Circa: A Hardware Description Language

Peter Somers

A thesis
presented to the University of Manitoba
in partial fulfillment of the
requirements for the degree of
'~ Master of Science
in
the Department of Computer Science

Winnipeg, Manitoba

® Peter Somers, 1986

Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

ISBN

L'autorisation a @t& accordée
& la Biblioth&que nationale
du Canada de microfilmer
cette thése et de préter ou
de vendre des exemplaires du
film.

L'auteur (titulaire du droit
d'auteur) se réserve les
autres droits de publication;
ni la thé&se ni de 1longs
extraits de <celle-ci ne
doivent @&tre imprim&s ou
autrement reproduits sans son
autorisation &crite.

0-315-340p9_¢

CIRCA: A HARDWARE DESCRIPTION LANGUAGE

BY

PETER SOMERS

A thesis submitted to the Faculty of Graduate Studijes of

the University of Manitoba in partial fulfillment of the requirements

of the degree of

MASTER OF SCIENCE

© 1986

Permission has been granted to the LIBRARY OF THE UNIVER-
SITY OF MANITOBA to lend or sell copies of this thesis. to

the NATIONAL LIBRARY OF CANADA to microfilm this
thesis and to lend or sell copies of the film, and UNIVERSITY
MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the
thesis nor exteusive extracts from it may be printed or other-

wise reproduced without the author’s written permission.

The University of Manitoba requires the signatures of all
persons using or photocopying this thesis. Please sign be-
low, and give address and date.

- iii -

ACKNOWLEDGEMENTS

Many thanks are due to my thesis advisor, Dr. Michael
Miller, and to Gerhard Dueck and Chris Carson for their

helpful suggestions and criticisms.

In addition, a debt of gratitude is owed to the Natural
Science and Engineering Research Council for their financial

support during my research.

- iy -

ABSTRACT

Hardware and software design have many similarities. 1In
this thesis, these similarities are examined and the tech-
nigue of abstraction, common in software development, is ap-

plied to hardware design and synthesis.

In the spirit of software languages, hardware description
languages are seen as a way of assisting the hardware design
process. The design can be verified by simulation and syn-

thesized by silicon compilers.

A hardware description language, Circa, is proposed. The
implementation of an interpreter or simulator is discussed
in detail. Some ideas for silicon compilation of Circa pro-

grammes are included.

CONTENTS

ACKNOWLEDGEMENTS . & & ¢ ¢ 4 & o o o o o o o o o &

ABSTRACT v v ¢ v & v v o o o o o o o o o o o o o

Chapter
I. INTRODUCTION v 4w ¢ ¢ v o o o o o o « o o o
11, THE DESIGN PROCESS & + ¢« & v« v « o o« o o
III. HARDWARE DESCRIPTION LANGUAGES . . . + . . .
Iv. LANGUAGE REQUIREMENTS . + +. & & & &4 o o o »
V. THE LANGUAGE CIRCA + v ¢ v v v o s o o o o &
A Tutorial . v & v v v v v v e e .
An Example 0 0 0 v e v e e
Vi, AUTOMATED SYNTHESIS . . ¢« v « v v & & o « &
Silicon Compilers « « «v v v v v v & « &
The Circa Model . + & v v v v v v v o & &
Primitives .+ v o v v v v v v v v e e e
High Level Processors « « « « o o « o+ o &
An Example v 0 v 00w e .
Conclusion v & v v v v 4 v v v v 0 v o W
VII. THE IMPLEMENTATION OF THE CIRCA INTERPRETER
Introduction .« « & v v v v v v 4 4 0 o .
Analysis of the Source . .« . « « o « o .
Process Management ¢« + « « . .
Evaluation of Expressions « . . .
Channel Implementation and Environment
Lists . L ° L] e . L] o e L] L] L] e o
VIII. CONCLUSIONS AND FURTHER WORK + « + o o o+ &

Evolution of the Circa Language
Applying Circa to Hardware Design

vi

13

. 38
. 38

. 51

. 64
° 65

. 69

Appendix

A.

THE SYNTAX OF CIRCA . .

REFERENCES & ¢ o « & &

- vii -

°

page

. 719

LIST OF FIGURES

a s o ° ° ° ° . °

Sequential

° ° ° ° ° ° ° °

WHILE Constructor

IF Constructor

Parallel

Figure
1. Algorithm to Transistor Refinement . . .
2. Software/Hardware Partitioning
3. Design Mechanics
4, Real World Analogy
5. Ring of Processes
6. Street Intersection
7. Light Timing « + « « « . .
8. Clock Generation
9. Processor Control Signals . .
10. Processor Control Sequence . .
11. Bus Interface
12. Read and Write Cycles . . .
13. Bus Timing « ¢ o o & o & & o &
14, Channel Interface
15. Channel Timing Example
16. Hardware Implementation of the
Constructor
17. A Variable in the SEQ Machine
18. Hardware Implementation of the
19. Hardware Implementation of an Infinite Loop . .
20. Hardware Implementation of the
21. Hardware Implementation of the

Constructor « « » o « « &

- viii -

.32

. 48

. 52
. 52

22.

23,
24,
25.
26.
27.

Hardware Implementation of the Alternative

Constructor .

°

Hardware Implementation of “Traffic” . . .

Hardware Implementation of “Phase”

Hardware Implementation of “CheckCars” . .

The Source Tree

External Channels

. . . ° 8 . . . o ¢

- ix -

. 57

60
61
62
67
72

Chapter 1

INTRODUCTION

A number of formalisms are used in the hardware design
process, for example: boolean algebras, state diagrams,
stick diagrams [Mead80], and timing charts. The one attri-
bute they have in common is that they hide certain details
of the hardware structure such as chip structure, electrical
characteristics, etc. In other words, hardware formalisms
raise the level of abstraction at which the designer works.
This aids in design synthesis and in hardware description to

other designers or to an automated synthesis system.

These traditional formalisms are fine for designing small
circuits, but as circuit complexity increases they are glar-
ingly deficient. Why is this so? 1t is because their abil-
ities for abstraction are limited to one level only. This

is termed horizontal abstraction.

A more general approach, vertical abstraction, allows the
designer to substitute details at any level by an
“abstraction”. By successive applications of this process,

the designer can raise the level at which he works.

Hardware description languages (HDLs) allow vertical ab-

straction. HDLs give the designer a methodology for devel-

2
oping large hardware systems. This methodology is analogous
to the software design philosophy and is discussed in sub-
sequent chapters. HDLs also provide a vehicle for describ-
ing circuits to other designers 1in addition to circuit com-

pilers and simulators.

The goal of this thesis is to present Circa, a hardware
description language, and some of the ideas that led to its

development.

The second chapter describes the hardware design process
at a very abstract level. It attempts to tie together the

notions of software engineering with hardware design.

In the third chapter, the concept of a hardware descrip-

tion language is explained.

Our HDL is based on a software language called Occam
[InmosB4]. Occam is a language oriented towards parallel
processing. Chapter four examines the shortcomings of the

Occam language for hardware description.

A tutorial to the Circa hardware description language is

presented in chapter five.

Circuit compilation using Circa is the subject of chapter
six. A microprocessor tailored to the execution of Occam
programmes called the Transputer was built by Inmos
[Inmos85]. Unlike the Occam/Transputer relationship, the
circuit compiler proposed generates hardware tailored to the

execution of a single (and unique) Circa programme.

3
Chapter seven looks at the implementation of the Circa

interpreter on a UNIXT computer systenm.

Finally, chapter eight presents conclusions from this

work and looks at some areas for further research.

T UNIX is a trademark of A T & T Bell Laboratories.

Chapter 1II

THE DESIGN PROCESS

In order to understand the problem, what type of hardware
description language is required, we need to better under-

stand the hardware design process.

There are two major approaches to designing hardware just
as there are in designing software: bottom-up and top-down

[Wirth74].

Bottom-up design 1involves taking components and assem-
bling them together into larger components. This is done
without any prior knowledge of the rest of the design.
These larger parts are put together to create even larger
components. This process continues until we have a compo-
nent whose behaviour matches the initial specifications.
There are problems with this approach. Bottom-up design of-
ten imposes restrictions on a final design or gives an inef-

ficient fit to the optimal solution.

Most designers of large systems use the top-down approach
(see figure 7). 1Illustrated is the step-wise interlevel re-
finement from of an algorithm to the transistor level
[Laws77]. Not evident from the diagram is the intralevel
refinement that must take place. Each level, while appear-

ing somewhat flat here, actually contains many sublevels.

- 4 -

5

Let us examine microprocessor design as an example.
Typical software compilers automate the refinement from the
high level language to the instruction set architecture lev-
el. Most hardware designers tend to restrict their activi-
ties to levels below the instruction set architecture.
There have been attempts to automate the design process at
these levels [Suss81]. Ideally, an algorithm would be
translated to a high level language programme and through

the lower layers until a complete circuit is realized.

In fact, it is really irrelevant which layers are imple-
mented in hardware or software. The designer may move the
hardware/software boundary up or down depending on his con-

straints (ie: speed, cost, chip yield, market, etc.).

The RISC (Reduced Instruction Set Computer) versus the
CISC (Complex Instruction Set Computer) debate is just one
such example of a shifting hardware/software boundary
[Patt82] [Ungar84] [Rowen86] as shown in figure 2. Complex
operations done in hardware on a CISC would be done in soft-
ware on a RISC. The RISC philosophy is to place simple,
frequently used instructions in hardware. Complex opera-
tions are simulated by subprogrammes. What we have here is
a higher level virtual machine being emulated by a RISC.
RISC advocates avoid microcode as it slows down the instruc-

tion cycle of the machine [Radin82].

algorithm

A
high level language programme
virtual machine code

v
assekmbly language programme
4

microcode software that is "bound" (ie: fixed)

v
organisation

gate implementation

transistors

Figure 1: Algorithm to Transistor Refinement

algorithm

software
high level language
virtual machine
instruction set
microcode

hardware

organisation

gate level

RISC generic CIsC

Figure 2: Software/Hardware Partitioning

7

Constraints that have influenced RISC designers are de-
sign time, a small silicon area to work with and a need to
have more reliable (bug-free?) hardware. RISC designers

also cite an increase in performance as an advantage.

If we look at another example of hardware design, say a
traffic light controller, we can see that there are a number
of different implementation alternatives. One could use a
register and combinational logic. By replacing the combina-
tional logic with a ROM, we would have moved up one level of
abstraction with the creation of a horizontal microcodable
machine. Moving up even higher still is an assembly lan-
guage programme and a single chip microcomputer. Although
each implementation is different, the external behaviour is

still the same.

Even though the software and hardware implementations are
expressed in different forms, they are fundamentally the
same. Our hardware 1is a sequential machine which is com-
posed of combinational logic and a state. Imperative soft-
ware gives 1its state by the contents of the variables and
the programme counter. The analogue of combinational logic
is the instruction set of a computer. Memory locations are
modified, output is produced and the programme counter is
adjusted according to the flow of control. The whole point
of an instruction set is to alter the state of the machine

and its outputs.

8

Noting the close relationship that hardware has with
software, it would seem desirable to have the same or at
least a similar formalism or model for describing both hard-
ware and software. We know that we can certainly describe
the behaviour of hardware in software. But could the struc-

ture of hardware precipitate out of the formalism?

It is to the designer's advantage not to bind an algor-
ithm until the last possible moment. The designer should be
allowed to experiment or, indeed, to just change his mind as
to what should be committed in hardware. Another advantage
of a universal model is that the compiler itself could make
judgements regarding hardware/software partitioning. The
compiler could design or create several alternatives and
based on a list of constraints given by the designer, anal-
yse those alternatives and return to the user with the best

possible solution.

Chapter II1I

HARDWARE DESCRIPTION LANGUAGES

Hardware can be described in various levels of abstrac-
tion: behavioural, functional, structural, logical and, at

the lowest level, physical.

At the behavioural and functional levels, processes are
interconnected without regard as to their actual implementa-
tion or structure [Lewin81]. Strictly speaking, the behav-
ioural level describes the behaviour of a system in its en-
tirety. If the system 1is broken into submodules, even
though each submodule may be given at the behavioural level,
the system is considered to be described at the functional
level. These two definitions tend to be blurred as most be-
havioural languages allow some sort of partitioning, thus
placing them under the functional language category as well.
For simplicity, we will classify functional hardware de-
scription languages as behavioural languages. Traditional
HDLs of this class have been Register Transfer Level (RTL)

languages and have had only qualified success [Kato83].

At the structural level, a system is described in terms
of abstract components and their interconnections [Lewin81].
The difficulty with structural and indeed lower level de-

scriptions is that the entire system must be described.

10
Submodules must be given in terms of lower level components
and interconnections; in other words, the submodules must be
told not only what to do, but how to do it. This is not the
case for the behavioural level. A behavioural language be-
comes part of the step-wise refinement approach rather than
an after thought. Nevertheless, a structural language can
help the designer to more readily visualise the circuit that

will be synthesized.

A system described at the logic level is given in terms
of physically realisable, primitive logic functions (for ex-
ample nand gates) and their interconnections. In general,
designers should avoid designing hardware at this level. It
is too expensive for a sizable system due to the number of
devices involved. It is also unnecessary with design auto-

mation.,

Finally, the physical level consists of a description of
a digital system in terms of the final implementation tech-
nology. An example is that of silicon masks for an inte-
grated circuit. It is far too time consuming and error

prone to work at this level.

Only in a small number of specialised cases is manual de-
sign necessary either at the logic or physical level. These

usually involve power or speed constraints.

Typical design mechanics are given in figure 3. The

hardware description language 1is passed to Simulator A for

11
verification of the design. Simulator A gives an approxi-
mate picture of behaviour of the hardware; but what it lacks
in parametric accuracy it makes up for in speed. Once the
description is found to be suitable, it is passed to the
silicon compiler which generates a low level HDL. The Low
Level description 1is at the transistor level. It can be
passed to Simulator B for a very accurate, but very slow
simulation or to the Mask Generator which produces the masks
necessary for construction of the chip (if it is to be im-

plemented in silicon).

The layout that is generated by the Mask Generator may be
used by Simulator C to produce a still better picture of the
hardware. This would allow the designer to examine the de-
vice physics in more detail since it is at this level that

the actual device construction is known.

If one has enough confidence in the silicon compiler,
simulators B and C could be ignored. A working chip would

be the indicator of success.

The designer should not have to know any details of the
low level HDL. The designer's work should be contained
within the higher level HDL. The HDL should support the de-
sign process: the step-wise refinement of the behavioural

description.

12

hardware description language > silicon compiler

A

v .
low level hardware description language
simulator "A"
%
mask generator simulator "B"
v
chip masks > simulator "C"

Figure 3: Design Mechanics

Chapter IV

LANGUAGE REQUIREMENTS

From the previous chapter we can see that our hardware
description language should be a behavioural language.
There must be an easy way of specifying components and in-
terconnections. Subordinate components should be given ei-
ther as a behavioural model or as smaller parts intercon-
nected together; the latter more likely as the design nears
completion. We should not have to finish the design in or-
der to verify it. Only a behavioural language offers this
kind of rapid prototyping so important to designers. To re-
iterate, we are looking for a design tool in the broadest

sense.

The language should be as simple and as consistent as
possible. This will make it easy to learn and to use. It
should be modular; code and type definitions should be sha-

rable between system descriptions.

The HDL should provide a model which is software/hardware
independent. The designer must be able to move back and
forth between software and hardware without any translation

in terms of the model.

- 13 -

14

An ideal model is that of the process. A process is a
sequence of events occuring concurrently with other events.,
Every level in the design, from high level software to the
lowest hardware entity, can be modeled as a process. Is
this possible? The .following list illustrates that it is

not only possible, but quite natural.

LEVEL EXAMPLE
high level language real time 0.S.
instruction set hardware scheduling (a simple

example is an interrupt vector)

system level each chip/subsystem is modeled
as a process

organisational level pipeline
gate each gate is modeled as a
simple process
Not only do we want a process model, but we want to make
the parallelism as explicit as possible. The circuit compi-
ler should be given enough information to allow the designer

control over the fundamental nature of the circuit.

Since we will have a collection of processes, it is as-
sumed that they will be communicating with each other. A
communication model must be developed. Several possibili-
ties exist: monitors, message passing via a channel and mes-

sage passing directly to a process, for example.

The monitor concept turns out to be inadequate [Harl85].

It is less natural on machines without a common store, since

15
the monitor provides only exclusive access to shared store:
nothing else., It also reduces parallelism by forcing the
calling task to wait while processing 1inside the monitor
takes place. Now if very little processing takes place,
then the monitor is analogous to the channel, so we might as

well use a channel.

Message passing mirrors the actions of hardware. How-
ever, sending messages directly to processes (or receiving
from processes) can cause problems when a library of gener-
alised programmes are to be created. To avoid explicit nam-
ing of the target or the source of the message, messages are
sent over channels (analogous to wires in hardware). Chan-
nels in the sender are linked to channels 1in the receiving

process. This would be done as processes are created.

It would also be an advantage if our HDL was an extension
of an existing software language. This would certainly re-
duce the learning curve and make it more natural to software
people. This is not as simple as it may seem. Most lan-
guages are oriented towards single-threaded execution.
Those languages which do support processes often do so in
the most cumbersome of ways. A good example of this is the

UNIX operating system's fork and join functions [Blair85].

However, two languages, namely CSP (Communicating Sequen-
tial Processes) [Hoare78] and Occam [Inmos84) provide suit-
able support for processes. Occam, a derivative of CSP, was

designed primarily for multiprocessing applications.

16

CSP has a few problems that should be noted.

First, it passes messages to processes directly; no chan-
nels are used. The explicit naming of processes makes it

difficult to construct libraries of general programmes.

Second is the vague definition of process termination and

failure [Fay84].

Both Occam and CSP require processes to be synchronised
when communicating with each other. This type of message
protocol is, unfortunately, not always exhibited by hard-
ware. Sometimes a device sends a message and then carries
on with the next sequence of actions; it does not wait to
ensure that any of the potential receivers has actually col-

lected the message.

The last shortcoming CSP shares with Occam,t that is the
lack of suitable data types. The basic data type required
by the HDL 1is the bit. Bits need to be combined to form
other types (for example: the type INTEGER). Bits need to
take on other values besides zero and one: values such as
unstable, tri-state, and unknown are necessary. Occam does

not provide any support for this.

t It should be noted that Inmos has recently extended Occam
(called Occam 2) giving it a more extensive set of data
types [Poun86].

17

The language Circa, presented in the next chapter, is a
derivative of Occam and as a result Circa shares much of Oc-
cam's philosophy. However, there are differences. The rig-
id format of Occam was liberalised, but Circa still uses the
concept of indentation of subordinate processes to illus-
trate the process hierarchy and flow of control. A few new
operators and types were introduced to better support hard-
ware description. The communication mechanism of Occam was
generalised - the handshaking protocol was augmented with an

asynchronous capability.

Chapter V

THE LANGUAGE CIRCA

5.1 A TUTORIAL

This chapter presents an informal examination of the lan-
guage Circa: a hardware description language developed by

the author. The syntax is given in Appendix A.

The basic building block of Circa is the process. There
are several primitive processes in Circa: input, output and

assignment.

An input process looks like:

channel ? variable

A value is transferred from the channel into the variable.
An input process will wait until a new value is placed onto
the channel by some output process. It is quite acceptable
to have more than one process waiting for input from the
same channel. This one to many relationship works exactly
the same way as a one to one message transfer. If we wished

to disregard the value, we could rewrite the input process:

channel ? ()

- 18 -

19
To do the above, but not requiring the input process to

wait for a new value, we would write:

channel ?7? variable

Whatever happens to be in the channel at the time will be

placed into the variable.

An output process is used to put a value onto a channel.

It is denoted by:

channel ! expression

If more than one process attempts to place a value onto a
channel at the same time, that channel will contain an unde-

fined value. One can issue signals by:

channel ! ()

Signals do not involve any transfer of data, but are useful

in process synchronisation.

The above form of the output command forces process syn-
chronisation. The process will wait until there is a pro-
cess ready to receive the data: that is, wuntil a process
requests input (in any form) from the channel. If the de-
signer wishes to have the command terminate as soon as it

has placed a value on a channel, he should use:

channel !! value

20

Assignment works exactly the same as in most other lan-

guages. The notation was designed to reflect this:
variable := expression

Expressions are constructed in a similar manner. The fol-

lowing is a list of operators:

OPERATOR MEANING
tesessssssssseassss integer division

¥ ieessssssseessssss multiplication

\ ceetereeereecainns. remainder

&& sieeieieesseesssss logical and

<> tieeesneesesessse. nNot equals (logical)

Il eevevieiiieveeeen. logical or
ceesscssssasssssess bitwise and

>< tesssesesssssnsses Dbitwise exclusive or

| veeieierieeiaaaaa.. Dbitwise or

¥ iieecessessssseasss addition

= csssssssessosssesas SUbtraction
tesessssssseessssos CONcatenation

= tsiesseeseeaessse. greater than or equals (logical)

<= tieevsessesesess.. less than or equals (logical)

> teieeiiievsesess... greater than (logical)

< tetesisesiesesesse. less than (logical)

Expressions are evaluated from left to right, except for ex-

pressions within parenthesis (these are done first). 1In

Circa, all operators have the same precedence.

Values can be any number of bits in length. Concatena-
tion combines two values, of n amd m bits in length, into a
single value with n+m bits. The bitslice operation extracts
bits from a value. Variables, channels and constants con-
sist of a set of bits numbered 0 (least significant bit) to
“n” (there would be “n”+1 bits). To select the lowest order

bit, we would write: variable{0} .

21

Other primitive processes include: the wait and skip.
Skip is a do nothing process and is defined simply by the
keyword SKIP. The wait is used to cause a delay; WAIT n

causes the process to be suspended for “n” time units.

The processes mentioned so far are useless unless they
can be combined together. To assemble commands to form
larger, more powerful processes, constructors are used.
There are five constructors in Circa: SEQ, PAR, IF, ALT and

WHILE.

The SEQ constructor causes its constituent processes or

commandsf to be executed sequentially. It is formed by:

SEQ
command
command

s s

command

To execute processes in parallel, Circa provides the PAR
constructor. The form is similar to that of SEQ:
PAR

command
command

s 08 @

command

The PAR command terminates when all of the subcommands have

terminated.

T The word “command” is used as a synonym for “process”.

22
The alternative (ALT) constructor waits until one of its
guarded processes is ready. A guarded process is considered
to be ready if its gquard (Dijkstra's guards [Dijk75]) is
ready (if the guard is a process) or has a non-zero value in
the case of an expression. The ready process is then exe-
cuted. When the process is finished, the ALT constructor
terminates. If more than one guarded process is ready to
execute, the first one to be encountered textually is cho-
sen. Simple guards may be expressions, SKIP commands, WAITs
or input commands. A guarded command has the form:
guard
command
Guards can be cascaded together to form more complex and
more useful structures. For example:
a=0
ch ?a
chx ! 3
The value 3 will be placed onto channel “chx” 1if the vari-
able “a” 1is equal to 0 and if there 1is a value sent over
channel “ch” (the value is inserted into “a” overwriting the
old value of “a” used in the comparison). This of course
assumes that there are no other ready guarded processes be-

fore this one (textually) in an ALT.

Normally an ALT will wait until one of its guards becomes
ready before it can execute a guarded command and then ter-

minate. Sometimes we might want to exit the ALT if none of

23
the guards are ready. We can do this by adding a SKIP as a

guard.

The IF evaluates its expression guards sequentially.
When an expression is found to yield a non-zero result, the
guarded command is then executed. Once this has finished,
the IF terminates. To place the maximum of two variables

“a” and “b” into a variable “c”, we would write:

IF
a>b
c := a
a <= b
c :=b

We could omit the last test, since it must be true if a > b
is false. We merely substitute a non-zero constant (a “1”
in our case) for the true expression. This saves us from
having to evaluate it during execution time. Rewriting the

last example, we get:

The WHILE constructor works exactly like while loops in
traditional languages. The body of the WHILE loop is a sin-
gle process. Since infinite loops are common in hardware
descriptions, we can omit the expression to denote this. To
output numbers from 1 to 10 to channel “x”, the following

would suffice:

24
SEQ
count := 1
WHILE count < 10
SEQ
X ! count
count := count + 1
Up until now, we have not looked at declarations: at how

variables and channels are defined. Variables and channels

are declared by giving a name and a type name:
name :: type name

This type name is user defined. It refers to the actual
type definition, In Circa, each type definition is stored
in its own file. This enhances reusability of the variable/
channel definitions. To create a variable type definition

for a byte, we would write:
Byte :: VAR { 8 }

The number 8 in this example indicates the number of bits in
variable declared with the type “Byte”. A channel is a lit-
tle more complicated; a byte wide channel type might be giv-

en by:
ByteChan :: CHAN { 8 } FALL 2 RISE 3

The RISE and FALL keywords deserve a small mention here.
Bits that make up a channel may change from 0 to 1 (rising
edge) or from 1 to 0 (falling edge). The expression immedi-
ately following the FALL keyword indicates the number of

time units that elapse before the 1 to 0 changes are seen on

25
the output side of the channel. In this case, the delay
will be at least 2 time units. If the bits that change go
from 0 to 1, the delay will be 3 time units as indicated by
the expression following the RISE. This allows the designer
to simulate rise and fall times of logic devices as well as
propagational delays through wiring. To create an instance

of this kind of channel, we would write:
Fred :: ByteChan
in the programme text.

Of course, if we wanted a byte wide channel with a delay
of 4 time unitst for a rising edge and a delay of 3 time
units for a falling edge we could create another type defi-
nition. But this 1is very wasteful since most of the type
definition is useful; only two numbers need to be changed.

This brings us to variant types.

Variant types are types with parameters. So to redeclare

our byte channel, we would write:
ByteChan(f;r) :: CHAN {8} FALL f RISE r

Now to reallocate Fred: Fred :: ByteChan(3;4) or Fred ::

ByteChan(2;3) depending upon the delays required.

T Note that Circa does not have any concept of absolute
time: the units are arbitrary.

26
Circa provides symbolic references to constants. In Pas-
cal, they are called constant identifiers. Circa's symbolic
constants may refer to an array of constants, however, not
just a single wvalue. Each constant appears on a separate
line after the constant header. Given
HowLong :: CONS
3
we could allocate: WaitTime :: HowLong . WaitTime now re-

fers to the value 3 and can be used anywhere the constant 3

can.

A declaration for a symbolic constant, variable or a
channel is prefixed to a particular constructor. The scope
of the 1identifier created in the declaration is that con-
structor. Scope is hierarchical and is formed around the
process hierarchy. In this way, the designer can specify

which processes are to have access to which values.

An important aspect of Circa is that of process abstrac-
tion. A process is created by giving a name and a programme
which defines what the process will look like. Programs in
Circa are merely an extension of the type concept used ear-

lier for variables, etc.

A programme resides in its own file as do all type defi-

nitions. It is defined in a similar fashion as well:

programme name :: PROC (channel list)
process

27
The channel list consists of channel declarations separated
by semicolons. These channels are external channels and al-
low intermodule communication. They are linked together
with other channels during process creation. For example:
to join the following processes together
Pump :: PROC(x :: Chany)
some process here
Tank :: PROC{(w :: Chany)
some process here

we could use a superordinate process:

hose :: ChanY:

PAR
gasPump(hose) :: Pump
carTank(hose) :: Tank

A'real world analogy of the previous set of processes is

given in figure 4.

Array definition is the only major subject not yet cov-
ered. Circa has only single dimensional arrays. We can,
however, have arrays of channels, variables, constants or

even processes. An array is defined as follows:
name [subrange] :: type

So to declare a variable array “M” with 5 elements:
M[1..5] :: Number or M[0..4] :: Number

or whatever.

Figure 4: Real World Analogy

fred

link[1]

carTank

3

fred

link[2]

GasPump

fred

Figure 5: Ring of Processes

28

link[0]

29
We can declare an array of processes in exactly the same
way. Named processes or process abstractions are quite
straightforward, but what about arrays of constructors which
do not have any names? After the constructor name, a Size
(as above) can be given. So
PAR [1..3]

A

B
where “A” and “B” are two unspecified processes, 1is equiva-

lent to

PAR

W W w

In the size specification, a symbolic constant can be
given. This symbol is called the replication identifier.
The value of this identifier coincides with the subscript of
the particular element. For example:
1link{[0..2] :: SomeChannel:
PAR [j :: 0..2]
fred(link[j]; link[(j+1)\2]) :: WhoKnowsWhat
WhoKnowsWhat :: PROC (in :: SomeChannel; out :: SomeChannel)
some process here

is the same as:

link[0..2] :: SomeChannel:
PAR
fred(link[0]; 1link[1]
fred(link[1]; link[2]
fred(link[2]; 1link[0]

) :: WhoKnowsWhat
) :: WhoKnowsWhat
) :: WhoKnowsWhat

30

In this example, a ring of processes (see figure 5) is
created. Each process communicates with its neighbours
through two channels: one for input and the other for out-

put s

Replicators make the specification of large arrays of
similar processes trivial. As above, we can use the repli-

cator identifier to vary the declaration somewhat.

It should be pointed out that Circa keywords, like Occam
keywords, must be in uppercase. In the interests of a uni-
form programming style, it is recommended that type names

begin capitalised and instance names do not.

5.2 AN EXAMPLE

To illustrate the language Circa we will consider a sim-
ple traffic light example. A similar example can be found

in [Mead80].

There is an intersection (figure 6) we wish to control
using four sets of traffic lights. The lights work 1in a
straightforward way: first red, then green, followed by yel-
low and then back to red. Lights on opposite sides of the
intersection go through this sequence at exactly the same
time, The set of lights, say on the south side, are out of
phase with the lights on the east side. The length of time
the light is red, green or yellow is fixed. A more intelli-
gent traffic controller might monitor traffic flow or adjust

the lights depending on the time of day.

31
Let us sketch out the overall design in pseudo-Circa:
Traffic
PAR
lights facing east-west
lights facing north-south
Lights
WHILE
SEQ
green
yellow
red

We can describe the behaviour of the lights in more detail

by using a simple timing diagram in figure 7.

Now to create the main process (Traffic). The controller
must have two external channels: one to pass the value to
the east and west light stands and the other for the north
and south light stands.

Traffic :: PROC(eastwest :: LightVal; northsouth ::
yellowTime :: WarningTime:
greenTime :: GoTime:
PAR
a(eastwest) :: Light(0)
b(northsouth) :: Light(greenTime + yellowTime)
Processes “a” and “b” are both of the same type: “Light”.
We decided to make “Light” a variant programme. The variant
is the amount of skew we want the light to have. “GoTime”
and “WarningTime” are the times when the light 1is to be
green and yellow respectively. These constants are referred
to within the programme as “greenTime” and “yellowTime”.

They were made symbolic constants because at this point in

the design their wvalue is unknown and indeed irrelevant so

Lightval)

North

West East

South

Figure 6: Street Intersection

red

yellow

lights facing east-west

green green

32

red

red

yellow

lights facing north-south

green

Figure 7: Light Timing

33
we will put off giving them values until the very last pos-

sible moment.

The “Light” process is essentially an infinite 1loop cy-

cling through the light sequence.

Light(skew) :: PROC (mode :: LightVal)
SEQ
WAIT skew
yellowTime :: WarningTime:
greenTime :: GoTime:

WHILE
SEQ
mode ! 0 ~- green light
WAIT greenTime
mode ! 1 -- yellow light
WAIT yellowTime
mode ! 2 -- red light

WAIT greenTime + yellowTime

Note that when the lights are first turned on (after mainte-
nance or installation) the east-west lights will actually be
on before the north-south lights. This anomaly may only
last a minute and is not a critical issue in this example,

but there may be systems where it is.

So far our channels have been undefined. We have given
them a name: “LightVal”, but nothing more. Since there are
three values that the lights can take on: green, red and
yellow, we will need at least two bits to represent them.
That means that the channels used to carry those values must

be at least two bits wide.

LightVal :: CHAN { 2 } RISE 0 FALL 0

34
In Circa the designer must determine the channel width.
An enumerated type concept, which would allow the compiler

to make those decisions, does not exist in Circa.

To fill in the rest of the picture, we need to define the
symbolic constants “GoTime” and “WarningTime”.
WarningTime :: CONS
2
GoTime :: CONS
16

These would be in separate files of course.

There is alternative to this design. Rather than having
a process control the entire phase for a set of lights, we
could have a process control only half a phase for both sets
of lights.
Traffic :: PROC(eastwest :: LightVal; northsouth :: LightVal)
WHILE
SEQ
first(northsouth; eastwest) :: Phase
second{eastwest; northsouth) :: Phase
The first phase will have the north-south lights turn
green then yellow while the east-west 1lights remain red.
During the second phase the reverse will be true; this is

reflected in the channel argument 1list of “first” and

“second”. Let us have a look at “Phase”.

35

Phase :: PROC(goLight :: LightVal; stopLight :: LightVal)

greenTime :: GoTime:
yellowTime :: WarningTime:

SEQ
stopLight ! 2 -- red colour
goLight ! 0 -- green colour
WAIT greenTime
goLight ! 1 -- yellow colour

WAIT yellowTime

Now this does not look like anything would be gained by
partitioning the problem in this way. Let us suppose that a
more intelligent traffic light controller is desired. As
traffic increases, the lights are to change more gquickly.
During the first phase, if more than “n” cars pass through
the intersection travelling on the north-south route before
the normal phase (defined in the previous example) has fin-
ished, the lights are to change immediately. The same ap-

plies to the east-west route during the second phase.

To accomplish this, we need some way of measuring traf-
fic. Two sensors are introduced into the system: one for
north-south traffic, then other for east-west. When a north
(or south) bound car drives over the north-south sensor, a

signal is sent along that line to our controller.

To simplify processing in the “Phase” module, we create a
new module called “CheckCars”. “CheckCars” receives the
signals from the sensors. When the number of signals reach
a certain limit, a “traffic is busy” signal 1is sent to
“Phase”. “Phase” must terminate its part of the cycle as

soon as it receives one of these “traffic is busy” notifica-

36
tions. If it does not receive any signal from “CheckCars”,

then the phase terminates normally.

Phase :: PROC(goCar::Sensor;goLight::LightVal;stopLight::LightVal)

yellowTime :: WarningTime:
greenTime :: GoTime:

SEQ
stopLight ! 2 -- red colour
goLight 10 -- green colour

isBusy :: Signal:
stop :: Signal:

PAR
busy(goCar; isBusy; stop) :: CheckCars
ALT
WAIT greenTime
stop ! () -- sends a signal to busy to terminate
isBusy ? ()
SKIP
goLight ! 1 -- yellow colour

WAIT yellowTime

CheckCars :: PROC(goCar :: Sensor; busy :: Signal; stop :: Signal)

ok :: Bit:
count :: Short:
SEQ
ok := 1
count := 0
WHILE ok && (count < 10)
ALT

The miscellaneous declarations are:

Sensor :: CHAN {1} RISE 0 FALL 0
Signal :: CHAN {1} RISE 0 FALL 0
Bit :: VAR {1}

Short :: VAR {16}

37
Naturally the sensors must go out to the external world,

therefore they must be included in the mainline header.

Traffic :: PROC(nsc::Sensor;ewc::Sensor;nsl::LightVal;ewl::LightVal)

WHILE

SEQ
first{nsc; nsl; ewl) :: Phase
second(ewc; ewl; nsl) :: Phase

We have abbreviated the channel names for lack of room in

the header.

To simulate this system, we would simulate the programme
“Traffic”; all other definitions would be automatically read

in from their respective files.

It is guite evident from these simple examples how Circa
can implement a set of communicating processes. Also shown
is Circa's ability to aid the designer in the top-down de-

sign process.

An Occam programme to implement this would be very simi-
lar to the above Circa programme. The Occam implementation
is weak given the limited choice for variable and channel
sizes. Occam channels are not capable of supporting channel
delays. The latter 1is not significant in this case since
the delays are 0, but for many problems delays are of great

importance.

Chapter VI

AUTOMATED SYNTHESIS

6.1 SILICON COMPILERS

Currently, microprocessors with 250 000 [Inmos85] and
275 000 [ElAy85] transistors are available. It has been
suggested that circuits will have on the order of 10 million
transistors by 1990 and 250 million by the year 2000
[SoloB6]. At first glance, one might think this freedom
would make the system designer's job easier, but in fact, it
is precisely the thing which makes VLSI design more diffi-
cult [Deny85]. The detail and number of design alternatives

are overwhelming.

In this chapter, we outline a silicon compiler in the
hopes of addressing this problem. The term “silicon compi-
ler” was first coined by [Johan79] and there is some debate
concerning what actually constitutes a silicon compiler
[GajskiB5]. The silicon compiler suggested takes a pro-
gramme written in Circa and translates it into a low level

hardware description (perhaps chip masks).

The key element of this circuit compiler is the notion of
modularisation. Modules appear like black boxes from the

outside; internal details are hidden. Higher level modules

- 38 -~

39
are assembled together from lower level ones using a set of
rules derived from the definition of the Circa langquage.
The language primitives, which are at the lowest level, map
into pre-defined pieces of hardware. This is similar to
software compilation where primitives such as operators or
subroutine calls are implemented by pre-defined sets of ma-

chine instructions.

The abstraction mechanism of the silicon compiler helps
the designer manage detail. The designer is not concerned
with implementation details at lower levels, only with their

external behaviour.

By using a high level language, chip design becomes
available to a larger group of potential designers. It is
no longer necessary to have an intimate knowledge of device

physics to build circuits.

Assuming a valid design, the compiler will generate the
masks T for a working chip. Since the primitive modules and
the assembly mechanism have been verified, the chip will be

free of implementation errors.

The hardware description language 1is technology indepen-
dent. Should it be necessary to convert to a new device
technology, only the mask generation portion of the compiler

would have to be rewritten. This situation is analogous to

T Masks are typically described in a simple layout language
such as CIF (Caltech Intermediate Form) [Mead80].

40
a portable software language that 1is transferred to a new

machine.

Finally, a uniform software based design methodology of-
fers a vehicle for organising designs and exchanging designs

between interested groups.

6.2 THE CIRCA MODEL

A standard computer organisation is the von Neumann ma-
chine, It is typified by a single computational unit and a
small set of registers located 1in the processor. The pro-
cessor communicates with a memory through a bus. The memory

bus is usually only a word in width.

The primary complaint with this style of computer organi-
sation is the serial nature of the system. Computation
takes place in one part of the computer, but the data, upon
which the operations are to be performed, reside in another
part. The only link between the two is the aforementioned
bus. This link tends to serialise processing as only one
word of data (or instruction) can pass during a bus cycle,
This situation gives rise to the term “von Neumann bottle-

neck” [Back78].

Computer designers have suggested building computers with
arrays or trees of processors each with its own local store
[Mead80]. By splitting up a programme among a number of

processors greater speeds should be obtained. This is true

41
if the algorithm can be partitioned so as to minimise inter-

process communication and to maximise concurrency.

Now this is not to say that all computer systems should
be designed this way. The von Neumann architecture will be
around for a while; we are very adept at programming them
and hierarchically organised machines are still as yet un-

proven.

An interesting parallel exists between the organisation
of a computer system and the internals of the processor it-
self. A microprogrammed processor can be thought of as a
miniature computer system. There is the “von Neumann bot-
tleneck” (the data paths) connecting the processing unit
(the ALU) to the memory (the register set). Perhaps we can

use the new approach to systems design in processor design.

This is the approach that we have taken with the Circa
silicon compiler. The low level primitives of the Circa
language are implemented by small, simple processors. Circa

constructors are used to assemble these processors.

The Circa language provides a time framework in which
processes are executed. What we mean by this is that there
is a definite ordering of events, but no fixed times at

which these events must occur.

We have taken this liberal approach in the timing between

the elementary or primitive processors. Each processor is a

42
sequential machine and therefore has a clock. However, the
clock is hidden inside the primitive processor. The proces-
sors communicate between each other in an asynchronous man-
ner using a set of control lines. Since interprocess commu-
nication is independent of a clock, the clocks inside the
processors need not be the same. A two-phase non-overlap-
ping processor clock can be generated by the circuit in fig-

ure 8 (from [Mead80]).

A set of signals, described in figure 9, 1is used to con-
trol the actions of the processor. RESET is used, usually
during power up, to reset the processor back to the known
initial state. The initial state of the processor is an
idle state where nothing happens. To start the processor up
so that it can perform its function, a pulse is sent along
the ENABLE control line. When the processor accomplishes
its task, it sends a pulse over the DONE line to another
processor which is waiting. The Mealy state graph in figure

10 illustrates the control sequence of a processor.

The processors implementing Circa primitives are assem-
bled together to form larger, higher level processors as
specified by the Circa constructors. These high level pro-
cessors look exactly like their primitive counterparts from
an external perspective. High level processors do not real-
ly exist in silicon; it is only a concept to make the tran-

sition from Circa to masks easier.

43

@)

21

period of g1 and

NI AN

@2 is 2*delay
delay
o2
Y
A
Figure 8: Clock Generation
RESET —
Processor ———» DONE
ENABLE ————»
Figure 9: Processor Control Signals
0-/0
initial state ENABLE,RESET/DONE
10/0 -1/0
-0/1

equencing through microcode

-0/0

Figure 10: Processor Control Sequence

44
6.3 PRIMITIVES

6.3.1 Primitive Processors

Input, output, assignment and wait are primitive process-
es in the Circa language. They are implemented as primitive
processors., Primitive processors are microcoded finite

state machines.

Expressions which appear in the WHILE constructor and as
guards in the IF and ALT constructors are also implemented
as microcoded processors. Expression processors deviate
from the model in only one aspect: there are two separate
DONE signals leaving the module. One is used to signal a
processor if the expression is evaluated to be a one; the

other indicates a zero result.

Note that expressions in construct replicators and vari-
ant parameters can only be constant expressions. These ex-
pressions can be evaluated at compile time and therefore are

not implemented as primitive processors.

Although SKIP is a primitive process in Circa, it is not
implemented as a sequential machine simply because it does
not do anything. It is a dummy processor with the ENABLE
control line passing though to the DONE control line without

any modification.

45

6.3.2 Arrays

When faced with an array in the Circa language, the sili-
con compiler has two choices: to implement the Circa array
as a real memory array (large ROM or RAM) or to split up the

array into its individual elements.

In this section, we will deal with the criteria that Cir-

ca uses for making this implementation decision.

For channels, there is no decision to make. Channel sub-
scripts must be evaluated at compile time; they must be con-
stant expressions. Consequently, channels are always imple-
mented as individual elements. It complicates the hardware
considerably if channels are chosen dynamically from a memo-

ry array.

With variables and constants there is some flexibility.
Let us consider the following example:
al0..2]::Byte:

SEQ [i:Eo..z]
ali] := 1

In this case, the variable “a” is subscripted using only

119

constant expressions. a” could be implemented as a three
byte RAM with a bus that is shared between the three assign-
ment processes or as three individual one byte RAMs (with
three individual buses: one for each assignment processor).

There does not seem to be any obvious advantage to one ap-

proach over the other.

46
Suppose we were to perform the operations in parallel.
al0..2])::Byte:
PAR [i::0..2]
ali] =1
If “a” were to be implemented as a three byte RAM, we
would have a problem. Although we are modifying a different
element in each assignment command, there is only a single
bus. The data bus certainly cannot be shared: nor can the
address bus (an address bus is required when a memory array
is accessed 1in order to select the appropriate element).
There are two alternatives here. A bus arbitration scheme
could be used. But this would serialise access and would
therefore make the PAR behave like a SEQ constructor in this
case. The other possibility is to implement the array as a
series of individual elements and to allow only constant ex-
pressions as subscripts. The latter approach was adopted.
Note that this only applies to parallel access; for sequen-

tial access, none of these problems appear.

Constant arrays also follow this scheme.

6.3.3 Memory Access

We will examine variable access first.

A variable is accessed by a processor over an asynchro-
nous bus. The bus control signals (figure 11) are patterned
after the asynchronous bus interface of the 68000 processor

[Moto82].

47
The flow charts in figure 12 and timing diagram (in figure
13) illustrate the bus protocol. Each stage of the read or
write cycle corresponds to one micro cycle in the state ma-

chine.

Constants are wusually constructed out of ROMs and have
the same interface logic as variables. Depending on the
choice of microcode instruction format, it may be possible
to encode individual constant values 1in the instruction it-

self (immediate values).

The behaviour of channels differs radically from that of
constants or variables. Channels can cause a processor to
wait indefinitely; constants and variables have a known up-
per bound. The upper bound is a function of the memory ac-

cess time,

A channel has its own memory and is dual-ported. There
is an input and output port. Each port has its own set of

asynchronous bus logic (figure 14).

The idea behind the channel 1is quite straightforward.
Processors communicate between each other using channels.
Processor synchronisation 1is accomplished through the bus

control signals.

For example, if we write a value to an active channel
(using a “!”), the bus cycle will complete as soon as a pro-

cessor on the input side of the channel is ready to read a

variable

>MXFER

J

Figure 11: Bus Interface

Read Cycle

processor
R/W* high
MEI\IJABLE asserted

variable

v o
data valid

MXF‘ER asserted

v
latch data
deasfsert MENABLE

Remove data from bus

deassert MXFER

Figure 12: Read and Write Cycles

MENABLE

MENABLE

Write Cycle

processor
RW* low
data valid

MEI\IIABLE asserted

48

variable

remove data from bus

deaslsert MENABLE

v
data latched
asse'rt MXFER

MXFER

v
deassert MXFER

X

4

read data

2

write data

K4

%

Figure 13: Bus Timing

49
value. The bus cycle could complete immediately if a pro-

cessor is already waiting.

If a value is sent to a passive channel (we issued a
“117), then the bus cycle completes immediately, regardless
of the status of the input side of the channel. Any proces-
sors waiting on the input side are woken up. This is done

by the completion of the bus cycle (figure 15).

With each channel bit is a “new bit” which is set when
data is sent to the channel and reset when data is read out.
This is used by the input side of the channel. When a pro-
cessor issues an input command from an active channel (a
“?”), the new bit is examined. If the new bit is set, then
the bus cycle completes. Suppose the new bit is clear, the
processor will wait. As soon as the new bit is set (by data
being placed into the channel), the bus cycle on the input

side resumes.

If data is requested from a passive channel, the new bit

is ignored and the bus cycle completes without waiting.

What happens when more than one processor issues an input
command from the same channel at the same time? The MENABLE
signals from each processor on the input side of the channel
are ORed together. This means that the bus cycle on the in-
put side of the channel will finish when the slowest proces-

sor is finished.

input side

MENABLE

MXFER<

b?

Figure 14: Channel Interface

MENABLE (input) /

MXFER (input)

MENABLE (output)

MXFER (output)

channel

50

output side

MENABLE

bl
> MXFER

N
/ ~_

——

Figure 15: Channel Timing Example

A

Signal depsndancies

51

6.4 HIGH LEVEL PROCESSORS

Processors can be formed into a hierarchical structure of
higher level processors. They are formed in such a way as

to implement the appropriate Circa constructor.

The following sections outline the Circa constructors and
their corresponding implementations. Note that the graphi-
cal representations of Circa constructors do not necessarily

imply suitable layout.

6.4,1 Sequential Constructor

Subprocesses of the SEQ are formed into a pipeline-like
structure (figure 16). It is not a true pipeline, however,

as only one stage can be active at any one time.

If a variable were to be declared so that its scope en-
compassed only this SEQ constructor, the variable could be

located within the SEQ perimeter (figure 17).

As an optimisation feature, a SEQ containing only sequen-
tial constructs (IFs, WHILEs, other SEQs or primitive pro-
cesses) could be compacted into a single processor. No per-
formance degradation would take place and chip space would

be saved.

RESET

52

ENABLE

resst

SEQ

enable done

uAu

reset

enable

uBu

done

|

reset

enable done

uC"

Figure 16: Hardware Implementation of the Sequential Constructor

RESET

ENABLE

declaration of variable "V":

SEQ
A
B

Figure 17: A Variable in the SEQ Machine

reset

enable done

reset

"All

enable

uB"

done

variable "V"

DONE

SEQ perimeter

DONE

53

6.4.2 While Constructor

Figure 18 describes the implementation of the WHILE.

It may be possible to include this construct when com-
pacting sequential constructs as the previous section sug-
gests. However, our microcode must be able to handle condi-

tional execution.

If the expression is omitted in Circa (an infinite loop),
the result would be the structure in fiqure 19.
6.4.3 I1f Constructor

An IF construct evaluates its guards sequentially. Con-
current evaluation of guards is only done by the ALT con-
struct. The structure is given in figure 20. The IF guard

must be an expression.

6.4.4 Parallel Constructor

The PAR definition states that a PAR terminates when the
slowest of 1its components terminates. We use latches to
hold the DONE signals of its components. When all of the
latches are set, the PAR is finished and a signal is there-
fore sent. The latches are then reset. See figure 21 for

details.

RESET

54

ENABLE

reset

———_::izj::}——— enable

Vol

done
{true}

done
(false)

|

/

reset

enable done

body

/

DONE

WHILE expression

body

Figure 18: Hardware Implementation of the WHILE Constructor

RESET

ENABLE————j_

WHILE
body

Figure 19: An Implementation of an Infinite Loop

reset

enable

body

done

—— DONE
L

55

RESET

ENABLE

reset reset reset
enable done |— — enable done |— enable done |—
(trus) (true) |‘ (true)
done done done
"A" (false) "B" (false) "C" (false) ——J’
reset reset reset
L enable done L—i enable done L1 enable done
"D" llEll I|Fll

Figure 20: Hardware Implementation of the IF Constructor

RESET

ENABLE

PAR

I

reset L reset L reset
enable done enable done enable done
"A" IIB" "Cll
datain data in data in
asynchronous asynchronous asynchronous
latch latch latch
reset — reset —| reset
data out data out data out

L

~
/

Figure 21: Hardware Implementation of the Parallel Constructor

— DONE

DONE

56

6.4.5 Alternative Constructor

The ALT guards are evaluated concurrently. The first
guard to finish gets to execute its quarded command. The
priority encoder (see figure 22) allows only the first sig-
nal to get through. The guards have a priority: “A” is the
highest and “C” the lowest. This is determined by their
placement in the ALT text. The priority encoder does more
than just enabling a particular processor: it also resets

the guards.

It is important to realize that the speed of the guards
ﬁlays an important part in determining which guarded process
is executed. The difference between the time when the con-
ditions for a guard to become ready (such as receiving an
input signal) and the time when the guard actually responds
with a pulse on the DONE wire is called the reaction time.
Therefore, guards with small reaction times will have their
guarded processes executed in the. case of races with slower

guards. The SKIP guard has the fastest reaction time.

6.5 AN EXAMPLE

In chapter five, we discussed an intelligent traffic
light controller. 1In this section, we shall apply the ideas
in silicon compilation to the implementation of such a con-

troller.

RESET

57

ENABLE

reset

reset reset
enable done |— enable done |— enable done |—
IIA" "Bll "Cll
reset out guard in resst out guard in reset out guard in
Priority Encoder/Controller
enable enable enable
reset reset reset
enable done enable done enable done
"D" llEll "Fl'

DONE

Figure 22: Hardware Implementation of the Alternative Constructor

58
The controller mainline was given by the following:
Traffic :: PROC(nsc::Sensor;ewc::Sensor;nsl;:LightVal;ewl::LightVal)
WHILE
SEQ

first(nsc; nsl; ewl) :: Phase
second{ewc; ewl; nsl) :: Phase

An implementation of this process is given in figure 23.

Note that the module “Phase” is not defined yet (in fig-
ure 23), so it appears as a black box. This is how the com-

piler works: a top-down decomposition of Circa processes.

The input side of the “nsc” and “ewc” channels and the
output side of the “nsl” and “ewl” channels are connected to

the chip pads.

Given the definition of “Phase” and its subordinate mod-
ule “CheckCars”:
Phase :: PROC(goCar::Sensor;goLight::LightVal;stopLight::Lightval)

yellowTime :: WarningTime:
greenTime :: GoTime:

SEQ
stopLight ! 2 -- red colour
goLight ! 0 -- green colour

isBusy :: Signal:
stop :: Signal:

PAR
busy(goCar; isBusy; stop) :: CheckCars
ALT
WAIT greenTime
stop ! () -- sends a signal to busy to terminate
isBusy ? ()
SKIP
goLight ! 1 -- yellow colour

WAIT yellowTime

59

CheckCars :: PROC(goCar :: Sensor; busy :: Signal; stop ::

ok :: Bit:
count :: Short:

SEQ
ok = 1
count := 0
WHILE ok && (count < 10)
ALT
stop ? ()
ok := 0
goCar ? ()
count := count+1
IF
ok
busy ! ()

Figure 24 shows the result of compiling the module
“Phase”. The structure of “CheckCars” is illustrated in

figure 25,

6.6 CONCLUSION

This is only one possible model for silicon compilation
using Circa. Similar ideas regarding integrated circuit de-

sign have been proposed by [Hayes83].

One objection to this approach 1is its inefficient use of
chip area. This arises from the duplication of processing
units and the potentially large number of buses. However,
this objection is becoming less important as circuit densi-

ties increase.

There are some interesting advantages to this particular

model.

Signal)

RESET ENABLE

Figure 23: Hardware Implementation of "Traffic"

Traffic

60

RESET ENABLE 61

Phase

reset enable

done opLight

nable

golLight

goCar

nable
one

IsBusy 4 - l

resetout guard in reset out uard in
enable Priority Encoder/Ctler enable

stop ! ()
reset enable
done

\ done

data in data in

reset reset

asynchronous asynchronous
fatch latch

data out data out

enable
done

DOl\]E Figure 24: Hardware Implementation of "Phase"

RESET

ENABLE

enable

done

reset

enable

done (false)

done (true)

stop? ()

reset

enable

done -_I

reset out

guard in

enable Priority Encoder/Controller

reset out

guard in
enable

ok:=0

reset

enable

count ::
count +

done

enable
done

I

reset

enable

done (false)

done (true)

reset

enable

62

CheckCars

ok

count

goCar

stop

busy

done

Figure 25: Hardware Implementation of "CheckCars"

DONE

63

The problem of clock distribution within the chip virtu-
ally disappears since the organisation is based on asynchro-
nous processing units. This also means that global process-
ing (processing between processors) takes place at the fast-

est possible speed.

Due to the localised processing and memory, still greater
speeds can be obtained. This is attributed to the tendency
towards small buses. Traditional organisations usually have
large buses which slow up processing. Large buses have
large capacitances which cause signals to travel slower

[Mead80].

Chapter VII

THE IMPLEMENTATION OF THE CIRCA INTERPRETER

7.1 INTRODUCTION

The Circa interpreter is an event-driven simulator. This
means that the processing of data occurs only when it has
to; that is, when messages are sent from one process to an-
other or when a process proceeds to its next state. The
word simulator is used as a synonym for interpreter in our

discussions.

The simulator is written in C and runs under the UNIX op-
erating system. The simulator is called from the shell and
is ready to execute a Circa process typed in from the termi-
nal. When the process terminates, the Circa interpreter re-
turns control back to the shell. The process would usually
be a call to the top level process. To aid the Circa pro-

grammer, a source language trace facility is provided.

The discussion of the workings of the simulator is broken
down into four areas: analysis of the source text, process
management, expression evaluation and channel implementa-

tion.

- 64 -

65

7.2 ANALYSIS OF THE SOURCE

When a type is encountered (a declaration or an abstrac-
tion), the type definition is read in from a file and inter-
preted. The result depends upon the type. If it was a
variable or a channel, attributes will be the result. If
the type was a constant, then a list of constants (or per-
haps only one) will be the result. Finally, if the type was

a procedure, it will be executed.

Let us examine the mechanism that gathers the source
code., First of all, the source code that has already been
gathered into the Circa system resides in a list: each ele-
ment being one type definition. FEach element consists of a
tree of source lines (see figure 26). The depth of a line
in the tree is determined by its indentation in the original
source. For each line, there is a list of tokens each rep-
resenting some elementary syntactic unit (for example an

identifier) from the source.

The programme which recognises tokens from the source
file was generated by UNIX's LEX [Lesk75]. LEX takes a file
consisting of regular expressions and produces a programme
which recognises them, It is called by a higher level pro-
gramme which inserts the tokens into the appropriate place

in the source tree.

The source is not compiled into any type of low level

form. There would be little advantage in doing this. We

66
would be replacing the tokens with another form which would
require as much processing to interpret it as did the origi-
nal. Furthermore, the source code 1is kept around to be

printed during traces or when an error occurs.

BEach line also contains the column position and the line
number in the file where the code starts so that when the
piece of code is printed, the user knows exactly the place

where the line came from.

Once a type definition has been “compiled” into the
source tree form, subsequent accesses to that type need only

consult the source list.

7.3 PROCESS MANAGEMENT

To create a process, a process control structure is
formed. Its function is to keep track of the state of the
process. The state includes information such as the major

and minor states, the stack and the source pointer.

The major and minor state indicate to the Circa inter-
preter exactly what the process is doing. Possible major
states are: process is active, inactive, waiting for a time
event or waiting for some input/output event to occur. Mi-
nor states further define the actions of the process. For
example, if a process is active (a major state), it may be
any of three minor states: 1initial, executing and finished.

During the “initial” minor state, the process may be inter-

67

Some example text from file "fred"™:
PAR
SEQJi:1..3]
cfi] li+1 (source node)

num=0 }mo——— fred e
/

IF

{line node)

par

chid \ (token node)

.
//mﬂ—-_\
)

child
0 brother brother
-] -]
expr ~ expr = expr -
l 1 |
child child child
lassignment” | ouput cmd e e @ ° @ e
~ brother ~

butput cmd putput cmd output cmd

O—0—C0—-060-0

OaOmOmOmO=0
OmOm0
O——®
OmOnO=0

Figure 26: The Source Tree

68
preting the replicator if it is a constructor. While in the
“executing” minor state, a SEQ constructor fetches the next
substatement to be executed. When a process is ready to re-
turn control to the father process, it is finished and en-

ters the “finished” state.

While in many of the above major states, the process is
placed into a gueue. The only exception to this is the in-
active state; the process does not belong to any gqueue.
Processes are picked from the active queue for execution.
When the active gueue has been exhausted, the current time
is set to the time of the process at the beginning of the
time queue. Processes on the time queue which have their
time field equal to that of the global time counter will be
activated (placed on the time gueue). The time queue is in
ascending order by time so that only the first part of the
gueue needs to be examined. Processes are placed onto the
time gueue if they are waiting for some time event to occur
(after issuing a WAIT for example). A process waiting for
an 1/0 event to occur is placed onto the input or output

gueue of a channel.

The stack is usually reserved for primitive processes but
can be used by any process that requires the evaluation of
expressions. Normally, processes point to tokens at the be-
ginning of a line (also the beginning of a Circa statement)
and when finished have an empty stack. Expressions can de-

viate from this. If some process, say an assignment, wishes

69
to evaluate an expression, it creates a separate process to
do this. The source pointer points to the token in the line
currently being executed by the father process (the assign-
ment). The expression is evaluated and the result is placed
on the father's stack. The father's source pointer is also
updated to point to the token following the expression just
evaluated. The expression process no longer exists and the

assignment process continues on.

7.4 EVALUATION OF EXPRESSIONS

The evaluation of expressions is quite straightforward.
This is due primarily to the uniformity of precedence be-
tween operators. The only part that requires explanation is
the identifier search. When an identifier is encountered in
the expression, it is searched for in the environment list
of the current process. If it is not found, the search con-
tinues in the father process' environment list. The search
proceeds, moving up the process hierarchy until the identi-

fier is found or a process header is reached.

The expression evaluation module executes the expression
in the same manner as if it were parsed by a recursive de-
scent parser (see Appendix A for parse rules). A nested ex-
pression, for example, would be evaluated in a subprocess of

the orginal expression process.

70

7.5 CHANNEL IMPLEMENTATION AND ENVIRONMENT LISTS

Channels, constants and variables are organised as an ar-
ray of pointers, each of which points to an individual bit
structure. Channel and variable bit structures not only
contain the current value for the bit, but also the process
that last modified it and the time when the change occured.
This allows us to introduce “undefined” values. Values be-
come undefined when two or more processes attempt to modify

a variable, for example, at the same time.

Any time a declaration is encountered, the statement is
evaluated and the result (some variable, constant or chan-
nel) is placed in the environment list of the following pro-

cess.

When a variable is subscripted or bitsliced, a new set of
bit pointers are created. However, the bit pointers still
point to their old bit structures. This is also the case

for constants and channels.

Channels are a little bit more complex than the reader
has been led to believe up until this point. Each channel
bit actually contains a process control structure; this is
used to implement channel delays. The following pseudo-code

illustrates the channel mechanics:

71
initially:

if a “!” or a “!!” command was issued

if channel process is in WAIT TIME state or

there is a process in the channel output queue
channel new value := UNDEFINED

else
channel new value := value sent
put channel process onto time queue for
appropriate delay

add sending process onto output gqueue

if a “?” command was issued
if new data (“new” bit set)
return channel old data
activate processes on output Qqueue
else
place receiving process onto channel's input
queue
if a “??7” command was issued

return channel old data
activate processes on output gqueue

after channel delay time event occurs:

look through output queue for processes that issued a
“!1” command; if any found, activate them

if there are any processes waiting on the channel input queue
activate them
activate all processes on the output queue
channel old value := channel new value
Channels specified in a Circa command typed in by the
user during simulation are assumed to be external channels.
External channels are really just UNIX files and therefore
allow the user to provide external stimuli to his model or
to collect simulation results. The file format is the same
for input files as it is for output files. Each line con-
tains two numbers; the first number is the value to be sent

(or received), while the second number denotes the duration

of the signal (see figure 27).

72

Time 0 1 2 3 4 5 6 7 8 9
B lt : : H : : : : : :

0100 1100 0010 1111} 0010 1100} 0000 1001; 0011 11105 0000 1100¢ 0000 1100} 0001 1111} 0000 1001 0000 1001

Binary

The resulting external channel file would be:

#4c O
#2f 1
#2c 2
9 3
#3e 4
#c b
#1f 7
9 8

Figure 27: External Channels

Chapter VIII

CONCLUSIONS AND FURTHER WORK

8.1 EVOLUTION OF THE CIRCA LANGUAGE

One of the principal aspects of designing hardware using
an HDL is the ability to verify the design. The verifica-
tion is accomplished through simulation. Often this is done
before it is passed to a silicon compiler. MacPitts, a cir-

cuit synthesis system, uses this approach [South83].

The development of Circa was an evolutionary process.
Early on, structural hardware description languages were
considered; they were soon discarded in favour of a behav-
ioural language as the latter's advantages became apparent.
As we discussed 1in previous chapters, Occam was chosen as
the basis for Circa because of its ability to deal with pro-

cesses.

Of course, we were not satisfied with Occam. The commu-
nications protocol was among the most significant deviations

from the Occam definition, but by no means the only one.

One of the early (and perhaps most superficial) com-
plaints of Occam was its rigid format. Occam uses two spac-

es for each level of indentation. The initial solution was

- 73 -

74
to place the body of a constructor within a C-like begin-end
block: that is, enclose the constructor body within a
“{»-%}” pair. Although this allowed complete freedom for
the Circa programmer, rarely was it used. Circa programmers
writing in a reasonable manner tended to format the source
text much like Occam programmes. The result was code that
appeared very much like Occam with additional “{”-%“}” clut-

ter.

A compromise was taken allowing some freedom while main-
taining the clean format of Occam. This took the form of
relative positioning of statements. Subordinate statements
have a greater indentation than their superiors. This is

the only rule and seems to work quite well.

More fundamental “improvements” were considered, but were
once again discarded in favour of Occam's definition. An IF
constructor was initially omitted since it was deemed to be
unnecessary. An alternative constructor with expressions as
the only guards would be functionally equivalent. This is
not quite the case when compiling to hardware. The IF is
evaluated sequentially, while the ALT is a parallel con-

struct. Thus the IF was included.

Occam's WHILE was chosen as the loop construct over a re-
peat loop despite the repeat's many advantages [Buhr85].
The WHILE construct has one main advantage; it is much easi-

er to implement in hardware.

75

A type concept was introduced. Occam has only two types,
WORD and BYTE, which are not sufficient for the task at
hand. The size of each variable or channel element must be
determined by the system designer. As well, the type mecha-
nism was extended to encompass externally defined constants

and procedure abstractions.

Each type consists of three components: the type name,
the actual type (channel, variable, constant or procedure)
and the type attributes. The type attributes consist of a
procedure body, a list of constants, or a channel or vari-

able description.

The type mechanism allows the programmer to hide some of
the details regarding channels, variables, etc. By includ-
ing procedure abstractions under types, we are able to use

variant parameters with procedures in a clean, elegant way.

Other differences between Circa and Occam include addi-
tional operators and the uniform treatment of constructor

replicators and subranges.

There is, of course, room for improvement in Circa. Mo-
nadic operators (negation specifically) would be convenient.
Caution should be taken, however, not to fall into the trap
of featurism that plague many of the conventional languages

(PL/1 for example).

76

One improvement would be to alleviate the problem Circa
programmers have with the limited room for the procedure
header (it must fit on one line). The space restriction
acts as an incentive to construct headers with only a few
parameters. This tends to make procedures easier to work

with, since their interface is simpler and more comprehensi-

ble.

Each so-called improvement must be judged according to

the language philosophy; in Circa's case: keep it simple.

8.2 APPLYING CIRCA TQ HARDWARE DESIGN

The vehicle through which the technique of abstraction
has been utilised is the hardware description language, Cir-
ca. We have looked at how Circa was successfully applied to

the problems of circuit synthesis and verification.

While a simulator has been implemented, a silicon compi-
ler has not. The silicon compiler holds a great deal of
promise: more so than ever before. Together with techno-
logical improvements, building chips will become as easy and

as commonplace as programming.

Appendix A

THE SYNTAX OF CIRCA

The syntax of the Circa language is described using

Wirth's version of BNF [Wirth77].

type_definition = id “(” id {“;” id} “)” “::” type_body.

type_body = “CONS” expr {expr}

“VAR” bitslice

“CHAN” bitslice chan_delay

“PROC” “(” parm_list “)” process.
chan_delay = “FALL” expr “RISE” expr

| “RISE” expr “FALL” expr.

parm_list = item_declaration {“;” item_declaration}.
process = item_declaration “:” process

construct

abstraction

simple_command.
éonstruct = “WHILE” expr process

“PAR” construct_body
“SEQ” construct_body
“IF” expr_body

“ALT” guarded_body.

construct_body [size] process {process}.

expr_body [size] expr process {expr process}.

guarded_body [size] guard process {guard process}.
abstraction = id [size] “(” channel {“;” channel} “)” “::” type.

item_declaration = id [size] “::” type.

size = “[» [id “::”] subrange “]”.
type = 18 “(” expr {“;” expr} “)”.
guard = simple_guard {simple_guard}.
simple_guard = expr

| wait_command

- 77 -

simple_command

input_command

output_command

wait_command
variable
channel
subscript
bitslice
subrange
constant
expr

element

operator

id
alphanumeric
number
hex_number
character

comment

78
input_command.

variable “:=" expr
wait_command
input_command
output_command

“SKIP”,.

channel “?” variable
channel “?7 «()”»
channel “7?7” variable
Channel 55?” u()n.
channel “!” expr
channel u!n u()n
channel “!!” expr
channel “!1!” «()»,
“WAIT” expr.

id [subscript] [bitslice].

id [subscript] [bitslice].

13 {” expr ‘t] u'
u{n expr u}n.
expr “..” expr.

id | number | hex_number | character.
element {operator element}.

variable
channel
constant

u(s: expr u)n.

G_»
“>’!

u|”

“* "

({3 1)

“+ 2
“(”
“&”

s [y | “\n ‘ %9
!

s S | el

YRR | “"n.

[y 1)
<=

letter {alphanumeric}.
letter | digit.

digit {digit}.

“#” hex_digit {hex digit}.
“'” any_character_except_eof_and_eoln “'”,

£

‘--* {any_character_except_eof_and_eoln} eoln
“~-» {any_character_except_eof_and_eoln} eof.

[Back78]

[Blair85]

[Buhrgs]

[Dijk75]

[Deny85]

[E1Ay85]

[Fay84]

REFERENCES

J. Backus: “Can Programming Be Liberated from the
von Neumann Style? A Functional Style and Its
Algebra of Programs,” Commun. of the ACM, Vol. 21,
Number 8, August 1978

G. §. Blair, J. R. Malone, J. A. Mariani: “a
Critiqgue of UNIX,” Software-Practice and
Experience, John Wiley and Sons, Vol. 15, Number
12, December 1985

P. Buhr: “A Case for Teaching Multi-exit Loops to
Beginning Programmers,” Sigplan Notices, ACM, Vol.
20, Number 11, November 1985

E. W. Dijkstra: “Guarded Commands,
Nondeterminacy, and Formal Derivation of
Programs,” Commun. of the ACM, Vol. 18, Number 8,
August 1975

P. Denyer, D. Renshaw: VLSI -Signal Processing: A
Bit-Serial Approach, Addison-Wesley, 1985

K. El-Ayat, R. Agarwal: “The Intel 80386 -
Architecture and Implementation,” IEEE Micro, Vol.
5, Number 6, December 1985

D. Fay: “Experiences using Inmos Proto-Occam,”
Sigplan Notices, ACM, Vol. 19, Number 9, September
1984

[GajskiB5]D. Gajski: “Silicon Compilation,” VLSI Systems

[Harl85]

[Hoare78]

[Hayes83]

[Inmos84]

Design, Vol. 6, Number 11, November 1985

D. Harland: “Towards a Language for Concurrent
Processes,” Software-Practice and Experience, John
Wiley and Sons, Vol. 15, Number 9, September 1985

C. A. R. Hoare: Communicating Sequential
Processes, Commun. of the ACM, Vol. 21, Number 8,
August 1978

A. Hayes: “Self-Timed IC Design with PPL's,”
Third Caltech Conference on Very Large Scale
Integration, Computer Science Press, 1983

Inmos Ltd.: Occam Programming Manual, Prentice-
Hall International, 1984

- 79 -

[Inmos85]

[Johan79]

[Kato83]

[Laws77]
[Lesk75]
[Lewin81]

[Mead80]
[Moto82]
[Patt82]
[Poun86]

[Radin82]

[Rowen86]

[S0lo86]

[South83]

80

Inmos Ltd.: IMS T424 Transputer: Preliminary
Data, Inmos, February 1985

D. Johannsen: “Bristle Blocks: A Silicon
Compiler,” 16th Design Automation Conference, IEEE
Computer Society Press, 1979

S. Kato, T. Sasaki: “FDL: A Structural Behaviour
Description Language,” Computer Hardware
Description Languages and Their Applications,
North-Holland, 1983

H. Lawson, Jr: “Computer Architecture and
Microprogramming,” Software Portability, Cambridge
University Press, 1977

M. Lesk: “Lex - A Lexical Analyzer Generator,”
Comp. Sci. Tech. Rep. No. 39, AT & T Bell
Laboratories

D. Lewin: “Computer Aided Design for
Microcomputer Systems,” Vol. 126: Microcomputer
System Design, Springer Verlag, 1982

C. Mead, L. Conway: Introduction to VLSI Systems,
Addison-Wesley, 1980

Motorola: MC68000 16-bit Microprocessor User's
Manual, Prentice-Hall, 1982

D. Patterson, C. Sequin: “A VLSI RISC,” Computer,
IEEE, September 1982

D. Pountain: “Personal Supercomputers,” Byte,
Vol. 11, Number 7, July 1986

G. Radin: “The 801 Minicomputer,” Proc. Symp.
Architectural Support for Programming Languages
and Operating Systems, March 1-3, 1982

C. Rowen, L. Crudele, D, Freitas, C. Hansen, E.
Hudson, J. Kinsel, J. Moussouris, S§. Przybylski,
T. Riordan: “RISC VLSI Design for System-Level
Performance,” VLSI Systems Design, Vol. 7, Number
3, March 1986

J. Solomon: IEEE International Solid-State
Circuits Conference: Keynote Address, Micronews:
IEEE Micro, Vol. 6, Number 2, April 1986

J. Southard: “MacPitts: An Approach to Silicon
Compilation,” Computer, IEEE, December 1983

[Suss81]

[Ungar84]

[Wirth74]

[Wirth77]

81

G. Sussman, J. Holloway, G. Steel Jr., A. Bell:

“Scheme-79: Lisp on a Chip,” Computer, IEEE, July
1981

D. Ungar, R. Blau, P. Foley, D. Samples, D.
Patterson: “Architecture of SOAR: Smalltalk on a
RISC,” Proc. Eleventh International Symposium on
Computer Architecture, 1984

N. Wirth: “On the Composition of Well-Structured
Programs,” Computing Surveys, ACM, Vol. 6, Number
4, December 1974

N. Wirth: “What Can We Do about the Unnecessary
Diversity of Notation for Syntactic Definitions?”,
Commun. of the ACM, Vol. 20, Number 11, November
1977

