
WWW in DSVM

by

SARAVANAN COIMBATORE

A thesis
Subrnitted to the Faculty of Graduate Studies

in Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Depart ment of Computer Science
University of Manitoba
Winnipeg, Manitoba

National L i b w u*m of Chna&
Bibliothèque nationale
du Canada

~u is i t ions and Acquisitions et
Bibliographie Senrices senrices bibliographiques

395 w d r i ç1i-t 395. nre üWington ~~ K l A W W O N K1AONQ
CaMda canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or seU
copies of this thesis in microform,
paper or electronic formats.

The author retains ownefship of the
copyright in this thesis. Neither the
thesis nor substantial extracts fiom it
may be printed or otheMrise
reproduced without the author's
permission.

L'auteur a accordé me licence non
exclusive permettant à la
Biblïotheqpe nationale du Canada de
reproduire, prêter, distn'buer ou
vendre des copies de cette thèse sous
la forme de mimofiche/nlm, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

A Thesis sabmitted to the Ficuity of Graduate Studies of the Univtnity of Mianitoba
in partir1 faldtlmeat of the nqairements of the degrte of

Ltster of Science

Permission hm been granteâ to the LIBURY OF THE UNIVERSITY OF bfAMTOBA
to Iend or sell copies of a i s th* to the NATIONAL LlBRARY OF CXYADA to micnrfiim thh
thesis aad to Iend or seU copies of the film, rad to UNIVlERSrrY ~IICROFILLMS to publisb an
abstract of tbis thesir,

This nproduction or copy of th& thesis bas bten made avaiiable by authority o f the cop~rigbt
owner solcly for the purpose o f private study and research, and may ooly be reproduced and
copicd as permittecl by copyright kws or with erpnu m e n authorizatioa tmm the copvright
owuer,

WWW in DSVM

Saravanan Coimbatore
Master of Science, 1997

Department of Computer Science, University of Manitoba

Abstract

The World Wzde Web (WWW) can be uiewed as a uery large d29Cnbuted system

consisting of multiple seruers and clients. This thesis presents a model and prototype

implementatzon of a system that applies dislributed system management techniques to

the WWW. This system (called WWW in DSVM) prouides a large distn'buted ~virtual

memory that .is shared across a set of brawsers and servers in a network. The model is

based on the DistrtCnbuted Shared Virtval Mernosr (DSVM) p~oject under development

at the Aduanced Database System Laboratory (ADSL) of the Un2versity of Manitoba.

WWW in DSVM prouides sharing of reEneved documents among browsers through its

undwlying shared virtual memory paradigm. The major bene* of th& approach are:

1. Improved document retrïeual in lzght of seruer and lznk fadures,

2. increased speed of access sznce documents can be retrieued locally from other

bro wsers,

3. Redvced network Zoad and s m e r Zoad since a separate access to a semer by each

brovser is no longer required.

A prototype WWW in DSVM system is implemented and has a demonstrated

capabzlzty of sharing documents among browsers in a local network, zn an intranet,

and across the Internet.

Acknowledgrnents

First , 1 would Like to thank my supervisor, Dr. Rand4 Peters for showing me the right

directions in research; needless to mention his pieashg srnile and motivating ideas. 1

wodd also iike to thank my thesis committee members Dr. Peter C. J. Graham (for

his useful comments) and Dr. David Blight, for their t h e and remarks in preparing

for the thesis defense. Finally, my thanks goes to my parents and kiends for their

emotional support and encouragement aII through.

Contents

1 Introduction 1

1.1 m o v e ~ e w . 1

. 1.2 Problem Area 3

2 Related Work 6

3 Technical Background 13

. 3.1 Shared Virtual Address Space (SVAS) Mode1 13

. 3.2 Distributed Consistency Protocols 16

. 3.3 PersistentStorageManagement 18

. 3-4 Treadmarks 30

. 3.5 DSVM 23

. 3.6 World Wide Web 27

. 3.6.1 World Wide Web ProtocoIs 27

. 3.6.2 Caching in Proxy Server 34

. 3.6.3 WWW Transaction without a Proxy 36

. 3.6.4 WWW Transaction Through a Proxy 37

3.6.5 WWW Transaction through Proxy Cache 38

4 m i n DSVM 40

. 4.1 General Architecture 40

4.2 DSVM Participation and Scalability 42

iii

. 1.3 Operational Stages 43

4.4 DesignIssues . 45

5 Proof of concept prototype 49

. 5.1 Software Module Relationships 52

. 5.2 Execution and Event Trace of the Prototype 53

. 5.3 Validation Rules 58

5.3.1 The Apache Server Rdes . 58

. 5.3.2 WlWV in DSVM Validation d e s 59

5.3.3 Performance . 63

6 Conclusions and Research Directions 64

List of Figures

3.1 Mernory Mapping in a SVAS systern 16

3.2 Release Consistency . 17

3.3 Distributed Shared Memory . 20

3.4 DSVMArchitecture . 24

3.5 Placement of GD0 fragments . 26

3.6 UFLL Structure . 28

. 3.7 Proxy server on a firewall 35

3.8 Web transaction without Proxy . 36

3.9 Web trâ11saction through Proxy . 37

3.10 Web transaction through Proxy Cache 38

4.1 VWiW in DSVM : Architecture . 41

. 4.2 Intranet formation 43

. 4.3 Operationalstages 44

5.1 Prototype ImpIernentation . 50

5.2 Prototype Setup . 51

5.3 Softwaze Modules Relationship . 52

5.4 Event Trace Diagram . 54

5.5 PrototypeExecution: Stage 1 . 55

5.6 Prototype Execution : Stage 2 . 57

Chapter 1

Introduction

The World Wide Web (WWW or Web) can be characterized as a large collection

of servers and clients that are interconnected by the Internet. Increased use of the

WWW has lead to network congestion and high server loads. In part, these problems

are attribute to the basic operation of the WWW which requires each client to indi-

vidually contact the appropnate server for a document, regardless of the client and

server locations. For example, if two clients Located on a desk next to one another

wish to retrieve the same document from a server across the world, they must each

contact the server and the document must be t r d e r r e d across the Internet twice

(ie., once to each of the two clients). There is no cooperation between the clients

and the server in the retrieval of documents. If instead the document can be sent to

the first client and the second client retrieves it from the first, there will be reduced

network tranic and server loads. This thesis develops an architecture and prototype

implementation of a system that provides this kind of cooperation and functionality.

1.1 WWW overview

From its beginnings at CERN [2], research has been conducted to improve the perfor-

mance of the WWW. The WWW provides a graphical, easy-t-navigate interface for

viewing documents on the Internet. These documents, as well as the links between

them. comprise a "Web' of information. The Web lets one jump or "hyperlink" from

one document to others. The Wèb can be thought of as a large library of information

with an ad hoc orgsnization. Web sites are üke the books, and documents are like

specific pages in the books. Pages on the Web are comprised of multimedia informa-

tion such as images, movies, sound, application code, and so on. These pages can be

located and accessed anywhere in the world.

The Web is a very sophisticated and elegant source of hypermedia documents.

The Web offers not only access to an impressive magnitude and depth of informa-

tion, but &O a standardized hypermedis format, which makes navigation of the Web

quick, intuitive and consistent, regardless of cornputer plat fo m. This interactive

interface places the Web far beyond other wide-area seMces. The servers in the

WWW are the workstations that store and transfer their documents to clients that

request them. The clients in the WWW are the browsers (eg., Netscape, Internet

Explorer) that make requests and receive documents hom the servers. Documents in

the WWW are transferred using the Hypertext T rade r Protocol (HTTP) which is

an application-level protocol for distnbuted, c~llaborative~ hypermedia information

systems. Documents in the WWW are coded using the HyperText Markup Lan-

guage (HTML) [q . Hypertext dEers fiom regular text in only one regard: hypertext

incorporates markup tags that specify formatting or specid characteristics of the

document. One of these tags is a hypertext link that provides information to jump

to other documents. For example, a hypertext document may include references to

a g lo s sq so th& whenever a reader encounters a new term, that word contains a

hyperlink to its definition in the glossary thet the user can access wit h a single mouse

cIick.

The Web includes a vast amount of information, from many dinerent categories.

The biggest sources of informat ion are universities, colleges, and research cent ers

around the world. Current research results. programs of s tud l papers. and e-xhibits

represent only a few types of information available kom these servers. Governent

agencies, such as NASA, &O have Web serve-, and provide text and graphical infor-

mation regmding current projects. Currently, the Web is the most sophisticated, and

readily available information system available on the Internet. The Web has steadily

grown since its implementation and WU continue to grow.

1.2 Problem Area

The increasing use of the WWW results in high network t r s c over the Intemet.

One solution is to maintain mirror sites for those WWW sites that axe expected to

face high network congestion. A mirror site is a duplicate of the documents of one

server at a geographicdy distant location. The idea is to distribute network tr&c

for these documents to merent parts of the Internet. It is not practical, however.

to have mirror sites for ail WWW sewers. For those sites that are not mirrored, the

oniy option available to users is to retneve documents fkom the original server. This

can result in Long retrievai times because servers become overloaded or are simply

geographically distant .

Other problems that plague the WWW axe server failures and communication

Iink fdures. When a WWW server fa&, or ail communication links between a server

and a client fail, retrïeving documents from that server becomes impossible until the

server hnctions again, or the communication links are restored- The clients may

cache these documents, but the cache is private to individual browser sessions. The

assumption made in this thesis is that similar sets of WWW documents are typicaily

requested at multiple clients. If clients cache these documents, then the copies are

potentiaily accessible h m multiple locations.

A document in the W4W is Linked to another document through a hypertext link.

A common way of reaching relevant documents is to traverse through the h-ypertext

links. Problems axise when a document is deieted f?om the MrMrW as the Uniforrn

Resource Locator (URL), the "address" of the document becomes invalid and the

document cannot be accessed (known as the "broken-link probIemy'). There can be

many other documents referencing a deleted document and users trying to Iocate a

document without knowing that it is deleted can 6nd themseIves at a Udead end"

after traversing a series of links. U m e c e s s ~ Internet connections are made when

many users in a local network try to retrieve a document that has been deleted in

the Ww. This can be deviated by sharing document status between users.

A document can &O move fiom one location/URL to another. A possible solution

for maintaining links to relocated documents is to introduce forwarding pointers to the

new location. However, as documents move, the number of forwarding links increase

and traversing through the Iinks becomes cumbersome and inefficient. Traversal of

surrogate links, which requires WWW server (re)connections, can be avoided by shar-

ing documents across clients because the results of document traversal performed by

one client can be sbared by others so that they do not have to individudy go through

the same process. That is, if one client has traversed the links and retrieved the doc-

ument, then subsequent requests hom other clients can get the document that was

retrieved by the f h t client without traversing the Links again.

This thesis presents a model and prototype implementation of a system that ap-

plies distributed system management techniques to the WWW. This systern (called

WWW in DSVM) provides a large distributed virtud memory that is shared across a

set of browsers and servers in a network. The model is based on the Distributed Shared

Virtual Memory (DSVM) project [7] under development at the Advanced Database

System Laboratory (ADSL) of the University of Manitoba. WUrW in DSVM pro-

vides sharing of retrieved documents among browsers through its underlying shared

t%~uaI memory paradigm. The major benefits of this approach are :

1. Improved document retrieval in light of server and ünk faiiures,

2. Increased speed of access since documents can be retrieved locdy fkom other

browsers,

3. Reduced network load and server load since a separate access to a server by

each browser is no longer required.

A prototype WWW in DSWI system is implemented and has a demonstrated [23]

capabiiity of sharuig documents among browsers in a locaI network, in an intranet.

and a c r s the Internet.

The remainder of this thesis is organüed as foilows: Chapter 2 discusses the

related work on improving document access in the WWW. The existing technologies

that motivate this model are presented in the Chapter 3. Chapter 4 presents the

generd model architecture, its operational details, and the design issues. The proof

of concept prototype and its execution are presented in Chapter 5. FinaDy, conclusions

and hture work are given in Chapter 6.

Chapter 2

Related Work

Several research efforts are ongoing to provide an efficient way of retrievuig documents

in the WWW despite high network traftic- One mechanism commonly used is to have

multiple rnirror sites for those servers that are expected to have a high network load.

When a client requests a document, the mirror site clasest to the client is selected

for information retrieval. Automatic selection of a mirror site is done by the main

Web site based on the client's location [3]. However, it is not practical to have mirror

sites for alI Web sites. WWW in DSVM effectively provides a focussed and dynamic

mirrorîng of certain documents to a set of participating browsers. In this thesis, a

document retrieved fiom an overloaded Web server is shared by other browsers in the

local network thus avoiding unnecessary delay due to server and network failure for

subsequent requests for the same document boom other browsers. In other words, a

mirror site has been created dynamicaUy inside the local network.

Another popular mechanism to reduce the network load is to cache documents

at the client side. WWW in DSVM takes this concept a step further by allowing

the sharing of retrieved documents between clients. That is, the clients share their

cached documents. The performance benefits of caching documents close to clients

have been pointed out by several researchers. Yoshida [32] presents a distributed Web

and cache server called MOWS. MOWS loads modules that are present either locally

or remotely. These modules perforrn the cluties of Web and cache sewers and run

as a cluster of distrïbuted Web servem. A request for a local byte code instruction

retneves it fkom the MOWS system, while a remote byte code instruction retrieves

the code fkom the remote site and executes it. The details of other modules and

MOWS servers are maintained in a module called "JMEDVectory" that specifies the

URL adcires of the modules and the location of the directory. The MOWS system

communicates with other proxy servers or MOWS systems to retrieve a document if

the original server is down. This could introduce communication overhead especially

when the MOWS servers and proxy servers are far apart.

Nabeshima [20] proposes a domain cache server that handles access to a particular

domain name. Documents are prefetched during light network usage. Document

coherency is maintained by using the original server Refrrsh information. A cache

replication server services the documents and acts as a HTTP sewer rather than just

a proxy server. However, multiple simultaneous requests to the domain server can

result in very higb network congestion and performance degradation.

Cache replacement algorithms have been extensively studied in the WWW com-

munity to refresh or remove documents in the proxy cache. Wooder and Abram

[30] present two removal dgorithms for cached documents that consider the retrieval

time for each document and cache only those documents that result in a very long

connection time. The dgonthms work by estimating the Web page download delays

or proxy-teWeb server bandwidth using recent page fetches. The algorithms are

compared with the three existing policies (LRU, LFU, and SIZE) using measures lîke

user response time, Web server loads, and network bandwidth conswnption. However,

network load is a time-variant factor that depends on the number of connections at

any given time. A document that was retrieved during low network load may not be

cached. If a subsequent request for the same document occurs during a high network

load period. then the document has to be retrieved from the WCVW.

Anot her replacement algorit hm t hat considers the retrieval t ime is presented in

[24]. The algorithm tries to r n e e the metric cded delay-savin-ratio by con-

sidering the fect that Web clients tend to retrieve small documents most of the time.

However, the performance of the algorithm degrades when larger documents are ac-

cessed fiequently.

PURL (Persistent URL) [6] is an approach that provides a global naming scheme

for addressing the document relocation problem. PURLs are sïmilar to URLs, but

PURL addresses are' resoived using a PURL resolver. When a document is relocated,

the PURL maintainers update the information in the PURL semer. Our approach

provides a simüar global naming space for documents, but our mode1 does not cur-

rentiy provide a global narne resolving seMce as in PURL. However, as part of out

future work, we are integrating the UrWW servers into DSVM and then object iden-

tifier~ (OIDs) will be sirnilar to PURLs in that they d l always reference the correct

document in DSWL Documents in Web servers wiU exist in DSVM with their ad-

dresses resolving to unique OIDs.

Uniform Resource Name (URN)[26] is a naming scheme in which global names are

assigned to resources in the WWW. A URN stores the characteristics of the document

and a iist of the UEUs where the document is replicated. The name resolution services

in this scheme decompose the URN into URLs. Different resolution s e ~ c e s generate

different sets of URLs and users can choose the resolution service. Our mode1 also

stores a list of node addresses where the document is replicated in the Global Directory

of Objects (GDO) entry in DSW1 and maintains consistency between document

copies. In the future, the GD0 entry can be modified to have metadata about the

document to support a searching and resolution mechanism.

Kosuge and Monta [17] have used replication of management information in the

L W to avoid network congestion. The management information is divided into

two records, one contains the la& modified tirne of the information resource file and

the other contains the location of the rnirror sites. The protocol uses the Domain

Name SeMce (DNS) for exchanging information. In our model, the management

information is fragmenteci and replicated across multiple nodes in a local network.

A proxy caching server retrieves and caches documents for the browsers connected

to the proxy. In this sense, the proxy cache is shareci among the attached browsers.

Thus, a document retrieved by one browser may be passed to another browser hem the

proxy cache without having to access the Internet. This is a centralized approach that

does not scale weU when the number of browsers wishing to share documents increases.

Furthemore, the caching capacity of the prow is M t e d and more replacements will

occur as the number of browsers increase. Our approach distributes the management

of documents across the participants and hence distribut es the workload, and provides

good scalability as the shared environment grows. Moreover, the participants have a

large (2&L or greater) shared address space for maintainhg retrieved documents.

Ingham, et al (151 propose a solution for the broken-link problem in the WWW.

In their solution, forward reference mechanisms, a name service, and c d back mech-

anisms are used. The solution is based on an object oriented approach and each

resource in the WWW is considered to be an object. When an object moves from

one space to another, the first request for the object traverses through the forward-

ing links. After reaching the target ob ject, the requested object updates itself with

the new location of the object (this is known as a Forward Reference mechanisrn).

The model manages the broken links (created due to deletion of objects) by using a

naming service and c d back mechanism. Every object registers itself in the naming

service. When an object is deleted, d objects registered in the naming service that

refer to the deleted object are informed about the deletion. However, as the number

of referencing objects increases? informing these objects about new locations becomes

e-xpensive.

In the DCE Web pro ject [18], security issues of WWV documents are discussed.

The approach appües the OSF Distributed Computing Environment(DCl3) features

to the WWW. The environment consists of a DCE Web, which is a set of DCE

capable servers grouped together to form a cell. Conununication between cells is

by Remote Procedure C d (RPC) for DCE capable servers or HTTP for non DCE

capable servers. The DCE Web has a naming s e ~ c e in which the server maps the

document into a DCE name that keeps track of the location and authorization of the

document. The DCE naming services provide name-based document Iookup in the

DCE Web. A server for a document makes the document available at the same DCE

name irrespective of the server location. The browsers use the naming senrices to

bind to the correct server. However, the URL refen-ïng to a DCE document includes

the DCE name embedded in the URL. Thus, non-DCE browsers have to go through

a proxy server to gain access to the DCE Web documents. In this thesis, separate

communication mechanisms (RPC, IIOP) can be used between browsers and servers

inside DSWl and HTTP can be used to communicate with other Web servers outside

DSVPUI.

Wide area file syçtems [25] are similar to indices in the WWW. When a client

requests a document, the URL is translated into a corresponding database entry and

the database is queried. If the information is not found, it is retrieved from the

WWW. If the document is available, then it is returned to the user. Wide area file

systems support global name space, location transparency, data replication and access

control mechanisms. A request for a docurnect inside a Wide area file system queries

the local host first and if the document is not present in the local host, it is converted

into a URL and retrieved fiom the WW. The decision of which documents to cache

in the system is left to the user and each document is given a document refresh

intenml. This is similar to the proxy caching server mechanism which is a centralized

querying approach. The system is similar to our approach in the sense that it provides

a global naming space and location transparency for documents. However, ours is a

distributeci approach to manage cached documents that employs a weak consistency

mechanism to minïmize network trafic and provides better scalabili@ and reliabiüty.

Several researchers have trïed to integrate distributed system concepts in the

CVWW. Pagespace [12] is an approach to support open distributeci applications on

top of the UrWW.

Pagespace Mplements a set of user agents that reside on every machine to manage

user interface, perform user services and form applications : Uitegrate seMces pro-

vided within coordination environments like CORBA, DLE and Pagespaces. Pages

Pace implements a set of agent classes and is built on coordination technology (plat-

form for coordination of activities arnong asynchronously working agents), Web in-

terface (for widespread communication and presentation) and Java technology (for

wiiform processing platform) .

Yang and Kaiser [31] propose a scheme for integrating the WWW and object ori-

ented databases to support dynamicdy customized presentations of WWW informa-

tion to users. The information is stnictured based on user needs and the application

at hand. For example, a document rnay be displayed in different formats to differ-

ent users. A document may display all information in a database to a super-user

and may display only selected fields for other users. The browsers are linked to the

database by usiog a HTTP implementation. The HTTP implementation provides the

interface to the WWW. User views are dynamicaüy generated by a View Processor .

The HTML file is embedded with customer specific instmctions. These instructions

are interpreted by the view processor to generate customized documents. The major

disadvantage of this approach is that the user must modifv the source files to include

the embedded met hocls.

Chapter 3

Technical Background

There are a number of technological achievements that motivate this research. This

chapter gives a detailed overview of these base technoiogies and introduces how they

are combined into a system that provides Mproved access and usability of the WW.

The dlistri6uted shared virtual memory system (DSVM) is used to provide a distnbuted

cache among browsers in a network for sharing documents. A proof of concept pro-

totype of this mode1 that supports HTTP features is developed to illustrate the

feasibility of this approach. The distributed shared memory platform for the proto-

type is provided by Treadmarks. Shared memory consistency is done by using the

Treadmarks functions. The interface of the shared memory manager with the WWW

is implemented by using the Web interface iibraxy provided by Perl.

3.1 Shared Virtual Address Space (SVAS) Mode1

Traditional virtual memory systems operate on a Priuate Address Space (PAS) scheme

where each application has its own address space and applications use messages and

files to communicate. The Shared Virtval Address Space (SVAS) paradigm [22, 101

hm a single, common, virtual address space that is shared among all applications.

In the PAS scheme, each process has its own virtual address space that starts

at virtual address zero and accommodates the size required by that process. In a

multi-process application, separation of the address space makes it difficult to share

data across processes. There are many approaches to m h h k e this problem. One

approach is to use messages and £iles to communicate changes to other processes.

A disadvantage with this approach is the potentidy large communication overhead.

Another way is to use shared memory segments mapped to the same virtual memory

location in all processes. In a PAS system, pointers lose t heir significance when passed

from one application to another because shared data in one application's PAS may

appear at a different virtual address in another application's PAS. One possible way

of solving this problem is to have a single global address space across aJl processes

to provide d o r m memory access as al1 data appears at the same location for aii

processes.

In the SVAS scheme, a programmer has the advantage of a single address space

which provides ease of programrning by eliminating coding of cumbersome communi-

cation procedures (eg., sockets, RPC) between appücations. Data sharing is easier in

the SVAS approach since all data appears to d l processes at the same virtual address.

In an SVAS system, the addresses are valid across al1 sites and can be accessed at

any site, i.e. the addresses are context - independent. Context-independence has

advantages both in hardware usage like efficient address translation and in software

like sharing, storage and retrieval of stnictured data containing pointers.

An SVAS system can be page based, shared variable based, or object based.

Furthemore, an SVAS can be distributed and shared a c r m nodes (workstations) of

a network. In a distributed object-based SVAS system, applications on multiple nodes

share an abstract space tilled with objects- The distribution of objects is transparent

and ob jects can move freely between sites. Access to a non-resident object will obtain

the ob ject hom the site that holds the object . Any application can invoke any ob ject 's

met hods (provided proper permissions have been granteci). regardless of where the

application and object are locnted. From the programmer's perspective, methods can

be invoked without any additional complexity like RPC, lunction shipping etc., as

the objects share the address space. The underlying system may use these techniques

to actudy execute methods, but this is hidden fiom the programmer.

Context switching is efficient, as address translations and page table contents are

d i d across method invocations. The object-based SVAS approach also has more

advantages than other SVAS approaches including modulari@, flexibility and inte-

gration of access and synchronization. In t his approach, a distributed ob ject-based

SVAS provides the underlying architecture where retrieved WWW documents are

managed and shared.

An object-based SVAS system c m be designed to support persistence. Since

persistent ob jects are expected to exist for a long t h e , the address space of the process

must be unchained fkom the process itseif. This is possible when we have a luge single

address space such as those provided by 64-bit architectures (e-g., DEC Alpha, IBM

RS-6000, etc.). Moreover, distribution of objects can be made transparent, while the

actual operations are perfomed at the system level.

Although the SVAS system has admtages, there are issues like security that

must be addressed. One approach to program securely is through systems that pro-

vide hardware protection based on hardware supported protection domains rather

t han the address spaces [28]. The working environment in this t hesis is a persistent

object system in a single shared address space environment. Security aspects of this

environment are not considered in this thesis.

3.2 Distributed Consistency Protocols

In a distributed environment, information is shared between proceses across net-

works. In such a case, vùtual memory c m be distributed across machines. Changes

in the shared Wtual memory of one process should be reflected in the vittual memory

process ninning on another machine.

Virtual
Mernory

Red Mapping of
Memory Addresses

Red
Memory

Vicîual
Memory

Figure 3.1: Memory Nfapping in a SVAS systl

Figure 3.1 shows memory mapping between two processes P 1 and P2. For main-

taining consistency of shared memory between the two processes, the operating sys-

tem must be actively involved. When there are multiple processes storing the same

information, updates to a shared memory location in one process must be propagated

to aJ.l other processes so that the information remains consistent between processes.

Shared memory consistency can be maintained by two mechanisms. In strong consis-

tency mechanisms, when a shared memory location is updated, the new value must

be propagated to a l l other processes so that subsequent reads will see the new value.

However, frequent writes to data result in frequent updates to cached copies and high

associated overhead. The communication overhead can be reduced by using some

form of weak consistency. In weak consistency mechanisms, the updates are sent

to other processes only when demmed "necessazy". Two protocols that maintain

weak consistency between data items are the 'telease consistency' and "lazy release

consistencÿ protocois.

Release consistency 1331 was k t proposed to reduce communication overhead

by avoiding unnecessary updates. In this mechanism, consistency of shared data

is ensureci only at lock-release t h e , which minimizes the overhead of propagating

intermediate updates to other copies. A table indicating data items that are stored in

each processor is maintaineci and explicit control of the virtuai memory management

is needed to propagate updates. At any point of t h e , either aii processors have u p

to-date information or only one process (the one that holds the lock) ha. the latest

information. This protocol has some deficiencies as shown in Figure 3.2.

Figure 3.2: Release Consistency

Figure 3.2 shows the update operations on data item X by three processes Pl.

P2 and P3. A process (say, Pl) locks the data item and updates it (say, Xl). Upon

lock release, the new value X1 is propagated to the two processes P2 and P3. Now,

process P3 locks and updates the data item (say to X2) and propagates the value

to other processes. The data items at P2 and P l are updated with the new value.

As shown in the figure, propagation of data item X fkom process P l to process P2 is

unnecessary as the data propagated by P l to P2 was modfied by P3 before P2 resids

the data.

This problem was solved by L a q Release Consistency (LRC) [16]. In this a p

proach, consistency is maintained during lock acquisition rather than during lock

release. Updates are propagated only to the process that acquires the lock. To pro-

vide information about which process has most recently updated the data item, a

Iock manager maintains the identifier of the holder of the most upto-date copy of the

datum. Thus, when a new process acquires a lock, the "home node" (lock manager)

sen& the identifier of the last updater to that process. A request is then sent to

the last updater (if it is not the same one that just acquired the lock) for that data

item. Once the data is received and updated, upon lock release, the lock manager

updates itself to record the most recent updater of the data item. By this method,

the unnecessary updates in the release consistency protocol are avoided. The proof of

concept prototype in this thesis uses Treadmarks to provide consistent shared mem-

ory between interconnected nodes. Treadmarks uses the LRC mechankm to maintain

s hared memory consistency.

3.3 Persistent S torage Management

Persistent data is long-term, non-volatile storage that exïsts between program invo-

cations to store data that must be preserved for future reference (e-g. databases).

A persistent system is one in which data created by a process persists beyond the

termination of the creating process. A process creating persistent data need not be

concerned with explicit operations to store the data to a file. Subsequent processes

accessing the persistent data need not issue explicit fiie read operations. In a persis-

tent system, the user need not know the file system semantics and operations. The

file system calls need not be coded explicitly to store and load persistent data. Also.

t here is no need to traosform data between in-memory and on-ciisk data formats (eg. .

dumping a linked List to disk).

While implementing a persistent system, addresses are tramformecl into persistent

references. A reference to persistent data wiil coosist of an identifier with (typically)

more bits than an address. For example, suppose a process refers to a data file

"/home/c~/grad/crs/datafile'~ during its program execution. The data file has to

be read into memory for processing. When referring to such a persistent reference,

directory d e t d s are needed for Ioading the Ne into the memory. The persistent

reference requires more bits to specify dl the necessary information. On the other

hand, a memory address consists of a fked number of bits. When data is in memory.

it c m be accessed by memory addresses (minimal number of bits) but when it is non-

resident, it must be referenced using a larger identifier. Thus, persistent references

must be dynamicdy converted into in-memory references before data can be accessed

(this is called pointer s~~1zzlzng [29]).

Swizzling can be eager or Lazy, based on whether the objects referred to by an in-

memory object are pre-swizzled (eager) or not (I szy) . In either case, a table mapping

the persistent identifier to the memory address is rnaintained to avoid multiple m a p

pin- of the same object. As the number of objects brought to the memory increases,

the size of the table increases. This overhead can be avoided by swizzling objects

on a per-page basis at page-fault time (291 when the page is brought into memory.

There is no need to keep track of an ob ject 's status in a separate mapping table since

objects in memory are swizzled as they are brought in during page-fauit. If the page

is in the memory, page-faults will not occur.

Treadmarks is a distributed shared memory software package that provides shared

rnemory between multiple workstations interconnecteci by a network.

S hared Memory

Figure 3.3: Distnbuted Shared Memory

Treadmarks provides the abstraction of a global shared mernory acroçs worksta-

tions. The programmer need only be concerneci with memory addresses and need not

worry about the site where the data is stored or the procedures by which the data

is transmîtteci. The Treadmarks application prograrnrning interface has many meth-

ods for process creation, destruction, synchronization, shared memory docation and

maintenance. Treadmarks also provides two synchronization primitives (locks and

A lock is a simple form of synchronization object and supports two operations. The

acquire operation provides control of a lock for a particular process and the release

operation releases the specified lock. Once a process locks a portion of the shared

memory, other processes cannot access that particdar shared memory segment. The

programmer associates a set of privileges to a lock and a process has to acquire the

lock to use the set of privileges. The process releases the lock after it is done with

the privileges. For example, a lock can be associated with the privilege of updating

an object and another lock can be associated wit h reading the same object . Thus.

to read or update the abject' the requester should acquire the corresponding lock to

get the read/write privileges. Locks are used to synchronize muitiple writes to a data

item by different processes at the same tirne.

Different processes may be at different program segments during m u t i o n of the

program. A barrier halts the progress of a process until a& of the other processes reach

the same state as of the current processes. Ideally, the barn-er primitive is used by

the process that aiiocates aod distributes shared rnemory between other Treadmarks

processes.

The folIowing are some Treadmarks huictions used in the development of the

prototype WWW in DSWf system.

Tmkstartup(int argc, char **argv) Initiates the Treadmarks processes in the

workstations specified in the initialization

file .Tmkrc.

Trnkezit(int status)

Tmli;malloc

Terminates the cailing process with value

"status" .

Allocates shared memory between the Tread-

marks processes and retunis a pointer to a

block of shared memory. Only the memory

that is aiiocated by this function is shared.

Dedocates the shared memory pointed to

by ptr-

Distributes the contents of a block of PRI-

VATE memory on the calling process to ev-

ery other process. After the c d , dl p r e

cesses have the same information in speci-

TMKJVLOCKS

Tmklockacquzre (id)

Tmkloclcrelease (id)

Tmkprocid

fied memory locations. Normally, this hinc-

tion is called by the main process which al-

locates the shared rnemory.

A constant that contains the number of syn-

chronization ob jects providecl by 'Iteadmarks.

Blocks the current process untü it acquires

the specified lock. The parameter id repre-

sents a lock number in the range O .. the

TMK-IILOCKS - 1

Releases the lock specified by id.

Variable that contains the current Tread-

marks process identifier.

A constant that contains the actual number

of pardel processes after Tmkstartup.

The Treadmarks mode1 requires shared memory management among dynamically

invoked processes. Every invocation of a browser is a process that should be able

to access the shared memory- Also, at any instant in time, there can be multi-

ple requests from the browsers. To service these requests sïmultaneous~y, the shared

memory manager must provide shared memory management between dynamicdy in-

voked processes and the main process. Treadmarks is used to provide shared memory

between workstations to develop the prototype. However, Treadmarks only provides

and maintains shared memory between workstations that are specified in the con-

figuration file ".Tmkrcn during system startup. Other processes cannot access the

shared mernory- Hence, the shared memory manager is designed as servers that store

and retrieve documents from the shared memory. Each server services one request

at a t h e and there are multiple semers to service document requests. h o t h e r re-

quirement with neadmarks is that each Treadmarks process that is invoked requires

40MB of swap space.

3.5 DSVM

This thesis is based on the ongoing DSVM (Distnbuted Shared ViuaI Memory)

project [13, 7, 141. The DSVM project environment is a distributed persistent ob ject

system and uses the distnbuted object-based SVAS m e c h d m as a basis for object

sharing. DSVM uses a large virtud address space such as those provided by 64-bit

architectures (e.g., DEC slpha) [Il] to create a persistent distributed shared memory.

Objects are placed in persistent memory and shared transparently between intercon-

nected nodes (workstations) of a network. Implementing such a system has many

advantages including simplified programming (both persistence and distribution are

transparent) and elimination of swizzling of object references. The ob ject model of

DSVM is 'tanilla flavored" but supports the object concepts of encapsdation, inher-

itance and polymorphism. Meta information is used for accessing data in the model.

Objects in this mode1 comist of state (attributes) and behavior (methods). Each

ob ject is identiiied by a unique identifier (OID) , which is the object's virtual address

in the persistent object space. Each object is instantiated from a given type that

specifies the attribute structure and method implementations. Objects instantiated

from a type belong to the same class. Method executions are treated as nested atomic

transactions.

The high level logicd system architecture of DSVM is shown in Figure 3.3. The

system uses a stub process approach for difFerent legacy systems (eg., relational, file-

Obj- Uniform Object Obj- Uniform Object

Fitcs Pmcuscs

I
I
F
1

Objm ~ e t h o d :
Exceutions ;

1 ---- 7-

Mcmory
Rcads/Wrilcs ;

I
I
1
I
I
I
1

Chunks ot
Memory :

I
1
I
t
F
t
l
t

Absolute j
Storage ;

I
l
I
I
I

DSVM j

Figure 3.4: DSVM Architecture

based applications) to interact with the canonical ob ject model. The ob ject model is

based on the uniform behavioral model of the Sigukat OBMS [21]. The transaction

manager deals with the concurrency control and recovery issues of DSVM. The rele-

vant portions in DSVM that are of direct concern to this thesis include the "Memory

Manager" and the c'Storage Manage?. The persistent storage (disks) is rnanaged by

the persistent storage manager, which in the prototype DSmi system is implemented

as a set of c-operating Exodus [9] servers. The shared memory manager provides a

single virtual memory abstraction among processes at a l l nodes and maintains shared

memocy consistency across sites. The prototype DSWI system uses Treadmarks [SI

to provide s h d memory across sites. Treadmasks does not provide persistence, so

the prototype implements an interface to the Exodus based storage manager.

Objects in DSVM are visible to applications at ali sites. Each site has a DSVM pro-

cess and methods are executed as threads that access objects in the shared memory.

Ta ensure efficient mapping of Wtual memory, znvded page tables (e-g. IBM RS-

6000) can be exploited. SecUL2ty and privacy of objects can be providecl by software

protection mechanisms [27] as well as more efficient hardware protection mechanisrns

[28] that enforce restricted access to hardware protection domains.

The DSVM system uses an object repository c d e d the Global Directory of Objects

(GDO) [19] that provides distribution, efficient data retrieval, and scdability. Nodes

in a local network are clustered into DSVM-ce& consisting of several nodes per cell

[NI. The GD0 is bgmented and distributed across the ceils and may be replicated

on several nodes withh a cell. Each cell manages a disjoint range of virtual addresses

within the 264 possible addresses (see Figure 3.4). Objects are created in the SVAS

with virtud addresses serving as object identifieers (OIDs). After an object is created.

it can be made persistent in the SVAS. The GD0 fragments use an index structure

(eg., B+ tree) for efficient searching and insertion of objects. Each GD0 entry consists

of the OID, object size, an exists field to indicate the status of the object (deleted

or not deleted), lock variable to lock the object, pending lock requests queue, and

persistent storage location references. Other fields in a G D 0 entry are optional and

depend on the application that is executed on DSVM.

The Lazy Release Consistencj (LRC) [16] protocol of Treadmarks is used to ensure

the consistency of ob jects between nodes with minimum communication overhead. In

the LRC mechanism, a "home node" is defined for each object and the information

about the 1s t node that updated the object is stored at this site. Access to an object

Figure 3.5: Placement of GD0 fragments

requests the site that last updated the object kom the home node and retrieves the

object from this Iatest updater. In the general architecture for supporting W&W

in DSVM, the WWW browsers f o m the nodes in DSVM and each UFU maps to a

virtual address (i.e., OID) that represents a document as an object in the SVAS of

DSVM-

An object in the object space consists of (i) an indexed jump instruction that

invokes the relevant object method, (ii) attributes of the object and (iii) method code

for the object. Implementation of the management îùnctions on the shared address

space is based on detecting object references and then exerting specid control on

memory management. During startup, the physicd memory and the virtual address

space of ail processes are empty, but the G D 0 is accessible at some known location.

When a transaction invokes a method of an ob ject , a reference to the virtual address of

the ob ject is generated. As the virtual address is undefined. this results in a mapping

faidt. The G D 0 is then cousulted wit h the wtuai address of the ob ject . If an ente-

is found, then page tables axe constructed using the information in the GDO. After

an object is mapped, the page fadts are taken care of by demand paging.

3.6 World Wide Web

The World Wide Web (WWW or Web) has progressed £rom its humble beginnings

at CERN [2], as a means to effectively transport research and ideas throughout the

organization, to a global service used by millions each day.

The popularity of the Web bas sparked efforts in both the commercial and research

communities. There are many good commercial browsers t hat offer user-friendly

graphical interfaces to the traditionally bard-temaster resources of the Internet. An

assortment of standard protocols (HTTP, FTP, etc.) are integrated into the Web

environment. There are extensive research efforts to increase the types of services

available on the Web (video, sound, conferencing, Java, etc.) as weU as efforts to

provide more efficient access to Web documents while reducing network and semer

loads. This research focuses on the latter by providing a shared memory paradigm

where a set of heterogeneous browsers, distributed across a network, share documents

with one another and form a ceoperative Web environment.

3.6.1 World Wide Web Protocoh

The WWW consists of a body of information protocols, standards, and conventions

that govern their use. These information protocols can ciiffer greatly fkom one another

but they al1 allow clients and servers to communicate. Some of the most common

W\Wl protocols and utilities are 1) Resource Addressing, 2) Data Ikansfer, and 3)

Pro-xy Senrers.

Resource Addsessing

URLs (Unifonn Resource Cocators) are a standard for identi&ng objects in the

WWW. Every document has a URL that serves as its network-wide address. Doc-

uments can form links to others by including their UEUk. A URL is a string of

characters that uniquely identifies an object in the WWW (me a catalog number

in the WWW). The URL describes any object anywhere on the Internet and these

objects are accessed using different protocoIs.

Protocol Host Identification Part I Object Identification Part

Ca) (b) (cl

Figure 3.6: URL Structure

A URL has three basic parts as shown in Figure 3.6:

1. Protocol : Figure 3.6a shows the protocol portion of the URL. This portion

specifies the protocol to be used by the browser to communkate with the WW3V

server. In most cases, the standard protocol is either "HTTP (for objects on

a server) or '%le" (for local objects) . Other protocols include common Internet

protocols such as FTP and Gopher.

2. Host Identification : The host identification portion of the URL represented by

Figure 3.6b identifies the server where the required information resides. Nor-

mally, the host ID consists of cluster name, domain name, and port number.

Most MTWW servers use port 80 as the default port. The standard Internet

Domain Name Service (DNS) resoives these names into a numerical Internet

address. In some cases, some servers may not be registered or the local domain

name server may have problems. Alternatively, a system can be specified by

its numerical Intemet address, rather than by the combination of system name

and domain name.

3. Ob ject Identification : Figure 3 . 6 ~ identifÏes the ob ject identification portion

of a U R . . There are two different types of identifiem. One of them refers to

text mes (HTML files) and the other refers to executable progrm. The Ne

identification consists of i) directory path that is always an absolute path and

must begin with a slash to separate it from the server, ii) filename that specifies

the ob ject to be transferred, which is most commody an HTML file (other m e s

such as an executable program are also dowed, depending on the protocol being

used) , and iii) section name t hat defines sections in an HTML file. Most RTML

files are not broken into sections, so a section name is not n o m d y used.

URLs map to documents in the document tree on a WWW server. The minimai

URL that can reach a server is:

If the WWW semer is run on a port other than the default port, the nonstandard

port number is included in the URL, for example:

During translation of a URL to real files, the URL is scanned for any 'Wual paths"

by the WWW server. The tilde prefuc (N) foilowed by the directory name indicates

a virtual path. If a virtual path is found, then it is replaced wit h the real directory

and the request is processed.

Data Transfer : HTTP

HTTP (HyperText Transfer Protocol) is a stateless search and retrieve protocol for

\VW3V operations. This generic. object-oriented protocol accommodates distributed.

29

collaborative hypermedia information systems. A client using HTTP sends a List of the

representations it understands wit h its request, and the server c m then ensure that it

replies in a suitable way. HTTP dows communication between user agents (browsers)

and various gateways. HTTP also employs a disciplined and consistent system for

referencing different resources through the use of URLs and URIs (Universal Resource

Identifiers - identifiers that include all names snd addresses that are short strings

referring to abjects).

HTTP accommodates several cornmands or methods to perform a variety of tasks

on an object identified by the URL. The GET rnethod retrieves the data identined by

a URI. The HEAD method is similar to GET except that the server returns only the

document headers; it does not return the document body. The POST method is used

to request that the destination server accept the entity enclosed in the request as a

new subordinate of the resource identified by the request line. The POST method

covers functions such as: 1) annotation of existing resources, 2) posting a message to

a builetin board, newsgroup, or mailing list, 3) providing a block of data, such as the

result of submitting a fom to a data-handling process, and 4) extending a database

through an append operation. The server responds with a 201 code and the status of

the request if the entity is created. A vaüd "Content-Length" is required on ail POST

requests. A WWW server responds with a 400 (bad request) message if the length of

the request message's content cannot be determined. Responses to a POST request

are not cached because the client has no way of knowing that the server wodd return

an equivalent response on some future request. This thesis supports the GET, HEAD

and POST methods of HTTP.

Ail HTTP transactions take place over a T C P / P comection and usually through

the default port 80. An HTTP transaction consists of four stages.

1. Connectzon : In this phase. the browser (the client) attempts to connect nith

the WWW server. The status of the comection is displayed on the status line

on most browsers.

2. Reqvest : After a connection is estabiished, the client sen& a request to the

WWW server specifying the protocol to be used, the required document, and

the document types it c m understand.

3. Response : The server either sends an error message if it caanot Nfill the request

or responds with the document if it c m fuEU the request. The browser might

display a 'kading responçe" message or a "trderring" message on the status

line. The server tries to send only those data types that the browser supports

and responds k t with the m e of document that it is sending followed by the

document.

4. C h e : After the server sends the response, either the client, the server, or both

close the connection.

An example request for a hypertext Link such as:

wiIl send a request similar to the following:

GET thesis. html HTTP/l .O

Accept: text/pluin

Accept: image/gif

Accep t: image/x-portable- bitmap

User-Agent: NCSA WinMosazc 1. O

[A blank line contaznzng only CRLF]

The request header defines several fields indicating the requested document and

the capabilities of the browser. The first line in the request contains the requested

document. The Accept lines are client information spec@ing the data types that

the browser can accept. The User-Agent specifîes the program making the reqtiest.

The end of the request header is indicated by a single Lioe containing ody s CRLF

(carriage-retm he-feed) pair.

The WWW server responds with the document header foilowed by the document.

A sample response to the above request is given below:

HTTP/l.O 200 OK

MIME- Version 1.0

Semer: NCSA/I. 3

Content- Type:tezt/htmZ

Last-rnodzfied: Thursda y, 3-A UG-95 23:37:8 GMT

Content-length: 145

[A blank Izne containing only CRL F]

Document text

</body>

The k s t iine in the response header represents the state of the response. If the

document is not found, then the server responds with a 404 status. If the request

is successful, the server responds with a 200 status followed by the document type

(line 4), the last modified date (h e 5) and the Length of the document (line 6). The

server rnay ako send some more header details depending on the request. The end of

the document header is specified by a blank line containing only a CRLF pair. The

actual document is sent foilowing the blank line. For a detailed description of HTTP

see [SI.

The prototype implementation of the WWW in DSVM supports HTTP features.

The queries are formed by the WWW browser and the mode1 uses these queries to

retrieve documents from the WWW server. Requests fkoxn the browsers are sent to

the WWW server without any modifications. The response from the WWW server is

sent to the browser without any modification and is processed by DSVM to identify

if the response was an error code or a vslid document. For example, if the document

has been deletecl, then the status information in the shared memory is updated to

"Document Deleted" .

Proxy Servers

A proxy server (sometirnes referred to as an application gateway or forwarder) is

an application that regulates t r a c between a protected network and the WWW.

Proxies are often used instead of router-based t r d c controls to prevent tr&c fkom

passing directly between networks. Many proxies contain e4xtra logging or support

for user authentication. Since proxies must ''understaad" the application protocol

being used, they can also implement protocol specific security (e-g., an FTP proxy

c m be conûgured to permit incorning file transfer and block outgoing file transfer).

There are many ways of protecting a local network fiom another network or illegal

users. A proxy server may &O hinction as a k e w d for protecting the local network

from illegd users. A Iirewd performs at le& two hinctions: (1) it blocks trafEc

fiom passing between a local network and the WWW, and (2) it permits t r a c flow

between a local network and the WWW. The proxy server's duties are divided to

manage the incorning and outgoing network t r a c for better efficiency and to control

the incoming and outgoing t r a c . For example, one part of a firewall in a Company

c m restrict people ftom sending resumes to companies outside the firewall and the

other part can filter the retneval of imauthorized sets of dociiments (Iike receiving

job postings).

A proxy server listens for a request from a ctient within the firewall and forwards

the request to a remote server on the WWW outside the firewd. The proxy server

reads the response and sends it back to the client. Operation of a proxy server

should be transparent to the users. P r o q senrers can be usehl in many ways. Proxy

servers can permit and restrict client access to the WWW based on the IP address

of the client. Documents can be cached by the proxy s e m . The advantages and

disadvantages of caching documents in a proxy server are discussed later in this

chapter. Access to the WWW a d subnets can be controiled based on the submitted

URL. Proxy semers c m be used for providùig WWW access for companies over private

netnrorks (Internet Service Providers) . Clients who do not implement Domain Name

Services (DNS) can reach the WWW through a proxy server. To use a proxy server.

a client only needs the IP address of the proxy server.

Sometimes a browser rnay not be able to have direct access to WWW resources

when it is run on a system behind a protective firewall. Under such circumstances?

a proxy server can retrieve the desired files. The proxy server receives the request

from the browser in the fom of a URL. The proxy server retrieves the requested

information, converts it to HTML format (if it is not already HTML) and sen& it

on to the browser behind the firewall. The proxy server handles al1 network requests

and it is the machine that is directly comected to the WWW.

3.6.2 Caching in Proxy Server

Normally, al1 browsers in a local network access the same proxy server. When a

browser requests a document, the proxy server retrieves the document from the

WWW and sends it to the browser. The document may or may not be cached

Gopher

Figure 3.7: Proxy server on a firewaU

at the proxy server based on the proxy server setup and the user requirements. If

the documents are not cached at the proxy server, and other browsers request the

same document, the proq server retrieves the document fkom the WWW for each

request. If the document is cached by the proxy server, then the proxy server will

retuni the document fiom its cache after the initial request for that document has

been processed. The documents to be cached and the expiry time for those documents

are set based on the information provided by the client. Caching a document that

a large number of users may access fkequently can Save network cost and comection

time. Furthemore, caching can rninimize the use of disk space because only one copy

of the document is stored. Proxy servers can be particularly useful when interactive

applications have to be executed using information normdy found in the WWW. If

both client and the proxy server are on the same machine, and the system is con-

figured to use only the local cache, interactive applications c m be esecuted without

establishing a WWW comection.

Although caching documents has advantages, it &O has some disadvantages.

EvIany documents in the WWW are '%vin$' documents. Determining when such

a document might be updated or made obsolete can be a difncult task. A document

could remain stable for a very long time and then suddenly change. Conversely, a

document could change on a daily basis or even more kequently. This means that an

arbitrary decision has to be taken about the expiry thne of the documents. Normally,

a proxy server performs a conditional check on the cached documents to decide on the

Vitlidity of the document. The conditions are decided using the information provided

by the server and various system parameters.

3.6.3 WWVV Tkansaction without a Proxy

rn
Browser GET http://.Jdetail.htrd

Document

Web Semer

Figure 3.8: Web transaction without Proxy

Figure 3.8 shows the Web transaction when a browser (client) sen& a document

request to the WWW server without a proxy server. Clients in t his situation have a

direct comection to a VA&W server. A user places a request,

The client converts the request into

GET /-user/thesis/detail.html HTTP/1.0

and a series of parameters specined by HTTP. The browser sen& the request to

the server that corresponds to ~~cs .umanz to6a .ca and waits for a response from

the server. The request specifies the path (directory tree) where the document (de-

tail-html) c m be located in the server. The response is either an HTML document

or an error message.

3.6.4 7NmTW Transaction Through a Proxy

When a browser (client) sends a request through a proxy, it always uses HTTP for the

transactions with the proxy server. This is true even when the user wants to access

a remote server that uses another protocol (say, FTP). A proxy server acts both as

a server and a client. It acts a s a server when it accepts requests fkom a browser

and acts as a client when it requests a document boom a WWW server. Similarly,

even when the client specifies a document on an FTP server on the WWW, the proxy

server retrieves the file hom the remote FTP server and sen& it to the client usiog

HTTP. A Web transaction through a proxy server is shown in Figure 3.9.

m
0mwser GEï h$.JI..fdemil.htmi GET hrtp-JlJdeaunl -

Docmnent
7 7

Web Senrer

Figure 3.9: Web transaction through Proxy

A user places a request, for example:

http: //www.~s.umanitoba~ca/-mer/thesis/detd. html

The client converts the request into

GET http://www.cs.umanitoba.ca/-user/thesis/detl h m HTTP/ 1.0

and a set of parameters specified by the HTTP and sends it to the proxy server. The

proxy server sends the reguest to the WWW server that corresponds to vunu. CS. umanztoba. CU

and waits for a response.

3.6.5 VWVW Transaction through Proxy Cache

Proxy servers may cache documents in their local memory. When browsers (clients)

request locdy cached documents, the proxy server returns the document fiom the

cache imtead of getting it fiom the WWW. The operation of a document request

through a proxy server that caches documents is shown in Figure 3.10.

of ihe Roxy Server
Web Server

Figure 3.10: Web transaction through Proxy Cache

A user places a request, for example:

The client converts the request into

GET http: / /www.cs .umani toba .ca / .vuser / th~rnl HTTPI1.0

and a set of header information specified by the HTTP and sends it to the proxy

server. The proxy server searches its local cache for the document. If the document

is available in its cache, the proxy server r e t m the document to the browser. If the

document is not available in the cache, then the proxy server retrieves the document

from the WWW, caches it locdy and sends it to the browser. Subsequent requests

for the same document retrieve it from the local cache of the proq server.

When the document in the proxy cache is outdated, the proxy server retrïeves

the document from the respective W'VW semer. If the \VVVtV server F d s or if the

transaction was unsuccessfd, the document in the proxy cache is displayed with a

warning that it is a previously cached copy.

Chapter 4

W W in DSVM

DSVM functions as a transparent layer between the WWW semers and the browsers.

Retrieved documents are stored in the SVAS of DSVM and subsequent requests for

documents (even by other browsers) retneve them Erom the shared memory. This can

speed up document access, reduce network load, and deviate server Ioad by avoiding

recomections to semers for each browser,

4.1 General Architecture

Figure 4.1 represents the generd system architecture of the proposed WWW in D S W

system. The system consists of a Domain O (Domain Outside the DSVM) and a

Domain 1 (Domain Inside the DSVM).

To the left side of the dashed Line is a representation of the cunent WWW en-

Wonment. To the nght side of the dashed line is the proposed architecture based

on DSVM. The communication layer of the browsers in Domain 1 (DI) are modified

to send the document request to DSVM. The SVAS is distributed between aU the

browsers in DSW. Every browser that is invoked forms a node in DSWI and man-

ages its own address space. Al1 documents retneved by one browser are visible to

Browser '7

Bromcrs linkcd by DSVM

<Domaln D

1
I f

Figure 4.1: WWW in DSVM : Architecture

t
t DNS

DSVM

Interficc
I

ail other browsers connected to DSVM. Browsers c m have their own local cache and

Browscr

Browser

their caching policies need not be modified to minimize changes and support greater

t
4 /

Browscr

I

t ransparency-

The Domain Name Senrice (DNS) & GD0 interface provides the integration of

DSVM with the WWW. This interface receives requests from DSWI, retrieves docu-

ments from the WWW based on client requests and sends documents back to DSVM.

The interface uses DNS and standard protocols (HTTP, FTP, Gopher) for retrieving

documents. Thus, DSVM integrata with the WWW with no modification to the cur-

rent WWW setup. The DSVh/l operations and the shared memory management are

completely transparent to the user. Browsers receive documents from either DSWf

or the WWW.

4.2 DSVM Participation and Scalability

In thk model, the browsers hinction as nodes in the DSVM and a group of browsers

form a DSVM-cell (intranet). Browsers in one local network form an intranet and

another group of browçers in another network form another intranet. The address

space is partitioned and distributed across multiple intranets. The intra.net formation

can be explained by the following example.

Consider a scenario where there are various departments in an institution. A local

network manages the invocation of browsers within its domain (say, the cornputer

science de part ment). Similady, ot her local networks (say, the elec trical engineering

and sociology departments) manage browsers invoked inside their network. Each

local network forms an intranet (DSW-celi) in this model. Eventudy, linking d l

departments in an institution would provide a scalable and efficient systern for sharing

documents as shown in Figure 4.2a.

When collaboration is conducted between more than one institution, similar sets

of documents may be required at various locations. This model scales to larger collab-

orations and documents can be shared across institutions through the Internet (see

Figure 4.2b). ln this case, the GD0 can be fiagmented across multiple institutions.

Each institution forms an intranet (DSVM-cell) with respect to the other institutions.

Each intranet can be managed locally at each institution. This may introduce issues

such as network load on the Internet that must be addressed. To rninimize the prob-

lems, institutions that are located in the same geographical ares and those requiring

similar documents can be Iinked to share documents.

Figure 4.2: Intranet formation

4.3 Operational Stages

Figure 4.3a shows an example operational setup during system startup. The setup

consists of khree browsers (Client 1, Client 2, Client 3) couected to D S W . DSVM

does not initially contain any documents in the shared memory. Client 1 sends a

document request to DSVM. The requested document is available in the respective

WWW server in Dornain O (DO) only- The DSVM checks the GD0 for an entry

that corresponds to the requested URL. Initially, since the document has not been

retrieved by any other client, DSVM will not h d an entry in the GDO. The request

is then passed to the DNS & GD0 interface which retrieves the document from the

respective \NWW server using standard protocols. The document is sent to the client

and the GD0 is updated with the document details. Figure 4.3b shows the modei

1

@ ~~mwsa(aicnt~)rrqucsts~do~um~lt() :@ ~othaBmcwscr(Qient2)requcstsIhesamedocumcntsClimt 1

@ The DSVM is rrquatrd for the docrmicnt : DSVM c k ~ r il i vpla copy euar f i ihc o w mrieved by
O ~f tbe doaimm is not w a i î a ~ e in DSVM tbc. DSVM j '

ruricves chctmm from the Web aod malces an t @ ~ h e docum~nc rrvievtd by Qitnt 1 is seut to lient t- ~ b c copy is
entry in tbt GD0 : v ~ * d y e d usiug stYidûrd vddation niles of Apache Servcr 1.1

I

(b)
1

1 fa

Figure 4.3: Operational stages

setup after the request has been processed by D S W . The document copy inside

Client 1 shown in Figure 4.3b represents the browsers copy in its local cache d e r the

document is sent by DSVM.

An advantage of having DSVM during a semer failure is shown in Figure 4 . 3 ~ . The

FNWW semer in DO is inaccessible. Another browser (eg., Client 2) sen& a request

for the same document. The DSVM checks the GD0 for an entry that corresponds

to the requested URL. An entry is found in the GD0 as the document had been

retrieved previously by Client 1. The entry is vdidated using the standard validation

niles of the Apache Server [II- The mode1 uses the didation rules of the Apache

Server [Il suice the d e s have been cornmonly accepted by the WWw community

and cache replacement policies are not a focus of this thesis. If the document is valid.

DSVM retunis the document kom the shared memory. If the document in DSVM is

outdated and the communication Link is down, then the system returns the document

in DSVM with a warning that it is a previously cached copy. The browsers may have

their own cache maintenance and validation mechanism. D S W does not interfere

with the vaiidation mechnnisms of the browser.

4.4 Design Issues

The documents in the WWW are considered to be objects in this modeI. Each URL

is mapped to a virtud address (OID) and d operations iike access, rekesh, delet ion,

and relocation of documents are methods on the objects. The data structure in this

mode1 must provide fast searching and minimal creation overhead. The G D 0 is an

index structure based on a B+ tree that provides efficient insertion and searching

of objects. Each entry in the G D 0 contains mapping information between the OID

(virtual address) and the URL, the address range of the document in the address

space, the status of the document (deleted or non-deleted) , the latest retrieval tirne,

the update fiequency of the document, header details of the protocol, and details of

the user who retrieved the document £tom the WWW. Stonng user details can also

be used for security purposes to trace the users accessing a particular document.

A document retrieved rom the WWW and stored in DSW1 cm become outdated.

Validating a document can be done in many ways. Idedy, the system validates a

document based on the information provided by the CVWW server (like last modified

date and document expiry date). Although the validation strategy largely depends

on the information sent by the WWW server? the user can also set an expiry time for

eacb document in the browser's memory cache,

Browsers rnay store documents in their local cache. Browsers may not send re-

quests to DSVM for documents that are locdy cached in the browser (depending

on the browser setup). Mead, the browser displays the cached document. If the

document is outdated in the browsers cache or if the document is paged out of the

cache, then the browser sends a document request to DSVM. The parameters set in

the browser (say, "retrieve documents everytime" option in Netscape) results in the

didation of the DSVM copy every time the document is requested. A document that

is outdated in DSVM will always be outdated in the local cache of a browser. This

is because DSVM uses the information sent by the client and the server to validate

an entry. The converse, however, is not true. If a document is outdated in the local

cache of a browser, it need not necessarily be outdated in DSVM. Another client may

have requested the same document and DSVM may have retrieved the latest copy

ftom the WWW. When a document in a browser's cache is outdated, it is guaranteed

that the DSVM copy is either the same or a more recent version. If the document

in DSVM is the same copy as that of the browser, then the document is retrieved

hom the WWW and sent to the user. The advantage of this approach is that if

the document is valid in DSVM (ie., the latest copy has been retrieved by another

browser), then it is sent to the browser bom the shared memory without making an

Internet connection. This is because the validation d e s of a document are based on

the latest retrieval date and tirne.

Documents that are retrieved and stored in the shared memory may not be ac-

cessed repeatedly without being rekeshed. Documents in the shared memory can be

refreshed eit her automatically or whenever the documents are outdated. Documents

can be automatically refreshed by having a process that retrieves the documents from

the WWW after a particular time frame and updates the shared memory. In our

model, validating and refieshing a document is done when the document is requested

by a browser rather than automatically refieshing the documents. If a document copy

in the shared mernory is outdated and the corresponding WWW server is dom, then

the system displays the copy of the document in the shared memory with a warning

that the document is a previously cached copy-

When a WWW server or aJI the Links between the WWW server and a client fail,

and if the server documents have been retrieved previously in DSVM, subsequent

access to the documents by ciients will retrieve them from the shared memory. Even if

the document in the shared memory is outdated, the same document can be displayed

to the user with a warning that the document is outdated and the semer iink has

failed. Thus, when a WWW server fa&, the user will get a relevant document. The

naming scheme of the WWW d l remain the same as that of the conventiond URL

scheme with the DSVM as a transparent layer for querying the WWW. The advantage

is that users need not modify URLs to access the DSW.

Scalabiliw is another issue to consider when designing a system in the WWW.

Workstations based on 64-bit architectures provide a very large Wtud address space

that can accommodate many WWW documents. For example, at the rate of 100MB/sec,

it would take over 5000 yems to consume the address space. Furthermore, Mth the

likely availability of 12û-bit architectures in the near future, such address spaces wiil

be sunicient to accommodate the expansion of the WWW.

Performance of the mode1 while adding a client depends on the scalability of the

DSVM. When WWW clients are added to (or removed from) the DSVi\,1: only simple

changes to the underlying structures are required [19]. As the GD0 is partitioned

and due to the load balancing features of the DSVM, the system will scale well as

new nodes are added.

A document may be relocated fiom one URL to another in the WWW with

a forwarding pointer to the new location. After a document is retrieved from the

WiW, if the document is relocated, then subsequent requests for the document

retrieve it kom the virtual memory without traversing the surrogate links. If the

document in the memory is outdated, heuristics can be used for automatic traversal

of surrogate Links to retrieve the relevant document kom the WWW. One method for

automatic traversal of surrogate Luiks is to scan the incoming document for phrases

Iike "document relocated' . If the system Iocates such a phrase, then the document is

scanned for a hypertext Link after the phrase and a request is sent to the corresponding

server for the new document. Heuristics for hproving access to relocated documents

is not a focus for this thesis. Using DSVM, however, any resuits in this area can be

shared among participating browsers so that they do not have to go through the same

procedures.

If a document requested by a client has been deleted on a WWW server and the

document had been retrieved by a client in DSVM before the deletion, then requests

for the document retrieve it from the shared memory until it becomes invalid. When

the document in the shared memory is outdated, subsequent access to the document

changes the status of the corresponding entry in the GD0 to 'document deleted'.

Subsequent access to the same document will retrieve the status information fiom

the GD0 and thus, deletion of a document can be known prior to accessing the

W V W server. The entry for a deleted document WU have the default values for

validating the entry, thus enabling the user to venfy if the document is re-created in

the WWW. Furthemore, a user may find that a document is deleted after traversing

a series of "redirecting" hypertext links (the broken-link problem). The ünk traversal

information and the document status (ie., deleted) can also be shared by other users

trying to access the same document. Thus, traversal of surrogate Links is avoided

and the user will know the status of a document without making a series of Internet

connections.

Chapter 5

Proof of concept prototype

The complete implementation of the logical design of WWW in DSVhl depends on the

implementation of DSVM, which is ongoing- A proof of concept DSWI prototype [7]

has been developed using Tkeadmarks [S] as the shared memory manager and Exodus

[9] as the persistent storage manager. The prototype M M W in DSVM system builds

on this and manages WWW documents as objects in DSVM. GD0 entries contain

the URL, the latest retrieval date, update frequency of the document, status of the

document, and HTTP header details.

Figure 5.1 shows the prototype architecture of WVW in DSWI. To provide in-

teroperablity for multiple browsers, and to avoid being browser specific, proxy senrers

are used to provide an interface between DSVM and browsers in the prototype. A

proxy server, apart from hinctioning as an interface between browsers and DSVM,

also performs the duties of the DNS & GD0 interface. A proxy server receives the

document requests from browsers and sends them to the DSVM. If the document is

not found in the shared memory, then the proxy server retrieves the document £rom

the WWW server and sends it to the browsers and DSVM. Linking a browser to a

proxy server involves only setting the proxy server option of the browser to 2 rrspec-

tive proxy server. Al1 commody available browsers c m link to a proxy server so the

1 Browser 1 I

In terne t
Protoc01

Server L;ii

1 Browser
f

Browser

Browsers Unked to DSVM thrwgh h x y Server

@ o d n 1)

Figure 5.1: Prototype Implementation

prototype supports a heterogeneous set of browsers. The proxy servers interact with

the shared memory manager (ie., Treadmarks) for rnanaging documents in the shared

memory.

Figure 5.2 shows a simple prototype setup demonstration in our Lab. The pro-

totype consists of 1) Proxy Servers, 2) Treadmarks servers and 3) the DNS & GD0

interface. Tkeadmarks (TM) is used to provide shared memory between workstations.

Since TM does not support dynamic process management, it is instded among the

participating workstations (eg., copper, calcium and barium) during startup. These

workstations correspond to the nodes in DSVM system and manage the documents in

the shared memory. Al1 TM servers are iterative servers that senrice only one request

at any instance. Al1 requests are serviced in a FIFO fashion by the TM semer. There

are two types of requests that can arrive fkom proxies. Proxies may either request

Retrieve document

Web Server Document Request
(nickel)

Figure 5.2: Prototype Setup

an object fiom DSVM or may send an object to be updated in the shared memory.

The shared memory is checked for an ob ject based on the request or is updated wit h

an ob ject as sent. Synchronization primitives (locks, barriers) are used to maintain

consistency. Requests fiom proq servers can be sent to any TM server. The TM

servers ail have similar processing characteristics ui out prototype and we attempt

to distribute the workload evenly by randomiy selecting the TM server where the

request is sent. This is a simple approach that scdes weil and d o m redistribution

of workload by redistributing the probability of a server being selected. A more elab-

orate load balancing approach can be incorporated and Ïs a topic of hiture research

and fine ttining of the system.

The browsers are iinked to DSVM through proxy servers (in the example setup,

there is only one proxy, the machine helium) that waits for requests fiom browsers.

The DNS & GD0 interface is integrated with the proxy servers to retrieve documents

from the WWW. A p r o q semer is a multi-threaded server that invokes a thread for

each request from a browser- Multiple proxy servers wait for browser requests and

there can be any number of nodes Linked by DSWf to manage shared documents.

This creates the shared distributed environment shown in the logical design of Figure

4.1 where multiple bromes are ünked to the shared memory.

5.1 Software Module Relationships

Document (7)

Figure 5.3: Software Modules Relationship

Figure 5.3 shows the relationship between the software modules of the prototype.

The grayed components represent the modules written to develop the prototype. The

other components are exhting software and systems that interface with the prototype.

The prototype uses the commercidy avaiiable 'Ikeadrnarks software package and

its Application Programming Interface (API) for providing shared memory between

workstations. Portions of the API used for this prototype are described in Section

3.4. The prototype also uses the LWP (Library for WWW in Perl) library of Perl for

interfacing with the WWW and to retrieve documents fiom the WWW. The proxy

server is coded in Perl and provides the interface between browsers. Th1 servers. and

the WWW. The interface between the browsers and the proxy server is provided

by receiving requests from the browsers and assigning a thread process to manage

each request. The interface between the proxy server and the WWW is integrated in

the proxy server and uses the LWP übrary to retrieve documents fkom the WWW.

The p r o q server uses socket communication to interface with the TM servers for

providing shared memory services. The data structure manipulation in the shared

memory is integrated in the TM server which reacls and updates the GD0 structure

using various TM hinctions. The following table gives a iist of the software modules

that were available and the modules that are written to develop the prototype.

1 WWW Interface 1

Software Modules

Browsers

'Iteadmarks Package

5.2 Execution and Event Trace of the Prototype

Available

X

X

Proxy Server

TM server

GD0 Interface

Figure 5.4 shows the event trace of the prototype. A user enters a request for a

document. If the browser h d s a vaiid document copy in its local cache, it is rettu-ned

without any involvement by DSVM. If the document is not cached by the browser,

or if the copy is invalid, then the browser sen& the request to a proxy server. The

proxy server invokes a thread to seMce the request and continues to iisten for other

requests. The thread sends the request to any of the T M servers. The selected TM

Wntten

X

X

X

User Bro wser Proxy Server (CS)
DNS & GD0 WWW

Interface Scrver

Request for a
document

Document displayai

i F found in browsers
Iocai cache
(no involvement by

DSVM)

Displays Document k-

1 If document not found,

request document Crorn the WWW

R e m Document
- - - - - - - - - - - - - - - - - -

Returns Document
*

Updates s hared -
I memory 1 I

Figure 5.4: Event n a c e Diagram

server checks the shared memory for a valid copy of the document. If a valid copy is

found in the shared memory, then the TM server sends the document to the thread,

which in tum sends it to the browser for display. If the document is not found in

the shared memory, or if the document copy in DSVM is outdated, then the thread

requests the DNS & GD0 interface to retrieve the document £rom the WWW server.

After receiving the document from the interface, the thread sen& the document to

the browser for display and then selects (a possibly different) TM server for updating

the shared memory with the retneved document. The update instruction sent to the

TM server consists of a Une containing only "UPDATG', followed by the document

header and the document.

Docl not found in Checks & updates

TM (4)

Retrieve Docl
h m Web (5)

Web Server
(nickel)

1

T h d i Checks & updates
invocation ; Shared Memory

(helium)

Figure 5.5: Prototype Elxecution : Stage 1

Figure 5.5 shows the k t stage of the prototype execution. Domain O is attached

by an HTTP server (nzckel) that waits for requests on port 8080. Browsers can be

invoked at any workstation in the network. The proxy server option of the browsers

is set to ''point at" the proxy server (hetzum) at port 8080.

Step 1 User requests a document by entering the URL of the document (say, at

coppe~ for Docl). The browser sends a request in the following format to the

proq server (hel2um).

GET Docl HTTP/I.O

Referer: ~~~~ : / / ' u I zuw~ umanzto ba. ca/dep t. htrnl

Proxy- Connection: Keep-Alzve

User- Agent: Mozilla/3.0 (X I 1; 1: SunOS 5.5 mm@)

Host: wunu- CS- urnanitoba. ca

Accep t: zmage/gzh zrnage/z-xbztmap, imageheg, image/pjpeg7 */*

Line contaznzng only CRLF

S tep 2 The proxy server receives the request , creates a thread to service it, and con-

tinues to üsten for other requests. The thread process manages al l operations

on behalf of the request.

Step 3 The thread sends the request to one of the TM servers (eg., barium) by

randomly selecting an entry from the configuration file .Tmk~c.

Step 4 The TM servers are modeleci as iterative servers and service the requests in

a FIFO (First In First Out) fashion. The TM server receiving the request

checks to see if it is a GET instruction or an update instruction. If the

request is a GET instruction, the TM server checks the shared memory for

the document by searching through the GDO. Initidy, since the document

has not been retrieved previously, the TM server does not h d the document

in the shared memory and replies with a "NOT FOUND" message.

Step 5 The thead receives the "NOT FOUND" reply from the TM server and sends

the document request to the respective MWW server. The DNS & GD0

interface to the WWW is integrated with the proxy server to avoid multiple

requests manipulation at the interface level. The WVW server responds

either with the document or with an error code.

Step 6 The thread sends the response (enor code or the document) to the browser

and also to a selected TM server (eg., calcium). The update message to the

TM server includes a lùie containing "UPDATF folIowed by the document

headers and the document itself. The TM server that receives the information

checks the shared memory for the URL. If the document entry is found (this

means that the document was outdated in memory), the T M server updates

the entry with the latest content. If the document entry is not found (ie.,

the document is retrieved for the first tirne), then the document is stored in

the shared memory (GDO) as a new document. AU subsequent requests for

th* document from any browser will retrieve the document from the shared

memory until the document becomes outdated (see validation niles in Section

barium

Checks & updates a
khared Memory

Request for
Dacl (1) Requested

cb
calcium

Web Semer
(nickel)

1 (helium)

Checks & updates
S hared Memory

>

Figure 5.6: Prototype Execution : Stage 2

In stage 2 (see Figure 5.6), the communication link with the WWW server (nickel)

is down. In such a case, no documents at the semer can be retrieved until the link

is re-established. Another client (eg., barium) requests the same document (Docl)

during the link failure. A separate thread is invoked that manages al1 the operations

of this request. The thread sends the request to a TM server (eg., calcium). The

T M server fin& the document that was retrieved previously by capper (Figure 5.5)

in the shared memory. The document is validated using the Apache Server d ida t ion

rules (see next section). If the document is not outdated, the TM server returnç the

document to the thread, which in turn sends it to the browser. If the document is

outdated in the shared memory and the Web server is unreachable, then the thread

retrieves the document from the TM server and sen& the document to the browser

with a warning that the displayed document is a previously cached copy.

5.3 Validation Rules

The validation techniques used in this thesis are derived from the validation d e s of

the Apache Server m d y because the d e s work well and are commonly accepted.

Documents that are cached in the shared memory c m become stale. The system

must ver@ the validity of the cached document b e h e sending the document to the

browser. There axe many methods of validating a document. One such method is

to ve* the cached copy with the original document from the WWW. However, it

is not practical to check each of the cached documents with the original documents

in the WWW before sending them to the client. A practical method of validating

a cached document is to use some standard validation d e s . These validation rules

dBer between systems. However, nearly ail systems use the information provided by

the WMW server with the document to validate that document.

5.3.1 The Apache Server Rules

The following are some of the Apache Server validation criteria that are used in this

thesis. Sorne of the rules are extended and modified to suit the goals of this thesis.

1. CacheLastModzfiedFactor <factor> : If the orïginating \W server did not

supply an e-qiry date for the document, then estimate one using the formula

For example, if the document was 1st modified 10 hours ago, and <fsctor> is

0.1, then the expiry penod will be set to 10*0.1 = 1 hour.

2. CacheMazEqire <tirne> : Cachable documents will be retained for at most

<tirne> hours without checking the originating server. Thus, documents can

be at m a t <tirne> hours out of date. This restriction is enforced even if an

e x p j r date was supplied with the document.

3. CacheDefaulEqire <tirne> : I f the document is fetched via a protocol that

does not support expiry times, then use <tirne> hours as the expiry tirne.

4. NoCache <word/host/domazn List> : The NoCache option specifies a list of

words, hosts and/or domains, separated by spaces. HTTP and non-password

FTP documents fiom matched words, hosts or domains are not cached by the

proxy server. The proxy module will also attempt to determine IP addresses of

List items, which may be host names during startup, and cache them for match

test as weu.

5.3.2 FWVW in DSVM Validation rules

The WWW in DSVM vaiidation rules use the header information provided by the

WWW server to validate a document in the shared memory. Some of the header

details provided by the WWW server that are used in the didation d e s are the

Refresh : T seconds, expiry-date, and last-modzfied date header iines. The validation

rules given below are checked in the given sequence to vaiidate a document in the

s h e d memory. f f at Ieast one rde returns true, then the system returns the document

in the shaxed memory to the bromer.

1. Pragma : no-cache : A document is not cached in the shared memory if the

proq server gets instmction fkom the browser or the WWW server that the doc-

ument should not be cached (by using Pragma : no-cache). Using the Pragma

option, the client specines that the document should not be cached because

it is a dynamicaiiy changing document. Thus, the proxy server retrieves the

document from the WWW evecytime the document is requested.

if (pragma line in Document header)

Always return document outdated

2. Rehesh : T seconds : This validation d e is not based on the Apache Server

validation. This validation is based on browsers' abiIity to rekesh documents

automaticdy. The value T is the document refresh period- The valid time

kame of a document is decided by the information sent by the WWW server

in the header information. The WWW server rnay specify that a document

gets updated every T seconds and has to be automaticdy refreshed once in T

seconds. This is speci£ied by the iine (Refresh : T seconds) in the document

header by the WWW server that sends the document. In such a case, the

browser automaticaüy sends a request for the same document every T seconds.

if (document ref!resh period is amilable in document header)

if (current Arne - document letrieval-date) > document refiesh period)

Return document outdated

Return document copy is d i d

Caching t his type of a document and sharing the information wit h ot her browsers

c m result in reduced Internet server connections. For example, if a browser re-

tneves a document that has a refresh period of T seconds and another browser

requests the same document within the T seconds, the latter browser will receive

the document from the shared memory rather than fkom the Web.

Suppose a document is retrieved fkom the WWW with refresh time T = 120

and the document was retrieved at 1l:OOam. The document is valid in DSVM

until ll:02am. Suppose another browser requests the same document at time

1l:Olam- If the DSVM sends the document with the r e h h time as 120 sec-

onds (ie., without any modification to the header information sent by the WNW

semer), then the document in the second browser will be valid until ll:03am,

which is obviously incorrect- To maintain the life span of the document in aiI the

browsers to the appropriate T seconds, the system modifies the refresh period

of the document to the ciifference between the current time and the document

expiry date. In the above example, when the second browser requests the docu-

ment at ll:Olam, the DSVM sen& the document copy from the shsred memory

with the document refresh period as T = 60 (Document exp j r time in DSVM

(1 1:02arn) - Document requested time (I l :Ohm)) . Thus, document copies in

dl the browsers become stale after T seconds from the time the document was

retrieved from the Web. The modification of the refkesh tirne is performed

to synchronize the expiry tirne of the document copies that are cached in the

browsers so that al1 browsers have the same expiry time for the document-

ezpire-date : If the above header information is not available, and the document

has an expiry date, then the document in the shared rnemory is validated using

the -ire-date sent in the document header by the \NWW server. Every time

a document request is received. the expiry date of the document is checked

with the current tirne. The document is retrieved from the WWW if the copy

has expired. If the document cannot be retrieved h m the WWW, then the

document in the shared memory is displayed to the user with a warning that

the document is a previously cached copy.

if (expiredate h e is present in document header)

if (expiredate < currentdate)

ret uni document outdated

eise

return document copy valid

4. Zast_modified date : If the document header does not contain any of the

above header fields, then validation of the cached copy is done by using the

lastmodified date of the document. The validation period of a document c m

be increased or decreased by either increasing or decreasing the value of the

system setup parameter jfactor~. This is simiiar to the Apache Server d e 1.

if (lastmodified date exists)

t imehs = curent-date - lastmodified date

expiryperiod = timelirs * jfactor~;

if ((documentsetrievaldate + expiryperiod) > currentdate)

return document outdated

else

return document copy valid

5. Default E x p e Period : EXPIRYPERIOD : #en the server sends incomplete

header information omitting expirydate, lastsiodified date, or refresh-penod,

then the user can stili set an e.xpiry time for the document by setting the

parame t er EXP IRYPERIOD t O the required t ime.

if ((document letriemidate + EXPIRYPERIOD) > currentdate)

return document outdated

return document copy valid

5.3.3 Performance

To estimate the efficiency of the prototype, its performance can be compared with

and without DSVM caching. An accurate formal analysis of the pedorrnance gain

depends on many factors including network load, WWW server workload, and final-

ized irnplementation of DSVM. Moreover, the network load and the WWW server

workload are tirnevariant factors. Due to the significant undertaking required for a

formal analysis, only an ad hoc comparison of times taken for retrieving documents

with and without shared memory was perforrned.

The prototype was tested by retrieving documents nom sites that had high net-

work load and performing an ad hoc comparison with the time taken for subsequent

requests for the sarne document from other browsers comected by DSVM. The docu-

ments were displayed from DSVM and there was a noticeable reduction in time when

DSVM was useci. Advantages of the DSVM system during a WAW server failure

were demonstrated using a local HTTP server (nickel). Documents from nickel were

retneved by a browser in one node and then the server was killed. Subsequent re-

quests for the same server documents from other browsers in the network retrieved

them from DSVM. The prototype has been installed on a nurnber of workstations in a

local network and has been demonstrated t O link browsers sharing documents wit hin

the local network, in a departmental intranet, and across the Internet.

Chapter 6

Conclusions and Research

Directions

A distributed WWW document sharing mechanism between browsers is presented in

this thesis. A proof of concept protome has been developed and Uustrated [23].

The system (cailed WWW in DSVM) provides a distributeci memeory cache between

browsers that helps to reduce network Ioad and server load, and also minimizes the

impact of senrer and communication link failures on the retried of documents. An

ad hoc cornparison of times needed to retrieve documents with and without shared

memory was performed snd the tests show noticeable gains cornensurate with the

above goals. An accurate formal analysis of the performance gains depends on various

factors üke network load, WWW server workload, and 6nal implementation of DSWI.

Since this is a significant undertaking, a formal performance analysis was not a part

of the thesis.

This mode1 c m be used in alleviating the number of hits on a fkequently accessed

WWW server which in turn deviates the network load to that senrer. A typical

example of this scenario is the Cable News Network (CNN) Web server. Following the

landing of Pathfinder on blars, the CNN server and related sites (eg., NASA) received

many extra hits from people attempting to get information and pictures about the

event. This situation represents a typical application of this model. Assume that

there is a WWW in DSVM network connecting aIl the bromers in the Universiw of

Manitoba campus. If one user retrieves a document and images fiom the CNN server,

aJI the other users in the Universitg can retrieve the document Iocdy from DSVM

without connecting to the CNN server. If there were a large number of instded

WWW in DSVM systerns around the world, this wouid result in a reduced number

of hits on the servers as well as reduced Internet network l o d

Some of the other application environments where this model can be used to

improve performance include : (1) Internet Senrice Providers (ISPs) cooperating

to provide better service to a local custorner base, (2) corporate intranets where

employees in certain project cliques work with simiiar sets of WWW documents,

and (3) education in Intemet training where instmctors direct hundreds of students

in a classroom to access certain WWW pages to demonstrate certain hctionaüty

(hundreds of students requesting the same page sirnultaneously can cause detrimental

server and network load). With WWW in DSVM, the documents are retrieved once

from the Internet and the other browsers then retrieve the document locally fkom the

DSVM.

In all the above application areas, performance of WWW in DSVM shodd offer

improvements over the conventional WWW approach since the number of Internet

connections are minimized, which minimizes the problems due to network load. By

sharing documents across browsers, the model &O alleviates problems due to link

failures and Web server fadures.

This system can be extended to integrate the WWW servers into DSVM. When

WCVW servers are integrated into DSVM, the system can use different communication

protocols like RPC or IIOP for better performance inside DSVM. Requests from

browsers iinked by DSVM for documents residing in DSVM can also be s e ~ c e d by

us ing s pecidized pro t ocols for irn proved performance. Communication wit h CnmV
servers outside DSVM can be done using standard Intemet protocols.

Requests fkom browsers in DSVM can ako be customized for read-only data (eg.,

image files) for better performance. When a document is retrieved kom the WWW,

one of the main reasons for time delay is the transfer of image nles. An HTML

document in DSVM may refer to many image files. Every time the document is

requested, the referenced image files are also validated with the validation d e s . If

the image fila in DSVM are invalid, then they are loaded hom the WWW and this

results in time delays. Users can be given an option at retrieval time to specib

whether the image files in DSVM should be validated with the WWW. Based on the

users' decision, the image files are either verifid and loaded fi-om the WWW or loaded

directly fiom DSVM. This will reduce the network Ioad and provide better document

retrieval times for users who are ïnterested in seeing the latest textual components of

the documents.

Another possible extension of this pro ject is to provide an indexed searching mech-

anism inside the DSVM. After a document is retrieved Erom the WWW, DSVM can

store metadata about a document in the GD0 entry dong with other details. Meta-

data can be extracted by using the information provided by the semer with the docu-

ment heade~s. If the user wants to query DSVM documents for a particular keyword,

then the metadata in the GD0 entries can be searched for the keyword. The k t of

URLs that contain the keyword and its corresponding metadata can be retumed to

the user in the form of a dynamically generated HTML file. Users can then select the

required documents fiom the list. Requests for documents that are valid in D S W

receive them directly from DSVM. Other documents are retrieved fiom the WWW.

If the keyword cannot be found in the metadata, then the user c m be consulted to

perform a full text scan of documents in DSVM.

The definition of heuristics for automatic traversal of hypertext links to reiocated

documents is a potentid extension to this thesis. The results of the heuristics can

be shared among browsen to awid repeated traversal of sunogate Links. Currenth

the documents in the shared memory are didateci and refieshed only when the page

is accessed. Document refieshing mechanisms can be extended to refresh documents

automaticdy based on the system workload. The documents that are kequently

accessed can be refreshed during low system workload to increase the efficiency of the

systern-

In summary, this thesis presents a mode1 that appiies distributed shared mernory

system concepts to the WWW. The main focus of the thesis is to reduce network

Ioads, server Ioads, and rninimize the problems of retrieving documents due to com-

munication link failures and senrer failures. These goals are xhieved by providing a

distributed caching mechanism between browsers in a local network to share docu-

ments. This model reduces network trafnc and server 104s by reducing the number of

Internet connections required to retrieve documents in certain shared environments.

This model can be extended to integrate FWW senrers into DSVM and an indexed

searching mechanism can be provided to search documents inside DSWM for better

performance.

Bibliography

[1] Apache Proxy Semer. http://www.apache.org/.

[2] CERN Laboratory Home Page. http://wwwcn.cem.ch/pdp/ns/ben/TCPHIST.htmL

[3] Comprehensive Perl Archive Network. http:// www. peri.org/CPAN/.

[5] HyperText Trwfer Protocol. http://www.ics.uci.edu/pub/ietf/http/rîc 1945.html.

[6] Persistent URL Home Page. http://purl.oclc.org.

[7] K. Barker, R. Peters, and P. Graham. Distributed Shared Virtud Memory for

Interoperabïlity of Heterogeneous Informat ion Systems. In OOPSLA Workshop

on Interoperable Objects - Eqeriences and Issues, October 1995.

(81 P. Keleher C. Amza, W. Zwaenepoel A.L. Cox, and R. Rajamony. TreadMarks:

Shared Mernosr Computing on Networks of Workstations. IEEE Cornputer,

29(2) :1û-28, 1996.

[SI M. Carey, D.J. Dewitt, and S.L. Vmdenberg. A Data Mode1 for EXODUS.

In Proc. ACM SIGMOD Int'l C o n . on Management of Data, pages 413-423,

September 1988.

[IO] J.S. Chase. H M - Levy. and MJ. Feeley- Sharing and Protection in a Single

Address Spsce Operating System. ACM ~unsact ions on Cornputer systems,

12(4):271-307, November 1994.

[Il] J.S. Chase, H.M. Levy, M.J. Feeley, and E.D. Lazowska. How to use a 64-bit

Virtuai Address Space. Technical Report UW-CSE92-03-02, Dept. of Cornputer

Science, The Universi@ of Washington, 1992.

[12] P. Ciancarini, A. Knoche, R. Tolksdorf, and F. Vitali. PageSpace: An Architec-

ture to Coordinate Distributed Applications on the Web. In Fifth International

WorZd Wide Web Confmence, France, May 1996.

[13] P. Graham and K. Barker. Distnbuted Object Base Implementation Using a

Single, Shared Address Space. Proc. Mid-Continent Information Systems Con-

ference, pages 62-77, May 1993.

[14] P. Graham, K. Barker, S. Bhar, and W. Zapp. A Paged Distributed Shared

Virtual Memory System Support h g Persistent Ob jects. Technical Report TR

92-07, The University of Manitoba, 1992.

[15] D. Ingham, S. Caughley, and M. Little. Fixing the Broken-Link Problem: The

W3Ob jects Approach. In Fzfth International WWW Conference, France, May

1996.

[16] P. Keleher, Alan L-Cox, and W. Zwaenepoel. Lazy Release Consistency for Soft-

waxe Distributed Shared Memory Technical Report TR 92-07, Rice University.

1992.

[17] K. Kosuge and M. Morita. An Implementation of Management Information

Exchange Using DNS for Replicated Information Resources on WWW. In Proc.

Japan WWW Conference'S5. Japan. Xovember 1995.

[18] S. Lewontin and ME. Zurko. The DCE Web Project: Providing Authorization

and Other Distributeci S e ~ c e s to the World Wide Web. In Second International

WWW Conference, Chicago, U.S.A., October 1994.

[i9] J. Mathew, P. Graham, and K. Barker. Object Directory Design for a Fuily

Distnbuted Persistent Object System. In froc. Object Oiiented Database Sys-

t e m Symposium of the Engineering Systems Design und Analysis Conference,

Montpellier, Fi-mce, July 1996.

[20] M. Nabeshima. The Japan Cache Project: An Experiment on Domain Cache. In

Sizth Internathal World Wide Web Conference, Santa Clara, California, USA,

April 1997.

[21] M.T. &u, R. Peters, D. Szafron, B. Irani, A. Lipka, and A. Munoz. TIGUKAT:

A Uniforrn Behavioral Ob jectbase Management System. The VLDB Journal,

4(3) :445-492, 1995.

[22] B. Ozden and A. Silberschatz. The Shared Virtud Address Space Model. Tech-

nicd Report TR-92-37, The University of Washington, 1992.

[23] C.R. Saravanan and R. Peters. Internet Innovation Centre Workshop, Winnipeg,

Manitoba., 1997. WW W in DSVM System Demonstration.

[24] P. Scheuermann, J. Shim, and R. Vingralek. A Case for Delay-Conscious Caching

of Web Documents. In Sizth International World Wide Web Confience, Santa

Clara, California, USA, April 1997.

[25] M. Spasojevic, C.M. Bowman, and A. Spector. Using Wide-Area File Sys

tems Within the World-Wide Web. In Second International W W W Conference,

Chicago, U.S.A., October 1994.

[26] The URN Implementators. Uniform Resource Names. D- Lzb Magazine. Febniary

1996.

[27] J. Vochteloo, S. Russell, and G. Heiser. Capabiiity-Based Protection in a Per-

sistent Global Viual Memory System. Technical Report SCS&E Report 9303,

School of Cornputer Science, Universiw of New South Wales, hhch 1993.

[28] J. Wilkes and B. Sears. A Cornparison of Protection Lookaside BufEers and

the PA-RISC Protection Architecture. Technical Report HPL92-55, Hewlett

Packard, March 1992.

[29] Paul R. Wilson and Sheetd V- Kakkad. Pointer Swizzhg at Page Fadt Time :

Efficiently and Compatibly Supporthg Huge Addresses on Standard Hardware.

In Proceedings of the International Workslcop on Object Orientation in Operatzng

Systems (1 WOOOSLE), pages 364-377, 1992.

[30] R. P. Wooster and M. Abrams. Proxy Câching That Estimates Page Load Delays.

In Sizth International World Wide Web Confeience, Santa Clara, California,

USA, April 1997.

[3 11 J. J. Yang and G-E- Kaiser. An Architecture for Integrating OODBs with WWW.

In Fifh International WWW Conference, France, May 1996.

[32] A. Yoshida. MOWS: Distnbuted Web and Cache Server in Java. In Sixth In-

ternational World Wide Web Conference, Santa Clara, California, USA, April

1997-

[33] W. Zwaenepoel, K. Bennett, and J.B. Carter. Operatzng Systems of the 90s and

Beyond, pages 56-60. Springer-Verlag LNCS 563, 1991.

