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Abstract 
 

The thesis introduces an approach for obtaining higher level decision support 

information using electromagnetic transient (EMT) simulation programs. In this 

approach, a suite of higher level driver programs (decision support tools) control the 

simulator to gain important information about the system being simulated. These tools 

conduct a sequence of simulation runs, in each of which the study parameters are 

carefully selected based on the observations of the earlier runs in the sequence. In this 

research two such tools have been developed in conjunction with the PSCAD/EMTDC 

electromagnetic transient simulation program. The first tool is an improved optimization 

algorithm, which is used for automatic optimization of the system parameters to achieve a 

desired performance. This algorithm improves the capabilities of the previously reported 

method of optimization-enabled electromagnetic transient simulation by using an 

enhanced gradient-based optimization algorithm with constraint handling techniques. In 

addition to allow handling of design problems with more than one objective the thesis 

proposes to augment the optimization tool with the technique of Pareto optimality. A 

sequence of optimization runs are conducted to obtain the Pareto frontier, which 

quantifies the tradeoffs between the design objectives. The frontier can be used by the 

designer for decision making process. 

The second tool developed in this research helps the designer to study the effects 

of uncertainties in a design. By using a similar multiple-run approach this sensitivity 

analysis tool provides surrogate models of the system, which are simple mathematical 

functions that represent different aspects of the system performance. These models allow 

the designer to analyze the effects of uncertainties on system performance without having 
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to conduct any further time-consuming EMT simulations. In this research it has been also 

proposed to add probabilistic analysis capabilities to the developed sensitivity analysis 

tool. Since probabilistic analysis of a system using conventional techniques (e.g. Monte-

Carlo simulations) normally requires a large number of EMT simulation runs, using 

surrogate models instead of the actual simulation runs yields significant savings in terms 

of shortened simulation time. A number of examples have been used throughout the 

thesis to demonstrate the application and usefulness of the proposed tools. 
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Chapter 1 Introduction 
 

 Methodologies for design of power systems have evolved from simplified 

analytical methods to sophisticated computer-aided ones over the course of several 

decades. As complexity of systems escalated over time design of power systems using 

conventional techniques, which rely on analytical studies, became increasingly difficult. 

Modern large interconnected networks, which include power electronic devices, are 

perhaps among the most challenging systems for analysis and design. As the cost of 

conducting field tests is extremely high, use of digital simulation is often the only 

feasible solution for power system design problems. 

 Nowadays, there are several methods available for computer simulation of power 

systems. Examples include power flow simulation [1], transient stability simulation [2], 

small signal stability simulation [3], and electromagnetic transient (EMT) simulation [4]. 

Power flow simulation is useful for determining whether consumer power demand can be 

delivered without violating transmission system limits. Although this type of simulation 

is carried out for the steady state condition and it is not capable of dealing with transient 

behaviour or stability of power systems, it is still a fundamental tool for any power 

system design problem. Small signal stability simulation, on the other hand, is capable of 

analyzing the transient behaviour and stability of the system. In this type of simulation a 

linearized model of power system is used for finding its eigen-values. This is especially 

important for design of control systems in power networks. In order to increase accuracy 

of simulation, transient stability and electromagnetic transient simulation programs model 
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power elements with more details, and they also consider nonlinearity of power system 

elements. Based on the type and duration of the transient phenomenon under study, a 

designer selects one of these methods. Transient stability simulation is used for studying 

longer-term transients caused by severe and large disturbances such as faults and 

switching. The simulation period in this type of study is usually in the range of a few 

seconds and it is mainly done to make sure the system retains synchronism after a 

disturbance.  

 In electromagnetic transient (EMT) simulation, power system elements are 

modeled in far more detail compared to transient stability and small signal stability 

studies, so that the models are valid over a large frequency spectrum and they also 

represent the nonlinearities involved in power system elements. This makes the EMT 

simulation tools even capable of simulating fast transients of power systems in the range 

of milliseconds or microseconds. In addition the ability of modeling power electronic 

switches makes these programs suitable for studying power electronic devices in power 

networks [5] and [6]. Benefiting from the above factors EMT simulation is a suitable tool 

for power electronic and power system design problems; however, as this type of 

simulation is highly detailed, the computation time required for EMT simulation is 

usually long. Moreover design is inherently a repetitive cycle that usually requires several 

simulations before obtaining a final solution. Therefore, it is important to minimize the 

total number of EMT simulations in the design procedure of power systems to shorten the 

overall design cycle. 
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 Conventionally use of the EMT simulation programs for power system design 

requires an expert to conduct several simulation runs to study different aspects of the 

design problem. This process usually takes a long time and it requires the expert to be 

available during the whole process. In order to facilitate the design procedure, this thesis 

introduces the concept of decision support tools for power system and power electronic 

applications. Decision support tools utilize intelligent supervisory algorithms, which are 

capable of conducting several simulation runs in an adaptive manner to aid in different 

aspects of the design problem. In this context a mathematical algorithm plays the role of 

the human expert and analyzes the simulation results after each run and makes decisions 

about the parameter values for the next run. As a result these tools significantly improve 

the computer-aided design cycle by automating the process that would otherwise require 

repetitive human intervention. 

 

1.1 Motivation and Background 

One of the major steps in a design problem is to select the values of the system 

parameters (e.g. control system parameters, size of the system elements, etc.) to optimize 

the system performance under different operating conditions. Although there are several 

analytical methods available for analyzing and selecting parameters for power systems 

[103] and [104], it is always necessary to tune the system parameters with a highly 

detailed simulation program to finalize a design, and to make sure that the design 

objectives are actually met. This is because analytical methods are often not easily 

applicable to complex and large systems and simplifications are required before they can 
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be conveniently applied. As mentioned before in a power system design procedure an 

expert conducts several simulation runs before the design can be finalized. In this process 

the expert selects a different set of parameter values for each run. The starting parameter 

values for this trial and error based approach are typically obtained from simplified 

analytical methods. At the end of each simulation run, based on the results observed and 

using his/her experience the expert selects a new set of parameter values, which in his/her 

opinion are likely to be an improvement for the next run. This procedure continues until a 

satisfactory system performance is achieved. Although in this process the intelligence and 

experience of the designer may reduce the number of required EMT simulation runs (by 

sensibly selecting the parameter values for each run), this procedure does involve 

significant user intervention, which typically results in extra design cost and length. 

 In order to reduce human interaction the first approach was to automate the 

simulation runs by using primitive run-control techniques. The multiple-run simulation 

feature [9] – [11], which is offered by many of the EMT simulation programs, is an 

example of such techniques. This feature allows the designer to automatically conduct 

several simulation runs with sequentially or randomly selected parameter values. The 

user therefore does not need to manually change the parameter values following each 

simulation run, and he/she can analyze the results once all the simulation runs are done. 

Additionally in order to facilitate the selection of the final parameter set among the 

typically large number of simulation cases, an objective function (or an error function) is 

used in the multiple-run simulation process. This is a user-defined mathematical function 

that quantifies the simulated performance of the system by penalizing any undesirable 
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behaviour of the system. Having the objective function makes the parameter selection 

straightforward, as the parameter set that produces the lowest objective function is 

selected. This feature does reduce the human interaction to a large extent, but since in this 

procedure the human supervision is eliminated, using multiple-run simulations in practice 

significantly increases the number of required simulation runs. This is because in a 

multiple-run approach the parameter values for each run are selected regardless of the 

results obtained in the previous runs; as opposed to a supervised approach in which the 

expert uses the results obtained in the previous runs to avoid conducting simulation runs 

that are less likely to cause an improvement. 

 Recently the concept of optimization-enabled EMT simulation has been proposed 

[13], in which an optimization algorithm replaces the primitive brutal-force multiple-run 

approach for conducting the EMT simulation runs. This was an attempt to give the 

simulation program the ability to make wise choices based on the previous experience 

accumulated during past simulations. In this method an optimization algorithm plays the 

role of the human expert in the sense that it uses the previous experience (in terms of the 

previously obtained values of the objective function) to select a new parameter set that is 

likely to be an improvement in the system performance (i.e. results in a lower objective 

function value). 

 The idea of using such supervisory algorithms for conducting multiple-run 

simulations was the main motivation of this research. This thesis is aimed to enhance the 

capabilities of the optimization enable EMT simulation and to find other opportunities for 

automating the design procedure as described in the following section. 
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1.2 Problem Definition and Research Objectives 

In order to enhance existing methodologies for computer-aided design this thesis 

introduces the concept of decision support tools. A decision support tool is a supervisory 

algorithm that takes control of the multiple-run simulations and judiciously selects 

parameter values for each run. By analyzing the EMT simulation results following each 

run, a decision support tool is capable of selecting the new set of parameter values in a 

wise manner to use the time consuming simulation runs efficiently. Depending on the 

application these tools can also be used for post-processing of the simulation results after 

all the simulation runs are done. The post-processing stage could be simply an algorithm 

for sorting the results or it may involve advanced statistical and mathematical 

manipulation of the data. This makes the simulation results more usable for the designers, 

which in turn expedites the design procedure. With the above view the existing 

optimization-enabled EMT simulation is indeed a decision support tool, which uses a 

nonlinear optimization algorithm for supervising the multiple-run simulation process. The 

concept of decision support tools is however not limited to an optimization algorithm and 

encompasses other algorithms as briefly stated in the following sub sections. 

 

1.2.1 Uncertainty Analysis 

This research proposes to employ the decision support tools for uncertainty 

analysis of power systems. It is well-known that power system elements are 

manufactured with tolerances, which means their actual characteristics are expected to 

vary within certain tolerance bands around their nominal values. In addition to 
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manufacturing tolerances, there are other factors such as aging and operating conditions 

that may cause deviations from nominal design values and hence introduce a level of 

uncertainty in a design process. Such uncertainties may cause degradation in the 

performance of a system after implementation. Therefore it is imperative that their impact 

be studied to ensure that the actual performance remains within acceptable limits even in 

the presence of perceived uncertainties. One approach to handle this problem at the 

design level is to use multiple-run EMT simulations. In this approach several simulation 

runs are conducted with parameter values varying in their permissible ranges around the 

nominal design values. The performance of the system is then studied using the 

simulation results. Lightning studies is perhaps one the most widely investigated 

applications of the multiple-run EMT simulations for uncertainty analysis [45] – [47]. In 

these studies the transmission line over-voltages caused by lighting strikes are simulated 

by an EMT simulation program to estimate the chance of occurrence of a flashover. As 

the lightening strokes have a random nature, the flashover rate of the transmission lines 

cannot be determined just by simulating a single lightening strike and it is determined by 

Monte-Carlo simulation of many lightening strikes (a multiple-run approach with 

randomly selected values for the strike parameters). Although this method is an effective 

method for uncertainty studies, it is not efficient in terms of the number of simulation 

runs. As mentioned before multiple-run approach requires a large number of EMT 

simulation runs, completion of which takes a long time. 

Another approach for handling uncertainties is to adopt a sensitivity analysis 

method [12]. In these methods a number of performance indices (or performance 
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measures) are defined to quantify different aspects of the design performance. These 

functions are then approximated around the operating point, and the designer uses the 

changes in the values of these functions to assess the impact of uncertainties on the 

system performance. If uncertainty levels are small one common method is to use linear 

approximation of the performance indices around the operating point and use simulation-

based methods to find parameters of the linear functions [27] – [31]. Note that once these 

linear functions are developed using a relatively small number of EMT simulations, they 

replace the actual simulation for rapid evaluations of the respective performance indices. 

Although using linear approximation of the performance indices lowers the 

simulation burden of uncertainty analysis, linear approximations have two main 

drawbacks. Firstly, linear approximations are not valid when the parameter variations are 

large. Secondly in case of systems operating at optimal points, these approximations fail 

to adequately represent the system performance. Therefore, recently the concept of 

surrogate models has been introduced [48], [49]. A surrogate model is a mathematical 

function that approximates a performance index (response variable) over a range of 

system parameters. With this definition the conventional linear functions, discussed 

above can also be considered as surrogate models. However, to add more detail to the 

models, this thesis proposes to use second-order polynomial surrogate models for 

uncertainty analysis of optimal systems. Second-order functions are capable of 

representing optimal operating points (which often manifest quadratic-like behaviour) 

while still retaining a simple form. Simplicity of the model makes it possible to find the 

parameters of the surrogate model with minimum number of EMT simulation runs, and 
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the thesis introduces a decision support tool for finding those parameters. As uncertainty 

studies are usually carried out in two forms of worst-case analysis [40] – [43] (in which 

the goal is to find the worst-case scenario of the system performance) and statistical 

analysis [44] – [49] (in which the probability of different performance levels is estimated) 

the tool was enhanced so it becomes capable of providing probabilistic as well as 

deterministic information. 

 

1.2.2 Extensions on Simulation-Based Optimization 

 Another aspect of the research in this thesis is to improve and expand the concept 

of simulation-based optimization. As mentioned earlier simulation-based optimization is 

considered as one of the decision support tools, which uses a nonlinear optimization 

algorithm as the supervisor for conducting multiple-run simulations. This thesis expands 

the previous work on the optimization-enabled transient simulation [13] by adding the 

capability of handling multi-objective optimization problems. Normally a design problem 

consists of several objectives, which have to be satisfied simultaneously. A good example 

of such a problem is cost-performance optimization, which is an important aspect in 

many engineering designs [25], [26]. This is normally done by defining sub-objective 

functions for different aspects of the design and combining them into one aggregate 

objective function using a linear weighted combination. Although it might be possible to 

satisfy these sub-objectives at the same time for some special cases, such luxury is often 

unavailable in practical cases, which implies improvement in one of the sub-objectives 

results in deterioration of at least one of the other ones. Therefore, it is important to find a 
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compromised solution for such optimization problems. This thesis aims to address the 

multi-objective optimization problem by using the concept of Pareto optimality [24]. The 

goal of the Pareto optimization is to obtain the Pareto frontier of all the sub-objectives, a 

curve or a surface that shows the tradeoffs between the sub-objectives. This curve plays 

an important role in the design procedure as it helps the designer to decide about the 

relative significance of each sub-objective to achieve a compromised design. Therefore, 

in this thesis the technique of Pareto optimization is implemented in the optimization tool 

to enable it to deal with multi-objective problems. Similar to the previous work, in this 

research the PSCAD/EMTDC electromagnetic transient simulation program [7], [8] has 

been selected as the simulation core. The reason for selecting PSCAD/EMTDC is that 

this program is an established commercial program, developed by the Manitoba HVDC 

Research Center, which has made technical support accessible during the course of this 

research. 

 Another important step for the optimization tool is to implement a gradient-based 

optimization algorithm in the tool. There are many instances of using gradient-based 

optimization algorithms for the design purposes in the electrical engineering area [14] – 

[19]. This is mainly because of two reasons. Firstly these methods are simple and 

effective and secondly they can be expedited by using fast gradient calculation methods 

[18] – [23], or by parallelizing the process of their calculation [17]. As a result 

implementing a gradient-based optimization algorithm provides the opportunity for future 

improvement of the optimization tool by using the above techniques. 
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 As a last step for the optimization tool, the tool was modified by implementing 

constraint handling techniques. In most engineering problems the system parameters 

cannot assume arbitrary values, and are usually limited within certain ranges; therefore, it 

is necessary to devise methods to impose constraints during the optimization process. 

 

1.3 Organization of the Thesis 

 This thesis starts with a description of the first decision support algorithm, i.e. the 

optimization. Chapter 2 provides background review of the simulation-based 

optimization techniques. A simple illustrative example of an optimization problem is 

presented to demonstrate the role of the optimization in the design procedure. Chapter 3 

starts with a brief explanation of the Fletcher-Reeves optimization algorithm, which has 

been utilized in the developed optimization tool. The chapter also discusses the multi-

objective optimization problems, and the concept of Pareto optimality. Implementation 

stages of the optimization tool in the PSCAD/EMTDC transient simulation program are 

also explained in this chapter. 

 Chapter 4 contains a number of application examples to demonstrate the 

usefulness of the developed optimization techniques. The first case study considers the 

application of the developed tools for designing a three-level static compensator 

(STATCOM). In this example, the control system of the STATCOM is tuned using 

simulation-based developed optimization. An important issue in the STATCOM design is 

selecting the size of its dc capacitor. In general, the larger the dc capacitor the better is 

the performance of the STATCOM; however, a large dc-side capacitor means higher 
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capital cost. The example deals with the problem of selecting a suitable capacitor size as 

a multiple objective problem, which involves the tradeoffs between the capacitor size and 

the system performance. In the second example an induction motor drive system is 

optimized, where the tradeoffs are between high quality steady state response and fast 

transient response. 

 In Chapter 5 the other decision support algorithm, the uncertainty analysis tool is 

introduced. This chapter starts by defining terminology in the context of uncertainty 

analysis. The chapter discusses two major uncertainty analysis problems namely, 

sensitivity analysis and tolerance analysis. Under each topic the chapter presents a brief 

review of literature. The techniques used in development of the uncertainty analysis tool 

in PSCAD/EMTDC are also explained in this chapter. 

 The thesis continues in Chapter 6 with a number of case studies that demonstrate 

the application of the developed uncertainty analysis tool. Selective harmonic elimination 

technique is the first case study considered in this chapter. This example shows how the 

optimization, sensitivity analysis, and statistical analysis are useful in studying the 

harmonic performance of a selective harmonic elimination switching scheme. In the 

second example uncertainty analysis is used to study the effect of system parameter 

variations on the transient response of a three-level STATCOM following a load 

interruption. The sensitivity analysis is conducted to relate the duration of transient 

phenomena to the values of the system parameters, and then statistical analysis is 

performed to estimate an expected duration for the transient phenomena when the 

parameters vary within their permitted ranges. 
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 The thesis ends with the conclusions and recommendations for the future work. In 

addition at the end of the thesis a number of gradient-based optimization methods are 

briefly explained in an appendix. 
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Chapter 2 Simulation-Based Optimization 

Background 
 

 The complexity of modern power systems, which results from nonlinearity and 

complexity of individual system elements and their intricate interactions, makes selection 

of the optimal parameters for a power system a time-consuming and difficult process. As 

mentioned in the previous chapter, the traditional method for tuning the system 

parameters using an electromagnetic transient simulation program requires an expert to 

conduct several simulations and follow a trial and error approach to find an optimal set of 

system parameters. The multiple-run feature, which is offered in many of the EMT 

simulation programs [9], [10] reduces the human interaction to some extent. This feature 

allows the user to automatically conduct several simulation runs with randomly or 

sequentially selected parameter values. After the multiple run procedure is completed, the 

designer can scrutinize the results and select the best performing set of system parameters 

among the ones simulated. The advantage of this method is that it significantly reduces 

the human interaction, as the designer does not need to run the simulation cases 

manually. However, since this process entirely eliminates the role of human supervision, 

a typically large number of simulation runs are often conducted, which normally includes 

parameter combinations that could have been eliminated by minimal inspections. In 

practice, this makes the multiple-run simulation process an unaffordably long process. 

 One way to reduce the number of required simulation runs without involving 

repetitive human interactions is to implement supervisory methods that conduct the 
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multiple-run process in an intelligent way. The technique of optimization-enabled 

electromagnetic transient simulation (OE-EMTS)  [13] is one such method, which uses a 

supervisory nonlinear optimization algorithm to conduct a sequence of runs on an 

electromagnetic transients simulator. The closeness of the simulation results with the 

desired performance is quantified by a suitable metric known as the objective function 

(OF). In this thesis the selected metrics are such that the closer the results to the desired, 

the smaller is the value of the objective function. Observing the behaviour of the OF from 

earlier runs can yield information on how to adjust parameters for further improvement in 

the design. This is achieved by utilizing a nonlinear optimization algorithm as will be 

discussed later in this chapter. 

There are several reports on application of computer-aided optimization in 

different areas of electrical engineering [13] –  [16]  and [63] – [73]. Perhaps one of the 

first attempts in this field was the matching of given frequency response curves to 

realizable filter transfer functions [63]. Subsequently powerful tools were created by 

coupling nonlinear optimization programs to electronic circuit simulators for the design 

of microelectronic circuits [14], [15], [65], [66]. Utilization of computer-aided 

optimization techniques for high-power applications originated in the power electronics 

area, where electronic-circuit simulators such as SABER and PSpice were used  [16] ,

[64]. Recent developments extended simulation-based optimization to modern power 

system transient simulators [13]. Implementation of these tools in EMT simulation 

programs makes the simulator especially suitable for power electronics and power system 
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applications as EMT simulation programs are able to accurately model a wide range of 

power system and power electronic equipment  [4]. 

 

2.1 Optimal Design Example: Minimum Cost Filter 

In order to illustrate the concept of optimal design, in this section an example of a 

minimum cost filter design is presented. Filters are used to reduce the effects of 

harmonics (produced by nonlinear components) in power systems. There are several filter 

topologies available for power systems that vary in complexity and performance; 

however, since this section is only meant to show the essential aspects of the optimization 

approach, it uses a simplified scheme. The design objective in this section is to find a set 

of values for the filter elements that result in the lowest cost. Practical power system 

design examples are presented in Chapter 4 of this thesis. 

 A commonly used filter topology is the doubly-tuned scheme shown in Figure 

2.1. This type of filter is capable of eliminating two harmonic components 

simultaneously, which makes the design more economical and more compact [101],  as in 

many cases nonlinear loads introduce more than one harmonic current that needs to be 

eliminated. 

The frequency response of a doubly-tuned filter, tuned to eliminate 5th (300Hz) 

and 7th (420Hz) harmonics, is shown in Figure 2.2. As shown in the figure, the 

impedance of the filter tends to zero at two different resonance frequencies (in this case 

the filter is designed for eliminating the 5th and 7th order harmonics). The resonance 

frequencies can be calculated using equation (2.1). 
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Figure 2.1  Doubly-Tuned Filter 
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Figure 2.2  Frequency response of a doubly-tuned filter 
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where f1 = ω1/2π and f2 = ω2/2π are the resonance frequencies of choice. As it can be seen 

in (2.1) the number of parameters (L1, L2, C1, and C2) is more than the number of 

equations to be satisfied, which provides flexibility in the design. For a given set of 

resonance frequencies, two of the variables can be arbitrary selected and the other two 

can be expressed as functions of those two, e.g., L1 and C1 can be expressed as functions 

of L2 and C2 as shown in (2.2) and (2.3). However in this case L2 and C2 are constrained 

through the condition that L1 and C1 have to be positive. 
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A similar approach to the one presented in [101] can be used for finding the 

element values that yield the minimum cost design. This involves finding the cost of the 

filter in terms of the filter parameters and minimizing the cost function. The filter consists 

of four reactive elements and the cost of each element depends on its power rating, which 

is determined by both the fundamental frequency and the harmonic currents in the 

element. As in this case the filter is designed to eliminate 5th and 7th order harmonics, 

those harmonics are the ones included in calculation of power rating of each element 

(assuming that the effect of other harmonic currents is negligible). For example the power 

rating of C1 is: 
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where V1 is the rms value of the fundamental phase-voltage, Ih5 is the 5th order harmonic 

current, Ih7 is the 7th  order harmonic current, and Zs is the impedance of the filter at the 

fundamental frequency calculated as shown in equation (2.5): 
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Similarly, the power ratings of the other elements (L1, C2, and L2) are: 
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Having expressed the power ratings, the cost of the filter can be obtained using the per 

kVAR cost of inductor (UL) and capacitor (UC) as shown by equation (2.9): 

( ) ( )2121 rCrCCrLrLLd PPUPPUK +++=        (2.9) 
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Note that Kd is eventually a function of the L1, C1, L2, and C2 values. In this example it is 

assumed that Ih5 = 70A and Ih7 = 50A, V1 = 235kV, UC = 3.5$/kVAR, and UL = 

8.0$/kVAR. A contour map of filter cost as a function of L2 and C2 is shown in Figure 

2.3. The minimum cost point (indicated by “�”) is approximately at C2 = 14.3µF and L2 

= 13.8mH. Using (2.2) and (2.3) C1 and L1 are calculated to be C1 = 1.66µF and L1 = 

124mH, which results in the minimum cost of $92,200 per phase. 
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Figure 2.3  Contour map of the doubly-tuned filter cost 

 

Note that generation of a contour such as the one shown in Figure 2.3 requires numerous 

function evaluations over the entire search space of C2 and L2. Alternatively use of an 

optimization algorithm significantly reduces the amount of calculations required for 
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finding the minimum cost (for example using an initial guess of L2 = 10mH and C2 = 

20µF the optimization steps of a steepest descent optimization algorithm are shown in 

Figure 2.4). 
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Figure 2.4  Steepest descent method for finding the minimum cost filter 

 

In addition, for complex systems, derivation of a closed-form representation for 

the objective function (e.g. the one shown in Eq. 2.9) in terms of optimization parameters 

may be practically impossible. As described in the next section, a simulation method can 

be used in lieu of an analytical objective function, thus facilitating the use of an 

optimization algorithm for optimal design. 
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2.2 Simulation and Optimization 

As mentioned in the previous section, it is difficult or impossible to express the 

objective function in terms of the optimization parameters for large and complex systems. 

This is the main motivation behind the development of simulation-based optimization 

methods [13]. In these methods instead of developing an analytical form for the objective 

function (as in 2.9), the objective function is calculated based on the simulation results 

obtained for each set of parameter values. The concept of simulation-based optimization 

is illustrated in Figure 2.5. 

 
 

Figure 2.5  Simulation-Based Optimization  

 

 In each step the optimization algorithm passes a set of trial values for system 

parameters to the simulation program (in case of the filter design problem these are the 

inductor and capacitor sizes); the program simulates the circuit for the given set of system 

parameters and returns the corresponding value of the objective function. Since 

simulation programs are capable of handling large and complex systems, optimization of 

such systems becomes possible through this synergetic combination. 

 As an application example of simulation-based optimization, the filter design 

problem presented earlier is solved using the method described above. The 
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PSCAD/EMTDC simulation program has been used for representing the circuit and 

calculation of the objective function with the Nelder-Mead nonlinear optimization 

algorithm [13] as the optimization routine. The progress of the optimization procedure is 

shown in Figure 2.6 with the ‘�’s denoting the generated trial points. For this simple 

case the contour plot of the objective function, obtained earlier, is superposed on the 

sequence of the trial points to demonstrate the quality of the convergence. 

 

 
Figure 2.6  Simulation-based optimization of the minimum cost filter 

 

In the figure, the minimum cost to which the algorithm converges is located in the 

area where the density of the trial points is highest (implying convergence). In this 

example the optimization process started with the initial values of L2 = 10mH and C2 = 

20µF, at which the cost of the filter is around $97,100. During each run of the trial 
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sequence the Nelder-Mead algorithm generates a new set of trial values for L2 and C2 

based on the objective function values (filter costs) obtained from the previous runs, 

which eventually leads to an optimum cost of $92,200 after about 30 simulation runs. 

 

2.3 5onlinear Optimization Methods 

Selection of the optimization algorithm is a key factor in development of the 

simulation-based design methods. Although a large number of nonlinear optimization 

algorithms exist, these methods can be classified into three categories of direct search 

methods, gradient-based methods, and heuristic methods. In this section each of these 

methods are briefly explained and their main advantages and disadvantages are discussed. 

 

2.3.1 Direct Search Methods 

The main feature of direct methods is that they only use the values of objective 

function (obtained at a limited number of sample points) in their search. From these 

sample evaluations, a candidate direction for moving the search is determined, and 

additional points are generated. This is done by selecting the new samples in the vicinity 

of the points with lower objective function values (assuming a minimization problem). 

Methods of Nelder-Mead, Hooke-Jeeves, and Powell’s conjugate directions are typical 

examples. 

The main advantage of direct search methods is their simplicity, in that they do 

not require explicit calculations of derivatives as would be required in gradient based 
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method, hence earlier approaches to optimization enabled electromagnetic transients 

simulation [13] have used such methods. 

 

2.3.2 Gradient-Based Optimization Methods 

These methods not only use sampled values of objective function, but they also 

use derivative information of the function at each point. Derivatives of a function indicate 

the local rate of change of the function with respect to its parameters. Therefore this 

information can be used for selecting an effective and suitable direction for reducing the 

objective function. In a simulation-based approach, however, the derivative information 

is not available and derivatives have to be numerically calculated using samples of the 

objective function. This reduces the optimization speed to some extent; however as  is 

shown in the thesis, the overall speed of the optimization still remains satisfactory due to 

their fast convergence rate. In addition calculation of the derivatives is a highly 

parallelizable task, which can be accelerated using parallel-processing platforms. 

Examples of gradient-based methods are Cauchy’s method, Newton’s method, and 

Marquardt’s method. 

 

2.3.3 Heuristic Optimization Methods 

Heuristic methods are those methods which are mainly inspired by nature (as 

opposed to direct and gradient-based methods which have a mathematical foundation). 

These methods are mainly used for their capability of finding the global optimum of a 

function. In the past few decades several heuristic methods have been developed and 
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examples include genetic algorithm (GA), particle swarm optimization (PSO), simulated 

annealing (SA), and ant colony. The main drawback of these methods is that they require 

a relatively large number of samples to provide reasonably accurate results. Since EMT 

simulation of large power systems itself is an extremely lengthy process, use of heuristic 

methods for these applications is not recommended. 

 

2.4 Selection of the Optimization Method 

The thesis uses electromagnetic transient simulation for objective function 

evaluation.  This is the most detailed method for simulating power system transients and 

can handle the full range of power system phenomena, ranging from high frequency 

lightning transients, to power electronic switching transients and even to 

electromechanical machine transients. However, the high level of detail makes these 

methods computationally very slow, with simulation times for individual runs ranging 

from several seconds to an hour. Hence, minimizing the number of simulation runs in the 

optimization process is extremely important. Therefore, utilization of heuristic 

optimization methods (which normally require a large number of simulation runs) is not 

recommended for such studies. 

The previously reported research on simulation-based optimization used Nelder-

Mead method as the nonlinear optimization algorithm. This method is one of the direct 

search methods, i.e., it does not require the derivative information (gradient) of the 

objective function. The advantage of not calculating the gradient is that finding the 
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direction in which the trial point is moved from run to run typically does not require more 

than one function evaluation. 

Gradient-based optimization methods on the other hand require several function 

evaluations, and at the first glance appear to be computationally expensive; however, as 

discussed in the next chapter gradient-based methods provide more exact information as 

to the steepest descent direction of the objective function, and therefore potentially 

converge in a smaller number of iterations. In addition these methods lend themselves to 

implementation on parallel computers, resulting in potential speed improvements. 

Another advantage of having derivative information of an objective function is 

that such information can be used for sensitivity analysis of the system under study. In 

practice the system components cannot be made so that they have the exact values 

obtained from the optimization process, and such tolerances may cause deterioration in 

the system performance. As discussed in the next chapters, having the derivative 

information of the objective function makes it possible to approximate the function 

around an operating point. This allows the designer to quantify the resulting degradation 

in the performance when the system parameters have small variations. 

 Based on above in this research a gradient-based optimization algorithm has been 

chosen as the main core of the optimization process. 
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Chapter 3 Improved Approaches for 

Simulation-Based Optimization 
 

 As indicated in the previous chapter, simulation-based optimization is an effective 

approach for parameter tuning in design of highly complex power systems. It not only 

reduces human interactions during the design process but also reduces the required 

number of simulation runs. This thesis extends the previously developed non-gradient 

simulation-based optimization approach [13] by adding gradient-based optimization 

capability. This allows potentially faster convergence, enables proper scaling of 

variables, and paves the way for assessment of design sensitivity through a gradient-

based sensitivity assessment algorithm. 

 Moreover the concept of Pareto optimality [24] has been used in conjunction with 

the simulation-based optimization to make it possible to deal with multi-objective design 

problems. The Pareto frontier is drawn in the space of all the sub-objective functions, and 

it permits the understanding of tradeoffs between competing sub-objectives. This helps 

the designer make an informed decision on the weight of each sub-objective in the 

design. 

 In the next sections, the gradient-based optimization algorithm, used in this 

research, is explained. Moreover, other practical issues such as scaling and constraint 

handling are also discussed. 

 



Chapter 3.  Improved Approached for Simulation-Based Optimization 29 

 

3.1 Gradient-Based Optimization 

As mentioned before, in this research a gradient-based optimization algorithm has 

been used in conjunction with an electromagnetic transient simulation program to 

construct a gradient-based simulation-based optimization facility. Even though gradient-

based algorithms may not always be the fastest methods available, and are not able to 

handle objective functions with discontinuity, they are popular in the area of electrical 

engineering due to the following reasons: 

 

1. Although calculation of the gradient vector is generally a time-consuming 

process (especially when the number of system parameters is large) there are 

a number of circuit-based methods available for fast calculation of the 

gradient vector, which can expedite the process [18] – [23]. 

2. Even when the gradient has to be calculated numerically via significant 

computational effort, the number of steps to convergence, taken by the 

algorithm, may be less, making the method comparable to direct methods in 

time penalty. This is shown by an example later in Chapter 4. 

3. Gradient-based methods are highly parallelizable, and can be conveniently 

implemented on parallel processing platforms, which in turn results in 

accelerated optimization [17]. 

4. There is past evidence of successful use of gradient-based methods for 

electrical engineering applications [14] – [23]. 
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Gradient-based optimization methods constitute a major category of classical 

optimization methods. In this section the main characteristics of these methods are 

explained and their advantages and disadvantages are outlined. Additional details about 

the gradient-based methods are also presented in Appendix A of this thesis. Without loss 

of generality, the following describes gradient-based methods for a minimization 

problem. Any maximization problem can be reformed as a minimization problem for 

example by negating the objective function. 

As mentioned before, an optimization problem is defined as finding the optimum 

value of an objective function f(x), in which x = {x1, …, xn} is a point (decision vector) in 

the search space. Gradient-based methods use the derivative information of the objective 

function to find a suitable search direction (d), which results in a decrease in the objective 

function evaluation. Having found the direction, a step is taken in that direction as shown 

in equation (3.1): 

( ) ( ) ( ) ( )kkkk s dxx +=+1          (3.1) 

where x
(k+1) is the new point, x

(k) is the previous point, s
(k) is the current step length 

(determined using a line search method as described later), and d
(k) is the current 

direction vector. The algorithm proceeds by calculating the direction vector, and by 

taking an appropriately-sized step in that direction until an optimum is achieved. 

Cauchy’s method is arguably the simplest gradient-based method. In this method 

the opposite direction of the objective function gradient (∇f ) is chosen for d. The 

gradient vector shows the direction of the maximum increase in value of the objective 
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function; therefore, its opposite direction shows the direction of the steepest descent. The 

algorithm is represented mathematically in (3.2), in which ∇f  has replaced d in (3.1): 

( ) ( ) ( ) ( )( )kkkk fs xxx ∇−=+1         (3.2) 

The step length s(k) is determined by a single variable search, in which the variable 

is s
(k) and the objective function is evaluated at f(x(k+1)) where x

(k+1) is calculated from 

(3.2). 

Although Cauchy’s method is straightforward and works well for simple objective 

functions, it has excessively slow convergence rate when the objective function has a 

complex shape. Other methods have therefore been developed to deal with complicated 

objective functions, and are available in the literature. In this research the Fletcher-

Reeves optimization algorithm, which is an improved version of the Cauchy’s method, 

has been selected for the purpose of optimal design. This method is described in the next 

section. Appendix A presents more information about these two and other gradient-based 

optimization methods. 

 

3.1.1 Fletcher-Reeves Method 

The Fletcher-Reeves optimization algorithm is one of the most effective gradient-

based optimization methods as it benefits from a fast convergence rate [74] and it only 

uses the first order-derivatives of the objective function (which reduces computation time 

and numerical error in the optimization process). In this method movement from the 

current point x(k) to the new point x(k+1) occurs along a direction vector as shown in (3.3): 
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As seen in the first equation in (3.3) the current gradient vector (∇f ), as well as 

the previous direction vector, are used to generate the new direction vector. The Fletcher-

Reeves method belongs to a class of gradient-based optimization algorithms called the 

conjugate gradient methods. In these methods, instead of looking for a direction in which 

the objective function decreases the most, the algorithm provides a number of different 

directions (conjugate directions) that result in the minimum number of line searches in 

the optimization process. In order to explain the concept of conjugate directions, consider 

a generic �-variable quadratic function as shown in equation (3.4): 

( ) Cxxxbx TT

2

1
++= af         (3.4) 

where a is a constant, b is a � ×1 vector, and C is an �×� matrix. Directions d1, … , d� 

are called C conjugate if the condition shown in (3.5) is satisfied: 

jiji ≠= any for 0Cdd
T

       (3.5) 

It can be proved that starting from any point on the surface of the �-variable quadratic 

function, � line searches along the above directions lead to the optimum value of the 

function [74]. As any well-behaved function can be approximated by a quadratic form in 

at least a sufficiently small area around its optimum, using conjugate gradient methods 
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significantly reduces the number of function evaluations in the optimization process. For 

a quadratic function, it can be proved that the direction vectors produced by Fletcher-

Reeves method (3.3) are conjugate to each other [74]. In order to illustrate and compare 

the performance of the Cauchy and the Fletcher-Reeves methods Figure 3.1and Figure 

3.2 show the optimization steps of the objective function shown in (3.6) using each of the 

two methods. 
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Figure 3.1  Cauchy’s method of optimization 
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Figure 3.2  Fletcher-Reeves method of optimization 
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As it can be seen in the figures, with the same starting point the Cauchy’s method has not 

reached the optimum even after seven trial points, whereas the Fletcher-Reeves method 

converges to the optimum only after two iterations, as expected from a conjugate gradient 

method. 

 

3.1.2 Constraint Handling Technique 

Most engineering applications have constraints on the optimization parameters 

imposed either by physical properties (e.g. inductor values should be non-negative) or 

other engineering limitations. Therefore, there is a need for constraint handling 

techniques in the simulation-based optimization to ensure that the search is conducted 

within allowed boundaries. In general in an optimization problem there are two types of 

constraints, namely equality constraints and inequality constraints. There are several 

methods available to deal with each of the above types of constraints [74]. These 

methods, however, can be classified in two major groups. The first group suggest the 

objective function to be modified, so that a constrained problem is converted to an 

unconstrained problem (e.g. method of Lagrange multipliers) [74]. The second ones 

suggest modifying the optimization algorithm itself, so it becomes capable of handling 

design constraints (e.g. method of feasible directions) [74]. 

In this research the optimization algorithm has been modified to address 

inequality constraints that put a limit on the range of the system parameters. Figure 3.3 

shows the constraint handling technique that has been incorporated in this research  [15]. 

The figure shows the contour plot of an objective function with two parameters x1 and x2, 
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and a rectangle (hypercube in higher dimensions) outlining the boundaries of the search 

variables. 
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Figure 3.3  The constraint handling method 

 

Assume that the search for the optimum is currently at point ‘A’, and a move in 

direction d is recommended by the algorithm. The movement along d intersects the 

boundary at point ‘B’; at this stage the motion in direction d is discontinued in favour of 

the motion in direction d1, where d1 = (d.i1)i1 is the projection of d on the constraint 

boundary, and i1 is the unit vector for x1 axis. 

 

3.2 Interfacing the Optimization Algorithm with the 

EMT Simulator 

In the previous sections the methods used for gradient-based optimization were 

briefly explained; however, during the actual interfacing of these methods with the 

simulator, further considerations had to be made to overcome implementation difficulties. 

In this section different steps of interfacing the Fletcher-Reeves optimization algorithm 

with the simulation program are discussed. Although the discussion is general, in this 
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thesis the PSCAD/EMTDC electromagnetic transient simulation program has been used 

as the simulation core, and the optimization algorithm has been implemented in 

FORTRAN programming language. 

 

3.2.1 Structure of the Simulation-Based Optimization Facility 

A block diagram of the optimization-simulation interface is shown in Figure 3.4. 

As shown, the optimization process starts by numerical calculation of the derivatives of 

the objective function. In this process the simulator is used for evaluation of the objective 

function at each point. A new direction vector is then constructed based on the above 

derivatives and the previous direction vectors. This direction is used for a line search, 

which also involves several simulation runs to find a new point with a lower value of the 

objective function. The process is repeated until the optimization process converges to an 

optimum. The convergence condition in the optimization process is satisfied when none 

of the parameter values change more than a prescribed amount (according to user’s 

choice) in two successive iterations. 

 

3.2.2 Scaling of the Variables 

Optimization of electrical networks involves dealing with numbers in markedly 

different orders. For example resistors may assume values in range of kilo-ohms (103Ω) 

and capacitors may assume values in range of micro-Farads (10-6F). Such differences in 

the orders of the numbers can make the problem numerically ill-conditioned. 
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(as shown in Fig. 3.5)

 
 

Figure 3.4  The optimization-simulation interface 

 

Pre-scaling of the variables to convert the original values to scaled values over a 

given range ([-10, 10] in this case) is an important step that improves numerical 

performance of the method. The formula shown in (3.7) has been used for scaling. 

( )i

i
i

x

x
x

max
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In the above formula xi* is the scaled value of the i-th parameter (xi). For example if the 

search range of a capacitor is [0.1µF, 200µF] and its initial value is 20µF, the above 

formula yields the scaled value of the initial capacitor as 1
200

2010
=

×
F

F

µ
µ

. At the same 

time if the acceptable range of a resistor is [0.5kΩ, 50 kΩ] and its initial value is 2kΩ, the 

above formula yields a value of 0.4. It is obvious that although the original values for the 

capacitor and the resistor are totally different, the scaled values reside in a smaller 

interval. 

 

3.2.3 5umerical Evaluation of the Gradient and Direction Vector 

In each iteration of the Fletcher-Reeves optimization method, a direction vector 

must be calculated using (3.3). However, since a closed-form representation of the 

objective function is unavailable, the gradient in (3.3) must be calculated numerically. To 

calculate the partial derivatives ( ixf ∂∂ ) used in the gradient vector, the objective 

function is evaluated at (x10, … , xi0–∆xi0, … , ∆xn0) and (x10, … , xi0+∆xi0, … , ∆xn0) by 

conducting two separate simulation runs. (3.7) is then used to evaluate the partial 

derivatives. In PSCAD/EMTDC this is done using the multiple-run feature of the 

program. 
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where x0 = (x10, …, xn0) is a vector that indicates the current point, and f (x) is the 

objective function. 
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An important observation regarding calculation of the direction vector is resetting 

certain terms when intersecting a constraint boundary.  As discussed in section 3.1.2 

when one of the variables reaches a boundary, the value of that specific parameter is kept 

constant unless a move toward the inner area of the boundary is suggested by the 

algorithm. In order to improve the performance of the Fletcher-Reeves method, the 

direction vector for the variables that are located on the boundary is set to zero unless a 

move toward the inner area of the boundary is suggested by the algorithm. For example if 

(3.3) suggests d(k)
 = [d1

(k), … , d�
(k)] as the direction vector, and the m-th variable is located on 

the boundary, then d
(k)

 = [d1
(k), … , dm-1

(k), 0, dm+1
(k), … , d�

(k)] is used for the direction vector 

unless a move towards the inner area of the boundary is suggested. 

 

3.2.4 Determination of the Optimum Step Length 

Once the direction vector is determined, a step with a suitable length in that 

direction must be taken. The step length s(k) in (3.1) is found by optimizing the objective 

function as a function of s(k) (referred to as a line search) [74]. However, as the evaluation 

of the objective function requires time consuming electromagnetic transient simulations, 

using such a line search method makes the optimization process slow. Therefore, instead 

of using a classical line search method the algorithm shown in Figure 3.5 has been used. 

Although this algorithm does not lead to the “optimal” step length, it helps to find a 

suitable step length in a smaller number of simulation runs. 

In the algorithm an initial step length is selected, and the objective function is 

evaluated by simulation using parameter values of x as suggested by (3.1). If the 

objective function is reduced, the search direction is deemed to be a good one, and an 
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acceleration factor p is applied to the step length to yield a larger step; otherwise the step 

length is reduced by the factor p. If the increase in step length does not result in a 

decrease in the value of objective function, a smaller acceleration factor q < p is used. A 

similar approach is used when the initial step length does not result in a reduction (as 

indicated by Figure 3.5).  

 
 

Figure 3.5  The algorithm used for finding the suitable step length 

 

In the actual implementation of the algorithm the factors p and q, shown in Figure 

3.5, have been selected as p = 2 and q = 1.5. In order to avoid excessively large and small 

step lengths in this method the step length is limited within a range. In addition, in order 

to accelerate the procedure after each iteration the step length is adjusted based on the 
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previous results, i.e. if in the previous iteration the suitable step length was much larger 

than the initial step length, the starting value of the step length in the following iteration 

increases. 

 

3.3 Multi-Objective Optimization 

This section describes a major contribution of the thesis that addresses problems 

with multiple, often competing, objectives. Engineering optimization problems usually 

involve multiple objectives that have to be satisfied simultaneously. One way to handle 

such problems is to construct a composite objective function, which is a weighted sum of 

the individual sub-objective functions. An ordinary optimization algorithm can then be 

used for optimizing the system performance. However, in this method selection of a 

suitable set of weights for sub-objective functions is difficult, as the weight selection 

requires prior knowledge about the impact of each sub-objective function on the other 

ones. Another way to handle the multi-objective problems is to use the concept of Pareto 

optimality [24] and [75] – [79]. The Pareto frontier, which is a set of all the Pareto 

optimums, clearly shows the tradeoffs between sub-objective functions in a multi-

objective problem. In this thesis the Pareto optimization has been used to address design 

problems with multiple objectives. The method is described in the next sections. 

 

3.3.1 Definition of a multi-objective optimization problem 

In a multi-objective problem [24], rather than a single scalar objective function a 

vector of individual objective functions is used. This vector consists of all the single 

objective functions, as shown in (3.9): 
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T
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T
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where xi is the i-th parameter to be optimized and fj is the j-th objective function. The 

vectors f and x are referred to as the objective vector and the decision vector, 

respectively. 

 

3.3.2 Pareto Optimality 

One of the methods for handling multiple objective optimization problems is to 

use the concept of Pareto optimality [75] – [79]. Without loss of generality the concept is 

presented for a minimization problem. A Pareto minimum is a decision vector (x) that 

provides a compromised solution for which none of the corresponding sub-objectives can 

be further reduced without an increase in at least one of the other ones [24]; in other 

words x* is a Pareto optimum if: 
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where fi(x) is an element of the decision vector in (3.9). A Pareto optimal set or a Pareto 

frontier is the set of all Pareto optima in the entire search space. Consider Figure 3.6, 

which is drawn for a problem with two sub-objectives f1(x) and f2(x). The figure shows 

different combinations of f1(x) and f2(x) resulting from all possible choices of the 

optimization parameters (x). The space can be divided into two regions; one contains the 

feasible function pairs and the other where no point exists. The boundary between the 

two regions is the Pareto frontier. It is evident that any point on the frontier satisfies the 
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Pareto optimality condition given in (3.10). For example consider point 2, for which any 

further improvement in f1(x) results in a degradation in f2(x) (as the points on the left side 

of the Pareto frontier are not feasible); however, if one considers any of the interior points 

(i.e. one of the circles) f1(x) can be improved (by a horizontal move towards the Pareto 

frontier) without degrading the other objective function. 

  
Figure 3.6  Pareto optimality and Pareto frontier. 

 

There are several methods for obtaining the Pareto optimal set for a specific 

design [75] – [80]. A simple method for generating the Pareto frontier is to use the linear 

weights method. In this method, the multiple objectives are amalgamated into a single 

scalar objective function as shown in (3.11): 
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This single function f (note that f is a scalar function of the decision vector x) is 

optimized for a particular set of weights Wn = {wn1,wn2, …}. It can be easily proved that 

the resulting optimum is also a Pareto optimum in the space of sub-objective functions (if 

not there should be at least one fi that can be improved without degrading the other sub-
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objective functions, which is in contradiction with the fact that f is at an optimum). 

Several optimizations are carried out with the weight-set spanning the space of possible 

weights. The values for the individual functions for each set of weights are plotted as a 

point in m-dimensional space in the form of a parametric plot. 

Figure 3.6 show a Pareto frontier for an optimization problem with two sub-

objectives. Any point on this frontier is a Pareto optimum. For example the point ‘2’ 

gives the smallest value of f1 (say f1(x2)) that can be achieved when f2 has the value of 

f2(x2), and vice versa. Therefore the Pareto frontier shows the tradeoffs involved in 

optimizing both sub-objectives. For example if the operating point is moved from point 1 

to point 2 the first objective function can be improved significantly while the second 

objective function deteriorates to some extent; however if the operating point is at point 3 

further improvement in f1(x) results in significant deterioration of the second objective 

function. Selecting a compromised set of parameters is an important step in many design 

studies involving multiple objectives, and the Pareto frontier helps the designer in 

properly selecting the operating parameters. 

 

3.3.3 Generation of Pareto Frontier by Coupling to an EMT 

Simulator 

The Pareto frontier algorithm was interfaced to the PSCAD/EMTDC 

electromagnetic transient simulation program; however, the approach is general and can 

be applied to other simulation programs as well. The Pareto frontier algorithm is shown 

schematically in Figure 3.7. It automatically performs a sequence of optimizations, each 

requiring several runs of the EMT simulation program. 
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Similar to the approach used for the single objective optimization, the method 

described in the previous section was successfully combined with the EMT simulation 

program. This approach allows the Pareto frontier to be developed for complex power 

system cases, where an explicit form of the sub-objective functions is not possible and 

they must be derived by observation of the simulation results. 
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Figure 3.7  Generation of the Pareto frontier 

 

In each of the optimizations the weights (gains) of the sub-objective functions are 

changed, so that a new point on the Pareto frontier is obtained. At the end the results are 

stored in a file, and they can be plotted as a Pareto frontier in an m-dimensional space. 

This method is able to generate the Pareto frontier with high efficiency because it reduces 
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the number of simulation runs as much as possible. The key to doing this is to use a 

sequential variation of the weights for subsequent optimizations that produces relatively 

continuous points on the Pareto frontier. By doing so, a previously obtained decision 

vector can be used as a suitable starting point, which usually generates the next point with 

only a small number of additional simulations. 
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Chapter 4 Application Examples of 

Simulation-Based Optimization 
 

In this chapter a number of power system and power electronic design examples 

are used to show the effectiveness of the developed simulation-based optimization 

methods. Development of an analytical objective function for the examples presented is 

prohibitively difficult; therefore a simulation-based design approach becomes necessary. 

This closely resembles the situation in the majority of practical design cases as well. 

 

4.1 Optimal Design of a Static Compensator 

In this example the developed optimization tool is used to improve the response 

of a three-level Static Compensator (STATCOM) during a power network transient. 

Parameters of the control system, i.e. its proportional gains and integral time constants, 

are optimally tuned. This example demonstrates the effectiveness of the developed tools 

as for this case an analytical formulation of the objective function is practically 

unattainable. The example also presents an application of the Pareto optimality concept in 

the analysis of the tradeoffs between cost and performance considering the size of the dc-

side capacitor. The concept of Pareto optimality is used for selecting a suitable dc 

capacitor size to make a reasonable compromise between the cost and performance of the 

STATCOM. 
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4.1.1 Description of the System Model 

A STATCOM is a FACTS (Flexible Alternating Current Transmission System) 

device, which is mainly used for fast VAR compensation and voltage regulation in power 

networks [91]. In addition a STATCOM may also be used for other purposes such as 

voltage balancing [92] and oscillation damping [93]. in power networks. A typical 

structure of a STATCOM is shown in Figure 4.1. It consists of a voltage sourced 

converter (VSC) connected to a capacitor on the dc side and to the power network 

(through a power transformer) on the ac side. By controlling the magnitude and phase of 

the STATCOM output voltages (the three-phase ac voltages), the STATCOM is able to 

exchange different amounts of real and reactive power with the ac network. The real and 

reactive power control is mainly used for voltage regulation of the dc capacitor and the ac 

network [94] and [95]; however, it can also be used for other purposes such as oscillation 

damping [93]. 

 Figure 4.1 also shows the schematic diagram of the ac network used in this 

example. The data pertinent to the network are given in Table 4.1. The STATCOM uses a 

three-level voltage sourced converter with sinusoidal pulse-width modulation (SPWM) as 

shown in Figure 4.2. The three-level converter operates on the same concepts as the two-

level converter, (a brief explanation of a two-level VSC is presented in section 6.1.3); 

however, the extra switches used allow a three-level converter to produce an additional 

voltage level of 0V at the output terminal. This extra voltage level can be leveraged to 

craft voltage waveforms with improved harmonic spectrum without increasing the 

switching losses. 
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Figure 4.1  STATCOM system 

 

Table 4.1  System parameters 

AC network 115 kV, SCMVA = 500 MVA at 80º 

Distribution transformer 115 kV / 20 kV, 30 MVA, Xl = 10% 

Distribution line Resistance = 0.04 pu, Reactance = 0.10 pu 

Load #1 10.0 MVA, pf = 0.9 lagging 

Load #2 10.0 MVA, pf = 0.85 lagging 

STATCOM converter 3.3 kV, 10 MVA, C = 0.5 pu 

STATCOM transformer 20 kV/3.3 kV, 10 MVA, Xl = 14% 

 

 
 

Figure 4.2  The three-level diode clamped converter used in the STATCOM 
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Gate pulses for the upper (S) and lower (S*) half-bridges are generated by comparing a 

sinusoidal reference waveform with two triangular waveforms (carriers) as shown in 

Figure 4.3 [96]. When the reference waveform (the sinusoid) is higher than both carriers 

(the triangular waveforms), both Sx1 and Sx2 (x is a, b or c depending on the phase) 

switches are ON, which results in a voltage +Vdc at the output. When the reference lies 

between the two triangular waves, Sx1 is OFF but Sx2 is ON, which results in 0V at the 

output. Finally when the reference wave is lower than both triangular waves, Sx1 and Sx2 

are both OFF, which results in a voltage level –Vdc at the output. Note that Sxx (xx is a1, 

a2, b1, b2, c1, or c2) switches are complementary switches for S
*
xx switches, which 

means if Sxx is ON, S*
xx is OFF, and if it is OFF, S*

xx is ON. 
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Figure 4.3 .  Generation of the gate signals. 

 

 Control of the dc-bus voltage and the ac network voltage is conducted through a 

de-coupled control system  [94], [95] as shown by the dotted enclosure in Figure 4.4. This 

controller regulates the direct (d) and quadrature (q) components of the STATCOM 

current to their desired reference values id* and iq* (indirectly controlling the real and 

reactive power delivered to the network). 
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Figure 4.4  STATCOM de-coupled control scheme 

 

 A synchronously rotating reference frame is locked to the positive sequence of the 

load bus-bar voltage. Hence in the steady-state vd =Vm and vq = 0, where Vm is the peak of 

the phase voltage. The q-axis current order iq* (indirectly the generated reactive power) 

for the decoupled controller is generated by an upstream proportional-integral (PI) 

controller that regulates the terminal voltage vd to its reference value vd*. Another 

controller generates the direct axis current order (indirectly the generated real power) to 

charge or discharge the capacitor so as to regulate its voltage vd to the desired reference 

capacitor voltage vC*. 

The STATCOM generates harmonic voltages, as is typical for switched power-

electronic equipment. In order to reduce harmonic-related contamination of the 

controller’s input signals a set of signal conditioning filters are normally used prior to the 

controller inputs. In this example first order low-pass filters, as shown in Figure 4.5, are 

used for this purpose. 
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Figure 4.5  Input filters for the STATCOM 

 

4.1.2 Optimization of the STATCOM Dynamic Response 

 This section demonstrates the application of the developed optimization methods 

for designing the STATCOM. At first the transient performance of the STATCOM is 

optimized by selecting proper control system settings using the optimization method 

described before. Such optimization is useful if the STATCOM already exists and it is 

desired to improve its performance.  

On the other hand, if the STATCOM has not yet been constructed, further 

flexibility is possible in the design stage because in addition to the control settings, the 

selection of the hardware components can also be part of the performance and cost 

optimization. To demonstrate this aspect, the dc-capacitor size is next included as an 

optimization variable in the second stage of this example. This added flexibility of an 

additional optimizable component provides the potential for improving the performance; 

however, changing the capacitor size also affects the cost of the STATCOM. Therefore 

having a small capacitor size can be considered as another objective for this problem. The 

developed Pareto optimality technique is used to study the tradeoffs between the 

capacitor size and the dynamic performance of the compesator. 
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4.1.2.1 Single Objective Optimization 

 The developed gradient-based optimization can be used to select parameters 

(gains and time constants) for the control system of the STATCOM in order to improve 

its transient performance. This section demonstrates the effectiveness of the proposed 

simulation-based approach, as in this case an analytical solution is prohibitively difficult 

to obtain. The objective function (4.1), which is a function of the controller parameters 

shown in Figure 4.4, is used. It penalizes the deviations in the capacitor voltage vC and ac 

network voltage vd from their respective set-points devoted by VC
* and Vd

* respectively. 
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Note that this objective function (OF)  penalizes both poor transient response as 

well as steady state ripple due to harmonics; as in either case, there will be non-zero 

deviations. Also because the control of the ac voltage is the principal purpose of the 

STATCOM, more weighting is given to the ac network voltage deviation. Although the 

relative weights were pre-selected here, the procedure of Pareto optimization to follow in 

the next section could have also been employed in their selection. The objective function 

(OF) in (4.1) is minimized using the procedure described in Chapter 3 to yield the 

optimal parameter values.  

 In this example, the STATCOM in Figure 4.1 is subjected to a load rejection (in 

this case load #1) at t = 1.0 s with a subsequent reconnection of the load at t = 1.5 s. The 

OF is evaluated over the interval [ts, te] = [0.75s, 1.75s]. Table 4.2 shows the pre- and 
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post-optimization values of the control system parameters. Note that the optimization 

process reduces the OF from a large value of 27.8 to a significantly reduced value of 

10.1. The performance improvement is clear from the pre- and post-optimization plots for 

the capacitor voltage (Figure 4.6) and network voltage (Figure 4.7). 

 

Table 4.2  Pre- and post-optimization values 

 
Before 

optimization 
After 

optimization 

DC-capacitor 
voltage controller 

K1 0.1 0.17 

T1 0.15 0.13 

id controller 
K2 3.0 1.8 

T2 0.2×10-2 0.40×10-2 

Network voltage 
controller 

K3 0.2×10-1 0.40×10-1 

T3 0.2×10-1 0.32×10-1 

iq controller 
K4 5.0 17.3 

T4 0.1×10-2 0.57×10-3 

Filter time 
constants 

Tf1 0.1×10-1 0.47×10-2 

Tf2 0.1×10-2 0.32×10-3 

Tf3 0.1×10-1 0.80×10-2 

Objective function 27.8 10.1 
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Figure 4.6  DC capacitor voltage before (a) and after (b) optimization 
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Figure 4.7  5etwork voltage before (a) and after (b) optimization 
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Figure 4.8  Injected reactive power before (a) and after (b) optimization 
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Note that the capacitor voltage transients damp much faster and with less overshoot after 

optimization. The optimized network voltage (vd) also shows significant improvements 

both during the disturbance and after it. In addition, the injected reactive power 

waveform for initial and optimized parameters is shown in Figure 4.8 where the 

improvement of response is clearly visible. 

 

4.1.2.2 Comparison of 5on-Linear Simplex (5elder-Mead) and 

Gradient Based Optimization 

As was mentioned in Chapter 3, earlier wisdom was that gradient-based methods 

would be too slow when combined with EMT simulation, because of the considerable 

effort involved in calculating the derivative. However, the total number of steps to 

convergence may be significantly reduced, resulting in a total simulation time which is 

not significantly different from that of the direct method.  
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Figure 4.9  Convergence rate comparison 

The simplex method of 5elder-Mead vs. the Fletcher-Reeves method 
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Figure 4.9 shows the optimization progress (in terms of the OF evaluations vs. run 

number) of the same case using both the Nelder-Mead and the Fletcher-Reeves methods. 

Although the gradient-based method requires 22 simulations to calculate the gradient 

vector, still due its faster convergence rate, both methods converge to the optimum at 

about the same time. Also it should be noted that with parallel computers, the gradient 

based approach would have a much better advantage as each partial derivative can be 

computed using a different processor. The above optimization process takes 

approximately 33min (Using a computer with 4GB of RAM and a 3GHz AMD Athlon™ 

64 X2 Dual Core Processor). 

 

4.1.2.3 Multi-Objective Optimization 

 The optimization case in the previous section considered only the control system 

parameters, and their tuning for optimal performance. This section includes the additional 

parameter of the dc-capacitor size in the optimization. Although changes in the control 

settings are easy and inexpensive to implement, changes in the size of the dc-capacitor 

have an additional financial implication. It is therefore necessary to evaluate the trade-off 

between the capacitor size (or cost) and system performance in order to determine the 

smallest capacitor size that will also yield acceptable performance. 

The Pareto frontier discussed in Chapter 3 provides a useful visualization of the 

tradeoffs involved for multiple objectives. The Pareto optimization tool developed in this 

thesis automatically generates the Pareto frontier when supplied with a single OF, which 
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is derived by a weighted sum of the sub-objectives. For the problem at hand, the vector of 

sub-objectives is expressed in (4.2), where x and fp are as defined in (4.3) and Cpu is the 

capacitor size in pu. The Pareto optimization method outputs the frontier shown in Figure 

4.10. 
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Figure 4.10  Pareto frontier of the dc capacitor size and the performance 

 

The Pareto frontier is developed by conducting a sequence of optimizations for several 

values of the relative weight w. For each optimization, the corresponding sub-objective 

values are plotted against each other. For this example, the two sub-objectives are the 

performance index fp and the capacitor size Cpu. The Pareto frontier in Figure 4.10 

indicates that the performance can be optimized by selecting increasing values of Cpu; 
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however, once the capacitor size reaches approximately 0.75 pu, performance 

improvement is marginal. For example, at point ‘A’ on the diagram the capacitor value is 

1.3 pu, with a performance index of fp = 5.0. To improve the performance by an 

additional 20% (fp = 4.0), the capacitor size must be increased by almost 300% 

corresponding to point ‘B’ where Cpu = 3.9 pu. Rather than try to optimize the 

performance any further, thereby increasing the size (and hence cost) of the capacitor, the 

designer may choose to select a capacitor size in the neighbourhood of 0.75 pu. 
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(a) C = 0.17pu 
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(b) C = 0.36pu 
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(c) C = 3.9pu 

Figure 4.11  STATCOM performance for different values of the dc capacitor 
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Figure 4.11 shows the network voltage when the size of the dc capacitor is (a) 

0.17 pu (b) 0.36 pu and (c) 3.9 pu. As it can be seen in the results when the capacitor size 

increases from 0.17 pu to 0.36 pu the steady state ripple on the network voltage 

considerably reduces by almost 50%. However, further increase in the size of the dc 

capacitor (from 0.36 pu in Figure 4.11b to 3.9 pu in Figure 4.11c) does not improve the 

response significantly. The above waveforms confirm the results obtained from the 

Pareto analysis. Note that as the injected reactive power from t = 1s to t = 1.5s is almost 

zero during this period the ripple is very small and the same for all the above cases. 

 

4.2 Multi-Objective Optimal Design for an 

Induction Motor Drive System 

In this example the simulation-based Pareto optimization method is used for  the 

multi-objective optimal design  of an induction motor drive system. Using this approach, 

an optimal set of system parameters is selected, which achieves a reasonable trade-off 

between two competing objectives: (i) a low steady state ripple and (ii) a fast transient 

response in the developed electrical torque. As opposed to the previously shown 

STATCOM case, in which the competing objectives were cost versus performance, in 

this example the competing objectives are two different aspects of the system’s dynamic 

performance. 
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4.2.1 Description of the Drive System 

Induction motors are perhaps the most widely used type of electric machinery. In 

many installations, torque and speed control of these machines is achieved by utilizing a 

variable frequency drive systems, such as the one shown in Figure 4.12.  The induction 

motor is driven by a voltage sourced converter (VSC), and by changing the magnitude 

and frequency of the output voltage of the VSC, the desired speed and torque can be 

obtained. The DC voltage required by the VSC is produced by a three-phase controlled 

rectifier. 

rω

α

 
Figure 4.12  A variable frequency induction motor drive system 

 

 In this example a controlled six-pulse rectifier and a two-level VSC with 

sinusoidal PWM have been used for the drive system. The control system uses a constant 

slip-speed control strategy to regulate the output torque of the induction machine. In this 

strategy, the frequency of the VSC is changed so that the motor always has a constant 

slip. This way by changing the magnitude of the voltage, the output torque of the motor 

can be controlled. Figure 4.13 shows the schematic diagram of the control system. 
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Figure 4.13  Constant slip speed control strategy 

 

As in this specific case the magnitude of the output voltage is controlled by changing the 

dc voltage, a constant modulation index (m), adjusted to 1.0, is used for all operating 

conditions. Controlling the output voltage by changing the dc voltage reduces the 

switching losses at low speeds, as lower voltage means less switching losses. The 

parameters of the drive system are given in Table 4.3. 

 
Table 4.3  Drive system parameters 

 Rated Values 

Induction Motor 

Voltage 4160V 

VA 1.045MVA 

Current 145A 

Frequency 60Hz 

Speed 3600rpm 

Voltage Sourced Converter Switching Frequency 10kHz 

Rectifier Number of Pulses 6 

Input AC Network 

Voltage 5.6kV 

Frequency 60Hz 

Impedance 0.96Ω∠78° at 60Hz 

 

4.2.2 Optimization of the System Performance Using the Pareto 

Approach 

The drive system should be optimized so that the ripple on the dc voltage and dc 

current is reduced. Doing so reduces the voltage harmonics at the output of the VSC, the 
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current harmonics at the input of the rectifier and the ripple current in the dc capacitor. 

This requires proper selection of the control system parameters as well as the filter 

elements (smoothing inductor and dc capacitor). However, improving the filtering 

performance typically requires the use of larger energy storage elements, and 

consequently degrades transient performance. Therefore it is necessary to find optimal 

values for the system parameters, which result in an acceptable compromise between the 

competing objectives of fast transient response and low ripple level.  

As the output torque of the induction motor is regulated by the controller, the 

torque order (the reference torque) is changed at t = 4.0s and t = 6.0s, so that the transient 

response of the control system can be measured. In order to quantify both aspects of the 

system performance, the objective functions shown in (4.4) have been defined to assess 

transient and steady state performance of the system. 
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In equations (4.5) and (4.5), variables id, vd and Tm are the dc current, dc voltage, and 

mechanical output torque. The objective function  fSS  penalizes the ripple in steady state. 

by measuring the steady state integral of the squared error. The selection of the 
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integration limits avoids the region where step changes are applied, so that the function 

only reflects the steady state performance. The objective function fTr penalizes a slow 

transient response and penalizes any discrepancy between ordered and measured torque. 

Weighting function wt discounts the immediate instants at which the reference changes 

(i.e. at t = 4.0s and t = 6.0s). Weighting function wt is shown in the following figure. 
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Figure 4.14  ft function which has been used in the objective function 

 

The parameter space in this problem consists of nine parameters of the control 

system (TfT, KpT, TiT, TfV, KpV, TiV, TfI, KpI, TiI) and 2 parameters of the power circuit (Ldc 

and Cdc). The two-objective optimization has been carried out using the developed Pareto 

optimization method, with the objective functions defined in (4.4) and (4.5). The 

following figure shows the Pareto frontier of the objective functions. 
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Figure 4.15  Pareto frontier of the drive system 
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Development of this frontier takes about 25 hours (Using a computer with 4GB of 

RAM and a 3GHz AMD Athlon™ 64 X2 Dual Core Processor). As seen in the figure, 

improvements in the transient response (lower fTr) results in increased steady state ripple 

(higher fSS). The following figures show the response of the system for two extreme 

points on the Pareto frontier (i.e. A and C). 
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Figure 4.16  System response to torque order change (a) point A (b) point C 
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Figure 4.17  Steady state ripple on the dc voltage (a) point A (b) point C 
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Figure 4.18  Steady state ripple on the dc current (a) point A (b) point C 

 

As seen in Figure 4.16 to Figure 4.18, although operating point A results in a much faster 

transient response Figure 4.16 (a), the amount of ripple at this point is high. On the other 

hand at point C the dc voltage and current are relatively smooth Figure 4.17 (b) and 

Figure 4.18 (b). However, this results in a slower transient response Figure 4.16 (b). 

Finally point B, which is at the middle of the Pareto frontier, results in a response that is 

both fast and smooth. The system response at point B is shown in Figure 4.19 and Figure 

4.20. 
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Figure 4.19  System response to torque order change at the operating point B 
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Figure 4.20  Steady state ripple on the (a) dc voltage and (b) dc current 

 

Table 4.4 shows the parameter values of the drive system for each of the three operating 

points. As it can be seen in the table operating point B shows a compromised 

performance compared to the other points. 

 

Table 4.4  Parameter values of the drive system for three different Pareto optimums 

 A B C 

TfT 0.0285 0.0224 0.0217 

KpT 1.22 0.174 0.304 

TiT 0.255 0.0493 0.0445 

TfV 0.00870 0.0341 0.0344 

KpV 0.871 0.661 0.570 

TiV 0.0504 0.0270 0.0187 

TfI 0.00712 0.0304 0.0320 

KpI 2.82 2.87 1.89 

TiI 0.268 0.417 0.350 

Ldc [mH] 1670 391 120 

Cdc [µF] 3510 624 401 

fTr  1.34 0.386 0.274 

fSS 0.0703 0.740 6.99 

 

Note that every point on the Pareto frontier is an optimal solution of the problem for a 

specific set of relative weights for each of the sub-objective functions. The Pareto frontier 

shows the tradeoffs between the objectives as the relative weights are varied. It is the 
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designer’s responsibility to select a suitable point on the frontier, which satisfies the 

multiple objectives to a degree deemed adequate by the designer. Based on this rather 

subjective choice, point B appears to be a reasonable tradeoff, as midway between two 

directions of diminishing return.  However, if there were a strong requirement for 

transient performance (for example fTr <= 0.3), point B would be unacceptable, and the 

most acceptable point would be point C.  
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Chapter 5 Simulation-Based Uncertainty 

Analysis for Design  
 

Due to practical limitations such as manufacturing tolerances and component 

aging the parameter values in the physical implementation of a system may not be 

identical to those originally obtained through optimization or otherwise decided by the 

designer. In addition imprecise knowledge of the system (e.g. measurement errors) 

increases the level of uncertainty in the design. In order to quantify the potential 

degradation in performance resulting from such parameter variations and to ensure that 

the system performance remains satisfactory in the presence of uncertainties, it is 

essential to perform uncertainty analysis of the design. 

This thesis proposes to use a set of simulation-based facilities to automate the 

uncertainty analysis process and to reduce the human interactions in such studies. Similar 

to the simulation-based optimization method described in the previous chapters, 

simulation-based uncertainty analysis also alleviates the need for analytical calculations 

by using an electromagnetic transient simulation program as an evaluator of system 

performance under different scenarios. 

 

5.1 Definitions 

Uncertainty analysis has a long history in engineering applications, and a wide 

variety of methods exist for such studies. However, existing literature on uncertainty 
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analysis does not use a common terminology for various concepts. In the following, 

necessary terms and definitions are outlined as they are used in the context of this thesis. 

 

5.1.1 Definition of Performance index 

A performance index (also called performance function [39] or response variable 

[49]) is a mathematical function of the system outputs, which quantifies certain aspects of 

design performance. For uncertainty analysis of a system a number of different 

performance indices are usually defined to cover different aspects of the design. A 

performance index may for example measure the amount of remnant harmonics in a filter 

subject to component aging, or the changes in the overshoot of a control system step 

response due to the variations in the system operating conditions. 

 

5.1.2 Definition of Sensitivity analysis 

Sensitivity analysis is a mapping that relates small changes in the system input 

parameters to the changes in the performance index. This is equivalent to developing a 

simplified or “surrogate” model of the system that relates the performance index to its 

input parameters. Since analytical development of a full model that is accurate in the 

entire range of system parameters is difficult, several alternative methods are used for 

such analysis. The most common one of those methods is first-order (linear) 

approximation of the performance indices around an operating point. Use of more 

complex methods for sensitivity analysis has also been reported in the literature [39], 

[48], [49], [51], and [59]. These methods in general enhance the accuracy of the analysis; 
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however, the added complexity increases the required computation time for such 

methods. 

 

5.1.3 Definition of Tolerance Analysis 

In tolerance analysis, the variation of the performance index is estimated from a 

known spread in the input parameter values of the system. This is done to ensure that the 

input parameter tolerances will not cause the performance index to lie out of its 

acceptable range. In many cases, the result of tolerance analysis is the probability 

distribution of the performance index or even simply its worst-case value. Once 

sensitivity-based surrogate models are obtained, tolerance analysis can be done using 

these models [49]. It should be noted that the sensitivity-based approach is not the only 

solution to the tolerance analysis problem, and other approaches such as direct Monte-

Carlo analysis [81] and interval mathematics [55] can also be used to address this 

problem. 

 

5.2 Uncertainty Analysis Background 

Uncertainty analysis covers a wide range of studies; however, based on the 

literature, such studies can be divided into two major categories of (1) sensitivity analysis 

and (2) tolerance analysis. As mentioned before, sensitivity analysis is performed to 

develop models (often simple ones) that relate performance indices to the input 

parameters of a system. These simple models can then be used for optimization and/or 
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tolerance analysis of the system, when computational power or time constraints do not 

allow use of full-detailed system models. 

Tolerance analysis is also used for estimation of the system performance under 

uncertainties. However, as opposed to sensitivity analysis, tolerance analysis is not meant 

to relate each set of input parameters to a specific set of performance indices. It rather 

aims to solve the problem as a whole, and in this analysis the goal is to find a boundary 

for the system response when the input parameters vary within their tolerance ranges. 

There are two major classes of tolerance analysis problems, namely (a) worst-case 

tolerance analysis and (b) statistical tolerance analysis. In worst-case tolerance analysis 

an extreme limit is found for each performance index, in such a way that the performance 

index never passes that limit when the system parameters are within their tolerance 

ranges. Rather than a single limit, statistical tolerance analysis provides probabilistic 

information about the performance indices. Using this type of analysis the designer can 

estimate the probability of having different performance levels. 

The thesis introduces a simulation-based sensitivity analysis scheme, which 

allows modeling of performance indices using a second-order Taylor’s series. This not 

only increases the accuracy of analysis for regular operating points (compared to the 

conventional first-order sensitivity analysis), but also allows sensitivity analysis of 

optimal operating points, where the first-order analysis fails to provide useful results, due 

to vanishing first-order derivatives. In addition, the thesis proposes to use the sensitivity 

models to perform tolerance analysis (as defined above). As will be discussed later, using 
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sensitivity models for tolerance analysis significantly reduces the computational burden 

of the analysis while still providing accurate results. 

 

5.3 Simulation-Based Sensitivity Analysis 

In this section the sensitivity analysis problem is described and different stages of 

development of a simulation-based sensitivity analysis facility are discussed. Initially a 

brief background on sensitivity analysis is presented, and then the concept of simulation-

based sensitivity analysis is introduced. The section also discusses different stages of 

developing the proposed sensitivity analysis facility and explains the implementation 

details of this method. 

 

5.3.1 Background 

Sensitivity analysis of linear circuits was perhaps one of the first efforts in the 

area of sensitivity analysis of electrical systems [12]. In its simplest form, the sensitivity 

of a performance index (normally a network function) to the variations of the system 

parameters can be represented as a linear function. The well-known Bode logarithmic 

sensitivity function (shown in 5.1) is a commonly used form of sensitivity analysis for 

electrical networks [12]. 
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In the above expression T is a network function (the performance index) and x is a 

network parameter. Using such a simple formulation allows the designer to easily 
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approximate the relative variation in the network function T resulting from small relative 

changes in the system parameter x, as shown in equation (5.2): 
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Such sensitivity models were originally derived analytically by developing a 

closed-form equation relating the output (performance index) to the inputs, and by 

analytical calculation of derivatives (5.1). However, for large and complex systems, 

which are usually analyzed thorough computer simulation, sensitivity analysis using 

closed-form formulation of performance indices becomes impossible as formulation of 

the problem is prohibitively difficult. Therefore, computer-aided techniques were 

developed for such studies and simulation programs were utilized for the purpose of 

sensitivity analysis [28] – [35]. This trend was accelerated by the development automatic 

design tools for linear electronic circuits. In these tools gradient-based optimization 

techniques were used for parameter tuning of analog electronic circuits. Since gradient-

based optimization methods rely on sensitivity information (gradients) of their objective 

function, significant amount of research was dedicated to development of computer-aided 

sensitivity analysis methods, which were capable of fast calculation of the required 

sensitivity information [29], [33], and [34]. 

 Researchers also found sensitivity information useful in tolerance analysis of 

different systems, as using the sensitivity information expedites the tolerance analysis 

process (this topic will be discussed in greater detail later on in this chapter). As such 

techniques expanded to other areas in electrical engineering, it was found that first-order 
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sensitivities are not sufficient for tolerance analysis of complex and nonlinear systems; 

therefore, more accurate and more complex models (such as second-order models) have 

been developed for sensitivity analysis of complex systems [39], [49], [51], [52], [53], 

and [59]. 

An important contribution of this thesis is in the area of sensitivity analysis of 

optimal systems. At an optimal operating point all first-order derivatives of the objective 

function with respect to system parameters are zero. As a result, conventional first-order 

(linear) sensitivity analysis is not capable of providing accurate results on the sensitivity 

of optimal systems to parameter variations. In this research second-order polynomial 

models are used to address sensitivity analysis problem for optimal systems. 

 

5.3.2 Use of Simulations for Sensitivity Analysis 

 As mentioned earlier, in modern large power systems it is often difficult to 

analytically obtain a closed form representation of a performance index in terms of 

system parameters, and the behaviour of the system is usually determined by simulation. 

Therefore, computer-aided methods have to be used for sensitivity analysis of such 

systems. One such method is to conduct several simulation runs with slightly perturbed 

parameter values around an operating point to numerically determine the variation of the 

performance with respect to system parameters. The results are then used for creating a 

closed-form approximation of the performance index around that point [33], [48], [49], 

[52], and [53]. 
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In this thesis a general-purpose simulation-based sensitivity analysis method is 

proposed for power system applications. In this method the sensitivity information is 

obtained automatically using numerical techniques combined with multiple-run 

simulations. This way the designer becomes capable of conducting sensitivity analysis of 

a power system conveniently by modeling the system in an electromagnetic transient 

simulation program. 

 

5.3.3 Sensitivity Analysis Using Multiple-Run Simulations 

One way to calculate the derivatives of a performance index without recourse to 

analytical expressions is to use numerical differentiation methods. In this method the 

simulation program is used to evaluate the performance index at a given operating point. 

A sensitivity analysis algorithm is then used to change the system parameters using a 

multiple-run simulations procedure. In each simulation, one (or two in case of mixed-

derivatives) of the parameter values is slightly perturbed from its original value, and the 

performance index is evaluated using the EMT simulation program for this slightly 

altered set of parameter values. By the end of the multiple-run simulations the sensitivity 

analysis algorithm calculates the derivatives using the numerical formula (shown in 5.3), 

based on the performance index values obtained during the multiple-run simulation. 
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In the above formula f is the performance index and x1, …, xn are the system 

parameters. In this research the PSCAD/EMTDC electromagnetic transient simulation 
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program has been used as the main core of the computer-aided sensitivity analysis tool. 

This makes the tool especially suitable for power systems containing power electronic 

apparatus. 

 

5.3.4 Sensitivity Analysis of Optimized Systems 

A first-order approximation of a performance index is often all that is necessary, 

particularly when the parameter variations are sufficiently small. A first-order 

approximation is obtained by calculating the first-order derivatives of the performance 

index at the operating point of interest and using the Taylor’s expansion for the 

approximation. Once all the derivatives are determined (using 5.3), one can assess the 

effect of single or multiple parameter variations (∆xi) on the system performance 

(represented by f ) using the expression given in equation (5.4): 
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 Note that sensitivity analysis assumes that the objective function is continuous 

and differentiable at the point of interest; if this were not so, derivatives would not exist. 

Based on (5.4) it can be seen that first-order sensitivity analysis fails to provide any 

useful insight when the sensitivity around an optimum solution is considered. This is 

because all first-order derivatives of a function tend to zero around an optimum (unless 

the optimum lies on the boundary of a constrained optimization). At first glance it does 

not seem to cause any problem as zero sensitivity implies that the performance index is in 

a locally flat, i.e. insensitive, area. However, the sensitivity information of an optimum 
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becomes important (1) when comparing different optimal solutions with each other and 

(2) when sensitivity-based tolerance analysis of an optimal operating point is necessary 

(as will be discussed later in this chapter). For example consider Figure 5.1, in which the 

objective function shown has one optimum at x = 1 and another one at x = 3. The 

optimum solution at x = 1 is clearly much more sensitive to the parameter variations than 

the one at x = 3, as evidenced by the steep variations of the objective function around this 

point; however, first-order sensitivity analysis shows zero sensitivity for both optima due 

to first-order function derivatives approaching zero. Such different optima typically result 

when the optimization algorithm is started from different starting points.  
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Figure 5.1  A function with two optima 

 

 To allow assessment of sensitivity around optimal point(s) of a given performance 

function second-order sensitivity analysis is proposed. In this method second as well as 

first-order derivatives of the performance function are used to assess the effect of 

parameter variations on the performance. Unlike first-order derivatives, second-order 

derivatives of the objective function do not necessarily tend to zero at optimal points. In 

addition, they increase the accuracy of sensitivity assessment around non-optimal points 
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by providing a more accurate representation of the performance index. Using a Taylor 

series expansion, one can obtain an estimation of a given multi-variable function by 

considering both first and second-order terms as shown in equation (5.5): 
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The above formula can be written in a matrix form as given in equation (5.6): 
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Note that although second-order derivatives provide more accurate results and 

enhances the sensitivity analysis capabilities, calculation of second order derivatives 

requires  significantly more simulation runs and hence computer time, than calculation of  

first-order derivatives. 
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5.3.5 High Precision Sensitivity Models 

It is possible to increase the accuracy of the sensitivity models by using higher-

order derivatives, or by using other forms of approximation (e.g. using Lagrange 

polynomials [39]). However, obtaining such accuracy increases the required number of 

simulation runs for finding the parameter values of the models. For example the number 

of partial derivatives required for an m-th order Taylor’s approximation of a function can 

be calculated from equation (5.8): 
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Where n is the number of parameters of the function. As can be seen in (5.8) the 

number of required partial derivative significantly increases as the order of 

approximation increases. In case of polynomial representation of the performance index 

improving the polynomial order increases the required number of runs significantly. 

Therefore in this thesis as a reasonable compromise between high accuracy and amount 

of computation, derivatives of the performance index up to and including the second-

order are considered. 

 

5.3.6 Development of a Simulation-Based Sensitivity Analysis 

Procedure 

There are a number of methods for finding the derivatives of a performance index 

in an electrical system. In this work numerical methods combined with multiple-run 

simulations have been used for the purpose of sensitivity analysis. Unlike other 
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sensitivity analysis methods, which require the system to have certain properties (e.g. 

linearity); numerical methods for sensitivity analysis do not add any constraint on the 

systems to be studied, and are only limited by the modelling capabilities of the simulation 

program. Therefore, these techniques can deal with a wide range of nonlinear and 

complex systems. 

 A numerical method for calculation of second-order derivatives is developed next. 

This method is particularly suited for the EMT simulation framework as it only relies on 

objective function values resulting from an electromagnetic transient simulation. For a 

positive incremental change ∆xi in the variable xi of a multi-variable performance 

function f(x), expression shown in (5.9) can be used to estimate the function variation 

using the Taylor series expansion (third and higher order terms are neglected). 
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Similarly for a negative increment, we obtain: 
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Combining (5.9) and (5.10) yields equation (5.11) for estimated values of both 

first and second order derivatives of the function with respect to the variable xi. 
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Note that approximation of the above partial derivatives requires two function 

evaluations f(x1,…,xi+∆xi,…,xn) and f(x1,…,xi-∆xi,…,xn), i.e., two transient simulations of 

the system. Having found the above derivatives, one can use a similar approach to 

determine mixed-partial derivatives as given in (5.12). Note that the right-hand side in 

(5.12) contains only function values and the previously calculated partial derivatives, 

which makes this method suitable for simulation-based implementation. 
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The above method requires two additional simulation runs for each mixed-

derivative. It is also possible to use a more classical approach for calculation of the mixed 

derivatives as follows; however (5.12) requires only two function evaluations whereas the 

method in (5.13) requires four. This has led to the adoption of (5.11) and (5.12) for the 

calculation of the complete set of first and second-order derivatives in this work. 
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From the above expressions, it can be seen that the evaluation of the full set of 

first and second order derivatives at a point in parameter space requires M function 

evaluations (i.e., M transient simulation runs on the transient simulation program), where:  
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1)1( ++= nnM         (5.14) 

The above number arises due to the following terms: 
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-n). 

• One simulation at the operating point 
 

The final block diagram of the sensitivity analysis tool in shown is Figure 5.2. 
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Figure 5.2.  Block diagram of the sensitivity analysis tool 



Chapter 5.  Simulation-Based Uncertainty Analysis for Design 84 

 

5.3.7 Surrogate Models from Sensitivity Analysis 

As mentioned earlier, surrogate models are simple models that capture the 

essential behaviour of the system but may not have any direct physical basis. The 

advantage of such models is that they produce outputs close to that of the actual system, 

but require a much smaller computational effort. In this thesis, the second-order models 

obtained from the simulation-based method described in the previous sections are used as 

surrogate models. As will be discussed in the next sections these surrogate models can be 

used for uncertainty analysis of the system performance. Application examples of the 

developed sensitivity analysis method and the surrogate models are presented in Chapter 

6 of this thesis. 

 

5.4 Tolerance Analysis 

As mentioned before tolerance analysis is the process of finding the variations in 

the system performance indices when the system parameters vary within their respective 

ranges. In every design there is typically an acceptable performance range (referred to as 

a tolerance range), which is determined by the designer based on the design requirements. 

For example consider an induction motor connected to an ac transmission system. The 

maximum terminal voltage of the machine cannot exceed its rated insulation level. There 

is also a lower voltage limit dictated by power factor and over current considerations. In 

the design of the supply ac system for the induction motor these maximum and minimum 

voltages may define the tolerance range for the output voltage of the supply system. 
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Figure 5.3  Tolerance analysis (an acceptable design is shown) 

 

Figure 5.3 illustrates the tolerance analysis concept. Due to variations in the 

system parameters, performance of a design also varies within certain ranges. In case of 

our example it could be the actual voltage at the machine terminal. If the actual 

performance range lies within the tolerance range, then the designed system is 

satisfactory; otherwise, the system has to be re-designed. The purpose of tolerance 

analysis is to obtain an expected range for the system performance when the parameter 

values change in their ranges, to determine whether satisfactory performance is retained. 

 

5.4.1 Types of Problems in Tolerance Analysis 

In general there are two types of tolerance analysis problems. The first one is the 

worst-case analysis problem, in which the designer determines the potential worst-case 
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performance of the system, assuming that the input parameters can take any value within 

a pre-specified range [41], [43], [50], [52], [53], and [56]. 
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Figure 5.4  Statistical tolerance analysis 

 

The other type of tolerance analysis problem is statistical tolerance analysis [39] 

[49], [51], [59], [60], and [61]. Here the designer finds the probability of having different 

performance levels (for example by using Monte-Carlo simulations). In such cases the 

designer is usually willing to accept a certain level of performance degradation risk to 

reduce the cost or to satisfy other design constraints. The concept of statistical tolerance 

analysis is illustrated in Figure 5.4. The figure shows an example of a probability density 

function for a performance index, which can be obtained using statistical tolerance 

analysis. As shown in the figure, at the nominal operating point the value of the 

performance index is zero. It is assumed that the acceptable performance range is within 

±1.5 (as indicated by the dashed lines). The chance of having a non-satisfactory 
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performance (i.e. the risk) is determined by taking the integral of the probability density 

function over the entire x-axis excluding the area between -1.5 and +1.5. If the resulting 

risk is sufficiently small to be acceptable to the designer, the designed system passes the 

tolerance analysis stage, otherwise it should be re-designed. 

 

5.4.2 Tolerance Analysis Methods 

In this section, a number of tolerance analysis methods are described, and their 

advantages and disadvantages are discussed. 

 

5.4.2.1 Direct Analytical Approach 

For both types of worst-case analysis and statistical tolerance analysis problems, 

direct analytical approaches can be used. However, use of direct methods is only possible 

when the system under study is small and simple, and a closed-form representation of the 

system can be obtained. 

 

5.4.2.2 Monte-Carlo Simulation 

Monte Carlo simulation is one of the most commonly used methods for tolerance 

analysis of electrical systems [38], [81] – [85]. In this approach a large number of 

simulation runs are carried out, in which the parameter values of the system are selected 

randomly within their permissible tolerance ranges. After each run, the obtained values of 

different performance indices are recorded. At the end of this process, the results can be 

plotted in the form of histograms. 
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Monte-Carlo simulation can be used for both worst-case and statistical analysis 

problems. It should be noted that Monte-Carlo simulation only estimates the system 

performance for a given spread of parameter values, and the larger the number of 

simulations the closer the results to the actual distribution. Therefore, in order to obtain 

accurate results from this method it is necessary to conduct a large number of simulation 

runs, which in turn implies a long computation time. 

 

5.4.2.3 Interval Arithmetic Method 

In order to expedite the tolerance analysis process a number of other methods 

have been developed, including interval arithmetic methods [55], optimization-based 

methods [41], and sensitivity-based methods [52]. In the following paragraphs these 

methods are explained briefly. 

Interval arithmetic [55] and [56] (and its improved version the affine arithmetic 

[42]) has been developed to find an outer range for the value of a function while its 

parameters vary within specified ranges. This means that the predicted performance range 

obtained from this method is larger than the actual performance range of the system, and 

it includes the actual performance range of the system. Different variants of this method 

have been used by researchers for finding the worst-case scenario of the system 

performance. These methods are sometimes combined with other tolerance analysis 

methods (such as optimization-based methods and Monte-Carlo simulation) to find both 

the inner and outer ranges of the system performance. However the problem with these 

methods is that they require a closed-form representation of the performance index in 
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terms of the system parameters, which is not easily available for large and complex 

system. 

 

5.4.2.4 Optimization-Based Method 

Another approach to worst-case problems is to use optimization-based tolerance 

analysis methods [41], [43], and [50]. In such methods a global optimization algorithm is 

used to find the worst-case value of the performance index within the permissible range 

of its input parameters. This method provides an inner solution for the worst-case 

problem. 

 

5.4.2.5 Sensitivity-Based Method (and Response Surface Method) 

Sensitivity-based tolerance analysis methods are capable of handling both worst-

case and statistical analysis problems [39], [49], [51], [59], and [61]. In these methods 

instead of the actual detailed model of the system an approximated sensitivity model of 

the system is used for both worst-case and statistical analysis problems. This is a form of 

surrogate modeling described earlier. Using such surrogate models (which are usually 

simple) allows fast calculation of the performance indices. Thus simple function 

evaluations can be performed instead of time-consuming transient simulations, which 

results in significant time savings for the Monte-Carlo simulation. 

The response surface method (RSM) is an extension of the sensitivity-based 

method. In RSM first a simple model (usually a first-order model) of the performance 

index is developed using a limited number of simulations. This model is used to detect 
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those system parameters, which are more important than the other ones (the ones which 

affect the performance index the most). The model is then improved by conducting more 

simulations only for the important parameters. 

 

5.4.2.6 Polynomial Chaos and Stochastic Response Surface Method 

 Polynomial chaos (PC) expansion is a method for representing well-behaved 

(square-integrable) random variables in terms of orthogonal polynomial functions of 

standard random variables (srvs). This method was originally developed by Norbert 

Wiener [108] for analyzing Gaussian process [108], and later on it has been used in 

various engineering fields for analyzing uncertainties and noise [60], [105], [106], and 

[107].  

Consider a function y to be a function of several random inputs x1, … , xm. Using 

PC it is possible to express the above function terms of standard random variables ξ1, ... 

ξn (m = n when inputs are independent) i.e. y = f (x1(ξ1, ... ξn), … , xm(ξ1, ... ξn)). In 

classical RSM, y would have been fitted directly with a response surface involving 

variables xi-s. In contrast, in stochastic response surface methods (SRSM) that use PC, 

PC y is fitted to a more fundamental set of random variables ξi-s. This is particularly 

useful when xi-s themselves do not have a standard distribution. However, it is still 

possible to express xi-s in terms of standard variables ξi, from which the PC expression 

for y in terms of ξi-s can be determined. Hence, rather than using samples of xi-s in 

generation the distribution of y, it is easier to use samples of ξi-s because their behaviour 

is standard. In addition, having y expressed in terms of ξi-s helps to select better samples 
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(which have high likelihood of happening) for fitting the surface. This make the models 

obtained from SRSM more statistically accurate compared to the models obtained from 

RSM. The details of the PC approach are summarized below: 

When the srvs have normal distribution (zero mean and unity standard deviation) 

the output y can be expressed using a Hermite polynomial chaos expansion in the 

following form: 
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where y is the output, ai-s are constants, and ( )ipip ξξ ,,
1
LΓ  is Hermite polynomial of 

degree p which is calculated from the following equation: 
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where [ ]Tipi ξξ ,,
1
L=ξ . As the order of the polynomial chaos expansion increases the 

probability distribution function (pdf) of the expansion becomes closer to that of the 

output variable (y). As an example the second-order polynomial chaos expansion of a 

variable y with respect to one standard random variable 1ξ  has the following form: 
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For a single variable Hermite polynomial ( ) 111 ξξ =Γ  and ( ) ( )2

1112 1, ξξξ −=Γ ; 

therefore the above expansion can be simplified as follows. 

( )2

111110 1 ξξ −++= aaay         (5.18) 

 Equation (5.18) is now the approximate formula for y in terms of ξi-s, and can be 

used further for Monte-Carlo analysis. As the underlying distributions of ξi-s are known 

and easy to generate, distribution of y can be easily obtained using the above formula. 

Hence, stochastic response surface methodology (SRSM) in some ways is similar 

to RSM; but generates a response surface in terms of standard variables ξi-s to rather than 

in terms of the direct dependency variables xi-s. This way the resulted pdf is more 

accurate compared to regular RSM. 

 

5.4.2.7 Polynomial Chaos and Stochastic Differential Equations 

Another way of handling tolerance analysis problems is to model the system 

under study by a set of differential equations that show the stochastic behaviour. 

Polynomial chaos (PC) has been proven to be an effective method in such cases. As 

mentioned before, the Hermite polynomials are orthogonal with respect to the following 

inner product: 

( ) qpifE qpqp ≠=ΓΓ=ΓΓ 0..       (5.19) 

Where E(x) represents the expected value of x. By expanding both system input 

parameters and system outputs in terms of their polynomial chaos expansions, one can 
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take advantage of the orthogonality feature to simplify the system solution. By re-

arranging the terms in (5.15) one can represent the output as follows. 
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where there is a one-to-one correspondence between the iΦ  and the Hermite polynomials 

functions iΓ . Consider a simple differential equation as shown below, where the 

coefficient k is a random variable 

ky
dt

dy
−=           (5.21) 

By expressing k and the solution y(t) in their PC expansion we have: 
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Using the above expansion and the orthogonality feature of iΦ -s (5.20) can be converted 

to the differential equation form as follows [109]: 
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  Note that the above equation (5.23), can be solved for the yi(t)–s. Once the yi-s are 

obtained, one can use (5.22) to obtain distribution of y(t) at any time t. 

There are approaches that use the method described above to generate equivalent 

electric circuit models that can be solved using conventional circuit analyzers [105] and 
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[106]. The main drawback of this method for simulation-based implementation is that it 

requires modifications in the simulation core of the simulator program, which may not be 

always possible. 

 

5.4.3 Tolerance Analysis for Power Systems 

Monte-Carlo simulation is one of the traditional tolerance analysis approaches in 

power systems [81] – [85]. However as the size and complexity of power system 

increases the required time for Monte-Carlo simulations of such systems becomes 

unacceptably long. Therefore other methods have been proposed for tolerance analysis of 

such systems [48], [49], [50], [52], and [61]. 

In this thesis the sensitivity-based tolerance analysis approach discussed in the 

previous sections is adopted for tolerance analysis of power systems. Use of the 

sensitivity model instead of the actual model significantly reduces the required 

computation time for tolerance analysis. In order to facilitate the process in this thesis the 

second-order models obtained from the proposed simulation-based sensitivity analysis 

approach are used for tolerance analysis. 

 

5.4.4 Tolerance Optimization 

 Although this technique has not been used in this thesis, it is briefly described in 

this section as it plays an important role in the future work of this thesis. In tolerance 

optimization [57] and [58], the designer is looking for an operating point, which results in 

an optimized worst-case scenario rather than an optimum operating point. 
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Figure 5.5  Tolerance optimization 

 

The concept of tolerance optimization is illustrated in Figure 5.5. The figure 

shows the objective function for a single-variable optimization problem. In a regular 

optimization process the operating point #1 is selected as the optimal solution, as it 

results in the lowest value of the objective function. However, assuming a tolerance range 

of ±0.4 for the parameter value, the worst-case value of the objective function for this 

operating point can reach 22, which is much higher than the optimal value. On the other 

hand, operating point #2 is the optimal solution of the tolerance optimization process. 

This is because with the same tolerance range (±0.4), the operating point #2 can only be 

degraded to 9.3, even though the value of the objective function at this operating point is 

higher than the operating point #1. Therefore, in such cases the designer may decide to 
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select the tolerance optimization solution (i.e. operating point #2) to reduce possible 

performance degradation in presence of parameter uncertainties. 

 

5.4.5 Tolerance Analysis Using the Proposed Simulation-Based 

Method 

As mentioned in the previous section, Monte-Carlo simulation of a system usually 

requires a large number of simulation runs to produce accurate results. When the system 

under study is large and complex, EMT simulation of the system takes a long time, which 

makes the Monte-Carlo simulation an unaffordably long process. Therefore, other 

methods have to be used for statistical tolerance analysis of such systems. 

This research proposes to use the second-order models, obtained from the 

developed sensitivity analysis method, as surrogate models of the performance indices for 

tolerance analysis of the system. 

 

5.4.5.1 Tolerance Analysis Using the Direct Method 

Once surrogate models are obtained from the proposed simulation-based method, 

tolerance analysis of the system can be done directly by using those models. Direct 

methods are only applicable when surrogate models have simple mathematical forms; 

therefore, one of the advantages of the proposed surrogate models is that they make it 

possible to use direct methods for tolerance analysis. In the following sections, direct 

form of worst-case and probabilistic tolerance analyses is described. 
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5.4.5.1.1 Direct Worst-Case Tolerance Analysis 

Access to a simple second-order Taylor’s expansion to describe the system 

response makes it possible to easily address the worst-case tolerance analysis problems 

directly using analytical methods. There are two possible situations, namely (1) second-

order terms are negligible compared to first-order terms; (2) second-order terms are 

considerable compared to first-order terms (e.g. when the operating point is around an 

optimal point or when the parameter variations are large enough that the second order 

terms become important). In the first case the worst-case scenario can be found by 

considering only the first-order terms of the Taylor’s expansion given by (5.24): 
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At the worst-case scenario, f  has its maximum value, as given by (5.25): 

maxmax1max 1 nxx xDxDf
n

∆++∆≈∆ L        (5.25) 

Where ∆fmax is the maximum variations of f and ∆ximax is the maximum variations of 

parameter xi (assuming equal positive and negative variations). For the second case, 

where both first and second-order terms are important, the worst-case value of f cannot be 

easily found as it may lie on one of the vertices of the hypercube of the parameter 

variation space, or it may lie inside it. However, in the case that it lies on one of the 



Chapter 5.  Simulation-Based Uncertainty Analysis for Design 98 

 

vertices (usually around an optimum) the worst-case value of f can be found from 

equation (5.22): 
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In the above equations ± sign are determined based on the vertex that corresponds to the 

worst-case. 

 

5.4.5.1.2 Direct Statistical Tolerance Analysis 

 If a closed-form representation of a function is available, its probabilistic 

behaviour can also be calculated knowing the probabilistic behaviour of its input 

parameters. Before the procedure is described, it is necessary to review two definitions 

from probability theory, i.e., cumulative distribution function (CDF), and probability 

density function (PDF). The mathematical definitions of CDF and PDF of a random 

variable X are shown in equations (5.27) and (5.28): 

( ) ( )xXPxFX ≤=          (5.27) 

( ) ( )∫=≤≤
b

a

X dxxfbXaP         (5.28) 
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where, X is a random variable and FX and fX are its CDF and PDF respectively. These 

functions completely describe the probabilistic behaviour of the random variable. For 

example the mean of the random variable can be calculated from equation (5.29): 

( )∫
−∞

∞−

= dxxxfX X          (5.29) 

If Y is a function of n random variables X1, … Xn as follows: 

( )nXXFY ,,1 L=          (5.30) 

The CDF of Y can be calculated from equation (5.31): 
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where 
nXXf ,,1 L
 is the joint PDF of the random variables, which in case of independent 

random variables can be calculated from equation (5.32) [102]: 

( ) ( ) ( )nXXnXX xfxfxxf
nn

××= LLL 11,, 11
,,       (5.32) 

 

5.4.5.2 Tolerance Analysis Using the Monte-Carlo Simulations 

Although direct methods can be applied to simple surrogate models with a limited 

number of variables, as the complexity of the surrogate model and the number of 

variables increase use of direct methods becomes more difficult. On the other hand, as 

opposed to original models, which are time consuming to evaluate, surrogate models can 
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be evaluated in a significantly shorter time; therefore, Monte-Carlo analysis using the 

surrogate models could be considered as an alternative to direct methods. 

In this research, a statistical tolerance analysis procedure has been developed, 

which uses the simulation-based sensitivity analysis results, and performs the Monte-

Carlo simulations on the system performance. The block diagram of this procedure is 

shown in Figure 5.6. 

  Initialization 

Simulation-based 
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Electromagnetic transient 
simulation program 

(PSCAD/EMTDC) 

Sensitivity models of 
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Monte-Carlo 

simulation 

Generation of 

histograms 

MATLAB 
Output 
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Figure 5.6  Proposed probabilistic analysis scheme 

 

As it is shown in the diagram, the EMT simulations are first used to obtain surrogate 

models for different performance indices. Then the surrogate models are deployed to 

perform the Monte-Carlo Analysis. In the next chapter a few application examples of the 

developed tools are presented. 
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Chapter 6 Application Examples of 

Simulation-Based Uncertainty Analysis 
 

6.1 Uncertainty Analysis of Selective Harmonic 

Elimination Switching Pattern 

In this section simulation-based uncertainty analysis is used for analyzing the 

performance of a power system. The procedure is explained using an example which 

considers the impact of an error in the firing of switches on the performance of a selective 

harmonic elimination (SHE) switching scheme for a voltage-sourced converter (VSC). It 

is shown that the low level of harmonics generated by the VSC is affected by variations 

in the firing instances (angles), which may happen due to accuracy limitations of the 

physical system. 

In this example the simulation-based optimization is first used to determine SHE 

switching angles. After an optimal switching pattern is obtained, sensitivity of the 

harmonic spectrum to small variations in the switching angles is determined using the 

proposed sensitivity analysis approach. The problem is studied in two different stages. In 

the first stage a converter with three switching angles in each quarter cycle and an ideal 

dc-bus voltage (ripple free) is considered. Under the assumption of an ideal dc-bus, it 

becomes possible to obtain analytical solutions for optimization and sensitivity analysis 

of the problem; these analytical solutions serve to verify the results obtained from the 

proposed simulation-based solution. In the second stage of this example, the same 

switching pattern is analyzed when it is used for a two-level static compensator 
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(STATCOM), where the dc-bus voltage fluctuates. With the inclusion of dc-bus voltage 

dynamics, development of analytical solutions becomes prohibitively difficult; however it 

is shown that the developed methods will still be capable of handling this system. 

 

6.1.1 Selective Harmonic Elimination 

Repetitive switching of power electronic switches in high power converters makes 

them one of the largest producers of harmonic currents in the power networks. Harmonic 

currents cause additional losses in the network elements [87], [88], torque vibrations in 

electric machines [89], interference in neighbouring communication systems [90], etc. In 

order to eliminate these adverse impacts, different methods have been proposed to reduce 

the amount of harmonic currents produced by power electronic converters. Selective 

harmonic elimination (SHE) is one of those methods, which has gained popularity due to 

its relatively low switching losses  [86]. In this method a number of switching instants 

(firing angles) are judiciously selected in order to craft a waveform with a given 

fundamental component and specified lower-order harmonic content. 

The technique of selective harmonic elimination (SHE) is explained with 

reference to Figure 6.1 and Figure 6.2. This technique can be used for single-phase and 

three-phase voltage-sourced converters (VSC) and can be applied to two or multi-level 

converts. In this section a simple three-phase two-level converter is used to describe the 

method. To generate an ac waveform on phase a, the switches S1 and S4 of the voltage-

source converter shown in Fig. 5.1 are operated to apply a voltage of +Vdc or –Vdc at the 

output, respectively. The resulting waveform is shown in Figure 6.2.  
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The harmonic spectrum of the resulting voltage waveform is clearly a function of 

the switching instants. The instances of switching, represented by angles α1, α2… α�, are 

adjustable degrees of freedom that can be selected so that a certain number of lower order 

harmonics are eliminated and the desired magnitude of the fundamental frequency 

voltage is obtained. By choosing � switching per quarter-cycle (Figure 6.2 shows three), 

�-1 harmonics can be eliminated. 

 

 

 
 

Figure 6.1  A two-level converter 

 

 
Figure 6.2  SHE switching scheme with three switching angles in a quarter-cycle 
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It can be shown that for a fixed dc voltage (Vdc = constant) the harmonic 

components of the output voltage waveform are obtained using the expression given in 

(6.1)   [86]: 
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In the above equations, V1 is the magnitude of the fundamental voltage and n1, 

n2…n�-1 are the orders of the �-1 harmonics targeted for elimination. 

Conversely, the above system of equations can be solved for � switching angles 

given a desired fundamental and �-1 harmonic components specified. Typically, the 

solution seeks the angles to result in matching a desired fundamental voltage and 

eliminate �-1 low order harmonics. In the 3-variable example considered here in addition 

to the fundamental, the 5th and 7th order harmonics are selected as they are the lowest 

order characteristic harmonics in a balanced 3-phase system. 

 

6.1.2 Tolerance Analysis of a SHE Pattern under Ideal Conditions 

In this section a selective harmonic elimination scheme with three switching 

angles in each quarter-cycle and an ideal dc voltage is considered. Having the ideal 

conditions makes it possible to use the analytical solution (6.1) for analyzing the 
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harmonic contents of the waveform, which can be used for verification of the results 

obtained from the developed simulation-based methods. 

 

6.1.2.1 Optimization of the Switching Pattern 

As mentioned earlier solution of the system of equations given in (6.1) yields the 

� angles required for lower-band harmonic spectrum specified by the desired 

fundamental and �-1 harmonic components. The solution can be obtained either using a 

numerical method for solving nonlinear systems of simultaneous equations, or can be 

similarly obtained using an optimization technique.  

An objective function can be defined so that it reaches its minimum when the 

specified harmonics are zero and the magnitude of the fundamental component is as 

desired. For example objective function (OF) shown in (6.2) is used for this problem. 
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 In (6.2), Vref is the desired fundamental voltage magnitude, and V1, V5, and V7 are 

the values of the fundamental, fifth and seventh harmonics, respectively. The magnitude 

of the OF is represented by the function f(α1, α2, α3), where α1, α2 and α3 are the three 

switching angles. Note that f attains a minimum value of zero when the objectives of 

regulating fundamental voltage to its set-point and eliminating the required harmonics are 

perfectly achieved. Hence minimizing f by suitable choice of {α1, α2, α3} gives a design 

whose performance is as close as possible to the desired objective, provided that the 
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respective minimum has a vanishingly small objective function evaluation. Table 6.1 

shows the optimal solution for {α1, α2, α3} obtained using the developed optimization 

tool. Analytical results obtained using (6.1) are also shown in the table for comparison. 

Note that the solution obtained using the developed simulation-based optimization 

closely matches the analytical solution, thereby confirming the validity of the simulation-

based method. Also note that in this simple case, the evaluation of harmonics does not 

necessarily require an EMT simulation and can be done analytically; however as it is 

shown in the next sections, for more complex cases obtaining such analytical solutions 

becomes prohibitively difficult. 

 

Table 6.1  SHE switching angles for a scheme with three chops in each quarter cycle 

Vdc = 35kV, Vph = 20kV 

 Optimization Results Analytical Results 

α1 18.15° 18.22° 

α2 37.09° 37.07° 

α3 48.23° 48.30° 

 

6.1.2.2 Uncertainty Analysis of the Switching Pattern 

In practical implementations, due to small imperfections in the control circuit, the 

realized switching angles typically differ slightly from their designed values. Such 

limited precision in switching will introduce an error in the magnitude of the realized ac 

voltage waveform, and will also result in an incomplete elimination of the targeted 

harmonics. As will be shown in this section, uncertainty analysis can be used to study the 

effects of such (small) deviations in the switching angles on the harmonic spectrum of the 

output voltage. This section demonstrates the use of the simulation-based sensitivity 
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analysis approach developed in this work for determining the effect of uncertainties on 

the harmonic performance of the SHE scheme. As an analytical solution is also possible 

for the ideal SHE scheme, such analysis will be used to validate the proposed technique. 

In this example the square of the harmonic distortion of voltage due to remnant 5th 

and 7th harmonics, as shown in (6.3), is used as a performance index. The impact of firing 

imprecision is then studied using this performance index. 
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For the precise angles {α1, α2, α3} as presented in Table 6.1, D57 is zero; however 

in practice it will deviate from zero due to slight deviations in these angles. The 

developed sensitivity analysis technique, which uses the procedure described before in 

Chapter 5, is used to calculate D57. Note that in this case, as the optimized switching 

angle solution minimizes D57, the first derivatives are zero and the sensitivity analysis 

must rely on second-order derivatives to estimate the performance index. The sensitivity 

analysis results, obtained from the previously-described second-order analysis method, 

are shown in Table 6.2, which also includes the results obtained by analytical calculation. 

The sensitivities indicate the incremental D57 per degree error in the respective 

switching angles. To read the table, the entry in a row marked 
jα∂∂ /  and a column 

marked 
kα∂∂ /  corresponds to the partial derivative ( )








∂
∂

∂
∂

57D
kj αα

. The rows labelled 

‘1’ contain the first-order partial derivatives. The sensitivity analysis tool automatically 

generates the last four rows of Table 6.2. 
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Table 6.2  Derivatives obtained for the SHE scheme with 3 chops * 

Vdc = 35kV, Vph = 20kV (rms) 
Analytical results 

D57 1α∂∂  
2α∂∂  

3α∂∂  

1 0.0* 0.0 0.0 

1α∂∂  9.9 5.3 -7.1 

2α∂∂  5.3 5.9 -2.8 

3α∂∂  -7.1 -2.8 5.5 

Values obtained using the sensitivity analysis tool 

1 0.0 0.0 -0.1 

1α∂∂  10.3 5.1 -7.7 

2α∂∂  5.1 5.2 -2.7 

3α∂∂  -7.7 -2.7 6.1 

* Unit [10
-3

/Degrees] 

 

Having found all first and second order derivatives, the D57 can be represented as 

a simple formula using the expansion in (6.4). This formula can be used as a surrogate 

model for D57, which is valid for small variations in the three firing angles. 
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    (6.4) 

Replacing the sensitivity analysis results in the above equation, results in the 

surrogate model shown in (6.5): 
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6.1.2.2.1 Worst-Case Tolerance Analysis: Forward Problem 

In a forward worst-case tolerance analysis problem, the surrogate model is used to 

find the maximum possible degradation in the system performance, when the parameter 

values are within a certain range. In case of this example the forward problem is to 

estimate the maximum value of the D57 when switching angles can have a maximum 

deviation of ∆α around the their desired values. 

If the maximum uncertainty due to the electronics in the controller for each firing 

angle is a specified value of ∆α = ±0.1° (a typical limit for power electronic equipment in 

power systems), the worst case value of D57 can be calculated by using the surrogate 

model (6.4) without any further need for time-consuming simulations. The resulting 

worst-case increase in the value of 5757 DHD =  is shown in Table 6.3. 

Table 6.3  The worst-case scenario for 5
th

 and 7
th

 harmonics 

Vdc = 35kV, Vph = 20kV 

Worst-case combination of switching angles: 

∆α1 = -0.1° ∆α2 = -0.1° ∆α3 = +0.1° 

Corresponding HD57: 

First-order estimation 0.0% 

Second-order estimation 1.65% 

Analytical result 1.69% 

 

In this example, where the simplicity of the idealized case allows derivation of a 

closed form expansion for D57, it is also possible to compare the values obtained using 

the simulation-based approach with the result from analytical calculation. As shown in 

the table, the result of HD57 = 1.65% obtained using the surrogate model agrees well with 

the analytically available solution of HD57 = 1.69%. Note also that an estimate of HD57 

based on first-order derivatives yields a totally inaccurate value of HD57 = 0.0%. 
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As will be shown in the next sections, for realistic cases, where the dc bus voltage 

variations are also included, the simulation-based approach can still be applied, while the 

analytical approach becomes practically impossible. 

 

6.1.2.2.2 Worst-Case Tolerance Analysis: Reverse Problem 

A converse problem to the one considered in the previous section is to determine 

the permissible deviation of the firing angle ∆α, so that the harmonic distortion HD57 

remains below a specified value. Let us assume a limit of HD57 < 2% (or in other words 

D < 0.04) as a design objective; the permitted maximum error in the firing angles ∆α can 

then be calculated using (6.6) and (6.7) below, which are restatements of (6.4). Note that 

in (6.6) and (6.7) the + or – signs are due to the fact that the deviation can be positive or 

negative (i.e. +∆α or –∆α, where ∆α > 0) for each of the firing angles {α1, α2, α3}. The 

second-order partial derivatives required in (6.6) and (6.7) are automatically generated 

using the simulation-based approach at the optimum point. 
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Hence 
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In the final expression of (6.7) the “max” function is used to select the 

combination of + and – signs that gives the largest value for the divisor, so as to yield the 

worst-case situation with the smallest magnitude for ∆α. Note that from (6.6) it can be 

concluded that in the expression (6.7), the situation of all three signs being negative is 

prohibited. This gives a result of °≤∆ 123.0α , for which the case was also simulated 

and the corresponding deviation in HD57 was measured to be 2.1%, which is essentially 

the same as the maximum limit of 2%, thereby confirming the validity of this approach. 

This example demonstrates that once the sensitivities are determined by the 

simulation-based sensitivity analysis method, further analysis can be conducted with 

simple mathematical calculations, and without any further need for time-consuming EMT 

simulations. 

 

6.1.3 Tolerance Analysis of SHE Pattern for a High Power 

STATCOM 

In the previous section a simple example of selective harmonic elimination 

scheme with 3 switching angles and with an ideal dc source was presented. The 
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assumption of a constant dc voltage made it possible to verify the results obtained from 

the developed simulation-based techniques by using an analytically available solution. In 

practice however, voltage-sourced converters are often supplied on the dc side through a 

capacitor. Unlike an idealized dc source a capacitor will experience voltage fluctuations 

during normal and transient operations of the converter. Although provisions for 

minimizing such fluctuations are incorporated into the design of the dc bus, small voltage 

ripple will still be present. Presence of ripple on the voltage waveform makes it difficult 

to find an analytical solution for the SHE scheme. Therefore, a simulation-based 

approach has to be used for analysis of this case. This thesis introduces the application of 

the developed simulation-based decision support tools for determining the sensitivity of 

the ripple harmonics to the switching angle uncertainty at the optimal operating point. 

 In this section, a static compensator (STATCOM) is considered as a practical 

application of SHE switching scheme with a non-ideal dc bus. A STATCOM is a FACTS 

device mainly used for fast reactive power compensation and voltage regulation in power 

networks, and its description is given in Chapter 4. Figure 6.3 shows the system, studied 

in this example. 

 
 

Figure 6.3  Single line diagram of the STATCOM 
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The specifications of the system are listed in Table 6.4. SHE switching pattern 

with five switching angles (as shown in Figure 6.4) is used in order to shape the output 

voltage waveform generated by the converter. 

 

Table 6.4  System specification: Tolerance analysis of SHE pattern  

Network 20 kV, 60Hz, SCR = 5 

STATCOM Transformer 4.8 kV/20 kV, 8.0 MVA, Xl = 15% 

Capacitor Bank 10 MVAR 

Load 25 MVA, pf = 0.85 

STATCOM Converter 4.8 kV, ±8MVAR, C = 0.4 pu 

 

t

vo

-Vdc

Vdc

 
 

Figure 6.4  SHE switching scheme with 5 switching angles in each quarter cycle 

 

6.1.3.1 Optimization of the Switching Pattern 

In this section the developed simulation-based optimization method is used for 

finding an optimized set of switching angles for the STATCOM converter in order to 

eliminate certain harmonics while adjusting the fundamental component of the voltage. 

Due to the presence of capacitors, the dc side voltage of the STATCOM has ripples, and 

therefore, it is difficult to develop an analytical formula for the harmonic content of the 



Chapter 6.  Application Examples of Simulation-Based Uncertainty Analysis 114 

 

output voltage as a function of switching angles. As a result in this case simulation-based 

optimization seems to be the only solution. 

The method described in section 6.1.2.1 is used for the optimization using 

simulation. With five switching angles in each quarter-cycle it is possible to eliminate the 

four lowest dominant harmonics of the voltage waveform, i.e., 5th, 7th, 11th and 13th order 

harmonics, while regulating the fundamental voltage as desired. Since the role of the 

STATCOM is to regulate the ac voltage at the load bus, the optimization objective 

function is formulated in terms of the load bus voltage, rather than the converter voltage 

(as done in section 6.1.2.1). The equation (6.8) shows the objective function used in this 

example. 
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 In (6.8), Vref is the desired magnitude of the fundamental voltage at the load bus 

(selected to be equal to the nominal ac phase voltage of the system, which is 

kVkV 54.11
3

20 = rms), and V1, V5, V7, V11 and V13 are the magnitudes of the 

fundamental, 5th, 7th, 11th and 13th order harmonics obtained from the EMT simulation. 

The optimization results are summarized in Table 6.5. As seen the harmonic 

content of the load voltage has been reduced significantly (total harmonic distortion for 

the first four harmonics was reduced from 5.2% to 1.0%), and also the fundamental value 

of the ac voltage has been regulated to its nominal value (11.54kV rms). the above 

optimization process required about 150 EMT simulation runs of the system. 

 



Chapter 6.  Application Examples of Simulation-Based Uncertainty Analysis 115 

 

Table 6.5  Optimization results for the STATCOM selective harmonic elimination 

 Vdc = ±4.5 kV , V1 = 11.54kV 

 SHE Switching Angles 

 α1 α2 α3 α4 α5 

Initial Values 10.00° 20.00° 30.00° 40.00° 50.00° 

Optimized Angles 9.89° 19.57° 25.56° 42.75° 47.99° 

 Harmonic Spectrum of the Output Voltage [kV] 

 V1 V5 V7 V11 V13 

Before Optimization 10.53 0.14 0.51 0.06 0.11 

After Optimization 11.53 0.01 0.01 0.07 0.09 

 

The figures below show the simulation results of the operating point of the 

STATCOM, before and after optimization. The dc-bus voltage, the output voltage of the 

converter, and the ac voltage at the load bus are shown. Note that the ripple on dc voltage 

affects the output voltage of the converter as well. The difference can be seen by 

comparing the results to the ones shown in Figure 6.4. In addition harmonics injected by 

the STATCOM introduce distortion to the network voltage as well. 
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Figure 6.5 The STATCOM dc-bus voltage 

(a) before optimization (b) after optimization 
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Figure 6.6  Output voltage of the STATCOM converter 

(a) before optimization (b) after optimization 
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Figure 6.7  Load ac voltage (a) before optimization (b) after optimization 
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6.1.3.2 Worst-Case Analysis 

When dc voltage fluctuations and firing mismatch are considered simultaneously, 

formulation of the sensitivity of the harmonics to switching angle variations becomes 

excessively difficult. In this section the proposed simulation-based sensitivity analysis 

method is used for estimating the sensitivity of the optimized harmonic spectrum of the 

output voltage when the switching mismatch is present. This sensitivity model is then 

used for tolerance analysis of the harmonic spectrum. 

 As an example the sensitivity of the 5th order harmonic to small variations in the 

switching angle is considered here. The performance index, shown in (6.9), is used for 

quantifying the 5th harmonic’s re-appearance in the harmonic spectrum. 

2

2

5
5

refV

V
HD =           (6.9) 

 The above function has a minimum value of zero when 5th order harmonic 

disappears from the output voltage. It is readily seen that the optimized switching pattern 

obtained in the previous section is also a minimum for the performance index in (6.9). 

Therefore, in order to obtain meaningful results second-order representation of the 

performance index, as proposed in Chapter 5, is required. Table 6.6 shows the derivatives 

calculated by the simulation-based sensitivity analysis method.  

The above derivatives are used to find the worst-case scenario for the re-

emergence of the 5th order harmonic cause by firing angle mismatch. It is assumed that 

the optimal firing angles can be attained within a 0.1° tolerance. Note that the above 
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derivatives make it possible to develop a closed-form local representation of the 

performance index in the vicinity of the optimum; this closed-form formula can be used 

for tolerance analysis of the 5th order harmonic without any need for extra simulations. In 

the first two columns of Table 6.7 the worst-case combination of switching angle 

mismatches, which leads to the largest value of 5th order harmonic, is presented. For that 

combination estimations of 5th order harmonic are given when the first-order and second-

order sensitivity methods are used. Results obtained using direct simulation are also 

shown for validation. 

Table 6.6  Sensitivity analysis results for the 5
th

 order harmonic* 

HD5 1α∂∂  2α∂∂  3α∂∂  
4α∂∂  5α∂∂  

1 0.0146 -0.0283 0.0145 0.0132 -0.0548 

1α∂∂  3.24 -4.74 4.77 3.18 -4.28 

2α∂∂  -4.74 6.76 -5.54 -3.57 5.60 

3α∂∂  4.77 -5.54 4.56 2.93 -5.02 

4α∂∂  3.18 -3.57 2.93 2.04 -3.41 

5α∂∂  -4.28 5.60 -5.02 -3.41 5.47 

*Unit [10
-3

/Degrees] 

 

Table 6.7  Worst case scenario for the 5
th

 order harmonic 

∆α1 +0.1° 
5th Order Harmonic 

(In Percentage of the Fundamental Voltage) 

∆α2 -0.1° First-Order 
Estimation 

Second-Order 
Estimation 

Direct Simulation 
Result ∆α3 +0.1° 

∆α4 +0.1° 
0.4% 2.4% 2.4% 

∆α5 -0.1° 

 

 As shown the first order model gives an estimated value of 0.4%, while the value 

predicted by the second-order model is 2.4%. Note that direct simulation of the network 

for the worst-case combination of switching angles also yielded a value of 2.4% for the 
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fifth harmonic, which matches the second-order estimation. This confirms the necessity 

and also the accuracy of the proposed second-order method for sensitivity assessment 

around an optimum. 

 

6.1.3.3 Statistical Tolerance Analysis of Harmonic Performance 

 In this section statistical behaviour of the harmonic content of the STATCOM 

voltage is determined using the proposed simulation-based surrogate modeling method. 

In order to verify the results obtained from the surrogate model obtained from the 

simulation-based sensitivity analysis, Monte-Carlo simulations were conducted on the 

detailed EMT simulation model. A uniform distribution with a maximum deviation of 

0.1° was assumed for the switching angles, i.e. each firing angle could vary uniformly 

within a ±0.1° interval around its nominal value. In this case the nominal values were the 

optimum values obtained above. In order to quantify the harmonic content, performance 

indices shown in (6.10) were used. 
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 The above performance indices show the level of each individual harmonic (5th, 

7th, 11th and 13th). The statistical results from both methods (the actual EMT simulations 

and the surrogate models) are presented in Figures 6.8 to 6.11. As seen in the results, the 

results obtained from EMT simulation are close to the ones obtained from the surrogate 

models. 
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Figure 6.8  Histogram of HD5 (a) EMT simulation (b) surrogate model 
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Figure 6.9  Histogram of HD7 (a) EMT simulation (b) surrogate model 
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Figure 6.10  Histogram of HD11 (a) EMT simulation (b) surrogate model 
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Figure 6.11  Histogram of HD13 (a) EMT simulation (b) surrogate model 
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As can be seen in the figures, the statistical analysis done on the actual simulation model 

and the ones obtained from the sensitivity models (surrogate models) are reasonably 

close. Note that the Monte-Carlo approach gives more accurate results as the number of 

samples is increased, and so the small differences could be also due to limited number of 

samples. 

 

Table 6.8  Statistical analysis results. 

Harmonic performance of the SHE switching pattern for the STATCOM* 

 Average Standard Deviation Skewness 

 
Surrogate 

Model 
EMT 

Simulation 
Surrogate 

Model 
EMT 

Simulation 
Surrogate 

Model 
EMT 

Simulation 

HD5 0.0361 0.0388 0.0480 0.0502 2.2675 2.1405 

HD7 0.0007 0.0007 0.0008 0.0009 1.8480 1.8627 

HD11 0.0430 0.0425 0.0039 0.0038 0.0922 0.0984 

HD13 0.0534 0.0540 0.0027 0.0027 0.1088 0.0725 

* All values to be multiplied by 103 

 

 Table 6.8 presents the average value and the standard deviation of each parameter 

obtained from both the surrogate models and the actual simulations. In the table the 

results are based on 3125 samples for each method. As seen in Table 6.8, the average, 

standard deviation, and the skewness obtained from the actual simulations are close to the 

ones obtained from the surrogate models. The simulation time required for the first 

method, which uses direct EMT simulations of the network, is about 8.6 hours; whereas 

the required evaluation time for the second method using surrogate models is about 6 

minutes (Using a computer with 4GB of RAM and a 3GHz AMD Athlon™ 64 X2 Dual 

Core Processor) a saving of 9900% in computing time. This is due to the fact that the 

proposed sensitivity analysis approach requires only 31 EMT simulation runs, based on 
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(5.13), to obtain the parameter values of the sensitivity models. Once the sensitivity 

models are obtained, Monte-Carlo-type evaluations can be done on these simple models, 

which take only a few seconds. On the other hand performing Monte-Carlo simulation of 

the fully detailed model requires 3125 simulations of the full system (each simulation 

takes about 10s, which results in total simulation time of 8.6 hours). 

 Statistical analysis results provide important information that help the designer in 

the decision making process. For example assume that in the above example one of the 

design requirements is to keep each individual harmonic below 1.5% of the fundamental 

component. Based on the above results, although at the worst-case scenario the 

magnitude of the 5th order harmonic exceeds 1.95% of the fundamental voltage 

(equivalent to HD5=3.8 as shown in Figure 6.8), statistical analysis shows that the 

probability of having a 5th order harmonic level more than 1.4% (equivalent to HD5>2) is 

very low (less than 100 samples out of 3125 samples). In such a situation the designer 

may accept a small risk of design failure (having 5th order harmonic level above 1.5%) to 

reduce the price of the system by using smaller-size filters, for example. 

 

6.2 Uncertainty Analysis of a Static Compensator 

(STATCOM) 

As another application of the proposed methods, in this section the uncertainty 

analysis methods are utilized for studying distribution of the dynamic behaviours of a 

static compensator controlling the ac voltage at its point of common coupling (PCC). 
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6.2.1 System Description 

In this section the same static compensator case, presented in Chapter 4 is used to 

demonstrate the effectiveness of the proposed optimization methods. Figure 6.12 shows 

the schematic diagram of the network used for this example with the system data as given 

Chapter 4. 

 

PCC 

 
 

Figure 6.12  The STATCOM system 

 

Table 6.9  Control system parameters of the STATCOM 

DC-capacitor 
voltage controller 

K1 0.23×10-1 

T1 0.16 

id controller K2 4.5 

T2 0.87×10-2 

Network voltage 
controller 

K3 0.18×10-1 

T3 0.57×10-1 

iq controller K4 6.5 

T4 0.87×10-3 

Filter time 
constants 

Tf1 0.1×10-1 

Tf2 0.1×10-2 

Tf3 0.5×10-3 

 

The STATCOM in Figure 6.12 uses a three-level SPWM controlled voltage 

sourced converter. Control of the dc-bus voltage and the ac network voltage is conducted 
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through a de-coupled control system. The control system parameters for this part are 

shown in Table 6.9 (see Figure 4.4 for controller structure). 

 

6.2.2 Uncertainty Analysis 

In this section the effect of variations of the system parameters on the variations 

in the transient response of the STATCOM is studied. The parameters of concern 

considered here are the hardware components: distribution line resistance and inductance 

(RDL and LDL), distribution transformer leakage inductance (LDT), size of the capacitor 

bank (CB), STATCOM transformer leakage inductance (LST), and load resistance and 

inductance (RL and LL). However, as in the system LDL and LDT are in series with each 

other and the same tolerance is considered for both, they have been replaced by one 

inductance (LD) to simplify the problem to some extent. Note that although in this 

example only the above parameters are considered, in general the choice and the number 

of uncertain parameters will depend on the specifics of the case at hand. In this case it is 

also assumed that the control system parameters do not change. 

 In order to be able to assess the transient behaviour of the system, it is first 

necessary to apply a disturbance to the system. In this case, in order to generate a 

transient phenomena, at t = 0.5s, load #1 is disconnected from the system, to which the 

STATCOM responds by adjusting its injected reactive power to maintain the network 

voltage at its desired level. In order to quantify the system performance during this 

transient phenomenon, the transient performance index, give in (6.11), was defined. 
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The above performance index penalizes the difference between the actual network 

voltage (Vref) and its reference value. Therefore, the higher the value of fT the worse is the 

system performance. Figure 6.13 shows the system response at the nominal operating 

point where the performance index has a value of fT = 3.69×10-3. 
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Figure 6.13  The STATCOM response at the nominal operating point 

 

6.2.2.1 Worst-Case Analysis 

It is assumed that the system parameters (RDL, LD, CB, LST, RL, LL) each have a 

normal distribution with a standard deviation of σ = 5%. Mathematically, the normal 

distribution does not impose any limits on its minimum or maximum values. For practical 

reasons, however, the spread of values in the computer experimentation was limited to 

±3σ , as 97% of the values will be covered within this range.   
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The tolerance analysis was carried out using the proposed sensitivity-based 

method described in the previous chapter. Similar to the previous example in section 

6.1.3.2, the worst-case scenario of the system response was determined using a surrogate 

model, and verified using the fully detailed EMT simulation. The results of the worst-

case analysis are shown in Table 6.10. Note that at the worst-case condition the value of 

fT increases from 3.69×10-3 to 10.9×10-3, an increase of 295%. 
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Table 6.10  Worst-case scenario of the STATCOM case 

 ∆RDL ∆LD ∆CB ∆LST ∆RL ∆LL 

Change in the 
Parameter 

-15% 15% 15% 15% -15% 15% 

 
First-Order Appr. 

Second Order 
Appr. 

EMT Simulation 

fT value 6.4×10-3 10.0×10-3 10.9×10-3 

 

The results show that although the operating point is not an optimal one, the 

second-order approximation still provides a more accurate result. This is likely because 

the perturbation in the performance index (fT) is close to 300%, and a linear fit is too 
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simplistic, necessitating a higher order surrogate model. In Figure 6.14 the system 

response with the original parameter values is compared with the system response for the 

worst possible operating condition. Figure 6.14 shows that the uncertainty in the values 

of the STATCOM components leads to significant differences in the damping of the 

network voltage. 
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Figure 6.14  The STATCOM response at the nominal operating point 

(Top) and the worst-case operating point (Bottom) 

 

6.2.2.2 Statistical Tolerance Analysis of the STATCOM Dynamic 

Response 

In the design process, a compromise is often required where the risk is reduced to 

a small and acceptable value rather than completely eliminated. This is done in order to 

reduce the cost or to meet some other design constraints. Therefore it is necessary to 

perform statistical tolerance analysis to evaluate the risk level involved in each design. In 

this section statistical analysis has been carried out using two different methods, namely 
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(i) Monte-Carlo EMT simulation, and (ii) Monte-Carlo simulation with the surrogate 

models of (6.12). Figure 6.15 shows the histogram of the results obtained from both 

methods after 2500 runs. 
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Figure 6.15  Histogram of fT for the STATCOM case 

(a) EMT simulation results (b) results obtained from the surrogate model 

 

Use of surrogate models instead of the EMT simulation results in a significant time 

saving. For the above results, use of EMT simulation took about 14 hours, whereas use of 

the surrogate models took about 15 minutes (on a computer with 3.0GHz AMD Athlon 

64 Dual Core Processor and 4GB of RAM). 

 Assume that the design specification dictates that the performance index fT be no 

greater than 4.5×10-3. The detailed Monte Carlo analysis shows that the number of 

samples higher than this value is 335 out of the total of 2500, giving a probability of 
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13.6% of exceeding the design specification. The simplified model essentially gives a 

similar result of 14.8%. If this risk is unacceptable, then the tolerances on the components 

must be made more stringent and the components will most likely cost more money. 
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Chapter 7 Concluding Remarks 
 

7.1 Contributions 

The thesis introduces new decision support tools that can be used to facilitate the 

design of power systems. These tools assist the design process by conducting multiple 

run simulations in an intelligent manner, so that the design information required by the 

user is automatically extracted from the system.  

Specifically, the thesis introduces a new gradient-based optimization approach for 

electromagnetic transient simulation and shows that it is often more effective than direct 

optimization methods. The thesis introduces supervisory optimization algorithms that 

handle multiple objectives, and include the effects of uncertainty in the design of power 

equipment and systems.  The use of an electromagnetic transient (EMT) simulation 

program makes the developed decision support tools especially suitable for power system 

and power electronic applications. The details of the contributions made by the author are 

outlined in three categories below. 

 

7.1.1 Gradient-Based Optimization 

The main highlights of the thesis contributions in the area of gradient-based 

optimization are as follows. 

• A gradient-based optimization algorithm was adopted for simulation-based 

optimization. 
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•  The developed gradient-based simulation facility was equipped with a constraint 

handling feature. 

 

Previous work on simulation based optimization [13] considered direct methods 

(non-gradient based) for optimization. The belief was that gradient-based techniques 

would be too time-consuming due to the considerable number of simulations required for 

numerically computing a gradient. However, this thesis showed that by using a suitably 

conditioned gradient-based method, the total number of steps needed to be taken to reach 

to an optimum can be significantly reduced. Therefore, although in the developed 

gradient-based method the required number of simulation runs in each step is more than 

that of the direct method, the overall optimization time of the gradient-based method is 

often comparable to that of the direct method. This is an important conclusion as the 

gradient-based methods can be easily parallelized, which provides the opportunity to 

develop fast optimization facilities. Moreover, a constraint handling feature was added to 

the optimization process that helps the designer to limit the design parameters within a 

user defined ranges. 

 

7.1.2 Multi-Objective Optimization 

The main highlights of the thesis contributions in the area of multi-objective 

optimization are as follows. 

• The thesis adopts the Pareto method as a structured way for handling multi-

objective optimization problems. 
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•  A multiple-run optimization process was developed, which is capable of 

efficiently generating the Pareto frontier. 

• The proposed method was successfully utilized for analysing two practical cases 

namely (1) a three level STATCOM and (2) an induction motor drive system. 

 

The developed Pareto Frontier graphically identifies the tradeoffs between 

multiple objectives and enables the designer to select the optimum parameters that 

provide an acceptable compromise between competing objectives. The usefulness of the 

optimization tool has been demonstrated by using two design examples, (1) a three-level 

STATCOM and (2) an induction motor drive system. The results showed that the 

proposed multi-objective optimization method is capable of handling multi-objective 

optimization problems. 

 

7.1.3 Uncertainty Analysis 

The main highlights of the thesis contributions in the area of uncertainly-analysis are 

as follows. 

• The thesis creates a surrogate model that replaces the detailed simulation by a 

second-order sensitivity model which can be used to calculate the performance 

indices of the system. The higher order allows the uncertainty analysis to be done 

for optimal operating points. 

•  A multiple-run uncertainty analysis process was developed that automatically 

calculates the parameters of the second-order models. 
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• The surrogate models were used to solve the worst-case case tolerance analysis 

problems.  In addition, the simplicity of the models makes it possible to solve the 

inverse problem easily and with less computational effort. 

• The above surrogate models can also be used for Monte-Carlo simulation to 

obtain statistical distributions. Using surrogate models instead of the actual EMT 

simulations makes the uncertainty analysis significantly faster as the evaluation of 

a surrogate model needs considerably less computational effort compared to 

detailed EMT simulations.  

• By using two practical application examples namely (1) the selective harmonic 

elimination and (2) the three-level STATCOM, it was shown that the developed 

technique is capable of producing accurate results in a significantly shorter time. 

 

The capability of the uncertainty analysis tool was demonstrated by using two examples, 

(1) uncertainty analysis of the selective harmonic elimination (SHE) switching pattern, 

and (2) uncertainty analysis of the dynamic response of a three-level STATCOM. In the 

first example, the sensitivity information was effectively used to calculate the permitted 

deviations of switching angles to keep the key harmonics below a satisfactory level. In 

addition, statistical analysis provided an estimation of the expected harmonic levels of the 

output voltage. In the second example, the uncertainty analysis tool was used to analyze 

the dynamic behaviour of a STATCOM, when the system parameters varied within their 

permissible ranges. The analysis not only resulted in an estimation of the worst-case 

performance, but also provided statistical information about the distribution of system 
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response. In both examples, Monte-Carlo EMT simulations were used to verify the 

accuracy of the results. 

 

7.2 Recommendations for Future Work 

In this section some of the suggestions for future work based on this research are 

summarised. As two different decision support algorithms were developed during the 

course of this research, the future work is explained separately for each one. 

 

7.2.1 Optimization 

The main highlights for the future expansions of the simulation-based 

optimization method are as follows. 

 

• Combining the sensitivity analysis methods and gradient-based optimization in 

order to increase the optimization speed; 

• Employing other optimization techniques such as response surface methodology 

(RSM) and heuristic methods for the purpose of the optimization; 

• Investigating other methods for handling multi-objective problems; 

• Using heuristic methods for generation of Pareto Frontier; 

• Addressing the problem of optimization under uncertainties and tolerance 

optimization. 
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In this research in order to obtain the gradient vector required by the optimization 

algorithm, multiple-run approach has been used; for the electrical networks, sensitivity 

analysis techniques can be used for fast calculation of the gradient vector. Using such 

methods the gradient vector can be obtained in much fewer number of simulations, thus 

the speed of the optimization tool can be increased. 

 Other modern optimization techniques such as response surface methodology and 

heuristic methods can be also implemented for simulation-based optimization to compare 

their performance with the available techniques and to study their advantages and their 

short-comings. This way the user can select the optimization method based on the design 

requirements. 

 In this work the concept of Pareto optimality has been introduced for handling 

multiple objective problems. In order to obtain the Pareto frontier a sequence of 

optimization runs has been used. However, the Pareto frontier is not the only way for 

handling multiple objective problems and other methods for handling such problems 

should be also investigated. 

 The capability to handle uncertainties in an optimization procedure is one of the 

important issues in the optimization area. There are many examples in which certain 

parameters (such as the size of the load, the impedance of the network, etc.) are not 

exactly known, and therefore special care should taken for handling such problems. 

Therefore as part of the future work, the problem of optimization under uncertainty has to 

be addressed. 
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7.2.2 Uncertainty Analysis 

In this thesis second-order estimation has been done using a multiple-run 

simulation approach. The method was based on estimation of the first and second-order 

terms of the Taylor’s expansion of the performance index. However, this method can be 

improved by using a Response Surface Method (RSM), in which the sampling of the 

simulation points and the accuracy of the model changes based on the properties of the 

case at hand to minimize the required number of simulation runs. In addition Stochastic 

Response Surface Method (SRSM) can be used to improve the probabilistic convergence 

of the surrogate models. 

 In order to obtain the second-order estimation, this thesis proposes to use a 

multiple-run simulation approach. When the number of system parameters is large, this 

approach requires a large number of simulation runs to find the model, which could lead 

to a long processing time. However, for a large number of cases (where the simulation 

model is simple enough) faster sensitivity analysis methods such as adjoint network 

approach can be used. Therefore, an important future work could be examining these 

methods in the context of power system simulation. 

 

7.3 List of Publications Related to This Thesis 

Here is a list of publications related to this work. 
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Appendix A Gradient-Based Optimization 
 

 An optimization problem can be defined as finding the minimum (or maximum) 

of a mathematical function, commonly referred to as an objective function (OF), within a 

specified parameter space. Even though analytical solutions can be found for simple 

objective functions it is generally difficult to find the optimum point of a nonlinear 

multivariable function. As a result optimization algorithms are used for solving such 

problems. In these methods the optimal point of the OF is found by following an iterative 

search process. The search starts by selecting an initial point(s). A set of mathematical 

techniques are then used to move the initial point(s) in the search space until the best 

value of the objective function (the minimum value for a minimization problem) is found. 

As in this work a gradient-based optimization algorithm has been implemented, in this 

section some the common gradient-based optimization methods are explained and the 

advantages and disadvantages of each method is briefly discussed. 

 Gradient-based optimization methods use the information obtained from the 

derivatives of the objective function to find a suitable direction for movement in the 

search space. As a result these methods are generally faster compared to other 

optimization techniques. However, there are two main disadvantages for these methods. 

Firstly since these methods use the derivative information they cannot be applied to 

discontinuous objective functions (OF). Secondly the calculation of derivatives could be 

a time consuming task, which sometime makes the whole procedure considerably slow. 

In this section, some of the commonly used gradient-based methods are explained. 



Appendix A.  Gradient-Based Optimization  140 

 

A.1 Cauchy’s Method 

 Cauchy’s method can be classified as one of the steepest descent methods, in 

which only the first-order derivatives of the function are used. Generally in a steepest 

descent method, the problem is to find a direction vector so that the initial velocity of 

function change in that direction is maximized, while the vector has unity norm. In other 

words, the direction vector should be chosen so that it maximizes ∆f and makes 1=d , 

where d is the direction vector. Based on the kind of norm being used different steepest 

descent methods can be obtained. If the Euclidean norm (2-norm) is used, it yields the 

Cauchy’s method of optimization,  in which the direction vector is obtained as follows 

[62]. 

f

f

∇
∇

−=d           (A.1) 

Having the above direction vector, in each interaction of Cauchy optimization 

method the decision vector (vector of the current values of the parameters) is updated 

using the following equation, in which s is the step length and it is found using a line 

search algorithm. 
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The main advantage of Cauchy’s steepest descent method is its simplicity. 

Simplicity is an important factor in practice, not only because it makes the 

implementation easier but also it causes the method to be less vulnerable to numerical 
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errors. Application of this method for optimization of power electronic systems is 

reported in [17] . 

 

A.2 5ewton’s Method 

 The Cauchy’s method only uses the first-order information of the objective 

function; however, one can take second-order terms into account as follows. 

( ) ( ) ( ) ( ) L+∆∇∆+∆∇+= xxxxxxx T

0

2

00
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ffff      (A.3) 

Neglecting the third and higher order terms one can approximate the function 

using the first and second order terms. Knowing the fact that the gradient of a function at 

its optimum is zero, one can solve the above estimation to find the x0 for which the 

gradient vector is zero; this leads to Newton’s method of optimization, which is 

formulated as follows. 

( ) ( ) ( )( ) ( )( )kkkk ff xxxx ∇∇−=
−+ 121        (A.4) 

Similar to Cauchy’s method, the Newton’s method can be also classified as a 

steepest descent method, in which the quadratic norm defined by the Hessian is used  [97]. 

The Hessian quadratic norm can be calculated as follows. 
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It has been observed that Newton’s method does not work well for non-quadratic 

functions, especially when the starting point is far from the optimum point. However, it is 

possible to improve this method by combining Newton’s method with a line search 

algorithm  [62], as shown below. 

( ) ( ) ( ) ( )( ) ( )( )kkkkk ffs xxxx ∇∇−=
−+ 121        (A.6) 

In the above equation, s should be determined so that it minimizes the objective 

function (OF). 

 

A.3 Marquardt’s Method 

 Since Cauchy’s method is more effective when the point is far from the optimal 

point, and Newton’s method is better when the point is close to the optimal point, 

Marquardt introduced a method to have both advantages at the same time. This method is 

shown in the following equation [74]. 

( ) ( ) ( )( ) ( )[ ] ( )( )kkkkk fsf xIxxx ∇+∇−=
−−+

1121       (A.7) 

It can be seen that when s is large, Marquardt’s method tends to Cauchy’s 

method, and when s is small it tends to Newton’s method. On the other hand, it is known 

that usually step length is large when the point is far from the optimum point, and it is 

small when the point is close to optimum point, so Marquardt’s method has both 

advantages of Cauchy’s and Newton’s methods. 
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A.4 Conjugate Gradient Methods 

 It was mentioned that Marquardt’s method exhibits both positive characteristics of 

Cauchy’s and Newton’s methods. However, the drawback of this method is that it uses 

second-order derivatives to find the optimum point. Calculation of second-order 

derivatives of a function using numerical methods is a time-consuming process, and is 

likely to introduce numerical errors. In this section, the conjugate gradient methods are 

introduced, which have a fast convergence rate and only use the first-order derivatives of 

the objective function. 

Given an �×� arbitrary matrix (C) directions, d1, …, d� are called conjugate 

directions if we have: 

jiji ≠=      allfor       0Cdd
T

       (A.8) 

It can be shown that the optimal solution of the following quadratic function can 

be found by � line searches in the directions of d1, …, d� [74]. 

( ) Cxxxbax TT ++=f         (A.9) 

The above theorem is useful for optimization process, considering the fact that 

every function can be approximated by a quadratic function around its optimum. The 

only remaining question is how to find the above conjugate directions. Fletcher and 

Reeves suggested the following method for finding the directions [53]. 
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Comparing the Fletcher-Reeves method with other gradient-based methods shows 

that this method is capable of effectively handling objective functions with complex 

shapes [74]. 

 

A.5 Quasi-5ewton Methods 

 Quasi-Newton methods also have appealing characteristics of Newton’s method 

while still using only the first-order derivatives of the OF. Quasi-Newton methods have 

the following form. 

( ) ( ) ( ) ( ) ( )( )kkkkk fs xAxx ∇−=+1         (A.11) 

where matrix A called the metric matrix. Recalling from the previous sections, if A is the 

inverse of Hessian matrix, the above equation is exactly Newton’s method. However, in 

Quasi-Newton methods in order to avoid the use of second-order derivatives, instead of 

inversed Hessian matrix, the metric matrix is used. In each iteration this matrix is 

modified so that it eventually converges to the inverse of Hessian matrix. The sequence is 

usually traced in the following form. 
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where Ac is the correction matrix. There are different types of correction matrices 

proposed by different researchers. One of them is the method proposed by Davidon, 

Fletcher and Powell (DFP), which has the following form [62]. 
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where ∆g can be calculated as follows: 

( ) ( )( ) ( )( )kkk ff xxg ∇−∇=∆ +1         (A.14) 

Another method similar to DFP was proposed by Broyden, Fletcher, Goldfarb, 

and Shanno (BFGS), and it is formulated as follows  [62]: 

( ) ( ) ( ) ( ) ( )( )kkkkk fs xBxx ∇−=
−+ 11        (A.15) 

B is updated using the following equation. 
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Having a complicated form makes these methods prone to numerical error. 
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Appendix B Computer-Aided Sensitivity 

Analysis 
 

 The method developed in the thesis for sensitivity calculations (Chapter 5) is 

generally applicable to all systems - linear or non-linear. However, as described in the 

main thesis body there are other methods, used in the past, for sensitivity analysis of 

circuits. These methods are not applicable to all circuits, and can only be used 

specifically with linear circuits. They exploit linear system properties to generate more 

rapid and accurate calculation of sensitivities. These methods are presented here for 

completeness. The method introduced in the thesis, is completely general and has the 

following advantages and disadvantages. 

 

Advantages: 

1. As opposed to other computer-aided sensitivity analysis techniques which 

require the system to have certain characteristics (e.g. to be linear), this 

method does not impose limitation to the system. 

2. The method can be implemented without altering the main core of the 

simulation program, and therefore, it can be implemented on almost any 

simulation program. 

Disadvantages: 

1. Numerical methods always involve numerical errors, which makes the 

sensitivity calculations inaccurate. 
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2. If the number of system parameters is large, this method requires a large 

number of simulation runs, which makes this method time-consuming. 

 

B.1 Incremental 5etwork Approach 

 If the circuit under study has certain properties, it is possible to reduce the 

simulation burden of the sensitivity analysis by using some mathematical methods and 

taking advantage of those properties. In this section and the next section two of such 

sensitivity analysis techniques are briefly explained. In this section the incremental 

network approach (INA) for sensitivity analysis of electrical networks is described based 

on  [27]. 

 Suppose it is desired to perform sensitivity analysis on the network �. If the 

elements of the network vary from their original values, a new network, the perturbed 

network �p, is obtained as shown in Figure B-1. In the figure the original network (�) 

and the perturbed network (�p) are shown. KVL and KCL can be written for both 

networks as follows. 

0:,0:

:Network  

== BVAI KVLKCL

�
      (B.1) 

( ) ( ) 0:,0:

:Network  

=∆+=∆+ VVBIIA KVLKCL

� p
     (B.2) 

Where, V and I are the vectors of the network branch currents and the network branch 

voltages. 
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(a) 

 
(b) 

 
(c) 

Figure B-1  Original network (a), perturbed network (b) and incremental network (c) 

 

In the sensitivity analysis, we are interested in finding the currents and the voltages of the 

perturbed network. However, in order to find the values of the currents and the voltages 

in the perturbed network, it is just enough to calculate the changes in the currents and the 

voltages of the original network (∆V and ∆ΙΙΙΙ). This is where the incremental network �i, 

can be used. Combining the original network equations with the perturbed network 

equations, we have: 

0,0 =∆=∆ VBIA         (B.3) 
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The above equation shows that the incremental values ∆V and ∆I have the same 

constraints as the original network, so those values can be currents and voltages of a 

network (incremental network �i) with the similar topology as the original one.  

 Now the question is how we can find the incremental network. Consider an 

impedance branch in the original network (�), and the same branch in the perturbed 

network (�p). The equations for that branch can be written as follows. 

( ) ( )( )IIZZVV

ZIV

∆+∆+=∆+

=
        (B.4) 

Neglecting the second order term (∆Z∆I) and combining the equations in B.11 we get: 

IZZIVZIIZV ∆=∆−∆⇒∆+∆=∆       (B.5) 

 Equation (B.12) shows that the incremental voltage and current of an impedance 

branch can be voltage and current of the same branch in the incremental network if a 

series voltage source with the value of I∆Z is added to the incremental network.  

Using this technique one can obtain the incremental network equivalent of each 

element in the original network � as shown in Figure B-1. Using a similar method, one 

can obtain the equivalent incremental models for different network elements. Table B-1 

shows the incremental network equivalents for different elements [27]. 
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Table B-1  Incremental network equivalents for different elements 

Original Network (N) Incremental Network (Ni) 
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Having the incremental network, one can calculate the sensitivities in three steps 

as follows. 

1. Analyze the original network (�) 

2. Use the results from the original network to make the incremental network 

(�i) 

3. Analyze the incremental network to find the sensitivities 

 

Note that since the incremental network (�i) and the original network (�) are only 

different in the placement of the independent sources, they have the same admittance 

matrix. This makes the solution of the incremental network much faster. In general the 

incremental network approach (INA) has the following advantages. 

 

1. Compared to the method described in the previous section, INA method takes 

much less simulation time. 

2. Since INA visualizes the effects of the parameter variation (by adding 

independent sources into the network), it provides a better insight on the 

sensitivities. 

3. Using INA, the incremental currents and voltages in all branches will be 

obtained. This information might be useful in some studies. 

 

For more information about INA refer to  [27]  and [28]. 
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B.2 Adjoint 5etwork Approach 

The adjoint network approach (ANA) for sensitivity analysis at first was proposed 

by Director and Rohrer in 1969. The main purpose of this approach was to find a quick 

way of calculating the gradient vector for automatic network design using gradient-based 

optimization techniques [21]. Since one of the most time consuming steps in gradient-

based optimization is the calculation of the gradient vector, ANA made those methods 

significantly faster. 

In ANA Tellegen’s theorem is used to set up a new network, i.e. adjoint network, 

which has the same topology as the original network; and the elements of original 

network are replaced by their adjoint equivalents. It can be shown that having the 

simulation results of the original network and the adjoint network makes it possible to 

calculate the first-order derivatives of an arbitrary selected network function [27]. The 

detailed explanation of this method is beyond the scope of this thesis; however readers 

may refer to [27] for such information. 

In general Adjoint networks can be used for time-domain sensitivity analysis of 

linear circuits  [27], [29],  [32]; however there are methods available for applying adjoint 

networks for special kinds of nonlinear and switching systems [30],  [31], [33],  [14]. In 

addition, even thought the original ANA was developed for calculation of the first-order 

derivatives, higher order derivatives can be found using adjoint networks  [23]. For more 

information about adjoint networks, readers may refer to [98] – [100]. 
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