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ABSTRACT

Modern power systems complexity increases daily as new interconnections are

made, Fo¡ tbis reason, energy control cetrters are developed and being implemented

ir ofder to provide real-time security assessment and control for these systems, The

prediction of system anomalies ie tberefore essential,

A new prediction system based on pattern recognition techniques is designed.

This system is to predict generato¡ self-excitation of the Manitoba Hydro Northern

power system, Coûverter station blocking, sometimes followed by machine trips, is

the contiûgency bebind tbat condition, A corrective algorithm based on sensitivity

analysis is developed to provide op€rators with suggested actions in order to improve

eystem security,

Secondly, a prediction system is designed to predict dynamic overvoltages due to

cotrverter blocling (load rejection). Overvoltage corrective actions are derived using

the corfective algorithm. A least equares based algorithm is developed in orde¡ to

estimate the post-contingency dynamic overvoltages.

Thirdly, a multi-class prediction slstem approach is investigated. The approach

is new, it has some advantages and at the same time it possess some limitations. It

was applied to the Northern Eystem in order to predict self-excitation as well as

dynamic overvoltages.

Finally, a new pattern reæognition based voltage contingency analysis algorithm

is developed. Using this algorithm a discriminant hyperplane is defined as a perfor-

mance index. Using this index, a screening and ranking of voltage outages (con-

tingencies) can be efficiently achieved. Tbe speed of computation involved is slightly

lower, in the cas€ of on-line design, when compared to other methods. The off-line

design approach is efficient and reliable but it has an excessive computational bur-

den. The algorithm and other methods are investigated on a sample system and on

the Northern power system as well.
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CHAPTER I

INTRODUCTION

r' r @r-!r¡!en-Qper¡!!s

Electric power Eystems consist mainly of generatíon, transmission, and distribu-

tion systems. The distribution Ð¡stems must supply the consumption centers, or load

centers, with a cootinuous service of satisfêctory quality, Therefore, this means that

the power system should operate in such a way to provide the customer with a ser-

vice of the quality requirements. These requirements mean thât both the voltage

and frequency at the load centers must be within certain limits.

In order to satisfy the customer's demands, the electrical trânsmission network

should operate within certain constraiots that are ecceptable for the system equip-

ment operation. This imposes new constraints on the planning and operation of

porver system. In general, all the ne¡essary conditions required for normal operation

of a power system could be expressed in two sets of constraints : the

equalíty conslraínls called the load constraints, and the ínequalíty constr^¡nts

called the operating constraints. The load constraints set the conditions which

satisfy the requirements that the load demands will be met by the system, while the

operating corstraints impose maximum o¡ minimum operating limits (e.9. voltage

limits,loading limits, ..) on variables associated with the component parts of the sys-

tem.

The conditions of operation of a power system can be categorized into three

operating states i normal , etnergency, and restorative [1¿]. A system is in the nor-

mal state when the load a¡d operating constraints are satisfied. The Eystem may be

op€rating within the space of all feasible normal operating states. This space is com"

pletely de6ned by the load constraints and the operating constraints. A system is in

the emergency state $¡hen the operating constraints are not satisfied. For example,

when an equipment loading limit is exceeded or when tbe voltr.ge limit at a bus is



a

violated, A system is in the restorative state when the loading constraints are

violated. This mea¡s a condition of either a partial or total shutdown.

1.2 Power Svstem Secorltv A¡sessment

Modern interconaected power systems demand a high degree of security for

normal operation. This dema¡d is due to the fact that some contiûgencies can have

a catastrophic results on these systemÊ,

Security assessment is a new approach to po\ryer system operation' helping the

system op€rator to detect conditions that may lead to a failure or deterioration in

the quality of the power supply before it occurs. The security analysis could be con-

side¡ed as two parts [3], the ûnt is to determioe whetber tbe system is in the secure

state or not. Tbe second is to determine what corlective ection should be taten when

the system is insecure,

Three types of security assessmeût can be identiûed, the steady state , the

transient state , and the dynamic stdle ,Tbe steady state security assessment exam'

ines the steady state tespoDse of the system under credible outâge conditions, Each

contiDgency in the steady state security analysis causes transients which can result in

very undesirable conditions, such as loss of synchronism of Eenerators' To prevent

such conditíons fast co¡rective action must be taten which requires transient security

assessment. The dynamic security assessment pertains to system response of the

order of a few minutes.

The ¡esults of a security assessment study must be presented to the porver sys'

tem op€rator in such a $,ay so that he may be able to take necessary correctíve action

effectively [3]. Such info¡mation may be presented in terms of simple indices and

may be a part of the power system control centers duties,
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1.3 Motlvatlon and Llter¡turc Rcvlcç

The main objective of this project has been guided materially by Manitoba

Hydro. Several discussions at Hydro were behind the need of an on-line predictíon

systeñ to ass€ss the dyømíc securily of the Northern system against generator

self -excítatíon and system dynamic overvoltages , due to the blocking of con-

verter statioos (dc load rejection). Also, a prediction (security) index that tells the

operator how fa¡ the syßtem is from having self-excitation was required,

Referring to literature, it was found that the ûrst study on load rejection over-

voltages was done by de Mello [4] using analog simulation. It was concluded that gen-

erator self-excitation caD occur more readily with hydro-generators than rvith steam-

generators, because of the higher overspeeds obtained after load rejection as well as

the associated extensive transmission systems.

Dandeno [5] has investigated the effect of dynamic overvoltages, produced on

the 500 KV line of Onta¡io Hydro due to load rejection on hydro-generâtors, on the

s¡ætem design e.g. insulation coordination, relaying schemes, etc. It was reported also

that when self-excitation occurs, the voltage regulator becomes unstable and can

increase system overvoltages,

De Mello then reported [6] that the lack of negative ûeld current capability, on

the static excitation systems, causes self-excitation when the direct axis reactance

(X¿ ) of the machine is greater than the capacitive reactance seen at the machine ter-

minals (X"). Ao extremely rapid rise in voltage (2 p.u "lse-c) is ¡ecorded during self-

excitation, Moreover, he has recommended, as a special overvoltage protection

requirement, the study with modern simulation tools which permit prediction of con-

ditions under load rejection.

Gole in [?] is the ûrst to investigate the effect of converter station blocking on

the excitation system of the Manitoba Hydro Northern system. The study revealed

that the most s€vefe case of overvoltage occurs, due to machine trips, when a small

numbe¡ of machines are feeding a capacitive load (ac ûlters). Also, it was indicated
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that the same overvoltage conditions could happen, but less severe, in the case of

converter blocking (dc load rejection) when a few machines are left connected to

large filter bants.

Pattern recognitioÂ techniques have been applied to power systems as a fast on-

line âssessment method, Several attempts have be¿n made to apply pattern recogni'

tion to load forecasting, steady rtate security assessment [1,2,8], and transient secu'

rity assessment 12,9 -211.

Pang [1,2] has applied pattern recognition to steady state and transient state

security assessment. He has used single and ¡ep€titive ranking fÕr feature selection,

least squares and optimâl search fo¡ classifier design, He has obtained good simula-

tioû results on the CIGRE-225 KV system.

Tokyo Electric power company in Japan was the first utility to have experi-

mented $,ith using the pattero recognition approach for on'line fast transieût stabil-

ity assessment. The possibility of implementing a pattern recognition approach as a

part of the security monitoring pactage has been rePorted in [9,10,16]' It was con-

cluded that these advanced techníques are feasible not only for on-line security

assessment, but also for off-line analysis in Power system planning and operation.

Gupta [11,18] has used the linear tra¡sformation to extract required features.

Also, he was the first to report on the application of PDM (Polynomial Discriminant

Method) for the classifier design.

Halimmashadi and Heydt [13,19] have recommended the use of transient meas-

urements âs features for transient stability assessment. They have investigated the

application of: Bayes rute, PDM, a¡d Nearest Neighbor for the classifier design. They

have concluded that the Bayes design is the fastest approach, while the Nearest

Neigbbor has proved to be the most accurate. Moreover, tbey proved that pattern

recognition is a fast, and serious candidate for power system onJine security assess-

ment compared to other methods such as Liapunov and numerical integratiotr.
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Re¿ent ¡esea¡ch [14] has reported that pattern recognition techniques are suit-

able fo¡ powef s).stem security, either in off-line mode or on-line mode. A data gen-

eration algorithm has been developed and the selection of variables related to gen-

erators as primary va¡iables has been recommended.

New Yort Power Pool [8] have introduced a prediction system using pattern

recognition for steady state voltage security analysis. They have used the intuitive

features and Nearest Neigbbor design. The system proved to b€ efficient and reliable

ard it is being implemented.

Finalty, Mokhtari in [21] has applied generalized square distance and K-th

Nea¡est Neighbor (K-NN) classifier on the large BPA AUzn KV system for a tran-

sient security assessment. He has introduced new features (post fault as well as pre-

fault features). Also, new feature selection and performance estimation. methods

have been investigated.

Modern energy control centets 122-261 utilized in electric utility control and

monitor schemes are required to provide real-time security assessments. Steady state

arsessments are usually evaluated for a large number of actual and anticipated con-

tingencies. Therefore, as the number of contingencies increase, the solution time will

be a burden to the overall real-time control function. Under these circumstances, the

selection of the most important (critical) contingencies to perform a detailed con-

tingency analysis, becomes more desirable and is gaining a lot of utilities attention

127-371. The selection process of these contingencies is called Automatic Con-

tingency Seleætion (ACS).

Ejebe [28] has introduced the ûrst ACS algorithm. Line and generator outages

are ranled according to theif severity as reflected in voltage level degradation and

circuit overloads. The algorithm uses Tellegen's theorem to generate tbe sensitivities

of a system-wide performance index with respect to outages.

The application of decision theory to ACS has been reported, as a new

approach, by Fischl [31J6]. The approach is a theoretical one which allows
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development of â method for 6nding the performance index as a volume maximiza-

tion problem. The use of Bayes criterion has been recommended sínce it offers an

additional flexibility to the classification problem.

Nara [27] has presented a new ACS algorithm for contingency selection con-

cerning voltage security analysis. This algorithm proves to be efficient both in con-

tingency selection and ranking. The algorithm is based on the definition of a perfor-

mance index as a second order vector no¡m in the voltage space. Performing a dc

load flow for each contingency, the algorithm can be used to select and rank critical

contingencies.

Ao investigation of the current algorithrns [27-37] indicated inefficient and

unreliable performance due in part to a lack of one or mo¡e of the following con-

side¡ations:

l- Ranking process is not efficient due to Eisclassified cases.

2- Generato¡ VAR limits are ignored.

t Bus cufrent injections are assumed constant.

4- Screening criterion is ûot efficiently achieved,

t Execution time at the beginning of sensitivity analysis is not that low.

6- Most algorithms do not perform reliably.

7- Single and multiple outages are not cooside¡ed.

Due to the important conside¡ations discussed above, a new approach to the

voltage contingency analysis, screening and ranking, is developed. The approach is

based on pattero ¡e¡ognition techniques in o¡der to coñe up with the appropriate

performance index design. Once the performance index is designed, off-line or on-

line, then using a dc load flow to derive the post-contingency conditions, a screening

and ranking of tbe most critical cases can be achieved,
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1.4 Thcsl¡ Outllncs

The main objective of this project has been discussed. Chapter 2 describes the

basic conñguration of a prediction system based on patterD recognition techniques.

Pattern acquisition, pattern preprocessing, feature vector identification, predictor

design, and performance evaluation have been discussed.

Chapter 3 deals with the load rejection overvoltages on the Northern system.

Self.excitation, dynamic overvoltages, and normal conditions are explained. Effects

of machine tripping, Êlter tripping are also investigâted on the Northern system.

In Chapter 4 a prediction system is designed for self-excitation conditions due

to load rejection and double contingency. A corrective action algorithm is

developed.

Chapter 5 concerns with the prediction of dynamic overvoltages due to load

rejection. A prediction system is designed and a least squares metbod is used for the

estimâtion of the port-contingency voltages,

Cbapter 6 treats the load rejection operating problem as a multi-class pattern

recogûition pfoblem, A multi-class prediction system is described, advantages and

limitations of this scheme are outliûed.

A new approach to the voltage contingency analysis is described in chapter 7.

Pattero ¡ecognitioû techniques are applied in this approach. A comparison with

other current algorithms a¡e included,

Finally, the general conclusions and the future ¡ecommendations are summar-

ized.



CHAPTER 2

PATTERN RECOGNITION BASED PREDICTION SYSTEM DESIGN

2,1 Introductlon

PøtternrecoSnìlion,whichisapaftofthelargertopics
Artif ícíal Inteìlígence ønd Knowledge Bas¿d methods' has been used fo¡ a wide

variety of applications 11,2,Ù211. The main advantage of tbe pattern recognition

method is that a given new pattern can be quickly identiûed as belonging to a known

classofpatterns.Theintelligencetomakethisc/assficafioncomesfromextensive

off-line comPutation.

Pattern tecognition principles and methodologies have influenced the course of

technological development in almost every knowledge'based ûeld' In many 6elds'

Patteroreco8fiitionisaûeffectivecandidateforproblemsolving,capableofproduc.

ing dramatic results' Pattern recognition has been very much a product of today's

computer technology, Automatic programming ' parallel processing

color grøphícs , hígh speed computation , and mícroprocessors ' have all benefited

from tbe concePts and methods of pattern recogûition applications'

A pred¡clion system is one which uses pattern recognition techniques to predict

theclassmembershipofagivenPattefn.Thischapterconsidersthedifferentphases

required for the design process of the prediction system' Several algorithms are

employed to come uP with such design as well as to evaluate its performance'

2.2 Predlctlon Svsteo Confleuratlon

The conûguration of the prediction system can be divided into four phases' as

shown io Fig' 2'7t
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(1) pattern acquisition;

(2) pattern preprocessing;

(3) feature vecto¡ identiÊcation;

(4) predictor function design.

ln the pallern acquìsitíon phase, digital patterns generated from a sysiem simu-

lation model, are gathered in a format suitable for further computer processing.

The measured patterns are then used as the input to the seeo:d phase,

pøttern preprocessing, and grouped into a set of cha¡acteristic patterns as outPut.

The general intent of thís process is simply to lea¡n about the patterns, dete¡mine

the diffe¡ent pattern classes thât might exist in the patterns, and organize the lea¡ned

knowledge into a form Eost efficient for further processing.

In the third phase, f ealure veclor ide¡tifrcation, some techniques are applied

to the output patterns from the second phase, in order to de¡ive the required feature

vector.

The fourth phase in a typical prediction system is a predíclor f unction desígn.

This predictor is in the form of a set of díscriminant f unctions required to provide

th€ system with the appropriate decisions. Its purpose is to predict, based on the

information obtained, what class would be assigned to a given unknown Pattern.

2,3 Pattero Acqulsltlon Phss€

As stated before, pattern acquisition is the process of generating and converting

a pattern from its main source into â form acceptable to the digital computation sys-

tem for further processing, Also as explained before, the design of a prediction sys-

tem is based oû a set of patteros which represent typical operating conditions of the

system under study.

Pattern acquisitior is to obtain a pattern set whicb represents the characteris-

tics of different classes whicb are to be classiûed or predicted. It should be

emphasized, tbat all the consecutive analyses are based on these patterns and on the
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âssumption that all the information required for recognition is contained in the pat'

tefn set.

Apalternisave¿tofofvariables,theseva¡iablesshouldrepresentdiffe¡ent

cbâ¡acteristics of the object undef consideration. The task of a prediction system is

the identificatíon of the common characteristics of a class of Patterns and on the

basisofthisinforEation,toclassifyanewpattern.ThesuccessfulidentiÊcationof

thesepattefnsissigniûcantlydependentonthechosenpatternvafiables,Infact,the

selection of these variables sets the lower bound fot recoSnition error l73l and

therefore the selection of low quality variables could weaken the applicability of a

predictionsystem'Iogeneral,theselectioDofthesevariablesrequireanintimate

knowledge of the system under consideration and tbe speciñc application of the pat-

tefnleco$litioDmethodotosy'Patternvariablesshouldassessthepropertiesofeach

class and should fulfill three main requirements [14], namely:

- díscriminalion between different classes'

.relìøbítíry;i'e.varíablesshouldtakeonsimilafvaluesforallpatternsofthesame

class,

- índepenilence , i.e' variables should be uncor¡elated with each other' although

they might be combined to reduce noise sensitivity'

tt is very essential to have a representative and adequate pattern set for a mean-

ingfulsolutiontotheoverallproblem,Thepatternsshouldincludealltheinforma.

tion pertinent to the recoSûition process' As has been shown' there are statistical

reasons behind most of the methodologies iû pattern recognition' Therefore' the

problem a¡ises of how many patterns are needed for an adequate prediction system

design.Itbasbeenshown[38,39]thattheerrorrâteofmisrecognítiotronthedesign

patterns is ao estimate of the asymptolíc ercor rate of the prediction system The

amount of this bias is a function of the ratio of the number of patterns Per class to

the number of features used. Foley [38] has shown that a fatio of 8reâter than thfee

will be acceptable for an accurate prediction system design'
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2.4 Pstterû Preorocesslnq Phss€

This stage could be conside¡ed as a preparation stage for the next processing

stages. Three activities can be involved under this stage, namely:

. pattern normalization,

- noise ûltering, and

- estimatioD of measurements failure.

Usually, the system measurements a¡e in dífferent units, therefore it is neces-

sary to normalize the input patterrs in order to speed up the numerical convergence

of the desigr process. A study [12] has shown that zero mean and unit variance is

the optimal normalization algoritbm.

In the 6eld implementation of a prediction system, two problems may arise: one

is due to the measurement errors which implies that additive toise is suPerimposed

on the ideal rep¡esentation of patterns, the other problem arises when one or more

measufements are not available for some ¡eason. The pfoblem of measurement

er¡ors is relevdnt in the situation when the design of a prediction system is based on

a design set of patterns generated some \pay different than that presented to the

actual system in the field operation. Researchers [13,19] have concluded that meas-

urement er¡ors affect the performance optimality of the prediction system and

increase the recognition error probability. However, if the pÀttern generating pro-

cess, i,e, simulation model of the studíed system, is of an acceptable accuracy for the

representation of the real system cha¡acteristics for specific application, it will lead

to a reasonable optimal prediction scheme.

When a designed prediction system is in the 6eld implementation, it may hap.

pen that one or mofe measurements fail for some practical reasons. Thus, the recog-

nition capability may drop to a very low level which of course will affect the overali

performance of the prediction system. Costa [14] has outlined different approaches in

o¡de¡ to overcome tbis problem. One of tbese approaches, the less demanding one, is

to replace tbe missing measurements by tbeir hístorìcal average values or by their
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last values if suitable.

2.5 Fcatorc ,Vector Identlllcstlon Phsse

The problem of concern in this stage is how to identify or extract from a set of

variables Í = (yr, y2,..-,y") r those that have the best discrimínatory powet,

called f eatures ot key varíables, wbere v is the number of pattern variables, These

features should permit tbe prediction system to distinguish between patterns belong'

ing to different classes.

The numbe¡ of variables obtainable for a pattern can be very large in any pat-

tern recognition problem. Therefore, it is desirable to extract a small number of

these variables from the initial set to be the features. Usually intuítíon a¡d

knowledge of the problem being studied guide the listing of potentially useful vari-

ables to be considered. However, it is a very difficult task to identify the best vari-

ables required to fepresent the system state,

With feature identification we aim to achieve three objectives [4&46], namely:

(Ð to s€lect with appropriate methods the most useful information from the

paltern vcctot Y and to present it it the form of a,

f eature vector X = lx¡x2,..., x¡lr of lowe¡ dimensionality / ( u, where

/ is the number of selected features;

(ii) to remove any redundant and irreleva¡t information which may have a det¡i-

meûtal effect on the Pfediction system; and

(iii) to rearrange the variables in terms of their discriminatory power in order to

provide the consecutive design stages with the most informative variable to be

considered.

For this stage, the following algorithms are recommended for the application of

coDcefn:
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(a) Variable Separabilitv Measure Alsorithm (VSM)

In this algorithm a function VSM is used as a criterion in the identification of a

feature [1,2] since it provides a measure of lhe separabìlíty between any two classes

j& k fot each variable. This functio¡ could be written as:

vsvjr!) =ABs [ (Mj(i)-MtQ))/(sDj(í) +sD¡(t))] (2.1)

í = 1,2, ..., v .

where:

M¡ (i ) : mean of va¡iable i in class j ,

M¡(ì) : mea¡ of va¡iable íin class &,

SD¡ (i ): standa¡d deviation of variable i in class j,

SD¡ (i): standard deviation of va¡iable i in class & .

ABS: absolute value.

The algorithm procedures could be summarized as follows, see Appendix (A):

1- identify the va¡iable with the largest class separability measure VSM;

2. discard the highly cor¡elated variables, i.e. variables of

correlation coef f icients = 0.9, and

U repeat tbe above procedure till the required features are obtained.

(b) Intuitive ldeoti6cation Method

h this method [8,47], usually intuition and knowledge of the problem being stu-

died guide the listing of potentially useful va¡iables to be considered as features. In

general, features to be selected by this method are based oû the availability of:

1- telemetering roeasurements;

2- intuition gained from experience;

$ correlation coefficients obtained from multi-va¡iable regression analysis; and

4- engineering judgment .
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(c) Stepwiseldenti6cation Alqorithm

In this algorithm, as in the case of stepwìse regression analysis [48], the

identification of features to be used in the final analysis is often ûot known in

advance. A stepwise analysis is a sequence of simple analysis that moves f¡om one

analysis to tbe next by adding , and sometimes deleting, a feature variable at each

step. The most commonly used method [49] of selecting variables to be entered or

deleted is based on the ratio oî. tbe withín class generalízed díspersíon to the

total class generalized díspersion fo¡ the selected va¡iables. The within class gen'

eralized dispersion is simply the determinant of the within group sum of cross-

p¡oduct matrix IV (X ) for tbe feature vector X = (x 1, x2, .., ,¡)' As such it may

be viewed as a generalization of Fisher's ratio,

R(x) = tw (x)t/tr (x)t (2.2)

where : T (X ) is the total class sum of cross-product matrix.

The selectíon measurc SM, Appendix (B), for the entry of va¡iable )j into the

set X ¡s given by :

sM¡ = (a/b)IUMI j - tl (2s)

and for the case of removing of the feature t¡ from the set

X = (x ¡ x z, ..4 x¡ , ..., *l )' , the removíng medsure could be written as :

RM¡=((ø+t)lb)lMlt-tl (2.4)

wherc MI¡ multiplicatíve ¡ncrement in Fisher's ratio R(X) resulting from the entry

of the va¡iable yr or the deletion of the feature r¡, âtrd a & b a¡e constants for a

given case.

The algorithm rules can be summarized as follows:
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1- not to remove a feature if its removing measure Rll4 value is greâter than

or equal to a speci6ed limit (threshold).

2- not to enter or Eelect a va¡iable if its selection measure ,SM is below a

specified limit.

U not to select a variable if its tolerance value is below a specified limit'

Tolerance fo¡ the identi6cation of a feature variable is one minus the square of

its within group multiple correlation with the currently entered variables. This algo-

rithm is a very powerful technique since it has the advantage of lhe backlrdckín|

pbenomeoa.

2.ó Predlctor Functlon Deslen Phsse

Having chosen the pattern features, this stage is to design a surface in the

feature space which separates the patterns of one class from those of the other.

Therefo¡e, this design is equivalent to fitting a surface, called

prediclor or classiî íer in pattern recognition terminology, to correctly classify pat-

terns from different classes. Depending on the information contained in the feature

vecto¡s and the distribution of patterns in the feature space, the predictor function

can be a simple or a very complicated expression.

As stated before, the aim of a prediction system is to identify the underlying

characteristics which are common to a class of patterns. The identification of these

cha¡acteristics enables one to correctly predict the class of a new pattern.

Pattern recognition problems can be divided into two groups: supervised and

unsupervísed, In the supervised gtouP, there is a prior classif ícatìon knowledge

available about design patterns. On the other band, the unsupervised problem has no

prior information about the classification of design patterns. Power system oPerating

problems can be considered to be of the supervised group from the point of view of

pattern recognition theory,
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In pattern ¡ecognition theory, many techniques a¡e available in orde¡ to design

the prediction surface [40.46]. However, tbe predictor function must be as simple as

possible mathematically, and must cotrsists of as small a number of features as is

allowable, Also, the prediction system should be easy to implement in the practical

ûeld, Therefore, the follo\r,¡ng design schemes are developed in order to achieve tbe

af orementioned ch af acterist¡cs.

2.6.r@
In this design the prediction surface is constructed from discriminant functions,

the forms of which a¡e Lnown to be linear, The desígn patterns are to be used fo¡

the estimation of the predictor parameters. Also, this design is suitable for situations

whe¡e no knowledge of the forms of underllng probability density distributions are

required, and in this sense it can be considered as a nonpardmefric approach,

Linea¡ disc¡iminant functions have a variety of pleasant properties from an

analytical point of view. They can be optimal if the underlying distributions are

cooperative. Even, when they are ûot optimal, one might be willing to sacriûce some

performance to gain the advantage of simplicity, Linear discriminant functions are

relatively easy to compute, and a predictor of fixed structure is an attractive candi.

date for implementatíon on a digital model.

2.6.1.1 Two-Clsss Predlction Problem

Consider a two -class problem in which a predictor o¡ discriminant function,

which is a linea¡ combination of the feature-vector components X, can be written as:

d (X) = w1r1 * wztz* "' 1'w¡x¡ *ws

=wrX *wo Q.5)

The f .dimensional vector til = I w t, ra 2t ..r w¡ lr is catled the weìght vector 
^ 

d

reg is the threshold weigbt. Also, the f-dimensional vector X = Lx1,x2, ...,x¡)r is
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called the feÂture vector,

The predíctíon rzle corresponding to the predictor function d (X ) is to assign

the pattern X to class l if d(X) ) 0 and to class 2 if d(X) s 0 . The prediction

boundary is defined by the equation:

d(x) = 6 (2.6)

As d (X ) is a linea¡ function of X tberefore the prediction surface is a linear surface

i.e. a hyperplan¿ in f-dimensional space given by:

wTx = -wo Q;r)

F¡om the geometry of hyperplanes, a very imPortatt property can be derived

,Fig. 22. On this diagram, let us assume X 1 and X2 be two patterns on the byper-

plane and U be the unit vector normal to the hyperplane at pattern X ¡ As X ¡ X 2

a¡e both on the hyperplane, we can write

Wr x, + wo= Wr X2*ws=0

wr (xt-xz)=o

From Eq. (2.8), we can conclude that W is normal to the hyperplane and

u=w/llwll,
¡ lÍ2

llly |=[:r¡2]
j=1

xlv=tTT#r=-r#,

(2.8)

(2.e)

Therefore, the vector IV defines the orientation of the hlperplane.

The normal Euclidean dista¡ce from the origin to the hyperplane is given by :

(2,10)

Therefore, with an appropriate normalization, the threshold weight w6 defines the



Fig.2.2 The geometry of byperplanes
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location of the hyperplane. Now, the Euclidean distance r

plane can be written as :

from X to the hyper-

ttt î
r =ur (x-xl) = 

"it " 
(x-xr)

_wT x +wo
IIW II

=d(x)lttw tt (2.11)

i.e. the predictor function d(X) gives an algebraic measure of the distance from X

to the hyperplane,

To summarize, a linear predicto¡ function divides the feature space by a hyper-

plane surface. The orientation of the su¡face is determined by the weight vector W

and the location of the surface is determined by the threshold weight wg .

2.ó.1.2 Multl-class Predlctlon Problem

The case of. a multi -class problem can be treated in the same manner exactly

as the case of the two-class problem. Many of the concePts discussed in the two'class

case can be extended to the case of multi-class problem. The multi-class case offers

some more possibilities and on the other hand it raises some additional difficulties.

One way of treating a c class problem is to convert it into

c two-class subproblems, Each subproblem añounts to discriminate the patterns

belonging to class í from those which do not belong. Although this aPProach is intui-

tively satisfying , it has the disadvantage that some future Patterns may be found

with undeûned decisions or belong to several classes up to c -1 simultaneously, see

Fig. 23 for a three class problem.

A second possibitity is to cotvert the c-class problem into c -l two-class sub'

problems exactly as described in the previous approach, This way this approach has
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c=2

c= 1
R4

c=3

c= 1R2

Fig.23 Three two-class subproblems approacb

Àr - R¡ : undefined decision regions.

Closs 1
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the advantages of a less€r number of required decisions and a reduced region of mul-

ticlass de¡isions.

A third approach is to convert the c-class problem into c (c -t)/2 two-class sub-

problems. This approach is called the paírwise predictor functions. Tbe prediction

rule in this case is to assign the unknown pattern to the class that reach c -1 positive

answers, In addition to being costly, this approach also has the disâdvantage that

some future decisions may be unde6ned, Fig, 2.4.

All approaches discussed so far have the disadvaotages of undefined or ambigu-

ous decisions. Tbese disadvantages can be overcome by defining c linear predictor

functions as:

d¡ (X) = rar¡1 .r1 * w¡2x2 * ,... * wir x¡ * w¡¡

='W¡r X * w¡0, i = t,2, ..., c (2.12)

The prediction rule in this case, is to assign pattern X to class i if d¡ (X) > d j (X)

for all j * í, Fig. 25. This way, the space is partitioned into c prediction regions

R¡ given by :

R¡=[x/d¡(X)> dj(x);i =1,2,...,c; j * il (2.13)

Each region R¡ may be shown, Fig. 2.5, to be 
^ 

convex polyhedron with at most c -1

portions of the hyperplanes deûned by:

dt(x)=dj(x)ii =t,2,...,c;i + í

Tbe predictor scheme in this case is given by Fig.2.6 .

(2.14)

2.é'2@

As stated before, the predictor function has a weighting vector Iy and a thres-

bold weight ws. The process of determining these weigbts is called learníng. In the

pattern recognition literatures, thete are many learning algorithms, Appendix (C),

howeve¡ the algorithms ¡elected he¡e are euperior since they are based on
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Fig. 2.4 Pair*'ise predictor approacb
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Fig. 25 Three linear predictor functions approach
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nonparametric estimâtion of the probability density function for each class to be

classífied.

(a) Linear Learninr Alqorithm

This algorithm is advantageous since it is based on nonparametric estimation of

the probability density function f (X /i), in addition to the application, of Bøyes

decision rule for classificatioo, One way to estimate the class density function taking

into consideration the contribution of each pattern X¡ is given by [50]:

t Nt

r 8 /Ð = 
Tr, æîrj'r:l,exnl-(x -x'¡)r (x -x,,)/2ø21 (2'1s)

where:

X¡ : pattern j in class i ,

tV¡ : numtær of patterûs in class i ,

o : smoothing factof.

The parametef o dictates the smoothness of the estimate of the density func-

tion. rühen o is small the estimated density approximates the true distribution of

patterns in the design s€t more closely, As o is increased tbe estimated density is

smoothed, Fig.2.7, and can the¡efo¡e be represented by lower order terms. Hence,

for a given number of training patterns, o should be at least large enough to provide

smoothing between adjacent patterns. It may even be increased above this minimum

to limit the order of function representing the decision boundary.

Equâtion (2.15) can be used directly with the Bayes decision rule. However,

Specht [$] proposed a simpli6ed approximation to tbis equation using Taylor's

expansion series. As explained in Appendix (C), the ûnal form of the weighting vec-

tor f7¡ , for the case of design patterûs X¡ from class i of prior probability p¡, can

be estimated from design patterûs during the design stage as:

*,, = *'1ft !,',ir'a,¡l (2.16)
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wbere:¿ = t,2, ..,, Í, a¡d

*,0 = Íf Ë¡,,, 
(2'17)

i =1,2, ... ,c.
where:

X ¡j = lx¡jt, x¡Jz, -., x,rt lr ¡-th feature vector from class i '

W ¡ = Íw¡ r, w¡2, ..., w iÍlT weighting vecto¡ for class i .

-05 xí xrj ,,
B¡¡ = exp (---i-)

As an example, consider a trvo-class prediction system, where the predictor

function is given as:

d(x)=dr(x)-d2(x)

=wT X *wo (2.18)

whe¡e Wr = (Vl tr - W zr ), wo = ( wro - pzo ). With some mathematical

manipulation we can have the final form of the weighting vectors as :

*r= Ltå"rr'*r<#>l
-firl,,u'*o<#n)t (2.1e)

k = 1,2,...,f .

',=f rl,*o<#¡t

-fft!*l:$Pl (2.20)
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where PR is the príor probability ratio .

(b) Stepwise Lea¡ninq Alqorithm

Having chosen the stepwise pattern features, this stage is to build a surface in

the featufe space which s€Parates patterns of one class from those of tbe other.

Therefore, this design is called lhe slepwìse predictor ' The stepwise development of

the predictor fuoctions is dependent almost exclusively oD the current values of tbe

status matfices, These matrices are equal to the within and total sums of cross-

products. They are updated from one step to another be means of the sweeping

op€ration [48,49]. When the stepPing is complete, or when tbe number of features

setected is equal to the one specified, the Predictor function \À'eighting vectors for

class i a¡e computed as:

wro = ln p¡ - 05 (N -c) M¡r W (X)-r Mi (2.22)

í = 1,2, ..., c .

where p¡ is the prior probability for class i, and M¡ is the features mean vector for

class i,

As an example, conside¡ a two.class prediction system, where the predictor

function is given by Eq. (2.18) and substituting with W1, lV 2,wþ, and w29 from

Eqns. (2.21) nd (2.22), the weiShting vector can be obtained as:

w, = (iv -c)w(x)-rut

and the corresponding predictor functioo thresholds are given by:

w = (N - 2) rv(x)-l (Mt- Mz)

and the predictor constant is given by:

(221)

(2.23)

we = ln( tlPR ) - 05(/v - z)LMT w(x)-r Mt- Mî w(x)-r M2lQ'24)
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2,7 Predlctlou Svstem Performance Evalustlon

As fa¡ as a performance evaluation methods are concerned, there are t\.vo

approaches; on-line and offJine. For the on-line metbod, tbe prediction system is

installed on the actual system, and its parameters are adjusted in accordance with

experience. This method is probably only practical for'6ne tuning" of the prediction

system, Fig. 2.8,

Tbe of f -line approach uses an accurate computer model to generate test pat-

terns and estimate the pfobability of misprediction for each test pattern.

In this study we will deal with the second approach and incorporate error esti-

mâtion methods. The performance evaluation given by these methods could be writ-

ten âs:

Perf ormance = 100. (1,0 - UN,y t1- ôjl ) (2.2s)

where : ô; is the Kronecker delta function, i.e. ôr. = I in case of correct prediction,

ô; = 0 io wrong prediction cases, and N, is the number of patterns in the test set.

Generally spealing, the last step in a pattern prediction system design is to

evaluate the future classi6cation performance of this system. Several estimates exist

in the literatures [aG46]. However, only some of them are used here, Appendix (D),

as:1- Resubstitution Estimate,2- Hold-out Estimate,3. Leave-one-out Estimate, and

4- Rotation Estimate.
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CHAPTER 3

LOAD REJECTTON OYERVOTTAGES ON NORTIIERN SYSTEM

3,1 Introductlon

In power system applications involving synchronous Senerators connected to

long distance ac transmission systems or connected to dc systems with large ûlter

ba¡ts close to the ¡oacbines, serious overvoltage conditions can a¡ise following major

syslem contingencíes. Examples of such coûtingencies a¡e ac load rejection or block-

irg of converter stations.

These overvoltages have been reported before [4,6] using analog and digital

simulations, They are a function of the ac transmission system charging capacitance

or the amount of ûlter capacitance for acldc systems, the number of machines con'

nected, the over-speed characteristic of the turbine-generator set, and the excitation

system response. The problem of load rejection overvoltages on hydro'generator sys'

tems can be avoided by eliminating or at least minimizing the possibility of generator

self -excitatíon, and controlling system dynamíc overvoltages to acceptable levels,

The generating stations in power systems could be either steam-turbine or

hydro-turbine units, Historically, hydro-turbine and steam-turbine units have been

faced with overvoltages and generator self-excitation wben long unloaded EHV

transmission systems are left conne¿ted to the Senerators [4]. Generator self-

excitation has been a common cotce¡n on hydro systems due to the high over'speed

condition on load rejections [4]. In practice, for steam-turbine Senerator units load

rejection can be tolerated with little or no signi6cant derriage to the unit, and the

unit can contitue to run on a self-supporting basis, lor periods of up to several

hours, without incurring major operating difficulties [51]'

Load rejection overvoltages are conside¡ed in this chapter for the Manitoba

Hydro Northern system. Existing preventive and protective schemes are outlined'
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3.2 Losd Rejectlon Overvoltsge Condltlons

3.2,1 I n!¡qduç149!

As shown in Fig.3.1, the Manitoba Hydr,o Northern system on the Nelson River

consists of two interconnected hydro generatiDg stâtioûs (Kettle and Long Spruce)

feeding power to Southern Manitoba through two dc bipoles: bipole 1 (BP1) and

bipole 2 (BPz). AC ûlter banks are connected at Radisson and Henday converter sta-

tions and are of a 2295 &.5tÐ MVARs capacity respectively. Tbese filters are to

ûlter out the harmonic currents of the 5,-th,7-th, 1I-th, 13th, and higher order.

The system under study, simplified in Fig.3.2, is only a part of the Northern sys-

tem in order to identify the problem very well and to avoid excessive computations

at this stage. This system consists of Kettle generating station connected to Radisson

through K-lines (lines Kl to K7 in Fig.3.1). At Radisson there are ac filte¡ banks

connected to the âc side of bipole 1 converter stations, to 6lter out the generated

current harmonics. In such a system dc load rejections caused by the blocking of

Radisson converter stations, can lead to situations where certain combinations of

over-speeding machines are left connected to filter banks. These conditions can give

rise to se¡ious overvoltages, especially when the ûlter VARs are excessive relative to

the number of generating units remaining connected.

The digital simulation model used for tbis study bas been developed by Mani-

toba Hydro [52]. The hydraulic turbine generator unit is represented by: the

governor-turbine system, the synchronous machine equations, and the excitation sys-

tem. Appendix (E), shows a block diagram for a salient pole machine; a representa-

tion of static exciter wíthout negative field current capability and voltage regulator; a

bloct diagram of the hydro turbine governor; and a detailed nonlinear hydraulic sys-

tem simulation incorporated with the governor,
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3.2.2 No Sell.Excltstlon Condltlon

For the Northern system simpliûed in Fig. 3.2, hydro generating plants as Kettle

are feeding a dc system Lnown as bipole 1 (BPl).

Figure 33 shows a typical pattern of no self -cxcìtatíon results. In this pat-

tern, 6 units at Kettle,2295 MvARs ûlters load at Radisson, and 600 MW of 0.86

power factor lagging dc load on BPl, are considered. These results show that load

rejection overvoltages are all characterized by an instantaneous rise at the instant of

rejection (0.1 seæ), then followed by a temporary voltage limiting by regulator control

and ending with a more gradual rise, Also, it can be seen that the generator dynamic

voltage rise is about 20%, while the steady ttate ris€ is about 7Vo. On tbe other hand,

the corresponding Radisson overvoltages are about 28Vo and 107o respectively. An

increase in the gene¡ator speed with about 25 FIz can be observed.

3.2.3 Dvnrmlc Overvoltesc Condltlon

In some situations [53], involving a few machines connected to a Pa¡ticula¡ frltet

configuration, full load rejection does not indicate imminent self-excitation, but

nevertheless, can lead lo poot voltd|e regulatíon in the dynamic and/or steady state

periods following the load reje-ction. For example, it is possible for the bus voltage

to rise to approximately 1.4 p.u. duríng the dynanic period immediately following the

load reje-ction, and to s€ttle several seconds later at more than 12 p.u. Either of

these could be considered abnormally high, even though s€lf-excitation has ûot

occur¡ed,

3.2.4 Self-Exclt¡tlon Condltlon

For the system under study, Fig. 3.2, hydro -generdtíng planls are feeding a

dc system (BPl). Self-excitation usually occurs during 
^û, 

over -frequency condi'

tion (up to 80 Hz). It occurs following resonance betrveen the machine direct axis

reactance X¿ aod the capacitive reactatce re€n at the machine terminals X" ,
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particula¡ly fo¡ machines equipped with static excitation systems without negative

Êeld current capability. The effe¿ts of having or not having negative ñeld current

capability in the excitation system have been tfeated in some detail [6].

A pattern of results for self-excitation conditions is illustrated in Fig,3.,1. This

pâttern is for the same configuration given in the case of no self-excitation except

that the number of Kettle units is 4 in this case. The converter station, blocked at

0.1 second, produces the field current and voltage responses giveo in Fig.3,4. The

genefator ûeld current becomes negative at approximately 25 seconds, at the same

time the dire¿t axis ñux and voltages start to reverse directions.

During the condit¡oû of self-excitation, the stator cur¡ent due to the capacitive

load tends to excite the machines. When this happens, the exciter and field circuit

have no control over the machine te¡minal vottage and it can rise dramatically, with

a rate of about I - 2 pttsec, to an extremely high level, Fig. 3.4. At the same time,

the 6eld current is forced rapidly to zero causing very bigb voltage stresses across

the field, wbich can damage the excitation system as explained by Gole [7]. Damage

to an exciter of the Kettle generating plant has been reported,

In summary, the problem of load rejection overvoltages ca¡ be considered as a

problem of mâchine/ûlter interaction following load rejection.

3.2.5 Ellect ol Gcncrator Unltc Trlo

The design of Kettle and Long Spruce involved terminating two units per high

voltage breater position, This is a concern at Kettle where the existing K.line protec.

tion is set to trip at 172 MVA ¡nto the generating station. With two units of Kettle

per K-line, the possibility of losing the line following a dc load rejection exists. The

machine VAR intale during the dynamic period following a rejection is important

due to the loss of field âûd loss of excitation relays at Kettle, Comparing the results

of Fig.33 with those of Fig.3.rl, the effeÆt of a two units trip at Kettle is clea¡.
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3.2,6 Ellcct ol Fllter Enak Trlps

The effect of ûlter tripping can be explained by Fig.35. It shows a comparison

between the.results of two patterns: tbe first pattern is self-excitation condition, and

the second is a no self-excitation pattefn, The self-excitation pattern in this case

includes 12 units at Kettle, 600 MVARs of filte¡ banLs, and 1200 MW of 0.86 power

factor BP1 load. On the other hand, a trippíng of 20 MVARs of filters at 1.0 se€ond

and for the same system conûguration as that for the first pattern, produces no self-

excitation condition fo¡ tbe second pattern. From these results, it is clear to see the

effect of ûlter tripping on the rate of ¡ise of the generator and load terminal voltages

i.e. the f íIter típpíng affe€ts the load rejection overvoltage conditions in the

correctìvc action dire¿tion.

3.3 Exlstlne Prcventlvc ¡nd Protectlve Measurcs

DeMello [6] concluded that the excitation system design can be an important

means for solving system overvoltage problems. However, Dandeno [5] mentioned

that for a hydro system it may be very costly to design an excitation system such that

setf-excitation catnot occur at overspeeds. A protective method based on the noní-

toring of machine ûeld current has been proposed. This proposal can solve major

problems but for some cases it can indicate a problem when the overvoltage is not

serious.

Another protective measure [6] euggests that overvoltage relays should drop

reactive sources (ûlters) when ¡afe voltage levels a¡e exceeded. It is difficult to avoid

overslressíng the breateÎs because the voltage can rise very fast.

Manitoba Hydro bas implemented a look -up table method [53]. The strategy is

prevention via conñguration operating ¡est¡ictions. It is based on maintaining the

machine/6lter cornbinations s,ithin the operating ¡estrictions and therefore involves a

very high number of computation runs. For example, Table 3.1 presents the relation

between the minimum number of machines corresponding to different ûlter
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Table 3.1 The minimum nurnber of machines allowed for no
se 1f -e xc itation

F- present ---+- rulure ---]

FiI!Er (MVÀRS) 79 'I 00 150 229.5 300 500 s80

No. of machines 2 2 4 5 7 11 12
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configurations, required to prevent self-excitation at rated loading conditions, The

'boundar¡/ is not that simple for the wide variety of possible operating conditions:

hence a procedu¡e such as the one described in tbis thesis is highly recommended,

Another approach is to use a complete digital computer system model to assess

the cur¡ent op€fating conÊguration, In this scheme the evaluation is based on tran-

sient stability and load 6ow simulations which tates about 50.6 seconds cpu time for

one case on the P¡ime computers, Since more thâ¡ one 'case" needs to be run, i,e,

more than one a¡ticipated fault condition for a particular operating condition, this

method is too slo\v and too expensive.

3,4 Pro¡osed Approech

Any protection scheme for load rejection overvoltages (system dynamic overvol-

tages and/or generator self-excitation) must be capable of offering protection for the

following operating situations [53]:

(1) Provide protection in the event of loss of machines. The loss of two units is the

most probable situation.

(2) Provide protection for the case of a complete bipole block or a large dc ¡educ-

tion,

On the otbe¡ ha¡d, the successful proteætion scheme should have the following

qualiûcations:

(1) It should reduce or eliminate the large numbe¡ of machine/filter operating res-

trictions,

(2) It should only talc action as required aod only aflect the generating

station/fi lters in danger.

(3) It should be casily extended as additional generation and dc facilities are added.
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(4) It should not inte¡fere with existing machine protection.

Looting for a protection scheme to operate in the above situations and possess

all required quali6cations, all protection schemes mention.ed in the above section

bave drawbacks. The approach suggestcd here is to use a prediction system, as

recommended by de Mello in [6], that will assess the current machine/filter

configuration using a'fast calculation' based on a few key measured variables. The

design is based on the ùse of paßern recognílion techniques. It will help the power

system operator to detect after receiving system informations, within 10 msec predic-

tion time on AMDAHL computer, conditions that may lead to the aforemeDtioned

abno¡mal conditions befo¡e they occur,

Pattern recognition has a wide variety of applications [2,8,95a-59]; however the

application discussed herc is unique in both the problem that being addressed and

the manner in which the technique is applied.

3,5 Concluslous

Tbe Manítoba Hydro Northern system has experienced generator self-excitation

as well as system dynamic overvoltages, due to coDverter station blocking (dc load

rejection). These conditions are found to be dependent on the system confrguration

i.e, machine/ûlter combinations. It was also explained that the lesser thc number of

machines, the mofe severe the condition will be.

Investigating the curreût protection schemes, it was concluded tbat they are

unreliable, and therefo¡e the suggesting prediction scheme was recommended. The

reduction of ûlte¡ MVARs was proved to be a suitable eorrective action,



CHAPTER 4

SELF-EXCITATION: PREDICTION SYSTEM DESIGN

4,1 Introductlon

As discussed before, power system loâd rejection may result in generator self.

excitation and/or system dynamic overvoltage depending or tbe machine/filter combi-

nations, Tberefore, in the Êeld implementation the¡e a¡e two prediction system

schemes: the self -excítatíon prediction system and the

dynmíc overvoltage predictíon system. Each of these systems is considered as a

two-class prediction problem e.g, the normal class and the abnormal class.

This chapter concerns the s€lf-excitation prediction system design. The main

purpose of this system is to assess the curfeot machine/ûlter configuration using a

fast calculation method based on the available Lnowledge contained in design pat-

terns.

The application of pattern recognition techniques, described in chapter 2, is

illustrated here to design the required prediction system for tbe simplified Manitoba

Hydro Northern system. A detailed description of the self.excitation prediction sys-

tem, its performa¡ce evaluation, a¡d the effect of failure in communication channels

are provided. Also, the idea behind the development of an algorithm to iteratively

sioplify the prediction s)ßtem structure is presented. Finally, a correctíve measure

is proposed in order to prevent self-excitation.

By using pattern recog¡ìition techniques, including the establishment of the

appropriate features and predictor design, a scheme is suggested to aid power sys-

tem operators in anticipating self-excitation operating problems and to evaluate the

required action io a very short time compa¡ed with other methods.
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4,2 Cregtlon ol Cherecterlstlc Petterns

This stage is to create â set of patterns called pøttern s¿t, The pattern s€t

should be representative of the whole range of power system operating conditions.

Otherwise, the prediction system obtained may not be able to correctly predict

future patterns,

The characte¡istic pattefn s€t fof a particular class í in the variable space may

be deûned as:

t
ly¡rr !¡n ._. )iw,

., lY,r, !¡zz ..- liw¡
I: = |

I

[)i" t !¡vz livv¡

(4.1)

which could be ¡ew¡itten in the following format:

Yi = l,)¡i* / j = 1,2,...,v;k = 1,2,...,N¡)

whe¡e y is the numbe¡ oî. pattern varíables and iV¡ is the number of patterns in

class í (i = 1,2) ,

Iû order to âvoid the la¡ge off-line computational burden involved to create the

pattern s€t, a simplified ve¡sion of the Manitoba Hydro Northern system is studied

(seæ Fig.32 in chapter 3 ). Additíonally, â numb€r of self-excitation relevant systeñ

configurations a¡e considered, in order to test the proposed prediction system

without using excessive computation at this stâge.

For an isolated hydro generating plant as Kettle feeding a dc load as bipole 1,

self-excitation predíction assessmenl involves new kinds of contingencies. As men-

tioned in the previous chapters, the prediction system should be capable of providing

self-excitâtion protection fo¡ the most probable cootingencies. For this reason, the

complete bipole block and the loss of one o¡ two Kettle units following the dc load

rejection are considered as the system operatin8 coûtingencies of major interest.

(4.2)
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Any power system pattern cao be fully described by a set of va¡iables, Tbe

number of va¡iables comprising a pattern for self-excitation studies will depend on

the detail to rvhich the system ís modelled, as well as the size of the system.

Nevertheless, a great number of va¡iables is always needed and the problem of high

dimensionality can be avoided using feature identiñcation techniques.

During the pattern set creation, it was found that the following variables a¡e

the most inf ormatíve for the predictior proccss of self-excitation patterns:

P¿", Qa" = active and reactive load into a converter station

Qp= rcaclive generatioo of ûlter banks at a bus

X¿ = machine direct axis synchronous reactance at a bus

I¡¿ = machine Êeld cu¡rent at â bus

V, ô = voltage magritude and angle at a bus ¡espectively

P, , Qs = active aod reactive power generation at a bus ¡espectively

Pt,Qt = active and reactive line f,ows respectively

Using the Ma¡itoba Hydro self-excitation digital simulation, discussed in some

detail in cbapter 3, a load rejection pattern set of 124 patterns of 12 variables each is

created. Tbese patterns are thetr classi6ed into no self-excitation (90 patterns) and

self-excitation (34 patterns). Out of these m patterns, a ! easible pattero s€t of 88

patterns is constituted for the case of double contingency i.e. the loss of one o¡ two

units following load rejection. The last pattern set is again classified into 51 no self-

excitation and 37 self-excitation patterDs,

¿1.3 ldentlllcatlon ol Requlred Fe¡tores

Patterû s€ts having been created, this stage is to identify the required features.

By applying the pfincipal component method or KL -lransf orm¿tÍ¿n , Appendir

(A), to these pattern sets in the va¡iable space, the required number of features

sufficient for a prediction procers caû be estimated as shown in Table 4.1.
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Table 4.1 Principal componenls resulls

LR3 load rejection contingency

DC: double cont ingency

e.v.: eigen-vaLue

Feature

no.

LR-predi c tor ÐC-pred i c tor
sum % sum %

1

2

3

4

401.31

1? .46

4,72

0.46

94 ,66

98.78

99.89

99.99

91.81

7 .47

? aq

0 .42

88. s

95,7

99.60

99 .99
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Then applyíng leature identi6cation techniques, discussed in chapter 2, to a Pat-

tern set given by Eq. (a.1) will produce the corresPonding f eature spøce despribed

as:

(43)

rewritten in the form:

X¡ = (xifi / i = 1,2,.., f tk = 1,2,...,N¡) (4.4)

where / is the numbe¡ of required features i.e. f = 4.

Table 4.2 presents the features identified using the va¡iable separability measure

(VSM) and intuitive techniques for the load rejection contingency as well as the dou'

ble contingency.

The stepwise featu¡e identi6cation algorithm is then applied to the avâilable

pattern eets aûd the results obtained are provided in Table 4.3. These results show

that at each step ther€ is one feature to be added to or removed from the current

features untit the stepping is complete. The selection and removing threshold used is

0.001.

¡1.¡l Predlctor Deslen snd Perlormsncc Evsluatlon

Having identiûed the required features, we can design the predictor and evalu-

ate its performance in predicting self-excitation conditions. The design process is

really based oî the tecognitíon knowledge contained in the features and on the dis-

tribution of the patterû 8et in the feature sPace, For this design the following two

schemes are employed: Linear prediction and Stepwise Prcdíctíon .
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TabIe 4.2 Features identification results

Table 4.3 Stepwise features identification results

Feature

no.

LR-predictor Dc-predictor Intuitive
featuresfeature vsr'd feature vsM

1

2

5

4

v3

Qzz

Þ's
,{d

0. 9501

0.9187

0.3908

0.3807

Qzs

v3

xd

Q¡,

1 .3561

1 .1913

0.5187

0.4513

xd

0F

Q9

Ifd

Step

no.

LR-predictor DC-predictor

feature SM feature SM

1

2

4

v3

Itd
ô3

Qzs

89.0420

11.9342

3,2814

.9693

Qzs

0s

xd

V3

115.7065

22.8578

¿3. ¿ I t 5

4.1879
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4,4.1 Llnear oredlctlon ¡cheme

In this approach the Resubstitution atrd Hold-out design methods are involved

along with the línear learnìng algorithm (section 2.6.2). This scheme deals with the

features identi6ed using the variable separøbílìty measure and the intuitive algo-

rithms (section 25), see Fig.4.1.

(a) The Resubstltotlon deslqn

Io this method the predictor scheme is designed using the pattern set. Figure

42 shows the design procedure for this case. This design is a function of two parame-

ters, o and PR, the smoolhin9 lactor o dictates tbe smoothness of the estimated

density function, while lbe prior probabílity ratìo PR adjusts the design so as to

have a desi¡ed accuracy in the prediction of patterns from a particular class.

The design results, shown in Fig.4.3, explain the selection process of these t\Po

parameters, The selection crite¡ion involved bere is based on the effectiveness of the

overall prediction accuracy. These results declare that both designs start with accu'

racy around 30 Vo and builds up till it saturates to around 80 7o using VSM features

and 9O % using the intuitive features.

The design parameter PR starts flat and settles for few times then builds up till

it saturates at 1.45 for VSM and 1.15 for intuitive features. The apPropriate designs

are selected at o = 11 and o = 6 using VSM and intuitive features respectively.

The results obtained in Fig.43 prove that the intuitive features are more informative

than the VSM features for the case of the load rejection predictor scheme.

The selected desigo of the predictor hyperplane d for the case of

load rejection and using VSM features is obtained as:

d =Wr X *ws

where

1y = [ -0.4543,13928, - O.V12l, - 02614 lr ,wo= -0'4183
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X =lVs,QB,Ps,Xa Jr

and for the intuitíve features:

X =tQzt,Vs,X¿,Qp Jr

and for the intuitive features case is obtained as:

¡7 = [ -0.1649, - 0.6042, 15471,0.0616 ]t , ,o = -0.1451

X =l,X¿,Qp,Q¿,1¡a 7r (4.6)

where ÌV is the weighting vector, rtg is the threshold weight, and X is the feature

vector. From these desigÊs, Eqns. (45) and (4.6), it can be seen that the hyperplane

su¡face is inversely proportional to V 3, P* X¿, and Qp. Fot example, if X¿

inc¡eases (meaning fewer machines) then the predictor hyperplane will tend towards

the self-excitatior patterns, which is logical. On the otbcr hand, the predictor surface

is directly proportional to Q zl, Q e , and I ¡ a which agrees with the physical interpre-

tatior of self-excitation conditions.

Similarly, Figure 4.4 presents the design results obtained for tbe selection of

desigû parameters, o and PR, for the double contingency condition. In this case the

prediction accuracy builds up faster than the case of load rejection, and reaches

about 90 Vo, It must be noted here that the design philosophy is to keep the predic-

tion of self-excitatioû patterns greater than or equal to 95 Vo. The preferred designs

in this case are selected at o = 4 and ø = 5. On the other hand, the PR parameter

starts ñat then builds up to a saturation levels of 1.3 and 1.4 for both feature cases.

The hyperplane design for the double contingency case and using VSM features

can be derived as:

1t¡ = [ 1.1268, - 0.2203, - 0,0909, - 0.9064 ]t , , o = -0.2057

(45)

y¡ = | -0.0926, - 1.0635, 1.1053, - 0.2479 )r , wo = -0.2393

(4.7)
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X =lX¿,Qr,Qs,I¡a lr (4.8)

Table 4.4 presents the performance evaluatÍon results using the above described

design procedure for the ûrst class (no self-excitation), the second class (self-

excitation), and fo¡ the overall problem. These results confirm that an overall pred-

iction accuracy of greater tban 9OVo caa be achieved for the load rejection case and

atound 90Vo for the double cottingency câse.

(b) Thc Hold+ut desler

The design procedure involved in this method is based o^ lhe partition of the

available pattern set into a desígn set and a t¿st set. The design set is to be used for

the design of the predictor hyperplane, while the test s€t is to be used for the evalua-

tion of the predictor performance,

The partition method developed here is based on the idea of selecting patterns

wbich a¡e near to the hyperplane seParatitg surface to construct the design set, Fig.

45. This method has the advantage of getting the highest predictor accuracy using

the smallest number of desígn patterns compared to the case of using Patterns gath-

ered at random [9,10].

The Hold-out desigr âlgorithm developed is shown in Fig.4.6. This algorithm

presents different steps s,hich are required to come up with the aPPropriate design.

These steps could be summarized as follows:

(Ð Design an approximate predictor using an ioitial design set.

(2) Update the design set using the neatest patterns to the separating surface

(3) Redesign the predictor surface using the new design set.

(4) Calculate the predictor accuracy. If it is satisfactory terminate this process, oth'

erwise proceed to step (2).

The results obtained using tbis algorithm, given in Fig.4.7, explain the effecl of

selecting the design set oD the acbieved predictor performance. These results are



Table 4.4 Resubstitution design performance evaLuation

Class

type

LR-pred ic !or DC-pred i c tor
VSM Intuitive VSM Intuitive

Class 1

Class 2

72.22

100.0

90.0

97.06

84.31

97.3

84.31

97.3

OveraIL 79.84 91 .94 89.77 89.77
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obtained for the case of load rejection as well as for the double cotrtingency case. It

can be concluded that the 6nal desígns could be derived after only 6 iterations.

Each of the final designs obtained before, is a function of the design parameters

( o and PR), Figure 4.8 shows the results obtained regarding the selection of these

parameters, using the VSM and íntuítive features for the case of load rejection con-

tingency. The optimal design obtained using the VSM featu¡es can be written as:

1y = [ -0.0209,0.6098, - 0.M22,- 0.0209 ìr, ro = -0.0089

aûd that obtained using the intuitive features is given by:

(4.e)

¡y = [ -0.1059, - 03769,0.9344, 0.0669 ]1 , wo = -0.0608 (4.10)

The ¡esults shown in Fig.4.9 explain the effect of the design parameters on the

design process for the condition of double contingency. It can be observed that the

intuitive features are quite effective and info¡mative than the VSM features in this

design. Additionally, the predictor hyperplane designs are selected at a prior proba-

bility ratio PR of 1.0 and 1.01, and at a smoothing factor o of 3.0 and 4.0, in the case

of VSM and intuitive features respectively.

The selected hyperplane equations a¡e obtained as:

¡7 = [05548, - 0.2052, - 0.1063, - 03004 ]r , ro = -0.1978 (4.11)

for the VSM featu¡es, a¡d

¡r = [ -0,1087 , - 03761,0.6386, - 0.2903 ]r , w o = -0.2074 (4.12)

fo¡ the intuitive features.

The performance evaluation using the Hold-out metbod is presented by Table

45. The results obtained indicate that the lowest design accuracy is about 80 Vo and

the highest is about 95 %. O¡ the other hand, the test results we¡e as low as 98.44 Va

prediction accuracy. Generally speaking, the overall prediction accuracy is gteater
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Table 4.5 Hold-out design performance evaluation

(a) design stage

(b) testing stage

class

t yPe

LR-predictor DC-pred i c lor

VSM Intuitive vsM I ntu i t ive

CIass 1

Class 2

67 .57

100.0

91 .89

100.0

82.76

100.0

86.21

100.0

Tota I 80.00 95.00 90.00 92.00

CIâss

t ype

LR-predi ctor DC-predi c tor

VSM Intuitive VSM I ntuit ive

Class 1

Class 2

100.0

f 00.0

100.0

90.91

100.0

100.0

100.0

r 00.0

Total 100.0 98.44 100.0 100.0

Overall 90.32 96.77 94.32 95.4 6
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thú m 7o, and the intuitive features are proved to be more powerful and informa-

tive than tbe VSM featu¡es,

The diagram shown in Fig.4.10 explains the predictor design spectrum fot the

available pattern set. Self-excitation pâtterns (abnormal patterns) have a prediction

index which va¡ies f¡om -2.0 to near zero. On the other hand, no-self-excitation pat-

terns have the range from nea¡ zero to 8.0 which could be divided into three levels:

weak, average, and strong. Therefore, the level of a given new pattern can be simply

identiÊed and bow close this pattern is to other levels, In other words, the relative

degree by which a pattern belonç to a certain level can be evaluated.

4.4.2 &ps!S9-p¡Êgþ99!__EÉem!

This is another design scheme where a stepwise learning algorithm and stepwise

features are employed in o¡der to come up with the required prediction scheme. Fig-

u¡e 4.11 presents a block diagram fo¡ this scheme. The prediction of self-excitation

due to the load rejection as well as the double contingency is considered in the sys-

tem under design,

The stepwise learning algorithm is essentially based on the available pattern set

and the distribution of these patterns in the feature space. This algorithm is a func-

tion of the prior probability ratio (PR). This parameter PR affects the constant term

or threshold weight wq and it does not aflect the weighting vector W, By changing

this parameter the hyperplane constant term changes which means that the hyper-

plane moves up or down in parallel by increasing or decreasing the parameter value.

The results obtained, shown in Fig. 4.72, explain the hyperplane predictor

design and its ¡elation with the prior probability of class no. 1þ1) for different

numbers of features (f ) (only.f =1 an¿ Í =4 ate shown). These results prove that

the highest design overall accuracy occurs at pr = 0.6. It shoutd be emphasized that

if pz> pt the prediction will be bíased towardÊ the s€cond class patterns, and on

the contrary, iÎ pt> pz the first class patterns will be biased. Therefore, a strong
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conclusion from these results cân be drawn. It is that the prior probability ratio

Qt2/p) coÙld be estimated to â value a¡ound 1.0. This estimation looks reasonable

for most situations wbere this design scheme is evolved.

Table 4.6 ¡ecords lhe results obtained during tbe design stage as well as the test'

ing stage, In the design stage, the whole pattern set is used to derive the design

scheme, while in tbe testing stage, the leave -one -o¡¡t estimate is evolved in order

to evaluate the performance of the prediction scheme' It can be proved that the

highest prediction accuracies arc of 92'7,943 Vø, and are obtained when / = 3.

4,5 Effect ol Telemeterlng Communlcatlons Fsllur€

Failure of lhe comñunícalio¿ channels is a practical possibility' Therefore it is

necessary to study the effeÆt of the failure on the Performance of the prediction sys'

tem and to identify the most info¡mative cha¡nels. This is in order to avoid a degra-

dation it the predictioo system accuracy and keep the accuracy of the predictor as

high as possible.

As discussed in chapter 2, there is another approach in order to avoid a large

drop in the prediction system performance in case of communications failure, This is:

either to use the last sample of the failed channel, or to use the average value of

recent samples of the failed channel.

Assuming that one channel failu¡e at a time is the most likely situation. Table

4J presents the results obtained fo¡ the linea¡ prediction scheme (section 4 4.1) in

case of communications failure. F¡om these results, it can be proved that the failure

of X¿ channel or sometimes V3 channel had no effect (or occasionally a slight effect)

on the prediction system performance. On tbe other hand, the failure of 023 channel

ot Qp ot O, channels had a drastic effect and the prediction performance dropped

to a very low level,

The results obtaíoed in Table 4.8 explain the effect of communications failure

oû the stepwise prediction scheme performance, They indicate tbat all the channels
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Table 4.8 Effect of teLemetering communications failure on
the stepwise Prediction scheme

Channel

failed
LR-Prediction

CIass 1 Class 2 Tota l

v3

Itd
63

100.0

100.0

100.0

0.0

0.0

ö.ó¿

72.58

72.58

75.0

(a) load rejection

(b) doubLe contingency

Channe 1

failed

DC -Pred i c t ion

Class '1 class 2 To!al

Qzg

Q9

x6

0.0

100.0

100.0

100.0

2,70

37.84

42.05

59.09

73.86
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are very informative and highly important for the prediction system.

As a swnmary, it can be concluded that the X¿ cbannel is the least signíficant

channel for the linea¡ predictíon scheme.

4.6 Reductlon of Predlctlon Svstem Structurc

The designed predictor hyperplane (dimension) is a function of identified

features. Therefore, lhe operaling prediction slructure, Fig.4.13, has a number of

telemetering channels equivalent to the number of predictor features. These com-

munication channels may be costly. For this reason, there is a need for an algorithm

to ¡educe the number of required channels, which of course will also simplify the

pfediction system stfuctufe,

The following procedure has been developed in o¡der to ¡educe the required

number of features ìr,ithout affecting the overall system performance appreciably:

1- Design the predictor byperplane with the features identified.

2- Avoid the feature with the smallest discriminatory power from the featu¡es

used in step 1.

, Redesign the predictor with the reduced features obtained in step 2.

4- Check the predictioÂ system accuracy: if it is decreased terminate this pro-

cedure, if not return to steP 2.

Table 4.9 presents the results obtained using this procedure, from which it is

clear that the prediction system structure can be ¡educed by one channel without any

significant effe¿t on the ove¡all performance.

4.7 Development of Self-Excltstlon Correctlve Actlon

If a system state is predicted to be abnormal, then a fast corrective action is

needed in order to improve system eecurity. As to the required actions, several

methods are available [1,9]. For example, a change of the power s¡stem configuration,

o¡ a modification of the distribution of the active or reactive injections. An
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Table 4.9 Reduction of prediction system structure

(a) load rejection

(a) double contingency

No. of

feat.ures

Resubs. design Hold-ou! design

vsM Intuitive vsM Intuitive
tt

?

79.84

79.84

91 .94

OI ER

90.32

91 ,94

96.77

96.77

2 75.00 68.55 75.00 87.10

No. of

features

Resubs. design Hold-out des i gn

vsM Intuitive VSM Intuilive
.t

3

89.77

89.77

89.77

89.77

94.32

93. 18

95 .46

95.46

2 87.50 88.54 90.91 89.77
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alternative approach would be to employ a load flow simulation constrained by the

predictor function.

Regarding the self-excitation problem which is basically a violation in the ¡eac-

tive 6ow distribution throughout the system, the corrective action suggested is the

adjustment in the reactive power injections from the reactive sources (filter banks).

A corrective algorithm is developed in orde¡ to correct the system ølerl (insecure)

state into a pref erred (secure) state. This algorithm is based on the s¿rrsitivif) of

the predictor design in terms of the selected features.

To provide the system ope¡ato¡ s,¡th the suggested appropriate action, the fol-

lowing algorithm, Fig. 4.14, is developed as:

(1) Derive the required predictor design d usiog the appropriate learníng scheme.

For example, assume tbe predictor design is a function of all features as:

d = F (x¡ x2, ..., x¡) (4.13)

(2) Formulate the predictor seûsitivity w.r.t. all features involved in the design

scheme as:

(3)

(4)

(4.14)

Select one oL the f easíble features, means all features under tbe operator con-

trol, to be the control f eature by which the operator will adjust system condi.

tions,

Re-evaluate the prediction sensitivity in terms of the control feature taking into

conside¡ation other features contribution.

^d 
=t*+ + . I + +..... + 4L Y to,,' ôx1 ðx¡ ôx2 ðx¡ ðx¡ ôx¡

^¿ 
= aF tt, ç -9å6'. +..... + E-6r,

ð¡r ' ðxz ' ðrî t

=hAxt (4.15)
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where ¡t is the control feature and å is a constant,

(5) Determine the amount of change in the control feature A.r¡ just required to

bring the s¡ntem into a normal state as:

Lx, = 6¿ ¡, (4.16)

Using a fast load flow simulation (DC load low), obtain the new system condi-

tions in general and the design features in particular.

Calculate the prediction index d and verify the required coûstraints i.e. if

d ) 0 proceed to next step, otherwise return to step (5) since the system is in

the abno¡mal (alert) state.

ConÊrm the action feasibility using system dynamic simulation.If it agrees then

opefator mey take action. In case it does not agree, which may happen in a very

¡a¡e situations due to a misprediction by the prediction scheme involved, opera-

tof has to recommend for a modiûcation in the design of the prediction system

and to decide an action based on his own knowledge and ñeld experience as

explâined in Fig. 4.14 .

In case of excessive modifications, an accelerating procedure could be employed

Lx,=o6OrO

(8)

¡¿(o)¡ø = (d(1)-d(Ð
(4.17)

where ¿ is the acceleration coefficient ¡¡6 ¿(o) ¿ ¿(t) ¡r the prediction index afte¡

zero, one iteration fespectively,
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4,7.1 Correctlve Actlon ol Llnesr Pr€dlction Scheme

With respect to tbe application of this algorithm to the problem of concern, the

following steps a¡e considered:

(1) Consider a predictor design as for example the scheme using Hold-out method

with the intuitive features involved as given by Eq. (4.10).

(2) Select the control feature as in this case the reactive power injection of filter

banks Q¡ .

(3) Assume that the change in ûlter banks MVARs Ap¡ is followed by an equal

and opposite chaoge in generator MVARs ùQ, i.e. ÁQr = -ÃQs.

(4) Evaluate the predictor sensitivity in terms of the control feature as:

àd = h àQr, h = -l31l3inthiscase.

A sample of the results obtained using the proceeding algorithm is presented in

Table 4.10a. It can be observed that only one iteration step is required for most of

cases and two iterations for one case in order to come up with the required correc-

tion, without the use of any accelerating process.

4.7.2

Consider, in this case, the stepwise prediction scheme designed for the double

contingency condition as discussed befo¡e in section 4.4.2 . This design can be writ-

ten as:

d =Wr X rws, Wr =fw¡w2,*tl , Xr =IX¿,ee,ez] (4.18)

The predictor sensitivity could be written as:

Ld = wz ÃQ, t ws LQ23 (4.1e)

and assume thât app¡oximately Àp, = AQzt = - LQr then substitute back in Eq.

(4.19), therefore, we can write:
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Table 4.10 SeIf-Excitation corrective actions

(a) linear prediction scheme

rnitiaL
predic.

i nde x

. (0)
cl

Initial
f i Iter

I'fVÀ R s
(0)

0F

Requ i red

fil-ter
MVÀR S

(k)
Q¡

F i na I
predic.

i nde x
(k)

d

No.

of

steps

k

À PPROVED

OPERÀTOR

ÀCTI ON
(k) (0

Qe -Q¡

-0.4776

-0. 1786

-0.0694

-0.0775

-0.3915

-1 .1571

-0.026s

-0.1125

-0. 1489

-0. 1851

-0.2239

75.00

'1 05.00

1s0.00

200.00

229 .50

229,50

24 5. 00

300.00

400.00

500.00

600.00

38.58

91.38

144.71

'1 94.09

194. 13

141 .26

242,98

291 ,42

388.64

485.81

582.92

0.1005

0.0301

0.0106

0.0116

0.0112

0.2094

0.0042

0.0173

0.0227

0 .027 1

0.0315

1

1

1

1

2

1

1

1

1

1

'1

-36 .42

-13.62

-5.29

-5.91

-3s.37

-88,24

-2,02

-a qa

-1 1 .36

-14.19

-17.08
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Ld=-(w2+w)LQe=hÁQr (4.20)

whe¡e å is equal to -0.16724 in this design scheme.

From Eq. (4,20) the correction in the control feature caD be determined in

orde¡ to enhance the system conditions. Following the corrective algorithm conse-

quence including the accelerating procedure, a sample of results a¡e obtained and

presented in Table 4.10b .It can be proved that the developed corrective algorithm is

very effective and helpful to the power system operators providing them with

appropriate actions ¡equired to improve system security.

4.t CoqqþÊþE!

This chapter provides a new application using pattern recognition techniques.

An efficient prediction system based on these techníques is designed. It rapidly

predicts self-excitation conditions so that the operator can take action necessary to

improve the system state,

The ¡esults obtained for the studied power system confirm the high perfor-

mance of the pattern-recognition based prediction system presented. The intuitive

identiûcation of features was very effective for this application. The discriminant

h'?erplane used for the predictor design was proven applicable for the prediction of

self-excitation problems. The use of this design method p€rmits a recursive adapta.

tion to new system conditions. The developed prediction-system structure.reduction

method was very useful. The developed corrective algorithm proved its effectiveness

for the application of concern.

The main conclusion in this chapter is that pattern recognition techniques catr

be applied to the prediction of power system s€lf-excitation operating problems.

These techniques âre very attractive candidates for on-line prediction schemes:

speed, accuracy, and ease of implementation can be accomplished.
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Table 4.10 (continued)

(b) stepwise prediction scheme

Initial
predic.

index
.(0)o

Initial
filter

MVÀRS

^ (0)
9p

Requ i red

filter
MVÀRS

(k)
o¡

Final

predic.

i nde x
(k)

d

No.

of

steps

k

APPROVED

OPERÀTOR

ÀCTI ON
(k) (0

Qr - Qr

-0.0817

-0. 1534

-0.0668

-0.0947

-0.1429

-0. 1982

1s0.00

1 9s. 00

250.00

350.00

450.00

550. 00

85.95

87.00

204.22

285. 1 9

355. 51

417.96

0.0019

0.0004

0.0009

0.001s

0.0006

0.0011

)

2

2

2

3

-64.05

-108.00

-45.78

-64 .81

-94 .49

-132.04



CHAPTER 5

LOAD REJECTION DYNAMIC OVERYOLTAGES:

PREDICTION SYSTEM DESIGN

s.r Isl¡qg.s-sgsq

As discussed before in chapter 3, load rejection may lead to dynamic overvol-

tage problems, This situation can a¡ise in cases pa¡ticularly wbere self-excitation has

not occurred, depending on the number of macbines in service ¡elative to the

number of ûlter banks. Dynamic overvoltages are considered unacceptable coûdition

in power systems, They have many side-effects on tbe op€ration of hydro power sta-

tions [5].

An overvoltage prediction system is to be designed in this chapter. Linear and

stepwise prediction schemes are considered in the design process. Communications

failu¡e and its effect on the performance of the prediction system is discussed.

Reduction of the prediction system structure is treated. Finally, a corrective ârtion

algorithm is developed.

A Load rejection predictor scheme is shown io Fig. 5.1. In this ñgure two

predictor scbemes ale connected in se¡ies: the self-excitation predictor and the

overvohage predictor. The self-excítation predictor predicts self-excitation states,

and the overvoltage predictor predicts overvoltage conditions for all noself-

excitâtion states.

5.2 Dvnsmlc Overvoltsge P¡ttern Sct

Radísson Converter Statíon blocking (dc load rejection) is the most likely con-

tingency fo¡ the Northern system, Therefore, the 6rst step is to create, due to that

cootingency, a dynamíc overvoltage pattern set sufficient for the prediction system

design. In order to do so, the load rejection pattern set (124 patterns) created before
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in Chapter 4, is used âgain, but ín this case excludíng all self-excitation cases. In

other words, the overvoltage pattern set is constructed from all no-self-excitation

conditions (90 patterns) created due to load rejection.

As shown io Fig,5,2, the dynanic ovewoltage 'limit' is taken here at 1.26 p.u.

This results in an overvoltage pattern set having 50 normal patterns and 40 abnormal

Patterns,

5.3 Dvnamlc Overvoltaqe Features

As mentioned beforc,lhe príncípal component method is applied bere again to

the voltage pattern set in order to determine the sufficient number of features

needed fo¡ the prediction pÍocess. Table 5.1 presents the results obtained in this

case. These results conûrm that only four features (for a tolerance of 7Vo) arc

required to provide the prediction system with the appropriate information.

In order to select the most informative va¡iables to be considered as features,

the feature ideotification techniques of Section 2.4 are employed. Table 5.2 includes

the features obtained in this case.

5,4 Overvoltsqe Predlctor Deslen snd Evsluatlon

The pattern set having been created and the informative f€atures identified, the

next stage is to design lhe overvoltage predíctor and evaluate its performance. In

this design process, two schemes are considered: the linear prediction scheme and the

stepwise prediction scheme.

s.4. r !þe¡¡_p¡!¡sUss_lsEs!

In this approach the Resubstitution and Hold-out design methods are involved,

along with the VSM and intuitive feature approaches,

Regarding the desigû process using the Resubstitution method, tbe results

shown in Fig, 53 sbow the sele¡tion process of the two design parameters o 
^Dd
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Table 5.1 Principal components results

e.v.: eigen-vaLue

Table 5.2 Dynamic overvoltage features

Feature no. 2 3 4

218.6780 16.052s 4,4473 0.4396

sum % 91 .26 9'7 .96 ôo o I 99.99

Feature

no.

vSM me Lhod Steplij se method Intuitive
featuresfeature VSM feature SM

1

2

3

4

v3

Qzl

Qp

xd

2954

0369

h I ¿ó

3362

0

0

v3

62

jfd

Qz3

133.7678

79.8336

12.0086

3 .7 632

xd

Q¡

Qs

t- -'td
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PR. The best designs a¡e selected at o = 5.0 and PR = 1.03 for the case of usi¡g the

VSM features , and at o = 6.0 and PR : 1.08 using the intuitive features.

The selected design of the predictor hyperplane for this case and using VSM

featu¡es is obtained as:

d = rilr X * ws

where:

¡7 = [ -0.1138, 1.4888, - l,0326, - 0,0908 jr , po = -0.0956

X =lVyQzt,Qr,X¿ lr

and for the intuitive featu¡es is given by:

(5.1)

p = [ -0.1039, - 1.2818, 13719, -O.O932lr ,no= -0.1824

X =lX¿,Qr,Q6,I¡a lr (s.2)

The evaluation results shown in Table 53 indicate the performance of the pred-

iction system designed herein. These results verify that the overvoltage prediction

accuracy can be as lovv as 94.44Vo and as high as 9556Vø. Also, it can be observed that

the VSM features are more powerful and info¡mative than the intuitive features for

the application of concern.

Now considering the predictor design using in this case the Hold-out method

and taking into account that the VSM features are involved as well as the intuitive

features, Table 5.4 presents the ¡esults de¡ived due lo the partilioning of the pattern

set into design and test sets, These results indicate that only 35 patterns are good

enough for the design s€t. Also, the VSM features are more effective and superior

than tbe irtuitive ones. Moreover, a 95 56Vo overall prediction accuracy is achieved

with only 2 iterations to come up with the accurate design set.
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Using the achieved design set, Figure 5.4 provides the design results obtained.

From these results the selected design schemes in this case are given as:

y¡ =[-0.04a7,05396, -03711,-0.1040]1 ,wo= -0.0347 (s.3)

using the VSM features, and

y¡ = | -0.1277, - 0.4895, 0.4558, - 0.0259 lr , wo = -0.0567 (5.4)

for the case of intuitive features.

Table 55 shows the ¡esults achieved for the overvoltage prediction system

evâluation. These results confirm that the highest accuracy (9556Vo) achieved by the

prediction system prerented and on the application of concern, using the VSM

features method.

5.4.2 !tep_ElS!_prÊdlgllqggh€Eg

In this design scheme, the stepwise featu¡es a¡e involved as well as the stepwise

learning algorithm. Also, using this scheme, the dependence on the number of

features or steps (/ ) -d on the pr¡or probabílity of different classes, could be

derived from the results presented in Fig. 55. A perfect prediction accuracy is

obtained at p1 = 0.6. The optimal design selected is given by:

¡y = [ -0.9996, 0.0086, -0.0288, -0.00087 11 , ro = 1.0969 (s5)

The results presented by Fig.5.6 show the prediction accurâcy of a particular

class of patteros and its prior probability factor. Patterns of class 1 are completely

fecognized when p1 is greater than 0.6, and on the other hand, patterns of class 2 a¡e

also completely recognized when p2 is greater than 0.2 In addition, it can be

observed that both classes a¡e of 700% prediction in this case for the range of

6.6< p t< 0,8 .
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The performance evaluation of the prediction scheme under consideration in

the design stage is reported in Table 5.6. The system evaluation in the testing stage is

also veri6ed, From these results, a prediction accuracy of. 700% in the design stage

0 = a) is achieved a¡d a Vl ,9Vo evaluation accuracy can be conñrmed.

In conclusíon, the bighest prediction accuracy of a particular class of patterns,

for a two-class problem, can be achieved wheo its prior probability is greater than 0.5

The stepwise predictor spectrum, shown in Fig. 5.7, interprets the

prediction oulput (iîdex) and its change for the available patterns. It extracts weak,

average, and strong patterns according to the predictioD output value given to each

pattern in the pattero set. In additiotr, it displays tbe range of tbe prediction system

Pres€nted for this application.

5.5 Prcdlctlon ol Svstem Overvoltsses

As discussed before, the main function of the overvoltage prediction system is

mainly to predict overoltage problems. This is of course in order to avoid any over-

voltage stresses on the po\ ef system elements. Another purpose based on the pred-

ictor outputs þrediction indices) could be lhe estímalíon of system overvoltages.

The estimation of these ovefvoltages is very valuable for the procedure of

identification of overvoltage busses, which in turn will guide the process of taking

corrective actions,

The procedure developed he¡ein is mainly based on the r¿gr¿ssion of the sys-

tem voltage deviations and the predictor outputs, Using the leøsl squares method,

post -contingcrlcy system voltages o4 all busses cen be evaluated. In fact, the basic

idea behind this algorithm is that the voltage deviations are a function of the predic-

tor outputs, We assume that this relation ís in a quadratic format:

AV =aorald * a2d2 (s.6)

where øg, a l&. a2 ate constaots for each bus. Tbese constaûts are to be determined
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using a least squares technique, taking into account that the voltage deviation Ay at

each bus and predictor output d Àre available lor all cases in the pattern set. Then,

knowing the pre -conlíngency conditions V¡1 , tbe post-contingency voltages yp

could be estimated.

The algorithm procedure starts by calculating the ¿'s constants at each bus. For

example, consider any pafticular bus and evaluate the voltage deviations and the

corresponding predictor outputs for all patterns in the pattern set. Therefore, the

following form can be obtaioed as:

Vp¡ - Vu¡ = ao+ drd 
1¡.1 

* a2dqi¡z

í = t,2, ...., n

In matrix form this equation could be rew¡itten as:

Ívp -vul =[D].txl

where:

n = is the number of patterns in the voltage pattern set.

lvp - Vul = IVpt - V¡11,Vp2 - Vuz, .....,Vpn - Vunlr

(s.7)

(s.8)

lDl =

I dlt¡
I dp'1

I d6¡

',rtl

"!i,l[X] = [oo, a1, a 2lr

From eqn. (5.8), there a¡e 3 unknowns and n observations with n ) 3 . There-

fore, the solution of this equation ca¡ be derived using the least squares technique.

The obtained solutions for the systeD under study and using the available states in

the pattern set are given by:

ÍXl' = 10.1754, -0,8289, -53.95121 , lor voltase V 1



99

= 10,2514, -!.2477, -77 5t9ll , f,ot voltage V 2

= [0.2590, -1.2115, -80.0605] , î,or voltage Vs (s.e)

Figure 5.8 shows the ¡elation bet\ùeen the voltage deviatíon AV and the predictor

output d at bus 1, bus 2, and bus 3 using the least squares solution. This solution has

a maximun error of 75% for the case of bus 1, 2.O% f.ot bus 2, and 2.7Vo Lo¡ bus 3.

These e¡¡ors are all in the pessímistíc direction, that is the predicted voltages are

usually worse than the actual values. This is thought to be due to the predictor mis-

ranking process of some states in the pattern set, In addition, the mean absolute

error is equal to A.llVo in predicting voltage V 1, 0.98Vo in predicting voltage V 2 , and

7.02Vo in predicting voltage V 3.

In order to evaluate the developed algorithm, a set of 20 historic testing states

of different conditions is used. Table 5.7 presents the results achieved using tbis algo-

rithm. It can be seen that the results are promising and they indicate that this algo-

rithm can be used effectively, and it has a potential for further extension. The max-

imum e¡¡or recorded is about 03Vo in predicting voltage at bus 1 , about 0.5Vo in

predicting voltage at bus 2, and a,bout 0.7Vo in predicting voltage at bus 3.

The algorithm presented here has many advantages compared to the one

presented by Mc Clelland [8]:

1- The¡e is no need to store all patterns in the pattern set, the¡efore, there is no a

storage problem.

2- The larger computation part is to be done off-line, hence, the computatiorì time

required for real time implementation is very small compared to that presented

in Ref ,[8],

! The algorithm is simple and has no weighting coefficients to be calculated by

t¡ial and eror as in [8].
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Table 5.7 Predict.ion of system overvoltages

Case vu1 vpl vP1 * Etror %

I

¿

t

6

7

I
o

10

11

12

13

14

t5

16

18

19

20

I .0100

1.0100

1.0100

1.0100

1.0100

1.0100

1.0100

1 . 0100

1.0100

1.0100

1.0100

1.0100

1.0100

1 .0100

1.0100

1 . 0100

1.0100

1.0100

1.0100

1.0100

1 .1898

1 .1894

1.1892

1.1897

1 . 1893

1 .1897

1 . 1894

1 .1896

1 .1 892

1.1891

1 .1883

1 .1850

1 .1838

1 . 1883

1 . 1890

1 . 1890

1 .1895

1 .1889

1 .1893

1.1893

1 . 1883

1 . 1884

1 . 1883

1 . 1883

1 . 1884

1 .1884

1 .1885

'1 .1881

1 . 1883

1 . 1882

1.1879

1 . 1866

1.1877

1.1883

1 . 1883

1 . 1884

1 . 1884

1 . 1858

1 . 1882

1 . 1882

-0. 13

-0.08

-0.07

-0.12

-0.07

-0. 1 1

-0.08

-0.12

-0.07

-0.07

-0.03

0. 13

0.33

0.0

-0.05

-0.05

-0.09

-0.26

-0.09

-0.09

Vy] : pre-contingency voltage at bus 1

Vpl : post-contingency voltage at bus 1

V"1*. pred'cted voltage at bus 1
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Table 5.7 (continued)

Ca se vM u"2 uo2* Error %

1

2

J

4

R

6

7

I
9

10

11

12

13

14

15

16

17

18

19

20

1 .0200

1.0190

1 .0190

1 .0200

1 .0190

1 .0200

1 .0190

1 .0203

1 .0194

1 .0204

1.0207

1 .027 7

'1 .0251

1 .0207

'1 .0196

1.0191

1.0'1 90

1 .0205

1.0204

1 .0197

1 .277 4

1.2760

1.2753

1.2774

1.2757

1.2773

t-¿tb¿

1.2773

t.¿t5é

1 .27 67

1.2758

1 .2783

1.2739

1.2757

1.2757

1.2753

1 ,27 60

1,2765

1.2770

1.2763

1 .27 61

1.2752

1 ,27 51

1 .27 61

1.2752

1 .27 62

1.2753

1.2762

1.2755

1.2764

1.2763

1.2815

1 .2804

1.2768

1.2757

1.2753

1.2753

1.2733

1 .27 54

1.2756

-0.1 1

-0.06

-0.01

-0. 10

-0.04

-0.09

-0.07

-0.09

-0.02

-0.03

-0.04

0.25

0.51

0.09

0.0

0.0

-0.0s

-0.25

-0.05

-0.0s

vyl: pre-contingency voltage at bus 2
vp;3 post-conlingency voLtage at bus 2
Vp'*: predicted voltage at bus 2
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Table 5.7 (continued)

Ca se
2Vu" Vp- uP3 * Ertor %

1

2

J

4

5

6

7

I
9

10

11

12

13

14

15

16

17

18

19

20

1.0180

1 .0170

1 .0170

1.0180

1.0170

1.0180

1 .0170

1.0186

1 .017 6

'1 .0189

1 .0195

1 .027 0

1.0242

1 .0195

1.0180

1 .0173

1 .01 78

'1 .01 90

1.0188

1.0179

1 .2839

1 .2824

1 .2816

1 .2837

1 . 2818

1 .2834

1,2822

1 .2829

1 .2814

1.2818

1.2796

1 .2825

1.2779

1.2795

1 .2810

1 .2809

1 .2829

1.2812

1 .2823

1.2819

1.2811

1 .2803

1 .2802

1 .2812

1 .2803

1 .2812

1 .2804

1 .2815

1,2807

1.2819

1 .2821

1.2875

1 .2864

1 .2826

1.2811

1 .2806

'1 .281 1

1.2784

1.2817

1 .2808

-0.22

-0. 16

_fl l I

_^ r o

-0 .12

-0. 17

-0.14
_ô I I

-0.05

0. 01

0,19

0.39

0.66

0.24

0. 01

-0.02

-0. 14

-0,22

-0.04

-0.08

v¡l : pre-contingency voltâge at bus 3
vpi : post-contingency voltage at bus 3
Vpr*: predicted voltage at bus 3



Í

104

The developed algorithm considers different system configurations and loading

conditions a¡d can be extended to include all tikely system contingencies,

The extended version can be installed in a real time computer system as an

implementation of a fast dynamic voltage prediction, which could be autobati-

cally executed every 5 minutes,

5.6 Effect of Telemeterlne Communlcatlons Fallure

The prediction system functions cannot be fu16lled without a supporting

communicatíon system (information system). The principle function of this com-

munication system is to determine the operating conditions of the power system and

provide the necessary info¡mation inputs to the prediction system. In addition, the

communication system will provide the /in& between the power system and the sys-

tem operator ot díspøtcher, giving him information on request.

The required information ¡epresents the measurements, and measurements

include data obtâined from the porver system and f¡om tbe environment. The

environment also in tu¡n repres€nts all kind of external factors which affect the

electrical conditions of the system, Tbe problems of measurement atrd their hardware

and communication aspects will have a decísive inûuence on the structure of the

control center in general and the prediction system in particular [60].

The main purpose of the comDunication system is to provide the

ínf ormation paths fuom local Êtations to the control center and the conrol paths

back f¡om the control center, The¡efore, the failure of any of these paths (channels)

may have a large effect on the performance of the prediction system. In order to

avoid such a problem, we must either reduce the probability of failure or improve

the system performance despite the failure. The 6rst approach, to be considered

here, requires identification of those highly informative channels. For this case Table

5.8 presents the system performance due to the lack of each channel one at a time,

From these results, the most powerful channels can be identified as well as the least
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TabIe 5.8 ( cont inued )

(c ) Stepwise features

Channe I

failed
Stepw i se des i gn

CIass 1 Class 2 Total
v3

6z

Ifa
Qzg

100.0

100. 0

100.0

100.0

0.0

0.0

0.0

95. 00

55.56

55. 56

55.56

97 .78
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s,7

signi6cant channels.

As discussed in section 4,6, an attractive algorithm is developed in o¡der to

reduce or simplify the prediction system structure, Since the main purpose of the

communication eystem is to provide the predictiotr system with the required informa-

tiotr, it is mo¡e economical to use tbe minimum number of required channels.

The developed algorithm is applied in this case to the dynamic overvoltage pred-

iction system and the results are reported in Table 5.9. These results confirm the

possibility of reducing the number of charûels (predictor features) by one channel.

The ove¡all prediction system performance should not be sigûificantly affected by

this process,

5.t Development of Overvoltsqe Correctlve Actlon

Using the developed correctíve algorithm discussed in section 4.7, 
^ 

prcventive

measure or improving measure can be achieved, The dynamic overvoltage problem,

the problem of concern in this chapter, has a strong correlation with the reactive

sources in the power netwo¡k, Therefore, the adjustment of the reactive power

sou¡ces is the control feature to be considered in this application.

Considering the linea¡ prediction scheme, see section 4.7.1, designed fo¡ this

application and following the same sequerces of the corrective algorithm, a sample

of results, Table 5.10, can be obtained, It can be seen that only one iteratioû step is

needed in o¡de¡ to develop the required co¡rections,
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Table 5,9 Reduction of Ov-prediction system strucLure

No. of

features

Resubs. des i gn Hold-out design

VSM Intuitive vsM Intuitive
4

3

95.56

95.56

94,44

94.44

95. 56

9s.56

93.33

o1 't 't

2 -t 6 .67 73.33 44 ,44 62 .22

Table 5.10 Overvoltage corrective actions

InitiaL
predic.

index
(0)

d

Initial
filter

MVÀRS
(0)

Q¡

Requ i r ed

filter
MVÀR S

(1)
Q¡

Final
predic.

i nde x
(t )

d

APPROVED

OPERÀTOR

ÀCTI ON
(1) (0

VF YF

-1 ,2489

-0.5304

-1.3036

-0.6469

-2,8646

-3.648s

100.00

1 50,00

250.00

300.00

450.00

550.00

Et ô,

130.01

200.87

275,62

342.05

412 .51

0.0735

0.0363

0. 1003

0.0507

0.2360

0.3069

-41 .06

-19,99

-49.13

-24 ,38

_ 1n? otr

-137.49
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5.9 Conclu¡lons

A new application based on pattern recognition techniques is discussed in this

chapter, A successful overvoltage prediction system based on these techniques is

designed. It predicts overvoltage conditions in a very short time so that power system

dispatcher can decide and tale actions as required in the appropriate time in order

to improve the system conditions,

The results provided in this chapter confirm a very highly performed prediction

system. The VSM features method was very effective compared to the iotuitive

method for this application of concern. A perfect prediction of overvoltage prob-

lems was achieved using the stepwise hyperplane design. An overvoltage cor¡ection is

developed using the corrective algorithm.

A general conclusion can be drawn: pattern recognition techniques can be

applied to the prediction of power system dynamic overvoltage op€rating problems.



CHAPTER 6

MULTI-CLASS PREDICTION SYSTEM DESIGN

6.1 Introductlon

Power system dynamic overvoltages as well as generator self-excitation have

been t¡eated so far as a two-class problem in chapters 4 and 5. This chapter concerns

the multi -class approach i.e. the class prediction of a given pattern among patterns

belonging to more thân two classes e,g, normal, dynamic overvoltage, and self-

excitatio¡ patterns due to power system load rejections.

The design of the required prediction scheme, called a

Iínear predíctíon mdchíne, is described. This approach has never appeared in the

literature so fa¡, It offers more capabílítíes and at the same time it has some limíf¿-

tions, O¡e of its main advantages could be the reduction in the telemetering com.

munications compared to the two-class approach, Moreover, this scheme could be

much mo¡e efficient and of less computation time (during the desígn process). How-

ever, one of the disadvaotages is the reduction in performance when a telemetering

channel fails, in comparison to the two-class approach. The estimation of prior pro-

bability could mate the design of multi-class system a difficult task.

This algorithm could be useful and it has some variety of applications, e.g. it

could be used for the oû-lire âssessment of both steady state and transient security

problems at the sane time [2,8].

6.2 Confieuratlou of Multl-Clsss System

As discussed in chapter 2, the multfclass prediction system configuration is very

similar to that of the two-class case, except that the predictor design scheme is

different in this case.
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As stated before, power systeE load rejection may result in a generato¡ self-

excitâtion and/or a Eystem dynamic overvoltage. Therefore, a situation of simila¡ con-

ditions could be treated as â thre.€-class recognition problem e.g. normal class, over-

voltage class & self-excitation clâss, as explained in Fig. 6.1.

In order to come up with the required multi-class prediction scheme, it ís

required to follow the sañe design phases as desc¡ibed in cbapter 2,

Regarding the pattert generation phase, all load rejection patterns (124 of

them) a¡e classified using the employed dynamic simulation model into normal pat-

terns (50), overvoltage patterns (40) & self-excitation patterns (34).

On the other haûd, the feature vector is identi6ed using the stepwise algorithm,

The featu¡es obtained in this concern are:

V y Ey Qr, 62, Qzt, I¡ ¿, P 6, X¿, P,

ó.3 Multl+lass Predlctor Deslen md Evaluatlon

Following the sâme procedure âs that for the stepwise algorithm, the multi-class

design scheme can be de¡ived. The design process in this case is a function of four

variables: / , p L, p z& p3 rvhere

/ is the required number of features

pt pz& p3 are the prior probability of class 1 , class 2 and class 3 respectively.

Utilizing a numerical experimentation approach, the optimal design scheme can

be deûned with the mun objectíve of achieving tbe maximum overall prediction

accuracy, Figure 62 presents the results obtained under these conditions, The predic-

tion accuracy obtained when p 1 and / are changing and assuming lhat p z = p 3, ate

given by Fig.6.2a. Similarly, the prediction results obtained considering the change

in f aad p 2, f and p 3 are shown in Fig. 6.2b and in Fig. 6.2c respectively.

The ¡esults provided during the design have come to the optimal number of

features and the optimal combination of prior probabilities, these are:
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Í = 5, pt = Pz = 0,25, p3 = 050' The predictor maximum accuracy reached is

97jVo.

In order to investigate the effect of number of features and the prior probabil-

ity on the th¡ee-class prediction accuracy, Fig' 6.3 is provided. In Fig. 63a the

number of features is ûxed at 5. The insignificant effect of prior probability p3 on

the prediction of class 1(normal patterns) can be verified, while the high depen'

dence of class 2 (overvoltage patterns) and class 3 (self'excitation patterns) oû p3 can

also be observed. ln additíon, Fig' 6.3b explains the relation between tbe number of

featu¡es and the prediction accufâcy of each class, for the best probability condi-

tions.

Regarding the evaluation process for the prediction system of concern , the

leave-one-out method is used. The evaluation ¡esults are important in providing us

with the degree of conf idence by wbich we can rely on the achieved design scheme,

see Table 6.1 .

It must be emphasized here that the total CPU computation (design) time for a

two-class problem is about 0.86 sec (AMDAHL)' while it is about 0.96 sec for a

thfee-class case.

6.4 Multl-cl¡ss Svstem Perlormsnce s¡d Effect of Communications Fsllure

The performance of a multi-class prediction system is very dependent on the

communication channels. This is due to the fact that these channels are involved in

the process of recognition of more thaû two classes at the same time. Therefore, the

multi-class system perforrnance will be highly affected by the degree of. availabílity

of communications.

Table 6,2 shows the behavior of the prediction system of concern due to the

failu¡e of telemetering channels. It can be s€en that the prediction of class 1 is very

sensitive to ô3 channel, while the prediction of class 2 is highly dependent on

Qr,Vl& ô2 cbannels. It âddition, the failure of p¡ channel bas no signiûcant
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Table 6.1 Evaluation of mul.ti-class system performance

No. of

features

Ðesign accuracy

Class 1 CLass 2 class 3 Tota l
'1

2

3

4

R

86.0

96.0

94.0

96.0

100.0

35.0

67.5

70.0

70.0

82.5

100.0

100.0

100.0

97 .1

88.2

1? L

87 .9

87.9
o'7 0

91 .1

Table 6. 1 (continued)

No. of

features

Test ing ac c urac y

class 2 Class 3 Tota 1

'1

2

4

q

86.0

96.0

94.0

96.0

98.0

35.0

65.0

62 .5

57.5

70.0

100.0

100.0

8s.3

8s.3

61.8

12 L

87.1

81.5

80.6

to r\
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Table 6,2 MuIti-class prediction performance due to
commun icat i on fa i lure

Channel

fa i Ied

Prediction ac c urac y

CIass 1 Class 2 class 3 Tota I
v3

63

Qp

62

9zg

100.00

0.00

100.00

100.00

78.00

0.00

100.00

17.50

0.00

97.50

0.00

0.00

J4. I ¿

0.00

5s.88

40.32

32.26

71,77

40.32

78.23
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influence on the prediction process of class 3 ,

The results provided by Table 6.2 can lead us to a general conclusion: tbe

overall pe¡fctrmance of the multi-class prediction system developed has dropped to a

low level (78.23Vo) due to a failure in communications i.e. the system performance is

highly degraded. Therefore, it is considered as one of the limitations concerning the

application of multi-class approacb.

ó.5 Multl.class Csnonlcsl T¡ansfornstlon

In this section a transformation algorithm [49] is applied in order to derive a set

oî. canonícal functions (CF). For a multi-class system (c classes) there a¡e c-l
canonical functions e.g. for a thfee-class system there two canonical functions. These

functions are to be determined for each pattern of the whole pattern set.

The algorithm involved he¡e is based on the solution of a generalized eigen-

value problem:

T(X)v¡ = À¡ IY(X) v¡

v,r w 1x¡ v¡ = ö¡j

i = 7,2, ...,f

whe¡e:

f (X), W (X) : are the total and within groups sum of cross product matrices respec-

tively

[À1, À2, ..., À¡ ] : are the eigen-values in a descending order

lv y v 2, ..., v¡ I : are the correspônding eigen-vectors

ô¡¡ : is the K¡onecker delta function

X = fxp x2t ....; x¡ lr : is the feature vector

Solving Eq. (6.1) then using the v¡ solution to define the c¡.nonical functions as:

(6.1)

CF¡(X) =X vt1, í = 1,2,...,c-l (6.2)
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The plot shown in Fig. 6.4, provídes the scattering of the three classes of con-

ce¡n, This plot is obtained from the two canonical functions (variables) determined

for each pattern. The letters A, B & C a¡e to indicate patterns from class 1, class 2 &

class 3 respectively, On the other hand, the numbers 7,2 & 3 afe to represent each

group mean , while the asterisks denote overlap betvreen different groups.

6.6 Concluslons

A multi-class prediction system is designed and applied to a three-class predic-

tion problem. The multi-class approach bas many advantages and it posses some limi-

tations. One of the advantages is the communication ¡eduction which may simplify

the structure of the communication system required. On the other hand, the desigr

of an optimal scheme ís not atr easy task and it has some diffículty. Also, the

required classi6cation time for tbe multi-class approach may be longer or equal to

thât fequired for the two-class approach.

In general, for power system applications the two-class approach has proved to

be applicable and for the purpose of prediction it is highly recommended,
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CHAPTER 7

VOLTAGE CONTINGENCY ANALYSIS DUE TO SYSTEM

OUTAGES

7.1 lntroductlon

In the last few chapters (4,5 & 6), \rye were concerned with rhe application of

pattern recognition tecbniques to the prediction of load rejection self.excitation con-

ditions and dynamic overvoltages as welt. Therefore, this application was for a

dynamic power system operating problems. This chapter deals with the normal,

(steady state), operating condition. For this condition power system on-line

conlingcncy analysìs is of major interest (for system planning and operation) at

control cenlers

A new pattern recognition based algorithm for power system voltage con-

tingency anal¡sis, is introduced in this chapter. The algorithm is based on the design

of a contingency selector (CS), or díscrimínant hyperplane in pattern recognition

terminology. The design of such a CS is based on a training knowledge. Using the CS

a screening and ranking of voltage problem contingencies can be obtained. Further

processing on tbe finalized list of conti¡rgeûcies can be performed in order to

develop, if called for, the required corrective actions.

7.2 Volt¡se Contlnsency AnEIvsl¡ snd Methodoloeles

Since modern power systems are gettiog large and more extensively intercon-

nected, the task of contingency analysis and control is becoming difficult for tbe sys-

tem dispatcher. Fo¡ this reason, on-line contingency analysis is gaining much atten-

tion, and rightfully so, as new energy control centers a¡e developed and applied [22-

26).
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In the methodology of contingency analysis, overload and voltage contingency

analysis bave been separately considered 127-37), The overload contingency analysis

(P /ô) has been efficiently and reliably developed, and is being implemented in new

control cente¡s [61]. On the other hand, voltage contíngency analysis (Q /V ) is a very

difficult problem due to its nonlinea¡ behavior. At efficient and reliable algorithm

bas not been developed yet 1621.

Tbe direct approach to contingency analysis means that at a givet system condi-

tion, AC power flows for all likely contingencies (hundreds), single and multiple, is

to be performed for every assigûed period, usually in the range of 2 - 3 minutes,

Therefore, a large computation burden is required in order to analyze all these con-

tingencies, which is difficult to overcome. As a result, a contingency selection

methodology was introduced. The idea behind tbese approaches is to select only

those contingencies conside¡ed critical and then perfo¡m AC power ßows for these

cases (see Fig. 7.1).

Several papers have proposed CS techniques, However, CS techniques can be

grouped into two diffe¡ent groups: a sensitivíty analysis based group [28-37,61], and a

f øst load f low bæed group 1271. Sensitivity techniques are based on performing

the base case AC load flow a¡d using the sensitivity matrices to predict system

changes due to outages. On the other hand, the fast load ffow group is based on the

evaluation of DC or fast decoupled power ûow for eacb assigned contingency

(outage); then by use of a predefined performance index, a short list of critical con-

tingencies can be produced fo¡ furthe¡ atalysis. It must be noted here that, sensi-

tivity analysis is less efficient thatr the fast load flow algorithms but more reliable

162).

Currently CS algorithms are judged in terms of their Caplure ßøte (CR) and

the False-Alarm Rdt¿ (FR), which a¡e de6ned by [31]:

CR=1-NM /NNC FR=NFA/NC (7.1)

whe¡e iVM is the number of misses out of N/VC the numbe¡ of noncritical
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Fig.7.1 Metbodology of contingency selection and analysis
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contingencies and rVFÄ is the number of false ala¡ms out of iVC the number of criti-

cal contingencies, It must be noted that Miss means classifying a critical con-

tingeûcy as being noncritical and False -Alarm means classifying a noncritical con-

tingency as being critical.

If there are no misses and false-ala¡ms, then CR =1, FR =0 , and the CS algo-

rithm correctly predicts the impact of every contingency. Thus the effectiveness of

the CS algorithm should be evaluated in terms of both CR & FR.

7.2.r@
This algorithm is a new concept in formulating a performance index for voltage

contingency selection. It is â DC load fforv based algorithm. The index is a second

order vector norm in the voltage space. Two types of voltage limits are defined:

alarm limit s aad security /imits. Contingency cases of indices greater than 1.0 are

considered insecure cases.

This algorithm has many advantages compared to others [28-37]. These are:

(1) It considers the magûitude of voltage violation as: (a) maximum magnitude ; (b)

combined magnitude; and (c) average of voltage violations.

(2) It takes into accouût the number of voltage violations.

(3) It is a function of the system load level.

(4) It is a function of the distance between voltage violations and their limits.

(6) It is based on the relative importance of each voltage violation.

This algorithm can be explained by de6ning the following terms (see Fig.7.2):

V (') : vottage magnitude at bus i

FLç)ø), FUç)ø): lower and upper voltage alarm limits at load level Z



vD(i)

I

I

I

Éii:ï:|jl
Fig.7.2 Secure, alarm, and insecure voltage zones,
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VLU)(L), VU$)@): lower atrd upp€r voltage security limits at load level Z

VDç)(L): desired volrage at bus í and load level Z

ÀV(') : voltage deviation beyond alarm limits

,lVå : number of system busses.

The voltage deviation AV(') can be defined as:

6y(i) = y(i) - pUç)(¿) ; if y(¡) > FU(r)(¿)

= p¡(t)1tl - y(i) ; if y(,) < FL(i)(L)

= 0 i íf FLç)(Ð = y(d) < FU(i)(Ð e.2)

Rewriting Ây(i) into two terms DII , DL (corresponding to two limits) as defined by

DUç)(Ð = [y(,) - FU(r)(¿)] ; if y(i) > FUç)@)

= 0 ; if y(,) < FUQ)(L) (7.3)

and

DLç)(Ð = ÍFLç)@) - y(¡)l ; if y(i) < FLQ)(L)

= 0 ; if y(i) - ,¿(i)(L) (7.4)

The performance index P/V 1 catr then be defined as:

NBprvt=[ I (tu<,1 DU(ù@)1. * it 4¡(i) p¿(i)1¿¡,¡a 11/a (25)
i=l J=l

which desc¡ibes a hyper -ellípse in the voltage space. Tbe terms AU &AL are defined

by

¿s(t) = t.o /Ívue)@) _ FU(t)(Ð!

ALU) = t.o / IFLç)(Ð _ vLç)@)l e.6)



128

F¡om the deûnition of the performance index, PIV y the system voltage coodi-

tions are classified as:

secure state iÎ PIV t = g

alarm state if 0< PIV1= I

insecure state iÎ PIVr> I

The algorithm preseûts an accurate screening and rankíng voltage index. At

the same time, it has some disadvantages: 1- the computation time needed is larger

than the sensitivity based approach for on-line applications; 2- it generates bonafide

as well as pseudo voltage violations.

7.2.2 Ejebe Selectlon Alsorlthm f2tì

This algorithm is a s¿nsitivify based approach. It presents a methodotogy

developed for ranking line and generator outages according to the severity of their

effects on bus voltage proûle. It employs Tellegen's theorem to derive the sensitivi-

ties of a performance index due to system outages. By ordering these sensitivities a

contingency ranking can be obtained. Full AC load ûow must be carried out for crit.

ical contingencies. The set of critical contingencies is determined by simply running

load ñow from one contingency to another starting at the top of the list and screen-

ing out cases that do not give problems,

The voltage constraínts at the load busses are usually expressed in terms of a

high and low limit. The high limit is imposed by the maximum volrage value of the

system, and the low limit is a value below which the load can no longer be supplied

with the required quality of supply. In ligbt of these constraints, tbe voltâge perfor-

mance index must be deûned in such a way to reffect the severity of out.of-limit vot-

tage values, Therefore, the performance index defined by this algorithm is chosen to

quantify s¡mtem deficiency due to out.of-limit bus voltages. It is deûned by:

i o, t (v(t) - vp(i)¡ / tvilit y
i =1

PIV2= (7.7)



729

where:

VD (i ): desired (specified) voltage magnitude at bus i

AVL$); voltage deviation limit at bus i

The voltage deviation AVI (¡) represents the voltage limit. Outside this limit

voltages are unacceptable and yield a high value of index PIV 2. On the other hand,

when voltage deviations a¡e within Ay¿(') the system voltages will not be a problem

and the index in this case will be small. Generally speaking, this voltage index meas-

ures the severity of the out-of.limit bus voltages, for a set of contingencies, it pro-

vides a direct means of ranking the ¡elative severity of these contingencies on tbe

system voltage proÊle.

This ranking algorithm has the advantage of reducing the computation time

required for on-line applications purpose, compared to the Nara approach. On the

other band, it has some drawbacks:1- it is not an efficient ranking algorithm;2- the

screening criterion involved needs to be enhanced.

7.3 New Psttern Recosnltlon Bas€d Voltsge Contlnsency Anslysls

7.3.1 Introductlon

This section is to present a CS algorithm based on pattern recognition tech-

niques, to be used for voltage contingency analysis, The automatic contingency

analysis problem is concerned with the developing of an efficient algoríthm which

can rank and classify contingencies in terms of their impact on system performance.

None of the available contingency selection methods can recognize all c¡itical

contingencies. Some severe contingencies may be omitted and some that are not

severe mây be included, In many cases, an increase in accuracy can be obtained only

at the price of a dec¡ease in execution speed. Moreover, some of the selection algo-

¡ithms [2718] have the desirable property that each bus voltage has its own reference

voltage. Unfortunately, thís feature results in computational difficulties which
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prevent an efficient calculation of the change in index when a circuit is dropped, for

sensitivity methods.

In the lâst few sections we hâve discussed two different approaches currently

used to come up with the CS algorithm. This section is to investigate a new approach

to the definition of CS (performance index). The basic idea behind this approach is

the design of a discrimínant hyperplane which can classify contingencies into critical

and nonc¡ítical. Using tbis hyperplane a measure of contingency impact on the sys-

tem can be determined.

7,3.2 Dlscrlmlnant Hvperolane Selectlon Aleorlthm

The application of decísion theory to the contingency selection, which is a

binary decision problem, has been reported [31,3ó], On the other hand, the applica-

tion of pattern recognition te{hniques has been recommended by Fischl [36], and as

far as we tnow this application has never been appeared on the literature so far.

Contingency selection is to select critical contingeûcies among all diffe¡ent con-

tingencies. In othe¡ words, it is required to recognize critical contingencies from

nonc¡itical ones. Therefo¡e, the pattern recognition discriminant hyperplane can be

us€d âs a performance index to classify those critical and noncritical contingencies.

In other words, using the discriminant hyperplane a screening process between criti.

cal and noncritical cases can be achieved.

Moreover, with respect to the ranking criterion, the disc¡iminant h)?erplane

represents the'bounda4/ ¡urface between different kinds of contingencies. By cal-

culating lhe separatíon (distance) of each contingency from this surface a ranked list

of contingencies can be de¡ived. As discussed in Chapter 2, it was concluded that the

value of the discriminant hyp€rplaûe gives a measure of the separation for eacb con-

tingency. As a conclusion, the function of a performance index or a CS algorithm is

exactly the same as the function of the discriminant hyperplane from the point of

view of sc¡eening a¡d rânl.ing of contingencies.
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The performance index format using the discriminant hyperplane is given by:

PIVs= ! w¡ÀVF(¡)+wo
i=1

= wr 
^vF 

+ uro (7.8)

where:

Wr = lw y w 2t ..t w¡ I is the weighting vector,

AVF = [AyF(1), 6ypQ), ..., 
^VFUr]r 

is the voltage deviation feature vector,

ÁVp = lÀyp(1), 
^VpQ),..., 

Ayp(NB)]? is the voltage deviarion vector,

Àyp(,) = 100.0 ÁBS [V(r) - VA(i)¡ is the absolute voltage deviation in per

cent at bus i ,

/ is the number of voltage features.

The voltage features ÂVF are to be identiñed from AVP using the srepwise

features algorithm. Also, the weighting vector W and threshold w0 are to be deter-

mined using the steps,ise discriminant method, discussed in Chapter 2.

As discussed in Chapter 2, the stepwise hyperplane design is a function of two

parameters Í A PR (prior probability ratio). In order to come up with the optimal

design, the two parametefs must be selected in such a way that the screening and

ranking processes should be efficiently achieved. The parameter / affects the rank-

ing and screening processes, while PR âffects only the screening accuracy.

By changing P¡R, the threshold ws changes and the hyperplane moves into

another parallel surface. Therefore, the ranting process will not change. Assuming

an equal prior probability criteria for all contingencies (PR=1,0), the whole design

will rely only on the number of features / . Then, using a numerical experimenta-

tion approach, / can be selected such that the ranking process can be efficiently

achieved. Finally, by cortrolling PR, an optimal design efficient in ranking and

screening, can be determined,
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7.3.2 Me.hstg!9Þþ_DþEs.S!_S.e!ectlon Also¡lthm

In this section another approach is discussed. This approach is really based on

the determination of separability measure between different contingencies and the

group mean of noncritical contingencies, see Fíg, 73 , It can be seen that the larger

the separation is, the more cr¡tícal the contingency will be, and vice versa.

The statisticat s€parability measure selected here is called the Mahalanobis -D2
(MH-DrD) in pattern recognition theory. MH-D'D is a measure of the distance

between each contingency and each g¡oup mean, Therefore, a ranking process could

be developed usiog the MH-D'D method. On the other hand, this method does not

provide a screening process and it has been used here only to provide a ranking pro-

cess. However, the screening criteria could be achieved by monitoring of bus vol-

tages.

The performance index in this case is deûned to be the MH-D'D, which can be

given as (for case j in group i from the mean of group * ) [48,49]:

PIV4= (N -2) ( 
^vFuì 

- 
^Wk, 

) a." ( avF¡¡" - 6l[, ) (z.l)

í &k =t,2 ; j =t,2,...,N¡
whe¡e

IV¡ is the number of cases in group i ,

A VF¡;, is the value of voltage deviation feature r in tbe case j of the group i ,

AVl, is the value of group i mean for voltage deviatioû feature r ,

A = (arr) is the covariance matrix, see Appendix (A),

JV is the total number of cases in all groups.

The voltage deviation features ÁVF are to be selected again using the stepwise

selection algorithm, see Chapter 2 for mo¡e detail. The number of features / is to

be selected using a numerical experimentation method. This algorithm could be con-

side¡ed ¡elatively an efficient approach.

ÉÉ
r=t ¡=1
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Non-critical cases

o Non- critical group mean

Critical cases

Fig. 73 Mahalanobis separability meâsure between contingencies.
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7.4 Numeric¡l A¡pllcgtlon R.esults snd Discusslons

The evaluation of the above mentioned selection algorithms is to be examined

through this section, Two power systems are to be tested: a ?-bus sample system, and

an &bus real system (Northern system). The 7-bus sample system (see Fig. 7.4) data

are given in Table 7.1, while the Northern system (Fig.7.5) data a¡e listed by Table

7.2 .

The MVA base used here is 100 MVA, Also we assume:

AVLç) = + 0.03 yD(i) ,

FUç) = I.03 yD(i) , p¡(i) = O.g7 VD(í) ,

VUç) = I.05 yD(i) , VLQ) = 9.95 y¿(i) ,

Y¿(i) = 1.3 (sampte system),

VDç) = base case values (real system) ,

i = 1,2, ,..,N8

The power system will be in an alarm state if the bus voltage y (t ) I VOQ) is

greater than 1.03 or less than 0.97 p.u. , Moreover, the system will be in the insecure

state if V(') is greater than 1.05 VD(j) or less than 0,95 yD(t) for any given loading

condition. Three loading conditions a¡e used to demonstrate the effectiveness of tbe

proposed performance indices. The capture rate CR and the false alarm rate Fß ate

to be determined.

The value of the discriminant performance index (PII|3) indicates the state of

the system, summarized as follows:

voltage secure stare i í1. PIY3 > 0.0

vohage ínsecure stdle i if PIy3 < 0.0

Therefore, the ranking process using P173 starts with tbe lowest value as the most

critical contingency and the second higher value as the second critical contingency
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Table 7.1 Sample system data

(a) Line da t.a

F rom
bus

To
bus

R
(%)

x
(%)

Total
MVÀR

1

1

2
2
¿
3
4
6
7

2
3
3
4

4

1

2

0.6
0.8
1.8
1.8
1.2
0.3
1.2
0.4
t.J

6.0
8.0

18. 0
18. 0
12.0
3.0

12.0
4.0

13.0

6.0
5.0
5.0
4.0
3.0
2.0
5.0

(b) Bus data

BUS
#

Rated
voLtage

Ge
Mw IMVÀR

)erat
Qma x

on
Qmin

Light load
MW MVÀR

Middle load
MW MVÀR

Heavy load
MW MVÀR

1

3
4

6
7

1.0
1.0
1,0
1.0
1.0
1.0
1.0 40

swln
30

bus
40 15

'1 0
30
20
30

-7
_R

-5
-9

20
45
40
60

10
15

R

10

¿U
55
50
70

10
20
10
I5
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TabLe 7.2 Northern system data

(a) Line data

From
bus

To
bus

No.
cts

R
(%)

X
(%l

Tota I
MVÀR

Tap
p.u.

2
2
E

9
5
6
E

1

3
6
4
9
3
7

12

IU

3

2aô
066
180
179
000
ftÊo
220

8.s70
0.593
1 .850
6 .920
0. 100
3.750
2 .320

0.0
0 .147
3.610
0.0
0.050
0.0
4 ,490

1 .025
1.0
1.0
1 .050
1.0
1.0
1.0

(b) Bus data

Bus
*

Ra ted
vol tage

Ge
Mw IMVÀR

erat
Qma x

on
Qmin

Light loa d
Mç.Ì MVÀR

Middle loa d
MW MVAR

Heavy l oad
MW MVÀR

1

2

4
E

6
7
9

t.u I

1.0
1.0
1.03
1.0
1.0
1.0
1.0

o tt

sr¡t n( bus

o oo -9.99
9.0 5.4

4.5

12.0

1 0.0

7.2

6.0

13. 2

11 .U 6.6

* À11 values are in per unit.
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and so otr in an increasing order,

The calculation results obtained using the selection algoríthms of concern are

illustrated in Table 73. The design of the discriminant index involved here is based

on atr equal prior probability approach. Also, the selection of two features was con-

sidered enougb for this design, atrd for the system uoder study.

The timing analysis of the disc¡iminant algorithm is essential at this stage. It can

be explained as follows: if nv represent the number of variables and lV is the number

of cases, then the number of required operations cao be estimated by [a9]

nv (nv * ó) lV for sums of c¡oss products,

3 nv2 (nv + 1) for setection of features (stepping),

2 nv (nv + 1) for the discriminant design

For example, the oû-line CPU time needed to come up with the discriminant

index is about 0.4 sec oD the AMDAHL machioe, for the sample system. Therefore,

the proposed algorithm has a small time delay compared to others [27,28],

rfle believe that for a reliable contingency selection, an accurate index must be

considered even that the computing speed is sacri6ced, With the ever increasing

speed of modern coñpute¡s and various new techniques such as parallel processing,

computing speed will be less a problem [27].

The ¡esults obtained using Nara and Ejebe algorithms are included in Table 7.3

in order to compare them with the results obtained by the developed algorithms. It

must be noted that the AC load ffow technique is used for all methods and only sin-

gle contingencies (outages) are considered. It can be seen that the ranking of severe

cases is almost tbe same fo¡ all methods, even though the respectíve values of the

performance indices are different. A value of CR equals 1 and FR equals 0 are

noticed which prove the effectiveness of the proposed algorithms.

Table 7.4 shows the results obtained using the discussed algorithms for the case

of the No¡the¡n system. Single as well as multiple contingencies a¡e considered in

this situâtion. Two design approaches are employed with the indices PIV3 & PIV 4 ,
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they ate: on-line mode and off-line mode. In the on-line mode the cases used

for the design are those only corresponding to the post-outage contingency condi-

tions for the current system state. On the other hand, the off-line design mode

meaos the generation of many post-outage conditíons felated to different system

states.

In the case of on-line design, it was found that two voltage features are satisfied

and the prior probability of the insecure (critical) contingencies is equal to 0.6 . On

the other hand, a two voltage features and a 0.8 prior probabitity of critical câses are

considered for off-line design case,

It can be s€en from Table 7.4a that CR equals 1; FR equals 0 for the on-line

design and equals 0.1? fo¡ the off-line design mode due to one false ala¡m. Also

from Table ?.4b, it can be observed that CR equals 1 for all algorithms and FR

equals 0.17 for the off-line design. Moreover, from Table 7.4c it ís clear that CR

equals 0.88 fo¡ the on-line design case. It must be noted that the CR value can be

maximized by increasing Õf the prior probabiliry of the critical cÕntingencies to a

value greater than 05 ,

Insecure cases can be easily recognized from Table 7.4 as those with values less

than zero (using PIII3 ). Those ma¡ked with m are misclassi6ed. However, they can

be simply minimized by checking it y(t) is greater than 1.03 yD(¡) or less than

0.97 VD() for any monitored bus i . If so the case is noted as voltage insecure state,

othenvise, it is a voltage s€cure state.

7.5 Concluslons

Pattern recognition based voltage contingency selection algorithms are

developed. The proposed algorithms are examined on a sample system and on a real

system, Results obtained proved tbe effectiveness of these algorithms.

A comparison with other selection methods is presented. The developed algo-

rithms are efficient for single and multiple outages. They have slightly a lower speed
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of computation (for on-line design), which could be considered less a problem with

the fast advanced computer technology.

The developed algorithms, off-line design approach, is efficient and reliable

compafed with Nara and Ejebe methods. However, it requires an excessive computa-

tional burden,

The application of the proposed algorithms on a large scale ¡eal system is being

investigated.



CHAPTER 8

GENERAL CONCLUSIONS AND RECOMMENDATIONS

8.1 Gq.er4_ge!.sþ-!þq!

The following contributions have been achieved throughout this dissertation:

1- A new pattern-recognition based prediction system has been successfully

designed, This design adapts to new system conditions. Using this system, a

power system operator can anticipate abno¡mal conditions. The design scheme

has been applied to the Manitoba Hydro Northern system in order to predict

self -excitation and dynamic overvoltages.

2- A fast, efficient cor¡ective action algorithm has been developed. This algorithm

provides the op€rator with the suggested cofrective action in case of anticipated

trouble, i.e, insecure condition, It has been applied to improve the system secu-

rity against self-excitation and dynamic overvoltages as well.

t The design of a multi-class prediction system using a multi-class pattern-

recognition approach has been applied to a three-class power.system load-

rejection overvoltages problem. The application is new and it has many advan-

tages, One of the major advantages is the reduction in telemetering communica-

tions which simpliûes the information system structure, On the other hand, it

poss€s some limitations:

a- The estimation of the prior probability is not aû easy task in this design

scheme.

b- The prediction time (time delay from receiving information to taking deci-

sion) could be longer compared to the two-class approach.
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c- The degradation in the system performance due to telemetering failure.

4- An efficient, relatively fast voltage contingency selection algorithm based on

pattern-recognition discriminant hyperplane has been developed, This algorithm

proved to be effective in case of single as well as multiple outages study. On the

other hand, the on-line design scheme bas stightly lower speed of compuration

while the off-line has an excessive computation burden. The algorithm has been

tested on a sample system and a real power system,

t.2 Recommendatlons lor Future Extenslous

Future research at this stâge could be extended to include:

1- Application of the prediction system on a large scale power system e,g. Mani-

toba Hydro Northero system as a whole, for the detection of load-rejection

self-excitation as well as dynamic overvoltages.

2- Extension of the pattern-recognition based voltage cootingency analysis on a

large scale system, e.g. IEEE 25-bus system. An investigation for its feasibility

study is also recommended.

t Application of the pattern recognition based prediction scheme to other power

s]ßtem operating problems.



APPENDIX (A)

ESTIMATION OF STATISTICAL RELATIONS

(1) Estimate of Means

Given the N by M matrix X, consisting of iV patterns each of M variables.

Then, computation of the means of the M variables uses the following formula :

&=Ë*,,=1,2,...,M (A.1)

where:

X¡; is the pattern i on variable j ,

N is the numbe¡ of patterns per variable.

(2) Estimate of Standard Deviations

Staodard deviations â¡e computed using the following formula:

', = låd+ )1P, i = 1,2' "', M (A'2)

where:.r¡¡ =X¡¡ -l¡
(3) Estimate of Cor¡elation Coefficients

Computation of the simple cofrelation coefficients of the M variables is done as

follows:

'"=¿1"1fi;' í+i (A'3)

where: r¡¡ =lif i = j,r¡j = r¡¡ andi, j = 1,2, ..., M .
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(4) Estimate of Covariance Matrix

The cova¡iance matrix can be calculated as :

A=(a¡j ), i,j =1,2,....,M (A.4)

where: a¡¡ = rjlsrsi, a¡j = aji

(5) Determination of Required Featu¡es

The determination of the required number of features using tbe feature extÍac-

tion techníque is described herein, The objective of the feature extrâction is to

derive a linear transformation that will emphasize the differences among patterns

belonging to different classes. In othef words, it is required to define new coordinate

axes in the direction of high information content useful fo¡ classification purposes.

The algorithm used here is called the principal components, Karhunen-Loeve

transformation (KLT) in pattern recognition terminology [41]. The procedure is

described as follows:

1- Determine the M by M covariance matrix among classes.

2- Find the M eigen-values and the corresponding M eigen-vectors of the covari-

ance matfix.

3. Extract the f largest eigen.values such that their sum is almost equal to the

sum of the M eigen-values,

4- The t¡ansformation matrix can be obtained from the f eigen-vectors

corresponding to the f eigen-values in a descending order,

f The M-dimensional pattern vector can be transformed to the f vector using

the transformation matrix, i.e, the required feature vector.
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STEPWISE DISCRIMINANT ANALYSIS

(1) Feature Selection

The selection of features using this algorithm [48,49] is based on the ratio

R(X)of the within generalized dispersion lW (X)l to tbe total generalized disper.

sion 11(X)l as:

R(x) = tw(x)t/tr(x)t (8.1)

Large values of R(X) indicate poor separation between classes, while small values

indicate good separation.

whe¡e:

W (X) = (*,"/ r,s = 1,2, ..., f ) (8.2)

c Nt
w," = X t (rr¡ - x-¡) (.r¡;" -.r-¡)

, =lj =1

T(X)=(t,"f r,s =1,2,...,f )

r,, = I I (xi¡ -.t-,) (r¡¡ - x-,)
Í =lj =1

(83)

(B.4)

(B5)

The multiplicative incremeut MI¡ in Fisher's ratio R (X ) resulting from the

addition of a va¡iable /¡ to the set X can be formulated as follows:

llVlX. v,) I ll lX) I

MIt = P1Y,yj)/R(x\ tr(x,y¡) I rw(x)r

= "¡¡ /g¡i (8.6)
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where

cij = tw(x,t¡)t / lw(x)l

9¡¡: tr(x,yj)t /tr(x)t
while fo¡ the case of deletion of feature x¡ from the set of X, it can be given as:

R(x, -x¡) / nû-) = lw(x' -¡¡)l lr(x)l
l1(X, -x¡)llW(X)i

= þ¡¡ / o,¡¡ = MI¡-l (8.7)

Using the F-statistic âs â measure to guide the selection or deletion of variable

¡¡ , it can be written as:

It _ - _ Jr =fre-MrL)/MrL (8.8)

Therefore, using Eq. (8.8) the selection measure of a variable x¡ can be written in

the form:

whe¡e ø =JV -c -"f and b =c - 1. Similarly, the removíng measure of a vari-

able x¡ can be obtained as:

^t -^ _a
su¡ = ? (t - Mrj) /Mr j

= (a /b) u/Mr j - tl (B.e)

(8,10)

by:

The within class tolerance l, for a variable )¡ not included in the set X is given



(2) Steowiqe Discriminant Desiqn

When the stepping is complete, or when the number of features selected is

equal to the one specified, then the disc¡iminant design starts. The design of the

stepwise discriminant function can be easily formulated [48,49]. Let us assume that:

M¡ = fm¡p m¡2, ..., m i¡fT is the mean vector for class i

M = lm 1, Dt2t ,* nt¡ ]1 is the overall mean vector, and

X = [¡r, x2t ..t x¡ ]1 is tbe feature vector.

The class í disc¡iminant function is:

d¡(x) = (¡ù -")M¡rw(x)-rx -05(N -c)M¡r w(x)-1 Mi

* ln p¡ (8.12)

therefore, the class weighting vector ly¡ and the threshold weight wq are given by:

754

t¡ = a¡¡ / w¡¡

W¡r = (N - c) M¡r w(x¡-t

w¡o= - os(iv - c)M¡r w(x)-1 M, +lnp,

(8.11)

(8.13)

(8.14)
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. PATTERN.R,ECOGNITIOW

In this appendix three learning algorithms are introduced:

1- Bayes learning theory;

2- Lineat disc¡iminant Dethod; aod

3- K-nearest neighbor method.

(1) Baves Lea¡nins Theorv

In this method the conditional probability density function for each class must

be known in orde¡ to construct the likelihood ratio

t(x)=Í(x/i)/r6/j) (c.1)

where i,j are any t\À,o classes. Assuming a normal distribution for the primary vari-

ables, the density function can be estimated as:

f 6 /i) = (2n)-r lz t2ít-tn exp [ -0s (x - M¡)r2¡-t (x - u,) ] (c,z)

í = 1,2, ...., c

The main objective of Bayes theory is to minimize the average or expected value

of the loss function L(d¡, j) (i.e. the loss incurred for taking decision d, for pattern

of class j ). The Bayes rule could be written as:

d(x)= dt iÎ iL(dt,j)p(j/x\. itla^,r)p(r/x) (c3)
j=l r=L

fo¡ all m * í,i =t,2,,...,c.

For the two-class problem i.e. c = Z,considering the loss function equals one in

case of tating a wrong decision and ze¡o in case of right decisions, then the decision

¡ule could be w¡itten as:

d(x)=dt if. l(x/r)pt> f@/2)pz ,
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d(x)=dz ff Í @/2)pz> f 6/1)pt (c.4)

where:

p(i /x) = Í (x /i) n /Í (x) (c5)

The Bayes recognition rule is optimal from the point of view of the probability

of error, but its practical performance depends on the degree of validity of assuming

normal distribution for the primary variables.

(2) Linear Discriminant Method

The linea¡ discriminant method derived here [50] is based on a non-parametric

estimatior of the class density function | (X /i). In order to take into account the

contribution of each design pattern in the estimation of the density function, the fol-

lowing form is the most suitable for this situation, that is:

r(x/i) å"'',-]H*Pr (c.6)

í = t,2,....,c
where:

/ is the number of featu¡es,

iV¡ is the numbe¡ of patterns in class i,
o is a smoothing factor.

As explained in [50] the class density function could be wrirten as:

Í (x /i) = ,# ¡expçt4¡|ot1x¡ (c.7)

í = 1,2, ...., c

where:

Gí (x) = Ito...o * 8¡ro..o ¡r
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*gioto.,o xz*....* girrrr...rt Ít" x2z2 .',xrzt. (C.8)

õi =f- 
t N¡

6 ,Lz2 '" z! , (rrtJ1jr,,,U]Et¡f ' '¡i2" ""x,,r'r 8,, lce¡

where:

h=zt*22*...*z¡
x,,r x,,

B¡¡ = exp(-#)

XT = Íxt, x2, -., x¡!

Taking only 6¡st order terms and neglecting higher ones, then Eq. (C.8) can be

refo¡mulated as:

Gt(X) = g'i + 81i xL + gzì x2 * ...t g¡í x¡ (C.10)

where

r IVr

eo' = -^,! 2 B,t ,,,i j=1

er' = 
o, *,L lrr,u u,, (c.11)

Once the density functions are estimated on the basis of the design patterns,

Bayes rule could be derived as:

d(x) = ¿, if. p¡ f (x/í)> p¡ Í (xli) ror øtt j + i (c.12)

substituting with / (X /í), Í (X /j) from Eqns. (C.7) and (C.10) we can write the

disc¡imina¡t ¡ule as:

d (x) = ¿, íf p¡ c¡ (x) > r¡ Gi (x¡ lor all j + i (c.13)
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i = 1,2, .,., c,

(3) K-Nearest Neishbor Method

In this algorithm the density function is estimated as follows:

Í (x /í) = r--- (c,14)

where Y is the volume of the hypersphere tbat contains the set of all É-th nea¡est

neighbor patterns to the gíven pâttern X,,lV¡ is the number of panerns from class Í,
ft¡ is the number of nearest patterns from class i i.e,

cr = SÉ,
Í =l

(c.1s)

Then using Bayes rule given by eq. (C.12) atrd substituting with / (X/Í) from

eq. (C.14) we can obtain the following K-NN rule:

d(X)=¿, ì1 k¡> kj lorall j * i (c.16)

ì = 1,2, ..., c

il, c
wherep¡ = -!- ¡o6 ¡V = XN¡ is the number of patterns on the design set.

/Y i=l

Therefore, the K nearest neighbor rule is very simple and it is just a com-

parison of frj with frl (i.e. comparison between the numbe¡ of nearest neighbor pat-

terns from each class). Its disadvantage is the need to store all patterns and to com-

pare the distance measure betweeÂ each witb the unknown one.
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PERFORMANCE EVALUATION METHODS

The following methods a¡e discussed:

(1) Th€ Resubstltutlon Estlmat€

In this method, patterns used for design are also used for the performance

evaluation of the pattern prediction system. This method could be considered an

optimistic estímate since the patterns used for design are the same used for the

evaluatioo. However, when a large desígn set is available, this error estimate is prob-

ably as good an estimator as any other one.

(2) The Hold-out Estlmste

The most obvious alternative to the resubstitution scheme is to parlition lhe

pattern set into two mutually exclusive subsets and to use one subset for designing

the predictor and the other one to ,¿st it. This approach has the disadvantage of

making a poor use of the available patterns since a predictor designed on the entire

pattern set will, on the average, perform better than the one designed on only a por-

tion of the whole set.

This approach is relying on the available patterns. These patterns should be

divided into the design patterns and the test patterns i.e. they should be statistically

independent or at least diffe¡ent. Also it must be emphasized that if most of the pat-

terns are used fo¡ designing the predictor, there ìvill be a little confidence in the

testing stage and vice versa,

For small to modefate sample sizes, very significant discrepancies betrveen the

¡esubstitution and hold-out estimates may be observed. The later one being an o¡der

of magnitude larger than tbe former. As it turns out the bold-out method has a

definite tendency to over-estimate the actual effor rate.
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To summarize, the hold-out estimate is making poor use of the available pat-

terns and ít gives pessimistic error estimates.

(3) The Lesve.One.Out Estlmste

Tbe so-called leøve -one -out or deleted method is formed in the following

mannef :

1- remove one pattern, (X ) from the pattern set .td

2- design the predictor using remaining patterns .9¿ -1 and estimate its performance

using removed pattern (X ).

, return the ¡emoved pattern (X) to the pattern set Sd-l .

4- repeat the above procedure for all patterns in the pattern set.

Clearly, with this method, all patterns a¡e used in each design, and also all of

them are used in the tests, though each design and test sets may be regarded as

independent, This estimate could be considered as unbiased, that is because the

design and test sets distributions are essentially identical. Also, another advantage of

this method is the efficient making use of the available patterns. On tbe other band,

tbere are two disadvantages: the first is that the error bias reduction is achieved at

the expense of an increase in the varíance of the estimator, and the second is the

excessive computâtion involved as iV design sessions are required.

(4) The Rotatlon Estlmste

This e¡¡o¡ estimate method is a compromise betrveen the hold-out and leave-

one-out metbods. The procedure of this method can be summarized as follows:

1- partition tbe ,lV patterns of the pattern set into iV /¿ disjoint subsets ( Z is an

integer and a divisor of /V ),
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2- remove j -trr subset from the pattern set,

, design the predictor with the remaining subsets and then assess its performance

using the j -tå subset.

4- return the subset j to the pattern set.

t repeat the above operations for all subsets (.¡ = 1,2, ..., N /L).

6- calcuiate the rotation estimate as the average frequency of misrecognitions over

the N /L test sessions.

In this estimate, iÎ L = 1, it reduces to the leave-one-out method, where as

when Z = N /2 it reduces to the hold-out method. The rotation estimate reduces

both the bias inherent to the hold-out method and the computational burden associ-

ated with the leave-oûe-out method.



APPENDIX (E)

NORTHERN SYSTEM BLOCK DIAGRAMS AND DATA

I: System Block Dlagrsns

The dynamics of the power system used fo¡ this study is explained in Fig. 1.

From this diagram [6] it can be seen tbat the system model consists mainly of:

machine model; excitation system model; governor-turbine system model; and

t¡ansmission system model. The system model and blocl. diagrams [52] are given as

shown in Fig.2.

II: System Dets

Machine data

x¿ = 0.922, xq = 0535, x¿' = 0.251, Xc' = 0535,

X¿" = Xq" = 0.194, X¡ = 0.t93, T¿o' = 4.7 sec,

T ¿o" = O.079 ser, T qo" = 0.048 sec, fI = 4'1 sec

Exciter data

KA = ?t19.0, TA = 7.04 sec, I! = 1.43 sec,

TC = 0.02 sec, TD = 0.012 sec, TE = 0.0,

KE = 1.0, I/¡ max = 5.O, V¿, min =-35

Governor data

l/f R = 0,88, c1 = 4.8, Cz=0,1

C¡ = 0.0, C e = 0.02, Cs = 0.04,

Tc = 3:l sec, 13 = 0.44 sec, T a =0.22 sec,
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Fig.2. Power system block Cing:ams
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? s = 1.0 sec, I, = 0.05 sec, I¡¡ = 0.05 sec,

T6¡¿¿ = 0,0 ser

Line and Transfo¡mer data

R¡¿ = 0.00ffi6' Xr¿ = 0.ffi593, R,' = 0.00329'

X,, = 0.0857, Line charging MVAR = 0,147

IIII Llst of V¡rlsble¡

All quântities are in per unit unless noted.

tro = rated frequency

o¡ = actual frequency

X¡ = stator leatage reactance

X¿" = dftect axis subtransieot reactance

X¿' = ditect axis t¡ansient ¡eactance

X¿ = direct axis s¡nchronous reactance

Xo" = quaùúure axis subtrânsient reactance

X, = guadrature axis synchronous reactance

ú¿ " = direct axis subtransient flux linkages

rlo " = quadrature axis subtransient flux linkages

ec' = voltage proportional to ûeld ûux linkages

¿j = voltage proportional to field current

T ¿o' = oryo circuit ûeld time constant

T do" = orr-o circuit d-axis subtransient time constant

T oo' = oFæ.n circuit q-axis trânsient time cÕnstânt
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T oo" = oW circuit q-axis subtransient time constant

E¡¿ = slip ring ûeld voltage

I¡¿ = ñeld current

E¡ = exciter voltage

úa, úo = atmature flux linkages, direct and quadrature axis components

i¿, ic = armature cufrent, direct and quadrature axis components

e¿ t eq = a¡mâture voltage, direct and quadratufe axis components

Il = ine¡tia constant (sec)

P e, Qe = generatof outPut powefs

V¡,V¿ = generator terminal and load voltages

Ato = speed change

R¡¿ = transmission line series resístance

X¡¿ = transmission line series reactance

Rr, = transformel se¡ies resistance

Xr, - transformer se¡ies feactance



REFERENCES

(1) C. K. Pang, A. H. El-Abiad, et..âl,"Application of Patte¡n Recognition to Steady

State Security Evaluation in a Power System' IEEE Trans., Vol. SMC.3, No.6,

pp.622-631, Nov.193 .

(2) C. K. Pang, et .. al,'Security Evaluation in Power Systems Using Pattern Recog-

nition'IEEE Trans., Vol. PAS-93, pp.969-76, MaylJune 797 4 .

(3) A. Brameller and H. Rudnick,' Transient Security Assessment Methods' ,IEE

Proceedings, Vol. 125, No. 2, pp. 135-140, Feb, 1978.

(4) F. P. de Mello, et .. al,'Analog Computer Studies of System Overvoltages Fol-

lowing Load Rejections ' AIEE Transactions, Pt. III, PAS, pp. 42-49, April 1963.

(5) P. L. Dandeno, K. R. McClymont,' Extra.High-Voltage System Overvoltages

Following Load Rejection of Hydraulic Generation ", IEEE Trans. on PAS, Vol.

65, Pt. III, pp.49-57, April 1963.

(6) F, P. de Mello, et .. al,'Load Rejection Overvoltages as Affected by Excitation

System Controf IEEE T¡ans., Vol. PAS-94, No. 2, pp. 280-287, March/April

79?5.

(7) A. M. Gole, et..a1,'Capacitive Load Induced Field Stress on Generators Con-

neÆted into DC Systems' IEEE Trans. on Power Apparatus and Systems, Vol.

PAS-104, No.3, pp. 54348, March 1985.

(8) E. C. Mc Clelland, et .. al,"Fast Voltage Prediction Using a Knowledge Based

Approach'IEEE T¡ans., Vol. PAS-102, No.2, pp.31S19 , Feb.1983 .

(9) O. Saito, et .. al,'Security Monitoring S),stems Including Fast Transient Stability

Studies'IEEE Trans., Vol. PAS-94, No.5, pp. 1?89-1805, Sept./Oct. 1975 .

(10) M. Udo,'Design and Functional Cha¡acteristics of Hierarchical Power Control

Systems ' CIGRE, R.eptt 32-77 -69, Meeting 1977 in Dortmund.



168

(1Ð C. L, Gupta, et ..a1,'Transient Security Assessment of Power System by Pattern

Recognition . a Statistical Approach ' ,IEEE PES Summer Meeting, Mexico

City, Mex.July 77-22,7977 ,

(12) J. M. G. Sa Da Costa,'Application of Pattern Recognition to Transient Security

Assessment in Powe¡ Systems "PH,D thesis, Univ, of Manchester, Institute of

Science and Technology, 1982 .

(13) H. Halimmashhadi, G, T. Heydt,'Fast Transient Security Assessment' IEEE

Trans., Vol, PAS-102, No.12, pp381624, Dec.1983 .

(14) J. M. G. Sa Da Costa, et..al'Pattern Recognition in Power System Security" Int.

J, Elect¡ic Power a¡d Energy Systems, pp.31-36, Jao. 1984 .

(15) J. M. G. Sa Da Costa 'Transient Security Assessment in Power Systems" Real

Time Control of Lârge Scale Power Systems ,PATRAS, GREECE, pp.254-67,

July 9-12, 1984.

(16) K, Koizumi, O. Saito ,et..al,"Fast Transient Stability Study Using Pattern Recog-

nition' $th PSCC þower system computation conference), September 1975.

(17) F. S. Prabhakara,'On Line T¡ansient Stability and Security Evaluation Using

Lyapunov and Pattern Recognition Methods' TR-EE 74-29, Purdue University,

West Lafayette, August 1974.

(18) C. L. Gupta,'Transient Security Assessment of Power Systems by Pattern Recog-

nition and Liapunov's Direct Method" Ph.D. Thesis, Purdue University, ìüest

Lafayette, August 1976,

(19) H. Hatimmashhadi,'Fast Transient Security Assessment" Ph.D, Thesis, Purdue

University, West Laf ayette, IN, August 1982.

(20) C. L, Gupta, et..al,'Transient Security Assessment of Power Systems by Pattern

Recognition -A Pragmatic Approach' IFAC Symposium 7977 o¡ Automatic Con-

trol atrd hotection of Electric Power Systems, Melbourne, Australia, pp.359-63,

Feb.27-25, 1977 .



169

(21) S. Mokhtari,' Fast Transient Security Evaluation of Power Systems by Using

Pattern Recogoition Techniques',Ph.D. Thesis, University of Missouri-

Columbia, Dec. 1983.

(22) N. S. Van Nielen,'New Energy Management System for The Dutch Power Pool,'

IEEE Trans. Porver Systems, Vol. PWRS-2, No. 1, pp.58-64, Feb. 1987.

(23) F. Mc Dyer, K. Herger,'The New National Control Center, IRELAND,' IEEE

Trans. Power Systems, Vol. PWRS-2, No. 1, pp.8f91, Feb. 1987.

(24) R. L. Lugtu, et..al,"The Atlantic Electric System Control Center,'IEEE T¡ans.

PAS, Vol. 102, No. 11,pp.3571-76, Nov. 1983.

(25) A, K. Subramanian, et..al,"Power System Security Functions of the Energy Con-

trol Cente¡ at the ORANGE and ROCKLAND Utilities 'IEEE Trans., Vol.

PAS-102, No.12, pp. 382UY, Dec.1983 ,

(26) R. L. Lugu, et..al,'The OHIO Edison Energy Control Center,' IEEE Trans.

PAS, Vol. 102, No. 11,pp.3577-81, Nov. 1983.

(27) K. Nara, R. R. Shoults, M. S. Chen, et..al,'On-line Contingency Selection Algo-

rithm For Voltage Security Analysis,'IEEE T¡ans. on PAS, Vol. 104, No.4, pp.

847-856, April 1985,

(28) G. C. Ejebe, B. F. Wollenberg,"Automatic Contingency Selection," IEEE Trans.

on PAS, Vol. 98, No. 1, pp. V1-t09,IanlFeb 7919.

(29) M. G. Lauby, T. A. Mikolinnas, N. D. Reppen,'Coûtingency Selection of Branch

Outages Causing Voltage Problems,' IEEE Trans. on PAS, Vol. 102, No. 12, pp.

3E99-3904, Decembe¡ 1983.

(30) R. G. Wasley, M. Daneshdoost,'Identiûcation and Ranking of Critical Con-

tiûgencies in Dependent Variable Space,' IEEE Trans. on PAS, Vol. 102, No.4,

pp. 881-892, April 1983.



770

(31) T. F. Halpin, R. Fischl, R. Fink,'Analysis of Automatic Contingency Selection

Algorithms,' IEEE Trans. on PAS, Vol. 103, No.5, pp.938-945, May 1984.

(32) G. D. Irisarri, A. M. Sasson,'An Automatic Contingency Selection Method for

Online Security Analysis,' IEEE Trans. on PAS, Vol. 100, No.4, pp. 1838-1844,

April 1981.

(33) T. A. Mikolinnas, B. F. Wollenberg,'An Advanced Contingency Selection AIgo-

¡ithm,' IEEE Trans. on PAS, Vol. 100, No. 2, pp. ffi8-677 , Feb. 1981.

(34) L Dabbaghchi, G. Irisarri,"AEP- Automatic Contingency Selector: Branch

Outage Impacts on Load Bus Voltage Profile,' IEEE Trans. on PAS , Summer

Meeting, Vancouver, July 1985.

(35) G. Irisarri, A. M. Sasson, D. Levner,'Automatic Coûtingency Selection For On-

line Security Analysis- Real-Time Tests,' IEEE Trans. on PAS, Vol. 98, No.5,

pp. 1552-1559, Sept/Oct 1979.

(36) R. Fischl, T. F. Hâlpin, A. Guvenis,'The Application of Decision Theory to

Contingency Selection,' IEEE Trans. on Circuits and Systems, Vol.29, No, 11,

pp. ?12-7?3 , Nov. 1982.

(37) S. Vemuri, R. E. Usher," Online Automatic Contingency Selection Algorithms,"

IEEE T¡ans. on PAS, Vol. 102, No.2, pp. YG354, Feb. 1983.

(38) D. H. Foley,'Consideration of Sample and Feature Size'IEEE Trans., Vol. IT-

18, No. 5,pp. 618-626, September 192.

(39) G. F, Hughes,l{umber of Pattern Classi6er Design Samples Per Class" IEEE

Trans., Vol, IT-18, No.5, pp.61$618, September 1972.

(40) S. Watanabe,' Methodologies of Pattern Recognition " Academic Press, New

York, 1969.



7tt

(4Ð P. A. Devijver, J, Kittler,' Pattern Recognition: A Statisticat Approach ,, prentic

/ Hall International, Inc,, London, 1982.

(42) ' Pattern Recognition and Scene Analysis " Course notes by E. Shwedyk and

Pawlat, 1986, University of Manitoba.

(43) S. T. Bow,' Patteh Recognition: Application to Large Data Set problems ,',

Marcel Detker, Inc., 1984.

(44) J. M. Mendel, K. S. Fu,' Adaptive, Learning, and Pattern Recognition Systems:

Theory and Applications " Academic Press, Inc. (LONDON) LTD., 1970.

(45) K. S. Fu," Pattern Recognition and Macbine Learning n Plenum press, New

York,7977.

(46) R. O. Duda and P. E. Hart,' Pattern Classification and Scene Analysis,,John

Wiley and Sons, 1973.

(47) F. Denomme, et .. al,'Security Monitoríng of the Hydro-Quebec power System "

CEA, Toronto, Ont., March 1984 .

(48) 'BMDP Statistical Sof twa¡e Manual", University of California Berkeley, Berke-

ley, CA, 1985 Edition.

(49) R, L Jeunrich,' Stepwise Discriminant Analysis', Statistical Methods for Digitat

Computers, Vol. III, Jobn-willey and Sons, Toronto, 7977 , pp.76-95.

(50) D. F. Specht,'Generation of Polynomial Disc¡iminant Functions for pattern

Recognition' IEEE Trans., Vol. EC-16, No. 3, pp.308-319, June 196?.

(51) M. I. Olken, rrV. T. \iloelfle,' Load Rejection of Subc¡itical Steam

Turbine_Generator Units', IEEE Trans. PAS, Vol. PAS-85, Feb, 1973, pp.336-

340.

(52) 'Self-Excitation Program" Manitoba Hydro User's Manual.



772

(53) W. Pyl, C, V, Thio," Nelson River Collector System Operating Restrictions and

ProtectiÕD for Self-Excitation and Second Harmonic Resonance ', 61D-01001,

SPD Report 6le, Manitoba Hydro.

(54) L. A. Beattie, ' Experience with Power System Security Analysis via Pattern

Recognition Techniques ',paper A75 449-9 P¡esented at IEEE Summer Power

Meeting, July 1975.

(55) S. Yamashiro,' On-line Secure-Economy Preventive Control of Power Systems

by Pattern Recognition ', Proceedings of PICA 1985, pp. 11G115.

(56) S. Yamashiro, T. Koike, A. H. El-Abiad," Fast Transient Security Assessment

and Enhancement Using Pattern Recognition n, Proceedings of 8-th PSCC,

August 1984.

(57) E. A. Mohamed, G. W. Swift," Security Assessment to Avoid Self.Excitation "

IASTED conf ., Bozeman, MT, Aug. 2G22,7986.

(58) E. A. Mohamed, G. W. Swift,' Power System Self-Excitation On-line Security

Assessmento accepted paper (in press) to be publisbed in the Int. J. of Electrical

Power and Energy Systems,

(59) E. A. Mohamed, G. W. Swift,"Prediction of Load Rejection Overvoltages Using

Pattern Recognition' a paper under preparation for IEEE Trans., Power Sys-

tems,

(60) T. E. Dy Liacco,'The Adaptive Reliability Control System," IEEE Trans. PAS,

Vol.86, No.5, pp. 577.31,Mry 1967.

(61) EPRI teport EL-2526 by on Power Technologies, Inc.,o Transmission System

Reliability Methods,' July 1982.

(62) A. P. Meliopoulos, A. G. Bakirtizis, R. R. Kovacs, R. J. Beck," Bulk on Power

System Reliability Assessment Experience With The RECS Program,' proceed-

ings PICA Conference 1985, pp. 38-45.


