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ABSTHACT

This thesis describes a method of isolating a single
fault in an active network where only the input and output
terminals are avallable for test aeasurements.

The method relies on the measurement and analysis of
the coefficlents of the network transfer function.

The significance of thils solution is that it allows
. direct comvutation of' the Tault instead of having to choose
from a set of precomputed faults. The conputations per se
avold the pitfalls of symbollic traznsfer functions and

pole-~zero calculations.
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CHAPTER
INTRODUCTION
L. ATURE OF PROBLEM

The maintenance of electronic systems has long been
the domain of technicians whose procedure relies upon
accumnulated exverience with a particular type of eguipment.
Unfortunately, a conseguence of the present trend of
~accelerated obscsclescence i1s that experlence becomes
more difficnlt to acauire.

The time honored teo“nique of probing a network for
signals at various voints is raplidly losing favor because
of high packaging density. It is at best tedious to probe
a printed circuit and virtually impossible to probe an
integrated circuit.

This investigation‘is varticularly relevant to the
problem of diagnosing &a fault iﬁ pass produced integrated
cirouits_[{] where a large vportion of the network is
inaccessible. Unlike in discrete networks, the detection
of a2 fault in an integratecd circuit vould mean rejection;
"however,; the information regarding-the element at fault
would serve as the basis for redesigning the network and/or
the zssembly line.

The use of extra test terminals 1s undesirable beczuse
stray cavaclitance would ve introducsd, which would be

objectionable in fast response networis,
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It is therefore necessary to devise new fault isolation-
techniques which do not demand access to very nmany interior

points in a network.

ITI. DEPINITION OF WHE PROBLZM

Congider a2 linear, lumped, time»invariant network for
which only the input and output terminasls are available for
test measurements., Given the network zrzph, the nominal
- value of every element, and the occurrsnce of at most a2 single
fault,; the problem 1s to identify the faulty element and its
approximate value.

In order to simplify the presentation, the general
network will be considered to be a two-port-network,
Cstastrovhic faults (i.e. short-circuits and open-circuits)

which prevent mezsurement at either port,will be ignored.
IITI. HEVIEW .Of PzEVIOU: WORK

Seshu and Waxman [2] have given a solution to the
problem of analyzing the variations in magnitude of the
network transfer function. The baslis of thelr procedure
is that a change in one of thg network elements must chenge
the position of the breszk freguencies and/or the value of
the constant nmultiolier (i.e. in the sense of the Boce plot).

The network is described by zeasuring the magnitude

of the transfer function between and around each of the

nominal break frecuencles. The mezsurements are guantized
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(1.e. the measurements are truncated to an integral number
of dB.) and the ordered set of such measurements is called
a frequency signature in this thesis.

A fault dictionary is precomputed by computing the
frequency signatﬁre for each guantum varlation of every
element in the network. By having a computer match a
measured frequency slignature to a precomputed frequency
signature, a fault may be identified.

Preliminary computation in this method involves symbolic
transfer function and pole-zero computations which restrict
the size of networks that can be considered. The motivation
for another solution was to circumvent the above difficult

computations in order to consider larger networks.
iv. PROPOSED PROCEDURE

In this theslis,; a novel approach was taken by assoclating
the variation of a network element with the variation of the
coefficlents of the network transfer function. The ordered
set of values of these coefficients will be called a
coefficient-signature vector.

In the following chapter a method 1s developed which uses
the coefficient-signature vector of a network to identify a
fault to within & proper subset of the set‘of 2ll network
elements. An example is cited td demonstrate that the subset
of elements which are suspected of being at fault can be
reduced to one element in some cases.

The problem may be reduced to two parts: the measurement
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and the analysis of the coefficlent-signature vector. The
first problem involves estimating the coefficients of the
transfer function where the type and order of the transfer
function are known, a priori., BSignal levels are assumed to
be large enough éo that nolse causes no difficulty, but
estimates are still haipered by measurement error and
numerical error in computation. This problem is beyond the
‘scope of this thesls and will not be considered here;
however, J. E. Valstar (3] has done a very thorough survey
of this measurement problem and should be consulted for
the details.,

The body of this thesls consliders the second problém
which 1s the analysis of the coefficient-signature vector

in order to identify a network fault.



CHAPTER IT
COEFFICIENT-SIGNATURE METHOD -
I. FORMAL DEVELOPMENT

Coefficient properties

Consider the voltage transfer function of the two-port

network in PFigure 1 to be written:

n S
> 8mt1+) S

v J=0

2 = (1)

v om

1 m-1

> 8y s
i=0

Since the network transfer function is unigue with regard to
derivation, assume eguation (1) to be derived from the

topological admittance formulal.

\-T | < -FT“

A
Sum—
+
v
0
2

Figure 1. Two-port network

1Topological notations and definitions were adopted from [4].



This derivatién depends on the existence of the
admittance matrix. The assumption that the adumittance
matrix exists thus prohibits all dependent voltage
generators (iL.e. unless they are converted into current
generators by the use of Norton's theorem); even current
generators that depend on currents can be admitted only
if the governing current is a&n element with‘a finite
aduittance. An exsnple of & prohiblited network wonld be
a network containing an ideal transforrer.

As z conseguence of the assumption thset at most a
single fault has occurred, the coefficients of eguation
(1) are linearly rel=zted to each network element where
the network contalns no mutual inductance. This wmay be
seen more clearly if the topologlcal formula for thne

transfer function is examined:

v - A
2 A 12 12 ;
= = (2)
A
Vl 11 A
' i+ i,r
where 4313 - (1)t Y €. (complete 2-tree - product )
) o 9
all conmplete 2-trees
E;t = sign of complete 2-tree broduct,
and r = reference node

First observe that if ecuation (1) is identified with
egquation (2), then every term in ecuation (1) is & sum of
coaplete 2-tree products with a cowmmon power of s. The

next point to note 1s that by definltion of a complete

2-tree product, every branch admittznce in that nroduct is
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a fector of multlplicity one. Consecvently every network
element in a complete 2-tree product is also a factor of
multiplicity one. Thué the relation between a coefficient
8 and some pzriticular element e may be written: |

a = C{e %ﬁ (3)
whereti andﬁzare real constants and e is a rgal
variable with the dimension of conducténce, reciprocal
inductance; or capacitance.

Equation (3) may be noruwalized by expressing the
variable e as;

e = e, X 0€x (L)
where ¢ is the nominal value of e and x is a positive real
dimensionless variavle. The normalized form of equation
(3) may ove written as:

a = oAx +§8 (5)

Bauation (1) is now written in standsrd fora and as
-a result the relationsnip between.a coefficlent & and a

normalized element x is the bllinear form:

a

XX +p ' -

(6)
rx + 4/
where « ﬂ s and‘//are all real constants.

The bilinear relationshiv of eguation (6) reculres
only three constants to describe it and for computaticnal
parvoses will be exXpressed as:

c. x + 1
1
a =, (7)
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In order to determine the three constants Cqs 02 and

C three eguations may be derived from eguation (6) by

39

setting x equal to zero, one and infinity (i.e. the element

e is open-circulted, setvto nominal value and short-circuited).
To recapitulate the assunption that at most & single

fault has occurred implles a genéral relationshlp tetween

the coefficients of the standard voltaée trznsfer function

and a particular normalized network element. The array of

N

m+n+l coefficients is ordered &g seen in equation (1) and
' ) .. . . e th
is called the coefficient-signature vector, A. The k

coefficient function, Fk (x), relates the coefficient-

signature vector to a scalar varlable X which is the k

normalized element. The above relationship méy be expressed

D

as:
A = FK (x) (8)
- - — r
or [éi} = fj,k (x)]
"c . x + 1
{stk (X)J = J,l
' —03;2 X oy oy

There are p nelwor« elements and therefore p relationsnios
of the type in e@uation (8).

It is stated without proofvthat the relationship of
eguation (8) is a function which maps the set of non-

negativs resl numbears into a set of n-tuples 1In a one-to-one

\¥)
]

T2TNE T e

e



Identification procedure

In this section it is assumed that an exact coeffilcient-
signature vector can be obtained from ideal measurements.
Given an accurate coefficientnsignaturg vector, an
elimination procednre is initiated which eliminates those
network elements whose variation‘cauld not possibly yleld
the given vector. The remaining netwofk elements constitute
a set of possible faults.

The mapping describted may be written in set notation

as:
F : R 8
K I K (9)
where R = the set of non-negative real numbers
— \ i e TR £
and Sk = {Al A = rk(x), 0 x}

At this point it seems that the complsete mathenstical
model of the problem can be presented most lucidly by
_drawlhg attention to the pictorial representztion in
Flzure 2.

A genéral characteristic of this model 1s that the
intersection of all the prover subsstey S1 to_ S 4, contain
only one n-tuple - the nominal coefficlent-signature vector.
On the other hand, intersections between proper subsels

occur &s a result of sucn speci

QO

1 cases as parallel
reistors or otner, possibly less trivial, cases;'the
variation of one element or aanother 1s indistinguishable

o

in the coefficisnts of the transfer function.



Figure 2.

Mathematical model of problem

10



11

The principleé of identification follows naturally
from the above mathematiceal model: 1f a given coefficient-
gignature vector can be mapped into the set R, then the
element ek corresponding to that mapping is a possible
fault. A possible fault becomes the one and only fault for
the case of a unique coefficiehtusignature4vector (Leoeo
the given coefficient-signature vectér does not occur in
any intersection).

The identification procedure simply involves checking
to determine which function, FK(X)g that a given
‘coefficientasi@nature vector, A, will satisfy, and the
rules for checking are:

Rule 1. Eliminate element e, unless each
constant function entry in Fk(x) is equal tQ the
corresponding entry in A,

Bule 2. Eliminate element €y unless esch non-

constant function entry in Fk(x) has é solution
for x which is non-negative. This followus

from equation (@){

Rule 3. Eliminate element ey unless every non-

constant functicon entry in f](X) has ldentical
X

solutions for x. Tnis foliows from the
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Gy = 1 mho G, = 10 mhos C3 = 10 f. Cp=1f°1.
Figure 3. Example network
The nominal network in Figure 3 is given along with
a coefficlient-signature vector A:
AT - fezset 20/21 2/21 (10)
The problem is to determine which network element
i1s faulty and what is the approximate value of that
element. B
Thé first step is to generate the coefficlent functions
whose origin is best understood by first deriving a

symbolic transfer functlion:

V2 8,8 + a3
. = — (11)
Vl aos + 81
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c G
3 s o+ !
C, + C C,+C
3 L L
G +G
12
s +
¢y +C,

The coefTiclent functions may now be written as:

. r -
T G X + G C G.X
F, (x) = 1 2 3 1 (12)
03 + 04 03 + C4 03 + C4J
= [ x + 10 10 X ]
| 11 11 T |
o sz + G1 C G1
F2 (x) = (13)
C. + C C. + C c +C
L3 T3 b 73 4 |
= [10x + 1 10 17
i 11 11 i1
[G + G C.x G 7
T 1 2 1
Fy (x) = ¢ C - TETC (14)
+
-CBX L 3x + 04 BX + 4_
= | 11 10x 1 i
[ 10x + 10x + 1 10x + 1
(G, + G C G ]
T 1 2 1
F, (x) = 2 (15)
+ C.x +
-Cux C3 MX C3 Cax + 03_
= [ 11 __10  __ 1 ]
x + 10 X + 10 x + 1OJ

Now the gilven coefficlent~-signature vector is compared
with each coefficlient function in turn and the previously

described rules of elimination are applied.
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Network elements G, and G2 are both eliminsted from

1
conslderation because the first rule is not satisflied;
the constant entry in the coefficient function is not
equal to the corresponding entry in the coefficient-
signature vector. HNetwork element C3 is eliminsted
because the third rule is not éatisfieo; the solutions
for x are not identical. |

The remalning network element, C&’ satisfied all
three rules and is clearly the fault. The solution of
¥ = 0.5 means that the fault is 50% of nominal value.

The coefficient functions were genersted directly
from a gymbolic transfer function for simplicity in this
example, but in practice the symbolic transfer function is
avoided. The parameters of each billnear function may be
obtained from & set of thres equations which are forzed by
setting x equal to zero, one and infinity (L.e. the network
element 1s openwcircuited,Aset to nominal value'and short-
circulted). The method of generéting the transfer
funotion in order to obtain known valués for the coefficients,
is arbitrarv; however, in this thesis the state equation

approach is favored for reasons to be discovered in the

third chapter.

II. PRAGHATIC SOLUTION

£

fiodification of rules of eliminztion

1

It was previously assumed that the coeflicient-

signature vector was known exacily; however, in practice
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a degree of unceriainty 1s alwayvs involved in deternmining
the coefficient»signature vector of an electrical network.
As was stated in the-previous chapter, it is assumed that
siénal levels will be of sufficient megnitude that nolsge
will not cause any difficulty in measuvurement, but the
-coefficlient~signature vector will still be corrusted by
measurement error, and numerical error in computation.

In order to achieve & pragmatic solution, the emphagis
-must be shifted from determining the coefficient functions
that perform an exact mapping to determining the coefficient
function that comes closest to an exact mapoving. Thus a
modified set of ruies for networx element elimination are
given:

Rule 1 Eliminate element ey unless each constant
function entry in Fk(x) contains the correéponding
entry in A within a orescribed tolerance. The
tolerance is determiﬁed by the accurzcy of
measurements and the size of network beling
consldered.

Rule 2., Eliminate element =, unless each non-

]

constant function entry in F (x) hes a solution
: K
for x which 1s non-negative. Tnis follows from

equation (4).

er the sel of networx elements

jo R

Rule 5. Consi
whose coefficient functilons contain

non-constant function entries. Eliminate 211l of
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these network elements except the elément e‘K
whose solutions for x contain the minimpum
deviation. In the limit, as the coeflficient-
slgnature Veptor becomes exact, the solutions
for x would become identical.

‘Brror reduction

The -ccefficient function FK(X) is in general an array
of bilinear functions which tend towards a zero slope for
"large values of x. In the region of near zero slope a
slight deviation in the measured value of a coeflicient
can cause gross deviztions in the evaluatlons of x. Thus
the third rule, which relies on selecting the coefficient
function whicn exhibits a minimum deviation in the solutions
of X, becomes useless.

Since lzarge values of X correspond to near zero
slopes the difficulty oén be alleviated by evaluating X
for smzll valuves; and otherwise considering thé elenent
e, to be short-circulted. This simply means that an
element which is nearly shorfmoircuited can te considered
to nave the same effect

Seshu and Waxman [2] choée to investigate element
varliations of zero to three hundred percent of nominal
value. Usinz this precedent, evzluztions of X. in the
range of zero to Tnree will bDe consldered; otr

element will be considered short-circulilted.
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Upon examination of equation (6) of the general
coefficient function, it becomes apparent that the choice
of element dimension (i.e. admittance or impedance)
determines whether a function be hyperbolic or straight
line. Since thé stralght line function with its constant
.slope 1s more advantageous, that dimension which maximizes

the number of straight line functions should be chosen.
III. EXAMPLE

To demonstrate the feasibility of locating a single
fault in an active network by means of the coefficient-

signature method, consider the nominal network in Flgure L

| }
Cé ~
GY |G,
G1=G =G =G, =10  “mho Ce=C,=1000pf
1702=63=6,= 5=C=1000pT

Figure 4. Example network
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In order for £he coefficient-signature method to be
verified, assume that‘an arbitrary fault exists (e.g.
element Cé reduced to 50% of nominal value).
Using the technique proposed by J. E. Valstar [ 3],
the coefficient~signature vector of the network with the

faulty element C is detersmined. 1In przctice the entries

69
of this vector are not exzct but fall'within a tolerance
determined by the slize of the network and the accuracy of
the measurements. A reasonable tolerance to asgsign in this
N _

example would be - 5%. Thus the coefficient-signature

vector corresponding to the faulty element C,, would be:

6
6 12, 12 .
AT = [M.OXIO i5% 4,0x10 <5% -2.0%10 _fS%J (16)
A tyvical measurement result mizht be:
T 6 1 ‘
AT = [M,ZOXlo 3°80x1012 ~1.90x10 2 J (17)

"With the knowledge ofrthe noninal network, the
coefficient functions can be computed. ¥ach coefficient
function is an array of billinear functions ezch of which
reguires three constants to describe it: As an exauple
of how these constants are cetermined, consider the

pazrticular bilinear function T (x) which is associszted

1,1
with coefficient 8y and is a wmenter of the array of the.
coefficient function Fl(x):
. A 01,1 x + 1
£, ) = _ (18)
s ' 01,2 X 01’3
or a_(x) = f. ,(x)
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A computer is used to generate the coefiicients of the
standard voltage transfer function for three different
values of the element G1 where 'all the other elements are

held at theilr nominal value such that three equations result:

a, (x=0) = - 1' ) (19)
1,3
Cq 1 + 1
a(x=1) = ’ (20)
01’2 -+ 0193
. b
a (x=2) = S (21)
1 2c + C
1,2 1,3

Note that in egquation (21), x 1s set egual to two
whereas in previous parts of this thesis 1t was set equzl
to infinity. The reason for ftnis change is that computers
are limited to finite nuanbers.

Equations (19), (20) and (21) a2re solved for the
unknéwn constants and the bilinear functlion 1s now
comoletely described as:

. fl,l(x) =" (x+2) 106 . (22)

Proceeding in this mann=r, 21l the coefficient functions

may be listed as:

Ff(x) = [(x+ 2)10° (x + 1)10?2 ~(i)1012; (23)
Fg(x) = [(x+ 2)10° (x + 1)10°° 210725z | (2n)
Fi(X) - [0 (210 s ~010™] (25)
»FE(XX, = [ (x +2)10° (2x)10%2 ﬁ10?2f5%] (25)
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' 6 12 12 7
Fe(x) = (rr2)100 (2)1077 210 (27)
X X X
T r N X 6 iz _ 12 7
Fo(x) = (x + 2)10°  (2)10 10 (28)
i X X X i

Notice that the coefficient functions are modified in
keeping with the first rule of elimination Sﬁoh that each
constant entry is assoclated with the prescribed tolerance
of j5%,

The eliminztion procedure is initiated by comparing the
Aieasured coefficlient-signzture vector in equation (17) with
each of the coefficient functions in eguations (23) to (28).
mlements Goy G3 and GQ are eliminated because the first
rule is not satisfied; tne entries in the uweasured coefficient-
signature vector corresponding to the constant entries in the
coefficient function do not fall within the vrescrived
tolerance.

‘The second rule does not eliminzte eny elements; all
the solutions for x are non-negat;ve.

The difference between the maximum and the zinimun

i

0

solutions for x in 7 (x), F (x) and P (x) are 0;9, 0.1 znd

1 5 6

0.08; rescectively. Thus rule three eliainates elenents Gl

ral

and Cge ‘e remaining elenent Cé is the fault, viz. the

]

fault that was essumed at the beginning of this example,
The agproximzte value of tne fault.is taken as the mesn
value of the sclutions for x in the coefficient function
F6(X), and 1s not significantly different from the assumed

value of x = 0.5.



CHAPTER IIX

DISCUSSION ARD COLCLUSICH

Having demonstrated the feasibility of the coefficlient-
signature method; & comparison should be drawn to determine
vwhat features recommend this particular method. The
comparison is begun by first éxamining Figure 5 and Figure
6 which epltomize the computational stevs for the freguency-
signature method and the coefficient-signature method.

The proposed procedure avoids the difficulty of having
to compute a symbolic ftransfer function which reguires the
listing of 2-~trees. Even for a medium sized netuwork (e.g.
20 edges and 7 nodes) the required list of ;—tress could
heavily tax the memory of a large computer, and conseguently
a severe restriction is placed on the size of network that
may be considered by the freguency-signzture method.

The standard voltage transfer function in thils thesis
is derived from the state equations instead of topologlcal
formulas; but could have been derived from eny of a number
of tyvpes of.network e@uations. The choice of the state
eguations was influenced by the ease with which théy lend
themselves to computer vrogramming [5], and by their
flexibility 1in being used for alterngte fofms of analysis

(e.g. time resvonse).



Figure 5.

Figure 6.
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By means of a rational symbolic

transfer function, precompute:

(1) Nominal bresk frequencies

(2) Frequency-signature for all
faults of interest,

Y

Measure frequency slignature.

Mlatch measured frequency signature
to precomputed freguency signature
in order to identify the fault

Flow diagram of the frequency-signature

~.procedure.

By means of a rational transfer
functions derived from state
equations, precompute the
coefficient function constants

[

Use measurement data in solving
a set of linear egquations to
determine the coefficient-
signature vector.

Y

Use elimination procedure to
identify the fault.

Flow diagram of the coefficient-signature
procedure.
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Another desifable feature of the coefficient«signature
wethod,; is that the computation of the nominal poles and
zeros 1is avoided. In the frequency-signsture method, the
accurate search for a large number of poles and zeros (e.g.
ten or more) requires a large investment in conputation
time and further prohibits the size of networx that may
be considered.

The mathemsatical model used by the coefficlient-signature
-method requires less information to be precomputed and
stored in memory in oxder to identify a fault.

In the ooefficientésignature method there are p
coefficient functions each of which contains an array of
m+n+1 bilinear functions. Each bilinear function needs
three constants to be described and therefore a total of
3(m+n+1)p pieces of information have to ove vrecomputed and
stored°

In the case of thne frequeﬂcy signature method, each
freguency signature contains at least m+n+l pieces of
information where m+n+l eguals tne rnumber of poles plus
zeros plus one, but in practice this figure should be
doubled or even trioled in of@er to icentify a fault
with any accuracy. There are »h freguency signatures
where ph eguals the number of networx elements and h eguals
the number of quantized step variations in a networx
element. Thus it can be seen that the frecguency-signsture

method nust orecompute and store 3n(m+n+l)p pieces
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of information as compared to 3(m+n+1)p pleces of information
in the case of the coefficlent-signature methods,

The critical factor is h and in the case of Seshu and
Waxman [2] a figure of fifteen (i.e. h = 300% / 20% = 15)
was chosen in demonstrating the frequency-signature method
on a simpie common~-emitter transistor amplifier. If a
fault 1s to be accurately identified in a large network,
the size of the gquantized variations in element value
must be reduced to smaller variations which in turn increases
the value of h. The greater the discrimination desired
in identifying a fault with the freguency-signature method9
the larger the value of h must become, whereas the
coefficient-signature method suffers from no such handicap.

Thus in requiring less information to accurately identify
a fault, the4coefficient-signature method makes more
efficlent use of a computer’s memory and this feature
becomes more significant as the size of networks being
considered beomes larger.

It must be conceded that the frequency-signature
method 1s slightly faster in 1dentifying a fault. Both
methods utilize elimination procedures which are basically
equivalent with respect to computation time. Whereas
the fregquency-signature method can use the measurement
data directly in the elimination procedure, the coefficient-
signature method must first determine the coeffieicnt-
signature vector by solving a set of linear eguations

before beginning the elimination procedure.
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It might be conoiuded that the frequency signature
method would be preferable for on-line testing of a large
number of small networks. The coefficient-signature
method would be bettér suited for testing larger networks
where the efficient use of a computer is more important

than a fast test procedure.
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