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Abstract

Pricing options quickly and accurately is a well known problem in finance. Quan-

tum computing is being researched with the hope that quantum computers will be

able to price options more efficiently than classical computers. This research extends

the quantum binomial option pricing model proposed by Zeqian Chen to European

put options and to Barrier options and develops a quantum algorithm to price them.

This research produced three key results. First, when Maxwell-Boltzmann statistics

are assumed, the quantum binomial model option prices are equivalent to the classical

binomial model. Second, options can be priced efficiently on a quantum computer

after the circuit has been built. The time complexity is O((N−τ) log2(N−τ)) and it

is in the BQP quantum computational complexity class. Finally, challenges extend-

ing the quantum binomial model to American, Asian and Bermudan options exist as

the quantum binomial model does not take early exercise into account.
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Chapter 1

Introduction

Many of the problems facing the finance community have no known analytical

solution. As a result numerical methods and computer simulations for solving these

problems have proliferated. This research area is known as computational finance.

Many computational finance problems have a high degree of computational complex-

ity and are slow to converge to a solution on classical computers. In particular, when

it comes to option pricing, there is additional complexity resulting from the need to

respond to quickly changing markets. For example, in order to take advantage of inac-

curately priced stock options, the computation must complete before the next change

in the almost continuously changing stock market. As a result, the finance commu-

nity is always looking for ways to overcome the resulting performance issues that

arise when pricing options. This has lead to research that applies alternative com-

puting techniques to finance. One of these alternatives is quantum computing. Just

as physics models have evolved from classical to quantum, so has computing. Quan-

tum computers have been shown to outperform classical computers when it comes

1



2 Chapter 1: Introduction

to simulating quantum mechanics [8] as well as for several other algorithms such as

Shor’s factorization algorithm [32] and Grover’s quantum search algorithm [16], mak-

ing them an attractive area to research for solving computational finance problems.

Following these breakthroughs, Chen published a paper in 2001 [10] where he presents

a quantum binomial options pricing model or simply abbreviated as the quantum bi-

nomial model. There were several key results in his paper. First of all, he shows a

quantization of the classical Black-Scholes-Merton [7] based binomial option pricing

model developed by Cox-Ross-Rubinstein [12] for European options. He then shows

his quantum binomial model does not pose the risk indifference paradox that appears

in the classical binomial model. Next he shows its risk-neutral world exhibits a struc-

ture as a disk in the unit ball of R3 with a radius that is a function of the risk-free

interest rate with two thresholds that prevent arbitrage (risk-less profit) opportuni-

ties. Finally, he suggests that the quantum binomial model may be implemented

using quantum computers.

The first part of this research extends Chen’s quantum binomial model from Eu-

ropean Call options to various styles of vanilla and exotic options by deriving the

respective quantum mechanical binomial equations. Each of the equations is then

analyzed and evaluated. The second part of this research is the implementation of

several of the option pricing formulas on a quantum circuit simulator. This is done in

order to verify not only the accuracy and performance of calculating the prices, but all

of the claims Chen made regarding its structure. The final part of this research com-

pares Chen’s quantum binomial model to the classical Cox-Ross-Rubinstein model.

The rest of this thesis is setup as follows: First of all, a brief overview of quantum
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computing and finance theory is presented. This is followed by a related work section

that provides a brief overview of relevant quantum finance research to date and a

detailed look at Chen’s quantum binomial model. This is then followed by a detailed

presentation of the results of this research, and finally, a conclusion.

1.1 Background on Quantum Computing

1.1.1 Computational Complexity

In 1982, Richard Feynman suggested that modeling computers on the princi-

ples of quantum mechanics would intrinsically allow us to overcome the difficulties

classical computers have simulating quantum mechanical systems [15]. This is now

known as quantum computing. When compared to a classical computer, it has been

shown that exponential speed up can be achieved by simulating quantum mechan-

ics on a quantum computer [8]. Thus, if finance is quantum mechanical, perhaps

it too, can be simulated with exponential speed on a quantum computer. Spurred

by these results, researchers looked to find ways to speed up algorithms not related

to simulating quantum mechanics. Eventually this lead to several significant quan-

tum algorithm discoveries in the mid-1990s. Most notably are Shor’s factorization

algorithm in 1994 [32] and Grover’s quantum search algorithm in 1996 [16]. Shor’s

algorithm, shown in Figure 1.1, can factor a number N in O((logN)3) time using

O(logN) space, where no classical algorithm is known that can factor a number N

in time O((logN)k) for any k. Grover’s algorithm can be used to search an unsorted

database with N entries in O(
√
N) time using O(logN) storage space, where the
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Figure 1.1: Quantum Circuit implementing Shor’s Algorithm. Picture by The Center
for Bits and Atoms [1].

best classical algorithm uses O(N) storage. The efficiency of these quantum algo-

rithms and others [22] have spawned a great deal of interest in quantum computers.

That said, even though there are quantum algorithms that have been developed that

perform better than any known classical algorithm, there is still no proof that an

equivalent classical algorithm does not exist. Further, there has been no evidence

that quantum computers have algorithms that would change the complexity classi-

fication of any problems [29]. Such a discovery would be very significant and would

help move towards answering one of largest open questions in computer science —

does P = NP ? Note, however, that there are still very few quantum algorithms and

that developing new ones that are more efficient than their classical counterparts is
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proving to be quite difficult. There are also quantum algorithms that are less efficient

than their classical counterparts but are still useful because they run on a quantum

computer and can be used as a subcomponent of a larger quantum algorithm that

is more efficient overall. Even with these questions outstanding and challenges, the

results look promising and research continues.

Not surprisingly, quantum complexity theory has been researched with the ar-

rival of quantum computing. There has been a fair amount of research into quantum

complexity theory, but for purposes of this research we will focus on a few of the

essential results. The class of problems that can be efficiently solved by a quantum

computer is called BQP, for “bounded error, quantum, polynomial time”. Essen-

tially, it stands for the class of decision problems that can be solved with a bounded

probability of error, using a polynomial-size quantum circuit. Another way of looking

at it is, a quantum computer is said to efficiently solve a problem if its answer will

be right with high probability for every instance. If that solution runs in polynomial

time, then that problem is in BQP. On the other hand, BPP for “Bounded-error,

Probabilistic, Polynomial time” is the class of decision problems solvable in polyno-

mial time, with an error probability of at most 1/3 for all instances on a classical

computer. Considering quantum computers only run probabilistic algorithms, BQP

for a quantum computer is the equivalent of BPP for a classical computer. Further,

BQP is contained in the complexity class P, which is a subclass of PSPACE where

PSPACE is the class of problems that can be solved by algorithms which only need

a polynomial amount of memory to run. Finally, BQP is suspected not to be part of

NP-complete and to be a strict superset of P, however this has not been proven. To
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summarize:

P ⊆ BPP ⊆ BQP ⊆ PSPACE (1.1)

For a more comprehensive examination of quantum complexity theory see Watrous

[36].

1.1.2 Quantum Computers and Quantum Circuits

There are several differences between classical and quantum computers. Classical

computers are based on bits that equal either 0 or 1. On the other hand, Quantum

computers are based on what are called qubits. Qubits differ significantly from clas-

sical bits as they are in a probabilistic state in the two-dimensional complex vector

space and written as follows:

α |0〉+ β |1〉 (1.2)

and can be envisioned as a Bloch Sphere [17]. In quantum mechanics, the state

of a physical system is identified by a point in the Hilbert space H of the system.

Each vector in the Hilbert space is called a ket and written |ψ〉. The ket can be

viewed as a column vector and written out as |ψ〉 = (c0, c1, c2, ...)
T (where T means

transpose) for a given basis when, as is in quantum computing, the Hilbert space is

finite-dimensional. Every ket |ψ〉 has a dual vector bra written as 〈ψ|, that can be

expressed as the row vector 〈ψ| = (c∗0, c
∗
1, c

∗
2, ...) where c∗ means the complex conjugate

of c. When the qubit is measured, |α|2 is the probability that the qubit will be equal

to 0 and |β|2 is the probability that the qubit will be equal to 1, and by the law

of total probability, |α|2 + |β|2 = 1. For example, a qubit is often initialized to the
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following state where it has a 50% chance of being either a 0 or 1 when measured:

1√
2
|0〉+

1√
2
|1〉 (1.3)

Multi-qubit systems also have probabilistic states as shown with these 2 qubits:

α |00〉+ β |01〉+ γ |10〉+ δ |11〉 (1.4)

An example of a two qubit state is as follows:

1√
4
|00〉+

1√
4
|01〉+

1√
5
|10〉+

√
3√
10
|11〉 (1.5)

which means that there is a 25% chance the state will be |00〉, a 25% chance the state

will be |01〉, a 20% chance the state will be |10〉 and a 30% chance the state will be

|11〉 when the qubits are measured. Another key concept in quantum computing is

the tensor product1, which is indicated by ⊗. The main purpose of the tensor product

in physics, is, to represent composite quantum mechanical systems. In other words, it

is used to represent the combination of multiple quantum mechanical systems. This

is illustrated with equation 1.6 that shows the tensor product of two systems where

each system is represented by the outer product of two basis vectors and alternatively

by equation 1.7 that shows the tensor product of two systems where each system is

1Also known as the Kronecker product.
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represented by a 2× 2 matrix.

|u〉 〈u| ⊗ |v〉 〈v| =

u11

u21

× [u∗11 u∗21

]
⊗

v11

v21

× [v∗11 v∗21

]

=

u11u
∗
11 u11u

∗
21

u21u
∗
11 u21u

∗
21

⊗
v11v

∗
11 v11v

∗
21

v21v
∗
11 v21v

∗
21

 (1.6)

u11 u12

u21 u22

⊗
v11 v12

v21 v22

 =


u11

v11 v12

v21 v22

 u12

v11 v12

v21 v22


u21

v11 v12

v21 v22

 u22

v11 v12

v21 v22




(1.7)

=



u11v11 u11v12 u12v11 u12v12

u11v21 u11v22 u12v21 u12v22

u21v11 u21v12 u22v11 u22v12

u21v21 u21v22 u22v21 u22v22


Qubits are used to store information during the execution of a Quantum algo-

rithm. Quantum algorithms themselves are often described using what are known as

quantum circuits. Quantum circuits are a way of representing quantum algorithms

just like classical digital circuit diagrams represent classical algorithms. Quantum

circuits are made up of a variety of gates but instead of the familiar classical AND

and OR gates, there are quantum gates called CNOT, Hadamard, rotation and more.
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Each of these quantum gates can be represented by a unitary matrix2 and are the

building blocks of the quantum circuit. As shown in Figure 1.2, and unlike classical

circuits, quantum circuits execute only by moving from left to right. During each step

of the circuit’s execution, it builds an effective matrix by moving top to bottom by

performing cumulative matrix-matrix tensor products. Using the effective matrix, the

execution then moves across the circuit from left to right performing vector-matrix

multiplication. These types of linear algebra operations are well known to be difficult

for classical computers and provide insight into why quantum computers, which do

these operations intrinsically, have been shown to solve some quantum mechanical

problems faster as discussed earlier. Further, as discussed above, if finance can be

shown to be quantum mechanical, then simulating it on a quantum computer should

also be intrinsically faster than simulating it on a classical computer. During the

execution of a quantum algorithm, the quantum state must not become decoherent.

Quantum decoherence occurs when a system in a quantum mechanical state starts

to interact with an external system and begins to tend towards classical behavior.

Once the quantum mechanical system that is supporting the quantum computer be-

gins to act classically, the quantum computation running on the quantum computer

typically fails. This is because quantum decoherence causes the probabilistic state of

the quantum system to be lost and thus the probabilistic state cannot be leveraged

by quantum algorithms. On the contrary, quantum decoherence is required during

measurement. Measurement is a necessary step in obtaining the results of a quan-

tum computation, but it is typically performed at the end of a quantum algorithm,

2A unitary matrix is a n by n complex matrix U that satisfies the condition (UT )∗U = U(UT )∗ =
In where In is the identity matrix.
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Figure 1.2: Execution of a Quantum Circuit

when all of the computations have been completed. Exceptions to this rule are the

hybrid quantum/classical algorithms like teleportation [9] that rely on the measure-

ment of certain qubits during the execution. As will be shown later on, the idea of

measurement is central to the quantum binomial model.

As mentioned above, one other key to note is that quantum computing is currently
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restricted to finite dimensional Hilbert spaces. That means that problems relating to

infinite dimensional Hilbert spaces such as those found in quantum field theory are

not intrinsically efficiently solved on quantum computers. Further, to date, there is

no known way to efficiently simulate quantum field systems on a quantum computer.

As will be shown in the results section, path dependent options such as Asian options

appear to actually be quantum field problems.

1.1.3 Statistical Mechanics

In the field of statistical mechanics there are both quantum and classical statistics.

Statistics consider the distinguishability of particles and how that affects the number

of unique states the particles can create. Maxwell-Boltzmann statistics are used

to describe the statistics of distinguishable classical particles. In other words the

configuration of particle P1 in energy state A and particle P2 in energy state B

is not the same as the configuration of particle P2 in energy state A and particle

P1 in energy state B. Extending this to N particles yields the Maxwell-Boltzmann

distribution of particles in energy states. On the other hand, Bose-Einstein and Fermi-

Dirac statistics are used when quantum effects have to be taken into account and the

particles are considered indistinguishable. When particles are indistinguishable, the

number of unique states is decreased considering the number of unique configurations

is reduced. Bose-Einstein statistics apply to bosons and Fermi-Dirac statistics apply

to fermions and both become Maxwell-Boltzmann statistics at high temperatures or

low concentrations. See Figure 1.3 for a detailed picture of the difference between

these statistical models. In the quantum pricing model, the particles are the N qubits
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Figure 1.3: Configurations of (a) Maxwell-Boltzmann, (b) Bose-Einstein and (c)
Fermi-Dirac ball-in-box models. Note that all N entities are fully allocated. Image
taken from Niven and Grendar [30].
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used to simulate the N pricing periods on a quantum computer. Further, the model is

general enough that Maxwell-Boltzmann, Bose-Einstein or Fermi-Dirac statistics can

be used. If classical Maxwell-Boltzmann statistics are used, the quantum binomial

model collapses into the classical binomial model. However, if either of the quantum

statistics are used, the quantum model will produce an option price that is different

from the classical one. Determining the usefulness of this new quantum option price

has been left to future research.

1.1.4 Background on Finance

Much of finance today is concerned with markets, risk and reward. A market

can be a publicly accessible place where trading takes place, like a stock or futures

exchange, or it can be a network that links buyers and sellers, like the over-the-counter

market. Markets facilitate investors wishing to manage their risks and by doing so,

they also manage their potential rewards and losses. Typically, an investor expects a

higher possible reward as they take on more risk. Finding a good balance of risk and

reward for a particular investment and investor are essential. Having the ratio too

high can mean never receiving the reward and potentially taking large losses, whereas

having the ratio too low can mean that the cost of the investment is such that you

would have been better off not investing. Trading options is an essential part of

managing risk and reward and so is understanding the fundamentals of the financial

instruments and processes used by exchanges explained in the sections below.
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Securities

Securities are financial instruments that indicate ownership, a debt agreement or

the right to own. Some examples of each are shown in Table 1.1 below. Securities

Securities Category Example

Ownership Common Stock, Preferred Stock
Debt Agreement Bond, Note, Certificates, Mortgages
Right-to-own Option, Future, Swap, Warrant

Table 1.1: Examples of Securities

represent a contract between parties that can be valued and traded. The structure of

each security and the types of contracts that each security can be entered into vary

and influence the ability to manage the risk/reward ratio. All right-to-own securities

are useful tools for managing an investor’s risk/reward ratio, but as shown in the

following sections, options are considered the most useful.

Exchanges

There are several exchanges in the world trading various securities. Table 1.2

shows some of the top exchanges by market capitalization as of September 2005 [37].

Trading on exchanges is done by either using the open outcry system or electronic

trading. In the open outcry system, traders physically meet and use a series of hand

gestures and verbal communication to complete trades. On the other hand, electronic

trades are completed using computers. This highlights the significance of being able

to calculate an accurate option price quickly — if a mispriced option can be found

on the market, it can be automatically traded using a computer for a profit.
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Exchange Market Cap (Billions)

NYSE $12992.1
Tokyo Stock Exchange $4042.6
Nasdaq $3475.2
London Stock Exchange $2988.2
Osaka Stock Exchange $2632.2
Euronext $2607.3
TSX Group (Toronto) $1361.5
Deutsche Borse $1185.3
BME Spanish Exchanges $1013.8
Hong Kong Exchange $981.7
Swiss Exchange $896.1
Australian Stock Exchange $777.7
OMX Exchange $747.3
Borsa Italiana $730.5
Korea Exchange $574.9
Bombay Stock Exchange $512.8
JSE (South Africa) $475.0
Sao Paulo Stock Exchange $437.1

Table 1.2: Market Capitalization of Top Exchanges

Options

As mentioned above, options are a crucial tool for managing an investor’s risk/reward

ratio. Options can be combined with other securities so the investor can customize

the risk/reward ratio of their portfolio. The portfolio can even be setup in such a

way that the risk is zero (called a perfect hedge). Options are financial instruments

that give the owner the right to execute a future transaction on some security such

as a stock or futures contract — if they choose to do so. As an example, consider

the purchase of what is known as a call option. A call option gives the owner of the

option the right to buy a specific number of shares of a security at a set price called

the strike price until some set expiry date. On the other hand, the party who sold

the option is obligated by the terms of the option to sell the owner of the option the
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underlying security for the strike price before the expiry date. Call options can be

purchased for several reasons. Two of which are, buying a call option to benefit from

a rise in the price of the underlying security or to lock in the price of the underlying

security. The trader will estimate the price of the security over some future time

period and then look for a call option with a strike price and premium in that time

period that will allow them to exercise the option in-the-money. Because the trader

is buying a call option that gives them the right to purchase a security at some point

in the future, the trader will only be able to to exercise the option in-the-money if the

price of the underlying security rises. This is because when the option is exercised

by the trader, they purchase the underlying security for the strike price and then sell

it for whatever price the security is currently trading for on the open market. If the

price of the security is lower than the strike price when the option is exercised, the

investor would lose money. In this case, the investor would not exercise the option

and would effectively lose whatever premium they paid for the option in the first

place. Formally, the option payoff is expressed as [S −K]+, where this is defined to

be:

[S −K]+ = Max[(S −K), 0] (1.8)

where S is the price of the security and K is the strike price. If a trader sees an at-

tractive security price and would like to lock it in without a large initial investment,

they can buy a call option which is usually much less than the cost of the security.

As explained in the previous section, if the option can be exercised in-the-money, the

trader will do so, and if not, the most the trader loses is the cost of the option. A

put option is very similar, but instead, the owner has the right to sell the underlying
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security at the strike price prior to the expiry date. With a put option, if the un-

derlying security drops below the strike price, the owner of the option can purchase

the underlying security on the market, exercise the option, and then sell the security

for a payoff of [K − S]+. If the option expires or the underlying security never falls

below the strike price, the option becomes worthless. Call options and put options

are the two types of options, but there are many styles of options with varying un-

derlying financial instruments and payoff formulas. Several vanilla option styles and

the exotic option styles that are the focus of this research are described below. For a

more detailed discussion on various financial instruments please refer to [20].

European and American Options European and American options are the most

basic styles of options and are typically referred to as vanilla options. The only

difference between the two styles of options is American options can be exercised any

time before or on the expiry date whereas European options can only be exercised

on the expiry date. As described above, the payoff of European and American call

options take the form [S −K]+.

Asian Options An Asian option is also known as an average option. This is because

their settlement value is based on either the arithmetic or geometric average value

of the underlying financial instrument between a range of dates during the lifetime

of the option. The Asian option payoff typically takes one of two forms, however,

both forms settle European style. The first form is an average price option where

the payoff is based on the difference between a fixed strike price and the average of

the underlying financial instrument over the lifetime of the option. The other form is
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an average strike option where the payoff is determined like a regular option except

the strike price is based on the average price of the underlying financial instrument

over the lifetime of the option. The payoffs of the Asian call options take the form

[Savg −K]+ and [S −Kavg]
+ respectively.

Bermudan Options A Bermudan option is a hybrid of American and European

options. Bermudan options can be exercised early like American options, but can

only be exercised early during certain date ranges over the lifetime of the option.

Thus, prior to the early exercise date range the option behaves like a European

option and after the early exercise date range it behaves like an American option.

Bermudan options are typically used by companies as a form of compensation for

senior executives joining the company as it motivates them to consider the long term

benefits of their actions to the company.

Barrier Options Barrier options are very similar to regular options except that the

option to exercise is based on the underlying financial instrument reaching a barrier

price level. Barrier options typically take two forms, either knock-out or knock-in. As

a result, they generally act like vanilla American or European options until one of the

barrier events such as knock-out or knock-in occur. With knock-out, if the underlying

financial instruments reach a specific barrier price level, the option terminates and

expires worthless. With knock-in, the option does not become effective until the

underlying financial instruments reach a certain price, and if they don’t, the option

expires worthless. Considering there are more conditions that must be met in order

to receive a payoff and that the payoff is at best as good as a regular option, the
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premium on Barrier options is usually less. Four specific styles of Barrier options

are Up-and-out, Down-and-out, Up-and-in and Down-and-in. Up-and-out Barrier

options are where the spot price starts below the barrier level and has to move up

for the option to expire worthless. Down-and-out Barrier options are where the spot

price starts above the barrier level and has to move down for the option to expire

worthless. Up-and-in Barrier options are where spot price starts below the barrier

level and has to move up for the option to become effective. Down-and-in Barrier

option are where spot price starts above the barrier level and has to move down for

the option to become effective.

Pricing Options

Determining the price (value) of an option is central to financial instrument valua-

tion theory and is the key theme of this research. Several models have been proposed

to price options but the most popular, and the one awarded the 1997 Nobel Prize

in Economics, is the Black-Scholes-Merton pricing model. By assuming the efficient

market hypothesis [5] is true, i.e. that no arbitrage (risk-free profit) opportunities

should exist in a market where options are correctly priced, Black, Scholes and Mer-

ton developed a formula for pricing options [7]. Their research examines previous

attempts to develop a formula for pricing options, and concludes that each of them

are flawed, as they all contain at least one parameter that is either inappropriate or

effectively guessed. In order to develop their options pricing formula, they first make

the following assumptions:

1. There are no arbitrage opportunities.
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2. The short term interest rate is known and constant through time.

3. The stock price follows a random walk in continuous time with a variance rate

proportional to the square of the stock price.

4. The distribution of stock prices is lognormal.

5. The stock pays no dividends or other distributions.

6. The option is European.

7. There are no transaction costs or taxes.

8. It is possible to borrow and lend cash at a constant risk-free interest rate.

9. It is possible to short sell the underlying stock without penalty.

10. All securities are perfectly divisible.

With these assumptions it is possible to create a perfectly hedged position with

a long position in the stock and a short position in the option such that the value of

the option is dependant only on time and known constant values. This portfolio is

created by taking a short position equal to 1/(∂V
∂S

) options where V (S, t) is the value

of the option in relation to the stock price S and time t. If this hedge is continuously

maintained, then the expected return from the portfolio becomes the risk-free interest

rate as the portfolio has no risk of losing money. If this were not true, arbitrage would

be possible. The result is a partial differential equation for the price of the option as

follows:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (1.9)
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Noting that the boundary condition of a European call option is C(S, t) = [S −K]+,

the solution to this differential equation is the following:

C(S, t) = SN(d1)−Ke−r(T−t)N(d2) (1.10)

d1 =
ln(S/K) + (r + 1

2
σ2)(T − t)

σ
√
T − t

(1.11)

d2 =
ln(S/K) + (r − 1

2
σ2)(T − t)

σ
√
T − t

(1.12)

where C(S, t) is the call option price, N(d) is the cumulative normal density function

(which is the most difficult of the variables to calculate in practice), r is the risk-

free interest rate, (T − t) is the maturity time and σ2 is the variance rate. The key

component of this result (which many find surprising) is that the return on the stock

is not a variable in the formula for the option price.

The Black-Sholes-Merton valuation approach can be extended to other styles of

options. In particular, American call options can be valued the same way because it

has been shown that they have the same value as a European call option [26]. This

was proven by showing that a rational investor would continue to hold an American

option until maturity, even if it is in-the-money. Further, the pricing formula can be

extended to European put options by simply changing the boundary condition to be

P (S, t) = [K − S]+ where P (S, t) is the value of a put option. Further calculation

shows a European put price can be expressed as follows:

P (S, t) = −SN(−d1) +Ke−r(T−t)N(−d2) (1.13)
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Unfortunately, no analytical formula for an American put option has been derived,

which has given rise to the popularity of numerical methods.
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Related Work

There is a large body of research on classical option pricing and while there has

been some research in the area of quantum finance, there has been comparatively

little research in the area of quantum option pricing. Most quantum option pricing

research so far has typically focused on the quantization of the classical Black-Scholes-

Merton equation from the perspective of continuous equations like the Schrödinger

equation. On the other hand, metaphorically speaking, Chen’s quantum binomial

model (referred to hereafter as the quantum binomial model) is to existing quantum

finance models what the Cox-Ross-Rubinstein model was to the Black-Scholes-Merton

model — a discretized and simpler version of the same result. These simplifications

make the respective theories not only easier to analyze but also easier to implement

on a computer. This is crucial given that many option types and styles have no

known analytical equation. This section will briefly outline research in quantum

finance related to option pricing, with the exception being a detailed account of the

Cox-Ross-Rubinstein classical binomial model and Chen’s quantum binomial model.

23
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Haven [18, 19] builds on the work of Chen and others but considers the market

from the perspective of the Schrödinger equation. The key message in Haven’s work

is that the Black-Scholes-Merton equation is really a special case of the Schrödinger

equation where markets are assumed to be efficient. The Schrödinger-based equation

that Haven derives has a parameter h̄∗ (not to be confused with the complex conjugate

of h̄) that represents the amount of arbitrage that is present in the market resulting

from a variety of sources including non-infinitely fast price changes, non-infinitely fast

information dissemination and unequal wealth among traders. Haven argues that by

setting this value appropriately, a more accurate option price can be derived, because

in reality, markets are not truly efficient. This is one of the reasons why it is possible

that a quantum option pricing model could be more accurate than a classical one.

Baaquie [5] has published many papers on quantum finance and even written a

book [4] that brings many of them together. Core to Baaquie’s research and others like

Matacz [25] are Feynman’s path integrals. Baaquie applies path integrals to several

exotic options and presents analytical results comparing his results to the results

of Black-Scholes-Merton equation showing that they are very similar. Baaquie is

explicit in his book, “No attempt is made to apply quantum theory in re-working

the fundamental principles of finance”. Essentially, he reformulates classical results

into quantum field theory language to obtain equivalent results. The results provide

useful tools in this context, but they do not show how quantum computers could be

leveraged, and an alternative finance theory based on quantum theory is not explored.

Piotrowski et al. [31] take a different approach by changing the Black-Scholes-

Merton assumption regarding the behavior of the stock underlying the option. Instead
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of assuming it follows a Wiener-Bachelier [20] process, they assume that it follows

a Ornstein-Uhlenbeck [34] process. With this new assumption in place, they derive

a quantum finance model as well as a European call option formula. Other models

such as Hull-White [21] and Cox-Ingersoll-Ross [11] have successfully used the same

approach in the classical setting with interest rate derivatives. That said, Piotrowski

et al. do not provide any quantitative results or analysis regarding the impact of using

the Ornstein-Uhlenbeck process for option prices in general.

Khrennikov [23] builds on the work of Haven and others and further bolsters

the idea that the market efficiency assumption made by the Black-Scholes-Merton

equation may not be appropriate. To support this idea, Khrennikov builds on a

framework of contextual probabilities using agents as a way of overcoming criticism

of applying quantum theory to finance. Although the work is interesting, no option

pricing formula was derived.

Accardi and Boukas [2] again quantize the Black-Scholes-Merton equation, but in

this case, they also consider the underlying stock to have both Brownian and Poisson

processes. Again, no quantitative results or analysis regarding the impact of their

choice is provided.

Almost all of the research examined in this area has been completely theoretical

and lacked quantitative results with analysis. This is one of the motivations for

simulating option pricing algorithms as part of this research.
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2.1 Classical versus Quantum Binomial Model

For simplicity and clarity, the following sections show the derivation of both the

classical and quantum binomial models assuming only a single step of the simulation

will be run. This is then followed by an extrapolation of the single step quantum

model to the multi-step quantum binomial model. Both the quantum and classical

binomial model derivations use one key common assumption to price an option. They

assume an arbitrage-free replicating portfolio instead of the alternative, yet equivalent,

arbitrage-free delta hedging portfolio or risk-neutral valuation assumption. Consid-

ering the arbitrage-free replicating portfolio technique is used frequently below, it is

described here as follows. First of all, a portfolio is created that consists of ∆ shares

of a stock and B dollars borrowed at the risk-free rate which, is typically assumed to

be the London Interbank Offered Rate (LIBOR) in practice. ∆ and B are selected

such that they emulate the cash flows of the option to be valued. The replicating

portfolio technique assumes that there should never be any arbitrage opportunities

and, as a result, the replicating portfolio should have the same value as the option. If

this were not true, the portfolio could be sold and the option could be purchased for

a risk-less (arbitrage) profit. Consider the following call option example where K is

the strike price, Su is the stock price as it increases in value and Sd is the stock price

as it decreases in value:

∆Su −B(1 + r) = [Su −K]+ (2.1)

∆Sd −B(1 + r) = [Sd −K]+ (2.2)
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After solving for both ∆ and B the value of the call option C is:

C = ∆Sc −B (2.3)

where Sc is the current stock price.

As mentioned previously, another key consideration when comparing the clas-

sical versus quantum model is the statistical distribution chosen. If the Maxwell-

Boltzmann classical statistical distribution is used with the quantum binomial model

the price will match the classical price and the model will collapse to the Black-

Scholes-Merton model. Alternatively, if a quantum statistical distribution such as

Fermi-Dirac or Bose-Einstein is used, the price will not be the same as the Black-

Scholes-Merton model and instead, will be equal to what will be referred to as the

quantum binomial model price.

2.1.1 Derivation of the Single-Step Classical Binomial Model

The classical binomial stock pricing model derived by Cox-Ross-Rubinstein trans-

lates the Black-Scholes-Merton model into a discrete binary tree of prices. Essentially,

it is a numerical method for the valuation of options that is very popular because of

its flexibility and for its ability to be executed on a computer. For each n steps of the

binomial model, n new tree nodes are created. These new nodes represent a single

discrete change in the underlying stock price. The execution of each step increases

the accuracy of the resulting option price, eventually converging to the Black-Scholes-

Merton price. The term single-step means that only one discrete change in the stock

underlying the option will be considered as shown in Figure 2.1. With this, the classi-
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Figure 2.1: Single Step Classical Binomial Model

cal binomial stock pricing model is derived as follows. With B representing a risk-free

bank account and S representing a stock, an arbitrage-free replicating portfolio can

be set-up as follows:

B1 = B0(1 + r), S1 = S0(1 +R) (2.4)

where R is random variable taking just two values, causing S to go either up or down.

Cu is the price of the call option if there is an upward movement u in the stock price1:

Cu = [S0u−K]+ (2.5)

Cd is the price of the call option if there is a downward movement d in the stock price:

Cd = [S0d−K]+ (2.6)

where, by definition, u ≥ 1 and 0 < d ≤ 1. In order to account for the time value

of money and that the Black-Scholes-Merton model is continuous, the present value

1Recall that [S0 −K]+ is shorthand for Max[S0 −K, 0]
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of C at time 0 is derived by discounting the future value of C using the continuous

compounding interest rate formula [20] as follows:

C = e−rT [qCu + (1− q)Cd] (2.7)

Because of the form of equation 2.7, q is interpreted as the probability of an upward

stock movement, and 1 − q is interpreted as the probability of a downward stock

movement in a risk-free world where:

q =
erT − d

u− d
(2.8)

Recalling that the distribution of the stock price is lognormal, u and d are estimated

as a function of the historical stock volatility σ as follows:

u = eσ
√

∆t (2.9)

d = e−σ
√

∆t (2.10)

Substituting for q in equation 2.7 we get the expanded formula for the price of an

option C:

C = e−rT

[
erT − d

u− d
Cu +

(
1− erT − d

u− d

)
Cd

]
(2.11)

2.1.2 Derivation of the Single-Step Quantum Binomial Model

The following is a brief outline of the derivation of the quantum binomial method

based on the work of Chen [10]. First, the quantum mechanical foundation for a



30 Chapter 2: Related Work

quantum-based no-arbitrage stock market is presented, which is followed by the quan-

tization of the classical binomial model. Assume a stock is in a quantum state:

ρ =
1

2
(wI2 + xσx + yσy + zσz) (2.12)

where ρ is an arbitrary 2× 2 Hermitian matrix2 and is known as the density matrix.

In quantum mechanics, a density matrix is, by definition, a Hermitian matrix of

trace one. Density matrices are used to describe the statistical state of either an

ensemble of systems or a single system where the pure quantum state the system is

in, is unknown. Note that any 2 × 2 Hermitian matrix can be written as a linear

combination of the Pauli matrices3, as they form the basis for the Hilbert space of

2 × 2 complex Hermitian matrices. In addition, consider a matrix A (known as a

quantum operator in quantum mechanics) that is used to transform the stock from

one state to the next:

A = (x0I2 + x1σx + x2σy + x3σz) (2.13)

where A is an arbitrary Hermitian matrix. Let a and b be the eigenvalues of A, which

means they represent the possible values A can take when it is measured. Eigenvalues

2A Hermitian matrix is a complex square matrix that is equal to its own conjugate transpose.
3The Pauli matrices:

I2 =
(

1 0
0 1

)
σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
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a and b can be expressed as follows:

a = x0 −
√
x2

1 + x2
2 + x2

3, b = x0 +
√
x2

1 + x2
2 + x2

3 (2.14)

such that all xj are real numbers and that x2
1 + x2

2 + x2
3 6= 0 and a, b > −1. After

solving each equation for x0 and setting them equal to each other, the following result

is obtained:

a+
√
x2

1 + x2
2 + x2

3 = b−
√
x2

1 + x2
2 + x2

3 (2.15)

which can be rewritten as:

(b− a)2

4
= x2

1 + x2
2 + x2

3 (2.16)

By substituting (b−a)/2 into equation 2.14 in place of
√
x2

1 + x2
2 + x2

3, it follows that:

x0 = a+
b− a

2
=
a+ b

2
(2.17)

Black-Scholes-Merton derivative pricing theory says that in a risk-neutral world, one

should expect to earn the risk-free interest rate. Considering A is used to transform

the stock from one state to the next, one should expect that it evolves the stock at

the risk-free rate. Thus, the expected value of measuring A should be the risk-free

interest rate. In quantum mechanics, the expected value of a quantum operator can

be calculated as 〈A〉ρ = tr(ρA), where tr is the trace matrix operation, and ρ is the

density matrix. As a result:

〈A〉ρ = tr(ρA) = r (2.18)
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where r is the risk-free rate. As discussed earlier, a density matrix must have a trace

of one:

trρ =
1

2
(w + z) +

1

2
(w − z) = 1 (2.19)

and as a result w = 1, which means that:

r = tr

1

2

w + z x− iy

x+ iy w − z


 x0 + x3 x1 − x2i

x1 + x2i x0 − x3




which reduces to:

r = wx0 + zx3 + xx1 + x2y (2.20)

After substituting x0 = (a+b)/2 and w = 1 into equation 2.20, the risk-neutral states

are shown to be:

x1x+ x2y + x3z = r − a+ b

2
(2.21)

Considering, by definition, the eigenvalues of any density matrix must be 0 ≤ λi ≤ 1,

the eigenvalues of ρ are:

λ1 =
1

2
(w −

√
x2 + y2 + z2), λ2 =

1

2
(w +

√
x2 + y2 + z2) (2.22)

where w = 1, meaning the eigenvalues must have:

x2 + y2 + z2 < 1 (2.23)
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This means that the geometry of the risk-neutral states defined by equations 2.22 and

2.23 is a disk with radius: √
1− (2r − a− b)2

(b− a)2
(2.24)

in the unit ball of R3. The quantum binomial model replaces the single random

variable R in the classical model with a complex Hermitian matrix A much like

Heisenberg did in 1925 to quantize Newtonian Physics. The result is the following

quantum single step binomial model for the price of a European call option. With

B representing a risk-free bank account and S representing a stock, an arbitrage-free

replicating portfolio can be setup as follows:

B1 = B0(1 + r), S1 = S0(I2 + A) (2.25)

where the quantum operator A is built as per equation 2.13. hb is the price of the

call option if there is an upward movement in the stock of (1 + b):

hb = [S0(1 + b)−K]+ (2.26)

ha is the price of the call option if there is a downward movement in the stock of

(1 + a):

ha = [S0(1 + a)−K]+ (2.27)
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C is the price of the European call option at time 0 discounted by 1/(1+ r) assuming

the market is quantum:

C =
1

1 + r

[(
b− r

b− a

)
ha +

(
r − a

b− a

)
hb

]
(2.28)

2.1.3 Multi-Step Quantum Binomial Model

The following equations take the single-step quantum binomial model and ex-

trapolate it to an N -period multi-step model. In the multi-step model, each step is

tensored4 with the previous step to build a composite quantum system that represents

the entire history of the simulation of the option price. With B representing a risk-

free bank account and S representing a stock, an arbitrage-free replicating portfolio

can be set-up as follows:

B1 = B0(1 + r)n, Sn = S0

n⊗
j=1

(I2 + Aj)⊗ IN−n (2.29)

where the quantum operator A is a complex Hermitian matrix representing stock

price movement and is built as follows:

Aj = x0I2 + x1jσx + x2jσy + x3jσz (2.30)

where σx, σy, σz are the Pauli spin matrices of quantum mechanics, for all j = 1, ..., N .

SN can be represented as follows, assuming the Maxwell-Boltzmann classical statis-

4Recall that ⊗ represents the tensor product (otherwise known as the Kronecker product).
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tics:

SN = S0

N∑
n=0

(1 + b)n(1 + a)N−n

∑
|σ|=n

N⊗
j=1

|wjσ〉 〈wjσ|

 (2.31)

where all σ (not to be confused with stock volatility) are subsets of {1, ..., N}, wjσ =

uσ for j ∈ σ or wjσ = vσ otherwise and form an orthonormal basis in the Hilbert

space. With these definitions, [SN −K]+ can now be represented as follows:

[SN −K]+ =
N∑

n=0

[S0(1 + b)n(1 + a)N−n −K]
+

∑
|σ|=n

N⊗
j=1

|wjσ〉 〈wjσ|

 (2.32)

The density matrix representing the stock’s quantum state ρ is constructed as follows:

N⊗
j=1

ρ =
1

2N

N⊗
j=1

(I2 + xjσx + yjσy + zjσz) (2.33)

where each j will require an additional qubit in order to be simulated with a quantum

computer. The resulting option price is then:

CN
0 = tr[(

N⊗
j=1

ρj)[SN −K]+] (2.34)

Chen then takes this equation and derives the equivalent of the Cox-Ross-Rubinstein

option pricing formula as follows:

CN
0 = (1 + r)−N

N∑
n=0

N !

n!(N − n)!
qn(1− q)N−n[S0(1 + b)n(1 + a)N−n −K]

+
(2.35)

This shows that assuming stocks behave according to Maxwell-Boltzmann classical

statistics, the quantum binomial model does indeed collapse to the classical binomial
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model. Chen also shows that classical Maxwell-Boltzmann statistics can be replaced

by the quantum Bose-Einstein statistics resulting in the following option price for-

mula:

CN
0 = tr[(ρ

N̂
N)[SN −K]+] (2.36)

Chen then takes this equation and derives a new quantum option pricing formula

that is not the equivalent of the Cox-Ross-Rubinstein as follows:

CN
0 = (1 + r)−N

N∑
n=0

(
qn(1− q)N−n∑N
k=0 q

k(1− q)N−k

)
[S0(1 + b)n(1 + a)N−n −K]

+
(2.37)

Equation 2.37 will produce option prices that will differ from those produced by the

Cox-Ross-Rubinstein option pricing formula in certain circumstances. This is because

the stock is being treated like a quantum boson particle instead of a classical particle.
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Results

The results of this thesis research are described in the following sections. First

of all, the classical and quantum binomial models are compared and contrasted to

each other. Secondly, to give the appropriate context to the discussions relating

to extending the model, the base quantum binomial model simulation is presented.

Finally, the extension of the quantum binomial model to styles other than European

call options is presented and evaluated.

3.1 Differences Between the Classical and Quan-

tum Binomial Model

The differences between the classical and quantum binomial models are summa-

rized in Table 3.1. If one took the approach of J. Bernoulli and C. Huygens [6] for

calculating the expected value of a random variable in the 1700’s, an option could be

37
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CV QV Classical Meaning Quantum Meaning

Bn Bn Risk Free Bank Account after Step n Risk Free Bank Account after Step n
Sn Sn Stock Price at Step n Stock Price at Step n
K K Strike Price Strike Price
r r Risk-Free Rate Risk-Free Rate
R A Random Real Scalar Growth Random Complex Unitary Matrix Growth
d 1+a Downward Movement Amount Downward Movement Amount
u 1+b Upward Movement Amount Upward Movement Amount
Cd ha Downward Option Price Downward Option Price
Cu hb Upward Option Price Upward Option Price
q q Upward Stock Movement Probability Upward Stock Movement Probability
σ σ Stock Volatility Stock Volatility
∆t ∆t Time Step Time Step
T T Total Time Total Time

Table 3.1: Comparison of classical variables (CV) and quantum variables (QV)

priced as follows:

C =
1

1 + r
E(S1 −K)+ =

1

1 + r
(qhb + (1− q)ha) (3.1)

where q is the probability that the random variable R takes the value hb. Equation 3.1

is in the same form as the classical binomial equation 2.7 above, but q isn’t estimated

using volatility σ like in equations 2.9 and 2.10. The problem with this is that the

value of the option is based on some arbitrary assumption of the probability q of

the stock moving up or down. This is precisely the problem that the Black-Scholes-

Merton equation solved by developing a formula that prices options only on the

stock’s volatility and not its expected return. That said, the Black-Scholes-Merton

approach is effectively estimating the probability of stock movement using historical

volatility and thus not entirely removing it from the equation. The quantum binomial

model represents probability with density matrices and when repeated measurements
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of the quantum system are made, the expected value of the quantum operator A

is calculated which equals the price of the option. This is accomplished as follows,

stock movement is based on the evolution of the quantum rate of return A until a

measurement is made. When a measurement is finally made, the equation collapses to

the classical binomial model with the option value being based on the eigenvalues of A

as shown in equation 2.28. Each eigenvalue a and b has a specific probability of being

the value returned during the measurement. The following section describes how the

probability of measuring a specific eigenvalue is calculated. First of all, assume u, v

form an orthonormal basis in C2. A can then be written in terms of outer products

of the basis and its eigenvalues as follows:

A = a |u〉 〈u|+ b |v〉 〈v| (3.2)

where a and b are the eigenvalues of A and |u〉 〈u| means the outer product of the

vectors |u〉 and 〈u|. If the orthonormal basis is |u〉 = (1, 0)T and |v〉 = (0, 1)T then

the outer product |u〉 〈u|, is a 2×2 matrix with a 1 in position [1, 1] and 0’s elsewhere

as shown in equation 1.6. In quantum mechanics, the probability that measuring a

system in the state ρ will result in the eigenvalue a is 〈u| ρ |u〉 and the probability it

will result in the eigenvalue b is 〈v| ρ |v〉. Thus, the probability that A takes the value

a or b after measurement can be expressed as follows:

p(a) = 〈u| ρ |u〉 =
1

2
[u1u

∗
1(w + z) + u∗1u2(x− iy) + u∗2u1(x+ iy) + u∗2u2(w − z)] (3.3)

p(b) = 〈v| ρ |v〉 =
1

2
[v1v

∗
1(w + z) + v∗1v2(x− iy) + v∗2v1(x+ iy) + v∗2v2(w − z)] (3.4)



40 Chapter 3: Results

which reduces to:

p(a) = 〈u| ρ |u〉 =
1

2
[(w + z)] (3.5)

p(b) = 〈v| ρ |v〉 =
1

2
[(w − z)] (3.6)

The quantum binomial model is just like any quantum model in that, in order for

it to evolve from state to state and still remain in a quantum state, it must not be

measured. Thus measurement of the quantum binomial model should not occur until

it has reached the desired number of steps required for the desired accuracy of the

option price. This means that during the evolution of the stock from one quantum

state to the next without measurement, the probability of the stock moving up or

down is not manifested and the the density matrix ρ preserves the entire statistical

ensemble of the state. Essentially, in the classical binomial model it is as if a mea-

surement is occurring after each step of the model. In this case, it would be rational

for the measuring observer to think that the value of their option is based on the

probability of the stock going up or down. The irony is that the observer is the one

causing probability to become a factor as they are collapsing the quantum state by

performing the measurement. The fact that the classical form can be re-written in

probabilistic form is what Chen is calling the paradox. This is because, the probability

of the up and down option prices is already built into the movement of the underlying

stock prices, thus, it seems paradoxical that probability would re-enter the equation.
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3.2 Base Algorithm for Simulating the Quantum

Binomial Model

European call options, European put options and Barrier options were simulated

as part of this research. The base algorithm for simulating these options, developed

as part of this research, has four main phases.

Derive the Eigenvectors of the Quantum Operator The first phase is to derive

the eigenvectors that will be used as the canonical basis for the simulation for a given

volatility σ and a number of periods N . Deriving the eigenvectors has several steps

as follows. Using the formula originally proposed by Meyer [27] and corrected as part

of this research, for volatility:

σ =
ln (1 + x0 +

√
x2

1 + x2
2 + x2

3)√
1/t

(3.7)

that can be rewritten in terms of b by substituting in equation 2.14 as follows:

σ =
ln (1 + b)√

1/t
(3.8)

where t = T/N is the time of each period. The eigenvalue b can then be calculated

by rearranging equation 3.8 as follows:

b = eσ
√

1/t − 1 (3.9)
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Using the value of b and the risk free rate r as constraints, the rest of the parameters

for A0 and ρ shown in equations 2.13 and 2.12 respectively are chosen such that the

risk free equation 2.24 is satisfied. With these parameters chosen, the eigenvalue a

is calculated as per equation 2.14 and the operator A0 for period 1 is constructed as

per equation 2.13. Next, the eigenvectors v and u of A0 are derived using both the

eigenvalues a and b. The eigenvectors, v and u are then used as the canonical basis for

further calculations. Note that the parameters x1, x2, x3 that drive the operator A can

be adjusted as per equation 3.7 to achieve the desired volatility σ for the simulation.

Initialize the Input Values The second phase is the preparation of the input

values |ψ0ψ1ψ2ψ3...ψN〉 according to the density matrix ρ as follows:

ρ =
N⊗

j=1

(|u〉 〈u| (1− q) + |v〉 〈v| q) (3.10)

where q is derived as per equation 2.8.

Build the Quantum Operator The third phase is to build the quantum operator

A that will be used to evolve the stock price S through the N periods. This is done

by combining the eigenvectors v and u, which form the canonical basis of the vector

space, as follows, from equation 2.31:

∑
|σ|=n

N⊗
j=1

|wjσ〉 〈wjσ| (3.11)

where all σ (not to be confused with volatility) are subsets of {1, ..., N}, wjσ = uσ

for j ∈ σ or wjσ = vσ otherwise. Note that m will be used to represent the number
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of subsets per period as follows:

m = |σ| = N !

n!(N − n)!
(3.12)

which can also be represented by Pascal’s triangle. There are several steps required to

combine the subsets in accordance with equation 3.11. First of all, the subset number

m is converted to binary for each subset. Secondly, subsets with the same number

of 0s in their binary subset numbers are grouped together. Thirdly, the groups are

sorted in descending order of the number 0s in their respective binary subset number

m. Finally, for each binary subset number m, each 0 is set to |u〉 〈u|, each 1 is

set to |v〉 〈v| and then the tensor product of each of the resulting outer products is

calculated1. This is illustrated with following examples where n is the current period

and m is the number subsets within the period. When N = 1,

n0 = |u〉 〈u|+ |v〉 〈v| (3.13)

When N = 2,

n0 = m0 = |u〉 〈u| ⊗ |u〉 〈u|

n1 = m1 +m2 = (|u〉 〈u| ⊗ |v〉 〈v|) + (|v〉 〈v| ⊗ |u〉 〈u|)

n2 = m3 = |v〉 〈v| ⊗ |v〉 〈v|

(3.14)

1For example, 9 = 1001 = |v〉 〈v| ⊗ |u〉 〈u| ⊗ |u〉 〈u| ⊗ |v〉 〈v|
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When N = 3,

n0 = m0 = |u〉 〈u| ⊗ |u〉 〈u| ⊗ |u〉 〈u|

n1 = m1 +m2 +m4 = (|u〉 〈u| ⊗ |u〉 〈u| ⊗ |v〉 〈v|) + (|u〉 〈u| ⊗ |v〉 〈v| ⊗ |u〉 〈u|)

+ (|v〉 〈v| ⊗ |u〉 〈u| ⊗ |u〉 〈u|)

n2 = m3 +m5 +m6 = (|u〉 〈u| ⊗ |v〉 〈v| ⊗ |v〉 〈v|) + (|v〉 〈v| ⊗ |u〉 〈u| ⊗ |v〉 〈v|)

+ (|v〉 〈v| ⊗ |v〉 〈v| ⊗ |u〉 〈u|)

n3 = m7 = |v〉 〈v| ⊗ |v〉 〈v| ⊗ |v〉 〈v|

(3.15)
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When N = 4,

n0 = m0 = |u〉 〈u| ⊗ |u〉 〈u| ⊗ |u〉 〈u| ⊗ |u〉 〈u|

n1 = m1 +m2 +m4 +m8 = (|u〉 〈u| ⊗ |u〉 〈u| ⊗ |u〉 〈u| ⊗ |v〉 〈v|)

+ (|u〉 〈u| ⊗ |u〉 〈u| ⊗ |v〉 〈v| ⊗ |u〉 〈u|) + (|u〉 〈u| ⊗ |v〉 〈v| ⊗ |u〉 〈u| ⊗ |u〉 〈u|)

+ (|v〉 〈v| ⊗ |u〉 〈u| ⊗ |u〉 〈u| ⊗ |u〉 〈u|)

n2 = m3 +m5 +m6 +m9 +m10 +m12 = (|u〉 〈u| ⊗ |u〉 〈u| ⊗ |v〉 〈v| ⊗ |v〉 〈v|)

+ (|u〉 〈u| ⊗ |v〉 〈v| ⊗ |u〉 〈u| ⊗ |v〉 〈v|) + (|u〉 〈u| ⊗ |v〉 〈v| ⊗ |v〉 〈v| ⊗ |u〉 〈u|)

+ (|v〉 〈v| ⊗ |u〉 〈u| ⊗ |u〉 〈u| ⊗ |v〉 〈v|) + (|v〉 〈v| ⊗ |u〉 〈u| ⊗ |v〉 〈v| ⊗ |u〉 〈u|)

+ (|v〉 〈v| ⊗ |v〉 〈v| ⊗ |u〉 〈u| ⊗ |u〉 〈u|)

n3 = m7 +m11 +m13 +m14 = (|u〉 〈u| ⊗ |v〉 〈v| ⊗ |v〉 〈v| ⊗ |v〉 〈v|)

+ (|v〉 〈v| ⊗ |u〉 〈u| ⊗ |v〉 〈v| ⊗ |v〉 〈v|) + (|v〉 〈v| ⊗ |v〉 〈v| ⊗ |u〉 〈u| ⊗ |v〉 〈v|)

+ (|v〉 〈v| ⊗ |v〉 〈v| ⊗ |v〉 〈v| ⊗ |u〉 〈u|)

n4 = m15 = |v〉 〈v| ⊗ |v〉 〈v| ⊗ |v〉 〈v| ⊗ |v〉 〈v|

(3.16)

Calculate the Payoff Formula for the Option Style In this phase, the payoff

formula for the option style being simulated is calculated and it involves several steps

as follows. For each n, the stock price SN = SN−1 +Sn is calculated (Sn is equivalent

to the value of the nth leaf node of the Cox-Ross-Rubinstein binomial tree) using

equation 2.31. The next step is to implement the payoff formula and if the result is

non-zero, multiply it by the quantum operator matrix created in the previous phase.

For example, for a European call option, where N = 2 and n = 1, this step would
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perform the following calculation:

Sn = [S0(1 + b)n(1 + a)N−n −K]+(|u〉 〈u| ⊗ |v〉 〈v|+ |v〉 〈v| ⊗ |u〉 〈u|) (3.17)

Calculate the Expected Value of the Quantum Operator The final phase is

to determine the option price CN by calculating the expected value of the quantum

operator SN as per equation 2.34.

3.2.1 Multi-Step Quantum Binomial Algorithm Quantum Cir-

cuit

The following circuit implements the multi-step quantum binomial algorithm de-

scribed above:

|0〉 H • • • • · · · • • H NM



 C

σ
E

|ψ1〉 R(θ)

A1 UP1 + A2 UP2

· · ·

+ AN UPN

N |ψ2〉 R(θ) · · ·

|ψ3〉 R(θ) · · ·
...

|ψN〉 R(θ) · · ·

L
• •

...

L
• • •

L
· · · • • •
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3.2.2 Complexity Analysis of the Quantum and Classical Bi-

nomial Algorithms

The first part of the quantum circuit above is the E function call, which is a

classical routine, that derives the eigenvectors of the quantum operator based on

volatility σ and the number of periods N . The amount of processing required for E is

constant as it requires four elementary calculations and solving for the eigenvectors

of a 2 × 2 matrix. The second part of the circuit is the preparation of the input

values |ψ0ψ1ψ2ψ3...ψN〉 according to the density matrix ρ in equation 3.17 which can

be done in one step [28], using N rotation gates2 Ry(θ) with appropriately selected

values of θ. In the third part of the circuit, each quantum operator An is built as per

the subset algorithm described in the section above which takes O(2N) time. Note

that the overhead to create the operators is borne while the circuit is being built

and not during the execution of the circuit. This means that subsequent simulations,

where values other than volatility σ and the number of periods N change, can be run

without incurring the overhead associated with building the operators. However, it

also means that quantum binomial option pricing with stochastic volatility will incur

this overhead every time. The next part of the circuit implements the payoff function

2

Ry(θ) =
(

cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)
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for the option style being simulated. L contains the payoff condition for the option

style being simulated and if the payoff is positive, the associated quantum operator

An times UPn = (S0(1 + b)n(1 + a)N−n − K) × IN will act on the input qubits and

add it to the value calculated in the previous step using the addition gate [14]. The

addition gate has a runtime of O(log2N) and uses 2N qubits (the additional qubits

are not shown in the quantum circuit diagram). The final step is to calculate the

expected value of the quantum operator. This is done using the gates on the wire

with the |0〉 ancillary qubit. The two Hadamard3 gates H and the control wires,

calculate the expected value of the A operator tr(ρA) in constant time O(1) which is

equal to the final value of the option C. The time complexity of the entire circuit,

ignoring constant time operations, is therefore O(2N +N log2N). If the same circuit

is used to run another simulation, but the volatility σ and the number of periods N

are kept the same, the time complexity is O(N log2N). The circuit can be optimized

by considering the fact that only periods where the option is in-the-money need to

be executed. The option is in-the-money when S0(1 + b)n(1 + a)N−n > K. The

resulting time complexity with this optimization is O((N − τ) log2(N − τ)) where

τ is the boundary where the option becomes in-the-money. Further, because the

quantum circuit can be built using a polynomial number of gates O(N − τ) and it

can be uniformly generated, it is in the quantum complexity class BQP.

For certain option styles, such as American put options, exercising the option

prior to its expiry date may be more advantageous. This is know as early exercise.

3

H =
1√
2

(
1 1
1 −1

)
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Classical binomial option price algorithms that take early exercise into account, need

to evaluate every node in the binomial tree and have a time and space complexity of

O(N2) [24]. Classical binomial option price algorithms that do not take early exercise

into account, are more efficient. One such algorithm [24] has a time complexity of

O(N − τ), and a space complexity of O(1) where τ is the boundary where the option

becomes in-the-money. The quantum algorithm above does not take into account

early exercise, however, it preserves all of the information that would be contained

within a full binomial tree. So although it runs slower than a classical binomial

algorithm that does not take into account early exercise, it does run faster than one

that does. Further, because the matrix representing every period of the simulation is

generated, it seems reasonable to expect that there should be a way to incorporate

early exercise into the algorithm without much change in its complexity. Modifying

the algorithm to consider early exercise has been left to future research.

3.3 Extending and Evaluating the Quantum Bino-

mial Model

The following extends the quantum binomial model from European call options

to European put options and to Barrier options by deriving the respective quantum

mechanical binomial equations. In addition, challenges extending the quantum bino-

mial model to American, Asian and Bermudan options while maintaining the ability

to efficiently implement the model is analyzed. To accomplish this, the classical bino-

mial models for each of the exotic option styles were analyzed. The analysis included
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determining what portions of the classical model need to be extended to the quan-

tum model and which portions remain in their current classical form. Note that the

analysis considered the most basic option pricing scenarios and does not consider the

effect of dividends, variable interest rates, variable volatility or other complicating

factors. Further, the analysis assumed that the payoff formula remained classical and

that the stock evolution is quantum.

Several steps were taken in order to simulate the quantum binomial model. First

of all, quantum circuits that implement the various options using the quantum bino-

mial model were designed using the one described in the previous section as starting

point. The second step was to implement the quantum circuit using a quantum circuit

simulator. The quantum binomial model option prices were derived by coding the

quantum circuits using the QuIDDPro quantum circuit simulator [35], whereas the

classical values were simulated using DeriGem and tools from Hoadley Trading. Cod-

ing in QuIDDPro involved developing an I/O processing module, I/O file types, the

quantum binomial model algorithm and a statistics module. In addition, the version

of QuIDDPro used did not natively support factorial, exponentiation to a real number

and natural logarithms. As a result, they had to be coded as they are each required

to implement the quantum binomial algorithm. Further, the statistical distribution

chosen for each simulation was the Maxwell-Boltzmann classical statistical distribu-

tion. Note that simulating Fermi-Dirac and Bose-Einstein statistics was left to future

research. In general, with the available hardware, a 2.4GHz Linux server with 2GB of

RAM, it was difficult to run simulations for more than 10 periods as the CPU usage

was always at 100% (although the memory usage was typically around 2%). Another
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consideration when analyzing the results is the affect of rounding. DerivaGem is im-

plemented in Excel so its precision is limited to 15 decimal places. The QuIDDPro

simulations were also limited to 15 decimals in order to make the runtimes reasonable.

Because the quantum binomial algorithm implemented in QuIDDPro has more steps

than the classical one implemented in DerivaGem rounding has more of an impact on

the final value that is calculated.

Each simulation was then evaluated using two key evaluation criteria. First is

comparing the classical binomial model prices to the quantum binomial model prices.

This was done by running simulations with judiciously-chosen scenarios and parame-

ters to see how the resulting quantum option prices compare to classical option prices.

Second is comparing the option pricing performance of the quantum binomial model

to the classical binomial model. In order to compare the performance, complexity

analysis was performed on the quantum binomial model in order to determine its

efficiency for each option style.

European Options The payoff of European call options take the form [S − K]+

whereas European put options take the form [K − S]+. Therefore, the quantum

binomial equation for the price of a European put option is:

CN
0 = tr[(

N⊗
j=1

ρj)[K − SN ]+] (3.18)
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Figure 3.1: Eight period European call option classical binomial tree. The upper
value in each box is the stock price Sn and the lower value is the option price Cn.
S0 = 50 and K = 20.

that can be expanded to the equivalent Cox-Ross-Rubinstein European put option

pricing formula as follows:

CN
0 = (1 + r)−N

N∑
n=0

N !

n!(N − n)!
qn(1− q)N−n[K − S0(1 + b)n(1 + a)N−n]

+
(3.19)

Note that the values Sn and Cn calculated in each step of the simulation of the
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Periods 2 3 8 9

Sn Cn Sn Cn Sn Cn Sn Cn

32.7126 7.71255 29.7375 4.73747 21.4022 0 20.3285 0
50 25 42.0483 17.0483 26.4598 1.45981 24.8293 0
76.4233 51.4233 59.4555 34.4555 32.7126 7.71255 30.3265 5.32653

84.069 59.069 40.4429 15.4429 37.0409 12.0409
50 25 45.2419 20.2419
61.8156 36.8156 55.2585 30.2585
76.4233 51.4233 67.4929 42.4929
94.4829 69.4829 82.4361 57.4361
116.81 91.8103 100.688 75.6876

122.98 97.9802

CN 26.51467343 26.51467343 26.52583019 26.52429863

Table 3.2: The stock price Sn and the option price Cn for each step of various multi-
period quantum binomial model simulations.

multi-period quantum binomial model equal the leaf nodes of the classical binomial

model tree. This can be seen by comparing the Sn and Cn values found in the leaf

nodes (surrounded by the blue box) in the classical binomial model in Figure 3.1 to

the values in Table 3.2 for the 8 period quantum binomial simulation. Simulation

of the classical binomial model using DerivaGem and the quantum binomial model

using QuIDDPro can be seen in Figure 3.2. The simulation results are identical up

to 9 decimals of precision with the difference attributed to rounding error.

American Options Just like European options, the payoff of American call options

take the form [S−K]+ whereas American put options take the form [K−S]+. Without

considering the effect of dividends, American call options will have the same price as

European call options. On the other hand, American put options are not equivalent

in price to European put options because it may be better to exercise an American

option early. Considering early exercise is not allowed with European options, an
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Figure 3.2: Comparison of the prices calculated by the classical binomial model and
the quantum binomial model for a European call option. Note that they are identical.

American put option’s price must be different. The quantum binomial model in its

current format, is not well suited to price options where early exercise is possible.

The reason is, that just like in the classical model, no analytical formula has been

discovered to price American put options. A common classical approach has been

to tackle this problem with binomial trees. Binomial trees can be created with the

quantum model as well, but then it becomes exactly equivalent to the classical model

and the possible advantage of using a quantum computer appears lost. The reason

the advantage appears lost is, that every node needs to be evaluated individually

to determine if early exercise is more desirable than continuing to hold the option
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Figure 3.3: Eight period American put option classical binomial tree. The upper
value is the stock price Sn and the lower value is the option price Cn. The values in
red are situations where early exercise is desirable. S0 = 25 and K = 20.

as shown in Figure 3.3. Further, one of the advantages of quantum computing is

its ability to intrinsically deal with matrices efficiently and moving to a tree based

algorithm that deals with individual nodes doesn’t leverage this ability. That said,

there is no reason to think that a quantum algorithm that does take advantage of

quantum computing cannot be found for American put options.



56 Chapter 3: Results

Bermudan Options Because a Bermudan option can be exercised early like an

American option, the quantum binomial model has the same issues as mentioned

above for American options.

Barrier Options The quantum binomial model was extended to four styles of

European Barrier options: Up-and-out, Down-and-out, Up-and-in and Down-and-in.

The classical formulas that were extended are as a result of Chao et al. [33]. The

quantum binomial model was not extended to the American version of these Barrier

option styles for same reasons mentioned above for American options. When they are

effective, the payoff of European Barrier call options take the form [S−K]+ whereas

European Barrier put options take the form [K − S]+ just like vanilla European

Options. The quantum binomial equation for the price of these European Barrier

option styles, assuming the Maxwell-Boltzmann classical statistical distribution, are

as follows; where I{...} denotes the indicator function4 and SB is the barrier level. For

Up-and-out call options:

CN
0 = tr[(

N⊗
j=1

ρj)[SN −K]+I{Sj<SB}] (3.20)

CN
0 = (1 + r)−N

N∑
n=0

N !

n!(N − n)!
qn(1− q)N−n[S0(1 + b)n(1 + a)N−n −K]

+
I{Sn<SB}

(3.21)

4IA(x) =
{

1 if x ∈ A,
0 if x /∈ A.
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For Up-and-out put options:

CN
0 = tr[(

N⊗
j=1

ρj)[K − SN ]+I{Sj<SB}] (3.22)

CN
0 = (1 + r)−N

N∑
n=0

N !

n!(N − n)!
qn(1− q)N−n[K − S0(1 + b)n(1 + a)N−n]

+
I{Sn<SB}

(3.23)

For Down-and-out call options:

CN
0 = tr[(

N⊗
j=1

ρj)[SN −K]+I{Sj>SB}] (3.24)

CN
0 = (1 + r)−N

N∑
n=0

N !

n!(N − n)!
qn(1− q)N−n[S0(1 + b)n(1 + a)N−n −K]

+
I{Sn>SB}

(3.25)

For Down-and-out put options:

CN
0 = tr[(

N⊗
j=1

ρj)[K − SN ]+I{Sj>SB}] (3.26)

CN
0 = (1 + r)−N

N∑
n=0

N !

n!(N − n)!
qn(1− q)N−n[K − S0(1 + b)n(1 + a)N−n]

+
I{Sn>SB}

(3.27)

For Up-and-in call options:

CN
0 = tr[(

N⊗
j=1

ρj)[SN −K]+[1− I{Sj<SB}]] (3.28)
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CN
0 = (1+r)−N

N∑
n=0

N !

n!(N − n)!
qn(1− q)N−n[S0(1 + b)n(1 + a)N−n −K]

+
[1−I{Sn<SB}]

(3.29)

For Up-and-in put options:

CN
0 = tr[(

N⊗
j=1

ρj)[K − SN ]+[1− I{Sj<SB}]] (3.30)

CN
0 = (1+r)−N

N∑
n=0

N !

n!(N − n)!
qn(1− q)N−n[K − S0(1 + b)n(1 + a)N−n]

+
[1−I{Sn<SB}]

(3.31)

For Down-and-in call options:

CN
0 = tr[(

N⊗
j=1

ρj)[SN −K]+[1− I{Sj>SB}]] (3.32)

CN
0 = (1+r)−N

N∑
n=0

N !

n!(N − n)!
qn(1− q)N−n[S0(1 + b)n(1 + a)N−n −K]

+
[1−I{Sn>SB}]

(3.33)

For Down-and-in put options:

CN
0 = tr[(

N⊗
j=1

ρj)[K − SN ]+[1− I{Sj>SB}]] (3.34)

CN
0 = (1+r)−N

N∑
n=0

N !

n!(N − n)!
qn(1− q)N−n[K − S0(1 + b)n(1 + a)N−n]

+
[1−I{Sn>SB}]

(3.35)

The difference between simulating vanilla European options and European Barrier

options is that the quantum binomial algorithm needs to determine when a Barrier
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event has occurred and make the option either effective or expire it worthless. To

accomplish this, an enhancement to the step that calculates the payoff formula for

the option style was developed to check for a barrier event and it was embedded into

the L gate in the quantum circuit shown above.

When pricing Barrier options with the classical binomial model there are two

types of errors that occur: quantization error and specification error. Quantization

error tends towards zero as the number of periods approaches infinity, and effectively

measures the differences between the current value of the binomial simulation and the

analytical value. Specification error on the other hand comes from the fact that the

barrier does not always align with the nodes on the binomial tree. As the number of

periods simulated increases, the coarseness of the binomial tree reduces, which in turn

reduces the impact of the specification error. There are various techniques that can

be used to reduce specification error [13] including the use of trinomial trees as shown

in Figure 3.4. With the quantum binomial model there is an additional source of

error, which we will call eigenvalue error. Eigenvalue error results from the fact that

the quantum binomial model is really operating at the leaf node level of the classical

binomial model (as discussed in the previous sections) and that the leaf nodes are

equal to the eigenvalues of the quantum operators. As a result of the coarseness,

additional nodes are counted as part of the option value as can be seen in Figure 3.5.

The red node is counted by the quantum binomial method but not in the classical

binomial tree method as shown in Figure 3.6. Note that the same techniques used to

reduce specification error can be used to reduce eigenvalue error.

The results of simulating a down-and-out Barrier European call option are shown
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Figure 3.4: Five period down-and-out European Barrier call option classical trinomial
tree. S0 = 100, K = 100 and B = 120.

in Figure 3.7 for the quantum binomial method, the classical binomial method and

the classical trinomial method. In general the quantum binomial method will produce

a higher option price than the classical models because of the additional nodes that

will be counted as part of the eigenvalue error mentioned above.
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Figure 3.5: Four period down-and-out European Barrier call option effective classical
binomial tree for the quantum binomial model. S0 = 100, K = 60 and B = 80.

Asian Options As discussed earlier, an Asian option is also known as an average

option. Asian options are based on either the geometric average or the arithmetic

average of the underlying security over a specified time period. Because the average of

the underlying security depends on the values the security took during the simulation,

it is often referred to as a path dependent option. As will be shown below, path



62 Chapter 3: Results

Figure 3.6: Four period down-and-out European Barrier call option classical binomial
tree. S0 = 100, K = 60 and B = 80.

dependence poses a problem for the quantum binomial model. Just as was discussed

with American options above, Asian options also require that each node of the tree

be evaluated. However, instead of considering early exercise only, the average value a

security took while traversing each path in the tree needs to be calculated. Again, a

quantum binomial tree could be created to overcome this problem but as mentioned
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Figure 3.7: Comparison of the quantum binomial model, the classical binomial model
and the classical trinomial model for the price of a down-and-out Barrier European
call option. S0 = 100, K = 60 and B = 80.

above, it becomes exactly equivalent to the classical model, and the possible advantage

of using a quantum computer appears lost, as the quantum computers intrinsic ability

to operate with matrices is not being leveraged. As an illustration, consider the

following, the payoff of an Asian option is defined as follows at maturity t+ T :

[SAV G(t+ T )−K]+ (3.36)

where SAV G(t + T ) is the arithmetic average of the underlying asset prices attained

during the lifetime of the option T and where K is the strike price. The detail of the
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arithmetic average is as follows:

SAV G(t+ T ) =
1

n+ 1

n∑
i=0

S(t+ i∆t) (3.37)

Replacing the payoff formula in the quantum multi-step binomial model used for

European options results in the following price for an Asian option:

CN
0 = tr[(

N⊗
j=1

ρj)(SAV G −K)+] (3.38)

= tr[(
N⊗

j=1

ρj)(
1

j + 1

j∑
i=0

S(t+ i∆t−K)+]) (3.39)

While it appears simple to extend the Asian option by simply substituting SN for

SAV G, it is not. The reason it is not is; the calculation of SAV G requires considering

of all of the 2N paths the stock’s value can take. How to accomplish this, while being

constrained by the finite dimensional Hilbert space of quantum computing, is not

clear. As mentioned in the related works section, Baaquie’s research and others like

Matacz [25] have used Feynman’s path integrals to attempt to price Asian options.

Essentially, they reformulate classical results into quantum field theory language to

obtain equivalent results. This does not directly translate into a way to implement

their approaches with a quantum computer. Further it remains an open question as

to whether or not quantum field theory can be simulated efficiently on a quantum

computer at all. See a discussion on this topic by Ahrensmeier [3].

In this section, only Asian options based on the arithmetic average of the under-

lying security were considered, although the same ideas can be extended to Asian
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options based on a geometric average.

3.3.1 Risk Free Unit Ball and Sigma

Another interesting result is, as Chen claimed, by varying the parameters that

make up A and ρ within the unit ball of R3 the value of the quantum European call

option price equals the risk-free price. In addition, just as in the classical one step

model, when σ changes, the option price does not.
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Conclusion

There were several outcomes from this research. The first is that, as Chen pro-

posed, the simulations show that when Maxwell-Boltzmann statistics are assumed, the

quantum binomial model produces option prices that are equivalent to the classical

binomial model. Second is that European and Barrier options can be priced efficiently

on a quantum computer after the circuit has been built. The time complexity of cre-

ating and running the circuit for the first simulation is O(2(N−τ)+(N−τ) log2(N−τ))

where τ is the boundary where the option becomes in-the-money. If the same circuit

is used to run another simulation, but the volatility σ and the number of periods N

are kept the same, the time complexity is O((N − τ) log2(N − τ)). Analysis shows

that this quantum algorithm is in the BQP quantum computational complexity class.

That said, the quantum algorithm implemented does not take into account early ex-

ercise, however, it does preserve all of the information that would be contained within

a full binomial tree. So although it runs slower than a classical binomial algorithm

that does not take into account early exercise, it does run faster than one that does.

66
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The algorithm can also be useful as a subcomponent to a larger quantum algorithm

where preserving the quantum state of the system is required. Further, because the

matrix representing every period of the simulation is generated, it seems reasonable

to expect that there should be a way to incorporate early exercise into the algorithm

without much change in its complexity. If this is possible, then option styles where

early exercise needs to considered, could be priced exponentially faster, as classical bi-

nomial algorithms for these option styles have a space and time complexity of O(N2).

The key reason for this possible efficiency is, that these option styles can be priced

using quantum operators and density matrices, which are well suited for quantum

computers. As a result, each individual binomial state may not need to be considered

and the processing could be done on aggregates. Modifying the algorithm to consider

early exercise has been left to future research. The final outcome of this research is

that Asian options require a different approach. The reason is, that not only does

each individual binomial state of an Asian option need to be considered, but there is

also an exponential number of paths to consider. As a result, pricing Asian options

with a classical binomial tree has a space and time complexity of O(2N). Further, a

method to price these options efficiently with a quantum algorithm is not clear. Al-

though the quantum model can also be represented using a binomial tree, it basically

becomes equivalent to the classical model, and the possible advantage of using a quan-

tum computer appears lost. One approach to this problem, is to look at efficiently

simulating binomial trees on a quantum computer. Another approach, is to look at

leveraging research for Asian options that use quantum field theory frameworks, and

find a way to efficiently simulate quantum field theory on a quantum computer.
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