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ABSTRACT 

 A platform technology is identified for grain handling facilities to improve 

grading and determine non-destructively different quality parameters of wheat. In this 

study, a near-infrared (NIR) hyperspectral imaging system was used to scan four wheat 

classes namely, Canada Western Red Spring (CWRS), Canada Prairie Spring Red 

(CPSR), Canada Western Hard White Spring (CWHWS), and Canada Western Soft 

White Spring (CWSWS) that were collected from across various growing regions in 

Manitoba, Saskatchewan, and Alberta in 2007, 2008, and 2009 crop years.  A database of 

the near-infrared (NIR) hyperspectral image cubes of bulk samples of four wheat classes 

at three moisture levels for each class was created. These image cubes were acquired in 

the wavelength region of 960-1700 nm with 10 nm intervals. Wheat classification was 

done using the non-parametric statistical and a four-layer back propagation neural 

network (BPNN) classifiers. Average classification accuracies of 93.1 and 83.9% for 

identifying wheat classes using the linear discriminant analysis (LDA) and quadratic 

discriminant analysis (QDA), respectively, were obtained for two-class identification 

models that included variations of moisture levels, growing locations, and crop years of 

samples. In the pair-wise moisture discrimination study, near-perfect classifications were 

achieved for wheat samples which had difference in moisture levels of about 6%. The 

NIR wavelengths of 1260-1380 nm had the highest factor loadings for the first principal 

component using the principal components analysis (PCA). A four-layer BPNN classifier 

was used for two-class identification of wheat classes and moisture levels. Overall 

average pair-wise classification accuracies of 83.7% were obtained for discriminating 

wheat samples based on their moisture contents. Classification accuracies of 83.2, 75.4, 
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73.1%, on average, were obtained for identifying wheat classes for samples with 13, 16, 

and 19% moisture content (m.c.), respectively. Ten-factor partial least squares regression 

(PLSR) and principal components regression (PCR) models were developed using a ten-

fold cross validation for prediction. Prediction performances of PLSR and PCR models 

were assessed by calculating the estimated mean square errors of prediction (MSEP), 

standard error of cross-validation (SECV), and correlation coefficient (r). Overall, PLSR 

models demonstrated better prediction performances than the PCR models for predicting 

protein contents and hardness of wheat. 
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1. INTRODUCTION 

Agricultural materials are heterogeneous substances, have inherent quality 

variations, and contain complex components such as proteins, carbohydrates, and fat. 

Wheat is the third most important cereal crop in the world after maize and rice. In 

Canada, wheat, which is ranked at the top in the list of agricultural crops followed by 

canola and maize, was produced and exported in quantities of 28.6 and 15.7 MT, 

respectively, in 2008 (FAOSTAT, 2011). Wheat grades of the Canadian Grain 

Commission (CGC) ensure a satisfactory performance in wheat quality and milling 

potential; and prove that grains are contaminant free (CWB, 2011). Classification of 

wheat is mainly based on its colour (red vs. white), hardness (soft vs. hard), and growing 

season (winter vs. spring). Eight major western Canadian wheat classes, which are 

produced throughout the prairie provinces (Manitoba, Saskatchewan, and Alberta) and 

exported to various countries around the world, are: Canada Western Red Spring 

(CWRS), Canada Prairie Spring Red (CPSR), Canada Western Extra Strong (CWES), 

Canada Western Red Winter (CWRW), Canada Prairie Spring White (CPSW), Canada 

Western Amber Durum (CWAD), Canada Western Soft White Spring (CWSWS), and 

Canada Western Hard White Spring (CWHWS). Production of class-based wheat, while 

maintaining a zero tolerance policy on insect levels during export, normally satisfies a 

wide range of domestic and international consumers. The price of wheat that is traded in 

Canada is normally fixed based on the quality and the market demand of specific wheat 

classes. A specific wheat class is used as a primary raw material for products such as 

bread, pasta, noodles, and flat bread. Traditionally, wheat classification has been carried 

out based on kernel morphological features such as size, shape, colour, and appearance.  
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A CGC report indicated that protein content of CWRS in 2009 was 0.2 and 0.9% 

lower than 2008 and 2007 CWRS wheat, respectively (CGC, 2011). The report also 

specified that the protein content of CWHWS wheat in 2009 (13.2%) was 0.2% lower 

than that of CWHWS wheat in 2008. Chemical compositions may vary in wheat classes 

because of changes in soil and climatic conditions of growing regions through crop years. 

Also, variations in moisture levels of procured wheat turn out to be a serious concern for 

grain handlers. McNeill et al. (2011) reported that wheat harvesting could be performed 

at higher moisture levels (above 15%) if followed by an effective drying. High moisture 

wheat should be dried to an optimal moisture level (12-13%) to store safely and prevent 

spoilage and/or sprouting prior to processing. Also, moisture levels of wheat lots are not 

uniform at the time they reach primary or terminal elevators or other processing facilities. 

Accidental mixing of wheat classes during transportation or handling reduces the value of 

the wheat lot considerably. Hence, inclusion of location-specific, crop year-specific, and 

moisture-specific wheat classes become a part of this study. Also, it helps to develop 

robust classification and prediction models when sample variations due to growing 

locations, crop years, and moisture are taken into consideration. 

It is very important to know information on a wheat class and its quality in every 

stage of the grain handling process. Presently, visual inspection is the primary method for 

identifying classes and associating them with quality in grain handling facilities even 

though Canada has an established grain grading system for wheat. This method often 

needs experienced and specific skill-set personnel and is highly subjective in nature. 

Factors, such as tiredness, impaired vision, work pressure, poor lighting, and sometimes 

weather, also influence grain inspectors during wheat grading and quality assessment. 



 

 3 

Existing laboratory-based methods include polyacrylamide gel electrophoresis (PAGE) 

and reversed-phase high performance liquid chromatography (RP-HPLC) for objective 

classification of wheat. Some of the drawbacks of using these methods are length of time 

per analysis, requirement of skilled operators, and higher equipment cost. To overcome 

the drawbacks, machine vision and spectroscopy have been researched for classifying 

agricultural products and evaluating their quality parameters. Paliwal et al. (1999) used a 

machine vision approach to classify barley, oats, rye, and two wheat classes (CWRS and 

CWAD). Neuman et al. (1987) used digital imaging techniques to classify wheat cultivars 

based on kernel type and identity. The NIR spectroscopy has been used extensively for 

measuring the concentration of various constituents in agricultural products. However, 

this technology was not helpful in resolving the spatial distribution of constituents within 

the sample. Imaging techniques are therefore used predominantly for evaluating the 

quality parameters of agricultural crops. Image analyses with hardness measurements 

were used to identify wheat classes and their cultivars (Zayas et al., 1996). Monochrome 

images of wheat bulk samples were used to classify western Canadian wheat at different 

moisture levels (Manickavasagan et al., 2008). Thermal imaging that generates visible 

images of samples from invisible radiation patterns was also found useful in classifying 

wheat (Manickavasagan et al., 2010). 

Wheat has higher protein content; which varies between 10 and 18% of the total 

dry matter; than maize, paddy, or other cereal crops. Protein content of wheat is 

considered as one of the basic intrinsic properties and it always has an effect on 

functional properties of processed products. Also, the presence of specific type of protein 

in wheat affects the baking quality. MacRitchie (1987) described from the study to 
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evaluate protein fractions of wheat for bread making and dough mixing that the relative 

amount of globulin-type to the glutenin-type proteins seemed to be influential in baking 

quality.

Spectral imaging is a modern technology that combines spectroscopy with image 

processing. Hyperspectral imaging, an extension of multispectral imaging, is becoming a 

popular research tool from which both spectral and spatial information of samples can be 

acquired simultaneously. Hyperspectral imaging provides a large data set, otherwise 

called a data cube, which facilitates a complete and reliable analysis of intrinsic 

properties and external characteristics of samples. It is a recognized tool that permits 

spectroscopic image analysis of a sample or a point within the region of interest using 

image processing techniques and chemical sensing methods (Headwall, 2011). Two to 

ten spectral images can be collected in the multispectral imaging. But, more than ten to 

several hundred images can be acquired by hyperspectral imaging systems (Lawrence et 

 Protein content of single kernels and bulk samples of wheat were calculated from 

near infrared reflectance spectroscopic values of individual kernels (Delwiche ,1998; 

Delwiche, 2000). A near-infrared transmittance spectrophotometer was used to find out 

the practicability of measuring protein contents of intact kernels of wheat (Delwiche, 

1995). Watson et al. (1977) developed regression models for protein content of wheat 

using near-infrared reflectance spectroscopy. They further reported that the near-infrared 

reflectance values were affected by and were based on the hardness of wheat, the key 

determinant of end usage.  Williams (1979) utilized near infrared reflectance 

spectroscopy to inspect wheat for protein and hardness. Slaughter et al. (1992) specified 

discriminating possibilities between hard red spring and hard red winter wheat classes for 

protein and hardness attributes.   



 

 5 

al., 2003). In the laboratory, the Raman, infrared, and near infrared wavelengths were 

used in the hyperspectral imaging instruments. Since the late 1990s, hyperspectral 

imaging has been used in studies in a variety of different fields such as regional mapping 

of planetary surfaces (Bellucci and Formisano, 1997), environmental mapping (Clark et 

al., 1997), mineral mapping (Resmini et al., 1997), and precision farming (Moran et al., 

1997). Hyperspectral imaging in the NIR wavelength range becomes increasingly 

interesting in industrial applications such as material classification (Tatzer et al., 2005). 

Considerable research has been reported in the last 10 years on using hyperspectral 

imaging for quality and safety inspection of food and agricultural products. It included 

detection of bruises on pickling cucumbers (Ariana et al., 2006), apples (Xing et al., 

2005), starch index determination of apple (Peirs et al., 2003), detection of fecal and 

ingesta contaminants in poultry carcasses (Park et al., 2002), and measurement of 

ripeness of tomatoes (Polder et al., 2002). Image, spectra (reflectance and absorbance), 

and feature (distinct points in n-dimensional vector) forms are the three common methods 

used to quantitatively represent the hyperspectral data. Supervised classification models 

are developed using the feature form of a data cube. During the hyperspectral image 

acquisition process, high quality images with high signal-to-noise ratio have been 

acquired using the long wavelength near-infrared (LWNIR) region hyperspectral sensors. 

Singh et al. (2007) detected different fungal species in wheat using the LWNIR 

hyperspectral imaging in the wavelength region of 1000-1600 nm. Xing et al. (2009) 

evaluated the α-amylase activity in single kernels of wheat using a short wavelength 

infrared (SWIR) hyperspectral imaging system in the wavelength region of 1000-2500 

nm. Choudhary et al. (2009) used wavelet features extracted from NIR hyperspectral 
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image cubes of bulk samples of wheat in the wavelength region of 960-1700 nm for 

identifying classes. Considering the advantages of using the LWNIR hyperspectral 

imaging, the overall objectives of this research were to evaluate the potential of using the 

LWNIR hyperspectral imaging for classifying wheat using statistical and neural network 

classifiers, and to develop partial least squares and principal components regression 

models for the prediction of protein and hardness. 

The main objectives of this thesis were to: 

1. examine the performance of statistical classifiers for real-time identification of 

location-specific and crop year-specific wheat classes and the spectral region 

and/or wavelengths that were most suitable for classification; 

2. develop statistical classifiers to identify specified moisture levels of wheat classes 

and to find out the spectral region and/or wavelengths that were most suitable for 

the identification; 

3. study the performance of neural network classifiers to identify bulk samples of 

wheat; and 

4. investigate hyperspectral image cubes of wheat using partial least squares 

regression (PLSR) and principal components regression (PCR) methods for 

assessing quality parameters such as protein and hardness.  



 

 7 

2. BACKGROUND THEORY 

This section discusses details of the principles and components involved in the 

system and various analysis methods used for handling hyperspectral image data.  

2.1 Near-infrared hyperspectral imaging 

Electromagnetic spectrum, basics of mechanical models (harmonic and 

anharmonic), and different forms of energy were briefly discussed by Singh (2009).  

2.1.1 Basic principles of hyperspectral imaging  

Hyperspectral imaging applies conventional imaging, radiometry, and 

spectroscopic principles for acquiring images. Each pixel, which is otherwise a spatial 

resolution element, of a hyperspectral image cube has a spectrum. Hyperspectral data are 

generally arranged as a three dimensional (3-D) cube, otherwise called a hypercube, with 

two spatial dimensions and one spectral dimension. Hypercube corresponds to a stack of 

images of samples where images are acquired at a wavelength region of 960-1700 nm 

(Gat, 2000). Hyperspectral data can be transformed into radiometric quantities such as 

reflectance, absorbance, and transmittance. These quantities can be further related to the 

physical characteristics or chemical composition of samples. Extrinsic characteristics, 

such as size, geometry, appearance, and colour of samples, can be obtained through 

hyperspectral image feature extraction procedures. Chemical constituents such as water, 

fat, protein and other carbon-hydrogen-oxygen bonded constituents of samples can be 

identified using hyperspectral image analyses (Lu and Chen, 1999). Each hyperspectral 

image cube consists of 50 to 300 images, which are acquired at different wavelengths, 

with a spectral resolution of 1 to 10 nm from a specific wavelength region. Basic 

approaches in the spectral imaging are:  
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• Sequential acquisition of two dimensional (2-D) images at different wavelengths 

in a specific wavelength region and 

• Obtaining a full spectrum for each pixel on the line by acquiring line images 

sequentially in a wavelength region 

Use of the NIR region in hyperspectral imaging instruments gives an ideal 

situation for studying diverse biological materials. Reflectance and/or absorbance spectra 

can be derived from hyperspectral images of samples and further used for chemometric 

analyses. Diffuse reflectance spectra can be generated when the NIR radiation penetrates 

well into the samples. Production of absorbance spectra can be possible while there is no 

reflection in the absorbed radiation of samples. Absorbance spectra can be directly 

related to sample characterization and concentration determination.  

2.1.2 Hyperspectral hardware 

The actual configuration depends on the type of approach used for the 

hyperspectral imaging system development. Common parts in all types of hyperspectral 

imaging systems include a charge coupled device (CCD) camera, a frame grabber, a 

detector, a filter, a computer, and an illumination system. In general, a highly sensitive 

CCD camera with a high signal-to-noise ratio is required to detect a limited amount of 

photons entering the detector. A higher power illumination system is often required to 

acquire hyperspectral images effectively. The size and space occupied by hypercubes are 

crucial and considered important in the hyperspectral imaging. As the hyperspectral data 

are huge in size, they are very difficult to view, manage, and interpret. High speed 

computer with a massive capacity hard disk is normally required for processing 

hyperspectral information. Shading correction is used when illumination is not uniform 
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when looking at bigger areas. Use of reference standards offers effective shading 

corrections and true reflectance estimates.  

2.1.2.1 Hyperspectral detectors  

Reflectance and transmittance spectra of samples are recorded using hyperspectral 

detectors. Table 2.1 shows the summary of different detectors and their use in the 

hyperspectral imaging. Lead sulphide (PbS), silicon, and Indium-Gallium-Arsenide 

(InGaAs) detectors are used for the wavelength regions of 1100-2500, 360-1050, and 

900-1700 nm, respectively, in the single channel detection systems. Focal plane array 

(FPA) detectors are used mostly in hyperspectral imaging than point detectors. The 

advantages of using the FPA detectors are: less scanning time, high signal-to-noise ratio, 

uniform background, and no image distortion. A linear array and 2-D array of detectors 

are used in line scan and area scan imaging systems, respectively. In the line scanning 

method, spatial dimension records pixels in the lines whereas spectral dimension 

documents the spectral information of the corresponding pixel. This approach is perfect 

for a conveyor belt system where the line scan hyperspectral camera is used (Polder et al., 

2002). In the short wavelength near-infrared (SWNIR) hyperspectral imaging in the 

wavelength region of 700-1000 nm, silicon detectors are used. They are cheap but cannot 

be used for long wave NIR applications. Silicon detectors need coating which will reduce 

the quantum efficiency in long wave applications. Indium Antimonide (InSb), Platinum 

Silicide (PtSi), Indium Gallium Arsenide (InGaAs), Germanium (Ge), Mercury Cadmium 

Telluride (HgCdTe), and quantum well infrared photodetectors (QWIPs) are common 

commercial FPA detectors. In multispectral and/or hyperspectral imaging systems, the 

InSb, InGaAs, HgCdTe, and QWIP detectors are mostly used. Indium antimonide (InSb), 
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HgCdTe, QWIPs are also used for long wavelength IR imaging systems. Specific 

advantages and drawbacks of using these detectors for hyperspectral imaging are briefly 

discussed by Singh (2009). In hyperspectral imaging, the InGaAs detectors are normally 

used in wavelength region of 900-1700 nm. They are highly sensitive and used for wider 

wavelength regions. They produce a small amount of noise and take less response time in 

the NIR region but they are not highly sensitive beyond 1700 nm.  

Table 2.1. Detectors and their use in the hyperspectral imaging 

Detector type Use 
Lead Sulphide (PbS) 1100-2500 nm 
Silicon 360-1050 nm 
Indium-Gallium-Arsenide (InGaAs) 900-1700 nm, FPA detection 
Indium Antimonide (InSb) FPA detection, LWIR systems 
Platinum Silicide (PtSi) FPA detection 
Germanium (Ge) FPA detection 
Mercury Cadmium Telluride (HgCdTe) FPA detection, LWIR systems 
Quantum well infrared photodetectors 
(QWIP) 

FPA detection, LWIR systems 

 

2.1.2.2 Hyperspectral filters  

A number of optical monochromatic principles, such as prism-grating prism, 

tunable filters, and interferometers with sample scanning, are available for producing 

hyperspectral images by obtaining desired wavelength light and removing all other 

unnecessary wavelength radiations (Geladi et al., 2004). Hyperspectral imaging system 

was developed by attaching either a tunable filter or a filter wheel with a monochrome 

camera (Polder et al., 2003). Major limitation of using a filter wheel in the system is the 

limited availability of the number of bands. In some types, an imaging spectroscope and a 

monochrome camera are joined together in developing a hyperspectral imaging system. 

Both spectral and spatial information of samples is collected by capturing hyperspectral 
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images. Filters are selected based on the type of hyperspectral imaging system used, i.e., 

grating devices are used for pushbroom hyperspectral imaging and electronically tunable 

filters (ETF) for area scan hyperspectral imaging. Liquid crystal tunable filters (LCTFs), 

one of the most common filters, is currently being used to acquire hyperspectral images 

(Gat, 2000; Lu and Chen, 1999). The LCTF can be used in the sequential recording of 

full spatial images (FSI) at each wavelength and tuned to any desired wavelength by 

computer. The exposure time at each wavelength should be adjusted properly in the 

LCTF as its transmission is mainly wavelength-dependant. Acousto-optical tunable filters 

(AOTF) and interferometers are other common electronically tunable filters used in 

spectral imaging. The AOTF and LCTF have the following advantages: large aperture 

size, high spectral resolution, wide spectral range, easy tuning of wavelengths, and 

acquisition of no-distortion images. Measurements of distinctive greyscale images with 

high spectral resolution can be possible using more advanced hyperspectral hardware, 

software, suitable wavelength filters along with broad spectral band imaging detectors. 

Voltage and acoustic signals are used to control spectral transmissions electronically in 

tunable filters, one of the core parts, in hyperspectral imaging systems. Table 2.2 shows 

filter types, their use, and advantages of using in hyperspectral imaging. Gat (2000) 

describes perfect tunable filters should have the important attributes such as minimal 

tunability time, minimal out-of-band transmission, minimal physical thickness, low 

power consumption, polarization insensitivity, selectable bandpass, insensitivity to 

ambient temperature and humidity, insensitivity to angle of incidence of the incoming 

light, infinite spectral range, top hat bandpass curve, large aperture, constant bandpass, 

and random access to wavelengths. 
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Table 2.2. Filter types, their use, and advantages of its use in hyperspectral imaging 

Filter type Use Advantages 
Liquid crystal 
tunable filter 
(LCTF) 

• electronically tunable 
filters 

• the sequential recording of 
full spatial images (FSI) at 
each wavelength is 
possible 

• easily tunable to any 
desired wavelength by 
computer 

• large aperture size 
• high spectral resolution 
• wide spectral range 
• easy tuning of 

wavelengths 
• acquisition of no-distortion 

images 

Acousto-
optical tunable 
filter 

• electronically tunable 
filters 

• large aperture size 
• high spectral resolution 
• wide spectral range 
• easy tuning of 

wavelengths 
• acquisition of no-distortion 

images 
Interferometer • electronically tunable 

filters 
• Spectral imaging is 

possible with very fine 
spatial resolution 

 

2.1.2.3 Hyperspectral illumination  

An ideal illumination of hyperspectral imaging system should have the following 

key characteristics: homogeneous illumination over a large area, perfect fiber 

transmission in long fibers, short pulses < 10 fs, intense polychromatic light, polarized 

light with known Stokes parameters, deep transmission through samples, controlled 

reflection from deep into the sample, and no radiation damage to the samples. In the real 

world, no illumination system fulfils all the properties and always some properties have 

to be compromised. High quality hyperspectral images without any significant noise can 

be acquired using proper illumination sources. In NIR instruments, tungsten halogen 

lamps, quartz halogen lamps, light emitting diodes (LED), tunable lasers, and heated 

xenon lamps are used as illumination sources. As tungsten halogen lamps are durable, 
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stable, and capable of emitting 400-2500 nm light, they are used as the NIR hyperspectral 

illumination sources.  

2.1.3 Hyperspectral imaging software  

Once hyperspectral images are captured, the data are further transferred to a high 

speed computer for storage and further analyses. Effective algorithms are developed to 

efficiently organize the voluminous hyperspectral data and extract important spatial and 

spectral features. The following steps are needed to analyze hyperspectral images: data 

pre-processing, enhancement of spectral images, dimension reduction of data, and 

material/chemical component identification or classification. Standard normal variate 

(SNV) and multiplicative scatter correction (MSC) are crucial pre-processing methods 

used in the removal of some of the large amount of variability that are generated from 

scattering effects of reflectance spectra. In data pre-processing, original image files are 

converted into 3-D hypercubes with radiometric quantities. Good quality filters and 

proper transformation methods are used to improve the quality of spectral images to 

extract the most important features effectively. The SNV and MSC often produce similar 

results and are commonly considered as transferable methods (Fearn et al., 2009). The 

SNV gave curved structures in score plots, which was generated from treated spectra, 

whereas the MSC produced outliers.  

Principal components analysis (PCA), the minimum noise fraction (MNF) 

transform, and the major dimension reduction methods are involved in hyperspectral data 

analyses with the goal of reducing dimensions or shrinking the volume of spectral and 

spatial data without loss of critical information of samples. Also, spatial dimensions can 

be reduced using the pixel purity index (PPI) method. Vogt et al. (2005) used 3-D 
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wavelet transformation methods for reducing the dimensions of hyperspectral data before 

storing and/or performing any chemometric analyses. Five Daubechies family wavelet 

types were compared for their data preserving abilities. As a result, the computation time 

for the PCA for wavelet transformed hyperspectral data was decreased and the storage 

space was reduced for the transformed data. A multiresolutional multivariate image 

analysis (MR-MIA) performed better than the wavelet textural analysis. The MR-MIA 

was helpful in the data decomposition of hypercubes that were acquired from using a 

large number of wavelength bands in hyperspectral imaging (Liu and MacGregor, 2007).  

2.1.4 Hyperspectral imaging system calibration and image correction  

Image corrections in the hyperspectral imaging include corrections for gain, dark 

current offset, and the variable integration time during image processing. Use of bad 

sensors, sensor nonlinearity, sensor differences, heterogeneous illumination, and 

inadequate resolution of analog to digital (A/D) convertor influence a great deal the 

results of hyperspectral imaging. A number of calibrations and corrections are required to 

acquire good quality hyperspectral images. The raw uncorrected data can be inspected 

only as images as the spectral data collected from a CCD camera represent detector signal 

intensity counts but not actual reflectance values. The spectra become useful once the 

reflectance and absorbance intensities are determined. It becomes essential to calibrate 

and correct hyperspectral imaging instruments. Changes in the intensity of lamps can be 

compensated for by adjusting the integration time of the InGaAs array of the camera 

(Geladi et al., 2004). Many biological materials get damaged or catch fire when exposed 

to high intensity lamps. Saturation of the analog to digital (A/D) converter can be avoided 

by combining the lamp intensity with the array integration time. For the most sensitive 
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wavelengths, the A/D converter saturation should be set at the intensity values of 75 to 

90%. Noises, such as photon, thermal, readout, and quantization, from a variety of 

sources can be introduced during the image acquisition process using a hyperspectral 

camera. Chemometric tools with image processing methods are used in hyperspectral 

imaging for the following reasons: to reduce the hyperspectral data dimensions, select the 

most significant wavelengths, extract key features, and develop classification and 

prediction models. In the hyperspectral imaging, a dark current (background) image, D, 

has to be recorded as the InGaAs array has a wavelength-dependant dark current. A 

reference image, W, is acquired using a reference standard of nearly 100% reflectance. 

Generally, the 99% reflectance standard is used and percent reflectance for samples, S, 

can be calculated using the following formula:             

R = ([S − D] [W− D]⁄ ) … … … … … … … … … … … … … … … … … … … …. (2.1) 

where R = percent reflectance of samples; S = the sample image; D = the dark current 

(background) image; W = the white reference image of the 99% reflectance standard. 

Absorbance values of samples can also be computed as follows: 

A = log10(1/R) =  −log10 �
(𝑆 − 𝐷)

(𝑊−𝐷)� �… … … … … … … … …. (2.2)       

Equation 2.2 is called a one-point calibration as it follows a linear trend. It is very hard to 

detect the nonlinear behaviour of detectors. Since the reflectance values are calculated 

from one single reference standard values, calibration is linear. As it is difficult to find a 

100% reflectance standard, the use of nearly 100% standards may produce minor errors 
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in reflectance (R) and absorbance (A) values. Use of 2, 50, 75, and 99% reflectance 

standards produce more reference images that help detecting nonlinearities and producing 

superior values for reflectance intensities by averaging. Major concerns of hyperspectral 

imaging include the size of hypercube (usually very large) and information overlap in 

neighbouring image slices (Singh, 2009).  

2.1.5 Hyperspectral data analysis  

Once the hyperspectral data are reduced dimensionally, sample identification can 

then be performed using either supervised and/or unsupervised classification techniques. 

Common classification techniques are: minimum distance method, maximum likelihood 

method, and Mahalanobis distance method, linear discriminant analysis (LDA), quadratic 

discriminant analysis (QDA), and/or the artificial neural networks (ANNs). The relevant 

features from hyperspectral images are acquired using mathematical and/or statistical 

techniques. Suitable data reduction techniques such as principal components analysis 

(PCA) and partial least squares (PLS) techniques are selected to reduce the 

dimensionality and the volume of spectral information.  

In some studies, the standard error of calibration (SEC) and standard error of 

prediction (SEP) values, which are determined using the following formulae (ElMasry et 

al., (2007)), are used for evaluating PLSR and PCR models. 

 SEC = � 1
(Ic−1)

∑ (yı� − yi)2
Ic
i=1 … … … … … … … … … … … … … … … … … …. (4.5) 

SEP = �
1

�Ip−1�
∑ (yı� − yi − bias)2Ip
i=1   … … … … … … … … … … … … … … …(4.6) 
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bias =  1
�Ip�

∑ (yı� − yi) … … … … … … … … … … … … … … … … … … … . …Ip
i=1  (4.7)                                                          

where, yı�= the predicted value of the quality parameter in sample number i, yi= the 

measured value of the quality parameter in ith sample, Ic = the number of samples in the 

calibration set of the model, Ip 

The probabilistic neural network (PNN), LDA, QDA, k-nearest neighbour 

(KNN), and least squares support vector machines (LS-SVM) are used for classification 

purposes. The NIR spectral information is reduced in dimensions using methods such as 

the PCA, wavelet transform (WT), and Fourier transform (FT). The PCA based 

multivariate image analysis (MVI) techniques are used for dimensionality reduction and 

necessary features extraction from hyperspectral image files. In the PCA, score values, 

factor loadings, and variance are used to determine the number of significant components 

required for explaining most of the sample variations. Some of the chemometric tools 

include wavelet transform and independent component analysis (ICA). In the ICA, the 

number of independent components has to be specified before the analysis.   

= the number of samples in the validation set of the 

model. Attaining low SEC and SEP values and a high correlation coefficient (r) are the 

characteristics of a good PLSR model. 
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3. REVIEW OF LITERATURE 

In this section, major applications and limitations of using hyperspectral imaging 

are discussed in detail. 

3.1 Applications of near-infrared hyperspectral imaging  

High-resolution hyperspectral imaging provides an abundance of spectral 

information from which essential features are extracted for further analysis using image 

processing procedures. Indispensable wavelengths are selected for multispectral imaging 

purposes as hyperspectral images of full wavelength regions that have excessive and 

redundant information. Combination of spectral and data processing methods are required 

to select a few optimal wavelengths for detecting defects in fruits and vegetables. 

Consideration should be given to avoid loss of crucial information in the original 

hyperspectral data. In recent years, the quality and safety inspection studies of food, 

agricultural, and poultry products were conducted using the visible and NIR 

hyperspectral imaging. Hyperspectral imaging was used mainly for: bruise detection in 

fruits and vegetables (Ariana et al., 2006; Xing et al., 2005; Lu, 2003), detection of fecal 

contamination (Kim et al., 2002; Lefcourt et al., 2006) and surface defects (Mehl et al., 

2004) in fruits, and measurement of bitter pit in apples (Nicolai et al., 2006). Also, it was 

used for inspecting cucumber chilling damage (Cheng et al., 2004) and determining 

moisture content, total soluble solids content, and acidity in strawberries (ElMasry et al., 

2007). Gowen et al. (2007) reported that hyperspectral imaging in the visible and NIR 

wavelength regions (350-1700 nm) was used for assessing quality parameters of 

agricultural (corn, potato, and cucumber), horticultural (apple, citrus, peach, strawberry, 

and cherry), and meat products (poultry, pork, and codfish). 
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3.1.1 Fruits 

3.1.1.1 Bruises and surface defects detection  

If an automatic system is developed for bruise detection in fruits and vegetables, it 

will help provide better products for consumers, reduce potential economic losses, and 

increase the net profit. Lu (2003) detected both old and new bruises in Red Delicious and 

Golden Delicious apples using NIR hyperspectral imaging. Results showed that spectral 

region of 1000-1340 nm was more appropriate region in detecting bruises. Detection 

accuracies of 62-88% for Red Delicious and of 59-94% for Golden Delicious apples were 

reported using both PC and minimum noise fraction (MNF) transforms. The optimal 

spectral resolution for bruise detection was between 8.6 and 17.3 nm with 20-40 spectral 

bands. 

Mehl et al. (2004) studied detection of surface defects and contaminations, such 

as side rots, bruises, flyspeck, scabs and moulds, fungal diseases, and soil 

contaminations, on the surfaces of Red Delicious, Golden Delicious, Gala, and Fuji 

apples using visible-NIR hyperspectral imaging. Contaminated portions of apples, 

independent of the apple colour and cultivar, were detected by comparing asymmetric 

second difference images at the wavelengths of 685, 722, and 869 nm.  

The potential of using a multispectral imaging system was investigated for 

detecting bruises on Golden Delicious apples (Xing et al., 2005). Spectral region of 400-

1000 nm was used for acquiring hyperspectral images. Four wavelengths (558, 678, 728, 

and 892 nm) were selected based on the PCA for the multispectral imaging. 

Classification accuracies were 93 and 86% for detecting healthy and bruised apples, 

respectively, using image processing and classification algorithms based on moments 
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thresholding. Lee et al. (2005) reported correlation coefficients of 0.91 and 0.79 using 

band ratio and band difference methods, respectively, for detecting defects on apples. 

Also, the wavelength region of 418-918 nm was appropriate for detection using the 

hyperspectral imaging.  

3.1.1.2 Detection of bitter pits and fecal contaminations  

Design of detection or classification system using hyperspectral imaging becomes 

significantly difficult than ordinary machine vision systems as the former produces large 

size data sets. Nicolai et al. (2006) identified bitter pit lesions on apples using the NIR 

hyperspectral images acquired from the wavelength region of 1000-1600 nm. The system 

could identify bitter pit lesions that were unseen visually and developed just after harvest. 

But, corky tissues could not be differentiated.  

Kim et al. (2002) detected fecal contaminations on apples using the hyperspectral 

imaging in the wavelength region of 450-851 nm. The PCA was used on hyperspectral 

images of apples to identify 2-4 potential wavelengths that could be used for developing 

an on-line multispectral imaging system. Fecal contaminations were identified 

successfully using wavelengths from green and red bands in the visible region and the 

NIR region or two wavelengths from the ends of the NIR region. Sorting of apples based 

on colour was effective using three wavelengths from the visible-NIR region. Analyses 

with threshold detection and morphological filtering were needed for detecting diluted 

fecal contamination spots on apples. 

Lefcourt et al. (2006) studied the multispectral detection of fecal contaminations 

on apples. Detection accuracies were 100 and 62.5% for Golden Delicious and Red 
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Delicious apples, respectively, for 1:20 dilution fecal contamination spots using optimal 

wavelengths identified from the NIR hyperspectral reflectance images. Concentrated 

fecal contamination spots were detected at a detection rate of 100%. Liu et al. (2007) 

explored the potential of hyperspectral images for detecting fecal contaminations on 

apple surfaces. Reflectance intensities were low for fecal contaminated areas on apples. 

In the visible-NIR region (675-950 nm), significant spectral differences were observed 

between uncontaminated and fecal contaminated skins. Fecal contaminated skins were 

identified using a dual-band ratio algorithm at 725 and 811 nm. Use of spectral features at 

these wavelengths reduced colour variation effects of apple cultivars. 

3.1.1.3 Determination of quality attributes  

Harvest time, post harvest quality, and end use are determined by the maturity of 

apples. Skin and flesh colour, firmness, sugar, starch pattern index, soluble solids content, 

and titratable acid are important maturity parameters in apples. Peirs et al. (2003) 

determined starch index of apples using the NIR hyperspectral imaging. The use of iodine 

solution, which is generally toxic in nature, is avoided in this method for the starch index 

determination. The PCA score images were used to classify starch and non-starch areas 

of apples. They suggested that the use of bandpass filters could simplify this technique 

and speed up the application in the future. 

Noh and Lu (2007) assessed quality parameters such as skin and flesh colour, 

firmness, soluble solids content, and titratable acid on Golden Delicious apples using the 

hyperspectral laser-induced fluorescence imaging. Mean, maximum, and standard 

deviation spectra were found. A hybrid method, which combined the PCA with ANN, 

was used to predict the quality parameters at 0, 1, 2, 3, 4, and 5 min after illumination.  
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The apple skin hue was predicted with a correlation coefficient of 0.94. Predictions of 

fruit firmness, skin chroma, and flesh hue were better than the predictions of soluble 

solids content, titratable acid, and flesh chroma. 

Non destructive determination of moisture content, total soluble solids (TSS), and 

acidity (pH) were done using the vis-NIR hyperspectral imaging (400-1000 nm) in 

strawberries (ElMasry et al., 2007). The correlation coefficients for predicting moisture, 

TSS, and pH were 0.90, 0.80, and 0.87, respectively, using partial least squares (PLS) 

analysis with the full spectral data. The β-coefficients of the PLS models were used for 

selecting optimal wavelengths to develop multiple linear regression (MLR) models. 

Correlation coefficients for predicting moisture, TSS, and pH using the MLR models 

were 0.87, 0.80, and 0.92, respectively. Grey-level co-occurrence matrix (GLCM) was 

used to perform a texture analysis on hyperspectral images for classifying strawberries 

based on ripeness stages. The highest classification accuracy of 89.61% was reported 

using the GLCM parameters at the horizontal direction (θ = 0°).  

Nagata et al. (2004) evaluated maturity parameters of strawberries using a 

hyperspectral imaging system with a LCTF in the visible wavelength region of 450-650 

nm. Hyperspectral images were acquired at every 2 nm interval and data were extracted 

to develop firmness and soluble solids content calibration models. A correlation 

coefficient of 0.784 with a standard error of prediction of 0.364 was observed for the 

firmness model with five predictors (510, 650, 644, 628, and 598 nm). Consistent 

predictions of soluble solids content could be obtained using maturity level analyses of 

individual strawberries.  
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Nagata et al. (2005) further evaluated internal qualities such as firmness and 

soluble solids content of strawberries using the vis-NIR hyperspectral imaging with the 

wavelength region of 650-1000 nm at every 5 nm intervals. A stepwise MLR method was 

used for developing firmness and soluble solids content calibration models. A three-

wavelength firmness model confirmed the importance of peaks at around 675 and 980 nm 

(chlorophyll and water, respectively) for firmness of strawberries. A correlation 

coefficient of 0.786 was observed for 50% to full ripe group of strawberries. A five-

wavelength soluble solids content model was developed using near-infrared wavelengths 

of above 800 nm where absorptions due to carbohydrate and sugar could be seen. A 

correlation coefficient of 0.87 for measuring soluble solids content in the 70% to full ripe 

group of strawberries was obtained using the five-wavelength prediction model.   

Lu and Peng (2005) investigated the measurement of firmness in peaches using 

the hyperspectral imaging. In this study, a hyperspectral imaging system was used to 

acquire images of Red Haven and Coral Star peaches in a wavelength region of 500-1000 

nm at 153 spectral bands. Two-parameter Lorentzian distribution function was used to fit 

the spectral scattering profiles for individual wavelengths with an average coefficient of 

determination (r2) value of > 0.99. The 677 nm wavelength, which was related to 

chlorophyll absorption, had the highest correlation among all wavelengths in MLR 

models for firmness. The best predictions (with r2 = 0.77 and 0.58 for Red Haven and 

Coral Star peaches, respectively) of firmness were obtained when 10 or 11 wavelengths 

were combined in the MLR model. Non destructive and rapid predictions of firmness of 

peaches were estimated effectively using the hyperspectral scattering.  



 

 24 

Sugar content and firmness of Empire and Red Delicious apples were predicted 

using the rapidly-acquired spectral data from a NIR sensing method in the wavelength 

range of 900-1500 nm (Lu and Ariana, 2002). Data at two sensing positions of samples, 

3.5 and 5.5 mm from the illumination source, were evaluated. The PLSR method gave 

prediction values of ≤ 0.81 with an error of 0.5-0.7 for sugar content. Relative reflectance 

spectra of samples gave better predictions when comparing with the results of ratio 

spectra. In this method, sugar content predictions surpassed firmness predictions. 

3.1.2 Vegetables 

3.1.2.1 Determination of quality attributes  

Gowen et al. (2009) identified freeze damaged white button mushrooms at early 

stages using a pushbroom line-scanning hyperspectral imaging in the wavelength region 

of 400-1000 nm. The SNV method was used to pre-process the hyperspectral reflectance 

data which were obtained by imaging mushrooms from various positions. The PCA and 

LDA were used for classifying freeze damaged mushrooms and healthy ones. 

Classification accuracies were 100 and 97.9% for whole undamaged mushrooms and 

freeze damaged mushrooms, respectively, for an independent test set.   

Detection of bruises on pickling cucumbers was evaluated using NIR 

hyperspectral imaging (Ariana et al., 2006). Bruises in cucumbers were created by hidden 

internal damages which were caused from mechanical injuries at the time of harvesting, 

transporting, and handling. Band ratio, band difference methods, and Principal 

component analysis (PCA) were used to discriminate bruised cucumbers from healthy 

ones. Bruised tissues, which increased over time, had always lower reflectance intensities 

than healthy tissues. Spectral region of 950-1350 nm with a band width of 8.8 nm was 
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reported as the best region for detecting bruises using the PCA. Self-healing of bruised 

tissues decreased detection accuracies from 95 to 75% over a period of 6 days after injury 

using the PCA. Detection accuracies of 93 and 82% were reported for the best band ratio 

of 988/1085 nm, and of 89 and 84% for the best band difference of 1346 and 1425 nm. 

Cheng et al. (2004) investigated cucumber chilling damages using a novel 

integrated PCA and Fisher’s linear discriminant (FLD) method in hyperspectral image 

analyses. The integrated PCA-FLD method performed better than the PCA and FLD 

methods when used separately for inspecting chilling damages. 

3.1.3 Hyperspectral imaging in feeds and veterinary products  

Recent developments in spectroscopy have been directed to the effective 

monitoring of food and feed products using the spectral imaging. Pierna et al. (2006) 

developed an innovative method for effective screening of compound feeds using the 

NIR hyperspectral imaging. The SVM was used to produce discriminant equations from 

hyperspectral data to determine the sample composition using a classification tree 

method. Classification accuracies were 99-100% for more than 36 combinations of C (a 

penalty that was added to take into account that the samples cannot be properly 

separated) and σ (the width of the Gaussian function). The SVM could become a 

promising classification tool for determining the presence of different feed ingredients.  

In broilers, detection of cecal contaminants in the visceral cavity region is 

essential while performing safety inspections. Cecal portions of the digestive tract were 

used for collecting digestive materials for studies. Cecal feces were darker in colour than 

duodenum or colon feces. Park et al. (2005) used a hyperspectral imaging system for 
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distinguishing internal cecal contaminants in the visceral cavity areas of bisected broiler 

carcasses (Park et al., 2005). Band ratio, thresholding, and median filtering algorithms 

were used to detect fecal contaminants. Detection accuracy was 92.5% to identify cecal 

contaminants when using a fecal threshold value of 1.05. Park et al. (2002) identified 

fecal and ingesta contaminations on poultry carcasses using a hyperspectral imaging 

system. The system had a prism-grating-prism spectrograph, fibre optic line lighting, 

motorized lens control, and hyperspectral image processing software. Wavelengths of 

434, 517, 565, and 628 nm were identified important by the PCA for hyperspectral 

images acquired at a wavelength region of 400-900 nm with 512 spectral bands and 

further used. Images processed using the band ratio of dual wavelengths (565/517 nm) 

and histogram stretching were effective to detect fecal and ingesta contaminations. 

Detection accuracies were 97.3 and 100% for linear and non-linear histogram stretching, 

respectively. Fecal contaminants of duodenum, cecum, colon, and ingesta on poultry 

carcasses were detected effectively using the hyperspectral imaging.  

3.1.4 Cereals 

3.1.4.1 Determination of quality attributes  

Near-infrared hyperspectral transmittance imaging in the wavelength region of 

750-1090 nm was evaluated for predicting the constituent concentrations and analyzing 

the quality of single kernels of maize (Cogdill et al., 2004). The standardized absorbance 

spectra were used for developing the PLSR and PCR models to predict moisture and oil 

contents. Common hyperspectral data pre-processing methods such as standard normal 

variate (SNV), detrending (DET), multiplicative scatter correction (MSC), wavelength 

selection by generic algorithm, and no pre-processing were evaluated for performance. 
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Standard error of cross validation was 1.20% (with a relative performance determinant 

(RPD) of 2.74) and 1.38% (with an RPD of 1.45) for moisture and oil content models, 

respectively.  

Mahesh et al. (2008) investigated the feasibility of using the NIR hyperspectral 

imaging for identifying western Canadian wheat classes. Hyperspectral images were 

acquired from a wavelength region of 960-1700 nm at 10 nm wavelength intervals. 

Spectral information of hyperspectral data were presented in relative reflectance 

intensities. Classification accuracies were > 94% and > 90% for the statistical and ANN 

classifiers, respectively.  

Zhang et al. (2007) evaluated the support vector machine in the classification of 

wheat kernels, which were infected by storage fungi (Aspergillus niger van Tieghem, 

Aspergillus glaucus group, and Penicillium spp.), using the NIR hyperspectral images 

acquired from the wavelength region of 1000-1600 nm. The PCA was used for reducing 

dimensions of pattern vectors. Classification accuracies were 92.9, 87.2, 99.3, and 100% 

for identifying wheat kernels infected by Aspergillus niger, Aspergillus glaucus, 

Penicillium spp., and healthy kernels, respectively, using a multi-class support vector 

machine having kernel of radial basis function for classification.  

Choudhary et al. (2009) extracted wavelet features for identifying wheat classes 

using bulk sample images taken from the NIR hyperspectral imaging camera in the 

wavelength region of 960-1700 nm. The LDA, QDA, and a back propagation neural 

network (BPNN) classifiers were used for the class identification. The highest average 

classification accuracies were 99.1 and 92.1% for the LDA and BPNN, respectively. The 
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principal component (PC) 2 features registered 80% classification accuracy using the 

PCA for wavelet features. 

Singh et al. (2010) detected midge damaged wheat kernels using images acquired 

using two cameras: a short-wave NIR (700-1100 nm) and an area scan digital colour. The 

LDA, QDA, and Mahalanobis classifier were used for classification purposes having 

statistical and histogram features extracted from hyperspectral image data of significant 

wavelengths. The highest classification accuracies were 95.3-99.3% to discriminate 

healthy and midge damaged kernels using the combined NIR hyperspectral and top 10 

colour image features as input.   

The NIR hyperspectral imaging was used in the wavelength range of 1000-1600 

nm to detect single kernels of insect-damaged wheat (Singh et al., 2009). Hyperspectral 

images were acquired for healthy, and Sitophilus oryzae (L.), Rhyzopertha dominica (F.), 

Cryptolestes ferrugineus (Stephens) damaged kernels of wheat. The multivariate image 

analysis (MVI) was used for reducing dimensions of hyperspectral data. Statistical and 

histogram features of significant wavelengths were used as input for the LDA and QDA 

giving classification accuracies of 85-100% in identifying healthy and insect-damaged 

kernels of wheat.  

Williams et al. (2009) evaluated the classification of maize kernels based on 

hardness levels by acquiring images using the NIR hyperspectral imaging camera in the 

wavelength region of 960-1662 nm and using the SWIR hyperspectral pushbroom 

imaging system in the wavelength range of 1000-2498 nm. Background, bad pixels, and 

shading effects from absorbance images were removed using an exploratory PCA 
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method. The PC3 of NIR hyperspectral data and the PC2 of SWIR hyperspectral data 

gave noticeable differences between glassy and floury endosperms of maize kernels. The 

root mean square errors of prediction (RMSEP) were 0.18, 0.18, and 0.29 for 12-kernel, 

24-kernel NIR hyperspectral image, and SWIR image, respectively, for the partial least 

squares discriminant analysis (PLS-DA) models.  

Prediction of the α-amylase in single kernels of CWRS and CWAD wheat was 

evaluated, by investigating different degrees of sprout damages, using the SWIR 

hyperspectral imaging with the spectral range of 1000-2500 nm (Xing et al., 2009). The 

PLSR was used for predicting α-amylase activity giving regression coefficient (R2

Lawrence et al. (2003) demonstrated a geometric control point correction, which 

is one of the modified calibration methods, to reduce smile and keystone effects from a 

pushbroom type hyperspectral imaging system that could be used for agricultural 

inspection studies. Also, wavelength, distance, and pixel-by-pixel percent reflectance 

calibration methods were performed on hyperspectral data. These calibration procedures 

were effective for the wavelength range of 430-900 nm. The stability of calibration over 

time had to be analyzed over time to improve calibration procedures for real-time 

analysis. 

) 

values of 0.54 and 0.73 for CWAD and CWRS wheat, respectively. Classification 

accuracy of 80% was attained for discriminating high levels from low levels of α-amylase 

activity in CWRS wheat.  
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3.1.5 Non agri-food applications  

Hyperspectral imaging is gaining popularity not only in food and agricultural 

sectors but also in other industrial applications. Materials classification can be achieved 

from hyperspectral images acquired in the NIR wavelength region of 900-1700 nm. 

Tatzer et al. (2005) investigated inline material sorting to classify raw and colour 

cardboards, newspaper, and printed papers using the NIR hyperspectral imaging. It was 

observed that mean classification accuracies of 93, 81, 95, and 91% were obtained for 

raw cardboards, coloured cardboards, newspaper, and printed papers, respectively, by 

combining the PCA with linear discriminant analysis (LDA). 

3.1.6 Limitations of hyperspectral imaging  

Hyperspectral imaging has a few limitations like any other technique. The major 

limitation is the production of large amount of data. This leads to a significant increase in 

the computational time for extracting main features from the spectral images. Hence, it 

becomes difficult for hyperspectral imaging to be used for on-line inspection of food, 

agricultural, and industrial products. Commercial hyperspectral imaging software and 

algorithms such as ENVI (Research Systems Inc., Boulder, CO) are developed for remote 

sensing purposes and are not suitable for performing quality and safety inspections of 

food and agricultural products. Development of reliable, fast, and efficient algorithms for 

hyperspectral data analyses becomes crucial. As machine vision is being combined with 

spectroscopy in the hyperspectral imaging, hardware implementations become more 

difficult than those in imaging or spectroscopic systems alone. Reliable and accurate 

hyperspectral data are produced using proper lighting design, system calibration, and 

image correction and affected by the performance of CCD camera. 
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3.2 Applications of the NIR spectroscopy 

Quality parameters in grains, milk, meat, fruits, and beverages are determined 

using NIR spectroscopy. Functional, compositional, and sensory analyses are performed 

for verifying the adulteration and genuineness of food products. Also, the NIR 

spectroscopic applications for determining quality parameters of agricultural and 

biological materials have been discussed elsewhere (Sivakumar, 2007). Monochromators 

(H1034B, Jobin Yvon Inc., Edison, NJ) and diode array spectrometers (8452A, Hewlett-

Packard Inc., Palo Alto, CA) are used for acquiring the NIR absorbance intensities of 

samples using diffuse reflectance and/or transmittance principles. The NIR absorbance/ 

reflectance/transmittance data are pre-processed using standard normal variate and 

detrending (SNV-DET) and multiplicative scatter correction (MSC) methods.  The NIR 

calibration models are developed using multiple linear regression (MLR), principal 

components regression (PCR), and partial least squares regression (PLSR) methods 

(Osborne, 2006). The NIR absorption of C-H, R-OH, R-NH2, ArOH, and combination 

bands, first, second, and third overtones are shown in Fig. 3.1. 
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Fig. 3.1. The NIR absorption of C-H, R-OH, R-NH2

3.2.1 Classification of cereal grains  

, ArOH, and ArCH combination 

bands, first, second, and third overtones (modified from Anonymous, 2011). 

Delwiche and Massie (1996) classified single kernels of wheat using the Vis/NIR 

reflectance values acquired from three hard wheat (hard white (HWH), hard red spring 

(HRS), and hard red winter (HRW)) and two soft wheat (soft red winter (SRW) and soft 

white (SWH)) samples. A diode array spectrometer and a spectrophotometer were used 

for gathering reflectance intensities in the vis-NIR region and the NIR region, 

respectively. Classification accuracies were > 97% for differentiating red and white 

wheat using a seven-factor PLSR method. A five-factor MLR method gave classification 

accuracies of > 96% for identifying red and white wheat.  

Dowell (2000) used the NIR spectroscopy to segregate vitreous and non vitreous 

durum wheat using a diode array spectrometer in the wavelength range of 400-1700 nm 
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at 5 nm intervals. Wheat kernels were classified in this study into two groups, i.e., easily 

distinguishable and easily non distinguishable. Identification of vitreous wheat kernels 

was improved by increasing the discriminant value from 0.5 to 0.7 in the PLSR model. 

The Bureau of Appeals and Review (BAR) method was used as the reference which in 

turn reduced the performance of the PLSR model. Classification accuracies were 80 and 

70% for vitreous and non vitreous kernels, respectively, using the PLSR with a 

discriminant value of 0.5. The NIR spectroscopy can be used for quantifying vitreousness 

using the difference in the NIR absorption for protein and starch contents of durum 

wheat. Partially waxy and wild wheat varieties were identified using the NIR 

spectroscopy (Delwiche and Graybosch, 2002). The NIR reflectance spectra of ground 

wheat samples were collected using a spectrophotometer in the wavelength range of 

1100-2498 nm at 2 nm intervals. An iodine binding blue complex colorimetric method 

was used for measuring apparent amylase contents of wheat samples. The PCA was used 

for reducing dimensions of spectral data preceded to a stepwise regression. One-out cross 

validation was used for determining the optimal number of discriminant functions.  

Perfect classification was not possible because of the overlapping effects of amylase 

contents of wheat classes.  

Wang et al. (2002) conducted a feasibility study using the vis-NIR spectroscopy 

to discriminate dark hard vitreous (DHV) kernels from non dark hard vitreous (NDHV) 

kernels of wheat. A diode array spectrometer was used to collect reflectance intensities of 

wheat samples in the wavelength range of 400-1700 nm. This wavelength region was 

segmented into three regions, i.e., 500-750 nm (visible), 750-1700 nm (NIR), and 500-

1700 nm (vis-NIR) for calibration purposes. Dorsal side kernel orientation and the 
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selection of specific wavelength regions produced significant improvements in detecting 

the DHV kernels. Lower classification accuracies (91- 97%) were observed for bleached 

kernels than non bleached kernels (97-100%) in the two-class PLSR model. The vis-NIR 

region or the NIR region itself was more suitable than the visible region for detecting the 

DHV kernels of wheat. Cocchi et al. (2006) measured the degree of adulteration in durum 

wheat flour with common bread wheat flour using the NIR spectroscopy. The PLSR and 

wavelet interface to linear modeling analysis (WILMA) methods were used having raw 

and SNV pre-treated data as input.  A spectrophotometer was used in the wavelength 

range of 400-2498 nm at 2 nm intervals. Spectral pre-treatment reduced root mean square 

error for calibration (RMSEC) (= 0.2903), root mean square error of cross validation 

(RMSECV) (= 0.7215), and root mean square error of prediction (RMSEP) (= 0.3974) 

values of the eight-variable PLSR model. The WILMA-PLS model with 60 coefficients 

and seven latent variables had a minimum RMSEP value of 0.447.  

3.2.2 Detection of fungal, insect, and other damages in cereal grains 

Baker et al. (1999) differentiated kernels infested by larval and pupal stages of 

rice weevils (Sitophilus oryzae (L.)) which were parasitized by specific mites, 

Anisopteromalus calandrae (Howard), from uninfested and unparasitized kernels of 

wheat. Uninfested kernels, kernels infested with weevil larvae, kernels infested with 

weevil pupae, kernels containing parasitoid larvae, and kernels containing parasitoid 

pupae were used. A diode array NIR spectrometer was used to collect absorbance 

intensities of wheat kernels in the wavelength region of 400-1700 nm. A thirteen-factor 

PLSR model detected the rice weevil infestation in wheat with r of 0.90 and SECV of 

0.15. Levels of the NIR absorption intensities differed due to the compositional 
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difference in chitin and cuticle contents. Misclassifications occurred for kernels with 

small parasitoids or weevils that absorbed a small amount of the NIR radiation. The NIR 

spectroscopy was effective to separate larval or pupal stages of insects or parasitoids in 

wheat. 

The NIR reflectance spectroscopy was used to identify heat damaged wheat 

kernels from healthy kernels (Wang et al., 2001). Reference data were collected using the 

mixogram for identifying heat damages in wheat. A rapid viscosity analyzer was used for 

measuring gelatinization, pasting, and set back profiles of wheat. A diode array 

spectrometer was used for measuring the vis-NIR reflectance intensities in the 

wavelength region of 400-1700 nm. The PLSR and two-wavelength regression models 

were developed to separate heat damaged from undamaged kernels. They observed that 

heat damaged kernels were darker than undamaged kernels. The classification accuracy 

was 100% for the 7-factor PLSR model for 750-1700 nm for discriminating heat 

damaged kernels from undamaged ones. The 2-wavelength regression model for 985-

1050 nm had classification accuracies of 97.5 and 96.8% for calibration and test sets, 

respectively. The NIR spectroscopy can be used to identify heat damaged and healthy 

wheat. 

Wang et al. (2002) conducted a feasibility study to differentiate sound soybean 

kernels from damaged ones using the NIR spectroscopy. Six categories of soybean seeds, 

i.e., sound, weather damaged, frost damaged, sprout damaged, heat damaged, and mould 

damaged, were used. A diode array spectrometer was used to collect the NIR reflectance 

intensities in the wavelength range of 400-1700 nm at 5 nm intervals. Two and six-class 

PLSR models were developed using a commercial PLS software. Also, two and six-class 



 

36 
 

BPNN models were developed for differentiating sound and damaged kernels of soybean. 

Two-class PLSR model was developed using the values from wavelength regions of 750-

1690 nm and 490-1690 nm. Accuracies were > 99.3% and > 99.5% for calibration and 

validation, respectively, for classifying damaged and sound kernels. The PLSR model, 

used spectral values from the visible wavelength region (490-750 nm), had classification 

accuracies of > 98.4% and > 97.8% for calibration and validation sets, respectively. Six-

class PLSR model for 490-1690 nm had average classification accuracies of 75.2 and 

74.5% for calibration and validation, respectively, in identifying sound and damaged 

soybean seeds.    

Delwiche (2003) identified scab and mould damages in wheat using the NIR 

reflectance spectroscopy. First, mould-affected and scab-damaged kernels were visually 

separated from sound kernels in hard red spring wheat. A Zeiss MCS511 diode array 

spectrometer was used to acquire the NIR absorbance intensities in the wavelength region 

of 940-1700 nm. The NIR absorbance intensities of 1002-1704 nm at 6 nm intervals were 

used for modeling. Two kernel orientation types, i.e., crease down placement and random 

placement of kernels, were used in this study. The LDA with leave-one-out cross 

validation, soft independent modeling of class analogy (SIMCA), and the PCA were 

used. Cross validation accuracies of 89-98% and test set accuracies of 90.5-98.4% were 

obtained for the LDA for a two-way classification (sound kernels vs. damaged kernels 

(scab damaged + mould damaged)). Cross validation and test set accuracies were 89.3 

and 86.4%, respectively, for the LDA with scores of 1st, 2nd, 7th, and 3rd principal 

component as input. Cross validation and test set accuracies were 85.3-86.7 and 83.6-

85.8%, respectively, for 2-, 4-, and 6-factor SIMCA-PLS models. Classification 
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accuracies of scab-damaged, mould-affected, and sound kernels with random kernel 

orientations were equal to or less than the accuracies with the precise kernel orientation. 

Maghirang et al. (2003) detected live or dead rice weevils at pupal and larval 

stages in single kernels of wheat using the NIR spectroscopy. Sound kernels, kernels 

infested with pupae, large larvae, medium sized larvae, and small larvae of rice weevils 

were selected using the x-ray imaging. A single kernel characterization system (SKCS) 

was used to collect data of single kernels in the wavelength region of 400-1700 nm at 5 

nm intervals. The PLSR method was used to detect different stages of internal 

infestations using values from the wavelength region of 950-1690 nm in wheat. Ten key 

wavelengths were identified (990, 1135, 1210, 1250, 1370, 1395, 1425, 1510, 1610, and 

1670 nm) using the PLS beta coefficients. Classification accuracies were > 90% to detect 

pupae or large larvae of rice weevils using the 5-7 factor PLSR models. 

Perez-Mendoza et al. (2003) detected insect fragments in wheat flour using NIR 

spectroscopy. A diode array NIR spectrometer was used for collecting diffuse reflectance 

intensities in the wavelength region of 550-1700 nm. The NIR reflectance intensities 

were converted to absorbance values. The AOAC 972.32 floatation method was used to 

find out insect fragments in wheat flour. A PLSR model was developed using ten PLS 

factors to predict insect fragment levels in wheat flour. Six wavelengths (890, 1120, 

1220, 1370, 1530, and 1630 nm) in the NIR region were identified as wavelengths 

responsible for the excitation of first, second, and third overtones of CH groups. Some of 

the main constituents of insect fragments, i.e., chitin and lipid, were responsible for the 

CH group absorption. The AOAC floatation method produced high accuracy in 

predicting insect fragments in wheat flour in 2 h. Classification accuracy was 83.3% for 
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classifying samples with 0, 35, and 75 insect fragments (< 130 fragment samples per 50 g 

flour class) and 90% for samples with 150, and 300 insect fragments ( > 130 fragment 

samples per 50 g flour class). The NIR spectroscopy was not as sensitive as the floatation 

method to determine the US-Food and Drug Administration (US-FDA) levels of insect 

fragments (75 insect fragments per 50 g of flour) in wheat flour. They suggested that the 

NIR and mid-IR spectroscopy could be used to detect the US-FDA permissible levels of 

insect fragments in wheat flour, in future, with advancements in the field of spectroscopy. 

Wang et al. (2004a) classified fungal damaged kernels from healthy kernels of 

soybean using NIR spectroscopy. Healthy kernels and kernels damaged by Phomopsis, 

Cercospora kikuchii (T. Matsumoto and Tomoy), soybean mosaic virus (SMV), and 

downy mildew in soybean were used. A diode array spectrometer was used to collect the 

NIR reflectance intensities in the wavelength region of 400-1700 nm from single kernels 

of soybean. The NIR reflectance intensities were interpolated to 5 nm intervals. Two 

(healthy vs. damaged) and five-way classifications (healthy vs. four types of damage) 

were developed using the PLSR and ANN methods using the vis-NIR reflectance 

intensities of 490-1690 nm as input. A ten-factor PLSR model had classification 

accuracies of > 99% for calibration and validation sets in classifying healthy kernels from 

damaged kernels of soybean. The highest average classification accuracies were 93.5 and 

94.6% for calibration and validation sets for separating healthy and four types of fungal 

damage in soybean. 

3.2.3 Determination of quality parameters in cereal grains 

Hareland (1994) predicted the percent volume of flour particles for different 

wheat classes and milling methods using the NIR reflectance spectroscopy. A laser 
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diffraction method was used for finding out the percent volume and the PLSR model 

gave an accuracy of 96% for determining percent volume. Delwiche (1995) measured 

single kernel protein contents of wheat using the NIR transmittance spectroscopy. 

Nitrogen and food protein determinator and Kjeldahl methods were used for measuring 

protein contents. The NIR transmittance intensities (T) were acquired from the 

wavelength range of 740-1139 nm. The following formula was used for converting 

transmittance intensities into absorbance (A) values: 

A = log10 �
1
T
�… … … … … … … … … … … … … … … … … … … … … ..  (3.1) 

The NIR absorbance values of 850-1050 nm were used for developing a PLSR 

model. Three types of input data sets, i.e., no change in absorbance intensities, the MSC 

corrected absorbance intensities, and the MSC corrected second derivatives of 

absorbance intensities, were used. Model performances were improved for the second 

and third types of pre-processed data sets.  

An NIR model was developed to measure starch structure and degree of 

processing of cereal products in the twin screw extrusion cooking (Guy et al., 1996). The 

NIR reflectance intensities were collected in the wavelength region of 1100-2500 nm at 4 

nm intervals. The models were developed using forward stepwise regression to predict 

specific mechanical energy (SME) using principal component scores as input. Principal 

components were identified for the NIR reflectance intensities in the wavelength region 

of 1300-1800 nm. The first two principal components explained > 95% of variations of 

the NIR reflectance intensities. Performance of regression models was affected by 

damage in hydrogen bonds during extrusion cooking. 
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The NIR reflectance spectroscopy was used for measuring protein contents in 

single kernels of wheat (Delwiche, 1998). Two NIR wavelength regions, 1100-2498 nm 

and 1100-1798 nm, were used for scanning samples at 2 nm intervals. Protein contents 

were determined by the combustion method. Two hard and soft wheat classes were used 

and PLSR and MLR models were developed. The MSC was used to reduce the spectral 

variability and the NIR wavelength region of 1100-1400 nm was found effective for 

determining protein contents. An error of 0.411% was found from the chemometric 

analysis for protein. Inclusion wheat classes from more than one crop year in the 

calibration set might improve accuracy. 

Pearson et al. (2001) detected aflatoxin in corn using the vis-NIR transmittance 

and reflectance spectroscopy. Corn samples with varying levels of aflatoxin were selected 

using the black light examination of bright greenish-yellow fluorescence (BGYF) 

characteristics. A silicon photo diode array fibre optic spectrometer was used to collect 

transmittance spectra of single kernels of corn in the wavelength region of 500-950 nm. 

A diode array NIR spectrometer was used for collecting reflectance intensities in the 

wavelength region of 550-1700 nm. The nineteen-point Savitzky-Golay second order 

filtering operation was used for smoothing the transmittance spectra. Mahalanobis 

distance method was used for grouping corn samples at three aflatoxin levels, i.e., 1, 10, 

and 100 ppb. A PLSR method was used to detect aflatoxin levels of corn. The USDA-

FGIS (United States Department of Agriculture-Federal Grain Inspection Service) 

aflatest affinity chromatography was used for measuring aflatoxin levels of corn. In the 

discriminant analysis, better classification accuracies were obtained to identify 0, 1 – 10, 

> 100 ppb aflatoxin levels using transmittance and reflectance intensities as input. Error 
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rates were 52-56% and 65-87% for transmittance and reflectance intensities, respectively, 

to classify 10-100 ppb levels of aflatoxin in corn using the discriminant analysis. Germ 

up and germ down kernel orientation methods improved accuracies to ≥ 84% to classify 

10-100 ppb levels of aflatoxin in corn using the six-factor PLSR model. The vis-NIR 

spectroscopy could be used to detect aflatoxin levels in corn. 

Wesley et al. (2001) measured gliadin and glutenin contents by developing the 

NIR models for wheat. Gliadin and glutenin are related to the quality of wheat protein. 

The PLSR and curve fitting methods were used for predicting gliadin and glutenin 

contents. Size exclusion high performance liquid chromatography (SE-HPLC) was used 

for measuring gliadin and glutenin contents. Pre-processing of the NIR spectra was 

carried out using standard normal variate-detrending (SNV-DET) methods. The 

performance of the PLSR model was better than the curve fitting method. The PLSR 

model had coefficient of determination (r2) values of 0.83 and 0.78 for glutenin and 

gliadin contents, respectively. The curve fitting method had r2

Detection of fumonisin using the reflectance and transmittance spectroscopy was 

evaluated (Dowell et al., 2002). Two different spectrometers, i.e., fiber optic spectrometer 

(Model S2000, Ocean Optics, Dunedin, FL) and the NIR spectrometer (Perten 

 values of 0.71 and 0.46 for 

glutenin and gliadin contents, respectively. For the PLSR model, standard errors of cross 

validation (SECV) were 0.38 and 0.43 for glutenin and gliadin contents, respectively. The 

standard errors of prediction (SEP) of a curve fitting method were 0.65 and 1.02 for 

glutenin and gliadin contents, respectively. The curve fitting method could rank samples 

qualitatively, i.e., high, medium, and low, based on amount of glutenin and gliadin 

contents in wheat.  
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Instruments, Springfield, IL), were used for collecting transmittance (550-1050 nm) and 

reflectance (400-1700 nm) intensities from single kernels of corn. A fluorometer was 

used for finding out the total fumonisin contents. A PLSR method was used to develop 

models to detect the fumonisin contents (< 10 ppm and ≥ 10 ppm) of corn. The 

Mahalanobis distance method was used for grouping based on fumonisin levels. 

Classification errors were 0% and < 7.2% for identifying 1-10 ppm and > 100 ppm levels 

of fumonisin, respectively. Misclassifications were more for 10-100 ppm levels of 

fumonisin (error rate = 23-73%). Key transmittance wavelengths (650, 710, 935, and 990 

nm) were identified using the PLS beta coefficients. Four reflectance wavelengths (590, 

995, 1200, and 1410 nm) were also identified. The detection of fumonisin at a minimum 

FDA threshold levels of 2-4 ppm in corn using the NIR transmittance or reflectance 

spectroscopy was not possible. 

Ruan et al. (2002) developed ANN models to measure mycotoxin, i.e., 

deoxinivalenol (DON), in barley using the NIR spectroscopy. The DON concentration of 

barley was measured using gas chromatography/mass spectrometry (GC/MS) method. 

The absorbance values from bulk barley samples were collected from the wavelength 

range of 400- 2500 nm at 2 nm intervals. Barley with varying DON levels were clearly 

separated in the NIR wavelength region of 1500-1800 nm. A three-layer BPNN model 

was developed using raw NIR absorbance values as input. Wavelengths of 400-700 and 

700-1100 nm were crucial in predicting the DON levels in barley. The ANN models, 

which used values from 400-700 and 700-1100 nm, produced the best R2 values of 0.921 

and 0.912; and produced the minimum SEP values of 3.351 and 3.706. The ANN models 
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(400-2500 nm) at 2 nm and 4 nm intervals produced the best r2

Petterson and Aberg (2003) determined ergosterol and DON levels in wheat using 

the NIR transmittance spectroscopy. In addition, insect and mite infestations were studied 

using the NIR transmittance spectra of wheat. The wavelength region of 570-1100 nm 

was used for acquiring the NIR transmittance intensities. Gas chromatography (GC) and 

high performance liquid chromatography (HPLC) were used for measuring the DON 

levels of wheat. Eleven to thirteen PLS factors were extracted for modeling from three 

wavelength regions, i.e., normal (850-1100 nm), extended (570-1100 nm), and reduced 

(670-1100 nm). Separate PLSR models were developed for the fungal infection in wheat 

grown from Norway and Austria. The eleven-factor PLSR model for 670-1100 nm for 

Nordic samples produced r and SECV values of 0.984 and 381µg DON per kg of wheat, 

respectively, for 670-1100 nm. The NIR transmittance spectroscopy could be helpful to 

measure the DON and ergosterol (a fungal metabolite) levels in cereal crops. 

 values of 0.933 and 0.923, 

respectively; and produced the minimum SEP values of 3.097 and 3.431, respectively. 

Miralbes (2004) determined quality parameters of wheat flour using the NIR 

models. The AACC standard methods were used for measuring quality parameters of 

wheat, i.e., moisture content, protein, wet gluten, dry gluten, and ash content. The NIR 

transmittance intensities were collected from the wavelength region of 850-1048 nm at 

two nm intervals. A modified PLSR model was developed after correcting spectral 

variations of the NIR transmittance intensities using the SNV-DET method. The r2 was 

0.99 for the PLSR validation in predicting protein and moisture contents. Minimum SEPs 

were 0.14 and 0.15 for predicting protein and moisture contents, respectively. The NIR 
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transmittance spectroscopy can control quality parameters of wheat flour during the 

online monitoring in milling industries.  

Wang et al. (2004b) developed a linear regression model for determining moisture 

contents of ground wheat using the NIR spectroscopy. The NIR reflectance intensities 

were collected from the wavelength range 850-2000 nm at 5 nm intervals. The NIR 

reflectance intensities (R) were converted to absorbance values (A) using the following 

formula: 

A = log10 �
1
R
� .............................................................................................. (3.2) 

Linear regression models were developed for the averaged NIR spectra and for 

first derivatives of averaged NIR spectra. Pre-processing methods such as the MSC and 

SNV were used for correcting the NIR absorbance values. The r2 and RMSEC values 

were 0.972 and 0.239, respectively, using the first derivatives of averaged NIR spectra. 

Baseline elimination and resolution of overlapping peaks improved the performance of 

models developed from first derivatives of the NIR absorbance intensities. Using the 

averaged NIR spectra as input, the r2

3.3 Summary of literature review  

 and RMSEC values were 0.793 and 0.541, 

respectively.  

The NIR hyperspectral imaging and the NIR spectroscopy have been used in 

many applications for inspecting biological and agricultural products (Sivakumar, 2007; 

Singh, 2009; Gowen et al., 2007). Tables 3.1 and 3.2 show the summary of hyperspectral 

and spectroscopic applications, respectively, in various agricultural and/or non-

agricultural products. Hyperspectral imaging is a combination of both spectroscopic and 
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image processing techniques. Reference methods such as Kjeldahl method, nitrogen 

combustion method, and USDA-FGIS aflatest affinity chromatography, GC/MS, and SE-

HPLC are time consuming, labour intensive, and skill demanding. It is apparent, after 

conducting an extensive review on hyperspectral imaging and spectroscopy, that 

hyperspectral imaging is considered more useful than other methods for performing 

chemometric analyses. Hyperspectral imaging can generate a full reflectance or 

absorbance spectrum for each pixel of an image. It is a robust technique in which 

biological materials are easily characterized and analysed. Hyperspectral imaging for 

commercial applications generally requires a high speed setup for hardware and advanced 

image processing software. It is an established method that has an analytical ability 

comparable to traditional techniques for sample separation and quality measurement. 

Also, it requires less analytical time than the conventional methods. Compositional 

distribution has been measured using PC score images and concentration maps. The type 

of quality parameter and the objective of the study determine the selection of proper 

wavelength range, pre-processing method, and type of analysis. The PCA and PLS 

methods are commonly used for the dimension reduction of hyperspectral data. The PCA 

based multivariate image analysis can effectively reduce the hyperspectral data 

dimensions and aid in selecting appropriate wavelengths. It is possible to consistently 

reproduce reflectance intensities from analog to digital (A/D) counts when known 

reflectance standards and values are used. Multispectral imaging can be designed using 

selected wavelengths where online monitoring of biological materials become easier and 

faster. In hyperspectral imaging, a homogeneous and intense illumination, which is not 

harmful to agricultural materials, is required. The LDA and QDA, which are helpful for 
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developing supervised classification models, have been used extensively for sample 

classification. The performance of statistical classifiers was better than the neural 

network classifiers in the LWNIR hyperspectral imaging because of the possible linear 

response of the InGaAs detector. The BPNN classifiers give better results if a non-linear 

type of training data set is used as the input.  
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Table 3.1. Summary of hyperspectral imaging applications in fruits, vegetables, 

cereals, feeds, veterinary, and industrial products  

Mode Product  Analysis Wavelength 
range (nm) Classification Reference(s)  

Fruits:      
Reflectance  Strawberry Measurement 

of firmness 
and soluble 
solids content 

650-1000 Stepwise 
MLR 

Nagata et al. 
(2005) 

Reflectance  Apple Detection of 
bruises 

400-1000  PCA Xing et al. 
(2005) 

Reflectance Apple Detection of 
bruises 

900-1700 PC and MNF 
transforms 

Lu (2003) 

Reflectance Apple Detection of 
fecal 
contaminations 

450-851 PCA Kim et al. 
(2002) 

Fluorescence 
and 
Reflectance 

Apple Detection of 
feces 

452-729 and 
465-900 

Band ratio Lefcourt et 
al. (2006) 

Reflectance Apple Detection of 
surface defects 
and 
contaminations 

430-900 Asymmetric 
second 
difference 
method 

Mehl et al. 
(2004) 

Reflectance Apple Measurement 
of bitter pits 

900-1700 Discriminant 
PLS  

Nicolai et al. 
(2006) 

Reflectance Strawberry Determination 
of m.c., TSS, 
and pH  

400-1000 PLS, MLR ElMasry et 
al. (2007) 

Reflectance Apple Defects 418-918 PCA, band 
difference, 
and band ratio 

Lee et al. 
(2005) 

Reflectance  Apple Detection of 
fecal 
contaminants 

447-951 PCA, band 
ratio, and 
asymmetric 
second 
difference 

Liu et al. 
(2007) 

Scattering Peach Measurement 
of firmness 

500-1000 MLR Lu and Peng 
(2005) 
 
 

Reflectance Apple Measurement 
of sugar 
content and  
firmness 

900-1500 PLSR Lu and 
Ariana 
(2002) 
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Reflectance Apple Starch index 
determination 

900-1700 PCA Peirs et al. 
(2003) 

Fluorescence Apple Measurement 
of fruit skin 
and flesh 
colour, 
firmness, 
soluble solids 
content, and 
titratable acid 

500-1040 PCA with 
neural 
network 

Noh and Lu 
(2007) 

Reflectance Strawberry Measurement 
of firmness 
and soluble 
solids content 

450-650 Stepwise 
MLR 

Nagata et al. 
(2004) 

Vegetables:      
Reflectance White 

button 
mushroom 

Freeze damage 400-1000 PCA, LDA Gowen et al. 
(2009) 

Reflectance  Cucumber Detection of 
bruises 

900-1700 PCA, band 
ratio, and 
band 
difference 

Ariana et al. 
(2006) 

Reflectance Cucumber Inspection of 
chilling 
damages 

447.3-951.2 Integrated 
PCA-FLD 

Cheng et al. 
(2004) 

Cereals:      
Transmittance Maize Prediction of 

moisture and 
oil contents 

750-1090 PLSR and 
PCR 

Cogdill et al. 
(2004) 

Reflectance Wheat Identification 
of composite 
wheat classes 

960-1700 LDA, QDA, 
and ANN 

Mahesh et 
al. (2008) 

Reflectance  Wheat  Classification 
of fungi-
infected wheat 
kernels 

1000-1600 SVM Zhang et al. 
(2007) 

Reflectance Wheat  Identification 
of wheat 
classes 

960-1700 Wavelet, 
LDA, QDA, 
and ANN 

Choudhary 
et al. (2009) 
 
 
 
 

Reflectance Wheat Identification 
of midge-
damaged 
wheat kernels 

700-1100 LDA, QDA, 
and 
Mahalanobis 

Singh et al. 
(2010) 
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Reflectance  Wheat Identification 
wheat classes 
and moisture 
levels of 
composite 
bulk samples 

960-1700 LDA and 
QDA 

Mahesh et 
al. (2011) 

Reflectance Wheat Detection of 
insect damages 
in single 
kernels of 
wheat 

1000-1600 MVI, LDA, 
and QDA 

Singh et al. 
(2009) 

Reflectance Maize Classification 
of maize 
kernels based 
on hardness 

1000-2498 PLS-DA Williams et 
al. (2009) 

Reflectance Wheat  Prediction of 
α-amylase 
contents 

1000-2500 PLSR Xing et al. 
(2009) 

Agri-related 
products: 

     

Reflectance  Feeds Screening of 
compound 
feeds 

900-1700 SVM Pierna et al. 
(2006) 

Industrial 
products: 

     

Reflectance Cardboards Sorting of raw 
and colour 
cardboards, 
newspaper, 
and printed 
papers 

900-1700 PCA, LDA Tatzer et al. 
(2005) 
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Table 3.2. Summary of spectroscopic applications in cereal grains 

Mode Product  Analysis Wavelength 
range (nm) Classification Reference(s)  

Reflectance Wheat Classification 
of single 
kernels of 
wheat 

551-750 
(colour), 1120-
2476 (intrinsic 
properties) 

PLSR, MLR Delwiche 
and Massie 
(1996) 

Absorbance Wheat Classification 
of vitreous and 
non vitreous 
kernels 

400-1700 PLSR Dowell 
(2000) 

Reflectance Wheat Identification 
of partially 
waxy and wild 
wheat varieties 

1100-2498 Stepwise 
regression 

Delwiche 
and 
Graybosch 
(2002) 

Reflectance Wheat Classification 
of dark hard 
vitreous and 
non dark hard 
vitreous 
kernels 

400-1700 PLSR Wang et al. 
(2002) 

Reflectance Wheat Measurement 
of adulteration 
in durum 
wheat flour 

400-2498 PLSR,WILMA Cocchi et 
al. (2006) 

Absorbance Wheat Detection of 
insect 
infestations 

400-1700 PLSR Baker et al. 
(1999) 

Reflectance Wheat Detection of 
heat damaged 
kernels 

400-1700 PLSR Wang et al. 
(2001) 

Reflectance Soybean Detection of 
damaged 
soybean 
kernels 

400-1700 PLSR Wang et al. 
(2002) 

Reflectance  Wheat Detection of 
mould and 
scab damages 

940-1700 SIMCA, LDA, 
PCA 

Delwiche 
(2003) 

Reflectance Wheat Detection of 
insect 
infestations 

400-1700 PLSR Maghirang 
et al. 
(2003) 

Reflectance Wheat Detection of 
insect 
fragments 

550-1700 PLSR Perez-
Mendoza et 
al. (2003) 
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Reflectance Soybean Detection of 
fungal 
damaged seeds 

490-1690 PLSR and 
ANN 

Wang et al. 
(2004a) 

Reflectance Wheat Percent 
volume of 
flour particles 

400-2500 PLSR Hareland 
(1994) 

Absorbance Wheat Prediction of 
protein 
contents 

740-1139 PLSR Delwiche 
(1995) 

Reflectance Cereal 
products 

Measurement 
of starch 
structure and 
degree of 
processing 

1100-2500 Stepwise 
regression 

Guy et al. 
(1996) 

Reflectance Wheat Measurement 
of protein 
contents 

1100-2498 PLSR, MLR Delwiche 
(1998) 

Transmittance 
and 
reflectance 

Corn Detection of 
aflatoxin levels 

550-1700 PLSR Pearson et 
al. (2001) 

Reflectance Wheat Measurement 
of gliadin and 
glutenin 
contents  

1100-2498 PLSR and 
curve fitting 

Wesley et 
al. (2001) 

Transmittance 
and 
reflectance 

Corn Detection of 
fuminosin 

550-1050 
(transmittance) 
and 400-1700 
(reflectance) 
 

Mahalanobis, 
PLS 

Dowell 
(2002) 

Absorbance Barley Measurement 
of 
deoxinivalenol 
(DON) 

400-2500 BPNN Ruan et al. 
(2002) 

Transmittance Wheat Measurement 
of 
deoxinivalenol 
(DON) 

570-1100 PLSR Petterson 
and Aberg 
(2003) 

Transmittance Wheat Measurement 
of quality 
parameters of 
wheat 

850-1048 PLSR Miralbes 
(2004) 

Absorbance Wheat Determination 
of moisture 
content 

850-2000 Linear 
regression 

Wang et al. 
(2004b) 
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4. METHODS AND MATERIALS 

This chapter focuses on discussing information on samples, sample preparation, 

the NIR hyperspectral imaging system, image analysis, spatial calibration, illumination 

standardization, image acquisition, image analysis, the PCA, pattern recognizing 

classifiers such as statistical and neural network classifiers, and multivariate regression 

algorithms such as the PLSR and the PCR.  

4.1 Grain samples 

Four western Canadian wheat classes, two red and two white, of varying degrees 

of hardness and protein grown at different locations in the prairie provinces (Manitoba, 

Saskatchewan, and Alberta) of western Canada and in 2007, 2008, and 2009 crop years 

were collected and used for this study (Table 4.1). The wheat classes used were CWRS, 

CPSR, CWHWS, and CWSWS. Climatic subdivisions of Canadian prairies were used for 

selecting sample locations (Putnam and Putnam, 1970). Sample locations were 

distributed over the humid prairie, the sub-boreal, the sub-humid prairie, and the semi-

arid regions. Wheat samples, conditioned to three moisture contents (% wet basis), 13 

(straight), 16 (tough), and 19% (damp) were used (CGC, 2004). Wheat samples for 

imaging were randomly selected by taking a Petri dish (90 mm in diameter and 11 mm in 

depth) full of grains for each location- and crop year-specific wheat from 2 kg samples. 

Moisture content of samples was determined by drying whole kernels at 130°C for 19 h 

using about 10 g samples, in triplicate (ASAE, 2003).   
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Table 4.1. Growing locations (crop years) near the listed towns from where wheat 

samples were collected.  

CWRS CPSR CWHWS CWSWS 
Corning, SK (2008, 
2009)  

Edmonton, AB (2008, 
2009) 

Churchbridge, SK 
(2008, 2009) 

Corning, SK (2008, 
2009) 

Dauphin, MB 
(2008, 2009) 

Rosemary, AB (2008, 
2009) 

Kenton, MB (2008, 
2009) 

Jansen, SK (2008, 
2009) 

Domain, MB (2008, 
2009) 

Viking, AB (2007, 
2009) 

Limerick, SK 
(2008, 2009) 

Kenton, MB (2008, 
2009) 

Melfort, SK (2008, 
2009) 

Wainwright, AB 
(2008, 2009) 

Mather, MB (2008, 
2009) 

Nokomis, SK 
(2008, 2009) 

Tisdale, SK (2008, 
2009) 

Corning, SK (2009) 
 

Shaunavon, SK 
(2008, 2009) 

Wilkie, SK (2008, 
2009) 

 Unity, SK (2008)   

4.2 Near-infrared hyperspectral imaging system 

The near-infrared hyperspectral imaging system consisted of a near-infrared 

camera with two VariSpec liquid crystal tunable filters (LCTFs) (Model No. MIR06, 

Cambridge Research and Instrumentation Inc., Woburn, MA), a 25 mm F1.4 C-mount 

lens (Electrophysics Corp. Fairfield, NJ), a sample stage, and a light source controlled 

through a Dell Optiplex GX280 Intel(R) (Dell Inc., Round Rock, TX) computer (Figure 

4.1).  

An Indium Gallium Arsenide (InGaAs) camera (Model No. SU640-1.7RT-D, 

Sensors Unlimited Inc., Princeton, NJ), that could be operated in a room within a 

temperature range of 20-40°C, was used for acquiring images at different wavelengths in 

the NIR region of 960-1700 nm at 10 nm intervals. This system had a spatial resolution 

of 640×480 pixels with 27 µm pitch. Each session commenced by imaging a 10 cent 

Canadian coin of 17.96 mm known diameter to ensure same pixel size. For all tests, the 

pixel size was maintained and there was no need to adjust the distance between the 

camera lens and the sample throughout the study.  
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Fig. 4.1. The NIR hyperspectral imaging system. 

1. Bulk wheat sample, 2. Liquid crystal tunable filter (LCTF), 3. Lens, 4. NIR 

camera, 5. Copy stand, 6. Illumination, 7. Data processing system. 
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The LCTFs had a 20 mm aperture size and a 10 mm transmission bandwidth. This 

high quality interference filter helped to rapidly select a wavelength in the NIR region 

without any vibration. This filter was attached to the camera, which ultimately produced 

12-bit multispectral images. The data acquisition board (NI PCI-1422, National 

Instruments Corp., Austin, TX) was attuned to RS-422 signals generated from the camera 

system for image acquisition. The sample was illuminated by a pair of 300 W halogen 

lights (Ushio Lighting Inc., Cypress, CA) fitted on either side of the copy stand that 

supported the NIR imaging system. These halogen bulbs had the capacity to emit light in 

a wavelength range of 400- 2500 nm.  

4.3 Spatial calibration 

Martens and Naes (1992) explained necessary system calibrations that need to be 

done before acquiring the NIR hyperspectral images. Spatial resolution of pixels was 

calculated every time before starting the imaging process to make sure that the camera set 

up was not moved up or down from its initial position. A hyperspectral image of a 

Canadian 10 cent coin was acquired. Number of pixels occupied by the diameter of the 

coin was counted. It was confirmed that the number of pixels along the diameter of the 

ten cent coin were the same every time.  

4.4 Illumination standardization  

As the InGaAs camera had a wavelength-dependent dark current, dark current 

images (D) were recorded. A reference standard of 99% reflectance (Labsphere, North 

Sutton, NH) was used to acquire a reference image (W). Dark current and white reference 

spectra were collected prior to acquiring images in each session. In total, 2400 

hyperspectral image cubes at each moisture level were acquired for analyses. Near-
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infrared reflectance intensities were calculated for every pixel of the images of bulk 

samples taken at each wavelength using Equation 4.1.  

R =  � S−D
W−D

�  … … … … … … … … … … … … … … … … … … … … … … … … ….   (4.1) 

where R = near-infrared relative reflectance intensity of each pixel at all slices of the NIR 

hyperspectral image of wheat; S = raw uncorrected intensity of each slice of the NIR 

hyperspectral image; D = intensity of a dark current image; W = intensity of a 99% 

reflectance standard.  

4.5 Image acquisition  

Near-infrared hyperspectral images were acquired with a help of the LabVIEW 

control program (Version 1, National Instruments Corp., Austin, TX). Imaging system 

setup, wavelength range, number of wavelength slices, and hypercube of a NIR 

hyperspectral image were stored by the program. The camera was aligned to the centre 

wavelength of 1330 nm in the NIR camera’s usable wavelength region of 960-1700 nm. 

Sixty hyperspectral image cubes were collected for each wheat sample from each 

growing location and crop year. Six hundred hyperspectral image cubes were acquired 

for a wheat class at each moisture level. Overall, 7200 hyperspectral image cubes were 

taken and used for the analyses.  

4.6 Image analysis 

The NIR hyperspectral images of bulk samples (S) of wheat were collected in the 

equipment’s usable wavelength range of 960-1700 nm incremented by a 10 nm interval. 

In total, hyperspectral images of 600 bulk samples of each wheat class at each moisture 

level were taken to form a set of 7200 samples (60 hyperspectral images × 10 location 
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and crop year specific samples per class × 3 moisture levels × 4 classes) and used for 

further analyses discussed in the next few sections.  The NIR wavelength region was 

segmented into 75 slices, resulting in an NIR hypercube consisting of 75 images (an 

image per slice) with the first image at 960 nm. An area of 200×200 pixels around the 

centre pixel was cropped from each image and used for further analyses. Cropping at the 

centre of the image was done to avoid pixels with poor reflectance intensities along the 

four edges of the image. The MATLAB (Mathworks Inc., Natick, MA, USA) codes were 

used for importing image files; and for displaying and analyzing hypercubes. Sensor 

defects produce insensitive pixels in images acquired from common imaging cameras. 

The insensitive pixels, otherwise called dead pixels, from the spatial area of hyperspectral 

images were removed by replacing with the median value of neighbourhood pixels. The 

signal-to-noise ratio was improved by co-adding the image slices at each wavelength 

during image acquisition. Bulk sample images were analyzed using a multivariate image 

analysis program written in MATLAB (Mahesh et al., 2011). The MIA was performed 

using the principal components analysis (Geladi and Grahn, 1996). The PCA, image 

segmentation, and spectral feature extraction codes were developed using MATLAB 

(Version 7, The Mathworks, Inc., Natick, MA). A four-layer BPNN and non-parametric 

statistical classifiers were used for classification.  

4.6 Principal components analysis (PCA) 

The PCA was used to reduce the spectral information. Here, a few correlated 

vectors were identified from a wide wavelength range. The top 2 or top 3 principal 

components could represent the most variations that existed in the raw data. The PCA 
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was used for conducting the multivariate image analysis (MIA) of the hyperspectral 

image cubes of bulk samples (Geladi and Grahn, 1996).  

The MIA can be applied to bulk sample images after automatically selecting a 

region of interest (ROI). The ROI in this study was 200 × 200 pixels around the centre of 

the image. The hypercube data of the ROI of hyperspectral images were reshaped into a 

2-D array by rearranging all the pixel intensities (reflectance) of a bulk sample image into 

a column at each of the 75 spectral bands. This resulted in a 40000 × 75 sized 2-D array 

in which 40000 is the total number of pixels in the cropped region of the bulk sample 

image and 75 is the total number of spectral bands. The PCA was then applied to the 

reshaped 2-D data set of hyperspectral images. First and second principal components 

were used for selecting the most significant wavelengths using the highest factor 

loadings. Loadings plot of principal components were used in identifying wheat classes. 

Discriminant classifiers could be developed for the data set for which dimensions were 

reduced using the PCA.  Features such as maximum, minimum, and mean from the 

images at significant wavelengths were extracted for classification of fungal-infected 

wheat kernels from healthy kernels (Singh et al., 2007).  

4.6 Pattern recognizing classifiers 

 Statistical and neural network classifiers were used for pattern recognition 

purposes. Paliwal (2002) discussed in detail about the basics of pattern recognizing, 

parametric and non parametric types of statistical methods, and neural network 

classifiers. Also, single layer and multi-layer neural network fundamentals were reviewed 

thoroughly in his work. 



 

59 
 

4.6.1 Statistical classifier  

The class-conditional probability density function (pdf) of the input features is 

considered important in statistical classification. A non-parametric statistical classifier 

was used as the assumption of normal behaviour of distribution of features in the feature 

space was impossible. The statistical analysis software (SAS) (Version 9.1.3, SAS 

Institute Inc., Cary, NC) was used for developing the non-parametric statistical classifier. 

The linear and quadratic discriminant classifiers with a leave-one-out cross-validation 

method were used in this study. These were implemented using DISCRIM procedure of 

SAS. This SAS procedure uses the Bayes’ theorem, in which the prior probability of 

group membership and group-specific densities are assumed, for determining the 

probability of an observation corresponding to a particular group. The STEPDISC 

procedure of SAS was used on the hypercube which was huge in size and had surplus 

features. Average squared canonical correlation values were used to rank the features in 

their order of significance. Top 10 wavelengths based on their contributions to the 

classification were identified. The level of contribution of each wavelength was found 

from the values of partial r2 and average squared canonical correlation (ASCC). In the 

identification of the top 10 wavelengths, the wavelength with the highest level of 

contribution was identified first and subsequently removed from further analysis to find 

the next best wavelength. This analysis was continued until the 10th

4.6.2 Artificial neural network classifier 

 ranked wavelength 

was found.  

 Design and implementation of neural networks were performed using Neuroshell 

2 software (Ward Systems Group, Frederick, MD). The BPNN is the best suited for 
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classifying agricultural produce (Jayas et al., 2000). A four-layer BPNN was used for 

class and moisture identification. The total number of hidden layer nodes was calculated 

using the following formula: 

n = �I+O
2
� + y0.5 … … … … … … … … … … … … … … … … … … … … … … ….   (4.2) 

where: I = number of inputs; O = number of outputs; y = number of input patterns in the 

training set. The network was trained using the nodes, which was calculated by the 

formula, for the two hidden layers. The calculated total number of nodes was divided 

equally between the two hidden layers. The output class was identified by comparing the 

outputs that ranged from 0 to 1. The total number of samples in each treatment was 

equally divided into five sets. Training and testing of the BPNN classifiers were 

performed using two sets of samples, one for each purpose, from each treatment. 

Remaining three sets were used for validating model performances. Five iterations were 

performed for each model and average classification accuracies were determined. For the 

overall moisture identification, 480 samples each per wheat class from each moisture 

level were used for training and test sets. The remaining 1440 samples from each 

moisture level were included for validation purposes (4320 samples in total). For the pair-

wise class identification at each moisture level, 120 samples each per class were used for 

training and test sets. The remaining 360 samples from each class at every moisture level 

were included for validation purposes (720 samples in total). The classification accuracies 

were obtained five times by which each sample was included at least once in training, 

test, and validation sets to verify the performance consistencies of the BPNN classifiers. 

Top ten feature-wavelengths were identified based on their contribution towards 
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classification. In all cases, the BPNN was trained and tested for 1000 epochs before using 

the validation data set. Over-training was arrested by saving the trained network every 

time once the test set got a new minimum average error for the classifier.         

4.7 Protein and hardness measurements 

 Wheat samples were sent to the Central Testing Laboratory, Winnipeg for 

measuring protein contents using the American Organization of Analytical Chemists 

(AOAC) standard method 968.06. Dumas method was used for analyzing crude protein 

or total nitrogen contents of wheat samples. In this method, samples were combusted at 

850°C and the resultant combustion gas was purified for nitrogen by removing CO2 and 

O2

Wheat hardness measurements were calculated at the Cereal Research Centre in 

Agriculture and Agri-Food Canada (AAFC), Winnipeg. A single kernel characterization 

system (SKCS) 4100 (Perten Instruments, Springfield, IL) was used for measuring 

hardness of wheat. In this method, mass of single kernels of wheat were measured. The 

wheat kernels were crushed individually between a rotor and a crescent gap. The force 

and conductivity measurements were taken as the wheat kernel was crushed. Using this 

information, mass, size, moisture, and hardness values were calculated for single kernels 

of wheat. Mean hardness index, mass, size, moisture, and their standard deviations were 

determined from the single kernel data obtained from a 300 kernel sample of wheat.  

Average SKCS hardness index values were used for classifying wheat based on hardness 

. Isolated nitrogen gas was analyzed using a thermal conductivity cell. Dumatherm 

Nitrogen analyzer (Gerhardt Instruments, Königswinter, Germany) and Leco FP-428 

Nitrogen protein analyzer (Leco Corporation, St. Joseph, MI) were used for performing 

protein analysis in wheat samples.  
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(Table 4.2). The Scheffe’s grouping was used for comparing protein and hardness means 

of wheat classes.  

Table 4.2. Classification of wheat based on the Perten SKCS hardness index 

(Source: Perten instruments, Springfield, IL)  

Classification SKCS hardness index Wheat class 
Extra hard 90 - 100+ Durum and other tetraploid 

wheat 
Very Hard 80 - 89 Durum and some white 

wheat 
 

Hard 65 - 79 CWES, CWRS, DNS, 
HRW, APH, AH, Others  

Medium Hard 50 - 64 CWRW, CPSR, AH, ASW, 
Others  

Medium Soft 40 - 49 Some CPSW, SRS, some 
ASW, Others 

Soft 30 - 39 Some ASW, CWSWS, 
some club, Others 

Very Soft 15 - 29 Some CWSWS, Club, 
SWW, SRW, AS, Others 

Extra Soft Up to 14** SWW, SRW, Some AS, 
Others 

HI = Hardness Index, CWES = Canada Western Extra Strong, CWRS = Canada Western 

Red Spring, DNS = Dark Northern Spring (U.S.), HRW = Hard Red Winter, APH = 

Australian Prime Hard, AH = Australian Hard, CPSR = Canada Prairie Spring Red, 

CPSW = Canada Prairie Spring White, ASW = Australian Standard White, SRS = Soft 

Red Spring, CWSWS = Canada Western Soft White Spring, SRW = Soft Red Winter, 

SWW = Soft White Winter, AS = Australian Soft. ** HI data may be negative for some 

extra soft wheat samples.  
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4.8 Multivariate regression algorithms 

 Two multivariate regression algorithms, the partial least squares regression 

(PLSR) and the principal components regression (PCR) were used for analyzing data 

from the full spectrum. It was hypothesized that the PLSR, one of the latent-variable 

regression techniques, was more advantageous than the PCR.   

4.8.1 Partial least squares regression (PLSR) 

 The PLS analysis was used to form the prediction model between spectral 

responses of analyzed samples of wheat and their major quality parameters such as 

protein and hardness. The development PLSR algorithm, which was used in this study, 

was reported for determining quality parameters of strawberries (ElMasry et al., 2007). 

The PLS analysis was conducted between the NIR reflectance intensities and the 

parameter of interest (protein or hardness) using MATLAB. Maximization of the spectral 

data, which was formed from computing the average spectra with 75 wavelengths in 

wavelength range of 960-1700 nm, was done using the PLS analysis. The transfer of 

highly correlated data, which was also large in size and often co-linear in nature, into 

partial least square variables was performed. A mathematical relationship between a set 

of independent variables, X matrix (N7200 samples × K75 wavelengths), and the dependent 

variable, Y vector (N7200 samples × 1) was obtained for protein and hardness models 

using an overall data set having 7200 spectra in total.  The dependent variable (Y), which 

was always a vector in this study, was formed using the values of one parameter (either 

protein or hardness) at a time. The independent variable or predictor data set (X) was 

formed using the reflectance values of 75 spectral bands for 7200 scanned wheat samples.  
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In the PLS analysis, the first few latent variables could explain most of the 

variations. Random noises and/or linear discrepancies of wavelengths only were 

described by the rest of the latent variables. A set of orthogonal projection axes (W), 

which was otherwise called as the PLS weights, and wavelength scores (T) were 

determined by the PLS algorithm (ElMasry et al., 2007).  

Y� = XWa
∗β = Taβ … … … … … … … … … … … … … … … … … … … … … …    (4.3) 

W∗ = (W(P′ × W)−1) … … … … … … … … … … … … … … … … … … … …     (4.4)    

where, Y� = the predicted value of the parameter of interest, P′= the wavelength loadings, 

W = a set of orthogonal projection axes (otherwise called as PLS weights), X = the 

predictor variable, Y = the dependent variable, a = the number of PLS factors, and T = 

wavelength scores, β = regression coefficient. The PLSR produced a regression model, 

which had latent variables that were optimal in number, and the predicted value of the 

parameter for each scanned wheat samples. The number of latent variables, which were 

optimal for developing the model, was selected using the percent variance explained by 

the latent variables and the minimum value of residual mean squared error for prediction 

(RMSEP). In regression analysis, mean squared error, which was referred to the error 

variance estimate, was calculated by dividing residual sum of squares by the number of 

degrees of freedom. Standard error of cross-validation (SECV), estimated mean square 

error of prediction (MSEP), and the correlation coefficient (r) of the predictive model 

were used for evaluating the PLS model.  
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The optimal wavelengths were identified using the PLS β-coefficients. As 

maximum spectral information was explained, these wavelengths could be used for on-

line multispectral imaging applications. Non-significant wavelengths, which had the low 

absolute values of β-coefficients, could completely be rejected as they had zero 

involvement in the prediction of intrinsic attributes of wheat. The prediction performance 

was estimated using the 10-fold cross validation method (Cogdill et al., 2004). In the k-

fold cross-validation, which can estimate model performances accurately (Refaeilzadeh et 

al., 2011), the original data set was randomly divided into 10 subsample groups. Nine out 

of ten groups were used for calibration and the remaining one group was used for 

validation. The root mean squared errors of prediction (RMSEP) were estimated during 

the cross-validation process for the PLSR models. The probable prediction errors for the 

new samples were estimated using cross-validation. The cross-validation was repeated 

ten times by which data from each of the subsample group used exactly once for 

validating the model. Average of ten iterations was reported for the model performance. 

Estimated MSEP were calculated for finding out optimal number of components for 

developing the PLSR model. This method was considered advantageous because all 

observations were used for training and validating the models. Also, each observation 

was used just once for validation. 

4.8.2 Principal components regression (PCR) 

 The principal components regression (PCR) model were developed for predicting 

protein and hardness using the full spectral data set (960-1700 nm) of 7200 sample 

spectra to avoid prediction instabilities caused by co-linear nature of predictor data set 

(P). In this method, uncorrelated principal components, which had decreasing variances, 
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were generated from the NIR reflectance intensities. Regression models were developed 

between principal component scores and the attributes of interest (protein and hardness). 

A ten-fold cross-validation explained in the previous section, was used for validating the 

PCR models. The RMSEP values were used for finding out the optimal number of 

principal components for modeling. Standard error of cross-validation (SECV), estimated 

mean square error of prediction (MSEP), and the correlation coefficient (r) of the 

predictive model were used for evaluating the PCR model.   



 

67 
 

5. RESULTS AND DISCUSSION 

5.1 Segmented images and NIR reflectance spectra of wheat classes 

The segmented 200×200 pixel images are shown for the 13, 16, and 19% m.c. 

wheat in Fig. 5.1. Reflectance intensities mostly depend on the NIR wavelengths which 

in turn lead to dissimilar visible textures in the images. Soft and hard wheat classes have 

starch granules with low and high molecular proteins, respectively (Famera et al., 2004). 

The reflectance intensities at different NIR wavelengths in hyperspectral imaging can be 

attributed to the chemical composition of samples. The Figs. 5.2, 5.3, and 5.4 illustrate 

the NIR reflectance spectra of 13, 16, and 19% m.c. wheat classes, respectively.  

Sivakumar (2007) reported that protein and oil contents of composite samples of 

different western Canadian wheat classes were significantly different. The NIR 

reflectance intensities were different for wheat samples with varying degrees of hardness 

and protein. The NIR absorption of water can be seen at 960 and 1420 nm; protein at 

1470-1500 nm; carbohydrate at 1200-1360 nm and 1610-1700 nm; kernel hardness at 

960-1060 nm, 1330-1480 nm, and 1680 nm; and oil content at 1390 nm in wheat (Wang 

et al., 1999; Delwiche and Massie, 1996; Murray and Williams, 1987). 

In a classification study of fungal-damaged soybean, the NIR wavelength of 1330 

nm was identified as one of the significant wavelengths and related to fiber and starch 

contents of soybean (Wang et al., 2004a). The NIR absorptions of wheat samples 

produced excitations for carbon-hydrogen (CH) and oxygen-hydrogen (OH) combination 

bonds; CH, OH, and nitrogen-hydrogen (NH) 1st overtones, 2nd overtones, and CH 3rd 

overtones in samples (Osborne, 2006).    
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Fig. 5.1. Segmented NIR hyperspectral images acquired at 1330 nm for bulk 

samples of a) CWRS b) CPSR c) CWHWS and d) CWSWS wheat at 13% (left), 

16% (center), and 19% (right) moisture content (wet basis). 

The NIR features at the wavelengths of 1420 and 1440 nm were found significant 

for detecting insects in wheat (Dowell et al., 1999; Toews et al., 2007). 
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Fig. 5.2. Near-infrared (NIR) reflectance spectra of wheat classes that had 13% m.c. 

(wet basis).  

 

 

 

 

 

 

 

 

 

Fig. 5.3. Near-infrared (NIR) reflectance spectra of wheat classes that had 16% m.c. 

(wet basis). 

The NIR reflectance intensities were different for wheat samples with varying 

degrees of hardness and protein. Maghirang et al. (2003) reported that the NIR features at 

1135 and 1325 nm wavelengths were important for detecting insects in wheat. 
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Fig. 5.4. Near-infrared (NIR) reflectance spectra of wheat classes that had 19% m.c. 

(wet basis). 

5.2 Comparison of scores’ images of wheat samples using the PCA 

The PCA was performed for each image individually and the principal component 

scores’ images were examined for determining relationships between image features and 

wheat classes. The first few principal components accounted for the majority of the 

variances of hyperspectral data (> 99%), which was explained in latter sub sections of 

this section. Figures 5.5, 5.6, and 5.7 show the loadings of first principal component 

plotted against wavelengths for wheat classes. The NIR wavelengths of 1260-1380 nm 

had the highest factor loadings out of the full spectral range of 960-1700 nm for all wheat 

samples of 13, 16, and 19% m.c. Baker et al. (1999) found that the NIR features at 1130-

1200 and 1300-1400 nm wavelength regions were significant in detecting parasitized 

Sitophilus oryzae (L.) in wheat. In the wavelength regions of 1060-1160 nm and 1260-

1380 nm, the NIR reflectance spectra of CWRS, CPSR, CWHWS, and CWSWS wheat 

showed variability.   
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Fig. 5.5. The PC1 loadings plot of wheat classes that had 13% m.c. (wet basis)  

The shapes of the reflectance spectra for all wheat classes were similar and 

comparable. In the highest factor loading region, peaks were also identified in the NIR 

reflectance spectra. Singh et al. (2007) found that wavelengths at 1284.2, 1315.8, and 

1347.4 nm had the highest factor loadings for the first principal component (PC1) out of 

20 wavelengths in the region of 1000-1600 nm in the fungal-detection study in wheat. 

 

  

 

 

 

 

 

 

Fig. 5.6. The PC1 loadings plot of wheat classes that had 16% m.c. (wet basis) 
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Fig. 5.7. The PC1 loadings plot of wheat classes that had 19% m.c. (wet basis) 

The first three principal component scores images of wheat classes having 13, 16, 

and 19% m.c. are shown in Figs. 5.8, 5.9, and 5.10, respectively. The principal 

component 1 (PC1) and principal component 2 (PC2) scores images were similar but had 

an opposite display of the germs, the endosperms, and the kernel gaps in segmented 

images for all wheat classes. The germ portions of wheat kernels had higher PC1 scores 

than the rest of the kernel body images. Also, PC2 scores were lower for germ portions 

than the rest of kernel body for all images. The PC3 scores of all images of wheat classes 

accounted for a minority of the variance existing in the data. The PC3 scores images 

could only detect the edges of the kernels in a bulk wheat sample. The PC1 scores 

explained maximum variations of the data and PC2 got the maximum of the rest of the 

variations. As the data in the normal plane were transferred to the principal components 

plane in the PCA, discriminant classifiers such as LDA and QDA could be used for 

classification of wheat using the PCA scores as input.
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Fig. 5.8. The PC1, PC2, and PC3 scores images of wheat samples at a moisture 

content of 13%.  
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Fig. 5.9. The PC1, PC2, and PC3 scores images of wheat samples at a moisture 

content of 16%.  
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Fig. 5.10. The PC1, PC2, and PC3 scores images of wheat samples at a moisture 

content of 19%. 
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5.3 Discriminant classifiers 

 The LDA and QDA were used for performing discriminant analyses in this study. 

The LDA uses the pooled covariance and the QDA considers the individual covariance 

for each class for classification purposes. Equal dispersion of reflectance intensities in all 

wheat classes might lead to an improved performance by the LDA. 

5.3.1 Overall identification of wheat classes 

 Wheat classes and moisture levels were identified independent of each other. At 

each moisture level, i.e., 13, 16, and 19%, 600 images per wheat class (containing 60 

images at each growing location for each crop year) were used for developing the LDA 

and QDA classifiers. In total, 7200 samples were used. In overall identification of wheat 

classes, sample variations among wheat classes and variations within growing locations, 

crop years, and moisture contents were included. To verify the efficiency of classification 

models, a leave-one-out cross validation method was used (Mahesh et al., 2010a and 

2010b). In a similar study, Mahesh et al. (2011) also identified wheat classes and their 

moisture levels for composite CWRS, CWES, CWRW, CWSWS, and CWHWS wheat 

samples, which were conditioned to 12, 14, 16, 18, and 20% moisture contents, by 

scanning bulk samples using the NIR hyperspectral imaging.  

Average classification accuracies of 80.6 and 76.3% were obtained for the LDA 

and the QDA, respectively (Fig 5.11). All CWSWS wheat samples were classified with 

the highest classification accuracies of 88.1 and 95.2% for the LDA and QDA, 

respectively. Classification accuracies of 65.6% were obtained for CWHWS wheat which 

was the lowest in the LDA. The results of the QDA were superior to those of the LDA for 

all wheat classes except for CWRS. Similarly, Mahesh et al. (2011) reported 
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classification accuracies of 61-97% and 82-99% for the LDA and QDA, respectively, for 

identifying wheat classes independent of moisture contents. 

  

 

 

 

 

 

 

 

Fig. 5.11. Overall classification accuracies of identifying western Canadian wheat 

classes using the LDA and QDA classifiers. 

5.3.2 Overall identification of moisture levels  

 Sample variations among moisture levels and variations within growing locations, 

crop years, and wheat classes were included. An input data set of 7200 images in total, 

that were developed by including scanned images of 600 samples for each class at each 

moisture level, were used.  Average classification accuracies were 95.2 and 90.8% for the 

LDA and QDA, respectively, for overall identification of moisture levels (Fig. 5.12). 

Classification accuracies were 99.5 and 91.7%, which were the highest and the lowest, 

for the LDA for identifying wheat with the 13 and 19% m.c., respectively. For the QDA, 

using overall sample set, the classification accuracies were 95 and 83.3%, which were the 



 

78 
 

highest and the lowest, respectively, for identifying the 16 and 13% m.c. wheat, 

respectively.  

 

 

 

 

 

 

 

 

Fig. 5.12. Overall classification accuracies of identifying moisture levels of wheat 

using the LDA and QDA classifiers. 

The pair-wise classification could classify with average classification accuracies 

of 98.1 and 95.2% using the LDA and QDA, respectively (Figs. 5.13 and 5.14). The 

thirteen vs. nineteen pair followed by the thirteen vs. sixteen pair were classified the best 

using the LDA. For the LDA, classification accuracies of 100% were obtained, where 

difference between the moisture levels were high (about 6%), for identifying low (13%) 

and high (19%) moisture wheat. Average classification accuracy was 97.1% for the LDA 

of the wheat samples that had a low difference (about 3%) in their moisture levels. For 

the QDA, using overall sample set for classification, the classification accuracies were 

98.8 and 100%, which were the highest, for identifying the 13% m.c. and the 19% m.c. 

wheat, respectively. The wheat samples, that had about 3% moisture difference, were 

discriminated with average classification accuracies of 93.2%. 



 

79 
 

 

 

 

 

 

 

 

 

Fig. 5.13. Pair-wise classification accuracies of identifying moisture levels of wheat 

using the LDA classifier. 

 

 

 

 

 

 

 

 

 

Fig. 5.14. Pair-wise classification accuracies of identifying moisture levels of wheat 

using the QDA classifier.  

Procedure STEPDISC was used to identify the relative importance of NIR 

reflectance features towards classification. Table 5.1 shows the input features (related 

wavelengths are shown) that were ranked in descending order based on contribution to 
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the discriminant models. Top ten features included the NIR reflectance intensities in the 

wavelength regions of 1220-1230, 1320-1400, and 1630-1660 nm for overall 

identification of moisture contents. Rankings of the pair-wise discrimination included the 

NIR reflectance features from the wavelength regions of 1140-1250, 1330-1420 nm, and 

1630-1660 nm. Wavelength regions identified for overall classification were within the 

regions recognized by the pair-wise discrimination of moisture contents. In a related 

study, Mahesh et al. (2011) identified that the NIR wavelengths of 1260-1360 nm were 

important for discriminating wheat at different moisture levels that were ranged from 12 

to 20% with a 2% increase for each level.   

Table 5.1. The top 10 features, in descending order, based on their contribution 

towards classification accuracy for wheat moisture identification while using non-

parametric classifiers with all features as inputs. 

Rank 
Top 10 wavelengths for pair-wise discrimination (nm) 

Overall 
moisture (nm) 

13% vs. 16% 16% vs. 19% 13% vs. 19% 

1 1660 1570 1330 1660 
2 1320 1400 1250 960 
3 1220 1640 1140 1400 
4 1330 1190 1220 1630 
5 990 1330 960 1190 
6 1070 1410 1200 1650 
7 1230 1630 1070 1410 
8 970 1220 1340 1340 
9 1400 1420 1210 1570 
10 1630 1650 1150 1200 

5.3.3 Identification of wheat classes at 13% m.c. independent of growing locations 

and crop years  

 An attempt was made to classify wheat classes independent of growing locations 

and crop years at a uniform moisture level of 13%. As the chemical compositions of 
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wheat classes were different, it seemed possible to classify with higher accuracies wheat 

classes at the same moisture content. The input data set of 600 images per class 

(containing 60 images at each growing location for each crop year) was used for non-

parametric classifiers. Sample variations among wheat classes and variations within 

growing locations and crop years were included. To verify the efficiency of classifiers, a 

leave-one-out cross validation method was used. In this type of validation, discriminant 

models were developed by excluding one observation for each cycle randomly from the 

data set. Later, these models were validated using the excluded data set. The validation 

accuracy for each cycle was recorded. This cycle was performed ‘n’ times where ‘n’ was 

equal to the number of input samples.  

For the non-parametric classifiers, using the NIR reflectance features of wheat 

that had 13% m.c., the average classification accuracies were 95.4 and 92.3% for the 

LDA and QDA, respectively. In the LDA model, classification accuracies of 86.5-99% 

were obtained in which CWHWS wheat had the lowest accuracy of 86.5%. This could be 

because of the fact that CWHWS had overlapping intrinsic qualities (e.g., protein, 

hardness, starch, oil content, and moisture) with other wheat classes. Average posterior 

probabilities of wheat classes classified into a correct class ranged from 0.97 to 0.99. 

Classification accuracies of 84.5-100% were achieved in the QDA model. In this model, 

average posterior probabilities were 0.98-1.00. The classification accuracies of wheat 

classes independent of growing locations and crop years using the LDA and QDA models 

are given in Fig. 5.15. Wheat classes were identified with accuracies of about 100% using 

the differences in fluorescence properties of different wheat parts, which included 

pericarp, aleurone layer, and endosperm, and protein and hardness (Irving et al., 1989). 
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Majumdar et al. (2000) reported that morphological resemblance might lead to 

misclassification using digital images of wheat.    

 

 

 

 

 

 

 

 

 

Fig. 5.15. Classification accuracies of identifying wheat classes that had 13% m.c. 

using the LDA and QDA classifiers. 

5.3.4 Identification of wheat classes at 16% m.c. independent of growing locations 

and crop years 

 Four sets of six hundred images per class (60 images at each growing location for 

each crop year in each class) were used for the statistical classification to identify wheat 

that had 16% m.c. Sample variations among wheat classes and variations within growing 

locations and crop years were included for modeling. A leave-one-out cross validation 

method was used for validating the performance of classifiers. Classification accuracies 

of 91.8-95.8% and 94-98.3% were obtained for the LDA and QDA, respectively (Fig. 

5.16). The mean classification accuracies with the LDA and QDA were 93.1 and 96.4%, 

respectively. Canada Western Red Spring wheat followed by CWHWS wheat were 
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classified the best using the LDA. For the QDA, higher classification accuracies of 98.3 

and 96.8% were obtained for CWSWS and CWRS, respectively. The lowest 

classification accuracies of 91.8 and 94% were obtained, for the LDA and QDA, for 

CPSR and CWHWS wheat, respectively.  Singh et al. (2007) investigated fungal 

detection in wheat using the NIR hyperspectral imaging and reported 97.8% of average 

classification accuracy for identifying infected kernels using the LDA. 

 

 

 

 

 

 

 

 

Fig. 5.16. Classification accuracies of identifying wheat classes that had 16% m.c. 

using the LDA and QDA classifiers. 

5.3.5 Identification of wheat classes at 19% m.c. independent of growing locations 

and crop years 

 Sixty hyperspectral images acquired from each location- and crop year-specific 

bulk samples of wheat were used for developing the input data set. The full set, 2400 

images in total, was used to develop non-parametric statistical classifiers to identify 

wheat that had 19% m.c. A leave-one-out cross validation method was used to confirm 

the performance of classifiers. Classification accuracies were 88.5-98.6% and 95.5-98.3% 
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for the LDA and the QDA models, respectively, for identifying wheat classes at a 

moisture level of 19% (Fig. 5.17). Average classification accuracies were 93.9 and 96.5% 

for the LDA and QDA, respectively. The results of the QDA were superior to those of the 

LDA for all wheat classes except for CWRS. Canada Western Red Spring and CPSR 

wheat were discriminated with high classification accuracies of 98.6 and 98.3%, for the 

LDA and QDA, respectively. The classification accuracies of QDA were superior to 

those of LDA for all wheat classes except CWRS.    

 

 

 

 

 

 

 

 

Fig. 5.17. Classification accuracies of identifying wheat classes that had 19% m.c. 

using the LDA and QDA classifiers. 

Procedure STEPDISC was used to identify top 10 ranked features, which are 

presented in Table 5.2, based on their contribution towards classification for the non-

parametric classifiers. Top ten features included the NIR features in the wavelength 

regions of 1080-1110 and 1300-1380 nm for overall identification of wheat classes. 

Rankings for the identification of wheat classes at each specific moisture level included 

the NIR reflectance features from the wavelength regions of 1110-1130, 1200-1260, 



 

85 
 

1290-1420, and 1660-1700 nm. Wavelength regions identified for overall class 

identification was mostly within the regions recognized by the classification of wheat at 

specific moisture levels. 

Table 5.2. The top 10 features, in descending order, based on their contribution 

towards classification accuracy for wheat class identification while using non-

parametric classifiers with all features as inputs. 

Rank 

Top 10 wavelengths identified using a stepwise discrimination 
method (nm) 

Overall classes Classes with 
13% m.c.  

Classes with 
16% m.c.  

Classes with 
19% m.c.  

1 1300 1030 1350 1700 
2 1100 1130 1460 1210 
3 1340 1260 1390 1010 
4 960 1300 1700 1530 
5 1490 1340 1130 1080 
6 1210 1500 1080 1380 
7 1380 1210 1290 1040 
8 1660 1380 1210 1110 
9 1080 1660 1200 1350 
10 1110 1680 1420 1390 

5.3.6 Pair-wise classification of wheat  

 Two-class LDA and QDA classifiers were tested for identifying wheat classes. 

Overall identification and identification of wheat classes at each moisture level were 

performed for the following combinations: CWRS versus CPSR, CWRS versus 

CWHWS, CWRS versus CWSWS, CPSR versus CWHWS, CPSR versus CWSWS, and 

CWHWS versus CWSWS. 

5.3.6.1 Identification of wheat classes using the full data set 

Pair-wise discriminant classifiers such as LDA and QDA with an independent 

sample set of 1800 bulk samples (600 samples in each moisture level × 3 moisture levels) 
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in each wheat class were developed. A leave-one-out cross validation was used for 

validating model performances. Classification accuracies were 88.6-97.6% and 48.1-

100% for the LDA and QDA, respectively, for identifying wheat classes (Figs. 5.18 and 

5.19). Average classification accuracies of 93.1 and 83.9% were obtained for the LDA 

and QDA, respectively. In the LDA, the classification accuracies were high for the 

CWRS versus CWSWS followed by CPSR versus CWSWS. Both red wheat (CWRS vs. 

CPSR) and white wheat (CWHWS vs. CWSWS) classes were identified with average 

classification accuracies of 93.6 and 91.6%, respectively. The CPSR versus CWSWS and 

CWHWS versus CWSWS were superior pairs in the QDA. Wheat classes, which were 

compared with other wheat classes except CWRS, were discriminated with high 

accuracies of above 90% using the QDA. Overall, the LDA gave better results than the 

QDA. 

 

 

 

 

 

 

 

 

Fig. 5.18. Pair-wise classification accuracies of identifying wheat classes using the 

LDA classifier.  
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Fig. 5.19. Pair-wise classification accuracies of identifying wheat classes using the 

QDA classifier. 

Relative importance of the NIR features towards classification was found using 

the procedure STEPDISC of SAS. Table 5.3 shows top 10 features that were ranked 

based on their contribution towards classification for non-parametric classifiers. Top ten 

features included the NIR features in the wavelength regions of 1060-1180, 1200-1250, 

1300-1470, and 1610-1700 nm for pair-wise identification of wheat classes. The NIR 

reflectance features in the wavelength region of 1100-1300 nm relate to C-H 1st and 2nd 

overtones, and C-H combination band. In this wavelength region, starch molecules of 

samples absorb the NIR radiation.  
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Table 5.3. The top 10 features, in descending order, based on their contribution 

towards pair-wise classification accuracy for overall identification of wheat classes 

while using non-parametric classifiers with all features as inputs. 

Rank 

Top 10 wavelengths for pair-wise discrimination (nm) 
CWRS 
vs. 
CPSR 

CWRS vs. 
CWHWS 

CWRS vs. 
CWSWS 

CPSR vs. 
CWHWS 

CPSR vs. 
CWSWS 

CWHWS 
vs. 
CWSWS 

1 1690 1300 1300 1300 1340 1120 
2 690 1330 1500 1110 1060 1340 
3 1530 1350 1640 1700 1460 1140 
4 1030 1660 1070 960 1210 1060 
5 1080 1420 1210 1000 1000 1170 
6 1110 1640 1470 1210 1100 1450 
7 1670 1640 1650 1380 1450 1380 
8 1660 1230 1110 1170 1250 1310 
9 1060 980 1530 1250 1160 1200 
10 1610 1160 1420 1690 1180 1070 

5.3.6.2 Identification of wheat classes at 13% m.c. 

 Figures 5.20 and 5.21 show classification accuracies of two-class identification of 

wheat, which had 13% m.c., using non-parametric statistical LDA and QDA classifiers, 

respectively. Compared to the accuracies of identifying wheat using the full data set, 

classification accuracies were improved significantly for wheat classes that had uniform 

moisture levels of 13, 16, and 19%. This can be attributed to the elimination of moisture 

variations from the input data set. Average classification accuracies were 98.8 and 97.4% 

for the pair-wise LDA and QDA classifiers, respectively.  

Classification accuracies for the QDA were improved considerably. The CWRS 

wheat samples were identified with perfect accuracies of 100% when they were 

discriminated against CPSR and CWHWS wheat classes. Overall, the accuracies of the 

pair-wise classification using the non-parametric discriminant classifiers were very high 
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(greater than 97%). In a similar classification study, the highest classification accuracies 

of 95.3-99.3% were reported for classifying healthy and midge-damaged wheat kernels 

using the NIR reflectance features combined with the top 10 colour image features (Singh 

et al., 2010). 

 

 

 

 

 

 

 

 

 

Fig. 5.20. Pair-wise classification accuracies of identifying wheat classes that had 

13% m.c. using the LDA classifier. 

The top 10 ranked features were identified using the procedure STEPDISC for the 

non-parametric classification (Table 5.4). Relative importance of input features towards 

classification was used to rank the features in the descending order.   
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Fig. 5. 21. Pair-wise classification accuracies of identifying wheat classes that had 

13% m.c. using the QDA classifier. 

Top ten features included the NIR features in the wavelength regions of 960-

1070, 1120-1210, 1290-1390, and 1570-1700 nm. 

Table 5.4. The top 10 features, in descending order, based on their contribution 

towards pair-wise classification accuracy for class identification for 13% m.c. wheat 

while using non-parametric classifiers with all features as inputs. 

Rank 

Top 10 wavelengths for pair-wise discrimination (nm) 
CWRS 
vs. 
CPSR 

CWRS vs. 
CWHWS 

CWRS vs. 
CWSWS 

CPSR vs. 
CWHWS 

CPSR vs. 
CWSWS 

CWHWS 
vs. 
CWSWS 

1 980 1030 1320 1310 1700 1120 
2 1350 1070 1270 1340 1340 1170 
3 1200 1390 960 1200 1500 1500 
4 1300 960 1470 1700 1300 1400 
5 1330 1690 1070 1680 1030 1060 
6 1290 1670 1180 1070 1210 1190 
7 1690 970 1660 1640 1320 1700 
8 1360 1450 1570 1170 1640 1010 
9 1450 1600 1200 1160 1240 1450 
10 1600 1060 1630 1500 1570 1390 
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5.3.6.3 Identification of wheat classes at 16% m.c. 

 Six hundred samples from each wheat class, which had 16% m.c., were used as 

input for the pair-wise discrimination using the LDA and QDA. Average classification 

accuracies were 98 and 98.5% for the LDA and QDA, respectively. Classification 

accuracies attained during the pair-wise discrimination process are shown in Figs. 5.22 

and 5.23. The elimination of moisture variations from the input data set improved 

classification accuracies of pair-wise comparisons of wheat. The LDA showed consistent 

and very high classification accuracies that ranged from 94.5-99.8%. 

 

 

 

 

 

 

 

 

Fig. 5.22. Pair-wise classification accuracies of identifying wheat classes that had 

16% m.c. using the LDA classifier. 

Figure 5.23 indicates that a reduced set of features, which had no moisture effects, 

improved classification accuracies for the QDA. Near-perfect classification accuracies of 

greater than 96.5% were obtained for the QDA for all two-class combinations of wheat. 

The significant amount of variations in hardness and protein content of wheat leads to 

high identification accuracies for non-parametric classifiers.  



 

92 
 

 

 

 

 

 

 

 

 

Fig. 5.23. Pair-wise classification accuracies of identifying wheat having 16% m.c. 

using the QDA classifier. 

Procedure STEPDISC of SAS was used for finding out the relative importance of 

input features towards classification. Table 5.5 shows the top 10 rankings of features 

which were categorized based on their contributions to classification. Among the top 10 

features, the NIR reflectance intensities of wavelengths in the regions of 960-1080, 1160-

1210, 1270-1470, and 1640-1700 nm were present. Maghirang and Dowell (2003) 

reported that the NIR wavelengths of 1100, 1200, 1380, 1450, and 1670 nm were 

contributed mainly in predicting hardness of wheat samples. The NIR absorption of 

water, protein, and carbohydrate can be seen at 960 and 1420; 1470-1500; 1200-1360 and 

1610-1700 nm, respectively. Wavelengths of 960-1060, 1330-1480, and 1680 nm relate 

to the NIR absorption of hardness. Variations in oil content of wheat samples can be seen 

at differences in the NIR absorption at 1390 nm. In another study, The NIR absorption of 

wheat in the wavelength of 1480 nm is attributed to protein content of samples (Delwiche 

and Massie, 1996).   
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Table 5.5. The top 10 features, in descending order, based on their contribution 

towards pair-wise classification accuracy for class identification for 16% m.c. wheat 

while using non-parametric classifiers with all features as inputs. 

Rank 

Top 10 wavelengths for pair-wise discrimination (nm) 
CWRS 
vs. 
CPSR 

CWRS vs. 
CWHWS 

CWRS vs. 
CWSWS 

CPSR vs. 
CWHWS 

CPSR vs. 
CWSWS 

CWHWS 
vs. 
CWSWS 

1 1540 1530 1700 1700 1330 1310 
2 1130 1640 1210 960 1470 1470 
3 1080 1420 1460 1210 1380 1400 
4 1040 1320 1390 1200 1210 1460 
5 1570 1210 1280 1330 1130 1570 
6 1350 1380 1430 1040 1000 1200 
7 1680 960 1400 1080 1590 1660 
8 1660 1160 1270 1070 970 960 
9 1160 1540 1540 1160 980 970 
10 1290 1650 1640 1000 1700 1170 
 

5.3.6.4 Identification of wheat classes at 19% m.c. 

 Pair-wise discriminant classifiers were developed for identifying wheat classes 

that had uniform moisture levels of 19%. An independent sample set of 600 reflectance 

spectra for each wheat class, in total 1200 samples per treatment, was used. The 

performance of classifiers was validated using a leave-one-out cross validation method. 

Classification accuracies of the LDA and QDA are shown in Figs. 5.24 and 5.25, 

respectively. Average classification accuracies of 97.6 and 98.6 were obtained for the 

LDA and QDA, respectively. Wheat classes were identified with accuracies of 92.3-99.5 

and 97-100%, for the LDA and QDA, respectively. Canada Western Red Spring wheat 

was identified with near-perfect accuracies of 99.3 and 99.5%, when compared to CPSR 

and CWSWS, respectively, using the LDA.   
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Fig. 5.24. Pair-wise classification accuracies of identifying wheat classes that had 

19% m.c. using the LDA classifier. 

 

 

 

 

 

 

 

 

Fig. 5.25. Pair-wise classification accuracies of identifying wheat classes that had 

19% m.c. using the QDA classifier. 

Using the QDA, classification accuracies, which were above 97%, were more 

superior to those of the LDA. It is apparent that variations in intrinsic qualities such as 

hardness, protein, and starch content of wheat lead to very high pair-wise identification 



 

95 
 

accuracies. The procedure STEPDISC was used for finding out the relative importance of 

input features for classifying pair-wise the wheat classes having 19% m.c. Table 5.6 

shows the top 10 features that were ranked based on their contribution to classification. 

The NIR reflectance intensities of wavelengths in the regions of 960-1210, 1300-1380, 

1490-1570, and 1650-1700 nm were identified in the rankings. 

Table 5.6. The top 10 features, in descending order, based on their contribution 

towards pair-wise classification accuracy for class identification for 19% m.c. wheat 

while using non-parametric classifiers with all features as inputs. 

Rank 

Top 10 wavelengths for pair-wise discrimination (nm) 
CWRS 
vs. 
CPSR 

CWRS vs. 
CWHWS 

CWRS vs. 
CWSWS 

CPSR vs. 
CWHWS 

CPSR vs. 
CWSWS 

CWHWS 
vs. 
CWSWS 

1 1700 1700 1300 1700 1340 1300 
2 960 960 1500 1110 1100 1680 
3 1540 1540 1210 1250 1570 1110 
4 1570 1210 1700 1360 1690 1040 
5 980 1360 1670 1350 1250 1140 
6 1490 1670 1080 1380 1360 1100 
7 1650 1050 1160 1210 1350 1050 
8 1010 1160 1430 1520 1330 1700 
9 1080 1690 1110 1570 1140 1260 
10 1040 1040 1050 1170 1040 1180 

 

5.3.7 Growing locations 

5.3.7.1 Identification of growing locations of wheat independent of crop years   

A study was conducted to identify wheat classes at 13, 16, and 19% m.c. based on 

growing locations. It was hypothesized that sample variations of wheat classes among 

growing locations were significantly different. Variations among crop years within a 

wheat class were included in non-parametric classifiers. The data set of 600 image cubes 
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in wheat class, 2400 image cubes in total, was included for analyses. A leave-one-out 

cross validation method was used and validation accuracies were reported.  

Average classification accuracies of 91.4-99.6% and 86.8-99.6% were obtained 

for the LDA and QDA, respectively. The LDA performed better than the QDA for 

identifying growing locations of wheat that had 13% m.c. (Table 5.7). The highest 

classification accuracies (100%) were reached when classifying CWHWS from all 

growing locations except from ‘Limerick’, CWRS from ‘Melfort’, and CWSWS from 

‘Kenton’ using the LDA. The classification accuracy of 73.3% was the lowest using the 

LDA when identifying CWSWS from ‘Jansen’. The CWHWS wheat from locations 

‘Limerick’ and ‘Mather’ and CWRS wheat from ‘Tisdale’ had the highest classification 

accuracy of 100% using the QDA. Wheat (CWSWS) from ‘Wilkie’ had 73.3% of 

classification accuracy that was the lowest in the QDA. The average classification 

accuracies ranged from 91-99% and 86-99% using the LDA and QDA, respectively, 

when identifying growing locations of wheat independent of crop years (Table 5.7). 
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Table 5.7. Classification accuracies of identifying growing locations near the listed towns (independent of crop years) using the 

linear discriminant analysis (LDA) and the quadratic discriminant analysis (QDA) for 13% m.c. wheat. 

 CPSR  CWHWS  CWRS  CWSWS 

Location 
LDA 

(%) 

QDA 

(%) 
Location 

LDA  

(%) 

QDA 

(%) 
Location 

LDA 

(%) 

QDA 

(%) 
Location 

LDA 

(%) 

QDA 

(%) 

Edmonton 88.3 90.8 Churchbridge 100 98.3 Corning 94.1 98.3 Corning 98.3 99.1 

Rosemary 84.1 87.5 Kenton 100 99.1 Dauphin 97.5 97.5 Jansen 73.3 82.5 

Viking 90.8 89.1 Limerick 98.3 100 Domain 99.1 95 Kenton 100 96.6 

Wainwright 94.1 80.0 Mather 100 100 Melfort 100 99.1 Nokomis 95.8 79.1 

Corning 98.3 * Shaunavon 100 98.3 Tisdale 98.3 100 Wilkie 90 73.3 

Unity 100 *          

Average 92.6 86.8  99.6 99.1  97.8 97.9  91.4 86.1 

* As wheat samples from CPSR at locations ‘Unity’ and ‘Corning’ were received only from crop years 2008 and 2009, respectively, 

the classification accuracy of identifying these growing locations using the QDA were 0% and were not included for calculating 

overall classification accuracies. 
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Average classification accuracies were 90.5-97.1 and 85.6-96.0% for the LDA 

and QDA, respectively, for identifying growing locations of the 16% moisture content 

wheat. The highest classification accuracy (100%) was reached when classifying CPSR 

wheat from ‘Corning’ using the LDA for the 16% m.c. wheat. Classification accuracy of 

80.8% was the lowest using the LDA when identifying CWRS from ‘Corning’. The 

CWSWS from growing location ‘Jansen’ had the highest classification accuracy of 100% 

using the QDA. The CWRS from growing location ‘Melfort’ had 80% of classification 

accuracy that was the lowest using the QDA. The average classification accuracies 

ranged from 90.5-97.1% and 85.6-96% using the LDA and QDA, respectively, when 

identifying growing locations of 16% m.c. wheat independent of crop years (Table 5.8).  

For identifying growing locations of the 19% m.c. wheat independent of crop 

years, average classification accuracies were 85.9-96.3% and 80.6-90.3% using the LDA 

and QDA, respectively (Table 5.9). For the 19% m.c. CPSR wheat, classification 

accuracies were comparatively low, which were 70.8-100 and 75-87.5%, for the LDA 

and QDA classifiers, respectively. Average classification accuracies of CWHWS wheat 

using the LDA and QDA were higher than the accuracies for other classes (LDA=96.3%; 

QDA=90.3%). Overall, in the non-parametric statistical classifiers, performance of the 

LDA was superior to that of the QDA for all moisture levels of wheat samples.  
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Table 5.8. Classification accuracies of identifying growing locations near the listed towns (independent of crop years) using the 

linear discriminant analysis (LDA) and the quadratic discriminant analysis (QDA) for 16% m.c. wheat. 

 CPSR  CWHWS  CWRS  CWSWS 

Location 
LDA 

(%) 

QDA 

(%) 
Location 

LDA 

(%) 

QDA 

(%) 
Location 

LDA 

(%) 

QDA 

(%) 
Location 

LDA 

(%) 

QDA 

(%) 

Edmonton 99.1 99.1 Churchbridge 85 94.1 Corning 80.8 83.3 Corning 99.1 98.3 

Rosemary 80.8 84.1 Kenton 94.1 90 Dauphin 86.6 92.5 Jansen 99.1 100 

Viking 91.6 87.5 Limerick 98.3 88.3 Domain 99.1 89.1 Kenton 97.5 94.1 

Wainwright 91.6 82.5 Mather 92.5 82.5 Melfort 93.3 80 Nokomis 92.5 97.5 

Corning 100 * Shaunavon 97.5 82.5 Tisdale 92.5 83.3 Wilkie 97.5 90 

Unity 96.6 *          

Average 93.3 88.3  93.5 87.5  90.5 85.6  97.1 96.0 

* As wheat samples from CPSR at locations ‘Unity’ and ‘Corning’ were received only from crop years 2008 and 2009, respectively, 

the classification accuracy of identifying these growing locations using the QDA were 0% and were not included for calculating 

overall classification accuracies.  
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Table 5.9. Classification accuracies of identifying growing locations near the listed towns (independent of crop years) using the 

linear discriminant analysis (LDA) and the quadratic discriminant analysis (QDA) for the 19% m.c. wheat. 

 CPSR  CWHWS  CWRS  CWSWS 

Location 
LDA 

(%) 

QDA 

(%) 
Location 

LDA 

(%) 

QDA 

(%) 
Location 

LDA 

(%) 

QDA 

(%) 
Location 

LDA 

(%) 

QDA 

(%) 

Edmonton 81.6 75 Churchbridge 94.1 83.3 Corning 91.6 84.1 Corning 81.6 80 

Rosemary 81.6 75.8 Kenton 96.6 90 Dauphin 95 96.6 Jansen 100 92.5 

Viking 70.8 87.5 Limerick 100 90.8 Domain 86.6 79.1 Kenton 98.3 95 

Wainwright 81.6 84.1 Mather 92.5 93.3 Melfort 83.3 78.3 Nokomis 88.3 80.8 

Corning 100 * Shaunavon 98.3 94.1 Tisdale 100 78.3 Wilkie 96.6 94.1 

Unity 100 *          

Average 85.9 80.6  96.3 90.3  91.3 83.3  93.0 88.5 

* As wheat samples from CPSR at locations ‘Unity’ and ‘Corning’ were received only from crop years 2008 and 2009, respectively, 

the classification accuracy of identifying these growing locations using the QDA were 0% and were not included for calculating 

overall classification accuracies. 
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5.3.8 Crop years 

5.3.8.1 Identification of crop years of wheat independent of growing locations 

 Non-parametric classifiers were used for identifying crop years of wheat 

independent of growing locations. The CPSR wheat was the only class that was obtained 

for the crop year 2007. The rest of the sample set of CPSR wheat, which was received 

from 4-5 locations, was collected for the crop years 2008 and 2009, respectively. For all 

the other wheat classes, samples were received from five different locations for crop 

years 2008 and 2009. For the 13, 16, and 19% m.c. wheat, average classification 

accuracies using the QDA were greater than those for the LDA (Tables 5.10, 5.11, and 

5.12).  

In the 13% m.c. wheat, classification accuracies were 76.3-99.6% for classifying 

crop years using the LDA. The QDA had 84.6-100% classification accuracies for 

identifying crop year independent of growing locations. Near-perfect accuracies of above 

98% were obtained for the CWHWS wheat for both LDA and QDA. Lower accuracies of 

76.3-90% were obtained for CWSWS for non-parametric classifiers. Mahesh et al. 

(2010a and 2010b) reported that differing amounts of quality parameters (protein, starch, 

moisture, and hardness) in wheat samples can be related to higher classification 

accuracies for discriminating crop years using non-parametric classifiers.    
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Table 5.10. Classification accuracies of identifying crop years (independent of 

growing locations) using the linear discriminant analysis (LDA) and the quadratic 

discriminant analysis (QDA) models for 13% m.c. wheat. 

Crop year 
CPSR CWHWS CWRS CWSWS 

LDA QDA LDA QDA LDA QDA LDA QDA 

2007 98.3 *       

2008 92.9 94.1 98 99.6 98.6 99.3 79.3 84.6 

2009 93.6 97.3 99.6 99 96.6 100 76.3 90 

Average 94.9 95.7 98.8 99.3 97.6 99.7 77.8 87.3 

* As CPSR wheat was the only class that was received from 2007, the classification 

accuracy in the QDA was 0% and it was not included for calculating average 

classification accuracies. 

Classification accuracies were 70.5-95.5 and 90.2-97.5% for the LDA and QDA, 

respectively, for identifying crop years of wheat classes that had 16% m.c. High (99.1%) 

and low (82.6%) average classification accuracies were obtained for the CWHWS and 

CWSWS, respectively, for non-parametric classifiers. The performance of the QDA for 

identifying growing locations was better for all wheat classes except CWRS than that of 

the LDA. Similarly, Delwiche and Graybosch (2002) reported classification accuracies of 

42-71% for identifying waxy wheat using a linear discriminant function with 1-10 

principal component scores as input. The same authors also concluded that classification 

accuracies of 46-71% were possible to identify waxy wheat using a quadratic 

discriminant function with the same input criteria.  
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Table 5.11. Classification accuracies of identifying crop years (independent of 

growing locations) using the linear discriminant analysis (LDA) and the quadratic 

discriminant analysis (QDA) models for 16% m.c. wheat. 

Crop year 
CPSR CWHWS CWRS CWSWS 

LDA QDA LDA QDA LDA QDA LDA QDA 

2007 100 *       
2008 88.7 92.5 92.3 97.6 88.6 95.3 71.6 93 
2009 91.6 91.6 98.6 97.3 93.3 94.6 69.3 87.3 
Average 93.4 92.1 95.5 97.5 91.0 95.0 70.5 90.2 
* As CPSR wheat was the only class that was received from 2007, the classification 

accuracy in the QDA was 0% and it was not included for calculating average 

classification accuracies. 

Table 5.12. Classification accuracies of identifying crop years (independent of 

growing locations) using the linear discriminant analysis (LDA) and the quadratic 

discriminant analysis (QDA) models for 19% m.c. wheat. 

Crop year 
CPSR CWHWS CWRS CWSWS 

LDA QDA LDA QDA LDA QDA LDA QDA 

2007 91.6 *       
2008 98.3 92.5 92.3 93 84 92 80.6 87 
2009 87.6 96.6 93.3 97.6 79 87 86.6 88.6 
Average 92.5 94.5 92.8 95.3 81.5 89.5 83.6 87.8 
* As CPSR wheat was the only class that was received from 2007, the classification 

accuracy in the QDA was 0% and it was not included for calculating average 

classification accuracies. 
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For the 19% m.c. wheat, average classification accuracies were 81.5-92.8% and 

87.8-95.3% using the LDA and QDA, respectively. Accuracies were high for CPSR and 

CWHWS wheat for identifying crop years. In related studies, classification accuracies of 

94-100% and 86-100% were reported using the LDA and QDA, respectively, in 

identifying composite samples of western Canadian wheat classes with a moisture 

content of 11% (Mahesh et al., 2008). The average classification accuracy of the LDA 

using the top 90 wavelet features was the highest (99.1%) in a study conducted to identify 

wheat classes from the NIR hyperspectral images of bulk samples (Choudhary et al., 

2009). 

5.3.9 Identification of key wavelengths 

Procedure STEPDISC was used to find out the relative importance of the NIR 

reflectance features towards classification. Table 5.13 shows the rankings of the features 

that were categorized based on their contributions in the descending order to the 

discriminatory power of the model for the 13% m.c. wheat. The stepwise discrimination 

method identified important wavelengths that contributed mostly to identify growing 

locations independent of crop years and to separate wheat classes based on crop years 

independent of growing locations. For the 13% m.c. wheat, features at the wavelengths in 

the NIR regions of 1000-1100, 1260-1380, and 1650-1700 nm were found important in 

identifying growing locations independent of crop years for wheat. A similar trend was 

observed for separating wheat samples based on crop years independent of growing 

locations. Similar NIR hyperspectral imaging studies showed that the NIR absorption of 

water, protein, and carbohydrate can be observed at 960 and 1420; 1470-1500; 1200-

1360 and 1610-1700 nm, respectively.  
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Table 5.13. The top 10 features, in descending order, based on their contribution 

towards classification accuracy for a) identifying growing locations independent of 

crop years and b) identifying crop years independent of growing locations for the 

13% m.c. wheat while using non-parametric classifiers with all features as inputs. 

Rank 

a) Top 10 wavelengths for 

identifying growing locations 

independent of crop years (nm) 

b) Top 10 wavelengths for 

identifying crop years 

independent of growing 

locations (nm) 

CWRS CPSR CWHWS CWSWS CWRS CPSR CWHWS CWSWS 
1 1680 1690 1700 1700 1700 1350 1100 1540 
2 1700 1570 1530 1690 1670 1190 1360 1690 
3 1670 1270 1270 1370 1680 1280 1070 1670 
4 1690 1050 1680 1680 1690 1590 1190 1700 
5 1310 1700 1190 1480 1310 1030 1210 1130 
6 1080 1210 1690 1670 1240 1070 1050 1660 
7 1020 1670 1310 1260 1540 1700 1240 1120 
8 1580 1060 1140 1390 1640 1060 1180 1090 
9 1660 1260 1100 1210 1080 1690 1610 960 
10 1270 1470 1360 1240 1160 1460 1400 1290 

 

Table 5.14 shows rankings of features (corresponding wavelengths are shown), 

which are crucial for finding growing locations independent of crop years and crop years 

independent of growing locations, in the regions of 1100-1200, 1260-1390, and 1650-

1700 nm. The complexity of the nature of intrinsic components of wheat needs further 

investigation, which was performed in latter sections, to arrive at a chemical meaning for 

peak wavelengths. Variations in oil content of wheat samples can be noticed at 

differences in the NIR absorption at 1390 nm. 
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Table 5.14. The top 10 features, in descending order, based on their contribution 

towards classification accuracy for a) identifying growing locations independent of 

crop years and b) identifying crop years independent of growing locations for the 

16% m.c. wheat while using non-parametric classifiers with all features as inputs. 

Rank 

a) Top 10 wavelengths for 

identifying growing locations 

independent of crop years (nm) 

b) Top 10 wavelengths for 

identifying crop years 

independent of growing 

locations (nm) 

CWRS CPSR CWHWS CWSWS CWRS CPSR CWHWS CWSWS 
1 1700 1290 1290 1620 1510 1690 1700 1620 
2 1110 1010 1590 1700 1090 1190 1110 1140 
3 1670 1700 1190 1680 1060 1450 1660 1160 
4 1350 1690 1310 1090 1100 1350 1000 1020 
5 1210 960 1510 1350 1400 1110 970 1570 
6 1690 1560 1210 1110 1110 1140 1090 1380 
7 1450 1260 1700 1100 1050 1680 1160 1240 
8 1130 1210 960 1020 960 1470 1690 1230 
9 1230 1310 1690 1320 1000 1030 1210 1170 
10 1320 1360 1110 1080 970 1000 1010 1370 

 

The procedure STEPDISC was used for finding out the relative importance of 

input features for identifying crop years and growing locations of wheat samples that had 

19% m.c. Table 5.15 shows the top 10 features (related wavelengths are shown) that were 

identified and ranked based on their contribution in the descending order. The NIR 

reflectance intensities of wavelengths in the regions of 960-1210, 1300-1380, 1490-1570, 

and 1650-1700 nm were identified. Similar studies identified that wavelengths of 960-

1060, 1330-1480, and 1680 nm associate to the NIR absorption of hardness.  
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Table 5.15. The top 10 features, in descending order, based on their contribution 

towards classification accuracy for a) identifying growing locations independent of 

crop years and b) identifying crop years independent of growing locations for the 

19% m.c. wheat while using non-parametric classifiers with all features as inputs. 

Rank 

a) identifying growing locations 

independent of crop years (nm)  

b) identifying crop years 

independent of growing 

locations (nm) 

CWRS CPSR CWHWS CWSWS CWRS CPSR CWHWS CWSWS 
1 1700 1700 1700 1290 1510 1680 1700 1060 
2 1380 1670 1510 1700 1260 1700 1300 1640 
3 1450 1690 1290 1670 1200 1690 1580 1700 
4 1110 1030 1110 1130 1210 1460 1130 1680 
5 1670 1140 1130 1210 1700 1360 1060 1270 
6 1210 1460 1330 1020 1690 1060 1370 990 
7 1300 1210 1000 1690 1080 1140 1230 1510 
8 1120 1290 1030 1140 1050 1510 1030 1670 
9 1220 1190 1660 1150 1110 1670 1630 1170 
10 1570 1090 1690 1080 960 1210 1160 1380 

 

In the current study, the results showed that The LDA and QDA had very superior 

classification for four-class and pair-wise discrimination of wheat classes using moisture-

specific samples. In a related study, Mahesh et al. (2011) used the LDA and QDA to 

identify wheat classes, which had varying moisture levels, with accuracies of 61-97 and 

82-99%, respectively, free from the effect of moisture contents. Once wheat classes were 

identified, 90-100 and 72-99% of classification accuracies were attained using the LDA 

and QDA, respectively, to identify specific moisture levels. Reflectance features at 1060, 

1090, 1340, and 1450 nm were ranked at top to identify wheat at varying levels of 
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moisture. In another NIR hyperspectral imaging study on wheat, classification accuracies 

of 85-100% were reported for identifying healthy and insect-damaged wheat kernels 

using the LDA and QDA (Singh et al., 2007).  

5.4 Back propagation neural network (BPNN) classifiers for identifying moisture 

levels and wheat classes  

 Previous research works (reported below) showed that the BPNN classifiers are 

the best suited for classification of cereal grains. The classification accuracies of nearly 

100% were obtained using bulk sample images of cereal grains (Majumdar and Jayas, 

1999). Visen et al. (2004) reported classification accuracies of above 98% for identifying 

cereal grains such as wheat, barley, oats, and rye using a four-layer BPNN classifier. 

Paliwal et al. (2001) reported classification accuracies of over 97% for CWRS, CWAD 

wheat, and oats and about 88% for barley and rye while using morphological features of 

colour images as input for four-layer BPNN classifiers. They found that the general 

regression neural network architecture was not fully suitable for cereal grain 

identification. Performance of a four-layer BPNN and specialist probabilistic neural 

network (SPNN) architecture were compared towards classifying individual kernels of 

wheat, rye, barley, and oats (Visen et al., 2004). They concluded that BPNN was better 

than SPNN for identifying cereal grains. Wang et al. (1999) reported that classification 

accuracies of BPNN models were 98.8 and 98% for divergence feature selection method 

and principal components analysis (PCA), respectively, for discriminating single kernels 

of wheat using the reflectance spectra of 400-2000 nm. The divergence feature selection 

method and the PCA were helpful in reducing the number of reflectance features used 

during BPNN classification. 
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In the present study, a four-layer standard back propagation neural network 

classifier was used for the pair-wise discrimination of wheat classes and moisture levels. 

Two-way identifications were carried out for 13 versus 16%, 16 versus 19%, and 13 

versus 19% moisture contents independent of wheat classes. Identification of wheat at 

each moisture level was performed for the following combinations: CWRS versus CPSR, 

CWRS versus CWHWS, CWRS versus CWSWS, CPSR versus CWHWS, CPSR versus 

CWSWS, and CWHWS versus CWSWS. 

5.4.1 Pair-wise identification of moisture contents 

The input feature set used consisted of 75 NIR reflectance intensities in the 

wavelength region of 960-1700 nm. A four-layer BPNN classifier was used for pair-wise 

identification of moisture contents. Input, two hidden and output layers consisted of 75, 

34, 34, and 2 nodes, respectively. The following combinations of data sets were tested: 13 

vs. 16%, 16 vs. 19%, and 13 vs. 19%. In total, 4800 samples were used for all iterations 

in each analysis (2400 per moisture level). The summarized results are shown in Figure 

5.26. The average classification accuracies of five iterations were 88.2 and 98.7%, which 

were the highest, for identifying 13 and 19% m.c. respectively. It showed that the BPNN 

classifiers could be used for discriminating low and high moisture wheat. Overall average 

classification accuracy of pair-wise BPNN classifiers was 83.7%. The thirteen vs. 

nineteen pair followed by the thirteen vs. sixteen pair were classified the best using the 

BPNN classifier. Average classification accuracies of 93.5% were obtained, where 

difference between the moisture levels were high (about 6%), for identifying low (13%) 

and high (19%) moisture wheat. Average classification accuracy was 78.8% for the 
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BPNN for the wheat samples that had a low difference (about 3%) in their moisture 

levels.  

 

 

 

 

 

 

 

Fig. 5.26. Pair-wise classification accuracies of identifying moisture levels of wheat 

using a four-layer BPNN. 

Contributions of input features towards classification were calculated by the 

BPNN network for all iterations. The top ten input feature wavelengths that had highest 

average contribution values are shown in Table 5.16. Contribution values show that most 

of the top features come from 1200-1220, 1310-1340, and 1390-1420 nm. The NIR 

absorption of water, protein, carbohydrate, kernel hardness, oil content, fiber, and starch 

content of wheat are seen in the long wavelength near-infrared (LWNIR) region of 960-

1700 nm (Wang et al., 1999, Delwiche and Massie, 1996, and Murray and Williams). The 

NIR absorptions of wheat samples produced excitations for carbon-hydrogen (CH) and 

oxygen-hydrogen (OH) combination bonds; CH, OH, and nitrogen-hydrogen (NH) 1st 

overtones, 2nd overtones, and CH 3rd overtones in samples (Osborne, 2006). Singh et al. 
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(2007) reported that 1284.2, 1315.8, and 1347.4 nm were ranked at the top based on the 

first principal component factor loadings out of 20 LWNIR wavelengths in the region of 

1000-1600 nm while detecting fungal-infected wheat using the NIR hyperspectral images 

of individual kernels. 

Table 5.16. The top 10 feature wavelengths, in descending order, based on their 

contribution towards classification accuracy for moisture identification while using 

pair-wise back propagation neural network classifiers with all features as inputs. 

Rank Top 10 wavelengths for pair-wise discrimination (nm) 
13 vs. 16 16 vs. 19 13 vs. 19 

1 1320 1330 1330 
2 1340 1340 1340 
3 1400 1700 1400 
4 1330 1310 1310 
5 1410 1210 1410 
6 1210 1400 1210 
7 1310 1390 1320 
8 1030 1200 1200 
9 1390 1140 1630 
10 1420 1150 1220 

 

After identifying moisture contents, wheat classes were discriminated pair-wise at 

specific moisture levels using the BPNN classifier.  

5.4.2 Classification of wheat at 13% m.c. 

The network consisted of 75, 27, 27, and 2 nodes in the input, two hidden, and 

output layers, respectively, for each wheat class. Input data set consisted of 1200 samples 

in total (600 samples per wheat class) for all iterations in each treatment. The summarized 

results of pair-wise classification of 13% moisture content wheat are shown in Figure 

5.27. The highest classification accuracies of 88.6 and 91% were obtained for identifying 
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CPSR and CWSWS wheat, respectively. Classification accuracies were 80.5 and 86.3% 

for identifying red wheat classes CWRS and CPSR, respectively. White wheat classes 

(CWHWS and CWSWS) were identified with classification accuracies of 69.8 and 

83.3%, respectively. Average classification accuracies were 70.5 and 86.2% for 

identifying soft (CWSWS) wheat and hard (CWRS and CWHWS) wheat, respectively. 

Overall average classification accuracy of two-way BPNN classifiers was 83.2% for 

identifying wheat at 13% m.c. 

 

 

 

 

 

 

 

 

 

Fig. 5.27. Pair-wise classification accuracies of identifying wheat classes that had 

13% m.c. using a four-layer BPNN. 

The top 10 NIR feature wavelengths that were ranked based on their highest 

contribution values towards classification are shown in Table 5.17. Most of the features 

that contribute significantly towards classification are derived from wavelengths in the 

regions of 1070-1130, 1210-1270, 1300-1350, and 1660-1700 nm. When comparing to 

non-parametric statistical classifiers, Mahesh et al. (2010a) reported that the linear and 
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quadratic discriminant classifiers had average classification accuracies of 95.4 and 

92.3%, respectively, for identifying the 13% moisture content wheat that included sample 

variations due to growing locations and crop years. 

Table 5.17. The top 10 feature wavelengths, in descending order, based on their 

contribution towards classification accuracy for wheat class identification at 13% 

m.c. while using pair-wise back propagation neural network classifiers with all 

features as inputs. 

Rank 

Top 10 wavelength for pair-wise discrimination (nm) 
CWRS 
vs. 
CPSR 

CWRS vs. 
CWHWS 

CWRS vs. 
CWSWS 

CPSR vs. 
CWHWS 

CPSR vs. 
CWSWS 

CWHWS 
vs. 
CWSWS 

1 1700 960 1680 1700 1700 1700 
2 960 1300 960 1680 1690 1100 
3 1300 1700 1700 1690 1320 1690 
4 1690 1210 1320 1670 1680 1400 
5 1270 1680 1690 1310 1260 1300 
6 1030 1130 1070 1130 1270 1130 
7 1670 1450 1300 1320 960 1330 
8 1450 1690 1670 1070 1350 1110 
9 1210 1310 1310 1660 1210 1210 
10 1680 1670 1660 1300 1330 1230 
 

5.4.3 Classification of wheat at 16% m.c. 

In the class identification part of the 16% moisture content wheat, a pair-wise 

four-layer BPNN classifier was used. Input, two hidden, and output layers of neural 

network classifiers had 75, 27, 27, and 2 nodes, respectively, for each wheat class. Input 

feature set consisted of 600 samples in each wheat class and 1200 samples for each 

analysis. The pair-wise classification results are shown in Figure 5.28. In the present 

study, the highest classification accuracies were 91.1 and 78.2% for identifying CWRS 

and CWSWS wheat, respectively. Classification accuracies of 84.9 and 80.6% were 
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obtained for identifying CWRS and CPSR (red wheat classes), respectively. The 

CWHWS and CWSWS (white wheat classes) were identified with classification 

accuracies of 71.7 and 69.6%, respectively. Overall average classification accuracy of 

75.4% was obtained for two-way BPNN classifiers for identifying the 16% m.c. wheat.  

Song et al. (1995) developed BPNN models for classifying wheat using the NIR 

transmittance spectra that were developed in the wavelength region of 850-1049 nm. 

They reported that two-class BPNN models had average classification accuracies of 97-

100% which were higher than that of six-class models. 

 

 

 

 

 

 

 

 

 

Fig. 5.28. Pair-wise classification accuracies of identifying wheat classes that had 

16% m.c. using a four-layer BPNN. 

The contribution rankings in descending order for the NIR features 

(corresponding wavelengths are shown) to the classification process are given in Table 

5.18. Features from NIR wavelengths in the regions of 1070-1130, 1300-1410, and 1690-

1700 nm contributed mostly to the classification process.  Mahesh et al. (2010b) reported 
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that features at NIR wavelength regions of 1000-1200 and 1260-1390 nm were ranked at 

the top for identifying the 16% m.c. wheat. 

Table 5.18. The top 10 feature wavelengths, in descending order, based on their 

respective contribution towards classification accuracy for wheat class identification 

at 16% m.c. while using pair-wise back propagation neural network classifiers with 

all features as inputs. 

Rank 

Pair-wise discrimination (nm) 
CWRS 
vs. 
CPSR 

CWRS vs. 
CWHWS 

CWRS vs. 
CWSWS 

CPSR vs. 
CWHWS 

CPSR vs. 
CWSWS 

CWHWS 
vs. 
CWSWS 

1 1700 1320 1210 1700 1700 1700 
2 1690 1010 1700 1400 1320 1690 
3 1320 1700 1070 1330 1340 1320 
4 1010 1330 1120 1130 1350 1310 
5 1330 1350 1190 1690 1370 1360 
6 1070 1690 1380 1010 1070 1380 
7 1350 1260 1570 1550 1360 1300 
8 1100 1070 1390 1100 1300 1350 
9 1540 1110 1640 1600 1380 1340 
10 1400 1410 1400 1310 1690 1200 

 

5.4.4 Classification of wheat at 19% m.c.  

In the present study, a two-way four-layer BPNN classifier was used for 

identifying classes of 19% m.c. wheat. The classifier had 75 input nodes, 27 nodes in 

each of two hidden layers, and 2 output nodes for each wheat class. Input feature set 

consisted of 600 samples in each wheat class and 1200 samples for each analysis. The 

pair-wise classification results are shown in Figure 5.29. The highest classification 

accuracies were 82.3 and 87.6% for identifying CPSR and CWSWS wheat, respectively. 

In the present study, average classification accuracies of 71.4 and 77.4% were obtained 
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for identifying red (CWRS vs. CPSR) and white (CWSWS vs. CWHWS) wheat classes, 

respectively. Overall average classification accuracy was 73.1% for two-way BPNN 

classifiers for discriminating the 19% m.c. wheat classes.  

 

 

 

 

 

 

 

 

 

 

Fig. 5.29. Pair-wise classification accuracies of identifying wheat classes that had 

19% m.c. using a four-layer BPNN.  

Table 5.19 shows the rankings of the NIR features, where related wavelengths are 

shown, based on their contribution towards classification. Features in the NIR regions of 

1040-1130, 1290-1350, and 1660-1700 nm are crucial to the BPNN classification. 

Wavelengths of 960 and 1420; 1470-1500; 1200-1360 and 1610-1700 nm were 

responsible for the NIR absorption of water, protein, and carbohydrate contents of 

samples, respectively. The NIR absorptions of wheat in the wavelength regions of 960-

1060, 1330-1480 nm, and at 1680 nm are likely associated to protein, starch, and 

hardness of samples (Maghirang and Dowell, 2003; Murray and Williams, 1987). These 

wavelengths can be added to a multispectral imaging system that will be used for 
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conducting on-line class identification in wheat in the future. The 960-1060, 1330-1480 

nm wavelength regions, and 1680 nm wavelength relate to the NIR absorption of 

hardness of samples. Maghirang and Dowell (2003) reported that the NIR wavelengths of 

1100, 1200, 1380, 1450, and 1670 nm were contributed mainly in predicting hardness of 

wheat. Variations in oil content of wheat samples can be seen by differences in the NIR 

absorption at 1390 nm.  

Table 5.19. The top 10 feature wavelengths, in descending order, based on their 

contribution towards classification accuracy for wheat class identification at 19% 

m.c. while using pair-wise back propagation neural network classifiers with all 

features as inputs. 

Rank 

Top 10 wavelengths for pair-wise discrimination (nm) 
CWRS 
vs. 
CPSR 

CWRS vs. 
CWHWS 

CWRS vs. 
CWSWS 

CPSR vs. 
CWHWS 

CPSR vs. 
CWSWS 

CWHWS 
vs. 
CWSWS 

1 1700 1700 1700 1700 1700 1700 
2 1690 1010 1110 1570 1350 1690 
3 1110 1690 1690 1350 1060 1680 
4 1660 1230 1310 1690 1340 1320 
5 1670 960 1210 1060 1100 1130 
6 1400 1400 1470 1100 1320 1110 
7 1680 1330 1330 1400 1210 960 
8 1540 1130 1320 1680 1040 1290 
9 1070 1490 1130 980 1070 1670 
10 1080 1200 1300 1110 1310 1350 

 

5.5 The PLSR and PCR models for protein and hardness of wheat 

Wheat milling gives various types of flour such as whole wheat flour, all purpose 

flour, and semolina for human consumption and considerable quantities of by-products 

such as bran for animal feeds. Famera et al. (2004) stated that cake and biscuit flour 
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require low protein and soft wheat classes that would have minimum damages of starch 

during milling. But, bakery flour required high protein and hard wheat classes. Durum 

wheat is used for producing pasta because its protein, hardness and gluten strength values 

are high.  

In the present study, hyperspectral image cubes in the LWNIR wavelength region 

of 960-1700 nm were examined for non-destructive determination of protein content and 

hardness in wheat. The NIR reflectance spectra were analyzed using multivariate 

calibration techniques such as the partial least squares regression (PLSR) and the 

principal components regression (PCR).   

5.5.1 Protein content of wheat 

Four western Canadian wheat classes, CWRS, CPSR, CWHWS, and CWSWS, 

were used in this study. Table 5.20 shows the summary of protein dataset statistics and 

results of grouping that was performed using the Scheffe’s test. The American 

Organization of Analytical Chemists (AOAC) standard method 968.06 was used for 

determining protein contents of wheat samples. Dumas method (Schmitter and Rihs, 

1989), a modification of Leco version 2.2, was used for analyzing crude protein or total 

nitrogen contents of wheat samples. 

Table 5.20. Summary of protein dataset statistics for wheat (n = 30 per wheat class) 

Wheat 
class 

Protein content 

Average (%)* Maximum 
(%) 

Minimum 
(%) 

Standard deviation 
(%) 

CWRS 14.62 16.19 a 11.88 1.28 
CPSR 13.26 15.39 b 11.38 1.13 
CWHWS 14.38 16.45 a 12.12 1.44 
CWSWS 11.25 12.93 c 9.51 1.06 
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*Values with same letters in the column are not significantly different by Scheffe’s test 

for comparing means. 

5.5.1.1 The PLSR and PCR prediction of protein contents of wheat samples using 

the full data set 

 The PLSR and PCR models were developed using the average spectra from 7200 

samples utilizing the full spectral range of 960-1700 nm (75 wavebands). A ten-fold 

cross-validation method was used for both PLSR and PCR methods for choosing the 

optimal number of components that were involved in model development processes. It is 

a more statistically reliable method for choosing components in the PLSR or PCR. Figure 

5.30 shows the percent variations, which was represented by the components of PLS and 

PCR, of the input data.  

 

 

 

 

 

 

Fig. 5.30. Percent variance explained by the components of PLSR and PCR models 

for wheat.  

Over-fitting of data was restricted in both model fitting and prediction error 

estimation. The first 3 components of the PLSR and PCR accounted for 99.9% of 
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variations in the input data set. For both PLSR and PCR, optimal model components and 

prediction performance were estimated using a ten-fold cross-validation method. In ten-

fold cross-validation method, the full data set was randomly divided into ten groups (i.e., 

by having 720 samples in each group). The PLSR or PCR predictions for each of the ten 

groups, which had 720 samples, were calculated using the calibration equations derived 

from the rest of the nine groups (i.e., by using 720×9 = 6,480 samples) of NIR spectra of 

wheat samples. Ten iterations were performed in the cross-validation and mean square 

errors of prediction (MSEP) were estimated for explaining model performances. The 

optimal number of components for the PLSR and PCR was selected by considering the 

component that had the minimum MSEP values. Figure 5.31 shows the estimated MSEP 

values for components used in the PLSR and PCR models for predicting protein contents 

of wheat samples. The minimum MSEP values were 2.02 and 1.76 for the PCR and 

PLSR with ten components, respectively.  

 

 

 

 

 

 

 

 

 

Fig. 5.31. Estimated MSEP values for the components of PLSR and PCR models for 

predicting protein contents of wheat.  
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For the protein content measurement part, the accurate results were obtained using 

the PLSR on the NIR reflectance spectra. With 10 factors included, the PLSR calibration 

achieved an estimated mean square error of prediction (MSEP) of 1.76 with a standard 

error of prediction (SECV) of 1.33 and a correlation coefficient (r) of 0.68. The PCR, 

which had first 10 components in the model, attained 2.02, 1.42, and 0.62 for the 

estimated MSEP, SECV, and r, respectively. Cogdill et al. (2004) reported an SECV of 

1.2% and an r2

 

 of 0.87 for predicting moisture concentrations in individual kernels of 

maize using the NIR hyperspectral imaging. The predicted protein contents against the 

observed protein contents of wheat samples for the ten-factor PLSR and ten-factor PCR 

models are shown in Figs. 5.32 and 5.33, respectively. 

 

 

 

 

 

 

 

 

Fig. 5.32. Predicted protein contents against observed protein contents of wheat 

using the ten-factor PLSR model (n = 7200, r = 0.68, and SECV = 1.33).  

In a similar study, ElMasry et al. (2007) observed that the PLSR method had very 

high correlation for predicting moisture, total soluble solids content, and pH for 

strawberries using the Vis-NIR hyperspectral images acquired from the wavelength 
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region of 400-1000 nm. Also, in the same study, the moisture contents of strawberries 

were precisely predicted using the PLSR with r value 0.96 for the validation set. 

 

 

 

 

 

 

 

 

 

Fig. 5.33. Predicted protein contents against observed protein contents of wheat 

using the ten-factor PCR model (n = 7200, r = 0.62, and SECV = 1.42).  

Based on the values of β-coefficients and the first PC loadings, the optimal 

wavelengths for predicting protein contents of wheat were identified for the PLSR and 

PCR methods, respectively (Table 5.21). As optimal wavelengths explained maximum 

information of the spectral data, they could be used in future for on-line applications that 

were performed by multispectral imaging. The NIR reflectance features from the 

wavelength regions of 1180-1200 and 1460-1500 nm were found important by 

considering β-coefficient values of the PLSR method. The NIR absorptions of protein 

contents of samples were seen at the wavelengths of 1470-1500 nm. Wavelengths from 

the regions of 960-1030 and 1670-1700 nm identified vital for the first PC loading values 

in the PCR method. These wavelengths could be added for developing a multispectral 
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imaging system that will be used in future for conducting on-line quality assessments in 

wheat. 

Table 5.21. The top 10 wavelengths, in descending order, identified for the ten-

factor PLSR and PCR models for predicting protein contents of wheat samples 

Rank Top 10 wavelengths for 
PLSR (nm)  

Top 10 wavelengths for 
PCR (nm) 

1 1190 1700 
2 1210 1690 
3 1180 1670 
4 1090 1680 
5 1670 960 
6 1220 970 
7 1130 980 
8 1490 1030 
9 1500 1020 
10 1460 990 

 

5.5.1.2 Class-wise PLSR and PCR prediction of protein contents of wheat samples 

 In this part of the study, the multivariate regression models, which included PLSR 

and PCR, were developed using the class-specific NIR reflectance intensities and 

reference protein contents of wheat samples as independent and dependent variables, 

respectively. The average NIR reflectance spectra from the LWNIR wavelength region of 

960-1700 nm of class-specific wheat samples, which included 1800 samples per class 

from CWRS, CPSR, CWHWS, and CWSWS, were used. In the Appendix, the percent 

variations, which were explained by the components of PLSR and PCR for CWRS, 

CPSR, CWHWS, and CWSWS, are shown in Figs. D1, D2, D3, and D4, respectively. 

The first 3 components of the PLSR and PCR accounted for > 99.6% of variations of the 

input data set for all wheat classes.  
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A ten-fold cross validation method was used for PLSR and PCR for estimating 

the model performance and finding out an optimal number of components for model 

development. In this cross-validation method, the data set was randomly split into ten 

groups (i.e., by having 180 samples in each group). The PLSR or PCR predictions of 

protein contents of samples for each of the ten groups, which consisted of 180 samples 

each, were calculated using the calibration equations developed from the NIR spectra of 

wheat samples of the rest of the nine groups (i.e., by using 180×9 = 1,620 samples). The 

MSEP values were calculated from ten iterations that were performed using the cross-

validation. The optimal number of components for the PLSR and PCR was selected. 

Figures D5, D6, D7, and D8 in the Appendix show the estimated MSEP values for the 

components of the PLSR and PCR for ten-fold cross-validation for predicting protein 

contents of class-specific wheat samples of CWRS, CPSR, CWHWS, and CWSWS, 

respectively. Table 5.22 shows the estimated MSEP, SECV, and r values for the ten-

factor PCR and PLSR, respectively, for predicting protein contents of class-specific 

wheat samples. The ten-factor PLSR models for all class-specific wheat samples 

performed better than the ten-factor PCR models. For all wheat classes, the correlation 

coefficients of PLSR were higher than those of PCR. The more accurate protein content 

predictions were expected from the CWHWS and CWSWS wheat samples that had 

correlation coefficient values of 0.71 and 0.77, respectively. The correlation coefficient 

values of 0.57-0.61 were achieved for the ten-factor PCR models for predicting protein 

contents. Predicted protein contents against observed protein contents for class-specific 

wheat samples for the ten-factor PLSR and the ten-factor PCR models are shown in Figs. 

D9-D12 and Figs. D13-D16, respectively.   
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Table 5.22. Performance of ten-factor PLSR and PCR models for predicting protein 

contents using the class-specific wheat samples. 

Wheat 
class 

Ten-factor PLSR model Ten-factor PCR model 
Estimated 
MSEP SECV r Estimated 

MSEP SECV r 

CWRS 0.961 0.980 0.65 1.071 1.035 0.59 
CPSR 0.712 0.844 0.68 0.849 0.921 0.57 
CWHWS 1.044 1.022 0.71 1.310 1.145 0.59 
CWSWS 0.467 0.683 0.77 0.683 0.826 0.61 

 

Using β-coefficients and the first PC loading values, the optimal wavelengths for 

predicting protein contents of class-specific wheat samples were identified (Table 5.23). 

The NIR reflectance features from the wavelength regions of 960-1220, 1280-1360, and 

1610-1670 nm were important using the 10-factor PLSR method.  

Table 5.23. The top 10 wavelengths, in descending order, identified for the ten-

factor PLSR and PCR models for predicting protein contents of class-specific wheat 

samples.  

Rank Top 10 wavelengths for PLSR (nm) Top 10 wavelengths for PCR (nm) 
CWRS CPSR CWHWS CWSWS CWRS CPSR CWHWS CWSWS 

1 1010 1150 1330 1090 1700 1580 1570 1700 
2 1110 1340 1130 1210 1670 1590 1590 1690 
3 1120 1210 1260 1220 1690 1570 1610 1680 
4 1190 1190 980 1100 1680 1600 1600 1670 
5 1280 1110 1630 1080 960 1610 1560 960 
6 960 1360 1640 1450 970 1520 1580 970 
7 1000 1100 970 1670 1030 1560 1510 980 
8 1150 1120 1180 1190 980 1510 1520 1660 
9 1060 1040 1610 1330 1020 1550 1550 990 
10 1220 960 1620 1110 990 1530 1530 1010 

 

From the ten-factor PCR method, the NIR reflectance features from the 

wavelength regions of 960-1030 and 1510-1700 nm were ranked at the top. These 
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wavelengths could be used on-line quality assessments in class-specific wheat samples. 

From similar studies, it was reported that he NIR absorptions of wheat in the wavelength 

regions of 960-1060, 1330-1480 nm, and at 1680 nm were likely associated to protein, 

starch, and hardness of samples (Maghirang and Dowell, 2003; Murray and Williams, 

1987). 

5.6.1 Hardness of wheat 

In this part of the study, four western Canadian wheat classes, CWRS, CPSR, 

CWHWS, and CWSWS, were used. Table 5.24 shows the summary of hardness dataset 

statistics and grouping results that was performed by comparing means using the 

Scheffe’s test. A single kernel characterization system (SKCS) 4100 (Perten Instruments, 

Springfield, IL) was used for measuring hardness of wheat. The force and conductivity 

measurements were taken when wheat kernels were crushed.  

Table 5.24. Summary of hardness dataset statistics for wheat (n = 300 kernels per 

wheat class per moisture).  

Wheat 
class 

Hardness 
Average* Maximum Minimum Standard deviation 

CWRS 70.8 87 ab 57 8.73 
CPSR 66.1 78.8 b 54.5 7.21 
CWHWS 78.9 86.6 a 66.2 7.87 
CWSWS 27.9 37.9 c 12.8 8.67 
* Values with same letters in the column are not significantly different by the Scheffe’s 

test for comparing means. 

Mean hardness index, weight, size, moisture, and their standard deviations were 

determined from the single kernel data obtained from a sample of 300 kernels of wheat. 
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Delwiche and Norris (1993) reported that the NIR hardness values were significantly 

different for most of the hard red winter (HRW) and hard red spring (HRS) wheat classes. 

5.6.1.1 The PLSR and PCR prediction of hardness of wheat samples using the full 

data set 

 Average NIR reflectance spectra from 7200 samples utilizing the full spectral 

range of 960-1700 nm were utilized for predicting hardness using PLSR and PCR 

models. A ten-fold cross-validation method was used for both PLSR and PCR for 

selecting the optimal number of components that were further used in the prediction 

studies. Figure 5.34 shows the percent variations, which were represented by the 

components of PLS and PCR, of the input data. The first 3 components of the PLSR and 

PCR accounted for 99.9% of variations in the input data set. 

 

 

 

 

 

 

 

Fig. 5.34. Percent variance explained by the components of PLSR and PCR models 

for wheat.  
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For both PLSR and PCR methods, optimal model components and prediction 

performances were calculated using a ten-fold cross-validation method. The procedure 

for performing the ten-fold cross-validation method was already discussed in the section 

5.5.1. Ten replications were performed in the cross-validation process and mean square 

errors of prediction (MSEP) were estimated. The optimal number of components for the 

PLSR and PCR was selected by considering the component that had the minimum MSEP 

value. Figure 5.35 shows the estimated MSEP values for components of the PLSR and 

PCR models for predicting hardness of wheat samples. The minimum MSEP values were 

193.1 and 147.7 for the tenth component of PCR and PLSR models, respectively. 

 

 

 

 

 

 

 

 

Fig. 5.35. Estimated MSEP values for the components of PLSR and PCR models for 

predicting hardness of wheat.  

The predicted hardness against the observed hardness of wheat samples for the 

ten-factor PLSR and ten-factor PCR models are shown in Figs. 5.36 and 5.37, 

respectively. 
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Fig. 5.36. Predicted hardness against observed hardness of wheat using the ten-

factor PLSR model (n = 7200, r = 0.82, and SECV = 12.15). 

 

 

 

 

 

 

 

 

 

 

Fig. 5.37. Predicted hardness against observed hardness of wheat using the ten-

factor PCR model (n = 7200, r = 0.75, and SECV = 13.9).  
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In a related study, Pomeranz et al. (1988) stated that spring wheat classes had 

more hardness values than winter wheat classes. For the hardness prediction, the ten-

factor PLSR method gave relatively better hardness predictions than the ten-factor PCR 

method for wheat. With the first 10 components included, the PLSR calibration achieved 

an estimated MSEP of 147.7 with a SECV of 12.15 and an r of 0.82. In a similar 

prediction study, Lu (2001) reported that the PLSR models had r values of 0.80 and 0.65 

for predicting firmness of Hedelfinger and Sam cherries, respectively. The PCR, which 

had the first 10 components in the model, attained 193.1, 13.9, and 0.75 for the estimated 

MSEP, SECV, and r, respectively. 

The optimal wavelengths for predicting hardness of wheat were identified based 

on the values of β-coefficients and the first PC loadings using PLSR and PCR, 

respectively (Table 5.25).  

Table 5.25. The top 10 wavelengths, in descending order, identified by the ten-factor 

PLSR and PCR models for predicting hardness of wheat samples. 

Rank Top 10 wavelengths for 
PLSR (nm)  

Top 10 wavelengths for 
PCR (nm) 

1 1390 1700 
2 1220 1690 
3 1180 1670 
4 1320 1680 
5 1480 960 
6 1190 970 
7 1210 980 
8 1460 1030 
9 1490 1020 
10 1400 990 
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The NIR reflectance features from the wavelength regions of 1180-1220, 1320-

1400, and 1460-1490 nm were critical for predicting hardness by considering β-

coefficient values of the ten-factor PLSR model. Wavelengths from the regions of 960-

1030 and 1670-1700 nm were identified important from the loading values of the first PC 

of the ten-factor PCR model. In a similar study, Maghirang and Dowell (2003) reported 

that the NIR wavelengths of 1100, 1200, 1380, 1450, and 1670 nm mainly contributed 

predicting hardness of wheat samples using the PLSR. The NIR absorptions of wheat in 

the wavelength regions of 960-1060, 1330-1480 nm, and at 1680 nm are likely associated 

to protein, starch, and hardness of samples (Maghirang and Dowell, 2003; Murray and 

Williams, 1987).These wavelengths can be added to a multispectral imaging system that 

will be used in the future for conducting on-line hardness assessments in wheat. 

5.6.1.2 Class-wise PLSR and PCR prediction of hardness of wheat samples 

The PLSR and PCR were used for predicting hardness of class-specific wheat 

samples by having the NIR reflectance intensities and reference hardness values of wheat 

samples as independent and dependent variables, respectively. The average NIR 

reflectance spectra from the LWNIR wavelength region of 960-1700 nm of class-specific 

wheat samples, which included 1800 samples from each of CWRS, CPSR, CWHWS, and 

CWSWS wheat classes, were used. The percent variations, which were explained by the 

components of PLSR and PCR for CWRS, CPSR, CWHWS, and CWSWS, are shown in 

Figs. D17, D18, D19, and D20, respectively, in the Appendix. Above 99.5% variations of 

input data were explained by the first three components of the PLSR and PCR for all 

class-specific wheat samples.  



 

132 
 

A ten-fold cross validation method was used for both PLSR and PCR methods for 

estimating the model performance and finding out an optimal number of components that 

were further used for prediction studies. In this cross-validation method, the data set was 

randomly split into ten groups (i.e., by having 180 samples in each group). The PLSR or 

PCR predictions of hardness of samples for each of the ten groups were found. The 

MSEP values were calculated from ten iterations that were performed in the cross-

validation. The optimal number of components for the PLSR and PCR was selected. The 

estimated MSEP values for the PLSR and PCR components are shown in Figures D21, 

D22, D23, and D24 for ten-fold cross-validation for predicting hardness of CWRS, 

CPSR, CWHWS, and CWSWS wheat, respectively. Table 5.26 shows the estimated 

MSEP, SECV, and r values for the ten-factor PCR and PLSR, respectively. The ten-

factor PLSR models for all class-specific samples performed better than the ten-factor 

PCR models. For all wheat classes, the correlation coefficients of PLSR were higher than 

those of PCR. The more accurate hardness predictions were expected from the CWSWS, 

CPSR wheat classes followed by CWHWS. High correlations with correlation coefficient 

values of 0.88 and 0.81 were achieved for the PLSR and PCR methods for predicting 

hardness of CWSWS wheat.  

Table 5.26. Performance of the ten-factor PLSR and PCR models for predicting 

hardness using the class-specific wheat samples 

Wheat 
class 

Ten-factor PLSR model Ten-factor PCR model 
Estimated 
MSEP SECV r Estimated 

MSEP SECV r 

CWRS 36.4 6.03 0.70 46.8 6.83 0.57 
CPSR 17.0 4.12 0.81 22.6 4.75 0.72 
CWHWS 25.1 5.01 0.76 40.2 6.34 0.76 
CWSWS 16.2 4.03 0.88 24.0 4.90 0.81 
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The PLSR method performed better than the PCR method for predicting hardness. 

The ten-factor PLSR method had r values of 0.7-0.88 for all class-specific samples. The 

correlation coefficient values of 0.57-0.81 were achieved for the ten-factor PCR method 

for predicting hardness. Predicted hardness against observed hardness for class-specific 

wheat samples for the ten-factor PLSR and the ten-factor PCR methods are shown in 

Figs. D25-D28 and Figs. D29-D32, respectively. 

Based on the β-coefficients of PLSR and the first PC loading values of PCR, the 

optimal wavelengths were identified for predicting hardness of class-specific wheat 

samples (Table 5.27). The NIR reflectance features from the wavelength regions of 1030-

1250, 1300-1480, and 1630-1670 nm were identified important using the 10-factor PLSR 

method. From the ten-factor PCR method, the NIR reflectance features from the 

wavelength regions of 960-1030 and 1510-1700 nm were ranked at the top.  

Table 5.27. The top 10 wavelengths, in descending order, identified for the ten-

factor PLSR and PCR models for predicting hardness of class-specific wheat 

samples  

Rank Top 10 wavelengths for PLSR (nm) Top 10 wavelengths for PCR (nm) 
CWRS CPSR CWHWS CWSWS CWRS CPSR CWHWS CWSWS 

1 1070 1470 1370 1090 1700 1580 1570 1700 
2 1040 1360 1080 1370 1670 1590 1590 1690 
3 1360 1280 1150 1390 1690 1570 1610 1680 
4 1140 1440 1060 1650 1680 1600 1600 1670 
5 1170 1480 1630 1380 960 1610 1560 960 
6 1080 1460 1240 1400 970 1520 1580 970 
7 1300 1330 1340 1230 1030 1560 1510 980 
8 1640 1450 1250 1640 980 1510 1520 1660 
9 1200 1130 1470 1170 1020 1550 1550 990 
10 1160 1030 1430 1670 990 1530 1530 1010 
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Maghirang and Dowell (2003) reported that the NIR wavelengths of 1100, 1200, 

1380, 1450, and 1670 nm contributed mainly in predicting hardness of wheat samples 

using the PLSR. The results of the protein and hardness prediction studies implied the 

greater potential likelihood of developing a non-destructive technique using the NIR 

hyperspectral imaging for measuring the intrinsic quality parameters such as protein and 

hardness for location- and crop year-specific wheat samples.  
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6. CONCLUSIONS AND RECOMMENDATIONS 

This thesis research investigated the potential of using the LWNIR (960-1700 nm) 

hyperspectral imaging system for identifying wheat classes, both moisture-specific and 

moisture-non specific, using non-parametric statistical (LDA and QDA) and a four-layer 

BPNN classifiers for location- and crop year-specific wheat samples. Stepwise 

discriminant and BPNN contribution factor values were used to identify the relative 

importance of NIR reflectance features to the classification process for non-parametric 

statistical and four-layer BPNN classifiers, respectively. The PCA was used for 

identifying relationships between image features and wheat classes. Further research was 

extended to identify variations among growing locations and crop-years of wheat 

samples. Also, protein contents and hardness of wheat were predicted using the ten-factor 

PLSR and PCR methods.  

A hyperspectral image database was developed for four wheat classes, which 

were collected from five-six different locations for two-three crop years from the three 

prairie provinces of Canada, each at three different moisture levels. Computer codes were 

written in MATLAB to extract the NIR reflectance intensities of wheat samples. Non-

parametric statistical classifiers were used to identify classes using moisture non-specific 

wheat samples. The LDA and QDA were tested for four-class and two-class 

identification of wheat classes. Average classification accuracies of 80.6 and 76.3% were 

obtained for the LDA and QDA, respectively, for identifying moisture non-specific wheat 

classes. Classification accuracies were 86.5-99, 91.8-95.8, and 88.5-98.6% for identifying 

moisture-specific wheat classes that had 13, 16, and 19% m.c., respectively, using the 

LDA. In the same study, using the QDA, 84.5-100, 94-98.3, and 95.5-98.3% of 
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classification accuracies were achieved for discriminating wheat classes. Non-parametric 

classifiers, which were used for moisture-specific wheat samples, gave better results for 

identifying wheat classes than neural network classifiers. Hence, moisture-specific non-

parametric classifiers can be used for accurate identification of wheat samples that 

included variations of growing locations and crop years. Using the PCA, the NIR 

wavelengths of 1260-1380 nm had the highest factor loading values for the first PC.  

Non-parametric statistical classifiers were used for identifying moisture levels of 

wheat samples. Average classification accuracies of 95.2 and 90.8% were obtained for 

the LDA and QDA, respectively, for discriminating wheat samples into 13, 16, and 19% 

moisture groups. In the pair-wise moisture discrimination study, near-perfect 

classification (around 100%) was achieved for wheat samples which had a difference in 

moisture levels of about 6%. Non-parametric high-low m.c. classifier can be used for 

accurately discriminating wheat samples that had highly varying moisture contents.  

For the pair-wise identification of wheat classes, average classification accuracies 

were 93.1 and 83.9% for identifying wheat classes, which included variations of moisture 

levels, growing locations, and crop years, for the LDA and QDA, respectively. 

Classification accuracies were considerably improved for two-class identification of 

wheat samples that had only 13, 16, or 19% m.c. (wet basis). Non-parametric pair-wise 

moisture-specific classifiers can be used for accurately discriminating wheat classes that 

had very similar visual features. Classification accuracies were ≥ 85 and ≥ 80% for 

identifying growing locations of wheat independent of crop years using the LDA and 

QDA, respectively. In the crop year identification study the non-parametric QDA 

classifier that had accuracies of 84.6% or above, performed better than the LDA. The 
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wavelengths, which were identified important towards classification using the 

STEPDISC procedure, were also listed for all classification studies. 

For the neural network classification, four-layer BPNN architecture was used for 

pair-wise identification of wheat classes and moisture levels. Overall average 

classification accuracies of 83.7% were obtained for the pair-wise discrimination of 

wheat samples based on their moisture contents. When moisture-specific samples of 13, 

16, or 19% m.c. were used, a two-class four-layer BPNN classifier had average 

classification accuracies of 83.2, 75.4, or 73.1%, respectively, for identifying wheat 

classes. Key wavelengths were identified and further listed based on contribution values 

of input features using the BPNN.    

In the protein content prediction study, using the full data set, the ten-factor 

PLSR, which had 1.76%, 1.33%, and 0.68 for the estimated MSEP, SECV, and r, 

respectively, produced better results than the ten-factor PCR model. The r values were 

0.65, 0.68, 0.71, and 0.77, for CWRS, CPSR, CWHWS, and CWSWS wheat, 

respectively, for predicting protein contents using the 10-factor PLSR method for class-

specific wheat samples. Based on the β-coefficient values of the ten-factor PLSR method, 

960-1220, 1280-1360, and 1610-1670 nm were found important.  

In the hardness prediction part, the estimated MSEP, SECV, and r values were 

147.7, 12.15, and 0.82, respectively, for the ten-factor PLSR model that was developed 

using the full data set of samples. The 10-factor PLSR models had r values of 0.70, 0.81, 

0.76, and 0.88 for CWRS, CPSR, CWHWS, and CWSWS for predicting hardness of 

class-specific wheat samples. The NIR reflectance features from the wavelength regions 
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of 1030-1250, 1300-1480, and 1630-1670 nm were identified important using the β-

coefficient values of the ten-factor PLSR models. Overall, PLSR models demonstrated 

better prediction performances than the PCR models for predicting protein contents and 

hardness of wheat. The PLSR models are thus recommended for predicting protein and 

hardness of western Canadian wheat classes.   

In the present study, the LWNIR region of 960-1700 nm was used for acquiring 

hyperspectral images of wheat classes. In future, if the wavelength region is extended to 

2500 nm, the complete NIR absorption of different quality parameters can be measured 

and further added to the models to improve classification and prediction accuracies. Also, 

hyperspectral imaging can be used for other major crops such as rye, barley, and canola 

for identification and quality-prediction purposes. Multispectral imaging systems, which 

use wavelengths identified by hyperspectral imaging, can be developed and evaluated for 

on-line quality assessments for all major crops grown in Canada.   
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APPENDIX  

Graphs of protein content and hardness prediction studies in wheat   
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Protein content prediction graphs in wheat 

 

 

 

 

 

 

 

 

Fig. D.1. Percent variance explained by the components of PLSR and PCR for 

CWRS wheat.  

 

 

 

 

 

 

 

 

 

Fig. D.2. Percent variance explained by the components of PLSR and PCR for 

CPSR wheat.   
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Fig. D.3. Percent variance explained by the components of PLSR and PCR for 

CWHWS wheat.  

 

 

 

 

 

 

 

 

 

Fig. D.4. Percent variance explained by the components of PLSR and PCR for 

CWSWS wheat.   
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Fig. D.5. Estimated MSEP values for the components of PLSR and PCR models for 

predicting protein contents of CWRS wheat. 

 

 

 

 

 

 

 

 

 

Fig. D.6. Estimated MSEP values for the components of PLSR and PCR models for 

predicting protein contents of CPSR wheat.  
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Fig. D.7. Estimated MSEP values for the components of PLSR and PCR models for 

predicting protein contents of CWHWS wheat. 

 

 

 

 

 

 

 

 

 

Fig. D.8. Estimated MSEP values for the components of PLSR and PCR models for 

predicting protein contents of CWSWS wheat.  
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Fig. D.9. Predicted protein contents against observed protein contents of CWRS 

wheat using the ten-factor PLSR model (n = 1800, r = 0.65, and SECV = 0.98).  

 

 

 

 

 

 

 

 

 

Fig. D.10. Predicted protein contents against observed protein contents of CPSR 

wheat using the ten-factor PLSR model (n = 1800, r = 0.68, and SECV = 0.84).  
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Fig. D.11. Predicted protein contents against observed protein contents of CWHWS 

wheat using the ten-factor PLSR model (n = 1800, r = 0.71, and SECV = 1.02).  

 

 

 

 

 

 

 

 

 

Fig. D.12. Predicted protein contents against observed protein contents of CWSWS 

wheat using the ten-factor PLSR model (n = 1800, r = 0.71, and SECV = 1.02). 
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Fig. D.13. Predicted protein contents against observed protein contents of CWRS 

wheat using the ten-factor PCR model (n = 1800, r = 0.59, and SECV = 1.04).  

 

 

 

 

 

 

 

 

 

Fig. D.14. Predicted protein contents against observed protein contents of CPSR 

wheat using the ten-factor PCR model (n = 1800, r = 0.57, and SECV = 0.921).  
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Fig. D.15. Predicted protein contents against observed protein contents of CWHWS 

wheat using the ten-factor PCR model (n = 1800, r = 0.59, and SECV = 1.15).  

 

 

 

 

 

 

 

 

 

Fig. D.16. Predicted protein contents against observed protein contents of CWSWS 

wheat using the ten-factor PCR model (n = 1800, r = 0.61, and SECV = 0.83).  
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Hardness prediction graphs for wheat 

 

 

 

 

 

 

 

 

Fig. D.17. Percent variance explained by the components of PLSR and PCR for 

CWRS wheat.  

 

 

 

 

 

 

 

 

 

Fig. D.18. Percent variance explained by the components of PLSR and PCR for 

CPSR wheat.  
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Fig. D.19. Percent variance explained by the components of PLSR and PCR for 

CWHWS wheat.  

 

 

 

 

 

 

 

 

 

Fig. D.20. Percent variance explained by the components of PLSR and PCR for 

CWSWS wheat.  
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Fig. D.21. Estimated MSEP values for the components of PLSR and PCR models for 

predicting hardness of CWRS wheat. 

 

 

 

 

 

 

 

 

 

Fig. D.22. Estimated MSEP values for the components of PLSR and PCR models for 

predicting hardness of CPSR wheat.  
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Fig. D.23. Estimated MSEP values for the components of PLSR and PCR models for 

predicting hardness of CWHWS wheat. 

 

 

 

 

 

 

 

 

 

Fig. D.24. Estimated MSEP values for the components of PLSR and PCR models for 

predicting hardness of CWSWS wheat.  
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Fig. D.25. Predicted hardness against observed hardness of CWRS wheat using the 

ten-factor PLSR model (n = 1800, r = 0.70, and SECV = 6.03).  

 

 

 

 

 

 

 

 

 

Fig. D.26. Predicted hardness against observed hardness of CPSR wheat using the 

ten-factor PLSR model (n = 1800, r = 0.81, and SECV = 4.12).   
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Fig. D.27. Predicted hardness against observed hardness of CWHWS wheat using 

the ten-factor PLSR model (n = 1800, r = 0.76, and SECV = 5.01).  

 

 

 

 

 

 

 

 

 

Fig. D.28. Predicted hardness against observed hardness of CWSWS wheat using 

the ten-factor PLSR model (n = 1800, r = 0.88, and SECV = 4.03).  
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Fig. D.29. Predicted hardness against observed hardness of CWRS wheat using the 

ten-factor PCR model (n = 1800, r = 0.57, and SECV = 6.83).  

 

 

 

 

 

 

 

 

 

Fig. D.30. Predicted hardness against observed hardness of CPSR wheat using the 

ten-factor PCR model (n = 1800, r = 0.72, and SECV = 4.75).  
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Fig. D.31. Predicted hardness against observed hardness of CWHWS wheat using 

the ten-factor PCR model (n = 1800, r = 0.76, and SECV = 6.34).  

 

 

 

 

 

 

 

 

 

Fig. D.32. Predicted hardness against observed hardness of CWSWS wheat using 

the ten-factor PCR model (n = 1800, r = 0.81, and SECV = 4.90).  
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