice on a sample version of the experiment, until they

felt comfortable with its tasks. The experiment phase captured participant responses

and response times. Scoring was the same as in the other experiments with a score

of 1 for a correct answer, a score of 0 for an incorrect answer, and a fractional score

for partially correct answers.

8.3.2 Results and Discussion

Following the procedure described in the methods section, two values were recorded

for every response provided by the participant; accuracy and response time. The
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collected data were then submitted to a 3 × 2 × 3 repeated measures Analysis Of

Variance (ANOVA) treating semantic type (partially-mediated vs. threshold vs. bidi-

rectional), statement type (correct vs. incorrect), and representation type (text vs.

text + static-sequence vs. text + animation) as within-subject factors. Table 8.8

summarizes the overall analysis of the results, along with a summarization of the

mean values for the factors showing signi�cance in Table 8.9.

Factor Accuracy rate Response time

Representation type

(F1)

No signi�cance No signi�cance

Semantic type (F2) No signi�cance Signi�cance

Response type (F3) No signi�cance Signi�cance

F1 × F2 interaction No signi�cance Signi�cance

F1 × F3 interaction No signi�cance No signi�cance

F2 × F3 interaction No signi�cance No signi�cance

F1 × F2 × F3 interac-

tion

No signi�cance No signi�cance

Table 8.8: Summary of analysis showing signi�cant results (in bold), for Experi-

ment 8: Complex causal semantics, DG2, Representation type(F1): Text-only vs.

Text+Static-sequence vs. Text+Animation, Semantic type(F2): Partially-mediated

causality vs. Threshold causality vs. Bidirectional causality, Response type(F3): Cor-

rect vs. Incorrect-with-corrections, Memory Recall Experiment.

An analysis of the response times showed a main e�ect of semantic type, F (2, 34) =
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Factor Accuracy rate

(↓ = % less accu-

racy than highest

accuracy value for

factor(in bold)

Response time

(↑ = % more time

than lowest re-

sponse time value

for factor(in bold)

Semantic type

(F2)

Partially-

mediated causal-

ity

- 17.267 seconds

(∼8% ↑)

Threshold causal-

ity

- 15.815 seconds

Bidirectional

causality

- 18.970 seconds

(∼16% ↑)

Response type

(F3)

Correct - 13.683 seconds

Incorrect-with-

corrections

- 21.018 seconds

(∼35% ↑)

Table 8.9: Summary of accuracy rates and response times for factors showing sig-

ni�cance in the analysis of Experiment 8 results. NOTE: Highest accuracy rate and

lowest response time for each factor are highlighted in bold. The ↓ arrow shows reduc-

tion in accuracy rate when compared to the highest accuracy rate for the factor and

the ↑ arrow shows increase in response time when compared to the lowest response

time for the factor.
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5.258, MSe = 51.214, p < 0.5. Speci�cally, participants responded fastest to ques-

tions about threshold causality (mean = 15.82 seconds), were ∼9% slower in re-

sponding to questions about partially-mediated causality and ∼20% slower in re-

sponding to questions on bidirectional causality (Figure 8.6), which is expected since

threshold causality contains the least amount of causal information when compared

to the other two semantics. The analysis also showed a main e�ect of statement

type F (1, 17) = 47.416, MSe = 91.892, p < 0.005, which suggests that partici-

pants were ∼35% faster in recognizing correct matches, than in recognizing mis-

matches, between the displayed relations and given statements, which again is ex-

pected as the participants found it more di�cult to recall and provide the correct

causal information, compared to identifying matches between given relations and

statements. The analysis also showed a main e�ect of interaction between seman-

tic and statement type F (2, 34) = 5.619, MSe = 53.167, p < 0.05, which suggests

that participants' response time was dependent upon the combination of semantic

and statement type that was presented to them. Further analysis of this interaction

reveals that a main e�ect of semantic type was seen for the `Incorrect' statements,

F (2, 34) = 13.461, MSe = 38.793, p < .001, which suggests that the signi�cant in-

�uence of semantic, as suggested in the main analysis, was seen mostly when the

participants were asked to recognize mismatches between statement and relation.

An analysis of the accuracy points did not show a main e�ect of semantic (p > 0.5)

or statement type (p > 0.5), which shows that all three semantics were similarly com-

prehended and that there was little di�erence in recognizing matched or mismatched

statements. The analysis also did not show a main e�ect of representation type
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Figure 8.7: Accuracy rates text-only, text + static-sequence, and text + animated

representations of DG2 complex semantics: partially-mediated causality, threshold

causality, bidirectional causality, and response types: correct, incorrect (±5% error

bars depict 95% con�dence intervals for the means).

(p > 0.5), which suggests that there was negligible di�erence in comprehension when

the semantics were presented using static-sequence graphs or animations. This could

be attributed to the complexity of the causal semantic being represented and the dif-

�culty in comprehending the information provided to the participants (Figure 8.7).

Comparison of static-graph (Experiment 4) and static-sequence (Experi-

ment 8) representation of DG2 semantics

The �nal step of this analysis focused on comparing the data collected from the

static-graph representation to the data collected from the static-sequence representa-

tion of partially-mediated, threshold, and bidirectional causalities. Due to di�erence
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in sample sizes and participants, a between-subjects ANOVA was conducted using

Sum of Squares type III analysis. The analysis did not show signi�cant di�erence

between the two versions of the static representation for partially-mediated or bidi-

rectional causalities. However, response times for threshold causality suggested that

participants were signi�cantly faster with the traditional static-graph representation

rather than the enhanced static-sequence representation. Speci�cally, participants

were ∼30% faster, F (1, 56) = 4.315, MSe = 63.664, p < .05, in recognizing `Correct'

statements, and ∼33% faster, F (1, 56) = 7.846, MSe = 64.666, p < .01, in recognizing

`Incorrect' statements, with the static-graph visualization. This analysis suggests that

sequential animation of the relation does not help, and sometimes deters, information

acquisition using the static representation.

Due to the similar design of Experiment 4 and 8, I compared the accuracy rates

and response times for the text-only and text+animated conditions to determine

if the results can be expanded over a larger population of subjects. However, the

comparisons(Table 8.10) showed di�erences between the accuracy rates and response

times for the two conditions. Comparing the accuracy rates for text-only with static

in Experiment 4 (di�erence = .08) and for Experiment 8 (di�erence = .08) we see

very similar di�erences between the two representations, suggesting the di�erence in

accuracy rates for this condition between the experiments was due to the capacity

of the participants to memorize more of the information in Experiment 8. Simi-

larly the di�erences between the accuracy rates for text+static and text+animation

conditions for Experiment 4 (di�erence = .006) and Experiment 8 (di�erence = 0)

and the di�erences between response times for Experiment 4 (di�erence = .267 sec-
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Experiment 4 Experiment 8

Accuracy rate

Text+static .643 .713

Text-only .563 (di�erence =

.08)

.631 (di�erence =

.082)

Text+animation .637 (di�erence =

.006)

.713 (di�erence =

0)

Response time

Text+static 14.053 seconds 17.609 seconds

Text-only 14.811 seconds

(di�erence = .758

seconds)

16.592 seconds (dif-

ference = 1.017 sec-

onds)

Text+animation 14.320 seconds

(di�erence = .267

seconds)

17.851 seconds (dif-

ference = .242 sec-

onds)

Table 8.10: Comparison of accuracy rates and response times in the text-only and

text+animated conditions for Experiment 4 and Experiment 8. NOTE: �di�erence�

denotes the di�erence in value between the representation type and the static repre-

sentation that was tested in each experiment.

onds) and Experiment 8 (di�erence = .242 seconds) are very similar. Overall, this

suggests that the performance for the text-only and text+animated conditions were

similarly di�erent from the static-sequence representation, but di�erent between the

two experiments, which can be attributed to the memory and recall capabilities of

the participants between the two experimental groups.
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Summary of Experiment 8

The following inferences can be made based on the results of this experiment:

• Analysis of response times showed main e�ect of statement type and suggested

that participants were ∼35% faster in recognizing matches, than mismatches,

between statement and relation pairs.

• Analysis of the response times also showed a main e�ect of semantic type and

main interaction between semantic and statement type, which suggests that

participant responses were signi�cantly di�erent for the `Incorrect' responses.

Speci�cally, participants were fastest in providing responses regarding threshold

causality (mean = 15.82 seconds), ∼9% slower responding to partially-mediated

causality, and ∼20% slower with bidirectional causality statements. These re-

sponse times suggest the general order of complexity of these three semantics.

• Analysis of the accuracy rates did not show a main e�ect of representation

type (p > .05), which suggests that participants were able to comprehend the

information with similar accuracy with all three representation types.

• Comparison of static-graph and static-sequence results from experiments 4 and 8

respectively did not show major signi�cance in the results for partially-mediated

and bidirectional causality. However, the results suggested that response times

for threshold causality drastically increased, when the causal relations were

presented sequentially (static-sequence).

The results of this experiment did not concur with Hypothesis 1 as no signi�cance

was seen in the accuracy rates between the representation types. The results also
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do not satisfy Hypothesis 2 as no signi�cant di�erence was seen between the perfor-

mances of the static-sequence and the animated representations. Finally, a compar-

ison of static-sequence to the static-graph representation suggests concurrence with

Hypothesis 3, as either an insigni�cant change or a decline in performance was seen

when the relations were sequentially presented.

Therefore, this study infers that information using the static representation is

best represented simultaneously and also determines that sequential presentation of

information does not create an unfair bias in the animated representation. However,

in order to round o� the analysis and generate a strong support for the animated

representation, a �nal experiment was conducted that repeated the procedure of Ex-

periment 5, but replaced the static-graph representation with the static-sequence and

compared it to the animated representation, in order to test their e�ciency as stand-

alone modes of presenting causal information.

8.4 Experiment 9 - Comparing static-sequence and

animated representations of complex causal se-

mantics

As in the other static-sequence experiments, the main aim of this experiment was

to determine whether the improvement in performance in Experiment 5 (section 7.3)

was due to the smooth animation of the causal relations or due to sequential animation

of the causal relations.

My hypotheses for this experiment were as follows:
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• Hypothesis 1: Participants will perform the recall tasks more accurately when

the causal relations are described using animations, when compared to a textual

description of the information.

• Hypothesis 2: Participants will be able to respond faster when the causal

relations are depicted as animations.

• Hypothesis 3: Participant performance will not be in�uenced by the sequential

animation of the causal relation in the static-graph representation.

8.4.1 Method

Participants

35 undergraduate psychology students of a local university participated in this

experiment. The participants satis�ed the same selection criteria as in the previous

experiments (age, normal to corrected vision, no prior experience with causal graphs).

Color blindness tests were deemed unnecessary as color coding was not used in the

static-sequence representation.

Materials

The experiment was executed as a .NET program with embedded static and ani-

mated Macromedia Flash� �les. Individual copies of the program were executed on a

Windows XP computer and displayed on a 17" Dell monitor with a 1024 × 768 pixel

screen resolution.
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Design

As in Experiment 5, the experiment comprised of a 2 × 6 within subject design.

The two independent variables were: Representation Type and Statement Type.

Representation type

Two types of representations were shown to the participants: Static-sequence and

Animation.

• Static-sequence: In this representation type, the participants were shown a

static graph with 1 � 2 causal relations. In the case where 2 causal relations

were shown, the casual relations were shown one after the other in sequence.

All other features such as + and − glyphs to depict in�uences, and upright

and inverted bars to depict e�ects remained the same as in the static-graph

representation.

• Animation: As in the animated representations of the previous experiments,

the causal relations were visualized using animated factors, bullets, and targets.

Statement type

At the completion of each trial, the participants were shown a statement based

on the relation(s) they viewed. As in Experiment 5, each statement represented one

of the 6 complex causal semantics being tested; additive causality (S1), contradic-

tive causality (S2), fully-mediated causality (S3), partially-mediated causality (S4),

threshold causality (S5), and bidirectional causality (S6).
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Tasks

The experiment consisted of two tasks:

• Memorization: In this task the participant was shown either a static or an

animated causal relation for 9 seconds (one relation) or 18 seconds (two rela-

tions). The participant was asked to view the visualization and memorize the

causal relation(s) being depicted.

• Recall: In this task the participant was asked to match a given statement to

the relation(s) viewed in the memorization task. Participant was required to

respond �Yes� (`B' key on the keyboard) for an exact match and �No� (`N' key

on the keyboard) for a mismatch between statement and relation, in order to

score 1 point. Incorrect answers were given a score of 0.

The trials were fully counterbalanced using a Latin square design. Each trial was

based on a random selection of 1 of 12 topics, with one statement per trial. The

experiment consisted of 120 trials in total, divided into 5 sessions. Overall, with

35 participants, 5 sessions, 2 representation types (static-sequence, animations) per

session, 6 statement types per representation (additive, contradictive, fully-mediated,

partially-mediated, threshold, bidirectional), and 2 response types (yes, no) per state-

ment type, a total of 4200 responses were collected for analysis.

Procedure

The experiment was divided into two phases. In the self-training phase, the par-

ticipant was asked to run a sample version of the program until they were comfortable
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Figure 8.8: Accuracy rates for static-sequence and animated representations of state-

ment types: S1 (additive causality), S2 (contradictive causality), S3 (fully-mediated

causality), S4 (partially-mediated causality), S5 (threshold causality), S6 (bidirec-

tional causality), and response types: Y (yes), N (no) (±5% error bars depict 95%

con�dence intervals for the means).

with the experimental tasks. In the experiment phase, the trials in the experiment

were divided into 5 sessions, with 24 trials per session. At the end of each session,

the timers were paused and the participant was allowed to take a break if required.
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8.4.2 Results and Discussion

Following the procedure described in the Method section and in the static-graph

experiments, two values were recorded for each answer provided by the participant:

accuracy rate and response time. These data where then submitted to a 2 × 6

× 2 repeated-measures Analysis of Variance (ANOVA) treating representation type

(static-sequence vs. animation), statement type (additive vs. contradictive vs. fully-

mediated vs. partially-mediated vs. threshold vs. bidirectional), and response type

(yes vs. no) as within-subject factors. Table 8.11 summarizes the overall analysis of

the results, along with a summarization of the mean values for the factors showing

signi�cance in Table 8.12.

Factor Accuracy rate

(↓ = % less accu-

racy than highest

accuracy value for

factor(in bold)

Response time

(↑ = % more time

than lowest re-

sponse time value

for factor(in bold)

Representation

type (F1)

Static-graph .696 (∼5% ↓) 8.029 seconds

(∼6% ↑)

Animation .736 7.527 seconds

Semantic type

(F2)

Additive causality

(Q1)

.747 (∼1% ↓) 6.763 seconds

Contradictive

causality (Q2)

.724 (∼4% ↓) 7.666 seconds

(∼12% ↑)
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Fully-mediated

causality (Q3)

.757 6.876 (∼2% ↑)

Partially-

mediated causal-

ity (Q4)

.720 (∼5% ↓) 8.796 seconds

(∼22% ↑)

Threshold causal-

ity (Q5)

.693 (∼8% ↓) 8.407 seconds

(∼20% ↑)

Bidirectional

causality (Q6)

.654 (∼13% ↓) 8.160 seconds

(∼17% ↑)

Table 8.12: Summary of accuracy rates and response times for factors showing sig-

ni�cance in the analysis of Experiment 9 results. NOTE: Highest accuracy rate and

lowest response time for each factor are highlighted in bold. The ↓ arrow shows reduc-

tion in accuracy rate when compared to the highest accuracy rate for the factor and

the ↑ arrow shows increase in response time when compared to the lowest response

time for the factor.

An analysis of the accuracy rates showed a main e�ect of representation type

F (1, 34) = 20.730, MSe = .017, p < 0.001. Speci�cally, participants were ∼6% more

accurate when the casual relations were visualized using animations. The analysis

also showed a main e�ect of statement type, F (5, 170) = 4.069, MSe = .049, p < .01,

which suggests that participants were most accurate in comprehending fully-mediated

causality and least accurate with bidirectional causality (Figure 8.8), similar to Ex-

periment 5. However, the analysis also showed signi�cant interaction between the
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Factor Accuracy rate Response time

Representation type

(F1)

Signi�cance Signi�cance

Semantic type (F2) Signi�cance Signi�cance

Response type (F3) No signi�cance No signi�cance

F1 × F2 interaction Signi�cance Signi�cance

F1 × F3 interaction No signi�cance No signi�cance

F2 × F3 interaction No signi�cance Signi�cance

F1 × F2 × F3 interac-

tion

No signi�cance No signi�cance

Table 8.11: Summary of analysis showing signi�cant results (in bold), for Experiment

9: Complex causal semantics, DG1 & DG2, Representation type(F1): Static-sequence

vs. Animation, Semantic type(F2): Additive causality vs. Contradictive causality vs.

Fully-mediated causality vs. Partially-mediated causality vs. Threshold causality vs.

Bidirectional causality, Response type(F3): Yes vs. No, Intuitiveness Evaluation

Experiment.

representation type and the type of statement that was presented to the participant

F (5, 170) = 2.866, MSe = .034, p < 0.05. Analysis of this interaction suggests that,

with animations, participants performed with ∼16% higher accuracy rates, F (1, 34) =

11.093, MSe = .035, p < .01, in comprehending contradictive causality (S2) state-

ments, with ∼12% higher accuracy rates, F (1, 34) = 7.391, MSe = .035, p < .05,

in comprehending fully-mediated causality (S3) statements, and with ∼8% higher
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Figure 8.9: Accuracy rates for static-sequence and animated representations of state-

ment types: S1(additive causality), S2(contradictive causality), S3(fully-mediated

causality), S4(partially-mediated causality), S5(threshold causality), S6(bidirectional

causality), and response types: Y(yes), N(no) (±5% error bars depict 95% con�dence

intervals for the means).

accuracy rates, F (1, 34) = 8.718, MSe = .013, p < .01, in comprehending partially-

mediated causality statements. Finally, the analysis also showed a signi�cance in re-

sponse type, F (1, 34) = 8.413, MSe = .049, p < .01, for partially-mediated causality

(∼16% more accurate with response type `Y'), which suggests that, for most state-

ment types, participants were able to recognize matches and mismatches between

given statement and displayed causal relation, with comparable e�ectiveness.
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An ANOVA analysis of the response times also suggests similar e�ects. The re-

sults showed a main e�ect of representation type F (1, 34) = 11.288, MSe = 4.701, p <

0.001 and a comparison of the means showed that participants responded ∼7% faster

when the causal relations where represented using animations (Figure 8.9). The

analysis also showed a main e�ect of statement type F (5, 170) = 17.659, MSe =

5.443, p < 0.001, which suggests that participant response times were dependent

upon the type of statement that was presented. A comparison of the means shows

that participants took the least amount of time to match additive causality state-

ments and the most amount of time to match partially-mediated causality state-

ments. The analysis also showed signi�cant interaction between the type of rep-

resentation and statement F (5, 170) = 2.313, MSe = 3.826, p < 0.05. Analysis

of this interaction suggests that, with animations, participants were ∼15% faster,

F (1, 34) = 16.759, MSe = 3.742, p < .001, in responding to contradictive causality

statements (S2), and ∼13% faster, F (1, 34) = 7.224, MSe = 4.579, p < .05, in re-

sponding to fully-mediated causality statements. Finally, the analysis also showed sig-

ni�cant interaction between statement and response types, F (5, 170) = 2.292, MSe =

3.139, p < .05. Analysis of this interaction suggests that, with the `Y' response

type, participants were ∼5% faster, F (5, 170) = 11.529, MSe = 4.230, p < .001,

with animations than the static-sequence representation. Analysis of the `N' re-

sponse types showed that, with animations, participants responded ∼21% faster,

F (1, 34) = 14.750, MSe = 3.998, p < .01, to contradictive causality statements and

∼11% faster, F (1, 34) = 4.637, MSe = 2.412, p < .05, to fully-mediated causal-

ity statements, compared to their static-sequence counterparts. These results sug-
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gest that animations generally performed with faster response times than the static-

sequence representation and this di�erence was more prominent with contradictive

and fully-mediated causality statements.

Comparison of static-graph (Experiment 6) and static-sequence (Experi-

ment 9) representation of the complex causal semantics

The last step of this analysis focused on comparing the data collected from the

static-graph representation to the data collected from the static-sequence represen-

tation of complex causal semantics. The experiment design of Experiment 9 was

similar to Experiment 5, however due to di�erence in sample sizes and participants,

a between-subjects ANOVA was conducted using Sum of Squares type III analysis.

The analysis did not show signi�cant di�erence between the two representation types

for any of the semantics (all p′s > .05), which suggests that participant performance

was not in�uenced by the simultaneously or sequential representation of the causal

relations. Thereby, the analysis also infers that participant performance was not en-

hanced or biased in favor of the sequential presentation of the information in the

animated representation.

Comparing the accuracy rates and response times for the animated conditions in

experiments 5 and 9 suggests that there are di�erence between the values for the two

experiments(Table 8.13). However, on comparing the di�erence between the accu-

racy rates for the animation and static representation in Experiment 5 (di�erence

= .042), it is very similar to the di�erence in accuracy rate between the animation

and static representation in Experiment 9 (di�erence = .04). Similarly, the di�erence
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Experiment 5 Experiment 9

Accuracy rate
Static .753 .696

Animation .795 (di�erence =

.042)

.736 (di�erence =

.04)

Response time
Static 8.115 seconds 8.029 seconds

Animation 7.441 seconds (dif-

ference = 0.674

seconds)

7.527 seconds (dif-

ference = 0.502sec-

onds)

Table 8.13: Comparison of accuracy rates and response times in animation conditions

for Experiment 5 and Experiment 9. NOTE: �di�erence� denotes the di�erence in

value between the representation type and the static representation that was tested in

each experiment.

between the response times of animation and static are very similar for both Exper-

iment 5 (di�erence = .674 seconds) and Experiment 9 (di�erence = .502 seconds).

These di�erence suggest that the animations results are similar but on a slightly dif-

ferent scale, which could be attributed to the memory and recall capability of the

participants within each experimental group.

Summary of Experiment 9

The following inferences were made from this experiment:

• The results of the experiment showed that participants were ∼6% more accurate

and responded ∼7% faster when the complex causal semantics were visualized
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using animations.

• The results also showed a signi�cant interaction between representation type

and statement type, which suggests that participant responses were a�ected

by the type of causal semantic and the type of representation presented to

them. Speci�cally, participants were ∼16% more accurate and ∼15% faster

with contradictive causal statements, ∼12% more accurate and ∼13% faster

with fully-mediated causal statements, and ∼8% more accurate with partially-

mediated causal statements, with animations rather than the static-sequence

representation.

• The results did not show a main e�ect of response type which suggests that

participants were able to recognize matches and mismatches between the given

relation and statement with similar e�ciency.

• Analysis of the response times showed that participants provided ∼5% faster

`Yes' responses while viewing animated, rather than static-sequence, informa-

tion. Animations also fared with faster response times, than their static-sequence

counterparts, when providing `No' responses for contradictive (∼21% faster) and

fully-mediated (∼11% faster) causal statements.

• Comparison of the static-sequence representation to corresponding static-graph

representations did not show any signi�cant change in accuracy rates or response

times, which suggests that sequential presentation of information is not a major

factor in the superior performance of the animated representation.
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The results of this experiment show that participants performed with higher ac-

curacy rates and faster response times with animations, which concurs with both

Hypotheses 1 & 2. Analysis of the accuracy and response times of static-graph (Ex-

periment 5) and static-sequence representations show that participant performance

was not enhanced when the causal information was presented in sequence. The re-

sults therefore also fully concur with Hypothesis 3 and conclude that the sequential

animation does not bias participant performance in the animated representation.

Experiments 1 through 9 describe the various studies and analysis that have been

conducted to evaluate causal semantics and their visual representations. The over-

all consensus of these analysis along with a summary of the experiments has been

described in the next chapter.



Chapter 9

Experimental Studies Summary

9.1 Design Summary

My main premise in this study is that animations intuitively describe causal se-

mantics. However, research states that animations should be used with care as they

can quickly get out of control and overwhelm the user [Tversky et al., 2000]. There-

fore, it is also important to test if the causal information can be adequately displayed

using equivalent static images and whether animations improve the comprehension

of the relations, over their corresponding static versions. Four representation types

were therefore tested during the course of my study:

• Text-only representation: The text-only representation is used as the control

condition in the Memory Recall experiments to analyze the improvement in

comprehension when the causal semantics are visualized using the static and

animated representations.

• Static representation: The static representation visualizes the causal seman-

231
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tics using nodes (to depict the factor and targets), connecting lines (to depict

the relation between factor and target), and glyphs (to depict the in�uences

and e�ects). The static representation is divided into two categories depending

on the method of displaying the relations:

� Static-graph: In the static-graph representation, the entire set of causal

relations is shown simultaneously, so that the participants can view the

information in their orders of preference. Colors are used abundantly in

order to di�erentiate between relations.

� Static-sequence: In the static-sequence representation, the causal rela-

tions are isolated and shown in sequence. Order is pre-determined and

colors are not employed.

• Animated representation: In this representation, factors and targets are

depicted as nodes, the relation between them is depicted by a connecting line,

in�uences are depicted by animated bullets that move from the factor(s) to the

target, and �nal e�ects are depicted by change in target size. Relations are

shown one at a time and follow a storyboard pattern.

In my research, I hypothesized four main outcomes, one or more of which were

assumed in each of the experiments:

• Hypothesis 1 (H1): Participants will perform the recall tasks with higher

accuracy rates and faster response times when the causal relations are enhanced

with visualizations, when compared to a textual description of the information

(i.e. text vs. static/animation).
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• Hypothesis 2 (H2): Participants will perform the recall tasks with higher

accuracy rates when the causal relations are enhanced with animations.

• Hypothesis 3 (H3): Participants will perform the recall tasks with faster

response times when the causal relations are enhanced with animations.

• Hypothesis 4 (H4): Participant performance (accuracy rates and response

times) will not improve with the sequential presentation of the causal relations

in the static representation (static-graph vs. static-sequence).

Finally, two experiment designs were created to test the e�ectiveness of the visual

representations:

• Memory Recall: This experiment compared the visual representations to a

control condition, namely a text-only description of the causal relations. The

experiment tested 3 conditions; text-only, text + static (static-graph or static-

sequence), and text + animation. In the text-only condition, the participants

were initially shown a set of causal relations described using English statements

for half the time, and then were asked to �ll the rest of the time performing

non-essential tasks such as connect-the-dots. In the text + static condition, the

participants �rst viewed a textual description of the relations and then viewed a

static (static-graph or static-sequence) representation of the same relations for

the rest of the time. Similarly, in the text + animation condition, the partic-

ipant viewed the textual description followed by the animated representation.

The experiment consisted of 3 conditions with a questionnaire proceeding each

condition. In each questionnaire session the participant was asked to recall



Chapter 9: Experimental Studies Summary 234

and recognize matches (`Correct' response) or mismatches (`Incorrect' response

with corrections) between the given statements and the set of memorized rela-

tions. Participants could take breaks between conditions and the experiment

concluded after all three conditions were completed. Experiments 1, 3, 4, 7,

and 8 were based on this design.

• Intuitiveness: This experiment compared only the static (static-graph or

static-sequence) and animations, without the aid of the textual descriptions.

The experiment was divided into 5 � 6 sessions with 16 � 24 visualization-

statement pairs per session. Each pair consisted of 1 � 2 static or animated

representations and one statement corresponding to the visualization. Partic-

ipants viewed the visualization for a given period of time and then responded

to the statement. Participants were limited to only `Yes' (`B' key) and `No'

(`N' key) responses, for a match or a mismatch respectively. Participants were

allowed to take breaks at the end of each session and the experiment ended after

all the sessions were completed. Experiment 2, 5, 6, and 9 were based on this

design.

My entire research is divided into four main components, and chapters 6, 7, 8,

and 9 describe the experiments conducted in analyzing simple visualizations of causal

information, which form components II, III, and IV of my research:

• Component I: focuses on recognizing the causal semantics inherent in the

world around us, and has been detailed in Chapter 5.

• Component II: compares the e�ciency of static-graph and animated visual-
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izations in representing simple causal semantics.

• Component III: compares the e�ciency of static-graph and animated visual-

izations in representing complex causal semantics.

• Component IV: repeats the experiments of Components II and III by com-

paring the animations to the enhanced version, static-sequence, of the static

representation.

The following are summaries of the three components of experimental analysis in

my research:

9.1.1 Component II

The main focus of this component was to compare the e�ciency of the static-

graph and animated representations in depicting the simple causal semantics. Two

experiments were conducted here:

• Experiment 1: This experiment tested the improvement in comprehension

when static-graph and animated visualizations were employed to enhance a

text-only representation of the simple causal semantics. Hypotheses H1 and

H2 were tested in this experiment. This study was paper-based (answers were

recorded on paper) and did not calculate response times. Therefore, H3 was

not assumed.

• Experiment 2: This experiment compared the e�ciency of the static-graph

and animated representations in representing the simple causal semantics. Hy-

potheses H2 and H3 were tested in this experiment.
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9.1.2 Component III

The main focus of this component was to extend the experiments designed in

Component II to test the e�ciency of the static and animated representations in

enhancing text-only representations and in visualizing the set of complex causal se-

mantics. Three experiments were conducted in this phase:

• Experiment 3: This experiment tested the improvement in comprehension

when static-graph and animated visualizations were employed to enhance a

text-only representation of DG1 of the complex causal semantics. Hypotheses

H1 and a combination of H2 & H3 were tested in this experiment.

• Experiment 4: This experiment tested the improvement in comprehension

when static-graph and animated visualizations were employed to enhance a

text-only representation of DG2 of the complex causal semantics. Hypotheses

H1 and a combination of H2 & H3 were tested in this experiment.

• Experiment 5: This experiment compared the e�ciency of the static-graph

and animated representations in representing DG1 and DG2 of the complex

causal semantics. Hypotheses H2 & H3 were tested in this experiment.

9.1.3 Component IV

The main focus of this component was to compare the static-sequence to the

animated representations of the causal semantics, in order to determine if sequential

presentation of information had any signi�cant in�uence on the superior performance

of the animations in the previous experiments. Four experiments were conducted in
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this component, one testing the simple causal semantics and the other three testing

the representations of the complex causal semantics:

• Experiment 6: This experiment replaced the static-graph representation by

the static-sequence representation and compared it to the animated representa-

tion of the simple causal semantics. Hypotheses H2, H3, and H4 were tested

in this experiment.

• Experiment 7: This experiment replaced the static-graph representation by

the static-sequence representation and tested the improvement in comprehen-

sion when static-sequence and animated visualizations were employed to en-

hance a text-only representation of DG1 of the complex causal semantics. Hy-

potheses H1, a combination of H2 & H3, and H4 were tested in this experi-

ment.

• Experiment 8: This experiment replaced the static-graph representation by

the static-sequence representation and tested the improvement in comprehen-

sion when static-sequence and animated visualizations were employed to en-

hance a text-only representation of DG2 of the complex causal semantics. Hy-

potheses H1, a combination of H2 & H3, and H4 were tested in this experi-

ment.

• Experiment 9: This experiment compared the e�ciency of the static-sequence

and animated representations in representing DG1 and DG2 of the complex

causal semantics. Hypotheses H2, H3, and H4 were tested in this experiment.
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9.2 Results Summary

The experiment tested the e�cacy of my static and animated representations as an

enhancement to the text-only representation and as stand-alone modes of visualizing

simple and complex causal semantics that were identi�ed in my taxonomy. The results

of the experiments were analyzed using SPSS®mathematical analysis software. Each

set of data was analyzed using repeated-measures Analysis of Variance (ANOVA). The

following conclusions can be made from these experiments:

The �rst step of the research was to analyze the simple causal semantics, using a

Memory Recall test, in order to determine the easiness of comprehending and recall-

ing the visual information presented to the participants. Experiment 1 therefore,

compared the e�ectiveness of the static-graph and animated representations in en-

hancing a text-only representation of the simple causal semantics. The results of the

experiment showed that the participants showed ∼8% higher accuracy rates in the

text + animated condition, when compared to the text-only condition and ∼10%

higher accuracy rates when compared to the text + static-graph condition. These re-

sults suggested that the animations enhanced the textual description and were easily

comprehended and recalled by the participants. As this experiment was a paper-

based study, response times were not calculated or analyzed. The results partially

concurred with H1 as only the text + animated condition showed higher accuracy

rates than the text-only representation. The results also concurred with H2 as par-

ticipants were more accurate in the text + animated condition than in the text +

static-graph condition.

The next step now was to isolate and compare the Intuitiveness of my static-graph
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and animated representations, without the aid of the text-only representation, as was

done in Experiment 2. Results of the experiments did not show signi�cance in

accuracy rates between animations and static-graph representations, which suggests

that participants were able to understand the information similarly with both rep-

resentations. The results also showed that participants were ∼9% faster with the

animated representation than with the static-graph representation, which suggests

that the animations were intuitive and faster to recall when matching the statement

to the given relation. These results suggests non-concurrence withH2, as signi�cance

was not seen between the accuracy rates for the two representation types, and full

concurrence with H3 due to the signi�cantly faster response times with the animated

representation.

The results of the simple causal semantics experiments were encouraging and

showed that animations showed faster response times than the corresponding static-

graph representations. The next set of experiments extended these designs to test the

e�ectiveness of the representations in visualizing complex causal semantics. Firstly,

Experiment 3 conducted a Memory Recall test on DG1 of the complex causal se-

mantics and results of this experiment did not show a reliable main e�ect of represen-

tation types, as the semantics were still simple and could be adequately represented

by all three representations (non-concurrence with H1). The analysis of the response

times also did not show a reliable main e�ect of representation type, which suggests

that participants took similar time to respond to statements represented by each of

the three conditions (non-concurrence with H2/H3). Overall the results of this ex-

periment were not signi�cant and this could be attributed to the number of causal
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relations (6 relations) that the participant was asked to memorize and to the di�culty

in sorting through and recalling this information when asked to match the relations

to the given statement.

Experiment 4 conducted a Memory Recall experiment on DG2 of the complex

causal semantics and, again, the results of this experiment did not show a reliable main

e�ect of representation type for both accuracy rates and response times, showing non-

concurrence with H1 and H2/H3. The lack of signi�cance in this experiment can be

attributed to the complexity and volume of information provided to the participants,

and their di�culty in recalling the accurate information when asked to match the

relations to the given statements.

From the results of Experiment 3 and 4, I was unable to conclude which of the

two visualizations (static-graph or animated) were more e�ective in describing the

complex causal semantics. Therefore, Experiment 5 tested the Intuitiveness of the

static-graph and animated representations. The results of this experiment showed a

reliable main e�ect of representation type in that participants were ∼5% more accu-

rate when the causal semantics were visualized using animations, when compared to

the static-graph representations (concurrence with H2). An analysis of the response

times also favored animations, as participants were ∼8% faster with animations than

with static-graphs (concurrence with H3). This suggested that animations were in-

tutitive, comprehended easily, and recalled faster when compared to the static-graph

representations of the causal semantics. However, the results also showed a main

e�ect of interaction between representation type and statement type as performance

using the preferred representation type was dependent upon the type of semantic
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being represented. Participants were faster with animations in responding to addi-

tive causality (`N' response: ∼17%), contradictive causality (`Y' response: ∼11%,

`N' response: ∼17%) and fully mediated causality (`Y' response: ∼37.6%, `N' re-

sponse: ∼16.8%). The static-graph representation displayed faster response times for

partially mediated causality (∼9%), which could be attributed to the time taken to

mentally replay the animation before providing a response.

One concern that arose during the course of these experiments was whether the se-

quential presentation of the relations had any in�uence on the superior performance

of the animated representation. In order to address this concern, Experiment 6

conducted an Intuitiveness test to compare the e�cacy of an enhanced version of the

static-graph representation (called static-sequence) to the animated representation of

the simple causal semantics. The results of this experiment showed that participants

were equally e�cient with both types of visualizations (non-concurrence with H2)

but responded ∼4% faster when the relations were depicted using animations (con-

currence with H3), which were similar to the results from Experiment 2 suggesting

the ability of the participants in quickly recalling the causal information when it was

represented using animations. A comparison of the static-sequence results from this

experiment to the static-graph results from Experiment 2 did not show any signi�-

cant improvement in performance when the relations in the static representation was

shown in sequence. Also, the static-sequence representation showed a signi�cant de-

terioration in performance when participants were asked to recognize correct matches

for the overall combination of components (S4, ∼22% deterioration). However, when

asked to recognize incorrect matches for magnitude of outcome (S3), participants were
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∼13% faster with the static-sequence than the static-graph representation. There-

fore, the results showed that in general the sequential presentation does not in�uence

participant performance, except in isolated conditions which also could be attributed

to the comprehending ability of the participant (concurrence with H4). In addition,

it can be inferred from these results that the sequential presentation of information

does not in�uence or promote the e�ectiveness of the animated representation. An-

other observation from this experiment was that the mean accuracies and response

times for the animated representation were very similar with Experiments 2 and 6,

which showed the consistency of participants performance and the adaptability of the

animated representations to larger populations.

The next step was to address the concern about the simultaneous representation

of the complex causal semantics, as was done with the simple semantics. Experiment

6 did not show a change in performance when the static-graph was replaced with

the static-sequence representation. However, I was concerned if the lack of change in

performance could be attributed to the simplicity of the semantics being represented,

and if any di�erence can be seen if the complex causal semantics were visualized

using the static-sequence representation. Therefore Experiments 7 (Memory Recall,

DG1), 8 (Memory Recall, DG2) and 9 (Intuitiveness, DG1 & DG2 combined) tested

the e�ectiveness of the static-sequence representation. The results of Experiment 7

did not show a main e�ect of representation type, showing non-concurrence with H1,

which can be attributed to the the number of causal relations (6 in total) being pre-

sented to the participants. Analysis of response times also did not show a main e�ect

of representation type (non-concurrence with H2/H3), suggesting that participant
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took similar amounts of time to match statements to the given relations in each of the

representation types, which again could be attributed to the di�culty in memorizing

and recalling the causal information. The results of the static-sequence representation

collected in this experiment were compared to the static-graph representation from

Experiment 4. Analysis of these results did not show signi�cant di�erence between

the two variations of the static representation, which suggests that the sequential

presentation of information does not in�uence performance (concurrence with H4).

Comparison of the means for text-only and text-animated conditions between Exper-

iment 3 and Experiment 7 suggested that the accuracy rates and response times were

very similar, which in turns shows the consistency of the results and extendability of

the results to larger populations.

The results of Experiment 8 again did not show a main e�ect of representa-

tion type, (non-concurrence with H1). The analysis did not show signi�cant di�er-

ence between the static-sequence and the animated representations (non-concurrence

with H2/H3) with both accuracy rates and response times, which suggests that the

causal information was complex and di�cult to memorize and recall. Comparison of

the static-sequence results to corresponding static-graph results (from Experiment 5)

showed no signi�cant di�erence between the two representations for partially mediated

and bidirectional causal statements. However, participants were signi�cantly faster

with the static-graph representation in responding to threshold causality statements

(`Correct' response: ∼30%, `Incorrect' response: ∼33%). The overall consensus of

this analysis signi�es concurrence with H4 and suggests that sequential presentation

of information does not in�uence participant performance, and in some cases deteri-
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orates the performance of the static representation. Although, comparisons between

results of Experiment 4 and Experiment 8 did not show similar accuracy rates and

response times for the text-only and text+animated conditions, comparing these val-

ues to the accuracy rates and response times for the respective text+static condition

showed a consistent change in the values. This suggests that the accuracy rates and

response times were similar, but on a slightly di�erent scale, which can be attributed

to the memory and recall capacities of the participants between the two experimental

groups.

Finally, with Experiment 9, I wanted to determine if the static-sequence repre-

sentation improved performance if it was used as a stand-alone mode of visualization.

Here, the analysis showed a main e�ect of representation type, and as hypothesized,

animations proved more e�ective and performed with ∼6% higher accuracy and ∼7%

faster response times than the static-sequence representation (concurrence with H2

and H3). In addition, a comparison of the static-sequence results to the static-graph

results from Experiment 6 did not show any signi�cant di�erence between the per-

formances of the two representations, thereby showing full concurrence with H4.

Also, comparisons between accuracy rates and response times for the animated rep-

resentations of Experiment 5 and Experiment 9 showed similar di�erences from the

respective static representation, which suggests that the results were similar but on a

slightly di�erence scale due to the di�erence in comprehension and recall capabilities

of the participants between the two experimental groups.

The overall consensus of this research was that comprehension of the simple causal

semantics was improved when the textual information was enhanced using the static
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and animated visualizations (Experiment 1). Speci�cally, the animations proved to

be more e�ective and induced faster response times than the static representations

(Experiment 2). Memory recall studies on the complex causal semantics showed that

there was no signi�cance between my animated and static visualizations, due to the

complexity of the relations being presented (Experiment 3 & 4). However, as stand-

alone representations, animations had higher accuracy rates and lower response times

than the static-graph representation (Experiment 5). Alternatively, static-sequence

representations did not improve comprehension of the simple (Experiment 3) or the

complex causal semantics (Experiments 7 & 9), and in some cases showed a deteri-

oration in performance (Experiment 8). Therefore, I can conclude that the relations

should be shown simultaneously and not sequentially in the static representation.

Finally, as hypothesized and after the long series of studies, I have determined that

my animations are the preferred method of representing the set of causal semantics

identi�ed in my taxonomy.

Experiments 1 to 9 comprise the studies I conducted to analyze the e�ectiveness

of my causal visualizations. I will now conclude with a summary of my inferences

and suggestions of the impact my visualizations will have on the greater community.
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Conclusion

This research reports on the construction and evaluation of visual semantics that

enhance information content in causal diagrams. My representations are based on per-

ceptual structural rules for recognizing causal occurrences, as suggested by Michotte

and Thinés [1963]. This study consists of four components to design and analyze the

e�ectiveness of my representations in describing causal semantics.

In the �rst component I focused on de�ning a taxonomy of causal semantics that

are commonly encountered our environment. This component then aimed at de�ning

the structure of the causal relation and designed a framework for constructing the

path of the relation. The �nal step of this component focused on creating visual

representations of the causal semantics using the suggestions of other research in the

area [Michotte and Thinés, 1963; Sekuler and Ganz, 1963], and of the structure and

path of the causal relation.

The main hypotheses of my research are that visual representations help in im-

proving comprehension and that my animations are more accurate and have lower
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response times when compared to the static representations in describing the causal

semantics. In the second component of my research, I tested the static-graph and

animated representations of the simple causal semantics. Two experiments were con-

ducted in this phase. In both experiments animations had higher accuracy rates and

lower response times than the corresponding static-graph and textual representations.

Animations were ∼8% more accurate when used to complement textual descriptions

in the Memory Recall test (Experiment 1) and ∼8% more accurate and ∼9% faster

when compared to the static-graph representations for an Intuitiveness Evaluation

(Experiment 2).

Encouraged by the results of the second component, the third component of my

research aimed at testing static-graph and animated depictions of the complex causal

semantics. Although there was no signi�cant di�erence between the animations and

static-graph representations in the Memory Recall experiments (Experiment 3 and

4), the Intuitiveness evaluation (Experiment 5) suggested that animations improved

comprehension by ∼5% and response times by ∼8%.

Finally, in the fourth component of my study, I enhanced the static-graph repre-

sentation, by sequentially animating the relations, and compared it to the animations

using both Memory Recall and Intuitiveness evaluations. The goal of these experi-

ments was to determine if the sequential animations of the relations had any in�uence

on the performance of the animations. Results of this study did not show signi�cant

di�erences between the static-graph and static-sequence representations, and also

suggested that animations were still the preferred form of visualization of my causal

semantics. Overall, the experiments conducted in my research support my hypothe-
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sis that visualizations, animations speci�cally, are e�ective modes of representing my

causal semantics.

In keeping with the main goals of my research, I did not focus some complex, criti-

cal aspects of causal relations, such as multiple targets, continuous scales for in�uence

and e�ect, and time domains. The reason for focusing on the basic representation of

my semantics is because I believed that it is essential to build a strong foundation

for future research in the area of causal visualization and this can be achieved by

�rst identifying the taxonomy of causal semantics and then using existing theories

of perception to build simple visualizations to describe these semantics. Some of the

limitations of my research has been discussed in the next section.

10.1 Limitations of my research

My research focused on designing and testing basic visualizations of the causal

semantics identi�ed in my study. Therefore, some complex features of causal relations

have not been addressed, as mentioned below.

1. My causal semantics only focus on single target scenarios, and do not take into

consideration conditions when a factor a�ects more than one target. The reason

for this is that I wanted to focus on the type and magnitude of outcome with

respect to a target. I do recognize that multiple targets are common in real-

life scenarios, and understand that more semantics might be identi�ed when

the focus shifts to multiple targets and outcomes, however, this was currently

beyond the scope of my thesis.
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2. The in�uence and e�ects are deterministic and based on a 0/1 scale, i.e. small/large

in�uences and increase/decrease in e�ect. This scale was chosen in order to

maintain the simplicity of the experiments and to focus on the e�ectiveness of

the visualization in depicting the causal semantic. Also, participants were not

given additional interactive aids, such as tooltips, to help them in determin-

ing the magnitude of the in�uences or e�ects, and so I wanted to show a clear

distinction between the magnitudes. However, I do understand that a more

continuous scale, along with interactive tools, will need to be adapted when ap-

plying my visualizations to applications in the life sciences, which would form

future work for this research.

3. The causal graphs used in this research are small, simple, and �t within the

participants' screen. The reason for this is again to keep the experiments simple

and to focus on each type of causal relation rather than on the whole scenario.

However, if my visual designs are applied to more complex scenarios, additional

dynamic techniques will need to be investigated and/or incorporated to enable

easy viewing and traversal of the causal graphs. Some of these techniques could

include zooming, scrolling, node selection, and division of the visualization into

small segments using checkpoints.

4. Time domains were not incorporated in my research as I focused on one causal

event at a time and each event was isolated and disconnected from the next

event within the given scenario. The main reason to this experimental design

was because I was testing the individual semantic and components of the causal

relation, and was not focused on the scenario or sequence of events within the
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scenario. However, I do recognize that in real-life applications, the visualizations

will need to incorporate time domains when describing the causal semantics.

5. The current thesis focuses on creating a non-domain speci�c taxonomy of causal

semantics. The reason for this decision was that I wanted to identify the seman-

tics and design simple representations such that they can be applied to several

domains. This would require application and testing in di�erent domains, which

has been identi�ed as part of my future work and described in the next section.

I recognize that real-life applications are more complex than the simple represen-

tations designed in my thesis. However, the main focus of my thesis was to de�ne a

set of relations and design simple visualizations for them. The research also focuses

on initial experimental studies to test these visualizations, as I believe they have im-

mense potential and future to be incorporated in real-life applications. Therefore,

although this study only focused on testing the causal visualizations in a laboratory

environment, I am con�dent that these representations can be applied to di�erent

real-time scenarios in order to extract information and make critical decisions. Some

example scenarios that display the practical applicability of my visualizations have

been explained in the next section.

10.2 Future applications of my research and its im-

pact on the greater community

Newton's third law of motion states that, �every action has an equal and opposite

reaction�. The causal equivalent of this statement is that, �every cause has a precise
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e�ect�. Every action performed is the result of a preceding cause and gives rise to a

succeeding e�ect. Hence, causality is so general and abundant in the universe that it

can be obtained by simply observing the environment around us and discerning the

causal relationships from it. However, when it comes to comprehending these seman-

tics and making future predictions and judgments from them, it can be quite complex

to remember the interconnections between di�erent relationships, and also to perceive

the overall picture. This is where visualization plays an important role. Visualiza-

tions elucidate the complex concepts using simple visual representations, which cause

the concepts to be comprehended, remembered, and appreciated. Simple visualiza-

tions are employed in many �elds, such as medicine, pharmacy, education, computer

science, management, physics, and chemistry, to explicate complex semantics.

In the medical and health �elds, these representations can be used in radiotherapy

to show the actions of radiations on various organs of the body. They can be used in

surgery to visualize the outcomes of di�erent surgical methods and can also help to

choose the method with least complications and risks. They can be used to show the

behavior of the human anatomy and how it reacts to di�erent diseases, medications

or circumstances. The visualizations can also be used to show the origin and spread

of diseases, their range, the rate at which they spread, timelines, methods that can

be employed to stop or reduce this spread, and the e�ectiveness of these methods

(Figure 10.1).

In the pharmaceutical �eld, my visualizations can be used in drug research. They

can be used to simulate the ways in which drugs a�ect a disease, which combinations

of drugs might have a signi�cant e�ect on destroying or bringing the disease under
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Figure 10.1: Example of a causal graph that can be used by disease surveillance

organizations, such as the Public Health Agency of Canada (PHAC), to monitor the

source of di�erent diseases and their e�ect on the health of the Canadian public.

control, which drugs have adverse e�ects, the side-e�ects of these drugs, and the

amounts that should be administered for best results. The representations can also

be used to monitor the administration of the drug in a sick person for testing purposes.

In the educational �eld, my visualizations can be used in many places e�ectively.

They can be used in hospitals, such as in children's hospitals, as educational tools to

educate children on their illness. The tools can be of various forms such as quizzes or

video games, which can use these visualizations to teach to teach children the causes

of their illness, how their medications help control the disease, what foods or drinks

they should avoid, and what other procedures they should take to prevent a relapse.

They can also be used in general to show patients the extent of their diseases and
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Figure 10.2: Example of a causal graph that can be utilized to analyze the structure

of a company, its e�orts, and �nally its outcomes.

progress of their medication plans. In the universities, my representations can be

used for research purposes.

Likewise, some other �elds that will bene�t from my visualizations include, but are

not restricted to, computer science, physics, chemistry, and management. In computer

science, my visualizations can be used in the universities and industries to visualize

program models, communications between components in a system, project timelines,
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workload division, input from the team members, side-e�ects, and by-products of a

system. The visualizations can also be used by the students to describe their programs

and also test them with di�erent sets of inputs. These visualizations can be used by

physicists and chemists to view the e�ects of light on various substances, heat on

elements, combinations of mixtures, and radiation e�ects on a substance. They can

also be used by businesses to review marketing strategies, product lines, pro�ts, and

losses (Figure 10.2).

In consensus, causal semantics are abundant in almost every profession and �eld

of research. Hence, I hypothesize that my visualizations are powerful enough to help

simplify the complex semantics that are encountered on a regular basis.
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Figure A.1: The main screen for the Passage Recall experiment. This screen recorded

participant name, student number, a brief description of the experiment along with

any instructions.
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Figure A.2: Text representation was displayed through one line descriptions of the

causal relations.
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Figure A.3: Static Representation was displayed using +/- glyphs to depict in�uences

and upright/inverted bars to depict e�ects.
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Figure A.4: Animated representation was displayed using moving bullets to show

in�uences and target expansion/contraction to show e�ects.
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Figure A.5: Each phase of the experiment displayed the text representation followed

by a visual representation. At the end of each phase, participants shown a statement

and asked to choose 'Correct' if the statement correctly matched one of the relations

shown in that phase.
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Figure A.6: If the given statement did not match any of the relations shown in that

phase, the participant was asked to choose 'Incorrect' and provide the correct causal

information.
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Figure B.1: The main screen for the Intuitiveness Evaluation experiment. This screen

recorded participant name, student number, and a brief description of the experiment

along with any instructions.
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Figure B.2: In the static representation, participants were shown 1�2 relations using

static plus/minus glyphs to show in�uences and upright/inverted bars to show e�ects.
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Figure B.3: In the animated representation, participants were shown 1�2 relations

using moving bullets to show in�uences and and target expansion/contraction to

show e�ects.
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Figure B.4: Each experiment trail consisted of a visualization followed by a state-

ment. Participants were asked to choose 'Yes' or 'No' depending on whether they

agreed/disagreed that the statement matched the displayed visualization.
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