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ABSTRACT

Modular progran development is the state-of-the-art
met hodology for compnter project davelopment. As yet, how-
ever, there is no programming environment in which this
methodology can be used conveniently and safely for the-

developument of computer software projects,

This thesis examines the current typical program devel=-
opnent environment from the point of view of the modular
program deva2lopment methodology and points out the weak-
nesses in the present environment, It then focuses on the
interaction of the user with the system and outlines the

goals of a software system suited to this methodology.

These goals are then used in the design of such a gsoft-
ware systel, «called DENOS. DEMOS 1is an interactive systenm
for the development of programs, It maintains complete con-
trol over the inter module interfaces not only at the user
level but also at the operating systenm ievel- Consequently,
it guarantees complete consistency checking during separate
compilation of modules and thus encourages modular develop-
ment, In this environment a module is always developed as a

fragment of a larger program., This program, in turn, is con-




sidered as a module in an even larger Program Which may be a
]

module of the operating systen.

It should be noted that this thesis 1is concerned with
the design of the software envircnment and does not describe

a specific implementation of such a systenm.
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1 INTRODUCTION

Modular program development is +the state-of-the-art
program development methodology., It incorporates the con-
cepts of stepwise refinement [ 23], structured programming
[9], and top down design [17], Ths breakdown of a task into
subtasks done by chief programmer teams [1] reflects this
methodology, Languages have also been developed with this
met hodology in mind {2417, However, up to now, few attenpts
have besen made to prévide a programming environment in which

this methodology can be used conveniently and safely for the

develbpment of computer software projects [ 191, [22], [6],

L47.

modular programming implies the decomposition of a sys-

tem into a number of interacting components called modules.

The deccmposition is done according to a set of guidelinesa
A number of sets of guidelines have been used including
functional decomposition [23] and dscomposition by abstract
data types [147. Other decomposition criteria have also

been proposed [21], Throughout this thesis the term modular
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programming will be used to imply decomposition by abstract

data types,

The programmping environment includes the hardware {e.q.
terminals) and software (e.qg. inﬁeractive systams) used in
progran development. The Current environment is inadeguate
mainly in the area of software, The software provided in
current program development environments is outdated by the
modern program development methodology. It is the interac-
tion bhetween the user and the software system which reguires
updating to make the program development environment suita-

ble for modular program development,

This thesis, therefore, concentrates on the design of a
suitable software system, The designed system, DEMOS (Devel-
opment Environment for MOdular Systems), integrates the
tools of program development into a single system which is
oriented towards modular programming, Included in the sys-
tem are facilities for module abstraction and realization,
control of module interaction and resource needs, and test-
ing and modifying'of modules, The system is interactive
since program development requires constant feedback. The
system automates consistency éhecking and therefore frees
the programmer from the error prone task of verifying con-

sistency of interfaces hetwsen modules. #fodule dzvelopment
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is done within the environ of an abstract machine which
itself contains modules Which are in tha anviron of still
other abstract machines which ultimately are machines of the

operating systen,

The designed system w%ill realizs these goals and, at
little extra cost, will yield added advantages, Some of
these advantages include the easy integration of: a high-
level debugging aid which can yield meaningtful information,
a simulator for modules which have been designed and not yvet
implemanted, and an automated program provar {when this

become s possible),

1.1 PROGRAM DEVELOPMENT IN PRESENT DAY ENVIRONNERNT

1.1.1 THE ENVIRONMERT

Tools in the software system of the typical progran
development environment include a procedure oriented 1lan-
guage and a compiler for it (eg, PL/I, FORTRAN, COBOL), an
online editing and job submission (usually to batch) system
{eg., TS0), a linkage editor or loader, a job control lan-
guage processor and system level routines whicCh are used as

primitives in program development,
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The language and compiler allow compilation of a proce~-
dure and perform type CheCking within the Scope of the
compilation, The information passing betwsen saparately com-
piled procedures is limited to parameters and some sSet of

commnon external nanmes,

The online system allows program editing and submis-
sion, Sometimes it includes foreground or online execution

and debugging,

The linkage editor {or loader) is usad to connect sepa-
rately compiled procedures together prior to execution time.
It also connects 1library procedures into the resulting

object deck,

The job control 1language processor is used to control
the order of execution of the tools (eg., conmpiler and link-
age editor}y and specify the source and destination of all

"files” (eg., procedure text, object deck, data etc.).

The system level routines are either linkedited into
the object deck or are dynamically invoked at =2xecution time

by supervior calls (S5VC's).




PROGRAM DEVELOPMENT PROCESS 5

1.1.2 PROGRAN DEVELOPMENT PROCESS

Within the previously outlined system {section 1.1.1) a
certain program development process emerges, This process is
an approximation to the modular programming methodology

which is restricted by the tools available.

The first step in the process is that of developing a
complete problem statement, This is really a process vwhich
precedes the actual software development procass and is the

same in all environments,

The next step is the stepwise refinement process. This
is carried out‘ by the chief programmers {[1]. It includes
spacification and documentation of procedure interfaces and
behaviour, description of global and local data areas, and
definition of access rights to procedures and levels of the
program, The result of this step is a document {or docu-
ments) indicating the expected behaviour of the entire
project, It may be stored online so that it may be accessed
as needed by prograWmers during the development phase of the

project,

Once the design phase is completed the programmer teanms
develop their portions of the project more or less indepen-

dently, Within each team, development usually progresses
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from bottom to top, that is, the procedures which depend
only on system routines, library procadurss, and/or program-
ming language features, are coded first and once they have
been coded, tested, and debugged, procedurss at the next
level way be developed, An alternative 1is a top down

approach where program stubs are used.

Each procedure 1is developed independently with refer-
ence to the design document for specification of interfaces
and usa of global data areas, et¢, The procedure is con-
piled and tested independently of others and when it is
thought to be correct, it is linkedited into the object deck
for the entire project., Once this 1is done it provides part

of a basis for the next level of development.

sometimes, during the development phase, a design deci-
sion is found to be incorrect or incomplete. When +this
occurs, it is neceSsary to re-evaluate parts of the design
phase and then modify the ﬁeSign document, After this has
been done 1t is then the responsibility of each team to
ensure that the procedures they have previously developed
and are currently developing, conform to ths new, modified
design documsant, This is probably the most confusing and

error prone part of the development process.
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Once the davelopment process reaches the top level of
the design, an overall system test may be carrisd out and
then the integration of the project into common use can

begin,

1.2 PROBLEAS ENCOUNTERED IN CURRENT ENVIRONMENT

There are numerous problems in trying to use modular
program development methodology in th2 current environment,
These stem from the fact +that the current environment was
developed to support the development of a program as a sin-
gle entity, Only when the need for independent development
of separate portions of the samwe proiject was realised were

some attempts made to adapt the environment to this purpose.

The major problem in the current senvironment is the
lack of any control or verification of +the interfaces
between separately compiled parts of a progranm, The only
method for controlling these interfaces is the design docu-
ment which states what these interfaces should be. There is
no automatic method of verifying that thess proposed inter-
faces are the ones actually used, Thus it 1is quite

possible, and often the cause of many problenms, for one
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procedure to view an interface one way and another procedure
to view it in some other way, causing incorrect intercommu-
nication between these procedurss, This error 1is not
detected except after a painstaking search when some unex-
plainable bug is encountered after these two prodedures are

used together,

Another area where lack of interface verification is a
problem is that between the program and thzs operating sys-
tem, The operating system has no a priori knowledge that a
program is going to communicate with it correctly. It must,
therefore, test at execution time whether the progran's
usage of the interface is correct if it is to make any test
at ali, Unfortunately, the number of ways in which the
interface could be used incorrectly is large and the operat-
ing system cannot check for all of them. Also since thisg
verification is done at execution time it is performed every

time the interface is used and is thus very expensive.

When the design document is being developed there is no
antomatic method of discerning whether or not its specifica-
tion of interfaces is consistent., It must, therfore, be
thoroughly checked for consistency by its authors. This is a

time consuming process and is definitely srror prone,
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When a design decision is resvaluated, and this leads
to a modification of the specification of an interface or
interfaces, there exists no mechanism which can ensure that
the new interface specification is reflected throughout the
project, both 1in existing, already tested procedures and
ones under develcpment, Sometimes the change in interface
does not affect a procedure other than to change some data
typing information; othertimes it may have far reaching

effects and may demand redevelopment of a procedure.

A large portion of development time is spent in verify-
ing the interfacesS bet¥een procedures, It is not sufficient
to test a procedure by itself but it must also be tested in
conjunction with every other procedure with which it could
interact. If there was a guarantee that a procedure used its
interface correctly, that its only m2thod of accessing
axternal informétion ¥as via that interface, and that any
intercommunication with +that procsdure was via that inter-
face, then a 1large portion of the testing could be
eliminated since the ‘definition of a procedure would be

guaranteed consistent with its uses,

There is a requirement for users of the current envi-
ronment to have a familiarity with many languages. In

addition to the language in which the program is being writ-
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ten, the user is required +to Know the online system command
lan9uage, ths editor commands, +the linkage editor commands
and the debugging facility commands, This proliferation of

languages causes time loss and confusion to the users.

procedure testing and dehugging is usually carried out
at a lower level than that of the programming language., That
is, most debugging packages allow only machine level intecr-
action with the procedure to be debugged. This means that a
user must nnderstand the way in which the compiler he is
using operates and represents the data structures of his
progranm., If a debugging package is not used then either
core dumps or traces must be used, Both of these produce a
large amount of output which must then be searched for what
is really desired, Again, the core dump and some traces are
at the machine level and thus suffer from the same problems

as the machine level debugging package. '

A final problem in the current environment is ths unit
which can be developed independently, In most languages and
compilers this unit is the procedure. This limits definition
of interfaces to specification of procedure parameters angd
declaration and use of global variables. Thare exists no
way of grouping together, into a single development unit,

the data and the procedures which work on that data {(i.e. an
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abstract type [141]) and specifying inter typs rather than

inter procedurz interfaces,
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2 1A MODERN PROGRAM DEYELOPMENT ENVIRONHENT

2,1 ABSTRACT TYPBS

The design of a system using stepwise refinement
involves the definition of the behaviour of the system and
the resources it provides to a usar, The abstractions
necessary to implement the system can thezn be specified by
defining their 5ehavioﬁr and dindicating what resources each
provides, The ‘aggregate of these abstractions defines an
abstract machine which provides the resources desired by a
user of the systen [141. In the next level of refinement
the abstractions necesary to implement the abstractions of
the previous level can be specified, Again, these can be
aggregated 1into subsystems required to impiement the
abstract types of the previous abstract machine, and each of
these subsystems igs in fact an abstract machine at the lower
level, Eventually the abstractions required to implement all
of the remaining abstract machines will he available on ther

target machine, and the design will be complets.
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The abstractions at each leval are definitions of new
abstract types with the operations dafined upon the abstract
type as part of the definition, These abstract types make

up the modules of the modular programming methodology.

The abstraction is the design unit in which an abstract
type is defined, It includes a definition of the abstract
type's behaviour, a specification of the resources provided,
and a specification of the abstract types required for +this
abstract type's implsmentation {81, Tha spescification of
the resources provided and the abstract t¥ypes requirsd con-
stitute the abstract type's interface with Other abstract

types in the design,

>In the implementatiorn of a program in a top down man-
ner, an abstract type at one level is implemented in code
for an abstract machine of the next lower level. The
abstractions of the abstract machines at the lowest level

are implemented in the code of the target machine.

The realization 1is the programming unit in which one
abstract type of an abstract machine is realized. It con-
sists of code, written for the underlying abstract machine,
which realizes the resources specified in the abstraction
according to the bsghaviour thers defined and using the

abstract types there specified,
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An abstract type is thus two parts [12]: an
abstraction which includes the module's interface with the
external environ, and a definition of the abstract type's

behaviour; and a realization,

when design and implementation are complate we have a
collection of abstract types, each providing resources for
some abstract types and each depending on resources provided

by other abstract types.

2.2 CONSISTENCY CHECKING

As a program is being designed using the method indi-
cated in section 2,1, a number of abstractions evolve., To
verify that the design is correct it is nscessary to prove

thase abstractions to be both complete and coansistent.

Completeness means that all abstractions which have
been referenced by any abstraction are defined 1in the sys-
tenm, consistency means that the abstractions interact in a
consistent manner, that is, refersnce only the ressurces
provided by other abstractions and use these resources in a

manner consistent with their definitions.
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Proof of completeness is easily 3done by comparing
references with the absStractions defin=sd. The proof of con-
sistency involves proving each abstract type's interface to
be consistent with that of every other abstract type with
which the first intercommunicates, This implies, for exanm-
ple, verifying that the type, number of actual parameters
and types of the actual parameters in the reference match
the type, number of formal parameters and types of tha for-
mal parameters in the resource definition. In addition the
object referenced in the operatioﬁ must be verified to be an
instance of the abstract type for which the operation is

defined.

During implemeatation, a realization is developed for
each abstraction, It is necessary to prove this realization
valid, To do this, it must be verified that the realization
behaves as defined in the abstraction and that it uses the

interface specified in the abstraction correctliy.

Whenever a modification is made, b2 it to the abstrac-
tion or the realization of the abstract type, some
reverification must be done, Depending on the changs, the
reverification may be localized or very general. If the
change is to a realization, the reverification is localized

and invclves verification that the new realization is con-
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sistent with the abstraction for this abstract type. If the
change is to an abstraction then it is necessary to verify
that the Tealization for this module 1is still consistent
with the new abstraction and that the interfaces of this
abstract type and all abstract types with which it intercom-

manicates are still consistent,

2.3 SEPARATE COMPILATION

AS was indicated in section 2.1, th2 implementation of
an abstract type is perceived as a single problem during the
implementation phase, This implies that the only concern
during the implementation of an abstract type should be how
it is implemented and not how it is to fit into the scheme
of things for the entire project, The implementation pro-
ceeds with reference only to the abstraction defined during
the design phase of project development. Thus implementation
of an abstract type proceeds without knowledge of the
abstract type from which it was abstracted {[20]. Phis, in
essence, 1is what wmodular programming ié all about and what

makes it a reasonable progran development methodology.
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Since the implementation of an abstract type proceeds
independently of the implementation of other abstract types,
so the verification of the implementation should proceed
independently, The verification process includes a proof of
the implementation’'s consistency with the behaviour and

interface given in the abstraction,

The proof that the realization is consistent with +he
definition of the abstract type's behaviour is actually a
program proof as defined in the literature {167, Automatic
program proving or a formal or informal mannal proof may bhe
used to yerify tﬁis consistency. The compiler used to com-
pile the realization may verity that the realization uses
the interface specified in the abstraction correctly if the

abstraction is compiled along with the module.

2.4 AUTOMATIC CONSISTENCY CHECKING

Separate compilation as described above (gection 2.3)
cal provide aUtomatic consistency checking on only +two of
the four areas described in section 2.2 {i.2. that abstrac-
tions are complete and consistent and that realizations

behave as defined and use the interfaces correctly). The
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checks on completeness of abstractions and the checks of
consistency of interfaces cannot be automatically done at
cbmpile time using separate compilation in current systemnms.
The check of completeness can be done at link-edit time but
the check of consistency of interfaces is done at exscution
time, if at all, This would\require that code be produced at
each point of access to every umodule to verify that the

module has been accessed correctly.

This solution is expensive in three ways..  First, it
does not provide the check until the abstraction is tested
with all other abstractions with which it interacts, at
which time, if there are any errors, development must return
to a point which was passed possibly months before., Sec-
ondly, of course, the interfaces are checked whenever the
program is run caunsing extra execution time, Thirdly, the
solution is incomplete, since only the interfaces actually
us2d in the test are verified instead of testing all inter-
faces which may be used in production.  If the operating
system is developad in this same way, this solution could

-provide consistency checking of the interface between the
modules in the project and the modules in the operating sys-

ten,
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A second solution providing automatic consistency
checking is to eliminate separate compilation and force all
abstract types in a project to be compiled simultaneously.
In this way, complete consistency checking could be done

since all information required by the compiler is available.

This solution is cost prohibitive. In a large project
the number of abstract types to be compiled would be exceed-
ingly large and compilation times would be iong,  Whenevar a
modification, however minor, wers made to a abstract type,
complete recompilation of +the entire project would have to
be done, In addition; to maintain complete consistency
checking of the project +to operating system interface at
compile time would Tegquire a complete recompilation of the
operating systen and the project together which is essen~-

tially impossible,

What is desired is a system in which complete congis-
tency checking can be done automatically at compile tinme,
thus eliminating the errors and oversights common in manual
checking, and providing all the information about consis-
tency errors at the time that it is required, In addition,

of course, the solution must allow separate compilation.
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2.5 DESIGN GOALS OF DEMOS

The intent of the design of DEMOS is to provide a suit-
able software environment for the modular development of
programs, The system will support the complete development
process {section 2,1) from design through implementation and
testing as well as the project's life in production. Com-
plete consistency between all abstract types (section 2,2)
will be enforced by the system, including those in the oper-
ating systen, while allowing separate compilation of

abstract types to be performed {section 2.3).

Inconsistencies will be detected and reported at com-
pile time, The design phase will be conducted on-line so
that any design inconsistencies can be detected at that

time, Abstract types will be <checked for cousistency when

they are entered during development., Whenever abstractions .

or realizations are modified, any resulting inconsistencies
will be noted, At no time will an inconsistent abstract type

be allowed to ba utilized,

Data security will be provided by the enforcem=nt of
consistency in access to data by the compiler and be suppli-
mented by access rTights checking, by the exscution

environment, of accsess to instances of abstract types.
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The system will be on-line to provide immediate
teedback and will be integrated rather than a collection of

tools.,

2.6 REQUIRENENTS FOR THE DEMOS SOLUTION

The provision of the facility of automatic consistancy
checking at compile time while still allowing separate com-
pilation, placas certain regquirements on the system., These
requirenments include: use of high-lavel language{s) only,
retention of abstractions after compilation, ©provision of a
mechanism to detect possible inconsistencies afterla modifi-
cation is made, and provision for tha development of the

operating system utilizing this systam.

A high level language is 'neCQSSary since only a conmpi-
ler can do the required consistency checking, To allow a
translator (for a language at any 1level) which does not or
can not do the consistency checking +to be used in this Sys~
tem would defeat the entire purpose of the systen, The
language{s) must not allow low level operations which could
be used to defeat the consistency checking (e.g, unrestric-

ted use of pointers ete,) for the same Teason.
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The abstraction provides valuable information to be
us=sd for consistency checking, It is created during the
design phase and shonld not bs included in ths code for the
realization but should be automatically used when the reali-
zation is compiled, After compilation the abstraction should
not be discarded but retained so that other compilations may
refer to it, When an abstract type is designed to interact
with another abstract type, the abstractions are used to
ensure consistency, After a modification is nade, the
abstractions may be used to reverify the consistency of the

interfaces,

There must bhe a supervisory system which enforces con-
sistency upon abstract types, It is this system which
provides the correct abstractions to the compiler when com-
pilation of a <realization is being done. It also verifies
completeness of the absiractions, A further regquirement is
thét it be able to detect when inconsistencies are caused by
modification of an abstract type and which abstract types
are affected, and ensure that these inconsistencies are cor-

rected before any exscution is begqgun,

Finally, the operating system must have been developed
~within this system since project abstract types interact
with operating system abstract typass and the consistency of

this interface must also be under control of the systenm.
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3 LOGICAL ORGANIZATION OF DENOS

3.1 HNODULES IR DEMOS

The module concept in DEMOS is a language independent
concept similar to that of the class concept in SIMULA [ 3],
the cluster concept in CLU [18], {15], the form concept in
Alphard ([25], and similar constructs in other languages
{181, [11j1, {281 It embodies the data ﬁype abstraction
discussed in [ 14] and section 2.1. The difference between
the module in DEMOS and the class in SIMULA is in the abil-
ity to reference the individual parts which make up the
entity, In SIMULA all names in the class may be referenced
by any process which has access to any member of that class.,
In DEMOS, the moduls explicitly states which parts are vigsi-

ble {referable) outside the module and which ars not.

The class definition in SIMULA and the module dafini-

tion in DEMOS both are declarative in nature and provide the
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definition of a class of entities which could be created by
anyone having access to the definition, In SIMULA, when a
new member of the class is created {using the new operator},
it appears to have all the facilities declared in the class
definition but is distinct from any other member of that
class.,  The sameris true in DEMNOS. When a module instance
is created, it appears to have all the facilities defined in
the module definition but is an entity different from any

other instance of that module,

In DEMOS there are two things then, +the module defini-
tion (hereafter called the module) and the instances of the
module t(hereafter called the module instances). The module
serves as a definition of the behaviour and form of the
module instanhces, The module consists of the two parts men-
tioned earlier {section 2.1), namely the abstraction and the
realization, The module instance appears to include within
its21f the complete abstraction and realization and behaves
accordingly, but is in fact only a data area ({section 4,1.1)

upon which operations specified in the module operate.
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3.2 MODULE REPRESENTATION

A module is the development unit in the DEMOS systen,
The system provides for separate compilation of modules
while retaining complete consistency checking. Modules in
the.system have interdependencies which force a new consis-
tency check of a previously checked module to be performed
whenever a module with which it interacts is modified, in
order to maintain assurance of consistency. Since, in gen-
eral, one module may interact with many other modules each
of which may interact with oﬁhers, and so on, the number of
new consistency checks of other modules due to a changs in
6ne module may be large and an effort must be made to limit

the number and complexity of these consistency checks,

To do this, DEMOS does not maintain a module as a sin-
gle unit, but as a collection of pieces called components,
The choice of what makes wup a camponént is made with the
nesd for limiting the complexity of the consistency checks

in mind.

In addition to the components which make up a module,
the system maintains a set of dependency relationships
between-module components, both within and among modules. A

component A is said to be dependent upon 3 component B if:
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a) A is another representation for the
information in B (direct dependence)
b) theres is an implicit  mapping of
entries in component B +o0 entries in
component A (form depsndence)
c) there is an explicit mapping (i.e. a
pointer, offset or index) from A to
component B {Pointer dependence)
d) component A contains information
taken from component B (information
dependence)
Dependencies are used to determine when components must be
subjected to new consistency checks, The rule used is: if

component A is dependent upon component B and component B is

modified, then component A must undergo a new consistency
check.
"% =
i mY <= m2 |
| EORUS— | | S |
fig. 3.2.a Hodule Dependence
Logically, when a module m2 uses resources provided

a module mt,

is dependent upon m1,

This relationship can

by

we have a dependence relationship such that m2

be viewed as
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shown in figure 3.2,a, Here a module m2 is d=apendent upon a
module m1 (as shown by the arrow) since a change to module
m1 must force a consistency check of_ module m2 to ensure
consistency. In DENOS, the logical dzpendence of mn2 upon m!
is reflected by the actual dependsence of some components of

module m2 upon some components of module m1.

3.2.1 CONPORENTS

As was indicated in section 2.1, to a user a module is
composed of two parts: an abstraction and a realization.
These are two distinct entities developed at different tinmes
in the devélopment process, the abstraction besing developed
during the design phase and the realization during the

implementation phase,

In DEMOS the logical division of a3 module into two
parts is reflected by a division of the module representa-
tion dinto two groups of components, The first group
consists of components reflecting the definition of the
module, i,e, the abstracfion. This group also defines the
interface of the module with other modules within the sys-
ten, The second group reflects the particular realization

of the defining abstaction, (see figqure 3.2.1.a)
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fig. 3.2.1.a Component Groups

Here the dependence of modulse w2 upon ml is reflected

by a dependence of the abstraction of m2 upon the abstrction

of m1 and indicates that m2 uses resources provided by m?1,

The realization is dependent upon the abstraction since it
is a realization of the module as defined by the abstrac-

tion,

The realization is separated from the abstraction since
the realization has no effect upon the interface between
this module and others, Any realization which realizes the
module defined by the abstraction would suffice and a change
to the realization does not require any ney consistency

checks of the interface betvween this module and others.,
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3.2.1.17 ABSTRACTION COMPONERTS

The abstraction can be viswed as a definition part and
an interface part, The definition part indicates the param-
eterization of +the module and the machine upon which this
module is to be implemented, The interface part indicates

the interface that this module has with other modules.

The definition part is represented by a single compo-
nent called the module specification {MS) which contains the
parameterization and the name of the implementation machine
for the module, A module may be parameterized so that dif-
ferent instances of the module may vary structurally but
remain organizationally the same [251]. This parameteriza-
tion includes parameters of the standard types within the
system language and parameters of the type type (i.e. a
module may be parameterized by a data typz). This allows a
module to be somewhat representation independent, at least
in these parameters, For eXample: a Single nodule “stack®
could be defined, parameterized by an integer {the maximun
stack depth) and a type (the type of elements in the stack).
This one module could be used to define stacks of any depth
and type including even a stack of stacks., The values of
moduls parameters are not available until module instance
creation time and thus the use of parameters cannot he con-

sistency checked until that time,
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The interface part is represented by two components,
th2 uses specification (US) and the defines specification

{D3) .,

The uses specification indicates the resources rsquired
by this modunle and the names of the module(s) which are
expected torprovide then, This component is dependent upon
the module specification since the modules available to pro-~
vide the resources needed belong +o the machine 1listed in
the module specification or are parameters of the module (as
indicataed by the module specification}. The existence of
the resources 1is known only to the module from vwhich the
resources are drawn. Thus the uses specification is depen-
dent wupon the defines specification of all modules from

which this one draws resources,

The defines specification indicates the resources pro-
vided by the module to other modules within the system. For
each resource it also gives complete typing information.
Since the types may be modules which provide resources to
this module, or types in the parameter list, this component

is dependent upon the module specification of this module.

The components that make up the abstraction of a module
ar2 shown in 3.,2.1.1.a. It can be szen that the dependence

of one module's abstraction upon that of another is repre-
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sented by the dependence of that module's US upon the DS of

the other,

The resources defined and used by a mwmodule are all
opsrations upon the abstract type which is defined by the

module, Thesé are represented by procedures and operators.

Data objects within the module are not provided as resources

since this would cause a dependency of modules upon the
representation (see saction 3,2,1,2) of the module which is
not part of the abstraction., TIf, in fact, access is desired
fo a data object from within another module, this access may
be made via procedures defined for this purpose in the
detfining module, These procedures themselves are dependent
upon the representation but the use of the procedure is not
and thus the unwanted dependency bhetween a module and the

representation of another is avoid=d,

=3
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The three components of the abstraction are created by
the designer of the nodule and thus originate in a human
comprehendable (external) formn, To facilitate consistency
checking, an internal form would be pfeferreﬁ. DEMOS main-
tains an internal form of eachk of the three components of

the abstraction.

The internal form of the module specification is called
the module definition {MD}. 1t conéists of a pointer to a
machine and a table containing one =ntry for =ach parameter
in the parameter 1list, In addition the table contains one
entry for each module available for use in implementation of
this module, Each entry contains: the module or formal par-
ameter name; a flag indicating whether the entry is for a
module or a formal parameter; the type of the object des-
cribed by the sntry ({modules have type type) in a coded
form; and an address field which is either the offset within
the parameter space to the parameter (if the entry is a par-
ameter) or the module address within the system {if the

entry is for a module which is not a parameter).

The internal form of the uses specification is called
the import list (IL), A resource is said to be imported if
it is provided by another module and used by this one, The

import list contains one entry for each resource used by the
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module; Each entry contains: the resource name; the offset
in the MD o©Of the entry for the nmodule providing the
resource; and the index, into the export definition {ED see
next paragqraph} of the module providing the resource, 5f the
entry for the resource used. This provides a link from the
IL to the ED of the wmodule providing the resource since the
location of the ED can be found from the module address
which is contained in the HMD, Note however, that if the
module providing the resource is a parameter, +the ED index
is not available until module instance creation time and
differs with different module instances. Thus, for a module
parameter, the ED index field is not used in the II but

resides in the parameter space,

The internal form of the defines specification 1is
called the export definition (ED), It contains one entry
for each resource defined by this module, Bach entry con-
tains: the resource name and the type of the resource in a
coded form, The coded form includes an offsst within the HD
whenever a type defined by a module is used in the parame-

terization of the resource,

The module definition contains all the information con-
tained in the module specification eXcept for the machine

name, Due to this fact, if the machine name is retained in
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the MD, tha external form of the module specification can be
regenerated from the internal form excapt -for the layout
(i.e. spacing etc.,). If a standard layout is adopted, it is
not necessary to maintain the external form at all, since,
whenever the external form is desired, it can bes regenerated
from the 1internal one, Changes can be made by the user,
directly to the internal form as well, {even though the user
may think he is modifying the external form). Thas DEMOS

maintains only the MD and an imaginary #S.

A similar argument can be used for the uses specifica-
tion and the defines specification except for one thing.
#hen the IL {or ED) 1s consistent with the HD, the pointer
into the MD <can be used +to regenerate the modrle names
referred to by ths entry. However, if the #D is modified,
the pointer is no longer valid, aﬁd there is no longer any
way to regenerate the podule name for this entry. To over-
come this problem, another field is added to each of the IL
and the ED, The field added to the IL contains the name of
tha module providing the resource, The field added to the
ED contains an internal text £form of the typing information
of +the resource. Now all the information required for
regeneration of the US from the IL and the DS from the ED is
avalLable for listing, modification or consistency checking
purposes, and so DEMOS maintains only the IL and ED and an

immaginary S and DS. .




ABSTRACTYON COMPONENTS ' 35

environ

d | <=
i MD o
i
I
]

SRS |

i SN

]
GCE"O’I]*‘.Q!C"OO!‘-‘.‘Q' LA B & RN ]
| |

1
!
|
|
{
!
!
|
|
|
I
!
| ! ]

m—_——-‘m—“ﬂm“——a—ﬂ

——————— g ———— |
other <—4—}j{Se | ] #D5|{—4—~ other
| joss ] | see| |
mnodules ! {—dmm| | 1 { {—4——modules?
I IL | l ED I
EDs <L—4—u] i i j{~4%— Iis
* [ S S, ¥ | 1 -

"fig, 3.2.1.1.b Abstraction Representation

The final <form of the abstraction part of +the module
representation is shown in figure 3.2.1.1.b. Here +he IL
and the ED are dependent upon the MD by pointer dependence
since they contain offsets into the MD., The IL is dependent
upon the EDs of other modules which supply resources +2 this
module by pointer dependence since it contains indices into
these Ebs, The MP has a dependence as wa2ll since it is
dependent upon the source of the module names and addresses
by information dependence, This source is termed the envi-

ron of the module and is discussed in section 3:u.
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3.2.1.2 REALIZATION COMPONENTS

The realization of a module can be viewad as two parts,
a representation part and an implementation part [12], {5].
The representation part indicates the concrete representa-
tion of the abstract data type defined by the module and the
implementation part indicates the inmplementation of the

operations defined upon that type.

The representation part is represented by a single com-
ponent called the module representation (MR). The aodule
represantation contains declarations of all variables
{fields) which make up the concrete static representation of
the abstract type. This representation dafines the instan-
tiation of the module {i.e. the module instance or data
area). The +typing information includes references *to
modules listed in the wmodule definition compohent of the

abstraction part of the module,

The implsmentation part is represented by a single com-
ponent called the module implementation (MI). The module
implementation <contains the sourcez code fdr operations
defined by or local to the module, and the cods for creation
and disposal of the module instances, The source code makes
reference to the resource declavrations given in the DS of

this and other modules, uses only resources listed in the 03
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and references modules of the environ indicated by tha #S

and the variables declared in the MR,

The realization part is thus representsd as shown in

figﬂre '3o 2!1.2' de
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fig. 3.2.1.2.a Realization Components

The two components of the realization were created by
the implementor in a human comprehendable {external) form.
Bxecution speed éan be improved if internal forms of the
components are maintained, since this would obviate the
recessity of scanning the MR and interpreting the MI during

execution, To facilitate this improvement, DEMOS maintains
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some internal components for the realization part of the

module definition,

The internal form of the module reprssentation is
called the representation dictionary {(RrRb}, The representa-
tion dictionary contains one entry for each fiszld (variable)
in the representation of the abstract data type. FEach entry
contains the field name, the type of the field (encoded in
an internal form) and the address of the field within the
data area., The internal form of the type includes an o ffset
into the MD or standard type table to entries for the names

of the modules which define the types of the fields,

The RD contains all of the information from the MR as
long as it is consistent with the ¥D, However, this consis-
tency may be violated if the HMD is modified and, in this
evant, it is impossible to determine the types of the fields
directly from the coded type in +the RD (since this contains
offsets into the MD which are now invalid). To enable the
maintenance of only the RD and not the MR, a new field must
be added t0 the RD Which contains the type of +the field in
an internal text form, This novw allows the rsgeneration of
the MR from the RD and thus eliminates the nsad to maintain

both the MR and the RD,
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The internal form of the MI is more involved, Clearly
thz most impoCtant component is the object cods (OC) created
from the MI., This object code requires the addresses of all
resources which it wutilizes including those providsd by
other modules, If these addresses were coded directly into
the 0OC, they would force the 0C to be dependent upon the OCs
of other modules by pointer dependence. This is undesirable
since this would make the implementation of one medule
dependent upon the implementation of another which violates

the desire that modules be implementation independent.

To overcome this, a new component is added to the
implementation part of the realization, This component,
called +the entry map (EM), contains the offsets of the
resources defined by this module within the object code conm-
ponent, This eﬁﬁbles' a reference +to this table by the
System at eXecution time when a call is made to a resource

in this module, in order to get the address of the resource,

This, however, has two drawbacks. Firstly, this refer-
ence® must be done at each Use of the resource even if its
address has not changed since the last use and, secondly, .
requires system intervention at exscution time to resolve

the reference,
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To remove these drawbacks, another component is main-
tained as part of the implementation, This <componant,
called the use map (UM), contains one entry for each exter-
nal name referenced. This entry contains the offset within
the OC of +the providing module of the resource referencad.
These - offsets are loaded from the EMs of the providing
modules, 211 references to external resources from the 0OC
are made indirectly via the UHN,. As 1long as the U¥ is con-
sistent with the EM of a providing module, the referencs to
the resource can be made without system intervention, If
the UM is not consistent with the EM, the nevw offsets in the

EN must be load=2d4 into the UM before execution may proceed.

Since there iz one entry for each resource refarenced
by the module implementation 1in the ON and there is one
entry for each resource r=ferable in thes IL, there 1is an
entry in the IL for each entry in the UH.. In fact, 1in a
fully implemented module, there should bs a one-to-one cor-
respondence of entries in these two components. The 0O#
could even be considered as part of the IL except that it is
dependent upon inmplementational not abstraction considera-
tions, Due to +this correspondence, the UM is maintained
only as a table of offsets organized so that there is a cor-
respondence between the entries in it and the antries in the
I, such that the first entry in the UM is the offset 0f the

resource described by the first entry in the IL, etc..
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A similar argument can be used for the structure of the
EN resulting in the EH being simply a table of offsets which
has a one-to-one correspondence to ED entries such that the
first entry in the EM is +the offset for the resource des~

cribed in the first entry of the ED, etc.

It is now possible to do an efficient job of loading
the UM when necessary, If the IL is consistent with all EDs
upon which it depends, it contains indices into the EDs {and
hence EMs) of the providing modules and its entries corre-
spond one-to-one with the entries in the UM to be loaded,
Thus a series of simple index and cOPy operations can be

used to load the UM from the required EHMs,

A final component is added to the implementation part
of the realization of a module, This component, called the
symbol table (5T), is added for consistency checking of
separately compiled procedures (section 3.2.1.3y ., The sym-
bol table contains one entry for each name declafed in the
MI, Fach entry contains the namé, the encoded form of the
type, the scope of the name and its offsst or value. This

component is another internal form of the HI,

The OC and the ST together do not give all the informa-
tion contained in the MI since +ha translation of source

language statements into machine lanquage instructions does
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not have a well defined reciprocal operation. Thus, the MT
must be maintained in order to have a human readable form,

unlike the cases for the MS, DS, U5, and MR,
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fig, 3,2.1.2.b Realization Representation

The final representation of the module realization is
shown in figure 3.2.1.2.D0, Here the RD is dependent upon
ths MD by pointer dependencé since it contains indices into
the MD (i.e, to module names dafining the types of the
fields). The MR does not actually exist but is an imaginary

component, f”ﬁGEWék”“-
S

OF MANITOBA

N _LIBRARIES
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The OC and ST are directly dependent upon the HI since
they are internal forms of the MI., The EM is dapendent upon
the OC by pointer dependence, since it contains offsets into
the 0C, and upon the ED by form dependence since its form is
defined by the form of the ED, The UM is dependent upon the
IL by form dependence and upon the EMs of other modules by
information dependence, The O0C is dependent upon the ED,
RD, HD, IL and EDs of other modules by information depen-
dence since information from these components is implicitly
encoded in the OC., The ST is dependent upon the HD by poin-

ter dependence since it contains indices into the MD.

3.2.1.3 SEPARATE PROCEDURES

The module concept provides data Lype abstraction; how-
aver, this is probably not sufficient for program
development [141], Additionally a functional abstraction is
needed, Functional abstraction is represented in DENOS by
procedures yithin a module. In order that development of a
functional abstraction may proceed separately from that of
the rest of the module, DEMOS provides for, a special type of

procedure, termed a separate procedure,

A separate procedure is no different functionally fron

any other procedure, Its difference 1lies in the manner in
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which consistency checking is done, A separate procedure is
consistency checked at a time ©potentially different from

that of the rest of the procedures in the module,

To enable this independence, a separate procedure is
maintained as a separate entity within the module represen-
tation, Since 1its environ is like that of any other
procedure within the same module, it is essentially another
part of the implementation part of ths module. The separate
procedure is represented by a component called the procedure
implementation {(PI), The procedure implementation 1s the
source code‘of the procedure body, It makaes referencs to
the M5, DS and US of the abstraction part of this mddule,
the MR and MI of the realization of the module and the DSs
of modules supplying resources us2d by this procedure, .}
separate procedure is represented as shown 1in figure

3'2a1931a1

MS DS US MI MR

P2 23 A

| Y e
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| PI {——->modules?
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fig, 3,2.1.3.a Separate Procedure Components
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It should be noted that the proceduré header (declara-
tion) Tesides in the MI and not in the PI, that is, the
procedure is declared in the MT and implemented in the PI,
This is to enable referehces to the Separate procedure by
the MI to be consistency checked without being forced to

compile the PT,

As expected, an internal form of the PI is maintained
by DEMOS., This is similar to that of the MI and consists of
two compoﬁents, the procedure object code (PO) and the
procedure symbol table (PS), which are organized in the sanme
manner as thelr corresponding components in the implementa-

tion,

A functional abstraction may be made at any level, and,
in fact, may be made from a separate procsdure, In this
case one separate procedure may be dependent upon another,
higher 1level separate procedure in which its procedure
header resides, 0f course it is also dependent upon all -
separate procedures upon vwhich its encompassing separate

procedure depends as well as upon the HMI.

The entry point of a defined resource must reside in
ths OC of the module and thus a separate prodecurs may not
implement a detined resource directly. This is due to the

fact that the entries in the UM of a module using the
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resource are assumed to point into the OC of the defining
module and this would not be tftrus for a separate procedure.
This does not pose any restriction since a defined rasource
could be impiemented by a dummy procedure in the #MI which

simply invokes the separate procedure.
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fig, 3.2.1.3.b SeParate Procedure Representation

The final form of a separate procedure is shown in fig-
ure 3.2.%1.3.b. Here the PO and PS are dirsctly dependent
upon the PI, The PO is dependent upon the #MD, ED, IL, RD,
0C and ST of +the module, POs and PIs of other separate
procedures in which it is imbedded within the module, and
EDs of modules which supply resources utilized by this sspa-

rate procedure, since the PO contains information from these
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sources encoded within it, Since the PS contains indices
into the MD and ST of the module and PSs of separate proce-
dures in which this omne is imbedded, the PS is pointer

dependent upon these components,

3.2.1.8 MODULE INSTANCES

A module instance is one instantiation of the abstract
type defined by a module, It thus incorporates the defini-
tion of the module as well as a data area in which the
values of the fields of this instance are retained, Thus a
module instance could be Lepresentad by a copy of the compo-
nents that represent the module with the addition of a data

area unique to this instance.

This representation would be inefficiernt, hovever,
since it implies duplication of the components common to all
instances of +the same nmodule. In addition, whenever a
change is made to the module, all instances would have to be
updated to reflect this change, A far more efficient repre-
sentation is realized if only one copy of the module 1is
maintained and each module instance is representad by only a

data area which contains values unique to this instance.

Within DEMOS a module instance is represented by a data

area (section #4,7.1). This data area (DA) is defined by the
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representation of the module ({i.e, the MR} and 1is thus
depandent upon the RD by form dependence (i.e. the RD
defines the form of the D). A data area is solely depen-
dent upon the RD (see figure 3,2,1.4,a) which means that

only a change to the MR will make a data area inconsistent.

RD

A

!

1
==
| DA |
I

fig. 3.2.1.%.a Data Area Representation

3.2.2 COMPONENT DEPENDENCIES

The components (figure 3.2.2.3) which make up the
mrodule representation discussed in section 3.2.71 have depsen-
dencies between them which arise from the inherent
dependence of the abstract types upon other abstract types
in terms of which the first are defined; the dependence of
the realization of the abstract +type upon the abstraction
which defines the abstract type; and finally the desire to
improve efficiency by maintaining internal forms of sone
modale ccmponents, These dependencies indicate the compo-
nents whose modification would require the reverification of

consistency of a component,
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T 1
} ACRONYM | COMPONENT | SECTION | TYPE |
fommmmm———- e it R fomm |
i M35 { Module Specification b 3.2.1.1 4 o |
| DS ] Defines Specification | 3.2.7.1 ] U |
i s | Uses Specification | 3.2.17.1 ] 1§
| MDD | Module Definition I 3.2.1.1 4 S |
{ ED | Export Definition | 3.2.1.1% 1 5
| TL | Import List | 3.2.1.1 | s |
i MR | Module Representation | 3.2.1.2 4 o |
| MI | Module Implementation ] 3.2.1.2 1 U
]l RD { Representation Dictionary | 3.2.1.2 | 5
H EN | Entry Map f 3.2.1.2 5 |
| ocC | Object Code | 3.2.1.2 1} S |
| ST | Symbol Table | 3.2.1.2 { S |
| uM { Use HMap { 3.2.1.2 S i
| PI | Procedure Implementation | 3.2.1.3 | 1
| PO } Procedure Object t 3.2.1.3 S 1
| PS { Procedure Source | 3.2.1.3 4 S
1 DA | Data Area i 3.2.1.48 S
e e e e e e e e e oo "

TYPE: U - User component
S - System component

fig., 3.2.2.a Hodule Component summary

In any system under development, the number of modifi-
cations to components would be large and thus DEMOS will
spend a large portion of its tine performing Consistency
CheCks, It is important to minimiZe the number of compo-~
nents that must be interrogated +to determine if a component
neesd be consistency checked. To this end, the number of
dependence relationships maintained in DEMOS is raduced to

the minimum number needed to maintain complete consistency.

The first method used to reduce the number of dependen~

cies that nheed to be maintained is due to noting that if
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there is a sequence of dependencies A->B->C and an addi-
tional dependence A->C, the depsndence of A on € 1is not
required since the discovery of C's modification will cause
B to be consistency checked (wodifying B) and this modifica-
tion will lead to the consistency checking of A, This
removes the need for the maintenance of the dependencies of:
the EM upon the ED; the OC upon the MD and ths EDS of other
modules; +the PO on the MD, ED, EDs of other modules, IL, RD
and, if the separate procedure is local to another separate
procedure, the 0C, ST and P0Os and PSs of separate procedures

other than that in which it is imbe=dded.

A second set of depéndencies can be removed by noting
that whenever the 0C is regenerated (by recompiling the HNT),
the 5T is recreated and vice versa. This implies that any
dependencies that the ST has in common with the O0OC are not
needed since the consistency checking of the ST will occur
at the same time as that of the 0OC anyway. This removes the
dependence of the ST upon the HD, The same argument wWorks
for the PS and the PO of separate procedures, removing the
need for the dependence of the PS on the MD, ST and PSs of

other separate procedures.

The dependence of the POs of separate procedures local

to the module upon the ST can be vremoved by noting that,
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since the 0C and ST are modified at the same time, if the ST
is modified, the consistency check indicated by the PO~->ST
dependence will be forced by the P0O->0C dependence, The
same is true for +the dependence of the Po of a separate
procedure local to another separats procedure upon the PS of

that procedure,

Lastly, +the dependence of the EM upon the 0C can be
removed since, by necessity, the EM must be recreated at the
same time as the OC since that is the only time +that the

information necessary to create the EM is available.

This leaves the dependency relationships shown in fig-
ure 3.2.2.b to be maintained by the systen, The direct
dependencies are not shown by arrows but by the inclusion of
a component in the same box as the comporent it is directly

dependent upon,

3.3 CORSISTENCY OF RODULE COMPONESTS

3.3.1 CONSISTENCY AND COMPILATION

The three areas of consistency mentioned in section 2.2

must be verified for all modules within the system to be
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cerﬁain that the system will function correctly. The first
of these areas 1s completeness of thes abstractions; that is,
vhen an abstraction states that the module uses a resource
provided by a second module, that second module exists pro-
vides the named resource, and secondly, that all external
resources used by & realization are stated in the abstrac-
tion, The second area is consistency of wutilization and
provision of resources by the realizations; that is, that
all resources declared as provided by the abstraction are
realized in the realization consistent with their definition
in the abstraction, and secondly, that the usage of external
resources by the realization 1is consistent with the
resources' definitions in the abstractions of the modules
which provide the resources, The last aseﬁ is consistency
of thé behaviour of the resources provided by the module

with the definition of that behaviour in the abstraction.

A compiler is capable of verifying the consistency of
the first tyo areasS listed above if it has access to the Ms,
s, DS, MR, HMI and PIs of all modules concerned, At the
current time, compilers are not able to perform the consis-
tency check upon the third area, which amounts to automatic
program proving, but progress is being made in that area

[117.
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With the introduction of system maintained componsnts
into the module\ representation, a n2w typs of consisténcy
must be maintained, This is consistency of the information
encoded in these components ({the MD, ED, IL, RD, EK, 0OC, ST,
UM, PO and PS) with the sources of that information. This
differs from consistency in the usSer created components
(i.2. the MS, U5, DS, MR, MI and PI) in that inconsistency
of system components implies that they were created from
Oobsolete versions of user components while inconsistency of

user components indicates a flaw in the design or implemen-

tation of one or more modules,

The system components can all be generated by a suita-
ble compiler using the user components as sources. This
compilation and generation process does consistency checking
of the source (user) components as well as creating new,
consistent system components, Since the system maintains
internal forms of user entered componants, the compiler ns=ed
. not use the user compoﬁents as sources at all times but may
use the internal forms of them as long as they are consis-
tent with their external fornms, This reduces the time
required to generate new, consistent system components when

0ld ones are inconsistent,
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Since it is desirable to reduce the npumber {and dura-
tion) of the compilations needed to maintain and verify con-
sistency, the compiler is broken into parts capable of
compiling single user components using system components as
additional sources, This aliows regeneration of an incon-
sistent system component without recompiling all other

module componants,

There is effectively a "compiler® for each type of user
component, that is, an MS compiler, a US compiler, a DS com-
piler, an HR compiler and an MI compiler, Since the PI is
similar to the MI the same compiler can be used for the PT
as the NI, Since the MS, US, DS and MR are not maintained
corcretely within the systen, their compilers are really
just table lookup and update routines invoked directly when
the user wishes to modify one of thess components. The MY

comrpiler is the only real compiler within the system.

3.3.2 CONSISTENCY AND MODIFICATION

Whenever a component is modified, a check nust be made
to see if this component and all componsnts dependent upon
it are still consistent within the system. If there is an

inconsistency, some action must be taken to reconcile it,
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The dependencies recognizsd by DENDS are those dis-
cussed in sSection 3,2.2. The maintenanca of consistency of
components related by these dependencies is sufficient to
ensure consistency of all modules within the system.. A1l
the dependencies maintained are of system components upon
éither the user component of which they are an internal forn
or uwpon other system components, A system component is
inconsistent whenever any component upon which it depends is
nodified, To restore the consistency, the system component
is regenerated by "compilation® of the wuser component of

which it is the internal form,

This compilation can result in a nsw, consistent ver-
sion of the system component or will fail indicating that
there is an inconsistency between two Or more user compo-
nents one of which 1is the one being recompiled, and the
others being some of the indirect sources for the compila~-

tion,

Whenever a system component is discovered to be incon-
sistent, an attempt is made to regenerate the component,
This attempt may either successfully conmplete yielding a
consistent component, or fail indicating an inconsistency
between user components,. This second case reguires inter-
vention by a user to reconcile the inconsistency before a

consistent system component can be generated.
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Some components do not fit this schéme. The EM, ST and
PS have no depsndencies but are regenerated in consistent
form as a byproduct of the regeneration of the 0OC and PO,
The UM has no usser component upon which it is dependent.
When the UM 1is found inconsistent, it is regenerated by a
special "routine which accesses tha IL and BHNs of other
modules, Regeneration of the UM cannot fail if the IL and
the EMs are consistent and thus cannot indicate any inherent

inconsistency betweem user components,

The inconsistency of the DA with ths MR is an unrecon-
cilable inconsistency since it implies that the DA no longer
has the form defined by the MR and thus the data within it
is incomprehensible, Recreation of a consistent DA would
have to be done by a user by reinvoking the opsrations which

created the DA using the nevw module representation and the

0ld data.

when the MD is discovered inconsistent within the sys-
tem, its regeneration will either be successful, indicating
the NS is consistent, or will fail, indicating an incom-
pleteness of the abstractions since the M5 references a

molule which does not exist within its environ. .

When the ED is discovered inconsistent with the MD, its

regeneration is either successful, indicating the DS is con-
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sistent with the MS, or will fail, indicating the DS refers

to some module not listed in the KS,

When the IL is discovered inconsistent with the MD or
EDs of other modules, its regeneration is either successful
or fails, indicating either an inconsistency between the US
and MS (i.e. the US refers to a module not listed in the MS)
or an inconsistency between the IL and the DS of some other
module (i.e. an incompleteness of abstraction since the IL

refers to a resource not provided by the module namegd).

#hen the RD is discovered inconsistent with the MDD, its
regeneration is either successful or fails, indicating an
inconsistency between the MR and the MS {i.e. that the MR

refers to a module nbt listed in the MS).

When the OC is discovered inconsistentrwith either the
ED, BRD, or IL; its regeneration is either successful, in
which case new, consistent versions of the EM and ST will
also be produced; or will fail, indicating an inconsistency
between the MI and the MS, DS, MR, US and/or +he DSs of
other modules., These inconsistencies are inconsistencies of
the realization of a module with the abstractions defining

the module or those defining modules utilized by this one.
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When the UM 1is discovered inconsistent with the IL or
the EMs of other modules, its regeneration is always suc-
cessful since 1its regeneration simply involves copying of

information from the EMs in the order defined by the TL.

When the PO is found inconsistent with the OC or the PO
of another separate procedure, its regeneration will either
be successful, in which case a new, consistesnt version of
the PS will also be generated, or will fail, 4indicating an
~inconsistency between the PI and the MS, DS, US, MR, MI, PO
of another separate procedure and/or +the DSs of other

modules,

The regeneration of system components found inconsis-
tent due to mod}fication of a component upon which DEMOS
knows the component is dependent, results in consistency
checking of the user components in the two areas discussed
in section 3.3.7 and thus verification of consistency of the

modules in the system,

3.3.3 COHMPILATION FOR CONSISTENCY CHECKING

The timing of the compilations to perform consistency
checking is important, Along with the desire to report a
user component's inconsistency as soon as possible, there is

the requirement of informing the correct user, that is, the
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user with the knowledge and responsibility to reconcile the
inConsistency. Als0, Since compilation requires time and
will cause a real-time delay to the user who nust wait for
it to be done, it is important to cause the appropriate user
this delay, The solution derives from dividing the depen~-
dencies into two categories and performing the requisite
consistency checks for these two categotiesrat different

times,

3.3.3.1 CATEGORIES OF DEPENDENCE

The scheme used is based upon the assumption that dif-
ferent groups of people develop different modules and that
within one group, two subgroups exist, one developing the
abstraction and one the realization. UOnder this assumption,
a change to an abstraction should cause reporting to the
’changer of any inconSistencies the change causes within the
abstraction or between it and the abstractions of modules
upon which this one depends, ILikewise a change to the real-
ization should cause vreporting to the changer of any
inconsistencies within the realization or between the reali-

zation and the abstraction it implements.

Two sets of inconsistencies are not covered by this,

These are the dinconsistency of the realization with the
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abstraction defining it after a change to the abstraction,
and the inconsistency of an abstraction with the abstraction
of a module it is dependent upon when the providing module's
abstraction is modified, In both of these cases, the person
making the change has neither the responsibility nor the
expertise to understand messages concerning the inconsis-

tency nor make the modifications required to reconcile them.

Consistency checking is thus divided into +two catego-
ries: immediate and deferred, Components whose dependencies
fall into the immediate category are consistency checked
whenever the module upon which +they have this dependence is
modified, Components whose dependencies are in the deferred
category have the implied consistency checks deferred until
a later time which, however, must preceed utilization of the

resources defined by this module,

Components which €fall into the immediate category are
those whose regeneration will cause consistency checking of
user components which may result in reporting of inconsis-
tencies which are the responsibility of the changer to
reconcile, These components are all componsnts which are
internal forms of a user component with their dependence
hpon that user component, and all dependencizs which are

entirely within the abstraction or resalization..
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The modification of the HMS causes the HD to be
regenerated, which causes the EbD and IL to be regenarated,
When the DS is modified, the ED is regenerated, as is the IL
when the US is modified, In the realization, whenever the
MR is modified, the RD is regenerated causing the regenera-
tion of the OC (and hence the ST and ENM). Modification of
the MI causes the regeneration of the OC (ST and EN). In a
Separate procedure, the modification of the PI causes the

Tegeneration of the PO (and hence ths PS),

Components with dependencies in the deferred category
are those with dependencies which cross abstraction-realiza-
tion, separate procedure or module boundaries. This
includes the dependencies of the ND upon the environ; the IL
apon“the EDs of other modules; ths oC upon ths ED, RD, and
IL; the UM upon the IL and EMs of providing modules; the POs
on the OC or POs of other separate procedures; and the DAs

upen the RD,

A couple of exceptions to the rule for immediate con-
Sistency checking may be made to allow +the user mors
flexibility, Normally, a «change to ths H¥S would imply a
change to the DS, US or both, In this case, if the MS were
changed first, the unchanged versions of the DS and US would

be <consistency checked with +the obvious. inconsistencies
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noted,  Likewise, if the DS or US were modified first, a
spurious consistency cheCck would be made, - This is vwasted
etfort since the user is well aware of +thess inconsisten-
cies, In addition, a user may be making a number of changes

to the MI or PI of a separate procedure but be unable to

complete them all in one session, With only some of the
changes made, Tecompilation of the MI (or PI) would be a
waste,

To resolve this problem an option would be available to
allow a user, when making a change to the MS, HI or PI, to
specify that the consistency check be deferred. In this
case, modification of the MS would not antomatiCally cause
the immediate regeneration of the EP and IL (as would nor-
mally be the case} and the modification of the HI {or PI}
would not automatically cause the immediate regeneration of
the OC (PO) and associated components. The consistency
checks involved would instead be handled as deferred consis-~

tency checks by DEMOS,

3.3.3.2 DEFERRED CONSISTENCY CHECKS

ConsistenCy checks which have been deferr2d must still
be performed at some time prior +to the use of the component

in execution or another component's regensration. In DEMOS,
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deferred consistency checking is performed just prior to the
beginning of execution, The dependencies which could be
involved in deferred consistency checking are shown in fig-

ure 3.3.3.2.3a.

When execution of a resource from a module is initiated
by a user (section 3.4.2,2), the system must determine if
any deferred consistency checking must be performed before
execution may begin, If some is necessary, it informs the
user and allows the user to cancel the execution or to allow

the system to procead with the checking.,

To determine which deferred consistency checks must be
per formed, the syStem follows the network of modules upon
which this one depends directly or indirectly and places the
modules encountered into sets, one set for each diferrent
path length from the root module (i.e., the module in which
the execution is to begin). PBach module is placed only into
the set for its maximum path length from the root. In doing
50 it also determines if the modules referred to exist in

the specified environ (section 3.4%),

Wwhen this operation terminates {as it must since ulti-
mately, all modules depend upon the hardware) the systen
then begins with the set containing the mnodules at maximum

disance from the root and tests the components of these
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modules to determine if any deferred consistency checks nust
be performed, If there are any, the checks are performed.
When all the checking in this set is complete, the systen
goes on to the next set again testing for deferred consis-
tency checks and, if any are found, does the checking anrd so

on to the next set until the root module has been tested.

Within a module, the test for deferred consistency
checks proczeds down from the MD through the ED, 1L, Rp, 0OC,
UM to the POs in turn, Whenever a deferrad consistency
check is requirad, the check is performed before going to

the next component,

To enable the system to determine when a consistency
check has been deferred, components are date stamped with
the date of their last modification, WYhenever a user compo-
nent is modified or a system component is regenerated, the
date of last modification is updated, This requires the
-system to make only a simple test of the date stamps of a
component and the components with which it may have a defer-
red consistency check to determine if a deferred consistency
check is necessary, A deferred consistency check is neces-
sary if the date stamp of the depesndent component is prior

to the date stamp of the component upon which it depends,
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When deferred consistency checking is performed, the
regeneration of the dependent system coamponent may be suc-
cessful, or unsuccessful due to an inconsistency betwesn two
Or mOore user pomponents. When the check is unsuccesssful,
the user 1is informed and further checks and the execution
are aborted, To prevent future, wunnecessary deferrad con-
sistency checks of a component which has already been
unsuccessfully consistency checked, the system maintains a
flag in each component which is set when a consistency check
is successful and reset when it is unsuccessful, In addi-
tion, even if an unsuccessful regeneration of a component
occurs, the modification date is set, When a component is
tested for deferred consistency checking, the date stamps
ars tested as usual, If they indicate that a deferrsd check
is necessary, the check is done regardless of the statse of
the flag, However, if the dates indicate that no deferred
check need be done, the system tests the flag, and, if it is
reset, the component is treated as if it had undergone an
unsuccessful consistency check, This eliminates unnecessary
compilations of components which are alréady knovn to be

inconsistent,
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3.4 ABSTRACT MACHINES

Modules in DENOS are implemented upon abstract machines
{or simpiy machines), Where modules are the development
unit, machines are the organizational unit, Each module is
a module of one and only one machine and gives to the
machine the capabilities of the data type defined by the
module and the operations upon it, In this way a module is
like a hardware block within a CPUY {eg. the integer arith-

metic hardware) and a machine is like a hardware machine.

A machine has the ability to eXecute operations in its
repertoire upon data objects located within its store., In
terms of modules, the operations are the resources provided
by the modules making up the machine, and the data objects
are instances of those modules, These operations may be
initiated and sequenced by a user attached to the machine or
by a super machine (machine at a higher level rTunning on

this machine) acting as an automated user.

When a system is being developed, a ney machine is
created to provide users with the capabilities desired in
the systen, This machine is developed in terms of its com-
posite modules,  Each module making up the machine is to be

implemented on some other machine (or subsystenm) which is
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called the environ for the module, This machine may be the
same for all modules which comprise the current machine, or
there may he different machines used to implement different
modules, At any time, some of the machines nesded to imple-
ment modules may be previously defined in other systems or
may be the actual hardware machine, If this is the case for
all modules in a machine, no new machines need be created.
However, 1f, for some modules, new machines are needed, they

can be created as described above.

When a user is attached to a machine, he uses the
machine language for that wmachine to psrform his desired
tasks, This machine language enables the user to utilize
the facilities of the modules provided upon the machine.
The language is, in fact, the implementation language
extended by the abstract data types which are defined on the
machine and the operations upon those types., The unextended

lanquage is the same for all machines in the systen.

When a user creates an instance of an abstféct'type
during his work on a machine, that instance is created in
the address space (see section 4,2,1) which is the store for
the . machine, The instance will be creat=ad as either a
dynamic or static area (i.e. as an address space or not)

depending on whether +the representation of +the nodule
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involves dynamicly sized data or only data of static size.
The user may, uPOn cfeation of an instance, supply access
rights information concerning this instance, to limit other
users access beyond the limitations of the machine that the

instance is created within,

An address space in DEHOS is a region of storage within
which dynamic allocation may be done and for which dynanic
address translation is performed, A more dstailed discus-

sion is given in section 4,2.1,

Any operation that may be done by a user on a machine
may also be done by a super machine running on the machine.
This is the -an mnodules operate upon the abstract types in
terms of which +they are defined, The differences hetween
this mode and that of a user using the machine are, firstly,
that instances created by a super machine are not necessar-
ily created within the address space of this machine but are
usually allocated as subpaces of the user created data area
upon which the operations ultimately causing this creation
were initiated by the user (see section 3.4.3). Secondly,
instructions from the super machine which are executed by
the machine are not necessarilY in the implémentation lan~-
guage (which looks to a user as the machine language for the
machine) but are usually in the actual machine language of

the target machine,
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3.4.7 MACHINE BREPRESENTATION

A machine consists of four basic units, These are the
cpntrol unit, the operations unit, the memory management
unit, and the memory unit, These basic units also exist for
a DEMOS machine, The control unit is an interpreter for the
implementation language, The operations unit is represented
by the collection of modules which makes up the machine.
The memory management unit is a module which defines the
address management operations on the machine. The memory
unit consists of the.data areas of the modules which make up

th2 machine,

The interpreter is the same for all machines in the
system since the language for all machines is the sane
high-level language with data type extensions represented by
the modules on the particular machine, It can thus, with
reference to the module abstraction, determine correbtness
of input and then, with reference to the module realization,
cause the resource of a moduls to be 2xecuted. The inter-
preter virtually belongs to a machine; however,
implementationally, there is only one interpreter and it is

passed a machine pointer when its execution is required.

The machine has an address space associated with it in

which module instances c¢reated upon this machine are allo-
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catad, Module instances are created upon this machine if a
user creates an instance while attached to this machine or
if a module instance is declared as separate by a machine
running on this machine, Contained module instances created
by a super machine are imbedded physically in the data area
of the module which creates the contained instance (section
3.4.3). In addition to the module instances, the module
definitions for modules of this machine are allocated within

this address space,

The operations unit is represented by a single table
which ccnta%ns the names of the meodules defined for this
machine along with the addresses of their definitions., 1In
addition, to maintain a record of instances allocated within

this address space, a table of instances .is also maintained.

Thus a machine is represented by an address space ywhich
Ccontains module definitions and instances and tables tp fing
these, and a virtual interpreter for the implementation lan-

guage, .
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3.4.2 THE DEVELOPMENT ENVIRONMENT

3.4.2.1 MACHINE DEVELOPMENT

There is a predefined machine in the system which per-
mits machine creation and development, If permitted access
to this machine and once attached to it, a user may daclare
new machines and develop modules for then. This sane
machine can be wused to access machines to modify ‘their
repertoire or change abstractions or inmplementations of

modules which are part of the machins.

achines are maintained in heirarchical directories
which may be created and added to with appropriate access
rights, Typically, esach user group would have a main direc-
tory entry under which it may dsvelop systeas. Thus a
machine name is a multi part name which specifies the path

in the directory and the directory name,

Development of a system may proceed as follows.  The
system designer first attaches to the machine develspnent
machine,  He then creates a new machine for the system by
invoking the operation provided for this purpose, In creat-
ing the machine he supplies a machine name {indicating the
directory and where the machine is to be added in the direc-

tory) and may also supply access rights information for this
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machine (including run access, list access, environ acecess,
and modification access). He may then develop the abstrac-
tions for this machine by performing operations which allow
creation of modules and modification of module compon=ants
namely the module definition, defines specification and uses

spacification,

In giving the module definition, the designer supplies
the name of the environ for the module, When the module is
first used (6r when specifically instructed by the designer)
the directory specified will be searched for thisg machine
name during the consistency check for the module definition.
At that time, the environ must exist and the module creator
{i.e, designrer) must have environ access (pasrmission to use
the machine as an environ) to the machine which is the ipdi-

cated environ,

Once the modules for this machine have been designed,

the designer may create any new machines required to imple-
ment the modules of the higher level machine, and then
design the modules of those machines, This process may ter-
minate at any time and any module which has no:t had an
environ specified is assumed to have the hardware machine as

its environ,
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When implementation is +to begin, the implementor
attaches to the machine development machine. e may then
list the modules to be implemented in the sfstem {i.e. the
machine which provides the system), To do this he must have
list access to that machine. He may then selact the module
he is to implement and perform the implemantation by modify=-
ing the module rep:esentation and implementation. Again, to

do this, he must have modification access to this module.

When the module is to be implementead in an environ, the
implementor may list the modules in tha environ and the
abstractions for any module he requires in his impleamenta-
tion (here he needs list access to the machine which is the
environ and its modules). The implementation may then pro-
ceed, If ths implementor wishes to devslOP a new environ
for a module for which the designer has not specified one,
he may do so if he has modify access to the module defini-
tion, He creates the new machine and the modules which
comprise it just as the system designer did at a higher

level,

3.4,2.2 NACHINE USE

When a user connects to the DEMOS system, he is auto-

maticly attached to a machine which provides two facilities:
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the ability to 1list the machines available to the uger and
the ability to atftach to a machine to which the user has run

aceess,

When a user is attached to a machine, he may use any of
the facilities provided by that machine, namely create
objects of types defined on the machine and perfornm opera-
tions on those objects, These activities are carried out
using the implementation language for the systen just as the

development of machines and modules is dona.

When the user is finished working on one machine, he
nay end his session on that machine and return to the
machine accessS machine, Here he may =2ither end his session
on DENMOS or attach to another machine to which he has run

access,

3.4.3 BACHINES AND ADDRESS SPACES

Machines have a close connection with address spaces
and the addressing mechanism ({discussed in section 4. 2}
Machines provide address spaces in which module instances
may be created and define the address allocation and resolu-
tion mechanisms to be used for any instance of a module of

this machine which is an address space.
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fig, 3.4,3.a Contained and Separate Instances

Module instances may be separated into two categories:
separate and contained (figure 3.4,3.,a)., A contained module
instance is one which is allocated as a part of +the data
area representing the instance of ths module of which it is
a field, A separate module instance is one which is created
in a separate address space from the inétance of which it is
a field, When creating an instance, the creator declares
whether the instance of the module is to be separate or con-
tained, This is a property of a particular module instance
and may be different <for different instances of the same

modnle,

Separate module instances are allocated within the
address space of the machine of which the module definition
is a part, All machines are creatad such that their address
spaces are subspaces of the system space (section 4.2.3).

This means that the address resclution activity is short in
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duration for separate instances, In addition, since amemory
management segments correspond to subspaces of the SyStenm
sPace (Section #4,3,1), this forces these instances to be in
different memory management segments with tﬁe advantage of
making the segments smaller and the disadvantage of breaking
the physical contiguity of the instances which might cause
an extra segment load for the access of informtion in this

instance,

A machine, when created, has one module predeclared. .
This is the address management module which is implemented
upon a pred=zclared address management machine., If the crea-
tor of this machine desires, he may modify +this module to
provide a different address management facility. Any
address space which is managed by a modified memory manage-
ment module is called a used defined address space {(section
4.2.5). #hen a module which is an address space {i.e. a
dynamic data area) 1is manipunlated upon this machine, it is
this address wmanagement facility which is used to handle

address allocation and mapping.

The module which implements the address managenment
facility of a machine is a special type of module. Unlike
all other modules, the address space module handles its own

instance as a subspace of the address space it is managing.
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It also has available to it low level routines for manipu-

lating addresses and block tables.

The module specification and defines specification for
the address space module are predefined and. unchangable by a
user, The other components may be modified by a user to
perform a different address allocation/mapping function. A

sample address space module is found in appendix A.




80

% PHYSICAL ORGANIZATION OF DEMOS

4.1 DATA MANAGEMERT

4.1.1 DATA AREAS

Every entity in the DEMOS environment is an instance of

2 module and also part of another such an instance. This is
true of all entities in the DEMOS system and all entities in
progdrams developed under it, The instance of a module is
the data upon which the implementation of the module oper-
ates, The code generated for the module implementation
treats the data area as a storage area with initial address
of zero, The addresses within the data area are converted
into real storage addresses at execution time by the systenm

{see sections 4,2.3 and 4,3.2).

To permit consistency checking, each data area consists

0f three fields:
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1)y instance pointer

2) <creation date

3}y data
The existence of the first two fields is knoyn only to the
elemental system routines which create, check and manipulate
data areas, The compiler ensures that the code implementing
the module doss not reference these fields.  The last field
is the contents of the data area and, of course, is accessi-

ble to the code for the module implementation.

The instance pointer is a system address which points
to the module which defines the abstract type of which this
data area is an instance, This enables a check for consis-
tency of the data area with its defining module {section

3.3-3]2) *

The creation date is the date upon which this data area
was created as an instance of its defining module. It is
used by the system routines to determine if the data area
has beconmse inconsistent with its dafinition ({section
3.3.3.2). It is initialized to the current date when the

data area is created.

Modules {and hence their instances) can be separated
inte two categories, This separation is by the kind of data

type they define, If the data type the module defines is
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dynamic in size over time, the module is termed dynamic, If
the data tyPe iS fiXed in size over time, the module is
termed static, . This is a property of the module (i.e, all

instances) not just the property of a particular instance.

The size dynamism of a module can be determined by
inspection of the module representation, A module is
dynamic in size 1if any fields in the module representation
are dynamic in size or are references +to dynamically allo-
cated objects, The first can be determined by inspection of
the module définitions of the modules which define the types
of the fields angd the second can be determined from the
field declarations directly (i.e, if the field is of type

Ypointer to"),.

An instance of a module which 1is static in size is
represented by a simple data area, The area is fixed in
size and all references can be made directly into it without

having to go through any address resolution at this level.

An instance of a dynamic module is represented by a
data area with tw0 parts,  The first part is a static area,
jast 1like that fbr a static module, in which all static data
is maintain=d, The second is a dyramic area which contains
all dynanic data. The first field 4in the static area is a

block table for the subspace which 1is the instance of the
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address space module which manages this area. A data area
of this type is called an address space, The two types of

data areas are shown in figure 4.1.1%1.a
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addfesSs space

fig. 4.17.1.a Data Area Types

When reference is made to objeCts within the static
portion, the offset within the data area is used. When
reference is made to objects within the dynamic portion, the
subspace identifier is used, When a transfer is made to a
module in the base machine for this one, the same address

resolution rontines as those for the current data area are
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used if the wmodule is static, However, if the nmodule is
dynamic, the address resolution routines for the machine of
which the invoking module is a part, are used to resolve

references into the instance,

Elemental entities, that is those defined as intrinsic
in the system, are not represented by data areas themselves
but are always part of some data arsa,  Since they are not
data areas, their use does not involve the overhead associ-
ated with data areas, This, however, prevants them from
being consistency checked with +their definitions since they
have no instance pointer, but, because they are elemental,
this presents no problems, A1l other module instances are

represented by data areas as describhed above.

4.2 ADDRESS MANAGEMENT

4.2.1 ADDRESS SPACES

The method of successive decomposition £or progranm
development in addition to imposing a structure on the pro-
gram, also imposes a siructurs upon the data. Modules at

one level in the decomposition are dafined in terms of the
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modules at the next lower level, The instance of a module
defined at one level 1S thus conmposed of instances of
modules defined at lower levels, and so on, yielding a heir-
archical structure of the data in which the data areas of
one level are imbedded within the data areas of another,

higher level,

To the code for the module implementation, the data
area representing the module instance is a set of storage
locations labeled by a segquence of addresses. At the same
time, many data areas are dymamic in size and, since a num-
ber of dynamic data areas may be imbeddsd within another,
some method of address allocation must be provided to assign
addresses within the outer data area to the dynamic portions

of the imbeded data areas.

Two seemingly confilcting regquiremsnts thus arise. To
alliow for efficient implementation of dynamic data areas by
retaining fixed addresses and avoiding copying, it is neces-
sary for the dynamic portions to be non-contiguous within
the outer'data area, At the same times, however, to the code
for the module implementation the data area must seem conti-
guous, The address space concept in DEMOS is the mechanisn

which resolves this confilct.
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All data areas which are dynamic are created as address
spaces (section 4.1.1)}. An address space provides for allo-
cation of possibly non-contiguous addresses to dynanic
portions of imbedded data areas as well as dynamic address
translation so that, when these areas are referred to as
contiguous by the module implementation, the correct refer-

ence will be made,

The address allocation and rssolution performed for an

address space involves some overhead. To enable this over-
head to "be avoided, a data area which is static is not
created as an address space, When this is the «cass, no

dynamic address allocation is dons for imbedded data areas
and no address translation is needed in order to reference

the imbedded data areas.

Since data areas may be imbedded to an arbitrary depth,
an address space may have imbedded within it further address
spaces., All data areas (whether they are address spaces or
not} which are imbedded uithin an address space are called

subspaces,

The address space concept in DEMNOS is similar to the
concept of a segment as commonly used in virtual memory sys-
tems [2], {7] except that it extends the concept to allow

dynamic address translation to be applied to subspaces (sub-
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segments}) as well as top level address spaces (sagments).
Thus a top level address space {system space) is equivalent

t0o a segment in common virtual memory systens,

4.2.2 ADDRESS ALLOCATIOR

To enable address allocation, ecach address space is
divided into a number of equal sized storage allocation
blocks, When needed, the address space allocates addresses
by blocks to its subspaces, The size of the storage alloca-
tion block for a subspace which is an address Space should
be an even divisor of the size of the storage allocation
block of its superspace since, if it is not, inefficiencies

would arise due to address space fragmentation,

Address allocation is only done to perform an extension
te the length o0f a subspace, That 1is, the allocated
adiresses become addresses logically contiguous to the end
‘of the subspace, The extension could be caused by an =xpli-
cit request of a subspace or by the implicit request caused
by a reference to a logical address besyond the snd of the
subspace,  Each address space mechanism provides a routine

to be used for extension of a subspace ({section 4.2.%5).

To enable the address space to keep track of ths stor-

age allocation and to enable dynamic address translation,
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the address space maintains a block table for sach subspace.
This table contains, in order by 1logical address of the
block, the address space address of the storage allocated to
the block, Thus, the address space address of the block
containing the logical addresses in the subspace bheginning
at address zero is contained in the first entry of the block
table for that subspace, etc,. Since the subspaces vary in
length, the size of the block tables may also vary in
length, To enable the address space to handle this, it
maintains a subspace table which contains, for each sub-
space, the length of the subspace and a pointer to the block

table for the subspace,

It is at the address space 1levsl that DEMDS applies
access protection, This is in addition to type checking
since type ch=scking verifies that the access has a valid
form where access rights checking verifies that the user has
been permitted access, Each subspace of an address space
has associated with it an access 1list, This 1list indicates
the type of access sach user in the system is allowed ﬁo
this subspace, The effects of denial of access are cumula-
tive, that 1is, if a user is denied access to an address
space he cannot gain access to any of the address space's

subspaces,
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To enable access rights checking, the address space
maintains the access 1ist associated with each subspace and
a pointer to the list is maintained in the subspace table

(see section #.2.3).

4,2.3 ADDRESS RESOLUTION

To make possible dynamic allocation of addresses by an
address Space, the system performs address resolution at
execution time, The information required for this resolu-
tion is maintained in the system space table {S5T). The SST
contains, for each active subspace in the systém, a number
of entries including:

1) the length of the subspace

2) the size of the address allocation
block in units ef which the subspace
has been allocated

3) a pointer to the block table for the

subspace

Address resolution proceeds as follows, When an
address within a subspace is referenced, the entry in the
SST for that subspace is interrogated, The address is
divided by the allocation block length from thes SST entry to

‘give the logical block number while the remainder gives the
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offset within that block. The logical block number is used
as an index into the block table pointed to by the SST
entry.  The block table entry then yieslds the superspace
address of the beginning of this block. To this values the
offset within the logical block may be added to get the
address within the superspace, If the superspace is not the
system address space, the resolution continues, using the
entry in the SST for the superspace (whose SST entry is
found by a pointer from this SST entry, see g2Ction 4.2.4),
and so on until the resolution yields an address within the
System space (hereafter called a system address). These
operations are similar to those involved in paging in a vir-

tual memory system [7].

To enable address resoluticn to proceed to the super~
space, the system maintains a pointer in the SST from the

entry for each subspace to the entry for its superspace.

To avoid re-resolution of addresses which have not
changed since last reference an extra bit is maintained in
each block table entry. This bit {the resolved bit) indi-
cates if this block has had its address resolved within the
system space or not, Whenever a block table entry is inter-
rogated, the resolved bit is first checked. If it is set,

the address in the block table entry is the system address
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of the block and, if not, it is the address of the block

within the superspace.

Whenever, during address resolution, a block is discov-
eCad with the resolved bit clear in its block table entry,
resolution proceeds to the superspace for the subspace and
s0 on, until it is finally resolved, Once resolved, the
appropriate system addresses are placed into the-block table
entries encountered during the address resolution and the
resolved bits are set, Hhenever an address space modifies
the address allocation for any of its subspaces, the
resolved bit is cleared to force re-resolution of the modi-

fied address,

%.2.4 ADDRESSING SCHEME

During normal execution, references are usually made to
ong of three subspaces. These are the subspace containing
the code for the module implementation which Vis currently
being executed, the subspace containing the data area which
is the module instance and the subspace containing the exe-
cution stack, To enable these éubspaces t0o be easily
referenced, the system maintains three pointers into the
S5T. These are the instruction space register (ISR), the

data space register (DSR) and the stack space resgister
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{35R) . They each contain a pointer +to the SsT entry for

each of the thTee current subspaces.

Sihce the data area actually being referenced s2ay be
@ither a subspace ({if it is imbedded within an address
space} or part of a subspace (if it is imbedded within a
data area which is not an address space), an additional
value is needed to locate the actual data area. This is the
offset of the actual data area within the subspace indicated
by the space register, This is maintained in a register,
one for each current data area. Thers are three nffset
registers, the instruction offset register {IDR), the data
offset register {(DOR) and the stack offset register ({S0R).
The offset registers and space registers are maintained in
pairs, the ISR with the IOR, the DSR with the DOR aad the

53R with the SOR,

An address reference consists, then, of three parts.
The first is a data area reference (indicating the instruc-
tion, data or stack space), the second ig the displacenent
within the indicated data area and the third indicates an
index register, The subspace address is then computed asi
(sOR) + (IR1) +disp
where "s" is I for the instruction area, D for the data

area, and 5 for the stack area; IRL is the i'th index regis-
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ter and "disp" 1is the displacemant, This address then
undergo=ss address resolution as explained in section 4.2.3
The complete address resolution activity is shown in figure

u'2au’0a

An invocation of an resource provided by another module
does not fit into the above addressing scheme. This type of
"reference involves a change in all three of the data areas,
The instruction data area is that for a different module
implementation, the data area is that for a different module

instance, and the stack data area is a new stack frame.

A special system call is used to handle inter module
invocations, To it are passed the system namss of the sub-
spaces containing the module implementation, the subspace
containing the module instance and the offsets of the data
areas wWwithin those subspaces, These names are used to
gearch the 53T for the entry for the subspaces. The systen
routine searches the SST for the names, verifies that the
access is valid and that the date stamps are consistent and
then allocates a new stack frame, It then stores the cur-
rent (ISR,ICR), (DSR,DOR), ©position of the o0ld stack frame
as well as the other registers, etc., in the new stack
frame, which has been allocated as a subspace of the current

stack address space.  Next it copies the parameters into a
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fig., 4.2.4,a Address Resolution

parameter aresa in the nev stack frane, The ISR and DSR are

set to point to the SST entries for the subspaces which wvere
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given as arguments to the system routine, Th2 IOR and DOR
are set to the Offsets also supplied, The system then gives
control to the module implementation which 'was to be

invoked,

For return, again a special systenm call is made. The
system then recovers the (ISR,IOR), (PSR,DOR), (SSR,SOR} and
registers from the stack and then deallocates the stack

frame,

The use map contains addressing information for use in
refersncing external resources (section 3.2.1.2). It con-
‘tains the offset within the subspace of the resource beipg
referenced, while the object code contains the system nane

of the subspace.

Since the use map is referenced frequantly, the address
space containing the data area which 4is the2 use map for the
currently executing module implementation is noted by a
fourth space register-ovifset register pair. These registers
are called the external space register (ESR) and the exter-
nal offset register {(EOR). The ESR points to the SST antry
for the subspace containing the use map and the EOR contains
the offsget of the use map within that subspace, This pair
is maintained by the system in the same way that the

{ISR,IOR), (DSR,DOR}) and {SSR,SOR} pairs are. The systen

S et
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call for a bhranch to another module instance is passed then
thr2e system name-offset pairs for tha new (ISR,IOR),

{DSR,DOR) and (ESR,EOR),

A system name 1is a path in the system space tree fronm
either the current node or the root to a data area. Each
branch selector is a subspace identifier. ¥hen a subspace
is crfated within ah address space, a routine in the address
space 1is invoked to create a unique subspace identifier
within that address space, The sSubspace identifier is
thereafter the selector for the branch from the address
space to the Subspace. When a subspace is destroyed, a
routine in the subspace's superspace {an address space) is
inﬁoked to return the subspace identifier to the address

space for use in creating future subspaces.

The system name for the instruction space aiways des-
cribes a path from the root nodé. The system name for the
data space usually describes a rpath from the current data
space node, It can in certain circumstances describe a path
from the root node {i,e, in the case of a separate module

instance, see section 3.4,3).

To enable the search for subsPaceS by path name, the
55T is organized as a tree, Fach entry has two additional

fislds, one a pointer to the entry for one of (the space's
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shbspaces, and the other a pointer to the S$SST eontry for one
of its brothers as subspaces of their Common superspace, In
addition there is a field which contains the subspace iden-
tifier of the space as a subspace of 1its superspace.
Depending on the search required, the search begins at the
root {or current) node ard follows the pointers checking the

subspace identifiers until it reaches the desired node.

To save space in the system sSpace table, the positions
for entries are multiplexed among all possible entries.
During a search for a node in the tree, if a null pointer is
encountered, the system adds an»entry to the S5T by invoking
a routine in the superspace of the node it is currently at
{if it is currently searching a brother list) or in the cur-
rent subspace (if it is attempting to descend to a subspacs)
which returns (upon being passed the subspace identifier)
the access list pointer, the block table pointer, the sub-
space length and the subspace address allocation block size.
These values are placed into the SST and the values for sub-
space identifier and superspace pointer are set, the
subspace pointer and brother pointer are set to null and the
brother pointer (if currently searching a brother list) or
the subspace pointer {(if attempting to descend to a sub-
space) of the brother or superspace currently at, is

Updated.
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To free up S5ST entries, leaves may be pruned from the
tree, When a leaf is pruned, it is possible that a stacked
ISR, DSR or ESR pointé to the SST aﬁtry. A stacked SSR will
never point to a leaf to be pruned since stack frames are
always allocated as subspaces of the current stack frame
which ensures that all stacked SSRs point to superspaces of
the current stack space and are thus not pointing to leaves
in the space tree, To ensure that the stacka2d values do not
point to invalid SST entries after a pruning, the SST enfry
contains a pointer to4the first entry in a connection list.
A connection 1list is a list of the stack entries for space
registers that point to an SST entry, linked by pointers.

When an space register is stacked, it is stacked along with

the current value of the connection list pointer, and the

connection list pointer is pointed to the stack entry. .

When a leaf is pruned, the connection list pointer is

followed to find all stack entries containing pointers to

this SST entry. These stack entries are replaced by the
system name for the subspacs, When a space register is
unstacked, if the entry dis a systen name; the name 1is
resolved within the SST and the new $ST pointer is placed

into the space register,

e T
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8.2.5 USER DEFINED ADDRESS SPACES

To allow fleXipility 4in the manner in which addresses
are allocated, users are allowed to define an address space
mechanismn, This mechanism must provide the same resources
as the standard address space mechanism, but may use any

method of address allocation desifed by the user.

The user defined address space is implemented as a
nodule of a machine {section 3.4,3} and must prdviﬂe four
routines in addition to the module <creation and disposal
routines that all modules must supply. An example of such a
module is given in appendix A, The additional routines are:

1) CREATE

2) DESTRDY

3) EXTEND

4y FETCH
which are used to create a nev subspace under the user
defined address space, remdvg a subspace so created, extend
the length of such a subspacélaﬁﬁ return information neces-

sary to the system for subspace management.

The CREATE routine is invoked whenever a subspace is to
be created under the user defined address space. The access
rights list 1is passed to the routine so it may initialize

the access rights for the subspace. The user defined
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address space amust build a bhlock table for the new subspace
and return a uhique (within the address space) subspace

jdentifier for that subspace.

The DESTROY routine 1is invoked whensver a subspace
within the user defined address space 1is to b2 removed from
the system, The subspace identifier is passed to the DES-
TROY rountine to identify the subspace to be removed. The
user defined address space may then remove the bloCk table
for the subspace, recOver the addresses allocated to the
subspace, and note that the éuhspace identifier is now reus-

able.

The EXTEND routine is invoked whenaver a subspace of
the user defined addreés space is to be extended bayond the
space already allocated to it, The invocation occurs only
if the user causing the extend rTequest has extend access
rights to the subspace, The subspace identifier is passed
to the EXTEND routine t§ identify the subspace to be
extended. The user defined address space must allocate a
block of addresses to the the sﬁbspace andnnote the alloca-~-
tion in the block table, If the allocation cannot be done,
the user defined address space must return an indication to

that effect,

e A e ot 1 s 1 e
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The FETCH routine is invoked by the system inter module
transfer routine when, upon attempting to refarence a sub-
space, it is detected that there is no entry for that
subspace in the s§sT, The system then passes the subspace
identifier to the user defined address space which 1s the
Superspace of the desired subspace, The FETCH routine must
return the required information to the system. This infor-
mation includes the pointer to the subspace's access rights
list, the size of the block in which addresses are allocated
to the subspace, the length (in blocks) of the subspace, and
a pointer to the block table for the subspace. Hith this
information the system can create tha SST ehtry for the sub-

space and enable address resolution to procesad.

When an address space 1is to be referenced either to
create the aédress space in the first place or +to access a
subspace of it, the system preloads the SST antry for sub-
space zero of this address space with teﬁporary values, It
sets the subspace identifier to zero, the superspace pointer
to point to the SST entry for the address sPace itself (this
entry is already in £he 55T), the brothsr pointer to nil,
the access rights 1list pointer +o an access rights 1list
granting unrestricted access, the block size to the maXinmum
value possible, the subspace length to one {block), and the

block table pbinter to point to the beginning of the data
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area {i.e. tO the tirst field in the data arez, which is the

block table foT subspace zero).

1f the address spate itself is heing created, the SYST
ten loads the first entry of the block table for subspace
zero Wwith the address of the dynamic area (called the Base
of Dynamic Area = BDA)Y ., 1t then invokes the address space
module's creation routine. This routine must fill in the
appropriate entries in its subspace +able for subspace Zero
(which 1is the address space nodule instance itself) and take

any otherl ipitialization action it desires.

pnce the creation routine completes, OT if this is a
reference to 2 subspace, the systen then doss a fetch oOn
subspace ZeroO to obtain the current values for the access
1ist, block 1ength and subspace lengthe. Phe block table
pointer returned by FETCH is ignored since . the block table
for subspace Zero must be the ORe at the beginning of the
jata area., The system 1s now ready to perform the access to
any subspace of the address space DY using CREATE, DESTROY s

"EXTEND, OT FETCH,

The creation routine and the module representation for
an address space module must each adhere to one restriction.
The representation must cause allocation of no more than one

block in the addraess space at creation and the creation
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routine may only access variables allocated within this

block, This is due to the fact that the system preload has

provided for only one block in subspace zero {since it can-

not determine where another block would reside), and until
the fetch for subspace zero is done, no other blocks can be
referenced. In addition, the fetch for subspace 2zerd must
only reference within block one of subspace zaro for the

Same reason,

One final restriction is imposed on the CREATE routine.
Whenever it creates a new block +table, it must allocate it
as a separate instance (section 3.4.3). If this is not
done, the block table would be allocated as a subspace of
this address space and this would cause a Tresursive invoca~
tion of +the CREATE routine to <create the subspace for the
block table, An added advantage of having the block tables
as separate instances 1is that then there would be a memory
management segment which contains all of the block tables
for address spaces created by this addfess space mechanisn,.
This segment 1is likely to remain resident, removing the
posibility of extra memory managemeéent operations upon refer-

ence to a block table.

To ensure that the appropriate address management rout-

ines are used for an address spacs, all address management
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operations are initiated via the systen. When an inter
module invocation is made, the inter module transfer routine
determines if the data area involved in the transfer is a
separate or contained instance. If it is a contained one,
the routine loads the addresses of the address management
routines for the current mnachine for use by the system
create, destroy, extend and fetch routines. Othervise the
appropriate addresses for the address mechanism of the sepa-
rate address space .are loaded, #henever the user defined
create, destroy, extend or fetch routines are invoked by a
system routine, - they are invoked with subspace zero of the
address space as their module instance. In this subspace,
all the data reguired by these routines to perform their
task must be located, All wuser initiation of create, des~
troy and extend is done via a call to a system routine which
in turn invokes the appropriate user defined address manage-

ment routine with the appropriate parameters..
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4.3 MENMORY MANAGEMENT

4.3.1 MEMORY SPACES

Hemory ManRagement in DEMOS 1is based on a paged seg-
mented system as are HULTICS [2] and other systems.  This
provides a virtual memory system with efficient use of space
and minimal delay when addresses referenced are not resident

in main memory.

As in MULTICS, all data potentially referencable by
programs in the system have unique addresses within the sys-
tem called system addresses, In DEMOS these addresses are a
direct result of the compilation and address resolution pro-
cesses, and are provided; in a single form to the memory
management systenm. éhe system need only concern itself with
the address decoding and +the location of the actual data
within the =storage hierarchy, instead of being concerned

with data management,

The entire collection of storage devices in the systen
is ordered into a hierarchy by access time and storage
capacity with the devices with short access time and Sméll
capacity at the top of the hierarchy, and those with longer

access times and larger capacity at the bottom of the hier-
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archy. Bach level of the hierarchy is called a menory

space,

Fach memory space is managed in a similar manner. When
a request for a piece of data is made to the mewmory space, -
it determines if it currently contains the data requested
and, if so, returns that data, If the requested data is not
currently within the memory space, it makes a request for
the data to the memory space immediately beneath it in the
hierarchy. The top level memory space gets its requests for
data directly from the CPU and the lowest level memory Space
contains all data accessable to the system and thus never

has to request data from a lower level,

Memory management 1is handled separately from address
management {section 4,2} and data management {(section 4.1),
however the memory management sSegments are equivalent to the
suhspaces of the system space in address management. This
forces physical (i.e. within +the memory management system)
contiguity of areas which are logically contiguous, which
enables the memory management system to take advantage of
the locality of reference which manifests itself in the
references to the logical address spaces. This also allous
the system subspace identifier to be used as the segment

identifier in the memory management system yielding a sinmple
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correspondence between system subspaces and memory managde-

ment sedments,

Fach memory space is divided into a number of egual
sized page frames, The page frame size of a memory space at
one level is at least as large as that of the next higher
level and 1is likely a multiple of that size. The actual
page frame sizZes are chosen according to access times and
transfer rates of the storage devices on which +the memory

space is located [7].

Each segment is physically divided into pages at each
memory space level,  These pages are of fixed size (within
the leavel) and equal to the size of the page frames at that

level, The segments are the same throughout the hierarchy.

Whenever pages of a segment are in the memory space at
one level, there is at least one pags of that segment in the
memory space at the next lower level, This requires that
the number of segments which may have pages in the nemory
spaces must not decrease as one proceeds down the memory
space hierarchy, In addition, for each page in the Aemory
space at one level, there nust be room for the page {of the
next lower level) which contains the same data as the page
at the higher level, This requires that the number of page

- frames must not decrease as one proceeds down +the memory
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space hierarchy, These two provisions provide a 1linear
storage hierarchy and make memory space page and ssgment
mulitplexing, which is performed at all levels, more effi~

cient (section 4,3.2).

4.3.2 ADDRESS DECODING

Since pages of segments are placed arbitrarily into
page frames in a memory space, and the number of page frames
in each memory space {except the one at the lowast level) is
limited and less than the number needed to hold all of the
pages of all of the segments in the system, it is necessary
to multiplex the page frames and to provide a scheme for
mapping system addresses into memory space addresses and
providing that the correct page of the sagment is actually

in the memory space page franme,

Page frames 1in each of the memory spaces. {except the
one at the lowest level) are multiplexed over pages in all
segments accessable to the systen. In each memory spacse,
only some of the pages are maintained in page frames, When-
ever it is necessary to access a page which is not currently
allocated to a page frame, a page is selected according to a
paging strategy {eg. LRU}, is removed from the memory space

and its page frame is allocated to the page in guestion.
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This page may then be moved into the page frame from the

next lower memory space.

To maintain a vrecord of all segments currently having
pages in the memory space, the memory spaces each maintain a
contained segment table (CST) which contains, for each seg-
ment with pages currently in the memory space:

1) the segment identifisr
2) a page table
3) fields for use in determining seqg-

ment insout criteria

The segment identifier is the intra memory space iden-
tifier for the segment and is the same as the subspace
identifier for the system subspace +to which it is equiva-

lent,

To allow a mapping from pages witﬁin a segment to page
frames within the memory space, the memory space maintains,
for each segment in the memory space, a page table. a1l
page tables in a wmemory space are of the same length and are
large enough to provide mapping for a segment of maximunm
size, sinée there are, in general, more pages in all seg-
ments which are contained in a memory space than there are
page frames in a memory space, some of the page table

entries mnst be for pages which have not peen allocated page
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frames in the n@memory space. A flag is maintained in each
page table entry to indicate if this page is currently allo-

cated a page frame in the memory space,

Since page frames in the memory space are multiplexed
over the pages in all segments, a scheme must be provided to
indicate which pages are to be maintained in a certain
nepory space, Additional fields are maintained in the page
table entries to record information to be used in determin-
ing which page should be paged out of the memory Space when
a page not currently ailocated a page frame in the aemory
space is referenced, For example, a least recently used

{(LRU) page out algorithm might be used,

S%nce, at all times, when a page of a segment resides
in a memory space at one level the page containing that page
in the memory space at the next lower level also resides in
that memory space {section #,3,7), when a page is to be
paged out of a memory space a copy operation to the next
lower level is only required if the contents of the page has
changed since it was fetched from the next lower aenory
space, A flag is maintained in the page table entry for the
page to indicate when the copy: nesds to be dones. The flag
is set whenevgr a copy ({store) operation is performed into

this page at this level, On page out, if the flag is set,
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the copy is performed to the next lower menory space {caus-
ing the flag on the page table entry there to be set). If
the flag is not set, the copy need not be performed since
the page has not changed since it was fetched. In addition,
when the copy operation must be done, the segment is guaran-
teed to be contained in the next lower memory space (section

4,3.1) 8o no delay due to a segment fault can occur.

Address decoding begins when a fetch or store reguest
is made to0 the memory space for a particular memory space
address, This address is in the form of a sesgment identi-’
fier {(number} and an offset, The offset is divided by the
page size for the memory space to give the the page number
and page offget, The CST is Searched for the entry which
contains the segment indicated by the segment number, If
there is no such entry, a missing segment must be processed.
When the entry 1is found, the page table for that entry is
interrogated, If the page table entry for the page indi-
cated by the page number indicates that the page is not in
the memory space, a missing page must be processed.  Other-
wise the memory space location is found by‘ adding the pade
offset to the address field of +the page table entry and the
fetch or store is performed from or to that lLocation, ~ This

activity is shown in figure 4,3,2,a.
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fig, 4.3.2.a Address Decoding

When a missing segment is discovered, the CST is
searched for an entry which best meets the segment out
criteria (i.e. least recently used and contains no pages) .
‘This entry is then used for the missing segment. | The new
segment number is plﬁced into the entry, and, since the seg-
ment which was removed from the table had no pages in the
memory space, the page table entriss do not have to be

marked as missing since they are already marked so.
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Yhen a missing page is discoverad, the page tables in
the CST are searched for the entry which best satisfies the
page out criteria (i.,e. least recently used)., This entry is
then marked as missing., The entry is then checked to sea if
the page has been modified since it was fetched, If so, a
store operation is initiated 1in the lower level memory
space. S5ince this store coperation may take some time, the
task which initiated this address decode is suspended pend-
ing the +termination of the store, When the transfer is
complete (of if it wasn't necessary), the page frame allo-

catad to the page table entry is freed.

Now there is a free page frame and the segment page
encountering the missing page condition may be allocated a
page frame for the page, The frame address is placsd into
th2 table entry, The page is then loaded into the page
frame by requesting a fetch of the requifed page from the
next lower memory space,  Since again this takes some tinmes
the task initiating this address decode is suspended pending
the termination of the fetch, Since some other process run-
ning in the system may request the same page before this
fetch is complete, sSteps must be taken to prevent an unne-

cessary page fetch.
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Before the fetch is initiated, another bit (the loading
bit) in the page table entry is set. Whansver a missing
page is processed, this bit is checked. If it is set, the
task causing the address decode is suspended pending the
termination of the fetch of the page, When the fetch of the
page 1s complete, the missing page procegs for the task
causing the fetch resets the loading bit, marks the page as
being in the memory space, and notifies any other tasks
waiting for the fetch to terminate that the fetch has ind=ed
terminated,  The missing page processes for ths other sus-
pended tasks which are awaiting such notification, then

terminate as if they had caused the page to be fetched.

The amount of data transferred in a fetCh or store is
always the numbel of bytes in the page frame size of the
higher of +the two memory spaces involved in the transfer,
This is due to the fact that, from the point of view of the
higher of the two menory spaces, the opsration is either a
page in or page out, Since this is true, the offset needed
for the fetch or store from or +o the lower memory space is
just the page number of the page in the higher memory space,
and thus the page frame size of the lower memory sSpace is
recorded as the number of higher level memory space pages
that can be stored in one lower level nemory space page

frame,
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At the top of the memory hierarchy is the memory space
which is accessed directly by the CPU. This space is han-
dled as if fetch and store requests come from a higher level
merory space whose page size is the width of the data path

between this nemory and the CPU,

4,4 HARDWARE SUPPORT

To improve the efficiency of the address restluation and
address decode operations, certain functions are relegated

to hardvare, .

The space registers contain two pieces of inforpation:
1) the access rights
2) a pointer to the S5ST entry
The access rights field contains the access rights of the
user Whose process owns the space register, to the subspace
at which the space register points, The access rights
stored in +the space register are  the access rights which
wvere in effect when the task the user started first attempts
to reference the subspace, These rights will remain in
effect until the task terminates even if the user's access

rights are modified in the subspace's access rights 1list
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during the life of the task since problems would ariss if a
user is denied access to a subspace after partial completion

of some activity in that subspace,

The pointer to the space table is just an offset within
the SST with which the spacé table information wmay be
accessed, It is guaranteed to point to a valid SST entry
since the SST entry for a subspace contains a field indicat-
ing the number of space registers of tasks being currently
executed which point to the SST entry., Unless this count is
zero, the S5T entry cannot be pruned from the table {see

section 4,2,4),

To improve the speed of address resolution, the hard-
ware performs part Of the resolution operation, It first
verifies that the access is valid by comparing the access
requested with the access rights in the space register. If
the access is invalid, it faults to a system access rights
fault routine, The hardware then computes the offset within
the subspace by adding the offset register, index register
and displacement from the instruction. From this it com-
putes the block number and block offset within the subspace
by refsrencing the SST entry pointed to by the Space regis-

ter and accessing the block length field.
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If the block number sxceeds ths subspace length indi-
cated in the SST entry, the hardware eithsr invokes the sys-
tem length fault routine {if the user does not have extend
access to the subspace) or to the system extend fault rout-
ine {if the user does have extend access t0 the subspacel.
Next, +the hardware interrogates the block table entry for
the block number developed earlier, If the resolved bit is
not set, it faults to the system resoclution fault routine.
If the resolved bit is set, it davelops the system address
by-adding the block offset to the address found in th2 block

table entry.

Part of the system address decode is also handled by
hardvare, The CST for the top level memory space is main-
tained in associative memory. This enables an efficient

search of the CST by the hardware.

The hardware takes the system address devaloped in the
address resolution phase and extracts the segment number and
segment offset, It then divides the segmant offset by the
top level memory space page frame size to yield the page
number and page offset, It then searches the €57 for the
top level memory space (in associative memory) for the entry
with the given segment number, I£f thers is no such entry,

it faults to the system segment fault routine.
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The hardware then interrogates thas entry for the page
number in the page table of the CST entzry, If the missing
pags flag is set, it faults to the system missing page fault
routine, If the flag is clear, it computes the machine
address as the sum of the page offset and the address found

in the page table entry.

To allow the hardware to process some of the address
resolution and address decode functions, the system must
provide six fault routines, These are:

1}  access rights fault routine
2) extend fault routine

3} 1length fault routine

4) resolution fault routine

5) missing segment fault routine

6) missing page fault routine

The access rights fault and length fault routines abort

tha task and notify the user why the task was aborted,

Tﬁe extend fault routine determines which subspace the
fault occurred for and then branches to the-EXTEND routine
for the address space which is the superspace for the fault-
ing subspace, This enables a user defined address space to
get control to allocate addresses to its subspaces, When

the EXTEND routine returns, it indicates if the subspace was
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ext ended, If it was, the extent fault routine terminates.
It not, it aborts the task indicating to the user why the

task was aborted,.

The resolution fault routine performs the address
resoultion through the system space tres until it finally
gets a system address for the referenced address. It can
then terminate causing the access to be retried by th2 hard-

yare,

The missing segment fault routine finds a CST entry
which can be used for the segment information for the refer-
enced segment, It then causes the appropriate information
to be loaded into the CST entry and terminates allowing the

reference to be retrisad by the hardware.

The missing page fault routine locates a fres page
frame and causes the referenced page to be loaded into the
page frame, It updates the nissing page bit and then termi-

nates allowing the reference to be retried by the hardware.

The above hardware and software additions should make
the address resolution and address decode operations reason-
ably efficient to enable rapid execution of code within the

systen,
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5 DENOS IR REVIEW

5.1 SATISFACTION OF THE GOALS

The bpasic goal behind the design of DEMOS was +the
desire to provide a software environment suitable for devel-
oping systems using a modular devslopment methodology, An
important consideration was that large projects are devel-
oped by a group of people working in parallel. This leads
to the desire for independent development of parts of the
system.  In addition, it was recognized that design should
pracede implementation in a project and that, in a multi-
level system, design of at least the first few levels should

proceed before any implementation begins.

Even though development of the system proceeds with
independent efforts being made by several developers at the
same time, the parts of the system each isg developing are

not totally independent, These parts interact via inter-
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faces between them to make the system a whole. In
independent development, the enforcement of proper use of
these interfaces is probably the biggest problem facing pro-

ject managers.

When designing a system, a major consideration is the
design of the interfaces between the parts, For the systen
to perform properly, it is imperative that this part of the
design effort be done well, In addition, it is desirable
for the spécification of these interfaces to remain stable
throughout the development of the project. Having the
design debugged before the implementation begins goes a long

way towards making this possible,

The basic goals for the DEMDS system were then: that
design of a system could precede implementation and that the
design could be verified before implementation begins; and
that both the design and implementation phases could proceed
as a number of parallel, independent activities but, at the
same tinme, that the interactions between the parts under
indepandent develcpmént could be maintained consistent with

other parts and the design in general.

The development unit chosen for development under DEMOS
was the abstract data type, which, in DENOS, is represented

by a module {(section 3,1)., This provided a logical unit for
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both design and inmplementation. To collect these units into
a group suitable for the representation of a subsystem, the
concept of an abstract machine (section 3.4) was introduced.
This allowed the designr to specify the tools available to an
implementation by specifying a machine upon which a module

was to be implemented {based).

So that the design could be verified automatically and
that the implementation could be verified consistent with
the design, the design was to be provided to DEMOS in the
form of an abstraction {section 3.2.1.1) for a module. To
enable the design of a module and its implementation to be
carried out at different times, DEMOS retained the abstrac-
tion so that, when the implementation was done, ~ the
verification of its consistency with the design could be
carried out automatically, In addition, this enabled the
design of interacting modules to be done at different times
and still allow automatic checkitg of the designs. Also it
allows changes to be made to both the design and implementa-
tion and DENOS can recheck the modified versions after the

changes are made.

It was recognized that, in any system under develop~
ment, modifications would be rife, This would imply that a

nodule design and/or implementation, once verified to be
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correct within the system, could become incorrect through
either a modification to it or to some module with which it
interacted, This lead to the maintenancs, within DENOS, of
dependencies between modules in the system ({section 3.2.2)
and the use of automatic recompilation, 1in the event of a
modification, to perform checks of consistency between

modules {section 3.3.2).

since recompilation of modules is an éxpensive proposi-
tion, all efforts were made to reduce the number and extent
of these recompilations, This brought about the division of
a module into a number of components {section 3.2.1), so
that modifications of one component of a module need not
force recompilation of other components in tgis or other
modules if this is not warrantad to verify consistency. It
was recognized that abstract machines, once developed, were
a resource which could potentially be shared throughout the
user comnunity (much as subroutine libraries are now). With
this in mind, it was realized that a user who is willing to
provide a machine he has developed to othar users should be
able to specify which users may use the machine and how they
could use it, This leads to the use of access rights for
machines, Also, when the owner of a machine makes a change
to the machine, he should not encounter added delays due to

the fact that other users have developed modules based on
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his machine., This would occur if automatic racompilation of
depenient modules wyas done immediately when a change is made
to a providing module, To spread these delays out over the
user community, DEMOS recognizes sone dependencies between
components to be different from others and the concept of

deferred consistency checking evolved (section 3.3.3.1)

These developments provide the framework of a systen
which satisfies the goals set for DENMOS. However, it was
still necessary to develop the underlying representation

which would enmable all these developments to be implemented,

¥hen a module is actually used in a sy¥ystem, there must
be some concrete representation of th® module instance., The
concept of a data area (section 4.1.1) provided this repre-
sentation, It was recognized that the successive
decomposition aspect of the development methodology lead to
the 1logical imbedding of module instances within others.
This logical imbedding was carried over into the physical

representation of module instances,

At the same time, it was realized that module instances
would not necessarily remain static in size since an
abstract type may be such that the amount of information it
represents may be dynamic over time (eg.. an abstract type

defining the concept of a file). Since module instances
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were physically imbedded within each other, this lead to a
problem which was resolved bY the concept of address spaces
(section 4,2,1) as a means of allowing dynamic allocation of

space within a module instance.

Since it may be desirable to allocate space in a module
instance in different manners for different abstract types,
DENOS allows a user to specify a user defined address space
mechanism (section #.2.5). This allows a ussr to use any
space allocation and wmapping principle he desires within @

specific moduls instance,

gsince +the imbedding of module instances within each
other causes a segmenting of data into units which have the
property that most references by a program to these units
wonld be clustered in time, it was resasonable to use this
knowledge to¢ enhance the performance of accasses to data.
This lead to a memory management scheme (section #4.,3) using
segmentation and paging, where segments were eguated to cer-
tain address spaces (Section 4,3.1) to allow the logical
grouping of the data to reduce the load on the memOory man-—

agement systen,

A last point covered was a discussion o©of the hardware
requirements needed to support the address and memory man-
agement schemes devised at a reasonable level of efficiency

{section 4.4).
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When all these developments are brought together, DEHOS
would Provide a suitable environment for modular development
of systems as outlined by the goals s=t for it and 4o so in
a manner which should be reasonably efficient and convenient

to use.

5.2 ADDITIONAL BENEFITS AND FUTURE DEVELOPMENT

The organization and representation of machines and
modules in DEMOS which were designsd to satisfy the specific
goals of section 2.5 would also enable, at 1little extra

cost, other features not in the original plan.

The first 1is a high~level interactive debugging pack-
age, This would be easy to incorporate since all the
information required for interrogating the contents of data
areas already exists, and there is already in the system a
facility for interpretive execution. Since each data area
is connected to its module definition {via its dinstance
pointer), it is a simple task to discover the values of any
fields in the data area.,  The symbol +ables maintained in
the module definition give the information required to find

a field in a data area and, in addition, +to display it in a
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meaningful form, This means that the debugging inquiries
can be made at high level, that is using field names, and
that responses (displays)  can also be at a high level (i.e.
appropriate to the +type of the data item) instead of at a

low level (e.g., hexadscimal).

Since theres is already an interpreter available on all
machines in the system, the debugging aid nesd only invoke
this interpreter to interpretively sxecute operations from a
mod ule, The interpreter could also be us=2d for the genera-
tion of high level display of data areas by invoking the

output routines provided by a module for its data type.

A second feature which could be developed in DEMOS is a
simulator for modules which have been defined, but not yet
implemented, for testing purposes. The information retained
in the defines specification could be augmented by a formal
definition of the behaviour of the resources provided by the
module, An additional resource could be provided by the-
*moduls? module which wonld simulate the behaviour of the
module resources based on the formal definition of their
behaviour, A scheme similar to this has been implemented in

TOPD { 13].

As techinques for automated progran proving are

improved, it would be possible to incorporats an auntomatic
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program prover into the system using a scheme very similar
to that discussed above for the module simulator. Again a
formal definition of the behaviour of module resources could
be maintained as part of the defines specification. A pro-
gram prover could use these specifications and those of the
modules in the base machine for this module {pointed to by
the module definition) to perform an automated proof of the
functioning of this module and ultimately of the entire Sys~

ter under development.

One eXxtension to the system which reguires a nmajor
effort, is the addition of more programming languages to
DEMNOS, DENOS c¢ould function sufficiently well with differ-
ent languages being used for development except for the
verification of correctness of interfaces between modules
developed in different languages, The problem arises from
trying to determine if the types specified at one end of the
interface match the types used at the other end. This is a
generalized mode equivalence problem (i.e. between, rather
than within languages), If a standard representation for
types could be developed and the translation for +types in
all langunages into that standard representation was known,

then modules in various languages could interact,




129

APPENDIX A ADDRESS SPACE NODULE EXAMPLE

The following is an exanmple of an address space manage-
ment module (see sections 3.4.3 and 4,2.,5), The language
used in this example is not any formally defined language
but is instead an informal cross betweesn Pascal and ALGOL68
with extensions to allow module definition, and is used only
as a vehicle for the presentation of this example, It
assumes the existence of a dynamic array type which is an
array that has an initial allocation of a specified number
of alements but can be extended by invocation of a procedure
“axtendarray? to add a number of <=lements to the end of the
array. In additiocn, the standa:d procedure "sep® is like
"new" in Pascal or heap in ALGOL68, but differs from new in
that it creates the object as a separate instance instead of

a contained one,

A module always provides two procedurss called "newy®
and "disposa® which are invoked upon creation of an instance
of the module and Just prior +to the destruction 2f an

instance. The 'new" routine has as parameters the parane-
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ters of the module {and is the only routine +to which these

parameters are directly available),

The machine “"system,addressmachina® is a predeclared
machine which provides types accessiist, address and
blocktable, The procedure "iload" accepts a variable and an
address and loads the contents of»the specified address.into
the variable, The procedure "store" accapts a value and an
address and stores the value at the address specified. the
operator -= accepts two address values and returns the bool-
2an value TRUE if they are differant addresses. The
oparator + accepts an address {a) and an integer (i) and
returns an address value which 1is the address i storage
units from the address a, The function "getaddr"” accepts a
block table (b} and an integer {1} and returns the address
contained in the i'th entry of block table b. The procedure
"setaddr” accepts a block table (b), an integer {1} and an
address (a) and sets the i'th entry of block table b t5 con-

tain the address a.

The module defines four routines called "create", "deg-
troy", "extend” and "fetch". The requirements for these and
described in section 4,2.5. It wuses the resources: 1load,
store, —= and + defined by module "address™, and getaddr and

setaddr defined by module "blocktablev, In addition, it
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reguires the existence of the access list type as defined by

the module "accesSslist™,

The wodule is represented by (i.e. has as its instance)
a palr of addresses and a dynamic array. The address
"endspace" gives the address of the first location after the
last logical block So far allocated (i.e. the address of the
first location past the current end of the area). The
address "nextblock® gives the address of the nesxt bhlock to
be allocated, Free blocks are maintained as a linked list
with the address of the next block in the list stored in the
first location of a block,. When nextblock equals endspace,
there are no more free blocks. In this case the new block
to be allocated will be at this address and reference to it

may cause extension of this address space.

The dynamic array %spacetable" represents the space
table for the address space, It is initially allocated 10i
entries which will allow the initial representation of the
address space module instance to be less than one block in
length, The subgpace identifier is used as an 1index to
access the subspace information for that subspace in the
space table, The subspace information fér subspacs zZero
{the instance of the address space module) is stored in
entry zero of the array, guaranteeing that it is in block

on2 of gsubspace zero as required,
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The size of a storage allocation block (blklath) is
fixed as 1is the maximum number of blocks per subspacs

{btsize).

The address space instance creation routine (new) fills
in the entry for the instance as subspace zero and then ini-
tializes the rest of the subspace table to fres entries. An
entry is free (i,e, no subspace axists with that index as
subspace identifier) if there is no block table for that
entry {(i.e. the block table pointer is nil). It then sets
endspace and nextblock to indicate that there ar® np free
blocks available and that the first location for a new block
impediately follows the first block of subspace zZero {(which

resides at address bda).

The address space instance destruction routine {dis-

pose) performs no action,

The subspace creation routine (create) searches the
subspacé table for a free entry, If none are found, it
attempts to extend the subspace table, If that fails, a
create is not possible and zero is returned as the subspace
identifier indicating that create failed. If extension was
possible, +the new entries are initialized to free and the

first one is the position of the enfry for the new subspace.
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If an entry was found, the information %s entered into
this entry and a block table (of sizs btsize) is created.

The subspace identifier is the index of this entry.

The subspace destruction routine (destroy}) adds all
blocks allocated to the subspace to the free block list by
storing the address nextblock into the first location of the
block and then loading the blocks address into nextblock.
It then frees the block table allocated to the subspace and

marks the entry in the subspace table as free.

The subspace eXtension routine (entend) determines if
the subspace has already reached. maximum size {i.e. btsize
blocks). If not, it allocates the next available block to
the subspace as the next logical block and then, if the free
block list was not empty, sets nextblock to indicate the
negt block in the list, Otherwise it sets botﬂ endspace and
nextblock to the next location for a block to be allocated,
that is the location after the end of thz block just allo-

cated,

The subspace information feteh routing (fetch) extracts
the appropriate information from the subspace table and
returns it, A fetch for subspace identifier zero will only
access the first block in subspace zero satisfying the res-

triction on fetch.
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The Ycode" for the module follows:

addressspace:MODULE {ssbtable:REF blocktable,
alist:REFaccesslist, bda:address)
ENVIRON system,addressmachine;

ABSTRACTION

DEFINES
create:PROC{alist:REF accesslist) :INT;
destroys PROC(id:INT) ;
extend:PROC (1d: INT) : BOOL
fetch:PROC{id:INT):

STRUCT {alist:REF accesslist,
blocklength: INT,
subsPacelength:INT,
blocktable:REF blocktable);

USES
load, store, -=, + FROM address;
accesslist;
getaddr, setaddr FROM blocktable:

REALIZATION

REPRESENTATION
endspace, nextbhlock:address:
spacetable:DYNANIC ARRAY{ 0..100] OF
STRUCT {(aclist:REF accesslist,
subspacelnth:INT,
btable:REF blocktable);

IMPLEMENTATION
CONST blklnth=..as.. F)
btsize=,.4..3
new:
BEGIN
WITH spacetable{ 0] DO
aclist:i=alist;
subspacelnth:=1;
btable:=ssbtable
CD;
FOR i:=1 T0 upb{spacetable, 1) DO
spacetable] i ].btable:=NIL
0D;
endspace:=nextblock:=bda+blklnth
END;
dispose:
BEGIN END;

134
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‘create:
BEGIN
VAR ssi, 1:INT;
ssi:=03
ir=1;
WHILE 1 <= upb{(spacetable,?) AND ssi

IF spacetable[i].btable = NIL THEN ssii=i FI;

i+:=1
OD3
IF ssi = 0 THENXN

0 DD

IF extendarray({spacetable,1,100) THEN

ssii=1i;
FOR i:=ssi+1 TO upb(spacetable,)
spacetable{ i }.btable:;=NIL
0D
I
FI;
IF s8si ~= (0 THEN
WITH spacetable[i] DO
aclist:=alist;
subspacelnth:=0;
sep{btable,btsize)
0ob
FI;
create:=ssi
EUD;
destroy:
BEGIN
VAR block:address;
HITH spacetable[ id] DO
FOR 1:=1 T0 subspacelnth PO
block:=getaddr {btabled, 1) ;
store {nextblock, block);
nextblocks:=block
1633
dispose (btable);
btable:=NIL
0D
END;

DO .

135




APPENDIX A ADDRESS SPACE MODULE EXAHPLE

axtend:
BEGIN
WITH spacetablefid] DO
IF subspacelnth = htsize THEN
extend :=FALSE
ELSE
subspacelnth+:=1;
setaddr {(btabled, subspacelnth,nextblock)
IF nextblock -~= endspace THEN
load (nextblock,nextblock)
ELSE
neXtblock:=endspacer=endspace+blklnth
PI;
antend:=TRUE
FI
0D
END;
fetch:
BEGIN
WITH spacetable[id] DO
fetch,alist:=aclist;
fatch, blocklengthi=blklnth;
fetch.subspacelnth:=subspacelnth;
fetch.blocktable:=btable
oD
END
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