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ABSTRACT

Using the University of Manitoba sector-focussed cyclo-

tron a study has been made of the elastic and inelastic
scattering of protons from 6Li. Data were obtained at

25.9, 29.9, 35.0, 40.1 and 45.4 MeV. The 2.18 MeV (3%,

T = 0) state of 6Li was found to be strongly excited, but
the 3.56 MeV (Ot; T=1) state was quite weakly excited.

To test the applicability of the optical model description
for the scattering from such a light nucleus the elastic
angular distributions have been analysed using the automatic
search code SEEK. Available poldrization angular distribu-
tions were included in the analysis. Good fits have been
obtained for quite acceptable optical model parameters.
Angular distributions for excitation of the 2.18 MeV level
were measured at all five energies. Angular distributions
for excitation of the 3.56 MeV level were measured at 25.9
and 45.4 MeV. An analysis in terms of a microscopic theory
may give information about the spin-isospin dependent part of

the effective interaction.
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1.

CHAPTER 1

1-1 Introduction

The present thesis describes an experiment in which protons
from the University of Manitoba sector focussed cyclotron were scatter-
ed by a 6Li target. The incident protons had energies of 25.9, 29.9,

35.0, 40.1 and 45.4 MeV, and data were collected for elastic scattering

and for inelastic scattering from the first and second excited states of 6Li.

The elastic scattering data have been analysed using the
optical model. An analysis of the inelastic scattering from the 3.564
MeV (O+, T=1) level in 6Li is planned for the near future according
to a microscopic description of the interaction. It is suggested that

the angular distributions corresponding to the 2.184 MeV (3+, T=0) state

in 6Li would form an interesting subject for a copuled channels calculation.

It is the intention to examine in the first chapter in some
detail the purpose of the experiment and the motives for a theoretical
analysis of the data obtained, and to give an account of related investi-
gations which have appeared in the literature. The main part of the dis-
cussion is contained in section 4, while the two preceediﬁg sections
are intended as a review of some of the basic material involved; Sec-
tion 2 contains an account of the fundamentals of the nuclear optical
model, while section 3 deals with the present knowledge and understanding
of the features of the 6Li spectrum. The second chapter contains a des-

cription of the experimental arrangement and of the methods followed in




the reduction of the experimental data. In the third and final chapter

the results obtained are presented and discussed. Appendix I contains
the derivation of a few formulas used in the data reduction. Fihally,

tables of the differential cross-sections are given in appendix II.

1-2. The Optical Model

A comprehensive presentation of the optical model theory is
outside the scope of this thesis and can be found for instance, in
monographs written by Hodgson ﬁl} and by Jones {2}. We shall limit our-
selves to an account of the basic ideas together with a sketch of the
historical development. Around 1950 the interagtion of a neutron with
a nucleus was thought to correspond to the following picture:

1) At very low energies (keV range), where the only channels

open are elastic scattering and radiative capture, the dependence on energy

of the differential and total cross-sections shows strongly peaked reson-

ances. The scattering cross-section is the sum of terms corresponding
to two different processes. The first (potential scattering) is a sur-
face phenomenon in which the nucleus behaves as a hard sphere, while
the second corresponds to the capture of the neutron to form a compound
nucleus, which decays after a time of ;10—14 seconds. The compound scat-
tering is responsible for the resonances: the neutron can be absorbed
only at those energies at which the wave function of the incident neutron.
at the nuclear surface satisfies the boundary conditions appropriate for

the wave function describing a neutron inside the compound nucleus. At

all other energies the nuclear surface is perfectly reflecting (resonance




scattering). .The mathematical formulation of these ideas leads to

the famous Breit-Wigner resonance formulas. {3}

2) At higher energies (28MeV) the number of channels avail-
able for the decay of the compound nucleus becomes so great that the
probability of decay through the entrance channel is negligible. At
the same time the separation between two adjoining states of the compound
nucleus becomes less than their width. As a consequence the scattering
is potential scattering. As the energy of the incident neutrons increases,
the scattering cross-section remains constant while the reaction cross-
section decreases regularly, being inversely proportional to the velocity.

In conclusion, at energies where the continuum theory is appli-
cable, the total crossfsection is expected to decrease smoothly with
increasing incident energy. The same is expected to happen at lower
energies for the "gross" variation of the cross-section, which is obtain-
ed by averaging over the resonances.

At the beginning of the fifties this picture was partially con-
tradicted by experimental observétions. On one hand, experiments like the
one of Eisberg and Igo {4} (inelastic p%oton scattering at 32 MeV) gave
strongly forward peaked angular distributions and relatively large values
of the (p,p') cross-section while the compound nucleus theory prediects
angular diétributionssymmetricabout 90° and strongly favours the (p,n)
process over the (P,p‘) process. On the other hand, evidence of phenomena

thatcould:notfbewexplained in terms of the compeund theory was given by

the discovery of the giant resonances (Barschall {5} ): plots of the total

cross-section versus energy show broad peaks (of width ~1 MeV) whose posi-
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tion and height vary regularly with the mass number of the target.

This behaviour can be explained if one supposes that the nucleus, in-
stead of being perfectly reflecting away from resonances, is partially
absorbing. The potential scattering is then no more hard sphere scat-
tering, the incident wave function penetrates into the nuclear well,
and a resonance.is_produced when this can accomodate an integer number
of half wavelengths.

From a mathematical point of view the partial absorption of
the incident wave function can be obtained if one represents the nucleus
by a complex potential well (optical potential). To illustrate this
point, and to indicate how the cross-sections can be calculated, we shall
consider the very simple case of %=o neutrons and of a complex potential
of the square well type:

V(E)

-V-iWw, r <R
0 r >R

Let us recall some well known formulas relative to the scatter-
ing of a plane wave by a central potential of range R. The asympotic
solution of the Schrddinger equation, the differential cross-section for

elastic scattering and the scattering cross-section are given by:
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where n,=e 6£ and the phase shifts 62 are obtained by imposing the

continuity of the radial wave function and of its derivative at the boun-
dary r=R.

In our case the radial sclution is:

[l
H

A(sin V/ (E+V+iW) r) s r <R

B sin(v/%gg-r + 80) s r >R
and the continuity condition:

—_— —
. & . Y 2mE omEY
2@-(E+V+1W) cotg V/ég-(E+V+1W) RE E@— cotg, ( ﬁg— R+80

~gives a complex phase shift 60, so that ]no|<l; As a consequence the
amplitude of the outgoing wave {second term in the asympotic solution
’{l}) is less than the amplitude of the incoming wave, the difference being
proportional to the number of particles absorbed per unit time. The same
method gives the complex phase shifts in the case of any & and different
shapes of the potential, but, of course, the integration of the radial
wave equation becomes in general far from trivial and numerical methods
have to be employed.

Substitution of the phase shifts in the general formulas (2)
and (3) gives the differential cross-section and the scattering cross-

section while the reaction (absorption) and total cross-section are given

by:
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(5) 0y = Oy t O k2220(22+1) 2 Re (1-n))

It should be noted that the optical model does not contradict the idea
of the formation of a compound nucleus, but only the assumption of
perfectreflectionaway from resohances. Actually at low energies the
optical model and the compound nucleus theory are complementary, the
former giving the general trend of the dependence of the total cross-
section on the incident energy, the latter giving the details of this
dependence.

At energies>éorresponding to the continuum, the optical model
gives the cross—-section for the formation of the compound nucleus, while
its decay in one or anothér of the available channels, given the great
number of these, can be treated from a statistical point of view (stats
istical theory). At these energies, however, the formation of the compound
nucleus is not. - the only possibleAreaction mechanism, and, in particular,
reactions invélving charged particles, where emission from the compound
nucleus is inhibited by the Coulomb barrier, follow generally the direct-
reaction pattern.

In Barlier studies of the optical model, like the one by Feshbach,
Porter and Weisskoff {6}, a square well_potential was used. It was found
however, that a better agreement with experiment is obtained using a

potential of the Woods—Saxon’{7} type:
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(6) Ulr) = =X
r-R
l+exp!—2;—
characterized by the four parameters, V. W. R, and a. V and W are
the strengths of the real and imaginary part of the potential, R.is

the nuclear radius expressed in terms of the radius parameter rg and

of the atomic number by R = roAl/s, and a is the diffuseness parameter.

Genefally better agreement with the experimental data is obtained when

the values of rg and a for the real and imaginary parts are different.
An improvement is obtained considering, together with' the

volume absorption term (imaginary part of (6)), a surface absorption term,

1

of the form +4iW_a SL—(

02D In = AI73 ) (derivative Wood-Saxon form).

lt+exp

aD-

The reason for including this term is the following. The absorption pro-
cess is due to the collisions of the incident neutrons with the nucleons
of the target nucleus. Such collisions are opposed by the exclusion prin-
ciple, particularly in the inside of the nucleus, where most shells are
filled. So we expect the absorption to take place in preference at the
surface of the nucleus, especially at lower energies, where the exclusion
principle is more effective.

A further refinement of the optical potential is obtained with
the inclusion of a spin-orbit term, which accounts for the polarization
of the scattered particles. In analogy to the shell model potential,
the spin-orbit term is chosen to be of the Thomas form. An absorption
part in the spin-orbit term is sometimes included; however,

its utility is doubtful, except at very high energies. Also, when
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the optical model is applied to the scattering of charged particles,
a Coulomb term Vc must be included in the potential.

Taking into account the additional terms discussed, we

obtain what we shall call the "standard form" of the optical potential.

Vi iW

(7) U(I‘)‘—- VC(I’) - S, A.LI/J‘ - Tr-1 Allld
l+exp( lt+exp
W
+uilpar S ( J'-r—rDA“/‘f’) + (Vstils) = & (
lt+exp Sk l+exp
@

The potential (7) has been used extensively in the analysis of exper-
imental data consisting of differential cross-section and polarization
and total reaction cross-sections for a wide range of projectiles and
target nucléi, at energies from a few MeV's to 150 MeV and over.

To fit, -say, a differential cross-section angular distribution,
the differential cross-sections are computed for all the angles consid-
ered using the potential (7) with a suitable set of starting parameters.

Then the parameters are varied in order to minimize the quantity.

4oy _ Q@ 2
(8) x? = Z 49 +n 4R exp .
all do
angles A(ag)
do do . .
where (5=) and (=) are the theoretical and experimental values
da th e exp

of the differential cross-section and A(%%Q is the experimental error.

The optical model potential (7) contains thirteen adjustable
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parametérs and usually some additional condition is imposed in order
to reduce this number. For example, it is quite common to set either

W=0 (only surface absorption) or W_=0 (only volume absorption), and when

D
both terms are considered it is usual to take rLErp

The parameters, which give the best fit vary with type and
energy of the projectile and with the atomic number of the target
nucleus. Systematic optical model studies in progress in various
laboratories have the purpose of finding the general trends in the

variation of the best-fit parameters and the limits in the applicabil-

ity of the model.

1-3. The Spectrum of 6Li

The level scheme of the 6Li nucleus is given in figure 1.
According to the shell model the 6Li nucleus consists of the complete
1s shell, containing two protons and two neutrons, plus one proton and
one neutron in the lp shell,i.e:,the ground configuration of 6Li is
as)*(ap)?.

With a purely central potential the ground configuration would
be completely degenerate. Introduction of the interaction between the
spiniand orbital angular momenta of each particle and of two-body forces
causes the degeneracy to be partially removed, the ground configuration
splitting into levels corresponding to the different values of the total
angular momentum J. The particles of the closed shell contribute zero
angulaf momentum and .  positive parity, and may be ignored when com-
puting the splitting of the ground configuration. Spin, parities, and
relative energies of the lower levels of 6Li are therefore those of a>

1
2

system of two particles, of quantum numbers nl=n2=l, 1. =1,=1, s .

1772 17897
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Ty =ttt

t =%, t .= -%, subject to the potential:

V.=V -a &, * s, + V..,
1 6 —1 -1 1]

The parity of all levels of the ground configuration is given by
(-1)%? T2 +1; thus the states of negative parity whose existence

has been suggested between 6 and 14 MeV belong to some higher configu-

ration arising from the lifting of one p-nucleon to a higher shell.

The states of the ground configuration may be classified
according to the value of the total isespin T. States with T=1 have
the spin and space dependent part of the wave function antisymmetric
and are analagous to those obtained when the two particles in the 1lp-
shell are béth protons or both neutrons. The states with T=1 form
isospin triplets together with the corresponding states of 6Be andBHe
while the states with T=0 have the spin and space dependent part of the
wave function symmetric. The values of the total angular momentum are
obtained by coupling spins and orbital angular momenta of the two nuc-

leons. The level scheme obtained depends on the coupling scheme adopted.

If one supposes that in the potential the spin-orbit term is
much larger than the two-body interaction it is reasonable to use the

j-j-coupling:

-&1 + Ei = 11 D &@ + §Q ‘QQ D 11 + ll = E_ (%)

G Here and in the following the symbols used are self explanatory and
conform to the usual practice.
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Jid2 L (%)
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.(jlmjljzmjzlJM) ¢£1m ¢E2m “im_ o
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Considering the two-body interaction as a perturbation,then in . zer¢ order
approximation states with the same values of ji and j, but different

J and M are degenerate, and the levels of the (p)2 configuration are
obtained by letting the two nucleons occupy independently- single par-
ticle states. The single particle levels of the p-shell are P3/2 and

Py the former being the lowest, so that, neglecting the two-body
interaction completely, the states of (p)2 configuration are given by
(R%)Q, pB/QP%’ (P%)Q, in order of increasing energy. Introducing

the perturbation due to the two-body interaction the multiplet (13_5/2)2
splits according to the different values of J. These are determined

in the following way. We can write:

3/2 3/2

. 3.3 "
Yo = % (5 M 5—M—m|JM)¢3/2 (W oy (2

_ & 3

= % Fm 5 M- m|JM) Vg om(2) Vg oy (1)

_ 3

= i%(E-M— 3 nlow) Vg oum(?) Vg on(L

where the sign on the right hand side is + for T=0 states, (which are

symmetric with respect to the exchange of the space and spin coordinates

(*%) (jy1,my,3p,mp|j3.m3) denotes the Chebsch-Gordon coefficient for the
coupllng of the angular momenta Ji and jo to j3
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of the two nucleons) and is - for T=1 states. Using the following

property of the Clebsch-Gordon coefficients:

. . j1+j2~-d, . .
(Fim1iemz |dM) = (-1)31TI27Y(5 1my g omy | TM)

we have:

.3/2 3/2 _ 3-J v,3 3 . .
Wiy = £(-1) %(a-m E-M—m[JM) w3/2M_m(2) w3/2m(l)
- 1(e1)3Y W3§2 3/2

Thus the values of J for the multiplet (p3/2)2 are even if T=1 and odd
if T=0, and spin and isospin of the first four states are(J=3,T=0)
(g=1, T=0)(J=2, T=1),(J=0, T=1). This conclusion does not agree
with the experimental results, which suggest T=0 for the J=2(4.57MeV)
state.

The question of the applicability of the j-j model to the 1lp
shell nuclei has been examined in detail by Kurath”IS}. This author,
using the Hartree method and assuming j-j coupling, calculated the

matrix elements of a two-body interaction of the form Vi2=Pexp{ ~(51302}
[¢]

for the cases in which P is the Wigner, Majoraﬁé;. Bartlett or Heisenberg
operator. A comparison with the results obtained fifteen years earlier
by Feenberg and Wigner {9} and Feenberg and Phillips”{ld} in L-S coup-
bling shows that, while both models predict correctly the spins in some
cases, none of them accounts satisfactorily for the spectra of all the
lp-nuclei. In particular, in the case of 6Li, according to the j-j

coupling model the order in increasing energy of the lower states is




14,

(3,0) (0,1) (1,0) (2,1), while experimentally the ground state is
(J=1, T=0), which is given correctly by the L-S model. The L-S coup-

ling scheme is defined by:

Xt %o =

|
e

s1t 82 =5 L+8S+

[

Ls _ : 1 1
Uiy LCmy tom, 1M ) (G Fm |SHG)
(LM SM.|TM) ¥, -~ X Y e
LS llmzl My 22m22 S2

For two p-nucleons the possible values of the qguantum numbers L,S,J
are given by:
L=0,1,2 ; S$=0,1 ; J= |L-S|, ..., L+S-1, L+S
The value of the total isospin is determined by symmetry considerations.
The space dependent part of the wave function has symmetry given by

$(1,2) = (—1)L

¢$(2,1) and the spin part is antisymmetric for singlet
states (S=0) and symmetric for triplet states (S=1). The spin-space
dependent wave function is then antisymmetric for even singlets and odd
triplets, which will correspond to T=1, while we shall have T=0 for odd

singlets and even triplets. Therefore the states of the (p)2 configura-

tion in L-S coupling are given by the following table:

L g 3 7| 2T+1,28+1,

J
0 0 0 1 31,
(o]

0 1 1 0 13
5
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con't.
L g 7 T 2T+l,2S+lL
J
1 0 1 0 11
Pl
1 1 0 1 33P
o
1 1 1 1 33
Pl
1 1 2 1 33P
: 2
2 0 2 1 SlD
, 2
2 1 1 0 13
Dl
2 1 2 0 13
D2
2 1 3 0 13D3

In the case of pure L-S coupling and of a central potential the
levels corresponding to the same values of L and S are degenerate. Feenberg
and Phillips,{gl give the energies of the various multiplets in terms
of direct and exchange integrals of the Hartree theory:

A= SU(L)S(2)V1a P(L)P(2)dT1dT2,

1]

FH(1)6(2)V126(1)P(2)dT1dT2,

K

where { and ¢ are two single particle wave functions. The indices 1
and 2 refer to the coordinates of the two nucleons and V12 is the inter-
action potential. The resulting order of the levels depends on the
exchange character of the interaction and on the wave functions.

The intermediate coupling theory of the lp-shell nuclei is
due to Inglis-fﬂl,lQ } and Kurath“{lS}. These authors describe the sys-

tem of the n nucleons of the (1p)" configuration by a Hamiltonian of

the form:
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(9) H= :ZLTiJ“iZj Vi3(P350055* ga&i'_s_i’
where Ti is the kinetic energy operator for the iEE-nucleon, ii
and 8; are the orbital and spin angular momenta, Vij(rij) is a cen-
tral two-body interaction and Oij an exchange operator between nuc-
leons i and j. The radial dependence of Vij is assumed to be
gaussian, the single particle wave functions are taken of the harmonic
oscillator type, and the exchange operator Oij is chosen to be the
following linear combination of the space-exchange (Majorana) operator
P and of the spin-exchange (Bartlett) operator Q:
Oij = 0.8 P + 0.2 Q.

Having specified the interaction, the ratio of the direct to the ex-
change integral A/K depends only on the strength of the nuclear force
and on the nuclear radius. Inglis and Kurath estimatei% = 6 to be a
reasonable value for the lp—shell, In the L-S coupling limit, which
is obtained by setting a=0 in eq.(9), the order of the levels is now
determined and their spacing depends'only on K, which is left as a
free parameter in order to compare more easily the prediction of the
theory to the experimental results. For the (lp)2 configuration the
order of the 28+lL multipléts is 38, 3D, lS, lD, 3P, lP.

The transition to intermediate'coupling is described in terms
of the parameter\%3 which measures the relative strength of the spin-

orbit coupling and of the two-body interaction. When a<<k the des-

cription of the system in terms of the L-S model is still valid, but the

coupling. term Z a&_i-ii = A L-S, acting as a perturbation, removes the
i
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degeneracy among levels of the same multiplet 28+l

L. At the opposite
limit, when a>> K, the spin orbit term dominates the interaction, and the
(§-j) model is applicable. Numerical solutions, obtained by Inglis and
by Kurath for the various mass numbers corresponding to the lp-shell,
give position and spacing of the levels as a function of the parameter

%u The value of this parameter which best describes each nuclide is

then determined by comparison with the observed spectra.

In the case of'6Li this value is given by 2131.3, which is
much lower than the values obtained for heavier nuclei of the lp-shell
(=5), and corresponds to essentially L-S coupling, the spin orbit int-
eration representing only a perturbation which causes the splitting of
the multiplets 2S+lL.

In the preceeding we have discussed the spectrum of 6Li from
the point of view of the shell model. Another possible approach is rep-
resented by a description in terms of an o-cluster deuteron-cluster
model~{14}. A general review of the cluster model of nuclei is given
by Wildermuth and McClure {15}.

According to the cluster model the 6Li wave functions are writ-
ten as:

v

where ¢i(d) is the internal wave function for the «-cluster, which de-

pix = A0;(8)04(8) X (a-0)

pends on the space, spin and isospin coordinates of the four nucleons,

¢j(d) is the analagous wave function for the d-cluster, Xk(a—d) corres-

ponds to the relative motion of the two clusters and A is the antisymmetriz-

ation operator.
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In the simplest formulation of the model (a), ¢(d), and
X(a-d) are taken to be harmonic oscillator wave functions with the same
oscillator parametérs. The ground state and the lowest excited state
are assumed to correspond to a situation in which there is no internal
excitation of the clusters. Since S=0, T=0 for the a-cluster and S=1,
T=0 for the deuteron cluster, the wave functions obtained will corres-
pond tec S=1, T=0.

The orbital angular momentum for the relative motion is deter-
mined by the requirement that the lowest eigenvalue for the .

(%)

hamiltonian:

_ 3 3
EnZ = {2(n-1) + 2+ 2} nw+ §-Hw + Ea

be the same as obtained in the single particle model. Since we have
two particles in the 1lp shell, the lowest eigenvalue is,2(l+%0 he + Ea'
We have then 2(n-1) + £ = 2 and the wave function for the relative motion
corresponds to either 2s or 1d. The first case corresponds to the ground
state:

9=0, s=1, J"=1" ,
while the second corresponds to the lowest T=0 excited state:

g=2, s=1, J"=3%, 2F, 1%.

The lowest T=1 states are determined considering an unexcited
a-cluster plus a deuteron cluster in the singlet state, (S=0, T=1).
Again, since the corresponding single particle configuration is (lp)2

the possible values for % are 0,2 and we obtain for the lowest two T=1

s&ates.

(%) The second term on the right hand side is the internal energy of.

the unexcited d-cluster. The internal energy of the g-cluster, E,, is assumed

to be the same as the energy of the a core in the shell model description.
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2=0 S=0 J" = of,
and 2=2 $=0 Jm o= ot

It should be noted that, although the shell model description and the

cluster description could appear quite different, when proper consider-
ation is given to the identity of the particles the difference between
the two points of view results to be merely a matter of perspective.

From a physical point of view, the fact that there is a high probability

of finding four nucleons near each other to form an ag~cluster does not

contradict a quasi-independent motion of the nucleons, since any four
among all the nucleons can, at any given instant, belong to the cluster.
From a mathematical point of view, for the simple case of harmonic
oscillator wave functions with the same parameters, it can be shown
that, after proper antisymmetrization, the @-d cluster wave function be-
comes identical to the wave function obtained, on the basis of the shell

model, by coupling in the L-S scheme two harmonic oscillator wave func-

&
o

tions. However, when refined versions of the two models are consid-

ered, the wave functions obtained are no longer identical.

1.4 Objectives of the Present Experiment

The optical model is remarkably successful when applied to
medium and heavy nuclei. For these nuclei it is possible to determine

"overall" potentials, with geometrical parameters fixed and dynamical

parameters equal to given functions of energy which give good fits over
a wide range of energies. Overall potentials for proton scattering in
the range of 10-20 MeV have been determined by Perey'le} and Rosen et
al.'fl7}, The potential obtained by Perey is given by:

* An explicit calculation is given in the book of Wildermuth and McClure
{lB}jfor the analogous case of the -@-a cluster model of 8Be.
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V = 53.3 MeV - 0.55E + (27 §i§-+ 0.4 K%%a) MeV

1/3 , _ (8.5 MeV if E 217 Mev
s 7.5 MeV if E <17 MeV

r=r =r =1.25 fm ; a=a_= 0.65 fm., a_= 0.47 fm.
s s : D

The analysis of Rosen et al.s led to the potential:

V = 53.8 MeV - 0.33 E

W 7.5 MeV

5 ; V= 5.5 MeV

r =r_ =1r = 1.25 fm. H a=a = 0.65 fm ;y a = 0.7 fm.
o D 8 s o
Analyses at higher energies show that some modification is necessary.

In the range of 30-40 MeV the energy dependence of the real central

well becomes:

V= 49.9 MeV - 0.22E + (26,452 + 0.urits) MeV e

(Fricke et al. {18}). At energies ”30 MeV the radius of the imaginary
potential becomes greater than that of the real part (Hodgson{19} ,
Johanson et al {20} , Fricke and Satchler {21} , Fricke et al. {18} ).

At 40 MeV the optimum geometrical parameters are:

1.37 fm.

1.16 fm. y a = 0.75 fm. Y

ro W

0.738 fm.

a

W 0.63 fm. 3 v = 1.064 fm. 3 a

It should be noted that at these energies r < T

The optical model is less successful for light nuclei (A$18).

This can be expected on the basis of the following considerations. On

one hand the basic idea of the model, that the interaction of the incident

nucleons with the A nucleons of the nucleus can be represented by an aver-
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age one-body potential, may be expected to be a better approximation
when A is large than when only few nucleons are present. On the other
hand, when A decreases the number of states available in a given energy
range decreases, and the effect of isolated resonances in the compound
system is felt also at relatively high energies.

Examples of optical model studies of light nuclei are the
investigations of the systems p + 12¢ and p + 160, 1In the case of Cl2
irregularities in the energy dependence of the differential cross-section
and polarization angular distributions between 20 and 30 MeV have been
explained by resonances in the compound system 13N (Dickens et al. {22,
23}, Craig et al.{24}). An optical model study of the elastic scattering
of protons by !2C, at 30,40 and 50 MeV has been carried out by Fannon et
al. {25}. The geometrical parameters which correspond to the best fits
obtained by these authors are quite close to those for medium and heavy
nuclei, but the quality of the fits is generally not as good. At 40
MeV Fannon et al. could obtain a good fit to polarization data at back-
ward angles only by letting a decrease to very small values (0.1 fm.).
While at 30 and 50 MeV the calculations of these authors produce
reaction cross-sections in agreement with values interpolated from total
reaction cross-section measurements on neighboring nuclei, at yg
MeV it was not possible to obtain simultaneously good fits to polariza-
tion and differential cross-section data and an acceptable value for the
reaction cross-section. An optical model analysis of elastic scattering

of protons from '®0 has pecently been published by van Oers and Cameren

{26}. The data analysed were differential cross-sections and polarizations
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in the energy range of 23 - 53 MeV. These authors were especially
interested in the energy dependence of the strength of the potentials,

therefore an optimum set of averaged geometrical parameters was deter-

mined and the analysis was carried on with fixed geometry. The optimum
geometrical parameters and the energy dependence of the real central

potential do not differ greatly from those obtained at comparable ener-
gies for medium and heavy nuclei. However, the quality of the fits ob-

tained for the differential cross-sections is only fair and the agreement

between the calculated and experimental polarization angular distribu-
tions is only qualitative. The quality of the fits deteriorates for ener-
gies $30 MeV. This is consistent with the observed nonmonotonic energy
behaviour observed in this energy region, which has been attributed to
resonances in the compound system 17p,

One of the objectives of the present experiment was to further
investigate the applicability. of the optical model to light nuclei. 6Li
éppeared to be a highly suitable target for this purpose, since it is

probably the lightest nucleus for which macroscopic concepts and models

may be expected to apply. An investigation of the applicability of the

optical model to 6Li can be considered as consisting of two parts. The
first part is a test of the possibility of obtaining fairly good fits with

reasonable values of the parameters. A negative result on this test

would put in question the possibility of representing the interaction of
the incident proton with the 6Li nucleus by means of an average one-body
potential. This would imply a complete failure of the optical model. On

the other hand, should one be able to obtain reasonable fits, not all the
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questions regarding the applicability of the optical model to 6Li
would be settled, since the model can be considered completely success-

ful only if the fits are obtained with parameters which vary slowly and

regularly with energy and mass number. The second part of the investi-
gation consists therefore in fitting the data with the geometrical para-
meters kept fixed to optimum averaged values, and comparing these values
and the dynamical parameters obtained with those for other 1light nuclei.

When doing such comparisons one should, however, not overlook the follow-

ing point. It has been shown (Cole et al. {27}, Perey {28}) that, when the
elastic channel is strongly coupled to inelastic channels, the optical
potential obtained by fitting the elastic scattering alone may be quite
different from that obtained by fitting the elastic and inelastic data
together, and that it is the latter that may be expected to vary regular-
ly from nucleus to nucleus. In the case of 6Li the differential cross-
section for scattering from the (JTT = 3+, T = 0) 2.184 MeV level is,

except at the most forward angles, comparable to that for elastic scat-

tering. Neglecting the coupling may therefore affect the results in a

significant way.

In order to take into account the coupling between the elastic
and inelastic channels and obtain simultaneous fits of the elastic and

inelastic data, one has to resort to a generalization of the optical model

which is known as the coupled-channel approximation (Chase et al {29},

Buck {30}, Tamura {31}). This approach consists in expanding the complete
wave function in a series of eigenfunctions of the total angular momentum

of the system. For each entrance channel (specified by the spin of the
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target nucleus and the total and orbital angular mbmenta of the inci-
dent proton) the angular momentum eigenfunctions are expressed as a
sum of products of elastic and inelastic scattering wave functions
and nuclear wave functions corresponding to the ground state and to

those excited states which one wants to take into account explicitly,

g& insertifig these angular ﬁomentum.eigenfunctioné in‘the'Schradiﬁger
equation one obtains a set of coupled differential equations. The reac-
tion channels not considered explicitly are taken into account by in-
cluding an absorptive part in the interaction potential. In order to
solve the coupled equations one has to specify the interaction. In

the case of collective nuclei the interaction can be represented by a
potential having the same general form as the optical potential, but with
a non-spherical real central well. This potehtial can be easily expres-
sed, to first order, as the sum of the ordinary (spherical) optical po-
tential and a term proportional to the parameter describing the permaneﬁt
or dynamical deformation.

All the coupled-channel calculations done to date are relative
to the case of collective nuclei. The theory can be formulated in a quite
general way, and there exist a number of computer codes which may be used
in calculations for m;ny'colléctive:nuclei. A divect usé -of these ccdes in
the case of 6Li is not possible, since the 6Li spectrum can not be des-
cribed by a collective model in a straight forward way. If is possible,
however, to rewrite the cluster model wave functions in a form which ex-

hibits a collective character(“) and one may hope along these lines to be
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able to formulate the coupled-channel calculation for 6Li in a form
which differs from the usual collective model formulation only in
details. The feasibility of such a program is currently under study.
Another objective of the present experiment was the measure-
¥ )

ment of angular distributions for the scattering from the (0=0,T-=3
3.562 MeV level and their analysis in terms of a microscopic theory.

In the microscopic description of an inelastic scattering reac-
tion (Madsen {32}, Satchler {33}) the interaction of the incident proton
with the target nucleus is described by an effective potential Veff which
is assumed to be the sum of the two body interactions of the incident pro-

ton with the active nucleons of the target.

(10) V_.. = %Vkp

Neglecting tensor forces and spin-orbit forces, a general form of the

two-body interaction Vkp is given by:-

(11) v+

o = Vo ez, |) + (I;—g_ﬁgk}'gp) + VT(IE_EKI')(IIQIPZ‘)

+ VOT(IL—L’kl) (g:k'gp) (1k'1p)

h

where r and p, are the position of the incident proton and of the kt

k

nucleon relative to the center of mass of the target, and Qk’gp’lkllp

are the spin and isospin operators.

In the framework of the distorted wave Born approximation the

transition amplitude for inelastic scattering is given by:

}
I
i
{
i
|
|
i
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- (-)* : + 3

where Xé—) and X§+) are distorted waves, obtained from an optical pot-
ential which fits the elastic scattering data and depends on the rela-
tive position and momentum while wf and wihdepend on the intermal co-
ordinates of the scattering system.

Assuming the same radial dependence for each term, the poten-
tial (10),(11) can be written in the form:

Ne) &5

(13) Vege =V 02+ V704,
where
. (o) _
(i) v o= ]Z< Voot V109 °0,) & Uz, ),
(1) _
(15) vt = 1% T (Vor#V1,9°9.) g (lz-ry ).
The right hand side of (13) is of the form Z V(T)'OT, that is a sum of

T
scalar products of tensors V(T), of rank T in the isospin space of the

target, and tensors OT’ of rank T in the isospin space of the projectile.
Since the potential (13) is a écalar, the total isospin Itarget + Ep is
conserved. Clearly the tensor V(T) may join states in which the nuclear
isospin differs by T. Hence the isoscalar potential (14) cannot trans-
fer isospin to the target, while the isovector potential (15) may trans-
fer one unit of isospin.
Similiarly, the right hand sides of (14) and (15) may be written

as sums of tensors in the spin spaces of the target and of the incident

proton. It may so be shown that the indicesthat identify the strengths

VTS of the various terms of the potential correspond to the isospin and
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spin that may be transferred to the target nucleus.
.. 6.. ,. .M _.+
The transition between the ground state of Li (J"=1",T=0)
and the second excited state (Jﬂ= O+,T=l) correspond to T=1l, S=1.

In this case therefore the effective interaction reduces to

Vogp * }% V(g e (g T g ey D)

With the proper choice of the optical model parameters, the nuclear wave
functions and the function g(l;—gkl), the differential cross-section can
be calculated in terms of V,,, which may then be determined by compari-

son with experimental results.

Austin and Crawley {34} have measured and analysed the diff-
erential cross-section for the inelastic scattering from the second
excited state of 6Li at 24.5 MeV incident energy. In the analysis the
states of 6Li were described by L-S coupled harmonic oscillator wave
functions, with an oscillator parameter of 1.9 fm. The interaction
was chosen of Yukawa shape, with a range of 1.0 fm. A good fit to the
experimental data for angles <509 was obtained with V,;=12.7 fm. The
energy dependence of V,, hés been studied by Austin et al}{SBE from data
for the total cross-section of the reactions 6Li(p1pi)6Li (3.562 MeV)and
by Clough et al iSGL.from data for the angular distribution of the rea-
ction 6Li(p,n) 6Be at 30 and 50 MeV. Theyresultéﬂindicate that the
strength of the spin-isospins dependent interaction is approximately con-

stant over the range 20 to 50 MeV.
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CHAPTER 2:

2-1 Experimental Arrangement

The experiment was performed using the proton beam produced
by the University of Manitoba sector-focused cyclotron {37}. The
proton beam is obtained by accelerating negative hydrogen ions.
Extraction from the cyclotron is accomplished by passing the ions
through a 25p thick -aluminum foil, which strips off two elec-
trons from each ion. Figure 2 shows the layout for the vault area
and for the 45° pight beam line used in the present experiment. The
beam is deflected down the beam line by a combination magnet C. The
quadrupole doublet Ql - Q2 produces a horizontal waist in the beam
cross-section. The steering magnets Sl and 82 are used to center the
beam vertically along the beam line. A set of horizontal and vertical
slits (slits 1) is located at the position of the waist. The beam is
then momentum analysed by a 45° deflection through a bending magnet.
A second set of slits (slits 2) transmits a suitable component of the beam
into the experimental room, where the quadrupole doublet Q5 —Q6 produces a
second waist at the center of the scattering chamber. Typical size of the
beam spot at the target is 3mm. by 5mm. The scattering chamber is shown in
figure 3. Detector cubes are positioned on two turn tables which can be
rotated independently. The top table can hold only one detector cube
while the bottom one can hold four cubes each separated by 10.0°. Accurately

positioned holes on the tables and corresponding dowels in the cubes -are

used for positioning the detector cubes on the tables. The target

mount can hold three solid targets and is lowered
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from a vacuum lock mounted at the top of the chamber. Selection of
the target to be used, as well as the setting of the target angle, 1is
accomplished by the proper vertical and rotational positioning of the
target rod.

During the course of the experiment, a ZnS screen, mounted on
the target ladder, was used to check if the beam was correctly center-
ed and had the proper dimensions. The intensity of the incident beam
was measured by collecting the beam current in a Faraday cup, surround-
ed by steel bricks to reduce background radiation. The Faraday cup was
connected to a charge integrator (Brookhaven Instrument Corp. model
1000), whose digital output was fed to a scaler. The energy calibra-
tion of the proton beam was obtained by using the crossover method
with CD2 and CH2 targets {38} . The calibration measurements related
the beam energy to the bending magnet field strength, which was deter-
mined using an NMR system. The energy of the beam was knowh with an
accuracy of * 0.2 MeV.

A AE-E detector telescope was mounted in a cube on.the lower
turn table of the scattering chamber. A collimator, mounted in the
cube in front of the detector telescope, defined the solid angle of
acceptance. The diameters of the collimators used and their distances
from the center of the scattering chamber have been accurately measured.
Two Nal counters, set at 37.5° on the two sides of the scattering
chamber, were used to monitor any variation in the direction of the
beam. The targets were made from isotopically enriched (99.3%) 6-Li

metal. The characteristics of the nine self-supporting targets used
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in the course of the experiment are given in the following table:

Method of

Target Measured Thickness Preparation

#1 13.89 mg/cm2 pressed powder

f#2 6.61 mg/cm2 "

#3 9.05 _mg/cm2 "

SHY 4.62 mg/cm2 "

#5 6.26 mg/cm2 "

#6 4,84 mg/cm2 "

#7 2.67 mg/cm2 evaporation under

#8 3.45 mg/cm> vaguum

#9 2.30 mg/cm2 "

The thickness of the thicker targets was determined by weighting a
portion of known area taken from the center of the target. The
thickness of targets 7 to 9 was determined using known range
energy relations from the energy loss of a-particles. (from both 2LH'Am
and ThC sources) which have traversed the target. The AE silicon

surface barrier detectors and E Lithium drifted silicon detectors had

the following thicknesses:

E(Li-Drifted

Energy AE (Surface Barrier) Silicon)
25.9 MeV 200u S5mm.

29.9 MeV 200u 3mm. + 5mm.
35.0 MeV 200u 3mm. + 5Smm.
40,1 MeV 200u S5mm. + Smm.
u5.4 MevV 200u » 5mm. + 5mm.
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A block diagram of the electronics is given in figure 4. All com-
ponents indicated were manufactured by Canberra Industries, with the
exception of the particle identifier (ORTEC, Model 423). This unit
operates according to the Goulding-Landis identification method {38}.

The energies lost in the E and AE detectors are related by:

= (& + ap)H 7 o gl

where T is the thickn:ss of the AE detector and a is a constant which
depends on the type of the incident particle but is approximately inde-
pendent of its energy. This formula is derived from the empirical
range-energy relationship R= aEl'73, and gives a quantity which is char-
acteristic of each type of particle. When the pulse from the E detector,
the pulse from the AE detector and the enable pulse arrive in coinci-
dence at the particle identifier, the unit produces two output pulses:
an E + AE pulse, proportional to the totai energy of the particle, and

a particle identifier output (P.I.0.) pulse, whose height depends on

the type of incident particle. The E + AE pulse was fed to a Nuclear
Data 160 dual analog to digital converter (. ADC. ). The P.I.0. pulse
was sent to a single channel analyser ( SCA- ) and then to the ADC gate.
The SCA window was set in such a way that only pulses corresponding to
protons could open the gate. The ADC was interfaced to a PDP-9 com-
puter, where the spectra were stored and recorded on DEC tape. A
correction factor for the dead time of the ADC was obtained from the

ratio of the counts recorded by the SCA scaler and the total number

of counts recorded by the computer. A typical example of the spectra




35.

COUNTS

CLiwp Proton Spectrum -

Ep= 25.9 MeV

ehjb = 19.8°

G.S.

X1/32 »

2.18

3.56

CHANNEL NUMBER

Fig. 5




36.

obtained is shown in figure 5.

2-2. Data Reduction and Errors (Elastic Scattering)

The differential cross-section for the scattering of protons

from a pure isotope of mass number A is given by (#*)

(16) ac _ . -4 AYtcosd
o - 2.660 x 10  x 0t A0 mb/sr. -,

where Y is the number of counts in the peak, ¢ is the target angle,

which is defined as the angle between the normal to the target and

the incident beam director, T is the dead-time correction factor,

Q is the charge collected (in nC), t is the target thickness in mg/cm2
and AQ is the solid angle. If the target contains an admixture of a
second isotope of mass number A' and is contaminated by impurities of

mass numbers Ai’ A. ....., the following corrections must be consider-

i+l
ed:

(i) In the numerator of (16) the atomic number A must be sub-

stituted with the guantity:

(17) A= =

where o is the ratio of the number of atoms of the species A to the

total number of atoms of the two species

"a
nA+nA i

o =

(ii) In the denominator of (16) the measured target thickness

+ must be substituted with an effective target thickness¢.

(*) Formulas (16), (17) and (18) are derived in appendix I
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where the "impurities target thickness" ti, ti+l"" can be calculated

from the known values of the cross-sections for scattering of protons
by the contaminating nuclei (see appendix I).

(iii) At those angles where a proton peak due to elastic or in-
elastic scattering by a nuclide Aj (one of the impurities) overlaps
with the peak corresponding to the scattering by the isotope A, the
contribution due to the former must be subtracted froﬁ-Y. This con-
tpibution can be calculated from (16) in terms of the differential
cross-section for scattering by Aj:

N S Bl
3 2.661x10~+ Aj tcosd 4Ry

Setting YO =Y - Yj and substituting (16) one obtains the following

expression for the corrected differential cross-section (%% )o

At
d j d
(dc) _do i o]

(19) Eﬁo“?ﬁ‘Ajt aa’s

A correction of this kind should also be applied to those spectra

where the elastic peak overlaps with peaks due to elastic and inelastic

scattering by the other isotope. If, however, the percentage of the
second isotope in the target is small, the corresponding inelastic
peaks may generally be neglected, and the correction given by (19) fbr
elastic scattering by the contaminating isotope approximately cancels
out with the correction (ii).

In practice the reduction of the data was performed according

to the following procedure. First the number of counts in the elastic
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peak was determined using an appropriate program run off-line on the
PDP-9. Generally the spectra did not show any appreciable background
in the region corresponding to the elastic peak. An exception was re-
presented by the small angle spectra for 45.4 MeV incident protons

in which case proper subtraction was made. As a first step in the
data reduction the uncorrected differential cross-sections were comput-
ed by means of formula (16). Next the target thicknesses of the impur-
ities were determined for each of the targets used. This was done by
choosing for each target a spectrum in which the peaks due to elastic
scattering from the contaminating nuclei were clearly resolved. These
peaks were then integrafed and the thicknesses were calculated from the
known values of the differential cross-sections for the contaminants.
The uncorrected differential cross-sections were multiplied by the
correction factor t/teff. The correction factor A/A was also applied
in all cases where the elastic peaks due to 6Li and to 7Li were resol-
ved. Finally, the results of kinematics calculations and energy cali-
bration were used to determine the position of the elastic and inelas-
tic peaks dﬁe to scattering by the impurities, and, whenever appli-
cable, the correction (19) was made. In several cases two or more
measurements of the differential cross-section were available for the
same scattering angle and incident energy. In particular, during the
measurement of the angular distribution at a given emergy it was prac-
tice to repeat the measurement for those scattering angles at which
the target angle setting was changed. A weighted average of the diff-

erent measurements was taken, according to the formula:
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n .
Y Ei/(ax,)2
i=1 - +
6 =

) y@xiﬁ
i=1 -

where X, (i=1,..n) are the different measurements and Axi the corres-
ponding statistical error. The error of the weighted mean was calcu-
lated using n

L (r- G/ (x,)?

i=1
Ax =

. Y n
(n-1) } 1/(ax.)?
i=1

In general the error was of the same order of magnitude as the
statistical errors. This indicated the consisten;y of the different
‘measurements.

The laboratory scattering angles could be measured with an
accuracy of %0.1°. 1In order to detect any systematic error in the
angle measurement, the cross-sections at forward angles were measured
both left and right of the incident beam. The observed asymmetry was
negligible in all but two cases, where a correction of 0.2% to the
measured laboratory scattering angles had to be introduced.

The relative errors in the differential cross-sections were de-
termined by taking into account:

(i) The statistical error

(ii) The error due to the uncertainty in the scattering angle

0

(iii) The error due to the uncertainty in the incident energy

(iv) The error in the dead time correction.
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The total relative error Ac/c (%) was obtained from the errors

corresponding to the different contributions Aci as

Ao _ /“7

o 2 (AEL
i o

The errors (ii) and (iii) were obtained from:

_ 30(6,Ep) . _00(6,E ) .
AO’Z = 30 AO and AO’3 = _S—E_PS—-P- AEP
with A6= 0.1° and AEP’= +0.2 MeV. The error in the dead time corr-

ection was taken equal fo 1/10 of the correction made.For 8<130° the
error due to the uncertainty in the energy gave the greatest contribu-
tion, while at extreme backward angles the statistical error was gen-
erally the most important.

The order of magnitude of the different contributions to the

relative error is given in the following table:

Error Typical values

(i) 0.1-0.2% (small angles), 2-3% (large angkles)

(ii) 0.5%(20°), 1%(60°), 0.1%(170°)

(iii) %(small angles), 3-4%(100°), 1.5% (large
angles)

(iv) at 25.9 MeV 2%(small angles), 0.3%(angles 590°)

at other energies 0.2-0.5%(small angles), €0.1%

(angles
>90°)

(*) Here and in the following we write %%-=
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In particular cases the following additional contributions to the
relative error were considered:
(v) The error in the correction made when the elastic
peak overlaps with a peak due to scattering from
the impurities in the target (eg. (19))
(vi) The error in the background subtraction.
The error (v) was taken equal to 1/3 of the correction made. The
error in the background subtraction was of the order of 1%.
The uncertainty in the normalization of the differential cross-
section was compounded from
(a) The uncertainty in the determination of the solid angle
(b) The uncertainty in the integration of the beam current
(c¢) The uncertainty in the target thickness
(d) The uncertainty in the determination of the incident energy.
The most important contribution to the total error in the normalization
was the uncertainty in the target thickness, which resulted not only
frém errors in the measuring process, but also from the non-uniformity
of the target and from the error in the correction. for contaminations.
The total error in the normalization was estimated to be of the order

of 10%.
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9.3 Data Reduction and Errors (inelastic scattering)

The differential cross-section for inelastic scattering can be

calculated from the formula:

Y.
do )y, = in dc)

(20) a9 ’in T 7. @
el

el

where Yin is the number of counts in the peak which corresponds to
scattering from the level considered, Yez is the number of counts
in the elastic peak of the same spectrum and dc/dﬂ)ez is the elastic
differential cross-section for the same energy and scattering angle.
The main problem in the reduction of the inelastic data was
the extra¢tion of peaks from the continuum resulting'from three-body
break-up reactions. In the case of the (2.184 MeV) first excited
state the background subtraction did not present serious difficulties
since only the low energy side of the inelastic peak is appreciably
affected by the background (see figure 5). Two methods for the back-
ground subtraction were used. In the first method, the PDP-S and
a CALCOMP plotter were used to obtain an enlarged graph of the peak
and the background subtraction was done graphically. The graphical
method was applied twice to a whole series of spectra, and the results
were found to be consistent within 1%. The second method consisted of
using a cémputer program to fit the experimental peak to a gaussian with
a fixed horizontal baseline. It was found that changing within reason-
able limits the input parameters of the fit (peak position, width and
baseline) the resulting values of the integrated peak varied by less
than 1%. It was also found that by applying the two methods to the

same spectrum one obtained results in agreement within 1%.
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Ha&ing determined the number of counts in the inelastic peaks,

the differential cross-sections were calculated from equation (20).
In the great majority of cases the values used for the elastic cross-
section had been previously derived from the same spectrum. Thus,
applying formula (20) was exactly equivalent to calculating the inelas-
tic cross-section by substituting Yin for Y in the general formula
(16) and making the appropriate corrections. The errors could there-
fore be calculated in the same way as for the elastic scattering
differential cross-section, assuming an error of 1% in the background
subtraction. In the cases corresponding to elab 2609, Ep=45.4 MeV,
however, the elastic cross-sections used had been extracted from diff-
event data than those used to determine Yin and Yez(*)' In these
cases, therefore, the guantities on the right hand side of (20) were
obtained from three independent measurements and gave independent con-
tributions to the total error.

| In the case of the 3.562 MeV level the extraction of the peak from
the background was quite a difficult‘problem. This is already apparent
from the spectrum of figure 5, and the situation is even worse at
larger angles, where the peak becomes barely visible. The problem was
solved in the following way. The PDP-9 and the CALCOMP plotter were
used to plot the part of interest of the spectrum. The energies corres-

ponding to the three-body break-up threshold, to the elastic peak and

(*) The reason was the following. In the original data, used to

calculate dc/dQ)ez, the resolution was not good enough to extract the
inelastic peaks. The experiment was therefore repeated. The second
time however, the counting rate was high, . resulting in a large dead-time.
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to the peaks of the first and second excited states were determined
from relativistic kinematics calculations. The spectrum was cali-
brated using the positions of the peaks corresponding to the ground
state and to the first excited state. Then a smooth curve was drawn
on the graph, starting from the threshold for the three—body break-up
and passing through the valleys on both sides of the peak. For each
one of the channels of interest, the number of counts above the curve
was determined from the graph, and the numbers so obtained were used
as input in a gaﬁssian fitting routine. This code was the same as
used in the reduc¢tion of the data for the first‘egcited state; however,
the béseline level was not kept fixed during the fitting procedure.

Care was taken in determining in each case the positions of the
peaks corresponding to excited states of carbon and oxygen. These
peaks were present in the spectrum because of impurities in the target.
When one such peak overlapped exactly with the peak corresponding to
the second excited state, the proper correction could be mdde by use
of formula (19). When, however, the overlap was partial, it was not
possible to obtain a correct‘background subtraction.

In three cases the entire background subtraction procedure was
applied twice, obtaining results which differed by 15 - 20%. A typical
error of 20% was therefore assumed for the differential--cross-sections

for scattering from the 3.562 MeV level.
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CHAPTER 3

3-1. Results and Discussion (elastic scattering).

The experimental result, for the elastic scattering differen-
tial cross-sections are given in the first five tables of appendix II
and in Fig. 6, where the size of the points corresponds to the typical
relative errors. The angular distributions show a uniform variation
with incident proton.energy. The diffraction like structure becomes
more pronounced as the energy of the protons increases, with minima in
the angular distributions shifting to smaller angles.

The potential used in the optical model analysis is of the stan-
dard form (eg. (7), chapter 1.), with pure surface absorption and a real
spin-orbit term. The data included in the analysis are the differential
cross-sections measured in the present experiment and the polarizations
obtained by Hwang et al. {40} at 38.7 MeV and by Mani et al. {41} at 49.5
MeV. The analysis was performed using the automatic search code SEEK
{42} in a modified version which allows one to vary the spin-orbit geo-
metrical parameters independently and which uses a surface absorbtive-po-
tential of the derivative Woods-Saxon form.

In the search for the best fit parameters the following procedure
was adopted. At first the geometrical spin-orbit parameters were kept

fixed at rs = 0.98 fm. and as = 0.20 fm.(w)

The analysis was carried
out searching for values of the remaining parameters which gave the best

fits to the differential cross-sections and, at the same time, reasonable

fits to the polarizations and reasonable values of the total reaction

(%) These values were taken from Ref. {36} and are the result of an
unpublished analysis of the 49.5 data by Mani.
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cross-sections. Since no experimental data were available for the

total reaction cross-sections, the theoretical results obtalned were
compared with values extrapolated from data for nearby nuclei. Next,
the spin-orbit parameters were varied so as to optimize the fits to the
polarization data. Finally, r and_aS were fixed to the optimum values
obtained and the search on the remaining parameters was repeated. It

is well known that an indeterﬁinacy exists for the parameters of the real
central part of the optical potential, so that equivalent fits can be
obtained with different values of the radius, provided that the depth of
the well is adjusted according to the rule Vr% = const., with n=2. 1In
order to facilitate the comparison of the potentials at the various
energies, the search was carried out with the radius parameter:of the
real central term fixed to a suitable common value.

The program SEEK pequines the polarizations to be fitted simul-
taneously to the differential cross-sections. A differential cross-
section angular distribution at 49.5 MeV has been obtained by Mani et al.
{81}. These data, however, were available only in graphical form and
there was a discrepancy between the normalization for these data and the
results of the present experiment. #) Since other measurements of the
differential cross-sections around 50 MeV were not available, the results

of Mani et al. were extracted from the graph and renormalized. A

relative error of 10% was arbitrarily assigned to these data.

(*) The normalization for the data of the present experiment at 40.1
MeV agrees within 10% with the results of Chen and Hintz at
39.7 MeV {u43}.
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A test done in the course of the analysis showed that, even at the

higher energies, the inclusion of a small volume absorption term does

not improve the’fits appreciably.

The best fits obtained for the differential cross-section an-
gular distributions are shown in Fig. 7, where the ratio of the diff-
erentiél scattering créss—section to the Rutheford cross-section is

plotted versus the center of mass scattering angle. The results of the

analysis of the 49.5 MeV data by Mani et al. are also included, even
though one can not expect a very good fit in this case. Because of

the large relative error assigned to these data, the differential cross-
sections had less weight than the polarizations in the fitting of the

49.5 MeV data.

The best fits for the polarization angular distributioms are
shown in Fig. 8.

In fhe energy range 25-45 MeV. the fits obtained for the differen-
tial cross-sections are supprisingly good. At 49.5 MeV the general

shape of the experimental angular distribution is well reproduced by the

optical model calculation, but, not surprisingly, the height of the for-

ward peak is slightly different in the theoretical and experimental

curves. The fit to the polarization angular distribution at 49.5 MeV

is quite good for angles up to 115° c.m. However, the negative values

of the polarization experimentally observed at the larger angles are not
reproduced. At 38.7 MeV a good fit has been obtained for the polariza-

tions over the range 23° to 85° c.m. covered by the experimental data. ?
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The optical model parameters which correspond to the best fits

are given in table 1. The quantities given are the dynamical and geo-

metrical parameters, the theoretical total reaction cross-section GEZ )
the ratio XZG/N of the x2 to the number of data points for the differen-
tial crossfsections, the corresponding quantity for the polarizations
sz/N" the typical relative error of the experimental differential

. b
cross—sections Ac and the typical absolute error of the experimental

polarizations Ap. The total peaction cross-sections obtained by extrapo-
lation from experimental data for nearby nuclei are in the range 30-45
fm2 at 25 and 30 MeV, 25-40 fm? at 35 MeV and 25-35 fm? at 40 and 45 MeV. %-
The values of 0;2 obtained at the first five energies are therefore quite |
peasonable. At 49.5 MeV an extrapolated experimental value of the total
veaction cross-section was not available, but 0;2 seems to be quite

low as compared to the value at 45.4 MeV. The parameters obtained are

in general quite acceptable. The value 0.2 fm for the spin-orbit diffuse-

ness is rather small, but this is consistent with what has been found for

other light nuclei.

The most notable feature of the results obtained is the irregular
variation with energy of the diffuseness of the real central potential,
of the strength and the radius parameterucof the imaginary potential and

of the strength of the spin-orbit potential. The energy dependence, how-

ever, is not erratic and the six sets of parameters can be quite naturally
divided into two groups, one corresponding to the energies of 25.9 and
29.9 MeV, the other corresponding to the energies greater than 30 MeV.

Within each group the strength of the real central potential decreases




TABLE 1 - BEST-FIT OPTICAL MODEL PARAMETERS

th

- . 2 . 2

Ep v WD VS rQ T T a aD a Ol X O/N Az %_P; Ap
(MeV) (MeV) (MeV) (MeV) (£m) (£fm) (£m) (fm)  (£fm) (fm)  (£m?) o P
25.9 59.15 10.14 12.15 (1.050) 1.334 (1.020) 0.288 0.568 (0.200) u3.y 0.667 3.5% ——m ——m
29,9 54.48 10.95 11.72 (1.050) 1.143 (1.020) 0.273 0.700 (0.200) u46.5 3.26 2.5% --- ---
35.0 34.71 2.93 3.37 (1.050) 1.8u8 (1.020) 0.670 0.695 (0.200) 37.9 4.06 2.5% --- ---
10.1$%) 31.76 2.2 2.74 (1.050) 1.934 (1.020) 0.727 0.678 (0.200) 32.4 6.9% 3.0% 9.12 £0.04
B5,.1 28.35 2.63 2.36 (1.050) 1.969 (1.020) 0.757 0.611 (0.200) 30.2 5.69 8.0% --- ---
49.5 26.82 1.69 1.88 (%.050) 1.841 (1.020) 0.825 0.630 (0.200) 18.6 2.63 10% 6.04 0.06

*CS

(*) Ep = 38.7 MeV for the polarization data.

Note: The parameters in parenthesis were kept fixed during the search.
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P

smoothly with increasing energy, while the other parameters vary only
slightly.

In order to further investigate the energy dependence of the
potential an analysis was attempted keeping the geometrical parameters
fixed to values independent of energy.

Three sets of averaged geometrical parameters were used. The
first was obtained by averaging over the optimum parameters correspond-
ing to all six energies and gave very poor fits in all cases. The
second was obtained averaging over the parameters corresponéing to the
best fits at 25.9 and 29.9 MeV. The fits obtained with this geometry
were good at the two lower energies but very poor at the energies above
30 MeV and the energy dependence of the dynamical parameters was irre-
gular. Finally, a third geometry was extracted from the parameters corr-
esponding to the second group of energies (ﬁ). The dynamical parameters

obtained with this geometry are shown in table 2, where the values of

Gth s Xz/ , and XZ/‘S are also given. On the basis of the values of
re r'N, p-Nﬁv.r e
Xé/N. and A the fit at 25.9 MeV can be considered quite acceptable.

o
The position of the maxima of the experimental angular distribution is

well reproduced by the calculations, which, however, give too small values

for the cross-sections in the range 90° to 140°c.m. An improvement is

apparent at 29.9 MeV and at 35.0 MeV the ggreement between the theoreti- .

cal and experimental differential cross-sections is good. At the higher

ofs

*) It was found that a slight improvement of the fits was obtained
by letting r_ assume a value larger than the average of the best
fit parameters for the energies of the second group.




TABLE 2 - OPTICAL MODEL PARAMETERS WITH FIXED GEOMETRY

r, = 1.050 fm r) = 1.923 fm. r_ = 1.020 fm
a = 0.745 fm as = 0.654 fm a_ = 0,200 fm
Ep v WD Vs OEE XZG/N Ac sz/Nn Ap
(MeV) (MeV)  (MeV) (MeV) (fm?) ° P
25.9 37.17 2.44  4.07 37.5 23.5 3.5% — -
29.9 35.25 2.30 3.08 83.7 28.9 2.5% - - .
35.0 34.32 2.42 3.03 32.8 24.6 2.5% — —- d
40.14") 32,08 2.54 2.92 32.2  8.94  3.0% 10.3  +0.04
5.4 30.13 3.11 2.53 35.8  8.07  3.0% — _—
49.5 25.33 1.49 1.48 18.6  3.48  10% 15.6  *0.06

(%) Ep=38.7 MeV for the polarization data.

g g e A g VD,
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energies the fits for the differential cross-sections are good and

those for the polarizations reasonable.

From the analysis with fixed geometry one can derive the follow-

ing averaged potential:

ro = 1.050 fm PD = 1.923 fm rS = 1.020 fm
a = 0.745 fm aD = 0.654 fm aS = 0.200 fm
V = 46.2 MeV—O.35Ep WD = 2.38 MeV VS = 2.85 MeV

It may be observed that the energy dependence of the real central potential
is in agreement with that found for medium weight nuclei.

In conelusion the analysis with fixed geometry gives acceptable
fits with reasonable values of the parameters over the whole energy range
considered. The quality of the fits at the lower energies can be dramati-
‘cally improved if one lets the parameters acquire values markedly different

from those at energies greater than 30 MeV. A possible explanation for

the anomalous energy behaviour may perhaps be found in the following argument.

(%)

As has been already mentioned , it is quite possible that the
elastic channel is strongly coupled to the inelastic channel corresponding
to scattering from the 2.184 MeV level. It is known (#%) that in the case
of strong coupling the parameters obtained from the simple optical model

may be different from those obtained from a generalized optical model and

that the difference increases with the decreasing energy. If the hypothesis

of strong coupling is correct and one assumes that a generalized optical model

(*) see chapter 1. section 4

(*%*) see Buck {30}.
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would give parameters which vary regularly with energy, then it is

quite possible that at energies above 30 MeV the simple optical model

gives parameters very close to those that would be obtained from the
generalized optical model, while at the lower energies the difference
due to the coupling becomes apparent. The irregular energy dependence
of the potential could also be explained by the effect of resonances in

the compound system 7Be, as in the case of p + !2C {2u4},and p + 169

{44-47} elastic scattering between 20 and 30 MeV.

While further studies are necessary to clarify this point,
the quality of the fits obtained indicates that the optical model
applies  to 6Li better perhaps than one would expect for such a light
nucleus.

3-2. Results and Discussion (inelastic scattering)

Tables of the differential cross-sections obtained for the scat-
tering from the first excited state (St, T=0, 2.184 MeV) are given in

appendix II. The angular distributions for the scattering from this

level are shown in Fig. 9. The dimensions of the error bars would be

comparable to the size of the experimental points. The curves show little
structure and the variation with energy is smooth.
Tabulated values for the scattering from the (0+, T=1, 3.562 MeV)

second excited state at 25.9 MeV incident energy are also given in appen-

dix II. In Fig. 10 the differential cross-sections obtained in the pre-
sent experiment are shown tqgether“with the experimental data of Austin

and Crawley {34}. As has been discussed in sections 1 - 4, an analysis
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of the data for inelastic scattering from the second excited state in
terms of a microscopic theory may yield information on the strength of
the spin-isospin dependent effective interaction. The curve shown in
Fig. 10 represents the results of the calculations done by Austin and
Crawley with a spin-isospin dependent potential of Yukawa shape. The
two sets of experimental results are consistent. The agreement between
theory and experiment is good only at forward angles, and is obtained
for a spin-isospin dependent interaction which has a strength of 12.7
MeV and a range of 1 fm.

The reduction of the data for the scattering from the second
excited state at 45.4 MeV is in progress. An analysis of these data will
give information on the energy dependence of the spin-isospin dependent
effective potential, which other investigations'{35,36} indicate to be

nearly constant over the energy range 30-50 MeV.
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APPENDIX I

Derivation of some Formulas Used in the Reduction of the Data

The differential cross-section for the scattering of an inci-
dent beam of particles by a single scattering center is a function

of the scattering angle 6 which is defined by:

(a) do _ n(8)

dQ Io ®

=}

where n(®) is the number of particles scattered per unit time in
the unit solid angle about 6 and Iy is the incident flux. If Y

is the number of protons scattered by n, target atoms in the solid
angle AQ during the time At, then

_ Y
(®) n(®) = T xant -

t
The incident flux of protons is related to total charge Q carried

by the beam in a time At by

_Q
eSAt

(C) IO =
where S is the area of target (¥) and e is the electronic charge.
If the target is made of a spearated isotope of mass number A,
the number of atoms in the target can be expressed as the product of

the Avogadro number N times the ratio of the mass of the target M

+o the mass of one male

(*) Here and in the following it is assumed that the entire surface
of the target is exposed to the beam. The derivations given, however,

maintain their validity - in the general case, provided that one refers

the quantities M, S and n, to the portion of the target crossed by the
beam.
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where M is in grams. By substituting (b), (c), and (d)into'(a) one
obtains

(e) _d.g. = gé_ _._-Y
dQ N QMAQ

S

The vatio M/S is the measured target thickness t. If one wants

. . 2 .
to express t in the usual units mg/cm and Q in nC, then

oA
N

= (2.66018 x 1073 A)ne x mg.

. 2
hence, converting from cm To mb:

do _ -4 AY
a0 2.66018 x 10 QtAQ

mb/sur.

(£)

which becomes identical to equation (16) of chapter 2 if one
introduces the dead time correction factor T. -
Suppose now that the target is not isotopically pure but con-

tains ny and n, atoms of the isotopes of atomic numbers Al and A2

i
1
i
¢
¢
i
i

respectively with

1
n, 0, =0 . o, = a.

n

Equation (d) still holds, but-A must now'be interpreted as the atomic

weight of the mixture of the two isotopes, that is, A grams is the
mass of N atoms of which aN have atomic number A, and (1-a)N have

atomic number A2:

(g) A= uAl + (l—u)A2




The differential cross-section for scattering by the isotope A,
is obtained substituting in (a) the expression (c) for Ig and for

n(0) an expression analagous to (b), but containing n, instead of

n_t:
do _ e X
(h) ae  n. QIAQ
13

From the definition of o and from (g) it follows

_ M
n, = on = el = TR
o

1 2

Inserting this expression for n, in (H) one obtains an expression

which differs from (e) only in the substitution of A with the quantity

A= 1o
Al * o A2
in agreement with equation (17) of Chapter 2.

Finally, consider a target containing n atoms of the isotope A,

and n, atoms of an impurity Ai' The correct differential cross-section

for scattering by the isotope A is given by:

ds Q%AQ

The measured target thickness, however, contains a contribution from

the impurity-Al:

nA + n.A.
= 1 1

NS

Solving for n/S and substitutimg in the previous equation one obtains

the differential cross-section for scattering from the isotope A in terms
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of the measured target thickness and of the number of atoms and

atomic number of the impurity:

® F=¥ A
Q(t-"i"i)AQ
NS
It is quite natural to call the quantity Eiﬁi the "target thickness
for the impurity" as in equation (18) of cgzpter 2. It should be
noted however, that the derivation does not depend on a model in which
the impurity atoms are localized in a layer of area S and thickness
t.
Considering the differential cross-section for scattering by

the impurity at an angle at which the corresponding peak is completely

resolved:

do A X

i TN QT80

n,A.
i'i

can be derived from a known value of*gg).
B 4’1

the value of ti =

and measured values of Yi’ Q, and:AQ.




B4.

APPENDIX II

TABLES OF DIFFERENTIAL CROSS-SECTIONS

h
i
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171.5

6Li(p,p) 6Li(g.s.) Ep 0.2 MeV
alab dc/dﬂ)lab ecm do/dQ)Cm 1. error
[degﬂ [mb./s.r.] EQeg] Enb./s.ru] [%]
19.8 368.0 23.2 273.3 2.4
24.8 284.5 28.9 2L3.5 1.7
29.8 187.1 34.7 142.2 2.1
34.8 119.0 40. 4 91.8 2.4
39.8 72.0 46.1 56.5 2.8
4.8 40.2 51.8 32.2 3.4
49.8 2L, 24 57.3 19.80 3.6
54.8 11.32 62.9 9.46 Ty
59.8 6.16 68.3 5.27 3.7
64.8 3.75 73.7 3.30 4.5
69.8 2.93 79.1 2.65 4.0
74.8 2.75 84.3 2.56 3.9
79.8 2.67 89.5 2.55 3.1
84.8 2.54 .6 2.50 3.6
89.8 2.1488 99.7 2.52 4.0
94.8 2.367 104.6 2.475 3.6
199.8 2.069 108.5 2.230 3.5
104.8 1.783 114.3 1.981 4.0
109.8 1.446 119.1 1.654 4.9
114.8 1.149 123.7 1.352 4.5
119.8 0.899 128.3 1.087 3.8
124.8 0.681 132.9 0.847 3.7
129.8 0.519 137.3 0.662 3.2
134.8 0.409 141.8 0.534 3.2
139.8 0.322 146.1 0.429 2.6
144.8 0.274 150.5 0.373 2.9
149.8 0.2u7 154.7 0.342 3.1
154.8 0.234 159.0 0.329 3.2
159.8 0.234 163.2 0.332 3.2
164.8 0.2u41 167.14 0.346 3.1
'169.8 0.2u47 0.358 3.0
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®1i(p,p) CLi(g.s.) Ep = 29.9 £ 0.2 MeV
elab -do/dmlab ®em _dO/dQ)cm rel.error
.[deg] [mb/s .r :] l:deg] ‘_mb/s .7 ] [%]
20.0 323.9 23.4 240.4

25.0 229.6 29.2 172.2

'30.0 150.4 34.3 114.3

35.0 S0.4 40.7 69.8

40.0 50.42 46.3 39.57 1.9
45.0 26.64 52.0 21.31 .
50.0 13.42 57.6 10.97 2.2
55,0 . 6.88 63.1 5.75 2.2
60.0 3.708 68.5 3.177 2.4
65.0 2.510 73.9 2.206 2.2
70.0 2.027 79.3 1.831 2.5
75.0 1.825 84.5 1.696 2.5
80.0 1.699 89.7 1.625 2.3
85.0 1.554 94.8 1.532 2.9
90.0 1.453 99.9 1.475 2.5
85.0 1.257 104.8 1.316 3.0
100.0 1.027 109.7 1.109 3.7
105.0 0.836 114.5 0.930 3.5
110.0 0.664 119.3 0.761 3.6
115.0 0.512 123.9 0.604 3.8
120.0 0.402 128.5 0.488 3.5
125.0 0.3140 133.1 0.391 2.8
130.0 0.2567 137.5 0.3276 2.2
135.0 0.2038 141.9 0.2662 2.8
140.0 0.1733 146.3 0.2313 2.2
145.0 0.1576 150.6 0.2145 2.4
150.0 0.1376 154.8 0.1904 2.7
155.0 0.1304 1539.1 0.1832 2.0
160.0 0.132%1 163.3 0.1879 1.9
165.0 0.1281 167.5 0.1839 2.1
170.0 0.1589 171.7 0.2298

2.0
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6Li(p,p) 6Li(g.s.) + 0.2 MeV
elab dc/dﬂ)lab ecm do/dQ)cm rel. error
[deg] [mb/s.r N [d‘eg] [mb/s.r -] %]
20.0 272.1 23.4 201.7 .8
25.0 193.0 29.2 144.6 U
30.0 118.7 35.0 90.1
35.0 67.2 40.7 51.8 .
40.0 35.49 46.4 27.83 2.3
45.0 17.07 52.0 13.65 2.9
50.0 8.01 57.6 6.5 2.9
55.0 3.93 63.1 3.28 3.6
60.0 2.368 68.6 2.028 2.4
65.0 1.684 74.0 1.480
70.0 1.428 79.3 1.290 1.9
75.0 1.273 84.6 1.183
80.0 1.076 89.8 1.029 !
85,0 0.910 94. 9 0.897 2.8
80.0 0.781 199.9 0.794 2.9
95.0 0.622 104.9 0.651
100.0 0.456 109.7 0.493 3.1
105.0 0.344 114.5 0.383 .
110.0 0.2607 119.3 0.2988 3.2
115.0 0.2078 123.9 0.2452 3.0
120.0 0.1698 128.5 0.2060 2.6
125.0 0.1456 133.1 0.1814 2.4
130.0 0.1299 137.5 0.1659 2.2
135.0 0.1122 142.0 0.1467
140.0 0.1055 146.3 0.1410
1uh.1 0.0995 149.9 0.1350 .
150.0 0.0890 154.9 0.1234
155.0 0.0813 159.2 0.1143 .
160.0 0.0770 163.4 - 0.1096
165.0 0.0692 167.5 0.0995
170.0 0.0673 171.7 0.0974




68 .

6Li(p,p) 6Li(g.s.) Ep = 40.1 * 0.2 MeV
®1ab do/dQ)lab % m dc/dQ)Cm rel.error
Eieg] Eﬁb/s.r.] [deg] Eﬁb/s.r.] (%]
20.0 243.8 23.4 180.5 1.6
25.0 158.4 29.2 118.5

30.0 90.0 35.0 68.2 2.2
35.0 48.4 40.7 37.24- 2.6
v40.0 22.63 ue. k4 17.73 2.7
45.0 10.20- 52.0 8.14 4.6
50.0 L.77 57.6 3.89 3.3
55.0 2.307 63.2 1.926 3.6
60.0 1.541 68.6 1.318 2.5
65.0 1.224 ~74.0 1.075 2.2
70.0 1.036 79.4 0.935 .
75.0 0.895 84.6 0.831

80.0 0.724 89.8 0.693 1.7
85.0 0.555 94.9 0.547

90.0 0. 414 99.9 0.420

95.0 0.294 104.9 0.308 LU
100.0 0.2016 109.8 0.2178 3.4
105.0 0.1449 114.6 0.1613 3.6
110.0 ©0.1082 119.3 0.1241 3.3
115.0 0.0925 124.0 0.1092 3.3
120.0 0.0831 128.6 0.1009 2.9
125.0 0.0771 133.1 0.0962 2.9
130.0 0.0743 137.6 0.0950 2.8
135.0 0.0697 142.0 0.0912. 3.3
140.0 0.0680 146.3 0.0910 3.2
145.0 0.0655 150.7 0.0893 2.9
150.0 0.0594 154.9 0.0824 .1
155.0 0.0512 158.2 0.0721 3.1
160.0 0.0468 163.4 0.0667
165.0 0.0408 167.5 0.0588 3.5
170.0 0.0353 171.7 0.0512 4.0




69 .

6Li(p,p) 6Li(g.s.) Ep = 45.4 + 0.2 MeV
elab dc/dQ)lab ecm 'do/dQ)Cm rel.érror
[deg] [mb/s.r.} [deg] [mb/s.r.:l [%]
18.8 176.3 23.2 130.3 3.4
2L.8 107.1 29.0 80.0 3.9
29.8 62.3 34.8 47.1 2.8
34.8 31.03 40.5 23.85 3.2
39.8 13.50 46.2 10.55

4,8 5.59 51.8 .46 I 4
49.8 2.411 57.4 1.964

54.8 1.135 63.0 | 0.946 4.5
59.8 0.887 68.L 0.758 2.5
6L.8 0.762 73.8 0.669 2.3
69.8 0.675 79.2 0.609 2.3
74.8 0.551 - 8l L 0.511 2.5
79.8 0.414 89.6 0.396 3.1
8lL. 8 0.2952 9u.7 0.2907

89.8 0.2010 99.8 0.2040

94.8 0.1855 104.7 0.1418

99.8 0.0936 109.6 0.1011
109.8 0.0439 119.2 0.0503 4.6
114.8 0.0417 123.8 0.0492 3.5
119.8 0.0437 128.4 0.0530 2.5
124.8 0.0u66 138.0 0.0581 2.7
129.8 0.0461 137.4 0.0590 3.0
134.8 0.0L5U 141.8 0.0594
139.8 0.0419 146.2 0.0560 3.1
144.8 0.0378 150.5 0.0516 3.2
149.8 0.0347 154.8 0.0u482 3.4
154.8 0.0299 159.0 0.0421 3.6
159.8 0.0278 163.2 0.0396 3.6 »

164.8 0.0278 167.4 0.0401 3.6




Ts
«®

6Li(p,pi)6Li (2.184 MeV level)

70.

Ep = 25.9 £ 0.2 MeV
elab do/dQ)lab ecm do/dQ)Cm rel.error
[deg] ]:mb Js.r.] I:d‘eg] [mb./s.r . [%]
19.8 6.76 23.3 4.95 2.5
24.8 9.13 29.1 ' 6.76 1.9
29.8 10.32 34.9 7.74 1.
3L.8 10.95 40.7 8.35 1.9
39.8 10.91 46. 4 8.46 1.7
44.8 9.70 52.1 7.68
49.8 8.59 57.7 6.95 3.1
54,8 7.17 63.3 5. 94 3.0
59.8 5.82 68.7 4.95 2.8
64.8 4.30 74.2 3.75 .0
69.8 3.51 79.5 3.154 3.1
74.8 2.846 8k4.8 2.634 3.3
79.8 2.195 90.0 2.094 3.2
84.8 1.815 95.1 1.786 3.4
89.8 1.644 100.1 1.670 4.6
94.8 1.523 105.1 1.597 3.0
99.8 1.290 110.0 1.397 3.0

104.8 1.228 114.8 1.373 2.8

109.8 1.093 119.5 1.260 2.7

114.8 1.044 124.2 1.240 2.5

119.8 1.017 128.8 1.245 2.2

124.8 0.973 133.3 1.224 2.1

129.8 0.907 137.7 1.172 2.1

134.8 0.879 142.1 1.164 2.0

139.8 0.847 146. 4 1.148 2.0

144.8 0.788 150.7 1.089 1.9

149.8 0. 744 155.0 1.0i8 1.9

154.8 0.724 159.2 1.035 1.9

159.8 0.699" 163.3 S 1.012 1.9

164.8 0.665 167.5 0.973: 2.0

169.8 0.676 171.6 0.998 1.9




6Li(p,p') 6Li §(2.184 MeV level)

Ep = 0.2 MeV
®.ab dc/dQ)lab ® dq/dQ)Cm rel.error
[deg] [mb./s.r -] I:deg:[ I:mb Js.r.] [%]
20.0 5.97 23.5 4.37 3.0
25.0 7.67 29.4 5.69 2.6
30.0 8.81 35.1 6.62 2.5
35.0 9.26 40.9 7.06 .2
40.0 8. 64 46.6 6.71
45.0 7.92 52.3 6.28 2.1
50.0 6.30 57.9 5.10 2.
55.0 5.30 63.4 4.40 2.5
60.0 3.99 68.9 3.398 2.6
65.0 3.002 74.3 2.626 2.9
70.0 2.237 79.7 2.013 3.0
75.0 1.753 85.0 1.625 2.6
80.0 1.292 90.2 1.234 2.7
85.0 1.128 95.3 1.112 2.8
90.0 1.074 100.3 1.092 .9
95.0 0.919 105.3 0.965

100.0 0.863 110.1 0.936
105.0 0.840 114.9 0.939
110.0 0.779 119.7 0.898 .
115.0 0.738 124.3 0.878 1.
120.0 0.725 128.9 0.887
125.0 0.674 133.4 0.848 1.
130.0 0.663 137.9 0.856
135.0 0.627 142.2 0.830
140.0 0.574 146.6 0.778 1.
145.0 0.526- 150.9 0.727
150.0 0.4992 155.1 0.702
155.0 0.4646 159.3 0.664 .
160.0 0.4349 163.5 0.629 )
165.0 0.40u40 167.6 0.591
170.0 0.3905 171.8 0.575




72.

OLi(p,p') CLi T(2.184 MeV level) Ep = 35.0 # 0.2 MeV
8 1ab do/ dﬂ)la 8 om do/dﬂ)cm rel.error
[deg:l [:mb./s.r.:l [deg] [mb./s.r.] l:%]
20.0 6.09 23.5 L4.468 2.0
25.0 7.90 29.3 5.86 2.1
30.0 8.49 35.1 6.38 1.7
35.0 8.37 L0.9 6.39

40.0 7.56 46.6 5.883 ¢S
45.0 6.16 52.3 4.888 .
50.0 4.977 57.9 4.036

55.0 3.657 63.4 3.037 .
60.0 2.703 68.9 2.302

65.0 2.017 74.3 1.765 2.4
70.0 1.431 79.7 1.288 2.6
75.0 1.105 84,9 1.024

80.0 0.849 90.1 0.811 3.1
85.0 0.669 95.2 0.659

90.0 0.647 100.3 0.658 2.8
85.0 0.642 105.2 0.674 2.6
160..0 0.576 110.1 0.624 3.1
105.0 0.546 114.9 0.610 2.2
110.0 0.504 119.6 0.581 4.2
1l15.0 0.492 124.3 0.584 4.0
120.0 0.470 128.9 0.575 .
125.0 0.4564 133.4 0.5738 1.5
130..0 0.433 137.8 0.558

13540 0.3889 142.2 0.5142 1.6
140-.0 0.3691 146.6 0.4991-

lag. 1 0.3510 156.1' 0.4827 1.6
150.0 0.3240 155.1 0.4551 .
155.0 0.3007 159.3 0.4290

160.0 0.2835 163.5 0.4096

165.0 0.285 167.6 0.416 .
176.0 0.2771 171.8 0.407 3.0




73.

8Lip,p') OLi “(2.184 MeV level) Ep = 40.1 % 0.2 MeV
6.1 a0/af 6 do/de) rel.
[deg] [mb./s .‘r;'.] [deg] [mb./s.r.] [%]
20.0 6.27 23.5 4.60 .5
25.0 8.13 29.3 6.03 .9
30.0 8.60 35.1 6.47
35.0 7.1 140.9 5.69
40.0 6.23 46.6 4.85
45.0 5.162 52.3 4. 096
50.0 3.843 57.9 3.117
55.0 2.651 - 63.4 2.202 .
60.0 1.885 68.9 1.606 2.9
65.0 1.360 74.3 1.190 2.9
70.0 0.969 79.7 0.873
75.0 0.718 84.9 0.666 3.1
80.0 0.567 90.1 0.542 .
85.0 0.492 95.2 0.485 2.9
90.0 0.438 100.3 0.4145 2.8
95.0 0.411 105.2 0.432 2.5
100.0 0.3602 110.1 0.3903 2.2
105.0 0.3392 114.9 0.3792 2.2
110.0 0.3254 119.6 0.3751 2.1
115.0 0.319 124.3 0.379 3.
120.0 0.2986 128.9 0.3651 2.0
125.0 0.26u2 133.4 0.3321 2.0
130.0 0.2578 137.8 0.3326 2.0
135.0 0.2502 142.2 0.3307
140.0 0.2488 146.6 0.3363
145.0 0.2233 150.8 0.3079
150.0 0.2278 155.1 0.3198
155.0 0.2236 - 159.3 0.3188 .
160.0 0.2224 163.5 0.3211 2.0
165.0 0.2114 167.6 0.308Y4 2.0
170.0 0.2171 171.8 0.3190 2.0




8Li(p,pt) OLi "(2.18% MeV level) Ep = 45.4 ¥ 0.2 Mev
CE do/dQ) om do/dQ)Cm rel. error
[deg] [mb /s.r.] [deg:l |:mb ./s.r ] [%]
20.0 5.70 23.5 4.18

25.0 7.79 29.3 5.78 .1
30.0 8.46 35.1 6.36

40.0 5.88 6.6 L,57

50.0 2.778 57.9 2.253 n.,1
60.0 1.542 68.9 1.314

64.8 0.798 74.1 0.697 2.4
69.8 0.585 79.4 0.526 .
74.8 0.440 8k, 7 0.408

79.8 0.3509 89.9 0.3349 2.4
8l.8 0.316L 95.0 0.3116

89.8 0.2651 100.1 0.2693 .
94. 8 0.2L404 105.0 0.2521

99.8 0.2274 109.9 0.2461 1.8
109.8 0.1622 118.4 0.1867 .8
114.8 0.1568 124.1 0.1861
119.8 0.1630 128.7 0.1991
129.8 0.1584 137.6 0.2041 .
134.8 0.1511 142.0 0.1995
139.8 0.1482 1u46.4 0.2001 2.0
144.8 0.1499 150.7 0.2066 2.0
149.8 0.1503 154.9 0.2108 2.0
159.8 0.1521 163.3 0.2194 2.0
164.8 0.1618 167.5 0.2358 1.9




®Li(p,p') PLi ~(3.562 MeV level)

do/dQ)
Enb./s.r.]

75,

0
cm
[deg]

0.2 MeV

do/dQ)
cm
[@b./s.r.]

1.06

0.63

0.479

0.403

0.401

0.317

0.271

0.186

0.131

0.065

0.434

0.0387

23.4

29.3

35.1

40.9

46.7

52.4

58.0

63.6

74.5

79.9

85.2

95.5

.76

LU65

.356

. 304

.308

. 249

.218

.154

114

0.059

0.0401

0.0381

typical
relative .
error =20%
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