A Full Custom ASIC Design
for the Real-Time Generation of
Lowpass and Bandpass Multiresolution
Image Representations

by

Jonathan D. Loewen

A thesis
presented to the University of Manitoba
in partial fulfillment of the
requirements for the degree of
Master of Science
in
Electrical Engineering

Winnipeg, Manitoba, 1987
© Jonathan Loewen, 1987

Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to 1lend or sell
copies of the film.

The author (copyright owner)
has reserved cther
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

L'autorisation a été accordée
& la Bibliothéque nationale
du Canada de microfilmer
cette thése et de préter ou
de vendre des exemplaires du
film.

L'auteur (titulaire du droit
d'auteur) se réserve les
autres droits de publication;
ni la thése ni de longs
extraits de celle-ci ne
doivent &tre imprimés ou
autrement reproduits sans son
autorisation écrite.

ISBN 0-315-37468-3

A FULL CUSTOM ASIC DESIGN FOR THE REAL-TIME GENERATION

OF LOWPASS AND BANDPASS MULTIRESOLUTION IMAGE REPRESENTATIONS

BY

JONATHAN D, LOEWEN

A thesis submitted to the Faculty of Graduate Studies of
the University of Manitoba in partial fulfillment of the requirements

of the degree of

MASTER OF SCIENCE

© 1987

Permission has been granted to the LIBRARY OF THE UNIVER-
SITY OF MANITOBA to lend or sell copies of this thesis. to

the NATIONAL LIBRARY OF CANADA to microfilm this
thesis and to lend or sell copies of the film, and UNIVERSITY

MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the
thesis nor extensive extracts from it may be printed or other-
wise reproduced without the author’s written permission.

I hereby declare that I am the sole author of this thesis.

I authorize the University of Manitoba to lend this thesis to other institutions or indivi-
duals for the purpose of scholarly research.

Jonathan Loewen

I further authorize the University of Manitoba to reproduce this thesis by photocopying
or by other means, in total or in part, at the request of other institutions or individuals
for the purpose of scholarly research.

Jonathan Loewen

-ii-

The University of Manitoba requires the signatures of all persons using or photocopy-
ing this thesis. Please sign below, and give address and date.

-iii-

ABSTRACT

Many image processing and analysis tasks can be accomplished efficiently by
using multiresolution representations of an image. A fixed computational cost is spent
to transform the information content of an image into a multiresolution representation
which enables the use of very efficient image processing and analysis algorithms. This
thesis describes the design of an application specific integrated circuit (ASIC) which
may be cascaded to produce a system capable of generating a Gaussian (lowpass)
filtered multiresolution representation and a Difference of Gaussian (bandpass) filtered
multiresolution representation of an image in real time. The design of the ASIC is
based upon a systolic architecture, however modifications to the architecture are intro-
duced to take advantage of separability of the Gaussian function and hierarchical con-
volution. High degrees of pipelining and exploitation of the flow-through nature of the
algorithm enable the ASIC to achieve real-time operation. Real-time operation of the
ASIC allows implementation of the multiresolution representation system in the pipe-
line between detector and downline viewing, storing, or further image processing or

analysis steps.

-iv-

Acknowledgements

I would like to extend my appreciation to my advisor, Prof. H.C. Card for his

supervision and assistance during the development of this work.

Financial support from the Natural Sciences and Engineering Research Council of
Canada and equipment loans from the Canadian Microelectronics Corporation are

gratefully acknowledged.

Table of Contents

ADSITACE ottt ercrsaneresss e s st s st E e R bR s b e iv
ACKNOWIEAZEMENLSoocorrererrerecrrreererisssnsssrsnsnsss s s sssssisessssssesssssssssssssssoseenssmesssosonse ¥
TabLE Of CONENLSovereereserrme e ssr s ssssssssstssssssss s ssessss s ssssessesasssssesesss e sssesseennos vi
LISt Of FIZUTES ...oovoeerceconecrrirensinssssscsi s sssssss s ssensssssssssseses st e sssasssssss s sasesse et seossssmnne viii

List Of TADIES coocoveivsiicrvisininrinsi s ssssssmessssssssrsesesssssssssssssmssssssmsssssssss | X

Chapter 1: INErOGUCLION ..ot ese e sesesessesesse e eestesssesessssseees 1
1.1. Gaussian-Filtered Multiresolution Representationeeeeosecossereonns 2
1.2. Multiresolution Representation based on Difference of Gaussians 5

Chapter 2: Algorithms and ArchiteCtUres ... eeeesserssesnens 9
2.1. FFT IMPIEMENLALIONccrvuriririeerieesirenererimssssrssasesssssssssasssssssssssssssssssssssesssessesossesesssesens 10
2.2, SyStOliC ATCHITECIUIEoiveiireerrestiee st esss st st ssssaesesssssassesssesersessesssssesnnees 11
2.3. Dimensional Separability and Hierarchical Convolution ..., 14
2.4. Computational Cost and COMPIEXILY ...ccceerromrerinmnivinsessirescesemsressssssssinsecreresecseeee 20
2.5. Systolic ConvoIVETr DESIEN ...t s ss s ssee e sseseeeeseseseenee 21

Chapter 3: Design of Adders, Storage Elements, and Multiplexers 28
3.1, Ripple Carry AQAEIS ..ot sssssssssssssssssissssssssssssssssssssssssseneeseesnene 28

3.1.1. Full Adder DeSIZN ...oooveoierrinrersnesmsessssisssssesssesssansssssesssssns e snsessssssesssessasssssees 32
3.1.2. Half AQAEr DESIZI vttt saessbsssessssesossessesssessessessesesesessesessonss 34
3.1.3. Half Subtractor DESIZNccieecomrienssisnneresssseessesssissssssevesessesssesssseesssneses 36
3.1.4. Carry-out DIIVEr DESIZN ...coonvieerrrsicrnnsrmnssiinssssesssssssssssisssnsesssnesssesesesossennees 37
3.1.5. Adder Bank DEeSigNmrmmmmrsmmssmsssssssssssssssssssesesnesssommssesesenees 38
3.2, FHP-FIOP DESIZN oeevriorereirrreisserierssessssessssssnsss s ssisssssisssssss s ssssses s esesesesssesseesesesesss 45
3.3, MultipleXer DESIZN ...ocvccnmriieisssnesssssessssissssssssssiessssssssssssssssssssssssssssssssssonmnss | 47
3i4. SIMDIALON .crirceierieecrnerecs s cesssascs s ssarsas sttt s srs s st s e ses s sessanes 49

Chapter 4: Floor Plan and Layout ... 51
4.1, FLOOT PIAN ..ot sasssessissssessossesessstsssss st ssssssssssssssesssmsas s sssssssssnes 51
4.2, CMOS LAYOUL .ot ninss e sessses et snsessss s sssssissrassssss s sssssosssssssass et esesssssssssssanne 56
4.3, TIMUNE .ovoirierireccissee s s v are s st sas r s sasssssae s st b s s s seese e sarsss st 58

~VI-

A4, STMIUIATION coriivissveeesesestsesseseseresesseresssisssssntssstsssssssressassssssasssese s Rs 1A SEaE s e Er e e aab e e SRS S s 0 60

Chapter 5: TESHNE ..ooooinirississsssrsss s s s s s 63
Chapter 6: Simulation and ApplicatioNS ... e 67
6.1, SIMUIBTON coorereseereecmsersieieisetensess s sssssssess e b s s sbs e e bR R b s bbb 508 67
6.2, APPICAIONS oneocricrnresssisissssssss s s s sesesesssmssss s s 73
6.2.1. Image Data COMPIESSION .ouvevvrcnmiecsmeremsissssiss s 74

6.2.2. TMAZE BAZES coruierrercermimniersssssmms s ssass s resmsss s ssasssnsen st ssssssssasesasasosessasssses 75
Chapter 7: CONCIUSIONScuuimmmmmmmmmmmmmimssmmssesssmsssssesssmmsssesmissssmsmsssassssssssisssssssssissssssssss o 78
RETETEIICES ovnovervveereesseeeeereeessessessssssssssmsssanssarasasssas ssssssassessbsnssnbas b ens s asa s AR sm e R RSB R0 R1
Appendix: Program LISHINES ..o Al

-Vii-

0PN AN~

LUCTIE o T N T N T NS T N T N T O T N T N T S e I Y T I R P P L
TSTWOVWHOPNIUWHRUNNSIOVOONH WY ~S

b W W
Lo B

List of Figures

A multiresolution representation Of n IMAZE ...recesroiseerieeeenssisessssssiessoesessos
A SYSIOLIC QTTAY PIOCESSOT oevrrrimsrereessesstissssessessssesssssisssss s st sssesesesses s semsseesseesssnes
Generation of multiresolution lowpass and bandpass representations ...
Equivalent GaQuSSian fUNCITONS ..o iesissssasssssesssssseseosseesseossssesssessssssnsssasons
Dazta flow diagram of the systolic convolution algorithm ...,
One-dimensional SyStoliC CONVOIULION QIYAY ...eeeeereeeeereeeeereeceeeresseseeseevessrese s
Modified one-dimensional systolic convolution Qrrayeeeoomereeeeeeoneron,
Block diagram of the Gy SYSIOlIC CONVOIVELcoreeeeoeeecessereeereeereoereveneeeeseeeeesresss s
Timing sequence comparison Of QAAer SCREMESoeeeeeeeceeeeeereeseerescemsres oo
Logic diagram of a carry 100k@Read CIFCUIL .veorreeeceeeseceseeeeeeeessees s ssevesesss

. Logic diagram of a full QdAer SIQQE ...t v essesseens
. CMOS layout of @ full QAAEr CEll .. eeeeeoreeeeeeeeseeeeeeesreeeseeeeeeeeeses s
. Half adder logic circuit and CMOS IGYOULoeeeeeeeeseneconeeeseeseres e eesssesssssssonn
. Half subtractor logic circuit and CMOS [QYOUL oo eseeeeeeeoeressreeeresseieiens
. CMOS 1ayout of the CArry-0UL QriVETr .. oisinessesceserssomseessissesssessssssses s ssssens
o AAAlr DANK LAYOULS oot ss s ssssssssssssssss s sos st ssesssasssass s eees s o

SUDIFACIOT URIE JAYOUL oo ss e ssss s asssssssssssasssssssssseneseneeesesssssas e as s

. D-type flip-flop logic diagram and CMOS [GYOUL ..o,
. IO MUILDIEXING CIFCUIITY oot s ss e serssessssss s ssss s eesens st enees e oo

IO multiplexer CMOS IGYOUL .o vess s enes s sss e nes e seses s s eses s

. Floor plan showing computational blocks and IlO requirements
. Detailed foor PIAn ... st s se s eenen
o LAYOUL OF THE ASICcoecererecessssssnessssssassessssiss e ssess e ss st s e es et st ses s oo

. Final pad-frame IGYOUL ... sesstssssssonss s esssese s esceses s aseeesesns

Complete multiresolution repreSentarion SYSIEM ... woeecioeeeeeeeronseressseesessnens

. Timing sequence of the COMPUIAIION ..wiceevemsvireeonres s ssssss s s sesssessseseossemssees

Worst-case computation time estimate for the Gy convolver ..o,
Photomicrograph Of the ASIC ... sssssssssesssssesssennsesssesssssens

. The test image Qnd RISIOQIAM ..o cesereessiisessss s sases s ess s seseses s sossens
. Lowpass-filtered represeniations Tp BRPU TP s sscsisssiosren s esinines

- Lowpass-filtered representations Iip TArU ILp, weveeeeecsessnesncesescsssesesmssssssesinene
. Bandpass-filtered representations Ipp 1hIt Igp, cooovcovoscssmcmmmseesenesssesesssessssenssssn
. Bandpass-filtered representations Igp thrit Igp, with RiStograms ...

-viii-

34, RECONSITUCIEA IMAGEvooveveveeverrrsisssssss s ssssisesmsssossressesesesesesoossssssssseses s
35. Zero-crossings of Tgp, BRI IBp oottt sessssass s st sesssssss s o

36. Zero-crossings of Igp thru Igp, with pixel sizes magnified ...

-1x-

1. Full adder truth table

List of Tables

..

Introduction

The computational complexity of an information processing problem is deter-
mined, in part, by the representation of the information. Many image processing and
pattern recognition tasks can be accomplished more efficiently by using an improved
representation of the information in the image. Multiple resolution representations pro-
duce successively condensed versions of the information in an image. This thesis
describes the implementation in silicon of a scheme for the generation of successively
reduced resolution representations of an image by (1) condensing image intensity and
by (2) providing increasingly coarse approximations to certain descriptive features by

condensing the information about those features.

Multiple resolution representations of images was first suggested by Kelly [1] as a
method of planning to detect edges. Marr and Hildreth [2], Hanson and Riseman [3],
and many others have shown the advantages of multiple resolution representations for
detecting edges. Marr and Poggio [4], and Moravec [5] have used multiresolution
representations in stereo matching. Crowley [6] accomplishes efficient pattern
classification and Burt and Adelson [7] have devised a compact image code using mul-
tiresolution representations. The motivation for using a multiple resolution representa-
tion is to spend a fixed computational cost to transform the information content of an
image into a representation which enables the use of very efficient image processing

and analysis algorithms.

-1-

Image processing applications pose extremely large information processing prob-
lems due to the high resolution (many pixels or data elements per image) and the fast
data acquisition frequently required (particularly in the fields of satellite imagery and
medical imaging). Multiresolution representations can be used to reduce the computa-
tional cost of many image processing operations by using divide-and-conquer princi-
ples. For example, feature detection can be performed efficiently at lower resolutions
and the results used to constrain the search at higher resolutions. Searching becomes
fast since a global region in the original image can be detected using local operators at
a low resolution. In parallel hardware implementations of image processing algo-
rithms, local operators require considerably less communication and message passing
and thus exhibit faster execution times and simpler control than global operations. In
a multiresolution representation, global information is condensed at lower resolutions
thus allowing use of efficient local operators to detect and extract the global informa-
tion. A multiresolution representation therefore enables extraction of both local and
global information using simple, fast, and efficient local operators as well as restricting

the resolution at which the information is extracted.,

1.1. Gaussian-Filtered Multiresolution Representation

Multiple resolution representations provide successively condensed representations
of the information in an image. A simple scheme might generate successively reduced
resolution representations by averaging image intensities in non-overlapping two by
two blocks of pixels and subsampling. Repeated application of this process produces
the multiresolution representation shown in Figure 1 where level 0 (/) is the original
image of size 2" x 27; level 1 (/) has been averaged and subsampled once producing
a 2"1 x 2"~ image. Repeated applications produce exponentially decreasing image

sizes until a single pixel image is generated. Stacking these images on top of one

another forms a pyramid and thus some authors refer to this multiresolution representa-

tion as a pyramid structure.

o H o

2 x2 2n1 x nl 4x4 2x2 1x1
lo 5 I [} In

Figure 1: Multiresolution representation of an image,

Averaging image intensities in non-overlapping two by two blocks amounts to
low-pass filtering of the image. The low-pass filtering effectively reduces the high fre-
quency content of the image output at each stage and is required to reduce the aliasing
error introduced by subsampling. Frequency domain evaluation of a non-overlapping
unweighted square region average implementation for low-pass filtering reveals a
wide-band characteristic or ringing effect. The ringing characteristic or high frequency
pass-bands beyond the principal pass-band pass some high frequency image content as
well as passing certain high frequency noise. The inability to suppress all high fre-
quency noise is a disadvantage since later processing steps such as edge detection typi-
cally enhance noise thus producing false edges and distortions. These unwanted
features can be avoided by using an overlapping, weighted circular region average in
the filtering stage. The optimal averaging filter to be used is determined by two physi-
cal considerations. The first is the frequency domain consideration of wide-band
response, ringing characteristics and high frequency noise. These problems are

avoided by using a filter whose frequency spectrum is smooth and bandlimited; ie. its

variance in the frequency domain should be small. The second consideration is a spa-
tial domain consideration and is due to the fact that the visual world is constructed of
things which are spatially localized relative to a certain scale. These things give rise
to intensity changes in an image and consist of light sources, shadows, illumination
gradients, changes in orientation or distance, and changes in surface reflectance [2].
The spatial localization of intensity changes is in fact the essence of a multiresolution
representation. All of the things represented in an irﬁage are, at some resolution, spa-
tially localized. Thus, the contributions to each point in the filtered image should arise
from a smooth average of nearby points rather than any kind of average of widely
scattered points. Furthermore, when physically implemented, an algorithm which aver-
ages a local region is less computationally expensive and requires only local communi-
cation. Thus, the optimal filter should be smooth and lécalized in the spatial domain;
ie. its variance in the spatial domain will be small. The optimal filter therefore has the
conflicting requirements of spatial localization and frequency localization. The best
compromise in satisfying these conflicting requirements is obtained using a Gaussian

filter [2] described as

~x?+y%)

G, y)=—rre B (1.1)
2no

in two dimensions,

Use of a Gaussian filter eliminates the wide-band response and high frequency
pass-bands associated with an unweighted square region average. The high frequency
content of the image is reduced at each level in the multiresolution representation thus
enabling resampling of the image without aliasing errors. Furthermore, intensity
changes in an image become localized at some level in the representation. Repeated
ﬁltering of an image with Gaussian filters of appropriate standard deviation followed

by resampling will generate scaled copies of the original image. The resultant

multiresolution representation has been found appropriate for use in motion analysis,

texture analysis, image segmentation, and image property algorithms [8].

1.2, Multiresolution Representation based on Difference of Gaussians

The Gaussian-filtered multiresolution representation effectively provides copies of
an image with successively reduced resolution by condensing image intensity. It is
also often desired to provide reduced resolution copies, corresponding to increasingly
coarse approximations to certain descriptive features, by condensing the information
about these features. Such a representation, while still enabling the complete recovery
of the original image, has the advantages of data compression and of making the
salient information readily available. Representing size-scaled copies of an image with
a reduced amount of data will decrease the necessary memory or storage requirements
and increase the throughput rate of the system performing the relevant image process-
ing and analysis tasks. Furthermore, these tasks will be simpler and more efficiently
implemented. Obtaining a complete, compact description of the most meaningful
image information is viewed as the first step in visual information processing [2, 9].
This first step involves representing the intensity changes or edges which correspond to
the reflectance and illumination of visible surfaces and their orientation and distance

relative to the point of observation.

In natural images, intensity changes occur over a wide range of resolutions. To
adequately characterize the intensity changes in the image in terms of the physical
processes that originated them, the intensity changes must be detected at all resolutions
at which they occur. This process suggests characterizing edges within a multiresolu-
tion framework. Furthermore, a Ganssian-filtered multiresolution representation is the

optimal framework within which to characterize edges [2].

Intensity changes within an image may be detected by comparing intensity values
within a limited neighborhood. The rate of change of the intensity values along a path
in the image is given by the first derivative. Where the rate of change is large, the
absolute value of the first derivative in the direction of change will also be large. For
natural images, rapid changes or sharp variations in intensity correspond to physical
edges in the objects or surfaces in the image. Thus, extreme values of the first direc-
tional derivative localize physical edges. Alternatively, these peaks in the first deriva-
tive will correspond to zero-crossings of the second derivative. The intensity changes

may then be identified by locating the zero-crossings of
DG (x,y)* I(x,)] (1.2)

where D? signifies the second derivative in the appropriate direction, G (x, y)
corresponds to the Gaussian function used to generate the scaled copies of the original
image, I'(x, y) is the original image, and * signifies a two-dimensional convolution.

By the derivative rule for convolutions,
DG (x,y)* I(x, y) (13)

The direction in which the second derivative is taken within the two-dimensional
image must also be determined. In smooth images, intensity change near and parallel
to an edge will be approximately linear. The linear change stipulates that the second
derivative operator with zero-crossings of maximum slope will localize the edge.
However, these zero-crossings correspond to the zero-crossings of the Laplacian (V?)
which is the only orientation-independent second-order differential operator. Use of
the Laplacian enables determination of the appropriate zero-crossings for a particular

resolution with just one convolution. The process is
V3G (x,y) * I(x,y) (1.4)

where the function, V2G (x, y) is called the Laplacian of a Gaussian [2] or LOG

function and is mathematically expressed as

1 ey x2 42
VGx,y)=— e 20 el A (1.5
Y no? 202)

The LOG filter is bandpass and responds optimally to a certain range of spatial fre-
quencies of the intensity changes. Implementing the bandpass filter at multiple resolu-
tions effectively reduces the center frequency of the filter as the image resolution
decreases. Alternatively, the size of the LOG filter (convolution window size) deter-
mines the range of resolution over which it will respond to intensity changes. Thus,
intensity changes at different resolutions can be optimally detected by using LOG
filters of different sizes. Large filters detect soft edges and overall illumination

changes. Smaller filters detect finer detail.

The computational cost and complexity of implementing the LOG filter in
hardware [10] can be significantly reduced by approximating the V3G function with
the difference of two Gaussian functions or DOG function. The V2G function is very
similar to a DOG function and is in fact the limiting case of the DOG function as
03/ 0, tends to unity [2]. ©; and O, are the standard deviations of the Gaussian
functions which are subtracted to form the DOG function. The DOG function is

expressed mathematically as

2 +yY = ihsy
- 111 267 _ T
DOG(X’Y)__Z—E _&17 E;-e (1.6)

A computational saving exists since it is now possible to simply subtract consecutive
levels of the Gaussian-filtered multiresolution representation to obtain a near-optimal
bandpass representation. The resultant bandpass multiresolution representation under-

goes data compression by removing pixel to pixel correlations and shifting pixel values

toward zero thus enabling less than eight-bit representations of each pixel. Pixel to
pixel correlations are removed when consecutive levels of the Gaussian-filtered mul-
tiresolution representation are differenced (see Sec 6.1). This bandpass multiresolution
representation has been found appropriate for pattern classification [6], image encoding
[7], stereo and motion analysis [4], and other visual information processing applica-

tions.

Having determined that a Gaussian multiresolution representation and a
Difference of Gaussian multiresolution representation are optimal or near-optimal for
many image processing and analysis tasks, we now set about to develop a system
capable of producing these representations. The following four chapters detail the
development and testing of an application specific integrated circuit (ASIC) which is
used to produce these representations. A strict criteria in the design of the ASIC is
that it achieves the throughput required by real-time computation. We define real-time
computation as the ability to process 30 image frames per second, with an image
frame containing 512 x 512 image elements or pixels where each pixel is represented
with eight bits. Other criteria such as area and accuracy are left less rigid in order to
make tradeoffs between design criteria and to enable the realization of the ASIC

design in the available IC fabrication facilities.

CHAPTER 2

Algorithms and Architectures

The practical value of an algorithm for a problem is ultimately determined by its
computational cost. A practical algorithmic solution of a signal procéssing problem
will correspond to an architectural design which allows for extensive pipelining and
high degrees of parallelism. It will take advantage of the concurrency present in both
the application and the target architecture while observing the requirements of locality
and balanced distribution of computation. These requirements enable extensive pipe-
lining of the architecture. The resultant system can therefore hope to meet the very

high throughput rate requirements of real-time signal processing applications.

In designing special purpose ASIC’s for digital signal processing there are a
number of algorithmic issues to be addressed. Almost all digital signal processing
algorithms are characterized (1) by the regularity of arithmetic operations (multiplica-
tions and additions), (2) by a negligible amount of decision branching, and (3) by a
large ratio of computational steps to loop steps during execution. As a result, digital
signal processing algorithms tend to exhibit a flow-through behaviour with partial
results moving from one step to the next with negligible requirements for decision
branching or looping. Exploitation of these attributes in the architectural design is
necessary to achieve the throughput rates required by real-time computation of the

digital signal processing algorithm considered here.

In the present problem the system is being designed to operate in a pipelined
fashion between detection and viewing steps. Data is acquired in a continuous stream
from the pipe and exits in a continuous stream, Both the algorithm and the architec-
ture must be designed to enable the system computation rate to match the I/O rate of
the pipeline. The architecture must also be designed to allow high degrees of pipelin-
ing to exploit the flow-through behaviour of the algorithm and in so doing to employ
simple, local communications. An FFT implementation and a systolic architecture are

evaluated in this chapter in light of these algorithmic and architectural considerations.

2.1. FFT Implementation

FFT implementations are common in digital signal processing applications. The
FFT algorithm is derived by decomposing dimensionally-separated discrete Fourier
transform pairs to reduce the number of multiply and add operations required. An
FFT implementation for this problem instance requires (1) the image to be
transformed, (2) a transform of the filter or filters to be hardwired or stored in
memory, (3) frequency-domain multiplication of the image and the appropriate filter,

and finally (4) the inverse transform of the resuit.
An FFT requires %N log; N multiplications and Nlog, N additions for a one-

dimensional N -point transform. The two-dimensional transform is obtained as a series
of one-dimensional transforms; N row transforms followed by N column transforms
for an Nx N image. Multiplication in the frequency domain of the image with the
filter requires N2 multiplies. The requirements of the inverse FFT are the same as the
forward FFT. The total computational requirements of an FET implementation there-

fore are N2 + 2N 2log2 N multiplies and 4N 210~g2 N additions for an Nx N image.

-10-

The FFT implementation is independent of the convolution window size in the
spatial domain and therefore no advantage can be taken of the fact that a Gaussian
filter can be implemented in a hierarchical manner. This necessitates the storage of
the entire row or column of the image to complete the appropriate row and column
transforms. The repetitive use of a pixel element required by the FFT algoiithm
necessitates the element to be stored inside the system until the element is no longer
required. The memory capacity of the system will therefore influence 1/0O imposed
limitations. For example, performing the N -point fast Fourier transform using an s-
point device when N is large and s is small necessitates each subcomputation block to
be sufficiently small so that it can be handled by the s-point device. During execu-
tion, results of a block must be temporarily sent to the host or some form of memory
and later retrieved to be combined with results of other blocks as they become avail-

able. To perform an N-point FFT with a device of O(s) memory requires

N log N

O(
log s

) I/O operations for any decomposition scheme [11]. Thus, the I/O limita-

tions of device to host or device to memory impose an upper bound which is indepen-
dent of device speed. Furthermore, the entire image must be obtained and stored
before the first filtered result can be entirely computed. This imposes an O(N?) (for an
Nx N image) latency or delay when the device is operated in the pipe between detec-

tor and further processing or viewing steps.

2.2. Systolic Architecture

A systolic system [12] is an array of processor elements (PE’s) which rhythmi-
cally compute and pass data through the array. Systolic systems may be one- or two-
dimensional with the possibility for data to flow at multiple speeds and in multiple
directions through the system. In a systolic design all data, while being pumped regu-

larly across the array, can be effectively used in all the PE’s. Data flows between cells

-11-

in a pipelined fashion and between the system and the outside world only at boundary
cells. Thus, the multiple use of each data element within the systolic array allows
compute-bound computations to be accelerated without increasing the 1/O require-

ments.

Each processor element in the systolic array performs some simple operation.
Thus, the array can be built modularly with simple, regular, local communications
between processor elements allowing for very simple data and control flows. I/O and
computations are overlapped in this highly pipelined and highly synchronized architec-
ture. Systolic arrays do however require global synchronization (ie. global clock distri-
bution). This may cause clock-skew problems in high-order VLSI system implementa-
tions and must be addressed in design and layout stages. Fortunately, for any one-
dimensional systolic array, a global clock parallel to the array presents no problem,
even if the array is arbitrarily long. The array will operate correctly despite the possi-
bility of a large clock-skew between the two ends. Aside from global synchronization,
systolic arrays are modular, have regular interconnects, local comunication, present no
difficult synchronization or resource conflict problems and eliminate overhead associ-

ated with operations such as address indexing.

A straightforward systolic array implementation of a two-dimensional filter is
shown in Figure 2. The size of the array is primarily dependent on the required
sidelobe attenuation of the Gaussian low-pass filter. Each computational element in
the systolic array contains a weighting coefficient which is equal to the sampled filter
coefficient. The filter coefficients do not move. Input data, x(n), flows in one direc-
tion through the array and output results, y(n), flow in the opposite direction. The
row by row transmission of the image data necessitates the need for shift register
buffers at the end of each row in the array to allow the convolution window to overlay

the proper region of the image. The size of the shift register is dependent on the array

-12-

x({i, j) ;
y(l.j) WS wl w?. . w4 wﬁ SR

W, W, W, W, W, SR

RN

0 W, W, S.R.

)

W, W, W, W, W, S R.

3

W, W, W, W, W g("‘S' J-5)

LT LT e L

Figure 2: A systolic array implementation of a 5 x5 coefficient digital filter with oc-

tal symmetry.
size and on the image row length. The convolution is produced by each computational
element multiplying its input, x (), by its weighting coefficient, w (n), then adding this
result to the output y(n) from the previous stage, and passing the sum to the next
computational element. The latency associated with this implementation is equal to
N x (M — 1)+ M where N is the image row length and M2 is the filter size. Note
that the two-dimensional array can be unfolded to essentially produce a one-
dimensional array. A -global clock parallel to the systolic array will enable proper
operation despite the possibility of a large clock-skew between the two ends of the
array.,

Clark and Lawrence [13] have designed a hierarchical system using this method
for the generation of a Laplacian of a Gaussian (V2G) in a multiresolution representa-
tion of an image. They have generated multiresolution representations of the image
using a half-band low-pass filter (which restricts the maximum frequency to one-half
its previous value) and a subsampler followed by V2G filters at each resolution. Word
lengths of eight bits were used for filter coefficients and image data. A standard devi-

ation & = V2 for the VG filter requires 11 X I1 coefficients for the bandpass filter.

-13-

Clark and Lawrence chose a peak sidelobe level of less than -30 db and therefore they
required a filter size of 25 x 25 coefficients for the low-pass filtler. Both filters have
octal symmetry. Thus not all computational elements are required to perform multipli-
cations, if the input values from each computational element with identical weighting
coefficients are first ripple-summed in a cyclical manner, followed by a single multipli-
cation with the coefficient. The ripple summing of input values produces considerable
computational savings at the expense of loss of linearity in the systolic array. This
latter effect can produce problems with clock-skew, as well as requiring large multi-
pliers since summed input values now require twice as many bits for accurate
representation. As results percolate through the systolic arrays they require an increas-
ing number of bits to avoid overflow and retain accuracy. Due to the fact that the
low-pass filter requires 625 computational elements and the V2G filter requires 121
computational elements, this implementation requires considerable area in a silicon

implementation.

The following section describes a design which uses a separable, hierarchical
implementation of Gaussian filters to greatly reduce the computational complexity and

silicon area requirements.

2.3. Dimensional Separability and Hierarchical Convolution

A straightforward systolic convolution implementation of a Gaussian Afilter
requires M2 computational elements and O(M2N?2) multiplies and additions for each
image frame, where M2 is the number of filter coefficients and N2 is the number of
pixels per image frame. Two techniques can be used to reduce both the computational
complexity and the number of computational elements in the systolic array: (1) dimen-
sional separability of the two-dimensional Gaussian filter and (2) hierarchical convolu-

tion.

-14-

Dimensional separability refers to the fact that a two-dimensional Gaussian filter
can be implemented with two consecutive one-dimensional convolutions; a horizontal
convolution followed by a vertical convolution. Mathematically, a Gaussian function

is expressed as

~(x% y%
1 207

G,y)=—5e “° 2.1)

2no

in two dimensions. When dimensionally separated, the function becomes

x2

- _
G(x,y)=G(x)xG@)=Ti%&_e Wx?é;ge 2° 2.2)
where G(x) is a one-dimensional horizontal convolution and G(y) is a one-
dimensional vertical convolution. Separated in this manner the convolution may be
carried out in one of two ways: (1) the vertical and horizontal one-dimensional convo-
lutions operate on the original image and corresponding pixels are multiplied together,
or (2) first the horizontal (or vertical) one-dimensional convolution operates on the ori-
ginal image followed by the vertical (horizontal) one-dimensional convolution which
operates on the resultant. Both methods give the correct result; however, the second
method does not require multiplication of corresponding pixels and is therefore compu-
tationally less expensive. Dimensional separability reduces the computational com-
plexity of an Mx M convolution from O(M?) multiplies and additions to O(M).
Further, the number of computational elements in the systolic array is reduced from
OM?) to O(M). The systolic array in fact becomes two truly one-dimensional arrays,

each of length M. Use of one-dimensional systolic arrays enable the use of a parallel

clock thus eliminating any clock skew problems.

The second technique, hierarchical convolution, exploits the fact that the convolu-
tion of a Gaussian function with another Gaussian function results in a third Gaussian

function with different standard deviation. In particular, if G;(x) with standard

-15-

deviation ©;, is convolved with G;(x) with standard deviation G;, the resultant Gaus-
sian has standard deviation ¢ = Vo7 + 01-2. This may be shown as follows. In one

dimension let

x2

207 1 207

G,(x) = 0_1\1%(3 "G = e 2.3)
then
_ x? _ x?
G) * G,(x) = E}éﬁe 27 g}%e 27 | 2.4)
or taking the product of the respective Fourier transforms,
~u’c? ~u’c} ~u*(of + o)

with inverse Fourier transform 71——e2_"2r where 6 = Vof + of
oN2n

Generation of size-scaled copies of the original image is accomplished through
convolution with Gaussian functions of increasing standard deviation. Generated
hierarchically, the image is convolved consecutively with Gaussian filters where, at
each pass, the coefficients of the filter are mapped into a larger sample grid, thereby
expanding the size of the filter or equivalently increasing the resultant standard devia-
tion of the Gaussian function. As the standard deviation of the Gaussian function
increases, the upper cutoff frequency of the filter decreases, and thus its output can be
resampled with coarser spacing without loss of information. The exponential growth
in the number of filter coefficients which results from the exponential scaling of size is
offset by an exponential growth in distance between points at which the convolution is

computed. Each Gaussian-filtered copy of the image may therefore be computed with

the same filter as shown in Figure 3, where each output is a Gaussian-filtered copy of

-16-

its predecessor. Use of identical filters to generate all size-scaled copies of an image

produces a very modular design.

Tolx. y) 7 Ipp,(x. 3)
Golx,)
’ Ir(x.y)
RESAMPLE
| SR * 1sp (%1 ¥}
Golx.y) -
> I (x,y)
RESAMPLE
Igp (%, ¥)
Gox,y)
e (x, ¥)
RESAMPLE
Ipp (%, ¥)
Gdx,y)
! Tp fx.y)

Figure 3: Generation of multiresolution lowpass and bandpass representations.

Multiresolution bandpass or difference of Gaussian representations are derived by
subtracting each lowpass image from the resampled version of the previous lowpass
image (Figure 3). Subtracting two eight-bit per pixel images in the pipeline requires
only a single eight-bit subtractor. Obviously, this method requires considerably less
silicon area to implement than a full two-dimensional systolic array. The shift regis-
ters are necessary to realign the image pixels due to the latency or delay of the
Go(x, y) systolic convolver. The computational savings of hierarchical convolution is

proportional to the depth of hierarchy in the system. As the number of coefficients in

-17-

the Gaussian filter G o(x, y) decreases, the depth of the hierarchy increases for a fixed
standard deviation of the Gaussian function. Thus, using fewer coefficients for
Golx, y) increases the computational saving. However, decreasing the number of
coefficients decreases the accuracy with which the sampled Gaussian function is
represented. A tradeoff therefore exists between accuracy and computational complex-
ity.

Burt [14] has derived a hierarchical method for the generation of Gaussian-filtered
size-scaled copies of an image. In one dimension, the five -coefficients
0.05 0.25 0.4 0.25 0.05, represent the sampled Gaussian function. Each node at
each level in the hierarchy is obtained as a weighted average of the five coefficients
centered on the five nearest neighbors of the corresponding node in the previous level.
The sample distance in each level is double that in the previous level, effectively dou-
bling the standard deviation of the resultant Gaussian function. The resampling results
in each image in the hierarchy being half as large as its predecessor, since the resam-

pling rate is two (ie. every second pixel). The process may be summarized as follows:

1) define a sampled Gaussian function, G as a width-5 convolution window with

coefficients 0.05 0.25 0.40 0.25 0.05

2) convolve the original image [(size N) with G producing a Gaussian-filtered

output IH,1 (size N) (LP = lowpass).

3) resample Iy p with sample reduction factor 2.

4) convolve this result with G producing Iy p, (size N/2).
5) resample Iy p, with sample reduction factor 2.

6) convolve this result with G producing I;p_ (size N/4).

and repeat.

-18-

The hierarchically-generated Gaussian-filtered outputs Iip, — I1p correspond to
convolving the original image directly with equivalent Gaussian functions G, - G,,.
That is, three convolutions using the Gaussian function G and appropriate resampling
produces the output [;p.. However, the original image could have been convolved
with an equivalent Gaussian function G,, producing the identical output fyp,. The
equivalent Gaussian functions are shown in Figure 4. Each function in the hierarchy
has a standard deviation twice that of its predecessor. Each resultant Gaussian-filtered
copy of the image therefore has a band limit one octave lower than its predecessor.
Sample rate reduction in the hierarchy is in proportion to the band limit reduction, and
remains above the Nyquist rate; thus no information is lost in the subsequent mul-

tiresolution representation.

0.4 — 0.2

-

0.1

Figure 4: Equivalent Gaussian functions

The dimensional separability of the Gaussian function enables simple expansion
of the process to two dimensions. Convolution is performed horizontally, row by row,
and then vertically, column by column, at each level in the hierarchy. The convolution

at each level is interleaved with resampling which consists of selecting every second

-19-

pixel per row and every second row in the image frame thus reducing the image size
by a factor of two in both dimensions. The resultant data flow graph (Figure 3) shows
the generation of both a lowpass (Gaussian) filtered multiresolution representation and

a bandpass (Difference of Gaussian) filtered multiresolution representation.

2.4. Computational Cost and Complexity

The computational cost of the above convolver design is determined for the most
part by the number of multiply and addition operations required, the I/O requirements,
and the memory or storage requirements. For compute-bound problems such as con-
volution, systolic arrays have considerable computational cost advantages over FFT
implementations in regard to I/O and memory requirements (see Sec. 2.1 and 2.2). The
number of multiply and addition operations required by an FFT implementation is
independent of convolution window size and is fixed for each size-scaled copy
required. The total requirements are N2 + 2N210g2 N multiplies and 4N 2log2 N addi-
tions for an Nx N image. In a hierarchical systolic implementation as described
above, the computational cost is determined by the number of steps needed to compute
the equivalent convolution; the number of levels in the hierarchy. However, in most
applications, all levels of the multiresolution representation are needed. Thus, since all
levels are being generated there is a fixed cost per level. Furthermore, exploiting the
symmetry of the sampled Gaussian function coefficients, the process requires three
multiplies and four additions per pixel per level. Assuming an N x N image the total
requirements are 3NZ multiplies and 4N? additions. Depending on image size N, a
hierarchical systolic implementation requires one or two orders of magnitude fewer

computational operations than convolution in the frequency domain using the FFT.

Computational complexity is determined in part by the number of bits used to

represent the data, the coefficients, and the partial results. In a two-dimensional

-20-

systolic array the number of bits required to represent the partial results increases at
each computational element through which the result passes. Large word size is there-
fore required for large convolutions. Alternatively, the number of bits allocated to
each computational element determines the size of the convolution which can be com-
puted. A hierarchical implementation enables large convolutions to be broken into
smaller convolutions in a divide-and-conquer scheme. As a result the number of bits
needed in arithemetic operations is independent of convolution size. Furthermore, the
one-dimensional width-5 convolution used has normalized coefficients, ie.
0.05 +0.25 + 0.40 + 0.25 + 0.05 = 1.0 Therefore each result is represented by the
same number of bits as the original data. Partial resulis require a maximum of twelve

bits to retain accuracy (see Sec. 2.5).

2.5. Systolic Convolver Design

Implementation of the dimensionally-separable hierarchical convolution algorithm
using systolic convolvers results in the data flow diagram shown in Figure 5. The data
flow diagram, in its entirety, represents the G y(x, y) (Figure 3) convolver block used
for implementation of the Gaussian filters. The one-dimensional systolic convolvers
Golx) and Gy(y), im~p}ement the horizontal and vertical convolutions respectively.
These convolvers are identical aside from the fact that pixels are shifted serially
through Gy(x), one new pixel per clock cycle, whereas five new pixels are shifted in
parallel into Gy(y) on each clock cycle. This is due to the fact that the image data is
being transmitted row by row as opposed to column by column. Henceforth, the term

G will refer to both Gy(x) and G y(y).

The row by row transmission of the image data necessitates the need for the shift
register buffers shown to allow the convolution window to overlay the proper region of

the image. The size of the shift register is dependent on the convolver size and the

21-

Ip (. y) Golx) | SR.]—]
!—>1 SR. T—j

Goly) |—>-] SR. 1—|

1—)] SR. —h

:

ILP-ﬂ(x * .‘/)

Figure S: Data flow diagram of the systolic convolution implementation of the
dimensionally-separable hierarchical convolution algorithm.
image row length. The systolic convolver, G, contains five computational elements
corresponding to the five Gaussian function coefficients, 0.05 0.25 0.4 0.25 0.05.
For an image row length of N, the required shift register length is N — 5. Due to the
resampling, N decreases by a factor of two at each level in the hierarchy; thus the

shift register length is halved at each level.

The systolic convolver, Gy(x), uses a fan-in design as shown in Figure 6. The
weighting coefficients are fixed to their particular computational elements. During a
cycle, all x;’s move one cell to the right, multiplications are performed at all cells
simultaneously, and their results are fanned-in and summed using an adder to form a
new y;. Essentially, the convolver performs a sum of products operation. The systolic
convolver, Gy(y), requires a modification to this design due to the fact that the inputs,
X;, are shifted in parallel into the computational elements. The modifications imply the
following design (Figure 7).

The number of multipliers can be reduced by exploiting the symmetry of the

Gaussian function. In particular, this is achieved by grouping the equivalent G

22

FAN-IN ADDER

Figure 6: Systolic convolution array where w;’s are fixed, x;’s move systolically, and
¥;’s are formed as a sum of products via the fan-in adder.

X, X, X, X,

b K

FAN-IN ADDER

N

Yi

Figure 7: Systolic convolution array showing the paralle! input medification to the
Go(y) convolver necessitated by the row by row transmission of image data,

weighting coefficients. This process can be expressed in the following manner. Gy
contains the weighting coefficients 0.05 0.25 0.4 0.25 0.05. The convolution win-
dow, at any one instant, will contain five pixels which we label a b ¢ d e.

Mathematically, the convolution can be expressed as follows
005xa +025xb+04xc+025xd +005xe (2.6)
Grouping coefficients gives

005(@ +e)+025@® +d)+04 (c). 2.7

-23-

The grouping of coefficients requires two additions. Pixel a must be added to pixel e,
and pixel b must be added to pixel d leaving a nine-bit result from both additions. At
the expense of two eight-bit additions, the required number of multiplications is
reduced from five to three. 0.05 must be multiplied with the nine-bit result of (a{r e),
0.25 must be multiplied with the nine-bit result of (b+ d), and 0.4 must be multiplied

with the eight-bit representation of c.

Since the values of the weighting coefficients are fixed and unchanging, the
fixed-precision multiplications can be implemented by combinations of binary shift and
add operations. Shift and add implementations of fixed-precision multiplications can
be mechanized in much smaller silicon area and can also be made considerably faster
since multipliers are typically both slow and expensive in area. A parallel multiplier
available in the Manitoba CMOS standard cell library [15] requires 1.5 x 10% um? area
(Bum double metal CMOS) and approximately 500 nanoseconds to perform a single

ten-bit by ten-bit multiplication.

A simple method of applying the binary shift and add operations to implement

the multiplications is to scale the 0.05 weighting coefficient to unity giving
-2%[(61 +e)+ 5B +d)+ 8] (2.8)

The weighting coefficients are now represented by the small whole numbers i, 5, and
8. Multiplication by one is trivial requiring no operation. Multiplication by 8 is
implemented by three shifts left which also requires no operation. Finally, multiplica-
tion by 5 is implemented by shifting twice left and adding the original which requires
a single eleven-bit addition. Thus, a single eleven-bit adder suffices to implement all
three multiplications. The resultant three products are then added in the fan-in adder
of Figure 6. The fan-in adder may be implemented with an eleven-bit adder and a

twelve-bit adder. Due to the 0.05 scaling factor, the output of the fan-in adder must be

24-

divided by 20 in order to retain an eight bit per pixel representation of the image data.
Once again this fixed-precision multiplication can be implemented with a series of
binary shift and add operations if some small error is allowed. The division by 20 is
approximated by (x/16 — x/64) + (x/16% — x/(16 x 64)) = 51x/1024 where x is the

output of the fan-in adder. The error can be calculated as

1720 — 51/1024

=04 2.
730 x 100% = 0.4% (2.9)

The error in fact represents a scale factor of 0.996, identical for each pixel. The scale
factor will not cause overflow since it is less than unity and therefore will be inconse-
quentia.l.

The divide-by-20 process is physically implemented with two additions by sub-
tracting x shifted six places to the right from x shifted four places to the right. The
result is then shifted four places to the right and added to itself. The use of two’s
complement arithmetic reduces addition and subtraction to a single operation. The
divide-by-20 process therefore requires a ten-bit adder and a nine-bit adder. The resul-
tant systolic convolver, G, can be represented in block diagram form as shown in Fig-

ure 8.

As indicated in Figure 8, seven adders are required to implement the systolic con-
volver, Gy. Adders I and 2 are eight-bit adders generating nine-bit results and are
used to group the coefficients @ and e, and b and d respectively. Adder 3 combines
the result of adder I (nine bits) with 8 times pixel ¢ (eleven bits) requiring an eleven-
bit adder. Adder 4 implements a multiplication by 5, adding 2 times the result of
adder 2 to itself thus requiring an eleven-bit adder. Adder 5 combines the twelve-bit
results of adders 3 and 4 and thus a twelve-bit adder is needed. Adders 6 and 7
implement the divide-by-20 operation and are ten- and nine-bit adders respectively.

Simplification is possible where the inputs are hardwired to one or zero (ie. use of half

-25-

SHIFT REGISTER (8-BIIS/SFAGE}

o T L I I -

Figure 8: Block diagram of the G, systolic convolver.

adders is possible). The sequence in which the additions have been implemented
enables adders / and 2 and adders 3 and 4 to operate concurrently in addition to the

already highly cascaded nature of the circuit.

Due to the fact that the G weighting coefficients are constant, thus enabling the
implementation of the algorithm in seven additions, the physical dimensions of the sili-
con implementation will be considerably smaller than a straightforward implementation
using multipliers. Since the building block for a parallel multiplier is a full adder cell,
a single eight-by-eight multiplier requires 64 full-adder cells. The multiplier imple-
mentation requires roughly three such multipliers as well as four parallel adders to
group coefficients and sum the final result. The seven adder solution requires silicon
area roughly the size of a single eight-by-eight multiplier. Except for the 0.996 scale

factor, the solutions are identical.

26~

Due to the cascaded nature of the layout the data exhibits a sequential flow
through the circuit. If the layout is depicted as in Figure 8, the flow is from top to
bottom. Since this flow of data is sequential it is possible to incorporate further pipe-
lining in the circuit. A ten-bit storage register placed after adder 5 reduces the com-
putation, and thus the computation time of each block in the pipeline, allowing a faster
clock rate to be used. The faster clock rate is achieved at the expense of a greater
latency associated with the systolic convolver. However, when large amounts of data
are to be processed identically as in this problem instance (and for all systolic con-

volvers), the benefit of a faster clock rate far exceeds the additional cost in latency.

27-

CHAPTER 3

Design of Adders, Storage Elements,
and Multiplexers

The preceding chapter illustrated the design of a systolic convolver with low
component count and high throughput. The major computational components used in
the G systolic convolver are adders and storage elements. This chapter discusses and
contrasts the varying adder schemes available, describes the design of choice, and
explains its operation. The chapter then continues with the design of the storage ele-
ments used and an explanation of their operation. The final section discusses the
manner in which data is multiplexed into and out of the chip. Multiplexing of data is
necessary due to the limited I/O of the pad frame. Each cell design is a full custom

design built specifically for use in the systolic convolver.

3.1. Ripple Carry Adders

The G, systolic convolver requires seven adders which vary from eight-bit to
twelve-bit additions. Addition of two multi-bit binary numbers may be implemented
either in serial or in parallel. The serial method uses a single full adder to generate
the sum and carry outputs from corresponding bits in the addend and augend. The
carry is required to be stored after each bit-addition and depending on the implementa-
tion it may be required to supply registers for the addend, augend, and sum. The
resultant silicon area required by the storage elements reduces the area advantage of

the serial method. Furthermore, because of the sequential nature of the addition, a

28-

serial adder is slow. Since the rate at which data is clocked through the convolver is
determined by the speed of operation of the adder, serial adders were considered to be

too slow to meet the throughput rate requirements of the convolver.

Parallel addition requires one full adder for each pair of corresponding bits in the
addend and augend. All sums are computed simultaneously since all full adders
operate in parallel. This concurrency enables parallel addition to be faster than serial.
There are a number of options in terms of the type of parallel adder that can be imple-
mented. The choices available include ripple carry adders, lookahead carry adders,
and encoded addition adder schemes. Lookahead carry adders and encoded addition
adder schemes are typically faster than ripple carry adders; however, any encoded
adder scheme or lookahead carry adder requires considerablely more area to implement
in silicon than does a ripple carry adder. A comparison between ripple carry adders

and carry lookahead adders follows.

For the present problem, ripple carry adders have two advantages over carry loo-
kahead adders. The first is reduced area. Ripple carry adders require approximately
30% of the silicon area of carry lookahead adders. The second advantage is more sub-
tle and is a result of the cascaded layout of the convolver. Depending on the word-
length of the parallel adders and the cascade depth in the layout, cascaded ripple carry
adders can in some cases be faster than carry lookahead parallel adders. The timing
sequence of a cascaded ripple carry adder is contrasted with that of lookahead carry

adders in Figure 9.

Associated with each full adder is a computation time T corresponding to the time
between presentation of augend, addend, and carry-in and generation of the sum and
carry-out. Since the full adder corresponding to the LS bit in the second bank of
adders is presented with augend, addend, and carry-in T seconds after the full adder

corresponding to the LS bit in the first bank, there is only a single T second delay

229.

37 27 T 4-BIT CARRY
F.A F.A F.A. F.A
LOCKAHEAD ADDER
4T ch) 27 T T
1
4T 37 27 4-BIT CABRY
F.A F.A. F.A. F.A.
LOOKAHEAD ADDER
57 a7 37 2T 2T,
5T a7 37 4~BIT CARRY
F.A. F.A. F.A. F.A,
LOOKAHEAD ADDER

S A

(a)

Figure 9: Timing sequence of (a) a cascaded ripple carry adder (F.A. = full adder) and

{b) a lookahead carry adder.
between their respective outputs. This is true for all coﬁesponding full adders in the
two banks and thus there is only a T second delay between adder banks in a cascaded
layout. The total computation time of a cascaded layout is C, = T(b + d — 1), where
T is the computation time of a single full adder, b is the number of adder banks, and
d is the number of bits per adder bank. The computation time T, of a single full adder
is determined by the charging (or discharging) time on the carry propagéte path which
consists of a metal wire, a transmission gate, and two inverters. For the full adder
used in this design, T = 6 nsec (see Sec. 3.1.1). In contrast, carry lookahead circuits
typically calculate propagate and generate signals for each corresponding bit in the
addend and augend and use these signals to generate the input carrys four bits at a
time. The circuit will then use a ripple carry from four-bit bank to four-bit bank. The
computation time, T,, per four-bit bank is determined by the propagation of the input
signals through the circuitry shown in Figure 10. Adding the indicated computation
times associated with each gate along the critical path determined the required compu-
tation time T, = 20 nsec. Thus, T/T = 20/6. For d = 4, the cascaded ripple carry lay-

out will require less computation time when

-30-

b >

T +3)<T, xb

b+3<

’rtxb

T

(T/T~1)b >3

33

/T 1 T 2006 - 1

= 977

or the number of adder banks is greater than or equal to 2.

[

:

S;E

Figure 10: Logic diagram of & carry lookahead circuit.

-31-

(3.1

3.1.1. Full Adder Design

For this problem instance, the best adder layout in terms of cost and performance
is the cascaded ripple carry adder. For a ripple carry adder, the performance is deter-
mined by the propagation of the carry signal as it ripples through the carry chain. The
critical path is the carry chain and this path must be optimized to obtain the best per-
formance. The following design of a full adder cell optimizes the carry chain of a rip-
ple carry adder. Optimization reduces the carry chain to a single transmission gate
with associated wiring at each full adder stage. The truth table of a full adder is

shown below.

Ay B, Cia S G
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
i 1 1 1 1

Table 1: Full adder truth table,

At each full adder stage i in the carry chain, the inputs A; and B; will determine
whether the carry-in, C;_;, will propagate on to the next stage or if a new carry-out,
C;, will be generated. As can be seen from the truth table, if A; EXOR B; is true,
then C; = C;_; and the carry-in can propagate thru the i, stage. If A; EXOR B; is
false a new carmry-out, C; must be generated. If A; EXOR B; is false then
A; = B; = C; (see Table 1). Generation of C; is simply a matter of feeding either A;
or B; to C; and propagation is a matter of feeding C;_; to C;. The sum, §; is gen-
erated as A; EXOR B; EXOR C;_,. The resultant full adder logic circuit is shown in

Figure 11.

-32-

> »ﬁ?
L P

i
i

G

Figure 11: Logic circuit of a full adder stage with optimized carry chain and buffered I/O.

Once the inputs A; and B; arrive, each stage computes whether to propagate C;_,
or A; as the carry-out and sets the transmission gates appropriately. Since this can be
computed in parallel at each stage in the adder bank, the worst case add will occur
when the carry-out from the LS bit full adder must propagate through the entire carry
chain. This requires the signal to propagate through one transmission gate per stage
and the associated wiring on the carry chain. The RC component associated with the
carry chain will necessitaté the use of repeaters or drivers at every third or fourth
adder stage. The drivers are necessary since the RC time constant or, equivalently, the
charge and discharge time of the carry chain limits the speed with which the carry sig-
nal propagates through the carry chain. Due to the lack of modularity introduced by
using drivers in this manner, a simple buffer is used on the carry chain at every stage
rather than employing drivers at every third or fourth stage. This enables the full
adder stages to be linked together without regard for the loading on the carry chain.
Furthermore, since the adder banks are cascaded in this design, such that the sum of
one adder bank becomes the input to a following adder bank, it is advantageous to

keep the carry propagation time through each full adder stage equivalent. Use of

-33-

drivers at every third or fourth adder stage will cause unequal carry propagation times
through the stages. To avoid delays, the corresponding drivers in each bank must be
vertically aligned throughout the overall cascaded circuit. This is impossible in this
layout and therefore input buffering on the carry chain is used at each full adder stage.
A criteria in the design of the full adder is to enable its use in a modular fashion when
building the varying length adder banks. This requires appropriate buffering of inputs
and outputs. Since the sum of one adder bank becomes the input to a following adder
bank, the sum output of each full adder is driven with a double-sized inverter. The
driver enables the input load of the following full adder stage to be charged or
discharged in a reasonable amount of time. The resultant layout of the ripple carry
full adder used is shown in Figure 12.

The layout is a full custom design requiring 156 um by 95 pwm using 3 wm dou-
ble layer metal CMOS technology. The circuit requires 24 transistors with the output
sum being driven by a double-sized inverter. The power bus (gnd and vdd) runs in
parallel along the bottom of the layout. This enables the full adder stages to be linked
together in a row to form the adder banks without requiring an extra power bus to be
run to each adder bank. All I/O ports in the layout are exported with a via (metal-1 to
metal-2 contact) and no metal-2 wiring is used in the layout. This enables intercell
wiring using the metal-2 layer and allows the wires to be run over the top of the full

adder stages greatly reducing the wiring complexity and the wiring area.

3.1.2. Half Adder Design

Half adders can be used when either the carry-in, the addend bit, or the augend
bit input to a stage is always zero. A half adder therefore has only two inputs, ing and
in). The sum and carry-out are computed as SUM =iny EXOR in, and
Cous =ing AND in,. Figure 13(a) shows the logic circuit of the half adder. The

-34-

METAL

POLY

DIFFUSION

Figure 12: CMOS layout of a full adder cell.

AND gate is implemented with a NAND and an inverter. The EXOR gate is imple-
mented with an EXNOR and an inverter. Use of the inverters enable the outputs to be
properly buffered. In particular, the sum output inverter is double-sized for reasons
explained above. Figure 13(b) shows the silicon layout which is a full custom design
requiring 89 pm by 94 pm using 3 um double layer metal CMOS technology. The
layout requires 14 transistors and in a similar way to the full adder layout, the power
bus runs along the bottom of the layout and all 1/O ports are exported with a ﬁeial

via, No metal-2 layer wiring is used.

-35-

ing imy

?

(a) (b)
Figure 13: (a) Half adder logic circuit and (b) CMOS layout.

C

3.1.3. Half Subtractor Design

Half subtractors are used when either the carry-in, the subtrahend bit, or the

minuend bit input to a stage is always one. A half subtractor therefore has only two

inputs, ing and in;. The sum and carry-out are computed as SUM = iny, EXOR ing
and C,, =inyg OR in,. Figure 14(a) shows the logic circuit of the half subtractor.
The OR gate is implemented with a NOR and an inverter. The sum output is gen-
erated with an EXOR gate and a double-sized inverter for driving down-line devices.
Figure 14(b) shows the silicon layout which is a full custom design requiring 104 jum
by 86 ym using 3 um double-layer metal CMOS technology. The layout requires 14
transistors and as with previous layouts the power bus runs along the bottom of the
layout and all I/O ports are exported with a metal via. No metal-2 layer wiring is used

within the cell,

-36-

ing Imy

(a))
Figure 14: (a) Half subtractor logic circuit and (b) CMOS layout.

GND VDD

%3 g3

Figure 15: CMOS layout of the carry-out driver,

3.1.4. Carry-out Driver Design

The carry-out of each full adder stage is designed considering the optimization of
the carry chain and is unbuffered. The MS bit carry-out from an adder bank therefore
will be unbuffered. Since this carry-out will, in some situations, be required to drive
down-line devices, it is necessary to use a driver to enable the drive capability of the

carry-out to match the load requirements. The silicon layout is shown in Figure 15.

-37-

The driver is essentially two inverters cascaded with the second inverter being double-
sized to increase its drive capability. The layout requires 47 pm by 83 um in 3 um
double-layer metal CMOS technology.

3.1.5. Adder Bank Design

As indicated in Section 2.5, the G systolic convolver requires six adder banks
and one subtractor bank. A further eight-bit subtractor bank is required to implement
the differencing of images to produce the bandpass representation. All adder and sub-
tractor ‘banks are built primarily with the full adder cell, however in some instances the
carry-in, augend, or addend is required to be hardwired to one or zero. In these cases
use of half adders, half subtractors, or simple wires replace the full adder cell and
require less silicon area to implement. As indicated above, all adder cells have been
designed to be linked together in a row to form the adder banks. The carry chain is
wired using the metal-2 layer and is run over the adder stages thereby keeping its RC
component to a minimum. The requirements and design of each adder and subtractor
bank is explained in this section. Reference is made to Figure 8 to identify each adder

bank uniquely.

Adder banks 1 and 2 (Figure 8) are used to exploit the symmetry of the low-pass
filter coefficients. Both are eight-bit adders and are identical. Representing the five
image elements in the convolveras @ & ¢ d e, adder bank 1 is required to add
@7 Ag A5 A4 a3 Gy Gy Ay 10 €7 eg €5 €4 e3 e, €; eg where a; - a
and e; -+ eg are the eight-bit representations of image elements ¢ and e respec-
tively. Adder bank 2 is required to add b7 - -+ bgtod; - dy No single bit of
any of the image elements is known a priori and thus the only simplification which can
be made is the use of a half adder for the LS stage. Since the carry-out is required to

drive a down-line adder stage it is driven using a carry-out driver. The resultant adder

-38-

bank is shown in Figure 16(a). The silicon layout requires 1114 wm by 95 pm.

Adder bank 3 adds the output of adder bank 1 with eight times image element ¢.

The required addition is

0 0 13 11 15 15 14 13 12 11 10 addend
+ c7 €g €5 €4 €y €o £ Cg 0 0 0 augend
3u 310 3 3% 33 3 35 3 3 3 3 3)

3, to 3, are equivalent to 1, to 1j respectively and therefore the full adders in these
stages are replaced with wires. The carry-out of the 3rd stage is 0 and the fourth
stage can thus be implemented with a half adder. The two MS bits of the addend-are
zero, however the carry-out of the previous stage is not known a priori and half adders
are therefore required for the two MS stages. Once again a carry-out driver is used
after the MS stage. Adder bank 3 is shown in Figure 16 (b). The silicon layout of

adder bank 3 requires 989 pum by 95 wm.

The fourth adder bank generates five times the output of adder bank 2. This is

accomplished as follows.
0 0 23 27 26 25 24 ?/3 2/1 2; 20 addend
+ 23 27 25 25 24 23 22 21 20 0 0 augend
4n 4o 4 43 4 4y 45 4y 4, 4 4 4 p

Since bits 4, and 4 are equivalent to 2, and 2 respectively, the full adders in these
stages are replaced with wires. The carry-out of the second stage is zero and the third
stage is implemented with a half adder. As with adder bank 3, the two MS stages are
implemented with half adders and the carry-out is driven. Adder bank 4 is shown in
Figure 16(c). Its silicon layout requires 1136 ym by 95 pm.

-39.

VR vodbd by b b Ve by
CO. FA | FA [FA | FA | FA | FA | FA | HA
v oV v v \ \ v v v
(a)
vv_ 4 v 4y by by v W
HA | HA [FA] FA | FA] FA | FA | Hi
v v v v \)\ v v
(b)
Yy v e Y b by by b b
HA | RA | FA L FA | FA | FA | Fa | | ol
v v) v v v v ¥ \2
(©)

Vb v VY by b by b b VY e b
CO| FA | FA L FA [F L P [F [FA [FA L F TR] Fa | Ha
v v % v v \ v v v v ¥ \ v

G))
Yy b dd bbby VY b b Y
BS. | FA | FA | FA | FA | FA | FA | FA | HS
v v v v v \ v v v
(e
Vb bbb b WY b b b Y
HA | HA L BA | HA | FA L FA | FA | FA | ®
v v v v v v vV v
®

Figure 16: Adder bank layouts. F.A, = full adder, H.A. = half adder, H.S. = half sub-
tractor, C.D. = carry-out driver

The fifth adder bank adds the outputs of adders 3 and 4 as follows.

311 310 39 33 3'] 36 35 34 33 32 3] 30 addend
+ 4,4 410 4y 4. 4, 4¢ 4 4,4 44 4, 4, 45 augend
Sz Su S 5 S8 57 5 55 54 55 5 5, 5 by

The LS stage is implemented with a half adder and all other stages require full adders.
The carry-out is driven with an output carry driver giving the configuration for adder 5
shown in Figure 16(d). Adder bank 5 requires 1596 um by 95 wm for its silicon lay-

out.

Adder bank six implements the first stage of the divide-by-20 process, which is
x/16 — x/64 (where x is the output of adder 5). This process constitutes a subtraction.
The subtraction is implemented using 2’s complement arithmetic which requires adding
the minuend to the 1’s complement of the subtrahend and using a carry-in of one on
the LS stage of the adder. The 1’s complement of the subtrahend is generated by
inverting each bit of the subtrahend. Inverted values of the subtrahend are available
from the storage cell which is positioned in the circuit immediately upline from adder
6 (Figure 8). The subtraction unit therefore requires only a full adder for each stage.

The subtraction may be depicted as follows.

1 carry—in

512 511 519 59 53 57 55 55 54 . 53 52 5; 50 0 0 minuend

+ 1 1 5, 5 5 5 5 5 5 .5 5 5 5 5 5 subrakend

The carry-in of one is indicated over the LS stage and the decimal points indicate the
shift right processes used to implement the divide-by-16 and divide-by-64. The six
fractional decimal places shown would require excessive silicon area to implement as
well as requiring extra time during execution. The five LS stages of the addition are

therefore omitted and the following process is implemented:

-41-

1 carry—in

512 5;1 5;0 59 58 51 56 55 54 . 53 minuend

+ 1 1 55, 51 50 5 5 5 5 . 5 subtrahend
1 0 6 6 6 6, 6 6 6 6 . 6, Y

Omission of the five LS stages means the output will be greater by an additive factor
of between 0.0 and 0.5. Since the divide-by-20 process implemented here involves a
scale factor of 0.996, the additive factor will result in a more accurate result and is
therefore beneficial not only as an area and time saving but also to increase accuracy.
A larger additive factor cannot be used since it would then be impossible to obtain a

zero output.

In 2°s complement subtraction an output carry of one indicates a positive result.
As shown, the output carry is always high since the result is always positive
(x/16 — x/64 is always positive for positive x). The sum out from the MS stage is
shown as zero. It is always zero since the output of the subtractor can be no larger
than 239 which requires only eight bits for a binary representation. A maximum of
239 is due to the fact that the largest output from adder 5 is 5100 since
5100 = 20 x 255, where 20 is the initial scale factor and 255 is the largest pixel value
possible for an eight-Bit representation. Finally, 239 = 5100/16 — 5100/64. Since the
output carry and the sum out of the MS stage are known a priori, no hardware is
necessary for the MS stage. The sixth adder bank therefore requires a half subtractor
for the LS stage, seven full adders, and a half subtractor to generate 6;. Adder bank
six is implemented as shown in Figure 16(e). The silicon layout of adder bank six

requires 1224 pm by 95 um.

The seventh adder bank implements the second stage of the divide-by-20 process

and accomplishes the following:

42

1 carry-in
67 66 65 64 63 62 61 60 . 6_1 minuend
67 65 65 64 . 63 augend

G

s iy oo Gy, Gi %

The eight-bit result shown represents the output of the G convolver. The carry—éut is
always zero since 239 + 239/16 < 256. An LS stage input carry of 1 is used to
round-up the output rather than truncate since the fraction can no longer be carried.
No sum output is required from the LS stage and the carry-out is generated as 6_; OR
63 by using a simple OR gate. Stages two through five require full adders and stages
six through nine are implemented with half adders. The configuration of adder bank 7
is shown in Figure 16(f). Ifs silicon layout requires 971 wm by 95 pum.

One final subtractor unit is necessary. An eight-bit subtractor is required to take
the difference of consecutive lowpass filtered results, thus producing a bandpass
filtered output. An adder bank subtracts the output of the G;(x, y) systolic convolver
from the output of the previous stage, G;_;(x, y). The output of the subtractor can be
either positive or negative and is represented with nine bits in 2’s complement form
where the carry-out indicates whether the result is positive or negative. It therefore
becomes necessary to change the representation to sign-magnitude form using eight
bits to represent the magnitude and an additional bit to indicate the sign. Two condi-
tions exist; (1) the carry-out of the adder bank is high, or (2) it is low. If the carry-out
is high, the result is positive and in the correct sign-magnitude form. If the carry-out
is low, the result is negative and in 2's complement form. Condition (2) requires the
2’s complement of the output to be taken. This is accomplished by inverting the eight
magnitude bits and incrementing once, leaving the result in sign-magnitude form.
There are now two results in sign-magnitude form; (1) the output of the adder, and (2)

its 2’s complement. If the carry-out is high the first result is selected and if the carry-

-43-

out is low the second result is selected. This is accomplished by using the carry out as
the select line to seven 2-1 multiplexers, one for each corresponding pair of bits of the
two results. The LS stage output of the 2’s complement is always S and therefore no
multiplexer is required. The operation of the subtractor unit may be summarized as

follows.

1 carry—in
Gia, Ging Giny Gin, Giy, Gy, Gi.y, Gig, minuend
stagel + GT_’ G—,-; G—: (T,-: (.?,_3 CT: &: (?0 subtrahend
Sy 8 Se Ss S S4 Sz S So 3
1 carry—in
stage2 + S, 5; E; Ss Sy .S: S, Se Y. inverted
sS4 S % S5 A A 55 S S o 2's complement

stage3 If S5 is high select the stage 1 output else select the stage 2 result.

Stage 1 of the subtractor unit is implemented using a half subtractor for the LS stage
and full adders for the remaining stages. The inverted bit values of the subtrahend are
available from the output of the G;(x, y) convolver and therefore inverters are not
required. Stage 2 is implemented using an inverter at each stage as well as seven half
adders for stages one through seven. Stage 3 uses the carry-out of stage 1 (S g) as the
select line to seven 2-1 multiplexers enabling the selection of the correct result. The
subtractor unit is physically implemented as shown in Figure 17. The silicon layout of

the subtractor unit requires 1508 wm by 353 pwm.

Vb vy by vy b by b

-1 F.A. F.A. F.A, F.A. F.A. F.A, F.A. H.8.
Yy \ Y
H.A. H. A, H.A, H.A. H.A. H.A. H.A. inv.
inv. inv, iny, inv, inv, inv. inv.
y / / y
L 2-1 2-1 2-1 2-1 2-1 2-1 2-1
mUx nux mux muUx mux fmux RuUxX
v v v v \ v ooV v v

Figure I7: Subtractor unit layout

3.2. Flip-Flop Design

Each computational element in a systolic array requires some form of storage to
hold inputs, weighting coefficients, and partial results as the data percolates through
the array. A fan-in adder systolic array, however, eliminates the need for storage of
partial results since, at each time step in the computation, all partial results are
summed and the resultant sum exits from the one-dimensional systolic convolver. No
storage is necessary for weighting coefficients since all weighting coefficients are
hardwired in the design. Therefore, each computational element requires storage to
hold a single input element. Each image pixel is represented by eight bits requiring
eight bits of storage at each computational element. Because the input data percolates
through the array, the data must be shifted from each computational element to the
next on each clock cycle. Storage elements holding corresponding bits in each compu-
tational element are linked together forming shift registers to enable the data to per-
colate through the array. An edge-triggered D-type flip-flop (Figure 18(a)) is used as
the basic storage element since, when linked together, D-type flip-flops become the

basic delay circuit for a shift register.

-45-

(a)

(b)
Figure 18: D-type flip-flop (a) logic diagram and (b) CMOS layout

A potential problem with D-type flip-flops is that a clock race condition exists
when ¢ is high and ¢ overlaps it due to skew (¢ and ¢ are nonoverlapping clock
phases). If this occurs the D input and feedback signal will fight to determine the new
value on the input latch. Skew between the clock phases must be eliminated by ensur-
ing the RC time constant of the ¢ and ¢ phases is balanced. This is accomplished, in

part, by balancing the loads of the ¢ and ¢ phases of the silicon layout of the D-type

flip-flop. Figure 18(b) shows that the polysilicon wires and gates associated with the
clock phases have equal RC components. The length of these polysilicon wires has
been kept as short as possible to reduce the loading on the clock drivers. Furthermore,
the clock phases are run in a parallel bus along the top of the flip-flop in the metal-1
layer using 6 wm width wires, enabling the flip-flop to be linked in a row to form

multi-bit storage cells.

The silicon layout is a full custom design requiring 139 (m by 79 pm using
3 pm double-layer metal CMOS technology. The circuit requires 16 transistors as
shown. The power bus runs along the bottom of the layout enabling the flip-flops to
be linked in a row to form multi-bit storage cells without requiring an extra power bus
to run to each storage cell bank. All I/O ports in the layout are exported with a metal
via and no metal-2 layer wiring is used in the layout enabling inter-cell wiring using

the metal-2 layer.

3.3. Multiplexer Design

Multiplexing of the I/O data is required due to the I/O limitations of the available
pad frame within which thé design is fabricated. The limited number of pads requires
two I/O data bits to be multiplexed through each pad on every clock period. Input
data is latched in using D-latches and output data is multiplexed out using 2-1 multi-

plexers. The D-latch requires ¢ and ¢ clock phases and the 2-1 multiplexer requires

select and select lines. Using the ¢ and ¢ phases as the multiplexer select lines
enables the I/O data to be multiplexed in and out of the design without the need for

further clock phases.

The input data is latched in as shown in Figure 19(a). When ¢ is high the LS bit
(of the two bits to be multiplexed into this input) is available on the input line and is

consequently latched into the D-latch. The flip-flop inputs are not on, When ¢ goes

-47-

low the MS bit becomes available on the input line. The D-latch is latched and is no
longer reading the input line. Both flip-flops are now reading their inputs. The flip-
flop associated with the MS bit latches the data on the input line and the flip-flop asso-
ciated with the LS bit latches the data held at the output of the D-latch. The LS and
MS bits associated with the input line are held at the outputs of the two flip-fiops for a
full clock period and are therefore available to the down-line logic for the full clock
period. The silicon layout of the input multiplexing circuitry is shown in Figure 20(a).
The layout consists of two flip-flops and a D-latch where the D-latch is essentially half
a flip-flop. The entire layout requires 340 pm by 79 wn in 3 pm double-metal
CMOS technology.

Output data is multiplexed as shown in Figure 19(b). Two flip-flops hold the LS
and MS bits (associated with the particular output line) at their outputs for a full clock
period. The outputs are fed to the input of a 2-1 multiplexer. When ¢ is high the
multiplexer selects the LS bit making it available on the output line and when ¢ is low
the MS bit is selected. The silicon layout of the output multiplexing circuitry is shown
in Figure 20(b). The layout consists of two flip-flops and a 2-1 multiplexer requiring a

total of 350 pum by 79 wm in 3 pm double-metal CMOS technology.

48-

input MSbit

D
FF latch FF I FF MUX
MSbit LSbit output
LV_’SW‘L’W“‘-J
d-al FF's data held at FF's data held at
reads r:ad. c;a,:u“ inputs read mux inputs
(S

mux mux
selects selects
LSbit MShit

(a) (b}

Figure 19: Circuifry necessary for (a) input multiplexing and (b) output multiplexing

(b)
Figure 20: CMOS Iayout of (a) input multiplexer and (b) output multiplexer

-49-

3.4. Simulation

At the time of design, the only available simulator for the double-metal technol-
ogy was CSIM, a switch-level simulator. A switch-level simulator is limited to func-
tional verification of the layout, ie. to verify correct logic and wiring. Each device
described in this chapter was simulated using CSIM to verify correct function‘ality.
The full adder stage is a very crucial element in the design since it is the main build-
ing block for the adder and subtractor banks. Poor electrical performance of the full
adder stage will be magnified in the electrical performance of the adder and subtractor
banks and consequently in the entire chip. Verification of the electrical performance
of the full adder stage under loaded conditions was therefore considered important. A
timing-level simulator was therefore used to verify the performance of the full adder
stage. The simulation was accomplished by duplicating the layout of the full adder
cell using single-layer metal 3 um CMOS technology for which a timing-level simula-
tor was available. An eight-bit adder bank was designed using the full adder cell.
Outputs of the adder bank were loaded using the inputs to a further adder bank. Simu-
lation tests were then run using the timing-level simulator. Best case eight-bit addi-
tions were accomplished in 15 nanoseconds for output logic levels of 0.5V low and
4.5V high. Worst-case additions occur when the entire carry chain must be driven
from the LS stage, the entire carry chain must change logic level, and each output load
must change logic level. The worst-case eight-bit additions were accomplished in 48
nanoseconds for output logic levels of 0.5V low and 4.5V high. This simulation indi-
cates each full adder stage requires 48/8 = 6 nanoseconds to compute a worst-case

addition when configured in cascaded adder banks under loaded conditions.

-50-

CHAPTER 4

Floor Plan and Layout

The previous chapter described the design and layout of the necessary computa-
tional elements or blocks used in the final layout. This chapter deals with the place-
ment of the blocks establishing the final floor plan of the design. The placement of
the blocks is influenced by a number of criteria including power bus, clock bus, and

data bus wiring considerations.

4.1. Floor Plan

Each computational block within the design requires power bus connections in
order to function. The power bus must therefore be connected to every element within
the design. The RC component of the power bus itself must be kept minimal to
enable the bus to properly sink and source charge at each computational block. The
bus is therefore wired using only metal, and the VDD line is never allowed to cross
the GND line. When data buses are required to cross the power bus, the data buses, if
necessary, use metal vias and no break is made in the power bus. Minimal crossover
of buses is achieved by wiring power buses in a finger fashion. This method requires
power buses to run in parallel at regular intervals across the layout with all VDD lines
connected on one side of the layout and all GND lines connected on the other. The
analogy of fingers is obvious when the left and right hand fingers are interleaved with
palms toward one’s face. No crossover of VDD and GND lines occur using this

method and the power bus is available throughout the design.

-51-

All flip-flops, D-latches, and multiplexers within the design require clock bus con-
nections. As with the power bus, the clock bus is wired only in metal to keep the RC
product to a minimum. Data buses are broken when required to cross the clock bus.
The clock bus is run in parallel across the design but only where it is required by flip-
flops, D-latches, and multiplexers. Both phases of the clock bus are connected to the
parallel buses on the same side of the layout. The ¢ and ¢ wires will thus cross over
each other at certain instances and require metal vias. However, connecting the clock
phases on the same side of the layout is necessary to avoid skew between the clock

phases (ie. ¢ and ¢ must remain nonoverlapping).

The amount of wiring, the number of vias, and the length of wires used by a lay-
out influences the simplicity with which it is built, the silicon area it requires, and the
performance of the layout. To increase the simplicity of inter-block wiring, computa-
tional blocks are placed in the floor plan near blocks with which they share I/O. This
tends to limit the length of the wires required and the number of crossovers between
data buses. Computational blocks are oriented such that, where possible, the input and
output of connecting blocks align in a one-to-one correspondence, thus eliminating the
need for a data bus to cross over itself. Data buses are routed in such a way that
crossover between buses is kept to a minimum. Crossover of data buses requires
metal vias and the number of vias must be kept to a minimum since vias require more

area, have a larger RC component, and are less fault tolerant than a simple metal wire.

Figures 3 and 8 show block diagrams of the entire multiresolution representation
system and the G, systolic convolver respectively. Along with the area and VO
requirements of the individual computational blocks listed in the previous chapter,
these block diagrams were used to layout a floor plan which stipulates the required
area and I/O lines. Figure 21 shows the floor plan consisting of the three blocks

(Golx) convolver, G(y) convolver, and subtractor unit) necessary to generate both a

-52-

SUBT.

—— Gofx) Goly) UNIT — 5>

L, Bp8kBLB

a2
N

\\m
R

-
T

V

Figure 21: Floor plan showing computational blocks and 1/O requirements.

lowpass and a bandpass representation of an image. Im?lementatien of these blocks
on a single chip enables a multiresolution representation system to be built by cascad-
ing a number of these chips together and adding the required number of shift registers
at each level in the hierarchy. Shift registers are not implemented on chip since the
number required is reduced by a half at each level in the hierarchy. Inclusion of the
shift registers on chip would therefore negate the multiple use of the one chip to create
the entire multiresolution system. Furthermore, it would restrict the image size with
which the system could be used. Exclusion of the shift registers from the chip how-
ever, requires an additional five eight-bit I/O lines. The chip therefore requires two
eight-bit data buses for the Gy(x) convolver (one in and one out), five eight-bit data
buses for the G(y) convolver (four in and one out), and one eight-bit input data bus
and a nine-bit sign-magnitude result from the subtractor unit. The number of /O data
lines required is 8 x 8 + 9 =73. In additon, the layout requires four pads for the
VDD, GND, ¢, and § lines. Since the pad frame used contains only 40 I/O pads the

need to multiplex I/O data becomes evident. To reduce the number of required pads

-53-

to 40, each eight-bit data bus is multiplexed in or out of the chip using four pads. The
two MS bits of the magnitude result of the subtractor unit are ignored, and the remain-
ing six bits are multiplexed out using three pads. Dropping the two MS bits can be
done without loss of information since the subtraction operation removes pixel to pixel
correlations, shifting pixel values toward zero and allowing six-bit representations of
each pixel (see Sec. 6.1). The I/O pad requirements then become
8 X4+ 3+ 1+ 4 =40 pads. All input data buses are recieved on chip using an input
multiplexer bank which also holds the data in flip-flops for a full clock period. This
enables the input data to be available to the required computational elements for a full
clock period at each time step in the computation. Output buses use output multi-
plexer banks which present each data bit to the output pad for half a clock period. A
detailed floor plan of input and output multiplexer banks, adder banks, and the subtrac-
tor unit, as well as the required data bus wiring between these computational blocks is

shown in Figure 22.

The placement of the computational blocks allows for the floor plan design cri-
teria to be satisfied. 1) The power buses are run in a finger fashion at regular intervals
throughout the layout. There are essentially two columns of computational banks in
the floor plan. These columns of banks are placed in such a way to enable the align-
ing of the power bus which runs along the bottom of each bank. Each power bus
therefore runs across the entire layout allowing VDD to be connected on the left side
of the layout and GND to be connected on the right. Both VDD and GND are wired
using only the metal-1 layer. 2) The clock bus is run in parallel across the design only
where it is required. Both clock phases are connected on the same side of the layout
to eliminate skew between the phases. Clock buses running horizontally are wired
using the metal-1 layer only allowing metal-2 data buses to be run vertically over top.

The vertical clock bus is run in the metal-2 layer enabling it to cross over the VDD

-54-

VDD @@

GND

v

v

S.B.
I — i =
INPUT MUX] S.B.
_ =
S B.] S.B.
J{fb]
ADDER 1 N ADDER 2
y Y) !
ADDER 3 _ ADDER
4 J
ADDER 5
y
5.B. ;L ADDER 7
\L | II_L_ 7 J/
ADDER 6] OUTPUT MUX
¥ X]
INPUT MUX INPUT MUX
v v
INPUT MUK INPUT MUK
1 ‘
ADDER 1 | ADDER 2
I v I \
ADDER 3 a ADDER 4
v ¢
ADDER 5
y
5.B. ADDER 7
J : 7 v
ADDER 6 ij QUTPUT MUX
A2
INPUT MUX
¢
SUBT. UNIT
v
OUTPUT MUX

N4

Figure 22: Detailed floor plan showing computational block placement and bus wiring.

wires without the need for metal vias. 3) Computational banks are placed in such a
way as to eliminate all global wiring and to minimize data bus crossover. Correspond-
ing bits in the adder banks are for the most part aligned vertically, therefore data bus
cross over is only necessary when a data bus is required to connect one column to the

other.

All vertical data buses are run in the metal-2 layer enabling the buses to cross
directly over computational banks. This is possible since the cells which comprise the
computational banks were designed without metal-2 wiring. Crossing over computa-
tional banks allows data buses to be far shorter and have far less crossover than would
otherwise be possible since the buses would then be required to snake around compu-
tational banks and vertical alignment of adder banks could not be used to minimize

Crossover.

To determine the necessary area requirements of the floor plan is straightforward.
All computational banks are approximately the same size. An average size is about
1200 pm by 90 pm. Allowing an additional 30 pm of width for wiring at each bank
gives an average size of 1200 wm by 120 wn. Since the floor plan consists of two
columns and 18 rows of computational banks, a rough estimate of the required area
may be given as (1200 + 1200) by (120 x 18) or 2400 wn by 2160 wn. The pad
frame used has outside dimensions of 4500 pm by 4500 um with usable interior lay-
out area of 3900 um by 3900 pm. The floor plan layout should, therefore, when laid

out in silicon, fit easily into the pad frame.

4.2. CMOS Layout

The layout of the design is shown in Figure 23 with the final pad-frame layout
and pad connections shown in Figure 24. 2715 wm by 2192 um of silicon area are

required by the layout. The circuit contains 5264 transistors. Most evident in the

-56-

-T" s
b ﬁI. o j

: Y Ve ,4
nI?r:.Thr"vT»l»F*v]"*T*in

Figure 23: Layout of the ASIC

Figure 24: Final pad-frame layout.

-57-

layout is the small percentage of wire area used by the design. This is largely due to
the efficient placement of the computational banks and the fact that the bénks have
been designed to allow metal-2 wiring to be run across them. All wiring has been
done using only metal-1 and metal-2 layers thus minimizing the RC component of the
wires. All data buses are local and therefore relatively short thus negating the need for

large drivers or repeaters that would be necessary on global buses.

The final layout of the ASIC enables the design of the multiresolution representa-
tion system shown in Figure 25. Cascading the ASIC as shown results in an
extremely modular system requiring the simple addition of more ASIC’s and shift
registers to generate further low-resolution levels in the representation. Resampling of
the image data between levels in the hierarchy is acheived by using the clocking
scheme shown. The scheme allows each ASIC to read every second pixel and every

second image row from the output of the ASIC above it.

4.3. Timing

The architecture of the ASIC is based on a systolic architecture. Therefore all
pipeline blocks in the systolic array are synchronized with a global clock and each
block receives new inputs and calculates a new output on every clock pulse. Conse-
quently, on every clock pulse, the ASIC receives one new image element and outputs
two image elements corresponding to the lowpass filtered output and the bandpass
filtered output. There are five pipeline blocks in the ASIC; two each in the Golx) and
the G o(y) convolvers and one in the subtractor unit.

The shift registers which allow the convolution window to overlay the correct
region of the image can be thought of as a second dimension of pipelining. Both
dimensions of pipelining influence the timing sequence of the ASIC. A timing

diagram illustrating the flow of data through the ASIC is shown in Figure 26.

-58-

To(x, y) —“

¢, UL
S.R.] ASIC Y]Bpl(xsy)]O
, > Iual(xa)')
S.A. ASIC (Dl‘j - -) B

—> Igp,(x, y)

g]I.Pz(xv J’)
$

P,) R -
S.R. N ASIC S——]gps(xsy) la
Ip(x,y)
@, -
5.R. ASIC | Igp (x, y)

Figure 25: Cascading the ASIC to produce a multiresolution representation system,
Iy(x, y) is the original image, Iu,l(x, y) and IBpi(x, y) are lowpass and bandpass

representations of Iy(x, y). The clocking scheme shown effectively resamples the image
data between levels in the hierarchy.

Ip, (m, n) is the input image element to the level i ASIC, I'1p(m,n)is an image
element which has been processed by the G o(x) convolver at level i, Iip(m, n)is an
image element which has been processed by the G(y) convolver at level i, and
Ipp,(m, n) is an image element corresponding to the level i bandpass filtered output.
Ipp,(x,y) and Ip(x,y) are generated 6 and 7 clock periods respectively after the
Iyp(x +2,y +2) input is read. The resultant latency of the system is equal to
(2'N + (2 +6) x2"1y clock periods for the Iip(x,y) output and
(2'N + 2+7x 2"‘1) clock periods for the Ipp.(x, y) output where N is the number

of image elements per image row and / is the level in the hierarchy.

-59-

¢ | |

L Al V)
e i
read input G o(x } calculation
Iua'__l(x+2, y+2) N . N .)
write oulput
read Ip'(x42, y)
mpults v ' P
Ip (x~2, y) —v
Ip,"(x-1, y) Goly) calcutation
ILP.- (X ’)’) L A J
Ip'(x+1, y) A o

i read inpul wnite oulput
Ip, (x0¥) Ip(x.y)
L A J

v A4

subt, . lua',(x, ¥) write oulput
from Iip, (x,y) Tor(x.)

Figure 26: Timing diagram showing timing sequence of the computation

4.4, Simulation

Simulation of the layout is relatively straightforward since the design employs
only synchronous logic. The only available simulator is a switch-level simulator called
CSIM. Tt is therefore possible to verify only that the correct logic and wiring has been
implemented in the layout process. The design is composed of several functional
blocks including the Gy(x) convolver, the Gy(y) convolver, and the subtractor unit.
Evaluation of the outputs of each of these functional blocks during simulation reduces
the required number of test cases needed in order to exhaustively test all data'paths in
the circuit. Exhaustive testing at this level using a switch-level simulator is relatively
useless since the logic of each smaller building block or cell within the design has
been verified by simulation previously. Therefore it is only useful to verify that the
cells have been wired together correctly. Approximately 100 test cases were simulated

all of which produced the correct outputs.

The design criteria of real-time processing influenced both the algorithmic and

arcitectural design. Since it is impossible to determine, using switch-level simulation,

whether or not this criteria has been met, some estimation of the computation time
required by the layout was needed before the chip was fabricated. A reasonably good
estimation was made using the worst-case computation time of the full adder cell
which was acquired from the timing-level simulation (Sec. 3.4). Since the layout uses
a pipelined architecture, data can only be clocked through the layout at the rate at
which the data can be clocked through the pipeline block with the largest computation
time. The block with the largest computation time is the G convolver block. An
estimate of its required computation time may be found as follows. The data must
propagate through full and half adders as shown in Figure 27. The worst-case compu-

tation time through each adder cell has been simulated at ¢t = 6 nanoseconds (Sec.

3.4).
F.A. t F.A, s F.A. 2t F.A. 4 F.A. Ll F.A. 2 F.A. t H.A.
8t 8t 7t 6t 5t it It t
H.A. 1t H.A. 10t F.A. 2t F.A. o F.A, t F.A. kL F.A. st F.A. at H.A.
L
12t 11t 10t 8t Bt 7t J/Bt 5t 4t
Al

F.A. e F.A. 12t F.A. 1 F.A. 0 F.A. \gt F.A. ks FL.A. Tt F.A. .l F.A. St F.A,
\l/“t J[ﬂt 12t 1it 10t \1/9\: 5t l?t iﬁt lﬁt

5 N 5 N

Figure 27: Worst-case computation time estimate for the G convolver.

The longest path in Figure 27 passes through 14 full and half adder cells. Thus,
14 x 6 = 84 nanoseconds. After computation the output must be read by a storage
cell. The flip-flops used for the storage cell require a 6 nanosecond set-up time, giv-
ing 84 + 6 = 90 nanoseconds for the worst-case computation time. All other pipeline

blocks in the layout require less computation time. Therefore, a rough estimate for the

frequency at which data may be clocked through the layout is W =11.1 Mhz.
X

-61-

At this rate the system will process a 512 x 512 image in
90 x 1077 x 512 x 512 + latency. The number of image frames the system can pro-

cess per second is independent of the latency. For a 512 x 512 image, the multiresolu-

1

0% 105 x50 % 512 or 42 image frames per second. This
X X X

tion system will process

is well above TV rates of 30 image frames per second.

-62-

5

Testing

Five ASIC’s were fabricated and available for testing purposes. A photomicro-
graph of a chip is shown in Figure 28. Each ASIC was tested by generating test vec-
tors on an HP 8180A data generator and analyzing the outputs using an HP 8182A
data analyzer. All ASIC’s were functionally tested for correct operation using test
vectors. Each working ASIC was then tested for its maximum operating frequency

under worst-case computational conditions.

The testing of each ASIC is simplified by two results of its architectural design.
Firstly, the design employs only synchronous logic and thus dynamic faults are elim-
inated. Secondly, block testing of the chip is possible since outputs are available at
three different points in the computational logic of the design. Block testing reduces
the combinational explosion of testing by reducing the number of test vectors required
to ensure a given percentage of internal nodes at each particular block are correct.
QOutputs are available at three points in the ASIC; after the Go(x) block, after the

G o(y) block, and after the subtractor unit.

Each ASIC has 20 input lines and thus 40 inputs to its combinational logic. The
outputs of the ASIC are dependent on its inputs and its internal state. The internal
shift register of the G y(x) systolic convolver has 32 bits of storage resulting in internal
states which influence the outputs. These internal states must be clocked in before
each test case can be run. Exhaustive testing of the combinational logic will therefore

require 240 x 232 = 272 test cases. Block testing reduces the necessary number of test

-63-

cases to 290 4 240 4 216, Although block testing greatly reduces the number of test
cases, clearly, exhaustive testing is impossible. It is therefore required to generate a
minimal number of test cases to verify (1) the correct behavior of the ASIC and 2)

the correct operation of a given percentage of internal nodes.

R gyt s

{@} %‘3’ ‘g.sx S

" By - SR 5 v Ty ORI 5 RS 0y IR BT

Figure 28: Photomicrograph of the ASIC

The correct operation of some internal nodes can be accomplished by running
three simple test cases.
Case (1). All inputs are set to zero and the data is clocked through to the outputs.
The outputs of the Gy(x) and G(y) blocks should both be zero. The magnitude of
the subtractor unit should be zero and its sign bit should be one indicating a positive

result. All internal nodes corresponding to sum and carry-out nodes in the adder banks

must be zero for correct operation. Carry-out nodes in the subtractor bank will be

high with sum nodes being low.

Case (2). All inputs are set to one and the data is clocked through to the outputs. The
outputs of the Gy(x) and the G y(y) blocks should both equal 254 (not 255 because of
the 0.996 scale factor). The magnitude of the subtractor unit will be one and its sign
bit will also be one (255 - 254 = 1). Most internal nodes corresponding to sum and
carry-out nodes in the adder banks will be one. The states of the sum and carry-out

nodes in the subtractor banks will have both high and low logic levels.

Case (3). All inputs are left high except for the subtractor unit inputs which are set
low. The magnitude of the subtractor unit output will be 254 and its sign bit will be

. zero indicating a negative resuit.

These three test cases eliminate the possibility of stuck at faults at all output
nodes and some internal nodes. Secondly, correct propagation of the carry signal
through the carry chain in each adder and subtractor bank is verified. Due to the
operational verification determined by these test cases, further test was considered
necessary using only a small number of random test cases. Fifteen random test cases

were run on one of the ASIC’s which had correct results from the first three test cases.

Maximum operating frequency under worst-case computational conditions is
determined by applying input vectors to the ASIC which correspond to the worst-case
computational conditions. The operating frequency of the ASIC will be limited by the
maximum operating frequency of adder banks 1 through 5 in both the G o(x) convolver
and the Gy(y) convolver. Worst-case conditions occur when the carry signal is
required to propagate a maximum distance through the carry chain in all adder banks.
A worst-case computation will occur when each bit of pixels @ and ¢ are ones and all
bits of pixels b, d, and e are zero (see Section 2.5 for explanation of pixel labeling).

This causes the carry signal to propagate through the entire carry chain in adder bank

-65-

1, through three-quarters of adder bank 3’s carry chain, and through three-quarters of
the carry chain in adder bank 5. Computation times of adder banks 2 and 4 are
irrelevant since they operate in parallel with adder banks 1 and 3 respectively and have
a computation time no worse then the worst-case computation time of adder banks 1

and 3.

Of the five ASIC’s tested, one did not function properly. The faulty ASIC
powered-up but produced erroneous outputs when test vectors were clocked in. The
remaining four tested correctly under the three test cases mentioned above and tested
correctly under worst-case conditions. One of the four had a maximum operating fre-
quency under worst-case conditions of 10 Mhz. The remaining three operated
correctly at 12 Mhz. The maximum operating frequency is the highest frequency at
which logical testing produces correct results. One ASIC was then tested using the

fifteen random test cases. All results were correct.

-66-

CHAPTER 6

Simulation and Applications

6.1. Simulation

Computer simulation of the multiresolution representation systeﬁ was accom-
plished using a 512 by 512 image where each pixel is represented with eight bits. The
first four levels of both the lowpass and bandpass representations were generated in the
simulation. The programs used for the simulations are listed in Appendix A. The test

image and its histogram are shown in Figure 29(a) and (b) respectively.

28 %

0 128 256

(a) (b)
Figure 29: (a) The test image, (b) histogram of the test image,

It is a digitization of a scene containing both sharply outlined objects and shadowy
objects. Since it is an unaltered digitization of a real scene, it contains noise. Figure

30 shows the lowpass-filtered and subsampled outputs I;p, thru I;p,. Figures 31(a)-(d)

-67-

show each of these filtered copies with pixel sizes magnified for ease of viewing. The

reduction of information at each level is evident.

Figure 30: Lowpass-filtered representations /;p , thru fpp .

Figure 32 shows the bandpass filtered outputs Igp, thru Ipp . Generation of these out-
puts has removed pixel-to-pixel correlations and has shifted pixel values towards zero.
This compression of data is evident from the histograms of Igp, thru Ipp shown in
Figure 33. Pixel values are clustered about zero and have both positive and negative
values between -128 and +128. To accommodate the negative pixel values for view-
ing purposes, an offset has been added linearly to the gray scale to enable a zero pixel
value to have a gray scale level of 128, a pixel of 128 to have a gray scale level of
256, and a pixel value of -128 to have a gray scale level of 0. For viewing purposes,
histogram equalization was performed on each bandpass image. Figures 33(a)-(d)
show these results with pixel sizes magnified. The consecutively-reduced center fre-

quency of the passband is evident in these figures. Ipp accentuates the high frequency

-68-

() (b)

(c) (d)
Figure 31: Pixel sizes magnified. (a) I;p 0 (b) ILPZ, (c) Iuaj,) I1p .

component of the original image whereas Ipp . portrays the overall shape and size of
the objects within the image. The overtone medium-level gray of each bandpass
image is due to the fact that only the relevant image information at each passband is

represented allowing considerable data compression. The entropy, H, given as

k
H =3, p(r) logy p(r), represents the minimum number of bits per pixel required to
0

-69-

exactly encode the image (k is the number of gray levels and p (r,) is probability of

the k™ gray level).

30% 7

-128

128

Figure 33(a)

-70-

30%

-128) 128

(b)

24%

-128 0 128

(4]

-128 0 128

(@)

Figure 33: Histogram equalized bandpass filtered representations with pixel sizes
magnified. (a) IBPI and histogram, (b) [z 2 and histogram, (c) Iz s and histogram, (d)

Igp, and histogram.

71-

An important attribute of a multiresolution representation is completeness: it
should be possible to recover the original image from its multiresolution representa-

tion. The bandpass multiresolution representation has been generated as follows;
Igp,=1o~Ip1p,
Ipp, = resample(I;p) — Irp,
Ipp, = resample (Iyp) — I p,
Igp, = resample (Irp.) = I1 p,

The original image I, may be reconstructed from the first four bandpass level

representations and fourth lowpass representation as follows;

Irp, = expand(Upp, +I1p,) -

ILPz = expand ([BP3 + ILP3)

Iip, = expand(gp, + I1p)

IG = IBP1 +]Lpi
OR
‘[0 = IBP1 + expand(IBp2 + expand([BPS + expand(IBh + ILP)

The expansion process produces Irp (size m xm) from the images
Igp.,, (size m/2 X m/2) and Iy p.,, (size m/2 x m/2). Addition of corresponding pixels
in images Igp and Ijp produces the resampled version of I;p.. The remaining pixel
values of I;p which were removed in the resampling process may be calculated from
Igp,, and Iyp . A one-dimensional Izp = contains m/2 equations in m unknowns and

a one-dimensional ILPM contains m /2 equations in the same m unknowns. Thus, in

total there are m equations in m unknowns and the remaining pixels may be calculated

-72-

exactly. Since the two-dimensional process is separable into consecutive one-
dimensional processes, the /;p image may be reconstructed. This method however, is
computationally expensive and is not practicable, An approximate method of recon-
struction was used were each resampled pixel was interpolated from its two horizontal
or vertical neighbors, where use of horizontal or vertical neighbors depends upon the
location of the pixel in the resampled grid. This process is both computationally sim-
ple and efficient, and is very easily implemented in real-time with the appropriate
hardware. Figure 34 shows the reconstructed image. Only close scrutihy on a high-

resolution monitor reveals any degradation from the original image.

Figure 34: The reconstructed image.

6.2, Applications

Of the numerous applications applicabie to lowpass and bandpass multiresolution

representations, two are briefly explained here. The first uses the representation for

73-

image data compression and the second application produces a multiresolution

representation of the intensity changes or edges in an image.

6.2.1. Image Data Compression

Neighboring pixels within an image are highly correlated and therefore direct
representation of the pixels results in redundant information being represented. A pro-
cess which decorrelates the image pixels will enable a compressed data representation
of the image. Decorrelation of image pixels may be achieved through predictive or
transformation techniques. Transformation techniques encode pixels in blocks and
involve image transforms or solutions to large sets of simultaneous equations. Predic-
tive techniques encode pixels sequentially by subtracting the predicted value of a pixel
from its actual value. Predictive coding is computationally simple and inexpensive.
Transformation coding is computationally expensive; however, it offers greater data

compression.

There are essentially two types of predictive coding: causal and noncausal.
Causal prediction predicts a pixel’s value using only previously-encoded pixel values.
Noncausal prediction uses symmetric neighborhoods centered about each pixel and
thus yields greater data compression. The method of data compression described here
uses multiresolution symmetric neighborhoods to predict each pixel value noncausally.

If I, is the image to be encoded, then each pixel’s predicted value will be an
expanded version of the resampled / rp,- The expansion process constitutes an interpo-
lation using simple local averaging. Each predicted pixel value is subtracted from the
pixel’s original value to obtain the prediction error. The array of prediction error
values, E,, essentially represent a bandpass filtered copy of I, Encoding

E; (size n x n) and Iip, (size n/2 X n/2) rather then Iy (size n x n) results in a net

-74-

data compression since E, is largely decorrelated. Further data compression is
achieved by applying the same process to I;p . lteration of the process produces a
multiresolution representation of predictive error images E 1, E2, s Ey, where

Ey =I1p,. 1 is recovered without error from this representation by expanding each

N
predictive error image to size n X n and summing, ie. [y= 3 expand(E;). Expan-
0

sion is identical to the expansion used to obtain the predicted values of each pixel.
Further data compression is possible by quantizing pixel values if quantization errors
are allowed by the application. Burt and Adelson [7] have used this method to encode
images with negligible degradation at less than one bit per pixel.

The required expansion process used to produce the prediction pixel values and
expand the prediction error images is considerably less computationally expensive then
the ASIC designed for the generation of the lowpass representations, I;p.. Thus, a sys-

tem could be constructed to encode and decode noncausally in real time.

6.2.2. Image Edges

As indicated in chapter 1 the first step in visual information processing involved
representing an images intensity changes or edges. The zero-crossings of a Difference
of Gaussian multiresolution representation localize image edges in a near optimal
manner. Figure 35 shows the zero-crossings of the bandpass levels Igp, thru Ipp .
Figures 36(a)-(d) show each image with pixel sizes magnified for ease of viewing.
Zero-crossings may be found very efficiently using the sign bit of each pixel value in

the bandpass representation.

-75-

10N,

tat

10N ZEro-Crossing represen

lut

1reso

Mult

Figure 35

-76-

(© (@)

Figure 36: Multiresolution zero-crossing representation with pixel sizes magnified.

-77-

CHAPTER 7

Conclusions

Many image processing and analysis tasks can be accomplished efficiently by
using multiresolution representations of an image. A full-custom ASIC enables the
design of a system capable of transforming the information content of an image into a

multiresolution representation in real time.

A number of techniques have been used to reduce the computational complexity
and the cost of the ASIC design. Separability of the Gaussian function reduced the
number of computational elements used by the systolic array from M2 to 2M and
reduced the number of multiplications and additions for each image frame from
O (M?N?%) to O (MN?) where N2 is the number of pixels per image frame. Hierarchi-
cal convolution eliminated the use of large bit representations of partial results by
reducing large convolutions to smaller convolutions in a divide-and-conquer scheme.
Thus, only a small fixed-size convolution is necessary, enabling the repetitive use of
just one ASIC in cascaded fashion to produce a complete multiresolution representa-
tion system. The symmetry of the Gaussian function and the fixed nature of the filter-
ing coefficients further allow the separated convolutions to be implemented with a

small number of additions and with no multiplications.

Other techniques have also been adopted to increase the performance of the lay-
out. Exploitation of the flow-through nature of the algorithm allows a second dimen-
sion of pipelining to be incorporated in the design, thus increasing the throughput of

the system. The full custom design of the ASIC allowed for optimization of all

-78-

critical paths and of the basic cells from which the system was built, particularly
within the adder banks. Each cell was designed to allow the overall layout to be com-
pact, to require only local data-bus wiring, and to allow appropriate power- and clock-
bus wiring. The resultant ASIC was therefore able to achieve real-time operation

under test conditions.

-79-

References

[1] M.D. Kelly, "Edge Detection in Computers by Using Planning’, in Machine Intelli-
gence, B, Meltzer and D, Mitchie, eds. 1971.

[2] D.B. Marr and E. Hildreth, "Theory of Edge Detection’, Proc. R. Soc. London, B
207, pp. 187-217, 1980.

[3] AR. Hanson and E.M. Riseman, ’Visions: A Computer System for Interpreting
Scenes’, in Computer Vision Systems, A.R. Hanson and E.M. Riseman, eds., New
York: Academic, 1985.

[4] D.B. Marr and T. Poggio, A Computational Theory of Human Stereo Vision’,
Proc. R. Soc. London, B 204, pp. 301-328, 1979,

[5] H. Moravec, ’Obstacle Avoidance and Navigation in the Real World by a Seeing
Robot Rover’, Ph. D. dissertation, Stanford Univ., Sept. 1980.

[6] J.L. Crowley, *Multiple Resolution Representation and Probabilistic Matching of
2-D Gray-Scale Shape’, IEEE Trans. on Patt. Ana. and Mach. Int., Vol. PAMI-9,
No. 1, pp. 113-121, Jan. 1987,

[7] P.J. Burt and E. Adelson, *The Laplacian Pyramid as a Compact Image Code’,
IEEE Trans. of Comm., Vol. COMM-31, No. 4, pp. 532-540, Apr. 1983.

[8] A. Rosenfeld, Multiresolution Image Processing and Analysis, Springer-Verlag,
New York, 1984.

[9] V. Torre and T.A. Poggio, *On Edge Detection’, IEEE Trans. on Patt. Ana. and
Mach. Int., Vol. PAMI-8, No. 2, pp. 147-163, March 1986.

[10] C.D. Thompson, ’Area-Time Complexity for VLSI’, Proc. 11th Annual ACM
Symp. Theory of Computing, ACM Signact, pp. 81-88, 1975.

[11] J.W. Hong and H.T. Kung, 'I/O Complexity: The Red-Blue Pebble Game’, Proc.

13th Annual ACM Symp. Theory of Computing, ACM Signact, pp. 326-333, May
1981.

[12] H.T. Kung and C.E. Leiserson, ’Algorithms for VLSI Processor Arrays’, in C.A.
Mead and L. Conway, Introduction to VLSI Systems, Addison Wesley, pp. 271-
292, 1980.

[13] JJ. Claik and P.D. Lawrence, 'A Hierarchical Image Analysis System Based
Upon Oriented Zero Crossings of Bandpassed Images’, in Multiresolution Image

Processing and Analysis, A. Rosenfeld, ed., Springer-Verlag, New York, PP.
148-168, 1984,

[14] PJ. Burt, ’Fast Filter Transforms for Image Processing’, Computer Graphics
Image Processing, Vol. 16, pp. 20-51, 1981.

[15] H.C. Card, P.D. Hortensius, and R.D. McLeod, Standard Cells for Custom VLSI
Chip Design, Dept. of Elec. Eng., Technical Report TR87-1, Univ. of Man., 1987.

-R1-

Appendix A: Program Listings

-Al-

File multi printed on Fri Aug 28 22:23:37 13987 page 1 of 4

C*******************#**

Cx THIS PROGRAM PRODUCES A LOUPASS, A BANDPASS, AND THE %
Cs BANDPASS ZEROCRDSSING MULTIRESOLUTION REPRESENTATION %
Cx OF A 512 BY 512 IMAGE. FOUR RESOLUTION CHANNELS ARE *
€x GENERATED IN EACH CASE. *

C********X***#*************************************#***#*******
c

integerx2 img{512,512), fing(512,512},n,%, j,val,a,b,c
character imagibl2,512)

C

c read In image

C
opentil@, file="'couboy’, forma'unformatted’)
open{ll, fiiea’bpl’, form="unformatted’)
open(12, file="bp2’, form="unformatted")
open(13, fite="bp3", form='unformatted"} >
open{ld, file="bp4’, form="unforrmatted’}
open{l5,file=’1pl’, form="unformatted®)
open(lE, file="1p2’, form="unformatted")
open{l7,file="Ip3*, form="unformatted’}
open{l8, file='1p4’, form="unformatted’)
openill, file="zcl’, form="unformatted’)
open{28, file='zc2’, form="unformatted')
open(2l, file="zc3", form="unformatted’)

c open(22, file='zc4’, form="unformatted’}
read{18) n,n
do 25 i=1,512

read(18) (imagli, j}, j=1,512)
25 continue
C
E decode the ascii image to integer format

do 26 i=1,512
do 26 j=1,5i2
imgli, ji=ichar2{imag(i,j)) + 1
26 continue

n=512
call gauss{img, fimg,n}
cafl stoimg(img, imag,n)
uwrite{ls) n,n
do 27 i=l,n
write (15} (imagli,), j=1,n)
27 continue
call stoimg(fimg, imag,n)
writef{il) n,n
do 28 i=l,n
urite(ll) (imag(i, j}, j=1,n)
28 continuse
call zcross(fimg,n)
call stoimgffimg, imag,n}
urite(ig}) n,n
do 29 i=1,n
write(18) (imagli, j), j=1,n)
23 continue
n=256
call subsample{img,n)
call gauss(img, fimg,n)
call stoimg{img, imag,n}
write(lB} n,n
do 3@ i=1,n
uwrite(16) {imagfi, j), j=l,n)
38 continue
call stoimg(fimg, imag,n}
write{l2) n,n
do 31 i=l,n
urite(12) {imagli,), j=1,m)
31 continue
call zcross(fimg,n)
call stoimg{fimg, imag,n)
write(28) n,n
do 32 i=1l,n
write{28) {imagli, j), j=1,n)
32 continue
n=l28
call subsample(img,n)
call gauss{img, fimg,n)
call stoimglimg, imag,n}
writetl?) n,n
do 33 i=l,n

File multi printed on Fri Aug 28 22:23:37 1987 page 2 of 4
write(l7) (imag(i, ji, jal,n)
33 continue
call stoimg(fimg, imag,n)
urite{l3) n,n
do 34 i=l,n
wurite(13) (imagli, j}, j=1,n}
34 continue
call zcross{fimg,n)
call stoimg(fimg, imag,n)
writel(Zl) n,n
do 35 i=1,n
write(21) {imagti, j}, j=1,n}
35 continue
n=64
call subsample{img,n)
call gaussl(img, fimg,n)
call steimglimg, imag,n)
uritet{l8) n,n
do 3B i=l,n
wurite(18) limagli, j), j=1,n)
36 continue
call stoimg(fimg, imag,n)
write{l4) n,n
do 37 i=1l,n
urite{l4) (imagl(i,)}, j=1,n)
37 continue
call zecross(fimg,n)
call stoimg{fimg, imag,n)
write{22) n,n
do 38 i=1l,n
urite(22) (imagli, j), j=1,n}
38 continue
stop
end
C
C et Aok o IO KKK AR AR KKK HORICK O SOROIORR KA ok oiokoK
Cx this subroutine subsamples the image producing an n/2 by Jokx
Cx n/2 image Rokk
C ot RO KRR RROIRIOIKIRACKAOK FROR AR KK AR KOOI AR ACK AR o

subroutine subsample(img,n)

C
integerk2 img(512,512},i,j,n
C
do 12 i=l,n
do 12 j=1,n
imgli, j)=imgl{ixZ, j%2)
12 continue
return
end
C

o akotoioioi ok ok SRR R KRR IO ORI KK KR KSR A AR A A AOKAKHOR A
Cx this subroutine converts the image into ascii format sexsokkiok
C stk RIOOK AR KOOI RIS K R KK AOIOOIROR R OIAOR SR IKIORAOKAKAOK

subroutine stoimg(mg, imag,n)

integerx2 mg(512,512),n
character imag{512,512)

do 13 i=l,n
do 13 j=1,n
imag(i, ji=charimg(i,j) - 1}
13 continue

return

end
C
L sotioriotoR I OIORKRIOR KRR AACIR R AR R KRR AR A AR KR KR RIR ARk
Cx this subroutine performs the two-dimensional convolution xx
S e L R

subroutine gaussl(img, fimg,n)

integerx2 img{5i2,512), fimg(512,512),x¢512,512)
integer%2 i,j,a,n

do 18 i=l,n
x(i,1)=B8.7%img(i,1}+0.25%img{i,2)}+B.85ximg(i,3)
#(1,21=8.3ximg (i,1}48.4%img (i,2)+8.25ximg(i,3)+8.85ximg(i,4)
x(1,n-1)=0.85x%img (i,n-3)+8.25x%img (i,n-2) +B. bximg (i, n-1)

+ +8.3ximg{i,n)

File multi printed on Fri Aug 28 22:23:37 1987 page 3 of 4
x(i,n)=0.B5%img{i,n-2)+8.25x%img{i,n-1}+8.7%ximg(i,n)
do 18 ja3,n-2
{1, jleB. 4ximg{i, j}+8.25% (img{i, j-1}+img(i, j+1})
+ +B.85xlimgli, j~-2)+imgli, j+2})
18 continue

do 11 j=1,n
a=imgl(l, j)
img(l, j)=@.7%x(l, j)+0.25%x (2, j} +0.85%xx (3, })
fimg(l, jl=a-img{l, j}+123
a=imgl2, j})
imgl2, jl=8.3%x{1, j)+8.4¥x (2, j}4+8.25%x (3, j)+8. B5%x (4, j)
fimg(2, j}=a-img(2, j1+129
a=imgin-1, j)
imgin-1, j}=8,85%x(n-3, j}+8.25%x (n-2, j)+8. 4% (n-1,)
+ +8.3%x(n, j)
fimg(n-1, j)=a-img{n-1, j)+123
a=img{n, j}
img(n, j)=8.85%x (n-2, j}+8.25%x (n-1, j}+B. 7xx(n, j}
fimg{n, jl=a-imgln, j}+129
do 51 i=3,n-2
asimgli, j)
img (i, j1=8.4%¢(i, 40, 25%{x{i-1, jl4xli+l, j)}
+ 48.85%(x{i-2, jlex(i+2,)]
fimg(i, jy=a-img{i, j}+129
51 continue
do 11 i=l,n
if {fimgli, j).gt.256} then
fimgli, jl=256

end if .
11 continue
return
end
C
C ookt ok F R HAEICIOR AR SOKAIR KA KK R KRB KKK KA KRR IAACRAOK R AR TR RAK AR
Cx this subroutine detects zero crossings of the bandpass image *

Cottoksaickor ok ik ok SoloiooIoaol ook Kok oIk Folok ORIk kR R R SORRHOKR SIRR ECR Aok KR K
subroutine zcross(fimg,n)

C
integerx2 fimg(512,512),n,i,j,g,u(3,512}), thres,neg
logicalx2 val,dow,up, [ft,ragt, tlc, tre,blc,bre
c
do 41 i=1,2
do 41 j=1,n

yli+l, jl=fimgti, j)
41 continue
do 48 i=2,n-1
do 42 g=1,n
yll,gley(2,q)
ylZ,g)=y(3, g
yi3,gl=Ffimgli+l, g}
42 continue
do 48 j=2,n-1
ifln .eq. 512} then
thres=(128)
else
thres=129
end if
val=(y(2,j) .ge. thres)
up={yf{l, j} .ge. thres)
don={yl3, j} .ge. thres)
rgt={y{2, j+1) .ge. thres)
I ft={y(2, j-1) .ge. thres)
tle=(yll, j-1) .ge. thres)
tre=(yll, j+1) .ge. thres)
blealy(3, j-1} .ge. thres)
bre=(yl(3, j+1) .ge. thras)
neg=8
if{up) neg=neg+l
i fl{don) neg=neg+l
if{rgt) neg=neg+l
if(l1ft) neg=neg+l
ifltlic) neg=neg+l
ifl{trc} neg=neg+l
ifi{bic} neg=neg+l
iflbrc) neg=neg+l
if({val}.or. (up,and.dou.and. | ft.and.rgt.and. tic.and. trc

+ .and.blc.and.brc}.or, {({.not.up).and. {.not.dou) . and.
+ {.not. | ft).and, {.not.rgt)),.or. (neg.eq.7}) then
fimgl{i, jl=1

else

File multi printed on Fri Aug 28 22:23:37 1987 page 4 of 4
fimg(i, j) =256
end if
48 continue
return
end

File recon printed on Fri Aup 28 22:26:38 1887 page 1 of 2

Crokoioioksgiokiokioksior icioiol ioialoRiook oo okRkiookorok ok ioloiolor ofoiok skooioiaioksioiolokioloiok

Cx THIS PROGRAM RECONSTRUCTS A 512 BY 512 [MAGE FROM ITS]
Cx FIRST FOUR BANDPASS LEVEL REPRESENTATIONS AND I7S FOURTH «
Cx LEVEL LOWPASS REPRESENTATION.]

Colototoksk sakoiololoioioioiolooriolsiokaoloioiolopisoioriaioiok olaiooiakniosioioiooriaiol ok dokdaiokoioiol

integersZ 1mgi512,512), img2(512,512),img31512,512},n,i, j, x,y,val
character imag{512,512)

read in image

oo

open(18,file="bpl’, forms="unformatted’)
open(ll,file="bp2’, forme"unformatted’)
open(12,file="bp3’, form="unformatted’)
open(l13,filea"bp4’, form="unformatted’)
open(l4,file="{p4', form="unformatted')
open(l15, file="rebuilt’, form="unformatted')

read(13) n,n
do 28 i=l,n
read(13) {imagli, j), jei,n)
20 continue
call decod{imag, img,n)
read{l4) n,n
do 21 i=1l,n
read{14) (imagti, j}, j=1,n)
21 continue
cal! decodlimag, ing2,n}
do 22 i=l,n
do 22 j=l,n
img2{i, jl=imgli, jd+img2(i, j}-129
22 continue
call expand{img2, img3,n}
read(i2} n,n
do 23 i=l,n
read(12) (imag(i, j}, j=1,n)
23 continue
call decodl(imag, img,n)
call comb{img, img2, img3,n)
cal!l expand{img2, img3,n)
read(11l} n,n
do 24 iel,n
read{11) {imagli, j}, j=1,n)
24 continue
call decodlimag, ing,n}
call comblimg, img2, img3,n)
call expand(img2, ing3,n)
read(18) n,n
do 25 iel,n
read (18} (imagl(i, j}, j=l,n)
25 continue
call descod{imag, img,n}
call comblimg, img2, img3,n)
calt stoimglimg2, imag,n)
write(15} n,n
do 26 i=l,n
write{lS) (imagli, j), jel,n}
26 continue .
stop
end

c

C#**********#**ﬁ********************t********************t*******i****
Cx this subroutine decodes the ascii image into integer format sociboliox
Et*****t********x*x***x***************#****x*t****x*x*x**x**********x*

c

subroutine decod{imag,ng,n)

integerx2 mg{512,512),n,1, j,val
character imag(512,512}

do 38 ilgn
do 38 j=l,n
rgli, jl=1 ¢ ichar2{iragli, j))
38 continua

return

end
C
CroioinioiokiickiciaiicobiosioicokoicisaioloctlokoiRorciokcicio ol
Cx this subroutine converts the image into ascii format socicox
Cactaronisioickicioiciociokomcicioiiooliokaiciola riciololiafoioroiskoRRolciick

File recon printed on Fri Aug 28 22:26:38 1987 page 2 of 2

subroutine stoimgimg, imag,n}

integerx2 mg(512,512),n
character imag{512,512}

do 40 iel,n
do 40 jel,n
imag(i, jl=char (mg{i, j} - 1)
48 continue

return

end
C
Catokorirtonkosotok IRtk FK IR R AR OR R AOK K SOOI KK K ACRORAOK AR R Ao ok
Cx thie subroutine combinea the lowpass image with the suckkiocik
Cx bandpass image forming the next lowpass level image dkiokkiokk
Cotcstototokoiotor i A oK IR KA AR HORK K RO HOKHCRR SRR IR RRK IR RSO

C
subroutine comb{img, img2, img3,n)
c integer*2 img{512,512), img2(512,512), img3(512,512),n, i, j,%,y,m
do 58 i=l,n
do 58 j=l,n
img2{i, jl=imgli, j} - 129 + img3(i, j)
iflimg2(i, j} .it. 1) img2(i, jl=l
58 continue
return
end
C

Cottotoioion o kRO R KRR A AOIIR AR R KRR AR K KRR AR R K AR R HOR AR AR
Cx this subroutine expands an n x n image into a 2n x 2n image sokkkik
Catoriotokok iokodoR R RO R RO K AR AR KA KK IR HOKRAIO SRR AR KRR K

C
subreutine expand{img2, img3,ni
c .
integers2 img2{512,512}, img3{512,512},n,1, j,0.,m,x,u
c
do B8 i=1,n
do 68 j=1,n

img3(ix2, j«2)=img2(i, j)
68 continua

o=n%2

m=2
img3{1,1}=1mg3(2, 2}
do 78 i=2,0

x=mod2 (i, m)
ifix .EQ. 8) then
img3{i,1)=img3(i,2}
else
img3(i,1)=08.5%{img3(i-1,2)+img3(i+1,2}})
end if
78 continue
do 88 j=2,0
y=modZ{j,m}
ifly .EQ. B} then
img31{1, j}=img3(2, j)
else
img3{1, j)=B.5%(img3(2, j-1)+img3(2, j+1)}
end if
82 continue
do 98 i=2,0
x=mod2{i,m)}
do 98 j=2,0
y=mod2 (}, m)
ifl{x .eq. 1) .and. (y .eq. 8)) then
img3{i, j)=0B.5%(img3{i-1, j)+img3(i+l, j}}
elee iflix .eq. @) ,and. {y .eq. 1)} then
img3 (i, })=8.5%{img3 (i, j-1}+img3(i, j+1))
eise ifl{x .eq. 1) .and. (y .eq. 1)) then
img3{i, j)eB.25x%{img3(i-1, j~1}+img3{i+l, j-1}

+ +img3(i-1, j+1}+img3(i+l, j+1))
end if
90 continue
return

end

