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ABSTRACT

A solutfon for the electromagnetic fterd Ín the presence of a

radfally stratlfled spherical lens 1s used to study the radiation
characteristfcs of the Luneber:g lens. rt is shown that for a Huygens,

source excitatlon the directivity of a Luneberg lens increases smoothry

wfth the sfze of the lens and approaches asymptotrcally that of a uni-
formly lllumlnated aperture. on the other hand, the performance of the

lens as a focuslng element deterforates contlnuously at 1ow frequencles
and 1ts dlrectrvity fal1 berow that of a homogeneous spherrcal Iens.

To enhance the drrectivlty of the lens aÈ 10w frequencfes a

neür class of modtfied Luneberg lenses are then fntroduced. The

electromagnetic field of these modffied lenses, for a Huygens, source

excltatlon are also obtained by utfltzfng the spherlcar wave expanslon

method' Thelr radíatlon characteristlcs fndicate a better focusing
property at low frequencles, whlch are examined for various parameters

of the lens profile.

To study the performance of a lens wlth a practlcar source

antenna, the excitation is represented by an array of Huygenst sources.

A rectangular array is used to rnodel the radlated fterd of an open*

ended rectangular waveguide" Thts source array 1s then used to gener_

ate the desired radiatton flelds. The effect of a Lrrneberg lens on the
polarfzation of the fleld ls also studled and for both Huygens and

dlpole sources the computed data of the co-porar and the cross-polar
radfated flelds of the lens are presented.
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CHAPTER

INTRODUCTION

Recent advances in the communícatlons field, particularly

satelllte communications, have renewed the need for economfcal hlgh

galn antenna systems. This has resulred 1n additlonal efforts towards

more thorough invesrlgatfon of some of the existlng antenna deslgns

that has been previously consldered impracticar due to thelr
complexity' rn addition, the avaflabl1lty of new dielectric materÍars

and recent advances in manufacturing technfques have provided

economical means of fabricating ne\,¡ antennas"

High gaf n antennas can be crassif red into t\,/o categorf es,

phase arrays and reflector or lens systems. Phase arrays are normally

made of slmple radÍating elements with a complex feeding system to
supply proper tnput signal to each element. Their characterlstlcs can

be controlled easlly by the feed system electronics, but are too costly
to fabricate and less reliable due to the complexr ty of thelr
electronlcs. on the other hand, the reflector and lens systems have a

simple feed system and the reflector or lens is used to correct the

phase of the feed radiatlon Eo provtde a unlform phase distrfbutlon

over the antenna aperture to lncrease the directívity. Their geometry

is lherefore slmpler than that of a phase array and since the unit
operates as a passive phase corrector, they are more reliable. rn this

thesls \re are concerned prirnarily with Lhe lens antennas and thus, the

reflector antennas will not be díscussed.

Among Lhe lens antennas, one of the most wtdery fnvestlgated
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system is the Luneberg lens. A Luneberg lens l,zol is a variable-fndex,

spherically symmetric refractlng structure rvhlch will form perfect
geometrÍcal images of two given concentric spheres on each other. rf
one of the spheres 1s of inftntte radius, the lens wlll focus a

para1le1 beam of rays from any direction exactry at a point on the

other sphere, or will form a perfectly paralle1 beam out of rays from a

polnt source on the 1ocal sphere. Considerable interest has developed

ln mfcrorvave applicatfons of Luneberg lenses, because of thelr
advantages as wlde angre scanners and passlve reflectors.

The perfect focuslng property of the runeberg lens may be

achieved ln rnany number of \ìrays. Luneberg l2ol found a partf cular
solution for the lndex of refractlon of a lens ¡¿htch has two given

points outslde the lens as conjugate focl-. Hfs solution takes a simple

expllclt form 1f one of the points ts at fnfinity and the other is at

the surface of the 1ens. Brown t3l and Gutman lLzl have designed

lenses wfth one focal polnt at tnflnity and the other lnside the lens.

Gutman has shown that it is theoretically posstble to build a large

dl-ameter Luneberg lens antenna, with whlch a pencil beam can be scanned

over the entire volume of space by movfng a point source over a small

diameter sphere.

A general expresslon for the lndex of refractlon of a lens

which wf1l focus between two given conjugate polnts has been presented

by Morgan 1221. One of the focr is taken to be outsfde the rens or at

lts surface; the other may be ouLside, fnsfde, or at the surface.

Danfele et al Í71 and Kay [r7], and Huynen [14] have presented general

solutlons and properties for a certaln class of spherlcally symmetrfcal

lenses wlth indices of refraction which vary wlth the radlus on1y.
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TheÍr study put great emphasis on the Luneberg Iens case"

Several- Luneberg lens fabrication techniques have been inves-

tigated" Ireeler and col-eman L2rl and lruckley Ilgl , have presented the

stepped-index Luneberg lens and measured the radiation patterns for t¡e

ProtoEypes" The lenses l{ere consEructed by assembling several molded

hemlspherical shells of expancied polystyrene materiar.

Gunderson and Holmes Il0l and Gunderson and Kaufman tIt] have

fabricated two dimensi-onal and three dimensional l,uneberg lenses out of

foamed borosi]icate glass. They ind.icated that a lens fabricated from

glass would have a significant advantage wlth regard to the envÍron-

mental effects- Also lt w1lt handle six tirnes the power density that a

l-ens fabricated from expanded polystyrene can normally handle.

Several researchers have dealt wÍth the theoreLlcal radiatlon

clìaracterlstics of Luneberg .Lens. Braun L2l has derived an expresslon

for the radiation charact.erlst.lcs of the spherÍcal Luneberg lens. He

assumed that the amplltudes of the electrlc and magnetic fields are

arbltrarily known functlons of positlon over the surfac.e of the lens,

and the phases are such as to result in a plane phase front perpendi-

cular to the axis of the lens.

An exact theory of the cylindrlcal or the two-dj-menslonal

Luneberg lens has been obrained by Jasik t15l" Tai t::¡ srarring wiEh

a general dlscussion of the electromagnetic field in a radj-ally strati-

fied medium, apptied Èhe soluÈion to the spherical Luneberg lens. I{e

also derived the general expression for the electromagnetic field due

to a dipole outside and on the surface of the lens. Rozenfeld lz9)
used the dyadic Greenrs functions to derlve an expression for the elec-

trrc fields generated by the Lluygens source in the presence of a

-3-



Luneberg lens"

The scattering of the electromagnetic waves by a Luneberg

lens has also received considerable aEtention by numerous investi-
gators. Garbacz L9it determined the bistatic scattering cross-section

of the Luneberg lens of smalÌ <iiameter" The coefficients of the scat-
tered fiefds \,rere expressed rn terms of the Tu and rM impedance and

admittance functions. TLris nethod has a disadvantage due to the fact

Ehat both the imped;rnce and admlttance functions are rapidly varying

functions. l'hese functions can become very large and even unbounded in
ttre region of anti-resonances" A more convenient method from the com-

putational point of vlew is described by shafai l,3zl " The vector

Potentials are expressed in terms of two auxiliary functions, namely

the phase and amplitude functions. The scattereci field is given com-

pletely by the phase functlons and they \¡¡ere found to be relatively

smooth and weÌ1 behaved. Therefore, their comput.ation is more effi-
cient than that of the Ímpedance and admittance functions used by

Garbacz. Hizal and Tosun tt:1 used the state-space formulation for the

saûìe purpose. Their results are in good agreement with those of

Shafal.

A comparison between the radiat.ion patterns of a Luneberg

lens and a homogeneous sphere of smal1 diameter using geomeÈrical

opEÍcs is reported by Ryan and cain t:01. They found that the hono-

geneous lens comPares favorably wi-th the Luneberg lens with regard to
directlvfty, beaur width and sldelobes. Rozenfeld t}g) has computed the

directivity of the Luneberg lens and compared lt to Lhe directÍvity of

the homogeneous lens ' He found that the directivity of snall diameter

Luneberg lenses is in gener:al lower than that of lhe homogeneous lens,

-4-



'IIle directivÍty of hornogeneous lenses deteriorates whÍ1e the directi-
vity of Luneberg lenses improves as thelr diameter increases. Also,

Luneberg lens does not present the resonance phenomenon experienced in
the homogeneous lenses. This Índicates that a Luneberg lens is a more

frequency independent antenna than a homogeneous lens. Recently, ()noe

et al t23l have intrc¡cluced a Luneberg J-ens conErollabre reflector. The

reflection of such a refl-ector can be modurated by slowly varying data

such as temperature and wind velocit.y.

To enhance the perf ormance of t.he Luneberg l_ens at mi s¡e1g¿y"

frequencies, \Á/e will introduce a new class of modified Luneberg lenses.

we will show that the new lens designs will improve arr the radiation
characteriscics of a Luneberg rens, especiarry, when the lens diameter

is in the order of a few wavelengths.

we will arso investigate the performance of a Luneberg rens

as a wideband antenna. To analyse such antennas a neu¡ model of a wave-

guide radiator as an array of Huygens sources w111 also be introduced.

Prior to the introductron of the new lens design, a review of
the existing lens cìesigns, characterÍstlcs, and nethods of fabrication
are presented in Chapter 2" Chapter 3 presents the spherical vector
u/ave function solutlon for a radially stratified sphere and hence for
the Luneberg Lens. The Luneberg lens radiation pattern, dfrectivity
and rnodal power distributions are also presented, chapter 4 is dedi-

cated to the investigation of the new classes of modified Lenses.

sEartlng with Ehe dielectric constant proflle of the new lens, we will
derive an expression for the radiated field and the radiation

characteristlcs 
"

The radiation characterÍsLics of Luneberg lenses exciÈed by a

-5-



rectangular v/avegulde and the quality of their radiared field are

discussed in Chapter 5" Normally, a wavegulde radiator is modelled by

a single Huygens source. However, a slngle Huygens source does not

describe adequately the radiatlon of a wavegulde with arbitrary cross*

sectional dimensions. I,Je have therefore modelled an open ended

rectangular wavegulde by a rectangular arÍay of Huygens sources,

located at its aperture. It fs shown that such an array represents the

radiation of the open ended wavegulde more accurately and is therefore

used to slmulate the excltatíon of a Lrneberg lens by a wavegurde. The

radiatlon characterlstics of both standard and modified Luneberg renses

are then studied using the arrays of Huygens sources. The quality of

the radiated f1elds ts also examlned by invesLigatrng the cross-porar

radlatlon of the lens.

Chapter 6 summarizes Ehe results and

remarks on the characterlstlcs of Luneberg lenses

recommendatfons for future work"

presents concludlng

It also includes

-6-



CHAPTER 2

SPHERICALLY SYMMETRIC LENSES

2.1 Introduction

Hfstoricallyn conslderable fnterest has been shown 1n scat-

tering by spheres with contfnuously variable but rotatfonally syumetrlc

refractive lndex, due to thetr abllfty to focus mlcrowave radiation.
According to the geometric optics, radiaìly symmetric spheres can be_

have as perfectly focusing lenses when they have an approprlate varia-
tlon of the refractlve Lndex.

A classlcal example of sphertcally

Maxr¿e11 "ftsh-eye" for whtch the refractfve

symmetrlc lenses fs the

fndex varlatlon ls t1 l

n(r) =

where n and e are constants ando

center of symmetry to an arbltrary point.

emanatlng from thls point will be focused

When the medfum ls a ffnlEe sphere, w"lth r

tive to the radfus of the sphere (0 ( r (

whlch brlngs the rays emanatfng from a pofnt

to focus at the opposfte surface pofnt, p

Flg.2"L

(2.1)

1s the dfstance from the

In such a rnedlum, all rays

elsewhere ln the medium.

the radial dfstance rela-

1) , 1t behaves as a lens,

aource on the surfacer por

The ray paths are shown fn

o
.-----T
Lr + (ã) j

A

a

Luneberg lens [L5 rL7 ,22] is a spherlcally syrnmetrlc struc-
variable refracEfve lndexo v¡hlch r¿f1l form perfect geomet-ture r¿lth

-7-



f'Íg. 2.L Spl-rerical Maxwell "fish -eye" lens

Fig. 2.2 Luneberg lens with trùo external Íoci
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rical images of two gfven concentric spheres on each other. l-ig " z.z

and 2-3 irlustrate schematic Luneberg lenses, respectively, wiÈh two

external foci and with one external and one internal focus. l,Jhen one

of the foci is placed on the surface of the lens and the other is moved

Ëo j-nfinity, the refractive index profile takes on the foJ_lowing form

n(r)=(2-¡z¡Itz (2"2)

with the ray path shown in l-ig. 2.4. A plane pararlel incident beam is
brought to a focus at p or the rays from a source at p emerges as a

pararlel beam at the opposire surface. rf the Luneberg rens is nornr

fitted with a spherical cap reflector, 1È becomes a Luneberg reflecter.
Such a lens will behave as a perfect back*scatterer, returnfng a1l the

incldent energy into the backward dlrectlon except for the rays 1ost at

the front surface reflectlon. ln a hÍgher order Luneberg lens or re-
fLector [14j, the rays reverse r\rithln the sphere before coming to a

focus as shown in l'ig. 2"5"

Tl-re lsotropic or Eaton lens fÍrst

scattering device, whlch obvlates the need

The refracÈive lndex variation is

proposed as a perfecE back-

for a metalliq refl_ecter.

(2"3)
) - r I/2n(r) = r

The ellipttcal path of a ray through an Eaton lens emerges in the back-

ward direction as shov¡n in t'ig, 2"6.

Luneberg has developed the t.heory for the strati-fied spheres

-9-



Fig.2.3

Fig. 2.4 Luneberg lens
on the surface

Luneberg lens with one externaI f ocus ancl one
inLernal focus

wÍth one
of the

focus
lens

-10-
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Fig. 2.5 Hi.gher: order Luneberg
inf ini ty and tire other
of the lens

lens wÍth one focus at
on the ncr,lr-side surface

Fig. 2.6 Eaton lens
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as an academlc exerclse in classlcal optlcs

lmmedfately recognized their utiliry.

However radar workers

2.2 Luneberg Lens

Luneberg lenses are the most commonry used among all the

above classes of renses. rn its complete form, the rens ls a sphere

wfth the property that energy from a feed source at any point on the

spherlcal surface, whlch fs propagated through the sphere ls focused

Ínto parallel rays emerging from the other slde of the sphere. perfect

focusing 1s obtained for arl feed posrtrons on the surface.

As presented above the lens is formed as an lnhomogeneous

medfurn 1n whlch the lndex of refractlon n varles wfth the lens radius

r accordfng to the expresslon in equation (2.2). A centrar cross-

sectlon of the sphere 1s shown ln Flg " 2.7, together wlth typicar ray

paths through the lens. The ray paths are sectfons of elllpses which

are glven ln polar coordinates by the expresslon t16l

s ln2cr
1 - cosa cos(28-c) (2 .4)

where . 1s the feed angle deffning a partfcular ray. Because the

lens 1s a symmetrlcal structure, certain relatlonshfps between angles

in the system are evrdent from Flg. 2.7. The most important is the

equiangular relatlonshfp between the angle formed between the ray and

the radlus vector at the polnt where the ray leaves the lens, the polar

angle deffned by the radlus vector to the polnt at whlch the ray leaves

the 1ens, and the feed angle. The feed angle is measured at the source

-t2-



Fig. 2.7 Geometry of Luneberg lens cross-section
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point l)etr,reen the central ray and the general ray. This equiangle 1s

desÍgnared a in Ffg. 2.7.

Another point of interest is the fact that the radius vector

normal to the ray path bisects the ray path wÍthln the lens " Further

geometrical information obtalned from FÍg" 2.7 shows that the pat.h

length of a ray within the lens can be obtalned as a function of the

feed angle. For a maxlmum feed angle of 90", the ray travels along the

lens perfphery for a dfstance of r /2 . other path lengths wÍthln the

lens can be determÍned from the fact that the opÈtcal path length

equals r/2 * cosc " From the path length varÍatlonsr'lt is posslble

to glve an expresslon for the variatfon ln the phase across the output

arc of the lens cross scr_'.tion as 1- cosc', where c ls the polar

angle.

Another slgnificant property of the Luneberg lens is the fact

that the rays emerglng from a feed horn do not appear fn a unlform

manner across the aperture, but lnstead Eend to spread out ln the

center and approach a Eheoretlcally lnfinite concentratfon at the

edges. Because of this fact, the analytlcal aperture illumination ls

obtafned from the original feed pattern multl-plied by the fac¡or secq

2.2.L Two-dimensional Luneberg lens

Many varfatlons of Ehe Luneberg rens have been anaryzed.. The

sfmplest Eo consider 1s one fn which only a plane section of the lens

ls utfllzed lzLl. The ray paths through thls secEion are ldentlcal to

those of Fig.2.7. However, the emerglng wave front ls not a plane but

a saddle-shaped surface. Thts surface is the envelope of the Huygensr

wavelets, wfth centres on the semlcircular aperture. In rectangular
-14-



coordinates, this surface is given by the parametric expression

x=B

/ I-- d-r .

- 

(I
c

| { t-"2 ¡z
I-n2 r/2-æ- ( l-s-z*¡ z1

Because of this distorted wave-front, certaln limitatlons exist in the

radiation pattern. This pattern has been analyzed by peeler and Archer

1,241 , where it is shown t.hat a slde-lobe revel of L7 to lg dts exists
for all nornal feed-horn iLlurninations. This problen can be

clrcumvented by lntroduclng a linear aperture, as shown rn l.ig. 2.g. A

cylindricar wavefront is produced by thls system, and tire expected

pattern is slmil¿lr to that obtai-ned from an ordinary line source. lc
should be pornted out that rhe lntroductlon of the l-inear aperture

destroys the symmetry of the lens and limlts the system to narrorr¡er

angle of scan.

2.2"2 Virtual-source Luneberg lens

A variation of Èhe Luneberg rens invorves the addition of

plane metarlic reflectors passing through the centre of the lens l,26).

The additlon of such reflecÈors produces vÍrtual sources where

posÍtions depend on the orientation of the real feed source and the

metallic reflector. l-ig. 2.9 shows a lens cross-section with a single

reflector in place. l-rom a consideration of the Eay paths, it is
evj-dent that a perfect vÍrtual image of Èhe real source is forned. It
siroul-d be noted from the figure Èhat not all the energy from the real

-15-



Fig. 2.8 Luneberg lens with linear aperture

Fig. 2.9 Virtu;rI-source Luneberg lens

METALLIC
BEFLECTOR

\\\.\
\\\

--)..\
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source whlch passes through the lens strlkes

chls anLenna rvill produce two focused beams,

and one from the virtual source.

It is posslble to add more plane

complexity of virtual sources.

the reflector. Therefore

one from the real source

reflectors and create a

2.2.3 Small-feed-circle Luneberg lens

Another variatlon of the spherical Luneberg lens has produced

a system wfth smaller radius of the feed clrcle and with limlted angle

of scan' It ls interestlng to see that the requlrements for a smaller

feed clrcle and perfect focuslng does not produce a unique expressfon

for the varlatfons in the index of refractlon.

The flrst expresslon was obtalned by Eaton tg].
considered a sphere of unit radius, with refractlve index equal

unity on the surface and wlth a feed positlon at any distance, less

than or equal to unity, from the center of the sphere. rf the radlus

of the feed clrcle is denoted by a then the variatron in refractrve

lndex ls given by the followlng expressÍon

for 0(r(a (2.5)

for a(r(1 (2.6)

from the expresslon 1t can be seen that 1f the feed cÍrc1e radius is

one-ha1f the radius of the sphere, the refractlve index at the centre

fs 2 , aE the feed clrcle fs L.7 o and at the edge of the lens 1Ë

_L7_
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decreases to unity "

The second expresslon for a sma11-feed-circle Luneberg lens

I¡ras derlved by J. Brown t3 ] " He lndicated that the problem could be

attacked by assuming a certain variation in the index of refraction

between the feed clrcle and the outer surface and then computlng its
varlatlon wlthfn the feed circle whfch would yíe1c1 the deslred focusing

properties. He consÍdered the problem of bringing a1l rays incldent

upon the lens surface lnto the feed polnt and displayed tr,ro solutlons

to this problem. The flrst solution involves choosing a refractive
lndex whlch 1s constant ln the outer region. rn terms of the variables

used above, the refractive index was chosen l/a . With this constant

value of the refractive index, the index varfaLion in the lnner reglon

v¡as found by a numerical integratlon process. For a feed clrcle of one

half the lens radlus, the results showed that the index had a maxrmum

value of 2.34 at the lens centre and decreased monotonically to the

value 2 at the feed clrcle" The lndex rn the outer region had the

constant value 2 - The variatlon 1n the lndex is then continuous,

but the slope of the variatfon ls discontinuous at the feed c1rcle"

sínce there ls an abrupt dísconLinuity 1n the index of

refractfon at the lens surface, a ray passing from Lhe region in whlch

the index ís 2 into free space, where the index Ís 1 , suffers both

reflectlon and refraction. rn order to avofd thls problem, Brown

consldered a lens wlth lndex of unlty at the surface. He showed that

1t l¡/as lmposslble under this condltfon to select a constant fndex ln

He found one permissible index variation to be

_18_
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Jnz = I +y(t-r)(r-a) (2.7 )

r¿here y is a posltive constant.. uslng this value of the lndex of

refraction for the outer region, it was posslble Lo evaluate the fnd.ex

ín the lnner regfon from the followfng expressfon

4an2 = ,r*rr{/7 ('*") * [¿o' * "r(t-.)']t"]t
$ + lta)z

(2.8)

where p2=L-r2rl

Brown selected a value of

value ml.nlmfzed the refractfve fndex

refractive lndex varied continuously

the feed clrcl.e, and hence to unlty

refractlve lndex vs. radius curve was

A third sma11-feed-circle

He selected an lndex variation

Y equal to 4/a , slnce such a

requlred at the lens center. The

from 2.2 aL the center to 2.0 at

at the surface. The slope of the

dlscontinuous at the feed circle.

Luneberg was obtained by Gutman

glven by the expresslonlL2l

rL2 = (1 + u2 - t27¡^2

He then showed that wlth the feed at a distance a from the lens

center, the outgoing rays would be parallel. rt is obvlous from thls

expresslon that the lndex and its slope are continuous functions of the

radfus. For a feed-clrcle radlus equal to one-half the lens radlus,

the lndex varles from 2"24 aÈ Ehe lens center Lo 2 at the feed-

cfrcle radius and to unlty at the surface.

-19-



It is evident, then, ttrat many expressions are available for

the design of a small feed-circle Luneberg 1ens. A comparison of the

varlous desi-gns can be made for feed-cÍrcle radius one-haff the lens

radius on the basis of the maximum refractÍve index required and the

maxixûum effective aperture obtained. This is shown in Table 2.r, where

it can be seen that Hatonrs design provides a minimum in the required

index but. Brownrs design provides â ma¡i61¡* effective aperture with

only a small increase in refractive index.

TABLts 2" I

Comparison of Sroall-feed-clrcle Luneberg Lenses

I

I Haton

I Brown

I cutman

| |taximum refractive index I Ef f ectlve Aperture, "Á 
|

I

I

I

2.0

na

2"24

86.6

r00

100

rt should be noted that although alr above desrgns have

theoretically produced a small feed clrcle, the practical utilization

of such designs 1s physically difficulc. Also the tntroduction of the

feed and feed mechanism to these desÍgns for pracricar use may

serlously affect their performance.

2 "3 liethods of Constructfng Luneberg Lenses

l"lany different methods have been proposed for constructing

the Luneberg lens- Several schemes have been attempted in a spherical

lens to satlsfactorily approximate the variation of Ehe dielectric
constant" No practicable scheme for smoothly varying the relatlve

-20-



dÍelectric constant trom t\,¡o at tire centre to one aÈ the surface has

been achieved 
"

Lenses have been ur,ade with void-type dielectrics in which a

series of flat circular plates of different radii are stacked on one

another to apProximate a sphere" These plates have a relative d.ielec-

tric constant of 2 or greater. Holes, l/g to 1/2 inch in diameter, are

drilled in each plate to reduce the "effective" dielectrÍc constant to

nore or less the correct value at each point in the sphere. such

dielectrics are neither homogeneous nor isotropic, however, the result-
ing lenses Dây be severely sensitive to polarlzation unless very small

holes 1n very thin plates are employed,

Artificial dielectrics, in whrch conducting particres are

dispersed unif ormly in a .l.ow-< medÍum, are frequency-sensitive, unless

the dimensions of lhe loadlng elements are either very small with

respect to wavelength or in the order of magnitude of a wavelength. In

most cases, adequate polarizabÍlity requires other than spherical l_oad-

ing elements, with the larger elements of the order of one wavelength,

isoLropicity then requi-res complicated and expensive shapes" one

reasonable artfficial dielectrlc appears to be one in which very tiny
(micron dimesioned) conducting flakes of a uetal such as aluminum are

randomly dispersed in a 1ow-<, low density, foam base. lsotropiclty

and homogeneiEy are fair to good, but the dissipatlon factor is too

large for many applications in the mj crowave region tIBl .

A strait forward approach invol-ves an approximation to the

sphere by a central spher:e and several sphericar shells t2lJ. The

central sphere has a dielectric constant of about 2, white the shells

will have decreasing values of dielectric constant with increasing

-21 -



radius" Through the use of a sufficient number of dfelectrlc shells, a

sufficÍentry close approximation to the required lens can be obtained.

rf a two dimenslonal model of the lens is considered, all the

prevlous methods of construction are appllcable. Another const.ruction

method involves obtalnrng the requíred refractive index by using the

concept that the phase velocl-ty of a ¡¡ave can be varied by varying the

spaclng between parallel plates 1241. If the electrlc fleld vector ls
paral1e1 to the plates, the requlred refractfve index is obtained by

varyfng plate spaclng a accordlng to the followlng formula

^a = G;-l +Tjrn (2.10)

where dlelectric constanÈ for medium betvreen parallel plates

r = radlalcoordinate, 0<r<1

Thln metaltc cyllnders can be used between parallel plaLes to
produce the varlation in the refractlve lndex required in the Luneberg

lens. rf the plns are mounted between the prates so that they are

perpendicular to, but do not contact efther plate, the deslred

variation can be obtafned by varyrng the length and spaclng of the

plns.

The most used technlque for the constructron of Luneberg

lenses ls the stepped index technique tlgl. rn the following section

we wfll revlew thls technique in detatl.

2.3.t

In thls technique the desired contlnuous variation of index

of refracLlon with radius 1s approximated by a number of constant lndex

_LL-



$Pherical- shells' The most practlcal dielectrics for use in such a

tyPe are adjustable denslty foam materials in which the relative
dielectric constant can be held v/ithin a tolerance of about t 0.02 for
dielectric constant between I and 2" These foams can be consÍdered

void-type dielectrics, but the vofds are very smaLl_ and

size and shape so the Ísotropicity is reasonably good.

factor can be kept to less than 0.0005.

The following facLors lnfluence the choice

reflector. stepped-index Luneberg lenses has been made in

any diaureter from 3 to 48 in. The number of steps varies

mum of l0 fn smalt slze lenses to 50 in larger units.

-23-

number of steps in any particular case:

a) The maximum required frequency of operation places a rinita-

tion on maximum shell thickness of the order of a half wavelength. If

shells are much thicker than a harf wavelength, a type of wave-trapping

phenomenon apPears to be possible. It tends to reduce the transmission

of energy from one shell to the next.

b) The degree of production-Iine control over the dielectric

conStant (t 0.02) may limit the number of steps.

c) Individual shelLs cannot be made arbltrarily thin because of

moldíng difficulties and the relatlvely fragile nature of very Low-

density, low-r foams. At Ehe outside of a large 1ens (rc-l), it is not

feasible Eo make shel-Ls much less than l/g inch in thickness. The

sEep-wj-se approximafion of the smooth K versus r curve permits the

use of an outermost step which is actually air, and the focal point can

be located just outside the surface of the balJ. thls j-n turn, permits

optlmum adjustment of the position of the feed antenna or the cap

random in both

The dissipation

of the actuaL

practically

from a mini-



2"4 Appllcations of Luneberg Lenses

Luneberg lenses are commonly used in lens antennas and pass-

ive reflectors " If a sma1l broad. beamed feed antenna is placed wÍth

its effectÍve phase centre at the focal radius of the lens, all energy

will radiate lnto the forward henisphere. Neglectíng the scattering
due to finÍte size of the source and the lens, thfs radiatlon wilI be

collfmated along the axis of the lens as shown in Fíg.2.10. rn prac-

tlce the feed can be rnade llghtwelght, so that lt can be moved radially
over the surface ol- the sphere to provide a convenient means of scann-

lng a radfatlon beam. A series of ftxed feeds, electrically swfLched,

ls also posslble for scannlng. The lens does not impose any lfmitation

on the scannlng angre, srnce iÈ can remain statronary whfle the rlght-
welght feed ts moved over tts surface.

Typfcal feed devfces are smalr-aperture waveguide horns,

open-end waveguldes or dlelectrÍc loaded waveguldes, the prime requlr-
ment being a satlsfactory approxlmatlon to a polnt source. The dlrect-
fvlty, beam wldth and slde-lobe leve1 of the resulÈing feed-plus-rens

antenna system can be controlled to some extent by modifying the fllu-
mlnatlon taPer and by radial adjustment of the effectfve phase center

of the feed wlth respecE to the focal point.

The majorlty of Luneberg lenses are used as passfve refrec-
tors ln conjunctlon wfth approprlate cap reflectfng surfaces. These

are wldely used as radar cross-section enhancement devlces in target

drones or other test vehlcles. They are arso appried as tow targets,

runr¡¡ay mnrkers and seaway channel markers, and ln test installatlon for
radar equlpment IlBl "
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Fig. 2.I0 Luneberg lens antenna

Fig.2.LI Luneberg lens reflector

1800 CAP
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If a metal 1ic reflector cap ls used to cover a portion of the

surace of the lens, the combination wf11 serve as a passlve reflector
of mfcrowave energy throughout a soltd angle equal to Lhat subtended by

the cap as shown 1n l'ig. z.rL. rf the reflecting cap is circular and

subtends a conlcal angle of 90o at the centre of the sphere, as shown

ln Flg. 2.Lra, the reflector will have a uniform response over a

conical angle of 90'. wlth a 1g0" câp, the conical response angre wfrl

be increased beyond 90" but the response pattern will not be uniform

because, as rhe tncldent angre changes, a varfable portlon of the inci-
dent radiatfon will be diverted by the outslde surface of the cap.

This effect 1s shown ln Fig. 2.1Ib.

The theoretlcal scatteríng cross-sectfon of the Luneberg Iens

reflector at the angle of maximum response 1s equal to the scatterlng
cross-sectlon of a circular flat plate whose radius is equal to Ehat of

Èhe sphere

4n3R4
u-ô

^¿

where R >> À . In practlce, however, o

belorv the theoretlcal value, due to losses

lens "

.nay be as much as 1.5 db

and imperfectlons in the

Recenrly a Luneberg controlrable reflector lz3l, which can

send information about slow1y varying data such as temperarure, wfnd

veloclty' etc, has been manufactured. The system is achieved by prac-

lng half wavelength slots in two overlapping plates with DC bias lsola-

tlon on the focal phase of a Luneberg lens. The lens reflection can be
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controlled by a swÍtchlng diode lnserted at the feed point of the

slot "

An experimental reflector consistlng of 6 x 48 slots r¡ounted

on a Luneberg lens has produced a modulatlon depth of more than 10 dB

over a range of 180 degrees incident angle.



C}IAPTER 3

VECTOR WAVE }'UNCTIONS I'OR THE SPHERICALLY SYI.II'IHTRIC LENSES

3"1 lnt roduction

An erectronagnetic field r¿ithin a volume may be specified

terms of its distributÍon over the surface enclosing the volume or,

its source distribution. ln either case the fiel_d generated at any

point in space may be represented in terms of certain integrals over

the surface and source di-stributions orr in terms of an appropriate

series of wave functions. ln the latter case the expansion coeffi-

cients are normal-ly determlned from the boundary conditions and the

source distributions.

The representatlon of Ë.he field in terns of the surface and

source distrÍbutions provides a sinple and general formulation for the

field. Llowever, while such an integral formulation is convenient for

certaln numerical- computatlons it requlres t.he evaLuatlon of the inte-

grals for every field point. on the other hand, t.he expansion method

using appropriate wave functions, represeltts the field in terms of an

infinite serieso but. its coefficient.s need to be determined only once.

Althoughr iEs forn is more complex, and the approprlate r¡Iave functions,

saËlsfyÍng the boundary conditlon, can be determlned for certain slmple

geometries, it provides a convenfent form for understan¿ing the field

behaviour and i-t.s computation. For fiel-d computaÈion, in this method,

the infinlte serles are usually truncated after a certain number of

terns " The required number of Ëerus depends on the type of the field

distribution and the size of the object Ín scattering or antenna

_28_
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problems.

ln the present work the expansion function method Ís used Eo

fc¡rmulate the prclblem of a spherical Luneberg rens. Because of the

spherical geometry of the lens, spherical wave functions are utÍlized.
within the lens the region has a permlttivity which is a function of

the radial coordinate and appropriate v/ave functions must be utÍIized.
The form of Ehese functions are discussed first and the total fields
both inslde and outslde the rens are represented by proper series form,

with unknoe/n expansion coefficj-ents. These coefficlents are deÈermined

by utÍIizing the boundary conditions on the l-ens surface. F.or exciEa-

tion both electric and nagnetic dlpole sources are considered and the

expected field equations are generated. The results are also obtained

for a Lluygens source, which is simulated by a combination of an elec-
t ric and magnetic dÍpole"

3"2 Vector l^Jave !'unctions for a Itadially StratÍf ied lledium

The el-ectromagnetic fleld associated wich a radially
stratlfied mediun has been discussed. by several writ.ers Ll,22,32,33,
361.

In a radially stratlfied medium

is a functlon of the radial distance r ,

coordinate system, Maxwell equations in

written in the form

where the di-electric constant

measured from the origin of a

a source-free region can be

V*g ítrp 
ou

-29-
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VxH

V"H

- 1u-re <(r)Eo' (3.2)

V . Ir(r)n] 0, (3.3)

o , (3.4)

where r (r) denotes the

e^ , and assurnlng a tfme
o

By ellmlnatlng

obtains the followlng two

relative dielectric constant wlth respect

dependence of the form u-ltrtt

eÍther E or H from (3.1) and (3.2) one

vector equatfons:

to

VxV"g-kzoE o-t

t 2rtt

(3.s)

vxv*H-I!*v*n-
K

o-t (3.6)

where y2

set s of \./ave f unct ions "

3.2.L The magnetlc or transverse electric modes

ffelds are derfved by assuming the electrfc

to a vector wave functlon defined by:

o2u eoo

The general solutlon of (3"5) and (3.6) can be deflned by two

field

These types of

to be proportlonal

where the superscrfpt

"(*)=o,.(v(')l),

(r) denotes the magnetlc type and
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the unft vecror fn the radlal directlon (Ffg. 3.1). From equations

(3.5) and (3.7) ;(m) ls found ro be a solution of rhe wave equarion
lm)if ,1r' ' satísf les

¿z* 
(m)

-ñr- .;%};o þ {"r,,u 4P, + ñ+",0 +P * k2.f.,(m) = o (3.8)

The general solutions for the above equation are

(m) m cos,fe = Srr(r)Pr.,(coso)"tr, r0 (3.9)
mn

o

where Pm(cos0) denotes the associated Legendre functlon, and ee o

for even and odd functlons respectively.

The radial function s (r) satf.sfles rhe differentr-a1

equat lon

d2s

, I + lt2r - "(" T 1)l t = odtttr¿Jn (3.10)

The vector I¡/ave functlons corresponding to the magnetlc field are glven

by

;(ur)=1,r-;(m)
^" =kv"M;' (3.11)
ott o*t

where by definltion

mn
o
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rvhich can be written as

;(m)
e

mn
o

S n___ _ (+r

, s as
=it-*r +r n -^

K Lr- e rã. (t
mn

o

m
mPn s'ln 

^---:----:- mö 0 -SlNU COS

Sn-
re

mn
o

a0

ô)l
. as

^Inr *-;--rdr

m
AP

n

¡(m)
e

mn
o

where

and

I
k I "(",,I 1) s pn c?smo

n n sln---

aPm,ncos( ao 
"i.,*Q

m.mP4- n sfnU + ------= mós]-nu cos

cos 
^.

"i'm0 0) = (3.r3)

(3.14)

(3.rs)

*ã . )l
mn

o

aPmn cos
Jõ- s1n

m

_m
mP_ns1n^= + 

- 

-- m0 0 _e slnO cos
mn

o

m(þ0

e
mn

o

n(n * 1) PÏ l?lrnon sln r

3"2"2 The electric or transverse magnetlc modes

The electric or the transverse magneLfc

assuming the magnettc field to be proportlonal t.o

function deflned by

lt(") = v t (,1,(")+) ,

1_
I_

modes are derlved

a vector \,/ave

by

where the superscript (e)

procedure used in sectlon

denotes the

3.2"L, or(t)

electrlc type. By the same

fs a solution for the wave
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equation if !r(") sarisfles

.#3 - ::: +1 * ;,=î* þ {",,,u ,viu)r *

":" =v x (*:") il
ott ott

. ;,;*r, {fP + k2.p(e) = o (3.i6)

The general solutions for 3.16 are glven by

(e) m costi,; = Trr(r)Prr(coso ) 
"i;** 

, (3.17 )
mn

o

r¿here T (r) satlsffes the dffferentLal equatfon
n

dzt dr

æ+-:å:f + ltzr -.qPlr,, = o (3.18)

Equatlon (3.18) differs consfderably from equarlon (3.10) when r is a

functlon of r e but they become the same when r fs a constant" The

vector wave functfon representing the electric field fn thts case is
glven by

-le) I ,, _ ;(m)N' =¿v"M;-' , (3.19)
oml ot'

where

(3 .20 )

The electromagnetlc fteld assoclated wlth a radially stratified medlum
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in a source-free region can in general be represented by

ts=å,o""1"*or,ñ(")) ,

3"3 Solution for the Spher@

The spherical Luneberg lens is characterized by a dielectric
constant which varies according to the relation

-2r=2-(;) ,0<r<a, (3.23)

where a is the lens radlus" When equatfon (3.23) is substituted inÈo

equatfon (3.10) the resultant equatlon ls transformable into the

confluent hypergeometrlc equatlon t33J " one solution for that

equation, whlch 1s finiCe at r = 0 Is given by

-. n*l -P2l2P^ 
lHl(o, y, p2/p^),

"., =Þ e

( 3. 21)

(3.24)

where

p=krrg=ka
a

t. 3 3a=7(n+1-o^) r .r=n*;

IFI (o, y, z) denotes t.he confluent hypergeometric funct.ion or

Kumms¡¡s function that satisfies Ehe differential equatlon
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when equatlon (3.23) ts substftured into equation (3.18) the resultant
equatlon becomes

dzl ^ dr-Ãå.6.;+;.#. l, - #- n(n-l 1) I r,,= o (3.26)

r¿here

-^2 tq -
rn= eoz^- p2)r/2rn+ru-p-t¿Þa rJ^ (3.27)

n

and

U - satlsfles the equatfonn

d2 ¡s du

-++2(n+l -P \ flrl2-2n*3dp. p -Çruo-rL-- 
%

#. rL- t> #-îr^¡ = o (3.2s)

l3p2ì

A further transformatlon of the independent variabLe z =

p2 / p ^ converrs (3 .28) inroa

with

d2u d
NYîf * (:-') #- r;.:. #l u.,= o

3'( =n+ 
2

"r=T c"*å-p,* ù,
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Lo'2 = - T6;-a
3*3 i6o'a

^_.)oz - tQa

Tai t33l has found that the differential equation for

different from the differential equation for S-, , and

generalized confluent hypergeomeEric funcËÍon.

3.4

T
n

he

is basicall-y

caIled it the

Radiation from an Electrj-c Dipole tn the presence of a spherical

Luneberg Lens

A horj-zontal electrlc dipole of moment is located
X

= or I'ig. 3.1. The fieldparallel to x-direction at r = b, 0 = o,

due to the dipole in free space is given

1k3o @

;i 'x ,. 2n * I
4te n(n + l)n=r

o

by

r,(r)(pb) 11:i) *

i"{o) ri(])

(r)
touh,.,'(oo)J'

pb
r)
ln¡{

e
r<b

(3.29)

ñ( ?)eln r>b
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D IPOLF

Fig. 3. 1 Spherical coordinate system
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_:
Ht=

u}c2 p
x I

n=1
4tr

2n*1
n(n+l)

nlt' {oo> ñ(l)
teonll)(eo)l'

pb

* [oojrr(oo) ]' 
o{r)

P U 
^'eln

;( 1)
eln r<b

(3.30)

i"{oo> ñjl) r>b

where

p. = kb ,
D

-t1)M' - V
e-In
o

Irj,,(kr)Pl{.o"0I lii + lr ,

ñ(i)
e-ln
o

The vector lrave

can be obtalned

derivative wlth

1
= f v t ;(t)ur'

o

functlons of the thlrd kind 
":il ,

by replacing jrr(kr) by t 
(1) qtr¡

respect to the argument pb "

ñ:i],":il,ñ:îl
. The prlmes denote

The scattered ffeld in the presence of the lens and

transmltted ffelds lnslde the lens nlay be shown to be in the form

ik3P @

;;s_ x 1 2n*1
" - -Znl L. ;(n-T-Itn=l

t"Í')nÍt ) 
ro o>u{])

, (e)-t- ct
n

t1)loot'''(oo)i'
%

_38_
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k2p t @

H' = -z;r- 
"l=, 

**++ t"Í*'nÍt',oo,oÍ?'

t1)
*oi",[eohì.'(eo)]'"!ilf , t]â, (3.32)n Pb

ik3o @

--t _ 'x , 2n * I r., (m). (1
f, ---;- ) -4'rre un nln + ¡ iÞ¡ nr., ){or'":il

n=I

. . (i).
, .(u¡ [oon'-'(oo)]' -(.),-rÞ N^'t..I ' (3'33)' -m 

oO 

- 

*.lrJ t

k2o @

nt = '*' \ +++ tsl')n(t)coolñji)4'fi nn=l

(1)

- o (") tpbh; '(oo) I'
no 'b

The coefficrenrs 
(m) (e) (m) (e)o., , cn , ß., and ß., can be determlned bY

applying the boundary condirlons thar + " ; and f t H are

contlnuous at the surface of the sphere. This gives

"!ïli,r(a. (3.34)
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R RI S] SI RI(n) I , I _ -r ., , , "^a"-''=\(\-{, r.%-\, ,

.(*) - 
Rr , Ri Rå s: Rå 

(3'3s)

ßì""=E,q-nt r,i-it,

o:') =t,i t, , ,+ t, ,

^(.) - 
Rr , *i R{ rr nå . 

(3'36)

B;-'=T,q--qt,,T-{t

where

Rr = p.j,r(0") , Ri = # [o j,r(p)llp=pu ,

R3 = p.n(t)(ou) , Rå = # to nlt',0)jlo=0. ,

s" = srr(pu) , s, = -9 s"(o )lp=p" ,

T. = T.,(p"), T' =#Tr,(p)lo='",

or=k
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For the Luneberg lens case the source

of the spher:e correspondlng to b = a

to the dlpole ln the presence of the

should

" The

lens is

be sltuaEed at

total electric

therefore

the surface

fleld due

k2o @* ^ \'tr--)
e 4rea L-

n=I

T.-t *3'

The far-zone expression

expresslon for ":il ,

*å_
R3

¡or ¡ can be
e

-(3)*.t. given bY

ñ(J)eln
(3 .37 )

- 1)

obtalned uslng the asymtotlc

2n+1
n(n + 1)

"(J)oIn
TR:.a J

tTt R^aJ

S'

su)
a

"(l 
)

oIn

ñ(J )
eIn

(- r)t+l
fpe-
p

1p
e

p

o1n

(- r)t

resultlng in the far electric field of Ehe form

{} " t.tr.,)

kr
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E

k2p 1p æ

Gå r|> I. (- i)"
n=l

-1m -oIn

2n+l
n(n + 1)

t"IIl-
eLn1,o_l

R3' (3 .38 )
..5'R3

SI
-=1 )ò

a

TR:<#-t>
aJ

3.5 Radiatlon from a Magnetfc Dipole in the presence of a Luneberg

Lens

when consldering the radiatlon of a magnetic dipole it ls
convenl-ent to use the duality prlnclple [6, 33]. To change from a

system of fields exclted by an electrlc source to one exclted by the

magnetfc source, or vice versa, it fs only necessary to reprace the

quantltles by thelr duals as presented in Table 3.1.

TABLE 3.1

Dualfty Relarlonship

Erectric"o,'.". lt l" lu l. lt|

The expresslon

on the surface

wrltten as t6l

the magnetl-c

the sphere 1n

field due to a

the negative y

magnetlc dlpole located

dlrection can then be

for

of
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I.
-t
R.L

J

11 =
m

-kZo @'y 1' 2n * I
-Ç¿ ¿, n(n +-lt

n=.t

ñ(l)oln
S RI-

ct'oJ - rr
(3"3e)

l_s g]-ven by

(3.40)

;( 3)
fl_eln

Et.([-r)
Ja

sl-nce

xH

The electric field radiared by the magnetic

ik2o @

; - 'y t"r - -Ziã- L
n=I

2nII
n(n + I)

Iq
r(: )

¡ oln *L RIS, Ja\ ¡¡-i-- t)
Ja

dipole

N( 
3)

eln
RI TI

,Ja,t¡;-1-)
JA

3"6. Radiation from a Huygens Source ln the Presence of a Luneberg Lens

ln rrny practical srtuations a Luneberg rens may be excited

by an aperture radiaEor, such as an open ended waveguide. An exact

sorution f or a ]-ens illuminated by a waveguide radiator is not

feasible, but may be slmulated by a combination of an electric and a

magnetic dÍpole forming a ltuygens source. This representation is
approximate and neglects the diffraction effects at the waveguÍde open

end. However, it provides a convenient means of approximating the

waveguide radiator and investÍgation of lens radiation characteristics.
ln this section¡ w€ therefore, first define a Èluygens source and

present iÈs fiel_d and properties.
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3.b"1, @ source

¡ =Jxo
placed at

Assume that a constant electric and rnagnetic current source

¿rncl I',1_ = - |'1 of equal length L << À are simultaneouslyyo

the orÍgin of the spherical coordinate system, l-ig" 3.1.

If the currents are adjusted such that

nJL = lrl'oo

far fields of this source are given byËhen the

_ -ik exp(iKr)
4tr t cosS(I - cosO) JoL ( 3.41)

(3 .42)

The unique fealure of this fictiEious source compared Eo the

electric or Ehe magneLic current erements is the factor (I - cos0)

whlch Èends to cancel the far field radiation pattern in the region

0 < 0 < r/2 " Figure 3.2 shows the radlation pattern for a Huygensr

source 1n free space" Due to this cardold shape, aperture antennas

whfch have slmllar field dfstrfbutlons can be represented by Huygens'

source elements.

3.6"2 Huygens source in the presence of a Luneberg lens

To obtaln the electric fleld due to a Huygens source located

at the surface of a sphere, comblne equation (3.37) with equation

(3.40), the resultirrg field equaÈion is given by

E=
0

-ik exp(iKr)
4"i-- sinQ(I - cosO) JoL 

"

ík3 P
nn{r) = an* i

n=I

-4lt-
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Fig. 3.2 Radiatj,on pattern of a Huygensf source
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where

A jrr(ou ¡ + o 
(')n,lt',0",

RI R'I (e) --3

-.1-o'PnoAA

i j,,(p 
") 

+ r "1", nÍt ) 
{o 

")

(3 "44)

(3.4s)

(3 .46)

(3 .47 )

(3"48)

(3.4e)

(3 . s0)

Rr
.1

np
a

t o(t)
n

R'
3

p
a

From equatl-ons (3.35), (3.36) and rhe equatfon

\*ä - RiR: = oj,r(o) [pr,(1)(o)]' - on:t)(o)toj,,(o)1, = i

and after some algebralc manlpulatton it 1s found that

Rå

q-

p
a

*3

i1
A =-onpR^

AJ S'

s*)
a

T'
a

T_
a

RI T'
t*-Ét

JA
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11c = --.npR^ a5

D =l-.1npR^
AJ

R: T'(#-rs)
Jâ

(3.s1)

(3 . s2)

(3 . s4)

S'
a

s-
a

Rl s'cni-ft
Ja

Now the far-zone ffeld expressions may be wrltten as

tk2 p
f"{') = -an;"

fkr

E. E* R2 sino do dS

{- t (Ar, * Dr,) Ão1r, + (8, + c,.,) iuir,} (3.s3)

3 .6.3 Radlated pov¡er

An expressr-on for the total radfated pov¡er w may be derfved

by lntegratfng the totar poq¡er flow across an inflnltely large sphere

centered at the orfgfn as follorvs

[a/ =

,2¡T
Lrr

2nJ)ooo

where

o

denotes the

The

LZO ¡ Q ls the lntrinslc impedance of free space, and

complex conjugate.

vector wave functions ; . " ; - âre p{ven hvorn ' eln are glven bY
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_ pI (coso ) ^ âpI (cose )ãor.,=+*d--cospâ- "ãu 'srnsfi 
(3.ss)

â Pt (cosO ) pI (cos0 )
;-. = Di= .o"o ô - n- ' 

^'^eln a0 srn'- sfnS $ (3.56)

Uslng the following orthogonallty propertles of the assocfated Legendre

funcElons

" Pl (cos0 ) apl (cos0 )r n "_n, sin' ;U- sinO d0 = 0 (3.57)
o

and

T

/ p]Ccoso) rf(coso) d0=O m*K (3.s8)' n n'

and also uslng the formula

n âPm apT pmp*r ' n L 2 ", &^ ) sfno do1 (au 
ão-- + * 

slnuo

2n(n + 1)(n + m) !

ffi6r,r, (3's9)

the radlated power can be expressed as

, = + o, ,r" I (2n + 1)(q- o* * s' sl) (3.60)
n=lnr
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where

C = -1 P ls the dipole currenL momentex
c_=-i(A +D)rrnn
B =B +Cnnn

3 "6 "4 Directlvlry

The dlrectivlty in the forward directlon relative to an

lsotroplc source ts defined by

.'.., _ 4n (radlated lntenslty in 0 = tB0" directf on)
total radtated por¡rer (J ' or .'

thewavefunctlons molnrneln at 0=n and 0=O canbewrftten

AS

(3.62)

and

(3.63)

uslng the above equatlons and equation (3.53), an expressl0n for the

radlated power lntensity ln the negatlve z directron r.s

orn i^- = (-r)' Ú+l¿ ê
lu =f
lo =o

-49-
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the dlrectivfty can therefore be wrÍtten as

@

L
n=l

2n*1
,(i )t (o +ts )n n-

D= (3 .6s )@

r 2n*l
l-L2

n=I

*
(aq +nn

*rj ß)nn-

3.7 Results and Discussíon

using the ffeld equatlons deveroped in the preceding sec-

tions' relevant numerical data are computed to ínvestigate the focuslng

and radfatl-on characterístlcs of a Luneberg lens. The exclting source

fs assumed to be a Huygens source located on the surface of the lens.

RepresentatÍve computed radlatfon ffelds, directivity and the mode

power distributlons are presented in the followlng sectlons.

3.7 .I Radlatfon pattern

The normallzed power pattern of a Huygens source in

presence of a Luneberg lens of diameters from D = 2À to D = 10À

calculated tn both E and H planes, corresponding to the 0 = 0

TT

þ = T planes respectively. Figures 3.4 and 3.5 show the patterns

the

are

and

corresponding to D - 5À and D - l0À " It should be noted that,
wfth the source oriented as shown in Fig. 3.3, a maxJ.mum radiation
occurs 1n the negative z-directfon, and hence the top of the computed

patterns correspond to 0 = 180 degrees. cornparing the t\,¡o patterns,

I¡¡e see that the lens presents more dfrectlvity for larger dlameters as

predicted by geometrlcal optics " The slde lobe levels are also

decreased. The radfation pattern characteristic for Luneberg lens are
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Fig. 3.3 Huygenst source on the surface of a Luneberg lens
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summarized in Table 3.1" To compare this charactertstlc wlth the radÍ

ation characteristics of a uniformly illuminated circular aperture t34l

the half pol¡¡er beam width and the level of the fÍrst slde lobe for the

circular aperture are also presented in Table 3"1" For small lenses the

radiation pattern characteristlc for the Luneberg lens differ slightly

from that of a circular aperture particularly for the level of the slde

lobe. However, both Patterns become almost identical at large diameters.

TABLE 3.2

Luneberg Lens Radiation pattern Characterlstlc

Luneberg Lens Circular Aperture

Diameter 
I lrur* vlidth ll"',,.t or r"t 

I lu""* t,lidrh lr,"',r.r or tstGain

(an¡

14.7 85
18 "240
20 "7 58

22 "7 25

24 " 339

2s "7 0B

26 " 895

27 .940

28"776

(degrees ) Side lobe (degrees ) Sfde lobe

Galn

(dts)(À)

2
3

4

5

6

7

I
9

l0

30"i6
19.87
I5.00

1r.79

9"80

B "37
7 "3r
6"48

5.8

-r4 " 4r
-15 " 7B

-16.0s

-16 "7 4

-I6.90
-17.00
-17.07

-I7. l0
-16 "28

1s. e6 |

te .48 
|

21.e81

n "e2l
2s"sol

26 "841
28. oo 

I

2e.o2l

2e.e4l

29.24
r9.48
t4. 61

-17 .6
-17.6
-17.6

u"68 | -Ú.o
e"74 | -tt"o
8"3s | -tt"o
7"30 | -rt"o
6.4e | -rt "o
s. 84 | -tt .o
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3"7.2 Direcrivlry

using equation (3.65), the radiatlon pattern directivity of

Luneberg lenses were calculated for the same diameters of section
3.7"r" The resurts are presented in Table 3.2 and Fig" 3.6" The

directivity lncreases rnonotonicaly with increasing the lens dianeter.
The dtfferentlal increase in the dlrectlvlty, on the other hand,

decreases for larger lens diameters ¡ €rs can be seen from the
rsaturatíon' behaviour of the curve 1n Fig. 3.6. Thts behavlour is
expected since for large diameters compared to r,¡ave length, the lens

behaviour will approach the theoretical behaviour explained by the

geometrical optlcs. comparlng the directivity of the Luneberg lens as

presented 1n l'ig" 3.6 with the dtrectlvity of a homogeneous sphere with
r = 3.00 as presented by Rozenfeld lzgl, it Ís seen that the directi-
vlty of snal1 Luneberg lens is rower than tha! of the homogeneous

sphere. However, for a Luneberg lens the dtrectlvlty characterfstics
does not Present the resonance phenomena experfenced In the case of a

lossless homogeneous lenses t6l" From the above result, it is evldent

that a Luneberg rens when exclted by a Huygens' source has a behavlour

simllar to a uniformly illuurÍnated aperture. Since a uniformly itlumi-
nated clrcurar aperture provldes an optlmum gain, a Luneberg lens is
theref ore an ldeal -l-ens to focus the radlation f f eld of elementary

radiators wfth a radlatlon pattern slmilar to a Huygens source, such as

waveguides and horn antennas. The focusing properties of a Luneberg

lens, however, deteriorates as its diameter decreases. rn chapter 4 we,

therefore, \.¡-i11 attempt to study new lens profiles that \./ill improve

its performance aL low frequencles.
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3.7 "3 Modal power distribution

The Power distribution among different spherical wave modes

presents a useful means of Ínvestigating the behaviour of the rarliation
characteristic- A resonance behavior.rr, for exampler rnay be expected if
one of the modes ls carrying most of the radlated power. Also, modal

distributlon is a good indicatlon of the convergence of the summation

in equatlon (3.43). For thts reason, we shall artempË to evaluate the

percentage of pov/er distribution among

!¡ave expansions. The results will be

behavfour of the modes and the rate of

The total radiated po\¡¡er rnay

the powers radlated by

P

The quantlty Ol * fOO

each mode, which may be written as W = I- t.,
n=l

represents, therefore, the percentage of the

various modes in

used to determine

the convergence

be expressed as

the spherical

the resonance

the series.

summation of

for

the

total po\ÁIer contributed by each mode. The percentage pov/er distribu-
tion among the modes for diameter D = 5À to D = t0À are presented

in Table 3.3 and the power distributions for D = 5À anci D = l0À are

shown in Fig" 3.7 " Although the modes are discrete, their contributed
power 1evels are connected to form a continuous curve for identifi-

caÈion "

l'rom the distrlbution of the percentage pou/ers among various

modes shown in Table 3"3, it is evldent that, for a Luneberg lens the

Pov/er content of the modes continuously increase with the mocle number

until the mode n, where n= ltul- I, beyondwhlch the contribu-
tion of the higher order modes decreases rapidly" Thus unlÍke a homo-

geneous lens a Luneberg lens does not nanifest a resonance phenomena.

In addÍtion, the series representlng Èhe lens field converges rapidly
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TABLE 3.3

Modal Power Dfstrlbutlon

% contributfon/
Mode /l

1

2

3

4
5

6
7

B

9

10
11

L2
13
L4
15
16
L7

18
19
20
2I
22
23

24
25
26
27
28
29

30
3r
32
33
34
35

36
37

3B

D=6À D=7À D=BÀ D=9À D=10À

4.06
4.29
4.82
6 .6s
4.6
9. r8
8 .18
5"01

19.13
L4 .47
6.22
2.25
o "71
0.r9
0.05
0.01
0 .00

0. B8
1 .48
2 .00
2.7 5
3.05

0"61
I.O2
I.43
1 .83
2.30
2.54
3"33
3 .11
4.40
4.04
4 .62
6.44
3"89
B "29
7 "9t
3 .65
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CHAPTER 4

I'IODIFIED LUNEBERG LENSES

4"1 Introductíon

From a practical polnt of view rens antennas are normarly

used to increase the directivity of a radiating source, From the com-

puted data of the last chapter lt is clear that a Luneberg lens is a

good candldate for focusing the radlatfon ffeld of elenentary radia-
tors, such as open-ended waveguides or horns. However, it hras also

found in the last chapter that a Luneberg lens performs satisfactorily
only at hlgher frequencies, where the Lens dfameter is several \¡rave-

lengths ln size" At low frequencies the directivity of a Luneberg lens

deterlorates and a modificatlon fn the lens profile nr,ay be necessary to

lmprove fts focusfng properties. However before introduclng our modi-

fication of the lens profile, we present some of the prevlousry pro-

posed rnodificatlons.

Since the wavelength encountered at microwave frequencles are

much longer than those in optfcs, a large dlameter Luneberg lens ts

needed for scannfng antennas The instruments for the radiation,
therefore' are correspondingly larger, whlch mekes the ro¡ating of such

large instruments for scanning purposes cumbersome, and the speed of

rotation has fts mechanical 1tmftations.

As prevlously reviewed ln chapter 2, some investigators [3,

8, Lzl have proposed some ner¡ expresslons for the deslgn of smal1-feed-

circle Luneberg lens. Eaton tBl and Brown I3l expressions have pro-

duced an abrupt díscontinutty ln the slope lndex of the refraction at

-61 -



the feed circle. The Gurman [I2] design,

produced a continuous function of the index

radius "

where r is the radial distance

of refractlon, f is t.he distance

feed may be located, and a is

Fig. 4"1"

the other hand, has

refractfon versus the

from the origin and n is the index

from the centre to the focus, where a

the radius of the new lens as shown in

of refractfon Ís the same as in an

on

of

Gutman, using the HamilEonian optics for analysing the rays

1n the Luneberg lens has presented a formula for the inclex of a new

lens that is sphericalry symmetrfc and has a focar point near its
centre" The corresponding new fnd.ex of refraction formul-a is

_ r/2(a2+t2-rz)In- f

Whenf=arthelndex

ordinary Luneberg lens, i.e.

- 2 I/2
L2 - (;) I

d-

However, when f ( a

more rapidly towards

r is given by

for this lens

the centre. At

the dielectri_c

fhe centre lts

constant increases

dlelectric constant

, *i+

Figure 4"1 illustrates the ray path

est feed clrcle that 1s possfble ls

for some values of

deternined by the

f " The small-

dielectric con-
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t:1/2 a

Fig.4.7 Small-feed-circle Luneber¡¡ 1.ens

t-1/4 a
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stant. The highest dielectric constant is

the mi nimum si_ze of the feed circle as

at the centre, which liurj_ts

follows

E-a.mln _ ______r7z
(r - I)

max

A practfcal real|zatlon of such a lens is difflcult since the

feed antenna must be located j-nside the sphere and be allov¡ed to move

freely for scannlng purposes rvithout disturblng the performance of the

lens " It fs also impractical to introduce such a sharp grad.ient in the

dfelectric consLant by stepping t.echniques frequentry used. Arso,

since Gutman has used geometrical optics, his derivatlon is only va1Íd

for large diameter lenses" lt should also be noted that thts modifica-

tion did not reduce the radius of Luneberg 1ens, whtch is the main

disadvantage of uslng a Luneberg lens at mlcrowave frequencies.

The radiation characteristics of a Luneberg lens presented ín

chapter 3 has indicated that the lens behaviour improves with an

lncrease in the lens diameter, and the deterioratlon in the lens

behaviour at smal1 diameters was atÈributed to the snall diameter lens

compared to the wavelength. It was also found that. a sma1l homogeneous

lens with a dterectric constant r = 3, presents a better dlrectfvity
than a Luneberg lens of the same diameter. This property of a homo-

genlous sphere suggests an alternative means of modifylng Luneberg

lenses for a better directivity performance at low frequencies. Their

geometry is sinpler than a Gutman lens and from a practical point of

view they are easier to fabricate and use.
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(4.t)

where B and A are arbitrary constants

a is the radius of the lens

and r fs the radlal distance measured from the centre of the

lens 
"

Using the same nomenclature used by Taí [33], the differential equation

of such renses for the radlal functlon srr(r) of the magnetic or

transverse electrfc modes may be represented by

d2s (r)
TJ- + lk2K - n(n-i I) 

]s,,{.) = o (4.2)

4"2 llodifled Luneberg Lens

The dielectric constant for the modified Luneberg lens is

assumed to have a proflle expressed by

)
<=28-A2t:)

a 0(r<a

whfch can be wrltten as

a2 sr_, (o )

-þ-+L*-{î+!1s.,(o)=0, 
(4"3)

p=kr r pr=ka

Substituting equation (4"1) tn equation (4.3), we have

dzs (o)
+[zn -Az(:)2 - "t"rå t' I s-col = o (4.4)

P' I Il'
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a2 s,-,(o ) 
Í ^.. pz

-j[T-+12ts-pT
n(n + t),--îz-l sn(p) o (4.s)

p
a

P=i--
l^

Thls is the normal form of the second order differential equation 127 l

and its soluton can be found by the polynomÍa1 method of Sommerfeld

t18]" The method consists of deffnlng three functions such that their

product is the exact solution of the differential equation" These

functlons are chosen such that one of tl-rem describes the behaviour of

the solutÍon around the origtn, the second solution describes the

behaviour at infinlty and the thlrd determines the nature of the

solution in the intermediate region.

Whenp+@,

approximated by

the differential equarion (4.5) can be

d2s
n

ÃF-

which has an asymplotlc solution

^2lj^--?r- ùpÎ n

proportfonal to

tpz /2p t
qe

will be considered

therefore

(4"6)

tpz / 2p

1. e.

(4"7)

In (4.7) only the

function vanishes

negatlve sign

at infinity and
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-p2 /2pt
S- o, e (4"8)n

At the origin, the Frobenius method gives a soluti-on which is a

polynomlal of power (n+1) or -n " To obtain a finlte solution at the

orlgin, we select the polynomlal- with the por¡/er (n+l)

The sorution of equation (4"5) can then be wrltten as

. n*l -p2 /2p 
^srr(o) = p^"' e o nrr(o) (4.9)

where F-(p) describes Èhe behaviour of s in the intermed.iatenn

reglon" Differentiaring (4.9), we have

dS FI
--n=s_l(n+t)-L+Jl (4.r0)dp -nL I pt Fr, , ,

dF
Fr - 

n
'n dp

and

d2s Ì{-r

- 
= ,'(n+I)-P *^o '2dpz ""Ll--;*\l

+sl-(n+,})-r -t; 
t;'r

,.¡L---p-Z--ur**-q-l (4"11)
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d2pn.r - -ì--')-n op'

substltuting lnto equation (4"5), we fj_nd that the function F musr

satisfy Ëhe following equati-on

dzY dF

,#*z("lt-ll*3*lru-l -2(l+r)1, = 0 (4.r2)op- Þ Pt- dp . pt Pt , n

Now, if we define a new variable z as

z = o2/01

then

dI" ^ dFn¿pn
dp =;î dz (4'13)

d2r , . dzr - dF
.1 = 4P' 

--! * z -.J (4.I4)dp' pl dZ¿ 'prM-

dzr dF

az**rL-r)#-ir^ = Q (4.i5)

where

o = j{r, *å- uorl =å,r,.;-* or)

-1Y=n*; L

Equatlon (4.I2) can no\¡/ be written as
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p =ka
a

9r /A

Equation (4"15) is the confluent hypergeometric dÍfferentlal equatÍon.

The solution of this differentfal equation is the confluent hypergeo-

metrlc functlon (Kummer's function) ,

Fn(Z) = rFr(u, ^y; Z) (4. r6)

The second solutfon of the confluent hypergeometric equation

1-,
Z' 1 tFt(c - y+I, 2 - \; Z) is not flnite at the origin, The

confluent hypergeornetrlc function ls glven by the series

1F1 (c, yi z) = t * î, . r!,î)'r, z + .". . # 2.. + "".

where

,o)n a(a*l)(c+2) (q+n-I) and s = l

iF1(c, yi Z) ls a convergenÈ series for all values of d ¡.1, Z if

"y * !. and q, * -m where t and m are positive integers.

Since

I. 3 Ba =7(n +i- Ã0")

it can assume negaLÍve integer values. when a is negative Èhe
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function exhibits an oscillator-y behaviour and when a is a negative

integer the .series terminates and becomes an oscilratory porymomial.

Since 
"*; , Ehen yr-m

Therefore, the confluent hypergeometric functi-on is always well-behayed

In this case.

The derivative of the confluent hypergeornetric function is
gÍven by

d,Fr(c, yi Z)

T ttr(o + I, y * li z) (4. r7)

The S-function can then be written as

sr.,(o ) = pt+I u-02 /20, 
1I'1(c, yi o2 /o¡) (4.18)

The differential equation for the radial function T (r) for
n

Ehe electrj-c or transverse magnetic modes is

dZ

a2rr.,(r) l dr a r',(r) . 1.. n(n*I) ,--ã;-2--K dr dr +Lrc¿K JT.,(r)=0 (4.I9)

when the expression for the dielectric constant, equation (4.1) is

substituted into equation (4.19) we get
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where

Equation (4"20) can be transformed to the normal forn by the following

change to the dependent variable

n exP(- pdp) ,

a2 rr., (o )--w-

where p is the

tlal equatÍon and

d r-(p)- ,r"' +12ts _t_dp'al (4 "20)

. lBPz=lBPt =Jp"

L

2)

coefficient

is

of the ftrst derivative in the differen-

Therefore

r (o)
n

The dlfferentfal

(p ) Ehus becomes

r/2(zpl - p2) v_(p)-n

p2-;T'

equation for the new dependent vartable

n(n+l)-r-- Ìv -orn (4.2r)v" + {28nr

t¿hlch is the normal

the polynomial nethod

form of the dlfferential equation.

of Sommerfeld [18], we flnd tha'

z(pzz + pz)

- 7I -
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-^2 t¡^P ILP^
vrr(o) = e d on*l wr.,( o )

where W satisfies
n

Therefore T can ben

Ehe differentlal equation

writÈen as

with

where

and

where

rn(o )

dT
n

dp

uIrpn
or W

(4 "22)

(4.23)

= (zp: * pz)r/z on+r e-p/zpr wrr(o)
2

TInr
, (n+1)

p(2p2 - p2)
2

l¡Ir
n

dW
n=-

dp

ò2t
n

ãt¡- r t' -P o(n+i)-p +tå,,'nL(Íd--{f p pr-ll J-
2-n

+T t-2p2,1LOF-=-TY --¿;r=nz¡
22

(n+i)
p'

_l _
Pt

l,l|2 t.j"nn
-+-_WW

d2w
n*n = ¡;z--

. . . (4.24)

into equatlon (4"20) weSubstituting equations (4.22), (4"23), (4.24)

get
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d2w di^J

-,.rn+z1I+L-P),n*lzv-?"*l r '-2¿{ ' -.-p pr. dp , ï - o;-r-) - T#=Fvl ",, = o

A change of lhe independent variable to Z = p2/ptreduces ,0"""r'r'rO"r:t'

d2w dl"i û,1 2s, 2a2a3

ãz+*(+ t)#-l;.Tr:rJ @_"Jrl ",,=0 (4.26)

where y=r,+;

l, 3 ts A0r = îLn + Z - Ã p, + m- .l-a

A _3A 2Ba2 =c%' 03=crr;'ã2 =ã-Pu

@

t^¡=IAzmnm
m=U

and

I-t
w =7-(n +z)+ i A rm-{n+i)

fI t. mm=l

Equatlon (4"26) is the differentlal equatlon for the generallzed

confluent hypergeometric functlon glven by Tai t331. The two possible

serles solutfons around zero for this function are

We w111 only consider the ffrst soluÈion since t.he second solution is
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not finite at the origin" SubstiLutlng the fírst solutíon in to the

differentlal equation (4"26) and equating all the coefficients havlng

the same po\¡/er to zero, we flnd a four term recurrence relation between

the coefficlents. This recurrence relatfon can be further reduced to

the relation between the first coefficient and any subsequent term.

These relatlons are:

AI qt
:-foY

\ _ I or(or + I) o2 +o3
6 - z -tTY-T-Tr - C- "F-ir,

A3 
- r. qt(at+t)(o2+z)__ 

I r(or+Ð(z+q3)
^r=3! ffi-TG+Ð1ffi

,Zor(oz +03) 2(z +243),
y a ----ã:-- ,

For m > 3 , the coefficlents can be obtained from the recurrence

relationship

al(n + i)(m + y) A*+t - %lar(m * o) + 2n(.1 - m + I) A_

+ l\a2îy * c2 * q3 * m-I) + (n-t)("r + m-2)l ar_,

- (or I 2o2 + m-2) A__., = 0
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The serles solution for 
"r, 

converges u'ifornly and absorutery for

lz I < ^, or p2 a 1+ ,r^ . Thfs condfrlon wilt arways be sarisfied
ztsintheregfon 0(p(pa aslongas E >1. Thiscaneasllybe

satlsfied by the choice of the varues of the constants A and B as

will be explained further in Èhe following sections.

4"3 Dielectric Consfant profile

It 1s clear frorn the discusslon ín section 4"L that fn order

to enhance the performance of a small diameter Luneberg lens the values

of A and B should be chosen such that the overall diel-ectric
constant of the lens be increased. Also A and B should satisfy the

necessary condition for the convergence of the solutlon for the

function W
n

The effect of the constants A and B , fn equatlon (4.1),

on the dielectric constant profile of the ruodlfied Luneberg lens can be

explained further by referring to Flg. 4"2 which illustrates different
proflles assoclated with dffferent values of A and B as follows:

A = B = l; which ts the ordinary Luneberg lens case" The value

the dielectric c.onstant changes from 2 at the rens centre Eo

on the surface.

a)

b)

of

I

A = l; the effect of A and B is the same

effect (constant valuc) to the curve" In thts

can be expressed as

as adding a biaslng

case equation (4"1)
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-2K = 2R _ (;)

The second term of thls equation gives the same profile as an ordinary

Luneberg lens, whíle the first term presents an offset term of t.he

value (28-z) . This offset has to be positive to increase the total_

dielectric constant of the modified Luneberg lens.

Then

or B>i
rt is also expected that the value of B shourd be kept bel0w a

cerLain value 1n order to preserve the characteristic profí1e of the

Luneberg lens. This is due to the fact that Ehe results reported by

Ilason t6i for a homogeneous sphere shows that the lens performance

deEeriorates tf the dlerectrlc constant fs lncreased beyond 3.

c) [=I; rhen

zts-2>0

= (2ts - 2) + l, - <it'l

-2ç = / - A2(;)

(4 "27 )

(4 "28)

The val_ue of A has Eo be less Ehan unity to lmprove the

lens behavfour" curve c arso indicates that unress the varue of A

is much smaller than unity no appreciable change in lens performance

can be expected " 0n the other hand, a very small value of A will
cause a large change in the dfelectric contant profile which may cancel

any improvement expected by thls. roodification.

A2 - B; This is another interesting case. rt invorves both values
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of A and ì3 , whlle still satisfyfng the conditlon for convergence of

the radÍal function T-(r) " rt is not expected that the performance

of this modiffed desfgn will be much different than thaÈ of the case b,

since there is only a smaLl difference between the two profiles.

Although it may have the advantage of having a lower di_electric

constanË on the lens surface. ThÍs low surface dielectrlc constant may

improve the natchtng between the lens and lts feed if it is an air
fi1led waveguide.

4"4 Results and Discussion

Here, ü/e will lnvestigate the proposed modifications and

evaluate thelr effect on the radiatlon characEerlstlc of a Luneberg

lens. The modifled Luneberg lens shall be fed by a Huygensr source

located on its strrface" Radiatlon characteristfcs such as directlvity,

beam width and the level of the firsE slde lobe v¡1ll be computed for
the electric field in both princfpal planes.

Numerlcal calculations of the radiatfon characterÍstlcs of

the new nodffied lens are shown in Flgures 4.3 to 4.6. These figures

show that Èhe proposed modiffcatlons have enhanced the radiation

characteristics of the Luneberg 1ens" The modifled rens produces

higher directlvlty and narror¡Ier beams than the ordlnary Luneberg lens.

The fmprovement is more vislble 1n snall diameter lenses and decreases

as the lens dlameter increases" Thts ls expected., hence lenses wtth

diameters of several wavelength approach their optical behaviour. In

the followlng section r\7e r.rill present a discussion of the radÍatlon

characterÍstics of the modified lens.
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4"4"I Dírectlviry

For the tv/o dielectric constant profile cases corresponding

toA=1 and B=&, thevarueof B will be changed inincrements

of 0.01 and the directivity of the modified Luneberg lens when fed by a

l{uygens' source will be calculated for lens diameters from 2À to i0À.

The results for the ffrst case, A = I , are presented in
l'ig. 4"3" For all diameters Ehe directivity lncreases with fncreasing

B up to a certain limiting B value and then it decreases rapidry.

When we compute the directivity beyond this limltlng B value the lens

demonstrate a resonance effect in the same manner as that for a

homogeneous lens t6l " This indicates that beyond thls limit the lens

starts to behave as a homogeneous lens" The B llmit decreases as the

dfameter of the lens ts increased, whlch is also expected since as the

lens dlameter lncreases the performance of the lens approaches its
optical behavlour.

with this first type of rens modification there is a

notfceable increase fn the dlrect.fvlty, particularly for smaller

lenses; e.g. for a rens diameter of D = 2À an rncrease of 3db can

be achleved with Il = 1.4" This directlvity Íncrease is achieved over a

reasonably wlde range of B values. Thls is seen by the flat top

shape of the directtvlty curve over a certaln range B values. Thfs

phenomenon 1s very desfrable since lt allows for a large tolerance in
the dielectric constant and therefore v¡fder cholce of dielectric

materfal when m¿nufcturing such a 1ens" Fig. 4.3 also shows thaÈ the

improvement in dÍrectlvÍty decreases as the lens diameter increases and

the lens behavfour approaches that of an Ídeal one.

The dfrectivtty behavíour for the case A2 = B
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in Fig' 4.4. Tire lens performance in thls case is approxlmatery the

same as for the case A = I The improvement in the directivlty is
loweri e"8.¡ for a lens of 2^ diameter the directÍvity increases by

about 2"3d8 as compared to a 3db increase in the former case.

Although this increase is more stable over a wider range of B values.

Thls letter type of modification may be more desirable, especialry

since it provides an easi-er fleld mntch at its surface as discussed

above.

It should be mentloned here that the proposed rnodlfications

have achieved a better lens performance at a smaller diameter than that

for an ordinary Luneberg lens.

The percentage lncrease 1n the dlrectlvity versus the lens

diameter are shown 1n Ffg " 4"5. For the case of A = I the increase Ín

the directivlty wf 11 vary from approximately gr"Á to 14"/", when the

diameter lncreases from 2x to t0À respectlvely, whlle for 62 = B

the corresponding increase ls f rom approxftnately 6r "0"Á to ro"Á " Flg.

4 "6 shows the directivity of an ordinary Luneberg lens together v¡1th

the t\,¡o modified cases as a function of lens diameter.

4.4.2 Radfatlon patterns

The reason for Èhe dlrectivlty enhancement caused by the

lens rnodification uray be explafned by referring to Figures 4.7 and, 4.g.

The radlatlon pattern of two modified Luneberg lenses (D = 2À , D = 5À )

fed by a Huygens' source are shown, together with the radlation

patterns for the ordinary Luneberg lens. These curves show that for

Èhe modified case more povrer is concentrated in the maín lobe with an

accompanÍed reductlon 1n the side lobes; This lndlcates an improvement

Èo the lens focusing characteristico whfch in turn leads to an i-mprove-

ment ln Lhe directivity of the modtfied lens galn.
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Tab1e 4"1 1s a summary of the radlatlon characterlstlcs that

1s the Gain, beam v¡fdth and the level of ftrst stde lobe for lens

diameters from D = 2), to D = 10À.
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CIIAPTER 5

PERFORMANCE OF A LUNEtsERG LENS WITT{ A PRACTICAL SOURCE ANTENNA

5" i Introduction

A najor use of the Luneberg rens, next to its use as a pas-

sive reflector, is as a broadband lens antenna. An open-ended wave-

gulde or a feed horn û'-y be employed as the actual source erement.

Such a relatively light weighË feed. can be moved raprdry over the lens

surface to accomplish beam scanning. Alternatlvery, the rnoving feed

may be replaced by an array of electronically switched feeds to ellmin-
ate bulky mechanical scannÍng system. Multfple frequency operation,

uslng dlfferent feeds at different frequencies, is also feaslbre to

improve feed bandwtdth.

To sfmplify the analysis of the lens performance small aper-

ture waveguides and horns are normally modelled by a slngle Huygens r

source locaLed at the feed aperture. However, such a representation of

the feed with a single Huygens î source is generally fnadequate and the

computed lens characteristlcs do not agree satisfacËor11y with those

obÈained by experlment. To overcome this dÍfflculty, v¡e have repre-

sented an aperture feed element, such as an open ended rectangular

waveguide, by a rectangular array of Huygens t sources. rt is shown

that by modifylng the number of Huygens' source elements the radlallon

characterlstics of any wavegulde radfator can satisfactorily be repre-
sented by an array of Huygenst sources. Uslng this representation the

radiation characterlst.fcs of Luneberg lenses irluminated by waveguide

radiators is studied" Both standard and nodified Luneberg lenses are
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considered and their radiation patterns are computed.

To examlne the quality of the radiated fierd both co-polar

and cross-polar radiations are presented. It is shown that a Luneberg

lens generally produces a hlgh qualÍty radiation with a relatively 1ow

leve1 of cross-polarÍzation. It ís also found that modified lenses

have better radlation characteristics than a Luneberg lens.

5"2 Waveguide RadiatÍon Characteristlcs 1n the Presence of a Luneber

Lens

The radÍatton from a Luneberg lens of a few waverengths in
diameter, placed over the aperture of an open*ended waveguide ls of

pracÈica1 interest slnce it exhibits properties suitable as transmÍtt-
ing and feed antennas. Since the exact analytical solution of a lens

illumfnated by a waveguide radÍator is Èoo difflcult to obtain, prê-

vious lnvesti-gators L6r zgl have used a Huygens'source to model the

radiatlon of the waveguide.

crosv¡ell et al t6l used a Huygens r source to model the wave-

gulde aperture for excitatfon of a homogeneous dielectrlc sphere. They

compared the theoretically computed normalized por^rer patterns with the

experfmental results measured by croswell and chatterjee t5l for Ehe

radiatfon pattern of a plexfglass sphere centered against the flange of

an open-ended wavegulde. Although the agreement between the theoretl-

cal and the experimental results'was good, the theoretlcal patterns

have presented sharper nulls in the meln bearn and stronger back lobes

than the measured Patterns. They attrlbuted the dffferences to

scatËerlng from the waveguide feed structure used in the measurements"
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However, the Huygens' source radiation pattern shown in Fig. 3.2 is
consi-derably different than the radiation pattern of a rectangular

r+avegulde" Flgure 5"I illusErates these differences by showing both

the normalized far fleld radiatlon characteristic of a Huygens I source

together wfth the theoretical and experimental radiation patterns of a

rectangular e/aveguide given by silver t34l " rt is crear that the 3 dB

and I0 dB points of both the calculated and observccl radiatlon patterns

of the rectangular r^raveguide wlrh f = 0.71; * = 0.32 are consfderably

narrower than that of a Huygensr source. Hence 1t Ís

radiatlon patterns of the Huygens' source and the

presence of a Luneberg lens wtll also be different.

expected that

waveguide ln

the

the

In this section we w111 deflne a better model for the wave-

gulde aperture. The electrlc and magnetfc fleld distrlbutfons at the

aperture suggests that a better model may be obtained by an array of

Huygensr sources. We w111 then flnd a mathematical expression for the

proposed model, calculate the radlation pattern for this array distri-
butlon and compare lts data with the radfatlon pattern of a rectangular

waveguíde.

s"3

5.3.1

The tangential field components

aperÈure of a rectangular guide, shown in

Rectangular Wavegulde Model

Radiation pattern of a rectansular T¡IaVg uide a rture

of

Fig 
"

Tl'1 and

5 "2, are

TE vraves

given by

in the

t 3+1
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RectanguÌar \¡/aveguíde apercure
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H =-ltt , =tntt' ^*-/mîx\ ,nry.
x irou Y çã 

sln(-) cos(-r-)

(s.t¡

H = I-" E = 
tnY*r, ,Itr'TX. ,nrY,

y lou x EZ b cos (-) sin(-c-)
nn

where y2 = (* )' + rlll2mn a -b

r/2and propagation constant yr, = 1tZ - tZ ¡

À 8r.,

where Àg is the waveguide wavelength.-mn

a" !'or TE-waves

b. For Tl"I-waves

2r

Y__ mTrY

- mn ., mn .mrx.b =-:_FI =_x ioe y %-- 
cos(rrx¡ srn(ff)

(s "2)

- 
Y*r,,, ttYtr, 

,m' x, ,nrv.oy = - iæ H* = - 12- sin(:) cos(f)
mn

The electrlc field over the aperture is polarlzed in the y-directlon

and the electrlc-fleld components of the radiation field due to the

TE mode excitations are
iun
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Eo = -(Ë)"'fiffiFe Lr
mn

' ÍTNT

l(; sinq)¿ -

ts

coso*r(1-ffcoso)J
ß.mn+-'k

(fL cosq¡2j ,lmn(s,O) ,

ß

#>l r{'*rr(o,o) 
'

,, (o,o) = Ittrr

srn(p stno cos(r + fl> sr"(p stng sinQ * il
Ir(p srno cosq )2 - {{¡z (p srno sfng)2 - {fl¡z

1[kR sln0 (a cosQ + b slnQ) -(n+n+r)| 1

and I ls the reflectlon coefflclent at the wavegufde aperture

For the TE16-mode the radiatlon fteld reduces to

]T*i (s"3)

r _ ,tt ,L / 2 (r ab)z s 1n0 s lnó cosô
0 'e' 2\3 R

ß
i lllll
Lcoso * L *I(coso -

where
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;u = -(å)"' # "rnr lr *
ßto ßio
1- cosO + f (1 - T- cosO)]

cos(p sino cosþ) "i"(p slno sinS)

(p sino cosq )2 - <\72
lt

sin0 sln$)

i IkR sinO (a cosg + b sing ) l

,nb(;-

]T-\

E --
0

,lr"'mcoss[ ßro ßro
cos0* k +f(cosO- n)j

cos(p stn0 cos0 )

It
sin(p sÍno stnQ )

sinO cosq )2 - ç\¡z slnO sinQ

I IkR sin0(acos$+bstnQ)l

rf Lhe origin is shlfted to the centre of the aperture, as shown in
Fig. 5-2, the phase factor transforms lnto kR, R noer berng measured

from the origin" rn the case of large apertures f = o, therefore, the

space factor ts real and Ëhe wavegulde Is a directlve polnt-source

feed, the centre of the feed belng the centre of the aperture. rn

small apertures where f is complex, there is no exact centre of the

feed and the waveguide is onry approximately a point. source, from the

point of view of the equlphase surfaces of the rad.iatÍon pattern.

As shown in Fig " 5"2 the electrlc field over the aperture is

nb
À

(F
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polarfzed fn the

sysEem, while the

the two principal

for the E-plane,

Ee ='<å1"' #
ßro

It * r. cos0 *
ßro

r(I - n- coso)]

E-plane of the

patterns 1n

(s.s)

each respectfve

principal planes

y-direction so that the yz-plane is the

xz-plane Is the H-plane. The radiation

planes are

'À ikrì
e

sin(P sinO )

cos(p sino )

nb
À

sin0

and for Ehe H-plane,

E_
0

-,å,t/'z m| coso
ßro

+-E-*f(cosg
opl0

- 
- 

rl
k /J

fkR
(p srno)2 -f

It ls observed that the predomfnant factors in the patterns

stn(P srne )/p sfn0 and

"o"(f stng )/t (F

are deterrnlned by the dimensfon

plane, This illustraEes that the

of Èhe aperture in

patterns in the t$/o

97-
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are independenl and are determÍned by the aperture dj-mensfon fn the

respective plane.

The above discusslon suggests that the wavegulde aperture mây

be nodelled by a rectangular array of Huygens t sources locatecl in t¡e¡

plane of the aperture as presented in the next sectlon.

5.3.2 Rectangular array of Huygensr sources

consider the rectangular array of discrete Huygens t source

elements in the xy plane as shown in Fig.5.3, where the central

element is chosen at the coordlnate orlgin. rf we select 2Nx+l

elements 1n each colurnn paralrel to the x axis with an equal spacing d*

and 2 N *I elements in each row parallel to the y axis with a commonv

spacíng d-- ' the entlre array will have N . N elements. The arrayY'xy
becomes a square array when N = N and d = dxyxy

The field at a distanr point p in free space contributed by

the array colunn coincident \,/ith the x axis ls then tzIl

Eo = f(0,t) 
_)_,, 

rrno.*pli(rn k d* sino cos6 + a*)] (5.6)
*=-N*

where f(0'6) 1s the element pattern functlon, tro t" the arnpritude

excitation of the mth element (counting from the origin) in the column

y = 0, c* 1s the associated phase excitaÈion, and k = fl When the

anplitude excitation for elements in other columns are proportional Èo

those for corresponding elements on the x axis then

I -I Imn mo on
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P (r'0,ó )

Fig" 5.3 Rectangular array of Huygensr sources
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and v/e can sum up the total contribution from the array as

N
v

E(0,0) = | n
n

ll --l\ v

N
x

where g = \ f_^ exp[i(m k d* stn0 cosQ + a*)]* ,1_N_ 
-mo -"'

N
v

S--= | t exp[i(nkd.-slnOsinq+q)]Y 
''=-* 

on y -- 
y

v

NNxy
=f(0,0) I I

m=-N n=ru IIIn x
xy

. exp[l(n k d, sinO sfnQ + cr)j

= f(0,ô) s sxy (s.7)

(s.B)

rt is crear from (5"r) that the pattern of the rectangular array is the

product of the array factors of two llnear arrays"

Now to calculate the field in the E-plane as defined in
chapter 3 for 0 = 0 where c* = c,, = 0, i.e., element excitatlons

are in phase, equatlons (5.8) can be written as

- i00 -



N
Y

S.,= ) r_^exp[i(mkd sinO)]
^ -_ IltO Xm=-Nx

(5"e)
N
vs-) r

Y L -- on- n=-N
v

Similarly for the H-plane for 0 = 90"

N

^S=T rxmo
m=-Nx

(s" r0)
N
v

S..= ) t exp[i(nkd)]Yonvn=-N
v

since 1n equatlons (5"9) ancì (5.I0) s, and s* are constant respective-

ly' the Íar field in the tr^ro principal planes ls dependent only on the

array distrlbution in each correspondlng plane,

5"3"3 Huygenst source model of the waveguide

To calculate the far fleld of a rectangular array rn the E

and H-planes it is sufficient to calculate the field due to the linear
array ln the E or H planes. Hence the wavegulde aperture måy be

modelled by two perpendicular arrays of Huygens' sources coincfding

with the two principle axes as shown in Fig" 5"4"

We shall study the effect of the number of elements in each
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array on Ehe radfatlon characteristics, and ldentify a ¡oinimum number

of Huygens I sources to model the aperture. This simpre rnodel may prove

to be particularly desirable for more lnvolved problens. According to
equatlons (5.9) and (5"i0) the far fleld of the array can be found by

separately calculating the field due to Índividual array elements and

summing their flelds at any point in space.

since we are lnterested primariry in calculatlng the

radÍati-on characteristics of a waveguide aperture ln the presence of a

Luneberg lens, the two arrays can be located on the surface of a large
sphere !dth a diameter greater than several wavelengths (Fig. 5.5).
without loss of generallty, this is acceptable sÍnce the waveguide wide

dimension "a" is less than one wavelength, whtch is very small compared

to the clrcumference of the sphere. This assumptlon wirr arso make it
possible to use all the equatlons derlven fn Chapter 3.

1<z or yz planes

equal angular

Now, considerlng the array located on the

+l) x (2Ny+I) elements, respectfvely, vr-Ithwith (2N
x

spacing of A0 equations (5.7) and (5"8) may then be wrltLen as

For the E-plane

and the H-plane

N

E(0) = I
m=-N

N
Y

ri(0) = I'
n=-N

E (0)
m

E (0)
n

(s.tl)

(5.12)

En(0) and Err(O) are the field ofwhere

-r02-
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Fig. 5.4 Waveguide aperture
arrays of lluygenst

representation by
sources

trvo linear

Huygenst source
Luneberg lens

array on the surface of aFig. 5. 5
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at a distant point of an angle 0 .

If the far field is calculated

to 40, we can then denote Ehe field at a

particular element n or m by E(n, g")

at p can then be expressed as

at an angular

point p of 0

and E(m, L) "

interval equal

= gA0 due to a

The rotal field

for the E-plane, and

E(s) = I e(*, o"t-f,)
m=-N

X

N
vE([) = [ n(n, n+.t)

n=-N
v

(s.r3)

(5"14)

for the H-plane"

using equarion (5"13) and (5.I4) together wrth the resurts
obÈained for a srngle Huygens' source fn chapter 3 we have found the

radiation pattern; flrst for waveguide aperture i_n free space and then

for a wavegulde aperture in the presence of a Luneberg lens. The

results are presented in section 5.6 of rhls chapter.

5"4 Cross-polarizatíon

The use of tsro orthogonal porarlzations to provrde tv/o

communlcatlon channels for each frequency band has led to lnterest in
the polarization purity of antenna patterns. The cross-plarÍzation is
consldered in the case of three appllcatlons: t) an antenna system to

achleve nearly orthogonal polarizatlon everywhere in some coverage

reglon in order to create two communlcatlon channels for each frequency

band; 2) a feed system for a parabololdal reflector which wfll in t.urn
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be used for the first application; and 3) a

boloidal reflector in which the objective is

efficiency of the reflector"

feed system for a para-

to maximize the aperture

rn this section vre wÍI1 study the cross-polarization

íntroduced by the Luneberg lens, and the possibility of using the lens

to reduce cross-polarizatlon of feeds with higher cross-polarization

level, such as a dipole radlator.

5"4"I Definitlon of the cross-polarizatlon

The IEEE standard t,lll defines the cross-polarizatlon as the

polarizatÍon orthogonal to a reference polarfzatlon" This deflnftion
has led to three arternatlve deflnltfons I I9] : I) in rectangular

coordinate systemr one unlt vector ls Ëaken as the directlon of the

reference porarization, and another as the dlrectÍon of cross

polarfzatlon [34]; z) in spherrcar coordfnate system the same deflni-
tion applles usfng the unlt vectors tangent to a spherlcal surface; and

3) reference and cross-poLarízation are defined to be what one measures

when antenna patterns are taken in the usual mânner. The thlrd
deflnition will be used in this sectlon. Using this defÍnltfon Ludwig

l19] has shown thaÈ the ueasured co-polar and cross-polar patterns are

gfven by, respectlvely,

R(0,0) = E(0,ó) . {cosp

C(0,0) = E(0,0) . {sinq

( s. rs)

(s.r6)

appllcatfons of

ldea1 case: the

0 - sinQ

0 * cosQ

0l

0Ì

For evaluatlng

ort.hogonal channels, we

secondary patterns for the

postul-ate the following
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tranSmÍttlng antenna has thro ports, which radiaLe t\{ro patterns that are

orthogonal at every pattern angle in the coverage reglon" clearry, it
is then possible to receive the tr.ro channels w-ithout any interf erence

anywhere fn the coverage region.

5"4.2 Cross-polqrization of a Huygens' source in free s

Huygens t source 1s formed by a comblnatlon of an eÌectric
dipole and a magnetrc dipore at 90o angular seperatlon. rf Ehe

electric dipole ls in Èhe x dlrectlon and the magnetlc dipole in the y

directlon, the far-zone electric fleld radfated by the Huygensl source

ls given by:

lou C tkR
ñ = - o e a-E- (cosQ ô - srnq ôltr - cose)-H hr

where C^ 1s the electrtc dipole moment,e

û) the angular frequency

Io the free space permlttfvity, and

k the propagation constant

From equation (5"I6) the cross poLarrzaEion fleld c(0,q) is

(s.17)

c(o,o) = Eno slnþ * E"* coso

-0

lkR
tT- (l - coso)

polarization of a

_i06_

(sing cos+ - sinS cosg)
-ÍwU Coe

4t

This means that the cross crossed Huygens o source l-s



ldenticalLy zero" Thls presents an interesting con.ept., since by using

a Huygens t source as the feed for any antenna system and by calculating
the cross-polarization field, we directly calculate the cross-polariza-
tion introduced by the antenna system" This concept will be used later
in this chapter to find the cross polarization introduced by the

Luneberg lens 
"

5"4"3 cross-polarrzation of an electric drpole in free space

To illuminate a Luneberg lens by a dipole source, r^re xnay

assume the dipole is located at the coordinate origln and directed
along the x-axís. Its far field can be found from the magnetlc vector

potentfal Ã*, which ln spherical coordinates may be assumed to be

A=Ar
A^=

U

A=
0

* cos$ sln0

Ã cosó coso
X

-Ã slnrt,xt

( s. lB)

C,Telkrwnere A--=f.-=. e o andX ¿+TT

magneEic fleld can be expressed

e

âs

ls the dfpole moment. Then the

AA ô(r A )

--Eg- I (s. re)Ho = curt,u Ã = t, +* .

H
0

T I râ
0 r LAr

a0

AA
_r

a0
Cur.[ (rA^ )

U

(s.19) and (5"20)

ro7 -

(s.20)

Evaluating equations and ignoring terms of L/rz and



I/13 for the far field components,

directions can be shown to be

-ir¡u C i kR
'-oee"t0 = ---J;-- -a- cos0 cosÓ

ir,rp C j kR
E. = , ê9:slnq
04nR

the electric fields in the 0 and

The

fields for an

expresslons for

electric dipole in

the reference and cross

space can then be written

( 5. 21)

(5.22)

polarizatlon

AS

R(0,4) =
-lutp C ikRee

hr I coso cos2q + sln2g]

ikR
9T- li + coszq(coso - t)]

-it i¡-r C lkR
c(0,0) = -¿rr-3 

=- 
lsfnq cosg coso - sinQ cosg]

R

-ir¡-lu C'e=- /{t (s.23)

-loy C
e

4n

lkR

Equatlons (5"23) and (5"24) presenr

polarizatlons of an electrlc dipole located

dlrection. For the two princfpal planes 0 =

simplifies to the following:

In the E-plane for 0 = 0,

sln(r cosg lcosO - I ] (s 
" 24)

reference and cross-

the orlgin 1n the x

0{ = 90 equation (5"23)

Èhe

at

0,

-r0B-



This equaEion will produce the famfllar figure

maxlmum at 0 = 0" and mlnimum aÈ 0 = 90".

In the H-plane for ó = 90"

-1ou C lkR
R(o,O) = --G- \_ coso

-lury C
e

(5"2s)

elght shape, w1th its

(5.26)

both principal

0n the other

at0=45"as

R(o,r ) =
-1o¡C ikRee

i.e. the fleld is constant and is lndependent of 0

The cross polarlzation is tdenttcally zero in
planes due to the term slnQ cos$ in equation (5"24).

hand, the cross-polarizatlon Í¡-rll have a maxrmum varue

follows

4n

c(o,O) =

lkR

=T- stnQ cosg [cos0 - I]4r

-1o¡r C lkRee-- G-- --l=- sln2$ [cos0 - l]

which fs maxlmum at the 0 = 45" plane, and gtven by

(5 "27 )

IcosO - l] ( s " 28)

plane the cross-polarlzaÈion has

I
2

-louC ikR
c(e, ä) = --*-= --

]T

4

r09

Thls equation shows that in the þ



the same shape as Ehe reference porarizatlon in the E-plane, arthough

1t fs shifted by 90"" Figure 5"6 shows the reference and cross_

polarization fields in the three ¡rlanes discussed above. It is clear
from this figure rhat the electric dipole has a substantial cross-

polarlzatlon leve1, which increases rapfdly wtth increasfng pattern

angle. The cross-polarization level 1s only l0 dB below the reference

polarization 1eve1 at the beam half pov¡er points.

5"5

In this section we wlll derive an

polarizatlon introduced by a Luneberg lens.

calculatlng the cross-polarizatÍon field of

Huygens t source, since Huygens r source does

polarÍzatLon"

expression for the cross-

This can be achieved by

a Luneberg lens fed by a

not lntroduce any cross-

a Luneberg lens fed by an electrlc

to lnvestlgate whether the lens can

level of the dipole antenna"

dlpole

reduce

5.5"1

The cross-polarlzatfon of

ls also an inEerestlng case,

the large cross-polarÍzatÍon

Cross-polarizatlon of a Hu ens e source fn the presence of a

Luneberg lens

The far elect

of a Luneberg lens has

rlc ffeld for a Huygens I

been derlved 1n Chapter 3

source ln the presence

and is

er{n) =
-itiy C

e
--G-- (-i)t

c.,) t"tn]

lkR
i

n=1

D)mn' oln +(B +'ni-i1er, +

-ItO-

(s .2e)



where A.r, Brr, C' and O' are defined in ChapÈer 3 and the vector wave

functions ; oln' nelnare glven bY

_ pI (coso ) 
^ 

âpI (cosO)
moln = ät- cosq ê - -"ãr- sinq $

â Pl (coso ) Pl (cosg )
ñ.1r, = -+ð-- cosq ê - "õ ;, 

' 
srnq ff

Then the far fleld can be written as

where

(s.30)

Apl (cosO) pl (coso)
{-t(Ar, + D,r) -"m-- -. (Br, * .r,) +1;# t

substitutlng equaÈton (5"30) in equation (5.16) r{e can wrlte the cross-
polarizaElon as follorvs:
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cH(o,g) = Er(o,O) " IsinQ cos0

srn2Q lrrrce¡ - n"rcelJ

0̂+ OJ

I
2 (s.31)

The field" Èr, and nn, are rhe flelds in

planes respectlvely"

Usíng equarlon (5.31)

plane O = ä, and for a cerraln

the two prfncfpal E and H-

the maximum cross-polarl_zatlon fn the

polar angle 0 can sÍmply be obtalned by

electrlc field ln one prlncipal plane at

the electrtc field at the other princípal

the

of

subÈractfng the value of

the angle 0 from the value

plane at the same angle 0

of an electrlc dl5.5.2 Cross-Þolarlzatfon le l.n the resence of a

Luneberg lens

Accordfng to the deflnltion of the cross polarlzatlon pre-

sented above the electrlc dipole produces a conslderable cross-polarf-
zation 1evel whlch rncreases with increasing pattern angle 0 rt is
lnterestlng to lnvestlgate the effect of the Luneberg lens on the

cross-polarlzatlon fleld of such a dfpole. The far electric field of a

dfpole located at the surface of a Luneberg lens, wtth lts centre at

the origfn 1s given by
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where

Then tl-re far fteld can be expressed as in the Huygensr source case, as

l-re;. +Born n n"lrrl

ED(o) = EDt(o) cos0 tu - io, stnô 1,

-ürU C fkR @

nor{o) = -u'--e \- _1, ## (_1)"
n=l

(s.32)

(s.33)

pl (coso ) apI (coso )L-ü'-**-* u" # ]

and

-{uC ikR æ

ror{e) =# ;.,1, *# (-i)n

ôPr (cosO) pl(cos0)
L-rAr,_]¡u *n"ffJ

1-cD(o,o) =; srn2q,Laor{o¡ - ror(e)J

Following the same procedure used for the Huygens r source in
the prevlous eectl,on the cross-polarization can be expressed as

- 114 -
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where Eo, and Er^ are Ehe H-prane and E-plane far flelds respectivery.

5,6 Results and Discussion

To lnvestigate the validity of the waveguide model derived in
the preceding sectlons, the far fleld of various waveguide uodels

represented by different number of array elements will be calculated.
this procedure w111 also help to identify the mi-nÍmum array (array w-ith

minimum number of elements) that nay correctly model the waveguide

aperture.

5. 6. f Radiatfon ttern of a rect ular waveguide aperture in free

space

The H-plane radiation patterns of a waveguide wlth a dimen-

slon a = 0.7À are shown in Flg " 5.7, together wlth the radiation pat-
terns reported by silver t:+¡. The radiation patterns are shown for
three di-fferent model arrays havlng 9, 5 and 3 elements fn the H-pJ-ane.

The angular separation of the adjacent elements ln the array are glven

by 0"5' I and 2 degrees respectl-vely. It should be noted Èhat the

number of elements ls always odd slnce we have chosen one of the ele-
ments to be at the centre of the aperture. All three distributions
have presented a good model for the waveguÍde, judging by the far fleld
radlatfon pattern, when cornpared with the reported patEerns of the

wavegulde wfth the same dlmenslon" rt is parclcularly interesÈfng to

notice that the thfrd case, an array wlth three sources, had produced a

paEtern very close to the measured pattern of the wavegurde. This

means that the wavegulde aperture can be node]-ed by three r{uygens e

sources w1Ëh equal strength, one located aÈ Ehe centre and the others

- 1r5 -



at each sfde of the aperture.

To further check the validlty of the three source moder, this
nodel \,ras used to calculate the radiation pattern for waveguíde aper-
tures of dimensions a = 0"5À to a = o"g7À. The calculated patEerns are

lllustrated in Fig. 5"8. The width of the radiation lobe decreases as

the dlmension "a" of the waveguide rncreases, which is consistant w-rth

the observed waveguide aperLure radlatlon characterlstics. This again

confirms that the three source array is a valid model for the rectan-
gular waveguide aperture.

5.6.2 Radlatlon pattern of a rectansular uide aperture in the

presence of a Luneberg lens

In the preceding sectlon

aperture can be modeled by an array

sectfon we wl11 find the radiatlon

in the presence of a Luneberg lens,

ween this patLern and the patterns

sented fn Chapter 3"

I¡/e have shown that the wavegulde

of three Huygens I sources. In this

pattern of a rectangular wavegulde

and point out Èhe differences bet-

for a single Huygens t source pre-

The radiation patterns of a rectangular wavegulde aperture
wlth the broad dlmensÍon a = 0.7À located at the surface of a Luneberg

lens of diameter þ = 5À and D - t0À are presented. in Þ-igures 5.9 and

5.10 respectlvery. compared to Èhe radiation patterns of a slngle
Huygens' source, the wavegufde radiaËlon pattern presented a slightly
wider rnajor lobe, while the mrnor lobes are largely suppressed. For

Ëhe Luneberg lens r,\¡ith diameter D = 5À the half pov¡er pofnt beam w-idth

has lncreased by approxlmately two degrees while the slde _lobes have

been reduced by BdB" For the Luneberg lens wlth a diameter D = l0À the

beam wldth has lncreased by one degree, and t.he side lobes have
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decreased by 8 dll ,

Finally, we wilr present the radiation pattern for a vrave-

guide aperture 1n the presence of a modified Luneberg lens, as

described in chapter 4" 0n1y a lens with a diameter D = 5À has been

considered since for larger diameters the lmprovement in the Luneberg

lens ls small" The radiatlon pattern for the above case fs presented

in Fig. 5"11. The major lobe presented the same characterfstfcs as in
the case of an ordlnary Luneberg lens in Ffg.5.9 although the

improvement 1n the side lobe ls better.

s.6"3

The electrlc dlpole presents a sfgnlflcant cross-polarlzatlon

1eve1" It fs therefore lnterestlng to study the cross-polarfzatlon
fields of a dipole radiator in the presence of a Luneberg lens.

The reference and cross-polarlzatlon flelds for an electric

dlpole in the presence of a Luneberg lens are shown in l-igures 5. 12 and

5'i3' The naximum cross-polarizatlon fleld level at the main bearn half
por¡¡er polnts fs -22 dB, compared to the correspondlng level of -10 dts

for a dlpole ln free-space" This 
'ueans thar the Luneberg lens has

reduced the cross-polarizatfon level by 12 dB. Thts indfcates that a

combinatfon of a dlpole and a Luneberg lens uny be used as a feed for a

parabolic reflector antenna. The combfnatlon wfll reduce the cross-
polarized currents on the surface of the parabolold and hence lncrease

the aPerture efffclency. It should also be noted that the un.ximum

cross-polarfzatlon leve1 ls -14 dB compared to 0 dts for a dfpole tn

free space. That fndlcates that the Luneberg lens not only reduces the

cross-polarlzatfon level in the coverage area, but also reduces Èhe

total power of the cross-polarlzation field.
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5.6"4 Cross-polarlzation of a Luneberg lens

By definrtlon, Huygensr source produce no cross-porarlzatlon

field components in free space. Hence the cross-polarization field of

a Luneberg lens may be evaluated by calculatlng the cross-polarization
field of a Huygens'source in the presence of a Luneberg rens. The

cross-polarlzation flelds when the source fs located on the surface of

Èhe sphere are shown in Flgs. 5.14 and 5.15. A sumnary of the cross-

polarlzatlon levels at the bea¡n half povrer points, for lens dianeters

from D = 2À to D = r0À are shown 1n Table 5.r. The t.able also shows

the corresponding values for the nodified Luneberg lens introduced in
Chapter 4. Thfs table shows that the modlffed lens of A = I produced a

considerable reductfon of cross poLarlzatlon level ln the beam area of
coverage' Also the modified lens has reduced the tot.al pov¡er of the

cross-polarlzatlon ffe1d, as shown in Ffg. 5.16.
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TABLE 5. I

Luneberg Lens Cross-Polarizatlon

at Beam Half-Povrer Point: 0 = 45o

Cross-Polarlzatton (dB)

Diameter Luneberg Lens Modifled Luneberg Lens

2

3

4

5

6

7

B

9

10

I

I

I

I

I

I

I

I

I

-27 "44

-3r.33

-33"9

-36 " r3

-37 "7 B

-39 " 17

-40.42

-41"50

-43.26

I

I

I

I

I

I

I

I

I

-40. 35

-40.52

-39"8r

-40 .43

-40.99

-41"35

-4r "69

-42.40

-43 " 4r

-29 "62

-32.81

-35.r8

-36. 98

-38 "26

-39 " 60

-40 "87

-4 I .83

-42.54
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CHAPTER 6

CONCLUSION

6 "L Sumrnary of the Results

A solutfon for the electromagnetlc flelds in the presence of

a radially stratlffed spherical lens \,/as used to study the radiatfon

characterlstfcs of Luneberg lenses. The distributlon of the total
power among the modes and the directfvfty of the lens, as a functlon of

Its sJ-ze, I¡Iere examlned . It was found that a Luneberg lens does not

exhlbft the reaonant property of a homogeneous sphere and the modal

pot¡er distrlbutfon shows a smoother behavlour. Furthermore, the per-

centage Poú/er content of the hlgher order modes reduced rapfdly beyond

a certaln mode number M = ka - l, where a is the lens radlus and k

fs the propagatfon constant of the wave. Stmllarly, the dlrectfvlty of

a Luneberg lens shov¡ed a smooth variatfon wlth the 1ens slze and

asymptotfcally approached the dlrecttvity of a unLformly illumlnated

aperture" However, at the low frequency end 1t decreased continuously

below that of a unlformly llluminated aperture.

To enhance the directrvfty of the lens at low freqeuncies

three ner^7 lens proflles !/ere consldered. Thefr permftttvlty proffles

vTere assumed sim11ar to a Luneberg lens, but wlth larger average

dielectrfc constants. Examlnation of the radtatfon characterlsttcs of

the modiffed Luneberg lenses lndlcated that their focuslng properties

can be controlled by modifying thelr dlelectric proftle, but generally,

showed better dlrectlvities at 1ow frequencfes than a standard Luneberg

lens. The electromagnetlc field solutlon of these modlffed lenses were
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obtafned by utillzing the spherical wave expanslon method, whlch r¡/as

developed to account for the assumed varfatlons of the dielectrlc pro-

flles.

The performance of a Luneberg lens wfth a practlcal source

¿lntenna was also fnvestiaged. I.Ie represented an open-ended rectangular

wavegulde, by a rectangular a--ray of Huygens t sources . rt r^ras shown

that by modifyfng the number of Huygens' source elements the radiatlfon

characteristfcs of any wavegulde radfator can be satlsfactorily repre-

sented. Uslng thls representatfon the radiatlon characterlstfcs of

both standard and modlfed Luneberg lenses, lllumlnated by a wavegul-de

radiator were studled.

To examine the quallty of the radiated field both co-polar

and cross-po1ar radlations vrere presented. It vraa shown that the

Luneberg lens generally produced a hfgh quallty radlatlon wíth a rela-

tlvely 1ow level of cross-polarlzatlon. It hras also found that the

radiatlon patterns of the modtffed Luneberg lenses have lower slde lobe

1eve1s and produce more symmetrlcal patterns. Thls latter property

resulted fn 1ow cross-polar radlatlon level for the modtfied lens.

6.2 Suggestlons for Further l{ork

1. All through the present and prevrous investfgatrons, onry

the case of a lossless Luneberg lens has been considered. rt may be

interestlng to study the ef f ect of l-ntroducing a loss fact,or into the

dielectrfc constant and study lts lmpact on the radiation characteris-

tics of the lens.
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2. l^Ie have attributed the lncrease of the dtrectivfty of the

modlfied Luneberg lens to the lncrease of the average permfttivlty of

the 1ens. However, the fnvestlgatlon of the near field may also shed

some ltght on the improved behavlour of the modified lens. such a

study may lndicate the degree of field concentratlon at Lhe focal pofnt

and show the actual location of the focal polnt that an excitlng source

may be located to yleld a better radlation fteld.
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