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THESTS ABSTRACT

This thesis is concerned with the problem
of determining under what conditions the identities
holding in a universal algebra can be formally deduced
from a finite subset (a finite equational basis) of
these identities., After a preliminary review of the
basic results of Universal Algebra, the problem is
considered in its most general form, and some results
about the concept of deducibility are obtained. Then
the effect of the number of elements in a finite
algebra upon its possession of a finite equational
basis 1s investigated. Finally, further results in
the field are stated and discussed, to provide a

review of the resgearch to date.
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CHAPTER T

PRELIMTNARTES

The purpose of this chapter is to introduce
the basic concepts and theorems of Universal Algebra
which will be required in the remainder of the discus-
sion. The results are presented without proof, and the
reader is referred to G. Gratzer's Universal Algebra [3]

for full details.

1. Universal Algebras

Definition 1.1: A type T 1s a sequence of non-

negative integers, <nj, ny, ... B o>,y <olT),

where 0(17) is an ordinal number called the order of

the type.

For each v < o(??), we introduce a symbol 27,

called an operation symbol.

Definition 1.2: An aglgebra C}l = <A3F> of type T
is an ordered pailr, where A is a non-void set, and

F = <f £, ...> v <o(T), is a sequence of

0’ fl, e L,
operations on A,




£ 1s an n -~ ary operation, called the real-
4 4
ization of £ in Cﬂ/ . If n =0, £ is a nullary oper-
- 4 Y
ation; that is, a mapping fy: A° = {¢§~——> A, and so
effectively picks out an element a = f7(¢) from A, We

will often denote f7 by a in this case.

It Cﬁ, and E@ are algebras of the same type,

we denote the realizations of £7 in both algebras by fy'

If there is danger of confusion, we will use the notation

(f7>5L and (fy)ig . Thus, in general, we will write

‘(}l = <A;F> and i@ = <B;F>,

Definition 1.5: An algebra will be said to be A~

finite 1f the set of elements upon which it is defined
is finite, :and F-finite if the set of operations is
finite. An algebra is finite if it is both A-finite and
F-finite. When an algebra is F-finite, so that the set

oo T >, we will

of operations has the form <fO, bl N1

l)

= <b; £, £, ... T, >

write

We denote by'KK'E) the class of all algebras of



Definition 1.k4: Iet (ﬂ, and ZQ e K(T). Then a
mapping &: A —~% B is a homomorphism if

f7<a0’ 8q5 +e. B _1)6 = fy(aoﬁ, 8,8, ... an7—16>
for all f7 € F, and all a; € A, The concepts of endomor-

phism, isomorphism, and automorphism are then defined in

the usual manner.

Definition 1.5: An equivalence relation © on A is a

congruence relation on OI, = <A;F> if a; = bi(Q) implies

fy(ao, g5 - an7-1> = fy(bo, LIPR bny_l) (e)

for all fy e ¥,

If © is a congruence relation on ¢ , We can
define a factor algebra C?@ /@ = <A/Q; F> in the usual
manner, If &: £ﬁ,”‘¢ ﬁg is a homomorphism, then the
relation © on A defined by: a = b(0) if and only if
Furthermore, (j% /Q

is isomorphic to <Ad; F>., There are two trivial congruence

ad = bd, is a congruence on

relations on any algebra: the relation of equality, and the

total relation, where any two elements are congruent.

2. Polynomials and Polynomial Symbols

Definition 1.6::ThHe n-ary polynomials of an algebra C&

are functions from An-—? A, defined as follows:




l; o X_L’l—l> = Xi,

(i) The projections e?(xo, X
for 1 =0, 1, ... n-1, are n-ary polynomials,
In practice, the function e? is identified

with the variable Xi'

(ii) IFf po(xo, - Xn—l)’ pl(xo, cen Xn_l),
D, -l(XO’ e Xn—l) are n-ary polynomials,
7
then so is fy(pO’ pl, e pny_l)(xo, ees xn_l) =
fy(po(xo, e Xn-l)’ ... pny_l(xo, ... xn_l)).

(iii) The n-ary polynomials of the algebra are those,
and only those, which can be obtained from (i)

and (ii) in a finite number of steps.
Equality of n-ary polynomials 1s equality of functions.

We can extend this definition to o-ary poly-
nomials, where o is an arbiltrary ordinal number, by consider-

ing functions from A% into A. We need only replace

n o
ei(XO, - Xn_l) by ei(xo, e X ...), ¥ <. Then

every q-ary polynomial depends upon only a finite number
of its variables, and every n-ary polynomial can be
extended to an g~ary polynomial by the introduction of
dummy variables. Since every q~ary polynomial is essen-

tially finite, it is usually most convenient to consider




& ~ary polynomials , where ¢ 1is the order type of the
natural numbers. We obtain essentially the same opera-
tions on A as we would from the n-ary polynomials, n = O,
1, 2,..., with the advantage that we can discuss the

eguality of functions without considering their arities.

A nullary operation is an g~ary polynomial
for every ¢, and nullary polynomials exist 1f and only

if there are nullary operations.

We will write p(xo, X5 e Xn_l) to mean that

the set of variables upon . which the function p depends

is contained within the set {XO, Xl, RN Xn—l% .

Definition 1.7: The n-ary polynomial symbols of

type € are defined as follows:
(1) X35 Xy5 ... X, q &re n-ary polynomial

symbols.
(ii) If Py> Pys --+ B, _q B8Te m-ary polynomial

symbols, then so is gy(go, Pps oo £n7-1>'

(iii) The n-ary polynomial symbols are those, and
only those, which can be obtained from (i)

and (ii) in a finite number of steps.
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Again, we can extend the above definition
for an arbitrary ordinal o by modifying clause (i) to

admit Xy gj; .o 57, vee 5 ¥ <o, as g-ary polynomial

symbols.

Nullary polynomial symbols exist if and only
if nullary operation symbols exist in the type T . If
a 1s a nullary operation, then a will denote the corres-
ponding symbol.

We will write p( ) to indicate

B\ Zp5 vv Ep g
that the set of variable symbols occurring in p is con-

tained within the set {-50’ Xis eee zn-l}’ . The
expression £<£O’ 51, R En—lD will denote the polynomial

symbol which results from replacing each occurrence of

gi by : the polynomial symbol Ei' in p.

If infix notation is used for operations, the
same ‘notation will be used for the corresponding operation

symbol, as, for example, in %, + X The context will

make clear whether the operation + or the operation symbol
+ 1g intended. When only several variable symbols are
involved in a polynomisl symbol, we will use the more

usual X Zy Uy Vs Wy oo instead of x X X
Xy Yo Z, U, V, W, > X2 %0 Eoo



As with polynomials, we will henceforth consider
all polynomial symbols to be & -ary, unless otherwise
stated.

Definition 1.8: TIet p by a polynomial symbol of type
T and GL an algebra of type T . Then the polynomial

induced in OL by p is defined as follows:

. . @
(1) x, induces ei(:x:o, X een Ep o).

(ii) If p is _f_y(_go, By .- £n7-1>’ and if p.

induces pi(xo, ces X . ), then p induces

?,J

f,y(po) LI Pny"l)<XOJ oo X'}') ...).

Definition 1.9: ILet P(T) denote the ¢d-ary poly-

nomial symbols of type T . Then for fy ¢ F, and P>

b, .1 ¢ f_(’t’), we define:

fy(go, -Eny-l) = gy(p 5 e P-ny-l)'

Then we get an algebra of type T

@ (z) =<0(T); &>

called the polynomial algebra of type [

Similarly, we can define the g-ary polynomial

algebra @ <a)(t ), using g=ary polynomial symbols.
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3, Subterms

Definition 1.10: For each polynomial symbol p of
type T , we define a set s(p) € P(T) called the set of

subterms of p:
(1) s(x,) = {zl}

(11) If p is _f_‘y(_}go, _131, Eﬁ —l)’ then s(g)

1l

{2} v s U s v . usle, ).
7

A polynomial symbol g is a subterm of p if ¢ € S(E).

We speak of the occurrence of a subterm g if
we wish to emphasize its position in p as well as its
form. Let os(_g) be the set of all occurrrences of sub-
terms of p. Then s(g) (=) os(g), with distinct occur-
rences of g as a subterm of p counting as distinct

elements of os(p).

We define a partial order € on os(p) as
follows: r & g if and only if r ¢ os(q). If p is
i}/(p s e £n7-1>’ then the branches of <os(p); & >

are the partially ordered sets <os(£i); & > It is

clear that the inclusion diagram for <os(p); & > is a

reverse tree, in the sense that distincet branches of

<os(g); & > are disjoint for any g € os(p).
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Definition 1.11: g, ¥ € os(g) are said to

overlap if there exists 1 € OS(_E) such that t & 4q,

and T & r.

Lemma 1.12:- If g and r overlap, then g & r or
Proof: If g and r are not comparable, then they occur
in distinct branches of some subterm of p. But these
distinet branches are disjoint, so that t € ¢ and
I & r is impossible. Hence, g and r must be comparable.

L, Tdentities

Definition 1.15: An identity of type T is an

expression of the form p = g, where p, g € _]2(‘2’)

Definition 1.14: An identity p = g of type T
holds in m € K(T) if p and g induce the same poly-
nomial in m,,

Definition 1,15: Id(m) is the set of all identities
which hold in L . Tr K € K(T), Ia(K) is the set of all
identities which hold in every @ e K.

Definition 1.16: If X is a set of identities of type
T ,then =" is the class of all algebras D?E., of type T
such that each identity in ¥ holds in @1 .
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5. Direct and Subdirect Products

Definition 1.17: ILet Cﬂ’i = <Ai; >, 1 €I, be a

family of algebras of the same type. The direct product
of the algebras (}Ei is the algebra

TOO, 2 en=<Ta | 1en;s ™

where the operations are defined as follows:

f,y(po, Pys «eo pny_l)(l) = fy(po(l), coop _1(2))
for i € I, and the P e‘?TYAi] ieI).
I T = ‘{O, 1, ... nrl:% ., then we write
Lo X QEEI X ... X n-1 for the direct product of the

algebras, If ; = {?E for all 1 € T , then we write

for the direct product, and call it a direct power
of {ﬁt . If, in this case, I = {O, 1, ... n—l} » then

. n
we write sz .

Definition 1.18: The mapping Bi:f?E(gﬁi[i e I)=> |

defined by 8,: p —» p(i) is called the ith projection,

Si is a homomorphism onto 5

Definition 1.19: A subalgebra % of ﬂ(@i[i € I)

is called a subdirect product of the ., 1 € I, if the

restriction of each Si to B is onto Ai'



If O],i=0l, for all 1 € I, then k is

called a subdirect power of m

If €. 1s the congruence induced by 61, let
O. be e, restricted to EQ Then &/Q o m,, and
i i i i
ﬂ (@ili e I) is the trivial congruence of equality.
Conversely, if {Qili € I} is a family of congruences
on an algebra m such that f}(0]i e I) is the trivial

congruence of equality, then m is isomorphic to a

subdirect product of the algebras /@i’ iel,

Definition 1.20: Ol is subdirectly irreducible

if, for any family of congruences %Oi]i € I% on m,,
ﬁ (Qi[i € I) being equality implies that Oi is equality
for some i € T,

Birkhoff has shown that every universal
algebra is isomorphic to a subdirect product of sub-

directly irreducible algebras.

6. Free Algebras

Definition 1.21: Iet K & K(T), and let g be an

ordinal number. The free algebra over K with ¢ generators,

denoted by fK(oz) = <E‘K(a); F>, is defined as follows:




(1) f.K(oc) e K.

(i1) ‘#K(a) is generated DY Xy, Xy5 ... »

y < Q.
(iii) If 8 815 +ev By eee 5 7 < @, are elements
of an arbitrary algebra GL e K, then the

mapping X -=» a can be extended to a homo-

7 V4
morphism of fK(oc)""*‘ m .

I f’K(a) exists, it is unique up to isomor-
phism. Specifically, ﬁK(a) g@(a)(’t)/gw where

@(a)(?) is the polynomial algebra formed on ¢ variable

symbols, and O, is the congruence defined by: p = Q_(OK)

K
if and only if p = g € Id(X).

7. Equational Classes

Definition 1.22: K &= K(Z‘) is an equational class

if K = o, for some set I of identities of type T .

A famous theorem proved by Birkhoff characterizes
equational classes as those which are closed under the form-
ation of subalgebras, homomorphic images, and direct pro-

ducts.

16
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Iet _S_(K) be the class of subalgebras of
algebras of K. Similarly, define H(K) and P(K) for
homomorphic Images and direct products. Finally,
let HSP(K) represent H(S(P(K))). Then if K is any
class of algebras, Eﬁlﬁ(K) is the smallest equational
class containing K. If K = {mg , we write _}LS_E(OL)
for the equational class generated by O-L . These

equational classes can also be defined as (Id(K))" and

(ra( 0L ).

If K = 2" is equational, then the free algebra

over K on ¢ generators exists, and Jé‘K(a) is isomor-

phic to @(a)(f)/QK, where p = q(@K) if and only if

P=4de Ta(X). Furthermore, the free algebrs on
generators, kﬁK(w> 'g@(%)/gw satisfies precisely

the set of identities Id(K), and so completely deter-

mines K,
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CHAPTER TT

THE FINITE EQUATIONAL BASTS PROBLEM

This chapter contains a precise statement of
the problem with which this thesis is concerned, and
some very general results concerning this problem., All
the results proved here are well-known to researchers
in the field, and are used informally in the wvarious
papers on the subJect. Since full proofs are not avail-

able in the literature, however, they are presented here.

1. Deducibility

Let % be a set of identities of type T . We

shall define what is meant by the statement: "p = g can
be deduced from %", which is symboligzed by:

S f—p=ga

We first give the elementary rules of inference in the

followings

Definition 2.1:

(i) F--§b = X, (in other words, we can always

deduce this identity).

(1) p=g F—a=12
(iii) p=g, g=r F—p=r

(1v) By =95 120, 1, «oom -1 f—



(v) If p' and g' are derived from p and g by
el aq e} el

replacing all occurrences of X, by an arbitrary poly-

nomial symbol r, then p = g — p'=4q'.

Definition 2.2: TIf ¥ is a set of identities, a

proof from ¥ is a finite sequence of 1dentities:

2y = 9
B =9
RSN R |

such that either D, = 4

= foll f
5 e X, or j_gi 9—*1 ollows from

previous identities in the sequence by the rules of

inference. The sequence 1s said to be a proof of

Poq = %1 from 2.

Definition 2.3: % }— p = g means there is a
proof from Z of p = (.

We note that by using rules (i) and (v),
that we always have }— p = p. Further, rule (iv)
can be extended to:
(iv') If plx.s ... X ) e (7)), then py = g5 - .-
)

B = Go1 PR o Byy) =R - g
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The proof of (iv') 1s immediate by induction

on the number of operation symbols occurring in p.

Definition 2.4: The closure of I, denoted by 3,

is the set of all identities which can be deduced from X.

Y2, is closed if T = —Z‘,-.

Definition 2.5: X l—— W means % ’—— p = g for
each p = g € W, Equivalently, we could define this to

mean W & 2.

We note that if & & W, then s = V—\f, and that

if 5 b—W, then W< 7.

w5 = 1a((|,), then = is closed. Conversely,
if £ is closed, then m = Z (Z)/e, where p = g(0)
if and only if p = g € %, is an algebra with Ta((Jl) =
Y., Thus rules (1) to (V) provide a complete set of rules
of inference in the following sense: 1f p = g is satisfied

in GL whenever I is satisfied in m s then X i———- P =d.

2. Bases for Sets of Tdentities

Definition 2.6: A set X of identities of type T

is finitely based if there exists a finite set W of
identities of type T such that W = T.




Theorem 2,7: If ¥ is finitely based, then there

exists a finite set of identities ZO & Y such that

ZO = Z,

i=0, 1, ... n-l} be a finite

Proof: Tet W = {;Ei =g

set of identities such that W= %. Then W € 3, so for

each Dy = 9 there is a proof from 2, involving a finite

. . . c =

gset of identities Ei & X, Let ZO Eol) ElLJ e U En—l.
. - jpacy = - ey C T

Since %, & I, T, € . Also, I, J—w, 5o W=% & %

Thus EO = E.

Such a set ZO will be called a finite basgis for

£. 1r 2= 1a( (), then 5, will ve called a finite

equational basis (FEB) for 01 .

The finite equational basis problem, in its most
general form, is the following: to find . necessary and
sufficient conditions for an algebra to have a FEB, A
related problem is the following: given an algebra 01
satisfying various properties, to determine whether Cmi
has a FEB.



5. Extension of Rules of Deduction

Definition 2.8: Iet _1_3_(3{0, ﬁn-l)’ 91(50, . §n-l)

be polynomial symbols of type T . ILet p' and g' be

_;Q(EO, E—n-l) and g(g{), En-l)' et r € P(T ),

such that _jp_' is a subterm of r., ILet t be the result of
substituting g' for p' in r.

5

Then p = g |—— 1z = t.

%

Definition 2.9: P=4g }——-— T

S
1

p=g b— t-zx

L if and only if

We will use the symbol S to mean "either Sl

11
or 82 .

S
Theorem 2,10: If p = g I-——— r =1, then

p=g f—z-z

Proof: If S is Sl, then p = g_LI—— p' = g' by a finite

number of applications of rule (v) Then a finite number
of applications of rule (iv) yields p=gl—r = t.
If S is 82, then we have by the first part of the theorenm,

!

that p= g F— t = r, since, by definition, p = g F—
Then, by rule (ii), p = g l—-—_I; = .

|t

i=

22
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We note, in particular, that if p i1s a sub-

term of r and t 1s the result of substituting g for p
in r, then p = g ;——_1:=§,

Lemma 2,11t If p =g }_ﬁ_ r =1, and if r' and

t' are obtained from r and t by substituting s for all

occurrences of X5 then p = g l—ﬁ— rt o=t

Proof: Tt dis sufficient to prove the result for S = Sl°

We recall that, by Definition 2.8, r and t have subterms

p' and g' respectively, where p' is ;9_(;_)0, gﬁ_l) and
T 1 1

9" is a(pys eee By q)e Iet Pl ... !, be the result

of substituting s for x, in e P _qs and let p"

Bpys
be p(pls oo -Et;l—l) and let g" be a(pls ... Errl—l)' Then

r' has p" as a subbterm, and t' is r' with g" substituted

S:L

for p".
Definition 2,12: Iet 2 be a set of identities con-

s for i=1, 2, ... 1,

taining the identities D; 79

Suppose the following sequence of deductions holds:



Then we say that t is obtainable from r through 5;

and we write y }—2— r = t. The sequence of deductions
is called a T-sequence for r = t, or a T-sequence con-

necting r to t.

Theorem 2,13: If 5 E—TL- r =1, then X }-—-£=Eg

Proof: The proof is immediate from Theorem 2,10, and

rule (iii),
Theorem 2,1k: If = g——-— D = g, then either p is g,

orz |- p= g,

Proof: The proof is by induction on k = the length of
a proof from X of p =g, If k=1, thenp =g € X

S
and we have p = g 3——1— P = g, which is a T-sequence
for p = q.
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We now assume that p is not g, and that the
theorem is true for all identities which have a proof
from 2 of length < k, There are four cases to con-
sider, corresponding to the rules of inference (ii),

(iii), (iv), and (v),.

Case 1l: Suppose that p = g follows from g = p occurring
earlier in the proof, and hence having a proof of length

< k. Then there is a T-sequence connecting g to p:

1T 9 ‘i q=7%

e
°

=4 - Tpe1 T B

Tet Sl = SQ, and let 82 = Sl’ Then
D = l——_s:—- P = +t
= 'ng = —-1
I E]_ =49

is a Twsequence for p = g from 2,

Case 2: ©Suppose p = g follows from p = r and r = ¢

occurring earlier in the proof, Then we have T-sequences



connecting p to r, and r to g. The juxtaposition of the

two T=sequences is clearly a T-sequence for p = g,

Case 3: Suppose that p is £( ), g is

B> eee Bpg

f(_qo, coo -q’n-l)’ where £ is an operation symbol, and

D; = 955 1=0, 1, ... n-1, occur earlier in the proof,
Then we have a T-sequence for each Ry < 9;. Suppose,

that for By T 4y WE have:

- S -
n=g oy

= S =
L, 75 o = %

Then we can construct the T-sequence:
= S =
r, =8 = £y eee By q) = £(gs Bys eee By )

B s
rp =8 b £(&p By oo By ) = (8 By e By )

éks
ém
T
)
m
;
R
}L’d
A¥]
}%‘—d
l-—‘\/

ol —_f_(go) El’ o0 o ':El’l—l>°

26




Similarly, using the T-sequence for D= 9,5 We can con-

struct a T-sequence connecting £(gys Bys «+e B, 1) O
£(gys Gy Bps eee _p_n_l). Finally, we will get a T-

sequence connecting _f_(_go, coe Qo “-p*a—l) to g, which
is :_E‘_(_go, soe —qrn—l)' The Juxtaposition of all these

T-sequences will yield a T-sequence connecting p to g.

Cage &: Suppose that p is derived from p' by replacing

all occurrences of the variable zc_i by a polynomial syme

bol s, and that g is similarly derived from g'. TFurther,
suppose that p' = g' occurs earlier in the proof. Then

we have a T-sequence connecting p' to g':

- I S = o1
2, T4 L i A
Using Lemma 2,11, we can replace all occurrences of §i

in all identities on the right by s, thus obtaining a

T-sequence connecting p to g.

This completes the proof of the theorem,




L, Normal Forms

Iet £ be a set of identities of type T . Then
the binary relation 6 on ’E(Z") defined by p x g(@) if and

only if p= g € E, is an equivalence relation.

Definition 2,15: A set N & _J::(‘Z*) of representatives

of equivalence classes of E(Z')/Q is called a set of

normal forms of Z,

Thus for each p € _P_(‘Z‘), there is a unique

Dy € N, the representative of the class [pl]e, such that

s b— p=Dpg Zis said to reduce p to normal form p..

Definition 2.16: Iet W be any set of identities of
type T . We say % normalizes W if there exlsts a set of
normal forms, N, for %, such that whenever p =g ¢ W,

then -E-N is QN‘ 2 is called a normalizer of W,

Theorem 2,17: If 2 normalizes W, then X ‘-——— W,

Proof: Tet p=g € W, Then X }———-;@_ = Dy and

Z l———9-=-9-N‘ But py is gy so = {_—12:9: Thus,

z b—w.




Corollary 2,18: TIf T € W is a normalizer of W,

then % = W.

Proof: If = & W, then & W, Since & }———W, =

Thus % = ﬁ,

We now consider the special case when
W= Id(m,), for some algebra 01 .

Theorem 2,19: Iet Z & Id(OE,) Let (p) oL denote

the polynomial induced in m by p. Then 2 normalizes
Id(m) if there exists a set N of normal forms such
that, for distinet p, g € N, (2)01 # (_g.)m.

Proof: Iet p= g ¢ Id(m), and let N be a set of normal

forms of 2 as described in the theorem. We must show that
Py is -(lN’ Since Z l——_lz: D g = gN, and X & Id(m),
which is a closed set of identities, we have that

R=py € (1), and g = 9y € 1a(Ql). Tenp=g e 1a({l)
implies that p. = g ¢ W(01); that is, (elpL = (et

So Py must be el since if they were distinct, we would

have that (_p_N)m% (gN)m.



5. Equivalence of Tdentities Modulo a Set of Identities

Ilet £ & W, where W is a closed set of

identities,

i

Definition 2,20: Iet P=g r

1f and only if:

s € W, These

identities are equivalent modulo

zuip=g} b=
and tuf{z=sfl—p=4.
This is an equivalence relation oft W, X is an equivalence
class, called the zero class, W/Z denotes the set of

for I

1
it

equivalence classes,

Definition 2.21: Let N be a set of representatives

of the non-zero equivalence classes of W/Z° Mg Wis a
basis modulo % for N if S ¢y M }— N,

Theorem 2,22: If M is a basis modulo I for N, then

SUM p—w,

Proof: ILet p =g € W, and (Q = -q')l\T the representative
of [p=gl. Then = U M |— (EZQ-}N’ and
v {<£=9.>N§ F—p-g MuszuM |—p-g

If W= T14( OT,) and & is finite, then we need

only find a finite basis for a set of representatives




N of W/Z to prove that 6\: has a FEB, The theorem,
therefore, allows us to assume that any identity holding

in m has a particular form.

To illustrate this, let O} be a group, and let

S be the group identities: x.(y.z) = (x.y).z, x.1 = x,

l.x=x 295—1 =1, §-l._>_c_ =1, If r =5 is an identity

nolding in 0!, then
v {z=s}
and 2 U {;’_.E—lz;_.(g i——-—— T =

Thus, in discussing the FEB problem for 03 , We may

st=1

(R

19}

assume that every identity satisfied in G} can be written
in the form p = 1. If we add to £ the identity x.y = y.X,
so that we have abelian groups, then we can assume that

every identity has the forxm:

] Fo-1
Xy oXp e ee. 0% =1

where the ki are integers, with the understanding that

ki = O means that _}gi does not occur on the left.

Suppose that p' = g' 1s obtained from p = g
by changing variable symbols in such a way that distinct
variable symbols remain distinct. Then p' = g' and
P = g are equivalent modulo the void set of identities.
Hence if p = g has at most n distinct variable symbols,

we can, in most cases, assume that these symbols are

Zo» X2 e Xy
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6. Equivalent Algebras

Let O‘_e K(T ) and m’ ¢ K(@) be algebras
defined on the same set A. Thus, O",z <A; F> and
Ol = <05 . Tet P(QOl) ana P({') denote the sets
of polynomials of 01 and m’ respectively.

Definition 2.235: 5‘/ and m’ are equivalent if

P(Q1) = PCOLY).

Iet £ ¢ F be an n-ary operation on A. Then
f e P( m’), so there is an n-ary polynomial symbol

£'(xp ... %,_1) € P(¢) which induces the same function

on A, Similarly, for g € G, there is a polynomial

symbol 5’(350, }—Cm—l) ¢ P(¢) which induces the same

function on A as does g. We now define a mapping
P —» p' of Plz) —» E(G‘) as follows:

(i) X, —» X, for i=0, 1, ....

(i1) If p is £(prs --- P

n-l>’ end if p. —» BRI

1

then p —» £'(pl ... -Er’l-l)'

Similarly, we define a mapping g - ¢' of _E(O‘) -3 E(“Z‘)
This mapping makes precise the following pro-

cedure: for each operation symbol in p ¢ _IE’_("Z“), we sub-

stitute the corresponding polynomial symbol of E( o).

32



It is clear that the result is independent of the order
in which the substitutions are made. Hence, we have the

following:

Lemma 2.24: TFor any polynomial symbol t of type
7T or @, let t" denote (t')'. Then if p is
1t . " H 1"
5<£O’ - Em—l)’ p" is g (EO’ ce. gm_l).

Lemma 2.25: p and p' induce the same functions

on A,

Proof: If p is Xs» the lemma is obvious. Suppose
Ds and Ei induce the same functions on A, for i = O,

1. ... n-1. Then, by the definition of f', we have

that £(pqs .- _;gn_l) and £'( . _p_r’l_l) induce the

By

same function on A,

Temma 2,263 let 5 = {g(}_{o,...x

for g € Gg. Then % t--p = p" for all p ¢ P(o°).

Proof: The result is obvious if p is X Suppose that

. _ 1
p is g(go, ce Em—l) and that = k——-gi = B; for all

i=0, 1, ... m-1. By rule (iv),

z b—gleg --- B,q) = 8@, --- B)_q)



oo
But gz, .- -}Sm—l) =g (50’ zm—]) € . Therefore,
1" " _ n 1 1"
by F—g_(;go, c o q) =8 (Rl _pm_l). Thus,
oo 1
2 F—glpy --- 2, 1) =8"(@® -+ 21 ;). Butby
Lemma 2,26, _g_” (__g), -P-I“rll-l) is p". So = &—— p = _”

Theorem 2.27: Let m, = <A; F> be an algebra with
a FEB, W. Let Ol’ = <A; G> be an equivalent algebra
with G finite. ILet W' = ‘{E' =qg'l p=ge W} , and

let ¥ be as in Lemma 2.26. Then W' U I is a FEB for m,‘.

Proof: Let p =g ¢ Id(m’). Then p' q' € Id(m,),
and so there is a proof P from W of p' = g'. Then we

have a proof P' from W' of p" = g". But £ g—— p =71
a=g" Sz YW |—p=ag

Corollary 2.28: If 01 and 01' are equivalent
F~finite algebras, then m has a FEB if and only if
@1’ has a FEB.

3k




CHAPTER IIT

THE EFFECT OF FINTTENESS CONDITIONS

It was at first supposed by researchers that
every finite algebra has a FEB. The first results in
this direction were obtained by ILyndon [6], who proved
the conjecture for all finite two~element algebras,
Lyndon [7] also obtained the first counter-example:

a finite seven-element algebra with a single binary
operation., Visin [16] then proposed the problem of
finding the smallest k for which all finite k-element
algebras have a FEB, and in the same paper, exhibited
a four-element algebra with a single binary operation
having no FEB. Murskii's example [11l] of a three-
element algebra with a single binary operation having
no FEB showed that Iyndon's first result was the best

possible.
In this chapter, we present Lyndon's results
on the two-element algebras, and Murskii's three-

element counter-example.

1. Post's Tterative Systems

Post [15] gives a complete classification of

what he calls "closed two-valued iterative systems"



(hereafter called Post systems), which are defined as

follows:

Definition 3.1: A Post system is a set of opera-
tions F on the two-element set A = { O,J_} such that

- ) € F, and X5 X

if f(xi > Xy
1 2 n

either wvariables chosen from among x

X are
n

x X 5 wuns

1?72 "t T
n <, or functions from F, then the function

(X, Xe, Xn) e F.

The set of polynomials of any two-element
algebra is then a Post system, and so Post's classgific-
ation includes a classification of all two-element
algebras, up to equivalence, Not every one of Post's
systems corresponds to an algebra since he does not
require the system to include the projection functions.
In particular, we can immediately discard those systems
which do not possess the identity function. From
Post's method of classifying these systems, we cannot
immediately verify whether a system possessing the
identity function also contains all the other projec-
tion functions. This need cause no difficulty, however,
gince by considering each system separately, and
assuming that it does contain the proJjection functions,
we can only prove more than is necessary by giving

separate proofs for the same (up to equivalence) algebra.




We can effect a further economy by omitting
algebras corresponding to systems containing only con-
stant functions and (possibly) projection functions,
since such an algebra is equivalent to an algebra
with a trivial FEB: either the void set of identities
or x=x will do. We can also omit one of each pair

of dual algebras, which are defined as follows:

%ﬁMﬁmBQ:Lﬂf&y.uxmﬁ:ﬁ—+A,

and let 0 = 1, 1 = O. Then the dual function T is

defined by: f(xo, - xn_l) = f(xo, .. Xn-l)'

Definition 3.3: If Ol = < {O,l; ; F> is a two-

element algebra, then its dual algebra is the algebra

GL = <{O,l} ; F>, where F = {E[ f e F%.

Then the omission mentioned is Justified
by the observation that the mapping 8: O =~ 1, 1=~¥% O
1s an isomorphism between ()1 and Efl.

Post has shown that all of his systems can be
finitely generated by functions chosen from among the

following:

(i) Constant functions: O and 1.




(ii) Unary function: x' where O' = 1 and 1' = O,
(iii) Binary functions, presented in dual pairs:

Join: x v ¥y Meet: x A ¥ or Xy

Jlo | 1 o~

Symmetric Difference: x + y

Equivalence: x = ¥y
X J 0 1 X J
Conditional: x = vy Set Difference: x - ¥y
X J 0 1 X J

(iv) Ternary functions: (x, v, z) = x(y ¥ z),
(%, v, z] = x(y 2 2z), and x + v + z. (It is well-known
that symmetric difference is an associative operation,

so that the latter is well-defined.)

(v) n-ary functions, for n > 2: dn(xl, Kgs e xn) =

X2X5...Xn v XlXB...Xn v XlXQXlL"'Xn ¥ .. V XlXE"' n-1"




In the following sections, we shall list the

Post systems which have not yet been eliminated. For
each, we shall list one or more possible finite sets of
generating functions. We shall then prove the existence
of a FEB for the two-element algebra with these func-
tions as operations, and hence for any equivalent finite
algebra. Post's name for the system (for example, Oh)

will also be used for the name of the algebra.

2. Post Systems I

The algebras of this group can be proved to
have a FEB using Theorems 2.17 and 2.19 on normal forms.
For each algebra Cn), we list a finite set of identities
s( 01) and a set of polynomial symbols N({l). Tt can
readily be verified that these sets satisfy the conditions
on ¥ and N in the theorems on normal forms, and so Z(Cﬁ,)

will be a FEB for 01 .

We list for reference the following identities:
Idempotency: §l: Xv X=X 92: XX = X.
Associativity:al: xv(yvz)=(xvy vz

Oy xGw) = ()2

I<

Commutativity: C;.' X v X5 552: Xy = yX.

<
<

1
Mmmmmmlmm:ﬁlzﬁv(gﬂ =x;ﬁ2:g§vz)=§.



Finally, so that there will be no ambiguity,
the last set of generating functions given for any Post
system will be assumed to be the defining operations of

the algebra in question.

oy {7 §s =0 = {ar=x)s w0y -

{EO’ ?__C('): ?_C_l: 51’ Xn, Xn, vees 0 < @%

(i1) Og: {, o} ; 2(0g) = £(0)); W(0y) {o o}

N(oh).

(111) 8¢ {v% 3 2(8)) = { %lg ﬁlp /8 %

n(s,) = {ggilv Gy v Coe vy vy D), wiere

11<12<"'<1n’n<w% .

(iv) 8,3 {v,oi; z(su)= xv0 z%u (s

n(s,) = {of v ms).

1

{v 1% z(s ={_>§v_1_=;§Uz(sl
N(85>= {_% U u(s)).

)3

);

Lo



(Vi) 86: {V: 0, l} B Z(S6> = E(S)-l-) U Z<S5)5
N(sg) = M(s,) v H(sy).

(vii) &): {v,/\} ; Z(Au) = z(sl) v {fjg, ;2:
O,E’ ﬁl’ 629 Dl’®2§ 3 N(ALL) = {glv oo v_gnln<1.o,

p; is of theform_}gi_}gi...gi with 1l<12<...<1k.J
172 k. i
the p. are distinct, k:l < k2 L ... L kn, and the ih of

the same length are ordered lexicographically with respect

to the subscripts on the variable symbols § .

viii)Ag:”{V,A, o} ; z(A2)=Z(A4)U{§,v 0=x

x0 Qfs N(A,) = N(a),) u{gi.

[
A
]
A
A
[N

B

[ ]

Ly



(x1) Ll: ‘{'*'; '} or {+: 's 0, l‘i H Z(Ll) = Z<L5> U
1 ty=x+tyl;

N(El) = {;ﬁ—u N(L,) u {p_‘,l p € N(L5>’ but is not Q_% ]
{

'{ O By By T oael —Enl n <@, where p, is of the form
X

Xy oee X 1l< 12< oo < 1o and the D, are dis-

tinct and ordered as for Ahg .

(xiii) C): ¥ -, '} or {+, A , 0, 1§ or {v, A, ', 0, 1§;
I
Z(Ch) = the set of identities listed for reference on pages

39 to 40, together with ‘{(2{_ =x xy 0=x, x0=0,

!)l
x 0'=1, x'v y' = (xy)', x'y' = (ggvz)'%;

We note that C).;. is (up to equivalence) the

two-element Boolean algebra.

(xiv) Ly '{X Ty toz } H Z(L1L> = a set of identities

asserting that x + y + z 1is invarisnt under any permuta-

tion of the variable symbols, together with

{z+z+z=&§+z+<£+z+ﬂ=<§+z+@+2+z§s

Lo
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N(LM) = {)—CO""EH""’ n< &), and polynomial symbols

of the form x, + x, + (... + (x, +x  +x )),
1 e k-2 k-1 k

i<i <...<i, k=34 ... n, ...,n<w}.

1 2 k’

o) gt {x vy e )5 sm) =5 v
{<_>s'>‘=_>s» <.>5+y_+_z_>'=_}s'+z+z}s (L) =

N(LLL) v {_jg‘] D e N(LLL)}'

3. Post Systems IT

The algebras in consideration here are

FM: {:3} and Fﬁ: {D 5 dn% for n > 2, The proof of

the existence of a FEB for these algebras will proceed
as follows:

(a) We define "a fragment of the propositional
calculus containing material implication" (hereafter

called a Henkin fragment), and show that in such a

formal system, a finite set of axiom schemata can be
chosen from which all tautologies are deducible as

theorems, using only modus ponens (MP) as a rule of

inference.

(b) We show that from any finite two-element
algebra m = < {O,l} 3 >, where F contains the
conditional (2 ), we can construct a Henkin fragment L({).



(¢) From the finite set of axiom schemata of

L(Ol), we can construct a finite basis for Id({]).

Step (g): The results here are due to
Henkin [4]. The proof is carried out for the case
when there is Just one other logical connective be-
sides the material implication, but, as Henkin remarks,
the modifications necessary for the more general re-
sult are notational rather than conceptual. Further,
this particular result is sufficient for our pur-

poses here,

Definition 3.4: A Henkin fragment is a formal

system defined as follows:
(i) The primitive symbols are a denumerable

set of variable symbols: x X,

0’ Xl’ e X veesy D <&,
connective symbols: 2 and g, and punctuation
symbols: (, ), and 2.

(i1) A variable alone is a well-formed formula (Wwff);

if A and B are wif's, then so is A> B; if Al’ . Am
are wif's, then so isg B(Al, cee Am). We allow the case
m = 0, in which case we write g rather than g( ).

(iii) For each logical connective, we have a truth

table, the one for material implication being:



X Xy Xy 2 Xl
0 0 1
0 1 1
1 0] 0
1 1 1

Thus, if the variables in a wff are assigned truth
values chosen from {o, l% , then we can compute g
corresponding truth value for the wff. If A is a wff
containing variables Koo Xqs ene X, _q> We write x(‘),

Xi, .o Xﬁ_l for an assignment of truth values to

these variables, and A' for the corresponding truth
value of A,

(iv) A wff A is a tautology if A' is 1 for every

possible assignment of truth values to its variables.

Definition 5.5: A schema is defined as follows:

(1) Q’l’ &2, G«n, ... », n <®, are schenas,

(i1i) 1If %l and BE are schemas, so is %l > %2.

(iii) If ?31, T%E’ .o %5m are schemas, then so is
B(%:LJ %2} e %m)o

It is clear that if for each Cii in a schema,
we substitute a wff Ai for all occurrences of a’i’ then

the result is a wff. A property P is said to hold for

b5



a schema if and only if it holds for all wff's which
can be so derived from the schema. TIf all wiff's de-
rived from a schema ES are tautologies, then.f3 will
be called an instance of a tautology. We note that

for every schema ES , there is a simplest wff derivable

from it by substituting X, for Cij

Let an arbitrary set of wff's and/or axiom
schemata be designated as axioms and/or axiom schemata
(this means that every wff derivable from the axiom

schema is an axiom). Let modus ponens (MP) be design-

ated as the single rule ~of inference: if Al and Ag

are wif's, then from A, and A, =2 A_, we can infer A

1 1 2 2

Definition 3.6: A proof from the assumptions V

is a finite sequence of wff's, each of which is an
axiom, an element of some set V of wff's, or results
from two preceding wff's of the sequence by MP, If
A is the last wff of such a proof, we write V /— A.
If V= ¢, we call A a theorem, and write /— A.

Definition 5.7: A Henkin fragment is said to be

axiomatizable if there exists a finite set of axioms

and/or axiom schemata such that every tautology is a

theoremn.




b7

We shall show that every Henkin fragment
is axiomatizable with the following finite set of

axiom schemata:

AL O”l = <&23 a’l)
n2: ((], = a2)3 ((als (QED &5)) > (al=> &5))
152 (=2 0s) 2 (R, 2 A= (= As)

In addition, there are 2m further axiom schemata involving

8. Let x

TAREE xm be distinet variables, and select any

one of the Em assigmments of truth values Xi, . XA

to these variables, and let g' be the associated value

of B(Xl, . xm). Tet v be any new variable, and let
x°i be either (Xi: y) >y or Xi =2 y, according as xi

islor O, for 1 =1, 2, ... m. Let g° be
(B(Xl, Xm)by)ay or B(Xl, xm):zy,

according as g' 1s 1 or 0. Then any result of replacing
each variable by some wff in:

el

2 (=2 ... o =258%))...)

is an axiom. This is done for each of the 2m possible
assignments of truth values, thus yielding 2m axiom
schemata. Here, the variables play the role of the

{ii used in defining schemata, so that these are indeed

schemata.



L8

We note that each axiom schema is an in-

stance of a tautology. Since modus ponens preserves

the property of being a tautology, Henkin's result
will show that the set of theorems is precisely the

set of tautologies.

We will make use of the Deduction Theorem:
H‘VU{AS /——]%1ma1V/——!&=B,fM’mwwﬁf%
A and B, and any set V of wff's., This follows from

Al, A2, and the rule of modus ponens. A proof can

be found in E, Mendelsohn's Introduction to Mathematical

Logic [10].

Temma 3.8: Iet x!

12 Xﬁ be any assignment of

truth values to the distinct varisbles Xl’ “ee Xn.

Let A be any wff containing no other variables than

X X s and let A' be the associated value of A,

l}
Iet C be any wff. Define A° to be (A> C)=2 C or
A2 C, according as A' is 1 or O. Then,
=] o] o]
Ko oer X /——~ A7,
Proof: The lemma is proved by induction on the length
of A. First, if A is one of the variables, the proof

is immediate.




Now suppose that A is B 2 D, and that the
lemma holds for B and D. We have three cases to con-
sider:

Case 1: B' = 0, Then B° is B2 €. Also, A' = (B> D)!
=1, so A° is (A® C) = C. By the induction hypothesis,
Xi, X;l /— B> (. Using A3, we get that

/

(B2C)a (((B2D)=2C)2 C). So by MP, we get

x°l, xn /— ((B® D)> C)> C. But B>D is A
and (A2 C) 2 C is A°., So Xi, X;l /— A°.

Case 2: D' = 1. Then D° is (D> C) 2 C. Also, A' =
(B2 D)' =1, so A° is (A2 C) 2 C. By the induction
hypothesis, xi, x;l /— (D2 C)=2 C. Consider the

following chain of deductions:
D/—B2D (by AL and MP)
D, (B2D)>C /—C (by MP)
(B2D)2¢C /~—D2C (by Deduction Theorem)
(B2D)=2¢C, (D2C)> ¢ /~—C (by MP)
b2cC)ac/— ((BaD)ac)=2c (by
Deduction Iheorem).
Thus, x‘]’_, x;l /— ((B2D)20C)2 ¢,

and this is A°.
Case 31 B' = 1, D' = 0., Then B° is (B2 () 2 C, and
D° is D2 C. Then A' = (B2 D)' = 0 and so A®° is A C.

By the induction hypothesis, xi, X; /———— (B2 0)2 ¢,

[e)

and Xqs

. X;l /—— D 2. Consider the deductions:

k9
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B, B2 D /— D (by MP)

B, B2 D, D> C /— ¢ (by MP)

B2D, D> C /— B> C (by Deduction Theorem)

(B2 ¢)>C, B>D, D>C /[~ C (by MP)

(B2 C¢)2¢C, D>C/— (B2D)=>C (by
Deduction Theorem).

Therefore, x°, ... x. /—— A°. This ex-
2 lJ n

hausts all possibilities when A is of the form B> D,

Suppose that A has the form B(Al, Am),

and that the lemma holds for Al’ .o Am. There are

ot cases, depending upon the assignment of truth

values Ai, . Ag. Suppose that we have such an assign-

° 2 (A . D(A° 2 A%))...) 4 i
ment. Then Al CAQ > (Am A%)) ) is an

axiom. By m successive applications of MP, we have

that Ai, ces A& /— A°. By the induction hypothesis,
xi, ces x; [~ A;, for each 1 =1, 2, ... m. Thus,

xi 5 ee x; /= A°. This completes the proof of the

lemma.,

Theorem 3. 9: If A is a tautology, then /— A.

Proof: ILet Ko oo X be all the distinct varigbles

that appear in A, For each of the 2n possible assign-~

ments Xi, A Xé, A' is 1. Hence, by the preceding



lemma, if C is an arbitrary wff, and X; and A° are

defined as before, we have, for each of the o™t

possible sets V= {Xi’_, X;l} , that

vn/—- (A20C)> C.

This entails that for any of the 2n-l sets Vn—l =

{xi, cen xn_lls , we have both

x,2 C V4 /— (A2 C)2 C

and (an )= ¢, v /— (A2 ¢C)> C.

1
By the Deduction Theorem, we obtain:

Vo1 /— (xn:a )2 ((A=>0)=20)
and vn_l/———((xna C)2C)2 ((A>cc)=2o0).
By A3, we have the following:
[— ((x,2C)a((a=2C)20))a((((x,2C)20C)=

((a20)=0)) > (A2 0)20).
Then by two gpplications of MP, we get that
—— >
V., /— @3c)=c.

Continuing thus, for each 1 = n-1, n-2, ... 2, 1, we
obtain for each of the 2@ possible sets v, = “{xi, xi%
that 7, /— (A2 C) 0. TFor i=1, this gives

x, 2 C /— (A= C)=>C and (x, 2 C)> ¢ /— (A=2C)=>C,

A final use of A3 gives /— (A > C) »C. Since C is
any wff, we have, in particular, that /— (A2 A) > A,



But from A /— A, we obtain /—— A D A by the Ded-

uction Theorem, and hence by MP, /———- A,

Step (b): We now show how, from a finite
two-element algebra m =< {O,l} ;3 >, where P con-
tains the conditional, we can define a Henkin frag-

nent L(QD. Tet 7 be the type of QL.

(i) The symbols of L(m) are the variable sym-

bols, X.5 ... }_{n, eee » 1 <& ; the connective sym-

bols are the operation symbols, Qy, of type T . This

1"

includes the symbol "=" for the conditional, which
plays the role of material  implication here. We also
have the usual punctuation symbols.

(ii) The wef's of L({J}) are the polynomial sym-
bols of type T .

(iii) The truth table for _f_‘y(g_co, e X l) is the
4
operation table for f')/ in Oi, .

(iv) A wff is a tautology if, as a polynomisl sym-

bol, it induces the constant 1 function in

It is clear that L(m) is a Henkin fragment.
If o is a schema in L(@,), we denote by o the simplest
wff (hence, polynomial symbol) obtainable from q.
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Step (g): If OL is an algebra satisfying
the conditions of Step (b), then L(m,) is a Henkin
fragment, and so can be axiomatized by a finite gset of

axiom schemata: Qs O o4

. ocn. Tet g_l, gg, cee Q)

25
be the simplest wff's (hence polynomial symbols) de-

rivable from Qs O e Tet _}gk be a variable

23
symbol other than x, y, or any of the variable symbols

occurring in ., Qs e & If 1 is not a constant

(nullary) function in OL > we will use 1 as an abbrev-

iation for J_(kD _>gk

Theorem 5.10: m has the following FEB:3% =
% Al x2x=1, A lox=%x A:(x2y)2x-=
1, 2, ... n.%

I

(y 2 x) » x, Bi: o, =1, 1

Proof: Al, A2, A3 clearly hold in 0!, Since oy is
an axiom schema of L(m), o, is a tautology, so
Q; = 1 holds in m, .

We show first that if /— p, then
p=21 If p is an axiom of L(m,), then eilther

.

%
P is oA for some i, or p can be obtained from Qs by

uniform substitution of wff's (hence, polynomial sym~

bols) for the variable symbols of Q- In either case,
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gi - !__ ‘___ D= ;_ Now suppose that /"""" p and

/—p g, and that £ f—p=1land sp—po>g=1.
Then by rule S, we can substitute 1 for p to get

S b—129g=1. Butbyae, = b—1359=9 %

Z l——— g = 1. This proves, inductively, that if /— P,
then % l—— p=1.

Now suppose p = ¢ € Id(OL). We wish to show
that o I——-—g = q. Since p =g ¢ Id(m,), we get by Al
that pm>g=1and g2 p=1hold in . Thenpo2 g
and g @ p are tautologies and hence theorems of L(m)
By the first part of the theorem, & |—p> g = 1,

and & f—go>p=1. By A3 = }b— (gap)ap

Il

(p2g)2g.
Using rule S, we can substitute 1 for p 2 g and g2 p
to obtain X E—-——- 12p=12>g9. Using A2, we get:

2 b—2=g

Corollary 3.11: The algebras FLL and Fi, n> 2,

each have a FEB,

L, Post Systems IIT

The proof in this sectlon is essentially that

given by Lyndon, with improvements suggested by G. Gratzer.

The algebras considered in this section are

the following:
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{(X:yaz)} or {(X)y)z)) XY}

F,
F7: {(x,y,z), o} or {(x,y,z), Xy, o}

pi {lnwal §oor {Bowal, (32), )

C): {[x,y,Z], xvy% or {[x,y,Z], (%,7,2), %7, xv;v}
Fo: {157,231, dn§ or {[x,y,z], (,¥,2), %y, a_ %
Fy {(x,y,z), dni or {(x,y,z), a xyg

7 {Gora), 4, 0F or {Gowa), a0, ]

We note that all these algebras have the operations
(%,y,2) and xy.

Let © consist of the following identities:

(1) xx=x (2) xzy = yx

) xz(yz) = (wz L) (yy) =z

(5) (Lxy) =x (6) (x,3,2) = (x,2,7)
(7) (x3,2) = (xxv,2) (8) wixy,z) = (wx,y,2)

(9) E(ES:_Y_)_Z_) = (E:EX:E)

We note that £ « Id(F6), so that HSP(F6) c 3", We
now proceed to show that " < HSP(F6), so that %

will form a FEB for F6.




Let OL be any algebra with operations
(X,y,z) and xy satisfying Z. For any x, y € A, we
define x £ y to mean xy = x. Using the identities
3, we can easily show that this defines a partial

order on A,

Definition 5.12: A dual ideal in Ol, is a

proper subset S & A such that:
(i) x, ¥ € S implies that xy € S, and
(ii) if x <y, and x € S, then v € S,

Definition 3.13: A dual ideal S is prime if

whenever (x,y,z) € 5, then either xy € S or xz € 8.

Lemma 3.1Lk: Tf a < b does not hold, then there

exists a prime dual ideal containing a but not b.

Proof: ILet S, = {z| a<z§. This is a dusl idesl

containing a but not b. We shall now show that every
dual ideal with this property, if not already prime,
can be properly extended to a larger dual ideal with
the same property. Let S be a dual ideal, not prime,
containing a and not b. Then, by definition, S con~
tains some (u,v,w) while neither uv nor uw € S.
Suppose there existed p, q € 8 such that puv < b

and quw < b. ILet r = pg, and note that r ¢ S.
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Then we have the relations (R): ruv < b and ruw < b.
Now br(u,v,w) = (u,brv,brw) by identity (9),

= (u,ubrv,ubrw) by (6) and (7),

= (u,ruv,ruw) by the relations (R),

= (w,rv,rv) by (6) and (7),

= r(u,v,w) by (9).
This means that r(u,v,w) < b. But r, (u,v,w) € S
so r(u,v,w) € S, and hence b € S, contradicting
b é S. So such p and g cannot exist. Suppose, by
symmetry, that puv { b holds for no p € S, Now let
S = { z| puv g z, P € S} . This is a dual ideal
not containing b. Also, S& S', since puv £ p for all
p ¢ 8. Finally, the inclusion is proper, for puv ¢ §'
for any p € S, while if puv € 8, then we would have
uv € S, contradicting the fact that uv and uw £ 8.

Now let ;g be the set of all dual ideals

of Cﬂ, containing a and not b, partial ordered by
set inclusion. The set union of any chain of such
dual ideals is a dual ideal with the same properties,
and so Zorn's Lemma can be applied to yield a
maximal dual ideal M with these properties. Then
M must be prime, for if not, it can be properly
extended to a larger dual ideal containing a but not

b, contradicting its maximality.



Theorem 3.15: CTLis a subdirect power of F6'

Proof: Tet a, b € A such that a £ b does not hold,
and let S be a prime dual ideal containing a but not

b. We define a mapping 6ab: A —> F6 as follows:

e wep ] 4 . :
Sab.x lif x e S, Sab' x=» 0 if x £ 8.

We show first that Sab is a homomorphism of C“, into
F6. Since xy € S if and only if x and y € S, we
have that (xy)aab = (x&ab)(y6ab) whenever x and y

are both in S or both not in S. Now suppose x € 8

and y é S, so that Xgab = 1 and ySab = 0. Now

Xy é S, for otherwise we would have y € S. So

(waa)=o:=1A>=(x%bxy%m%

Now consider (X,y,z) and suppose that

(x,y,2) € 8, so that (X,y,z)5ab = 1. Now, either

xy € Sor xz ¢ 8. If xy € S, then both x and y € S,
and we get <X6ab’y63b’zaab> = (l,l,z&ab) =1, A

similar result holds if xz € S. If, on the other
hm@(&wz%é&t@ny&ﬂﬂ)ﬁ& But y(x,y,2) =
(xy,¥,2) by (8), = (xy,xy,xyz) by (6), (7), = xy by (5).
Then xy £ S, so x £ Sand y £ 8. So we get that

(%8 ) = (0,0,z@ab) = 0 as required.

ab’ygab’26ab

So aab is, indeed, a homomorphism.
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Tet @ab be the congruence on OL induced

We 1 i -
by Sab' We note that aé b(@ab) gince a@ab 1

while Db aab

{ @abl a £ b-does not hold in m,}, and let O =

Q =
0., Also, Ol,/@ab ® Fg. Now let J

NN(e |0 € ). Iet x =y(6), with x # y, so that

either x < y,or x { y does not hold. If x <y, then
. J, and © L O .
¥ & x does not hold, and ny € d, and © < vx Then

we get that x

4]

y(@yx) which is a contradiction.

Similarly, if x £ y does not hold, we get a contra-

diction using @Xy' Then x = y(0) if and only if

X =¥, s0 © 1s the trivial congruence of equality.

Then Ol is a subdirect product of the m/gab’

that 1s, a subdirect power of F6.

Theorem 3.16: X is a FEB for F6.

Proofs If Ul, € 2", then m is a subdirect power of
Fg, 0 O'L € HSP(F6). Thus =" & HSP(F6). We have

already noted that HSP(F6) € ¥, Thus =" = HSP(F6)

and so Id(Fé) =3,



60

The same technique will be used for the
remaining algebras in this section; in each case,
all that we must show is that the addition of a
finite number of identities to I will ensure that

the additional operations are preserved by aab' It

should be noted that the additional identities do
indeed hold in the algebra in question,

Theorem 3.17: Bach of T, Fg, Fg, Fg,

and F$ has a FEB.

Proof: (i) F,: {xy.2), =, o}. We 8dd the
identity: (10) Ox = O. We must show that (o)zsab = 0,
But if (o)aab = 1, then O € 8. Since Ox = O for all

x €A, OL xfor all x ¢ A, and so S = A, DBut S is &
proper subset of A. So we must have (O)Bab = 0,

(ii)iFS: { (%,7,2], (%,¥7,2), Xw'} . We add the
identities: (11) [x,y,z] = [x,2,¥]

(12) _}E[X,}/’,_Z_

(13) Z[E:Z:_Z_

(1k) (E: (E;Z»E)J [X:ZJZ_
Let [x,y,2z] € 8. By (12), [x,¥,2] <
If neither y nor z € S, then [Xaab’ysab’zgab] =

, S0 X € S,

[1,0,0] = 1 as required. Otherwise, suppose y € S.
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Then y[x,v,2z] € S, and y[x,y,2] = xyz, so z € 8. Then
[X%Wy%wzzm]=[LLl]=lasrmmww.

For the converse, suppose [xSab,yBab,ZB 1 = 1.

ab

Then Xgab = 1, and yd z3 So x e S, and y and =z

ab ~ ““ap’
are elther both in S or both not in S. If they are both
in 8, then xyz ¢ 8. Now xyz[x,¥y,z] = yzl[x,y,z] by (12),
= z(xyz) by (13), = xyz. Then xyz < [x,¥,2] implies
that [x,y,z] € S, and [x,y,z]Sa,b = 1 as required,

On the other hand, if y and z are both not in S, we
consider x = (%, (%,v,2),[%x,7,2]) € S. Then either
x(x,5,2) = (%,7,2) € 8, or x[x,7,2] = [x,¥y,2z] € S.

The first possibility cannot occur, since it would im-
ply that either xy or xz e S, and hence either y or z ¢ S,

S [x,¥7,2z] € S, and [x,y,z]%ab = 1 as required.

(iii) Cy,2 {[x,y,z], (%,57,2), XV, va}. We add the

identities: (15) xvy = yvx

(16) x(x vy =x

(17) (xvy % y)=xv
Tet (x v :y‘)Sab = 1. Since (X v ¥,%X,¥)

I<

X v Yy, elther
x(xvy) = x e Sory(xvy) =y €8 S xp,vye, =L

Conversely, if x v v £ S, then by (16), neither x nor
¥y can be in 8. o Xﬁabv y@ab =0v0=0= (xv y)Sab.




hﬂF% {&ﬁﬂ%dmrw}- mtt&ﬁpu%g

be an abbreviation for (x,(x,...(X,(X,yi,yg),yB)...ym)

i . s
and let x~ be an abbreviation for xl"'Xi—lXi+l"'Xn'

Note that the n is the one given by dn' We add the

identities:

1 1

(18) x'a (x5 - x) = x
1 2 n
(19) &, (x;5...2) = (4, (x,...x )x % ,...x)
(20) Identities asserting that §n<§l’ ces §n>

is dinvariant under any permutation of the variable sym-
bols.

Now suppose dn(XlSab, - Xnaab> = 1. Then
for some i, (Xlgab)"'(Xi-lﬁab><xi+16ab>"'<Xn6ab) =1,

o xlsab =1, and ¥ € S. But by identities (18) and

i
(20), x~ = x dn<xi’x2""Xi-l’Xl’Xi+l""Xn)’ so we get
dn(xl,...xn) € S, and dn(xl, e Xn)gab = 1 as required.
Conversely, suppose that dn(xl, xn) € S, Then by
1 n .
(19), (dn(xl,...xn),x 5 ... X ) € 8. S either
1 n-1 1
) =
dn(xl""zh>(dn<xl""Xn”x see X ) (dn(xl,...xn),x b X
is in 8, or x4 (%, ... x ) =% e S, Tf this latter
n L n
n N -
holds, then x' 8, = 1, and dn(xlBab, cen xnsab) =1, as
. 1 n-1
required. If not, then (dn(Xl,...xn),x ,.. X ) €S
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and then either £t € 8, or (dn(xl,...xn),xl,...xn—e)

€ S.

Continuing thus, either one of Xn, Xn-l, . X5 € S, or

else (dn(xl,...xn),xl,xg) € 8. TIf this latter holds,

then either xl or x2 € 5. In any case, at least one

i i
x e 8, and X8 1. Then dn(XIBab,...x_S ) =1

ab - n ab

as required.

(V) F?: {'[XJYJZ]J (X,y}Z), dn; xy'§ . Clearly, the

identities (1) - (9), (11) - (1k4), and (18) - (20)
will do.

(vi) F?: '{(x,ygz), dn’ 0, xy‘% . Here, identities

(1) - (9), (10), and (18) - (20) will do.

5. Post Systems IV

The algebras to be considered here are the
following:
Z%:{d5=d}

Dl: {d, X+ y+ z%

DB: {d, X +y+ z; ’}
The method used for Post Systems ITT will be adapted
here by introducing a zero and partial order into such
algebras. This method was devised by G, Gratzer,

following a suggestion in Lyndon's paper.
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We note, first, that the following identities
hold in D2:

= X

1) alu,xy) = dlu,y,x)
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(20') Identities asseting that d(x,y,z) is invariant

under any permutations of x, y, and z.

The numbering and unnecessgary repetitions in
the list will serve to make the analogy with Systems IIT

more immediate,

Iet Zl denote this set of identities. Since le

Id(Dg), we have that HSP(DQ) < z,. For the other con-

tainment, we consider any algebra O], of the same type as

D2 satisfying Zl. Let u € A be fixed. We introduce the
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following definitions: x AL T = d(u,x,y), (x,y,z)u =
XA a(x,v,z), and 0, =u. Let Ol‘u be an algebra on
the same gset A as m , but with operations 4, xz\u Vs

i 3
(x,y,z)u, and O . Thus Ol’u is of the same type as FT
Now consider (1'): d(u,x,x) = x. For the
fixed u chosen and any x € A, d(u,x,x) = x. This

means that XA X=X for all x ¢ A, Then XA, X=X
holds in mu' Proceeding similarly with (2') - (9'),
we see that Glu‘satisfies the identities (1) - (9)

lised for Systems III. Hence, we can define prime dual

ideals in m’u’ and prove an analogue of Lemma 3.1k,
with a partial order defined in terms of xAu yv. Trans-

lating identity (10'), we get O, A, x=0,, and the

identities (18') - (20') yield the identities (18) - (20)
listed for F? We define the algebra Dé by adding to

D, the operations x A, ¥, (x,7,2) ., and O as for m

2 0’

The algebra so derived is isomorphic to F?

It is clear, now, that we can parallel the

proof in Systems IIT to obtaln a homomorphism
. 1
Sab' giun> D2

which separates any a and b such that a su b does not hold.



The same mapping is a homomorphism of Cﬂ;*> D2 which

separates a and b. Then Cn;is isomorphic to a sub-

direct power of D, and so Zi =4 HSP(DE). Thus Id(DE) =

Ei, and we have the following:

for a FEB,

Theorem %,18: D2 has Zl

Theorem 5.19: Dl and D5 have FEB's.

Proof: Again, we must show that the addition of a

finite number of identities will ensure that Sab pre-

serves the additional operations x + y + z and x'.

For Dl’ we add the following identities:

[ Pn SRt Palal pUaip P g ghh i id @ ™

P . TSR Py SR gt P i Ry “AR gty

—~
(=
p—
o
TN
o
s
>4
\s
oY
>4
»
3
+
0
o
s
»
N
—r
p—
S—
]
a3

The u~translations of these become:

(A") dlgysz)a, (x+y+tz)=xa ya 2

(B') xtytz = (xtytz, (xtytz,xy) , (xytz. y.2) )
(") (xa, ya 2)A, (x+y+z)=xa YA 2z

D) (& x+y+2 dlxyz) =x

Finally, we add identities asserting that x +y + z

is invariant under permutations of x, y, and z.



We will now show that (x + y + Z)Sab =

+ + =
X6, * ¥8, * z8,. Suppose that (x + 7y Z)Bab 1.

1 + + = + + = .
If x, y, z € S, then Xgab yd Zgab 1 1+1 1

ab
Now suppose x £ S. If y, z € S, then d4(x,y,2) € S, so
a(xy,2) A, (x+y+2) =xA_yA_ ze8 by (&),

and so x € S, contradicting x £ 8. So at least one
of y, 2, say ¥y, 1s not in 8. Now x + y + 2z € S, s0

by (B"), (x +y + z, (ry+z,%,¥) 5 (xty+z,y,2) ) € S.
So either (x+y+z)/\u (x+y+z,x,y)u = (x+y+z,x,y)u € S,
or (x+y+Z)Au (x+y+z,y,2)u = (x+y+z,y,Z)u € 8. The

first possibility cannot occur, for then we would have

that (x+y+z)A_Ll x € 8 or (x+y+z)Atly'e S, which would

imply that either x € Sor y € S. 8o the second alter-
native must hold, and a similar calculation yields that

T + = =
z € S, Then xaab yBab + Zgab O+0+1=1as

required.

+ + =
Conversely, suppose that Xgab yﬁab Zaab 1.

|
@)

So either xaab = yﬁab = Zaab = 1 or, say, XSab = yBab =

and Zaab =1, In the first case, x, ¥y, 2 € S, and hence
! + + =

XA, YA, 2 €S By (cr), XA, YA, G AU_(X v + z)

XA TA, D and s0o x + ¥y + z € 5 as required. In the

second case, z € Sand X, ¥y £ S. By (D'), z =

(z, x +y + z, d(x,y,z))u, and so either z 4 (x+y+z) € S
or z A, a(x,y,z) € 8. But z A a(x,v,z) = (z,x,y)u €8

would imply that z Au X or z Au y € S, which is a contra-
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diction, since neither x nor y is in S. o we must

MWeﬂmiZAu(x+3r+z)eS,amiﬂﬁsimﬂmstmm

x+y+ z e S as required.

For DB, we add the identity: d(x,y,y') = x.

Then for any x € A, xa, u' = a(u,x,u') = x, so u' is

a maximal element. Also, S is non-empty, so there is an

element z € S, and z sﬁ u'. So u' € 8. Also, we note

that x Ay x' = dlu,x,x') = u = Ou'

Now let x' e 8. If x ¢ S, ﬂmnXAux‘=Ou
is in S, which is a contradiction. So x £ S, and

— L . —_ 1
x5 = 0, Then (x&ab) =1= (x')8

ab ab’

Conversely, if (xBab)’ = 1, then x8_, =0,
and so X é S. Now u' € S, and u' = u'a_u' =
u'A_u d(ut,x,x') = (u’,x,x')u € 8. So either
u’Au>c=x:€S,oru'Aux’=>d € S. &nﬁzxé S,

x' € 8, and (x‘)&ab = 1 as required.

This now completes the proof that every finite
two-element algebra hag a FEB. That this is the best
possible result in this direction is exhibited in the

next section of this chapter.
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6. Murskii's Three-Element Counter-Example

J ret Ol be defined on the

set §0, 1, 2§ with &

X

single binary operation,

o O O |O
N 1o O
[AOINN N ol KGR V]

denoted by xy, with opera-
tion table as at left.

Consider the polynomial symbols:
ot 2l o (2 () o))
and Gz (xx,)(x (x ... (54(5552)) ces ).
We shall show that for n < 2, Fn = Gh holds in GL,
but cannot be deduced from a set of identities in

which any arbitrary term contains occurrences of not

more than n~1 different variable symbols.

Temma 3.20: Tet p(x., ... En-l) be a polynomial
gsynbol of type <> containing each of Ei’ 1=0, ...

n-1l. Then the polynomial p(xo, ve. X l) induced by

ne~

P in Cn, is a function depending on all its variables.

Proof: TFor arbitrary x., p(2,2,...2) = 2, whereas

p(2,2,...2, 0, 2, ...2) = 0, when the ith variable
is allowed to take on the value 0, Thus p depends

upoIl X..
P 1



Corollary 3.21: If p =g € Id(ot), then p and g

contain the same variable symbols.

Definition 5.22: The term occurrence will denote

the occurrence of a variable symbol in a polynomial symbol,

and we will use the notation bl’ b for occur-

2’ L N 3
rences Of X.o X.seeas
=i’ =3

Definition 3.23: Two occurrences bl and bg in a

polynomial symbol p will be called adjacent in p if p

containg a subterm EfEE’ and bl is the left-most occur-

rence in 2 and b, is the left-most occurrence in 22,

2

or vice-versa, Two variable symbols X, and Ej (with

possibly i = j) are called adJacent in p if there is

an occurrence b, of Ei adjacent to an occurrence b

1 2

of Ej in p. We note that every occurrence of a

variable symbol Ei in p is one of & pair of adjacent

occurrences.

Lemma 3.24: Tet p(x., ... En—l) e P(<2>), let
p(xo, . Xn_l) be the induced polynomial in OL, and
let 8y 895 +-. B 4 € A, Then the following results

hold:
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(1) if p(ao, - an-l) # 0, then p(ao, - an—l> =
8.5 where X, is the left variable symbol of p.

(ii) p(ao, - an—l) = 0 if and only if some a, = O,
or a, = aj = 1, where X and Ej are a pair of adjacent

variable: symbols of p, possibly identical,

Proof: (i) This follows immediately from the fact that
for any a, b € A, if ab % 0, then ab = a.

(ii) If some a, = 0, then p(ao, =0, If

.

a, = aj = 1 where X and Ej are adjacent in p, then p

has a subterm bip, such that X is the left variable

)

of p, and S is the left varisble of p,. If pl(ao,...an_l

= 0, or pg(ao, - an~l) = 0, we are done, Otherwise,
by (i), Pl(aO) an_l) = 1 and p2<a0’ an-l) =1,
and pl(ao, cen an_l)pg(ao, e an—l> = 0. Then
p(ao, eee an—l) = 0 as required.

Conversely, let p(ao, ve.a_ ) =0, Let p'

n-1

be a subterm of p such that p'(ao, ) = O but

an-l
all proper subterms of p' do not have this property. If
p' is a variable symbol, we are done. Otherwise, p'

is p;p, and pl(ao, e an-l) £ 0, pg(ao, ...an_l) £ 0.
But pl(ao, .. an_l)pg(ao, ... an_l) = 0, so each must
be 1 (this can be seen by checking the operation table).
Tet X be the left variable of oy and Ej of Do- Then

a; =8, = 1 by (1), and Xy, Xy are adjacent in p.
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Corollary 5.25: If p and g have the same left

varigble symbols, and the same pairs of adjacent variable

symbols, then =g e€ Id(cn).

Proof: WNote first that the same variable symbols occur

a_ .)

a € A, and suppose p(ao,... -

in p and ¢g. Let ao, RN
= 0, Then some a, = 0, or a. = a, = 1, where x. and x.

i i J —i =J
are adjacent in p. In either case, q(ao, an-l) = 0.
Suppose p(ao, oo an—l) # 0, Then p(ao, ce an-l) = ai,

where X5 is the left variable symbol of p, and hence of

g. Suppose q(ao, e an_l) = 0, Then by the same reason-
ing as above, we would get that p(ao, .o an-l) = 0, Hence
q(ao, - an_l) # 0, and so must equal &;  Then

p(ao, - an-l) = q(ao, - an-l) for all a; € A, So

p=ge€ Id(Ol).

Lemma 3.26: Let p be a polynomial symbol in which no
variable symbol is adjacent to itself, Then every ¢ for
which p = g ¢ Id(CR) has the same left variable symbol

and the same pairs of adjacent variable symbols as D.

Proof: Iet B(EO’ ... §n_l) be built up from varisgble

symbols Then ¢ has the same variable sym-

Xgr eee X 90
bols. DNow g has no variable symbol §i adjacent to itself;
otherwise, taking Xi =1, Xj = 2 for j % i, we would have

p(xo, - Xn—l) # 0 and q(xo, - Xn—l) = 0, Further,
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if the left wvariable Ej of p is not identical with
the left variable of g, then for Xj =1, X = 2 for
k £ j, we would have p(xo, ... Xn_l) = 1, while

q(xo, - xn_l) = 2, since neither p nor ¢ has a

variable adjacent to itself. Finally, if two variables

Xy and 53, i< J, adjacent in p, are not adjacent in g,
then for X, = Xj = 1, and Xk = 2 for k # i, J, we would
have p(xo, e Xn—l) = 0, but q(xo, e Xn_l) £ 0,

This completes the proof.

Lemma 3.27: Let P be a word (that is, a symbol

formed by juxtaposition) in the alphabet { Xqs e Xng
beginning with Xqs ending with x5, and not containing
some letter Xss i > 3. PFurthermore, assume that any

(unordered) pair of neighbouring letters of the word

X X..

P i 1 i ..
is one of the pairs X%y XEXB, . X 1% X%

Then P contains the subword XlXQXB.

Proof: The proof is a reverse induction on i, where

X, is the missing letter. Suppose X is missing. The

initial segment of P is x If x, follows Xp we are

1% 3
done. Otherwise, P has the initial segment xlxgxlxg.

Again, we have the two alternatives of x, and x..

5 1

Bventually, the next alternative must be x,, or P would

3

not contain x,.

3



Suppose the result is true for X, missing,
k>3, Let P be such a word with X missing. 'Then
X, occurs in P within subwords of the form Xk+lxkxk+l'
For each such subword, erase kak+l' The resulting
subword P' has xk missing and satisfies the hypotheses
of the lemma, So P' has x,x.x. as a subword, and since

17273

k > 3, P also contains this subword.

Corollary 3.28: If P is a word in the alphabet

{3%} X, ...:§1§ beginning with X5 ending with XB,

and with the same pairs of neighbouring letters as

above, then each of Xl’ XE, XA, oo Xn must occur in P,

Lemma 5.29: Let p' be a subterm of p, b, an

occurrence in p' which is not the left occurrence of p',

and b, an occurrence adjacent to b,. Then b2 lies

2 1
in p'.
Proof': Assume b. does not lie in p'. We have two

2
cases to consider:

Case (i): p has a subterm PP, Where b, is the left

occurrence of oy and bg is the left occurrence of Do-
Then p' overlaps 22, We cannot have DB s D',
since b2 does not lie in p'. Hence p'c e, and the

containment is proper for the same reason. Then

Th



p'c By oF R'< p,- Since by occurs in p', we must
have p'& p,. But bl is the left variable of 2y and
hence of p', contradicting the hypothesis.

Case (11): p contains EEEI where El and 22 are as

above. The same argument holds.

Corollary 3.30: Let b2 be an occurrence in p

ad jacent to the distinet occurrences b, and b Let

1 3"
p' be a subterm not containing one of these occurrences,
and containing at least one of the others not on the
left. Then b2 is the left occurrence of p'.
Proof': b2 must occur in p', since otherwise,
p' would contain a non-left occurrence adjacent to an
occurrence outside p', contradicting Lemma 3.29. By

Lemma 3.29, b, must be the left occurrence in p'.

2

Corollary 5.31: Tet 2 and 2, be non-overlapping

subterms of p., If bl occurs in El’ b, in 22, and Db

2 1

then b, and b. are the left occurrences

is adjacent to bg, 1 o

of El and. 22.

Proof: Tmmediate from Lemma 3.29.

&




Lemma 5.32: Let bl and b2 be distinet occurrences

in p. Then there exists a sequence of pair-wise dis-

tinct occurrences bi, b;, e b; , m > 1, such that

I

bo is b 5 b; is b,, and, for i

1 i, 2, ... m-1, b;

is adjacent to b;+ (We will call such s sequence an

1

A~sequence to bl and bg’)

Proof': The proof is by induction on the number k of

distinct occurrences in p. If k = 2, p is 5153 with

b. the occurrence of Ei and b

1 the occurrence of 53,

2

or vice-versa. Then b b, is the required A-~sequence.

1’2

Now suppose such a sequence exists for any two distinct
occurrences in a polynomial symbol with fewer than k
distinct occurrences. Let p have k occurrences, and

let bl and b2 be distinect occurrences in p. Let P

be 2Po- Ir bl and b, both occur in one of 2 of Bos

2
the result follows from the induction hypothesis.

Otherwise, let b. be in El and b2 in 22. Suppose

1

neither is the left occurrence of Dy Or P, Let

b, b;, ce b; be an A-sequence connecting b, to the

left occurrence b; of By - Tet be the left

Pr1
cees

o

17 an A-sequence

occurrence of Eg and D. o

b Since b and b°

connecting bk+l to o X k] 8Ye ad jacent
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.. b

and gl and 22 do not overlap, bl, b e bk’ 5

2’
to b2 An obvious modifi-

bk+l’

is an A-sequence connecting bl

cation proves the result if either or both bl’ b2 are

the left occurrences in El and 22

Definition 3.33: We define a subset K & P(<=>)

as follows: p ¢ Kn if and only if:
(i) P contains the variable symbols 51’ e En'
(i1) x; is the left variable symbol in p.
(iii) The pairs of adjacent variable symbols are
preciselys: LSRN §2§5, cee X X X X0
By Lemmas 3.2l and 3.26, if p, g € K > then
p=gce¢ a(0]). Furthermore, if p € K and p=g €
1a((l), then g € X .

In particular, F , G € K, and so F_ = G
n’ n n n n

holds in OL for each n.

Definition 3.34: p e P(<2>) has property P if

and only ifs
i K
(i) p e K

(ii) There is an occurrence of x, in p adJjacent

2

both to some occurrence of xl and to some occurrence of

X5



We note that Fn has Pn’ while C—rl does not.

TLemma, 5.35: Let & & Id(m) be such that any

identity of 2 contains occurrences of less than n

different variable symbols. TIf % l—-— P =49, and

p has P , then q has P .
= n - n

Proof: 1If p is g, we are done. Otherwise, by
Theorem 2.1k, = li p=g. Clearly, it is suffi-
cient to show that a single application of rule Sl
S

. . 1
preserves Pn; that is, if r = s *————— P =4d and
one of p or g has Pn’ then so does the other. We
will assume that p has Pn and show that g also has

Pn. The other case is proved in a similar manner.

Since r = 5 € Id(a,), the same set of
variable symbols Yis - -‘Zk’ k < n, occurs in both
r and s. We write _:g(y_l, Xk) and -S—(Xl’ Zk)
for r and s. Then for some polynomial symbols Pq>
Pos e+ Py _r_(gl, Ek) is a subterm of p and g is

the result of replacing this subterm in P by the poly-
nomial symbol E(_p_l, Ek)' We write r' and s’

respectively for these subterms of p and g.




We note that r' can be decomposed into non-

overlapping subterms of the form Ei' These will be

called elementary subterms. Analagously, we decompose
8' into elementary subterms. Since r and s contain the
same variable symbols, r' and s' contain the same
elementary subterms. The left occurrences of two elem-
entary subterms in r' (g') are adJjacent if and only if
the variable symbols they replace in r (E) are
adJjacent. Further, in r, there is no variable adjacent

to itself. For if ¥, is adJjacent to itself in r, then
the left variable symbol of 2 is adJjacent to itself
in r' and hence in p. But p has Pn and so the only

palirs of adjacent variables are 5152""§n—l§n’ Enzl'

Therefore, by Lemma 3.26, r and s have identical left
variable symbols, and identical pairs of adJjacent
variable symbols. In particular, the left elementary
subterms of r' and s' are identical.

We will call the left occurrence in an elem-
entary subterm a supporting occurrence,

We assume that p has Pn' Thus p € Kn’ and

so then is g € K .

" In p, there is an occurrence b2 of

x,.. adjacent both to an occurrence b

X5 1 of X and an

1
occurrence b5 of 55. We must prove that this also
holds for g. The following cases exhaust all the

possibilitiess
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(i) Bach of by, by, and by lies outside r'.

2’ 3

(ii) Two of bl, bg’ and b, lie outside r' and

3
one ingide,

(iii) b by, and b5 lie within r'.
(iv) One of bl, bg’ and b2 lies outside r', and

two inside.
Case (g): Since g is obtained from p by replacing r'

by s', there are occurrences of x X and x, in
20 __l)__} =

5 =%

having the same relationship to each other as do b

2

l)

b and b,. Hence g has Pn

2’ 3

Case (ii): The occurrence inside r' must be the left
occurrence of r' ( by Lemma 3.29)., If the two occur-
rences outside r' are adjacent in p, then they remain
adjacent after replacing r' by s'. If the left
occurrence of r' is adjacent to an occurrence outside
r', then in g, this occurrence outside s' is adjacent
to the left occurrence in s'. But the left occurrences

of E' and EI are identical. Hence ¢ has Pn'

02 and b5 lie in the same elem-

entary subterm, we are done, since the same elementary

Case (iii): TIf b, D

subterm occurs in d.
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Assume that among bl, b and b there is

2) 5}
a non-supporting occurrence, but that not all three
occurrences belong to the same elementary subterm. By

Lemma 3.29 and its corollaries, b,. is a supporting

2

occurrence, one of b, and b, is a supporting occurrence,

1 >
and the other lies in the same elementary subterm as bg.
Assume that bl lies in 2 and bg and b5 in Eig' The
variable symbols ¥ and y, are adjacent in r, and so
1 2
there are adjacent occurrences of ¥, and I in s.
1 2
in p., 1s adJjacent in
=i,

Then the left occurrence of 52

8' to the left occurrence of x, in D, 5 1in addition,

a 1

in Ei , the left occurrence of 52 is adJjacent to the
2

occurrence of x, in p, . Hence g has P .
-3 =i, = n

It remains to consider the case when b b

e

b; are supporting occurrences. Then in s', there are

3

also supporting occurrences bi, b;, b2 of the variable

3

symbols Xy X and 55. We can construct an A-sequence

for bi and,b%: bi, bé,

these occurrences are supporting: if, among them, there

.. b’

o b%, where s > 0.  All

were some non-left occurrence of some elementary sub-

term, then the left occurrence of the same subterm

81



would occur twice in the sequence, since by Lemma 3.29,
one can "enter" and "leave" a subterm only as a left

occurrence., Let P=xx. x. ... x. X, be the correspond-
=1-i =i =i =3

12 s

ing sequence of variable symbols., If P containg each of

Xy - X then r' would contain at least n distinct

elementary subterms, and so r would contain at least n
distinct variable symbols, contradicting k < n. Further,

if x, is missing, P would contain each of El’ 55, A

2 -n

by Corollary 3.28. Since %, is also a supporting occur-

rence, this would again contradict k < n. Hence P satis-

fies the conditions of Lemma 3.27, and so contains a sub-

word 515255' In the A-sequence, this yields an occurrence
of B ad Jacent both to an occurrence of 51 and an occur-
rence of x,. Hence g has P .

_..3 et n

Cage (iz): By Corollary 3.30, b, is the left occurrence

2
of r'. Assume that b5 lies outside r' and bl inside r'.
It bl belongs to the left elementary subterm of r', the

lemma is proved, since the left elementary subterm of s’

has the same form. Otherwise, by Corollary 3.31, bl is a

supporting occurrence, Hence, in g', there is a supporting

We join Db, to the left occurrence

occurrence b of x 1

1 1’
b. of x

2 2

in s8' by an A-sequence. As before, all occurrences
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adjoins

in it are supporting. In this sequence, b;

either an occurrence of 51 or an occurrence of 55.

In the first case, we are done, since b; is adjacent
to the occurrence of 53 outside g', In the second

case, there are supporting occurrences of Xl’ 52, and

X, in s', and the lemma is proved by the argument in

=5

Case (iii).

In all cases, then, g has Pn'

Theorem 3,363 Cﬂ, has no FEB,

Proof: Suppose Z &€ Id(m) were a finite basis for
Id(ﬁl). There exists, then, a positive integer n
such that each polynomial symbol occurring in & con-
tains fewer than n variable symbols., Then, since

hX l-—— Fn = Gh and Fn has Pn’ by the last lemma, Gh

must have P . But G does not have P .
n n n
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CHAPTER IV

A SURVEY OF OTHER RESULTS

The aim of this chapter is to present a
sumnary of all the additional results known to the
author concerning the finite equational basis problem.
Two of the shorter results, proving the existence of
a FEB for any Boolean algebra and any abelian group,
are presented in full detail, The remainder of the
results are merely stated, with possibly an indication

of their proofs.

1. Boolean algebras

Definition 4,1: A Boolean algebra is an algebra

b =<B;w,Aa, ', O, I> satisfying the following

identities: X ={_)_<_v_}_c_=_}§, XEMX=X XVYy-=

YV Xay=yax xviyvz)=(Zvyv 2

xalyaz)=(xayaz zalvy =x
xv(xAay)=x xv(yaz)=(vya (xv z),
xalyvz)=(xnay)v (xaz), Ov x=x, LAX-=
% xvx' =1 xax -0§.

Let 2 denote the 2-element Boolean algebra.
We have already shown that Id(z) has a finite basis.
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Theorem 4.2: TLet & be a Boolean algebra with more
than two elements. Then Id(&) = Id(&).

Proof: Since B has more than two elements, b has a
two-element subalgebra isomorphic to Z . Ifp=g
helds in b , then p = g holds in the two-element sub-
algebra, and so in 2, . Conversely, let P=gc€ Id(Z).
Every Boolean algebra is a subdirect power of the two-
element Boolean algebra (this can be proved by showing
that there always exists a prime ideal separating any
two distinct elements, as in Post Systems ITT). Then

P = ¢ must hold in EQ

Corollary 4.3: Any Boolean algebra has a FEB.

2. Abelian Groups

The major result of this section is due to

B. H. Neumann [12].

Definition 4.4: A group is an algebra 6} =

<G; ., —l, 1> of type <2,1,0>, satisfying the group

identities 5§ (see page 31).

Iet K = =" denote the equational class of
groups, and let T = <2,1,0>, ILet % also denote the
congruence relation on @(”Z‘) defined by p & g(z) if
and only if X t———g = d.
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By Theorem 2.22, any identity r = s ¢ Ia(¢)

is equivalent modulo Z to an identity of the form p = 1,

Lemma, E__S_ Let p(x s «.. l) 1 e Ia(z ).

Tet O}(n) = (1-)/2_ j} (n), and let OZ; (n)

denote the commutator subgroup of (n). Then

p(x., ... -}-C*n—l) = 1 is equivalent modulo Z to an

identity of the form:

% 9 S
X + X oo x TR =1

where [p'] € G'(n). (Note: a; = 0 will indicate non-
occurrence of X. in this form of the identity.)

Proof : O}(n) is generated by [_}_C_O], [_}_c_n_l].
Now [p] € G(n), so [p] = [gllx] where [r] e G' (n),

B B8 B
and [g] = [x, ] ‘lx, ) Loz 1 smere
0 k-1

‘{io, il’ 1 ‘i {O 1, ... n—l}, and again,

53_ = 0 will be used to indicate non~occurrence of the

equivalence class in question. Since n)/ O} (n)
B
is abelian, [p] :[gc_i 1 0 [_}gi Bk l [r] =
0] K~ l
Oéo Oél (04

] 21517, where [p'] € G'(n),

_ n-1 1 : Ill [
= [xy7. %7 cee X7 - '], Then % i-—-»g.o...__nl p' = D.



Oéo Oél (04

Then Z, p= 1 b— x x5 ... x 2t =1,

04 Q (07

o1 n-1 _, _ _ .
and T, Xy X7 ... X 7R =1 — p = 1, and this

is precisely what is required.

@(Z’ )/ %,

the free group.on J generators, and its commutator

il

Definition 4.6: Consider 0} (w)

subgroup 0&.‘ (w). An identity p = 1 is called a
commutetor identity if [p] e G'(w).

Theorem 4.7: Tet 6} be a group. Then Id(@)
has a basis consisting of the group identities X, the

k
identity x = 1, where k is the least common multiple

of the orders of all the elements of (if such k

exists), and commutator identities.

Proof: Note first that k is the smallest positive

integer for which x- = 1 holds, for if x* = 1 holds,

then the order of every element divides m, and so k

divides m, implying that k < m. Now if p = 1 holds

in 0} , we can assume that this identity has the form:
% &1 On-1

) S 1 1
Xy X ... X770 D' =1, [p'] € G'(n).

For each i = 0, 1, ... n-1, substitute zc_i for Ei and

1 for the _}gj where J ;é i, We get that the following

% %1
hold in O}: Xy =L ... % 7 = 1. ©Since k divides
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o,

i 1 .
=1 — X, = 1l. Also, since

' I
o, we have that I, x

A

these latter identities hold in Vi , we must have that
I
¢

M i
p' =1 holds in Vb o Then &, x =1, p'=1 i p=1,
H

and p' = 1 is a commutator identity, since G'(n) & G'(¢3).

- . . k
If no positive integer k exists such that x =1

. N . - Cﬁ
holds in UL, then all identities of [ can be deduced
: { :

\

from ¥ and commutator identities.

Yu

H

Corollarvy 4.8: 1If Gi

: . ol
is abelian, then Ld(Ci) is

H

finitely based.

Proof: Let [p'] € 6'(¢). Then S, ey =y.x F—p'=1.

Hence Z: Koy T YoX, 51{ = .1:. 5"—— Id(&ﬂi).

i

3. Further Resultsgs

(a) Primal Algebras:

e T £
Definition 4.9: An algebra %}@ is primal if it is

A-finite, with more than one element, and if every function

£: A" => A is a polynomial.

Rosenbloom L15a] has shown that every primal
algebra which is F-finite has a FEB. Mackenzie L9]
has provided a simplified proof: of thzs result. For each
n > 1, he exhibits a primal algebra :Q%n with n elements

o8

which has a FEB. Any primal algebra g} with n elements, then,
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can be assumed to be defined on the same set An, and
50 is equivalent to mn. Then by Theorem 2,27, if 1’)

is F-finite, then it has a FEB,

(b) Direct Products of Primal Algebras

Definition 4.10: A class K = {mi]i € I‘Ig of

algebras of the same type is said to be independent if
whenever {_Ei]i € I% are polynomial symbols, then

there is a polynomial symbol P such that p induces the

same polynomial in m’i as does B> for each i ¢ T.

Yaqub [17] has proved the following:

Theorem 4,11: If K = {ml, mg’ mn% is
a finite independent class of primal algebras, then

m= mlx mgx X mnhasaFEB.

The proof of this theorem depends upon the
following lemma due to Foster [2], presented here with-

out proof:

Lemma 4.12: Iet K be as above. An algebra EQ of
the same type is isomorphic to a subdirect product of

subdirect powers of the m’i if and only if:

T4 /( mlx mgx ve. X mn) < Id(&).



Yaqub points out that Foster uses only a
finite subset & € T4( Ull x m2 X ... x Uln) in

his proof, and that the lemma can be reformulated by
replacing Td( 611 X ... X 61n) by =. The proof of

the theorem then follows easily by considering the
free algebra 5: on & generators satisfying ¥. If
b = ¢ holds in 011 X ... X Cnrf then it holds in

each Gli’ and so in ﬁ? which is a subdirect product

of subdirect powers of the mi' So X F——— P =d.

(e) Semi-Groups

Definition 4.13: A uniformly periodic semi-group

is one satisfying an identity of the form:

m + k m
X = X

Definition 4.14: A permutative semi-group is one

satisfying an identity of the form:

Lot B T H0)%0@) 0 B(n-1)

where v is a permutation of the symbols O, 1, ... n-l.
Perkins [14] has obtained the following results:

Theorem 4.15: Every commutative semi-groups has
a FEB,

Theorem 4.16: Every uniformly periodic, permutative

semi~group has a FEB,
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Theorem 4.17: Every three-element semi-group has
a FEB,

Theorem 4,17 follows almost immediately from
Theorem 4.16, since of the elghteen isomorphism-anti-
isomorphism types of three-element semi-groups (enumer-
ated by Forsythe in [1]), seventeen are permutative,
while the eighteenth can be shown to have a FEB using

normal forms.
Perkins has also disp;ayed a six-element semi-

group of matrices under matrix multiplication which does

not have a FEB, The matrices are:
(o o) (1 o) (o 1) (o o) (1 o} 0
2 2 2 2 2
0O ¢ O 1 0 0 1 O 0O O 0

(d) Nilpotent and Finite Groups

Lyndon [8] has proved:

Theorem 4.18: Every nilpotent group has a FEB,

His result has been generalized by Higman [5]

as follows:

Theorem 4.19: ILet K and L be equational classes of

groups, and let KoL denote the equational class of groups
with a normal subroup in K with factor group in L. Then

Td (KoL) is finitely based if every group in K is nilpotent,
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and Id(L) is finitely based.

This is indeed a generalization, for let
be a nilpotent group. Then the equational class K
generated by has every group in it nilpotent, and
Ta(x) = 14/( bé). Since K = K, I, where I ig the
equational class of . one-element groups (which is
trivially finitely based), Ta(X) is finitely based,
by Higman's theorem. Hence, Id(f%ﬂ) is finitely

based.

The following theorem has been proved by
Oates and Powell [13]:

Theorem 4.20: Every finite group has a FEB.

(e) Non-distributive Lattices

It is well-known that any non-distributive

lattice contains one of the following as subalgebras:

B. Jonson has communicated to G. Gratzer that he has

shown that Id(M_) has a finite basis.

>
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Kirby Baker (in an unpublished result) has
shown that there exist an infinite lattice with no FEB.

This infinite lattice is, in fact, modular.
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