
A Full Custom ASIC Design
for the Real-Time Generation of

Lowpass and Bandpass Multiresolution
Image Representations

by

Jonathan D. Loewen

A thesis
presented to the University of Manitoba

in parrial fulfillment of the

requirements for the degree of
Master of Science

in
Electrical En gineering

Winnipeg, Ma¡itoba, 1987

@ Jonathan Loewen, 1987

Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or seIl
copies of the film.

The author (copyright owner)
has reserved other
publ ication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permi s s ion.

ïsBN 0-315_J7468_3

L'autorisation a êté accordée
à ta nibJ.iothèque natíonale
du Canada de micro f i lmer
cette thèse et de prêter ou
de vendre des exempl-aires du
taIm.

L'auteur (titulaire du droit
d'auteur) se rêserve 1es
autres droits de publication;
ni Ia thèse ni de Longs
extraits de cel-Ie-ci ne
doivenÈ être imprimés ou
autrement reproduits sans son
autorisation écrite.

A FULL CUSTOM ASIC DESIGN FOR THE REAL-TII,IE GENERATION

OF LOWPASS AND BANDPASS }ruLTIRESOLUTION II,IAGE REPRESENTATIONS

BY

JONATHAN D. LOEWEN

A thcsis submincd to the Faculty of Graduate Srudies of
thc Univcrsity of Manitoba ¡n part¡al fulfìllmcnt of the rcqu¡¡ements

of thc degrcc of

}ÍASTER OF SCIENCE

@ tgBl

Pcrmission has bccn g¡ented ro the LIBRARy OF THE UNIVER-
S¡TY OF MANITOBA to lcnd orsc copies of this thesis. to
the NATIONAL L¡BRARY OF CANADA to microfilm this
thcsis and to lcnd or scll copies of thc film, and UNIVERSITY
MICROFILMS to publish en absrracr of this thesis.

Thc author rcscrvcs other publication rights, and neither the
thcsis nor extcns¡vc cxtracts from it may be printed or other-
wisc rcproduccd without thc author's \,¡/ritten permission.

I hereby decla¡e that I am the sole author of this thesis.

I authorize the University of Manitoba to lend this thesis to other institutions or indivi-
duals for the purpose of scholarly resea¡ch.

Jonathan Loewen

I furthe¡ authorize the University of Muritoba to reproduce this thesis by photocopying
or by other means, in total or in part, at the request of other institutions or individuals
for the purpose of scholarly research.

Jonathan Loewen

-ll-

The University of Manitoba requires the signatures of all persons using or photocopy-
ing this thesis. Please sign below, and give address and date.

ABSTRACT

Many image processing and analysis tasks can be accomplished efficiently by

using multiresolution representations of an image. A fixed computational cost is spent

to transform the information content of an image into a multi¡esolution representation

which enables the use of very efficient image processing and analysis algorithms. This

thesis describes the design of an application specific integrated circuit (ASIC) which

may be cascaded to produce a system capable of generating a Gaussian (lowpass)

filte¡ed multi¡esolution representation and a Difference of Gaussian (bandpass) flltered

multiresolution representation of an image in real time. The design of the ASIC is

based upon a systolic architecture, however modifications to the architecture a¡e intro-

duced to take advantage of separability of the Gaussian function and hierarchical con-

volution. High degrees of pipelining and exploitation of the flow+hroøgå nature of the

algorithm enable the ASIC to achieve real-time operarion. Real-time operation of the

ASIC allows implementation of the multiresolution representation system in the pipe-

line between detecto¡ and downline viewing, storing, or funher image processing or

analysis steps.

Acknowledgements

I would like to extend my appreciarion to my advisor, P¡of. H.C. Card for his

supervision and assistance during the development of this work.

Financial support from the Natural Sciences and Engineering Research Council of

Canada and equipment loans from the Canadian Microelecfonics Corporation are

gratefully acknowledged.

Table of Contents

Acknowledgements
Table of Contents
List of Figures
List of Tables

Chapter 1: Introduction
1.1. Gaussian-Filtered Multiresolution Representation

1.2. Multi¡esolution Representation based on Difference of Gaussians

Chapter 2: Algorithms and 4rchitectures

2.1. FFT Implementation
2.2. Systolic Architecrure
2.3. Dimensional Separability and Hierarchical Convolution
2.4. Computational Cost and Complexity
2.5. Systolic Convolver Design

Chapter 3: Design of Adders, Storage Elements, and Multiplexers .,.....................

3.1. Ripple Carry Adders

3.1.1. Full Adder Design

3.1.2. Half Adder Design

3.1.3. Half Subtractor Design ,.....,.,.,.,..

3.1.4. Carry-out Driver Design
3.1.5. Adder Bank Design

3.2. Flip-Flop Design

1V

vi
vlu

x

I
7

5

9

10

11

14

20
2l

28

28

34

36

3t
38

45
3.3. Multiplexer Design

3.4. Simulation 49

Chapter 4: Floor Plan and Layout,...,.. 51
4.1. Floor Plan, 51

4.2. CMOS Layout 56
4.3. Timing 58

4.4. Simulation

Chapter 5: Testing

Chapter 6: Simulation and Applications ."..'.........'....'...

6.1. Simulation
6.2. Applications

6.2.1. Image Data Compression,....'..............

6.2.2. lmage Edges'.

Chapter 7: Conclusions

References

Appendix: Program Listings

60

63

67

67

t5
74
'75

78

R1

A1

-vrl-

List of Figures

I . A multiresolution representation of an image 3
2. A systolic array processor 13
3. Generation of multiresolution lowpass and bandpass representations 17
4. Equívalent Gaussian functio¡¡.r,........ j9
5. Data flow diagram of the systolic convolution algorithm 22
6. One-dimensional systolic convolution atøy 23
7. Modífied one-dÌmensional systolic convolution arra! ..., . 23
8. Block diagram of the co systolic convolver 26
9. Timing sequence comparison of adder schemes 30
10. LogÌc diagram of a carry look¿head circuit 3l
11. Logíc diagram of a full adder stage 33
12. CMOS layout of a full adder cell 35
13. Half adder logic circuít and CMOS layout 36
14. Half subtractor logic ctrcuit and CMOS layout 37
15. CMOS løyout of the carry-out driver 37
16. Adder bank layouts 40
17. St¿btractor unit layout 45
18. D-ry*pe fÌp-fop logic diagram and CMOS layout 46
19. IIO multiplexing circuitry 49
20. IlO mulríplexer CMOS layout 49
21. Floor plan showing computational blocks and IIO requírements 53
22. Detailed floor plan j5
23. Layout of the ASIC 57
21. Final pad-frame layout 57
25. Complete multiresolutíon representarion system Sg
26. Timing sequence of the computation 60
27. Worst-case computation ime estimate for th^e Go convolver 61

28. Plntomicrograph of the ASIC 64
29. The test image and histogram 67j0. Lowpass-fihered representaîions Iu,t îhru Iu,1,..,.................... ó8

3L Lowpass-fltered representaîions I u, t thru I u,1... óg

32. B antlpass-filtered representations IBpt thru IBpl 70

33. Bandpass-fltered representations IBp, thru IBplwhh histograms 7l

-vl¡¡-

34.

35.

36.

Reconstructed image .. 73
Zero-crossings of lur, thru Iept ---.--,-----
Zero-crossings of 1", , thru I3p o with pixel sizes magnified

76

List of Tables

l. Full adder truth table 32

CHAPTT,R]

Introduction

The computational complexity of an information processing problem is deter-

mined, in part, by the representation of the information. Many image processing and

pattern. recognition tasks can be accomplished more efficiently by using an improved

representation of the information in the image. Multiple resolution representations pro-

duce successively condensed versions of the information in an image. This thesis

describes the implementation in silicon of a scheme for the generarion of successively

reduced resolution representations of an image by (1) condensing image intensity and

by (2) providing increasingly coarse approximations to certain descriptive features by

condensing the information about those features.

Multiple ¡esolution representations of images was fusr suggested by Kelly [1] as a

method of p/¿nning to detect edges. Marr and Hildreth [2], Hanson and Riseman [3],

and many others have shown the advantages of multiple resolution representations for

detecting edges. Marr and Poggio [4], and Moravec [5] have used multi¡esolution

representations in stereo matching. Crowley [6] accomplishes efficient pattem

classi-fication and Burt and Adelson [7] have devised a compact image code using mul-

tiresolution representations. The motivation for using a multiple resolution representa-

tion is to spend a fixed computational cost to t¡ansform the information content of a¡r

image into a representation which enables the use of very efficient image processing

and analysis algorithms.

Image processing applications pose extremely large information processing prob-

lems due to the high resolution (many pixels or data elements per image) and the fast

data acquisition frequently required (particularly in the fields of satellite imagery and

medical imaging). Multiresolution representations can be used to ¡educe the compuu-

tional cost of many image processing operations by using divide-and-conquer princi-

ples. For example, feature detection can be performed efficiently at lower resolutions

and the results used to constrain the search at higher resolurions. Searching becomes

fast since a global region in the original image can be detected using local operators at

a low resolution. In parallel ha¡dware implementations of image processing algo-

rithms, local operators require considerably less communication and message passing

and thus exhibit faster execution times and simpler control than global operations. In

a multiresolution representation, global information is condensed at lower ¡esolutions

thus allowing use of efficient local operators to detect and extract the global informa-

tion. A multi¡esolution representation therefore enables extraction of both local and

global information using simple, fast, a¡d efficient local operators as well as restricting

the resolution at which the information is extracted.

1.1. Gaussian-Filtered Multiresolution Representation

Multiple resolution representations provide successively condensed representations

of the information in a¡ image. A simple scheme might generate successively reduced

resolution representations by averaging image intensities in non-overlapping two by

two blocks of pixels and subsampling. Repeated application of this process produces

the multiresolution representation shown in Figure 1 where level 0 (/¡) is the original

image of size 2n x 2n; level I (/1) has been averaged and subsampled once producing

a 2'-1 x 2n-1 image. Repeated applications produce exponentially decreasing image

sizes until a single pixel image is generated. Stacking these images on top of one

.t

another forms a pyramid and thus some authors refer to this multiresolution representa-

tion as a pyramid structtlre.

H
2^ x 2:'

ls
Z -t x 2^-1

¡l
4x4 2x2 lxl
l,-z ln-t l^

Figure l: Multiresolution r€presentation of an image.

Averaging image intensities in non-overlapping two by two blocks amounts to

low-pass filtering of the image. The low-pass filtering effectively reduces the high fre-

quency content of the image oulput at each stage and is required to reduce the aliasing

er¡or introduced by subsampling. Frequency domain evaluation of a non-overlapping

unweighted square region average implementation for low-pass filtering reveals a

wide-ba¡d cha¡acteristic or ringing effect. The ringing chancteristic or high frequency

pass-bands beyond the principal pass-band pass some high frequency image content as

well as passing certain high frequency noise. The inability to suppress all high fre-

quency noise is a disadvantage since later processing steps such as edge detection typi-

cally enhance noise thus producing false edges and distortions. These unwa¡ted

features can be avoided by using an overlapping, weighted circular region average in

the filtering stage. The optimal averaging fi.lter to be used is determined by two physi-

cal considerations. The fi¡st is the frequency domain consideration of wide-band

response, ringing characteristics and high frequency noise. These problems are

avoided by using a filte¡ whose frequency spectrum is smooth a¡d bandlimited; ie. its

-3-

varia¡ce in the frequency domain should be small. The second consideration is a spa-

tial domain conside¡ation and is due to the fact that the visual world is constructed of

tåings which are spatially localized relative to a certain scale. These råings give rise

to intensity changes in an image and consist of light sources, shadows, illumination

gradients, changes in orientation or distance, and changes in surface reflectance [2].

The spatial localization of intensity changes is in fact tïe essence of a multiresolution

representation. All of the ,l¡ir¡gs represented in an image are, at some resolution, spa-

tially localized. Thus, the contributions to each point in the filtered image should arise

from a smooth average of nearby points rather than any kind of average of widely

scattered points. Funhermore, when physically implemented, an algorithm which aver-

ages a local region is less computationally expensive and requires only local communi-

cation. Thus, the optimal filter should be smooth and localized in the sparial domain;

ie. its variance in the spatial domain will be small. The optimal fllte¡ therefore has the

conflicting requirements of spatial localization and frequency localization. The best

compromise in satisfying these conflicting requirements is obtained using a Gaussian

filter [2] described as

, -<x2+Yz)

G(x,y)= L^¿ 2a'
2ncz

(1. 1)

in two dimensions.

Use of a Gaussian filter eliminates the wide-band response and high frequency

pass-bands associated with an unweighted square region average. The high frequency

content of the image is reduced at each level in the multiresolution representation thus

enabling resampling of the image without aliasing drrors. Funhermo¡e, intensity

changes in an image become localized at some level in the representation. Repeated

filtering of an image with Gaussian filters of appropriate standa¡d deviation followed

by resampling will generate scaled copies of the original image. The ¡esultant

multiresolution ¡epresentation has been found appropriate for use in motion analysis,

texture analysis, image segmentation, and image propeny algorithms [8].

1.2, Multiresolution Representation based on Difference of Gaussians

The Gaussia¡-filtered multiresolution representation effectively provides ropi", ot

an image with successively reduced resolution by condensing image intensity. It is

also often desi¡ed to provide reduced resolution copies, corresponding to increasingly

coarse approximations to certain descriptive features, by condensing the info¡mation

about these features. Such a representation, \,vhile still enabling the complete recovery

of the original image, has the advantages of data compression and of making the

salient information readily available. Representing size-scaled copies of an image with

a reduced amount of data will decrease the necessary memory or storage requirements

and increase the throughput mte of the system performing the relevant image process-

ing and analysis tasks. Fut'thermore, these tasks will be simpler and more efficiently

implemented. Obtaining a complete, compact description of the most meaningful

image information is viewed as the fust step in visual information processing [2, 9].

This fust step involves representing the intensity changes ot edges which correspond to

the reflectance and illumination of visible surfaces and their orientation and distance

relative to the point of observation.

In natural images, intensity changes occur over a wide range of resolutions. To

adequately characterize the intensity changes in the image in terms of ttre physical

processes that originated them, the intensity changes must be detected at all resolutions

at which they occur. This process suggests characterizing edges within a multi¡esolu-

tion f¡amework. Furthermore, a Gaussia¡r-filte¡ed multiresolution representation is the

optimal fra¡nework within which to cha¡acterize edges [2].

-5-

Intensity changes within an image may be detected by comparing intensity values

within a limited neighborhood. The rate of change of the intensity values along a path

in the image is given by the first derivative. Where the rate of change is large, the

absolute value of the first derivative in the direction of change will also be large. For

natural images, rapid changes or sharp variations in intensity conespond to physical

edges in the objects or surfaces in the image. Thus, extreme values of the fust di¡ec-

tional derivative localize physical edges. Alternatively, these peaks in the fust deriva-

tive will correspond to zero-crossings of the second derivative. The intensity changes

may then be identiñed by locating the zero-crossings of

Dz[G (x, y) * I (x, y)l (1.2)

where D2 signifies the second derivative in the appropriate direction, G(x,y)

conesponds to the Gaussia¡ function used to generate the scaled copies of the original

image, 1(x, y) is the original image, and * signifies a two-dimensional convolution.

By the derivative rule for convolutions,

D2G(x,y) * /(¡, y) (1.3)

The direction in which the second derivative is øken within the two-dimensional

image must also be determined. In smooth images, intensity change near and parallel

to ar edge will be approximately linear. The linear change stipulates that the second

derivative operator with zero-crossings of maximum slope will localize the edge.

However, these zero-crossings correspond to the zero-crossings of the Laplacian (V2)

which is the only orientation-independent second-order differential operator. Use of

the Laplacian enables determination of the appropriate zero-crossings for a particular

resolution with just one convolution. The process is

V2G1x,y) * /(¡,y) (1.4)

where the function, YzG|x,y) is called the Laplacian of a Gaussian [2] or LOG

-6-

function and is mathematically expressed as

Y2c(x,y)=#"+r [# ')

{rt * y') i_*,--*-l
"l

(1.5)

The LOG filter is bandpass and responds optimally to a certain range of spatial fre-

quencies of the intensity changes. Implementing the bandpass filter at multiple resolu-

tions effectively reduces the center frequency of the filter as the image resolution

decreases. Altematively, the size of the LOC filter (convolution window size) deter-

mines the range of resolution over which it will respond to intensity changes. Thus,

intensity changes at different resolutions can be optimally detected by using LOG

filters of different sizes. Large filters detect soft edges and overall illumi¡ation

changes. Smaller filters detect finer detail.

The computational cost and complexity of implementing the LOG filter in

hardwa¡e [10] can be significantly reduced by approximating the VzG function with

the difference of two Gaussian functions or DOG function. The V2G function is very

similar to a DOG function and is in fact the limiting case of the DOG funcion as

o1 / o2 tends to unity [2]. o1 and 02 are the standard deviations of the Gaussian

functions which are subtracted to form the DOG function. The DOG function is

expressed mathematically as

(1.6)

A computational saving exists since it is now possible to simply subtract consecutive

levels of the Gaussian-filtered multiresolution representation to obtain a near-optimal

bandpass repr€sentation. The resultant bandpass multiresolution representation under-

goes data compression by removing pixel to pixel cor¡elations and shifting pixel vaJues

í -<,'* r">

DoG(x,r'= +J # "-u-
L

-7-

toward zero thus enabling less than eight-bit representations of each pixel. Pixel to

pixel correlations are removed when consecutive levels of the Gaussian-filtered mul-

ti¡esolution representation are differenced (see Sec 6.1). This bandpass multiresolution

representation has been found appropriate for pattem classification [6], image encoding

[7], stereo and motion analysis [4], and other visual information processing applica-

tions.

Having determined that a Gaussian multiresolution representation and a

Difference of Gaussian multiresolution representation are optimal or near-optimal for

many image processing and analysis tasks, we now set about to develop a system

capable of producing these representations. The following four chapters detail the

development and testing of an application specific integrated circuit (ASIC) which is

used to produce these representations. A strict criteria in úe design of the ASIC is

that it achieves the tkoughput required by real-time computation. We define ¡eal-time

computation as the ability to process 30 image frames per second, with an image

f¡ame containing 512 x 512 image elements or pixels where each pixel is represented

with eight bits. Other criteria such as area and accuracy are left less rigid in order to

make tradeoffs berween design criteria and to enable the rea-lization of the ASIC

design in the available IC fabrication facilities.

-8-

CHAPTER 2

Algorithms and Architectures

The practical value of an algorithm for a problem is ultimately determined by its

computational cost. A practical algorithmic solution of a signal processing problem

will correspond to an a¡chitectural design which allows for extensive pipelining and

high degrees of parallelism. It will take advantage of rhe concurrency present in both

the application and the target architectu¡e while observing the requirements of locality

and balanced distribution of computation. These requirements enable extensive pipe-

lining of the a¡chitecture. The resultant system can therefore hope to meet the very

high throughput rate requirements of ¡eal-time signal processing applications.

In designing special purpose ASIC's for digitat signal processing there are a

number of algorithmic issues to be addressed. Almost all digital signal processing

algorithms are cha¡acterized (1) by the regularity of arithmetic operations (multiplica-

tions and additions), (2) by a negligible amount of decision branching, and (3) by a

large ratio of computational steps to loop steps during execution. As a result, digital

signal processing algorithms tend to exhibit a flow+hrough behaviou¡ with panial

results moving from one step to the next with negligible requirements for decision

branching or looping. Exploitation of these atrributes in the architectural design is

necessary to achieve the throughput rates required by real-time computation of the

digital signal processing algorithm considered here.

-9-

In the present problem the system is being designed to operate in a pipelined

fashion between detection and viewing steps. Data is acquired in a continuous stream

from the pipe and exits in a continuous stream. Both the algorithm a¡d the architec-

ture must be designed to enable the system computation rate to match the VO rate of

the pipeline. The architecture must also be designed to allow high degrees of pipelin-

ing to exploit the flow+hrough behaviour of the algorithm and in so doing to employ

simple, local communications. An FFT implementation and a systolic architecture are

evaluated in this chapter in light of these algorithmic a¡d architectura-l considerations.

2.1. FFT Implementation

FFT implementations are colnmon in digital signal processing applications. The

FFT algorithm is derived by decomposing dimensionally-separated discrete Fourier

transform pairs to reduce the number of multiply and add operations required. An

FFT implementation for this problem instance requires (l) the image to be

transformed, (2) a transform of the filter or filters to be hardwi¡ed or stored in

memory, (3) frequency-domain multiplication of the image and the appropriate filter,

and finally (4) the inverse transform of the result.

An FFT requires lrV tog, N multiplications and Nlog2 N additions fo¡ a one-'2
dimensional N-point transform. The rwo-dimensional transform is obtained as a series

of one-dimensional transforms; N row transforms followed by N column transforms

fo¡ an Nx N image. Multiplication in the frequency domain of the image with the

filter requires N2 multiplies. The requirements of the inverse FFT a¡e the same as the

forwa¡d FFT. The totâl computational requirements of an FFT implementation there-

fore a¡e N2 + 2l,tzlogrN multiplies and 4N2log2N additions for an Nx ly' image.

-10-

The FFT implementation is independent of the convolution window size in the

spatial domain a¡d therefore no advantage can be taken of the fact that a Gaussian

filter can be implemented in a hiera¡chical manner. This necessitates the storage of

the entire row or column of the image to complete the appropriate ¡ow and column

transforms. The repetitive use of a pixel element required by the FFT algoàthm

necessitates the element to be stored inside the system until the element is no longer

required. The memory capacity of the system will therefore influence VO imposed

limitations. For example, performing the N-point fast Fourie¡ t¡ansform using an s-

point device when N is large and s is small necessitates each subcomputation block to

be sufficiently small so that it can be handled by the s-point device. During execu-

tion, results of a block must be temporarily sent to the host o¡ some form of memory

and later retrieved to be combined with results of othe¡ blocks as they become avail-

able. To perform an N-point FFT with a device of O(s) memory requires

O(N,]?g-¡/) I/O operations for any decomposirion scheme [11]. Thus, the VO limita-log s

tions of device to host or device to memory impose an upper bound which is indepen-

dent of device speed. Furthermore, the enti¡e image must be obtained and stored

before the fust filtered ¡esult can be entirely computed. This imposes an O(N2) (for an

Nx N image) latency or delay when the device is operated in the pipe between detec-

tor and funher processing or viewing steps.

2.2. Systolic Architecture

A systolic system [12] is an array of processor elements (PE's) which rhythmi-

cally compute and pass data through the aray. Systolic systems may be one- or two-

dimensional with the possibility for data to flow at multiple speeds and in multiple

directions through the system. In a systolic design all data, while being pumped regu-

larly across the array, can be effectively used in all the pE's. Data flows between cells

-l t-

in a pipelined fashion and between the system and the outside world only ar boundary

cells. Thus, the multiple use of each data element within the systolic array allows

compute-bound computations to be accele¡ated without increasing the VO require-

ments.

Each processor element in the systolic array performs some simple operation.

Thus, the a'ray can be built modularty with simple, regular, local communicarions

between processor elements allowing for very simple data and control flows. VO and

computations are overlapped in this highly pipelined and highly synchronized architec-

ture. systolic arrays do however require global synchronization (ie. global clock distri-

bution). This mây cause clock-skew problems in high-order vLSI system implementa-

tions and must be add¡essed in design and layout stages. Fortunately, for any one-

dimensional systolic array, a global clock parallel to the array p¡esents no problem,

even if the array is arbirarily long. The array will operate colrectly despite the possi-

bility of a large clock-skew between the two ends. Aside from global synchronization,

systolic arrays are modular, have regular interconnects, local comunication, present no

difficult synchronization or resource conflict problems and eliminate overhead associ-

ated with operations such as address indexing.

A straightforward systolic array implementation of a two-dimensional filter is

shown in Figure 2. The size of the anay is primarily dependent on the required

sidelobe attenuation of the Gaussian low-pass filter. Each computational element in

the systolic array contains a weighting coefficient which is equal to the sampled fllter

coefficien¿ The fllter coefficients do not move. Input data, -r(n), flows in one di¡ec-

tion through the array and ouçut results, y(n), flow in the opposite direction. The

row by row transmission of the image data necessitates the need for shift register

buffers at the end of each row in the array to allow the convolution window to overlay

the proper region of the image. The size of the shift register is dependent on the array

-12-

r (¡, i)
y(i, i)

Figrre 2: A systolic årray implementation of a 5 x 5 coefficient digital filter with oc-
tål symmetry.

size and on the image row length. The convolution is produced by each computational

element multiplying its input, ¡ (¿), by its weighting coefficient, w (n), then adding this

result to the output y(n) from the previous stage, and passing the sum to the next

computational element. The latency associated with this implementation is equal to

N x (M - l) + M where N is the image row length and M2 is the filter size. Note

that the two-dimensional anay can be unfolded to essentially produce a one-

dimensional array. A global clock parallel to the systolic array will enable proper

operation despite the possibiliry of a large clock-skew between the two ends of rhe

array.

Cla¡k a¡d Law¡ence [13] have designed a hierarchical system using this method

for the generation of a laplacian of a Gaussian (V2G) in a multi¡esolution representa-

tion of an image. They have generated multiresolution rcpresentations of the image

using a half-band low-pass filter (which restricts the maximum frequency to one-half

its previous value) and a subsampler followed by V2G filters at each resolution. Word

lengths of èight bits we¡e used for filter coefficients and image data. A standa¡d devi-

ation o=f for the V2G filter requires 11x 11 coefficients fo¡ the bandpass filter.

Clark and Lawrence chose a peak sidelobe level of less than -30 db and therefore they

required a filter size of 25 x 25 coefficients for the low-pass filter. Both filters have

octal symmetry. Thus not all computational elements are required to perform multipli-

cations, if the input values from each computational element with identical weighting

coefficients are first ripple-summed in a cyclical manner, followed by a single multipli-

cation with the coefficient. The ripple summing of input values produces considerable

computational savings at the expense of loss of linearity in the systolic array. This

latter effect can produce problems with clock-skew, as well as requiring large multi-

pliers since summed input values now require twice as many bits for accu¡ate

representation. As results percolate through the systolic arrays they require an increas-

ing number of bits to avoid overflow and retain accuacy. Due to the fact that the

low-pass filter requires 625 computational elements and the V2G ñlter requires 121

computational elements, this implementation requires considerable area in a silicon

implementation.

The following section describes a design which uses a separable, hiera¡chical

implementation of Gaussian filters to geatly reduce the computational complexity and

silicon area requirements.

2,3. Dimensional Separability and Hierarchical Convolution

A suaightforward systolic convolution implementation of a Gaussian filter

requires M2 computational elements and Oçtut2N2¡ multiplies and additions for each

image frame, wherc M2 is the number of filter co€fficients and N2 is the number of

pixels per image frame. Two techniques can be used to reduce both the computational

complexity and the number of computational elements in the systolic array: (l) dimen-

sional separability of the two-dimensional Gaussian filte¡ and (2) hierarchical convolu-

tion.

Dimensional separability ¡efers to the fact that a two-dimensional Gaussian filter

can be implemented with two consecutive one-dimensional convolutions; a horizontal

convolution followed by a vertical convolution. Mathematically, a Gaussian function

is expressed as

(2.1)

in two dimensions. When dimensionally separated, the function becomes

. -t" - -y2G(x,y)=G(¡)xG(Ð= ! eæ, ! ræ e.2)'l2no ',l2no

where G(r) is a one-dimensional horizontal convolution and Gþ) is a one-

dimensional vertical convolution. Separated in this manner the convolution may be

carried out in one of two ways: (1) the vertical a¡d horizontal one-dimensional convo-

lutions ope¡ate on the original image and conesponding pixels are multiplied together,

or (2) fust the horizontal (or vertical) one-dimensional convolution operates on the ori-

ginal image followed by the vertical (horizontal) one-dimensional convolution which

operates on the resultant. Both methods give the correct result; however, the second

method does not require multiplicarion of corresponding pixels and is therefore compu-

tationally less expensive. Dimensional separability reduces the computational com-

plexity of an M x M convolurion from O(M2) multiplies and additions to O(M).

Funher, the number of computational elements in the systolic array is reduced from

O(M2¡ to O(M). The systolic array in fact becomes t,wo truly one-d.imensional anays,

each of length M. Use of one-dimensional systolic arrays enable the use of a parallel

clock thus eliminating any clock skew problems.

The second technique, hierarchical convolution, exploits the fact that the convolu-

tion of a Gaussian function with another Gaussian function results in a third Gaussian

function with different standa¡d deviation. In particular, if G¡(x) with standard

- lrz+ ,z)
G(x,y)= -f- "T2tt6"

deviation o¡, is convolved with G¡(r) with standard deviation o¡, the resultant Gaus-

sia¡ has standard deviation
" = f[¡ a

"; This may be shown as follows. In one

dimension let

, --" x2

Gr(¡)= ', eÑ G.k\= 1, e-BIor12æ oz!2n -

then

xz x2

G r(¡) * G2@) = -],^ "-t;l
*

-],- "
8

or!2n oz!2n

or taking the product of the respective Fourier transforms,

-u'?s? -"\1 -u\a? + oî\
't ---t- i ----- I ---------¡--

-4

- Y-o ' =_?\2n 't2n 2n

. -r2
with inverse Fourier transform 4rzo' whe¡e o =^lo? + ot

6\2rE

Generation of size-scaled copies of the original image is accomplished through

convolution with Gaussian functions of increasing standa¡d deviation. Generated

hierarchically, the image is convolved consecutively with Gaussia¡ ñlters where, at

each pass, the coefficients of the filter are mapped into a larger sample grid, thereby

expanding the size of the filter or equivalently increasing the resulta¡t standa¡d devia-

tion of the Gaussian function. As the sta¡da¡d deviation of the Gaussian function

increases, the upper cutoff frequency of the frlter decreases, and thus its ouçut can be

resampled with coa¡ser spacing without loss of information. The exponential growth

in the number of filter coefficients which results from the exponential scaling of size is

offset by an exponential $owth in distance between points at which the convolution is

computed. Each Gaussian-filtered copy of the image may therefore be computed with

the same filter as shown in Figure 3, where each output is a Gaussian-filtered copy of

(2.3)

(2.4)

(2.s)

-16-

its predecessor. use of identical filters to generate all size-scaled copies of an image

produces a very modular design.

I oç, r) I u,Q, ,')

IÞr(t, y)

I¡p r(x, y)

Ietr, y)

Iæ,G, v)

lus$, r)

I* r(x ' y')

,ulx, y)

Figure 3: G€neration of Dultiresotution low?ass ând bandpass representatioDs.

Multi¡esolution bandpass or difference of Gaussian representations are derived by

subtracting each lowpass image from the resampled version of the previous lowpass

image (Figure 3). Subtracting rlro eight-bit per pixel images in the pipeline requtes

only a single eight-bit subractor. Obviously, this method requkes considerably less

silicon a¡ea to implement than a full two-dimensional systolic ar¡ay. The shift regis-

ters are necessary to realign the image pixels due to the latency or delay of the

Go@,y) systolic convolver. The computational savings of hierarchical convolution is

proportional to the depth of hierarchy in the system. As the number of coefficients in

-17-

the Gaussian filter Gs(x, y) decreases, the depth of the hierarchy increases for a flxed

standa¡d deviation of the Gaussian function. Thus, using fewer coefficients for

Go(x, y) inc¡eases the computational saving. However, decreasing the number of

coefficients decreases the accuracy with which the sampled Gaussian function is

represented. A tradeoff therefore exists between accuracy and computational complex-

ity.

Burt [14] has derived a hierarchical method for the generarion of Gaussian-filtered

size-scaled copies of an image. In one dimension, the five coefficients

0.05 0.25 0.4 0.25 0.05, represent the sampled Gaussian function. Each node at

each level in the hierarchy is obtained as a weighted average of the five coefficients

centered on the five nearest neighbors of the corresponding node in the previous level.

The sample distance in each level is double that in the previous level, effectively dou-

bling the standa¡d deviation of the ¡esultant Gaussian function. The resampling results

in each image in the hierarchy being half as large as its predecessor, since the resam-

pling rate is nvo (ie. every second pixel). The process may be summarized as follows;

1) define a sampled Gaussian function, G¡ as a width-S convolution window with

coefficients 0.05 0.25 0.40 0.25 0.05

2) convolve the original image /e gize N) with Ge producing a Gaussia¡-fi.ltered

output 1¡¡, (size N) (ZP = lowpass).

3) resample 1¿p, with sample reduction facto¡ 2.

4) convolve this result with G6 producing Ia,, (size Nl2).

5) resample l¡'"with sample reduction facto¡ 2.

6) convolve this result with G¡ producing I¡¡,, (size N l4).

and repeat.

- 18-

The hiera¡chically-generated Gaussian-filtered outputs lur- Ip, correspond to

convolving the original image directly with equivalent Gaussian functions G t - Gn.

That is, three convolutions using the Caussian function G6 and appropriate resampling

produces the ouçut /¡¿r. However, the original image could have been convolved

with a¡ equivalent Gaussian function G2, producing the identical output 1¡o3. The

equivalent Gaussian functions are shown in Figure 4. Each function in the hierarchy

has a standard deviation twice that of its predecessor. Each resultant Gaussian-filtered

copy of the image therefore has a band limit one octave lower than its predecessor.

sample rate reduction in the hierarchy is in proportion to the band limit reduction, and

remains above the Nyquist rate; thus no information is lost in the subsequent mul-

ti¡esolution representation,

Figure 4: Equivalent Gaussian functions

The dimensional separability of the Gaussian function enables simple expansion

of the process to two dimensions. Convolution is performed horizontally, row by row,

and then vertically, column by column, at each level in the hierarchy. The convolution

at each level is interleaved with resampling which consists of selecting every second

-19-

pixel per row and every second row in the image frame thus reducing the image size

by a factor of two in both dimensions. The resultant data flow graph (Figure 3) shows

the generation of both a lowpass (Gaussian) filtered multiresolution representation and

a bandpass (Difference of Caussian) filtered multiresolution representation.

2.4. Computationat Cost and Complexity

The computational cost of the above convolver design is determined for the most

part by the number of multiply and addition operations required, the I/O requirements,

and the memory or storage requirements. For compute-bound problems such as con-

volution, systolic arrays have considerable computational cost advantages ove¡ FFT

implementations in regard to VO and memory requirements (see Sec. 2.1 and 2.2). The

number of multiply and addition operations required by an FFT implementation is

independent of convolution window size and is fixed for each size-scaled copy

required. The total requirements are N2 + 2N2log2N multiplies and 4N2logrN addi-

tions fo¡ an Nx N image. In a hie¡archical systolic implementation as described

above, the computational cost is determined by the number of steps needed to compute

the equivalent convolution; the number of levels in the hierarchy. However, in most

applications, all levels of the multiresolution representation are needed. Thus, since all

levels a¡e being generated there is a fixed cost per level. Furthermore, exploiting the

symmetry of the sampled Gaussiul function coefficients, the process requires three

multiplies and four additions per pixel per level. Assuming an N x N image the total

requi-rements a¡e 3N2 multiplies and 4N2 add.itions. Depending on image size N, a

hie¡archical systolic implementation requires one or two orders of magnitude fewer

computational operations than convolution in the frequency domain using the FFT.

Computational complexity is determined in part by the number of bits used to

represent the data, the coefficients, and the partial results. In a two-dimensional

-20-

systolic a-ûay the number of bits required to represent the partial results increases at

each computational element through which the result passes. Large word size is there-

fore required for large convolutions. Alternatively, the number of bits allocated to

each computational element determines the size of the convolution which ca¡ be com-

puted. A hiera¡chical implementation enables large convolutions to be broken into

smaller convolutions in a divide-and-conquer scheme. As a result the number of bits

needed in a¡ithemetic operations is independent of convolution size. Funhermore, the

one-dimensional width-S convolution used has normalized coefficients, ie.

0.05 + 0.25 + 0.40 + 0.25 + 0.05 = 1.0 The¡efo¡e each result is represented by the

same number of bits as the original data. Pa¡tial results require a maximum of twelve

bits to retain accuracy (see Sec. 2.5).

2.5. Systolic Convolver Design

Implementation of the dimensionally-separable hierarchical convolution algorithm

using systolic convolvers results in the data flow diagram shown in Figure 5. The data

ffow diagram, in its entirety, represenrs the Gs(.r, y) (Figure 3) convolver block used

for implementation of_the Gaussian filters. The one-dimensional systolic convolvers

Go(x) and Gsþ), implement the horizontal and ve¡tical convolutions respecrively.

These convolvers are identical aside from the fact that pixels are shifted serially

through Gg(x), one new pixel per clock cycle, whereas five new pixels are shifted in

parallel into Gsþ) on each clock cycle. This is due to the fact that the image data is

being transmitted row by row as opposed to column by column. Henceforth, the term

Ge will rcfer to both co(r) and Gsþ).

The row by rolv transmission of the image data necessitates the need for the shift

register buffers shown to allow the convolution window to overlay the proper region of

the image. The size of the shift register is dependent on the convolver size and the

Iu,Q'y)

F¡gur€ 5: Data flow diagram of the systolic convolution imptementat¡on of the
dim€nsionally-separable hierarchical convolution algor¡fhm,

image row length. The systolic convolver, G0, contains five computational elements

corresponding to the five Gaussian funcrion coefficients, 0.05 0.25 0.4 0.25 0.05.

For an image row lengrh of N, the required shift register length is N - 5. Due to the

resampling, N decreases by a factor of two at each level in the hierarchy; thus the

shift register length is halved at each level.

The systolic convolver, G6(-r), uses a fan-in design as shown in Figure 6. The

weighting coefficients a¡e fixed to their particular computational elements. During a

cycle, all r¡'s move one cell to the right, multiplications are performed at all cells

simultaneously, and their results are fanned-in and summed using an adder to form a

new y¡. Essentially, the convolver performs a sum of products operation. The systolic

convolver, Geþ), requires a modification to this design due ro the fact that the inputs,

x¡, are shifted in parallel into the computational elements. The modifications imply the

following design (Figure 7).

The number of multiplien ca¡ be reduced by exploiting rhe symmetry of the

Gaussian function. ln panicular, this is achieved by grouping the equivaìent Gs

Iu,,r(t
' Y)

-22-

Figure 6: S¡'stolic convolufion array where w¡'s are fixed, .ri,s move systolically, and
¡'s are formed as a sum of products via the fan-in adder.

Vr

Figure 7! Systolic convolution arrây sholying the para el input modificâfion to the
G¡(y) convolver necessitåted by the row by row fransmission of image data.

weighting coefficients. This process can be expressed in the following manner. G0

contains the weighting coefficients 0.05 0.25 0.4 0.25 0.05. The convolurion win-

dow, at any one instant, will contain frve pixels which we label 4 å c d e .

Mathematically, the convolution can be expressed as follo\¡/s

0.05 x¿ +0.25 x b +0.4xc +0.25 xd +0.05 x¿ (2.6)

Grouping coefficients gives

0.05 (a + e) + 0.25 (b + d) + 0.4 (c).

FAN-¡N AOOEB

-23-

(2.7)

The grouping of coefficiens requires two additions. Pixel a must be added to pixel e,

and pixel å must be added to pixel d leaving a nine-bit result from both additions. At

the expense of two eight-bit additions, the required numbe¡ of multiplications is

reduced ftom five to three. 0.05 must be multiplied with the nine-bit result of (a+ e),

0.25 must be multiplied with the nine-bit result of (b+ d), and 0.4 must be multiplied

with the eight-bit rcpresentation of c .

Since the values of the weighting coefficients are fixed and unchanging, the

fixed-precision multiplications can be implemented by combinations of binary shift and

add operations. Shift and add implementations of fixed-precision multiplications can

be mechanized in much smaller silicon area and can also be made considerably faster

since multipliers are typically both slow and expensive in area. A parallel multiplier

available in the Manitoba CMOS standa¡d cell library [15] requkes 1.5 x 106 ¡tnz ar:ea

(3W double metal CMOS) and approximately 500 nanoseconds to perform a single

ten-bit by ten-bit multiplication.

A simple method of applying the binary shift and add operations to implement

the multiplications is to scale the 0.05 weighting coefficient to unity giving

1

*-t(a + e) + 5(b + d) + 8cl (2.8)
¿U

The weighting coefflcients are now represented by the small whole numbers i, S, *¿
8. Multiplication by one is trivial requiring no operation. Multiplication by 8 is

implemented by three shifts left which also requires no operation. Finally, multiplica-

tion by 5 is implemented by shifting twice left and adding the original which requires

a single eleven-bit addition. Thus, a single eleven-bit adde¡ suffrces to implement all

three multiplications. The resultant three products are then added in the fan-in adder

of Figure 6. The fan-in adder may be implemented with an eleven-bit adde¡ and a

twelve-bit adder. Due to the 0.05 scaling factor, the ouçut of the fa¡-in adde¡ must be

-24-

divided by 20 in order to retain an eight bit per pixel representarion of the image data.

Once again this fixed-precision multiplication can be implemented with a series of

binary shift and add operations if some small error is allowed. The division by 20 is

approximated by (r/16 - x /64) + (x/162 - x/(16 x 64)) = 5lxtl024 whe¡e ¡ is the

ouçut of the fan-in adder. The error can be calculated as

(2.9)

The eno¡ in fact represents a scale factor of 0.996, identical for each pixel. The scale

factor will not cause overflow since it is less than unity ald therefore will be inconse-

quential.

The divide-by-20 process is physically implemented with two additions by sub-

tracting r shifted six places to the right from.r shifted four places to the right. The

¡esult is then shifted four places to the right and added to itself. The use of two's

complement arithmetic reduces addition and subtraction to a single operation. The

divide-by-2O process therefore requires a ten-bit adde¡ a¡d a nine-bit adder. The resul-

tant systolic convolver, G6, can be represented in block diagram form as shown in Fig-

ure 8.

As indicated in Figure 8, seven adders a¡e required to implement the systolic con-

volver, Gs. Adders 1 and 2 ue eight-bit adden generating nine-bit results and are

used to group the coefficients a and e, and å and d respectively. Adder 3 combines

the result of adder ,l (nine bits) with 8 times pixel c (eleven bits) requiring an eleven-

bit adder. Adder 4 implements a multiplication by 5, adding 2 times the result of

adder 2 to itself thus requiring an eleven-bit adder. Adder i combines the twelve-bit

results of adders 3 and 4 and thus a twelve-bit adder is needed. Adders ó and Z

implement the divide-by-2O operation and are ten- and nine-bit adders respecrively.

simplification is possible where the inputs are hardwi¡ed to one or zero (ie. use of half

ryxToova=o. vo

-25-

Figure Et Block diagram of th€ Go systolic convolv€r.

adders is possible). The sequence in which the additions have been implemented

enables adders I nd 2 and adders 3 and 4 to ope¡ate concurrently in addition to the

already highly cascaded nature of the circuil

Due to the fact that the Gs weighting coefficients are constant, thus enabling the

implementation of the algorithm in seven additions, the physical dimensions of the sili-

con implementation will be considerably smaller than a straighÉorward implementation

using muldpliers. since the building block for a parallel multiplier is a full adder cell,

a single eight-by-eight multiplier requires 64 full-adder cells. The multiplier imple-

mentation requires roughly three such multipliers as well as four parallel adders to

group coefficients and sum the final result. The seven adder solution requires silicon

area roughly the size of a single eight-by-eight multiplier. Except for the 0.996 scale

factor, the solutions are identical.

-26-

Due to the cascaded nature of the layout the data exhibits a sequentiâl flow

through the ci¡cuit. If the layout is depicted as in Figure 8, the flow is from top to

bottom. Since this flow of data is sequential it is possible ro incorporate further pipe-

lining in the ci¡cuit. A ten-bit storage register placed after adder 5 reduces the com-

putation, and thus the computation time of each block in the pipeline, allowing a faster

clock rate to be used. The faster clock rate is achieved at the expense of a greater

latency associated with the systolic convolver. However, when large amounts of data

a¡e to be processed identically as in this problem instance (and for all systolic con-

volvers), the benefit of a faster clock rate fa¡ exceeds the additional cost in latency.

CHAPTER 3

Design of Adders, Storage Elements,
and Multiplexers

The preceding chapter illustrated the design of a systolic convolver with low

component count and high throughput. The major computational components used in

the G6 systolic convolver are adders and storage elements. This chapter discusses and

conrasts the varying adder schemes available, describes the design of choice, and

explains its operation. The chapter then continues with the design of the storage ele-

ments used and an explanation of their operation. The final section discusses the

manner in which data is multiplexed into and out of the chip. Multiplexing of data is

necessary due to the limited vo of rhe pad frame. Each cell design is a full custom

design built specifically for use in the systolic convolver.

3,1. Ripple Carry Adders

The Gg systolic convolver requires seven adders which vary from eight-bit to

twelve-bit additions. Addition of two multi-bit binary numbers may be implemented

either in serial o¡ in parallel. The serial merhod uses a single full adder to generate

the sum and carry ouçuts from corresponding bits in the addend and augend. The

carry is required to be stored after each bit-addition and depending on the implementa-

tion it may be required to supply registers for the addend, augend, and sum. The

resultant silicon area required by the storage elements reduces the area advantage of

the serial method. Funhermore, because of the sequential natu¡e of the addition, a

-28-

serial adder is slow. since the rate at which data is clocked through the convolver.is

determined by the speed of operation of the adder, se¡ial adders were considered to be

too slow to meet the throughput rate requirements of the convolver.

Parallel addition requires one full adder for each pair of corresponding bits in the

addend and augend. All sums are computed simultaneously since all full adders

operate in parallel. This concu¡rency enables parallel addition to be faste¡ than serial.

There are a number of options in terms of the type of parallel adde¡ that can be imple-

mented. The choices available include ripple carry adders, lookahead carry adder.s,

and encoded addition adder schemes. Lookahead carry adders and encoded addition

adder schemes are typically faster than ripple carry adders; however, any encoded

adder scheme or lookahead carry adder requires considerablely more area to implement

in silicon than does a ripple carry adder. A comparison between ripple carry adders

and carry lookahead adders follows.

For the present problem, ripple carry adders have two advantages over carry loo_

kahead adders. The fust is ¡educed area. Ripple carry adders ¡equire approximately

307o of the silicon area of carry lookahead adders. The second advantage is more sub-

tle and is a result of the cascaded layout of the convolver. Depending on the word-

length of the parallel adders and the cascade depth in the layout, cascaded ripple cany

adders can in some cases be faster than carry lookahead parallel adders. The timing

sequence of a cascaded ripple carry adder is contrasted with that of lookahead carry

adders in Figure 9.

Associated with each full adder is a computation time T conesponding to the time

between presentation of augend, addend, and carry-in and generation of the sum and

carry-out. since the full adder corresponding to the Ls bit in the second bank of

adders is presented with augend, addend, and carry-in T seconds after the full adder

coresponding to the LS bit in the fust bank, there is only a single T second delay

-29-

4.8IT CARRY

LOOI(AHEAI} AOOEF

Tr

4-8IÌ CAEnY

LOOKAHEAO AOOER

2T'

4-8IT CARRY

LOOKAHEAO AOOEN

31,

(b)

Figure 9: Timing sequence of (a) a cascaded ripple cårry sdder (F.A. = full adder) and
O) a lookahead caûy adder.

between their respective outputs. This is true for all corresponding full adders in the

two ba¡-ks and thus there is only a T second delay between adder banks in a cascaded

layout. The total computation rime of a cascaded layout is Ct = I(b + d - l), where

I is the computation time of a single full adder, å is the number of adder banks, and

d is the number of bits per adder bank. The compuration time T, of a single full adder

is determined by the charging (or discharging) time on the carry propagate parh which

consists of a metal wire, a ransmission gate, and two inverters. For the full adder

used in this design, T = 6 nsec (see sec. 3.1.1). In contrasr, carry lookahead circuits

typically calculate propagate and generate signals for each correspond.ing bit in the

addend and augend and use these signals to generate the input carrys four bits at a

time. The circuit will then use a ripple carry f¡om four-bit bank to four-bit bank. The

computation time, Tu per four-bit bank is determined by the propagation of the input

signals through the circuiu-y shown in Figure 10. Adding the indicated computarion

times associated with each gate along the critical path determined the required compu-

tation time trt = 20 nsec . Thus, t /t = 2016. For d = 4, the cascaded ripple carry lay-

out will require less computation time when

Î(b +3)<trLxb

t.xb
b +3< '

't,

(xL/1L-t)b >3

.31b> - - " = 9t7
Îrlr-l 2016-1

or the number of adde¡ banks is greater than or equal to 2.

Figure l0: Logíc diagram of a carry lookahead circuit.

(3. i)

-31-

3.1,1. Full Adder Design

Fo¡ this problem instance, the b€st adder layout in terms of cost and performance

is the cascaded ripple carry adder. For a ripple carry adder, the performance is deter-

mined by the propagation of the carry signal as it rípples through the carry chain. The

critical path is the carry chain and this path musr be optimized to obtain rhe best per-

formance. The following design of a full adder cell optimizes the carry chain of a rip-

ple carry adder. Optimization reduces the carry chain to a single transmission gate

with associated wiring at each full adder stage. The truth table of a full adder is

shown below.

Table 1: Full adder truth table,

At each full adder stage i in the carry chain, the inputs A, and B¡ will determine

whethe¡ the carry-in, C¡_¡, will propagate on to the next stage o¡ if a new carry-out,

C¡, will be generated. As can be seen f¡om the truth table, if A¡ EXOR B¡ is true,

then C¡ = C¡_r md the carry-in can p¡opagate th¡u the i,¡ stage. lî A¡ EXOR B¡ is

false a new carry-out, C¡ must be generated. If Ai EXOR B¡ is false then

A¡ = B, = C¡ (see Table 1). Generation of C¡ is simply a matter of feeding either ,4¡

or .Bi to C¡ and propagation is a matter of feeding C¡_, to C¡. The sum, S¡ is gen-

erated as A¡ EXOR Bi EXOR C¡_r. The resultant full adder logic circuit is shown in

Figure 11.

Al Br C¡- Sr CI

0

0
0

0

I
I
I
1

0
0
I
I
0
0
I
I

0
I
0
I
0
I
0
t

0

I
I
0
1

0

0

1

0
0
0

I
0
1

I
I

-32-

Figure 11: Logic circu¡t of a full ¡dder sfage with optimized carry chain and buffered VO.

Once the inputs A¡ and B¡ arrive, each stage computes whether to propagate C¡_,

or A¡ as the carry-out and sets the transmission gates appropriately. Since this ca¡ be

computed in parallel at each stage in the adder bank, the worst case add will occu¡

when the carry-out from the LS bit full adder must propagare rhrough rhe enrire carry

chain. This requires the signal to propagate through one transmission gate per stage

and the associated wiring on the carry chain. The RC component associated with the

carry chain will necessitate the use of repeate¡s or d¡ivers at every third or fourth

adder stage. The drivers are necessary since the RC time constant or, equivalently, the

charge and discharge time of the carry chain limits rhe speed wirh which the carry sig-

nal propagates through the carry chain. Due to the lack of modularity inuoduced by

using drivers in this manner, a simple buffer is used on the carry chain at every stage

rather than employing drivers at every third or fourth stage. This enables the full

adder søges to be linted together without regard for the loading on the carry chain.

Furthermore, since the adder banks are cascaded in this design, such that the sum of

one adde¡ bank becomes the input to a following adder bank, it is advantageous to

keep the carry propagation time through each full adder stage equivalent. Use of

-33-

drivers at every third or founh adder stage will cause unequal carry propagation times

through the stages. To avoid delays, the conesponding drivers in each bank must be

vertically aligned throughout the overall cascaded circuit. This is impossible in this

layout and therefore input buffering on the ca¡ry chain is used at each full adder stage.

A criteria in the design of the full adder is to enable its use in a modular fashion when

building the varying length adder banks. This requires appropriate buffering of inputs

and outputs. since the sum of one adder bank becomes the input to a following adder

bank, the sum oulput of each full adder is driven with a double-sized inverter. The

driver enables the input load of the following full adder stage to be charged or

discharged in a reasonable amount of time. The resulunt layout of the ripple carry

full adder used is shown in Figure 12.

The layout is a full custom design requiring 156 ¡ttn by 95 ¡rrn using 3 ¡rrz dou-

ble layer metal cMos technology. The circuit requires 24 transistors with the ouÞur

sum being driven by a double-sized invefer. The power bus (gnd and vdd) runs in

parallel along the bottom of the layout. This enables the full adder stages to be linked

together in a row to form the adder banks without requiring an extra power bus to be

run to each adder bank. All VO ports in the layout are exported with a via (metaJ-l to

metal-2 contact) and no metal-2 wiring is used in rhe layour. This enables inrerceil

wiring using the metal-2 layer and atlows the wi¡es ro be run over the top of the full

adder stages greatly reducing the wiring complexity and the wiring area.

3.1.2. Half Adder Design

HaIf adders can be used when either the carry-in, the addend bit, or the augend

bit input to a stage is always ze¡o. A half adde¡ the¡efo¡e has only nro inputs, rn g and

ínr The sum a¡d carry-out are computed as SUM = ino EXOR int and

Co* = insAND iny Figure 13(a) shows rhe logic circuit of the half adder. The

-34-

mffi¡ MErá¿

Èii.i:,i'i,i. ¿o¿v

m DI¡.rusloN

Figure 12: CMOS lâyout of a full adder ce .

AND gate is implemented with a NAND and an inverter. The EXOR gate is imple-

mented with an EXNoR and an inverter. use of the inverters enable the ouçuts to be

properly buffered. In panicular, the sum oulput inverter is double-sized for reasons

explained above. Figure 13(b) shows the silicon layout which is a full custom design

requiring 89 ¡rrn by 94 ¡r.rn using 3 prn double layer metal CMOS technology. The

layout requires 14 transisto¡s and in a similar way to the full adder layout, the power

bus runs along the bottom of the layout and all VO ports are exported with a metal

via. No metal-2 layer wiring is used.

-35-

lñ6 bl

-----lll_r-u
l, ltlÏY
YY

Qst

(a) (b)
Figure 13: (a) Half adder Iogic circuif and (b) CMOS tayoul

3.1.3. Half Subtractor Design

Half subtractors are used when either the carry-in, the subtrahend bit, or the

minuend bit input to a stage is always one. A half subtractor therefore has only two

inputs, ln 6 and iz ¡. The sum and carry-out are computed as SUM = l, o E"rrcR l, ,

arld Cou, = ino OR rz ¡. Figure 14(a) shows the logic circuit of the half subrractor.

The OR gate is implemented r ith a NOR and an inverter. The sum output is gen-

e¡ated with an EXOR gate and a double-sized inverre¡ for driving downline devices.

Figure 14(b) shows the silicon layout which is a full custom design requiring 104 ¡uz

by 86 ¡trn using 3 prn double-layer meral CMOS rechnology. The layout requires 14

Ea¡sisto¡s and as \ryith previous layouts the power bus runs along the bottom of the

layout and all VO ports are exponed with a metal via. No metal-2 layer wiring is used

within the cell.

-36-

J¡o f¡¡

----]-_]

ITHIYVVTT
crq

(a) (b)
Figure 14: (a) Hâlf subfractor Iogic circuit and O) CMOS layout.

Figure 15: CMOS layout of lhe c¡rry-out driver.

3.1.4. Carry-out Driver Design

The carry-out of each full adde¡ srage is designed considering the optimization of

the carry chain and is unbuffered. The MS bit carry-out fiom an adder bank therefore

will be unbuffered. Since this carry-out will, in some situarions, be required to drive

downline devices, it is necessary to use a driver to enable the drive capability of the

carry-out to match the load requirements. The silicon layout is shown in Figure 15.

-37-

The driver is essentially two inverters cascaded with the second inverter being double-

sized to increase its drive capability. The layout requires 47 ¡tm by g3 ¡ttn ín 3 ¡tm

double-layer metal CMOS technology.

3.1.5, Adder Bank Design

As indicated in section 2.5, the G¡ systolic convolver requires six adder banks

and one subtractor bank. A funher eight-bit subtractor bank is required to implement

the differencing of images to produce the bandpass representation. All adder and sub-

tractor'banks a¡e built primarily with the full adder cell, however in some instances the

carry-in, augend, or addend is required to be ha¡dwired to one or zero. In these cases

use of half adders, half subtracto¡s, or simple wires replace the full adder cell and

require less silicon a¡ea to implement. As indicated above, all adder cells have been

designed to be linked together in a row to form the adder banks. The carry chain is

wired using the metal-2 layer and is run over the adder stages thereby keeping its RC

component to a minimum. The requirements and design of each adder a¡d subtractor

bank is explained in this section. Reference is made to Figure 8 to identify each adde¡

bank uniquely.

Adder banks 1 and 2 (Figure 8) are used to exploit the symmetry of the low-pass

filter coefficients. Both are eight-bit adders and are identical. Representing the five

image elements in the convolver as ¿ b c d e, adder bank 1 is required to add

A7 a6 A5 a4 a3 a2 41 ag lo e7 e6 eS e4 ê3 e2 et eO, where a1 . . . aO

and e7 .. ' eg âre the eight-bit representations of image elements a and e respec-

tively. Adder ba¡k 2 is required to add å7 ... ås ro dt ... do. No single bit of

any of the image elements is known a priori and thus the only simplification which can

be made is the use of a half adder for the LS stage. Since the carry-out is required to

drive a down-line adder stage it is driven using a carry-out driver. The resultant adde¡

-38-

bank is shown in Figure 16(a). The silicon layout requires 1114 W by 95 ¡un,

Adder bank 3 adds the output of adder bank 1 with eight times image elemenr c .

The required addition is

0 0 ls 1.r 1o ls l¡ l¡ lz lr l¡ addend

3¡ 3lo 3s 3s 31 36 3s 34 3¡ 32 31 3o t
32 to 3q are equivalent to 12 to 1¡ respectively and therefore the full adders in these

stages are replaced with wi¡es. The ca¡ry-out of the 3rd stage is 0 and the fourth

stage can thus be implemented with a half adder. The two MS bits of the addend a¡e

zero, however the carry-out of the previous stage is not k¡own a priori and half adders

are therefore requi¡ed for the two MS stages. Once again a carry-out driver is used

after the MS stage. Adder bank 3 is shown in Figure 16 (b). The silicon layout of

adder ba¡k 3 requires 989 ¡ttn by 95 ¡tn .

The fou¡th adder bank generates five times the output of adder bank 2. This is

accomplished as follows.

0 0 2E h 4 2s 24 % % 2t 2¡ addend
* 2e 2¡ 2a 2s 2¿ 2z 2t \ 2¡ 0 0 augend

4rr 4rc 4s 48 h 46 45 44 43 42 4t 40

Since bits 4t and 46 a¡e equivalent to 2, and 2s respectively, the full adders in these

stages are replaced with wi¡es. The cârry-out of the second stage is zero and the third

stage is implemenred with a half adder. As wirh adder bank 3, the two MS stages are

implemented with half adders and the carry-out is d¡iven. Adder ba¡k 4 is shown in

Figure l6(c). Its silicon layout requires 1136 W by 95 ¡tm.

-39-

IJJ

(Ð

Figure 16: Adder bânk layouts. F.A. = full adderr H.A. = hatf adder, H,S. = half sub.
tr8ctor, C.D. = carry.out dr¡v€r

The fifth adder bank adds the ourputs of adders 3 a¡d 4 as follows.

3¡ 3ro 3s 3s 37 36 35 34 33 32 31 3o addend
* 4¡t 4o 4o 4e 4t 4t, 4< 4¿ 4t 4,¡ 4t 4o aupend,

5n 5rr 5ro 5s 51 57 56 5s 5¿ 5¡ 52 51 5o

The LS stage is implemented with a half adder and all other srages ¡equire full aclders.

The carry-out is driven with an ouçut carry driver giving the configuration for adder 5

shown in Figure 16(d). Adder bank 5 requires 1596 ¡tm by 95 ¡un for its silicon lay-

out.

Adder bank six implements the fust srage of the divide-by-20 process, which is

xlL6 - x164 (where.x is the ouçut of adder 5). This process constitutes a subtraction.

The subtraction is implemented using 2's complement arithmetic which requires adding

the minuend to the I's complement of the subtrahend and using a carry-in of one on

the LS stage of the adde¡. The I's complement of the subtrahend is generated by

inverting each bit of the subtrahend. Inverted values of the subtrahend a¡e available

f¡om the storage cell which is positioned in the circuit immediately upline from adder

6 (Figure 8). The subtraction unit rherefore requires only a full adder for each srage.

The subraction may be depicted as follows.

I carry-in

5n 5¡ 5ro 5e 5s 57 56 55 5a . 53 52 51 5o 0 0 minuend

+ 1 I 5u 5" 5,. 5, I s, t.l t t , t 5^ suhtahend

The carry-in of one is indicated over rhe LS stage and the decimal points indicate rhe

shift right processes used ro implemenr rhe divide-by-16 and divide-by-64. The six

f¡actional decimal places shown would require excessive silicon area to implement as

well as requidng extra time during execution. The five Ls stages of the addition a¡e

therefore omitted and the following process is implemented:

-41-

carry-in

minuend

I

565554.53
rs'tr

5e 56 57

5"s-r
5lo

:-)rr
5r:

I

5n

+1
66656aq61616.6_1

omission of the five LS stages means the ouÞut will be gteater by an additive factor

of b€tween 0.0 and 0.5. Since the divide-by-2O process implemented here involves a

scale factor of 0.996, the additive factor will result in a more accurate result and is

therefo¡e beneficial not only as an area and time saving but also to increase accuracy.

A larger additive factor cannot be used since it would tlren be impossible to obtain a

zero oufput.

ln 2's complement subtraction a¡ output carry of one indicates a positive result.

As shown, the output carry is always high since the result is always posiúve

(x /16 - x 164 is always posirive for positive ¡). The sum out from the MS stage is

shown as zero. It is always zero since the output of the subtractor can be no la¡ger

than 239 which requires only eight bits for a binary representation. A maximum of

239 is due to the facr that the largest ouçut from adder 5 is 5100 since

5100 = 20 x 255, where 20 is the initial scale facto¡ and 255 is the largest pixel value

possible for an eight-bit represenrarion. Finally, 239 = 5100/16 - 5100/64. Since the

oulput carry and the sum out of the MS stage are known a priori, no hardware is

necessary for the MS stage. The sixth adder ba¡k therefore requires a half subtractor

for the LS stage, seven full adders, and a half subrractor to generate Ç. Adder bank

six is implemented as shown in Figure 16(e). The silicon layout of adde¡ ba¡k six

requires 1224 ¡rn by 95 ¡tm.

The seventh adder ba¡k implements the second stage of the divide-by-20 process

and accomplishes the following:

61

q66656463
+000067

I
62616,6_r
û656463

cqfry-in
minuend

augend

Gt, Gto Gis G,, Gil Gt, G,, Gío

The eight-bit result shown represents the oulput of the G0 convolver. The carry-out is

always zero since 239 +239/16 < 256. An LS stage input carry of l is used to

round-up the ouçut rather than truncate since the fraction can no longer be ca¡ried.

No sum output is required from the LS stage and the carry-out is generated as 6_, OR

Q by using a simple OR gate. Srages two through five require full adders and stages

six through nine a¡e implemented with half adders. The configuration of adder bank 7

is shown in Figure 16(Ð. Its silicon layout requires 971 ¡tn by 95 ¡trn.

One final subtractor unit is necessary. An eight-bit subtractor is required to take

the difference of consecutive lowpass filtered results, thus producing a bandpass

filtered output. An adder bank subracts rhe output of the G¡(r, y) sysrolic convolve¡

from the ouçut of the previous stage, G¡_1(r,)). The output of the subtractor can be

either positive or negative and is represented with nine bits in 2's complement form

whe¡e the carry-out indicates whether the result is positive or negative. It therefore

becomes necessary to change the representation to sign-magnitude form using eight

bits to represent the magnirude and an additional bit to indicate the sign. Two cond.i-

tions exist; (l) the carry-out of the adder bank is high, or (2) it is low. If the carry-out

is high, the ¡esult is positive and in the correct sign-magnitude form. If the carry-out

is low, the result is negative and in 2's complemenr form. Condition (2) requires the

2's complement of the ouryut to be taken. This is accomplished by inverting the eight

magnitude bits and incrementing once, leaving the result in sign-magnitude form.

There a¡e now two ¡esults in sign-magnitude form; (1) the ouÞut of the adder, and (2)

its 2's complemenr. If the carry-out is high the fust result is selected and if the carry-

43-

out is low the second result is selected. This is accomplished by using the carry out as

the select line to seven 2-1 multiplexers, one for each conesponding pair of bits of the

two results. The LS stage output of the 2's complement is always 56 and therefore no

multiplexer is required. The operation of the subtractor unit may be summa¡ized as

follows.

stage I

G¡-tt G¡-lc Gi-ts

+Ç%%
Gi-r¡ G¡-ts G,-r" G¡-tt

"\%%".

1 carry-in

G¡-lo minu¿nd

% subtrahend

carry-in

I inverted

s1s2S3S¿S5s6S7S3

I

s.Ç&s.srsls.&sl4ge2

si ,S o 2's complement

stage3 If 53 is high select the srag¿ I output else select the rrdg¿2 result.

stage 1 of the subtractor unit is implemented using a half subtractor for the Ls stage

and full adden fo¡ the remaining stages. The invened bit values of the subtrahend a¡e

available f¡om the ouçut of the G¡(x,y) convolver and therefore inverters are not

required. stage 2 is implemented using an inverter at each stage as well as seven half

adders for stages one through seven. Stage 3 uses the carry-out of stage 1 (56) as the

select line to seven 2-1 multiplexers enabling the selection of the correct result. The

subtractor unit is physically implemented as shown in Figure 17. The silicon layout of

the subtractor unit requires 1508 prn by 353 ¡ttn.

sisäsisis'6si

44-

'l'^ F.A F.A- F.A. F.A FÂ F,A H,S

fl
\,

H.
^.

I

inv.
I

i,

\t,
x. ¡. I

rnv.
I

I
\t

r,.^ I

J:J
I +

j4
t{.À. I

inv .
I

ï

\,
n.^. Ir ¡nv.

2-l
hux

2-l
¡1U¡

2-t
lìux

2-l
Itrllx

2-'
ñux

2-l
t¡ut

Figure 17: Subtractor unit layout

3.2. Flip-Flop Design

Each computational element in a systolic array requires some form of storage to

hold inputs, weighting coefficients, and partial results as the data percolates through

the array. A fan-in adder systolic array, however, eliminates the need for storage of

panial rcsults since, at each time step in the computation, all panial results are

summed and the resultant sum exits from the one-dimensional systolic convolver. No

storage is necessa¡y for weighting coefficients since all weighting coefficients are

hardwi¡ed in the design. Therefore, each computational element requires storage to

hold a single input element. Each image pixel is represented by eight bits requiring

eight bits of storage at each computational element. Because the input data percolates

through the array, the data must be shifted from each computational element to the

next on each clock cycle. Storage elements holding corresponding bits in each compu-

tational element a¡e linked together forming shift registers to enable the data to per-

colate through the array. An edge-triggered D+ype flip-flop (Figure 18(a)) is used as

the basic storage elemenr since, when linked together, D-type flip-flops become the

basic delay ci¡cuit for a shift register.

-45-

(a)

g
-t'

Èt+

j'+$¡ilti$Èqi*t\,'i l'slr#l it**ilillH
ïl.jì"r,.:ii!:"r:ij::l Èælr'*:l:il

*iT iiE1 #.H,]i'i

ffi :,iiffi ,r:iHg rt :riäiliì

(b)
Figure 18: D.type flip-flop (a) logic diagram and (b) CMOS tayout

A potential problem with D+ype flip-flops is that a clock race condition exists

when Q is high and S overlaps it due to skew (Q and S are nonoverlapping clock

phases). If this occu¡s the D input and feedback signal will.¡lglir to determine the new

value on the input latch. Skew between the clock phases must be eliminated by ensur-

ing the RC time consta¡t of the Q and S phases is balanced. This is accomplished, in

part, by balancing the loads of the Q and þ phases of the silicon layout of the D-t)?e

46-

flip-flop. Figure 18(b) shows that the polysilicon wi¡es a¡d gates associated with the

clock phases have equal RC components. The length of these polysilicon wi¡es has

been kept as short as possible to reduce the loading on the clock drivers. Furthermore,

the clock phases are run in a parallel bus along the top of the flip-flop in the metal-l

layer using 6 ¡ua width wires, enabling the flip-flop to be linked in a row to form

multi-bit storage cells.

The silicon layout is a full custom design requiring 139 yn by 79 ¡rrn using

3 p-n doubleJayer metal CMOS technology. The circuit requires 16 transistors as

shown. The power bus runs along the bottom of the layout enabling the flip-flops to

be linked in a row to form multi-bit storage cells without requiring an extra power bus

to n¡n to each storage cell bank. All VO ports in the layout are expo¡ted with a metal

via and no metal-2 layer wiring is used in the layout enabling inter-cell wiring using

the metal-2 layer.

3.3. Multiplexer Design

Multiplexing of the vo dan is required due ro rhe vo limitations of the available

pad frame within which the design is fabricated. The limited number of pads requires

two VO data bits to be multiplexed through each pad on every clock period. Input

data is latched in using D-latches and output data is multiplexed out using 2-l multi-

plexers. The D-latch requires 0 and 0 clock phases and the 2-l multiplexer requires

select and srl¿r¡ lines. using ttre 0 and Þ phases as the multiplexer select lines

enables the Vo data to be multiplexed in and out of the design without the need for

further clock phases.

The input data is latched in as shown in Figure l9(a). When Q is high the LS bit

(of the two bits to be multiplexed into this input) is available on the input line and is

consequently latched into the D-latch. The flip-flop inputs are not on. When Q goes

low the MS bit becomes available on the input line. The D-latch is latched and is no

longer reading the input line. Both flip-flops a¡e now reading their inputs. The flip-

flop associated with the MS bit latches the data on the input line and the flip-flop asso-

ciated with the LS bit latches the data held at the ourpur of the Dlatch. The LS and

MS bits associated with the input line a¡e held at the outputs of the two flip-flops for a

full clock period and are therefore available to the down-line logic for the full clock

period. The silicon layout of the input multiplexing circuitry is shown in Figure 20(a).

The layout consists of two flip-flops and a D-latch whe¡e the D-latch is essentially half

a flip-flop. The entire layout requires 340 ¡tn by 79 ¡tn in 3 prz double-metal

CMOS technology.

Output data is multiplexed as shown in Figure 19þ). Two flip-ffops hold the LS

and MS bits (associated with the parricular output line) at theh ourputs for a full clock

period. The outputs a¡e fed to rhe input of a 2- 1 multiplexer. When Q is high the

multiplexer selects the LS bit making it available on the ouçut line and when Q is low

the MS bit is selected. The silicon layout of the ouçut multiplexing circuitry is shown

in Figure 20(b). The layout consists of two ffip-flops and a 2-l multiplexer requiring a

tota-l of 350 ¡tn by 79 ¡tm in 3 prn double-metal CMOS technology.

AA

Msbit ubir
lt\l/ v

I ee l**l FF I

j
output

ø-l__[L_f-L
FF'! dlr¡ h€ld ¡r
tlld mux irìpu!

3.l.cB ¡!l.cl!
tsbìr Msbir

inpul

.rù
I I l,Ì'l t I

JJ

øJ-LTL|
dùr FF,¡ drt! tEtd ¡trcrd! ltld c¡rcüir ¡nput!

(â) O)
Figure 19: Circuitry nec€ssary for (a) input mult¡plexing and (b) output multiplexing

(a)

(b)
Figure 201 CMOS lâyout of (a) input multiplexer and (b) oufput multiplexer

ff;H,,'ïHfi
1,4ã..',tÞç ç'.¡¡æ.
æ'ìt&ffivDDffi

t.-r'¡ar' S,'fir,

"ËH:u[Ë'fiii
Ë .rrF};¡.;sæ ji l:1N,|t*:.W#-iitêffir

trüffi
FLr.Lry ii l:i Iæs*{ ü.M*@,ìÌt#ffivDD@ifsg#j#***ffisffi#tiffi$ ik åfuæ#Wc¡spæxllrw@wí;¡r"*æWrerell:þ lF:q

otr.w¡@rRw¡r'ææEãt:

3.4, Simulation

At the time of design, the only available simulator fo¡ the double-metal technol-

ogy was csIM' a switch-level simulato¡. A switch-level simulator is limited to func-

tional verification of the layout, ie. to verify correct logic and wiring. Each device

described in this chapter was simulated using csIM to verify correct functionality.

The full adder stage is a very crucial element in the design since it is the main build-

ing block for the adder and subtractor banks. Poor electrical performance of the full

adder stage will be magnified in the electrical performance of the adder and subtractor

banks and consequently in the enti¡e chip. verification of the electrical performance

of the full adder stage under loaded conditions was therefore considered important. A

timing-level simulato¡ was therefore used to verify the performance of the full adder

stage. The simulation was accomplished by duplicating the layout of the full adder

cell using single-layer metal 3 lr¡z cMos technology for which a timing-level simula-

tor was available. An eight-bit adder bank was designed using the full adder cell.

Ouçuts of the adder bank we¡e loaded using the inputs to a further adder ba¡k. Simu-

lation tests were then run using the timinglevel simulator. Best case eight-bit addi

tions we¡e accomplished in 15 nanoseconds for ouçut logic levels of 0.5V low and

4.5V high. Worst-case additions occur when the enthe carry chain must be d¡iven

from the LS stage, the entire carry chain must change logic level, and each outpur load

must change logic level. The wonr-case eight-bir additions were accomplished in 4g

nanoseconds for output logic levels of 0.5v low and 4.5v high. This simulation indi-

cates each full adder stage requires 4818 = 6 nanoseconds to compute a worst-case

addition when configured in cascaded adde¡ banks under loaded conditions.

-50-

CHAPTER 4

Floor PIan and Layout

The previous chapter described the design and layout of the necessary compura_

tional elements or blocks used in the final layout This chapter deals with the place-

ment of the blocks establishirg the final floor plan of the design. The placement of

the blocks is influenced by a number of criteria including power bus, clock bus, and

data bus wiring considerations.

4.1. Floor Plan

Each computational block within the design requires power bus connections in

orde¡ to function. The power bus must therefore be connected to every element within

the design. The RC component of the power bus itself must be kept minimal to

enable the bus to properly sink and source charge at each computational block. The

bus is therefore wired using only metal, and the vDD line is never allowed to cross

the GND line. lvhen data buses are required to cross the power bus, the data buses, if
necessary, use metal vias and no b¡eak is made in the power bus. Minimal crossover

of buses is achieved by wiring power buses in a finger fashion. This method requires

power buses to run in parallel at regular intervals across the layout with alt vDD lines

connected on one side of the layout and all GND lines connected on the other. The

analogy or fingers is obvious when the teft and right hand fingers a¡e interleaved with

palms toward one's face. No crossover of vDD a¡d GND lines occur using this

method and the power bus is available throughout the design.

All flip-flops, Dlatches, and multiplexers within the design require clock bus con-

nections. As with the power bus, the clock bus is wired only in metal to keep the RC

product to a minimum. Data buses a¡e broken when required to cross the clock bus.

The clock bus is run in parallel across the design but only where it is required by flip-

flops, D-latches, and multiplexers. Both phases of the clock bus a¡e connected to the

parallel buses on the same side of the layout. The 0 and Þ wires will thus cross over

each othe¡ at certain instances and require metal vias. However, connecting the clock

phases on the same side of the layout is necessary to avoid skew between the clock

phases (ie. Q and þ must remain nonoverlapping).

The amount of wiring; the number of vias, and the length of wi¡es used by a lay-

out influences the simplicity with which it is built, the silicon area it requires, and the

performance of the layout. To increase the simplicity of inter-block wiring, computa-

tional blocks are placed in the floo¡ plan near blocks with which they sha¡e VO. This

tends to limit the length of the wires required and the number of c¡ossovers between

data buses. computational blocks are oriented such that, where possible, the input and

ouçut of connecting blocks align in a one-to-one correspondence, thus eliminating the

need for a data bus to cross over itself. Data buses are routed in such a way that

crossover between buses is kept to a minimum. crossover of data buses. requires

metal vias and the number of vias must be kept to a minimum since vias require more

area, have a larger RC component, and a¡e less fault tolerant than a simple metal wire.

Figures 3 and 8 show block diagrams of the entire multiresolution representation

system and the G6 systolic convolver respectively. Along with the area and VO

requirements of the individual computational blocks listed in the previous chapter,

these block diagrams were used to layout a floor plan which stipulates the required

a¡ea and vo lines. Figure 21 shows the ffoor plal consisting of the th¡ee blocks

(Go(.r) convolver, Gg()) convolver, and subtractor unit) necessary to generate both a

-5t_

SUBT.

UNTT

Figure 21: Floor plan showing computational block.and VO requirements.

lowpass and a bandpass representation of an image. Implementation of these blocks

on a single chip enables a multi¡esolution representation system to be built by cascad-

ing a number of these chips together and adding the required number of shift registers

at each level in the hierarchy. shift registers are not implemented on chip since the

number required is reduced by a half at each level in the hierarchy. Inclusion of the

shift registers on chip would tlrerefore negate the multiple use of the one chip to create

the entire multi¡esolution system. Furthermore, it would restrict the image size with

which the system could be used. Exclusion of the shift registers from the chip how-

ever, requires an additional five eight-bit VO lines. The chip therefore requhes two

eight-bit data buses for the G6(-x) convolve¡ (one in and one out), five eight-bit data

buses for the Go$) convolver (four in and one out), and one eight-bit input data bus

and a nine-bit sign-magnitude result f¡om the subtracto¡ unit. The numbe¡ of VO data

lines re4uired is 8 x 8 + 9 - 73. In addition, the layout requires four pads for the

VDD, GND, Q, and S lines. Since the pad fiame used conrains only 40 VO pads the

need to multiplex VO dat¿ becomes evident. To ¡educe the number of required pads

-53.

to 40, each eight-bit data bus is multiplexed in or out of the chip using four pads. The

two MS bits of the magnitude result of the subtractor unit are ignored, and the remain-

ing six bits are multiplexed out using three pads. Dropping the two MS bits can be

done without loss of information since the subracdon operation removes pixel to pixel

correlations, shifting pixel values towa¡d zero and allowirg six-bit representations of

each pixel (see Sec. 6.1). The IIO pad requirements then become

8 x 4 + 3 + 7 + 4= 40 pads. All input dara buses a¡e recieved on chip using an input

multiplexer bank which also holds the data in flip-flops for a full clock period. This

enables the input data to be available to the required computational elements for a full

clock period at each time step in the computation. Output buses use ouçut muld-

plexer banks which present each data bit to the outpur pad for half a clock period. A

detailed floor plan of input and output multiplexer banks, adder bants, and the subrrac-

tor unit, as well as the required data bus wiring between these computational blocks is

shown in Figure 22.

The placement of the computational blocks allows fo¡ the floor plan design cri-

teria to be satisfied. 1) The power buses a¡e run in a finger fashion at regular intervals

throughout the layout. There are essentially two colun'ìns of computational ba¡ks in

the floor plan. These columns of banks are placed in such a way to enable the align-

ing of the power bus which runs along the bonom of each bank. Each power bus

the¡efore runs across the enti¡e layout allowing vDD to be connected on the left side

of the layout and GND to be connected on the right. Both VDD and GND are wired

using only the metal-l layer. 2) The clock bus is run in parallel ac¡oss the design only

where it is required. Both clock phases are connected on the same side of the layout

to eliminate skew between the phases. clock buses running horizontally are wired

using the metal-l layer only allowing metal-2 data buses to be run vertically over top.

The vertical clock bus is run in the metal-2 layer enabling it to cross over the vDD

-54-

VDD øø

Figure 22: Detailed floor plan shou'íng computafional block placement and bus wiring.

wires without the need fo¡ metal vias. 3) Computational banks are placed in such a

way as to eliminate all global wiring and to minimize data bus crossover. Conespond-

ing bits in the adder banks a¡e for the most part aligned vertically, therefore data bus

cross over is only necessary when a data bus is required to connect one column to the

other.

All ve¡tical data buses a¡e run in the metal-2 layer enabling the buses to cross

directly over computational banks. This is possible since the cells which comprise the

computational banks were designed without metal-2 wiring. Crossing over computa-

tional banks allows data buses to be fa¡ shorter and have far less crossover than would

otherwise be possible since the buses would then be required to snake around compu-

tational banks and vertical alignment of adder ba¡ks could not be used to minimize

crossovel.

To determine the necessa¡y area requirements of the ffoor plan is sraightforward.

All computational banfts are approximately the same size. An average size is about

1200 W by 90 ¡tm . Allowing an additional 30 ¡un of width for wiring at each ba¡k

gives an average size of 1200 ¡tm by 120 ¡rrn. Since the floor plan consists of two

columns a¡d 18 rows of computational ba¡ks, a rough estimate of the required area

may be given as (1200+ 1200) by (120x 18) or 2400 ¡tnt by 2160 ¡rrn. The pad

frame used has outside dimensions of 4500 ¡r.rn by 4500 ¡uz with usable interior lay-

out area of 3900 ¡rm by 3900 pm. The floor plan layout should, therefore, when laid

out in silicon, fit easily into the pad frame.

4.2. CMOS Layout

The layout of the design is shown in Figure 23 with the final pad-frame layout

and pad connections shown in Figure 24. 2715 w by 2l9z p¿n of silicon area a¡e

required by the layout. The ci¡cuit contains 5264 transistors. Most evident in the

-56-

Figure 23: Layout of fhe ASIC

Figure 24: Finâl pad-frame layout,

-57-

layout is the small percentage of wire area used by the design. This is largely due to

the efficient placement of the computational banks and the fact that the banks have

been designed to allow metal-2 wiring to be run ac¡oss them. All wiring has been

done using only metal-l and metal-2 layers thus minimizing the RC component of the

wires. All data buses a¡e local and therefore relatively short thus negating the net for

large drivers or repeaters that would be necessary on global buses.

The final layout of the ASIC enables the design of rhe multiresolution representa-

tion system shown in Figure 25. Cascading the ASIC as shown results in an

extremely modula¡ system requiring the simple addition of more ASIC's and shift

registers to generate further low-resolution levels in the representation. Resampling of

the image data between levels in the hierarchy is acheived by using the clocking

scheme shown. The scheme allows each ASIC to read every second pixel and every

second image row f¡om the output of the ASIC above it.

4.3. Timing

The a¡chitecture of the ASIC is based on a systolic architectu¡e. Therefore all

pipeline blocks in the systolic array are synchronized with a global clock and each

block receives new inputs a¡d calculates a new output on every clock pulse. conse-

quently, on every clock pulse, the ASIC ¡eceives one new image element and outputs

two image elements corresponding to the lowpass flltered output and the bandpass

filtered ouçut. There a¡e five pipeline blocks in the ASIC; two each in the Gs(n) and

the Ggþ) convolvers and one in the subtractor uniL

The shift registers which allow the convolution window to overlay the co¡rect

region of the image can be thought of as a second dimension of pipelining. Both

dimensions of pipelining influence the timing sequence of the ASIC. A timing

diagram illustrating the flow of data through the ASIC is shown in Figure 26.

-58-

Ø, ru-Ln_TLTLJ-l_ruu
I ap,(x, y) 'o

Ip ,(x , y)

Ø, r---r-r-r-n-r-u
IwrG, y)
IurG

'
y)

Ø,r---___rr________
Isp"G,y)
IurG, y)

@*r---------------
Is¡rQ, !)
IurG

'
y)

Figure 25i Cascading the ASIC to produce a multiresolution repr€sentation system.
h(x, y) is the original image, I¡¡,,(x, y) and Isp,(x, y) ar€ lo*?ass and bandpass
repres€ntat¡ons of I¡(x, y). The clocking scheme showrr €ffectiv€ty resamples the image
data behye€n levels in th€ bierarchy,

I¡-p,_r(^, n) is the input image element to the level t ASIC, I,rp,(^, n) is an image

element which has been processed by the Gs(;) convolver at level i, Is,,(m, n) is an

image element which has been processed by the Gsþ) convolver at level i, and

Isp,(m, n) is an image element corresponding to the level i bandpass filtered ouçut.

Iu,@ , y) and Isp,(x , y) are generated 6 and 7 clock periods respectively after the

I¡¡',(x +2,y +2) input is ¡ead. The resultant latency of the system is equal to

(2í N + (2 + 6) x 2t-1) clock periods for the læ,(x,y) ourpur and

(2i N + (2 + 7¡ x 2i-1) clock periods for the 1¡4(-r, y) ouçut where N is the numbe¡

of image elements per image row and i is the level in the hierarchy.

-59-

rcåd input
Iu, _lx+2, y +2)

Co(¡) ci¡lculütion

wr¡lc oulDUtr,eâd tt t,.'(x+2', y\
lnDuß
t,],:(x-2, y>
tyi,l1-t,.t) cog)catcutat¡on
tt¿¡ \x ' I)ti,','i,ri,¡ ã1,ñïr.Tñ

Is,,_r(z, y) I s,,(x, Y)

subl. . /¿/,,(¡, y) wdle oulput
from /¿,".-j(.r, y) /æ,(x, l)

Figur€ 26: Timing diagram showing t¡ming sequence of the computation

4.4. Simulation

Simulation of the layout is relatively straightforward since the design employs

only synchronous logic. The only available simulator is a switchlevel simulato¡ called

CSM. It is therefore possible to verify only that the correcr logic and wiring has been

implemented in the layout process. The design is composed of several functional

blocks including the Go(r) convolver, the G6Q) convolver, and the subr¡actor unit.

Evaluation of the outputs of each of these functional blocks during simulation ¡educes

the required number of test cases needed in o¡der to exhaustively test all data paths in

the ci¡cuit. Exhaustive testing at this level using a switch-level simulato¡ is relatively

useless since the logic of each smaller building block or cell within the design has

been verified by simulation previously. Therefore it is only useful to verify that the

cells have been wi¡ed together correctly. Approximately 100 test cases were simulated

all of which produced the correct outputs.

The design criteria of real-time processing influenced both the algorithmic and

a¡citectural design. since it is impossible to determine, using switch-level simulation,

-60-

whether or not this criteria has been met, some estimation of the computation time

required by the layout was needed before the chip was fabricated. A reasonably good

estimation was made using the worst-case computation time of the full adder cell

which was acquired from the timing-level simulation (Sec.3.4). Since the layout uses

a pipelined a¡chitecture, data can only be clocked through the layout at the rate at

which the data can be clocked through the pipeline block with the largest computation

time. The block with the largest computation time is the G0 convolver block. An

estimate of its required computation time may be found as follows. The data must

propagate through full and half adders as shown in Figure 22. The worst-case compu-

tation time through each adder cell has been simulated at , = 6 nanoseconds (Sec.

3.4).

Figure 271 Worst.case computation time estimate for the Gg convolver.

The longest path in Figure 27 passes through 14 full and half adder cells. Thus,

14 x 6 = 84 nanoseconds. After computation the output must þ read by a storage

cell. The flip-ffops used fo¡ the storage cell require a 6 nanosecond set-up time, giv-

ing 84 + 6 = 90 nanoseconds for the \rr'orst-case computation time. All other pipeline

blocks in the layout require less computation time. Therefore, a rough estimate for the

frequency at which data may be clocked through the layout is =.-l--.-...- = ÍJ Mhz.
90 x lO-e

-61-

At this ¡ate the sysrem \ryill process a Sl2 x 512 image in

90 x 10-9 x 512 x 512+ latency. The number of image frames the system can pro-

cess per second is independent of the latency. Fo¡ a 512 x 512 image, the multi¡esolu-

tion system will process ,.^- -l -- or 42 image frames per second. This90x10-ex5l2x5l2
is well above TV rates of 30 image frames per second.

CHAPTER 5

Testing

Five ASIC's were fab¡icated and available for testing purposes. A photomicro-

graph of a chip is shown in Figure 28. Each ASIC was tested by generating tesr vec-

tors on ân HP 81804 data generator and analyzing the ouçuts usirg an Hp B1B2A

data analyzer. All ASIC's were functionally tested for correct operation using test

vectors. Each working ASIC was then tested fo¡ its maximum operating frequency

under wo¡st-case computational conditions.

The testing of each ASIC is simplified by two results of its a¡chitectural design.

Firstly, the design employs only synchronous logic and thus dynamic faults a¡e elim-

inated. Secondly, block testing of the chip is possible since ourputs are available at

th¡ee different points in the computational logic of the design. Block testing reduces

the combinational explosion of testing by reducing the number of test vecto¡s requked

to ensure a given percentage of internal nodes at each panicular block are correct.

Outputs are available at rkee points in the ASIC; after the Gg(x) block, afte¡ the

Gqþ) block, and after the subtractor unit.

Each ASIC has 20 input lines and thus 40 inpus to its combinational logic. The

ouçuts of the ASIC are dependent on its inputs and its intemal state. The intemal

shift register of the Gs(.r) systolic convolver has 32 bits of storage resulting in intemal

states which influence the ouçuts. These intemal states must be clocked in before

each test case can be run. Exhaustive testing of the combinational logic will therefo¡e

require 240 * 232 - f2 test cases. Block testing ¡educes the necessa¡y numbe¡ of test

-63-

cases to 2a0 q2a0 + 216. Although block tesring $eatly reduces the number of test

cases, clearly, exhaustive testing is impossible. It is therefore required to generate a

minimal number of test cases to verify (1) the correct behavior of the ASIC and (2)

the correct operation of a given percentage of internal nodes.

l----''

1."'

Figure 28: Photomicrograph ofthe ASIC

The correct operation of some internal nodes can be accomplished by running

tluee simple test cases.

Case (1). All inputs â¡e ser to zero and the data is clocked through to rhe ouÞuts.

The ouçuts of the G e(-r) and G s(y) blocks should both be zero. The magnirude of

the subtractor unit should be ze¡o and its sign bit should be one indicating a positive

result. All internal nodes corresponding to sum and carry-out nodes in the adder ba¡ks

ì

'--*w¡
@i
'@!

,,W|
-FI
-@:
-n!ì'l
_@¡
\Ð:

-Ð¡¡@r

-64-

must be zero fo¡ corÌect operation. ca¡ry-out nodes in the subtractor bank will be

high with sum nodes being low.

Case (2). All inputs âre set to one and the data is clocked through to the ouçuts. The

ouçuts of the Gs(r) and the G6þ) blocks should both equal 254 (not 255 because of

the 0.996 scale factor). The magnitude of the subtracto¡ unit will be one and its sign

bit will also be one (255 - 254 = 1). Most intemal nodes conesponding to sum and

carry-out nodes in the adder banks will be one. The states of the sum and carry-out

nodes in the subtractor banÏs will have both high and low logic levels.

case (3). All inputs are left high except for the subtracror unit inputs which are set

low. The magnitude of the subtractor unit output will be 254 and its sign bit will be

zero indicating a negative result.

These three test cases eliminate the possibility of stuck at faults at all ouÞut

nodes and some intemal nodes. Secondly, correct propagation of the carry signal

through the carry chain in each adder and subtracto¡ bank is verified. Due to the

operational verification determined by these test cases, fu¡the¡ test was considered

necessary using only a small number of random test cases. Fifteen random test cases

were run on one of the ASIC's which had correct ¡esults from the fust th¡ee test cases.

Maximum operating frequency under worst-case computational conditions is

determined by applying input vectors to the ASIC which correspond to the wo¡st-case

computational conditions. The operating frequency of the ASIC will be limited by the

maximum operating frequency of adder banks 1 through 5 in both the Gg(x) convolver

and the G6(y) convolver. Worst-case conditions occu¡ when the carry signal is

required to propagate a maximum dista¡ce through the carry chain in atl adder banks.

A wont-case computation will occur when each bit of pixels a and c a¡e ones and all

bits of pixels b, d, and e are zero (see section 2.5 for explanation of pixel labeling).

This causes the carry signal to propagate through the end¡e carry chain in adder bank

-65-

I, through three-quaners of adder bank 3's carry chain, and through three-quarters of

the carry chain in adder bank 5. Computation times of adde¡ ba¡ks 2 and 4 are

i¡relevant since they operate in parallel with adder banks 1 and 3 respectively and have

a computation time no worse then the worst-case computation time of adder banks 1

and 3.

Of the five ASIC's tested, one did not fun*ion properly. The faulty ASIC

powered-up but produced enoneous oulputs when test vectors were clocked in. The

remaining four tested conecdy under the thfee test cases mentioned abbve and tested

correctly under worst-case conditions. One of the fou¡ had a maximum operating fre-

quency under worst-case conditions of l0 Mhz. The remaining three operated

correctly at 12 Mhz. The maximum operating frequency is the highest frequency at

which logical testing produces conect ¡esults. one ASIC was then tested using the

fifteen random test cases, All ¡esults were corect.

-66-

CHAPTER 6

Simulation and Applications

6.1. Simulation

Cornputer simulation of the multiresolution representation system was accom-

plished using a 512 by 512 image where each pixel is represented with eight bits. The

fust four levels of both the lowpass and bandpass representations were generated in the

simulation. The programs used fo¡ the simulations are listed in Appendix A. The test

image and its histogram are shown in Figure 29(a) and (b) respectively.

(a) (b)

Figùr€ 29: (a) The test image, O) histogram of the test image.

It is a digitization of a scene containing both sharply outlined objects and shadowy

objects. since it is an unaltered digitization of a real scene, it contains noise. Figure

30 shows the lowpass-filtered and subsampled outputs l¿rÞr thru 1¡¿.. Figures 31(a)_(d)

show each of these filtered copies with pixel sizes magnified for ease of viewing. The

reduction of information at each level is evident.

Figure 30: Lorrpass.filtered representations !p,rtbrt Is,
o,

Figure 32 shows the bandpass filtered outputs lÀpl thru I¡p.. Generafion of these out-

puts has removed pixel-to-pixel cor¡elations and has shifted pixel values towa¡ds zero.

This compression of data is evident f¡om the histograms of I¡p, thru 13p. shown in

Figure 33. Pixel values a¡e clustered about zero and have both positive and negative

values between -128 and +128. To accommodate the negative pixel values for view-

ing purposes, an offset has been added linearly to the $ay scale to enable a zero pixel

value to have a gray scale level of 128, a pixel of 128 to have a gray scale level of

256, nd a pixel value of -128 to have a gray scale level of.O. Fo¡ viewing purposes,

histogram equalization was performed on each bandpass image. Figures 33(a)-(d)

show these resuits with pixel sizes magnified. The consecutively-reduced center fre-

quency of the passband is evident in these figures. 1¡p, accentuâtes the high frequency

-ó8-

(b)(a)

ww
(c) (d)

Figure 31: Pixel sizes magnified. (a) Iu,f þ) Iu,z, @) 1u,3, (d) Iu"a,

component of the original image whereas I¡p. porrays the ove¡all shape and size of

the objects within the image. The overtone medium-level gray of each bandpass

image is due to the fact that only the relevant image information at each passband is

represented allowing considerable data compression. The enfopy, I/, given as

k
H = 2 p 0ù log2 p þ¡), represenrs the minimum number of bits per pixel required to

0

-69-

exactly encode the image (& is the number of gray levels and p (r¿) is probability of

the,t'å gray level).

Figure 32: Bandpass-filtered repr€s€ntations /rp r thru 1rp..

(b)

(c)

(d)

Figure 33: Histogram cqualized bandpass filtered repres€ntations wíth pixel sizes
magnified. (a) /sp¡ and bistogrsm, (b) /¡¡, and b¡stogram, (c) rrp3 snd h¡stogram, (d)
t p. snd bislogram,

-71'

An imponant attribute of a multiresolution representation is completeness: it

should be possible to recover the original image from its multi¡esolution rep¡esenta-

tion. The bandpass multiresolution representation has been generated as follows;

Isp,=Is-1u,,

Ippr= resample (lu,) - Iu"

IBp, = rêsample(læ") - Iu,

I Bp a = resample (ltpr) - IUo

The original image /6, may be reconstructed from the fust four bandpass level

representations and fourth lowpass representation as follows;

Ig,r= expand (l spn * Irpo)

I¡¡, r= expand (l gr, * I ¡¡rr)

I¡¡', = expand (l sp
"
* Iu,¡

Io= IBpt + IU'
I

OR

I o = I ap, + expand(lsp"+ expand(Ispr+ expand(lsp,+ I4,n)

The expansion process produces Ig,, (size m x m) from the images

Isp,., (size ml2 x ml2) and lu'..t(size m12 x ml2). Ad.dition of conesponding pixels

in images IBp,*, and 1¿p,*, produces the resampled venion of 1¿¿_. The remaining pixel

values of 1¡¿, which were removed in the resampling process may be calculated from

/¿¡,., and ILp,u, A one-dimensional 1¡p,*, contains rnl2 equations in ¡n unknowns and

a one-dimensional 1¿¡o,*, contains rz /2 equations in the same m unknowns. Thus, in

total there are rn equations in m unknowns a¡d the remaining pixels may be calculated

-'1) _

exactly. since the two-dimensional process is separable into consecutive one-

dimensional processes, the 1¿¿, image may be reconstructed. This method however, is

computationally expensive and is not practicable. An approximate method of ¡econ-

struction was used were each resampled pixel was interpolated from its two horizontal

or vertical neighbors, where use of horizontal or vertical neighbors depends upon the

location of the pixel in the resampled grid. This process is both computationally sim-

ple and efficient, and is very easily implemented in real+ime with the appropriate

ha¡dware. Figure 34 shows the reconstructed image. Only close scrutiny on a high-

resolution monitor reveals any degradation from the original image.

Figure 34: The reconstructed image.

6.2. Applications

of the nume¡ous applications applicabie to lowpass and bandpass multiresolution

representations, two are brieffy explained here. The first uses the representation for

-73-

image data compression and the second application produces a multi¡esolution

representation of the intensity changes or edges in an image.

6.2.1, Image Data Compression

Neighboring pixels within an image are highly correlated and therefore ài¡ect

representation of the pixels results in redundant information being represented. A pro-

cess which decorrelates the image pixels will enable a compressed data representation

of the image. Decorrelation of image pixels may be achieved through predictive or

tra¡sformation techniques. Transformation techniques encode pixeis in blocks and

involve image transforms or solutions to large sets of simultaneous equations. hedic-

tive techniques encode pixels sequentially by subtracting the predicted value of a pixel

from its actual value. P¡edictive coding is computationâlly simple and inexpensive.

Transformation coding is computationally expensive; however, it offe¡s greater data

compression.

There a¡e essentially two types of predictive coding: causal and noncausal.

causal prediction predicts a pixel's value using only previously-encoded pixel values.

Noncausal prediction uses symmetric neighborhoods centered about each pixel and

thus yields greater data compression. The method of data compression described he¡e

uses multi¡esolution symmetric neighborhoods to predict each pixel value noncausally.

If /s is the image to be encoded, then each pixel's predicted value will be an

expanded version of the resampled 14o,. The expansion process constitutes an interpo-

lation using simple local averaging. Each predicted pixel value is subtracted from the

pixel's original value to obtain the prediction error. The array of prediction error

values, 81, essentially represent a bandpass filtered copy of 19. Encoding

E1$íze n x n) and Is', gize nl2x n/2) rathe¡ then Is (size n x n) results in a ner

-74-

data compression since E1 is largely decorrelated. Furthe¡ data compression is

achieved by applying the same process to r¡7,. Iteration of the process produces a

multi¡esolution representation of predictive error images E t, Ez,, E¡, where

E¡,t =Itpr. 16 is recovered without error from this representation by expanding each

predictive enor image to size n x ¿ and summing, ie. 1o = f expand(E¡). Expan-
0

sion is identical to the expansion used to obtain the predicted values of each pixel.

Further data compression is possible by quantizing pixel values if quantization errors

are allowed by the application. Burt and Adelson [z] have used this method to encode

images with negligible degradation at less than one bit per pixel.

The required expansion process used to produce the prediction pixel values and

expard the prediction error images is considerably less computationally expensive then

the ASIC designed for the generation of the lowpass representations, 1¿p,. Thus, a sys-

tem could be constructed to encode and decode noncausally in real time.

6.2.2. Image Edges

As indicated in chapter I the first step in visual information processing involved

representing an images intensity changes or edges. The zero-crossings of a Difference

of caussian multi¡esolution representation localize image edges in a near optimal

manner. Figure 35 shows the zero-crossings of the bandpass levels IBpt thlu IBp1.

Figures 36(a)-(d) show each image with pixel sizes magnified for ease of viewing.

Zero-crossings may be found very efficiently using the sign bit of each pixel value in

the bandpass representation.

Figure 35: Multiresolution zero-crossing representation,

-76-

(b)

(c) (d)

Fþre 36: Multiresolution zcro+rossing representation with pixel sizes magniffed.

-77-

CHAPTER 7

Conclusions

Many image processing and analysis tasks can be accomplished efficiently by

using multiresolution representations of al image. A full-custom ASIC enables the

design of a system capable of transforming the information content of an image into a

multi¡esolution representation in real time.

A number of techniques have been used to reduce the computational complexity

and the cost of the ASIC design. separability of the Gaussian fr¡nction ¡educed the

number of computational elements used by the systolic array from M2 to 2M and

¡educed the number of multiplications and additions for each image frame from

O (M2N2) to O (MN2) where rV2 is the number of pixels per image frame. Hie¡archi-

cal convolution eliminated the use of large bit representations of partial results by

reducing læge convolutions to smaller convolutions in a divide-and-conquer scheme.

Thus, only a small 6xed-size convolution is necessa¡y, enabling the repetitive use of

just one ASIC in cascaded fashion to produce a complete multiresolution representa-

tion system. The symmetry of the Gaussian function and the fixed nature of the filter-

ing coefficients further allow the separated convolutions to be implemented with a

small number of additions and with no multiplications.

Other techniques have also been adopted to increase the performance of the lay-

out. Exploitation of the flow+hrough nafure of the algorithm allóws a second dimen-

sion of pipelining to be incorporated in the design, thus increasing the throughput of

the system. The full custom design of the ASIC allowed for oprimization of all

-78-

critical paths and of the basic cells from which rhe system was built, particularly

within the adder banks. Each cell was designed to allow the overall layout to be com-

pact, to require only local data-bus wiring, and to allow appropriate power- ard clock-

bus wiring. The resultant ASIC was therefore able to achieve real-time operation

under test conditions.

-79-

References

lll M.D. Kelly, 'Edge Detection in computers by using planning', in Machine Intelli-
I,ence, B. Meltzer a¡d D. Mitchie, eds. 1921.

t2l D.B. Ma¡r and E. Hildreth, 'Theory of Edge Detection,, proc. R. Soc. London, B
207,pp. 187-217, 1980.

t3l A.R. Hanson and E.M. Riseman, 'Visions: A Computer System for Interpreting
Scenes', in Computer Vision Systems, A.R. Hanson and E.M. Riseman, eds., New
York: Academic, 1985.

t4l D.B. Marr a¡d T. Poggio, 'A Computational Theory of Human Stereo Vision',
Proc. R. Soc. London, B 204, pp. 301-328, 191-9.

[5] H. Moravec, 'Obstacle Avoidance and Navigation in the Real World by a Seeing
Robot Rover', Ph. D. dissertation, Stanford Univ., Sept. 19g0.

[6] J.L. c¡owley, 'Multiple Resolution Representation and probabilistic Matching of
2-D Gray-ScaJe Shape',IEEE Trans. on Patt. Ana. and Mach. Int., yol. PAMI_9,
No. 1, pp. 113-121, Jan. 1987.

[7] P.J. Bun and E. Adelson, 'The Laplacian pyramid as a Compact Image Code,,
IEEE Trans. of Comm., Vol. COMM-3l, No. 4, pp. 532-540, Apr. 1983.

[8] A. Rosenfeld, Multiresolution Innge Processing and Analysis, Springer-Verlag,
New York, 1984.

[9] V. Tone and T.A. Poggio, 'On Edge Detection,,IEEE Trans. on patt. Ana. and
Mach. Int., Vol. PAMI-8, No. 2, pp. 147-163, March 1986.

[10] C.D. Thompson, 'Area-Time Complexity for VLSI', proc. IIth Annual ACM
Symp.Theory ofComputing, ACM Signact, pp. 81-88, 1975.

l11l J.W. Hong and H.T. Kung,'VO Complexity: The Red-Blue pebble Game', proc.
I3th Annual ACM Synp. Theory of Compuring, ACM Signact, pp. 326_333, May
1981.

t12l H.T. Kung and C.E. Leiserson, 'Algorithms for VLSI processor Arrays', in C.A.
Mead and L. Conway, Intoduction to VISI Systems, Addison Wesley, pp. 271-
292, 1980.

[13] J.J. Cla¡k and P.D. Lawrence, 'A Hiera¡chical Image Analysis System Based
upon oriented Zero crossings of Bandpassed Images', in Multiresolution Image
Processing and Analysis, A. Rosenfeld, ed., Springer-Verlag, New york, pp.
148-168, 1984.

[14] P.J. Bun' 'Fast Filter Transforms for Image processing', computer Graphícs
Image Processing, Vol. 16, pp. 20-51, 1981.

[15] H.C. Ca¡d, P.D. Hortensius, and R.D. Mcleod, Standard Ceils for Custom VLSI
Chip Design, Depr of Elec. Eng., Technical Repon TRST-I, Univ. of Man., 19g7.

Appendix A: Program Listings

-41-

File hulti printEd on Fri Ár.:g 28 22t23t37 1987 page I of 4

c*****rt*t*****Br*****x*t(****toi**f.i*,ttÕtx***)**+x***x)rrþþr***)**r*Ðt!
C* TH¡S PRocRAll PRooUCES A LoupASS, A BANÐPASS, AND tHE rC* BANOPASS ZEROCROSSING NULTIRESOLUIION REPRESËNTATION ICll 0F A 512 BY 512 IñAGE. FoUR RESoLUTIoN CHANNELS ARE xCx GENERAIE0 IN EACH CASE, x
C*xxrË**********)t*r.**rtx**þk)***.*s**tå.****rqrx*****&i*,tþþß)k***r*tc*
c

c
c
c

c
c
c

integert2 ì nrg {512,512), f ih9 (512, 512), n, ¡, j, va t, a, b, c
charac t e. ¡mag (512, Sl2)

read In Ìmêge

open { 1ø, f ì ¡ e-' co¡Jbog' , forh.' un forna t ted' }
open(11, f ì la.'bÞl', forrn-'unforhatted')
oÞen(12, f ¡ lê.'bpz', forñ.'unforhatted')
open (13, f i I e-'bp3' , forh.' un forha t t €d')
open 114, f i I e-' bp4', f orm.' unf orr¡at tsd,)
open(15, f i lê.' lÞ1', forh.'uñformatteC')
open(15, f ¡ le.' lÞ2', form-'unfo.hatted')
oÞen (17, f i le-' lp3' , forh-' un f orha t ted')
open(18, f i lê-' lÞ4'. lorm.'unformatted')
open { 19, f i le.'zcl', forh.'unformatted')
open(20, f i lê-'zc2', for¡i-'unfornatted')
open (21 | f i lB-' zc3' , form.' unfo.na t ted')
oÞ6n (22, f i le.' zc4', f orñ.' unforhatted')

reâd (10) ô, n
do 25 ¡.1,512

read (19) (illlag (i, j), j-1,5f2l
zÞ conl ¡ nuê

decode thê aBc¡¡ ¡hag€ to integer forñat

do 26 i-1,512
do 26 j.1,512

iñg(i, j).¡char2{¡hag(¡, j)) + 1
zb conl r ñua

n-512
call gâuss (ihg, f ¡hg, n)
cal I stoihg(ih9, ihag,n)
l]r ì te (15) n, ñ
do 27 i-!,n

r¡ri te (15) (inag(¡, j), j.l,n)
¿/ cont I nue

cal I stoing(tihg, ¡naq,n)
Þr ite (11) ñ,n
do 28 i-1, n

!J. ìtê (11) (ihag(i,j),j.I,n)
28 con t inue

cê¡l zcros3 (f ¡hg, n)
cal I 6to¡Dg(f ihg, ihag,n)
rr i te (19) n, n
do 29 i-1, n

rr ite (19) (imag{ i, i), j-1, n)
29 cont inue

n-256
call BubsarìÞ l6 (¡mg, n)
cal I gausB(¡mg, f ìhg,n)
cal I 6toihg(ìhg, ¡haq,n)
rr¡ i te (16) n, n
do 30 i-1, n

r¡r i te(15) (¡rag(ì, i), j.1,n)
JU COñl r nus

cal I sto¡ng(f ihg, imag,n)
r¡r i te (12) n, n
do 31 i-1, n

^. rr. ì tr (12) (¡heg (¡, j), j-], n)
JI CONt I NUê

ca I I zcro€s (f ìñg, n)
ca¡ I stoi¡¡g(f img, ihaq,n)
¡Jr i t€ (29) n, n
do 32 i-1, n

¡¡r i te(29) (ihrag(i, j), j-1,n)
JZ COnt tnuê

n-128
call subsahp ¡c (ihg, n)
cell gaus s (ihg, f iñ9, n,
cal I stoìrîg(ing, ihag,¡.1)
H¡ i te (17) n, n
do 33 i-1, n

Fìle nult¡ priñted on Fri Aug 28 22t23t37 1387

.aubrout¡nê subsamples the ¡ñagê producing añ ñ/2 bg
I mage

Þage 2 oÍ 4

rlrite(17) f ¡ ¡,ag t i, .¡1 , ¡-i,.i
33 cont ¡nu6

cal I stoìhg(f ìmg, ìmag,n)
Fr i te (13) n, n
do 34 ¡-1, h

Fl- ìtB (13) (lmag (i, j), j-1, n)
34 cont inue

call zcross (f img, n)
cal I 6toihglf ¡hg, ihag,n)
!r ¡ te (21) n,n
do 35 i-1. n

uri te(21) (iÞag(i, j), j=I,n)
J5 COnt tnue

n-64
ca I I Bubsahp lê f iirg, ñ)
cal I gauss(¡Ìì9, f img,n)
cal I 6toìnrg(¡hg, ihag,n)
Hr i te 118) n, n
do 36 i.l, n

¡rìto(18) (ihas (ì, j),.i=1,n)
36 cont ihue

cål I 6toìrìg(f ifng, ihag,n)
r¡¡ i te (14) n. n
do 37 i-1, n

¡r ite (14) (inas (i,.i), j.1, n)
37 cont ¡nue

ca I I zcrosg (f img, n)
cal I stoihg(f ¡mg, irnãg,n)
rr i te (22) n, n
do 38 i.1, n

rrìte(22) (ihag (ì, j), j-1, n)
38 cont inue

s toÞ
ênd

c
c xxr*r¡r**r*xt t¡"¡8***þts**¡ot*¡oþi*x**
Cx thi€
C* ñ,/2

eubrout inê subsañp lê (ihg, n)
c

integer*2 ¡hg (512,512) , ¡, j.n
c

do 12 i -!,n
do 12 i-1, ñ

iñg(ì, j)-ihg(ix2, j)l2)
12 cont iñue

return
ênd

c
Cþr¡qcþf **x{.9**xx¡.x*.þþþiÒt j.f*¡.trt<xt +*xþ¡r.**x*x*)k****rþ*xi*Èr*þ*)r**
Cx thìs subroutine converts lhe imagê ¡nto asci¡ forhat *¡<*x*xx
Cxl.xrc*xrj"þir**xt *þþt¡Õtþþþkt i*fx*t***)t*¡otqot rot***xx**t******)Ìxx**

aubrout iñê 6toihg (ng, imag, n)
c

¡nteger*2 ng (512,512) , n
character imag(512,512)

c
do 13 i-1, n
do 13 j-l, n

inag (i, jl -char (ms (i, j) - 1)
13 coñt inue

rgturn
ênd

C¡q.r¡.¡o**¡.¡<***x.g*latt *toþkt ¡oþþþþß*{.to}x*rô(**********)r*)****þF****x
C* this subrout¡nê performg the t¡¡o-dimenBional convolut¡on ri
cì.ßì.lcl'Õtr¡q**rc*¡ct *&****roFtot *tot****)f þts****rþþt*)ts*iÕk*:tLrÞt***ä.i
c

aubrout ìnB gaugs (img, f ing, n)

integer¡iz ìmg(S12,512), f ing(512,512),x{512,512)
I nt€gerr(2 i, j,a,n

do l0 ì-1, n
x (i, 1) -0. 7*i mg (i, I) +9. 25* ¡ h9 (ì, 2) +0. BSx ¡ Ìg (¡, 3)
x (i,2) =9. 3*ì h9 (i, 1) +9. 4*ì hg (ì,2)+9, 25*i ms (¡, 3) +9. øS*ihs { ì,4)
x (ì, n-1) -0. 85* ¡ ng (i, n-3) +8. 25)ii irg (i, n-2) ;9. 4*ì hg (¡, n-l t+ +ø.3*img(i,n)

Page 3 of 4-----ll;;;t:s:e;;' ;;ìl;;:tt;ã:t;;;;;ii;;:i;;ã:;; ¡ ;;iì;;;----
do 19 i-3, n-2

x I ì, j).û. 4r(ì hg (ì, j) +ø. 25* (i ñq (ì, j -1) + ì iìa (i, i+1))+ +9.95*{ ihg (ì, j-2) +i¡ìs (i, j+2))
1ø cont ìnuê

c
do 11 i-1, n

a. tmg (1, j)
lng (1, j) -0,7*x (1, jl+9.25xx12, j) +ø. ø5*x {3, i)
f inìg (1, .i) .a- i mg {l , j)+129
a-i¡t9(2, jl
lhs (2, j) -ø.3¡rx (l, jl+ø,4xx12, i) +8,25xx (3, j) +ø. ø5*x (4, j)
f ¡h9(2, j)-a-¡ùs(2, j)+129
a. ihs (n-l, i)
i¡sln-l, j)-8.ø5*xln-3, j)+9,25xx(n-2, j) +9,4*x {n-1, j)+ +8.3*x (n, j)
f ¡ms (n-l, j).a- ¡mg (n-l, j) +129
a. ihs (n, i)
img (n, j).0.tSxx(n-2, j) +8.25xx (n-1, j) +8.7¡(x (n, ¡)
f i hg (n, j) .a- ihs (ñ, j) +129
do 5l i-3, n-2

a-¡ns(i,.i)
ihg (i, j) -ø.4xx (i, j) +8.25x (x (¡-1, ¡)+x(¡+1. i))+ +0.05x(x(i-2,¡)+x(i+2, ;))

f ihs(i, j).a-ihs(1, j)+129
5l cont inuB

do l1 ¡-1,n
¡f (f ¡hg (i, j), st.256) th6n

firdg(¡,j)-256
end ¡f

1l cont ì nuo
a6turn
€nd

c

Fìlê riult¡ Þrintêd on Fri Ar.¡s 28 22t23t37 1387

C ***$t*****1.***É¡(***¡orþt**¡dor**x¡or* ***)t
C* thìs subroutine dstects zero crossings of the bandpass Ìmage *
cpr¡orx¡crcr¿x*xxrc*rrrxrcþi¡oþþtxr*{.xt **x¡ort*ì(þtlÒþþr)*rxr.***{oßfr*)r***r.rþþþß***8*
^

gLJbrout inê zcross (f img, n)
L

i ntegerx2 f i rìg (512,512), n, ¡, j, g, U (3,512), th.es, neg
l09 ica l*2 val, dorr, up, lft,rgt, tlc, trc,blc,brc

c
do 41 i.1,2
do 41 i-l, n

g{ i+1, j} 'f ims (i, j)
41 cont inuê

do 49 i-2,n-I
do 42 g'1' ¡

g (1, s).s (2, s)
sf2,s).9(3,s)g(3,9).fims(i+l,s)

42 cont inue
do 4ø i-z,n-!if (n .eq, 512) then

thres- (128)
e lsê

t hr e4.129
Énd if
va l- (U (2, j) . ge. thres)
up. (g(1, il .ge. thrB6)
do¡. (g (3, jl ,ge. thres)
rgt- {9 (2, j+1) .96, thres)
lft-(g{2, j-1) . gê. thrês)
t lc- (C (1, i-1) . se. thres)
trc.(u(1, j+l) .96, thres)
b I c. (C (3, i -1) , 96. thrês)
brc- (c f3, j+1) .96. th¡.ês)
neg-0
if {uP) neg-neg+l
if (do¡.¡) neg.neg+1
if (rgt) neg-neg+1
ìf (lft) neg-neg+l
¡f (tlc) neo-neo+l
lf{trc} neõ.neõ+l
if(blc) neg.neg+l
lf (¡rc) neg-neg+l
lf ((val).or. (up. and. do!¡, and. lft.and. rgt, and. t lc. and. trc

+ , and. b lc. ãnd. brc). or. ((.not.up).and. (.not,doÈ).and.
+ (,not, lft).and, (,not,rgt)).or, (neg.eq.7)) then

f ih9{ i, j} -1
s l6ê

F¡lo recon Þr¡nted on Fri Aug 28 22¡26t38 1987 Þâge I of 2

CFr¡**x*xxr*r.{.**þf**sþt **i(þf** ** ** **!* **rttÕt *)Ít**)**)Ì*þti** ****H(
C* IHIS PRoGRAIl RECoNSTRUCIS Â 512 8Y 512 ¡¡IAGE FRoll ITS ;
Cx FIRST FoUR BANDPASS LEVEL REPRESENIATIoNS ANo ITS FoURIH i
C* LEVEL LOUPASS REPRESENTAI¡ON. *
C¡.**xxx****r**x+lr&t*¡rrr**,þk**x,f*****totþtol*þþþ*,¡:þþþt)F****jt**wÌ'rt
c

Integer*2 l ng {S12, 512) , ihs2 (512,512) , ¡ng3 (S12, 512 } , n, i . j, x, U, va I

charactBl. inag f 512,512)

rèad in inage

open (10, f i 16.' bpl', lorh.' unf ornìatted')
open (11, I i lè-' bÞ2', lor¡f1-' unforhat trd')
open (12, I i 1..'bp3', forh''unf orhatted')
opêñ (13, f i lc-'¡Þ4', f or¡r-'unf orhattêd')
open (14, f i I e-' lp4' , forñ.'un forEa t têd')
open (l S, f i le.'r6bu ¡ I t' . lorh-'uñforna t têd')

c
râad (13) ñ,ñ
do 20 i.l, n

read (t3l (ihag (i. j), j.1, n)
28 cont inue

cal I dBcod (¡nag, iñg,n)
¡!ad (14) n, n
do 21 l'1, n

read(14) (¡llag(¡' j!, j.1, n)
21 coñt iñuê

call decod (¡ñag. ¡hgz,n)
do 22 i-l,n
do 22 i-!,n

rirgzt¡,Jr-rrfigtr, t,+tttg¿|t I II -l¿J
22 cont inua

cal I .xÞand(ihgz, ihg3,n)
read (12) n,n
do 23 i-l, n

rêad(12) (ihaq(i, j), j.1,n)
23 çont inue

cal I decod(¡naq, ing,n)
call cohb(img, ing2, ing3,n)
cal I 6xpand{ ¡ñ92, ¡ñ93,n)
rêed (11) n,n
do 24 i.1, n

r6ad{11) (lnag (¡, j} '
j.1, n)

24 cont i nue
cal I decod(ihag, lh9,n)
ca ll cohb(img, ing2, iog3,n)
cal I êxpand(¡ngz, lhg3,ñ)
rcad (lgl n,ñ
do 25 i-1, n

.oad(lg) (ìilag(i. l), j-1,n)
25 cont inue

cel I dêcod(iitag, iirg,ñl
call collbf¡hg, ihg2, irig3,n)
cål I rto¡ñg(¡h92, iñag,n)
er ¡ tr (l5) n, n
do 26 i-1, n

¡¡r ite (15) (¡tag (¡, jÌ, j.l, n)
26 cont inue

! top
rnd

thià lubrout¡n6 dêcode! thê 83cii ¡hage ìnto ìntcaer torñat **a!ól**
C'ffietreþþr.q.þ:¡dqqqoþl**{ôþtr.tsËcÊrqqcÕr
c

3ub¡out ine decod (ihag, rg, n)

l ntôgèr*2 ¡e (512,512) , n, i , j, va l
che.act.r i nag (512,512)

do 3g i.l, n
do 30 j.l,n

¡9{i,j)-1 + ¡ char2 (¡ bag (i , j) }
3g cont i nur

r!turn
3nd

thir rubrout inr convèrts thr

File recon pr¡nted on Fr¡ Aug 28 22t26l.3ø L387 page Z of 2

c

^ 6ub.oul i nB atoihg(mg, ¡hag,n)
L

¡ntêssr*2 ng (512,512) , n

- charactêr imag (512,512)
l-

do 48 ì-1, n
do 40 J-l, n

ìmag(i, j)-char(h9(i, j) - 1)
49 cont iñuÊ

rêturn
€nd

c
cffr*¡rxx*x¡.¡.¡qx*rc*tÒ$**f*t**¡.þt(xxrr*¡öþF**x*x**)fxxTx*t *)r*þß*.*xrË*
C* th¡s subroutinè cohbines the loupass lirêgê Hith the x*r*****
Cr bahdpaB8 ¡magê fol.h¡ng th6 nBXt IoHpass ievel ìmage ¡<*rþr$**
cfttÌ'f*******r****¡o¡***þt,r******þfa)þ********x*ll**)rr.t{<**þt **i*x*
c

^ ¡ubrout ¡ôe comb (¡lng, img2, ìrîg3, n)
t_

^ integer*2 im9 (512,5I2) , 1ng2 ßI2,SI2l , iñg3(S12,S12),n,ì,j,x,U,h
L

do S9 i.l, n
do 50 j-1,ñ

i h92 (i , j) - ¡ hs (i , j) - 129 + ¡ñq3 { ì. i)
i l (i hs2 (i , j) , l t. 1) ih92 (i, jt-1

bU cont inuo
return
end

c
c*uoq.a¡¡¡¡"¡a¡"¡****þ*þþtoåx*xx'ß***x***&***x*¡cl***fr*x*x)tÞ*xxx**rx8x*xxtr;
C* th¡g Bubroutin6 expandg an n x n imago into a 2n x 2n image xxxx*x
Lþßtoþt***#{o¡þt *!þi$t*)þtotqoßl.40ß**$t**x*,Í**!r*****l:****idorx*xx**þt*x**xx*
c

- rubrout ine êxpand(¡hg2, img3,nì
l-

_ integerx2 i¡rg2{512,512},ims3(512,512),n,¡,i,o,ir,x,U
c

do 69 i-1, n
do 69 j.l, n

ims3 (ì*2, j*21-ingzli, j',
5ø cont ìnuê

o-^*2
r¡-2
ihg3(1,1).ims3{2,2)
do 78 i-2,o

x-r¡od2(i,ir)
if (x ,E0. g) then

ing3(i,1)-img3(i,2)
e ls6

img3 (i, 1) -9,5!*{ i mg3 (i -1,2) +i hg3 (ì+1, 2))
ênd ¡f

78 cont inue
do 8Ø j-2,o

U-hodz(i,h)lf (U .E0. 0) then
ims3 (l, j)-ins3(2, j)

elgB
iñs3 (1, j) -0.5x (ihs3 (2, j-1) +ims3 (2, j+1))

ênd ¡f
8ø cont inuè

do 9ø ¡-2, o
x.nod2(¡,n)
do 99 j-2, o

g-mod2 (i, m)
lt((x,eq. 1),and. (g.eq, ø)) th8n

¡ñ93(i, j).ø.5r.(¡hs3(i-1, j)+¡hs3(¡+1, j))
6lo6 ¡f{(x.êq.0) .and. (g.6q;1)} thên

ihs3 (¡, j) -ø,5*(ihs3 (i, j-I) +ihq3 (ì, j+l))
elee if((x,oq. l) .and. (g,eq, 1))-then

¡ ms3 (i, j) -ø. 25* { i hq3 (¡ -1 ; j -1) + i hq3 (ì +1, ¡ -1)+ + ìhs3 (¡-1. j +1) + ¡ hg3 (¡+1, j+1))
ehd if

98 cont inue
¡e turn
end

