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ABSTRACT

Integrated optical grating devices with facets designed to take advantage of total
internal reflection have recently been demonstrated. To date, analysis of these total
internal reflection (TIR) gratings has been limited to an elementary ray optics approach.
This thesis presents the first analysis of these gratings based on the full electromagnetic
theory of light. The validity of designing diffraction gratings with total internal reflection
facets is demonstrated. Results indicate that the efficiency of the retro-reflected order of
20™ order gratings etched in silica glass is enhanced by more than 11 dB for the TE mode
when the TIR grating design is used in place of a similar echelle grating without facet
metalization. Comparisons are made between results found using the full
electromagnetic theory of light and simple scalar wave approximations, qualitative

agreement is found for the retro-reflected order, particularly for grating orders 15-25.



i

ACKNOWLEDGEMENTS

[ wish to thank my advisor Dr. Ken McGreer and TRLabs for the opportunity to
do research in the exciting field of fiber optics. I appreciate Dr. McGreer's help in
choosing a thesis topic and reading this thesis. I am grateful for the excellent facilities
TRLabs has provided as well as the financial assistance of TRLabs and NSERC.

[ thank Dr. Sergey Sadov for sharing his knowledge of diffraction grati;lg theory
and for his assistance debugging my computer programs. [ also thank fellow graduate
students Heather Hnatiuk, Dan Jackson, and Dr. Zhijian Sun for their help and
discussions related to course work and my thesis.

I wish to thank my family and friends for their interest and encouragement over
the course of my studies. I am particularly grateful for my wife Valerie's understanding

and constant support. My sister Alison has also been very encouraging.



CONTENTS

iv

ABSTRACT ii

ACKNOWLEDGEMENTS iii

LIST OF FIGURES vi

LIST OF TABLES ix

1 INTRODUCTION 1

1.1  BACKGROUND.....ccc.teeeereenreerreteessaemesesiesssecmsestensastesmsmsssnsntsrnssssssenmnnssmsmmnrsssensssmnasemssssasnssmrasstensessenmnnns l

1.2 APPLICATION ... ceeeceeeecceececceecteecntacsesens anneastasarrre s e asansetmenmeraaessransroearesasesmonaonenenaetassesnsssmssnssasevsnns 3

1.3 STATEMENT OF PROBLEM L .oiiiiiiiiiiinermrcmre e eeestssne s es e e s s e e s e s s s e s ee e s s s s sme e nanes .

Lo OBIECTIVE o eeeeeeeeeeceeeeeeesceeaeeeme s ceeemnsmnssarrssseararssssssmssssasnremnssnnarssssestossmnssmsmansanntansssssnansemnens 7

1.5 QUTLINE OF THESES ... ceveeeiieireennestmaesacameteanensensasssssiessssertomsssssesnimmsnsrssarsssasssssanresssnasamnnnsnnssssnnnassasass 7

2 MODELING GRATINGS 9

2.1  BASIC GRATING THEORY ..cooiimminuinminemrreree e snsenemne s rererte e atr e as s saesr e s r e s bt ne 9

2.2 SCALAR WAVE THEORY ..oooioiciiicceccoricreeme st e anssaessenses s e s csmm e n e n s s e e s s s e s e am e s s nrnasaanssaerbanae 12

2.2.1 RAY OPIICS .ttt ee s eeeerase e ete s e meas st b s ram s et e e be st st s st osm s e s am s sna s assa bt eas 12

222 The Fresnel EQUALIONS..........mmeeeeeeeeeeeeeeie ettt asessae s st e s ae s ba s ssassssssnrnesscnenns 13

2.2.3  Fraunhofer DiffrQCIHOMN ............cccumieeeeememaeeeiietc i tcertessisssessressissrasssnessnssesssasensassnsssnsessnans 14

2.3 ELECTROMAGNETIC THEORY OF GRATINGS..c.ctotrcemreirmicamucrecenerceeensssccansensessessnesssssesseensssasaescannns 10

2.3.1  Notation.............ueeeeeeeenennn-. - . eeeeeeseeeemeeeeseesssteseeseteseeesosesetenenaeaaasean 16

2.3.2  Maxwell's Equations ... . eeeemeeteeertessaeseseteaetaseese st e s nn s e e et a s s e eenes 17

2.3.3 The HelmROIIZ EQUATION ........ccuueoonneeniniiniiineeeinttcte e e s sena s sesesntn e s st et i8

2.3. 4 BoUNAAry CONAIIIONS ..........coceieeuivcvinieioiiitinensiniieistscotsenernsastaesssasssasssms st be s s an e seeecte e eaneas 19

2.35 General Dielectric Graling..........c.. e ememeeeiceirirreeesrsisnnes e resssssssensssnsssmnssssrsermermnnns 20

2.3.6  RAVICIZGN EXPANSIONS......ccnnneeeiremeneieieeeeeeeecetenere st ss e ssesnes s s resse s essas s sassbessssosnavnsanas 23

2.3.7  Calculaling EffiCIENCIES.....ccoccocviimremeeemeeieeeieteteem e vcne s vene bt a e s s s b e s nssn s asenesens 27

2.3.8  Propagation in the Grating ReGIOM ..ottt et reac et sraes 29

2.4  THE DIFFERENTIAL METHOD ... centiieeirecenereeceittcceetreretteresse s osaceneesteesssasannsesnsrasnnnesssssssnssssnnessntnnraes 31

2.4.1 DIEfIRIIIONS ...o.eeeeeeeeeeeeeeeeeeeeeee et es et at s s cess s e sanmss st e s s e e s s e e sbeesbssas st aansranns e e seasnnas 31

242 Calcrlation Of T QA R..........occoueeeeeeicvnininiiciiecenie et ceacs e esessne s e s saesssensssnasesnans 32

2.4.3  Calculation Of EffCIENCIES. ... ueuieercririrnieiiitiniticcserenssse e ressssesates s e sesseesassssn s snesstns 34

244  Centering Real Orders in the VECIOIS.........uoiiiiioeacirieieieeeccnertanessassns e aeee s 35

2.4.5 A Brief Note on TM polarizarion .................eocuvooieeceeeemneiieieeeeeceeisseeessssaesesnsesssasseenssnaes 36

3 VERIFICATION OF ALGORITHM 37

3.1 CONSISTENCY OF RESULTS WITH PUBLISHED RESULTS ....oeetiiairieeeceenrereerreserneesoesesssesesnsnsasonmoceess 37

3.2 DETERMINING ACCURACY OF RESULTS . Heeeeeeeeeesessereariesessestirerternrerrassarenrrenrraas 40

3217 Dependency of Gccurary on Nigepse..veveeeesseemeriineienstietsese ettt ettt ea e 41

3.2.2 Dependency of accuracy 0N Ny «eeeeevemveiremneiiiimmnintieieecrersssenssssssnssesnsassnsasssesssssssessssnnes 43

4 RESULTS AND DISCUSSION 47

4.1 SCOPE OF STUDY ..occeiiiieneeirreencsnsscssntssaressessssssssssesstssssesessossssassissessssstessassansnsansnsssassnmstasssesesessenns 47

4.2  THE SCALAR WAVE APPROXIMATION ...ooniiiiiirmoieermiriecieseessesssssssssasosssanesssssssssssssasssssssssrsssransnnnses 48
4.3 COMPARISON OF SCALAR WAVE APPROXIMATION AND DIFFERENTIAL METHOD RESULTS FOR

RETRO-REFLECTED EFFICIENCIES ...coeeteiieicierererisrensesossoressssssssmsmssesssssnsnsesesssosamss oseesassssssssssssrsssssssssnersness 52

4.3.1  Retro-Reflected Efficiencies as a Function of Refractive Index...............c.cceeeeeueevcremeennnnen. 52

4.3.2  Retro-Reflected Efficiencies as a Function of Grating Order ...............oueeeemeremnnveenrennee. 60

4.4 RESULTS FOR THE TIR GRATING......cccoruittinirrmernismeiriitstiseencsasassnssnssas snmsesnsesassssessessssassesasssrassrns 65




4.4.1 TIR Grating Efficiencies as a Function of Refracrive Index

4.4.2  TIR Grating Efficiencies as a Function of Grating Order..................

..................................

4.5 RESULTS FOR THE ECHELLE GRATING...

4.5.1  Echelle Grating Efficiencies as a Function of Refractive Index
4.5.2  Echelle Grating Efficiencies as a Function of Grating Order

4.6 GRATING EFFICIENCIES FOR DIFFERENT REFLECTED ORDERS.

4.6.1 TIR Grating Efficiencies as a Function of Reflected Order.

4.6.2  Echelle Grating Efficiencies as a Function of Reflected Order.........

4.7 WAVELENGTH DEPENDENCE OF RETRO-REFLECTED EFFICIENCY

4.8 COMPARISON WITH EXPERIMENTAL RESULTS
5 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK
5.1 CONCLUSIONS.....cceermmerrrcmemraracnnenns

5.2 RECOMMENDATIONS FOR FUTURE WORK ..................
BIBLIOGRAPHY

APPENDNIY

& ——araam



vi

LIST OF FIGURES

Figure [-1: Profiles of a) triangular, b) lamellar, and c) sinusoidal gratings.................coccoveuveereennncnnnen.. 3
Figure 1-2: Integrated concave diffraction grating demultiplexer..................oueuemevceomennveeraeiirenieeennnes 4
Figure [-3: Profiles of a) Echelle and b) Total Internal Reflection (TIR) gratings ................ccccooevvuececcnne. 6
Figure 2-]: Parallel rays incident on grating elements .................coovvveerinireerirevrreresscsneiesnesiaasnesenesnes 10
Figure 2-2: 3" order aj Echelle and b) TIR gratings in the Littrow MOURL ............coweveeeemveeeverirereerennnens 12
Figure 2-3: Geometry for SNell’s LaW............o oottt e n e et 12
Figure 2-4: General dieleCtric Gralifg.............eeeeoonciricieeieetetiescee e eres e s n e se st es e e s s e s s b bne 20
Figure 2-3: lllustration of angles of diffraction from a dielectric grating .............coooueeeeeeeieeeeveecenneneee. 27

Figure 3-1: TE mode efficiency curves of dielectric lametiur gruting for comparison with lop graph of Fig.
6.104'=" in “Electromagnetic TREOTY Of Gratifgs” ..........cccreveieeeeccceecirirecrirnncresssereesssssesssesnssssesmessarasossess 38

Figure 3-2.; TE mode efficiency curves of dielectric lamellar grating for comparison with bottom graph of
Fig. 6.1 04'%! in “Electromagnetic Theorv of GrQUERGS " . ...oeoeemeeeeeeeececeeeaesencestenane s s s e smenan s s eacseseeses 39

Figure 3-3: TE mode efficiency curves of dielectric lamellar grating for comparison with Fig. 6.1 05> in
“Electromagnertic TREOrY Of GrQEINGS " .......oveovuieroneevsuensinsisrieseeerscescssteeseesssn e bssessassassanasessnansssensnenseens 39

Figure 3-4: Dependence of results on number of numerical integration steps for 1 0" order TIR grating (for
V,=1.5, Nm,m=23.‘ fof V1=3.6. N,,,,,,m—‘- [9) ................................................................................................... 43

Figure 3-5: Dependence of results on number of Fourier series components. Npyn.for 1 0* order TIR
Bratings (Nuseps=500) ...ccouvvmvmviiiiiriiiiiniiieretinteesi st ins et s s s e s e msen s n e st et et et e s sr e e b s caes 45

Figure 3-6: Dependence of results on number of Fourier series components, Ny, for | 0" order TIR
Bratings (NiugepsZI00) ......coovimmimiriniriintinteeee sttt et s ste s st e et et s s 435

Figure 4-1: Plot of Fresnel reflection component of the scalar wave approximation according to equation
(2.4) for TIR and echelle Gratings ...............couoeerieiruireecreeniiceseeetesssseressessrasees e s e n e es s asas s ananasstassens 50

Figure 4-2: Plot of Fresnel reflection component of the scalar wave approximation according to equation
(2.4) for TIR and echelle grarings in decibel URILS ................cccoumcnveieccimisvnereieneee et eer e nesses e s s sssnnesanens 50

Figure 4-3: Plot of Fraunhofer diffraction component of the scalar wave approximation according to
equation (2.9) for TIR and €cRelle Gratings ............c.cccoveiiicermeeeeeeeererceeesrreesstasersrmne s e s senesssnnassaraeas 51

Figure 4-4: Plot of Fresnel reflection component of the scalar wave approximation according to equation
(2.9) for TIR and echelle gratings in decCibel URILS...............eouioreerieoneinniciirrreesiirinsiasesmnessssnera e enenns 51

Figure 4-5: Plot of differential method results along with scalar wave approximations for retro-reflected
efficiencies as a function of refractive index for 1** order echelle and TIR gratings..........coceeceeeeevenenencee 53

Figure 4-6: Plot of differential method results along with scalar wave approximations for retro-reflected
efficiencies as a function of refractive index for 2™ order echelle and TIR GIatings.........eememenerenennen. 54

Figure 4-7: Plot of differential method results along with scalar wave approximations for retro-reflected
efficiencies as a function of refractive index for 5* order echelle and TIR gratings...............ccceeeverereen.. 54

Figure 4-8: Plot of differential method results along with scalar wave predictions for retro-reflected
efficiencies as a function of refractive index for | 0 order echelle and TIR BrALiNGS.......coovrenremvennnrereneens 55

Figure 4-9: Plot of differential method results along with scalar wave approximations for retro-reflected
efficiencies as a function of refractive index for 15® order echelle and TIR gratings..............ccceoevrevevunnnn. 55

Figure 4-10: Plot of differential method results along with scalar wave approximations for retro-reflected
efficiencies as a function of refractive index for 20" order echelle and TIR BIALNZS...ueonneenevenrrerrrreersrsenns 56



Figure 4-11:
refractive index for various TIR grating orders

Figure 4-12:
refractive index for various echelle grating orders...

Figure 4-13:
efficiencies as a function of grating order for v,=1.45 echelle and TIR grarings .............ccccceeeeeeeueeeaercnen.

Figure 4-14:
effictencies as a function of grating order for v,=2.2 echelle and TIR gratings.........cc.ccccccccccceennmresecrarans

Figure 4-15:

efficiencies as a function of grating order for v,=3.6 echelle and TIR gratings............ccccocccereeeeciioneacrnncens

vii

Plot of retro-reflected efficiencies along with scalar wave approximations as a function of
58

Plot of retro-reflected efficiencies along with scalar wave approximations as a function of
59

Plot of differential method results along with scalar wave approximations of retro-reflected
Plot of differential method results along with scalar wave approximations of retro-reflected

Plot of differential method results along with scalar wave approximations of retro- reﬂected

Figure 4-16: Plot of differential method results along with scalar wave approximations of retro-reflected
efficiencies as a function of grating order for TIR gratings with various v, values..............cccccoveveeevcnecn. 63
Figure 4-17: Plot of differential method results along with scalar wave approximations of retro-reflected
efficiencies as a function of grating order for echelle gratings with various V values............c.cueeeeeeeeenc... 64
Figure 4-18: Plot of efficiencies as a function of refractive index for I order TIR grating........................ 66
Figure 4-19: Plot of efficiencies as a function of refractive index for a 2™ order TIR grating.................... 66
Figure 4-20: Plot of efficiencies as a function of refractive index for a 5 order TIR grating .................... 67
Figure 4-21: Plot of efficiencies as a function of refractive index for a 10* order TIR grating .................. 67
Figure 4-22: Plot of efficiencies as a function of refractive index for a | 5™ order TIR grating .................. 68
Figure 4-23: Plot of efficiencies as a function of refractive index for a 20" order TIR grating .................. 68
Figure 4-24: Plot of efficiencies as a function of grating order for v;=1.43 TIR gratings ..............cc......... 70
Figure 4-25: Plot of efficiencies as a function of grating order for v;=2.2 TIR gratings...........cccceeuuucu..... 70
Figure 4-26: Plot of efficiencies as a function of grating order for v;=3.6 TIR gratings.......c..ccccceceeeeeeeen. 71
Figure 4-27: Plot of efficiencies as a function of refractive index for a I*' order echelle grating ............... 72
Figure 4-28: Plot of efficiencies as a function of refractive index for a 2™ order echelle grating .............. 73
Figure 4-29: Plot of efficiencies as a function of refractive index for a 5" order echelle grating.............. 73
Figure 4-30: Plort of efficiencies as a function of refractive index for a 10" order echelle grating............. 74
Figure 4-31: Plot of efficiencies as a function of refractive index for a 15* order echelle grating............. 74
Figure 4-32: Plot of efficiencies as a function of refractive index for a 20" order echelle grating. ............ 75
Figure 4-33: Plot of efficiencies as a function of grating order for v,=1.45 echelle gratings..................... 76
Figure 4-34: Plot of efficiencies as a function of grating order for v;=2.2 echelle gratings....................... 77
Figure 4-33: Plot of efficiencies as a function of grating order for v;=3.6 echelle gratings....................... 77
Figure 4-36: Plot of efficiencies along with scalar wave approximation as a function of reflected order for
A 5P OPAET TIR GIALNG ... e es e seseses s e eeees s snms s ememss e ee e ssesssaeessmesesesmnmne 79

Figure 4-37: Plot of efficiencies along with scalar wave approximation as a function of reflected order for
a 10™ order TIR grating ............oeeeeeeeeeeeeereeeeeeeesesenens 80

Fi zgure 4-38: Plot of efficiencies along with scalar wave approximation as a function of reflected order for
U5 OPAEE TIR GRALING ... eeseaeseeerses e e s ssenes s ass s aenmeas s s s s ssenseseesane 80

Figure 4-39: Plot of efficiencies along with scalar wave approximation as a function of reflected order for
a 20" order TIR grating .............ueeeeeerreeenn. 81

..............................................




viii

Figure 4-40: Plot of efficiencies along with scalar wave approximation as a function of reflected order for
5* order echelle grating. .................. . ereesresranaranssanasan 83

Figure 4-41: Plot of efficiencies along with scalar wave approximation as a function of reflected order for
10™ order echelle grating. eeeceeeeanas eermesaeeseesieseeetatan e cse st Rt e n s s s sna e aansaneanane 83

Figure 4-42: Plot of efficiencies along with scalar wave approximation as a function of reflected order for
15™ order echelle graring. eeeeaeetetieeee et sa s et e s e a st e et e e e sa e s r v e s e et e bere b e sesenrees 84

Figure 4-43: Plot of efficiencies along with scalar wave approximation as a function of reflected order for
20" order echelle graring. ............ccueeeeecmennc. eereetveeeneresraeeaesetesanraaas S, 84

Figure 4-44: Plot of differential method results along with scalar wave predictions of the —20" reflected
order efficiencies as a function of wavelength for a 20" order, v,=1.45 TIR grating..................... I 87

Figure 4-45: Plot of differentiul method results along with scalar wave predictions of the —20" reflected
order efficiencies as a function of wavelength for a 20% order, v;=1.45 echelle grating. .......................... 87

Figure 4-46: Plot of differential method results along with scalar wave predictions of the ~20* reflected
order efficiencies as a function of wavelength for a 20” order, v;=2.2 TIR grating. ........ccoeeveeeeeerencnn... 88

Figure 4-47: Plot of differential method results along with scalar wave predictions of the -20” reflected
order efficiencies as a function of wavelength for a 20" order, v;=2.2 echelle grating. ............................ 88

Figure 4—48: Plot of differential method results along with scalar wave predictions of the —1 5* reflected
order efficiencies as a function of wavelength for a | 5* order. v;=1.45 TIR grating...........cccoeeeuuvvevnnne.. 89

Figure 4—49: Plot of differential method results along with scalar wave predictions of the -1 5" reflected
order efficiencies as a function of wavelength for a 15" order, v,=1.45 echelle grating. ........................... 89

Figure 4-50: Plot of differential method resulis along with scalar wave predictions of the -1 5* reflected
order efficiencies as a function of wavelength for a | 5% order, v;=2.2 TIR grating. ............cceuuveeuvevemer... 90

Figure 4-31: Plot of differential method results along with scalar wave predictions of the —15" reflected

order efficiencies as a function of wavelength fora | 5" order, v,=2.2 echelle grating. ......................... 90

Figure 4-52: Plot of differential method results along with scalar wave predictions of the —15" reflected
order efficiencies as a function of wavelength for a 15" order, v;=3.6 TIR grating. ............ccuueuuerseeen. 91

Figure 4-33: Plot of differential method results along with scalar wave predictions of the —1 5™ reflecred
order efficiencies as a function of wavelength for a | 5" order, v;=3.6 echelle grating. ...................... 9f



LIST OF TABLES

Table 3-1: Comparison of diffraction efficiencies calculated for lamellar rransmission grating pictured on

FIBRL ..ottt saccre st e b re e e e s e s ne e me s rreeeressneraanesaneee s e s ae e s et e nnae e nnn 40
Table A-1: Average absolute percentage differences (%) between efficiencies for selected echelle grating
orders calculated with Nyg,,,=50 and Npgueps=500...... eeeeesaseeeeeacsrersesreseresesesrenssinnne 97
Table A-2: Average absolute percentage differences (%) between efficiencies for selected echelle grating
orders calculated With Ny pps=500 QN Nigiopm=5000..........ooniiriecereeeeeaeeeecceesecetesaeeeeaesseasesessssessens 97
Table A-3: Average absolute percentage differences (%) between efficiencies for selected TIR gratmg
orders calculated With Npgps=50 and Npyup,=500. eereeeateeessersiiesssbecestetesaerentnrnnteebnan—aaesnsataeeeomeeennnnnnanae 98
Table A-4: Average absolute percertage differences (%) between efficiencies for selected TIR grating
orders calculated With Nugeps=500 Qnd Niepi=5000..........ouoonomitiiireeiiiiciceteeesce e eeeeeemeeeseseseesanecenne 98
Table A-3: Absolute percentage differences (%) between retro-reflected efficiencies for selected echelle
grating orders calculated with N.......=50 and N..,.,.=500. ................ e eeteeeteernereeesaeereenarneeeeeann————tenonnann 98
Table A-6: Absolute percentage differences (%) berween retro-reflected efficiencies for selected echelle
grating orders calculated with Npyeps=500 and Niyepy=5000. .......o.onenoneeerriirirncinieiniieeesicreeeeerenesa e 99
Table A-7: Absolute percentage differences (%) between retro-reflected efficiencies for selected TIR
grating orders calculated with Npqp;=50 Qnd Nigepe=500. ....onemmniinininiininriiiciececite et eeane 99
Table A-8: Absolute percentage differences (%) berween retro-reflected efficiencies for selected TIR
grating orders calculated With Niseps=500 and Nigeps=5000 .......uonnvnncnisinsirecccveccineecicenseceetresena e 99
Table A-9: Average absolute percentage differences between efficiencies calculated with different matrix
5i2€S (Npune)r for first order echelle grating with Npggpe=500. ........ouveveiveeiiiorcarieeeeeecceecveetreeereeaseeces 100
Table A-10: Absolute percentage differences between retro-reflected efficiencies calculated with different
matrix sizes (Nmaine). for first order echelle grating with Niyueps=500.......uooneeucecneniininirmenciriniseisininiececens 100
Table A-11: Total efficiencies for different matrix sizes (Npgns). for first order echelle grating with
PNpistepsT500. ..ot eete ettt st et e st s e st et e s e he b e s et s e et e e st e aaenrsann 100
Table A-12: Average absolute percentage differences between efficiencies calculated with different matrix
5i2€5 (Npmuny). fOr fifth order echelle grating with Nyugeps=300. ....... .....ocuomvmnemniriieceerriineeecreeeerersaeneenes 101
Table A-13: Absolute percentage differences berween retro-reflected efficiencies calculated with different
mairix sizes (Nmanc), for fifth order echelle grating with Ny py=500...........couoeoioeoceniiiaeieeececerenene. 101
Table A-14: Total efficiencies for different matrix sizes (Nuune). for fifth order echelle grating with
istepsTI00. ...ttt ettt s e s e s st e ss e s ae s e ae s e ee e e e s e n e e Re e benns et aente b snsentesenbenseennens 101
Table A-15: Average absolute percentage differences between efficiencies calculated with different matrix
5i2eS (Npune), for tenth order echelle grating with Npgep =500 ...aeoneneemeianiciieee e remenns 102
Table A-16: Absolute percentage differences between retro-reflected efficiencies calculated with different
matrix sizes (Npune), for tenth order echelle grating with Nigepy=500. ........oeceoemeeceeeeeeaceceeeeaeeeeens 102
Table A-17: Total efficiencies for different matrix sizes (Npame). for tenth order echelle grating with
Nisteps=500. .ccooiniiiiiiieneccicceeee, . rereeeeereotereae et seanas 102
Table A-18: Average absolute percentage differences benveen efficiencies calculated with different marrix
sizes (Nmuns). for fifteenth order echelle grating with Niyep;=500. .........ccoceemieveeeveenirreceneeseneeseeseneans 103

Table A-19: Absolute percentage differences between retro-reflected efficiencies calculated with different
matrix sizes (Npuri). for fifteenth order echelle grating with Ny =500. ......ucuueueeceeorereneecnereeeeeaaeeeane 103

Table A-20: Total efficiencies for different matrix sizes (Nmaic). for fifteenth order echelle grating with
INitpsTI00. ..ottt cs et e s s st et et ettt et s et et et se et ressseassentasesnsenesenns 103




Table A-21: Average absolute percentage differences berween efficiencies calculated with different matrix
sizes (Nparic), for twentieth order echelle grating with Nigep,=500. . ... 104

Table A-22: Absolute percentage differences between retro-reflected efficiencies calculated with different
matrix sizes (Nmawi:), for twentieth order echelle grating with Nigepe=500.........cocooceeveeeaeeeeceeeeeeereenn. 104

Table A-23: Total efficiencies for different matrix sizes (Npgyi), for twentieth order echelle grating with
N,m,,,,=500. ..................... Ereretecitestenittbetnttonanr saratssratsesaressnatesennonnan 104




Chapter 1 - Introduction 1

1 INTRODUCTION

1.1 BACKGROUND

A diffraction grating consists of an array of repeating optical elements whose
effects, when summed together, act to alter (or “diffract”) incoming electromagnetic
(EM) waves. The elements of the grating direct light of a particular wavele‘ngth into
discrete orders, each order corresponding to a different direction of travel away from the
grating. Diffraction gratings are primarily used to produce spatial separation of light
according to wavelength'. This spatial separation is known as dispersion and occurs
because diffraction varies depending on the wavelength of the light. Different
wavelengths of light have maxima and minima of intensity at different angles. For
example, an incident beam of white light is separated into its constituent colors much like
what happens with a prism. This occurs for each of the diffracted orders so you will
have, for the case of incident white light, a number of spectra of light diffracted off the
grating.

Grating elements can be arranged in different ways. In unchirped planar
diffraction gratings the elements (lines of the grating) are equally spaced along a plane
and are designed to diffract incident plane waves to out-going plane waves. In concave
diffraction gratings the elements are placed along a concave surface (such as a section of
a sphere, cylinder, or toroid) and are designed to diffract incident diverging waves to out-
going converging waves. Concave diffraction gratings provide the dual functions of
focusing and diffraction. The configuration in which a grating is used is known as its

mount. Planar gratings in the Littrow mount and concave gratings in the Eagle mount are
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designed and arranged so that the diffraction order of interest is the retro-reflection” order
which is directed back towards the incoming wave’.

Diffraction gratings come in a wide variety of shapes; some of the more common
grating profiles are depicted in figure I-1. Incident light would travel in the same plane
as the page and the gratings would actually extend perpendicular to the page. Diffraction
gratings are often referred to by their method of production. The traditional r;xe[hod of
manufacturing gratings was to rule a series of grooves on an optical surface®. Master
ruied gratings are now produced using a diamond tooi, known as a ruling engine, on a
thin coating of metal that has been evaporated onto a planar or concave surface. Ruled
gratings generally have a triangular profile. Interference gratings, or holographic gratings
(this is actually a misnomer, as their production and use have nothing to do with
holography'), are produced by the photographic recording of an interference field.
Sinusoidal gratings are a good example of gratings that can be produced in this manner.
Recently, the microfabrication techniques of integrated semiconductor devices have been

used to produce gratings of many different shapes.

° In this thesis the term retro-reflection order is used, as this particular order of diffraction is one of the
“reflected” orders. The term retro-diffraction order could also have been used. Note that “reflected” orders
and “transmitted” orders are not simply reflected or transmitted. Rather, they are diffracted off the grating.
Reflected orders are simply diffracted to the same side of the grating as the incident light while ransmitted
orders are diffracted to the opposite side of the grating as the incident light.
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Figure 1-1: Profiles of a) triangular, b) lamellar, and c) sinusoidal gratings

1.2 APPLICATION

Diffraction gratings have been commercially avazilable for spectroscopic
applications for over 50 years'. They have recently been applied in wavelength division
multiplexing (WDM) and dense wavelength division multiplexing (DWDM) optical fiber
communication systems as demultiplexers and add/drop multiplexers. In WDM systems
several wavelengths of light are used to carry signals along a single fiber. Multiplexers
splice the different signal wavelengths together at the input to the system and
demultiplexers split apart the different signal wavelengths at the output of the system.
Present systems commonly make use of demultiplexers constructed with thin film
interference filters* or fiber Bragg gratings®. The ever-increasing demand for bandwidth
is pushing the industry to increase the number of channels a system can support.
Filtering techniques quickly become expensive and difficult to manage as the number of

channels increases®. Planar integrated circuits are more practical for a large number of
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channels. These devices include arrayed-waveguide gratings7 and integrated diffraction

gratingss.

concave
grating

Fqunu v W10 Py PR 1¥

....... —_ output
waveguides

A Ay Ax
strip
waveguide

Figure 1-2: Integrated concave diffraction grating demultiplexer

Planar integrated circuits use optical waveguides to confine the direction in which
light may travel. Slab waveguides allow light to travel freely in horizontal directions
while confining it in the vertical direction. Strip waveguides channel light along in one
direction. Integrated diffraction grating demultiplexers (see figure 1-2) consist of a strip

waveguide, which directs light towards the diffraction grating. Light comes out of the
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strip waveguide into a slab waveguide where it is allowed to spread out horizontally on
its way to the grating. Etching away part of the slab waveguide creates the grating. This
dielectric grating is formed by the boundary between two dielectrics — the slab waveguide
and air. The light diffracts off the grating and is focussed to an output strip waveguide.
Depending on the wavelength of light, the angle of diffraction will vary and the light will

be directed towards a different output strip waveguide.

1.3 STATEMENT OF PROBLEM

Until recently, integrated optical diffraction gratings primarily used a groove
shape copied from ruled gratings. More specifically they used the concave grating
equivalent of echelle gratings in the Littrow mount®®. Taking their name from the French
word for staircase, echelle gratings consist of “steps” formed by two facets with a 90°
angle between them. An echelle grating in the Littrow mount is oriented as in figure
1-3a) so that each groove of the grating has one “illuminated” facet, which the incident
light strikes at normal incidence, and one “shaded™ facet, which the incident light does
not strike. In an elementary view of the grating, the illuminated facet acts like a mirror
reflecting the light back towards its point of origin. Initially, integrated gratings were
simply dielectric gratings formed by an interface between the slab waveguide and air®.
Since the reflection coefficient for normal incidence on such an interface is low, this
interface has been coated with metal in many applications to enhance the reflectance of

the gratingm.
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Figure 1-3: Profiles of a) Echelle and b) Total Internal Reflection (TIR) gi'atings

Using the echelle groove shape for integrated optical devices does not take
advantage of the increased control and flexibility which the microfabrication process
affords. It is no longer necessary to use groove shapes that may be easily fabricated with
a ruling engine. By changing the groove shape design, high diffraction efficiency can be
achieved without metal coatings. McGreer proposed a groove shape based on replacing
the illuminated facet in an echelle grating with two facets designed to exhibit total
internal reflection''. This total internal reflection (TIR) grating is shown in figure 1-3b).
Taking an elementary approach to this grating, the light should strike each of the facets at
an angle smaller than 90° as illustrated by the arrows in the figure. If the refractive index
difference is large enough, light should undergo total internal reflection (i.e. 100%
reflection) off each facet, hence coating the gratings would no longer be necessary.

Recently devices based on Eagle mounted concave gratings designed to use total
internal reflection at the dielectric/air interface have been demonstrated'*'*. Up until
now, theoretical discussion of the reflection of light from these grooves has been limited
to an elementary ray optics approach. This thesis presents the first rigorous treatment
(using the full electromagnetic theory of light) of bulk-optic gratings with grooves that

utilize total internal reflection. Strictly speaking, the results are not valid for integrated
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diffraction gratings because guided modes will diffract differently than plane waves.
Nevertheless, validation of the principle of using total internal reflection for a bulk-optic
grating strengthens the qualitative argument that total internal reflection can be used to

enhance the efficiency of the retro-diffracted order for integrated gratings.

14 OBJECTIVE

The objective of this thesis is to characterize theoretical predictions of the
diffraction from Littrow mounted total internal reflection (TIR) gratings. Comparisons
will be made io the diffraction from echelle gratings in the Littrow mount. Given the
probable applications (wavelength division multiplexing), the gratings will be designed
for a central wavelength of 1.550 um and assessed for relevant optical materials. In order
to simplify calculations, this study will be restricted to planar bulk-optic gratings

perpendicular to the plane of incidence and with an angle of incidence of 45°.

1.5 OUTLINE OF THESIS

e In chapter 2 modeling of diffraction gratings is discussed. First some basic grating
theory is discussed, then a simple model based on scalar wave approximations is
introduced followed by a discussion of full electromagnetic wave theory. The
differential method for analyzing gratings is described in detail.

e In chapter 3 results from the differential method algorithm are corupared with
previously published results in order to verify the algorithm’s correctness. A method
of determining the accuracy of results produced by the algorithm is also developed.

e In chapter 4 results from the differential method algorithm for Littrow mounted bulk-

optic echelle and TIR gratings are presented and discussed. The responses of these
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two types of gratings are characterized and compared with one another. Comparisons
are also made with results from the scalar wave approximation and with previously
published experimental results.

e In chapter 5 conclusions and recommendations for future work are discussed.
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2 MODELING GRATINGS

2.1 BASIC GRATING THEORY

As mentioned in the introduction, a diffraction grating consists of an array of
repeating elements. For basic grating theory the nature of the elements is irrelevant; the
periodicity of the elements is important. Consider a plane wave incident on a planar
grating of period 4 at an angle 8“ from the grating normal. Now consider two rays
from that plane wave which strike adjacent elements of the grating as in figure 2-1. If we
know the wavelength of the light, A it is now easy to determine at which directions the
diffracted rays will add constructively based on the fact that a path length difference
equal to an integer number of wavelengths will produce constructive interference.

Constructive interference will occur at the angles given by the Bragg or grating equation,

(E)
n

fdi =sin0'" —sin 8", for y>0 2.1

% =sin8% —sin 8", for y<0 (2.2)

where n is an integer known as the diffraction order and the angles 6‘” and 8'" are
defined along with their sign conventions in figure 2-1. Equation (2.1) defines the
reflected orders (which travel in positive y directions) and (2.2) defines the transmitted
orders (which travel in negative y directions). It should be noted that A4 is the wavelength

of light in the medium in which the grating is placed. If the medium below the grating

has a different refractive index than the medium above the grating (2.2) should be
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. nl . 2) VI . (inc) . - - -
replaced with = =sin@,” ——-sin 0", where v, is the refractive index above the
Vv,
grating, v, is the refractive index below the grating, and A is the wavelength of light in v.

negative 81  ya positive 6"

e(inc)

i
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]

]

:
; 2 o &
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Figure 2-1: Parallel rays incident on grating elements

The total number of diffracted orders depends on the angle of incidence as well as
the ratio A/d (if the refractive index helow the grating is different from that above, the
number of transmitted orders also depends on the refractive index values). The zeroth
reflected order corresponds to waves that are reflected directly off the grating (just as
would happen with a planar mirror). The zeroth transmitted order corresponds to waves
that travel straight through the grating (just as would happen with no grating). It can be
seen in equations (2.1) and (2.2) that changing the wavelength changes the angles of all

the orders except the zeroth (i.e. dispersion affects all but the zeroth reflected and zeroth

* v is often used in grating theory to represent refractive index rather than the traditional n in order to avoid
confusion with grating orders and subscripts of Fourier transforms
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transmitted orders). For higher orders it is easy to see that the dispersion will be larger;
therefore, when using a grating to separate out different wavelengths of light, higher
orders are often preferable. The free spectral range (FSR) of a grating is defined as the
range over which the wavelength can be varied for a particular order without overlapping
with different wavelengths of light from adjacent orders’®. The FSR will decrease with
increasing order so there is a trade-off between FSR and dispersion. Since ti1e zeroth
order (reflected or transmitted) does not exhibit dispersion, it is of no use to have light
diffracted into this order. If a grating is designed to operate in a particular order, it is
desirable to have the majority of light diffracted into that order.

To use a grating in the Littrow mount it must be designed so that one of the orders
is travelling in the opposite direction as the incoming wave (i.e. 8"= —8“" for some

value of n). For the retro-reflected order to correspond to the —m™ reflected order, where
m is defined as the “grating order,” equation (2.1) implies that the grating spacing needs
to satisfy

mA
d=—m——, 2.3
2SiI'I e(mc) ( )

where A is the wavelength of light in the medium above the grating. Figure 2-2 illustrates
the reflected orders for echelle and TIR gratings in the -3 order Littrow mount. These

are third order gratings.
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Figure 2-2: 3" order a) Echelle and b) TIR gratings in the Littrow mount

2.2 SCALAR WAVE THEORY

2.2.1 Ray Optics

The simplest model of the echelle and TIR gratings uses a ray optics approach.
The law of reflection states that for a ray of light incident on the boundary between two
dielectrics, the angle of incidence equals the angle of reflection (8, =8,). The law of

refraction (Snell’s law) states that v,sin6; =v,sin®,. These angles and indices of

refraction are defined in figure 2-3.

Figure 2-3: Geometry for Snell’s Law

Rays strike facets of the echelle grating at normal incidence (8, =0). Using

Snell’s law, a portion of the light is transmitted straight through as if there were no

boundary (6, =0) and using the law of reflection a portion of the light is reflected
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directly back the way it came (6, =0). Rays strike the boundaries of the TIR grating
twice and according to the law of reflection end up travelling back in the retro-reflected
direction. Using Snell’s law we can calculate the angles of the transmitted rays from
each of the two boundaries and we notice that these angles depend on the ratio of the two
refractive indices. Looking at Snell’s law it can be seen that if the ratio bet.ween the

indices of refraction is large enough (i.e. v,sin®,/v, >1) the transmitted ray does not

exist and all light is reflected. This condition is known as total internal reflection. If the
dielectric below the grating is assumed to be air (v»=1) and we assume an angle of
incidence of 45°, then the condition for total internal reflection is v;>1.414. The ray
optics approach tells us what is required for total internal reflection but tells us nothing

about the reflectance in other cases.

2.2.2 The Fresnel Equations

Taking the approximation a little further, we can use the Fresnel equations to
determine more accurately just how much light is reflected or transmitted at each
boundary. Although the Fresnel equations are derived from electromagnetic optics of
plane waves they are easily calculated and make for a quick first approximation for the
gratings. The Fresnel equations are polarization dependent. When the component of the
electric field perpendicular to the direction of travel is parallel to the boundary between
the two dielectrics the light is in the TE (transverse electric) polarization. When the
component of the magnetic field perpendicular to the direction of travel is parallel to the
boundary between the two dielectrics the light is in the TM (transverse magnetic)
polarization. The portion of the light intensity reflected at a boundary between two

dielectrics is given by the Fresnel equations'®:
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2
R =[Y1C0s8: =V, €080y| o T polarization and 2.4)
v,cosB, +v, cos8,

- )
R=[= 9, ~v,cosH, , for TM polarization 2.5)
v,cosB, +Vv, cosB,

where cos8, = (1 Y gin? 9, ]yand 8,=angle of incidence (6;).
v,

For the echelle grating, 6,=0° and R is polarization independent

R=[V‘“V2). (2.6)
vV, +V,

For the TIR grating when 8,=45° as long as v;>1.414 (this is the total internal reflection

condition) R is again polarization independent and equal to 1.

2.2.3 Fraunhofer Diffraction

The approximations so far have taken into account reflection off only one grating
element. The next step in furthering the model is to take into account the wave nature of
light and determine the interference pattern for waves reflected off of all the elements.
Two-dimensional Fraunhofer diffraction can be used to approximate the interference
between the light reflected off of each element. For the echelle grating the approximation
is obvious - we can treat each of the illuminated facets as a single slit emitting light,
ignoring the diffraction effects of the shaded facets. For the TIR grating, tracing the path
of rays reflecting off of the two facets, reflected rays are in phase at the same position as
the illuminated echelle facet would be. So the Fraunhofer diffraction pattern for the
echelle and TIR gratings will be identical. It turns out that since adjacent facets differ by

an integer multiple of wavelengths, we may treat the sum of reflections off of all the
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facets as multiple slit diffraction with no spaces between the slits which is a common

problem in optics. The solution takes the form'’
10 =1, sincz(ﬁzgsin 3] } , 2.7

where 0 is the angle measured from the direction the slits (facets) are facing, D is the

width of the slits (facets), and & is the wavevector, k, =V, 271 / A, (we use Aq for the free-

space wavelength of the light). We can now make the approximation that the relative
intensity of light diffracted into each of the orders is given by the value from (2.7)
evaluated at the angle of that particular order.

Our full scalar wave approximation for the reflected orders will be the product of
the reflectance R and the relative intensity of light diffracted into that order, which can be
calculated with Fraunhofer diffraction theory. The portion of light diffracted into the n®

reflected order is known as the reflected efficiency, ¢,, and will be given by

sincz[k—'??-sine: ]
e =R — (2.8)

™ o k ,
Zsinc'[‘—ﬁ)D-sine, )

IEU1

where U, includes all reflected orders, 8, is the angle of the n™ reflected order measured
from the normal to the facets, and sinc® =sin©/6. For a grating in the —m order Littrow
mount with an angle of incidence of 45° we can use (2.3) to show that for light with a free
space wavelength A to exactly retro-reflect the grating spacing must be such that

D =ml,/2v, . For this specific case we can then write (2.8) as

sinc? (mm sin(45° 0™ ))

Y sinc*(mmsin(45° —6" )’

lelU;

e, =R (2.9)
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2.3 ELECTROMAGNETIC THEORY OF GRATINGS

The scalar wave approximation does not ensure that the boundary conditions are
satisfied on the shaded facets and neglects the effect that the shaded facets have on the
diffraction of the light. The effect of the shaded facets may be viewed as introducing a
new source of electromagnetic radiation. The magnitude and phase of this source would
then be determined by requirements of the boundary matching conditions. ’["his view
effectively illustrates the physical nature of the corrections to the simple model, but does
not lead to a practical method for calculating the diffracted waves. To accurately take
into account the effects of the shaded facets, we turn to the full electromagnetic theory of

gratings.

2.3.1 Notation

Vectors will be represented by bold characters, for example u. A unit vector will
be indicated with a hat, like this 4. Throughout this discussion, we will be working in a
rectangular coordinate system so we denote three unit vectors in the directions of the
primary axes as X, ¥, Z. O represents the origin (x=0, y=0, z=0) and r represents a
vector from O to some point within the coordinate system.

In this discussion we only consider monochromatic electromagnetic fields of
angular frequency wso their time dependence can be represented by exp(-iwr).
Consequently, any vector function a(r,?) can be represented by its associated complex
vector function A(r), where

a(r,r) = Re(A(r)exp(—iar)). (2.10)

We will be making use of the vector differential operator, or del operator, V

which is defined as
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v

]

d d d
—X+—V+—1Z. 2.11
axx+8yY+azz 210

The del operator defines the following common operations:'®

@ The gradiant of a scalar C =VC.
® The divergence of a vector A =V -A.

@ Thecurlofavector A =VxA.

e The Laplacian of a scalar C =V*C, where V* =

—t s+ —.
ox° dy> 9z°

2.3.2 Maxwell’s Equations

In any medium where the dielectric permittivity &r) and the magnetic

permeability y(r) are continuous the time-harmonic Maxwell equations are given by'’

VXE=iwB, (2.12)
VxH=J-iwD, (2.13)
V.-D=p, (2.14)
V.-B=0, (2.15)

where E(r) and D(r) represent the electric field, B(r) and H(r) represent the magretic

field, p(r) is the charge density, and J(r) the current density.

The following relationships may be used to eliminate D and B from Maxwell’'s equations:
D=¢E (2.16)
B=_uH. 2.17)

As we will only deal with dielectric gratings, € will have only real values and the

permeability u will be equal to that of vacuum, L.
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2.3.3 The Helmholtz Equation

Consider a region of constant € which has neither charge nor current (p=0, J=0).
Substituting oH for B and taking the curl of both sides of (2.12) gives
VxVxE=iou,VxH.
Applying the vector identity VxVxA =V(V-A)-V’A to the left hand side,
substituting from (2.13) into the right hand side and replacing D with €E gives
V(V-E)-V’E = iwu,(-iweE) .

From (2.14) and (2.16) (VE) must be equal to zero leaving us with the Helmholtz

equation

V’E+k’E=0, (2.18)
where

k* =gu,0°. (2.19)

Starting from (2.13) and following similar steps, it can be shown that H must also satisfy

the Helmholtz equation
V'H+k*H=0. (2.20)

In a dielectric €, =g, and @ are all real and positive so we can write

k=(eu, V'o. (2.21)

Since the refractive index v for a dielectric may be defined as'®

ve [iT/ (2.22)
80

we can write

k=kyv, (2.23)
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where

ko = (Eotte V200 (2.24)
would characterize the same wave In vacuum.

A simple solution of the Helmholtz equation is the plane wave
2
E=E, exp(-—i—u -r), (2.25)
where @ is a unit vector in any direction, and provided

7
A==L
k

Looking at (2.25) @ must be in the direction that the wave is travelling and A must be the
wavelength in the medium. Notice that if r is in direction G, increasing the value of r
by A makes E progress through a full cycle. Combining (2.23, 2.26) we can relate the

wavelength in the medium A and the free space wavelength A,

P 2.27)
\Y

2.3.4 Boundary Conditions

Wherever there is a discontinuity in the medium, the electric and magnetic fields
must satisfy certain boundary conditions. Define fi,, as a unit vector normal to the
boundary between two continuous regions pointing from region 2 to region 1. Define the
field A; as the field A evaluated in region j at a point approaching the point where a
vector in the direction of ft,, crosses the boundary between regions 2 and 1. We can then
write the boundary conditions as'’

i, x(E, ~E,)=0, (2.28)
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nllx(Hl —HZ)=Jx’ (2.29)
2” (Dr "Dz)= P, (2.30)
n, '(Bl “Bz)=o’ (2.3D

where J; is the surface current density and p; is the surface charge density. For a

dielectric grating J; and p; will both be equal to zero.

2.3.5 General Dielectric Grating
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Figure 2-4: General dielectric grating

A general dielectric grating is shown in figure 2-4. The grating boundary is
defined by the surface y=f(x) which is infinite and periodic in the x direction with period
d. The grating is unchanging in the z direction. f(x) is piecewise continuous and lies
between the planes y=0 and y=a. The grating is composed of two different dielectric
regions with refractive indices v, above f(x) and v2below f(x).

Assume we have a plane wave incident in the z=0 plane from above the dielectric

grating at an angle 8" as shown in figure 2-4. The incident wave vector k" =k, a (@



Chapter 2 - Modeling Gratings 21

indicates the direction the wave is travelling) has components in the x and y directions,
represented by & and -3 respectively, where

a =k, sin8™ and (2.32)

B =k, cosg™ . (2.33)

Assume that the incoming wave is in one of two fundamental modes of
polarization, transverse electric (TE) or transverse magnetic (TM). In TE polarization
(also known as P polarization) the component of the electric field perpendicular to the
direction of travel (i.e. the transverse electric field) points in a direction along the
grooves of the grating. In TM polarization (also known as S polarization) the transverse
magnetic field points in a direction along the grooves of the grating. In order to treat the
two polarizations simultaneously we introduce a new scalar function u(x,y) which
represents E. in TE polarization and H, in TM polarization. A different Helmholtz

equation must be satisfied in each region:
Viut+k u=0, ify>f(x) (2.34)

Viu+k, u=0, ify<f(x). (2.35)

Now we can determine boundary conditions for the general dielectric grating.
First from (2.28), taking the limit as you approach f(x) from either side of the boundary
along a path normal to f(x) leads to the result for TE mode that

u, (x, f(x)) = u, (x,f(x)) .
Since J,=0, (2.29) gives the same result for TM mode which leads to the conclusion that
u is continuous for both polarizations.

From (2.12) and (2.17) we have for TE mode

Vxui)=iouH,
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which gives us

—-i

H, =ZJ‘-‘—V><(u1 3),and H, =——Vx(u, ?).

1 H,

Using the identity VXA + VxB =V x(A + B) we can write

H —H,=_tvx| Sz 22z
o \m o

Substituting this into (2.29) and recalling that J,=0

“la, x| Vx| Sz-Z2z |0,
@ H, H

Using the identity AX(BxC) =B(A-C)-C(A -B) gives

el I (2.36)
Y, dn y, dn
Since W)=Wa=|, for dielectrics, (2.36) reduces to
du, _du, (2.37)
dn dn

Using (2.16) and (2.13) and following the same process for the corresponding equations

in TM mode leads to the result

ldu 1du,

g dn & dn

(2.38)

The boundary conditions for a dielectric grating may be summarized by saying

® u is continuous for both polarizations,
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e du/dn is continuous for TE polarization,

e £'du/dn is continuous for TM polarization.

2.3.6 Rayleigh Expansions
The incoming plane wave is given by
u™ (x, y) = expli(cex — By)). (2.39)
The total field above the grating will be the sum of the incident and reflected fields,
u=u"+ut’ y>f(x), (2.40)
while the total field below the grating will be simply the transmitted field,
u=u‘""), y<f(x). (2.41)
We now introduce a radiation condition based on well known experimental

results' - that the reflected and transmitted fields each be bounded as |y| approaches

infinity and that they be described by a superposition of plane waves. The problem then
is to find a function that satisfies the Helmholtz equation, the boundary conditions and
the radiation condition. We assume the existence and uniqueness of this solution.

From (2.39) the incident wave has the property

u“(x+nd, y)=u" (x, y)exp(iond), (2.42)
where n is any integer. The boundary condition requiring continuity of u can be stated as

u (x, f(x)) = u"™ (x, f(x)) —u "™ (x, f(x)) . (2.43)
Restating this boundary condition at x+nd, substituting from (2.42), and rearranging gives

u(i"c) (x. f(x)) =u (trans) (x + nd, f(X)) exp(-—-iwld)

: (2.44)
—u"M(x + nd, f(x))exp(~iond)
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This implies that the product of the reflected or transmitted waves and the factor
exp(-iax) is a periodic function of period d. Recognizing that from (2.42) the incident
wave must also meet this condition we can introduce the new periodic function

v(x, y) = u(x, y)exp(—iox). (2.45)
Because of this relationship u is known as a pseudo-periodic function'®. Since u must
satisfy the Helmholtz equation and the radiation condition then v must also satisfy the
Helmbholtz equation and radiation condition.

We can represent v(x,y) using a Fourier expansion in x. Substitution into (2.45)

gives the result

u(x, y) = exp(icx) D v, (y)exp(inKx) =Y v, (y)explia,x), (2.46)
where
2
k=22 and (2.47)
d
@, =k sin0“ +nk . (2.48)

Let a be the maximum value of f(x). If y>a, u(x,y) must verify the Helmholtz equation

(2.34) for any x. Substituting (2.46) into (2.34) we can write

) [d' MR —an’)v,Jexp(inKr) =0 (2.49)

k-, v, =0. (2.50)

If we define U, as the set of integers for which (Iu:l2 —anz) is positive and define

1
BY = (k7 -2 Y if nev,, @.51)
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BY =ile? k) if nev,, (2.52)
where i? =—1, then the general solution of (2.50) is

v, (y) = AP exp(~iB" y) + B exp(iB P y) for y>a. (2.53)
Below y=0 the same equations apply, except of course replacing k; with k». Define U, as

the set of integers for which (k2 : —anz) is positive and define

B =(kj—af}yl,if nel, (2.54)

n

BO =ile? - k) if ne U, (2.55)
then the general solution of the new differential equation corresponding to (2.50) is
v.(y)= A exp(=iB,” y) + B,” exp(iB,” y) for y<0. (2.56)
Expansions of the type given in (2.53) and (2.56) are known as Rayleigh expansions as

they appear to have been introduced by Rayleigh'’. Combining these Rayleigh

expansions with (2.46) gives the following results for the transverse field of interest:

u(x,y)= Y AP explior, x—iB"y)+ Y B." exp(ia, x+iB"y) for y>a, (2.57)

n=—co n=—ce

u(x,y)= Y AP explio, x— i, y) + 3 B exp(ict, x+iB?y) for y<0.(2.58)

n=—ee nm—e
Looking at these equations it can be seen that if an A, or B, coefficient’s corresponding f3,
value is real, the coefficient represents a propagating plane wave while if B, is imaginary
the coefficient represents an exponentially damped or exponentially growing wave
traveling along the grating. We are only concerned with the propagating waves at this
point so the following discussion will only consider those cases. Since f, must then be

positive, each of the A, coefficients represent downward propagating plane waves while
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the B, coefficients represent upward propagating plane waves (as far as the y coordinate
is concerned). If the incident wave is assumed to come from above the grating then A{’
coefficients represent incoming plane waves, B" coefficients represent plane waves
reflected off the grating, while the A!® coefficients represent transmitted plane waves.

The B¢” coefficients would represent waves propagating toward the grating from below
so they must all equal zero in this case. The angles at which these plane waves are
travelling can be determined from

all

8" =sin~' (=), (2.59)
1
0 =sin™! (Z—") . (2.60)
1
8 =sin" (22, 2.61)

2

m

n

where the angles of incident waves 8% reflected waves 6!, and transmitted waves
o n

8'¥ are defined as shown in figure 2-5. As one would expect, the angles calculated using

equations (2.60) and (2.61) are the same as those calculated using equation (2.1) and the

modified version of (2.2) which takes into account the different refractive indices.



Chapter 2 - Modeling Gratings 27

Y4

4

e(l)

o= N
i; ,
kz
f\
\__./
lul)

©

%
Figure 2-5: Illustration of angles of diffraction from a dielectric grating

Equation (2.59) introduces the possibility of having more than one incident wave,
or an incident wave at an angle other than 05 (85" is equal to our initial definition of

the angle of incidence, ). For now, assume there is only one incoming plane wave

(inc)

and it is at the angle 8, .

2.3.7 Calculating Efficiencies

In the study of gratings it is useful to determine how much of the incident energy

goes into each of the reflected and transmitted orders. Consider the situation in Figure
2-4 where we have one plane wave incident from above the dielectric grating. The A"
coefficients represent the incoming waves, so only one will have a non-zero value. For

calculation purposes assume the incoming wave has a magnitude of 1. The B!

coefficients represent the reflected plane waves while the A'® coefficients represent
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transmitted waves. The B!* coefficients represent waves propagating toward the grating

from below so they must all equal zero. We can now write

u(x, y) =exp(iox—ifly) + Z B exp(ia, x+iB"y), if y>a (2.62)

n=—e

u(x,y) = Y AP explia, x+iB ), if y<0. (2.63)

ol

Define the efficiency e,, of the n™ reflected wave as the ratio of its flux density
through the piane y=a to the flux density of the incident piane wave through the same
plane. Similarly, define the efficiency e, of the n™ transmitted wave as the ratio of its
flux density through the plane y=0 to the flux density of the incident plane wave through
the plane y=a. The intensity of a plane wave in a dielectric is given by'®

_ |EolIV _IHOIZ(E/#O)%

I =
2(e/ ty)" 2Zv

(2.64)

Applying this to equations (2.62) and (2.63), recognizing that the component of the wave
vector normal to the plane is the one which contributes to the flux density through the
plane, it can easily be shown that if 8" is the angle of incidence the various reflected

efficiencies are given by
e, =|B"| —5 for nev,, (2.65)

while the transmitted efficiencies are given by

2 cos89 v,

oy for ne U, (TE polarization), (2.66)
cos .

=|4®
e, = IA,,

2 cos8? v,

9y for ne U, (TM polarization). (2.67)
cos N

—|a®@
€, —IA,, l
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Calculation of the B and A‘® coefficients is thus sufficient to determine the

efficiencies for a dielectric grating. Note that the energy balance criterion'® requires that
the sum of all reflected and transmitted efficiencies equal unity. This criterion simply
implies that the total energy of the reflected and transmitted waves must be equivalent to

the energy of the incident wave.

2.3.8 Propagation in the Grating Region

Consider the TE mode. We can repiace the two Heimhoitz equations (2.34, 2.35)
with a single one

Viu+k(x, y)u=0, (2.68)

where u is the z component of E and

, { k® if y>f(x) (2.69)

k(x,y)= . .
k,” if y<f(x)

Since u is a pseudo-periodic function, we can say that (2.68) is valid in the sense of
distributions'®. This is a statement arising out of the distribution theory. Distribution
theory describes the relationships between functionals rather than vector functions.
When applying distribution theory the operations curl, divergence, gradient and
Laplacian need to be redefined. These new definitions automatically take into account
the boundary conditions of Maxwell’s equations so boundary conditions may be
ignored". Since u and du/dn are continuous for TE mode, the Laplacian in the sense of
distributions is actually going to be the same as the standard Laplacian'®. This means we

can ignore the boundary conditions and rewrite the Helmholtz equation (2.68) using the
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series expansion of u (2.46) and replacing the periodic function k°(x,y) by its Fourier

series i (k : )n (y)exp(inKx):

nS—es

> (d- Y _alv, )exp(inKt) +
dy~

exp(iox)| " =0 (2.70)
3 v, explimKx) - Y (k2), (v) explilk)
m=—so Iz
where (k?), can be calculated using
1 d12
(k). = - k*(x, y)exp(inKx)dsx . (2.71)
-d/2

Making the substitution n=/+m (2.70) can be rewritten as

Y d: , - .
Z[ ;y"z(-V) —a, V. (+ Z(k‘)n_,.(y) v,.(y) lexp(inKx) =0,

n=-oo

which implies that for each value of n

-

T-y‘-;—’-'-—af vt 3, v. =0. (2.72)

This is a straightforward second order differential equation that we can write in matrix
form as

Vi =M(y)V, (2.73)
where V is a column matrix composed of the functions v,(y), V* is a column matrix

composed of the second derivatives of v,(y) with respect to y, and M is a square matrix

composed of the elements

M,, =a2s,, —(k%),_. (2.74)
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This equation describes the field in the entire grating region (0<y<a) and the solution of a
field propagating through this area may be found using standard numerical algorithms.
This solution along with the known Rayleigh expansions outside the grating region may
be used to calculate the efficiencies for any dielectric grating using the differential

method.

2.4 THE DIFFERENTIAL METHOD
The differential method can be outlined as follows:

e A field is assigned below the grating and written using the Rayleigh expansion (2.56).

* A numerical integration algorithm is applied to the differential equation in the grating
region (2.72) in order to calculate the propagation of the field in reverse from y=0 to
y=a.

e The field above the grating is converted into incident and reflected plane waves using
the Rayleigh expansions (2.53).

e By repeating the process, matrices relating the Rayleigh expansion of the incoming
plane wave to those of the reflected and transmitted plane waves can be determined

and from these matrices the grating efficiencies can be calculated.

2.4.1 Definitions

Outside of the grating region, we have found the general solutions to the

Helmbholtz equation and we can write them as

u(x, y) = iv"(y)exp(ianx) , (2.75)

R=—ee

where

v, (y) =AY exp(-iB" y) + B exp(iB y), for y>a (2.76)



Chapter 2 - Modeling Gratings 32
v, (y) = AP exp(-if?), for y<0 (2.77)
Call ¢, ¢4, and y? the column vectors built from the coefficients A'”, B.”, and

A® respectively. Introducing the square matrices My, Mg, R and T we can define the

following relationships:

vy =M,y (2.78)
vy =M, vl (2.79)
vy =Ry (2-80)
v =Ty (2.81)

I[f My and Mg are known we can then calculate the reflection matrix R and the

transmission matrix T using the relationships
T=M,)", (2.82)

R=M,M,)' =M,T. (2.83)

2.4.2 Calculation of T and R

All the Fourier series are written as sums from —oo to o. Since it is impossible
to do numerical calculations of this scope we choose some number N, and make all
summations from n=N to n=+N. This means that all square matrices will have
dimensions of Nugm=2N+1 and all column vectors will have N, rows. N should be
chosen large enough that all real reflected and transmitted orders are included (i.e. all the
values in the sets U; and U are included in the range [V, +N]). Further choosing of the
size of N should be based on numerical resuits (this is discussed in chapter 3) or some

knowledge of the Fourier components for larger N.
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Start by choosing the field below the grating so that one of the values of A’ =1

and all other A®=0. The derivative of A!® just below the grating is straightforward

from (2.53) and since the tangential electric field and its derivative are continuous in TE

mode we can write

v, (0)=A2, (2.84)
dd‘;n (O) = _iB,:Z)A,(,z) . (2.85)

The functions v, and their first derivatives are now known at y=0. Applying the
differential equation in the grating region (2.72) and using a standard numerical
algorithm for second order differential equations, propagate the functions v, through the
grating region to y=a. We used the numerical integration algorithm presented in chapter

»20

4 of “Electromagnetic Theory of Gratings which implements the Noumerov

d
M (a) have been found for all n we can determine what
y

algorithm®'. Once v,(a) and

plane waves must exist above the grating. The continuity of the tangential electric field
and its derivative means we can use equations (2.53) and (2.56) along with their

derivatives to get

/
AP =1 vn(a)—#ddv“ (a))exp(iﬁ,‘,”a) (2.86)
\ n y
.
1 1 dv
BV =—|v (a) + ——= expl—iB " 2.87
| @)+ (a)) p(-iB%a) (2.87)

The resulting values of '’ and y$’ are then the values of the n™ (where n was the value

that we chose A'”=1) columns of M, and M; respectively (this is obvious if you look at
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equations (2.78) and (2.79)). By repeating this process Nmaric times, setting a different
A'? equal to | each time the complete matrices M4 and Mz may be calculated. From M,

and Mj; equations (2.82) and (2.83) can then be used to calculate T and R. T and R

describe everything we need to know about the system.

2.4.3 Calculation of Efficiencies

The matrices T and R allow us to calculate the coefficients B!"” and A‘® from the
coefficients A!”. T and R are independent of which of the coefficients A"’ have non-

zero values. This means that any or all of the values of A." may be assigned as
incoming plane waves and the corresponding reflected and transmitted plane waves

calculated using T and R. To be consistent wita our definition of 8" and for n to be
equal to the correct diffracted order numbers we choose AJ" as the incident plane wave
(corresponding to the input angle 65" =6} and assign it a value of 1. All other
A" are assigned values of zero. The reflected plane waves (B coefficients) and

transmitted plane waves (A,iz’ coefficients) are calculated with equations (2.80) and

(2.81). Using equations (2.65) and (2.66) the efficiencies can then be determined:

m
2 cosO
[3)] n )
€m "IB ! Ginc) (2.88)
cos9
)
e = A('.’) 2 cosen VZ (f) 89)
m n (inc) ' -
cos6'" v,

where 89 and 6", given by (2.60) and (2.61), are the angles of the reflected and

transmitted plane waves respectively.
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2.4.4 Centering Real Orders in the Vectors

It is desirable to center the real orders in the vectors used for calculating
efficiencies. Centering reduces the size of the vectors and matrices required to include all

real orders, thus making matrix inversion possible for gratings with greater numbers of
orders. If the incident plane wave is described as A" =1, the real orders will not
necessarily be centered in the matrices and vectors. For example, consider the 3™ order
gratings depicted in figure 2-2. The angle of incidence 6 is 45°. To include all the
real orders for these gratings we must take our summations from n=-3 to n=+3 even
though n=1, n=2, and n=3 do not correspond to real orders. A better method is to
temporarily choose 8™ to be 13.6° (this corresponds to a wave incident along the same
line but in the opposite direction as the -2 reflected order in the diagram). The angles of

all incident and diffracted real orders (i.e. 8, 8" for neU,, and 8! for ne U,)
remain the same as when 8’ =45°, only with the n coefficients all increased by 1. The

coefficients of the matrices T and R relating real orders also remain the same, only
shifted so that they relate the correct orders. We now need to take summations only from
=-2 to n=+2 to include all real orders. We have effectively centered all the real orders

(as well as possible when there are an even number, n=+2 is still not a real order). Since

we are actually interested in the case of a plane wave incident at 45°, we choose A" as
our incident wave. With our temporary assignment of 8" =13.6°, A"’ now corresponds
to an incident plane wave at the angle 8{" =45°. Efficiencies are calculated as before,
the only differences being that A" (not A{") is assigned the value of 1, and 6™ =45°

in used in equations (2.88) and (2.89). Once calculations are complete, the order
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numbers, n are then reassigned for the angles and efficiencies as they would have been if
we had initially chosen 8"’ =45°.
This method of centering real orders by temporarily choosing 6"’ equal to the

smallest of the angles 8" was used to obtain all results presented in this thesis. An

equivalent process should be to take summations from n=-N+/ to n=+N+[, where [ is

chosen so that the real orders are centered in the vectors.

2.4.5 A Brief Note on TM polarization

I have not included theoretical discussion of using the differential method for the
TM polarization. In TM polarization du/dn is not continuous throughout the grating
region. Consequently, the Helmholtz equation (2.68) will not necessarily be valid in the
sense of distributions. The Helmholtz equation needs to be replaced by a propagation
equation that will be valid in the sense of distributions in the grating region. For further
discussion of using the differential method for TM polarization see chapter 4 of

. .
“Electromagnetic Theory of Gratings °,
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3 VERIFICATION OF ALGORITHM

The differential method has been one of the most popular methods for analyzing
arbitrary profile gratings™. Given its previous success in replicating experimental results
for different gratings™**, we did not attempt experimental verification of the validity of
the differential method. In this chapter we verify the correctness of our algorithm. First,
results consistent with previously published results are obtained, then a method for

determining the accuracy of further results is developed.

3.1 CONSISTENCY OF RESULTS WITH PUBLISHED RESULTS

The first step in the verification process is to show that the programmed algorithm
is consistent with the algorithm developed in the literature. On page 222 of
“Electromagnetic Theory of Gratings,” Maystre et al present graphical results obtained
using the differential method for three different dielectric gratings™. (Results for the
zeroth order efficiencies of the grating in Fig. 6.104 in “Electromagnetic Theory of
Gratings” were also reported by Knop™ who used a different calculation method. Knop’s
results agree very closely with those reported by Maystre et al.) Using our diffraction
method programs, TE mode efficiencies for each of the gratings reported by Maystre et al
were calculated - these results are plotted in figures 3-1 to 3-3. Comparing our figures to
those of Maystre et al it can be seen that there is very close agreement. There are,
however, some small deviations in our plots that do not appear on theirs. For example,
the dips in the zeroth order efficiency of figure 3-1 at approximately 0.72um and 0.75um.
These small discrepancies could possibly be attributed to using a smaller wavelength

spacing for calculated points. Maystre et al and Knop did not indicate what wavelength
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spacing was used for their calculations so this hypothesis can not be verified. The only
significant difference between our results and the corresponding published results can be
found between wavelengths of 0.7um and 0.8um in the first diffracted order of the
grating plotted in figure 3-2. It can be seen that over this range the first order efficiency
in our plot rises from about 0.025 to 0.2 while Maystre et al’s corresponding plot stays

approximately constant at 0.025.
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Figure 3-1: TE mode efficiency curves of dielectric lamellar grating for comparison
with top graph of Fig. 6.104>) in “Electromagnetic Theory of Gratings”
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Figure 3-2: TE mode efficiency curves of dielectric lamellar grating for comparison
with bottom graph of Fig. 6.104 jn “Electromagnetic Theory of Gratings”
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To further verify the consistency of our programmed algorithm with that
presented in the literature a paper by Vincent was found containing numerical results for
a lamellar transmission grating obtained using the differential method*’. He used 19
terms in the Fourier series (Nmarix=19) but did not indicate how many steps he used for
numerical integration. Table 3-1 presents results calculated using 19 term Fourier series
and three different step sizes for numerical integration (Naseps = 50, 500, & 5060) along
with Vincent’s results. Looking at table 3-1 it can be seen that our results for this grating
agree very closely with those of Vincent, the best agreement occurring for Nyg.,s = 500

where all values agree to either 6 or 7 decimal places.

Table 3-1: Comparison of diffraction efficiencies calculated for
lamellar transmission grating pictured on right.

x_-o.sazsﬂ

0%
v.=3.881
— «
(hm] 0.2
Angle of Diffraction Efficiencies

Diffraction My calculated results Published
Order @) Nistepr=50 Nisiep=500 | Niorepy=5000 Results™”
To 0.000 0.2680423 0.2680288 0.2680285 0.2680287
o 39.257 0.0122900 0.0122915 0.0122915 0.0122915
to 0.000 0.1030229 0.1030530 0.1030519 0.1030528
8 9.384 0.1256445 0.1256183 0.1256187 0.1256183
t 19.032 0.0309303 0.0309360 0.0309361 0.0309360
t3 29.285 0.0495860 0.0495929 0.0495933 0.0495928
L 40.708 0.0516288 0.0516321 0.0516327 0.0516321
ts 54.612 0.0354150 0.0354155 0.0354160 0.0354155
ts 78.043 0.0089727 0.0089728 0.0089729 0.0089727

3.2 DETERMINING ACCURACY OF RESULTS

There are two variables in the algorithm that may be adjusted in order to change

the results for a grating with a given geometry. These variables are the number of

Fourier components, Nparic and the number of steps taken for numerical integration,
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Nhseps. A measure of the accuracy of results is obtained by varying Nmasric and/or Nageps
and comparing the different results.

Two measures of accuracy are used. First, the sum of the efficiencies for the
grating should be equal to 1. This condition is necessary but not sufficient to show that
the results are valid'®. If the sum of the efficiencies is not equal to 1 at least one of the
efficiencies must be incorrect because the system is not conserving energy. Sec-ondly we
look for convergence of results as Npurie and/or Npg.ps are increased. Looking at the
overall variation in the results as a function of Npnarir and Nageps, appropriate values of
each may be chosen.

After an appropriate choice of Nparix and Npseps our validity criterion demanded
only that the sum of efficiencies be within 10% of 1. The validity criterion was not
satisfied for grating orders higher than 25 for TE mode and 3 for TM mode. This
particular difficulty with the TM mode is inherent in the differential method?®. Failure to
satisfy the validity criterion also increases with grating depth, number of orders, and

. . . . 20.2
difference in refractive index values>%>

. While our validity criterion only required 10%
agreement, it should be noted that most results presented in this thesis agreed to a much

greater extent.

3.2.1 Dependency of accuracy on Njg.ps

The first variable examined was Niqeps. In order to reduce the calculation time,
the minimum value of Nnai. that included all real grating orders was used for this part of
the analysis. Grating efficiencies were calculated for echelle and TIR gratings using the

following combinations:
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e All calculable design orders (i.e. up to the highest order where the sum of the
efficiencies was still within 10% of 1).
e 13 different values of v, distributed between 1 and 3.6 (v, was kept constant at 1).
e 3 values of Nugeps - 50, 500, and 5000. (These numbers were selected after
experimenting with various values.)
Comparisons were then made between results from the same gratings but with different
values of Ng.ps used for calculation. The results for selected design orders are presented,
for the reader’s reference, in tables A-1 to A-8 of the Appendix. Based on the cost in
calculation time of increasing Npgeps and the small percentage difference (see tables)
between results calculated with Npgeps = 500 and 5000 it was decided that Nygeps = 500 is
a reasonable value to use for these gratings.
Typical plots of the relationship between N, and calculated efficiencies are
presented in figure 3-4. It can be seen that the retro-reflection efficiencies for the 10™
order TIR gratings are very stable between Njg.ps = 50 and Nageps = 5000. Using a larger

or smaller number of steps the results start to diverge.
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Figure 3-4: Dependence of results on number of numerical integration steps for 10"
order TIR grating (for vi=1.5, Nnariz=23; for v1=3.6, Nnariz=19)

3.2.2 Dependency of accuracy on Npatrix

The second variable examined was Npnurric.  Nigeps = 500 was used for all of this
part of the analysis since it was judged in the previous section to be a reasonable value
for the gratings in question. Grating efficiencies were calculated for the following
combinations of parameters:

e Design orders 1, 5, 10, 15, 20 (25 was about the maximum calculable order).

o 13 different values of v, distributed between 1 and 3.6 (v» was kept constant at 1).

o 7 values of Npugriz — 5, L1, 15, 21, 25, 31, 35 (These numbers were selected based on
the minimum matrix sizes and after experimenting with various values.)

In order to reduce calculation and analysis time comparisons of these results were done

only for the echelle grating. The geometry of the TIR grating is assumed to be close
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enough to that of the echelle grating that only one set of values needs to be reported.
Comparisons were made between results for the same gratings calculated using different
values of Nnarir. The comparisons are presented, for the reader’s reference, in tables A-9
to A-23. A plot of typical results is presented in figure 3-5 and the same plot with a
different scale in figure 3-6. Looking at the tables and graphs some generalizations can
be made. Using a matrix size less than the minimum size required to include ;111 orders
appears to introduce significant error in some of the efficiencies (even though the sum of
the efficiencies may still be within 10% of 1). The percentage difference between results
calculated for consecutive matrix sizes tends to decrease as the matrix size is increased
from the minimum size. This decrease continues only to a certain point where it starts to
increase again and quickly the sum of efficiencies becomes much larger than | and the
results are obviously no longer accurate. As the order of the grating is increased this
region of decreasing percentage differences becomes smaller and smaller until at the
largest calculable order, only the minimum matrix size satisfies the condition that the sum

of efficiencies be within 10% of 1.
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It was assumed that the ‘best’ result occurs when the percentage difference
between results calculated for consecutive matrix sizes is minimized. The reasoning
behind this is that as you increase the matrix size you are increasing the number of
Fourier coefficients and providing a better approximation of the actual grating shape. As
you increase Np,ric You also increase the number of evanescent orders and the size of the
matrix My which must be inverted. There is a large range of values in M, and -therefore
it becomes difficult to invert and the results start to be less reliable the larger it is. A
correlation was found between the ‘best’ results and the sum of the efficiencies. The
largest mairix size for which the sum of efficiencies is within .001% of 1 was found to
correspond to the ‘best’ matrix size for each of the orders that results were calculated for.
This is the criterion used for choosing what matrix size to use for the results presented in
this thesis.

The matrix size barely large enough to include all real orders was the minimum
matrix size used to obtain the results presented in this thesis. Results presented in the
following chapter were calculated using the largest matrix size for which the sum of
efficiencies is within .001% of 1. In cases where this criterion could not be met, the
minimum matrix size was used. Results are only presented for cases in which the sum of
efficiencies is within 10% of 1. An estimation of uncertainty is not provided for any of
the results. Tables presented in the Appendix may be used to estimate the calculation

uncertainty in a particular data point.
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4 RESULTS AND DISCUSSION

In this chapter, calculated diffraction efficiencies are presented for the echelle and
TIR gratings described earlier (see figure 1-3). The gratings’ responses are characterised
over a range of relevant optical materials. Comparisons are made between the two
gratings to test the concept of using total-internal reflection facets in grating design.
Comparisons are also made between values calculated using scalar wave theory and those
calculated using the differential method. Finally, theoretical results are compared with

some previously reported experimental results.

4.1 SCOPE OF STUDY

To simplify the geometry we restrict our study to an incoming plane wave
approaching at an angle of 45° with respect to the plane of the grating. The gratings are
assumed to be two-dimensional planar bulk-optic gratings. The gratings are operated in
the —-m™ order Littrow mount (i.e. retro-reflection corresponds to the -m™ reflected order,
for example see figure 2-2 for gratings in the -3 order Littrow mount) where m is referred
to as the “grating order.” Only results satisfying the validity criterion discussed in
chapter 3 are reported. Since very few of the results calculated for the TM mode satisfied
the validity criterion, only results for the TE mode are reported in this thesis.

Since current application of TIR gratings is for WDM components‘z'“ the
gratings were designed for a free-space wavelength, Ao=1550 nm. There is a
“transmission window” around 1550 nm where silica fibre exhibits its lowest loss™ so

most fibre optic telecommunications utilises light around this wavelength.
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In all cases discussed, the region below the grating is air, for which the refractive
index va=1. The region above the grating may be any of a number of optical materials.
Calculations were completed for values between v=1 (air) and v,=3.6 (GaAs). This

range includes SiOs (vi=1.45), SisNg (vi=2), Si (v1=3.5), and InP (v,=3.5) which are all

- . - . 2
materials commonly used in integrated opucsm"g.

4.2 THE SCALAR WAVE APPROXIMATION

The scalar wave approximation described in chapter 2 consists of two components
~ the Fresnel reflection component which varies with the refractive index above the
grating v, and the Fraunhofer diffraction component which varies with grating order m.
The Fraunhofer component is the same for TIR and echelle gratings while the Fresnel
component is different.

Figures 4-1 and 4-2 show the Fresnel reflection component as a function of v,.
This component was calculated using equation (2.4). Figures 4-3 and 4-4 show the
Fraunhofer diffraction component for retro-reflection for grating orders 1 to 30. This
component was calculated using the Fraunhofer diffraction portion of equation (2.9). As
indicated by equation (2.9), the scalar wave approximation of retro-reflection for a
particular order grating can be found by multiplying the appropriate curve in figure 4-1
by the appropriate value from figure 4-3 (or adding the appropriate decibel values from
figures 4-2 and 4-4). Looking at figures 4-3 and 4-4, it can be seen that the Fraunhofer
component’s effect is quite small, decreasing with increasing grating order. For grating
orders larger than 6 its effect is less than 10%.

As illustrated in figures 4-1 and 4-2, the scalar wave approximation predicts that

the retro-reflected efficiency for the TIR and echelle gratings will be zero for vi=1. This
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is the limiting case where the medium becomes homogeneous and the interface (and thus
the grating) vanishes. For the case v;=l it is clear that the incident light propagates
forward without being diffracted. This means that all light should be in the zeroth
transmitted order. As a check of our computer program, the limiting case of v;=1 was
calculated for all gratings reported in this thesis. In all cases, differential method and
scalar wave approximation results indicate that all the light ends up in the zeroth
transmitted order.

As illustrated in figures 4-1 and 4-2, the scalar wave approximation predicts that
the retro-reflected efficiency for the TIR gratings will start at zero for v =1, increase
slowly to the point where v;=1.3, then increase sharply between v;=1.3 and v;=1.45
where it will level off for further increases in v,. Since the angle of incidence on the
facets is 45° for the TIR grating we know that for v,;>1.414 the Fresnel reflection
coefficient will be equal to 1. As illustrated in figure 4-1, the scalar wave approximation
predicts that the retro-reflected efficiency for the echelle grating will increase
approximately linearly with increasing v,. This translates into the curved plot we see in
figure 4-2 when decibel units are used. Figures 4-3 and 4-4 show that the scalar wave
approximation predicts retro-reflected efficiencies will generally increase with increasing
grating order. It appears that the effect of increasing the order will be largest for smaller

orders.
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4.3 COMPARISON OF SCALAR WAVE APPROXIMATION AND
DIFFERENTIAL METHOD RESULTS FOR RETRO-REFLECTED
EFFICIENCIES

4.3.1 Retro-Reflected Efficiencies as a Function of Refractive Index

Figures 4-5 to 4-10 show the retro-reflected efficiencies as a function of
refractive index for both the echelle and TIR gratings. Differential method results are
presented along with the scalar wave approximations. Graphs for grating orders 1, 2, 5,
10, 15. and 20 are given.

As illustrated by the TIR grating curves in figures 4-5 to 4-10, there is a sharp
increase in the retro-reflection efficiency between v=1.3 and v;=1.45. This was
predicted by the scalar wave approximation as total internal reflection starts to occur in
this range. The 1%, 2", and 5™ order echelle gratings also show a sharp increase in this
region which is not predicted by the scalar wave approximation since the light strikes the
facets at normal incidence. According to grating theory, as the value of v, is increased,
there are fewer and fewer transmitted orders. With an angle of incidence of 45° to the
normal of the grating, two transmitted orders always disappear as v, is increased above
1.414. For a first order grating this means there are no longer any transmitted orders, all
light is reflected for vi>1.414 so it must go into either the retro-reflected order or zeroth
reflected order. As the order of the grating is increased there are more transmitted and
reflected orders so the loss of two transmitted orders becomes less significant. Perhaps
this is why the sharp increase is not visible at all on the plots for 10", 15®, and 20™ order
echelle gratings.

As illustrated in figure 4-5 the differential method results for the 1*' order TIR and

echelle gratings look very similar. Weak dependence of the efficiency on the groove
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shape has been observed for 1¥ order Littrow mount gratings with infinite conductivity®.
Perhaps this is because there are so few orders that the light may be diffracted into.

In figures 4-6 to 4-10 you can see the difference between the TIR and echelle
gratings increasing as the grating order is increased. For each of the grating orders

plotted, other than the 1%, it can be seen that the maximum difference between the TIR

and echelle gratings occurs between v|=1.45 and v;=1.75.
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Figure 4-5: Plot of differential method results along with scalar wave
approximations for retro-reflected efficiencies as a function of refractive index for
1¥ order echelle and TIR gratings
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Figures 4-11 and 4-12 summarize the retro-reflected efficiencies for the 1%, 2",
5™, 10", 15™, and 20" order TIR and echelle gratings plotted in figures 4-5 to 4-10.
Results from the differential method for each of these grating orders, along with the
Fresnel reflection component of the scalar wave approximation are plotted for the TIR
grating in figure 4-11 and for the echelle grating in figure 4-12.

Looking at the plots as a function of refractive index for the TIR grating in figure
4-11 it can be seen that there is qualitative agreement between the differential method and
scalar wave approximation for most grating orders plotted. There is an anomaly for the
differential method results for 53* and 10™ order gratings - they have an extra jog before
leveling off. The sharply increasing part of the jog in each of these cases appears to
correspond to the disappearance of two transmitted orders. There is, however, no

corresponding jump in retro-reflection efficiency every time transmitted orders disappear.
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The best agreement with the scalar wave approximation occurs for the 20" order grating
followed by the 15™ order grating. This might appear to indicate that agreement
improves with increasing grating order, however, this is not always the case, as [* and 2™
order gratings showed better agreement with the scalar wave approximation than the 5™
and 10™ order gratings. '

As illustrated in figure 4-12, which shows the same plots for the echelle grating,
there is again qualitative agreement between the differential method and scalar wave
approximation for most grating orders that are plotted. The differential method curve for
the 1* order grating does have a much sharper curve than the scalar wave approximation
curve and higher grating order curves. As previously discussed, the reason for this is the
sudden extinction of all transmitted orders. The 1% and 2™ order gratings’ differential
method results lie above the scalar wave approximation while higher plotted grating
orders lie below the scalar wave approximation. For the grating orders plotted on the

graph, it can easily be seen that agreement with the scalar wave approximation increases

as the grating order increases.
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4.3.2 Retro-Reflected Efficiencies as a Function of Grating Order

Figures 4-13 to 4-15 show plots of retro-reflected efficiencies as a function of
grating order for both the echelle and TIR gratings. Plots of the scalar wave
approximations as well as the differential method results are included on each of these
graphs. Graphs for refractive index values v,=1.45, 2.2, and 3.6 are given.

As illustrated in figures 4-13 to 4-14, for v;=1.45 and v,=2.2 grating orders higher
than 5, the retro-reflected efficiency of the TIR grating is on average increasing slightly
with grating order while that of the echelle grating is fairly constant. For v,=3.6 it can be
seen in figure 4-15 that the retro-reflected efficiency of the echelle grating is fairly
constant after 5 order, however, the retro-reflected efficiency of the TIR grating is only
consistently increasing after 10™ order. Figure 4-13 shows that when the grating order is
greater than six, a TIR grating with an index of refraction of 1.45 (Si0O») is 8-12 dB more
efficient than a similar echelle grating. The difference between the retro-reflected
efficiencies of the echelle and TIR gratings is smaller than predicted by the scalar wave

approximation.
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Figures 4-16 and 4-17 summarize the retro-reflected efficiencies for the v,=1.45,
2.2, and 3.6 TIR and echelle gratings plotted in figures 4-13 to 4-15. Differential method
results for each of these grating orders, along with the scalar wave approximation are
plotted for the TIR grating in figure 4-16 and for the echelle grating in figure 4-17. There
is only one scalar wave approximation curve for the TIR grating because all the values of
v plotted are greater than 1.414 so the Fresnel reflection coefficient is simply 1.

Figure 4-16 includes plots of retro-reflected efficiencies as a function of grating
order for the TIR grating. In general it appears that as the grating order is increased and
as the value of v, is increased there is better agreement between the differential method

and scalar wave approximation.
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Figure 4-17, which includes plots as a function of grating order for the echelle
grating, shows that above 5™ order there is excellent agreement between the differential

method and scalar wave approximation.
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To summarize figures 4-5 to 4-17, there is often qualitative agreement between
the differential method results and the scalar wave approximation, at least with the shape
of the curves. For the results reported here, agreement with the scalar wave
approximation generally improves with higher grating orders and higher refractive index
values. The scalar wave approximation is unable to predict anomalies such as those in
the 5™ and 10" order TIR gratings and in the 1% order echelle grating. The scalar wave
approximation does appear to be sufficient for predicting the improvement which total
internal reflection facets provide over the echelle grating, though it generally predicts a

greater difference between the two gratings than the differential method does.
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4.4 RESULTS FOR THE TIR GRATING

4.4.1 TIR Grating Efficiencies as a Function of Refractive Index

Figures 4-18 to 4-23 show plots of different efficiencies as a function of the
refractive index above the TIR grating. Each plot shows how the refractive index affects:
the retro-reflected efficiency, the total of all reflected efficiencies, and the total of all
transmitted efficiencies. Plots for grating orders 1, 2, 5, 10, 15, and 20 are presented.

In each of these plots it can be seen how the total reflected efficiencies and total
transmitted efficiencies are related. To satisfy the energy balance criterion the sum of all
diffracted efficiencies must be equal to 1. This means that as the sum of the reflected
efficiencies increases, the sum of the transmitted efficiencies must decrease and vice
versa.

In each of figures 4-18 to 4-23, it can be seen that as the refractive index is
increased above the limiting case v,=1, some of the light starts to end up in reflected
orders. There is a sharp increase in the amount of reflected light between v,=1.3 and
vi=1.45 for all grating orders as light starts to undergo total internal reflection at
vi>1.414. As v, is further increased there is somewhat of a leveling off of the total
reflected efficiencies, though this does not occur for all grating orders. It can be seen that
the retro-reflected efficiency curve tends to follow the same general shape as the total

reflected efficiencies curve.
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Figure 4-19: Plot of efficiencies as a function of refractive index for a 2" order TIR
grating
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Figure 4-20: Plot of efficiencies as a function of refractive index for a 5" order TIR
grating
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Figure 4-21: Plot of efficiencies as a function of refractive index for a 10'® order TIR
grating
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Figure 4-22: Plot of efficiencies as a function of refractive index for a 15" order TIR
grating
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Figure 4-23: Plot of efficiencies as a function of refractive index for a 20" order TIR
grating
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4.4.2 TIR Grating Efficiencies as a Function of Grating Order

Figures 4-24 to 4-26 show plots of efficiencies for TIR gratings as a function of
grating order. [Each plot shows how the grating order affects: the retro-reflected
efficiency, the total of all reflected efficiencies, and the total of all transmitted
efficiencies. Plots for refractive index values v,=1.45, 2.2, and 3.6 are presented..

Again, the shape of the retro-reflected efficiency curve roughly follows the shape
of the total reflected efficiencies curve for all three graphs, although the discrepancy
appears to be larger for the first few orders. For each of figures 4-24 to 4-26, these two
curves generally drop as the grating order is increased from 1 to about 4. Each curve has
a minimum total reflected (and retro-reflected) efficiency which occurs at m=5 for
vi=1.45, m=4 for v|=2.2, and m=3 for v,=3.6. As the order is further increased beyond
the minimum, the curves generally rise with a shallower pitch than the fall. The curves
for v{=2.2 have the most distinct minimum. The curves for v;=1.45 look the smoothest
of the three and do not rise back up as high as the other two curves. The retro-reflection
curve for v|=3.6 has a second dip around m=10 which none of the other reflection curves

have. We do not have a qualitative explanation for why these minimums occur.
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Figure 4-24: Plot of efficiencies as a function of grating order for v;=1.45 TIR

gratings
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Figure 4-26: Plot of efficiencies as a function of grating order for vi=3.6 TIR
gratings

4.5 RESULTS FOR THE ECHELLE GRATING

4.5.1 Echelle Grating Efficiencies as a Function of Refractive Index

Figures 4-27 to 4-32 show plots of different efficiencies as a function of the
refractive index above the echelle grating. Each plot shows how the refractive index
affects: the retro-reflected efficiency, the total of all reflected efficiencies, and the total of
all transmitted efficiencies. Plots for grating orders 1, 2, 5, 10, 15, and 20 are presented.

The plot for m=1 looks very similar to that for the TIR grating. The plot for m=2
is also similar to that for the TIR grating, although a smaller percentage of the light is
retro-reflected. For m=1, 2, and 5 there is a sharp increase in the total reflected
efficiencies curve between v,=1.3 and v,=1.45. This increase, as discussed previously,

corresponds to sudden loss of all transmitted orders.
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Looking at the plot for the 5™ order grating it can be seen that the shape of the

retro-reflected efficiency curve does not follow the shape of the total reflected

efficiencies curve. For grating orders larger than 5, it can be seen that the total reflected

efficiencies curve follows a more or less linearly increasing path as does the retro-

reflected efficiency curve.
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Figure 4-28: Plot of efficiencies as a function of refractive index for a 2™ order
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Figure 4-30: Plot of efficiencies as a function of refractive index for a 10" order
echelle grating
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Figure 4-31: Plot of efficiencies as a function of refractive index for a 15" order
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Figure 4-32: Plot of efficiencies as a function of refractive index for a 20" order
echelle grating.

4.5.2 Echelle Grating Efficiencies as a Function of Grating Order

Figures 4-33 to 4-35 show plots of efficiencies for echelle gratings as a function
of grating order. Each plot shows how the grating order affects: the retro-reflected
efficiency, the total of all reflected efficiencies, and the total of all transmitted
efficiencies. Plots for refractive index values v|=1.45, 2.2, and 3.6 are presented.

The basic shape of the total reflection efficiencies curve for these graphs has it
falling quite rapidly from unity for the first order grating to some value and then leveling
off as the grating order is further increased. It can be seen that as the value of v, is
increased the fall is more gradual and not as far. The smoothest curve occurs for v|=1.45.
The v;=2.2 grating curve has a small peak around m=6 while the v,=3.6 curve has 3

small peaks.
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It can be seen that the shape of the retro-reflected efficiency curve follows that of
the total reflected efficiencies curve quite closely for all graphs. The exceptions are the

peaks mentioned previously and the first few grating orders of the v;=3.6 plot.

efficiency
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Figure 4-33: Plot of efficiencies as a function of grating order for v;=1.45 echelle

gratings
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Figure 4-34: Plot of efficiencies as a function of grating order for v;=2.2 echelle
gratings
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4.6 GRATING EFFICIENCIES FOR DIFFERENT REFLECTED
ORDERS

4.6.1 TIR Grating Efficiencies as a Function of Reflected Order

Figures 4-36 to 4-39 illustrate how the reflected light is distributed among the
different reflected orders for TIR gratings. Included are plots for 5™ 10™, 15", and 20®
order gratings (1* and 2™ order gratings were excluded since there are so few"reﬂected
orders). Each graph shows the efficiencies for v,=1.45, 2.2, and 3.6 (except for the 20™
order plot where the validity criterion was not satisfied for v{=3.6 and it is replaced by
v;=3.0). The scalar wave approximation is also included in the plots. The scalar wave
approximation was calculated from equation (2.9) and interpolated for non-integer values
of n by evaluating the numerator at the appropriate angles. The scalar wave
approximation only has physical significance for integer values of n. The scalar wave
approximation is the same for each value of v, since they are in the range of total internal
reflection.

For all but one of these plots the highest peak is around the retro-reflected order.
This peak tends to be higher and wider for the v,=2.2 and v,=3.6 (or v;=3.0) curves than
for the v(=1.45 curve. The v|=1.45 curve tends to have a second peak just below the
zeroth reflected order which is nearly as large (or larger for the 5™ order grating) as the
peak around the retro-reflected order.

The scalar wave approximation predicts the highest peak will be at the retro-
reflected order. For diffraction orders close to the retro-reflected order, differential
method results show qualitative agreement with the scalar wave approximation. For

reflected orders close to the zeroth, differential method results predict substantially more
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diffracted optical power than the scalar wave approximation. Because of the power
diffracted to orders close to the zeroth order, the efficiency of the retro-diffracted order is
reduced from that predicted by the scalar wave approximation. The scalar wave
approximation predicts that the distribution of the optical power among the diffraction
orders is the same for all values of v,. The differential method indicates that the

distribution does depend on v.
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Figure 4-36: Plot of efficiencies along with scalar wave approximation as a function
of reflected order for a 5" order TIR grating
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Figure 4-37: Plot of efficiencies along with scalar wave approximation as a function
of reflected order for a 10" order TIR grating
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Figure 4-38: Plot of efficiencies along with scalar wave approximation as a function

of reflected order for a 15" order TIR grating
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Figure 4-39: Plot of efficiencies along with scalar wave approximation as a function
of reflected order for a 20" order TIR grating

4.6.2 Echelle Grating Efficiencies as a Function of Reflected Order

Figures 4-40 to 4-43 show how the reflected light is distributed among the
different reflected orders for echelle gratings. Included are plots for 5%, 10", 15™, and
20" order gratings (1* and 2™ order gratings were excluded since there are so few
reflected orders). Each graph shows the efficiencies for v|=1.45, 2.2, and 3.6. The scalar
wave approximation for v;=2.2 is also included in the plots. The scalar wave
approximation was calculated from equation (2.9) and interpolated for non-integer values
of n by evaluating the numerator at the appropriate angles. The scalar wave
approximation only has physical significance for integer values of n. The shape of the

plo.;ed scalar wave approximation does not change with v; but is 6.2 dB lower for

vi=1.45, and 3.5 dB higher for v,=3.6.
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For all but one of these plots the highest peak is around the retro-reflected order.
This peak tends to be higher and wider for the v;=2.2 and v,=3.6 (or v,=3.0) curves than
for the v,=1.45 curves. The v;=1.45 curve tends to have a second peak about halfway
between the zeroth and retro-reflected orders which is nearly as high as (or higher than
for the 5™ order grating) and wider than the peak around the retro-reflected order. For all
plots (except the v;=2.2, m=5 plot) the v,=2.2 and v=3.6 curves have a rninim'l..lm value
at approximately the same order as the second peak of the v,=1.45 curve and then rise as
they approach the highest reflected order.

The scalar wave approximation predicts the highest peak will be at the retro-
reflected order. For diffraction orders close to the retro-reflected order, differential
method results show qualitative agreement with the scalar wave approximation. The
scalar wave approximation shows poor agreement with the differential method results for
other diffraction orders. The scalar wave approximation predicts that the distribution of
the optical power among the diffraction orders will have the same shape for all values of

v;. The differential method indicates that the shape of the distribution does depend on v,.



Chapter 4 - Results And Discussion 83

0 T v ™ r Y T Y T

scalar wave aprox (v,=2.2)

10 S - v,=1.45 - 3

-15

n

adaa sl s

-20

-25 4

efficiency, e(dB)

-7 -6 -5 -4 -3 -2 -1 0
reflected order, n

-
N

Figure 4-40: Plot of efficiencies along with scalar wave approximation as a function
of reflected order for 5™ order echelle grating.
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Figure 4-41: Plot of efficiencies along with scalar wave approximation as a function
of reflected order for 10" order echelle grating.
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Figure 4-42: Plot of efficiencies along with scalar wave approximation as a function

of reflected order for 15" order echelle grating.
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Figure 4-43: Plot of efficiencies along with scalar wave approximation as a function
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4.7 WAVELENGTH DEPENDENCE OF RETRO-REFLECTED
EFFICIENCY

Figures 4-44 to 4-53 show the wavelength dependence of the retro-reflected”
efficiency for 15® and 20" order TIR and echelle gratings. Differential method results as
well as the scalar wave approximation (according to equation (2.8)) are plotted in each
graph. The gratings were designed for perfect retro-reflection at a wavelength of 1.550
pum and have refractive indices v,=1.45, 2.2 and 3.6 (v,=3.6 was not calculable for the
20" order grating). The —15™ reflected order is plotted for the 15% order gratings and the
~20"™ reflected order is plotted for the 20" order gratings.

It can be seen in figures 4-44 to 4-53 that the general shape of the wavelength
dependence consists of a large central lobe around the design wavelength with lower,
narrower side lobes somewhat symmetrically distributed around the central lobe. In all
plotted cases there is a slight shift (~<0.005-0.015 um) in the peak of the central lobe tc
the lower wavelength side of the design wavelength 1.550 um. This shift is seen in both
the differential method and the scalar wave plots.

The shape of the central lobes of the echelle gratings agrees closely with the
prediction from the scalar wave approximation. The shape of the side lobes agrees to
varying degrees with the shape predicted by the scalar wave approximation. The side
lobes appear to be shifted farther away from the central lobe than the scalar wave

approximation predicts.

* Here “retro-reflected” refers to the reflected order closest to the angle of incidence. When AzAq, perfect
retro-reflection is not possible uniess A=Aqo+pFSR where p=1, 2, 3, ...
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The shape of the central lobes of the TIR gratings agrees somewhat with the
prediction from the scalar wave approximation. The central lobes for the v,=1.45
gratings are more pointed than the scalar wave approximation. The side lobes for the TIR
gratings are more distorted than the side lobes of the echelle grating. Distortion is more
prevalent on the longer wavelength side. The position of the side lobes, when‘ distinct,
agree more closely with the scalar wave approximation for the TIR gratings than for the
echelle gratings. The side lobes for all gratings are not as symmetric as predicted by the

scalar wave approximation.
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Figure 4-44: Plot of differential method results along with scalar wave predictions of
the —20™ reflected order efficiencies as a function of wavelength for a 20" order,
vi1=1.45 TIR grating.
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Figure 4-45: Plot of differential method results along with scalar wave predictions of
the —20" reflected order efficiencies as a function of wavelength for a 20" order,
v1=1.45 echelle grating.
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Figure 4-46: Plot of differential method results along with scalar wave predictions of

the —20" reflected order efficiencies as a function of wavelength for a 20" order,
vi=2.2 TIR grating.
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Figure 4-47: Plot of differential method results along with scalar wave predictions of
the —20" reflected order efficiencies as a function of wavelength for a 20" order,
vi=2.2 echelle grating.
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Figure 4-48: Plot of differential method results along with scalar wave predictions of

the —15" reflected order efficiencies as a function of wavelength for a 15" order,
v1=1.45 TIR grating.

0
[T 20 Method of Calculation R,
S o Differential Method L
-104 o Scalar Wave Aprox. T T

e, s (dB)

15 16
wavelength, A (um)

Figure 4-49: Plot of differential method results along with scalar wave predictions of

the —15" reflected order efficiencies as a function of wavelength for a 15" order,
v1=1.45 echelle grating.
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Figure 4-50: Plot of differential method results along with scalar wave predictions of
the ~15™ reflected order efficiencies as a function of wavelength for a 15" order,
vi=2.2 TIR grating.
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Figure 4-51: Plot of differential method results along with scalar wave predictions of
the —15" reflected order efficiencies as a function of wavelength for a 15" order,
vi1=2.2 echelle grating.
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Figure 4-52: Plot of differential method results along with scalar wave predictions of
the —15"™ reflected order efficiencies as a function of wavelength for a 15" order,
vi1=3.6 TIR grating.
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Figure 4-53: Plot of differential method results along with scalar wave predictions of
the —15" reflected order efficiencies as a function of wavelength for a 15" order,
v1=3.6 echelle grating.
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4.8 COMPARISON WITH EXPERIMENTAL RESULTS

Sun and McGreer have designed and tested integrated concave gratings in the
Eagle configuration with facets equivalent to those of bulk optic TIR gratings'z‘l3 . They
achieved high diffraction efficiencies for 20™ order gratings without facet metalization.
Their results verify the principle of using total internal reflections to obtaip highly
efficient integrated optical gratings.

He et al'* have built integrated optics wavelength demultiplexers based on
concave gratings in the Eagle configuration utilizing facet configurations equivalent to
both the echelle and TIR gratings. They report that a 24™ order TIR grating with v,=3.18
produced 4 dB greater response than a similar 12 order echelle grating with v,=3.18.
Using the differential method we were able to calculate that a 20™ order bulk optic TIR
grating with v;=3.18 should theoretically produce 5.3 dB greater response than a 12
order bulk optic echelle grating with v;=3.18. We could not extend the calculations
higher than 20" order and still satisfy the validity criteria. Based on the stability of the
retro-reflection curves for the TIR grating after 5 order (see figures 4-14 and 4-15) we
do not expect that being able to extend the calculation to 24™ order would significantly
change the results. He, et al also report that their results indicate that loss from the TIR
grating without metalized facets is approximately equivalent to that from an echelle
grating with metalized facets, though with the advantage of having fewer production

steps'®.
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5 CONCLUSIONS AND RECOMMENDATIONS FOR
FUTURE WORK

5.1 CONCLUSIONS

Results presented in this thesis indicate that treatment with the full theory of
electromagnetic radiation validates the design principle of orienting grating facets to use
total internal reflection for grating orders between 5 and 25 provided that v,>1.414.
Using v;=1.45 (the index of refraction for silica glass), results indicate that a TIR grating
used in the —20" order Littrow mount (this is equivalent to one of the gratings used by
Sun and McGreer'?) is over 11 dB more efficient in TE mode than the corresponding
echelle grating.

Results indicate that the scalar wave approximation is often a reasonable
approximation for the retro-reflected efficiencies. For echelle gratings of order greater
than 5 and less than 25, the scalar wave approximation agrees with the differential
method to within 2 dB for most refractive indices. The scalar wave approximation is
qualitatively not as accurate for the TIR gratings as for the echelle gratings. The scalar
wave approximation generally predicts a greater difference between the TIR and echelle
gratings than the differential method does.

Based on the agreement between the differential method results and the scalar
wave approximation (which is polarization independent for v;>1.414) it is expected that
the TM mode results would also validate the design principle of the TIR grating.

The impressive results of Sun and McGreer help to verify experimentally the
principle of using TIR to obtain highly efficient integrated optical gratings. Qualitative

agreement between our theoretical results and experimental results reported by He et al
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give initial indications that parallels between Littrow mount planar gratings and Eagle

mount concave gratings are valid.

5.2 RECOMMENDATIONS FOR FUTURE WORK

Due to time constraints effort was concentrated on the most important objective
which was obtaining results for 20" order (this was the design order used by-Sun and
McGreer'®) gratings in the TE polarization. This goal was accomplished for the TE
polarization; however, TM polarization results were only obtained for up to 3™ order
gratings and were not considered reliable enough to present in this thesis. Effort could be
made to try and extend the TM mode results to orders greater than the third.

Very little research went into choosing the numerical method used for integration
of either of the polarizations. Perhaps a different numerical integration technique would
be able to extend the TE polarization or TM polarization results to higher orders.

Results presented in this thesis are only for theoretical bulk-optic gratings. It may
be useful to have a model to predict the output from integrated optic gratings. An attempt
could be made to try and model the integrated optics gratings.

Experimental verification of results presented in this thesis is somewhat limited at
this time. Further experimentation would verify more thoroughly the theoretical results
presented in this thesis and their application to predicting efficiencies for integrated optic
gratings.

All results presented in this thesis were calculated using the differential method.
Perhaps in order to extend results to higher order gratings, deeper gratings, or ones with a
larger refractive index difference a different approach would be more useful. One such

approach is the integral method. Dr. Sergey Sadov is currently working on this method.
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APPENDIX

Tables of comparisons between different values of Ny, and Npuri,. Cases where the sum of efficiencies
was not within 1% of 1 are not included in the results. Np.ic Was chosen to be the minimum value for
tables where different values of N,,, are compared. Ny, Was chosen to be 500 for tables where different
values of N are compared.

Table A-1: Average absolute percentage differences (%) between efficiencies for
selected echelle grating orders calculated with Nisieps=50 and Niugeps=500.

order of 1 5 10 15 20 25 1-25
grating

m=1 0.000 0.000 0.001 0.005 0.245 1.986 0.24
1.1 0.038 0.764 2522 12.232 22.665 59.174 15.79
1.3 0.043 0.529 0.742 4.844 17.124 42.980 9.89
14 0.045 0.432 0.531 6.602 10.389 91.330 10.40
1.45 0.041 0.145 0.816 7.023 17.387 75.739 10.07
L.5 0.037 0.113 1.140 6.271 16.983 7.32
1.6 0.033 0.212 1.363 5433 18.861 7.14
1.75 0.029 0.256 1.168 6.605 19.303 8.60
2.2 0.025 0.396 1.405 2439 18.671 9.67
2.5 0.024 0.095 1.168 2.761 20.741 6.96
3 0.022 0.073 0.925 2.319 36.205 3.86
35 0.022 0.197 1.030 3.892 78.446 6.47
3.6 0.022 0.224 0.632 5.067 70.847 6.00
average 0.029 0.264 1.034 5.038 26.759 54.242 7.88

Table A-2: Average absolute percentage differences (%) between efficiencies for
selected echelle grating orders calculated with Nisteps=500 and Nigeps=5000.

order of l 5 10 15 20 25 1-25
grating

n=1 0.00000 | 0.00000 | 0.00000 | 0.00000| 0.00001 0.00003 0.00001
1.1 0.00068 | 0.00023 | 0.00958 | 0.00201 | 0.07045 | 0.03433 0.01472
1.3 0.00040 { 0.00482 | 0.00153| 0.0137¢| 0.00574 | 4247614 1.77453
1.4 0.00038 | 0.00522 | 0.00097 | 0.03573 | 0.04973 0.37986
1.45 0.00039 | 0.00173 | 0.00061 0.02203 | 0.08652 1.01757
1.5 0.00035| 0.00117 | 0.00058 | 0.01453 | 0.43307 3.44395
1.6 0.00033 | 0.00187 | 0.00098 | 0.04749 1.59329 6.64046
1.75 0.00028 | 0.00253 { 0.00382 | 0.24402 | 10.03300 5.07154
2.2 0.00024 | 0.00372{ 0.00182| 0.64771 1.28998
2.5 0.00022 | 0.00103 | 0.00460| 0.55784 3.37366
3 0.00022 | 0.00076 | 0.00574 | 3.49814 6.67269
3.5 0.00020 | 0.00171 0.01427 | 7.28892 2.75876
3.6 0.00020 { 0.00193 | 0.00306 ] 6.69426 2.49028
average 0.00036 | 0.00205 | 0.00366 1.46664 1.53398 | 14.17017 2.68677
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Table A-3: Average absolute percentage differences (%) between efficiencies for
selected TIR grating orders calculated with Nisteps=50 and Nigieps=500.
order of 1 5 10 15 20 25 1-25
grating
n, =1 0.0000 0.0003 0.0012 0.0048 0.2453 1.9857 0.24
1.1 0.0199 0.2903 1.4012 8.5309 | 20.3102 42.2399 10.85
1.3 0.0119 0.1701 0.5824 3.0808 9.2121 19.5035 4.51
1.4 0.0062 0.1416 0.7102 2.8315 7.3771 14.7189 3.20
1.45 0.0108 0.1724 0.6336 2.8683 6.7831 17.2561 3.39
1.5 0.0117 0.1852 0.5420 2.1609 6.6787 33.0170 4.16
1.6 0.0124 0.1490 0.5190 2.6196 7.1887 3.30
1.75 0.0130 0.0995 0.6530 5.2259 9.9773 4.29
2.2 0.0133 0.1523 0.9459 3.4985 12.6976 5.75
2.5 0.0134 0.1307 0.8198 4.8597 14.3291 5.72
3 0.0134 0.1020 1.1374 3.6765 | 42.2141 4.21
3.5 0.0134 0.1298 0.9612 4.8601 68.7267 6.47
3.6 0.0134 0.1330 1.0069 4.3656 | 77.7530 6.22
Average 0.0118 0.1428 0.7626 3.7372 | 21.8071 21.4535 4.79

Table A-4: Average absolute percentage differences (%) between efficiencies for
selected TIR grating orders calculated with Nieps=500 and Npsteps=5000.

order of 1 5 10 15 20 25 1[-25
grating
n; =1 0.00000 0.00000 0.00000 0.00000 0.00001 0.00003 0.00001
1.1 0.00079 0.01780 0.00316 0.00256 0.00144 0.00248 0.01222
1.3 0.00009 0.00156 0.00383 0.00304 0.00107 10.18969 0.341857
1.4 0.00007 0.00144 0.00474 0.00308 0.02091 47.80935 1.94766
1.45 0.00011 0.00170 0.00506 0.00472 0.06884 0.08452
1.5 0.00011 0.00237 0.00495 0.00997 0.12825 0.54721
1.6 0.00013 0.00128 0.00345 0.01643 0.37494 1.93724
1.75 0.00013 0.00088 0.00204 0.12803 491915 4.93699
2.2 0.00014 0.00153 0.00481 0.55197 | 54.76891 4.04147
2.5 0.00012 0.00153 0.00683 1.49074 3.67277
3 0.00012 0.00091 0.0057! 6.02475 1.36317
3.5 0.00012 0.00125 0.00421 8.05192 2.93698
3.6 0.00012 0.00134 0.00459 8.59893 3.36759
Average 0.00016 0.00258 0.00410 1.91432 6.69817 14.50039 1.94357

Table A-5: Absolute percentage differences (%) between retro-reflected efficiencies

for selected echelle grating orders calculated with Nigteps=50 and Nigieps=500.

order of ] 5 10 15 20 25 1-25
grating
n;=1.1 0.02 0.24 0.12 2.01 5.92 2.57 2.05
1.3 0.04 0.07 0.19 1.68 4.94 6.93 1.68
1.4 0.06 0.22 0.22 2.81 2.86 7.30 1.61
1.45 0.05 0.15 0.33 2.67 3.67 1.00 1.22
1.5 0.05 0.02 0.38 2.29 3.23 1.23
1.6 0.04 0.11 0.17 1.61 1.39 .13
1.75 0.04 0.01 0.29 0.68 1.86 1.22
2.2 0.03 0.14 0.27 0.81 0.80 3.38
2.5 0.03 0.01 0.17 | 0.64 0.32 1.57
3 0.03 0.01 0.18 0.57 5.81 0.84
3.5 0.03 0.00 0.04 0.48 0.99 0.58
3.6 0.03 0.00 0.05 0.46 2.44 0.60
average 0.04 0.08 0.20 1.39 2.85 4.45 1.42
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Table A-6: Absolute percentage differences (%) between retro-reflected efficiencies
for selected echelle grating orders calculated with Nigeps=500 and Nisteps=5000.

order of 1 5 10 15 20 25 1-25
grating
n, =1.1 0.000000 | 0.000000 | 0.004466 | 0.000000 | 0.000000 | 0.000000 | 0.000682
1.3 0.000412 | 0.000000 | 0.000668 | 0.000000 | 0.001229 | 2.691664 | 0.110014
1.4 0.000525 | 0.002456 | 0.000367 | 0.000795 | 0.005092 0.027128
1.45 0.000501 | 0.001527 | 0.000342 | 0.002637 | 0.007872 0.011181
1.5 0.000445 | 0.000000 | 0.000000 | 0.000615 | 0.018949 0.212337
1.6 0.000419 | 0.001274 [ 0.000271 | 0.001683 | 0.104138 0.373308
1.75 0.000364 | 0.000000 | 0.000000 | 0.013609 | 0.878017 0.478420
2.2 0.000310 | 0.001192 | 0.000000 | 0.001162 “0.096997
2.5 0.000282 | 0.000286 | 0.000829 | 0.100591 0.402833
3 0.000283 | 0.000000 | 0.000587 | 0.119585 1.582606
3.5 0.000255 | 0.000085 | 0.000355 | 0.197259 0.060081
3.6 0.000255 | 0.000080 | 0.000038 | 0.199832 0.082635
average 0.000338 | 0.000575 | 0.000660 | 0.053147 | 0.145042 1.345832 | 0.286519

Table A-7: Absolute percentage differences (%) between retro-reflected efficiencies
for selected TIR grating orders calculated with Nuseps=50 and Nigteps=500.

order of 1 5 44] I5 20 25 1-25
rating
n,=1.1 0.0517 0.0519 0.7920 7.55 39.36 7.26 8.23
1.3 0.0311 0.0202 0.2332 1.15 1.09 4.05 0.92
1.4 0.0173 0.0262 0.0252 0.99 .40 2.30 0.39
1.45 0.0146 0.0455 0.1068 0.52 0.07 1.02 0.21
1.5 0.0153 0.0268 0.0266 0.49 0.71 5.55 0.57
1.6 0.0157 0.0075 0.0481 0.52 0.89 0.47
1.75 0.0158 0.0331 0.1790 0.26 1.34 0.40
2.2 0.0156 0.0398 0.1194 0.29 2.01 0.59
2.5 0.0155 0.0584 0.0328 0.53 0.47 0.35
3 0.0153 0.0099 0.0448 0.55 6.07 0.54
3.5 0.0152 0.0006 0.0010 0.64 9.11 0.81
3.6 0.0152 0.0017 0.0283 0.67 12.24 0.99
average 0.0199 0.0268 0.1364 1.18 6.23 4.04 1.21

Table A-8: Absolute percentage differences (%) between retro-reflected efficiencies

for selected TIR grating orders calculated with Nisteps=500 and Njsteps=5000

order of [ 5 10 I5 20 25 1-25
grating
n,=1.1 0.00000 0.00000 0.00000 0.00000 0.000 0.000 0.000
1.3 0.00036 0.00000 0.00210 0.00087 0.000 0.243 0.011
[.4 0.00022 0.00000 0.00023 0.00000 0.005 20.294 0.814
1.45 0.000t5 0.00038 0.00156 0.00009 0.006 0.014
1.5 0.00014 0.00026 0.00130 0.00061 0.026 0.014
1.6 0.00016 0.00000 0.00087 0.00172 0.052 0.090
1.75 0.000t5 0.00016 0.00050 0.00044 0.180 0.373
2.2 0.000t7 0.00043 0.00008 0.09302 7.233 0.388
2.5 0.00014 0.00061 0.00095 0.10890 0.566
3 0.000t4 0.00012 0.00088 0.28995 0.172
3.5 0.00014 0.00004 0.00055 0.49230 0.138
3.6 0.00014 0.00004 0.00051 0.57019 0.237
average 0.00016 0.00017 0.00079 0.12984 0.938 6.846 0.235
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Table A-9: Average absolute percentage differences between efficiencies calculated
with different matrix sizes (Nmarrix), for first order echelle grating with Np.ps=500.

Matrix | 3(min)-5 5-11 11-15 15-21 21-25 25-31 31-35
sizes
n =1 0.000000 0.000000 0.000000 0.000000 0.000000 0.00 0.00
1.1 0.007569 0.000000 0.000000 0.000000 0.000023 5.54
1.3 0.047468 0.000490 0.000117 0.000003 0.000576 6.52 178.07
1.4 0.078403 0.000772 0.000100 0.000006 0.004126 7.62 161.18
1.45 0.009641 0.002106 0.000022 0.000022 0.006090 9.24 113.62
1.5 0.062199 0.003040 0.000000 0.000028 0.003066 4.85
1.6 0.131871 0.004432 0.000022 0.000014 0.003417 5.39 99.00
1.75 0.204200 0.006046 0.000043 0.000014 0.004978 19.18°
2.2 0.330303 0.009263 0.000087 0.000030 0.005953
2.5 0.378139 0.010601 0.000109 0.000101
3 0.428049 0.012029 0.000131
3.5 0.458072 0.012931 0.000153
3.6 0.462620 0.013063 0.00013t
Average 0.199887 0.005752 0.000070 0.000022 0.003137 7.29 110.37

Table A-10: Absolute percentage differences between retro-reflected efficiencies
calculated with different matrix sizes (Nmaurix), for first order echelle grating with

Nhsup5=300.
Matrix 3{min)-3 5-11 [1-15 15-21 21-25 25-31 31-35
sizes
n; = 1
[.1 0.010011 0.000000 0.000000 0.000000 0.000000 18.45
[.3 0.061972 0.000412 0.000000 0.000000 0.000206 19.34 180.31
1.4 0.101046 0.000158 0.000053 0.000000 0.009511 12.85 165.07
1.45 0.012349 0.002698 0.000028 0.000028 0.009901 14.19 183.60
1.5 0.079691 0.003894 0.000000 0.000056 0.005118 6.67
1.6 0.169137 0.005682 0.000028 0.000028 0.003231 9.06 156.05
1.75 0.262316 0.007761 0.000056 0.000028 0.008180 25.48
2.2 0.425614 0.011921 0.000112 0.000028 0.009902
2.5 0.487828 0.013657 0.000140 0.000140
3 0.552889 0.015513 0.000169
3.5 0.592095 0.016686 0.000197
3.6 0.598038 0.016858 0.000169
Average 0.279415 0.007937 0.000079 0.000034 0.005731 15.15 171.26

Table A-11: Total efficiencies for different matrix sizes (Nmarrix), for first order
echelle grating with Nyeps=500.

Martrix 3(min) 11 15 21 25 31 35
sizes

n, =1 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000C00
1.1 1.000000 1.000000 1.000000 1.000000 1.000000 1.000001 0.996393 0.537302
1.3 1.000G00 1.000000 1.000000 1.000000 1.000000 1.00001 1 0.999881 0.942944
1.4 1.000000 1.000000 1.000000 1.000000 1.000000 0.999988 | 0.959872 1.092505
[.45 1.000000 1.000000 1.000000 1.000000 1.000000 0.999979 1.028043 0.973797
1.5 1.000000 1.000000 1.000000 1.000000 1.000000 0.999988 | 0.957595 1.440645
1.6 1.000000 1.000000 1.000000 1.000000 1.000000 1.000011 1.023152 1.012993
1.75 1.000000 1.000000 1.000000 1.000000 1.000000 1.000018 1.027022 | 0.000000
2.2 1.000000 1.000000 1.000000 1.000000 1.000000 0.999978 | 0.000000 | 0.000000
2.5 1.000000 1.000000 1.000000 1.000000 1.000000 0.000000 | 0.000000 | 0.000000
k} 1.000000 1.000000 1.000000 [.000000 | 0.000000 0.000000 | 0.000000 { 0.000000
3.5 1.000000 1.000000 1.000000 1.000000 | 0.000000 0.000000 1.525325 | 4.167400
3.6 1.000000 1.000000 1.000000 1.000000 | 0.000000 { 0.000000 | 0.655823 1.564048
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Table A-12: Average absolute percentage differences between efficiencies calculated
with different matrix sizes (Nmaurix), for fifth order echelle grating with Nyseps=500.

Matrix 5-9(min) 9(min)-11 11-15 15-21 21-25 25-31 31-35
sizes
ng =t 0.00 0.0000 0.0000 0.0000 0.0000 0.00 0.00
1.1 45.65 0.4591 0.1273 0.0549 0.2200 | 153.65
1.3 53.49 1.3422 0.2163 0.0429 0.5993
1.4 57.03 0.9436 0.2263 0.0450 0.3996
1.45 48.62 1.3289 0.2415 0.0348 0.6824
1.5 48.79 2.9614 0.4723 0.0666 0.5245
1.6 65.29 2.6657 0.4924 0.0760 0.3785
1.75 56.70 1.9629 0.4128 0.0712 0.4524
2.2 75.16 1.9615 0.4419 0.0811 0.7506
2.5 77.88 2.9697 0.5124 0.0704 [.1111
3 88.29 3.0095 0.5185 0.i035 0.6068
3.5 95.27 4.1327 0.6626 0.0882 2.5439
3.6 97.36 4.1179 0.6445 0.0655 4.1797
average 62.27 2.1427 0.3822 0.0616 0.9576 76.82 0.00

Table A-13: Absolute percentage differences between retro-reflected efficiencies
calculated with different matrix sizes (Npatrix), for fifth order echelle grating with

Nhsteps':SOO-
Matrix | 5-9(min) | 9(min)-11 11-15 15-21 21-25 25-31 31-35
sizes
n = I
1.1 0.1620 0.0710 0.0118 0.0829 21.44
1.3 0.9434 0.2878 0.0398 0.0384
1.4 0.3374 0.0162 0.0113 0.1240
1.45 0.5531 0.0668 0.0058 0.0152
1.5 4.7432 0.7672 0.0917 0.7861
1.6 7.0749 1.2265 0.1564 0.0497
1.75 3.5102 0.7247 0.1098 1.1256
2.2 0.0482 0.2245 0.0531 0.1621
2.5 0.1158 0.0272 0.0074 0.9718
3 0.2787 0.0463 0.0088 0.0481
3.5 0.2657 0.0590 0.0179 0.0912
3.6 0.2905 0.0530 0.0120 0.2551
average 1.5269 0.2975 0.0438 0.3125 21.44

Table A-14: Total efficiencies for different matrix sizes (Nmarrix), for fifth order
echelle grating with Npgeps=500.

Matrix 5 9(min) 11 15 21 25 31 35
sizes

n, =1 1.000000 | 1.000000 1.000000 1.000000 1.000000 | 1.000000 1.000000 1.000000
1.1 1.000000 | 1.000000 1.000000 1.000000 1.000000 | 1.000060 1.174131 1.366341
1.3 1.000000 { 1.000000 1.000000 1.000000 1.000001 | 1.000126 5.627084 1.503269
1.4 1.000000 | 1.000000 1.000000 1.000000 1.000004 | 0.998696 | 11.222791 0.965557
1.45 1.000000 | 1.000000 1.000000 1.000000 | 0.999998 | 1.000719 1.318001 1.024211
1.5 1.000000 | 1.000000 1.000000 1.000000 1.000005 | 1.000874 3.339687 1.081587
1.6 1.000000 | 1.000000 1.000000 1.000000 | 0.999998 | 1.000724 | 22.173488 1.257197
1.75 1.000000 | 1.000000 1.000000 1.000000 1.000005 | 0.998401 | 22.869961 1.212777
2.2 1.000000 | 1.000000 1.000000 1.000000 1.000013 | 0.996893 | 77.975491 0.992671
2.5 1.000000 | 1.000000 1.000000 1.000000 1.000015 | 0.998316 3.430840 1.635383
3 1.000000 | 1.000000 1.000000 1.000000 1.000009 | 1.001024 2.312066 1.128887
3.5 1.000000 | 1.000000 1.000000 1.000000 | 0.999995 | 1.000940 4.822470 1.517431
3.6 1.000000 }{ 1.000000 1.000000 1.000000 1.000013 | 0.991414 8.574895 1.942947
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Table A-15: Average absolute percentage differences between efficiencies calculated
with different matrix sizes (Nmarrix), for tenth order echelle grating with Npgeps=500.

Matrix 5-11 11-15(min) 15(min)-21 21-25 25-31 31-35
sizes
n, =1 0.000 0.000 0.000 0.000 0.000
1.1 73.721 5.858 0.092 87.746
1.3 111.340 15.999 0.352
1.4 95.429 18.177 0.446
1.45 69.145 14.747 0.451
1.5 79.914 14.795 0.485
1.6 73.715 14.591 1.058 .
1.75 83.600 9.824 1.372
2.2 82.656 12.606 0.819
2.5 87.750 10.621 1.507
3 91.345 11.522 2.706
3.5 86.121 10.044 3.910
3.6 70.492 7.955 3.752
Average 77.325 11.288 1.304 43.873 0.000

Table A-16: Absolute percentage differences between retro-reflected efficiencies
calculated with different matrix sizes (Nmatrix), for tenth order echelle grating with

Nhs(eps‘:sOO-
Matrix 5-11 11-t5(min) 15(min)-21 21-25 25-31 31-35
sizes
o, = {
1.1 5.554 0.004 0.027 58.940
1.3 19.125 5.924 0.040
1.4 27.502 4.169 0.199
1.45 6.471 8.740 0.234
1.5 17.291 8.915 0.475
1.6 20.929 6.069 0.428
1.75 10.935 2.851 0.372
2.2 15.046 1.532 0.001
2.5 6.605 1.526 0.011
3 5.004 1.798 0.567
3.5 4.301 1.979 0.158
3.6 7.371 1.793 0.180
Average 12.178 3.775 0.224 58.940

Table A-17: Total efficiencies for different matrix sizes (Nmawix), for tenth order

echelle grating with Nygeps=500.

Matrix 5 11 15(min) 21 25 35
sizes

n, =1 0.737210 | 1.000000 | 1.000000 | 1.000000 1.000000 1.0000 1.0000
1.1 0.737210 | 1.000000 | 1.000000 | 1.000000 | 0.999997 1.0555 | 451.5208
1.3 0.737210 | 1.000000 | 1.000000 | 1.000000 1.000006 6.7524 81.9537
1.4 0.737210 1.000000 1.000000 1.000000 1.000014 3.8861 5.6361
1.45 0.737210 | 1.000000 | 1.000000 | 1.000000 1.000023 7.8496 65.5008
1.5 0.737210 | 1.000000 | 1.000000 | 1.000000 1.000056 11.2183 30.6186
1.6 0.737210 | 1.000000 | 1.000000 }| 1.000000 | 0.999943 73.1646 86.1606
1.75 0.737210 | 1.000000 | 1.000000 | 1.000001 0.999949 | 454.9122 35.4484
2.2 0.737210 | 1.000000 | 1.000000 { 0.999997 1.001090 30.2208 25.1250
2.5 0.737210 1.000000 1.000000 { 0.999996 1.000411 33.8558 11.4577
3 0.737210 | 1.000000 | 1.000000 ] 0.999991 0.999055 32.0701 36.8897
3.5 0.737210 | 1.000000 | 1.000000 | 0.999999 1.002750 58.3363 94.5045
3.6 0.737210 | 1.000000 | 1.000000 | 1.000002 1.002164 12.6786 9.4261
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Table A-18: Average absolute percentage differences between efficiencies calculated
with different matrix sizes (Nmatrix), for fifteenth order echelle grating with

Nisteps=500.
Matrix 5-11 11-15 i5-21 21- 23(min)- 25-31 31-35
sizes 23(min) 25
n=1 0 0 0 0 0
1.1 99.59 71.54 16.02 8.23 13.98
1.3 122.66 117.77 20.53 6.89 44.63
1.4 151.50 8§9.40 35.55 8.75 63.68
1.45 140.51 81.61 34.14 6.10
1.5 165.18 104.08 31.05 6.26
1.6 159.89 92.56 22.31 7.47
1.75 156.90 112.75 20.48 7.48
2.2 123.52 81.20 18.94 6.30
2.5 128.84 90.76 18.62 6.35
3 132.80 131.51 27.64 9.36
3.5 117.70 108.07 30.58 10.00
3.6 116.94 112.41 30.87 10.78
Average 134.67 91.82 23.59 7.23 30.57 0

Table A-19: Absolute percentage differences between retro-reflected efficiencies
calculated with different matrix sizes (Natrix), for fifteenth order echelle grating
with Npgeps=500.

Matrix 5-11 11-15 [5-21 21- 23(min)- 25-31 31-35
sizes 23(min) 25
n = i
1.1 0.79 0.12 0.09
1.3 8.00 2.87 3.97
1.4 0.22 0.88 3.50
1.45 1.67 2.17
1.5 9.17 2.31
1.6 [1.06 1.45
1.75 9.69 0.85
2.2 4.69 0.60
2.5 1.38 0.57
3 0.02 0.85
3.5 0.29 0.56
3.6 0.26 0.32
Average 3.94 1.13 2.52

Table A-20: Total efficiencies for different matrix sizes (Nparix), for fifteenth order
echelle grating with Ngteps=500.

Matrix 5 I 15 21 23(min) 25 31 35
sizes

n =1 0.727607 0.826977 1.000000 1.000000 1.000000 | 1.000000 1.000000 1.000000
1.1 0.727607 0.826977 1.000000 1.000000 1.000000 | 1.000000 1.0015 25.3072
1.3 0.727607 | 0.826977 1.000000 1.000000 | 1.000000 | 1.000000 0.9993 4.5236
1.4 0.727607 | 0.826977 1.000000 1.000000 | 1.000000 | 0.999997 1.0112 2.5808
1.45 0.727607 | 0.826977 1.000000 1.000000 | 1.000000 | 1.000003 3,3239 11.3041
1.5 0.727607 | 0.826977 1.000000 1.000000 | 1.000000 | 1.000020 1.5002 37.9923
1.6 0.727607 | 0.826977 1.000000 1.000000 | 1.000001 | 1.000018 11.7925 72.3980
1.75 0.727607 0.826977 1.000000 1.000000 0.999996 | 1.000127 238.3846 60.8391
2.2 0.727607 0.826977 1.000000 1.000000 0.999985 | 0.999586 90.2666 17.9339
2.5 0.727607 | 0.826977 1.000000 1.000001 | 0.999983 | 0.998483 86.3062 18.7459
3 0.727607 | 0.826977 1.000000 | 0.999999 | 1.000112 | 1.001856 52.0966 13.7937
3.5 0.727607 | 0.826977 | 1.000000 1.000006 { 1.000163 | 1.000444 54.4595 10.2955
3.6 0.727607 | 0.826977 | 1.000000 | 0.999995 { 0.999852 | 1.002576 209.9843 128.7648




Appendix

104

Table A-21: Average absolute percentage differences between efficiencies calculated

with different matrix sizes (Nmatrix), for twentieth order echelle grating with

Nhsteps=500.
Matrix 5-11 1I-15 15-21 21.25 25- 29(mi 3t-35
sizes 29(min) n)-31

n;=1 0.00 0.00 0.00 0.00
1.1 105.12 64.05 90.27 21.99 6.77
1.3 120.39 128.19 73.75 28.44 37.46
1.4 153.18 104.23 63.33 34.49

1.45 147.71 74.67 83.87 22.32

1.5 153.86 77.49 86.91 19.51

1.6 149 .84 91.87 87.75 16.56

1.75 168.99 98.30 72.58 21.87

2.2 126.96 92.76 88.73

2.5 129.55 86.67 51.84
3 134.52 91.16 82.32

3.5 125.52 96.78 75.06

3.6 115.77 94.15 75.97

Average 135.95 84.64 71.72 20.65 14.74

Table A-22: Absolute percentage differences between retro-reflected efficiencies
calculated with different matrix sizes (Npawrix), for twentieth order echelle grating

with Nisteps=500.
Matrix 5-11 1i-15 15-21 21-25 25- 29({mi 31-35
sizes 29(min) n)-31
n, = 1
1.1 8.59 3.97 0.45 0.23
1.3 18.62 16.12 0.41 5.88
1.4 17.17 14.75 1.39
1.45 25.06 12.46 2.63
1.5 26.40 5.96 2.40
1.6 27.69 1.22 0.98
1.75 23.84 9.87 0.46
2.2 49.97 12.41
2.5 50.03 12.51
3 41.62 6.63
3.5 34.22 3.94
3.6 32.31 6.08
Average 29.63 8§.83 1.25 3.06

Table A-23: Total efficiencies for different matrix sizes (Nmauix), fOr twentieth order
echelle grating with Nygeps=300.

Matrix 5 Il 15 21 25 29(min) 31 35
sizes

n =1 0.714286 | 0.755929 0.813789 1.000000 1.000000 | 1.000000 1.000000 1.000000
1.1 0.714286 | 0.755929 0.813789 1.000000 1.000000 | 1.000000 1.000000 0.999982
1.3 0.714286 | 0.755929 0.813788 1.000000 1.000000 | 1.000000 0.999996 1.009893
1.4 0.714285 | 0.755929 0.813788 1.000000 1.000000 | 1.000000 1.000009 1.2648
[.45 0.714285 | 0.755929 0.813788 1.000000 1.000000 | 1.00000% 0.999949 6.1278
1.5 0.714285 | 0.755929 0.813788 1.000000 1.000000 | 1.000004 0.999708 15.5170
1.6 0.714285 | 0.755929 0.813788 1.000000 1.000000 | 1.000016 1.001094 10.4830
.75 0.714285 | 0.755929 0.813788 1.000000 1.000000 | 0.999967 1.002293 58.3012
2.2 0.714285 0.755929 0.813788 1.000000 1.000000 | [.002676 1.3451 14.2129
2.5 0.714285 0.755929 0.813788 1.000000 | 0.999998 | 0.987346 2.2073 448 8772
3 0.714285 0.755929 | 0.813788 1.000000 | 1.000007 | 1.001637 15.6952 52.3298
3.5 0.714285 0.755929 0.813788 1.000000 | 0.999972 | 1.098107 84.6883 103.0861
3.6 0.714285 { 0.755929 0.813788 1.000000 1.000022 | 1.016807 397.7129 229.6802
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