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ABSTRACT

A solution for the electromagnetic field in the presence of a
radially stratified spherical 1lens 1is used to study the radiation
characteristics of the Luneberg lens. It is shown that for a Huygens'
source excitation the directivity of a Luneberg lens increases smoothly
with the size of the lens and approaches asymptotically that of a uni-
formly illuminated aperture. On the other hand, the performance of the
lens as a focusing element deteriorates continuously at low frequencies
and its directivity fall below that of a homogeneous spherical lens.

To enhance the directivity of the lens at low frequencies a
new class of modified Luneberg lenses are then introduced. The
electromagnetic field of these modified lenses, for a Huygens' source
excitation are also obtained. by utilizing the spherical wave expansion
method. Their radiation characteristics indicate a better focusing
property at low frequencies, which are examined for various parameters
of the lens profile.

To study the performance of a lens with a practical source
antenna, the excitation is represented by an array of Huygens' sources.
A rectangular array is used to model the radiated field of an open-—
ended rectangular waveguide. This source array 1s then used to gener-
ate the desired radiation fields. The effect of a Luneberg lens on the
polarization of the field is also studied and for both Huygens and
dipole sources the computed data of the co—pqlar and the cross-polar
- radiated fields of the lens are presented.
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LIST OF SYMBOLS
Unless otherwise stated, the symbols most commonly used in
this thesis have the following meaning.

Latin Alphabet:

a radius of a sphere
a broad dimension of a rectangular waveguide
Ce electric dipole current moment
D diameter of a sphere
dB decibel
e subscripts denote even
E electric field vector
1F1 confluent Hypergeometric function
H magnetic field vector
hél),h£3) spherical hankel functions of the first and third kind of
order n .
i V-1
in spherical Bessel function
k propagation constant
ﬁe s ﬁe spherical vector wave functions
mn Cmn

Pz(cosﬁ) associated Legendre polynomial of first kind of order m
and degree n

r radial distance from the origin

& unit vector of spherical coordinate system

R radial distance between the origin and an arbitrary point in
space

ShTq solutlons of the radial equation for inhomogeneous sphere



Greek Alphabet:

€ permittivity

n intrinsic impedance

8 polar angle

% unit vector of spherical coordinate system
K dielectric constant

A wavelength

Mo free space permeability

n pl (3.141592654)

p KT

¢ Azimuthal angle

$ unit vector of the spherical coordinate system
P scalar wave function

w angular frequency

x1i



CHAPTER 1

INTRODUCTION

Recent advances in the communications field, particularly
satellite communications, have renewed the need for economical high
gain antenna systems. This has resulted in additional efforts towards
more thorough investigation of some of the existing antenna designs
that has been previously considered impractical due to their
complexity. 1In addition, the availability of new dielectric materials
and recent advances in manufacturing techniques have provided
econbmical means of fabricating new antennas.

High gain antennas can be classified 1into two categories,
phase arrays and reflector or lens systems. Phase arrays are normally
made of simple radiating elements with a complex feeding system to
supply proper input signal to each element. Their characteristics can
be controlled easily by the feed system electronics, but are too costly
to fabricate and 1less reliable due to the complexity of their
electronics. On the other hand, the reflector and lens systems have a
simple feed system and the reflector or lens is used to correct the
phase of the feed radiation to provide a uniform phase distribution
over the antenna aperture to increase the directivity. Their geometry
is therefore simpler than that of a phase array and since the unit
operates as a passive phase corrector, they are more reliable. In this
thesis we are concerned primarily with the lens antennas and thus, the
reflector antennas will not be discussed.

Among the lens antennas, one of the most widely investigated
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system is the Luneberg lens. A Luneberg lens [20] is a variable-index,
spherically symmetric refracting structure which will form perfect
geometrical images of two given concentric spheres on each other. If
one of the spheres is of infinite radius, the lens will focus a
parallel beam of réys from any direction exactly at a point on the
other sphere, or will form a perfectly parallel beam out of rays from a
point source on the local sphere. Considerable interest has developed
in microwave applications of Luneberg lenses, because of their
advantages as wide angle scanners and passive reflectors.

The perfect focusing property of the luneberg lens may be
achieved in many number of ways. Luneberg [20] found a particular
solution for the index of refraction of a lens which has two given
points outside the lens as conjugate foci. His solution takes a simple
explicit form if one of the points is at infinity and the other is at
the surface of the lens. Brown [3] and Gutman [12] have designed
lenses with one focal point at infinity and the other inside the lens.
Gutman has shown that 1t is theoretically possible to build a large
diameter Luneberg lens antenna, with which a pencil beam can be scanned
over the entire volume of space by moving a polnt source over a small
diameter sphere.

A general expression for the index of refraction of a lens
which will focus between two given conjugate points has been presented
by Morgan [22]. One of the foci is taken to be outside the lens or at
its surface; the other may be outside, inside, or at the surface.
Daniele et al [7] and Kay [17], and Huynen [l14] have presented general
solutions and properties for a certain class of spherically symmetrical
lenses with indices of refraction which vary with the radius only.
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Their study put great emphasis on the Luneberg lens case.

Several Luneberg lens fabrication techniques have been inves-—
tigated. Peeler and Coleman [21] and Buckley |[18], have presented the
stepped—index Luneberg lens and measured the radiation patterns for the
prototypes. The lenses were constructed by assembling several molded
hemispherical shells of expanded polystyrene material.

Gunderson and Holmes [10] and Gunderson and Kaufman [11] have
tabricated two dimensional and three dimensional Luneberg lenses out of
foamed borosilicate glass. They indicated that a lens fabricated from
glass would have a significant advantage with regard to the environ-
mental effects. Also it will handle six times the power density that a
lens fabricated from expanded polystyrene can normally handle.

Several researchers have dealt with the theoretical radiation
characteristics of Luneberg lens. Braun [2] has derived an expression
for the radiation characteristics of the sbherical Luneberg lens. He
assumed that the amplitudes of the electric and magnetic fields are
arbitrarily known functions of position over the surface of the lens,
and the phases are such as to result in a plane phase front perpendi-
cular to the axis of the lens.

An exact theory of the cylindrical or the two-dimensional
Luneberg lens has been obtained by Jasik [15]. Tai [33] starting with
a general discussion of the electromagnetic field in a radially strati-
fied medium, applied the solution to the spherical Luneberg lens. He
also derived the general expression for the electromagnetic field due
to a dipole outside and on the surface of the lens. Rozenfeld [29]
used the dyadic Green's functions to derive an expression for the elec-—
tric fields generated by the Huygens source in the presence of a
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Luneberg lens.

The scattering of the electromagnetic waves by a Luneberg
lens has also received considerable attention by numerous investi-
gators. Garbacz |Y] determined the bistatic gcattering cross—section
of the Luneberg lens of small diameter. The coefficients of the scat-
tered fields were expressed in terms of the TE and TM impedance and
admittance functions. This method has a disadvantage due to the fact
that both the impedance and admittance functions are rapidly varying
functions. These functions can become very large and even unbouﬁded in
the region of anti-resonances. A more convenient method from the com-
putational point of view is described by Shafai [32]. The wvector
potentials are expressed in terms of two auxiliary functions, namely
the phase and amplitude functions. The scattered field is given com-—
pletely by the phase functions and they were found to be relatively
smooth and well behaved. Therefore, their computation is more effi-
cient than that of the impedance and admittance functions wused by
Garbacz. Hizal and Tosun [13] used the state—-space formulation for the
same purpose. Their results are in good agreement with those of
Shafai,

A comparison between the radiation patterns of a Luneberg
lens and a homogeneous sphere of small diameter using geometrical
optics is reported by Ryan and Cain [30]. They found that the homo-
geneous lens compares favorably with the Luneberg lens with regard to
directivity, beam width and sidelobes. Rozenfeld [29] has computed the
directivity of the Luneberg lens and compared it to the directivity of
the homogeneous lens. He found that the directivity of small diameter
Luneberg lenses is in general lower than that of the homogeneous lens.
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The directivity of homogeneous lenses deteriorates while the directi-
vity of Luneberg lenses improves as their diameter increases. Also,
Luneberg lens does not present the resonance phenomenon experienced in
the homogeneous lenses. This indicates that a Luneberg lens is a more
frequency independent antenna than a homogeneous lens. Recently, Onoe
et al [23] have introduced a Luneberg lens controllable reflector. The
reflection of such a reflector can be modulated by slowly varying data
such as temperature and wind velocity.

To enhance the performance of the Luneberg lens at microwave
frequencies, we will introduce a new class of modified Luneberg lenses.
We will show that the new lens designs will improve all the radiation
characteristics of a Luneberg lens, especially, when the lens diameter
is in the order of a few wavelengths.

We will also investigate the performance of a Luneberg lens
as a wideband antenna. To analyse such antennas a new model of a wave-
guide radiator as an array of Huygens sources will also be introduced.

Prior to the introduction of the new lens design, a review of
the existing lens designs, characteristics, and methods of fabrication
are presented in Chapter 2. Chapter 3 presents the spherical vector
wave function solution for a radially stratified sphere and hence for
the Luneberg lens. The Luneberg lens radiation pattern, directivity
and modal power distributions are also presented. Chapter 4 is dedi-
cated to the investigation of the new classes of modified lenses.
Starting with the dielectric constant profile of the new lens, we will
derive an expression for the radiated field and the radiation
characteristics.

The radiation characteristics of Luneberg lenses excited by a
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rectangular waveguide and the quality of their radiated field are
discussed in Chapter 5. Normally, a waveguide radiator is modelled by
a single Huygens source. However, a single Huygens source does not
describe adequately the radiation of a waveguide with arbitrary cross-
sectional dimensions. We have therefore modelled an open ended
rectangular wavegulde by a rectangular array of Huygens sources,
located at its aperture. It is shown that such an array represents the
radiation of the open ended waveguide more accurately and is therefore
used to simulate the excitation of a Luneberg lens by a waveguide. The
radiation characteristics of both standard and modified Luneberg lenses
are then studied using the arrays of Huygens sources. The quality of
the radiated fields is also examined by investigating the cross-polar
radiation of the lens.

Chapter 6 summarizes the results and presents concluding
remarks on the characteristics of Luneberg lenses. It also includes

recommendations for future work.



CHAPTER 2

SPHERICALLY SYMMETRIC LENSES

2.1 Introduction

Historically, considerable interest has been shown in scat-
tering by spheres with continuously variable but rotationally symmetric
refractive index, due to their ability to focus microwave radiation.
According to the geometric optics, radially symmetric spheres can be-
have as perfectly focusing lenses when they have an aépropriate varia-
tion of the refractive index.

A classical example of spherically symmetric lenses is the

Maxwell "fish-eye" for which the refractive index variation 1is [1]

n
n(r) = ——>—p (2.1)
1 + (—
[+ (D]
where n and e are constants and r 1is the distance from the
center of symmetry to an arbitrary point. In such a medium, all rays

emanating from this point will be focused elsewhere 1in the medium.
When the medium is a finite sphere, with r the radial distance rela-
tive to the radius of the sphere (0 < r < 1) » it behaves as a lens,

which brings the rays emanating from a point source on the surface, P,

to focus at the opposite surface point, p . The ray paths are shown in
Fig. 2.1 .

A Luneberg lens [15,17,22] is a spherically symmetric struc-—
ture with a variable refractive index, which will form perfect geomet-—
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Fig. 2.1 Spherical Maxwell "fish -eye" lens

N

Fig. 2.2 Luneberg lens with two external foci



rical images of two given concentric spheres on each other. Fig. 2.2
and 2.3 illustrate schematic Luneberg lenses, respectively, with two
external foci and with one external and one internal focus. When one
of the foci is placed on the surface of the lens and the other is moved

to infinity, the refractive index profile takes on the tollowing form

n(r) = (2 - r2)l/2 (2.2)

with the ray path shown in Fig. 2.4. A plane parallel incident beam is
brought to a focus at p or the rays from a source at p emerges as a
parallel beam at the opposite surface. If the Luneberg lens is now
fitted with a spherical cap reflector, it becomes a Luneberg reflecter.
Such a lens will behave as a perfect back-scatterer, returning all the
incident energy into the backward direction except for the rays lost at
the front surface reflection. 1In a higher order Luneberg lens or re-
flector [l4], the rays reverse within the sphere before coming to a
focus as shown in Fig. 2.5.

The isotropic or Eaton lens first proposed as a perfect back-—
scattering device, which obviates the need for a metallic reflecter.
The refractive index variation is

— 2
2 oyt (2.3)

n(r) = (

The elliptical path of a ray through an Eaton lens emerges in the back-
ward direction as shown in Fig. 2.6.
Luneberg has developed the theory for the stratified spheres

- Qg ~



D

Fig. 2.3 Luneberg lens with one external focus and one
internal focus

g

Fig. 2.4 Luneberg lens with one focus at infinity and one
on the surface of the lens
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Fig. 2.5 Higher order Luneberg lens with one focus at

infinity and the other on the near-side surface
of the lens

Y

Fig. 2.6 Eaton lens



as an academic exercise 1in classical optics. However radar workers

immediately recognized their utility.

2.2 Luneberg Lens

Luneberg 1lenses are the most commonly used among all the
above classes of lenses. In its complete form, the lens is a sphere
with the property that energy from a feed source at any point on the
spherical surface, which is propagated through the sphere is focused
into parallel rays emerging from the other side of the sphere. Perfect
focusing is obtained for all feed positions on the surface.

As presented above the lens is formed as an inhomogeneous
medium in which the index of refraction n varies with the lens radius
r according to the expression in equation (2.2). A central cross-
section of the sphere is shown in Fig. 2.7, together with typical ray
paths through the lens. The ray paths are sections of ellipses which

are given in polar coordinates by the expression [16]

sinZa
= 2.
r? 1 - cosa cos(26~a) (2.4)
where a is the feed angle defining a particular ray. Because the

lens 1s a symmetrical structure, certaln relationships between angles
in the system are evident from Fig. 2.7. The most important 1is the
equiangular relationship between the angle formed between the ray and
the radius vector at the point where the ray leaves the lens, the polar
angle defined by the radius vector to the point at which the ray leaves
the lens, and the feed angle. The feed angle is measured at the source
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Fig. 2.7 Geometry of Luneberg lens cross-section
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point between the central ray and the general ray. This equiangle is
designated o in Fig. 2.7.

Another point of interest is the fact that the radius vector
normal to the ray path bisects the ray path within the lens. Further
geometrical information obtained from Fig. 2.7 shows that the path
length of a ray within the lens can be obtained as a function of the
feed angle. TFor a maximum feed angle of 90°, the ray travels along the
lens periphery for a distance of #/2 . Other path lengths within the
lens can be determined from the fact that the optical path length
equals 7/2 + cosa . From the path length variations, it is possible
to give an expression for the variation in the phase across the output
arc of the lens cross section as 1 - cosa , where a 1is the polar
angle.

Another significant property of the Luneberg lens is the fact
that the rays emerging from a feed horn do not appear 1in a uniform
manner across the aperture, but instead tend to spread out in the
center and approach a theoretically infinite concentration at the
edges. Because of this fact, the analytical aperture illumination 1is

obtained from the original feed pattern multiplied by the factor seca .

2.2.1 Two-dimensional Luneberg lens

Many variations of the Luneberg lens have been analyzed. The
simplest to consider is one in which only a plane section of the lens
is utilized [21]. The ray paths through this section are identical to
those of Fig. 2.7. However, the emerging wave front is not a plane but
a saddle-shaped surface. This surface is the envelope of the Huygens'

wavelets, with centres on the semicircular aperture. In rectangular
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coordinates, this surface is given by the parametric expression

(Ll -8 - a)

<
It

172

1-g2
= [(ma2)2 = (8-a)2 = —F— (1-g-2a)?]

N
i

Because of this distorted wave-front, certain limitations exist in the
radiation pattern. This pattern has been analyzed by Peeler and Archer
[24], where it is shown that a side—lobe level of 17 to 18 dB exists
for all normal feed~horn illuminations. This problem can be
circumvented by introducing a linear aperture, as shown in Fig. 2.8. A
cylindrical wavefront is produced by this system, and fhe expected
pattern is similar to that obtained from an ordinary line source. It
should be pointed out that the introduction of the linear aperture
destroys the symmetry of the lens ana limits the system to narrower

angle of scan.

2.2.2 Virtual-source Luneberg lens

A variation of the Luneberg lens involves the addition of
plane metallic reflectors passing through the centre of the lens [26]).
The addition of such reflectors produces virtual sources where
positions depend on the orientation of the real feed source and the
metallic reflector. Fig. 2.9 shows a lens cross-section with a single
reflector in place. From a consideration of the ray paths, it is
evident that a perfect virtual image of the real source is formed. It
should be noted from the figure that not all the energy from the real
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Fig. 2.8 Luneberg lens with linear aperture

METALLIC
REFLECTOR

Fig. 2.9 Virtual-source Luneberg lens

- 16 -



source which passes through the lens strikes the reflector. Therefore
this antenna will produce two focused beams, one from the real source
and one from the virtual source.

It 1is possible to add more plane reflectors and create a

complexity of wvirtual sources.

2.2.3 Small-feed-circle Luneberg lens

Another variation of the spherical Luneberg lens has produced
a system with smaller radius of the feed circle and with limited angle
of scan. It is interesting to see that the requirements for a smaller
feed circle and perfect focusing does not produce a unique expression
for the variations in the index of refraction.

The first expression was obtained by FEaton [8]- He
considered a sphere of unit radius, with refractive index equal to
unity on the surface and with a feed position at any distance, less
than or equal to unity, from the center of the sphere. If the radius
of the feed circle is denoted by a then the variation in refractive

index 1s given by the following expression

29 — 12
n? = —EL:;JL— for 0 < r < a (2.5)
2._
n = - 2 for a< r <1 (2.6)

from the expression it can be seen that if the feed circle radius is
one-half the radius of the sphere, the refractive index at the centre
is 2 , at the feed circle is 1.7 , and at the edge of the lens it
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decreases to unity.

The second expression for a small-feed-circle Luneberg lens
was derived by J. Brown [3]. He indicated that the problem could be
attacked by assuming a certain variation in the index of refraction
between the feed circle and the outer surface and then computing its
variation within the feed circle which would yield the desired focusing
properties. He considered the problem of bringing all rays incident
upon the lens surface into the feed point and displayed two solutions
to this problem. The first solution involves choosing a refractive
index which is constant in the outer region. 1In terms of the variables
used above, the refractive index was chosen 1/a . With this constant
value of the refractive index, the index variation in the inner region
was found by a numerical integration process. For a feed circle of one
half the lens radius, the results showed that the index had a maximum
value of 2.34 at the lens centre and decreased monotonically to the
value 2 at the feed circle. The index in the outer region had the
constant value 2 . The variation in the index is then continuous,
but the slope of the variation is discontinuous at the feed circle.

Since there 1is an abrupt discontinuity in the index of
refraction at the lens surface, a ray passing from the region in which
the index is 2 into free space, where the index is 1 , suffers both
reflection and refraction. In order to avoid this problem, Brown
considered a lens with index of unity at the surface. He showed that
it was impossible under this condition to select a constant index in
the outer region. He found one permissible index variation to be
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?r? =1+ y(l-r)(r-a) (2.7)

where vy is a positive constant. Using this value of the index of
refraction for the outer region, it was possible to evaluate the index

in the inner region from the following expression

— 172 2
ban? = (gl (Fa) + [4p2 + y(1-a)?] "}

(2.8)
(p + VYa)?

where p?2 =1 - 212

Brown selected a value of Y equal to 4/a , since such a
value minimized the refractive index required at the lens center. The
refractive index varied continuously from 2.2 at the center to 2.0 at
the feed circle, and hence to unity at the surface. The slope of the
refractive index vs. radius curve was discontinuous at the feed circle.

A third small-feed-circle Luneberg was obtained by Gutman

[12]. He selected an index variation given by the expression

n? = (1 + a2 - r2)/a?

He then showed that with the feed at a distance a from the lens
center, the outgoing rays would be parallel. It is obvious from this
expression that the index and its slope are continuous functions of the
radius. For a feed-circle radius equal to one-half the lens radius,
the index varies from 2.24 at the lens center to 2 at the feed-

circle radius and to unity at the surface.
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It is evident, then, that many expressions are available for
the design of a small feed-circle Luneberg lens. A comparison of the
various designs can be made for feed-circle radius one-half the lens
radius on the basis of the maximum refractive index required and the
maximum effective aperture obtained. This is shown in Table 2.1, where
it can be seen that Eaton's design provides a minimum in the required
index but Brown's design provides a maximum effective aperture with
only a small increase in refractive index.

TABLE 2.1

Comparison of Small-feed-circle Luneberg Llenses

| | Maximum refractive index | Effective Aperture, % |
| Eaton ] 2.0 | 86.6 |
| Brown | 2.2 | 100 |
| Gutman | 2.24 | 100 |

It should be noted that although all above designs have
theoretically produced a small feed circle, the practical utilization
of such designs is physically difficult. Also the introduction of the
feed and feed mechanism to these designs for practical use may
seriously affect their performance.

2.3 Methods of Constructing Luneberg Lenses

Many different methods have been proposed for constructing
the Luneberg lens. Several schemes have been attempted in a spherical

lens to satisfactorily approximate the variation of the dielectric
constant. No practicable scheme for smoothly wvarying the relative
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dielectric constant from two at the centre to one at the surface has
been achieved.

Lenses have been made with void-type dielectrics in which a
series of flat circular plates of different radii are stacked on one
another to approximate a sphere. These plates have a relative dielec-
tric constant of 2 or greater. Holes, 1/8 to 1/2 inch in diameter, are
drilled in each plate to reduce the "effective" dielectric constant to
more or less the correct value at each point in the sphere. Such
dielectrics are neither homogeneous nor isotropic, however, the result-
ing lenses may be severely sensitive to polarization unless very small
holes in wvery thin plates are employed.

Artificial dielectrics, in which conducting particles are
dispersed uniformly in a low—g medium, are frequency-sensitive, unless
the dimensions of the loading elements are either very small with
respect to wavelength or in the order of magnitude of a wavelength. In
most cases, adequate polarizability requires other than spherical load-
ing elements, with the larger elements of the order of one wavelength,
isotropicity then requires complicated and expensive shapes. One
reasonable artificial dielectric appears to be one in which very tiny
(micron dimesioned) conducting flakes of a metal such as aluminum are
randomly dispersed in a low-x, low density, foam base. Isotropicity
and homogeneity are fair to good, but the dissipation factor is too
large for many applications in the microwave region [18].

A strait forward approach involves an approximation to the
sphere by a central sphere and several spherical shells [21]. The
central sphere has a dielectric constant of about 2, while the shells

will have decreasing values of dielectric constant with increasing
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radius. Through the use of a sufficient number of dielectric shells, a
sufficiently close approximation to the required lens can be obtained.

If a two dimensional model of the lens is considered, all the
previous methods of construction are applicable. Another construction
method involves obtaining the required refractive index by using the
concept that the phase velocity of a wave can be varied by varying the
spacing between parallel plates [24]. 1If the electric field vector is
parallel to the plates, the required refractive index is obtained by

varying plate spacing a according to the following formula

A
(Ke— 2 + r?-)l/2

(2.10)

a =

where Ke = dilelectric constant for medium between parallel plates

[ad
i

radial coordinate, 0 < r < 1 .

Thin metalic cylinders can be used between parallel plates to
produce the variation in the refractive index required in the Luneberg
lens. If the pins are mounted between the plates so that they are
perpendicular to, but do not contact either plate, the desired
variation can be obtained by varying the length and spacing of the
pins.

The most used technique for the construction of Luneberg
lenses 1is the stepped index technique [18]. 1In the following section
we will review this technique in detail.

2.3.1 Stepped-index Luneberg lenses

In this technique the desired continuous variation of index
of refraction with radius is approximated by a number of constant index
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spherical shells. The most practical dielectrics for use in such a
type are adjustable density foam materials in which the relative
dielectric constant can be held within a tolerance of about + 0.02 for
dielectric constant between 1 and 2. These foams can be considered
void—-type dielectrics, but the voids are very small and random in both
size and shape so the isotropicity is reasonably good. The dissipation
factor can be kept to less than 0.0005.

The following factors influence the choice of the actual
number of steps in any partiéular case:

a) The maximum required frequency of operation places a limita-
tion on maximum shell thickness of the order of a half wavelength, If
shells are much thicker than a half wavelength, a type of wave-trapping
phenomenon appears to be possible. It tends to reduce the transmission
of energy from one shell to the next.

b) The degree of production-line control over the dielectric
constant (£ 0.02) may limit the number of steps.

c) Individual shells cannot be made arbitrarily thin because of
molding difficulties and the relatively fragile nature of very low-
density, low—x foams. At the outside of a large lens (k~1), it is not
feasible to make shells much less than 1/8 inch in thickness. The
step-wise approximation of the smooth « versus r curve permits the
use of an outermost step which is actually air, and the focal point can
be located just outside the surface of the ball. this in turn, permits
optimum adjustment of the position of the feed antenna or the cap
reflector. Stepped-index Luneberg lenses has been made in practically
any diameter from 3 to 48 in. The number of steps varies from a mini-
mum of 10 in small size lenses to 50 in larger units.
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2.4 Applications of Luneberg Lenses

Luneberg lenses are commonly used in lens antennas and pass—
ive reflectors. If a small broad beamed feed antenna is placed with
its effective phase centre at the focal radius of the lens, all energy
will radiate into the forward hemisphere. Neglecting the scattering
due to finite size of the source and the lens, this radiation will be
collimated along the axis of the lens as shown in Fig. 2.10. 1In prac-
tice the feed can be made lightweight, so that it can be moved radially
over the surface of the sphere to provide a convenient means of scann-
ing a radiation beam. A series of fixed feeds, electrically switched,
is also possible for scanning. The lens does not impose any limitation
on the scanning angle, since it can remain stationary while the light-
weight feed 1s moved over 1its surface.

Typical feed devices are small-aperture waveguide horus,
open—end waveguldes or dielectric loaded waveguides, the prime requir-
ment being a satisfactory approximation to a point source. The direct-
ivity, beam width and side-lobe level of the resulting feed-plus-lens
antenna system can be controlled to some extent by modifying the 11lu-
mination taper and by radial adjustment of the effective phase center
of the feed with respect to the focal point.

The majority of Luneberg lenses are used as passive reflec—
tors in conjunction with appropriate cap reflecting surfaces. These
are widely used as radar cross—section enhancement devices in target
drones or other test vehicles. They are also applied as tow targets,
runway markers and seaway channel markers, and in test installation for

radar equipment [18].
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Fig. 2.10 Luneberg lens antenna
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Fig. 2.11 Luneberg lens reflector
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If a metallic reflector cap is used to cover a portion of the
surace of the lens, the combination will serve as a passive reflector
of microwave energy throughout a solid angle equal to that subtended by
the cap as shown in Fig. 2.11. If the reflecting cap is circular and
subtends a conical angle of 90° at the centre of the sphere, as shown
in Fig. 2.1la, the reflector will have a uniform response over a
conical angle of 90°. With a 180° cap, the conical response angle will
be increased beyond 90° but the response pattern will not be uniform
because, as the incident angle changes, a variable portion of the inci-
dent radiation will be diverted by the outside surface of the cap.
This effect is shown in Fig. 2.11b.

The theoretical scattering cross—section of the Luneberg lens
reflector at the angle of maximum response 1s equal to the scattering
cross—section of a circular flat plate whose radius is equal to that of

the sphere

where R >> A . In practice, however, o may be as much as 1.5 db
below the theoretical value, due to losses and imperfections in the

lens.

Recently a Luneberg controllable reflector [23], which can
send information about slowly varying data such as temperature, wind
velocity, etc, has been manufactured. The system is achieved by plac-
ing half wavelength slots in two overlapping plates with DC bias isola-

tion on the focal phase of a Luneberg lens. The lens reflection can be

_26_



controlled by a switching diode inserted at the feed point of the

slot.

An experimental reflector consisting of 6 x 48 slots mounted
on a Luneberg lens has produced a modulation depth of more than 10 dB

over a range of 180 degrees incident angle.
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CHAPTER 3

VECTOR WAVE FUNCTIONS FOR THE SPHERICALLY SYMMETRIC LENSES

3.1 Introduction

An electromagnetic field within a volume may be specified in
terms of its distribution over the surface enclosing the volume or, by
its source distribution. In either case the field generated at any
point in space may be represented in terms of certain integrals over
the surface and source distributions or, in terms of an appropriate
series of wave functions. In the lattgr case the expansion coeffi-
cients are normally determined from the boundary conditions and the
source distributions.

The representation of the field in terms of the surface and
source distributions provides a simple and general formulation for the
field. However, while such an integral formulation is convenient for
certain numerical computations it requires the evaluation of the inte—
grals for every field point. On the other hand, the expansion method
using appropriate wave functions, represents the field in terms of an
infinite series, but its coefficients need to be determined only once.
Although, its form is more complex, and the appropriate wave functions,
satisfying the boundary condition, can be determined for certain simple
geometries, it provides a convenient form for understanding the field
behaviour and its computation. For field computation, in this method,
the infinite series are usually truncated after a certain number of
terms. The required number of terms depends on the type of the field
distribution and the size of the object in scattering or antenna
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problems.

In the present work the expansion function method is used to
formulate the problem of a spherical Luneberg lens. Because of the
spherical geometry of the lens, spherical wave functions are utilized.
Within the lens the region has a permittivity which.is a function of
the radial coordinate and appropriate wave functions must be utilized.
The form of these functions are discussed first and the total fields
both inside and outside the lens are represented by proper series form,
with unknown expansion coefficients. These coefficients are determined
by utilizing the boundary conditions on the lens surface. For excita-
tion both electric and magnetic dipole sources are considered and the
expected field equations are generated. The results are also obtained
for a Huygens source, which is simulated by a combination of an elec~

tric and a magnetic dipole.

3.2 Vector Wave Functions for a Radially Stratified Medium

The electromagnetic field associated with a radially
stratified medium has been discussed by several writers [7, 22, 32, 33,
36].

In a radially stratified medium where the dielectric constant
is a function of the radial distance r , measured from the origin of a

coordinate system, Maxwell equations in a source-free region can be

written in the form

VxE = iwuoﬁ , (3.1)
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VxH = - twe_k(O)E (3.2)

Ve [k(£)E] = O, (3.3)
VeH = 0, (3.4)

where «k(r) denotes the relative dielectric constant with respect to

~iwt
€ , and assuming a time dependence of the form e .
o

By eliminating either E or ﬁ from (3.1) and (3.2) one

obtains the following two vector equations:
VxVxE-=-KKE = 0, (3.5)

-— V —_ —
VxVxH--—-xVxH~KcH = 0 (3.6)
K b
where k? = wzu € .
0O 0

The general solution of (3.5) and (3.6) can be defined by two
sets of wave functions.

3.2.1 The magnetic or transverse electric modes

These types of fields are derived by assuming the electric

field to be proportional to a vector wave function defined by:

(m) A

6™ gk ™Y (3.7)

A
where the superscript (m) denotes the magnetic type and r denotes
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the unit vector in the radial direction (Fig. 3.1). From equations
=(m)

(3.5) and (3.7) M is found to be a solution of the wave equation
(m)
if ¢ satisfies
(m) (m) (m)

32y 1 1 32y

— t e ki 2, (m)
+ + + - .
or r“sinb 96 (sinf 96 ) rZSinle a&q)z k Ky 0 (3 8)

The general solutions for the above equation are

m) m cos
] = Sn(r)Pn(cose)Sin mé (3.9)

. o ‘
where Pn(cose) denotes the associated Legendre function, and e, O

for even and odd functions respectively.

The radial function Sn(r) satisfies the differential

equation

d?s
+ 1
"E¥;'+ | k2c - 553;7——2J s =0. (3.10)

The vector wave functions corresponding to the magnetic field are given

by
~(m) _ 1 =(m)
N =V ox M (3.11)
mn mn
o 0
where by definition
ﬁim) =V x (wém)g) . (3.12)
mn mn
) o
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which can be written as

=(m) Sn mPn sin A aPn cos A Sn =
Me = ;_'(+ sinb cosm¢ o - 200 sinm¢ 9) = ¥_-me (3.13)
mn mn
o) o)
m m
ﬁ(m) _ l‘[n(n + 1) S pll €os o A __asn aPn cos 6 - mPn sin A)]
e Tk A nnsin™ 7T 3 20 sin™® sind cos™ ¢
ol
LS as_ _
vl l, +153 (r xm, )] . (3.14)
mn mn
m
P
h - -3 mPn sin 6 _ 9 n cos A
Where mg, T ¥ T1ne cos™ 36 sin™ ¢
mn
band
- m cos
1e = n(n + 1) Pn inm¢ r
omn

3.2.2 The electric or transverse magnetic modes

The electric or the transverse magnetic modes are derived by

assuming the magnetic field to be proportional to a vector wave
function defined by

1) 2 g« (% , (3.15)

where the superscript (e) denotes the electric type. By the same

~(e)

procedure used in section 3.2.1, M is a solution for the wave
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(e)

equation if satisfies
-——2——8“’(e> - Lde aw(e) + L9 (sind aw(e)) +
or k dr dr résind 36 36
(e)
1 82\1) 2 (e)
+ =0 . .
r?sin?e 8¢2 koxy 0 (3.16)
The general solutions for 3.16 are given by
) 1 ()P (coss) O 3.17)
Ve =T (X)P (cosd) oomp 3.
mn
o
where T (r) satisfies the differential equation
n 5
¢*T 1 d dT (n + 1) (3.18)
n _ ___ﬁ ____Il 2 _ n{n - .
dr? < dr ar T [ r? ] T, =0

Equation (3.18) differs considerably from equation (3.10) when « 1is a
function of r , but they become the same when « 1is a constant. The

vector wave function representing the electric field in this case is

given by
~(e) 1_  =(m)
N = ka x Me s (3.19)
mn mn
0 o)
where
we Wy (3.20)
e e
mn mn
o 0

The electromagnetic field associated with a radially stratified medium
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in a source-free region can in general be represented by

=(m) =(e)

K =g (AM T BN (3.21)
TR L (Anﬁim) + Bnﬁr(f)) , (3.22)

iw
Ho

3.3 Solution for the Spherical Luneberg Lens

The spherical Luneberg lens is characterized by a dielectric

constant which varies according to the relation
2
K = 2 - (Z? s, U< rga, (3.23)

where a 1is the lens radius. When equation (3.23) is substituted into
equation (3.10) the resultant equation is transformable into the
confluent hypergeometric equation [33]. One solution for that
equation, which is finite at r = 0 is given by

- 2/2
PP ¥ (e v, p2/p))

5 =p e ’ (3.24)

where

lFl (¢, Y, 2) denotes the confluent hypergeometric function or

Kummer's function that satisfies the differential equation
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2w Y _ dw _ « -
ZtrG-Dg-sw=0. (3.25)

when equation (3.23) is substituted into equation (3.18) the resultant

equation becomes

a2t ) dT ) (n + 1)
n o n : p n(n
+ + 12 - - T =20 3.26
XA T | T J T (3.26)
where
2
1/2 —p=/20
_ 2 _ 2 n+l a
Tn (Zpa p) P e Un (3.27)
and
Un satisfies the equation .
a2y du
n n+l p n 2 _2n+ 3
ap t 2 Y p ) dp + [ p
a a
L 3 Ju =o0 3.28)
202 - p% (202 - p2)2 ) n T U G-

A further transformation of the independent variable z =

pz/pa converts (3.28) into

d?u du o 2&2 232a3
(- 2o — - Ju =0
dz z dz z z - ap (z - azjZ n
with

o3
Y =n 2

_Llo 3
o =3 @+ -0p, b
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a4, = -
2 lbpa
3
o = -
3 l()pa
az = Zpa

Tai [33] has found that the differential equation for Tn is basically

different from the differential equation for Sn , and he called it the

generalized confluent hypergeometric function.

3.4 Radiation from an Electric Dipole in the Presence of a Spherical

Luneberg Lens

A horizontal electric dipole of moment P is located
X

parallel to x-direction at r = b, § = o, ¢ = o, Fig. 3.1. The field

due to the dipole in free space is given by

=i _ X 2Zn + 1
"~ hne él n(n + 1)
(L)
lo,h_ "(p )1
(1) (1) bn b (1)
hn (pb) Moln + pb eln r<b
(3.29)
lppd (p,)]
=(3) b’n"b (3)
Jn(p) Moln + eln r>b
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Fig. 3.1 Spherical coordinate system
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._.i X 21‘1 + 1
H = 4 n£1 n(n+1)
(1) "
M oy 5@ L Prt @I o
(b)) N_J 1 reb
n oln pb Yeln (3.30)
le. 3 (e D1’
Bp(oy) NGy + =22 5Oy
b
where
oL = kb ,
__,(1) _ . 1 cos A
eln =V x [rjn(kr)Pn(Cose) sin ¢ r] ,
(o]
) _ %—v « uH
€1n €1n
o o]

73 763~ 3

The vector wave functions of the third kind M 5 , N
oln eln eln oln

can be obtained by replacing jn(kr) by h( )(kr) . The primes denote

derivative with respect to the argument pb .

The scattered field in the presence of the lens and

transmitted fields inside the lens may be shown to be in the form

_, e e 2n 41 (m). (1) (3)
N coe sl CREL N OO
n=
(1
[prh "(p, )17
+ qie) bn D (f)} , (3.31)
pb ein



s _ P T 2n+ 1, (m). (1), .=(3)
Ho = £ n(n + 1) {an hn (pb)Noln

(1)
i "0, )]" _
+ol8) b b7 g(3) , r>a, (3.32)
n Py eln
il S SO S S e U
B o= 4rie £1 n(n + 1) {Bn hn (pb)Moln
(1)
e h "7, 01" _
sple) b b7 gle) (3.33)
m o} eln
b
t _ P, ; 20+ 1y () (1) o(m)
B 21 n(n + 1) Bn n (pb) oln
(1)
lp,h “(p, 01"
b b -
+ Br(le) ;‘ Mé‘f; } ,r<a. (3.34)
b
The coefficients aim), aie), Bﬁm) and Bie) can be determined by

applying the boundary conditions that t x g and ? x H are

continuous at the surface of the sphere. This gives
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1 AR} 27 i |
m K ks S0 R
n - (5 - g—') /! ( roalialirey )
3 1 a a 3
(3.35)
1 1 T 1
(m) Rl Rl R3 S R3
B, = g—'( — =) / TR )
a 1 3 a 3
1 1 Wl 1
MO S T S S I
n Ry " RT, Ta K3
(3.36)
T L L} 1
) KRR} T R)
By = T*'( T — o) [/ ( ™ T .
a 1 3 a 3
where
Rl = pajn(pa) s Ri = H"—)—" [p jn(p)le___pa ]
(1) , _ _d (1)
R3 = pahn (pa) s R3 = dp [p hn (p)”p=pa 5
S =S (p.) st =-S5 (o)
a nPa’ dp "a p=p, ’
T =T (p) =L (o))
a n'Pa’ dp n'P p=p, ’
p, = Ka
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- For the Luneberg lens case the source should be situated at the surface
of the sphere corresponding to b = a . The total electric field due

to the dipole in the presence of the lens is therefore

2 ©
Fo= k px Z 2n + 1
e 4rie a n=1 n(n + 1)
- -(3
L A Vern
,,,,,, - | st T | (3.37)
3 ( 3 _’a (_3._2._ 1)
]
R3 Sa Ta R3

The far-zone expression for ' Ee can be obtained using the asymtotic

expression for ﬁ(3) §<3) iven b
P oln ’> “eln & Y
ip
=(3) _ _ ntl e -
Moln = (=1 o "oln
ip
=(3) _ _ ne A - .
Neln = (1) 0 (r meln) ’
p = kr

resulting in the far electric field of the form
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- X e . n 2n + 1
E = ) ) (-1
e 4nega N p ol (n + 1)
—15 r X &
1 oln eln
Tl et ] . (3.38)
P2 -E) (22
1
R3 Sa Ta R3

3.5 Radiation from a Magnetic Dipole in the Presence of a Luneberg

Lens
When considering the radiation of a magnetic dipole it is
convenient to use the duality principle [6, 33]. To change from a
system of fields excited by an electric source to one excited by the

magnetic source, or vice versa, it is only necessary to replace the

quantities by their duals as presented in Table 3.1.

TABLE 3.1

Duality Relatiomship

' Electric source E H u € k

l Magnetic source H -E € u k

The expression for the magnetic field due to a magnetic dipole located
on the surface of the sphere in the negative y direction can then be

written as [6]
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- 12 o =(3) =(3)
i = k py y Z2n + 1 i__[ Meln " Noln ] (3.39)
m 4y a n(n + 1) R R! S R! ¢

- S @D G2
R3 fa S R3
since
E =—2 7«
m lwe m
o

The electric field radiated by the magnetic dipole is given by

ik2p  w a3 3
= y . 2n + 1 1 oln eln
En = TIna i | —x7s My Tl (3.40)
n=1l n(n + 1) 3 3 a 3 a
‘gsr D (g-7)
3 a 3 a

3.6 Radiation from a Huygens Source in the Presence of a Luneberg Lens

| In many practical situations a Luneberg lens may be excited
by an aperture radiator, such as an open ended waveguide. An exact
solution for a lens illuminated by a waveguide radiator is not
feasible, but may be simulated by a combination of an electric and a
magnetic dipole forming a Huygens source. This representation is
approximate and neglects the diffraction effects at the waveguide open
end. However, it provides a convenient means of approximating the
waveguide radiator and investigation of lens radiation characteristics.
In this section, we therefore, first define a Huygens source and

present its field and properties.
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3.6.1 klementary Huygens source

Assume that a constant electric and magnetic current source

JX = 30 and My = - ﬁo of equal length L << ) are simultaneously

placed at the origin of the spherical coordinate system, Fig. 3.1.
If the currents are adjusted such that
n JOL = MOL
then the far fields of this source are given by
—-ik exp(iKr)

he = - cosg(l - cosp) JOL (3.41)

. _  —ik exp(iKr) | _
h¢ = - sing (1 cosg) JOL . (3.42)

The unique feature of this fictitious source compared to the
electric or the magnetic current elements is the factor (1 - cosh )
which tends to cancel the far field radiation pattern in the region
0< 6 < n/2 . Figure 3.2 shows the radiation pattern for a Huygens'
source in free space. Due to this cardoid shape, aperture antennas
which have similar field distributions can be represented by Huygens'
source elements.

3.6.2 Huygens source in the presence of a Luneberg lens

To obtain the electric field due to a Huygens source located
at the surface of a sphere, combine equation (3.37) with equation
(3.40), the resulting field equation is given by

:1.3 ©
= ik Px Z 2n + 1
n=1

EH(r) - 4re n(n + 1) {(An + Dn) Moln + (Bn + Cn) Neln} (3.43)
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where

_ . (m) (1)
A=) +a G ) (3.44)
R! R!
B o=t +o(®) 2 (3.45)
Pa noPy
oas (e) . (1)
Crl = ijn(pa) + 1 a hn (pa) (3.46)
R! R!
D o=-1 L5323 (3.47)
Pa noPy
From equations (3.35), (3.36) and the equation
Ry - RiRy =03 () [oh\ (0] - on D (o)pi (0)]" =1 (3.48)
Rl 3 Rl 3 n n n n
and after some algebraic manipulation it is found that
A = L L 1 (3.49)
= ° -] ¢ ' .
Tofa R ( Eé__ Ei
R3 Sa
T'
a
i 1 T,
a
= o L] 050
Bn o R R! T' (3 )
a 3 ( 3 __a )
R T
3 a
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n R R T (3.51)
a 3 ( 3 _ a )
R3 Ta
S'
a
1 1 5,
a
Dn =5 ‘R = 5 . (3.52)
a 3 ( 3 _Ta )
R3 Sa

Now the far-zone field expressions may be written as

ik?P ikr
X

- _ e
EH(r) =

2n + 1 n
n=1 n(n + 1) =1

-t

de r

-1 (A, +D)m, + (B + c) neln} . (3.53)

3.6.3 Radiated power

An expression for the total radiated power

W may be derived
by integrating the total power flow across an infinitely large sphere

centered at the origin as follows

1 2w *
W= o J | E°E RZ sin6 do d¢ (3.54)
0O o0 o
where
n = 12071 Q
o

is the intrinsic impedance of free space, and
*

denotes the complex conjugate.

The vector wave functions

LIS LT are given by
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Pl (cosd) A 3Pl (cosB)
n

- n A

Moin = " sime cosp 6 - — 55— sing ¢ (3.55)
BPl(cos6) A Pl(cose)

n, =—"___ 6 - 1 sing & (3.56)

feln 26 cos¢ sinb : :

Using the following orthogonality properties of the assoclated Legendre

functions

b1 P;(COSG) aPl(cose)

n —

/ i =5 sind d6 = 0 (3.57)
and

K K

J PT(cost) P (cos®) d8 =0 m# K (3.58)

)
and also using the formula

mo 9P 2P P .

| Gg 55+ ™ —gz5 ) siné do

2n(n + 1)(n + m)!

(2n + 1)(n - m)! 6n2 * (3-59)
the radiated power can be expressed as
15 5 = % %
== + .
W 5 k2 ) (2n + D(a o +8 B ) (3.60)

=1
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where

C = -1 P 1is the dipole current moment
e X
o =-i (A + D)
n n n
B =B +C
n n n

3.6.4 Directivity
The directivity in the forward direction relative to an

isotropic source is defined by

D = 4m(radiated intensity in 6 = 180° direction)

total radlated power (3.61)
the wave functions m , n at 0 =7 and ¢ = 0 can be written
oln eln
as
- _ ntl n(n + 1) A
oln =D 7 0 (3.62)
0 =m
$=0
and
o + 1 A
n . = (_1)n ESE_E_—l A (3.63)
O o=
$=0

Using the above equations and equation (3.53), an expression for the

radiated power intensity in the negative z direction is

15k2¢2 2

R? * - e . 2n + 1 n
77— E°E =7 | L TS (W) (a +8) (3.64)
o Q=n n=1
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the directivity can therefore be written as

T oon 41 .n 2
nél —— (1) (an +B )
D = - ° (3'65)
2n + 1 * *
nél 2 (anan M Bn Bn)

3.7 Results and Discussion

Using the field equations developed in the preceding sec-
tions, relevant numerical data are computed to investigate the focusing
and radiation characteristics of a Luneberg lens. The exciting source
is assumed to be a Huygens source located on the surface of the lens.
Representative computed radiation fields, directivity and the mode
power distributions are presented in the following sections.

3.7.1 Radiation pattern

The normalized power pattern of a Huygens source in the
presence of a Luneberg lens of diameters from D = 2\ to D = 10X are
calculated in both E and H planes, corresponding to the ¢ = 0 and

o = planes respectively. Figures 3.4 and 3.5 show the patterns

N | =

corresponding to D = 5% and D = 10A . Tt should be noted that,
with the source oriented as shown in Fig. 3.3, a maximum radiation
occurs in the negative z-direction, and hence the top of the computed
patterns correspond to 6 = 180 degrees. Comparing the two patterns,
we see that the lens presents more directivity for larger diameters as

predicted by geometrical optics. The side 1lobe 1levels are also
decreased. The radiation pattern characteristic for Luneberg lens are
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summarized in Table 3.1. To compare this characteristic with the radi-
ation characteristics of a uniformly illuminated circular aperture [34],
the half power beam width and the level of the first side lobe for the
circular aperture are also presented in Table 3.l. For small lenses the
radiation pattern characteristic for the Luneberg lens differ slightly
from that of a circular aperture particularly for the level of the side

lobe. However, both patterns become almost identical at large diameters.

TABLE 3.2

Luneberg Lens Radiation Pattern Characteristic

Luneberg Lens Circular Aperture
Diameter, Gain 'Beam Width!Level of Ist Gain .Beam Width|Level of lIst
(1) ! (dB) ‘ (degrees)‘ Side lobe (dB) I(degrees) Side lobe
| I ! |
2 14.785 30.16 ~14.41 15.96 29,20 -17.6
3 18.240 19.87 -15.78 - 19.48 19.48 -17.6
| 4 |20.758 15.00 -16.05 21.98 14.61 -17.6
| 5 |22.725 | 11.79 | -16.74 | 23.92] 11.68 |  -17.6 |
| 6 |24.339 |  9.80 | -16.90 | 25.50] 9.74 | -17.6 |
| 7 |25.708 | 8.37 | -17.00 | 26.84] 8.35 | ~17.6 |
| 8 126.895 | 7.31 | -17.07 | 28.00] 7.30 | =-17.6 |
| 9 |27.940 | 6.48 | -17.10 | 29.02] 6.49 | -17.6 |
| 10 |28.776 | 5.8 |  -16.28 | 29.94] 5.84 | -17.6
1 ! I I | I i

I
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3.7.2 Directivity

Using equation (3.65), the radiation pattern directivity of
Luneberg lenses were calculated for the same diameters of section
3.7.1. The results are presented in Table 3.2 and Fig. 3.6. The
directivity increases monotonicaly with increasing the lens diameter.
The differential dincrease 1in the directivity, on the other hand,
decreases for larger lens diameters, as can be seen from the
'saturation' behaviour of the curve in Fig. 3.6. This behaviour is
expected since for large diameters compared to wave length, the lens
behaviour will approach the theoretical behaviour explained by the
geometrical optics. Comparing the directivity of the Luneberg lens as
presented in Fig. 3.6 with the directivity of a homogeneous sphere with
k = 3.00 as presented by Rozenfeld [29], it is seen that the directi-
vity of small Luneberg lens is lower than that of the homogeneous
sphere. However, for a Luneberg lens the directivity characteristics
does not present the resonance phenomena experienced in the case of a
lossless homogeneous lenses [6]. From the above result, it is evident
that a Luneberg lens when excited by a Huygens' source has a behaviour
similar to a uniformly illuminated aperture. Since a uniformly illumi-
nated circular aperture provides an optimum gaiﬁ, a Luneberg lens is
therefore an ideal 1lens to focus the radiation field of elementary
radiators with a radiation pattern similar to a Huygens source, such as
waveguides and horn antennas. The focusing properties of a Luneberg
lens, however, deteriorates as its diameter decreases. In Chapter 4 we,
therefore, will attempt to study new lens profiles that will improve

its performance at low frequencies.
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3.7.3 Modal power distribution

The power distribution among different spherical wave modes
presents a useful means of investigating the behaviour of the radiation
characteristic. A resonance behaviour, for example, may be expected if
one of the modes is carrying most of the radiated power. Also, modal
distribution is a good indication of the convergence of the summation
in equation (3.43). For this reason, we shall attempt to evaluate the
percentage of power distribution among various modes in the spherical
wave expansions. The results will be used to determine the resonance
behaviour of the modes and the rate of the convergence for the series.

The total radiated power may be expressed as the summation of

o
the powers radiated by each mode, which may be written as W = Z P .
n=1 "
P
The quantity WE'X 100 represents, therefore, the percentage of the

total power contributed by each mode. The percentage power distribu-
tion among the modes for diameter D = 5, to D = 10X are presented
in Table 3.3 and the power distributions for D = 5\ and D = 10X are
shown in Fig. 3.7. Although the modes are discrete, their contributed
power levels are connected to form a continuous curve for identifi-
cation.

From the distribution of the percentage powers among various
modes shown in Table 3.3, it is evident that, for a Luneberg lens the
power content of the modes continuously increase with the mode number
until the mode n , where n = |ka|~- 1, beyond which the contribu—
tion of the higher order modes decreases rapidly. Thus unlike a homo-
geneous lens a Luneberg lens does not manifest a resonance phenomena .
In addition, the series representing the lens field converges rapidly

- 57 -~



TABLE 3.3

Modal Power Distribution

% contribution/ D = 5A D = 6A D = 7 D = 8\ D = 9x D = 10A
Mode #
1 0.88 0.61 0.45 0.35 0.28 0.22
2 1.48 1.02 0.75 0.58 0.46 0.37
3 2.00 1.43 1.07 0.81 0.64 0,53
4 2.75 1.83 1.33 1.05 0.84 0.67
5 3.05 2.30 1.70 1.26 1.00 0.83
6 4,06 2.54 1.9 1.55 1.21 0.96
7 4.29 3.33 2.31 1.66 1.37 1.15
8 4,82 3.11 2,58 2.10 1.56 1.23
9 6.65 4,40 2.75 2.06 1.79 1.48
10 4.6 4.04 3.52 2.61 1.83 1.51
11 9.18 4,62 2.97 2.60 2.30 1.77
12 8.18 6.44 4.51 2.84 2.07 1.89
13 5.01 3.89 3.74 3.54 2.78 1.95
14 19.13 8.29 4.3 2.77 2.50 2.38
15 14.47 7.91 6.23 4.50 2.87 2.02
16 6.22 3.65 3.36 3.48 3.48 2.87
17 2.25 16.31 7.37 3.94 2.56 2.37
18 0.71 14.12 7.82 6.05 4.42 2.85
19 0.19 6.44 2.87 3.01 3.29 3.4
20 0.05 2.50 13.62 6.43 3.54 2.36
21 0.01 0.86 13.89 7.82 5.90 4.3
22 0.00 0.26 6.69 2.51 2.8 3.16
23 0.07 2.75 11.02 5.50 3.13
24 0.02 1.01 13.73 7.81 5.75
25 0.00 0.34 6.97 2.48 2.73
26 0.10 2.99 8.56 4.59
27 0.03 1.17 13.55 7.76
28 0.01 0.41 7.27 2.67
29 0.00 0.38 3.25 6.33
30 0.01 1.33 13.28
31 0.00 0.5 7.58
32 0.17 3.50
33 0.05 1.50
34 0.01 0.59
35 0.00 0.21
36 0.07
37 0.02
_|_ 38 0.06
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beyond a mode number n = ]kal — 1 . This upper limit in the number of
modes, with a significant power content, provides a useful 1limit for
truncation of the series for an accurate evaluation of the infinite

series.
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CHAPTER 4

MODIFIED LUNEBERG LENSES

4.1 Introduction

From a practical point of view lens antennas are normally
used to increase the directivity of a radiating source. From the com-
puted data of the last chapter it is clear that a Luneberg lens is a
good candidate for focusing the radiation field of elementary radia-
tors, such as open-ended waveguides or horns. However, it was also
found in the last chapter that a Luneberg lens performs satisfactorily
only at higher frequencies, where the lens diameter is several wave-—
lengths in size. At low frequencies the directivity of a Luneberg lens
deteriorates and a modification in the lens profile may be necessary to
improve its focusing properties. However before introducing our mbdi—
fication of the lens profile, we present some of the previously pro-
posed modifications.

Since the wavelength encountered at microwave frequencies are
much longer than those in optics, a large diameter Luneberg lens is
needed for scanning antennas. The instruments for the radiation,
therefore, are correspondingly larger, which makes the rotating of such
large instruments for scanning purposes cumbersome, and the speed of
rotation has its mechanical limitations.

As previously reviewed in Chapter 2, some investigators [3,
8, 12] have proposed some new expressions for the design of small-feed-
circle Luneberg lens. ©Eaton [8] and Brown [3] expressions have pro-
duced an abrupt discontinuity in the slope index of the refraction at
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the feed circle. The Gutman [12] design, on the other hand, has
produced a continuous function of the index of refraction versus the
radius.

Gutman, using the Hamiltonian optics for analysing the rays
in the Luneberg lens has presented a formula for the index of a new
lens that is spherically symmetric and has a focal point near its
centre. The corresponding new index of refraction formula 1is

1 1/2
n = E’(a2 + £2 © r2)

where r is the radial distance from the origin and n is the index
of refraction, f is the distance from the centre to the focus, where a
feed may be located, and a is the radius of the new lens as shown in
Fig. 4.1.

When f = a , the index of refraction is the same as in an
ordinary Luneberg lens, i.e.

2172
no= [2- )]

However, when f < a for this lens the dielectric constant increases
more rapidly towards the centre. At the centre its dielectric constant

K is given by

Figure 4.1 illustrates the ray path for some values of f . The small-

est feed circle that is possible is determined by the dielectric con~
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stant. The highest dielectric constant is at the centre, which limits

the minimum size of the feed circle as follows

f = 177
min (x -1

max

A practical realization of such a lens is difficult since the
feed antenna must be located inside the sphere and be allowed to move
freely for scanning purposes without disturbing the performance of the
lens. It is also impractical to introduce such a sharp gradient in the
dielectric constant by stepping techniques frequently used. Also,
since Gutman has used geometrical optics, his derivation is only valid
for large diameter lenses. It should also be noted that this modifica-
tion did not reduce the radius of Luneberg lens, which is the main
disadvantage of using a Luneberg lens at microwave frequencies.

The radiation characteristics of a Luneberg lens presented in
Chapter 3 has indicated that the lens behaviour improves with an
increase in the lens diameter, and the deterioration in the lens
behaviour at small diameters was attributed to the small diameter lens
compared to the wavelength. It was also found that a small homogeneous
lens with a dielectric constant «k = 3 » Presents a better directivity
than a Luneberg lens of the same diameter. This property of a homo-
genious sphere suggests an alternative means of modifying Luneberg
lenses for a better directivity performance at low frequencies. Their
geometry is simpler than a Gutman lens and from a practical point of
view they are easier to fabricate and use.
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4.2 Modified Luneberg Lens

The dielectric constant for the modified Luneberg lens is

assumed to have a profile expressed by

rZ
K=2B~A2(;) 0<r«<a (4.1)

where B and A are arbitrary constants
a 1is the radius of the lens
and r 1is the radial distance measured from the centre of the
lens.
Using the same nomenclature used by Tai [33], the differential equation

of such lenses for the radial function Sn(r) of the magnetic or

transverse electric modes may be represented by

dZSn(r) 12 n(n + 1)
—7— + [k - ——z—= s _(r) = 0 (4.2)
which can be written as
d?s (p)
n . n(n + 1)
7 tle =I5 () =0, (4.3)
p = kr Py = ka

Substituting equation (4.1) in equation (4.3), we have

dZSn(p)

—"'a;z——'F [ZB - AZ(—;—)Z —P_.(.B_.—Zi-_ll

5 ]sn(p) = 0 (4.4)
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or

2 ¢
48, () p2  n(n + 1),
7t - v -] s () = 0 (4.5)
1
o
a
N -

1

This is the normal form of the second order differential equation [27]
and its soluton can be found by the polynomial method of Sommerfeld
[18]. The method consists of defining three functions such that their
product is the exact solution of the differential equation. These
functions are chosen such that one of them describes the behaviour of
the solution around the origin, the second solution describes the
behaviour at infinity and the third determines the nature of the
solution in the intermediate region.

When p > « , the differential equation (4.5) can be

approximated by

d?s 2
— - s = 0 (4.6)
dp th n
*p2/2p
which has an asymptotic solution proportional to e 10 i.e.
tp?2/2p,
S ae (4.7)
n

In (4.7) only the negative sign will be considered in order that the

function vanishes at infinity and therefore
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(4.8)

At the origin, the Frobenius method gives a solution which is a

polynomial of power (n+l) or -n

To obtain a finite solution at the
origin, we select the polynomlal with the power

(n+1)

The solution of equation (4.5) can then be written as

°

2
ntl TP°/20
Sn(p) =p

Fn(p) (4.9)
where Fn(p) describes the behaviour of Sn in the intermediate
region. Differentiating (4.9), we have

ds F?
n _ -(n+l) _p n .
R 8 | . o + F | ; (4.10)
d F
n
v =
Fn dp
and
2 F!
dsn S[(n+l)_& +__I_1_]2
F* F'2
—(n+
ps (Smth) Lo, o n (4.11)
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Substituting into equation (4.5), we find that the function Fn

satisfy the following equation

d2F dF
— 2(n+1 -2y Iy [2B - 1 _ 2£2i12.] F = 0
dp P p1” dp Pl Pl n
Now, if we define a new variable z as
Zz = 02/91
then
dPn B ER an
dp pl dzZ
2F 2F F
d no_ b4p? d no, 2 d n
dp“? pf  dZ° py dZ
Equation (4.12) can now be written as
dZFn y dF
a —
-t G D 3 70 =0
where
1 3 1 3 B
a =5+ 3 - Bp) =5(n ts o3 0y)
3
Y = n + 5
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Equation (4.15) is the confluent hypergeometric differential equationm.

The solution of this differential equation is the confluent hypergeo-—

metric function (Kummer's function),

Fn(z) = 1F(a, v; 2) (4.16)

The second solution of the confluent hypergeometric equation

ZldY 1Fi1a = y+l, 2 = y; Z) is not finite at the origin. The

confluent hypergeometric function is given by the series

. (@), (o)
F 30 2) =l +>Z2 2+ sih b Z" + ...
1f1les 5 2) Y T, (v)_n

where

(a)n = a(a+l)(a+2) ... (a+n-1) and a = 1

1F1(ay v; 2) 1is a convergent series for all values of q sy Y, Z if

Y #2%2 and o # -m where % and m are positive integers.

Since

it can assume negative integer values. When a is negative the
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function exhibits an oscillatory behaviour and when o is a negative
integer the series terminates and becomes an oscillatory polymomial.

3

Since y = n + 5 s then y # -m .

Therefore, the confluent hypergeometric function is always well-behaved
in this case.
The derivative of the confluent hypergeometric function is

given by

lel(O" Ys Z)
dZ

= %lFl(a + 1, vy + 1; 2) (4.17)

The S—function can then be written as

+1 -p2/2
n+l o P / o)

Sn(p) =p 1Fia, v;5 02/07) (4.18)

The differential equation for the radial function Tn(r) for

the electric or transverse magnetic modes is

d?T d T
———7——“(1:) S ode 0D (12 - 28D 17y 2 g (4.19)
dr K dr dr T n ‘

When the expression for the dielectric constant, equation (4.1) is

substituted into equation (4.19) we get
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2
‘ Tnjp) + 20 - ¢ %) + [2B - o2 _ “(“+1)]T (p) =0 (4.20)
dp 205 = p%7  dp of pZ 'n
/B
where pp =VB p = "APa

Equation (4.20) can be transformed to the normal form by the following

change to the dependent variable

1
T, = V_ exp(- E‘f pdp)

where p is the coefficient of the first derivative in the differen-

tial equation and is

Therefore

> 172
T.(e) = (205 - 02) V(o)

The differential equation for the new dependent variable

Vn(p) thus becomes

2(p5 + p2)
" _ p? _ n(n+l) _ 2 -
v + {28B o7 v I EY: } v, =0 (4.21)

which is the normal form of the differential equation. Again applying
the polynomial method of Sommerfeld [18], we find that
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2
-p</2p
V.ip) =e @

n+l
P w (p)
where Wn satisfies the differential equation
Therefore T can be written as
12 pt1 -p/2
T () = (202 - p2) o7 e PPy () (4.22)

with

dT W'
- 2
dn_Tn P +(n+l)_p +_w_n_] (4.23)
° (202 = p2) ° 1 "a
2
dw
where W' -
n dp
and
d2T 1
LU [ + (n + 1) P 4 EJE ]2
dp? n b (2% - p%)? e PL W,
W'z
1| ~2p2 + 1 ~n+1) -1 _"n_"n ]
n (2% - p%)2 " (207 - p2) p* Py W W
2 2 n n
d2wn
where wn vy

eeo(4o24)

Substituting equations (4.22), (4.23), (4.24) into equation (4.20) we
get
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d2w aw
n n+1 p n .
+ 2 -Ey 4+ ]2 -
( p p1” dp [

2n+3 1 3p2 ]

— — = O
Py (20 —p%)  (2p%-p%)2
2 2

n

eos(4.25)

A change of the independent variable to 2Z = pz/pl reduces (4.25) to

w P Ve ey el et 0 (4-26)
3
where Y =n +‘§
1, 3 B A
al_—Z—[n+—Z_Xpa 4Bpa]
A -3 _ 2B
%2 " Tekp, > ™ TTeB_ 0 2 Tk Pa

Equation (4.26) 1is the differential equation for the generalized
confluent hypergeometric function given by Tai [33]. The two possible

series solutions around zero for this function are

and

1 1
W < Z—(n + ) n—(n + »)

0
. + ) Am Y/

m=1

We will only consider the first solution since the second solution is
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not finite at the origin. Substituting the first solution in to the
differential equation (4.26) and equating all the coefficients having
the same power to zero, we find a four term recurrence relation between
the coefficients. This recurrence relation can be further reduced to
the relation between the first coefficient and any subsequent term.

These relations are:

Al al

ALY

AZ _ lal(al+l)— %2 +0L3

A ZYGFD G + Da,

f_3_ A 2+ 1 [(OL1 + 2)(%2 4+ %3y
A 31 y(y + Dy + 2) 3y + 2) (v +1) ap

+

2a1(a2 + 0‘3) 2(a2 + 2a3)
Y a + a‘ ]
2 2

For m > 3 , the coefficients can be obtained from the recurrence

relationship

a%(m + D(m + v) Am+l - azlaz(m +a) +2n(y —m+ 1) Am

+ [Zaz(al +ay, toag +ml) + (n-1)(y + m—Z)] Am—l

- (al + 20, + m-2) Am-Z =0
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The series solution for W converges uniformly and absolutely for
n

2B
|Zl <a, or p2 < Zz-pg o This condition will always be satisfied

2B
in the region 0 < p < p as long as -5 > 1 . This can easily be
g a g A2

satisfied by the choice of the values of the constants A and B as

will be explained further in the following sections.

4.3 Dielectric Constant Profile

It is ciear from the discussion in section 4.1 that in order
to enhance the performance of a small diameter Luneberg lens the values
of A and B should be chosen such that the overall dielectric
constant of the lens be increased. Also A and B should satisfy the
necessary condition for the con&ergence of the solution for the

function W .
n

The effect of the constants A and B s in equation (4.1),
on the dielectric constant profile of the modified Luneberg lens can be
explained further by referring to Fig. 4.2 which illustrates different

profiles associated with different values of A and B as follows:

a) A =3B = 1; which is the ordinary Luneberg lens case. The value of
the dielectric constant changes from 2 at the lens centre to 1

on the surface.

b) A = 1; the effect of A and B 1is the same as adding a biasing
effect (constant valuec) to the curve. 1In this case equation (4.1)

can be expressed as
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N
i

2B - (§>2

(2B - 2) + [2 - (i)z] (4.27)
The second term of this equation gives the same profile as an ordinary
Luneberg lens, while the first term presents an offset term of the
value (2B-2) . This offset has to be positive to increase the total
dielectric constant of the modified Luneberg lens.

Then 2B-2>0

or B>1

It is also expected that the value of B should be kept below a
certain value in order to preserve the characteristic profile of the
Luneberg lens. This is due to the fact that the results reported by
Mason [6] for a homogeneous sphere shows that the lens performance
deteriorates if the dielectric constant is increased beyond 3.

¢c) B =1; then

2
K = 2 - Az(g) (4.28)

The value of A has to be less than unity to improve the
lens behaviour. Curve € also indicates that unless the value of A
is much smaller than unity no appreciable change in lens performance
can be expected. On the other hand, a very small value of A will
cause a large change in the dielectric contant profile which may cancel

any improvement expected by this modification.

d) A? = B; This is another interesting case. It involves both values
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Fig. 4.2 Dielectric constant profile of the modified Luneberg
lens; a) A=B=1;b) A=1, B=1.1; ¢) A> = 0.95,
B=1;d) A*>=B= 1.1
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of A and B , while still satisfying the condition for convergence of

the radial function T (r) . It is not expected that the performance
n

of this modified design will be much different than that of the case b,
since there is only a small difference between the two profiles,
Although it may have the advantage of having a lower dielectric
constant on the lens surface. This low surface dielectric constant may
improve the matching between the lens and its feed if it is an air

filled waveguide.

fji}j’ 4.4 Results and Discussion

Here, we will investigate the proposed modifications and
evaluate thelr effect on the radiation characteristic of a Luneberg
lens. The modified Luneberg lens shall be fed by a Huygens' source
located on its surface. Radiation characteristics such as directivity,
beam width and the level of the first side lobe will be computed for
the electric field in both principal planes.

Numerical calculations of the radiation characteristics of
the new modified lens are shown in Figures 4.3 to 4.6. These figures
show that the proposed modifications have enhanced the radiation

3;, - characteristics of the Luneberg lens. The modified lens produces
higher directivity and narrower beams than the ordinary Luneberg lens.
The improvement is more visible in small diameter lenses and decreases
as the lens diameter increases. This is expected, hence lenses with
diameters of several wavelength approach their optical behaviour. 1In
the following section we will present a discussion of the radiation
characteristics of the modified lens.
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4.4.1 Directivity

For the two dielectric constant profile cases corresponding
to A =1 and B = A2 , the value of B will be changed in increments
of 0.0l and the directivity of the modified Luneberg lens when fed by a
Huygens' source will be calculated for lens diameters from 2\ to 10)\.

The results for the first case, A = 1 » are presented in
Fig. 4.3. For all diameters the directivity increases with increasing
B up to a certain limiting B value and then it decreases rapidly.
When we compute the directivity beyond this limiting B value the lens
demonstrate a resonance effect in the same manner as that for a
homogeneous lens [6]. This indicates that beyond this limit the lens
starts to behave as a homogeneous lens. The B 1limit decreases as the
diameter of the lens is increased, which is also expected since as the
lens diameter increases the performance of the lens approaches its
optical behaviour.

With this first type of 1lens modification there is a
noticeable increase in the directivity, particularly for smaller
lenses; e.g. for a lens diameter of D = 2\ an increase of 3db can
be achieved with B = 1.4. This directivity increase is achieved over a
reasonably wide range of B values. This is seen by the flat top
shape of the directivity curve over a certain range B values. This
phenomenon is very desirable since it allows for a large tolerance in
the dielectric constant and therefore wider choice of dielectric
material when manufcturing such a lens. Fig. 4.3 also shows that the
improvement in directivity decreases as the lens diameter increases and
the lens behaviour approaches that of an ideal one.

The directivity behaviour for the case A2 = B are presented
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in Fig. 4.4, The lens performance in this case is approximately the
same as for the case A = 1 . The improvement in the directivity is
lower; e.g., for a lens of 2\ diameter the directivity increases by
about 2.3dB  as compared to a 3db increase in the former case.
Although this increase is more stable over a wider range of B values.
This letter type of modification may be more desirable, especially
since it provides an easier field match at its surface as discussed
above.

It should be mentioned here that the proposed modifications
have achieved a better lens performance at a smaller diameter than that
for an ordinary Luneberg lens.

The percentage increase in the directivity versus the lens
diameter are shown in Fig. 4.5. For the case of A = | the increase in
the directivity will vary from approximately 91% to 14%, when the
diameter increases from 2X to 10X respectively, while for A2 = B
the corresponding increase is from approximately 61.0% to 10%. Fig.
4.6 shows the directivity of an ordinary Luneberg lens together with
the two modified cases as a function of l;ns diameter.

4.4.2 Radiation patterns

The reason for the directivity enhancement caused by the
lens modification may be explained by referring to Figures 4.7 and 4.8,
The radiation pattern of two modified Luneberg lenses (D = 2\, D = 5))
fed by a Huygens' source are shown, together with the radiation
patterns for the ordinary Luneberg lems. These curves show that for
the modified case more power is concentrated in the main lobe with an
accompanied reduction in the side lobes. This indicates an improvement
to the lens focusing characteristic, which in turn leads to an improve-
ment in the directivity of the modified lens gain.
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Fig. 4.3 Directivity of the modified Luneberg lens; A =1
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Table 4.1 is a summary of the radiation characteristics that

1s the Gain, beam width and the level of first side lobe for lens

diameters from D =21 to D = 10).
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Fig. 4.5 1Increase of the directivity of the modified Luneberg
lens compared to the standard Luneberg lens
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CHAPTER 5

PERFORMANCE OF A LUNEBERG LENS WITH A PRACTICAL SOURCE ANTENNA

5.1 Introduction

A major use of the Luneberg lens, next to its use as a pas-—
sive reflector, is as a broadband lens antenna. An open—ended wave-
guide or a feed horn may be employed as the actual source element.
Such a relatively light weight feed can be moved rapidly over the lens
surface to accomplish beam scanning. Alternatively, the moving feed
may be replaced by an array of electronically switched feeds to elimin-
ate bulky mechanical scanning system. Multiple frequency operation,
using different feeds at different frequencies, is also feasible to
improve feed bandwidth.

To simplify the analysis of the lens performance small aper-
ture waveguides and horns are normally modelled by a single Huygens'
source located at the feed aperture. However, such a representation of
the feed with a single Huygens' source is generally inadequate and the
computed lens characteristics do not agree satisfactorily with those
obtained by experiment. To overcome this difficulty, we have repre-
sented an aperture feed element, such as an open ended rectangular
waveguide, by a rectangular array of Huygens' sources. It is shown
that by modifying the number of Huygens' source elements the radiation
characteristics of any wavegulde radiator can satisfactorily be repre-—
sented by an array of Huygens' sources. Using this representation the
radiation characteristics of Luneberg lenses illuminated by waveguide
radiators is studied. Both standard and modified Luneberg lenses are
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considered and their radiation patterns are computed.

To examine the quality of the radiated field both co-polar
and cross—polér radiations are presented. It is shown that a Luneberg
lens generally produces a high quality radiation with a relatively low
level of cross-polarization. It is also found that modified lenses

have better radiation characteristics than a Luneberg lens.

5.2 Waveguide Radiation Characteristics in the Presence of a Luneberg

Lens

The radiation from a Luneberg lens of a few wavelengths in
diameter, placed over the aperture of an open—-ended waveguide is of
practical interest since it exhibits properties suitable as transmitt-—
ing and feed antennas. Since the exact analytical solution of a lens
illuminated by a waveguide radiator is too difficult to obtain, pre-
vious investigators [6, 29] have used a Huygens' source to model the
radiation of the waveguide.

Croswell et al [6] used a Huygens' source to model the wave-
guide aperture for excitation of a homogeneous dielectric sphere. They
compared the theoretically computed normalized power pattérns with the
experimental results measured by Croswell and Chatterjee [5] for the
radiation pattern of a plexiglass sphere centered against the flange of
an open-ended waveguide. Although the agreement between the theoreti-
cal and the experimental results ‘was good, the theoretical patterns
have presented sharper nulls in the main beam and stronger back lobes
than the measured patterns. They attributed the differences to

scattering from the waveguide feed structure used in the measurements.
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However, the Huygens' source radiation pattern shown in Fig. 3.2 is
considerably different than the radiation pattern of a rectangular
waveguide. Figure 5.1 illustrates these differences by showing both
the normalized far field radiation characteristic of a Huygens' source
together with the theoretical and experimental radiation patterns of a
rectangular waveguide given by Silver [34]. It is clear that the 3 dB

and 10 dB points of both the calculated and observed radiation patterns

= 0.71; b. 0.32 are considerably

of the rectangular waveguide with X

>l

narrower than that of a Huygens' source. Hence it is expected that the
radiation patterns of the Huygens' source and the waveguide in the
presence of a Luneberg lens will also be different.

In this section we will define a better model for the wave-—
guide aperture. The electric and magnetic field distributions at the
aperture suggests that a better model may be obtained by an array of
Huygens' sources. We will then find a mathematical expression for the
proposed model, calculate the radiation pattern for this array distri-
bution and compare its data with the radiation pattern of a rectangular

waveguide,

5.3 Rectangular Waveguide Model

5.3.1 Radiation pattern of a rectangular waveguide aperture

The tangential field components of TM and TE waves in the

aperture of a rectangular guide, shown in Fig. 5.2, are given by [34]
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Ra!atlve Power

Polar Angle

Fig. 5.1 Theoretical and observed radiation patterns of a
rectangular waveguide (a = 0.7)) [34], and the
radiation pattern of a Huygens' source:

A) Huygens' source; B) Theoretical; C) Observed
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a. For TE-waves

Y mn Y in mmx nny
HX = - m’ E = m Sin(T) COS(T)
mn
Yimn Y on mnx nny
Hy = m- EX = Ez———g COS(T) s1n(—~b~)
mn
2 2
where k?2 = (EE) + (EEO
mn a b
. 2 2 1/2
and propagation constant Yon = (kmn - k%)
2w
Agmn

where Agmn is the waveguide wavelength.,

b. For TM-waves

Ymn

E = e =

X iwe 'y

Ymn

E = - —

- H
y iwe X

L mn R (mﬂx) ( )
= —.IZZHH—:— sSin '—"—a cos —'—"b

mmy
-y cos(CD) sin(HY)
mn

nmy nmy

(5.1)

(5.2)

The electric field over the aperture is polarized in the Y-direction

and the electric-field components of the radiation field due to the

TE mode excitations are
mn
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mn mn
E6 = -G 233 R K2 (1 + " cosB + I'(1l - S cosO)J
mn
m nn
LG sine)? - (5= cos)?] v_(8,9) ,
B 172 (wab)? sin® sing cos¢
E =-(2) 3
) € 2)° R
an an :
[cose +-—E— + I'(cosf -~ ~E—)J wmn(6,¢) R
where
sin(gg-sine cos¢p + %1) sin(%k'sine sing + gﬂﬁ
Vo (8s9) = |

(%é-sine cos¢ )% - (%EDZ (%P-sine sih¢)2 - (%1)2

1[kR - ;— sin® (a cos¢ + b sing) —(m+n+1)g— ]
e

and I' is the reflection coefficient at the waveguide aperture

For the TE|j—mode the radiation field reduces to
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e 172 pa2y B1o B1o
Ee = "'(-e-) 2_>\2_E 81n¢ [l +T cosB + r(l _T COSG)]

cos (;\l—i sind cos¢) ‘sin(-;\ﬂl sin® sing)

[

(%3 sinb cos¢)? - (ﬂ-z—)2 (;ﬁ sin® sing)

i[kR - % sin® (a cos¢ + b sing)]
e

B B8
172 2 10 10
U ma<b .

E¢ == (—8) R cosﬂcose + - + I'(cosB - < )]

cos(;{—a sinf cos¢) _sin(%tl sinb sing)

(;i sinf cos¢ )2 - (%)2 1;\—2 sin6 sing

ilkR - :— sind(a cos¢ + b sing)]
e

If the origin is shifted to the centre of the aperture, as shown in
Fig. 5.2, the phase factor transforms into kR, R now being measured
from the origin. 1In the case of large apertures I' = 0, therefore, the
space factor 1s real and the waveguide 1is a directive point-source
feed, the centre of the feed being the centre of the aperture. In
small apertures where I' is complex, there is no exact centre of the
feed and the waveguide is only approximately a point source, from the
point of view of the equiphase surfaces of the radiation pattern.

As shown in Fig. 5.2 the electric field over the aperture is
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polarized in the y-direction so that the yz-plane is the E-plane of the
system, while the xz-plane is the H-plane. The radiation patterns in
the two principal planes are

for the E-plane,

u 172 a2 B1o Bio
E8 = Z(Eﬁ ;xz§'[l + —E*'COSG + Il - *E“'Cose)]

sin(§2~sin6)

eikR
%-b- sin6
and for the H-plane,
1/2 .2 Bio Bio

s ma‘h ¢ e oY
h¢ = (e) 7R | cose + — + I'(cos® N ]

Ta

cos(— sinf)
k
A ei R (5.5)

7
Ta 2 17
(A sind ) A

It is observed that the predominant factors in the patterns
b
sin(;E-sine)/%— sind and

2
ra ma 2 .1
cos(x sine)/[(A sinf) 4 ]

are determined by the dimension of the aperture in each respective
plane. This illustrates that the patterns in the two principal planes
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are independent and are determined by the aperture dimension in the
respective plane.

The above discussion suggests that the waveguide aperture may
be modelled by a rectangular array of Huygens' sources located in the
plane of the aperture as presented in the next section.

5.3.2 Rectangular array of Huygens' sources

Consider the rectangular array of discrete Huygens' source
elements in the xy plane as shown in Fig. 5.3, where the central
element is chosen at the coordinate origin. If we select ZNX+1
elements in each column parallel to the x axis with an equal spacing d
and 2 Ny+l elements in each row parallel to the y axis with a common

spacing dy’ the entire array will have NX ° Ny eléments° The array

becomes a square array when N = N and d =d .
X y X y

The field at a distant point P in free space contributed by

the array column coincident with the x axis is then [21]

E = £(6,9) é_N I exp|i(m k d_sind cos¢y + ax)] (5.6)

where f(0,¢) 1s the element pattern function, I o is the amplitude
m

excitation of the mth element (counting from the origin) in the column

2
y =0, o is the associated phase excitation, and k = XE-. When the

amplitude excitation for elements in other columns are proportional to

those for corresponding elements on the x axis then



PrLE,0)

Fig. 5.3 Rectangular array of Huygens' sources
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and we can sum up the total contribution from the array as

N
y
E(6,p) = ) E
n=-N
N N
K Zy
= £(8,9) ) I exp[i(m k d_ sin® cos¢ + a )]
m=—N n=N ma X X
X y

o expli(n k dy sind sing + ay)]

= £(0,9) 5, S

N
X
where S = ) I expli(m k d sinb® cos¢ + o )]
X mo X X
m=~N
X
Ny
S = 3 I expli(n k d_ sin® sing + q )]
y iy on y y
y

(5.7)

(5.8)

It is clear from (5.7) that the pattern of the rectangular array is the

product of the array factors of two linear arrays.

Now to calculate the field in the E-plane as defined in

Chapter 3 for ¢ = 0 where o =gq =0, i.e., element excitations

X y

are in phase, equations (5.8) can be written as
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x
SX = ) Imo expl[i(m k dX sin6) ]
m=—NX
(5.9)
N
y
S =) I
y Iy on
y
Similarly for the H-plane for ¢ = 90°
N
x
s = Y 1
x 2N mo
(5.10)
N
y [i(n k d_)]
S = I expli(n d
¥ p=n_ °" Y

Since in equations (5.9) and (5.10) Sy and SX are constant respective-

ly, the far field in the two principal planes is dependent only on the
array distribution in each corresponding plane.

5.3.3 Huygens' source model of the waveguide

To calculate the far field of a rectangular array in the E
and H-planes it is sufficient to calculate the field due to the linear
array 1n the E or H planes. Hence the waveguide aperture may be
modelled by two perpendicular arrays of Huygens' sources coinciding
with the two principle axes as shown in Fig. 5.4.

We shall study the effect of the number of elements in each
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array on the radiation characteristics, and identify a minimum number
of Huygens' sources to model the aperture. This simple model may prove
to be particularly desirable for more involved problems. According to
equations (5.9) and (5.10) the far field of the array can be found by
separately calculating the field due to individual array elements and
summing their fields at any point in space.

Since we are interested primarily in calculating the
radiation characteristics of a waveguide aperture in the presence of a
Luneberg lens, the two arrays can be located on the surface of a large
sphere with a diameter greater than several wavelengths (Fig. 5.5),.
Without loss of generality, this is acceptable since the waveguide wide
dimension "a" is less than one wavelength, which is very small compared
to the circumference of the sphere. This assumption will also make it
possible to use all the equations deriven in Chapter 3.

Now, considering the array located on the xz or yz planes

with (2N;+1) x (2Ny+1) elements, respectively, with equal angular

spacing of A® equations (5.7) and (5.8) may then be written as

N
X
E(B) = ) E (8) (5.11)
m=-N_ "
X
For the E-plane
N
Yy
E(B) = ) E (8) ‘ (5.12)
n=-N n

and the H-plane

where Em(e) and En(e) are the field of elements m and n respectively
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Fig. 5.4 Waveguide aperture representation by two linear
arrays of Huygens' sources

Fig. 5.5 Huygens' source array on the surface of a
Luneberg lens

- 103 -



at a distant point of an angle 6 .

If the far field is calculated at an angular interval equal
to AB, we can then denote the field at a point p of 68 = A8 due to a
particular element n or m by E(n, £) and E(m, £). The total field

at p can then be expressed as

N
A,X
E(R) = ) E(m, m+2) (5.13)
m=-N
X
for the E-plane, and
N
y
E(®) = ) E(n, n+g) (5.14)
n=-—Ny

for the H-plane.

Using equation (5.13) and (5.14) together with the results
obtained for a single Huygens' source in Chapter 3 we have found the
radiation pattern; first for waveguide aperture in free space and then
for a waveguide aperture in the presence of a Luneberg lens. The

results are presented in section 5.6 of this chapter.

5.4 Cross—-polarization

The wuse of two orthogonal polarizations to provide two
communication channels for each frequency band has led to interest in
the polarization purity of antenna patterns. The cross-plarization is
considered in the case of three applications: 1) an antenna system to
achieve nearly orthogonal polarization everywhere in some coverage
region in order to create two communication channels for each frequency

band; 2) a feed system for a paraboloidal reflector which will in turn
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be used for the first application; and 3) a feed system for a para-
boloidal reflector in which the objective 1is to maximize the aperture
efficiency of the reflector.

In this section we will study the cross—-polarization
introduced by the Luneberg lens, and the possibility of using the lens
to reduce cross-polarization of feeds with higher cross-polarization
level, such as a dipole radiator.

5.4.1 Definition of the cross—polarization

The IEEE standard [37] defines the cross—-polarization as the
polarization orthogonal to a reference polarization. This definition
has led to three alternative definitions [19]: 1) din rectangular
coordinate system, one unit vector is taken as the direction of the
reference polarization, and another as the direction of Cross
polarization [34]; 2) in spherical coordinate system the same defini-
tion applies using the unit vectors tangent to a spherical surface; and
3) reference and cross—polarization are defined to be what one measures
when antenna patterns are taken in the usual manner., The third
definition will be used in this section. Using this definition Ludwig
[19] has shown that the measured co-polar and cross-polar patterns are

given by, respectively,

Ii

A A
R(6,9) = E(0,$) = {cosp 6 - sing ¢} (5.15)

il

A A
C(6,0) = E(8,¢) » {sing 6 + cos¢ 6} (5.16)
For evaluating secondary patterns for the applications of
orthogonal channels, we postulate the followlng ideal case: the
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transmitting antenna has two ports, which radiate two patterns that are
orthogonal at every pattern angle in the coverage region. Clearly, it
is then possible to receive the two channels without any interference

anywhere in the coverage region.

5.4.2 Cross-polarization of a Huygens' source in free space

Huygens' source 1s formed by a combination of an electric
dipole and a magnetic dipole at 90° angular seperation. If the
electric dipole is in the x direction and the magnetic dipole in the y

direction, the far-zone electric field radiated by the Huygens' source

is given by:
iwp C ikR
EH =T TR (cos¢p 6 — sing ¢)(1 - cosh) (5.17)

where Ce is the electric dipole moment,

w the angular frequency

uo the free space permittivity, and

k the propagation constant
From equation (5.16) the cross polarization field C(8,¢) is

EHe sing + EH¢ cosd

C(6,¢)

=1 C ikR
Hove e .
= T R (1 = cosB) - (sing cosp - sing cos¢)

This means that the cross polarization of a crossed Huygens' source is
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identically zero. This presents an interesting concept, since by using
a Huygens' source as the feed for any antenna system and by calculating
the cross-polarization field, we directly calculate the cross—polariza-
tion introduced by the antenna system. This concept will be used later
in this chapter to find the cross polarization introduced by the
Luneberg lens.

5.4.3 Cross—polarization of an electric dipole in free space

To illuminate a Luneberg lens by a dipole source, we may
assume the dipole is located at the coordinate origin and directed
along the x-axis. Its far field can be found from the magnetic vector

potential Kx’ which in spherical coordinates may be assumed to be

A = AX cos$ sinbd

r
g = AX cos$ cos (5.18)
A(:0 = ~AX sing
C
- e ikr
where A = e e » and C 1s the dipole moment. Then the
X bur e

magnetic field can be expressed as

N 1 ) Ar 1 a(r A¢)
Ho = Curtg A= [t " 55 ~ 7 —or— | (5.19)
1 (3 oA
- r

Evaluating equations (5.19) and (5.20) and ignoring terms of 1/r2 and
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1/r3 for the far field components, the electric fields in the 6 and ¢

directions can be shown to be

—iquCe eij
By = p- R cost cos¢ (5.21)

ique eij
6 —-—Z—T—r-——-'——-i—- Sin(j) (5.22)

t
[

The expressions for the reference and cross polarization

fields for an electric dipole in space can then be written as

—iwuC ikR
e e

R(0,¢) = —4 = [cosé cos?¢ + sinZ¢]
—ique eikR )
= T R [1 + cos?¢(cosp - 1)] (5.23)
~iwpC ikR
C(0,¢) = n S R [sin¢ cos8 cos¢ - sing cos¢]
-1wpC ikR
e e _
= = m sing cos¢[cose - l] (5.24)

Equations (5.23) and (5.24) present the reference and cross-—
polarizations of an electric dipole located at the origin in the x
direction. For the two principal planes ¢ = 0, ¢ = 90 equation (5.23)
simplifies to the following:

In the E-plane for ¢ = 0,
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—ique ikR

R(8,0) = y = R cosh (5.25)

This equation will produce the familiar figure eight shape, with its
maximum at 6 = 0° and minimum at 8 = 90°.

In the H-plane for ¢ = 90°

—1wpC ikR
e e

= R s (5.26)

R(B,m) =

i.e. the field is constant and is independent of 6 .
The cross polarization is identically zero in both principal

planes due to the term sin¢ cos¢ 1in equation (5.24), On the other

hand, the cross-polarization will have a maximum value at ¢ = 45° as
follows
—ique eikR
C(6,9) = = g~ sing cos¢ [cose - 1]
—iwuC ikR
e e 1
= o R 7~sin2¢ [cose - 1] (5.27)

which is maximum at the ¢ = 45° plane, and given by

T 1wy Ce e ikR
C(o, ZJ = o R [cosd - 1] (5.28)

This equation shows that in the ¢ = plane the cross-polarization has

=
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the same shape as the reference polarization in the E-plane, although
it is shifted by 90°. Figure 5.6 shows the reference and cross-—
polarization fields in the three planes discussed above. It is clear
from this figure that the electric dipole has a substantial cross-—
polarization level, which increases rapidly with increasing pattern
angle. The cross-polarization level is only 10 dB below the reference

polarization level at the beam half power points.

5.5 Cross-polarization of a Luneberg Lens

In this section we will derive an expression for the cross-
polarization introduced by a Luneberg lens. This can be achieved by
calculating the cross-polarization field of a Luneberg lens fed by a
Huygens' source, since Huygens' source does not introduce any cross-—
polarization.

The cross-polarization of a Luneberg lens fed by an electric
dipole is also an interesting case, to investigate whether the lens can
reduce the large cross-polarization level of the dipole antenna.

5.5.1 Cross-polarization of a Huygens' source in the presence of a

Luneberg lens

The far electric field for a Huygens' source in the presence

of a Luneberg lens has been derived in Chapter 3 and is

7 (R) = —1que eikR § 2n+1 (_i)n
H - by R n=1 n{n+1)

(=i, +D) m |+ (B +C)n } (5.29)
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where An, Bn’ Cn and Dn are defined in Chapter 3 and the vector wave

functions m

oln’® Teigdre given by

1 1
_ ) Pn(cose) N 8 . BPn(COSG) iy
Moln = “sing cos¢ 30 ¢ ¢
3Pl (cosp) Pl(cose)
n =2 8 6 -2 sing b
eln 90 cos¢ sin6 ¢

Then the far field can be written as

- - A - . A
EH(9,¢) = EHl(e) cosgp 6 - EHz(e) sing ¢ (5.30)
where
E (8) = —que eikR g 2n+1 (_i)n
H1Y 7 4re R n{n+1)
n=1
Pl (coso) aPL (cosp)

{ni(An + Dn) sin® + (Bn + Cn) q0 }

C ikR o
B o(6) = —© & R S L
H2 4me R n=l n(n+1)
3Pl (coso) P;(cose)
{_i(An + Dn) 20 + (Bn + Cn) sinb }

Substituting equation (5.30) in equation (5.16) we can write the cross-—

polarization as follows:
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5.6 Co-polar and cross—polar patterns of an electric dipole
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(a3 A
CH(8,¢) EH(8,¢) ° [sin¢ 6 + cos¢ ¢J

%'sin2¢ [EHl(e) - EH2<9)} (5.31)

The fields EHl and EHZ are the fields in the two principal E and H-

planes respectively.
Using equation (5.31) the maximum cross—polarization in the

plane ¢ = %

» and for a certain polar angle 6 can simply be obtained by
subtracting the value of the electric field in one principal plane at
the angle 0 from the value of the electric field at the other principal

plane at the same angle 6 .

5.5.2 Cross-polarization of an electric dipole in the presence of a

Luneberg lens

According to the definition of the cross polarization pre-
sented above the electric dipole produces a considerable cross—polari-
zation level which increases with increasing pattern angle 6 . Tt is
interesting to investigate the effect of the Luneberg 1lens on the
cross—polarization field of such a dipole. The far electric field of a
dipole located at the surface of a Luneberg lens, with its centre at

the origin is given by
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—que eikR N 2n+1
= _ - n |
ED(R) Ty R Z n(n+l) (-1)
n=1
[-1A m ,_ + B, ] (5.32)

Then the far field can be expressed as in the Huygens' source case, as

ED(G) = EDl(e) cos¢ ie - ED2 sing i¢ (5.33)
where
—wp C 1kR o
= _ e e : 2n+l R !
Epp (8) = —4 L sy D
n=1
P;(cose) QP;(COSO)
L_iAn sinb + Bn a0 ]
and

-wuC ikR =
E 6) = e e 2 2n+1 (__i)n
D2 &n R n=1 n(n+l)

3Pl(cose) Pl(cos0)
n n

+ B

[-1 An a0 n  sin6 ]

Following the same procedure used for the Huygens'® source in

the previous section the cross—polarization can be expressed as

[

C,(6,¢) = E‘sin2¢[ED1(6) - ﬁDz(e)] (5.34)
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where EDl and EDZ are the H-plane and E-plane far fields respectively.

5.6 Results and Discussion

To investigate the validity of the waveguide model derived in
the preceding sections, the far field of various waveguide models
represented by different number of array elements will be calculated.
this procedure will also help to identify the minimum array (array with
minimum number of elements) that may correctly model the waveguide
aperture.

5.6.1 Radiation pattern of a rectangular waveguide aperture in free

space
The H-plane radiation patterns of a waveguide with a dimen-
sion a = 0.7)x are shown in Fig. 5.7, together with the radiation pat-
terns reported by Silver [34]. The radiation patterns are shown for
three different model arrays having 9, 5 and 3 elements in the H-plane.
The angular separation of the adjacent elements in the array are given
by 0.5, 1 and 2 degrees respectively., It should be noted that the
number of elements is always odd since we have chosen one of the ele-
ments to be at the centre of the aperture. All three distributions
have presented a good model for the waveguide, judging by the far field
radiation pattern, when compared with the reported patterns of the
waveguide with the same dimension. It is particularly interesting to
nbtice that the third case, an array with three sources, had produced a
pattern very close to the measured pattern of the waveguide., This
means that the waveguide aperture can be modeled by three Huygens'
sources with equal strength, one located at the centre and the others
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at each side of the aperture.

To further check the validity of the three source model, this
model was used to calculate the radiation pattern for waveguide aper-
tures of dimensions a = 0.5\ to a = 0.87A. The calculated patterns are
illustrated in Fig. 5.8. The width of the radiation lobe decreases as
the dimension "a" of the waveguide increases, which is consistant with
the observed waveguide aperture radiation characteristics. This again
confirms that the three source array is a valid model for the rectan-

gular waveguide aperture.

5.6.2 Radiation pattern of a rectangular waveguide aperture in the

presence of a Luneberg lens

In the preceding section we have shown that the waveguide
aperture can be modeled by an array of three Huygens' sources., In this
section we will find the radiation pattern of a rectangular waveguide
in the presence of a Luneberg lens, and point out the differences bet-
- ween this pattern and the patterns for a single Huygens' source pre-
sented in Chapter 3.

The radiation patterns of a rectangular waveguide aperture
with the broad dimension a = 0.7A located at the surface of a Luneberg
lens of diameter D = 5% and D = 10A are presented in Figures 5.9 and
5.10 respectively. Compared to the radiation patterns of a single
Huygens' source, the waveguide radiation pattern presented a slightly
wider major lobe, while the minor lobes are largely suppressed. For
the Luneberg lens with diameter D = 5\ the half power point beam width
has increased by approximately two degrees while the side lobes have
been reduced by 8dB. For the Luneberg lens with a diameter D = 104 the
beam width has increased by one degree, and the side lobes have
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Generation of the radiation characteristics of a
rectangular waveguide by an array of Huygens' sources;
A) 9 elements; B) 5 elements; C) 3 elements; D) measured (34).
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decreased by 8 dB,

Finally, we will present the radiation pattern for a wave-
guide aperture in the presence of a modified Luneberg lens, as
described in Chapter 4. Only a lens with a diameter D = 5) has been
considered since for larger diameters the improvement in the Luneberg
lens 1is small. The radiation pattern for the above case is presented
in Fig. D5.1l. The major lobe presented the same characteristics as in
the case of an ordinary Luneberg lens in Fig. 5.9 although the
improvement 1n the side lobe is better.

5.6.3 Cross—polarization of an electric dipole

The electric dipole presents a significant cross—polarization
level. It is therefore interesting to study the cross-polarization
fields of a dipole radiator in the presence of a Luneberg lens.

The reference and cross-polarization fields for an electric
dipole in the presence of a Luneberg lens are shown in Figures 5.12 and
5.13. The maximum cross—polarization field level at the main beam half
power points is -22 dB, compared to the corresponding level of -10 dB
for a dipole in free-space. This means that the Luneberg 1lens has
reduced the cross-polarization level by 12 dB. This indicates that a
combination of a dipole and a Luneberg lens may be used as a feed for a
parabolic reflector antenna. The combination will reduce the cross-
polarized currents on the surface of the paraboloid and hence increase
the aperture efficiency. It should also be noted that the maximum
cross—polarization level is -14 dB compared to 0 dB for a dipole in
free space. That indicates that the Luneberg lens not only reduces the
cross—polarization level in the coverage area, but also reduces the

total power of the cross-—-polarization field.
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Generation of the rectangular waveguide radiation
characteristics by a 3 element array of Huygens'
sources, waveguide dimension; A) a = 0.52A;

B) a = 0.65A; C) a = 0.7x; D) a = 0.78\
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5.6.4 Cross-polarization of a Luneberg lens

By definition, Huygens' source produce no cross—polarization
field components in free space. Hence the cross—polarization field of
a Luneberg lens may be evaluated by calculating the cross-polarization
field of a Huygens' source in the presence of a Luneberg lens. The
cross—polarization fields when the source is located on the surface of
the sphere are shown in Figs. 5.14 and 5.15. A summary of the cross-
polarization levels at the beam half power points, for lens diameters
from D = 2\ to D = 10\ are shown in Table 5.1. The table also shows
the corresponding values for the modified Luneberg lens introduced in
Chapter 4. This table shows that the modified lens of A = 1 produced a
considerable reduction of cross polarization level in the beam area of
coverage. Also the modified lens has reduced the total power of the

cross—-polarization field, as shown in Fig. 5.16.
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Fig. 5.9 Radiation pattern of a rectangular waveguide in the
presence of a Luneberg lens; Diameter D = 5)
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Fig. 5.10 Radiation pattern of a rectangular waveguide in the

presence of a Luneberg lens; Diameter D = 10X
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Fig. 5.11 Radiation pattern of a rectangular waveguide in the
presence of a modified Luneberg lens; Diameter D = 5\
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Fig. 5.12 Co-polar and cross-polar radiation patterns of an
electric dipole in the presence of a Luneberg lens;
Diameter D = 5A
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Fig. 5.13 Co-polar and cross-polar radiation patterns of
an electric dipole in the presence of a
Luneberg lens; Diameter D = 10A
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TABLE 5.1

Luneberg Lens Cross-Polarization

at Beam Half-Power Point: ¢ = 45°

] Cross-Polarization (dB)

Diameter | Luneberg Lens | Modified Luneberg Lens
) I ] A=1 | aA2=3
2 | -27 .44 | -40.35 | -29.62
3 | -31.33 | -40.52 | -32.81
4 | -33.9 | -39.81 | -35.18
5 | -36.13 | ~40.43 | -36.98
6 | -37.78 | -40.99 | ~38.26
7 | -39.17 [ -41.35 | -39.60
8 | -40,42 | -41,69 | -40.87
9 | -41.50 | ~42.,40 | -41.83
10 | -43,26 | -43.41 | -42.54
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Fig. 5.14 Co-polar and cross-polar radiation patterns of a

Huygens' source in the presence of a Luneberg lens;
Diameter D = 5A
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Co-polar and cross-polar radiation patterns of a
Huygens' source in the presence of a Luneberg lens;
Diameter D = 10A
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Fig. 5.16 Co-polar and cross—-polar radiation patterns of a
Huygens' source in the presence of a modified
Luneberg lens; D = 5\
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CHAPTER 6

CONCLUSION

6.1 Summary of the Results

A solution for the electromagnetic fields in the presence of
a radially stratified spherical lens was used to study the radiation
characteristics of Luneberg lenses. The distribution of the total
power among the modes and the directivity of the lens, as a function of
its size, were examined. It was found that a Luneberg lens does not
exhibit the resonant property of a homogeneous sphere and the modal
power distribution shows a smoother behaviour. Furthermore, the per-
centage power content of the higher order modes reduced rapidly beyond
a certain mode number M = ka — 1, where a 1is the lens radius and k
is the propagation constant of the wave. Similarly, the directivity of
a Luneberg lens showed a smooth variation with the lens size and
asymptotically approached the directivity of a uniformly 1lluminated
aperture. However, at the low frequency end it decreased continuously
below that of a uniformly illuminated aperture.

To enhénce the directivity of the lens at low freqeuncies
three new lens profiles were considered. Their permittivity profiles
were assumed similar to a Luneberg lens, but with larger average
dielectric constants. Examination of the radiation characteristics of
the modified Luneberg lenses indicated that their focusing properties
can be controlled by modifying their dielectric profile, but generally,
showed better directivities at low frequencies than a standard Luneberg

lens. The electromagnetic field solution of these modified lenses were
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obtained by utilizing the spherical wave expansion method, which was
developed to account for the assumed variations of the dielectric pro-
files.

The performance of a Luneberg lens with a practical source
antenna was also investiaged. We represented an open—ended rectangular
waveguide, by a rectangular array of Huygens' sources. It was shown
that by modifying the number of Huygens' source elements the radiat'ion
characteristics of any waveguide radiator can be satisfactorily repre-—
sented. Using this representation the radiation characteristics of
both standard and modifed Luneberg lenses, illuminated by a waveguide
radiator were studied.

To examine the quality of the radiated field both co-polar
and cross-polar radiations were presented. It was shown that the
Luneberg lens generally produced a high quality radiation with a rela-
tively low level of cross—polarization. it was also found that the
radiation patterns of the modified Luneberg lenses have lower side lobe
levels and produce more symmetrical patterns. This latter property

resulted in low cross—polar radiation level for the modified lens.

6.2 Suggestions for Further Work

1. All through the present and previous investigations, only
the case of a lossless Luneberg lens has been considered. It may be
interesting to study the effect of introducing a loss factor into the
dielectric constant and study its impact on the radiation characteris-—

tics of the lens.
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2. We have attributed the increase of the directivity of the
modified Luneberg lens to the increase of the average permittivity of
the lens. However, the investigation of the near field may also shed
some light on the improved behaviour of the modified 1lens. Such a
study may indicate the degree of field concentration at the focal point
and show the aétual location of the focal point that an exciting source

may be located to yield a better radiation field.
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