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ABSTRACT

Modern power systems complexity increases daily as new interconnections are
made. For this reason, energy control centers are developed and being implemented
in order to provide real-time security assessment and control for these systems. The

prediction of system anomalies is therefore essential.

A new prediction system based on pattern recognition techniques is designed.
This system is to predict generator self-excitation of the Manitoba Hydro Northern
power system. Converter station blocking, sometimes followed by machine trips, is
the contingency behind that condition. A corrective algorithm based on sensitivity
analysis is developed to provide operators with suggested actions in order to improve
system security.

Secondly, a prediction system is designed to predict dynamic overvoltages due to
converter blocking (load rejection). Overvoltage corrective actions are derived using
the corrective algorithm. A least squares based algorithm is developed in order to

estimate the post-contingency dynamic overvoltages.

Thirdly, a multi-class prediction system approach is investigated. The approach
is new, it has some advantages and at the same time it possess some limitations. It
was applied to the Northern system in order to predict self-excitation as well as

dynamic overvoltages.

Finally, a new pattern recognition based voltage contingency analysis algorithm
is developed. Using this algorithm a discriminant hyperplane is defined as a perfor-
mance index. Using this index, a screening and ranking of voltage outages (con-
tingencies) can be efficiently achieved. The speed of computation involved is slightly
lower, in the case of on-line design, when compared to other methods. The off-line
design approach is efficient and reliable but it has an excessive computational bur-
den. The algorithm and other methods are investigated on a sample system and on

the Northern power system as well.
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CHAPTER I

INTRODUCTION

1.1 Power System Operation

Electric power systems consist mainly of generation, transmission, and distribu-
tion systems. The distribution systems must supply the consumption centers, or load
centers, with a continuous service of satisfactory quality. Therefore, this means that
the power system should operate in such a way to provide the customer with a ser-
vice of the quality requirements. These requirements mean that both the voltage

and frequency at the load centers must be within certain limits.

In order to satisfy the customer’s demands, the electrical transmission network
should operate within certain constraints that are acceptable for the system equip-
ment operation. This imposes new constraints on the planning and operation of
power system. In general, all the necessary conditions required for normal operation
of a power system could be expressed in two sets of constraints : the
equality constraints called the load constraints, and the inequality constraints
called the operating constraints. The load constraints set the conditions which
satisfy the requirements that the load demands will be met by the system, while the
operating constraints impose maximum or minimum operating limits {e.g. voltage
limits, loading limits, ..) on variables associated with the component parts of the sys-

tem.

The conditions of operation of a power system can be categorized into three
operating states : normal , emergency, and restorative [1,2]. A system is in the nor-
mal state when the load and operating constraints are satisfied. The system may be
operating within the space of all feasible normal operating states. This space is com-
pletely defined by the load constraints and the operating constraints. A system is in
the emergency state when the operating constraints are not satisfied. For example,

when an equipment loading limit is exceeded or when the voltage limit at a bus is



violated. A system is in the restorative state when the loading constraints are

violated. This means a condition of either a partial or total shutdown.

1.2 Power System Secority Assessment

Modern interconnected power systems demand a high degree of security for
normal operation. This demand is due to the fact that some contingencies can have

a catastrophic results on these systems.

Security assessment is a new approach to power system operation, helping the
system operator to detect conditions that may lead to a failure or deterioration in
the quality of the power supply before it occurs. The security analysis could be con-
sidered as two parts [3], the first is to determine whether the system is in the secure
state or not. The second is to determine what corrective action should be taken when

the system is insecure.

Three types of security assessment can be identified, the steady state , the
transient state , and the dynamic state . The steady state security assessment exam-
ines the steady state response of the system under credible outage conditions. Each
contingency in the steady state security analysis causes transients which can result in
very undesirable conditions, such as loss of synchronism of generators. To prevent
such conditions fast corrective action must be taken which requires transient security
assessment. The dynamic security assessment pertains to system response of the

order of a few minutes,

The results of a security assessment study must be presented to the power sys-
tem operator in such a way so that he may be able to take necessary corrective action
effectively [3]. Such information may be presented in terms of simple indices and

may be a part of the power system control centers duties.



1.3 Motivation and Literature Review

The main objective of this project has been guided materially by Manitoba
Hydro. Several discussions at Hydro were behind the need of an on-line prediction
system to assess the dynamic security of the Northern system against generator
self —excitation and system dynamic overvoltages , due to the blocking of con-
verter stations (dc load rejection). Also, a prediction (security) index that tells the

operator how far the system is from having self-excitation was required.

Referring to literature, it was found that the first study on load rejection over-
voltages was done by de Mello [4] using analog simulation. It was concluded that gen-
erator self-excitation can occur more readily with hydro-generators than with steam-
generators, because of the higher overspeeds obtained after load rejection as well as

the associated extensive transmission systems.

Dandeno [5] has investigated the effect of dynamic overvoltages, produced on
the 500 KV line of Ontario Hydro due to load rejection on hydro-generators, on the
system design e.g. insulation coordination, relaying schemes, etc. It was reported also
that when self-excitation occurs, the voltage regulator becomes unstable and can

increase system overvoltages.

De Mello then reported [6] that the lack of negative field current capability, on
the static excitation systems, causes self-excitation when the direct axis reactance
(X, ) of the machine is greater than the capacitive reactance seen at the machine ter-
minals (X,.). An extremely rapid rise in voltage (2 p.u/sec) is recorded during self-
excitation. Moreover, he has recommended, as a special overvoltage protection
requirement, the study with modern simulation tools which permit prediction of con-

ditions under load rejection.

Gole in [7] is the first to investigate the effect of converter station blocking on
the excitation system of the Manitoba Hydro Northern system. The study revealed
that the most severe case of overvoltage occurs, due to machine trips, when a small

number of machines are feeding a capacitive load (ac filters). Also, it was indicated



that the same overvoltage conditions could happen, but less severe, in the case of
converter blocking {dc load rejection) when a few machines are left connected to

large filter banks.

Pattern recognition techniques have been applied to power systems as a fast on-
line assessment method. Several attempts have beer made to apply pattern recogni-
tion to load forecasting, steady state security assessment [1,2,8], and transient secu-
rity assessment [2,9-21].

Pang [1,2] has applied pattern recognition to steady state and transient state
security assessment. He has used single and repetitive ranking for feature selection,
least squares and optimal search for classifier design. He has obtained good simula-

tion results on the CIGRE-225 KV system.

Tokyo Electric power company in Japan was the first utility to have experi-
mented with using the pattern recognition approach for on-line fast transient stabil-
ity assessment. The possibility of implementing a pattern recognition approach as a
part of the security monitoring package has been reported in [9,10,16]. It was con-
cluded that these advanced techniques are feasible not only for on-line security

assessment, but also for off-line analysis in power system planning and operation.

Gupta [11,18] has used the linear transformation to extract required features.
Also, he was the first to report on the application of PDM (Polynomial Discriminant

Method) for the classifier design.

Hakimmashadi and Heydt [13,19] have recommended the use of transicnt meas-
urements as features for transient stability assessment. They have investigated the
application of: Bayes rule, PDM, and Nearest Neighbor for the classifier design. They
have concluded that the Bayes design is the fastest approach, while the Nearest
Neighbor has proved to be the most accurate. Moreover, they proved that pattern
recognition is a fast, and serious candidate for power system on-line security assess-

ment compared to other methods such as Liapunov and numerical integration.



Recent research [14] has reported that pattern recognition techniques are suit-
able for power system security, either in off-line mode or on-line mode. A data gen-
eration algorithm has been developed and the selection of variables related to gen-

erators as primary variables has been recommended.

New York Power Pool [8] have introduced a prediction system using pattern
recognition for steady state voltage security analysis. They have used the intuitive
features and Nearest Neighbor design. The system proved to be efficient and reliable

and it is being implemented.

Finally, Mokhtari in [21] has applied generalized square distance and K-th
Nearest Neighbor (K-NN) classifier on the large BPA 345-230 KV system for a tran-
sient security assessment. He has introduced new features (post fault as weli as pre-
fault features). Also, new feature selection and performance estimation methods

have been investigated.

Modern energy control centers [22-26] utilized in electric utility control and
monitor schemes are required to provide real-time security assessments. Steady state
assessments are usually evaluated for a large number of actual and anticipated con-
tingencies. Therefore, as the number of contingencies increase, the solution time will
be a burden to the overall real-time control function. Under these circumstances, the
selection of the most important (critical) contingencies to perform a detailed con-
tingency analysis, becomes more desirable and is gaining a lot of utilities attention
[27-37]. The selection process of these contingencies is called Automatic Con-
tingency Selection (ACS).

Ejebe [28] has introduced the first ACS algorithm. Line and generator outages
are ranked according to their severity as reflected in voltage level degradation and
circuit overloads. The algorithm uses Tellegen’s theorem to generate the sensitivities

of a system-wide performance index with respect to outages.

The application of decision theory to ACS has been reported, as a new

approach, by Fischl [31,36]. The approach is a theoretical one which allows



development of a method for finding the performance index as a volume maximiza-
tion problem. The use of Bayes criterion has been recommended since it offers an
additional flexibility to the classification problem.

Nara [27] has presented a new ACS algorithm for contingency selection con-
cerning voltage security analysis. This algorithm proves to be efficient both in con-
tingency selection and ranking. The algorithm is based on the definition of a perfor-
mance index as a second order vector norm in the voltage space. Performing a dc

load flow for each contingency, the algorithm can be used to select and rank critical

contingencies.

An investigation of the current algorithms [27-37] indicated inefficient and
unreliable performance due in part to a lack of one or more of the following con-

siderations:

1- Ranking process is not efficient due to misclassified cases.

2- Generator VAR limits are ignored.

3- Bus current injections are assumed constant.

4- Screening criterion is not efficiently achieved.

5- Execution time at the beginning of sensitivity analysis is not that low.
6- Most algorithms do not perform reliably.

7- Single and multiple outages are not considered.

Due to the important considerations discussed above, a new approach to the
voltage contingency analysis, screening and ranking, is developed. The approach is
based on pattern recognition techniques in order to come up with the appropriate
performance index design. Once the performance index is designed, off-line or on-
line, then using a dc load flow to derive the post-contingency conditions, a screening

and ranking of the most critical cases can be achieved.



1.4 Thesis Cutlines

The main objective of this project has been discussed. Chapter 2 describes the
basic configuration of a prediction system based on pattern recognition techniques.
Pattern acquisition, pattern preprocessing, feature vector identification, predictor

design, and performance evaluation have been discussed.

Chapter 3 deals with the load rejection overvoltages on the Northern system.
Self-excitation, dynamic overvoltages, and normal conditions are explained. Effects

of machine tripping, filter tripping are also investigated on the Northern system.

In Chapter 4 a prediction system is designed for self-excitation conditions due
to load rejection and double contingency. A corrective action algorithm is
developed.

Chapter 5 concerns with the prediction of dynamic overvoltages due to load
rejection. A prediction system is designed and a least squares method is used for the
estimation of the post-contingency voltages.

Chapter 6 treats the load rejection operating problem as a multi-class pattern
recognition problem. A multi-class prediction system is described, advantages and
limitations of this scheme are outlined.

A new approach to the voltage contingency analysis is described in chapter 7.
Pattern recognition techniques are applied in this approach. A comparison with

other current algorithms are included.

Finally, the general conclusions and the future recommendations are summar-

ized.



CHAPTER 2

PATTERN RECOGNITION BASED PREDICTION SYSTEM DESIGN

2.1 Introduction

Pattern recognition, which is a  part of the larger topics
Artif icial Intelligence and Knowledge Based methods, has been used for a wide
variety of applications [1,2,8-21]. The main advantage of the pattern recoganition
method is that a given new pattern can be quickly identified as belonging to a known
class of patterns. The intelligence to make this classif ication comes from extensive

off-line computation.

Pattern recognition principles and methodologies have influenced the course of
technological development in almost every knowledge-based field. In many fields,
pattern recognition is an effective candidate for problem solving, capable of produc-
ing dramatic results. Pattern recognition has been very much a product of today’s
computer  technology. Automatic programming , parallel processing ,
color graphics , high speed computation , and microprocessors, have all benefited

from the concepts and methods of pattern recognition applications.

A prediction system is one which uses pattern recognition techniques to predict
the class membership of a given pattern. This chapter considers the different phases
required for the design process of the prediction system. Several algorithms are

employed to come up with such design as well as to evaluate its performance.

9.2 Prediction System Configuration

The configuration of the prediction system can be divided into four phases, as

shown in Fig. 2.1:
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(1) pattern acquisition;

(2) pattern preprocessing;

(3) feature vector identification;
(4) predictor function design.

In the pattern acquisition phase, digital patterns generated from a system simu-

lation model, are gathered in a format suitable for further computer processing.

The measured patterns are then used as the input to the second phase,
pattern preprocessing, and grouped into a set of characteristic patterns as output.
The general intent of this process is simply to learn about the patterns, determine
the different pattern classes that might exist in the patterns, and organize the learned

knowledge into a form most efficient for further processing.

In the third phase, f eature vector identification, some techniques are applied
to the output patterns from the second phase, in order to derive the required feature

vector,

The fourth phase in a typical prediction system is a predictor f unction design.
This predictor is in the form of a set of discriminant f unctions required to provide
the system with the appropriate decisions. Its purpose is to predict, based on the

information obtained, what class would be assigned to a given unknown pattern.

2.3 Pattern Acquisition Phase

As stated before, pattern acquisition is the process of generating and converting
a pattern from its main source into a form acceptable to the digital computation sys-
tem for further processing. Also as explained before, the design of a prediction sys-
tem is based on a set of patterns which represent typical operating conditions of the
system under study.

Pattern acquisition is to obtain a pattern set which represents the characteris-

tics of different classes which are to be classified or predicted. It should be

emphasized, that all the consecutive analyses are based on these patterns and on the
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assumption that all the information required for recognition is contained in the pat-

tern set.

A pattern is a vector of variables, these variables should represent different
characteristics of the object under consideration. The task of a prediction system is
the identification of the common characteristics of a class of patterns and on the
basis of this information, to classify a new pattern. The successful identification of
these patterns is significantly dependent on the chosen pattern variables. In fact, the
selection of these variables sets the lower bound for recognition error {13] and
therefore the selection of low quality variables could weaken the applicability of a
prediction system. In general, the selection of these variables require an intimate
knowledge of the system under consideration and the specific application of the pat-
tern recognition methodology. Pattern variables should assess the properties of each
class and should fulfill three main requirements {14}, namely:

. discrimination between different classes,

- reliability ; i.e. variables should take on similar values for all patterns of the same
class,

- independence , ie. variables should be uncorrelated with each other, although

they might be combined to reduce noise sensitivity.

It is very essential to have a representative and adequate pattern set for a mean-
ingful solution to the overall problem. The patterns should include all the informa-
tion pertinent to the recognition process. As has been shown, there are statistical
reasons behind most of the methodologies in pattern recognition. Therefore, the
problem arises of how many patterns are needed for an adequate prediction system
design. It has been shown [38,39] that the error rate of misrecognition on the design
patterns is an estimate of the asymptotic error rate of the prediction system. The
amount of this bias is a function of the ratio of the number of patterns per class to
the number of features used. Foley [38] has shown that a ratio of greater than three

will be acceptable for an accurate prediction system design.
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2.4 Pattern Preprocessing Phase

This stage could be considered as a preparation stage for the next processing
stages. Three activities can be involved under this stage, namely:
- pattern normalization,
- noise filtering, and

- estimation of measurements failure,

Usually, the system measurements are in different units, therefore it is neces-
sary to normalize the input patterns in order to speed up the numerical convergence
of the design process. A study [12] has shown that zero mean and unit variance is

the optimal normalization algorithm.

In the field implementation of a prediction system, two problems may arise: one
is due to the measurement errors which implies that additive noise is superimposed
on the ideal representation of patterns, the other problem arises when one or more
measurements are not available for some reason. The problem of measurement
errors is relevant in the situation when the design of a prediction system is based on
a design set of patterns generated some way different than that presented to the
actual system in the field operation. Researchers [13,19] have concluded that meas-
urement errors affect the performance optimality of the prediction system and
increase the recognition error probability. However, if the pattern generating pro-
cess, i.e. simulation model of the studied system, is of an acceptable accuracy for the
representation of the real system characteristics for specific application, it will lead

to a reasonable optimal prediction scheme.

When a designed prediction system is in the field implementation, it may hap-
pen that one or more measurements fail for some practical reasons. Thus, the recog-
nition capability may drop to a very low level which of course will affect the overali
performance of the prediction system. Costa [14] has outlined different approaches in
order to overcome this problem. One of these approaches, the less demanding one, is

to replace the missing measurements by their historical average values or by their
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last values if suitable.

2.5 Feature AVecter Tdentification Phase

The problem of concern in this stage is how to identify or extract from a set of
variables ¥ = (¥, Y3, --»¥,) | those that have the best discriminatory power,
called f eatures or key variables , where v is the number of pattern variables. These
features should permit the prediction system to distinguish between patterns belong-

ing to different classes.

The number of variables obtainable for a pattern can be very lai‘ge in any pat-
tern recognition problem. Therefore, it is desirable to extract a small number of
these variables from the initial set to be the features. Usually intuition and
knowledge of the problem being studied guide the listing of potentially useful vari-
ables to be considered. However, it is a very difficult task to identify the best vari-

ables required to represent the system state.
With feature identification we aim to achieve three objectives [40-46], namely:

(i) to select with appropriate methods the most useful information from the
pattern vector Y and to present it in the form of a
eature vector X = x4, X9y oy X T of lower dimensionalit < vy, where

1: %2 f y

f is the number of selected features;

(ii) to remove any redundant and irrelevant information which may have a detri-

mental effect on the prediction system; and

(iii) to rearrange the variables in terms of their discriminatory power in order to
provide the consecutive design stages with the most informative variable to be

considered.

For this stage, the following algorithms are recommended for the application of

concern:
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(a) Variable Separability Measure Algorithm (VSM)

In this algorithm a function VSM is used as a criterion in the identification of a

feature [1,2] since it provides a measure of the separability between any two classes

J& k for each variable. This function could be written as:

VSM; (i) = ABS [ (M;(i) — M, (i)) / (SD; (i) + SD;(i)) ] (2.1)

where:

M (i) : mean of variable iin class j,
M, (i) : mean of variable iin class k,
8D, (i ): standard deviation of variable iin class j,
SD; (i): standard deviation of variable iin class k .

ABS: absolute value.
The algorithm procedures could be summarized as follows, see Appendix (A):
identify the variable with the largest class separability measure VSM ;

discard the highly correlated variables, ie. variables of

correlation coef f icients = 0.9, and
repeat the above procedure till the required features are obtained.

{b) Intuitive Identification Method

In this method [8,47], usually intuition and knowledge of the problem being stu-

died guide the listing of potentially useful variables to be considered as features. In

general, features to be selected by this method are based on the availability of:

1- telemetering measurements;
2- intuition gained from experience;
3- correlation coefficients obtained from multi-variable regression analysis; and

4- engineering judgment .
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(c¢) Stepwise Identification Algorithm

In this algorithm, as in the case of stepwise regression analysis [48], the
identification of features to be used in the final analysis is often not known in
advance. A stepwise analysis is a sequence of simple analysis that moves from one
analysis to the next by adding , and sometimes deleting, a feature variable at each
step. The most commonly used method [49] of selecting variables to be entered or
deleted is based on the ratio of the within class generalized dispersion to the
total class generalized dispersion for the selected variables. The within class gen-
eralized dispersion is simply the determinant of the within group sum of cross-
product matrix W (X ) for the feature vector X = (xq, X3, ..., X )T . As such it may

be viewed as a generalization of Fisher’s ratio,
RX)=1WwW@X)I/IT(X)I (2.2)

where : T (X ) is the total class sum of cross-product matrix.

The selection measure SM , Appendix (B), for the entry of variable y; into the

set X is given by :

and for the case of removing of the feature x; from the set

X = (xq, Xy «s Xjy -y X7 )T , the removing measure could be written as :
RM; = ((a + 1)/b) [MI; — 1} 2.4)

where MI, multiplicative increment in Fisher’s ratio R (X ) resulting from the entry
of the variable y, or the deletion of the feature x;, and a & b are constants for a

given case.

The algorithm rules can be summarized as follows:



16

1- not to remove a feature if its removing measure RM value is greater than

or equal to a specified limit (threshold).

2- not to enter or select a variable if its selection measure SM is below a
specified limit.

3-  not to select a variable if its tolerance value is below a specified limit.

Tolerance for the identification of a feature variable is one minus the square of
its within group multiple correlation with the currently entered variables. This algo-
rithm is a very powerful technique since it has the advantage of the backtracking

phenomena.

2.6 Predictor Function Design Phase

Having chosen the pattern features, this stage is to design a surface in the
feature space which separates the patterns of one class from those of the other.
Therefore, this design is equivalent to fitting a surface, called
predictor or classif ier in pattern recognition terminology, to correctly classify pat-
terns from different classes. Depending on the information contained in the feature
vectors and the distribution of patterns in the feature space, the predictor function

can be a simple or a very complicated expression.

As stated before, the aim of a prediction system is to identify the underlying
characteristics which are common to a class of patterns. The identification of these

characteristics enables one to correctly predict the class of a new pattern.

Pattern recognition problems can be divided into two groups: supervised and
unsupervised . In the supervised group, there is a prior classif ication knowledge
available about design patterns. On the other hand, the unsupervised problem has no
prior information about the classification of design patterns. Power system operating
problems can be considered to be of the supervised group from the point of view of

pattern recognition theory.
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In pattern recognition theory, many techniques are available in order to design
the prediction surface [40-46]. However, the predictor function must be as simple as
possible mathematically, and must consists of as small a number of features as is
allowable. Also, the prediction system should be easy to implement in the practical
field. Therefore, the following design schemes are developed in order to achieve the

aforementioned characteristics.

2.6.1 Hyperplane Predictor Algorithm

In this design the prediction surface is constructed from discriminant functions,
the forms of which are known to be linear. The design patterns are to be used for
the estimation of the predictor parameters. Also, this design is suitable for situations
where no knowledge of the forms of underlying probability density distributions are

required, and in this sense it can be considered as a nonparametric approach.

Linear discriminant functions have a variety of pleasant properties from an
analytical point of view. They can be optimal if the underlying distributions are
cooperative. Even, when they are not optimal, one might be willing to sacrifice some
performance to gain the advantage of simplicity. Linear discriminant functions are
relatively easy to compute, and a predictor of fixed structure is an attractive candi-

date for implementation on a digital model.

2.6.1.1 Two-Ciass Prediction Problem

Consider a two —class problem in which a predictor or discriminant function,

which is a linear combination of the feature-vector components X , can be written as:
dX) =wxytwoxy + -0 twexp +wy

=WTX +w, (2.5)

]T

The f-dimensional vector W = [ wy, w,, ..., we is called the weight vector and

wy is the threshold weight. Also, the f-dimensional vector X = | x{, x, ..., x¢ ¥ is
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called the feature vector.

The prediction rule corresponding to the predictor function d (X) is to assign
the pattern X to class 1if d(X) > 0 and to class 2 if d(X) =< 0. The prediction

boundary is defined by the equation:
diX)=0 (2.6)

As d (X) is a linear function of X therefore the prediction surface is a linear surface

i.e. a hyperplane in f-dimensional space given by:

WTX = —w, 2.7

From the geometry of hyperplanes, a very important property can be derived
JFig. 22. On this diagram, let us assume X ; and X, be two patterns on the hyper-
plane and U be the unit vector normal to the hyperplane at pattern X ;. As X, X,

are both on the hyperplane, we can write
WX, +wo=WI X, +wy=0
wl (X{-X;)=0 (2.8)
From Eq. (2.8), we can conclude that W is normal to the hyperplane and

U=W/1IWII,
1/2
:|W||=[£w3] (2.9)
i=1

Therefore, the vector W defines the orientation of the hyperplane.

The normal Euclidean distance from the origin to the hyperplane is given by :

T W wo
1

W Il W I

(2.10)

Therefore, with an appropriate normalization, the threshold weight w defines the
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Class 2

Fig. 2.2 The geometry of hyperplanes.
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location of the hyperplane. Now, the Euclidean distance r from X to the hyper-

plane can be written as :

- WT
Wl X +wg
T wW o
=dX)/ I W 1l (2.11)

i.e. the predictor function d (X ) gives an algebraic measure of the distance from X

to the hyperplane,

To summarize, a linear predictor function divides the feature space by a hyper-
plane surface. The orientation of the surface is determined by the weight vector W

and the location of the surface is determined by the threshold weight wg .

2.6.1.2 Multi-class Prediction Problem

The case of a multi —class problem can be treated in the same manner exactly
as the case of the two-class problem. Many of the concepts discussed in the two-class
case can be extended to the case of multi-class problem. The multi-class case offers

some more possibilities and on the other hand it raises some additional difficulties.

One way of treating a ¢ class problem is to convert it into
¢ two —class subproblems. Each subproblem amounts to discriminate the patterns
belonging to class i from those which do not belong. Although this approach is intui-
tively satisfying , it has the disadvantage that some future patterns may be found
with undefined decisions or belong to several classes up to ¢ —1 simultaneously, see

Fig. 23 for a three class problem.

A second possibility is to convert the c-class problem into ¢ —1 two-class sub-

problems exactly as described in the previous approach. This way this approach has
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Fig. 2.3 Three two-class subproblems approach.

R — R4 : undefined decision regions.



22

the advantages of a lesser number of required decisions and a reduced region of mul-

ticlass decisions.

A third approach is to convert the c-class problem into ¢ (¢ —1)/2 two-class sub-
problems. This approach is called the pairwise predictor functions. The prediction
rule in this case is to assign the unknown pattern to the class that reach ¢ —1 positive
answers. In addition to being costly, this approach also has the disadvantage that

some future decisions may be undefined, Fig. 2.4.

All approaches discussed so far have the disadvantages of undefined or ambigu-
ous decisions. These disadvantages can be overcome by defining ¢ linear predictor

functions as:

d; (X) =wijpxptwipxy+ o twixp wp

W.TX +wy i=12.,c¢ (2.12)

The prediction rule in this case, is to assign pattern X toclassi if d; (X) > d; (X)
for all j # i, Fig. 2.5. This way, the space is partitioned into ¢ prediction regions

R; given by :
R, =[X/d;(X)> d;(X);j =1,2,.,c ;) #*i] (2.13)

Each region R; may be shown, Fig. 2.5, to be a convex polyhedron with at most ¢ —1

portions of the hyperplanes defined by:

The predictor scheme in this case is given by Fig. 2.6 .

2.6.2 Deterministic Learning Algorithms

As stated before, the predictor function has a weighting vector W and a thres-
hold weight wg. The process of determiﬂing these weights is called learning. In the
pattern recognition literatures, there are many learning algorithms, Appendix (C),

however the algorithms selected here are superior since they are based on



Fig. 2.4 Pairwise predictor approach.

R :undefined decision region.

Fig. 2.5 Three linear predictor functions approach.
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P | Maximum —
Pattern | | Prediction
' : Selector

L dg (X)

Fig. 2.6 Multiclass predictor scheme.
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nonparametric estimation of the probability density function for each class to be

classified.

(a) Linear Learning Algorithm

This algorithm is advantageous since it is based on nonparametric estimation of
the probability density function f (X /i), in addition to the application of Bayes
decision rule for classification. One way to estimate the class density function taking

into consideration the contribution of each pattern X; is given by [50]:

N,
f&/iy= 1 - 3, exp[-(X X))l (X -X;;)/ 207 (2.15)

[N; @nY 2ol ] 5

where :
X;; tpattern jin class i ,
N; : number of patterns in class i ,
o : smoothing factor.

The parameter o dictates the smoothness of the estimate of the density func-
tion. When o is small the estimated density approximates the true distribution of
patterns in the design set more closely. As o is increased the estimated density is
smoothed, Fig. 2.7, and can therefore be represented by lower order terms. Hence,
for a given number of training patterns, ¢ should be at least large enough to provide
smoothing between adjacent patterns. It may even be increased above this minimum

to limit the order of function representing the decision boundary.

Equation (2.15) can be used directly with the Bayes decision rule. However,
Specht [50] proposed a simplified approximation to this equation using Taylor’s
expansion series. As explained in Appendix (C), the final form of the weighting vec-
tor W;, for the case of design patterns X; from class i of prior probability p;, can

be estimated from design patterns during the design stage as:

1
Wi = ———[—_ zxuk Bu] (2.16)
O’ l ]—1
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where:k =1,2, ..., f,and

Pi N
Wip = ["ﬁ" XM (2.17)
i j=1

where:

Xy = xij Xijas o Xijy JF j-th feature vector from class i .

W; = [wi1, Wia, ..., wie]T weighting vector for class i .

_0.5 XE; XU )

B;. = ex
ij p ( 2

As an example, consider a two-class prediction system, where the predictor

function is given as:
dX)=d;(X)—d, (X)
=WT X +w, (2.18)

where WT = (W, T —W,T ), wo=(wy — wy ). With some mathematical

manipulation we can have the final form of the weighting vectors as :

1 N “X1§TX15
w, = - X1 " EX
T
X2
[ sz,k exp(——j—")] (2.19)
k=12 .,f.
1 & ___.___L___._
wo = o [ Z exp ( )]
1 =1

[ 2 exp(——"——zi)] (2.20)
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where PR is the prior probability ratio.

(b) Stepwise Learning Algorithm

Having chosen the stepwise pattern features, this stage is to build a surface in
the feature space which separates patterns of one class from those of the other.
Therefore, this design is called the stepwise predictor . The stepwise development of
the predictor functions is dependent almost exclusively on the current values of the
status matrices. These matrices are equal to the within and total sums of cross-
products. They are updated from one step to another be means of the sweeping
operation [48,49]. When the stepping is complete, or when the number of features
selected is equal to the one specified, the predictor function weighting vectors for

class i are computed as:
W, =(N—c)W(X) M, (2.21)
and the corresponding predictor function thresholds are given by:
wio=1Inp;, —05N—-c)MT WX) M, (2.22)

i=12,.,c.
where p; is the prior probability for class i, and M; is the features mean vector for

class i,

As an example, consider a two-class prediction system, where the predictor
function is given by Eq. (2.18) and substituting with W, W,, wp, and w, from

Eqns. (2.21) and (2.22), the weighting vector can be obtained as:
W=W-2)WHX)T (M- My (2.23)
and the predictor constant is given by:

wo=In(1/PR )~ 05N —2)[M] WX) M, ~M] WX) " M,;](24)
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2.7 Prediction System Performance Evaluation

As far as a performance evaluation methods are concerned, there are two
approaches; on-line and off-line. For the on —line method, the prediction system is
installed on the actual system, and its parameters are adjusted in accordance with
experience. This method is probably only practical for “fine tuning” of the prediction

system, Fig. 2.8.

The of f —line approach uses an accurate computer model to generate test pat-

terns and estimate the probability of misprediction for each test pattern.

In this study we will deal with the second approach and incorporate error esti-
mation methods. The performance evaluation given by these methods could be writ-

ten as:

N, ’
Perf ormance = 100. (1.0 — 1/N, 21 [1-38;]) (2.25)
]=
where : Sj is the Kronecker delta function, i.e. 8_,- = 1 in case of correct prediction,

5;‘ = 0 in wrong prediction cases, and N, is the number of patterns in the test set.

Generally speaking, the last step in a pattern prediction system design is to
evaluate the future classification performance of this system. Several estimates exist
in the literatures [40-46]). However, only some of them are used here, Appendix (D),
as : 1- Resubstitution Estimate, 2- Hold-out Estimate, 3- Leave-one-out Estimate, and

4- Rotation Estimate.
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CHAPTER 3
LOAD REJECTION OVERVOLTAGES ON NORTHERN SYSTEM

3.1 Introduction

In power system applications involving synchronous generators connected to
long distance ac transmission systems or connected to dc systems with large filter
banks close to the machines, serious overvoltage conditions can arise following major
system contingencies . Examples of such contingencies are ac load rejection or block-

ing of converter stations.

These overvoltages have been reported before [4,6] using analog and digital
simulations. They are a function of the ac transmission system charging capacitance
or the amount of filter capacitance for ac/dc systems, the number of machines con-
nected, the over-speed characteristic of the turbine-generator set, and the excitation
system response. The problem of load rejection overvoltages on hydro-generator sys-
tems can be avoided by eliminating or at least minimizing the possibility of generator

self —excitation , and controlling system dynamic overvoltages to acceptable levels.

The generating stations in power systems could be either steam-turbine or
hydro-turbine units. Historically, hydro-turbine and steam-turbine units have been
faced with overvoltages and generator self-excitation when long unloaded EHV
transmission systems are left connected to the generators [4]. Generator seli-
excitation has been a common concern on hydro systems due to the high over-speed
condition on load rejections [4]. In practice, for steam-turbine generator units load
rejection can be tolerated with little or no significant damage to the unit, and the
unit can continue to run on a self-supporting basis, for periods of up to several

hours, without incurring major operating difficulties [51].

Load rejection overvoltages are considered in this chapter for the Manitoba

Hydro Northern system. Existing preventive and protective schemes are outlined.
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3.2 Load Rejection Overvoltage Ceonditions

3.2.1 Introduoction

As shown in Fig. 3.1, the Manitoba Hydro Northern system on the Nelson River
consists of two interconnected hydro generating stations (Kettle and Long Spruce)
feeding power to Southern Manitoba through two dc bipoles: bipole 1 (BP1) and
bipole 2 (BP2). AC filter banks are connected at Radisson and Henday converter sta-
tions and are of a 2295 & 500 MVARs capacity respectively. These filters are to

filter out the harmonic currents of the 5-th, 7-th, 11-th, 13-th, and higher order.

The system under study, simplified in Fig. 3.2, is only a part of the Northern sys-
tem in order to identify the problem very well and to avoid excessive computations
at this stage. This system consists of Kettle generating station connected to Radisson
through K-lines (lines K1 to K7 in Fig. 3.1). At Radisson there are ac filter banks
connected to the ac side of bipole 1 converter stations, to filter out the generated
current harmonics. In such a system dc load rejections caused by the blocking of
Radisson converter stations, can lead to situations where certain combinations of
over-speeding machines are ieft connected to filter banks. These conditions can give
rise to serious overvoltages, especially when the filter VARSs are excessive relative to

the number of generating units remaining connected.

The digital simulation model used for this study bas been developed by Mani-
toba Hydro [52]. The hydraulic turbine generator unit is represented by: the
governor-turbine system, the synchronous machine equations, and the excitation sys-
tem. Appendix (E), shows a block diagram for a salient pole machine; a representa-
tion of static exciter without negative field current capability and voltage regulator; a
block diagram of the hydro turbine governor; and a detailed nonlinear hydraulic sys-

tem simulation incorporated with the governor.
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3.2.2 No Self-Excitation Condition

For the Northern system simplified in Fig. 3.2, hydro generating plants as Kettle

are feeding a dc system known as bipole 1 (BP1).

Figure 3.3 shows a typical pattern of no self —excitation results. In this pat-
tern, 6 units at Kettle, 2295 MVARs filters load at Radisson, and 600 MW of 0.86
power factor lagging dc load on BP1, are considered. These results show that load
rejection overvoltages are all characterized by an instantaneous rise at the instant of
rejection (0.1 sec), then followed by a temporary voltage limiting by regulator control
and ending with a more gradual rise. Also, it can be seen that the generator dynamic
voltage rise is about 20%, while the steady state rise is about 1%. On the other hand,
the corresponding Radisson overvoltages are about 28% and 10% respectively. An

increase in the generator speed with about 25 Hz can be observed.

3.2.3 Dynamic Overvoltage Condition

In some situations [53], involving a few machines connected to a particular filter
configuration, full load rejection does not indicate imminent self-excitation, but
nevertheless, can lead to poor voltage regulation in the dynamic and/or steady state
periods following the load rejection. For example, it is possible for the bus voltage
to rise to approximately 1.4 p.u. during the dynamic period immediately following the
load rejection, and to settle several seconds later at more than 12 p.u. Either of
these could be considered abnormally high, even though self-excitation has not

occurred,

3.2.4 Self-Excitation Cendition

For the system under study, Fig. 3.2, hydro —generating plants are feeding a
dc system (BP1). Self-excitation usually occurs during an over —f requency condi-
tion (up to 80 Hz). It occurs following resonance between the machine direct axis

reactance X; and the capacitive reactance seen at the machine terminals X, ,
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particularly for machines equipped with static excitation systems without negative
field current capability. The effects of having or not having negative field current

capability in the excitation system have been treated in some detail [6].

A pattern of results for self-excitation conditions is illustrated in Fig. 3.4. This
pattern is for the same configuration given in the case of no self-excitation except
that the number of Kettle units is 4 in this case. The converter station, blocked at
0.1 second, produces the field current and voltage responses given in Fig. 3.4. The
generator field current becomes negative at approximately 2.5 seconds, at the same

time the direct axis flux and voltages start to reverse directions.

During the condition of self-excitation, the stator current due to the capacitive
load tends to excite the machines. When this happens, the exciter and field circuit
have no control over the machine terminal voltage and it can rise dramatically, with
a rate of about 1 - 2 p.u/sec, to an extremely high level, Fig. 3.4. At the same time,
the field current is forced rapidly to zero causing very high voltage stresses across
the field, which can damage the excitation system as explained by Gole [7]. Damage

to an exciter of the Kettle generating plant has been reported.

In summary , the problem of load rejection overvoltages can be considered as a

problem of machine/filter interaction following load rejection.

3.2.5 Effect of Generator Units Trip

The design of Kettle and Long Spruce involved terminating two units per high
voltage breaker position. This is a concern at Kettle where the existing K-line protec-
tion is set to trip at 172 MVA into the generating station. With two units of Kettle
per K-line, the possibility of losing the line following a dc load rejection exists. The
machine VAR intake during the dynamic period following a rejection is important
due to the loss of field and loss of excitation relays at Kettle. Comparing the results

of Fig. 3.3 with those of Fig. 34, the effect of a two units trip at Kettle is clear.
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3.2.6 Effect of Filter Bank Trips

The effect of filter tripping can be explained by Fig. 3.5. It shows a comparison
between the results of two patterns: the first pattern is self-excitation condition, and
the second is a no self-excitation pattern. The self-excitation pattern in this case
includes 12 units at Kettle, 600 MVARs of filter banks, and 1200 MW of 0.86 power
factor BP1 load. On the other hand, a tripping of 20 MV ARs of filters at 1.0 second
and for the same system configuration as that for the first pattern, produces no self-
excitation condition for the second pattern. From these results, it is clear to see the
effect of filter tripping on the rate of rise of the generator and load terminal voltages
i.e. the filter tripping affects the load rejection overvoltage conditions in the

corrective action direction.

3.3 Existing Preventive and Protective Measures

DeMello [6] concluded that the excitation system design can be an important
means for solving system overvoltage problems. However, Dandeno [5] mentioned
that for a hydro system it may be very costly to design an excitation system such that
self-excitation cannot occur at overspeeds. A protective method based on the moni-
toring of machine field current has been proposed. This proposal can solve major
problems but for some cases it can indicate a problem when the overvoltage is not

serious.

Another protective measure [6] suggests that overvoltage relays should drop
reactive sources (filters) when safe voltage levels are exceeded. It is difficult to avoid

overstressing the breakers because the voltage can rise very fast.

Manitoba Hydro has implemented a ook —up table method [53]. The strategy is
prevention via configuration operating restrictions. It is based on maintaining the
machine/filter combinations within the operating restrictions and therefore involves a
very high number of computation runs. For example, Table 3.1 presents the relation

between the minimum number of machines corresponding to different filter
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Table 3.1 The minimum number of machines allowed for no
self-excitation

Filter (MVARs) 79 100 150 |229.5) 300 500 580

No. of machines 2 2 4 5 7 11 12

Me—————— present future -——
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configurations, required to prevent self-excitation at rated loading conditions. The
"boundary” is not that simple for the wide variety of possible operating conditions:

hence a procedure such as the one described in this thesis is highly recommended.

Another approach is to use a complete digital computer system model to assess
the current operating configuration. In this scheme the evaluation is based on tran-
sient stability and load flow simulations which takes about 50.6 seconds cpu time for
one case on the Prime computers. Since more than one “case” needs to be run, ie.
more than one anticipated fault condition for a particular operating condition, this

method is too slow and too expensive.

3.4 Proposed Approach

Any protection scheme for load rejection overvoltages (system dynamic overvol-
tages and/or generator self-excitation) must be capable of offering protection for the
following operating situations [53]:

(1) Provide protection in the event of loss of machines. The loss of two units is the
most probable situation.

(2) Provide protection for the case of a complete bipole block or a large dc reduc-
tion,

On the other hand, the successful protection scheme should have the following
qualifications:

(1) It should reduce or eliminate the large number of machine/filter operating res-
trictions.
(2) It should only take action as required and only affect the generating

station/filters in danger.

(3) It should be easily extended as additional generation and dc facilities are added.
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(4) It should not interfere with existing machine protection.

Looking for a protection scheme to operate in the above situations and possess
all required - qualifications, all protection schemes mentionzd in the above section
have drawbacks. The approach suggested here is to use a prediction system, as
recommended by de Mello in [6], that will assess the current machine/filter
configuration using a "fast calculation” based on a few key measured variables. The
design is based on the use of patrern recognition techniques. It will help the power
system operator to detect after receiving system informations, within 10 msec predic-
tion time on AMDAHL computer, conditions that may lead to the aforementioned

abnormal conditions before they occur.

Pattern recognition has a wide variety of applications [2,8,9,54-59]; however the
application discussed here is unique in both the problem that being addressed and

the manner in which the technique is applied.

3.5 Conclusions

The Manitoba Hydro Northern system has experienced generator self-excitation
as well as system dynamic overvoltages, due to converter station blocking (dc load
rejection). These conditions are found to be dependent on the system configuration
i.e. machine/filter combinations. It was also explained that the lesser the number of

machines, the more severe the condition will be.

Investigating the current protection schemes, it was concluded that they are
unreliable, and therefore the suggesting prediction scheme was recommended. The

reduction of filter MVARSs was proved to be a suitable corrective action.



CHAPTER 4

SELF-EXCITATION: PREDICTION SYSTEM DESIGN

4.1 Introduction

As discussed before, power system load rejection may result in generator self-
excitation and/or system dynamic overvoltage depending on the machine/filter combi-
nations. Therefore, in the field implementation there are two prediction system
schemes: the self —excitation prediction system and the
dynamic overvoltage prediction system. Each of these systems is considered as a

two-class prediction problem e.g. the normal class and the abnormal class.

This chapter concerns the self-excitation prediction system design. The main
purpose of this system is to assess the current machine/filter configuration using a
fast calculation method based on the available knowledge contained in design pat-

terns.

The application of pattern recognition techniques, described in chapter 2, is
illustrated here to design the required prediction system for the simplified Manitoba
Hydro Northern system. A detailed description of the self-excitation prediction sys-
tem, its performance evaluation, and the effect of failure in communication channels
are provided. Also, the idea behind the development of an algorithm to iteratively
simplify the prediction system structure is presented. Finally, a corrective measure

is proposed in order to prevent self-excitation.

By using pattern recognition techniques, including the establishment of the
appropriate features and predictor design, a scheme is suggested to aid power sys-
tem operators in anticipating self-excitation operating problems and to evaluate the

required action in a very short time compared with other methods.
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4.2 Creation of Characteristic Patterns

This stage is to create a set of patterns called pattern set. The pattern set
should be representative of the whole range of power system operating conditions.
Otherwise, the prediction system obtained may not be able to correctly predict

future patterns.

The characteristic pattern set for a particular class i in the variable space may

be defined as:

Yin Yiiz ... YiWw;
, . . yw'

y, = |7 dim oo (4.1)
Yivt Yz T Yaw,;

which could be rewritten in the following format:
Y.' = (yt'jk /j = 1, 2, ey V) k = 1, 2, seey N,) (42)

where v is the number of pattern variables and N; is the number of patterns in
classi (i =1,2),

In order to avoid the large off-line computational burden involved to create the
pattern set, a simplified version of the Manitoba Hydro Northern system is studied
(see Fig. 3.2 in chapter 3 ). Additionally, a number of self-excitation relevant system
configurations are considered, in order to test the proposed prediction system

without using excessive computation at this stage.

For an isolated hydro generating plant as Kettle feeding a dc load as bipole 1,
self-excitation prediction assessment involves new kinds of contingencies. As men-
tioned in the previous chapters, the prediction system should be capable of providing
self-excitation protection for the most probable contingencies. For this reason, the
complete bipole block and the loss of one or two Kettle units following the dc load

rejection are considered as the system operating contingencies of major interest.
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Any power system pattern can be fully described by a set of variables, The
number of variables comprising a pattern for self-excitation studies will depend on
the detail to which the system is modelled, as well as the size of the system.
Nevertheless, a great number of variables is always needed and the problem of high

dimensionality can be avoided using feature identification techniques.

During the pattern set creation, it was found that the following variables are

the most inf ormative for the prediction process of self-excitation patterns:
P,., Q4. = active and reactive load into a converter station
Qr = reactive generation of filter banks at a bus
X 4 = machine direct axis synchronous reactance at a bus
{74 = machine field current at a bus
V , 8 = voltage magnitude and angle at a bus respectively
P,, Q. = active and reactive power generation at a bus respectively
P;, 0Q; = active and reactive line flows respectively

Using the Manitoba Hydro self-excitation digital simulation, discussed in some
detail in chapter 3, a load rejection pattern set of 124 patterns of 12 variables each is
created. These patterns are then classified into no self-excitation (90 patterns) and
self-excitation (34 patterns). Out of these 90 patterns, a f easible pattern set of 88
patterns is constituted for the case of double contingency i.e. the loss of one or two
units following load rejection. The last pattern set is again classified into 51 no self-

excitation and 37 self-excitation patterns.

4.3 Identification of Required Features

Pattern sets having been created, this stage is to identify the required features.
By applying the principal component method or KL —transf ormation, Appendix
(A), to these pattern sets in the variable space, the required number of features

sufficient for a prediction process can be estimated as shown in Table 4.1.



Table 4.1 Principal components results

Feature LR-predictor DC-predictor
no. e.v. sum % e.v. sum %
1 401,31 84,66 91.81 88.5
2 17.46 98.78 7.47 95.7
3 4,72 99.89 3.99 99.60
4 0.46 99.98 0.42 95,39

LR: load rejection contingency
DC: double contingency

e.v.: eigen-value
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Then applying feature identification techniques, discussed in chapter 2, to a pat-
tern set given by Eq. (4.1) will produce the corresponding f eature space described

as:

Xi11 Xz ... TN
X; X; .. XioM.
Xx; = [T e TN (43)
Xig1 Xip2 T XN,
rewritten in the form:
X, =@u/li=1L2,..fik=12 .,N;) (4.4)

where f is the number of required features ie. f = 4.

Table 4.2 presents the features identified using the variable separability measure
(VSM) and intuitive techniques for the load rejection contingency as well as the dou-

ble contingency.

The stepwise feature identification algorithm is then applied to the available
pattern sets and the results obtained are provided in Table 4.3. These results show
that at each step there is one feature to be added to or removed from the current
features until the stepping is complete. The selection and removing threshold used is

0.001.

4.4 Predictor Design and Performance Evaluation

Having identified the required features, we can design the predictor and evalu-
ate its performance in predicting self-excitation conditions. The design process is
really based on the recognition knowledge contained in the features and on the dis-
tribution of the pattern set in the feature space. For this design the following two

schemes are employed: Linear prediction and Stepwise prediction .
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Table 4.2 Features identification results

Feature LR-predictor DC-predictor Intuitive
no. feature VSM feature VSM features
1 Vi 0.8501 Qs4 1.3561 X3
2 Qo3 0.9187 Vs 1.1913 Op
3 Pg 0.3908 X3 0.5187 Qg
4 X3 0.3807 Qp 0.4513 I¢g

Table 4.3 Stepwise features identification results

Step LR-predictor DC-predictor
no. feature SM feature SM
1 Vi 89.0420 Q23 115.7065
2 I¢gq 11.9342 Qg 22.8578
3 ) 3.2814 X4 23.2773
4 Q23 .9693 V3 4,1879
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4.4.1 Linear prediction scheme

In this approach the Resubstitution and Hold-out design methods are involved
along with the linear learning algorithm (section 2.6.2). This scheme deals with the
features identified using the variable separability measure and the intuitive algo-

rithms (section 2.5), see Fig. 4.1,

(2) The Resubstitotion design

In this method the predictor scheme is designed using the pattern set. Figure
4.2 shows the design procedure for this case. This design is a function of two parame-
ters, ¢ and PR, the smoothing factor ¢ dictates the smoothness of the estimated
density function, while the prior probability ratio PR adjusts the design so as to

have a desired accuracy in the prediction of patterns from a particular class.

The design results, shown in Fig. 4.3, explain the selection process of these two
parameters. The selection criterion involved here is based on the effectiveness of the
overall prediction accuracy. These results declare that both designs start with accu-
racy around 30 % and builds up till it saturates to around 80 % using VSM features

and 90 % using the intuitive features.

The design parameter PR starts flat and settles for few times then builds up till
it saturates at 1.45 for VSM and 1.15 for intuitive features. The appropriate designs
are selected at o = il and o = 6 using VSM and intuitive features respectively.
The results obtained in Fig. 4.3 prove that the intuitive features are more informative

than the VSM features for the case of the load rejection predictor scheme.

The selected design of the predictor hyperplane d for the case of

load rejection and using VSM features is obtained as:
d=WI'X +w,
where

W = [ —0.4543, 1.3928, — 0.0721, — 02614 |7 , w, = —0.4183
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X = [VS: Q23! Pg’Xd ]T (45)
and for the intuitive features:

W =[ —0.1649, — 0.6042, 1.5471, 0.0616 | , w, = —0.1451

X =[X4,00, Q14 I (4.6)

where W is the weighting vector, w is the threshold weight, and X is the feature
vector. From these designs, Eqns. (4.5) and (4.6), it can be seen that the hyperplane
surface is inversely proportional to V3, P,, X,;, and Qp. For example, if X,
increases (meaning fewer machines) then the predictor hyperplane will tend towards
the self-excitation patterns, which is logical. On the other hand, the predictor surface
is directly proportional to @53, @, , and I, which agrees with the physical interpre-
tation of self-excitation conditions.

Similarly, Figure 4.4 presents the design results obtained for the selection of
design parameters, o and PR, for the double contingency condition. In this case the
prediction accuracy builds up faster than the case of load rejection, and reaches
about 90 %. It must be noted here that the design philosophy is to keep the predic-
tion of self-excitation patterns greater than or equal to 95 %. The preferred designs
in this case are selected at 0 = 4 and o = 5. On the other band, the PR parameter

starts fiat then builds up to a saturation levels of 1.3 and 1.4 for both feature cases.

The hyperplane design for the double contingency case and using VSM features

can be derived as:
W = [ 1.1268, — 02203, — 0.0909, — 0.9064 |7 , w, = —0.2057
X =[0mVaXs0r V 4.7
and for the intuitive features case is obtained as:

W =] —0.0926, - 1.0635, 1.1053, — 02479 |7 , wo = —0.2393
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X ={X4,0r Qs I (4.8)

Table 4.4 presents the performance evaluation results using the above described
design procédure for the first class (no self-excitation), the second class (self-
excitation), and for the overall problem. These results confirm that an overall pred-
iction accuracy of greater than 90% can be achieved for the load rejection case and

around 90% for the double contingency case.

(b) The Hold-put design

The design procedure involved in this method is based on the partition of the
available pattern set into a design set and a test set. The design set is to be used for
the design of the predictor hyperplane, while the test set is to be used for the evalua-

tion of the predictor performance.

The partition method developed here is based on the idea of selecting patterns
which are near to the hyperplane separating surface to construct the design set, Fig.
4.5. This method has the advantage of getting the highest predictor accuracy using
the smallest number of design patterns compared to the case of using patterns gath-

ered at random [9,10].

The Hold-out design algorithm developed is shown in Fig. 4.6. This algorithm
presents different steps which are required to come up with the appropriate design.

These steps could be summarized as follows:

(1) Design an approximate predictor using an initial design set.

(2) Update the design set using the nearest patterns to the separating surface.
(3) Redesign the predictor surface using the new design set.

(4) Calculate the predictor accuracy. If it is satisfactory terminate this process, oth-

erwise proceed to step (2).

The results obtained using this algorithm, given in Fig. 4.7, explain the effect of

selecting the design set on the achieved predictor performance. These results are
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Table 4.4 Resubstitution design performance evaluation

Class LR-predictor DC-predictor

type VSM Intuitive VSM Intuitive
Class 1 72,22 90.0 84.31 84.31
Class 2 100.0 97.06 97.3 87.3
Overall 79.84 91.94 89.77 89.77
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obtained for the case of load rejection as well as for the double contingency case. It

can be concluded that the final designs could be derived after only 6 iterations.

Each of the final designs obtained before, is a function of the design parameters
( o and PR). Figure 4.8 shows the results obtained regarding the selection of these
parameters, using the VSM and intuitive features for the case of load rejection con-

tingency. The optimal design obtained using the VSM features can be written as:
w = [ —0.0209, 0.6098, — 0.0622, — 0.0209 ¥, wo = —0.0089 (49)
and that obtained using the intuitive features is given by:

W =[ —0.1059, — 03769, 0.9344, 0.0669 | , wy = —0.0608 (4.10)

The results shown in Fig. 4.9 explain the effect of the design parameters on the
design process for the condition of double contingency. It can be observed that the
intuitive features are quite effective and informative than the VSM features in this
design. Additionally, the predictor hyperplane designs are selected at a prior proba-
bility ratio PR of 1.0 and 1.01, and at a smoothing factor o of 3.0 and 4.0, in the case

of VSM and intuitive features respectively.

The selected hyperplane equations are obtained as:
W = [ 05548, — 0.2052, — 0.1063, — 0.3004 T, we = —0.1978 (4.11)

for the VSM features, and

W =[ —0.1087, — 03761, 0.6386, — 02903 |7 , wy = —02074  (4.12)

for the intuitive features.

The performance evaluation using the Hold-out method is presented by Table
4.5, The results obtained indicate that the lowest design accuracy is about 80 % and
the highest is about 95 %. On the other hand, the test results were as low as 98.44 %

prediction accuracy. Generally speaking, the overall prediction accuracy is greater
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Table 4.5 Hold-out design performance evaluation

Class LR-predictor DC-predictor
type VSM Intuitive VSM Intuitive
Class 1 67.57 91.89 82.76 86.21
Class 2 100.0 100.0 100.0 100.0
Total 80.00 85,00 90.00 82.00
(a) design stage

Class LR-predictor DC-predictor
type VSM Intuitive VSM Intuitive
Class 1 100.0 100.0 100.0 100.0
Class 2 100.0 80.91 100.0 100.0
Total 100.0 98.44 100.0 100.0
Overall 90.32 S6.77 94,32 85.46

(b) testing stage
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than 90 %, and the intuitive features are proved to be more powerful and informa-

tive than the VSM features.

The diagram shown in Fig. 4.10 explains the predictor design spectrum for the
available pattern set. Self-excitation patterns (abnormal patterns) have a prediction
index which varies from -2.0 to near zero. On the other hand, no-self-excitation pat-
terns have the range from near zero to 8.0 which could be divided into three levels:
weak, average, and strong. Therefore, the level of a given new pattern can be simply
identified and how close this pattern is to other levels. In other words, the relative

degree by which a pattern belongs to a certain level can be evaluated.

4.4.2 Stepwise prediction scheme

This is another design scheme where a stepwise learning algorithm and stepwise
features are employed in order to come up with the required prediction scheme. Fig-
ure 4.11 presents a block diagram for this scheme. The prediction of self-excitation
due to the load rejection as well as the double contingency is considered in the sys-

tem under design.

The stepwise learning algorithm is essentially based on the available pattern set
and the distribution of these patterns in the feature space. This algorithm is a func-
tion of the prior probability ratio (PR). This parameter PR affects the constant term
or threshold weight w, and it does not affect the weighting vector W. By changing
this parameter the hyperplane constant term changes which means that the hyper-

plane moves up or down in parallel by increasing or decreasing the parameter value.

The results obtained, shown in Fig. 4.12, explain the hyperplane predictor
design and its relation with the prior probability of class no. 1 (p;) for different
numbers of features (f )} (only f =1 and f =4 are shown). These results prove that
the highest design overall accuracy occurs at p; = 0.6. It should be emphasized that

if p, > py, the prediction will be biased towards the second class patterns, and on

the contrary, if p; > p, the first class patterns will be biased. Therefore, a strong
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conclusion from these results can be drawn. It is that the prior probability ratio
(p,/p1) could be estimated to a value around 1.0. This estimation looks reasonable

for most situations where this design scheme is evolved.

Table 4.6 records the results obtained during the design stage as well as the test-
ing stage. In the design stage, the whole pattern set is used to derive the design
scheme, while in the testing stage, the leave —one —out estimate is evolved in order
to evaluate the performance of the prediction scheme. It can be proved that the

highest prediction accuracies are of 92.7, 94.3 %, and are obtained when f = 3.

4.5 Effect of Telemetering Communications Failure

Failure of the communication channels is a practical possibility. Therefore it is
necessary to study the effect of the failure on the performance of the prediction sys-
tem and to identify the most informative channels. This is in order to avoid a degra-
dation in the prediction system accuracy and keep the accuracy of the predictor as

high as possible.

As discussed in chapter 2, there is another approach in order to avoid a large
drop in the prediction system performance in case of communications failure. This is:
either to use the last sample of the failed channel, or to use the average value of

recent samples of the failed channel.

Assuming that one channel failure at a time is the most likely situation. Table
4.7 presents the results obtained for the linear prediction scheme (section 44.1)in
case of communications failure. From these results, it can be proved that the failure
of X, channel or sometimes V 3 channel had no effect (or occasionally a slight effect)
on the prediction system performance. On the other hand, the failure of Q3 channel
or Qr or Q, channels had a drastic effect and the prediction performance dropped

to a very low level.

The results obtained in Table 4.8 explain the effect of communications failure

on the stepwise prediction scheme performance. They indicate that all the channels
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Table 4.8 Effect of telemetering communications failure on
the stepwise prediction scheme

Channel LR-Prediction

failed Class 1 Class 2 Total
V3 100.0 0.0 72.58
I¢g 100.0 0.0 72.58
64 100.0 8.82 75.0

(a) load rejection

Channel DC -Prediction

failed Class 1 Class 2 Total
Qo3 0.0 100.0 42,05
Qg 100.0 2.70 59.05
X3 100.0 37.84 73.86

{(b) double contingency
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are very informative and highly important for the prediction system.

As a summary, it can be concluded that the X; channel is the least significant

channel for the linear prediction scheme.

4.6 Reduction of Prediction System Struciure

The designed predictor hyperplane {(dimension) is a function of identified
features. Therefore, the operating prediction structure, Fig. 4.13, has a number of
telemetering channczls equivalent to the number of predictor features. These com-
munication channels may be costly. For this reason, there is a need for an algorithm
to reduce the number of required channels, which of course will also simplify the

prediction system structure.

The following procedure has been developed in order to reduce the required

number of features without affecting the overall system performance appreciably:
1-  Design the predictor hyperplane with the features identified.

2-  Avoid the feature with the smallest discriminatory power from the features

used in step 1.
3-  Redesign the predictor with the reduced features obtained in step 2.

4-  Check the prediction system accuracy: if it is decreased terminate this pro-

cedure, if not return to step 2.

Table 4.9 presents the results obtained using this procedure, from which it is
clear that the prediction system structure can be reduced by one channel without any

significant effect on the overall performance.

4.7 Development of Self-Excitation Corrective Action

If a system state is predicted to be abnormal, then a fast corrective action is
needed in order to improve system security. As to the required actions, several
methods are available [1,9]. For example, a change of the power system configuration,

or a modification of the distribution of the active or reactive injections. An
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Table 4.9 Reduction of prediction system structure

No. of Resubs. design Hold-out design
features VSM Intuitive VSM Intuitive
4 79.84 91.94 90.32 86.77
3 78.84 93.55 91.94 96.77
2 75.00 68.55 75.00 87.10
(a) load rejection
No. of Resubs. design Hold-out design
features VSM Intuitive VSM Intuitive
4 89.77 89.77 94,32 95,46
3 89.77 89.77 93.18 95.46
2 87.50 88.64 90.91 89.77

(a) double contingency
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alternative approach would be to employ a load flow simulation constrained by the

predictor function.

Regarding the self-excitation problem which is basically a violation in the reac-

tive flow distribution throughout the system, the corrective action suggested is the

adjustment in the reactive power injections from the reactive sources (filter banks).

A corrective algorithm is developed in order to correct the system alert (insecure)

state into a pref erred (secure) state. This algorithm is based on the sensitivity of

the predictor design in terms of the selected features.

To provide the system operator with the suggested appropriate action, the fol-

lowing algorithm, Fig. 4.14, is developed as:

ey

(2

€))

4

Derive the required predictor design d using the appropriate learning scheme.

For example, assume the predictor design is a function of all features as:

d =F(xq, x4, .., xg) (4.13)

Formulate the predictor sensitivity w.r.t. all features involved in the design

scheme as:

Ad =2 a1 O g+ 2E

A 4.14
dxy dx, oxy g (4.14)

Select one of the f easible features, means all features under the operator con-
trol, to be the control feature by which the operator will adjust system condi-

tions.

Re-evaluate the prediction sensitivity in terms of the control feature taking into

consideration other features contribution.

ax ax ax
Ag =2 2L OF FR2 4 2E TN 4,
dxq, dx; dx, Ox; axy  0x;
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where x; is the control feature and k is a constant.

Determine the amount of change in the control feature Ax; just required to

bring the system into a normal state as:

Ax; =Ad /h (4.16)

Using a fast load flow simulation (DC load flow), obtain the new system condi-

tions in general and the design features in particular.

Calculate the prediction index 4 and verify the required constraints ie. if
d > 0 proceed to next step, otherwise return to step (5) since the system is in

the abnormal (alert) state.

Confirm the action feasibility using system dynamic simulation. If it agrees then
operator may take action. In case it does not agree, which may happen in a very
rare situations due to a misprediction by the prediction scheme involved, opera-
tor has to recommend for a modification in the design of the prediction system
and to decide an action based on his own knowledge and field experience as

explained in Fig. 4.14 |

In case of excessive modifications, an accelerating procedure could be employed

Ax,-=a Ad/h

WAL

a = m (4.17)

where a is the acceleration coefficient and d (D & 4V s the prediction index after

zero, one iteration respectively.
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4.7.1 Corrective Action of Linear Prediction Scheme

With respect to the application of this algorithm to the problem of concern, the

following steps are considered:

M

(2

3)

#

Consider a predictor design as for example the scheme using Hold-out method

with the intuitive features involved as given by Eq. (4.10).

Select the control feature as in this case the reactive power injection of filter

banks Qf .

Assume that the change in filter banks MVARs AQy is followed by an equal

and opposite change in generator MVARs AQ, ie. AQr = —AQ,.

Evaluate the predictor sensitivity in terms of the control feature as:

Ad =h AQr , h = —13113 in this case.

A sample of the results obtained using the proceeding algorithm is presented in

Table 4.10a. It can be observed that only one iteration step is required for most of

cases and two iterations for one case in order to come up with the required correc-

tion, without the use of any accelerating process.

4.7.2 Corrective Action of Stepwise Prediction Scheme

Consider, in this case, the stepwise prediction scheme designed for the double

contingency condition as discussed before in section 4.4.2 . This design can be writ-

ten as:

d=W'X +wo, WI =[wy,wy,wi], X7 =[X;, 0, Q23] (418)

The predictor sensitivity could be written as:

Ad = Lid) AQS + Wi AQ23 (419)

and assume that approximately AQ, = AQj3 = — AQr then substitute back in Eq.

(4.19), therefore, we can write:
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Table 4.10 Self-Excitation corrective actions

Initial | Initial |Required Final No. |APPROVED
predic. filter filter predic. of OPERATOR
index MVARS MVARS index steps ACTION

g (O Q;o) f(.‘k) 48 y Q;k)_Q;O)
-0.4776 75.00 38.58 0.1005 1 -36.42
-0.178B6 105.00 91,38 0.030t1 1 -13.62
-0.0654 150.00 144,71 0.0106 1 -5.29
-0.0775 200.00 194.09 0.0116 1 -5.91
~0.3915 225.50 194.13 0.0112 2 -35.37
-1.1571 229,50 141.26 0.2094 1 -88.24
-0.0265 245.00 242,98 0.0042 1 -2.02
-0.1125 300.00 291.42 0.0173 1 -8.58
-0.1489 400.00 388.64 0.0227 1 -11.36
-0.1861 500.00 485,81 0.0271 1 -14.19
-0.2239 600.00 582.92 0.0315 1 -17.08

(a) linear prediction scheme




B2

where h is equal to -0.16724 in this design scheme.

From Eq. (4.20) the correction in the contro! feature can be determined in
order to enhance the system conditions. Following the corrective algorithm conse-
quence including the accelerating procedure, a sample of results are obtained and
presented in Table 4.10b . It can be proved that the developed corrective algorithm is
very effective and helpful to the power system operators providing them with

appropriate actions required to improve system security.

4.8 Concluosions

This chapter provides a new application using pattern recognition techniques.
An efficient prediction system based on these techniques is designed. It rapidly
predicts self-excitation conditions so that the operator can take action necessary to

improve the system state.

The results obtained for the studied power system confirm the high perfor-
mance of the pattern-recognition based prediction system presented. The intuitive
identification of features was very effective for this application. The discriminant
hyperplane used for the predictor design was proven applicable for the prediction of
self-excitation problems. The use of this design method permits a recursive adapta-
tion to new system conditions. The developed prediction-system structure-reduction
method was very useful. The developed corrective algorithm proved its effectiveness

for the application of concern.

The main conclusion in this chapter is that pattern recognition techniques can
be applied to the prediction of power system self-excitation operating problems.
These techniques are very attractive candidates for on-line prediction schemes:

speed, accuracy, and ease of implementation can be accomplished.



Table 4.10

&3

(continued}.

Initial Initial (Required Final No. APPROVED
predic. filter filter predic. of OPERATOR
index MVARS MVARSs index steps ACTION
d(o) Q;()) Q(_Fk) d(k) X Q(Fk)_ Q(F(?)
-0.0B17 150.00 85.95 0.0019 2 -64,05
-0.1534 185.00 87.00 0.0004 2 -108.00
~-0.0668 250.00 204.22 0.0005 2 -45,78
-0.0947 350.00 285.19 0.0015 2 -64.81
-0.1429 450.00 355.51 0.0006 2 -94.49
-0.1982 550.00 417.96 0.0011 3 -132.04

{b) stepwise prediction scheme




CHAPTER 5

LOAD REJECTION DYNAMIC OVERVOLTAGES:
PREDICTION SYSTEM DESIGN

5.1 Introduction

As discussed before in chapter 3, load rejection may lead to dynamic overvol-
tage problems. This situation can arise in cases particularly where self-excitation has
not occurred, depending on the number of machines in service relative to the
number of filter banks. Dynamic overvoltages are considered unacceptable condition
in power systems. They have many side-effects on the operation of hydro power sta-
tions [5].

An overvoltage prediction system is to be designed in this chapter. Linear and
stepwise prediction schemes are considered in the design process. Communications
failure and its effect on the performance of the prediction system is discussed.
Reduction of the prediction system structure is treated. Finally, a corrective action

algorithm is developed.

A Load rejection predictor scheme is shown in Fig. 5.1. In this figure two
predictor schemes are connected in series: the self-excitation predictor and the
overvoltage predictor. The self-excitation predictor predicts self-excitation states,
and the overvoitage predictor predicts overvoltage conditions for all no-self-

excitation states.

5.2 Dynamic Overvoltage Pattern Set

Radisson Converter Station blocking (dc load rejection) is the most likely con-
tingency for the Northern system. Therefore, the first step is to create, due to that
contingency, a dynamic overvoltage pattern set sufficient for the prediction system

design. In order to do so, the load rejection pattern set {124 patterns) created before
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in Chapter 4, is used again, but in this case excluding all self-excitation cases. In
other words, the overvoltage pattern set is constructed from all no-self-excitation
conditions (90 patterns) created due to load rejection.

As shown in Fig. 5.2, the dynamic overvoltage “limit” is taken here at 1.26 p.u.
This results in an overvoltage pattern set having 50 normal patterns and 40 abnormal

patterns.

5.3 Dynamic QOvervoltage Features

As mentioned before, the principal component method is applied here again to
the voltage pattern set in order to determine the sufficient number of features
needed for the prediction process. Table 5.1 presents the results obtained in this
case. These results confirm that only four features (for a tolerance of 1%) are

required to provide the prediction system with the appropriate information.

In order to select the most informative variables to be considered as features,
the feature identification techniques of Section 2.4 are employed. Table 5.2 includes

the features obtained in this case.

5.4 Overvoltage Predictor Design and Evsluation

The pattern set having been created and the informative features identified, the
next stage is to design the overvoltage predictor and evaluate its performance. In
this design process, two schemes are considered: the linear prediction scheme and the

stepwise prediction scheme.

§.4.1 Linear prediction scheme

In this approach the Resubstitution and Hold-out design methods are involved,

along with the VSM and intuitive feature approaches.

Regarding the design process using the Resubstitution method, the results

shown in Fig. 53 show the selection process of the two design parameters o and
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Table 5.1 Principal components results

Feature no. 1 2 3 4
e.v. 218.6780 16.0525 4,4473 0.4396
sum % 91.26 97.9¢6 93,81 99,99

e.v.: eigen-value

Table 5.2 Dynamic overvoltage features

Feature VSM method Stepwise method Intuitive
no. feature VSM feature SM features

1 V3 1.2954 V3 133.7678 X3

2 Qo3 1.0369 &2 79.8336 QF

3 Op 0.6128 Ifga 12.0086 Qg

4 X3 0.3362 023 3.7632 I¢q
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Fig. 53 Resubstitution overvoltage predictor design.
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PR. The best designs are selected at ¢ = 5.0 and PR = 1.03 for the case of using the

VSM features , and at ¢ = 6.0 and PR = 1.08 using the intuitive features.

The selected design of the predictor hyperplane for this case and using VSM

features is obtained as:
d = WT X + Wpo
where:

W =[ —0.1138, 1.4888, — 1.0326, — 0.0908 |7 , wy = —0.0956

X = [ VS’ Q23s QF [ Xd ]T (5.1)
and for the intuitive features is given by:

W =[-0.1039, — 1.2818, 1.3719, —0.0932 [ , w, = —0.1824
X =[X4,0r, Q.10 I (52)

The evaluation results shown in Table 5.3 indicate the performance of the pred-
iction system designed herein. These results verify that the overvoltage prediction
accuracy can be as low as 94.44% and as high as 9556%. Also, it can be observed that
the VSM features are more powerful and informative than the intuitive features for

the application of concern.

Now considering the predictor design using in this case the Hold-out method
and taking into account that the VSM features are involved as well as the intuitive
features, Table 5.4 presents the results derived due to the partitioning of the pattern
set into design and test sets. These results indicate that only 35 patterns are good
enough for the design set. Also, the VSM features are more effective and superior
than the intuitive ones. Moreover, a 95.56% overall prediction accuracy is achieved

with only 2 iterations to come up with the accurate design set.
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Using the achieved design set, Figure 54 provides the design results obtained.

From these results the selected design schemes in this case are given as:

w

]
I

[ —0.0447, 0.5396, — 0.3711, — 0.1040 [T , wy = —0.0347 (53)

using the VSM features, and
W =[ —0.1277, — 0.4895, 0.4558, — 6.0259 |7 , wq = —0.0567 (54)

for the case of intuitive features.

Table 55 shows the results achieved for the overvoltage prediction system
evaluation. These results confirm that the highest accuracy (95.56%) achieved by the
prediction system presented and on the application of concern, using the VSM

features method.

5.4.2 Stepwise prediction scheme

In this design scheme, the stepwise features are involved as well as the stepwise
learning algorithm. Also, using this scheme, the dependence on the number of
features or steps (f ) and on the prior probability of different classes, could be
derived from the results presented in Fig. 55. A perfect prediction accuracy is

obtained at p; = 0.6. The optimal design selected is given by:

W =[ —09996, 0.0086, —0.0288, —0.00087 |© , w, = 1.0969 (53)

The results presented by Fig. 5.6 show the prediction accuracy of a particular
class of patterns and its prior probability factor. Patterns of class 1 are completely
recognized when pq is greater than 0.6, and on the other hand, patterns of class 2 are
also completely recognized when p, is greater than 0.2 . In addition, it can be
observed that both classes are of 100% prediction in this case for the range of

06=p;=08.
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The performance evaluation of the prediction scheme under consideration in
the design stage is reported in Table 5.6. The system evaluation in the testing stage is
also verified, From these results, a prediction accuracy of 100% in the design stage

(f = 4) is achieved and a 97.8% evaluation accuracy can be confirmed.

In conclusion, the highest prediction accuracy of a particular class of patterns,

for a two-class problem, can be achieved when its prior probability is greater than 0.5

The stepwise predictor spectrum, shown in Fig. 5.7, interprets the
prediction output (index) and its change for the available patterns. It extracts weak,
average, and strong patterns according to the prediction output value given to each
pattern in the pattern set. In addition, it displays the range of the prediction system

presented for this application.

5.5 Prediction of System Overvoltages

As discussed before, the main function of the overvoltage prediction system is
mainly to predict overvoltage problems. This is of course in order to avoid any over-
voltage stresses on the power system elements. Another purpose based on the pred-
ictor outputs (prediction indices) could be the estimation of system overvoltages.
The estimation of these overvoltages is very valuable for the procedure of
identification of overvoltage busses, which in turn will guide the process of taking

corrective actions.

The procedure developed herein is mainly based on the regression of the sys-
tem voltage deviations and the predictor outputs. Using the least squares method,
post —contingency system voltages on all busses can be evaluated. In fact, the basié
idea behind this algorithm is that the voltage deviations are a function of the predic-

tor outputs. We assume that this relation is in a quadratic format:
AV =ay+a;d +a,d? (5.6)

where ag, a & a, are constants for each bus. These constants are to be determined
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using a least squares technique, taking into account that the voltage deviation AV at
each bus and predictor output d are available for all cases in the pattern set. Then,
knowing the pre —contingency conditions V,,, the post-contingency voltages Vp
could be estimated.

The algorithm procedure starts by calculating the a’s constants at each bus. For
example, consider any particular bus and evaluate the voltage deviations and the
corresponding predictor outputs for all patterns in the pattern set. Therefore, the

following form can be obtained as:
Vp,‘ —VMi =a0+a1d(,-)+azd(,-)2 (57)

i=1,2,..,n

In matrix form this equation could be rewritten as:
Ve —Vul=[D].[X] (58)

where:

n = is the number of patterns in the voltage pattern set.

[Ve = Vil = [Vp1— Vg1, Voo = Viagz s s Vo = Vg I

2

1 dg, “'(1)2
p1=|! 1@ ‘@
1 dyy d@)

[(X]=l[ag, a1, GZ]T
From eqn. (5.8), there are 3 unknowns and n observations with n > 3 . There-
fore, the solution of this equation can be derived using the least squares technique.
The obtained solutions for the system under study and using the available states in

the pattern set are given by:

X7 =[0.1754, —0.8289, —53.9512], for voltage V,
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= [0.2514, —1.2477, —77.5191] , for voltage V,
= [0.2590, —1.2115, —80.0605) , for voltage V, (59

Figure 5.8 shows the relation between the voltage deviation AV and the predictor
output d at bus 1, bus 2, and bus 3 using the least squares solution. This solution has
a maximum error of 1.5% for the case of bus 1, 2.0% for bus 2, and 2.19 for bus 3.
These errors are all in the pessimistic direction, that is the predicted voltages are
usually worse than the actual values. This is thought to be due to the predictor mis-
ranking process of some states in the pattern set. In addition, the mean absolute
error is equal to 0.71% in predicting voltage V {, 0.98% in predicting voltage V, , and

1.02% in predicting voltage V 5.

In order to evaluate the developed algorithm, a set of 20 hisroric testing states
of different conditions is used. Table 5.7 presents the results achieved using this algo-
rithm. It can be seen that the results are promising and they indicate that this algo-
rithm can be used effectively, and it has a potential for further extension. The max-
imum error recorded is about 0.3% in predicting voltage at bus 1 , about 0.5% in

predicting voltage at bus 2, and about 0.7% in predicting voltage at bus 3.

The algorithm presented here has many advantages compared to the one

presented by Mc Clelland [8]:
1-  There is no need to store all patterns in the pattern set, therefore, there is no a
storage problem.

2- The larger computation part is to be done off-line, hence, the computation time
required for real time implementation is very small compared to that presented
in Ref.[8].

3-  The algorithm is simple and has no weighting coefficients to be calculated by

trial and error as in [8].
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Table 5.7 Prediction of system overvoltages

Case VM1 VP1 VP1* Error %
1 1.0100 1.1898 1.1883 -0.13
2 1.0100 1.1894 1.1884 ~-0.08
3 1.0100 1.1892 1.1883 -0.07
4 1.0100 1.1897 1.1883 -0.12
5 1.0100 1.1893 1.1884 -0.07
6 1.0100 1.1897 1.1884 -0.11
7 1.0100 1.1894 1.1885 -0.08
8 1.0100 1.1896 1.1881 -0.12
S 1.0100 1.1892 1.1883 -0.07

10 1.0100 1.1891 1.1882 -0.07
11 1.0100 1.1883 1.1879 -0.03
12 1.0100 1.1850 1.1866 0.13
13 1.0100 1.1838 1.1877 0.33
14 1.0100 1.1883 1.1883 0.0

15 1.0100 1.1890 1.1883 -0.06
16 1.0100 1.1890 1.1884 -0.05
17 1.0100 1.1895 1.1884 -0.09
18 1.0100 1.1889 1.1858 -0.26
19 1.0100 1.1893 1.1882 -0.083
20 1.0100 1.1893 1.1882 -0.09

VM1 ¢ pre-contingency voltage at bus 1
vpl : post-contingency voltage at bus 1
Vpl*: predicted voltage at bus 1



Table 5.7 (continued)

102

Case VM2 VP2 VPZ* Error %
1 1.0200 1.2774 1.2761 -0.11
2 1.0180 1.2760 1.2752 -0.06
3 1.0180 1.2753 1.2751 -0.01
4 1.0200 1.2774 1.2761 -0.10
5 1.0180 1.2757 1.2752 -0.04
6 1.0200 1.2773 1.2762 -0.09
7 1.0190 1.2762 1.2753 -0.07
8 1.0203 1.2773 1.2762 -0.09%
] 1.0194 1.2758 1.2755 -0.02

10 1.0204 1.2767 1.2764 -0.03
11 1.0207 1.2758 1.2763 -0.04
12 1.0277 1.2783 1.2815 0.25
13 1.0251 1.2739 1.2804 0.51
14 1.0207 1.2757 1.2768 0.09
15 1.0186 1.2757 1.2757 ¢.0

16 1.0191 1.2753 1.2753 0.0

17 1.0190 1.2760 1.2753 ~-0.05
18 1.0205 1.2765 1.2733 -0.25
19 1.0204 1.2770 1.2764 ~-0.05
20 1.0187 1.2763 1.2756 -0.05

VMZ : pre-contingency voltage at bus 2

v
Py
VP k

: post-contingency voltage at bus 2
¢ predicted voltage at bus 2
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Table 5.7 {continued)

Case VM3 Vp3 Vp3* Error %
1 1.0180 1.2839 1.2811 -0.22
2 1.0170 1.2824 1.2803 -0.16
3 1.0170 1.2816 1.2802 -0.11
4 1.0180 1.2837 1.2812 -0.18
5 1.0170 1.2818 1.2803 -0.12
6 1.0180 1.2834 1.2812 -0.17
7 1.0170 1.2822 1.2804 -0.14
8 1.0186 1.2829 1.2815 ~0.11
S 1.0176 1.2814 1.2807 ~-0.05

10 1.0189 1.2B18 1.2819 0.01
11 1.0185 1.2796 1.2821 0.19
12 1.0270 1.2825 1.2875 0.39
13 1.0242 1.2779 1.2864 0.66
14 1.0195 1.2785 1.2826 0.24
15 1.0180 1.2810 1.2811 0.01
16 1.0173 1.2809 1.2806 -0.02
17 1.0178 1.2829 1.2811 -0.14
18 1.0190 1.2812 1.2784 -0.22
19 1.0188 1.2823 1.2817 -0.04
20 1.0179 1.2819 1.2808 -0.08

VM3 ¢ pre-contingency voltage at bus 3
Vp3 ¢ post-contingency voltage at bus 3
VP3*: predicted voltage at bus 3
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4- The developed algorithm considers different system configurations and loading
conditions and can be extended to include all likely system contingenciés.

5- The extended version can be installed in a real time computer system as an
implementation of a fast dynamic voltage prediction, which could be automati-

cally executed every 5 minutes.

5.6 Effect of Telemetering Communications Fallore

The prediction system functions cannot be fulfilled without a supporting
communication system (information system). The principle function of this com-
munication system is to determine the operating conditions of the power system and
provide the necessary information inputs to the prediction system. In addition, the
communication system will provide the /ink between the power system and the sys-

tem operator or dispatcher , giving him information on request.

The required information represents the measurements, and measurements
include data obtained from the power system and from the environment. The
environment also in turn represents all kind of external factors which affect the
electrical conditions of the system. The problems of measurement and their hardware
and communication aspects will have a decisive influence on the structure of the

control center in general and the prediction system in particular [60].

The main purpose of the communication system is to provide the
inf ormation paths from local stations to the control center and the control paths
back from the control center. Therefore, the failure of any of these paths (channels)
may have a large effect on the performance of the prediction system. In order to
avoid such a problem, we must either reduce the probability of failure or improve
the system performance despite the failure. The first approach, to be considered
here, requires identification of those highly informative channels. For this case Table
5.8 presents the system performance due to the lack of each channel one at a time.

From these results, the most powerful channels can be identified as well as the least
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Table 5.8 {(continued)

Channel Stepwise design

failed Class 1 Class 2 Total
Vs 100.0 0.0 55.56
52 100.0 0.0 55.56
Ieg 100.0 0.0 55.56
Qr3 100.0 95.00 87.78

(c) Stepwise features
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significant channels.

5.7 Reduction of Overvoltage Prediction System Structure

As discussed in section 4.6, an attractive algorithm is developed in order to
reduce or simplify the prediction system structure. Since the main purpose of the
communication system is to provide the prediction system with the required informa-

tion, it is more economical to use the minimum number of required channels.

The developed algorithm is applied in this case to the dynamic overvoltage pred-
iction system and the results are reported in Table 5.9. These results confirm the
possibility of reducing the number of channels {predictor features) by one channel.
The overall prediction system performance should not be significantly affected by

this process.

5.8 Develepment of Overvoltage Corrective Action

Using the developed corrective algorithm discussed in section 4.7, a preventive
measure or improving measure can be achieved. The dynamic overvoltage problem,
the problem of concern in this chapter, has a strong correlation with the reactive
sources in the power network. Therefore, the adjustment of the reactive power

sources is the control feature te be considered in this application.

Considering the linear prediction scheme, see section 4.7.1, designed for this
application and following the same sequences of the corrective algorithm, a sample
of results, Table 5.10, can be obtained. It can be seen that only one iteration step is

needed in order to develop the required corrections.
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Table 5.9 Reduction of OV-prediction system structure

No. of Resubs. design Hold-out design
features VSM Intuitive VSM Intuitive
4 895.56 94,44 95.56 93.33
3 95.56 94,44 95.56 93.33
2 76.67 73.33 44.44 62,22

Table 5.10 Overvoltage corrective actions

Initial Initial |Required Final APPROVED
predic. filter filter predic. |OPERATOR
index MVARSs MVARS index ACTION

(0) (0) (1) (1) (1) (0)

d Qr Qg d Qp =~ Cr
-1.2489 100.00 52.94 0.0735 -47,06
-0.5304 150,00 130.0t 0.0363 -19.99
-1.3036 250.00 200.87 0.1003 -49,13
-0.64685 300.00 275.62 0.0507 -24,38
-2.8646 450,00 342.05 0.2360 -107.95
-3.6485 550.00 412.51 0.3069 -137.49
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5.9 Conclusions

A new application based on pattern recognition techniques is discussed in this
chapter. A .successful overvoltage prediction system based on these techniques is
designed. It predicts overvoltage conditions in a very short time so that power system
dispatcher can decide and take actions as required in the appropriate time in order

to improve the system conditions.

The results provided in this chapter confirm a very highly performed prediction
system. The VSM features method was very effective compared to the intuitive
method for this application of concern. A perfect prediction of overvoltage prob-
lems was achieved using the stepwise hyperplane design. An overvoltage correction is

developed using the corrective algorithm.

A general conclusion can be drawn: pattern recognition techniques can be

applied to the prediction of power system dynamic overvoltage operating problems.




CHAPTER 6

MULTI-CLASS PREDICTION SYSTEM DESIGN

6.1 Introduction

Power system dynamic overvoltages as well as generator self-excitation have
been treated so far as a two-class problem in chapters 4 and 5. This chapter concerns
the multi —class approach i.e. the class prediction of a given pattern among patterns
belonging to more than two classes e.g. normal, dynamic overvoltage, and self-

excitation patterns due to power system load rejections.

The design of the required prediction  scheme, <called a
linear prediction machine, is described. This approach has never appeared in the
literature so far. It offers more capabilities and at the same time it has some limita-
tions. One of its main advantages could be the reduction in the telemetering com-
munications compared to the two-class approach. Moreover, this scheme could be
much more efficient and of less computation time (during the design process). How-
ever, one of the disadvantages is the reduction in performance when a telemetering
channel fails, in comparison to the two-class approach. The estimation of prior pro-

bability could make the design of multi-class system a difficult task.

This algorithm could be useful and it has some variety of applications, e.g. it
could be used for the on-line assessment of both steady state and transient security

problems at the same time [2,8].

6.2 Confipuration of Multi-Class System

As discussed in chapter 2, the multi-class prediction system configuration is very
similar to that of the two-class case, except that the predictor design scheme is

different in this case.
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As stated before, power system load rejection may result in a generator self-
excitation and/or a system dynamic overvoltage. Therefore, a situation of similar con-
ditions could be treated as a three-class recognition problem e.g. normal class, over-

voltage class & self-excitation class, as explained in Fig. 6.1.

In order to come up with the required multi-class prediction scheme, it is

required to follow the same design phases as described in chapter 2.

Regarding the pattern generation phase, all load rejection patterns (124 of
them) are classified using the employed dynamic simulation model into normal pat-

terns (50), overvoltage patterns (40) & self-excitation patterns (34).

On the other hand, the feature vector is identified using the stepwise algorithm.

The features obtained in this concern are:

V3,83, OF 82, Q23 [pa» P23, Xy, Py

6.3 Multi-class Predictor Design and Evaluation

Following the same procedure as that for the stepwise algorithm, the multi-class
design scheme can be derived. The design process in this case is a function of four
variables: f , pq, pa& p; where

f is the required number of features

P 1, P2& pj are the prior probability of class 1, class 2 and class 3 respectively.

Utilizing a numerical experimentation approach, the optimal design scheme can
be defined with the main objective of achieving the maximum overall prediction
accuracy. Figure 6.2 presents the results obtained under these conditions. The predic-
tion accuracy obtained when p; and f are changing and assuming that p, = p,, are
given by Fig. 6.2a. Similarly, the prediction results obtained considering the change

in f and p,, f and p; are shown in Fig. 6.2b and in Fig. 6.2c respectively.

The results provided during the design have come to the optimal number of

features and the optimal combination of prior probabilities, these are:
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f =5,p;=py =025,p3 =050 The predictor maximum accuracy reached is
01.1%.

In order to investigate the effect of number of features and the prior probabil-
ity on the three-class prediction accuracy, Fig. 6.3 is provided. In Fig. 6.3a the
number of features is fixed at 5. The insignificant effect of prior probability p3 on
the prediction of class 1 (normal patterns) can be verified, while the high depen-
dence of class 2 (overvoltage patterns) and class 3 (self-excitation patterns) on p 3 can
also be observed. In addition, Fig. 6.3b explains the relation between the number of
features and the prediction accuracy of each class, for the best probability condi-
tions.

Regarding the evaluation process for the prediction system of concern , the
leave-one-out method is used. The evaluation results are important in providing us
with the degree of conf idence by which we can rely on the achieved design scheme,
see Table 6.1.

It must be emphasized here that the total CPU computation (design) time for a
two-class problem is about 0.86 sec (AMDAHL), while it is about 0.96 sec for a

three-class case.

6.4 Multi-class System Performance and Effect of Communications Failure

The performance of a multi-class prediction system is very dependent on the
communication channels. This is due to the fact that these channels are involved in
the process of recognition of more than two classes at the same time. Therefore, the
multi-class system performance will be highly affected by the degree of availability

of communications.

Table 6.2 shows the behavior of the prediction system of concern due to the
failure of telemetering channels. It can be seen that the prediction of class 1 is very
sensitive to 83 channel, while the prediction of class 2 is highly dependent on

Qr , Va& 8, channels. In addition, the failure of Qr channel has no significant
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Table 6.1 Evaluation of multi-class system performance

117

No. of Design accuracy

features Class 1 Class 2 Class 3 Total
1 86.0 35.0 100.0 73.4
2 86.0 67.5 100.0 B7.9
3 94.0 70.0 100.0 87.8
4 86.0 70.0 §7.1 87.9
5 100.0 82.5 88.2 81.1

Table 6.1 (continued)

No. of Testing accuracy

features Class 1 Class 2 Class 3 Total
1 86.0 35.0 100.0 73.4
2 86.0 65.0 100.0 87.1
3 54.0 62.5 85.3 81.5
4 96.0 57.5 85.3 80.6
5 98.0 70.0 61.8 79.0




Table 6.2 Multi-class prediction performance due to
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communication failure

Channel Prediction accuracy

failed Class 1 Class 2 Class 3 Total
Va 1006.00 0.00 0.00 40.32
63 0.00 100,00 0.00 32.26
o) 1006.00 17.50 894.12 71.77
65 100.00 0.00 0.00 40.32
Q53 78.00 97.50 55.88 78.23
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influence on the prediction process of class 3 .

The results provided by Table 6.2 can lead us to a general conclusion: the
overall performance of the multi-class prediction system developed has dropped to a
low level (78.23%) due to a failure in communications i.e. the system performance is
highly degraded. Therefore, it is considered as one of the limitations concerning the

application of multi-class approach.

6.5 Multi-class Canonical Transformation

In this section a transformation algorithm [49] is applied in order to derive a set
of canonical functions (CF). For a multi-class system (¢ classes), there are ¢ —1
canonical functions e.g. for a three-class system there two canonical functions. These

functions are to be determined for each pattern of the whole pattern set.

The algorithm involved here is based on the solution of a generalized eigen-

value problem:
T(X) v, = h’i W(X) Vi
viTt WX) v, =38, (6.1)

i=1,2,..,f
where:
T (X), W(X): are the total and within groups sum of cross product matrices respec-
tively
[As Mgy sy )\f] : are the eigen-values in a descending order
[vi, v2, s vf ]t are the corresponding eigen-vectors

9,

ij +is the Kronecker delta function

X =[x, x9 Xg ' :is the feature vector

Solving Eq. (6.1) then using the v; solution to define the canonical functions as:

CFJ(X) =X Vi M i = }., 2, aeey C"'}. (6.2)
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The plot skown in Fig. 6.4, provides the scattering of the three classes of con-
cern. This plot is obtained from the two canonical functions (variables) determined
for each pattern. The letters A, B & C are to indicate patterns from class 1, class 2 &
class 3 respectively. On the other hand, the numbers 1, 2 & 3 are to represent each

group mean , while the asterisks denote overlap between different groups.

6.6 Conclusions

A multi-class prediction system is designed and applied to a three-class predic-
tion problem. The multi-class approach has many advantages and it posses some limi-
tations. One of the advantages is the communication reduction which may simplify
the structure of the communication system required. On the other hand, the design
of an optimal scheme is not an easy task and it has some difficulty. Also, the
required classification time for the multi-class approach may be longer or equal to

that required for the two-class approach.

In general, for power system applications the two-class approach has proved to

be applicable and for the purpose of prediction it is highly recommended.
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CHAPTER 7

VOLTAGE CONTINGENCY ANALYSIS DUE TO SYSTEM
OUTAGES

7.1 Intreduction

In the last few chapters (4,5 & 6), we were concerned with the application of
pattern recognition techniques to the prediction of load rejection self-excitation con-
ditions and dynamic overvoltages as well. Therefore, this application ﬁras for a
dynamic power system operating problems. This chapter deals with the normal,
(steady state), operating condition. For this condition power system on-line
contingency analysis is of major interest (for system planning and operation) at

control centers .

A new pattern recognition based algorithm for power system voltage con-
tingency analysis, is introduced in this chapter. The algorithm is based on the design
of a contingency selector (CS), or discriminant hyperplane in pattern recognition
terminology. The design of such a CS is based on a training knowledge. Using the CS
a screening and ranking of voltage problem contingencies can be obtained. Further
processing on the finalized list of contingencies can be performed in order to

develop, if called for, the required corrective actions.

7.2 Voltage Contingency Analysis and Methodologies

Since modern power systems are getting large and more extensively intercon-
nected, the task of contingency analysis and control is becoming difficult for the sys-
tem dispatcher. For this reason, on-line contingency analysis is gaining much atten-
tion, and rightfully so, as new energy control centers are developed and applied [22-

26).
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In the methodology of contingency analysis, overload and voltage contingency
analysis have been separately considered [27-37]). The overload contingency analysis
(P /8) has been efficiently and reliably developed, and is being implemented in new
control centers [61]. On the other hand, voltage contingency analysis (Q /V') is a very
difficult problem due to its nonlinear behavior. An efficient and reliable algorithm

has not been developed yet [62].

The direct approach to contingency analysis means that at a given system condi-
tion, AC power flows for all likely contingencies (hundreds), single and multiple, is
to be performed for every assigned period, usually in the range of 2 - 3 minutes.
Therefore, a large computation burden is required in order to analyze all these con-
tingencies, which is difficult to overcome. As a result, a contingency selection
methodology was introduced. The idea behind these approaches is to select only
those contingencies considered critical and then perform AC power flows for these

cases (see Fig. 7.1).

Several papers have proposed CS techniques. However, CS techniques can be
grouped into two different groups: a sensitivity analysis based group [28-37,61], and a
fast load flow based group [27]. Sensitivity techniques are based on performing
the base case AC load flow and using the sensitivity matrices to predict system
changes due to outages. On the other hand, the fast load flow group is based on the
evaluation of DC or fast decoupled power flow for each assigned contingency
(outage); then by use of a predefined performance index, a short list of critical con-
tingencies can be produced for further analysis. It must be noted here that, sensi-
tivity analysis is less efficient than the fast load flow algorithms but more reliable
[62].

Currently CS algorithms are judged in terms of their Capture Rate (CR) and

the False ~Alarm Rate (FR), which are defined by [31]:
CR=1-NM /[NNC, FR =NFA /NC (7.1)

where NM is the number of misses out of NNC the number of noncritical
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Fig. 7.1 Methodology of contingency selection and analysis.
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contingencies and NFA is the number of false alarms out of NC the number of criti-
cal contingencies. It must be noted that Miss means classifying a critical con-
tingency as being noncritical and False —~Alarm means classifying a noncritical con-
tingency as being critical.

If there are no misses and false-alarms, then CR=1, FR=0 , and the CS algo-
rithm correctly predicts the impact of every contingency. Thus the effectiveness of

the CS algorithm should be evaluated in terms of both CR & FR.

7.2.1 Nara Selection Algorithm [27]

This algorithm is a new concept in formulating a performance index for voltage
contingency selection. It is a DC load flow based algorithm. The index is a second
order vector norm in the voltage space. Two types of voltage limits are defined:
alarm limits and security limits. Contingency cases of indices greater than 1.0 are

considered insecure cases.
This algorithm has many advantages compared to others [28-37]. These are:

(1) It considers the magnitude of voltage violation as: (a) maximum magnitude ; (b)

combined magnitude; and (c) average of voltage violations.

(2) It takes into account the number of voltage violations.

(3) Itis a function of the system load level.

(4) Itis a function of the distance between voltage violations and their limits.

(6) It is based on the relative importance of each voltage violation.
This algorithm can be explained by defining the following terms (see Fig. 7.2):
v, voltage magnitude at bus {

FLG(L)Y, FUY)(L) : lower and upper voltage alarm limits at load level L
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VLU(L), VUUXL) : lower and upper voltage security limits at load level L
VDU)(L) : desired voltage at bus i and load level L

AV @) : voltage deviation beyond alarm limits

NB : number of system busses.

The voltage deviation AV @) can be defined as:
AVO =v® —pu) ; if v > Ful(L)
=FLOWY-v® ; if v < FLOW)
=0 s if FLO(L) = v = Fu®EL) (72)
Rewriting AV @) into two terms DU , DL (corresponding to two limits) as defined by
pUWEL) =[vW - Fu®E)] ;if v > Fu®E)
=0 (if v = FuWE) (7.3)
and
DLOW) =[FLOW) - v ;if v < FLO(L)

=0 it v = FrLU)L) (7.4)
The performance index PIV { can then be defined as:

/
PIV, =] ‘}’f (AUD pu @) + Sﬁf(u,m 1A AR ]1 ! (7.5)

i=1 i=1

which describes a hyper —ellipse in the voltage space. The terms AU&AL are defined

by
AUG =10/ [vUuDWL) - FUGL)]

ALG)Y =10/ [FLUL) — vLO(L)Y] (7.6)



128

From the definition of the performance index, PIV , the system voltage condi-
tions are classified as:
secure state if PIV; =0
alarm state if 0< PIV; =1

insecure state if PIV, > 1

The algorithm presents an accurate screening and ranking voltage index. At
the same time, it has some disadvantages: 1- the computation time needed is larger
than the sensitivity based approach for on-line applications; 2- it generates bonafide

as well as pseudo voltage violations.

7.2.2 Ejebe Selection Algoerithm [28]

This algorithm is a sensitivity based approach. It presents a methodology
developed for ranking line and generator outages according to the severity of their
effects on bus voltage profile. It employs Tellegen’s theorem to derive the sensitivi-
ties of a performance index due to system outages. By ordering these sensitivities a
contingency ranking can be obtained. Full AC load flow must be carried out for crit-
ical contingencies. The set of critical contingencies is determined by simply running
load flow from one contingency to another starting at the top of the list and screen-

ing out cases that do not give problems.

The voltage constraints at the load busses are usually expressed in terms of a
high and low limit. The high limit is imposed by the maximum voltage value of the
system, and the low limit is a value below which the load can no longer be supplied
with the required quality of supply. In light of these constraints, the voltage perfor-
mance index must be defined in such a way to reflect the severity of out-of-limit vol-
tage values. Therefore, the performance index defined by this algorithm is chosen to

quantify system deficiency due to out-of-limit bus voltages. It is defined by:

NB . , .
PIV,=3 05[(v®) —vDW) /AvL®) P (1.7

i=1
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where:
vD (): desired (specified) voltage magnitude at bus i
AVLU): voltage deviation limit at bus i

The voltage deviation AVL @) represents the voltage limit. Outside this limit
voltages are unacceptable and yield a high value of index PIV,. On the other hand,
when voltage deviations are within AVL G) the system voltages will not be a problem
and the index in this case will be small. Generally speaking, this voltage index meas-
ures the severity of the out-of-limit bus voltages, for a set of contingencies, it pro-
vides a direct means of ranking the relative severity of these contingencies on the
system voltage profile.

This ranking algorithm has the advantage of reducing the computation time
required for on-line applications purpose, compared to the Nara approach. On the
other hand, it has some drawbacks: 1- it is not an efficient ranking algorithm; 2- the

screening criterion involved needs to be enhanced.

7.3 New Pattern Recognition Based Voltage Continpency Analysis

7.3.1 Introduction

This section is to present a CS algorithm based on pattern recognition tech-
niques, to be used for voltage contingency analysis. The automatic contingency
analysis problem is concerned with the developing of an efficient algorithm which

can rank and classify contingencies in terms of their impact on system performance.

None of the available contingency selection methods can recognize all critical
contingencies. Some severe contingencies may be omitted and some that are not
severe may be included. In many cases, an increase in accuracy can be obtained only
at the price of a decrease in execution speed. Moreover, some of the selection algo-
rithms [27,28] have the desirable property that each bus voltage has its own reference

voltage. Unfortunately, this feature results in computational difficulties which
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prevent an efficient calculation of the change in index when a circuit is dropped, for

sensitivity methods.

In the last few sections we have discussed two different approaches currently
used to come up with the CS algorithm. This section is to investigate a new approach
to the definition of CS (performance index). The basic idea behind this approach is
the design of a discriminant hyperplane which can classify contingencies into critical
and noncritical. Using this hyperplane a measure of contingency impact on the sys-

tem can be determined.

7.3.2 Discriminant Hyperplane Selection Algorithm

The application of decision theory to the contingency selection, which is a
binary decision problem, has been reported [31,36]. On the other hand, the applica-
tion of pattern recognition techniques has been recommended by Fischl [36], and as

far as we know this application has never been appeared on the literature so far.

Contingency selection is to select critical contingencies among all different con-
tingencies. In other words, it is required to recognize critical contingencies from
noncritical ones. Therefore, the pattern recognition discriminant hyperplane can be
used as a performance index to classify those critical and noncritical contingencies.
In other words, using the discriminant hyperplane a screening process between criti-

cal and noncritical cases can be achieved.

Moreover, with respect to the ranking criterion, the discriminant hyperplane
represents the “boundary” surface between different kinds of contingencies. By cal-
culating the separation (distance) of each contingency from this surface a ranked list
of contingencies can be derived. As discussed in Chapter 2, it was concluded that the
value of the discriminant hyperplane gives a measure of the separation for each con-
tingency. As a conclusion, the function of a performance index or a CS algorithm is
exactly the same as the function of the discriminant hyperplane from the point of

view of screening and ranking of contingencies.
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The performance index format using the discriminant hyperplane is given by:

PIV, = i w; AVF) + wy

i=1

=WT AVF +w, (7.8)

where:
WT =[wy,wy, o wy ] is the weighting vector,
AVF =[AVFO, AVF®, . AVF U s the voltage deviation feature vector,
AVP = [AVP M, avp@, _ AvP ("‘“3)]"r is the voltage deviation vector,

AvP () = 1000 ABS [V - vD)] is the absolute voltage deviation in per

cent at busi ,
J is the number of voltage features.

The voltage features AVF are to be identified from AVP using the stepwise
features algorithm. Also, the weighting vector W and threshold w, are to be deter-

mined using the stepwise discriminant method, discussed in Chapter 2.

As discussed in Chapter 2, the stepwise hyperplane design is a function of two
parameters f & PR (prior probability ratio). In order to come up with the optimal
design, the two parameters must be selected in such a way that the screening and
ranking processes should be efficiently achieved. The parameter f affects the rank-

ing and screening processes, while PR affects only the screening accuracy.

By changing PR, the threshold w; changes and the hyperplane moves into
another parallel surface. Therefore, the ranking process will not change. Assuming
an equal prior probability criteria for all contingencies (PR =1.0), the whole design
will rely only on the number of features f . Then, using a numerical experimenta-
tion approach, f can be selected such that the ranking process can be efficiently
achieved. Finally, by controlling PR, an optimal design efficient in ranking and

screening, can be determined.
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7.3.2 Mzhalanobis Distance Selection Alporithm

In this section another approach is discussed. This approach is really based on
the determination of separability measure between different contingencies and the
group mean of noncritical contingencies, see Fig. 7.3 . It can be seen that the larger

the separation is, the more critical the contingency will be, angd vice versa.

The statistical separability measure selected here is called the Mahalanobis —D?
(MH-D*D) in pattern recognition theory. MH-D®D is a measure of the distance
between each contingency and each group mean. Therefore, a ranking process could
be developed using the MH-D*D method. On the other hand, this method does not
provide a screening process and it has been used here only to provide a ranking pro-
cess. However, the screening criteria could be achieved by monitoring of bus vol-

tages.

The performance index in this case is defined to be the MH-D*D, which can be

given as (for case j in group i from the mean of group &k ) [48,49]:

PIV,=(N —2) ﬁ é (AVF;, — AVFy )a,, (AVF;, — AVF, ) (79)

r=1s=1

i&k=12 ;j=12,.,N,

1

where
N, is the number of cases in group ¢ ,

AVF,;, is the value of voltage deviation feature r in the case j of the group i ,

ijr
Aﬁ, is the value of group i mean for voltage deviation feature r ,
A = (a,,) is the covariance matrix, see Appendix (A),

N is the total number of cases in all groups.

The voltage deviation features AVF are to be selected again using the stepwise
selection algorithm, see Chapter 2 for more detail. The number of features f is to
be selected using a numerical experimentation method. This algorithm could be con-

sidered relatively an efficient approach.
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Non-critical cases Critical cases

® Non-critical group mean

Fig. 7.3 Mahalanobis separability measure between contingencies.
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7.4 Numerical Application Results and Discussions

The evaluation of the above mentioned selection algorithms is to be examined
through this section. Two power systems are to be tested: a 7-bus sample system, and
an 8-bus real system (Northern system). The 7-bus sample system {see Fig. 7.4) data
are given in Table 7.1, while the Northern system (Fig. 7.5} data are listed by Table
72.

The MVA base used here is 100 MVA. Also we assume:
AVL®) = + 003 vDW) |
FU®) =103vDpW | FLW =097 vD®) |
vu®) =105vD®) | vLG) =095 vD ) |
vDW =10 (sample system),
vD W) = base case values (real system) ,

i=1,2, ..,NB
The power system will be in an alarm state if the bus voltage v yvDW) s
greater than 1.03 or less than 0.97 p.u. . Moreover, the system will be in the insecure
state if V) is greater than 1.05 VD) or less than 0.95 VD) for any given loading
condition. Three loading conditions are used to demonstrate the effectiveness of the
proposed performance indices. The capture rate CR and the false alarm rate FR are

to be determined.

The value of the discriminant performance index (PIV ;) indicates the state of
the system, summarized as follows:
voltage secure state ;if PIVy= 0.0
voltage insecure state ;if PIV3 < 0.0
Therefore, the ranking process using PIV 5 starts with the lowest value as the most

critical contingency and the second higher value as the second critical contingency
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Table 7.1 Sample system data

(a) Line data

From| To R X Total
bus| bus| (%) (%) |MVAR

1 2 0.6 6.0 6.0

1 3 0.8 8.0 5.0

2 3 1.8 18.0 5.0

2 4 1.8 18.0 4.0

2 5 1.2 12.0 3.0

3 4 0.3 3.0 2.0

4 5 1.2 12.0 5.0

6 1 0.4 4.0

7 2 1.3 13.0

(b) Bus data
T T T

u Rated Generation Light locad|Middle load|Heavy load
# |voltage| MW |MVAR|Qmax |Omin| MW MVAR MW MVAR| MW MVAR
1 1.0
2 1.0 10 -7 20 10 20 10
3 1.0 30 -5 45 15 55 20
4 1.0 20 -5 40 5 50 10
5 1.0 30 -9 60 10 70 15
6 1.0
7 1.0

swing bus
40 30 40 -15
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Table 7.2 Northern system data

(a) Line data

From| To No. R X Total| Tap
bus| bus| cts (%) (%) MVAR |p.u.
2 1 12 .329 8.570 |0.0 1.025
2 3 7 .066 0.593 (0.147(1.0
5 6 3 .180 1.850 |3.610(1.0
9 4 10 .179 6.920 (0.0 1.050
5 9 5 .000 0.100 {0.050(1.0
6 3 3 .059 3.750 (0.0 1.0
5 7 3 .220 2.320 [4.4901(1.0
{b) Bus data
T ;i T
u Rated Generation Light load|{Middle load|Heavy load
# |voltage| MW [MVAR|Qmax|Qmin MW MVAR MW MVAR| MW MVAR
1 1.01 swing bus
2 1.0
3 1.0 8.0 5.4 12.0 7.2|13.2 7.9
4 1.03 9.77 8.99|-9.99
5 1.0
6 1.0
7 1.0 7.5 4.5 10.0 6.0111.0 6.6
9 1.0

* All values are in per unit.
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and so on in an increasing order.

The calculation results obtained using the selection algorithms of concern are
illustrated in Table 7.3. The design of the discriminant index involved here is based
on an equal prior probability approach. Also, the selection of two features was con-

sidered enough for this design, and for the system under study.

The timing analysis of the discriminant algorithm is essential at this stage. It can
be explained as follows: if nv represent the number of variables and N is the number
of cases, then the number of required operations can be estimated by [49]

nv (nv + 6) N for sums of cross products,
3 nv? (nv + 1) for selection of features (stepping),

2 nv (nv + 1) for the discriminant design

For example, the on-line CPU time needed to come up with the discriminant
index is about 0.4 sec on the AMDAHL machine, for the sample system. Therefore,

the proposed algorithm has a small time delay compared to others [27,28].

We believe that for a reliable contingency selection, an accurate index must be
considered even that the computing speed is sacrificed. With the ever increasing
speed of modern computers and various new techniques such as parallel processing,

computing speed will be less a problem [27].

The results obtained using Nara and Ejebe algorithms are included in Table 7.3
in order to compare them with the results obtained by the developed algorithms. It
must be noted that the AC load flow technique is used for all methods and only sin-
gle contingencies {(outages) are considered. It can be seen that the ranking of severe
cases is almost the same for all methods, even though the respective values of the
performance indices are different. A value of CR equals 1 and FR equals 0 are

noticed which prove the effectiveness of the proposed algorithms.

Table 7.4 shows the results obtained using the discussed algorithms for the case
of the Northern system. Single as well as multiple contingencies are considered in

this situation. Two design approaches are employed with the indices PIV3 & PIV,,
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they are: on-line mode and off-line mode. In the on-line mode the cases used
for the design are those only corresponding to the post-outage contingency condi-
tions for the current system state. On the other hand, the off-line design mode
means the generation of many post-outage conditions related to different system
states.

In the case of on-line design, it was found that two voltage features are satisfied
and the prior probability of the insecure (critical) contingencies is equal to 0.6 . On
the other hand, a two voltage features and a 0.8 prior probability of critical cases are

considered for off-line design case,

It can be seen from Table 7.4a that CR equals 1; FR equals 0 for the on-line
design and equals 0.17 for the off-line design mode due to one false alarm. Also
from Table 7.4b, it can be observed that CR equals 1 for all algorithms and FR
equals 0.17 for the off-line design. Moreover, from Table 7.4c it is clear that CR
equals 0.88 for the on-line design case. It must be noted that the CR value can be
maximized by increasing of the prior probability of the critical contingencies to a
value greater than 0.5,

Insecure cases can be easily recognized from Table 7.4 as those with values less
than zero (using PIV 3 ). Those marked with m are misclassified. However, they can
be simply minimized by checking if V() is greater than 1.03 VD{) or less than
0.97 VD) for any monitored bus i . If so the case is noted as voltage insecure state,

otherwise, it is a voltage secure state.

7.5 Conclusions

Pattern recognition based voltage contingency selection algorithms are
developed. The proposed algorithms are examined on a sample system and on a real

system. Results obtained proved the effectiveness of these algorithms.

A comparison with other selection methods is presented. The developed algo-

rithms are efficient for single and multiple outages. They have slightly a lower speed
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of computation (for on-line design), which could be considered less a problem with

the fast advanced computer technology.

The developed algorithms, off-line design approach, is efficient and reliable
compared with Nara and Ejebe methods. However, it requires an excessive computa-

tional burden.

The application of the proposed algorithms on a large scale real system is being

investigated.



CHAPTER 8

GENERAL CONCLUSIONS AND RECOMMENDATIONS

8.1 Genera! Conclusions

1-

The following contributions have been achieved throughout this dissertation:

A new pattern-recognition based prediction system has been successfully
designed. This design adapts to new system conditions. Using this system, a
power system operator can anticipate abnormal conditions. The design scheme
has been applied to the Manitoba Hydro Northern system in order to predict

self-excitation and dynamic overvoltages.

A fast, efficient corrective action algorithm has been developed. This algorithm
provides the operator with the suggested corrective action in case of anticipated
trouble, i.e. insecure condition. It has been applied to improve the system secu-

rity against self-excitation and dynamic overvoltages as well.

The design of a multi-class prediction system using a multi-class pattern-
recognition approach has been applied to a three-class power-system load-
rejection overvoltages problem. The application is new and it has many advan-
tages. One of the major advantages is the reduction in telemetering communica-
tions which simplifies the information system structure. On the other hand, it

posses some limitations:

a- The estimation of the prior probability is not an easy task in this design

scheme.

b- The prediction time (time delay from receiving information to taking deci-

sion) could be longer compared to the two-class approach.
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¢- The degradation in the system performance due to telemetering failure.

An efficient, relatively fast voltage contingency selection algorithm based on
pattern-recognition discriminant hyperplane has been developed. This algorithm
proved to be effective in case of single as well as multiple outages study. On the
other hand, the on-line design scheme has slightly lower speed of computation
while the off-line has an excessive computation burden. The algorithm has been

tested on a sample system and a real power system.

8.2 Recommendations for Future Extensions

Future research at this stage could be extended to include:

Application of the prediction system on a large scale power system e.g. Mani-
toba Hydro Northern system as a whole, for the detection of load-rejection

self-excitation as well as dynamic overvoltages.

Extension of the pattern-recognition based voltage contingency analysis on a
large scale system, e.g. IEEE 25-bus system. An investigation for its feasibility

study is also recommended,

Application of the pattern recognition based prediction scheme to other power

system operating problems.



APPERDIX (A)

ESTIMATION OF STATISTICAL RELATIONS

(1) Estimate of Means

Given the N by M matrix X, consisting of N patterns each of M variables.

Then, computation of the means of the M variables uses the following formula :

— N X;;
X; = gT,j =1,2, ., M (A1)

where:

X..

ij is the pattern i on variable j ,

N is the number of patterns per variable.

(2) Estimate of Standard Deviations

Standard deviations are computed using the following formula:

2
= (2 )1’2 =1,2, ., M (A2)

where: xU =XU "'XJ

(3) Estimate of Correlation Coefficients

Computation of the simple correlation coefficients of the M variables is done as

follows:

N xh-xkj

rp= S Mg (A3)
Y k2=1 N - Ds;s;

where:r;; = 1if i =j,ry=rzandi,j=12,..,M
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(4) Estimate of Covariance Matrix

The covariance matrix can be calculated as ;
A= (a,-j ), i,j=1,2,.. M (A4)

where: aij = r,-js,-sj, a,-j = aj,-

(5) Determination of Required Features

The determination of the required number of features using the feature extrac-
tion technique is described herein. The objective of the feature extraction is to
derive a linear transformation that will emphasize the differences among patterns
belonging to different classes. In other words, it is required to define new coordinate

axes in the direction of high information content useful for classification purposes.

The algorithm used here is called the principal components, Karhunen-Loeve
transformation (KLT) in pattern recognition terminology [41]. The procedure is
described as follows:

1- Determine the M by M covariance matrix among classes.

2- Find the M eigen-values and the corresponding M eigen-vectors of the covari-

ance matrix.

3- Extract the f largest eigen-values such that their sum is almost equal to the

sum of the M eigen-values.

4- The transformation matrix can be obtained from the f eigen-vectors

corresponding to the f eigen-values in a descending order.

5- The M-dimensional pattern vector can be transformed to the f vector using

the transformation matrix, i.e. the required feature vector.



APPENDIX (B)

STEPWISE DISCRIMINANT ANALYSIS
(1) Feature Selection

The selection of features using this algorithm [48,49] is based on the ratio

R (X )of the within generalized dispersion |W (X )! to the total generalized disper-
sion 1T (X)! as:

R(X)=1W@)I/ITX)I (B.1)

Large values of R(X) indicate poor separation between classes, while small values
indicate good separation.

where:
WX)Y=(w,/r,s =1,2, ., ) (B2)
and
c N;
Wy = E‘lza(x"" - %) (xjs — %) (B.3)
TXY=(, /7,58 =1,2, ., f) (B.4)
and
c N;
ts = Eﬁ%(x.yr - %) (s — %) (B5)

The multiplicative increment MI, in Fisher’s ratio R(X ) resulting from the

addition of a variable y; to the set X can be formulated as follows:

W (X, y;)1 1T (X)!
MI; =R(X,y;)/RX) = |T(X,y;)i W (X))

= oj; /By (56
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where

o; \W(X,y) / IW(X)I
Bjj = IT(X,y)! /IT(X)I
while for the case of deletion of feature x; from the set of X, it can be given as:
WX, —x)NITX)!
ITX, —x) 1W(X)]

RX,-x)/R(X)=
=By /oy =ML (B.7)

Using the F-statistic as a measure to guide the selection or deletion of variable

X , it can be written as:

F = LV—;—{% (1 - ML) / MI, (B.8)

Therefore, using Eq. (B.8) the selection measure of a variable x; can be written in

the form:

SM; = E—cl-c_——lii (A - MI;) / MI;

J
= (a/b) [1/MI; - 1] (B.9)

where a =N — ¢ — f and b = ¢ — 1. Similarly, the removing measure of a vari-

able x; can be obtained as:

RM; = = _z :{ £ A-M7Y /ML
= ((a + 1)/b) M1, — 1] (B.10)

The within class tolerance ¢; for a variable y; not included in the set X is given
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(2) Stepwise Discriminant Design

When the stepping is complete, or when the number of features selected is
equal to the one specified, then the discriminant design starts. The design of the
stepwise discriminant function can be easily formulated [48,49]. Let us assume that:
M; = [m;q, m;3, ..., my]" is the mean vector for class i,

M =[mym,, .., mg ]T is the overall mean vector, and
X =[xy,x2 s x5 |7 is the feature vector.

The class i discriminant function is:
diX) =N - IMTWwWX)Y1x —05(N —c)M,T wX) 1 M,
+ In p; (B.12)
therefore, the class weighting vector W, and the threshold weight w are given by:
WTl=W-c)yMTwx)! (B.13)



APPENDIX (C)

PATTERN-RECOGNRITION LEARNING ALGORITHMS

In this appendix three learning algorithms are introduced:
1- Bayes learning theory;
2- Linear discriminant method; and

3- K-nearest neighbor method.

(1) Bayes Learning Theory

In this method the conditional probability density function for each class must

be known in order to construct the likelihood ratio
IX)=fX/M)/f X/J) (C.1)

where i,/ are any two classes. Assuming a normal distribution for the primary vari-

ables, the density function can be estimated as:
F&f)=@m)y 215,17 exp [ 05 (X - M)TE, (X - M;)] (C2)

i=12,..,c

The main objective of Bayes theory is to minimize the average or expected value
of the loss function L (d;, j) (i.e. the loss incurred for taking decision d; for pattern

of class j). The Bayes rule could be written as:
[ [y
d(X)=d: if ZL(dnj)pU/X)< ZL(dmsr)p(r/X) (CB)
j=1 r=1

forallm # { ,i =1,2, ...,c.

For the two-class problem i.e. ¢ = 2, considering the loss function equals one in
case of taking a wrong decision and zero in case of right decisions, then the decision

rule could be written as:

dX)=d, if fX/Dpy>fXR2)p, ,
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dX)=d, if fX/2)p,> f (X/1)p, (C4)
where:

p/X)=f X/i)p;/f X) (C5)

The Bayes recognition rule is optimal from the point of view of the probability
of error, but its practical performance depends on the degree of validity of assuming

normal distribution for the primary variables.

(2) Linear Discriminant Method

The linear discriminant method derived here [50] is based on a non-parametric
estimation of the class density function f (X /i). In order to take into account the
contribution of each design pattern in the estimation of the density function, the fol-

lowing form is the most suitable for this situation, that is:

N = 1 ol X - X))V (X - X))
f X /i) N, of 2n) " ngexp[ o2 I (C6)
i=12, ..c¢

where:
f is the number of features,
N, is the number of patterns in class i,

o is a smoothing factor.

As explained in [50] the class density function could be written as:

XX 6ix) €

§ @) = o lexp(- 2

i=12,..°c

where:

G'(X) =g'o.0+ 8 10.0%1
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+ 8 010.0%2 F o 8100, oy xR g T (C.8)

1 al
]Z x,-_,-f‘ x,-jzzz vees xijf % BU (Cg)

g =
Ziza ton 2
12 ! (z1lzy! - 24 Ne? N, /2

where:
h=zy+tz+ ..tz
x..Tx..
B = exp(-—L—4)
Y 202

XT = [xl, X9y eery Xf]

Taking only first order terms and neglecting higher ones, then Eq. (C.8) can be

reformulated as:

G'X)=g¢ +g/ x1+8 x+ ..+ gfi xs (C.10)
where
. 1 N
80 =~ B; ,
i 1 %
&' = X:n Bi: (C.11)
k D'ZN,- = ijk ~ij

Once the density functions are estimated on the basis of the design patterns,

Bayes rule could be derived as:
d(X)=d; if p,-f(X/i)>pjf(X/j) forall j +# i (C.12)

substituting with f (X /i), f (X /j) from Eqns. (C.7) and (C.10) we can write the

discriminant rule as:

dX)=d; if p G'(X)> p; G/(X) forall j# i (C.13)
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i=12,.,c.

(3) K-Nearest Neighbor Method

In this algorithm the density function is estimated as follows:

k‘-'_].
N, V

¥

f&/fi)y= (C.14)

where V is the volume of the hypersphere that contains the set of all k-th nearest
neighbor patterns to the given pattern X, N; is the number of patterns from class 7,

k; is the number of nearest patterns from class i i.e.

K =3k (C.15)

Then using Bayes rule given by eq. (C.12) and substituting with f (X /i) from
eq. (C.14) we can obtain the following K-NN rule:

dX)=d; if &k > k; forall j # i (C.16)
i=12, .,c¢
Nl' c
where p; = v and N = ZN,- is the number of patterns on the design set.
i=1

Therefore, the K nearest neighbor rule is very simple and it is just a com-
parison of k; with k; (i.e. comparison between the number of nearest neighbor pat-
terns from each class). Its disadvantage is the need to store all patterns and to com-

pare the distance measure between each with the unknown one.



APPENDIX (D)

PERFORMANCE EVALUATION METHODS

The following methods are discussed:

(1) The Resubstitution Esiimate

In this method, patterns used for design are also used for the performance
evaluation of the pattern prediction system. This method could be considered an
optimistic estimate since the patterns used for design are the same used for the
evaluation. However, when a large design set is available, this error estimate is prob-

ably as good an estimator as any other one.

{2) The Hold-out Estimate

The most obvious alternative to the resubstitution scheme is to partition the
pattern set into two mutually exclusive subsets and to use one subset for designing
the predictor and the other one to fest it. This approach has the disadvantage of
making a poor use of the available patterns since a predictor designed on the entire
pattern set will, on the average, perform better than the one designed on only a por-

tion of the whole set.

This approach is relying on the available patterns. These patterns should be
divided into the design patterns and the test patterns i.e. they should be statistically
independent or at least different. Also it must be emphasized that if most of the pat-
terns are used for designing the predictor, there will be a little confidence in the

testing stage and vice versa.

For small to moderate sample sizes, very significant discrepancies between the
resubstitution and hold-out estimates may be observed. The later one being an order
of magnitude larger than the former. As it turns out the hold-out method has a

definite tendency to over-estimate the actual error rate.
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To summarize, the hold-out estimate is making poor use of the available pat-

terns and it gives pessimistic error estimates.

(3) The Leave-One-Out Estimate

The so-called leave —one —out or deleted method is formed in the following

manner:
1- remove one pattern, (X ) from the pattern set S, .

2- design the predictor using remaining patterns S, _; and estimate its performance

using removed pattern (X).
3- return the removed pattern (X ) to the pattern set S, _; .
4- repeat the above procedure for all patterns in the pattern set.

Clearly, with this method, all patterns are used in each design, and also all of
them are used in the tests, though each design and test sets may be regarded as
independent. This estimate could be considered as unbiased, that is because the
design and test sets distributions are essentially identical. Also, another advantage of
this method is the efficient making use of the available patterns. On the other hand,
there are two disadvantages: the first is that the error bias reduction is achieved at
the expense of an increase in the variance of the estimator, and the second is the

excessive computation involved as N design sessions are required.

(4) The Rotation Estimate

This error estimate method is a compromise between the hold-out and leave-

one-out methods. The procedure of this method can be summarized as follows:

1- partition the N patterns of the pattern set into N /L disjoint subsets ( L is an

integer and a divisor of N ).
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2- remove j —th subset from the pattern set.

3. design the predictor with the remaining subsets and then assess its performance
using the j —th subset.

4- return the subset j to the pattern set.

5-  repeat the above operations for all subsets (j = 1,2, .., N /L).

6- calculate the rotation estimate as the average frequency of misrecognitions over
the N /L test sessions.

In this estimate, if L = 1, it reduces to the leave-one-out method, where as
when L = N /2 it reduces to the hold-out method. The rotation estimate reduces
both the bias inherent to the hold-out method and the computational burden associ-

ated with the leave-one-ocut method.




APPENDIX (E)

- NORTHERN SYSTEM BLOCK DIAGRAMS AKND DATA

I: System Block Diagrams

The dynamics of the power system used for this study is explained in Fig. 1.
From this diagram [6] it can be seen that the system model consists mainly of:
machine model; excitation system model; governor-turbine system model; and
transmission system model. The system model and block diagrams [52] are given as

shown in Fig.2.

II: System Data

Machine data

Xy =0922, X, =0535, X;”=0251, X, = 0535,
X;7=X,7=019, X; =0193, T,,” = 4.1 sec,
Ty =0019sec, T,,” = 0.048 sec, H = 4.1sec
Exciter data

KA =2890, TA =704 sec, TB = 143 sec,

TC =002sec, TD =0.012sec, TE =0.0,

KE =10, V, max = 5.0, V4 min =-35

Governor data

1/fR =088,C,=48,C, =01
C;=00,C,=002 Cs =004,

Te =37sec, Ty =044 sec, T 4 =0.22 sec,
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Ts=10sec, Ty =0.05sec, Tpp = 0.05 sec,
TGDEL = 0.0 sec

Line and Transformer data

Ry, = 0.00066, Xy, = 0.00593, R,, = 0.00329,

X, = 0.0857, Line charging MVAR = 0.147

IIl: List of Variables

All quantities are in per unit unless noted.
w, = rated frequency

w = actual frequency

X; = stator leakage reactance

X4 = direct axis subtransient reactance

X, = direct axis transient reactance

X, = direct axis synchronous reactance

X, “ = quadrature axis subtransient reactance
X, = quadrature axis synchronous reactance
Y, 7 = direct axis subtransient flux linkages
v, “* = quadrature axis subtransient flux linkages

e, = voltage proportional to field flux linkages

q

e:

; = voltage proportional to field current

T,;,” = open circuit field time constant
T4, = open circuit d-axis subtransient time constant

T,,” = open circuit g-axis transient time constant
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T4, = open circuit q-axis subtransient time constant
Ey4 = slip ring field voltage
I;4 = field current

E, = exciter voltage

X
¥, ¥, = armature flux linkages, direct and quadrature axis components
ig, i = armature current, direct and quadrature axis components

eq, € = armature voltage, direct and quadrature axis components

H = inertia constant (sec)

P, , @, = generator output powers

V,, V. = generator terminal and load voltages

Aw = speed change

Ry; = transmission line series resistance

= transmission line series reactance

Bet
e
!

R,. = transformer series resistance

= transformer series reactance
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