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Abstract 

This article introduces the EU Horizon 2020 research project GRACE (Integrated oil spill response actions and environ‑
mental effects), which focuses on a holistic approach towards investigating and understanding the hazardous impact 
of oil spills and the environmental impacts and benefits of a suite of marine oil spill response technologies in the cold 
climate and ice-infested areas of the North Atlantic and the Baltic Sea. The response methods considered include 
mechanical collection in water and below ice, in situ burning, use of chemical dispersants, natural biodegradation, 
and combinations of these. The impacts of naturally and chemically dispersed oil, residues resulting from in situ burn‑
ing, and non-collected oil on fish, invertebrates (e.g. mussels, crustaceans) and macro-algae are assessed by using 
highly sensitive biomarker methods, and specific methods for the rapid detection of the effects of oil pollution on 
biota are developed. By observing, monitoring and predicting oil movements in the sea through the use of novel 
online sensors on vessels, fixed platforms including gliders and the so-called SmartBuoys together with real-time 
data transfer into operational systems that help to improve the information on the location of the oil spill, situational 
awareness of oil spill response can be improved. Methods and findings of the project are integrated into a strategic 
net environmental benefit analysis tool (environment and oil spill response, EOS) for oil spill response strategy deci‑
sion making in cold climates and ice-infested areas.
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Background
Accidental oil spills have occurred—and will occur—in 
different sea areas of the world as long as oil drilling, pro-
duction and transport activities continue on our planet. 
The degree of damage of the spills on local ecosystems, 
and the effectiveness of different response technolo-
gies are highly dependent on prevailing environmental 
conditions and immediately available oil spill response 
resources. In polar and sub-polar regions, the marine 
ecosystems are especially vulnerable to oil spills, mainly 

due to the coldness and slow degradation of the spilled oil 
compounds. Furthermore, the cold and often ice-infested 
sea poses serious challenges for oil combating measures. 
Along with other differences in critical environmen-
tal characteristics, it is obvious that each marine region 
needs risk assessment, monitoring and response methods 
more or less tailored to fit its specific characteristics.

The Baltic Sea is the second largest brackish water 
basin in the world and is characterised by strong strati-
fication, high nutrient concentrations, continuous oxy-
gen deficiency in most deep water basins and low salinity 
[1]. With a coastline shared by nine highly industrialised 
countries, it supports approximately 15% of the world’s 
total maritime traffic, including the transport of differ-
ent types of oil [2, 3]. Since large amounts of oil are used, 
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transported and stored in this region, oil and oil spills 
are considered a major threat to the Baltic Sea ecosys-
tem [3]. In the Baltic Sea, the rate of oil transportation 
continuously increases on an annual basis, and therefore 
possible environmental risks should be taken into consid-
eration [4]. Marine pollution arising from illegal oil dis-
charges from ship tank or bilge pumping is much greater 
than that from spectacular ship accidents, and is mainly 
detected along essential navigation routes [4, 5]. With 
regard to oil spill response activities, the description of 
the type, location, extent and state of oil at sea is of prime 
importance for predicting the trajectory of oil slicks and 
areas of shoreline likely to become polluted [4, 6]. The 
detection of oil spills and the description of their location 
and extent is performed using remote sensing imagery 
(SAR data) [4, 5].

In the Arctic parts of the North Atlantic, the risk of oil 
spills due to both oil and gas exploration as well as cli-
mate change is increasing, the latter opening new ship-
ping routes. Navigation and operations in ice-infested 
waters are presenting extra challenges to oil spill 
response [7], and increase the risk rate of ship accidents 
and related oil spills [8]. Arctic seas, such as the Barents 
Sea and the East Greenland coast, constitute important 
areas for fisheries [9, 10], seabirds [11] and marine mam-
mals [12]. Oil pollution in cold subarctic and arctic seas 
may therefore have serious ecological effects [13] as well 
as large socioeconomical impacts related to fisheries [14].

The chemical composition of crude oils is a complex 
mixture of thousands of organic compounds contain-
ing alkanes, cycloalkanes, aromatic compounds and 
asphalthenes. However, it differs significantly among the 
oils, depending on their origin [15]. Organic compounds 
containing oxygen, nitrogen, sulphur, as well as organo-
metallic compounds are also found in smaller amounts 
[3, 16]. Crude oils containing large and heavy hydrocar-
bon molecules ranging from 5 to 40 carbons in length do 
not dissolve readily in water [3, 6]. The most toxic compo-
nents of crude oils are the polycyclic aromatic hydrocar-
bons (PAHs), many of which possessing mutagenic and/
or carcinogenic properties [2, 17]. Moreover, the chemi-
cal and physical properties of oil begin to change when 
it enters the sea and undergoes the so-called weathering. 
Initially, the oil spreads on the water surface forming a 
thin film. Some of the oil compounds evaporate, some 
dissolve in the water, and some form emulsions. Waves 
contribute to oil becoming mixed into the water column 
as oil droplets that may aggregate, and oil slicks may also 
sink and be deposited on the seafloor (sedimentation). 
The viscosity and behaviour of the oil is greatly affected 
by the ambient temperature as higher temperatures 
accelerate the vaporisation, dissolution, and biodegrada-
tion of the oil compounds [6]. The longest persistence 

of an oil spill has been found in soft sediments and on 
shorelines protected against strong wind and waves. In 
general, rocky headlands are quickly cleansed by wave 
and tidal actions. Oil contamination of sediments can be 
very long lasting, and long-term effects on benthic organ-
isms have been seen in several cases [18].

During an average winter, ca. 40% of the Baltic Sea 
area is covered by ice. In Arctic marine environments, 
the spilled oil can be frozen into the ice sheet in various 
ways, and this preservation is expected to reduce evapo-
ration, dissolution, and degradation. The preservation 
also implies that the oil will retain much of its potential 
toxicity upon release from the ice [19]. The estimation of 
the pathways, release rates, and chemical characteristics 
of the remaining oil provide the basis for eventual envi-
ronmental risk and impact assessments [20].

Today, different response methods for removing oil are 
applied in order to minimise the environmental conse-
quences of oil spills. Oleophilic skimmers are the most 
used type of mechanical oil spill response equipment. 
When employed on a large scale, the mechanical recov-
ery method may be very time consuming and expensive 
due to its low recovery rates [21]. In situ burning, where 
an oil slick is ignited and burnt in a controlled manner, 
is considered to be a response method with high poten-
tial of oil removal in Arctic conditions [22]. The use of 
dispersing chemicals is aimed at increasing the natural 
potential for oil removal from the sea surface by dispers-
ing the oil in the water column [23]. This oil spill response 
method was the main method used during the Deepwater 
Horizon blow-out accident aboard an oil-drilling plat-
form in the Gulf of Mexico [24]. However, there is not 
much experience on the effectivity and hazardous effects 
of use of dispersants in Arctic areas. Currently disper-
sants are not used in the Baltic Sea because they are not 
recommended by the Helsinki Commission (HELCOM).

It is well known that in case of an oil spill, seabirds 
are among the groups of animals that are most vulner-
able (e.g. [25]. Even small amounts of fresh oil can have 
lethal effects on seabirds by destroying the waterproofing 
of their plumage, leading to loss of insulation and buoy-
ancy and causing rapid death by hypothermia, starvation 
or drowning [26]. In the Arctic, these impacts are inten-
sified, as the cold water leads more rapidly to hypother-
mia. Marine animals can take up PAHs and other crude 
oil components both passively, i.e. through diffusion over 
gills (invertebrates and fish) and lungs (birds and mam-
mals), and actively, e.g. through feeding. Biomarkers, 
indicating changes at the lowest levels of biological com-
plexity (molecular, cellular, tissue-level), provide an “early 
warning” of ecosystem health deterioration and have 
been recently suggested by the effect-based tools report 
of the European Commission to be used for monitoring 
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under the EU Water Framework Directive [27]. In addi-
tion, marine monitoring programmes are increasingly 
including biomarkers in the assessment of biological 
effects of pollutants. Assessments of the consequences 
of oil spills is necessary for providing information on the 
maintenance of biodiversity and the integrity of marine 
communities and food webs, as well as for protecting 
critical habitats and safeguarding human health [28, 29].

Aims
The core aim of the GRACE project is to develop, com-
pare and evaluate the effectiveness and environmen-
tal effects of different oil spill response methods in cold 
climate conditions. To date, several approaches have 
been proposed in the polar region, each catering to spe-
cific governmental or environmental requirements that 
inhibit broad application. GRACE aims to develop such 
a broadly applicable decision-support tool. Furthermore, 
a system for the real-time observation of underwater oil 
spills and a strategic tool for choosing oil spill response 
methods are developed. Currently, there are no auto-
mated systems available that can perform oil spill iden-
tification and monitoring in a single united integrated 
system consisting of remote sensing and in  situ sens-
ing. Furthermore, the satellite-detected (e.g. by EMSA’s 
CleanSeaNet) oil spills are validated by eye [30].

The overall objective of the project is to explore the 
environmental impacts and benefits of a suite of marine 
oil spill response technologies in the cold climate and ice-
infested areas of the North Atlantic and the Baltic Sea. 
The response methods considered include mechanical 
collection in water and below ice, in situ burning, use of 
chemical dispersants, natural biodegradation, and combi-
nations of these. The impacts of naturally and chemically 
dispersed oil, residues resulting from in  situ burning, 
and non-collected oil on fish, invertebrates (e.g. mussels, 
crustaceans) and macro-algae are assessed by means of 
highly sensitive biomarker methods, and specific meth-
ods for the rapid detection of the effects of oil pollution 
on biota will be developed. By observing, monitoring and 
predicting oil movements in the sea by using novel online 
sensors on vessels, fixed platforms including gliders and 
the so-called SmartBuoys together with real-time data 
transfer into operational systems that help to improve 
the information on the location of the oil spill, situational 
awareness of oil spill response can be improved. Meth-
ods and findings of the project are integrated into a stra-
tegic net environmental benefit analysis tool for oil spill 
response strategy decision making in cold climates and 
ice-infested areas.

Project concept and approach
GRACE aims to achieve the research goals over a 
period of three and a half years, starting in 2016 and 
ending in 2019. The project includes a genuine trans-
disciplinary consortium comprising experts in the 
fields of oil monitoring and on-line observations, as 
well as oil spill response authorities. It makes use of 
bioanalytics, field and laboratory studies, environmen-
tal impact assessment, monitoring and assessing the 
fate of oil pollutants as well as oil-degradation-related 
biotechnology, and also contributes to the development 
of oil spill response technology.

Beyond producing relevant knowledge on technolo-
gies that can be used for oil spill response and on their 
impacts, GRACE develops a tool for strategic net envi-
ronmental benefit analysis, the environment and oil 
spill response (EOS) tool for deciding suitable oil spill 
response strategies in cold climates and ice-infested 
areas. The EOS results can be used in cross-border 
and transboundary co-operation and agreements. All 
gathered knowledge will be fed into the development 
of a beyond state-of-the-art response system based 
on high-end detection methods and environmentally 
friendly yet highly efficient mitigation and remediation 
techniques.

Project consortium
The genuine trans-disciplinary consortium with work-
groups and scientists from Europe and Canada conduct-
ing the GRACE project consists of 13 partners. Leading 
research scientist Kirsten Jørgensen from the Finnish 
Environment Institute SYKE coordinates the project. 
The project partners are grouped into six work packages 
(WP), presented below with their contributing members 
and specific project tasks (Table 1).

Work packages
WP1—Oil spill detection, monitoring, fate and distribution 
(Lead: Tarmo Kõuts, TUT)
The main objective of this WP is to make in situ opera-
tional oil spill detection more accurate and cost-effective. 
The oil-in-water sensors, the core of in  situ oil detec-
tion, are commercially available nowadays. However, 
their performance varies to a large extent, which is why 
the potential of in  situ measurement technologies in 
respect to their accuracy and representativeness to detect 
oil spills in surface water of the sea needs to be analysed 
and tested. The existing oil spill detection and monitor-
ing sensors could also be integrated with new platforms, 
such as ships of opportunity (SOOP), Smart Buoys, glid-
ers or drifters for in situ oil spill detection. Furthermore, 
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a new local scale model system for oil dispersion, evapo-
ration and fate should be developed (Table 2).

WP2—Oil biodegradation and bioremediation (Lead: Jaak 
Truu, UTA​RTU​)
The main objective of this WP is the assessment of natu-
ral degradation rates of different oil fractions in seawater, 
seawater–ice interface, sediments, and shoreline tak-
ing into account environmental parameters, dispersants 
application, cleaning and washing agents, and electro-
kinetic treatment. Based on the determination of key 
bacterial species and metabolic pathways responsible for 

the degradation of different oil fractions in different sea 
compartments of the Baltic Sea and the Northern Atlan-
tic, a metagenomic prediction platform for inferring oil 
biodegradation activity parameters (including biodegra-
dation kinetics) in cold marine environment is being con-
structed (Table 3).

WP3—Oil impacts on biota using biomarkers 
and ecological risks assessment (Lead: Thomas‑Benjamin 
Seiler, RWTH)
The main objective of WP3 is the achievement of knowl-
edge on (i) biological impacts and adverse outcome 

Table 1  Composition of the GRACE project consortium

Participant organisation name Acronym Country Person in charge Contribution 
to WP 
number

Coordinator

Finnish Environment Institute SYKE Finland Kirsten S. Jørgensen 1,2,3,4,5,6

Aarhus University AU Denmark Susse Wegeberg 2,3,4,5,6

University of Tartu UTA​RTU​ Estonia Jaak Truu 2,3,4,6

Tallinn Technical University TUT​ Estonia Tarmo Kõuts 1,3,4,5,6

RWTH Aachen University RWTH Germany Thomas-Benjamin Seiler 1,2,3,4,6

University of the Basque Country UPV/EHU Spain Ionan Marigomez 2,3

Norwegian Univ. of Science and Technology NTNU Norway Bjørn M. Jenssen 3

Greenland oil spill response A/S GOSR Greenland Lonnie Bogø Wilms 4,5

LAMOR corporate Ab LAMOR Finland Rune Högström 2,4,5

Meritaito Oy MTOY Finland Seppo Virtanen 1

SSPA Sweden AB SSPA Sweden Björn Forsman 1,4,5

Norut Narvik AS Norut Norway Christian Petrich 2,4

University of Manitoba MICB Canada Feiyue Wang 4

Table 2  The main methods and expected outcome the work of WP1: oil spill detection, monitoring, fate and distribution

General experimental procedure Aims and expected outcome Refs.

Development and characterisation of novel systems for 
the online exposure of zebrafish embryos under flow-
through conditions

A novel biosensor based on the behavioural responses 
of zebrafish embryos for the detection of oil in water

Steffens et al. [31]
Nüßer et al. [32]

Integration of UV—fluorometers into FerryBox and 
SmartBuoy platforms

Operational, real-time oil spill detection on fairways Petersen [33]
Lambert [34]

UAVs and gliders are used to monitor localised oil pollu‑
tion. UAVs are used for mapping of oil spread on the 
surface. Gliders determine the spatial distribution of an 
oil spill and its temporal evolution underwater

Monitoring and mapping the oil pollution from a ship‑
wreck using UAVs and gliders

OGP/IPIECA [35]
URready4OS [36]
Vasilijevic et al. [37]
American Petroleum Institute [41]
IPIECA-OGP/IMO/CEDRE [38]
Fingas and Brown [39]

Combined use of drifters and UAVs to improve oil spills 
situational awareness in tactical scale

UAV systems together with drifter buoys is a cost-
effective way to monitor different marine parameters 
in case of oil spills, improving considerably situational 
awareness of operations

Lumpkin et al. [40]
IPIECA-OGP/IMO/CEDRE [38]
American Petroleum Institute [41]

Lagrangian model is applied to assess oil short-time 
fate in the realistic marine environment combined by 
meteorological and oceanographic models

Oil fate modelling: hind- and forecast module ready to 
be integrated with measurement systems

Wolk [42]
Gräwe and Wolff [43]
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links elicited after oil spills, and (ii) the effects oil spill 
responses in different environmental and biological 
conditions at a regional scale. Furthermore, it aims at 
the development, adaptation and optimisation of effect-
based methods for oil pollution monitoring, and at the 
assessment of the efficiency of each response method. In 
addition, scenario-targeted environmental risk assess-
ments (ERA) are conducted (Table 4).

WP4—Combating oil spill in coastal Arctic waters—
effectiveness and environmental effects (Lead: Kim 
Gustavson, AU)
The main objective of this WP is to improve the knowl-
edge base for combating oil spills in ice-infested and cold 

waters. In addition, a mechanical unit for removal of oil 
under sea ice is being designed and tested. Environmen-
tal fate and effects of stranded oil, shoreline cleaning 
by in  situ burning and shoreline clean-up by chemical 
agents in Arctic regimes are also assessed. The results 
of the experiments will provide valuable information for 
decision makers regarding oil spill response options to 
be included in the EOS assessment for oil spill response 
strategy and capacity building in the Arctic and the Baltic 
Sea (Table 5).

Table 3  The main methods used and expected outcomes of WP2: oil biodegradation and bioremediation

General experimental procedure Aims and expected outcome Refs.

Seawater microcosms with Crude oil water accommodated 
fraction (WAF) and addition of chemical dispersant at cold 
temperature. Chemical oil analysis and molecular biology 
analysis

Oil and dispersed oil biodegradation rate and kinetic param‑
eters at low temperature. Knowledge on main microbial 
taxa participating in oil biodegradation

Reunamo et al. [2]
Venosa and Holder [44]

Sea ice experiments with encapsulated oil in laboratory scale. 
Chemical oil analysis and molecular biology analysis

Natural degradation rate of crude oil in seasonal sea ice 
covered water. Knowledge on key microbial species and 
metabolic pathways responsible for biodegradation of oil

Brakstad et al. [45]
Garneau et al. [46]

Omics data integration and meta-analysis of project-obtained 
and public domain data by recovery of individual genomes 
from obtained metagenomics datasets

Information about microbial community taxonomic composi‑
tion and metabolic markers. Better understanding of the 
role of uncultivated microbial species in oil biodegradation

Huang et al. [47]
Klemetsen et al. [48]

Field pilot test with electrokinetic treatment of petroleum 
hydrocarbon contaminated marine sediment. Chemical oil 
analysis and molecular biology analysis of field samples

Documented information on the performance of electroki‑
netic treatment as a method for marine sediments clean-up

Masavat et al. [49]

Effect-based assessment of remediation success by cellular 
level bioassays

Success of the remediation method evaluated for the mixed 
contamination using bioassays

Brack et al. [50]

Table 4  The main methods and expected outcomes of WP3: oil impacts on biota using biomarkers and ecological risks 
assessment

General experimental procedure Aims and expected outcome Refs.

Effect biomarkers in blue mussels from a North Atlantic 
transect and seasonal samples from Baltic Sea

Latitudinal and seasonal biomarker baselines and variability 
for exposure assessment

Leiniö and Lehtonen [51]

Passive sampling of oil components in the study area and 
extract testing in vitro

Environmental relevance of oil contamination Posada-Ureta et al. [52]

Investigation and storage of specimen samples Build-up of an environmental specimen bank for oil spill 
impact diagnosis and prognosis

Villares et al. [53]
Garmendia et al. [54]

Effects of WAF of pure and dispersed oil on mussels, copep‑
ods, zebrafish and endemic sticklebacks using biomarkers 
and gene expression

Understand how molecular modes of action cause apical 
effects

Counihan [55]
Hansen et al. [56]
Knag and Taugbøl [57]
Van der Ost et al. [58]
Turja et al. [59]

Zebrafish embryo and larvae toxicity test at different salinities 
and with WAFs prepared at different temperatures

Adapt the assay to Baltic Sea conditions, also as a pre-requi‑
site for the biosensing in WP1

Perrichon et al. [60]
de Soysa et al. [61]

Measurement of the effect of WAFs of different oil types by 
means of a large bioassay battery

Derive toxicity profiles as fingerprints and relate to differ‑
ences in oil composition, complement chemical analysis

Singer et al. [62]

Biomarker measurement in field-exposed mussels and snails 
(WP4)

Effects of in situ burning on aquatic invertebrates and envi‑
ronmental assessment of this method for oil spill response

Turja et al. [63]
Marigómez et al. [28, 29]

Risk analysis oil spills and dispersants use by means of the 
PETROTOX model

Refine the risk assessment of oil spills and responses using 
the data produced in WP3 and feed the result into WP4

Redman et al. [16]
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WP5—Strategic net environmental benefit analysis 
(SNEBA) (Lead: Susse Wegeberg, AU)
The main objective of the WP is to develop and launch 
a strategic net environmental benefit analysis (SNEBA) 
tool for decision-making. During the project the title of 
the tool to be launched was changed to environment and 
oil spill response (EOS) and it will be used for designing 
an appropriate and rapid oil spill response strategy com-
bining the right mix of interventions (e.g. mechanical 
recovery, in  situ burning, chemical dispersants, and/or 
bioremediation) for closed basins with extreme cold tem-
peratures, based on relevant scenarios (Fig. 1).

An EOS assessment should not be confused with a net 
environmental benefit analysis (NEBA)/spill impact miti-
gating assessment (SIMA) for acute oil spill situations 
(Table 6).

Prospects for the GRACE project
The work obtained in the different work packages is 
strongly interlinked, and the results will be commu-
nicated not only to the scientific community, but also 
very actively to the relevant stakeholder groups such 

Table 5  Main methods and  expected outcome of  WP4: combating oil spill in  coastal Arctic waters—effectiveness 
and environmental effects

General experimental procedure Aims and expected outcome Refs.

Controlled outdoor experiments with burning of oil in sea ice New knowledge on temperature development, burning 
efficiency and melt pool behaviour

Buist [64]

Field tests with in situ burning of oil on the shore line and in 
the open water in Greenland after obtaining permission 
from the authorities. Monitoring of impact on seaweed and 
invertebrates of burning and burning residues in seawater 
and on the shore

New knowledge on how to ignite and control the burn and 
function of pyro booms. New experience in how to collect 
burning residue. New information on long-term monitoring 
of impact on biota by in situ burning

Fritt-Rasmussen et al. 
[65]; Fritt-Rasmus‑
sen et al. [66]

Small-scale field studies on coasts in the Arctic, represented by 
a north–south gradient in Greenland by deploying oiled tiles 
in the tidal zone

Evaluation of the self-cleaning potential and biodegradation 
of stranded oil on of rocky coasts in the Arctic by deploying 
oiled tiles and Fucus distichus tips in the tidal zone

Fukuyama et al. [67]

Establishment of an “Oil in ice code” to describe ice formation 
and interaction with oil

Tool for facilitation and streamlining of efficient communica‑
tion between all professionals and stakeholders involved in 
oil spill issues related to sea ice

Lewis et al. [68]

Design and testing of a new mechanical under ice unit for col‑
lection of oil under ice

Commercial product for mechanical collection of oil under ice 
to be used with existing remotely operated vehicles (ROVs)

Singsaas et al. [69]

Assessment by Environment & 
Oil Spill Response (EOS) tool

Environmental
sensi�vity

Oil spill fate

Response
effects

Fig. 1  Schematic presentation of input to the environment and oil 
spill response (EOS) assessment
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as cross-border working groups dealing with oil spill 
response in the Arctic including, e.g. the EPPR (Emer-
gency Prevention, Preparedness and Response) work-
ing group of the Arctic Council and the HELCOM 
RESPONSE working group (Fig. 2).

The project has already produced a large number of 
reports that are available at the GRACE project web 
site http://www.grace​-oil-proje​ct.eu. The expected 
impacts of GRACE are several:

•	 Mitigate negative impacts of oil pollution and 
response activities on the marine environment, 
coastal economies and communities.

•	 Better decision support tools for oil spill response 
strategy in different conditions.

•	 Improve the integration between the scientific com-
munity and relevant government agencies charged 
with dealing with pollution, including cross-border 
and trans-boundary co-operation.

•	 Better business potential for companies producing 
oil response equipment and monitoring services.

Table 6  Main methods and expected outcomes of WP5: strategic net environmental benefit analysis (SNEBA)

General experimental procedure Aims and expected outcome Refs.

Development of matrices for data collection to serve as 
input for a strategic analysis. Gathering of data on biodi‑
versity and oil ecotoxicology and national frames for oil 
spill sensitivity. Modelling of relevant oil spill scenarios 
(Disko Bay, northern part of Baltic Sea)

Matrices and decision tree tool approaches to be used in 
the further development of the EOS tool

Wegeberg et al. [70]
Liungman and Mattsson [71]

Application of logistic tools and operational selec‑
tion guidance. Defining operational requirements. 
Designing Risk assessment model based on existing 
knowledge

General operational requirements for the operational 
window and resource logistics. Description of the 
background data on spill risk modelling and the design 
of the designated spill risk assessment model for appli‑
cation in GRACE

Lewis et al. [68]

Construction of a strategic the environment and oil spill 
response (EOS) tool. Design, input flow and potential 
value calculations. Evaluation using a fuzzy logic model. 
Interactions with stakeholders in workshop

EOS tool based on matrices, explanatory boxes and deci‑
sion trees

Compiling of data from Grace. The fuzzy logic model 
allows merging experts’ opinion per compartment into 
one single score

Bock et al. [72]
Laanemets et al. [73]
Wenning et al. [74]

Development of an e-learning course for EOS Framework for an E-based distance learning, video lec‑
tures, exercises and a final report on the EOS tool

Jensen and Fritt-Rasmussen [75]
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