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Abstract

This thesis is in the area of ultrasound tomography, which is a non-destructive

imaging method that attempts to create quantitative images of the acoustical prop-

erties of an object of interest (OI). Specifically, three quantitative images per OI are

created in this thesis, two of which correspond to the complex compressibility profile

of the OI, and the other corresponds to its density profile.

The focus of this thesis is on the development of an appropriate two-dimensional

inverse scattering algorithm to create these quantitative images. The core of this

algorithm is the Born iterative method that is used in conjunction with a fast and

efficient method of moments forward solver, a Krylov subspace regularization tech-

nique, and a balancing method. This inversion algorithm is capable of simultaneous

inversion of multiple-frequency data, and can handle a large imaging domain. This

algorithm is finally tested against synthetic and measured data.



iii

Contributions

The research presented in this thesis was performed in the Electromagnetic Imag-

ing Laboratory (EIL) at the University of Manitoba. Research in the lab has focused

on electromagnetic imaging except for the contributions made by Gabriel Faucher

on the calibration and inversion of data obtained from a prototype Ultrasound sys-

tem [1]. The research in this thesis represents the lab’s first attempt at using fully

non-linear inversion techniques for Ultrasound imaging. Broadly speaking, this the-

sis contributes to the area of ultrasound tomography by investigating the possibility

of simultaneously creating three quantitative images of the object being imaged us-

ing time-harmonic scattered pressure data collected outside the object. These three

quantitative images are related to three acoustical properties of the object; namely,

compressibility, attenuation, and density.

To this end, the following specific contributions have been made:

• A forward scattering algorithm based on the Neumann series was implemented.

This algorithm was implemented based on a recently published work∗. The

Neumann forward solver described in that work was expanded to take into

account the variations of both compressibility and density without considering

any linear relationship between these two properties.

∗Haynes and Moghaddam, IEEE Trans. Biomed. Eng., 57(11), 2010.
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• A Method of Moments (MoM) forward solver to handle the complex compress-

ibility and density profiles was implemented. The conjugate gradient algorithm,

which is used in this MoM forward solver, requires the definition of the so-called

domain operator and its adjoint. This operator and its adjoint have been de-

rived analytically, and implemented numerically.

• The MoM forward solver was equipped with the fast matrix-vector multiplica-

tion based on the Toepltiz matrix formulation and a Fourier technique. Also,

the use of this formulation allows the implementation of an efficient memory

storage technique for this forward solver. The marching-on-source technique

was also used to make the convergence of the forward solver faster.

• The Born Iterative Method (BIM) in conjunction with the MoM forward solver

was developed to simultaneously reconstruct the complex compressibility and

density profiles.

• The BIM was extended to simultaneously invert multiple-frequency data sets.

• A balancing method was developed and implemented to enhance the BIM re-

constructions.

• The CGLS regularization technique was used with the BIM method.

Although all of these techniques have been used in the past for such problems as

microwave tomography, to the best of the author’s knowledge it is the first time that

they have been put to use to solve the UT imaging problem. Some of the adjoint

operators of the acoustic integral equations formulated in this thesis, which allow

simultaneous inhomogeneities in all three parameters: compressibility, attenuation,
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and density, and which are required for the implementation of the CG method, have

been derived for the first time here.
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1

Introduction

This thesis presents research work in the area of ultrasound tomography (UT).

In UT, the goal is to create quantitative images of the compressibility and density

profiles of the object of interest (OI) from ultrasound data collected outside the OI.

This information can be of use in biomedical diagnosis such as breast cancer imaging

where it may allow one to differentiate malignant tissues from healthy tissues. The

fact that the data is collected outside the OI makes this imaging modality a non-

invasive method; thus, removing the need for biopsy.

As far as the UT data collection is concerned, the OI is surrounded by several

transducers as shown in Fig 1.1. Each of these transducers can either work as a

transmitter or a receiver of ultrasound energy. When one transducer operates as

a transmitter, the others work as receivers. This procedure continues until all the

transducers act as a transmitter [2–5]. Different frequencies can also be used to

generate more information about the OI [6–13]. The region of interest in the absence

of the OI and transducers is called the background medium. The background medium

is usually a known homogeneous medium, and is chosen in such a way that the

reflection from the OI is minimized. For example, for breast imaging applications,

it is common to use water as the background medium [7, 14]. This is due to the

fact that the relevant physical parameters of breast tissues match closely to those of
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Figure 1.1: Ultrasound tomography setup in which the object of interest (OI) is
enclosed by an array of ultrasound transmitters/receivers.

water. Therefore, much of the energy in the ultrasound waves penetrates into the

breast tissues; thus, extracting more information from the OI.

Two domains are defined in UT. The first one containing the OI and a background

medium is called the imaging domain and denoted by D as shown in Fig 1.1. The

second domain containing all the transmitters and receivers is called the data domain

and denoted by S as shown in Fig 1.1. It should be noted that the data domain is

outside the imaging domain.

The data to be used in UT is the scattered field data. To obtain scattered field

information, the measurements are first performed in the background medium in the

absence of the OI. This measured data is usually called the incident field measurement.

Next, the same measurement is performed in the presence of the object of interest.

This set of data is usually called the total field data. Subtraction of the incident field
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data from the total field data yields the scattered field data, which serves as the input

data to the UT problem.

The UT problem can then be mathematically formulated as an inverse scattering

problem, which is nonlinear and ill-posed [6, 7, 15, 16]. The non-linearity comes from

the fact that the two unknowns in this problem, i.e., (1) contrast profiles of the

compressibility and density, and (2) the total field inside the imaging domain, are

nonlinearly related to each other. Also, one of the main challenges in solving the

inverse problem associated with UT is that a small change in the measured data can

result in a large change in the predicted contrast profiles (instability). According

to the definition of ill-posed problems given by Hadamard [17], the UT problem is,

therefore, ill-posed.

To quantitatively solve this nonlinear and ill-posed problem, different types of

iterative algorithms have been proposed such as the Born iterative method (BIM)

[6, 7, 18], the Distorted Born Iterative Method (DBIM) [19–22] and the Contrast

Source Inversion (CSI) method [23]. These algorithms first create some form of cost

function which includes the discrepancy between the measured data and the simulated

data due to some predicted contrast profiles. They will then try to minimize this

cost function using different optimization methods. Due to the ill-posedness of the

problem, different regularization methods should be used in these inversion algorithms

such as Krylov subsapce regularization [24, 25], Tikhonov [22, 26–29], Multiplicative

[30,31] or L1-norm [32,33] regularization methods. At each iteration of these inversion

algorithms, the contrast profiles and the total field inside the imaging domain is

updated. The algorithm is terminated when the discrepancy between the measured

data and the simulated data is sufficiently small.
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1.1 Literature Review

Relatively speaking, there has not been much research work that has focused

on the development of appropriate inversion algorithms, to be used with UT, to

quantitatively reconstruct various acoustic properties of an OI. Even less, has been

published on the simultaneous reconstruction of the compressibility, density, and

attenuation profiles. As will be shown in subsequent chapters, these are converted

into a complex valued compressibility profile and a real valued density profile. Here,

a short literature review of the potential application areas of interest to the author

and of previous UT work is outlined so as to set the context of the research that will

be presented.

Probably the most studied application of biomedical ultrasound tomography is in

the area of breast cancer detection [7, 34–38]. Breast cancer is currently the second

most common occurring cancer across the world and is ranked first in the number of

cancer occurrences in women. It is estimated that around 1,152,000 new breast cancer

cases occurs each year, and around 411,000 people die per year due to this cancer [39].

Early detection of breast cancer is crucial in dealing with this problem. To achieve this

goal, imaging methods which have a good resolution to detect breast cancer in its early

stage are needed. Such imaging methods should also distinguish between benign and

malignant tumors. Recently, microwave and ultrasound tomography using inverse

scattering methods have been investigated as alternatives to the current imaging

methods such as X-ray mammograms, Magnetic Resonance Imaging (MRI), X-ray

Computed tomography (CT) and conventional ultrasound imaging [40]. In what

follows, some other imaging methods are briefly described.

MRI is a high resolution imaging method and can be used for early detection of

breast cancer. However, this method has some disadvantages: (1) its high cost, (2) it
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is not portable (3) and it requires the use of contrast agents for breast imaging [36,41].

X-ray mammography is based on the absorption of photons in different tissues. In

this method, it is assumed that the cancer mass is denser than the healthy tissues and

it also has different attenuation. As far as the sensitivity is concerned, this method is

not good for women with dense breasts. This is due to the fact that the variation of

density is an important criteria to be considered. That is, some healthy tissues may

have the same density as cancerous tissue and it is difficult to distinguish these tissues

from cancer masses [34, 36, 41, 42]. X-rays are ionizing radiation which, if possible,

is better to avoid [43]. In addition, microwave tomography (MWT) is also being

investigated for breast cancer imaging applications. However, at the current state-of-

the-art, the resolution achievable from MWT is not sufficient for early detection of

breast tumors. The Electromagnetic lab at the University of Manitoba is investigating

the hybridization of UT with MWT as future work.

The invention of the supersonic reflectoscope was the starting point of ultrasound

imaging [1, 44]. Since then, different types of ultrasound imaging techniques such

as sonography and Ultrasound Tomography have been proposed to reconstruct an

image of the OI. Sonography is more accurate in dense breast imaging compared to

the X-ray mammography. The main problem with this method is that it is operator

dependent. To solve this problem, one should have a fixed measurement system that

is not dependent on the person doing the measurements [36].

Ultrasound Tomography (UT) is a quantitative imaging system which has much

potential for biomedical imaging. As described previously, UT uses ultrasonic waves

to interrogate the OI and create acoustic property profiles or images of the OI. These

can be 2D tomographic images or full 3D images. Different approaches are available to

process the data collected in a UT system including (1) Time of Flight tomography
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[36, 42, 45], (2) Diffraction Tomography [34, 36, 46–48], and (3) Full-wave inversion

algorithms. The focus of this thesis is on full-wave inversion algorithms because

these can provide quantitative images of many more acoustical properties of the OI.

However, in what follows, we briefly describe the other two processing methods.

Time of Flight tomography (TFT) is one of the most important approaches for

creating images from ultrasonic data [36]. In this method, instead of solving the

full-wave equation, which is computationally very expensive, the geometrical acoustic

ray approximation is used to reconstruct the image of the OI. This method is com-

putationally more efficient than solving the full-wave equation [45]. Two different

approaches are applied in TFT. In the first approach, it is assumed that the wave

propagates in the straight line (ray approximation). This approximation leads to a

linear problem. The second approach uses a better “bent ” or “diffracted ” ray ap-

proximation to model the wave propagation inside the OI and is thus better, or more

accurate, than the first approach (which uses a direct ray) [36, 45]. In this method,

time of flight can be found using the relationship between the speed of the sound and

propagation paths. This second approach leads to a nonlinear ill-posed problem. The

nonlinearity of this problem is due to the fact that both the speed of the sound and

propagation paths are unknown and nonlinearly related to each other [45]. Therefore,

within the framework of the bent ray for TFT, some researchers have defined a cost

function and then tried to minimize it using optimization methods. Regularization is

required for this problem due to its ill-posedness [45]. The goal of solving this prob-

lem is to reconstruct the speed of the sound and attenuation within the OI [42]. The

resolution obtained using this method has not been particularly good, and therefore

it is not a good method for early detection of breast cancer [36].

Diffraction tomography is based on the first-order (Born) approximation which
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linearizes the wave propagation within the OI [36, 47, 48]. It simply assumes that

the total field inside the domain is equal to the incident field and thus removes one

of the unknowns from the problem [47]. That is, now the only unknown in the

problem will be the contrast profile. Therefore, this method can only be used for low-

contrast objects where the total field inside the imaging domain will be close to the

incident field. To satisfy this condition the object should be (1) small compared to the

utilized wavelength, and (2) should have a low contrast compared to the background

medium [34,36,46]. As is obvious based on these criteria, this method is not suitable

for breast imaging due to the fact that the size of the breast is usually much larger

than the wavelength of operation.

Full-wave UT methods can be very accurate for reconstructions of the OI. The

key in these algorithms is their ability to take into account multiple scattering events

within the OI. That is, as opposed to the TFT and diffraction tomography algorithms,

full-wave UT methods attempt to model the wave interaction (multiple scattering)

within the OI without any approximations. Within the framework of these full-wave

methods, the UT problem is mathematically cast as a nonlinear inverse scattering

problem where both the contrast profiles and the total field inside the imaging domain

are taken to be the unknown [7,18]. Different inversion algorithms can be used to solve

this inverse scattering problem; e.g., the Born Iterative Method (BIM), the Distorted

Born Iterative Method (DBIM), and the Contrast Source Inversion Method (CSI).

All of these inversion methods are iterative methods for solving the nonlinear inverse

scattering problem. When they work, they can provide more accurate reconstructions

with enhanced resolution over TFT and diffraction tomography. These full-wave UT

methods are the focus of this thesis.

As mentioned earlier, our goal is to find the quantitative properties of the OI
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which are the complex valued compressibility and density profiles. In most of the

papers published in this area, it is assumed that the density profile is constant and

the only unknown is the compressibility profile [21, 22, 49–51]. However, the density

profile in most human imaging applications is not a constant as a function of posi-

tion; for example, experimental results show that the variation of density affects the

reconstruction of sound speed in human tissues [20, 52]. In [7], the authors used an

improved approach in which they assumed a linear relationship between the contrast

of compressibility and density profiles. Therefore, the effect of density profile is only

partially taken into account in this approach. The advantage of assuming such a

linear relationship is that the number of unknowns will remain the same as in the

case where the density is assumed to be constant. However, assuming this linear

relationship does not provide very accurate reconstructions.

It is thus concluded a premise of the research described in this thesis is that

both the density and the complex valued compressibility profiles should be treated

as unknowns in the UT problem so as to achieve a more accurate reconstruction and

obtain as much information as possible in the images of the OI. In some papers,

various manifestations of these properties have been solved for as unknowns; e.g.,

see [6, 18–20, 23, 53]. These papers might be classified into two categories. The first

category [19, 20] formulates the problem in such a way that the final result consists

of two images: (1) an image of the sound speed profile, and (2) an image of the

attenuation profile. In the second category [6, 18, 23, 53], the problem is formulated

in such a way that the final result consists of three different images: (1) an image of

the compressibility profile, (2) an image of the density profile, and (3) an image of

the attenuation profile. Therefore, in the second category, the number of unknowns

is greater than the first case and thus more computationally expensive. However,
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the advantage of this method is that one gets more information about the OI. This

thesis is focused on this second category but as will be shown in the next Chapter, it

is more efficient to define a complex valued compressibility which takes into account

compressibility and attenuation.

Inversion algorithms require a forward solver either explicitly or implicitly. Most

forward solvers that have been proposed for UT assume that the OI has a con-

stant density profile. For example, a conjugate gradient Method of Moments method

has been used as a forward solver in [49]. The multilevel fast multipole algorithm

(MLFMA) has also been proposed as a fast forward solver that can be used for this

application [21]. Time-domain and a frequency-domain eigenfunction methods have

also been proposed in [50] and [51], respectively. However, all of these forward solvers

assume that the density profile of the OI is a constant (no spatial variation).

Some forward solvers have also been proposed to simultaneously account for vari-

able density and compressibility profiles. For example, in [20], the T-matrix approach

is used for this purpose. According to this paper, the T-matrix approach has diffi-

culty to converge when the size of the object is on the order of the wavelength. To

solve this problem, the frequency hopping approach was used. In [15], the fast mul-

tipole method (FMM) was used as a forward solver. In [18], a time-domain method

was used as a forward solver, however, the inversion algorithm used in conjunction

with this time-domain forward solver is in the frequency domain. The time-domain

results obtained from this forward solver were transferred to the frequency-domain

using the Fast Fourier transform (FFT). It should be noted that the main reason for

having a frequency-domain inverse solver is that inversion in the time-domain is very

computationally expensive [16].

In this thesis, we have implemented a Method of Moments (MoM) forward solver
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based on the Conjugate Gradient (CG) method and the FFT for the general case in

which both the compressibility and density profiles are non-constant. This forward

solver has some features that make it fast and efficient: (1) only one row of the MoM

matrix needs to be calculated and stored in this code due to the use of Toeplitz block

matrix properties, (2) the FFT is used to accelerate the matrix-vector multiplications,

(3) marching-on-source is implemented to provide a better initial guess for the CG

solver; thus, resulting in faster convergence, and (4) the magnitudes of the unknowns

are appropriately balanced to provide a more accurate solution [54].

Different nonlinear inversion algorithms have been proposed in MWT and can

also be used in UT as well, including the BIM [6, 7, 18], the DBIM [19–22] and the

CSI [23]. BIM is used in this thesis as the nonlinear inversion algorithm. The main

reason for choosing BIM as our inversion algorithm is that BIM is faster and more

efficient compared to the other two methods especially when we are simultaneously

dealing with two unknowns, i.e. the compressibility and density profiles [7]. It should

be noted that DBIM and CSI can generally provide better reconstructions of high-

contrast objects compared to BIM. However, for biomedical imaging applications, if

the background medium is chosen wisely so as to minimze the reflection from the OI,

tissues will have relatively low contrast (less than one) [7]. This justifies the use of

BIM as opposed to DBIM and CSI for this application.

As previously mentioned, this problem is an ill-posed problem. Therefore, reg-

ularization is required. For ill-posed problems, different regularization techniques

have been proposed such as the Conjugate Gradient Least Squares (CGLS) method

[24,25,27], different forms of Multiplicative regularization [30,31], Tikhonov regular-

ization [22,26–28] and the L1-norm [32,33] regularization. In Tikhonov regularization,

the two-norm of the solution is added to the cost function. This term has a weighting
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coefficient called the regularization parameter. The regularization parameter can be

found using several techniques such as the L-curve method [27] and the Generalized

Cross Validation (GCV) [55]. Finding a regularization parameter is computationally

very expensive especially for large domain problems. In nonlinear ill-posed prob-

lems, such as the UT problem, the regularization parameter should be found at each

iteration of the inversion algorithm; this makes the whole process even more com-

putationally expensive. In L1-norm regularization, a term which is the one-norm of

the solution is added to the cost function. This regularization is very good in find-

ing the edges of the OI. However, it is computationally more expensive compared to

the other methods [32, 33]. Multiplicative regularization [30, 31] is another regular-

ization technique in which the regularization term is multiplied against the original

cost function. The main advantage of the multiplication regularization technique is

that it automatically finds the regularization parameter at each iteration of the al-

gorithm. Therefore, there is no need to use another method such as the L-curve to

find the regularization parameter at each iteration of the algorithm. Moreover, this

regularization also has edge-preserving characteristics.

The CGLS regularization method [24,25,27] is used in this thesis. This method has

been successfully used for the MWT problem. Here, we show how it can be applied

to the UT problem. In the CGLS regularization scheme, the solution is iteratively

projected onto a Krylov subspace. In early iterations of the CGLS algorithm, the

low-spatial frequency components of the contrast profiles are reconstructed. As the

algorithm goes on with more iterations, it gradually reconstructs more of the higher

spatial frequency components of the contrast profiles. In this method, the regular-

ization parameter becomes the iteration number at which one terminates the CGLS

algorithm. The main advantage of this regularization technique is that it is extremely
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fast as it only relies on simple matrix-vector multiplications [24,25,27]. However, this

algorithm, in its current form, is not capable of providing edge-preserving recon-

struction. In UT, the domain size is extremely large compared to the wavelength.

Therefore, in practical situations, we always deal with large-scale problems; thus, fast

regularization methods are of necessity.

As the size of the imaging domain in UT is usually much larger than the wave-

length, after discretizing the imaging domain the number of unknowns will be very

large. On the other hand, the data is usually collected on a circle around the OI with

a limited number of transducers. Therefore, the number of unknowns is usually larger

than the number of measured data. To compensate for this imbalance between the

number of measured data points and the number of unknowns, we perform our mea-

surements at multiple frequencies so as to generate more information about the OI.

This complicates the development of the inversion algorithm as multiple-frequency

data needs to be processed by the algorithm. There are two different ways to pro-

cess multiple-frequency data sets. In the first method, called the frequency-hopping

technique, the inversion is first applied to the lowest frequency data set. The con-

verged image is then given as the initial guess to the inversion algorithm with the

next higher frequency data set. This process continues until all frequency data sets

have been used. In other words, the frequency-hopping technique attempts to first

reconstruct low resolution information about the OI. As we use higher frequency data

sets, the algorithm will provide higher resolution information about the OI [8, 9, 19].

In the second method, which is called simultaneous frequency inversion [6,10–13], all

the multiple-frequency data sets are used at the same time to reconstruct the OI.

The simultaneous frequency inversion method is much more complicated in terms of

code development compared to the frequency-hopping technique. However, the re-
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sults obtained using this method are usually much better than those obtained with

the frequency hopping technique.

The rest of this thesis is structured as follows. The physics of acoustics relevant

to the work presented in this thesis is described in Chapter 2. Chapter 3 describes

the forward scattering solver that was developed for this research. The inverse solver

utilized in this thesis is then described in detail in Chapter 4. The regularization

method used in conjunction with the inverse algorithm, as well as some overview

of other common regularization techniques, are described in Chapter 5. Numerical

results are then presented in Chapter 6. Finally, conclusions and some ideas for future

work are outlined in Chapter 7.
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2

Physics of Acoustics

There are several similarities between electromagnetic and ultrasonic waves [56].

For example, pressure, velocity, compressibility and density are analogous to electric

field, magnetic field, permittivity and permeability, respectively [1]. Therefore, meth-

ods used in electromagnetics are often applicable to ultrasonic wave modelling. One of

the main differences between ultrasonic and electromagnetic waves lies in the arrange-

ment of the field components. The velocity field components in ultrasonic pressure

waves are in the direction of the wave propagation; thus, they are sometimes called

longitudinal waves. On the other hand, the arrangement of the electromagnetic field

components is generally perpendicular to the direction of the wave propagation for

simple plane waves; thus, they are sometimes referred to as transverse waves [56,57].

In Section 2.1, the inhomogeneous acoustic wave equation will be formulated using

the conservation of mass and linear momentum laws. Then in Section 2.2, the equa-

tions for the scattered field will be derived using the assumption that the magnitude

of the imaginary part of the wavenumber is much less than the magnitude of the real

part of the wavenumber [58]. In Section 2.3, the general form of the scattered field

equation without using the previous assumption will be derived.
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2.1 Inhomogeneous Acoustic Wave Equation

The acoustic wave equation is the basis on which to model the scattered field in

a UT system. Here we follow the development given in [1, 56,59].

To derive the acoustic wave equation, the following forms of the conservation of

mass and linear momentum are used:

• Conservation of mass [56]: in an isolated system, the mass will remain constant.

Thus, the rate of density change is set to zero.

d

dt

∫
V (t)

ρ(r, t)dv = 0 (2.1)

where V (t) is the volume which can be changing with the time t and r is the

position vector. ρ [ kg
m3 ] is the fluid mass density. Applying the Liebnitz identity

to (2.1), we have

d

dt

∫
V (t)

ρ(r, t)dv =

∫
V (t)

∂ρ(r, t)

∂t
dv +

∮
A(t)

ρ(r, t)u(r, t) · n̂da

=

∫
V (t)

(∂ρ(r, t)

∂t
+∇ · [ρ(r, t)u(r, t)]

)
dv = 0 (2.2)

where u(r, t) [m
s
] is the velocity of the surface and A(t) is a closed surface. Thus,

∂ρ(r, t)

∂t
+∇ · [ρ(r, t)u(r, t)] = 0 (2.3)

• Conservation of linear momentum [56] : Linear momentum is the product of

velocity and mass. This law says if we have a closed surface and we assume that

we don’t have any external forces, the linear momentum cannot be changed [1,
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56]:

d

dt

∫
V (t)

ρ(r, t)u(r, t)dv =

∫
V (t)

F(r, t)dv (2.4)

where F(r, t) [ N
m3 ] is the total force on the volume of fluid and it can be found

as [1, 56]

F(r, t) = −∇p(r, t) (2.5)

where p [ N
m2 ] is the pressure. In the above equation, it is assumed that viscosity

and external forces are zero. Applying the Liebnitz identity to the (2.4), we

have

d

dt

∫
V (t)

ρ(r, t)u(r, t)dv =

∫
V (t)

∂

∂t
[ρ(r, t)u(r, t)]dv +

∮
ρ(r, t)u(r, t)u(r, t) · n̂da

=

∫
V (t)

[ ∂
∂t

[ρ(r, t)u(r, t)] +∇ · [ρ(r, t)u(r, t)u(r, t)]
]
dv

=

∫
V (t)

F(r, t)dv =

∫
V (t)

−∇p(r, t) dv (2.6)

According to (2.6), we can conclude that

∂

∂t
[ρ(r, t)u(r, t)] +∇ · [ρ(r, t)u(r, t)u(r, t)] = −∇p(r, t) (2.7)

We can also define density, pressure and velocity as a constant number plus some

fluctuations as [1, 56]

ρ = ρ0 + ρ1(r, t)

p = p0 + p(r, t)

u = u0 + u(r, t) (2.8)
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We also have the following relation [1, 56]

∂p

∂ρ
=
κ′

ρ
(2.9)

where κ′ is the incompressibility. Substituting (2.8) into (2.9), we have

p(r, t)

ρ1(r, t)
=
κ′

ρ0

(2.10)

or

ρ1(r, t) =
ρ0

κ′
p(r, t) (2.11)

Substituting (2.8) and (2.11) into (2.3) and (2.7), we have [59]

∇p(r, t) = −ρ(r)
∂u(r, t)

∂t
(2.12)

∇ · u(r, t) = − 1

κ′
∂p(r, t)

∂t
(2.13)

If it is assumed that pressure and velocity have a e+jωt time dependency then the

frequency domain version of (2.12) becomes

∇p(r) = −jωρ(r)u(r) =⇒ u(r) =
j

ωρ(r)
∇p(r) (2.14)

The vector u(r) can be written as

u(r) = ux(r)x̂+ uy(r)ŷ + uz(r)ẑ (2.15)

where

ux(r) =
j

ωρ(r)

∂p(r)

∂x
(2.16)
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uy(r) =
j

ωρ(r)

∂p(r)

∂y
(2.17)

uz(r) =
j

ωρ(r)

∂p(r)

∂z
(2.18)

The frequency domain version of (2.13) is

∇ · u(r) =
−jω
κ′(r)

p(r) (2.19)

Substituting (2.16), (2.17) and (2.18) into (2.19), we have

∂

∂x

( j

ωρ(r)

∂p(r)

∂x

)
+

∂

∂y

( j

ωρ(r)

∂p(r)

∂y

)
+

∂

∂z

( j

ωρ(r)

∂p(r)

∂z

)
=
−jω
κ′(r)

p(r) (2.20)

We can multiply both sides of (2.20) with ω/j. Thus,

∂

∂x

( 1

ρ(r)

∂p(r)

∂x

)
+

∂

∂y

( 1

ρ(r)

∂p(r)

∂y

)
+

∂

∂z

( 1

ρ(r)

∂p(r)

∂z

)
=
−ω2

κ′(r)
p(r) (2.21)

1

ρ(r)

∂2p(r)

∂x2
+
−1

ρ2(r)

∂ρ(r)

∂x

∂p(r)

∂x
+

1

ρ(r)

∂2p(r)

∂y2
+

−1

ρ2(r)

∂ρ(r)

∂y

∂p(r)

∂y

1

ρ(r)

∂2p(r)

∂z2
+
−1

ρ2(r)

∂ρ(r)

∂z

∂p(r)

∂z
=
−ω2

κ′(r)
p(r) (2.22)

Rewriting (2.22), we get

∇2p(r)− 1

ρ(r)
∇ρ(r) · ∇p(r) +

ω2ρ(r)

κ′(r)
p(r) = 0 (2.23)

Notice that

1

ρ(r)
∇ρ(r) = −ρ(r)∇ρ−1(r) (2.24)
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Substituting (2.24) into (2.23), we have

∇2p(r) + ρ(r)∇ρ−1(r) · ∇p(r) +
ω2ρ(r)

κ′(r)
p(r) = 0 (2.25)

Instead of using incompressibility, κ′(r), we can use compressibility, κ(r), which is

defined as

κ(r) ,
1

κ′(r)
(2.26)

Therefore, (2.25) can be rewritten as

∇2p(r) + ρ(r)∇ρ−1(r) · ∇p(r) + ω2ρ(r)κ(r)p(r) = 0 (2.27)

The first two terms of (2.27) can be written as

∇2p(r) + ρ(r)∇ρ−1(r) · ∇p(r) = ρ(r)∇ · [ρ−1(r)∇p(r)] (2.28)

Thus,

ρ(r)∇ · [ρ−1(r)∇p(r)] + ω2ρ(r)κ(r)p(r) = 0 (2.29)

The speed of the sound can be found as [59]

c(r) =
1√

ρ(r)κ(r)
(2.30)

Thus, the lossless wave number in acoustics is defined as

k(r) =
ω

c(r)
= ω

√
ρ(r)κ(r) (2.31)
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so

k2(r) = ω2ρ(r)κ(r) (2.32)

Therefore, the ultrasound wave equation can be written as [15,53,60]

ρ(r)∇ · [ρ−1(r)∇p(r)] + k2(r)p(r) = 0 (2.33)

This equation is used to find the scattered field equation as will be explained in

section 2.2.

2.2 Scattered Field Equation

The scattered field equation is used in the inverse scattering problem to find the

properties of the object of interest. This equation addresses the problem in a general

form in the sense that it assumes (1) both compressibility and density profiles can

vary, and (2) both the object of interest and background medium may be lossy (having

a non-zero attenuation profile).

The attenuation parameter determines the decay of the amplitude of the trav-

elling US signal and it is denoted by α [61, 62]. This parameter has an important

role in medical imaging because the attenuation for different tissue types can vary

significantly [35,62,63]. The effect of the attenuation can be modeled by assuming a

complex valued wave number [15,38,60].

k̂(r) ,
ω

c(r)
− jα(r) (2.34)

where k̂(r) is a complex wave number and α(r) is the attenuation. The minus sign in

(2.34) is due to the assumed e+jωt time dependancy. Similarly the background wave
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number, k̂b, is defined as

k̂b ,
ω

c0

− jα0 (2.35)

where α0 is the background attenuation. In this thesis, k0 is used as a background

wavenumber without attenuation

k0 =
ω

c0

(2.36)

Therefore, the complex background wavenumber can be written as

k̂b = k0 − jα0 (2.37)

The square of the complex wave number is

k̂2(r) =
ω2

c2(r)
− α2(r)− j 2α(r)ω

c(r)

=
ω

c(r)

[ ω

c(r)
− α2(r)c(r)

ω
− j2α

]
(2.38)

The magnitude of the imaginary part of the wavenumber is much less than the mag-

nitude of its real part in most cases [58]. That is, we can make the assumption

that

α(r)c(r)

ω
<< 1 (2.39)

The derivation of the scattered field equation without using this assumption is pro-

vided in Section 2.3. Using (2.39) into (2.38) makes the second term of (2.38) small

compared to the other terms and it can therefore be neglected:

k̂2(r) =
ω2

c2(r)
− j 2α(r)ω

c(r)
(2.40)
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The same procedure can also be applied for the square of background wave number:

k̂b
2

=
ω2

c2
0

− j 2α0ω

c0

(2.41)

To find the scattered field equation, two parameters need to be defined. The first

parameter, δρ−1(r), is defined as

δρ−1(r) , ρ−1(r)− ρ−1
b (2.42)

and represents the difference between the inverse density at position r with the back-

ground inverse density. Thus, the inverse density at position r can be written as

ρ−1(r) = δρ−1
b (r) + ρ−1

b (2.43)

The second parameter, δκ(r), is defined as

δκ(r) , κ(r)− κb (2.44)

and represents the difference between the compressibility at position r with the back-

ground compressibility. Thus, the compressibility at position r can be written as

κ(r) = δκ(r) + κb (2.45)

In UT, the background medium plays an important role in the reconstruction of the

properties of the object of interest: compressibility and density. The background

medium should be chosen to closely match those of the object of interest so that the

US waves will better penetrate the object. We say that the scattered fields contain
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more information about or better interrogates the object of interest when more energy

penetrates the object.

The properties of the object can be related to the background properties by defin-

ing contrast variables. The contrast of the compressibility is defined as

χ1(r) ,
κ(r)− κb

κb
(2.46)

and contrast of inverse density is defined as

χ2(r) ,
ρ−1(r)− ρ−1

b

ρ−1
b

(2.47)

where χ2(r) is the contrast of the inverse density, ρ−1
b is the background inverse density

and ρ−1(r) is the inverse density at position r. If the values of χ1(r) and χ2(r) are

known, we can easily find the exact values of compressibility and density because it

is assumed that the background properties are known.

Substituting (2.40) into (2.33), we have

ρ(r)∇ · [ρ−1(r)∇p(r)] + [
ω2

c2(r)
− j 2α(r)ω

c(r)
]p(r) = 0 (2.48)

where p(r) is the total pressure field. Using (2.30), we have

ρ(r)∇ · [ρ−1(r)∇p(r)] + ω2ρ(r)κ(r)p(r)− j2α(r)ω
√
ρ(r)κ(r)p(r) = 0 (2.49)

Both sides of (2.49) are now multiplied by ρ−1(r), giving

∇ · [ρ−1(r)∇p(r)] + ω2κ(r)p(r)− j2α(r)ω
√
ρ−1(r)κ(r)p(r) = 0 (2.50)
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Substituting (2.43) and (2.45) into (2.50), we have

∇ ·
[
(δρ−1(r) + ρ−1

b )∇p
]

+ ω2
[
δκ(r) + κb

]
p(r)

−j2α(r)ω
√[

δρ−1(r) + ρ−1
b

][
δκ(r) + κb

]
p(r) = 0 (2.51)

This can be expanded as

∇ ·
[
δρ−1(r)∇p(r)

]
+∇ ·

[
ρ−1
b ∇p(r)

]
+ ω2δκ(r)p(r)

+ω2κbp(r)− j2α(r)ω

√
δρ−1(r) + ρ−1

b

ρ−1
b

δκ(r) + κb
κb

ρ−1
b κbp(r) = 0 (2.52)

Substituting (2.46) and (2.47) into (2.52), we get

∇ ·
[
δρ−1(r)∇p(r)

]
+∇ ·

[
ρ−1
b ∇p(r)

]
+ ω2δκ(r)p(r)

+ω2κbp(r)− j2α(r)ω
√

[χ2(r) + 1][χ1(r) + 1]ρ−1
b κbp(r) = 0 (2.53)

Multiplying both sides of (2.53) with ρb assumed to be constant, we will have

∇ ·
[δρ−1(r)

ρ−1
b

∇p(r)
]

+ ρb∇ ·
[
ρ−1
b ∇p(r)

]
+ ω2ρbκb

δκ(r)

κb
p(r)

+ω2ρbκbp(r)− j2α(r)ω
√

[χ2(r) + 1][χ1(r) + 1]ρbκbp(r) = 0 (2.54)

After some simplifications and applying (2.36), (2.42) and (2.44) into (2.54), we will

have

∇ ·
[
χ2(r)∇p(r)

]
+∇2p(r) + k2

0χ1(r)p(r) + k2
0p(r)

−j2α(r)
ω

c0

√
[χ1(r) + 1][χ2(r) + 1]p(r) = 0 (2.55)
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which can be written as the Helmholtz equation for the pressure with an inhomoge-

neous right hand side

∇2p(r) + k2
0p(r) = −k2

0χ1(r)p(r)−∇ ·
[
χ2(r)∇p(r)

]
+j2α(r)k0

√
[χ1(r) + 1][χ2(r) + 1]p(r) (2.56)

If we add −j 2α0ω
c0
p(r) to the both sides of (2.56) so as to introduce the attenuation,

then we have

∇2p(r) +
[
k2

0 − j
2α0ω

c0

]
p(r) = −k2

0χ1(r)p(r)−∇ ·
[
χ2(r)∇p(r)

]
+ j2α(r)k0

√
[χ1(r) + 1][χ2(r) + 1]p(r)− j 2α0ω

c0

p(r) (2.57)

Substituting (2.36) and (2.41) into (2.57), we have

∇2p(r) + k̂b
2
p(r) = −k2

0χ1(r)p(r)−∇ ·
[
χ2(r)∇p(r)

]
+ j2α(r)k0

√
[χ1(r) + 1][χ2(r) + 1]p(r)

− j2α0k0p(r) (2.58)

The contrast values of χ1(r) and χ2(r) are small in biomedical applications such as

breast cancer imaging (χ1 << 1 & χ2 << 1) [7,14,64,65]. Therefore, we can assume

that

√
[χ1(r) + 1][χ2(r) + 1] =

√
χ1(r)χ2(r) + χ1(r) + χ2(r) + 1 ' 1 (2.59)
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Substituting this approximation into (2.58), we have

∇2p(r) + k̂b
2
p(r) = −k2

0χ1(r)p(r)−∇ ·
[
χ2(r)∇p(r)

]
+ j2α(r)k0p(r)− j2α0kop(r) (2.60)

or

∇2p(r) + k̂b
2
p(r) = −k2

0χ1(r)p(r)−∇ ·
[
χ2(r)∇p(r)

]
+ j2k0

[
α(r)− α0

]
p(r) (2.61)

We define δα(r) as

δα(r) , α(r)− α0 (2.62)

where α(r) is the attenuation at position r and α0 is the background attenuation.

Thus, (2.61) can be written as

∇2p(r) + k̂b
2
p(r) = −k2

0χ1(r)p(r)−∇ ·
[
χ2(r)∇p(r)

]
+ j2k0δα(r)p(r) (2.63)

We can factor out k2
0 in (2.63) to get

∇2p(r) + k̂b
2
p(r) = −k2

0

[
χ1(r)− j 2δα(r)

k0

]
p(r)−∇ ·

[
χ2(r)∇p(r)

]
(2.64)

Now consider (2.33) for the incident field where there is no object inside the domain.

The background properties are the only properties used in the incident field equation

which can be written as

ρb∇ ·
[
ρ−1
b ∇p

inc(r)
]

+ k̂b
2
pinc(r) = 0 (2.65)
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where pinc is the incident pressure (the pressure at the absence of the object of inter-

est). Now assuming that the background density is constant, we have

∇2pinc(r) + k̂b
2
pinc(r) = 0 (2.66)

The scattered field equation can be found by subtracting incident field equation (2.66)

from total field equation (2.64) and defining pscat , p− pinc:

∇2pscat(r) + k̂b
2
pscat(r) = −k2

0

[
χ1(r)− j 2δα(r)

k0

]
p(r)−∇ ·

[
χ2(r)∇p(r)

]
(2.67)

where pscat is the scattered pressure. According to the definition of the Green’s

function for the Helmholtz equation, we have

∇2g(r, r′) + k̂b
2
g(r, r′) = −δ(r− r′) (2.68)

where k̂b is the background wavenumber including the background attenuation and

δ(·) is the Dirac delta function. Knowing the Green’s function we can formulate the

solution of (2.67) as

pscat(r) = k2
0

∫
V

g(r, r′)
[
χ1(r′)− j 2δα(r′)

k0

]
p(r′)dv′

+

∫
V

g(r, r′)∇ ·
[
χ2(r′)∇p(r′)

]
dv′ (2.69)

where, to summarize, k0 is a background wave number assuming no attenuation,

χ1 is the contrast of compressibility, χ2 is the contrast of inverse density, δα(r′) is

the difference between the value of attenuation at position r and the background

attenuation, and g(r, r′) is the known Green’s function. This represents the integral
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equation for the scattered pressure field under the approximations (2.39) and (2.59).

Note that this equation could represent a way to calculate the scattered pressure field

outside of V = D, some imaging domain, given χ1, χ2 and δα as well as the pressure

field inside D. In this case, where r /∈ V = D it would be a Fredholm integral

equation of the first kind, nonlinear in p(r ∈ V ) with each of χ1, χ2, and δα.

2.3 General Scattered Field Equation

In the previous section, we assumed that the magnitude of the real part of the

wavenumber is much greater than the magnitude of the imaginary part and this led

to (2.40) and (2.41) [58]. This assumption is valid for several practical applications

including biomedical applications. Therefore, the equation obtained in Section 2.2,

(2.69), will be used throughout this thesis. However, in this section, the general

formulation without using this assumption will be shown for completeness.

If this assumption is not used, we should substitute the original square of the

wavenumber (2.38), into (2.33) giving

ρ(r)∇ · [ρ−1(r)∇p(r)] +
[ ω2

c2(r)
− α2(r)− j 2α(r)ω

c(r)

]
p(r) = 0 (2.70)

Equation (2.70) can be expanded as

ρ(r)∇·[ρ−1(r)∇p(r)]+ω2ρ(r)κ(r)p(r)−α2(r)p(r)−j2α(r)ω
√
ρ(r)κ(r)p(r) = 0 (2.71)

If both sides of (2.71) are multiplied with ρ−1(r), then we have

∇ · [ρ−1(r)∇p(r)] + ω2κ(r)p(r)− α2(r)

ρ(r)
p(r)− j2α(r)ω

√
ρ−1(r)κ(r)p(r) = 0 (2.72)
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Applying (2.43) and (2.45) in (2.72), we will have

∇ ·
[
(δρ−1(r) + ρ−1

b )∇p(r)
]

+ ω2
[
δκ(r) + κb

]
p(r)− α2(r)

[
δρ−1(r) + ρ−1

b

]
p(r)

− j2α(r)ω
√[

δρ−1(r) + ρ−1
b

][
δκ(r) + κb

]
p(r) = 0 (2.73)

which can be written as

∇ · [δρ−1(r)∇p(r)] + ∇ · [ρ−1
b ∇p(r)] + ω2δκ(r)p(r) + ω2κbp(r)

− α2(r)δρ−1(r)p(r)− α2(r)ρ−1
b p(r)

− j2α(r)ω
√

[χ2(r) + 1][χ1(r) + 1]ρ−1
b κbp(r) = 0 (2.74)

Multiplying both sides of (2.74) with ρb, we have

∇ ·
[δρ−1(r)

ρ−1
b

∇p(r)
]

+ ρb∇ ·
[
ρ−1
b ∇p(r)

]
+ ω2ρbκb

δκ(r)

κb
p(r) + ω2ρbκbp(r)

− α2(r)
δρ−1(r)

ρ−1
b

p(r)− α2(r)p(r)

− j2α(r)ω
√

[χ2(r) + 1][χ1(r) + 1]ρbκbp(r) = 0 (2.75)

Substituting (2.36), (2.42), (2.44), (2.46) and (2.47) into (2.75), we have

∇ ·
[
χ2(r)∇p(r)

]
+ ∇2p(r) + k2

0χ1(r)p(r) + k2
0p(r)

− α2(r)χ2(r)p(r)− α2(r)p(r)

− j2α(r)
ω

c0

√
[χ1(r) + 1][χ2(r) + 1]p(r) = 0 (2.76)
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or

∇2p(r) + k2
0p(r) = −k2

0χ1(r)p(r)−∇ ·
[
χ2(r)∇p(r)

]
+ α2(r)[χ2(r) + 1]p(r)

+ j2α(r)k0

√
[χ1(r) + 1][χ2(r) + 1]p(r) (2.77)

If we add (−α2
0 − j 2α0ω

c0
)p(r) to the both sides of (2.77), we will have

∇2p(r) +
[
k2

0 − α2
0 − j

2α0ω

c0

]
p(r) = −k2

0χ1(r)p(r)−∇ ·
[
χ2(r)∇p(r)

]
+ j2α(r)k0

√
[χ1(r) + 1][χ2(r) + 1]p(r)− j 2α0ω

c0

p(r)

− α2
0p(r) + α2(r)[χ2(r) + 1]p(r) (2.78)

Again using approximation (2.59) that the values of χ1(r) and χ2(r) are much smaller

than one, we get

∇2p(r) + k̂b
2
p(r) = −k2

0χ1(r)p(r)−∇ ·
[
χ2(r)∇p(r)

]
+ j2k0[α(r)− α0]p(r)

+

(
α2(r)[χ2(r) + 1]− α2

0

)
p(r)

(2.79)

The last term is problematic because it involves α(r), χ2(r) and p(r) in a nonlinear

fashion. We can deal with this final term by again applying that the contrast of

density is small [7, 14,64,65], That is

χ2(r) << 1 ⇒ α2(r)[χ2(r) + 1]− α2
0 ' α2(r)− α2

0 (2.80)
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Plugging (2.62) and (2.80) into (2.79) , we have

∇2p(r) + k̂b
2
p(r) = − k2

0

[
χ1(r)− j 2δα

k0

]
p(r)−∇ · [χ2(r)∇p(r)]

+ [α2(r)− α2
0]p(r) (2.81)

As before, the scattered field equation can be found by subtracting the incident field

equation (2.66) from the total field equation (2.81).

∇2pscat(r) + k̂b
2
pscat(r) = − k2

0

[
χ1(r)− j 2δα(r)

k0

]
p(r)−∇ · [χ2(r)∇p(r)]

+ [α2(r)− α2
0]p(r) (2.82)

Applying the same Green’s function technique as before we get

pscat(r) = k2
0

∫
V

g(r, r′)
[
χ1(r′)− j 2δα(r′)

k0

]
p(r′)dv′

+

∫
V

g(r, r′)∇ ·
[
χ2(r′)∇p(r′)

]
dv′

−
∫
V

g(r, r′)
[
α2(r′)− α2

0

]
p(r′)dv′ (2.83)

As can be seen by comparing (2.83) to (2.69), when we do not assume that the

magnitude of imaginary part of the wave number is much smaller than the magnitude

of the real part of the wave number, (2.39), (still assuming that χ1 � 1 and χ2 � 1)

then the scattered field integral equation, (2.83), has one more term.
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3

Forward Solver

In ultrasound inverse scattering, the goal is to find the compressibility and density

profiles of the OI using measurement data which is the scattered pressure information

at receiving cites. The so-called inversion algorithms used to find these profiles are

iterative. In each iteration of these algorithms, the discrepancy between the mea-

surement and simulated data due to predicted profiles is found, and will be used for

updating the predicted profiles. Therefore, we need a solver to find the simulated

scattered pressure at the receiving cites due to given profiles. This solver, which is

usually called a forward solver, is the topic of this chapter. Using this forward solver,

the simulated data can then be compared with the measured data.

The scattered pressure can be found using either (2.69) or (2.83). In this thesis,

it is assumed that the magnitude of the imaginary part of the wavenumber is much

smaller than the magnitude of the real part of wavenumber [58]. Therefore, (2.69)

will be used.

The contrast profiles of the object, as well as the receiver and transmitter positions

are known information provided to the forward solver. According to (2.69), to find

the scattered pressure at any receiver location due to a predicted profile, the total

pressure inside the domain should be found. To this end, r and r′ in (2.69) should

be both in the region that we have the OI (r, r′ ⊂ D). In this case, (2.69) is called

domain equation.
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In Section 3.1, it will be explained how to find the total pressure inside the do-

main using the Neumann series along with the limitations of this method. Then, in

Section 3.2, an MoM forward solver based on using operator A and its adjoint will be

explained. (It will also be shown how to find the adjoint of this operator.) In Section

3.3, some features of the MoM forward solver that was implemented for this thesis

will be explained. These features make this MoM forward solver fast and efficient.

3.1 Neumann Series Forward Solver

In this forward solver, a Neumann Series approximation [7] has been used to

find the total pressure inside the imaging domain. This forward solver has some

limitations: (i) the object (scatterer) should be low contrast [7], and (ii) the size of

OI should be small compared to the wavelength of operation.

To explain the Neumann series forward solver, let’s start by noting that both χ1

and χ2 are real functions in Equation 2.69 (In the discrete form, they will be real

vectors.). Inside the first integral in this equation, we have the term χ1(r′)− j 2δα(r′)
k0

.

For notational simplicity, in the rest of this thesis, this term is denoted by χc1, and

will be treated as a complex parameter. (The superscript c denotes that this is a

complex parameter.) Thus, the total pressure equation can be written as

p(r) = pinc(r) + k2
0

∫
g(r, r′)χc1(r′)p(r′)dr′

+

∫
g(r, r′)∇ ·

[
χ2(r′)∇p(r′)

]
dr′ (3.1)
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and the scattered pressure equation as

pscat(r) = k2
0

∫
g(r, r′)χc1(r′)p(r′)dr′

+

∫
g(r, r′)∇ ·

[
χ2(r′)∇p(r′)

]
dr′ (3.2)

where χ2 is the contrast of the reciprocal of the density and g(r, r′) is the Green’s

function of the background medium. The superscript scat and inc denote scattered

and incident pressure respectively. As noted above, χc1(r′) is a complex profile that

is equal to χ1(r′) − j 2δα(r′)
k0

, where χ1 is the contrast of compressibility, k0 is the

background wavenumber without any attenuation and δα is the difference between

the attenuation of the object and the attenuation of the background.

Two operators are now defined where both operate on the total pressure inside

the domain; namely,

G1(·) , k2
0

∫
D

g(r, r′)χc1(r′)(·)dr′ r, r′ ∈ D (3.3)

G2(·) ,
∫
D

g(r, r′)∇′ · [χ2(r′)∇′(·)]dr′ r, r′ ∈ D (3.4)

D is the domain where the object exists. Substituting (3.3) and (3.4) into (3.1), we

have

p(r) = pinc(r) + G1

{
p(r′)

}
+ G2

{
p(r′)

}
(3.5)

This is an equation for the total pressure inside the domain given the total pressure

inside the D. Thus,

p(r) = pinc(r) + (G1 + G2)
{
p(r′)

}
(3.6)
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Another operator is simply defined as the summation of these two operators:

G , G1 + G2 (3.7)

Equation 3.6 can be written as

(I − G)
{
p(r)

}
= pinc(r) (3.8)

where I is the identity operator. Therefore, total pressure inside the imaging domain

can be found as [7]

p(r) = (I − G)−1
{
pinc(r)

}
(3.9)

If ||G|| < 1, the Neumann series can be applied to (3.9) giving [7, 66,67]

(I − G)−1 = (I + G + G2 + . . . ) (3.10)

The total pressure using the Neumann series is thus

p(r) = (I + G + G2 + . . . )
{
pinc(r)

}
(3.11)

It should be noted that (3.11) can only be used when ||G|| < 1, and it is due to this

condition that the OI should be of low contrast and small compared to the operating

wavelength. The convergence of the Neumann series, (3.10), is related to the norm of

G: as ||G|| increases more terms in the series are needed to converge to the solution.

It should be noted that if only the first term in (3.11) is utilized, this approximation

will be equivalent to the Born approximation [7,68]. This Neumann series is the basis

of the work presented in [7].
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3.2 Method of Moments (MoM) Forward Solver

To remove the deficiencies of the Neumann series forward solver which can only

be used if the OI is (1) of low contrast, and (2) small compared to the wavelength of

operation, we implement an MoM solution of the integral equation. This is required

for UT, where we are usually faced with a large object with respect to the operating

wavelength (That is, the wavelength in UT applications is very small, on the order

of a few millimeters). Therefore, a forward solver that does not have the Neumann

series forward solver limitation is needed in UT. An MoM forward solver is proposed

to handle this challenge.

The MoM is a general technique to solve linear equations of the form Ax = b

where for our case b is the known incident field inside the imaging domain and x is

the unknown total pressure inside the imaging domain. The operator A is given as

A = I − G

= I − G1 − G2 (3.12)

To solve this Ax = b, the Conjugate Gradient (CG) method will be used and therefore

it is crucial to know what adjoint of the operator A and its adjoint, Aa, is. We next

explain how to find Aa for this problem. According to the properties of the adjoint

operator, we have

Aa = (I − G)a

= (I − G1 − G2)a

= I − Ga1 − Ga2 (3.13)
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Therefore, to find Aa, we only need to know what Ga1 and Ga2 are. The adjoint of G1

can be found using its definition.

< G1

{
p(r′)

}
, ψ(r) >D=< p(r′),Ga1

{
ψ(r)

}
>D (3.14)

where < ·, · > is the inner product and the subscript D denotes that this inner

product is taken over the domain D. The dummy function ψ(r) is arbitrary over

D. It should be noted that the argument inside
{}

is the argument on which the

operator operates. According to the definition of the inner product, we will have

∫
D

G1

{
p(r′)

}
ψ∗(r)dr =

∫
D

p(r′)
[
Ga1
{
ψ(r)

}]∗
dr′ (3.15)

where ∗ denotes the complex conjugate. Inserting the definition of the operator (3.3),

into the left side of (3.15), we have

I1 =

∫
D

k2
0

∫
D

g(r, r′)χc1(r′)p(r′)dr′ψ∗(r)dr

(3.16)

This equation can be written as

I1 =

∫
D

p(r′)k2
0χ

c
1(r′)

∫
D

g(r, r′)ψ∗(r)drdr′ (3.17)

Comparing the right hand side of (3.15) with (3.17), we have

[
Ga1
{
ψ(r)

}]∗
= k2

0χ
c
1(r′)

∫
D

g(r, r′)ψ∗(r)dr (3.18)
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Thus,

Ga1
{
ψ(r)

}
=
[
k2

0χ
c
1(r′)

]∗ ∫
D

g∗(r, r′)ψ(r)dr (3.19)

which can also be written as

Ga1
{
ψ(r′)

}
=
[
k2

0χ
c
1(r)

]∗ ∫
D

g∗(r′, r)ψ(r′)dr′ (3.20)

because of the symmetry of g. Therefore, the adjoint of G1 will be

Ga1
{
·
}

=
[
k2

0χ
c
1(r)

]∗ ∫
D

g∗(r′, r)(·)dr′ (3.21)

The same procedure is used to find the adjoint of G2. Thus, we start with the definition

< G2

{
p(r′)

}
, ψ(r) >D=< p(r′),Ga2

{
ψ(r)

}
>D (3.22)

and expanding the inner product, we have

∫
D

G2

{
p(r′)

}
ψ∗(r)dr =

∫
D

p(r′)
[
Ga2{ψ(r)}

]∗
dr′ (3.23)

Using (3.4) and denoting the LHS of (3.23) by I2 we have

I2 =

∫
D

∫
D

g(r, r′)∇′ · [χ2(r′)∇′p(r′)]dr′ψ∗(r)dr (3.24)

We also know that

∇′ · [χ2(r′)∇′p(r′)] = χ2(r′)∇′2p(r′) +∇′χ2(r′) · ∇′p(r′) (3.25)
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which substitutions into (3.24) gives

I2 =

∫
D

∫
D

g(r, r′)[χ2(r′)∇′2p(r′) +∇′χ2(r′) · ∇′p(r′)]dr′ψ∗(r)dr

=

∫
D

∫
D

g(r, r′)χ2(r′)∇′2p(r′)dr′ψ∗(r)dr +

∫
D

∫
D

g(r, r′)∇′χ2(r′) · ∇′p(r′)dr′ψ∗(r)dr

=

∫
D

[ ∫
D

g(r, r′)ψ∗(r)dr
]
χ2(r′)∇′2p(r′)dr′ +

∫
D

[ ∫
D

g(r, r′)ψ∗(r)dr
]
∇′χ2(r′) · ∇′p(r′)dr′

(3.26)

For the simplicity in writing, we define F (r′) as

F (r′) ,
∫
D

g(r, r′)ψ∗(r)dr (3.27)

Substituting (3.27) into (3.26), we have

I2 =

∫
D

F (r′)χ2(r′)∇′2p(r′)dr′ +

∫
D

F (r′)∇′χ2(r′) · ∇′p(r′)dr′ (3.28)

We call the first and second terms of (3.28) C1 and C2 respectively. We also have

∇′[F (r′)χ2(r′)] = χ2(r′)∇′F (r′) + F (r′)∇′χ2(r′) (3.29)

Substituting (3.29) into C2, we have

C2 =

∫
D

F (r′)∇′χ2(r′) · ∇′p(r′)dr′

=

∫
D

[
∇′[F (r′)χ2(r′)]− χ2(r′)∇′F (r′)

]
· ∇′p(r′)dr′

=

∫
D

∇′[F (r′)χ2(r′)] · ∇′p(r′)dr′ −
∫
D

χ2(r′)∇′F (r′) · ∇′p(r′)dr′ (3.30)
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We call the first and second terms of the (3.30) D1 and D2, respectively. D1 is thus

D1 =

∫
D

∇′[F (r′)χ2(r′)] · ∇′p(r′)dr′

=

∫
D

(
∇′ · [F (r′)χ2(r′)∇′p(r′)]− F (r′)χ2(r′)∇′2p(r′)]

)
dr′

=

∫
D

∇′ · [F (r′)χ2(r′)∇′p(r′)]dr′ −
∫
D

F (r′)χ2(r′)∇′2p(r′)dr′

=

∫
∂D

F (r′)χ2(r′)∇′p(r′)dΓ−
∫
D

F (r′)χ2(r′)∇′2p(r′)dr′ (3.31)

where ∂D represents the integral over the boundary. Therefore, if we assume that the

contrast of inverse density (χ2) is zero on the boundary, then the first part of (3.31)

becomes zero. The second part of (3.31) will be canceled with C1. Therefore, I2 will

be

I2 = D2

= −
∫
D

χ2(r′)∇′p(r′) · ∇′F (r′)dr′

= −
∫
D

χ2(r′)
[
∇′ · (p(r′)∇′F (r′))− p(r′)∇′2F (r′)

]
dr′

= −
∫
D

χ2(r′)∇′ ·
[
p(r′)∇′F (r′)

]
dr′ +

∫
D

p(r′)χ2(r′)∇′2F (r′)dr′ (3.32)

We call the first and second terms of (3.32) E1 and E2, respectively. If we apply the
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divergence theorem to E1, we will have

E1 = −
∫
D

χ2(r′)∇′ ·
[
p(r′)∇′F (r′)

]
dr′

= −
∫
D

[
∇ ·
[
χ2(r′)p(r′)∇′F (r′)

]
−∇′χ2(r′) · p(r′)∇′F (r′)

]
dr′

= −
∫
D

∇ ·
[
χ2(r′)p(r′)∇′F (r′)

]
dr′ +

∫
D

∇′χ2(r′) · p(r′)∇′F (r′)dr′

= −
∫
∂D

χ2(r′)p(r′)∇′F (r′)dΓ +

∫
D

∇′χ2(r′) · p(r′)∇′F (r′)dr′ (3.33)

If we assume that χ2 is zero on the boundary, it makes the first part of (3.33) zero.

Thus,

E1 =

∫
D

p(r′)∇′χ2(r′) · ∇′F (r′)dr′ (3.34)

Finally I2 can be found as

I2 = E1 + E2

=

∫
D

p(r′)∇′χ2(r′) · ∇′F (r′)dr′ +

∫
D

p(r′)χ2(r′)∇′2F (r′)dr′

=

∫
D

p(r′)
[
∇′χ2(r′) · ∇′F (r′) + χ2(r′)∇′2F (r′)

]
dr′ (3.35)

Comparing (3.23) with the right hand side of (3.35), we have

[
Ga2
{
ψ(r)

}]∗
= ∇′χ2(r′) · ∇′F (r′) + χ2(r′)∇′2F (r′) (3.36)

We can also change the variable. Thus,

[
Ga2
{
ψ(r′)

}]∗
= ∇χ2(r) · ∇F (r) + χ2(r)∇2F (r) (3.37)
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Figure 3.1: Comparison between the calculated scattered pressure using the Neu-
mann series and MoM forward solver. (a) the real part of χc1 of the OI. (b) The
imaginary part of χc1 of the OI. (c) Contrast of inverse density, χ2, of the OI. (d)
Comparing the magnitude of the scattered pressure at receiver positions using Neu-
mann and MoM forward solver. (e) Comparing the phase of scattered pressure at
receiver positions using Neumann and MoM forward solver.
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Substituting (3.27) into (3.37), we have

[
Ga2
{
ψ(r′)

}]∗
= ∇χ2(r) · ∇

∫
g(r′, r)ψ∗(r′)dr′

+ χ2(r)∇2

∫
D

g(r′, r)ψ∗(r′)dr′ (3.38)

When Ga2 operates on the ψ(r′), we have

Ga2
{
ψ(r′)

}
= ∇χ∗2(r) · ∇

∫
g∗(r′, r)ψ(r′)dr′ + χ∗2(r)∇2

∫
g∗(r′, r)ψ(r′)dr′ (3.39)

Thus, the adjoint operator Ga2 is written

Ga2
{
·
}

= ∇χ∗2(r) · ∇
∫
g∗(r′, r)(·)dr′ + χ∗2(r)∇2

∫
g∗(r′, r)(·)dr′ (3.40)

The adjoint operator of A that is mentioned in (3.13) can be found using (3.21) and

(3.40). It should be noted that the only assumption used to find the adjoint operator

is that the contrast of the reciprocal of the density is zero on the boundary. This

assumption is true in practice. With the OI surrounded by the background medium,

the contrast is zero on the boundary.

The way that the imaging domain and contrast profiles are discretized is explained

in Appendix A. In this Appendix, we also explain how to handle the singularity in

the domain equation. The Conjugate Cradient (CG) algorithm which is required in

MoM forward solver is explained in Appendix B.

The comparison between the magnitude and phase of scattered pressure at receiver

positions using the Neumann series and MoM forward solver for a cylinder object

which has χc1 = 0.3− j0.05 and χ2 = 0.1 is shown in Figure 3.1.
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3.3 MoM Features

The MoM forward solver that was implemented for this thesis has some features

that make it fast and efficient. These features are

• The use of the marching-on-in-source technique.

• The use of the Toeplitz Block Matrix for the memory storage.

• The use of the fast Fourier transform (FFT) for matrix-vector multiplications.

These features are now explained in more details.

3.3.1 Marching-on-in-source technique

One of the methods used in this thesis to accelerate the MoM forward solver is

the marching-on-in-source method. As explained above, our MoM forward solver uses

the CG method to solve the associated Ax = b problem where x is the unknown total

pressure in the imaging domain. One of the inputs to the CG algorithm is an initial

guess for the unknown total field pressure. This initial guess is usually chosen to be

either the incident pressure inside the imaging domain or zero. The choice of the

initial guess plays a very important role in the number of CG iterations needed for

the convergence. That is, if we have a good choice for the initial guess (close to the

actual value of the total pressure inside the imaging domain), a much fewer number

of CG iterations will be needed. As a result, much less matrix-vector multiplications

will be performed; thus, having a much faster forward solver.

Herein, we have implemented the marching-on-in-source technique to provide a

good initial guess for the CG algorithm. This technique was originally developed for

the electromagnetic forward scattering problem [69], and here we apply this method
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to the ultrasound forward scattering problem. The idea behind this technique is

that if we have a couple of transmitters close to each other, and we know the total

pressure due to a few of them, we can somehow predict what the total pressure due

to an adjacent transmitter will be. This is due to the fact that if the transmitters are

close to each other, the total pressure inside the domain due to these transmitters

should be close to each other.

When using the marching-on-in-source technique in conjunction with the CG-

MoM forward solver, we first find the total pressure due to a few transmitters, say 3

of them, using a standard initial guess, e.g., zero. We then use these calculated total

pressures to find a good initial guess for the forward scattering problem corresponding

to the next transmitter. In the next step, we can use this recently-calculated total

pressure with previously-calculated total pressures to find a good initial guess for the

forward scattering problem corresponding to the next transmitter. This procedure

continues until we solve all the forward scattering problems.

Now, let’s explain this method in the mathematical framework. Assume that we

want to find a good initial guess for the forward scattering problem corresponding to

the mth transmitter. This good initial guess can be written as a linear combination

of the previously-found total pressures due to Q previous transmitters. Denoting

the initial guess corresponding to the mth transmitter by x0
m, and the total pressure

corresponding to the (m− q)th by xm−q, the initial guess can then be found as

x0
m =

Q∑
q=1

aqxm−q (3.41)

where aq is the weighting coefficient for the total pressure inside the domain due to

the transmitter m−q. These weighting coefficients are unknown. If we can find these
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unknown coefficients, we will then have our initial guess. To find these coefficients,

it should be noted that a good initial guess should be close to the exact solution. In

other words, it should minimize the following norm

argmin
x0m

{
||Ax0

m − b||2
}

(3.42)

where ‖‖ is denoted as the norm. Substituting (3.41) into (3.42), we have

argmin
aq

{
||A

Q∑
q=1

aqxm−q − b||2
}

(3.43)

The above minimization can be written as

argmin
aq

{
||

Q∑
q=1

aqAxm−q − b||2
}

(3.44)

where A is the operator that operates on the total pressure inside the domain, xm−q

is the total field due to the transmitter m − q and b is the incident field due to the

transmitter m. It should be noted that when A operates on xm−q, it gives the incident

pressure inside the domain due to transmitter m− q. Thus, (3.44) can be written as

argmin
aq

{
||

N∑
q=1

aqp
inc
m−q − pincm ||2

}
(3.45)

where pincm−q is the incident pressure inside the domain due to the transmitter m− q.

In our implementation, pincm−q is a column vector whose size is equal to the number

of discretizing pulses, N , within the imaging domain. Now, we can write the above
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minimization in the following form:

argmin
aq

{∣∣∣∣∣∣∣∣ (pincm−1 pincm−2 · · · pincm−Q

)


a1

a2

...

aQ


− pincm

∣∣∣∣∣∣∣∣2} (3.46)

where

(
pincm−1 pincm−2 · · · pincm−Q

)
is an N × Q matrix. This norm minimization is

equivalent to solving the following linear algebra equation:

(
pincm−1 pincm−2 · · · pincm−Q

)


a1

a2

...

aQ


= pincm (3.47)

Multiplying both sides of (3.47) with the Hermitian of the first term, we will have

(
pincm−1 pincm−2 · · · pincm−Q

)H (
pincm−1 pincm−2 · · · pincm−Q

)


a1

a2

...

aQ


=

(
pincm−1 pincm−2 · · · pincm−Q

)H
pincm (3.48)
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Therefore, these coefficients can be found as



a1

a2

...

aQ


=

[(
pincm−1 pincm−2 · · · pincm−Q

)H (
pincm−1 pincm−2 · · · pincm−Q

)]−1

(
pincm−1 pincm−2 · · · pincm−Q

)H
pincm (3.49)

Note that the size of the matrix for which we need to find the inverse according to the

above equation is Q×Q. As noted above, we may use the previous Q = 3 transmitters

to find a good initial guess for the next transmitter. In this situation, the size of the

matrix will be 3 × 3. Therefore, finding the inverse matrix is very quick. Also, the

matrix itself only depends on the incident pressures, which means that the matrix

itself can be precomputed and stored. Finally, having these coefficients, we can find

a good initial guess for each of our transmitters.

3.3.2 Toeplitz Block Matrix

To understand the Toeplitz block matrix, we first describe a Toeplitz matrix. A

Toeplitz matrix is a matrix whose diagonals are constant [70]. In our particular case,
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a symmetric Toeplitz matrix such as the following form is needed.

p e d r a m

e p e d r a

d e p e d r

r d e p e d

a r d e p e

m a r d e p





Now, let’s focus on our UT forward scattering problem. From (3.2) the following

term is common in both integrals:

∫
g(r, r′)dr′ (3.50)

This provides us with a hint as to how we might be able to take advantage of the

Toeplitz matrix properties in our numerical implementation. Before discussing this

further, let’s remind ourselves that we are dealing with a 2D time-harmonic problem

with e+jωt time-dependancy. Thus,

g(r, r′) =
1

4j
H

(2)
0 (k0|r− r′|) (3.51)

where k0 is the background wavenumber neglecting attenuation and H
(2)
0 is the zeroth-

order Hankel function of the second kind. To find the total pressure inside the imaging

domain, we should use the domain equation for which r, r′ ⊂ D. In this case, if we

discretize the imaging domain, the size of
∫
g(r, r′)dr′ will be N ×N where N is the
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total number of the pixels in the domain, that is

N = nx × ny (3.52)

and nx and ny are the number of pixels in the x and y directions respectively. As

can be seen in (3.51), the Green’s function depends only on the distance between

the source and observation points inside the domain. Therefore, if we discretize∫
g(r, r′)dr′, we have the following N ×N matrix.
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a1 a2 · · · any any+1any+2 · · · a2ny aN−ny aN−ny+1· · · aN

a2 a1
. . . any−1 any+2any+1

. . . a2ny−1 · · · aN−ny+1 aN−ny

. . . aN−1

... a2
. . .

...
... any+2

. . .
... · · · ... aN−ny+1

. . .
...

any any−1 · · · a1 a2ny a2ny−1· · · any+1 aN aN−1 · · · aN−ny

any+1 any+2 · · · a2ny a1 a2 · · · any

any+2 any+1
. . .a2ny−1 a2 a1

. . .any−1
. . .

... any+2
. . .

...
... a2

. . .
...

. . .

a2ny a2ny−1 · · · any+1 any any−1 · · · a1

any+1any+2 · · · a2ny

... any+2any+1
. . . a2ny−1

. . .
...

...
... any+2

. . .
...

. . .
...

a2ny a2ny−1· · · any+1

aN−ny aN−ny+1· · · aN a1 a2 · · · any

aN−ny+1 aN−ny

. . . aN−1
. . . a2 a1

. . .any−1

... aN−ny+1
. . .

...
. . .

... a2
. . .

...

aN aN−1 · · · aN−ny any any−1 · · · a1




As can be seen, this matrix consists of blocks; each of which is a Toeplitz matrix.

The size of each Toeplitz matrix is ny × ny and the total number of Toeplitz blocks

is nx × nx. If we think about each of these Toeplitz blocks as one element, then they



3.3. MoM Features 52

make a large Toeplitz matrix. For example, if we assume that nx = 5, then we have

25 Toeplitz blocks. These blocks will then make a block Toeplitz matrix that is shown

below. 


Now, let’s look at this matrix carefully. It can be easily seen that if we only know

the first row of this matrix, we can find the rest of its elements. Implementing this

into the algorithm will make it very efficient in terms of memory storage. This is due

to the fact that we only need to find and store N elements of this matrix instead of

N2 elements. This will be especially useful for the large domain problems considered

herein.

3.3.3 Fast Fourier Transform (FFT) Multiplication

The other technique implemented in the forward solver of this thesis to make the

CG-MoM forward solver faster, is the use of the fast Fourier transform (FFT) for

the matrix-vector multiplication. This is important because standard matrix-vector

multiplication has a computational complexity of the order of O(n2) whereas the com-

putational complexity of FFT-accelerated matrix-vector multiplication isO(n log(n)).

It is well-known that matrix-vector multiplication can be accelerated by the FFT

if the matrix is circulant. A circulant matrix is a Toeplitz matrix where each row is
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shifted with respect to the previous row [71]. For example, the following matrix is a

circulant matrix:

M O J A B I

I M O J A B

B I M O J A

A B I M O J

J A B I M O

O J A B I M





Circulant matrix-vector multiplication can be performed using FFT multiplication:



m0 m1 · · · mp−1 mp

mp m0
. . . mp−2 mp−1

... mp m0
. . .

...

m2
. . . mp

. . . m1

m1 m2 · · · mp m0





n0

n1

n2

...

np


= ifft

[
fft[M(1, :)] fft[N(:, 1)]

]
(3.53)

where M is the above circulant matrix and N is the above column vector. ifft

and fft are the inverse fast Fourier transform and fast Fourier transform, respec-

tively. M(1, :) is the first row of the circulant matrix and N(:, 1) is the column vector

that should be multiplied with a circulant matrix. Therefore, if we only know the

first row of a circulant matrix, we can find the results of a circulant matrix-vector

multiplication.

This method can be applied to the Toeplitz block matrix method mentioned in

Section 3.3.2. In this case, the N ×N matrix which is a large block Toeplitz matrix
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is to multiply an N × 1 vector. In this section, the goal is to show how to use only

the first row of the N ×N Toeplitz block matrix to multiply an N × 1 vector using

FFT multiplication. As mentioned in Section 3.3.2, the first row of the N×N matrix

corresponds to the first rows of nx Toeplitz blocks where the size of the first row of

each Toeplitz block is 1 × ny. To use the FFT multiplication, each Toeplitz block

matrix should be converted to a circulant matrix.

Conversion of a Toeplitz Matrix to a Circulant Matrix:

Being a Toeplitz matrix, a circulant matrix will have constant diagonals. To

convert a Toeplitz matrix into a circulant matrix [72], some columns should be added

to the Toeplitz matrix. For example, if we have the following ny×ny Toeplitz matrix,

a1 a2 · · · any−1 any

a2 a1 a2 any−1

... a2 a1
. . .

...

any−1
. . . . . . a2

any any−1 · · · a2 a1




we should add ny − 2 columns to convert it to a circulant matrix. The size of the

obtained circulant matrix will be ny × (2ny − 2). The elements which are added to

the first row of a Toeplitz matrix are (any−1 any−2 · · · a3 a2). The other elements of

the circulant matrix can be found using the first row of the circulant matrix as shown
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below:

a1 a2 · · · any−1 any any−1 any−2 · · · a3 a2

a2 a1 a2 any−1 any any−1 a4 a3

... a2 a1
. . . . . . . . . any any−1

. . .
...

any−1
. . . . . . a2 a3

. . . . . . any

any any−1 · · · a2 a1 a2 a3 · · · any−2 any−1




Here the yellow box is a Toeplitz matrix and the green box is added to a Toeplitz

matrix to make it a circulant matrix. It should be noted that an ny × ny Toeplitz

matrix should multiply an ny × 1 vector. Therefore, when a Toeplitz matrix is con-

verted into a circulant matrix, some elements should be added to the vector which

will be multiplied by the circulant matrix. This is due to the fact that the size of

the new circulant matrix is ny × (2ny − 2). Thus, the size of the vector which is

multiplied with this matrix should be (2ny−2)×1. The elements which are added to

a column vector are denoted by c1, c2, · · · cny−2. The advantage is that now instead

of using a Toeplitz matrix-vector multiplication, we can use a circulant matrix vector
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multiplication. The results of both matrix-vector multiplications are shown below:

a1 a2 · · · any−1 any any−1 any−2 · · · a3 a2

a2 a1 a2 any−1 any any−1 a4 a3

... a2 a1
. . . . . . . . . any any−1

. . .
...

any−1
. . . . . . a2 a3

. . . . . . any

any any−1 · · · a2 a1 a2 a3 · · · any−2 any−1





b1

b2

...

bny−1

bny

c1

c2

...
cny−2





=

a1 a2 · · · any−1 any

a2 a1 a2 any−1

... a2 a1
. . .

...

any−1
. . . . . . a2

any any−1 · · · a2 a1





b1

b2

...

bny−1

bny




It can be concluded that the value of c1, c2, · · · cny−2 should be set to zero to have

the same results for both matrix-vector multiplications. Because we only need to

store the first row of a block Toeplitz matrix, when a Toeplitz matrix is converted

into a circulant matrix, we only need to store the first row of this circulant matrix as

well as add n− 2 zero elements to the corresponding column vector. The size of the

vector obtained using this circulant matrix vector multiplication is 2ny − 2 so that

the last ny − 2 elements of this vector should be removed to have an ny-vector. We

should perform the same procedure for the first row of each nx Toeplitz matrices and

column vectors that corresponds to these Toeplitz matrices. It should be noted that

this block Toeplitz matrix makes a big Toeplitz matrix. Therefore, using the first

row of a block Toeplitz matrix, we can do the same procedure for the other Toeplitz
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matrices and find the final result.

Let’s explain this using one example. Assume that the matrix W which is a

block Toeplitz matrix with a size of N ×N multiplies a column vector of length N .

Further, assume that the size of each Toeplitz matrix is ny × ny. For this matrix-

vector multiplication, only the first N elements of this matrix are used. These first

N elements correspond to the first row of the matrix W and are denoted by W (1, :).

Now, let’s see how we can use the first row of this matrix, W (1, :), to perform this

matrix vector multiplication.








=




The first step corresponds to the case that the first ny rows of the N × N matrix

multiply a vector of size N as shown below. In this case, the first row of each of the

following block Toeplitz matrices are known. We should add ny − 2 elements (these

additional elements are chosen based on the above explanation) to the first row of

each Toeplitz matrices (for converting it to a circulant matrix) and add ny − 2 zero

elements to the corresponding column vector. Now, we can apply FFT multiplication.

It should be noted that the size of the vector obtained from multiplication of each

Toeplitz matrix with the corresponding column vector is a vector of length (2ny− 2).

The last ny − 2 elements of the results should be removed to have a column vector of

length ny. We should perform the same procedure for all the Toeplitz matrices which
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are in the first ny rows of N × N matrix. Therefore, the results of multiplication

of each Toeplitz matrix with the corresponding column vector will be an ny-vector.

Finally, all these vectors of length ny should be added.








=




The second step corresponds to the case that the second ny rows of the N×N matrix

multiply an N -vector as shown below. It should be noted that we only have the first

row of N × N matrix, W (1, :). Now, let’s see how can we use this information to

find the results of the multiplication of the second ny rows of N × N matrix by an

N -vector. As can be seen this N × N matrix consists of some Toeplitz blocks and

these Toeplitz blocks make a large Toeplitz matrix. Therefore, to find the first row of

the second ny rows of the N ×N matrix, which is denoted by W (ny + 1, :) , using the

first row of N × N matrix, W (1, :), we can use the properties of this large Toeplitz

matrix. To this end, we need to remove the last ny elements of W (1, :) and then add

the second ny elements of the W (1, :) as the first ny elements to make W (ny + 1, :).

Thus, we found the first row of the second ny rows of the N ×N matrix, W (ny +1, :).

Now, we should do the same procedure which is explained in the first step to perform
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the matrix vector multiplication using the FFT method.








=




The third step corresponds to the case in which the third ny rows of N ×N matrix

multiply an N×1 vector as shown below. Thus, similar to the previous step, we need

to find the first row of this ny × N matrix to use it for the FFT multiplication. To

find this row denoted by W (2ny + 1, :), we need to use W (1, :) and W (ny + 1, :). To

this end, we should remove the last ny elements of W (ny+1, :) and then add the third

ny elements of W (1, :) as the first ny elements of W (2ny + 1, :). Therefore, all the

elements of W (2ny + 1, :) are found and we can use this row to multiply this ny ×N

with an N vector.








=




We should do the same procedure for all ny × N matrices. It should be noted that
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to find the first row of each of these ny ×N matrices, we only need to know the first

row of the previous ny ×N matrix and W (1, :).
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4

Inverse Solver

Finding the quantitative acoustical properties of an object of interest (OI) is the

goal in the UT inverse scattering problem. As has already been discussed, in this

thesis we try to simultaneously reconstruct the contrast of compressibility and den-

sity profiles [6]. Having the quantitative profiles for these properties is useful for

several applications: medical imaging for distinguishing between healthy tissues and

malignant tissues, and industrial applications of non-destructive testing and evalua-

tion [7, 35–37]. As shown in (2.69) and (3.2), UT can be mathematically formulated

as an inverse scattering problem. This mathematical problem is non-linear and ill-

posed. Mathematically speaking, non-linearity comes from the fact that the unknowns

of this problem, i.e., contrast profiles and the total pressure inside the domain, are

nonlinearly related to the received pressure field which forms the data for the in-

verse problem. Physically speaking, non-linearity is due to multiple-scattering events

within the OI. That is, ultrasound waves do not travel in straight lines within the OI;

rather, they experience several scattering events while interrogating the OI. The ill-

posedness of this problem will be addressed in the next chapter where regularization

techniques are discussed.

To quantitatively solve this non-linear problem, various inversion algorithms have

been proposed such as the Born Iterative Method (BIM) [6,7,18], the Distorted Born
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iterative Method(DBIM) [19–22] and the Contrast Source inversion (CSI) algorithm

[23]. To handle non-linearity, these algorithms are iterative. They try to deal with

the multiple scattering within the OI by converging to a best estimate of multiple

scattering events within the OI. Therefore, these algorithms provide more accurate

reconstruction compared to linear (non-iterative) methods such as the Born and Rytov

approximation methods (linear methods cannot model multiple scattering events).

Therefore, linear methods introduce their own modelling error into the problem; i.e.,

the discrepancy between the scattered field resulting from the OI and the numerical

model of that field.

We choose to use a nonlinear method in this thesis wherein a cost function, which

is related to the discrepancy between the measured and simulated data, is created and

minimized. This cost function can be minimized using different types of optimization

methods, but in this thesis, BIM is chosen as our non-linear inversion algorithm. The

main reason for choosing this method is that BIM is more computationally efficient

compared to CSI and DBIM [7]. This is due to the fact that as opposed to DBIM and

CSI, BIM does not require the derivative of the cost function. However, the DBIM

and CSI algorithms usually provide better reconstruction for high contrast objects

compared to the BIM [7,21]. However, in biomedical imaging application, tissues will

typically have low contrast profiles, if the background medium (matching fluid) is

chosen wisely [7]. Therefore, noting that we generally have more flexibility to choose

an appropriate matching fluid, we can control the contrast of the OI to some extent.

It should also be noted that when we have low contrast profiles, a greater proportion

of the ultrasound wave energy will penetrate the OI (i.e., more interrogation energy)

providing more information about the OI. These considerations justify the use of BIM

instead of DBIM and CSI for this application.
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In Section 4.1, our formulation of the BIM equipped with balancing of the un-

knowns and the simultaneous use multiple-frequencies will be described. In Section

4.2, the two operators used in the data equation will be described and their adjoint

will be derived. Section 4.3, addresses an efficient method to find the Green’s func-

tion for the data operator. In Section 4.4, it will be explained how to formulate the

data operator to simultaneously reconstruct both the contrast of compressibility and

density profiles. Then, it will be shown how to numerically balance these two contrast

profiles in the inversion algorithm. This balancing method plays an important role

in better reconstruction of the contrast profiles. In Section 4.5, it will be shown how

to simultaneously invert multiple-frequency data sets to reconstruct contrast profiles.

The simultaneous inversion of multiple-frequency data sets provides better imaging

results because more information about the OI is utilized.

4.1 Born Iterative Method (BIM)

We now explain how the BIM quantitatively solves this nonlinear ill-posed UT

problem [6,7, 16]. The steps of the BIM can be summarized as follows.

1. Use the incident pressure as the total pressure in the first iteration (this is the

Born approximation). Note that in the case of multiple-frequency inversion

(to be described), we will have different incident pressures for each frequency.

Therefore, the number of incident field pressure vectors will be nTx× nf , each

of these vector will have a length of N where nTx is the number of transmitters,

nf is the number of frequencies and N is the number of discritized elements in

the imaging domain.

2. Linearize the associated integral equation by using the current approximate
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value for the total pressure distribution within the imaging domain D and then

solve for contrast profiles of OI. This requires the solution of a matrix equation.

The matrix is the discretized form of the data operator, and the right-hand side

is the measured scattered pressure. The conjugate gradient algorithm is applied

to this matrix equation to solve the contrast profiles. The conjugate gradient

algorithm requires the adjoint operators that we have already found. This step

also takes advantage of the balancing method (to be described). Simultaneous

frequency inversion is also incorporated into this step. To solve this matrix

equation, care needs to be taken to handle the ill-posedness of this system of

equations. This will need the use of an appropriate regularization technique,

which will be discussed in the next chapter.

3. Calculate the total pressure inside the domain based on the contrast profiles

predicted in the previous step. Now that we have newly predicted contrast

profiles from the previous step, we can update the total pressure distribution

within the imaging domain. In other words, in this step, we try to update

our knowledge regarding the multiple scattering events within the object of

interest. To this end, we need to run our forward solver nTx×nf times. As can

be seen, this step is computationally expensive. Therefore, we have used a CG-

FFT MoM in conjunction with the marching-on-in-source position technique as

described in Chapter 3.

4. Find the simulated scattered pressure at the receiver locations using the pre-

dicted contrast profiles. Having the total pressure within the OI, we can now

calculate the scattered pressure at the receiving cites using the data equation.

5. Find the residual between the measured and simulated scattered pressure. Hav-
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ing the calculated scattered pressure from the previous step, we can find the

discrepancy between the measured scattered pressure and the calculated (sim-

ulated) scattered pressure. This discrepancy tells us how close we are to the

actual solution.

6. Go back to step 2, incorporate the newly calculated total pressure distribution,

and continue iterations until the residual between the measured and simulated

scattered pressure is sufficiently small.

4.2 Data Operator

The data operator takes a contrast profile and produces the scattered pressure at

the specified receiver locations. For the UT case, this data operator is the sum of two

different operators, one for each of the two contrast mechanisms in the UT problem.

The first operator, which is denoted by G1s, operates on the complex contrast of

compressibility. The second operator, denoted by G2s, operates on the contrast of

inverse density.

According to (3.2), we can define these operators as

G1s(·) , k2
0

∫
D

g(r, r′)(·)p(r′)dr′ r /∈ D, r ∈ S (4.1)

G2s(·) ,
∫
D

g(r, r′)∇ ·
[
(·)∇p(r′)

]
dr′ r /∈ D, r ∈ S (4.2)

where subscript s denotes that the range of these two operators is in the measurement

domain, S, i.e., the domain containing the transceiver locations. When G1s and G2s

operate on the contrast profiles, they map the properties within the imaging domain,

r′ ∈ D, into pressure data outside the imaging domain, r ∈ S. Note that these
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operators are different from those operators which is explained in Chapter 3; i.e., G1

and G2. The operators G1 and G2 described in Chapter 3 are domain operators whose

domain and range are both located within the imaging domain D.

The Scattered pressure can be found using these data operators by substituting

(4.1) and (4.2) into (3.2) as

pscat(r) = G1s{χc1(r′)}+ G2s{χ2(r′)} (4.3)

The argument inside {} is the argument in which the operator operates.

In several inversion algorithms, including the one utilized in this thesis, the adjoint

of the data operators is required. Thus, the respective adjoint operators Ga1s and Ga2s

need to be found. Using the definition of the adjoint operator, the adjoint Ga1s must

satisfy the equation

< G1s{χc1(r′)}, ψ(r) >S=< χc1(r′),Ga1s{ψ(r)} >D (4.4)

where < · , · > is the inner product and subscripts S and D denote the domain over

which the inner products are taken. ψ(r) is an arbitrary function over S. Thus, we

see that Ga1s maps a function over S to one over D. According to the definition of the

inner product, we can expand (4.4) as

∫
S

G1s{χc1(r′)}ψ∗(r)dr =

∫
D

χc1(r′)
[
Ga1s{ψ(r)}

]∗
dr′ (4.5)

where ∗ denotes the complex conjugate. Substituting (4.1) into the left side of (4.5),
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we have

W1 =

∫
S

G1s{χc1(r′)}ψ∗(r)dr

=

∫
S

k2
0

∫
D

g(r, r′)χc1(r′)p(r′)dr′ψ∗(r)dr

=

∫
D

k2
0χ

c
1(r′)p(r′)

∫
S

g(r, r′)ψ∗(r)drdr′ (4.6)

Comparing (4.6) with the right side of (4.5), it can be concluded that

[
Ga1s{ψ(r)}

]∗
= k2

0p(r
′)

∫
S

g(r, r′)ψ∗(r)dr (4.7)

Thus,

Ga1s{ψ(r)} =
[
k2

0p(r
′)
]∗ ∫

S

g∗(r, r′)ψ(r)dr (4.8)

or in the general operator form:

Ga1s{ · } =
[
k2

0p(r
′)
]∗ ∫

S

g∗(r, r′)(·)dr (4.9)

We follow the same procedure to find Ga2s. Again the definition of the adjoint operator

gives

< G2s{χ2(r′)}, ψ(r) >S=< χ2(r′),Ga2s{ψ(r)} >D (4.10)

which can be expanded as the following form

∫
S

G2s{χ2(r′)}ψ∗(r)dr =

∫
D

χ2(r′)
[
Ga2s{ψ(r)}

]∗
dr′ (4.11)
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Substituting (4.2) into left side of (4.11), we have

W2 =

∫
S

G2s{χ2(r′)}ψ∗(r)dr

=

∫
S

∫
D

g(r, r′)∇′ ·
[
χ2(r′)∇′p(r′)

]
dr′ψ∗(r)dr (4.12)

Using the identity

∇′ ·
[
χ2(r′)∇′p(r′)

]
≡ ∇′χ2(r′) · ∇′p(r′) + χ2(r′)∇′2p(r′) (4.13)

we have

W2 =

∫
S

∫
D

g(r, r′)
[
∇′χ2(r′) · ∇′p(r′) + χ2(r′)∇′2p(r′)

]
dr′ψ∗(r)dr

=

∫
S

∫
D

g(r, r′)∇′χ2(r′) · ∇′p(r′)dr′ψ∗(r)dr

+

∫
S

∫
D

g(r, r′)χ2(r′)∇′2p(r′)dr′ψ∗(r)dr (4.14)

For the simplicity in writing, we define F (r′) as

F (r′) =

∫
S

g(r, r′)ψ∗(r)dr (4.15)

to give

W2 =

∫
D

F (r′)∇′χ2(r′) · ∇′p(r′)dr′ +

∫
D

F (r′)χ2(r′)∇′2p(r′)dr′ (4.16)

The first part of (4.16) can be expanded using the identity

∇′
[
F (r′)χ2(r′)

]
≡ χ2(r′)∇′F (r′) + F (r′)∇′χ2(r′) (4.17)
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Therefore, the first part of (4.16) will be

W3 =

∫
D

F (r′)∇′χ2(r′) · ∇′p(r′)dr′

=

∫
D

[
∇′[F (r′)χ2(r′)]− χ2(r′)∇′F (r′)

]
· ∇′p(r′)dr′

=

∫
D

∇′[F (r′)χ2(r′)] · ∇′p(r′)dr′ −
∫
D

χ2(r′)∇′F (r′) · ∇′p(r′)dr′ (4.18)

The first part of (4.18) can be expanded using (4.13) as

W4 =

∫
D

∇′[F (r′)χ2(r′)] · ∇′p(r′)dr′

=

∫
D

[
∇′ ·

[
F (r′)χ2(r′)∇′p(r′)

]
− F (r′)χ2(r′)∇′2p(r′)

]
dr′

=

∫
D

∇′ ·
[
F (r′)χ2(r′)∇′p(r′)

]
dr′ −

∫
D

F (r′)χ2(r′)∇′2p(r′)dr′

=

∫
∂D

F (r′)χ2(r′)∇′p(r′)dΓ−
∫
D

F (r′)χ2(r′)∇′2p(r′)dr′ (4.19)

where ∂D represents the integral over the boundary obtained using the divergence

theorem. If we assume that the contrast of the inverse density is zero on the boundary,

then the first term of W4 will be zero. The second part of W4 cancels with the second

part of (4.16). Thus, W2 can be written as

W2 = −
∫
D

χ2(r′)∇′F (r′) · ∇′p(r′)dr′ (4.20)

Comparing (4.20) with the right side of (4.11), we have

[
Ga2s{ψ(r)}

]∗
= −∇′p(r′) · ∇′F (r′) (4.21)
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Substituting (4.15) into (4.21), we have

[
Ga2s{ψ(r)}

]∗
= −∇′p(r′) · ∇′

∫
S

g(r, r′)ψ∗(r)dr (4.22)

Therefore, the adjoint we’re looking for is

Ga2s{ψ(r)} = −∇′p∗(r′) · ∇′
∫
S

g∗(r, r′)ψ(r)dr (4.23)

or in the operator form:

Ga2s{ · } = −∇′p∗(r′) · ∇′
∫
S

g∗(r, r′)(·)dr (4.24)

The above adjoint operator is the same as the one used in [7]. This completes the

derivation of the adjoint of the data operators needed by our inversion algorithm.

4.3 Efficient implementation of the data operator

This section deals with efficient implementation of the discretized data operator.

The data operator is dependent on: (1) the Green’s function value between a given

point in the imaging domain and the receiver location, and (2) the total field pressure

within the imaging domain due to the active transmitter. Therefore, the size of the

matrix which represents the discretized data operator will be (nTx×nRx)×N where

nTx is the number of transmitters, nRx is the number of receivers per transmitter,

and N is the number of discretized elements within the imaging domain.

As an example, let’s assume that we have 60 transducer in a UT system. When

one of these transducers is active as transmitter, the rest of the transducers work as

receivers. Also, assume that the OI is discretized into 10000 pulse basis functions.
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The size of the data operator will thus be 3540×10000. That is, we need to calculate

and store 3540× 10000 complex values for each frequency.

An efficient method is used in this thesis wherein we only calculate and store

nA × N complex numbers, where nA is the total number of receiving transducers.

For example, in the above example, the total number of transducers is nA = 60.

Therefore, 60×10000 complex numbers need to be calculated and stored which require

59 times less storage. This procedure is now explained.

As mentioned in Section 3.3.2, the Green’s function for our 2D time-harmonic

problem with e+jωt time-dependency is

g(r, r′) =
1

4j
H

(2)
0 (k0|r− r′|) (4.25)

where k0 is the wavenumber of the background medium neglecting attenuation and

H2
0 is the zeroth-order Hankel function of the second kind. It should be noted that in

contrast to the domain equation, where both r and r′ belong to the imaging domain

(r, r′ ∈ D), the data equation is used to find the scattered pressure at receivers

locations outside of the imaging domain, r /∈ D. In the data equation, r′ ∈ D, r ∈ S.

For the data equation, we cannot take advantages of the properties of a Toeplitz block

matrix as was the case for the domain equation. This is due to the fact that, r and

r′ belong to different domains.

In this thesis, we calculate and store the Green’s function values between the re-

ceiver locations and the discretized elements within the imaging domain, independent

of the active transmitter. This results in a matrix having the size of nA×N . We also

store the total pressure within the imaging domain per each transmitter in a different

matrix having the size of nTx×N . In other words as opposed to creating one matrix

of the size (nTx × nRx) × N , we create two smaller matrices of sizes nA × N and
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nTx × N . Then these two matrices can be used to implement the data operator on

the contrast profiles. In fact, this implementation does not explicitly construct the

data operator matrix. It implements the “operation” of the data operator using two

smaller matrices.

This technique is implemented using object oriented programming where we do

not have the actual matrix of the data operator stored, but rather have a function

which calculates the result of the operation of the data operator on contrast profiles.

This method is especially useful for large-scale problems, such as 3D UT, in which the

actual matrix for the data operator can be quite large. This method was originally

used in microwave tomography [73], and here we apply it to the UT problem.

It should also be noted that the above discussion was for the case of single fre-

quency. We have extended the above methods to the case of multiple frequencies.

Although the implementation of the above method is more complicated for the mul-

tiple frequency case, it uses the same idea as presented above.

4.4 Balancing of the Contrasts

The contrast variables have different magnitudes and must be balanced in order

for the BIM inversion to work well. It has already been shown shown in microwave

tomography that this balancing can create enhanced reconstructions [74]. The idea

behind this method is that if, for example, we have two unknowns but one unknown

is much greater than the other, the numerical algorithm will tend to favour the

reconstruction of the larger unknown. In microwave tomography, the real part of

the permittivity profile is often larger than the imaginary part of the permittivity

and without prior balancing, the resulting quantitative image of the real part of the

permittivity is much more accurate than that of the imaginary part of the permittivity
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profile.

To balance the unknowns, the expected range of the contrast profiles for the OI

should be known. For example, if we want to apply a balancing method for breast

imaging, we should know the range of values that can be expected for each of the con-

trast profiles for different breast tissues. This information is required for the proper

balancing of the reconstruction of contrast profiles. In other words, balancing the

unknowns needs some form of prior information about the OI. In practical situa-

tions, this prior information is usually available. For example, the expected range

of compressibility and density for different breast tissues are known. Therefore, the

ratio between the expected values for the compressibility and density values can be

estimated and then used in the balancing algorithm.

Now, let’s consider how this method can be applied to the UT problem. To this

end, G1s, G2s and the contrast profiles should be split into the real and imaginary

parts. This is due to the fact that the real and imaginary parts of compressibility and

density profiles can have different ranges of value. When G1s operates on the complex

contrast of compressibility, we have

G1s{χc1} = (G1sr + jG1si){χc1r + jχc1i} (4.26)

G1sr{·} , Re

(
G1s{·}

)
(4.27)

G1si{·} , Im

(
G1s{·}

)
(4.28)

where G1sr and G1si are the real and imaginary part of the operator G1s respectively.

The real and imaginary parts of χc1 are denoted by χc1r and χc1i. The above equation
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can be written in the following form

G1s{χc1} =

[
G1sr{χc1r} − G1si{χc1i}

]
+ j

[
G1si{χc1r}+ G1sr{χc1i}

]
(4.29)

Symbolically, we can write the above equation as

 G1sr −G1si

G1si G1sr


 χc1r

χc1i

 =

 Re
(
G1s{χc1}

)
Im
(
G1s{χc1}

)
 (4.30)

where Re(·) and Im(·) denote the real and imaginary parts of whatever is in the

parentheses.

When G2s operates on the contrast of inverse density, we have

G2s{χ2} = (G2sr + jG2si){χ2r + jχ2i} (4.31)

G2sr{·} , Re

(
G2s{·}

)
(4.32)

G2si{·} , Im

(
G2s{·}

)
(4.33)

where G2sr and G2si are the real and imaginary parts of the operator G2s, respectively.

The real and imaginary parts of χ2 are denoted by χ2r and χ2i. We also know that

χ2 is real, that is χ2i = 0. Thus, we have

G2s{χ2} = G2sr{χ2r}+ jG2si{χ2r} (4.34)
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The above equation can be written as

 Re
(
G2s{χ2}

)
Im
(
G2s{χ2}

)
 =

 G2sr

G2si

χ2r (4.35)

The scattered pressure is written as

pscat =

(
G1s G2s

) χc1

χ2

 (4.36)

Noting that when G1s and G2s operators, operate on the χc1 and χ2 respectively, the

result of each operation is a vector of length nRx× nTx. It should be noted that χc1

and χ2 correspond to the discretized form of χc1(r) and χ2(r) respectively. Expanding

(4.30) and (4.35), we have

 pscatr

pscati

 =

 G1sr −G1si G2sr

G1si G1sr G2si




χc1r

χc1i

χ2r

 (4.37)

where pscatr and pscati are the real and imaginary parts of scattered pressure. The size

of each of these column vectors is (nRx×nTx). It should be noted that in (4.37), the

contrast column vector consists of the real and imaginary parts of χc1 and the real part

of χ2. Having all the contrast profiles in a single column vector is very useful because,

in this thesis, the goal is to simultaneously reconstruct the contrast of compressibility

and density profiles. Thus, this vector constitutes the unknowns of the in inversion

algorithm. This 3N vector is updated at each iteration of the inversion algorithm.

To apply the balancing method, we introduce scalar balancing coefficients Q1, Q2,
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and Q3 into (4.37) as follows


pscatr

pscati

 =
Q1 G1sr Q2 −G1si Q3 G2sr

Q1 G1si Q2 G1sr Q3 G2si




Q−1
1 χc1r

Q−1
2 χc1i

Q−1
3 χ2r



 (4.38)

Therefore, if we know the range of expected values for the contrast profiles, we can

choose the scalars Q1, Q2 and Q3 so as to balance the values of the elements in these

contrast profiles. In the following, we define new contrast profiles and consider the

effect on the computations of including these balancing coefficients. New contrast

profiles are defined as

χcn1r =
χc1r
Q1

(4.39)

χcn1i =
χc1i
Q2

(4.40)

χn2r =
χ2r

Q3

(4.41)

where the superscript n denotes that these are the normalized contrast vectors which

are balanced using the balancing coefficients. Substituting these into (4.38), we have


pscatr

pscati

 =
Q1 G1sr Q2 −G1si Q3 G2sr

Q1 G1si Q2 G1sr Q3 G2si





χcn1r

χcn1i

χn2r

 (4.42)

According to (4.42), the real and imaginary parts of scattered pressure can be found

as

pscatr = Q1Re

(
G1s{χcn1r}

)
−Q2Im

(
G1s{χcn1i }

)
+Q3Re

(
G2s{χn2r}

)
(4.43)
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pscati = Q1Im

(
G1s{χcn1r}

)
+Q2Re

(
G1s{χcn1i }

)
+Q3Im

(
G2s{χn2r}

)
(4.44)

Now, we consider how these coefficients affect the adjoint operators. Now that we

have introduced balancing coefficients, we need to incorporate these into the adjoint

operators. The following explains how the adjoint operator are implemented when

balancing coefficients are included. It should be noted that in the inversion algorithm,

the adjoint operators operate on the results of applying the data operator to the

contrast profiles, that is, the adjoint operators operate on the scattered pressure

vector. Therefore, when Ga1s operates on the scattered pressure, we can split the

adjoint operator and scattered pressure into its real and imaginary parts as

Ga1s{pscat} = (Ga1sr + jGa1si){p
scat
r + jpscati } (4.45)

Ga1sr{·} , Re

(
Ga1s{·}

)
(4.46)

Ga1si{·} , Im

(
Ga1s{·}

)
(4.47)

where subscripts r and i denote the real and imaginary parts of Ga1s and pscat. Thus,

the real and imaginary parts of the result can be found as

Ga1s{pscat} =

[
Ga1sr{p

scat
r }+ Ga1sr{jp

scat
i }

]
+ j

[
Ga1si{p

scat
r }+ Ga1si{jp

scat
i }

]
(4.48)

The above equation can be written in matrix form as

 Ga1sr Ga1sr
Ga1si G

a
1si


 pscatr

jpscati

 =

 Re
(
Ga1s{pscat}

)
Im
(
Ga1s{pscat}

)
 (4.49)
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We perform the same procedure for Ga2s. Thus, we have

Ga2s{pscat} = (Ga2sr + jGa2si){p
scat
r + jpscati } (4.50)

Ga2sr{·} , Re

(
Ga2s{·}

)
(4.51)

Ga2si{·} , Im

(
Ga2s{·}

)
(4.52)

The real and imaginary parts of Ga2s{pscat} can be written as

Ga2s{pscat} =

[
Ga2sr{p

scat
r }+ Ga2sr{jp

scat
i }

]
+ j

[
Ga2si{p

scat
r }+ Ga2si{jp

scat
i }

]
(4.53)

Again, because the contrast of the inverse density, χ2, is real, the second part of (4.53)

is zero. The matrix form of Ga2s{pscat} can be written as

 Re
(
Ga2s{pscat}

)
Im
(
Ga2s{pscat}

)
 =

(
Ga2sr G

a
2sr

) pscatr

jpscati

 (4.54)

Using (4.49) and (4.54), we write the adjoint operator as


x1

x2

x3

 =


Ga1sr G

a
1sr

Ga1si G
a
1si

Ga2sr G
a
2sr


 pscatr

jpscati

 (4.55)

It should be noted that the size of each column vector x1, x2, and x3 is N . We

now apply balancing coefficients to the adjoint matrix. According to (4.38), we can
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understand how these coefficients affect the above equation.


x1

x2

x3

 =

Q1 Ga1sr Q1 Ga1sr

Q2 Ga1si Q2 Ga1si

Q3 Ga2sr Q3 Ga2sr




 pscatr

jpscati

 (4.56)

Thus, we have

x1 = Q1Re

(
Ga1s{pscatr }

)
+Q1Re

(
Ga1s{jpscati }

)
(4.57)

x2 = Q2Im

(
Ga1s{pscatr }

)
+Q2Im

(
Ga1s{jpscati }

)
(4.58)

x3 = Q3Re

(
Ga2s{pscatr }

)
+Q3Re

(
Ga2s{jpscati }

)
(4.59)

It should be noted that x1, x2 and x3 correspond to χcn1r , χ
cn
1i and χn2r respectively.

Therefore, if we use a balancing method in the inversion algorithm, a 3N vector is

found at each iteration of the inversion algorithm. The first N elements correspond

to χcn1r , the next N elements correspond to χcn1i , and the last N elements correspond

to χn2 . To find the actual values of the contrast profiles, each contrast profiles should

be multiplied by its corresponding balancing coefficient.

4.5 Simultaneous frequency inversion

In UT, we are usually faced with a large domain problem in terms of the wave-

length [7]. The number of unknowns is very large. As mentioned in Section 4.4, if we

assume that the total number of pixels in the imaging domain is N , then the number

of unknowns will be 3N . These unknowns are the real and imaginary part of contrast

of compressibility and the contrast of inverse density (each of them is an N vector).
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For example, if we assume that the size of the domain is 20λ × 20λ and we use 10

cells per wavelength, then the total number of cells in the imaging domain will be

N = 200 × 200 = 40000. The total number of unknowns will be 3N = 120000. To

successfully reconstruct this many unknowns requires that we obtain sufficient infor-

mation about the OI. There are two well-known ways to get more information about

the OI:

• Increasing the number of receivers and transmitters.

• Using multiple-frequency data sets instead of a single-frequency data set.

For any measurement system, we can usually only incorporate a limited number of

transmitters and receivers. Therefore, the only way to compensate for this imbal-

ance between the number of data and the number of unknowns is to perform our

measurements at multiple frequencies, thus generating more information about the

OI.

Two different methods are proposed to invert a multiple-frequency data set: (1) a

frequency hopping technique, and (2) a simultaneous frequency inversion technique.

In the frequency hopping technique, the inversion is first applied to the lowest fre-

quency data set. The converged image will be given as the initial guess to the inversion

algorithm when applied to the next higher frequency data set. This process continues

until all frequency data sets have been used. In other words, the frequency hop-

ping technique attempts to first reconstruct low resolution information about the OI.

As we use higher frequency data sets, the algorithm will provide higher resolution

information about the OI [8, 9, 19].

In the second method, the data sets for all the frequencies are used simultaneously

to reconstruct the OI [6, 10–13]. The simultaneous frequency inversion method is

much more complicated in terms of the code development compared to the frequency
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hopping technique. However, the results obtained using this method are usually much

better than the frequency hopping technique. In this thesis, simultaneous frequency

inversion is used.

To implement simultaneous frequency inversion, scattered pressure values for all

the, say nf , frequencies are concatenated and stored in a single vector. The matrix

form of the data operator for these simultaneous frequencies can then be written as

Q1G1sr,f1 −Q2G1si,f1 Q3G2sr,f1

Q1G1si,f1 Q2G1sr,f1 Q3G2si,f1

Q1G1sr,f2 −Q2G1si,f2 Q3G2sr,f2

Q1G1si,f2 Q2G1sr,f2 Q3G2si,f2

...
...

...

Q1G1sr,fnf−1 −Q2G1si,fnf−1 Q3G2sr,fnf−1

Q1G1si,fnf−1 Q2G1sr,fnf−1 Q3G2si,fnf−1

Q1G1sr,fnf
−Q2G1si,fnf

Q3G2sr,fnf

Q1G1si,fnf
Q2G1sr,fnf

Q3G2si,fnf





χcn1r

χcn1i

χn2r




=

pscatr,f1

pscati,f1

pscatr,f2

pscati,f2

...

pscatr,fnf−1

pscati,fnf−1

pscatr,fnf

pscati,fnf




(4.60)

where f1, f2, · · · , fnf
denote the nf data sets. Each block in the data operator matrix

corresponds to the data operator at a specific frequency. When the data operator for

each frequency operates on the contrast profiles, the scattered pressure corresponding

to that frequency is found. For example, when the yellow block in the data operator

matrix, which corresponds to the data operator for frequency f1, operates on the

contrast profiles vector, the scattered pressure due to the first frequency is found. We

also use the yellow block for this scattered pressure to indicate that this scattered
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pressure corresponds to f1. It should be noted that the size of the scattered pressure

vector for each frequency is (2 × nRx × nTx) where the first nRx × nTx elements

correspond to the real part of scattered pressure and the second nRx×nTx elements

correspond to the imaginary part of scattered pressure at that frequency. Thus, the

size of scattered pressure vector in (4.60) will be (2× nRx× nTx× nf ).

Now consider how the adjoint of the data operator works for simultaneous fre-

quency inversion. The adjoint of the data operator for a single frequency is shown

in (4.56). The expansion of (4.56) for simultaneous frequency inversion is shown in

(4.61). As shown in (4.61), when the adjoint operator for each frequency operates on

the vector that is related to scattered pressure at that frequency, a 3N × 1 vector is

obtained. To indicate the results of each frequency, the subscripts f1, f2, · · · fnf
are

used and we also use a specific colour for each frequency to distinguish the compo-

nents of each frequency. For example, when the green block which corresponds to the

first frequency operates on the scattered pressure for that frequency, we can find x1,

x2 and x3 for that frequency. Each of them is a column vector of length N . We also

put the results in a block of the same colour to indicate that it corresponds to that
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frequency.

Q1Ga1sr,f1 Q1Ga1sr,f1 Q1Ga1sr,f2 Q1Ga1sr,f2 · · · Q1Ga1sr,fnf
Q1Ga1sr,fnf

Q2Ga1si,f1 Q2Ga1si,f1 Q2Ga1si,f2 Q2Ga1si,f2 · · · Q2Ga1si,fnf
Q2Ga1si,fnf

Q3Ga2sr,f1 Q3Ga2sr,f1 Q3Ga2sr,f2 Q3Ga2sr,f2 · · · Q3Ga2sr,fnf
Q3Ga2sr,fnf



×

pscatr,f1

jpscati,f1

pscatr,f2

jpscati,f2

...

pscatr,fnf

jpscati,fnf





=

x1,f1 x1,f2 · · · x1,fnf

x2,f1 + x2,f2 + · · · + x2,fnf

x3,f1 x3,f2 · · · x3,fnf





(4.61)
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5

Regularization Methods

The fact that the UT problem is ill-posed means that a small change in the mea-

sured pressure data can lead to a huge change in the predicted contrast profiles.

Therefore, regularization methods, such as the Truncated Singular Value Decompo-

sition (TSVD) [27, 75], the standard Tikhonov [22, 26–28], various type of Multi-

plicative [30, 31], the Conjugate Gradient Least Squares (CGLS) [24, 25, 27] or the

L1-norm Tikhonov methods [32, 33], should be applied to handle the ill-posedness of

this problem. In this thesis, the CGLS regularization technique is chosen because it is

computationally efficient, requiring only a few matrix-vector multiplications [6,24,25].

In contrast to some other regularization techniques such as the TSVD method, the

CGLS regularization method does not require the full storage of the ill-posed matrix.

Noting that in UT we are usually faced with a large domain problem due to the small

operating wavelength, the CGLS regularization method is a reasonable choice.

In this chapter, the ill-posedness of the inverse problem is described. The concept

of regularization is then explained using the idea of singular value decomposition

(SVD). Finally, some regularization methods, including the one used in this thesis,

will be explained.
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5.1 Why do we need a regularization?

According to Hadamard’s definition, a well-posed problem must satisfy the fol-

lowing three criteria [17,76]:

1. The solution must exist.

2. The solution must be unique.

3. The solution must be stable.

In our UT problem, we know that a solution exists because there is an object to

be imaged in the measurement system. Regarding the uniqueness of the solution,

it cannot be generally guaranteed for the UT problem. In fact, several acoustical

profiles might result in the same scattered pressure data. However, there is generally

a remedy for having multiple solutions: collecting more data. That is, as we collect

more data (e.g., by having more transducers or more frequencies, etc) we reduce the

number of possible solutions. In fact, in electromagnetic imaging, it has been shown

that under some conditions, the electromagnetic inverse scattering problem can have a

unique solution [77,78]. On the other hand, the instability of the solution with respect

to a small change in the measured data is always present due to the mathematical

formulation of this problem. Therefore, the main effort of regularization techniques

is to handle this instability. Note that small changes in the measured data cannot be

controlled due to measurement noise. Thus, regularization techniques mainly try to

handle the instability of the inverse problem.

We now look at the UT mathematical formulation to explain the ill-posedness

of this problem. The data equation in the UT problem is ill-posed because it is a

Fredholm integral equation of the first kind where all the unknowns of the problem are
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inside the integral and the Green’s function of this integral (Kernel) has no singularity

[79,80]. The general form of a Fredholm integral equation of the first kind is

∫ b

a

K(r, r′)q(r′)dr′ = w(r) (5.1)

where K(r, r′) is the Kernel function, w(r) represents the measurement results and

q(r′) is the unknown of this problem which resides inside the integral. For imaging

problems, the observation point, r, is outside the domain of integration. The fact

that r and r′ cannot be the same means that the Kernel of this integral equation

does not have a singularity. That is the Kernel is smooth [80]. One of the issues in

this type of Fredholm integral equation of the first kind is that w(r) is smoother than

q(r′) [27,80,81]. This means that the integral operation of the kernel on the unknown

results in some loss of high-spatial frequency information. The integral operator act as

a low-pass filter, passing low-spatial frequency components, and suppressing the high-

spatial frequency components. Noting that high-spatial frequency components might

be lost in the noise, the integral operator might develop a numerical nullspace [79,82].

Having a numerical nullspace, we may be faced with a set of solutions (i.e., a non

uniqueness of the solution).

5.2 The Singular Value Decomposition

The discrete form of the data operator shown in (4.60) can be considered as a

matrix equation Ax = b where the matrix A represents the discrete form of the data

operator, the vector b stores the measured scattered pressure at the receiving cites,

and the vector x is the vector of unknowns. Using the singular value decomposition,
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A can be written as [27,75,80]

A = UΣV H (5.2)

where U = (u1, u2, · · · , um) and V = (v1, v2, · · · , vm) are orthonormal matrices that

contain the left and right singular vectors of the matrix A, respectively [27]. The

superscript H denotes the Hermitian operator. The diagonal matrix Σ contains the

singular values of the matrix A [27, 75,80]:

Σ =

σ1 0 · · · 0 0

0 σ2 0 · · · 0

... 0 σ3
. . .

...

0
. . . . . . . . . 0

0 0 · · · 0 σm




, 0 ≤ σm ≤ · · · ≤ σ3 ≤ σ2 ≤ σ1 (5.3)

Note that the diagonal elements of the matrix Σ are ordered starting with the largest

singular value. In general, the largest singular value of an ill-posed operator is much

larger than its smallest singular value. Thus, the condition number of an ill-posed

operator, defined as the ratio of the maximum singular value to the minimum singular

value, can extremely large [27,80]. It should also be noted that [27]

If A ∈ Cn×m =⇒


U ∈ Cn×m

Σ ∈ Rm×m

V ∈ Cm×m

(5.4)

Introducing (5.2) into Ax = b, we have

UΣV Hx = b (5.5)
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Multiplying both sides of (5.5) with UH , we have

UHUΣV Hx = UHb
U is orthonormal matrix−−−−−−−−−−−−−→

UHU=UUH=I
ΣV Hx = UHb (5.6)

Multiplying with the inverse of Σ gives

Σ−1ΣV Hx = Σ−1UHb
Σ−1Σ=ΣΣ−1=I−−−−−−−−−→ V Hx = Σ−1UHb (5.7)

Finally, if we multiply both sides of (5.7) with V , we find x as

V V Hx = V Σ−1UHb
V is orthonormal matrix−−−−−−−−−−−−−→

V HV=V V H=I
x = V Σ−1UHb (5.8)

Noting that the Σ is a diagonal matrix, the inverse of this matrix will be

Σ−1 =

1
σ1

0 · · · 0 0

0 1
σ2

0 · · · 0

... 0 1
σ3

. . .
...

0
. . . . . . . . . 0

0 0 · · · 0 1
σm




(5.9)

Therefore, (5.8) can be written as [27,80]

x =
m∑
i=1

uHi b

σi
vi (5.10)

The above equation shows that the solution x is the superposition of the right sin-

gular vectors, each of which is weighted by weighting coefficients. The weighting

coefficients are dependent on the left singular vectors, the measured data vector b,
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and the singular values. It should be noted that the measured data vector b consists

of two parts: (1) the true value (noiseless) of the measured data, and (2) the error

due to the measurement noise and the numerical noise (round-off error). These two

parts, the true value and the noise term, are not separable. We just assume that

they are separable to explain the concept of regularization. Thus, the measured data

vector can be written as

b = bexact + e (5.11)

where bexact is the true value (noiseless) of the measurements and e is the error due to

the measurement noise or numerical error. Substituting (5.11) into (5.10), we have

x =
m∑
i=1

uHi b
exact

σi
vi +

m∑
i=1

uHi e

σi
vi (5.12)

Note that the denominator in both of these summations goes to zero or is very small

for large values of the summation index i. However, the numerator of the first term in

(5.12), i.e., uHi b
exact, goes to zero faster than its denominator [27,75]. This is usually

referred to as the discrete Picard condition [27,80,83]. Therefore, there is no stability

problem with the first summation term of (5.12). However, in the second term of

(5.12), the numerator value does not change significantly as the summation index i

increases. This can be understood by thinking of e as white noise and uHi e can be

thought of as different spatial frequencies of the white noise, which should be the

constant [83]. Thus, the numerator of the second term does not change that much.

On the other hand, the denominator of the second summation term becomes smaller

and smaller when i increases. This results in the ”blow-up” of the second summation

term, which ultimately results in the ”blow-up” of the solution x. This explains why

a small change in the measured data, in this case due to the noise e, can result in a
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huge change in the solution. In what follows, regularization methods to handle this

instability issue are described. If implemented correctly, these regularization methods

can stabilize the solution and aid its convergence.

5.3 Truncated Singular value Decomposition

One way to handle the stability problem is to not include all of the singular values

in the SVD of A. To this end, we truncate the summation in (5.12) to filter out small

singular values that make the denominator go to zero faster than the numerator.

Thus, instead of using m in (5.12), we choose k as the truncation index [27, 75, 80].

Thus, we have

x =
k∑
i=1

uHi b
exact

σi
vi +

k∑
i=1

uHi e

σi
vi 1 ≤ k < m (5.13)

and the method is called TSVD. The choice of k plays an important role in regular-

ization; it becomes the regularization parameter. This is due to the fact that if k is

chosen to be a large number, close to m, then the denominator can go to zero faster

than the numerator, blowing up the solution. On the other hand, if k is chosen to

be small, the denominator doesn’t go to zero but the solution will be overly smooth

and we lose resolution. Therefore, k needs to be chosen in such a way that we have

a proper balance between these two situations.

5.4 Tikhonov Regularization

Tikhonov regularization [22, 26–29] is probably the most popular regularization

method. We will now explain how this regularization method works, and compare it

with the TSVD method. First, note that x, the solution of Ax = b, can be found
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using the following minimization [79]:

x = arg min
x

{
||Ax− b||22

}
(5.14)

However, due to the ill-posedness of the operator A, such an approach will be unstable

and lead to the wrong answer. Tikhonov regularization adds one more terms to the

cost functional, the two-norm of the solution [27, 28]. This term is usually called

the penalty term or the regularization term [30]. Thus, we now have the following

regularized cost functional

xtikhonov
λ = arg min

x

{
||Ax− b||22 + λ2||Lx||22

}
(5.15)

where λ ∈ R+ is a regularization parameter and L is a matrix that operates on x.

xtikhonov
λ is the solution using Tikhonov regularization for the regularization parameter

λ. The Tikhonov cost functional, CTikhonov, is the summation of the data misfit cost

functional ||Ax− b||22 and a regularization term with an appropriate weight λ2; i.e.,

CTikhonov , ||Ax− b||22 + λ2||Lx||22 (5.16)

To solve (5.15), we may write it in the following equivalent form [84]

xtikhonov
λ = arg min

x

{∥∥∥∥∥∥∥
 A

λL

x−

 b

0


∥∥∥∥∥∥∥

2

2

}
(5.17)

where 0 is the zero vector of appropriate size. (This equivalent form is sometimes

referred to as the damped least squares problem [85, 86].) The minimization shown
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in (5.17) is equivalent to the following equation.

 A

λL

x =

 b

0

 (5.18)

Multiplying both sides of (5.18) with the Hermitian of the first term, we will have

 A

λL


H A

λL

x =

 A

λL


H b

0

 (5.19)

or (
AH λLH

) A

λL

x =

(
AH λLH

) b

0

 (5.20)

Thus, we have

(AHA+ λ2LHL)x = AHb (5.21)

In Tikhonov regularization, L is usually chosen to be the identity matrix (L = I) [27].

If we assume that L = I, then (5.21) will be

(AHA+ λ2I)x = AHb (5.22)

Therefore, in Tikhonov regularization, we effectively solve the above equation instead

of solving Ax = b. The diagonal elements of AHA are modified by adding λ2 to all of

them. This will produce a regularized (stable) solution for our problem. As can be

seen if λ→ 0, the Tikhonov solution will be least square solution of Ax = b.

Now the main challenge is how to choose the regularization parameter. In practice,

it is usually chosen using either ad hoc techniques or more sophisticated regularization

parameter choice methods such as the generalized cross validation [27,55] and L-curve
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methods [27,80,87].

We now show how the Tikhonov regularization can stabilize the solution. To this

end, take the SVD of A and AH [27, 75,80]. The SVD of AH can be found as

AH =
(
UΣV H

)H
= V ΣHUH Σ is a real−−−−−−−−−→

diagonal matrix
AH = V ΣUH (5.23)

Therefore, (5.22) can be written as

[
V ΣUHUΣV H + λ2I

]
x = V ΣUHb (5.24)

or [
V ΣIΣV H + V diag(λ2)V H

]
x = V ΣUHb (5.25)

where diag(λ2) is a diagonal matrix having the square of the regularization parameter

as its diagonal elements. Factoring the V on the left and right sides of (5.25), we have

V diag(σ2
i + λ2)V Hx = V ΣUHb (5.26)

Therefore, x can be found as

x = V diag
( σi
σ2
i + λ2

)
UHb (5.27)

or, more informatively, as [27, 75]

x =
m∑
i=1

σi
σ2
i + λ2

uHi bvi =
m∑
i=1

σ2
i

σ2
i + λ2

uHi b

σi
vi (5.28)

Comparing (5.28) with the first term of (5.12), it can be seen that we have an extra

multiplicative factor. This new multiplicative factor has a similar role as k in the
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TSVD method. To understand this, let’s have a closer look at this factor. For

small values of i, the corresponding singular values are larger than the regularization

parameter (i.e., λ� σi). Therefore [27, 75],

σ2
i

σ2
i + λ2

for the small i−−−−−−−−→
λ�σi

σ2
i

σ2
i + λ2

≈ 1 (5.29)

Therefore, when i is small, this extra multiplicative term is approximately one, and

thus has no effect. As i increases, the corresponding singular values become smaller

and smaller (i.e., σi → 0) as shown in (5.3). Therefore, eventually, σi � λ, and

the multiplicative term in (5.28) goes to zero, effectively truncating the summation.

Concisely, we can write [27, 75]

σ2
i

σ2
i + λ2

i↗−−−→
σi�λ

σ2
i

σ2
i + λ2

≈ 0 (5.30)

Comparing Tikhonov regularization with the TSVD, we see that whereas TSVD trun-

cates the summation at a chosen k to prevent the blow-up of the solution, Tikhonov

regularization method uses the extra multiplicative term σ2
i /(σ

2
i + λ2) to handle the

instability. This extra multiplicative factor filters out the high spatial frequency in-

formation which corresponds to small singular values. As can be seen, both Tikhonov

and TSVD regularization are almost doing the same thing: they both dampen the

high spatial frequency information to prevent instability.

Now, the main question is that if they are the same in terms of effect, why would

one use Tikhonov regularization. The reason is that Tikhonov regularization is com-

putationally more efficient than the TSVD method for two reasons: (1) Tikhonov

regularization does not require one to calculate the SVD of the matrix A whereas

the TSVD method does. In Tikhonov regularization, we simply solve (5.18) using an
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iterative technique such as the conjugate gradient algorithm. This is important as

the computational complexity of the conjugate gradient algorithm is O(n2) whereas

the computational complexity of the SVD is O(n3). (2) Tikhonov regularization does

not need the full storage of the matrix A, it just needs the operation of A and AH

on vectors of appropriate size whereas the TSVD method requires the full storage of

the matrix A in order to find its SVD.

It should be noted that the choice of λ is crucial for Tikhonov regularization.

This is due to the fact that when λ is too big (it is equivalent to using a small k in

TSVD), we are far from the exact solution because too much information will be lost.

Thus, the residual error (Axtikhonov
λ = b) will be large. However, if λ is too small (it

is equivalent to using a large k in TSVD), the residual error will be a small number

but there is chance that before σ2
i /(σ

2
i + λ2)→ 0, the denominator goes to zero and

the solution blows up; thus, having an extremely large value for ||x||22. Therefore, a

good choice of λ is really important in Tikhonov regularization. Several techniques

are proposed to find the regularization parameter such as the L-curve method [27,87],

or Generalized Cross Validation (GCV) [55].

5.5 CGLS Regularization

Krylov subspace methods, such as conjugate gradients for least squares (CGLS),

least squares with QR factorization (LSQR), and the general minimum residual

method (GMRES), solve the least squares problem by iteratively projecting the so-

lution into the Krylov subspace. To see how they work, we first define the Krylov

subspace. Assume we have a matrix A ∈ Rn×n and a vector b ∈ Rn, then the Krylov

subspace of order k (k ≤ n) associated with this matrix and vector, denoted by
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Kk(A, b), is equal to [27,88]

Kk(A, b) = span {b, Ab,A2b, · · · , Ak−1b} (5.31)

That is, the Krylov subspace of order k is the space that can be spanned by vectors

b, Ab, · · · , Ak−1b.

Now, assume that we want to solve Ax = b using the CGLS method which is a

Krylov subspace method. At each iteration of the CGLS algorithm, the solution is

projected into a Krylov subspace constructed by A and b. In early iterations of the

CGLS, the order of the subspace is small; however, as the number of CGLS iterations

increases the order of the Krylov subspace increases. For example, in an early CGLS

iteration, the solution might be projected into span {b, Ab,A2b}. However, after a few

more iterations, the solution is now projected on to span {b, Ab,A2b, A3b, A4b, A5b}.

As the CGLS iteration number increases, the order of the Krylov subspace increases

until the final solution is sufficiently accurate. At that point, the CGLS method is

terminated.

Note that our current discussion is in the framework of solving Ax = b when A is

a well-posed matrix. The discussion on how to use this method as a regularizer will

come later. The other thing that needs to be addressed is what happens if the matrix

is not square, for example when A ∈ Rm×n and b ∈ Rm. In this case the Krylov

subspace associated with this pair will span [83,88]

Kk(ATA,AT b) = span {AT b, (ATA)AT b, (ATA)2AT b, · · · , (ATA)k−1AT b} (5.32)

Now, let’s see what is the concept behind the Krylov subspace methods. When

the order of the Krylov subspace is small, it is only spanned by vectors containing
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low spatial frequencies. However, as the order of Krylov subspace increases, it is

spanned by vectors containing high spatial frequencies. That is, when applying a

Krylov subspace method such as the CGLS method to Ax = b to solve for x, the

method first constructs the low spatial frequency components of x. As the CGLS

iterations continue, higher spatial frequency components of x will be constructed.

After sufficient spatial frequency components of x have been constructed, the solution

x will be said to have sufficient accuracy, and the CGLS method is terminated.

Given this basic concept of how the Krylov subspace method solves Ax = b for a

well-posed matrix A, we describe a regularization scheme to solve Ax = b when A is

an ill-posed matrix. Recall that in the TSVD method, the solution is projected onto

a set of right singular vectors, but not all of the right singular vectors are used. In

fact, we terminated the expansion of the solution in terms of right singular vectors

at an appropriate index k. This was based on the fact that the singular vectors cor-

responding to the larger singular values contain low spatial frequency information,

however as the index of right singular vectors increases, they contain more high spa-

tial frequency information [89]. This is very similar to the methodology of a Krylov

subspace method. As in TSVD we will need to truncate the Krylov subspace method

before reaching high spatial frequency components which will make the solution un-

stable. Recall that the TSVD regularized solution is expanded in terms of the right

singular vectors, vi, as

x =
k∑
i=1

uHi b

σi
vi (5.33)

with coefficients given by the inner-product of the corresponding left singular vector

with the RHS divided by singular value. As can be seen, the summation is truncated

at the index k. That is, we do not allow our regularized solution x to be spanned by

right singular vectors vi>k. In other words, the TSVD regularized solution is spanned
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by

xTSV D = span {v1, v2, · · · , vk} (5.34)

Now, we can do the same thing using the Krylov subspace method. The whole

idea is that we need to terminate the Krylov subspace method, for example, the

CGLS method, before ‖Ax− b‖ is minimized so that the solution remains stable.

To achieve this regularized solution, we minimize ‖Ax− b‖ under the constraint

x ∈ Kk(ATA,AT b). Limiting the solution to lie within Kk(ATA,AT b) produces the

regularized solution of the problem to order k. The challenge with this method is how

to choose an appropriate k (Krylov subspace order). This is similar to the challenge

that we have in finding the termination index of the TSVD method.

This CGLS regularization technique has been used for microwave tomography

applications [24, 25]. To apply this technique to the UT problem considered herein,

we use the ad hoc method of finding k proposed in [24]. In this ad hoc method,

the termination index is chosen to be small in the early iterations of the BIM, and

as the BIM gets closer to the solution, the termination index k increases. This is

consistent with the concept of adaptive regularization [90] for nonlinear ill-posed

problems. In adaptive regularization, the regularization weight is changed at each

iteration of the optimization algorithm. It is chosen to be large in early iterations of

the optimization algorithm, and is reduced as one gets closer to the solution. In our

case, the termination index acts as the regularization weight: the smaller the Krylov

subspace, and therefore, the larger the regularization effect.

The CGLS algorithm is shown as Algorithm 5.1 [91]. In this algorithm, the con-

trast profile vector, x, is a real column vector of length 3N where the first N elements

correspond to the real part of the contrast of compressibility after applying a balanc-

ing method (χcn1r). The second N elements of this vector correspond to the imaginary
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part of the contrast of compressibility after applying the balancing method (χcn1i ), and

the last N elements correspond to the contrast of inverse density after applying the

balancing method (χn2r). In the single frequency case, when operator A operates on

this real 3N contrast profile vector, the results of this operation will be a real vector of

size 2×nRx×nTx where the first nRx×nTx elements of this real vector correspond

to the real part of the scattered field and the next nRx × nTx elements correspond

to the imaginary part of the scattered pressure. Thus, in the single frequency case,

when operator A operates on the contrast profile, the first nRx × nTx elements of

the resulting vector, which correspond to the real part of the scattered pressure, are

found using (4.43). The next nRx × nTx elements of the resulting vector, which

correspond to the imaginary part of the scattered pressure, are found using (4.44).

This procedure can be easily extended to the multiple-frequency case. In the

multiple-frequency case, we have several A operators, each of which corresponds to one

specific frequency. When each of these operates on an appropriate vector of length 3N ,

the result will be a real vector of length 2× nRx× nTx. For simultaneous frequency

inversion, we use the information of all frequencies at the same time. Therefore, after

the corresponding operator for each frequency operates on an appropriate vector, the

nf resulting vectors, each being real vector of length 2×nRx×nTx, are concatenated

into a single real vector of length 2× nRx× nTx× nf .

The adjoint operator, Aa, operates on a real 2× nRx× nTx vector in the single-

frequency case. The result of this operation is a real vector of length 3N . The first,

second and third set of N elements of this vector can be found using (4.57), (4.58),

and (4.59) respectively. In the multiple-frequency case, when the adjoint operator

operates on a real vector of length 2× nRx× nTx× nf , the result obtained by this

operation is a real vector of length 3N . Now let’s consider how we can find the result,



5.5. CGLS Regularization 100

a 3N -vector, of the operation of multi-frequency adjoint operator on a real vector of

length 2 × nRx × nTx × nf . To this end, Aa corresponding to the first frequency

operates on the first 2×nRx×nTx elements of the 2×nRx×nTx×nf vector. The

results of this operation using (4.57), (4.58), and (4.59) is a real 3N -vector. Then,

Aa corresponding to the second frequency operates on the second 2 × nRx × nTx

elements of the 2 × nRx × nTx × nf vector and the result of this operation using

(4.57), (4.58), and (4.59) is another real 3N -vector. We continue this procedure for

all the frequencies to find nf different real vectors of length 3N . These 3N -vectors

are added to find the result of the operation of the multi-frequency adjoint operator.

It should be noted that the result, x, in Algorithm 5.1, obtained with the last

iteration of the CGLS regularization method is a real 3N -vector where the first N

elements correspond to the balanced version of the real part of the compressibility

contrast profile, the second set of N elements to the balanced version of the imaginary

part of the compressibility, and the last set of N elements to the balanced version of

the inverse density contrast profile. To find the actual contrast values, the reciprocal

of the balancing coefficients must be multiplied to each of these balanced profiles.

The procedure utilized in this thesis to find the contrast profiles, which is based

on the BIM in conjunction with the CGLS regularization algorithm and the MoM

forward solver, is shown in Appendix E.
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Algorithm 5.1 CGLS Algorithm

Input: A, Aa, and b are known in Ax = b
Output: Finding x in Ax = b using CGLS [91]

1: x(0) = 0 (starting vector)
2: r(0) = b− Ax(0)

3: d(0) = Aar(0)

4: for k = 1, 2, · · · , K do (K is the number of CGLS iterations)

5: αk =
∥∥Aar(k−1)

∥∥2

2
/
∥∥Ad(k−1)

∥∥2

2
(αk is scalar)

6: x(k) = x(k−1) + αkd
(k−1)

7: r(k) = r(k−1) − αkAd(k−1)

8: βk =
∥∥Aar(k)

∥∥2

2
/
∥∥Aar(k−1)

∥∥2

2
(βk is scalar)

9: d(k) = Aar(k) + βkd
(k−1)

10: end for
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6

Results

In this section, the inversions of noisy synthetic and measured data are obtained

using the BIM in conjunction with the CGLS regularization method. As explained

in the previous chapters, the goal in this thesis is to simultaneously reconstruct the

real part of the complex contrast of compressibility (χc1r), the imaginary part of the

complex contrast of compressibility (χc1i), and the contrast of inverse density (χ2)

from time-harmonic scattered pressure data. The effects of the balancing method

in the reconstruction algorithm and the use of multiple-frequency data sets, both of

which are utilized to improve the reconstruction results, are also discussed.

6.1 Synthetic Results

In this section, we use synthetic measured scattered data with added noise to

reconstruct the contrast profiles of various OIs. We attempt to reconstruct different

types of OIs such as a cylinder, two cylinders having the same contrast profiles, two

cylinders with different contrast profiles and a breast model. It should be noted that

these examples represent the so-called large-domain inverse problems as the size of

the imaging domain is large compared to the wavelength of operation. Also, the

discretization mesh used to obtain the synthetic scattered pressure is different from
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the meshes used in the inversion algorithm in all the examples so as to avoid the so-

called inverse crime. In all the following examples, the background medium (matching

fluid) is chosen to be water. Therefore, the background density and the background

speed of the sound are set to ρb = 1000[ kg
m3 ] and cb = 1483[m

s
], respectively. The

choice of water as a background medium for ultrasound biomedical tomography is

appropriate as it is easily available, non-toxic, and makes the OI have a relatively

low-contrast with respect to the background. This also means that more energy will

be coupled into the OI.

6.1.1 Reconstruction of a cylinder

In this example, a cylinder with a radius of 1.7λmin, and the contrasts of χc1 =

0.3 − j0.1, and χ2 = 0.1 is enclosed by a 10λmin × 10λmin imaging domain as shown

in Fig 6.1. The number of receivers, nRx, and number of transmitters, nTx, used to

reconstruct the contrast profiles are 80. To have more information about the OI, the

scattering data are collected at multiple frequencies. The number of frequencies, nf ,

and their exact values are

nf = 6, f = [ 250, 280, 310, 330, 360, 390 ] kHz

We also add three percent noise to the synthetic data set (synthetic scattered pres-

sure) using the following equation

pscatnoisy = pscatsimulated + (Average value)× (Noise Percentage/
√

2)× (Random Vector)

(6.1)
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Figure 6.1: True contrast profiles: (a) the real part of compressibility contrast, (b)
the imaginary part of compressibility contrast, and (c) the contrast of inverse density.

where

Average value = |pscatsimulated| (6.2)

− 1 < Random Vector < 1 (6.3)

It is this noisy synthetic data set that our inversion algorithm inverts.

In this example, the BIM inversion algorithm took only 8 iterations to converge.

The termination of the code is mainly based on having a data misfit cost function less

than a specified number and having the difference between two successive data misfit

cost function values less than a specified number. Also the number of the CGLS

regularization iterations at each iteration of the BIM inversion algorithm has been

chosen as 2, 4, 8, 18, 30, 50, 70, and 80 respectively. (Note that as we get closer to the

solution, the number of CGLS iterations increases.) The data misfit at each iteration

of the BIM inversion algorithm is shown in Table 6.1. The data misfit is defined as

Data misfit ,
‖pscat

measured − pscat
simulated‖2

‖pscat
measured‖2

(6.4)

The results of the reconstruction of contrast profiles for the first, second, fourth,
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Table 6.1: Data misfit for different iterations of the BIM inversion algorithm for the
cylinder with a radius of 1.7λmin.

BIM Iteration Number Number of CGLS Iterations Data misfit

1 2 0.5837
2 4 0.1496
3 8 0.0533
4 18 0.0254
5 30 0.0202
6 50 0.0176
7 70 0.0148
8 80 0.0125

sixth, and eighth BIM iterations is shown in Fig 6.2. It should also noted that the

balancing factors in this example are all chosen to be unity: Q1 = Q2 = Q3 = 1

It is instructive to compare the reconstruction result at the first BIM iteration

with that at the last BIM iterations. The first iteration of the BIM represents the

Born approximation, which is one of the most common linear inversion methods.

Although the reconstruction result for the first BIM iteration provides a qualitative

image of the OI, it totally fails at quantitatively estimating the acoustical properties

of the OI. For example, the true value of χc1r is 0.3. The reconstruction at the first

BIM iteration estimates this to be about 0.07. On the other hand, the last iteration

of the BIM, which represents a nonlinear inversion of this data set, estimates this

value to be about 0.25.

6.1.2 Reconstruction of two cylinders

We now consider two cylinders each with a radius of 1.2λmin, and the contrast

profiles of χc1 = 0.2− j0.01 and χ2 = 0.05 enclosed within a 10λmin × 10λmin imaging

domains as shown in Fig 6.3. The number of transmitters and receivers used in this

example are 80. Six frequencies of operation, f = [ 250, 280, 300, 320, 340, 360 ]
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Figure 6.2: Simultaneous reconstruction of χc1 and χ2 for the cylinder data set with
three percent noise. The first, second, third, fourth and fifth rows correspond to the
reconstruction of the contrast profiles at the 1st, 2nd, 4th, 6th, and 8th iterations of the
BIM respectively.
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kHz, are used for the simultaneous frequencies inversion method. Note that the

contrast profiles of this object are not within the same numerical range. Therefore, the

balancing method is utilized to enhance the reconstruction. The balancing coefficients

for this example are chosen to be

Q1 = 1, Q2 = 0.1, Q3 = 0.2

Similar to the previous data set, three percent noise is added to the synthetic sim-
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Figure 6.3: True value of contrast profiles for two identical cylinders. The size of the
domain is 10λmin× 10λmin. (a) the real part of the contrast of compressibility (b) the
imaginary part of contrast of compressibility and (c) the contrast of inverse density.

ulated data using (6.1). For this example, the BIM converged at the 11th iteration.

The number of CGLS iterations at each iteration of the BIM inversion algorithm was

set to 2, 4, 18, 30, 50, 60, 80, 100, 120, 140, and 160 respectively. As for the first data

set, note that the number of CGLS iterations is allowed to increase as we get closer

to the solution. The data misfit at each iteration of the BIM is shown in Table 6.2.

The results of the reconstruction of the contrast profiles for the 1st, 3rd, 5th, 7th and

11th iteration of the BIM are shown in Fig 6.4.

Again the linear inversion method, i.e., the first iteration of the BIM, provides a

reasonable qualitative reconstruction but totally fails to provide a reasonable quanti-
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tative reconstruction for the OI. For example, the linear inversion estimates the value

of χc1r to be about 0.09 whereas the nonlinear inversion estimates the same value to be

about 0.18. As the true value is 0.20, it can be seen that nonlinear inversion outper-

forms the linear inversion at the cost of requiring more computatios. The other thing

that needs to be emphasized here is that it is usually stated that linear inversion is

sufficient for low contrast profiles. But, as can be seen in this low contrast example,

linear inversion is not successful at accurately reconstructing the quantitative infor-

mation. This is due to the fact that the size of the object is large compared to the

wavelength. Noting that the wavelength in UT is usually very small, most OIs will

be large objects compared to the wavelength of operation.

If we add more noise to the data set, we will require more regularization to prevent

the blow-up of the solution. That is, for example, k should be chosen a smaller

number in the TSVD method, λ should be chosen a larger number in the Tikhonov

regularization method, and the number of CGLS iterations should be decreased. One

way to add more noise to the data set is to add three percent noise using the maximum

value instead of the average value in (6.1). The reconstruction results of the contrast

profiles for this higher noise case are shown in Fig 6.5. In this case, the BIM converges

after only four iterations. As can be seen, with more noise added, the BIM converges

with fewer iterations. The number of CGLS iterations used at each iteration of the

BIM was 2, 4, 18, 30. In this case the number of CGLS iterations were fewer as

compared to that lower noise case. Note that adding more noise adversely affects

the quality of the reconstruction of the inverse density compared to the contrast of

compressibility. It was generally found that the density contrast was more difficult

to reconstruct.
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Figure 6.4: Simultaneous reconstruction of χc1 and χ2 for the two cylinder data set
with 3% noise based on the average value. The first, second, third, fourth and fifth
rows correspond to the reconstruction of contrast profiles for the 1st, 3rd, 5th, 7th and
11th iterations of the BIM inversion algorithm respectively.
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(c) Reconstructed χ2

Figure 6.5: Simultaneous reconstruction of χc1 and χ2 for the two cylinder data set
with three percent noise using the maximum value.

Table 6.2: Data misfit for different iterations of the BIM inversion algorithm for the
case that the OI is two cylinders with the same contrast profiles. Three percent noise
is added and also balancing coefficients are applied.

BIM Iteration Number Number of CGLS Iterations Data misfit

1 2 0.0392
2 4 0.0188
3 18 0.0152
4 30 0.0137
5 50 0.0121
6 60 0.0112
7 80 0.0107
8 100 0.0104
9 120 0.0103
10 140 0.0101
11 160 0.0102
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Table 6.3: Data misfit for different iterations of the BIM inversion algorithm for two
cylinders without applying a balancing method.

BIM Iteration Number Number of CGLS Iterations Data misfit

1 2 0.389
2 4 0.1268
3 18 0.0471
4 30 0.0355
5 50 0.0229
6 80 0.0167
7 110 0.0127
8 130 0.0101
9 150 0.0112

6.1.3 Two Cylinders Without Applying Balancing Method

To have a better understanding of the effect of the balancing method on the

reconstruction of the contrast profiles, the reconstruction of the previous target was

performed without applying the balancing method. That is the balancing factors

were set to Q1 = Q2 = Q3 = 1.

The data misfit for different iterations of the BIM is shown in Table 6.3. The true

solution is shown in Fig 6.3. The results of the reconstruction of the contrast profiles

for the 1st, 3rd, 5th, 6th and 9th iteration of the BIM are shown in Fig 6.6. Comparing

to Fig 6.4, it can be concluded that when the contrast profiles are not in the same

range, we will only have a good reconstruction for the dominant contrast profile. That

is, contrast profiles which are very small compared to the dominant contrast profile

are difficult to reconstruct without applying a balancing method. In this example, χc1i

and χ2 are more difficult to reconstruct due to this imbalance. Applying a balancing

method normalizes all the contrast profiles to be within the same numerical range

and a better reconstruction for all the contrast profiles is obtained.
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Figure 6.6: Simultaneous reconstruction of χc1 and χ2 for two cylinders without
applying the balancing method. The first, second, third, fourth and fifth rows cor-
respond to the reconstruction of contrast profiles for the 1st, 3rd, 5th, 6th and 9th

iterations of the BIM, respectively.
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6.1.4 Two-cylinders reconstruction with reduced information

In this section, we show the importance of having sufficient information about the

OI for the reconstruction of the contrast profiles. To this end, we show the recon-

struction of the two cylinders shown in Fig 6.3 using less information as compared to

those reconstructions reported in Fig 6.4. As a reminder, this example considers two

cylinders with a radius of 1.2λ, χc1 = 0.2 − j0.01, and χ2 = 0.05 within a 10λ × 10λ

imaging domain. The balancing coefficients have been chosen to be

Q1 = 1, Q2 = 0.1, Q3 = 0.2

As already explained in the previous chapters, there are two common ways to have

more information about the OI: (1) increasing the number of transmitters and re-

ceivers, and (2) using multiple frequency data sets. Thus, to reduce the amount of

information about the OI in this example, only a single frequency (f = 250kHz) is

used and also the number of transmitters and receivers have been reduced to 30.

BIM converges after six iterations; the number of CGLS iterations at each iteration

is 2, 4, 18, 30, 50, 80. The data misfit for different iterations of the BIM is shown

in Table 6.4. The reconstruction of χc1r, χ
c
1i, and χ2 for the first, second, third, fifth

and sixth iterations of the BIM inversion algorithm are shown in Fig 6.7. As can be

seen in Fig 6.7, we have poor reconstruction of the contrast profiles compared to the

results obtained using multiple frequency data shown in Fig 6.4. This is expected as

the amount of information about the OI used for the reconstruction is much smaller

than the total number of unknowns.
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(c) Reconstructed χ2

x

y

 

 

−0.02 −0.01 0 0.01 0.02

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

−0.1

−0.05

0

0.05

0.1

0.15

(d) Reconstructed χc
1r

x

y

 

 

−0.02 −0.01 0 0.01 0.02

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

−14

−12

−10

−8

−6

−4

−2

0

2

x 10
−3
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(f) Reconstructed χ2
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(i) Reconstructed χ2
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(l) Reconstructed χ2
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(o) Reconstructed χ2

Figure 6.7: Simultaneous reconstruction of χc1 and χ2 for two cylinders using a
single-frequency data set. The first, second, third, fourth, and fifth rows correspond
to the reconstruction of contrast profiles for the 1st, 2nd, 3rd, 5th and 6th iterations of
the BIM, respectively.
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Table 6.4: Data misfit for different iterations of the BIM inversion algorithm for two
cylinders using a single frequency.

BIM Iteration Number Number of CGLS Iterations Data misfit

1 2 0.5
2 4 0.1276
3 18 0.0257
4 30 0.0098
5 50 0.0039
6 80 0.0016

6.1.5 Two cylinders with different contrast profiles

In this example, two cylinders with different contrast profiles are enclosed within

a 10λmin × 10λmin imaging domain. The number of transmitters and receivers used

in this example are 90. Six frequencies between 250 kHz and 360 kHz are used with

the simultaneous frequency inversion method. The simulated scattered pressure is

contaminated with three percent (average) noise using (6.1). The following balancing

factors are used

Q1 = 1, Q2 = 0.1, Q3 = 0.2

The true contrast profiles are shown in the first row of Fig 6.8. The reconstruction of

the contrast profiles for the first, fourth and eleventh iterations of the BIM are shown

in the second, third and fourth row of Fig 6.8 respectively. The number of CGLS

iterations in the first, fourth and eleventh iterations of the BIM are 2, 40 and 250

respectively.

The results of the comparison between the exact value of contrast profiles with the

reconstructed contrast profiles for the elements on the antidiagonal from the bottom

left corner to the top right containing both cylinders are shown in Fig 6.9. The first,

second and third row of Fig 6.9 correspond to the first, fourth and eleventh iterations

of the BIM. Note that since the discretization mesh for the true profiles and the
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Table 6.5: Residual error for each contrast profile with respect to the exact value
of contrast profile for the case that the OI is two cylinders with different contrast
profiles. These values for each iteration of the BIM are shown below.

BIM Iteration

∥∥∥∥χc
1r(Exact)

−χc
1r(Simu)

∥∥∥∥
2∥∥∥∥χc

1r(Exact)

∥∥∥∥
2

∥∥∥∥χc
1i(Exact)

−χc
1i(Simu)

∥∥∥∥
2∥∥∥∥χc

1i(Exact)

∥∥∥∥
2

∥∥∥χ2(Exact)
−χ2(Simu)

∥∥∥
2∥∥∥χ2(Exact)

∥∥∥
2

1 0.6429 0.9776 1.0533
2 0.3918 0.9082 1.0819
3 0.3601 0.3754 1.0785
4 0.3332 0.2414 1.0655
5 0.3187 0.2194 1.0027
6 0.3047 0.2188 0.8753
7 0.3012 0.2193 0.7950
8 0.2943 0.2148 0.6832
9 0.2970 0.2133 0.6070
10 0.3021 0.2204 0.5484
11 0.3167 0.2192 0.4915

reconstructed profiles are different, we need to use an interpolation scheme to compare

the reconstructed profiles with the true profiles. Herein, a linear interpolation scheme

is used for this purpose. The error of each contrast profile with respect to the exact

contrast profiles for different BIM iterations are shown in Table 6.5. This example

confirms that the BIM is able to quantitatively reconstruct OIs with different contrast

profiles.

6.1.6 Simple Synthetic Breast Model

In this section, we apply the inversion algorithm to a simple numerical breast

model to reconstruct its contrast profiles. To this end, we assume that the background

medium is water. The attenuation of the background medium for different frequencies

is tabulated in [92]. In this example, it is assumed that the background attenuation
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Figure 6.8: Simultaneous reconstruction of χc1 and χ2 for two cylinders with different
contrast profiles. The first row is the true value of the contrast profiles. The second,
third and fourth rows correspond to the reconstruction of contrast profiles for the
1st, 4th and 11th iterations of the BIM respectively.
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Figure 6.9: Antidiagonal cut from the bottom left corner to the top right for the
case that the OI is two cylinders with different contrast profiles. The first, second
and third rows correspond to the first, fourth and eleventh iterations of the BIM.
The solid blue line corresponds to the actual contrast profiles and the dashed red line
corresponds to the reconstructed contrast profiles



6.1. Synthetic Results 119

of the water is

α0 = 0.0022
dB

cm

It should be noted that the speed of the sound in water is dependent on the tem-

perature of the water [93]. If the temperature of water is increased, the speed of the

sound in the water will be increased [93]. If we assume that the temperature of the

water in our model is 22◦C, then the speed of sound in this background medium will

be

cb ' 1483
m

s

We also know that the density of the background is ρb = 1000 [ kg
m3 ]. Therefore, using

(2.30), the compressibility of the background can be found. Thus, we have all the

information about the background medium. We only need to know the acoustical

properties of breast tissues to set the contrasts of compressibility and inverse density

for a numerical breast model. The properties used in this example are based on those

reported in [94] and are listed in Table 6.6. These properties of the breast, as well

as for other biomedical tissues, are also discussed in [14, 62, 64, 94–97]. Thus, using

Table 6.6 and the properties of the water background medium, the contrast profiles

for breast tissues can be found as shown in Table 6.7. It should be noted that the

value of the attenuation used in this work is for 1 MHz. As can be seen, the numerical

range of the contrast profiles varies considerably. Therefore, the following balancing

coefficient are applied to this problem

Q1 = 0.1, Q2 = 0.01, Q3 = 0.1
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Table 6.6: Ultrasound properties for breast tissue at 22◦C

Tissue c (m/s) ρ(kg/m3) α (dB cm−1MHz−1)

Fibroadenoma 1557 1010 0.09
Glandular 1511 970 0.22
Cancer 1533 990 0.13
fat 1492 950 0.35

Table 6.7: χc1 and χ2 for breast tissues at 22◦C

Tissue χc1r χc1i χ2

Fibroadenoma −0.1 −0.005 −0.01
Glandular −0.006 −0.003 0.03
Cancer −0.05 −0.007 0.01
fat 0.04 −0.002 0.05

Breast Model within a 12λmin × 12λmin imaging domain

The reconstruction results for the contrast profiles of a numerical breast model

within a 12λmin × 12λmin imaging domain are considered in this section. The breast

model along with the true contrast profiles are shown in Fig 6.10. The number of

transmitters and receivers used in this example is 90 (nRx = 90 and nTx = 90). The

number of frequencies and the actual frequencies used are

nf = 6, f = [ 250, 280, 300, 320, 340, 360 ] kHz

Similar to the previous section, 3% noise (based on the average value) was added to

the synthetic data set collected from this numerical breast model. In the following,

the results of the reconstruction of the contrast profiles for two different cases will be

shown.

The first case provides a balanced reconstruction for this multiple-frequency syn-

thetic data set. The BIM converged after 8 iterations. The number of CGLS iterations

for different iterations of the BIM is 2, 4, 18, 40, 80, 120, 150 and 180 respectively.
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The reconstruction of the contrast profiles for the first, third, fifth, sixth and eighth

iterations of the BIM is shown in Fig 6.11. The results of the comparison between the

exact value of the contrast profiles with the reconstructed contrast profiles for the el-

ements on the diagonal from the top left corner to the bottom right corner are shown

in Fig 6.12. The first, second, third, fourth and fifth rows of Fig 6.12 correspond

to the first, third, fifth, sixth and eighth iterations of the BIM. Note that since the

discretization mesh for the true profiles and the reconstructed profiles are different,

we need to use an interpolation scheme to compare the reconstructed profiles with

the true profiles. Herein, a linear interpolation scheme is used for this purpose. The

error of each contrast profiles with respect to the exact contrast profiles and data

misfit for different BIM iterations are shown in Table 6.8.

The second case shows the reconstruction of this same numerical breast model

for a single-frequency data set without the use of the balancing method. The single

frequency of the operation is 360 kHz. BIM converged after 8 iterations, and the

number of CGLS iterations at each iteration of the BIM was 4, 18, 30, 60, 100, 130,

160, 180, respectively. The results of the reconstruction of the contrast profiles for the

first, second, fourth, sixth and eighth BIM iteration are shown in Fig 6.13. Comparing

Fig 6.13 and Fig 6.11, it can be concluded that the multiple frequency method and

balancing method significantly improve the reconstruction of the contrast profiles.

This is due to the fact that (1) we use more information about the OI when using

multiple frequencies method, and (2) balancing the contrast profiles brings all the

contrast profiles within a similar range.
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Figure 6.10: True value of χc1 and χ2 for breast tissues for the case that the size of
imaging domain is 12λmin × 12λmin.

Table 6.8: Residual error and data misfit for the breast model within a 12λmin ×
12λmin imaging domain. These values for each iteration of the BIM are shown below.

BIM Iteration

∥∥∥∥χc
1r(Exact)

−χc
1r(Simu)

∥∥∥∥
2∥∥∥∥χc

1r(Exact)

∥∥∥∥
2

∥∥∥∥χc
1i(Exact)

−χc
1i(Simu)

∥∥∥∥
2∥∥∥∥χc

1i(Exact)

∥∥∥∥
2

∥∥∥χ2(Exact)
−χ2(Simu)

∥∥∥
2∥∥∥χ2(Exact)

∥∥∥
2

Data misfit

1 1.0297 0.9498 0.8463 0.4173
2 0.9297 0.7957 0.8805 0.1397
3 0.8913 0.2746 0.8285 0.0293
4 0.7313 0.2208 0.6749 0.0141
5 0.6309 0.1781 0.5768 0.009
6 0.5280 0.1783 0.4663 0.0082
7 0.4414 0.2106 0.3825 0.0083
8 0.4023 0.1885 0.3337 0.008
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(c) Reconstructed χ2
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(f) Reconstructed χ2
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(o) Reconstructed χ2

Figure 6.11: Reconstruction of χc1 and χ2 for the breast model within a 12λmin ×
12λmin imaging domain. The first, second, third, fourth, and fifth rows correspond to
the reconstruction of the contrast profiles for the 1st, 3rd, 5th, 6th, and 8th iteration of
the BIM, respectively.
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Figure 6.12: Diagonal cut from the top left corner to the bottom right for the breast
model within a 12λmin× 12λmin imaging domain. The first, second, third, fourth and
fifth rows correspond to the first, third, fifth, sixth and eighth iterations of the BIM.
The solid blue line corresponds to the actual contrast profiles and the dashed red line
corresponds to the reconstructed contrast profiles
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Figure 6.13: Reconstruction of χc1 and χ2 for the breast model within a 12λmin ×
12λmin imaging domain and three percent noise is added. A single frequency is used
and the balancing method is not applied. The first, second, third, fourth, and fifth
row correspond to the reconstruction of the contrast profiles for the 1th, 2th, 4th, 6th,
and 8th iterations of the BIM inversion algorithm respectively.
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Breast Model within a 22λmin × 22λmin imaging domain

In this example, we increase the size of the imaging domain as well as the size of the

breast model, to be closer to reality. The size of the imaging domain is 22λmin×22λmin

which in this case is 11.6 cm by 11.6 cm. Similar to the previous targets, the scattered

simulated data is contaminated by three percent noise using (6.1). Seven frequencies

between 250 kHz and 280 kHz are used for the multiple-frequency inversion method.

The number of transmitters and receivers used in this example are 120. Only four

BIM iterations are used and the number of CGLS series in each iteration is 4, 18, 50

and 80. The balancing coefficients that have been chosen for this example are the

same as for the smaller model:

Q1 = 0.1, Q2 = 0.01, Q3 = 0.1

It should be noted that in this case we truncated the BIM after only four iterations

due to the fact that this large domain problem is very computationally expensive (it

takes on the order of days). The results of the reconstruction of the contrast profiles

for different BIM iterations are shown in Fig 6.14.

6.2 Measurement Results

The UT measurement system which has been developed in the Electromagnetic

Imaging Laboratory at the University of Manitoba is shown in Fig 6.15. This system

consists of eight rows of transceivers. Each row consists of 32 transducers. The

frequency range for this system is between 0.7 MHz and 1.3 MHz. More information

about the system and the different types of calibration techniques which have been

used for the time-domain pulse data obtained from this system are explained in [1].
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Figure 6.14: Simultaneous reconstruction of χc1 and χ2 for the realistic numerical
breast model. The size of the domain is 11.6 cm by 11.6 cm (22λ × 22λ). nRx, nTx =
120, nf = 7 and 250KHz ≤ f ≤ 280KHz. Four BIM iterations are used. The number
CGLS iterations used in this example are 4, 18, 50 and 80.
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In the following, the reconstruction results of the contrast profiles for two OIs will be

shown.

The first measurements correspond to the case that the OI consists of two wires

as shown in Fig 6.16 (a). For reconstruction of this object, 32 transmitters and

5 receivers per transmitter are used (nTx = 32, nRx = 5). Also, 26 frequencies

between 1.1 MHz and 1.3 MHz are used for the multiple-frequency inversion method.

The measured data is calibrated using the incident field calibration [1]. The BIM

is then applied to the calibrated measured data. The reconstruction results of the

contrast profiles are shown in the second row of Fig 6.16.

The second measurements correspond to the case that the OI consists of three

wires as shown in Fig 6.17 (a). In this example, 32 transmitters and 5 receivers per

transmitter were used. The number of frequencies and the range of the frequency

used in this example are

nf = 26, 1.1MHz ≤ f ≤ 1.3MHz

The reconstructions of the contrast profiles for this OI using the incident field cali-

bration, are shown in the second row of Fig 6.17. It should be noted that the amount

of information obtained about the OI is very much smaller than the number of un-

knowns in this example. That is, the amount of information obtained about the OI

is

Amount of information = nRx× nTx× nf = 32× 5× 26 = 4160

At the highest frequency of f = 1.3 MHz, the wavelength is

λmin =
c

fmax

=
1483

1.3 MHz
= 0.0011m ' 1mm
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Therefore, if the size of imaging domain is 10 mm × 10 mm this is equivalent to

10λmin × 10λmin (the size that is needed for imaging this 3 wire object), then the

number of discretized elements in the x and y axes will be

nx = 100, ny = 100

where 10 cells per wavelength are assumed to sufficiently resolve the acoustic wave

problem. Therefore, the total number of discretized elements in the imaging domain

is

N = nx × ny = 10000

In this inversion algorithm, we simultaneously reconstruct the contrast of compress-

ibility and inverse density. We also know that the contrast of compressibility is a

complex value which counts for two unknowns in each cell. Therefore, the total

number of unknowns in this problem is

Total Number of unknowns = 3N = 30000

As can be seen, the total number of unknowns is much larger than the number of

data points (i.e., the information). In addition to this large discrepancy between

the number of unknowns and the number of data points, the level of noise is high

in this imaging system (low signal-to-noise ratio). Thus, we don’t expect to have

a good reconstruction of the OI in terms of quantitative imaging. However, we can

distinguish the three wires from each other; thus, having some qualitative information

about the OI. The fact that we can somehow distinguish these three wires shows the

high resolution capability of UT.
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Figure 6.15: The ultrasound measurment system at the Electromagnetic Imaging
Laboratory at the University of Manitoba.
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Figure 6.16: Simultaneous reconstruction of χc1 and χ2 for two wires.
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(a) Three wires
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Figure 6.17: Simultaneous reconstruction of χc1 and χ2 for three wires.



132

7

Summary, Conclusions and Future Work

7.1 Summary and Conclusions

In this dissertation, the Ultrasound Tomography (UT) problem was formulated

based on a two-dimensional (2D) inverse scattering model. This results in a quantita-

tive imaging modality which can open up new industrial and biomedical applications.

In terms of biomedical applications, it can be very useful because in addition to safe

ultrasound energy, it can potentially identify tissues based on their acoustic proper-

ties. Noting its ability to quantify tissue properties as well as its high resolution, due

to its small wavelength, it may be possible to distinguish between benign and malig-

nant tissues at an early stage of disease development. The following is a summary

and conclusion of the presented work:

• The UT problem was cast in the framework of inverse scattering. The mathe-

matical formulation associated with this inverse scattering problem was derived.

This mathematical formulation was based on to important integral equations:

data and domain equation.

• The ultrasound properties of the object of interest (OI) are its density and

compressibility. To the best of the author’s knowledge, most of the published
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work in this area assumes that the density profile is constant. That is, they

assume that density does not vary within the OI. However, in this thesis, both

compressibility and density profiles were taken as unknown and reconstructed.

This is important because experimental results show that the density profile

is not constant in human tissues. Therefore, the formulation in this thesis

can potentially provide more accurate images compared to images obtained by

assuming a constant density profile.

• The first step toward creating the inversion algorithm to deal with this problem

was to develop an appropriate forward solver. A forward solver based on the

Neumann series was implemented. This forward solver has the limitation that

the OI must be low contrast and small compared to the operating wavelength.

This limitation can be serious for UT as the objects, e.g., a human breast, can

be considerably larger than the ultrasound wavelength.

• Due to the limitations of the Neumann series forward solver, an efficient MoM

forward solver, based on the CG algorithm, was implemented to handle OIs

which are large compared to the wavelength. To use this forward solver, an

appropriate operator and its adjoint for the acoustic case were developed. These

were derived and used in the implementation of the MoM forward solver.

• To make this MoM faster and more efficient, extra features were developed. The

first feature used a marching-on-source technique to find a better initial guess for

the CG algorithm so as to converge in less iterations. The second feature used

the properties of block Toeplitz matrices to save on memory storage. The third

feature utilized the FFT-based matrix-vector multiplication so as to reduce the

computational complexity. Using this fast and efficient forward MoM forward
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solver, domains as large as 22λ× 22λ were simulated.

• The inversion algorithm that was utilized in this thesis was the Born Itera-

tive Method (BIM). The BIM is an iterative inversion algorithm which requires

calling the forward solver at each iteration. The MoM forward solver was in-

corporated into the BIM for the UT problem. As the BIM also requires a

regularization technique at each of its iterations, the CGLS method was used as

a regularization algorithm because it is one of the fastest available regularization

techniques.

• The developed inversion algorithm simultaneously reconstructs the compress-

ibility and density profiles. To make this inversion algorithm more capable, the

ability to simultaneously invert multiple-frequency data sets was added to the

algorithm. Also, a balancing method was added to the inversion algorithm to

result in more accurate quantitative images.

• This inversion algorithm was applied to synthetically-collected as well as mea-

sured data. The results obtained show that having quantitative images from

this technique is possible. However, the accuracy of the reconstructed images

was not always good especially for the density profile when a significant amount

of noise was added.

• It was also shown in this thesis that the use of multiple-frequency data sets is

crucial to obtaining sufficient information about the object of interest. Using a

single-frequency data set often results in large imbalances between the number

data points and the number of unknowns to be reconstructed.

• It was also shown that when the contrast profiles to be found are not numerically

in the same range, the dominant one is often reconstructed with more accuracy.
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It was also shown that the use of a balancing method can improve the overall

reconstruction accuracy for all the contrasts. The use of this balancing method

requires prior information about the existence and approximate ratio of the

imbalance.

In summary, the ultrasound inverse scattering algorithm implemented in this the-

sis is capable of providing three quantitative images of the object being imaged.

These three quantitative images provide information about the object. However, in

its current state of development, this algorithm sometimes fails to provide accurate

images. In such situations, the reconstruction of the real and imaginary parts of the

compressibility profile is relatively accurate; but, that of the density profile contains

oscillatory artifacts.

7.2 Future Work

Several suggestions to improve the developed UT inversion algorithm are as fol-

lows.

• Making the code parallel so as to be able to invert larger domains.

• Using a regularization method that has an edge preserving feature such as the

multiplicative weighted L2-norm total variation regularizer or the L1-norm ad-

ditive regularizer. This may improve reconstruction results. The multiplicative

weighted L2-norm total variation regularizer is explained in Appendix C and

the concept of L1-norm additive regularizer is explained in Appendix D.

• In cases in which we do not need to know the compressibility and density con-

trast values independently, it might be more efficient to reconstruct the speed

of sound within the tissue. This is due to the fact that the speed of sound is



7.2. Future Work 136

dependent on both the compressibility and the density. Therefore, the varia-

tions of compressibility and density profiles will be reflected in the variation

of the speed of sound profile. The advantage of using this method compared

to what was done in this thesis is that in this case we would only have one

contrast. Therefore, the number of unknowns decreases so that this method

is computationally more efficient, and fewer data points would need to be col-

lected. In addition, it is this author’s opinion that this method would require a

fewer number of CGLS iterations.

• The 2D inversion algorithm could be extended to a 3D inversion algorithm.

• The Time of Flight tomography (TFT) approach can be combined with the UT

inversion algorithm. TFT is computationally more efficient than the inversion

algorithm presented here, because instead of solving the full wave equation

which is computationally expensive, the geometrical acoustic ray approximation

is used. Thus, one would apply TFT to reconstruct qualitative images of the

OI and then use this information as a prior information for the UT inversion

algorithm to reconstruct the quantitative images of the OI.
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A

Discretization of the Forward Model

In this thesis, the imaging domain is discretized into square cells and the Method

of Moments (MoM) algorithm is based on the Richmond’s method [98]. Noting that

we are concerned with 2D ultrasound tomography, we only need to discretize the

imaging domain along the x and y axes. The number of discretized elements in the x

and y axis is denoted by nx and ny. Thus, the total number of discretized elements

(cells) in the imaging domain will be

N = nx × ny (A.1)

The discretized imaging domain is shown in Fig A.2. In this figure, the red dashed

circle is the location of the transducers. This measurement domain is outside the

imaging domain.

Similar to Richmond’s paper, it is assumed that in each square cell the pressure

is uniform [98]. Thus, the size of each square cell must be small enough for this

assumption to hold [98]. Therefore, we only need to find the pressure at the centre

of each cell [98].

We now discretize the operator on this square cell mesh. As shown in (3.1), the
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total pressure can be found as

p(r) = pinc(r) + k2
0

∫
g(r, r′)χc1(r′)p(r′)dr′

+

∫
g(r, r′)∇ ·

[
χ2(r′)∇p(r′)

]
dr′ (A.2)

where g(r, r′) is the Green’s function.

The contrast profiles, χc1 and χ2, are discretized using pulse basis functions. That

is, it is assumed that within each discretization cell, the value of the contrast profile

is constant. A finite difference method is used to find the gradient and divergence

in this thesis [99]. For example, the gradient of the pressure for the two-dimensional

case at the position (i, j) as shown in Fig A.1 can be found as

∇pi,j =
pi+1,j − pi−1,j

2∆x
âx +

pi,j+1 − pi,j−1

2∆y
ây (A.3)

where pi,j is the pressure at the position (i, j). ∆x and ∆y are the distance between

the two successive discretized elements in the x and y axes respectively. As can be

seen in (A.3), the central difference is used to find the gradient of the pressure [99].

This is due to the fact that both the backward and forward points around the centre

are used [99].

In this thesis, the incident pressure in the imaging domain, is assumed to be that

of a point source. That is, we place a point source at the position of each transmitter

and then we find the pressure in the imaging domain due to that point source. Thus,

the incident field is the pressure due to a point source which is given as

1

4j
H2

0 (k0|r− r′|) (A.4)
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Figure A.1: Calculation of ∇pij for the 2D case using the central finite difference
approximation.

where r is the position of the transmitter and r′ corresponds to the position of the

centre of each discretized imaging domain. Thus, for each transmitter, the size of

the incident pressure vector in the imaging domain will be N . We construct such

as incident pressure vector for all transmitters and frequencies, and this represents

the information about the incident pressure. It should be noted that in this case the

position of r and r′ are always different because the transmitter is outside the imaging

domain.

As can be seen in (A.2), the Green’s function is the common part in both integrals.

This Green’s function for the 2D time-harmonic problem (assuming a e+jωt time

dependency) is

g(r, r′) =
1

4j
H2

0 (k0|r− r′|) (A.5)

Thus,

k2
0

∫
D

g(r, r′)dr′ =
k2

0

4j

∫
D

H2
0 (k0|r− r′|)dr′ (A.6)
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To find the total pressure in the imaging domain D, the domain equation is used.

In the domain equation, both r and r′ belong to the imaging domain (r, r′ ∈ D). It

should be noted that in this case we are faced with a singularity when the observation

point is at one of the locations, r′, within D where the integration is taken. Say this

is the centre of cell n [98]. To handle this singularity, the following method is used

(based on [98]):

k2
0

4j

∫
H2

0 (k0|r− r′|)dr′ =


−j
2

[
πk0aH

(2)
1 (k0a)− 2j

]
if m = n

(−jπk0a
2

)J1(k0a)H
(2)
0 (k0|rm − rn|) if m 6= n

(A.7)

where m is the cell of the observation point and n identifies a cell in the imaging

domain. The position vectors rm and rn are the position vectors for the centre of

these cells. The parameter a denotes the radius of a circle which has the same area

as the square cell. That is,

πa2 = dx × dy =⇒ a =

√
dx × dy
π

(A.8)

where dx and dy denote the length of each side of the square cell (in our case, dx = dy).
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Figure A.2: The discretization of the imaging domain using square cells is shown in
this figure. nx and ny are the number of elements in the x and y axis. The red dashed
circle represents the location of the transducers.
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B

Conjugate Gradient Method

In this Appendix, we will explain how to use the CG method to find x in Ax = b.

As explained before, x, the solution of Ax = b can be found using the following

minimization [79]:

x = arg min
x

{
||Ax− b||22

}
(B.1)

where ||Ax− b||22 is called the cost functional and is denoted by C. The CG method

is an iterative method where x is updated in each iteration as [30,79,100,101]

x(n+1) = x(n) + α(n)s(n) (B.2)

where x(n+1) and x(n) are the x for (n+ 1)(th) and n(th) iterations respectively. s(n) is

the search direction for the n(th) iteration and α(n) is the weighting parameter that

controls the size of search direction. In this method, the search direction can be found

as [30,79,100,101]

s(n) = g(n) + β(n)s(n−1) (B.3)

where g(n) is the gradient of the cost function for the i(th) iteration. The coefficient

β is a scalar parameter. There are different methods to find this coefficient such as

the classical form and Polak-Ribiere formula [79]. In the classical conjugate gradient
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method, β can be found as [30,79]

β =

∥∥g(n)
∥∥2

2

‖g(n−1)‖2
2

(B.4)

It should be noted that β is zero in the first iteration. The gradient of the cost

function can be found as

∂C(x)

∂x

∣∣∣
x=xn

(ψ) = lim
ε→0

‖A(x+ εψ)− b‖2
2 − ‖Ax− b‖

2
2

ε

= lim
ε→0

(‖Ax− b‖2
2 + ε2 ‖Aψ‖2

2

ε

+
2εRe < Ax− b, Aψ > −‖Ax− b‖2

2

ε

)
= 2Re < Ax− b, Aψ >

= 2Re < AH(Ax− b), ψ > (B.5)

Thus, the gradient of the cost function is

g = AH(Ax− b) (B.6)

α(n) should be chosen in such a way that minimizes the cost function [30,101]. There-

fore, we will have

∂C

∂α

∣∣∣
x=x(n+1)

= 0 (B.7)

The cost function for multiplicative regularization at x = x(n+1) is

C(x = x(n+1)) =
∥∥Ax(n+1) − b

∥∥2

2
=
∥∥A(x(n) + α(n)s(n))− b

∥∥2

2

=
∥∥(Ax(n) − b) + Aα(n)s(n)

∥∥2

2
(B.8)
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or

C(x = x(n+1)) =

(∥∥Ax(n) − b
∥∥2

2
+ [α(n)]2

∥∥As(n)
∥∥2

2
+ 2α(n)Re < Ax(n) − b, As(n) >

)
(B.9)

Therefore, the gradient of the cost function with respect to α(n) can be found as

∂C

∂α(n)

∣∣∣
x=x(n+1)

= 2α(n)
∥∥As(n)

∥∥2

2
+ 2Re < Ax(n) − b, As(n) >= 0 (B.10)

Therefore, α(n) can be found as

α(n) =
−Re < Ax(n) − b, As(n) >

‖As(n)‖2
2

(B.11)
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C

Multiplicative Regularization

A Multiplicative regularization [30, 102–105] is one of the most important and

powerful regularization methods. In this method, instead of adding one term to the

cost function explained in Section 5.4, we multiply the cost function by a regular-

ization term. One form of the multiplicative regularizer which has received lots of

attention is the weighted L2-norm total variation multiplicative regularizer. In this

method, we will have the following minimization to solve Ax = b [30, 102,105]

xmultiplicative = arg min
x

{
‖Ax− b‖2

2

‖b‖2
2

∫
d2
n

[
|∇x|2 + δ2

n

]
ds

}
(C.1)

The above minimization is usually performed iteratively using the CG method. The

parameter δ2
n is a positive parameter at the nth iteration of the CG algorithm. This

parameter controls the strength of regularization [30]. Thus, this parameter is some-

times referred to as the steering parameter. Also, dn is defined as [30,102]

dn ,
1√

Area
(
|∇xn−1|2 + δ2

n−1

) (C.2)

where xn−1 is the predicted x at the (n − 1)th iteration of the CG algorithm. Note

that as opposed to Tikhonov regularization, the cost function to be minimized in this

method is changing. This is due to the fact that the parameters δn and dn which define
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the cost function change at each iteration of the CG algorithm. In fact, according to

(C.1), the cost function of multiplicative regularization will be

Cn(x) =
‖Ax− b‖2

2

‖b‖2
2

∫
d2
n(r)

[
|∇x|2 + δ2

n

]
ds (C.3)

where the cost function is dependent on the number of iteration n. Note that this cost

function consists of two parts: (1) the first part of the cost function corresponds to

the least square solution and it is denoted by CLS (independent of n), (2) the second

part of the cost function corresponds to the multiplicative regularization term and it

is denoted by CMR
n (changing with n). Thus,

CLS(x) ,
‖Ax− b‖2

2

‖b‖2
2

(C.4)

CMR
n (x) ,

∫
d2
n

[
|∇x|2 + δ2

n

]
ds (C.5)

Thus, the cost function can be written as [30,102,103]

Cn(x) = CLS(x)CMR
n (x) (C.6)

As noted above, this multiplicatively regularized cost function can be minimized by

the CG method. To use the CG method, we need to know what the gradient of the

cost function is. In the following, it will be explained how to find the gradient of the

cost function at the nth iteration of the CG algorithm.

∂Cn
∂x

∣∣∣
x=xn

=
∂CLS(x)

∂x

∣∣∣
x=xn

+ CLS(x)
∂CMR

n (x)

∂x

∣∣∣
x=xn

(C.7)
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Noting that CMR
n (x = xn) is equal to one. The gradient of CLS and CMR

n can be

found as

∂CLS(x)

∂x

∣∣∣
x=xn

(ψ) =
1

‖b‖2
2

lim
ε→0

‖A(x+ εψ)− b‖2
2 − ‖Ax− b‖

2
2

ε

=
1

‖b‖2
2

lim
ε→0

(‖Ax− b‖2
2 + ε2 ‖Aψ‖2

2

ε

+
2εRe < Ax− b, Aψ > −‖Ax− b‖2

2

ε

)
=

2

‖b‖2
2

Re < Ax− b, Aψ >

=
2

‖b‖2
2

Re < AH(Ax− b), ψ > (C.8)

It should be noted that CMR
n can be written as [30]

CMR
n (x) =

∫
d2
n

[
|∇x|2 + δ2

n

]
ds

= ‖dn∇x‖2
2 + ‖dn(r)δn‖2

2

= ‖dn∇x‖2
2 + δ2

n ‖dn‖
2
2 (C.9)

If we do the same procedure shown in (C.8), we can find that [30,105]

∂CMR
n (x)

∂x

∣∣∣
x=xn

(ψ) = 2Re < −∇ · (d2
n∇x), ψ > (C.10)

Therefore, the gradient of the cost function for multiplicative regularization will

be [30]

∂Cn
∂x

∣∣∣
x=xn

=
1

‖b‖2
2

AH(Ax− b) +
‖Ax− b‖2

2

‖b‖2
2

[
−∇ · (d2

n∇x)
]

(C.11)

Note that in the above expression, we have removed the coefficient 2 and also the real-

part operator Re. This is based on the Wirtinger calculus which deals with finding
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the derivative of a real-valued cost function (in our case, Cn) with respect to complex

function (in our case, x).

It should be noted that we can multiply an arbitrary real number to the above

gradient given in (C.11). This is due to the fact that this gradient will be eventually

multiplied by the value of the step-length in the CG algorithm. Now, for example, if

we multiply this gradient by ‖b‖2
2, the corresponding step-length will be divided by

‖b‖2
2. Therefore, we can write this gradient as

∂Cn
∂x

= AH(Ax− b) + ‖Axn−1 − b‖2
2

[
−∇ · (d2

n∇x)
]

(C.12)

Now let’s compare the effect of this multiplicative regularization with Tikhonov reg-

ularization. To this end, if we assume that L in (5.16) is the Laplacian operator (i.e.,

L = ∇2), then the cost function for Tikhonov regularization will be

CT ikhonov = ||Ax− b||22 + λ2||∇2x||22 (C.13)

The gradient of the above cost function can be found as

∂CTikhonov

∂x
= AH(Ax− b) + λ2(−∇2x) (C.14)

Comparing the gradient of the cost function of multiplicative and Tikhonov regular-

ization in (C.12) and (C.14), we can conclude the following (a similar comparison has

been also pointed out in [30])

1. The norm of the residual error (‖Ax− b‖2
2) is somehow used as a regularization

parameter in multiplicative regularization instead of λ2 in Tikhonov regular-

ization. Let’s see how this two-norm works as a regularization parameter in



149

multiplicative regularization. ‖Ax− b‖2
2 is a large number for early iterations.

This is due to the fact that at early iterations x is far from the true solution.

As the algorithms goes on with more iterations, x will become closer to the true

solution. Thus, the residual error (regularization parameter in multiplicative

regularization) becomes smaller. Therefore, it can be concluded that one of the

advantages of multiplicative regularization compared to Tikhonov regulariza-

tion is that it automatically finds the regularization parameter at each iteration

of the algorithm [30, 102]. This feature of multiplicative regularization has an

important role in terms of computational time.

2. The regularization parameter is multiplied with −∇·(d2
n∇x) [105] and −∇2x in

multiplicative and Tikhonov regularization respectively as shown in (C.12) and

(C.14). It should be noted that the Laplacian operator (∇2) has an smoothing

effect on the solution [105]. However, the gradient operator (∇) can preserve

the edges of the OI. In Tikhonov regularization L is usually chosen either the

identity matrix or Laplacian operator. This is due to the fact that if L = ∇,

then the gradient operator contribute in all iterations (i.e., early BIM and final

BIM iterations). Now, it should be noted that an edge-preserving regularization

needs to be used in laters iterations of the BIM when the predicted solution

is sufficiently close to the true solution. Therefore, if L = ∇ is used with

Tikhonov regularization, there is a chance to reconstruct an error as an edge

of the OI. However, multiplicative regularization method has both smoothing

and edge preserving effects [102, 103, 105]. In fact, in early BIM iterations, it

more acts as a smoothing regularizer, but in later iterations of the BIM, it

more acts as an edge-preserving regularizer. Now, let’s see how multiplicative

regularization has both of these features. As already explained, the following
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term is multiplied with the regularization parameter in the gradient of the cost

function in multiplicative regularization [105].

−∇ · (d2
n∇x) (C.15)

where d2
n can be found as

d2
n =

1

Area
[
|∇xn−1|2 + δ2

n−1

] (C.16)

δ2
n is usually chosen as [30]

δ2
n =

1

2

‖dn∇xn−1‖2
2

‖dn‖2
2

(C.17)

In the early iterations, we are far from the exact solution and therefore the

residual error is a large number. However, |∇x| is small. For example, in the

first iteration, Born approximation is used and it is assumed that the total

pressure in the imaging domain is equal to the incident pressure. It means

that we assume that there is no object in the imaging domain. Therefore,

the contrast profiles will be zero. Thus, it can be concluded that in the early

iterations of multiplicative regularization, we have [103]

|∇x|2 � δ2
n−1 =⇒ dn ' constant =⇒ −∇·(d2

n∇x) = −d2
n∇2x (C.18)

Therefore, multiplicative regularization in early BIM iterations has essentially

the same effect as the Laplacian regularizer (smoothing effect). As the algo-

rithms goes with more iterations, we will get closer to the true solution. There-
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fore, the residual error (‖Ax− b‖2
2) will be small, and we will face with two

different situations. Let’s explain these two situations in an example. In this

example, it is assumed that we are close to the last iteration of the BIM (i.e.,

we are close to the true solution). Let’s also assume that the true solution is

the one shown in Figure C.1. As can be seen in this figure, the first situation is

the situation in which we have a transition between two different homogeneous

media. In other words, in this situation, we have an edge (sharp transition).

This situation is denoted by 1© in Figure C.1. The second situation the situa-

tion in which we are in a homogeneous medium. For example, this situation is

denoted by 2© and 3© in Figure C.1. In the first situation, the gradient of the

contrast is not zero. This is due to the fact that two different media have two

different contrast profiles. Therefore, the gradient of the contrast profile is not

zero. Thus, we have

|∇x| 6= 0 =⇒ dn 6= constant =⇒ −∇ · (d2
n∇x) (C.19)

Therefore, the gradient operator which preserve the edges is maintained in the

first situation.

Now, let’s see how the second situation works. In the second situation, the

region is homogeneous. Therefore, we can conclude that the |∇x| should be

close to zero (i.e., no edge exists). Thus,

|∇x| ' 0 =⇒ dn = constant =⇒ −∇ · (d2
n∇x) = −d2

n∇2x (C.20)

Therefore, this operator becomes equivalent to the Laplacian operator which has

a smoothing effect. In this case, the region has no edges so that a smoothing
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(a) The object containing two different media
illustarated by red and blue colours.

Figure C.1: circle 1 is the inhomogeneous region. circle 2 and circle 3 are the
homogeneous region.

effect on the solution can be more useful.

Therefore, multiplicative regularization is very efficient regularization because (1)

the regularization parameter is automatically updated in each iteration [30,102,103],

(2) the Laplacian operator which has a smoothing effect is applied at the early it-

erations of the BIM in which the predicted contrast is not sufficiently accurate for

edge-preserving reconstruction, and (3) as the MR algorithms goes on with more

iterations, the operator −∇ · (d2
n∇) alternates between the Laplacian operator and

edge-preserving operator in which edge preserving is only applied to the region con-

taining edges and for the other regions the Laplacian operator is applied.

As already explained, the CG method [30,79,100,101] is applied to minimize the

multiplicatively regularized cost function. In the CG method, we have the following

update for x [30, 79,100,101]

x(n+1) = x(n) + α(n)s(n) (C.21)
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where x(n+1) and x(n) are the x for (n+ 1)(th) and n(th) iterations respectively. s(n) is

the search direction for the n(th) iteration and α(n) is the weighting parameter that

controls the size of search direction. In this method, the search direction can be found

as [30,79,100,101]

s(n) = g(n) + β(n)s(n−1) (C.22)

where g(n) is the gradient of the cost function for the i(th) iteration. The coefficient

β is a scalar parameter. There are different methods to find this coefficient such as

the classical form and Polak-Ribiere formula [79]. In the classical conjugate gradient

method, β can be found as [30,79]

β =

∥∥g(n)
∥∥2

2

‖g(n−1)‖2
2

(C.23)

It should be noted that β is zero in the first iteration. The gradient of the cost

function is shown in (C.11). The only unknown parameter for the CG is α(n). It

should be noted that α(n) should be chosen in such a way that minimizes the cost

function [30,101]. Therefore, we will have

∂Cn
∂α

∣∣∣
x=x(n+1)

= 0 (C.24)

The cost function for the multiplicative regularization at x = x(n+1) is

Cn(x = x(n+1)) =
∥∥Ax(n+1) − b

∥∥2

2

(∥∥dn∇x(n+1)
∥∥2

2
+ δ2

n ‖dn‖
2
2

)
(C.25)
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Substituting (C.21) into (C.25), we have

Cn
∣∣
x(n+1) =

∥∥A(x(n) + α(n)s(n))− b
∥∥2

2

(∥∥dn∇(x(n) + α(n)s(n))
∥∥+ δ2

n ‖dn‖
2
2

)
=
∥∥(Ax(n) − b) + Aα(n)s(n)

∥∥2

2

(∥∥dn∇x(n) + dnα
(n)∇s(n)

∥∥2

2
+ δ2

n ‖dn‖
2
2

)
(C.26)

or it can be written as

Cn
∣∣
x(n+1) =

(∥∥Ax(n) − b
∥∥2

2
+ [α(n)]2

∥∥As(n)
∥∥2

2
+ 2α(n)Re < Ax(n) − b, As(n) >

)
×
(∥∥dn∇x(n)

∥∥2

2
+ δ2

n ‖dn‖
2
2 + [α(n)]2

∥∥dn∇s(n)
∥∥2

2
+ 2α(n)Re < dn∇x(n), dn∇s(n) >

)
(C.27)

For the simplicity in writing, we define the following parameters.

T1 ,
∥∥Ax(n) − b

∥∥2

2
(C.28)

T2 ,
∥∥As(n)

∥∥2

2
(C.29)

T3 , 2Re < Ax(n) − b, As(n) > (C.30)

T4 ,
∥∥dn∇x(n)

∥∥2

2
+ δ2

n ‖dn‖
2
2 (C.31)

T5 ,
∥∥dn∇s(n)

∥∥2

2
(C.32)

T6 , 2Re < dn∇x(n), dn∇s(n) > (C.33)

Using the above parameters, (C.27) can be written as

Cn
∣∣
x=x(n+1) =

[
T1 + [α(n)]2T2 + α(n)T3

]
×
[
T4 + [α(n)]2T5 + α(n)T6

]
(C.34)
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Therefore, the gradient of the cost function with respect to α(n) can be found as

∂Cn
∂α(n)

∣∣∣
x=x(n+1)

=
(

2α(n)T2 + T3

)(
T4 + [α(n)]2T5 + α(n)T6

)
+

(
T1 + [α(n)]2T2 + α(n)T3

)(
2α(n)T5 + T6

)
= (4T2T5)[α(n)]3 + 3(T2T6 + T3T5)[α(n)]2

+ 2(T2T4 + T3T6 + T1T5)α(n)

+ (T3T4 + T1T6) = 0 (C.35)

Thus, α(n) can be found by solving (C.35).
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D

L1-norm Regularization

L1-norm [32,33,81,106] is one type of additive regularization method in which the

penalty term is the first-norm of the solution. Therefore, the cost function for this

type of regularization method will be [33,107]

CL1 = ‖Ax− b‖2
2 + α ‖x‖1 (D.1)

where α is a regularization parameter and CL1 is denoted for the L1 regularization

cost function. As can be seen in (D.1), the cost function consists of two parts. The

first part corresponds to the least square solution and two-norm is used for this part.

The second part corresponds to the penalty term and the first-norm is used in this

part. Sometimes, instead of using the first-norm of solution as a penalty term, the

first norm of the gradient of the solution can be used [81,106]. This term is called the

total variation of the solution [106]. Thus, the total variation of x is defined as [106]

TV (x) = ‖∇x‖1 (D.2)

Therefore, we can also have the following cost function for the L1 regularization.

CL1 = ‖Ax− b‖2
2 + α ‖∇x‖1 (D.3)
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Figure D.1: A linear function used to compare the penalty term for L1-norm with
Tikhonov regularization.

This regularization is very good in terms of finding the edges of the OI [30, 32].

However, it is computationally expensive (minimization of the cost function requires

nonlinear optimization methods) and also it is difficult to find the regularization pa-

rameter [30]. To have a better understanding of how L1-norm has an edge preserving

effect on the solution, we use an example to compare the penalty term in Tikhonov

and L1-norm regularization [81]. Let’s assume that we have the function shown in

Figure D.1 [81]. In this case, the m-norm of the gradient of F (x) can be found as

(The following discussion is based on [81].)

‖∇F (x)‖m =
[ ∫ ∞
−∞
|F ′(x)|mdx

] 1
m

=
[ ∫ x2=p+k

x1=p

(
−d
k

)mdx
] 1

m

= −
[
dmk1−m

] 1
m

= −dk
1−m
m (D.4)
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Therefore, the first and second norm of ∇F (x) will be


‖∇F (x)‖m=1 = −d First-norm

‖∇F (x)‖m=2 = − d√
k

Second-norm

(D.5)

According to above equation, the variation of k doesn’t affect ‖∇F (x)‖1. However,

it affects the second-norm. For example, the variation of ‖∇F (x)‖2 for the small and

large values of k is:

 If k is too small (k → 0) Then ‖∇F (x)‖2 →∞

If k is too large (k →∞) Then ‖∇F (x)‖2 → 0

Therefore, as explained above when we have a rapid change (i.e., having a small k

value, which corresponds to an edge), the penalty term for Tikhonov regularization

(second-norm) will be a large quantity [81]. Thus, the cost function will be dominated

by the penalty term. Due to this, the residual error (‖Ax− b‖2
2) will not be sufficiently

minimized. Thus, the final solution will have a large data misfit error; i.e., it will be far

from the true solution. Therefore, the Tikhonov regularization method which utilizes

the second-norm has some issues for reconstruction of edges. On the other hand, the

penalty term for L1-norm regularization method is independent of k. Therefore, for

a rapid change, the penalty term doesn’t go to infinity. Therefore, we can maintain

a good balance between the data misfit error and the regularization term. Thus, we

can reach a reasonable solution while reconstructing the edges of the OI.
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E

Flowchart of the Inversion Algorithm

In this appendix, the flowchart of the overall inversion algorithm is illustrated. As

can be seen, this algorithm consists of three main parts:

1. the BIM which governs the iterative nature of the inversion algorithm.

2. the CG-FFT MoM, which acts as the forward solver of the algorithm.

3. the CGLS technique, which acts as the regularization scheme of the algorithm.

In the next page, this flowchart is shown.
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Set the total pressure inside the

imaging domain to be the inci-

dent pressure inside the domain

Apply the CGLS algorithm to

find the balanced contrast profiles

From the reconstructed balanced pro-

files, find their unbalanced forms

Apply the CG-FFT MoM for-

ward solver to find the total pres-

sure for these reconstructed profiles

update model

Find the simulated scattered

pressure at the receiving cites

Is the data misfit

sufficiently small?
stop

YES

NO
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