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ABSTRACT

It was Karl Pearson who in 1900 discovered the goodness
of fit criterion and showed that it followed the chi-square
distribution. This significant discovery‘provided the
impetus that has made the chi-square distribution one of
the most useful in applied statistics. ‘Its range of applic-
ation is mainly accounted for byﬁgzn-parametric character
of many chi-square tests.

'In this thesis is given some indication of the varlety
of experimental prbblems to which chi-square may be applied.
‘Supplementing this is an historical survey which traces the
origins of the chi-square distribution back to the man who
originally derived it in 1876, the German mathematician |
Helmert. In addition, several mathematical derivations of

the curve are given, and its properties investigated.
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INTRODUCTI ON ,
One of the most usefui distributions in applied statis-

tics is the chi-square distribution. It forms the underly-

ing distribution for a multitude of statistical tests,
including goodness of fit tests, and tests of independence.

Although the chi-square distribution was originélly ‘

- discovered in 1876 by the German mathematician H. Helmert,
it was Karl Pearson in 1900 who introduced the goodness of
£fit criterion and showed that it asymptotically followed the
chi-square distribution. P@arson'svtheoretical conclusions,
hovever, were later proven to be entirely accurate only for
thé.case in which the null hypothesis provided exact values
for the expected frequencies. For the case in which pOpuf-

lation parameters must be estimated from sample data, Sir
Ronald Fisher in 192% showed that the distribution of the
test criterionjhas one less degree of freedom for each such
estimate made. His théor@tical conclusions were subsequently
backed up by various published sampling experiments.

Dr. F. Yates, who introduced the correction for continu-
ity in 193%, H. Mann and A. Wald, who arrived at an express-
ion for the "best" number of clésses'(i9%2), and George
Barnard, who resolved problems of interpretation relating to
the 2 x 2 contingency table (1947), were ofhers who played

.significant roles in the developmeﬁt of the goodness of fit

- and other chi-square testse. : |

Because of its non-parametric nature, the chi-square

test has found application in many statistical realms,




However, this by no means spells the extent of chi-square's
cohtribution to statistical inference. In addition, it has
valuable application in tests of independence, homogeneity
tests, estimation of arbitrary parametérs, experimental
design énd linear regression,

There are two basic forms of the chi-square statistic,
the continuous form and the discrete form. Continuous chi-
square ‘1s defined as the sum of squares of n independent,
normally distributed variables, each with zero mean and unit

variance. In notational form,

él‘:_:_)_ , where the Xi are N1D(0)

uu

n is called the number of.degrees of freedom,.

The probability density function of the continuous chi-

square. statistic is given by a

p)- g B0 <5 0en’4

ﬂ@@ is the gamma function of pn where (m) is defined as

Mw) = /X"""Agﬂxgx
o

 Discrete chi-square is defined in terms of the observed
and expected frequencies resulting from performing a random
experiment a given number of times.

Formally,
/X(g;“) i§°~ E~2

L=

where k is the number of classes of frequencies

O; is the observed frequency in the jth class, 1 = l;2...k




E; is the expected frequency in the 1th.class.

This is the goodness of fit criterion. Tbe number of
degrees of freedom n is Interpreted as the numﬁer'of indep-
endent expected frequencies. As n becomes infinitely large,.
»1thé distribution of discrete bhi-square approacheé tﬁgt

of continuous chi-square.
In this thesis I will discuss the mathematical deri-

vations of the chi-square distribution, describe its properQ B
ties, explore its historical origins and background, and -

.fpllow it through to ité applications in mpdern‘statistics. -




S CHAPTER I SR
~ MATHEMATICAL DERIVATIONS OF IHE CHI-SQUARE DISTRIBUTION
1. MATHEYATIGAL INDUCTLO L

By definition,'/l’ 2)( s where the Xi are N1D(0,1)

Let n = 1
a

Then X~ = %2, X is n (0,1)
.#NWJ“Qf%Ts_w4X4¢'

NEY
Put ¥ = X2
er\l?
Ax ____L.
Y _QW'
'] og(Y) =4.2~‘Q-—E,_.L.-) OLYAOD
Jar Yy
-4 Y« o0
<
)But ..ZL a'é"‘" ™ )
?C,x——-L——JL a@c) ,0475.4
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- 4 a>
ol e7* 04 34‘3"
T

X2 follows a dist. with 1 d.f.
Assumeéx is a ’7{@) and show undar ‘this assumption that

,: =
m+t

a
Z AT is a 7

i<

Let'O’:X%-e-x‘zgce-e”xg
V = x2 " -
M o@my :
oo gl = 4 PUT o osusee
a‘i"‘r(,m) S
h(V) =__1 _,Q—%f
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U= -)\(r =. \( > £ &

U and V are independent since the Xi's are indepondené,i”"

°

o o Joint density function of U and V is given by Lo
v""‘ Ui, -U:E‘J, o ULed
m+/a)"€_>r(£.) o avese - o

Let Y =U+V  U=Y-Z2

Z =V V:Z
J = l -l‘ = l '
- o . 1) | | e
| "f.f. Joint densiuy function ofyx and Z is given by“*f§;r-1ff‘
W] (. (\’“27 =TT 0 &Y 4D -
& l’( & “ oAzLY :
B v";,.'Probébiliﬁy densi vy function of Y is givan by ﬂf;fv?'-"

'Kfyz‘ﬁ(‘/ ‘z)‘* 47;

- Let 2 = 1Y
dz = Ydat -

e e Probability density function of Y becomes

. K f({: \{) 9“(\/--{; Y') l\(&_e kYQ Y FY f_& a( 't) = d‘t‘ | .

e rm @ TE T

';4 o ® Y-“ U + V zollows the chi-squar@ distribution with

a -+ 1 aegrees of freedome
-

",. By the principle of mathematical induction9

& v ':
”';{-;‘X* ; whers the Xi are N1D(0,1) follows

the chi-squargidiétribution withln_degr@es of froedom. -



2. GAMMA DISTRIBUTION DERIVATION

X e
Define m) =){ﬂ. x"“'dx
_ o

Then £(x) = o X )
is a probability density function called the gamma function

with parameter n.

The monment geherating function of the gamma distribution

is MX(t) - E(etX) = fi;_é;\_) X.(‘t"l)Xm-ldX

_w(i~t) s
= rm[ dx

Let U = X(1-%t)

i

U/1-%

X
(1-%) X & = au/1-%
Um1du

Mx(t) T@Y\) (ﬂ”" (S =)

_ | red_ L 4l
A CON

Let us find the distribution of the sum of two independ-

ent gamma variates, X; and X, with parameters { and m

respectively. Its moment generating function is

Mx + 1) () = B(e"(FIF %2)) = p(obXL ot2)

= E(e"*1)E(e¥%2) = Mxy(%)Mxo(t)

= 1 1 = 1 , which is the M.G.F.
(Lee)e  (1-t)m (L-g)R+m |

‘of a gamma variate with paranmeter £ + me
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Sum of 2 independent gamma variates with parameters 1

*® °

and m respectively is a gamma variate with parameter 1 + m.

Theorem 1
A
If X is NQ4¢?) then éjzzﬂl-is a gamma variate with para-
, o>

meter . N
Proof -'%;[K:ﬁél_é :
o>~ 9X

piodx =gz 7
Let U =_Qg_—_ﬁﬁ U = __X_:_g. 4%
*rC* o)

Also X -ph= oo¥5U 5 AZH
X - o V3V j A< H

U -v"éL,
and g(u) du = ¢ U du

)

which shows that U = #(X -fu)2 is a gamma variate with

parameter 4.

Theorem 2

A ‘
$+X is a gamma variate with parameter % given that
a 2R
%—_-éﬁb_:_%ﬁ»
a=i o
From the result in theorem 2 it follows that. the prob-
8
ability density function of 7@4£ is
a
/A a)‘g‘"
2 &+ (a iz

1
)

-8
and the probability deg;ity function of A is
{ m

___._l.—-————-_,gﬂ%: %a)"—l()d&
rE)as ).



3., TFE MOMSNT GENERATING FUNCTION TECHNIQUE

Consider the probab:.lity density function

m. -
£ (x) '-;,;(7&??‘_)%& - ’0;4714‘:0

Where n is the number oi‘ "degrees of freedom”e

The moment genera ulng function of X is

1 6) E(ﬁ) m)f ex m.‘JX
;1"‘“1‘(%‘ uﬂl‘x%-ldx
Lot U '-'Q-.Z_“G_EC_' | X = 2V
| 12t
du's L»::@i)“x X = 2d
, 1-2%.
O J V™ e du
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o o o L
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= Q Q{yWa

Consider A* gX; 5. where the Xi are NlD(O 1)
. XA
B(5) _E(fﬁx‘ ) “,'”‘E(I—et ‘) = [MxL Jc)}

~ since all the Xi have 'bhe same distributione




o4 JcXL __XL/.;L
M2 () = 5(4 am ,f_. ‘JX

oo x“(l at)

'“"""'d Xi

= \g'—_' :
' + [&u :
Let U.= Xi?2 2( ;—gtz X=% | —-at

40 = Xi(1-26da0 du = 2duit-3t

e e M.2(t> U_____-l————;——-‘
: \Iiﬁ: mil—a&' |
L j_*.’uu'*-": du
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(- 207

1

R
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wh:.ch is the M.C F. of the previous distribut ion.

o

| X
e e ne’ p;ooab;liuy den.u.\.y fmc 10"1 of 7( ZX NKOC ,) .

| ' YA i

B vis g( (X >._ m/g_r( [7[ | Y o L 47(,4

L. CGROMRTRIC DERIVATION = . -
By definiti 'r{9 | |
7i éX 5 vhovo the Xi ave NID(0,1)
. \

mis eouau.uon ‘represents a hypersphere in n—dimensional
a

. spaca\_wi’cn radius 7C . If we considez' 7( as a parameter,



7
then depending upon the value of7(9 we have a family of
concentric hyperspheres with centre the origin. In 2-space

we can represent 2 of these hyperspheres (now circles) as

dx

where é 7( is an
element of radius

For n—s‘pac@9 it can be shown that dv, the element of

volume between 2 hyperspheres can be expressed in terms of
4%9 the element of radius, by the following formula
"
av ={(’7{ o where K 1s a constant.
We also knoy that the j{;int density function of the
- z2Xe - X2

Xi's is R ¢ - =R2

Thus we can f£ind the probability that a random value

of X 1lies in the intervaldX, It is
AN A
ke *du=heo KX d%

A L, o S

=CX

Since ¢ 1s independent of 7( s We may solve for it using

the property that /71?(7()57( =1

o0 4

__d; =1
f«)[C”Q "dd



4 Ia .
Lot ul-:%?— | =
~aw8 A—‘W( d?f:.__fly__
. - Jau
O

p
( fo e-U Ea_é
<

[ ("%
o o The probabiliuy aensiuy‘ function of 7£ is
— 3— m~| .
%(%) —‘ﬂquCS | ¢
Lot V=" A=V o

av = A%dX H=du_
ASIVA

Th@n? /g&) d\/ = /@ __y, <\ m"/&. é Y

’) m"/& r.(gjar'
e ¢ The p¢ooabiliuy dons oy fanction of ‘7{ ig

3 -
a’“/irm .: (7( yo‘”—%“’o.

Qis called the number ¢f dogreos of Lreosdom.

Suppose now vwe have P Llinocar homogencous conutraint. '
on the X;%s. ‘Bach of theso constraints is r@presented by
a hyperplane intersecting the n-dimehsional hypersphere

\through the origin. ~This Will result in a hyperspherc of

the same radius but o; one dimension lower. Thus, with these

P linear homoveneous constraints the cist ibution remeins
the same, except that the number of écgrecu of frec&om |

changes from o to 1 ¥,



CHAPTER II

MATHEMATI CAL, DESCRIPTION OF THE CHI SOUARb DISTRIBUTION AND
LTS PROPERTIES

DESCRIPTION OF THE CHI-SQUARE FUNCTION

The probability density function of the chi-square
(294- -AYa

distribution is given by %(% = —
a/&l‘(%

where n 1s the number of'degre@s of freedoim.

As previously shown, this contlnuous distribution is
that followed by the sum of square%ii%d@pendently distrib-
uted normal variates with zero means and unit variances

(standard normal variates).

Note that wpel - AT P
/Qurn __,_.,L___. ()ﬁ ) : < = 1 ' -
q:——)oo A /ar@ﬂ-) am/ar,%l.) A % oo ,QK%L

An application of |['Hospital's Rule (n-1) times shows
2
this limit to be zZero. Therefore the chi-square curve is
asymptotic to the positive X-axis, and is skewed to the right.

Also or M>a
» £ ..%/3

-1
Lirer 6X) =0
Ao
Therefore the left end-point of the chi-sguare curve '
for m=>a is the origin.
The extrema of the chi-square curve are found by

setting the first derivative equal to O.
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a
Let X = | vl
= X -2

TR - X mp-l
My = a A L A a
i = gty 10-1) o
_M%M/a— {(L&, { f/,ﬁ)__J-} 0
2 '&%’- 0 implies X =

B
A = 0 implies'%

(%-1) 1~ =0 implies X = n=2
X 2

Using the second derivative test, it can be verlfi@d

that the maximum of the chl-sguare curve occurs atc{ = n-2

PEARSONIAN DISTRIBUTLIONS .

Karl Pearson has shoun that the standard frequency dis-
ﬁribuﬁions may be re?resented as solu%ions of a certain
differential equation. In particular, the chl-square curve
can be characterized as a "Pearson type I1I curve™, and as
such can bs writiten in the following form:

Al (X~ 1) |
=C(X..]J-) s )X}“ L7o A7 o

where for the chi-sguare curve,

o

M =0, A= % s L= 1

" MOMENTS AND CUMULANTS

It has been shown in Chapter I that the moment generat-

ing function of %the chi-square distribution

is given by 1 s At«l
(1 = ae)™




1l

, From this, we can easily obtain the moments of’x

M({:}HOT‘ ~G-(l—-at)” e (- w o M= N

(== (1=24)"" (:ﬂ}%w
(&-+m>a = Mm%+ dm '
" Therefore, Pa p; }L)& =n = 2n-ﬁ;'2n

 Similarly, all other moments may be obtained.

H M”‘a?)},b,o

B

ll

However, we can also obtaln the moments directly. For

example9 the mean is

By = / %me

N e mp =1 _7(/&

i) (J‘)% A"
Bat [ fen) = w%””’ Mk
Tz - )" m("ﬁ 7

m’ Of
.-- m“/ A" /;Lcl%

i

f

4]

Since [(m+l) = mfzzzl
H =:r€§93f71 @n? él%" :
In the same manner, we can obtain the other moments of
X ='7{%' . |
A formula for the rih moment about the origin ¢an be .
obtained from the gamme distribution. The rtth moment about

the origin for the gamma distribution is given by

“Fe / 2”7
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#—%%%Ef¥>= (m)(m 4+ L)ecoolm + = = 1)

oince 3'x is a gamma variate wit h"parameter % 5 the

rith moment of the chi—square distribution is

Hé==ahr(“"*€97 = (n)(n % 2)fn‘+ff)....(n.+ 2r - 2)
s - |

The facuor 2% pesulis f om the fact that multiplying a
variable by 2 multiplies its rav moments by or,

From the moment generating function; it follows'thét '
thé cunulant generating function |

K(t) = log M(t) = log (1-2% )y~ 2
log (1-2%) '-JQLEEJQil

© e
- e

=

H

=

From this, the rth cumuiant is
ko= (r-1y2 2
This can. also be(obﬁained fronm the‘gamma distribution.
Since the r'th cumulant for the gamma distribution with .
parameter‘m is Ko = n(r-1) ¢ = m [ (), theArtb cumulant for
chi-square is given by Kp = 2T fkr)(g) = 2r”1(r.1) ﬁ n

From the moments we find that:

(1)'coefficient of skewness = } = &%40"
= 12 -
= ,

(2)'coefficient of kurtosisz'k'*

| Pa
. Noto that Lion ¥y =L Yo =0 _‘
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This indicates that the chi-square distribution tends

{0 normality for large n,

SPECIAL CASES: DEGREES OF FREEDOM ONE _AND TWO

Let us now ekamine the special casés when the degrees,
of freedom, n, of the chi-square distribution are l and 2..

Case (l) n <2

Then the equdtion of the curve reduces to

V= @a oaxéw

l\‘)!}—’

Its graph is as follows:
ng)\ica'sh

|

case (2) n = 1

%&

—_Z.& X PN
Thon y = 1 g RRhS oz d 4
' Jamr .
Lts graph is as follows:

vg\\%&_

This is the same distribution as that followed by the

square of a normal variate with O mean and unit variance.

ASYMPTOTIC DISTRIBUTION OF CHI-SQUARE

Asymptotically, chi-square follows a normal distribution.

This was indicated previously when it was shown that in the
limit both Xl -and .Xz approach 0, A formal proof now

‘follews. The moment generating function of the chi-square

‘distribution is given by 1 o 5 o, However;/the
| (1-2t)§ |



L
moment generating function of a distrlbution does not always
exist. But the characteristic i‘unc’ciom E(eitx)g | \!——, ,
always exlsts aﬁd, like the moment generating function,
A‘uniquely characterizes its disfributione' '

The characteristic functlon, (c. F.) for the chiwsquara ‘
distribution is Qx(t) 1
. , (1—21t)§ A
. Let y -—x;—f‘}*—, where K =n and G"a.= 2n
" "Y‘Then ¢y("u) = mfé (% . ) ..

'lilogﬂgb -—%_ - ;g, [logza %}

3

Since logﬂ(l +X) =%~ l-)-.%_ +o

 and letting' -2 =X

. log 3937'(1*.) = =it +"g[-&dc
‘ 2 SZn_ 2L Yoon
o - A
e o 1lim lOg d) @) = “':t"
4 m~>°" . }{ >
' "9 e lim Cb,u&@ﬂ = e * which i1s the C.F. 0of the standard
, normal distrmbu’tiom |

Thus9 uhl-square asymptotically follows a normal dlstrl- '
bution. , ,
| Fisher has shown that fo;nw’ao 0% is approximately

, normally dlstrlbuted w:x.'th mean = Wn and variance = 140_”
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This can be proven quite readilys:

PEE-Bm £ X)
wﬂ@?é PERCY

o Pl x+ axk{am-+am)
= P Z—X/a-%-m X ¥ 3

: nﬂ;
\EVN Q&
Where Z is a random variable normally distributed with O
mean and unit variance.

Tnus, to test the signmficance of a value of  based
. on more than 30 degrees of freedoms one can treat
.as a normal deviate with mean O and variance 1. |
In addition, Wilson .and Hilferty have shown that
is.épproximately normally distributed with mean l-ﬁ%;'aﬁd
“variance'z .~ Garwood (1936) has shown'that this égprOXG,
imation 1 ebtor than thab of Fisher‘so o |

REPRODUCTIVE PROPERTY

The sum Qf'k ihdepeﬁdantly éistributed dhi;squéreéy
with ny, ﬁz ;;énk ‘degrees of freedom respecti&ely, is -
a’chi-square with  degrees of freedom. -
This can be proved using the moment generating functioh  '
o techniques . . | | Q“" - .
| eGP ofé_?ﬁ& ( 2 y o R
:-p_E(ﬁ ‘>, WT(]—at)mv&'v~ "‘}3 .H:,i1f RS "
- J : P o
(Cae)eh
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which is the M.G.F. of a chi~-square withié/“i degrees of

-freedom. As a corollary: - |
If the sum of two independent positive variates 1s a
V-variate with np + no degrees of freedom, and one is a7{

with nl degrees of freedom, then the other is a 7( with

n2 d fo . . .
This follows from the fact that, since the 71 s are ‘
independent, k
- piene - np N
(1-2t)” =5—2 = (1-21:) 2= ML)

°

ee M o2 (%) = (1-.%)
A theorem which has useful application in homogeneity

v

ﬁests is the following one, due to Flsher..
FISHER'S THEOREM |
Let A be a sum of squares’of n independent normal

4standardized variates Xy, and suppose A = B + C, where B is
.‘1a quadratic form in the Xj, distributed as ﬁ: with h degrees
~of freedom. Then C is distributed as C{ with n-h degrees
of freedom, and is independon% of Bo | '

" The proof may be sketched as followss

| Since B is & quadratic form in the Xj and is distributed

as with h degrees of freedom, B is-a sum of squares of h
orthogonal linear functions Y 5 Yigseeey Y of the Xj. From
‘ rthe theory of ‘linear transfommation39 we can find n—h further
functions mnﬂa,ikwhich are mutually orthogonal and

Al
or%:hogonal to ¥y 4 Ypgeees Yhsuch “that axﬁ =Z Ty
3=

eyl

. -’r-’
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It can be shoun that if the Xj are N1D(0,1) then the
Yi are N1D(O,1)

We have9

A= 4:)4‘1 = B+C = ?&mc -«2\’*'%“2\{:
b
%Y'&
%~hﬂ is a sum of squares of n-h independ-

ently normally distributed standard variables and therefors
follows the chi-square distributionlwith n-h degrees of
freedos. | |

This theorem can be extended,ih the following way:

If A = B?+B2+ eao.oBk + 09
vhere A = é\/\ﬁaand Byy L = ly...k is a sum of squares
of ny variates Yy which are independent linear functions

R S
of the Xi and Zmisam , then C is distributed as X with
R A=
n-ggfﬂﬁ degrees of freedom, independently of the By,

IHE PARTITION TﬁEOREM

A converse of this theorem is the partition theorem.
It gives the condition under which each member of a sum of
k sums of squares will be independently distributed as A
This theorem states:

Let the sum of squares of the n variables Uj; UjseeoUpy
be partitioned into a sum of k sums of squares, Qp QoeeeQy

with £4, foy0.0fy degrees of freedom, respectively:
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The necessary and sufficient condition that Ql, Q2...Qk
are stochasthally indenendent and - dlstrlbuted as'x. with
fl, f5 ....fk degrees of f;eedom, respGCuively, is that:
Lo+ Lo* fk =n
This theorom forms thé theorotical basls for the analysis

of varisnce.

e e

MULTLVARL ATE NORNAL DTSLRIBUTIOV

Another property which has very important applications
involves thé-distribution of the quadratic form in the expon- |
ent of. the multivariate normal diSuribuﬁiono | |

Let X19 Xoyeeok have the following jolnt distribuuion°

f'(x;x?_...xnf-: G sl M) _\_/ll(x'”“]-_

~Where X is an nxl column vector

p isan nxl column vector

-1

VT, the inverse of the variancescovariance matrix,

' ‘is a symmetric nxn matrix.
Let Q = (X-—M).:LV“1 (X~

The momenu generating function of Q is My(t) = E(£ €9 )=

J-f @vsm/*r‘ cexp P VIH=H) 0 pft @) dudars e
j... | G o - e -'@ M- at})“ T

{\/}

so [+ I
I — b—-
f f @Tﬂm/"\! [V/icat! (1 aﬂ "“GXP[_‘ (X~ Iu) V© '(X MY &JQ]
™/ a 7{' Ya. ,

. (M)

o o Q follows a’X' distributlon thh n degrees of freedom. |
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RELATIONSHIP TO OTHER DISTRIBUTIONS

(a) NORMAL DISTRIBUTION

(1) By definition, chi-square is the sum of
squares of normal, standardized.variates.
S (2) It has been .shown that chi-square is as&mp—
. totically normally distributed ﬁith mean n
and variance 2n. Flsher has shown tbat{ﬁﬁa'
"1s approximately normally distrituted with
H»meanﬂﬁ;;-and variance 1, '%%lson and Hil-
| ferty have shown that (ﬁi) is approximately

normal with mean (l—~ ) and variance g
: 9n.

(b) GAMMA DISTRIBUTION

& a
. ‘ 2% Y. . o
It has been shown that ”/Z'Ef =X >X'MD@")‘LS a gamma
variaoe with param@uer ne <Ihis property s1mp11fies the (
derivation of many. othexr properties of'%

(¢) BETA DISTRLBUTILON

There are two %ypes of Beta variates, denoted by

By and B,. The probability density function of Bl is

fer, m-t
B = X fi=X) | o 4Xel

The probability densmty functlon of B2 is B2(X)
R o
= N S Qé—_)(—éo‘?-

Sl (e x)m

- ' -~ ‘
where B(l,m) = J’x kl:x)nﬂ dx
' : ' -3 : :
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It can be shown that if X and ¥ are independent gamma

variates with parameters ﬁ and m respectively, then X,X -
, | _ | T

is a By variate with parameters d and m. Also, % is a By
variate with parameters.ﬂ apd Me
From fhis, and knowing the relation between the gamma -
and the chi-square distribution, the following theorem can
be stated: | ‘ .' ’,
if'the independent variates X and Y are distributed as |

fchi—équare with n; and n, degrees of freedom respectively,

then %}Y" is a By variate with parameters nj and n, , and
o} —— L

-%. isa Bg variate with parameters ny and’Eg .
| , 5 2
(d) STUDENT'St DISTRIBUTION ‘
The random variable t is defined by © = Z

o : o~ . v{m
where Z is n(0,;1) and V_is‘K vwith n degrees of freedom, and
Z and V are independent. ' | - . ';

(¢) T DISTRLBUTION

- The randonm variable F_is'defined as F = C?ﬁ:‘
| ' ' : %

vhere V and U are indépendently distributed as chi-squares

‘With‘ni“and n, degrees of freedom respectively.
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CHAPTER ITT
HISTORICAL DEVELOPMENT

The first known derivation of the chi-square distribu-
tion was obtained by Prof. W. Helmert of the Polytechnikum
in Aachen, Germany in the year 1876, 1In a very general
' paper, entitled ®On the Probability of the Sum of Powers in
Errors of Observations and Some Related Questions", Helmert,
working on a special case of this problem, derived byvmathe-
matical induction the distribution of n normally distributed
standard variates, Twenty-five years later, Karl Pearson
was to name it the chi-square distribution.

In Helmert's paper, he first sets up the multiplé _
integral that must be evaluated in order %o obtain the dis-
tribution of the sum of the mbh powers of n errors in observe
ations, and proceeds to solve it for particular values of m
and n, given that the errors follow a specified distribution.
Having first dealt with the unifqrm distribution, Helmert
then proceeds %o the case in which the errors are'normally
distributed. Substituting the Gaussian function into his
original formulé, Helmert obtains the required distribution
for the cases n =1 and 2 with m = 1,2 and 3. He then con-
cerns himself exclusively with the proﬁlem of what happens
when m is fixed at 2, stating that for this value of the ex-
ponent, "the méthematical treatment i1s most convenient'.
Using the results he obtained for n = lland 2 he easily
extends his findihgs to'n = 3 and 4, These caleulations now

strongly suggeét a general formula for the distribution of

°
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the sum of squares of n standard normal variates with n
arbitrary. A formal proof by induction verifies this
hypothesis; and the chi-square distribution has been de-
rived for the first time.
KARL PEARSON

The chi-square distribution seems to have been neg-
lected until Karl Pearson rediscovered it in 1900. In his
classic paper in the Philosophical Magazine, he introduced
the goodness of fit criterion, and established its dis-
tribution. ©Since all goodness of fit problems up to that
time were solved by visual inspection, the 7fL test hés
turned out to be one 6f the most useful in statisties.

Pearson starts off by considering the multivariats
normal distribution, = 'Z=Zo,°;% of a system of variates
with zero means; where @ is a quadratic form. He defines
7CLto be Q and proceeds, by transforming the ellipsoid
’Zﬁ; Q into a hypersphere, to develop its distribution. The
result is that he expresses P, "the chances of a system of

errors with as great or greater frequency than that denoted .

X -
by "y as P =z /,Q /&mJﬂ

/ A e

He next expresses this probability in power series form,

and from this develops the first probabillty table for the
7( distribution.
Fearson then applies these results to the goodness of

fit problem.‘~The problem 1s that of deciding whether a set
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of observed frequencies can be reasonably considered under
random'sampling to have arisen from a particular theoret-
ical distribution. In other words, 1t must be decided
whether the frequencies to be expected under this distri-
~bution are compatible with the observed frequencies. Pearson
first assumes these expected values are known, and deals
with an (n+l) fold grouping of frequenclies under the sole
restriction (which is crucial in order for the test to make
any sense at all), that the sum of the observed frequencies
equals the sum of the expected frequencies. Sincethis
fixes one of the observations, we‘have left only n fariables.
These he assumes to have a multivariate normal distribution,
and by a complicated transformation to polar coordinates he
obtains the result that the quadratic form Q = ’76&=§ 'QL%'"‘

Lc’

where my 1is the lep eipected frequéncy (known a priori), and
ej 1s the 1y deviation of thé observed frequencyﬂnffromnn;.
This result, the goodness of fit criterion, Pearson aptly
refers to as being "of very great simplicity and very easily
applicable",

One calculates this result from the data and finds the
corresponding P, the probability that a random sample of
observed frequencies from the hypothetical distribution will
give a more extreme value of'%a: If P is between o1 and .9,
the hypothesis of a "good" fit is almost always accepted.

.This value of P, Pearson notes, can be calculated directly
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from the power series form, 6r for m«i3 can be obtained
from his tables. However, these tables, which give P as
a function ofq:&and.nl =n + 1, are not completely accurate.
This is because Pearson assumed, as long as the only linear
constraint among the observations was that imposed by fix-
ing the total sample size, that nl could aiWst be taken as
one more than the number of cells. It was Sir Ronald
Fisher who showed more than twenty Years later that the
number of degrees of freedom used by Pearson was not correct.

Pearson concluded in his own paper that if the expect=
ed frequencies had to be estimated from the sample, the dis=-
tribution of the test criterion would remain unchanged. He
compares‘%& based upon the true theoretical values with7ﬁ?
based upon estimates from the sample data, and says the
following about the differences between them:

"I think we may conclude thaﬁ'%-only differs from

As by terms of the order of the squares of the

probable errors of the constants of the sample

distribution.” '

Thus he maintains (although as Cochran notes, "with
some sign of hesitation",) that estimation of parameters o
from the sample data does not modify the distribution of X ’
and in particular, its degrees of freedom. Pearson was to
stick adamantly to this conclusion until 1922.

Although Pearson granted, and indeed himself showed
(1915) that the degrees of freedom had to be reduced by one

for every linear restriction imposed upon the observations,
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‘he drew a distinction between this and the estimation of
population parameters. This 1s clear when he says,
"If the sampled population is not known we can
only put for the marginal totals the values
given by the sample itself and test from this

substitution the degree of divergence from
independence."

As Fisher points out, however, Pearson never suggests
any correction for this. Pearson states (1922):
"We certainly do not by using sample constants
reduce in any way the random sampling degrees
of freedom. What we actually do is replace
the accurate value of X*y unknown to us and
cannot be found, by an approximate value, with
the same justification as the astronomer
claims, when he calculates his probable error
on his observations, and not on the mean square

error from an infinite population of errors
unknown to him."

SIR RONALD FISHER
It was Fisher, who in papers in 1922 and 1924, finally

cleared the issue up, at least theoretically. In his 1922
article, Fisher dealt principally with the 2x2 contlngency
“table. He showed that nl, which is entered into Pearson's
table along with the calculated %f\to obtain the corrgspone-
ding P, should be taken as one more than the degrees of free-
dom in the distribution. Since in a test of independence of
two attributes, the marginal totals are used to estimate the
expected frequencles, they'are considered fixed. This leaves
only 6ne degree of freedom by which the expected values

might differ from the observed values, not threa, as Pearson

would claiﬁ., Fisher also points out that the same problem
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can be examined by testing the difference between two pro-
portions, using the normal approximation to the binomial
| distribution. This procedure should be equivalent to the
’Zatest, but only if the degrees of freedom are taken as
one, will the two tests turn out to be identical.

Fisher's theoreticel conclusions were backed up by sam-
pling experiments on the 2x2 table conducted by Yule (1922),
By comparlng values of observed 7*5 calculated from 350
tables with lOO observations each, against the values to be
expected from the theoretical distrlbution, he found that -
the two sets of 'K 's were compatible only if each table was
assumed to have a single degree of freedom. _

Fisher's 1924 paper deals with the general case in
which population parameters must be estimated in order to
obtain the expected frequencies. First he points out that
the distribution of 7(& wilill depend upon the method of estima;‘
tion. Reasonably enough, he chooses to estimate the par-
ameters in such a way that 7( i1s a minimum. He then shows
that if the number of observations is large, this method is
equivalent to that of maximum likelihood.,

Figher's maih accomplishment in this paper is showing
that if a single estimated parameter is used to caleculate
the expected frequen01es, the resulting 41 differs from the
true Q: by the square of a quantity normally distributed
with unit variance. Since this quantity has a single degree
of freedom attached ot it, it is evident that for each estima-
ted parameter, one degree of freedom is lost from the distri-

bution of 7(
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Thus Fisher cleared up the issue theoretically. Pear-
son, however, taking up a new line of‘defense, still maine-
tained the degrees of freedom for a 2x2 contingency table
should be three. He claimed now, and as late as 1932,
that fixing the marginal totals ereated a "spurious" con-
tingency table and that the data should not be arranged in
a 2x2 table at all. Many others also questioned the logic
of having contingency tables with "fixed" marginal totals.
One would expect that in many experiments, the marginal
totals would change from sample to sample.
GEORGE BARNARD

George Barngrd,.examining the philosophy of the sit-
uation in 1947, resol#ed the problem with great thorough-
ness, He verified that élﬁhough logically three different
kinds of tests of independence can be executed on the data
in a 2x2 table, each involves only a single degree of free-
dom., The appropriate test depends upon the abstract picture

the experimenter has in mind. However, the adoption of the

correct picture depends upon information not always supplied

in a real situation. It is this information that determines
the differences between the three tests.

What Barnard refers toias "independence trials" corres-
ponds logically to the case in which the marginal totals are
‘allowed %o vary from sample to sample. For example, in test-
ing the hypothesis of indépendence between marriage adjust-

ment and level of education, one would not expect the numbers



28

in each category to remain fixed from trial to trial. How-
ever, since two parameters must be estimated in order to
test the hypothesis of independence, and the total sample
size is fixed, we have left only 4-2-1 = 1 degree of fresdom.

Barnard's "comparative trials" correspond logically to
the situation in which one set of marginal totals is fixed.
Hers the null hypothesis is that the proportion in the %wo
categories are egual. For example, one may have two urns,
A and By each containing balls labelled either I or II. The
null hypothesis is that the proportion of balls marked I in
urn A equals the proportion of balls marked I in arn B is
equal to P, say.'-it is assumed that the number of balls in
each urn 1s fixed (although these two totals are independent).
However,; this means one parameter (P) must be estimated.
Furthermore, fiking a set of marginal totals imposes an add-
itional linear restrictlon on the observations. Thus again
we are left with a single degree of freedom.

"Double dichotomy" trial is the name given by Barnard
to the situation which corresponds logically to fixing both
sets of marginal totals. An example, as pointed out by
Cochran (1952), is Fisher's well-known tea tasting experiment
in which a lady attemptsto guess whether milk or tea was
added first in her cup. In the test situation, one classifi-
cation corresponds to what quantity is added first, and the
other classification, fto Qhat the lady guessed.was added

first. Since she knew how many cups were of each kind, it
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i1s assumed she matched her guesses to these numbers. Again
the null hypothesis 1s that of independence between the two
classifications, but now there are three linear restrictions,
corresponding to fixing the two sets of marginal totals and
the total sample size. However, there are no estimated
parameters since fixing all the sub-totals and the grand
total permits the exact cdeculation of the various proba-
bilities. Again we are left with one degree of freedomn.

Barnard's paper was a valuable contribution. He show=-
ed whether the marginal totals in 2x2'independence table
are lnterpreted as being fixed or not from trial to trial,
the resulting'xaihas in either case one degree of freedom.

Besides the "degrees of freedom" battle, the goodness
of f£it test provoked discussion on other points. Some of
these points are concerned with the minimum allowable number
of observations per cell, the optimum number of classes in
thé observationsy; and the need for a correction for continui-
ty.
MI NI MUM NUMBER OF:OBSERVATIONS AND THE CONTINUITY CORRECTION

There are a variety of proofs for the limiting distri-

“bution of the chi-square criterion. These include Pearson's
original derivation, and Cramer'’s method, which makes use of
the characteristic function. Morgenstern (1958) has given
‘a proof based on mathematical induction. ©Still another is
Rybarz's proof (1959) using the asymptotic normalit& of the
Poisson distribution (an idea originally stated by Fisher).
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A1l these proofs, however, have in common one assumptlion,
and this is that the total sample size is large, and that
the theoretical numbers in each class are not too small,
There are two types of approximations made by these
~authors that make these assumptions necessary:

(1) Rough approximations which include Stirling's

approximation to the factorial and the omlssion qf all but
the first two terms of the Taylor series expansion of

log (L+X) =X =X2+ X2+ weee
2 3

(2) The approximation of a discrete distribution by
a continuous one. |

In Pearson's original proof, he took the observed
multinomially distributed Xj's as each having a ﬁormal
distribution'about the dorrespondihg expected value, mi. As
Cochran points out, this'immediately committed him to a
large number of observations per cell. Camp (1931) has set
bounds on the maximum errof involved in this.

Howevery, it 1s not necessary to rigorously make the
normality assumption. It may be alternatively assumed that
the discrete distribution of the test criterion can be |
approximated by the continuous chi-square distribution. This
assumption arises from the fact that, in order to facilitate
" the calculation of the tabular probabilities corresponding
to different values of'xe, one must replace a discrete sum

by an integration over the appropriate region. The error
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involved in both types of approximation increases as the
sample size decreases; however, it is impossible to set an
absolute lower bound on the pemissible number of ob-
servations.

- What is adequate for one application may be unsuitable
for another. Although many statisticians disagree on this
poeint, the generally accepted rule is that the total sample
size should be at least 50, and that the minimum allowable
cell frequency should be 6. A number of studies have been
made on this, some of which I shall now refer to.

Hoel (1938) performed a study in which he concluded
about the first type of error (rough® approximations) that
"the actual error committed by using the customary first

approximation is much smaller than the order of the neglected

terms would indicate, and therefore the range of applicability

of P is wider than has been supposed".

Neyman and Psearscn havé studied the problem when the
sample size is ten. After performing a sampling experiment
they concluded that the exact :1& differs from the tabular
"1& by‘very little. ‘In the region of significance from (0l
to .10, the greatest difference between the two P's was
«06l,; and in most cases was far lower,

In the case in which all expectations are small{ but
there is a large number of degrees of fresdom(Cochran suge

gests no less than 60), the normal approximation to the chi-

square distribution may be used. Haldane (1937) has worked
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out exact expressions for the mean and variance of %é; that-
can be used for this purposes. For}an rxe contingency table,
his result for the mean of Za'is (r=1)(e=1).N,; where N is
the sample size. His expression forN;%e variahce.ivaery
cumbersome. Dawson (1957) has substituted a simpler but
equivalent expressions:

> 2
Var (7[ ) =N%%I ° (nl-Ul)(nZ-Uz) +NI‘E.I (Ule)

(r~1) (NM=3)
N-1

(c~1)(N-¢)
N~1

NERL T
N-2

U2 = NﬁC:H* cé\’

N-2 y

where nj

0

o

il

JUl

where ry 1s the sum of the entries in the ith row, and
Cy the sum of the entries in the Jth column.

To correct for the bias introduced in assuming that
the discrete frequencies can be approximated by a continuous
distribution, Yates (1934) suggested subtracting 5 from the
absolute valuses of each‘Of the deviations, before squaring
- them. This adjustment, called Yates' continuity correction,
will lower the value oi"x-:l and yield more exact probabllities.
Yates himself stated that "the worker will not be led badly
astray if he applies the ordinary chi-square test (after

correcting for continuity) to tables giving expectations as

low as 10, so long as the corresponding distributions are



33
reasonably symmetrical”. '

In the same paper, Yates offers an example in which two
of the expected frequencies are between 2 and 3. He concludes
that the exact results are very well approximated by using
‘}félong with the continuity correction.

Fisher stated his belief that while it is permissible
to deal with frequencies like 2 or 3 (along with the con-
tinuity correction) in a 2x2 contingency table, for all other
cases the minimum allowable expected frequency should be 5.
There seems to be some confusion here, as well as in other
parts of the literature, about the distinction between
observed frequencies arbund 5 and expected frequencies
around 5. .

As was stated before, the commbnly accepted practice is
to allow a minimum of five observations per cell. If this
condition is not satisfied, adjacent cells are to be pooled
until it is, with a resulting loss in degrees of freedom
(number of additional degrees of freedom lost = number of
pooled cells). Cochran (1952) points out that this can be
a dangerous practice, especially in fitting bell-shaped
curves such és the normal. This is because discrepancies are
often likely to appear at the tails, where observations are
most scarce. It is Cochran's belief that the recommended
minimum of 5 is too conservativeg and that too rigid an appli-
cation of the rule may result in a substantial loss of power.

However, he adds that this is Jjust an opinion since not
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enough research has been donse to make the test quite clear,

One study, however, has beendone'by Neyman and Pearson

(1931).

They concluded after performing a sampling exper-

iment that the error will not be large if the groups which

are pooled contain only a small portion of the total fre-

quency. In any case, they point out that if the X based on

pooling is insignificant, there is no problem, since the

P2 N
true minimum A would show a still better fit.

For reference, I have constructed the following table

which shows how various statisticans feel about the issue as

a whols.

Author

Pearson,
Karl

Fisher,

o

Yates,

°

Recommendations

Makes no specific recommen=
ations but states that ¥no
cell (should) be taken so
small that its contents are
very small compared with the
size of the sample',

Minimum expectation should
be 5, except in the case of
the 2x2 table, where fre-
guencies of 2 and 3 may be
dealt with using Yates?!

correction for continuitye.

"The worker will not be led
badly astray if he applies
the ordinary chi-square
tost (after correcting for
continuity) to tables
giving expectations as low
as 10, as long as the
corresponding distributions
are reasonably symmetrical®,
No minimum sample size is

~ demanded, but if smallest
expectation is less than

500, continulty correction
should be used. S

ourcs

"On the General

‘Theory of Mul-

tiple Continéency"
BKA,VXI, 1916,
pp 147-158,

"Statistical Methods
for Research Workers"
1lth edition,

Hafner Publ. Co.,
N.¥Y., 1950 pp 931

Contingency Tables
Involving Small
Numbers and the
A*test", JRSS
Supl. Vol. 1,193k,
PP 229 .




Author

Snedecor,
Ge

Yule, G.
and
Kendall,

Cramer,

Hoel,
P,

Cochran
Wo

Recommendations

"No expected number should be
smaller than 5, and when
possible, all should be 10

or more. (The correction for
continuity) is well worth
making if any critical de-
cision is involved, espsclally
if the numbers in any class
fall below 50.%

The sample size should be
“"preasonably large ... It is
difficult to say exactly

what constitutes largeness,
but as an arbitrary figure,
we may say N should be at
least 50, No theoretical
¢oll frequency should be
small. Here again it is hard
to say what constitutes small-
ness but 5 should be regarded
as the very minimum, and 1O
is better',

The minimum expected fre=-
quency should be 10.

"The approximation is usual=-
ly satisfactory provided
that the (expected values
are) > 50 i .

For the 2x2 table, Fisher's
exact test should be used if
the sample size n <20, or if
204 n <40, and the smallest
expectation is less than 5.
For n7 %0, A*should be cor- ,
rected for continulty, if the

- smallest expectation is less

than 500. However, for tables
with more than 1 degree of
freedom and some expectations
under 5, A™ should be used,

35
Source

"Statistical Meth-
ods" Iowa State
College Press,
Ames, lowa, 1940,
pp 168-170

“An Introduction
to the Theory

of Statistics"
Charles Griffin
and Co. Ltd.,
London, 1937,

p. 422,

“Mathematical Meth-
ods of Statistics"
Princeton Universi-
ty Press, Prince-
ton 1946, p 420 f.

"Introduction to
Mathematical Sta-
tisties", J. Wylie
& Sons Inc.y Ne¥o,
1947, p. 191,

o
nPhe A Test of
Goodness of FitH®

‘Annals of Mathe

ematical Sta=
tistics, Vol. 23,
1952, p. 334

uncorrected. If all expectations
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Author Recommendations Source

are less than 5, but there are

more than 60 degrees of free-

dom, use the normal approxima-

tion to the exact dlistribution,

using the exact mean and variance

of x& "
NUMBER AND WIDTH OF CLASSES

The choice of the proper number and width of the

classes for the goodness of fit test has also been subjected
- to scrutiny. These are important decisions, since differ-
ent choices may change the result of the test. Williams
(1950) gives a simple example of this. Consider the
following frequency distribution, where the dashed line
represents the distribution under the null hypotheslisy the
numerals I, II, III and IV, one set of class frequency divis-

ions, and Il ang 1119 another set,

25
_ 20
Observed 15 b e = e~ ] -
Frequency .
‘ 10
0

a .
Then X under the four-fold division yields? =

(25- 15)2 + g5w15)2 + (10-15)2 + gzo 2

= 16,7, significant at the 5% level.
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a .
But X under the tuo-fold division ylelds X =
(30-—30)2 + §3O~3022= 0, which is non-significant.
30 30

The most thorough study in this area has been done by
Mann and Wald (194%2), By maximizing the power function of
the test at about the point where the power is % (accord-
ing to Cochran an. "arbitrary" but "reasonable" cholce), the
theoretically "best" number of classes k emerges as

k--%@

a ‘
I PR "
wher@jm |

<

and £ 1s the desired level of significance. At the
5% levels ¢ is l.6k4,

The class limits are then chosen so that the number of
theoretical frequencies in each class is equal to N. Choos-
ing the class limits in this way has the obvious agvantage
that it removes the subjective element, although it is a
fairly complicated procedure, and requires that the data be
ungrouped. | o

Although Mann and Wald rigorously proved their findings
only for very large N (N=4SO at the 5% level of significance),
they maintain that their results hold f or sample sizes as
low as 200, For sample sizes even smaller, it is their

belief that their results still hold approximately;




38
CHAPTER IV - APPLICATIONS

GOODNESS_OF FIT TESTS
(a) GENERAL GOODNESS OF FIT

It is often wished to test whether a set of eb-
served fpequencies resulting from some experiment are com=-
patible with the frequencies to be expected if the data
came from a particular theoretical distribution.

Let the total sample size be N, the number of classes
of frequencies (cells) k, the observed frequencies'ml, mp
«seelk, and the expecte frequencies mll y mol ...mhl
Then the criterionjx A’r__ZfEthere .Zn?h-— mi'= N
gives a measure of tbe(;goodness of fit". Associated with
each such calculated A 1is its degrees of freedom, the
number of independent observations in‘the sample. For the
goodness of fit application i1t can be interpreted as the
number of classes k %ess'the number of independent restric-
tions imposed upon the theoretical and obsefved frequencies,
Owing to certain assumptions maée in the derivation of the
limiting distribution of s each such restriction must be
linear and homogeneoue. The one universal restriction (withe
out which it becomes very difficult to interpret the test) is
that £2mi = £ mi',

If this is the only restriction, the degrees of freedom
become k-l. Often, however, other restrictions are imposed,
such as requiring that the arithmetic means of the observed

and expected frequencies are equal; Sometimes, also, the

expected frequencies are not known a priori, and they must
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be estimated from the sample data. That is, parameters of
the hypothetical distribution are estimated by the informa-
tion at hand. Sir Ronald Fisher has shown that each such
estimated parameter has the same effect as a linear con-
straint and therefore causes the degrees of freedom to be
| reduced by ons. For example, in fitting a normal distribu-
tion to observed data, usually both the mean and the vari-
ance of the distribution are not known, and consequently
must be estimated from the sample. This involves the loss
of two additional degrees of freedom.

The calculated value ofj( s together with its degrees
of freedom, can be compared to a tabalar'x-. If the calcule-
ted X% exceeds the‘tabular'xa, at the chosen level of signifi-'
cance , we conclude that a system of deviationssuch as that
observed will occur less than 100«L % of the time under random
sampling, and thereforeﬁiejacﬁ the hypothesis that the ob-
served sample follows the theoretical distribution that
yielded the eipected frequencles.

This teSu vias discovered by Karl Pearson, who showed
that the ﬂf criterion asymptotically followed the continuous
chi-square distribution. This would indicate that the sample
size should be large and that the frequency in any one cell
sbould not be too 1Qw0 As a general rule, the minimum expect-
ed frequency in any one cell is téken to bé 5;'1f this con-
dition is not met, adjacent cell frequencies are grouped to-

gether antil it is. This procedure has the effect of
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reducing the degrees of freedom by the number of pooled
cells. Since the sensitivity of the test is then diminished,
the‘pooling technique is not to be greatly encouraged.

The fact'that we are using a continuous distribution
to approximate a discrete set of data would also indicate
that a correction for continuity is desirable. The commonly
accepted one, that proposed by Yates, involves the.sub-
traction of .5 from the absclute values of each of the
deviations, before they are squared. It is of practical
vaiua only in situétions where there is a single degree of
freedom. In this case, since there is a very’limited number
of possible values for’%a 9 it is obvious that the distribu-
tion is discrete. By reducing the calculated ’Xé s Yates'!
correction factor partially compensates for this.

The 7€L test for goodness of fit is treated as a one-
sided test in most cases and the hypothesis of a gooa fit is'
rejected whenever a calculated statistic exceeds a criti-
cal value that corresponds with a particular .level of signifi-
cance, To reject the hypothesis under test whenever a cale
culéted 7za statistic is so small that the probability of its
occurrence under the given hypothesis is less than L 4 is to
admit that there is the possibility in fitting frequencies
or curves that thelfit can be too good. - In'some areas of
research a two-sided test of this type is useful in detect-
ing some discrepancies in the conduct of the experiment such

as non-randomness in the observed sample,
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(b) PARTILTION OF_DEGREES OF FREEDOM

If the goodness of fit test is significant, 1t is
often of interest to investigate where the discrepancy lies.

We can then test the significance of any linear function

of the deviations, L = ;igi(mi~ mil), where the g4 are
-

numbers chosen in advance. The test criterion is X =
a
L s and is approximately distributed as chi-square

Var(L)

with one degree of freedom. For tests involving the Poisson,
binomial or normal distributions, Cbchran (1954%) has given
special formulas for var (L)e As an example, consider the

fitting of a Poisson distribution to the data shown in the

table below. (my= mil)Z
i | my mil : m{I
0 52 47,65 0,40
1 67 | 77.0% 1.31
2 N 62,28 0.29
3 52 33.56 10.13
L 13.56 3.17
5 3 %.39 0ol
6 1 __1.52 0,18
Total 240 240,00 15.92

a 1
The total”l = Zmizamil = 15,02 with 5 d.2. 1s signifi-
cant at the 1% level. The large contribution from i = 3

attracts attgntion, and therefore we test the deviation

‘L.= m3- m3l = 52 - 33.56 = 18.4%., For the situation in
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which the Poisson mean m must be estimated from the data,

Cochran's formula for var (L ) is

23 rm——éﬁﬂ - [ZC? rrm(;.~f7’hﬂ

where N is the total sample size, and m is the estimate of

m. In our example,

- = i i = 388 = 106167
"eZign TR
var (L) = 33.56 - (33.56)2 [1 + (3-106167)2] = 23.31
: 240 1.6167

a .
and 7Q)= 518H%22 = 14,59, significant at the 1% level.
23.31

It is thus seen that the deviation corresponding to
= 3 constitutes the major part of the total 7{% . Cochran

points out, however, that for the test to be strictly valid,
the deviation should be picked out before seeing the data.
If the test is applied, as here, Ef a deviation thaﬁ looks
unusually large, the calculated X will be too high.

A similar investigation may be performed when fitting
the binomial or the normal distributions. In these cases
Cochran's formulae for var (L) are:

(1) Binomial distribution. parsmeters n and p

Var (L) = ZgiPmy- (Zeymy)2~Jeim (i-np}?
* N anq

where D = sample estimate of p

A

1-p

= o R
1l

total number of observations'
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- (2) Normal distribution

Var( L ) =Zg;2m;- (Zgim;)2- (£gidim;)a- (£ gims(df- §2)2
N NS2 2Ns™*

where

di = (midpoint of ith class) - (sample mean)
S2 = sample estimate of variance

TESTS OF INDEPENDENCE

(a) r x s Contingency Tables

By arranging the data into an r x s contingency
table, it is possible to test the independence of 2 attri-
butes A and B, divided into s and r classes respectively.

The contingency table may appear as follows:

011 012 Ois T
021 | %22 o,

O3 5 Oig Ti.
Orl Or2 Orj Ors fTr.
T, T.a Te T.s T..
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If the classification of individuals into columns is
independent of the classification of individuals into rows,
then the joint relative frequencies in the body of the table
differ from the product of the marginal frequencies by
| amounts equal to chance fluctuations. The expected fre-
quencies Ejj for the body of the table can be calculated,
under the hypothesis of independence between the row and
column classifications, as products of the 1%h ang jth
marginal totals divided by the total number of frequencles
in the table. Given that T, , T* , and T.. represent the
150 row total, the %R column total, and.the grand total

respectively,

The use of the marginal totals and the grand total in
the calculation of the expected frequencies in the table
fixes these totals in the sense that the sample space for
the purpose of calculating the probability of the observed
\frequencies consists of all possible tables with these mar-

ginal totals. The chi-square statistic 1s calculated as

7( éOLK— Eh,;z

4,3

with degrees of freedom equal to (r-1)(s-1). A sufficiently
large 7: causes rejection of the hypothesis of independence,
and one may wish to parult*on'XZ with the object of dis-

covering a more specific reason for rejecting the hypothesis
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of independence,

Lancaster (1949) showed that every r x s contingency
table‘can‘be reduced to (r-1)(s-1) two by two contingency
tables‘in a unique way and such that the sum of the single
degres of freedom chi-squares is equal to the ovrigi.nal‘JlCéL
obtained from the r x s table.

The component single degree of freedom tables can be
constructed as follows: For each frequency in the last
r~1 rows and $-1 columns, there is a 2x2 table having this
frequency in its 1bwer right hand cell. The‘remaining
three cells are composed of the frequencies above and to
the left of the frequency chosen for the lower right hand
cell. |

For example, for a 3 x & table; the 6 component 2 x 2

tables are

’ | | O11* 01
011 | O12 0711+012 | 013 + 013 Oq
O21 | O 0217025 | Op3 + 0p3 Oy
| | 031+0312%073
011+ 012 *021%022  1091,,00
011#021 | 912%022 - +021%055 073+053  *+ 0p3
, | ‘ °31+ 032)
031 032 - 031+032 | 033 -+ O3 03y




| | 6

Kimball (1950) has given formulae for thefxa's of each
‘of the component tables that do ndt require knowledge of the
‘éxpected frequenéiaé. Each of these formulas are of the |
same form as that for an ordinary 2x2 table. As a result,
comp&tatibn of the single degree bf freedom chl-squares
requiresno moré‘effort than the compu%aﬁion of chi-sqdarqs
from (r-1)(sel) 2x2 tables. | A

As an example consider the 3x3 table. If the observed

frequencies and marginal tables are
q ..

011 | 012 [013 | 13,

Opy {055 (993 | T

037 | 032|033 | T3
o, | Ta [T | T

Kimball?s formulae are

7K9- = T.JgTzl(ToQOll—Tololg) - Tlo(Togozl- T.iOég}z_'
'Tl To, T TlZ(Tl + T2 }(T & le)

‘fxf T *l;23(°11+ 015) = 073(0n1 + 0pp)] ‘2
* Tl T2 3(Tl + T2 ) (T 1+ T 2)

jf: © (035001 3+ 05) = 0330015+ 05,0]°
I 73,72, T, 20T+ To (T 1+ T,2)

7( = T (K°33(011+ 012+ 0oq* 022) - <°1%+ 0530 (045+ O%lﬂa
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(b) r x 2 tables
The r x 2 table is a special case of the r x 8
table. It can be represented as follows:

Catego Category Proportion
gory £ B Total in Cate

2 X2 0= X2 n, P2= —-=

e
P4
o)
]
P
13
g
i
L‘SlN
I i

Tot
als T T~ 1T T

o>
]
o

The X4 refer to the observed values. A short-cut

metbod of calculating 7( is given by '7( éxxPx PTX
| PG
with r-1 degrees of freedom. _
As a further step, it may be desirable to test whether

the value of P in the first ry rovws differs from the value of

P in the next rp rows, where r; + ry = T
a

X may be divided into 3 components as followss N
Degrees of
Freedonm
Difference between P's in first r; and last r, rows 1
Variation among Pi's within first r) rows r1- 1

Variation among P;‘'s within last r2 TOWS o= 1

r - 1
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A separate X can then be calculated for each com-

X

parison. This is done by subdividing the sum of squares

n
éiX}F@-ﬁT%] into the three relevant components and then

?dividing each component by PQ.
As an example, consider the following 4% x 2 table

Proportion
A Total in Cat.
XL B ng Pj
1 86 81k 200 0.,095556
2 117 1038 1155 0.101299
3 ) 1475 1524 0.032152
L 61 1580 1641 0.037172
' A
P = 0,059962
N
G = 0.9%0038
P3 = 0,056367

a
4 A
Total 7((3) = ZX}PX’" PTX
PP |
= (86)(0.095556) + ... + (61)(0,037172) =
56367

(313)(0.059962)
= 91,27, significant at the 1% leveal.

There is evidence in the data that the value of P inv
the first two rows diffefs from the value of P in the last
two rows. To test this hypothesis, we first combine the
data into the following 2 x 2 table: |
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Proportion
e Total in Cat.
Xy B ___nj Py
1 and 2 _203 1852 2055 0,098783
3 and & _110 3055 3165 0.034759

o
We can now obtain the following kg

ous v ow d b
= (203)(0,098783) + (110)(&.0 =
0,056367

= 90,62, significant at the 1% level.

Oy S. RO

= (86)(0.099556) + 11%§0@L012222 - 203(0,098783)
0.056367 '

= 0,30, not significant.

Row 3 vs. Row L

= (49)(0,0 +(61)(0 = 110(0.0
0.056367

= 0.35, not significante.

From this we can conclude that the significance of
the original'ﬁevwitb 3 d.f. was due to the difference in
the value of P in the first two rows from that in the last
two rows.

In general, one may divide the rows into any number
of groups, based upon the experimenter's diseretion. Then
the variation in P among %the groups,and also within each

group may be tested for significance.
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(e) ble

The 2x2 contingency table may be represented as

follows:
Totals
where Xj's and ¥y's
X X T are the observed
1 2 X _ values
_EL T2 Ty
Totals| 11 Ty T

A short-cut method of calculating is given by

4%
N RIS A N
T ol 0y

The subtraction of T represents Yates' correction
2

factor, which is advisable for tables with only a Single
degree of freedom. _

Fisher has developed an exact test for the 2 x 2 case.
He has shown that the probability of the above table is

given by

T 1 X1! Kot ¥q1 Yot

His method is to calculate the probability of 2 x 2

tables as extreme or more extreme than the one in question,
with the marginal totals assumed fixed. If the sum of

these probabilities is less than the significance level, the
null hypothesis of independence is rejectede For example,

consider the table

10

19
12 2
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The following tables would be considered more extreme

18 11 17 12

13 - 1 4 Y

The three probagbilities for these tables would be
summed and if the total fell short of .05, the null hypothe-
sis would be rejecﬁed at the 5% level of significance.

Cochran (1959) recommends that this test be used when
the sample size is less than 20, or when the sample size 1s
less than 40 and one of the expecﬁed frequencies is less
than 5,

(d8) Combining of Contingency Tables

It often happens that we obtain a number of
tables with similar data, but from different testing areas.
Some or all of the individual?fl‘s may be insignificant.
However, we can galn an over-all picture of the significance
by pooling both the separate values of?zaand their degrees
of freedom to obtain a single value for each.. The 7€‘test
may then be applied as if the data came from a single table.

This method has the disadvantage that it takes no
account of the signs of the differences in the different
samples. Hence, as pointed out by Cochran (1954), it lacks
power in detecting a difference that shows up consistently
in the same direction in all or most of the individual
tables. ,

An alternative procedure is to immediately pool the
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data into one table, and compute ?Za'in the usual way. How-
‘ever, this is possible only if the theoretical probabllities
are assumed to be the same in each of the tables.

A third procedure, applicable only to 2 x 2 tables,
is suggested by Cochran (195%). One computes the separate?f
values, and adds them, taking into account for each table
the sign of the difference between the observed proportions.
Since’x. is approximately normally distributed with mean O
and unit variance, the sum of g independent %:values is
approximately normally distributed with mean O and variance
g Therefore the test criterionZ =-€£z; 1s approximately
a standara normal variate. J

Cochran particularly recommends this test if the
totals of the individual tables do not differ greatly, and
if the proportions are all in the range .2 to .8. If these
conditions are not satisfied, addition of the?f's tends to
lose power.‘

(e) Coefficients of Contingency

A measure of assoclation between qualitative data

arranged in some ﬁeaningful way in a contingency table is
provided by Pearson's‘coefficient of contingency. 1t is

given by ¢ = JEBZ;:Z:, where N is the total number of

observations. :
-8
1
There are other such criteria such as ¢™ = 7.4
N(t=1) ’

applicable to an xc table, where t is the smaller of r and

R

ce This eriterion lies between O and l.
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k]

(f) Analysis of Variance
A
It should be noted that the /A test of independ-

ence between two groups can be replaced by a one-way anal-
ysis of variance on the means of these groups.' Either

method is satisfactory.

For an r ch contingency table, the F-value fzgm the
equivalent analysis of variance is related to the A with
(r-1)(c~1) = k degrees of freedom as follows:

F= A(r-c

T
where T is the total number of observations

TESTS OF HOMOGENEI TY
(a) mx n _contipngency tables

Consider the following problem. We are given m
samples, each sample divided into n classes. We wish to
test the hypothesis that the frequencies of the classes for
each sample fall into some ratio, say 9:3:3:1 for n = k.

The problem may be presented in the following contingency

table:
L 2 n
1 1|1z | T3
2 1 [T
b
B, | B, By |T

In this type of experiment, there are three useful

X
A 's that can be caleculated. For each, the null hypothesis
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is the same: that in each of the m samples, the ratio of
the frequencies of the n classes is Dj: Doe.. D, » for some
integers Dy DyeeseD, « The alternative hypotheses for
each, however; differ. Following Snedecor's notation,
these %}'s may be described as follows:
(1) Sum K}

For each of the n samples a %é.witb'(n-l) degrees
of freedom is calculated. The expected frequencies for the
cell in the i'th sample and the jth class will be given by

MD&T:'- ’Lz‘,&.uf)‘n
20 .

These m7 's Will themselves each give information on
whether the hypothesized ratio is being followed in the
correspondlng sample. We now add the m values ofix g 8ach
with n-1 degrees of freedom, to obtain a "sum—7f" with
m(n-1) degrees of freedom. This sum—‘l may be significant
even if all its components are insignificant. The alterna-
tive hypothesis is that the population ratios differ from
those hypothesized, with no distinction between excess and
deficlt, that is, no distinction of sign. This distinc-

- tion 1is remoz?d by the squaring of the deviations in the
component A rse

(2) Pooled %

o~ .
In this X s the m samples are treated as one
Iarge sample. To calculate it,; we use the observed totals

Bl"Bz’ °°°Bn together with the corresponding expected
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totals _
BT DT ... 0.T
éD D, = ZD,
Thls "pooled A* " has n-1 degrees of freedom. The

alternative hypothesis is that there is a predominating
tendency toward deviations with a common signj; that is,
the samples deviate in the same direction from the hypo-

thetical values.
a

(3) Heterogeneity A

This is obtained by subﬁfécting the "pooled X
from the sum xa ." It hasmi(n-1) - (n-1) =
(m=1)(n-1) degrees of freedom. It measures the incon-
sistency of the deviations of the sample ratios from the
hypothetical? That is, the alternative hypothesis states
that there are deviations, signs considered,.

(b) HOMOGENEITY OF VARIANCES

Bartlett's Test of Homogeneity is used to test
the hypothesis that 5?\=O§ = eeee = }:wnere the or
are the population variances corresponding to the k inde-

pendent sample variances, 8129 8229...Sk2, coming from

samples of sizes nj, MDpyees Dy respectively.

Bartlett has shown that X

where § = éi 832

and C, the correctlon factor,

=i 71::7-2 D g“!“—gcni-
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a
is distributed approximately as 7( with k-1 degrees of
freedom. M is calculated from the sample and compared with

oL
the appropriate tabular S
(e) HOMOGENEITY OF CORRELATION COEFFICIENTS

Consider the problem of testing whether k

correlation coefficients ry, rpe.c.r, can be regarded as

homogeneous. Rvo Fisher has shown that Z; = .5 1n€ +ri;
| lery

is approximately normally distributed with mean = .5 Infl+f),

1-p.
A
where F is the population correlation coefficient,

ral_?)_. 1s the variance of rj calculated from the 1th
i-
sample of size nj. Tables have been published that allow

for immedla'te conversion between o} and Zi

éi (=3)Z:
Let Zw = -3 » the weighted mean of the Z;

Then N = f —Z ) Z(n’h 3YZ: Zw}
i a/,!rn‘wS 4=

= Mi~ Z:L"“ Z/YU-?QZ»'
Slori-3)Z4 &%Ez”'"/mk 2

is approximately a X with k-1 degrees of freedom. If the
null hypothesis that the correlation coefficients are homo-
geneous 1s accepted,; then a pooled estimate of the true

‘may be obtained by conver'tmg ZW back to r.

- (d) ONFIDENCE INTERVALS AND TESTS OF HYPOTHESE
FOR _o*

a
A 1is defined as the sum of squares of independent

normally dilstributed variables with zero means and unit




57
variances. That is,'qu-éi_,.gg-g where the Xy are normally

distributed with mean M and variance S

It follows then that Zfi-X)_ which is equal to
O~

2 G
SE:ll§_ is a A with n-l degrees of freedom, since we lose
s> .
one degree of freedom in estimating,u

Therefore we can find 7{ 025 and 7{2 975 such that

Prob., (/x 975 ,__.. _&I\_;;Q&_S__ .é"—- %‘03(;) = 095

=3 a
a n-11)3 ,
or Prob. n-Ns* £ o & o = .95

/7( 036 -~
where 22 .025 is that value of ’7[ such that P(?[ > T .oas )

= ,025 and 2;975 is such that P (7[ //:Zang ) = .975.

Consequently,

IS kﬁ~(}
oas /7( G715 a
constitutes a 95% confidence interval for & .

3
Similarly, the hypothesis that O equals a certain
Y
constant Oo can be tested by compiing the statistic:,

a
S .
and comparing it with the tabular A for (n-1) degrees of
freedom. '
(e) -GENETICAL APPIICATIONS
(1) Mendelian Ratios

The chi-square statistic is well sulted for

~ testing the goodness of fit of observations to genetical
ratios. Breeding experiments, that are designed to provide

information about the mode of inheritance of certain
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genetical characteristics, consist malnly of crosses be-
tweensselected individuals. The progeny that result from
a cross are then identified and classified according to
the presence or absence of a particular characteristic;
as exhibited by the appearance of the individual. Genetical
theory is responsible for the ratio of kinds of individuals
that one expects given a certain hypothesized mode of ine
heritance. For exampge, 1f one makes a cross between two
filial generation ddiploid individuals in which two loci are
involved, and if the loci are on separate chromosomes with
a condition of simple dominance at each, then one should
expect a ratio of 9AB : 3 Ab: 3 aB: lab where A and B are
characteristics at the first and second ioci respectively
and a and b are their respective alleles (Sinnott et al
1950).

The genetical hypothesis that gives rise to the 9:3:
3:1 ratio can be tested by means of a chi-square statistic
that is calculated from a random sample of observations
drawn from the population in question. This chi-square has
three degreééiof freedom and if it is found significant one
concludes that the 9:3:3:1 ratio 1s not the correct model.
The deficlency in the model may be that the loel are not
independent and/or that dominance at one or both of the
loei is not the case. Chi-square with three degrees of
freedom can be partitioned into three parts, each with one
degree of freedom, in order to find where the discrepancy

lies.
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To do this, we construct three orthogonal contrasts, with

the following coefficients:

AB Ab 2B ab
(L) 1 1 -3 =3
(2) 1 =3 1 =3
(3) 1 -3 -3 9
P 9/16 3/16 3/l§ 1/16

9_ .
Each contrast results in a Z with one degree of

freedom. Contrast (1) measures the deviation from & 3:1

™~ 5
ratio at the A locus and‘% = KAE + Ab = ééaB + 351
mgz Tikey

where Py = 9/16, Pp = 3/16, Py = 3/16, Py = 1/16

k1 =1, kp = 1, ky = =3, ky = =3
n= totél sample size.
Contrast (2) leads to a ®st of the hypothesis that

3
the B locus segregates in a 3:1 ratio and =[§B+aB—3(Ab+aE)2
m<pRE

where the P;'s are&the same as in the previous test, and

ki = 1, kz = =3, k, = =1, kh = =3

3
Contrast (3) leads to a test for linkage or for in-

dependence between the two loci A and B.

*
A = [gB + 9(ab) = 3(Ab + a.bﬂ2
meE PR

where the Pi's are as before and ki= 1, kp = =3, k3 = =3

Ky = 9.

o-
Partitioning 7{ in this way enables one to locate

the discrepancy in the null bypotheSis more specifically.

P .
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(2) BLOOD GROUP ESTIMATION

Stevens (1950) used the chi-square distribution

in developing'a goodness: of fit test for the gpecial situation

in which observed phenotypic frequencies were compared to
those expected under a genetical hypothesis.

In particular he was concerned with the estimation
of gene frequencles in genetical populations that were
classified according to the A-B-0 blood group system. He
used & method developed by Bernstein (1930), to obtain
efficient estimates of the three proportions. Denoting the
phenotypes and their numbers by 0, A, B, and &B, and their
total number by n, the first estimates of the frequencies
of the genes A, B, and 0, are given by

pt = 1- [
gt =fl“vﬁ%¥r

These preliminary estimates, which are inefficient,

have a sum which falls short of 1 by the quantity
D=1~ (pt+ i+ rl).
Efficient estimates.are’ found by transforming the

preliminary estimates as follows:

p = pt (1+ D/2)
r - (rl+ D/2) (1+ D/2)
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The preliminary estimates pl, q1 and rl, added to 1-D.
It is easily shown that the transformed estimates p, q, and
r add to l—D2/4; and since D is the difference between unity
and a number between 1 and 0, fairly close to 1, D is a quan~
tity that is very small in absolute value, and D2/4 is
considerably smaller. If one applies the transformation
to the gene frequencies a second time the discrepancy of
“the sum of the revised frequencies from unity becomes D§/64
and one sees that this can be made arbitrarily close to zero
with repeated application of the transformation. One concludes
that E(D) = O.

It can be shown also that the variance of D is 1
en(l+ r/pq)

and with the assumption that D is normally distridbuted

2nD%{1 +r/pq) is distributed as chi-square with one degree of
freedom. This is the criterion that can be used to testithe .
genetic hypothesls that. the relative freg uencies are in
equilibrium. |

GENERAL ESTIMATION OF PARAMETERS AND TESTS OF HYPOTHESIS

(8) Comparison of Estimates and Parametric Values

Let X be the estimate of a parameter E. Then when the
number of observations n is large, by virtue of the central
limit theorem, X will tend to be normally distributed around E
with variance inversely proportional‘to'n, say V = v/n, where
v is a function of E and not of n. For example, if E is the pop-

X
ulation mean, then v is O, the population variance.
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To test the hypothesis that X comes from a population

having parametric value EO’ that is Ho: B = Eo, we can use

the usual/normal deviate test to compare the differehce
X - Eg to its standard error. However, this is equivalent‘
to writingj{l= (X~Eo)2, where.ﬂ? is the square of a standard
normal variate agdnhas one degree of freedom.

This test can be generalized quite easily to the case
of 2 pafameters. Suppose that X and Y are the sample estl-
mates of the parameters E and N, respectively. In the limit,
X and Y will have a bivariate norhal distribution around E

and N respectively. Let Vl = V1 and V2 = Vo be the
| : o1 n2
variance of X and Y, respectively. Then the hypothesis
Ho s E = Ey
N = Ng can be tested by

1
-p?

i
X =[(X-Eg)2 = 2P (X ~Eg)(¥-N,) + (¥-N,)2
V]_/nl Vi/ny Vo/no Vo/No

“Where P is the correlation coefficient between X and Y and

has twé degrees of freedom.

(b) Probability Ellipses

A confidence interval for the single parameter
E will be given by X + Z, V(X), assuming that X is
normally distributed about E. Zo is the value associated
with the unit normal curve such that the area under the

curve between -Zo and ZO is 1=Pe

- In the case of two parameters we choose a value for

. .
A with two degrees of freedom such that the probability is
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1-P that the point represenping the true values of the .
parameters lies within the ellipse having the following

equation.'

[kx- - 2B(X-Eo) (¥-Ng) +(Y—Nol] 1
Vi/Ny o WAL VAL VAR 1-p°

. As in the case of a confidence interval for one
.parameter, the value of P is somewhat arbitrary. Stevens
(1950) suggests that P = .20 is a good choice. The‘proba-*
© bility is .80 that the point representing the.true valuee
lies within the ellipse. The "standard ellipse" is that
obtained by putting'x.- 1 in this equation. The proba-
bility is .39 that the true values will. lie within the
standard ellipse. Since the median of'X-with 2 degrees
" of freedom is 1.386, pubtting~X2 = 1.386 into the equation

~"gives usvan ellipse which has a probability -of 50 of con- -

- taining the point representing the true parametric valuese

 This ellipse 1s called the probable ellipse.
(¢) Comparigon of 2 sets of data

Suppeee we have.z samples of sizes nj and np’

'l drawn from the same pepulation and yielding.estimates,xl

- and Xp, resPecﬁively,lef a parameter E. The variance of -

~ the difference X1~ X5 is given by v +y=(1 +1
nl , n2 nl nz

. where v is a function of E alone. Therefore, to test the.

hypothesis that the two samples,ceme from the same popula-'in

tlon with respect to E, that is Ho s Ep = Ep; e can use



. the criterion'x.= (X = Xg)z ‘ , S

with one degree of freedom. ‘

.The genefalization to the caée of two parameters
follows directly. Let Xy and ¥; be the estimates of the '
parameters E and N respectively from the first sample, and;l

X, and Y, be their estimates from the second. Let

1 ' + -
vl‘( w1 +v%2) be the variance of Xj~- Xpand vp (%1 %g, Co

the variance of Y; - Yp. Then the hypothesis that the

samples come from the same‘population, i.e. Hg: El'z Ey
| | Ny =N

"ffis tested ’t)y")(-aL with two degrees of freédom, where

=l <x1-x2>2 - 2P( 1~ 2)(¥q =Yp) +'(¥1- ¥p)2
1-p Vi(L+ 1) ViV (L + 1) V(L + 1)
. nl n2 -‘nl n2v ,«.nl n2-'

*(d) Heterogenelty of more than two setg. of _datg

Suppose we have t 72 samples and we wish to

: test whether they come from ‘the same population with respect?.'

to a certain parameter, Ee Let the sample sizes and the

 estimates of E be respectively, Ny, Noyssengand Xqy Xy

so0oXp, ,Let‘%l be the variance of X;, and let X = 12iﬂ£29i -
: : , Zmi

‘be the welghted mean of the estimates; Then we can test the

hypothesis. Ho 3 El- Ep = ceese = Ey DY the eriterion
: =\
-‘%z'éﬁ - X1

' with t-1 degrees of freedom.
’pa y%% S , P
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Now let us consider the generalization to two para-
meters, E and N. Let Yj, ¥y ....¥; be the estimates of N
from the t samples, and let ¥ = _2m.Y: be their weighted

' Zme

means

Then the. hypothesis that the t samples come from
the same population with respect to the parameters E and

N, that is,

pre

Ho :El - E2 e ooooonEt
Nl=N2= .'....Nt

1is Efsted by . N . n a
o = a[é_@&:_ﬁ_ ~oaps(xe-XY-Y) . F(Y.-Y)
L= P* T Vi i= J\—/X/m,;~v"/m; ST \Nymi

with 2t=-2 degrees of freedom,

(e) Approximations Made And Their Improvement

The tests described in this section are not
exacte In the first place the distributions of the esti-
mates are not exactly normal, and secondly variances of the
estimates are not known exactly. Stevens (1950) suggests
that the reliability of the tests increases with a suitable
transformation of the data. It is well known that trans-
formations that stabilize the variance also make the
distributions more normal.

INDICES OF DISPERSION

& -
X can be used in the situation where a goodness of

fit test to the binomial or Poisson distribution is required,
but in cases where the observed values are so few that it

i1s not worthwhile to obtain expected values. In this case

2
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. eriteria are available that will test whether the sample SRR

'_variancé is compatible with the theoretical variance.

(a) Binonial Index
For the binomial distribuuion, the index of

dispersion is ’Xh_, Z-L)S‘———t'ﬁ‘ é m
ti:where le Xzs... Xk are the number of successes for eachj;{i'

i of‘k‘samples of n trials.

(b) Polssonian. Index | |
“ For situauions in which p is very small and ni‘

r.very 1arge, the binomial index of dispersion reduces to '

 i the Poisson index of dispersion, T(h, ﬁiﬁi_-———

k=i

‘:if This criterion can be used for testing %he bypothosis that

-71‘the data come from a Poisson distribution.-

LINEAR BEGRESSION LN N_x 2 TABLES

Suppose that we have a contingency table with N rows

. and 2 columns, one column conuaining observations denoted

by Xy, J= Le.eoll, the other column ‘containing observations

'Efdenoted by Yj9 3 = 1...N. Let Nj = Xj + Yj denote the

- marginal totals. Let Pj = gi be interpreued as the observed.:fffi ﬁ'

_Nj

7i,pr0portion of;succééses in the jtb mémbér’of thé.samplee
', The situation may arise where iheie is a variate Zj, assignedi.
. . to each of. the rows, which is linearly related to Pjo -
'Alternativeiywit~may b@;possible to assign such a va:iate_'i'
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to the rows, assuming that they fall into some natural
order. Then a continuous scale may be created which will
be linearly related to the Pj's. The problem may be re=-

presented as follows:

X; Y4y ny Py Z

X3 | ¥ | np | Py 2y

X Y

2 2 = +

, ng= Xyt 1

B _

. Py= Xy
03

X, | Yy | oy |Py Zy

T, | T, | T

A
Let P be an estimate of P from the total sample:
.S |
EENH
Then the regression coefficient b of Pj on Zjis
= m;(Pi'-fn’)(Z'}‘Zw)
' f_mé(?—}"iw)a‘ o

where Zw 1s the weighted mean of the Zj.
*

g
]

b

The/x for regression, with one degree of freedom, is
A N N :
A = [.2 MZ}‘TXéM;ZJ]
. &—.-l T 8=l

2 A & a G
P(’*P)[gmxzs -(é_rr_;z'y}]
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.
The total X from the N x 2 table can be partitioned

as follows:
Degrees of

Freedom
Regression of Pj on Zj ' 1
Deviations‘from regression N-2
Total N-1

As an example, consider the following data. One
hundred and ninety six hospital patients were classified as
to the degree of infiltration (a measure of a certaln type
of skin damage) and change in condition after 48 weeks of
treatment. The total Xa , 6.88 with % def., is insignifi-
cant. However it is noticed that the Pj (the proportions
of patients With severe infiltration) decline steadily from
the "markedly improved" class to the "worse" class. This
suggests that a regression of the Pj on the clinical change
might provide a more sensitive test.

In order to compute the regression, we assign the
scores 3, 2, 1, O and -1 respectively to the five classes

of clinical change:

_ Degree of
Infiltration Total

Clinical Change Zs 0-7 8-15 N P.=X./n. N.Z

J A J i3 373
Marked Improvement 3 11 7 18 «39 g%
Moderate Improvement2 27 15 L2 236 L
Slight Improvement 1 L2 16 58 .28 58
Stationary - 0 53 13 66 .20 0
Worse -]l 11 1 12 .08 ~-12

Total Ik 196 18k
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a a
7@,,:(2 K Zy - .11«_ ém}zo
P~ P) [ém 2 (ém_“él]
= (7)(3) + <15><2> Teee ¥(1)(- 1) - gzzlzgglau) 2

19
= 6,666, significant at the 1% level.
The total ??.has now been subdivided as follows:
e a
Regression of Py on Zj _ | 1 | 6,67
Deviations from Regression o 3 0,21
R 6.88

TESTS OF SECOND=ORDER INTERACTION

2 X 2 x 2 Factorial FExperimentsg

In a factorial experiment with three factors each
at two levels, the main effects and the interactions can
be tested by an F statistlie, as is well kﬁgwn. However,
it is also possible to use the goodness of fit criterion
to test the second order interaction.

If the three factors are denoted by Ay B, and C, and
the levels denoted by 1 and 2, we can set up the following

contingency table.

By Bo By By
Ci Co C1 Co | Cy Co Cy Co {Total
Xl X2 X3 X, X5 X6 X7 Xg n
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In this table, the Xy are the observed values, and

the ML are the expected values, where éXi':éM‘i; =n, An
example using this method can be found in an article by
M. Kastenbaum and D. Lamphiear (1959).

To test the second order or ABC interaction we test
whether the BC interaction is the same for A; and Ajse fhe
null hypothesis is that

M3/Mn M7 Mg
or M; My Mg M7 = M2 M3 M5 Mg

Because of this relation, and since éMA = n,
which is fixed, we have only to estimate six of the M;'s.
Therefore we have left 8-6-1 = 1 degree of freedom.

By the method of maximum likelihood, the best

estimates of the Mi are:

My =X, +k . My =Xg -k
My, = X, - k M6='x6+k
My =Xy - k Mg =Xg 4k
M =X, +tk Mg = Xg - k

where B is found from the equation

(Xp+ 1) (Hy* k) (X 1) (Kot k) = (Xpmke) (Kg-k) (Xgok) (Xg=k)

& ey
The criterionCX = Zéé(%;Fﬁﬁ
L

with one degree of freedom tests the null hypothesis of no

3-factor interaction.
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 x s x &t FACTORIAL EXPERIMENTS

The foregoing test can be extended to the general
(r x s x t) contingency table. In this case, estimation
of the paraﬁéters will involve the solution of
(r-1)(s-1)(t-1) third degree equations, and the resulting
’Xawill have (r-1)(s-1) (t-1) degrees of freedom. In
general, the null hypothesis of no second~-order interaction

for an (r x s x t) contingency table is given by

Prst Pijg = Pegk Pidk
Pist Prit Pisk Prik

where L = 1, 2; eool=-l
J=1ly 25 eoes=1
k=1, 2, eeot-l |
and the Pijk's are the parameters of the multinomial dis-

tribution
Nk

96 = Pd! ET—P-IT ﬂih

and 22%&-“\ = |
4

Since solving the (r-1)(s-1) (t-1) simultaneous
equations is extremely laborious, Kasﬁenbaum and Lamphiear
(1959) have given a computational procedure well-suited for

a desk calculator.
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NON=-PARAMETRIC TESTS

Non-parametric tests are those which do not depend

29

on aﬂyyparticular frequency distributlion, nor any par- .
ticular parameter. The first non-parame@ric test developed
was the goodness of £it test itsélf. Two others which
will be discussed now are the Uest for medians énd Fried-

man’s two~way analysis of variance test.

MEDIAN TRST

Consider the problem- of testing the hypothesis fhat

TWO 30pulaulonsg denoted by X and Y, have the same median.

~7

Let Xqy Lo eeee Ly and Yiy Yojeeodyo be the ordered

na-

ples from the X and Y populations, respectively, and let

]
fo
5]

13 dgseesly) yo DC the order statistics from the combined - -

campla, Denote the median of the combined sample by Z.
If the null hypothesis is trus, we should expect the number
of ¥X's that exceed 29‘say My, %O equal'gé , and the number

| 3 2
of Y's that exceed Z, say Mg, to equal No

‘ 2
It thenr follows that Uy and Mg have' the following

o

hypergeometric TODablllt’ dlSurlbution°
perg Y

{‘5 (ng M&.) = Nl “ N2
;( M_i N B[Lz
| Ny + Ng\

\M + Mz} |
“hls is the same distribution as that followed by

i

the frequ@ncies in a 2x2 contingency table, under the

hypothesis of independence. The corresponding contingency




table is
<Median >Median Total
Sample I Ny My Y Ny
Sample II No= My, % My - N2
(Np+ Np) = (fy+ Mp) Mg+ Mp Ny# N

The null hypothésis that the two populations have a
‘common median can be tested by the 7Cl criterion with one
degree of ffeedom. However, if either Nj or N, 1s less
than 10, Fisher's exact test should be used.

This test is easily extended to more than two samples.
Suppose we wish to test whether k populations have the

same median. Let Z be the median of the k combined samples.

If;Mi,li = 1y, 24 eeok is the number of observations from
the 1th sample that exceed Z, then the distribution of
M1, MpseoeoMgols

g (M, Mpyeeol) = j@ﬂ/@)

This is the same distribution as that followed by the
frequencies in the'following k x 2 contingency table, under

the hypothesis of independence:

_ Median | - Medlan
Sample 1 Ny= My Mq Ny
Sample 2 N2— M2 M2 N2
k N- My M, N,
M N




o 7)+
The null hypothesis may be tested by the ﬁl criterion
&
with k-1 d.f. For this problem 1 may be put in the foll-

owing form:

e N(N—t)gi_(nm;— r: Z o )
- e me N %ﬂvﬂz(N'-%inma

FRIEDMAN'S 2-WAY ANATYSIS OF VARTANCE TEST

&

Friedman (1937) proposed a non-parametric procedure
for use as a test for differences among treatment means
in a randomized-block design. His test involved ranking
the treatments within each block from lowest to highest,
and then determining the probabllity that the different
columns of ranks came from the same population. After
ranking, the procedure requires the sum of the ranks for
each treatment, and the following criterion as a test of
the null hypothesis of no differences among treatment

means:

Ty = 12 Zx’ - 3b(t+)

bt (k+1) N

where t is the number of treatments, b is the number of
blocks, and r; the sum of the ranks for the ith treatﬁent.
This criterion is approximately distributed as chi-square
with ﬁ-l degrees of freedom. The approximation is poorest
for small sums of % and b, but in this case exact probabil-

ity tables can be used.

TOLERANCE LIMITS

In the manufacturing of industrial products, limits

beyond which only a small fraction of items is expected
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to fall are constructed. These limits Ly and Lp are
called tolerance limits.

I us assume that we have a population which is
normally distributed with mean M and variance q&. To
£ind two symmetric tolerance Hmits such that the probabil=-
ity is P that 100(1-2E)% of the population lies between

these two limits, we solve the following equation for

[

X
AT IR +OZ-& -
l " ia%& = |-QaE
G o e
M-CZe
For example, 1-2E = .95 gives the tolerance limits

as M+ 1.960.

Suppose now that M 1s known but that o 1is not.
Let S be its sample estimate. Then the condition that
®ox s{ will include at least (1-2E)% of the population
is that

s> CZ e or S/o-' 72«-E/J2.

A
But 7 = (n-1)8°

If P is the probability that at least 100( 1-2E)%
of the population is included between these limits in
repeated random sampling, then Pr (§4r7;z“;ﬁ>= P has the

solution



76

Therefore, the sample tolerance limits are
M) m—~i /%
(éi ~-SZ, ¢ j /7(1—? , M+ SZ, .« J /7[t~? )

In the general case, where both 4 and O are unknown,

it may be shown that the value of/Q is approximately given
- n-l L
by L = 2p (- (@)
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CHAPTER V. - NON-CENTRAL

DEFINITION AND DESCRIPTION

C(& {8 defined as the sum of squares of n independent
random variables that are normally dlstributed with zero
means and unit standard deviations.

Consider now n independent and normally distributed
variables, Eq, EsyoeeEy with means Ay, Asy Ay and each
with the same standard deviation O . Let X;= Ej= Ag.

Then non~central r/(& is defined by

a a P
1= Zfharnd - 2R
/XI is a gen;rali;;d form <>‘f= %&@

o~
The distribution of 7{’ can be shown to be

g(%a‘)z e¥p r“ /lla/f’l Q2 V&ﬁ‘&)r%-l] | + ﬁ A+ gzx’&z }& A e ]

Q™ [() *  mmia)alit
where M\ is the parameter of non-centrality,

and n is called the number of degrees of freedom.

a
The moment generating function of A is
(\t/i-at)
M(t) = _& - ytL e
(1-2t)2

The rth cunulant can then be shown to be
Kp = 2r"l(r-1)1 (n+r). In particular,

Kl-zn-}-}\: H’l'&

K, = 2(n + 2))= O%*
K3 = 8(n + 3)\)_—-7'
Ky = 48 (n + k&)
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X
APPROXIMATIONS TO THE A DISTRIBUTION

o~
(a) The AL approximation
x~

The distribution of Qy s Where
P

P=n+2r=1+_2 , can be
n -+ \ MmN

a ,
approximated by that of A with r degrees of freedom,

a
where » = (n +%22 =n +_N_ -

B o+ 2)\ . Mt
r is in general a fraction.

(b) The normal approximsition

Fisher has shown that &??'is approximately nor-

mally distributed with mean {Eﬁ and variance l. There

™
1

ig a similar approximation to the distribution of X
& o
Furthermore,‘%' approaches normality faster than A .

48
Patnaik (19%9) has shown that j A (m+N).  is
M+3IN

X
approximately normally distributed with mean Jgiﬁittﬁﬂ_ |
' m+ N
and variance 1l

APPLICATIONS OF THE NON-CENTRAL DISTRIBUTION TO THE
POWER FUNCTION OF TESTS

Suppose we wish to test the null hypothesis that

a raendom sample of observations,; E; , BEgy coeE,, comes from a

population normally distributed with mean 0 and variance
1. Then the test criterion is 71 fifbo' If we wmsh %o

compute the power of the test, we must find the probabll—
ity that this criterion exceeds the critical value C[

under some alternative hypothesis. Let this alternative
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the :
hypothesis be that/E; come from populations with unit
variances but different means, .Al g Aogecebe Then the
. x
distribution of non-central A can be used to supply the

power function, given by

[ game

where the null hypothesis 1s tThat A= 2/\~-— 0, and the
alternative hypothesis is the composite h:,rpo’zshesi.s9
including the family of alternatwes for whichZ A» =N,

The non~central 7(. distribution can also be used %o
determine the power of the goodness of fit test. The
"~ erux of tbis}‘ces’c is that 1f ny denotes the observed fre-
quencies and NT: +he expected frequencies, then
z'ﬁfﬁﬁf—‘l s Where k is ﬁh: number of classes; 1s
‘approxn.ma'tely.dis’c.ribu'ted as ’X with k-1 degrees of free=~
domn.

Patnaik (19%9) has shoun that if the true expecta-
tions are NP; rather than NT: , vhere2 @ =2T: = 1, then

{m,\—- N ux)

NP: is approximately distributed as non-

L'-‘-l

cen’cral/x with k-1 degrees of freedom, With this result,
one can determine the power of the goodness of fit test of
any simple hypothesis (specifying probabilities T ) with
respect to simple alternative hypotheses (specifying probab-
ilitles P;)o Knowing the power functlon, several impor-

tant problems can be solved. As examples, Patnalk cites
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the following:
w(1l) For a given sample size N and number of

groups K, what is the chance of establishing the inadequacy
of the null hypothesis, using a given significance level?

(2) For a given k, how many observations are
necessary to give a chance, say of 90%, of establishing
significance at the &) level?

(3) For a given k and N, how large a departure of

Hyand Hy will be detected with a given chance?"

4

Illustrations of these applications are given by

Patnaik (1949).
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SUMMARY AND DISCUSSION

The distribution of contindoué chi~square, defined
as the sum of squares of standard normal variates, was
originally derived by F.R. Helmert in 1876 by mathematical
induction. Chapter I gives this derivation as well as
three others.

Only the normal distribution; to which it is in-
timately related, outranks the chi-square distribution in
general usefulness. Accounting for this are 1ts general
yet diversified properties, and it is with application
in mind that these properties are discussed in Chapter 1I.
Of particular importance are the reproductive property of
chi-square and its identification with the exponent of
the multivariate normal distributicn. The former property
facilitates the location of underlying areas of significance
with pin-point precision, while the latter extendsthe
breadth of chi-square's inferential powers to’parameters
of any distribution. Both form the theoretical basis{for
many of the tests described in Chapter IV, ’

In need of some criterion to measure the quality
of curve-fitting?Karl Pearson introduced the goodness of
fit statistic, or discrete chi~square, and established its
asymptotic distribution as that of contlinuous chi-square.
As the oldest of the non-trivial significance tests, as |
well as one of the most widely used, chi-square has an
absorbing, controversial history. In particular the

tdegrees of freedom battle", waged for over twenty years
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by Karl Pearson and Sir Ronald Fisher, has theoretical
and philosophical implications worthy of careful study.
The flavour of this and other historical highliights are
discussed in Chapter IIX. |

Over the years chi-square has turned into an enormously
useful device with a range of applications far greater than
the specific problem to which 1t was initially applied.
Although by no means complete, the selection of tests in
Chapter IV has been chosen with this range in mind. AS
well as covering the standard applications, including
goodness of fit tests, tests of independence, ana tests of
homogeneity, less well-known procedures are also investigated.
These include tests of second-order interactions in factorial
experiments, bivariate confidence ellipses, and the estimation
of gene frequencies in genetical populations.

Chapter V-contains a discussion of the non-central chi-
square distribution, discovered by Patnaik in 1949, Par-
ticularly emphasized is 1ts relationship to the central chi-~

square distribution.
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