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Enumeration 9£.Antichains

1. Introduction.

In the course of this discussion, certain terms in set
theory, graph theory, and the theory of partially-ordered sets will
be used. Some of these - for example, SET, SUBSET, ORDERED n-TUPLE,
UNION - are standard terms, and there can be no confusion as to
their meaning. However, without further clarification, other terms
would be meaningless, or at best ambiguous. This section will

define and explain these particular terms.

'n-VECTOR' is the name used throughout for the concept

of ordered n-tuple.

Let <Ky, X xn> be an n-vector. Then., for each

9o oo
1<i<n,i an integer, we define the i-TH CONSTITUENT of

<xX,, X ce., X > as x.
1° —2° > “n i

Let S = <81’ s . Sn> be an n-vector of variables,

29

and let I = <% .5 Zn> be an n-vector of constants.

135y o
By SUBSTITUTING I FOR S , we will mean substituting Zi for each

= in the n-vector S



A SIMPLE DIGRAPH is defined as an ordered pair of sets
<V,E> . V 1is a set whose elements are called VERTICES. E is a

set whose elements are ordered pairs of vertices called EDGES.

Let one of the edges be <i,j> , where i,j € V . Then
1 is the TAIL VERTEX of the edge, and j is the HEAD VERTEX.
Let H be a simple digraph. Then V(H) represents the set of vertices

of H , and E(H) represents the set of edges of H .

If X and Y are sets of vertices of a simple digraph G ,
X 9 Y 1is the set of edges <i,j> such that ie¢ X, j € ¥, and
<i,j> € E(G) . The set X 9 Y is called the COBOUNDARY OF X

TOWARD Y . The set X 9 [v(G) - X1 1is called the COBOUNDARY OF X .

A simple digraph H 1is called a SUBGRAPH of another simple
digraph G when the vertex set and edge set of H are respectively
subsets of the vertex set and edge set of G . If U is a set of
vertices of G , then G - U 1is the simple digraph such that
V(G-U) is the set of vertices of G not in U , and E(G-U) is
the set of edges of G none of whose constituents is an element of U .
If K is a set of edges of G , then G-K is the simple digraph such
that E(G-K) 1is the set of edges of G not in K ,'and V(G-K) is
the set of vertices v such that there is at least one edge having v

as a constituent.

If G and H are simple digraphs, the UNION of G and H
written G u H , has vertex set V(G u H) = V(G) u V(H) , and has edge

set E(G v H) = E(G) u E(H)

v,> of G is a k-vector, for some

A DITRACK <V, V,, ooy V)

k = 2, such that for all integral i, with 1 <i <k - 1,'<vi, Vie1”




is an edge of G .

A TRACK v,> V

1 X L, v.> k22 ,0f G is a k-vector

such that, for all integral i with 1 < i < k-1 , either <Vi, Viiq”

or <V..,» vi> is an edge of G . If v, =V ina ditrack, we call

that ditrack a DICIRCUIT.
An ACYCLIC DIGRAPH is a simple digraph with no dicircuits.
A SOURCE of an acyclic digraph is a vertex which is not the head vertex

of any edge of the acyclic digraph.

v ., Vv.> be a ditrack of a simple digraph

k
G such that k =2 3 . Then the ordered pair <v

Let <v1, X

10 Vi o if vy and

v, are distinct, is called a TRANSVERSAL of G .

A PARTIAL ORDER is an acyclic digraph whose edge set contains

all its transversals.

A simple digraph is CONNECTED if, for any two of its vertices
i, j, there is a track from i +to j . It is STRONGLY CONNECTED if

there is always a ditrack from any vertex to any other.

A simple graph M is MAXIMAL WITH PROPERTY P if no simple

digraph other than M which contains M as a subgraph has property P

A STRONG COMPONENT of G is a maximal strongly connected

subgraph of G .
A COMPONENT of G 1is a maximal connected subgraph of G .

A TAIL COMPONENT T of G 1is a strong component of G such

that no edge of G-T has a head vertex in the vectors set of T .



Define a ¢-DIVISION of a set Q as an ordered g-vector

of disjoint subsets of Q where the union of all the subsets is Q

Define a PARTITION of Q as a collection of non-null dis-
joint subsets of Q where the union of all subsets in the collection
is Q

Define the n-SPREAD of a partition of a set Q with n

elements as the n-vector <i i

10 - in> , where, for all k ,

2)

ik is the number of sets in the partition with k elements. We

must have i + 212 + ...t klk + ..t ni =n .
Define the STRONG COMPONENT PARTITION of a simple digraph

G as the collection of vertex sets of all the strong components of

G .

Define the COMPONENT PARTITION of a simple digraph G as

the collection of vertex sets of the components of G .

In this paper (1 + x){m} will be equal to (1 + x)"  if

m >0 or identically 1 if m= 0 .

A relation R on a set S is a PARTIAL ORDER RELATION if
it satisfies the three properties:
(i) aRa for all a e S (REFLEXIVITY)

(ii) aRb and b Ra imply a and b are the same

element of S (ANTISYMMETRY)

(iii) aRDb and b Rc imply a Rc for all a,b,c e S
(TRANSITIVITY)

S 1is called the PARTIALLY-ORDERED SET.



An ANTICHAIN U is a subset of S such that for all
a,b e U, aRb if and only if a and b are the same element

of U. If U has k elements, it is called a k-ANTICHAIN.

Define the POWER SET of a set A as a collection of all the
subsets of A , including A and ¢ (the null set). It can be seen
that the power set of any set under the subset relation is a partially-
ordered set. A k-antichain of the power set of a set with n elements

under the subset relation is called an n-BOOLEAN k-ANTICHAIN.

Let fn be the number of simple digraphs with n edges of
a certain type. Then we define the EDGE SERIES for the type of

simple digraph being counted by fn as the series

Let & be the number of simple digraphs with m vertices
of a certain type. Then the VERTEX SERIES for the type of simple

digraph being counted by & is the series

Let hmn be the number of simple digraphs of a certain
type with the restriction that each simple digraph have m vertices
and n edges. Then we define the COMPLETE SERIES for that type of

simple digraph as




Let a simple digraph with property C possess either

property A or property B , but not both.

Let the edge series for simple digraphs with properties

o«

A, B, and C be z anxn . z bnxn , and 2 cnxn respectively.

n=0 n=0 n=0
For all n, ¢ =a_ + b_ . Therefore
s! n n
«© 0 «©
Z cnxn = z anxn + z bnxn
n=0 n=0 n=0

There are analogous results for vertex series and complete series.

This result will be referred to as the ADDITION THEOREM.

Let the edge set of a simple digraph of type A be the
union of the edge sets of two simple digraphs of types B and C
respectively, where the union of any two simple digraphs of types
B and C vrespectively will be a simple digraph of type A .
Further, suppose that any simple digraph of type A 1is respresent-
able in one and only one way as a union of simple digraphs of types
B and C . Let the edge series for simple digraphs of types A,

B, and C be

[ee] oo
n n .
) oax, ) b x ) cnxn respectively .

A simple digraph of type A with n edges must be the union

of a simple digraph of type B with c¢ edges and a simple digraph
of type C with n-i edges in one and only one way. Let such a

simple digraph be of type Ai . These are bi S such simple



digraphs. Because all the types A An are mutually

00 By e

exclusive, by repeated application of the addition theorem we obtain

a =b_c + Db, c + ... +bec for all n . Thus
n 1 n 0

n 0 n-~1
a xn = < z b xn c xn .
n=0 n n=0 n n=0 n

This result will be called the MULTIPLICATION THEOREM.

e~ 8
1N~ 8

The STIRLING NUMBER s(n,m) OF THE FIRST KIND is the
coefficient of %' in the expansion of x(x+1) ... (xtn-1) . The

binomial theorem gives the result

(1 -9y) " =1+ xy+ 342%;2- y2
N oy x(x+1) e (x+n-1) yn .
n!
-% 1
But (1 -y) = exp [Xlog -:I-::;; J 5
- 1 x2 2 1
t 1 - = —— — —
hat is, (1 - y) 1 + xlog = t 3 log iy
m
X m 1
+ + I—H_!_ log E'i‘
m oy -4
s{n, m) is the coefficient of x %T in (1-y) It is also,
. . s yn . 1 m 1
by the last equality, the coefficient of or in EF'lOg Zj§ .

This will be called the STIRLING FORMULA.

In the following discussion, we investigate the problem
of enumerating n-Boolean k-antichains. Some preliminary work is done
on the more general problem of enumerating k-antichains on any given

partially-ordered set. As a by=product of these investigations, we



discover a method fo formulating a complete series for strongly

connected simple digraphs, as well as a complete series for acyclic

digraphs.



2. History of the Problem

A one-to-one correspondence between n-Boolean k-anti-
chains and elements of a free distributive lattice on n generators

can be established as follows. Let {Al’ A . Ak} be the set of

23

sets which form the antichain. Then

k
) N a
a=1 ach

o

is an element of the free distributive lattice on n generators
(the partial order relation being formal set inclusion), and

conversely.

The problem of determining the number of elements of the
free distributive lattice on n generators was essentially posed by
Dedekind in 1897 [3], and solved by him for n = 1,2,3,4 .

R. Church [12] obtained the solution for n = 5,6 . His solution

for n =7 is disputed by F. Lennon [7]. In [1], Church presents

an analysis of the free distributive: lattices on 5 or fewer generators
by rank and by conjugacy class.

In 1954, E. N. Gilbert [4] established the lower bound

n
2 ( [%J ) on the number of elements in the free distributive lattice,

where [ E-] is the greatest integer less than He also

n
2 2

n
([n/2] + 2)

obtained the upper bound n

n
n
B. Korobkov [8] improved the upper bound to 24’23([§J)



In 1966, G. Hansel [5] reduced the upper bound to

o
, CI51)

In 1968, D. Kleitman [6] showed that the logarithm of the
size of the free distributive lattice on n generators is asymptotic

o (8
2
If we designate the total number by Nn , these results
thus show that:

(a)

>

n i
R

3
(b) N L F1)

10



3. The Complete Series for the Strongly Connected Simple Digraph.

Let the complete series for the strongly connected simple
digraph be represented by
© n
D(x,y) = D (x) L+
n n!
n=1
Let a simple digraph with n vertices and k components
have the same component partition as it has strong component partition,

i >

and let the spread of the common partitions be <i1, i2, e 1

The edge series for digraphs of this type is the product of the edge
series for each component, since the components satisfy the conditions

of the multiplication theorem. This product is

i

il i2 n
D,"(x) D,“(x) ... D (%)
1 2 n
The number of component partitions with spread <i1, i2, cees in>
is
n!
i, i i
1 2 n .
1 1 1 I | 1 1
11 721 .e. nl 01,0 i

Since a simple digraph can have only one component partition, we can
use the addition theorem to obtain the edge series for simple
digraphs with identical component and strong component partitions

and k components as
i i i

[k]
An (%) = z i

11



all n-spreads <i1, i in> such that i, + i, + ... +1_ =k .

2% "2 1 2 n

With the same range for z, we can write

oo n
2 An[k] (%) %T
n=1 :
© n 3,517
[D.(x) 1]
=7 Vo ; vy /3
n=1 =1 ij!
= i_ z ( k )
k! i1+12+...+in:k il,i2,...,in,...
o D.(x)y) T
1 R |
. j!
j=1
1 k
= "k_!' D (Xay) )
k
where we use (il’iQ""’in"") to denote the multinomial coefficient.

Any simple digraph G can be constructed by taking the
union of a simple digraph on +t vertices for some +t with identical
component and strong component partitions, where the simple digraph
is a subgraph of tail components of G , and any subgraph of the
graph whose edge set has no head vertex among any of the t vertices.
There are (n-1)(n-t) such edges if G has =n vertices.

Consider the edge series

n
(1+X){(n—1)n} + 2 (_1)k (n) At[k](x)°(1+X){(n—1)(n—t)}

k=1 t

1 ~113

1

12



In this expression, each simple digraph with exactly r tail
. . k .
components on exactly t vertices is counted (-1) (E) times by
each edge series

I~

t=1

and so is counted 0 +times altogether, r being always at least

one. Since A [k](x) is the coefficient of yt 3 1 Dk(x,y),
t - = in —
t! k!
° k . [k] : - vt
2 (-1) At (%) 1is the coefficient of o in expl-D(x,y)] -1 ;
k=1 :

we shall write this coefficient as et(x)
We then obtain
n .
(1+x){(n—1)n} v ™) « (X)°(1+x){(n—1)(n—t)} -0
=1 t t

This result can also be written as

(1+X)(n—1)n . g t(x) . (1+X)(n—t—1)(n—t) .
2/ - 2/2 _ 2/2 >
n!(1+x)" =1t (n-t) 1 (14x) (27F)
when x # - 1
Therefore we obtain
t
Theorem 1. Let et(x) be the coefficient of %T‘ in
exp[-D(x,y)] - 1 . Let x # -1 and
@ (n-1)(n) n
_ (1+x) v
Dlx,y) =1+ mZ1 373 oy
T (1+%)

13



Then we have

Corollary 1.1. E(x,y) = 1/6(x,y)

Also, take the identity

n
(e 7R T o (Dm0

t=1
Substitute mn =1 and x = -1 . The result is
1+ 61(—1) = 0.
If n>1 and x = -1 , we obtain
0 + en(—i) = 0.

Therefore

expl-D(-1,y)] - 1 = -y

1
or D(-1,y) = log Et§
Thus, we have
1
Lemma 1. D(-1,y) = log iy = - log(l - y)

Further, observe that any acyclic' digraph A on n
vertices can be constructed by taking the union of any acyclic
digraph B on n-k vertices and any simple digraph whose edge

A
set is a subset of (V(A) - V(B)) V V(B) which has k(n-k) edges.

We note that V(A) - V(B) is a subset of the set of sources of A .

Consider the edge series

An(x) -n An_i(x)(1+x){n(_1)} Foun

14



bR A () (1) KEOT
k n-k
+ (—1)nAo(x)

Each acyclic digraph with exactly r sources is counted

-k (F {k(n-k)}

. . n
k) times by each edge series (k) An_k(x)(1+x)

and, because r is at least one, is not counted at all in the edge

series. Thus the series is identically zero, or if

o A (x) m
Alx,y) = 1 + Z —EL———§7§'° %T
m=1 (1+x)m
P k k
and I(X,y) =1+ z (_1;/2 °i, s
k=1 (1+x)k
then A(x,y) = 1/I(x,y)

15



4., The Inclusion-Exclusion Formula Applied to k-Antichains of a

Partially-Ordered Set.

Let L be a partially-ordered set, and let L Dbe the
corresponding partial order relation (a L b is to be read as

"3 is L-related to b").

Let G be a simple digraph such that V(G) is the set of

., S, > be a k-vector

integers {1,2,...,k} . Let S = <s K

1> S22
of variable constituents. Define the PROPERTY SET of G on S as
the set of all expressions of the form Si L Sj , <i,j> e E(G)
Define the G-COLLECTION of L as the set of all k-vectors Z of
elements of L whose constiticents satisfy the conditions imposed

by the members of the property set of G on S , upon substitution

of 2 for S

For every k-vector of the G-collection of L , if there
is a ditrack from i to j in G , then the i-th constituent of
the k-vector is L-related to the Jjth constituent. This follows
naturally from the transititivity property of the partial order
relation L . Further, if i and J are vertices in the same
strong component of G , then the i-th and j-th constituents
of the k-vectors in the G-collection of L must be the same
element of L , by the antisymmetry property of the partial order

relation L .

16



Now, because the vertices are designated by integers, we can

speak of the smallest vertex in a given simple digraph. Let

'{vl, Voo eees vm} be the set of ¥ertices, one from the vertex set
of each strong component of a simple digraph G , which are the
smallest vertices in their respective strong components. Let vy
be thesmallest of these, v, the next smallest, and so on.

2

Let T = <t tm> be a vector of variable constituents,

12 tys eees
and let r be the set of all expressions of the form tp L tq )
where 1 is in the same strong component as vp » J 1s in the
same strong component as vq _—h L Sj ,and p # q . Then any
m-vector 6 of elements of L satisfying all the properties of
r upon substituting © for T corresponds to an elements of the

G-collection of L by the substitution of tp for all S: where

i is in the same strong component as Vp’ and conversely.

Now r is the property set for some acyclic digraph K ,
which we call the IMPLOSION of G . We see that the C-collection
and the K-collection of L have the same number of elements. K
is the implosion of G if and only if: G has strong component
partition {Vl, V2, cees Vm} if m = |V(k)| , where v, is the

G

smallest vertex in Vi 5 and, if <i,j> ¢ E(K) , then Vi v Vj

does not have a null edge set.

The edge series for simple digraphs G with the above
conditions satisfied for a fixed acyclic digraph K is the product
of the edge series for strong components on each vertex set in the

partition multiplied by the product of the edge series for a non-

17



null coboundary Vi g Vj , <i,3> e E(K) , since all these edge sets
are disjoint and independent, as required by the multiplication
theorem. This product is dependent only on the number of vertices

in each Vi

Since the number of m-divisions such that IVi| = m is

» we see that the edge-series for simple digraphs on n

vertices whose implosion is K is

m m, -1,
mytmote.4m o =0 — I D (x)- T [(1+x) & I-1]
izt ™ <i,i>
I m! E(K)
i=1 * €
Upon substituting x = -1 , this expression becomes the
n
co-efficient of %T in
[l p"(-1,y) = () B0 1og" Lo
m! 24 m! & 1-y
= (—1)IE(K)IS(n,m)
by employing the Stirling Formula. Hence, we have
Lemma 2. If x = -1 is substituted in the formula for the edge

series for simple digraphs on n vertices whose implosion is an
acyclic digraph on m vertices with g edges, the result is

(—1)qs(n,m) , where s(n,m) is a Stirling number of the first kind.

18




By direct application of the inclusion-exclusion method,

we have

Lemma 3. To enumerate k-antichains of L , we must divide k!

(1) [E@]

into the sum of times the G-size of L , the sum

being over all simple digraphs G on the vertex set {1, 2,...,k}

Suppose we consider all the terms involving any G such

IE(G)‘ times

that the implosion of G is K in the summation of =x
the G-size of L over all G with k vertices. These terms
represent precisely the edge series for all simple digraphs on k
vertices with implosion K , multiplied by the K-size of L ,
where the K-size of L 1is equal to the G-size of L over all

G with implosion K . These considerations, along with

Lemmas 2 and 3, lead us to

Lemma 4. The number of k-antichains of I is 1/k! times the sum
over all acyclic digraphs K on 1<p<k vertices and q edges

of (—1)qs(k,p) times the K-size of L .

There is a unique partial order resulting from the
addition of all transversals to a given acyclic digraph. Also, by
the transitivity of the partial order relation L , addition of
transversals to an acyclic digraph U does not affect the U-size
of L . The edge series for acyclic digraphs U such that the par-
tial order formed by adding all t trénsversals of U +to its edge

Lt

set is a given partial order P is (1+x) Upon substituting

x = -1 , as required to eliminate acyclic digraphs from consideration

19



in Lemma 4 unless they are partial orders, we get a coefficient of
s(k,p)(—l)q , where P has p vertices and g edges ; of 0 , if
P has any transversals; and of 1 if P has no transversals, that
is, if every edge of P has as tall vertex a source of P . Let

such a simple digraph be called a BASIC DIGRAPH. Then we have

Theorem 2. The number of k-antichains of L is 1/k! times the
sum over all basic digraphs B on 1<p<k vertices and q edges

of (—1)qs(k,p) times the B-size of L

These results apply regardless of the partially-
ordered set and partial order relation considered in enumerating

antichains.

Further, let Ep be the sum for a fixed p of (-n4
times the B-size of L over all basic digraphs on p vertices and

g edges. Then we can write the formula of Theorem 2 as

Let the maximum number of elements of any antichain of

L be w . Then the total number of all antichains of L is

it~
=
T
~1
~1
K1H
0]
P
=
3
N’
£
=]

1 m=1 k=m

1
D~ E
£
=]

e

20



As indicated in the introduction,

Consequently,

(1 +y+ y2 +

Hence,

that is

(1-y)

(o]

(ZI.—y)—-X =1+ z
n=1 m=1

-x~-1

1+

U TC IS i

I

n

)

w=1 m=1

m

1

|

n

)

n

)

k=

(w+1)!

21

1
ET-s(n,m) men

© 1 ooi
1+ ] Z[ZW

=1 m=1

k=1

. 1! s(k,m)] men 5

s(w+1,mt1)

s(k,m)] xmyn .



5. Methods for Simplifying the Enumeration of n-Boolean k-Antichains.

Define the (A,P) - SIZE and the (A,P) - COLLECTION as the
P-size and P-collection respectively of any power set of a set A

under the subset relation.

Let S = <Si’82""’s’v(p)> and T = <t1’t2""’t1v(p)>
be two |V(P)|-vectors of variable constituents. Define the PRIME
SET 6f S and T as the collection of all expressions of the form

n s, | 0 n ot , Where Vs V> is a 2-division of
Xev, yev,

V(P) . Such an expression will be called a PRIME.

Let % = and @ = <A-X

poeeohT)

SO M R ) > >
12922 M v(p) | v(p)| ™’
where ¥ is in the (A,P)-collection. The result of the substitu-

tions S = L and T = & in a prime will be called its I-VALUE

Define a REGIONAL of P as a prime whose X-value is not
the null set for some X in the (A,P)-collection. Let the number

of vregionals of P be H(P)

Let each of the regionals of P be set equal to a
different set from any H(P)-division of A . Then the system of
equalities can be solved in one and only one way, and that solution
must be in the (A,P)-collection, by definition of the term regional.

Hence, we obtain

Lemma 5. The (A,P)-size is the n-th power of the numer of regionals

of P , where A has n-elements.

22



Suppose the property set of P on § contains the

property S; E-Sj . Then

and all primes of any member of the (A,P)-collection which contain
the symbols s and tj can not be regionals since they are §

for every member I of the (A,P) collection, where Zi is always

a subset of Zj . Conversely, if for every S; E-Sj in the property
set of P on S a prime p does not simultaneously contain both

s; and tj , then we may construct an element I of the (A,P)-
collection which assigns a non-null value (in fact, the value A )

to p as follows. If p contains S then set Zi = A
otherwise, Zi is the null set (for, if we assume that Zi E_Zj
is not satisfied in I , then Zi = A and Zj = ¢ , and thus

contains Ss and does not contain Sj , that is, contains tj .

contrary to the conditions imposed on p ) . Thus, we have

Lemma 6. A prime p on S and T is a regional of P if and
only if, for all s: € sj in the property set of P on S , p

does not simultaneously contain both s and tj , where

S = <31’S2,...,S|V(p)|> 5 T = <'t19-.-,t|v(p)|> .

Let Ki be the set of all vertices j of P such that

s; E-Sj is in the property set of P . Then, if a regional of P
contains S: » it must also contain all sj , 7 € Ki . Therefore,

we can state

23



Lemma 7. H(P) = H(P - {i}) + H(P - Ki - {i}) , where each i is

a source of P ; also, if P is null, H(P) = 1

By induction on the number of vertices in the smallest
component of P , i a vertex in that component, and by employment

of Lemma 7, we otbain

Lemma 8. The number of regionals of P 1is the product of the

number of regionals of each component of P

2y



6. Numerical Results

Herein, Si(n) will represent the sum for a fixed 1
of (-1)? times the B-size of a power set of a set with n
elements over all basic digraphs on 1 vertices and q edges.
Let Nk(n) represent the number of k-antichains of such a power

set. Then, from Section 4 , we write

Il o~/
[

Nk(n) = s(k,m) S_(n)
m

Tt
n=1 k!

Table 1 gives the computed values of Sm(n) for m from
1 to 7 as a function of n , the size of the set whose subsets

form the power set on which we are counting antichains.

Table 2 gives the values of Nk(n) for k from 1 to
10 and n from 1l to 5 , and the total number of antichains for
each n from 1 +to 5 , thus verifying previous results on the

size of the small free distributive lattices.
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Table 1

_ n
S, = 2
. on n
5, = 47 - 2.3
S, = g™ _ 6.6 + 6.5°

s = 16" - 12.12% + 24.10% + 4.9" - ou.8" + 6.7"

S¢ 32™ ~ 20.24™ + 60.20" + 20.18™ + 10.17" - 120.16"

-120.15" + 150.14" + 120.13" - 120.12" + 20.11"

S = 6™ — 30.48" + 120.40" + 60.36" + 60.34" - 12.33"
-360.32" - 720.30" + 810.28" + 120.27" + 480.26"
+ 360.25" - 180.24" - 720.23" - 240.22" - 720.21" + 600.20"

+ 750.19" - 360.18" - 360.17" + 180.16" - 20.15"

8, = 128" - u2.96" + 210.80" - 490.72" + 210.68"
-8u.66" - 8u0.6u" - 2520.60" + 2730.56" + 8u0.54"

+ 840.52" - 420.51" + 2960.50" + 1260.48" - 5040.u8"
+ 840,457 - 1260.u4" + 1680.43" - 10920.42"

+ 1260.41" - 760.u0" - 7560.39" + 8610.38"

+ 5880.37" + 7140.36" + 1302.35" - 2520.3u"

+ 3360.33" + 7560.32" - 3360.31" + 6580.30"
+ 13860.29" + 7560.28" - 7560.27" + 420.26"

+ 2520.25" — 8u0.2u4™ + 70.23"
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Nk(n)

k\n 3 b 5 6
1 8 16 32 ol
2 9 55 285 1351
3 2 64 1090 14000
b 0 25 2020 82115
5 0 6 2146 304752
6 0 1 1380
7 0 0 ug90
8 0 0 115
9 0 0 20

10 0 0 2

TOTAL

NOT 19 167 7580

COUNTING

THE NULL

SET AS

A ZERO

ANTICHAIN
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