
Circa: A Hardware Description Language

by

Peter Somers

presenred to ,t.AulH:::try of Maniroba
in partial fulfillment of the
requirements for the degree of

Master of Science
IN

Lhe Department of Computer Science

Winnipeg, Manitoba

@ Peter Somers, '1 986

Permission has been granted
to the Nat ional- L ibrary of
Canada to microfilm this
thesis and to lenci or sell
copies of the film.

The author (copyright owner)
has reserved other
publ ication rights, and
ne ither the thes is nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

Lrautorisation a été accordée
ã 1a Bibliothèque nationale
du Canada de microfilmer
cette thèse et de prêter ou
de vendre des exemplaires du
film.

Lrauteur (titulaire du droit
d' auteur) se réserve les
autres droits de publication;
ni Ia thèse ni de longs
extraits de celle-ci ne
doivent être imprimés ou
autrement reproduits sans son
autorisation écrite "

rsBN Ø_3L5_34 ØØg_6

CIRCA: A HARDI,TARE DESCRIPTION LANGUAGE

PETER SOMERS

A thesis submirted to the Facurty of craduate Studies of
the university of Manitoba in partial fulfillment of the requirer'ents
of the degree of

MASTER OF SCIENCE

@ 1986

Permissiorr has bee'gra'ted to the LIBRARY oF THE UNIVER-
slrY oF MANIToBA ro rend or seil copies of this thesis. to
the NATIONAL LIBRARy oF CANADA ro microfìrnr this
thesis ard to le¡ld or seil copies of the film, and UNIVERSITY
IVIICROFILMS to publish an absrract of this thesis.

The author reserves other publicatiorl rights, a¡rd neitrrer trre
thesis nor exterrsive extracts from it may be prirted or other-
wise reproduced without the author's writte' pernrissio'.

BY

The university of Manitoba requires the signatures of a1l
persons using or photocopying this thesis. please sign be-
low, and give address and date.

- l-tÌ -

ÀCKNOWTEDGEMENTS

Many thanks are due to my thesis advisor, Dr. Michael

Miller, anci to Gerhard Dueck and chris carson for their
helpful suggestions and criticisms.

In addition, a debt of gratitude is owed to the Natural

science and Engineering Research councir for their financial

support during my research.

- lV -

ÀBSTRACT

Hardware and softr+are design have many similarities" In

this thesis, these similarities are examined and the tech-

nique of abstraction, common in software development, is ap-

plied to hardrvare design and synthesis"

In the spirit of software languages,

languages are seen as a lvay of assisting

process. The design can be verified by

thesized by silicon compilers.

hardware description

the hardware design

simulation and syn-

A hardware description language, Circa, is proposed. The

implementation of an interpreter or simulator is discussed

in detail. some ideas for silicon compilation of circa pro-

gramnes are included.

-v-

ACKNOWTEDGEMENTS

CONTENTS

iv

ABSTRACT

Chapter

i. INTRODUCTION

Ii. THE DESIGN PROCESS 4

III. HÀRDWÀRE DESCRiPTION LÀNGUAGES

paqe

.1

VI.

TV.

v"

VII.

TANGUÀGE REQUIREMENTS

THE tÀNGUÀGE CTRCÀ

A

Àn
Tutorial

Example

AUTOMÀTED SYNTHESIS

Silicon Compilers
The Circa Model
Primitives
High Level Processors
Àn Example .

Conc Ius i on

THE IMPLEMENTATION OF THE CIRCA INTERPRETER

13

18

18
30

38

38
40
44
5t
56
59

64

64
65
66
69

70

73

17

76

Introduction
Analysis of the Source .
Process Management .
Evaluation of Expressions
tnunnul,li:t:.:':":t:'.":u.u:":':nT":r.

.

VIII. CONCTUSIONS ÀND FURTHER WORK .

Evolution of the Circa Language
Àpplying Circa to Hard¡vare Design

- vI -

Àppend i x

A. THE

REFERENCES

SYNTAX OF CIRCA

paqe

77

79

- vl. 1 -

LIST OF FIGURES

F i qure

1. Algorithm to Transistor Refinement

paqe

5

2. Software/Hardware Partitioning 6

3. Design Mechanics 12

4. Real World Analogy . Zg

5. Ring of Processes . Zg

6. Street Intersection 32

7. tight Timing 32

8. Clock Generation 43

9. Processor Control Signals 43

10. Processor Control Sequence 43

1 1 . Bus Interface 4g

12. Read and Write Cyc1es 4g

13. Bus Timing 4g

14. Channel Interface 50

15. Channel Timing Example . . S0

16. Hardware Implementation of the Sequential
Constructor " 52

17. À Variable in the SEQ Machine . 52

18. Hardware implenentation of the WHILE Constructor 54

19. Hardware Implementation of an Infinite Loop 54

20, Hardware Implementation of Lhe IF Constructor 55

21. Hardware implementation of the paraIÌel
Constructor.. o. 55

- v111 -

¿¿.

23,

24.

25,

26,

)1

Hardware Implementation of the Alternative
Constructor 57

Hardware Implementation of "Traffic" 60

Hardware Implementation of "phase',

Hardware Implementation of "CheckCars"

The Source Tree

External Channels

61

62

67

72

Chapter I

INTRODUCTION

A number of formarisms are used in the hardware design

process, for exampJ-e: boolean algebras, state diagrams,

stick diagrams [t-tead80] , and timing charts. The one attri-
bute they have in common is that they hide certain details

of the hardware structure such as chip structure, electrical.

characteristics, etc. In other words, hardware formalisms

raise the level of abstraction at which the designer works.

This aids in design synthesis and in hardware description to
other designers or to an automated synthesis system.

These traditional formalisns are

circuits, but as circuit complexity

ingly deficient. i.ihy is this so?

ities for abstraction are Iimited

is termed horizontal abstraction.

fine for designing smal1

increases they are glar-

It is because their abil-

to one level on1y. This

À more general approach, vertical abstraction, allows the

designer to substitute details at any level by an

"abstraction". By successive applications of this process,

the designer can raise the level at which he works.

Hardware description languages (uors) allow vertical ab-

straction. HDLs give the designer a methodology for devel-

-l

2

oping large hardware systems. This methodology is analogous

to the software design philosophy and is discussed in sub-

sequent chapters. HDLs arso provide a vehicle for describ-

ing circuits to other designers in addition to circuit com-

pilers and simulators.

The goal of this thesis is to present Circa, a hardware

description language, and some of the ideas that red to its
developmenL.

The second chapter describes the hardware design process

at a very abstract IeveI. It attempts to tie together the

notions of software engineering with hardware design.

in the third chapter, the concept of a hardware descrip-
+,ion language is explained.

Our HDt is based on a software language called Occam

IInmos84]. Occam is a language oriented towards paralle]

processing. chapter four examines the shortcomings of the

Occarn language for hardware description.

A tutorial to the Circa

presented in chapter five.

hardware description language is

circuit compiration using circa is the subject of chapter

six. À microprocessor tailored to the execution of occam

programmes calLed the Transputer rvas built by Inmos

Iinmos85]. UnIike the Occan/rransputer relationship, the

circuit compiler proposed generates hardware tairored to lhe

execution of a single (and unique) Circa programme.

3

Chapter seven looks at the implementation of the Circa

interpreter on a UNIXf computer system.

Fina11y, chapter eight presents conclusions from this

work and looks at some areas for further research.

t UNIX is a trademark of A T & T BeII Laboratories.

Chapter I I

THE DESIGN PROCESS

In order to understand the probrem, what type of hardware

description ranguage is required, we need to better under-

stand the hardware design process.

There are two major approaches to designing hardware just

as there are in designing software: bottom-up and top-down

IwirttrZ¿] .

Bottom-up design involves taking components and assem-

bring them together into larger components. This is done

without any prior knowledge of the rest of the design.

These larger parts are put together to create even larger

components. This process continues until we have a compo-

nent whose behaviour matches the initiar specifications.

There are problems with this approach. Bottom-up design of-
ten imposes restrictions on a final design or gives an inef-
ficient fit to the opLimal solution.

Most designers of large systems use the top-down approach

(see figure 1). illustrated is the step-wise interrevel re-

f inement from of an algorithm to the transistor level

llaws77]. Not evident from the diagram is the intral_evel

refinement that must take p]ace. Each Ievel, whire appear-

ing somewhat flat here, actually contains many subrevels.

-4-

5

Let us examine microprocessor design as an example.

Typicar software compilers automate the refinement from the

high level language to the instruction set architecture lev-

eI. Most hardware designers tend to restrict their activi-
ties to levels below the instruction set architecture.

There have been attempts to automate the design process at

these levels ISuss81] . Ideallyr ârì aLgorithm would be

translated to a high level language programme and through

the lower layers until a complete circuit is realized.

In fact, it is rea1ly irreLevant which layers are imple-

mented in hardware or software. The designer may move the

hardware/software boundary up or down depending on his con-

straints (ie: speed, cost, chip yieId, market, etc.).

The RISC (Reduced Instruction seL computer) versus the

clsc (comprex Instruction set computer) debate is just one

such example of a shi fting hardware/software boundary

IpattgZ] [Ungar84] [Rowen86] as shown in figure 2. Complex

operations done in hardware on a GISC would be done in soft-
ware on a RISC. The RiSC philosophy is to place simple,

frequently used instructions in hardware. Complex opera-

tions are simurated by subprogrammes. what we have here is

a higher level virtual machine being emulated by a RiSC.

RISC advocates avoid microcode as it slows down the instruc-

tion cycle of the machine InaainB2].

aloorithm"rÍ
I i'igl'r.levellanguageprogrammelf
I virtual machine codelr

assembly lar'UuaOe program me

l+
I microcode software that is ,'bound,, (ie: fixed)ir

organisation
ô

I
gate^ implementation

I
transistors

Figure 1: Algorithm to TransistorRefinement

software

hardware

generic CISC

algorithm

high level language

viftual machine

instruction set

microcode

organisation

gate level

RISC

Figure 2 : S of¡vare l}Jardw are Partitioning

7

Constraints that have influenced RISC designers are de-

sign time, a small silicon area to work with and a need to

have more reliable (bug-free?) hardware. RISC designers

also cite an increase in performance as an advantage.

If we look at another exampJ.e of hardware design, say ô

traffic light controller, we can see that there are a number

of different implementation alternatives. one could use a

register and combinational 1ogic. By replacing the combina-

tional logic with a ROM, we would have moved up one 1evel of

abstraction with the creation of a horizontaL microcodable

machine. Moving up even higher still is an assembly lan-

guage programme and a singJ.e chip microconputer. ÀIthough

each implementation is different, the external behaviour is

still the same.

Even though the software and hardware implementations are

expressed in different forms, they are fundamentally the

same. Our hardware is a sequential machine which is com-

posed of combinational logic and a state. ImperaLive soft-
ware gives its state by the contents of the variables and

the programme counter. The analogue of combinational rogic

is the instruction set of a computer. Memory locations are

modified, output is produced and the programme counter is

adjusied according to the flow of conLrol. The whole point

of an instruction seL is to alter the state of the machine

and ils outputs.

I
Noting Lhe close relationship that hardware has with

software, it would seem desirable to have the same or at

least a similar formalism or model for describing both hard-

ware and software. I.ie know that we can certainly describe

the behaviour of hardware in software. But courd the struc-

ture of hardware precipitate out of the formalism?

It is to the designer's advantage not to bind an algor-

ithm until the last possible moment. The designer should be

allowed to experiment or, indeed, to just change his mind as

to what should be committed in hardware. Another advantage

of a universal model is that the compiler itself courd make

judgements regarding hardware/software partitioning. The

compiler could design or create several alternatives and

based on a list of conétraints given by the designer, anal-

yse those alternatives and return to the user with the best

possible solution.

Chapter I i I

HARDWARE DESCRIPTION LÀNGUÀGES

Hardware can be described in various levels of abstrac-

tion: behavioural, functional, structural, logical and, at

the lowest level, physícal.

At the behavioural and functional levels, processes are

interconnected ¡vithout regard as to their actuar implementa-

tion or structure ItewinS'1]. Strictly speaking, the behav-

ioural level describes the behaviour of a system in its en-

tirety. If the system is broken into submodules, even

though each submodule may be given at the behavioural level,

the system is considered to be described at the functional

level. These two definitions tend to be blurred as most be-

havioural languages allow some sort of partitioning, thus

placing them under the functional language category as we1l.

For sinrplicity, we will classify functional hardware de-

scription languages as behavioural languages. TradiLional

HDLs of this class have been RegisLer Transfer Lever (nrl)

languages and have had only qualified success Inato8g].

At the structural level, a

of abstract components and their

The difficulty with structural

scriptions is that the entire

system is described in terms

interconnections [Lewin81] .

and indeed lower level de-

system must be described.

-9-

'10

submodules must be given in t,erms of lower leve1 components

and interconnections; in other words, the submodules must be

told not only what to do, but how to do it. This is not the

case for the behavioural level. A behavioural 1anguage be-

comes part of the step-wise refinement approach rather than

an after thought. Nevertheless, a structural language can

help the designer to more readily visualise the circuit that

will be synthesized.

A system described at the logic level is given in terms

of physically realisable, primitive logic functions (for ex-

ample nand gates) and their interconnections. In general,

designers should avoid designing hardware at this level. It
is too expensive for a sizable system due to the number of

devices involved. It is also unnecessary with design auto-

nation.

Finally, the physical- level consists

a digital system in terms of the final

nology. An example is that of silicon

grated circuit.. It is far too time

prone to work at this leveL.

of a description of

implementation tech-

masks for an inte-

consuming and error

0n1y in a small number of specialised cases is manual de-

sign necessary either at the logic or physical leve1. These

usually involve power or speed constraints.

Typical design mechanics are given in figure 3.

hardware description language is passed to Simulator

The

A for

11

verification of the design. Simulator A gives an approxi-

mate picture of behaviour of the hardware; but what it lacks

in parametric accuracy it makes up for in speed. Once the

description is found to be suitable, it is passed to the

silicon compiler which generates a low leve1 HDL. The tow

Level description is at the transistor Ievel. It can be

passed to Simulator B for a very accurate, bul very slow

simulation or to the Mask Generator which produces the masks

necessary for construction of the chip (if it is to be im-

plemented in silicon).

The layouL that is generated by the Mask Generator may be

used by Sirnulator C to produce a still better picture of the

hardware. This would allow the designer to examine the de-

vice physics in more detail since it is at this level that

the actual device construction is known.

If one has enough confidence in the silicon compiler,

simulators B and C could be ignored. À working chip would

be the indicator of success.

The designer should not have to know any details of the

low leve1 HDL. The designer's work should be contained

within the higher level HDL. The HDL should support the de-

sign process: the sLep-wise refinement of the behavioural

description"

t2

hardware description language

low level hardwar'e description language
simulator "A"

mask generator

chip masks

Figure 3: Design Mechanics

Chapter IV

LÀNGUÀGE REQUIREMENTS

From the previous chapter vre can see that our hardware

description language should be a behavioural language.

There must be an easy way of specifying components and in-

terconnections. Subordinate components should be given ei-

ther as a behavioural model or as smaller parts intercon-

nected together; the Latter more like1y as the design nears

completion. We should not have to finish the design in or-

der to verify it. 0n1y a behavioural language offers this

kind of rapid prototyping so important to designers. To re-

iterate, vre are looking for a design tool in Lhe broadest

sense.

The language should be as simple and as consistent as

possible. This will make it easy to learn and to use. it
should be modular; code and type definitions shoul_d be sha-

rable between system descriptions.

The HDL should provide a model which is software/hardware

independent. The designer must be able to nove back and

forth between software and hardware wirhout any translation

in terms of the model.

- 13 -

14

An ideal model is that of the process. A process is a

sequence of events occuring concurrently with other events.

Every level in the design, from high level software to the

lowest hardware entity, câD be modeled as a process. Is

this possible? The following list illustrates that it is

not onj.y possible, but quite natural.

LEVEL

high level language

instruction set

system level

organisational leveI

gate

EXÀMPLE

real time 0.S.

hardware scheduling (a simpJ-e
example is an interrupt vector)

each chip/subsystem is modeled
as a process

pipel i ne

each gate is modeled as a
simple process

Not only do we want a process model, but we want to make

the parallelism as explicit as possible. The circuit compi-

ler should be given enough information to arlow the designer

control over Lhe fundamental nature of the circuit.

Since we wilL have a collection of processes, it is as-

sumed that they will be communicating with each other. À

comrnunication model must be developed. several possibili-

!ies exist: monitors, message passing via a channel and mes-

sage passing directly to a process, for example.

The monitor concept turns out to be inadequate [Harl85].

It is less natural on machines without a common store, since

15

the monitor provides onLy exclusive access to shared store:

nothing else. It also reduces parallel-ism by forcing the

calling task to wait while processing inside the monitor

takes place. Now if very little processing takes place,

then the monitor is analogous to the channel, so we might as

well use a channel.

Message passing mirrors the actions of hardware. How-

ever, sending messages directly to processes (or receiving

from processes) can cause problems when a library of gener-

alised programmes are to be created. To avoid explicit nam-

ing of the target or the source of the message, messages are

sent over channels (analogous to wires in hardware). Chan-

nels in the sender are linked to channels in the receiving

process. This would be done as processes are created.

It would also be an advantage

of an existing software language.

duce the learning curve and make

people. This is not as simpì-e

guages are oriented towards

Those languages which do support

the most cumbersome of ways. À

UNIX operating systen's fork and

if our HDL was an extension

This would cerLainly re-

it more natural Lo software

as it may seem. Most lan-

single-threaded execution.

processes often do so in

good example of this is the

join funcrions Istair85].

However, two languages,

tial Processes) [Hoare78]

able support for processes.

designed primarily for mult

namely CSP (Cornmunicating Sequen-

and Occam Iinmos84] provide suit-

Occam, a der ivat i ve of CSP, Ì{as

iprocessing applications.

16

CSP has a few problems that should be noted.

First, it passes messages to processes directly; no chan-

nels are used. The explicit naming of processes makes it
difficult to construct libraries of general programmes.

Second is the vague definition of process termination and

failure lnay8aJ.

Both 0ccam and CSP require processes to be synchronised

when communicating with each other. This type of message

protocol is, unfortunately, not always exhibited by hard-

ware. Sometimes a device sends a message and then carries

on with the next sequence of actions; it does not wait to

ensure that any of the potential receivers has actualty co1-

lected the message.

The last shortcoming CSP shares with Occam,i that is the

lack of suitable data types. The basic data type required

by the HDt is the bit. Bits need to be conbined to form

other types (for example: the type INTEGER). Bits need to

take on olher values besides zero and one: values such as

unstable, tri-state, and unknown are necessary. Occam does

not provide any support for this.

f it should be noted
(called Occam 2)
types IPoun86].

that Inmos has recently extended Occam
giving it a more extensive set of data

17

The language Circa, presented in the next chapter, is a

derivative of Occam and as a result Circa shares much of Oc-

cam' s phi losophy. However , there are di f ferences. The r i g-

id format of Occam was liberalised, but Circa still uses the

concept of indentation of subordinate processes to illus-
trate the process hierarchy and flow of control. A few new

operators and types were introduced to better support hard-

ware description. The communication mechanism of Occam was

generalised - the handshaking protocol rlas augmented with an

asynchronous capability.

Chapter V

THE LANGUÀGE CIRCA

5.1 À TUTORIÀL

This chapter presents an informal examination of the lan-

guage Circa: a hardware description language developed by

the author. The syntax is given in Appendix À.

The basic building block of Circa is the process. There

are several primitive processes in Circa: input, output and

ass i gnment .

An input process looks like:

channel ? variable

À value is transferred from the channel into the variable.

An input process will wait until a nevl value is placed onto

the channel by some output process. It is quite acceptable

to have more than one process waiting for input from the

same channel. This one to many relationship works exactly

the same lray as a one to one message transfer. If we wished

to disregard the value, we could rewrite Èhe input process:

channel ? ()

- 18 -

19

To do the above, but not requiring the input process to

wait for a netv value, we would wriLe:

channel ?? variable

Whatever happens to be in the channel at the time will be

placed into the variable.

An output process is used to put a value onto a channel.

It is denoted by:

channel ! expression

If more than one process attempts to place a value onto a

channel at the same time, that channel will contain an unde-

fined va1ue" One can issue signals by:

channel ! ()

Signals do not involve any transfer of data, but are useful

in process synchronisation.

The above form of the ouLput command forces process syn-

chronisation. The process will wait until there is a pro-

cess ready to receive the data: that is, until a process

requests input (in any form) from the channel. if the de-

signer wishes to have the command terminate as soon as it
has placed a value on a channel, he should use:

channel ! ! value

Assignment works exactly the same

guages. The notation was designed to

20

as in most other lan-

reflect this:

variable := expression

Expressions are constructed in

Iowing is a list of operators:

similar manner. The fol-

MEANING
integer division
mult ipl icat i on
remainder
logical and
not equals (logicaI)
Iogical or
bitwise and
bitwise exclusive or
bitwise or
addition
subtraction
c onca t enat i on
greater than or equals (logical_)
less than or equals (logical_)
greater than (logica1)
l-ess than (1o9 i ca1)

*

&&

I
&

I

l
I

>=
<=

Expressions are evaruated irom left to right, except for ex-

pressions within parenthesis (these are done first). In

Circa, all operators have the same precedence.

Values can be any number of biLs in 1ength" Concatena-

tion combines two values, of n amd m bits in]ength, into a

single value with n+m bits. The bitsrice operation extracts

bits from a value. variables, channels and constants con-

sist of a set of bits numbered 0 (least significant bit) to
rrÍr" (there would be "n"+'1 bi ts) . To select the lowest order

bit, we wouLd write: variable{0}

21

Other primitive processes include: Lhe wait and skip.

Skip is a do nothing process and is defined simply by the

keyword SKIP. The wait is used to cause a delay; WAIT n

causes the process to be suspended for "n" time units.

The processes mentioned so far are useless unless they

can be combined together. To assemble commands to form

larger, more powerful processes, constructors are used.

There are five constructors in Circa: SEQ, pÀR, IF, ÀLT and

i^¡HILE.

The SEQ constructor causes its constituent processes or

commandsi to be executed sequentially. it is formed by:

SEQ

command
conmand

command

To execute

constructor.

processes in parallel, Circa provides the pAR

The form is simil-ar to that of SEQ:

PAR

command
command

conmand

The PAR command terminates when all of

terminated.

the subcommands have

I The word "command" is used as a synonym for "process".

22

The alternative (¡Lt) constructor rr'aits until one of its
guarded processes is ready. À guarded process is considered

to be ready if its guard (Dijkstra's guards [Dijk75]) is

ready (if tne guard is a process) or has a non-zero value in

the case of an expression. The ready process is then exe-

cuted. When the process is finished, the ALT constructor

terminates. If more than one guarded process is ready to

execute, the first one to be encountered textually is cho-

sen. Simple guards may be expressions, SKIp commands, I^¡ÀITs

or input commands. À guarded command has the form:

guard
command

Guards can be cascaded together to form more complex and

more useful structures. For example:

a=0
ch?a

chx!3

The value 3 will be placed onto channel "chx" if the vari-

abfe "a" is equal to 0 and if there is a value sent over

channel "ch" (the value is inserted into "a" overwriting the

old value of "a" used in the comparison). This of course

assumes that Lhere are no other ready guarded processes be-

fore this one (textually) in an ÀLT.

Normally an ALT will wait until one of its guards becomes

ready before it can execuLe a guarded command and then ter-
minate" Sometimes ¡ye might want to exit the ÀtT if none of

the guards are ready.

guard.

23

We can do this by adding a SKIp as a

The IF evaluates its expression guards sequentially.

When an expression is found to yield a non-zero result, the

guarded command is then executed. once this has finished,

the iF terminates. To prace the maximum of two variables

"a" and "b" into a variable "c", we would write:

IF
>b

L .- A

<=þ
¡ .= h

We could omit the last

is false. i.ie merely

in our case) for the

having to evaluate it
last example, we get:

test, since it must be true if a > b

substitute a non-zero constant (a "1',

true expression. This saves us from

during execution time. Rewriting the

a

a

IF
a>b

U .- Cr

1

n .= h

The WHILE constructor works exactly like while loops in

traditional languages. The body of the WHILE loop is a sin-

gle process. Since infinite loops are common in hardware

descriptions, we can omit the expression to denote this. To

output numbers from 1 to 10 to channel "x", the following

r+ouId suf f ice ¡

24

SEQ

count := 1

WHitE count < 10
SEQ

x ! count
count ¡= count + '1

Up until now, we have not looked

variables and channels are defined.

are declared by giving a name and a

at declarations:

Variables and

type name:

at how

channels

name :: type name

This type name is user defined.

type definition. In Circa, each type definition

in its own file. This enhances reusability of the

channel definitions. To create a variable type

for a byte, we would write:

It refers to the acLual

is stored

var iable/

definition

Byte :: VÀR { I l

The number I in this exampre indicates the number of bits in
variable declared with the type "Byte". À channel is a lit-
tle more complicated; a byte wide channel type might be giv-

en by;

ByteChan :: CHÀN { e } rerr 2 RISE 3

The RISE and FÀtL keywords deserve a small mention here.

Bits that nake up a channel may change from 0 to 1 (rising

edge) or from 1 to 0 (falling edge). The expression immedi-

ately follor+ing the FÀLL keyword indicates the number of

time units that elapse before the 1 to 0 changes are seen on

25

the output side of the channel. in this case, the delay

will be at least 2 time units. If the bits that change go

from 0 to 1, the delay will be 3 time units as indicated by

the expression following the RISE. This allows the designer

to simulate rise and fall times of J.ogic devices as wel1 as

propagational delays through wiring. To create an instance

of this kind of channel, we would write:

Fred :: ByteChan

in the programme text.

Of course, if we wanted a byte wide channel with a detay

ot 4 time unitsf for a rising edge and a delay of 3 Lime

units for a falling edge we could create another type defi-

nition. But this is very r,¡asteful since most of the type

definition is useful; only two numbers need to be changed.

This brings us to variant types.

Variant types

our byte channel,

f Note t.hat Circa
time: the units

types with parameters.

would write:

So to redeclareare

f{e

ByteChan(f ;r) :: CHAN {e} F'en f RrSE r

Now to reallocate Fred: Fred :: ByteChan(3;a) or Fred 3:

ByteCiran Q;3) depending upon the delays required.

does not have any
are arbitrary.

concept of absolute

26

Ci.rca provides symbolic references to constants. In pas-

cal, they are called constant identifiers. Circa's symbolic

constants may refer to an array of constants, however, not

just a single va1ue. Each constant appears on a separate

line after the constant header. Given

Howlong ¡: CONS
¿

we could allocate: WaitTime

fers to the value 3 and can

can.

A programme resides in

nitions. It is defined in

Howlong . I^iaitTime novr re-

used anywhere the constant 3

its own file as do all type defi-

a similar fashion as well:

PROC (channel list)
process

be

À declaration for a symbolic constant, variable or a

channel is prefixed to a particular constructor. The scope

of the identifier created in the declaration is that con-

structor. Scope is hierarchical and is formed around the

process hierarchy. in this r+ay, the designer can specify

which processes are to have access to which values.

An important aspect of Circa is that of process abstrac-

tion. A process is created by giving a name and a programme

which defines what the process will look like. programs in

Circa are merely an extension of the type concept used ear-

lier for variables, etc.

programme name ::

27

The channel list consists of channel declarations separated

by semicolons. These channels are external channels and al-
low intermodule communication. They are linked together

with other channels during process creation. For example:

to join the following processes together

Pump :: PROC(x :: Chany)
some process here

Tank :: PROC(w :: Chany)
some process here

we could use a superordinate process:

hose ¡: ChanY:
PAR

gasPump(hose) : ! pump

carÎank(hose) :: Tank

Ä real world analogy of the previous set of processes is

given in figure 4.

Àrray definition is the only major subject not yet cov-

ered. Circa has only single dimensional arrays. We can,

however, have arrays of channels, variables, constants or

even processes. An array is defined as follows:

name Isubrangej :: type

So Lo declare a variable array "M" with 5 elemenls:

Mi1..5l :: Number or M[0..4] :: Number

or whatever.

28

Figure 4: Real World Anaiogy
X

GasPump

Figure 5: Ring of Processes

29

We can declare an array of processes in exactly the same

way. Named processes or process abstractions are quite

straightforward, but what about arrays of constructors which

do not have any names? Àfter the constructor name, a size

(as above) can be given. So

PÀR [1..3]
À

B

whgrg "À" and "8" arg

lent to

lwo unspecif ied processes, is equiva-

PÀR

À

B

A

B

À
B

In the size specification, a symbolic constant can be

given. This symbol is called the replication identifier.
The value of this identifier coincides with the subscript of

the particular element. For example:

link [0. .2] : : SomeChannel
PÀR tj ¡: 0..21

fred(rinkljl ; Iink[(j+1

WhoKnowsWhat :: PROC (in
some process here

is the same as:

:

)\21) :: I,¡hoKnowslJhat

:: SomeChannel; out :: SomeChannel)

WhoKnowsWhat
WhoKnowsWhat
WhoKnowsi.that

link [0. .2]
PÀR

fred(link
tred(Irnk
fred(link

SoneChannel:

; link[1J) ::
; link[21) ::
; iink [0]) ;3

I0l
t1l
l2l

30

In this example, â ring of processes (see figure 5) is

created. Each process communicates with its neighbours

through tr+o channels: one for input and the other for out-

put.

Replicators nake the specification of large arrays of

similar processes trivial. As above, rve can use the repli-
cator identifier to vary the declaration somewhat.

It should be pointed out that Circa keywords, like Occam

keywords, must be in uppercase. In the inLerests of a uni-

form programming style, it is recommended that type names

begin capitalised and instance names do not.

5,2 ÀN EXÀMPLE

To iLlustrate the language Circa we will consider a sim-

ple traffic light example; À similar example can be found

in l¡tead80].

There is an intersection (figure 6) we wish to control

using four sets of traffic lights" The 1ights work in a

straightforward way: first red, then green, followed by yeI-

low and then back to red. Lights on opposite sides of the

intersection go through this sequence at exacLly the same

time. The set of lights, sây on the south side, are out of

phase with the lights on the east side. The length of time

the lighL is red, green or yeIlow is fixed. À more intelli-
gent traffic controller might monitor traffic flow or adjust

the lights depending on the tirne of day"

31

Let us sketch out the overal-I design in pseudo-Ci rca:

Traffic
PAR

lights fac ing
lights facing

ti ghts
T,{HI LE

SEQ
green
yellow
red

ea st -west
north-south

We

by

can describe the behaviour of the lights in more detail

using a simple timing diagram in figure 7.

Notv to create the main process (Traffic). The controller

must have two external channels: one to pass the value to

the east and west light stands and the other for the north

and south light stands.

Processes "a" and "b" are both of the same type: ,,Light".

We decided to make "tight" a variant programme" The variant

is the amount of skew we want the light to have. ,,GoTime"

and "WarningTime" are the times when the light is to be

green and yellow respectively. These constants are referred

to within the programme as "greenTime" and ,,ye1IowTime".

They were made symbolic constants because at this point in
the design their val-ue is unknown and indeed irrerevant so

Traffic 3: PROC(eastwest :: LightVal; northsouth :: Lightva1)
yellowTime :: WarningTime:
greenTime :: GoTime:
PAR

a(eastwest) :: Light(0)
b(northsouth) : : Light(greenÎims + yellowTime)

32

North

South

lights facing east-west

lights facing north-south

Figure 6: Street Intersection

Figure 7:LightTiming

we rvill put off giving them

sible moment.

33

values until the very last pos-

The "Light" process is essentially an infinite loop cy-

cling through the light sequence.

tight(skew) :: PROC (mode :¡ Lightval)
SEQ

WAIT skew
yellowTime : : WarningTime:
greenTime:: GoTime:
WHitE

SE8
mode ! 0 -- green light
WAIT greenTime
mode ! 1 -- yellow light
WÀiT yellowTime
mode | 2 -- red light
WÀIT greenTime + yellowTi.me

Note Lhat when the lights are first turned on (after mainte-

nance or installation) the east-west lights will actually be

on before the north-south lights. This anomaly may only

last a minute and is not a critical issue in this example,

but there may be systems where it is.

So far our channels have been undefined. We have given

them a nane: "LightVal", but nothing more. Since there are

three values that the lights can take on: green, red and

yelIow, we wiJ-I need at least two bits to represent them.

That means that the channels used to carry those val_ues nust

be at least two bits wide.

tightval :: CHAN { 2 } nrsn 0 FALL

An

to

34

In Circa the designer must determine the channel width.

enumerated type concept, which would allow the compiler

make those decisions, does not exist in Circa.

To fill in the rest of the picture, we need to define the

symbolic constants "GoTime" and "liarningTime".

WarningTime :: CONS
2

GoTime :: CONS

16

These would be in separate files of course.

There is alternative to this design. Rather than having

a process control the entire phase for a set of lightsr wÊ

could have a process control only haLf a phase for both sets

of lights.

Traffic : ¡ PROC(eastwest :: LightVal;
r.iHI LE

SEQ
first(northsouthi eastwest) : !
second(eastwest; northsouth) !:

northsouth : : LightvaJ.)

Phase
Phase

The first phase will have Lhe north-south Iights turn

green then yellow while the east-west lights remain red.

During the second phase the reverse will be true; this is
reflected in the channel argument list of ,,first," and

"second". Let us have a look at "phase".

35

Phase :: PROC(golight :: LightVal; stoptight :: tightval)
greenTime :: GoTime:
yellowTime :¡ WarningTime:
SEQ

stoptight I 2

gotight ! 0

WAIT greenTime
golight ! 1

l,lÀi T yellowTime

red colour
green colour

-- yellow colour

Now this does not look like anything would be gained by

partitioning the problem in this way. Let us suppose that a

more intelligent traffic light controller is desired. Às

traffic increases, the J.ighLs are to change more quickly.

During the first phase, if more than "n" cars pass through

the intersection travelling on the north-south route before

the normal phase (defined in the previous exanple) has fin-
ished, the lights are to change immediately. The same ap-

plies to the east-west route during the second phase.

To accomplish this, we need some way of measuring traf-
fic. Two sensors are introduced into the sysLem: one for

north-south traffic, then other for east-west. When a north

(or south) bound car drives over the north-south sensor, a

signal is sent along that line to our controller.

To simplify processing in the "Phase" module, we create a

new module called "CheckCars". "CheckCars" receives the

signals from the sensors. tihen the number of signals reach

a certain limit, a "traffic is busy" signal_ is sent to
"Phase". "Phase" must terminate its part of the cycle as

soon as it receives one of these "traffic is busy" notifica-

36

tions. If it does not receive any signal from ,,CheckCars',,

then the phase terminates normally.

Phase : : PROC (gocar ¡ : sensor ; golight ; :Li ghtval ; stopli ght : : Li ghtval-)
yelJ.owTime : : WarningTime:
greenTime :: GoTine:
SEQ

stoplight t. 2 -- red colour
golight t 0 -- green colour
isBusy :: Signal;
stop !: Signal:
PÀR

busy(goCar; isBusy; stop) 3: CheckCars
ALT

WÀIT greenTime
stop ! { ¡ -- sends a signal to busy to terminate

isBusy ? ()
SKI P

golight ! 1 -- yellow colour
WAIT yellowTime

CheckCars:: PROC(goCar:: Sensor; busy:: Signal; stop:: Signal)
ok :: Bit:
count :: Short¡
SEQ

ok ¡-- 1

count := 0

WHITE ok && (count < 10)
ÀLT

stop ? o
ok := 0

goCar ? ()
cognt ¡= ggtj¡l+1

IF
ok

busy ! o

The miscellaneous declarations are¡

Sensor :: CHAN {1 } ntSE 0 FALL 0

Signal :: CHÀN {1} NISE O FAIL O

Bit :: VÀR {1 }

Short ¡: VAR {16}

a-

Naturally the sensors must go out to the external world,

therefore they must be included in the mainline header.

I^ie have abbreviated the channel names for lack of room in

the header.

To simulate this system, we would simulate Lhe programme

"Traffic"; all other definitions would be automatically read

in from their respective files.

It is quite evident from these simple examples how Circa

can implement a set of communicating processes. ÀIso shown

is Circa's ability to aid the designer in the top-down de-

sign process.

Àn Occam programme to implement this would be very simi-

lar to the above Circa programme. The Occam implementation

is weak given the limited choice for variable and channel

sizes. Occam channels are not capable of supporting channel

delays. The latter is not significant in this case since

the delays are 0, but for many problems delays are of great

importance.

Traf f ic ¡ : PROC(nsc : : Sensor ; ev¿c : : Sensor ; nsl : :Li ghtVaI ; ewl ¡ : Li ghtVal)
WHI LE

SEQ
first(nsc; nsl; ewI) :: phase
second(ewc; ewl; nsl) :: phase

Chapter VI

AUTOMÀTED SYNTHESIS

6.1 SILICON COMPILERS

Currently, microprocessors with 250 000 [Inmos85] and

275 000 lefeygs] transistors are available. It has been

suggested that circuits will have on the order of 10 million

transistors by 1 990 and 250 million by the year 2000

[SotoAg]. ÀL first glance, one might think this freedom

would make the system designer's job easier, but in fact, it
is precisely the thing which makes VLSI design more diffi-
cult lneny85]. The detail and number of design aJ.ternatives

are overwhelming.

In this chapter, we outline a silicon compiler in the

hopes of addressing this problem. The term ,,siLicon compi-

ler" ryas first coined by [Johan79] and there is sone debate

concerning what actually constitutes a silicon compirer

[caist<i85]. The siticon compiler suggested takes a pro-

gramme written in circa and translates it into a 10w level

hardware description (perhaps chip masks).

The key element of this circuit compiler is the notion of

nrodularisation. Modures appear like brack boxes from the

outside; internal details are hidden. Higher lever modures

-38-

39

are assembled together from lower leve1 ones using a set of

rules derived from the definition of the Circa 1anguage.

The language primitives, which are at the lowest 1evel, frêp

into pre-defined pieces of hardware. This is similar to

software compilation where primitives such as operators or

subroutine calls are implemented by pre-defined sets of ma-

chine instructions.

The abstraction mechanism of the silicon compiler helps

the designer manage detail. The designer is not concerned

with implementation detairs at lower Ievels, only with thei.r

external behaviour.

By using a high leve1

available to a larger group

no longer necessary to have

physics to build circuits.

I Masks are lypicalIy described in
such as CIF (CaItech Intermediale

language, chip design becones

of potential designers. it is

an intimate knowledge of device

a simple layout language
Forn) [¡¿ead80] .

Assuming a valid design, the compiler wilI generaLe the

masks i for a working chip. since the primitive modules and

the assembly mechanism have been verified, the chip wiII be

free of implementation errors.

The hardware description language is technology indepen-

dent. Should it be necessary to convert to a new device

technology, only the mask generation portion of the compiler

would have to be rewritten. This situation is anarogous to

a portable software language that

machine.

FinaIly, a uniform software based

fers a vehicle for organising designs

between interested groups.

is transferred to

40

a nev¡

design methodology of-

and exchanging designs

6.2 THE CIRCA MODEL

A standard computer organisation is the von Neumann ma-

chine. it is typified by a single computational unit and a

small set of registers located in the processor. The pro-

cessor communicates with a memory through a bus. The memory

bus is usually only a word in width.

The primary complaint with this style of computer organi-

sation is the serial nature of the system. Computation

takes place in one part of the computer, buL the data, upon

which the operations are to be performed, reside in another

part. The only link between the two is the aforementioned

bus. This link tends to serialise processing as only one

word of daLa (or instruction) can pass during a bus cycle.

This situation gives rise to the term "von Neumann bottle-

neck" IBack78].

Computer designers have suggested buitding computers with

arrays or trees of processors each with its own 10ca1 store

[¡¡ead80]. By splitting up a programme among a number of

processors greater speeds should be obtained. This is true

41

if the algorithm can be partitioned so as to minimise inter-
process communication and to maximise concurrency.

Now this is not to say that all computer systems should

be designed this vray. The von Neumann architeciure will be

around for a while; we are very adept at prograrnming them

and hierarchically organised machines are still as yet un-

proven.

Àn interesting parallel exists between the organisation

of a computer system and the internals of the processor it-
self. A microprogrammed processor can be thought of as a

miniature computer systen. There is the "von Neumann bot-

tleneck" (ttre data paths) connecting the processing unit
(tire ef,U) to the memory (the register set). perhaps rve can

use Lhe ner,r approach to systems design in processor design.

This is the approach that we have taken with the Circa

silicon compiler. The low level primitives of the Circa

language are implemented by sma11, simple processors. Circa

constructors are used to assemble these processors.

The Circa language provides a time

processes are executed. What we mean by

is a definite ordering of events, but

which these events must occur.

framework in which

this is that there

no fixed times at

We have taken

the elementary or

this liberal approach

primitive processors.

in the timing between

Each processor is a

42

sequential machine and therefore has a clock. However, the

clock is hidden inside the primitive processor. The proces-

sors communicate between each other in an asynchronous man-

ner using a set of control lines. Since interprocess commu-

nication is independent of a clock, the clocks inside the

processors need not be the same. A two-phase non-overJ_ap-

ping processor clock can be generated by the circuit in fig-
ure 8 (from [uead80]).

À set of signals, described in figure 9, is used to con-

trol the actions of the processor. RESET is used, usually

during power up, to reset the processor back to the known

initial state. The initial state of the processor is an

idle state where nothing happens. To start the processor up

so that it can perform its function, a pulse is sent along

the ENÀBIE control line. Iihen the processor accomplishes

its task, it sends a pulse over the DONE line to another

processor which is waiting. The Mealy state graph in figure

10 illustrates the control sequence of a processor.

The processors implementing Circa primitives are assem-

bled together to forn larger, higher leve1 processors as

specified by the Circa constructors. These high 1evel pro-

cessors l-ook exactJ.y like their primitive counterparts from

an external perspective. High level processors do not real-

ly exist in silicon; it is only a concept to make the tran-

sition from Circa to masks easier.

43

period of ø1 and
ø2 is 2*delay

ø2

Figure 8: Clock Generation

RESET

ENABLE

Figure 9: Processor Control Signals

initial sta

equencing through microcode

-0l0

ENABLE,RESET/DONE
D,,'
te

\,,,

\.''

Figure 10: Processor Control Sequence

44

6.3

6.3

PRIMI TIVES

.1 Primitive processors

input, output, assignment and wait are primitive process-

es in the Circa language. They are implemented as primitive

processors. Primitive processors are microcoded finite
state machines.

Expressions which appear in the WHITE constructor and as

guards in the IF and ÀLT constructors are also implemented

as microcoded processors. Expression processors deviate

from the model in only one aspect: there are two separate

DONE signals leaving the module. One is used to signal a

processor if the expressi.on is evaluated to be a one; the

other indicaLes a ze:o result.

NoLe that expressions in construct replicators and vari-

ant parameters can only be constant expressions. These ex-

pressions can be evaluated at compile time and therefore are

not implemented as primitive processors.

Although SKIP is a primitive process in Circa, it is not

implemented as a seguential nrachine simply because it does

not do anything. It is a dummy processor with the ENÄBLE

control line passing though to the DONE control line without

any modification.

45

6.3.2 Arrays

When faced wiLh an array in the Circa language, the sili-
con compiler has two choices: to implement the Circa array

as a real memory array (large ROM or RAM) or to split up the

array into its individual elements.

in this section, we rvill deal with the criteria that Cir-

ca uses for making this implenrentation decision.

For channels, there is no decision to make. Channel sub-

scripts must be evaluated at compile time; they must be con-

stant expressions. Consequently, channels are always imple-

mented as individual elements. It complicates the hardware

considerably if channels are chosen dynamically from a memo-

ry array.

With variables and constants there is some flexibility.
Let us consider the following example:

a [0
SEQ

d,

..21
li:

lil
::Byte:
20, ,2)
:= i

In this case, the variabLe "a" is subscripted using only

constant expressions. "a" could be implemented as a three

byte RAM with a bus that is shared between the three assign-

ment processes or as three individual one byte RÀMs (wittr

three individual buses: one for each assignment processor).

There does not seem to be any obvious advantage to one ap-

proach over the other.

46

Suppose we were to perform the operations in paraIlel.

a [0..2] ::Byte:
PAR Ii::0..2]

aIi] := i

If "a" were to be implemented

would have a problem. Although we

a three byte RAM, rve

modifying a different

as

are

element in each assignment command, there is only a single

bus. The data bus certainly cannot be shared: nor can the

address bus (an address bus is required when a memory array

is accessed in order to select the appropriate element).

There are two alternatives here. À bus arbitration scheme

could be used. But this would serialise access and would

Lherefore make the PÀR behave like a SEQ constructor in this

case. The other possibility is to implement the array as a

series of individual elements and to allow only constant ex-

pressions as subscripts. The latter approach was adopted.

Note that this only applies to parallel access; for sequen-

tial access, none of these problems appear.

Constant arrays also follow this scheme.

5"3.3 Memory Access

We will examine variable access first.

À variable is accessed by a processor over an asynchro-

nous bus. The bus control signals (f igure '1'1) are patterned

after the asynchronous bus interface of the 68000 processor

lrqotoBzl.

47

The flow charts in figure 12 and timing diagram (in figure

13) illustrate Lhe bus protocol. Each stage of the read or

write cycJ-e corresponds to one micro cycle in the state ma-

chine.

Constants are usually constructed out

the same interface logic as variables.

choice of microcode instruction format,

to encode individual constant values in

self (immediate values).

of ROMs and have

Depending on the

it may be possible

the instruction it-

The behaviour of channels differs radically from that of

constants or variables. ChanneLs can cause a processor to

wait indefinitely; constants and variables have a known up-

per bound. The upper bound is a function of the memory ac-

cess time.

A channel has its own memory and is dual-ported. There

is an input and output port. Each port has its own set of

asynchronous bus logic (figure '14).

The idea behind the channel is quite straightforward.

Processors comnunicate between each other using channels.

Processor synchronisation is accomplished through the bus

control signals.

For example, if we write a value to an active channel

(using a "!"), the bus cycle will complete as soon as a pro-

cessor on the input side of the channel is ready to read a

48

Figure 11: Bus Interface

Read Cycle
processor

R/W* high

MENABLE asserted

-

data valid
+

MXFER assededr
latch data

deassert MENABLE

-

Remove data from bus
+

deassed MXFER

Figure 12: Read and Write Cycles

MENABLE

MXFER

R/W*

read data

write data

variab le

R

NABLE

Write Cvcle

processor

R/W* low
+

data valid
+

varíab le

data latched
+

assert MXFER

MXFER

remove data from bus
+

deassert MENABLE

-

deasseft

Figure 13: Bus Timing

value. The bus cycle could

cessor is already waiting.

49

complete immediately if a pro-

If a value is sent to a passive channel (we issued a

¡¡l l"), then the bus cycle cornpletes immediately, regardless

of the status of the input side of the channel. Àny proces-

sors waiting on the input side are woken up. This is done

by the completion of the bus cycle (figure 1b).

With each channel bit is a "new bit" which is set when

data is sent to the channel and reset when data is read out.

This is used by the input side of Lhe channel. When a pro-

cessor issues an input command from an active channel (a

"?"), the new bit is examined. If the new bit is set, then

the bus cycle completes. Suppose the new bit is clear, the

processor will wait. Às soon as the new bit is set (by data

being placed into the channel), the bus cycle on the input

side resumes.

If data is requested from a passive channel, the new bit
is ignored and the bus cycle completes without waiting.

What happens when more than one processor issues

command from the same channel at the same time? The

signals from each processor on the input side of the

are ORed together. This means that the bus cycle on

put side of the channel will finish when the slowest

sor is finished.

an input

MENABLE

channel

Lhe in-

proces-

50

Figure 14: Channel Interface

MENABLE (input)

MXFER (input)

MENABLE (output)

MXFER (output)

Figure 15: Channel Timing Example

51

6,4 HIGH LEVEL PROCESSORS

Processors can be formed into a hierarchical structure

higher level processors. They are formed in such a r+ay

to implement the appropriate Circa constructor.

The following sections outline the circa constructors and

their corresponding implementations. Note that the graphi-

cal representations of circa constructors do not necessariry

imply suitable layout.

6,4"1 Sequential Constructor

Subprocesses of the SEQ are formed into a pipeline-like

struclure (figure '16). It is noL a true pipeline, however,

as only one stage can be active at any one time.

of

AS

If a variable were to be declared so that its
compassed only this SEQ constructor, the variable

located within the SEQ perimeter (figure 17).

SCOpe en-

could be

Às an optimisation feature, a

tial constructs (IFs, I.lHILEs,

cesses) could be compacted into

formance degradation would take

be saved.

SEQ containing only sequen-

other SEQs or primitive pro-

a single processor. No per-

place and chip space would

52

SEO
A
B
c

Figure 16: Hardware Implementation of the Sequential Constructor

declaration of variable "V":
SEQ

A
B

Figure 17: A Variable in the SEQ Machine

SEQ perimeter

53

6.4.2 While Constructor

Figure'18 describes the implementation of the WHitE.

It may be possible to include this construct when com-

pacting sequential constructs as the previous section sug-

gests. However, our microcode must be able to handle condi-

tional execution.

if the expression is omitted in Circa (an infinite loop),

the result would be Lhe structure in figure 19.

6.4,3

AnI

current

struct.

must be

i f Constructor

F construct evaluates its
evaluation of guards is

The sr-ructure is given

an expression.

guards sequentially. Con-

only done by the ALT con-

in figure 20. The IF guard

6.4,4 Parallel Const ruc tor

The PÀR definition states that a pÀR terminates when the

slowest of its components terminates. I.ie use latches to

hold the DONE signals of its components. When al1 of Lhe

latches are set, the PÀR is finished and a signal is there-

fore sent. The latches are then reset. See figure 2'1 for

deta i ls.

54

WHILE expréssion
body

Figure 18: Hardware Implementation of the WHILE Constructor

Figure 19: An Implementation of an Intinite Loop

WHILE
body

55

RESET

ENABLE

IF

A
D

B

E
c

F

PAR
A
B

c

Figure 20:Hardware Implementation of the IF Constructor

Figure 21: Hardware Implementation of the Parallel Consffuctor

56

6.4.5 Àlternative Constructor

The ÀLT guards are evaluated concurrently. The first
guard to finish gets to execute its guarded command. The

priority encoder (see figure 22) allows only the first sig-

nal to get through. The guards have a priority: ,,A" is the

highest and "C" the lowest. This is determined by their
placemenL in the ÀLT text. The priority encoder does more

than just enabling a particular processor¡ it also resets

the guards.

it is important to realize that the speed of the guards

plays an important part in determining which guarded process

is executed. The difference between the time when the con-

ditions for a guard to become ready (such as receiving an

input signal) and the time when the guard actuarly responds

with a pulse on the DONE wire is calIed the reaction time.

Therefore, guards with small reaction times will have their
guarded processes executed in the case of races with slower

guards. The SKIP guard has the fastest reaction Lime.

6.5 AN EXAMPLE

In chapter five, we discussed an intelligent traffic
light controller. In this section, we shall appty the ideas

in silicon compilation to the imprementation of such a con-

Lroller.

57

RESET
E

Priority Encoder/Controller

en ab ls

guard ¡n

en able

ALT
A

D

B

E

c
F Figure 22:Hatdwarc Implementation of the Alternative Constructor

5B

The controller mainline was given by the following:

Traf f ic : : PROC (nsc : : sensor ; ewc : : sensor ; nsr : :Lightval ; ewI ; :Li ghtval)
WHI LE

SEQ

first(nsc; nsl; ewl) :: phase
second(ewc; ewl; nsl) :! Phase

Àn implementation of this process is given in figure 23.

Note that the module "Phase" is not defined yet (in fig-
ure 23), so it appears as a black box. This is how the com-

piler works: a top-down decomposition of Circa processes.

The input side of the "nsc" and "ewc" channels and the

output side of the "nsl" and "ewl" channeLs are connected to

the chip pads.

Given the definition of "phase" and its subordinate mod-

ul-e "CheckCars":

Phase_ : : PROC (goCar : : Sensor ; goLi ght : : Li ghtVal ; stopli ght : : ti ghtval)
yellowTime ¡¡ WarningTime:
greenTime :: GoTime:
SEQ

stoptight I 2 -- red colour
golight ! 0 -- green colour
isBusy :: Signal:
stop :: Signal:
PAR

busy(goCar; isBusy; stop) :: CheckCars
AtT

WAIT greenTime
stop ! () -- sends a signal to busy Lo terminate

isBusy ? ()
SKi P

gotight ! 1 -- yellow colour
WAIT yellorsTime

59

SignaI; stop :: SignaI)CheckCars :: PROC(goCar :! Sensor; busy :å
ok :: Bit;
count :: Short:
sE8

ok := 1

count := 0

WHILE ok && (count < '10)

ALT
stop ? o

ok := 0

goCar ? ()
count := count+1

IF
ok

busy I o

Figure 24 shows the result of compiling the module

"Phase". The structure of "CheckCars" is illustrated in

figure 25.

6.6 CoNCLUSIoN

This is only one possible model for silicon compilation

using circa. similar ideas regarding integrated circuit de-

sign have been proposed by [Hayes83].

One objection to this approach is its inefficient use of

chip area. This arises from the dupJ-ication of processing

units and the potentially Large number of buses. However,

this objection i.s becoming less important as circuit densi-

ties increase.

There are some interesting

model.

advantages to this particular

60

RESET

Figure 23 : Hardware Implementation of "Traffic"

Figure Z4:Hardware Implementation of "Phase"

RESET ENABLE

DONE

Figure 25 : Hardw ue Implementation of "CheckCars"

63

The problem of clock distribution within the chip virtu-
ally disappears since the organisation is based on asynchro-

nous processing units. This also means that globa1 process-

ing (processing between processors) takes place at the fast-

est possible speed.

Due to the localised processing and nemory, stiIl greater

speeds can be obtained. This is attributed Lo the tendency

towards small buses. Traditional organisations usually have

large buses which slow up processing. Large buses have

large capacitances which cause signals to travel slower

luead80l.

Chapter VI I

THE IMPLEMENTATION OF THE CIRCA INTERPRETER

7.1 INTRODUCTION

The Circa interpreter is an event-driven simulator. This

means that the processing of data occurs only when it has

to; that is, when messages are sent from one process to an-

other or when a process proceeds to its next state. The

word simulalor is used as a synonym for interpreter in our

discussions.

The simulator is written in C and runs under the UNIX op-

erating system. The simulator is called from the shelt and

is ready to execute a Circa process typed in from the termi-

nal. When the process terminates, the Circa interpreter re-

turns control back to the shell. The process would usually

be a call to the top level process. To aid the Circa pro-

grammer, a source language trace facility is provided.

The discussion of the workings of the simulator is broken

dor¿n into four areas: analysis of the source Lext, process

management, expression evaluation and channel implementa-

tion.

-64-

65

7.2 ANALYSIS OF THE SOURCE

When a type is encountered (a declaration or an abstrac-

tion), the type definition is read in from a file and inter-
preted. The result depends upon the type. If it r+as a

variable or a channel, attributes will be the result. If
the type vras a constant, then a list of constants (or per-

haps only one) will be the result. Finally, if the type was

a procedure, it will be executed.

Let us examine the mechanism that gathers the source

code. First of all, the source code that has already been

gathered into the Circa system resides in a list: each e1e-

ment being one type definition. Each element consists of a

tree of source lines (see figure 26). The depth of a 1ine

in the tree is determined by its indentation in the original

source. For each line, there is a list of tokens each rep-

resenting some elementary syntactic unit (for example an

identifier) from the source.

The programme which recognises tokens from the source

file was generated by UNIX's LEX ltesk7Sl. tEX takes a file
consisting of regular expressions and produces a programme

which recognises them. It is called by a higher level pro-

gramme which inserts the tokens into the appropriate place

in the source tree.

The source is not compiled into any type of low level

form. There would be little advantage in doing this. We

66

would be replacing the tokens with another form which would

require as much processing to interpret it as did the origi-
nal. Furthermore, the source code is kept around to be

printed during traces or when an error occurs.

Each line also contains the

number in the f ile rvhere the

piece of code is printed, the

where the line came from.

column position and the line

code starts so that when the

user knows exactly the place

has been "compiled" into the

accesses to that type need only

Once a

source tree

consult the

type definition

form, subsequent

source list.

7.3 PROCESS MANÀGEMENT

To create a process, a process control struciure is
formed. Its function is to keep track of the state of the

prccess. The state includes information such as the major

and minor states, the stack and the source pointer.

The major and minor state indicate to the Circa inter-
preter exactly what the process is doing. Possible major

sLates are: process is active, inactive, waiting for a time

event or waiting for some input/output event to occur. Mi-

nor states further define the actions of the process. For

example, if a process is active (a major state), it may be

any of three minor sLates: initial, executing and finished.

During the "initial" minor state, the process may be inter-

67Some example text from file "fred":

PAR
SEQ [i ::1..3]

b[i]:= i

c[i] !i+1
IF

num=0
flag !0

num>0
flag !1

num<0
flag l0-1

(source nod€)

Figure 26:The Source Tree

68

preting the replicator if it is a constructor. White in the

"executing" minor state, a SEQ constructor fetches Lhe next

substatement to be executed. When a process is ready to re-

turn control to the father process, it is finished and en-

Lers the "finished" state.

While in many of the above major sLates, the process is

placed into a queue. The only exception to this is the in-

active state; the process does not belong to any queue.

Processes are picked from the active gueue for execution.

When the active queue has been exhausted, the current time

is set to the time of the process at the beginning of the

time queue. Processes on the time queue which have their

time field equal to that of the global time counter wilI be

activated (placed on the time queue). The time queue is in

ascending order by time so that only the first part of the

queue needs to be examined. Processes are placed onto the

time queue if they are waiting for some time event to occur

(after issuing a WÀIT for example). À process waiting for

an t/O event to occur is placed onto the input or output

queue of a channel.

The stack is usually reserved for primitive processes but

can be used by any process that requires Lhe evaluation of

expressions. NormaLly, processes point to tokens at the be-

ginning of a line (also the beginning of a Circa statement)

and when finished have an empty stack. Expressions can de-

viate from this. If some processr say an assignment, wishes

69

to evaluate an expression, it creates a separate process to

do this. The source pointer points to the token in the line

currently being executed by the father process (the assign-

ment). The expression is evaluated and the result is placed

on the father's stack. The father's source pointer is also

updated to point to the token following the expression just

evaluated. The expression process no longer exists and the

assignment process continues on.

7.4 EVÀIUATI ON OF EXPRESSIONS

The evaluation of expressions is quite straightforward.

This is due prinarily to the uniformity of precedence be-

tween operators. The only part that requires expranation is

the identifier search. when an identifier is encountered in

the expression, it is searched for in the environment list
of the current process. If it is not found, the search con-

tinues in the father process' environment 1ist. The search

proceeds, moving up the process hierarchy until the identi-

fier is found or a process header is reached.

The expression evaluation module executes the expression

in the same manner as if it were parsed by a recursive de-

scent parser (see Appendix A for parse rules). A nested ex-

pression, for example, would be evaluated in a subprocess of

the orginal expression process.

70

7"5 CHÀNNEI IMPLEMENTATION AND ENVIRONMENT LI STS

Channels, constants and variabies are organised as an ar-

ray of pointers, each of which points to an individual bit
structure. Channel and variable bit structures not only

contain the current value for the bit, but also the process

that last modified it and the time when the change occured.

This allows us to introduce "undefined" values. Values be-

come undefined when two or more processes attempt to modify

a variable, for example, at the same time.

Àny time a declaraLion is encountered, the statement is

evaluated and the result (some variable, constant or chan-

nel) is placed in the environment list of the following pro-

^Âêê

When a variable is subscripted or

bit pointers are created. However,

point to their old bit structures.

for constants and channels.

bitsliced, a nerv set of

the bit pointers still
This is also the case

Channels are a little biL more complex than the reader

has been led to believe up until this point. Each channel

bit actually contains a process control structure; this is
used to implement channel delays" The following pseudo-code

illustrates the channel mechanics:

71

initially:
if a "I" or a "! !" command

if channel process
there is a process

el se
channel nev¡

channel new
put channel
appropr i a Le

was issued
is in WAIT TIME state or
in the channel output queue
value := UNDEFINED

value := value sent
process onto time queue for
delay

add sending process onto output gueue

if a "?" command was issued
if new data ("new" bit set)

return channel old data
activate processes on output queue

else
place receiving process onto channel's input
queue

if a "??" command was issued
return channel o1d data
activate processes on output gueue

after channel delay time event occurs:

look through output queue for processes that issued a
"!!" command; if any found, activate them

if thereu:ii":i:
!;:;".r.r

waitins on the channel input queue

activate all processes on the output queue
channel old value := channel new value

Channels specified in a Circa comnand typed in by the

user during simulation are assumed to be external channels.

External channels are really just UNIX files and therefore

allow the user to provide external stimuli to his model or

to collect sinulation results. The file format is the same

for input files as it is for output files. Each line con-

tains two numbers; the first number is the value to be sent

(or received), whire the second number denotes the duration

of the signal (see figure 27).

72

Time

Bit

0

1

2

3

4

5

o

7

Binary

:,i,i:::::::::::
o1oo 11oo: oolo 1111: ooto llooi oooo 1001, ootl 1110: oooo fioo, oooo llooi oool 1111, oooo looti oooo loot

The resulting external channel file would be:

#4c 0
#2f 1

#2c 2
oe
#3e 4
#c5
#lf 7
oo

Figure 27 : Extemal Channels

Chapter VIiI

CONCTUSIONS ÀND FURTHER WORK

8.1 EVOLUTION OF THE CIRCA LANGUAGE

One of the principal aspects of designing hardware using

an HDL is the ability Lo verify the design. The verifica-

tion is accomplished through simulation. OfLen this is done

before it is passed to a silicon compiler. Macpitts, a cir-
cuit synthesis system, uses this approach ISouth83].

The development of Circa was an evolutionary process.

Early on, st,ructural hardware description languages rlere

considered; they were soon discarded in favour of a behav-

ioural language as the Iatter's advantages became apparent.

As we discussed in previous chapters, Occam was chosen as

the basis for Circa because of its ability to deal with pro-

cesses.

0f course, we were not satisfied with 0ccam. The commu-

nications protocol was among the most significant deviations

from the Occam definition, but by no means the only one.

One of the early (and perhaps most superficial) com-

plaints of Occam was its rigid format. Occam uses two spac-

es for each level of indentation, The initial solution was

-73-

74

to place the body of a constructor within a C-like begin-end

block: that is, enclose the consLructor body within a

It{tr-rr}" pair. Although this allowed complete freedom for

the Circa programmer, rarely was it used. Circa programmers

writing in a reasonable manner tended to format the source

text much like Occam programmes. The result was code that

appeared very much like Occam with additional 'rt{tr-tri" clut-
ter.

A compromise was taken allowing some freedom while main-

taining the clean format of Occam. This took the form of

relative positioning of statements. Subordinate statements

have a greater indentation than their superiors. This is

the only rule and seems to work quite well.

More fundamental "improvements" were considered, but were

once again discarded in favour of Occam's definition. An iF

constructor rlas initially omitted since it was deemed to be

unnecessary. An alternative constructor with expressions as

the only guards would be functionally equivalent. This is

not quite the case when compiling to hardware. The IF is
evaluated sequential-ly, while the ALT is a parallel con-

struct. Thus the IF was included.

Occam's WHILE was chosen as the loop construct over a re-

peat loop despite the repeat's many advantages [¡unr8S].

The WHILE construct has one main advantage; it is much easi-

er to implement in hardware.

75

A type concept was introduced. Occam has only two types,

WORD and BYTE, which are not sufficient for the task at

hand. The size of each variable or channel- element must be

determined by the systen designer. Às well, the type mecha-

nisn was extended to encompass externally defined constants

and procedure abstractions.

Each type consists of

the actual type (channel

and the type attributes.

procedure body, a list
able description.

three components: the type name,

, variable, constant or procedure)

The type attributes consist of a

of constants, or a channel or vari-

The type mechanism allows the programmer to hide some of

the details regarding channels, variables, etc. By includ-

ing procedure abstracLions under typesr wê are able to use

variant parameters with procedures in a clean, elegant way.

Other differences between Circa and Occam include addi-

tional operators and the uniform treatment of constructor

replicators and subranges.

There is, of course, room for improvement in Circa. Mo-

nadic operators (negation specifically) would be convenient.

Caution should be taken, however, not to faLl into the trap

of featurism that plague many of the conventional languages

(er,/l f or example)
"

One improvement would

76

be to alleviate the problem Circa

programmers have with the limited room for the procedure

header (it must fit on one line) . The space restriction

acts as an incentive to construct headers with only a few

parameters. This tends to make procedures easier to work

with, since their interface is simpler and more comprehensi-

ble.

Each so-ca11ed improvement must be judged according to

the language philosophy; in Circa's case: keep it sinple.

8.2 APPLYING CIRCA TO HÀRDWÀRE DESIGN

The vehicle through which the technique of abstraction

has been utilised is the hardware description language, Cir-

ca. We have looked at hor+ Circa r,ras successf u1ly applied to

the problems of circuit synthesis and verification.

While a simul-ator has been implemented, a silicon compi-

ler has not. The silicon compiler holds a great deal of

promise: more so than ever before. Together with techno-

logical improvements, building chips wilt become as easy and

as commonplace as programming.

Appendix À

THE SYNTAX OF CIRCÀ

The syntax of the Circa language is described using

Wirth's version of BNF [wirtirZf] .

type_definition = id "(" id {";" id} rr),r ,,::,' type_body.

tYPe-body = "CONS" expr {expr}
"VÀR" bitslice
"CHÀN" bitsIice chan_deIay
"PROC" "(" parm_list ")" process.

chan_delay î "FÀtL" expr "RISE" expr
| "RISE" expr "FALL" expr.

parm_list = item_declaration ["; " item_declaration].

= item_declaration ":" process
I consEruct

proc es s

abstract i on
s imple_command.

construct = "WHILE" expr process
"PAR" construct_body
"SEQ" construct_body
"IF" expr_body
"ALT" guarded_body.

construct_body = [size] process {process}.

expr-body = lsize] expr process {expr process}.

guarded body = [size] guard process {guard processJ.

abstraction = id Isize] "(" channel [,,;" channe].] 3.)"..::" type.

item_declaration = id Isize] "::" Lype.

stze

type

guard

simPie-suard
T ;äli_."mmand

- etItt lid "::"] subrange "J".

= id "(" expr {";" expr} ")".

= simple_guard {simple_guard}.

- 77 -

78

s imple_c ommand

i nput_command = channel
channe l
channel
channel

output_c ommand

wa i t_command

var iable

channel

subsc r i pt

bitsli.ce

subrange

c on stant

expr

element

operator

id

alphanumer i c

number

hex_number

cha rac ter

comment

i nput_c ommand.

variable ":=" expr
wa i t_command
i nput_c ommand
output_command
"sKI P" .

I

tt)st

rrtrr
ttltt

tt)st

variable
'ßo"
variable
"()".

expr
c(),r

" expr
tt r()r.

= channel "!"
channel " ! "
channel " ! !

channel " ! !

"WAIT" expr.

id IsubscriptJ Ibitslice].
id IsubscriptJ Ibitslice].
"[" expr t']".

"{" expr "}".

expr ".." expr.

id I number I hex_number I character.

element {operator elenrent}.

var iable
channel
c on stantt'(" expr ")".

=
..+" | ,,-,r | ,r1rr I "/.

I..<l Irr¡rr Irr_rr Irr¡¡l
'¡&" I :'1" l"nn"'¡"ll"
letter {alphanumeric}.

letter I algit.

dlgrt tdrgrt I.

"#" hex_digit {hex_digit}.

¡¡\ rr I ¡¡ ¡r\t,
lt'ta'l"t=" l"a=t'

- "r " any_character_except_eof_and_eofn "

: "--" {any_character_except_eof and_eoln
| ¡'--" tany_character_except_eof and_eoln

eoln
eof "

REFERENCES

[Back78] J. Backus: "Can Programming Be Liberated from Lhe
von Neumann Style? A Functional Style and Its
Àlgebra of Programs," Commun. of the ACM, Vol. 21,
Number B, Àugust 1978

Intairgs] G. S. BIair, J. R. Malone, J. A. Mariani: ,,A

Critique of UNIX," Software-practice and
Experience, John Wiley and Sons, Vo1. 15, Number
12, December 1 985

l¡unrgS] P. Buhr: "À Case for Teaching Multi-exit Loops to
Beginning Programmers," Sigplan Notices, ÀCM, VoI.
20, Number 11, November 1985

[Di j k75] E. I^¡. Di j kstra : "Guarded commands ,
Nondeterminacy, and Formal Derivation of
Programs," Commun. of the ACM, VoI. 18, Number B,
August 1 975

[Deny85] P. Denyer, D. Renshaw: VLSI Signal processing: A
Bit-Serial Àpproach, Addison-Wesley, 198s

lnfayesJ K. El-Àyat, R. Agarwal: "The Intel 80386 -
Àrchitecture and Implenentationr" IEEE Micro, Vol.
5, Number 6, December 1985

Ifay8aJ D. Fay: "Experiences using Inmos proto-Occam,"
Sigplan NoLices, ACM, Vol. 19, Number 9, September
1 984

Icajst<i85]D. Gajski: "Silicon Compilation," VLSI systems
Design, Vol. 6, Number 11, November 1985

[Har185] D. Harland: "Towards a Language for Concurrent
Processesr" Software-Practice and Experience, John
Wi ley and Sons, Vol . 1 5, Number 9, September 'l 985

[Hoare78] C. À. R. Hoare: Communicating Sequential
Processes, Commun. of the ACM, Vol. 21, Number 8,
Àugust 1 978

[Hayes83J À. Hayes: "SeIf-Timed iC Design with ppl's,',
Third Caltech Conference on Very Large Scale
Integration, Computer Science press, 1983

Iinmos84] Inmos ttd. ¡ 0ccam programming Manual, prentice-
Hall international, 1984

79

l- ^-ltrnmosu5l

[¡ohan79]

Inatog3]

ILaws77]

It esk75]

lLewinB.ll

lMeadB 0l

h¿otog z l

Ipattgz]

lPounE6l

lnaai ngz l

IRowenB 6]

lsotogel

80

Inmos Ltd.: IMS T424 Transputer: Preliminary
Data , I nmos, February '1 985

D. Johannsen: "BristIe Blocks: À Silicon
Compiler," 'l6th Design Automation Conference, IEEE
Computer Society Press, 1979

S. Kato, T. Sasaki: "FDL: À Structural Behaviour
Description tanguage," Computer Hardware
Description Languages and Their Applications,
North-Holland, 1 983

H. Lawson, Jr: "Computer Architecture and
Microprogramming," Software Portability, Cambridge
University Press, 1977

M. Lesk: "Lex - A Lexical Ànalyzer Generator,"
Comp. Sci. Tech. Rep. No. 39, À T & T BeIl
Laborator ies

D. tewin: "Computer Aided Design for
Microcomputer Systems," VoI. 126: Microcomputer
System Design, Springer Verlag, 1982

C. Mead, L. Conway: Introduction to VLSI Systems,
Àddison-Wesley, 1 980

MotoroLa: t'iC0gOO0 15-bit Microprocessor User's
Manual, Prentice-Hall, 1982

D" Patterson, C. Sequin: "A VLSI RISC," Computer,
IEEE, September 1982

D. Pountain: "Personal Supercomputers," Byte,
VoI. 11, Number 7, JuIy 1985

G. Radin: "The 801 Minicomputerr" proc. Symp.
Àrchitectural Support for Programming Languages
and Operating Systems, March 1-3 , 1982

C. Rowen, L. Crudele, D. Freitas, C. Hansen, E.
Hudson, J. Kinsel, J. Moussouris, S. przybylski,
T. Riordan: "RISC VLSI Design for Systen-Level
Performancer" VLSI Systems Design, Vol. 7, Number
3, March 1986

J. Solomon: IEEE International SoIid-State
Circuits Conference: Keynote Àddress, Micronews:
IEEE Micro, Vol. 6, Number 2, ÀpriJ. 1986

J. Southard: "MacPitts¡ Àn Approach to Silicon
Compilationr" Computer, IEEE, December 1983

lsouthE3 l

IsussB 1]

lUngarE4l

[wt rtnz¿]

[wi rthTz]

8'1

G. Sussman, J. Holloway, G. SteeL Jr., À. Be11¡
"Scheme-79: Lisp on a Chip," Computer, iEEE, JuIy
1 98'1

D. Ungar, R. Blau, P. FoIey, D. Samples, D.
Patterson: "Architecture of SOÀR¡ Smalltalk on a
RISC," Proc. Eleventh International Symposium on
Computer Architecture, 1984

N. Wirth: "0n the Composition of tieIl-Structured
Programs," Computing Surveys, ÀCM, Vol. 6, Number
4, December 1974

N. llirth: "What Can We Do about the Unnecessary
Diversity of Notation for Syntactic Definitions?",
Commun. of the ÀCM, Vol,20, Number 11, November
1977

