
Routing Algorithms for Differentiated

Services in a Heterogeneous Network

Environment

by

WAN LIN

A Thesis

Submitted to the Faculty of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

University of Manitoba

Winnipeg, Manitoba, Canada

Thesis Advisor: K. Ferens, Ph.D., P.Eng'

@Wan Lin; May, 2004

THE UNTVERSITY OF MANITOBA

FACULTY OF GRADUATE STIJDIES
tr*t *t

COPYRIGHT PERMISSION

Routing Algorithms for Differentiated Services in a Heterogeneous Network Environment

BY

Wan Lin

A Thesis/Practicum submitted to the Faculty ofGraduate Studies ofThe University of

Manitoba in partial fulfillment ofthe r€quirement ofthe degree

of

MASTER OF SCIENCE

Wan Lin @ 2004

Permission has been granted to the Library ofthe University of Manitoba to lend or sell copies of
this thesis/practicum, to the National Library of Canadâ to microfilm this thesis and to lend or sell

copies of the film, ând to University Microfilms Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
orvner solely for the purpose of private study and research, and may only be reproduced and copied

as permitted by copyright laws or with express written authorization from the copyright owner'

Abstract

Difierentiated Services (DiffServ) has been proposed for the next genera-

tion network. DifiServ allows the users to pay for and receive differentiated

services. We realize that it is impractical to implement DifiServ in all nodes

at the same time. Thus, it is reasonable to assume that the network will con-

sist of both DifiServ capable nodes and DiffServ incapable nodes for quite

some time. For DifiServ routing, DifiServ capable links are preferred. But a

path consisting of oniy DifiServ capable nodes may not exist in the network.

Even if such a path exists, it may not be the "optimal" path.

In this thesis, we give routing algorithms for a DiffServ capable user to

establish a route in such a network. One of the routing metrics we consider

is DiffServ capability. The other metric is cost. Three routing algorithms

are given. In the fir'st algorithm, cost is given higher precedence over Diff-

Serv capability. In the second algorithm, DifiServ capability is given higher

precedence over cost. The first two algorithms consider the metrics as inde-

pendent metlics. In the third algorithm, we assign a DifiServ route selection

order number to each link in the network topology. The algorithm computes

the optimal path using the assigned DifiServ route selection order numbels.

Simulations in ns show that the third algorithm is more powerful than the

first two algorithms. Through simulations, we have proved that the algorithm

calculates the correct routing paths in all netwolk topologies.

Acknowledgements

I would like to express my sincerest gratitude to my advisor Prof. K.

Ferens for the many suggestions, helpful discussions and comments.

I rvould also like to say thank you to the other members of my thesis

examining committee, Prof. A. S. Alfa and Prof. Y. Zhang. They have

spent lots of their valuable time reading my thesis.

Table of Contents

Abstract

Acknowledgements 1l

Introduction L

1.1 Need for Quality of Service . I
1.2 Integrated Services 4

1.3 Differentiated Selvices 8

1.4 Multi-Protocol Label Switching 10

1.5 Need for Routing Algorithms t2

1.6 Organization of This Thesis L2

Difrerentiated Services Architecture 14

2.I The DifiServ Field of an IP Packet 15

2.2 Per-Hop Behavior 16

2.2.L Assured Forwarding PHB 17

2.2.2 ExpeditedForrvardingPHB 18

2.3 In Packets and Out Packets . . . 19

2.4 T\'affic Classifrcation and Conditioning 20

2.5 Packet Markers

2.6 DiffServ Domain

2.7 DiffServ Router Components .

2.7.L Classifiers

3.1 Basic Concepts

3.2 Extensions to the OSPF Protocol

3.3 Hop-by-Hop Routing fol Premium Tl'affic in DiffServ

3.4 QoS-Based Routing Algorithms with a Single Metric

3.4.1 Bandwidth

3,4.2 Delay

3.5 QoS-Based Routing AÌgorithms with Dual Metrics .

3.5.1 Bandwidth and Cost

3.5.2 Bandwidth and Delay

3,5.3 Delay and Cost

3.5.4 Two Additive Metrics

3.6 QoS-Based Routing Algorithms with Multiple Metrics .

lv

2t

2l

22

2.7.2 Monitor/Meter

2.7.3 Ttaffic Conditioner

2,7.4 Dropper24
2.7.5 Shaper.25
2,7.6 Bufier Manager 25

2.7.7 LinkScheduler26
2.8 Summary ...26
2.9 Glossarv of Terms 27

QoS-Based Routing Àlgorithms

24

35

.lo

40

41

,1.t

42

42

43

43

44

48

49

3.7 Multiple Path Routing Algorithms

Routing Algorithms for Difrerentiated Services 61

4.t Source Routing And Hop-By-Hop Routing 62

4.2 Dijkstra's Algorithm64
4.3 Algorithms66

4.3.1 Problem Definition 66

4.3.2 Algorithm1....68
4.3.3 Algorithm2....73
4.3.4 Algorithm 3 - A Difierent Approach74

4.4 Implementation Issues 79

Simulations

5.1 Introduction to ns .

5.1.i DiffServ Support in ns

5.L.2 Routing in ns

5.2 Adding Our New Module to ns

5.3 Other Modifications to ns ,

6.4 Simulations

5.4.1 Network Topology One .

5.4.2 Network Topology Two .

5.4.3 Network Topology Three .

5.5 Data Structures and Prototypes in the Implementation

Conclusions 1L1

6.1 Conclusions111
6.2 Recommendations for F\rture Wolk7L2

81

81

82

82

83

84

85

85

r02

103

105

References

Chapter 1

Introduction

L.1- Need for Quality of Service

The Internet has undergone a tremendous growth. In addition to the tra-

ditional applications such as telnet, ftp and gopher, many new applications

have emerged in the last decade. WWW is now the primary application

for the Internet. Multimedia applications such as Video-on-Demand, Video-

Conferencing and IP Telephony applications have also appeared. These ap-

plications require valious degrees of guarantees regarding bandwidth, delay

jitter, latency and loss rate. Network trafrc has increased as the number of

users and applications have increased, The question is whether increasing

bandrvidth - the data carrying capacity of the network - is sufÊcient to ac-

commodate these incre¡sed demands, The answer is no, it is not. The nature

of tra.frc through the Internet has changed.

In the iraditional IP (Internet Protocol) world, packet delivery is on

a best-efiort basis and no gus.rantees are given with respect to the packet

stream's characteristics. A voice stream is more sensitive to packet delays

than to packet losses. If a packet experiences a delay of more than 400

milliseconds, the voice becomes unintelligible. But it can typically tolerate

packet losses of up to 20%. An application with contrasting demands is the

standard ftp. ftp sessions are more concerned about throughput than delays.

Many critical applications such as corporate data access applications need

reliable and secure network support. So, as we can see, the Internet is filled

with trafrc from applications with contrasting requirements and the current

best-efio¡t style service is no longer sufficient.

Quality of Service (QoS) is the ability of a network element (e.g. an

application, host or router) to have some level of assurance that its traffic

and service lequirements can be satisfied. There are essentially two types of

QoS available [71]:

¡ Resource Reservation: On an application's QoS request, and subject to

bandwidth management polic¡ network resources ale reserved for the

application's exclusive use. RSVP and Integrated Services (IntServ)

provides this service.

¡ Prioritization: Network trafrc is classified and apportioned network

lesources according to netrvork management policy criteria. An appli-

cation may request special treatment of its trafrc subjecting to net-

work management policy. Differentiated Se¡vices (DifiServ) provides

this service.

These QoS protocols and algorithms are not competitive or mutually

exclusive, but on the contrâry, they are complementary. As a result, they

are designed for use in combination to accommodate the varying operational

requirements in different network contexts.

These types of QoS can be applied to individual application flows or to

flow aggregates [72]:

¡ Per Flow: A flow is defined as an individual, uni-directional, data

stream between a sender and a receiver. A flow is uniquely identified

by the flow's transport protocol, source address, source port number',

destination address, and destination port number.

r Per Aggregate: An agglegate is two or more flows that have something

in common. Usually they have the same source address, destination

address and transport protocol. But they may be aggregated in other

Ìvays.

To accommodate the need for these different types of QoS, there a.re a

number of different QoS protocols and algorithms:

o ReSerVation Protocol (RSVP): Provides the signaling to enable net-

wo¡k resource reservation (also known as Integrated Services or IntServ).

r Diffe¡entiated Services (DifiServ): Provides a coarse and simple way to

categorize and prioritize network traffic (flow) âggregates.

r Multi Protocol Labelling Switching (MPLS): Provides bandrvidth man-

agement for aggregates via network routing control according to labels

in (encapsulating) packet headers.

¡ Subnet Bandwidth Management (SBM): Enables categorization and

prioritization at Layer 2 (the data-link layer in the OSI model) on

shared and switched IEEE 802 networks.

Figure 1.1: Relations among the QoS models

t.2 IntegratedServices

Integrated Services (IntServ) is an Inte¡net service model that includes

both traditional best-effort service and real-time services. IntServ research

started in the eally 1990s, and has generated much interest and discussions

by 1994. The problern IntServ research work addresses is how to provide

network support for real-time applications as well as for non-real-time appli-

cations. The researchers make the observation that many emerging real-time

applications - multimedia teleconferencing, l'emote video, computer-based

telephony, remote visualization, etc - ¡vill have very different Quality of Ser-

vice (QoS) requirements than the traditional text-based non-real-time appli-

cations like ftp or telnet. IntServ researchers realized that they were design-

ing a service model that is based on conjectures about future applications,

institutional requirements, and technical feasibility.

The Integrated Service model is an extension to the original Internet best-

effort a.r'chitecture, and it includes tlvo services targeted to¡va.rds real-time

applications: guaranteed service and predicted service. Guaranteed service

involves pre-computed worse-case delay bounds and predicted service uses

the measured performance of the netrvork in computing delay bounds [58].

Based on the above considerations, the researchers believe that the In-

tegrated Service model wouid 1) keep additional flow state in routers, and

2) require an explicit setup mechanism to install and eliminate flow state in

routers. The proposed solution, then, is to have end hosts initiate a quality

of service (QoS) request prior to the transmission of traffic to networks. Such

request will be carried by a reservation protocol called RSVP. If such a re-

quest is accepted by networks, then the netwo¡k will create per-flow state to

guarantee such a QoS request during the transmission. If the network does

not have enough resources, then the QoS request is denied.

The ReSerVation Protocol (RSVP) is a signaling protocol that provides

reservâ.tion setup and control to enable the Integrated Services [IntServ].

RSVP is the most complex of all the QoS technologies, for applications and

fo¡ network elements. The protocol works as illustrated below:

Figure 1.2: RSVP

¡ Senders characterize outgoing traffic in terms of the upper and lower

bounds of bandwidth, delay, and jitter. RSVP sends a PATH message

fi'om the sender that contains this traffic specification (TSpec) informa-

tion to the destination address, Each RSVP-enabled routel along the

downstrea.m route establishes a path-state that includes the previous

source address of the PATH message.

¡ To make a resource reservation, receivers send a RESV (r'eservation

request) message upstream. In addition to the TSpec, the RESV mes-

sage includes â request specification (Rspec) that indicates the type of

Integrated Services required - either Controlled Load or Guaranteed

- and a frlter specification (filter spec) that characterizes the packets

for which the reservation is being made. Together, the RSpec and fil-

ter spec represent a flow-descriptor that ¡outers use to identify each

reservation.

¡ When each RSVP router along the upstream path receives the RESV

message, it uses the admission control process to authenticate the re-

quest and allocate the necessary resouÌces. If the request cannot be

satisfied (due to lack of resources or authorization failure), the router

returns an error back to the receiver. If accepted, the route¡ sends the

RESV upstream to the next router.

r When the last router receives the RESV and accepts the request, it
sends a confirmation message back to the receiver.

r There is an explicit tear-down process for a reselvation when the sender

or receive,- ends an RSVP session.

Integrated Service effort has done a very good job in 1) analyzing the

requirements of real-time applications and 2) arguing for the efrciency of

an integrated netwo¡k ofiering difierent kind of services instead of disjoint

networks each with a distinct service model. However, the implementation

framewolk IntServ has raised serious concerns. Is it feasible to implement

and maintain per-flow state in routers, especially in those which handle a

lot of aggregated trafrc? The RSVP protocol is complex, and it may be

unrealistic to expect routers to devote much resources to interpreting RSVP

requests and handling admission control for established state. Last, there is

the partial deployment problem for RSVP itself. If there are routers on a

path which do not understand RSVP and can't make reservations, then it

would be impossible to make any guarantees on end-to-end delay bounds.

1-.3 Differentiated Services

In the Differentiated Services architecture (DifiServ), packets are classi-

fred into different classes and given differentiated services. Users can choose

from the service level best suited for their applications. They will subsclibe

to and pay for Service Level Agreements (SLAs) fi'om their Internet Service

Providers (ISPs). An SLA specifies the expected service a user will receive.

The DiffServ architecture augments the current best-efiort Internet archi-

tectule. It consists of mechanisms to be implemented in existing Internet

devices-network routers and end hosts-but pushes the complexity of the sys-

tem towards the edge of the network, which makes it more scalable. A variety

of services can be constructed using the simple primitives provided by the

DiffServ architecture. DifiServ is able to offer very flexible services to users

with different requirements.

One reason for IP's tremendous success is its simplicity. Differentiated

Services (DiffServ) provides a simple and coarse method of classifying services

of va¡ious applications. DiffServ is kind of combination of culrently used

best-effort service model and IntServ.

Currently, there are two standard per hop behaviors (PHBs) defrned to

Ìepresent two service levels (trafrc classes):

r Expedited Forwarding (EF) [DitrServ EF]: Has a single codepoint (Diff-

Serv value). EF minimizes delay and jitter and provides the highest

level of aggregate quality of service. Any traffic that exceeds the traffic

profile (rvhich is defined by local policy) is discarded.

r Assured Forwarding (AF) [DiffServ AF]: Has four classes and three

drop-precedences within eâch class (so a total of twelve codepoints).

Excess AF traffic is not delivered with as high probability as the tÌâ.mc

"within profile," which means it may be demoted but not necessarily

dropped.

DifiServ assumes the existence of a service level agreement (SLA) between

networks that share a border. The SLA establishes the policy criteria, and

defines the tlafrc profile. It is expected that traffic will be policed and

smoothed at egless points according to the SLA, and any trafrc out of profile

(i.e. above the upper-bounds of bandwidth usage stated in the SLA) at an

ingless point have no guarantees (or may incur extra costs, accoÌding to the

SLA). The policy criteria used can include time of da¡ source and destination

addresses, transport, and/or port numbers (i.e. application lds). Basically,

any context or traffic content (including headers or data) can be used to

apply policy.

As illustrated in Figure 1.3, PHBs are applied by the conditioner to

trafrc at a network ingress point (network border entry) according to ple-

determined policy criteria. The trafrc may be marked at this point, and

routed according to the marking, then unmarked at the network egress (net-

Figure 1.3: Differentiated Services

work border exit). Originating hosts can also apply the DifiServ marking.

detailed description of the alchitecture of Difierentiated Services is given

Chapter 2.

L.4 Multi-Protocol Label Switching

Multi-Protocol Label Switching (MPLS) is similar to DiffServ in some

lespects, as it also marks traffic at ingress boundaries in a network, and

un-marks at egÌess points. But unlike DiffServ, which uses the marking to

determine priority within a router, MPLS malkings (20-bit labels) are pri-

marily designed to determine the next router hop. MPLS is not application

A

in

controlled (no MPLS APIs exist), nor does it have an end-host protocol

component. Unlike any of the other QoS protocols we desc¡ibe in this the-

sis, MPLS resides only on louters. And MPLS is protocol-independent (i.e.,

multi-protocol), so it can be used with network protocols other than IP (like

IPX, ATM, PPP or Flame-Relay) or directly over data-link layer as well

[MPLS F\'amework, MPLS Architecture].

MPLS is more of a traffic engineering protocol than a QoS protocol, per

se. MPLS routing is used to establish fixed bandwidth pipes analogous to

ATM or Flame Relay virtual circuits. The difference is arguable since the

end-result is service improvement and increased service diversity with more

flexible, policy-based network management control, all of which the other'

QoS protocols also provide. MPLS simplifies the routing process (decreases

ovelhead to increase performance) while it also increases flexibility with a

layer of indirection. The following is a sketch of the process used by MPLS-

enabled ¡outers called a Label Switching Router (LSR):

r At the first hop router in the MPLS network, the router makes a for-

rvarding decision based on the destination address (or any other infor-

mation in the header, as determined by local policy) then determines

the appropriate label value - which identifies the Forwarding Equiva-

lence Class (FEC) - attaches the label to the packet and forwards it to

the next hop.

¡ At the next hop, the router uses the label value as an index into a table

that specifies the next hop and a new label. The LSR attaches the new

label, then forwards the packet to the next hop.

11

1.5 Need for Routing Algorithms

Routing is essential for data transmission in the network. Standald rout-

ing algorithms are typicaliy single objective optimizations, that is, they may

minimize the hop-count, or maximize the path bandwidth, but not both.

These path computation algorithms are widely used in the current best-efiort

service network.

For QoS support, we may need to consider two or mo¡e metrics. It has

been proved that the problem of finding the best path subject to multiple

constlaints is an NP-hard problem [43]. Thus the QoS routing probiem is re-

garded as not-feasible and, hence, unattractive, though desirable in telecom-

munications networks. However, many QoS routing algorithms have been

developed for Integrated Se¡vices. A few papers have addressed the rout-

ing problems fol Difierentiated Services. A review of the existing routing

algor-ithms is given in Chapter 3.

In this thesis, we raise the problem of how to find optimal routing in a

network consisting of DifiServ capable nodes and DiffServ incapable nodes

(see Definition 4.3.1). We will give routing algorithms for Differentiated

Services in such a network. Our algorithms have very little impact on the

currently used routing algorithms and protocols and thus are practical.

1.6 Organization of This Thesis

In Chapter 1, we explain why we need Quality of Service (QoS) and give

an iutroduction to the common Quality of Service models.

In Chapter' 2, we give a more detailed description of the Differentiated

Services (DiffServ) Architecture. There are currently two Per-Hop Behav-

ior groups defined for DiffServ. The first is Assuled Forwarding (AF) PHB.

Four AF classes, each with three drop precedence va.lues, are defined and

required in a DiffServ implementation. The second is Expedited Forward-

ing (EF) PHB. EF PHB is not required to be implemented in a DiffServ

implementation.

In Chapter 3, we give a review of the existing QoS-based routing algo-

rithms. Theorem 3.1.1, Theorem 3.1.2 and Theorem 3.1.3 show that quality

of service routing problems are very hard.

In Chapter 4, rve raise the problem of how to find optimal routing schemes

in a netwo¡k consisting of DifiServ capable nodes and DiffServ incapable

nodes (see Definition 4.3.1). We develop three routing algorithms for Differ-

entiated Selvices in such a netwolk. Our algorithms have very little impact

on the currently used routing algorithms and protocols.

In Chapter 5, we give a brief introduction to the Network Simulator

(ns) that has been developed at the Lawrence Berkeley National Laboratory

(LBNL) of the University of California, Berkeley (UCB). Then we show how

our ne\ry routing algorithm developed in Chapter 4 is implemented and added

to ns. Network topologies are then created for simulations in ns. The simula-

tions show that our algorithm is correct and easy to implement. Simulation

results are presented in this chapter.

In Chapter 6, we conclude the thesis with a brief summary of our research

and raise some issues fo¡ future wo¡k.

-tó

Chapter 2

Differentiated Services

Architecture

In the Differentiated Services (DifiServ or DS) architecture [67, 68] , pack-

ets are marked into a small number of classes at the edge of the network to

be treated differentially according to the Service Level Agreements (SLAs)

specified. Users can choose the se¡vice level best suited for their applications.

They subscribe to and pay for SLAs from their Internet Service Providers

(ISPs). An SLA specifies a plofile of what a customer's t¡a.frc will look like.

The customel pays for the SLA under the condition that the ISP delivers the

specifled forwarding service to traffic within the profile.

DifiSe¡v takes the approach to combine the best of both worlds: a high

degree of aggregation from the best-eflort model and QoS assurance from the

IntServ model. The edge routers keep per-flow state, and monitor and malk

trafrc using trafrc conditioners. The interior routers are still stateless, as in

74

the current Internet. This approach is more scalable than that of IntSelv.

Like IntServ, DifiServ takes advantage of the observation that many real-

time applications a.r'e adaptive and do not require stringent network gualan-

tees. However, it differs from IntServ in a number of ways. Instead of trying

to support a very fine level of QoS specifications in network itself, DifiSelv

only supports that level of specifications at the edge of the netrvork, where

it maps these QoS specifications to a few classes of packets. In the intelior

of the network, DiffServ treats different classes of packets differently. This

design simplifies the design of the interior network and pushes the complexity

to the edge of the network.

2.t The DiffServ Field of an IP Packet

The research work on DiffServ started in late 1997. By early 1998, a

working group for Differentiated Selvices (DitrServ WG) was chartered in the

Internet Engineering Task Force (IETF) and active standardization process

was in progress. The DiffServ WG attempts to standardize the use of the

DifiServ field in both IPv4 and IPv6 packet headers.

The Difierentiated Services Field (or DifiServ Field) [67] is the IPv4

header TOS octet [52] or the IPv6 T\'affic Class octet [61]. The DiflSer"v

field contains a 6 bit codepoint called the DiffSelv codepoint (DSCP). The

DSCP field determines the kind of per-hop behavior (PHB) that the flow

should receive. All codepoints must be mapped to some PHB and code-

points that are not mapped to a standardized PHB should be mapped to a

Default PHB. The PHBs define the forwarding behaviolfor the florv at that

15

particulaÌ router. The two-bit currently unused (CU) freld is reserved. The

value of the CU bits are ignored by differentiated services-compliant nodes

when determining the per-hop behavior to apply to a leceived packet. The

DiffServ field structure is presented below:

01234567
+- - -+- - -+---+-- -+- - -+- --+---+-- -+

I DSCP ICU I

+-- -+- --+-- -+---+---+- - -+---+---+

DSCP: differentiated scrvices codepoint

CU: currently unused

2.2 Per-Hop Behavior

A per-hop behavior (PHB) is a description of the externally observable

forwarding behavio¡ of a DiffServ node applied to a particular DifiServ be-

havior aggregate. The PHB is the means by which a node allocates lesources

to behavior aggregates. The observable behavior of a PHB uray depend on

certain constraints on the traffic characteristics of the associated behavior

aggregate or the characteristics of other BAs. PHBs may be specified in

terms of their resource priority relative to other PHBs, or in terms of their

relative observabie traffic characteristics.

Currentl¡ two types of PHBs for DiffServ have been standaldized by the

Internet Engineering Task Folce (IETF): the Assured Forwarding (AF) PHB

16

group [69] ând the Expedited Forwarding (EF) PHB group [70]. Each PHB

group is allocated three bits of the DifiServ field.

2.2.L Assured Forwarding PHB

Assured Forwarding (AF) PHB was proposed in [69]. In AF PHB, the

edge devices of the netrvork monitor and mark incoming packets of either

individual or aggregated flows. A packet of a flow is marked IN (in-profile)

if the temporal sending rate at the arrival time of the packet is within the

contract profile of the flow. Otherwise, the packet is marked OUT (out-

of-profile). The temporal sending rate of a flow is measured using TSM

(Time Sliding Window) or a token bucket controller. The core routers in the

network provide RIO (RED with IN/OUT) drop policy.

AF PHB is a means for a DifiServ domain to ofier difierent levels of

forwarding assurances for IP packets received from a customer of a DiffServ

domain. Four AF classes are defined, where each AF class in each DiflServ

node is allocated a certain amount of forwarding Ìesources. IP packets that

wish to use the services provided by the AF PHB group are assigned by the

customer or the provider of a DiffServ domain into one or more of these AF

classes according to the services that the customer has subscribed to.

Within each AF class, IP packets are marked with one of three possible

drop precedence values. In case of congestion, the drop precedence ofa packet

determines the relative importance of the packet within the AF class. A

congested DiffServ node tries to protect packets rvith a lower drop pt'ecedence

value from being lost by preferably discarding packets with a higher drop

precedence value.

'I

In a DiffServ node, the level of forwarding assurance of an IP packet thus

depends on (1) how much forwarding resources has been allocated to the AF

class that the packet belongs to, (2) what the cu¡rent load of the AF class

is, and in case of congestion within the class, (3) what the drop precedence

of the packet is.

AF PHB must be implemented in a DiffServ implementation.

2.2.2 Expedited Forwarding PHB

Expedited Forwarding (EF) PHB rvas proposed in [70] as a premium

service for the DiffServ netrvork.

In contrast to AF PHB, the EF PHB group is designed to build a low loss

rate, lorv latenc¡ low jitter, assured throughput, end-to-end service through

a DiffServ domain. Such a service appears to the endpoints like a point-

to-point connection or a "virtual leased line". The departure rate of the EF

traffic should equal or exceed a configurable rate independent of the intensity

of any other traffic. The departure rate is measured over any time interval

equal to or longer than a packet time. Several types of queue scheduling

schemes (e.g., a priority queue, a single queue with a weighted round robin

scheduler, and class-based queue) may be used to implement the EF PHB.

EF PHB is not required to be implemented in a DiffServ implementation.

It is just an option.

18

2.3 In Packets and Out Packets

At the edge of the netwolk, the ISP's edge routers classify packets and

map traffic to their respective SLAs. Tlaffic sent within the profrles in SLAs

are marked by edge routers into difierent classes of packets. Tl'afic sent

outside the profiles in SLAs are left unma.rked by the edge routers and is

considered opportunistic traffic. There are two types of packets: IN (in-

profile) packets and OUT (out-of-profile) packets. IN packets represent pack-

ets within a profrle and OUT packets represent packets beyond a profile. The

edge routels mark packets as IN packets if the traffic is within a customer's

SLA. Anything in excess of the SLA is tagged as OUT packets.

Different conditioning actions may be applied to the in-profile packets

and out-of-profile packets. In-profile packets may either be allowed to enter

the DiffServ domain without furthel conditioning or may have their DiffServ

codepoint changed. The latter happens when the DifiServ codepoint is set to

a non-Default value for the first time, or when the packets enter a DifiServ

domain that uses a diffe¡ent PHB group or codepoint to PHB mapping pol-

icy for this traffic stream. The out-of-profile packets are either dropped or

ma¡ked with a different PHB by the egress router. The ingress router classi

fies traffic into aggregates based on DSCP. This is then policed according to

the aggregate profiles, A core ¡outer may introduce some burstiness into an

in-profile tlaffic because of queuing or increased agglegation. So, the egress

may have to shape the trafrc so that the downstream clouds do not police

this traffic unfairly.

Inside the network, core routers only need to distinguish between two

types of packets and give IN packets preferentiai treatment in terms of band-

19

width or delay, or both, In DifiServ, only edge routers need to keep per-flow

state and the core routers keep no per'-flow state. This way, the complexity of

the system is pushed to the edge of a network. Putting per-flow state in only

edge routers makes DiffServ architecture more scalable than IntServ. Addi-

tionally, SLAs serve as a basis for ISPs to account for the network resout'ce

usage.

2.4 TYaffic Classification and Conditioning

Differentiated Services a¡e extended â.cross a DiffServ domain boundaly

by establishing a SLA between an upstream network and a downstream Diff-

Serv domain. The SLA may specify packet classifrcation and re-marking rules

and may also specify traffic profrles and actions to trafrc streams which are

in- or out-of-profile. The Tþaffic Conditioning Agreement (TCA) between

the domains is derived (explicitly or implicitly) from this SLA.

The packet classification policy identifies the subset of trafrc which may

receive a difierentiated service by being conditioned and/or mapped to one

ol more behavior aggregates (by DifiServ codepoint re-marking) within the

DifiServ domain,

T!'affic conditioning performs metering, shaping, policing and/or le-marking

to ensuÌe that the trafrc entering the DiffServ domain conforms to the rules

specifled in the TCA, in accordance with the domain's service provision-

ing policy. The extent of traffic conditioning required is dependent on the

specifics of the service ofiering, and may range from simple codepoint re-

ma.rking to complex policing and shaping operations. When packets exit the

20

traffic conditioner of a DifiServ boundary node the DifiServ codepoint of each

packet must be set to an appropriate value.

TYaffic meters measure the temporal properties of the stream of packets

seiected by a classifier against a trafrc profile specified in a TCA. A meter

passes state information to other conditioning functions to trigger a particu-

lal action for each packet that is either in- or out-of-profile (to some extent).

2.5 Packet Markers

Packet markers set the DiffServ field of a packet to a particular codepoint

and adds the marked packet to a palticular DifiServ behavior aggregate. The

marker may be configured to malk all packets, that are steered to it, to a

single codepoint, or may be configured to mark a packet to one of a set of

codepoints used to select a PHB in a PHB group, according to the state of

a meter. When the marker changes the codepoint in a packet, it is said to

have "re-marked" the packet.

2.6 DiffServ Domain

A DiffServ (or DS) domain consists of a set of DiffServ capable nodes

connected together and governed by a common policy for provisioning ser-

vices. Each DiffServ domain has an ingress DiflServ node that provides

fine-grained classification. This node selects a PHB to be associated with

the florv and conditions the flow if necessary. A DifiServ domain consists

of DiffServ boundary nodes and DifiServ interior nodes. DifiServ boundary

nodes intel'connect the DifiServ domain to other DiffServ capable or Diff-

Serv incapable domains, while DifiServ interior nodes only connect to other

DiffServ interior or boundary nodes within the same DifiServ domain. Both

DiffServ boundary nodes and interior nodes must be able to apply the appro-

priate PHB to packets based on the DiffServ codepoint. In addition, DiflServ

boundary nodes may be required to perform trafrc conditioning functions as

defined by a Tfaffic Conditioning Agreement between their DifiServ domain

and the peering domain that ihey connect to.

Traffic enters a DiffServ domain at a DiffServ ingress node and Leaves a

DiflServ domain at a DifiServ egress node. DifiServ boundary nodes act both

as a DiffServ ingress node and a DifiServ egress node for different directions

of trafrc. A DiffServ ingress node is responsible for ensuring that the traffic

enteling the DiffServ domain conforms to â,ny TCA between it and the other

domain to which the ingress node is connected. A DiffServ egress node

may perform traffic conditioning functions on traffic forwarded to a directly

connected peering domain, depending on the details of the TCA between the

two domains.

2.7 DiffServ Router Components

The basic components of a DifiServ router are classifrers, trafrc condi-

tionels, meters, buffer managers, shapers and link schedulers.

22

2.7.L Classifiers

A classifrer is a module that selects packets based on certain fields of the

packet header and according to certain ruies. The packets are identified to

belong to some flow defined by a flow ID. They are then passed on to a

traffic conditioner defined for that particular flow. There are two types of

packet classifrers defined in the DifiServ architecture - behavioral aggregate

classifier and multi-field classifier.

A behavioral aggregate (BA) classifier selects or classifies packets based

on the DSCP freld only. If different customers use the same interface to send

packets, the BA classifie¡ will not be able to distinguish the packets among

the users. In other words, it is impossible to enforce the TCAs on a per-

customel basis using a BA classifier. Multi-Field classifiers should be used

in such cases.

A MultiField (MF) classifler selects packets based on combinations of

various frelds of the IP packet header. These fields may be the destination

address, source address, DSCP, protocol ID, source port number and the

destination port number.

2.7.2 Monitor/Meter

A monitoring interface enables collection of statistics regarding traffic

calried at various DifiServ service levels. These statistics are important for

accounting pulposes and for tracking compliance to service level agreements

negotiated with customels. Specifically, counter information on how many

packets were transfer¡ed in-plofile vs. out-of-profile would be useful on a

23

customer-by-customer basis.

Boundary routers use classifiers to identify classes of trafrc submitted for

transmission through the DiffServ network. Once trafrc is classified at the

input to the router, traffic from each class is iypically passed to a meter. The

meter is used to measure the rate at which trafrc is being submitted for each

class. This rate is then compared against a trafrc profile, which is part ofthe

TCA. Based on the results of the compalison, the meter deems particular

packets to be conforming to the profile or non-conforming. Appropriate

policing actions are then applied to out-of-profiIe packets.

2.7.3 TYaffic Conditioner

A tlaffic conditioner (TC) is used to make sure the traffic confolms to

the negotiated profile. The traffic conditioner may be a marker, droppel

ol shaper. A trafrc profile represents the temporal properties of the traffic

stream. The traffic conditioner uses â meter and determines whether the

packet is in-profile or out-of-profrle. It may decide to drop or re-queue an

out of profile packet and normally queues an in-profile packet. The condition-

action parameters are decided by the service provider and may be difierent

at each DifiServ router'.

2.7.4 Dropper

A dlopper discards some or all of the packets in a tra.ffic stream in order

to bring the stream into compliance with a traffic profile. This is the simplest

form of policing that may be supported by ingress routers.

2.7.5 Shaper

A shaper delays some or all of the packets in a trafrc stream passing

through the router in order to bring the stream into compliance with a traf-

fic profile. A shaper usually has a finite-size buffer, and packets may be

discarded if there is not sufficient bufier space to hold the delayed packets.

Boundary routers are not required to provide shaping functionality, but may

do so for the following reasons: (1) Ingress routers may use shaping as a

folm of policing - when submitted traffic is deemed non-conforming, it must

be policed to protect the DifiServ netwo¡k, One form of policing is to de-

lay submitted trafrc in a shaper until it conforms to the profile specified in

the TCA. This is usually referred to as policer shaping. (2) Egress routers

may shape behavior aggregate traffic before it is submitted to a subsequent

provider's netrvork. This preventative measut'e avoids policing action in the

subsequent network. This is usually referred to as egless shaping.

2.7,6 Buffer Manager

The main function of a bufier manager is to manage the queues. The

two main aspects to buffer management are: queue selection and congestion

control.

Queue Selection deals with the selection of a queue for the packet. The

strategies adopted for this include Class Based Queueing (CBQ) and Mi-

croflow Based Queueing (MBQ). The main goal of CBQ is to aggregate trafrc

into classes. Use of this class-hierarchy enables link sha.ring too. When the

classification is more fine-grained and thus we have more classes, it becomes

25

a micÌoflow-based queueing.

Congestion Control deals with the issue of controlling congestion. An

active queue manâgement strategy helps in controlling congestion. The buffer

manager controls the length ofthe queues by dropping packets at appropriate

times. Queues are an integral part of any network as they are required to

handle traffrc bursts, But long queues can increase the delay in a netrvo¡k.

Effective queue management strategies are important.

2.7.7 Link Scheduler

A scheduler is an element which gates the departure of each packet that

ar¡ives at one of its inputs, based on a scheduling algorithm. It has one or

more input and exactly one output. Every input has an upstream element

to which it is connected, a¡d a set of parameters that afiects the scheduling

of packets received at that input.

Generally, schedulers can be broken into two different classes. The first

is known as work conserving. The other class of schedulers are known as

non-work conserving.

2.8 Summary

In the DiffServ domain, customers mây contract for a certain level of ser-

vice with the service provider. This contract can be made for individual or

aggregated flows. The routers at the edge of the network, called boundary

routels or ingress routers, may monitor', measure, shape, classify and mark

packets of floivs (individual or aggregated) according to the subscribed ser-

26

vice âgreement. The core routers forward packets differently to provide the

subscribed service. The core routers only need to provide several forward-

ing schemes to provide service differentiation, and thus we can deploy the

DifiServ to large networks.

Two PHB groups ale currently defined in DifiServ: the Assured For-

warding (AF) PHB group [69] and the Expedited Forwarding (EF) PHB

group [70]. While Expedited Forwarding is optional, Assured Forwarding is

required in an implementation of DifiSe¡v. Expedited Forwarding, horvever,

can be used as a premium service for the DiffServ network like a "virtual

leased line,"

2.9 Glossary of Terms

The following is a list of the main terms used in the Diffelentiated Services

Architecture [67],

Assured Forwarding (AF) - A specifrc DiffServ behavior, which divides

IP packets into four separate per-hop-behavior (PHB) classes. Using

these classes, a providel may offer different levels of service for IP pack-

ets received from a customer domain. Each Assured Forwarding class

is allocated a specified amount of bufier space and bandwidth.

Autonomous System (AS) - A self-connected set of networks that are

generally operated within the same administrative domain.

Behavior Aggregate (BA) - a collection of packets with the same code-

point crossing a link in a particular direction. The terms "aggregate"

and "behavior aggregate" are used interchangeably.

BA classifier - a classifier that selects packets based only on the contents

of the DiffServ field.

Best-Efrort Service - The default behavior of TCP/P networks in the

absence of QoS measures. TCP/P nodes rvill make their best efiort

to deliver a transmission but will drop packets indiscriminately in the

event of congestion managing the bandwidth or assigning priority to

delay-sensitive packets. The Internet today uses best-effort service.

Codepoint - Codepoint markings are made in a new implementation of

the IP version 4 Type of Service (ToS) header called the DiffServ freld

(six bits, reserving two for congestion notifrcation) and are used to

select a per hop behavior (PHB). This marking takes place on the host

ol on a boundary or edge device.

Core router - A router on the network service provider WAN that has no

direct connections to any routers at customer sites.

DifrServ-compliant - a node enabled to support differentiated services

functions and behaviors.

Differentiated Services Boundary - The edge of a DifiSe¡v domain,

where classifiers and trafrc conditioners are likely to be deployed. A

DifiServ boundary can be further sub-divided into ingt'ess and egress

nodes, where the ingress/egress nodes are the downstream/upstream

nodes of a boundaly link in a given trafrc direction. A DifiServ bound-

ary may be co-located rvith a host, subject to local policy.

28

Differentiated Services Domain - A contiguous portion of the Internet

over which a consistent set of DifiServ policies are administered in a

coo¡dinated fashion. A DiffServ domain can represent difierent ad-

ministrative domains oÌ autonomous systems, different tt'ust regions,

diffelent network technoiogies, hosts and routers, etc.

DiffServ egress node - a DifiServ boundary node which handles traffic

as it leaves a DiffServ domain,

DiffServ ingress - a DiffServ boundary node which handles trafrc as it

enters a DifiServ domain.

DiffServ interior node - a DifiServ node that is not a DifiServ boundary

node.

DiffServ ffeld - the IPv4 header TOS octet ol the IPv6 Tlaffic Class octet.

Dropper - a device that discards packets based on specified rules

Expedited Forwarding (EF) - A Per-Hop Behavior (PHB) in the Diff-

Serv standard, used to create a virtual leased line service.

IPv4 (Internet Protocol version 4) - The most widely deployed ver-

sion of the Internet Protocol. IPv4 provides some basic traffic classifr-

cation mechanisms with its IP Precedence/CBQ and Type of Service

header fields, However, network hardware and software traditionally

have not been configured to use them.

IPv6 (Internet Protocol version 6) - An update to the Internet Pro-

tocol that is in the eally phases of adoption. Most of the refrnements

29

concentrâte on basics such as expanding the IP address numbering

scheme to accommodate the growth of the Internet. However, IPv6

does include a Class header field that is explicitly intended to desig-

nate a Class of Service.

Jitter - The distortion of a signal as it is propagated through the network,

where the signal varies from its original leference timing and packets

do not alrive at its destination in consecutive order or on a timely

basis, i.e. they vary in latency. In packet-switched networks, jitter is a

distortion of the lnterpacket arrival times compared to the interpacket

times of the original transmission. Also refelred to as delay variance.

This distortion is particularly damaging to multimedia traffic.

Latency - Delay in a transmission path or in a device within a transmis-

sion path. In a router, latency is the amount of time between when a

data packet is received and when it is retransmitted. Also referred to

as propagation delay.

Marker - a device that sets the DiffServ codepoint in a packet based on

defined rules.

Meter - a device that measures the temporal properties of a traffic stream

selected by a classifier.

Microflow - a single instance of an application-to-application flow of pack-

ets which is identified by source address, source port, destination ad-

dress, destination port and protocol id.

30

MF Classifier - a multi-field (MF) classifler rvhich selects packets based

on the content of some arbitrary number of header fields.

Per Hop Behavior (PHB) - The forwarding treatment given to a spe-

cific class of traffic, based on criteria defined in the DiffServ field.

Routers and switches use PHBs to determine priorities for servicing

various trafrc flows.

PHB group - A set of one or more PHBs that can only be meaningfully

specified and implemented simultaneously, due to a common constraint

applying to all PHBs in the set such as a queue servicing or queue

management policy. A PHB group provides a service building block

that allows a set of related forwarding behaviors to be specified together

(e.g., four dropping priorities). A single PHB is a special case of a PHB

group.

Policing - Packet-by-packet monitoring function at a network border (ingress

point) that ensures a host (or peer or aggregâte) does not violate its

promised trafrc characteristics. Policing means limiting the amount of

traffic flowing into or out of a particulal interface to achieve a specific

policy goal. Policing typically refers to actions taken by the network to

monitor and control trafrc to protect network lesouÌ'ces such as band-

width against unintended or malicious behavior. Tl'affic shaping may

be used to achieve policing goals ol to do congestion management.

Policy - The combination of rules and services where rules defrne the cri-

teria fol resource access and usage to manage the bandwidth made

31

available to specified trafrc. A policy dictates a number of conditions

that must be met before a specified action can be taken.

Premium Service - In DiffServ terms, Premium service is a peakJimited,

extremely low-delay service, resembling a leased line. At the network

edge, rvhere a Premium class is first created, it must be either shaped

or policed to B, r'ate with no more than a two-packet burst. A policel for

Premium service is set to drop packets that exceed the configuled peak

rate. For this service, the peak rate of the Premium class aggregate

acloss any boundary must be specified and the rate must be smaller

than the link capacity.

Quality of Service (QoS) - A collective measure of the level of service

delivered to the customer. QoS can be characterized by several basic

performance criteria, including availability (low downtime), erlol per-

formance, response time and throughput, lost calls or transmissions

due to netrvork congestion, connection set-up time, and speed of fault

detection and correction. Service providers may guarantee a particu-

lar level of QoS (defined by a service level agreement or SLA) to their

subscribers.

QoS Routing (QoSR) - A dynamic routing protocol that has expanded

its path-selection criteria to include QoS parameters such as available

bandwidth, link and end-to-end path utilization, node resources con-

sumption, delay and latency, and induced jitter.

Service Level Agreement (SLA) - a service contract between a cus-

tomer and a service provider that specifies the forwarding service a cus-

32

tomer should receive. A customer may be a user organization (source

domain) or another DifiServ domain (upstream domain). A SLA may

incìude traffic conditioning rules which constitute a TCA in whole or

in part.

Service Provisioning - a policy which defines how traffic policy condi

tioners are configured on DifiServ boundary nodes and how trafrc

streams are mapped to DifiServ behavior aggregates to achieve a range

of services.

Shaper - a device that delays packets within a traffic stream to cause it

to conform to some defined trafrc profile.

Tlaffic Conditioner - An entity that performs traffic conditioning func-

tions and which MAY contain meters, policers, shapers, and markers.

Tlaffic conditioners are typically deployed in DifiServ boundary nodes.

TYaffic Conditioning - Control functions that can be applied to a behav-

ior aggregate, application flow, or other operationally useful subset of

traffic, e.g., routing updates. These may include metering, policing,

shaping, and packet marking, TYafrc conditioning is used to enforce

agreements between domains and to condition trafrc to receive a differ-

entiated service within a domain by marking packets and by monitoring

and altering the temporal characteristics of the aggregate where neces-

saÌy.

T}affic Conditioning Agreement (TCA) - An agreement specifying clas-

sifier rules and any corresponding traffic profiles and metering, malk-

ing, discarding and/or shaping rules which are to apply to the traffic

streams selected by the classifier. A TCA encompasses all of the t'-affic

conditioning rules explicitly specifred within a SLA along rvith all of

the rules implicit from the relevant service requirements.

Tlaffic Proffle - A description of the temporal properties of a trafrc stream

such as rate and burst size.

T}affic Shaping - A group of techniques that attempt to regulate or meter

the flow of packets through the network.

Tlaffic stream - An administratively significant set of one or more mi-

croflows which traverse a path segment. A tl¿ffic stream may consist

of the set of active microflows which are selected by a particular clas-

sifier.

Type of Service (TOS) - A freld within an IP header which can be used

by the device originating the packet, or by an intermediate networking

device, to signal a request for a specific QoS level. TOS uses three bits

to tell a router how to prioritize a packet and one bit apiece to signal

requirements for delay, throughput, and reliability. TOS is also known

as IP precedence bit format and the IP precedence fleld. However, it

has not been used much in practice.

Chapter 3

QoS-Based Routing Algorithms

Routing is an essential component in data transmission over the Internet.

A considerable amount of literature has been developed on routing protocols

fo¡ the "best-efiort" seivice. Quality of Service routing has recently received

substantial attention in the context of its possible use in an Integrated Ser-

vices IP netwolk. A few papers have addressed the routing problems for

Diffelentiated Services.

In this chapter, we give a review of the existing routing protocols and

algorithms.

3.1 Basic Concepts

Path computation algorithms for a single metric, such as hop-count and

cost, are well known and have been widely used in the current best-effort

service network. Multiple metrics can certainly model a network more ac-

culately. However, the problem of finding the best path subject to multiple

constraints is an NP-compleie problem [43].

The network is modelled as a directed graph G(N, E), where N is the set

of nodes representing routers and hosts and E is the set of edges representing

links that connect the nodes. Each link s : (u ,v), where u, v in N, is

associated with k independent weights, w{e), w2(e), ..., .x("), where z.'¿(e)

is a positive real number (w¿(e) e.B+) for all 1< i < k. The notation

u(e) : ry11t,u¡ : (w1(e),w2@),...,r¡(")) is used to represent the weights of

a link.

Definition 3.!.L G'iaen a d,i,rected, graph G(N,E) ui'th k > 2 wei,ght func-

t'ions ut : E - Rt, u2 i E'-+ R+, ..., ux : E n R+, a path p : src -t't)r ---+

u2 + . . . ---+ d,st i,s said to be an opti,mal QoS path from node src to nod'e

d,st if there d,oes not eri,st another path q from nod'e src to nod'e dst such that

u(q) < u(p), that i,s, for all L < i, < k, ui(ò < u¿(p).

When À : 1, the optimal QoS path is the same as the shortest path.

When,b > 1, however, there can be multiple optimai QoS paths between two

nodes.

Definition 3.L.2 Let d,(i,, j) be a metric for li.nk (i, j). For ang path p :
(i, j,k,...,1,m), we sag that metri,c d, i,s add,iti'ue ft31 i'f

d(fl : d,(t., j) + d(j,k) + ... + d(t,m)

We sag that metric d i,s multi,plicati,ue i,f

d(ù : d(i, j) * d.(j,k) * .,. * d(I,m)

We sag that metric d, 'ts concaue 'if

d.(p) : mi.nld(i,, j), d.(i,k),...,d'(t,m)l

The quality of the service can be estimated and specified in terms of some

pa,râ.meters, called metrics, that ale of prime importance to the application

under consideration. These parameters are used to express the applications

requirements that must be guaranteed by the underlying netrvork. We norv

look at some parameters that a¡e likely to be conside¡ed as QoS routing

metrics: delay, delay jitter, cost, loss probabiiity and bandwidth. It is ob-

vious that delay, delay jitter, hop-count and cost follow the additive com-

position rule, probability of successful transmission follow the multiplicative

composition rule, and bandwidth follows the concave composition rule. The

composition rule for loss probability is more complicated as seen below:

d(p) : | - ((r - d(i,, j)) * (t - d(j, e)) * . . . * (1 - d(t,m)))

However, the loss probability metric can be easily transformed to an

equivalent metÌ'ic (the probability of successful transmission) that follows

the multiplicative composition rule.

The main difference between QoS-based routing and traditional routing

is that the routing decision is based not only on source and destination ad-

dresses for each packet, but also on the traffic cha.r'¿cteristics of the related

florv. This fact has two major effects on the routing mechanisms (i.e. routing

protocol and IP layer). The routing algorithm used by the routing protocol

will have to consider several metrics in route computation at the same time,

instead of just one as in traditional routing. This leads to difficulties in the

construction of such QoS-based routing algorithms.

Wang and Crowcroft proved that the problem of finding a path subject

to two or more independent additive and/or multiplicative constraints in any

possibie combination is NP-Complete. The only tractable combinations are

the concave constraint and the other additive/multiplicative constraints [43].

The proof of NP-Completeness relies heavily on the correlation of the link

weight metrics. it has been proved for the chain topology and assumed

that the NP-Complete nature will hold for all topologies. However QoS

routing in realistic networks may not be NP-Complete in nature as both

chain topology and the correlated link metric vectors are unlikely to occur in

lealistic networks. QoS Routing is NP-Complete when the QoS metrics are

independent and are real numbers or unbounded integers.

When both the metrics are additive, [8] suggests that given a rveight

,u.'(u, r,') between nodes z and o, it can be converted to a new weight function

ut(u,u) : l(w(u,u) * x)lc]. This reduces the constraint u 1 c to u' 3 r,

where c is a leal number or an unbounded integer and ø is a bounded integer.

It is proved that the solution for the simpler problem is also a solution for the

original problem. If .L is the length of a path p, andw(p) ! l-l(L-1)*cllc,
then p is also a solution for the simpler problem,

We iist the three general NP-completeness theorems for additive and mui-

tiplicative metrics.

Theorem 3,!,L Giuen a networle G : (N, A), n add,iti,ue metri,cs d1(a),

dz@), ..., d*(a) for each a i,n A , tuo speci.fi,ed nod,es i,, m, and' n poszti'ue

'i.ntegers Dt, Dz, ..., Dn, (n22.,d4(a) > 0,D¿> 0 fori:1,2,...,n), the

38

problern of d,ecid,ing 'if there'is a si,mple pat'h p : (1, ¡,le , ...,1,m) uhich satisfi'es

the foltowing constraints d¿(p) < Do where i': L,2,...,n i's NP-com'plete [13].

Theorem 3.L.2 Giuen anetworle G: (N,Á), n multi,pli,cati,ue metri,cs d,l(a),

d,2(a),...,d"(a) for each a i.n A, tuo speci,fi,ed nod,es i., m, and' n posit'iue 'inte-

gers D1, D2,..., Dn, (n >- 2,d¡(a) > L, D¿ > I for i : 1,2,...,n), the problem

oJ d,eci,d,'ing iJ there is a siznple path p : (i,, j,k,...,1,m) uhich sati,sf'es the

followi.ng constraints d¿(p) < Do where i,:7,2,...,n i,s NP-complete [13].

Theorem 3.1.3 Gi,uen a netuork C : (N,A), n addi,ti,ue and k multi,pl'ica-

ti,ue metrics d1(a),d,r(a),...,dn+*(a) for each a in A, tuo speci'fi'ed' nodes i,, m,

andn*k posit'iue i,ntegers D1,D2,...,Dn¡¡, (n> l,k21,d¿(a) > 7,Di> 0

for i:7,2,...,n, D¿> l fori: n]-7,2,...,n+ k), the problem of d'ecid-

'ing i.f there 'is a simple path p : (i., j,k,...,1,m) whi,ch sati,sfi'es the following

constra'ints dr(p) 3 Dn where'i : !,2,...,n I le i,s NP-complete ft31.

The thlee theorems âbove shor¡/ that the problem of finding a path subject

to constraints on two or more âdditive and multiplicative metlics in any pos-

sible combination is NP-complete. The results are applicable to any metric

that follows additive or multiplicative composition rules, and to any metrics

that can be transformed to equivalent metrics that follow the additive or

multiplicative composition rule.

In [36], Sobrinho investigated the properties that path weight functions

must have so that hop-by-hop routing is possible and optimal paths can

be computed with a geueralized Dijsktra's algorithm, Sobrinho defined an

algebra of weights which contains a binary operation, for the composition of

link weights into path weights, and an order relation. Isotonicity is the key

property of the algebra. It states that the order relation between the weights

of any two paths is preserved if both of them are either prefixed or appended

by a common, third, path.

Isotonicity is proved to be both necessary and sufficient for a generalized

Dijkstra's algorithm to yield optimal paths. Likewise, isotonicity is also both

necessaxy and sufficient for hop-by-hop routing. However, without strict

isotonicity, hop-by-hop routing based on optimal paths may produce routing

Ioops.

The computation complexity of a routing algorithm is primarily deter-

mined by the composition rules of the metrics.

3.2 Extensions to the OSPF Protocol

In [14], Guerin, Orda and Williams discussed path selection algorithms

to support QoS routes in IP networks. The work is carried out in the con-

text of extensions to the OSPF protocol [63]. They ûrst review the metrics

requii-ed to support QoS, and then present and compare several path selec-

tion algorithms, which represent different trade.offs between accuracy and

computational complexity. They also describe and discuss the associated

link advertisement mechanisms, and investigate some options in balancing

the requirements for accurate and timely information with the associated

control ove¡head.

In [3], Apostolopoulos, Guerin and Kamat added QoS routing extensions

to the OSPF routing protocol [63] implementation (gate daemon or gated)

on the UNIX system. They evaluated its performance over a wide range of

40

operating conditions. The evaluation results provide insight into the respec-

tive weights of the two major components of QoS routing costs' processing

cost and protocol overhead and establish strong empirical evidence that ihe

cost of QoS routing is well within the limits of modern technology and can

be justified by the performance improvements.

3.3 Hop-by-Hop Routing for Premium Tþaf-

fic in DiffServ

Based on the hop-by-hop routing mechanism, an interesting problem is

how to find an optimal routing algorithm for premium class trafrc such that

(1) it works correctly and efficiently for premium traffic; (2) it reduces neg-

ative influences to other classes of traffic (such as bandwidth starvation, ex-

cessive delay jitter, etc.). This problem is called the Optimal Premium-class

Routing (OPR) problem which is NP-Complete.

In [39], Wang and Nahrstedt analyzed the strength and weaknesses of

two existing algorithms (Widest-Shortest-Path algorithm and Bandwidth-

inversion Shortest-Path algorithm), and applied to the OPR problem a noveÌ

heuristic algorithm, called the Enhanced Bandwidth-inversion Shortest-Path

(ÐBSP) algorithm. They proved theoretically the correctness of the EBSP

algorithm, i.e,, it is a consistent and loop-free hop-by-hop routing algorithm.

3.4 QoS-Based Routing Algorithms with a Sin-

gle Metric

3.4.L Bandwidth

If the single metric is bandwidth, all the links with bandwidth less than

the desired bandwidth are removed before the path is selected from the source

to the destination. Guerin-Orda [7, 19] considers the imprecision in the net-

work while selecting the path. The imprecision model is based on the prob-

ability distribution functions. The heu¡istic tries to find the path with the

best multiplicative probability over all the links making the path, that is, a

path that has the highest probability to accommodate a new connection with

a given bandwidth requirement. The multiplicative problem is transformed

into an additive problem by assigning weight'u¿ to the link I as -logp¿,

rvhere p¿ : p¿(tu) is the probability of success in the link having the t¿ units

of bandwidth.

3.4.2 Delay

If the single metric is delay, Guerin-Orda [7, 19] considers the impre-

cision model, based on probability distribution functions, to determine the

delay-constrained path. The goal of the algorithm is to find a path that

has highest probability to accommodate a new connection with a required

delay requirement. The heuristic proposes transforming global constraints

into local constrâints by splitting the end-to-end delay constraint among the

intermediate links such that every link in the path has an equal plobability

42

of satisfying the delay constraint. Given a probability function Í{dù, [28)

defines a cost function c¡(d,¡) : - Ìog /,(d¿) so that the cost associated with

each link is positive and it decreases as the associated delay increases.

3.5 QoS-Based Routing Algorithms v/ith Dual

Metrics

3.5.1- Bandwidth and Cost

The Ticket Based Probing (TBP) algorithm proposed for delay con-

strained least cost routing can be applied to bandwidth constrained least

cost routing [9]. Probes are sent flom the source, limited in number, towards

the destination. Receipt of a probe by the destination ensures availability of

a path satisfying the desired resource requirements.

3.5.2 Bandwidth and Delay

Wang-Crowcroft's algorithm [7, 22] based on source routing for bandwidth-

delay based routing algorithm first prunes al1 the links v¡ith bandwidth less

than the required bandwidth. Next, it finds the shortest path with respect

to delay in the modifled graph using Djikstra's algorithm. A distributed al-

gorithm based on hop-by-hop routing is proposed that decides pr-ecedence

among the metrics to determine the best path. Insufficient bandwidth leads

to higher queuing delay and loss rate. Improper propagation delay leads to

higher overali delay but the increase is predictable and stable. Thus bot-

tleneck bandwidth is given higher precedence over propagation delay. Orda

ploposed the quântization of QoS metrics with a rate-controlled earliest dead-

line first schedule¡ at each router [50].

3.5.3 Delay and Cost

When both the metrics are additive, [8] suggests that given a weight

tl(u, ø) between nodes ¿ and o, it can be converted to a new weight function

w'(u,a) : l(w(u,a)*x) lc], thereby changing the constraint w l ctowt 1x,

where c is a real number or an unbounded integer and z is a bounded integer.

If .L is the length of a path p, and ur(p) < 1 - [(¿ - l) * cl/x, then p is also

a solution for the simpler problem (the heuristic condition). The cost-delay

constrained QoS routing is reduced to two problems where the link weights

1. Originai cost and new-delay (u,u) : l(d(u,u) x r)/L¿]

2. Original delay and new-cost (u,u) : l(c(u,u) * r) I L"]

where ø : coefrcient * distance (source, destination). coefficient is a given

positive numbeL, d(2, t') is the delay of the path from z to o, c(2, t,) is the

cost of the path from u to u, L,¿ is the delay constraint and A" is the cost

constraint. An extended Djikstra's and extended Bellman-Ford algorithm is

proposed that is guaranteed to find a solution if any of the paths from the

source to the destination satisfies the heuristic condition stated above.

The Delay Constrained Unicast Routing (DCUR) algorithm proposed by

Salama chooses between the least cost and least delay paths independent of

the choice of the previous nodes [7, 21]. It maintains a cost and delay vector

a,t every node by a distance-vector protocol. Control message is sent from

the source towards the destination to construct a delay-constrained path.

Any node at the end of the partially constructed path can select one of the

only two alternative outgoing links: least cost or least delay. Loops may

occul as control message chooses the ieast-cost path and the least-delay path

alternatively, however it detects a loop if the control message visits the same

node trvice.

Sun-Landgendorfer improves on Salama's algorithm by avoiding loops

instead of detecting and removing loops. The message travels along the

least-delay path until it reaches a node from which the delay of the least-cost

path satisfies the delay constraint. Flom that node on, the message travels

along the least-cost path all the way to the destination [7].

Delay Scaling Algorithm (DSA) [18] preprocesses the network to pÌune

out nodes that are not feasible. It computes paths from the source to all

destinations such that the cost of the path from source to each receiver is

at most the cost of the cheapest path between the two with delay ? and

its delay is at most (1 + €)7. A r-scaling G, of graph G is obtained by

multiplying the delay on each link in G by r lT and then truncating the new

delay to an integer. DSA is executed on it and if every destination has delay

greater than (1 + e)", then ¡ is doubled and the procedure is repeated.

A Lagrange Relaxation based method has been proposed for QoS Routing

called Lagrange Relaxation based Aggregated Cost (LARAC) [21]. LARAC

is based on the heuristic of minimizing modified cost function c^ : cost +

À.delag, where À is the weight assigned to delay wrt cost. If) : 0 and the

delay constraint is satisfred, an optimal solution for the original problem has

been found. If this is not the case, À is increased to increase the dominance of

45

delay in the modified cost function. L(À) : rn¿n1"^(p) , p e P(s, f)] - ÀA¿

is a lower bound to DCLC for any À > 0. To obtain the best lower bound

we need to maximize the function .L(À), that is, tr* : marL(À) for À > 0.

The constraining conditions is neglected and built into the object function

(the relaxation). Since solutions feasible to the original problem suit the le-

laxation conditions as weil, a lower bound of the original problem is found.

Increasing the dominance enforces the solution to approach the optimal so-

lution and decrease the difference between the obtained lower bound and the

optimal of the original problem as well.

A distributed routing algorithm with imprecise state information called

Ticket Based Probing (TBP) has been proposed in [9]. Certain number of

tickets is issued at the source according to the contention level of network

lesources. Each probe is required to carry at least one ticket. The total

number of tickets bound maximum number of probes at any time. Each

probe searches a path; hence the number of tickets also bound the maximum

number of paths searched, The Level of imprecision has a direct impact on

the number of tickets issued. Probes can only travel along the paths that

satisfy the delay requirement. Hence any probe arriving at the destination

detects a feasible path.

Delay-Cost-Constrained Routing (DCCR) [20] rapidly generate a near-

optimal delay-constrained path, then, it employs the k-shortest path algo-

rithm proposed by Chong et. al. with a new non-linear weight function

of path delay and cost to efficiently search for a path subject to both the

requested delay constraint and the cost constraint. Starting with the least

delay path as a feasible soìution, the cost of the least-delay path is selected

as the cost bound. If there is no feasible paths with cost less than this, then

the least delay path itself must be the optimal path and this is what the

algorithm returns. Path weight (w) has an exponential gror,r'th with the path

cost (c) and is only linearly proportional to the path delay (d). Thus, the

weight function w is designed to give more priority to lower cost paths Pf as

shown below:

(ae:) I G - c(Pi) / L.), tf d(Pi) 1 L¿ and c(Pi) < L.
w(P:): <

I oo, otherwise

To search for a tighter cost bound, another heulistic - the Blokh and Gutin

(BG) heuristic is used in a new algorithm called Search Space Reduction

+ DCCR (SSR+DCCR). BG uses a linear function of the link delay and

cost to compute link rveight. It adjusts the weights given to cost and delay

in the weight function according to the quality of the current path, thus

it iteratively approaches the optimal (least-cost) solution. It starts with

two paths: Ieast-delay-path (LDP) and least-cost-path (LCP). If LCP is a

feasible path (de1ay-bounded) path, then it is the optimal solution. If not,

then algorithm maintains 2 paths: The current feasible (delay-bounded) path

LDP and the current best infeasible path LCP. W(p): aD(p)+ þC(ù. H

W(LW P) < 7, where 'y is the current least path weight and LWP is feasible,

LWP replaces LDP to become the best feasible path, thus the weight given

to link cost increases in the next round. If LWP is infeasible, then the weight

given to link delay increases. The path found by the BG algorithm may still

not be optimal. BG has unbounded time complexity, however SSR+DCCR

time complexity is bounded since BG is only used as a prelude to DCCR

47

witll a vely small number of iterations.

3.5.4 Two Additive Metrics

Jafe proposed an intuitive approximation algorithm based on minimizing

a linear combination of the link weights ø1(p) + d'w2(p), where d : 1 in the

first algorithm and d : JGJõ in the second. The latter provides better

performance in comparison to the former [24].

[24] proposes an algorithm based on the minimization of the lineal cost

function aw1(p) + Bw2(p) for two additive metrics ør and u2. The paper'

suggests a binary search strategy (using either {a: l,B: k} or {a:
k, P : l\) io find the appropriate value of fr. With link weight l(e) :
u1(e) + w2(e) (i.e., a : l, þ : l), the algorithm searches for path p. If both

w{p) > c1 and w2(p) > c2, then it is guaranteed that there is no feasible

path and the algorithm terminates. It maintains min-tu1[u] and min-u.r2[z]

that represent the minimum ul a\d w2 weights among all shortest paths. If

min-ø,1[ú] I cr or min-t¿zltl < c2,, then there is a possibility of existence of

a feasible path. The algorithm executes the binary search using link weights

I(e) : kw1(e) + u2(e) in Phase I and l(e) : w{e) + kw2(e) in Phase II. Æ

is in the range [1,8], where B: n * max{u¡(e)} ttrat is an upper bound on

the total cost of the longest path wrt link weight tur', If the algorithm cannot

find a path p for which 1(p) is minimum and ø¡(p) (cr', then such a path p

cannot be found with larger values of ,b. If the binary search fails to return

a feasible path wrt both constraints, then it returns a path p that satisfies

the c¡ constraint and whose ti.'¿ 0 cost is upper bounded as follows:

.u(p) I wn(l) + l.¡U) - r¡(ùll k

48

where / is a feasible paih, ,b is the maximum value that the binary search de-

termines at its termination, and the pair (i,j) is either (1,2) or (2,1) depend-

ing on the phase. This algorithm provides superior performance to Jafie's

approximation algolithm.

3.6 QoS-Based Routing Algorithms lt¡ith Mul-

tiple Metrics

The MultlConstrained Optimal Path (MCOP) problem attempts to find

a minimal-cost path satisfying the constraints. It is also known as Restricted

Shortest Path (RSP) problem and is NP-Complete even for a single con-

straint. Multi-Constrained Path (MCP) is MCOP problem without the path

optimization requirement; it is NP-Complete for more than one constraint

[22]. Several techniques have been devised to deal with the multiple metrics

routing scenario. We categorize the solutions as shown beiow:

1. Single Metric representative ofthe individual metrics: There have been

proposals of a single metric that is a linear combination of weighted link

metrics and representative of the individual metrics. The individual

weights can be statically configured or determined dynamically. The

weights can be iteratively changed to get better paths. However, if

the path is optimal in the single metric, it is not necessary that it

is optimal in terms of the individual met¡ics. Subsections of shortest

paths in multiple dimensions are not necessarily shortest paths [32].

There is information loss in the aggregation plocess, which needs to be

quantified.

49

2. Fallback Routing approach: QoS metrics are consideled one by one in

a predetermined iallback sequence hoping that the optimal path rvrt a

single par-ameter will also satisfy the other constraints.

3. Dependent QoS Metrics: Multiple metrics dependent on each other can

be ¡educed to one metric and the resulting problem with single metric

can be solved in polynomial time.

'When all the QoS metrics, except one, take bounded integer values, the

multi-constrained QoS routing problem is solvable in polynomial time. Lim-

ited path heuristic is when each node maintains a limited number of optimal

QoS paths that ensut'es worst-case polynomial time complexity [50]. Yuan

studied the trvo heuristics for two-const¡aints problem. [50] extends it for

multiple-constraints problems. It was found that limited path heuristic is su-

pelior to limited granularity heuristic for multiple constraints problem when

the number of constraints is greater than three.

A path vector routing protocol called QoSFinder [38] has been proposed

that considers throughput (t, function of bandwidth and load), delay (d) and

loss rate (e) metrics for path selection of long-lived multimedia flows. Path

vectol routing has been derived from distance vector routing. On receiving

an update message, the receiving node's address is inserted in the route, cost

to reach the neighbor that sent the update is added to the cost of the route

and the message is forwa¡ded. If its address is already present, a loop is

detected and the message is dropped. Given two paths with QoS (¿r,dr,er)

and (t2, d,2, e2) respectively, if either one of it satisfies the required constraints,

then the one satisfying the demand will be accepted. Howevel if both do/do

not satisfy, then the better should be selected. The routing process is required

to retur-n the "best" QoS path, irrespective of whether the path satisfies all

the QoS or not. The "best" path is selected based on availability (A), defined

as Ar: (tltò, Ad: @ald), A.: (e¿le). Availability of a parameter with

a value of 1 means that the tested parameter is equal to the demanded

parameter, while greater than 1 indicates reserve and lesser than 1 indicates

that the parameter value does not meet the demand. If two sets are equal,

the router with lower hop-count is selected. If hop-counts are also equal, the

least recently used route is selected,

Ma-Steenkiste's algorithm [7, 30] states that when WFQ-like scheduling

algorithms are used, queueing delay, delay-variation, and loss are not in-

dependent metrics; they are a function of bandwidth. This simplifies the

problem and makes it solvable in polynomial time.

A heulistic algorithm for multlconstrained optimal path (H-MCOP)

problem is proposed in [22]. A non-linear cost function is developed as shown

below:
ulp) ,,wz@) ,.x(p)

ox(ù : =f *
^+ I x À +... + ;f x)'l ì 1

where u.'¿ (p) is the total weight of the i¿å metric in the path p and the con-

straint is .o(p) 3 c¡. The goal of the algorithm is to determine the path p

with minimum cost. It has been proved that t¡(p) (c¡ for at least one,k and

.¡(p) 3 {Kcx fot the rest. The likelihood of finding a feasible path increases

as À increases. Starting from souLce, H-MCOP finds the next node based

on minimization of 9¡þ). If mo¡e than one path is feasible since H-MCOP

uses the k-shortest path routing approach, the path with minimum cost is

selected.

Chen-Nahrstedt's Selective Probing [7] is when after a connection le-

quest arrives, probes are flooded selectively along those paths that satisfy

the QoS and optimization requirements. This method ovet'comes the high

communication overhead associated with Shin-Chou algorithm: Probes are

only forwarded to a subset of outgoing links selected based on the topological

distances to the destination and it is done iteratively. Ticket-based Probing

is used to improve performance of selective probing. A ce¡tain number of

tickets are issued at the source according to the contention level of network

lesources. It can be used for multicast QoS routing as well.

A randomized algorithm [23] has been proposed for muitiple constraints

QoS routing. It prunes all links that cannot be on any feasible path and uses

a landomized BFS sealch to find a feasible path with minimum hop-count.

It may not find all feasible paths, but if it finds a path, that path rvill satisfy

the required constraints.

A scalable internetwork routing architecture for QoS routing has been

ploposed named Nim¡od [62]. The key to its scalability is its ability to

represent and manipulate routing related info¡mation in the folm of maps at

multiple levels of abstraction. Difierent maps can represent the same region of

a physical network at difierent levels of detail. Maps can be used to represent

glaphs of difierent metrics and aggregated to determine the optimal path.

As one of the most challenging problems of the next-generation high-speed

networks, quality of service routing (QoSR) with multiple (fr) constraints

is an NP-complete problem. In [i1], Cui, Xu and Wu proposed a multi-

constrained energy function-based precomputation algorithm, MEFPA. MEFPA

cares each QoS weight to å degrees, and computes a number @ : Cf;Ì-r)

of coefficient vectors uniformly distributed in the k-dimensional QoS met-

ric space to construct B linear energy functions. Using each LEF, it then

converts k QoS constraints to a single energy value. Then it uses Dijkstra's

algorithm to create B least energy trees, based on which the QoS routing

table is created.

3.7 Multiple Path Routing Algorithms

Most of the numerous studies of QoS routing (QoSR) have been aimed

at producing a single optimal path. With this approach, only a single path

is established between a source-destination pair', even if there exist some al-

ternative, possibly suboptimal, paths. In case of congestion, this approach is

likely to aggravate the problem and may additionally trigger routing oscilla-

tions.

With multiple-path routing, the trafrc between the same source and des-

tination can be assigned to different paths. Intuitively, this approach will

tend to smooth out occasional problems occurring on some paths, including

tìrose caused by inaccurate link state information.

Consider a network that is represented by a graph G: (¡ú, E), where N

is the set of nodes and .Ð is the set of links. Each link (i,, j) e E is associated

with .R non-negative and additive QoS values: u,(¿,i), r : 1,2,... ,R. A
length (or cost) function Tr.16 is defined as follows:

uo(i,i) :f a,w,(t,,¡)
r=1

Given a source node s and a target node ú, and ,? const¡¿ints C,(s,t), r :
!,2,. . . R. The K-Multiple-Constrained-Shortest-Path (KMCSP) problem is

53

to find eithe¡ the first K shortest length paths or all the paths (depending

on rvhich number is smaller) from a source node s to a target node ú such

that

u,(p(s,t)) : t w,(i.,j) < C,(s,t)
(d,j)ep(s,t) vr

Liu and Ramakrishnan [27] consider the KMCSP problem and give an

aìgorithm called A*Prune for finding k shortest paths subject to multiple

constraints. The algorithm constructs pâths starting at the source and going

towards the destination. But, at each iterâtion, the algorithm gets rid of all

paths that are guaranteed to violate the constraints, thereby keeping only

those partial paths thai have the potential to be turned into feasible paths,

from which the optimal paths are drawn, The choice of which path to be

extended first and which path can be pruned depend upon a projected path

cost function, which is obtained by adding the cost already incurred to get

to an intermediate node to an admissible cost to go the remaining distance

to the destination.

In [32], Mieghem and Neve deduce a QoS algorithm called T\nable Ac-

curacy Multiple Constlaints Algorithm or TAMCRA. TAMCRA is based on

three fundamental concepts: a non-linear measure for the path length, the k-

shortest path approach and the principle of non-dominated paths. When rr¿

multiple constraints are imposed, a non-linear choice for the definition of the

path length proves to be superior to a linear definition (i.e. a weighted sum

of the vector components). An important corollary of a non-linear length

function is that the subsections of shortest paths in multiple dimensions a.re

not necessarily shortest paths. This corollary suggests to consider in the com-

putation more paths than only the shortest one, leading us naturally to the

54

k-sholtest path approach. Finally, the multi-dimensional character of QoS

routing invites the use of state space reduction which has been implemented

via the concept of non-dominated paths.

The non-linear concave path length function used in this algorithm [32, 33]

is max('¿ur(P) I L,1,w2(P) I Lr,...,u*(P) /A-) where ut,'trz,.. ,'lr^ àre

weights of the paths and 41, L2,..., A^ are the constraints in terms of metric

1,2,. . . ,m respectively. TAMCRA possesses tunable accuracy (coupled to

the running time) via one integer parameter k that reflects the number of

shortest paths taken into account during computation. There always exists

a flnite value of k for which TAMCRA ¡eturns the exact path:

r:{::::::'

":r:r:A path is said to be dominated by another path p' iff w¿(p) 3 u¿(1) fot

i : 1,2,. . . , m, with an inequaìity foi' at least one weight component i. This

causes an efficient reduction in the search space. The main advantages of

TAMCRA are the following:

¡ The calculation time of TAMCRA increases only linearly with the value

of k and saturates beyond a certain value of ,b. The level at which the

calculation time saturates depends on the size of the graph.

¡ The vaiue of k needed to solve the multiple constraints problem exactly

is a polynomial function of the granularity (i.e., the number of possible

values) of the constraints.

r The probability of missing the shortest path is, above a certain thresh-

old, independent of the number of constraints. There is an exponential

decrease of the probability of missing the shortest path as the value of

fr increases. Fo¡ a constant plobability of missing the shortest path, &

increases logarithmically in the number of nodes in the graph.

A slight modification of TAMCRA, called Self-Adaptive Multiple Con-

straints Routing Algorithm (SAMCRA), has been proposed [25]. Unlike

TAMCRA, SAMCRA is guaranteed to find a path within the constraints,

provided such a path exists. The number of alternate paths computed differs

from node to node. Memory is required for the storage of the computed

alternate paths. SAMCRA allocates memory at the nodes when the need

arises, unlike TAMCRA which has a fixed amount of memoly allocated at

all the nodes.

TAMCRA has higher complexity than H-MCOP due to its extla compu-

tation to determine dominated paths. TAMCRA lequires a higher value of

k than H-MCOP. Due to path optimization feature of H-MCOP, its paths

aÌe more resoulce efrcient than TAMCRA. Solution of DCCR is exactly the

optimal path while the cost of the TAMCRA path is much higher tha¡ that

of the optimal solution.

Jia, Nikolaidis and Gburzynski propose a QoS routing scheme in which

a connection between a source-destination pair can be assigned to one of

several alternative paths [i6]. Starting from the well known algorithm by

Dijkstra, they develop a collection of K-shortest path routing strategies and

investigate their performance under a diverse set of network topologies and

traffic conditions.

56

A. Algorithm for Constructing the ll-Shortest Paths

This is a label setting algorithm based on the Optimality Principle and

being a generalization of Dijkstra's algorithm. The metrics under considera-

tion are bandwidth and hop-count. The space complexity is O(llnz), rvhele

K is the number of paths and m is the number of edges. By using a pertinent

data structure, the time complexity can be kept at the same level O(Km)

Let a Directed Acyclic Graph (DAG) G(N,,4) denote a network with n

nodes and m edges, where N : {1,...,n}, and A: {a¡¡ | ¿,i € ¡/} :

l\,,j) I i,j € N). The capacity of each link is b¿¡, where ij e .4. Given a

bandwidth request B for a connection from the source node s to the desti-

n¿tion node ú, the bandwidth-constrained multi-path routing problem is to

find the top K paths fi'om s to ¿ {PÈ | 0 < k S K},such that b(Pù > B'

V0<fr(K,where
b(Pi") : min¿¡¿pub¿¡

is called the bottleneck bandwidth of path P¡.

Define a label set X and a one-to-many projection h: N '-+ X, meaning

that each node i € l{ corresponds to a set of labels fr.(i), each element of

which represents a path from s to e. Each label/path has a major weight and

a minor weight. For the hop-based algorithm, the major weight is the inverse

of the number of hops and the minor weight is the bottleneck bandwidth of

the path represented by this label. Those weight are interchanged for the

bandwidth-based algorithm.

The algorithm:

. s: the source node

. X: the label set

r b,r.: the link bandwidth from o to j

c bw -thrsh: the bandwidth threshold used to trim unqualified links

o countlal: the number of paths from s to t, found so fat'

¡ lô0: the permanent label selected from X, such that lb}.bw > lb.bw,

Vlb€X

c lbl: a new label generated from lbO

c lb}.uer: h-I(lb}), that is, the corresponding node of label lbO

¡ lb}.bw: the bottleneck bandwidth of the path from s to lbO.oer

o lb\.parent: the label which generates lð0

o P,(countful): the countful'th path fi'om s to u

count[i,]:0,Vi€N
lbj:1
lbj.uer : s

lbj.bu : æ

Ibl.hops :0
Lb}.parent: NULL

x: {¿å0}

while (X I þ and I ¿ such that countlil < K, where 0 <i, <n)

58

do begin

find a permanent label lð0 from X, such lhat lb\.bu > lb.bw,V lb e X

x:x-uboll
a : lbj.aer

countlal: countlul+ 7

if (countlul < K and lb}.hops < max-Hop-Num)

then begin

record the path P"(countla]) by following the lå0 ---r parent link

for each o,p¡ € A

do begin

if (the prospective new label does not result in a loop and

b"¡ > bu-thrsh)

do begin

lbl.uer : j
Ibl:tb}+1
Ibl.bu : mi,n(lb}.bu, b,¡)

lbT.hops:Ib1.hops*l

lbL.parent -- lbl

x:xu{lbt}
end

end

end

end

59

B. Path Selection Algorithms

There are frve path selection algorithms resuiting from two different major

criteria and different ways of applying the minor criteria.

¡ Best-K-Widest (BI(W): Flom the K widest paths, select the one whose

bandrvidth best fits the connection request,

r Random-K-Widest (RKW): FYom the I{ widest paths, select one at

landom.

o Shortest-K-Widest (SKW): Flom the K widest paths, select the one

with the least number of hops.

¡ Best-K-Shortesi (BKS): F\'om the K shortest paths, select the one

whose bandwidth best frts the connection request.

r Widest-K-Shortest (WKS): trÌom the K shortest paths, select the one

with the largest bandwidth.

Chapter 4

Routing Algorithms for

Differentiated Services

Quality of Service (QoS) based routing is one of the main component of

the new QoS Internet Architecture. A good and practical routing algorithm

provides QoS guarantees to applications and an efficient utilization of the

network resources. The QoS routing algorithm shouid be simple because a

complicated procedure is costly to implement and does not scale with the

size of the network.

In traditional routing, packets are delivered using a route based on its

source and destination add¡esses. The routing protocols used in IP networks

are typically transparent to any particular Quality of Service that different

packets/flows may have. As a result, routing decisions are currently made

without any awaleness of resources avaiiability and requirements. This means

that flows are often routed over paths that are unable to support their re-

61

quirements, while alternate paths with sufficient resources are available [14].

In QoS-based routing, the route for each flow considers also its traffic re-

quirements. The process of selecting a path that can satisfy the QoS require-

ments of a new fl.ow relies on both the knowledge of the flow's requirements

and characteristics, and information about the availability of resources in

the network, The path selection process may need to consider several met-

rics. The common metrics include bandwidth, cost, delay, jitter and loss

probability etc.

In general, routing algorithms can be constructed in two ways. One ap-

proach is to use independent metrics that will be considered separately by

the route computation algorithm 128,421. This solution transfers the diffi-

culty to the construction of efficient algorithms. Some authors have shown

that the computation of routes with more than two metrics is very difficult

because of its complexity. It has been proved that multi-constrained path

routing is known to be NP-hard [15,43].

The second approach is to consider the dependency between the used met-

Lics [30]. This solution puts the complexity on the definition of the relations

between metrics, imposing minor changes to traditional algorithms.

4.L Source Routing And Hop-By-Hop Rout-

ing

Source routing and hop-by-hop routing are the two basic routing architec-

tures for data networks. Hop-by-hop routing is the common form of general-

purpose routing in current networks while source routing is mainly used for

62

network diagnosis and special policy routes.

In hop-by-hop routing, packets are forwarded hop-by-hop at each node.

Each node has a routing table rvith next hops for all destinations, and this

table is usually computed periodically in response to routing updates. When

a packet is received, hop-by-hop routing only requires a table lookup to

find the next hop and send the packet to it. The packet header is smaller

compared with source routing as the packets do not have to carry the full

forwarding path.

In source routing, a forwarding path is computed on-demand at the soulce

and listed in the packet header. Packets are forwarded according to the path

in the packet. Since the computation is done for each individual request in

a centralized fashion, source routing is very flexible. Howevel, a source must

have access to full routing information for each link for path computation,

and packets have a larger packet header.

Since hop-by-hop routing pre-computes forwarding entries for every desti

nation, it has to accommodate all possible tesource requirements. The usual

appi-oach in current hop-by-hop routing algorithms is to compute the best

path to evely destination. With a single metric, the best path can be defined

easily. With multiple metrics, horvever, the best path with all palameters at

their optimal values may not exist at all. Thus, we must decide the prece-

dence among the metrics in order to define the best path.

63

4.2 Dijkstra's Algorithm

The famous Dijkstra's algorithm (named after its discover, E.W. Dijkstra)

solves the problem of finding the shortest path from a point in a graph (the

source) to another point in the graph (the destination). It turns out that

one can find the shortest paths from a given source to all points in a graph

at the same time, hence this problem is sometimes called the single-source

shortest paths problem.

We state Dijkstra's algorithm in network terminology instead of formal

mathematical terminology below. We denote a network topology by G :
(N,L), where N is a set of nodes, and L is a set of links.

Dijkstra's algorithm [37] keeps two sets of nodes:

S the set of nodes whose shortest paths from the source have already

been determined and

N-S the set of the remaining nodes

The other data structures needed are:

d an array of best estimates of shortest path to each node

pi an array of predecessors for each node

The basic mode of operation is:

1. Initialise d and pi

2. Set S to empty

64

3, While there is still node in N-S,

(a) Sort the nodes in N-S according to the curt'ent best estimate of

their distance from the source

(b) Add u, the closest node in N-S, to S

(c) Relax all the nodes still in N-S connected to u

The relaxation process updates the costs of all the nodes v connected to

a node u if it is possible to improve the best estimate of the shortest path to

v by including (u,v) in the path to v. The relaxation procedure proceeds as

follows:

Initi al i seSingleSource (Netr,¡orkToPology T, Node s)

for each node v in nodes(T)

r. d [v] = ínfinity
T.pi [vl = nit
T.d[s] = 0;

This sets up the network topology so that each node has no predecessor

(pi["] : nil) and the estimates of the distance (or cost) of each node from

the soulce (d[v]) are infinite, except for the source node itself (dþl : 0).

The relaxation procedure checks whethe¡ the current best estimate of the

shortest distance to v (d[v]) can be improved by going through u (i.e. by

making u the predecessor of v):

Relax(Node u, Node v, double ¡¡[] [])
if d [v] > d [u] + r,¡ [u, v] then

65

d[v] = d[u] + w[u,v]

Pi[vJ = u

The Dijkstra algorithm is now:

Di-j kstrashortestPaths (NetworkTopology T, Height w, Node s)

Init ialiseSingleSource (T, s)

s={0}
Q = nodes (T)

r¿hile not Enpty (Q)

u = ExtractCheapest (Q) ;

AddNode(S, u);

for each nod€ v in Adjacent(u)

Relax(u, v, w)

4.3 Algorithms

4.3.1 Problem Definition

Although extensive research has been done in QoS routing, most of them

are focused on IntServ [31, 32, 36, 42]. A few papels have addressed the rout-

ing problems for DifiServ [39]. In this chapter, we develop routing algorithms

for DifiServ in a heterogenous network.

Deffnition 4.3,L If a network node supports Di.ffSern, we call it DiffSerø

capable. If a networlo nod,e d,oes not supporÍ DiffSeru, we call i,t Di.ffSera

i,ncapable. A li,nk i,s Di,ffSeru capable i,J and, onlg i,f i,ts originati,ng nod,e i.s

DiffSeru capable.

66

We realize that DiffServ is needed in the next generation network, but it

is impossible to implement DifiServ in all nodes at the same time. Thus, it is

reasonable to assume that the network will consist of both DiffServ capable

nodes and DifiServ incapable nodes. Here we raise the problem of how to find

optimal routing schemes in a network consisting of ÐifiServ capable nodes

and DifiServ incapable nodes. We will give routing algorithms for a DiffServ

capable user to estabiish a route in such an heterogeneous netwolk. Our

a.lgorithm has very little impact on the cu¡rently used routing algorithms

and protocols. It is easy to implement.

For DifiSelv louting, DiffServ capable links are preferred. But a path

consisting of only DifiServ capable nodes may not exist in â heterogenous

network. Even if such a path exists, it may not be the "optimal" path. The

problem is how to find the optimal path for DiffServ in such a netwolk.

One of the routing mett'ics we consider is DiflServ capability. The other

metric is the cost to uee a link. If the cost to use the link is set to be unity,

then cost is the same as hop-count. The number of hops determines the

amount of r-esources used along the path, rvhich is an important factor from

the viewpoint of efficiency and performance.

We denote a netwo¡k by a directed graph G : (¡ú, ¿), where N is a set

of nodes representing routers and hosts, and ,L is a set of edges representing

links that connect the nodes. .L is also simply called the set of links. We

associate each link ¿: (u,u), where z,o € lú, with a real variable c,o and

a boolean variable dcapableuu (1 or 0). c,,o is the cost to use the link e and

dcapableuo indicates whether e is DiffServ capable (value 1) or not (value 0).

67

We use p : (1,2,...,i,, j) to denote a path from 1 to j via 2, "., i.

C (1, 2, .. ., i, j) denotes the total cost of the path from 1 to j. D (I, 2,' .', i, i)
denotes the number of DiffServ capable nodes along the path from 1 to j

The current best-effort internet model depends on hop-count as a measure

of path cost (each link has unit cost). If each link is assigned a weight greater

than unity, the algorithm is a cost-constrained routing algorithm.

In order to find the proper routing algorithms for such a network, we need

to decide the precedence between the two metrics.

4.3.2 Algorithm 1

In this section, cost is given higher precedence over DiflServ capability.

In this case, we can use the existing routing algorithms to find the mini-

mum cost routing paths, and use a selecting algorithm to get the one with

the maximum number of DifiServ capable links. For example, the cur¡ent

routing algorithms have given the K-shortest paths. We can simply select

the one with the most DifiServ capable routers. But this is not efficient in

computation. We give a single algorithm to solve the routing problem.

Our strategy is to find a path with minimum cost (shortest path), and

when thele are moÌe than one shortest path, we choose the one with maxi-

mum number of DifiServ capable nodes (widest path).

Suppose that node 1 is the source node and ft, is the number of hops away

from the source node. Let Dlh) and Cjå) be the number of DiffServ capable

nodes and the total cost of the chosen widest-shortest path from node 1 to

node z within å, hops. Let ,9 be the set of nodes whose optimal paths from

the source node t have already been determined, and N-S the set of the re-

mâining nodes. The following algorithm finds optimal paths from the source

node 1 to all nodes in the network topology.

Algoritlim 1:

Step 1 Initialization. Set q3 : oo if there is no direct iink from node i to

node j. dcapable¿¡: g i¡ there is no direct link from node i to node

j. For all other links, the values of c¿¡ and dcapable¿¡ ale assigned.

Set C10) : 0 and DÍo) : 0, for all i I 1. à : 0 and S : {1}.

Step 2 For each i € N - S, frnd the set K of all the nodes ,b such that
h+2 nodes

CG-. ,kà -- min¡ç¡¡{Cjh) + c¡i}

Step 3 If C(1,...,k,i) I æ,Vk e K, find fr € K such that D(i, ".,k,i')
: max¡ex{DIh) + dcapabte¡r}. Record the optimal path (1, ..' ,k,i),

andset,9:SU{¿}.

Step 4 pln+D - D0,...,k,i) and gft'+t) : CG,...,k,i).

Step 5 If N - S +þ,seth:fr.+l andgoio Step 2.

Step 2 flnds all paths from node 1 to each node i with the minimum cost.

If there are more than one such path found, Step 3 chooses the one with the

maximum number of DifiServ capable nodes. Step 4 sets the values for latel

use, Step 5 checks to see if it is necessary to continue the loop.

Example. In the network topology depicted in Figure 4.1, node 2 is DiflServ

incapable, nodes 1, 3, 4 and 5 are DifiServ capable. We assign a cost of 1

to each link in the netrvork topology. We will show how the algorithm finds

Diffi ery cæable no d¿

Diffi erv inc anable node

optimal paths from the source node 1 to each of the nodes 2, 3, 4 and 5.

Figure 4.1: ExamPle Network

Step 1- After initialization. We have cr2 : cl1 : c24: ca4 -- c45:7,
c¡j : &, for all other paîs (i',i), i' I i.
d,capablep : d'capablerc : d,capablesq : dcapableas : 7, d'capableza :
0, dcapable¿¡: 0, for all other pafts (i'j), i' I j.

Cjo) : o and Djo) : 0, for a]l i I I'

h.:0andS:{1}.

Step 2 (h :0t i, :2) Step 2 finds paths with minimum cost from 1 to each

node i within ñ, hop(s). In the algorithm, each node i goes through

steps 2-4 separately.

Since c12 : 1, the path (i,2) has cost 1 and is the only path from 1 to

2 rvith minimum cost within t hop. If : {/}.

Step 3 (ft. :0t i, :2) Since C(L,2) : 1, (1,2) is the optimal path flom 1

to 2.

1gor'q g : {1,2}.

Step 4 (å. :0, i:Ð Dt\ :1 and Cj1) :1.

Step 2 (à :0t i:3) Since crc : 7, the path (1,3) has cost 1 and is the

only path from 1to 3 with minimum cost within t hop' K: {/}

Step 3 (å. :0, i. -- 3) Since C(1,3) : 1, (1,3) is the optimal path from 1

Ìo ó.

Now ,9 : {1,2, A}.

Step 4 (à :0¡ i:3) Dál) : 1 and Cjr) : t.

Step 2 (å : 0t i :4) Since cu : 6, the path (1, 4) has cost oo. That is,

(1,4) is not a physical link in the topology.

Step 3 (å -- 0, i,:4) No optimal path fi'om 1 to 4 has been found within

t hop.

Step a (h : 0, i : $ n\1) -0 and Cj1) : 66.

Step 2 (à :0t i, :5) Since crb : oo, the path (1,5) has cost oo.

Step 3 (h : 0t i, :5) No optimal path from 1 to 5 has been found within

I hop.

Step 4 (ft. :0t i,:5) nfu :0 and Cj1) : oq.

Step 5 (h.:0) Since 1Í - S: {4,5} + /, continue with h: 1.

7l

Step 2 (å:I,'i:4) There are two paths from 1 to 4 within 2 hops: (1, 2, 4)

and (1,3,4). Both of these two paths have a minimum cost of 2

fô oì¡t - 1¿, ùJ.

Step 3 (å, : L,, i,:4) Since d¡¿ : 1 and dz¿: 0, the only optimal path is

(1,3,4). Record the path (1,3,4).

Now ,9: {t,2,8,4}.

Step 4 (å. : lt 'i : g O[2t :2 anð. C[2) :2.

Step 2 (ñ. :7, i,:5) All paths from 1 to 5 within 2 hops have cost co.

Step 3 (ft. -- 7, i,:5) No optimal path f¡om 1 to 5 has been found within

2 hops.

Step 4 (fr. -- 7, i: $ n[2) :0 and Cj2) : 6¡.

Step 5 (h: 1) Since 1{ -,9: {5} + ó, continue with h:2.

Step 2 (à :2, i.:5) Since c¿s : 1 and (1,3,4) is the only optimal path

from 1 to 4, (1, 3, 4, 5) is the only possible path from 1 to 5 considered

by the algorithm. F\.rrther calculation finds that (1,3,4,5) is the only

path from 1to 5 with minimum cost within 3 hops, K: {4}.

Step 3 (ft. :2, i:5) Since C(1,3,4,5) : 3, (1,3,4,5) is the optimal path

from 1 to 5.

Now ,5 : {i,2,3,4,5}.

Step 4 (ft. :2, i.:5) a[r) : 3, and Cj3) : 3.

Step 5 (å:2) Since N - S: d, stop.

The complexity of the algorithm is equal to those of the traditional widest-

shortest algolithm and shortest path algorithm. The algorithm is scalable.

4.3.3 Algorithm 2

In this section, rve give an algorithm to find the optimal path when Diff-

Serv capability is given higher precedence over cost.

Our strategy is to find a path with maximum number of DiffServ capable

nodes (widest path), and when the¡e are more than one widest path, we

choose the one with minimum cost (shortest path).

Suppose that node 1 is the source node and å is the number of hops away

from the soulce node, Let Dlh) and, C[h) be the number of DifiServ capable

nodes and the total cost of the chosen shortest-widest path from node 1 to

node i within å. hops. Let ,9 be the set of nodes whose optimal paths from

the source node t have ah'eady been determined, and N-S the set of the re-

maining nodes. The following algorithm finds optimal paths from the source

node 1 to all nodes in the network topology.

Algorithm 2:

Step 1 Initialization. Set q¡ : oo if there is no direct link from node z to

node j. dcapable¿¡ : g il there is no dilect link from node z to node

j. For all other links, the values of c¿¡ and d,capable¿¡ are assigned.

Cjo) : o a"d Djo) : 0, for al| i I l ñ. : 0 and S : {1}.

Step 2 For each i € N - S, find the set K of all the nodes ,b such that
h12 noiles

DÇ', k,ù : max ¡ex {Djh) + dcapabte¡i}

rù

Step 3 If 1l has more than one element, find k e K such that C(1,.. . ,k,i)
: *¿n¡r*{Cln\ -l c¡r}. lf K has only one element k, (7,. . .,k,'i) is

optimal. Record the optimal path (1, . . . ,k,i'), and set ,S : S U {i}.
Step 4 Djà+1) : D(L,...,k,i) and C1o+t) : C(7,...,k,i.)

Step 5 If ¡{ - S { þ, set h : h + 1 and go to Step 2.

Step 2 finds all paths from node 1to each node i with the maximum

numbel of DifiServ capable nodes. If there are more than one such path

found, Step 3 chooses the one with the minimum cost. Step 4 sets the values

fol later use. Step 5 checks to see if it is necessary to continue the loop.

The complexity of the algorithm is equal to those of the traditional

shortest-widest algorithm and widest path algorithm. The algorithm is scal-

able.

4.3.4 Algorithm 3-A Different Approach

In the first two algorithms, the two metrics are independent. The first

algorithm treats cost as the more important metric. It can find the optimal

path in most network topologies. But in some cases, the found path may not

be the best path. For exampie, for the network topology in Figure 4.2, the

path with the lower cost is not the optimal path for DifiServ.

The second algorithm treats DiffServ capable as the more important met-

ric. Again it can find the optimal path in most network topologies. But in

some special cases, the found path may not be the best path. For example,

in the network topology depicted in Figure 4.3, apparently, the found path

is not optimal in the overall topology.

74

O Diffien¡cæablenn&

! Diffiery in¡ anable node

Figure 4.2: Network 1

If most of the nodes are DifiServ capable, choosing DifiServ as the prece-

dence is a good choice. If most of the nodes are DiffServ incapable, it is

better to choose cost as the precedence. If al1 nodes a¡e DifiServ capable,

it does not matter which metric is chosen to be the precedence. They have

the same result. Neither of the two algorithms performs well in all network

topologies. This prompts us to find a better algorithm for DiffServ in such a

network.

In this section, we will assign a DifiServ route selection order number to

each link. The order number is a real number. Usually a DiffServ capable

link has an order number smaller than that of a DifiServ incapable link.

The order number can be difierent in each area (or AS) according to the

user's request and the service charging policy. The order number can also be

changed by the Internet Service Provider (ISP) to reflect the service charging

ti)

--+ n+I-+ n

O Diffierv cæable n¡&

n Diffierv inc asable node

Figure 4.3: Network 2

policy.

The algorithm we give in this section is for source routing. It is an ex-

tended Dijkstra's algorithm. One generic aspect of the algorithmic complex-

ity of computing QoS paths is the efficiency of the algorithm used. Dijkstra's

algorithm has traditionally been considered more efficient for standard short-

est path computations because of its lower worst case complexity.

Suppose the netwo¡k topology is î : (¡ü, ¿), where ly' is a set of DifiServ

capable nodes and DiffServ incapable nodes, and .L is a set of links. Each

link e € .L is assigned a real numbelu", called the DifiServ route selection

order number of the link.

We define the Difi9erv route selection order number o(fl of a' path p :
(7,2, ...,i) to be the sum of the DifiServ route selection order number of each

link along the path. That is,

o(P) : utp I wzp * "' I w¿-t,¿

For DiffServ, the desired path is the one with the lowest DiffServ route

selection order number.

Let S be the set of nodes whose optimal paths from the source have

already been determined, and N -,5 be the set of the remaining nodes. Let

o denote the array of the DifiServ route selection order numbers of the best

estimates of optimal paths to each node, and r an array of predecessors for

each node. Q is a priority queue used to store the network topology along

with the DifiServ route selection order numbers. '¿u is the DiffServ route

seÌection order numbers of the links.

Initial i seSingleSource (NetworkTopology T, Node s)

for each node v in nodes(T)

T'o[v] = infinitY
T.r[v] = nil
T. o [s] = 0;

DSR-Dij kstra (NetworkTopology T, Selectionorder r¡, Node s)

/ / s ís thê source node

Init iali seSingleSource (T, s)

S = {0} // Initialise S to enpty

Q = uodes(T) // store the nodes in Q

vhile not Empty(Q)

77

u = Extractlowest0rder (Q) ;

AddNode(S, u); // Add r¡e lonest order node u to S

for each Dode v in Adjacent(u) // v is a:r adjacent node of u

Relax(u, v, v)

Re1ax(Node u, Node v, doubte w[] [])
if o[v] > o[u] + w[u,v] then

o[v] = o[u] + w[u,v] // Replace the previous order

r[v] = u // u is nol¡ the Predecessor

The above procedures can be combined to give the following easy to under-

stand algorithm.

Algorithm 3:

DSR-Dij kstra (NetworkTopology T, Selection0rder r¿, Node s) {
initialize o(u) for all u to ínfinity
initialize o(s) to 0

initialize Q !¡ith aII u using o(u) as keys

while (Q is not enpty) {
u = Q . extractlowestOrder o
for each node v that is adjacent to u {

if o(v) > o(u) + w(u,v) {
o (v) = o (u) + ¡.¡ (u, v)

r(v) = ¡

78

]

4.4 Implementationlssues

In order to deploy source routing, one must implement a link state type

of routing algorithm (e.g., OSPF). With link state, every router in the net-

work can maintain a local copy of the entire network topology and resource

utilization inforrnation. This prevents the scheme from being scalable since

the size of network information inc¡eases sharply as the network size glows.

Thus, large networks are usually composed hierarchically of several do-

mains (AS oÌ a.Ìeas in OSPF networks), and hierarchical source routing is

considered as the most promising scalable QoS routing approach. In hier-

archical QoS routing, network topology and resource information about a

specific domain are summarized before being exchanged with other domains.

This process is called topology aggregation 17, L3,17).

The currently used ve¡sion of OSPF does not support QoS. OSPF routes

IP packets based solely on the destination IP address found in the IP packet

header. The paper [14] gives an approach to provide QoS support while

imposing the least possible impact on the existing OSPF protocol. The

readel is referled to [14] for mo¡e details.

None of the existing routing protocols has the ability to identify whether

a router is DifiServ capable or not. In the simulations in ns' we distinguish

79

the routers by assigning different DifiServ route selection order numbers to

the routers. In a real network, however, we need a routing protocol that is

capable of identifying if a router is DifiServ capable or not.

80

Chapter 5

Simulations

S.L Introduction to ns

The Network Simulator (ns) [1] has been developed at the Lawrence

Belkeley National Laboratory (LBNL) of the University of California, Berke-

1ey (UCB), for network research. The current vei"sion of ns is generally

referred to as ns-2 (Network Simulator Version 2). ns has an extensible

background engine implemented in C++ that uses OTcl (an object oriented

version of Tcl) as the front end (command and configuration interface etc.).

It is a discrete event-driven simulator that derives its functionality through

an OTcl interpreter, which runs in the background.

A simulation is defined by a Tcl script. Running a simulation involves

creating and executing a file with a ".tcl" extension. A Tcl script file:

1. Defrnes a network topology (inciuding the nodes, links, scheduling and

routing algorithms of a network).

81

Defines a traffic pattern (including the start and stop time of the sim-

ulation).

Collects statistics and outputs the results of the simulation. Results

are usually written to frles, including files for Nam [2], the Network

Animator progÌâm that comes with the full ns download.

We use ns-2.1b8 for our simulation in this chapter.

5.1.1 DiffServ Support in ns

The Difierentiated Services module that comes with ns is provided by

Nortel Networks. The DifiServ functionality is captured in a queue object.

The position of dsREDQueue in the class hierarchy is shown below:

Queue

I

dSREDQueue

ll
edgeQueue coreQueue

5,1.2 Routing in ns

There are three routing strategies in ns: Static, Session and Dynamic.

Static and Session routing use Dijkstra's all-pairs SPF aìgorithm. One type

of dynamic routing is currently implemented: Distributed Bellman-Ford al-

gorithm, which is the algorithm implemented by distance-vector routing pro-

tocols such as RIP [59].

In ns, we blur the distinction between strategy and protocol for static

and session routing, considering them simply as protocols.

There is no specific routing algorithm specified or implemented for Diff-

Serv. A DiffServ capable router acts according to the code point, A DifiServ

incapable router simply ignores the code point. Routing strategies in ns ap-

ply the same rules to all packets, whether they are from a DifiServ capable

node or not.

5.2 Adding Our New Module to ns

Our algorithm (Algorithm 3) is implemented as an additional module to

ns-2 [1]. In this section, we show how our DiffSe¡v Routing Module is added

to ns. Adding the module to ns consists of the following steps:

Step 1 Creating the header file "rtDSRouting.h". This file includes class

specifications, as well as other definitions needed by the netv class.

Step 2 Creating the main C++ frle "rtDSRouting.cc". This file includes

implementations of each of the new class's methods and other routines

defined in the header ñle. To incorporate the new class into ns and

make it accessible through Tcl scripts, the class must be linked to the

ns class hierarchy. The following code is used in "rtDSRouting.cc" to

add DSRAlgorithmClass to the class hierarchy:

static class DSRAlgorithnClass : publíc TcICIass {
public :

DSRAIgoritbnCIass () : TclClass ("DSRAIgorithn") {}

83

TcIObjêcti create(int, const char*const'*) {
return (new DSRAlgorithro);

]
) class-dsralgorith-n ;

Step 3 Modifying the "Make" file. In order for the new class to be included

in the ns compilation, a reference to the new module must be added to

the file "Makefrle." We add the following line

rtDSRouting.o

to the object files section of "Makefile."

Step 4 Make a new version of ns with the new module. After recompiling ns

with the mâke command, Tcl scripts can use the new class. To declare

an instance of the new module, use the following Tcl command:

set dsr lnew DSRAlgorithm]

5.3 Other Modifications to ns

We also modify the Source Routing Agent Module that comes with ns.

The command method defined in the file slagent.cc (source files for source

routing are in the subdirectory src-rtg under the main ns directory) treats

every argument passed to it as a node name. When we get the optimal path

84

from the DifiServ Routing Algorithm Module, we must pass the complete

path as one âÌgument. Thus we must add code to the command method to

accommodate our simulation. Prototype of the command method is shown

belorv:

int SRAgent : : con¡nand (int argc, const char*const* argv)

5.4 Simulations

Simulation scripts ale written in Tcl. Each script defines a topology,

sets attlibutes of network devices, defines parameters, and describes network

events during a period of time frame.

Three topoìogies are constructed, all of them with a single trafrc source.

This source sends packets at a constant bit rate (CBR). By convention, the

CBR source is set at node 0 (source node) sending packets to the last node

(destination node) in the topology.

5.4.L Network Topology One

The first network topology we use for simulations is shown in Figure 5.1.

This topology has 18 nodes, including 5 traditional nodes or DifiServ inca-

pable nodes. Each link has a speed of lMbps and a delay of 2ms.

The source node and destination node (hexagon) are supposed to be Difi-

Selv capable. Since DiffServ is captured in queues, DifiServ capable nodes

are either DifiServ capable edge louters or DiffServ capable core routels in ns.

Packet marking is done by a DiffServ capable edge router, so the source node

85

O Diffierv cæable node

¡ Diffi erv in¡ anable node

Figure 5.1: Network 3

and destination node can be modelled as traditional nodes. They support

DifiSelv through the DiffServ capable edge routers.

The source node starts sending at the beginning of the simulation and

stops at time 2.5 sec.

We examine some lines of the Tcl script and explain what they do below:

set ns lne¡l Simulator]

$ns src-rting 1

This creates a Simulator instance and enables source routing in the sim-

ulation.

set dsr lnew DSRAlgorithrnJ

proc DSRCoropletePath {ReturnedPath}

global gstrPath

set gstrPath $ReturnedPath

Ì

set cpble 1

set incpble 5

set infinity 100

dsr is an instance of our DifiServ Routing Module, which must be created

in the Tcl script. Through dsr, we can use the DifiSe¡v Routing Algorithm

to calculate the optimal path for DiffServ in the simulation. If called with

the plocedure DSRCompletePøúå, the calculated optimal path will be stoled

in the global variable gstrPath. gstrPath is accessible in the whole script.

The DiffServ route selection order number are deciared here. To sim-

plify the simulation, all DifiServ capable nodes are assigned the same route

selection order number (cpble), and DifiServ incapable nodes are assigned an-

other route selection order number (incpble). If the value of cpble or incpble

changes, the calculated optimal path will change.

The variable infinitv is used to indicate that a link is down.

nf fopeu out.nan l¡]

na¡ntrace-all $nf

set

$ns

87

proc finish {} {
global ns nf

$ns flush-trace

#Close the trace fiLe

close $nf

#Execute nan on the trace file

Puts "\nstarting na:1. . . "

exec nan out.nam &

exit 0

]

We i-ecold the simulation ¡esults in the file out.nam for the Network

Animator progrâm Nam [2]. The procedure finish is called at the end of the

simulation.

set src [$ns node]

set e-src [$ns node]

set 11 [$ns node]

set 12 [$ns node]

set r3 [$ns node]

set 14 [$ns node]

set c5 [$ns node]

88

set c6 [$ns node]

set c7 [$ns node]

set c8 [$ns node]

set 19 [$ns node]

ser c10 [$ns node]

set cll [$ns node]

set cI2 [$ns node]

set c13 [$ns node]

set c14 [$ns node]

set e-dst [$ns node]

set dst [$ns node]

$src shape I'hexagonrl

$dst shape "hexagon"

$r1 shape "box"

$r2 shape "box"

$r3 shape "box "

$r4 shape "box "

$r9 shape "box"

$ns duplex-Iink $r1 $r2 lMb 2ns DropTail

$ns sinplex-link $s-src $c7 lMb 2ns dsRED/edge

$ns simplex-link $c7 $c11 lMb 2ns dsRED/core

$ns sirnplex-Iink $c14 $e-dst lMb 2ns dsRED/core

The above lines of code set up the network topolog¡ set the link speed

89

and delay, and declare if a node is DifiServ capable or not. dsRED/edge

indicates that the first node in the link is a DiffServ capable edge router.

dsRED/core indicates that the first node in the link is a DiffServ capable

core r-outer'.

set qESCT [[$ns linh $e-src $c7] queuel

set qC7C8 [[$ns línk $c7 $cBJ queueJ

set qC14ED [[$ns link $c14 $e-dstJ queueJ

Since DifiServ is captured in queues in ns, we must set queues corlespond-

ing to the DiffServ core ¡outers and edge routers.

Other parameters from one node to another must also be set before the

simulation begins. We set the packet size, policy and other parameters as

follows:

$qESC7 neanPktSize $packetSize

$qESC7 set nunQueues- 1

$qESC7 setNunPrec 2

$qESC7 addPoticyEntry [$src id] [$dst id] TokenBucket 10 $cirO $cbsO

$qESC7 addPolicerEntÌy TokeDBucket 10 11

$qESC7 addPHBEntry 10 0 0

$qESC7 addPHBEntry 11 0 1

$qESC7 configQ 0 0 20 40 0.02

$qESC7 confígQ 0 1 10 20 0.10

To call the DifiServ Routing Algorithm, we pass the node ids and their

DifiServ route selection o¡der number to the C+* method as shown belov¡:

set nt "[$src id] [$e-src idl $cpbte: [$e-src id] [$r1 idl $cpble:

[$r1 id] [$r2 id] $íncpble:[$r2 id] [$r3 id] $incpble:

[$r3 id] [$e-dst idJ $incpble: [$e-dst id] [$dst idl $cpbte:

[$r1 id] [$r4 id] $Íncpble: [$r4 Íd] [$c5 id] $incpbJ.e:

[$c5 id] [$c6 id] $cpb1e: [$c6 id] [$e-dst idJ $cpble:

[$e-src id] [$c7 ídl $cpble: [$c7 id] [$c8 id] $cpble:

[$cs id] [$r9 id] $cpble:[$r9 íd] [$c10 id] $íncpble:

[$clo id] [$e-dst idJ $cpble:[$c7 id] [$c11 id] $cpb1e:

[$c11 íd] [$c12 id] $cpbIe: [$c12 id] [$c13 id] $cpb1e:

[$c13 id] [$c14 id] $cpb1e: [$c14 id] [$e-dst id] $cPb1e"

$dsr GetDSRConpeletePath [$src id] [$dst id] $nt

puts "The conplete path is: $strPath \n"

The last line prints out the complete path returned from the C++ method.

When a link in the topology goes down at a specific time, the module is

called to recalculate the new route. If the route is not updated, the source

continues to send traffic on a failed route. Some packets will be lost, at a

quantity proportional to the time the loutes are not updated, since the traffic

generated is CBR. A DifiServ capable node ia able to adapt to the network

changes.

$tenp instatl-connection l$udpO set fid-] [$src id] [$dst id]

$strPath

This line of code installs the returned complete path for source routing.

Once the path is installed, all traffic will use the installed path.

91

At the end of the simulation, Nam [2] is executed on the trace frÌe out.nam.

Optimal paths returned from the algorithm in the simulations along with

the corresponding values of cpble and incpble a.re shown below:

cpble incpble Optimal Path

(0, 1,8, 12, 13, 14, 15, 16, 17)

2 5 (0, 1,8, 12, 13, 14, 15, 16, 17)

5 (0, 1,8,9, 10, 11, i6, 17)

4 5 (0, 1, 2, 3, 4,16, t7)

5 5 (0, 1, 2, 3, 4, t6, L7)

cpble incpble Optimal Path

1 o (0, 1, 8, 12, 13, 14, 15, 16, 17)

2 o (0, 1,8, 12, 13, 14, 15, 16, 17)

11 o (0, 1,8, 12, 13, 14, 15, 16, 17)

4 o (0, 1,8, 12, 13, 14, 15, 16, 17)

5 I (0, 1, 8, 9, 10, 11, 16, 17)

6 o (0, 1, 2, 3, 4, t6, L7)

7 o (0, 1, 2, 3, 4, 16, t7)

8 I (0, 1, 2, 3, 4, L6, 17)

o o (0, 1, 2, 3, 4, t6, t7)

The following are some snapshots of the simulation wíth cpble: I and

incpble -- 5.

Figure 5.2: Layout

Figure 5.3: Snapshot at 0.196s

Figure 5.4: Snapshot at 0.868s

95

:i¡ rr:ã:::I Li¡:ËI $F.Sl ttÈËÉll. i.. iË
*t:':a:!-ù-;¡t¡¿¡:.: ::-a:;:

:i:i

g
:.e..4
¡:t:ri:+
(lj,
ti-Ì¡l
lìÞ:,

::iÈ

,:ii.iì j

::r.i=:-,j:i

:.j ::

.1.:.. Ì
;:r:li

::J;¡:

ü

li
t:

t,

ii
i:
lì
i!,'':

I:.il l:

t,

li
!:
l:

eår-40$*gs-$t
i:
i:
t,¡'

t.
l.
t':
i!

-....''':-. *.*-*'..+.,.

1...1,.r -.r .l ¡ ..1,-..r-...¡--.lqnlq--,!..."J.-.r.-.f:..¿,..!,-r.-,l. .*l--,1- --t.- l-" l.--.,

Figure 5.5: Snapshot at 1.026s. A link is down. Nerv route is used.

96

Figure 5.6: Snapshot at Ll24s

o7

Figure 5.7: Snapshot at 1.511s. The link is back. The previous route is used.

98

Figure 5.8: Snapshot at 1.620s

oo

Figure 5.9: Snapshot at 2.114s

100

Figure 5,10: Snapshot at 2.253s

101

5,4.2 Network Topology Two

The second network topology we use for our simulations is shown in Fig-

ure 4.2. In ns, DiffServ capable nodes are either DifiServ capable edge routers

or DiffSelv capable core routers. We add a sending host (source, node 0) and

a receiving host (destination, node 12) to the above network topology. Two

DiffServ capable edge routers a¡e attached directly to them. The resulting

topology has 13 nodes. If Algorithm 1 is used to frnd the optimal routing

path in this topology, the found path will be the one with four traditional

routers (represented by squares). Obviously, the best path for DiflServ is the

one with frve DifiServ capable routers (represented by circles) in this network

topology. So it is better to use our Differentiated Services Routing Algorithm

(Algorithm 3) to find the optimal path.

As in the last simulation, all DifiServ capable nodes are assigned the same

route selection order number (cpble), and all DiffSelv incapable nodes are

assigned another route selection order number (incpble). In the Tcl script, we

can set different values for the variables cpble and i,ncpble lo achieve different

paths.

The following are optimal paths returned from the algorithm in the sim-

ulations along with the corresponding values of cpble and incpble:

t02

cpble incpble Optimal Path

1 5 (0, 1,6,7,8,9, 10, 11, 12)

2 5 (0, 1,6, 7,8,9, 10, 11, 12)

t) 5 (0, 1, 6,7,8,9, 10, 11, 12)

4 5 (0, i, 2,3,4,5, 11, 12)

5 5 (0, 1, 2, 3, 4,5, tL, L2)

cpble incpble Optimal Path

1 o (0, 1,6, 7,8,9, 10, 11, 12)

2 o (0, 1, 6,7,8,9, 10, 11, 12)

3 o (0, 1,6,7,8,9, 10, 11, 12)

4 o (0, 1,6,7,8,9, 10, 11, 12)

5 o (0, 1,6, 7,8,9, 10, 11, 12)

f) o (0, 1,6,7,8,9, 10, 11, 12)

o (0, 1,6,7,8,9, 10, 11, 12)

8 u (0, 1,2,3,4,5,Lr,L2)
o ô (0, 1, 2, 3, 4,5, tI,12)

6.4.3 Network Topology Three

The third network topology we use for our simulations is shown in Fig-

ure 4.3. We add a sending host (source, node 0) and a receiving host (desti

nation, node 9) to the above network topology. The resulting topology has

10 nodes. If Algorithm 2 is used to find the optimal routing path in this

103

topolog¡ the found path will be the one with five DifiServ capâble routers

(represented by circles). Apparently the best path is the one with only one

tladitional router' (represented by a square) in this network topology. Again,

it is better to use our Difierentiated Services Routing Algorithm (Algorithm

3) to find the optimal path.

As usual, all DiffServ capable nodes are assigned the same route selection

order number (cpble), and all DiffServ incapable nodes are assigned a¡other

route selection order number' (incpble). In the Tcl script, we can set different

values fol the variables cpble and i,ncpble to achieve different paths. This can

be controlled by ihe ISPs according the subscribed service agreement.

The following are optimal paths retulned from the algorithm in the sim-

ulations along with the corresponding values of cpble and incpble:

cpble incpble Optimal Path

1 o (0, 1, 3, 4, 5, 6, 7, 8, 9)

2 o (0, 1,2,8, 9)

o (0, 1,2,8,9)

4 o (0, 1,2,8, e)

5 6 (0, 1,2,8,9)

i04

cpble incpble Optimal Path

1 20 (0, 1,3,4, 5, 6,7,8,9)

2 20 (0, 1,3,4, 5,6,7,8,9)

20 (0, 1, 3, 4, 5, 6, 7, 8, 9)

4 20 (0, 1, 2,8,9)

5 20 (0, 1,2,8,9)

5.5 Data Structures and Prototypes in the

Implementation

In this section, we list some of the main data structures and method

prototypes in our implementation of the Difierentiated Services Routing A1-

gorithm on the Network Simulator.

class DSR-Node

{
public:

int intNa-ne ;

int intOrder;

int intParent;

DSR-Node *next;

DSR-Node(int n, íDt p, int d, DSR-Node *Poi¡ter=NULL);

void setNare (int intNn) ;

105

void setThe0rder(int intord) ;

void setParent(int intNer.tParent) ;

void operator =(DSR-Node& b);

int operator < (DSR-Node& b);

int operator <= (DSR-Node& b);

int operator > (DSR-Node& b);

int operator >= (DSR-Node& b);

];

cl-ass DSR-HashTable

{
private:

int intHsize;

int intcurrval;

struct HashNode {
unsigned ínt intID;

HashNode *Next;

HashNode (unsigned int id = 0, HashNode *N = NULL) :

intID (id), Next (N) { }
Ì **Hash-Tabre;

struct HashNodeConsec {

106

unsigned int uintHash;

char *Word;

HashNodeConsec (char xW = NULL, unsigned int id = 0) :

Word (Srrsave(W)), uintHash (id) { }

Ì *r,Hash_Tab1e_Consec ;

unsigned Hash (const char *s);

public:

DSR-HashTable (iut intSize = intHDefaultSize);
-DSR-HashTabte ();
int GetID (char *word);

char *GetNane (int id);
int GetNodes O;

int Fínd (chart'r¡ord) ;

ì..

class DSR-PriQueue

{
prj-vate:

DSR-Node *head;

int intsize;

int *intMapper;

int intMaxSize;

107

public :

DSR-PriQueue (int nunber = intQDefaultSize);
-DSR-PriQueue () ;

int lsThere (ínt nodeNane) ;

void Insert (DSR-Node& add) ;

DSR-Node DeleteMinO ;

int DecreaseKey(int nodeNane, int amt, ínt newparent);

Ì;

class DSR-Adj acentli st

{
private:

int intNodes;

int intsize;

int intlinks;

struct AdjNode {
DSR_Node *curpos;

DSR-Node *head;

short íntKnown;

int intOrd;

Ì *List;

i08

public :

DSR-Adj acentlist (int itrtNewsize = intlistDefaultSize);
-DSR-Adj acentLí st O ;

void Addlink(int ptÂ,int PtB, int link);
iut operator O (int naA,int ndB);

int Ernptyo;

void setNodes(int nv) ;

int NunlinksO;

int NunNodesO;

void setKnom(int i, short status) ;

short Known(int i);
int intOrder(int i);
void setOrder(int i, int intOrder);

DSR-Node *start (iDt i);
L.

class DSRAIgorithn : public TcLobject

{
public:

nSRAlgorithrnO {};
void DSR-Dij kstra (int intsource, DSR-Adj acentlist& AL,

109

DSR-Node xND, DSR-HashTabLe& HT);

void DSR-GetCompletePath (int intsource, int intDestination,

DSR-Node *ND, DSR-Adj acentlist& ÀL,

DSR-HashTabl-e& HT, int *. intTotal0rder, char r.pathBuf);

void CalPathForSim (char *strsource, char *strDest inat i on,

char *strNT);

virtual int connand(int argc, const char*constt(argv);

);

110

Chapter 6

Conclusions

6.L Conclusions

This tliesis studies the louting problem for Differentiated Services in a

network consisting of DifiServ capable nodes and DifiServ incapable nodes

(see Definition 4.3.1). We give three routing algorithms. The routing metrics

we consider in this thesis are DifiServ capability and cost. The first algorithm

assumes that cost is given higher precedence over DifiServ capability. The

second algorithm assumes that DiffSelv capability is given higher precedence

over cost. The frrst two algorithms do not perform well in their wotst cases.

This leads us to the third algorithm. In the third algorithm, rve assign a

DifiServ route selection order number to each ìink in the netwolk topology

and the algorithm computes the optimal path using the assigned DifiServ

route selection order numbers. Simulations show that the third algorithm

is more powerful than the first two algorithms. Through simulations in ns,

111

\¡/e have proved thåt the algorithm calculates the correct routing paths in all

network topologies. Since the route selection ordel number can be changed

by the Internet Service Provider, it can be used to create the service packages

and charging policy. Based on this, we recommend that the third algorithm

be used for all netwolk topologies.

6.2 Recommendations for F\rture'Work

The following areas require further attention:

In the algorithms, we use only two metrics: DifiServ capability and

cost. B¿ndwidth, delay and other metrics are not considered in the

route computation. In some QoS situations, these metrics may be

important in route selections. We need to consider these metrics in

future work.

We need to find a way to identify rvhether a. router is DifiServ capable

or not.

[1]

l2l

[3]

t4l

t5l

References

ns-2 network simulator, http://www-nrg.ee.lbl.gov/ns/.

http://www.isi.edu/nsnam/nam/.

G. Apostolopoulos, R. Guerin and S. Kamat, Implementation and Per-

formance Measurements of QoS Routing Extensions to OSPF, Proceed-

i,ngs of Infocornrn '99, New York, March 1999.

George Apostopoulos, Roch Guerin, Sanjay Kamat, Satish K. Ti'ipathi'

Quality of Service Based Routing: A Perfolmance Perspective, Proceed-

i,ngs of ACM SIGCOMM, September 1998, pp. 17-28.

Cristina Aurrecoechea, Andrew T Campbell, Linda Hauw, A survey of

QoS architecturcs. ACM/Springer Verlag Multi'media Systems Journal,

Speci,al Issue on QoS Architecture, Yol. 6, No. 3, May 1998, pp. 138-151.

[6] Roland Bless, Klaus Wehrle, Evaluation of Difie¡entiated Services us-

ing an Implementation under Linrx, Proceed,ings of IWQoS'99, London,

June 1999. IEEtr Press, 1999.

[7] Shigang Chen, Klala Nahrstedt, An Overview of Quality-of-Selvice

Routing for the Next Generation High-Speed Networks: Probiems and

113

t8l

tel

Solutions, IEEE Network Magazi,ne, Special Issue on Tfansmi,ss'i'on and,

Di.stributi,on oJ Di,gital Vi,d,eo, vol. 12, num. 6, pp. 64-79, November-

December, 1998.

Shigang Chen, Klara Nahrstedt, On Finding Multiconstrained Paths

(NICP), Intetnati,onal Journal of Computati.onal Geometry and Applica-

ti,ons, 1998, pp. 874-879.

Shigang Chen, Klara Nahrstedt, Distributed QoS Routing with Impre-

cise State Information, Proceed,ings oÍ 7th IEEE Intemati'onal Confer-

ence on Computer, Communications and, Networks, Lafayette, LA, Oc-

tober 1998, pp. 614-621.

Boris V. Cherkassky and Andrew V. Goldberg and Tomasz Radzik,

Shortest Paths Algorithms: Theory and Experimental Evaluation,

SODA: ACM-SIAM Symposi.um on Discrete Algorithrns (A Conference

on Theoretical and Erperimental Analgsis of Di,screte Algorithms), L994.

Yong Cui, Ke Xu and Jianping Wu, Precomputation for Multi-contraned

QoS Routing in High-speed Networks, Proceed'ings of IEEE InJocornm,

2003.

C. Dovrolis, D. Stiliadis and P, Ramanathan, Proportional Difierenti-

ated Services, Proceed,ings of SIGCOMM (October 1999), vol.29, 109-

120, 1999.

N. F\rjita and A. Iwata., A Hierarchical Multilayer QoS Routing System

with Dynamic SLA Management, IEEE Joutnal on Selected, Areas 'in

Cotntnunication, 18(12), December 2000.

[10]

[11]

[12]

[13]

t74

[14] Roch A. Guerin, Ariel Orda and Doughlas Williams, QoS Routing Mech-

anisms and OSPF Extensions, IETF Intem'et Drøfi, November 1996.

J.M, Jaffe, Algorithms for Finding Paths with Multiple Constlaints,

Netuorks, 14:95-116, 1984.

Yanxia Jia, Ioanis Nikolaidis and P. Gburzynski, Multiple Path QoS

Routing, Proceedings of ICC'01, Helsinki, Finland, June 11-15' 2001'

pp. 2583-2587.

S. Kamat, S. Tl'ipathi, G. Apostolopoulos and R. Guerin, Improving QoS

Routing Performance under Inaccurate Link State Information, ITC-16,

June 1999.

Ashish Goel, K.G.Ramakrishnan, Deepak Kataria, Dimitris Logothetis,

Efficient Computation of Delay-Sensitive Routes from One Source to All

Destinations, IEEE INFOCOM 2001, pp. 148-152.

R. Guerin and A. Orda, QoS-based Routing in Networks with Inaccu-

rate Information: Theory and Aìgorithms , IEEE/ACM Transactions on

Netuorki,ng, Vol. 7, No. 3, June 1999, pp. 350-364.

Liang Guo, ibrahim Matta, Search Space Reduction in QoS Routing,

College of Computer Sci,ence, Northeastem Uni,uersi,tg, Technzcal Report

NU-CCS-98-09, October 1998.

Alpar Juttner, Balazs Szviatovszki, Ildiko Mecs, Zsolt Rajko, Lagrange

Relaxation Based Method for the QoS Routing Problem, IEEE INFO-

COM 2001, pp.782-79r.

[15]

[16]

[17]

[18]

[1e]

[20]

l21l

115

[22] Tïrrgay Korkmaz and Marwan Krunz, Multi-Constrained Optimal Path

Selection, Proceedi,ngs of the IEEE INFOCOM 2001 Conference, Yol 2,

Anchorage, Alaska, April 2001, pp. 834-843.

[23] Turgay Korkmaz, Marwan Krunz, A Randomized Algorithm for Find-

ing a Path Subject to Multiple QoS Constraints, Computer Netuorks

Joumal, Vol. 36, No.2/3,2001, pp. 251 268.

[24] T[rgay Korkmaz, lvlarwan Krunz, Spyros Ttagoudas, Efficient Algo-

rithm for Finding a Path Subject to Two Additive Constraints, Corn-

puter Communi,cations Journal, Vol. 25, No. 3, February 2002, pp.225-

238.

[25] F. A. Kuipers and P. Van Mieghem, QoS Routing: Average Complex-

ity and Hopcount in m dimensions, Proceed,i'ngs of 2nd Internati'onal

Workshop on Quali,tg of Future Intemet Serai'ces, QoflS200i, Coimbra,

Portugal, September 24-26,2001, pp. 1i0-126.

[26] Longsong Lin, Tianji Jiang and Jeffrey Lo, A Generic T\'affic Condition-

ing Model for Difierentiated Selvices, ICC (3), i305-1309, 2000.

[27] Gang Liu, I{.G. Ramakrishnan, A*Prune: An Algorithm for Finding K

Shortest Paths Subject to Multiple Constraints, INFOCOM, 743-749,

2001.

[28] D. H. Lorenz and A. Orda, Qos routing in networks with uncertain

parameters, IEEE INFOCOM'98, 1998.

[29] Q. Ma, Quality-of-Service Routing in Integrated Services Networks,

Ph.D. thesis, CMU-CS-98-i38, January, 1998.

1i6

[30] Q. Ma and P. Steenkisie, Quality of service routing for traffic with per-

formance guarantees, IFIP Fl,fth Intetnati'onal Workshop on Qualitg oJ

Seraice, (New York), pp. 115-126, May 1997.

[31] Ibrahim \4atta and Azer Bestavros, QoS Controllers for the Internet,

Proceedings of the NSF Workshop on Informati'on Technology, CaÍo,

Egypt, March 2000.

[32] Piet Van Mieghem, Hans De Neve, Aspects of Quality of Service Rout-

ing, SPIE'Q9, Nov. 1-6, Boston (USA), 35294-05.

[33] Hans De Neve, Piet Van Mieghem, TAMCRA: A T\.rnable Accuracy

Multiple Constraints Routing Algorithm, Computer Comtnunzcat'ions,

Voì. 23, pp.667-679

[34] Kesava Prasad Narasimhan, An Implementation of Difierentiated Ser-

vices in a Linux Environment, M.Sc. Thesis, North Carolina State Uni

velsity,2000.

[35] Satyabrata Pradhan, QoS-Aware Hierarchical Multicast Routing on

Next Generation Internetworks, UM M.Sc. thesis, 2000.

[36] Joao Luis Sobrinho, Algebra and Algorithms for QoS Path Computation

and Hop-by-Hop Routing in the Internet, IEEE INFOCOM'}I, vol.2,

pp. 727-735,2001.

[37] W. Stallings, High-Speed Netwo¡ks: TCP/IP and ATM Design Princi-

ples, Prentice Hall Inc., NJ, USA, 1998.

Lt7

[38]

[3e]

[40]

[41]

[42]

[43]

l44l

Ronny Vogel, Ralf G. Herrtwich, Winfried Kalfa, Hartmut Wittig and

Lars C. Wolf, QoS Based Routing of Multimedia Streams in Computer

Networks, IEEE JSAC, Vol. 14, No. 7, 1996, pp. 1235-t244.

Jun Wang and Klara Nahrstedt, Hop-by-Hop Routing Algorithms For

P¡emium-class Tlaffic In DiflServ Networks, IEEE INFOCOM'02,2002'

June Wang, I(lara Nahrstedt and Yuxin Zhou, Design and Implementa-

tion of DiffServ Routers in OPNÐT, Proceed'i'ngs of OPNETWORK')},

Washington D.C., Aug 28 - Sep. 1, 2000.

Shengquan Wang, Dong Xuan, Riccardo Bettati and Wei Zhao, Pro-

viding Absolute Difierentiated Set'vices for Real-Time Applications in

Static-Priority Scheduling Networks, I N F O C O M, 669-678, 2001.

Z. Wang and Jon Crowcroft, Qos Routing for Supporting Resource

Reservation, IEEE JSAC, September 1996.

Z. Wang and J. Crowcroft, Quality of service routing for supporting

multimedia applications, IEEE Joumal on Selected Areas'in Communi-

cati,ons, vol 14, pp. L228-I234, Sept. 1996.

Zheng Wang and Jon Crowcroft, Quality of Service Routing for Sup-

porting Multimedia Applications, IEEE Joutnal on Selected Areas in

Communications, vol.14, pp. L228-7234, Sept. 1996.

[45] X. Xiao and L. M. Ni, Internet QoS: a big picture, IEEE Networh, vol.

13, no. 2, pp. 8-18, March-April, 1999.

118

[a6] Ikjun Yeom and A. L. Narasimha Reddy, Realizing throughput guaran-

tees in a differentiated services network, ICMCS, Yol. 2, 372-376, 1999.

[47] Ik-Jun Yeom, Bandwidth Assurance In A Differentiated Services Net-

work, Ph.D. Dissertation, Texas A & M University, May 2001.

[48] I. Yeom and A. L. N. Reddy, Marking for QoS Improvement, Computer

Cotnmuni,cationq vol. 24, No. 1, 35-50, 2001.

[49] Xin Yuan, On the Extended Bellman-Ford Algorithm to Solve Two-

Constrained Quality of Service Routing Problems, Technical Report',

TR-990701, Department of Computer Science, Florid,a State Uniuer-

silg, July 1999.,

[50] Xin Yuan, Xingming Liu, Heuristic Algorithms for Multi-Constrained

Quality of Service Routing, IEEE INFOCOM 2001, pp. 355-364.

[51] RFC 768, User Datagram Protocol, August 1980.

[52] RFC 791, INTERNET PROTOCOL, September 1981.

[53] RFC 792, INTERNET CONTROL MESSAGE PROTOCOL, Septem-

ber 1981.

[54] RFC 793, TRANSMISSION CONTROL PROTOCOL, September 1981.

[55] RFC 826, An Ethernet Address Resolution Protocol, November 1982.

[56] RFC 951, BOOTSTRAP PROTOCOL (BOOTP)' September 1985.

[57] RFC 1058, Routing Information Protocol (RIP)' June 1988.

[58] RFC 1633, Integrated services in the internet architecture: an overview,

t994.

[59] RFC 1721, RIP Version 2 Protocol Analysis, 1994.

[60] RFC 1771, A Border Gateway Protocol 4 (BGP-4), Ma¡ch 1995.

[61] RFC 1883, Internet Protocol, Version 6 (IPv6) Specification, December

1995.

[62] RFC 1992, The Nimrod Routing Ai"chitecture, August 1996.

[63] RFC 2178, OSPF Version 2, July i997.

[64] RFC 2205, Resource ReSerVation P¡otocol (RSVP) Version 1 Functional

Specifi cation, September 1997.

[65] RFC 2208, Resoulce ReSerVation Protocol (RSVP) Version 1 Applica-

bility Statement Some Guidelines on Deployment, September 1997

[66] RFC 22L0, "lhe Use of RSVP with IETF Integrated Services, September

t997.

[67] RFC 2474, Defrnition of the Differentiated Services Field (DS Field) in

the IPv4 and IPv6 Headers, December 1998.

[68] RFC 2475, An Architecture for Differentiated Services, December 1998.

[69] RFC 2597, Assured Forwarding PHB Group, June 1999.

[70] RFC 2598, An Expedited Forwarding PHB, June 1999.

r20

[71] Stardusi, White Paper - The Need for QoS, www.stardust.com,

www.qosforum.com.

[72] Stardust, White Paper - QoS protocols & architectules,

www.staldust.com, www.qosfoÌum.com.

[73] IETF "Differentiated Services" working group, See

http: //www.ietf.org/html.charters/diffserv-charter.htmi and

http://www.ietf .org/ids.by.wg/difiserv.html.

[74] Y.Bernet, R.Yavatkar, P.Ford, F.Baker, L'Zhang, K.Nichols, M.Speer

and R. Braden, Interoperation of RSVP/Int-Serv and Diff-Serv Net-

works, February 1999, (draft-ietf-diffserv-rsvp-02.txt).

[75] IETF "Integrated Services" rvorking group, See

http://www.ietf.org/html.charters/intserv-charter.html and

http://wwrv.ietf.org/ids.by.wg/intserv.html.

[76] IETF "Multiprotocol Label Switching" working group,

See http://www.ietf.org/html.charters/mpls-charter.html and

http: //www.ietf.org/ids.by.wg/mpls.htmi.

[77] E. Rosen, A. Viswanathan and R. Callon, Multiprotocol Label Switching

Architectule, April 1999, (draft-ietf-mpls-arch-05.txt).

[78] J. Heinanen, Differentiated Services in MPLS Networks, June 1999,

(draft-heinenen-diffserv-mpls-00. txt).

[79] F. Baker, Aggregation of RSVP for IPv4 and IPv6 Reservations, June

1999, (draft-baker-rsvp-aggregation-01.txt).

[80] Y. Bernet, Usage and Format of the DCLASS Object with RSVP Sig-

nalling, February 1999, (draft-bernet-dclass-00.txt).

