Reliable File Transfer on the Internet using
Distributed File Transfer (DFT)

by
Xin Fang

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements

for the Degree of
MASTER OF SCIENCE
Department of Electrical and Computer Engineering
University of Manitoba

Winnipeg, Manitoba, Canada

© Xin Fang, 2000

i+l

National Library Bibliothéque nationale

Your filg Votre réforsnce

Our file Notre réfdrence

L’auteur a accordé une licence non
exclusive permettant a la

of Canada du Canada
Acquisitions and Acquisitions et)
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Camnada

The author has granted a non-

exclusive licence allowing the

National Library of Canada to

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliotheque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propnété du
droit d’auteur qui protége cette theése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent €tre imprimés
ou autrement reproduits sans son
autorisation.

0-612-57539-X

Canadi

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

Tkkkk

COPYRIGHT PERMISSION PAGE

Reliable File Transfer on the Internet using

Distributed File Transfer (DFT)

BY

Xin Fang

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University
of Manitoba in partial fulfillment of the requirements of the degree
of

Master of Science

XIN FANG © 2000

Permission has been granted to the Library of The University of Manitoba to lend or sell
copies of this thesis/practicum, to the National Library of Canada to microfilm this
thesis/practicum and to lend or sell copies of the film, and to Dissertations Abstracts
International to publish an abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor
extensive extracts from it may be printed or otherwise reproduced without the author's
written permission.

I hereby declare that I am the sole author of his thesis.

I authorize the University of Manitoba to lend this thesis to other institutions or

individuals for the purpose of scholarly research.

I further authorize the University of Manitoba to reproduce this thesis by photocopying or
by other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

Reliable file transfer on the Intemet using DFT, @Xin Fang ii

ABSTRACT

Transferring files over the Internet is extremely common, hence the protocol, FTP.
However, the functionality, and reliability of FTP relies on lower layer protocols.
Improved performance mechanisms have yet to be deployed that combine the ubiquity of
FTP, high reliability, and fauit tolerance. This thesis describes the design and
implementation of such a mechanism called Distributed File Transfer (DFT). DFT
establishes multiple FTP sessions with multiple FTP sites transferring different segments
of a file simultaneously. It switches to other servers if some server becomes overloaded or
unavailable. A Load Distributing Server (LDS) in DFT collects server information and
distributes load among multiple servers. Experiments presented show that DFT is both

reliable and efficient.

Reliabie file transfer on the Intemet using DFT, €Xin Fang iii

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank all the people who have contributed towards

this thesis.

I wouid first like to thank my advisor, Dr. Robert D. McLeod, for his guidance and
encouragement through my academic years as well as his contributions and help with this
thesis. In addition, I would like to express my appreciation for his kind and generous

personality.

I would also like to thank Dr. Muthucumaru Maheswaran and Dr. David C Blight, for
taking the time to be on my thesis committee for reading my thesis and for their efforts

during my studies.

Furthermore, I would like to thank my husband, Jingshao Chen, and my parents, for their

constant encouragement and support.

Reliable file transfer an the Intemet using DFT, ©Xin Fang iv

TABLE OF CONTENTS

Approval Form .1
ADSITACE c.coeeceeciereccrceenreinsecectes sesseessarsessnse s e emssnreesb s ne s an st asessesnsen iii
Acknowledgements iv
Table of Contents v
List of Figures X
List of Tables... xif
Chapter 1 Introduction - |
1.1 Distributed Processing .. 2
1.2 The Internet.. 4
1.3 File Transfer Protocol (FTP) S
1.4 Motivation —
1.4.1 Statement of Problems 7
1.4.2 The Objective of DFT 9
SUIMINATY .. cereececeeceaeeacoeeeacrcan rmsesnsvessssarsmerssesssmessesmesassesassrmsmssmvssesssresraressssassmmsssnrasesnseses 11

Reliable file transfer on the Intemet using DFT, ©Xin Fang

Chapter 2 RelAted WOTKccocceueuercncanceserceceosmeassscsesecssensmssssrnssmsmssssassssessmscsmssanensassensasass 12
2.1 FTP eeeeoeeeeatetteiestemestessseotessmesseeseee e re b e rene s e nenaen 12
2.2 Checkpoint Resume Applications.. - .- 16
2.3 Round-Robin DNS ..o e e sene s 17
2.4 Internet Load Balance Solutions.. 18
2.5 Comparison of DFT and Other SOIUtIONSccccoeeoeeecmiermerremeeeernmeesnesneeenesaaeenes 19
SUMMATY . coeeeceeecercceee et eemeecaeseas e smressenasasmsrnaresanesssassarnnes .. 19

Chapter 3 Distributed File Transfer Architecture .21
3.1 Distribution Architecture of DFT .21

3,11 DET CHEOL et cceecceeeecoscssocanrccan s ecssccecescen e sessesssnssasssstesssransaraneranserenes 23
3.1.2 Load-Distributing Server (LDS) ..o e eee e e meneenes 24
3.1.3 File SEIVETS .cuverrereeeceecrrneemcernenenennes - 26

3.2 DFT Two-layer Connection MOl ... i cecrccecenireeen e eesesre e nssenresnsaeens 27
3.2.1 Control-layer COnNECHOMN. . e ccerarecereeercccenceaeaeecssemensnrsersserenanserassessnes ...30
3.2.2 Data-layer CONNECHON «.....ccccviumrircrarmssrssemseersossammmssssnmessnnrassesasssssasnnssesnnsnssns 32
Reliable file transfer on the Intemet using OFT, ©Xin Fang vi

3.3 DFT Working Procedure

3.3.1 Target File Query and Searching 33
3.3.2 Muld-connection File Downloading .35

3.4 Fault Tolerance .. 37
3.4.1 Layered Failure Model............ weee 38
3.4.2 Failure Detection...... 40
3.4.3 Failure RecoOVery.....c.cccceceeacceeaannens 43
Summary .. 44
Chapter 4 DFT Implementation............ .46
4.1 Implementation ToOIS ...cceeeeeeeeenceerenvnecs ... 46
QLY JAVA coeereeeeeeeceeeereeececasaceceanceeesssssnsesn sessaseasesnsnsnsrnsssesnasesmmmessssasassnennmmmnasnnssanasaas 46
4.1.2 Java Foundation Classes (JFC).. ..49

4.2 DFT client’s impleMentationcocioiviirinmirreecsiecssenesrese s srensssseenssnrassssssssnnen 50
4.2.1 DFT Client’s Function BIOCK.....c.ccucrreecieerccceraercesreinsieenssecrsssesrsessenressnnenes 50
4.2.2 Major Classes il DEFT CHENLoceeeeeeeeeeererceeeeecccrenncesesansasssronamtesseesessscseees 64
Reliable file transfer on the intemet using DFT, @Xin Fang vii

4.3 LDS implementation..... 66
4.3.1 LDS Function Blocks -.. 66
4.3.2 Major Classes in EDS ...t 69

Summary 70

Chapter S Experiments and Data Analysis . 71

5.1 Experiment Design 71
5.1.1 Experiment Goals 72
5.1.2 Experiment ENVITONMENDTcoooiimiicieeiececoececcceeterremeseeseresn s ensnes s snessssranses 74

5.2 RElIADILLY TSt coonnnnnceceeeeeceeecrenaecameaesceecrecesosssonsssanarssmsassrmmmms esssnsnsersnnessereses 75
5.2.1 Server Failure Recoverycccoocceiacnnccnncnces 75
5.2.2 Hardware Failure RECOVELYccccrererecnreeeeerremeterereecesrescsssoromsaseossesscsesssearerees 71
5.2.3 DFT Client Failure RECOVETY «.ccoiererieacireecrcrercoeereseresserssssesesrsssseormssssossssas 77 .

5.3 PerfOrmNANCE TESL......coueiiiieciiiicrenrtsreraneteserosesessesossnnenssssssessrsnsrnrssesaresnnnsorsrsnsessnnes 77

SUIMIINIATY - cceeeeeomecamoocecococeesoseraraaannsnssersssnennressssenssmemsresssmmmmsssesssssossvsssmssmsesssmsssserssnesssssses 81

Chapter 6 CONCLUSIONS ...cccemericieceecccerrrcrerereecrsserrsserssssasesasssassssesosesssssennsesssansesarssssassasasas 83
Reliable file transfer on the Intemet using DFT, @Xin Fang viii

References

Appendix A Numeric Order List of FTP Reply Codes

85

88

Reliable file transfer on the Intemet using DFT, @Xin Fang

LIST OF FIGURES

Figure 1 the Number of Hosts on the Internet from 1995 to 2000 [ISC2000]

Figure 2 Typical DFT System Layout

Figure 3 DFT Client and DFT File Servers

Figure 4 FTP Transportation Model

Figure 5 DFT Logical Transportation Model

Figure 6 DFT Control-level Connection and Data-level Connection........ccccceeeeeeeens

Figure 7 DFT Two-layer Model and Their Functions

.....

Figure 8 Queries and Reply between a DFT Client and an LDS

Figure 9 Multiple File Segments Downloading erersenanannares

..................

Figure 10 OSI Reference Model and Three-layer Failure Model

Figure 11 Job Switching when Failure Occurs in DFT

.............................

.22

.27

28

29

30

32

34

37

38

Reliable file transfer an the Intemet using DFT, ©Xin Fang

Figure 12 Function Blocks of a DFT Client and the Information Flow between Them

51
Figure 13 Overall Download Procedure of a DFT Client) 54
Figure 14 Working Procedure of a Controllerccccovueemrerencne 56
Figure 15 Working Procedure of a Download Thread 59
Figure 16 Working Procedure of the Timer 62
Figure 17 Communication between a DFT Clientand an LDS.........cccooavnernenenc.. 67
Figure 18 Downloading Speed of One Server.....co e eereeeeae 78
Figure 19 Downloading Speeds of Two Servers . 19
Figure 20 Downloading Speeds of Three Servers SO
Figure 21 Downloading Speeds of Four Servers....... 80
Figure 22 Throughput of DFT with Different Number of Serversccccceeeceverrevves 81

Reliable file transfer on the Intemet using DFT, @Xin Fang xi

LIST OF TABLES

Table 1 Meanings of Finish-flag and Stall-flag combination 53
Table 2 Explanations of DFT client’s overall behavior flow chartceeeeeeeencnc 56
Table 3 Explanations of DFT client’s download thread controller flow chart.......... 58
Table 4 Explanations of DFT client’s download thread flow chart . 61
Table S Explanations of DFT client’s timer flow chart...... .64
Table 6 DFT servers in experiment. 75
Table 7 Failure/recovery time when a server fails............. 76
Table 8 Failure/recovery time when a server’s link fails............ 77
Table 9 Downloading rate with different number of servers 80

Reliable file transter on Intemet using DFT, ©Xin Fang xit

Chapter 1 Introduction

Chapter 1
Introduction

This thesis presents a reliable file transfer mechanism called Distributed File Transfer
(DFT). The purpose of DFT is to increase the reliability of transferring files over the

Internet.

DFT is a distributed system. It simultaneously transfers a target file from multiple file
servers. DFT establishes multiple connections between the DFT client and file servers.
All connections transfer different segments of a target file at the same time. By
distributing the transfer tasks among multiple distributed servers, DFT provides a reliable

and efficient mechanism of file transferring.

DFT is designed to meet the requirements of today’s computing environment. It works on

a wide geographic distributed network and heterogeneous systems. It uses the most

Reliable file transfer on Intemet using OFT, ©Xin Fang 1

Chapter 1 introduction

common and widespread protocol, TCP/IP. Thus, any nodes that have TCP/IP
implementation can run DFT. Moreover, the hardware independent language Java was
chosen as the programming language to implement DFT. With these two features, DFT

can work on most computers throughout the largest distributed environment, the Internet.

1.1 Distributed Processing

Distributed computing environments have been widely adopted to increase a system’s
reliability and performance. A distributed system normally contains: nodes or hosts and
the network itself. Workload is distributed among computing nodes and nodes are
connected by the network. The network is responsible for the transfer of information
between nodes. The information includes control information, distributed code and

distributed data.

There are two kinds of distribution, method distribution and data distribution. Method
distribution makes each node dc a different task. In method distribution, a large
computing task is divided into many small tasks and the nodes will process the small
tasks simultaneously. Data distribution disﬁibutes replicas of the data or part of the data
to different nodes. Thus, if some nodes fail, the data is still available to users. In general,
method distribution increases the performance of a system and data distribution increases

the reliability.

Reliable file transfer on Intemet using DFT, ©Xin Fang 2

Chapter 1 Introduction

To achieve reliability, the nodes that contain the data should be widely spread apart. The
degree of reliability determines the degree of decentralization. Two servers can be
mounted in different racks in the same room. This configuration can endure one server
failure but cannot tolerant a power failure of the building. Or we can put servers in
different buildings. But this cannot tolerate an earthquake in that area. Sometimes, to
avoid a large-scale disaster, the nodes would be distributed across the country or

continent.

However, wide scale distribution brings another problem. The more widely the nodes are
separated, the larger the network is. The larger the network is, the more complex it is, too.
The construction of such a reliable, fast and large network will be very costly. Moreover,
this network should be multi-purpose in addidon to that particular distributing

application.

Therefore, a very large network is needed to increase the reliability and that network
should carry the information of the distributed system, as well as other information for
different applications. Fortunately, we now have such a network at hand. Moreover, we

can use the network with nearly zero cost. It is the Internet.

Reliable file transfer on Intemet using DFT, ©Xin Fang 3

Chapter 1 Introduction

1.2 The Internet

The Internet was bom in 1969. It was conceived by the Advanced Research Projects
Agency (ARPA) of the U.S. government and was first known as the ARPANet. The
original aim was to create a network that would allow users of a research computer at one
university to be able to communicate with research computers at other universities. When
it was designed, the idea of reliability also was weaved into the structure of Internet. The
Internet is designed as a packet switched peer-to-peer communication system. Therefore,
if one router fails, packets can be rerouted through other routers to their destinations.

Even if part of the Internet is destroyed, the remaining part can still work.

From the day it was formulated, the Internet has been growing at an exponential rate
{Paxson1994]. Figure 1 shows the number of hosts connected to the Internet. According
to the research of Paxon, the traffic in the Internet is also growing at an exponential rate.
With this fast growth, geographic distribution becomes increasingly cost effective. Many
new applications take advantage of global connectivity and the low communication costs
of the Internet. A VPN (virtual private network) [Ryan1999] is one example that uses the
Internet as a communication network to construct a private network just as a workgroup
on a LAN. Other applications such as Web switching [APa] [APb] take full advantage of

the redundancy of the Internet to provide quick and efficient service to users.

Reliable fike transfer on intemet using DFT, ©Xin Fang 4

Chapter 1 Introduction

AM Rutieowsid 3 B B ! - { 80,000,000
Cervter for Newt Generetion Intemat | -~ . . 72,398,092]
70,000,000
Source dete : !]
g Neiw C] 4 000
Lk survey |7] 2000,
i) data o :
— $ 20,000,000
— Adjustedoid —————— 10,000,000
©. surveydata S
Frrrrrerrer R e T s S— = Q

Jan-95 Jan86 Jan97 JanSs8 Jan-89 Jan-00
Figure 1 the Number of Hosts on the Internet from 1995 to 2000 [ISC2000]

1.3 File Transfer Protocol (FTP)

Among all the applications on the Internet, file transfer is a very basic but very useful
application. FTP is the application that transfers files between FTP clients and FTP
servers on the Internet. It has been used since 1971. The widely accepted standard of FTP
is defined in RFC 959, 1985 [PR1985]. It specified the application that allows a user to
retrieve files from a remote FTP server. FTP relies on TCP. The reliability of TCP
provides reliability of FTP itself. It has many features that makes file transfer among
heterogeneous system possible. Recent RFCs have developed FTP’s security features

[HL1997] and FTP over IPv6 [AOM1998].

Reliable file transfer on Intemet using OFT, ©Xin Fang 5

Chapter 1 Introduction

Today, FTP is the second most widely used application on the Internet in terms of traffic
[ISC2000]. Computers that connect to the Internet need to transfer files between each
other from time to time. Nearly every software company has their own FTP site for their
customers to download the latest products or patches. Many famous web sites such as
“www.download.com™ and “www.tucows.com” provide a service that collects popular
download files over the Internet. Users access their sites and download the file that
interests them. Some search engines also have dedicated FTP search engines that can
search through all the mirror sites of the Internet for a file. One example is Lycos’s search

site [Lycos] that can search for on FTP file name.

Because the demand for downloading a file is throughout the Internet, FTP server
mirroring is widely implemented. Many FTP sites have many mirror sites distributed
around the world. The mirror sites contain the same copies of files as on the original
server. Therefore, a user in Winnipeg can download a file from the mirror site that is
located in Winnipeg while a user in China can download the same copy of the file from
the mirror site in China. This approach generally can keep the traffic local and achieves

better performance.

However, if an FTP site has too many user connections, the speed of the site will be slow.

Most FTP servers have limits on the maximum number of concurrent users. New users

Reiiable file transfer on Intemet using DFT, ©Xin Fang 6

Chapter 1 introduction

have to wait until the server has an idle connection. Alternatively, the user can try to find
another mirror site or another FTP server that contains the same file and download the
file from there. This procedure does not happen automatically, users have to wait or

switch servers manually.

1.4 Motivation

1.4.1 Statement of Problems

FTP is widely used and easy to implement. However, it has problems with reliability,
performance and scalability. The problems are mostly caused by the growth of the
number of users, traffic, and the diversity of the Internet itself. Several problems with

traditional FTP include:

1. The load can easily exceed the capacity of the server. Under this circumstance, the

server will refuse new connections in order to maintain performance.

2. While some servers are quite busy, other mirror sites may be quite idle in contrast.
Users tend to download files from the servers with which they are familiar. Therefore,
although there are many mirror sites around the world, the load may not be equally

distributed among them.

Reliable file transfer on Intemet using DFT, ©Xin Fang 7

Chapter 1 Introduction

3. When a server is brought down for upgrade or maintenance, all users will lose their

connections with the server and the FTP sessions will be interrupted.

4. New FTP servers need a lot of advertisement to make them known to users.

The reliability problems are apparent when a user is downloading files from a server. The

reasons that cause the file transferring process to be seriously degraded or broken are:

1. The link (either physical or logical link) between the client and server is congested or

broken.

2. The server is not available due to too many simultaneous users or the system is down.

Looking into the problems that FTP is facing, one notes that poor traffic allocation is a
key component of the problem. When a server is too busy, if there is a mechanism that
redirects a new user to an idle server, the server unavailability problem will be solved.
When a server or the link to the server is down, if there is mechanism that transparently
switches the user to another mirror site, there will be a reduction in the number of

problems associated with hard faults or outages.

Reliable file transfer on Intemet using DFT, ©Xin Fang 8

Chapter 1 Introduction

1.4.2 The Objective of DFT

Distributed File Transfer (DFT) is designed to solve these problems. DFT can allocate
server resources according to their availability and utlization. Therefore, we obtain
reliability, scalability and efficiency by making better use of all file servers in the Internet.
This approach makes all FTP servers that contain the same files a ‘“‘cluster” and

distributes load among them.

The design concept of DFT is briefly described as follows:

1. In order to switch among servers, a client connects to multiple file servers to
download file components simultaneously. This approach improves the performance

of file transfer in general.

2. The client moritors all connections to file servers to detect failure and congestion
problems. If some connection is broken, the DFT client should have sufficient
intelligence or means to decide which server it should switch to and switch to that

server immediately.

3. There should be a Load Distributing Server (LDS). The LDS knows all file servers so

that it can provide a server list to a client. Thus, the LDS will take care of the load

Reliable file transfer on Intemet using DFT, ©Xin Fang 9

Chapter 1 Introduction

distribution among all servers and the client will focus on file transfer among a small

set of servers.

With the design concept in mind, the following table gives the main goals that DFT will

achieve:

Reliability File transfer is not interrupted even when servers or links are down.
Servers can be geographically separated among many sites. DFT should
offer anti-disaster level reliability.

Efficiency A client downloads multiple segments simultaneously from a carefully
chosen group of servers. File transfer load is dynamically distributed to
achieve best performance.

Scalability A new server can be added at any time and anywhere. Load can be

distributed to the new server as long as it registers itself with LDS.

Compatibility File transfer is based on the most widely adopted protocol, FIP. This

feature makes our system easy to implement and compatible with the

Reliable file transfer on Intemet using DFT, ©Xin Fang 10

Chapter 1 Introduction

existing Internet.

Transparency The failure recovery process should be transparent to user.

Summary

This section gave a brief background on distributing computing, the Internet and File
Transfer Protocol (FTP). Based on that, the problems of current file transferring on the
Internet was presented. One of the reasons for file transfer problems is poor load
allocation. Therefore, a distributed file transfer mechanism was presented. The last part

of this section provided the concepts and the objectives of the DFT methodology.

Reliable file transfer on Intemet using DFT, ©Xin Fang 11

Chapter 2 Related Work

Chapter 2
Related Work

This section introduces some related work on the reliability of file transferring and load
distribution topics. Section 2.1 introduces the very basic protocol, FTP. Section 2.2
introduces appiications that take advantages of the checkpoint resume property of FTP.
Section 2.3 introduces the round-robin DNS mechanism to distribute load among hosts
and section 2.4 introduces the solutions that perform load balancing based on Internet

traffic.

2.1FTP

FTP sessions maintain two connections between an FTP client and an FTP server. One
connection is control connection and the other is data connection. The control connection
is connected to the well know TCP port 21 on the server end. The data connection port is

generally connected to port 20 on the server end. Files are transferred only via the data

Reliable fle transtfer on Intemet using DFT,@Xin Fang 12

Chapter 2 Related Work

connection. The control connection is used for the transfer of commands. FTP commands

and responses are transferred in the same manner and format as Telnet.

In FTP, the packet level error detection and recovery is carried out by TCP. However, at
the application level, FTP has the checkpoint restart mechanism that user can resume
downloading a file from a given checkpoint. The checkpoint restart procedure is defined
in block and compress transfer modes. Most FTP servers implement the checkpoint
restart function. A user can issue a command via the control connection to the server to
indicate from which checkpoint would it like to start the downloading procedure. The
server will then begin to transfer the file from that checkpoint when the user gives the

start downloading command. A typical procedure is as follows:

I. A user sends command “REST 10000 to the server indicating that it wants to

download the file from the checkpoint 10000.

2. The server gets the command and prepares to transfer file from the 10000™ byte. Then
the server responds the user with a “350 Restarting at 10000. Send STORE

or RETRIEVE to initiate transfer.”

3. The user proceeds by sending a command “RETR targetfile” and the server

begins sending the targetfile from the checkpoint.

Reliable file transfer on Intemet using DFT, ©Xin Fang 13

Chapter 2 Related Work

There are many FTP commands. Following table introduce some of them that will be

used in this thesis.

USER | The argument field is a Telnet string identifying the user. This command together
with the PASS command authenticates a user to access the files on the server.

PASS | The argument field is a Telnet string identifying the password.

PORT | The argument is a HOST PORT specification for the data port to be used in data
connection. The fields are separated by commas. A port command would be:
PORT hl,h2,h3,h4,pl,p2 where hl is the high order 8 bits of the internet
host address. The pl and p2 are the local TCP port number, represented in 8-bit
decimal format.

TYPE | The argument specifies the representation type. Mostly it is set to “TYPE I”,
which is used to transfer binary files.

RETR | This command causes the server to transfer a copy of the target file.

Reliable file transter on Intemet using DFT, ©Xin Fang 14

Chapter 2 Related Work

REST | The argument field represents the checkpoint at which file transfer is to be
restarted. This command does not cause file transfer but skips over the file to the
specified data checkpoint. This command shall be immediately followed by
RETR command.

SIZE | The argument specifies a file name. This command returns the size of the file. If

the file does not exist, a response with code 5y z will be returned.

The response of a FTP server is sent via the control connection too. The response starts

with a three-digit code, followed by a human understandable sentence that explains the

response. The leading code has predefined meanings. Therefore, a DFT client can judge

the response by the code. The meanings of the first digit of the code are as follows:

lyz: The requested action is being initiated; expect another reply.

2yz: The requested action has been successfully completed.

3yz: The command has been accepted, but a further command is required.

4yz: The command was not accepted and the requested action did not take place, but the

Reliabie file transfer on Intemet using DFT, ©Xin Fang 15

Chapter 2 Related Work

error condition is temporary and the action may be requested again.

5yz: The command was not accepted and the requested action did not take place.

2.2 Checkpoint Resume Applications

Many FTP applications take advantage of the FTP checkpoint restart property to realize
file-downloading resuming. Some examples are GetRight [Headlight], Download
Accelerator [Speedbit], Net Vampire [Afreet] and Gozilla [Radiate]. Most of them are

freeware or shareware.

They are actually FTP clients that support checkpoint restart procedure. When the link
between the FTP client and server breaks, they will remember the breakpoint. When the
link is recovered again, they can automatically resume the file transfer from the

breakpoint.

The advantage of these applications is that they can recover the file transfer process from
broken link, client crash, or server reboot. Most of the time the recovery procedure will

take place automatically. However, there are the following shortcomings:

1. All of them are implemented on the client end only. The users still have to find the

server and the file by themselves manually.

Reliable fite transfer on intemet using DFT, ©Xin Fang 16

Chapter 2 Related Work

2. Checkpoint resume applications do not take advantage of multiple file servers that

already exist.

3. If the file server is down, the client does not switch to other available servers

automatically.

2.3 Round-Robin DNS

Round-robin DNS [Brisco1995] is a fixed configuration method that can distribute traffic

among many hosts. The mechanism of round-robin DNS is as follows:

1. A DNS has pre-configured multiple IP addresses associate with a given domain

name.

2. When a domain name resolve request is received by the DNS, it responds with one of

the multiple IP address. The selection of IP address is based on a round-robin manner.

For example, if there are three servers that have the same content. The server’s addresses
are 10.0.0.1, 10.0.0.2, and 10.0.0.3. In the DNS, it associates all these three address with
the domain name www.rrd-example.com. The first request to resolve
www.rrd-example.com gets the machine at 10.0.0.1, the second at 10.0.0.2, the third at

10.0.0.3 and a fourth will get 10.0.0.1 again.

Reliable file transfer on Intemet using DFT, ©Xin Fang 17

Chagter 2 Related Work

Round-robin DNS is easy to configure and implement. It can perform load balancing on
Internet traffic including web traffic as well as FTP traffic. However, it has no idea of the
load of a server. If a server is over loaded or removed, the DNS will still direct traffic to it

according to its round-robin schedule.

2.4 Internet Load Balance Solutions

There are many sophisticated load balance solutions for Internet traffic. Some of them are
implemented in software and some in dedicated hardware. Some examples of these
solutions are “Content Smart Web Switching” of ArrowPoint [APa] [APb], the “BIG IP”

of F5 [F5]. The common properties of all these solutions are:

1. These solutions have awareness of the load, speed, geographic position, and many

other performances parameters of the servers.

2. They are intelligent enough to distribute all types of Internet traffic among the servers

according to the server’s performance.

3. Most of the solutions have the concept of application layer flow switching, which

monitors the application layer packet header to make switching decision.

These solutions are quite complex and most of them require special software and

Reiiable file transfer on Intemet using DFT, ©Xin Fang 18

Chapter 2 Related Work

hardware installations. They may also require agent software instailed on servers so they
can monitor the performance parameters of servers. They do very good job on load
distributing. However, most of them are quite expensive and they can only do load

distribution within an Intranet.

2.5 Comparison of DFT and Other Solutions

DFT is aimed at providing a reliable file transfer mechanism in the Internet. This goal is
realized by connecting a DFT client with multiple file servers. DFT is not a solution on
the client end, but a solution on both the server and client ends. DFT has awareness of
multiple servers’ availability and speed. LDS distributes load among FTP servers.
Furthermore, DFT makes use of the existing FTP servers and mirror sites to provide the

server “cluster”, which makes the cost of DFT very low.

Although DFT does not provide as good of load balance functions as the solutions
introduced in section 2.4. DFT is still very good at failure recovery during file transfer.

This is the main purpose of our design.
Summary

This section introduced some applications and solutions that increase the reliability and

efficiency of file transferring on the Internet. They are all related works that have

Reliable file transter on Intemet using DFT, ©Xin Fang 19

Chapter 2 Related Work

similarity with the DFT project. However, DFT has unique properties as presented in the
last section. It maintains multiple connections with multiple file servers to increase the
reliability of file transfer. That is why it is of interest to design and implement DFT in this

thesis.

Reliable file lransfer on intemet using DFT, ©Xin Fang 20

Chapter 3 Distributed File Transfer Architecture

Chapter 3
Distributed File Transfer Architecture

This chapter presents the architecture of DFT that was developed in this thesis. Section
3.1 describes the outline of the overall system architecture. Section 3.2 introduces the
two-layer model of DFT. Section 3.3 describes the working procedure of DFT and section
3.4 gives the fault tolerant mechanism of DFT after introducing a three-layer failure

model.

3.1 Distribution Architecture of DFT

DFT has a distributed architecture. It contains three components, DFT clients, a
Load-Distributing Server (LDS), and multiple file servers. Figure 2 shows a typical
layout of these three components. The distributed architecture of DFT makes it suitable

for reliable file transferring.

Reliable file transfer on Intemet using DFT, ©Xin Fang 21

Chapter 3 Distnibuted File Transfer Architecture

File Server B in
File Server A in Winnipeg
Vancuver =

=2

File Server Cin
omnlo

[

Load Distributing
DFT Client Server (LDS)

Figure 2 Typical DFT Systém Layout

DFT’s distribution properties can be described through different aspects. DFT has the

following distribution properties:

Data Distribution — The data in this ;Ilcsis refers to the file a user is going to download.
In order to achieve reliability, a file is replicated on many file servers. Each file server
supports segment transfer.of the> file. Segment transfer means a user can request an
arbitrary length of segment of a ﬁle. from a file server. Thus, a user can request different
segments from different servers and assemble those segments together to get an

integrated file.

Geographic Distribution - All components in DFT system can be distributed across the

Internet. In Figure 2, there is one DFT cliént, one LDS and three file servers. We

. Reliable file transfer on Intemet using DFT, ©Xin Fang - - 22

Chapter 3 Distributed File Transfer Architecture

illustrate the geographic distribution by placing the fille servers, which carry the data, in
three different cities. In addition, the client and LDS could be anywhere. Geographic

distribution is a key property that makes DFT reliable.

Heterogeneous Systems — DFT can run on different platforms. In our thesis, DFT clients
and the LDS are implemented in Java, which generates platform independent codes.
Therefore, DFT can run on Windows, Linux/Unix, Mac OS or any other operating system

that support a Java virtual machine

TCP/IP Connectivity — DFT requires all components connected with each other via
TCP/IP. The types of connections to the Internet do not matter. We can assume our client
connects to the Internet through a dial up line; the LDS is through an OC-3 ATM
connection, the file servers through fast Ethernet. They connect to the Internet via
different ISPs. The only requirement for DFT is all parts of the system communicate with

each other via TCP/TP.

The following sections will give a brief description on each component of DFT.

3.1.1 DFT Client

A DFT client is a software application that runs on an end user’s computer. When a DFT

Reliable file transter on Imtemet using DFT, ©Xin Fang 23

Chapter 3 Distributed File Transfer Architecture

client downloads a file, it opens multiple TCP connections to a group of servers
simultaneously. From each server, it downloads a different segment of the file. The

segments are assembled into the target file at the DFT client in a synchronized manner.

A DFT client tests the speed of the link when it connects to a file server. The speed is
used to determine the segment size that should be downloaded from that server. If server
A is faster than server B and C, the DFT client will request a longer segment from server

A

When a segment cannot be downloaded from the file server, the DFT client will attempt

to download that particular segment from another server.

The DFT client sends requests to the load distributing server (L.LDS) to get information

about file servers.

3.1.2 Load-Distributing Server (LDS)

One thing a DFT client need not worry about is where the file is. DFT introduces a new
component that dynamically updates the latest file information on each server. It is a

Load-Distributing Server (LDS).

An LDS maintains a table that contains information about file servers. The information

Reliable file ransfer an Imemet using DFT, ©Xin Fang 24

Chapter 3 Distributed File Transfer Architecture

includes server names and addresses, directory structures, and the file server’s availability.

This is important information based on which a client can deterrnine which servers it

should choose.

An LDS has two parts inside it. The first one is a file information database, which is
learned and maintained while DFT clients request files. The second one is a search
engine that can search local and remote databases for a certain file. An LDS provides a
uniformed entrance for all clients. From the client point of view, an LDS acts as a file
search engine. When a DFT client wants to download a file, it sends a search request to
the LDS. The LDS will search for the file in its local database, if it dose not find it, the
LDS will search using a public FTP search engine. Then the LDS gives the DFT client a
list of file servers, telling the client where the file is. The LDS does not physically contain

any files.

The other function of the LDS is to distribute the file transfer traffic according to server
and network situations. An LDS collects the information of a server availability through
one of two ways: one is information inserted manually by users; the other is inserted by
the LDS itself when it finds the target file from the public search engine. Then LDS
figures out which group of servers is the “best” for the DFT client to download file from,

and tells the client the information about these servers.

Reliable file transfer on Intemet using OFT, ©Xin Fang 25

Chapter 3 Distributed File Transfer Architecture

3.1.3 File servers

File servers are servers that contain data. DFT clients establish connections with them
and download segments of files from them. File servers must have the following

properties:

Redundancy — one target file should have muitiple copies on different servers.

Segment downloadable — a DFT client can download an arbitrary length of segment of a

file from a file server.

In this thesis, traditional FTP servers act as DFT file servers. FTP is a well-defined
standard file transfer protocol. FTP servers are ubiquitous in the Internet. The first
criterion is met because there are many FTP mirror sites, which contain duplicate files.
FTP servers meet the second criterion too. Standard FTP protocol supports checkpoint
resume. This means that an FTP client can download from an arbitrary point in the

middle of the file, and thus the client can get a segment of the file.

DFT takes full advantage of FTP. DFT tumns individual FTP mirror sites into a fully
redundant server “clusters” by implementing FTP commands in both our DFT clients and

the LDS.

Reliable file transfer on Intemet using DFT, ©Xin Fang 26

Chapter 3 Distrbuted File Transfer Architecture

The next section will describe the working procedure of DFT.

DFT Client

* ADFT client downloads file from a group of servers.
The file transfer is based oa TCP/IP, so the servers can
be 1y disp toi system refiability.

EVUEEY

Figure 3 DFT Client and DFT File Servers

3.2 DFT Two-layer Connection Model

Traditional FTP uses two TCP connections. One is a control connection at port 21 to send
FTP commands and read responses. The other is a data connection that transfers a file

between a client and server.

Figure 4 shows the two connections of FTP session. One connection’s function is control,
and the other’s is data transfer. However, FTP mixes these two types of connections in

one server client pair. The FTP server is in charge of both controlling and transferring. If

Refiable fie transfer on Intemet using DFT, ©Xin Fang 27

Chapter 3 Distributed File Transfer Architecture

the server fails, all connections will be lost.

. Control Connection
Ll

FTP client Data Connection FTP server

Figure 4 FTP Transportation Model

The FTIP model— is simple and good for ‘a one-server environment. However, in a
distributed reliable file transfer architecture, there are more than one file servers. The
control part in the DFT implementation musﬁ be enhanced. Therefore, it is a better to
separate control connections and data connections. There are two different layers in DFT:
the control-layer, and the data.layer. The following functions are integrated into the

control layer:

1. LDS requests/reply

2. Server status calculation

3. Download process monitoring
4. Download task allocation

5. Failure detection

6. Download resume/recovery

Reliable file transfer on Intemet using DFT, ©Xin Fang 28

Chapter 3 Distributed File Transfer Architecture

The data layer will concentrate on the following functions:

1. File downloading
2. Status reporting

3. Failure detection

The DFT two-layer model is depicted in Figure 5 and Figure 6. Figure S shows the
two-layer communication model compared to FTP model while Figure 6 shows different

connections belonging to the control layer and data layer.

Control Connection

DFT server A

DFT client

DFT server B

Figure S DFT Logical Transportation Model

The control layer and data layer establish their own connections. Connections between a
DFT client and an LDS are control layer connections. Connections between a DFT client

and file servers are data-layer connections.

Reliable fie transter on Intemet using DFT, ®Xin Fang 29

Chagter 3 Distrbuted File Transfer Architecture

The DFT two-layer model separates the data transfer and transfer control parts. With this
model, it is possible to establish and maintain multiple data connections between one
DFT client and several DFT file servers. With this model, we can enhance both control
and data transfer layers separat.ely. Thus, we can provide a more robust file transfer

system.

DFT Client

_ @

y crv:rA\‘ ile Server B
LDS :
<—» Control-layer connections

=—> Data-layer connections

e

Search Engine

Figure 6 DFT Control-level Connection and Data-level Connection
The following sections discuss these two layers in detail.
3.2.1 Control-layer Connection

The purpose of a control-layer connection is to control and maintain data connections.

Before a DFT client Eegins downloading a file, it does not know where the file is.

Reliable file transfer on Intemet using DFT, ©Xin Fang 30

Chapter 3 Distributed File Transfer Architecture

Though a control-layer connection, the client makes an enquiry at the LDS and leamns
where the target files are located and the condition of the file servers. Then the client can

start data level connections with those servers and start the data transfer.

When data transfer is in progress, the client will report information to the LDS about the
link to the server. This information is used to help the LDS calculate the server’s
performance and the link’s speed. This status reports will also be transferred to the LDS

through control-layer connections.

Generally, control-layer connections are established between a DFT client and an LDS.
However, when a file cannot be found in an LDS’s local database, the LDS will connect
to a file search engine to find that particular file. This kind of connection is concerned

with file information retrieving. We classify these as control-layer connections.

Periodically, an LDS will poll file servers in its database to know if they are available.
This is done by establishing connections between the LDS and the file servers. This will
help the LDS provide more accurate information to DFT clients. This type of connection

is a third type of control-layer connection.

Control-layer connections are responsible for starting, stopping and resuming data

connections. The download control thread in the control-layer keeps monitoring the

Reliable fife transfer on intemet using DFT, ©Xin Fang 31

Chapter 3 Distributed File Transfer Architecture

situation of all data connections. In the case when data connections stall or fail,
control-layer connections will reestablish other data connections to substitute the
compromised ones. This isolation and enhancement of control connections ensures the

reliable transfer within DFT.

LDS Requests/Reply
Server Status Calculation
Download Process Monitor
Control-Layer Download Task Allocation
Failure Detecting

4 Resume/Recovery

Status Report Download Instruction

File Downloading

Data-Layer Status Reporting
Failure Detecting

Figure 7 DFT Two-layer Model and Their Functions

3.2.2 Data-layer Connection

Data-layer connections are established when the “real” part of DFT comes to work. When
a client downloads a file from DFT file servers, it establishes data-layer connections
between itself and the file servers. The target file is transferred through data-layer
connections. One data-layer connection is responsible for one piece of a file segment. It is

not concerned about the file’s availability, nor is it concerned about failure and recovery.

Reliable file transfer on Intemet using DFT, ©Xin Fang 32

Chapter 3 Distributed File Transfer Architecture

All a data-layer connection needs to do, is download the segment of the file under the

instructions of a control-layer connection.

However, while data connections are transferring data, the control layer keeps monitoring
each data connection. As soon as a control layer detects a data connection’s unusual
behavior, it will adopt an appropriate action. A data connection is responsible for

reporting any failure to the control layer.

3.3 DFT Working Procedure

Just as the DFT model has two layers, the working procedure of DFT has two steps:

1. Target file query and searching

2. Multi-connection file downloading

3.3.1 Target File Query and Searching

Target file query and searching is the main task of the control layer. When a DFT client
wants to download a file, it will establish a control layer connection to the LDS. Through
this connection, it sends a request to the LDS. The request includes a query, which asks
the LDS information about the target file. The LDS receives the request and searches its

local database. If it finds the related record about the file, it will respond to the client with

Reliable file transfer on intemet using DFT, ©Xin Fang 33

Chapter 3 Distributed File Transfer Architecture

the corresponding information. Thee information includes the file name, file servers’
addresses, and file locations. After t-he client get this response from LDS, it can start file

downloading.

‘I want to « download “TARGET.DAT™

Fite Name Server Path
i | Winnipeg fust/data/
TARGET.DAT || Vancouver [lopt/data/
i | Toronto /pub/downioad/

* A DFT cliexnt asks LDS for a file Target. DAT.
LDS replies wawith the information of those servers.

Figure 8 Queries and Reeply between a DFT Client and an LDS

If the LDS cannot find an entry for rthe requested file in its local database, it will send a
query to an FTP search engine. Thesre are many FTP search engines publicly available.
One well-know search engine is Lyceos FTP search engine [Lycos]. In our implementation,
we use this one. After receiving the :reply from the FTP search engine, LDS will add the
reply to its own database and at the same time, respond to the DFT client with the new

added record.

Reliable file transfer on Infemet using DF T, ©Xin Fangy 34

Chapter 3 Distributed File Transfer Architecture

If nothing is found in both the local database and the public search engine, a negative

reply will be sent to the DFT client. The file downloading procedure will be terminated.

3.3.2 Multi-connection File Downloading

File downloading is the main function of the data layer. The data layer gets instructions
from the control layer and performs data transferring between a DFT client and file

SE€Ivers.

Once the DFT client gets a positive answer from the LDS, it sends downloading
instructions to the data layer. Downloading instructions come from the LDS reply. The
DEFT client parses the reply and knows which servers contain the target file. For example,
in Figure 8, three servers contain the file. Then, three downloading instructions will be
passed to the data layer. The DFT client’s data layer then tries to establish three data

connections with all three servers. Each data connection is actually an FTP connection.

After data connections are established, the client will test the speed of the connections as
well as the availability of the target file. The speed is simply tested by sending FTP
“SIZE” commands and calculating the elapse time between sending the command and
receiving the reply. The response of “SIZE” is the file length in bytes. If the file is not on

the file server, the response will begin with an error code. Thus, the FITP “SIZE”

Reliable file transfer on intemet using DFT, ©Xin Fang 35

Chapter 3 Distributed File Transfer Architecture

command and reply tests both the server’s access and the file’s availability.

According to the speeds of the servers, DFT client calculate the length of segment from
each file server it should download. DFT uses the following formula to calculate the

segment length [:

L=<—, i=1,23,....N,

>

Where s, is the speed of serveri,and N is the number of servers.

The segment length is calculated in such a way that all data connections should last
approximately the same amount of time. This will maximize the overall downloading
performance. However, the server’s speed is a variable that changes from time to time.
As such, the speed variable is just an estimate. Even with this approximation,
performance of downloading is greatly improved and likely near optimal. Chapter 5 will

present the performance tests of DFT.

The DFT client starts to download each segment from each file server simultaneously
once the segment lengths of all servers are determined. The client synchronously writes

each segment into the local file.

Reliable file transfer on intemet using DFT, ©Xin Fang 36

Chapter 3 Distributed File Transfer Archilecture

While downloading from each server, all data connections have a timeout value set.
When there is no data from the server within the timeout period, this data connection will
terminate its downloading and report to the control layer. The control layer will tell the
data connection of other available servers (if there are any) for this data connection and

this data connection can resume its downloading task.

Figure 9 shows a DFT client downloads three segments from three file servers.

Vancouver Winnipeg Togoato
TARGETDAT TARGET.DAT TARGETDAT
] 2 3 1} 213 1] 2 3

EINUE -]

=

DFT Client

«A DFT client downloads different of a target file from three servers

-4

Figure 9 Multiple File Segments Downloading

3.4 Fault Tolerance

Before presenting the fault tolerance feature of DFT, this section will discuss a

Reliabie file transier an Intemet using DFT, ©Xin Fang 37

Chapter 3 Distributed File Transfer Architecture

classification of faults and corresponding reasons for their occurrence. A layered failure
model is introduced in the first section. It will help in detecting a failure and the recovery

from it. After that, a failure recovery technique will be described.

3.4.1 Layered Failure Model

A failure model is very helpful to detect and recover from failures. For reference, a
communication network has a seven-layer OSI (Open Systems Interconnection) reference
model. Similarly, to analyze failures, we define a three-layer failure model. See Figure 10

for the comparison of the two models.

Application Layer
Presentation Layer

Application Layer
Failure

Session Layer
Transportation Layer

Network Layer
Network Layer Failure
Data Link Layer
Physical Layer Hardware Layer Failure
OS] Reference Model Three-layer Failure Model

Figure 10 OSI Reference Model and Three-layer Failure Model

The three-layer failure model has the following layers:

Application layer failure — Application failures are the failures that can be positively

detected at the application level of DFT client. These kinds of failures are normally

Reliable file transfer on Intemet using DFT, ©Xin Fang 38

Chapter 3 Distributed File Transfer Architecture

caused by the application itself. The reasons for application failures are normally file
server malfunctions. For example, when an FTP server has too many users logged in, it
will ban new users and respond with a “421” error code. This will terminate a data
connection and thus the corresponding segment cannot be downloaded. A failure such as
a login failure, authentication failure, and destination file’s availability failure all can be
detected as soon as the file server responds with a negative reply. These are typical

application layer failures.

Application failures do not tear down network connections. When application failures
occur, the communication between DFT client and file server is still active. The DFT

client can still send commands to and read responses from the file server.

Nerwork layer failure — Network failures are the failures associated with a malfunctioning
network or those failures that cannot be positively detected by the DFT client. Such
failures do not send any message to the client. A DFT client can detect a network failure
when its TCP connection is broken or a preset timeout is fired. Most network failures
happen because of network problems, such as network congestion, link failure, etc.
However, sometimes, a DFT client cannot know the reason of a network failure. To a
DFT client, all timeout events look the same. When a timeout occurs, the DFT cannot tell

whether it is because the network is too busy or the server at the other end has stalled.

Reliable file transfer on Infemet using DF T, ©Xin Fang 39

Chapter 3 Distnbuted File Transfer Architecture

Hardware layer failure — Hardware layer failures are the failures that occur on the DFT
client side. They are caused by a DFT client’s malfunction. The reasons include a client’s
power failure, a full hard drive, a network interface being down, an operating system
crash, etc. This type of failure generally causes all downloading connections to be
terminated. If the failure is caused by a power failure, the entire client will be killed.
When this kind of failures occurs, the DFT has to recover its job from the break point

recorded by the client before it stopped.

The three-layer failure model is defined from the DFT client point of view. Thus, an
abnormal crash of a remote server has the same effect as a physical link break. Although
to the server, it is obviously a hardware failure, but to the client, the only symptom is
TCP connection timeout. This is the same as a network failure. However, if the file server
gives alarms before it halts, this failure will be detected by the DFT client and the failure

is classified as an application failure.

Next section will discuss how to detect the failures and the appropriate recovery action in

DFT implementation.

3.4.2 Failure Detection

Failure detection can take place on both the control layer and data layer. When the control

Reliabie file transter on intemet using DFT, ©Xin Fang 40

Chapter 3 Distributed File Transfer Architecture

layer detects failure, it will try to recover from it immediately. When a data layer detects

a failure, it will stop its current job and notify the control layer.

When failures occurs, we have to detect them as soon as possible. In the DFT system, we

have two ways to detect a failure:

1. Failure code detection

2. Timeout detection

Failure code detection is used to detect application layer failures. When application layer

failures happen, a DFT client still has connection with the file server. It detects the failure

by parsing the response from the other end of the connection.

When a DFT client makes a connection or sends a command to a file server, it will
receive a string as a response. The string will begin with a three-digit number followed by
a sentence explaining the response. A typical response is like this: “226 Transfer
complete.” As we discussed in Chapter 2, we can judge the response by observing the
three-digit code. A code larger than 400 generally indicates an incomplete service. If a
client reads such code from the server, it knows there is problem. In Appendix A, we give

a file server response code and explanation list.

Through failure code detection, all application failures can be detected immediately. Such

Reliabie fite transfer on Intemet using OFT, ©Xin Fang 41

Chapter 3 Distributed File Transfer Architecture

failures include a) server not available, b) file not found on server, ¢) too many users, d)

login failures and, e) failure to establish a data connection.

Timeout detection is a common method when detecting network failures. When network
failures occur, there will be no messages transferred through the connection. TCP timeout
makes the connection retransfer. However, this does not work if somewhere inside the
network is down. To avoid this problem, a DFT client sets timeout on each connection.
When the timeout fires, The DFT client assumes that the connection does not work and

switch the task associated with it to another connection.

There are two types of timeouts, the command-response timeout and the data timeout.
Command-response timeout is used on control connections. After a DFT client sends out
a command, it starts the timer. If timeout fires before it receives the response, the client
stops this control connection. Data timeout is set on a data connection. We set a timeout
in each data connection socket. If the elapse time between two packets is longer than the
timeout, the client assumes the data connection is down, or the network is becoming

congested.

Through timeout failure detection, network failures can be detected.

In spite of failure code and timeout detection methods, other common failure detection

Reliable file transfer on Intemet using DFT, ©Xin Fang 42

Chapter 3 Distributed File Transfer Archilecture

methods are also used in our implementation. For example, if a TCP pipe is broken
before our preset timeout fires, the DFT client also detects it and treats it as a timeout

event.

3.4.3 Failure Recovery

Failure recovery is the work of the control layer. When the control layer detects a failure

or receives the failure report from the data layer, it will do the following steps:

1. Record the latest status of the failed connection.
2. Terminate the failed connection.
3. Choose another connection that can do the terminated job.

4. Switch the job to that connection.

To improve performance, in step 3, the DFT client will choose the fastest server to switch

the terminated job. The speed of server is tested at the beginning of a connection.

This four-step recovery procedure is suitable for all application and network failures.
However, when hardware failures occur, the DFT client itself is terminated. Since the
computer on which the DFT client is running crashes, human intervention is required.
The downloading job can only be resumed when the DFT client runs again. To recover

from such a failure, we have to record the status of all connections on a hard drive. Given

Reliable file transfer on Intemet using DFT, ©Xin Fang 43

Chapter 3 Distributed File Transfer Architecture

the hard drive is readable when the DFT client comes to life again, the client recovers all
connections by reading the status record. In the implementation, a DFT client periodically
(every second) records the status of all connections’ on the hard drive. Through this

method, hardware failure at the DFT client can be recovered as well.

Vancouver Winnipeg Torooto

TARGET.DAT TARGET.DAT TARGET.DAT

1 2 3 1 2 3

Figure 11 Job Switching when Failure Occurs in DFT

Summary

This chapter has presented the architecture of the DFT that we developed for this thesis.
We introduced the distribution structure and the three parts of the DFT system. Following
that, we presented the two-layer working model of the DFT. We detailed the working

procedure of DFT. As for failure recovery, we introduced the three-layer failure model

Reliable fite transfer on Intemet using DFT, ©Xin Fang 44

Chapter 3 Distributed File Transfer Architecture

and described the recovery procedure of our system. The next step is to detail the design

of the DFT client, LDS and file server.

Reliable file transter on Internet using DFT, ©Xin Fang 45

Chapter 4 DFT Iimplementation

Chapter 4
DFT Implementation

This chapter gives a detailed implementation of a DFT client and an LDS. Section 4.1
introduces the implementation tools. Section 4.2 describes the implementation of the

DFT client and Section 4.3 describes the implementation of LDS.

4.1 Implementation Tools

DFT is designed to be platform independent. The implementation tool must meet this
goal. We chose Java as our programming language to implement the DFT client and the
LDS. The GUI interface of the DFT client is implemented in JFC. As for the DFT server,

we use existing FTP servers.
4.1.1 Java

Java was introduced by Sun Microsystems in 1995. One of the design goals of Java is to

Reliable fiie transfer on imtemet using DFT, ©Xin Fang 46

Chapter 4 DFT Implementation

provide a programming language that can develop applications suitable for distributed
computation environments. All java applications can run on different platforms. This
portability makes Java widely accepted as a programming language in developing
Internet applications. Since its introduction, Java has been widely supported. All major
Web browsers include a Java virtual machine and almost all major operating system

developers (IBM, Microsoft, and others) have developed Java compilers to support Java.

The major features of Java are:

® Java is object oriented, and very simple. In order to take advantage of modern
software development methodologies and to fit into distributed client-server
applications, Java is designcd as an object oriented language. Java has similar syntax
as compared with C/C++. Therefore, developers familiar with C/C++ can quickly

adapt to Java and find it is easy to learn and use.

® Java is an interpreted language. This feature makes the development cycle much
faster. Developers need just compile and run their code. Link and load steps are not
issues in Java. Furthermore, Java’s just-in-time compiler can dynamically compile
Java bytecode into executable code. This tremendously improves Java application’s

performance.

Reliable file transfer on Intemet using DFT, ©Xin Fang 47

Chapter 4 DFT Implementation

® Java applications are portable across multiple platforms. Java applications never need
to be ported — they will run without modification on multiple operating systems and
hardware architectures. A Java program is complied into bytecode. The interpreter,
Java virtual machine (JVM), interprets Java bytecode and executes it on a computer’s
hardware at run time. JVM hides. all differences between different hardware and
operation systems from the Java application. This is why Java can create applications

that are denoted “Write Once, Run Anywhere”.

® Java applications are robust. The memory management of Java is not a burden for the
»dcveloper. The Java run-time system takes care of all memory management tasks.
This feature helps Java applications avoid ill-formed memory operations. Unlike
programs written in C/C++, Java has no pointers. This means an instruction in Java
program cannot contain the address of data storage in another application or in the
operating system itself. Both situations can cause poor memory allocation and

release operations, which in turn cause system to terminate or “crash”.

® Java has built in support of multithreading. This feature improves the performance in
applications that need to perform multiple concurrent activities, such as multimedia

and GUL

Reliabie tile transter on Intemet using DFT, ©Xin Fang 48

Chapter 4 DFT Implementation

@ Java applications are adaptable to changing environments because developers can

dynamically download code modules from anywhere on the network.

® Java applications are secure. This feature is necessary for an application that needs to
run across the Internet. The Java run-time system has built-in protection against

viruses and tampering.

In summary, the Java Programming Language platform provides a portable, interpreted,
high-performance, simple, object-oriented programming language and supporting

run-time environment. For these reasons, it was selected for this project.

4.1.2 Java Foundation Classes (JFC)

The Java Foundation Classes (JFC) is a significant cross-platform graphical user interface
component and services solution. It was first introduced with the Java Development Kit
(JDK) software release 1.1 and was a joint work of Sun, Netscape, and [BM. Now JFC is
delivered as part of the Java platform. It can be used to develop large scale,

mission-critical intranet and Internet applications.

Java Foundation Classes is based on the original AWT. It also includes many of the key

features of Netscape’s Internet Foundation Class (IFC). It extends AWT by adding a

Refiable file transfer on Intemet using DFT, ©Xin Fang 49

Chapter 4 DFT implementation

comprehensive set of graphical user interface class libraries and is compatible with all

AWT-based applications.

JFC has the following features:

® JFC is core to the Java platform and reduces the need for bundled classes.

® All new JFC components are JavaBeans architecture-based. JavaBeans is an
architecture and platform neutral API for creating and using dynamic Java
components. Therefore, developers can create more compatible and portable Java

applications and applets with JFC

® No framework lock-in. Developers can easily bring in third party’s components to

enhance JFC applications.

® JFC components are cross-platform.

® JFC subclasses are fully customizable and fully extendible.

4.2 DFT client’s implementation

4.2.1 DFT Client’s Function Block

A DFT client runs on a user’s computer. It responds to a user’s input and carries out

Reliable fife transfer on Intemet using DFT, ©Xin Fang 50

Chapter 4 DFT Implementation

appropriate actions. Briefly, it has three function blocks: download threads, a download
thread controller and a logging thread. Figure 12 shows the data flow and control flow

between these function blocks.

Timer
Coctrol Flow

Status Information Flow

Figure 12 Function Blocks of a DFT Client and the Information Flow between Them

Download thread — Each download thread takes care of a file transfer session with one
file server. A DFT client may have one or several download threads. Each thread
downloads a segment of the destination file from a file server and writes it into the local

save-as file. When all download threads finish successfully, the file downloading is

Reliable file transter on Intemet using DFT, ©Xin Fang 51

Chapter 4 DFT Implementation

finished successfully.

The functions of a file download thread include file server log in, file segment request,
and downloading status report for the logging thread and controller thread. A download

thread stops if one of the following conditions is met:

1. The number of bytes it downloaded equals or exceeds the segment length. This means

the download thread finishes successfully.

2. There are failures stops the download thread.

Once a thread stops downloading, the corresponding file download thread sets its
finish-flag. The download thread checks how many bytes it has downloaded. If the length
is less than expected, the segment is not complete. The download thread sets the stall-flag.
The download controller thread can check these flags. If the finish-flag is set and the
stall-flag is not set, the segment is completed successfully. Otherwise, if the finish-flag is

set and stall-flag is set too, the segment is stopped but not completed.

Table 1 shows the combinations of finish-flag and stall-flag and their meanings.

Finish-flag Stall-flag Meaning
0 I Not defined
0 0 Downloading is in progress
1 0 Downloading finishes successfully

Reliable file transfer on Intemet using DFT, ©Xin Fang 52

Chapter 4 DFT Implementation

1 1 I Download finishes but this segment is not complete.

Table 1 Meanings of Finish-flag and Stall-flag combination

Download thread controller — The download thread controller makes sure that a DFT
client can resume its work when some file servers are not available. A download thread
controller periodically monitors the status of all download threads. When it finds a
download thread is stalled (finish flag set but number of downloaded bytes is less than
segment length), it will select another active file server and switch the stalled download

thread to that server.

Logging thread — The logging thread periodically polls all download threads for their
latest progress. It queries the information on the file server’s address, segment length,
beginning position of the segment, and how many bytes the download thread has already
downloaded. It also queries the finish and stall flags of the download threads. Then, it

writes all the information into a log file on local hard disk.

If all download threads are terminated, the DFT client can check the log file to know
where should it resume the work. Therefore, even when the DFT client’s computer

crashes, the download work can still be resumed from where it stopped.

The following flow charts and explanations show the detailed working procedure of a

Reliable fite transfer on Intemet using DFT, ©Xin Fang 53

Chapter 4 DFT Implementation

DFT client. They are organized in following order:

Figure 13 shows the overall download procedure of a DFT client. Table 2 explains each
block. Figure 14 shows the working procedure of a controller. Table 3 explains each
block. Figure 15 shows the working procedure of a download thread. Table 4 explains
each block. Figure 16 shows the working procedure of the timer. The timer is used by

both the controller and the logging thread. Table 5 explains each block.

/ Input Target File /

No

¥4

New dowy

Yes
. LDS Get server list,
l Get list J checkpotnt,
segment length
from log

ED N

Save as dialog

Start Controller

Figure 13 Overall Download Procedure of a DFT Client

Reliable file transter on Intemet using DFT, ©Xin Fang 54

Chapter 4 DFT Implementation

Input target file

This dialog asks the user which file he wants to download.

New download?

Check if the log file exists; return false if it exists, true if not. The
log file is created and updated when a download is in progress. If
the download process finishes successfully, the log file will be
deleted. Otherwise, it remains on the hard drive.

Get server list from
LDS

The DFT client sends a search request to the LDS, the LDS
searches its database, if it finds the location of the target file, it
will reply to the client with a list of servers that contains the file.
Otherwise, it will reply to the client with “Not Found”.

File found? Reads the LDS response and checks whether the response
contains a server list or not.

Get server list, | If the log file exists, the DFT client reads and parses the log file.

checkpoint, segment | Then it knows where the target file is located and the breakpoints

length from log file where the last download process terminated.

Recover dialog This dialog lets the user confirm the recover from a terminated

downloading process. If the user chooses not to recover, the
download process will start from beginning. Otherwise, the
download thread will resume from where it left.

User select servers

This dialog gives user a list of choices on which server(s) he
would like to use. The DFT client will download from the servers
the user has chosen.

Save as dialog

This dialog lets users choose where he want to save the target file.

Religble fife transfer on Intemet using DFT, ©Xin Fang

55

Chapter 4 DFT Implementation

Start Controller Start 2 new download thread controller.

Table 2 Explanations of DFT client’s overall behavior flow chart

C Start Controller)

For all server in server list

[CreasteDownloadthread |

v

I Start Download thread J

v

Wait for notify on Iogi@
Login Fail?

Yes

L Remove server from server list —l

I |

I Calculate segment length and checkpomt

v

Create log file

v

Notify all download threads
to start downloading their segments

v

Start timer

Figure 14 Working Procedure of a Controller

Reliabie file transfer on Intemet using DFT, ©Xin Fang 56

Chapter 4 DFT Implementation

Create download | For each server in the server list, create a download thread with

thread the server’s address, user name and password.

Start download thread | Let the download thread try to log into the server with the
usermame and password.

Wait for notify on login | If the download thread cannot login to the server, the download

status thread will notify the controller with a login failure. This

situation maybe due to the server not being reachable, too many
users on the server, or authentication failure. Otherwise, a
download thread notifies the controller with a login success.

Remove server from
server list

If login fails, the server is no longer available for this
downloading procedure. Therefore, it is removed from the server
list. Furthermore, as the download thread associated with this
server is useless, it is deleted too.

Server list empty?

If no servers are available, the server list will be empty. The
downloading procedure cannot carry on any more and the
download procedure is terminated.

Calculate segment
length and checkpoint

At this stage, all download threads associated with the servers in
the server list have successfully logged in and obtained the
server’s speed. Therefore, the segment length of each download
thread can be calculated according to different server speeds.
The faster the server is, the larger the segment is. After all
segment lengths are calculated, the checkpoint of each segment
is easily obtained. Later, all segments will be inserted in the local
save-as file at the corresponding checkpoint.

Reliable fife transter on Intemet using DFT, ©Xin Fang

Chapter 4 DFT Implementation

Create log file A log file is created in the working directory. Its file name is
“target file.log”.

Notify all download | After the segment length and the checkpoint are calculated, the
threads to start | download thread is ready to download the segment. The
downloading their | controller notifies the download threads to start downloading.

segments From this stage on, a real data transfer procedure commences.

Start timer The controller starts a timer. This timer will check the status of
all download threads periodically. In addition, it will log the
progress of each download thread.

Table 3 Explanations of DFT client’s download thread controller flow chart

Reliable file transfer on Intemet using DFT, ©Xin Fang 58

Chapter 4 DFT Implementation

v

@wmload Thread Starts) l Send retrieve command l
I Log-in and Test speed | I Read packet to buffer —l

=

Yes

N-otify controller
iogin success

Set stall flag

Notify Controller
login fail

Wait for Controller’s
staret downloading
segment

lCIose data connectionl

| Secfinishmag |
v
[Downtoad thread stops]1——

Figure- 15 Working Procedure of a Download Thread

Log in and test speed The download thread logs in the FTP server. If the login is
successful, it sends FTP SIZE command to the server. Then the
download thread records the response time. Speed is calculated
by dividing the response length by the response time.

Reliable file transfer on Intemet usizng DFT, ©Xin Fang 59

Chapter 4 DFT Implementation

Login success?

True if login success. False if not.

Notify controller login
success

If there is a login success, the download thread’s login method
returns a Boolean true. The controller can read this return value.

Notify controller login
fail

If login fails, the download thread’s login method returns a
Boolean faise. The controller can read this return value. The
download thread will terminate itself.

Wait for controller’s
notification to start
downloading a segment

Waits for the controller to calculate the segment length and
checkpoint. Download threads cannot start downloading if the
checkpoint and segment length are unknown.

Send retrieve command

Sends retrieve commands to the file server and starts to receive
data. This step includes opening a data socket to receive FTP
data.

Read packet to buffer

Reads arriving data packet from data socket.

Receive data timeout?

If a socket timeout event occurs, the connection to the server is
assumed lost. The server either becomes too slow or is no longer
available. This is a failure. The download thread sets its stall flag
and closes all data connections. It now is waiting for the
controller’s instruction.

Write packet to local
file

The download thread locks the local file from other download
threads’ writing. It moves the file’s write pointer to the last
position it left and continues writing the packet into the local
file. After writing, the download thread unlocks the local file.

Retiable file transfer on Intemet using OFT, ©Xin Fang

Chapter 4 DFT Implementation

Update counters The counters include the overall bytes all download threads have
downloaded, how many bytes this download thread downloaded
and the position where the write action left.

More data? If the socket’s input stream ends, there is no more data.

Exceed segment If the number of bytes this download thread downloaded is

length? larger or equal to the segment length assigned to it, it has already

finished its segment.

Close data connections

Close the FTP control connection and FTP data connection to
the server.

Download thread stops

The download thread stops. If it is stalled (stall flag set), it is
waiting for the controller’s further instructions.

Table 4 Explanations of DFT client’s download thread flow chart

Reliable file transfer on Intemet using DF T, ©Xin Fang 61

Chapter 4 DFT Implementation

Read Download Threads’ counters

v

Update log file _’

v

Wait for Check Threads'
timer's finish and stall flags
interval

Any server available?

Yes

Select an available server

Downloading +
is terminated Connect the download thread
to this server
L Delete Log File | ‘
Restart the thread to

le
continue downloading
the rest of its segment

Figure 16 Working Procedure of the Timer

Timer starts

Timer’s default interval is set to 1 second

Read download
threads’ information

Read information from every download thread. The information
includes: server address, username, password, target file name,
target file path, target file length, checkpoint, segment length,
and the number of bytes that have been downloaded.

Reliable file transfer on Intemet using DFT, ©Xin Fang 62

Chapter 4 DFT Implementation

Update log file

Update the log file with the information just read.

Check download
threads’ finish and stall
flags

Check the download threads’ finish and stall flags.

Any thread stalls? If a stall flag is set, that download thread is stalled.

All threads finished? If finish flag is set, that downloading thread has finished.

Delete log file When the downloading successfully finishes, the log file is no
longer needed. Therefore, it is deleted.

Any server available? If a download thread’s stall flag is not set, the server associated
with that download thread is available.

Select an available | Get the server’s address, username, password, and target file

server path.

Connect the download
thread to this server

Set the download thread associated with this server, i.e., change
the server address, username, password, and target file path.

Restart the thread to
continue downloading
the rest of its segment

Clear the download thread’s stall flag and finish flag. Advance
the checkpoint by the number of bytes this download thread has
already retrieved, less the segment length by the same amount.
Set bytes retrieved to zero, then, let the download thread start to
retrieve data from the new server again.

Reliable file transter on Intemet using DFT, ©Xin Fang 63

Chapter 4 DFT Implementation

Stop timer The controller and logging process as are stopped.

Table 5 Explanations of DFT client’s timer flow chart

4.2.2 Major Classes in DFT Client

ControlConnection

ControlConnection sends commands to the file server and receives corresponding
responses. It connects to a file server on TCP port 21, which is FTP control port. If the
response shows the server is not available, ControlConnection throws a

CommandException.

DataConnection

DataConnection receives data from a file server. It maintains a TCP connection and reads
data from that connection. Meanwhile, it writes the data into a local save-as file in a
synchronized manner. It also updates the counters with the number of bytes it has written,

and the number of bytes all instances of DataConnection have written.

DownloadThread

The DownloadThread uses ControlConnection and DataConnection to download a

segment from a file server. It catches exceptions thrown by both of the two classes. It sets

Refiabie file transfer on Intemet using DFT, ©Xin Fang 64

Chapter 4 DFT Implementation

flags to indicate the status of downloading. The flags are stall flag and finish flag. If stall
flag is set, the segment has not been downloaded successfully. If the stall flag is not set

and finish flag is set, the segment is downloaded successfully.

Getit

The class Getit is a controller class that controls an array of DownloadThreads to
download a file from different file servers. It is in charge of getting the server list from
LDS, assigning a segment to each server and creating an instance of DownloadThread
associated with that server, and making sure all instances finish successfully. The
controller provides a method to check the status of all DownloadThreads. It can also
write the status into a log file on a local hard disk. If the controller detects that a
DownloadThread has stalled, it can switch that thread to another file server to resume

downloading the segment.
LDSConnection

The LDSConnection gets the server list from which a target file will be downloaded. It
has two methods to get the server list. The first is parsing a local log file. The other is
getting a response from an LDS. A log file exists when a downloading procedure was
interrupted. If the target file’'s name is “TARGET”, the log file is named as

“TARGET.log”. It is a simple text file. The file’s format is as follows:

Reliable file transfer on Intemet using DFT, ©Xin Fang 65

Chapter 4 DFT Implementation

Line 1 ftp.download.com /pub/win95/intermet anonymous afa.com d:\i.exe
3007751 0 2197504 0 6450606 0 O

Line 2 ftp.icg.com /pub/icqg/win95/internet anonymous aGa.com d:\i.exe
3204166 2197504 4253102 0 6450606 0 0

Each line in the log file stands for an instance of the DownloadThread. The items in a line
are separated by a space. The first item is the file server’s address. The second one is the
path information. The third and fourth are username and password. The fifth is the local
save-as file. The sixth is the speed of the server. The seventh and the eighth are the
checkpoint and length of this segment. The ninth is how many bytes have already been
downloaded by this thread. The tenth is the total length of the target file. The eleventh

and the twelfth items are the finish and stall flags of this thread.

4.3 LDS implementation

4.3.1 LDS Function Blocks

LDS waits for connections from DFT clients on TCP port 6666. The communication flow

between a DFT client and LDS is depicted in Figure 17.

Reliable file transfer on Intemet using DFT, ©Xin Fang 66

Chapter 4 DFT Implementation

DFT Client LDS Public Search Engine
Get
target file name
from user Target File enquiry
Search local database
Get information on
Target file
Yes No
Respo Foub\‘
CGI query
Parse the
Response Search Target file
From LDS
Get server list k_____R_ﬁs‘,‘l.‘—-—/'
Analyze the result
Get server list
Response Update local database
Parse the
Responase
From LDS
Get server list

Figure 17 Communication between a DFT Client and an LDS

As shown in Figure 17, there are four steps for a DFT client and LDS to finish

communication:

Step 1. A DFT client sends a target file search request to LDS when the client gets a

target file name from user.

Step 2. LDS searches its database to get records of the target file.

Reliable file transfer on Intemet using DFT, ©Xin Fang 67

Chapter 4 DFT Implementation

Step 3. LDS sends the results back to DFT client. The result will be records of file servers
that contain the file if the target file is found. If the file is not found in the local database,
the LDS will send a query statement to the public FTP search engine. If the file is found
in the search engine, the LDS will add the records into its database and send them to the

client. Otherwise, the LDS will respond with a string of “Not Found”.

Step 4. The DFT client parses the response and begins to download. If the response is

“Not Found”, the client stops.

The local database in the LDS is a simple text file. Each line in the text file represents a
record. A text file was selected as the data source mainly because of its simplicity. Any
platform, Windows or Unix, supports text files very well. Each line of the text file has
following fields: server address, path that the target file locates, username, password, and

target file length. These fields are separated by a space.

The response of an L.DS is several lines of text. Each line is a record of a server that has
the target file. The line has the same format as the line in the database text file as we

described before.

Reiiable file transfer on Internet using DFT, ©Xin Fang 68

Chapter 4 DFT Implementation

4.3.2 Major Classes in LDS
LDSServer

The LDSServer listens on port 6666 and accepts new connections from DFT clients.
When a new connection is accepted, it creates a thread of LDSServerThread to handle the

connection.

LDSServerThread

The LDSServerThread reads the target file enquiry and sends the results back after it

searches its local database. If it cannot find the target file, it sends “Not Found”.

Get

Get tries to send a search query to the CGI gateway of the FTP search engine and
analyzes the results. The search engine in our code is the Lycos FTP search engine. The
Lycos search engine accepts HTTP GET commands to send CGI commands to its search

engine. The GET command is as follows:

“GET

/cgi-bin/search? form=1lycosnet&query=TargetFileName&doit=Go+G

et+It%21&filetype=All+£files”

Reliable fite transfer on intemet using DFT, ©Xin Fang 69

Chapter 4 DFT Impiementation

The search engine wiil reply with an HTTP formatted page that contains the results. Get
searches through the results and finds the right information for the file servers.
Summary

This chapter described the detail implementations of the DFT client and the LDS. The
DFT clients and LDS are both implemented in Java. The GUI of DFT client is

implemented using JFC.

Reliable fiie transfer on Intemet using DFT, ©Xin Fang 70

Chapter 5 Experiments and Data Analysis

Chapter 5
Experiments and Data Analysis

This chapter gives a series of experiments that explore the features of the DFT
architecture. First, the design of the experiments are described, including the goals that
the experiments are to achieve and the environments of the experiments. After that,
experimental data is collected and analyzed. The data shows both the reliability and

performance features of DFT. The last section is the summary of this chapter.

5.1 Experiment Design

The last chapter illustrated the implementation of all components of a DFT system. An
experiment is carried out in this chapter to test the features of DFT. DFT has many
features, as we described in Chapter 1. However, among them, only the most important

features will be tested here. These features are:

Reliable file transfer on Internet using DFT, ©Xin Fang 71

Chapter 5 Experiments and Data Analysis

1. The reliability of DFT.

2. The performance of DFT.

One of the motivations of designing DFT is to increase the reliability of file transferring.
Therefore, the first thing to test is if the implementation meets this goal and how well it
fits our requirements. If DFT’s performance is poor, it is not practical. Therefore, the

experiment must also test the performance of the implementation.

5.1.1 Experiment Goals

Reliability Test — DFT can detect and recover from many kinds of failures. According to
the layered failure model developed in Chapter 3, there are application layer failures,
network layer failures and hardware layer failures. Different failures lead to different
detecting and recovery procedures. The experiment should realize or simulate these

different failures. DFT should detect all those failure and recover from them.

The test measures the overall failure/recover time when applicable. The overall
failure/recovery time is the time elapsed between the failure occurrence and successful
recovery. It has two parts. The first part is failure-detecting time, which starts from the

time failure occurs and ends at the time the DFT detects the failure. The second part is the

Reliabie file transfer on Intemet using DFT, ©Xin Fang 72

Chapter 5 Expeniments and Data Analysis

recovery time, which starts from the tme when the failure was detected and ends at when
it is recovered. The overall failure/recovery time should be very short compare to the

downloading time.

The failure/recovery time is applicable when the failure can be automatically recovered.
However, if the DFT client is halted or the network interface of the client fails, human
interventicn has to be performed. A DFT client can only resume downloading after the
failure of the system or the network is recovered from. Therefore, the failure/recovery
time does not have practical meaning. In these scenarios, the experiment only tests if the

failure can be recovered from.

Performance test — DFT is designed not only to increase the reliability of file transferring
over the Internet, but also to improve the performance of file transferring. By
simultaneously downloading from multiple file servers, DFT is expected to increase

throughput when the number of servers increases.

The experiment will test the file transfer rate when a DFT client is downloading a file
from multiple servers. Different results will be compared when different numbers of file

servers are chosen.

Reliable file transfer on Intemet using DFT, ©Xin Fang 73

Chapter 5 Experiments and Data Analysis

5.1.2 Experiment Environment
5.1.2.1 Network

DFT is designed to transfer long files over the Internet. Therefore, the network in the
experiment will be over the Internet. The servers are distributed throughout the Internet
and the DFT client that resides in the lab is connected to the Internet through the campus

network.

5.1.2.2 Target Fﬂe

The target file is referred to as F in the experiment. F's name— is “Q3ADemo.exé", which
is the demo version of Quake II. It is.very popular and many FTP sites have copies of it.
The length of F is of 47M bytes. Th.lS file is chosen because' it is big enough to provide
enough downloading time. During that time, the file transfer rate becomes stable and
reliability tests can be performed. Yet, the size is not too big so that it represents a typical

target file in today’s Internet environment.
5.1.2.3 DFT Servers

In the experiment, seven servers contain F. They are listed in Table 6.

Server Address Path
ftp.aros.net /pub/games/Quake3/Q3ADemo.exe
ftp.cdrom.com /.1/3dfiles/games/Q3ADemo.exe
ftp.pipex.net /uunet/games/quake3/Q3ADemo.exe

Reliable file transfer on Intemet using DFT, ©Xin Fang 74

Chapter 5 Experiments and Data Analysis

ftp.u-net.net /pub/games/quake3arena/Q3ADEMO/Q3ADemo.exe

ftp.cableinet_net /pub/games/idsoftware/quake3/win32/0ld/Q3 ADemo.exe

ftp.csufresno.edu /pub/mirrors/q3demo/pc/Q3ADemo.exe

198.163.152.118 /home/jchen/Q3ADemo.exe

Table 6 DFT servers in experiment

Note that server 198.162.153.118 is a server in the lab. This server is used to simulate the

failures.
5.1.2.4 DFT Client

The DFT client runs on a sun workstation in the lab. The client connects to the Internet
through the campus network. The network interface of the client is a 10Mbps Ethernet.
The Java environment is JDK2 sel.3. For the purpose of data analysis, the DFT client
~ uses a consol mode instead of a graphical user interface mode. The consol mode uses a

text interface and therefore is more efficient in terms of system resources.

5.2 Reliability Test
§5.2.1 Server Failure Recovery
When the DFT client is downloading the target file, we reboot the server to simulate a

server failure. The DFT client has a socket read timeout set to 20 seconds. When the

server is down, no more data can be read on that socket. Twenty seconds later, the

Reliable fite transfer on Internet using DFT, ©Xin Fang 75

Chapter 5 Expeniments and Data Analysis

timeout fires and the DFT client detects the failure. Therefore, the detecting time is set at
20 seconds. The experimental data shows it precisely. The timeout is set to 20 seconds so
that a temporary delay on the network will not trigger switching of the server. In addition,
when one downloéding thread has failed, other downloading threads will still work.
Therefore, during the time of failure recovery, the DFT keeps downloading the file. The

overall downloading procedure will not be terminated.

The DFT client will try to reconnect to another file server after it detects the failure. This
procedure depends on the response speed of that server. If the server is fast in response,
the recovery time is short. Otherwise, the recovery time will be longer. It also depends on
the amount of welcome messages that a server sends to a client when the client logs in.

Our experiment shows a typical value of 3 seconds.

Table 7 shows the failure/recovery time of the experiment

Failed server Alternative server | detecting time | recovery time | fail over time

198.162.153.118 | ftp.aros.net 21 seconds 3 seconds 24 seconds

198.162.153.118 | ftp.pipex.net 20 seconds 2 seconds 23 seconds

Table 7 Failure/recovery time when a server fails

Reliable fite transfer on Intemet using DFT, ©Xin Fang 76

Chapter 5 Expeniments and Data Analysis

5.2.2 Hardware Failure Recovery

This experiment simulates a link failure by unplugging the network cable of the server.

DFT client use the same method to detect and recover link failure as server failure. Table

8 shows the test results of link failures.

Failed server Alternative server | detecting time | recovery time | fail over time
198.162.153.118 | ftp.aros.net 20 seconds 3 seconds 23 seconds
198.162.153.118 | ftp.pipex.net 20 seconds 2 seconds 22 seconds

Table 8 Failure/recovery time when a server’s link fails

5.2.3 DFT Client Failure Recovery

This experiment simulates the DFT client’s failure by killing all DFT client processes on

the workstation. Then, we execute the DFT client again and let it download the same file

as before. The DFT client successfully checks the log file and resumes the interrupted

downloading.

5.3 Performance Test

This experiment selects four servers to perform the performance test. We record the

download speed of each thread associated with each server and plot them according to

time. In order to get the speed of the transferring, we only use the stable section of the

Refiable file transter on inemet using DFT, ©Xin Fang

Chapter 5 Experiments and Data Analysis

speed to calculate the mean speed. Note that at the beginning, the speed increases sharply

and becomes stable after about 50 seconds.

Figure 18, Figure 19, Figure 20 and Figure 21 illustrate the speed of each thread. Figure
18 corresyonds to the server ftp.aros.net. Figure 19 illustrates the tli:c;ads of the servers
ftp.aros.net and ftp.cableinetnet. Figure 20 illustrates an additional server
ftp.csufresno.edu and Figu;'e 21 has an additional s;srvcr ftp.cdrom.com. Table 9 gives

‘the throughput comparison.

80000 L — I]
/\"‘\fﬁ_,. S

ftp.aros.net

—

Speed 40000

* 10000

o .
(] 100 200 300 400 500 600 700 Secoad

Figure 18 Downloading Speed of One Server

Relable file transfer on Intemet using DFT, ©Xin Fang] 78

Chapter 5§ Experiments and Data Analysis

Byte/Second
£0000
\ >
70000
{tp.aros net
»_ e
rd ftp.cableinet.net
Speed 4om0 [
) .
-l
ﬂ
10000 E
0
° 0 100 150 200 25 - 300 1s0 400 Second
Time
Figure 19 Downloading Speeds of Two Servers
Byte/Second
70000
- I T——F—J—
60000 [\/,‘, V fip.aros.net
50000 e = S S S
I fip.cableinet.net S~
40000 (-
s
pocd Iﬂ
20000
I’
10000 - fp.crufresno.edu
7 .
o | |
0 0 100 10 200 250 300 3%0 400 Second
Time

Figure 20 Downloadihg Speeds of Three Servers

Reliable fie transter on Intemet using DFT, ©Xin Fang

Chapter 5 Expeniments and Data Analysis

Byte/Second
70000
[L/ ”‘"\f"*w—\-—-f\'—“-l———-\
60000 ftp asos.net \\
50000
'h'_’4’\-~'-§._~\”_u~-‘\-_~_ ot ——
i fip.cableinetnet T
40000 [§—— e -t e
L e DEN e .
Speed] - ftp.cdrom.com
30000
20000
o -
¢ —_
10000 [+
{l fip.csufresno.edu
. L |
(] 50 100 150 200 250 300 350 Second

Figure 21 Downloading Speeds of Four Servers

Number of Servers { Throughput (Kbps) | Increasing percentage
1 - 610.3 0% -
2 999.7 63.8%
3 1040.6 70.5%
4 1314.8 115.4%
5 1372.7 124.9%

Table 9 Downloading rate with different number of servers

The overall throughput of DFT is compared in Figure 22. In Figure 22, we found that
generally speaking, downloading throughput increases when the number of servers

increases. Specifically, the throughput of two servers is nearly the sum of each one's

Reliable file transfer on Internet using DFT, ©Xin Fang 80

Chapter 5 Expeniments and Data Analysis

throughput.

—

—

Theoughput (Kbps)
- 588888

Figure 22 Throughput of DFT with Different Number of Servers

However, the throughput of five servers is very close to that of four servers. This may due
to three reasons. First, the additional server’s throughput is not significant. Second, the
overall throughput reaches the limit of the network’s bandwidth. Third, too many
downloading threads increase the DFT client’s burden. As the data shows in Table 9, the

highest rate is near 1.4 M bps.

Summary

This chapter presented the design and implementation of the experiments and tests for the

Reliabie file transter on Intemet using DFT, ©Xin Fang 81

Chapter 5 Experiments and Data Analysis

DFT system. The main features of DFT, which are reliability and efficiency, are checked
and tested. As the results show, DFT can detect and recover from server failures, network
failures and the DFT client failures. By distributing the downloading task among multiple

servers, DFT increases the overall throughput.

Reliable file transter on Intemet using OFT, ©Xin Fang 82

Chapter 6 Conclusions

Chapter 6
Conclusions

This thesis presented the designed and implementation of a reliable file transfer
mechanism over the Internet. It also presented a three layered failure model contributing

to the failure recovery philosophy of DFT.

Distributed file transfer (DFT) increases the reliability of file transfer on the Intemet.
DFT achieves this goal by downloading different segments of a file from multiple file
servers simultaneously. The reliability of DFT increases when the number of servers
increases. DFT can be deployed in the Internet to provide a global level reliable file
transfer system. The failure/recovery time of a single thread of DFT is adjustable. This
thesis shows a typical failure/recovery time of around 20 seconds for the recovery of a

hard failure.

Reliable file transfer on Intemet using DFT, ©Xin Fang 83

Chapter 6 Conclusions

The throughput of DFT increases when the number of servers increase. Due to the
simultaneity feature of DFT, multiple downloading streams raise the throughput of DFT
to the limit of the hardware. In the experiments oOf this thesis, the throughput of four

servers increases by more than 100% than that of one server.

Future work of DFT includes increasing the capa<city of the LDS. It is also better to
implement an LDS search engine of its own and put its search results in dedicated
database system. We may even consider increasing the reliability of the LDS. For
example, we can provide multiple LDS for DFT client to increase reliability. On the
server side, DFT can maintain some kind of agent like SNMP that reports the usage of

the server, so that LDS can provide more precise information to the DFT client.

Reliable fiie transter on Intemet using DFT, ©Xin Fang 84

References

References

[Afreet] Afreet Software, Inc., httpz//www.netvampire.com

[AOM1998] M. Allman, S. Ostermann and C. Metz, “FTP Extensions for IPv6 and
NATs”, RFC 2428, Network Working Group, September 1998.

[APa] Arrowpeint Communication, Inc., “Arrowpoint Web Network Service — Enabling

the Web-centric Internet”, hitp:/www.arrowpoint.com -

[APb] Arrowpoint Communication, Inc., “A Comparative Analysis of Web Switching

Architectures”, http://www.arrowpoint.com

[Briscol995] T. Brisco, “DNS Support for Load Balancing”, RFC 1794, Network
Working Group, April 1995.

[Comer1995] D. E. Comer, Internetworking with TCP/IP Volume I: Principles, Protocols,
and Architecture, 3™ ed., Prentice Hall, 1995

[Couch1987] L. W. Couch II, Digital and Analog Communication Systems, 5 ed.,
Prentice-Hall International, Inc. 1987

Rekable fie transfer on Intemet using DFT, ©Xin Fang 8

References

[CS1994a] D. E. Comer, D L. Stevens, Internetworking with TCP/IP Volume II: Design,
Implementation, and Internals, 2* ed., Prentice Hall, 1994

[CS1994b] D. E. Comer, D. L. Stevens, Internetworking with TCP/IP Volume III:
Client-Server Programming and Applications, 3™ ed., Prentice Hall, 1994

[CW1996] M. Campione, and K. Walrath, The Java Language Tutorial: Object-Oriented
Programming for the Internet, Addison-Wesley, 1996

[DuaneC1996] D. C. Hanselmen, , Mastering MATLAB: A Comprehensive Tutorial and
Reference, Prentice Hall, 1996

[F5] F5 Networks, Inc, http://www.bigip.com

[Flanagan1996] D. Flanagan, Java in a Nutshell, O’Reilly & Associates, Inc., 1996

[Harold1997] E. R. Harold, Java Network Programming, O’Reilly &Associates, Inc.,
1997

[Headlight] Headlight Software, htip://www.getright.com

[HL1997] M. Horowitz and S. Lunt, “FTP Security Extensions”, RFC 2228, Network
Working Group, October 1997.

[ISC2000] Internet Software Consortium, http://www.isc ore/ds/hosts.html, Internet

Software Consortium, 2000
[IM1997] J. R. Jackson and Alan L. McClellan, JAVA by Example, Prentice-Hall, 1997

(Linden1996] P. Van Der Linden, Just Java, Englewood Cliffs, Prentice Hall, 1996

[Lycos] Lycos, Inc., http:/fipsearch.lvcos.com

Relabie file transter on Intemet using DFT, ©Xin Fang 86

References

[Mullender1993] S.J. Mullender, Distributed Systems, 2™ ed., New York, ACM Press
1993

[Paxoni994] V. Paxson, “Growth Trends in Wide-Area TCP Connections”. IEEE
Network, Vol. 8 No. 4, pp. 8-17, July 1994.

[PR1985] J. Postel, J. Reynolds, “File Transfer Protocol (FTP)”, RFC 959, Network
Working Group, October 1985.

[Radiate] Radiate, Inc., http://www.gozilla.com

[Ryan1999] J. Ryan, Designing and Implementing a Virtual Private Network, the Applied

Technologies Group, Inc., 1999
[Schach1998] S. R. Schach, Software Engineering with JAVA, 4% ed., McGraw-Hill, 1998

[Speedbit] Speedbit, http://www.speedbit.com

[Stallings1994] W. Stallings, Data and Computer Communications, 4® ed., Macmillan
Publishing Company, 1994

[Stevens1998] W. R. Stevens, Unix Network Programming, Volume 1, 2°¢ ed. Prentice

Hali, 1998.

[Tanenbaumn1996] A. S. Tanenbaum, Computer Networks, 3 ed., Prentice Hall, 1996.

Reliable file transfer on Intemet using DFT, ©Xin Fang 87

Appendix A: Numeric Qrder List of FTP Reply Codes

Appendix A
Numeric Order List of FTP Reply Codes

110 Restart marker reply.

In this case, the text is exact and not left to the particular implementation; it must

read:
MARK yyyy = mmmm

Where yyyy is User-process data stream marker, and mmmm server's equivalent

marker (note the spaces between markers and “=").
120 Service ready in nnn minutes.
125 Data connection already open; transfer starting.
150 File status ockay; about to open data connection.
200 Command okay.
202 Command not implemented, superfluous at this site.

211 System status, or system help reply.

Reliable file transfer on intemnet using DFT, ©Xin Fang 88

Appendix A: Numeric Order List of FTP Reply Codes

212 Directory status.
213 File status.
214 Help message.

On how to use the server or the meaning of a particular non-standard command.

This reply is useful only to the human user.
215 NAME system type.

Where NAME is an official system name from the list in the Assigned Numbers

document.
220 Service ready for new user.
221 Service closing control connection.

Logged out if appropriate.
225 Data connection open; no transfer in progress.
226 Closing data connection.

Requested file action successful (for example, file transfer or file abort).
227 Entering Passive Mode (h1,h2,h3,h4,pl,p2).
230 User logged in, proceed.
250 Requested file action okay, completed.
257 "PATHNAME" created.
331 User name okay, need password.

332 Need account for login.

Reliable file transfer on Intemet using DFT, ©Xin Fang 89

Appendix A: Numeric Order List of FTP Reply Codes

350 Requested file action pending further information.
421 Service not available, closing control connection.
This may be a reply to any command if the service knows it must shut down.
425 Can't open data connection.
426 Connection closed; transfer aborted.
450 Requested file action not taken.
File unavailable (e.g., file busy).
451 Requested action aborted: local error in processing.
452 Requested action not taken.
Insufficient storage space in system.
500 Syntax error, command unrecognized.
This may include errors such as command line too long.
501 Syntax error in parameters Or arguments.
502 Command not implemented.
503 Bad sequence of commands.
504 Command not implemented for that parameter.
530 Not logged in.
532 Need account for storing files.

550 Requested action not taken.

Reliable file transfer on Intemet using DFT, ©Xin Fang EN)

Appendix A: Numeric Order List of FTP Repfy Codes

File unavailable (e.g., file not found, no access).
551 Requested action aborted: page type unknown.
552 Requested file action aborted.
Exceeded storage allocation (for current directory or dataset).

553 Requested action not taken. File name not allowed.

Reliabie file transfer on Intemet using DFT, ©Xin Fang 91

