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ABSTRACT

The binary interlacement array representation of woven textile
structures is examined algebraically and computationally, and a particular
class of interlacement arrays, namely those which are isonemal, is
described in detail. The sub-classes of isonemal structures, such as the
twills, are enumerated, both by counting arguments and by a computer
sieve. Algorithms which permit various types of analysis and
factorization of weave patterns into their corresponding loom set-up
components are also presented and discussed in terms of their relative
efficiency. The necessary features of an interactive computer graphical
system for the development and rapid display of woven textile design data

are examined and an implementation of such a system described.
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1.1 HISTORICAL CONTEXT

Wwoven textiles hold an extremely important position in the human
environment. Weaving is known to have been practiced at least as far back
as 4400 B.C. [11, p. 41] and historical literary references to weaving and
woven cloth are virtually limitless [28], [66), [67]. Today, woven fabrics
appear in an almost infinite number of end uses, including obvious
artifacts, such as clothing and household furnishings, as well as less
obvious applications, such as vascular prostheses [47] and aircraft bodies
[S6].

It is not therefore surprising that there are a great many papers
which have considered the subject of weaving, many of them attempting,
with varying degrees of success, to document the significant structural
characteristics of particular types of woven fabrics and to provide &

description of how these fabrics can be reproduced.

A very interesting and valuable weaving resource consists of the
published notebooks of the early professional weavers [46], [26] [21]
These manuscripts offer a fascinating historical insight into the types of
weaving patterns which were popular during the eighteenth century, as
well as the relatively high degree of technical complexity which was
exhibited by these designs. The pattern structures also, in some cases,

suggest the contemporary use of novel Joom attachments and



configurations, which are of great interest in their own right [SS1 in
addition, the variety and complexity of the patterns found in these books
is at a level which renders them exceilent sources of design inspiration

for modern textile designers.

The original purpose of these notebooks was primarily as a personal
documentation of the weaver's work and design ideas and as such, the
pattern investigation was undertaken in a pragmatic fashion rather than
for reasons of curiosity. There is no strong indication of an organized and
coherent examination of weave structures or visuél images, other than
some attempts to create alternative designs by changing the tie-up
matrices for the same standard threading. There is also a great deal of
overlap‘ between the patterns and structures found in many of these
manuscripts due no doubt, largely to the strong infiuence of fashion in the

demand for woven textiles [27].

There is some classification of weave structures present in the
nineteenth century weaving literature, as for example Murphy's description
and illustration of “leafed fancy tweels" [S8, p. 30]; however, the emphasis
at this time was directed more toward documentation and discussion of
weaving machinery and engineering solutions to the problems of producing
complex woven patterns. A typical exampie is the book written by T.F.

Bell, who is said to have been a



“NATIONAL SCHOLAR IN DESIGN (1875-8) AND
THIRD GRADE CERTIFICATED ART MASTER, SCIENCE
AND ART DEPARTMENT, S.K.: MEDALLIST N HONOURS
AND  CERTIFICATED  TEACHER IN  'LINEN
MANUFACTURING', AND IN ‘WEAVING AND PATTERN
DESIGNING’, CITY AND GUILDS OF LONDON
INSTITUTE" [4].

This work comprised a comprehensive treatment of both the
aesthetic and practical considerations of woven textile design as related
specifically to Jacquard types of looms and included extensive sections

devoted to a description of the actual loom mechanics.

The attitude of many of the writers of the time is summarized by
Barlow [3] thus:

[weaving] calls forth a greater number of
mechanical appliances and ingenious contrivances
than any other Art, and is on that account alone
always a source of interest to the Engineer and the

. Mechanician, as well as to the Manufacturer and
the Weaver.

Formerly the Art depended aimost entirely
upon the handicraft skill of the weaver, and his
contrivances were limited in their combinations to
produce designs of any considerable extent. . . .
But, by the introduction of the Jacquard Machine
and the Power Loom during the present century,
the whole system of weaving, with some few
exceptions, has been changed, and practically
become a New Art.



This interest in weaving machinery continued into the early
twentieth century, with books such as Bradbury's Jacquard Mechanism and
Harness Mounting [6] and Hooper’s Hand-Loom Weaving. Plain & Ornamental

[29] providing detailed descriptions of draw looms, jacquard heads, and

other related devices.

However, a major focus of much of the twentieth century weaving
literature has been the classification and analysis of weaves and woven
textiles and the generation of catalogues of structures and artifacts.

There have been a number of different approaches to this type of work.

 The first approach has involved an exhaustive study of particular
woven artifacts of a specific collection or geographic area. Coverlets
have been examined extensively in this manner and an outstanding example

of this type of study is found in the book Keep Me Warm One Night by

Harold and Dorothy Burnham {8]. In this book, a representative sampie of
the coverlet holdings of the Royal Ontario Museum have been described,
both as to their appearance and manufacture and as to their origins, and
have been analyzed to determine their weave structures. The organization
of the coverlets within the book is based on a division into the commonly
observed weave classes such as overshot and double weave (for which

rigorous definitions have been developed [2]).



Another important source is the book devoted to coverlets produced
by weavers in the State of Indiana in the nineteenth century {571 In this
book, discussion is focused primarily on the individual weavers, with
extant samples of these people’s work being described in detail. The
majority of the artifacts described are jacquard woven coverlets, but this
is due to the fact that only the work of professional weavers was

documented.

A third and more recent study of this nature is the Tennessee
Textile History Project (1978-1983), which is extremely well documented

in the book Of Coverlets [72] This work is primarily a record of the

coverlet weaving heritage of Tennessee and focuses on actual artifacts
known to be from the area. The historical information about these
coverlets is very detailed, as are the descriptions of their physical
characteristics. Common use weave structure categories are indicated
and there is some classification based on the appearance of recognizable

motifs.

These types of studies are historical in nature, concentrating on
specific woven textiles, and the information that they contain is of
considerable social and cultural interest. They also serve as a valuable
reference for weave structures and design motifs suited to coverlet

weaving. Although some classification of the fabrics naturally appears in



this type of work, this is really of secondary, rather than primary concern.

There is a considerable body of literature which has been devoted to
the development of an organized and rational method of classifying weave
structures into weli-defined categories. This task of classification has

been approached in a number of different ways.

irene Emery, in The Primary Structure of Fabrics [14], developed a

system for the classification of some of the simple fabric structures and
aiso discussed some of the problems inherent in any classification system.

it was her position that [14, p. xi]

While there are many possible bases for
classification, it is the structural make-up of the
fabrics and their component parts that provides
data integral to virtually all fabric studies,
regardiess of the nature or origin of the fabrics,
the special interest of the investigator, or the
special purpose of the study. Structure is never
absent; it is, with negligible exceptions,
determinable; it can be objectively observed; and
it is varied enough for significant grouping and
sub-grouping.  Aithough the details of structure
(and element make-up) do not in themselves give a
complete picture of a fabric, they provide a sound
factual basis for more comprehensive description
and, being determinable data, for comparative
studies and for classification.

She also felt that “words aione . . .. almost inevitably prove inadequate”



[14, p. xi] in gaining an un'derstanding of the basic principles governing

fabric construction and the variety of fabric structures.

Based on these premises, lrene Emery compiled a primary reference
source in the area of woven textile structures. As previously stated she
did however restrict the scope of her work to very simple structures.

Also, although The Primary Structure of Fabrics classifies fabric

structures in more rigorously defined categories than previous systems,
the categories are still partially descriptive, with inherent ambiguities
(eg. broken twill {14, p.129]).

Other attempts at fabric classification of which Warp and Weft: A

Textile Terminology by Dorothy K. Burnham [7] and Encyclopedia of

Hand-Weaving by Stanislaw Zielinski [75] are representative, have defined

their categories with respect to common use definitions and terminology.
This system has the major disadvantage of being heavily culturally
dependant and ambiguous. D.K. Burnham made an attempt, in her book, to
indicate the foreign language equivalents of the name of a particular
structure but her categories are broad and sometimes overlap. Also,
because of the common use nature of the classification scheme, there is
no single basis for distinguishing between fabrics, such as structure in
the case of Emery’s work. Rather, the fabric types are sometimes defined
in terms of their structure [example - satin, 7, p.113], sometimes in terms

of their composite materials [exampie - drugget, 7, p.51}, and sometimes



in terms of the motifs or patterns which they generally exhibit [example -
Star and Diamond, 7, p.135] Thus, although these types of studies
consider a wider range of fabrics and structures than previously, the
categories into which fabrics are classified become more ambiguous and

less rigorously defined.

The books written for industrial use, such as Woven Cloth
Construction by AT.C. Robinson and R. Marks [65], and ZJ. Grosicki's

revised version of Watson's Advanced Textile Design: Compound Woven

Structures [22] and Watson's Textile Design and Colour: Elementary Weaves

and Figured Fabrics [23], offer a third system of classification. The major
feature of this system is the determination of classes of weaves based on
how they are constructed. Thus, in addition to structures such as twill
and satin, there are categories of fabrics involving “figuring with extra
threads”, multi-layer fabrics (sub-divided according to how the layers are
held together) and “colour and weave effects” ([22], [23], Tables of
Contents). The scheme used by these industrial writers is actually a
composite of the structural and traditional approaches, modified by
functional considerations. Fabrics with “colour and weave effects” are
classified by the motifs which they exhibit but only in so far as the motifs
are produced by a specialized arrangement of coloured warp and weft
yarns. Similarly, multi-layer fabrics are classified by their distinctive
structure but the major focus is on the warp and weft configurations

which produce these fabrics.



A fourth system of classification of fabric structures is outiined in

a paper by HJ. Woods, The Geometrical Basis of Pattern Design [73] As

the title suggests, this system is concerned with classification by pattern
and motif and utilizes a sophisticated application of the rules of
symmetry to do this. Since ail patterns can be classified according to
their symmetry groups, this provides a very powerful scheme. [t does not
however address itself to the special characteristics of woven structures
and cannot be used in its present form as the sole means of categorizing

woven fabrics.

More recently, an investigation into the nature of the interlacement
- structure of woven textiles has been undertaken by geometers [24} [63],
with the result that an additional system for the description and
classification of woven fabrics has been proposed. The great benefit of
this approach is that it has applied the inherent rigor and formalism of

mathematics to the task at hand.

10



1.2 OBJECTIV

The objective of this study was to apply the concepts and
techniques of mathematics and computing to an examination of the
characteristic interlacement structure of woven textiles, in order to
obtain a precise description, ciassification, enurneration and analysis of
these structures. This investigation was focused on five principal areas,

as outlined in Section [1.3}.
1.3 CHAPTER OUTLINE

In Chapter Two, Grinbaum and Shephard's work on the
mathematical definition of some of the common weave structures [24] and
the work of Hoskins and Street on the enumeration of the simple twills
[44] has been examined and extended. The enumeration and corresponding
theoretical development of twills with a bounded float length, balanced
twills with a bounded float length, and the non-twill elementary isonemal
structures is original to this study and has been published in {41}, [40] and
{37], respectively. The members of the remaining class of isonemal
structures, the compound twillins defined by Hoskins and Thomas {45],
have also been enumerated by the author and the results published in [43)
and {42).

Chapter Three is concerned with algorithms for the structural

11



analysis of woven fabrics. The process of deriving the interiacement
array corresponding to a given set of threading, tie-up and shed sequence
matrices is considered, as well as the inverse process of factoring a given
interlacement array into its composite threading, tie-up and shed
sequences. Several new factorization algorithms have been developed and
implemented, and their performance compared with that of classical
methods. One of these algorithms, the one based on a bucket sort
technique, has appeared in [36] but the Minimal Bucket Sort Algorithm and
the algorithm for factoring coloured interlacement arrays have not been
published previously. The problem of factoring an ihteriacement array so
as to have a threading matrix for multiple threading and of defining the
permutation of a threading matrix so as to cause it to conform to some

previous specification are also considered in this chapter.

Chapter Four examines the unique characteristics of multi-layered
fabrics. The existing classification schemes for these structures are
examined [22] [S9], as are the extant algorithms for determining the
reducibility [32] of binary interlacement arrays {10}, [59], [15]. A new
algorithm for determining reducibility, which is based on a systematic
permutation of the rows and columns of the interlacement matrix, is

introduced at this time.

Also examined in Chapter Four is the question of how to illustrate

multi-layered fabric interlacement data so as to accurately and

12



"meaningfully represent the nature of these structures. Cross-sectional
diagrams are one form of representation which has been frequently used in
discussing multiple layered weave structures (eg. {22, p.105]), [15, p. 128],
[68, p. 100)), but there has been no attention paid to the development of an
organized method of creating such illustrations. A technique for the
automatic generation of cross-sectional representations of two, three and
four layer fabrics, directly from the binary interlacement data, has been
developed by the author and has appeared in [30], [33). This process is

described in this chapter.

Chapter Five further examines the procedure for representing
woven fabrics. In this instance, the problems inherent in creating a
graphics image which clearily illustrates the surface appearance of a
woven fabric are considered. A system is described which has been
developed and implemented for the automatic generation of such diagrams
from a given interiacement array. Also discussed is an extension of this
system to permit the representation of _leno, cross woven and braided
structures; This latter implementation is further discussed in terms of
the graphics editor which is required for the entry and editing of the

corresponding design data.
Chapter Six is concerned with the discussion and development of

the principles of an interactive user-computer interface suitable for a

designer involved with the design and production of textile samples. The

13



particular system described has been designated PATTERN MASTER 1V, and
the architecture and internal algorithms have been published in [34], [39],
{381 The particular implementation discussed in this chapter is
implemented on an APPLE I1+ microcomputer and is designed to operate in

conjunction with the Ahrens and Violette computer controlied dobby loom.

14
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2.1 INTRODUCTION
For clarity in the ensuing discussion, Figure [2.1.1} illustrates the

salient parts of a simplified loom and shows the relationship between its

moving parts and the resultant fabric.

The weave structure classification scheme developed by Grinbaum
and Shephard and based on "elementary geometry, group theory, number
theory and combinatorics” [24] has been further examined and extended to
include other isonemal structures. By making use of the results from [44]
and [45], all of the members of the classes of isonemal fabrics have been

enumerated. A discussion of this investigation follows.

it is necessary first to introduce the following definitions to

simplify the ensuing discussion [24], [44].

~ Definition 2.1.2. A binary sequence S = {s;} of period n is a sequence of

zeros and ones such that

Sk =Sj,  k=i(modn).

Two binary sequences of period n are considered eguivalent if and
only if one can be transformed into the other by a cyclic shift, reversal,
complementation, or any finite sequence of these operations. Cyclic shift

and reversal correspond to the action of the dihedral group of order 2n on

16
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the sequence, while complementation corresponds to the action of the

symmetric group of order 2.

Example 2.1.3. When n = 4, the induced equivalence classes of the 16

possible binary sequences are given by the following:

{0000, 1t111)
(1010,0101)
(1100,0110,100,0011)
{0001 ,0010, 0100, 1000, 1110, 1101, 1011, 0111]

Definition 2.1.4 An interlacement sequence Q of period n is a sequence

of over and under crossings of orthogonal strands, and each interlacement
sequence can be associated with an equivalence class of binary sequences

of the same period.

Definition 2.1.5. A warp (weft) - mononemal design is one in which, for a

given interlacement sequence Q, the columns {rows) are all equivalent to
Q.

Definition 2.1.6. A mononemal design is one with a column interiacement

sequence Q and row interlacement sequence R such that Q is equivalent to
R. Implicit in this definition is that a mononemal design must be both

warp and weft mononemal.

16



Definition 2.1.7. An elementary warp (weft) - isonemal design is warp

(weft) mononemal and the operation that is applied to each column (row)
to obtain the next one must be such that each column (row) maintains a
constant relationship with its neighbours. In addition, the same operation
must be applied to each column (row) to obtain the next one. This implies
that the symmetry group is cyclic and that the transformation from one

row (column) to the next is always the same.

Definition 2.1.8. An elementary isonemal g_iesign is mononemal,

elementary warp isonemal, and elementary weft isonemal. Also the
relationship between each column and its neighbours must be equivalent to
the relationship between each row and its neighbours, that is, the
symmetry group of such a design contains both the cyclic group of order n,
taking one column to the next, and the group of order 2, taking columns
into rows and vice versa. (For the purposes of enumeration, the warp and
weft are assumed to be equivalent. In addition, the fabric is considered to

be infinite, with no boundary conditions applying.)

Definition 2.1.9. Two woven fabrics are regarded as design equivalent if

one can be transformed into the other by: turning the fabric over; shifting
some warp (weft) threads from one side to the other (preserving their
cyclic order and interlacements); taking a mirror image of the fabric

parallel to either warp or weft directions; interchanging warp and weft;

19



any finite combination of these operations.

Definition 2.1.10. [42] A sequence for which reversal has the same effect

as cyclic shift is said to be a palindrome. Such segquences are of three
types, namely,

1. 303132...aw_13w_1...823130,0f period 2w,

2. agd1ag - - - Ay-13wly-1 - - - 823 , of period 2w,

3. 32130 - - - Ay~ 13y-1 ...aza!,ofperiod:?w-l.
Only those of type (1) occur in the present context.

Definition 2.1.11. [42] A sequence for which reversal and complementation

together have the same effect as cyclic shift is said to be a

co-palindrome. Such sequences are of the form

aoa|a2. ..aw_l'éw_; .. 525]50,

with period 2w.

Definition 2.1.12. [42] The weight of a sequence is the number of ones that

occur per period. The palindromes of type (1) have even weight, and we
may assume without toss of generality that the weight is at most w. The

co-palindromes have weight precisely w.

20



2.2 THE TWHILLS

2.2.1 THE FUNDAMENTAL PROBLEM

4

The first and most simple type of isonemal structure is the twill.
Twill fabrics have been woven since at least 1500-1000 BC [11]and twill
weaves have long been one of the most versatile and commonly used

structures:

In the texture of plain cloth, each thread
or woof [weft] passes over and under a
thread of warp, alternately; and two
leaves [shafts/harnesses] of heddies, only,
are requisite to produce this effect.
Tweeling f{twills], however, takes a
greater range with respect to the intervals
at which the threads of warp and weft are
interwoven; and these intervals increase
and vary in proportion to the number of
leaves employed, and the order in which
they are raised and sunk. Next to plain
texture, tweelling is the most extensive in
its application to every branch of the cloth
manufacture: it not only serves as a
ground on which other decorations are
woven, but it forms, purely on its own
principles, some of the most beautiful
patterns which can be produced in the art
of weaving. [58, p.22]

Based on the principles of isonemality formulated by Grinbaum and

21



Shephard [24], Hoskins and Street [44] developed a theoretical formula for
enumerating the twills and computed the members of the sets of twills
for n ¢ 20. For completeness, a summary of this work is included in this

subsection.

Definition 22.1.1. A simple twill on n harnesses is a planar

interlacement array in which each row (column) of the array is an
interlacement sequence of perio‘d n and is obtained from the previous row
(column) by displacement through one position. Thus the interlacements of
a simple twill can be regarded as a binary array generated as a square

tiling by a circulant binary array of period n.

The number of inequivalent twills for given n is equal to the number

of eguivalence classes of binary sequences of length n induced by the
action of the group Doy, X So, that is the direct product of the dihedral

group of order 2n with the symmetric group of degree 2. This means that

the numbers of twills could be enumerated using:

LEMMA 2.2.1.2. [9] |

Let G be a finite group, of order g, of transformations acting on a
finite set S and let two elements of S be equivalent if and only if one
can be transformed into the other by a transformation in G. Then the

number T of ineguivalent elements is
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T=(l/g)“2(;!(t),

where H{t) is the number of elements of S left invariant by a

transformation t belonging to G, and the sum is over all g

transformations in 6. O

COMPUTATIONAL ALGORITHM

The computational algorithm wused to determine all of the

inequivalent twills for 2 <n < 20 is a sieve given by the following steps:

A vector X of bits with 2P - 2 components is initialized to ones.

For example, if n = 4, then

1 234567 8 91011121314,

The index of the first non-zero entry in the vector gives a new
twill. In our example, the first twill is given by the index . This
corresponds to the binary sequence S of length 4, 0 0 0 1, which

is the binary representation of the decimal number 1.

The index in X for any sequence which can be transformed into 3

under the action of the direct product D2n X 52 is set to zero.

The sequences 00 10,0100,1000,1110,1101, 1011,

23



0 1 | 1, corresponding to the decimal integers 2, 4, 8, 14, 13,

11, and 7, respectively are equivalent to S.

Steps 2 and 3 are repeated until done. in this example, the final
vector X=1010100000 0000, indicating that there are 3
twills on 4 harnesses given by the sequences 0 00 I, 0 011,01
O 1 which correspond to the decimal integers 1, 3 and 5,

respectively.

The numbers of twills for 2 < n < 20 are given in [Table 2.1.3}.
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TABLE 2.2.1.3

n NUMBER OF TWILLS
2 1
3 1
4 3
5 3
6 7
7 8
8 17
9 22
10 43
11 62
12 121
13 169
14 361
15 611
16 4 1161
17 2055
18 3913
19 7154
20 13647

A subset of the twills, namely the balanced twills, being those
structures in which each strand passes over and under those perpendicutar
to it equally often, were also determined and enumerated for n < 18, and
are given in Table {2.2.1.4]. These twills clearly correspond to the subset

of binary sequences with weight equal to n/2.
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TABLE 22.1.4

n NUMBER OF BALANCED TWILLS
2 1
4 2
6 3
8 7
10 13
12 35
14 85
16 257
18 765
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222 TWILLS WITH BOUNDED FLOAT LENGTH

A sequence With S = Sj,q =... = Sj,i * Sjsksy 15 Said to have a

float of length k, that is, a block of k consecutive symbols which are

. equal. The maximum float length is closely related to the number of

breaks in the sequence, where [sl, Soy -y sn] has m breaks if and only if

S Sj.q for precisely m distinct values of i =1, ..., n For example, the

sequences 000111 and 00100111 both have maximum float length three,
and have two and four breaks respectively. Note that the number of breaks

must always be even.

The maximum float length is an important property of the twills,
and indeed of any woven structure since it is a major factor in
determining the functional performance and aesthetic appearance of a
fabric. Long floats deprive the fabric of interlacements that provide
structural stability, as well as increasing the possibility that the long

exposed yarn will be snagged and damaged.

The number of equivalence classes of binary sequences of length n,
with maximum float length k is denoted by F(nk), and the number of
classes of such sequences with exactly m breaks and exactly x floats of

length k is denoted by F(n,k,m,x). Then

(2.22.1) F(n,k) = 3 F(n,k,m,x),
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where the summation is over ail m and x satisfying the following

conditions:

(a) miseven, andn/k1+6<m<n-k+ ¢,
6,€ =0or 1,6 =Tn/k1(mod2), f =n-k(mod2)

(b) ifn=kg+r,0<r<k-1,then
1¢x¢ q ifr22,
orifr=1, qgodd,

orif r=0, qeven;

1 <X g-! if r=1, qeven,

orif r=0, qodd;

(c) x{min-kx+x-€, €=n-kx+x{mod2), e€=00rl,

and

if m = x, then kln, n/k is even, and X = n/k.

similarly, the sum of F(n,k,m,x) over all m satisfying the conditions

stated above, for given x is denoted by F(n,k,-,x).

Note that it is assumed that k <n, for if k = n, then m = 0, o
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corresponding twill exists, and condition (&) becomes 2 < m < 0. Hence

F(n,n) is not defined.

Let S{n,k,m,x) denote the set of binary sequences of length n, with

maximum float length k, m breaks, and x floats of length k, and let s €

S(n,k,m,x), where s = {sy, ..., s;}. The convention is made that s, = sy

(which is always possible since k < n), and associated with s is the

sequence of positive integers

r(s) = [rl,...,rm],

WHere Sy == Sp(1) ™ Sp(1)+ 17+ = Sp(1) + 1(2) * S r(1) + p(2)+17 -

(In the traditional break notation of weaving, this would be written

Thus, for example, the sequence s = (00101) € 5(5,2,4,1) has associated

sequence r(s)=(2,1,1,1).

t et R(n,k,m.x) be the set of positive integer sequences of length m,
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where

r=[ry..., rm) € R(n,k,m,x)
satisfies

1<rj<k, fori= 1,2,...,m,
ry = k for exactly x values of i,
and

2 en

i=t |

(Note that r is actually a composition of n into m parts, where x parts
equal k, and m - x parts are less than k.) Then each s € S(nk,m,x)
corresponds to r(s) € R(nk,m,x), and 'conversely each r € R(nk,m,x)
corresponds to exactly two sequences s, 8" € 5(n,k,m,x), where one is the
complement of the other. Thus these two sequences, S and s, are

equivalent in 5(n,k,m,x).

The equivalence relation on sequences in S(nk,m,x), induced by the

action of DZn X 52, corresponds to an equivalence relation on R(n,k,m,x),

where two sequences in R(n,k,m,x) are equivalent if and only if one can be
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transformed into the other by a cyclic shift, v, by a reversail u, or by some

finite sequence of these operations.

1fr={rFp, ..., m-1 M) then rv = (rp, Py, 1o, .., Ppoy), @NG

ru={ry, =t - <+ 072 rl

Hence the eguivalence relation on R(nk,mx) is induced by the

dihedral group of order 2m defined by

(2.2.2.2) G = {u,v].

Thus F(nk,m,x), the number of equivalence classes of binary

sequences in S(n,k,m,x) under the action of Do, x So, equals the number of

equivalence classes of positive integer sequences in R{n,k,m,x) under the

action of G.

A formula has been developed for enumerating F(n,k,m,x)and details
of the counting arguments are given in [41]. Using a sieve algorithm and
the twill sequences found in [44], the values of F(n,k,-,x) for n < 20, and x =
| to 10 have been calculated and checked against the theoretical results.

These values are listed in the following tables.
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TABLE 2.2.2.3
F(kn,k,-., 1), the number of twills on n harnesses, with maximum
float tength k which occurs precisely once per period for
n=4,...,20, k=1,...,n-1.

Mkt 2 3 4 5 6 7 8 9 101t 12 13 141516 17 18 19
4 0 O 1

S 0 1 1 1

6 0 0 1 1 1

7 0 1 2 2 | 1

8 0 0 3 2 2 1 1

9 0 t 4 5 3 2 1 1

16 0 0 7 7 5 3 2 T

11 o 1 10 14 9 6 3 2 1

2 0 0 1w 22 W7 9 6 3 2 t 1

13 0 1t 25 4 30 9 10 6 3 2 1 1

14 0 0 40 72 S8 33 19 10 6 3 2 1 1

15 0 1 62 136 106 66 35 20 10 6 3 2 t i

16 0 0 101 238 205 122 69 35 20 10 6 3 2 1 1

17 0 1 159 445 384 242 130 71 36 2010 6 3 2 1t 1

18 0 0 257 796 740 460 258 133 71 3620 10 6 3 2 t 1

19 0 1 410 1476 1406 909 498 266 135 7236 20 10 6 3 2 1 1
20 0 0 663 2674 2710 1756 988 514269 13572 36 20 10 6 3 2 1 1
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TABLE 2.2.24
F(n,k,-,2) = number of twills on n harnesses with maximum
float length k which occurs precisely twice per period for
n=4,...,20, k=1,...,Ln/21.

e\ k 1 2 3 4 5 6 7 8 9 W
4 0 1
5 0 0
6 0 2 1
7 0 0 0
B 0 3 2 1
9 0 0 2 0
10 0 4 5 2 1
it 0 0 6 2 0
12 0 S 15 7 2 1
3 0 0 18 8 2 0
14 0 6 41 23 7 2 1
15 0 0 58 34 10 2 0
16 0 7 113 80 25 7 2 1
17 0 0 174 134 42 10 2 0
8 0 B8 3D 291 98 27 7 2 1
9 0 0 514 524 178 44 10 2 1
2 0 g 929 1079 392 106 27 7 2 1
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TABLE 2225
F(n,k,-,3) = number of twills on n harnesses with maximum float
length k which occurs precisely three times per period for
n=4...,20, k=1,...,L{h=-1)/31

vk 1 2 3 4 5 6
4 0
S O
6 0
7 ¢ 0
8 © 0
g 0 3
10 0 0 1
it o0 5 1
12 0 0 3
13 0 8 6 1
14 0 0 1 1
15 ¢ 12 22 4
16 0 0. . 4 6 1
17 0 16 82 17 L
18 0 0 163 32 4
19 0 2 306 17 7 L
20 0 ¢ 572 158 17 1
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TABLE 2226
F{n,k,-,4) = number of twills on n harnesses with maximum float
tength k, which occurs precisely four times per period, for
n=4,...,20, k=1,...,Ln/41.

o\ k 1 2 3 4 5
4 1
S 0
6 0
7 0
8 0 1
g9 0 0
0 o 3
i1 0 0
12 0 B 1
13 0 0 0
14 0 16 3
15 0 0 3
6 0 29 B 1
17 0 0 19 0
18 0 47 49 3
19 0 0 85 3
2 0 72 2u 14 1
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TABLE 2.2.2.7
F(n,k,-,5) = number of twills on n harnesses with maximum float
length k, which occurs precisely five times per period, for
n=6,...,20, k=1,...,Lh-1)/51

ak 1 2 3

m—
(]
ODOOOOCODOLODOOCOOQOC
4 (72 ey
QPN OO QOUNO —-

[ %
0P Ul s —
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TABLE 2228
F(nk,-,6) = number of twills on n harnesses with maximum float
length k, which occurs precisely six times per period, for
n=6,...,20, k=1,...,kn/61

n\ k 1 2 3

6 I

7 6

8 0

g 0

t0 0

H 0

12 0 1

13 0 0

14 0 4

15 0 0

16 o 16

17 0 0

18 0 50 1
19 0 ¢ 0
20 0 126 4
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TABLE 2229
F(n,k,-,7) = number of twills on n harnesses with maximum f loat
~ length k, which occurs precisely seven times per period, for
n=8,...,20, k=1,...,L{n-1)/71.

ok 1 2

10
11
12
13
14
15
6
17
i6
19
20

OO0 CODOQLOOOOQ

L= s R R e R
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TABLE 2.2.2.10
F(n k,-,8) = number of twills on n harnesses with maximum float iength K,
which occurs precisely eaght times per period, for
n=8,...,20, k=1,...,Ln/81

A\ k 1 2

10
i
12
13
14
15
16
17
18
19
20

COODOLOOODOODOO O -

O OO —
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TABLE 22211
F(nk,-,9) = number of twills on n harnesses with maximum float
length k, which occurs precisely nine times per period, for
n=10,...,20, k=1,...,L(n-1)/91

Nk 1. 2

10
H
12
13
14
15
16
17
18
19
20

COQOOUOOOOOOO0O




TABLE 2.2.2.12
F(n,k,~,10) = number of twills on n harnesses with maximum float
length k, which occurs precisely ten times per period, for
' n=10,...,20, k=1,...,kLn/101.

a\ k 1 2

10
il
12
13
14
19
16
17
18
19
20

OOOQOOOOOLOO—
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2.2.3 BALANCED TWILLS WITH BOUNDED FLOAT LENGTH

Let Fb(n,k) denote the number of equivalence classes of binary

sequences of length n, with maximum float length k, which are balanced.

Let Fb(n,k,m) be the number of equivalence classes of balanced binary

sequences of length n, with maximum float length k and exactly m breaks.
Then

Fb(n,k) =3 Fb(n,k,m),

where the summations are over all m such that

fIn/k1+s6<m¢n-k- &g,

6, € €(0,1}, 5 = Tn/kT{mod 2), € = n - k (mod 2). Note that we assume

that k <n, for if k =n, thenm = 0, no corresponding balanced twill exists,

and the condition becomes 2 < m < 0. Hence Fb(n,n) is not defined.

Let Sb(n,k,m) denote the set of balanced binary sequences of length
n, with maximum float length k and m breaks. For s = {sl,...,sn] €

Sb(n,k,m), the convention is made that s; = s (which is always possible

since k <n), and s is associated with the sequence of positive integers
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r(s)={ry.....Mm})

where

S1= - =Sp(1) BSOS+ 1T TSN 2) TS e n(2) 4 1 T
Thus, for example, the balanced sequence
s=[00100111) € Sb(8,3,4)
has associated sequence
| r(s) =(2,1,2,3).

Let Rb(n,k,m) be the set of positive integer sequences of length m,

where

r= [r;,...,rm} € Rplnk,m)

satisfies T<rg k,fori=1,2,...,m,

ry= k for at least one value of i,
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and

Z Ty = Z Ti=n/2.
even i odd i

It is noted that r € Rb(n,k,m) is a pair of compositions of n/2 into

m/2 parts, where no part of either composition exceeds k and at least one

part of at least one composition equals k. Further, each s € Sy(n,k,m)
corresponds to r(s) € Ry(nk,m), and conversely each r € Rp(n,k,m)

corresponds to exactly two sequences s, s° € Sb(n,k,m), one of which is

the complement of the other. Thus these two sequences, s and s, are

equivalent in Sp(n,k,m).

The equivalence relation on sequences in Sb(n,k,m), induced by the
action of DZn X 52, corresponds to an equivalence relation on Rb(n,k,m),

where two sequences in Rb(n,k,m) are equivalent if and only if one can be

transformed into the other by a cyclic shift, u, by a reversal, v, or by some

finite sequence of these operations. Ifr = {r.1 T, ,rm_1,rm], then
ru=(rpuri.ro - - fm-1)
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and

v =P lm=1s - -« 2.0 }

Hence the equivalence relation on Rb(n,k,m) is induced by the dihedral

group of order 2m defined by
6 = {u,v).

Thus Fb(n,k,m), the number of equivalence classes of balanced binary
sequences in Sb(n,k,m) under the action of Dop X S, equals the number of

equivalence classes of positive integer sequences in Rb(n,k,m) under the

action of G.

A formula has been derived [40] to enumerate the values of
F D(n,k,m), corresponding to the equivalence classes of balanced twills onn
harnesses with maximum float length k and precisely m breaks. Using a
sieve algorithm on the set of balanced twills found in [44], the values of

Fp(nk,-,x), being the numbers of balanced twills on n harnesses with

maximum float length k, where the maximum float length occurs x times
per period, were computed for x = 1, ... ,10. The computed results were

checked against the derived formula, using the identity
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Fp(nk) = ZFp(nk,-x), x = 1,2,...,n/2

= I Fp(nk,m), where the summation is over all m such

that In/k1+8<{m¢<n-k-¢€,
6,€ E {0,11, & = I'n/k1(mod 2), € = n-k {mod 2).

These values are listed in the following tables.



TABLE 2.2.3.1
Fpink,- 1) 1 <k<(n/2) - 1

a\k 1 2 3 4 5 6 7

2 0

4 0

6 0 0

8 o0 0 1

o o0 0 2

12 0 0 S5 5 2

4 0 0 12 14 8 2

% 0 0 31 5t 30 12 3

18 0 0 78 164 111 46 16 3

20 0 0 201 562 413 196 71 2
TABLE 2.2.3.2

Fp(nk,-,2): 1 <k<n/2

Nk t 2 3 4 5 6 7 8 9 10

2 1

4 0 1

& 0 1 i

8 0 2 1 1

10 0 2 3 1 1

12 0 3 7 3 1 1

14 0 3 7 5] 3 1 t

16 0 4 43 B B8 3 L 1

i8 0 4 112 77 2% 8 3 1 1
20 0 S 298 25¢ 87 26 8 3 1
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TABLE 2.23.3
Fpink,=,3): 1<k < L{n-1)/31

Fb(n,k,—,3) =0 forf n<l4g

sk 2 3 4 5 6

i4 0 0 2 0
16 0 0 10 ¢ 0
16 0 0 38 3 0
20 0 0 138 24 0 0
TABLE 2.2.3.4
Fp(nk,-,4): 1 <k < Ln/4l
o\ k 1 2 3 4 5
2 i
4 1
6 0
8 0 1
10 0 2
12 0 3 1
14 0 9 2
i6 0 16 7 1
8 0 24 21 2
20 0 36 76 7 1




TABLE 2.2.35
Fb(n,k,-,G): 1<kg¢Ln/6l

mk 1 2 3

6 !

8 0

10 0

12 0 |

14 0 2

16 0 9

18 0 22 1
20 0 56 2

TABLE 2236

Fpnk,-8): 1 <k< Ln/8d

n\ k t 2

10
12
14
16
18
20

OO0 OO -
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- TABLE 2237
Fb(n,k,—,x) for x =5,7,9,10

Fp(20,3,-,3) = 4,

Fp(10,1,-,10) = F(20,2,-,10) = 1.

All other values of Fy(nk,-,x) are zerc in the
ranges given, namely

1< ng20;
1<x<10
1 <k L{n- €y)/x] where €5 =1,
€, =1,
€g = 1,
€40=0.
TABLE 2.2.3.8

Fb(n,k) forn=24,...,20;k=12,...,n/2

vk 1 2 3 4 S 6 7 g 9 10
2 1
4 1 1
6 1 1 1
8 3 2 |
10 1 4 S 2 1
12 1 9 13 8 3 1
149 1 14 33 22 1 3 !
16 1 30 9t. 77 38 15 4 !
18 1 53 250 246 137 54 19 4 1
20 1+ 114 719 852 501 222 79 24 9 1
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TABLE 2239
Fp(n) forn = 24, ...,20

n Fb(n)
2 1
4 2
6 3
8 7

10 13
12 35
14 85
16 257
18 765
20 2518

Sl



2.2.4 ]LLUSTRATIONS
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2.3  OTHER SIMPLE I1SONEMAL STRUCTURES

2.3.1 INTRODUCTION AND DEFINITIONS

Having established the characteristics of isonemal planar
interlacement arrays, as typified by the twills, three additional classes of

‘simple isonemal structures [45] have been identified [24].

Definition 2.3.1.1. A twillin on n harnesses is an isonemal planar

interlacement array in which each row (column) of the array is an
interlacement sequence of period n and is obtained from the previous row
(column) by displacement through s positions. Such a structure is called
an (n,s) twillin in [24] and a classic example is the (5,2) twillin, known as

a 5 end satin.

It is an obvious consequence of the definitions of interlacement
sequence and design equivalence that the first row of atwillin can only be
one of the first rows of a twill and that

gcd (n,s) = 1.

Similarly, it is apparent that the (n,1) twillins are twills.

Definition 2.3.1.2. A simple alternate twill on nharnesses is an isonemal
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design obtained from the planar interlacement array of a simple twill with

all even-numbered rows replaced by their complements.

Definition 2.3.1.3.  An (n,5,~) alternate twillin s an isonemal design

obtained from a planar interlacement array in which each row (column) of
the érray is an interlacement sequence of period n and is obtained from the
previous row (column) by displacement through s positions and

complementation (7).

232 ENUMERATION ALGORITHM

A result following from definitions {2.3.1.1} and {2.3.1.2} which is

stated in [24] without an explicit proof is:-

THEOREM 2.3.2.1.

For an (n,s) twillin or (n,s,”) alternate twillin
s? =+ 1 (modn).

proof. Consider the tile describing the twillin to be that member of the
equivalence class such that the element in the first row and first column
isa | (call it "black”). Hereafter note that the reference to squares in the
tile will be by “row-column’ names rather than the usual

abscissa-ordinate forms. The black square in position (1,1) generates
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black squares in positions (i, 1+(i-1)s) with all numbers being taken
modulo n and for convenience n being used rather than O for the nth row or
column. The design is isonemal; so using this fact on the columns to
“translate” all of the black squares to column n it is apparent that the
square in position (i, 1+(i-1)s) needs to be moved through n-1-{i-1)s
columns to position (x,n) and each move will either increase or decrease

the row by s (say €s, where € = ¢ 1),

Hence x = (i + €s{n - 1 - (i - 1) 8), and, since we are working
modulo n, we may take x = i - €(i - 1)s? - es= es?- es+i(l - £52).
Since €52 - €s is a constant, it can be ignored as far as the column

pattern is concerned. Let

e€s?- €s=1t,

|- gs=u

Then column n has black squares in row positions t, t+u, t+2u, t+3y, . .,
and these are generated by the original square in position (1,1). This of
course implies that any square does not occur in isotation but as a member
of a sequence of squares in every uth position. If the gcd (un) is
designated by the symbol a, then this sequence of squares has n/a
glements. Clearly, this number should be less than n or we would have no

mix of 0's and 1's in the array.
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Now the remark in the last paragraph shows that the twillin splits
up into subsquares of size n/a, and the whole tile is patched together from

these sub-twillins. If we agree to exclude this possibility of having a

“decomposable” twillin, then we must have n/a = 1, a = n; this implies
that u=0and

1-€s2=0 O
THEOREM 2.3.2.2.

Non-trivial simple alternate twills and (n,s,”) twillins on n

harnesses only exist when
n = 0 (mod 4.

Proof. In an isonemal planar interlacement array, the row and column
sequences have the same weight. But every second element of the row
sequence has been complemented when forming the column sequence.
Hence, among these n/2 elements, half must be zeros and half ones. Thus

4n. 0O

A consequence of definitions (2.3.1.1}, (2.3.1.2], {2.3.1.3} and the
preceding two results is that the color alternate twills, twillins, and
color alternate twillins can be determined by the following algorithm. The

twillins and alternate twillins counted and listed are those for which s =
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+1 (i.e. not twills or alternate twills) and s2 =1 {mod n).

1. Given r,s,n, and the set of twills on n harnesses.

2. Take the k% twill Q whose rows are [qi}, i=1,2,....n
3. Generate the planar interlacement array C with rows {c j]' jr=

1,2,...,n where

cy= @l (J"”qm

where i is computed from
s(j-1y=i(modn) j=12,...,n

4. Suppose that C and C* (the * denoting the transposed array) are
design equivalent. |
ifr=1,s=1t,then C is an alternate twill.

Ifr=0,s>1, 82

Ifr=1,8>1,8% = +1 (modn), then C is an alternate twillin.

+1 (mod n), then C is a twillin.

ifr=0,s=1,thenCisatwill
Using the twills determined in [44] and the above algorithm, the

members of the classes of alternate twills, twillins and alternate

twillins were found for n < 20. The number of members in each class was
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also computed for n < 20 and cross-checked by counting arguments. These

resuits appear in Table {2.3.2.3).

TABLE 2323
Number of Alternate Twills, Twillins
and Alternate Twillins

No. of Alternate Twills No. of Twillins No. of Alternate Twillins

4 2 0 0
5 0 1 0
6 0 0 0
7 0 0 0
8 6 g 10
9 0 0 ]
10 0 7 0
1 0 0 0
12 20 53 32
13 0 7 0
14 0 0 0
15 0 95 0
16 74 197 198
17 0 15 o
18 0 0 0
19 0 0 -0
20 284 1263 956
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2.3.3 1LLUSTRATIONS

TWILLINS
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12, s =5
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13, s =5







COLOR ALTERNATE TWILLS
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COLOR ALTERNATE TWILLINS
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2.4 COMPOUND TWILLINS

2.4.1 INTRODUCTION AND DEFINITIONS

Discussion to this point has been limited to simple isonemal
structures having one rule for deriving each row {and hence each column)

sequence from the previous one. Hoskins and Thomas [45] introduced the

term compound twillin to describe the only other possibie type of

isonemal binary interlacement array, which they def ined as:-

Definition 2.4.1.1 A compound twillin is an isonemal binary interiacement

array in which one rule is used to derive even row or column sequences
from the immediately previous row or column, and another rule is used to
derive odd row or column sequences from the immediately previous row or
column. These two rules involve reflection about a fixed point, with this
point being different for each of the rules. Complementation can also be

present in one or both of the rules.

The point of reflection of the sequence S = (ag, @y, .. . .@\-1) canbe

gither at a symbol or midway between two symbols and, for convenience,

the point midway between ag and ag, ¢ 15 considered to be the (s + %)

position of the seguence. (Subscripts are added modulo n as usual.)

Similarly, if s is an odd multiple of %, then the element a5, % is the next

sequence element after s. The ref lection that fixes position s is denoted
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by G thus if the sequence is

5=1(0,1,2,3,4,5),
then % S= (1,0,5,4,3,2)

and $oS =(0,5,4,3,2,1).

In all the cases of interest here, n is even. So g5 fixes two positions: s

and s + n/2.

In this notation, the transition rules of [45] can be represented as
P=(""tg and Q=" ¢,
where (™) denotes complementation and x,y € {0,1].

in developing subsequent results we make use of the following

additional definitions.

Definition 2.4.1.2. A dyadically derived row isonemal array is a row

isonemal array which has been generated using two different rules applied
alternately, where the first rule involves reflection about a fixed point s

and the second rule involves refiection about a different fixed point L.
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If the sequence is binary, complementation may or may not be
present in one or both of the rules; in general, permutation of the symbols

may or may not be present.

Definition 24.1.3.  An array A ,, i5 block isonemal if, when it is

partitioned into s x s blocks (n = 0 (mod s)), the resulting blocks

themselves form an isonemal array.

Clearly this property applies to all isonemal sequences and not just

to the compound twillins. It is convenient to choose an example from the

twills for illustration.

Example 2.4.1.4 Let A . be atwill with first row (1,1,0,1,0,0); then

110100 ]
011010
001101
100110
010011
(101001 |

If A is partitioned into 3 x 3 blocks then

(A



where
"110]
o= 011 i
001
and
100
F=1010

101

b

Since there are only two blocks, we can set « = Oand p = 1. Then

0t
10,

which is clearly an isonemal structure.
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2.42 DETERMINING THE COMPOUND TWILLINS

In the development of an algorithm for determining the compound
twillins, we make use of a number of results. Firstl, a computationally
simplified method of generating a compound twillin arises from the the
recognition that it can be constructed by specifying a (1,1) mapping from

the first row onto each subsequent row.

THEOREM 2.4.2.1. Consider a compound twillin with transition rules Qg
from row 2k to row 2k + 1, and ¢ from row 2k + | to row 2k + 2. If the

top row of the matrix is given by

ao,j=aj,1=0,l,...,n-l,then

agj = 8p,j-2k(s-t) a0 @+1,3= 30,25+2K(s-t)-j 1
for K=0,1,....(-2)/2

Proof. If ag occupies position ' in row 2k, then applying ¢ig to row 2k
takes the element in position (s' + w) to position (>s‘ - w), that is

oK+ g'-w T A2k s'rw -
similarly, if a; occupies position t' inrow 2k + 1, then

AoK+2,t-w - A2k+1 1w
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Thus Bk+2,j T B2k+2,t'-(t'- )
A%k« (t-))
= 3k+1,2t'-j
= k+1,8'(s'-(2t'- )
= A%k,5'+(s-(24 -1

=A%, 2(s )+ -

But, in row 2k, the element a; occupies the position s'+(t-s); so

t'=g -(t-s)ands -t =t -5 Hence

A2k+2,j = 92k,j-2(s-t)-
in other words, the even-numbered rows of the matrix form a cyclic array,

where each even-numbered row is just the preceding even-numbered row

shifted 2(s-t) places to the right. The odd-numbered rows form a similar

cyclic array.

This justifies the first statement, namely

42k, = @0,j-2k(s-t)-

74



Now the position s’ of ag Inrow 2K is just s + 2k(s-1) =5 ; S0

B2k+1,j = 32k+1,8'~(s"-})
= 82k,5'+(s'-j)

= 82k, 25+4K(s-1)-]

a9, 25+2k(s-1)-j *
giving the second statement of the theorem.O

From [45] it follows that the refiection points s and t may always

be chosen to satisfy certain restrictions, summarized as follows:
1. 0¢ls-tl <n/4, where n is the number of symbols in the sequence;
2. gcad(n/2, (s-th = 1;

3 (s-t)2 = ] {(mod n/2).

Further, ¢ and @g4p/, are equivalent reflections, for tg.n, takes
position s + w = (s+n/2) + (w+n/2) to position (s+n/2) - (w+n/2) = 5.- W,

just as @g does. Hence we aiso require:

4 0<¢s,ten/2
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in addition, several observations can be made concerning the periods
of compound twillins. Any compound twillin must obviously have period
n = 0 (mod 2). Any compound twillin with single complementation must
have period n = 0 {mod 4), since it has a four-row repeat. In fact, any
compound twillin with double complementation must also have period

n = 0 (mod 4), a less obvious fact proved in the following.

THEOREM 2.42.2. A compound twillin with double complementation has

period n = 0 (mod 4).

Proof. In a compound twillin, the row and column sequences are equal (up
to cyclic shifts and reflection). But every second element of the row
sequence has been complemented when'forming the column seguence.
Hence, among these n/2 elements, half must be zeros and half ones. Thus 4

inD

COROLLARY 2.42.3. |f a compound twillin with complementation has y 1's

in its initial sequence, thenn/4<y < 3n/4

Proof. For both single and double complementation, n/2 of the elements
will be complemented. Of these n/2 elements, precisely half (or n/4) must
be 1's. The remaining n/2 elements can be all I's, all O's or some
combination of the two. Therefore y, the number of 1's, must be in the

range
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n/4<y<3n/4, asrequired. O

At this point, it is convenient to divide discussion of the compound
twillins into two sections, namely

- compound twillins with reflection points s and t between

elements, that is, where s, t are odd multiples of % ;
- compound twillins with reflection points s and t at elements,

that is, where s, t are even multiples of % .
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2.42.1 COMPOUND TWILLINS WITH REFLECTION BETWEEN
ELEMENTS

THEOREM 2.4.2.1.1. Consider a dyadically derived row isonemal array A,

with no complementation or permutation, and with refiection points s and

t, where [s-t| = 1 and s,t are odd multiples of % . Then there are two

elements, ag ry @nd g pep,p » INTOW ZEMO of A, such that there exist arrays
B and C, design equivalent to A, with ag , and ag fap/o » respectively, lying

on their principal diagonals.

Proof. Suppose thatt=s+ 1. Leth=s+ % . Then ag r Moves

2(s-t) = -2 places to the right, or in other words two places to the left,

over each two rows. Also
A h-1"21,6-%"20,25-(s-% )~ 20,5+% " 30,h>
s0 that ag p, Moves one place to the left, from row to row.

Define the n x n arrays B and C to be:

bl,l = ai'n_j ; l,] =0,1,... n-i;

Cj = Bj he(n/2)-j » B =010l
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Since s-t = -1, the formulae of Theorem (2.4.2.1} now show that

bj i =agp and that ¢j = g henyz - 35 required. A similar (but shorter

argument deals with the case where t-s = 1, and b; ; = 3j 4 j.

Ci,j = 3ihe(n/2)+j- D

Example 2.42.1.2 Let A_ be an array, as in Theorem 2.4.2.1.1, with
s=53&,t=3§,n=6,aoj=j, i=0,...,5

Then
(012245 (054221 (221054
543210 501234 234501
= |224501|, B= |210542| , €= 5432104
221054 245012 012345
450123 432105 105432
(105432 | 123450 4506123

Note that, inBandC,s=%,t=- % . retative to the sequence in the initial
row. Note also that, in a compound twillin, which is a binary array, only

two distinct values can in fact occur.

COROLLARY 24213 Ifs=%  t=- %, and the initial sequence of A is

ag,; = J» j=0,1,...,n-l,thenai’f(—i)‘ (j-1).

Proof. SincCe azk,j = ao,j_ZK(S_t) , ands-t =1, we have
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an,j = ao’j_zk =i- 2K.

Since k+1,j = 20,25+ 2k(s-t)-j
= 80,1+2k-j
we have k41,5~ 2k+1-].

The corollary follows. O

THEOREM 2.4.2.1.4. Let A be a dyadically derived row isonemal array with
no complementation or permutation, with reflection points s and t where

Is-t] = 1 and s,t are odd multiples of % . Then A is column isonemal.

Proof. By Corollary {2.4.2.1.3], we may assume without loss of generality
thats=%,t=- %, and
aj,j= (-1 (j-1) (mod ),
fori,j=0,1,....n-1. Then
ey = GO GGe) = - CDTG-D-D = 3y gy
and
ai oy = CDNGHD-D = =D GG = -3y .

The sequence in the initiél column is 0,1,-2,3,-4, ... and subsequent
columns are obtained by reflectionin s’ = % and t' = - % alternately. Thus

A is also column isonemal. D
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To discuss binary arrays, we interpret the notation slightly

differently: the initial sequence consists of O's and !'s, and the term 3; j

gives the subscript of the term of this sequence occurring in position (i, ).

Example 2.42.1.5. If 3; j= -1 (j-i) as before, and the initial sequence is

(1,0,1,0,0,0), then the corresponding binary array has rows
(1,0,1,0,0,0), (0,1,0,0,0,1), (0,0,1,0,1,0),
(0,1,0,1,0,0), (1,0,0,0,1,0), (0,0,0,1,0,1).

THEQREM 2.42.16. Let A be a binary dyadically derived row isonemal

array, with complementation in one or both of the transition rules, with
reflection points s and t where Is-t| = 1 and s,t are odd multiples of %

Then A is column isonemal.

Proof. As in Theorem (2.4.2.1.4}, we may assume that s= %, t=- %, and
that
aj = (M ENGHD.

If we have single complementation, so that the transition rules for

rows are (") and ta-;{, thenh = L{i+1)/21 (mod 2); if we have double
complementation, so that the transition rules are (™) ¢ % and

(") -3, then h=1i (mod 2).
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This gives the initial column sequences and transition rules for

columns as follows: for single complementation, the sequence

01,-2,3,-45,-6,7,-8, . ..

and transition rules (~) ti% and ¢_3% ; for double complementation, the

sequence
01,-2,3,-45,-6,7,-8, . ..

and transition rules (M) and (M- % .

In either case, the array is column isonemal. U

THEOREM 2.42.1.7. Let A be a binary dyadically derived row isonemal

array, with or without complementation, and with reflection points s and
t, both odd multiples of % , and satisfying requirements (i) - (iv) of

Section {2.4.2). Then A is column isonemal.

Proof. (a) If s-t is odd, then the points 'midway between s and t are

occupied by sequence elements &n,3n.n,, SaYy, where h = (s+t)/2. By

requirement (ii), ged (n,(s-t)) = 1; so s-t has an inverse r (modulo n).
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By Theorem {2.4.2.1}, a, moves s-t spaces to the right in each

successive row; so, after r rows, it has moved r (s-t) = 1 space to the

right. Thus the array formed by taking

30,h ag.h+1 e a9, h-1

9% h 8y h+i v 9 h-1
21,5 B9r,h+1 v 82r h-1
n-1r,h An-1)r,het 0 %(n-1)r,h-1

is an array of the form given in Theorem {2.42.1.1). Hence the original

array is column isonemal by Theorem {2.4.2.1.4}.

(b) If s-t is even, by requirement (ii), n = 2 (mod 4) and gcd (n,(s-t))
= 2. Here the mid-point between s and t (position (s+t)/2 again} moves s-t
spaces to the right in each successive row, and occurs alternately to the
left and to the right of the point s. We may assume without loss of
generality that t = %, s =2m + %, and that there exists an integer r such
that (s-t) r = 2 (mod n). Then the array formed by taking rows O, 1, 2r, ...

is again row and column isonemal, and hence the original array is column
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isonemal. O

COROLLARY 2.4.2.1.8. For the array A of Theorem {2.4.2.1.7], the terms of

any column must be a permutation of the terms of the original row

sequence.
Proof. The result follows immediately. O

ENUMERATION ALGORITHM,.

An algorithm has been developed, based on the preceding results,

which can be applied to the twill sequences of [44] to determine all of the
possible compound twillins for a given sequence length. This algorithm is

given by the following sequence of steps:

I Start with n and the twill sequences on n shafts.
2. Choose appropriate values for s and t.

3. Taking each sequence in turn, generate a dyadically derived

row isonemal array, C, with rows Ck , k=1,2,...,n, where the

original sequence S is permuted to give Cp using the following

computational formula:

For k even: Ck =5n

where h = 1 + ((ks -(t(k-2)+n+1)-r) modn), r=0,1,...,n-1.
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For k odd: Ck = Sh ,

where h =1+ (({(k-1) (t-s)+r) modn), r=0,1,... n-1.
This array will be column isonemal.

4 Determine whether the row and column sequences are design
equivalent. If they are design equivalent, then determine
whether the rules for generating the columns are the same as
the rules for generating the rows. If they are the same, then
the array is isonemai.

S. Ensure that each of the compound twillins ‘which has been

found is unique.

6. introduce complementation into the first rule and repeat
steps 1 to 5.

1. Introduce complementation into both rules and repeat steps 1
to 5.

Using an implementation of the above algorithm, the numbers of
compound twillins with reflection points between elements forn ¢ 16

shafts were determined and are listed in Table {2.4.2.1.9].
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TABLE 2.42.1.9
NUMBER OF COMPOUND TWILLINS WITH
REFLECTION POINTS BETWEEN ELEMENTS

t,

NO

COMPLEMENTATION COMPLEMENTATION COMPLEMENTATION

SINGLE

DOUBLE

10
10
12
14
16
16

% 1% 9 0 0
% 1% 23 10 16
% 1% 67 0 0
% 2% 1G9 G 0
% 1% 216 | 95
% 1% 519 0 0
¥ 1% 1645 86 640
% 3% 509 306 16
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2.422 COMPOUND TWILLINS WITH REFLECTION AT AN ELEMENT

in the case of compound twillins with refiection points which occur
at elements of the array, the situation is more complicated than the one

previously discussed, as the following example shows.

EXAMPLE 2.42.2.1. If the reflection points s and t are integers, with |s-t| =

1, then row isonemality of the array need not imply column isonemality.
For instance, if n = 8, s= 0, t = 1, then the initial sequence 00010011 for
the rows leads to a row isonemal array which is not even column isonemal,

as illustrated.

00010011}
01100100
01001100
10010001
00110001
01000110
11000100
00011001

The following results enable the algorithm of (2421} to be
simplified and used for the determination of the compound twillins with

reflection points occurring at elements of the array.

Theorem 2.4.2.2.2. Any compound twillin which is partitioned into four

n/2 x n/2 blocks is block isonemal.
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Proof. A consequence of property (iv) in (2.4.1) is that dig and fig.n/2 are
equivalent reflections; further, ¢ and ¢y.n/2 are equivalent reflections.
Thus, any element aj,n/0, 1 €01, ... n/2)-1}, in the first row of a

dyadically derived row isonemal array will be mapped to the same position

as element a; (mod n/2). The array A can therefore be considered to be

two contiguous arrays of size n X n/2. But, if the array is isenemal, then
the elements in a column of the array must exhibit the same properties as
did the elements of the rows. Thus, the array A can be partitioned into

four blocks of size n/2 X n/2.

The array A considered in a block sense is now

[

If we consider two repeats of A in both the x and the y direction,

o:ﬁocET
% B ¥b

o B o f
E 861

but A is an isonemal structure. Therefore « = ¥ and B = 6. Assigning
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x =0andp=1,

ot
10

fl =

a block isonemal array, and the result is proved. O

Theorem 2.4223. Consider a dyadicaﬂy derived row isonemal array A

with reflection points s and t, where s and t are elements for which |s-t| =
i, with no complementation and with n # 0 (mod 4). In order for this array

to be isonemal, it must be symmetric.

Proof. Let n=2m. Sincen # O (mod 4), m is odd. From Theorem (2.42.1),

the elements of row m are given by:

am,j = 30’2S+(m_‘ )*} (mod n).

But, for this array to be isonemal, it must be block isonemal; see Figure
{24224)
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h-1,0

99.m-1  %0,m

In-1,m-1 9n,m

FIGURE 2.42.2.4

a0,n-1

9m-1,n-1

m,n-1

n-1,n-1

Thus @p 0 = @m m » 3m-1,m-1 = 2n-1,n-1 - 30,m = 2m,0 - €1C.

We can assume, with no loss of generality, that s = 0 in the

formulae of Theorem {2.4.2.1), since the first row can always be cycled so

that s will lie in the zero position.

Apply Theorem {2.4.2.1} to the matrix (a; j] , 1,j=0,1,...

For i,j even, ai,j = ao,i+j' and aj,i = ao,i+j , 50 a}-’j = aj,i .

For i,j odd, a; j =3 1-(j+j) 2},1 = 30,1-(1+))» S0 2;,1 = 9ji-
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For 1 even, J 00d, @ j = ap j+j . 84 @) j = 39 1-(j+])
but since m is 0dd, 3; j = 3jum j+m = 30,1-(i+]) -
and hence 3=y,

For i odd, j even, a; ; =g {-(j+]) - andaj ;=2p j+j-

But ai,j = ai+m,j+m = 30,1+j ,
and hence CRICIRE

and the result is proved. O

Corollary 2.42.2.5. Any compound twillin with reflection at an element,

with Is-t| = 1, and with order not a multiple of 4, is also a twill.

Proof. This follows as a direct consequence of Theorem (2.42.2.3) and
Definition {2.2.1.1) O

Example 2.42.2.6. Let A be a dyadically derived row isonemal array whose
top row is given by ag ic j, i=0,1,...,5 withs=0,t= 1
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—[112 | 345_
0541321
2341501

R=
4321105
450 | 123
2101543

For this array to be isonemal, the element in cells containing O
must be the same as the element in a "1" cell; "2" and "5" must correspond,

as well as “3" and "4". A could thus be written

—002 | 332—5
023|320
2331200

i =
3321002
3201023
_200 | 253_

and the symmetry is apparent.

There are further restrictions that can be placed on the sequences

which can pessibly occur in compound twillins with reflection occurring
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at elements of the array, which we now examine.

Consider first the case with no complementation, and suppose that

the reflections that generate the compound twillins occur at the elements

ap and a; of the initial sequence ap,ay,ag, - - ,8 - (A)wheren=2k and t

is chosen to satisfy the restrictions (i) - (iv) in Section {2.4.2], so that
0 <t <k/2, ged(k,t) = 1,12 = 21 (mod k).

Then column zero will be occupied by the sequence

a0, 3, By, -0t 24y A-ats -+ -» 4p 2-2v 8t (B)

and column one by the sequence

a1, 8-, 30t4+1s A-0t-1, 4t+ 1> A-4t-1» - -+ A4t-1> B-2t+ 1 32t-1 (0).

The restrictions on t ensure that the subscripts 0, 2t, 4t, ..., -4t, -2t run
through all the even integers modulo n, and thus that (E) consists of all the
elements from even-numbered positions of (A), twice each. Every
even-numbered column is occupied by cyclic shifts of (E) and every
odd-numbered column by cyclic shifts of {0). Since the array is isonemal,

these sequences are equivalent; hence (A) is a palindrome of type (1) and
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even weight, say 2h. Further, h of the ones in (A) must occur in
even-numbered and h in odd-numbered positions, so that (E) and (0) contain

equal numbers of ones.

Consider the particular case where t = 1, which satisfies
restrictions (i) - (iv) of Section {2.4.2} for any value of n. If we choose i

and j so that i + j = 1 {mod n) the sequence given by

3i=3j=l

aw=0,w=i,w==j

is a palindrome which, on refiection at 0 and 1 alternately, gives a twill.
If kK = 2m so that n = 4m, then

ai-aj-l,aw-o,w*i,w"j (*)
and

Bjuk = Bjak = 1,8y =0, w=i+k, w= j+K ()

are distinct but equivalent sequences, so we have m such twills; if
k= 2m + 1, so that n = 4m + 2, the sequences (¥) are distinct except in the

single case i=m+ 1, j =3m + 2; s0 we have altogether m + 1 such twills.

Further if we choose pairs (iy, j1), .- -, (ip, jp) where
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iw*Jyw =1 (modn),w=12....p andlet

3j[w] = aj[w]= ,w=12,....p

ah=0’h¢{i1’j"...’ip, Jp],

we have a palindrome of weight 2p, which again gives a twill when

reflected at 0 and 1 alternately.

if k =2m + 1, we choose p so that 1 ( p < m, and the weight of the

palindrome is at most 2m. This can be done in

% (B3 +[[;;z]] ) inequivalent ways,

using Burnside's lemma as described in [37], where the group is generated
by the reflection that maps i to 2m + 1 - i (mod n). Hence the number of

inequivalent twills which occur as compound twillins of this type is

xsgd'*’;"l NEAN

A similar, but more lengthy argument gives the number of
inequivalent twills which occur as compound twillins when k = 2m. The

detailed development is given in [42].
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The only case which has been considered theoretically is the one
with no complementation and with the 1's in the first row seguence
- appearing in positions i,j for i and j such that i + j = I. In other words,
only compound twillins which are isomorphic with twills have been
considered. Thus, the formulae developed give lower bounds, as shown in
Table (2.422.7).

We now consider the possible sequences for the compound twillins

with complementation in one or both of the generating rules. We may

assume that n = 4w, and that reflections occur at points an and at , where

O<tew,ged(2w,t) =1, t2 = +1 (mod 2w), and our initial sequence is

ao,ai,az,...,a4w_; .

If complementation occurs when we reflect at ag , but not when

we reflect at a; , then column zero has the sequence

ao, 50, 52{, a_Qt, adt, 5_4t, 56‘{: a_at cee s §4t, §_2t, 82t ,

and column one the sequence
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ay, -3__1, §2t+|: d.2t-1, 34t+ 1, 5-4;:..1, cees §4t_1, 5-2t+|, a_ot-1 -

If complementation occurs with both reflections, then column zero has the
sequence

ao, 50, aQt, a—Qt: a4t, 5_41;, ceey adt, a_2t, §~2t ;

and column one the sequence

ap, 8-1, 8ts 1, B-2t-15 24t 15 B-4ts 1o -2 24t-1, B-2t4 1 3t -

Hence for a compound twillin with either single or double

complementation, the initial sequence must in fact be of the form
ao, a], 32, ce ey azw_l, §2W‘l’ ceey 52, 5;, 50,

that is a copalindrome of weight 2w, where w ones occur in even and w in
odd positions in the sequence.

The algorithm of Section {2.42.2) can be applied to the twill
sequences of [44] to determine all of the possible compound twillins for a
given sequence length, with reflection points at an element. Based on the

preceding results, the following filters can be applied to the twill
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sequences prior to invoking the sieve algorithm, to obtain a rapid
reduction of those seguences which can potentially be used to create these

compound twillins.

Filtering Algorithm:

When no compliementation is to take place:

1. discard all sequences which have a weight for the odd numbered
elements pot equal to the weight for the even numbered elements;

2. of the remaining sequences, discard those which are not
palindromes.

Wwhen complementation is to occur in either one or both rules:

1. discard all sequences whose weight is not precisely equal to one
half the sequence length;
2. of the remaining sequences, discard those which are not

copalindromes.

Using an implementation of the above algorithm, the numbers of
compound twillins with reflection at an element have been determined for
n< 16 and are listed in Table {24227},

4
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TABLE 24227
NUMBER OF COMPOUND TWILLINS
WITH REFLECTION POINTS AT ELEMENTS

Ne
Complementation
Actual Theorestical Single Double

a s ¢t Number Lower Bound Compliementstion Complementation

6 0 1 2 2 0 0

8 0 1 S 5 2 6
10 ¢ 1 9 9 L] 4]
10 0 2 1 - 0 0
12 06 1 23 18 O 24
i4 0 1 35 35 1] 0
16 0 1 69 69 2 70
16 0 3 S - 10 6

The programs which were developed to enumerate and identify ali of
the isonemal structures were written in APL and run on an Amdahl 5850.
The CPU time required to obtain these tables was of course exponential
with n and, even for the small cases considered, involved in excess of

fifty hours.
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2.4.3 JLLUSTRATIONS

COMPOUND TWILLINS
NO COMPLEMENTATION

n=10, s =%, t =24
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12, s
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172

16, s =%, t =1

16, s =%, t = 3%
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COMPOUND TWILLINS
SINGLE COMPLEMENTATION

103.
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COMPOUND TWILLINS
DOUBLE COMPLEMENTATION
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3.1 INTRODUCTION

An interlacement array is actually the product of three matrices
which describe the physical set up and operation of a loom, namely the
threading, tie-up and shed sequence matrices. On all but the most simple
of looms, each lengthwise yarn, or warp end, is threaded through a heddle
on a particular shaft, with the result that every warp end threaded on the
same shaft makes exactly the same interiacements with the crosswise
yarn, or weft pick, as every other end on that shaft. The threading matrix
has the same number of columns as warp ends and the same number of

rows as shafts on which the ends can be threaded.

The weaving process involves raising one or more of these shafts at
a time. All of the warp ends threaded on this shaft, or these shafts, will
then lie on top of the weft pick inserted at this time, while the remaining
warp ends will lie underneath the weft pick. In the case of the most
common loom configuration, the single harness system, each warp end is
threaded on only one shaft. This places the restriction on the binary
threading matrix that there be precisely one 1 in every column, with the

remaining etements being 0.
The tie-up matrix indicates in which combinations the shafts will

be raised. The number of rows is equal to the number of shafts and the

number of columns is equal to the number of different combinations of
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shafts to be used. Each set of shafts to be raised in a particular
combination is physically tied to a treadle which, when depressed, causes
the shafts to rise. Thus, the number of columns in the tie-up matrix also

represents the number of treadles.

The shed sequence matrix indicates which treadle will be used for
each weft pick. The number of columns is equal to the number of treadles
and there are as many rows in this matrix as there are picks in the
corresponding interlacement array. Normally, only one treadie is
depressed for any weft pick. The shed sequence matrix therefore contains

precisely one 1 per row, with the remaining elements being 0.

Because of the inherent association between the woven design and
the set up and operation of the loom, it is essential to be able to
determine the interlacement array which will result from a specified
threading, tie-up and shed sequence matrix and conversely, to factor a
known interiacement array-into its three matrix components. This chapter

will discuss algorithms for both processes.
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3.2 DETERMINING AN INTERLACEMENT ARRAY

The traditional method of computing an interlacement array (Figure
{3.2.1}) requires that one start with the first row of the shed sequence
matrix (C) and find the column which has a non-zero entry. This
corresponds to the treadle which is to be used for the corresponding row
of the interlacement array. This is projected upward to the tie-up matrix
(B), which indicates the shaft or shafts tied up to this particular treadle.
Projecting across to the threading matrix (A) gives the precise warp ends
which are threaded on this (these) shaft(s). If these shafts are raised, the
warp ends which are threaded on them will be raised and will therefore lie
on top of the inserted weft pick. The first row of the interlacement array
will thus contain 1's where these raised warp ends are located and 0's in
the other positions. This process is continued until each rowq of the shed
sequence matrix has been used and all of the rows of the interlacement
array have been filled in. The resulting interlacement array is obviously
isomorphic to the conventional point-paper diagram [69] form of

representation, as described in Section (3.3).
The relationship between a given interlacement array D and its

corresponding threading, tie-up and shed sequence matrices can be more

succintly formulated as a matrix equation.
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Specifically, if the threading matrix is denoted by A, the tie-up
matrix by B and the shed sequence matrix by C (Figure {3.2.2)), then the

i,jt" element in the interlacement array, is given by

m ]
(3.2.3) di,j = };1[ 1:]1 ci’kAbr,kAar,j
i=12,....,5
j=12,....t

where the logical operators "and” and “or” replace the conventiona! matrix

operations, multiplication and summation, respectively.

More conveniently, using the notation developed in APL, Equation
{3.2.3) can be rewritten as [35]
(3.2.4) D = (CV.A (QB)) v.A A
where ® denotes the operation of transposition.

Although the preceding matrix equation completely and
unambiguously specifies the relationship between the interlacement array

and its three factors, this approach is not computationally very efficient.

Each element of D is obtained as the result of (r + 1) s “multiplications”.
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A more efficient and considerably faster process makes use of indirect

addressing, as in the following equation:

(325)  d;; = by

where p is the column index of the single 1| in the ith row of the shed
sequence matrix C, and where q is the row index of the single I in the ju‘

column of the threading matrix A.

This formulation arises from the observation that the tie-up matrix
is, in fact, a tile which is used to tessellate the plane defined by the
dimensions of the interlacement array. The threading and shed sequence
matrices specify the rules according to which this tile is placed. These
rules are the placement and orientation of the tie-up matrix tile, as well
as whether the entire matrix is to be placed in a given position, or rather

some submatrix.

An implementation of this indirect addressing algorithm is given by

the following Pascal procedure.
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VARIABLE DICTIONARY:

M

THREAD

SHEDSEQ

TIEUP

INTARRAY

SIZE

NUMBER OF COLUMNS IN THE THREADING MATRIX AND RESULTING
INTERLACEMENT ARRAY. (CORRESPONDS TO THE NUMBER OF WARP ENDS N
THE FABRIC SEGMENT)

NUMBER OF ROWS [N THE SHED SEQUENCE MATRIX AND RESULTING
INTERLACEMENT ARRAY. (CORRESPONDS TO THE NUMBER OF WEFT PICKS IN
THE FABRIC SEGMENT)

NUMBER OF ROWS IN THE THREADING AND TIE-UP MATRICES.
(CORRESPONDS TO THE NUMBER OF SHAFTS USED)

NUMBER OF COLUMNS IN THE SHED SEQUENCE AND TIE-UP MATRICES.
(CORRESPONDS TO THE NUMBER OF TREADLES USED)

THREADING MATRIX. BINARY MATRIX OF SIZE NS BY M WITH PRECISELY ONE
ONE [N EYERY COLUMN.

SHED SEQUENCE MATRIX. BINARY MATRIX OF SIZE N BY NT WiTH PRECISELY
ONE ONE IN EVERY ROW.

TIEUP MATRIX. BINARY MATRIX OF SIZE NS BY NT.
INTERLACEMENT ARRAY. BINARY MATRIX OF SIZE NBY M.

YARIABLE TYPE - PACKED ARRAY [1..120,1 .. 120] OF INTEGER
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PASCAL ALGORITHN:

PROCEDURE INTAR (VAR THREAD,SHEDSEQ, TIEUP, INTARRAY ‘SIZE #1,N NS NT:INTEGER);

(* THE ARRAY TEMTIE CORRESPONDS TO THE ARRAY TIEUP WITH AN ADDITIONAL ROW
AND COLUMN OF ZERO VALUES ADDED THIS ALLOWS THE POSSIBILITY OF A COMPLETELY
ZERO COLUMN OF THREAD OR ROW OF SHEDSEQ THE VECTOR SHAFTS CONTAINS THE ROW
INDEX OF THE ONE NON-ZERO VALLE IN EACH COLUMN OF THREAD THE VARIABLES |J
AND K ARE LOOP INDICES THE VARIABLE TREADLE CONTAINS THE COLUMN INDEX OF THE
ONE NON-ZERO VALUE IN THE CURRENT ROW OF THE SHED SEQUENCE MATRIX *)

VAR
TEMTIE:SIZE;
SHAFTS:ARRAY!120]) OF INTEGER;
(4K, TREADLE: INTEGER;

BEGIN

FOR [=1 TONS DO

BEGIN
FOR J:=1 TO NT DO TEMTIE[I J)=TIEUP[I J);
TEMTIELENT+1]):=0;

END;

FOR J:=1 TONT+1 DO TEMTIE{NS+ | J}=0;

FORJ=1 TOM DO
BEGIN
K:=1;
SHAFTS[J}=NS+1;
WHILE (K<=NS) AND {SHAFTSLd] > NS) DO
IF THREADIK J} <> O THEN SHAFTS[J)=K ELSE K=K+1;
END;

FORi=1 TONDO
BEGIN
K=1; [
TREADLE =NT+1;
WHILE (K<=NT) AND (TREADLE» NT) DO
IF SHEDSEG]{I1.K] <> O THEN TREADLE: =K ELSE K:K+1;
FOR J:=1 TOM DO
INTARRAY{1,3):=TEMTIE{SHAFTS{J],TREADLE];
END;

END;

116



3.3 DET ING A COLOURE TERLACEMENT ARRAY

Traditionally, weavers have represented interlacement arrays, and
thus the corresponding f abric structures, diagrammaticaly as a matrix of
black and white squares, where a black square represents a warp over
weft intersection (a value of | in our binary matrix notation) and a white
square indicates a weft over warp intersection (a value of O in our binary
matrix notation). This representation is known as a point-paper diagram

or draw-down [S].

For a fabric with black warp and white weft yarns, the black and
white squares of the point-paper diagram represent the colouring of the
fabric, as well as the intersections. There are however, some instances
in which it is advantageous that the colour and intersection
representations not correspond directly. This occurs when the warp or

weft, or both, contain stripes of colour.

Sometimes a particular motif or coloured pattern is required which
would not be structurally stable if it were woven with a solid coiour warp
and weft. In this case, the colour of sections of warp and weft yarns can
be changed such that interlacement sequences altered to produce a more
structurally stable fabric will result in the same motif as the original.
That is, the altered interlacement array will reproduce the original colour

array but the correspondence between colour and interlacement array will
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no longer bé one to one. This technique, know to weavers as colour and
weave effects [23], [25], is commonly used to produce a wide variety of

motifs in fabrics which are structurally stable.

When considering coloured interlacement arrays, the corresponding
threading and shed sequence matrices are now integer matrices while the

tie-up remains a binary matrix.

The threading matrix still corresponds to the shafts on which each
of the warp ends is threaded. The one non-zero entry in each column is
however now not necessarily equal to one. This entry instead is some

integer value which represents an encoded yarn colouring.

Similarly, the shed sequence matrix represents, not only which
treadle is to be depressed for a given weft pick, but also the encoded
colour of that yarn. As before, the shed sequence contains precisely one

NON-zero value per row.

The traditional method of computing a coloured interiacement array
(Figure (3.3.1)) requires that one start with the first row of the shed
sequence matrix (C) and find the column which has a non-zero entry. This
is projected upward to the tie-up matrix (B), and then across to the
threading matrix (A), as before. The precise warp ends which are to be

raised when the current weft pick is inserted have been determined. The
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visible colour in the first row of the coloured interlacement array will
thus be the colour of each of the raised warp ends where they lie on top of
the weft pick, and the colour of the current weft yarn everywhere else.
The coloured interlacement array, in its encoded form, is thus a discrete
matri% whose entries correspond to the encoded colours which will appear

on the surface of ihe fabric at each intersection.

The relationship between a given coloured interlacement array and
its corresponding threading, tie-up and shed sequence matrices can be

formulated using matrix notation. if the threading matrix is denoted by

A= [ai,j: i=1,2, ....,s; j=1,2, . .. .m}, the tie-up matrix by B = [bi,f

i=1,2, . ..,s; j=1,2, ... ,r} and the shed sequence matrix by C = [ci j
i=1,2, . .. ,m; j=1,2, . . . ], then the i,j“‘ elements in the coloured
interlacement array, denoted by D = [di,j: i=1,2, ...,m; j=1,2,...,m}, is
given by the following:
(33.2) D=2xA

where
(3.3.3) - Z=C.B,
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with ° denoting the transpose and the operation being
conventional matrix multipiication, and where the operation «

is defined as

(3.3.9 d i,j = (w i,j X MAX ak,j) +(~w i,j X MAX Zi,k)
k=1,2,...,5
where
$
(3.3.5) w i = LJ‘. (zi,k 20) A (ak,j > Q),

and where ~w denotes the complement of w.
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EXAMPLE 3.3.6

000200
003030
030003
200000

2000
0300
0030
0002
3000
0200
0020
0003

110001
011011
001110
100100
110001
011011
001110
100100
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0110
1100
100

0022
0330
3300
2002
0033
0220
2200
3003

232223
333333
333233
222222
233333
233233
223232
233233



An implementation of this algorithm is given in the following

Pascal procedure.

VARIABLE DICTIONARY:

M

THREAD

SHEDSEQ

TIE-UP
COLARRAY

SIZE

NUMBER OF COLUMNS IN THE VTHREADII@ MATRIX AND RESULTING COLOURED
INTERLACEMENT ARRAY. (CORRESPONDS TO THE NUMBER OF WARP ENDS IN THE
FABRIC SEGMENT)

NUMBER OF ROWS IN THE SHED SEQUENCE MATRIX AND RESULTING COLOURED
INTERLACEMENT ARRAY. (CORRESPONDS TO THE NUMBER OF WEFT PICKS IN
THE FABRIC SEGMENT)

NUMBER OF ROWS IN THE THREADING AND TIE-UP MATRICES.
( CORRESPONDS TO THE NUMBER OF SHAFTS USED)

NUMBER OF COLUMNS N THE SHED SEQUENCE AND TIE-UP MATRICES.
(CORRESPONDS TO THE NUMBER OF TREADLES USED)

THREADING MATRIX. DISCRETE MATRIX OF SIZE NS BY M WITH PRECISELY ONE
NON-ZERO YALUE iN EVERY COLUMN.

SHED SEQUENCE MATRIX. DISCRETE MATRIX OF SIZE N BY NT WITH PRECISELY
ONE NON-ZERO YALUE IN EVERY ROW.

TIE-UP MATRIX. BiNARY MATRIX OF SIZE NS BY NT.
COLOURED INTERLACEMENT ARRAY. DISCRETE MATRIX OF SIZE NBY M.

VARIABLE TYPE - PACKED ARRAY([1..120,t.. 120] OF INTEGER
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PASCAL ALGORITHM:
PROCEDURE COLAR(VAR THREAD,SHEDSEQ, TIEUP,COLARRAY SIZEMNNSNT: INTEGER):

(* THE ARRAY TEMTIE CORRESPONDS TO THE ARRAY TIEUP WITH AN ADDITIONAL ROW AND
COLLMN OF ZERO VALUES ADDED. THIS ALLOWS THE POSSIBILITY OF A COMPLETELY ZERO
COLUMN OF THREAD OR ROW OF SHEDSEQ. THE VECTOR SHAFTS CONTAINS THE ROW INDEX
OF THE ONE NON-ZERQ VALUE IN EACH COLUMN OF THREAD. THE VECTOR COLOURS
CONTAINS THE ENCODED COLOUR OF EACH OF THE CORRESPONDING WARP THREADS. THE
VARIABLES |J AND K ARE LOOP INDICES. THE VARIABLE TREADLE CONTAINS THE COLUMN
INDEX OF THE ONE NON-ZERO VALUE IN THE CURRENT ROW OF THE SHED SEQUENCE MATRIX.
THE VARIABLE COLTREAD CONTAINS THE ENCODED COLOUR OF THE CORRESPONDING WEFT
THREAD *)

VAR
TEMVIE:SIZE;
COLOURS.SHAFTS: ARRAY[ 1..20] OF INTEGER:
14X, COLTREAD, TREADLE: INTEGER;

FOR =1 TONSDO

BEGIN
FOR J=1 TONT DO TEMTIE! J):=TIEUP[LL);
TEMTIE[ILNT+1):=0;

ERD;

FOR J:=1 TONT+1 DO TEMTIEINS+1J)=0;

FOR J=1 TOM DO
BEGIN
K=i;
SHAFTSIJI=NS+1;
COLOURS{U]=0;
WHILE (K<=NS) AND (SHAFTSLJ] » NS) DO
IF THREAD[K J] <> O THEN
BEGIN
SHAFTS[U]:=K;
COLOURSIS}=THREADIK J1;
END
ELSE K=K+1;
END;
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FOR =1 TONDO
BEGIN
K=1;
TREADLE =NT+1;
COLTREAD:=0;
WHILE (K<=NT)} AND (TREADLE> NT) DO
IF SHEDSEQ]{I K} <> O THEN
BEGIN
TREADLE :=K;
COLTREAD=SHEDSEQ{I K ];
END
ELSE K=K+1;

FOR J=1 TOM DO
IF TEMTIE[SHAFTS[J).TREADLE}=1 THEN COLARRAY(1.J):=COLOURS(J]
ELSE COLARRAY([IJJ):=COLTREAD;

END;
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3.4 DET INING AN INTERLACEMENT ARRAY USING MULTIPLE
THREADING

Before beginning a discussion of multiple threading, we must first
consider the different types of sheds which can be created by moving
shafts up and down from their normal rest position (Figure ({3.4.1})). These
are basically of three types, namely rising sheds, sinking sheds and those
sheds created by the simultaneous raising and lowering of warp ends.
Rising sheds are created when a shaft which is tied up to a treadle is
raised when that treadle is depressed. All of the remaining shafts remain
in their rest position (Figure {3.4.2]). A sinking shed, on the other hand, is
created when a shaft which is tied up to a treadle is lowered when that
treadle is depressed (Figure {3.4.3]). Al of the remaining shafts rise in a
counter-balance effect. A rising and sinking shed is produced in a single
system when some shafts are tied up so as to‘ rise when a particular
treadle is depressed, while other shafts are tied up to sink when the same
treadle is depressed (Figure (3.4.4)). All of the shafts are normally tied
either to rise or to sink, with the tie-up configuration corresponding to

the particular design being woven.

The idea of multiple threading is very old, dating back to at least
the eleventh century in England and even earlier than that in Asia [29,
p.199]. Numerous references appear throughout the literature describing
different types of double threading schemes {75, p.170], [16], and to a
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discussion of various applications [74], [49] These references however,
refer primarily to two particular schemes, the double presser harness
system [60, p.375] used on Jooms such as the counter-marche loom which
employ the rising and sinking shed system , and a modification of this
system for use on a rising shed loom [19]. in future the former will be

referred to as Type | and the latter as Type 2.

The advantage of multiple threading is that a smaller number of
shafts may be required to ﬁroduce a particutar weave structure than if
that same fabric had been woven on a locom which was singly threaded.
Structures which successfully employ this technique are generally those
which can be partitionedinto recognizable blocks and counter-blocks. In
other words, the macro-structure of the fabric consists of only two
different design eiements. Each of these two blocks is, in itself, an
intertacement array. A muitiply threaded loom then has shafts which
fulfill one of two functions. A given warp end is threaded through a heddle
on one shaft which controls the gross pattern of the fabric and then
through a second, and possibly a third, shaft which controls the detailed or

ground structure of the fabric (Figure [3.4.5)).

The Type | system uses long-eyed heddles on the ground shafts (x)
at the front of the loom and reguiar heddles on the pattern shafts (y),
located at the back of the loom. Each of the heddles on the ground shafts

can take one of three positions -- down, neutral or up, which can be
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represented by 0, | and 2 respectively, while each of the heddles on the
pattern shafts can only take one of two positions -- down and up or O and
1. All possible configurations of these two groups of shafts are
illustrated in Figure {3.4.6}, along with an indication of which groupings
will produce a shed, in the position of the shuttle race marked with an
arrow. From this diagram, it is clear that the presence or absence of a
shed formed between any single warp end (w) and the remaining warp ends,
which are threaded on pattern shafts in the neutral position and ground

shafts in the down position, can be modelled by the values of the

expressjon

(3.47) Xy *Vyl22
where Xy € X
and YeE VY

One method of determining an interlacement array (D) in these

circumstances is to evaluate

(3.48) D=CBA

where * indicates the usual matrix transpose and the operation is

130



P
VV

X = NEUTRAL 1
Y=DOWN O
NO SHED t

X=UP 2
Y=DOWN O
SHED 2

X=DOWN O
Y=DOWN O
NO SHED 0

FIGURE 3.4.6
131

X = NEUTRAL 1
Y=UP 1
SHED 2
X=UpP 2
Y=UP i
SHED 3

X=DOWN O
Y=UP 1
NO SHED 1



conventional matrix multiplication. The threading matrix (A) now contains
precisely two I's per column, with gne of these 1's appearing in the area
corresponding to the ground, or x shafts, and the other appearing in the
area corresponding to the pattern, or y shafts. The tie-up matrix (B) now
contains values of 0, | or 2 in the area of the tie-up corresponding to the
ground shafts and values of O or 1 in the area of the tie-up corresponding
to the pattern shafts. The shed sequence matrix contains precisely one |
per row with the rest of the elements being 0. The resulting matrix D
contains elements of value O, |, 2, or 3. in order that this matrix be
interpreted as an interlacement array, each of the elements is divided by 2

using integer division, to obtain the required binary matrix.
An alternative algorithm for determining an interlacement array

makes use of the indirect addressing concept discussed in Section (3.2},

using the following equation:
(3.49) d i,j = ((b rp =1} v (b rq =20 A (b r.q = 3),

where r is the column index of the single 1 in the i*" row of the shed
sequence matrix C, and where p and g are the row indices of the first and

second 1, respectively, in the j”‘ column of the threading matrix A.

This 'formulation corresponds to the requirement that, in order to
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have a warp end lie on top of a given weft pick, either the ground or the
pattern shaft (or both) on which the warp end is threaded must be raised
and the ground shaft must not be in the down position.

An implementation of this algorithm is given by the following

Pascal procedure.
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VARIABLE DICTIONARY:

M

NT

THREAD

SHEDSEQ

TIEUP

INTARRAY

SIZE

NUMBER OF ROWS IN THE THREADING MATRIX AND RESULTING INTERLACEMENT
ARRAY. (CORRESPONDS TO THE NUMBER OF WARP ENDS IN THE FABRIC SEGMENT)

NUMBER OF ROWS IN THE SHED SEQUENCE MATRIX AND RESULTING
INTERLACEMENT

ARRAY. (CORRESPONDS TO THE NUMBER OF WEFT PICKS IN THE FABRIC
SEGMENT)

NUMBER OF ROWS IN THE THREADING AND TIE-UP MATRICES.

* (CORRESPONDS TO THE NUMBER OF SHAFTS USED)

NUMBER OF COLUMNS !N THE SHED SEQUENCE AND TIE-UP MATRICES.
(CORRESPONDS TO THE NUMBER OF TREADLES USED)

THREADING MATRIX. BINARY MATRIX OF SIZE NS BY M WITH PRECISELY TWO
ONES IN EYERY COLUMN.

SHED SEQUENCE MATRIX. BINARY MATRIX OF SIZE N BY NT WiTH PRECISELY ONE
ONE IN EVERY ROW.

TIEUP MATRIX. DISCRETE MATRIX OF SIZE NS BY NT.

INTERLACEMENT ARRAY. BOOLEAN MATRIX OF SIZE NBY M.

VARIABLE TYPE - PACKED ARRAY [1..120,1 .. 120] OF INTEGER
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PASCAL ALGORITHM:

PROCEDURE DOUBLETH(VAR THREAD, SHEDSEQ,TIEUP,] NTARRAY SIZEMNNSNT: INTEGER);

(* THE ARRAY TEMTIE CORRESPONDS TO THE ARRAY TIEUP WITH AN ADDITIONAL ROW
AND COLUMN OF 2ERO VALUES ADDED. THIS ALLOWS THE POSSIBILITY OF A COMPLETELY
ZERO COLUMN OF THREAD OR ROW OF SHEDSEQ. THE VECTOR PATTERN CONTAINS THE ROW
INDEX OF THE FIRST NON-ZERO VALUE IN EACH COLUMN OF THREAD. THE VECTOR GROUND
CONTAINS THE SECOND NON-ZERO VALUE IN EACH COLUMN OF THREAD. THE VARIABLES|.J
AND K ARE LOOP INDICES. THE VARIABLE TREADLE CONTAINS THE COLUMN INDEX OF THE
ONE NON-ZERO VALUE IN THE CURRENT ROW OF THE SHED SEQUENCE MATRIX. *)

VAR
TEMTIESIZE;
GROUND,PATTERN: ARRAY[1..20] OF INTEGER;
13K, TREADLE: INTEGER;

BEGIN
FOR =1 TONS DO
BEGIN
FOR J=1 TONT DO TEMTIED J1=TIEUP{I J);
TEMTIE[LNT+1]):=0;
END;
FOR J=1 TONT+1 DO TEMTIE[NS+14]:=0;

FOR J:=1 TOM DO
BEGIN

K=1;

GROUND[JT:=NS+1;

PATTERN[J)=NS+1;

WHILE (K<=NS) AND (GROUND[J] > NS) DO

IF THREADIK J} «> O THEN
IF PATTERN[J] > NS THEN

BEGIN
PATTERNIJ]=K:
K=¥+1;
END
ELSE GROUND{J}=X
ELSE K=K+1;
END;
FOR =1 TONDOD
BEGIN
K=1;
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TREADLE =NT+1;
WHILE (K<=NT) AND (TREADLE> NT) DO

IF SHEDSEQ{1 K] ¢» O THEN TREADLE:=X ELSE K:=K+1;
FOR J:=1 TOM DO
IE((TEMTIE[PATTERN[J), TREADLE}=1) OR (TEMTIEIGROUNDIJ}, TREADLE]=2))
AND (TEMTIE[GROUND{J), TREADLE)¢>3) THEN

INTARRAY[IJ)=1
ELSE

INTARRAY(I Ji=0;

END;

END;
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The second system (Type 2) is meant to be used where only a rising
shed is available and involves triple threading of each warp end [19]
(Figure {3.4.10}). The first set of ground shafts at the front of the loom
(L) contain push down heddles, the second group of ground shafts (M)
contain push up heddles and the pattern harnesses (N) contain either
regular or push up heddles. Each type of heddle can take one of two
positions -- down, where down is equivalent to neutral in the Type |
system, and up, these positions being represented by O and 1 respectively
as in the figure. Since this is a completely binary system, the possible
sheds that can be formed between a single warp end (w ) and the remaining
warp ends, which are considered to be in the down position, can be

represented by the values of the logical expression

(34.11) Ly a (M v Ny )

wheret, €L, My, €Mand Ny, EN.

The algorithm for determining an interlacement array D in this

instance is given by the following steps:

(1) S=CB, where ' indicates the usual matrix transpose and

the operation is conventional matrix muitiplication
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(2)

(3)

(4)

(5)

K is assigned a value of 1

The threading matrix A is partioned row-wise into 3 sets, where
the bottom partition is the area of the threading corresponding
to the first ground shafts, the second partition is the area of the
threading corresponding to the second set of ground shafts, and
the top partition is the area of the threading corresponding to

the pattern shafts.

The K row of S is "multiplied” by every column of A withno

summation taking place.

The elements of the K row of D are determined by evaluating

the logical expression

(3.412) LBMY¥N)

for every column of the result of (4).
The dyadic operation p takes two binary matrices as

arguments and returns a result with one row. The ith element in

this row is 1 if either argument has 2 1 in its ith cotumn.
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The dyadic operation ¥ takes two binary matrices as
arguments and returns a result with one row. The it element
in this row is ! if both arguments have a 1 in their ith columns.

(6) Kisassignedavalueof K+ 1.

(7) Steps (4), {(5) and (6) are repeated for every row of S.

This algorithm is clearly very similar to the second algorithm

discussed for the Type 1 system and, in fact we have the following resuit:

THEOREM 3.4.13. The double presser harness threading system (Type 1) can
be simulated on a triply threaded rising shed loom (Type 2).

Proof. From the preceding discussion, it is evident that the triply threaded

rising shed system can be represented by
R: L'ﬂ F (Nw A 4 NW)
and that the double presser harness system can be represented by

C XW * Y
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where it may be recalled that Ly, M, Ny, Yy, are binary variables and -

Xy i5 a ternary variable.

As previously shown, the two expressions R and C describe whether
or not a given warp end will be allowed to rise to create a shed. R takes

the values O and 1 while C can take the values 0, 1, 2 and 3.

The values of the ternary variable X, may be represented by the

following arithmetic expression:

(3.4.14) X = Z1 X (Zy + 2

where Zy and Z, are binary valued variables. Then

(3.4.15) Xe * Yw = 2y X(Z) + Z) + Yy,

But (3.4.15) is "true” if and only if X, +Y,, = 20r 3. That is, Z must be

true (=1) and. either Z, must be true (= 1) or Y,, must be true (=1),

therefore Zl ~ (22 v Y), as required. O
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3.5 FACTORING INTERL ACEMENT ARRAYS

3.5.1 THE FUNDAMENTAL PROBLEM

Weavers frequently wish to know what loom set up and what
operating sequence they should use in order to weave a particular
structure. This involves them in problems of textile analysis in which the
method of construction has to be determined from a sample of cloth or
from an abstract interlacement array. For shuttle woven structures (i.e.
those in which the weft picks run from one side or selvedge completely to
the other side or selvedge), this means the determination of three binary
matrices (A, B, C) referred to as the threading, tie-up and shed sequence
'(or treadling) matrices, respectively in the literature [60]. Numerous
algorithms for this form of analysis have appeared in the past {13,
p.130-133], [18). However they all assume that the analysis is being
performed directly on the physical sample, and hence rely solely on a slow

and tedious manual approach.

The analysis process can however be divided into two distinct
phases. The first phase involves transiating the intersections which every
warp yarn in the fabric sample makes with every weft yarn into the
corresponding interlacement array. The second phase of the analysis can
now take place entirely with respect to this interlacement array, with nc

further reference to the actual fabric itself. This task now becomes an
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interesting problem in binary matrix factorization and is ideally suited to

machine algorithms.

Five such algorithms will be described, namely the Mathematical,
the Classical, a new algorithm called the Bucket Sort, and variations of
this latter process called the Aiternating Direction and the Minimal Bucket
Sort Algorithms. Theoretical comparisons between these processes will
be made, so as to determine estimates of the order of the number of
operations performed. A brief discussion of the practical considerations

of implementation will also be included.
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352 THE HEMATICAL ALGORITHM

- The Mathematical Algorithm for factoring a binary interlacement
array into its threading, shed sequence and tie-up components proceeds
with absolutely no regard to the data which is being analyzed and, as a
result, much information is discarded. The process basically requires that
every element of the first column be compared with every element of
all the remaining columns. This establishes which columns of the
interlacement array are identical to the first column. = Next, every
element of the first of the columns not betonging to this equivalence class
is compared with every element of all the remaining columns not in the
equivalence class. This process is continued until all of the columns are
partitioned into equivalence classes. The threading matrix will thus
contain as many columns as there are columns in the interlacement array
and as many rows as there are equivalence classes. Each column of the
threading matrix contains precisely one “1" value located in the row
corresponding to the number of the equivalence class to which that column

belongs.

Once the columns of the array have been analyzed, and the threading
matrix thus determined, the identica! procedure is applied to the rows of
the matrix, to give the shed sequence matrix. The shed sequence matrix
has as many rows as the interlacement array has rows and as many

columns as there are equivalence classes of rows. Each row of the shed
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sequence ‘matrix contains precisely one "1 value, in the column
corresponding to the number of the equivalence class to which the row

belongs.

The tie-up matrix contains as many columns as there are
equivalence classes of rows and as many rows as there are equivalence
classes of columns. For each distinct row of the interlacement array, the
tie-up contains “1° values in positions corresponding to the eguivalence

classes of columns with a “1” value in that row.

THEOREM 35.2.1. There is no binary interlacement array for which this

algorithm is not maximal.

Proof. Every element of two columns which are being compared for

equivalence is examined in order to detect corresponding positions in
which they disagree. The only circumstance under which every pair of
elements need be checked-for disagreement is in the case of equivaient
columns. Therefore, al} of the columns are equivalent and the fabric
structure corresponding to this array is certainly reducible (see Chapter
4). Furthermore, 2s will be discussed in Section (3.5.4}, no comparisons
need be performed on the rows, in order to determine the distinct rows of
this array. There are only two possible rows, namely all ones or all zeros,
The Mathematical algorithm ignores this information and requires that all
of the first row be compared with all of the elements of al! the remaining
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rows to determine the rows which lie in the first equivalence class. If
there are two equivalence classes of columns, gli of the elements of the

rows in that class are compared with a representative row of the class. 0O

An example of this algorithm is discussed in detail in Section
{357}
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3.5.3 THE CLASSICAL ALGORITHM

The first stage in the Classical Algorithm can be construed simply
as performing the identification of the number of distinct columns in an
intertacement array D and determining which columns are identical.
identical columns in the interlacement array correspond to warp yarns
which intersect with all of the weft yarns in the fabric, in precisely the
same way. Each set of distinct warp yarns must be threaded on a separate
shaft.

Similarly, in the second stage of this algorithm, the distinct rows
of this interlacement array must be identified and the fidentical rows
determined. All identical rows in the interlacement array correspond to
weft yarns which intersect with all of the warp yarns in the fabric, in
exactly the same way. Each set of distinct weft picks must be assigned to

a separate treadie.

The third stage of the algorithm, which can in fact be executed
simultaneously with stage two, involves determining, for each distinct
row of the interlacement array, precisely which combination of shafts

must be raised in order to produce this row sequence.

There are numerous variations of this algorithm [70], [20] which
have traditionally been performed by hand. Since the order of the
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interlacement arrays can be quite large (10° to 10° elements in one of
these matrices is not unreasonable), these processes become extremely
tedious and prone to error. Even a straightforward computer
implementation of the Classical Aigorithm therefore represents an

improvement in the speed and accuracy of fabric analysis.

One such computer imple'mentation of the hand algorithm for fabric

analysis involves the following steps [31}

(3.5.3.1) To obtain the threading matrix (A)
I. PutalinA; ;and0inA, ,k=23,....5 wheres isthe

maximum number of rows of A (correspending to the maximum

number of available shafts).
2. Compare the first column of D to all other columns of D.

3. For every column which does not match the first one in every

corresponding position, put a 0 in the corresponding column of

the first row of A
4. For every column which does match the first one exactly, put a

I in the corresponding position of the first row of A and O in the

rest of that column of A, as was done with the first column.
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S.  Choose the first cotumn of D which does not already have a ! in
its corresponding column of A. Put a | in this column of A, in

the next row, and O in the rest of the column.

6. Compare this column with the remaining unused columns,

assigning | and O to the A matrix as before.

7.  Repeat this process until al} columns of D have a 1 in some row

of the corresponding column of A.

(3.5.3.2) To obtain the shed sequence or treadling matrix (C)

i. Repeat the preceding 7 steps for the rows of D, with the

corresponding entries being made in the matrix C.

(3.5.3.3) To obtain the tie-up matrix (B)

!, For each distinct row of D, determine which elements of this
row are equal to 1. For each of these positions, scan the
corresponding column of A to find the row index of the single |
element. Place a | in this row of B, in the column associated
with the single | in the row of C corresponding to this

row of D.
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Examples of this algorithm ‘are discussed in detail in Section
{3.5.7], where it is shown that the order of the number of comparisons for
only the first pass of the threading is n{m-1), with n the number of rows
of D and m the number of columns. The computer implementation of this
algorithm performs quite satisfactorily, although it takes no advantage of

being machine based.
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3.5.4 THE BUCKET SORT ALGORITHM

The historic algorithm outlined in Section (3.5.3} involves a simple
identification of the distinct columns and rows of an interlacement array
D. However, the number of rows and columns in D are typically large and it
is generally known a priori that the number of distinct columns will be
much smaller (eg. of order 16 - 50). In practice, rows may differ by as
little as a single element and the different element may be in any position.
The threading analysis compares columns of D while the shed sequence
analysis compares rows of D so that, although it is possible to use special
hardware features which will automatically perform extended memory
comparisons as part of a sorting algorithm for the threading, the
interleaving of memory that this will imply for the corresponding

row-wise sort prohibits the simple use of this type of hardware feature.

It is also possible to note that in comparing two columns for
distinctness and accepting their difference, a considerable amount of
information is ignored if their first encountered position of difference 15

discarded. This is the case with the classical algorithm.

Let us now introduce the following terms.
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= . : 7T
Let Dj ={dyj.dp....dp;)

i=1,2,...m,
be the set of column sequences considered, where m is the number of

columns, n is the the number of rows, and

Qj,k=minr a{dr,j = dr,k]-

re (1,2,...n]
The following procedure can now be applied:

Definition 3.5.4.1.

Define a bucket B s.j:q as the set

BS,j q = {s: S=0j,k]

$s=0,1,2,...n
k=1,2,...
and gq=1,2,3,..

corresponds to the qt!' stage of the bucket determination.

Obviously, use of the column D}- has generated a set of distinctness

classes determined by their first element of difference, and we have the

two results.
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Theorem 3.5.42, Every setB s,j:q contains atl columns which are possibly

equal.
Proof. Follows from Definition (3.5.4.1). O

THEOREM 3.5.4.3. The number of distinct columns is greater than or equal

to the number of non-nuill buckets B s.jq-

Proof. Follows from Definition {3.5.4.1). O

COROLLARY 3.5.44 Inany given bucket B jq two sequences can only

differ in position k wherek » s +1.
Proof. Follows from Definition (3.5.4.1}). O

A convenient method of implementing the algorithm implied by

these observations is therefore:

1. jisassigned avalue of 1; q is assigned a value of 1.

2. Determine B 5,j:q for all columns not identified.

3. All columns identical to Dj are in bucket B+ 1,j:q Identify them

and B

ne1,jq 'S assigned this set of columns.
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4, All columns in By, j.q are identical (sequences are binary).

Identify them and B j:q is assigned this set of columns.

. Select any element inB j:q wherek =maxr (k€0 ...m). If

none exist, then B j:q is assigned the nuil set.

6. j is assigned the value k. q is assigned the value g + 1. Repeat
from step 2.

COROLLARY 3545. If B over the unidentified columns (g > 1) is

s.j:aq
being computed then it need only be determined for the contents of the
bucket B k,j -q-1 -

Proof. All other buckets already have a lower index of disagreement Q and
will be unchanged. O

COROLLARY 35.46. I a bucket contains a single column, it s a distinct
column.
Proof. Follows immediately. O

5,9
determined then Q; y..q (where k belongs to the set of {unidentified column

COROLLARY 3547 If B over the unidentified columns is being
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indices] is such that
N+120Q,.q20k:q-1

Proof. The index of disagreements between the columns of a bucket cannot

decrease and cannot exceedn+ 1. O

The shed sequence matrix determination part of the aigorithm
proceeds in an exactly similar manner. However, it should be apparent
that, in determining the distinct rows, having examined the columns,

further information is avaiiable, viz.

THEOREM 3.5.4.8. The distinctness of row sequences cannot differ over

columns which are identical.

Proof. Consider two rows ry and ro and two identical columns ¢y and ¢y,

with intersections ey |, € 9, e | andep .

Case I: |If ey - €21 then ey 2" € 2 and thus r, and rp ére not

distinct over both Cy and Co.

Case 2. if ey | = eq then ey o = €5 9, and thus ry and rop are
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distinct over both 4 and Co. 0

COROLLARY 35.4.9. If k columns are identical, then for the row-wise

algorithm k-1 columns can be discarded.

Proof. Follows directly. O

THEOREM 3.5.4.10. If the first pass of the Bucket Sort Algorithm has been
applied to the columns of a two dimensional array then columns which
agree to k places may be replaced by one of their number and the others
ignored in their first k places since they do not contribute to the

distinctness of rows.

Proof. Without loss of generality we can assume the first column defines
the first bucket classification of columns and that by permutation of the
columns each column in the array agrees to fewer or the same number of

places with column |.

Case 1. A column is identical to column 1: This implies that if two rows
are distinct over the identical columns then they will still be distinct if
all except one of the identical columns is ignored. In addition, if two rows
are identical then the corresponding elements in the identical columns are

all identical even if all except one of the identical columns is ignored.
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Case 2. The rtf column is identical to the first column as far as the kth
position: This implies that, for the first k rows, Case | applies and the

theorem follows. O

Examples of an algorithm based on the preceding resuits are
discussed in detail in Section [3.5.7} and a machine implementation of this

algorithm is given in the following Pascal procedures.

VARIABLE DICTIONARY:
N NUMBER OF ROWS IN THE BINARY INTERLACEMENT ARRAY

M NUMBER OF COLUMNS IN THE BINARY INTERLACEMENT ARRAY

SIZE  YARIABLE TYPE - PACKED ARRAY [1..120,1..120] OF INTEGER
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PASCAL ALGORITHM:

PROCEDURE SHUFFLE(VAR VECTOR:VECSIZESTART FINISH: INTEGER);
(* THIS PROCEDURE ACCEPTS ONE VECTOR AND TWO INTEGERS AS ARGUMENTS. THE TWO
INTEGERS SPECIFY A RANGE OF ELEMENTS WITHIN THE VECTOR. THE VECTOR IS PASSED
BACK WITH THE ELEMENTS WITHIN THE SPECIFIED RANGE MOVED ONE POSITION TO THE LEFT.
»
)

VAR
I:INTEGER:

BEGIN
FOR | =START TO FINISH-1 DO VECTORI]:=VECTOR]i+1]);
END;

PROCEDURE INSERT(VAR POINTERS SORT:VECSIZE - TARGET POSITION, LAST:INTEGER):

(* THE PROCEDURE PERFORMS A BISECTION SEARCH ON A VECTOR OF DISAGREEMENTS,
SORTED IN ASCENDING ORDER (SORT). TO FING THE POSITION WHERE THE CURRENTLY
COMPUTED DISAGREEMENT (TARGET) BELONGS. THE INSERTION IS MADE AND THE
CORRESPONDING VECTOR OR POINTER (POINTERS) IS ALTERED ACCORDINGLY. THE
VARIABLE POSITION INDICATES TO WHICH COLUMN OR ROW THIS DISAGREEMENT
CORRESPONDS. THE VARIABLE LAST CORRESPONDS TO THE INDEX OF THE LAST
DISAGREEMENT WHICH MUSY BE CHECKED. THE INSERTION WILL BE MADE BETWEEN
POSITION AND LAST. *)

VAR
INDEX FIRST MID: INTEGER;
FOUND:BOOLEAN;

BEGIN
IF POSITION<LAST THEN
BEGIN
INDEX :=POINTERS{POSITION];
IF TARGET<SORTILAST] THEN
BEGIN
FIRST =POSITION:
FOUND =FALSE;
WHILE (FIRST<=LAST} AND NOT FOUND DO
BEGIN
MID=(FIRST+LAST) DIV 2:
IF (TARGET>=SORTIMID}) AND (TARGET«=SORTIMID+{]) THEN
FOUND = TRUE
FASE
iF TARGET>SORTIMID] THEM FIRST=MID+1
ELSE LASTMID-{;
END:;
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SHUFFLE{SORT ,POSITION,MID);
SHUFFLE(POINTERS POSITION,MID);
SORT{MID).=TARGET;
POINTERS[MID):=INDEX;

END

ELSE

BEGIN '

SHUFFLE(SORT POSITION LAST);
SHUFFLE(POINTERS, POSITION LAST);
SORTILAST):=TARGET;
POINTERS[LAST ):=INDEX;

END
END
ELSE SORTIPOSITION]:=TARGET,
END;

FUNCTION MATCH(BUCKET N.MR1,RZ: INTEGERROW:BOOLEAN; VAR
BNEW:INTEGER; VAR INTARRAY :SIZE,ROWSORT :VECSIZE): BOOLEAN;

(* THIS FUNCTION COMPARES TWO ROWS OR COLLMNS (R1 AND R2) OF A BINARY
INTERLACEMENT = ARRAY TO DETERMINE WHETHER THEY ARE IDENTICAL N ALL
CORRESPONDING POSITIONS. IF THEY ARE iDENTICAL THEN THE FUNCTION RETURNS A
VALUE OF TRUE. IF THEY ARE NOT IDENTICAL THEN THE VALUE OF THE FUNCTION IS FALSE,
AND THE POINT OF DISAGREEMENT IS RETURNED IN THE VARIABLE BNEW. COMPARISONS
BEGIN AT THE VALUE PASSED DOWN IN THE VARIABLE BUCKET. THE VARIABLE ROW IS TRUE
IF ROW COMPARISONS ARE TO BE MADE AND FALSE IF COLUMN COMPARISONS ARE TO BE

MADE. *)

VAR
STATE:BOOLEAN;
INDEX:INTEGER;

BEGIN
INDEX =BUCKET;
IF ROW THEN
BEGIN
REPEAT
INDEX :=INDEX+1;
STATE :=INTARRAY[R1,ROWSORTHNDEX 1 J=INTARRAYIRZ ROWSORTIINDEX]};
UNTIL (ROT STATE) OR (INDEX=M);
END
ELSE
BEGIN
REPEAT
INDEX =INDEX+1;
STATE =INTARRAY[INDEX R 1 ISINTARRAY[INDEX R2];
UNTIL (NOT STATE) OR (INDEX=N);
END;
BNEW =INDEX-1;
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MATCH:=STATE;
END,;

PROCEDURE ANALYSIS(VAR INTARRAY SIZE;VAR ROWSORT, SHAFTNUM: VECSIZEMN:
INTEGER; VARNS:INTEGER);

(* THIS PROCEDURE DETERMINES THE THREADING MATRIX WHICH CORRESPONDS TO A GIVEN
BINARY INTERLACEMENT ARRAY ¥)

VAR
SORT POINTERS :VECSIZE.
BNEW,BUCKET,ILAST R1,R2,SHAFT P1P2: INTEGER;
CONDITION,ROW: BOOLEAN;

BEGIN
SHAFT=1;
RZ2=M-1;
LAST =1
ROW:=FALSE;
NS=1;
FORI=1 TOM DO
BEGIN
SORT{1)=0;
POINTERS{1]):=M-141;
END;

WHILE LAST> | DO
BEGIN =
SHAF TNUM[POINTERSILAST)):=SHAFT;
ROWSORTISHAFT1:=POINTERSILAST);
R1=LAST;
BUCKET:=SORT{R1);
LAST=LAST-1;
R2=LAST;
CONDITION:=(BUCKE T=SORT[R2])) AND (R2>0);
WHILE CONDITION DO
BEGIN
P1:=POINTERSIR1);
P2:=POINTERSIRZ);
IF MATCH{BUCKET N,M,P1,P2 ROW BNEW INTARRAY ROWSORT)  THEN
BEGIN
SHAF TNUM[POINTERS[R2]):=SHAF T;
LAST:=LAST-1;
SHUFFLE(SORT R2,LAST+1);
SHUFFLE(POINTERS R2 (LAST+1));
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END
ELSE INSERT(POINTERS,SORT BNEW R2 LAST);
R2:=R2-1;

IF R2=0 THEN CONDITION:=FALSE
ELSE CONDITION:=BUCKET=SORT{R2);

END;
SHAFT =SHAFT+1;

END;

IF LAST=1 THEN

BEGIN
SHAF TNUM{POINTERS{LAST}1:=SHAFT;
ROWSORT{SHAFT):=POINTERS|LAST};
NS:=SHAFT;

END

ELSE NS:=SHAFT-1;

END;

PROCEDURE TIE(VAR INTARRAY  TIEUP :SIZE ;SHAF TNUR1,ROWSORT POINTERS:
VECSIZE NS LAST, TREADLE :INTEGER):

(¥ THIS PROCEDURE DETERMINES THE TIE-UP MATRIX CORRESPONDING TO A GIVENBINARY
INTERLACEMENT ARRAY *)

VAR
I:INTEGER;

BEGIN
FOR I:=1 TONS DO
TIEUP[NS+ 1-SHAF TNUM{ROWSORT{ t]], TREADLE J:=INTARRAY[POINTERS
{LAST)L.ROWSORTI]]

END;

PROCEDURE TREADAN(VAR INTARRAY,TIEUP.SIZE,VAR TREADNUFT.VECSIZE: VAR
NT:INTEGER;ROWSORT :VECSIZEN: INTEGER);

(* THIS PROCEDURE DETERMINES THE SHED SEQUENCE MATRIX CORRESPONDING TO A GIVEN
BINARY INTERLACEMENT ARRAY. ™)

VAR
POINTERS,SORT:VECSIZE;
BNEW,BUCKET,LR1,R2LAST,P1 P2, TREADLE: INTEGER;
CONDITION,ROW: BOOLEAN

BEGIN
TREADLE:=1;
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R2:=N-1;

LAST:=N;

ROW = TRUE;
NT:=1;

FOR =1 TONDO

BEGIN
SORT[1):=0;
POINTERS{i{]:=N-i+1;
END;
WHILE LAST>§ DO
BEGIN
TREADNUM[POINTERSILAST)):=TREADLE;
TIE(INTARRAY , TIEUP, SHAF TNUM,ROWSORT ,POINTERS NS LAST, TREADLE);
R1:=LAST;
BUCKET:=SORT[R1);
LAST:=LAST-1;
R2:=LAST; :
CONDITION:=(BUCKET=SORT{R2]} AND {(R2>0);
WHILE CONDITION DO
BEGIN
P1=POINTERSIRI):
P2:=POINTERSIR2};
IF MATCH(BUCKET N,NS,P1,P2,ROW BNEW,INTARRAY ROWSORT)  THEN
BEGIN
TREADNURIPOINTERSIR2]):=TREADLE;
LAST:=LAST-1;
SHUFFLE(SORT ,R2,LAST+1};
SHUFFLE(POINTERS, R2,LAST+1);
END
ELSE INSERT(POINTERS,SORT BNEW R2 LAST);
R2=R2-1;
iF R2=0 THEN CONDITION:=FALSE
ELSE CONDITION:=BUCKET=SORTIR2);
END;
YREADLE:=TREADLE+1;
END;
IF LAST=1 THEN
BEGIK
TREADNUMIPOINTERSILAST1}:=TREADLE;
NT:=TREADLE:
TIE(INTARRAY, TIEUP,SHAF TNUM,ROWSORT ,POINTERS NS LAST, TREADLE),
END
ELSE NT.=TREADLE-1;
END;
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3.55 THE ALTERNATING DIRECTION ALGORITHM

The Bucket Sort Algorithm represents a considerable saving over the
Classical Algorithm in terms of the time required to factor a given binary
interlacement array. As will be shown in Section (3.5.6], thé largest
reduction in the number of operations performed appears in the second
phase of the algorithm, when the shed sequence and tie-up matrices are
being determined. The greatest reduction in the number of operations
required to determine the threading matrix can be realized when the
buckets are well distributed at each stage. In a worst case situation all
of the columns of the interlacement array which are being examined at any
stage lie in the same bucket. In this instance, the Bucket Sort Algorithm
threading computation becomes identical to the threading determination

process used in the Classical Algorithm.

The Alternating Direction Algorithm performs the first phase of the
factorization process (column distinctness determination) using the
Bucket Sort Algorithm. This determination of the threading is not
however, continued to completion but rather, is suspended at the kth stage.
in other words, only k columns of the interiacement array are assigned
threadings. As before, any columns within these k columns which are
identical are eliminated from consideration. At this point, processing
switches to the shed sequence determination stage (row distinctness

determination) of the Bucket Sort A!gbrithm and continues to the r'h stage.
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Threading determination now resumes on the array with identical rows
excluded. This alternation of processing continues until the threading,

shed sequence and tie-up matrices have been computed in their entirety.

Specifically, the basic alternating direction algorithm is given by

the following steps:

1. Determine the entries in the threading matrix for k, columns.

These will be the first kl columns encountered in the execution

of the Bucket Sort Algorithm and will not necessarily be

contiguous.

2. Determine row distinctness over those columns which have

been determined to be distinct and them - kl columns not

completely analyzed, for the first r, rows encountered in the

execution of the Bucket Sort Algorithm.

3. Make the corresponding entries in the r, rows of the shed

sequence matrix.

4 For each distinct row encountered, compute the corresponding

column of the tie-up matrix.
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S.  Resume threading determination at the k, + 1% stage.

Determine column distinctness over all of the distinct rows

encountered in step 4 and all of then - r, rows which were
not completely analyzed. Continue this process to the kz,lh

stage, when k2 entries of the threading matrix have been

determined.

6. Repeat steps 4 and S until the entire binary interlacement array
has been factored into its corresponding threading, tie-up and

shed sequence matrices.

in the algorithm which has just been described, the various values
of k and r are not chosen with respect to the data being processed but
rather, are selected a priori. A k-vector and r-vector where the elements
are multiples of 10 is one example of such a scheme. The threading
analysis continues until threading entries are assigned for 10 columns, at
which time the shed sequence analysis begins. After 10 rows of the shed
sequence matrix have been determined, processing of the columns resumes
and continues unti) an additional 10 columns have been completely
analyzed, and so on until all of the columns and all of the rows have been
examined. At each stage of course, the analysis takes piace over a

sub-matrix of the previous interiacement array.
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The greatest homogeneity of processing is obviously achieved by a
one - one alternation between column and row processing, where the
dimensions of the active interlacement array decrease by one every time
that a row or column is determined to be equivalent to a previously

examined row or column.

An alternative form of this algorithm has the values of k and r being
determined dynamically based on the character of the interlacement data.

One particular variation of this approach is given by the following steps:

1. Compare the first column with every other column, up to the
point where they disagree. This will establish the coarse

buckets.

2. Choose the first bucket and determine the threading for all of

the columns in it.
3. Compare the first row with every other row, up to the point
where they disagree and ignoring positions corresponding to

non-distinct columns. This will establish the coarse buckets for

the rows.
4 Choose the first bucket and determine the treadles for all of the
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rows in it.

S. At the same time, determine the corresponding tie-up entries

for every distinct row of the shed sequence matrix.

6. Resume examination of the columns. Determine the threading

for all of the columns in the second bucket.

7. Determine the shed sequence for 2!l of the rows in the second
row bucket and make the appropriate entries in the tie-up

matrix.

8. Repeat steps 6 and 7 until the binary interlacement array has
been completely factored into its threading, tie-up and shed

sequence components. -

The Alternating Direction Algorithm can provide a high degree of
homogeneity of processing. This may be desirable. if, for example,
processing is not to continue if »the number of shafts or treadles required
exceeds a given value. in the case where the number of shafts used is
small relative to the number of treadles, phase | of the Bucket Sort
Algorithm (the time-consuming stage) would be executed in its entirety
and the factorization attempt would be aborted part of the way through

the second phase of the algorithm. Using the Alternating Direction
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Algorithm, the end condition on the shed sequence matrix would be

detected at an earlier stage.

It should be noted however that, if the factorization process is to be
continued to completion, the Alternating Direction Algorithm represents
no saving in operations over the Bucket Sort Algorithm. This is
illustrated in Section (3.5.7) where a test case, constructed to give the

maximum advantage to the Alternating Direction Algorithm, is examined.
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3.5.6 THE MINIMAL BUCKET SORT ALGORITHM

Although the Bucket Sort Algorithm represents a substantial saving
of operations, particularly in the determination of the shed sequence
matrix, this saving is still not maximal. Having compared the columns of
an interlacement array and determined the number of leading positions of
agreement, this information can be used to eliminate row-wise

comparisons. Specifically, we have the following results:

Definition 3.5.6.1. Two columns are said to be k - equivalent if they agree

in the first k positions.

THEOREM 3.5.6.2. If n columns are k - equivalent then the eiements inn - |
of these columns need not be examined in the comparison of the first k

rows.
Proof. Without loss of generality, we can consider the n  k-equivalent

columns to be contiguous. The matrix with these columns will be of the

form
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p—n—

111111
222222

kkkkkk

¥ & % ok ok *

= —|

where all elements represented by the same integer i (1 ¢ i < k) are the
same, and where (¥) indicates elements about  which we have no
information. Clearly, all of these columns are identical up to and including
the k" element, and only one of these columns need be considered with

respect to the equivalence of the first k rows. O

If the complete Bucket Sort Algorithm for the columns has been

applied then the columns are sorted as follows:

Definition 3.5.6.3. The Bucket Sort Algorithm k-sorts the columns in the

sense that:

(i)  all distinct columns are adjacent;

(ii) all columns which are k-equivalent with the first column are
contiguous;

(iii) each set of k-equivalent columns is sorted with respect to the

first column of the k-equivalent set, etc.
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THEOREM 356.4 At the termination of the column analysis, the bucket
value for each of the distinct columns, with the exception of the first
column examined in each set of k-equivalent columns, contains the number

of leading elements in the column which have been accessed.

Proof. If, in the comparison of one column with any other column, a
disagreement occurs then the last position of agreement is recorded as the
bucket value for each column. Since we are only considering the distinct

columns, this value will always be less than the length of the column. O

COROLLARY 3565 At the termination of the Bucket Sort Algorithm for
the columns, the first column of each k-equivalent set of columns will
have a bucket value corresponding to the last position in which it agreed

with the column to which it was found to be k-equivalent.

COROLLARY 3.566.  The very first column which is examined in the

Bucket Sort Algorithm for the columns will have a final bucket value of 0.
COROLLARY 3.5.6.7. The final bucket vector gives the number of rows for

which each column can be ignored in performing the Bucket Sort Algorithm

for the rows.
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An algorithm which utilizes these results involves thé following

Perform the Bucket Sort Algorithm on the columns of a binary
interlacement array D;

compare the second row with the first row, only over the distinct
columns, only in positions corresponding to bucket values less than
two, and only until a disagreement is encountered;

set the bucket value for the second row to the last position of

agreement with row one;

_ determine the appropriate entries in the tie-up matrix for each

distinct row, as in the Bucket Sort Algorithm;
repeat steps two, three and four until the shed sequence and tie-up

matrices has been completely determined.

An example of this algorithm is discussed in detail in Section

(3.5.7).
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3.5.7 THEORETICAL COMPARISONS

The factorization algorithms discussed in this section have been
presented in order of increased potential efficiency. It is clear however,
that the efficiency of any of the algorithms is very data specific and that,
in some circumstances, two algorithms do in fact become identical. For
that reason, any analysis of the relative efficiency of these processes

must be based on examination of specific non-trivial test cases.

The following four test cases have been constructed to present the
the factorization algorithms with worst case situtations, so as to ensure

that these algorithms retain their distinct character.
TEST CASE 1:

Let A be ann x m array with m 2 n and such that
(1) A is symmetric (excluding the (m - n) last columns of A);

(2) m-n+! columns are identical;

(3) the columns of A, ¢;, are such that, if c;and C jare
columns with i < j and j < n, then ¢; is identical with Cj to

(i - 1) places.
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EXAMPLES:

¢ n sl—(m - n)—
R R 0 rrrrves o 10000000
I oi10000080
N 010 covveerenns D cvvvvens 0 001000080
...................... ogotoo0o00
URINIR IR

+ 0- ---------- I -------- I
GENERAL SPECIFIC
: (n=5, m=8)

TEST CASE 2:

Let Abeann x m array with m 2 n and such that
(1} m-n+ 1 columns are identical;

(2) the columns of A are such that, if ¢; and c}- are columns
with i < j and 1,j > (m - n), then c; is identical with ¢, to

(i- (1 +m - n)) places;

(3) the n rows of A, ry, are distinct and such that, if r; and
rj are rows with 1 <1<}, thenr; is identical with rj to

(i - 1 +{m - n)) piaces;

(4) ryis identical with all ri to O places.
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EXAMPLES:

fe—(m - n}—l n 4|
11110000
T P, 110« veeennnn 0 00001000
b 00000100
0 0010 »----e-e 0 00000010
00000001
40 00 - « +orevenesd
GENERAL SPECIFIC
(n=5, m=8)
TEST CASE 3:

Let Abe ann x m array withm xn and such that
(1) m -k columns are identical;
(2) n-krows are identical;

(3) the columns of A are such that, If ¢;and ¢ jare columns
and i <j and i > (m- k), then c; is identical with c; to

(i - (1+m-n)) places;

(4) therows of A are such that, if rjandr j are rows and
i <jandi>(n-k), thenr;is identical with rj todi-1+{m-n)

places.
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EXAMPLES:

f—(m - k)l K |
0 D0+ » socenscsnsns o T
(n - k)
0 DO+ » srnmronnenns 0 4
1 00000000
D« - roeQ1Q - svevenennns 0 00000000
O« » oo 0010 vrrvonnmens 0 k gooo0t1000
00000100
v e 2 rEaF § 2 8 s 233 eaeaaaaaan sﬂﬂﬂaﬂlﬂ
T ] N T 1 4 00000001
GENERAL SPECIFIC
(n=6, m=8, k=4)
TEST CASE &

Let Abe ann X m array with n 2 m and such that
(1) all m of the columns are distinct;

(2) the first k, of the columns agree to k, positions;

(3) of these k, columns, the first k, of them agree to an
additional k2 positions;

(4) (m - k,) of the columns agree to k; positions, with i <k;

(5) the (m - k,) remaining columns are sorted in descending

order of the value of ki-
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EXAMPLES:

—k, f—(m-k; )|
Kyl (kK ]
I+ nreenassiannaas .10 -
100 Kk,
v 1111160
| I | B | ¥ oo00010
Ky 000100
1--10- 0 001000
] 000000
“n-(k,+k, ) pr1o000
B 0 ooo00¢0
GENERAL SPECIFIC

(m=6, n=7, k|=3, k2=2)

The number of operations required in performing the Mathematical
Algorithm, the Classical Algorithm and the Bucket Sort Algorithm on the
interlacement array given by Test Case 1 are now determined, both for the
general and for the specific examples. Since the tie-up matrix
determination is constant in all of these algorithms, the number of

operations required to compute this array are not included.
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MATHEMATICAL ALGORITHM:

Part 1 - Threading Determination:

step i compares column i with all others.

* of comparisons in general and specific exampiles.

step 1. n x{m-1) 35
step 2: nx{m-2) 30
step n: nx{m-n) 15

At the nth step all of the remaining columns are determined to be

identical.

Total: nx@m-n-1)/2 125.
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Part 2 - Shed Sequence Determination:

step i compares row i with all others.

* of comparisons in general and specific examples.

step 1: mx(n-1) 32
step 2: m x (n-2) 24
stepn-1: mx| 8

Total: mxnin-1)2 80.

Total number of operations - part | and part 2:

(3mn?2 -n(m +n?+n))/2 205.
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CLASSICAL ALGORITHM:

Part | - Threading Determination:

step i: compares column i with all others

* of comparisons in general and specific examples

step 1: (m-1) 7

step 2: 2x{m-2) 12
stepn-1: (n-1)x{m-n+1) 16
step n: n{m-n) 15

At the n' step al) of the remaining columns are determined to be identical

to column n.

Total: (GBmn-2n2-nX(n+ 1)/6 65.
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Part 2 - Shed Sequence Determination:

step 1. compares row i with all others.

* of comparisons in general and specific examples.

step 1: (n-1)
step 2: 2%x(n-2)

stepn-1. (n-1) 4

Total: (n2-n)(n+1)/6 20.

Total number of operations - part | and part 2:
nin+ 1N 3Bm-n-2)/6 85.
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BUCKET SORT ALGORITHM:

Part 1 - Threading Determination:

step i compares column i with all others.

* of comparisons in general and specific examples.

step 1: (m-1) 7
step 2: (m-2) 6
stepn-1: (m-n+1) 4
step n: {m - n)

At the nt step all of the remaining columns are determined to be identical

to column n.

Total: mn-n(n+1)/2 25S.
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Part 2 - Shed Sequence Determination:

step i compares row i with all others.

* of comparisons in general and specific examples.

step 1: (n-1) 4
step 2: (n-2)

stepn-1. 1 1

Total: nin-1)/2 10.

Total number of operations - part 1 and part 2
n(m - 1) 35.
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Summary and Compai“ison for Test Case I:

Mathematical Algorithm:
Part 1:  n?(2m-n-1)/2 125
Part 2: mn(n-1)/2 80.

The difference in the number of operations for part 1 and part 2 of this
algorithm is based solely on the difference in size between m and n, as

itlustrated when we set m=n.

Part1: n?(n-1)/2 - 50
Part 2  n2(n-1)/2 50.

Total number of operations - part 1 and part 2
(3mn? - mn - n3 - n)/2 205.

Classical Algorithm:
Part:  (3mn-2n2-n)(n+ 1)/6 65
Part 2. ~ (n2-n){(n+ 1)/6 20.

For this test case, the difference in the number of operations required in

parts 1 and 2 of the Classical Algorithm is based solely on the difference

in size between m and n, as illustrated when we set m = n.
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Part 1: (R -nY{n+1)/6 20
Part2:  (n2-n)(n+1)/6 20.

Total number of operations ~ part 1 and part 2:
(3mn2 +3mn -n> - 3n?- 2n)/6 85.

Ciearly the ratio of the number of operations performed in the
Mathematical Algorithm to the number of operations performed in the
Classical Algorithm is d:1, where d is asymptotically 3. The ratio in the
specific example is 205/85, or 2.4

Bucket Sort Algorithm:
Part 1: mn-n{n+ 1)/2 25
Part 2: nin-1)2 10.

For this test case, the difference in the number of operations required in
part 1 and part 2 of the Bucket Sort Algorithm is also based solely on the

difference between m and n, as illustrated when we setm =n:

Part 1: nin-1)/2 10
Part 2: nin-1)2 10.
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Total number of operations - part 1 and part 2:
nim-1) 35.

The Classical Algorithm has a dominant term of (3mn? - n + 3mn - 3n2)/6,
~ while the Bucket Sort Algorithm has a dominant term mn. Ciearly the
ratio of the number of operations in the Classical Algorithm to the number
of operations in the Bucket Sort Algorithm will be greater than 1, and will

increase with n. The ratio in the specific example is 85 to 35, or 2.4

The number of operations (comparisons) performed in the analysis
of the binary interlacement array of Test Case 2 is now considered with
respect to the Classical and Bucket Sort Algorithms. The Mathematical
Algorithm is dependent only on the number of rows and columns in the
matrix and takes no account of the data itself. For this reason, it is not

included in the comparison of this, or the next test case.
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NUMBER OF COMPARISONS
TEST CASE |
SPECIFIC EXAMPLE

ALGOR!ITHM

MATHEMATICAL  CLASSICAL BUCKET

PART 1 125 65 25
PART 2 80 20 10
TOTAL 205 85 35
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TEST CASE 2:
CLASSICAL ALGORITHM:
Part 1 - Threading Determination:

step 1 : step 1 compares column r+1 with all others (r=m-n).
‘ r

* of comparisons in general and specific examples.

step 1, (m-nin+(n-1) 19
step 2 2(n-2) 6
step 3. 3(n-3) 6
step(n-1): 1(n-1) 4
Total: (6mn + n° - 602 - n)/6 35.
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Part 2 - Shed Sequence Determination:
step i: compares row i with all othérs.

* of comparisons in general and specific examples.

step 1: n-1t 4
step 2: (n-2)(m-n+2) 15
stepn- 1 m-1 7
Total - {((h - 2){(2n + nm - m}/2)

- (n(2n2- 3n - 5)/6) 38.

Total number of operations - part | and part 2:
(n (-n2 - 3n + 6m + 4)/6)
+(n-2)(2n+nm-m)/2) 73.
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BUCKET ALGORITHM:

Part 1 - Threading Determination:

step 1. step i compares column i+r with all others (r=m-n).

* of comparisons in general and specific examples.

step 1, (m-n)n+(n-1) 19

step 2, n-2) 3

step (n - l)r: I . i

Total; (m-mn+(n-1)n/2 25,
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Part 2 - Shed Sequence Determination:

step i: compares row i with all others ignoring the f irst

{m-n) columns.

* of comparisons in generai and specific examples.

step 1. (n-1) 4
step 2: (n-2)

stepn- 1 1 1
Total: nin-1)/2 10.

Total number of operations - part | and part 2:

nim-1) 3s.
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Summary and Comparisons for Test Case 2.
Classical Algorithm:
1720 -n+2)m-(n?-5n-6)n] 73
Bucket Sort Algorithm:
nim-1) 35S.
Forn S, the ratio between the number of operations required in the

Classical Algorithm to the number of operations required in the Bucket

Sort Algorithm is 2 2. The ratio in the specific example is 73/35, or 2.1.
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NUMBER OF COMPARISONS
TEST CASE 2
SPECIFIC EXAMPLE

ALGORITHM

CLASSICAL BUCKET
PART 1 35 25
PART 2 38 10
TOTAL 73 35

The Bucke! Sort and Alternating Direction Algorithms are examined
in terms of the number of operations required to factor the binary
interlacement array represented by Test Case 3 into its constituent

threading and shed sequence matrices.
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TEST CASE 3:
BUCKET SORT ALGORITHM:
Part 1 - Threading Determination:
step i: compares column i with all othgrs
* of comparisons in general and specific examples.
step 1: nim-1)-{k/2)(k-1) 36
At this point, the first (m - k) columns are found to be equivaient, while
each of the rerﬁaining columns is in a separate bucket and is therefore

distinct.

Total: nim- D -k/2)k-1) 36.
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Part 2 - Shed Sequence Determination:

step i: compares row i with all others, ignoring the first

{m-k-1) columns
step 1: [(2n-k)(k+ 1)/2]-1 19

At this point, the first (n - k) rows are found to be equivalent, while each

of the remaining rows is in a different bucket and is therefore distinct.
Total: {(2n-k) (k + 1)/2] -1 19.

Total number of operations - Part t and Part 2:
Con(m+k)-(k2+1) 55.
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ALTERNATING DIRECTION ALGORITHM:

Part 1 - Threading Determination:

* of comparisons in general and in specific examples.

step {: compares first column with all others
nim-1)-k{k-1)/2 36
step 2 Compare first row with all others, ignoring the

first (m -k - 1) columns

(Zn-k)(k+1)/2}-1 19
At this point, the equivalent rows and columns have been identified while
all of the remaining rows and columns lie in different buckets and are

therefore distinct.
Total: nim+k)-(kZ+ 1) 55.
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NUMBER OF COMPARISONS
TEST CASE 3
SPECIFIC EXAMPLE

" ALGOR!THM
ALTERNATING
BUCKET DIRECTION
PART 1 36 36
PART 2 19 19
TOTAL 55 55

The Bucket So::t and Minimal Bucket Sort Algorithms are now
considered with respect to the interiacement array represented by Test

Case 4. However, since the character of this test case depends critically
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on the specific elements in all of the positions, the specific case only will

be analyzed as a representative of this type of array.
TEST CASE 4

BUCKET SORT ALGORITHM:

Part 1 - Threading Determination:

* of comparisons in general and specific examples.

step I: compares first column with all others
16

At this point,' all of the remaining columns are different buckets.

Total: 16
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Part 2 - Shed Sequence Determination:

step i compares row i with all others.

* of comparisens in general and specific examples.

step 1: 6
step 2: 14
step 3: 1
Total: 21

Total number of operations - Part 1 and Part 2
37.
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MINIMAL BUCKET SORT ALGORITHM:

Part 1 of the Minimal Bucket Sort Algorithm is identical to the
Bucket Sort Algorithm, so that the number of operations required for Part
1is 16.

Part 2 - Shed Sequence Determination:

* of comparisons in general and specific examples.

step 1. compares first row with all other rows
6
step 2: compares second row with all other rows r;,

3<i<7,only in positions corresponding to columns

whose bucket value bi is less than i

10 ,

step 3: compares fifth and seventh rows
1

Total: 17.

Total number of operations - Part | and Part 2.
33.
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Clearly, the Minimai Bucket Sort Algorithm requires fewer
operations than the Bucket Sort Algorithm for this test case and this
increased efficiency is realized entirely in the performance of the shed
sequence factorization. The ratio of operations for the Bucket Sort and
the Minimal Bucket Sort Algorithms for Part 2 is 21/17, or 1.2, in this
specific case. Since the Minimal Bucket Sort Algorithm is so data specific
however, it is not possible to generalize the degree of improved
efficiency. The only claim which can be made is that there exist binary
interlacement arrays for which this algorithm represents a theoretical
improvement in the amount of processing required and in all other cases it

is no worse, since it includes the Bucket Sort Algorithm as a special case.
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NUMBER OF COMPARISONS
TEST CASE4
SPECIFIC EXAMPLE

ALGORITHM

MINIMAL

BUCKET BUCKET
PART | 16 16
PART 2 21 17
TOTAL 37 33
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3.5.8 PRACTICAL CONSIDERATIONS

Although the Mathematical Algorithm is of some interest because of
its simplification of the factorization probtem, it is not a reasonable
algorithm to be applied, either by hand or by machine. As shown in Section
{3.5.7], the Classical Algorithm represents a considerable saving in the
number of operations, While still maintaining a relatively simple form to
the process. The Bucket Sort Algorithm represents a further saving still,

but the processing becomes considerably more complex.

In order to ascertain whether or not the overhead involved in the
complexity of the Bucket Sort Algorithm would eliminate the theoretical
advantage to be realized, the Bucket Sort Algorithm was implemented in
Applesoft Basic and run on an Apple 2+ microcomputer. Timing
comparisons were made between this algorithm and a similar
implementation of the Classical Algorithm, with respect to the binary
interlacement arrays shown in Figures {3.5.8.1) and {3.5.8.2). These arrays
were selected as being representative of typical multi-shaft woven

structures. The results are summarized as follows:
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.5.8.1

FIGURE 3
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FIGURE ARRAY SIZE TIME (MIN. : SEC)

CLASSICAL BUCKET SORT
ALGORITHM ALGORITHM
] 2 TOTAL ! 2 TOTAL
3.58.1 8x8 :05 129 :34 04 08 12
16 x 16 125 312 337 - 10 30 40
32 x 32 1:08 6:37 745 37 52 1:29
47 x 84 3:54 1719 2113 241 1112 353
3582 12x12 15 1:25 1:40 07 18 25
27 x 27 53 330 423 28 32 1:.00
54 X 54 2:51 11:50 1450 1:.48 1:17 3:.05

where 1 indicates Part 1 (threading determination) of the algorithm and 2
indicates Part 2 (shed sequence determination) of the algorithm plus the

tie-up computation.

Clearly, the Bucket Sort Algorithm exhibits a practical as well as a

theoretical, advantage over the Classical Algorithm.

The Alternating Direction Algorithm is identical with the Bucket

Sort Algorithm with the exception that processing switches back and f orth
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between Parts 1 and 2. The speed of processing should thus be comparable
in these two situtations, except that the switching overhead is included in
the Alternating Direction Algorithm. This is not great but, since the
Alternating Direction has no advantage except in partial processing, this
algorithm is actually less efficient if the entire array is always going to

be processed.

The Minimal Bucket Sort Algorithm is never theoretically less
efficient than the Bucket Sort Algorithm. However, the structure of this
algorithm is so complex that it is not clear that these theoretical savings

can in fact be realized.
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3.6 FACTORING A COLOURED INTERLACEMENT ARRAY

Normally the analysis of a woven textile fragment begins with the
development of the corresponding binary interiacement array, with some
notation being made as to the colours of the various warp and weft yarns.
At this point, any of the preceding factorization algorithms can be applied
to the interlacement array to determine the appropriate threading, tie-up
and shed sequence matrices. It should be recalled that this factorization
is unigque modulo permutation of the rows of the threading and tie-up
matrices and permutation of the columns of the shed sequence and tie-up

matrices.

Sometimes however, a given coloured design is to be analyzed to
determine how, or in fact whether it can be produced on a loom. This
design then must correspond to a multi-valued array which is a coloured
interlacement array if and only if it can be decomposed into a vector of
warp colours, a vector of weft colours and a binary interlacement array,
all of which are self-consistent. In other words, we require that the
resulting factors reproduce the original coloured design when the coloured
interlacement array computation algorithm of Section {3.3) is applied to

them.

The first stage of this analysis therefore involves determining a
vector of warp colours (WARP), a vector of weft colours (WEFT) and a
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binary interlacement array (D = {d; jD corresponding to a given colour

interlacement array (K = [ki,j])- tmplicit in this description is the

verification that the array K is, indeed a colour interlaéement array. we

will make use of the following results.

THEOREM 3.6.1. At least one unambiguous warp and weft colouring can !

always be determined for any given coloured interlacement array.

Proof. Let us assume that the n x m array K under consideration is a
coloured interiacement array. We can now assume that weft colours will
appear at least once per row and that warp colours will appear at least

once per column. O

The following finite series of steps will produce the required vectors of

colours (encoded as integers):
1. Set WARPj = K]Jj for ali columns where Kl,j = Ki,j: for
- 11
2. Set WEFT; =K;  for all rows where K; | = K, j» for all i.
3. ;ferminate the process if the WARP and WEFT vectors are

complete.

4 Choose a value for j (j = 1,2,..,m) such that there exists some

Ki,j = Kl,] (i= I,2,...,ﬂ).
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S. Let K, . be a warp over weft intersectton and set

6. AN K j = WARP j are weft over warp intersections. Set

WEFTi = Ki j for ail of these values of i.
7. For all WEFT, determined in step 6, locate all Ki j = WEFT,

ang set WARP i equal to these Ki j-

8.  Repeat steps 6 and 7 until all vatues for WARP and WEFT have

been defined.
* If, at any point in this process, an inconsistency develops, the array
K is not a coloured interlacement array.

THEOREM 3.6.2. - Any rectangular region in a coloured interiacement array
corresponding to intersections between warp and weft yarns of the same
colour is structurally indeterminate.

Proof. The coloured interlacement array represents the colour which
appears at a given intersection. If the warp and weft yarns are of the
same colour, then it is impossible to tell whether this is a warp over weft

or weft over warp intersection. O

THEOREM 3.6.3. The representation of the intersection between Individual
warp and weft strands remains Invariant under row and column
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permutations of the binary interlacement array.

COROLLARY 3.6.4. The colour representation of the intersection between
individual warp and weft strands remains invariant under row and column

permutations of the coloured interlacement array.

EXAMPLE 3.6.5.
This example shows a coloured interlacement array K with two colours

{encoded as 2 and 3) and its corresponding warp and weft colour vectors.
The same array is also shown with its rows and columns permuted,'with
corresponding changes being made to the colour vectors. It is ciear that,
although the colour sequences have changed, the interlacement

relationship between jndividual warp and weft strands has not.

3322333333 WEFT =
3323333233
3333333333
3332332333
2222322233
K= 2322332232
3322232222
3332332333
2322232222
2322332232
2222232223

MBNRN Gl NN N (A G L A

WARP = 3322332233
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3333332233 WEFT" =
3333332332
3333333333
3333333223
3333333223
K = 2232332222
2333322222
3323222222
2323222222
2333322222
2223232222

NN RKNKN WG G WG

WARP" = 3333332222

THEOREM 366. A coloured interiacement array is structurally
determinate if and only if the sets of warp and weft colourings are

disjoint, as determined by the atgorithm of Theorem (3.6.1}.

Proof. Let us first assume that the sets of warp and weft colourings are
disjoint; that is that there are no weft strands of the same colour as any
of the warp strands. With no loss of generality, we can substitute values
of 1 in the coloured interlacement array wherever a warp colour appears
at a given intersection and values of O where a weft colour appears. The

resulting matrix is a binary interiacement array.

Let us next assume that the sets of warp and weft colours for a

given coloured interlacement array K are not disjoint. By Corolary (3.6.4},
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we can permute the rows and columns of K to produce a coloured array K
with solid coloured rectangular blocks lying on the principal diagonal.
These regions correspond to the intersections of warp and weft yarns of
the same colour and, from Theorem {3.6.2], we know that these regions are
structurally indeterminate. Therefore our original coloured interlacemént

array K is also structurally indeterminate. [

Based on the preceding results, we now have an algorithm for

factoring coloured interiacement arrays, as follows:

1. Obtain the warp and weft colour vectors, using the process
outlined in Theorem (3.6.1].

2. If the sets of warp and weft colours are disjoint, set elements
in the coloured interlacement array corresponding to warp
colours equal to |1 and weft colour elements equal to 0. Go to
step 4. |

3. If the sets of warp and weft colours are not disjoint, partition
the coloured interlacement array into regions which are colour
disjoint and regions which are not colour disjoint. Assign i's
and O's in disjoint regions, as in step 2. Areas which are
undefined are structurally indeterminate and intersections can
be freely specified according to whatever criteria you choose
(for example, reducibility -- see 3.8). Assign these value;.

4 Determine the corresponding threading, tie-up and shed
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sequence matrices for the resulting binary interiacement array,

using one of the algorithms of 3.5.

EXAMPLE 3.6.7.

This example shows a coloured interlacement array K, with disjoint warp

and weft colouring, along with its corresponding binary interiacement

array D.
52523335 WEFT =3
52522444 4
32522533 3
44522524 4
K= | 33322525 3
54442525 4
52333525 3
952544425 4

WARP = 952522525
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WARP =

EXAMPLE 3.6.8.

52522525

WEFT =

Do Do AW D

This example shows a coloured interlacement array K with warp and weft

colours which are not disjoint, along with the corresponding partially

determinate binary interlacement array D. The array D’ is D, with its rows

and columns permuted to show the indeterminate intersections in

rectangular regions.

WARP =

42432223
42434444
22434222
33434243
22234243
44444243
42222243
42333343

42434243
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P 110 01 WEFT =

AN LN AN LN

WARP = 42434343

f10i10 WEFT' =
10 10 1
11oa0 (11
orio [10
D= ootil I
10011 |
011100l
100110l

WL NN ND D

WARP® = 444422133

An implementation of this colour factorization process is given in

the following Pascal procedures.
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PASCAL ALGORITHM:

FUNCTION COLOR(VARK:SIZEMN: INTEGER).BOOLEAN:;

(*THIS FUNCTION DETERMINES A VECTOR OF WARP COLORS (WARP) AND A VECTOR OF WEFT
COLORS (WEFT} FOR A GIVEN COLOURED ARRAY, IF POSSIBLE. IF THE GIVEN COLOURED ARRAY IS
NOT A COLOURED INTERLACEMENT ARRAY, THIS FUNCTION WILL ASSUME A VALUE OF FALSE. %)

VAR
WCOUNT FCOUNT {.J: INTEGER;
FLAG:BOOLEAN;

BEGIN
COLOR:= TRUE;
WCOUNT =0,
FCOUNT =0,
FOR 1:=1 TONDO WEFT[I}:=-1;
FOR J:=1 TO M DO WARP[J):=-1;

FOR J:=1 TOM DO
BEGIN
I=1;
WHILE (1<=N) AND (X[iJ}=X[1 4]} DOi=l+1;
IF DN THEN
BEGIN
WARPLJI=KI14);
WCOUNT :=WCOUNT+1;
END;
END;

FOR!=1 TONDO
BEGIN
J=i;
WHILE (J<=M) AND (KILJIKIL1]) DO J=J+1;
IF J>M THEN
BEGIN
WEFT[I]=KIL 1)
FCOUNT =FCOUNT+1;
END;
END;
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IF WCOUNT <M THEN
BEGIN
Ji=1;
WHILE WARP[{J]>-1 DO J:aJ+1;
WARP[J):=K[1,4);
WCOUNT =SWCOUNT+1,
END;

WHILE {(WCOUNT<M) OR (FCOUNT<N) DO
BEGIN
Je=l;
FLAG=TRUE;
WHILE J<=M DO
BEGIN
IF WARP[JI<O THEN J:=+1
ELSE
BEGIN
FOR 1:=1 TONDO
BEGIN
IF (KL J1OWARPLJ]) THEN
BEGIN
IF WEFTLI<O THEN
BEGIN
FLAG=FALSE;
WEFT):=K[ 11}
FCOUNT =FCOUNT+1;
END
ELSE IF Kli JJOWEFTII} THEN
BEGIN
COLOR:=FALSE;
WCOUNT =4;
FCOUNT =N;
J=M;
END;
END;
END;
J=M;
END;
END;
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k=1;
WHILE I<=N DO BEGIN
IF WEFT(I] < O THEN I:=i+1
ELSE
BEGIN
FORJ=1 TOMDO
BEGIN
IF (KHJJOWEFTLI]) THEN
BEGIN
IF WARP{J}¢<O THENM
BEGIN
FLAG=FALSE;
WARPLJ]=K[tJ);
WCOUNT =WCOUNT+1;
END
ELSE IF K{1 J)<>WARP[J] THEN
BEGIN
COLOR=FALSE;
WCOUNT =;
FCOUNT :=N;
I:=N;
END;
END;
END;
I=l+1;
END;
END;

IF FLAG THEN
BEGIN
IF (WCOUNT<M) THEN
BEGIN
J=i;
WHILE WARPLID-1 DO J:=J+Y;
WARPIJ)=KI[1J]);
WCOUNT =WCOUNT+1;
END
ELSE
BEGIN
I=1;
WHILE WEFTIIh-1 DO =14+ 1;
WEFT[1):=Ki, 1L
FCOUNT =FCOUNT+1;
END;
END
ELSE FLAG:=TRUE:
END;
END;
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PROCEDURE BINARRAY(VARK D:SIZE;WARP WEFT-VECSIZEMN: INTEGER);

(*THIS PROCEDURE COMPUTES A BINARY INTERLACEMENT ARRAY D FOR A GIVEN COLOURED
INTERLACEMENT ARRAY K, BASED ON THE WARP AND WEFT COLOUR VECTORS COMPUTED IN THE
PREVIOUS PROCEDURE. ALL ELEMENTS OF D WHICH ARE INDETERMINATE ARE ASSIGNED A VALUE OF ~1.
")
VAR

1oJ: INTEGER;

BEGIN

FOR =1 TONDOFOR J:=1 TOM DOD[IJ]=-1;
FORJ=1 TOM DO
BEGIN

FOR =1 TONDO

IF WARP[J}<>WEFT[I) THEN

IF WARP[JJ=K[1./1 THEM D1, J):=1 ELSE D[ J]}=0;
END; :
END;
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3.7 AFACTORING ALGORITHM FOR MULTI.PLE THREADING

Wwhen a conventionally woven fabric is produced on a loom with only
one harness, a separate shaft is required for each equivalence class of
strands. However, in some instances the nature of the weave structure is
such that the number of shafts can be reduced if multiple threading is
used. In this case, each warp strand is threaded through more than one
shaft as described in Section [3.4). This corresponds to a factorization of
a binary interlacement array into a threading matrix with more than one |
per column and a tie-up matrix which is multi-valued, as described in
section [3.4). The shed sequence matrix is binary with precisely one | per

row, as in the case of the single harness system.

Not all binary interlacement arrays can be factored in this manner.
In order to determine whether or not a given structure can be multiply

threaded, we consider the single harness factors.

Definition 3.2.1. A single harness factorization of a given binary
interlacement array is one which produces a binary threading matrix with

precisely one entry of one per column, a binary shed sequence matrix with

precisely one entry of one per row, and a binary tie-up matrix.

Definition 3.2.2. A compound factorization of a given binary

interlacement array is one which produces a binary threading matrix with
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more than one entry of | per column, a binary shed sequence matrix with
precisely one entry of 1 per row, and a tie-up matrix which is

multi-valued.

THEOREM 3.7.3. The ability for a given binary interlacement array to be
compoundl? factored is dependent solely on the properties of the single

harness tie-up matrix.
This follows from the foliowing theorem.

THEOREM 3.7.4. A given binary interlacement array can be compoundly
factored if and only if the corresponding single harness factorization is
such that there exists a one-to-one mapping of the ns shafts onto ns/d

shafts, with ns/d an integer.

Proof. If a binary interlacement array is compound factored then the
ground structure is controlled by the long-eyed heddles at the front of the
loom, where these heddles can take one of three positions, namely down,
neutral or up. The determination of precisely which of the threads which
can potentially be raised by the front shafts is controlled by the pattern
shafts at the back of the loom, where the heddles on these shafts can take
one of two positions, namely down or up. Therefore, p x q shafts have
been mapped onto q shafts, where p is the number of pattern shafts and g

is the number of ground shafts.
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If the single harness tie-up for & given binary interlacement array
is such that there exists a one-to-one mapping from ns shafts to ns/d
shafts, with ns/d an integer, then all of the strands can be threaded on
ns/d ground shafts. In addition, all of the strands must be threaded on one

of d pattern shafts. [
THEOREM 3.7.5. In order for compound factorization to reduce the
number of shafts required, the number of ground shafts (ns/d) must be

greater than 2.

Proof. There are only two inequivalent binary tie-up matrices of size 2 x

NN

The four shafts required for this tie-up could be reduced to two, by

2, namely:

combining these tie-up matrices, however two pattern shafts would also
be required and there would be no reduction in the total number of shafts

required. O
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EXAMPLE 3.7.6.

Single Harness Factorization:

000001
0000190
0001090
001000
010000
100000

101001
011010
110100
001101
010011
100110

000111
111000
001001
0100190
100100

101001
011010
110100
001101
010011
100110

100110
010011
001101
110100
011010
101001

100000
010000
001000
000100
000010
000001

Factorization Using Multiple Threading:

000111
111000
210210
021021
102102

100000
010000
001000
000100
00001t0

000001
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Pattern Shafts
0 =down; t =up

Ground Shafis
0 = down; | = neutral; 2=up



An algorithm based on the preceding results has the following steps:

Obtain a single harness factorization for the given binary

interlacement array.

Choose the minimum block size b, such that b| ns, the total
number of shafts required in the single harness factorization,
and such that b > 2.

Partition the rows of the single harness tie-up matrix B into
sets of b rows, [b'), and sum the columns of each of the {b’).
Choose the set of rows, (b}, whose first column sum is the
smallest.

Construct a one-to-one mapping of the shafts in column one of
this {b’} onto the shafts of the row set whose first column sum is
the next largest. Repeat for all columns of (b').

If an inconsistency develops at any point, return to step 5 and
choose a different initial mapping.

Construct a one-to-one mapping of this combined set onto the
row set whose first column sum is the next largest. Repeat for
all columns.

Repeat step 7 until all ns rows have been mapped onto ns/b

FOWS.

If no self-consistent mapping exists then return to step 2 and
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10.

IR

12.

choose the next largest block size.
If no further block sizes are possible then the given binary

interlacement array cannot be compoundly factored.

Re-write the threading matrix A on b shafts, according to the

mapping developed in the previous steps.

Choose a second shaft s j for each warp thread a jr

3 sj=b+r(aj-l)1+l.
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EXAMPLE 3.7.7.

TIE-UP
FIGURE 3.7.8
INTEGER REPRESENTATION

011101110001
101110110010
110111010100
111011101000
011100010001
101100100010
110101000100
111010001000
oootiottl101 11
001010111011
010011011101
100011101110
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FIGURE 3.7.8
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i
Al

COLUMN SUMS FOR (b')
222322230111
223211211011
221212111211

111032223222

MAPPING 1§

1 2 3)

S 6 5} inconsistent

MAPPING 2

1 2 3)

6 S 5} inconsistent
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COLUMN SUMS FOR [b')

J33333331111
333311118111
111133333333

MAPPING 1
1 2 3 4

5 6 7 8

9 10 11 12
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TIE-UP
FIGURE 3.7.8
COMPOUND FACTORIZATION

111111110000 Pattern Shafts
111100000000 O=down; i=up
o000 1111 LT]

011201120112
102110211021 Ground Shafts

12011201120 0=doWn;|=neutral;
211021102110 2=up
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THREADING
FIGURE 3.7.8
INTEGER REPRESENTATION

00000006000100000000000§
0000006000010000000000010
000000000100000000000C100
000000001000000000001000
000000010000000000010000
000000100000000C0600100000
00000!000000000001000000
000010000000000010000000
000100000000000100000000
001000000000001000000000
010000000000010000000000
100000000000100000000000
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THREADING
FIGURE 3.7.8
COMPOUND FACTORIZATION

000000001111000000001 11}
000011110000000011110000
llllOOOOOOOO!!lIOOOOOOOO
000200020002000200020002
002000200020002000200020
020002000200020002000200
200020002000200020002000

where 1 = reguiar heddles and 2 = long-eyed heddles.

233



3.8 COERCIVE ANALYSIS

In the interest of efficiency, it is frequently desirable to determine
whether a new structure can be woven on a loom which has already been

threaded on a specified number of shafts.

Definition 3.8.1. Coercive analysis is defined as the process whereby an
attempt is made to force the threading matrix for a given interiacement
array to conform to a previously formulated configuration, with

appropriate changes being made to the tie-up matrix.

it should be noted that coercion of a threading is not aiways

possible, and the following results apply:

Definition 3.8.2. A single harness threading Tk,r on r shafts is defined as:
Ter=® oo T T T -

where
Te=l(ay,2p,...,3]

and

aiE[I,2,... 7}
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with

Uap=02...0

Definition 3.8.3 The get of interlacement arrays e(T, ) is that set of

intertacement arrays whose threading factor is Tk r

Definition 3.8.4 The threading T, . is subordinate to T, ¢ if and only if

a(T, ) is contained in or equal to &(T, JJ)ands2r.

Definition 3.8.5. The period p of a threading T . is such that
p=ming
where

aj =3J+q Vj

Theorem 3.8.6. If the period of the threading Tk r is Py, and the period of

the threading Ty ,, is po then, in order that Ty . be subordinate to T, ., p,

must divide P2, for non-trivial threadings.
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Proof. Let (a;) be the elements of T, . and {b;) be the elements of T [, !f

Tk r is subordinate to Tk n then there is an equivalence relation between

4the two threadings, such that

a, is equivalent to b,

>
[}

,2,...,k

Consider
3y 8 3 A1}a[11. .. p[i]ex ... Bp[2]. .. Bpl2hx ... %

by by by bp13Pplijer .. Ppl1lex... Ppr21.. Ppl2kex. .. Bk

where p[1]=p,

ay fs equivalent to bx

Bp[2)+x is equivalent to bp[2]+x-
But p, is the period of Tk,n , S0 that

b, is equivalent to bp[2]* X
Therefore a, is equivalent to ap2)ex-
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But P is the period of Tk,l" (with Py ¢ 02). Therefore 3y (mod pl1}) is

equivalent to ap[2k+x (mod pl1]) In

order that Tk’r be a non-trivial

threading, py must divide pp as required. O

Theorem 3.8.7. For Tk,r to be subordinate to Tk,nv there must exist a

mapping

as, aSil Py as+t,

by, by ,.

from Tk,r to Tk,n» such that

¥ijs {as,,j*bj,,ll,

if as+p = bt* i
and as.(.q = bt."‘ |+
then B54p = Ageq

"’b{"'l""

...,as+k_] |

ka

Proof. If Tk r s subordinate to Ty ,,, then the mapping from T pto Tk,n

can be constructed by the following sequence of steps:
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Given Tk,!‘ with Tk = [al, 32, e ,ak} and Tk,n with



Tk = {bl’ Dz, Ces 'bk]’
Seti=1.

If 3; = b; then set Cp[i] = 3js set i=1+ 1 andreturn to step 3.

If a; = bj and cpyj) is undefined, then set cppj) = @, set i =i+ |

and return to step 3.

If a; = b; and Cpii} = X where x = a;, then shift the sequence
[a,, a, ..., ak] one position to the right, with cyctic wrap-

around, and return to step 2.

If the sequence (ay, ag, . .. ,ak] has been shifted through k

positions, then reverse the order of the sequence and return
to step 2_.

The algorithm  terminates, either when the mapping

C = (cy, €y, . . . ¢} has been constructed, or when the 2k
variations of the sequence {a,, 3,, . . ., ] have been unsuccessfully

compared with the sequence (by, bo, ..., by]. In the latter case, the
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threading Ty  is not subordinate to the threading Ty |, .

EXAMPLE 3.8.8.

Given two threading sequences

T I 0,4 = (2’3’2’ ‘ !41 ‘ :2:3:2: ']

and
Tio6={1.23,456,5,43,2),

we wish to determine whether the threading T,q 4 is subordinate to the.

threading T1g ¢ -

in attempting to construct a mapping between the two threading
sequences using the algorithm in Theorem (3.8.7}, an inconsistency is

encountered when i = 7. The threading sequence Tyq 4 is shifted one

position to the right, with cyclic wrap-around, and a mapping between the

two threading sequences Ty 4 and Ty ¢ IS successfully constructed, as

follows:

I=1;, 1=5; 2=2;,2=4, 3=3, 4=6.
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Figure {3.8.9} illustrates the effect of this coercion on the

cotresponding tie-up matrix.

3 3 33
2 2 2 2 22

6 66
5 5 9 5
4 4 44
3 3 33
2 2 22
1 1 1
T10.4 THREADING AND CORRESPONDING TIE-UP

AFTER COERCION TO T,  THRERDING

FIGURE 3.8.9
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4.1 INTRODUCTION

Muiti-layered cloths represent a class of textile structures which
exhibit a number of important utilitarian and aesthetic features. Fabrics
cah be made thicker and heavier without increasing yarn size. The volume
and weight of a fabric can thus be increased while still maintaining the
visual appearance and surface tactile properties of a finely woven
structure. Much use of multi-layer cloth techniques can also be made in
creating interesting visual effects. Extra sets of warp or weft yarns can
be introduced to create blocks of design in a solid colour. Alternatively,
extra warp and weft layers can be woven simultaneously to produce two
completely different fabrics v&hich are “stitched” together to form a

reversible textile with surface interest on both faces.

Classically, these muiti-layer structures have been cilassified
according to whether the layers are point stitched together at single
intersections -or are held together by the interchange of entire fabric
areas. The point stitched fabrics have been subdivided further, based on
which set or sets of yarns do the stitching. This classification system is

well defined in [22, p.103] as follows:

(1) Self-stitched double cloths. These fabrics
contain only the two series of threads in both
directions and the stitching of the face cloth layer
to the back layer is accomplished by occasionally
dropping a face end under a back pick, or, by lifting

242



a back end over a face pick, or, by utilising both of
the above systems in different portions of the cloth

(2) Centre-stitched double cloths. In these fabrics
a third series of threads is introduced either in the
warp or in the weft direction whose entire function
is to stitch the two otherwise separate layers of
cioth together. The centre threads lie between the
face and the back cloth and for the purpose of
stitching oscillate at regular intervals between the
face and the back thus achieving the required
inter-layer cohesion. .. . :

(3) Double cloths stitched by thread interchange.
These structures are similar to the first category
inasmuch as they do not contain an additional
series of stitching threads. However, they are
distinguished from the self-stitched fabrics by the
fact that the stitching of the face and the back
cloth is achieved by frequent and continuous
interchange of some thread elements between the
two cloth layers. Thus, in some portions of the
cloth the face ends may be made to interweave
with the back picks and the back ends with the face
picks... .

(4) Double cloths stitched by cloth interchange. In
this class of constructions the principle of the
interchange is taken one stage further than in the
third category and complete layers are made to
change places. .. .
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A more recent scheme proposed by Newton and Sarkar [59] divides

all structures into four types, namely

(1) single-layer;

(2) muiti-layer without stitching;

(3) single-direction multi-layer with stitching where, either
the ends form two or more layers with the picks remaihing
in a single layer or conversely, where the picks form two
or more layers and the ends remain in a single layer;

(4) two-directional multi-layer with stitching where the warp
ends and weft picks form two fabric layers connected by

stitching points.

Stitching in this sense is taken to include areas of cloth interchange as
well as the more restrictive form involving stitching points or

intersections.

In order to classify a fabric by either of these systems one relies on
being able to observe the structure or physically analyze the fabric. If
however, one is examining a point diagrafn rather than the actual fabric,
the type of f abfic cannot be readily classified because a homogenous point
diagram may conceal the fact that a structure is muiti-layered and/or
reducible. Weavers have therefore needed an identification process to aid

in ciassifyi‘ng point diagrams into these different types of structures and
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to determine their level of reducibility. Two types of analytical tools

have been developed to facilitate this process.

The first of these classes of tools comprises the algorithms for
identifying binary interiacement arrays which correspond to reducible
fabrics. These textile structures do not form a cohesive fabric but can be
separated into two or more completely disjoint layers of strands and/or
fabrics, corresponding to Newton and Sarkar's category 2. Partial
reducibility, corresponding to Newton and Sarkar's categories 3 and 4 and
all of Grosicki's four types, can also be identified from the binary
interlacement array, by means of a computational algorithm. These

algorithms are discussed in Section {4.2).

The second type of analytical tool is that characterized by
algorithms for mapping binary interlacement data to an alternative
representation corresponding to cross-sectional cuts through the warp or
weft yarns of a fabric, between successive weft or warp yarns. This form
of display provides a great deal of insight into the relative planar
positions of the constituent strands and is particularly useful for
examining reducible and partially reducible fabrics. Cross-sectional
diagrams and the appropriate mapping algorithms are discussed in Section
{4.3).
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4.2 ALGORITHMS FOR DETERMINING REDUCIBILITY

A reducible weave structure is a binary interiacement array
corresponding to a cloth which separates into two or more disjoint layers
of strands and/or fabrics. An jrreducible weave structure is a binary
interlacement array corresponding to a cloth in which all of the
constituent warp and weft strands are interlaced. A partially reducible
weave structure is a binary interlacement array corresponding to a cloth
which consists of two or more fabric or strand layers held together at a

small number of intersections.

In some instances, fabric structures are designed to be reducible to
fulfill particular purposes. This does provide, for example, a technique for
producing two fabrics simultaneously or for weaving a tubular cloth or a
fabric which is twice the Joom width [22, p. 104]. It is far more common
however, to design woven textiles which are intended to be irreducible or
only partially reducible, in which case structural reducibility is a property
which must be identified and eliminated. This is especially important
with the development of interactive COmputer graphical systems which
permit the rapid design of point diagrams representing novel and
unfamiliar interlacément arrays. As discussed in Section {4.3.2), it is not
always intuitively obvious from a point diagram that a given structure is
in fact reducible. We now consider four algorithms for determining

reducibility, namely an algorithm based on row and coiumn sums [10], an
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algorithm involving row and column permutation, an algorithm based on a
graph theoretic approach [15], and an algorithm based on the identification
of circuits [S1), [S9]. The last mentioned aigorithm can also be used in

identifying structures which are only partially reducible.
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4.2.1 A_LGORIT_HH BASED ON ROW _AND COLUMN SUMS
Clapham’s algorithm [10] relies entirely on two principles.

1. The reducibility of a weave structure depends entirely on the "set of
row-sums and the set of column-sums” of the corresponding

interlacement array.

2. |If afabric separates into disjoint layers of strands or fabrics “then it
does so by taking a set of weft strands corresponding to a certain
number of rows with row-sums as small as possible and a set of warp
strands corresponding to a certain number of columns with

column-sums as large as possible”.

This mathematically simple process is defined by the following steps.

1. For a given binary interlacement array
D=[di,j“= l,?,...,ﬂ,‘j= 1,2,...,m}

compute the row sums
[rili= 1,2,....,n}

and the column sums
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{cjlj =1,2,...,m}.
Sort the row sums into ascending order and the column sums
into descending order. '
Let j=t.
Choose the largest value of i such that
ri < _]
Calculate
Ei,j=" +...+ri+(n—c,)+...+(n~cj)-(ixj).
If Ei,j is not equal to O, calculate Ei,j forj=j«+I.
Continue until E; j* 0 oruntil j=m.
when Ei i= 0, the weft strands corresponding to
r] . I‘i
and the warp strands corresponding to
C1 - Cj
form one reducible layer which can be separated from the

- remaining fabric.

ITE; j is not equal to O for all values of j, j=1,2,...,m then

the interlacement array D represents a single layer irreducible

fabric structure.

It should be noted that this aigorithm does not differentiate
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between irreducible and partially reducible structures. A cloth which
consists of two fabric layers joined at only one intersection will
therefore be designated irreducible by this analysis. The algorithm also
does not directly determine whether a reducible structure is composed of

more than two layers.

In order to determine whether or not the two layers of a reducible
fabric are themselves reducible, it is necessary to construct two

sub-matrices and re-apply the algorithm on each of these, as follows:

I.  Given A = (3 j}, an n x m reducible array in which the first r

rows and the first ¢ columns separate from the remaining (n - r)
rows and {(m - c) columns of A,

2. Create two sub-arrays, X and Y, where
X=(aij|i= 1,2,...r;i=1,2, ... c]

and Y= [ai j fi=rel,re2,... 0 j=c+1,042, ... m)

Apply the preceding algorithm to X and Y.
4, If neither X nor Y is reducible, then the structure consists of
only two layers. If either, or both of these matrices is

reducible, then apply steps 1 through 3, as before.

Clearly a major component of this algorithm is the sorting of the
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integer valued row and column sums, and the evaluation of the table of

values Ei i thus making It ideally suited to computer processing.
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4.2.2 ALGORITHM INVOLVING ROW AND COLUMN PERMUTATIONS.

THEOREM 4.2.2.1. The reducibility of an interlacement array depends

only on the row and column sums.
Proof. From the previous algorithm. D

LEMMA 4.2.2.2. The reducibility of an interlacement array is invariant

under row and/or column permutations.

Proof. If A is an interiacement array and

[— —

1

with Aus=r,

thenr is the vector of row sums of A. Applying a row permutation P to A

implies that

PAu=Pr
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i

and the values in P r are the same as those in r, but permuted in order. A
similar argument applies to columns and hence, using Theorem {4.2.2.1},

the result follows. O

Janice Lourie [50] used a similar result to effect the synthesis of a
multi-layered fabric from two or more single layer structures. She

constructed an initial matrix P, where

with: Wy and W, interlacement arrays,

0 a matrix of O's of appropriate dimensions,

1 amatrix of 1's of appropriate dimensions;

and "with the "1" submatrix insuring that all the columns of W, are ‘over'
all the rows of W, and the "0" submatrix insuring that the columns of Wo

are ‘under' all rows of w, "

She then developed an algorithm for systematically permuting the

rows and columns of P so that the rows and columns of the arrays W, and
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W2 were interleaved. This was analogous to “vertically stacking” the

corresponding single layer fabrics.

THEOREM 4.2.2.3 An nxmarray A isreducible if and only if

ElC
A= P j__- | 0
DI|O

where P, Q are permutation matrices, Eisan r x s matrix of 1's, 0 is

an (n-r)x(m-s) matrix of 0's and C, D are matrices of appropriate

dimension.
‘Proof. If
Eic
A= P | ____ | 0
Dlo

then, from Lemma (4.2.2.2), A is reducible. Similarly, if A is reducible,
this implies that the interlacement array consists of at least two layers
which separate. These layers may be written, with no loss of generality,

as
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1c

Ly= | —
NIO
1M

L2= ——
olo

where Ly and L2 have the same partitioning as A and the dimensions of i,
C., 0, and D are changed appropriately. The arrays N and M are dummy

arrays, whose entries fulfill no purpose other than that of enabling Ly and

L to be written as square arrays. Now, if L, overlays Lo, the array

1icC

Dio )

is obtained. O
A consequence of this theorem is that it may be used to determine

the reducibility of an interiacement array, and in detail is given by the

following steps, where it is assumed that the array A = (3; ;) is not

trivially reducible (i.e. has no rows which are all zeros and no columns
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which are all ones):

1. Permute the rows of A such that, if w is the number of ones per
row, then
Wi,,I}Wi i=12...,n-1.

2. k is assigned |; p is assigned m.

3. if the k! row has a zero in the i position, then insert the rih
column between the columns in positions p and (p + 1) (or, if
p = m, then concatenate the rt column on the right).

4 Repeat step 2 for all the zeros in the first p columns of the kt
row.

3. § is assigned the number of ones in the first p columns of the
k™ row. ,

6. A is irreducible if s = 0, and the algorithm terminates.

Otherwise, if

a ;=1 (i=1,2,...,k; j=1,2,...,8)

and aij=0 (i=k+1,k+2,...,n; j=s+1,8¢2, ..., m),

then the array is reducible and the first k rows 1ift off with the

(m - s) last columns. The algorithm terminates.

8. Otherwise, if k = n then A is irreducible and the algorithm
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terminates.
9. Otherwise, k is assigned (k + |) and steps 2 through 7 are

repeated.

Having applied this algorithm to a matrix A and found it to consist
of two separate layers X and Y, it is a simple matter to determine whether
either of these submatrices is itself reducible. For example, to test the k
x (m-s) array X for reducibility, one must check whether X can be

partitioned into the form

ElC

Dio

No permutations are required to put X into this form if it is reducible.

Clearly this algorithm has the same mathematical structure as
Clapham'’s algorithm. Clapham permutes the row and column sums and
applies his computational formula to determine reducibility, whereas this
algorithm involves sorting the rows and columns themselves. Due 1o the
increased data handling, this approach leads to a much less efficient
implementation than Clapham’'s algorithm. It does however provide a

useful insight into the structural nature of reducible fabrics.

257



4.2.3 ALGORITHM BASED ON A GRAPH THEORETIC APPROACH

Enns’ algorithm [15] is "based on the observation that a fabric hangs
together if and only if the lifting of each strand v causes each other strand
to lift. The lifting of a strand v causes a strand w to 1ift if and only if
there is a sequence of strands, beginning with w and ending with v, such
that each element of the sequence lies under the next element of ihe
sequence.” This behaviour can be modeled using a bipartite directed graph
[48]

The steps involved in the execution of this process can be
summarized as follows:

1. Foragiven binary interlacement array

D=[di,}' [1,j=1,2,...,k), wherek =n+m,

number the rows of D {1, 2, ..., n} and

the columns of D (n+1, n+2, ... k]

2. Use D to construct an adjacency list representation for G, where

v; isadjacent to v, if du = |
and Visn is adjacent to vj if di:f =0

(i=1,2,...0j=12...m.
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3. Determine the strongly connected components of G:

i.  Order the vertices of G using a depth-first search

algorithm [1, p. 200 - 226}, as follows.

Suppose we have a directed graph G in
which all vertices are initially marked
unvisited. Depth-first search works by
selecting one vertex v of G as a start
vertex; v is marked visited. Then each
unvisited vertex adjacent to v is
searched in turn, using depth-first
search recursively. Once all vertices
that can be reached from v have been
visited, the search of v is complete. |f
some vertices remain unvisited, we
select an unvisited vertex as a new start
vertex. We repeat this process until all
vertices of G have been visited. {1, p.
215}

it.  Construct an adjacency list for a new graph G, formed

from G by reversing the direction of all the edges of G.

ili.  Starting with the highest numbered vertex from (i) as a
root, perform a depth-first search on G’ to lbcate all of the
depth-first spanning trees of G". Each tree in this

~ depth-first spanning forest forms a strongly connected

component of the original graph G.
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4 If G is strongly connected, then the corresponding fabric is not
reducible. Otherwise, each of the strongly connected
components of G corresponds to a disjoint layer of the

corresponding fabric.
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EXAMPLE 4.2 3.1 '




[a% )

A

~1

1001 ]

D= 1101 2
0110 3
4567
— 4 —— 7 .
— 4| —— 5| ——
— S —+ 6| s

l

L1
|
l

ADJACENCY LIST REPRESENTATION
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v4 (4)
(7) vt

| V5 (1)
6= (2 2

Vo6 (5)
' v7 (3)

The numbers in brackets indicate the ordering of the vertices after the
depth-first search in step (3 - i).

263



v4 (4)

7 vl ‘/

VS (hH

= (2) v2

v6 (S)

v7 (3)

G is strongly connected and corresponds to an irreducible fabric.
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1000

—

D= 1110 2
0010 3.
1011 4
5678
—t— S| »
+ 5 » G  m—
——| 7 °
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—1 3 .
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—— 1 )
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ADJACENCY LIST REPRESENTATION
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(4) vl \
v5 (3)
(8) v2
G =
vb (7)
(2) v3
v7 (1)
(6) v4
\vs (5)
(4) V! ‘\
VS (3)
(8) v2
G =
v6 (7
(2) v3
v7 (1)
(6) v4
v8 (5)

The graph G has two strongly connected components, with the vertices
V2, VB, V4 and V6 being in one and the vertices V1, V7, V3 and V5 being in
the other. This corresponds to a fabric in which the second and fourth
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warp strands interlace with the second and fourth weft strands to form
one fabric layer, while the first and third warp strands interlace with the

first and third weft strands to form a second and disjoint fabric layer.

The time complexity of this algorithm is O(e), where e is the number
of edges of G. Since e is always precisely equal to m x n, the number of
elementary operations required is the same as for Clapham's algorithm.
This algorithm does however possess two distinct advantages over those

previously discussed.

1. All of the fabric layers can be determined in one pass of the algorithm.

2. This process can be easily generalized to deal with fabrics with more

than two sets of strands.
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4.2.4 ALGORITHM INVOL VING IDENTIFICATION OF CIRCUITS

This algorithm, developed by Newton and Sarkar [59], involves
considerably more operations than the previous three processes and is

based on the principle of a circuit, as defined by Lourie [SO]:

A set of rows and columns represents an interwoven
structure, if from any row or column some circuit
can be found consisting alternately of O and |
corners such that all the rows and columns
contribute at least one corner point. Alternately or
equivalently stated, for any pair of columns {or
rows) in a woven structure or layers, . . . there
exists a circuit which contains alternate 0's and 1's.

It should be noted that the approach that Enns [15) used in his work
on reducibility (that is, that in order for a fabric to be irreducible, the
lifting of one strand of the fabric causes the lifting of all the remaining
strands as well) is an alternative formulation of Lourie’s notion of a

circuit.

The steps involved in the execution of this algorithm, when applied

to a binary intertacement array A= (a; (1i=1,2,....n; j=1,2,...,m),
ry Y ] ]

can be summarized as follows.

1. Label each column of A with a layer number L ] such that L j* j

(j =1,2,..,m)
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10.
1.

12.

Labe! each row of A with a layer number LL; such that LL; =1

(i=12...,n)
Examine all possible combinations of pairs of rows and columns
to identify circuits.

If a circuit is found between column p and column g, with

Lp < Lq, set Lq equal to Lp.

Similarly, if a circuit is found between row x and row y, with
LLy ¢ LLy, set LLY equal tolLL,.

At the termination of this stage, complete reducibility has been

determined. The fabric structure separates into as many layers

as there are different layer numbers, with these layer numbers

| indicating to which layer a given strand belongs.

If the array A has been found to be irreducible, the algorithm
now looks for partial reducibility.

Remove a column of A and repeat steps 1 through S on the
remaining submatrix.

Repeat step 8 until the submatrix which is being examined is
reducible.

Repeat steps 8 and 9 on the rows of A

If there is no reducible submatrix, then the array A is genuinely
irreducible and the algorithm terminates.

Otherwise, the array A corresponds to a partially reducible

structure, i.e. a muiti-layer fabric with stitching points.
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13.

14

15.

16.

17.

Add one of the original columns of A to the smaliest submatrix
obtained in step 9 and test for reducibility.

Repeat step 13 until the structure is no longer reducible.

Identify the circuit between two different layers and the
stitching point within the circuit. (This is related to the row and
column sums.)

The stitching point can be verified by changing it from O to I or
vice versa. If this change renders the array reducible, then that
intersection is indeed, a stitching point.

Repeat steps 13 through 16 for the remaining columns of the

original array A, with previously found stitching points removed.
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4.3 LGORITHMS TURAL CROSS-SECTIONS

Some woven fabric structures rely almost entirely on the tension
created by special interiacement sequences to broduce visual or textural
patterning [S1], [22, p.274). These tension effects cannot be meaningfully
form represented using the traditional point diagram interpretation of the
corresponding binary interlacement array and thérefore some alternative
form of graphical display is required to identify and visualize these
effects. A useful and meaningful of display is the sectional drawdown
which represents a cross-section of the fabric structure cut between

adjacent weft picks or warp ends.

The automatic display of these sectional drawdowns requires the
mapping of the binary interlacement array data onto an appropriate set of
graphic output primitives. The ensuing discussion presents newly
developed mapping algorithms. and optimal sets of graphic primitives for

four primary types of fabric.
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43.1 THE PRIMARY FABRIC TYPE Fl1]

Definition 43.1.1. The primary fabric type F[1] is defined as that

structure corresponding to a single strand t, passing either over or under

+in turn, a succession of strands k, orthogonal to it, where both t and k lie

in the same plane.

The crucial part of this definition is that the warp and weft strands
are co-planar. An example of this fabric type is given by the binary
interiacement sequence

R=(1,1,0,01,1,00,....]

which corresponds visually to

FIGURE4.3.1.2

For convenience, this and subsequent examples will consider the
sequence in the weft direction, with the cross-sections cut through the
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warp ends, although it is understood that the sequence could equally be
taken in the warp directibn, with the cross-sections cut through the weft

picks.

Definition 43.1.3. A mid-point centered graphic primitive is an element

of a basis set of graphic tiles, centered on the point midway between two

adjacent ends (or sets of ends). When drawn, mid-point centered graphic
primitives are intended to overlap to the extent that the first ends (or set
of ends) of one primitive overlaps the second end (or ends) of the previous

one.

Definition 43.1.4 An end centered graphic primitive is an element of the
basis set of graphic tiles, centered on an end (or set of ends). There will

be no overlap when these tiles are drawn.
THEOREM 4.3.1.5. For the primary fabric type F[1), four mid-point
centered graphic primitives are sufficient (without rotation or reflection

allowed).

Proof. The elements of this set are:
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FIGURE4.3.1.6

COROLLARY 4.3 1.7. The mapping from the interlacement sequence R to
the corresponding set of graphic primitives S for the primary fabric type

F{11is obtained by ordering the set S and computing the index i, where
(4.3.1.8) i=.‘2rj+rj+| j=12,...,n"1.

Proof. The ordering of the graphic primitives S can be defined as
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FIGURE4 3.1 9

interpreting each tile as corresponding to a 2 place binary interlacement
sequence and computing the index i for each of them gives the set of
decimal integers {0,1,2,3} which will uniquely identify each of the four

graphic primitives.

THEOREM 4.3.1.10. For the primary fabric type F[1], eight end-centered
graphic primitives are required (without rotation or reflection aliowed).

Proof. The elements of this set are:
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FIGURE4.3.1_11

COROLLARY 4.3.1.12. The mapping from the interlacement sequence R
to the corresponding set of graphic primitives Z for the primary fabric
type F[i] is obtained by ordering the set Z and computing the index i,

where

(43.1.13) i=de2rierp j=1
i=4r‘j_|+2rj+rj+l j=2,3,...,ﬁ“
i=4rj_l+2rj+l j=n.

Proof. The ordering of the graphic primitives Z can be defined as
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FIGURE4.3.1_14

Computing an index value 1 for all possible binary interlacement sequences
of length three produces the eight integers, O through 7, inclusive. These
€an be used to uniquely Identify each of the eight graphic primitives.

The set of end centered graphic primitives contains twice as many
elements as the set of mid-point centered primitives. The end centered
system also requires the computation of one extra term in determining the
index value, as well as requiring that the first and last elements of the
binary interlacement sequence R be handled as exceptional cases. For
these reasons the mid-point centered graphic system is considered to be
computationally more efficient and only primitives using this system wiil
be discussed in the subsequent sections.

An example of a structural cross-section for a primary fabric type
F[1] is given in Figure (4.3.1.15).
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INTERLACEMENT RRRAY INTERPRETED AS AN F[1] FABRIC
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4.3.2 THE SECONDARY FABRIC TYPE F[2]

Definition 43.2.1. The secondary fabric txpe- F{2} is defined as that
structure corresponding to a single strand t passing either over or under in
turn, a set k of strands orthogonal to it. This structuré is composed of
two paraliel fabric planes with the elements of k, and all of the t-strands,
lying in these two planes or oscillating between them. For the
fundamental type F[2:1:1], each fabric plane contains precisely half of the
k strands and half of the t strands at any one time. In general, F[2:ik] is a
secondary fabric type F{2] such that the relative proportion of strands
per unit length, in the two layers, is uniformly ik (for example, F{2:1:2]).
Since F[2:1:1] is the most frequently occurring structure of this type, it is
convenient to abbreviate F[2:1:1] to F[2].

THEOREM 4.3.2.2. For the secondary fabric type F[2], nine mid-point
centered graphic primitives are sufficient (without rotation or ref lection

allowed).

Proof. The ordered set S of these elements is:

280



:L:..

S

"

Jo o o

— A
FIGURE4.3.2.3

COROLLARY 4.3.2.4. The mapping from the interlacement sequence R to

the corresponding ordered set of graphic primitives S for the secondary
fabric type F[2] is obtained by computing the index i where

(43.25) j= 3("1 + rj+ ]) + r}+2 + rj+3 j =1,35,...,n-3

The number of elements in the sequence R must be divisible by 2. If itis
not, the final element is dropped from R.

Proof.  The proof follows mutatis mutandis from Corollary {4.3.1.7).

Two facts about this mapping can be noted immediately. The first
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observation is that the values of i are not distinct for all of the possible
binary interlacement sequences of length four. The second observation is
that this mapping assumes that the left-hand intersection of a pair is
always in the top layer and the right-hand intersection is always in the
bottom layer. This leads to a discussion of what will be termed a coercive

interaction.

Definition 4.3.2.6. A coercive interaction in the secondary fabric type F[2]
occurs when two successive intersections unambiguousty define the planar

relationship between the corresponding warp ends.

If a weft pick lies between two warp ends, one of which is in the
top plane and the other of which is in the bottom piane, then this weft pick
constrains these two ends in their current positions. If, on the other hand,
a weft pick lies either on top of or underneath two ends belonging to
different fabric planes, then there exists some ambiguity as to which of
these two ends belongs in the top layer and which belongs in the bottom
layer. For example, in Figure (4.3.2.7}, the F[2] representation of the
interlacement sequence (1 O O 0), illustrates a coercive interaction

between the first pair of intersections but not between the second pair.
warp end number | must be on top of warp end number 2, whereas the
relative planar positions of ends 3 and 4 are not fixed by this

interlacement sequence and form a non-coercive interaction.
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FIGURE 4.3.2.7

Definition 43.2.8 An exchange interaction is defined as a special case of
coercive interaction in which natural yarn tension would cause two
successive warp ends to exchange their relative positions. That is, the

A
physical constraints of yarn tension in & woven fabric structure would

render this interaction impossible.

Figure {43.29}, an F[2] representation of the interlacement

sequence {0 1 0 0}, illustrates such an intersction.

@/ 1@

FIGURE 4.3.2.9

The effect of tension in this interaction would be to exchange the relative
positions of warp ends 1 and 2 without affecting the relationship between

ends 3 and 4. The tile required to illustrate this sltered sequence is the
one iltustrated in Figure {4.3.2.7}.
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it is convenient to label individual warp ends which occur in a

coercive interaction so as to identify planar position changes as & result

of an exchange interaction Figure {4.3.2.10}, for example, illustrates the

F[2] representation of the interlacement sequence {1 0 0 0 0 1}, where

intersections 1 and 2 form a coercive interacti’nn. intersections 3 and 4

form a non-coercive interaction and intersections S and 6 faorm a coercive

exchange interaction.

FIGURE 4.3.2.10

THEOREM 4.3.2. 11 Lsbels to identify warp ends occurring in a coercive

interaction in the secondary fabric type F[2] can be indexed by computing

u

(43.2.12) =2+ ry, j=1,35,.. . n-1.

Proof. i € {0,1,2,3}

i i € {0,3}, then the F[2] representation of the interaction corresponds to

Figures {43.2.13} and {4.3.2.14}, respectively. Since neither of these is a
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coercive interaction, no tabelling changes are necessary.

Y . &
] &
FIGURE 4.3.2.13 FIGURE 4.3.2.14

tf 1 = 1, then the corresponding F[2] interaction is given by Figure

{4.3.2.15}. Since this is a coercive interaction, the warp ends must be

re-labelled to indicate that the ends have exchanged positions. Label 1

could be given by Figure {4.3.2.16}.

o X
¢ +
FIGURE 4.3.2.15 FIGURE 4.3.2.16

It 1 = 2, then the corresponding F{2] intersction is given by Figure

{43.2.17}. Since this is a coercive interaction the warp ends must be

re-labelled to indicate that warp end number 1 must lie on top of warp end

| number 2. Label 2 would then correspond to Figure {4.3.2.18}.
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FIGURE 4.3.2.17 FIGURE 4.3.2.18

An example of a structural cross-section for the secondary fabric type
F[2] is given in Figure {4.3.2.19}.

286



-

Tll"_l-i-'ll} I—Il'lfd-kll'—-'ll II}' ‘l|||+‘|l‘u;+s
[ "I.,______J' LJI L_____,Il ml s :-.'_I"l Rl x |"’—.'I

+

B B “ BN |

t+||‘.l|'—.il||.+lll+]l I'-_'II J+ lI"_-‘ll‘ul'q.'ll..:|"""‘1 FL
|"':__:l, >f- mlx ¥ :-I"'_'\ ,l"'—I :-.Iu l'l,.:-.

®E B + + N B 'I- +

Patavatotovatatioota

INTERLACEMENT ARRAY INTERPRETED AS AN F[2] CROSS-SECTION
DISJOINT LAYERS

287



4.3.3 THE SECONDARY FABRICS F[2:1:2] AND F[2:1:3}

THEOREM 4.3.3.1. For the secondary fabric F[2:1:2}, eighteen mid-point

centered graphic primitives are sufficient (without rotation or reflection

allowed).

Proof. The ordered set S of these elements is shown in Figure {4.3.3.2].

COROLLARY 4.3.3.3. The mapping from the interlacement sequence R to
the corresponding ordered set of graphic primitives S for the secondary

fabric F[2:1:2] is obtained by computing the index i where

(433.4)  1=6(0j+Fj, )+ 3 g+ Peg*Fjg 1= 147,04

The interlacement sequence R must consist of, or be reduced to, 3k + 2

elements, where k is an integer.
Proof. The proof follows mutatis mutandis from Corollary (4.3.1.7}.
COROLLARY 4.3.3.5. Labels to identify warp ends occurring in a

coercive interaction in the secondary fabric F{2:1:2] can be indexed by

computing

208



BRI

BRI

269



(43.36) = 2ry+ rj',,I 1=1,47,....n1.

Proof. Labels for interactions can be indexed by i, as in
Theorem (43.2.11). Since the assumption is made that the relative

proportion of yarns per layer remains constant, the warp ends
corresponding to ry, j = 3,6,9, . . . ,n-2 never occur as part of a pair of
intersections. These warp ends will never occur in a coercive interaction

and thus require no re-labelling.  Therefore, only the pairs of

intersections need to be examined for coercion.

THEOREM 4.3.3.7. For the secondary fabric  F[2:1:3], thirty-six
mid-point centered graphic primitives are sufficient (without rotation or

refiection allowed).
Proof. The ordered set S of these elements is shown in Figure (4.3.3.8}.
COROLLARY 4.3.3.9. The mapping from the interlacement sequence R to

the corresponding ordered set of graphic primitives S for the secondary

fabric F[2:1:3] is obtained by computing the index i where
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(43310) : i=]2(rj+[‘j+1)+ 6rj+2+3rj+3+rj+4 +I‘j+5

j=159,...,n5.

The interlacement sequence must consist of, or be reduced to, 4k + 2

elements, where k is an integer.

Proof. The proof follows mutatis mutandis from Corollary {4.3.3.5).

An example of a structural cross-section of the secondary fabric
type F[2:1:2] is given in Figure {4.3.3.11).
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4.3.4 THE TERNARY FABRIC TYPE FI3]

Definition 43.41. The ternary fabric type F{3] is defined as that
structure corresponding to a single strand t passing either over or under in

turn, a set k of strands, orthogonal to it. This structure is composed of
three parallel fabric planes with the elements of k, and all of the
t-strands, lying in these three planes or oscillating between them. For the
fundamental type F[3:1:1:1], each fabric plane contains precisely one third
of the k strands and one third of the t-strands at any one time. in general
F[3:i:k:m] is a ternary fabric type F[3] such that the relative proportion of
strands per unit length, in the three layers, is uniformly ikm (for
example: F{3:1:2.3]). The only structure of this type which will be
considered is F[3:1:1:1], which will be abbreviated to F[3].

THEOREM 4.3.4.2. For the ternary fabric type F[3), sixteen mid-point
centered graphic primitives are sufficient (without rotation or reflection

allowed).

Proof. The ordered set S of these elements is shown in Figure (4.3.4.3).
COROLLARY 4.3 4.4 The mapping from the interiacement sequence R to

the corresponding ordered set of graphic primitives S for the ternary

fabric type F{3] is obtained by computing the index i where
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(43.495) 1= 4(!'] + rj"‘l + rj+2) + rj+3 + FJ+4 + rj+5 j=147,....n5

The number of elements in the sequence R must be divisible by 3. If it is

not, the final elements(s) are dropped from R.

Proof. The proof follows mutatis mutandis from Corollary {4.3.1.7}.

COROLLARY 4.3.4.6. Four distinct labels are required to identify warp
ends occurring in a coercive interaction in the ternary fabric F[3]. These

labels can be indexed by computing

(43.47) i= 4FJ + 2rj+| + rj+2 j = 1,4,7, c e ,n-2

as an index to the ordered set of label tiles Z in Figure (43.48} If i

belongs to (0,7} no re-labelling is required.

X + [ = = L
L] = L | X -
] 4 = ] + X

FIGURE4. 3.4 8
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Proof.i € {0,1,...,7).

If i € (0,7), then the FI3} representétion of the interaction is not coercive
and no re-labelling is required.

If i = 1, then the bottom layer intersection moves to the top layer. The
relative positions of the remaining two intersections, with respect to
~ each other, are indeterminate. '

if 1 = 2, then the relative positions of 21l of the intersections are
constrained and an exchange of the first and second layer intersections
takes place.

If i = 3, then the top layer intersection moves to the bottom layer. The
relative positions of the remaining two intersectioné with respect to each
other are indeterminate.

If i = 4, then the position of the top layer intersection is constrained but
no exchange takes place. The relative positions of the remaining
intersections are indeterminate.

If § = 5, then the relative positions of all of the intersections are
constrained and an exchange of the second and third layer intersections
takes place.

If i = 6, then the position of the bottom layer intersection is constrained
but no exchange takes place. The relative positions of the remaining

intersections are indeterminate.

An example of the ternary fabric type F{3] is given in Figure
{4.3.49).
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4.3.5 THE QUATERNARY FABRIC TYPE F[4]

Definition 43.5.1. The quaternary fabric type F[4] is defined as that

structure corresponding to a single strand t passing either over or under in
turn, a set k of strands orthogonal to it. This structure is composed of
four parallel fabric planes with the elements of k, and all of the t-strands,
lying in these four planes or oscillating between them. For the
fundamental type F[4:1:1:1:1], each fabric plane contains precisely one
fourth of the k strands and one fourth of the t-strands at any one time. In
general Fl4:i:k:m:n] is a guaternary fabric type F[4] such that the relative
proportion of strands per unit length, in the four layers, is uniformly
kmn (such as F[4:1:2:3:4]). The only structure of this type which will be
- considered is F[4:1:1:1:1], which will be abbreviated to F[4)

THEOREM 4.3.5.1. For the quaternary fabric type Fl4], twenty-five
mid-point centered graphic primitives are sufficient {without rotation or

reflection aliowed).

Proof. The ordered set S of these elements is shown in Figure (4.3.5.2}.
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COROLLARY 4.3.5.3. The mapping from the interiacement sequence R to
the corresponding order set of graphic primitives S for the quaternary

fabric type F[4] is obtained by computing the index i where
(4.3.5.4) i= S(T‘J + rj” + Fj+2 + rj+3) + Fj+4 + rj+5 + Fj,,_ﬁ
i=159,...,n-2

The number of elements in the sequence R must be divisible by 4. If it is

not, the final element(s) is dropped from R.

Proof. The proof follows mutatis mutandis from Corollary (4.3.1.7).

COROLLARY 4.3.5.5. Fourteen distinct labels are required to identify
warp ends occurring in a coercive interaction in the quaternary fabric

Fl4]. These labels can be indexed by computing

(4.3.5.6) i= 8|"j + 4|'j.,.| + 21..,2 + rj+3 j=159....n3

as an index to the ordered set of label tiles Z in Figure (4.3.5.7). If i
belongs to {0,15], no re-1abelling is required.
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Proof. i € {01,...,15]
if i € {0,15), then the F[4] representation of the interaction is not

coercive and no re-labelling is required.

If i =1, then the bottom layer intersection moves to the top layer. The
relative positions of the remaining three intersections, with respect to
each other, are indeterminate.

If i = 2, then the third layer intersection moves to the top layer. The
relative positions of the remaining three intersections, with respect to
each other, are indeterminate.

- If 1 =3, then the intersections in the top two fabric layers exchange with
the bottom and second bottom layers. The intersections within each pair
of intersections are indeterminate with respect to each other.

If i = 4, then the second layer intersection moves to the top layer. The
relative positions of the remaining three intersections, with respect to
each other, are indeterminate.

If i = 5, then the second and fourth layer intersections are constrained in
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the top two layers and the first and third layer intersections are
constrained in the bottom two layers. The relative positions of
intersections within these two pairs of intersections are indeterminate.

If i = 6, then the second and third layer intersections are constrained in
the top two layers and the first and fourth layer intersections are
constrained in -the bottom two layers. The relative positions of
intersections within these two pairs of intersections are indeterminate.

If i =7, then the top layer intersection moves to the bottom layer. The
relative positions of the remaining three intersections are indeterminate
with respect to each other.

If i =8, then the top layer intersection is constrained in the top layer. The
relative positions of the remaining three intersections are indeterminate
with respect to each other.

If i = 9, then the first and fourth layer intersections are constrained in the |
top two layers and the second and third layer intersections are
constrained in the bottom two layers. The relative positions of
intersections within each pair of intersections are indeterminate.

If i = 10, then the first and third tayer intersections are constrained in the
top two layers and the second and fourth layer intersections are
constrained in the bottom two layers. The relative positions of
intersections within each pair of intersections are indeterminate.

If i =11, then the second layer intersection moves to the bottom layer.
The relative positions of the remaining three intersections are

indeterminate with respect to each other.
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If i =12, then the first and second layer intersections are constrained in
the top two layers and the third and fourth layer intersections are
constrained in the bottom two layers. The relative positions of
intersections within each pair of intersections are indeterminate.

If i = 13, then the third layer intersection moves to the bottom layer. The
relative positions of the remaining three intersections are indeterminate
with respect to each other.

if i =14, then the bottom layer intersection is constrained in the bottom
layer. The relative positions of the remaining three intersections are

indeterminate with respect to each other.

| An example of a structural cross-section for the quaternary fabric

type F[4] is given in Figure (4.3.5.8}.
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43.6 OBSERVATIONS AND SUMMARY

Several observations can be made about the number of graphic tiles
required to represent a given structure as well as about the nature of the

mapping atgorithm. These observations are summarized as follows:

1. The number of graphic tiles required to represent a
fundamental structure (that 1is, one in which equal
proportions of yarns lie in each fabric layer) can be
determined by evajuating

(43.6.1) n={(L+ 1), where L is the number of layers.

2. The index value i for all fundamental structures can be

cqmputed from the interlacement sequence, where

(4362)  i=(L+ ng r 2 Mg

3. The number of graphic tiles required to represent an F{2:1:k]

fabric structure is given by

(43.6.3) n=9x2-1
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(43.6.49)

The index value i for F[2:1:k] fabric structures can be

computed from the interlacement sequence, where

i= ((3'()2 (r‘ + rz)) + E (3_]) rj+2 + E rj+k+2 .

The index value i for the re-labelling tiles to indicate
coercive and exchange interactions can be computed from
the interlacement sequence simply by interpreting the
corrésponding sequence as an L place binary number and

evaluating the decimal equivalent.
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5.1 INTRODUCTION

Definition S5.1.1.  Cartesian woven structures are formed by the
interlacement of two sets of paralle! strands which lie orthogonal to one
another, with the resulting intersections of these two strands lying in a

plane. All conventionally woven fabrics are of this type.

Definition 5.1.2. Single layer cartesian woven structures correspond to
irreducible binary interlacement arrays, where all of the intersections

form a single fabric layer.

Definition 5.1.3. Double layer cartesian woven structures are defined to
be reducible or partially reducible binary interlacement arrays

corresponding to two fabric layers, with or without stitching points,
which have been uniformly interieaved. These binary interlacement arrays
are therefore two dimensional projections of three dimensional layered

structures.

Definition 5.1.4 Non-cartesian woven structures are defined as those
structures whose warp strands are no longer parallel, but are allowed to
cross over each other. Cross woven fabrics, such as leno, gauze {60, p.

211-247] and sprang [12] are of this type.

Definition 5.1.5. A flat sectional representation is defined as a top view

of the fabric corresponding to a given interiacement data structure.
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In the case of cartesian structures, flat sections provide an
alternative graphical representation which gives a clear illustration of
the interaction between the warp and weft strands. The representations
are useful for fabric design and aré particularly well suited to the
iHustration of manuscripts. In the case of non-cartesian structures
however, flat sections constitute the clearest and most effective
graphical representation of the corresponding interlacement data. The
data entry environment for such non-cartesian design data must therefore

be appropriate for this type of graphical dispiay.

This chapter will outline the process of developing ah appropriate
set of graphic output primitives for the fiat sectional representation of
single and double layer cartesian structures, as well as non-cartesian
structures. The mapping algorithm from the data structure to the
graphical display will also be discussed. In addition, a discussion of the
design of a graphics editor for the data entry and display environment

required for non-cartesian structures will be included.
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5.2  REPRESENTATION OF SINGLE L AYER CARTES!IAN STRUCTURE

A flat sectional representation of a single layer cartesian structure |
depicts the visual appearance of the interiacing warp and weft strands in
a fabric when viewed from the top. It is achieved by the mapping of the
corresponding data file to a set of appropriate output primitives. The
design of these particular graphic primitives is constrained by the

following factors:
1. Each intersection can be depicted independently of all other
intersections. This implies that end-centered _graphic

primitives, which do not overlap when drawn, can be

used and that

THEOREM 5.2.1. For a single layer cartesian structure representation,

two graphic primitives are sufficient.

Proof. The ordered set S of these elements is:
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FIGURES. 2.2

COROLLARY 5.2.3. The mapping from an interlacement sequence R to
the corresponding ordered set of graphic primitives S for a single layer
cartesian structure representation is obtained by computing the index i.

where

(5.2.4) P=rp+1 j=12,..,n

Proof. When r] = 0 then i = 1. This corresponds to a weft over warp

intersection and the appropriate primitive is indexed. Similarly, whenr i=

| then i = 2. This corresponds to a warp over weft intersection and the

appropriate primitive is indexed.

2 The warp and weft strands, as well as the empty spaces
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between them are drawn. Therefore, delineating the outlines of
the strands is not sufficient, since they can be easily confused
with the inter-yarn spaces. Some interior pattern is required to

define the strands.

3. For maximum differentiation between the warp and weft
strands, a significantly different pattern is required for each set

of strands.

4 The pattern used for the warp strands must be periodic on the
height of the primitive and the pattemr used for the weft
strands must be periodic on the width of the primitive. This is
required so that there will be no discontinuities in matching
these graphic tiles when a multi-element representation is

constructed.

Figure {5.2.5} is 2 point diagram representation of an interiacement
array and Figure (5.26} is a single layer cartesian structure
representation of this same data. The visual correlation between these

two graphical images is high.
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9.3  REPRESENT AT!ON OF DOUBLE L AYER CARTESIAN
STRUCTURES

A double layer cartesian structure representation corresponds to
the interpretation of an interlacement array as a fundamental F[2] fabric,
with the bottom layer fabric visible between the strands of the top layer
fabric, when the whole is viewed from the top. Once again, the
intersections can be interpreted independently of each other, with the
parity of the row and column indices determining in which layer a given
intersection lies. With no loss of generality, we ‘can specify that odd
numbered columns correspond to top layer warp strands and even numbered
columns correspond to bottom layer warp strands. Similarly, odd
numbered rows can be thought to correspond to top layer weft strands,

while even numbered rows correspond to bottom layer weft strands.

As in the case of the single layer fiat sectional representation,
there are a number of criteria for cheoosing a particular set of graphic
output primitives or tiles, and the corresponding mapping algorithm.

These criteria are as follows:

1. As before, some differentiation must be made between the warp
and weft strands of the two layers and the inter-yarn gaps.

Some interior pattern must therefore appear on the strands.
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2. For maximum differentiétion between the warp and weft
strands, the pattern for the warp strands must differ
significantly from the pattern for the weft strands, for each

fabric layer. Four patterns are therefore required in total.
3. __ The warp strand patterns must be periodic on the height of the
| tile and the weft strand patterns must be periodic on the width
of the tile.
4 The tiles must be large enough to accommodate the need for
visual distinction between the patterns but must also be small
enough so that a reasonable number of intersections can be

represented.

THEOREM 5.3.1. For a double layer cartesian structure representation,
eight graphic primitives are sufficient.

Proof. The ordered set S of these elements is:

o

FIGURES.3.2
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COROLLARY 5.3.3. The mapping from an interlacement sequence R to
the corresponding ordered set of graphic primitives S for a double layer

cartesian structure is obtained by computing the index i where

(534) i=1+(dn ;+2Ak-2xFk/2D+ (j-2xT}/21)

k=1,2,...,m
j=1,2,....n

Proof. Table (5.3.5) indicates the correspondence between the possible

intersection types and row and column parities, the computed value for the

index i, and the interlacement which is represented. O
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Table 5.3.5

PARITY Mg j  INTERLACEMENT

K J
aven even 0 bottom layer weft aver bottom layer warp
evan odd 0 top layer weft over bottom layer warp
odd aven 0 bottom layer weft over top layer warp
odd odd 0 top layer weft over top layer warp
even aven H bottom layer warp over bottom iayer weft
sven odd 1 bottom layer warp over top layer waft
odd aven 1 top layer warp ever bottom layer weft
odd odd 1

top layer warp over top iayer weft

Figure (5.3.6) illustrates a point diagram representation of a given
interlacement array and Figure {5.3.7) corresponds to a double layer
cartesian structure representation of the same interlacement array. It is
much more obvious in Figure {5.3.7], that the data corresponds to a double

layer structure than it is in Figure (5.3.6).

319



FIGURE 5.3.6
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5.4 RESENTATION OF NON-CARTESIAN STRUCTURES

5.4.1 CROSS-WOVEN AND GENERALIZED NON-CARTESIAN FORMS

An interesting class of woven structures consists of those fabrics
produced by crossed weaving. in cross woven structures such as leno and
gauze [60, p.211-247], the paths of the lengthwise strands are no longer
parallel, in that they are allowed to cross over each other between the
intersections with the crosswise elements. This technique produces a
fabric exhibiting a particularly stable structure while still maintaining an
open quality, and is used extensiveiy in drapes and decorative clothing
fabrics, for industrial uses such as screens and sieves, [22, p.207-210]

and for stabilizing the selvedges of shuttletess loom fabric [71].

In cross-woven structures, the twisting between warp strands
occurs in pairs of strands, with this pairing remaining fixed for the length
of the fabric. Within each pair of strands either one, or both of the yarns
is allowed to deviate from the straight path typified by conventionally
woven structures. The distinction between gauze and leno weaves is, in
fact based on whether or not one of the sets of strands is held fixed. "A
‘gauze’ effect is developed by causing one series of warp threads, termed
‘doup’ threads, to form more or less zig-zag or wavy lines, whilst another
series of warp threads, termed ‘regular’ or 'standard' threads, remain
comparatively straight . . . .A ‘leno’ effect, however, is developed by
causing both ‘standard’ and 'doup’ warp threads to bend eqUaHy“ [60,

322



p.211-247).

Leno structures themselves are also of two types.

In .. . [the first type], doup threads make only a
partial or half turn around their respective
standard threads: that is, they pass from one side
to the other side of those threads, and then return
to the same side, on different picks of weft, but do
not completely twist around them. Sometimes,
however, leno fabrics are produced in which doup
threads are caused to completely encircle their
standard threads, and thereby produce a fuli
crossing or twist with them . .. [60, p. 253]

There are three interactions possible within a pair of warp strands
in any cross-woven structure, namely:
. two adjacent warp strands can remain parallel to each other
with no twisting taking place;
2. the left-hand strand can twist over the right-hand strand;

3. the right-hand strand can twist over the left-hand strand.

Fabric structures such as sprang [12] and braiding [14, p.62)
represent a generalization of the principles exhibited by the cross-woven
forms in that, while warp strand interactions stiil occur in pairs, the
pairing is no longer fixed throughout the length of the fabric. A warp
strand can now twist with any currently adjacent warp. Clearly, a fourth

type of interaction is now possible, in which
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4. The left-hand strand can remain straight and the
right-hand strand can interact with the adjacent strand to

its right.

Non-cartesian woven structures actually consist of two distinct
types of design rows, namely interlacement and twist rows.
interlacement rows are ones in which the warp strands intersect with a
weft strand which lies perpendicular to them. The structure of the rows
can be described using the conventional binary representation, where a "1~
corresponds to a warp strand lying on top of a weft strand and a "0"

corresponds to a weft strand lying on top of a warp strand.

Twist rows, on the other hand, deal strictly with interactions
between adjacent pairs of warp strands and, since only four types of
interaction are possible for each pair of warp strands, an ordered pair of

binary digits can be used to represent each warp pair in a twist row.

Clearly, twist and interlacement rows are mutually exclusive. That
is, a twist row contains no warp/weft intersections while an
interlacement row exhibits no warp twisting. The corresponding data
structure must therefore include a binary twist vector in which, for
example, a "0" represents a twist row and a "1" represents an

interiacement row.
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Superficially then, the data structure for non-cartesian fabrics is
nearly identical to that for conventionally woven cartesian structures.
However, whereas each element of a binary interlacement array can be
interpreted completely independently of all the other entries in the
matrix, the data structure for non-cartesian structures is context

sensitive.

Firstly, if the twist vector entry for a given row j is "1”, then each
matrix element in the jth row is interpreted individually, as one of the
two possible warp/weft intersections. Otherwise, if the twist vector
entry for the jth row is 0", then the matrix elemehts for the }-th row are
interpreted as two place binary numbers in decimal form. Further, the
elements of a twist row are paired 1 and 2, 3and 4, ..., 2i - | and 2i until
or unless a pair corresponding to the fourth type of interaction is
encountered. At this point, the parity of the pairing changes to 2i and 2i +
1, and continues thus to the end of the row or until changed again.
Elements in a twist row are therefore also dependent for their

interpretation upon all of the previous entries in that row.
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5.42 DATA STRUCTURE AND GRAPHICAL DISPLAY

The graphical display of non-cartesian woven structures involves a
mapping of the binary matrix data structure to two sets of ordered graphic
output primitives or tiles, with the value of the twist vector at a given

row determining which set of tiles is to be indexed.

From Theorem {5.2.1}, two graphic output primitives are required to
represent the possible intersections in an interlacement row R, as

contained in the ordered pair of tiles:

FIGURES . 4.2.1

An index i into this set of tiles can be computed using the formula
(Coroliary {5.2.3):

i=rj+l 1,2,...,n

Rt s
n

326



For example, the binary sequence 1| O O 1 corresponds to the

following interiacement representation:

[ [ ] ]

FIGURES.4.2.2

As discussed in Section {5.2}, considerable visual distinction
between warp strands, weft strands, and inter-yarn spaces can be
achieved by drawing outlines of the strands and adding some pattern
within the strand boundaries, particularly if a significantly different
interior pattern is used for the warp and the weft. The choice of pattern
is highly constrained as to its period relative to the tile size, because
there is a requirement that no discontinuities appear along the tile edges
when the graphic display is generated. In displaying non-cartesian woven
structures, the warp strands in twist rows must be represented by
approximations to curved forms, thus rendering it impractical to use
patterned strands. For this reason, warp and weft strands appearing in
non-cartesian woven structures are represented by solid regions, which

are broken at the intersections where appropriate.

THEOREM 5.4.2.3. Four graphic output primitives are required to
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represent the possible interactions which can occur between warp strands

in a twist row.

Proof. The ordered set S of these elements is;

BHN DY

FIGURES . 4.2 4
COROLLARY 5.4.2.5 The mapping from the binary sequence R to the

corresponding set of graphic primitives S for twist row interactions is

obtained by computing the index i where
(5.42.6) i=(2 ry rJ) +1 _ j=12,...,n1.

The number of elements In the sequence R must be divisible by two. if it
is not, the final element is dropped from R.

Proof. The vailues of i belong to the set of decimal integers (1,2,3,4)

which can be used to identify uniquely each of the four graphic primitives.
a
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It should be noted that the third graphic tile is half as wide as the
other three tiles. This is because the third interaction corresponds to
leaving the first of a pair of warp strands straight and considering the

interaction between the second strand of the pair and its neighbour to the

right. This amounts to a change of parity of the index j of the elements ri

in the indexing formula and applies from the middle of the current pair of
strands to the end of the sequence, or until another of this type of
interaction occurs. For exampie, the binary sequence 0 1 110010011
is mapped to the appropriate twist row. graphical representation as

follows:

SEQUENCE: 01 1100100 11

e e i et e

k2 4 1 3

Nt pat’ S et

1 4

FIGURE 5.4.2.7

THEOREM 5.4.2.8. The set S of graphic output primitives is a spanning
set which can be used to represent all possible twist row interactions.

Proof. Consider all possible binary sequences of length four and the

graphic output primitives to which they correspond. These results are
given in Table {5.429). O
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TABLE 5.429

BINARY SEQUENCE GRAPHIC TILE NUMBERS

0000 i1

0001 12

0010 13+ {tor2)

0011 14

0100 21

0101 22

0110 23+{1or2)

o111 24

1000 31+{1or2)

1001 31+{4or3+{tor2})
1010 32+{1or?2}

1011 . 32+{40r3+(1or2}
1100 41

1101 42

1110 43+ {1 or 2}

1111 44

Wwhen it is observed that “graphic tile 3" plus “graphic tile 3" is the same
as “graphic tile 4" and that “graphic tile 3" plus "graphic tile 4" is
equivalent to “"graphic tile 4" plus "graphic tile 3", it is clear that all
possible interactions between four warp strands can be represented by
combinations of elements of S. By induction, the interaction between any
number of warp strands can be represented using this set of graphic output

primitives.
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9.4.3 DESIGNING PHICS EDITOR FOR THE DISPLAY AND
EDITING OF NON-CARTESIAN WOVEN REPRESENTATIONS

In the case of conventionally woven cartesian structures, the binary
matrix data structure provides a visually meaningful representation of the
interaction between warp and weft strands. Elements can therefore be
entered directly into the data structure. At each stage the user receives
appropriate graphical feedback as to what effect the new element has on
the overall textile structure. This is not however the case with
non-cartesian woven fabrics, where the binary matrix data structure does
not provide an immediate graphical representation of the fabric but must
be interpreted in @ more complex, context-sensitive manner. This
necessitates an alternative form of data input for non-cartesian woven

structures.

The most appropriate and meaningful method of data entry is to look
at a graphics screen and draw the appropriate tiles, using some simpie,
consistent interaction sequence [17, p.55-56], such as key presses. The
tile which is chosen is interpreted by the software and the data file is

updated.

Before data entry can actually take place, it is necessary that the
screen and database be initialized. This initialization can either be to a
previously created and stored structure, in which case data entry

corresponds to editing this structure, or to some inijtial or foundation
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structure. In the second case, it is convenient to initialize the structure
matrix and twist vector to zero. This corresponds to a fabric where al) of
the rows are twist rows in which the left-hand warp strand of each pair

of warps crosses over the right-hand strand.

Obviously, if the twist vector entry for one of these rows is
changed from 0 to 1, the entire structure row corresponding to this entry
must be re-interpreted as an interlacement row and re-drawn. In this
case, the entirely zero interlacement row corresponds to a weft yarn tying
on top of all the warp yarns. This of course is not now a single cohesive
fabric but is instead reducible (see Section {4.1}), with this particular

weft yarn 1ifting completely free from the rest of the fabric.

This initialized display or “foundation structure” provides the
equivalent of a grid to visually guide cursor movements and tile
placement. The cursor is moved around the screen in unit movements,
using the standard directional key pad. A unit move corresponds to one
row in height and one column in width. In interlacement rows, a
cross-wise move takes the cursor from one intersection to the next while,
in twist rows, a single cross-wise move takes the cursor from one warp
strand to an adjacent strand. Since the twist interactions occur primarily

in pairs, the usual twist row horizontal move will be two units, although

single unit movements are acceptable.

There are six possible tiles which can be drawn as part of a
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non-cartesian structure representation, of which two correspond to
interlacement interactions and appear only in interlacement rows. The
remaining four tiles corr‘espond to twist interactions and only appear in
twist rows. Data entry in this context therefore requires the use of either
six keys plus range checking or a single key interpreted in context. The

second solution requires less memorizing on the part of the user.

If the cursor is positioned in an intertacement row j» @s indicated by
some symbol such as "+" displayed in the jtn position in the twist vector,
then a single key can be used to toggle from one possible intersection
representation to the other. The key presses thus form a cyclic group of

order two.

if the cursor is positioned on a twist row k, as indicated by a
symbol such as "x" in the k™ position of the twist vector, the same key can
be used to cycle through the four possible types of graphic tiles. These
key presses now form a cyclic group of order four. Each of the twist row
interactions depends on the value of two adjacent data elements for their
immediate interpretation, with certain pairs of elements having broader
implications. However, it is possible to advance the cursor in singie unit
moves from one warp strand to an adjacent one, with the data file also
being addressed in successive and overlapping pairs of elements. Thus, it
is possible that the cyclic group of key presses will be applied to a pair of
_data elements that were not interpreted as a pair when the graphic display

was originally generated.
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THEOREM 5.4.3.1. The set of twist row interactions form a cyclic group

of order four, regardless of differences in the parity of data pairing
between the original graphic display and the current data entry phase.

Proof. Consider the set T of all possible binary sequences of length four,
and interpret T as two adjacent twist interactions, as in Theorem

[S.42.8). Consider the action of the cyclic group A on T, where the
elements of A are additions of one to the sequence (t;,, ti,z} or
[ti,} t; 4], fori=1,2,...,16, and with addition taking place over the

Galois Field of order two. The group A induces a permutation of the

elements of T, as follows:

AT (1234)(5678)(9101112) (131415 16)

AZT . (13) (24) (57) (68) (911) (1012) (1315) (14 16)
AT (1432 (5876) (91211 10) (131615 14)

AT (1)

Consider the group B of additions as before, but with the additions being

applied to the sequence [ti 2, b 3}, fori=1,2,...,16. The permutations

of T induced by B are:

BT :(1357)(2468) (3111315) (10 1214 16)
B2T : (15) (26) (37) (48) (913) (10 14) (11 15) (12 16)
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BT :(1753)(2864) (91513 11) 1016 1412)
B4T . (1)

Thus, the group B is also of order four and the set of graphic output

primitives will be correctly accessed regardless of where the cursor is
positioned in a twist row. O

EXAMPLE 5.4.3.2

Positioning the cursor between the first two strands, the possible

sequences and corresponding graphic images are:

0011 e B0 1) 1)
0111 ey 97 11

1011 ——— AUD

T —— GHEH

Positioning the cursor between the middle two strands, the possible
sequences and corresponding graphic images are:
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0011 ey T
0101 w—— b7/ 97/
0111 ey G000
6091 — G 97

Changes to a particular pair of data elements will necessitate the
re-drawing of the corresponding tile, or tiles, and possibly all the tiles to
the right, if the parity of the original display and design input are not the
same. Tiies to the left will not be affected. From an implementation
point of view however a convenient solution is simply to refresh the
entire row to reflect changes to the corresponding region of the data file.

In addition to updating the structure display and the corresponding
database, the twist vector must be addressable as well. Once again a
single key, the same one as before, can be used to toggle between the two
types of entries in this vector. The structure display and twist vector are
treated as separate input areas, with the user specifying which of these
areas 1s to be accessed. Cursor positioning and movement is now
restricted to the specified region and the data entry key is interpreted in
the appropriate context.
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CHAPTER 6

AN INTERACTIVE TEXTILE DESIGN SYSTEM

CONTENTS
6.1 Introduction.
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6.4 Graphic Display Program.
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6.5 Applications Programs.
6.5.1 Design Input.
6.5.2 Data Storage.
6.5.2.1 Design Storage.
6.5.2.2 Archives and Library Storage.
6.5.3 DesignManipulation.
6.5.4 Structure and Analysis.
655 Dobby Loom Interface.
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6.1 INTRODUCTION

The mixing of weaving technology and computer techniques is not a
new phenomenon. Indeed, the used of punched cards to control a Jacquard
loom predates the electronic computer by more than two centuries and is
often thought to be the conceptual forerunner of many of the principles of
modern computing [64] Especially worthy of note is the fact that looms
have even been used by the electronics industry to produce woven circuits
[S1, p.175]

The inverse relationship between computing and weaving has
naturally appeared more recently. A paper presented at the 1966 ACM.
National Meeting described an interactive computer graphics system for
designing a Jacquard fabric [54]. Subsequent work by this group produced a
Jacquard loom, unveiled April 6, 1968 at the San Antonio HemisFair, which
was controlled by an IBM 360 mainframe computer [53]. More recently, a
system has been described {61] whereby a mini-computer has been used in
conjunction with an automatic pattern card punching machine for the
direct contro} of a Jacquard loom. These developments have however
required expensive, large and often special purpose computer hardware
[22]. Today, textile designers can take advantage of the increasing
availability of inexpensive microcomputers and medium resolution
graphical display devices to create an environment well tailored to meet

their needs.
The purpose of this chapter is to outline the functional structure
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and interactive features required of a microcomputer-based interactive
textile design system in order to fulfill the needs of the designer of woven
fabrics. This subject will be divided into a discussion of the over-all
module hierarchy, the underlying application data structure, the graphic
display program, and the applications programs, including the necessary

computational algorithms.

As a testbed for the principles enunciated in this chapter, a
restricted version of the theoretical system described was implemented
on an Apple H+ microcomputer. The specific details of this

implementation will be described in the appropriate sections.
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6.2 MODULE HIERARCHY.

The components of this interactive textile design system can be
divided broadly into three categories, namely the application data
structure, the graphic display program and the applications programs. The
applications can themselves be sub-divided into two major
classifications. The first type of application is one whose primary
function is to induce some transformation on the application data
structure. Design input is an obvious example of this type of program.
Also in this category are the design manipulation or editing functions and
the data storage, retrieval and deietion functions. The second type of
application includes those programs which make use of the application
data structure as input to computational aigorithms. These algorithms are
either structural in nature, in which case the resulting output is data
which is itself added to the data file, or are used to provide information in

the form of graphic display.

The nature of woven textile design information is such that it is
highly visually oriented. For this reason, the graphic display program is
the central node in this system, through which every other function is
connected. |

Conceptually the module hierarchy of this textile design system is
illustrated in Figure {6.2.1}. It indicates the major components and their
inter-relationships. All subsequent discussion will assume that
transitions between program modules or between states within a program

are either event-driven [17, p.57], specifically arising from user keyboard
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1 MANIPULATION
DESION
FILE
—+]  STRUCTURE
AND
™ awaursis
DOBBY
> Loom
| INTERFACE

FIGURE 6.2.1

INTERACTIVE TEXTILE DESIGN SYSTEM
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input, or occur as the natural termination of an application program.
Attention will be concentrated throughout on the following design

principles as enunciated by Foley and Van Dam [17, p.55-56}:

. Provide simple, consistent interaction sequences.

2. Do not overload the user with too many different
options and styles for communicating with the
program.

3. Prompt the novice user at each stage of the
interaction (but allow the more experienced user
to bypass prompts).

4. Give appropriate feedback to the user.

5. Allow the user graceful recovery from mistakes.

This latter point is particularly important when creéting a working

environment for non-technical design personnel.

In implementing this system, the outlined modular structure has
been'used. However, due to the limited amount of available memory (48K of
RAM), these modules have been further segmented into sets of small
numbers of related tasks. Each set of operations is contained in its own
mainline segment which is read into memory from disk when required.
Associated with each of these segments is a menu of program functions
as, for example, seen in Figure (6.2.2). All menus first appear with a white
bar over the bottom ftem. The retype and backspace keys are used to move

the white bar either up or down, over the menu items, with cyclic
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DISPLAY MENU

DISPLAY THE DESIGN IN MEMORY

ANALYZE THE DESIGN IN MEMORY
DISPLAY WEFT DRAWDOWN

DEFINE WINDOW
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DISPLAY THREADING GRID, ERASE MEMORY
EXIT TO COLOR DISPLAY MENU

EXIT TO DESIGN ENTRY MENU

EXIT TO PRINTER MENU

EXIT TO DESIGNER COMMAND MENU

FIGURE 6.2.2

MENU
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wrap-around. The carriage return key is used to select a menu item.

The graphic display program of the theoretica! system is handled by
the DISPLAY MENU, COLOR DISPLAY MENU, COMPLETE DISPLAY MENU, COLOR
AND WEAVE MENU, PRINTER MENU, STRUCTURE MENU and STRUCTURE
SUB-MENU.

Menus are also used for many of the application programs. Design
input is handled in the DESIGN ENTRY MENU; design storage or retrieval is
performed by the FILER MENU, the PICTURE FILER MENU and the ARCHIVIST
MENU; design manipulation uses the DESIGN EDIT MENU. The DOBBY CONTROL
SYSTEM, which is the controliing software for a sixteen shaft dobby ioom,

is considered separately in an appropriate series of related menus.

The computational algorithms which synthesize a binary
interlacement array from a given threading, tie-up and shed seguence
matrix, or factor a given binary interlacement array into its corresponding
threading, tie-up and shed sequence matrices are each contained in a
separate segment. These programs each perform only a single task

however, and are not therefore associated with menus.
Figure (6.2.3} illustrates how the various programs relate to each

other. The specific operations performed in each of them will be discussed

in conjunction with the relevant theoretical system.
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6.3 PPLICATION DATA STRUCTURE.

The primary data structure which is created, stored and used as
input to the applications programs is the binary interlacement array,
which corresponds to a numeric representation of the intersections
between the warp and weft yarns of a rectangular segment of woven
fabric. With no loss of generality, values of one in this array can be used
to represent warp over weft intersections, while values of zero represent
weft over warp intersections. Traditionally, textile workers have
depicted binary interlacement arrays diagrammatically, as a matrix of
black and white squares, where a black square corresponds to a one and a
white square corresponds to a zero. This representation, known as a point
diagram, can commonly contain up to one million elements [22, p.1],

although it is more usual to contain of the order of one thousand elements.

It was shown in Chapter 3 that, if the binary interlacement array is
stored, then the threading, tie-up and shed seqUence data are actually
superfluous. Since the factorization of a binary interlacement array into
these components is essentially unique, the threading, tie-up and shed
sequence matrices which require the smallest number of shafts and
treadles can always be derived from a given interlacement array. This
means however that every time this component data is required, the
factorization aigorithm must be performed, which considerably increases
the time required to access the data.

In addition, there are occasionally applications where it is

important to specify precisely which warp strands are threaded on which
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shafts and which treadles control particular combinations of shafts. The
factorization process, it will be recalled, leaves the threading and tie-up
matrices invariant up to permutation of their rows and the shed sequence
and tie-up matrices invariant up to permutation.of their columns. There is
therefore no assurance that a given threading matrix, having been used to
create a binary interlacement array, will not be changed when regenerated
by a factoring algorithm. For this reason, it is prudent to store the binary
matrices corresponding to the threading, tie-up and shed sequence data as
well as the binary interiacement array. The dimensions of these four

matrices are also required.

A colour vector of encoded warp strand colours and a colour vector
of encoded weft strand colours must also be stored. These two vectors, in
conjunction with the binary interlacement array, allow the synthesis of a
multi-valued matrix corresponding to the visible coloured pattern of the

woven fabric.

Finally, some data storage positions must be allocated for flags and
other controlling variables. These are, of course implementation specific

and will be discussed as they appear in the following sections.

Since the primary application data structure is binary, a single bit
of RAM can conceivably be used to store each of the elements. This
compressed form of storage was in fact achieved in the test

implementation, where the application data structure was stored in the 8K
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region of memory corresponding to the second page high resolution
graphics screen. Since all display took place on the first page high
resolution graphics screen, this region of memory was not used for '
graphical display, program code, or variable and string storage. Instead
the program architecture was arranged so that when any module was used,
this region of memory was not compromised. As such, the application data
structure was maintained in memory as a resident global data file to be

accessed and freely modified by all program moduies.

High resoiution graphics images on the Apple I+ correspond to bit
maps stored in the corresponding 8K region of memory. This meant that a
single element coutd be stored in this area simply by drawing a single unit -
dot at the specified screen co-ordinates. Retrieval of the data therefore
required computational algorithms that would isolate a single bit or
detect a visual bit. This latter more interesting approach relied on a
graphics command and the high resolution collision counter. This type of
storage had the additional unique advantage thét the actual data file could
be visuatly examined in a meaningful way by displaying the page two high
resolution graphics screen. This arrangement in fact, simulated a process
monitor which was subsequently very useful in developing computational

algorithms with improved efficiency.
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6.4 P P 0

6.4.1 PRIMARY CONSIDERATIONS

Woven textile design data is visually extremely meaningful, even in
cases where the structure rather than the visible pattern is documented.
The binary interlacement array defines the inter-relationship between the
set of warp strands and the set of weft strands intersecting it. Given that
atl of the warp strands are coloured black and all of the weft strands are
coloured white, the traditional point diagram variation of the binary
interiacement array also describes the visible pattern of the structure.
Even if the strands are not coloured in this way, the interiacement data

corresponds to the surface appearance of the fabric.

Textile designers are, for the most part, well adapted to designing
woven structures and interpreting interiacement data, when it is recorded
in this format. Thus it is obvious that some form of graphical display
must form an integral part of an interactive textile design system.
Indeed, the graphical representation of the data is sufficiently important
that it is !ikely the quality of this display which will be the major factor
in determining the utility of such a design system.

As mentioned in Section {6.1], binary interlacement arrays can be
quite large. Since the use of a CRT display device introduces some
inherent limitations in the number of identifiable pixels available, some

balance must be reached between making the individual design elements
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large enough to see, yet small enough to accommodate a large design on
the screen. Two techniques can be used to to help achieve this required

balance.

The first method is to have a variable resolution display that is
defined by the user. Thus, a small amount of data can be displayed at a
large scale, and a large interlacement array can be displayed with the
individual elements, of necessity, being very small. It should be noted
‘that, because the data is discrete, there is no actual loss of detail, even in
a-high density representation. The relationships between individual
elements will however become difficult to detect or separate visually.
While this may be acceptable for some purposes, some applications, such
as design manipulation, will demand a clear delineation of individua) data

points or design elements.

A second approach is to use a windowing technique, where only a
segment of the data is selected to be displayed at any given time. This
permits an easily visible representation of a subset of the data. Clearly
this method is deficient in that it is difficult to examine relationships
between pattern areas and to visualize the displayed segment as it fits
into the design as a whole. Also, great care must be taken at the
boundaries of window segments to ensure that anomalies or

discontinuities with neighbouring structures are not created.

it is in fact likely that some combination of these two approaches
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is optimal, with the variable density method being used to obtain a visual
representation of a structure in its entirety and the windowing technique
being used where some modification to the individual data eiements is

required.

A second form of graphical display which is extremely important is
the hard copy print. Paper copies are useful when a graphic representation
-of design data is needed in a location where it may be difficult to site a
monitor, such as in the weaving shed. They are also required for
manuscript preparation, brochures and written communications. Dot
matrix printers with graphics capability provide a low-cost effective

means of producing hard copy renderings of the required graphics images.
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6.4.2 DISPLAY ENVIRONMENT FOR DATA INPUT

One of the first major concerns in creating an interactive textile
design system is that of actually entering the design data. Numerous
solutions to this problem have been devised for the automatic acquisition
of data, including the use of optical scanning equipment [52] and tight pens
[53] However, what is of prime importance in this context is that the
data be acceptable in some form which is visuaily meaningful to the user.
For example the 16 by 16 element interlacement array in Figure {6.4.2.1)
could be represented in a compressed notation by considering each row of
the matrix to be a 16 place bit string and interpreting it as a decimal
number. The design wouid then be specified by the numbers 17510, 39389,
6545, 30566, 25670, 55709, 4505, 26486, 26180, 56729, 37145, 26231,
18020, 40409, 39185 and 30311. This compressed notation is however,
much less meaningful in terms of the pattern which it represents. Ciearly,

some form of graphical input is indicated.

In the point diagram, the graphical form of the binary interiacement
array, the matrix co-ordinates define the single warp and weft strands
which intersect at a given location. Design elements must be placed
completely accurately with respect to these co-ordinates. The high degree
of precision required is best achieved by drawing an appropriate grid on
the screen, in which squares can be coloured. This has the added advantage
of being a form of design development with which textile designers are

completely familiar. An x-y position indicator or locator [17, p.24] is
simulated by a cursor drawn on the grid and moved up, down, left or right
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under the control of four keys from the keyboard, usually |, J, K, and M on
the APPLE || series [17, p.200]. Cursor movements are obviously made in

integer numbers of squares.

A further input unit is used as a pick to indicate selection or
de-selection of a given grid cell. As the point diagram representation is
created and modified, the corresponding application data file is
appropriately updated on 2 continuous basis. In the case where coloured
interiacement array data is to be accepted and the underlying data file is
discrete but not binary, selection of a grid cell is accompanied by a

numeric encoding of the colour drawn in the square.

The primary design data is contained in the binary interlacement
array and input to this array is obviously required. It is not uncommon
however for the textile design process to begin with the specification of a
threading, tie-up and shed sequence matrix, from which the corresponding
interlacement array is computed. Design input to each of these three
matrices is also therefore required. Additionally, in the case of coloured
interlacement arrays, the colour vectors which specify the colour of each

warp a'nd weft strand in the fabric representation must be addressable.

in the implemented system, the design entry environment is
established in the DISPLAY MENU. One of the available options is to
“Display Design Grid and Erase Memory”, where the "Design Grid” refers to

a rectangular array (Figure (6.4.2.2}) whose cells are mapped to elements
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of the binary interlacement array. When this option is invoked, a grid with
em.pty squares is drawn and the entire data storage area is initialized,
which corresponds to turning off all bits in the region of memory

corresponding to the page two high resolution graphics screen.

The grid size is variable. The larger the grid size, the fewer the
number of cells displayed and vice versa. Two keys are available to change
the grid size, with cyclic wrap-around at the ends of the range, and a third

key, carriage return, is used to accept the grid as drawn.

An alternative data entry environment for binary interlacement
array data is established by displaying a data file which has already been
created and which will be drawn as a grid with the appropriate squares
filled in (Figure {6.4.2.3]).

Another option which is available is to "Display Threading Grid and
Erase Memory”, where the "Threading Grid" provides input areas A,B and C
for threading, tie-up and shed sequence data respectively (Figure 6.4.2.4).
Once again, the grid is drawn with completely blank squares and the data
file is initialized to zero. The grid size is variable, as is the number of
rows in the threading and tie-up matrices, and the number of columns in

the tie-up and shed sequence matrices.

Selecting the option "Display Weft Drawdown™ will also result in

the display of a grid with threading, tie-up and shed sequence regions, but
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with data file entries appropriately represented in the display (Figure
(6.425}). The term "Weft Drawdown™ simply means that the compiement
of the conventional representation is shown. That is, warp over weft
intersections correspond to blank squares and weft over warp
intersections correspond to coloured squares. A facility for displaying the
"Reverse Drawdown™ allows the other representation to be displayed if

required.

Also in the DISPLAY MENU is the option to "Define Window", which
enables the user to specify a rectangular subset of the design area for
display. This feature allows a large design area to be visualized at a
small scale, while still permitting design input over a magnified portion

of the region.

Once the design entry environment has been created, a different
program module called the DESIGN ENTRY MENU is invoked which deals with
the locator, cell selection and data file updating. If the design grid or
design in memory have been displayed then "Drawdown Entry” can be
selected: “Drawdown” is a synonym for point diagram. Four keys are used

to move the cursor within the boundaries of the grid.

If a2 window is in effect and an attempt is made to move the cursor
outside the grid, then the option is available of moving the window over a
different region of the design. At any time, a key can be pressed which

causes the application data file on the page two graphics screen to be
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shown. The boundaries of the defined window are outlined in the data area.
This allows the design entry window grid to be visualized in the context of

the entire design.

Having displayed a drawdown grid or weft drawdown, it is now
possible td enter "Threading; Tieup,; Treadling Entry” data. (Treadling is a
synonym for shed sequence.) Each of the three data input areas is
associated with a single letter code. Pressing one of these code letters,
as prompted, places the cursor and defines the boundaries appropriately.
As before, attempts to move outside of the input area will result in the

option of moving the window.

A limited facility for displaying coloured interiacement arrays has
been implemented. However, input to the corresponding colour vectors is
used only for a local display and is not stored. This feature is discussed

more fully in Section (6.4.3}.

361



6.43 DATA DISPLAY

A major function of an interactive textile design system is to
provide a graphical display of the interlacement data. This display may be
used to facilitate data modification, as discussed in Section {6.4.2}, or it
may provide a graphical model of the corresponding fabric for examination

with a view to assessing its suitability for a particular application.

Graphical display of the threading, tie-up and shed sequence
matrices is another important requirement of a textile design system. A
skilled designer or textile technologist can use this information to assess
the particular loom requirements. In addition, these three factors def ine-
precisely how a loom should be threaded, tied-up and treadled in order to
produce the fabric corresponding to the binary interlacement array. As
such, this displayed data can be considered as a set of instructions for the

setting-up and operation of a loom.

As noted in Section {6.4.2], displaying this data as a matrix of
coloured and empty cells on a grid provides the necessary precision when
individual elements are to be addressed. This is true in the case of data
modification and also in the case where the graphical display is meant to
provide the exact detail regarding a particular strand, such as precisely on

which shaft a certain warp strand is threaded.

On the other hand, sometimes what is required is not a precise data

map, but rather a general over-all impression of the structure. In this
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instance, grid lines detract from, rather than add to, the clarity of the
image. An alternative form of graphical display is therefore desirable
where the interlacement data corresponds to contiguous black and white
squares. This form of representation has of course the added advantage
that a greater amount of data can be accommodated on the screen at a
given time. When a grid is used, 2 considerable number of pixels are
required just for the grid lines. In addition, the cells which are used to
represent the data elements must be of a size sufficient to distinguish

them from grid line intersections.

In the test system, two forms of data display have been
implemented. The first form is the one previously described, with a
variable grid and windowing. The second form is called a "Complete
Display™ and consists of black and white squares drawn contiguously at a
very fine scale, within the four defined data areas. This representation is

visually very similar to the appearance of the actual data file.

In the data display schemes discussed thus far the application data
structure and the design file are completely congruent. There is a
one-to-one mapping from the elements of the data file to the design
elements represented on the screen. The displayed eiements are solely a

function of the data points to which they correspond.

This is not however the case in the graphical display of a coloured

interlacemént array. In this instance, the binary interiacement array is
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mapped through the warp and weft colour vectors to compute the exact
colour which should appear in each of the cells of the displayed array. The
design file is no longer congruént to the application data structure but
arises from the interaction between the interlacement data and the colour

vectors.

If the user is permitted to create coloured interiacement arrays
directly by filling in coloured squares of the design area, then there is an
obvious need for continuous colour analysis and verif fcation. Each time
that a coloured element is drawn in the dispiayed matrix, the system must
determine whether this entry is consistent with the existing coloured
interlacement structure. At the termination of such a data entry session,
the application dat_a structure contains all the determinate interiacement
data. Since the storage area is initialized to zero prior to any data entry, -
all intersections which are indeterminate are automatically stored as
correspondin‘g to the weft over warp type. Alternatively, "Colour and
Weave Effects” {23, p.150] can be created by using colour vectors for the
warp and weft strands together with some initialization colour, likely
white, appearing in all positions not specified by the user. In the test
system, 2 sub-set of this coloured interlacement array display facility
was impiemented. The technique begins with the binary interlacement
array interpreted as a coloured interlacement array, where the warp
strands are all coloured black and the weft strands are all coloured white.
The displayed colour vectors correspond to this interpretation.

Alterations to the visible pattern are effected by changing any or all of
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the warp strand colours to white or weft strand colours to black, with

appropriate updating of the software being made to the design file.

A classical example of this type of effect is that of a fabric design
known as “houndstooth®. As shown in Figure (6.4.3.1), a twill structure is
combined with regular alternate/two colour striping of the warp and weft

strands to produce a smaili regular motif.
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FIGURE 6.4.3.1
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6.4.4 DATA MAPPED TO GRAPHIC OUTPUT PRIMITIVES

As previously discussed, woven textile design data is very visually
meaningful when represented graphically as a point diagram. In some
applications however, considerable insight into the structural
relationships between various warp and weft strands can be gained
through alternative graphical representations. In these cases, the
application data structure is no longer congruent to the design file.
Rather, each data element, or sequence of elements, is mapped to a graphic
output primitive which characterizes the relationships between the
mapped data elements, as well as with the remaining data. Three such
mappings are considered, namely: i) cross-sectional representations
ii) flat sectional representations and iii) profile substitution of design
blocks and counter-blocks (that is, the replacement of each black square
of a design by a design block or matrix and the replacement of each white
square of a design by a different matrix, namely the counter-block) {8,
p. 266, 287}

As discussed in Chapter 4, a diagram showing cross-sections
through the fabric corresponding to a given interlacement array can clarify
the interactions between adjacent data points. These sections, cut
through either the warp or the weft strands, can reveal whether floats of
yarn on the upper or lower surface are excessively long. They can also
indicate intersection sequences which will result in a multi-layered

fabric rather than a single-layered cloth.
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Flat sectional drawings are of value in illustrating the visible
structure of particular interlacement arrays. The relative lengths of yarn
floats in the warp or weft direction, as well as patterns which arise from
the relationship between these floats are highlighted by this type of
representation. In the case of multi-layered fabrics this type of
representation is less visually meaningful, because the interiacement
arrays for the separate layers are completely merged and any patterning
which is present in either of the layers is extremely difficult to detect
visually.  The flat sectional representation of these structures
corresponds to an "exploded view" of the fabric wheré the fabric layers are
shown loosely woven and offset so that the lower layers appear in gaps

between the yarns of the upper layers.

These first two examples have a major characteristic in common in
that in both cases the interlacement data is mapped to a set of
pre-defined graphic output primitives according to an established
algorithm. The graphic primitives can be considered as tiles, which are
used to tessellate the screen, with the yarns drawn within the boundaries
of each tile. The shapes depicted are primarily line drawings and the
density of pixels turned on within a given tile is relatively low. For this,
reason, the sets of output tiles are chain length encoded [62) Each of the
graphic primitives consists of the sequence of piotting vectors required to

produce the appropriate image.
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In creating the graphic output primitives for either of these two
applications, there are a number of factors which must be considered.
The first such factor is the precise placement of these shapes on the
screen so that each tile matches all possible adjacent tiles. This requires
that each image be drawn with reference to a common origin, and that a
standard tile format be used. Each tile is of constant width and height

since the sequence in which they are plotted is not known a priori.

The size of the graphic tiles must also be carefully considered. The
tiles must be large enough to obtain a good representation while being
small enough to allow an adequate number of them to be drawn on the
screen. The cross-sectional tiles must use enough pixels in representing
the cut strands to differentiate between the various symbols that indicate
coercion. The continuous strands must be separated from the cut strands
by at least one pixel, and there must be a sufficient number of pixels
across the tile so that the continuous strands can approximate the
required curvature. {f a2 multi-layered fabric is represented there must be
an odd number of pixels between the cut strands to permit a continuous

strand to be drawn through the mid-point between them.

The flat sectional tiles must be large enough to ensure that the
intersection of the warp and weft strands can be represented
unambiguously. This requires the outlines of the strands and some form of
internal shading be drawn so as to differentiate them from each other and

from the background.
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in the test system, a separate shape table of graphic output
primitives was created for each type of representation. The shapes were
all drawn within a rectangular boundary using a Shape Table Editor. Figure
(6.4.4.1) gives an example of a graphic output primitive created as part of
‘the F[2:1:1] shape table. The size of each graphic tile was constant within
a particular set of shapes but varied from one shape table to another.
Separate drawing routines were used for each of the different
representations to accommodate this difference, as well as to incorporate

the correct mapping algorithm.

The third example of interiacement data mapped to an alternative
form of graphical representation is that of profile substitution of design
blocks and counter-blocks. In designing block weaves such as damask and -
doubleweave, it is often convenient to interpret the interlacement data as
a description of the gross structure of a fabric rather than the actual
intersections between the warp and weft yarns. in such cases the
graphical data now defines only the profile of the design in terms of the
relative size and relationship of the gross design elements. Implicit in
this shorthand description is that the complete detailed design can be
generated by the substitution of some interlacement array, or block, for
every black square in the profile matrix, with a different interlacement

array, or counter-block, for every white square. Figure (6.44.2)

illustrates a binary interiacement array interpreted as a design profile,

with appropriate substitution of satin blocks and sateen counter-blocks.
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This facility is extremely valuable in that the textile designer need
only create a macro-design and specify or develop an appropriate block and
counter-block. The tedious, time-consuming and error prone task of
mapping the profile design to the interlacement array is handied
automatically in software. Much time can be saved by this division of the
development process into two stages, where only the first stage, being the
creation of the actual pattern and blocks, requires the designer's direct
attention. The second stage, that of providing the design with the
necessary structural integrity and fine pattern detail, is handled

separately and independently by the computer.

The graphical display of the detailed interlacement array requires
that the appropriate matrix of pixels be addressed for every element of
the design. Since the substitution is not pre-defined and the user may, in
fact, wish to define an entirely new block and counter-block, the system
cannot be developed with a mapping to a completely pre-defined set of
graphic output primitives for this application. Either the graphic
primitives must be chain encoded during the actual execution of this
program segment, or the block and counter-biocks must be individually

drawn, pixel by pixel.

The test system uses both of these solutions. Graphic displays of
designs with block substitution are drawn at a number of different scales
ranging from one to ten pixels per intersection. In any display which uses

more than one pixel per ihtersection, the appropriate interlacement
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matrix, either the block or counter-block, is plotted in the reguired
position. In the case of a display involving one pixel per intersection, the
block and counter-block data is used as input to a program segment which
creates a shape table containing the two desired blocks. The data file is
then mapped to the design file through this shape table, in a similar
manner to that used for generating the cross-sectional and fiat sectional

representations.
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6.5 APPLICATIONS PROGRAMS

One of the major requirements of an interactive textile design
system is that there be a facility for the appropriate graphic display of |
the design data. In fulfilling this requirement, three applications
programs, namely Design input, Data Storage and Design Manipulation, are
crucial in supporting the graphical display system,. Two additional
applications programs have also been developed (Figure {6.2.1)). They
provide implementations of computational aigorithms for the analysis of
structural properties associated with particular binary interlacement

arrays, and a physical interface to a dobby loom, respectively.
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6.5.1 DESIGN INPUT

The first of these application program segments, Design input,
provides a support environment for the display program because it creates
the application data file. This program is in turn supported by the graphic
display system which establishes the proper environment for user data

input, as already discussed in Section {6.4.2).
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6.5.2 DATA STORAGE

6.5.2.1 DESIGN STORAGE

The second major application is that of data storage. Having
created an application data file in RAM and then graphically displayed this
data, mapped it to a design file, or used it as input to one of the
applications programs, we need some long-term non-volatile storage of
the data file, such as on a floppy or hard disk. In this way, a personal
library of textile designs can be kept. In addition fo storage of the data
itself there is of course a need to store a text file or catalogue of the
names associated with each of the designs. This allows data files to be
accessed in the storage medium by name and loaded into RAM, or for

obsolete files to be deleted and their storage space released.

In the system as implemented, application data files are stored on
5.5 inch floppy disks. Each stored design consists of a binary file
containing the contents of the entire 8K region of memory corresponding
to the second high resolution graphics screen plus matrix dimensions and
system variables. A text file is created that serves as a design catalogue
operating separately from, and in addition to, the disk operating system

catalogue.
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6.5.2.2 ARCHIVES AND LIBRARY STORAGE

A second organized system of long-term data storage is also
required for archives of classical patterns and structures such as those
discussed in Chapter 2. Due to the extremely large volumes of data
involved in these files, a search algorithm for designs with particular

characteristics or size is also required.

in developing a twill array from an initial binary interlacement
sequence, the rule to get from one row to the next is a simple shift
through one position, with cyclic wrap-around. Thus, the number of
possible twills with a given repeat size is defined completely by the
number of inequivalent first rows. This number also specifies the number
of different twills that can be woven on a given number of shafts.
Consequently, in creating a twill database only the inequivalent first row

sequences need be stored.

In the implemented system each interiacement sequence has been
stored as a bit string in two bytes of storage, with sequences shorter than
sixteen bits being padded with zeros. The sequences themselves are
arranged in a canonical form such that the lowest order bit is always
non-zero. |t thus becomes a simple matter to find the first sequence of a
given order by performing a count of the number of leading non-zero bits in
each byte pair up to the required number. Having found this beginning
point, an individual record can be readily isolated by counting forward in

units of two bytes.
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The database of twillins, color alternate twills and cdior alternate
twillins is comprised of large binary files stored in an exactly similar
format to the twills, where for example, the file designator of coior
alternate twillins indicates that complementation is required in the
matrix generation rule. In the case of twillins and color alternate
twillins, because the order of these structures has been restricted to
sixteen shafts in the database, and because there is only one shift value
which produces an isonemal array for any given sequence length, it has not
been necessary to store the number of places through which a given

sequence must be shifted in generating all subsequent rows.

The database of compound twillins with single, double or no
complementation has been stored in three separate files. To simplify the
generation algorithm, the first and second rows for each structure have
been stored as bit strings, and again the file designator indicates the

presence or absence of compiementation in the generating rules.

Any of these archived structures can be used to generate a point
diagram quickly and easily, simply by using the chosen interlacement array
as a tie-up matrix and invoking the point diagram generation algorithm.
Obviously an appropriate threading and shed sequence matrix need also be

supplied, and this can be drawn from the archives as well.

Each of the inequivalent binary sequences used to generate the
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twills can be used to define all of the possible threadings and treadiings
with a given number of breaks [44]. Each element of the sequence can be
interpreted as a directed line segment of a specified length, so that the
entire sequence defines the points and straight runs in a particuilar

threading or treadling.

in the implemented system, the run length must be specified by the
user. This value is then checked by the program to determine that it is a
divisor of the number of shafts or treadles, whichever is appropriate. By
way of an example to illustrate this approach, the design in Figure
{6.5.2.2.1} was developed by first selectinga 16 x 16 compound twillin as
a tie-up matrix. Next a threading was selected from the database. The
particular one chosenhad asequenceof 0 0 1 O 1 1 O 1 1 1V | | and
a run length of four. Finally, a treadling was selected corresponding to the
sequenceC 0010101 10001 1 1 1,alsowitharunlengthof

four.

A library of binary interlacement arrays commonly used as blocks
and counter-blocks in profile substitution is another long-term storage
requirement. This removes the need of defining these particular matrices

every time such a mapped data display is reguired.
In the test system, each of the blocks and counter-blocks stored in

the library corresponds to a text file of ones and zeros, with a

correspondi'ng catalogue of file names. These files can be loaded from disk
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by the user, in which case each character is mapped to a numeric value of
one or zero to be stored in a single byte in RAM. Alternatively the file can
be deleted, so that new blocks and counter-blocks can be entered as

character strings.
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6.5.3 DESIGN MANIPULATION.

Frequently after creating an interlacement pattern, a designer
wishes to know how the design will bhange if a particular transformation
is applied to it. In the case of a hand drawn point diagram, the answer to
this question is often obtained only after tedious and time-consuming
re-drawing of the entire pattern. An interactive textile design and
display . system can therefore prove invaluable in facilitating

modifications to an existing design.

Conceptually, the design manipulation and editing operations are
performed by an application program acting on the application data
structure, with the operations invoived falling into three categories,

namely:

1. Alteration of the state of data elements corresponding to
design pixels whose positions are unrelated. This corresponds
to a change in the type of intersection, either from warp over
weft to weft over warp or vice versa, and is in fact simply a
part of the design input process.

2. Alteration of the séquence of data elements corresponding to
design pixels arranged in either rows or columns. Inserting a
row or column, deleting a row or column or indeed, deleting the
entire data structure are legitimate operations in this category.

3. Taking a subset of the application data structure elements and
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tessellating the entire data file with these elements in such a
way that the tile corresponding to each of these sets in the
display file corresponds to a non-overlapping contiguous set of

pixels.

It should be noted that cyclic rotation through a specified number of
rows or columns, horizontal and vertical reflection, as well as
transposition of the design should be regarded as operations included
under category (2) above. These operations are extremely important in
that they enable the examination and manipuiétion of the various
symmetries of the pattern. The option to use the design as a pattern tile
to tessellate the design space is also very important since most fabrics

are constructed from a pattern with a finite repeat.

in the test system as implemented the category (1) operations are
performed as part of the “Design Entry Menu"; whereas the design
manipulation features in category (2) are contained in the "Design Edit
Menu”. Due to the re‘\latively slow processing speed of the microcomputer
on which this system is resident, the cyclic rotation operations which
require re-mapping of the entire application data file with updating to the

design file have not been impiemented.

Transposition of the design also requires compiete re-mapping of

the data file. However, this feature has been implemented so that the
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warp and weft strands can be interchanged. This is important because it
means that the standard algorithm for mapping the data file to a
cross-sectional representation can be applied to a cut through either the

weft yarns or the warp yarns of the fabric.

The remaining options allow specific rows or columns of the design
to be deleted, as well as the insertion of a row or column at a specified
poiht. The option to restore the original unedited design is also ihc?uded,
in keeping with the design principle of allowing the user to recover

gracefully from errors.

Tessellation of the screen with the pattern corresponding to the
data file, as outlined in category (3) above, has been implemented in the
"Color Display Menu®. This is actually a part of the graphic display system
but, because of the way that the data is stored in RAM, this program
segment can actually be used to modify the application data structure as
well as the design file. When the design is displayed in black and white
using the finest detail, each pixel represents precisely one data element.
By moving the entire 8K of memory corresponding to this bit map from the
page one high resolution graphics screen to page two, the bit pattern is

now in the correct format for the data file.
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6.5.4 STRUCTURE AND ANALYSIS

At some point in the development of an interlacement pattern there
comes the realization that the design is not merely a graphical display of
black and white squares but a physical fabric with attendant structural
properties and inherent integrity. Thus, any textile design system must
incorporate some facility for interpreting and analyzing these structural

properties.

The structural analysis process can be thought of as having two
phases. The first phase is to interpret the complete design as a set of
instructions for the set-up and operation of a loom, and the second phase
is to examine the structural integrity of the fabric created according to
these instructions. There is really no preferred order of execution of
these two stages. in fact, as with all the other design steps, some amount
of interplay is to be expected. The flexibility and ease with which a
computer based system allows this interplay is of course one of its

significant advantages.

All of the algorithms discussed in Chapter 3 for factoring a binary
interlacement array into its corresponding threading, tie-up and shed
sequence matrices require the rigorous comparison of individual data
elements. This operation, which is routine and laborious, is ideally suited
to the computer environment. Once analyzed of course, the resultant
threading and tie-up must be compared with the available resources of the

loom to be used. Should the number of shafts or treadles exceed the
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number available, some design modification will be required.

The inverse of this process is also required in an interactive design
system. That is, this system must aiso be capable of dealing with the
situation where a set of weaving instructions (i.e. threading, tie-up and
shed sequence matrices) is developed and a representation of the resultant

fabric design is required.

- Finally, it is useful for a design system to contain an
implementation of the reducibility algorithms described in Chapter 4.
This form of analysis will determine a priori whether a certain binary
interlacement array, when woven, will produce a single or multi-layered
fabric. The combined need for data handling, numeric computation and
graphical display which this process demands make it highly suited to

computer processing.
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6.5.5 DOBBY 1LOOM INTERFACE

Having performed a dobby analysis on a given binary interlacement
array, the textile designer has determined the loom threading as well as
the pegging plan [68, p. 98] required to weave the corresponding fabric.
This pegging plan can be used as a set of instructions for manually setting
the chain of pegged lags. Alternatively, by using a loom which interfaces
directly to a microcomputer [eg. AVL Compu-dobby and Macomber's
Weaver's Delight] the pegging plan data can be transmitted directly to the

loom without the use of mechanical 1ags.

The test system has been implemented to interface directly to the
AVL Compu-dobby loom, in which the mechanical dobby head is replaced by
a bank of sixteen solenoids connected by a ribbon cable to an interface
card within the Apple computer. Each row of the pegging plan is
interpreted as the decimal equivalent of two eight bit binary integers.
These two integers are stored in two bytes of memory and passed to the
solenoid box where the correspdnding pattern of solenoids is activated.
The dobby mechanism is equipped with a light emitting diode and the
sweep arm which actuates the shafts incorporates a mirror on it which
continuously refiects the emitted light back to an optical sensor. In this
way, the position of the sweep arm is detected by the hardware which is
thereby able to determine when the solenoids should be re-set for the next

pick.
An inherent limitation of mechanical dobby looms is that every row
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of a design repeat requires a2 lag in proper sequence and little advantage
can been taken of pattern regularity. Special purpose attachments have
been constructed to enable highly structured block weaves to be handled
more easily, [29, p.22], {11, p.313-316]. These have achieved varying
degrees of success. The computer interfaced dobby loom, with its library
of block structures and automatic substitution algorithms, is ideally

suited to overcoming this limitation.

Just as the profile matrix and substitution blocks provide a
short-hand version of specifying an interiacement array, so a profile
pegging pian can be used to abbreviate the length of the required pegging
plah. tach element of the profile pegging pilan is mapped through the
appropriate block or counter-block to give the complete sequence for a
given row. This saves enormously in the amount of time and space
required in creating block designs, as well as eliminating an obvious

source of designer error.

in the test system, this facility is combined with the profile
substitution portion of the archivist system to provide full access to the
established library of blocks and counter-blocks. Each time that a new
pattern row is read, as many pegging sequences as there are rows in the

substitution block are generated and sent in sequence to the solenoids.

The addition of supplementary ground weaves, as used, for example,

in weaving Overshot designs [8, p. 174 - 263] require that one of two
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possible 1/1 plain picks be inserted between successive pattern picks. in a
similar manner this can be implemented on the test system merely
specifying the pattern rows and the order in which the plain picks are to
be interwoven. The actual plain weave sequences are then computed

automatically and unambiguously from the threading.

Implementation of the weaving sequence is tracked visually by a
white bar which is drawn across the page two graphics screen at the row
which is currently being woven. As successive design rows are read, this
white bar moves, either forward or backward as specified by the user. An
alternative display on page one shows each pattern fow as it is read, along
with a representation of the virtual lag and a notation of the current

design row.
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