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ABSTRACT 

Integrated optical grating devices with facets designed to take advantage of total 

intemal reflection have recently been demonswted. To date. anaiysis of these total 

internal reflection (TIR) gratings has been Limited to an elementary ray optics approach. 

This thesis presents the fmt analysis of these gratings based on the full electromagnetic 

theory of iight. The vaiidity of designing diffraction gratings with total internal reflection 

facets is demonstrated. Results indicate that the efficiency of the retro-reflected order of 

2 0 ~  order gratings etched in silica gass is enhanced by more than 11 dB for the TE mode 

when the TIR grating design is used in place of a similar echelle grating without facet 

metalization. Cornparisons are made between results found using the full 

electromagnetic theory of light and simple scalar wave approximations. qualitative 

agreement is found for the retro-reflected order, particularly for grating orden 15-25. 
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Chapter I - Inrroduction 

1 INTRODUCTION 

1.1 BACKGROUND 

A diffraction grating consists of an array of repeating opticai elements whose 

effects, when summed together, act to alter (or "diff?act'*) incorning electromagnetic 

(EM) waves. The elements of the grating direct light of a particular wavelength into 

discrete orders. each order corresponding to a different direction of travel away from the 

grating. Diffraction gratings are pnmariiy used to produce spatial separation of light 

according to wavelengthl. This spatial separation is known as dispersion and occurs 

because diffraction varies depending on the wavelength of the light. Different 

wavelengths of light have maxima and minima of intensity at different angles. For 

example, an incident beam of white Iight is separated into its constituent colors much like 

what happens with a prism. This occurs for each of the diffracted orders so you will 

have, for the case of incident white light. a number of spectra of light diffracted off the 

grating. 

Grating elements c m  be arranpd in different ways. In unchirped planar 

diffraction gratings the elements (lines of the grating) are equally spaced dong a plane 

and are designed to diffract incident plane waves to out-going plane waves. In concave 

diffraction gratings the elements are placed dong a concave surface (such as a section of 

a sphere, cylinder, or toroid) and are designed to diffract incident diverging waves to out- 

going converging waves. Concave diffraction gratings provide the duai functions of 

focusing and diffraction. The configuration in which a grating is used is known as its 

mount. Planar gratings in the Littrow mount and concave gratings in the Eagle mount are 
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designed and arranged so that the diffiaction order of interest is the retro-reflection' order 

which is directed back towards the incornhg wave'. 

Diffraction gratings corne in a wide variety of shapes; some of the more cornrnon 

grating profiles are depicted in figure 1-1. Incident light would travel in the same plane 

as the page and the gratings would aciually extend perpendicular to the page. Diffraction 

gratings are ofien referred to by their method of production. The traditional rnethod of 

rnanufacturing gratings was to rule a senes of grooves on an optical surface3. Master 

ruied grarings are now produced using a diamond tooI, known as a ruiing engine, on a 

thin coating of metal that has been evaporated onto a planar or concave surface. Ruled 

gratings generally have a triangular profile. Interference gratings, or holographie gratings 

(this is actually a misnomer. as their production and use have nothing to do with 

holographyl), are produced by the photognphic recording of an interference field. 

Sinusoidal gratings are a good example of gratings that can be produced in this manner. 

Recently, the microfabrication techniques of integrated semiconductor devices have been 

used to produce gratings of many different shapes. 

In this thesis the term retro-refiection order is used. as this panicular order of diffnction is one of the 
'Yeflected" orders. The terni retro-diffraction order could also have k e n  used. Note that "reflected" orders 
and "transmitted" orders are not simply reflected or transmitted. Rather, they are diffracted off the grating. 
Reflected orders are simply diffracted to the same side of the grating as the incident light while transmitted 
orders are dificted to the opposite side of the gnting as the incident light. 
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Figure 1-1: Profiles of a) trianguiar, b) lamellar, and c) sinusoidal gratings 

1.2 APPLICATION 

Diffraction gratings have been commercially available for spectroscopic 

applications for over 50 years'. They have recently been applied in wavelength division 

multiplexing (WDM) and dense wavelength division multiplexing (DWDM) optical fiber 

communication systerns as demultiplexen and adàldrop multiplexers. In WDM systems 

several wavelengths of light are used to c a ry  signals dong a single fiber. Multiplexers 

splice the different signal wavelengths together at the input to the system and 

dernultiplexers split apart thc different signal wavelengths at the output of the system. 

Present systems commonly make use of demultiplexers constmcted with thin film 

interference filters" or fiber Bragg graûngss. The ever-increasing demand for bandwidth 

is pushing the industry to increase the number of channels a system can support. 

Filtering techniques quickly become expensive and difficult to manage as the number of 

channels uicreases6. Planar integrated circuits are more practical for a large number of 
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ch-cls. These devices include arrayed-waveguide gratings7 and integrated diffraction 

output 
waveguides 

strip 
waveguide 

Figure 1-2: Integrated concave diffraction grating demultiplexer 

Planar integrated circuits use optical waveguides to confine the direction in which 

light may travel. SIab waveguides dlow Light to travel freely in horizontal directions 

while confining it in the vertical direction. Strip waveguides channel light dong in one 

direction. Integrnted diffraction grating demultiplexers (see figure 1-2) consist of a stnp 

waveguide, which directs light towards the diffraction grating. Light cornes out of the 
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strip waveguide into a slab waveguide where it is allowed to spread out horizontaily on 

its way to the grating. Etching away part of the slab waveguide creates the grating. This 

dielectric grating is formed by the boundary between two dielectrics - the slab waveguide 

and air. The light diffracts off the grating and is focussed to an output svip waveguide. 

Depending on the wavelength of light, the angle of diffraction will Vary and the light will 

be directed towards a different output strip waveguide, 

1.3 STATEMENT OF PROBLEM 

Until recently, integrated optical diffraction gratings primarily used a groove 

shape copied from ruled gratings. More specificaily they used the concave grating 

equivalent of echelle gratings in the Littrow r n o ~ n t ~ + ~ .  Taking their name from the French 

word for staircase, echelle gratings consist of "steps" formed by two facets with a 90" 

angle between them. An echelle grating in the Littrow mount is oriented as in figure 

1-3a) so that each groove of the grating has one "iiluminated facet, which the incident 

Iight strikes at normal incidence, and one "shaded" facet, which the incident Iight does 

not strike. In an elementary view of the gratinp, the illuminated facet acts like a mirror 

reflecting the light back towards its point of ongin. Initially, integrated gratings were 

simply dielectric gratings formed by an interface between the slab waveguide and air8. 

Since the reflection coefficient for normal incidence on such an interface is low, this 

interface has been coated with rnetal in many applications to enhance the reflectance of 

the grating''. 
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Figure 1-3: Profiles of a) Echelle and b) Total Interna1 Reflection (TIR) gratings 

Using the echelle proove shape for integrated optical devices does not take 

advantage of the increased conîrol and flexibility which the microfabrication process 

affords. It is no longer necessary to use groove shapes that may be easily fabricated with 

a r u h g  engine. By changing the groove shape design. hish diffraction efficiency can be 

achieved without metal coatings. McGreer proposed a groove shape based on replacing 

the illuminated facet in an echelle grating with two facets designcd to exhibit total 

intemal reflection". This total internal reflection (TIR) gnting is shcwn in figure 1-3b). 

Taking an elementary approach to this grating, the light should strike each of the facets at 

an angle smaller than 90' as illustrated by the arrows in the figure. If the refractive index 

difference is large enough, light should undergo total internal reflection (Le. 1008 

reflection) off each facet. hence coating the gratings would no longer be necessary. 

Recendy devices based on Eagle mounted concave gratings designed to use total 

12-14 intemal reflection at the dielectridair interface have been demonstrated . Up until 

now, theoretical discussion of the reflection of light from these grooves has been limited 

to an elementary ray optics approach. This thesis presents the first rigorous treatment 

(using the full electromagnetic theory of light) of buk-optic gratings with grooves thar 

utilize total intemal reflection. Strictly speaking, the results are not valid for integrated 
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diffraction gratings because guided modes will difiact differently than plane waves. 

Nevertheless, validation of the principle of using total intemal reflection for a bulk-optic 

grating strengthens the qualitative argument that total intemal reflection can be used to 

enhance the efficiency of the retro-diffracted order for integrated gntings. 

1.4 OBJECTIVE 

The objective of this thesis is to characterize theoretical predictions of the 

diffraction from Littrow mounted total intemal refiection (TIR) gratings. Cornparisons 

will be made io the diffraction from echelle gratings in the Littrow mount. Given the 

probable applications (wavelength division multiplexing). the gratings will be designed 

for a central wavelength of 1.550 p and assessed for relevant optical materials. In order 

to simplify calculations, this study will be restncted to planar bulk-optic gratings 

perpendicular to the plane of incidence and with an angle of incidence of 45'. 

1.5 OUTLINE OF THESIS 

In chapter 2 modeling of diffraction p t i n g s  is discussed. Fint some basic grating 

theory is discussed, then a simple mode1 based on scaiar wave approximations is 

inuoduced followed by a discussion of full electromagnetic wave theory. The 

differential method for analyzing gratings is described in detail. 

In chapter 3 results from the differential method algorithm are compared with 

previously published results in order to venfy the algorith 's  correctness. A rnethod 

of detemining the accuracy of results produced by the algorithm is aiso developed. 

In chapter 4 results from the differential method aigorithm for Littrow mounted bulk- 

optic echelle and TIR gratings are presented and discussed. The responses of these 
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two types of gratings are characterized and compared with one another. Cornparisons 

are also made with results from the scalar wave approximation and with previously 

publistied experimen tai results. 

In chapter 5 conciusions and recommendations for future work are discussed. 



2 MODELING GRATINGS 

2.1 BASIC GRATING THEORY 

As mentioned in the introduction, a diffraction grating consists of an anay of 

repeating elements. For basic grating theory the nature of the elements is irrelevant; the 

peiiodicity of the elements is important Consider a plane wave incident on a planar 

grating of period d at an angle B ' ~ '  from the grating normal. Now consider two rays 

from that plane wave which strike adjacent elements of the grating as in figure 2- 1. LT we 

know the wavelength of the light. A it is now easy to determine at which directions the 

diffracted rays will add constructively based on the fact that a path Iength difference 

equal to an integer number of wavelengths will produce constructive interference. 

Constructive interference will occur at the angles given by the Bragg or grating equation, 

where n is an integer known as the diffraction order and the angles O!," and 0.) are 

defined dong with their sign conventions in figure 2-1. Equation (2.1) defines the 

reflected orden (which travel in positive y directions) and (2.2) defines the transrnitted 

orders (which travel in negative y directions). It should be noted that A is the wavelength 

of light in the medium in which the grating is placed. If the medium below the grating 

has a different refiactive index than the medium above the grating (2.2) should be 
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n A V I  repiaced with -=sine:' --sine""', where VI is the refractive index' above the 
d v2 

grating, vz is the refractive index below the grating, and A. is the wavelength of Iight in v2. 

negative 8: y4 positive 8;' 
I 
I 

I 
t 

negative en) positive €37 
Figure 2-1: Parallel rays incident on grating elernents 

The total number of diffncted orden depends on the angle of incidence as well as 

the ratio Ald (if the refractive index helow the p t i n g  is different from that above, the 

number of transmitted orders ais0 depends on the refractive index values). The zeroth 

reflected order corresponds to waves that are refiected directly off the grating (just as 

would happen with a planar minor). The zeroth transmitted order corresponds to waves 

that travel straight through the grating (just as would happen with no grating). It can be 

seen in equations (2.1) and (2.2) that changing the wavelength changes the angles of al1 

the orders except the zeroth (Le. dispersion affects ali but the zeroth reflected and zeroth 

v is often used in grating theory to represent refractive index rather than the traditional n in order to avoid 
corifusion with grating orders and subscripts of Fourier transforms 
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transmitted ordea). For higher orders it is easy to see that the dispersion will be larger; 

therefore, when using a grating to separate out different wavelengths of light, higher 

orden are often preferable. The free spectral range (FSR) of a grating is defined as the 

range over which the wavelength can be varied for a particular order without overlapping 

with different wavelengths of light from adjacent ordealS. The FSR will decrease with 

increasing order so there is a trade-off between FSR and dispersion. Since the zeroth 

order (reflected or transmitted) does not exhibit dispersion. it is of no use to have light 

diffracted into this order. If a grating is designed to operate in a particular order. it is 

desirable to have the majority of light diffracted into that order. 

To use a grating in the Littrow rnount it must be designed so that one of the orders 

is travelling in the opposite direction as the incoming wave (Le. O:'= - e ( ~ ~ )  for some 

value of n). For the retro-reflected order to correspond to the -m" reflected order, where 

m is defined as the "gating order," equation (2.1) implies that the grating spacing needs 

to satisfy 

rnA 
d =  2 sin p c )  v (2.3) 

where A is the wavelenpth of light in the medium above the grating. Figure 2-2 illustrates 

the reflected orders for echelle and TIR gratings in the -3 order Littrow mount. These 

are third order gratings. 
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incident 
light 

Figure 2-2: 3rd order a) Echelle and b) TIR gratings in the Littrow mount 

2.2.1 Ray Optics 

The simplest mode1 of the echelle and TIR gratings uses a ray optics approach. 

The law of reflection states diat for a ray of light incident on the boundary between two 

dielectrics, the angle of incidence equds the angle of reflection ( B i  = 8,). The law of 

refraction (Snell's law) states that V, sin 0, = V, sin 8, . These angles and indices of 

refraction are defined in figure 2-3. 

Figure 2-3: Geometry for Snell's Law 

Rays strike facecets of the echelle grating at normal incidence ( Bi = O ). Using 

Snell's law, a portion of the light is transmitted straight through as if there were no 

boundary (8, = 0 )  and using the law of reflection a portion of the light is reflected 
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directly back the way it came (0, = 0). Rays strike the boundaries of the TIR grating 

twice and according to the law of refiection end up travelling back in the retro-reflected 

direction. Using Snell's law we can calculate the angles of the transmitted rays from 

each of the two boundaries and we notice that these angles depend on the ratio of the nuo 

refractive indices. Looking at Snell's law it can be seen that if the ratio between the 

indices of refraction is large enough (Le. v, sinBi/v, > 1) the transmitted ray does not 

exist and ai1 light is reflected. This condition is known as total interna1 reflection. If the 

dielectric below the grating is assumed to be air (v2=l) and we assume an angle of 

incidence of 45', then the condition for totd intemal reflection is vp1 .414  The ray 

optics approach tells us what is required for total intemal reflection but tells us nothing 

about the reflectance in other cases. 

2.2.2 The Fresnel Equations 

Taking the approximation a little funher, we c m  use the Fresnel equations to 

determine more accurately just how much light is reflected or transmitted at each 

boundary. Although the Fresnel equations are denved from electromagnetic optics of 

plane waves they are easily calculated and make for a quick first approximation for the 

gratings. The Fresnel equations are polarization dependent. When the cornponent of the 

elecuic field perpendicular to the direction of travel is parallel to the boundary between 

the two dielectrics the light is in the TE (transverse elecuic) polarization. When the 

component of the magnetic field perpendicular to the direction of travel is parallel to the 

boundary between the two dielectrics the light is in the TM (transverse magnetic) 

polarization. The portion of the light intensity reflected at a boundary between two 

dielectrics is given b y the Fresnel equations 16: 
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V I  cose, - v 2  c0se2 
R = l  

V I  cos0, +v, cose, ii , for TE polarization and 

v,  cose, - v 2  cos8, 
R = l-r. v,   COS^, +v, cose, for N polaïzation 

where cos O2 = and Bi=angIe of incidence (Bi). 

For the echelle grating, 8 ,=O0 and R is polarization independent 

For the TIR grating when 8i=350 as long as vl> 1.414 (this is the total interna1 reflection 

condition) R is again polarization independent and equal to 1. 

2.2.3 Fraunhofer Diffraction 

The approximations so far have taken into account reflection off only one grating 

element. The next step in furthering the mode1 is to take into account the wave nature of 

light and deterrnine the interference pattem for waves reflected off of al1 the elements. 

Two-dimensional Fraunhofer diffraction c m  be used to approximate the interference 

between the light reflected off of each element. For the echelle grating the approximation 

is obvious - we can treat each of the illuminated facets as a single slit ernitting light, 

ignoring the diffraction effects of the shaded facets. For the TIR grating. tracing the path 

of rays reflecting off of the two facets, reflected rays are in phase at the sarne position as 

the illuminared echelle facet would be. So the Fraunhofer diffraction pattem for the 

echelle and TIR gratings will be idenrical. It tums out that since adjacent facets differ by 

an integer multiple of wavelen,@s, we may treat the sum of reflections off of ail the 
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facets as multiple slit diffraction with no spaces between the sliü which is a common 

problem in optics. The solution takes the form" 

1(8) = 1, sinc' 'sin e , (" P 
where 0 is the angle measured frorn the direction the dits (facets) are facing, D is the 

width of the slits (facets), and kl is the wavevector, k, = v ,  (we use & for the free- 

space wavelength of the light). We c m  now make the approximation that the relative 

intensity of light diffracted into each of the orden is given by the value from (2.7) 

evaluated at the angle of that particular order. 

Our full scalar wave approximation for the reflected orders will be the product of 

the reflectance R and the relative intensity of Iight diffracted into that order, which can be 

calculated with Fraunhofer diffraction theory. The portion of light diffracted into the n" 

reflected order is known as the reflected efficiency, e,  and will be given by 

where LIl includes al1 reflected orden. 0: is the angle of the n" reflected order measured 

from the normal to the facets, and sinc 0 = sin 01 0 .  For a grating in the -m order Littrow 

mount with an angle of incidence of Mo we c m  use (2.3) to show that for Iight with a free 

space wavelength to exactly retro-reflect the grating spacing must be such that 

D = rn&/2vI . For this specific case we c m  then wnte (2.8) as 

sinc2 (ma sin(4s0 - 0:')) 
e, = R 

C s i n c Z ( m ~  sin(4s0 - eil) )) ' 
l€U, 
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2.3 ELECTROMAGNETIC -0RY OF GRATINGS 

The scalar wave approximation does not ensure that the boundary conditions are 

satisfied on the shaded facets and neglects the effect that the shaded facets have on the 

diffraction of the light. The effect of the shaded facets may be viewed as introducing a 

new source of elecîromagnetic radiation. The magnitude and phase of this source would 

then be determined by requirements of the boundary matching conditions. This view 

effectively illustrates the physicrù nature of the corrections to the simple model. but does 

not lead to a practical method for calculating the diffracted waves. To accurately take 

into account the effects of the shaded facets, we turn to the full electromagnetic theory of 

gratings. 

2.3-1 Notation 

Vectors will be represented by bold charactea. for example u. A unit vector will 

be indicated with a hat, like this û. Throughout this discussion. we will be working in a 

rectanguhr coordinate system so we denote three unit vectors in the directions of the 

primary axes as X. 9 .  2 .  O represents the ongin (A. y=O. z=0) and r represents a 

vector from O to some point within the coordinate system. 

In this discussion we only consider monochromatic electromagnetic fields of 

angular frequency wso their time dependence can be represented by exp( - io t ) .  

Consequently. any vector function a(r,r) can be represented by its associated cornplex 

vector function A@), where 

a(r, r )  = ~ e ( ~ ( r )  exp(-iun)). (2.10) 

We will be making use of the vector differentiai operator, or del operator, V 

which is defined as 
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The dei operator defines the following common operations:" 

The gradiant of a scalar C = VC . 

The divergence of a vector A = V - A . 

ThecurlofavectorA = V x A .  

2.3.2 Maxwell's Equations 

In any medium where the dielectric pennittivity E(r) and the rnagnetic 

permeability p(r) are continuous the time-harmonic Maxwell equations are given byt9 

V x E = i w B ,  (2.12) 

V X H =  J - i w D ,  (2.13) 

V . D = p ,  (2.14) 

V . B = O ,  (2.15) 

where E(r) and D(r) represent the electric field. B(r) and H(r) represent the magretic 

field, p(r) is the charge density, and J(r) the current density. 

The following relationships may be used to eliminate D and B from Maxwell's equations: 

D=EE (2.16) 

B=W. (2.17) 

As we will only deal with dielectric gratings, E will have only real values and the 

permeability p will be equal to that of vacuum, A. 
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2.3.3 The Helmholtz Equation 

Consider a region of constant E which has neither charge nor cumnt (@, J=0). 

Substituting MH for B and taking the curl of both sides of (2.12) gives 

V x V x E = i o p 0 V x H .  

Applying the vector identity V x V x A = V(V . A)- V'A to the lefi hand side, 

substituting from (2.13) into the right hand side and replacing D with EE gives 

~ ( 0  - E) - V'E = iwp,  (-ici& j . 

Frorn (2.14) and (2.16) (V -E)  must be equal to zero leaving us with the Helmholtz 

equation 

w here 

Staning from (2.13) and following sirnilar steps, it can be shown that H must also satisfy 

the Helmholtz equation 

In a dielectric E, p=h, and o are al1 real and positive so we c m  write 

Since the refractive index v for a dielecvic may be defined ad6 

we can write 



w here 

would chamcterize the same wave in vacuum. 

A simple solution of the Helmholtz equation is the plane wave 

where û is a unit vector in any direction, and provided 

Looking at (2.25) û must be in the direction that the wave is travelling and A must be the 

wavelength in the medium. Notice that if r is in direction ii, increasing the value of r 

by A makes E progress through a full cycle. Combining (2.23, 2.26) we can relate the 

wavelength in the medium A and the free space wavelength &. 

2.3.4 Boundary Conditions 

Wherever there is a discontinuity in the medium, the electric and magnetic fields 

must satisfy certain boundary conditions. Define fiZ, as a unit vector normal to the 

boundary between two continuous regions pointing from region 2 to region 1. Define the 

field A, as the field A evaiuated in region j at a point approaching the point where a 

vector in the direction of fi2, crosses the boundary between regions 2 and 1. We can then 

write the boundary conditions as1' 

fi,, X(E, - E , ) = o ,  



fi,, x (H, -a2)= J, ,  (2.29) 

- D Z ) =  P,.  (2-30) 

fi2, .(& - B 2 ) = 0 .  (2.3 1) 

where Js is the surface current density and p, is the surface charge density. For a 

dielectnc gnting Jr and p, will both be equal to zero. 

23.5 General Dielectric Grating 

Figure 21: General dielectric grating 

A general dielectnc grating is shown in figure 2 4 .  The grating boundary is 

defined by the surface y=f(x) which is infinite and periodic in the x direction with period 

d. The grating is unchanging in the z direction. f(s) is piecewise continuous and lies 

between the planes y=O and y=a. The grating is composed of two different dielectric 

regions with refractive indices VI above f(.r) and V? below f(x). 

Assume we have a plane wave incident in the ,-=O plane from above the dielectric 

(inc)- grating at an angle 8'"" as shown in figure 2-4. The incident wave vector k -kl û (fi 



indicates the direction the wave is travelling) has components in the x and y directions, 

represented by a and -p respectively, where 

a = k ,  sin B ' ~ '  and (2-32) 

/3 = ki COS B'hc' . (2.33) 

Assume that the incoming wave is in one of two fundamental modes of 

polarization. transverse elecvic (TE) or transverse magnetic (TM). In TE polarization 

(also known as P polarization) the component of the electric field perpendicular to the 

direction of travei (Le. the transverse electric field) points in a direction along the 

grooves of the grating. In TM polarization (also known as S polarization) the transverse 

magnetic field points in a direction dong the grooves of the grating. In order to treat the 

two poiarizations simultaneously we introduce a new scalar function u(.r,y) which 

represents E, in TE polarization and Hz in TM polarization. A different Helmholtz 

equation must be satisfied in rach region: 

~ ' u + k , ' u = ~ ,  ify>f(x) (2.34) 

V' u+ k12 u = O ,  if y < f(x). (2.35) 

Now we cm determine boundary conditions for the generai dielectnc grating. 

First from (2.28), taking the limit as you approach f(x) from either side of the boundary 

along a path normal to f(x) leads to the result for TE mode that 

u, (x, f(.r)) = U (x, f(x)) . 

Since J4, (2.29) gives the sarne result for TM mode which leads to the conclusion that 

u is continuous for both polarizations. 

From (3.12) and (2.17) we have for TE mode 

V X ( U ~ )  =iupH, 
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which gives us 

Using the identity V x A + V x B  =Vx(A+B)wecanwri te  

Substituting this into (3.29) and recalling that J4 

Using the identity A x (B x C )  = B(A - C) - C(A B) gives 

Taking dldn to be the derivative with respect to the direction of the normal, fi,, we get 

Since p,=pz=h for dielectrïcs, (2.36) reduces to 

Using (3.16) and (2.13) and following the same process for the corresponding equations 

in TM mode leads to the result 

The boundary conditions for a dielectric grating may be summarized by saying 

u is continuous for both polarizations, 
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du/& is continuous for TE polarization, 

g'du/dn is continuous for TM polarization. 

2.3.6 Rayleigh Expansions 

The incoming plane wave is given by 

dinC) (x, y) = exp(i(m - /?")). (239) 

The total field above the grating will be the sum of the incident and reflected fields, 

= U ( ~ ~ ~ +  U t r ~ ~ ~  , )..>f(x), (2.30) 

while the total field below the grating will be simply the transmitted field. 

U=U(-) , y<f(-r). (2 -4 1 ) 

We now introduce a radiation condition based on well known experimentd 

resultslq - that the reflected and transmitted fields each be bounded as l y l  approaches 

infinity and that they be descnbed by a superposition of plane waves. The problem then 

is to find a fu~iction that satisfies the Helmholtz equation, the boundary conditions and 

the radiation condition. We assume the existence and uniqueness of this solution. 

From (2.39) the incident wave has the property 

u'"" (X + nd ,  y )  = u'"" (x, y) exp(imd) , (2.42) 

where n is any integer. n i e  boundary condition requiring continuity of u can be stated as 

u(kc) (x, f(x)) = u trnuu) (x, f(x)) - u (r f l )  (x, f(x)) . (2.43) 

Restating this boundary condition at x+nd, substituting fiom (2.42), and rearranging gives 

u (") (x, f(x)) = u '*""' ( X  + nd. f(x)) exp(-imd) 

- drefl' ( X  + nd, f(x)) exp(-imd) 
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This irnpiies that the product of the reflected or transmitted waves and the factor 

exp(-iox) is a periodic function of period d. Recob-g that from (2.42) the incident 

wave must aiso meet this condition we can introduce the new periodic function 

V(X, y )  = u(x, y) exp(-im) . (2.45) 

Because of this relationship u is known as a pseudo-periodic functionlg. Since u must 

satisQ the Helmholtz equation and the radiation condition then v must also satisfy the 

Helmholtz equation and radiation condition. 

We can represent v(x,y) using a Fourier expansion in x. Substitution into (2.45) 

gives the result 

where 

2x 
K =  and 

d 

a, = k, sin 0'"" + nK . 

Let a be the maximum value of f(.r). If y>a, u(x.y) must verify the Helmholtz equation 

(2.34) for any x. Substituting (2.46) into (2.34) we c m  write 

implying that, for any value of the integer n 

If we define LIl as the set of integers for which (k,' -an2) is positive and define 
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~ 3 "  = i(a, ' - k l 2 P  i f n ~ ~ , ,  

where i 2  = -1 . then the general solution of (2.50) is 

v (y)  = A,!" exp(-iPil) y) + B:' exp(iPil) y )  for y>=. (2.53) 

Below y=O the same equations apply. except of course replacing ki with k2. Define U2 as 

the set of inregers for which (kZ2 -ant) is positive and define 

then the general solution of the new differentid equation corresponding to (2.50) is 

vn ( y )  = A:" e ~ ~ ( - i f i : " ~ )  + B:" exp(iPL3 y )  for y<O. (2.5 6)  

Expansions of the type given in (2.53) and (2.56) are known as Rayleigh expansions as 

they appear to have been introduced by ~ a ~ i e i ~ h ' ~ .  Combining these Rayleigh 

expansions with (2.46) gives the following results for the transverse field of interest: 

.- - 

U(X. y) = A:') exp(ia,x - ip,!" Y) + B:" exp(ian x + i&(" y )  for y>=, (2.57) 

u(.r. y) = A:" exp(icrnx - ip:" y )  + B:~' exp(ia,x + iPn" y) for y<0.(2.58) 

Looking at these equations it c m  be seen that if an A, or B. coefficient's corresponding P,, 

value is real, the coefficient represents a propagating plane wave while if pn is imaginary 

the coefficient represents an exponentially damped or exponentially growing wave 

traveling dong the grating. We are only concerned with the propagating waves at this 

point so the following discussion will only consider those cases. Since P. must then be 

positive, each of the An coefficients represent downward propagating plane waves while 
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the B, coefficients represent upward propagating plane waves (as far as the y coordinate 

is concemed). If the incident wave is assumed to corne from above the grating then A." 

coefficients represent incoming plane waves, B:" coefficients represent plane waves 

reflected off the grating, while the A:" coefficients represent transmitted plane waves. 

The B:" coefficients would represent waves propagating toward the grating from below 

so they must al1 equd zero in this case. The angles at which these plane waves are 

travelling can be determined from 

en.) = sin-' (-) , 
k 1 

- 

where the angles of incident waves 8"' , reflected waves Cl'," , and transmitted waves 

8y'are defined as shown in figure 2-5. As one would expect, the angles calculated using 

equations (2.60) and (2.6 1) are the sarne as those calculated using equation (2.1) and the 

modified version of (2.2) which takes into account the different refractive indices. 
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Figure 2-5: Illustration of angles of diffraction from a dielectric grating 

Equarion (2.59) introduces the possibility of having more than one incident wave, 

or an incident wave at an angle other than 8"' (€Irc' is equal to Our initial definition of 

the angle of incidence, 9'""). For now, assume there is ody  one incorning plane wave 

and it is at the angle O r ' .  

2.3.7 Calculating Efficiencies 

In the study of gratings it is useful to detemine how much of the incident energy 

goes into each of the reflected and transrnitted orders. Consider the situation in Figure 

2-4 where we have one plane wave incident from above the dielectric grating. The A:') 

coefficients represent the incoming waves, so only one will have a non-zero value. For 

calculation purposes assume the incoming wave has a magnitude of 1. The B:" 

coefficients represent the reflected plane waves while the A:" coefficients represent 
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transmitted waves. The B? coefficients represent waves propagating toward the grating 

fiom below so they must al1 equal zero. We can now wnte 

Define the efficiency e, of the n" reflected wave as the ratio of its flux density 

riirougn the piane FU ro [ne fiux aensity of the incident piane wave through the same 

plane. Sirnilarly. define the efficiency e,  of the n" tmsmitted wave as the ratio of its 

flux density through the plane y=O to the flux density of the incident plane wave through 

the plane F a .  The intensity of a plane wave in a dielectric is given by 16 

Applying this to equations (2.67) and (2.63), recognizing that the component of the wave 

vector normal to the plane is the one which contnbutes to the flux density through the 

plane, it can easily be shown that if B'"~' is the angle of incidence the various reflected 

eficiencies are given by 

2  COS^!," 
e ,  = IB;"~ COS 0 'inc' 

for n e  L I , ,  

while the transmitted efficiencies are given by 

2 cose'," v z  
- for n E LI2 (TE polarization), 

cose '~"  V I  

2  COS^. V, 
- for n e  LI2 (TM polarization). 

cos e'"" v, 
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Calculation of the B." and A:~' coefficients is thus sufficient to determine the 

efficiencies for a dielectric gating- Note that the energy balance criterionLg requires that 

the sum of al1 reflected and transmitted efficiencies equai unity. This criterion simply 

implies that the total enegy  of the reflected and transmitted waves must be equivalent to 

the energy of the incident wave. 

2.3.8 Propagation in the Grating Region 

Consi~er the T E  moàe. -We can replace the two Heimholtz equations (2.34. 2.35) 

with a single one 

V ' ~ + k ' ( x , ~ ) u = ~ ,  

where u is the z component of E and 

Since u is a pseudo-penodic function. we cm Say that (2.68) is vaiid in the sense of 

distributions? This is a statement arising out of the distribution theory. Distribution 

theory describes the relationships between functionals rather than vector functions. 

When applying distribution theory the operations curl, divergence, gradient and 

Laplacian need to be redefined. These new definitions automatically take into account 

the boundary conditions of Maxwell's equations so boundary conditions may be 

ignoredlg. Since u and dddn are continuous for TE mode, the Laplacian in the sense of 

distributions is actually going to be the sarne as  the standard ~ a ~ l a c i a n ' ~ .  This means we 

can ignore the boundary conditions and rewrite the Helmholtz equation (2.68) using the 
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senes expansion of u (2.46) and 

30 

replacing the periodic function g(xVy) by its Fourier 

1 C v,,, exp(imKrc) C (k ' ), ( y )  exp(iiKx) 1 

where (kL ),, can be calculated using 

Making the substitution r.=l+m (2.70) c m  be rewritten as 

which impiies that for each value of n 

This is 

d' v,, 9 

--a: v n +  x ( k L ) n - ,  v,,, = O .  
d~ m=- 

a straightfonvard second order differential equation that we c m  wnte in matrix 

form as 

V U = M ( y ) V ,  (2.73) 

where V is a column matrix composed of the functions v,,(y), V' is a column matrix 

composed of the second derivatives of v . 0  with respect to y, and M is a square matrix 

composed of the elements 

Mm = a:6m - ( k 2 ) , ' m .  
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This equation descnbes the field in the entire grating region (0ey-a) and the solution of a 

field propagating through this area rUay be found using standard numencd algorithms. 

This solution dong with the known Rayleigh expansions outside the grating region may 

be used to calculate the efficiencies for any dielectric grating using the differential 

method. 

2.4 THE DIFFERENTIAL METHOD 

The differential method c m  he outlintd s follows: 

A field is assigned below the gnting and wntten using the Rayleigh expansion (2.56). 

A numerical integration algonthm is applied to the differential equation in the gratin; 

region (2.72) in order to calculate the propagation of the field in reverse from y=û to 

y=a . 

The field above the grating is converted into incident and reflected plane waves using 

the Rayleigh expansions (2.53). 

By repearing the process, matrices relating the Rayleigh expansion of the incoming 

plane wave to those of the reflected and transmitted plane waves can be determined 

and from these matrices the grating efficiencies c m  be calculated. 

2.4.1 Definitions 

Outside of the grating region, we have found the general solutions to the 

Helmholtz equation and we can write them as 

I 

u(-G Y )  = & , ( ~ ) e x p ( i a , r ) ,  
n=- 

w here 

v,, (y) = A:" exp(-i~~"y) + BA') exp(i/3f1'y). for y>a 
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v, ( y )  = A:" exp(-@,!" ) , for y 4  (2.77) 

Cal1 * WB' and w:) the column vectors built from the coefficients A:" , BA') , and 

A:'' respecuvely. Introducing the square matrices MA, Mg, R and T we can define the 

following relationships: 

( 1 '  = M A  V A  (-. 7 78) 

= M, (3.79) 

(1) 
QJ:' = R v A  (3.80) 

(1) whl) = T w . ~  (2.8 1) 

If MA and 1Mg are known we c m  then calculate the reflection matrix R and the 

transmission matrix T using the relationships 

T = (M, )-' . 
R=M,(M,)-' = M E T .  

2.4.2 Calculation of T and R 

AU the Fourier series are written as sums from - = to m. Since it is impossible 

to do numencal calculations of this scope we choose some number N, and make al1 

summations from n=-N to n=+N. This rneans that ail square matrices will have 

dimensions of Nrm,2N+l and al1 column vecton will have NmrN rows. N should be 

chosen large enough that al1 real reflected and transmitted orden are included (Le. al1 the 

values in the sets UI and U2 are included in the range [-Np +NI). Further choosing of the 

size of N should be based on numerical resuits (this is discussed in chapter 3) or some 

knowledge of the Fourier components for larger N. 
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S tart by choosing the field below the grating so that one of the values of A:') = 1 

and al1 other A ~ ~ ' = O .  The derivative of A;" just below the grating is straighiforward 

from (2.53) and since the tangentid electric field and its derivative are continuous in TE 

mode we can write 

v (O) = A:", ( 2  -84) 

The functions v, and their first denvatives are now known ai )=O. Applying the 

differential equation in the ,grating region (3.72) and using a standard numerical 

aigonthm for second order differential equations. propagate the functions v, through the 

grating region to -Fa. We used the numencd integntion algorithm presented in chapter 

4 of "Electromagnetic 

algori thrn2'. Once v,(a) 

Theory of ~ r a t i n ~ s " "  which implements the Nournerov 

d v n  and -(a) have been found for al1 n we can determine what 
d~ 

plane waves must exist above the grating. The continuity of the tangentid electric field 

and its derivative means we c m  use equations (2.53) and (3.56) dong with their 

derivatives to get 

B ~ I )  = - l [Vn ( a )  + *- ( a )  exp(- i ~ : ' ) a )  
2 l "'. dy 1 

The resulting values of y:' and WB' are then the values of the n" (where n was the value 

that we chose A:"=[) columns of MA and Mg respectively (diis is obvious if you look at 
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equations (2.78) and (2.79)). By repeating this process N - k  times. setting a different 

A,!~' equal to 1 each t h e  the complete matrices MA and MMg rnay be calculated. From MA 

and M B  equations (2.82) and (2.83) c m  then be used to calculate T and R. T and R 

describe everything we need to know about the system. 

2.4.3 Calculation of Efficiencies 

The matrices T and R allow us to calculate the coefficients BA" and A,!" from the 

coefficients A:". T and R are independent of which of the coefficients A:'' have non- 

zero values. This means rhat any or al1 of the values of A:" may be assigned as 

incoming plane waves and the corresponding reflected and transmitted plane waves 

calculated using T and R. To be consistent with our definition of B'"'~' and for n to be 

equal to the correct diffracted order numben we choose 4') as the incident plane wave 

(corresponding ro the input angle Or) = 8'"'') and assign it a vdue of 1. Al1 other 

A:" are assigncd values of zero. The reflected plane waves ( B A "  coefficients) and 

transmitted plane waves (A:" coefficients) are calculated with equations (2.80) and 

(2.8 1). Using equations (2.65) and (2.66) the efficiencies can then be determined: 

2 cose.' V 2  
e, = IA;"( - 

cos 8'"') v, ' 

where 0;' and O:*', given by (2.60) and (2.61). are the angles of the reflected and 

transmitted plane waves respectively. 
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2.4.4 Centering Real Orders in the Vectors 

It is desirable to center the real orders in the vectors used for caiculating 

efficiencies. Centering reduces the sue of the vectors and matrices required to include dl 

real orden, thus making matrix inversion possible for gratings with greater numbers of 

orders. If the incident plane wave is described as  4" = 1 , the real orders will not 

necessarily be centered in the matrices and vectors. For example. consider the 3d order 

gratins depicted in figure 2-2. The angle of incidence 9'"' is 45'. To include al1 the 

real orders for these gratings we must take our summations from n=-3 to n=+3 even 

though n=l, n=2, and n=3 do not correspond to red orders. A better method is to 

temporarily choose 0'"" to be 13.6' (this corresponds to a wave incident dong the same 

Iine but in the opposite direction as the -2 reflected order in the diagram). The angles of 

al1 incident and diffiacted real orders (Le. 8"'. 0:' for n E LI, , and 8:' for n E U, ) 

remain the same as when 8''nc' = 45" , only with the n coefficients ail increased by 1. The 

coefficients of the matrices T and R relating real orders also remain the same, only 

shifted so that they relate the correct orders. We now need to take summations only from 

n=-2 to n=+2 to include al1 real orders. We have effectively centered ail the real orders 

(as well as possible when there are an even number, n=+2 is still not a real order). Since 

we are actually interested in the case of a plane wave incident at 45'. we choose A:" as 

our incident wave. With our temporary assignment of 8'"'' =13.6', A:') now corresponds 

to an incident plane wave at the angle 0:""' = 45'. Eficiencies are calculated as before, 

the only differences being that A:'' (not 4") is assigned the value of 1, and 8""' = 45" 

in used in equations (2.88) and (2.89). Once caiculations are complete, the order 
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numbers, n are then reassigned for the angles and efficiencies as they wouId have been if 

we had initially chosen 8'"' = 45" . 

This method of centering reai orders by temporarily choosing 8'"' equd to the 

srnailest of the angles 0.) was used to obtain d l  results presented in this thesis. An 

equivaient process should be to take sumrnations from n=-N+l to n=+N+i, where 1 is 

chosen so that the real orders are centered in the vectors. 

2.4.5 A Brief Note on TM polarization 

I have not included theoretical discussion of using the differential method for the 

TM polarization. In TM polarization du/& is not continuous throughout the grating 

region. Consequently, the Helmholtz equation (2.68) will not necessarily be valid in the 

sense of distributions. The Helmholtz equation needs to be replaced by a propagation 

equation that will be valid in the sense of distributions in the grating region. For hrther 

discussion of using the differential method h r  TM polarization see chapter 4 of 

"Electromagnetic Theory of ~ r a t i n~s"~ ' .  
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3 VERDFICATION O F ALGORITHM 

The differential method has been one of the most popular methods for analyzing 

arbitrary profile gatingsE. Given its previous success in replicating experimental results 

for different gratings?-'m'4, we did not attempt experirnental verification of the validity of 

the differential method. In this chapter we verify the correctness of Our algorithm. Fint. 

results consistent with previously published results are obtained, then a method for 

determinin:, h e  accuracy of funher results is developed. 

3.1 CONSISTENCY OF RESULTS WITH PUBLISHED RESCTLTS 

The first step in the verification process is to show that the programrned algorithm 

is consistent with the algorithm developed in the literature. On page 222 of 

"Electromagnetic Theory of Gratings." Maystre et ai present graphical results obtained 

using the differential method for three different dielectric (Results for the 

zeroth order efficiencies of the grating in Fig. 6.104 in "Electromagnetic Theory of 

Gratings" were also reported by h o p z 6  who used a different calculation method. Knop's 

results agree very closely with those reported by Maystre et al.) Using Our diffraction 

method progras, TE mode efficiencies for each of the gratings reported by Maystre et al 

were calculated - these results are plotted in figures 3-1 to 3-3. Comparing our figures to 

those of Maystre et al it c m  be seen that there is very close agreement. There are, 

however, some small deviations in our plots that do not appear on thein. For example, 

the dips in the zeroth order efficiency of figure 3-1 at approximately 0 . 7 2 ~  and 0.75j.1.m. 

These smdl discrepancies could possibly be attributed to using a smaller wavelength 

spacing for calculated points. Maystre et al and Knop did not indicate what wavelength 
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spacing was used for their calculations so this hypothesis can not be verified. The only 

significant difference between our results and the corresponding published results c m  be 

found between wavelen,@s of 0 . 7 ~  and 0 . 8 ~  in the fmt  diffracted order of the 

grating plotted in figure 3-2. It can be seen that over diis range the first order efficiency 

in Our plot rises from about 0.025 to 0.2 while Maystre et al's corresponding plot stays 

approximately constant at 0.025. 

0.5 0.6 0.7 

wavelength (prn) 

Figure 3-1: TE mode efficiency curves of dielectric lamellar grating for cornparison 
with top graph of Fig. 6 . 1 0 4 ~ ~  in 'CElectromagnetic Theory of Gratings" 
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Figure 3-2: TE mode efficiency cuwes of dielectric lamellar grating for comparison 
with bottom graph of Fig. 6.104'~ in '%lectromagnetic Theory of Gratings" 

0.6 O 17 

wavelength (pm) 

Figure 3-3: TE mode efficiency curves of dielectric lamellar grating for comparison 
with Fig. 6.105'~' in "Electromagnetic Theory of Gratings" 



Chapter 3 - Verifrcation UfAlgonthm 40 

To m e r  venfy the consistency of our prograrnmed algorithm with that 

presented in the literature a paper by Vincent was found containing numerical results for 

a lamellar transmission grating obtained using the differential rnethod". He used 19 

terms in the Fourier series ( N I M r f i 1 9 )  but did not indicate how many steps he used for 

numencal integration. Table 3-1 presents results calculated using 19 term Fourier senes 

and three different step sizes for numencal integration (NhsICPS = 50, 500, & 5000) dong 

with Vincent's results. Looking at table 3-1 it can be seen that Our results for this gating 

agree very closely with those of Vincent, the best agreement occumng for Nk, = 500 

where dl  values agree to either 6 or 7 decimal places. 

Table 3-1: Cornparison of diffraction effïcienci calculated for 
Iamellar transrnission grating pictured on right. 

Diffraction 
(7 

0.000 
39.257 
0.000 
9 -3 83 
19.032 
29.285 
40.708 
54.6 13 
78.043 

Angle of 1 Diffraction Efficiencies 

- 

3.2 DETERMINING ACCURACY OF RESULTS 

Published 
~esults~"' 
0.3680287 
0.0122915 
O. 1030528 
0.1356183 
0.0309360 
0.0495928 
0.05 1633 1 
0.0354 155 
0.0089727 

There are two variables in the algorithm that may be adjusted in order to change 

the results for a grating with a given geometry. These variables are the nurnber of 

Fourier components, Nmk and the number of steps taken for numencal integration, 



NhrtCPS. A measure of the accuracy of resulis is obtained by varying N - ~  and/or Nkfeps 

and cornparing the different results. 

Two measures of accuracy are used. First, the sum of the efficiencies for the 

grating should be equal to 1. This condition is necessary but not sufficient to show that 

the results are validIg. If the surn of the efficiencies is not equal to 1 at Ieast one of the 

efflciencies must be incorrect because the system is not conserving enerpy. Secondly we 

look for convergence of results as N w t d  andlor NhrrCPs are increased. Looking at the 

overail variation in the results as a function of N - ~  and Nhtep,. appropriate values of 

each may be chosen. 

After an appropriate choice of Plrnr* and NhsICPs Our validity criterion demanded 

only that the sum of efficiencies be within 10% of 1. The validity critenon was not 

satisfied for grating orders higher than 25 for TE mode and 3 for TM mode. This 

particular difficulty with the TM mode is inherent in the differential methodzO. Failure to 

satisQ the validity criterion also increases with grating depth, number of orders, and 

difference in refractive index values'0.? While our validity criterion only required 10% 

agreement, it should be noted that most resuits presented in this thesis agreed to a rnuch 

greater exten t. 

3.2.1 Dependency of accuracy on NhstePS 

The fint variable examined was NkIeps. In order to reduce the calculation time. 

the minimum value of Nmtk that included al1 real grating orders was used for this part of 

the analysis. Grating efficiencies were calculated for echelle and TIR gratings using the 

following combinations: 
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Ail calculable design orders (Le. up to the highest order where the sum of the 

efficiencies was still within 10% of 1). 

13 different values of VI distributed berneen 1 and 3.6 (v2 was kept constant at 1). 

3 values of - 50. 500, and 5000. (These numbers were selected after 

experimenting with various values.) 

Cornparisons were then made between results from the same gntings but with different 

values of NhsfCPs used for calculation. The results for selected design orders are presented, 

for the reader's reference, in tables A-1 to A-8 of the Appendix. Based on the cost in 

calculation time of increasing Nktcpx and the srnall percentage ciifference (see tables) 

between results calculated with h e p r  = 500 and 5000 it was decided that Nb,, = 500 is 

a reasonable value to use for these gratings. 

Typical plots of the relationship between NhrtePs and calculated efficiencies are 

presented in figure 3-4. It can be seen that the retro-reflection eficiencies for the 10" 

order TIR gratings are very stable between NhrfePs = 50 and Nhreps = 5000. Using a larger 

or smdler number of steps the results start to diverge. 
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number of numerical integration steps, NNtepf 

Figure 3-4: Dependence of results on number of numerical integration steps for loth 
order TIR grating (for vi=l.S, N , h = 2 3 ;  for vi=3d, N m e 1 9 )  

3.2.2 Dependency of accuracy on IVmmx 

The second variable examined was NJM,. NhsrCPr = 500 WU used for al1 of this 

part of the anaiysis since it was judged in the previous section to be a reasonable value 

for the gratings in question- Grating efficiencies were calculated for the following 

combinations of parameters: 

Design orders 1, 5 ,  10, 15.20 (25 was about the maximum calculable order). 

13 different values of vi  distributed between 1 and 3.6 (vr was kept constant at 1). 

7 values of NIwN - 5 ,  1 1, 15, 2 1, 25, 3 1, 35 (These numbers were selected based on 

the minimum matrix sizes and d e r  experimenting with various values.) 

In order to reduce calculation and analysis time cornparisons of these results were done 

only for the echelle grating. The geometry of the TIR grating is assumed to be close 



enough to that of the echeile grating that ody one set of values needs to be reponed. 

Cornparisons were made between results for the sarne gratings calculated using different 

values of NnrCIIrLr. The cornparisons are presented, for the reader's reference, in tables A-9 

to A-23. A plot of typical results is presented in figure 3-5 and the same plot with a 

different scale in figure 3-6. Looking at the tables and graphs some generalizations can 

be made. Using a matrix size less than the minimum size required to include al1 orden 

appears to introduce significant error in some of the eficiencies (even though the sum of 

the efficiencies may still be within 10% of 1). The percentage difference between results 

caiculated for consecutive matrix sizes tends to decrease as the matrix size is increased 

from the minimum size. This decrease continues only to a certain point where it starts to 

increase again and quickly the surn of efficiencies becomes much larger than 1 and the 

results are obviously no longer accurate. As the order of the gratin; is increased this 

region of decreasing percentage differences becomes smailer and smaller until at the 

largest calculable order, only the minimum matrix size satisfies the condition that the sum 

of efficiencies be within 10% of 1. 



absok.de percentage difference of retro-reflected 
eff iciency mmpared to N ,, =21 (%) 

O lu P 6, UJ 

1 

l . . . . , , I I  

absolute percentage difference of retro-rellected 

i 
1 

I I I  
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It was assumed that the 'best' result occurs when the percentage difference 

between results calculated for consecutive ma& sizes is minimized. The reasoning 

behind this is that as you increase the ma& sue you are increasing the number of 

Fourier coefficients and providing a better approximation of the actuai grating shape. As 

you increase Nm, you also increase the number of evanescent orders and the size of the 

matrix MA which must be inverted. There is a large range of values in MA and therefore 

it becornes difficult to invert and the results start to be Iess reliable the larger it is. A 

correlation was found between the 'best' results and the sum of the efficiencies. The 

largest maùix size for which the sum of effrciencies is within .OOl% of 1 was found to 

correspond to the 'best' matrix size for each of the orders that results were calculated for. 

This is the criterion used for choosing what matrix size to use for the results presented in 

this thesis. 

The matrix size barely large enough to include d l  reai orders was the minimum 

matrix size used to obtain the results presented in this thesis. Results presented in the 

following chapter were calculated using the largest matrix size for which the sum of 

efficiencies is within .001% of 1. In cases where this criterion could not be met, the 

minimum matrix size was used. Results are only presented for cases in which the sum of 

efficiencies is within 10% of 1. An estimation of uncertainty is not provided for any of 

the results. Tables presented in the Appendix may be used to estimate the calculation 

uncenainty in a particular data point. 
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4 RESULTS AND D ISCUSSION 

In this chapter, cdculated diffraction efficiencies are presented for the echelle and 

TIR gratings descnbed earlier (see figure 1-3). The gratings' responses are characterised 

over a range of relevant opùcal matenals. Cornparisons are made between the two 

gatings to test the concept of using total-intemal reflection facets in gratine design. 

Cornparisons are also made between values cdculated using scalar wave theory and those 

calculated using the differential method. Finally, theoretical results are compared with 

some previously reported experimental results. 

4.1 SCOPE OF STUDY 

To simplify the geornetry we restrict a ur sti ~ d y  to an incoming plane wave 

approaching at an angle of 45" with respect to the plane of the grating. The gratings are 

assurned to be two-dimensional planar bulk-optic gratings. The gratings are operated in 

the -m" order Littrow mount (Le. retro-reflection corresponds to the -nt" reflected order. 

for example see figure 2-2 for gratings in the -3 order Littrow mount) where m is referred 

to as the "grating order." Only results satisfying the validity criterion discussed in 

chapter 3 are reported. Since very few of the results calculated for the TM mode satisfied 

the validity criterion. only results for the TE mode are reported in this thesis. 

12-14 Since current application of TIR gratings is for WDM components the 

gatings were designed for a free-space wavelength, b1550 nm. There is a 

"transmission window" around 1550 nm where silica fibre exhibits its lowest 10s~ '~  so 

most fibre optic telecommunications utilises light around this wavelength- 
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In d l  cases ciiscussed. the region below the grating is air, for which the refractive 

index vt=l. The region above the grating may be any of a number of optical rnaterials. 

Calculations were completed for values between vl=l (air) and vl=3.6 (Ga&). This 

rang includes Si02 (vl=1.45), Si& (vl=2), Si (vl=3.5), and inP (vl=3.5) which are al1 

materials cornmonly used in inteepted ~ ~ û c s ' " ' ~ .  

4.2 THE SCALAR WAVE APPROXIMATION 

The scalar wave approximation described in chapter 2 consists of two components 

- the Fresnel reflection component which varies with the refractive index above the 

p t i n g  VI, and the Fraunhofer diffraction component which varies with grating order m. 

The Fraunhofer component is the same for TIR and echelle gratings while the Fresnel 

component is different. 

Figures 4-1 and 4-1 show the Fresnel reflection component as a function of VI. 

This component was calculated using equation (3.4). Figures 4-3 and 4 4  show the 

Fraunhofer diffraction component for retro-reflection for grating orders 1 to 30. This 

component was calculated using the Fraunhofer diffraction portion of equation (2.9). As 

indicated by equation (Tg), the scalar wave approximation of retro-reflection for a 

particular order grating can be found by multiplying the appropriate curve in figure 4- 1 

by the appropriate value from figure 4-3 (or adding the appropriate decibel values from 

figures 4-2 and 4-4). Looking at figures 4-3 and 4 4 ,  it c m  be seen that the Fraunhofer 

component's effect is quite small, decreasing with increasing grating order. For grating 

orders Iarger than 6 its effect is less than 10%. 

As illustrated in figures 4-1 and 4-2. the scalar wave approximation predicts that 

the retro-reflected efficiency for the TIR and echelle gratings will be zero for vi=l.  This 
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is the limiting case where the medium becomes homogeneous and the interface (and thus 

the grating) vanishes. For the case vi=L it is clear that the incident iight propagates 

fonvard without being diffracted. This means that d l  light should be in the zeroth 

msmitted order. As a check of Our cornputer program, the limiting case of vl=L was 

calculated for dl p t i n g s  reported in this thesis. In al1 cases, differential method and 

scalar wave approximation results indicate that ail the light ends up in the zeroth 

transrnitted order. 

As illustrated in figures 4- 1 and 4-2. the scalar wave approximation predicts that 

the retro-reflected efficiency for the TIR egatings will start at zero for v l=l, increase 

slowly to the point where ~ ~ ~ 1 . 3 ,  then increase sharply between ~ ~ ~ 1 . 3  and ~ ~ ~ 1 . 4 5  

where it will level off for funher increases in VI. Since the angle of incidence on the 

facets is 45' for the TIR grating we know that for v1>1.414 the Fresnel reflection 

coefficient will be equd to 1. As illustrated in figure 4-1. the scalar wave approximation 

predicts that the re tro-reflected for the echelle grating increse 

approximately linearly with increasing VI. This translates into the curved plot we see in 

figure 4-1 when decibel units are used. Figures 4-3 and 4-4 show that the scalar wave 

approximation predicts retro-reflected efficiencies will generally increase with increasing 

grating order. It appears that the effect of increasing the order will be largest for smaller 

orders . 
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refractive index, V, 

Figure 4-1: Plot of Fresnel reflection component of the scalar wave approximation 
according to equation (2.4) for TIR and echelle gratings 

Figure 4-2: Plot of Fresnel reflection component of the scalar wave approximation 
according to equation (2.4) for TIR and echeile gratings in decibel units 



Fraunhofer diffraction coefficient (dB) Fraunhofer diffraction coefficient 
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4.3 COMPARISON OF SCALAR WAVE APPROXIMATION AND 
DIF'FERIENTIAL METHOD RESULTS FOR RETRO-REFLECTED 
EFFICIENCIES 

4.3.1 Retro-Reflected Efficiencies as a Function of Refractive Index 

Figures 4-5 to 4-10 show the retro-reflected efficiencies as a function of 

refractive index for both the echelle and TIR gratings. Differential method results are 

presented dong with the scalar wave approximations. Graphs for grating orden 1. 2, 5, 

10, I S.  and 20 are given. 

As illustrated by the TIR grating curves in figures 4-5 to 4-10, there is a sharp 

increase in the retro-ref'iection efficiency betweei? v l r  1.3 and v lz 1-45  This was 

predicted by the scalar wave approximation as total internai reflection starts to occur in 

this range. The lst, znd. and 5h order echelle gratings also show a sharp increase in this 

region which is not predicted by the scalar wave approximation since the light strikes the 

facets at normal incidence. According to grating theory, as the value of vl is increased. 

there are fewer and fewer transmitted orders. With an angle of incidence of 45" to the 

normal of the grating, two transmitted orders always disappear as vi is increased above 

1.4 14. For a first order grating this means there are no longer any transmitted orden, al1 

light is reflected for vi>1.414 so it must go into either the retro-reflected order or zeroth 

reflected order. As the order of the gnting is increased there are more transmitted and 

reflected orders so the Ioss of two transmitted orders becornes less significant. Perhaps 

this is why the sharp increase is not visible at ail on the plots for 1 0 ~ .  1 5 ~ ,  and 2 0 ~  order 

echelle gratings. 

As illustnted in figure 4-5 the differentiai method results for the 1" order TIR and 

echelle gratings look very similar. Weak dependence of the efficiency on the groove 



shape has k e n  observed for 1'' order Linrow mount gratïngs with infinite cond~ctivit~". 

Perhaps this is because there are so few orders that the light may be d i f i c t e d  into. 

In figures 4-6 to 4-10 you can see the difference between the TIR and echelie 

gratings increasing as the grating order is increased. For each of the grating orders 

plotted, other than the lSt. it can be seen that the maximum difference between the TIR 

and echelle gatings occurs between vl=1.35 and vl=1.75. 

refractive index, v,  

Figure 4-5: Plot of differential method results along with scalar wave 
approximations for retro-reflected efficiencies as a function of refractive index for 
lY order echeiie and TIR gratings 
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refractive index, V, 

Figure 4-6: Plot of differential method results along with scalar wave 
approximations for retro-reflected efficiencies as a function of refractive index for 
2"order echelle and TIR gratings 

echelle scalar wave aprox 

----- TIR scalar wave aprox 

TIR differential method 

refractive index, V, 

Figure 4-7: Plot of differential methoci results along with scalar wave 
a proximations for retro-reflected efficiencies as a function of refractive index for E 5 order echelle and TIR gratings 
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1 .O 1.5 2.0 2.5 

refractive index, V, 

Figure 4-10: Plot of differential method results along with scalar wave 
ap roximations for retro-reflected efficiencies as a function of refractive index for ! 20t order echelle and TIR gratings 

Figures 4- 1 1 and 4- 12 summarize the retro-reflected efficiencies for the 1''. 2"*, 

sh, IO", 151h, and 2oU> order TIR and echelle gratings plotted in figures 4-5 to 4-10. 

Results from the differential method for each of these grating orders. dong with the 

Fresnel reflection component of the scalar wave approximation are plotted for the TIR 

gating in figure 4-1 1 and for the echelle grating in figure 4- 12. 

Looking at the plots as a function of refractive index for the TIR grating in figure 

4- 1 1 it can be seen that there is qualitative agreement between the differential method and 

scalar wave approximation for most grating orden plûtted. There is an anornaly for the 

differential method results for jh and 1 0 ~  order gratings - they have an extra jog before 

leveling off. The sharply increasing part of the jog in each of these cases appean to 

correspond to the disappearance of two transmitted orders. There is, however, no 

corresponding jump in retro-reflection eficiency every time transmitted orders disappear. 
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The best agreement with the scalar wave approximation occurs for the 20" order grating 

followed by the 15" order grating. This rnight appear to indicate that agreement 

irnproves with increasing grating order, however. this is not always the case, as lSt and znd 

order gratings showed better agreement with the scalar wave approximation than the 5& 

and 10" order ,gatings. 

As iilustrated in figure 4-12. which shows the sarne plots for the echelle grating, 

there is again qualitative agreement between the differentiai method and scalar wave 

approximation for most grating orders that are ploned. The differential method curve for 

the 1" order grating does have a much sharper cuve than the scalar wave approximation 

cuwe and higher grating order curves. As previously discussed. the reason for this is the 

sudden extinction of al1 transmitted orders. The l* and 2"* order gratings' diflerential 

method results lie above the scalar wave approximation while higher plotted grating 

orders lie below the scdar wave approximation. For the grating orders plotted on the 

graph, it c m  easily be seen that agreement with the scalar wave approximation increases 

as the grating order increases. 
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Figure 4-11: Plot of retro-reflected efficiencies along with scalar wave 
approximations as a function of refractive index for various TIR grating orders 
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refractive index, V, 

Figure 4-12: Plot of retro-refïected efftciencies along with scalar wave 
approximations as a function of refractive index for various echelle grating orders 
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4.3.2 Retro-Reflected Efficiencies as a Function of Grating Order 

Figures 4-13 to 4- 15 show plots of retro-reflected efficiencies as a function of 

grating order for both the echelle and TIR gratings. Plots of the scalar wave 

approximations as well as the differential method results are included on each of these 

gnphs. Graphs for refractive index values vi=1.45. 2.2, and 3.6 are given. 

As illustrated in figures 4- 13 to 4-14. for vl=1.45 and v 4 . 2  grating orden higher 

than 5, the retro-reflected efficiency of the TIR grating is on average increasing slightly 

with grating order while that of the echelle gnîing is fairly constant. For vl=3.6 it can be 

seen in figure 4-i5 that the retro-reflected efficiency of the echelle grating is fairly 

constant after 5" order. however, the retro-reflected efficiency of the TDR grating is only 

consistently increasing after loLh order. Figure 4-13 shows that when the grating order is 

greater than six, a TIR grating with an index of refraction of 1.45 (SiO?) is 8- 12 dB more 

efficient than a sirni1a.r echelle grating. The difference between the retro-re fiected 

efficiencies of the echelle and TIR gratings is smaller than predicted by the scalar wave 

approximation. 
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Figure 4-13: Plot of differential method results along with scalar wave 
approximations of retro-reflected effxiencies as a function of grating order for 
vI=1.45 echeIle and TIR gratings 
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Figure 4-14: Plot of differential method results alonp with scalar wave 
approximations of retro-reflected efficiencies as a function of grating order for 
vl=2.2 echelle and TIR gratings 
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Figure 4-15: Plot of differential method results dong with scalar wave 
approximations of retro-reflected eff~ciencies as a function of grating order for 
v1=3.6 echelle and TIR gratings 

Figures 4- 16 and 1- 17 sumrnaiize the retro-reflected efficiencies for the v l=  1 -45. 

2.2, and 3.6 TIR and echelle gratings plotted in figures 4-13 to 4-15 Differential method 

results for each of these grating orders, dong with the scalar wave approximation are 

plotted for the TIR grating in figure 4- 16 and for the echelle grating in figure 4- 17. There 

is only one scdar wave approximation curve for the TR grating because al1 the values of 

vl plotted are greater than 1.414 so the Fresnel reflection coefficient is simply 1. 

Figure 4-16 includes plots of retro-reflected efficiencies as a function of grating 

order for the TIR grating. In generai it appean that as the grating order is increased and 

as the value of vl is increased there is better agreement between the differential method 

and scalar wave approximation. 
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Figure 4- 17, which indudes plots as a function of grating order for the echeile 

grating, shows that above 5* order there is excellent agreement between the differential 

method and scaiar wave approximation. 

grating order, m 

Figure 4-16: Plot of differential method results along with scalar wave 
approximations of retro-reflected efficiencies as a function of grating order for TIR 
gratings with various VI values 
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Figure 4-17: Plot of differential method results dong with scalar wave 
approximations of retro-refiected efficiencies as a function of grating order for 
echelle gratings with various VI values 

To surnmxize figures 1-5 to 4- 17. there is often qualitative agreement between 

the differential method results and the scaiar wave approximation. at least with the shape 

of the curves. For the results reported here, agreement with the scalar wave 

approximation generally improves with higher bgating orders and higher refractive index 

values. The scalar wave approximation is unable to predict anomalies such as those in 

the 5'h and 10" order TIR gratings and in the 1" order echelle grating. The scaiar wave 

approximation does appear to be sufficient for predicting the improvement which total 

interna1 reflection facets provide over the echelle grating, though it generally predicts a 

greater difference between the two gratings than the differential method does. 
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4.4 RIESULTS FOR THE TIR GRATI[NG 

4.4.1 TIR Grating Efficiencies as a Function of Refractive Index 

Figures 4 1 8  to 4-23 show plots of different efficiencies as a function of the 

refractive index above the TIR graring. Each plot shows how the refractive index affects: 

the retro-reflected efficiency, the total of ail reflected efficiencies. and the total of al1 

transrnitted efficiencies. Plots for graùng orders 1. 2.5. 10, 15, and 20 are presented. 

In each of these plots it can be seen how the total reflected efficiencies and total 

transrnitted efficiencies are related. To satisfy the energy balance criterion the sum of al1 

diffracted efficiencies must be equal to 1. This means that as the sum of the reflected 

efficiencies increases, the sum of the transmitted efficiencies must decrease and vice 

versa. 

In each of figures 4-18 to 4-23. it can be seen that as the refractive index is 

increased above the limiting case vl=l ,  some of the light starts to end up in reflected 

orders. There is a sharp increase in the amount of reflected light between ~ ~ g 1 . 3  and 

~ ~ ~ 1 . 4 5  for al1 grating orden as light starts to undergo total interna1 reflection at 

vl>L.&l. As vl is funher increased there is somewhat of a leveling off of the total 

reflected efficiencies, though this does not occur for al1 gnting orden. It can be seen that 

the retro-reflected efficiency curve tends to follow the same general shape as the total 

reflected efficiencies curve. 
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refractive index. v ,  

Figure 4-18: Plot of efficiencies as a function of refractive index for 1" 
grating 

refractive index, V, 

order TIR 

Figure 4-19: Plot of efficiencies as a function of refractive index for a 2nd order TIR 
grating 
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Figure 4-20: Plot of efficiencies as a hinction of refractive index for a 5h order TIR 
grating 

refractive index, V, 

Figure 4-21: Plot of eficiencies as a function of refractive index for a loLb order TIR 
grating 
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Figure 4-22: Plot of efficiencies as a function of refractive index for a 1 5 ~  order TIR 
grating 

refractive index, V, 

Figure 4-23: Plot of efficiencies as a function of refractive index for a 20" order TIR 
grating 



Chapter 4 - Results And Discussion 

4.4.2 TIR Grating Efficiencies as a Function of Grating Order 

Figures 4-24 to 4-26 show plots of efficiencies for TIR gratings as a function of 

grating order. Each plot shows how the grating order affects: the retro-reflected 

efficiency, the total of al1 refiected eficiencies, and the total of dl transmitted 

efficiencies. Plots for refractive index values vl=1.45, 2.2, and 3.6 are presented. 

Again, the shape of the retro-reflected e fficienc y curve roughl y follows the shape 

of the total reflected efficiencies curve for dl three graphs, although the discrepancy 

appears to be larger for the first few orders. For each of figures 4-24 to 1-26. these two 

curves generally drop as the grating order is increased from 1 to about 4. Each curve has 

a minimum total reflected (and retro-reflected) efficiency which occurs at m=5 for 

vl= 1.45. m d  for vl=2.2. and m=3 for vl=3.6. As the order is further increased beyond 

the minimum, the curves generaily rise with a shallower pitch than the fall. The curves 

for vi=3.2 have the most distinct minimum. The curves for v ,= 1.45 look the smoothest 

of the three and do not rise back up as high as the other two curves. The retro-reflection 

curve for vl=3.6 has a second dip around m=10 which none of the other refiection curves 

have. We do not have a qualitative explanation for why these minimums occur. 
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grating order, m 

Figure 4-24: Plot of eff~ciencies as a function of grating order for vi=1.45 TIR 
gra tings 

1 .O 

grating order, m 

Figure 4-25: Plot of efficiencies as a function of grating order for vl=2.2 TIR 
gratings 
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Figure 4-26: Plot of efficiencies as a function of grating order for vi=3.6 TIR 
gra tings 

4.5 RlESULTS FOR THE ECHELLE GRATING 

4.5.1 Echelle Grating Efficiencies as a Function of Refractive Index 

Figures 4-27 to 4-32 show plots of different efficiencies as a hnction of the 

refractive index above the echelle grating. Each plot shows how the refractive index 

affects: the retro-reflected efficiency, the totd of al1 reflected efficiencies, and the total of 

al1 transmitted efficiencies. Plots for grating ordea 1, 2, 5, 10. 15, md 20 are presented. 

The plot for m=l looks ver-  similar to that for the TIR grating. The plot for m=2 

is also similar ro that for the TIR grating, although a smaller percentage of the light is 

retro-reflected. For m=l. 2, and 5 there is a sharp increase in the total reflected 

efficiencies curve between v i p  1 -3 and v 1.45. This increase, as discussed previously. 

corresponds to sudden loss of al1 transrnitted orders. 
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Looking at the plot for the srn order grating it can be seen that the shape of the 

retro-reflected efficiency c w e  does not follow the shape of the total reflected 

eficiencies curve. For grating ordea larger than 5, it can be seen that the total reflected 

efficiencies curve follows a more or less linearly increasing path as does the retro- 

reflected efficiency curve. 

refractive index, V ,  

Figure 4-27: Plot of efficiencies as a function of refractive index for 
echelle grating 
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Figure 4-28: Plot of efficiencies as a function of refractive index for a znd order 
echelle grating 
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Figure 4-29: Plot of efficiencies as a function of refractive index for a 5th order 
echelle grating 
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Figure 4-30: Plot of efficiencies as a function of refractive index for a 1 0 ~  order 
echelle grating 
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Figure 4-31: Plot of efficiencies as a function of refractive index for a 
echelle grating 
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Figure 4-32: Plot of efficiencies as a function of refractive index for a 20" order 
echelle grating. 

4.5.2 Echelle Grating EEciencies as a Function of Grating Order 

Figures 4-33 to 4-35 show plots of efficiencies for rchelle gratings as a function 

of grating order. Each plot shows how the grating order affects: the retro-reflected 

efficiency, the totd of al1 reflected efficiencies, and the total of al1 transrnitted 

efficiencies. Plots for refractive index values v1=1.45, 2.2, and 3.6 are presented. 

The basic shape of the total reflection efficiencies curve for these graphs has it 

falling quite rapidly from unity for the first order grating to some value and then leveling 

off as the grating order is further increased. It can be seen that as the value of vi is 

increased the fa11 is more gradua1 and not as far. The smoothest curve occun for v [= 1.45. 

The vi=2.2 grating curve has a small peak around m=6 while the v1=3.6 curve has 3 

srnail peaks. 
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It can be seen that the shape of the retro-refiecied eficiency curve foiiows that of 

the total refiected effkiencies curve quite closely for ail graphs. The exceptions are the 

peaks mentioned previously and the fmt few grating orden of the vl=3.6 plot. 

grating order ,  rn 

Figure 4-33: Plot of efficiencies as a function of grating order for vl=1.45 echelle 
gratings 
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Figure 4-34: Plot of efficiencies as a function of grating order for vi=2.2 echelle 
gratings 

grating order, m 

Figure 4-35: Plot of efftciencies as a function of graüng order for vi=3.6 echelle 
gratings 
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4.6 GRATING EFFICIENCIES FOR DIFFERENT REFLECTED 
ORDERS 

4.6.1 TIR Grating Eflticiencies as a Function of Reflected Order 

Figures 4-36 to 4-39 iilustrate how the reflected light is distributed among the 

different reflected ordea fûr TZR gratings. Included are plots for 5", 10". 1 5 ~ .  and 20" 

order gratings (1" and 2nd order gratings were excluded since there are so few reflected 

orders). Each graph shows the emciencies for v1=1.45, 2.2. and 3.6 (except for the 20" 

order plot where the validity cntenon was not satisfied for vl=3.6 and it is replaced by 

vl=3.0). The scalar wave approximation is also included in the plots. The scdar wave 

approximation was calculated from equation (7.9) and interpolated for non-integer values 

of n by evaluating the numerator at the appropriate angles. The scalar wave 

approximation only has physical significance for integer values of n. The scalar wave 

approximation is the same for each value of V I  since they are in the range of total internai 

reflec tion. 

For ail but one of these plots the highest peak is around the retro-reflected order. 

This peak tends to be higher and wider for the v 1=2.2 and v ,=3.6 (or v 1=3 .O) curves than 

for the vl=i  .45 curve. The vl=1.45 curve tends to have a second peak just below the 

zeroth reflected order which is nearly as large (or larger for the order grating) as the 

peak around the retro-reflected order. 

The scalar wave approximation predicts the highest peak will be at the retro- 

reflected order. For diffraction orders close to the retro-reflected order. differential 

method results show qualitative agreement with the scalar wave approximation. For 

reflected orden close to the zeroth, differentiai method results predict substantially more 
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diffracted optical power than the scalar wave approximation. Because of the power 

diffhcted to orders close to the zeroth order, the eff~ciency of the retro-diff'racted order is 

reduced from that predicted by the scalar wave approximation. The scalar wave 

approximation predicts that the distribution of the opticai power among the diffraction 

orders is the same for dl values of VI. The differential method indicates that the 

distribution does depend on v 1. 

O 
' scalar wave aprox. 

. 9 '. 

reflected order, n 

Figure 4-36: Plot of effciencies along with scalar wave approximation as a function 
of reflected order for a sih order TIR grating 
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Figure 4-37: Plot of effkiencies aIong with scalar wave approximation as a function 
of reflected order for a 10" order TIR grating 

Figure 4-38: Plot of eff~ciencies along with scalar wave approximation as a function 
of reflected order for a lsth order TIR grating 
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Figure 4-39: Plot of efficiencies along with scalar wave approximation as a function 
of reflected order for a 20" order TIR grating 

4.6.2 Echelle Grating Efficiencies as a Function of Reflected Order 

Figures 4-40 to 4-43 show how the refiected light is distributed arnong the 

different reflected orden for echelle ,ptings. Included are plots for 5", IO", 1 5 ~ .  and 

20" order gratings (1" and 2nd order gratings were excluded since there are so few 

reflected orders). Each graph shows the efficiencies for vi=1.45, 2.2, and 3.6. The scaiar 

wave approximation for vi=2.2 is also included in the plots. The scalar wave 

approximation was calculated from equation (2.9) and interpolated for non-integer values 

of n by evaluating the numerator at the appropriate angles. The scalar wave 

approximation only has physical significance for integer values of n. The shape of the 

p10i:ed scalar wave approximation does not change with vl  but is 6.2 dB lower for 

vi=l .45, and 3.5 dB higher for vi=3.6. 
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For aiî but one of these plots the highest peak is around the retro-reflected order. 

This peak tends to be higher and wider for the vi=2.2 and v1=3.6 (or vl=3.0) cuves than 

for the vl=1.45 curves. The vl= 1.45 curve tends to have a second peak about halfway 

between the zeroth and retro-reflected orders which is nearly as high as (or higher than 

for the 5" order grating) and wider than the peak around the retro-refiected order. For al1 

piots (except the vl=2.2, m=5 plot) the v1=2.2 and vi=3.6 curves have a minimum value 

at approximately the same order as the second peak of the vl=l .45 curve and then nse as 

they approach the highest reflected order. 

The scalar wave approximation predicts the highest peak will be at the retro- 

reflected order. For diffraction orders close to the retro-reflected order, differential 

method results show qualitative agreement with the scalar wave approximation. The 

scalar wave approximation shows poor agreement with the differential method results for 

other diffraction orden. The scalar wave approximation predicts that the distribution of 

the optical power among the diffraction orders will have the same shape for al1 values of 

v,. The differential rnethod indicates rhat the shape of the distribution does depend on VI .  
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Figure 4-40: Plot of efficiencies dong with scalar wave approximation as a function 
of reflected order for 5Lh order echelle grating. 
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Figure 4-41: Plot of efficiencies along with scalar wave approximation as a function 
of reflected order for 10" order echelle grating. 
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Figure 4-42: 
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Plot of efficiencies along with scalar wave approximation as a function 
of reflected order for l5& order echeiie grating. 
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Figure 4-43: Plot of efticiencies along with scalar wave approximation as a function 
of reflected order for 2 0 ~  order echelle grating. 
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4.7 WAWLENGTH DEPENDENCE OF RETRO-REFLECTED 
EFFICIENCY 

Figures 4-44 to 4-53 show the wavelength dependence of the retro-reflected' 

efficiency for 15" and 2oLh order TIR and echelle gratings. Differential method results as 

well as the scalar wave approximation (according to equation (2.8)) are ploned in each 

graph. The gratings were designed for perfect retro-reflection at a wavelength of 1.550 

p and have refractive indices vl=1.45, 2.2 and 3.6 fvl=3.6 was not calculable for the 

2om order grating). The -1 5'" reflected order is plotted for the 15& order gratings and t!e 

-20" reflected order is plotted for the 7oL" order gratings. 

It can be seen in figures 4-44 to 4-53 that the general shape of the wavelength 

dependence consists of a large central lobe around the design wavelength with lower, 

narrower side lobes sornewhat syrnrnetncally distributed around the central lobe. In al1 

plotted cases there is a slight shift (-0.005-0.015 pm) in the peak of the central lobe t~ 

the lower wavelength side of the design wavelength 1.550 pm. This shift is seen in both 

the differential method and the scalar wave plots. 

The shape of the central lobes of the echelle gratings agrees closely with the 

prediction from the scalar wave approximation. The shape of the side lobes agrees to 

varying degrees with the shape predicted by the scalar wave approximation. The side 

lobes appear to be shifted farther away from the central lobe than the scalar wave 

approximation predicts. 

Here "'retro-reflected" refers to the reflected order closest to the angle of incidence. When A#&. perfect 
retro-reflection is not possible unless k-FSR where p=l, 2, 3, . .. 
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The shape of the central lobes of the TIR gratings agrees somewhat with the 

prediction from the scaiar wave approximation. The central lobes for the vl=1.45 

gratings are more pointed than the scalar wave approximation. The side lobes for the TIR 

gratings are more distorted than the side lobes of the echelle grating. Distortion is more 

prevalent on the longer wavelength side. The position of the side lobes, when distinct, 

agree more closely with the scalar wave approximation for the TIR gratings than for the 

echelle gratings. The side lobes for al1 gratings are not as symmetric as predicted by the 

scalar wave approximation. 
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Figure 4-44: Plot of differential method results along with scalar wave predictions of 
the -20" reflected order efficiencies as a function of wavelength for a 2 0 ' ~  order, 
vl=1.45 TIR grating. 

1.3 1.4 1.5 1.6 1.7 1.8 

wavelength, n (pm) 

Figure 4-45: Plot of differential method results aIong with scalar wave predictions of 
the - 2 0 ~  reflected order efficiencies as a function of wavelength for a 2 0 ~  order, 
vi=1.45 echelle grating. 
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wavelength, 1 (pm) 

Figure 4-46: Plot of differential method results along with scalar wave predictions of 
the - 2 0 ~  reflected order efficiencies as a function of wavelength for a 2 0 ~  order, 
v1=2.2 TIR grating. 

wavelength. (pm) 

Figure 4-47: Plot of differential method results along with scalar wave predictions of 
the -20th reflected order efficiencies as a function of wavelength for a 2 0 ~  order, 
v i=2.2 echelle grating. 
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Figure 4-48: Plot of differential method results along with scalar wave predictions of 
the - 1 5 ~  reflected order efficiencies as a function of wavelength For a 1 5 ~ ~  order, 
vi=1.45 TIR grating. 
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Figure 4-49: Plot of differential method results along with scalnr wave predictions of 
the - 1 5 ~  reflected order efiiciencies as a function of wavelength for a 15" order, 
vi=1.45 echelle grating. 
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Figure 4-50: Plot of differential rnethod results along with scaiar wave predictions of 
the reflected order effieiencies as a function of wavelength for a 1s4 order, 
vi=2.2 TIR grating. 
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Figure 4-51: Plot of differential rnethod results along with scalar wave predictions of 
the - 1 5 ~  reflected order efficiencies as a function of wavelength for a 15" order, 
vi=2.2 echelle grating. 
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Figure 4-52: Plot of differential method results along with scalar wave predictions of 
the -15" reflected order efficiencies as a funcfion of wavelength for a 15" order, 
vi=3.6 TIR grating. 

1.3 1.4 1.5 1.6 1.7 1.8 

wavelength,  À ( ~ m )  

Figure 4-53: Plot of differential method results along with scalar wave predictions of 
the -15* reflected order efficiencies as a function of wavelength for a 15" order, 
vi=3.6 echelie grating. 
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4.8 COMPARISON WITH EXPERIMENTAL RESULTS 

Sun and McGreer have designed and tested integrated concave gratings in the 

Eagle configuration with facets equivalent to those of buik optic TIR gratings'z13. They 

achieved high diffraction efficiencies for 2 0 ~  order gratings without facet metaiization. 

Their results verify the pnnciple of using total internai reflections to obtain highly 

efficient integrated opticai gratings. 

He et al" have built integrated optics wavelength demultiplexers based on 

concave gratings in the Eagle configuration utilizing facet configurations equivaient to 

both the echelle and TIR gratings. They report that a ~4~ order TIR ,pting with vl=3. 18 

produced 4 dB greater response than a sirnilx 12" order echelle grating with vi=3.18. 

Using the differentiai method we were able to caiculate that a 20" order bulk optic TIR 

grating with vl=3. 18 should theoretically produce 5.3 dB greater response than a 12" 

order bulk optic echelle grating with vl=3.18. We could not extend the calculations 

higher than 2oLh order and still satisfy the vdidity criteria. Based on the stability of the 

retro-reflection curves for the TIR grating after 5" order (see figures 4-14 and 4-15) we 

do not expect that being able to extend the calculation to 24" order would significantly 

change the results. He, et ai also report that their results indicate that loss from the TIR 

grating without metalized facets is approximately equivaient to that from an echelle 

grating with metalized facets, though with the advantage of having fewer production 

stePsl4. 
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5 CONCLUSIONS AND RECOMMENDATIONS FOR 
FUTURE WORK 

5.1 CONCLUSIONS 

Results presented in this thesis indicate that treatment with the full theory of 

electromagnetic radiation validates the design principle of orienting grating facets to use 

total intemal reflection for grating orders between 5 and 25 provided that v1>1.414. 

Using vl= 1.45 (the index of refraction for silica glass), results indicate that a TIR grating 

used in the -20" order Littrow mount (this is equivalent to one of the gratings used by 

Sun and ~ c ~ r e e r l ~ )  is over 11 dB more efficient in TE mode than the comesponding 

echelle grating. 

Results indicate that the scalar wave approximation is often a reasonable 

approximation for the retro-reflected effïciencies. For echelle gratings of order greater 

than 5 and less than 25. the scalar wave approximation agrees with the differential 

method to within 7 dB for most refractive indices. The scalar wave approximation is 

qualitatively not as accurate for the TIR gratings as for the echelle gratings. The scdar 

wave approximation generally predicts a greater difference between the TIR and echelle 

gratings than the differentid rnethod does. 

Based on the agreement between the differential method results and the scdar 

wave approximation (which is polarization independent for v 1> 1.4 14) it is expected that 

the TM mode results would also validate the design principle of the TIR grating. 

The impressive results of Sun and McGreer help to verify experimentally the 

principle of using TIR to obtain highly efficient integrated optical gratings. Qualitative 

agreement between Our theoretical results and expenmental results reported by He et al 



Chupter 5 - Conclusions And Recommendations For Future Work 94 

give initial indications that parallels between Litîrow mount planar gratings and Eagie 

mount concave gratings are valid. 

5.2 RECOMMENDATIONS FOR FUTURE WORK 

Due to time constraints effort was concentrated on the most important objective 

which was obtaining results for 20" order (this was the design order used by-Sun and 

~ c ~ r e e r ' ~ )  gratings in the TE polarization. This goal was accomplished for the TE 

polarization; however, TM polarization results were oniy obtained for up to 3* order 

gratings and were not considered reliable enough to present in this thesis. Effort could be 

made to try and extend the TM mode results to orders greater than the third. 

Very little research went into choosing the numerical method used for integraiion 

of either of the polarizations. Perhaps a different numencal integration technique would 

be able to extend the TE polarkation or TM polarization results to higher orders. 

Results presented in this thesis are only for theoreticai bulk-optic gratings. It may 

be useful to have a modei to predict the output from integrated optic gratings. An attempt 

could be made to try and mode1 the integrated optics gratings. 

Experimental verification of results presented in this thesis is somewhat lirnited at 

this time. Further experimentation would verifj more thoroughly the theoretical results 

presented in this thesis and their application to predicting efficiencies for integrated optic 

gratings. 

Al1 results presented in this thesis were calculated using the differentiai method. 

Perhaps in order to extend results to higher order gratings, deeper gratings, or ones with a 

larger refractive index difference a different approach would be more useful. One such 

approach is the integral method. Dr. Sergey Sadov is currently working on this method. 
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APPENDM 
Tables of cornparisons between different values of Nws and N-. Cases where the sum of efficiencies 
was not within 1% of 1 are not included in the results- N- was chosen to be the minimum value for 
m b l a  where different values of Nbw rue compared. Nhw, was chosen to be 500 for tables where different 
values of N- are compared. 

Table A-1: Average absolute percentage differences (%) between eff~ciencies for 
selected echelle grating orders calculated with N M e e 5 0  and Nt is te~500-  

n i =  1 
1.1 
1.3 
1 -4 
1.45 
1 -5 
1.6 
1.75 
2.2 
2.5 
3 
3.5 
3 -6 

average 

Table A-2: Average absolute percentage differences (%) between efficiencies for 
seiected echelle grating orders calculated with N b t e ~ 5 0 0  and NktePs=5000. 

ni= 1 
1.1 
1.3 
1.4 

1.45 
1.5 
1.6 

1.75 
2.2 
2.5 
3 
3.5 
3.6 

average 



Table A-3: Average absolute percentage differences (%) between efficiencies for 
selected TIR grating orders calculated with Nbrtcps=50 and N W e ~ 5 0 0 .  

order of 
grating 
n ,  = 1 

Table A-4: Average absolute percentage differences (%) between efficiencies for 

3.6 
Averaee 

selected TIR grating orders caiculatedwith Nb,=500 and Nhn.,l=5000- 

1 

0.0000 

Table A-5: Absolute percentage differences (9%) between retro-reflected efficiencies 
for selected echelle grating orders calculated with Nek,=50 and Nbte&OO. 

0.0 134 
0.01 18 

5 

0.0003 

O. 1330 
0.1428 

order of 
gratin2 
n,  = 1.1 

1.3 
1 . J  
1-45 
1.5 
1.6 
1.75 
2.2 
2.5 
3 
3 -5 
3.6 

average 

10 

1 .O069 
0.7626 

1 

0.02 
O. 04 
0.06 
0.05 
0.05 
0.04 
0.03 
0.03 
0.03 
0.03 
0.03 
0.03 
0.04 

15 

0.001 2 1 0.0048 

4.3656 
3 . 7 3 7 2  

5 

0.24 
0.07 
0.22 
O. 15 
0.02 
0.1 1 
0.0 1 
0.14 
0.0 1 
0.0 1 
0.00 
0.00 

1-25 20 

77.7530 
21.8071 

1 O 

0.12 
O. 19 
0.22 
0.33 
0.3 8 
0.17 
0.29 
0.27 
0.17 
O. 18 
O. 04 
0.05 

0.24 

25 

O. 245 3 

1 6.22 
21.45351 4.79 

1.9857 

0.08 

1-25 

1.39 

15 

0.20 

25  
2o 1 

2.0 1 
1.68 
2.8 I 
2.67 
2.29 
1.61 
O. 6 8 
0.8 1 

' 0.64 
0.57 
0.48 
0.46 

t -42 2.85 4.45 

2.05 
1.68 
1.6 1 
1-22 
1.13 
1.i3 
1.22 
3.38 
1.57 
0.84 
0.58 
0.60 

5.92 
4-94 
2.8 6 
3.67 
3.23 
1.39 
1.86 
0.80 
0.32 
5.8 1 
0.99 
2.44 

2.57 
6 . 9 3  
7.30 
1 .O0 



Table A-6: Absolute percentage differences (%) behveen retro-refiected efficiencies 
for selected echelle grating orden calculated with Nwe500 and Nhby5000. 

Table A-7: Absolute percentage differences (%) between retro-reflected efficiencies 
for selected TIR grating orders calculated with Nbrtep&O and Nkte,500. 

order of 
rating 1. n, = 1 . 1  

1.3 
1 . 1  

1 .45 
1.5 
1.6 

1.75 
2.2 
2.5 

3 
3.5 
3 .6  

a v e r a g e  

Table A-8: Absolute percentage differences (%) between retro-reflected effkiencies 
for selected TIR grating orders calculated with Naneps=500 and Nhte,=5000 

order of  
ratine La 

n *  = 1 . 1  
1.3 
1.4 

1.45 
1.5 
1.6 

1.75 
2.2 
2.5 

3 
3.5 
3 .6  0.000 14 0.00004 0.0005 1 

a v e r a g e  0.000 16 0.000 17 0.00079 



Table A-9: Average absolute percentage differences between efficiencies calculated 
with different matrix sizes (N,& for first order echelle grating with Nbe&OO. 

/ Matrix 1 3(min)-5 
sizes 

n, = 1 
1.1 
1.3 
1 .S 

1.45 
1.5 
1.6 

1.75 
2.2 
2.5 

3 
3.5 
3 . 6  1 0.462620 

Average 1 0.199887 

Table A-10: Absolute percentage differences between retro-reflected efficiencies 
calculated with different matrix sizes (DI,,& for first order echelle grating with 

Matr ix  
sizes r- 

n l  = 1 
1.1 
1.3 
1.4 

1.45 
1.5 
1.6 

1.75 
2 .2  
2 .5  

3 
3 - 5  
3.6  

Average 

Table A-Il: Total efficiencies for different matrix sizes (PimlN), for first order 
echelle grating with Nbte&OO. 

M a t r i x  
sizes 

n, = 1 
1.1 
1.3 
1.4 

1.45 
1.5 
1.6 

1-75 
2.2 
2.5 

3 
3 .5  
3.6 

3 ( m i n )  

1.000000 
1.000000 
1.- 
1.000000 
1.000000 
1.000000 
1.000000 
1.000000 
1.000000 
1 .O00000 
1 .O00000 
1.000000 
1.000000 

5 

1 .O00000 
1.000000 
1.000000 
t .000000 
1.000000 
1.000000 
1.000000 
1 .O00000 
1.000000 
1 .O00000 
1 .O00000 
1.000Q00 
1.000000 

I l  

1 .O00000 
1.000000 
1.000000 
1 .m00 
1.000000 
1.000000 
1.000000 
1 .O00000 
1.000000 
1.000000 
1.000000 
1.000000 
1.000000 
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Table A-12: Average absolute percentage dwerences between efficiencies calculated 
with different matrix sizes (N-uix), for Fith order echelle grating with Nanee500. 

nt  = 1 
1 . 1  
1.3 
1.4 

1.45 
1.5 
1.6 

1.75 
2.2 
2.5 

3 
3 -5 
3 .6  

average 

Table A-13: Absolute percentage differences between retro-reflected efficiencies 
calculated with different matrix sizes (Nmt*3, for fifth order echelle grating with 

Table A-14: Total efficiencies for different matrix sizes (Nmm3, for fifth order 
echelle grating with Nb,,=500. 



Table A-15: Average absolute percentage differences between efficiencies calculated 
with dEîerent mat* sizes (IVmS&, for tenth order echeïle grating with Nbe+500. 

Matr ix  1 5-1 1 1 I l - 1 5 ( m i n )  
1 sizes 
nl = 1 0.000 

A v e r a g e  1 1 7 7 . 3 1 5  

Table A-16: Absolute percentage differences between retro-reflected efficiencies 
calculated with different matrix sizes (Nmuix), for tenth order echelle grating with 

- - 

A v e r a g e  1 1 2.178 3 . 7 7 5  

Table A-17: Total efficiencies for different matrix sizes (NmCri3, for tenth order 
echelle grating with Nhu+OO. 



Table A-18: Average absolute percentage differences between efficiencies calculated 
with different matrix sizes mm&, for ffiteenth order echelle grating with 

sizes -1 

Average 1 

Table A-19: Absolute percentage differences between retro-reflected efficiencies 
calculated with different matrix sizes (Pims&, for f~teenth order echelle grating 

Average 1 1 3.94 

Table A-20: Total efficiencies for different matrix sizes (NmWJ, for fifteenth order 
echelle grating with Nht,,=500. 



Table A-21: Average absolute percentage differences between effkiencies calculated 
with different matrix sizes (N-uu), for twenüetb order echelle grating with 
NbteP500. 

1 Matr ix  1 5-1 1 1 11 -15  1 15-21 
sizes 1 

n, = 1 1 

Table A-22: Absolute percentage differences between retro-reflected efficiencies 

3 -6 
Average 

calculated with dif'ferent matrix sizes (N,iiu), for twentieth order echelle grating 
with Nme&OO. 

1  15.77 
135.95 

Matrix 
sizes 

n i  = 1 
1 . 1  
1.3 
1.4 

1.45 
s - 5  
1.6 

1.75 
2.2 

Table A-23: Total efficiencies for different matrix sizes (NmtriX), for twentieth order 

[ Average 

echelle grating with NkePs=5OO. 

+ 
, I 
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