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ABSTRACT

The binary lnterlacement array repnesentation of woven textile

structures ls examined algebraically and computationally, and a particular

class of interlacement arrays, namely those which are lsonemal, is

described in detall. The sub-classes of lsonemaì structures, such as the

twllls, are enumerated, both by counting arguments and by a computer

sleve. Algorithms which permit various types of analysis and

factortzation of weave patterns into thelr corresponding loom set-up

components are aìso presented and discussed ln terms of their relative

efficiency. The necessary features of an interactive computer graphical

system for the development and rapid display of woven textile design data

are examined and an implementation of such a system descrlþed.

fi



ACKNOWLED6E¡,IENTS

I wish to acknowledge the financial support, ln the fonm of a

Unlversity of llanitoba graduate fellowship, of the Universlty of llanitoba

Faculty of Graduate Studies. I wish to express my gratitude t0

Prof. Hartin King, of the Department of Clothing and Textiles, and

Dr. Hugh Williams, of the Department of Computer Sclence, for their

helpful suggestions during the preparation of this thesis. I wish to thank

Dr. Anne Penfold Street of the Department of Hathematics, University of

Oueensland, who has served as a significant source of encouragement and

inspiration over the past three years. I also wish to thank

Dr. Ralph Stanton, head of the Department of Computer Science, whose

foresight and support were important ln establishing this program of

studies and whose guidance has helped a great deal in lts successful

completion. Finally, I wish to thank Dr. William Hoskins for many things,

but primarily for his constant challenges to me to fulfill my potential.



TAELE OF CONTENTS

2.3.3 lllustratlons...

2.4.2 Determinìng the Compound Twill ....73

2.4.2.1 Compound Twtlllns with Reflection Between

Elements.......... .......................78

2.4.2.2 Compound Twillins wlth Reflection at an

iv



2.4.3 lllustrations... ....................100

CHAPTER 3 ALGORITHIî5 FOR FABRIC ANALYSIS

3.I lntroduction....

3.2 DetermininganlnterlacementArray... ..................................110

3.3 Determinlng a Coloured lnterlacement Array.................................................1 l7

3.4 Determinlng an lnterlacement Array Using l'lultiple Thread1n9..............126

3.5 Factorlng lntenlacement Ærays............... ................................142

3.5.1 The Fundamental Problem..... ............142

3.5.2 The Hathematlcal Algorlthm........ ................................144

3.5.3 The Cìassicaì Aìgori t47

3.5.4 The Bucket Sort Algorithm........ ...................................151

3.5.5 The Alternating Direction Atgorìthm........ ............... 163

3.5.6 TheMinimalBucketSortAlgorithm........ ..................169

3.5.7 Theorettcal C0mparisons...................... ....................'.... I 73

5.5.8 Practicaì Considerations......................

3.6 Factoring a Coloured lnterlacement 4rray................. .........208

3.7 Factoring Aìgorlthm for tlultlple Threading.........

3.E Coercive Analysls...........

CHAPTER 4 AL6ORIT}ilIs FOR STRUCTURAL CROSS-SECTIONS

4. I lntroduction ............................242

4.2 Algorithms for Determlning Reducibi1ity.......................--...........'.............'....246

4.2.1 Aìgorithm Based on Row and Column Sums.....................................248

4.2.2 Algorithm lnvolving Row and Column Permutati0ns....................252

ozÁ

v



4.2.3 Algorithm Based on a graph Theoretic Appr0ach..........................258

4.2.4 Aìgorithm lnvolving ldentificatlon of Circuits.............................269

4.3 Algorithms for Structural Cross-Sections......................................................272

4.3.1 The Primary Fabric Type F[l ..........273

4.3.4 The Ternary Fabric Type Ft31.........

4.3.5 The Quaternary Fabrlc Type Ft4l. .........-.... .. ............299

4.3.6 Observations and Summary.. .........306

CHAPTER 5 FLAT SECTIONT\L REPRESEHTATIONS

5. I lntroductlon... ..........................309

5.2 Representatlon of Single Layer Cartesian Structure...................................31 I

5.3 Representation of Doubìe Layer Carteslan Structure..................................316

5.4 Representation of Non-Cartesian 5tructure......... ..............322

5.4.1 Cross-Woven ancl 0enerallzed Non-Cantesian Fonms.......................322

5.4.2 Data Structure and Graphical 01sp1ay.............. .........326

5.4.3 Designing a Graphics Editor for the Dlsplay and Editing

of Non-Carteslan Woven Representati0ns..........................................33 I

CHAPTER 6 AN INTERACTIVE TEXTILE DE5IGN SYSTEII

6. I lntroduction... ..........................338

6.2 Module Hierarchy......... ..........340

6.3 Applicatlon Data Structure......... ..................3¿16

6.4 Graphic Display Pr0gram............ ....................349

6.4.1 Prtmary Considerati0ns........................... ....................549

vl



6.5

6.5.2 Data Storage..

6,5.2.1 Design Storage.......

6.5.2.2 Archives and Llbrary 5t0na9e...............................................378

6.5.3 DesignHanipulation................. TRI

6.5.4 Structure and Analys .............386

6.5.5 DobbyLoom lnterface.......... ?aa

vii



INTRODUCTION

CONTENTS

t.t

1.2

t.3

Hìstorical Context

0bjectlve

Chapter Outline



I.I HISTORICAL CONTEXT

Woven textiles hold an extremely important p0sition in the human

environment. Weaving is known to have been practiced at least as far back

as 4400 B.C. Ill, p. 4l]and historical literary references to weaving and

woven cloth are virtuatly limitless t28¡, t661, [671. Today, woven fabrics

appear in an almost infinite number of end uses, including obvious

artifacts, such as clothing and household furnishings, as well as less

obvious applications, such as vascular prostheses l47l and aincraft bodies

ts6l.

It is not therefore surprislng that there are a gneat many gapens

which have considered the subject of weaving, many of them attemptlng,

with varying degrees of success, to document the significant structural

characteristics of particular types of woven fabrics and to provide a

description of how these fabrics can be reproducecl'

A very interesting and valuable weaving resource consists of the

published notebooks of the early professional weavers [46], [26] [2ll'

These manusct'ipts offer a fascinating historical insight into the types of

weaving patterns whlch were popular during the eighteenth century, as

well as the relatively high degnee of technical complexity which was

exhlbited by these designs. The pattern structures also, in some cases,

suggest the contemporary use of novel loom attachments and
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configurations, whlch are of great interest ln thelr own right [55]' ln

addition, the variety and complexity of the patterns found in these books

is at a level which renders them excellent sources of design inspiration

for modern textile designers.

The original purpose of these notebooks was pnimarily as a personal

documentation of the weaven's wor* and design ideas and as such, the

pattern investigation was undertaken in a pnagmatic fashion nather than

for neasons 0f curiosity. There is no strong indication of an organized and

coherent examination of weave structures or vlsual lmages, other than

some attempts to create alternative designs by changing the tie-up

matrices for the same standard thneading. There is also a great deal of

overlap Þetween the patterns and structures found in many of these

manusffipts due no doubt, langely to the strong influence of fashion In the

demand for woven textiles [271.

There is some classificatlon of weave structures present in the

nineteenth century weaving literature, as fon example llurphy's descripti0n

and lllustratlon of'leafed fancy tweels'[58, p.30]; however, the emphasis

at this time vúas dinected more toward documentation and discussion of

weaving machinery and engineening solutions to the problems of producing

complex woven patterns. A typical example is the þook written by T'F'

Bell, who ls said to have been a
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.NATIONAL sCI-OLAR IN DE5I6N (1875-8) AND

THIRD GRADE CERTIFICATED ART ¡1ASTER, SCIENCE

AND ART DEPARTIIENT, 5.K.:|1EDALLlST lN HONOURS

AND CERTIFICATED TEACHER IN 'LINEN

HANUFACTURINo" AND IN'WEAVIN6 AND PATTERN

DESIONINO" CITY AND OUILDS OF LONDON

INsTITUTE'[4I.

This wort comprised a comprehensive treatment of both the

aesthetic and practical considerations of woven textile design as related.

specifically to Jacquard types of looms and included extensive sections

devoted to a description 0f the actual loom mechanics'

The attÍtude of many of the writers of the time is summarized by

Barlow [3] thus:

fWeavingl calls forth a greater number 0f

mechanical appliances and ingenious contrivances
than any other Art, ancl is on that account alone

always a source of interest to the Engineer and the

Mechanician, as well as to the llanufacturer and

the Weaver.

Formerly the Art depended almost entirely
upon the handicraft skill of the weaver, and his

contrivances were limited in their combinations to
produce designs of any considerable extent . . .

But, by the intrcduction of the Jacquard llachine

and the Power Loom during the present century,

the whole system of weaving, with some few

exceptions, has been changed, and praetieally

become a New Art.
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This lnterest ln weavlng machinery continued into the early

twentieth century, with books such as Br'adbury's Jacouard llechanism and

Harness llounting [6] and Hooper's Hand-Loom weaving: Plain & onnamental

[29] providing detailed descniptions of draw looms, jacquard heads, and

other related devices.

However, a major focus of much of the twentieth century weaving

literature has been the classification and analysis of weaves and woven

textiles and the generation of catalogues of stn¡ctures and artifacts.

There have been a number of different approaches to this type of worfi'

The flrst apprcach has involved an exhaustive study of particular

woven artifacts of a specific collectlon on geographic area. coverlets

have been examined extensively in this manner and an outstanding exa¡nple

of thls type of study is found in the book Keeo l1e warm one Night by

Harold and Dorothy Burnham [8]. ln this b00k, a representative sample 0f

the coverlet holdings of the Royal ontario lluseum have been described,

both as to their appearance and manufactune and as to their origins, and

have been analyzed t0 determine thein weave structures. The organization

of the coverlets within the book is based on a division into the commonly

observed weave classes such as overshot and double weave (for which

rlgorous definitions have been rleveloped [2]).
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Another important source is the book devoted t0 coverlets produced

by weavers in the state of lndiana in the nineteenth century [57]. ln this

book, discussion is focused primarily on the individual weavers, with

extant samples of these people's wor'k being described in detail. The

maJority of the artifacts described are jacguard woven coverlets, but this

ls due to the fåct that only the worJ< of professional weavers was

documented.

A thlrd and more recent study of this nature is the Tennessee

Textile History Project ( 1978- l98J), which is extremely well documented

in the book 0f Coverlets [72]. This wort is primarily a record of the

coverlet weaving heritage of Tennessee and focuses on actual artifacts

known to be from the area. The hlstorical lnformation about these

coverlets ls very detailed, as are the desffiptions of their physical

characteristics. E@g!_!gg weave structure categoFies are indicated

and there is some classification based 0n the appearance of recognizable

motifs.

These types of studles are histonical in nature, concentrating on

specific woven textiles, and the ¡nformation that they contain is of

considerable social and cultural interest, They also serve as a valuable

reference for weave structures and design motifs suited to coverlet

weaving. Although some classificatlon of the fabrics naturally appears in
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this type of work, this is really of secondary, rather than primary concern'

There is a considerable Þody of llterature whlch has been devoted to

the development of an organized and rational method of classifying weave

stmctures into well-deflned categonies. This task of classification has

been approached in a number of different ways.

lrene Emery, in The Pnimary Structune 0f Fabt.ics [14], developed a

system for the classlfication of some of the simple fabnic structures and

also discussed some of the problems inhenent in any classification system'

It was her posltion that [14, P. xil

While there are many possible bases for
classificatlon, it is the structural make-up of the

fabrics and their component parts that provides

data integral to virtually all fabric studies,

regardless of the nature or origin of the fabrics,

the special interest of the investigator, or the

speciat purpose of the study. Structure is never

absent; it is, with negligible exceptions,

determinable; it can be objectively observed; and

it is varied enough for significant grouping and

sub-grouping. Although the details of structure
(and element make-up) do not in themselves give a

complete pictune of a fabric, they provide a sound

factual basis for more comprehensive description
and, being determinable data, for comparative

studies and for classification.

She also felt that "words alone . . . . almost inevitably prove inadequate'
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tl4 p. xil ln galning an understanding of the basic principles governing

fabric constructlon and the variety of fabric stn¡ctures.

Based on these premises, lrene Emery compiled a primary reference

source in the area of woven textile structunes. As previously stated she

did however restrict the scope of her worl to very simple structures.

Also, ålthough The Primary Structune of Fabnics classifies fabric

strüctures ln more rigor.ously defined categories than previous systems,

the categories are still partially desffiptive, with inhenent ambiguities

(eg. broken twill[14 P.l29l).

other attempts at fabric classlfication of which Warc and Weft: A

Textile Termtnology by Dorothy K' Burnham [7] and EncycloDedia 0f

Hand-weaving by Stanislaw zielinski [75] are repnesentative, have defined

their categorles with respect to common use def lnitions and ter^minology.

Thls system has the major disadvantage of being heavily cultunally

dependant and ambiguous. D.K. Bunnham made an attempt, ln her book, to

indicate the foreign language eguivalents of the name of a particular

structure but her categories are broad and sometimes overlap' Also,

because of the common use nature of the classification scheme, there is

no single basis for distinguishing between fabrics, such as structure in

the case of Emery's worÌ. Rathel, the fabric types are sometimes def ined

ln terms of their structure [example - satin, 7, p' I l3l, sometimes in terms

of the¡r composite materlals lexample - drugget, 7, p.5l], and sometimes
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ln tenms of the motifs or patterns which they generally exhibit lexample -

Star and Diamond, 7, p. 1351. Thus, although these types of studies

considen a wider range of fabrics and structunes than previously, the

categories into which fabrics are classlfied become more ambiguous and

less ri gorously def ined.

The books written fon industrial use, such as Woven Cloth

Construction by AT.C. Robinson and R. tlar*s [65], and Z.J. Grosicki's

revised version of Watson's Advanced Textile De9igÊ: Comoound Woven

Structures [22] and Watson's Textile Design and Coloun Elementary Weaves

and Figured Fabnics [23], offer'a third system of classification. The major

feature of this system is the determination of classes of weaves based on

hovr they are constructed. Thus, in addition to structures such as twill

and satin, there are categories of fabrics involving'figuring with extra

threads', multi-layer fabrics (sub-divided according to how the layers ane

held together) and 'colour and weave effects' lt22l' l23l' Tables of

Contents). The scheme used by these industrial writers is actually a

composite of the structural and traditional approaches, modified by

functional conslderations. Fabrlcs with'colour and weave effects" are

classified by the motifs which they exhibit but only in so far as the motifs

ane produced by a specialized arrangement 0f coloured warp and weft

yarns. Simllarly, multi-layen fabrics ane classified by their distinctive

structure but the major focus ls on the warp and weft configurations

which produce these fabrics.
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A fourth system of classification of fabric structures is outlined in

a paper by H.J. Woods, The Geometrical Basis of Pattern Design [73]. As

the title suggests, this system is concerned with classlfication by pattern

and motif and utilizes a sophisticated application of the rules of

symmetry t0 do this. Since all patterns can be classified acconding t0

their symmetry grouos. this provides a very powerful scheme. lt does not

however addness itself to the special characteristics 0f woven strïctures

and cannot be used in its present form as the sole means of categorizing

woven fabrics.

Hore recently, an investigation into the natune of the interlacement

structure of woven textiles has been undertaken by geometers t24l t6Ji,

with the result that an additional system for the description and

classificatlon of woven fabrics has been proposed. The great benefit of

this approach is that it has applied the inherent rigor and formalism 0f

mathematics to the task at hand.
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1.2 OBJECTIVE

The objective 0f this study was to apply the concepts and

techniques of mathematics and computing to an examination 0f the

characteristic interlacement stnlcture of woven textiles, in order to

obtain a precise descrlption, classification, enumeration and analysis 0f

these structures. This investigatlon was focused on five principal areas,

as outlined in Section [1.5].

I.5 CHAPTER OUTLINE

ln Chapter Two, Grünbaum and Shephard's wort on the

mathematical def inition of some of the common weave stnJctures [24] anO

the wort of Hoskins and Street on the enumenation of the simple twills

lq¿l nas been examined and extended. The enumeration and comesponding

theoretical development of twills with a bounded float length, balanced

twills with a bounded f loat length, and the non-twill elementary isonemal

structures is original to this study and has been published in [41], [40] and

[57], respectively. The members of the remaining class of isonemal

structures, the compound twillins defined by Hoskins and Thomas [45],

have also been enumerated by the author and the results published in [431

and [421.

Chapter Three ls concerned wlth algorlthms for the structural



analysis of woven fabrics. The process of deniving the interlacement

amay corresponding to a given set of threading, tie-up and shed seguence

matrices is considered, as well as the inverse pFocess of factoring a given

lnterlacement array lnto lts composite threading, tie-up and shed

sequences. Several new factorization algorithms have been developed and

implemented, and their performance compared with that of classical

methods. One of these algorithms, the one based on a bucket sot't

technique, has appeared in [36] but the Hinimal Bucket Sort Algorithm and

the algorithm for factoring coloured interlacement amays have not been

published previously. The problem of factoring an interlacement array so

as to have a thneading matrix for multiple threading and of defining the

penmutation of a thneading matrix so as to cause it to conform to some

previous specification are also considered in this chapter.

Chapten Four examines the unique charactenistics of multi-layered

fabrics. The existing classification schemes for these structures are

examined t22l t591, as are the extant algorithms for determining the

neducibility t32l of binary interlacement arrays [10], t591, t15¡. A new

algorithm fon determining reducibility, which is based on a systematlc

permutation of the rows and columns of the interlacement matrix, is

introduced at this time.

Also examined in Chapter Four is the question of how to illustnate

multi-layered fabric intenlacement data so as to accut'ately and

l2



meaningfully represent the nature of these structures. cross-sectional

diagrams are one form of representation which has Þeen frequently used in

discussing multiple layened weave structunes (eg. [22, p.l05l, [15, p. 1281,

[68, p. I O0]), but there has been no attention paid to the development of an

organized method of creating such illustrations. A technique for the

automatic generation of cross-sectional representations of two, three and

four layer fabrics, directly from the blnary interlacement data, has been

developed by the author and has appeaned ln [30], [33]' This process is

described in this chapter.

Chapter Five further examines the procedure for representing

woven fabrics. ln this instance, the problems inherent in creating a

graphics image which clearly illustrates the surface appearance 0f a

woven fabrlc are considered. A system is described which has been

developed and implemented for the automatic generation of such diagrams

from a given interlacement array. Also discussed is an extension of this

system to permit the nepresentation of leno, cross woven and braidetl

structures. This latter implementation is further discussed in terms 0f

the graphics editor which is required for the entry and editing of the

corresponding design data.

Chapter Six is concerned with the discussion and development 0f

the principles of an interactive user-computer interface suitable fon a

designer involved with the design and production of textile samples. The

t3



particulan system described has been designated PATTERN ¡IASTER lV, and

the anchitecture and intennal algot'ithms have been published in []a], [59],

t381. The particular implementation discussed ln this chapter is

implemented on an APPLE ll+ mimocomputer and is designed to operate in

conjunction with the Ahrens and Violette computer controlled dobby loom.
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2.I INTRODUCTION

For clar'ity in the ensuing dlscussion, Figure [2. l.l] illustnates the

salient parts of a simplified loom and shows the relationship between its

moving parts and the resultant fabric.

The weave structure classification scheme developed by Grünbaum

and Shephard and based on 'elementary geometry, group theory, number

theory and combinaton¡cs' [24] has been furthen examined and extended to

include other lsonemal structures. By making use of the results from [441

and [45], all of the members of the classes of isonemal fabrics have been

enumersted. A discussion of this investigation follows.

It is necessary first to intnoduce the following definitions to

simplify the ensuing discussion 1241,t441.

Deflnltlon 2. 1.2. A blnary seouence 5 = [sl] of pe¡lOll n ls a sequence 0f

zeros and ones such that

s¡=s¡, k=l(modn).

Two binary sequences of period n are considered eouivalent if and

only if one can be transformed lnto the other by a cyclic shift, reversal,

complementation, or any finite sequence of these operations. Cyclic shift

and reversal correspond to the action of the dihednal group of orden 2n on

t6
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the sequence, white complementation corresponds t0 the action 0f the

symmetnic group of order 2.

Examoìe 2. 1.3. When n = 4, the lnduced equivalence classes of the 16

possible binary sequences are given by the following:

[0000, I I I I ]
il010,01011

{l lo0, oll0, l00,00lll
t0ool , o0lo,0loo, 1000, I llo, ll0l, lol t,0ll lì

Definition 2. 1.4. An interlacement seouence 0 of period n is a sequence

of over and under crossings of orthogonal strands, and each inte¡^lacement

sequence can be associated with an equivalence class 0f binary sequences

of the same peniod.

Def inition 2. 1.5. A waro (wef t) - mononemal design is one in which, for a

given interlacement sequence Q, the columns (rows) are all equivalent to

o.

Def inition 2. 1.6. A mononemal design is one with a column interlacement

sequence Q and row interlacement sequence R such that Q is equivalent to

R. lmplicit in this def inition is that a mononemal design must be both

warp and wef t mononemal.

t8



Def inition 2. 1.7. An elementary waro (weft) - isonemal design is warp

(weft) mononemal and the operation that is applied t0 each column (row)

to obtain the next one must be such that each column (now) maintains a

constant relationship with its neighbours. ln addition, the same openation

must be applied to each column (row) to obtain the next one. This implies

that the symmetry group is cyclic and that the transformation from one

row (column) to the next is aìways the same'

Def initi0n 2. 1.8. An elementary isonemal design is mononemal,

elementary warp isonemal, and elementary weft isonemal. Also the

relationship between each column and its neighbours must be equivalent to

the relationship between each row and its neighbours, that is, the

symmetry group 0f such a design contains both the cyclic group of order n,

taking one column to the next, and the group of orden 2, taking columns

into rows and vice versa. (For the purposes of enumenation, the warp and

weft are assumed to be equivalent. ln addition, the fabnic is considered to

be infinite, with n0 boundary conditions applying.)

Definition 2. 1.9. Two woven fabnics are regardecl as design eouivalent if

one can be transformed into the other by: turning the fabric over; shifting

some wanp (weft) threads from one side to the other (preserving thein

cyclic order and interlacements); taking a mirror image 0f the fabric

parallel to either warp or weft directions; interchanging warp and weft;

t9



any finite combination of these operations.

Definition 2. 1.10. [42] A sequence for which neversal has the same effect

as cyclic shift is said to be a oalindrome. Such sequences are of three

types, namely,

l. aOaPZ...aw-law-t ...a2afg,0f period 2w,

2. agaf2... ârn-¡ã*ãrry -l .,.a2a1, of peniod 2w,

3. aça¡a2...aw-law-l ...azal,0f peniod2w - l.

0nly those of type ( l) occur in the present context.

Def inition 2. l. I l. [42] A sequence for which reversal and complementation

togethen have the same effect as cyclic shift is said to be a

co-oalindnome. Such sequences are of the form

a6a¡42. ., aw-tãw-l .. . ã2ã¡ã9,,

with period 2w

Definition 2.1. 12. t42l The weight of a sequence is the number of ones that

occur per period. The palindromes 0f type (l) have even weight, and we

may assume without loss of genenality that the weight is at most w' The

co-paìindromes have weight precisely w.
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2.? THE TWILLS

2.2.1 THE FUNDAÌ1ENTAL PROBLEII

Thefirstandmostsimpletypeofisonemalstructureisthetwill.

Twill fabrics have been woven since at least 1500- 1000 Bc Il t ] and twill

weaves have long been one of the most versatile and commonly used

stnuctures:

ln the texture of plain cloth, each thread

or woof lweft] passes over and under a

thread of wanP, alternatelY; and two

leaves lshafts/harnesses] of heddles, onìy,

are requisite to produce this effect.
Tweeling [twills], however, takes a

greater range with respect t0 the interuals

at which the threads of wanp and weft are

interwoven; and these intervals increase

and vary in proportion to the numben 0f

leaves employed, and the order in which

they are naised and sunk. Next t0 plain

texture, tweelling is the most extensive in

its application to every branch of the cloth
manufacture: it not onlY serves as a

ground on which other decorations are

woven, but it forms, PurelY on its own

principles, some of the most beautiful
patterns which can be pnoduced in the art
of weaving. [5S, p.22]

Based on the principles of isonemality fonmulated by Griinbaum and
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shephard [24], Hoskins and street [44] developed a theoretical formula for

enumerating the twills and computed the members 0f the sets of twills

for n g 20. For completeness, a summary of this work is included in this

subsection.

Def inition 2.2. l.l. A simole twill on n harnesses is a planar

interlacement array in which each row (column) 0f the amay is an

lntenlacement sequence of period n and is obtained from the previous row

(column) by displacement thr ough one position. Thus the interlacements of

a simpìe twill can be reganded as a binary array genercted as a square

tiling by a circulant binary array of peniod n.

The number 0f inequivalent twills for given n is equal to the number

of equivalence classes of binary sequences of length n induced by the

action 0f the group D2n x 52, that is the direct product of the dihednal

group of order 2n with the symmetric group of degnee 2. This means that

the numbens of twills could be enumerated using:

LE¡1MA 2.2. r.2. [9]

Let G be a finite group, of order g, of transformations acting on a

finite set S and let two elements of S be equivalent if and only if one

can be tnansformed into the other by a transformation in G Ïhen the

numben T of inequivalent elements is
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T =(l/q) I rttl,- ltc

where l(t) is the numben of elements of 5 left invariant by a

transîotmation t belonging to 6, and the sum is over all g

transformations in 0. E

COI1PUT AT I ONAL ALOOR I TI-IM

The computational aìgorithm used to determine aìl of the

inequivalent twills for 2 ( n ( 20 is a sieve given by the following steps:

A vector X of bits with 2n - ? components is initialized to ones'

For example, if n = 4, then

X=l I I

123
ttll
4567

lllllll
I 9 r0ll 121314

2 The index of the first non-zero entry in the vector gives a ,new

twill. ln our example, the first twill ls given by the index l. This

corresponds to the binary sequence 5 0f length 4,0 0 0 l, which

is the binary representation of the decimal number l.

The index in X for any sequence which can be transformed into 5

under the actlon 0f thc dlrect pnoduct Dzn x 52 ls set t0 zer0'

ThesequencesO0lO,O l0O, 1000, lll0, I l0l, l0ll,

5.
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4.

O I I l, cornesponding to the decimal integens 2,4,8, 14 13,

I l, and 7, nespectively are equivalent to S.

Steps 2 and 3 ane repeated until done. ln this example, the final

vectorX = I 0 I O I 0 0000 0000, indicating that theneare J

twills on 4harnesses given by the sequences 0 0 0 l, 0 0 I l, 0 I

0 I which cot nespond to the decimal integers l, 3 and 5,

respectively.

The numÞers of twills for2 { n ( 20 are given in [Table 2 1.3].
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TABLE 2.2. I.3

¡ NI.FTSER OF TWILLS

I
I
5
5
7
I

l7
22
43
62
l2l
rE9
3ó1
óll

t 16t
2055
39r3
7154

r3647

A subset of the twills, namely the balanced twills. being those

structures in which each strand passes over and under those perpendicuìar

to it equally often, were also determined and enumenated for n I 18, and

ane given in Table l?.2.1.41. These twills cìearly correspond to the subset

of binary sequences with weight equal to n/2.

2
3
4
5
ó
7
E

I
t0
il
12

l5
t4
t5
t6
l7
t8
t9
20
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TABLE 2.2.I.4

NUHBER tr BALANCED TULLSn

t
2
3
7

t3
55
65

2'57
765

2
4
6
õ
l0
12

t4
t6
t8
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2.2.2 TWILTS W]TH BOUNDED FLOAT LENGTH

A sequence wlth s¡ * si*l =... = si*k *.si'k*l is sald t0 have a

float of ìength k, that is, a block of k consecutive symbols whìch are

equal. The maximum float length is closely related to the number of

breaks in the sequence, where f s 
¡ , s2, . ' . , snJ has m breaks if and only if

s¡* s¡+¡ for preciseìym distinctvalues of i- 1,..., n. Forexample, the

sequences 0OOlll and 00l00lll both have maximum float length three,

and have two and four breaks f.espectively. Note that the numben of breaks

must always be even.

The maximum float length is an important pnopenty of the twills,

and indeed of any woven structure since it is a majon factor in

determining the functional performance and aesthetic appearance 0f a

fabric. Long floats depnive the fabric of interlacements that provide

str uctural stability, as well as inffeasing the possibÍlity that the long

exposed yarn will be snagged and damaged.

The number of equivalence classes of binary sequences of length n,

with maximum float length k is denoted by F(n,k), and the number 0f

classes of such sequences with exactly m breaks and exactly x floats of

length k is denoted by F(n,k,m,x). Then

F(n,k) = X F(n,k,m,x),e.2.2.1)
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where the summation is over all m and x satisfying the following

cond it ions:

(a) miseven,andfn/kl + 6lm<n-k+ e,

6,€ = O 0r l, 6 = tn/kl (mod2), f = n - k (mod2);

(b) if n=kq+r,0(r<k- l,then

lSxl q ifr)2,
orifr= l,qodd,

onifr=0,qeven;

l(xl q-l ifr- l,qeven,

orifn-0,qodd;

(c) x<msn-kx+x-8, €=n-kxrx(mod2), e '0orl,
and

if m = x, then kln, n/k is even, and x = n/k.

Similanly, the sum of F(n,k,m,x) oven all m satisfying the condltions

stated above, for given x is denoted by F(n,k,-,x).

Note that lt is assumed that k ( n, for lf k = n, then m = 0, no
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corresponding twill exists, and condition (a) becomes 2 I m 10. Hence

F(n,n) is not defined.

Let S(n,k,m,x) denote the set 0f binary sequences of length n, with

maximum float length k, m breaks, and x floats of length k, and let s E

S(n,k,m,x), where s = [st, . . ., sn]. The convention is made that sn * s¡

(which is always possible since k < n), and associated with s ís the

sequence of positive integers

r(s) = [r1,...,rm],

whene s¡ ". . .= sr( I ) 
* sr( | ) + l= .. -sr(l)+ r(2)"sr(l)+ r(2)+ l=.

(ln the traditional break notation of weaving, this would be wnitten

rr rJ

î2 14

Thus, for example, the sequence s = (0010.|) E 5(5,2,4, l) has associated

sequence r(s) = (2,1,1,1).

Let R(n,k,m,x) þe the set of positive lnteger sequences 0f length m,
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where

r = [r1,..., FmJ Ë R(n,k,m,x)

satisfies

I I ni ( k, for i- 1,2,...,m,

ri = k for exactly x values of i,

and

lfi

àr,=n.
i=f I

(Note that r is actually a composition of n into m parts, whene x parts

equaì k, and m - x parts ane less than k.) Then each s Ë S(n,k,m'x)

corresponds to r(s) e R(n,k,m,x), and convensely each r E R(n,k,m,x)

corresponds to exactly two sequences s, s' E S(n,k,m,x), where one is the

complement of the othe¡ . Thus these two sequences, s and s', are

equivalent in 5(n,k,m,x).

The equivalence relation on sequences in S(n,k,m,x), induced by the

action of D2n x 52, corresponds to an equivalence lelation on R(n,k,m,x),

where two sequences ln R(n,k,m,x) are equlvalent ll and only lf one can be
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transformed into the other by a cyclic shìft, v , by a reversal u, or by some

finite sequence of these operations.

lf r = [r1, þ, .. ., rm-l, tmJ, then rv = [r*, r¡, 12,. .. , r*-1], and

ru = (r*, rm-1,...,r2, r¡).

Hence the equivalence relation on R(n,k,m,x) is induced by the

dihedral group of order 2m defined by

Q.2.2.2) G = [u,v].

Thus F(n,k,m,x), the number- of equivalence classes 0f binary

sequences in S(n,k,m,x) unden the action of D2n x 52, equals the number 0f

equivalence classes of positive integer sequences in R(n,k,m,x) under the

action of G.

A formula has been cteveloped for enumerating F(n,k,m,x)and details

of the counting arguments are given in [41]. Using a sieve algorithm and

the twill sequences found in [44], the values of F(n,k,-,x) fon n ( 20, and x =

I t0 lo have been calculated and checked against the theonetical nesults.

These values ane listed in the following tables.
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TABLE 2.2.2,5

F(n,k,=, l), the numben of twills 0n n harnesses, with maximum

float length k which occurs precisely once per period for

n = 4...,20, k = t,...,n-1.

o\ll 2 3 4 5 6 7 E I 10 11 12 l3 14 15 16 17 lE19

I
tl
21t
32 tl
6 5 2l I

I
tl
ltt
22ll
52211
{s32ll
7755211
r0t4963211
1622t79632t|
25 43 50 19 t0 6 3 2l I

4 72 5E 33 19 l0 6 321I
62 136 106 ó6 35 20 l0 6 3 2 l l
rot 256 205 122 69 35 20 l0 6 3 2 1

tsg 445 384 242 130 71 56 20 l0 6 3 2

å7 79ô 740 60 256 lS¡ 71 56 20 10 6 3
410 1476 1406 909 498 266 'l35 ?2 3ó æ l0 6

663 2674 2710 1756 968 514 2ó9 135 72 36 20 10

4 00
50r
6 00
70t
E 00
90r
t0 00
il0I
t2 00
t50l
14 00
l50t
t6 00
170r
16 00
190l
20 00
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T ABLE 2.2.2.4
F(n,k,-,Z) = number of twllls on n harnesses with maximum

f loat length k which occul's precisely twice per period for
n= 4,...,20, R= 1,...,Ln/2t.

r\t t 2 5 4 5 6 7 I I l0

I
0
2l
2A
72

I
0
2l
2 '0s2l
620

15721
18820
4t23721
s834 .l020
113602372
174 134 42 l0 2
325 291 96 27 7
sr4 s24 176 4 10

929 1079 592 l0ó 27

401
500
602
700
805
900
r004
lt 0 0
1205
t300
14 0 6
1500
1607
1700
t606
t900
2009
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TABLE 2.2.2.5

F(n,k,-,3) = numben of twills on n hannesses with maximum f loat

length k which occurs precisely three times per period for
n- 4,.,.,20, k = 1,...,1(n- l)/5J.

n\t 1 2 3 4 S 6

I
I
4
7

t7

0
0
3
0l
5l
03
861
0 ll I
12224
04ó6
t6 82 l7
0 tó3 52

21 30ó 77
0 572 156

4
5
6
7
6
I

t0

12
l3
l4
ts
tó
l7
IE
t9
20

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
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ï ABLE 2.2.2.6
F(n,k,-,4) = number of twills on n harnesses with maximum f loat

length k, which occuns precisely four times pen peniod, for
n = 4...,20, k = t,... ,Ln/41.

r\l I 2 3 4 S

I
0
3
0
6
0

r6
0

29
0

47
0

72

4
s
6
7
E
I

t0
11

12
t5
l4
l5
16
t7
tõ
t9
20

I
0
3
3
il
t9
49
85

2l l

I
0
3
3

t4
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rABLE2.2.2.7
F(n,k,-,S) = number of twills on n harnesses with maximum f loat

length k, which occurs precisely five times per period, for
n - 6,...,20, k = 1,...,t(n - l)/51.

n\l 1 2 3

6
7
6
0

l0
il
12
f3
t4
l5
ló
l7
16

t9
m

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

I
0
5
0

t6
0l

5El
05

79 12

o28

56



TABLE 2.2.2.8

F(n,k,-,6) = number 0f twilìs on n harnesses with maximum float
length k, which occurs precisely six times per period, for

n= 6,...,20, k= 1,...,[n/61.

n\l t25

6
7
6
I

t0
il
l?.
l3
l4
t5
tõ
l7
lõ
t9
20

I
0
0
0
0
0
0
0
0
0
0
0
0
0
0

I
0
4
0

t6
0

50
0

l2õ

I
0
4
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-tABLE2.2.2.9

F(n,k,-,7) = number of twilìs on n harnesses with maximum float
length k, which occurs precisely seven times per period, for

n = 8,... ,20, k = 1,... ,1(n - 1)l7l'

n\l I 2

I
9

t0
ll
12
l5
l4
t5
t6
17
IE
l9
20

I
0
6
0

56
0
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TABLT 2.2.2.10

F(n,k,-,8) = number of twills on n harnesses with maximum float length k,

which occurs precisely eight timesper period, for
n= 8,...,20, k- 1,...'Ln/81.

¡\l I 2

E
I

t0

t2
t3
t4
t5
tó
t7
IE
t9
20

I

0
5
0

29

59



TABLE 2.2.2.11

F(n,k,-,9) = number of twiìls on n harnesses wìth maximum fìoat

length k, which occurs precisely nine times per period, for
n= 10,...,20, k= 1,...,1(n-1)/91.

n\l

t0
lt
t2
t5
t4
t5
l6
l7
t8
t9
20

0
0
0
0
0
0
0
0
0
0
0

I
0
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F(n,k,-,10) = number .t ,J'î:ät;i:r'ntrræ with maximum rloat

length k, which occurs precisely ten times per period, for
n= 10,...,20, k= 1,...,1n/101.

r\t I 2

l0
ll
t2
t5
t4
t5
t6
l7
IE
t9
20

I

0
0
0
0
0
0
0
0
0
0
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2.2.3 BALANCED TWILLS WITH BOUNDED FLOAT LENGTH

Let Fg(n,k) denote the number of equivalence classes of binary

sequences of length n, with maximum float length k, whlch ane þalanced.

Let F¡(n,k,m) be the numben of equivalence classes of balanced binary

sequences of length n, wtth maximum float length k and exactly m Þreaks.

Then

F¡(n,k) = I Fg(n,k,m),

where the summations are over all m such that

In/kl+6lm(n-k-e,

6, E Ë[0,1],6 r fn/kl(mod2), É !n-k(mod2). Notethatweassume

that k < n, for if k = n, then m = 0, no corresponding balanced twill exists,

and the condltlon becomes 2 ( m ( 0. Hence Fb(n,n) ls not deflned.

Let Sb(n,k,m) denote the set of balanced Þlnary sequences 0f length

n, with maximum float length k and m breaks. For s = [s¡,...,sn] E

S¡(n,k,m), the convention is made that s1 " sn (which is always possible

since k < n), and s is associated with the sequence of positive integers
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r(s) = {r¡,...,rm},

\ryhere

s¡=... =sr(l) * sr(l)* I = = sr( l) * r(2) * sr( l) . r(2) * l=

Thus, for example, the balanced sequence

s - [00l00lll) € Sb(8,5,4)

has associated sequence

r(s) = (2,1,2,3).

Let R¡(n,k,m) be the set of positive integer sequences of ìength m,

where

r = [r¡,...,rm] € R¡(n,k,m)

I ( nl ( k, for i= I,2,...,m,

r¡ = k for at least one value of i,

satisfies
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m

å ''= 
n'

and

Xr,=Zr,=ntz.
asli t odi ¡

It is noted that n Ë R¡(n,k,m) is a pair 0f compositions of n/2 into

m/2parls, where no part of either composition exceeds k and at least one

part 0f at least one compositlon equaìs k. Further, each s e S¡(n,k,m)

corresponds to r(s) E R6(n,k,m), and conversely each r E R6(n,k,m)

corresponds to exactly two sequences s, s' Ê S¡(n,k,m), one 0f which is

the complement of the other. Thus these two sequences, s and s', are

equivaìent in 55(n,k,m).

The equivalence relation 0n sequences in S¡(n,k,m), induced by the

action of D2n x 52, corresponds to an equivalence relation on R¡(n,k,m),

whene two sequences in R¡(n,k,m) are equivaìent ìf and only il one can be

tnansformed into the othen Þy a cyclic shift, u, by a reversal, v, or by some

finite sequence of these operations. lf r = {nl,r2, . . . ,rm- l,r*1, then

ru = [r*,r1,r2, . . .,rm-lJ
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and

rv = [rm,nm-1, . . .,r2,r¡)

Hence the equivalence relation on Rb(n,k,m) is induced by the dihedral

group of orden 2m defined by

G = [u,vl

Thus F6(n,k,m), the number of equivalence classes of balanced binary

sequences in S¡(n,k,m) under the action of D2n x 52 , equals the number of

equivalence classes of positive integer sequences in R6(n,k,m) under the

action of 6.

A formula has been derlved [40] to enumerate the values 0f

F¡(n,k,m), corresponding to the equivalence classes of balanced twills on n

harnesses wlth maxlmum float length k and preclsely m breaks. Uslng a

sleve algorithm on the set of balanced twills found in [a4], the values 0f

F¡(n,k,-,x), being the numbers of balanced twills on n harnesses with

maximum f loat length k, where the maximum f loat length occurs x times

per period, were computed for x = 1,. . . ,10. The computed results were

checked against the derived formula, using the identity
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F6(n,k) = Z Fb(n,k,-,x), x= 1,?,...,n12

= X FU(n,k,m), where the summatìon is over all m such

thattn/kl+6<mln-k-8,
6,E € [O,l], 6 - fn/kl(mod 2), € = n-k (mod2)'

These values are listed in the following tables.
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TABLE 2.2.3.I

F¡(n,k,-,|) : I I k I hlÐ - |

a\l 1 2 3 4 5 6 7 I 9

3

I
5

t4
st

164
562

3
t6
7l

2
E2

30 12
t4É

4t3 t96

20
40
600
6001
t0002
12005
t40012
t60051
t80074
20 0 0201 21 4

1A8L82.2.3.2

F¡(n,k,-,2):ltRtn/2

n\l 1 2 3 4 5 ó 7 A 9 l0

I
I
5

I
I
3
E

I
tl
3tt
7J1l
17E51
4t2583
112 77 26 I
29E 259 E7 26

2
4
É
E

l0
12
14

t6
IE
20

I
0l
0l
02o2
03
05
04
04
05
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TABLE 2.2.3.3
Fg(n,k,-,5) I I I k I t(n - l)/3J

F¡(n,k,-,3)=0forn< l4

¡\t I 2 3 4 5 ó

l4
t6
IB
20

0
0
0

00
00
00
00

20
100
385
rs8 24 0

TABLE 2.2.3.4
Fp(n,k,-,4) : I r k ( [n/41

n\l I 2 3 45

2
4
ó
6
t0
12
l4
t6
IE
20

0
I
0
0
0
0
0
0
0
0

I
2
7

2l
76

I
2
5
I

t6
24
56

I
2
7
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TABLE 2.2.3.5
F¡(n,k,-,6) : I r k < Ln/61

n\l I 23

6
E

t0
t2
l4
t6
t8
20

I

0
0
0
0
0
0
0

I

2
I

22
56

I
2

TABLE 2.2.3.6
F¡(n,k,-,8) : I (k ( [n/81

n\t t 2

E
t0
t2
l4
t6
IE
20

I
0
0
0
0
0
0

I
3

t6

49



TABLE 2.2.3.7
F¡(n,k,-,x) for x = 5,7,9, l0

F¡(20,3,-,5) = 4;

Fb(10,1,-,t0) = F¡(20,2,-,10) = l.

All other values of F¡(n,k,-,x) are zeno ln the

ranges given, namely
l(n(20;
I ( x r l0
I rkl [(n- €x)/xl where €s = l,

Ez = l,
Es =1,
Êro=0.

TABLE 2.2.3.8
F¡(n,k) for n= 2,4,...,20; k= 1,2,...,n12

n\t I 2 3 4 5 6 7 E 9 l0

I
4l
194
79 24

I

2l
E3l

22 lr 3
17 3E ls

2# t37 54
E52 50t 222

I
I
5
4
9

t4
50
55
il4

2
4
6
E

t0
l2
l4
t6
IB
20

I
2
5

t5
55
9l

250
7r9

I
5

50



TABLE 2.2.3.9

F¡(n)forn=2,4,.. 20

F¡(n)

2
4
6
E

t0
12

l4
t6
IE
20

I
2
3
7

t3
55
E5

É7
76S

25t8

5l



2-2.4 tttusïnßTlolls

n=4

n-7

n=5

n=6
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s5

0l=u

6=u
8=u

E
T



n=11

n=12
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n=16
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2.3 OTHER SII'IPLE ISONET1AL STRUCTURES

2.3.1 IHTRODUCTION AND DEFINITIONS

Having estabìished the characteristics 0f isonemaì planar

interlacement arrays, as typified by the twills, three additional classes 0f

simple isonemal structunes [45] have þeen identified [24].

Definition 2.3. 1.1. A twillin on n harnesses is an isonemaì planar

interlacement array in which each row (column) 0f the array is an

interlacement sequence o1 period n and is obtained from the previous row

(column) by displacement through s positions. such a structure is calìed

an (n,s) twillin in [24] and a classic exampìe is the (5,2) twillin, known as

a 5 end satin.

It is an obvious consequence of the definitions of interlacement

sequence and design equivaìence that the first row of a twillin can only be

one of the f irst nows 0f a twill and that

gcd (n,s) = I

Similanìy, it is apparent that the (n, l) twillins ane twills.

Def inition 2.3. 1.2. A simple alternate twill on n harnesses is an isonemal
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design obtained from the planar interìacement array of a simple twill with

all even-numbered rows neplaced by their complements.

Definition 2.1.1.3. An (n,s,-) alternate twillin is an isonemal design

obtained from a planan interlacement anray in which each row (column) of

the array is an interlacement sequence of period n and is obtained from the

pnevious t'ow (column) by displacement through s positions and

complementation (-).

2.3.2 ENUHERATION ALGORITFIÌ1

A result following fr'om def initions [2.3.1.1J and Í2.3.1.21which is

stated in [24] without an explìcit proof is:-

THEoREÌ1 2.3.2.1.

For an (n,s) twillin or (n,s,") altennate twiìlin

52rÊt(modn).

Proof. consider the tile descnibing the twiìlin to be that memben 0f the

equivalence class such that the element in the first Fow and first column

is a I (call it "black"). Hereaften n0te that the reference t0 squares in the

tile will be by 'row-column" names rather than the usual

abscissa-ondinate forms. The black square in position (l,l) generates
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black squanes in positions (i, l*(i-l)s) with all numbens being taken

moduìo n and for convenience n being used rather than 0 for the nth now or

column. The design is isonemaì; s0 using this fact 0n the columns t0

'translate" all of the black squares to column n it is appanent that the

square in position (i, l*(i-l)s) needs t0 Þe moved through n-l-(i-l)s

columns t0 position (x,n) and each move will elthel increase or decrease

the row by s (say €s, where e = t l).

Hence x = (i * es (n - I - (i - l) s), and, since we are working

modulon,wemay takex= i- e(i - l)s2 - es= esz- ts* i(l - esz)'

Since es2 - es is a constant, it can be ignoned as far as the column

pattern is concerned. Let

esz - es = t,

l-esZ=u.

Then column n has black squares in row positions t, t+u, t+2u, t+3u, ' ' ',

and these are generatecl by the oniginal squane in position(l,l). This of

course implies that any square does not occur in isolation but as a memben

of a sequence of squanes in every uth position. lf the gcd (u,n) is

designated by the symbol a, then this sequence of squares has n/a

elements. clearly, this numben should be less than n 0r we would have no

mix of 0's and l's ln the amay.

58



Now the remark in the last paragraph shows that the twillin splits

up into subsquares 0f size n/4, and the whoìe tile is patched together from

these sub-twillins. lf we agree to exclude this possibility 0f having a

"decomposable'twillin, then we must have nla = l, a = n; this implies

thatu=0and

l- es2=0. tr

THEOREM 2.3.2.2.

Non-trivial simple altennate twiìls and (n,s,-) twillins 0n n

harnesses only exist when

n=0(mod4).

Proof, ln an isonemal planan interlacement array, the row and column

sequences have the same weight. But every second element of the row

sequence has been complemented when fonming the column sequence.

Hence, among these n/2 elements, half must be zeros and half ones. Ïhus

4ln. tr

A consequence of definitions [2.3. l.l], t2.3' l 2l, [2.3 
.l.3] and the

preceding two results is that the color alternate twills, twiìlins, and

color alternate twillins can be determined by the following algorithm. The

twillins and alternate twillins counted and listed are those for which s *
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t I (i.e. not twills or alternate twills) and s2 = I (mod n).

l. Given r,s,n, and the set of twills on n harnesses

2. Take the ks twill Q whose rcws are [qi], i = 1,2, . . . ,n.

3. Generate the planar interlacement array C with rows tc¡}, j =

1,2,...,n where

c¡ = (-)r (J-l )qi* 
t

where i is computed from

s(j-l)= i(modn) j= 1,2,...,n.

4. Suppose that C and C* (the x denoting the transposed array) ane

design equivalent.

lf r = l, s = l, then C is an alternate twilì.

lf r. = 0, s ) l, s2 = tl (mod n), then C is a twillin.

lf r = l, s ) l, s2 = tl (mod n), then C is an aìte¡^nate twillin.

lf r = 0, s = l, then C is a twill.

Using the twills detenmined in [44] and the above algorithm, the

members of the classes of alternate twills, twillins and alternate

twillins wene found for n ( 20. The number of members in each class was
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aìso computed for n I 20 and cross-checked by counting anguments. These

resuìts appear in Table t2.3.2.3).

TABLE 2.3.2.3

Number of Alternate Twilìs, Twillins
and Altennate Twilìins

n 1lo. of AltopDrto Trllls llo. oF Tw¡lllßs llo' of Alternrte Trllllns

0
o
o
o

t0
o
o
o

32
o
o
o

t9E
o
o
o

956

o
I
o
o
I
0
7
o

55
.T

o
95

1l,7
t5
o
o

t265

2
o
o
o
6
o
o
o

20
o
o
o

71
o
o
o

244

1
5
6
7
E
9

to
ll
l2
l5
t4
t5
t6
t7
l8
l9
20

6t



ffi
#
ffi t

2.5.5 ILLUSTRSTIoNS

n=5
s=2

TI,IILLINS

n = 10, s = 3

n=8
s=3
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n = 12, s = 5

n = 13, s = 5
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n = 15, s = 4

n = 16, s = 7

64



COLOR ALTERNATE T[,IILLS

n=B

n=12
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n=16
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COLOR ALTERNATT TlJILLINS

n = 8, s = 3

67

n = 12, s = 5



n = 16, s = 7
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2.4

2.4.1

COHPOUND TVIILLINS

INTRODUCTION AND DEFI NIT IONS

Discussiontothispointhasbeenlim.itedtosimpleisonemal

structures having one rule for deriving each row (and hence each column)

sequence from the previous one. Hoskins and Thomas [45] introduced the

term compound twillin to describe the only other possìble type of

isonemal bìnary interlacement anray, which they defined as:-

Def inition 2.4. l.l A comoound twillin is an isonemaì binary interlacement

array in which one ruìe is used to derive even row 0r column sequences

lromtheimmediatelypreviousrowolcolumn,andanotherruleisusedto

deriveoddnoworcolumnsequencesfromtheimmediatelypreviousrowor

column. These two ruìes involve reflection about a fixed point, with this

pointbeingdifferentforeachoftherules.Complementationcanalsobe

present in one or both of the ruìes.

The p0lnt of reflectlon of the sequence 5 = [ag, a1, " ',an-¡) can Þe

eithenatasymbolormidwaybetweentwosymÞolsand,forconvenience'

the point midway between as and as+ ¡ is considered to be the (s * tÉ)h

position of the sequence. (Subscripts are added modulo n as usuaì')

Sinìilarìy, if s is an odd multipìe of h, tnen the element as+t is the next

sequenceelementafters.ThereflectionthatfiXespositionsisdenoted
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by 0s: thus lf the sequence ls

then

ancl

S = (0,1,2,3,4,5),

S¡ S = (1,0,5,a,3,2)

065 = (0,s,4,3,2,1)'

ln aìl the cases of interest hene, n is even. 50 0s fixes two positions: s

ands+ru2

ln this notation, the transition nules of [45] can be repnesented as

P = (*)' 0s and O = (-)Y tt,

whene (-) denotes complementation and x,y € t0, ll.

ln developing subsequent resuìts we make use of the following

additional def initions.

Definition 2.4. 1.2. A dyadicalìy derived row isonemal annay is a row

isonemal array which has been generated using two diffenent rules applied

alternately, whene the first nule involves reflection about a fixed point s

and the second rule involves refìection about a different fixed point t'
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lf the sequence is binary, complementation may or may not be

present in one or both of the nules; in generaì, penmutation of the symbols

may or may not be Present.

Definition 2.4. 1.5. An array A n*n is bloct( isonemal if, when it is

partìtioned into s x s blocks (n = 0 (mod s)), the resultìng blocks

themselves form an isonemal array. I

Clearly this property applies to all lsonemaì sequences and not just

to the compound twillins. lt is convenient to choose an example from the

twills lor ll lustratìon.

ExamDle 2.4.1.4. Let A. -. be a twill with fir^st row [1,1,0, 1,0,0J; then

R=

lf A is partitioned into 3 x 3 þlocks then

tt0l00
{1 tt0l0
00ll0l
t00ll0
0lttll
r0tlr0l
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whene

and

ff=

l-r r ol

" 
L: rN

F=

l-roo

lo'o
Lror

l-" nl

L,J

Since thene ane only two blocks, we can set cr = 0 and F = l Then

[o rln= I I

LtoJ '

which is cleanly an isonemal structure.
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2.4.2 DETERI1INlN6 THE CO¡1POUND TWILLINS

ln the development of an algolithm for determining the compound

twillins, we make use of a numþer of results. Firstl, a computationally

simplified method of generating a compound twillin arises from the the

recognition that it can be constructed by specifying a (l,l) mapping from

the first row onto each subsequent row.

THEOREII 2.4.2. l. conslder a compound twlllin wlth transition rules 0s

fromrow 2k to row 2k + l, and $lfrom row 2k + I t0ro\'v 2k + 2' lf the

top row of the matrix is given bY

aO,j = ai,j = 0, 1,.. ,n-1, then

azk,j = ao,¡-zt<{s-t) and a2¡+1,3 = a0,2s*2k(s-t)-j'

for k=0,1,...,ln-Ð/Z.

Pnoof. lf a, occuPies position s' in row 2k, then applying ùs to row 2k

takes the element in position (s' * w) t0 position (s' - w), that is

ä2k* l,s'-w = ã2k,s'*w .

Similarly, if at occupies position t' in row 2k + l, then

a2R*2,I'-w = a2k+ l,t'+w
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ThUS aZk*Z,j = azk*2,t'-(t'- j)

= a2k+ t,t,+(t'_j)

= a2k+ l,2t'-j

= a2k* t,s'-(s'-(2t'-j))

= azr,s'*(s'-(2t'-J))

= azk,2(s'-t')*j .

But, in ro¡v 2k, the element a1 occupies the position s'+(t-s); so

t'= s' - (t-s) and s' - t' = t - s. Hence

âzR Z,j = azr,j-z(s-t) ;

in other words, the even-numbered rows of the matrix form a cyclic array,

where each even-numbered row is just the preceding even-numbered row

shifted 2(s-t) pìaces to the right. The odd-numþered rows fonm a similar

cycìic array.

This justifies the first statement, namely

azr,J = ao,j-zt<(s-t)
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Now the posltlon s' of as ln row 2k ls Just s + 2k(s-t) = s' ; s0

a2k* f ,j = â2R*l,s'-(s'-j)

= azk,s,*(s'-j)

= a2k,2s*4k(s-t)-j

= ao,2s*zk(s-t)-J,

glvlng the second statement of the theorem.tr

From [45] it folìows that the ref¡ection points s and t may always

be chosen t0 satisfy certain restrictions, summarized ¿s follows:

l. O ( ls-tl ( n/4, where n ls the number 0f symboìs in the sequence;

2. gcd|n/2, (s-t)) = l;

3, (s-t)z=tl(modn/2).

Funther,05 and 0s+¡72 â1ê equivalent reflections, for $r*nrr takes

position s + w = (s+n/2) + (w+n/Z) to position (s*n/Z) - (w'n/Z) = s'- w,

Just as 0s does. Hence we also requlne:

4. 0(s,t<n/2.
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ln addition, sevenal observations can be made concerning the periods

of compound twillins. Any compound twillin must obviously have period

n = 0 (mod 2). Any compound twillin with single complementation must

have period n = 0 (mod 4), since it has a four-row repeat. ln fact, any

compounct twillin with double complementati0n must also have period

n = 0 (mod 4), a less obvious fact proved in the following'

fiEOREn 2.4.2.2. A compound twillin with double complementation has

periodn=0(mod4).

Pn00f. ln a compound twillin, the row and column sequences are equal (up

t0 cyclic shifts and reflection). But every second element of the row

sequence has been complemented when fonming the column sequence'

Hence, among these n/2 elements, half must be zeros and half ones. Thus 4

ln. tr

COROLLARY 2.4.2.5. lf a compound twillin with complementation has y l's

in its initial sequence, then n/4 ty tJn/4

Proof. Fon both single and double compìementation, n/2 of the elements

will be complemented. 0f these n/2 elements, precisely half (0r n/4) must

be I's. The remaining n/2 elements can be all I's, all 0's ol some

combination of the two. Thenefone y, the number 0f l's, must be in the

range
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n/4ty t3n/4,as reguired. tr

At this point, it is convenient t0 divide discussion of the compound

twillins into two sections, namely

- compound twillins with reflection points s and t between

elements, that is, where s, t are odd multiples of tÉ ;

- compound twillins with reflection points s and t at elements,

that is, where s, t ane even multipìes of tÉ.
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2.4.2.1 COI{POUND TWILLINS W¡TH REFLECTION BETWEEN

ELETIENTS

THEOREII 2.4.2. 1.1. Consider a dyadicaìly denived row isonemal anray A,

with no complementation on permutation, and with nef lection points s and

t, where ls-tl = | and s,t are odd multiples of lÉ . Then there ane two

elements, ag,¡ and âO,h*ntz , in row zero 0f A, such that there exist arrays

B and C, design equivalent to A, with ag,h and âg,¡+¡72 , respectively, lying

on their principal diagonals.

Proof. Supposethatt=s+ l. Leth=s* E. Thenag,¡moves

2(s-t) = -2 places to the right, or in other words two places to the left,

over each two rows. Also

al,h-l = al,s-rÊ = a9,2s-(s-tÉ ) = ag,s*!É = aQ,h,

so that ag,¡ moves one pìace to the left, from row to row

Define the n x n arrays B and C to be:

br,1= ar,n-¡, i,j = 0,t,...,n-l;

ci,¡ = ai,h*{n/2)-¡ , i,¡ = 0,1,..
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Since s-t = -1, the formulae of Theorem 12.4.2.11 now show that

bi,l = aO,n and that ci,i = ao,h*n¡z , as requined. A simllan (but shorter

argument deals with the case where t-s = l, and bi,j = a¡,n*j,

ci,¡ = ai,h*{nlz)*j' tr

Examole 2.4.2.1 .2 Let A be an array, as in Theonem 2 4.2. l.l, with

s = 5tÉ, t = tÉ, n = g, aO,j = j, j = 0,...,5.

Then

s=

Note that, inBandC, s = h, t = - h, relative to the sequence in the initial

row. Note also that, in a compound twillin, which is a binary array, only

two distinct values can in fact occur.

CoROLLARY 2.4.2.1.3. lf s = tÉ, t = - lÉ, and the initial sequence of A is

ao,j = j, j ='0,1,...,n-1, thenai,j = (-l)i (j-i).

Pr00f. Sln0e aZf,j = aO,j-zk(s-t) , and s-t = l, we have

[ores+sl fos+uzrl [sls¿¡zrol lsotzs+l l?
lr=oro'1. e= lttoso=l , c= l=lszrus+l ls+ssrzl lo
l+sorzsl l+sztorl lt
[ros+szJ l_tzs+sol L4

? 1054
34501
4ã210
12345
0343?
90123
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Since

we have

aZx,i= aO,¡-Z* =1-2k.

azk* l,j = ao,zs*zk(s-t)-j

= 40,1+2k_j,

a2k*l,j= 2k+ I -j.

The conollany folìows. E

THEOREI1 2.4.2. 1.4. Let A be adyadically derived now isonemal array with

no complementation or pemutation, with ref lection points s and t where

ls-tl = | and s,t are odd multiples of 
'É 

. Then A is column isonemal.

Proof. By Corollary 12.4.2.1.31, we may assume without loss of generality

thats= k,t=-rl,and
a¡,¡ = (- l)i (i-i) (moo n),

for l,j = 0,1,...,n-1. Then

at*t,J = 1-¡¡i+l 1¡-1i+l)) = - (-l)i ((j-l)-i) = a1,1-¡

and

u,,j*, = (-t)i tt1*l)-i) = - (-l)i-l (j-(i-l)) = - a¡-¡,¡

The sequence in the initial column is 0, l,-2,5,-4, ... and subsequent

columns ane obtained by leflection in s' = lÉ and t' = - h aìtennately, Thus

A is also column isonemal. tr
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To discuss binary arrays, we intenpret the notati0n sìightly

differently: the initial sequence consists of 0'S and I's, and the term a¡,¡

gives the subscript of the tenm of this sequence occurring in position (i,j).

Examole 2.4.2. 1.5. lf a¡ ¡ = (- l)t (j-i) as before, and the inÍtial sequence is
ttJ

( 1,0, 1,0,0,0), then the corresponding binary amay has rows

il,0,1,0,0,0), (0,1,0,0,0,1), (0,0,1,0,1,0),

(0,1,0,1,0,0), (1,0,0,0,1,0), (0,0,0,1,0,1).

THE0REII 2.4.2.1.6. Let A be a binary dyadically derived now isonemal

array, with complementation in one on both of the transition rules, with

reflection points s and t whene ls-tl = I and s,t are odd multiples of tÉ .

Then A is column isonemal.

Proof. As in Theorem 12.4.2.1.41, we may assume that s = 
'â 

, t= - h , and

that

a¡,¡ = (-)h (-l)i(J-i).

lf we have single complementation, so that the transition nules for

rows are (-)0¡ anO 0-4 , tnen h = [(i+ l)/21 (mod ?); if we have double

complementation, so that the transition rules ane (-) 0¡ and

(-) û-rÉ, then h = i (mod 2).
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This gives the initial coìumn sequences and transition rules for

columns as follows: fot single complementation, the sequence

0,î,-2,3,-4,5,-6,7,-8,

and transltlon rules (-) 0¡ ano 0-¡; tor double complementation, the

sequence

0,1,-2,3,-4,É,-6,7,-8, . . .

and transition rules (-)0h and (-)0-tt

ln either case, the array is column isonemal. tr

IHEORE1 2.4.2.1 .7. Let A be a binary dyadically derived row isonemal

array, with ot' without c0mplementation, and with ref lection points s and

t, both odd multiples of ,t , and satisfyìng requirements (i) - (iv) of

Section [2.4.2]. Then A is column isonemal.

PfOSt. (a) lf s-t is odd, then the points midway between s and t are

occupied by sequence elements ah,ah*nrz say, where h = (s*t)/2 By

requirement (ii), gcO (n,(s-t)) = l; so s-t has an invense r (modulo n).
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By Theorem t2.4.2.11, â¡ rnoves s-t spaces to the right ln each

successive row; so, after n rows, it has moved r (s-t) = I space to the

right. Thus the array fonmed by taking

ûo,h

oa,h

ð2r,rr

ôt,h* I

ür,h* I

ü2r,h+ I

ao,h- I

or,h- |

Ë2r,h- I

ð{n- | )r,h a(n- I )r,h+ |
f,{n- | )r,h- |

is an array of the form given in Theonem 12.4.2.1 ,ll. Hence the original

array is column isonemal by Theorem 12.4.2.1.4).

(b) lf s-t is even, Þy requirement (ii), n = 2 (mod 4) and gcd (n,(s-t))

= 2. Here the mid-point between s and t (position (s*t)/2 again) moves s-t

spaces to the right in each successive row, and occurs alternately to the

left and to the right of the point s. We may assume without loss of

generality that t =,É,s - 2m' lÉ, and that there exists an integenr such

that (s-t) r = 2 (mod n). Then the array fonmed by taking rows 0, r, 2r, . . .

is again now and column isonemal, and hence the original array is column
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isonemal. tr

CoROLLARY 2.4.2.1.8. Fon the arnay A of Theorem 12.4.2.1.71' the tenms of

any column must be a permutation of the terms of the oniginal row

sequence.

Proof. The result follows immediately. B

ENUI"IERAT I ON AL6OR I TI-fi .

An algorithm has been developed, based on the preceding results,

which can be applied to the twill sequences of [44] to determine all of the

possible compound twillins fon a given sequence length. This algot^ithm is

given by the following sequence of steps:

l. Start with n and the twill sequences on n shafts.

2. Choose appnopniate values fon s and t.

3. Taking each sequence in tunn, generate a dyadically derived

row lsonemal array, C, wlth rows Cf , k = 1,2, '. . ,n, where the

original sequence S is permuted t0 give C¡ using the following

computational f ormula:

For k even: Cf = 5n,

where h = I + ((ks -(t(k-2)+n+l)-r) modn ), r=0,1,
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For k odd: Cf = Sn ,

whereh= I + (((k-l)(t-s)*r) modn ), r=0,1,...,ñ-1.

This array will be column isonemal.

4. Determine whether the row and coìumn sequences are desìgn

equivalent. lf they are design equivalent, then determine

whether the ruìes lor generating the coìumns are the same as

the rules for generating the rows. lf they are the same, then

the array is isonemal.

5. Ensure that each of the compound twillins which has been

found is unique.

6. lntroduce complementation into the first nule and nepeat

steps I to 5.

7. lntroduce compìementation into both t'ules and repeat steps I

to 5.

Using an implementation of the above algonithm, the numbers of

compound twilìins with reflection points between elements for n ( l6

shafts wene determined and are listed in Table [2.4.2 1'9]
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TABLE 2.4,2.1.9

NUI1BER OF CONPOUND TWILLINS WITH

REFLECTION POINTS BETWEEN ELEHENTS

nst
xo slll6lE

coltptEnEÈTATlotl coltpLEt1Ellr^Tlotl

DüIBLE

corlptEnElTATl0ì

6
I

t0
t0
l2
l4
l6
l6

I
29
67
l9

2t6
519

t645
509

h
h
h
h
tf
,l
ti
h

0
l0
0
0
I

0
86

306

,l
h
,1
y2

tt
,1
yz

tt

I

I

I

2
I

I

I

3

0
l6
0
0

95
0

640
t6

B6



2.4.2.2 COI1POUND TWILLINS WITH REFLECTION AT AN ELEHEI{T

lnthecaseolcompoundtwilìinswithref.lectionpointswhichoccul.

at elements of the amay, the situation is more complicated than the one

previously discussed, as the following example shows.

EXA¡4PLE 2.4.2.2. l. lf the reflection poìnts s and t ane integers, with ls-tl =

l, then row isonemaìity 0f the array need not imply column isonemality.

For instance, if n = 8, s= 0, t' l, then the initial sequence 00010011 for

the rows leads to a row isonemal array which is not even column isonemal,

as illustrated.

0001001 I

0 r r00100
0 r001 r00
t0010001
00 r 10001
0 t0001 l0
I 1000100
0001 l00l

The following results enable the aìgorithm of f2.42'l] to be

simplified and used for the determination of the compound twiìlins with

reflection points occurring at elements of the afl ay.

Theorem 2.4.2.2.2. Any compound twillin which is pantitioned into foun

n/2 x n/2 blocks is block isonemal.
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Proof. A consequence of propelty (lv) ln [2.4. l] ls that 0s and 0s+n/2 are

equivalent reflections; furthen, û¡ and 6t*nrt ane equivalent reflections

Thus, any element ai+nl2, iE [0,1,...,(n/2)-l], in the first row of a

dyadlcally derlved row lsonemal array wiìl be mapped to the same poslti0n

as element al (mod n/2). The anray A can therefore be considered to be

two contiguous amays of slze n x n/2. But, if the anray is lsonemal, then

the elements in a column of the array must exhlbit the same properties as

did the elements of the rows. Thus, the anray A can þe partitioned 1nt0

lour blocks 01 size n/2 x n/2.

The array A considered in a Þlock sense is now

R= tîil
lf we consider two repeats of A in both the x and the y direction,

crFcrÊ

6E6r
crFcxF
úE6l

but A is an isonemal structure. Therefore o = ¡ and F = 6. Assigning

+
ff
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cr - oandÊ- I,

ff=

a block isonemal arFay, and the result is proved. tr

Theorem 2.4.2.2.5. Consider a dyadicalìy derived row isonemal array A

with reflection points s and t, where s and t ane elements for which ls-tl =

l, with no complementation and with n t 0 (mod 4). ln order for this array

t0 be isonemaì, it must be symmetrìc.

Proof. Let n = 2m. Since n * 0 (mod 4), m is odd. From Theorem {2'4'2'11,

the elements of row m ale given b¡l:

am,J = ag,2s,(m- | )nj 
(mod n).

But, for this array to be isonemal, tt must þe bìock isonemal; see Figune

12.4.2.2.4.1

0l
l0
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Ëo,o

am- l,o

Êmro

Eo,m-l ðfl,* Ëo,n- I

ff=
ôm-l,m-l Ëm,m

öm,m-l Em,m

öm- I ,n- |

am,n-l

öfi-l,o ün-l,m-l ün,m ün- I ,n- I

ilouRE2.4.2.2.4

Thus ag,g = ãm,m,am-l,m-l = an-l,n-l ,ag,m = ar,g, etc.

We can assume, wìth no loss of generality, that s = 0 in the

formulae of Theorem 12.4.2.1), since the first now can always be cycled so

that s will lie in the zero position.

AppfyTheorem 12.4,2J1to the matrix {a¡,¡}, ì,j = 0,1,...,n-l

For i,j even, a¡,j = aO,i*j,and a¡,i = ao,i*j , s0 ai,j = aj,i .

For i,j odd, ai,3 = aO,l-{i*J),aj,i = aO,t-(i*J), s0 ai,j = aj,ì

90



For leven, J odd, ai,j = ag,,i*j, and aj,i= ag,1-(i+j)'

but since m is odd, ai,j = ai*m,¡*6¡ = a6, ¡-(i+j) '

and hence a¡,¡ = a¡,i .

For i odd, j even, ai,j = ag,1-(i+j), and aj,i = ao,i+j.

But a¡,¡ = ai*m,j*m = a0,l+j ,

and hence at,J = aj,t ,

and the result ls Proved. tr

corolìary 2.4.2.2.5. Any compound twillin with ref lectlon at an element,

with ls-tl = l, and wlth order not a multiple 0f 4, ls also a twill'

Proof. Thls follows as a direct consequence of Theorem Í2'4.2'2'31 and

Def lnltion [2.2.1.1.] El

Examole 2.4.2.2.6. Let A þe a dyadlcally derived now isonemal array whose

toprow isgivenbyag,j = j, j =0,1,. '.,5,withs=0, t= I

9l



ft=

452lrfr5
4s0 | r 25

2r0ls45

For this array to be isonemal, the eìement in cells containing 0

must be the same as the element in a "l" cell; "2" and "5" must conrespond,

as well as "3" and "4". A could thus be written

0121545
0541521
2541501

r021552
0251520
2551200

5321t02
52011123
2001255

ff=

and the symmetry is apparenl

Thene ane furthel restnictions that can be placed 0n the sequences

which can posslÞly occur ln compound twllìlns with reflection occuming
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at elements of the array, which we now examine.

Consider finst the case with no complementation, and suppose that

the refìections that generate the compound twillins occur at the elements

ag and a¡ of the inltial sequence ag,a1,a2r.. . ,aZU-l (A) where n = 2k and t

is chosen t0 satisfy the restrictions (i) - (iv) in Section {2'4.2J, so that

O < I < R/2, gcd (k,t) = 1 ,12 = rl (mod k).

Then column zero will be occupied by the sequence

ag, ag, a2¡, a-2¡, a4¡, a-41, . . . , a4¡, a-2¡, a2¡ (E)

and coìumn one by the sequence

a l, a- l, a2¡a 1, a-2¡- 1, a4¡¡ 1, a- 4¡- 1, . ., a4l- 1, a-2¡+ 1, a2¡- 1 (0)'

The restrictions 0n t ensure that the subscripts 0, 2t, 4t, . ' ' , -4t, -2t run

through all the even integers modulo n, and thus that (E) consists of all the

elements from even-numbered positions of (A), twice each. Every

even-numbered column is occupied by cyclic shifts of (E) and every

odd-numbered column by cyclic shifts of (0). since the array is isonemal,

these sequences are equìvalent; hence (A) is a palindrome of type ( I ) and
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even weight, say 2h. Further, h of the ones in (A) must occun in

even-numbered and h in odd-numbened positions, so that (E) and (0) contain

equal numbers of ones.

Consider the particuìan case where t = l, which satisfies

restrictions (i) - (iv) of Section t2.4.21 f or any vaìue of n. lf we choose i

and j so that i t j = | (mod n) the sequence given by

ai=aj=l

aw=0,w-i,w-j

is a palindrome which, on neflection at 0 and I alternately, gives a twill

lf k = 2m so that n = 4m, then

ai . aj' l, a*'0, w ' i, w- j

and

a¡+¡ - a¡+k - l, aw - 0, w * i+ft, çt j+[

are distinct but equivalent sequences, so we have m such twills; if

k= 2m * l, so that ¡ = {¡ + 2, the sequences (x) are distinct except in the

single case i = m + l, j = 3m * 2; so we have altogetherm + I such twills'

Funther il we choose pains (i,¡, jf ),... , (io, jo) where

(r()

(x)

94



iw t Jw = I (mod n), w = 1,2'... ,P, and let

a¡¡*1= a¡twl= t, w = 1,2, '..,P

a¡ = o, h tt {i¡, jt,... , ip, jpJ,

we have a palindrome of weight 2p, which again gives a twill when

nefìected at 0 and I alternatelY.

lf k=2m+ l,wechoosepsothat I (p(m,andtheweightof the

palindrome is at most 2m. This can be done in

tÉ ( Pî'l 'tÞ¡J I inequivalent ways,

using Burnside's lemma as described in [37], where the group is generated

by the reflection that maps i t0 2m + I - i (mod n). Hence the number of

inequivalent twills which occur as compound twillins of this type is

ltì

r 
*f rPî1. kü¿h

A similar, but more lengthy argument gives the numben of

inequivalent twills which occul as compound twillíns when k = 2m. The

detailed development is given in [421.
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The only case which has been considered theorctically is the one

with no complementation and with the l's in the first now seguence

appearing in positions i,j for i and j such that i + j = t. tn other words,

only compound twillins which ane isomorphic with twills have been

considered. Thus, the formulae developed give lower þounds, as shown in

Taþle [2.4.2.2.7].

We now cons'ider the possible sequences for the compound twillins

with complementation in one or both of the generating rules. We may

assume that n = 4w, and that reflections occur at points a9 and a¡, where

O < t ( w, gcd(Zw,t) = l, t2 = !l (mod2w), and our initial sequence is

a9,a1,a2,...,44w-t

lf complementation occurs when we reflect at 40, but not when

we reflect at at , then column zero has the sequence

aO, ã0, ãZt,a-Zt,aqt, ã-¿t, ãOt, a-At .., ãqt, ã-2t,a2t'

and column one the sequence
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at,ã-t, ã2¡+ ¡, a-2¡-¡ ,a4t*1, ã-¿t-t,..',ãqt-1, ã-2¡+1,a-2¡-1

lf complementation occurs with both reflections, then c0lumn zero has the

sequence

aO, ã0, aX,ã-Zt, aqt,ã-at,. . . , ã¿t, a-X,a-Zt ,

and column one the sequence

al,ã-1, a2¡* ¡, ã-2¡-¡ ,a1t*1, ã-4t* l, ... ,a1l-l , ã-2t*l,a2t-l

Hence for a compound twillin with either single or double

complementation, the initial sequence must in fact be of the form

âg, a1, a2,. . ., ?Zw-¡,ãZw-t, . . .,-a2,ã1, ã0,

that is a copalindrome of weight 2w, where w ones occur in even and w in

odd positions in the sequence.

The algorithm of Section 12.4.2.21 can be applied t0 the twill

sequences of [44] to determine all of the possible compound twillins for a

given sequence length, with reflection p0ints at an element. Based on the

preceding nesults, the following filters can be applied to the twill
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sequences pnior t0 invoking the sieve algonithm, to obtain a rapid

neduction of those sequences which can potentially be used to create these

compound twillins.

Filterino Aloorithm:

When no complementation is to take place:

l. discard all sequences which have a weight fon the odd numbered

elements not eoual to the weight for the even numbered elements;

2. of the nemaining sequences, discard those which are not

palindromes.

When complementation is to occur in either æ ¡LÞqlh rules:

l. discard all sequences whose weight is not precisely equal to one

haìf the seguence length;

2. of the remaining sequences, discand those which are not

copalindromes.

Using an implementation of the above algonithm, the numbers of

compound twilìins with ref lection at an element have been dete''mined for

n r 16 and are listed in Table í2.4.2.2.71. \
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TA8182.4.2.2.7

NUIIBER 0F Co|.IP0UND TWItLINS

WITH REFLECTION POINTS AT ELEI1ENTS

ll¡
Complemcntrtlon

ns
Acturl

t Xumb3r
Theorcticrl
Lowrr Eound

Single
ComplomEntrtlon

Doublo
Complementrtion

óo
80

t00
too
t20
t40
t60
t60

0
6
o
o

24
o

70
6

2
5
I
I

23
55
ó9
5

0
2
o
o
o
0
2

lo

2
5

:
IE
55
69

The pnograms which were developed to enumenate and identify all 0f

the isonemal structures were written in APL and tun 0n an Amdahl 5850.

The CPU time required to obtain these tables was of course exponential

with n and, even fon the small cases considened, involved in excess 0f

filty hours.
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2.{.5 ILLUSTRRTIoilS

C0ltlPOUND TI.IILLINS

NO COMPLEMENTATION

n
s
t

I
4
L4

n=10,s=4,t-?rá

n=6,s=Z,t=Lh

t00



n=LZ,s=12, l,=!4

r0l

n=14,t=t'",t=!\



n = 16, s = 4, t = !r2

l02
n=16,s=1,i-3,



COMPOUND Tl/lILLINS

SINGLE COI'IPLEMENTATION

n = 8, s = 4, t = lr2

n=!2,s=\,t=h

t03



n=16, s=%,t=34

t04



COMPOUND TI.IILLINS

DOUBLE COMPLIT'IENTATION

n=B,s=\,t=7:,

n=L?,5=rz, l=74

r05



n = 12, S = \.2, t = l\
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3.I INTRODUCTION

An intenlacement arnay is actually the product of three matrices

which describe the physicaì set up and operation 0f a loom, namely the

thneading, tie-up and shed sequence matrices. 0n all but the most simple

of looms, each lengthwise yarn, 0n wanp end, is threaded thnough a heddìe

on a particular shaft, with the nesuìt that eveny warp end threaded on the

same shaft makes exactly the same interlacements with the cnosswÍse

yarn, 0r weft pick, as eveny other end 0n that shaft. The threading matrix

has the same numþer 0f columns as wanp ends and the same number of

rows as shafts on which the ends can be threaded.

The weaving process involves raising one or more of these shafts at

a time. All 0f the wanp ends threaded on this shaft, 0r these shafts, will

then lie on top of the weft pick insented at this time, while the remaining

warp ends will lie undenneath the weft pick. ln the case of the most

common loom configurati0n, the single hanness system, each warp end is

thneaded on only one shaft. This places the nestriction on the binary

threading matrix that there be precisely one I in eveny column, with the

remaining elements being 0.

The tie-up matrix indicates in which combinations the shafts will

be raised. The number of rows is equal to the number of shafts and the

numþen of columns is equal t0 the number 0f diffelent comþinations 0f
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shafts t0 be used. Each set of shafts t0 be raised in a pafticular

combination is physically tied to a tneadle which, when depnessed, causes

the shafts to rise. Thus, the number of coìumns in the tie-up matnix also

repnesents the number of tneadles.

The shed sequence matnix indicates which treadle will be used fon

each weft pick. The numben of columns is equal to the number of treadles

and there ane as many rows in this matrix as there ane pÍcks ln the

corresponding interlacement array. Normally, only one treadle is

depnessed for any weft pick. The shed sequence matnix thenefone contains

precisely one I per row, with the remaining elements being 0.

Because of the inherent association between the woven design and

the set up and operation of the loom, it is essential to þe abìe to

determine the interìacement anray which will result from a specified

thneading, tie-up and shed sequence matrix and conversely, t0 factor a

known intenlacement arnay into its thnee matrix c0mponents. This chapter

wÍll discuss algorithms fon both processes.
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3.2 DETERI,IININ6 AN INTERLACEI1ENT ARRAY

The traditional method of computing an interlacement array (Figure

{5.2. 11) nequires that one start with the lirst row 0f the shed sequence

matrix (C) and find the column which has a non-zero entry. This

corresponds to the treadle which is t0 be used for the corresponding row

of the interlacement array. This is projected upward to the tie-up matrix

(B), whicfr indicates the shaft or shafts tied up to this particuìar treadle.

Projecting across t0 the threading matrix (A) gives the precise warp ends

which are threaded on this (these) shaft(s). lf these shafts are raised, the

vvarp ends which are threaded on them will be raised and will therefore lie

on top of the inserted weft pick. The first row of the interlacement array

will thus contain l's where these raised wanp ends ane located and 0's in

the other positions. This process is continued until each row of the shed

sequence matrix has been used and all of the rows of the interìacement

array have þeen filled in. The resulting interlacement arnay is obviously

isomoruhic to the conventional point-paper dìagram [69] form of

representati0n, as desribed in Section (3.5J.

The relationship between a given interlacement array D and its

corresponding threading, tie-up and shed sequence matrices can þe more

succintly formulated as a matrix equation.

il0



BA

c

FIGURE 3.2.I

HE
Ë

T
T

¡I

t--'l

tr

E
H

ilt



Specifically, lf the threadlng matrix is denoted by A, the tie-up

matrix by B and the shed sequence matrix by C (Figure 13.2.2D, then the

i,jh element ln the lnterlacement array, ls given þy

(3.2.1',)

| = 1,2,

j = 1,2,

where the loglcal operators'and' and 'or'replace the convenilonal matrix

operatlons, mul t ipl i cat lon and summation, respect ive ly.

Hore convenlently, uslng the notation developed in ApL, Equation

(5.2.3J can be rewrltten as [551

ß.2.4', D = (Cw.,. (ÞB)).,.^ A

where \, denotes the operatlon of transpositlon.

Although the precedìng matrix equation completely and

unambiguously specifies the relationshlp between the interlacement array

and lts three factors, thls approach ls not computationally very efflcient.

Each element of D ls obtalned as the result of (r + I ) s 'mulilplications'.

lnD
o',: = I[ H',,*^br,k^ar,J

,E

,t
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A more efflcient and conslderably faster process makes use of indirect

addressing, as ln the following equatfon

(J.2.s) dr,J = bc,p

where p ls the column lndex of the slngle I in the lh row of the shed

sequence matrix C, and where q is the row index of the single I in the jh
column of the threading matrix A

This formulatíon arises from the observation that the tie-up matrix

is, ln fact, a tile which is used to tessellate the plane defined by the

dimensions of the interlacement array. The threading and shed sequence

matrices specify the n¡les according to which this ille ls placed. These

rules are the placement ancl orlentation of the tle-up matrlx tile, as well

as whether the entire matrlx is to be placed in a glven posltion, or rather

some submatrix.

An implementation of this indirect addressing algorlthm is given by

the following Pascal procedure.
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N5

NT

VARIABLE DICTIONARY:

H NUNBER Of æLUT4Ns II.I THE THRETDINO MATR.IX A}'¡D RTSTJLTII.IO

INTERLACEI'4EHI ARRAY. (CORRESPOT,IDS TO IHE NUHBER tr WARP ENDS IN

THE t,\BRIC SE$4ENT)

I{I,II4BIR OF ROIVS IN THE S}IED SEQIJEI.¡CT T,IATRIX AND RESTJTTINS

INTIRUffMENT ARRAY. (OORRESP${DS TO THE NUI1EER OI IYETT PICKS IN

THT FAERICSEOfIENT)

NUIIBER Of ROìilS IN THT THRIADII'IO 

^l'¡D 

TIE-UP HATRICES.

(CORRESPO''IDS TO lHE NUHBIR OF SI{A,FTS IXìED)

NUIIBER Of COIUT4NS IN THE SIIED STQIJI}'ICT AI,ID TIE-I,IP HATRICTS.

(æRRESPOI{DS TO TÆ NUI-IBER OF TREåDLES US[D)

THRIADINO }1ATRIX. 8IM,RY I4ATRIX Of SIZT NS 8Y H WITH PRECISTTY OI.¡E

ü'rr rN EYERY C0t-t F1t't

SI.IEDSEQ S}IED SIQIJE}{CT I4ATRIX. BIM,RY }4ATRIX OF SIZE N BY I.{T WITH PRECI$IY

ü,¡E ONE IN EYERY ROIY.

ÏIEUP TIEIP I'4,TRIX. BIMßY TIATRIX Of SIZE I{S 8Y NT

INTARRAY INTERLACÊT1EMT ARRAY. BIMRY I'IATRIX OF SIZÊ N BY Ì4.

stzE YARIASLE TYPI - PACX,ED ARRâY I I . . I 2O,I . . I2O] Of IIITEOER

THREA,D
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PASCAT At 60RlrHll:

PROGEUff II{TAR (VAR I}ftAD.SI{EDSÉO,TIEI.P,I'{TAfiRAYSIZEII,IIJ{:ì,NTJNTEGER);

(r Tle ARRAY nilTlE CffitSFolÐS T0 TIC ARRAY TlEtp W{IH A}l ADolTlo{Ál- RÛn,

AtÐ c0-tÌîi tr ERov tt.EsADotD lHls AlLoJs TIE pffilBltlTY tr A cüfLEIEtY
ztRocor,ttf{ tr It{FfÆ m KHrtr sl{Dsto Ìt{E vEcTm g{ fTs cÖlTAllË Tl[ RoT/

Ito€X tr Tt[ (I\E il€l{-ERO vAttf lN EACH Cq.ufi tr I}nEAD TtC vARIA¡tEs l¡J
AND K AË L(xp $D|CES TIE VARIABIE IËADtt CfiTAll€ Tl€ Cq,$fi ll$€x tr TIE
(}[ MI{-.ZERO VAt tE rN f}E flnRfNT ROY tr Ttf SltD Stcft{c€ tlAIRlx ¡)

YAR
TTIlTIESIZE;
SllÁFTS :ARRATI I æl (lF lilIEG:ER;
lJ,X.TRIAOIE: lLlf,O[n;

!c6m

F l¡l fO l*i D{l
!Í6H

FOR J=l TO l{T lX} IttltlEll¡Jl=TlEtPllJl;
IEnTlEll,tlT+ ¡ l:{;

ctt;

Ffl Jpl TO Nf+ I OO nHTElll$ I ¡Jl=O;

FfiJ¡l TO 11 D0
tE6lll

K:.1;
srffT:ìultÊrt;
UHrtC (K.4as) Am (g{AFTSUI ) }rs) Do

r îffADlK¡Jl {) 0lll[¡l sflAfTsulF( ELsË Kid+l;
Eto:

Ffil:=l TONO0
DC6IX

K:.1; I
lIEADLE :4{T+ I ;
¡¡¡¡1¡ (l(r4{T) ArO (TRfAtf,E) lfr) DO

tF s¡f,osEof r .x. l (' 0 THEI TËADLE :{( ELSI K :d+ l ;
FffJ:=l TOll OO

lffiAnRAYl l¡Jl:.lEflTlEf S¡lÄ¡TSf JI,TEADIEI;
EXO;
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5.5 DETERI"|ININC A COLOURED INTERLACEI'IEI{T ARRAY

Traditlonally, weavers have represented lnterlacement arrays, and

thus the corresponding fabric structures, diagnammatlcaly as a matrlx of

black and whlte squares, whert a black squane reprÊsents a warp over

weft lntersectlon (a value of I ln our blnary matnlx notatlon) and a whlte

square lndicates a weft over watp lntersection (a value of 0 in our binary

matrlx notatlon). Thls representation is known as a point-paper diagram

or draw-down [51.

For a fabric wlth black warp and whlte weft yarns, the black and

vvhlte squares 0f the point-paper dlagram represent the colouring of the

fabric, as well as the intersectlons. Thert are hovvever, some lnstances

in which lt ls advantageous that the colour and lntersectlon

r€presentations not correspond dlrectly. This occurs when the warp or

weft, or both, contaln strlpes of colour.

Sometlmes a partlcular motif or coloured pattern ls requlred whlch

would not be structurally stable if it were woven wlth a solld colour warp

and weft. ln this case, the colour of sections of war! and weft yarns can

be changed such that lntenlacement sequences altered to produce a mone

structurally stable fabrlc will rtsult in the same motlf as the orlglnal.

That ls, the altered lnterlacement array wlll reproduce the orlglnal colour

arr¿y but the correspondence between colour and lnterlacement array will
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no longer be one to one. Thls technlgue, know to weavers as colour and

weave effects t23¡, [25], ls commonly userl to produce a wide variety of

motifs ln fabrics whlch are structurally stable.

When considerlng coloured lnterlacement amays, the correspondlng

threading and shed seguence matrices are now lnteger matnlces while the

tle-up remains a binary matrix.

The threading matrix stlll corresponds to the shafts on which each

of the warp ends ls threaded. The one non-zero entry ln each column is

however now not necessarlly equal to one. Thls entry lnstead is some

lnteger value which represents an enco<led yarn colourlng.

Simllarly, the shed sequence matrix represents, not only whlch

treadle ls to be depressed for a glven weft plck, but also the encoded

colour of that yarn. As before, the shed sequence contains preclsely one

non-zero value per row.

The tradltlonal method of computlng a coloured lnterlacement array

(Figure t3.3.ll) requlres that one start wlth the first row of the shed

sequence matrlx (C) and flnd the column which has a non-zero entry. This

is projected upward to the tle-up matrix (B), and then amoss to the

threarllng matrlx (A), as before. The preclse warp ends whlch are to be

ralsed when the cument weft plck is lnserted have been determtned. The
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vislble colour ln the flrst row of the coloured lnterlacement array wlll

thus be the colour of each of the raised warp ends where they lle on top of

the weft plck, and the colour of the current weft yarn everywhene else.

The coloured lnterlacement array, ln lts encoded form, ls thus a discrete

matrix whose entrles corr€spond to the.encoded colours which will appear

on the surface of the fabrlc at each intersectlon.

The relatlonshlp between a given coloured lnterlacement array and

Its corrÊsponding threadlng, tie-up and shed sequence matrices can be

formulated using matrix notation. lf the threading matrix ls denoted by

A " [a¡,¡: l=1,2,...,s; J=1,2,...,m], the ile-up matrlx by B = [Þ¡,¡:

l=1,2, ... ,s; J=1,2, .. . ,rJ ancl the shed seguence matrix by C = [c¡,i:

i=1,2, .. ,n; J=1,2, . . . rJ, then the i,Jü elements in the coloured

interìacement array, denoted by D = (d¡,.¡: l'1,2,.. . ,n; J-1,2, . .. ,mJ, ls

given by the foìlowing:

(3.3.z'.) D=ZqA

where

(3.3.3) Z-C.B',
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(J.J.4)

(3.3.s)

with denotlng th€ transpose and the operatlon being

conventional matrlx multipllcation, and wher€ the operatlon c
ls defined as

tl ¡,1 = (w i,J x tlAx a k,j) * (-w l,j x ttÆt z¡,¡)

k=1,2,...,s

where

3

* i,J L{ ,r,,* 
) o) ^ 

(ak,j ) o),

and where -w denotes the complement of w

l2l



EXMPLE 3.3,6

000200
A= 003030

030003
200000

001 I

0tt0
I t 00
t 00 t

BI

z-

2000
0300
0050

c- 0002
3000
0200
0020
000J

0022
0530
3300
2002
0033
o220
2200
5005

I I OO0l
0r r0ll
00 t I r 0

w= t 00100
I 10001
0tt0ll
00 r I r0
r 00 t00

23 2223
t33J33
335253

D= 222222
253333
233233
223232
233233
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N

Arì lmplementatlon of this algorlthm ls glven in the followlng

Pascal procedure.

VARIABLE DICTIONARY:

}1 NUNEER tr COIUT,INS IN THE ÏHREADI].IO TIATRIX AND RESI.ILTI¡¡O COI.ruR$

lNTERllCtÌlENI ARR¡\Y. (CORRESP0IIDS I0 THE NUI4BER 0F WARP ENDS lN THE

fÆRtc stfftENI)

M,IHBER OF RTÍIS IN THE SfITD SEqJE}€T ñAIRIX AI{D REST'LTII,IO COTOURED

INTTRT¡CfHENT ARRAY, (CORRESPOI.IDS TO THE NUIIBER OF WETT PICI(S IN

rHE FAERtCSt&rtin)

NUMBER OF ROWS IN THT THREADINOAt{D TIE-UP I,IATRICES.

(CORRESPOT{DS IO THE NUI-4BER ()f SI{AFTS I'SED)

NUNBER Of Cû.UI"I]'IS IN THE S}IED SEQIJEÌ{CT A¡lD TIT-UP I"IATRICIS.

(CORRESPü{DS TO THE NUIIBTR OT TREIIDLES USED)

THREtDIt'lol4ATRlX. DISCRETE tlAlRlX 0F SIZE NS BY t1 IVITH PRECISELY ot'lE

NON-ZTRO YATUE IN EYERY COTItrlN.

sftEÐstQ STIED SEQIJEIüI HATRIX. DISCRETE I'IATRIX OT $IZE N BY NT WITH PRECISTLY

ü'¡T I{OI.I-ZERO YATUE IN EYERY ROIY.

TIE-UP TIE-UP llATRlX. BIMRY M,llRlX 0f SIZE NS BY NT

C(MRRAY COLOI,IRED II.¡TERI.AffI'IENT ARRAY. DISCRETE T,IATRIX OF SIIE N BY 11.

srzE v RIAELETYPE-PACTEDARR YII..120,1 ..l20l(F lxTEoER

NS

Nf

THREAD
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PASCAL AL6I[IT}TI:
PROCEDUnE Cq-AR(VAn TIREAD,SIfOSEOTIEtP.Cq.ARRAY:Sl2Et1J{JtSJlT: ltlltGEÐ;

(T I}[ ARRAY IEIITI CMRESP$DS TO f}E ARRAY TIEIPWIH Ail AÍX}ITIOIAT ROÍ AIO
Cü.Utl $ ERO VAttfS 400€0. IHIS AtLgr,S TlÍ P€SlBltlTY 0F A Cüfl-EntY ¡tRO
Cü.ttt{ tr r}AEAom Ro^,ff SlfDSEo. T}E VECTm sx fTS CCtlIAl}F T}Í Ro\^,|}OEx

G Tlæ orf r{ür-ERo vAtr.E lN ÊAcH Cü.ttt{ tr I}R[AD. flE vEcrm cq-üns
ccilT^rt6 m ErcÐtD c0qn tr EAcll tr TtG ConffsP${DING WARP 'I}EADS. T}Ë

vARtABtES t¡J AtO K AË t0æ lÐlcts. Tlf vARlABLt TËAo|-E colTAllls Ttt cd.tlll
tlÐEx ff IÌf, sf l{ü{-ERo vAttf lN I}E ctnRENT Ror, tr Ttf StfD Sfq.EilcE llAIRlx.
TtE VARtABtf Cq-TRÉ^D C(t{TAlllS T}f filCmÉD Cq.q-n tr T}f cmFfspoolt+o TEFT

l}ËA0 r)

vAR
IEHTIE€IZE;
CO-ûßS.SIIAFIS:ARI Ytl.2Ol tr IIIEGER:
IJ.K.CümAD.TRf ADLt : llllEGEl;

BE8¡X

F0tr l:.1 TO lfi tX)
Bf6lll

Fffi J:.1 TO t{f l}O TEIITlEU¡Jl:"TlEtpll¡ll;
lEtlTlEllJ{1+ I lF0;

Elto;

FmJrt TO Hr+ I DO IEHTEIflS+ l¡Jl:{;

f(R J¡ I TO Ì1 DO
Et6til

Krl¡
S}IAFTSIJId6+I:
Cü(IRSUb{;
tñilt E ú((4ts) A||D (sÍtAfTsul ) t{s) Ito

tF Il{RfADlK¡Jl (} 0 ffiÍ
EESIT

SflÁf TSIJI:{:
CO-fl .nSUl=llf ÍADIX J l;

EIID
ELsE [d+ l:

Etü';
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FORI:=l TOI{D0
BE6IX

K:=l:
TnEADLE :+{T+ | :
Cq.TREAD:{;
yHil-E (K(4fT) ArD (TnIADTE' t{T) 0{}

tF s+f,DsEolr"Kl t' 0 TllEì
IEG!X

IREAT¡I-E:{;
c0-TR€AD:"Slf DsE0ll ß l;

ETD
CLSE K:{+l;

FfiJrt TO t1 D{l
lF IIllTlE[SHAf TSUI.I¡EAI]LEI= | TtlEll Cq.Am YU¡J¡=tü(tmfJl
ETSC CCTARRAYII¡'I{q-TRTAD:

Elf';

EXD
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5.4 DETERIIININ6 AII IT{TERLACE},IENT ARRAY UsINO IIULTIPtE

THREADING

Before beginnlng a dlscussion of mult¡ple threading, we must f irst

consider the different types of sheds whlch can be created by moving

shafts up and down from their normal rest posltlon (Flgure (5.4. 11). These

are baslcally of three types, namely rlsing sheds, slnking sheds and those

sheds created by the simultaneous raislng and lowening of warp ends.

Rising sheds art crrated rvhen a shaft whlch ls tled up t0 a treadle ls

raised when that treadle is depressed. All of the nemaining shafts remain

ln thelr rest position (Figure t3.4.21). A sinking shed, on the other hand, is

created when a shaft which ls tied up to a treadle is lowered when that

treadle is depressed (Figure t3.4.31). All of the rrmainlng shafts rise ln a

counter-balance effect. A rislng and sinklng shed ls produced in a single

system when some shafts are tied up so as to rlse when a particular

treadle ls depressed, while other shafts are tled up t0 slnk when the same

treadle ls depressed (Figune (5.4.41). All of the shafts are normally tied

either to rlse or to sink, with the tle-up conflguratlon cor¡espondlng to

the pantlcular deslgn belng woven.

The idea of multiple threading is very old, dating back to at least

the eleventh century ln England and even earlier than that in Asia [?9,

p. l99l. Numerous references appear throughout the literature describing

dlfferent types of tlouble threading schemes [75, p.170], [16], and to a
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FIoURE 3.4.I REST POSITION

FIGURE 5.4.2 RISING SHED

FTGURE 3.4.5 SlllKll{G SHED

FIGURE 3.4.¿I RIS¡NO AND SINKING SHED
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dlscusslon of various applicatlons t741, 1491. These references however,

refer primarlly to two partlcular schemes, the double presser harness

system f60, p.3751 used on looms such as the counter-marche loom which

employ the rlsing and sinking shed system , and a modification of this

system for use on a rislng shed loom ll9l. ln future the former will be

refeñ'ed to as Type I and the latter as Type 2.

The advantage of multlple threading is that a smaller number ol

shafts may be rrquired to pmduce a particular weave structure than lf

that same fabrlc had been woven on a loom whlch was singly threaded.

Structures which successfully employ this technique are generally those

whlch can be partltioned lnto recognizable blocks and counter-blocks. ln

other words, the macro-structure of the fabric consists of only two

dlfferent deslgn elements. Each of these two blocks ls, in itself, an

interlacement array. A multiply threaded loom then has shafts which

fulflll one of two functions. A glven warp end ls threaded through a heddle

on one shaft which controls the gross patterfl of the fabric and then

through a second, and posslbly a thinl, shaft which controls the detalled 0r

ground structure of the fabrlc (Flgure t3.4.51).

The Type I system uses long-eyed heddles on the ground shafts (x)

at the front of the loom and regulan heddles on the pattern shafts (y),

located at the back oÍ the loom. Each of the heddles on the ground shafts

can take one 0f three posltlons -- down, neutral or up, whlch can be
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nepresented by 0, I and 2 respectlvely, while each of the heddles on the

pattern shafts can only take one of two positions -- down ancl up or 0 and

l. All posslble configurations of these two groups of shafts are

lllustrated ln Figure [3.4.6], along tvlth an lndlcation of which groupings

will pnoducB a shed, in the position of the shuttle race marked with an

amow. From this diagram, lt ls clear that the presence or absence of a

shed formed between any slngle warp end (w) and the remalning warp ends,

which are threaded on pattern shafts ln the neutrai posltion and ground

shafts ln the down positlon, can be modelled by the values 0f the

expression

ß.4.7) (x* . y")>2

where x*Ê x

and Y*€ Y

One method of detenmining an lnterlacement array (D) in these

circumstances is to evaluate

(3.4.8) D = CE'A

where ' lndlcates the usual matrlx transpose and the operatlon ls

t50



¿ l\v
V

X = l{tUTML I

Y = DOì{N 0

X = NEUTR I- I

Y=UP I

NosÌrED I

x=UP 2

Y = DOIYN 0

$HED 2

X=UP

Y-UP

2

I

SHED 2 SIJED 3

X - DOTIN

Y = D0llN

0

0

X = DOIYN

Y=UP

0

I

F|GURE 3.4.6

l5t

tü slrED 0 rüsltED I



conventional matrix multlplication. The threading matrix (A) now contains

precisely two l's per column, with one of these I's appearing ln the area

correspondlng to the ground, or x shafts, and the other appearing in the

area coffesponding t0 the pattern, or y shafts. The tle-up matrix (B) now

contains values of 0, I on 2 ln the area of the tie-up corresponding to the

ground shafts and values of 0 or I in the area of the tle-up corresponding

to the pattern shafts. The shed sequence matrlx contains precisely one I

per rorv with the rest of the elements belng 0. The resultlng matrlx D

contains elements of value 0, l, 2, or 3. ln order that this matrix be

interpreted as an interlacement array, each of the elements ls divlded Þy 2

using integer division, to obtain the requlred binary matrix.

An alternative algorithm for determining an interlacement array

makes use of the lndirect addressing concept discussed in Section f5.21,

using the following eguation:

(5.4.9) tl ¡,.¡ = ((b r,p = l) ., (Þ r,{ = 2)) ¡ (þ r,q " 5),

where r ls the column index of the single I ln the lh row of the shed

seguence matrix C, and where p and q are the row indices of the first ancl

second l, respectively, in the Jücolumn of the threading matrix A

Thls formulatlon corresponds to the requirement that, in order to
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have a warp end lle 0n top 0f a glven weft plck, either the ground or the

pattern shaft (or both) on which the ltarp end ls thrtaded must be raised

and the ground shaft must not be ln the down posltion.

An lmplementatlon of this algorlthm is glven by the following

Pascal procedure.
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N

VARIABLE DICTIONARY:

H NUMBER tr ROYIS IN THE THREADII\$ NATRIX AND RESI'JLÏII€ INÏTRIACTI'IENT

ARRAY. (CORRESPOilDS TO THE NUNEER Of IYARÞ ENDS IH THE TAERIC SEffIEHT)

NUMBER Of RüIÍS IN THE SHED $qJE}¡CE }4ATRIX AI,ID RESTJLTI}.IO

INTERTAæHENI

ARMY. (C0RRESP0I¡DS I0 THt NUIIBER 0F WEFT PICKS lN THt F,tBRlC

STGIIENT)

NUIIBER Of ROTYS IN THE THRUTDI}AAND TIE.UP I,IATRICSS.

(CORRESPOI-IDS IO ITE HUÌ1BER Of STßFTS I,ISED)

NUT1BER OT CüU¡1NS IN THE STIED SEQUEI.¡CI AND TIE-UP IIATRICIS.

(CoRRESPoNDS T0IHt NUÌ,IBER 0F TREIDLES t SED)

THREAD THREÁDIÌ{0 NAIRIX. BIMRY II,\IRIX tr SIZE }lS BY l"l VIIIH PRECISEIY lWO

$ITS IN EYERY COLUTIN.

STIEDSEq SHED SEqJEHCT IIATRIX. BIHARY IIATRIX Of SIZE N BY NT VIITH PRECISELY CFTE

OT'IE IN EVERY ROYú.

IIEUP TIEUP T,IATRIX. DISCftETT Ì1AIRIX OI SIZE NS BY NI

INTARMY INTERLACTIIENÍ ARRAY. BæTEAN I1ATRIX tr SIZE N BY 11.

slZE V,\RIABLETYPE-PÂCßEDARR Yll.. l?0,1.. l20l0f ltlIE0ER

NS

NT
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PASCAL ALGORITHI:

PROCEüñE tnFtflÌlryAn IlnEA0.SltDSE0.TlEtP.l llTAnf YSlZEfl¡l'l{SJ{r: ltltCGER}

(¡ m AnR Y IttlTlE c$ffsP$Ds To T}Ë AnRÂY TIEW $T?l All ADOlTlol{At Ror,

Al{) Cct¡t'l ü 2ERO VAIUS AD0€0. IHIS AttOrS T¡f poSSlBlLlTY tr A COfLETEtV

ERO CflLnîI tr NNEAD M RO^, OT S}EIXiEO" T}E VECTM PATTER{ CONTAINS Ï?E R}I
hþExoF ÏtfiRsT Mt{-ZgROVAltf lNEACH CüUt¿ ü nntÀD. T}f vEcToRGRr¡D

COt{lAlMi T}f S€CO\D l{0{-ZtRO vAttf lN EACH Cfl.Lrî{ tr T}fiEN}. Tlt VARIABLES ITJ

ArD K ARE tæ llülcEs. Tlt VARIA&E TËA0IE CüIrAlìls llf co.tFf{ lÎ{D€x c Tl{
(IlE N0r{-ËR0 vAllf lN TË cmREhlT Rol tr Tlf s]ED s[ü.El{cE llATRX. r)

YAR
IETITIESIE;
GRttt'D,PATIERil: AnRAYt l ..2Ol oF IITEGER;
l¡J,K,TËAIX.E: ¡Ilf,Gtnl

AEGIX
Fffl¡l TOtS D0
BfGIX

Fm JFI To NT l¡o IEtlllEll¡ll=TlEtPU¡Jl:
nHTEll,t{T+ I ¡FO;

Elo;
fflJ=l To l{T+ I DO IEHTEIilS+l^lld)l

F(nJ=l fO 11 lXl
tEolll

(= l;
GRü',ÐUlálS+l;
PATIEf,t'lUlåG+ l:
uH|lE (K(+F) A||t (ßRot.n['ul ] r#t) t o

tF It{ËAI)[rJl (] O IüE
r PArrEniltJl ) lls lltrlf
!t6lL

PATTEFilUI*I
XÍt+ l;

EIID
EtS[ GRCIX{JI¡{

ELSI K*+l:
Elo;

ffllrl fOll lþ
BE€III

K:l:
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Etü);

TnIADLE :4{T+ | :
uütlt (K(4{T) Aþ (TftADtEr l{f) lxl

lF Sl+DSEdlI'l (t O TIGI TRIADLE:+ CLSf, K:=l(+l;
FmJ:=l TOm lro
|f(NHTIEIPATTERT{IJLIËADIEÞ I ) (n (IE}TTEIGR TDIJI,TËAOTEI=20

Aþ (rEHTtE[Gne.$DUl.TRf AorEl()3) IrEX
F{TAFßAYIl¡Jl=l

EISE
ftTARRAYII¡J¡l);

E¡ID;
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The second system (Type 2) is meant to be used where only a rising

shed is avallable and involves triple threading of each warp end Il9l
(Flgure fl.4.lOl). The flrst set of ground $afts at the front of the loom

(L) contaln push down heddles,, the second group of ground shafts 01)

contain push up heddles and the pattern harnesses (N) contain either

regular or push up heddles. Each type of heddle can take one 0f two

positions -- down, where down is equivalent to neutral in the Type I

system, and up, these positions Þeing reprcsented by 0 and I respectively

as ln the flgure. Slnce this is a completely blnary system, the possible

sheds that can be formed between a slngle warp end (w ) and the remalning

warp ends, which are consldered to be ln the down posltion, can be

represented by the values of the logical expression

(3.4. r r) Lç ^ 
(11ç - N¡¡1 )

where L* € L, t1w € H and Nw € N.

The algorlthm for determinlng an lnterlacement array D in this

instance is glven by the following steps:

(l) 5 = C B', where' indicates the usual matnix transpose and

the operatlon is conventlonal matrlx multiplication
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(2') K is assigned a value of I

(3) The threading matrix A is partioned row-wise into 3 sets, where

the bottom partition is the area of the threading corresponding

to the fìrst ground shafts, the second partltion is the area of the

threading correspondlng to the second set of ground shafts, and

the top partitlon is the area of the threading corresponding to

the pattern shafts.

(4, The Kh row of S is'muìtipìied' by every column of A with no

summation taking place.

(5) The elements of the Kb row of D are dete¡"mined by evaluating

the logical expresslon

ß.4.12'' Lp01üN)

for every column of the result of (4).

The dyadic operatlon P takes two binary matrices as

arguments and returns a result with one roïr. The lh element in

this row is I lf either argument has a I in lts iucolumn.

t39



The Sa<lic operatlon ü takes two blnary matrlces as

arguments and returns a result wlth one row. The iü element

in this row is I if both arguments have a I tn their ih columns.

(6) K is assigned a value of K + t

Q, Steps (4), (5) and (6) are repeated for every row of 5.

This algorlthm ls clearìy very similar to the second algorithm

discussed for the Type I system and, in fact we have the following result:

THEOREI"15.4.l3. The double presser harness threading system (Type l) can

be simulated on a triply threaded rlsing shed loom fiype 2).

E@1. From the preceding discussion, lt is evldent that the triply threaded

rising shed system can be rcpresented by

R: Lç a fiç v Nç)

and that the double presser harness system can be represented by

C: X"+Y*

l¿m



where lt may be recalled that Lw, Hw, Nw , Yï, are blnary varlaþles and

X* ls a ternary varlable.

As previously shown, the two expressions R and C describe whether

or not a given warp end wlll be allowed to rise to create a shed. R takes

the vaìues 0 and I while C can take the values 0, I , 2 and 3.

The values of the ternary varlable Xw maY be nepresented by the

fol lowing arlthmetic expression:

(3.4. r 4) Xw=Zt x(71 +Zr¡

where Z¡ andZZarc binary valued varlables. Then

(3.4. r s) Xw * Yw = Zl x(21 + 22) + Y*

But (J.4. 15) ls "true' lf and only lf X* + Yw = 2 or 5. That is, Z I must be

true (=l) and. elther Z2 must be true (= l) g Yw must Oe true (=l),

therefore Zl ^ Q.Z - Y), as requlned. tr
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3.5 FACTORIN6 IHTERLACEIIENT ARRAYS

3.5.I THE FUNDÆIETITAI PROBTEII

Weavers frequently wish to know what loom set up and what

operatlng sequence they should use in order to weave a particular

structure. Thls involves them in problems of textile analysls ln whlch the

method of construction has to be detenmined from a sample of cìoth or

from an abstract lnterlacement array. For shuttle woven structures (1.e.

those ln whlch the weft picks run from one slde or selvedge completely to

the other side or selvedge), this means the determination of three blnary

matrices (4, B, C) referred to as the threading, tle-up and shed sequence

(or treadling) matrices, respectively ln the literature f601. Numerous

algorithms for thìs form of analysis have appeared in the past [13,

p.130-1331, [181. However they all assume that the analysis ls belng

perfonmed directly on the physical sample, and hence rely solely 0n a sìow

and tedious manual approach.

The analysis process can however be divided lnto two distlnct

phases. The flrst phase lnvolves translatlng the intercections which every

warp yarn ln the fabrlc sample makes with every weft yarn into the

comespondlng lnterlacement amay. The second phase of the analysls can

now take place entirely with respect to thls lnterlacement array, with no

further reference to the actual fabrlc ltself. This task now becomes an
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lnterestlng problem ln Þinary matrix factorizatlon and is ldeally suited to

machine algorithms.

Flve such algorithms wlll be desmibed, namely the Hathemat¡cal,

the Classical, a new algorlthm called the Bucket sort, and variations of

this latter process called the Alternatlng Direction and the Hinimal Bucket

Sort Algorlthms. Theorttical comparlsons between these processes will

be made, so as to determine estimates of the order of the number of

operations perfonned. A brief discusslon of the practical consideratlons

of implementation will also be included.
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3.5.2 THE }IATHEIIATICAL ALGORITH1

The Hathematlcal Algorithm for factoring a binary interlacement

array into tts threading, shed sequence and tle-up components proceeds

with absolutely no regard to the data which ts being analyzed and, as a

result, much lnformation ls dlscarded. The process basìcally requires that

every element of the first column be compared wlth every element of

all the remaintng columns. This establishes which columns of the

interlacement array are identlcal to the flrst column. Next, every

element of the first of the columns not belonging to this equlvalence class

is compared with every element of all the remaining columns not ln the

equlvaìence class. This process is continued until all of the columns are

partitioned into equivalence classes. The threading matrix will thus

contaln as many columns as there are columns ln the interlacement array

and as many rows as there are equivalence classes. Each column of the

threadhg matrix contaìns precisely one 'l' value located ln the row

correspondlng to the number of the eguivalence class to which that coìumn

Þelonç.

Once the columns of the amay have been analyzed, and the thneading

matrix thus determlned, the identical procedure is applied to the rows of

the matrix, to give the shed seguence matrix. The shed sequence matrix

has as many rovrs as the interlacement array has rows and as many

columns as there are equivalence classes of rtws. Each row of the shed
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sequence matrix contains precisely one 'l' value, in the column

corresponding to the number of the equivalence class to whlch the row

belongs.

The tie-up matrix conta¡ns as many columns as there are

equlvalence classes of rows and as many rows as there are equivalence

classes of columns. For each distlnct row of the lnterlacement aray, the

tfe-up contalns'l' values in posltlons correspondlng to the eguivalence

classes of columns with a'l'value ln that rûw.

THEoREN J.5.2.1. There is no binary lnterlacement array for which this

algorlthm is not maximal.

Proof.. Every element of two columns which are being compared for

equlvalence is examined in order to detect corresponding positions ln

whlch they disagree. The only cfrcumstance under wh¡ch every palr of

elements need be checked for disagreement ls ln the case of equivalent

columns. Therefore, all of the columns are equlvalent and the fabric

structure correspondlng to this array ls certainly reducible (see Chapter

4). Furthermore, as wlll be dlscussed ln Section [3.5.4J, no comparisons

need be performed on the rows, ln order to determine the distinct rows of

thls amay. There are only two posslble rows, namely all ones or all zeros.

The Hathematlcal algorlthm ignores thls information and regulres that all

of the f lrst row be compartd with all of the elements of all the remaining
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rows to determine the rows whlch lle ln the flrst egulvalence class. lf

there are two equivalence classes of columns, all of the elements of the

rows ln that class are compared with a representative row of the class. tr

An example of thls algorlthm is dlscussed in detail in Section

t3.s.7l
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3.s.3 THE CrASSlCAt AL60RlT}r{

The flrst stage ln the Classical Algorithm can be construed slmply

as performing the ldentlflcatlon of the number of dlstinct columns in an

interlacément array D and determinlng which columns are identlcal.

ldentical columns in the lnterlacement array correspond to warp yarns

which lntersect with all of the weft yarns ln the fabrlc, in preciseìy the

same way. Each set of distinct warp yarns must be threaded on a separate

shaft.

Similarly, in the second stage of this algorithm, the dlstlnct rows

of thls interlacement array must be identified and the ldentlcal rows

determined. All ldentical rows ln the interlacement ar1ay corrÊspond t0

weft yams which lntersect wlth all of the warp yanìs in the fabric, ln

exactly the same way. Each set of distinct weft picks must be assigned t0

a separate treadle.

The thlrd stage of the algorithm, which can ln fact be executed

slmultaneously wlth stage two, involves determining, for each distinct

row of the interlacement artay, precisely whlch combinatlon of shafts

must Þe raised ln order to produce this rolv sequence.

There are numenous variatlons of this algorithm [70], f20l whlcft

have tradltlonally been performed by hand. Slnce the order of the
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lnterlacement arays can be qulte large (105 to ld elements ln one of

these matrices ls not unneasonable), these pnocesses become extremely

tedious and prone to error. Even a straightforward computer

implementation of the Classical Algonlthm therefore represents an

improvement ln the speed and accurary of fabrlc analysls.

One such computer implementatlon of the hand algorithm for fabric

analysls involves the followlng steps [31]

(3.5.5.l) To obtain the threading matrix (A)

l. Put a I ln Al,l and 0lnAk, l, k =2,3,...,s, where s ls the

maximum number of rows of A (comesponding to the maximum

number of available shafts).

2. Compare the f irst column of D to all other columns of D.

3. For every column which does not match the flrst one ln every

corresponcllng posltlon, put a 0 ln the corresponding column 0f

the first row of A

4. For every column which does match the first one exactly, put a

I in the corresponding positlon of the first row of A and 0 in the

rest of that column of A, as was done with the f lrst column.
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5. Choose the flrst column of D which does not already have a I in

its corresponding column of A Put a I ln this column of A, in

the next row, and 0 ln the rest of the column.

Compare this colt¡mn with the remainlng unusecl columns,

assigning I and 0 to the A matrix as before.

Repeat thls process until all columns of D hare a I in some row

of the corresponding column of A

(3.5.3.2) To obtaln the shed seouence 0r treadllng mat

Repeat the preceding 7 steps for the rows of D, with the

comesponding entries belng made ln the matrix C.

(3.5.3.3) To obtain the tie-uo matrix (B)

For each distinct row of D, deteffnlne whlch elements of this

now ar€ equal to l. For each of these posltions, scan the

correspondlng column of A to find the row index of the single I

element. Place a I ln thls ¡ow of B, ln the column assoclated

wlth the slngle I ln the row of C corresponding to this

row of D.

6.

7
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Examples of thls algorlthm are discussed ln detail ln Section

t3.5.71, where lt ls shown that the ol'der of the number of comparisons for

only the flrst pass of the threading ls n(m-l), with n the number of rows

of D and m the number of columns. The computer implementation of this

algorithm performs quite satisfactorlly, although lt takes no advantage of

befng machine based.

t50



5.5.4 THE BUCKET 50RT ,\L6ORlTl0'l

The historic algorithm outlined in Section [3.5.3J involves a sìmple

identificaïon of the distinct coìumns and rows of an ìnterlacement arnay

D. However, the number of rows and columns in D are typically ìarge and it

is generally known 4!dql that the number of distinct columns will be

much smaìler (eg. of order 16 - 50). ln practice, rows may differ by as

litile as a single element and the different element may be in any position.

The threading analysis compares columns of D whtle the shed sequence

analysis compares nows of D so that, although it is possible to use special

hardware features which wiìl automatically perform extended memory

comparisons as part of a sorting algortthm for the threading, the

interleaving of mem0ry that this will imply for the corresponding

row-wise sort prohibits the simple use oÍ thls type of hardware feature.

It is also possible to note that in comparing two columns for

distinctness and accepting their difference, a considerable amount of

information is lgnored if thelr first encountered position of dìfference is

discarded. This is the case with the classical aìgortthm.

Let us now introduce the following terms.
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Def inition 3.5.4.1.

Define a bucket B

Let DJ =tdt,j,d2,J,...On,jlT

J = 1,2,... m,

be the set of column sequences considered, where m ls the number of

columns, n is the the number of nows, and

0¡,¡=mìnr r{dr,¡ * dr,kl.

r E {1,2,... n)

The foìlowing procedure can now be applied:

s,j , q as the set

Br,j,q = (s: s=0¡,fl

s=0, 1,2,...n
R=1,2,...

and q=1,2,3,..

corresponds to the qth stage oF the bucket detenmination.

Obvtously, use of the column D¡ has generated a set of distinctness

classes determlned þy thelr first element 0f dlfference, and we have the

two results.
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Theorem 3.5.4.2. Every set B .,j ,q contalns all columns whlch ane posslbly

equaì.

Proof, Follows from Definition [5.5.4.1J. tr

THEOREN 3.5.4.3. The number of distinct columns is greater than 0r equal

to the number of non-null buckets B.,j ,0.

Proof. Follows from Definition [3.5.4.1J. tr

COROLLARY 3.5.4.4. ln any given bucket B s,j :q ,two sequences can only

differ in position k where k ) s +L

Proof. Follows from Definition (3.5.4.11. tr

A convenient method of implementlng the algorithm implied by

these obseruations is therefore:

l. j ls assigned a value of l; q is assigned a value of I

2. Determine B r,j ,q for all columns not identifìed.

All columns identical to D¡ are in bucket Bn* l,J:q. ldentify them

and B¡+ l, j ,q is assigned this set of columns.

3.

t53



4.

5.

6.

All columns ln Bn,j:q are ldentlcal (sequences are blnary).

ldentlfy them and U n,j , O 
ls asslgned this set of columns.

Select any element lnB¡,¡ : q where k = max r (k E 0

none exlst, then B r J 
. 

O 
ls assigned the null set.

m). lf

J ls assigned the value k. q ls assigned the value q + l. Repeat

from step 2.

COROLLARY 3.5.4.5. lf B s,J: q over the unidentifled columns (q > l) is

being computed then it need only be determlned for the contents 0f the

bucket B k,j : q-l .

Proof. All other buckets already have a lower lndex of dlsagreement 0 and

wlll be unchanged. tr

coRoLLARY 3.5.4.6, lf a Þucket contahs a slngle column, lt ls a dlstlnct

column

Proof. Follows immediateìy. tr

COROLLARY 3.5.4.7. lf B ,,J :q over the unidentified columns is being

determlned then oj,k:q (where k þelongs to the set of [unldentlf led column
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indicesJ is such that

n+ I ) 0j,k,q ) 0¡,k:q-l

Proof. The index of disagreements between the columns of a bucket cannot

decrease and cannot exceed n + l. tr

The shed sequence matrix determlnation part of the algorlthm

proceeds ln an exactty slmllar manner. However, lt should be apparent

that, in determining the dlstlnct rows, hgyhg examined the columns,

further information is available, viz.

THEOREII 3.5.4.8. The distlnctness of row sequences cannot differ over

columns which are identlcal.

Proof. Consider two rows r¡ and 12 and two ldentlcal columns c¡ and c2,

with lntersections e¡,¡, el,Z,e2,l æde2,2.

Case l: lf e¡,¡ = e2,¡ then êl,Z= ëZ,Z,and thus r¡ and 12are not

distinct over both c¡ and c2.

Case 2: lf e¡,¡ * e2,¡ then el,Z, eZ,Z, arul thus rl and 12 are
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dlsthct over Þoth cl and c2. tr

COR0LLARY 3.5.4.9. lf k columns are identicaì, then for the row-wise

algorithm k-l columns can be discarded.

Proof. Follows directly. tr

THEOREH 3.5.4.10. lf the first pass of the Bucket Sort Algorithm has been

applted t0 the columns of a tvío dimensional array then columns which

agnee to k places may be replaced by one of their number and the others

lgnored ln their first k places slnce they do not contribute to the

dlstinctness of rows.

Proof. Without loss of generality we can assume the first column defines

the flrst bucket classlflcatlon of columns and that by Permutation of the

columns each column in the amay agrees to fewer or the same number of

places with column L

Case L Acolumn is identical tocolumn l: This implles that if two rows

are dlstinct over the ldentical columns then they will still be distlnct if

all except one of the identical columns is lgnored. ln addition, lf two rows

are ldentical then the correspondlng elements ln the identical columns are

all identical even if all exceptoneof the identlcal columns ls ignored.
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Case 2. The É column ls identlcal to the first column as far as the kh

position: This lmplies that, for the first k rows, Case I applies and the

theorem follows. tr

Examples of an algorlthm based on the preceding results are

dlscussed ln detall ln Sectfon [3.5.7J anO a machlne lmplementatlon of this

algorithm is given ln the followlng Pascal procedures.

VARIABLE DICTIONARY:

N NUHBER Of ROWS IN THT BIMRY INTERLACITIENT ARRAY

11 NUÌIBEROF COTUTINS IN THE BIMRY INTERLACEI1ENTARRAY

stzt VAR|AELE TypE - pâcfiED ARR y [ | .. t20,r .. r20l or lilIEofR
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pAscAt AIGfiIT}II:

PnOCEnURt s{.FttE(VAR VEcTfi :\ncslZE STARTf lt{lStl: IIlTEGER);
(r IHIS PROCffXnt ACCIPTS ü\E WCTm AlÐ T\vo INIIGERS AS ARdåfltTS. m fUt0

II{TEGTRS SPfCIFY A RAI{GE tr ELEITNTS WTHIN Ntr VECTM, TtG \ÆCTCR IS PASSED

EACX UnIH TIE ELEIGi{TS $THIN nE SpECIFIED R$Æ t,lO/€D q\E p6lTl0{ T0 f}f tEfT.
r)

vAR
l:lllIEGER;

IE6IT
Ím lr6TART TO FlNls*l-l Do WcTmlt¡r\EcTmll+ t ¡;

Eto;

PRoCENTRE ll'lSERl(VARPOINüRS,SfrI:VICSIZE;TARGET"PGITIO{' lASr:llllEGER):
(. Ttã PROCfC[ff PEtrmilS A BIFÉCllot{ stARGll 0l A \ÆcTm tr Dls^mfEttNTS,

smÏrD tN Asc€rÐll{G oRDER (smT). T0 tlto ftf ÞælTlü{ IllfRf l}E flnRfNnY
cctfulrD DtsAGRtEltllT (TARGID 8Etq,rcS. TtE lt$ÉRTlol{ ls llAD€ ASD l}f
C0ffiSpü,Dllß wCTm m FüNIER (øUNI[RS) lS AI.IERID ACC(Þ11'l6LY' TIE

vARtAEt-E PoSlTlfi llolc^ns To wtllctl c0-ttfi m Row lHls Dls^GRfEttllr
cæFtsÞol.Ðs. TIE VARIAEIE IAST CoRRfSp0lÐS To flE ll,Dfx ff IIE tAsT
DtsAGf,fEtf,ilT Wlllcfl nFr BE ctËcKED. l}[ ll{SERTl0{ Wtt BE tlADE BtrrEEt{
FærTtfi Aro tAsT. r)

vAR
ItOf X,FIRSTJIlD: ItITE€IR;
tül,D:Bfi)LEAll;

Bt6tt
tr Þ06tTlct{{ÀsT ïlEì
Et6rx

[rIEX:401Ì{TERSf P05lTlüll;
IF TARoET(SMTIIASTI TIff T
of6m

fIRST#61flO{:
ffl.i0-FALSE;
vlilE GlRsf<{.AST) Allll lloT tü.TD l}o
BEGITI

tlrDlfIRST+IAST) lllV2:
¡F (TARGTT)ÛSMTIHIDD AID (TARETT.SfiTIHIDT I I) TlfX

FfllÐ:=IltlE
Et!¡E

lF TAm€TrsmTlHlol n#fl tlRsr:+110+I
ILSE TASTIIID-I;

EtÐ;
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$rfFLE(S{nr,pGtfl ü{ JlrD}
sluru(PorxrE6PGrTrü{JlrD);
S0RTIÈllDl:=TAR6€T:
Foll{TERSllllD I :=ll$EX:

ETO
Etst
EE6II

$rf, rLE(smr.PGirilc{ l. AsT);
sl{f rLE(PorNf ERsP6t Tto{IAST);
SmTf LAST¡:"TAR6ET;
P0llllERSlLAST I :-1l0EX;

EXII
EXt)
EtSE smTlPoSlT¡0N¡:=TAR6€T;

EtÐ;

fÜllGTl0ll t'l TCl{flfftT}{tl.RI,R2: lllÏE6tRflOl:B{XX-EAII;YAR
BMv: l¡lIE6ER; YAR TilTARRAY :slZEf,OÍSoRT:vEcslzE): Eüf, EAll;

(, THts ftficTtcH ccHPARns Ír$0 KII^,S m cftuî.E (Rl A¡D R2) tr A BIN RY

INNÈACTMNT ARRAY TO DËITRÎ1II€ T}ETTER T}EY ARf IDET{IICA¡. ITI AIL
coRËsÞ0¡Ðtt{G PGtTt$6. ]t TtfY AË þ€NTlCAL ffN m FWCTIü{ RErlßlS A
VATI.E tr TRT.E. IT TTEY ARE NOT ¡DENTICAI r}til NE VATIE CF Ntr FLFrcTICII IS FALSE,

AIÐ ÌHE TüNT tr DISAG$ETENT IS RENNiED IN TIf VARIABI.E EIfW. Cü?ARISO{S
BE6IN AT T}G VAI-II PASSTD DOu/l{ IN TTE VARIAEI.T õTS{ET, T}E VARIAEI.E ROW IS INif
lF Ror/ coælRlst S AË TO Et tl DE AtÐ FATSC lF Cq.Uil Cü?ARISü\F ARt TO Et
Î1ADE. I)

YAR
STAIE:B{XlEAll;
ItÐ€X:llTEGfn;

!f6t¡t
llO€X ¡6IJCKET;
tf Rof mEi
tfGlx

ffPEAf
IND€X ].llÍ)tX+ l;
STATE :=lNTArrAYlR l,F0h/Smil lM,EXlÞlNTÆRAYlR2.RoilsmIUtOExll;
urr¡r 0roT sTArE) 0n (n0€x41);

EIID
$.st
Df6lt

ËPfAT
IiO€XFþOEX+ l;
STAIf 

=IilTARRAYI 
ltÐ€X¡ | ¡=INTAPRAYUtOtX¡21;

IrxTrr (xoT sTAlE) m (N,fxa{}
EIID;
Blfltr:=l )ÊX-l;
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IIATCH:,.STAIE;
EXD;

PROCEDT RE Al{AtYSlqVAn INTARR Y SIEiVAR ROíSfiT, SllAf ll{fi : VtCSlElll{:
IITE6ER; YAR tlS: lllIE6ER)¡

(r lHrs PnocfnÆ DETERî1ll€s TtE TlFtrullxs ttlTRlx wtllcH cmf,fspsDs lo A 6l\lEN

BINARY INITRT ACTTfi¡T ANNAY ¡)

YAR
SCRTPoINIEm:\,ECSIZE;
E|EW¡IJCXET,IIAST.R I 

"Fn.S+lAFÌP 
I P2: IIIIGI R;

Cü,Dl TIO{,ROI: 00(I-EAII;

¡E6tX
SllAFTr l:
ElFl+ l:
tAsT*t;
ROW:=FALSE;
llS= l;
Fffi l=l TOll D0
BE6IX

smTlll=0i
Þo|}{IERSUICl-l+ l;

EtÐ;

YIIILE LAST)I OO
BtGtI

SllAf Il{tllPOltlIERSILASTll :=S}|,{f T;

ROdSMTISHA,FTI*OINITRSU.ASf I;
RIíAST;
E{JCIGT:'€mTIRl ¡i
IAST:{AsT-l;
R2:dAST;
C0âID|T|Oi;{EUCKET=SmT]R2¡) AtÐ (R2)0}
t tlltE Cü,DlTlO{ llo
DC6IX

Þtsor{rEnsfRrl;
P2 FPqNrERSlR2l;
lF l{ATCH,BuCKtTJl.ll,P I 

"P2¡Orr"Bl'lEU/,lNTAnn 
Yßg$rSmI)

Ef6il
SHAFÏiltll9dNrERslR2ll:=S]l,Af T;

IASTidAST-l;
s+$ttE(s0RT.R2¡AST+ I L
s{f, ttEþqNnRs¡2,(LAST+ I D:
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EXD
ttsr tÌs€RT(ForNnRs.smT¡flEw,R2 J.AST):
R2:*2- l:

lF R?=0 IilEX C$DlTlCtl:=FALSI
EL5E c$ûlTl0{át cxtT=SmTlRz¡;

CXD;
SHAf T:--SfiAfT+ l;

Ello;
lF tAST=l n{Ei
ET6IT

SHAf rm.HlPolNIERSltAsTll:=sflåf T;
RO¡/SæTlSr{Af T lfotilnRsltAsr¡;
ffi:=SHAf T;

ttD
EISE I{SFSHAfT- l;

flflt;

PROCEDURE TtE(yAR lt{TARRAY.TIEtp SlZE;StlAFî{fi .RolrrsmTPOlNnRS ;

VECSlztt€.tAST.IËA0IE :IIIIEGERI

(¡ rHts PRoffüns o€ÌEtflltcs IIG Tlt-tp tl TRlx cmnÊsFq,DlMi T0 A G|V€NEIN RY

ITIEFÍ.ACE I1ENT ARRAY T)

YAR
l:IIfEGER;

BtGH
Fm lFl TO NS DO
TlEtpf NS+ r -SfiAf î{tllÉryu/SæTll ¡l.IËADIE l=lNTAnfAYlÞONIERS
fLASTI"ROT/SCRTIrll

Ero;

PnOCEDURE mADAN(V^R INTARRAY.TIEIP,sIã;vAR mÆ)t{¡'l;VECSI¡E; YAR
t{T; IITEGERflOTSæT:VECSl2Ef.l: lllIE6ER):

(r THIS PR0CtDmÉ DEIIRñ|¡ES IIE SIGD St(I.EñCt t{ nlx CffiSPü,Dltß T0 A 6llÆN

EINARY INIERI. ACEITT{T ANRAY }

vAn
PdNTERS,SffiT:VECSIZE;
Bt[W¡lJclff T,l"Rl¡2J.AslplP2,TËÆf,E: IIIE8ER;
C$ÐlTlO{,RO¡/: BdX-ÉAI;

BfGilt
lFÉADtE= l;
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R2:{-l:
!AST:tl;
ROl:.ïHf,:
NT:=l;
F0f,l:.1 TOtllþ

lfGlx
SfiTllJ:{;
ÞOl{ItRSllJ:{{+ l;

EID;
l,l{llE I.AST) I DO

BE6IT
InEAt)H.r'll POlNltRSf LASTI l=IRtADIE;
Tt€(tilTARRÂY,TlEtP,SllAf ll{t'1.Ro¡/Smr,FoltlITRs¡ËtASf ,TnÍADIE}
Rl r{.AST;
BtIcKETFSCRTIRI l;
IAST:=|AST-l;
R2:'tAST;
C(l,DlTl0.l:{BtÆxET'smTlR2D Alfl} (R2}0):

uilltE coiDlTlo,l Do
æ6¡r

P I #OINTERSIRI ¡:
F2 :f0lNTERSlR2 l;
lF llATcr(ilrcKEltl.l{s,Pl P2,R0.t¡l$w,lNTAmAY,ROÍSmT) rHEll
BE6¡i

TRIADf,[¡llPOlNIERS]R2 I l¡TREADtE;
IAST:{AST-l;
sH,F f tE(smT,R2,LAST+ I I
sHf ttE(trolNIERsff2IASf+ I ):

EID
CISC INSERT(POIHTTRS,SMT,ET€W.R2IAST);
R2#-l;
lF H lHtll C(I,D|TIO{= FALSI
EISE CCÍ\DIll(t{Fût CKET=SmTlRzÌ

Eto;
TFIAIX.E FÏRfADLE+ I;

Elffl;
lF LAsT=l ltËl
!EGIT

TnEADNIfi lr0ilrERsltASTllFInfAIÈE:
llT=TËAOLE;
nE(rNTARn Y.TlEtp,SHÆÏr*fi ,Rfi/SmTPOlNnnS,nsJ-AST.nf A¡¡Ll):

fxo
ELSE NT:=TR[ADLE-l;

Etf,r;
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3.5.5 THE ALTERNATINo DIRECTIOI{ ALoORIT}ÌI

The Bucket So|t Algorlthm represents a considerable saving over the

Classical Algorlthm in terms of the time required to factor a given binary

interlacement array. As will be shown in Section [3.5.61, the largest

reduction in the number of operations performed appears in the second

phase of the algorithm, when the shed sequence and tie-up matrices are

belng determined. The greatest reductlon ln the number of operations

rÊqulred to determine the threading matrix can be reallzed when the

buckets are ryell distrlbuted at each stage. ln a worst case sltuation all

of the columns of the interlacement array whlch are being examined at any

stage lle in the same bucket. ln this instance, the Bucket Sort Algorithm

threading computation becomes identical to the threading determination

process used in the Classical Algorithm.

The Alternating Dlrectlon Algorithm performs the first phase of the

factorlzation process (column distinctness determination) uslng the

Bucket Sort Algorlthm. This determlnatlon of the threading is not

however, continued to completion but rather, ls suspended at the kh stage.

ln other words, only k columns of the interlacement array are assigned

threadings. As before, any columns within these k columns which are

identical are eliminated from consideration. At thls point, processing

switches to the shed seguence determinatlon stage (row distlnctness

determlnation) of the Bucket Sort Algorithm and continues to the rh stage.
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Threading determinatlon now resumes on the amay with identical rows

excluded. This alternation of processlng continues until the threading,

shed sequence and tie-up matrices have been computed ln their entlrety.

Specifically, the basic alternating direction algorithm is given by

the follovving steps:

Determlne the entrles ln the threadlng matllx l0r kt columns.

These wlll be the flrst k, columns encountered in the execution

of the Bucket Sort Algorithm and willnot necessarily be

contiguous.

2. Deteffnlne row distinctness over those columns which have

been determined to be distinct and the m - kt columns not

completely analyzed, for the flrst rt rows encountered in the

executlon of the Bucket Sort Algorithm.

l'1ake the comespondlng entries ln the rt rows of the shed

seguence matrix.

For each distinct row encountered, compute the corresponding

column of the tle-up matrix.

3.

4.
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5. Resume threadlng determlnatlon at the kt + lst stage.

Determine column distinctness over all of the distlnct rows

encountered in step 4 and all of the n - r, rows whlch were

not completeìy analyzed. Continue this process to the k ù

stage, when Ç entries of the threading matrix have been

determined.

Repeat steps 4 and 5 until the entire blnary interlacement array

has been factored into its corresponding thneading, tie-up and

shed sequence matrices.

ln the algorlthm which has Just been clescribed, the various values

of k and r are not chosen with respect to the data being processed but

rather, arc selected 4!qi A k-vector and r-vector where the elements

are multlples of l0 ls one example of such a scheme. The threading

analysis continues until threadlng entrles are assigned for l0 columns, at

whlchtime the shed segupnce analysls beglns. After l0 rows of theshed

sequence matrix have been determined, processing of the columns resumes

and continues until an additlonal l0 columns have been completely

analyzed, and so on until all of the columns and all of the rows have been

examlned. At each stage of course, the analysis takes place over a

sub-matrlx of the prevlous interlacement array.

6.
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The greatest homogeneity of processing is obv¡ously achieved by a

one - one alternation between column and row processing, where the

dimensions of the active interlacement array decrease by one every tfme

that a row or column ls determlned to be equivalent to a previously

examined row or column.

An alternatlve form of this algorithm has the values of k and r being

determined ttynamlcally based on the character of the interlacement data.

One particular varlation of thls approach is given by the followlng steps:

Compare the f irst column wlth every other column, up to the

point where they disagree. This will establlsh the coarse

buckets.

Choose the first bucket and determlne the threadlng fon all of

the columns in it.

Compare the first row with every other row, up to the point

where they disagree and ignoring positions corresponding to

non-distinct columns. Thls will establlsh the coarse buckets for

the rows.

4. Choose the first bucket and determine the treadles for all of the

2.

3.
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6.

7

rows in lt.

5. At the same tlme, detennine the correspondlng tie-up entries

for every distlnct row of the shed seguence matrix.

Resume examinatlon of the columns. Determlne the threading

for all of the columns in the second bucket.

Determine the shed sequence for all of the rows ln the second

row bucket and make the appropriate entrles ln the tie-up

matri)c

8. Repeat steps 6 and 7 until the binary lnterlacement array has

been completely factored into lts threadlng, tie-up and shed

sequence components.

The Alternatlng Dirtctlon Algonithm can provlde a high degree of

homogeneity of processlng. Thls may be desirable lf, for example,

processing ls not to contlnue lf the number of shafts or treadles requlred

exceecls a given value. ln the case where the number of shafts used is

small relative to the number of treadles, phase I of the Bucket Sort

Algorlthm (the time-consuming stage) would be executed in lts entirety

and the factorizatlon attempt would be abonted part of the way through

the second phase of the algorithm. Using the Alternating Dlrection
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Algorithm, the end condition on the shed sequence matrix would be

tletected at an earller stage.

It should be noted however that, if the factorization process ls to be

continued to completion, the Alternating Dlrection Atgorithm represents

l)g saving in operations over the Bucket Sort Algorlthm. This ls

lllustrated in Sectlon (3.5.7) where a test case, constructed to give the

maximum advantage to the Alternating Dlrection Algorithm, ls examlned.
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5.5.6 THE IIIN¡IîAL BUCKET SORT AL6ORIT}ñ

Atthough the Bucket Sort Algorlthm represents a substantlal savlng

0f operatlons, partlcularly in the determination of the shed sequence

matrix, this savlng is st¡ll not maxlmal. Having compared the columns of

an interlacement amay and detennined the number of leading positions of

agreement, this lnfonnation can be used to eliminate row-wise

comparisons. Specifically, we have the following results:

Definition 3.5.6.1. Two columns are said to be k-- eglivalen! if they agree

ln the first k posltions.

THEOREI1 5.5.6.2, lf n columns are k - eguivalent then the elements in n - I

of these columns need not be examlned ln the comparison of the first k

rows.

Proof. Without loss of generality, we can consider the n k-equivalent

columns to be contiguous. The matrix wlth these columns will be 0f the

form

t69



lc-n---+l
tttttt
2 22222
kkkkkk
t't**'ti't'

where all elements represented by the same integer I (l < i ( k) are the

same, and where (x) indicates elements about lt/hich we have no

infonmation. Clearly, all of these columns are identical up to and including

the kb element, and only one of these columns need be considered with

respect to the equivalence of the first k rows. tr

lf the complete Bucket Sort Algorithm for the columns has been

applied then the columns are sorted as follows:

Definition 3.5.6.3. The Bucket Sort Algorlthm k-sorts the columns in the

sense that:

(i) alldistinct columns are adjacent;

(ii) all columns which are k-equivalent with the f irst column are

contiguous;

(iii) each set of k-equivalent columns is sorted with respect to the

flrst column of the k-eguivalent set, etc.

1

kt
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THEOREH 3.5.6.4. At the terminatlon of the colÛmn analysis, the bucket

value for each of the dlstinct columns, wlth the exception of the flrst

column examlned in each set of k-equivalent columns, contains the number

of teading elements in the column whlch have been accessed.

Proof. lf, ln the comparlson of one column with any other column, a

dlsagrcement occurs then the last position of agreement ls recorded as the

bucket value for each column. Slnce we are only considering the distinct

columns, this value wlll always be less than the length of the column. tr

COROLLARY 5.5.6.5. At the termination of the Bucket Sort Algorithm for

the columns, the flrst column of each k-equlvalent set of columns will

have a bucket value corresponding to the last posltion ln which lt agreed

wlth the column to whlch lt was found to be k-equlvalent.

COROLLARY 3.5.6.6. The very first column which is examined in the

Bucket Sort Algorithm for the columns wlll have a flnal bucket value of 0.

COROLLARY 3.5.6.7. The final þucket vector gives the number of rows for

which each cotumn can be ignored in performing the Bucket Sort Algorlthm

for the rows.
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An algorithm which utilizes these results involves the following

steps:

l. Perform the Bucket Sort Algot'ithm on the columns of a binary

lnterlacement array D;

2. compare the second row wlth the f lrst row, only over the dlstinct

columns, only ln positlons comespondlng to bucket values less than

two, and only until a disagreement ls encountered;

5. set the bucket value for the second rorv to the last position of

agreement wlth row onei

4. 
- 

determine the approprlate entries ln the tie-up matrix for each

distinct rrow, as in the Bucket Sort Algorlthm;

5. repeat steps two, three and four until the shed sequence and tie-up

matrices has been completely determlned.

An example of this algorithm is discussed in detail in Section

IJ.s.7].
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5.5.7 THEORETICT\L COIIPAR|SONS

The factonization algonithms discussed in this section have been

presented in order of increasedpqÈÐ[!¿L efficiency. lt is clear however,

that the efficiency of any of the algorithms is very data specific and that,

in some circumstances, two algorithms do in fact become identical. For

that reason, any analysis of the relative efficiency of these processes

must be based on examinatlon of specific non-trivial test cases.

The foìlowing four test cases have þeen constructed to present the

the factorizailon algorithms with $/orst case situtations, so as to ensure

that these algorithms retaìn their distinct character.

TEST CASE I:

Let A be an n x m array with m ) n and such that

( l) A ls symmetrlc (excluding the (m - n) last columns of A);

(2) m -n+l columnsare identlcal;

(3) the columns of A. ci, are such that,lf ciand cj are

columns with I ( J and j r n, then c¡ is identical with c¡ to

(i - l)places.
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EXA}1PLES:

þ--n+|.-{m - n)-'l

r 0....'.......0
0r0...'.""..0

0

0

0 ....' | ........1
GENERAL SPECIFIC

(n=5, m=8)

TEST CASE 2:

Let Abe an n x m afl'ay with m ) n and such that

(l) m - n + I columnsare identical;

(2) the columns of A are such that, if c¡ and cj ane columns

with i ( J and i,j > (m - n), then c¡ is identical with cJ to

fi_il+m-n))ptaces;
(3) the n rows of A, ri, are distinct and such that, if ri and

r¡ are rows wlth I ( I ( J, then ni ls ldentlcal wlth rj to

(i _ t+ (m: n))places;

(4) rl ls ldentlcal wlth all r¡ to 0 Þlaces

ï
n

I

t0000000
01000000
00t00000
000t0000
0000t I I I
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EXAIlPLES:

lr-(m - nl-{r-n-_--+l
| .....' l 10. .....'...0
r .....' 001 0 . ...'....f}

tttt0008
0t}001000
00000t00
000000t0
0000000r

00. . .'."....1
6ENERAL SPECTFIC

(n-5, m=8)

TEST CASE 3:

Let A be an n x m anray with m ¡ n and such that

( l) m - k columns are identical;

(2) n- k rows ane identical;

(3) the columns of A are such that, lf ci and cj are columns

and i (j and i ) (m- k), then c¡ is identical with cj to

(i - (l*m-n))places;

(4) the rows of A are such that, if ri and rj ane rows and

i< j and i) (n-k), thenr¡ is identicalwithr'¡ to(i- | +(m-n))

places.

0
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EXAIIPLES:

l*{m -
0. .'..'00

T(n-t
I
I
I

k

I

I

0

00000000
00000000
0000t000
00000100
0000001û
00û0000t

0 00

OENERAL SPECtFtC
(n=6, m=8, k=4)

TEST CASE 4:

Let A be an n x m array with n ) m and such that

( l) all m of the columns are distinct;

(2) the first k, of the columns agree to k, ÞositionsJ

(5) of these kt columns, the flrst l(z of them agree to an

additional k, positions;

( ) (m - k,) of the columns agree to k¡ Positions, with i < k';

(5) the (m - k,) remaining columns are sorted in descending

order of the value of k¡,
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EXAI"lPLES:

l-kl..------.---_-. l-(m-kl)*l

't0
t 00

*z)

ï
kl

I

I:F
k2
+

1
n-(k 

t 
+

I

t...'......t0"' .0

1...1ft".""'. . . .0

tttll0
0000t0
000t00
0010{10
0000fl0
0t000û
000000
SPECIFIC

t0 0

GENERAL
(m=6, n=7, k¡=3, k2=2)

The number of operatlons reguired ln performlng the llathematical

Alg0rithm, the Classical Algot'ithm and the Bucket Sort Alg0rlthm 0n the

interlacement array glven by Test Case I are now determined, both for the

general and fon the speclflc examples. Since the tie-up matrix

determination is constant in all of these algorithms, the numþer of

operatlons required to compute this amay ale not lncluded.
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I"IATHEIIAT I CAL ALGORI THH:

Part I - Threading Determination:

step i: compares column i with all others.

'of companisons ln general and specific examples.

step l:

step 2:

n x (m - l)
nx(m-2)

35

30

step n: nx(m-n) l5

At the nh step all of the remaining columns are determined to be

identical.

Total: rFx(2m-n-ll/2 r25.
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ParT 2 - Shed Sequence Determinatlon:

step i: compares row i with all others.

t of comparisons in generaì and speciflc examples.

step l:

step 2:

mx(n-l)
mx(n-2)

32

24

stepn-l: mxl

Total: mxn(n-l)/2

Total number of operations - part I and part 2:

(3mrP-n(m'rf'n))/2 205.

I

80.
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CLASSI CAL ALGORITI-}1:

Part I - Threading Determination:

step i: compares column i with all others

t of comparisons ln genenal and specific examples

step l:

step 2:

stepn- |

step n:

(m-l)
2x(.lr,-21

(n- l)x(m-n* l)
n(m-n)

7

l2

t6

t5

At the nb step all of the remaining columns are determined to be identical

to column n.

Total (3mn-2rF-n)(n.l)/6 65,
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Parl2 - Shed Sequence Determlnatlon:

step l: compares row I wlth all others.

t of comparisons in general and specific examples.

step l:

step 2:

(n- l)
2xl¡- 2)

4

6

4

20.

stepn- l: (n- l)

Total: (n2 - n) (n + l)/6

Total number of operations - part I and part 2:

n(n+ l)(3m-n-2)/6 85.
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ELICKET SORT AL6ORITI.H:

Part I - Threading Determlnation:

step i: compares column i with all others.

t of comparlsons in general and speclflc examples.

step l:

step 2:

stepn-l

step n:

(m-l)
(m-2)

(m-n* l)
(m-n)

7

6

4

3

At the nb step all of the remainlng columns arÊ determined to þe identical

to column n.

Total: mn-n(n'l)/2 25.

182



Part 2 - Shed Sequence Determinatioir:

step i: compares row I with all others.

' of companisons in general and speclflc examples.

step l:

step 2:

(n - l)
(n-2)

4

3

stepn- l: I

Total: n(n - l)/2 t0.

Total number of operations - part I and part 2:

n(m - l) J5.
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Summary and Comparlson for Test Case I

Hathematical Algorithm:

Part l: nz (2m-n-l)12

Parl2: mn (n - I )/2

125

80.

The difference tn the numÞer of operatlons for pañ I and part 2 of this

atgorithm is based solely on the difference in slze between m and n, as

lllustrated when we set m - n.

Part l:

Part 2:

nz (n- trtz
n2 (n- trtz

50

50.

205.

65

20.

Total number of operations - part I and part 2:

(3mn2-mn-n3-n)/2

Classical Algorithm:

Part t: (5mn - 2n2 - n) (n + l)/6

Part 2: (n2 - n) (n + I )/6

For this test case, the difference ln the number of operations required in

parts I and 2 oî the Classical Algorithm is based solely on the difference

ln size between m and n, as lllustrated ì,vhen we set m = n.
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Bucket Sort Algorithm:

Part l: mn-n(n+ l)/2

Part?; n(n- l)/2

(n2-n)(n+ l)/6
(n2-n)(n+ l)/6

n(n- l)/2
n (n - l)/2

Part l:

Parl2:

Part l:

Parl2:

20

20.

85.

Total number of operations - part t and part 2:

(3mn2 '3mn -ns - 3n2- 2n)/6

Clearly the ratio of the number of operations performed in the

l'lathematical Algortthm to the number of operations performed ln the

Classical Aìgorithm ls d:1, where d is asymptoticaìly 5. The ratlo ln the

speciflc example ls 205/85, or 2.4.

25

t0.

For this test case, the difference in the number of operations required in

pant I and parl2 oî the Bucket Sort Algorithm ls aìso based solely on the

dlfference between m and n, as illustrated when we set m ' n:

t0

10.
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Total number of operatlons: part I and part 2:

n(m- l) 35.

The Classical Aìgorithm has a domlnant term of (3mn2 - n3 ' 3mn - 3n2)tO,

while the Bucket Sort Algorlthm has a dominant term mn. Clearly the

ratio of the number of operations ln the Classical Algorithm to the numþer

of operations in the Bucket Sort Algorithm wlll be greater than l, and wllì

increase with n. The ratio ln the speclfic example ls 85 to 35, or 2.4.

The number of operations (comparisons) performed in the anaìysis

of the binary interlacement array of Test Case 2 is now considene<l with

respect to the Classlcal and Bucltet Sort Algorlthms. The llathematical

Algorithm is dependent only on the number of rows and columns ln the

matrix and takes no account of the data ltself. For this reason, it is not

included in the comparison of this, or the next test case.
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NIT{BER OF COIIPARISONS

TEsÏ CASE I

SPECIFIC EXÆ1PLE

AL60RtTl-ì1

HATHET,IATICAL CLASSICAL BUCKET

25

t0

l5

65

20

85

t25

EO

205

PART I

PART 2

TOTAL
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TEST CASE 2:

CLASSICAL AL@RITI-}1:

Part I - ThreadingDetermination:

step lr: step I compares column r+l wlth all others (r=m-n).

* of comparisons in general and specific examples.

step lo:

step 2.:

step 3.:

(m-n)n+(n-l)

2(n-2)

3(n-3)

t9

6

6

step(n- l)r: ¡(n- l)

Total (6mn.n5-6n2-n)/6

4

55.
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Paft 2 - Shed Sequence Determlnation:

step l: compares row I with all others.

'of comparisons in general and speclfic examples.

step l:

step 2:

n- |

(n-2)(m-n+2)
4

l5

73.

stepn- I m- |

Total: ((n - 2) (2n + nm - nl/21

- (n (2n2 - 3n - 5)/6)

Total number of operations - part I and part 2:

(n (-n2 - 5n + 6m * 4)/6)

* (n - 2) (2n + nm - nl/Z)

7

38.
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BUCKET ALCrORlTl-fi:

Part I - Threading Determination:

step lt: step I compares column l+r wlth all others (r=m-n).

t of comparisons in generaì and specific examples'

step lo:

step 2.:

(m -n)n'(n- l)
(n-2)

t9

3

steO (n - I )r: I

Total: (m-n)n*(n- l)n/2 25.
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Parl 2 - Shed Sequence Determlnation

step i

' of comparisons in general and speclfic examples.

compares row i with all others lgnorlng the flrst

(m-n) columns.

step l:

step 2:

(n- l)
(n-2)

4

3

stepn- I I

Total: n (n - l)/2

Total number of operations - part I and part 2:

n(m - l)

t0.

35.
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Summary and Comparisons for Test Case 2:

Classical Algorlthm:

l/21kf - n + 2) m - (rP - 5 n - 6) nl 73

Bucket Sont Algorithm:

n(m- l) 35.

For n ) 5, the ratio between the number of operations required ln the

Classlcat Algorlthm to the number of operations required in the Bucket

Sort Algorithm is ) 2. The ratlo in the specific example is 75lJ5, 0r 2.1
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NI,ì1BER OF COTIPARI SONS

TEST CASE 2
SPECIFIC EXA¡IPLE

AL6ORITIIl

CLASSICAL BUCKET

PART I

PART 2 t0

TOTAL

The Bucket Sort and Alternat¡ng Direction Algoritfms are examined

in terms of the number of operations required to factor the binary

lnterlacement array repnesented by Test Case 5 into its constituent

threading and shed sequence matrlces.

25

35

35

38

73
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TEST CASE 3:

EUCKET SORT AL6ORITI-H:

Part I - ThreadlngDeterminatlon:

step i: compares solumn i with all others

' of comparlsons ln general and speclflc examples.

step l: n (m - t) - (k/2) (k - l) 36

At this polnt, the first (m - k) columns are found to be equlvalent, while

each of the remaining columns ls in a separate þucket and ls therefore

disttnct.

Total: n (m - l) -(k/2) (k - l) J6.
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Part 2 - Shed Sequence Determlnation:

step i: compares row i with all others, lgnoring the first
(m-k- I ) columns

step l: [(2n - k) (k + l)/2]- | t9

At this point, the first (n - k) rows are found to be equivalent, while each

of the remalnlng rows is ln a dlfferent bucket and is therefore dlstinct.

Total: [(2n - k) (k + l)/2]-l t9.

Total number of operations - Part I and Part 2:

n(m*k)-(k2* l) 55.
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ALTERNATIN6 DIRECTION ALOORITI-I1:

Part I - Threading Determlnation:

* of comparisons ln general and in speclfic examples.

step l: compares first column with aìl otherc

ñ(m- l)-k(k- l)/2

step 2 Compare flnst row with alì othens, ignoring the

first(m-k- l)columns

[(2n-k)(k+ l)/2]- | t9

At this polnt, the equivalent rows and columns have been identified whlle

all of the remaining rows and columns lte in different buckets and are

therefore distinct.

Totat: n (m * k) - (k2 . l) 55.

36
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NI.î1BER OF COT1PARI SONS

TEST CASE J
SPECIFIC EXÆ1PLE

ALGORITI-I,I

BUCKET

ALTERNATINO

DIRECTION

PART I

PART 2 t9 l9

TOTAL

The Bucket Sort and Hlnimal Bucket Sort Algorithms are now

considered with respect to the interlacement array represented bi' Test

Case 4. However, since the chanacter of thls test case depends critically

3636

5555
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on the speciflc elements in all of the positions, the specific case only will

be analyzed as a representative of this type of array.

TEST CASE 4:

BUCKET SORT AL@RITFH;

Part I - Threading Determlnation:

' of comparisons ln genenal and specific examples.

step I compares first column with all others

t6

At this point, all of the remaining columns are <lifferent buckets.

Total: t6
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Parl2 - Shed Sequence Determlnation:

step l: compares row I wlth all others.

' of comparisons in generaì and specific examples.

step l:

step 2:

step 3:

6

l4

I

Total: 2l

Total number of operations - Part I and Part 2:

37.
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MININAL BUCKET SORT AL6ORITI.}1:

Part I of the l"linimal Bucket Sort Algorlthm ls ldentical to the

Bucket Sort AlgoritÌm, so that the number of operations required for Part

I ls 16.

Part 2 - Shed Sequence Determination:

t of comparisons in general and specific examples.

step I compares f irst row with all other rows

6

compares second row wlth all other rows Ì,
3 ( i ( 7, only in positions corresponding to columns

whose bucket value b¡ is less than i

t0

compares fifth and seventh rows

I

step 2:

step 3:

Total: t7

Total number of operations - Part I and Part 2:

33.
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Clearly, the Minimal Bucket Sort Algorithm requlres fewer

operatlons than the Bucket Sort Algonlthm for this test case and this

increased efflciency ls realized entirely in the performance of the shed

sequence factorlzation. The ratio of operations for the Bucket Sort and

the Minimål Bucket Sort Algorlthms for Part 2 is2l/ 17, or 1.2, in this

speclfic case. Since the Hinimal Bucket Sort Algorlthm is s0 data specific

howeyer, lt is not posslble to generalize the degree of improved

efflciency. The only claim which can be made is that there exist blnary

lnterlacement arrays for which this algorithm represents a theoretical

lmprovement in the amount of processing required and in all other cases it

is no worse, since it includes the Bucket Sort Algorithm as a special case.
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NI.}IBER OF COîIPARISONS

TEST CASE 4
SPECIFIC EXA}IPLE

A[GoRlTl-11

BUCKET

HININAL

BUCKET

PART I

PART 2

TOTAL

t6

2t

37

t6

l7

55
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3.5.8 PRACTICAL CONSIDERATIONS

Although the Hathematical Algorithm is of some lnterest because of

its simpìification of the factorization problem, it is not a reasonaÞle

algorithm to be applied, either by hand or by machine. As shown in Section

(3.5.71, the Classical Algorithm represents a considerable saving in the

number of operations, whlle still malntaining a relatively slmple form to

the process. The Bucket Sort Algonithm represents a further saving still,

but the processing becomes considerably more complex.

ln order to ascertain whether or not the overhead involved ln the

compìexity of the Bucket Sort Algorithm wouìd eliminate the theoretical

advantage to be realized, the Bucket Sort Algorithm was implemented in

Applesoft Basic and run on an Apple 2+ microcomputer. Timing

comparisons were made between this algorithm and a similar

lmpìementation of the Classical Aìgorithm, wlth respect to the binary

interlacement arrays shown ln Figures f5.5.8. I I and [3.5.8.21. These arrays

were selected as belng representative of typlcal muìti-shaft woven

structures. The results are summalized as follows:
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FIGURE ARRAY SIZE TIHE 011N. : SEC.)

CLASSICAL BUCKET SORT

ALCTORITII'I ALGORITI-î1

2TOTALI2TOTAL

3.5.8. t 8x8
16x16

32 x32
47 x84

3.5.8.2 12 x l2
27 x27

54x54

:05

:25

l:08

3:54

:29

3:12

6:37

l7:19

l:25

3:50

I l:59

:34

3:37

7:45

2l: l3

l:40

4:23

l4:50

:04

:10

:37

2:41

:08 :12

:30 :40

:52 l:29

l:12 3:53

:15

:53

2:51

:07

:28

l:48

:18

:32

l: l7

:25

l:00

3:05

where I lndicates Part I (threading determlnation) of the algorithm and 2

indicates Part 2 (shed sequence determination) of the algorithm plus the

tle-up computation.

Clearly, the Bucket Sort Algorithm exhlblts a practlcal as well as a

theoretical, advantage over the Classical Algorithm.

The Alternating Directlon Algorlthm is identical wlth the Bucket

sort Algorithm with the exception that processing swltches back and forth
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between Parts I and 2. The speed of processing should thus be comparable

ln these two sltutêtions, except that the swltching overiead is included in

the Alternating Dlrection Algorithm. This ls not great but, since the

Alternating Direction has n0 advantage except in partial processing, this

algorithm ls actually less efficlent if the entlre array is always going to

be processed.

The Nlnlmal Bucket Sort Algorithm is never theoretically less

efflcient than the Bucket Sort Algorithm. However, the structure of thls

algorithm is so complex that it is not clear that these theoretical savings

can ln fact be realized.
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5.6 FACTORINO A COLOURED IIITERLACEI{ENT ARRAY

Normally the analysls of a Yúoven textile fragment beglns with the

development of the correspondlng blnary lnterlacement affay, wlth some

n0tatlon being made as to the colours of the varlous warp and weft yarfls.

At thls polnt, any of the precedlng fåctorizatlon algorlthms can be applled

to the lnterlacement array t0 determhe the appropriate thrcading, tle-uÞ

and shed sequence matrlces. lt should be recalled that thls factorlzatlon

ls unlque modulo permutatlon of the rows of the threadlng and tle-up

matrlces and permutatlon of the columns of the shed sequence and tle-up

matrlces.

Sometimes however, a given coloured design ls to be analyzed t0

determlne how, or ln fact whether lt can be produced on a loom. Thls

deslgn then must comespond to a multl-valued array whlch ls a coloured

lnterlacement array lf and only lf lt can be decomposed lnto a vector of

warp colours. â vector of weft colours and a blnary lnterlacement array,

all of whlch are self-cons¡stent. ln other words, we requlre that the

resulting factors reproduce the origlnal coloured design when the coloured

lnterlacement array computatlon algorithm of Section [3.3] is applied to

them.

The flrst stage ol thls analysls therefore lnvolves determlnlng a

vector of warp colours (WARP), a vector ol weft colours (WEFT) and a
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þlnary lnt€rlacement array (D = {di,J)) comespondlng to a glven colour

lnterlacement array (K = [k¡,¡]). lmplicit in this desmlption is the

verification that the array K is, indeed a coloul'lnterlacement array. We

will make use of the following results.

THEOREI1 3.6. l. At least one unambiguous warp and weft colouring can'

always be determined for any glven coloured interlacement array.

Proof. Let us assume that the n x m amay K under consideration is a

coloured interlacement array. We can now assume that weft colours will

appear at least once per row and that wãrp colouns will appear at l€ast

once per column. tr

The followlng flnite series of steps will produce the neguired vectors of

colours (encoded as integers):

l. Set WARPj - K¡,¡ for all columns where K¡,¡ = K¡,¡, for

' all i.

2. Set WEFT¡ ' K¡, ¡ for all rows where K¡, ¡ = K¡,¡, for all i'

3. Terminate the process lf the WARP and WEFT vectors are

complete.

4. choose a value for j (j - 1,2,"',m) such that there exists some

Kl,J " Kl,J (i = 1,2,.'.,n).
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5. Let K¡,¡ be a warp ovel wef t lntercectlon and set

wARPj = Kt,j.

6. All Ki,j ' WARPj are weft over warp intersectlons' Set

WEFT| ' K¡,¡ for all of these values of i.

7. For all WEFT¡ determined in step 6, locate all Kl,J * WEFTI

and set WARP¡ eCual to these K¡,¡.

6. Repeat steps 6 andT untll all values for WARP and WEFT have

been deflned.

x lf, at any polnt ln thls process, an inconslstency develops, the array

K ls not a colouretl lnterlacement array.

THEOREII 1.6.2. Any rectangular reglon ln a coloured lnterlacement array

comespondlng to lntersectlons between warp and $'eft yarns 0f the same

colour ls structural ly lndeterm lnate.

Proof. The coloured interlacement array represents the colour whlch

appears at a glven intersectlon. lf the warp and weft yarns are 0f the

same colour, then lt is imposslþle to tell whether this ls a warp over weft

or weft over warp lntersection. tr

THEOREM 3.6.5. The representatlon of the lntersectlon between lndlvldual

warp and weft strands remalns lnvarlant under row and column
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permutations of the binary interlacement array

CoRoLLARY 3.6.4. The colour representation of the intersection between

individual warp and weft strands remains invariant under row and column

permutations of the coloured interlacement array.

EXÆlPLE 3.6.5.

This example shows a coloured interlacement arÎay K with two colours

(encoded as 2 and 5) and its comesponding warp and weft colour vectors.

The same array ls also shown with its rows and columns permuted, with

corresponding changes being made to the colour vectors. lt is clear that,

although the colour seouences have changed, the interlacement

relationship between individual warp and weft strands has not.

332233
532113
533331
533253
22223 2
23 223 3
332223
353253
23 2 223
23 2233
222223

3333
3255
3333
2333
2233
223 2
2222
2353
2222
2232
2223

WEFT 3
l
3
3
2
2
2
3
2
2
2

K.

3322332235WARP.
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3353332233
3533352352
35333333J3
333t333225
3J33535223
223 233 2222
2353322222
3323222222
2323222222
2353322222
222J23 2222

WEFT' = 5

K'=

3
3
5
3

2
2
2
2
2
2

WARP'. 3335332222

THEOREII 3.6.6. A coloured interlacement amay is structurally

determinate lf and only lf the sets of warp and weft colourings are

dlsjotnt, as determlned by the algorlthm of Theorem [3'6.11.

Proof. Let us flrst assume that the sets of warp and weft colourings are

ttisjoint; that is that there are no weft strands of the same colour as any

of the warp strands. with no loss of generality, we can substitute values

of I in the coloured lnterlacement artay wherever a warp cotour appears

at a given intersection and values of 0 where a weft colour appears. The

resulting matrix is a binary interlacement amay.

Let us next assume that the sets of warp and weft colours for a

glven coloured interlacement array K are not disjolnt. By Corollary [3.6'4],
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2.

we can pernute the rows and columns of K to produce a coloured array K'

with solld coloured nectangular blocks lying on the principal diagonal.

These regions corrÊspond to the lntersections of vúarp and weft yarns of

the same colour and, from Theorem [J.6.2J, we know that these regions are

structural ly indeterminate. Therefore our original coloured interlacement

aray K is also structurally indeterminate. tr

Based on the preceding results, we now have an algorithm for

factoring coloured interlacement arrays, as follows:

3.

Obtain the warp and weft colour vectors, using the process

outlined in Theorem [3.6. I ].

lf the sets of warp and weft colouts are disjolnt, set elements

in the coloured interlacement array corlesponding to warp

colours egual to I and weft colour elements equal to 0. 0o to

step 4.

lf the sets of warp and weft colours are not ttisjolnt, partition

the coloured lnterlacement amay lnto rÊglons which are colour

disjotnt and regions which are not colour disjoint. Assign l's

and 0's ln disjoint regions, as ln step 2. Areas which are

undefined are stnucturally indetermlnate and lntersections can

be freely speclfied accot'ding to whateven crlteria you choose

(for example, reduclbllity -- see 5.8). Assign these values.

Determine the correspondlng thrtading, tle-up and shed4.
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sequence matrices for the resulting binary interlacement amay,

using one of the algorithms of 3.5.

EXMPLE 3.6.7.

This example shows a coloured interlacement artay K, with disjoint warp

and weft colouning, along with its corresponding blnary lnterlacement

array D.

52525335
52522 4 4 4
325225JJ
4 452252 4
J3322525
5 4 4 42525
52333525
52544423

WEFT ¡5
4
J
4
3
4
J
4

K-

WARP= 52522525
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WEFT=3

00
00

D= 0001
t 000
I t 000
I I t000

WARP - 52522525

EXAIlPLE 3.6.8.

This example shows a coloured interlacement array K with warp and weft

colours whlch are not dlsjoint, along with the corresponding partially

determinate binary intenlacement artay D. The array D' is D, with its rows

and columns permuted to show the lntletenninate lntersections in

rectangular regions.

I

I

0

000 t

t 000

0
I

I

I

I

4
3
4
3
4
3
4

K=

42 432223
42434444
22 43 4222
3 3 43 4243
2223 4243
44444243
42222243
4233J343

-2
4
2
3
2
4
2
3

WEFT

WARP = 4243 4243
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0

I tlo
tt

0 ttt
00 r I

0 0tt
00t

I 000
tto 0

0t
00

00
ll

ll 0ll 0
l0 rl0 r

r r 00l lr r

0 I r 0l lr 0
00r rl lr r

roorl I

WEFT = 2

D¡

WARP = 4243 43 43

4
2
3
2
4
2
3

4
4
2
2
2

z
3
5

WEFT'

D'=

0 r r rl00l
r00 rlr0l

wARP'- 444¿ú22l,33

An lmplementation 0f this colour factorlzatlon process is given in

the followlng Pascal procedures.
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PASCAT Atcmlï]tl:

FtncTlfl c0.m(vAR KS|ZEilJl: IITEGIR):Büf, EAll:
(rÏlfls tr.ilcTtg{ fËTtRÎl[trs A VECTOR 0f WARP Cq.m $'ARP) Àt$ A VECTm tr Y'EtÎ
co.ms ft/ÉFT) tfr A 6IVEN CüüÆD ARRAY, lF FæSlBrE. lt 1l{ GlvEt{ cfl.flnËD ARn Y ls
NoT A Cq-CIÆD |N'ÍERIACE|'ENT ARRÂY, ÌHlS ttltlcTl(t{ WLt ASSLr€ A VAttf tr f ÀISE. ¡ )

YAR
t¡/CCf.I,fT,FCflilT,lrJ: IXTCGIR:
tLA6:D(X)LEAll;

BE6tlt
CO-e:'TRtf,;
ìIICUIT:.9;
tCü.llT:'O;
fm t:.1 TO N DOWEFTIII:*I;
F(F J:.1 TO 11 0OwARPfJ¡::-l;

FORJ:=l TOt'l lX!
EE6IX

l:=l;
ulilLE (r(+.t) 

^'lD 
(Ktl¡Jt,(l l¡rl, og ¡;=l+l

tF t)il lilEll
BE6IT

wAfptJl*ltJl;
WSCII{T :{,CCtl{T+ I ;

Eto:
EIT};

ffi l=l TO N D()
EtGII

J=l;
tttlllE (J(fl) AtO (KIl¡Jl*ll,l l) DOJ:J+l;
IF J}I1 TIIE¡I
ofGlx

sÆFTlll¡xll,l l;
tCqfiT i+Cül{T+ I ;

E1t);
flü);
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tFuicqt{T(H TlËx
!r6tx

J:=l;
UilltE WAPfJlt-l DO J:+J+ I
ì/ RFIJI:=KfIJl:
*Efl T:4Eq¡ÍT+l;

Ero;

UlrrLE (wcqt{T(t1) oR (Fc(IfiT{N) Do
!€6tr

J=l;
FLA6= TIIIE;
tfllLE J<{l DO

!f61tr
lF WAPÍJI(O ÏtEll JFJ+ I
ILSE
Ef6m

Fmlrl TOt{ DO
Bf5llt

r ßlt¡J¡()wARPuD ÍGX
3€Gilt

tF wfrTlt¡(0IrGx
tf6lll

tLAo=FALS;
u,rFTltl*ltJ¡;
fCqfiT Ffcqt{f+ | ;

cxl'
EtSt ¡F Klt¡J¡()WEFIItl IfcX
BEG¡X

C([mFfAISE;
Ulcflt{TFl1;
tC(IilT¡+l;
Jd1;

tlI);
tro;

EIID;
JF,þ l;
EllD;

EflO;
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l:'lt
yiltLE t(+{ Do Bt6lil

lF WEFTlll ( 0 TlEll lFl+ I
ELSE
BTGIX

FoRJ:=l TOll lXt
lf6lx

lF (Kll¡Jl{ )WEFTIl l) rllEtl
Bt6H

tF U/ARpUl(o rïEi
StGlll

tLAG:.FAL:¡E;
WARPUI:*llJl;
WE(tt{T F}TqfiÌ+ I :

Elll
ELSE tF Klt¡Jl()WAppUl tüEl
tf6lx

Co-mFFALSÉ;
u,f,(It{Tt'1;
tc(IfiTá{;
l:{:

EXD;
$tD;

ETI';
lFl+ l;
Elüt;

EO;

lF NAG NGX
!f6ltl

$ (btqr{T(il) T}Eil
BE6lft

J:=l:
YHIIE WARPUI)-I ItOJ;i.,+r;
hrARptJ¡*lt^Jl;
Wf,qÄT FWçCti{T+ l;

Elil,
ETSE
EEGIII

l:Ê l;
UtlltE TIFT[ll)-l DO lFl+ l;
wErTll¡*[r,ll;
tCqfiT FFCCI'IT+ l;

Ellfr;
EXO

ELS€ fLAG= T[[E:
EtÍ);

f,xD;
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pnOCtUlRE BIN RAY(YARKO:SIZE;WARP,WEFT:\'ÊCSI2E;I{J{: IIIIEGER}

(TTHIS PROCEDTÆ CüflJTES A BINARY INTERIACIITNT ARRAY D FM A GIVEN Cû.qÆO
INIERLACEI'€NT AmAY X, BASED Ol TIE WARP AlÞ WEFT Cü.Un WCTffi C(IfrJTED lN TIG
pnEvtcts PRoctD{.m. Æt EtEÌTNrs tr D u,}llcl{ ARf llotItFfllHAIE ARE ASSIGûE0 A VAttE tr - I .
¡)

VAR
lJ: lllTESR;

EfGIX
Fml=l TONDOFmJFI TOn fþ Dll¡Jl:-t;
FffJ=l TO tl fl)
Et6il

ffll=l TOI{ lþ
IF WARPUIÖWEFTUI IIftlI

tF wAnPUldtlôJl lltrx DU¡Jl=l ELSE Df l¡Jlc);
EIf);

Eltt;
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5.7 A FACTOBIN6 AtooRlTt$l FOR IIULTlPLE THREADIN0

When a conventlonalty woven fabric ls produced on a loom with only

one harness, a separate shaft is requlred for each equivalence class of

strands, However, ln some instances the nature of the weave structurt ls

such that the number of shafts can be reduced if multiple threading is

used. ln thls case, each warp strand is thrtaded through mort than one

shaft as described in Section [3.4]. Thls corresponds to a factorization of

a binary interlacement amay lnto a threadlng matrlx with more than one I

per column and a tie-up matrix which is multi-valued, as descnibed in

Section [3.4). The shed sequence matrix is binary with precisely one I per

row, as in the case of the single harness system'

Not all blnary interlacement amays can be factored in this manner.

ln order to determine whether or not a given structure can be multiply

threaded, we consider the single harness factors.

Definltl0n 3.7. l- A slngle harness factot'ization of a given binary

lnterlacement array ls one which produces a binary threading matrix with

preclsely one entry of one per column, a blnary shed sequence matrix with

precisely one entry of one per row, and a binary tie-up matrix'

Definition J.7.2- A comoound factorlzation of a glven binary

lnterlacement array ls one which produces a binary threading matrix with
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more than one entry of I per column, a binary shed sequence matrlx with

precisely one entry of I per row, and a tie-up matrix which is

multi-valued.

THEOREI1 5.7.5. The abtlity for a given binary interlacement array to be

compoundlT factored is dependent solely on the properties of the single

harness tie-up matrix.

This follovús from the followlng theorem.

THEOREII 5.7.4. A given binary interlacement amay can be compoundly

factored if and only lf the comesponding single harness factorization is

such that there exlsts a one-to-one mapping of the ns shafts onto ns/d

shafts, with ns/d an integer.

Proof. lf a binary interlacement array is compound factored then the

ground structure ls controlled by the long-eyed heddles at the front of the

loom, where these heddles can take one of three positions, namely down,

neutral or up. The determination of precisely which of the threads which

can potentially be ralsed by the front shafts is controlled by the pattern

shafts at the back of the loom, where the heddles on these shafts can take

one of two posltlons, namely down on up. Therefore, P x Q shafts have

been mapped onto q shafts, where p is the number of pattern shafts and q

ls the number of ground shafts.
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lf the single harness tie-up for a given binary interlacement array

is such that thene exists a one-to-one mapping from ns shafts to ns/d

shafts, with ns/d an integer, then all of the strands can be threaded on

ns/d ground shafts. ln addition, all of the strands must be threaded 0n one

of d pattern shafts. tr

THEOREH 5.7.5. ln order fon compound factorization to reduce the

number of shafts negulred, the number of ground shafts (ns/d) must be

greater than 2.

Pnoof. There are only two inequlvalent binary tie-up matrices of size 2 x

2, namely:

[' ol
LO IJ

The four shafts required for this tie-up couìd be reduced to two, by

combining_these tie-up matrices, however two pattern shafts would als0

be required and there would be no reduction in the total number of shafts

required. tr

[o'l
LI OJ
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EXAI1PLE 3.7.6.

Sinole Harness Factorization:

Factorization Usino Multiole Threadin0:

00000 r

0000 r 0
000 r 00
00 t 000
0 t 0000
r 00000

t 00 r l0
0 t 001 I

00 r l0l
r r 0 t 00
0t t0t0
r 0l00 t

t 0 r 00 r

0t t0l0
I t 0100
00 t r 0l
0100 r I

l00ll0

t 00000
010000
001000
000r00
000010
00000t

000 t I r

I I 1000
00 t 001
0100 t 0
t00r00

0001r I

I I t 000
2102 t 0
021021
r 02 r02

l0 r00 r

0tt0t0
I r 0 r 00
001 t 0 r

0 t 00 t I

t 00l r 0

t 00000
010000
00 t 000
000 t 00
000010
00000 t

Pattern Shafts
0-down; l-up

Ground Shafts
0=down; I -neutral; 2=up
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An algortthm based on the precedìng results has the following steps:

l. Obtain a single harness factorlzation for the given binary

interlacement array.

2. Choose the minimum block size b, such that þ I ns, the total

numþer of shafts requlred ln the slngle harness factorlzatlon'

and such that b ) 2.

5. Pantition the rows of the slngle harness tie-up matrix E into

sets of b rows, (b'1, and sum the columns 0f each of the [b'J.

4. Choose the set of rows, [b'J, whose first column sum ls the

smaìlest.

5. Construct a one-to-one mapplng of the shafts ln column one 0f

thls [b'] onto the shafts of the row set whose flrst column sum ls

the next ¡argest. Repeat for all columns of (Þ').

6. lf an lnconslstency develops at any polnt, return to step 5 and

choose a dlfferent lnltlal mapplng.

7. Construct a one-to-one mapplng of thls comþlned set onto the

row set whose flrst column sum ls the next largest. Repeat for

all columns.

E. Repeat step 7 until all ns rows have been mapped onto ns/b

r0lvs.

9. lf no self-conslstent mapplng exlsts then return to step 2 and
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choose the next largest block size.

10. lf no further block sizes are possible then the given binary

interlacement array cannot be compoundly factored.

I l. Re-write the threading matrix A on b shafts, according to the

mapping developed in the pnevious steps.

12. Choose a second shaft s¡ lor eacn warp thread aj,

I s¡ = b + f (aj - l) I + I .
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EXAHPLE 3-7.7.

TIE-UP

FIGTJRE 3.7.8

INTEGER REPRESENTAT ION

0 t I t 0l I 10001

t0 t I l0l 10010
r r 0 r I l0l0l00
I r t0 r I 101000
0 r I 100010001
t0l 100100010
I t 0101000100
I I t010001000
000101 I l0l I I

00 r0l0l I l0l I

0 r00 r l0l I l0l
t0001 I l0l I l0
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FIGURE 3.?.8
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b=3:

coLn1N sLms FoR (b'l

222322230 t t t

2232ll2ll0ll
22t2 t2l I l2l I

I I t032223222

Þ'2,

b'2t

HAPPING I

t23l
5 6 5] inconsistent

TIAPPING 2

t 23l
6 5 5) inconsistent
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b=4:

colttlN stî15 FoR tb'!

J33355331 I I I

35531 I I I ll I I

r r r r 33353333

MAPPINo I

b't:

b'z'

b'3'

1234

5678

9t0il12
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TIE-UP

FIGURE 5.7.8

COfIPOUND FACTORI ZAT ION

I I t I r I I 10000

I I I 100000000
00001 I I I I I I I

0 r t 20l l20l l2
t 02 t t02l l02l
t20l l20l l20l
2 t r 02l l02l l0

Pattern Shafts

0=down; ¡=up

Ground Shafts

0=down; l=neutral;

2=uP
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THREADIN6

FIGURE 3.7.8

INTE6ER REPRESENTATION

00000000000 I 00000000000 r

0000000000 I 00000000000 I 0

000000000 r 00000000000 I 00

00000000 r 00000000000 I 000

0000000 I 00000000000 I 0000
000000 I 00000000000 I 00000
00000 I 00000000000 I 000000
0000 I 00000000000 I 0000000
000 I 00000000000 I 00000000
00 I 00000000000 I 000000000
0 r00000000000 r 0000000000
I 00000000000 r 00000000000
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THREADING

Ft6URE 3.7.8

COT1POUND FACTORI ZAT ION

00000000 r I I 1000000001 I I I

00001 I I 1000000001 I I 10000

I t I toooooooo I I I lo0oooooo
000200020002000200020002
002000200020002000200020
020002000200020002000200
200020002000200020002000

where I - regular heddles and 2 ' long-eyed heddles.
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3.8 COERCIVE ANr\LYS|5

ln the interest of efficlency, it ls frequently desirable to determine

whether a new structure can be woven 0n a loom which has already been

threaded on a speclfied number of shafts.

Definition 3.8. l. Coerclve analysis ls defined as the process whereby an

attempt is made to force the threading matrix for a given interlacement

array to conform to a previously formulated configuration, wlth

appropriate changes being made to the tle-up matrix

It should be noted that coercion of a threadlng is not always

possible, and the following results apply:

Deflnltlon 5.8.2. A slngle harness threadlng T¡,¡ 0rì r shafts ls dellned as:

Tk,,= [,.., T¡, T¡, TX,.. J

where

T¡ = [a¡, a2,..., a¡]

ancl

a¡C [1,2,... ,r]
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with

ü o,, = [r,2,...,r]

Def lnltlon 3.8.f,. The set of lnterlacement amays c(T¡,.) ls that set 0f

lnterlacement arrays whose threadlng factor ls T¡,r.

Deflnition 3.8.4. The threading T¡,|" is subordinate to Tn,s if and only if

cfi¡,r) is contained ln or equal to cfin,r) and s) r.

Definition 3.8.5. The oeriod p of a thneading T¡,'. is such that

p-minq

where

.J=t1*g YJ.

Theorem 3.8.6. lf the period of the threading Tk,r is p¡, and the period of

the threading Tk,n ls p2 then, ln order that T¡,. be subordinate to T¡,¡ , p 
¡

must dlvlde pZ, fol non-trlvlal threadhgs.
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Proof. Let (a¡) Ue tne elements 01T¡,, and {b¡l be the eìements of T¡,n. lf

T¡,,. is subordinate to Tk,n then there ls an equivalence relation between

the two threadings, such that

a* lsequivalent tob* x= 1,2,..., k.

Consider

al az. ..ax

bt b2... bx

aptll aptll. I

bptll bpt tl* I

apill*x...aplzl

bpll]*x...bptzl

ap[2]*x...ak

bp[?]*x...bx

wherep[l]=pl

ax ls equlvalent to bx

ap[Z]*x ls equivalent to bpt2¡+x.

But p2 ls the period of T¡,n , so that

b* is equivalent to bp¡21+¡.

Therefore a* is equivalent to ap¡2¡+¡.
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Eut pl ls the perlod of Tk,. (wlth O¡ r p2). Theretore a¡ 1¡.,e6 ptll) ls

equivalent to up[Z]** (mod ptll] ln order that T¡,. be a non-trivial

threading, p¡ must divide p2 as requlred. tr

Theorem 3.8.7. For Tu - to be subordinate to Tu -. there must exist aÄrt arr r_

mapping

?S, ?S*l ,..., âg+[r..., AS+k-l

bl, b2,...,btr1,...,bk

from T¡,, to T¡,n,

lf

and

then

such that

YJ r {ar.1* b¡.¡}

â"+p = b¡+ ¡

ãs+q = b¡+ ¡,

8g+p ' ãg+q.

Prool. lf T¡,, is subordlnate to T¡,n, then the mapping from T¡,. to T¡,n

can be constructed by the followlng sequence of steps:

l. Given Tk,r wlth T¡ = (a¡, a2, . . . ,ayl and Tk,n with
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T¡ - {b¡, b2,...,bkl

2. Seti=l

3. lf a¡ =b¡ thensetcdil=ai,setl = | + I andreturntostepS.

lf a¡: b¡ and c6¡¡¡ is undefined, then set cilil = a¡, set i = i + I

and returfl to step 3.

lf a¡ * bt and c¡¡¡¡ = x, lvhere x É ai, then shift the sequence

[a1, a2,. . . , atJ one position to the right, with cyclic wrap-

around, and return to step 2.

lf the sequence Ía1, a2,. . . ,akl has been shifted through k

posltlons, then reverse the order 0f the sequence and return

to step 2.

The algorithm term¡nates, either when the maÞping

C = [c¡, c2, . . . ,c¡] has been constructed, or when the 2k

varlations of the sequence Ía1, a2,. . . , af] have been unsuccessfully

compared wlth the sequence [o¡,0r,..., bt). ln the latter case, the

4.

5.

6.

7
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threadhg Tk,r ls Dql subordlnate to the threadlng Tk,n

EXMPLE 3.8.8.

oiven two thneading sequences

T lO,¿ = t2,3,2,1 ,4,1 ,2,3,2,11

and

T10,6 = tl ,2,3,4,5,6,5,4,3,21,

we wish to detennine whether the threading Tl0,4is subordinate to the

threading TlO,O.

ln attemptlng t0 construct a mapplng Þetween the two threadlng

sequences uslng the algorlthm ln Theorem (3.8.71, an lnconslstency ls

encountered when i = 7. The threadlng sequence T¡9,4 is shlfted one

posltion to the rtght, with cycllc wrap-around, and a mapping between the

two threading sequences TlO,4 
"nd 

T10,6 is successfully constructed, as

follows:

| = f; | =5; 2=2; 2=4; J=J; 4=6.
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Figure {5.8.9} lllustrates the effect of this coercion on the

corresponding tie-up matrix.
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4.t tlrTRoDucTtoN

tlulti-layered cloths represent a class of textlle stn¡ctures which

exhibit a number of lmportant utilitanian and aesthetic features. Fabrics

can be made thicker and heavier without lncreasing yarn size. The volume

and welght of a fabric can thus be lncreased while still maintaining the

vlsual appeanance and surface tactile properties of a finely woven

structure. Huch use of multi-layer cloth techniques can also be made in

creatlng lnteresting visual effects. Extra sets of warp or weft yarns can

be introduced to create blocks of design in a solid colour. Alternatively,

extra warp and weft layers can be woven simultaneously to produce two

completely different fabnics which are 'stitched- together to form a

reversible textile wlth surface interest on both faces.

Classically, these multi-layer structures have been classified

according to whether the layers are point stitched together at single

intersections .or are held together by the interchange of entire fabric

areas. The point stitched fabrics have been subrlivided further, based on

which set or sets of yarns do the stitching. This classification system is

well def ined inl22,p.t03l as follows:

(l) Self-stitched double cloths. These faþrics
contain only the two series of threads in both
directions and the stitching of the face cloth layer
to the back layer is accomplished by occasionally
dropplng a face end under a back pick, or, by liftlng
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a back end over a face pick, or, by utllising both of
the above systems ln different portions of the cloth

(2) Centre-stttched double cloths. ln these fabrics
a third series of threads is introduced elther ln the
warp 0r in the weft direction whose entire function
is to stitch the two otherwise separate layers 0f
cloth together. The centre threads lle between the
face and the back cloth and for the purpose of
stitch¡ng oscillate at regular intervals between the
face and the back thus achievlng the requined
inter-layer cohesion . . .

(3) Double cloths stitched by thread lnterchange.
These structures are similar to the first category
inasmuch as they do not contain an additional
series of stitching threads. However, they are
distinguished from the self-stitched fabrics by the
fact that the stitching of the face and the back
cloth is achieved by frequent and continuous
lnterchange of some thread elements Þetween the
two cloth layers. Thus, in some portions of the
cloth the face ends may be made t0 interweave
with the back plcks and the back ends with the face
picks. . . .

(4) Double cloths stltched by cloth interchange. ln
this class of constructions the principle of the
interchange is taken one stage further than in the
third category and complete layers are made to
changeplaces....
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A more recent scheme proposed by Newton and Sarkar [59] d¡v¡Oes

¿[! structures into four types, namely

( l) single-layer;

(2) multi-layer without stitching;

(3) single-direction multi-layer with stitching whene, either

the ends form two or more layers with the picks nemaining

ln a single layen or conversely, where the picks form two

or more layens and the ends remain in a single layeq

(4) two-directional multi-layer with stitching where the warp

ends and weft picks form two fabric layers connected by

stitching points.

Stitching in this sense ls taken to include areas of cloth interchange as

well as the more restrictive form involving stitching points or

intersections.

ln orcler to classify a fabric by etther of these systems one reties on

being able to observe the str'ucture or physically analyze the fabric. lf
however, one is examining a point diagram rather than the actual fabric,

the type of fabric cannot be readily classified because a homogenous point

dlagram may conceal the fact that a structure is multi-layered and/or

reducible. Weavers have therefore needed an ldentification process t0 aid

in classlfying point diagrams into these different types of structures and
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to determine their level of reducibllity. Two types of anålytical tools

have been developed to facilitate this process.

The first of these classes of tools comprises the algorithms for

identifying binary interlacement amays which comespond to reducible

fabrics. These textile stn¡ctures do not form a cohesive fabrlc but can be

separated into two or more completely dlsjoint layers of stnands andlor

fabnics, corresponding to Newton and Sartafs category Z. partial

reducibÍlity, corresponding to Newton and Sarkar's categories J and 4 and

all of Grosicki's four types, can also be identified from the Þinary

lnterlacement array, by means of a computational algorithm. These

algorithms are discussed in Section 14.2J.

The second type of analytical tool is that characterized by

algorithms for mapplng binary interlacement data to an alternative

representation comesponding to cross-sectional cuts through the warp or

weft yarns of a fabric, between successive weft or warp yarns. This form

of display provides a great deal of insight into the relative planar

posftions of the constituent strands and is particularly useful for

examinlng reducible and parilally reduclble fabrlcs. Cross-sectional

diagrams and tne approprlate mapping algorlthms are discussed in Section

t4.5).
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4.2 AL6ORI T}il{s FOR DETERIII NI NO REDUCI BI L I TY

' A rÊduclble weave structure ls a binary interlacement array

corresponding to a cloth which separates into two or more disjoint layers

of strands and/or fabrlcs. An lrreducible weave structure is a blnary

interlacement amay conresponding to a cloth in which all of the

constituent warp and weft strands are interlaced. A partially r.educible

weave structure is a blnary lnterlacement array corresponding to a cloth

which consists of two or more fabric or strand layers held together at a

smal I number of intersections.

ln some instances, fabric structures åre designed to be reducible to

fulfill particular purposes. This does provide, for example, a technique for

producing two fabrics simultaneously or for weaving a tubular cloth or a

fabric which is twice the loom width [22, p. 1041. lt is far more common

however, to design woven textlles which are intended to be irreducible or

only partially reduclble, in which case structural rËducib¡lity is a property

which must be identif ied and eliminated. This is especially important

with the development of lnteractive computer graphical systems which

permlt the rapid design of point diagrams representing novel and

unfamiliar interlacement arrays. As discussed in Section f4.J.2J, lt is not

always intuitively obvious from a point diagram that a given structure is

ln fact reducible. We now consider four algorithms for determining

reducibility, namely an algorithm based on row and column sums [10], an
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algonithm involvlng row and column permutation, an algorithm basect on a

gnaph theoretic approach [15J, and an algorithm based on the identification

of circuits t5l¡, t591. The last mentioned atgorithm can also be used in

ldentifying structures which are only partially reducible.
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4.2.1 ALGORIT}IÌ1 BASED ON ROW AND COLIrIN SI.'IIS

Clapham's algorithm [10]relies entirely on two principles.

L The reducibility of a weave structure depends qntirely on the'set of

row-sums and the set of column-sums' of the corresponding

interlacement array.

2. lf a fabric sepanates into disjoint layers of strands or fabrics'then it
does so by taking a set of weft strands corresponding to a certain

number 0f rows wlth royÍ-sums as small as possible and a set of warp

stnånds corresponding to a certain number of columns with

column-sums as lange as possible'.

This mathematically simple process is def ined by the following steps.

For a given binary interlacement array

D = (d¡,¡ I | = t,2,...,n; J = l, 2,...,m)

compute the row sums

[r¡li=1,,2,...,n]

and the column sums
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tc¡ lJ = 1,2,...,m).

2. Sort the row sums lnto ascending order and the column sums

lnto descending order.

3. Letj=1.
4. Choose the largest value of i such that

ri (J'

5. Calculate

Ei,j = rl *... *.i * (n - c¡) +... + (n - c¡) - (i x j).

6. lf Ei,J is not equal to 0, calculate E¡,1 for j - j * t.

7. Continue until E¡,¡ = 0 or until j = m.

8. When E¡,.¡ = 0, the weft strands correspondíng to

rr ' ..ri

and the warp strands corresponding to

ct . ..cJ

form one reducible layer which can be separated from the

remaining fabric.

9. lf Ei,j ls not equal to 0 for aìl values of J, j = 1,2,...,m then

the interlacement array D represents a single layer irreducible

fabric structure.

It should be noted that thls algorithm does not differ.entiate
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bet$/een imeducible and part¡ally reducible structures. A cloth which

consists of two fabrlc layers Joined at only one intersection will
therefore be designated imeduclble by thls analysis. The algorithm also

does not dlrectly determine whether a reducible stnuctune is composed of

more than two layers.

ln order to determine whethen or not the two layers of a reduciþle

fabric are themselves reducible, it is necessary to construct two

sub-matrices and re-apply the algorithm on each of these, as foilows:

olven A = [a¡,¡1, an n x m reduclble array ln whlch the f¡rst r

rows and the first c columns separate from the remaining (n - r)
rows and (m - c) columns of A,

Create two sub-arrays, X and Y, where

X- [a¡,¡ li- 1,2,...,ri j - 1,2,...,cl

and Y=[a¡,¡li=¡+1,¡+!, ...,n;j=c+l,c+Z,...,m].

J. Apply the preceding algorlthm t0 X and y.

4. lf neither X nor Y is reducible, then the structure consists 0f

only two layers. lf either, 0r both of these matrices is

reduclble, then apply steps I through J, as before.

Clearly a major component of this algorithm ls the sorting of the

2.
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lnteger va¡ued row and column sums, and the evaluation of the table of

values E¡,¡, thus maktng tt tdeally sutted to computer processtng.
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4.2.2 AL6ORITTFI INVOLVING ROW AND COLI'I,IN PERIIUTATIONS.

THEOREII 4.2.2.1. The reducibility of an interlacement array depends

only on the row and column sums.

Proof. From the previous atgorlthm. El

LE¡+1A 4.2.2.2. The reducibility of an interlacement array is invariant

under row andlor column permutations.

Proof. lf A is an interlacement array and

u=

with Au=r,

then r is the vector of row sums of A þplying a row permutation p to A

implies that

PAU=Pr
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and the values ln P r are the same as those in r, but permuted ln order. A

similar argument applies to columns and hence, using Theorem t4.2.2.11,

the result follows. tr

Janice Lourie [50] useO a similar result to effect the synthesis of a

multi-layered fabric from two or more single layer structures. She

constructed an initial matrix P, where

P= ll, I

luz

with: W¡ and W2 interlacement arrays,

0 a matrix of 0's of appropriate dimensions,

I a matrix of l's of appropriate dimensìons;

and "wlth the'l'submatnlx lnsurlng that all the c0lumns of Wl are,over.

all the rows of W2, and the '0' submatrix insuring that the columns of W2

are 'under' all rows of W¡'.

She then developed an algorithm for systematically pemuting the

rows and columns of P so that the rows and columns of the arrays W¡ and
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WZ were lnterleaved. Thls was analogous to 'verilcally stacklng" the

corresponding sìngìe layer fabrics.

THEOREII 4.2-2.3. An n x m array A is reducible if and only tf

n= P

where P,0 are permutation matrices, E is an r x s matrix of l,s, 0 is
an (n - r) x (m - s) matrix of 0's and C, D are matrices of appropriate

dimension.

Proof. lf

Irrrl
R- p l_l o

IotoJ
then, lrom Lemma t4.2.2.21, A ls reductble. slmilarly, lf A ls reduclþle,

thls lmplies that the lnterlacement array consists 0f at least two layens

whlch separate. These layerc may be wrttten, wlth no loss of generaltty,

as

I r.lI lo
IotoJ
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,,= [i:.1
[ruroJ

Irrul
rr= | 

- 
|

Lsro_l

whene L¡ and L2 have the same partitioning as A and the dimensions of r,

C, 0, and D are changed appropriately. The arrays N and 11 are dummy

arrays, whose entries fulflll n0 purpose other than that 0f enabllng Ll and

L2 t0 be wrltten as square arrays. Now, lf Ll ovenlays 12, the array

t#l
is obtained. tr

A consequence of this theorem is that it may be used to determlne

the reducibility of an interlacement array, and in detail is given by the

followlng steps, where lt ls assumed that the anay A = [a¡,¡] ls not

trivlally reducible (i.e. has no royvs which are all zeros and no columns
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whlch are all ones):

l. Permute the rows of A such that, if w is the number of ones per

row, then

w¡+¡ ) w¡ l= 1,2,...,n-1.

2. k is assigned l; p is asslgned m.

3. lf the kt row has a zero in the rh position, then insert the rb
column between the columns in posltions p and (p + l) (or, if
p = m, then concatenate the rbcolumn on the right).

4. Repeat step 2 for all the zeros in the first p columns of the kb

row.

5. s is assigned the numben of ones in the first p columns of the

kb row.

6. A is ireducible if s - 0, and the algorithm terminates.

7. Otherwise, if

ai,j __ |

and ai,j - 0

li=1,?,...,k; j = 1,2,...,s)

(i =k+ l, k+2, . . ., n; j = s+ l, s+2,..., m),

then the array is reducible and the first k rows lift off with the

(m - s) last columns. The algorithm term¡nates.

8. otherwise, if k = n then A is lmeducible and the algorithm
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9.

terminates.

0therwise, k is assigned (k * l) and steps 2 thnough 7 are

repeated.

Having applied this algorithm to a matrix A and found it t0 conslst

0f two separate layers X and Y, it is a simple matter to determine whether

either of these submatrices is itself reducible. For example, to test the k

x (m-s) array X for reducibility, one must check whether X can be

partitioned into the form

t=,,J

No permutations are required to put X lnto this form if it is reduciþìe.

Clearly this algorithm has the same mathematical structure as

Clapham's algorithm. Clapham permutes the row and column sums and

applies hls computational formula to determine reducibillty, whereas this

algorithm involves sortlng the rows and columns themselves. Due to the

increased data handling, this approach leads to a much less efficient

implementation than Clapham's algorithm. lt does however provide a

useful insight into the structural nature of reducible fabrics.
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4.2.3 AL6OR!TTfl BASED ON A 6RAPH THEORETIC APPROACH

Enns' algorithm Il5l is 'båsed on the observation that a fabric hangs

togethen if and only if the lifting of each stnand v causes each other strand

to lift. The lifting of a strand v causes a strand w to lift if and only if
there is a sequence of strands, beginning with w and ending with v, such

that each element of the sequence lles under the next element of the

seguence.' This behaviour can be modeled using a biparilte directed graph

t481,

The steps involved in the execution of this process can be

summarized as follows:

l. For a given binary interlacement array

D= {d¡,¡ I i,J = l, 2,...,RJ,wherek =rì+ rrì,

number the rows of D [1,, 2,..., n] and

the columns of D [¡+ l, n+2, . . . ,kJ.

2. Use D to construct an adjacency list representation for G, where

vl is adjacent to v¡+¡ lf d¡,¡ = |

and v¡.,1 is adjacent to vj if Oi,j - 0

(i = 1,2,.'.,n; j = 1,2,...,m).
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3. Determine the strongly connected components of 0:

i. Order the vertices of G using a depth-first search

algorlthm [], p.200 - 226], as fotlows.

Suppose we have a directed graph 6 in
which all vertices are initially marted
unvlsited. Depth-first search wor*s by
selecting one vertex v of 0 as a start
vertex; v is marJ<ed vfslted. Then each
unvisited vertex adjacent to v is
searched in turn, using depth-first
search recurcively. once all vertices
that can be reached from v have been
visited, the search of v is complete. lf
some ventices remain unvisited, we
select an unvlslted vertex as a new start
vertex. We nepeat this process until all
vertices of 0 have been visited. [], p.

2 tsJ

il. Construct an adjacency list for a new gnaph G', formed

from 6 by reversing the dírection of all the edges 0f 6.

iii. Starting with the highest numbered vertex from (i) as a

root, perform a depth-first search on G' to locate all of the

depth-first spanning trees of G'. Each tree in this

depth-first spannlng forest forms a strongly connected

component of the original graph 0.
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4. lf 6 is strongly connected, then the corresponding fabric ls not

reduclble. Otherwise, each of the strongly connectecl

components of G corresponds to a disjoint layer of the

corresponding labric.
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EXÆ|PLE 4.2.3.t
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v4 G)

Q) vl

v5 il)
$= (Ð vz

v6 (5)

(6) vJ

The numbers in brackets indicate the ordering of the vertices after the

depth-finst search in step (5 - l).

(5)v7
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v4 (4)

v5 0)

(s)

(3)

v6

v7

(7) vl

$.= Q) v2

(6) v3

G is strongly connected and corresponds to an imeduclble fabric.
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EXÆ|PLE 4.2.5.2
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(4) vl

v5 (5)

v2
$=

v6 0)

v3

v7 (l)

v4

v8 (5)

vl

v5 (3)

v2
G'-

v6 (7t

v3

v7 fi)
v4

v8 (s)

The graph 6 has two strongly connected components, with the ventices

V2, VE, V4 and V6 þelng ln one and the verilces Vl, V7, V3 and VS Þelng ,ln

the other. Thls corresponds to a fabrlc ln whlch the second and fourth

(8)

(z',)

(6)

u)

(E)

Q)

(6)

267



warp strands interlace with the second and fourth weft strands to form

one faþrlc layer, while the first and third warp strands interlace with the

flrst and thÍrd weft strands to form a second and disjoint fabric layer.

The time complexity of this algorithm is 0(e), where e is the number

0f edges of G. Since e is always orecisely eoual to m x n, the number 0f

elementary operations required ls the same as for Clapham's algorithm.

This algorithm does however possess two rilstinct advantages over those

previously discussed.

All of the fabric layers can be determined in one pass of the algorÍthm

2. This process can be easily generalized to deal with fabrics with more

than two sets of strands.
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4.2.4 At60RrTHH |NVOLV|N6 tDENT|FtCATtON OF CtRCU|TS

This algorithm, developed by Newton and Sarkar [59], involves

conslderably mone operations than the previous three processes and ls

based on the princlple of a clrcult, as defined by Lourie [50]:

A set of ro$,s and columns represents an lnterwoven
structure, if from any row or column some circuit
can be found consisting alternately of 0 and I

corners such that all the rows and columns
contribute at least one corner point. Alternately on
equivalently stated, for any pair of columns (or
rows) in a woven structure or layers, . . . there
exists a circuit vúhich contains alternate 0's and l's.

It should be noted that the approach that Enns Il5l used in his work

0n reducibllity (that is, that in order for a fabric to be irreducible, the

lifting of one strand of the fabric causes the lifting of all the remaining

strands as well) is an alternative formulation of Lourie's notion of a

clrcuit.

The steps involved in the executlon of this algorithm, when app¡ied

toabinary interlacementamayA= (a¡,1 li= 1,2,...,n; j = 1,2,...,m),

can be summarized as follows.

Label each column of A with a layer numbeî LJ such that f_, = ¡

(J = 1,2,.., m).

269



2. Label each row of A wlth a layer number LLi such that tt, = ¡

(i . 1,2 ..., n).

3. Examlne all posslble combinations of palrs of rows and columns

to identlfy circults.

4. lf a circult ls found between column p and column q, with

Lp , Lq, set LO eQual to LO.

5. Similarly, if a circuit ls found between row x and row y, with

LLx ( LLy, set LLy equal to LL*.

6. At the termination of this stage, complete reduciblllty has been

determlned. The fabric structure separates into as many layers

as there are different layer numbens, with these layer numbers

lndicatlng to which layer a given strand belongs.

7. lf the array A has been found to be irreducible, the algorlthm

now looks for pertlal reduclbillty.

8. Remove a column of A and repeat steps I thrcugh 5 on the

remainlng submatrix.

9. Repeat step I until the submatrix which is being examined is

reduclble.

10. Repeat steps I and 9 on the rows of A

Il. lf there is no reducible submatrlx, then the amay A is genuinely

irreducible and the algorithm terminates.

12. Otherwise, the array A comesponds to a parilally rcducible

structure, i.e. a multi-layer fabric wlth stitching points.
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t3.

t4.

t5.

t6.

t7

Add one of the orlginal columns of A to the smallest submatrix

obtained in step 9 and test for reducibility.

Repeat step l3 until the structure ls no longer reducible.

ldentify the clrcult between two rllfferent layers and the

stltching polnt within the circuit. (This is related to the row and

column sums.)

The stltching point can be verlfled by changing lt from 0 to I or

vice versa. lf this change renders the arlay reducible, then that

lntensectlon ls lndeed, a stltchlng point.

Repeat steps l3 through l6 for the remainlng columns of the

orlglnal array A, wlth pneviously found stitching points removed.
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4.5 ALOORIT}fIS FOR STRUCTURAL CROss-SECTIONS

Some woven fabric structures rely almost entirely 0n the tenslon

created þy speclal lnterlacement sequences to produce visual or textural

patterning [51], [22, p.2741. These tension effects cannot be meaningfully

form represented using the tradltlonal point dlagram interpretation of the

correspondlng binary interlacement array and therefore some alternatlve

fonn of graphical display ls requlred t0 ldentlfy and vlsualize these

effects. A useful and meanlngful of dlsplay is the sectional drawdown

whlch represents a cross-section of the fabric structure cut between

adjacent weft plcks or warp ends,

The automatlc display of these sectlonal drawdowns requlres the

mapping of the binary interlacement array data onto an appropriate set of

graphic output prlmitives. The ensuing discussion presents newly

developed mapping algorlthms and optimal sets of graphlc primitives for

four primary types of fabric.
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4.5.I THE PRIIIARY FABRIC TYPE F[II

Definitlon 4.3.1.1. The orlmary fabric tyoe F[l] is defhed as that

structure corresponding to a slngle strand t, passing either over or under

' in turn, a succession of strands k, orthogonal to lt, where both t and k lie

in the same plane.

The crucial part of thls deflnltlon is that the warp and weft strands

are co-planar. An example of this fabrlc type ls glven by the blnary

lnterlacement seguence

R = [1,1,0,0,1,1,0,0,.... I

which comesponds visually to

30 e3 oc 3e

FTEUnE{-3-t_2

For convenlence, thls and subsequent examples wlll conslder the

sequence fn the weft dlrectlon, wlth the cross-sectlons cut through the
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warp ends, although lt ls understood that the sequence could equally be

taken in the warp dlrection, wlth the cross-secilons cut through the weft
picks.

Definition 4.3. 1.3. A mid-ooint centered graohic orimltive is an element

of a basls set of graphic tlles, centered on the polnt midway between two

adjacent ends (or sets of ends). When drawn, mld-ooint centered graohic

orimltlves arc lntend€d to overlap to the extent that the first ends (or set

of ends) of one prlmltive overlaps the second end (or ends) of the previous

one.

Def f nition 4.J. 1.4. An end centered graohic orimiUve ls an element of the

bas¡s set of graphlc tiles, centerecl on an end (or set of ends). There wlll
be no overlap when these tiles are drawn.

THEOREII 4.5.1.5. For the prlmary fabrlc type F[ll, four mid-polnt

centered graphic prlmitives are sufficient (wlthout rotation or reflecUon

allowed).

Proof. The elements of this set are:
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FtEütEa-t-t-6

COROLLARY 4.3. 1.7. The mapping from the interlacement sequence R to

the corresponding set of graphic primltlves S for the prlmary fabnic type

F[ l] is obtained by ordering the set 5 and computing the lndex i, where

(4.3. r.8) i -.2 r¡ + r¡+¡ j- 1,2,...,n-l

Proof. The ordering of the graphic primitives S can be defined as
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90030 e o o

FtEütEa-5-t_9

lnterpreting each tile as comesponding to a 2 place binary interlacement

sequence and computing the index I for each of them glves the set of

decimal integers {0, 1,2,5} which will uniquely identify each of the four

graphic primltives.

THEOREII 4.3.1.10. For the prlmary fabric type F[tl, eight end-centered

graphlc primltives are required (without rotation or reflectfon allowed).

Proof. The elements of this set are:
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COROLLARY 4.5.1.12. The mapping from the lnterlacement sequence R

to the corresponding set of graphic primltives Z for the primary fabric

type F[ll is obtained by ordering the set Z and computing the index i,

where

(4.3. r. r3)

\:\7y

i=4+2r¡+r¡+¡

| = 4r¡-l + 2r¡ + 11+ I

l-¿h¡-l+2rJ*l

j=r

i-2,3,...,n-l
j=n.

Proof. The ordering of the graphic prlmltives Z can be defined as
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FtGünEa_r_t_tt

Computhg an lndex value I for all posslble blnary lnterlacement sequences

0f length three produces the eight lntegers, 0 through 7, lnctuslve. These

can Þe used t0 unlquely ldenufy each of the elght graphlc prlmlilves.

The set 0f end cenlered graphlc prlmlHves contalns tvílce as many

elements as the set of mid-point centered prlmlUves. The end centered

system also requlres the computauon of one extra term ln determlnlng the

lndex value, as well as requirlng that the flrst and last elements of the

blnary hterlacement sequence R be handled as excepilonal cases. For

these reasons the mld-polnt centered graphlc system ls considered to be

computatlonally more eff lclent and only prlmlUves uslng thls system wlll
be dlscussed ln the subsequent secilons.

An example of a structural cross-secuon for a prlmary fabrlc type

F[ I ] ls glven ln Flgure [4.3. l. t 5].
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4.3.2 THE 5ECONDARY FABRIC TYPE F[2I

Definition 4.3.2.1. The secondary fabrtc tyoe F[2J is rlefined as that

structure correspondlng to a slngle strand t passing elther over on under in

turn, a set k of strands orthogonal to it. Thls structure ls composed of

two parallel labric planes with the elements of k, and all of the t-strands,

lying in these two planes or osclìlating between them. For the

fundamental type F[2: l:l], each fabric plane contains preclsely half of the

k strands and half of the t strands at any one time. ln general, F[Z:i:kJ ls a

secondary fabnic tyoe F[2] such that the relative proportion of strands

per unit length, in the two layers, is uniformly i:k (for example, Ft2:l:Zlt.

Slnce F[2: l:l]ls the most frequenily occunrlng structure of this type, it is
convenient to abbrevlate F[2:lrl]to F[21.

THEOREII 4.3.2.2. For the secondary fabric type F[Z], nine mid-point

centered graphic prlmltives are sufficlent (without rotation or reflection

allowed).

Proof. The ordered set 5 of these elements is:
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COROLLARY 4.5.2.4. The mapping from the interlacement sequence R to

the correspondlng ordened set of graphic primitives S for the secondary

fabric type F[2] ls obtained by compuUng the index i where

(4.3.2.s) l-3(r.¡+r¡+¡)+r.¡+2+r¡+5 J=1,3,5,...,n-3

The number of elements in the sequence R must be dlvlsible by 2. lf lt is
not, the final element is dropped from R.

Prcgf.. The proof follows mutatis mutandis from Corollary 14.3.1.71.

Two facts about thls mapping can be noted lmmediately. The flrst
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observation is that the vaìues of I are not distinct for all of the posslble

binary lnterlacement sequences of length four. The second observation is

that this mapping assumes that the left-hand intersection of a pair is

always in the top layer and the right-hand intersection ls aìways in the

bottom layer. Thls leads to a dlscussion of what wlll be termed a coercive

lnteraction.

Deflnltion 4.3.2.6. A coercive lnteraction in the secondary fabric type F[21

occurs when two successlve intersections unambiguously deflne the planar

relationship þetween the comespondlng warp ends.

lf a weft pick lies between two warp ends, one of whlch is in the

top plane and the other of whlch ls ln the bottom plane, then thls weft pick

constrains these two ends ln their current posltions. lf, on the other hand,

a weft pick lles either on top of or underneath two ends belonging to

different fabrlc planes, then therÊ exists some ambigulty as to which of

these two ends belongs in the top tayer and which belongs ln the bottom

layer. For example, ln Figure Í4.3.2.71, the F[2] representation of the

lnterlacement sequence (l 0 O 0), illustrates a coercive lnteraction

between the flrst pair of lntersections but not between the second pair.

Warp end number I must be on top of warp end number 2, whereas the

relative planar posltions of ends 3 and 4 are not fixed by this

lnterlacement sequence and form a non-coerclve interactlon.
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FTGURE 4.3.2.7

Definiti0n 4.3.2.8. An exchsnge intÈì-Ëcti0n is defined Ès Ë sFeriËl rsse 0f

c0ercive inteFËcti0n in which nÊturûl UËrn tensi0n would cËuse tw0

successive wËrp ends t0 exchånge their relËtive positirns. Thst is, the

FhUsicsl constrËints 0f Urrn tensiün in'o woven fËbric structure wLluld

render this interðcti0n imp0ssiÞle.

Figure {45.2.9}, an F[2] representation of the interlocement

sequenre {0 I 0 0}, illustrËtes such Ën interaction.

FIGURE 4.3.2.9

The effect 0f tensi0n in this interaction would be to exchange the relative

positions of warp ends I and 2 without affecting the relationship between

ends 3 snd 4. The tile required tn illustrete this altered sequence is the

0ne illustrsted in Figure 14.3.2.7Ìl.
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It is convenient t0 lôbel individurl warp ends Ìyhich 0ccur in Ë

coercive interaction so os to identifg planor position chonges as a result

0f on exchange interaction. Figure {4.I.2.10}, for exomple. iìlustrates the

F[2] representation of the interlÊcement sequence {l 0 0 0 0 l}, where

intersecti0ns I ond 2 form a coercive interaction. intersections S Énd 4

form o non-coercive interection ond intersections 5 Ënd 6 form a coercive

exchonoe int e ro ct ion.

t

xåt

F¡6URE 4.3.2.1O

THE0REtl 4.3.2. I I Lsbels to identifg worp ends occurring in a cserciïe

interaction in the secondõrg fsbric tgpe F[2] can be,indexed bg computing

(4.3.2.12J

x+

i = 2r¡ + r¡+l j = 1,5,5,...,n-l

Proof. i E {0, r,2,3}

lf iÊ {0,3}, then the F[2] representation of the intersction correspnnds to

Figures 14.3.2.131 and {4.3.2.l4}, respectivelU. Since neither of these is s
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coercive interocti0n, n0 laþelling chõnges Ëre necessõrg

F¡GURE 4.3.2.14

lf i = l, then the corresponding F[2] interacti0n is given bg Figure

{4.3.2.15}. Since this is o coercive interoction" the warp ende must be

re-lobeìled to indicate that the ends hsve exchanged positions. Label I

c0uld be given bU Figure {4.5.2. l6}.

Ft6URE 4.3.2.15 FI6URE 4.3.2.t6

ll i = 2, then the c0rresp0ndìng F[2] interacti0n is given bU Figure

{4.3.2.1|7ll. Since this is a coercive interaction. the wErp Ênds fiust Þe

re-labelled to indicote that warp end numÞer I must lie 0n t0F 'lf warp end

number 2. Label 2 ,vrould then correspond to Figure {4.3.2. l8}.

I

3

å

0

FTGURE 4.3.2.13

d x

+
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c

0

FI6URE 4.3.2.17 FI6URE 4.3.2.t8

An example of a structural cross-section for the secondorg fabric tgpe

F[2] is given in Figure 14.3.2.19].
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4.3.3 THE SECONDARY FABRICS F12:l:21AID F[2:l:31

THEOREÌ| 4.5.5.1. For the secondary fabric FfZ:l:21, eighteen mid-point

centened graphic primitives are sufficient (without rotation or reflection

allowed).

Proof. The ordered set S of these elements is shown in Figune 14.3.3.21.

COROLLARY 4.5.5.5. The mapping from the interlacement sequence R to

the corresponding ordered set of graphic prlmitlves S for the secondary

fabnic FfZ: l:21 ls obtained by computlng the index i where

(4.5.3.4) I = 6(r¡ + r¡+¡) + 3r¡+2 + rj*J * rJ*4 J= 1,a,7,... ,n-4.

The interlacement sequence R must consist of, 0r be reduced to, 3k + 2

elements, where k ls an integer.

Proof. The proof follows mutatls mutandis from Corollary [4.5.1.7].

COROLLARY 4.J.5.5. Labels to identify warp ends occurrlng ln a

coerclve interactlon ln the secondary fabric FI2:l:21 can be indexed by

computlng
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(4.3.J.6) l= 2r1 + 11+ 
¡ l= 1,4,7,...,n-l

Proof. Labels for interactlons can be indexed by l, as in

Theorem [4.3.2.11]. Since the assumption is made that the relative

prop0rtion of yarns per layer remains constant, the warp ends

comesponding to r¡, J = 3,6,9, . . . ,î-2 never occur as part of a pair of

intersectlons. These warp ends will never occur in a coercive interaction

and thus require no ne-labelling. Therefore, only the oairs of

lntersections need to be examlned for coercion.

THEORE¡í 4.3.5.7. For the secondary fabric F[2:l:31, thirty-six

mid-point centered graphic primitives are sufflclent (without rotailon or

reflection allowed).

Proof, The ordered set S of these elements is shown in Figure t4.3.3.81

COROLLARY 4.5.5.9. The mapping from the lnterlacement sequence R to

the comesponding ordered set of graphic primitlves S for the secondary

f abric F[2: I :J] is obtalned by computing the index i where
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(4.3.5.10) | = l2(r¡ + r1+¡) + 6r¡+2+ 5r¡+3+ r¡+4 r r¡+5

J = 1,5,9,...,o-5.

ïhe interlacement sequence must conslst of, or be reduced lo, 4< + 2

eìements, where k is an lnteger.

Proof. The proof follows mutatls mutandls from Corolìary (4.5.3.5).

An example of a structural cross-section of the secondary fabrlc

type F[2: l:21 ls glven ln Figure {4.3.3.1 I ].

292



¡+
¡xt ¡t{l

¡llt l¡Il

r+t+r+l

I
tl

xt
+l t+¡ t+l

¡¡l

r+¡ t l+
xrrlllllx

¡¡t¡rlI
t I lll rll II¡

+l
t(l x TX

Ft6UBE 4.5.5.11

INTERLñCEMENT RBBRY INTEBPRETED flS flN F[2:I:2] CFOSS-SECTION

tl
tll

+t+¡+r+

293



4.3.4 THE TERT{ARY FABRIC TYPE F[5I

Deflnition 4.3.4.1. The ternary fabrlc tyoe F[Jl is defined as that

structure correspondlng to a slngte strand t passlng either over or under ln

turn, a set k of strands, orthogonal to lt. Thls structure is composed of

three paraìlel fabric planes with the elements of k, and all of the

t-strands, lylng ln these three planes or oscillating between them. For the

fundamental type F[3:l:l:ll, each fabric plane contains pneclsely one third

of the k strands and one thlrd of the t-strands at any one time. ln general

F[3:i:km] is a ternary fabnic tyoe F[3] such that the nelative proporilon of

strands per unit length, ln the three layers, is unlformly i:km (for

example: F[3:l:2:3]). The only structure of this type which will be

considened is F[3:l:l:l], which wlll be abbrevlated to F[J].

THEOREI1 43.4.2. For the ternary fabrtc type F[J], stxteen mid-point

centered graphlc primitives are sufficlent (without rotati0n or reflection

allowed).

Proof. The ordered set S of these elements ls shown ln Figure [4.J.4.J1.

COROLLARY 4.5.4.4. The mapplng from the interlacement sequence R to

the correspondlng ordered set of graphlc primitives S for the ternary

fabric type F[3] is obtained by computing the index i where
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(4.J.4,5) 1.4(r1 *t1*t *r1+2)+r¡+3+r1+4+t1+5 l- 1,q1,...,n-5.

Tlre numben of elements in the sequence R must be divisible by 3. lf it is
not, the flnal elements(s) are dropped from R.

Proof. The proof follows mutatls mutandis from Corollary [4.3.1.7].

COROLLARY 4.5.4.6. Four distinct labels are required to identlfy warp

ends occuming in a coercive interaction ln the ternary fabric F[3]. These

labels can be indexed by computlng

ø.3.4.71 i=4r¡+2r¡+¡ +ri+2 l= 1,4,7,...,î-2

as an index to the ordered set of label tlles Z ln Figure [4.3.4.8]. lf I

belongs to [0,7J no re-labelllng is required.

I
a

a

=

r
+

a

a

a

a

+

I

a

a

r

FtEUREa-3-{-O
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P¡ggtl e [0,1,...,7¡.
lf I E [0,7], then the F[3] representation of the interaction ls not coercive

and no re-labelling is required.

lf I - l, then the bottom layer intersectlon moves to the top layer. The

relative posltlons of the remaining two intersections, with respect to

each other, are indeterminate.

ll I - 2, then the relative positlons of all of the intersections are

constrained and an exchange of the flrst and second layer intercections

takes place.

lf I . J, then the top layer lntersectlon moves to the bottom layer. The

relatlve posltlons of the remaining two intersections wlth respect to each

othen are lndetermlnate.

ll i - 4, then the position of the top ìayer intersecuon ls constrained but

n0 exchange takes place. The relailve positions of the remaining

intersections are indeterminate.

lf I - 5, then the relative posltlons of all of the intersections are

constralned and an exchange of the second and third layer intersections

takes place.

lf i .6,, then the position of the bottom layer intersection is constrained

but no exchange takes place. The relatlve positions of the remaining

intersect i ons are lndetenn inate.

An example of the ternary fabric type FfSl ls glven in Flgure

[4.3.4.el.
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4.5.5 THE OUATERT{ARY FABRIC TYPE F[4I

Definitlon 4.3.5.1. The ouaternary fabric type F[4] is defined as that

structure corresponding to a slngle strand t passing either over or under in

turn, a set k of stnands orthogonal to lt. This structure is composed of

four parallel fabrlc planes with the elements of k, and all of the t-strands,

lylng in these four planes on osclllating between them. For the

fundamental type F[4: l:l:l:l], each fabrlc plane contains preclsely one

founth of the k strands and one fourth of the t-strands at any one ilme. ln
general Ft4:l:k:m:nl is a ouaternary fabrlc tyoe F[4] such that the relative
proportlon of strands per unlt length, in the four layers, is unlformly

l:k:m:n (such astl4:l:2:3:41). The only structure of this type which will be

consldered is F[4:l:l:l:ll, whlch will þe abbrevlated to F[4].

THEOREII 4.3.5.1. For the quaternary fabric type F[4], twenty-five

mld-point centered graphlc primitives are sufflcient (wlthout rotation or

reflection allowed).

Proof. The ordered set 5 of these elements is shown in Figure l .J.S.Zl.
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COROLLARY 4.3.5.5. The mapping from the lnterlacement sequence R to

the correspondlng order set of graphic primitives S for the quaternary

fabrlc type F[4] is obtained by compuilng the index I whene

(4.3.s.4) | = 5(r1. tj*l . r1+2 + r1+g) * tj*O* rj*S * rj*6

J - r,s,e, ...,ñ-7

The number of elements ln the sequence R must be divislble by 4. lf it is
not, the final element(s) ls dropped from R.

Proof. The proof follows mutatis mutandis from Corollary (4.3. l.Zl.

COROTLARY 4.3.5.5. Fourteen distinct labels are required to identify

warp ends occurring ln a coerclve lnteraction ln the quaternary fabrlc

F[4]. These labels can be lndexed by compuilng

(4.3.5.6) l=Er¡+*jrt * 2j*Z*rJ*S J = 1,5,9,...,n-3

as an lndex to the ordered set of label tiles Z in Flgure f4.3.S.71. lf i

belongs to {0,15J, no re-labelìing is required.
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hqt I e [0,t,...,15J.

lf I E [0,15J, then the F[4] representailon of the interaction is not

coercive and no ne-labelling ls requlred.

lf i = l, then the bottom layer lntersection moves to the top layer. The

relatlve posltions of the remaining three intersections, with respect to

each other, are lndetermlnate.

lî I - ?, then the third layer intersection moves to the top layer. The

relative positions of the remalnlng three lntersections, with respect to

each other, are lndetermlnate.

lf i = 5, then the intersecilons in the top two fabric layers exchange with

the bottom and second bottom layers, The intersections within each pair

of lntensections are lndetermlnate wlth respect to each other.

lf i = 4, then the second layer intersecilon moves to the top layer. The

relative posltions of the remalnlng three intersections, with respect to

each other, are indeterminate.

lf I = 5, then the second and founth layer lntersections are constrained in
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the top two layers and the first and third layer lntersections are

constralned ln the bottom two layers. The relative positions of

lntersections withln these two pairs of lntersecilons are indeterminate.

lf I = 6, then the second and third layer intersections are constrained in

the top two layers and the first and fourth layer lntersections are

constrained in the bottom two layens. The relative pos,itions of

lntersections within these two palrs of intersections ane indetermlnate.

lf I - 7, then the top layer intersection moves to the bottom layer. The

reìative posltlons of the remaining three lntersections are indeterminate

wlth respect to each other.

lf i - 8, then the top layer lntersection is constrained h the top layen. The

relative posltions of the remaining three intersections are indeterminate

with respect to each other.

lf i . 9, then the first and fourth layer intersections ane constrained in the

top two layers and the second and thiru layer intersections are

constrained ln the bottom two layers. The relative poslUons of

lntensections within each pair of intersections are indeterminate.

lf i = 10, then the first and thlrd layer intersecHons are constrained in the

top two layers and the second antl fourth layer intersections are

constrained in the bottom two layens. The relative positions of

lntersections within each pair of intersections are indeterminate.

lf i = I l, then the second layer intersection moves to the bottom layen

The relative positions of the remaining three lntersections are

lncletermlnate wlth respect to each other.
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lf i - 12, then the flrst and second layer lntersections are constrained in

the top two layers and the third and fourth layer lntersections are

constrained ln the bottom two layers. The relative positions of

lntersections wlthin each pain of lntersections are indeterminate.

lf I = 13, then the third layer intersection moves to the bottom layer. The

relative posltions of the remaining three lntersecuons are indetermlnate

with respect to each other. :

lf I - l4 then the bottom layer intercection is constrained in the bottom

layer. The relative positions of the remaining three intersections are

lndeterminate with respect to each other.

An example of a structural cross-section fon the quatennary fabric

type F[4] is given ln Figure t4.3.5.s].
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43.6 oBSERVATtONS AND sUt{ÌlARY

Sevenal observations can be made about the number of graphic tiles
required to represent a given structure as well as about the nature of the

mapping algorlthm. These observations are summarized as follows:

The number of graphic tiles required to represent a

fundamental structure (that is, one ln which equal

proportions of yarns lle in each faþric layer) can be

determined by evaluating

(4.3.6.1) n = (1 . l )2 , where L is the numben of layers.

2. The index value I for aìl fundamental structures can be

computed from the lnterlacement sequence, where

e.3.6.2) I = ((L + Dfi ril. å t.,

3. The number of graphic tiles required to represent an Ft2:l:kl

fabric structure is given by

n=9x*-l(4.3.6.3)

506



4. The lndex value I for F[2: l:kl fabrlc structures can be

computed from the interlacement sequence, where

(4.3.6.4) | = ((ikP (r, +rr))- å,rr,r,*, . fi ,,**,

5. The lndex value i for the re-labelling tlles to tndicate

coercive and exchange lnteractions can be computed ftom

the lnterlacement sequence simply by interpreting the

corresponding sequence as an L place binary number and

evaluating the decimal equivalent.
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CHAPTER 5

FLAT SECTIONAL REPRESENTATIONS

CONTENTS

5. I lntroductlon

5.2 Representation of Singìe Layer Cartesian Structure

5.J Representatlon of Double Layer Cartesian Structure

5.4 Representatlon of Non-Carteslan Structure

5.4. I Cross-Woven ancl oenerallzed Non-Cartesian Forms

5.4.2 Data Strrcture and Graphical Display

5.4.J Designing a Graphics Editor for the Dlsplay and Edltlng

0f Non-Cartesian Woven Representations
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5.I INTRODUCTION

Definition S.Ll. Carteslan woven structures ane formed by the

lnterlacement of two sets of parallel strands which lie orthogonal to one

another, wlth the resulthg lntensections of these two strands lying in a

plane. All conventlonally woven fabrics are of this type.

Definition 5. 1.2. Single layer cartesian woven structures correspond to

irreducible binary lnterlacement amays, where all of the intensections

form a single fabric layer.

Definition 5, 1.3. Double layer cartesian woven structures are deflned to

be reducible on oartially reducible binary interlacement arrays

corresponding to two fabric layers, with or without stitching ooints.

which have been uniformly interleaved. These binary interlacement arrays

are therefore two dlmensional projectlons of three dlmensional layered

structures.

Definition 5. 1.4. Non-cartesian woven stn¡ctures are defined as those

stmctunes whose warp strands are no longer parallel, but ane allowed to

cross over each other. Cross woven fabrics, such as leno, gauze [60, p.

2ll-2471and sprang Il2lare of thls type.

Definitlon 5. 1.5. A flat Sectional neoresentation is defined as a top view

of the fabric corresponding to a given interlacement data structure.
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ln the case of carteslan structures, flat sectlons provide an

alternative graphical representation which gives a clear lllustration of

the lnteraction between the warp and weft strands. The representations

are useful for fabric design and are particularly well sutted to the

lllustration of manuscripts. ln the case of non-cartesian structures

however, flat sectlons constitute the clearest and most effective

graph¡cal representatlon of the corresponding lnterlacement data, The

data entry envlronment for such non-cartesian design data must therefore

be approprlate for this type of graphical display.

This chapter will outllne the process of developing an appropriate

set of graphic output primitives for the flat sectional representation of

slngle and double layer cartesian structures, as well as non-cartes¡an

structures. The mapping algorlthm from the data structure to the

graphical display will also be discussed. ln addltlon, a discussion of the

design of a gnaphics editor for the data entry and dlsplay environment

required for non-carteslan structures will be included.
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5.2 REPRESEI{TATION OF SINGLE LAYER CARTESIAN STRUCTURE

A flat sectional repnesentation of a single layer cartesian structure

deplcts the visual appearance of the interlaclng warp and weft strands in

a fabric when vlewed from the top. lt is achieved by the mapping of the

comesponding data file to a set of approprlate output primitives. The

design of these partlcular graphic primitives ls constrained by the

following factors:

Each lntersection can be depicted independently of all other

intensections. Thls implies that end-centered gnaohic

orimltlves. which do not overlap when drawn, can be

used and that

THEORE¡| 5.2. l. For a single layer cartesian structune nepresentation,

two graphic prlmltives are suff lclent.

Proof. The ordered set 5 of these elements ls:
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FTEUnE:t-2_2

CoROLLARY 5.2.5. The mapping from an interlacement sequence R to
the corresponding ordered set of graphic primitives S for a single layer

cartesian structure representation is obtained by computing the index i

where

(s.2.4) i=rr+ I j=1,2,...,n.

Proof. When 11 = 0 then I - l. This coffesponds to a weft over tvarp

lntersection and the approprlate pnimlUve is lndexed. Similarly, when rJ =

I then i = 2. This corresponds to a warp over weft intersection and the

appropriate primitive ls lndexed.

2. The warp and weft strands, as well as the empty spaces
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5.

4.

between them are drawn. Theref0re, dellneating the outllnes of

the strands ls not sufficient, slnce they can be easily confused

with the lnter-yann spaces. Some lnterior pattern ls required to

define the strands.

For maximum dlfferentiation between the warp and wef t

strands, a signlficantly different pattern ls required for each set

of strands.

The pattern used for the warp strands must be periodic 0n the

hetght of the primitive and the pattern used for the weft

strands must be periodic on the width of the prlmitive. This is

required so that there will be no dlscontinuities in matching

these graphic tlles when a multi-element representation is

constn¡cted.

Figurt [5.2.5] ls a point diagram representatlon of an interlacement

arîay and Figune t5.2.61 ls a slngle layer cartesian structune

representatlon of this same data. The visual correlation between these

two graphical lmages ls hlgh.
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5.3 REPRESEI{TATION OF DOUBLE LAYER CARTESIAN

STRUCTURES

A double layer cantesian structure representation corresponds t0

the interpnetation of an interlacement array as a fundamental F[2] fabric,

with the bottom layer fabric vlsible betvúeen the strands of the top tayer

fabnlc, when the whole ls viewed from the top. Once again, the

lntersections can be lnterpreted lndependenily of each other, with the

parity of the row and column lndices determining in which layer a given

intersectfon lies. With no loss of generallty, we can speclfy that odd

numbered columns comespond to top layer warp strands and even numbered

columns correspond to bottom layer warp strands. Similarly, odd

numberecl rows can be thought to correspond to top layer weft stnands,

while even numberecl tows correspond to bottom layen weft strands.

As in the case of the single layen flat sectional representation,

there are a number of criteria for chooslng a particular set of graphic

output primitlves or tlles, and the corresponding mapping algorithm.

These criteria are as follotvs:

As before, some dlfferentiatlon must be made between the warp

and weft strands of the tvúo layers and the inter-yarn gaps.

Some lnterlor pattem must therefore appear on the strands.
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2. Fon maximum differentiation between the warp and weft

strands, the pattern for the warp strands must differ
slgnificantly from the pattern for the weft strands, for each

fabric layer. Four patterns are therefore nequired in total.

The warp strand patterns must be periodic on the height of the

tile and the weft strand patterns must be periodic on the wldth

of the tlle.

FI6UßE¡.3-2

5.

4. ïhe tiles must be large enough to accommodate the need for

vlsual distinction between the patterns but must also be small

enough so that a reasonable numben of intersections can be

represented.

THEOREII 5.5. l. For a double layer cartesian structure representation,

elght graphic primltlves are sufficlent.

Proof. The ordered set 5 of these elements is:

[+ ++#+ ++#]
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COROLLARY 5.5.5. The mapping from an interlacement sequence R to
the corresponding ordered set of graphlc primiilves S for a double layer

cartesian structure ls obtalned by compuilng the lndex I where

(5.3.4) i = I + (4r¡,¡ + 2(k -2 trî/21)*(j-ZtÍ j/2D)

k.1,2,...,m
j-t,2,...,n.

Proof. Table (5.3.5] lndicates the correspondence betiveen the posslble

intersection types and row and column parities, the computed value for the

index l, and the interlacement which ls represented. tr
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Table 5.3.5

PARITY .*,j |NTERLACE|4ENT

k

bottom lsyor woft ovor botlom |ryer wffp
þ hyor wefl orrar botlorn leyer wrp
hottom llyer wÊn wor t¡g hysr wlrp
þ hyer weft onr t¡p byor wrrp

bottorn lryâr w'r? ovst" b0ttffi lry6r wen
boltorn hyer wrp ornr þ hyer weft
top |ryor wsr? o\trr bottom lryâr w8n
þ hyar we.p owr þ byer wefl

Figure (5.3.6) illustrates a point diagnam representation of a given

interlacement array and Figure {5,3.7} corresponds to a doubìe layer

cartesian structure repnesentation 0f the same interlacement arnay. lt is
much more obvious in Figune {5.3.7}, that the data corresponds to a double

layer structure than it is in Figure [5.3.6].

ÊtEft

odd

3r/Bft

odd

ovltì
odd

0ìærì

odd

clln
alrÊfl

odd

odd

ov€n

ttrlrl
odd

odd

0
0
0
0
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FIGURE 5.3.6
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FIGURI 5.3.7
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5.4 REPRESE}ITAT I ON OF }ION.CARTES I AN STRUCTURES

5.4.I CROSS-WOVEN AND CENERATIZED NOH-CARTESIAN FORIîS

An interestlng class of woven structures consists of those fabrics
produced by crossed weavlng. ln cross woven structu¡"es such as leno and

gauze [60, p.Zll-2471, the paths of the lengthwise strands are no longer

parallel, ln that they are allowed to cnoss over each other between the

intersections wlth the crosswlse elements. This technique produces a

fabrlc exhiblting a partlcularìy stable structure vyhiìe still maintainlng an

open quality, and ls used extensively ln dmpes and decorative clothing

fabrlcs, for industrlal uses such as screens and sieves, l2Z, p.207-Zl0l

and for stabillzlng the selvedges of shutileless loom faÞric [711.

ln cross-woven structures, the twisting between warp strands

occurs in pairs of strands, with this pairing remaining fixed for the length

of the fabrlc. Wlthln each pair of strands either one, or both of the yanns

ls allowed to deviate from the straight path typified by convenilonally

woven structures. The dlstincilon between gauze and leno weaves ìs, in
fact based on whether or not one of the sets of strands is held flxed. "A

'gauze'effect is developed by causing one serles of warp threads, tenmed

'doup'threads, to form more or less zig-zag or wavy lines, whilst another

series of warp threads, termed 'regular' or 'standard' threads, remain

comparatlvely straight . . . .A 'leno' effect, however, is developed by

causing both 'standard' and 'doup' warp threads to bend equally" [60,
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p,zn-2471.

Leno structures themselves are also of two types.

ln . . . lthe first typel, doup threads make only a
partial or half turn around their respective
standard threads: that is, they pass from one side
to the othen slde of those threads, and then retunn
to the same side, on different picks of weft, but do
not completely twist around them. Sometimes,
howeven, leno fabrics are produced ln which doup
threads are caused to completely encircle their
standard threads, and thereby produce a fult
crossing or twist wlth them . . . [60, p. 2531

There are three interactions possible within a pair of warp strands

ln any cross-woven structure, namely:

l. two adjacent warp strands can remain parallel to each other

with no twistlng taking place;

2. the left-hand strand can twist over the rlght-hand strand;

J. the right-hand strand can twlst over the left-hand strand.

Fabric stn¡ctures such as sprang [lZJ and braldlng lt4, p.6Zl

represent a generalizatlon 0f the prlnclples exhibited by the cross-woven

forms ln that, while warp strand interactions still occur in palns, the

pairlng ls no longer fixed throughout the length of the fabric. A warp

strand can now twist with anv currently adjacent warp. Clearly, a fourth

type of interaction ls now posslble, in which
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4. The left-hand strand can remain stralght and the

rlght-hand strand can interact with the adjacent strand to

Its right.

Non-cartesian woven structures actually consist of two distinct

tvDes 0f desi0n rows. namelv lnterlacement and twist rows.

lntenlacement rorvs are ones ln which the warp strands intensect wlth a

weft stnand which lies perpendicular to them. The structure of the rows

can be desfflbed using the conventional binary nepresentatlon, whene a 'l'
coresponds to a warp strand lylng on top of a weft strand and a'0'
cortesponds t0 a weft strand lying 0n top of a warp strand.

Twist rows, on the other hand, deal strictly with interactions

between adjacent pairs of warp strands and, since only four types of

¡ntenaction are possible for each palr of warp strands, an ordered pain of

binary digits can be used to represent each warp pair in a twist row.

Clearly, twist and interlacement rows are mutually exclusive. That

is, a twlst now contains no warp/weft lntersectlons while an

interlacement row exhlbits no wanp twisting. The corresponding data

structure must therefore lnclude a binary twist vector ln which, for

example, a'0" represents a twlst row and a'l'represents an

lnterlacement row.
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Superficially then, the data structure fon non-cartesian fabrics ls

nearly ldentlcal to that for conventionally woven cartesian structures.

However, whereas each element of a binary lnterlacement array can be

interpreted completely lndependently of all the other entries ¡n the

matrix, the data structure for non-cartesian structunes is context

sensitlve.

Firstly, lf the twtstvector entry fora glven row j is'1", theneach

matrix element ln the 1th row is lnterpreted lndividually, as one of the

two possible warp/weft intersections. Otherwise, if the twist vector

entry for tne jth row is '0", then the matrix elements for the ¡th row are

lnterpreted as two place binary numbers ln decimal form. Further, the

elements of a twist row are paired I and 2, 3 and 4,...,2i - I and 2i until

or unless a pair corresponding to the fourth type of interaction is

encountered. At this point, the panity of the pairing changes to 2i and 2i +

l, and continues thus to the end of the row or until changed again.

Elements in a t$,ist row are therefore also dependent for their

lnterpretatlon upon all of the previous entries in that row.
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5.4.2 DATA STRUCTURE AND GRAPHICAL DISPLAY

The graphical dlsplay of non-cartesian woven structunes lnvolves a

mapping of the binary matrix data structure to two sets of ordered graphic

output pnimitlves or tlles, with the value of the twist vector at a glven

row determining which set of tiles is to be lndexed.

From Theorem [5.2. 1J, two graphlc output primitives are required t0

represent the possible intersections in an lnterlacement row R, as

contained in the ordered palr of tiles:

Fl6UnE -¡l-2-l

An lndex I lnto thls set of tlles can be computed uslng the formula

(Corollary t5.2.31):

l=r¡+ I j=1,2,...,î.
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For example, the binary sequence I 0 0 I comesponds to the

following interlacement representation:

Ft6UnE -4-2_2

As dlscussed in Sectlon (5.2J, considerable vlsual distinction

between warp strands, weft strands, and lnter-yarn spaces can be

achieved by drawing outllnes of the strands and adding some pattern

withln the strand boundarles, particularly if a significantly different

interior pattern ls used for the warp and the weft. The choice of pattern

ts highly constrained as to lts perlod relative to the tlle size, because

thene ls a requlrement that no discontinuities appear along the tile edges

when the graphlc display ls generated. ln displaying non-carteslan woven

structures, the warp strands in twist rows must be represented by

approxlmatlons to curved forms, thus renderlng lt lmpractlcal to use

patterned strands. For this reason, warp and weft strands appearlng in

non-carteslan woven structures are represented by solid reglons, whlch

are broken at the intersectlons where appropriate.

THEOREII 5.4.2.5. Four graphic output primttives are required to
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represent the possible interactlons whlch can occur þetween warp strands

ln a twist row.

Proof. The ondered set S of these elements ls:

Wffiffi ffiffi)
Ft6UIE¡_a-2-4

COROLLARY 5.4.2.5. The mapping from the binary sequence R to the

corresponding set of graphlc prlmitives S for twlst row lnteractions ls

obtalned by computing the index i where

(s.4.2.6) l=(2r1*rJ)* | j= 1,2,...,ñ-l

The numbff 0f elements ln the sequence R must be dlvlslble by two. lf lt
ls not, the flnal element is dropped from R.

Proof. The va¡ues of I beìong to the set of declmal lntegers t1,2,3,4J

which can be used to ldentlfy unlquely each of the four graphlc pr¡mitlves.

tr
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It should be noted that the third graphic tile ls half as wide as the

other three tlles. This is because the thlrd interaction corresponcls to

leaving the finst of a palr of warp strands straight and considering the

lnteraction between the second strand of the pair and its nelghbour to the

rlght. This amounts to a change of parity of the index j of the elements r¡

ln the indexing formula and applies from the middle of the current pair of

strands to the end of the sequence, or until another of this type of

lnteractionoccurs. Forexample, theblnarysequence 0 I I I 00 I 00 I I

ls mapped to the approprlate twist row graphical representation as

follows:

$[OU[NCE: 0l ll00l00ll
:-\¡,d L--vJ È-- 

--l|24t5
l4

FIGURE 5.4,2.7

THEOREÌ| 5-4.2.8. The set S of graphtc output primtilves is a spanning

set whlch can be used to represent aìl posslble twlst row interacilons.

Pr00f. Conslder all posslble blnary sequences of length four and the

graphlc output prlmltlves to whlch they correspond. These results are

glven ln Tabte {5.4.2.9). tr
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TABLE 5.4.2.9

BINARY SEOUENCE oRAPHI C TILE NI.,i'1BERS

tt
l2
l3*(lor2l
14
2t
22
23+flor2l
24
3l*[lor2J
Jt+{40r3+[tor2]l
32*Uor2l
32,{40r3+ {l or2}J

When it is observed that'graphlc tile 3'plus'graphlc tile 3' is the same

as 'graphic tile 4' and that 'gmphic tile 3' plus 'graphic tile 4' is
equlvalent to 'graphic tile 4' plus 'graphic tile 3", it is clear that all

possible lnteractlons between foun warp strands can be represented by

combinations of elements 0f S. By induction, the interaction between any

number of warp strands can be repnesented using thls set of graphic output

prlmitives.

0000
000 t

00 t0
00 t I

0 r 00
0t0r
0t t0
0t I I

t 000
r 00 t

l0l0
t0t I

I 100
I r0t
ttt0
lltt

4t
42
43+[l
44

or 2J

330



5.4.5 DESIGNING A GRAPHICS EDITOR FOR THE DISPLAY AND

EDI T I N6 OF M)N-CARTES I AN WOVEN REPRESET{TAT I ONS

ln the case of conventionally woven cartesian structures, the binary

matrix data structure provldes a visually meanlngfuì nepresentation of the

interaction between warp and weft strands. Elements can therefore be

entered directly into the data structure. At each stage the user receives

appropriate graphlcal feedback as to what effect the new element has on

the overall textlle structure. This ls not however the case wlth

non-carteslan woven fabrlcs, where the blnary matnix data structure does

not provide an immediate graphical repnesentation of the fabric but must

be interpneted ln a mone complex, context-sensltive manner. This

necessltates an alternative form of data input for non-cartesian woven

structures.

The most appropriate and meaningful method 0f data entry ¡s to look

at a graphics screen and draw the approprlate tlles, uslng some slmple,

consistent interaction sequence [17, p.55-56], such as key presses. The

tlle which is chosen is lnterpreted by the software and the data file is
updated.

Before data entry can actually take place, it is necessary that the

screen and database be lnitlalized. This initialization can either be to a

previously created and stored structure, in whlch case data entry

corresponds to editing this structure, or to some initial or foundation
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structure. ln the second case, lt is convenient to lnltiallze the structure

matrlx and twist vector to zero. This corresponds to a fabrlc where all of

the rows are twlst rows ln which the left-hand warp strand of each pair

0f yúarps crosses over the rlght-hand strand.

obviously, if the twist vector entry for one of these rows ls

changed from 0 to l, the entire structure row comesponding to this entry

must be re-interpreted as an interlacement row and re-drawn. ln this

case, the entirely zero lnterlacement row comesponds to a weft yar-n lying

0n top of all the warp yarns. This of course is not now a single cohesive

fabrlc but ls lnstead reducible (see Section [4. l]), with this panilcular

vúeft yarn llfting completely free from the rest of the fabric.

Thls initialized display or 'foundaUon stn¡cture" pnovldes the

eguivalent of a grld to visually guide cursor movements and tile
placement. The cursor is moved around the screen in unit movements,

using the standard directional key pad. A unit move comesponds to one

rovy in height and one column in width. ln interlacement rows, a

cross-wise move takes the cursor from one intersecuon to the next while,

in twlst rows, a slngle cross-wise move takes the cunsor from one warp

strand to an adJacent strand. Since the twist interactions occur pnimarily

ln pairs, the usual twist row horizontal move wlll be two unlts, although

single unit movements are acceptable.

There ane six possible tiles which can be drawn as pant of a
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non-cartesian structure representation, of whlch two comespond to

lnterlacement lnteracilons and appean only in lnterlacement rows. The

remaining four tiles comespond to twist interacuons and only appear ln

twist rows. Data entry in this context therefore requlres the use of either

slx keys plus range checking on a single key interpreted in context. The

second solution requires less memorizing on the pant of the user.

lf the cursor ls positioned in an lnterlacement row j, as indicated by

some symboì such as '+' displayed in the jth position ln the twist vector,

then a single key can be used to toggle from one possible lntersection

repnesentation to the other. The key presses thus form a cyclic group of

order two.

lf the cursor ls positioned on a twlst row k, as indicated by a

symbol such as'x' in the kb position of the twist vector, the same key can

be used to cycle through the four possible types of graphic Ules. These

key presses now form a cyclic group of order four. Each of the twist row

lnteractions depends on the value of two adjacent data elements for their

immediate lnterpretation, wlth certaln pairs of elements having broader

implicatlons. However, it is posslble to advance the cursor ln single unit

moves from one warp strand to an adjacent one, with the data file also

being addressed in successive and overlapping pairs of elements. Thus, it
ls posslble that the cycllc group of key presses will be applied to a pair of

, data elements that were not lnterpneted as a palr when the graphlc display

was original ly generated.
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THEOREII 5.4.5. l. The set of twist row interactions form a ryclic group

0f order four, regardless of differences in the parity of data pairing

between the origlnal graphic dlsplay and the current data entry phase.

Proof. Consider the set T of alì possible blnary sequences of length four,

and lnterpret T as two adjacent twlst interactions, as in Theorem

[5.4.2.8]. Conslder the action of the cyclic group A on T, where the

elements 0f A are addltlons of one to the sequence (t¡,¡, t¡,21 or

{t¡,3, t¡,41, for I = 1,2, . ..,16, and wlth additiontaking place over the

Galols Field of order two. The group A lnduces a permutatlon of the

elements of T, as follows:

AT
¡2t
¡3t
t4t

(r234) (s678) (9 r0 il 12) il3 14 ts t6)

(r3) (24) (s7) (68) (e il) 00 t2) il3 ts) il4 t6)

lt 432l (s876) (9 12 il r0) (t3 t6 ts t4)

il)

(r 357) (2468) (9 il 15 t5) ilo t2 t4 t6)

(r s) (26) (37) (48) (e 13) (r0 14) 0r rs) il2 t6)

Conslder the group B of additions as before, but with the additions being

applled to the sequence [t¡,2, t¡,3], for l- 1,2,.. . ,16. The permutatlons

of T induced by B are:

BT
a2t
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0 7s3) (2864) (9 rs 15 il) r0 16 14 12)

0)

Thus, the group B is also of order foun and the set of graphic output

primitives wlll be correctly accessed regardless of where the curson ls

positloned in a twlst row. E

EXAÌlPLE 5.4.3.2

Positioning the cursor between the first two strands, the possible

sequences and corresponding graphic lmages are:

a5l

B\

00 t I

0trt

tort
tttt

-)

-)

-)

WMW

W"WM

WWW

WWWW

Posltlonlng the cursor Þetween the mlddle two strands, the posslble

sequences and corresponding graphic images are:
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001 I

0t0t

0ttl

000 t

W%W

WW
%WW

WW

Changes to a partlcular palr of data elements wlll necessltate the

re-drawlng of the correspondlng ille, or illes, and posslbly ail the illes to
the rlght, lf the parlty of the 0rlglnal dtsptay and design lnput are not the

same. Tlles to the ìeft wlll not be affected. From an lmplementation

polnt 0f vlew however a convenlent soìution ls slmply to refresh the

entire row to reÍlect changes to the corresponding region of the data file.

ln addltlon to updatlng the structure dlsplay and the corresponding

database, the twlst vector must be addressaÞle as well. once agaln a

slngle key, the same one as before, can be used to toggle þetween the t\ryo

types 0f entrles h thls vector. The structure dlsplay and t$,lst vect0r are

treated as separate lnput areas, wlth the user speclfylng whlch of these

areas ls t0 be accessed. Curso¡. poslilonlng and movement ls now

restrlcted to the speclfied reglon and the data entry key is interpreted in

the approprlate context.
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6.I INTRODUCTION

The mixing of weaving technology and computer techniques is not a

new phenomenon. lndeed, the used of punched cards to control a Jacquard

loom predates the electronlc computer by more than two centurles and is

often thought to be the conceptual forerunner of many of the princlples of

modern computlng [64]. Especlally worthy of note is the fact that looms

have even been used by the electronics lndustry to produce woven circuits

[5 ], p. t7sl.

The inverse relationship between computing and weaving has

natunally appeared more recenUy. A paper presented at the 1966 AC.H.

National Heeting described an interactive computer graphlcs system for

designing a Jacquard fabric f541. Subseguent work by this group pl-oduced a

Jacquard loom, unveilecl April6, 1968 at the San Antonio HemisFair, which

was controlled by an lBll 360 mainfname computer [5J]. tlore recenily, a

system has been descrlbed [6ll whereby a mini-computer has been used in

conjunction with an automatic pattern card punchlng machine for the

direct control of a Jacquard loom. These developments have however

required expensive, large and often speclal purpose computer hardware

1221. Today, textile designers can take advantage of the inffeasing

availability of lnexpensive mlffocomputers and medium resoluti0n

graphical display devices to create an envinonment well tailored to meet

their neetls.

The purpose of this chapter is to ouiline the functional structure

558



and lnteractive features requlred of a microcomputer-based interactive

textile design system in onder to fulfill the needs of the designer of woven

fabnics. This subJect will be divided into a discussion of the over-all

module hierarchy, the underlying appllcation data structure, the graphic

dlsplay program, and the appìlcations programs, lncluding the necessary

computational algorlthms.

As a testbed for the prlnclples enunclated ln this chapter, a

restnicted verslon of the theoretical system descrlbed was implemented

on an Apple ll+ mlcrocomputer. The speciflc details 0f this

lmplementation will be described in the appropriate sections.
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6.2 I,IODULE HIERARCHY.

The components of thls interactlve texUle design system can be

dlvlded broadly into three categories, namely the application data

structure, the gnaphic dlsplay program and the applications programs. The

applications can themselves be sub-divided lnto two major

classificatlons. The first type of application is one whose primary

function is to induce some transformation on the appllcation data

stnucture. Design lnput is an obvious example of thls type of prognam.

Also in this category are the deslgn manlpulailon on editing functions and

the data storage, retrieval and deletion functions. The second type of

application includes those programs which make use of the application

tlata structure as lnput to computational algorithms. These algorithms are

either structural in nature, h which case the resulting output is data

which is itself added to the data file, or are usetl to provicle information in

the fo'rm of graphlc display.

The natune of woven textile deslgn informailon is such that lt is

highly vlsually oriented. For this reason, the graphic display program is

the central node in this system, through which every other function is

connected.

Conceptually the module hlerarchy of this textile desfgn system is

illustrated in Figure [6.2.1). lt indicates the major components and their

inter-relationships. All subsequent discussion will assume that

transltlons between program modules or between states withln a program

are elther event-drlven I I 7, p.57], specifically arlsing from user keyboard
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lnput, or occur as the natunal termlnation of an application program.

Attention will be concentrated throughout on the following design

principles as enunciated by Foley and Van Dam [17, p.55-561:

l. Provide simple. consistent interaction sequences.

2. Do not overload the user with too many dlfferent
optlons and styles for communicating wlth the
program.

3. Promot the novlce user at each stage of the
interaction (but allow the more experienced user
to bypass prompts).

4. 0lve appropriate feedback to the usen

5. Allow the user onaceful recovery from mistakes.

This latter point is particularly important when creating a worklng

env lronment f on non-technical desi gn personnel.

ln implementing this system, the outl¡ned modular structure has

been used. However, due to the limited amount of available memory (¿AK of

RAtl), these modules have been funther segmented into sets of small

numbers of related tasks. Each set of openations is contained ln its own

mainline segment which is read lnto memory from dlsk when negulred.

Associated with each of these segments is a menu of program functions

as, for example, seen in Ftgure [6.2.2]. All menus f irst appear wlth a white

bar over the bottom ltem. The retype and backspace keys are used t0 move

the white bar either up on down, oven the menu ltems, with cycllc
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MENU
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wmp-around. The carrlage return key ls used to select a menu item.

The graphic dlsplay program of the theoretical system is handled by

the DISPLAY NENU, COLOR DISPLAY HENU, COIPLETE DISPLAY MENU, COLOR

AND WEAVE HENU, PRINTER I1ENU, STRUCTURE MENU and STRUCTURE

SUB-HENU.

Henus are also used for many of the application prûgrams. Deslgn

lnput ls handled ln the DESIGN ENTRY MENU; design storage or retrleval is

performed by the FILER |'1ENU, the PICTURE FILER HENU and the ARCHIVISï

tlENU; design manipulatlon uses the DESIGN EDIT IIENU. The DoBBY CONTRoL

SYSTEi1, which is the controlling software for a sixteen shaft dobby 100m,

ls considered separately in an appropriate series of related menus.

The computational algorithms which synthesize a binary

interlacement array from a given threading, tie-up and shed sequence

matrix, or factor a given binary lnterlacement amay into its corresponding

threadlng, tie-up and shed sequence matrices ane each contained ln a

separate segment, These programs each perform only a single task

however, and are not therefore assoclated with menus.

Figure t6.2.31 lllustrates how the various prognams relate to each

other. The speclflc operations perfoffned in each of them will be discussed

in conjunction with the relevant theoretical system.
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6.3 APPLICATION DATA STRUCTURE.

The primary data structure which is oeated, stored and used as

lnput to the applications programs is the binary lnterlacement array,

which corresponds to a numeric repnesentatlon of the intersections

between the warp and weft yarns of a rectangular segment of woven

fabric. With no loss of generality, values of one in this aîay canbe used

to represent warp over weft intersections, while values of zero represent

weft over warp intersections. Traditionally, textile workers have

depicted binary interlacement arrays diagrammatlcally, as a matrix of

black and white squares, ryhere a black sguare corresponds to a one and a

white square corresponds to a zero. This representatlon, known as a point

diagnam, can commonly contain up to one milllon elements 122, p.ll,

although it is more usual to contain 0f the order of one thousand elements.

It was shown in Chapter 3 that, if the binary lnterlacement array is

stored, then the threading, tle-up and shed sequence data are actually

superfluous. Since the factorizatlon of a binary ìnterlacement array into

these components ls essentially unique, the threadlng, tie-up and shed

sequence matrices which require the smalìest numÞer of shafts and

treadles can always be derived from a given interlacement array. This

means however that every time this component data ls required, the

factorization algorithm must þe penformed, which considerably increases

the time required t0 access the data.

ln addltion, there are occaslonally appllcations where it is

lmportant to specify preclsely which warp strands are threaded on which
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shafts and whlch treadles control particulan combinations 0f shafts. The

factorization process, lt wlll be recalled, leaves the threading and tie-up

matrlces lnvariant up to permutation of their rows and the shed sequence

and tie-up matrlces lnvarlant up to permutation.of their columns. There is

therefore no assurance that a given threading matrix, havlng been used to

meate a binary interlacement array, will not be changed when regenerated

by a factorlng algorlthm. For this reason, it is prudent to store the binary

matrices corresponding to the threading, tie-up and shed sequence data as

well as the blnary interlacement array. The dlmensions of these four

matrices are also requtred.

A colour vector of encoded warp stnand colours and a colour vector

of encoded weft strand colours must also be stored. These two vectors, in

conjunction with the binary interlacement array, allow the synthesis of a

multi-valued matnix corresponding to the visible coloured pattenn 0f the

woven fabric.

Finally, some data storage posltions must be allocated for flags and

othen controlllng variables. These are, of course implementation specific

and wlll be discussed as they appear in the followlng sectlons.

Since the primary application data structure is blnary, a single bit

of RAll can concelvably be used to store each of the elements. This

compressed form of storage was in fact achieved in the test

lmplementation, where the application data structure was stored in the 8K
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region of memory corresponding to tñe second page high resolution

graphics screen. Slnce all display took place on the first page hlgh

resolution graphics screen, this region of memory was not used for

graphical display, prognam code, or variable and strlng storage. lnstead

the program architecture was arranged so that when any module was used,

this region of memory was not compromised. As such, the applicatlon data

structure was maintained ln memory as a resident global data f ile to be

accessed and freely modified by all program modules.

High resolution graphlcs images on the Apple ll+ comespond to bit

maps stored ln the comesponding 8K region of memory. This meant that a

single element could be stored in this area simply by drawlng a single unit

dot at the specffied screen co-ordinates. Retrieval of the data therefore

required computatlonal algorithms that would isolate a single blt or

detect a visual bit. This latten more interesting approach relled on a

graphics command and the high resolution collision counter. This type of

storage had the additlonal unlque advantage that the actual data file could

be visually examined in a meanlngful way by displaying the page two high

resolution graphics screen. This anrangement in fact, slmulated a process

monitor which was subsequently very useful in developlng computational

algorlthms with improved eff iciency.
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6.4 oRAPHIC DISPLAY PROoRAII

6.4.1 PRIIIARY CONSIDERATIONS

Woven textile design data ls vlsually extremely meaningful, even in

cases where the structure rather than the vlsible pattern is documented.

The binary interlacement array deflnes the inter-relationshlp between the

set of wanp strands and the set of weft strands intersectìng it. Given that

all of the warp strands are coloured black and all of the weft strands are

coloured white, the tnaditional oolnt dlagram variatlon of the binany

interlacement array also describes the vlslble pattern of the structure.

Even if the strands are not colouned ln thls way, the interlacement data

corresponds to the surface appearance of the fabric.

Textile designerc ane, for the most part, weìl adapted to designing

woven structures and intenpreting lnterlacement data, when lt is recorded

ln thìs format. Thus it ls obvlous that some form of graphlcal dlsplay

must form an lntegral part of an lnteractive textlle deslgn system.

lndeed, the graphical representation of the data is sufficiently impontant

that lt ls llkely the quality of this display whlch will be the major factor

ln determlnlng the utlllty of such a deslgn system.

As mentioned in Section {6..|), binary interlacement arrays can be

qulte large. Since the use of a CRï display device intnoduces s0me

lnherent limltations ln the number 0f identifiable pixels available, some

balance must be reached between making the lndlvidual design elements
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large enough t0 see, yet small enough to accommodate a large design on

the screen. Two techniques can be used to to help achleve this required

balance.

The first method is to have a varlable resolution display that ls

defined by the user. Thus, a small amount of data can be displayed at a

large scale, and a large lnterlacement amay can be displayed with the

lndividual elements, of necesslty, belng very small. lt should Þe noted

that, because the data ls dlscrete, there is no actual loss of detail, even in

a high density representation. The relationships between individual

elements wlll however become difficult to detect 0t separate visually.

While this may be acceptable for some purposes, some applications, such

as design manipulation, will demand a clear dellneation of individual data

points or design e¡ements.

A second approach is to use a windowing technique, where only a

segment of the data is selected to be displayed at any given time. This

permits an easily visible representation of a subset of the data. Clearly

this method ls deflcient in that it ls difflcult to examlne relationships

between pattern areas and to visuallze the displayed segment as it fits
lnto the design as a whole. Also, great care must be taken at the

boundaries of wlndow segments to ensurc that anomalies or

discontinuities with neighbouring structures are not created.

It ls in fact likely that some combination of these two approaches
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ls optimal, with the vanlable density method belng used to obtain a vlsual

representatlon 0f a structure ln its entlrety and the wlndowing technique

being used where some modlfication t0 the lndividual data elements is

required.

A second form of graphical display which is extremely important is

the hard copy prlnt. Papen copies ane useful when a graphic representation

of design data is needed in a locatlon where it may be difficult to slte a

monltor, such as ln the weaving shed. They are also required for

manuscript preparation, brochures and wrltten communications. Dot

matrix printers with graphfcs capability provlde a low-cost effectlve

means of producing hand copy renderings of the required graphics images.
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6.4.2 DISPLAY ENVIRO]fiEHT FOR DATA INPUT

one of the flrst major concerns in ffeating an lntenactlve textile

design system ls that of actually entering the deslgn data. Numerous

solutions to thls problem have been devised for the automatic acquisition

of data, includtng the use of optical scanning equipment [52] and light pens

[53]. However, what ls of prime lmpontance ln this context is that the

data be acceptable in some form which is visually meaningful to the user.

For example the l6 by l6 element interlacement arnay in Figure [6.4.2.1]

could be represented in a compressed notatlon by considering each row of

the matrix to be a 16 place bit string and interpreting it as a decimal

number. The design would then be speclfled by the numÞers 17510,39389,

6545, 30566, 25670, 55709, 4505, 26486, 26 I 80, 56729, 37 I 45, 2623 l,

1E020, 40409, 391E5 and 30311. This compressed notation is however,

much less meaningful in terms of the pattern which it represents. Clearly,

some form of graphlcal hput ts lndlcated.

ln the point dlagram, the graphical form of the binary interlacement

array, the matrix co-ordinates define the single $,arp and weft strands

which lntersect at a glven location. Design elements must be placed

completely accurately with respect to these co-or"dinates. The high degree

of precision required ls best achieved by drawìng an appropriate grid on

the sreen, in which squares can be coloured. This has the added advantage

of being a form of design development with whlch textile designers ane

completely famlllar. An x-y oosition indicator or locator [17, p.24] is

slmulated by a cursor drawn on the grid and moved up, down, left or ilght
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under the control of four ke¡1s from the keyboard, usually l, J, K, and t1 on

the APPLE ll series [17, p.200]. Cursor movements are oþviously made in

lnteger numbers of squares.

A furthellnput unit is used as a pick to lndlcate selection or

de-selection of a given grid cell. As the point diagram representation is

cneated and modifled, the corresponding application data file is

appnopriately updated on a contlnuous basis. ln the case where coloured

lntenlacement array data ls to be accepted and the underlying data file is

dlscrete but not binary, selection 0f a grid cell is accompanied by a

numeric encoding of the colour drawn in the sguare.

The primary design data is contained in the binary interlacement

array and input to thls array is obviously required. lt ls not uncommon

however for the textile design process to begin with the specification of a

threading, tie-up and shed sequence matrix, from which the corresponding

interlacement amay ls computed. Design lnput to each of these three

matrices is also therefone required. Additionally, in the case of coloured

interlacement amays, the colour vectors which speclfy the coloun of each

warp and weft strand ln the fabric representatlon must be addressable.

ln the lmplemented system, the design entry environment is

established ln the DISPLAY l'lENU. One of the available options is t0
'Display Design 6rid and Erase Nemory", where the 'Deslgn Orld" refers to

a nectangular array (Figure 16.4.2.211 whose cells are mapped to elements
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of the binary intenlacement amay. When this opilon is lnvoked, a grid with

empty squares is drawn and the entire data stonage area is initialized,,

whlch corresponds to turning off all bits in the region of memory

corresponding to the page two high resolution graphics scneen.

The grid size ls variable. The larger the gr.id slze,, the fewer the

number of cells displayed and vice versa. Two keys are available to change

the gnid size, with cyclic wrap-around at the ends of the range, and a third

key, carrlage return, ls used to accept the gritl as drawn.

An alternative data entry environment for binary interlacement

annay data is established by displaying a data flle which has already been

created and which will be drawn as a grld with the appropniate squares

filled ln (Figure [6.4.2.3]).

Another option which is availaÞle is to'Display Threading 6rid and

Erase Hemory', where the "Threading orid' provldes lnput areas A,B and C

for threading, tle-up and shed sequence data respectively (Figure 6.4.2.4).

Once again, the grid is drawn wlth completely blank squares and the data

file is lnitialized to zero. The grid size ls variable, as is the number of

rows in the threading and tie-up matrlces, and the number of columns in

the tie-up and shed sequence matrices.

Selecting the optlon 'Display Weft Drawdown" will also result ¡n

the display of a grld with threading, tie-up and shed seguence regions, but
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with data file entries appropriately represented in the dtsplay (Figure

t6.4.2.5]). The tern 'Weft Drawdown' simply means that the complement

of the conventional representation is shown. That is, warp oven weft

intersections comespond to blank squares. and weft over warp

intersections correspond to coloured squares. A facility for displaying the

'Reverse Drawdown' allows the other representation t0 be displayed if

rÊquired.

Also ln the DISPLAY HENU ls the option to 'Def ine Window', which

enables the user to specify a rectangulan subset of the design area for

display. This feature allows a lange design area to be visualized at a

small scale, while still permitting design input over a magnified portlon

of the region.

once the design entry environment has been created, a different

program module called the DESI0N ENTRY tlENU is invoked which deals with

the locator, cell selection and data file updatlng. lf the design grid or

design in memory have been displayed then 'Drawdown Entry" can be

selected: 'Drawdown' ls a synonym for polnt diagram. Four keys are used

to move the cursor wlthln the boundaries of the grid.

lf a window is in effect and an attempt is made t0 move the cursor

outside the grld, then the option is available of moving the window over a

different region 0f the design. At any time, a key can be pressed which

causes the appllcation data file on the page two graphics screen to be
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shown. The boundaries of the defined window are outllned in the data area.

This allows the design entry window grid to be visualized ln the context of

the entine design.

Having displayed a drawdown grid 0r weft drawdown, it ls now

possible to enten'Threading; Tieup; Treadling Entry'data. (Treadling is a

synonym for shed sequence.) Each of the three data ¡nput areas is

associated with a single letter code. Pressing one of these code letters,

as prompted, places the cursor and defines the boundanies appropriately.

As befone, attempts to move outside of the lnput area will result in the

optlon of moving the window.

A limited facility for displaying coloured interlacement arrays has

been implemented. However, lnput to the corresponding colour vectors ls

used only for a local dlsplay and is not stored. This feature is discussed

more fully in Section [6.4.3].
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6.4.5 DATA DISPLAY

A major function of an interactive textiìe design system ls to
provide a graphlcaì display of the interlacement data. Thls display may be

used to facllitate data modification, as discusSed in Section [6.4.2], or it
may pnovide a graphical model of the corresponding fabric fon examination

rvith a view to assessing lts suitability for a particular application.

6raphical display of the threadlng, tie-up and shed sequence

matrices is another impontant requirement of a texttle design system. A

skilled deslgner or textile technologist can use thls information t0 assess

the particular loom requirements. ln addition, these three factors deflne

precisely how a loom should be threaded, tied-up and treadled ln order t0

produce the fabric cotr'espondlng to the binary lnterlacement array. As

such, thls displayed data can be considered as a set of instructlons for the

setting-up and operation of a loom.

As noted in Section [6.4.2J, displaying this data as a matrix of

colourecl and empty cells on a grld provides the necessary precision when

lndividual elements are to be addressed. This is true in the case 0f data

modification and also ln the case where the gnaphical display is meant to

provide the exact detail regarding a particular strand, such as pneclsely 0n

which shaft a certain warp strand is thneaded.

0n the other hand, sometimes what is nequlred is not a pnecise data

map, but rather a general over-all lmpression of the structune. ln this
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instance, grld lines detract from, rather than add to, the clarlty of the

lmage. An alternative form of graphical display is therefore deslrable

where the interlacement data corÎesponds t0 contiguous black and white

squares. This form of representation has 0f course the added advantage

that a gneater amount of data can be accommodated on the screen at a

given time. When a grid is used, a considerable number of pixels are

required just for the grid lines. ln addition, the cells which are used to

represent the data elements must be of a size sufficient t0 distlngulsh

them from gnid line lntersections.

ln the test system, two foms 0f data tllsplay have been

implemented. ïhe first form is the one prevlously descrlbed, with a

variable gnid and wlndowing. The second form is callerl a 'Complete

Display'and consists of black and white squares drawn contiguously at a

very fine scale, wtthln the four defined data areas. Thls representati0n is

visually very similan to the appearance of the actual data file.

ln the data dlsplay schemes discussed thus far the application data

stn¡cture and the design file are completely congruent. There is a

one-to-one mapping from the elements of the data file to the design

elements represented on the screen. The displayed elements are EgþlI a

function of the data points to which they comespond.

This is not however the case in the graphical display of a colouned

interlacement amay. ln this instance, the binary intenlacement array ls

3ó5



mapped through the warp and weft colour vectors to compute the exact

colour which should appear ln each of the cells of the dlsplayed array. The

design file ls no longer congruent to the application data structure but

arises from the lnteraction between the interlacement data and the colour

vectorc.

lf the user is permitted to ffeate colouned interlacement arrays

dlrectly by filìlng in coloured squares of the deslgn area, then there is an

obvlous need for continu0us colour analysis and venlflcation. Each time

that a coloured element is drawn in the displayed matrix, the system must

determine whether this entry is consistent with the exlsting coloured

lnterlacement structure. At the tenmination of such a data entry sesslon,

the appltcation data structure contains all the determinate interlacement

data. Since the storage area is initialized to zero pnior to any data entry,

all intersections which are indeterminate are automatically stored as

corresponding to the weft over wanp type. Alternatively, 'Coloun and

Weave Effects'[23, p. 150] can be created by using colour vectors for the

war? and weft strands together with some initializatlon colour, likely

whlte, appeaning in all positions not specified by the user. ln the test

system, a sub-set of thls coloured interlacement an'ay dlsplay facility

was lmplemented. The technique begins with the binary lnterlacement

array interpreted as a coloured interlacement array, where the warp

strands are all coloured black and the weft stnands are allcoloured white.

The tlisplayed colour vectors comespond to this lnterpretation.

Alterations to the visible pattern are effected by changing any 0l'all 0f
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the warp strand colours to whlte or weft strand colours to black, with

appropriate updating of the software being made to the design file.

A classlcal example 0f thls type of effect is that of a fabrlc deslgn

known as 'houndstooth". As shown in Figure [6.4.3.11, a twlll structune is

combined with regular alternate/two colour strlping 0f the warp and weft

strands to produce a small regular motlf.
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FIGURE 6 . 4. 3, 1
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6.4.4 DATA T,IAPPED TO 6RAPHIC OUTPUT PRIIlITIVES

As previously dlscussed, woven textile deslgn data ls very visually

meaningful when represented graphically as a point diagram. ln some

applicatlons however, considerable lnsight lnto the structural

relationshlps between various warp and weft strands can be gained

through alternatlve graphical representations. ln these cases, the

application data structure ls no longer congruent to the design file.

Rathen, each data element, or seguence of elements, is mapped to a graphic

output primitive which characterizes the relationships between the

mapped data elements, as well as wlth the remaining data. Thnee such

mappings are considered, namely: i) cross-sectional representations

ii) flat sectlonal representations and iii) profile substltution of design

blocks and counter-blocks (that is, the replacement of each black squane

of a design by a design block or matrix and the replacement of each white

square of a design by a different matrlx, namety the counter-block) [8,

p. 266,2871.

As discussed in Chapter 4, a diagram showing cross-sections

through the fabrlc corresponding to a given interlacement array can clarify

the interactions between adjacent data points. These sections, cut

through either the warp or the weft strands, can reveal whether floats of

yarn on the upper or lower surface are excessively tong. They can also

lndicate intersectlon sequences which wlll result in a multl-layered

fabric rather than a slngle-layered cloth.
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Flat sectional drawlngs are of value in illustrating the vislble

stn¡cture of particular lnterlacement arrays. The relative lengths of yarn

floats ln the warp or weft direction, as well as.patterns which anlse from

the relatlonshlp between these floats are highlighted by thls type of

representatlon. ln the case of multi-layered fabrics this type of

representatlon is less visually meaningful, because the lnterlacement

amays for the separate layers are completely merged and any patterning

which ls present in elther of the layers is extremely difficult to detect

visually. The flat sectionaì representation of these structures

corresponds to an'exploded view'of the fabnlc where the fabric layers are

shown loosely woven ancl offset so that the lower layers appear in gaps

between the yarns of the upper layers.

ïhese f irst two examples have a major characteristic in common in

that ln both cases the interlacement data is mapped to a set of

pre-defined gnaphic output primitives according to an established

algorithm. The graphic prlmitives can be considered as illes, which are

used to tessellate the screen, with the yarns dnawn within the boundaries

of each tile. The shapes depicted are primarily llne drawings and the

denslty of plxels turned on within a given tlle ls relatlvely low. For this,
reason, the sets of output tiles are chain length encoded [62]. Each of the

graphic primitives conslsts of the sequence of plotting vectors nequired to

produce the appropriate image.
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ln cneatlng the gnaphlc output pnlmitives fon elther of these two

appllcations, there are a number of factors whlch must be considered.

The first such factor is the precise placement of these sñapes on the

screen so that each tile matches all posstble adjacent tiles. Thls requires

that each image be drawn with neference to a common origin, and that a

standard tile format be used. Each tile is of constant width and height

since the sequence in which they are plotted is not known a oriori.

The size of the graphic tiles must also be carefully considered. The

tiles must be large enough to obtain a good representation whlle being

small enough to allow an adequate numben of them to be drawn on the

screen. The cross-sectional tiles must use enough pixels in representing

the cut strands to diffenentiate between the various symbols that indicate

coercion. The continuous strands must be sepanated from the cut strands

by at least one pixel, and there must be a sufficient number of pixels

across the tile so that the continuous strands can approximate the

required curvature. lf a multl-layened fabric ls represented there must be

an odd number of pixels between the cut strands t0 permit a continuous

strand t0 be drah,n through the mid-point between them.

The flat sectlonal tiles must be lange enough to ensure that the

lntersection of the wanp and weft strands can be represented

unambiguously. This reguines the outlines of the strands and some form of

internal shadlng be drawn so as to differentiate them fnom each other and

from the backgnound.
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ln the test system, a separate shape table 0f graphic output

primltives was created for each type 0f representation. The shapes were

all drawn wlthin a rectangulan boundary using a Shape Table Editon. Figure

(6.4.4.1) glves an example of a graphlc output primitive reated as part of

the F[2:l:ll shape table. The slze of each graphic tile was constant within

a particular set of shapes but varied from one shape table to another.

Separate drawing routines were used for each of the different

representatlons t0 accommodate this difference, as well as to incorporate

the correct mapping algorithm.

The third example of interlacement clata mapped to an alternative

form of graphical nepresentation is that of profile substitution of design

blocks and counter-blocks. ln designing block ì,veaves such as damask and

doubleweave, lt is often convenient to interpret the interlacement data as

a descrlption of the gross structure of a fabric rather than the actual

lntersections betyì,een the warp and weft yarns. ln such cases the

graphical data now defines only the profile of the design in terms of the

relative size and relatlonship of the gross design elements. lmpllclt in

this shorthand desmlption ls that the complete detailed deslgn can be

generated by the substitution of some interlacement array, or ÞlSK for

every black square in the profile matrix, with a different interlacement

array, or counter-block. for every white squane. Figure ß.4,4.2)

lllustrates a binary interlacement array interpreted as a deslgn profile,

with approprlate substltution of satin blocks and sateen counter-blocks.
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FIGURE 6.4.4. 2

372



Thls facility ls extremely valuable in that the textile designer need

only create a macro-deslgn and specify or develop an appropriate block and

counter-block. The tedious, time-consuming and emor prone task of

mapping the profile design to the interlacement amay is handted

automatlcally in softwarc. Huch tlme can be saved by this division of the

development process lnto two stages, where only the first stage, being the

meation of the actual pattern and blocks, reguires the deòigner.'s tlirect

attention. The second stage, that of providing the design with the

necessary structural integrlty and flne pattenn detail, is handled

sepamtely and independently by the computer.

The graphical display of the detailed interlacement array reguires

that the appnopriate matnix of pixels be addressed for every element of

the design. Since the substitution ls not pre-deflned and the user may, in

fact, wish to define an entirely new block and counter-block, the system

cannot be developed with a mapping to a completely pre-defined set 0f

graphic output primitives for this application. Elther the gmphic

primitives must be chain encoded durlng the actual execution of this

program segment, 0r the block and counter-blocks must be individually

drawn, pixel by plxel.

The test system uses both of these solutions. Graphic displays of

designs with block substitution are drawn at a number of different scales

ranging from one to ten pixels per lntersection. ln any display which uses

more than one plxel per lntersection, the appropriate intenlacement
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matrix, elther the block or counter-block, ls plotted ln the required

posltion. ln the case of a display involving one pixel per intersection, the

block and counter-block data is used as lnput to a program segment whlch

creates a shape table containing the two desired blocks. The data file is

then mapped to the design file thnough this shape table, in a simitar

manner to that used for generating the cross-sectional and flat sectional

representations.
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6.5 APPLtCATtOI|S PRO6RA},|S

One of the maJor requirements of an lnteractive textile design

system ls that there be a facility for the appropniate graphic display of

the deslgn data. ln fulfilllng this requirement, three applications

prognams, namely Design lnput, Data Storage and Design llanipulation, are

crucial in supportlng the graphical display system,. Two additional

applications programs have also been tleveloped (Figure t6.2.ll). They

pnovide implementations of computational algorithms for the analysis of

stnuctural properties associated with particular binary interlacement

arrays, and a physical interface to a dobby loom, respectively.
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6.5.1 DESI6N TNPUT

The first of these application program segments, Deslgn lnput,

provides a support environment for the display program because it creates

the application data flle. This pnogram is ln tum supported by the graphic

display system which establishes the proper environment for. user data

input, as already discussed in Section {6.4.2J.
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6.5.2 DATA STORAGE

6.5.2. t DEst6N STORAGE

The second major application is that of data storage. Having

created an application data flle in RÆ1 and then graphically displayed thls

data, mapped lt to a design file, or used it as lnput to one of the

applicatlons programs, we need some long-term non-volatile storage 0f

the data flle, such as on a floppy or hard disk. ln this way, a personal

llbrary of textile designs can be kept. ln addition to storage of the data

itself there is of course a need to store a text file or catalogue of the

names associated wlth each of the designs. This allows data files to be

accessed ln the storage medium by name and loaded into RAl1, or for

obsolete files to be deleted and their storage space released.

ln the system as implemented, application data files are stored on

5.5 inch floppy disks. Each stoned design consists of a binary file

contalnlng the contents of the entire 8K region of memory corresponding

to the second high resolution graphics screen plus matrix dimensions and

system varlables, A text file is created that serves as a design catalogue

operating separately from, and ln addition t0, the disk operating system

catalogue.
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6.5.2.2 ARCHIVES AND LIBRARY STORAOE

A second organlzed system of long-tenm data storage is also

required for archives of classlcal pattenns and structures such as those

discussed in Chapter 2. Due to the extremely large volumes of data

lnvolved ln these files, a seanch algorithm for designs with panilcular

characteristics 0r slze is also required.

ln developing a twlll array from an inlilal binary ìnterlacement

sequence, the rule to get fnom one row to the next ls a simple shift

through one position, with cyclic wrap-around. Thus, the number of

posslble twllls with a given repeat size is defined compìetely by the

number of inequivalent first rows. This number also specifies the number

0f different twìlls that can be woven on a given number of shafts.

Consequently, in cneating a twill database only the inequivalent first row

sequences need be stored.

ln the implemented system each interlacement sequence has been

stored as a bit strlng in two bytes of stonage, with sequences shorter than

sixteen blts being padded with zeros. The sequences themselves are

arranged in a canonical form such that the lowest order bit is always

non-zero. lt thus becomes a simple matter to find the first sequence of a

given orden by performing a count of the number of leading non-zero bits in

each byte pair up to the required number. Having found this beginning

polnt, an lndlvidual record can be readily isotated Þy counting forward in

units of two bytes.
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The database of twillins, color alternate twills and color altemate

twillins ls compnised of large binary files stored in an exacily similar

format to the twills, whene for example, the file designator of colon

alternate twilllns indicates that complementation is required ln the

matrix genenation rule. ln the case 0f twillins and color alternate

twillins, because the order of these structures has been restricted to

sixteen shafts in the database, and because there is only one shift value

which produces an lsonemal array for any given sequence length, it has not

been necessary to store the numben of places through which a glven

seguence must be shifted in generating all subsequent rows.

The database of compound twillins with single, double or no

complementation has been stored in three separate files. To simplify the

generation algorithm, the finst and second rows for each structure have

been stored as blt strings, and again the file designator indicates the

presence 0n absence of complementatlon in the generating rules.

Any of these archived structures can be used to generate a point

dlagram quickly and easlly, slmply by using the chosen lnterlacement amay

as a tie-up matnix and invoking the point diagr.am generation algorithm.

obvlously an approprlate threadlng and shed sequence matrix need also be

supplied, and this can be drawn from the archives as well.

Each of the lnequivalent binary seguences used to generate the
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twills can be used to define all of the possible threadings and treadlings

vrlth a glven number of breaks [44]. Eacn element of the sequence can be

interpreted as a dlnected line segment of a specifled length, so that the

entire sequence defines the points and straight runs in a particular

threading on treadling.

ln the lmplemented system, the run length must be specif ied by the

user, This value is then checked by the pnognam to determine that it is a

divisor of the number of shafts or treadles, whichever ls appropniate. By

way of an example to illustnate this approach, the design in Figure

[6.5.2.2. l] rvas developed Þy first selecting a l6 x l6 compound twillin as

a tie-up matnix. Next a threading was selected from the database. ïhe

particularonechosenhadasequenceof0 0 I 0 I I 0 I I I I land

a run length of four. Finally, a treadling was selected corresponding to the

sequence0 0 0 I 0 I 0 I I 0 0 0 I I I l,alsowlthartnlengthof

four.

A library of blnary lnterlacement afl'ays commonly used as blocks

and counter-blocks in profile substitution is another long-term storage

requlrement. Thls removes the need of defining these partlcular matrlces

every time such a mapped data display is required.

ln the test system, each of the blocks and counter-blocks stored in

the library comesponds to a text file of ones ancl zeros, with a

corresponding catalogue of file names. These files can be loaded from disk
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by the user, ln which case each characten ls mapped to a numeric value of

one 0n zero to be stored in a single byte ln RÆ1. Alternatively the file can

be deleted, so that new blocks and counter-blocks can be entered as

character strings.
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6.5.3 DESI GN IIANI PULAT !ON.

Frequently after creating an intenlacement pattern, a designer

wishes to know how the design will change if a particular transformation

is applled to lt. ln the case of a hand drawn point diagram, the answer to

this question is often obtalned only after tedious and time-consuming

re-drawing of the entire pattern. An interactive textile design and

display system can thenefore prove invaluable ln facilitating

modlfications to an existing design.

Conceptually, the design manipulation and editing openations are

perfonmed by an application program acting on the application data

structure, with the operations involved falling lnto three categories,

nameìy:

Alteration of the state of data elements corresponding to

desígn pixels whose positions are unrelated. This corresponds

to a change in the type of lntersection, either from warp over

weft t0 weft over warp 0r vice versa, and is in fact simply a

part of the design input process.

Alteration of the sequence of data elements corresponding to

design pixels arranged in either rows ot'columns. lnserting a

row 0r column, deleting a row or column or indeed, deleting the

entire data structure are legitimate operations in this category

ïaking a subset of the appllcatlon data structure elements and

2.

3
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tessellating the entire data flle with these elements in such a

way that the tile corresponding t0 each 0f these sets in the

display flle comesponds to a non-overlapping contiguous set of

pixels.

It should be noted that cycllc rotatlon through a specified numben of

rows 0r c0lumns, horizontal and vertical reflection, as well as

transposition of the design should be regarded as operations included

under category (2) above, These operations are extremely important in

that they enable the examination and manipulation of the various

symmetnies of the pattern. The option to use the design as a pattenn tile

to tessellate the design space ls also very lmpontant since most fabrics

are constructed from a pattern with a finite repeat.

ln the test system as implemented the category (l) operations are

performed as part of the 'Design Entry l'lenu', whereas the design

manipulation features in category (2) are containetl in the 'Design Edit
\

Nenu". Due to the relatlvely slow processing speed of the microcomputer

on which this system ls resldent, the cycllc rotation operations which

require re-mapping of the entlne application data file with updating to the

design file have not been lmplemented.

Transposition of the design also requires complete re-mapping of

the data flle. However, thts feature has been lmplemented so that the
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warp and weft strands can be lnterchanged. This ls important because it
means that the standard algonithm for mapping the data file to a

cr'oss-sectional representation can be applied to a cut through either the

vreft yarns 0r the warp yarns of the fabric.

The remainlng options allow specific rows or columns of the design

to be deleted, as well as the lnsertion of a row or column at a specified

point. The option to restore the original unedited design is also included,

ln keeping with the design principle of allowing the user to recover

gnacefully from errors.

Tessellation of the screen wlth the pattern corresponding to the

data file, as outlined in category (3) above, has been implemented in the

'Colon Display Henu'. This is actually a pant of the gnaphic display system

but, because of the way that the data is stored in RÆ1, this program

segment can actually be used to modify the application data structure as

well as the deslgn file. When the design is dlsplayed in black and whlte

using the finest detail, each pixel represents precisely one data element.

By moving the entire 8K of memory corresponding to this bit map from the

page one high resolution graphics scneen to page two, the bit pattern is

now ln the correct format for the data flle.
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6.5.4 STRUCTURE AND AIIALYSIS

At some point in the development of an interlacement pattern there

comes the realization that the design is not merely a gnaphical display of

black and white squares but a physical fabric with attendant structural

properties and inherent integnity. Thus, any textile design system must

incorporate some facility for interpreting and analyzlng these structural

properties.

The structural analysis process can be thought of as having two

phases. The first phase is to interpret the complete design as a set of

instructions for the set-up and operation of a loom, and the second phase

ls to examine the structural integnity of the fabric meated according to

these instnuctions. There is really no prefemed order 0f execution of

these two stages. ln fact, as with all the other design steps, some amount

0f lnterplay is to be expected. The flexibllity and ease $,ith which a

computer based system allows this interplay is of course one of its
si gnif icant advantages.

All of the algorithms discussed ln Chapter 3 for factoning a blnary

interlacement amay into its con esponding thneading, tie-up and shed

sequence matrices reguire the rigorous comparison of lndividual data

elements. This operation, which is routine and laborious, ls ideally suited

to the computer environment. Once analyzed of course, the resultant

thneading and tie-up must be compared with the avallable resources of the

loom to be used. Should the number of shafts or treadles exceed the
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number available, some design modification will be nequired.

The inverse of this process is also reguired in an lnteractive design

system. That is, this system must also be capable of dealing with the

situati0n where a set of weaving instructions (i.e. threading, tie-up and

shed sequence matrlces) is developed and a representation of the resultant

fabric deslgn is required.

Finally, lt ls useful for a design system to contain an

implementation of the reducibility algorithms described in Chapter 4.

This form of analysis will determlne a prlori whether a certain binary

interlacement array, when woven, will produce a slngle 0r multi-tayered

fabric. The comblned need fon data handling, numeric computation and

graphical display which this process demands make it highly suited to

computer processing.
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6.5.5 DOBBY LOSI INTERFACE

Having performed a dobby anaìysis on a given binary interlacement

array, the textile designer has determined the loom threading as well as

the pegging plan [68, p. 98] required to weave the corresponding fabric.

Thls pegging plan can be used as a set of instructions for manually setting

the chain 0f pegged lags. Alternatlvely, by using a loom which interfaces

directly to a microcomputer [eg. eVl Compu-dobby and llacomben's

Weaver's Delightl the pegging plan data can be transmitted dlrectly to the

loom without the use of mechanical lags.

The test system has been lmplemented to lnterface directly to the

AVL Compu-dobby loom, in which the mechanical dobby head is replaced by

a bank of sixteen solenoids connected by a ribbon cable to an interface

card wlthin the Apple computer. Each row of the pegging plan is

lnterpreted as the decimal equivalent of two elght bit binary integers.

These two lntegers are stored in two bytes of memory and passed to the

solenoid box where the corresponding patteFn of solenoids is activated.

The dobby mechanism ls equipped wlth a light emittlng diode and the

sweep arm which actuates the shafts incorporates a mirror on it which

continuously reflects the emitted llght back to an optical sensor. ln this

way, the posltlon of the sweep arm is detected by the hardware which is

thereby able to determine when the solenoids should be re-set for the next

pick.

An inherent llmitation of mechanical dobby looms ¡s that every row
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of a design repeat requires a lag ln proper sequence and little advantage

can been taken of pattern regulanity. Speclal purpose attachments have

been constructed to enable highly structured block weaves to be handled

more easlly, 129, p.221, [ll, p.315-316]. These have achieved varying

degrees 0f success. The computer interfaced dobby loom, with its llbrary

of block structures and automatlc substitution algorithms, is ideally

suited t0 overcoming thls limitation.

Just as the profile matrlx and substltution blocks pnovide a

short-hand version of specifying an interlacement array, s0 a proflle

peggtng plan can be used to abbreviate the length of the required pegging

plan. Each element of the profile pegging plan is mapped through the

appropriate block or counteFblock to give the complete sequence for a

given row. This saves enormously in the amount 0f time and space

requined in creating block designs, as well as eliminating an obvious

source of designer error.

ln the test system, this facility is combined with the profile

substitution portion of the archivist system to provide full access to the

established libnary 0f blocks and counter-blocks. Each time that a new

pattern row is read, as many pegging sequences as there are rows in the

substitution block are generated and sent in sequence to the solenoids.

The addition 0f supplementary ground weaves, as used, for example,

in weaving Overshot designs 18, p. 174 - 26Jl reguire that one of two
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possible l/ I plain plcks be inserted between successive pattern picks. ln a

simllar manner this can be lmplemented on the test system merely

specifying the pattern rows and the order in which the plain picks are to

be intenwoven, The actual plain weave sequences are then computed

automatlcally and unambiguously from the threading.

lmplementatlon of the weaving sequence is tracked visually by a

whlte bar which is drawn across the page two graphics screen at the now

which ls cunrently being woven. As successive design rows ane read, this

white bar moves, elther forward or backward as specified by the user. An

alternative display 0n page one shows each pattern row as it ls read, along

with a nepresentation of the virtual lag and a notation of the cument

design row.
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