A Multilevel Search Algorithm for Feature
Selection in Biomedical Data

by

Idowu Olayinka Oduntan

A Thesis
Presented to the Faculty of Graduate Studies

in Partial Fulfillment of the Requirements for the Degree

Masters of Science
in

Computer Science

Department of Computer Science
University of Manitoba

Winnipeg, Manitoba, Canada 2005

Copyright © Idowu O. Oduntan 2005

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

COPYRIGHT PERMISSION

A Multilevel Search Algorithm for Feature Selection in Biomedical Data

BY

Idowu Olayinka Oduntan

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of
Manitoba in partial fulfillment of the requirement of the degree

of

Master of Science

Idowu Olayinka Oduntan © 2005

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of
this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell
copies of the film, and to University Microfilms Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied
as permitted by copyright laws or with express written authorization from the copyright owner.

Abstract

The automated analysis of patients’ biomedical data can be used to derive diagnostic
and prognostic inferences about the observed patients. Many noninvasive techniques for
acquiring biomedical samples generate data that are characterized by a large number of
distinct attributes (i.e. features) and a small number of observed patients (i.e. samples).
Deriving reliable inferences, such as classifying a given patient as either cancerous or
non-cancerous, using these biomedical data requires that the ratio r of the number of
samples to the number of features be within the range 5 < r < 10. To satisfy this
requirement, the original set of features in the biomedical datasets can be reduced to an
‘optimal’ subset of features that most discriminates the observed patients. Feature
selection techniques strategically seek the ‘optimal’ subset.

In this thesis, I present a new feature selection technique - multilevel feature
selection. The technique seeks the ‘optimal’ feature subset in biomedical datasets using a
multilevel search algorithm. This algorithm combines a hierarchical search framework
with a search method. The framework, which provides the capability to easily adapt the
technique to different forms of biomedical datasets, consists of increasingly coarse forms
of the original feature set that are strategically and progressively explored by the search
method. Tabu search (a search meta-heuristics) is the search method used in the
multilevel feature selection technique.

I evaluate the performance of the new technique, in terms of the solution quality,
using experiments that compare the classification inferences derived from the result of
the technique with those derived from the result of other feature selection techniques such
as the basic tabu-search-based feature selection, sequential forward selection, and random
feature selection. In the experiments, the same biomedical dataset is used and equivalent
amount of computational resource is allocated to the evaluated techniques to provide a
common basis for comparison. The empirical results show that the multilevel feature
selection technique finds ‘optimal’ subsets that enable more accurate and stable
classification than those selected using the other feature selection techniques. Also, a
similar comparison of the new technique with a genetic algorithm feature selection
technique that selects highly discriminatory regions of consecutive features shows that

the multilevel technique finds subsets that enable more stable classification.

it

Acknowledgements

I appreciate the support, assistance, and contributions that I received to successfully
complete this thesis. Particularly, I thank my advisor, Dr. Michel Toulouse for his
invaluable advice, guidance, and educative ideas. Besides, I thank him for supporting me
to finish the thesis successfully and on time.

I am grateful to Dr. Richard Baumgartner, Dr. Christopher Bowman, and Dr. Ray
Somorjai, and the other members of the Biomedical Informatics Group at the National
Research Council’s Institute for Biodiagnostics for their contributions to this research and
for providing the materials required for the research. I am also thankful to Dr. Sylvanus
Ehikioya and the other faculty members and staff of the Department of Computer
Science, University of Manitoba, for providing a great opportunity to get trained as a
computer science graduate student.

I specially thank Dr. and Mrs. Olumide Makinde for their invaluable support in all
respects during this M.Sc. program. I sincerely appreciate the regular counsels of my
brotherly pastor and his wife (Pastor and Mrs. Okunnu) and of my mentors, Ismail
Odewale and Dr. Olanrewaju Oyewola. I am also thankful to my friends at The
Redeemed Christian Church of God, Winnipeg for their support.

I greatly appreciate the support and assistance of my family. I thank my parents (Mr.
and Mrs E. O. Oduntan) and siblings (Olufemi, Taiwo, Bamidele, Olanrewaju,
Adebowale, and Ruka) for believing strongly in me; that has always motivated my
courage. The emotional support and encouragement provided by my fiancée, Oluboade
Aderinto, are invaluable. I thank you for being there for me at those challenging periods

that I needed just a little push to continue.

111

Finally, I am grateful to God for His continual presence and loving guidance that

have sustained me hitherto; I cannot be thankful enough.

v

Contents

1. INtroduction....c.ccvieiiinirinrincrnsiiererestseeisecierersecsonccnacasessrsssnasonnssnse 1
| Y (614 A -1 () 1 T U 2

1.2. Problem definition and description..............ocooiiiiiiiiiiiiiin 2

1.3. Preview of research contributions..............oooooiiiiiiiiiiiiinin, 9

1.4. ThesiS OrganiZation.uvuuruuenninnii ittt 10

2. Background and Related WorkK.....cooeiiieviiinininiiaiiiniiiiiiiniiiniiecieen 11
2.1. Acquiring biomedical datasets...............oooiiiiiii 11

2.2. Processing biomedical datasets..............oooiiiiiiii 15

2.2.1. Pre-processing COMPONENL.o.ouiiritiuiiieneeneaeeeaeeienn 17

2.2.2. Feature selection and extraction cOmponent.......................... 18

2.2.3. Classifier design COMPONENt.........ooviiiieiiriiiiiiiiiaiiiieaaan 20

2.2.4. Optimization COMPONENL.ouuiniiriitiiitireieiennaeananens 21

2.3, Feature seleCtion........oovuiiiiiiiiii i 21

2.3.1. Feature selection techniques.............coooviiiiiiii 22

2.3.2. Evaluation criteria for feature selection techniques.................. 27

3. Search HeuriStiCS..coveereiiruiuereieieieiiiiiieiaieirerieteeecerseracacessssssecssncnces 30
3.1, Tabu Search......c.ooveiriiii e 30

3.2, Multilevel paradigm........cooovviiiniiiiiiiii 34

4. Multilevel Search Algorithm for Feature Selection Problem.................... 38
4.1, Coarsening Phase.......oiueniineitiiiiit i 41

4.2, Search phase........cooevuiiiiniiiiiii 52

4.3. Refinement Phase........o.oiieiimniiiiiii i 56

S. Experiments and resultS.....couvieiiiieinriiiiiiiiiieiiiniieiiiiiiiiiieeiiiniie. 62
5.1. Experimental dataset...............oooiiiiiiiiiii 62
5.2. Evaluation eXperiments.e.eeueeueruiiiniitiiiti et 63
5.3. Experimental results and discussions..............coooiiiiiiiiiiiiineenn 67
6. [801] 110 L1E5) (1) 1 U P PPN 74
6.1. Summary of the research. ... 74
6.2. FUtUIe WOTK. ..ottt 75
Appendix A. Code Listing of the Multilevel Feature Selection Algorithm............ 76
RO I EIICES. ¢ euveerenrrncrerostescsssstosssocsssssssassssssacssssnsssssssssensssssenssnssnssnssnsses 145

vi

List of Tables

Table 4.1: The classification error rate values for the multilevel

Table

Table

Table

Table

Table

4.2:

4.3:

4.4:

4.5:

5.1:

feature

selection

technique with different coarsening Strat€gies.ocovvmevininiieiiinn.n 44

The classification error rate values for the multilevel

technique with different reduction factor values.......................o 47

The classification error rate values for the multilevel

technique with different number of levels............. ... 50

The classification error rate values for the multilevel

technique with different search phase configurations 55

The classification error rate values for the multilevel

technique with different refinement configurations 59

The classification error rate values for the evaluated

LECHIIQUES .. eeeinet et et 67

Table 5.2: The classification accuracies for the evaluated feature selection techniques on

the rAININE SEL ...vveveeeten et 68

Table 5.3: The classification accuracies for the evaluated feature selection technique on

T =R o A <) AU OSSO

vii

.69

List of Figures

Figure 1.1: The effect of sample size and feature space dimensionality on classifier
PETTOITIANCEent ittt e ettt 4

Figure 2.1: An MR spectrum showing different H' bonds in an organic chemical

COMPOUNA SETUCLUTE . ..e.uintt ettt ettt 13
Figure 2.2: Microarray teChnology.........oovviiiiiiiiii 15
Figure 2.3: Sample biomedical spectra showing discriminatory regions of features...... 16
Figure 2.4: The basic components of classification process................ocoooiiiiiinnn 17
Figure 2.5: Wrapper and filter approaches in feature selection techniques.................. 23
Figure 3.1: A trapping of the local heuristic search in local optimality..................... 32
Figure 3.2: A pseudocode of the tabu search algorithm.................o 34
Figure 3.3: The concept of multilevel search algorithm ... 36
Figure 4.1: Depiction of the multilevel feature selection technique.......................... 40

Figure 4.2: The effect of the coarsening strategies on the multilevel feature selection
TECRIIQUE ...\ttt 45

Figure 4.3: The effect of the reduction factor on the multilevel feature selection technique
... 49

Figure 4.4: The effect of the number of levels on the multilevel feature selection
PECHIIQUE «venvervireerenreecc ettt 52

Figure 4.5: The effect of the search phase configuration on the multilevel feature
SEleCtion tECHMIGQUE ...c.eeeeeveieiiiiiiiiiice e e 55

Figure 4.6: The effect of different refinement possibilities on the performance of the

multilevel feature selection technique........cocoeeiviiiiiiiiiiiie 60

viil

Figure 5.1: The effect of over-fitting on the multilevel feature selection technique....... 65

Figure 5.2: Comparing the minimization objective function values of the evaluated

PECHMIGUES. .o+ e ettt

Figure 5.3: Comparing the classification accuracies of the evaluated techniques on the

TTAIIINEZ SEL. v ver ettt ettt et et ettt et ettt e

Figure 5.4: Comparing the classification accuracies of the evaluated techniques on the

1o)X 1R

ix

Chapter 1

Introduction

The rate of occurrence of terminal diseases such as cancer is increasing globally and there
is need to support the conventional clinical procedures used for the diagnosis and
prognosis of these diseases with automated techniques. In recent times, identifying and
monitoring the progress of these diseases can be automated by exploring the intrinsic
discriminatory information that exist in biomedical data generated using noninvasive
techniques such as magnetic resonance spectroscopy (MRS) [20] and gene microarrays
[7]. Automating disease diagnosis and prognosis can enhance the successful treatment or
management of diseases by enabling the early discovery of the diseases.

Biomedical datasets acquired using noninvasive techniques are usually
characterized with high dimensionality and small sample size [40]. To process and
analyze these datasets using appropriate pattern recognition (PR) techniques [21], a
common requirement is to reduce the dimensionality of the datasets into a size that
optimizes the cost of diagnosis and prognosis without compromising the reliability and
generalization of the inferences derived from the reduced form of the datasets. The focus
of this research is to design and develop a meta-heuristics that performs this form of
reduction. This chapter presents the motivation of the research; a comprehensive
description of the problem to be solved; a preview of the contributions of the research to

knowledge; and the organization of the remainder of the thesis.

CHAPTER 1. INTRODUCTION 2

1.1 Motivation

Biomedical datasets acquired using noninvasive techniques have great potentials that can
be developed to enable the automation of disease diagnosis and prognosis. Automated
diagnosis and prognosis can be used to support and speed-up the conventional clinical
practices in order to enable the early discovery of diseases, particularly terminal disease
such as cancer that can possibly be managed if discovered early enough.

Deriving diagnostic and prognostic inferences by analytically processing
biomedical datasets is an important but challenging task. An inherent challenge to this
task involves finding a compact representation of the datasets that enables the generation
of reliable inferences using feasible computational techniques. However, this challenge
and other similar challenges can be resolved using existing or innovative computing
techniques.

Finding a compact representation of biomedical datasets is an interesting research
that can be used to drive the enhancement of existing computing techniques and possibly
pioneer the innovation of new computing techniques. Besides, the results of such research
can be adapted to other problem domains that relate to research areas such as machine
learning in order to determine the variables that are most relevant in an inductive learning
process; data mining to determine data attributes that mostly contribute to trends in huge

databases; and astronomy to determine the prominent stars in the galaxies.

1.2 Problem definition and description

Biomedical datasets acquired from MRS and gene microarrays usually consist of a
combination of distinctive characteristics having quantitative measures. Each distinctive

characteristic is a feature. For instance, each chemical shift value in an MRS spectrum

CHAPTER 1. INTRODUCTION 3

corresponds to a feature; and each expressible gene in gene microarrays also corresponds
to a feature. A collection of L-ordered features that represents each given observed
sample is a feature vector; a feature space is the L-dimensional space that contains the
feature vector; and the dimensionality of the feature space is the number of features L that
defines each feature vector in the space.

Useful and reliable information and inferences can be derived from datasets of
biomedical origin by applying appropriate pattern recognition techniques. Classification
(another term for pattern recognition [54]) involves separating a given set of input data or
patterns into distinct classes denoted by class labels [21]. A classifier is an algorithm that
performs classification. When the input data are represented using feature vectors,
classifiers can predict the class label of a given feature vector by constructing implicit
boundaries in the feature space to separate feature vectors belonging to different classes
from one another, while optimizing a cost function [10]. The cost function is a
quantitative measure of the cost of misclassification that is often estimated using the
classification error rate (a measure of the number of wrongly classified samples in a
given dataset).

In theory, when the class distribution densities of a classification problem are
fully known, the performance of most classifiers, in terms of the classification accuracy
(i.e. approximately the inverse of the classification error rate), improves with increasing
number of features [18]. Figure 1.1 illustrates this idea by depicting the relationship
between the classification error rate, feature space dimensionality, and sample size (i.e.
the number of samples in a given dataset). As shown in Figure 1.1, the true minimum

error rate E,;, (i.e. the classification error rate when the probability densities of the

CHAPTER 1. INTRODUCTION 4

feature values for each class in the dataset are fully known) of the classifier is a non-
increasing function of the feature space dimensionality. That is, the discriminatory
information that the classifier can use to derive the class label for a given input data
accumulates with the addition of new features; hence the classification error rate

decreases directly with increasing feature space dimensionality.

0.5
045r E
0.4
0.35
0.38

025}

error rate

021

0.15}

0.1t

0.05}

2 4 6 8 10 12 F
feature space dimensionality

However, in practice the distribution densities of the feature values are rarely
fully known, therefore an implied knowledge of the distribution densities that can be
derived from a training dataset (i.e. a collection of samples with predefined class labels
from which the parameters of a classifier can be estimated) is often used to design
classifiers instead of the complete knowledge of the distribution densities. When a

classifier is designed using a training dataset, the performance of the classifier is not only

CHAPTER 1. INTRODUCTION 5

influenced by the dimensionality of the feature space, but also by the sample size of the
training dataset. As the sample size increases, the classification error rate decreases to the
minimal at a higher feature space dimensionality. For instance, Figure 1.1 shows that the
classification error rate is minimal at a feature space dimensionality of 4 when the sample
size Ns is 20; and similarly, the classification error rate is minimal at a feature space

dimensionality of 6 when the sample size Ny is 80.

Generally, when a training dataset is used to design classifiers, the performance of
most classifiers degrades as a result of the peaking phenomenon [37] when the sample
per feature ratio r exceeds a certain range. The typical values of r that guarantee high
classifier performance range between 5 and 10 (i.e. 5 <r <10); but for biomedical
datasets, the value of r typically ranges between 1/500 and 1/20 [39]. The value of r can
be increased to the required range either by increasing the number of observed patients
(i.e. the number of samples) or by reducing the number of features. The former option is
usually not practical because of the cost of the required resources and time. The more
feasible option of reducing the original set of features into an ‘optimal’ subset that most
enhances classification performance is the feature selection problem [25]. This research
focuses on addressing feature selection problem in biomedical dataset.

Feature selection problem can be formulated as a 0-1 integer programming
problem [50], a class of combinatorial optimization problems wherein the decision
variables can only be either 0 or 1. In applications to biomedical data, feature selection
appears in two different combinatorial formulations. For the first formulation, feature
selection involves finding a subset of features of fixed cardinality m (in the range 5 <r <

10) that yields the lowest classification error rate for a given classifier. For the second

CHAPTER 1. INTRODUCTION 6

formulation, feature selection involves seeking a subset of features with the smallest
cardinality such that the classification error rate is below a given threshold. These

formulations can be stated as follows:

Formulation 1:
Given an original set of L features F = {f}, f5 f3... i}, find a proper subset f of F such that
| f1 = m and C(f) minimizes the classification error rate e of a given classifier when
presented with the feature subset f. That is:

min C(f) = e(f) (1)

such thatf c F,|f|=m,m<L

Formulation 2:
Given an original set of L features F = {f}, f> f3... fp}, find a subset f of F such that the
classification error rate e of a given classifier when presented with f is less than a given
error threshold ¢ and C(f) minimizes the cardinality of f. That is:
min C(f) = | f] (2)
such thatf C F,e(f) <t

In both formulations, the optimal solution of the feature selection problem f is known as
the optimal subset (i.e. the subset that most enhances the accurate classification of any
given sample with similar feature vector dimensions as the optimal subset).

The problem formulations in (1) and (2) can be solved exactly by exhaustively

enumerating the subsets in the feature search space. For the problem formulation in (1),

L
the (]different subsets having cardinality m can be enumerated and evaluated, and the
m

CHAPTER 1. INTRODUCTION 7

subset having the ‘best’ evaluation can be regarded as the optimal subset. For the
formulation in (2), the subsets in the 2F different subsets having a classification error rate
that is less than a given threshold ¢ can be enumerated, and the subset having the smallest
cardinality amongst the enumerated subsets can be regarded as the optimal subset.
However, this approach is impractical for solving either formulation of the feature
selection problem except for very small values of L and m (e.g. 20 < L and m < 10) [53].
In biomedical datasets, the typical value of L is in thousands and the desired value of m is
usually in units. For instance, the biomedical dataset that is used in the experiments of
this research consist of a feature space having dimensionality L = 1500. For the first

formulation, if the desired cardinality of the optimal subset m = 10, the original solution

space of the problem instance for this dataset consists of [10 j (i.e. about 10%°) feature

subsets having a cardinality of m = 10. For the second formulation, there are possibly
21590 feature subsets that can be evaluated in order to find the optimal subset. Finding the
optimal subset amongst the 10% or 2'°% feature subsets in the solution space using
implicit or explicit enumeration is intractable [12]. This thesis focuses on techniques that
seek a near-optimal subser (i.e. the subset that is as close as possible to the optimal subset
in terms of the discriminatory capability) within practicable computational time.

To solve the feature selection problem in a practical way, many feature selection
techniques have been developed using search algorithms that enable the selection of
near-optimal subsets. Usually, these techniques can be configured to handle the two
formulations of the feature selection problem. Techniques based on heuristics such as the
greedy-like sequential search algorithms [1], and meta-heuristics such as genetic

algorithm (GA) [38] and tabu search [53] have been proposed. These techniques have

CHAPTER 1. INTRODUCTION 8

been adapted or possibly enhanced appropriately to suit feature selection problem in
particular types of biomedical data. For instance, Nikulin et al. [33] proposed a GA-based
feature selection technique that is primarily aimed at biomedical MRS data wherein there
is evident correlation amongst adjacent features; but this technique is inappropriate for
some other forms of biomedical data such as microarrays wherein such correlation may
not exist [39]. Also, feature selection techniques such as in [3, 11] that focus primarily on
microarray data are usually not flexible enough to exploit the evident correlation that
exist amongst features in MRS data. There is a need for a feature selection technique
having an underlying search method that is flexible enough to effectively adapt to the
different types of biomedical data, and strategically seeks an optimal subset that enhances
the performance of a classifier.

In this thesis, I propose a new feature selection technique — multilevel feature
selection - that addresses this need. Using the hierarchical structure that is inherent to
multilevel methods [48], the technique creates a framework that can adapt easily to
different forms of biomedical dataset. The technique is presently designed and configured
to address the first formulation of the feature selection problem (i.e. formulation (1)
above).

Given a biomedical dataset, the optimal subset f derived for an instance of
formulation (1) above can be used to create a compact representation of the dataset such
that a classifier that is designed using f easily, accurately and reliably separates the
samples in the dataset into definite classes. The result of such separation can be used for

disease identification purposes. The optimal subset derived for an instance of the second

CHAPTER 1. INTRODUCTION 9

formulation can be used to identify biomarkers (i.e. the features or substances that

primarily determine the presence or extent of a disease) in the observed samples

1.3 Preview of research contributions

This research contributes to knowledge in two folds. Firstly, the research furthers the
evolving investigation on adapting the multilevel paradigm to solve combinatorial
optimization problems. I provide empirical inferences that describe how configuration
parameters influence the performance of search methods that are based on the multilevel
paradigm. I also perform experiments that generate results that provide a basis to
compare the performance of the multilevel-based search methods with greedy-like search
methods and other meta-heuristics search methods such as tabu search in application to
the feature selection problem in biomedical data; although, the inferences derived may
not generically compare the performance of these search methods in application to other
forms of combinatorial optimization problems. Secondly, this research creates a new
feature selection technique that is based on multilevel search paradigm. The technique is
presently designed to address the feature selection problem in biomedical data. The
novelty of the new technique is shown in the potential capability of the technique to

flexibly adapt to different forms of biomedical datasets.

1.4 Thesis organization

The remainder of this thesis is organized as follows. Chapter 2 provides background
information and a review of related research work. Chapter 3 describes the concept of the
search framework (i.e. multilevel search) underlying the proposed feature selection
technique. In Chapter 4, I present the newly proposed multilevel search feature selection

technique. Chapter 5 provides the details of the experiments, the biomedical datasets used

CHAPTER 1. INTRODUCTION 10

in the experiments, and a discussion of the results generated from the experiments.
Chapter 6 presents the conclusion derived from the research and the possible directions of

future work.

Chapter 2
Background and Related Work

To provide a proper understanding of the feature selection problem in the context of this
research, a basic knowledge of the characteristics of the common forms of biomedical
datasets that are acquired using noninvasive techniques is imperative. A survey of the
existing feature selection techniques that can be used to select the optimal or near-optimal
subset from these datasets is also necessary. In this chapter, I describe the common forms
of biomedical datasets that can be acquired using modern noninvasive techniques
(magnetic resonance and microarray), the common characteristics of these datasets, the
challenges of processing the datasets and the development trend of the existing feature

selection techniques for processing the datasets.

2.1 Acquiring biomedical datasets

Biomedical and clinical sciences benefit from advancements in noninvasive techniques
for acquiring data to study the properties of the chemical and biological components of
cellular organisms. Modern techniques such as magnetic resonance (MR) and
microarrays provide noninvasive means of measuring the concentration of chemical
components within tissues and the expression levels of genes respectively. An ordered
collection of these measures for similar observations (i.e. biomedical dataset) can be used
for diagnostic and prognostic purposes. This section briefly describes the concepts and
techniques of MR and microarray and the characteristics of the biomedical datasets

acquired using these techniques.

11

CHAPTER 2. BACKGROUND AND RELATED WORK 12

Magnetic resonance, originally known as nuclear magnetic resonance (NMR),
involves interacting electromagnetic radiation (within the radio frequency bandwidth)
with a collection of nuclei in a strong magnetic field. Subjecting the nuclear particles of
some elements to a strong magnetic field causes the particles to precess at a
characteristics angular frequency (lamour frequency) and generate a resultant magnetic
moment directed along the magnetic field.

Applying electromagnetic radiation at a frequency that equals the oscillating
frequency of the nuclear particles causes resonance, and some of the particles are excited
from a lower to a higher energy level. Besides, the nuclear particles' magnetic moments
coherently track the oscillating magnetic field of the radiation and form precessions
around the field. Consequently, the resultant magnetic moment splits into components
that oscillate along the plane of the radiation's magnetic field. These oscillating magnetic
components are transformed into a radio frequency signal (MR signal) having a
frequency that equals the precession frequency of the nuclei. This signal can be
transformed (e.g. induced into a coil to generate alternating current) and amplified to
create an MR image or MR spectrum.

Two broad applications of MR technology are: magnetic resonance imaging
(MRI) and magnetic resonance spectroscopy (MRS). Both techniques are based on the
same physical principles of MR technology as explained above, i.e., detecting the energy
exchanged between external magnetic fields and specific nuclei within atoms. The
distinction between both applications is: in MRI, the emitted MR signals correspond to
the spatial positions of the observed nuclei and are then translated into an atomic image

by assigning different grey values according to the strength of the emitted signals; while

CHAPTER 2. BACKGROUND AND RELATED WORK 13

in MRS, the emitted signals correspond to the chemical components of a scanned tissue,
and are transformed into spectra with peaks that represent the concentration of the
chemical components according to the strength of the emitted signal. The spectra
generated by MRS can be used to determine the chemical structure of compounds and the
concentration of chemical compounds during metabolic processes. In the former
application of MRS, the chemical shift (i.e. a field-independent variation of the resonance
frequency) of a nucleus can provide a clue on the nature of the chemical bonds
surrounding the nucleus. Different chemical shift values in such MRS spectra represent
different chemical bonds in the observed compound that contain the nucleus. In using
MRS spectra to determine the chemical composition of compounds, the area of each peak
value of chemical shift in the spectra is compared with the corresponding chemical shift
value for a nucleus in a standard compound and the difference in the area of each peak
value corresponds to the abundance of the given nucleus in the observation. Tetramethyl
silane ((CH3)4Si) is a common standard compound used for this purpose. Figure 2.1
depicts an MRS spectrum that reveals the chemical structure of an organic compound. A
comprehensive description of MR technology and its application in MRS and MRI is

available in [44].

1
\) CHCHOCCH,CH,

Integration = |5 2 2 2 3

l lll JlA_Jﬁa J(J)

10 5 0 ppm

CHAPTER 2. BACKGROUND AND RELATED WORK 14

Microarrays is another noninvasive technique that can be used to acquire
biomedical data useful for describing phenomena that relate to disease identification and
progression, responses to stimuli, underlying differences between cells of different types,
and the elucidation of gene function at the molecular level. The nucleus of the biological
cell of cellular organisms contains substances such as DNA (Deoxyribonucleic Acid) that
encode genetic information which describe the uniqueness of a cell, and RNA
(Ribonucleic Acid) that enables the transmission of the genetic information. DNA
molecules consist of long sequences of four different deoxyribonucleotides that define
the genome (an encoding of the complete genetic information) of a cellular organism.
Transcribing a DNA to mRNA (messenger RNA) and subsequently to proteins is referred
to as gene expression [31].

All the cells of an organism, with a few specific exceptions, have the same
genomic DNA representation; though not all the cells of an organism are the same [31].
The differences in cell types result from the different subset of genes they express. Also,
the response of a cell in the form of gene expressions varies with stimuli. Therefore, gene
expressions can also be used to determine cell types and to differentiate between normal
and abnormal cells by monitoring the expression conditions of the cell in response to
stimuli.

A microarray contains a glass or polymer slide onto which DNA molecules are
attached at fixed locations. These locations are known as spots or features. An array can
contain thousands of spots, each containing millions of identical DNA molecules or
fragments. Each DNA molecule or fragment has length ranging from tens to hundreds of

nucleotides. In a microarray, each DNA molecule identifies a single mRNA in a genome,

CHAPTER 2. BACKGROUND AND RELATED WORK 15

and the identification of the mRNA transcript is printed on the microarray by a robot or
jet to avoid ambiguity. Applying a laser beam makes the print fluoresce with varying
intensity. The intensity at each slot in the microarray reflects the abundance of the DNA
expressed from the slot. Figure 2.2 depicts the data acquisition process in microarray

technology.

A comprehensive description of microarray technology and its applications is available in

[31].

2.2 Processing biomedical datasets

Biomedical datasets acquired using most noninvasive techniques are characterized with
high feature space dimensionality and small sample sizes. Typically, for each observable
sample, the number of measurable attributes (i.e. features) ranges from thousands to

hundreds of thousands. Conversely, the number of observable samples usually ranges

CHAPTER 2. BACKGROUND AND RELATED WORK 16

between units to hundreds, since the cost (time and resources) of measuring the large
number of attributes for each sample is usually huge. However, a collection of the
measured attributes of the observable samples can be analysed to derive reliable
inferences. A simple analysis of biomedical datasets using literal visual observation is
difficult and can generate unreliable inferences. For instance, in the biomedical spectra
shown in Figure 2.3, the regions of features (highlighted area) that discriminate between
the normal specimen’s spectrum and the infected specimen’s spectrum are not visually

evident.

Pattern recognition techniques can be applied to biomedical datasets to learn the
intrinsic relationship within the datasets and to subsequently assign independent samples
to distinct classes in order to derive reliable inferences. These inferences can be used for
diagnostic and prognostic purposes. A pattern recognition system is also known as a
classification process [54]. A pattern consists of an ordered set of observed measurements
having an associated meaning. In the design of a classification process for biomedical
datasets, each sample in the dataset, which typically consists of an ordered feature vector
and an optional class label, corresponds to a pattern. The basic goal in the design of a
classification process is to establish a mapping from the feature vector space into the
space of class labels and thereby associate a meaning to each feature vector in a given
dataset. Classification can be supervised or unsupervised. In supervised classification, the
class label space is fully predefined while in unsupervised classification the class label

space is defined during the classification process [21]. The scope of this thesis covers

CHAPTER 2. BACKGROUND AND RELATED WORK 17

only supervised classification; therefore subsequent reference(s) to classification is only
applicable to the supervised option.

Besides the feature vector space and the class label space, a classification process
consists of basic components that are interconnected. These components are: pre-
processing, feature selection and extraction, classifiers design, and optimization [54].
Figure 2.4 shows the connection amongst the basic components of a classification

process. I describe these components in the following subsections.

2.2.1 Pre-processing component

The raw datasets that are acquired for classification purposes using most noninvasive
techniques usually contain noisy background information that can impair an easy
classification of the datasets and a meaningful interpretation of the inferences derived
from the dataset. The pre-processing module primarily performs operations that segment
the interesting portion of the raw datasets from the background noise and possibly create
a compact representation of the raw datasets. Examples of operations that can be
performed in this module are: noise filtering, smoothing, and normalization [54]. Some
form of optimization may be required in this module to ensure that the input patterns (i.e.

feature vectors) are represented using the best form.

CHAPTER 2. BACKGROUND AND RELATED WORK 18

2.2.2 Feature selection and extraction component

Most pre-processed real-life datasets of biomedical origin that are used in the design of a
classification process are characterized with high feature space dimensionality. Using the
high-dimensional datasets directly for classification is disadvantageous in two respects.
Firstly, the computational complexity of the classification becomes too large. For
instance, a simple linear classifier requires in the order of KL operations, where K is the
number of classes and L is the dimensionality of the feature space; and similarly a
quadratic classifier requires in the order of KL? operations [18]. Secondly, an increasing
feature space dimensionality eventually degrades the classification performance when
there is no corresponding increase in the sample size. To avert these disadvantages, there
is need to reduce the dimensionality of the feature space by selecting a subset that has the
highest discriminatory capability (i.e. perform feature selection) or by transforming the
feature space into a projected space that eases the classification process (i.e. perform
feature extraction).

Feature selection simply selects a subset of the original feature set with an
ultimate goal of finding the (optimal) subset that enables the highest classification
accuracy or the lowest classification error rate. The optimality of the subset is measured
by an evaluation criterion created using the optimisation component, as shown in Figure
2.4 above. Feature selection is often modelled as a combinatorial optimisation problem
and several feature selection techniques have been proposed to find the optimal subset in
different problem domains. A detailed survey of existing feature selection techniques is

presented in the later part of this chapter (section 2.3). Despite the existence of many

CHAPTER 2. BACKGROUND AND RELATED WORK 19

feature selection techniques, new methods that minimize computational complexity
requirements and maximize classification accuracy are still desirable.

Feature extraction methods are usually applied when a transformation of the
original feature space into a new feature space can simplify the classification process.
Feature extraction methods project the original feature space onto another feature space;
that is, new features are extracted as functions of the features in the original feature
space. The subsequent classification processes are performed using the new feature
space. Based on whether the extraction function is linear or non-linear, there are two
broad categories of feature extraction techniques: linear feature extraction techniques and
non-linear feature extraction techniques [54]. An example of a linear feature extraction
technique is the principal component analysis (PCA) [22] and an example of a non-linear
feature extraction technique is the multi-dimensional scaling (MDS) [27]. Feature
extraction techniques usually make classification easier when a suitable transformation
function is used. However, finding a suitable transformation function for different
problem domains is a challenging task.

2.2.3 Classifier design component

The core component of the classification process is the classifier (i.e. the algorithm that
actually derives the mapping of a given input data or pattern onto the class label space).
A classifier can predict the class label of a given input data by constructing implicit
boundaries in the feature space to separate the samples that belong to different classes
from one another while optimizing a cost function [10]. The cost function is usually an
estimation of the rate of wrong classification. The cost function for the classifier design

component is used as an evaluation criterion to tune the performance of the classifier.

CHAPTER 2. BACKGROUND AND RELATED WORK 20

The optimization component provides the evaluation criterion for the classifier
component (Figure 2.4).

Classifiers can be designed using three different approaches [54]. The first
approach is based on the identifiable similarities that can exist between a reference entity
(i.e. a prototype) and the other entities to be classified. Template matching [21] is an
example of a classifier that can be designed using the concept of similarity. The second
approach uses probabilistic methods. Classifiers in this category are based on the Bayes
decision rule, the maximum likelihood or density estimators [21]. Examples of classifiers
in this category include k-nearest neighbour (KNN) classifiers and Parzen window
classifiers [21]. The third approach uses statistical methods to construct a decision
boundary directly in the feature space while optimizing the classification error rate.
Examples of classifiers in this category are Fisher’s linear discriminant analysis (LDA),
multilayer perceptrons, and support vector machines (SVM) [21].

The classifier design component in Figure 2.4 can consist of a classifier that is
designed using any of the approaches described above, or a hybrid of the approaches.
Two or more individual classifiers that are designed using any of the approaches can also

be combined in a collaborative manner to address complex classification problems.

2.2.4 Optimization component

The optimization component combines with the other components of a classification
process by providing the evaluation criterion that determines the optimality of the results
generated by those other components. As shown in Figure 2.4, the optimization

component is a sub-component of the preprocessing, feature selection and extraction, and

CHAPTER 2. BACKGROUND AND RELATED WORK 21

classifiers design components. In the preprocessing component, the optimization portion
provides a basis to determine the quality of the feature vectors that represent each sample.
In the feature selection and extraction module, the optimization sub-component
determines the optimality of the examined subsets during the search for the optimal
feature subset or evaluates the effect of transforming a feature space into another feature
space on the complexity of the classification process. In the classifiers design component,
the optimization sub-component provides an evaluation criterion that guides the classifier

towards generating minimum classification error rate.

2.3 Feature selection

Given an original feature space defined by a given feature set, feature selection involves
finding the ‘optimal’ subset of the feature set that best represents the original feature
space. Typically, the optimal subset is sought strategically using techniques (feature
selection techniques) that are guided by an evaluation criterion. The following
subsections describe existing feature selection techniques and the different evaluation
criteria that can be used to guide these techniques.

2.3.1 Feature selection techniques

Decades of active research have been devoted to designing and developing feature
selection techniques to address the feature selection problem. Feature selection
techniques typically consist of an underlying search or ranking algorithm that explores
the feature space and a cost function (e.g. a measure of the classification error rate) that
guides the underlying algorithm. Considering the approach for evaluating the cost
function of the feature selection techniques, Kohavi and John [26] identify two

approaches to designing feature selection techniques: filter and wrapper approaches. Liu

CHAPTER 2. BACKGROUND AND RELATED WORK 22

and Yi [29] further identify a third approach known as the hybrid approach, which
combines the strength of the filter and wrapper approaches. The filter-based approach
determines the fitness of an examined feature subset without any reference to or feedback
from the target classifier. That is, the cost function evaluation is independent of the target
classifier that uses the selected subset of features in the subsequent classification of
independent datasets. Rather, a generic error estimation function can be used to compute
the cost function value that guides the ranking of the individual features or the search for
an ‘optimal’ subset in the feature space. Examples of filter-based feature selection
techniques are described in [16, 28, 52, 24]. On the other hand, the wrapper-based
approach determines the fitness of an examined feature subset by referring the subset to
the target classifier to get a feedback in the form of an estimation of the classification
error rate that will result when the examined subset underlies the design of the target
classifier. Examples of wrapper-based feature selection techniques are described in [8,
26]. The wrapper approach usually enables the selection of feature subsets that leads to
higher classification accuracy than the filter approach. However, the computational
requirement for evaluating the discriminatory capability (i.e. the cost function value) of
each examined subset by the target classifier makes the wrapper-based methods more
computationally intensive than the filter-based methods. The filter-based feature selection
methods are typically faster than wrapper-based methods. Figure 2.5 depicts the concept
of the filter-based and wrapper-based feature selection techniques. The hybrid-based
feature selection techniques combine the strengths of the other two approaches. An

example of an hybrid-based feature selection technique is described in [9].

CHAPTER 2. BACKGROUND AND RELATED WORK. 23

In this thesis, I focus on wrapper-based approach for designing feature selection
techniques because of the high classification accuracy requirement in the processing of

biomedical datasets for diagnostic and prognostic purposes.

Guyon and Elisseeff [15] group feature selection techniques into two broad
categories based on the underlying search or ranking algorithm: feature ranking
techniques and feature subset selection techniques. Feature ranking techniques order the
features in the feature space according to a relevance criterion such as covariance, and
select a subset from the ordered features. Kira and Rendell [24] describe a simple feature
ranking technique. The technique scores each feature in the original feature set using a
ranking criterion and selects the first k features having the highest scores as the ‘optimal’
feature subset, where k is the cardinality of the desired subset. A primary drawback of the

feature ranking techniques with respect to classifier design is: a combination of the k

CHAPTER 2. BACKGROUND AND RELATED WORK 24

highest ranked features is not necessarily the optimal or near-optimal subset of features
that can most enhance the classifier’s performance.

Given sufficient computational time, feature subset selection techniques such as
in [32, 42, 43, 45] implicitly examine all the feature subsets and select the subset having
the ‘best’ cost function evaluation as ‘optimal’. These techniques guarantee finding the
optimal feature subset with respect to the estimation of the target classifier performance.
However, the computational requirements (time and resources) of the techniques are very
intensive and may be impracticable when applied to large-scale feature selection
problems. Besides, the techniques are usually based on assumptions that are not always
true in practice. For instance, the branch and bound-based feature selection techniques
[32, 42, 43] require that the cost function be monotonic on the subset of features; i.e.
adding a new feature from the original feature set to a current feature subset must result
in a better optimization of the cost function.

To solve the feature selection problem in a practical way, some other feature
subset selection techniques intelligently examine some of the possible subset of features
and select a subset having the ‘best’ cost function evaluation amongst all the examined
subsets as the ‘optimal’ subset. Although these techniques do not guarantee finding the
optimal subset, they can find a subset that is almost as qualitative as the optimal subset in
terms of the discriminatory capability (i.e. near-optimal subset). These feature subset
selection techniques are described in the following.

Sequential forward selection (SES) and sequential backward selection (SBS) [1]
are based on a simple greedy-like deterministic heuristics. SFS starts by selecting an

empty subset as the current subset and sequentially adds a new feature (from the original

CHAPTER 2. BACKGROUND AND RELATED WORK 25

set) to the current subset. In each sequence, the added feature satisfies the condition of
combining with the current subset to give the 'best' evaluation of the cost function. The
selection process stops when a termination criterion is satisfied (e.g. when the addition of
a new feature no longer improves the cost function or when the cardinality of the subset
equals a set threshold) and the ‘optimal’ subset of the selection is the current subset prior
to termination. SBS is similar to SFS, but the selection process is reversed. SBS begins
with the entire original set as the current subset and sequentially removes a feature from
the current subset until a termination criterion is satisfied. SFS adds a single feature (and
SBS removes a single feature) at each search sequence; hence the discriminatory
dependencies that exist amongst some combinations of features are ignored during the
search. Stearns [45] proposes the plus-I-take-away-r method to address the shortcoming
of possible exclusion. At each sequence, the method adds [features to the current
selection using SFS and removes r features using SBS. The challenging task of this
method is: there is presently no theoretical means of choosing a predefined value for [
and r that enables finding the ‘optimal’ subset. Generalized sequential forward selection
(GSFS), a generic form of SFS, provides a flexible means of finding the ‘optimal’ subset
by permitting the addition of k features to the current selection at every search sequence.
Similarly, there are generic forms for SBS and plus-I/-take-away-r: generalized sequential
backward selection (GSBS) and generalized plus-I-take-away-r, respectively.

The aforementioned sequential search techniques do not permit backtracking; that
is, a search step cannot be reversed even when subsequent steps reveal the step as
impairing to finding the ‘optimal’ subset. To resolve the backtracking drawback, Pudil et

al. [36] propose the sequential floating forward selection (SFES) and the sequential

CHAPTER 2. BACKGROUND AND RELATED WORK 26

floating backward selection (SFBS). At each search sequence, the SFFS method adds to
the current selection, using SFS and performs some SBS steps as long as the cost function
evaluates to a better value. SFBS is similar to SFFS, but the progressive search sequence
is based on SBS. Generally, other than the SFS and SBS, the sequential search techniques
are computationally expensive for large-scale feature selection problems.

Siedlecki and Sklansky [38] propose a genetic algorithm (GA) approach to feature
subset selection. Nikulin et al [33] develop a GA-based technique for selecting the
‘optimal’ subset of block of features (regions) in biomedical MRS spectra. The technique
does not generate a stable subset of features, because of the highly probabilistic property
of genetic algorithms. Also, biomedical MRS spectra usually have evident correlation
amongst consecutive features; therefore, this technique may be inadequate for biomedical
data not having such correlation.

Zhang and Sun [53] develop a tabu search method for feature subset selection.
Tabu search is a search meta-heuristics that intelligently explores a given solution space
beyond local optimality by using an adaptive memory structure and a strategic responsive
exploration [13]. The adaptive memory, known as the tabu list, keeps track of solutions
that have been visited and should be avoided for a number of iterations; and the tabu
tenure determines how long a solution remains in the tabu list. During a tabu search
iteration, adjusting or varying a current solution can be used to derive a new set of
solutions; a function that maps a current solution onto a set of solutions derived from the
current solution is known as a neighbourhood. Zhang and Sun [53] performed a
comparative analysis of the tabu-search-based technique and other feature selection

techniques (SFS, GSFS, SBS, GSBS, plus-I-take-away-r, SFFS, SFBS and GA) using a

CHAPTER 2. BACKGROUND AND RELATED WORK 27

synthetic dataset. Although the result of the performance analysis shows tabu search as a
promising search heuristics for feature selection problem, the analysis is done using a
synthetic dataset and there may be a need to verify the claims using real-life datasets. I
examine the strength of the basic tabu search feature selection technique using
biomedical data and propose a new feature selection technique that can be adapted to
solve feature selection problem in most forms of biomedical data (e.g. MRS spectra,
microarrays, mass spectra). The proposed technique is based on a multilevel search

paradigm [48].

2.3.2 Evaluation criteria for feature selection techniques

To find the optimal subset, an imperative and challenging requirement is: determining an
appropriate criterion for evaluating the discriminatory capability of each examined subset
during the search process. The cost of misclassification when an examined subset
underlies a target classifier is a proper criterion for evaluating the fitness of the examined
subset. However, assessing the cost of misclassification is difficult and sometimes fully
unknown; therefore, this cost is often replaced with the classification error rate [18]. The
classification error rate can be derived mathematically or empirically. The exact
mathematical representations of the classification error rate are complex and simple
approximations are often used. Two of the common approximate mathematical methods
for representing the classification error rate are: the inter-intra class distance and the
Chernoff distance [18]. The inter-intra class distance is based on the Euclidean distances
that separate the classes from one another and the proximity of the feature vectors of the

samples in each class to the mean feature vector of the class. The inter-intra class distance

CHAPTER 2. BACKGROUND AND RELATED WORK 28

can be expressed as a ratio of the between class separability to the within-class
separability. The Chernoff distance (and other similar distance measures such as
Bhattacharyya distance) is based on the probability densities of the classes. While the
Chernoff distance and Bhattacharyya distance are mainly suitable for two-class
classification problems, the inter-intra class distance can be used as an evaluation
criterion for multi-class classification problems [18].

Empirical methods can also be used to estimate the classification error rate in
order to evaluate the examined feature subsets. The usual practice is to partition the entire
dataset into a training set and a test set (also known as a validation set or evaluation set).
An examined feature subset f defines a feature space wherein a classifier is designed and
validated. The classifier is designed using the training set and is subsequently validated
by classifying the samples in the test set; and the estimated classification error rate e is
expressed as the ratio of the number of the wrongly classified samples during validation
n, to the sample size of the test set V.

e(f) =nJN

For most biomedical datasets, the sample size of the available dataset is usually
small and using the same dataset as the training set as well as the test set can be
considered a viable option. However, this option poses the threat of overfitting the
designed classifier to the training set and the resulting classifier can perform poorly when
subsequently used to classify an independent test set. The possibility of overfitting can be
averted when evaluating the fitness of the examined feature subsets from datasets with
small sample size by using the cross-validation method and the leave-one-out method

[46]. For the cross-validation method, the available dataset D is randomly partitioned into

CHAPTER 2. BACKGROUND AND RELATED WORK 29

x equally sized subsets of samples (i.e. D = {D;, D;, D3, ... D;}). One of the subsets e.g.
Dy is withheld and the remaining x-1 subsets are used to train the classifier. The withheld
subset is subsequently used to validate the classifier and an estimated error rate over the
withheld subset ep; is computed. Similarly, the estimated etror rate ep; over each subset
D; in D is computed and the average of the estimated error rates can be used as an
evaluation criterion for the examined feature subsets. The leave-one-out method is a
particular case of the cross-validation method wherein the partitioning of the available
dataset is done such that the cardinality of the subset of samples is 1 (i.e. |[D] = 1).
Although the leave-one-out method is more computationally intensive than the cross-
validation method, the leave-one-out method is often used in practice since the bias in the
evaluation method is less for this method and even negligible when the sample size is

sufficiently large.

Chapter 3

Search Heuristics

Search heuristics are algorithms that explore a given solution space using
strategies that are primarily based on intuitive intelligence. A category of search
heuristics, local search and its improved versions such as tabu search, explores a given
solution space using strategies that are based on a neighbourhood function paradigm [35].
The formal proves of the search behaviours of these methods are presently not in
existence, rather the behaviours are described using empirical analysis.

In this chapter, I describe the underlying search heuristics (i.e. multilevel search)
for the newly presented feature selection technique. Multilevel search creates an
intelligent search framework for solving optimization problems by combining the
multilevel paradigm with other search methods such as local search, tabu search, and
genetic algorithm. The following sections describe the tabu search (i.e. the search method
used in the multilevel search presented in this research) and the multilevel paradigm. The
choice of tabu search as the underlying search method for the multilevel feature selection
technique is attributable to the comparative analysis in [53] that shows tabu search as a

promising tool for solving feature selection problem.

3.1 Tabu search

Most real-life optimization problems (that are common in applied science, business and
engineering) are difficult to solve and stiff challenges are often encountered when
classical methods are used to solve these problems. The innovation of meta-heuristics

such as tabu search is changing the approach to solve these problems. Tabu search is a

30

CHAPTER 3. SEARCH HEURISTICS 31

meta-heuristic that guides a local heuristics search method to explore a given solution
space beyond local optimality using an adaptive memory structure and a responsive
exploration strategy [13].

The local heuristics search component of tabu search is similar to the generic local
search method as described in [35]. The local heuristics search explores a solution space
by moving from a given solution to another solution in the neighbourhood of the given
solution according to some defined rules. Consider a combinatorial optimization problem
that involves minimizing a cost function Y(x) over a finite set of solutions X. For each
solution x € X, there is an associated subset N(x) < X such that the elements of N(x) can
be derived by performing a move operation on x. N(x) is known as the neighbourhood of
x and a move is a simple operation that can transform x into any of the solution in its
neighbourhood. To find a local optimal solution, the local heuristics search starts from an
initial solution xy as the current solution and at each iterative step i, a new solution is
chosen in the neighbourhood N(x;) of the current solution x;. The choice of a new solution
is usually guided by a selection strategy and the commonest is known as steepest descent
(i.e. the ‘best’ solution in the neighbourhood of the current solution becomes the next
current solution — the next current solution x;.; satisfies Y(x;.;) < Y(x) V x € N(x;)). The
iteration continues until a termination criterion is satisfied and the current solution after
the termination criterion is satisfied is the local optimal solution. For instance, the
termination criterion can be when all the solutions in the neighbourhood of a current
solution are worse than the current solution.

In most practical optimization problems, the trajectory of the cost function over the

set of solutions usually consists of several local optimums (Figure 3.1). Using the basic

CHAPTER 3. SEARCH HEURISTICS 32

local heuristics search to find the global optimum for such problems can be misleading
since the local search can be easily trapped in a local optimum. As shown in Figure 3.2, if
the search starts at point x, the local optimum x“is presented as the optimum solution
instead of x that cannot be reached if the search starts at x . Tabu search guides the local
heuristic search beyond local optimality by maintaining a selective history of the
encountered solutions during the search process and using the same to modify the

neighborhood of the current solution N(x).

The encountered solutions can be tracked using a short term memory structure and/or a
long term memory structure. For the short term tabu search, the modified neighborhood
N’(x) of a current solution is a subset of the original neighborhood N(x). Consider a list T
(tabu list) that contains » different solutions, that is T = {x;, x2, ..., X}, if T explicitly
contains solutions that have been encountered during the search process, then the
relationship amongst the original neighborhood N(x) and the modified neighborhood

N {x) of a current solution and the tabu list T is as follows:

CHAPTER 3. SEARCH HEURISTICS 33

N’(x) = NoO\T

That is, N”(x) consists of solutions of N(x) that are not elements of the tabu list. The
solutions on the tabu list T are usually labeled as rabu-active and the duration of a
solution on the tabu list is known as tabu tenure t; that is, a solution can remain tabu-
active for a period of r iterations other than when the solution satisfies an aspiration
criterion (i.e. rules that are designed to override the tabu list membership rule in order to
enable tabu search achieve the best performance). For the long term tabu search, the
modified neighborhood N “(x) can contain solutions that are ordinarily not included in the
original neighborhood N(x). Tabu strategies such as intensification and diversification
benefit from the long term memory structure. Intensification involves modifying the
choice rule to favor moves or combination of solutions that are historically found good.
Diversification drives the search process towards examining unvisited regions of the
search space in order to generate solutions that differ from the encountered solutions. I
refer the reader to [13] for a comprehensive description of the concepts of tabu search.

Tabu search has been successfully applied to solve several difficult real-life
optimization problems such as scheduling, location and allocation, logic and artificial
intelligence, telecommunications, routing, graph optimization, and general combinatorial
optimization. A comprehensive list and explanation of some of the applications of tabu
search to solve different optimization problems is available in [14, 17]. Recently, Zhang
and Sun [53] designed a tabu search to solve feature selection problem and compared its
performance with other feature selection techniques. The pseudocode of the tabu search

feature selection techniques is as follows:

CHAPTER 3. SEARCH HEURISTICS

Start
Define variables
F = Solution space
f = initial solution
f="optimal' solution
N(f) = the neighbourhood of solution f and N(f) Cc F
k = iteration counter

TL = tabu list

J(f) = cost function that evaluates the discriminatory capability of solution f

Initialize variables
Generate a starting solution f

Set the optimal solution as equal to initial solution Le. f = f
Set iteration counter as 1 i.e. k =1
Set tabu list as a null set; TL = @

Begin iteration

Generate a non-null set of neighbourhood solutions of f N(f) = {y, y2, ...}

// Neighbourhood search process

For each element of N(f")

compute the cost function value
compare the values and find the 'best' element in N(f)
End for
Set the 'best’ element as ¥ Le. y' € N{f) such that J(y') £J(y) ¥V ye N(f)).
Check if ¥ is tabu-active (i.e. if y € TL) and if ¥’ does not satisfy the aspiration criterion
if yes,
remove ¥ from N(f) i.e. N(f) = N(f) — {y}

search for another solution in N(f') next in optimality to current y" and repeat the check
if no,
Set y’ as current solution i.e. f =y’
ify' is better that fi.e. J(y') < J(f)
sety' as the current optimal solution i.e. f=y

Check if termination condition is satisfied

if no,
append the current solution to tabu list i.e. TL=TL U { f }
increment counter k = k +1
Iteration continues

if yes,

output f as optimal solution

Stop

The comparative analysis in [53] shows tabu search as a promising tool for solving

feature selection problem.

34

CHAPTER 3. SEARCH HEURISTICS 35

3.2 Multilevel paradigm

Multilevel paradigm or method (also known as multigrid) is an approach to solving
computational problem that was originally proposed in the field of numerical
approximation [5, 51]. The primary idea of this method is to strategically and gradually
reduce the size of a computational problem instance such that the solution of a reduced
form of the problem can be extended to derive a solution for the original problem
instance. Typically, to apply this approach, an original problem domain discretization is
coarsened recursively to generate coarser discretizations (levels) by increasing the grid
spacing at a given discretization with respect to the spacing at the next less coarse
discretization. Subsequently, a solution at a coarse discretization is improved upon (i.e.
refined) in the less coarse discretization until a final solution is derived for the original
discretization. The process of improving a solution along the coarse discretizations is
based on two primary ideas: nested iteration and coarse grid correction [6]. The nested
iteration involves a simple process: compute an approximate solution at a given coarse
discretization, interpolate and use the approximation as the initial guess for an
approximation at the next less coarse discretization. The process starts at the coarsest
discretization and continues across the levels with decreasing coarseness. The final
approximation is used as an improved initial guess for the fine-grain relaxation (i.e. the
computation of a final approximate solution at the original problem domain
discretization). The nested iteration scheme helps to improve convergence in the original
problem domain discretization by providing a good initial guess to the relaxation method.
In some domain problem discretization, the final approximate solution produced by the
nested iteration still has significant errors; the application of the coarse grid correction is

very useful in such case. In the coarse grid correction, an approximation is first computed

CHAPTER 3. SEARCH HEURISTICS 36

in the original discretization. The residual of the approximation is then projected onto the
next coarser discretization where an approximation of the associated error is computed by
solving for the error in the system of linear equations that relates the error with the
residual. The correction at the coarse discretization is interpolated to the fine
discretization and a new approximation is computed. The V-cycle scheme of multilevel
methods is based on the recursive application of the coarse grid correction.

The combination of the multilevel approach and search algorithms, often referred
to as multilevel search, is an adaptation of the multilevel paradigm to combinatorial
optimization problems. The multilevel search framework primarily consists of three
phases: coarsening, initial search, and refinement. Most often, the three phases occur
consecutively in the order stated above. The following describes the multilevel search in
relation to these phases. Consider a combinatorial optimization problem A and an original
problem instance of A denoted as Ag. As shown in Figure 3.3, during the coarsening
phase, a succession Ag A; Az, ..., Ais, A; of increasingly smaller (or coarser) problem
instances of A is generated by recursively reducing the number of decision variables in

accordance with the definition of the original problem instance.

CHAPTER 3. SEARCH HEURISTICS 37

During the initial search phase, which usually follows the coarsening phase, a
feasible solution s; of the smallest problem instance A; is computed. During the
refinement phase, the feasible solution s; of the coarsest problem instance A; is
interpolated onto and improved upon at the next less coarse problem instance A;;. The
refinement phase continues the interpolation and refinement of the solution from a coarse
problem instance to a less coarse problem instance until the values of the decision
variables of sy (the desired solution in the original problem instance Ap) can be derived by
interpolating a solution of the immediate less coarse problem instance A;. We refer the
reader to [23, 48, 49] for recent applications of multilevel search to different
combinatorial optimization problems.

The design and implementation of the coarsening, search, and refinement phases of
multilevel search algorithms vary with different combinatorial optimization problems.
There are no generic designs and implementations of the multilevel algorithm phases;
therefore, the need to specify the design and implementation of these phases for the
proposed multilevel feature selection is imperative. The description of the design,

implementation, and calibration of these phases is presented in the next chapter.

Chapter 4

Multilevel Search Algorithm for Feature
Selection Problem

This chapter describes the design of a search framework for the feature selection problem
using the multilevel search method. Particularly, I present the design requirements and
the calibration parameters of the multilevel search feature selection technique.

Consider a problem instance of the formulation (1) in section 1.2 above and a
biomedical dataset D = {S; S, S3 ... S¢} consisting of k& samples. Each sample is
represented as a feature vector such that the dimensions of the vector correspond to the
features in the original feature set F = {f}, f>, f3 ... fu}provided in the given dataset. For
each sample S; = (s}, 52, 53, ... sz) represented as a feature vector, the elements s, s2, 53, ...
sy are the coefficients of the dimensions of the feature vector and the values of these
coefficients are provided in the given dataset. The feature selection problem instance that
is considered in this context involves finding the ‘optimal’ feature subset f from F such
that the cardinality of f is predefined as m.

For programming purposes, the elements of F are represented using unique
positive integers that correspond to the position of each feature in the feature vectors
provided in the given dataset. f being a subset of F is also represented as a set of unique
positive integers such that each element represents a feature that is selected from F as a
member of the optimal subset. For instance if L = 10 and m = 3, the possible elements of
F and f can be represented as follows: F = {1,2,3,4,5,6,7,8,9, 10} and f = {3, 8§, 10}.

In this example, the features in each given feature vector are uniquely represented using

38

CHAPTER 4. MULTILEVEL SEARCH ALGORITHM FOR FEATURE SELECTION PROBLEM 39

the positive integer position 1, 2, 3, ..., 10 and the elements of f, i.e. 3, 8, 10 imply that
the third, eighth and tenth features in each feature vector constitute the optimal subset.
This representation is appropriate since the feature vectors in a given biomedical dataset
are ordered sets of feature values and the positions of the features are the same in each
feature vector. In a given feature space, the decision to select a feature to be a member of
a subset of the feature space is represented using an implicit Boolean variable x. Each
element f; of F has a corresponding Boolean variable x;, such that when the value of x; is
set to ‘1’ during a selection process, the corresponding integer value f; in F is included in
the desired subset; otherwise when set to ‘0, the corresponding integer value in F is not
included in the desired subset. The value of the decision variables are set by a decision
process and the underlying search metaheuristics (i.e. tabu search) performs the decision
process in the multilevel feature selection technique.

The first step in the design of the multilevel feature selection technique involves
identifying the coarsening strategy that can be used to recursively reduce the number of
features for the original problem instance in context. The second step involves identifying
an appropriate search method that finds a starting solution from the coarsest form of the
problem instance. The third step is to refine the starting solution across the reduced
problem instances from the coarsest to the least coarse instance. Figure 4.1 illustrates an

overview of the multilevel feature selection technique.

CHAPTER 4. MULTILEVEL SEARCH ALGORITHM FOR FEATURE SELECTION PROBLEM 40

As shown in Figure 4.1, the coarsening phase recursively generates coarser feature
subspaces using a parameter (reduction factor) that determines the coarseness of the
subspaces and a coarsening algorithm that determines the elements of the subspaces. The
search phase generates a solution of the coarsest feature subspace and the solution is used
to initialize the refinement phase of the technique. The refinement phase improves upon
the solution generated by the search phase across the subspaces with decreasing
coarseness. The following sections describe the details of these phases.

The multilevel search is a meta-heuristic method, therefore the calibration of
parameters such as the reduction factor, the number of levels in the hierarchy, and the
appropriate search method for the search and refinement phases, that define the design
configurations of the multilevel feature selection technique can be determined using
experimental results. I performed experiments for the different design phases of the

multilevel feature selection technique. In each experiment, [used a 2-class MRS dataset

CHAPTER 4. MULTILEVEL SEARCH ALGORITHM FOR FEATURE SELECTION PROBLEM 41

of biomedical origin from the National Research Council’s Institute for Biodiagnostics
(NRC-IBD). The dataset consists of 337 samples and a feature space dimensionality of
1500; and the cardinality of the desired ‘optimal subset’ is 10. For each complete
experiment run, the dataset is randomly partitioned into training and test sets in the ratio
2:1 respectively. The experiments performed in the design phases use only the training
set partitions and these are represented as training dataset instances in the tables and

charts presented in the following sections.

4.1 Coarsening phase

The coarsening phase recursively creates a hierarchy of reduced form of the original
problem instance. For the feature selection problem, this phase recursively generates a
hierarchy of coarse feature subspaces. Across the hierarchy, a coarse feature subspace
consists of features obtained from the immediate less coarse subspace and the
dimensionality of the subspaces reduces with increasing coarseness. Given an original
feature set Fy, the coarsening phase combines a coarsening strategy with parameters such
as the reduction factor r and the number of levels # to generate feature subspaces Fj, Fa,
.., Fna, Fy such that [Fy| < |[Fpa] < ... < [F2] < [F4| < |[Fo|, where n is an implicitly or
explicitly defined parameter that determines the number of levels in the hierarchy; and r,
the reduction factor, is the ratio of the dimensionality of a given feature subspace to the
dimensionality of the immediate coarser feature subspace i.e. r = [Fy| / [Fi.q.

The coarsening phase can reduce the dimensionality of the feature subspaces
using different coarsening approaches. We identify two coarsening approaches for the
feature selection problem: feature clustering and feature pre-setting. The first approach is

similar to the coarsening strategy applied to the graph-partitioning problem [19]. It

CHAPTER 4. MULTILEVEL SEARCH ALGORITHM FOR FEATURE SELECTION PROBLEM 42

involves merging a collection of decision variables together and then representing the
merged variables by a single variable that results from the mergence. This idea can be
used to combine features and generate feature subspaces as follows: for a given level i,
the feature subspace F; can be coarsened by aggregating groups of features in F; such that
an approximated form of each group represents a new feature in the immediate next
coarse feature subspace Fj;. For a given subspace, the groups of features that are
approximated to constitute the immediate coarser subspace can be created using feature
clustering algorithms that identify the possible correlations that may exist amongst the
features in the given subspace. For instance, for biomedical MRS spectra wherein evident
correlations exist amongst adjacent features, the groups can be created by selecting
consecutive features within predefined window(s) and a statistics (e.g. median, average)
of the features within the window can represent an approximation of each group.
Typically, the coarsened feature subspaces generated using the clustering approach are
synthetic, i.e. they consist of features that literally may not exist in the original feature
space. Besides, the characteristics of the features can vary for each subspace in the
multilevel hierarchy. Therefore, the task of relating the solutions generated from the
synthetic feature subspaces to the desired solution in the original problem instance and to
the subsequent interpretation of the desired solution can be quite challenging. This
challenge may not be prominent for biomedical datasets wherein evident correlation
exists amongst adjacent features, since the resulting clusters in the synthetic subspaces do
not necessarily compromise the meaning of the original features that constitute the
clusters. However, for datasets wherein such correlation may not exist, the clusters are

usually not an approximate representation of the constituent original features with respect

CHAPTER 4. MULTILEVEL SEARCH ALGORITHM FOR FEATURE SELECTION PROBLEM 43

to meaningful interpretation; therefore, the final near-optimal solution selected for such
dataset can impair diagnosis and prognosis. A means of addressing the challenge of
retaining the originality of features in the feature clustering coarsening approach requires
tracking the features in a subspace that are combined to form new features in the coarser
subspaces.

The second coarsening approach (feature pre-setting) generates a coarse feature
subspace Fj,; at level i+1 from the immediate less coarse subspace F; by excluding some
features from the feature subspace at level i. Once a feature is excluded at a given level,
the feature cannot be included in the solution space at the coarser levels. Selecting the
elements of the feature spaces at different levels in this manner recursively reduces the
dimensionality of the feature subspaces in the multilevel hierarchy and therefore reduces
the size of the solution space of the original optimization problem progressively. In the
present implementation, the hierarchical framework is encoded by maintaining an n x m
dimensional array such that m defines the number of levels in the hierarchy and » defines
the varying dimensionality of the feature spaces at each level in the hierarchy.

In order to create the coarse feature subspaces using the pre-setting approach,
there is need for a means of determining which features belong to each level. I identify
and investigate two strategies for this purpose: biased feature pre-setting and random
feature pre-setting. For a given feature subspace, the biased pre-setting strategy
determines the feature that belongs to the immediate coarser subspace by examining the
discriminatory capability of the features in the given subspace. The discriminatory
capability of the features can be determined by applying a feature selection technique to

explore the given feature subspace. Any appropriate feature selection technique can be

CHAPTER 4. MULTILEVEL SEARCH ALGORITHM FOR FEATURE SELECTION PROBLEM 44

used for this purpose; a simple feature ranking technique is used in the present
implementation. For a given feature subspace, the ranking technique sorts the features in
descending order of discriminatory capability and the first k features are selected, where k
is the cardinality of the next coarser subspace. In the random feature pre-setting strategy,
the features that belong to a coarser subspace that is next to a given subspace in the
hierarchy are selected randomly and recursively. A simple Gaussian random number
generator is used to guide the selection in the present implementation. I performed
experiments to investigate the effect of the two coarsening strategies on the performance
of the multilevel feature selection technique.

In the experiment, I use three instances of the multilevel algorithm that have the
same configurations except for the coarsening strategy to find the near-optimal subset for
10 training dataset instances. The coarsening phase of the multilevel algorithm instances
differs only in the coarsening strategy that underlies the algorithm; the first instance is
based on the feature clustering strategy, the second and third instances are based on the
two versions of the feature pre-setting strategy (i.e. random feature pre-setting and biased
feature pre-setting, respectively). For the three multilevel algorithm instances, I compare
the estimated values of the classification error rate - CER derived using leave-one-out

cross validation. Table 4.1 (a, b, and ¢) and Figure 4.2 show the results of the experiment.

Table 4.1a The classification error rate values for the multilevel feature selection technique with a feature clustering coarsening strategy

Different dataset 1 2 3 4 5 6 7 8 9 10
instances / same
dataset instances CER CER CER CER CER CER CER CER CER CER
1 0.0591133 0.0394089 0.0738916 0.0738916 0.0295567 0.0689655 0.0492611 0.0581133 0.08867 0.0689655
2 0.0492611 0.0492611 0.0738916 0.0788177 0.0394089 0.044335 0.0541872 0.0492611 0.0591133 0.0788177
3 0.0541872 0.0492611 0.0640394 0.0738916 0.0394089 0.0591133 0.044335 0.0541872 0.0541872 0.0689655
4 0.0640394 0.0591133 0.0640394 0.08867 0.0394089 0.0394089 0.0482611 0.0738916 0.0640394 0.0837438
5 0.0591133 0.0591133 0.0541872 0.0935961 0.0394089 0.0541872 0.0492611 0.0591133 0.0492611 0.0689655
Average 0.05714 0.05123 0.06601 0.08177 0.03744 0.0532 0.04926 0.05911 0.06305 0.07389

Average objective function value = 0.05921 Standard Deviation = + 0.01275

CHAPTER 4. MULTILEVEL SEARCH ALGORITHM FOR FEATURE SELECTION PROBLEM 45

Table 4.1b The classification error rate values for the multilevel feature selection technique with a random feature pre-setting coarsening
strategy

Different dataset 1 2 3 4 5 6 7 8 9 10
instances / same
dataset instances ~ CER CER CER CER CER CER CER CER CER CER
1 0.0541872 0.0492611 0.0689655 0.0738916 0.0344828 0.0689655 0.0492611 0.0492611 0.044335 0.0837438
2 0.0591133 0.0394089 0.0344828 0.0837438 0.0344828 0.0591133 0.0394089 0.0640394 0.0541872 0.0738916
3 0.0492611 0.0394089 0.0689655 0.0935961 0.044335 0.0591133 0.0541872 0.0689655 0.0689655 0.0738916
4 0.0738916 0.0492611 0.0541872 0.0985222 0.0394089 0.0738916 0.0541872 0.0738916 0.0591133 0.0640394
5 0.0492611 0.0492611 0.0541872 0.0935961 0.0492611 0.0640394 0.044335 0.0640394 0.0788177 0.0640394
Average 0.05714 0.04532 0.05616 0.08867 0.04039 0.06502 0.04828 0.06404 0.06108 0.07192

Average objective function value = 0.05980 Standard Deviation = + 0.01401

Table 4.1¢ The classification error rate values for the multilevel feature selection technique with a biased variable pre-setting coarsening
strategy

Different dataset 1 2 3 4 5 6 7 8 9 10
instances / same
dataset instances ~ CER CER CER CER CER CER CER CER CER CER
1 0.0591133 0.0541872 0.0640394 0.0837438 0.0541872 0.0640394 0.0689655 0.0837438 0.0689655 0.0640394
2 0.0541872 0.0640394 0.0837438 0.0640394 0.044335 0.0640394 0.0295567 0.0541872 0.0689655 0.0837438
3 0.0591133 0.044335 0.0541872 0.0788177 0.044335 0.0541872 0.0541872 0.0738916 0.0591133 0.0689655
4 0.0541872 0.0689655 0.0689655 0.0738916 0.0295567 0.0591133 0.0591133 0.0591133 0.0738916 0.0640394
5 0.0541872 0.044335 0.0738916 0.0837438 0.0344828 0.0591133 0.0394089 0.0591133 0.0591133 0.0591133
Average 0.05616 0.05517 0.06897 0.07685 0.04138 0.0601 0.05025 0.06601 0.06601 0.06798

Average objective function value = 0.06089 Standard Deviation = + 0.01039

0.1

0.09 -

0.08

0.07

0.06 -

i

0.05 - E —F-—~Random variable pre-setting

| . . .
0.04] Biased variable pre-setting

0.03 -

0.02 -

0.01 4

Classification error rate values for near-optimal subset

1 2 3 4 5 6 7 8 9 10

Training dataset instances

CHAPTER 4. MULTILEVEL SEARCH ALGORITHM FOR FEATURE SELECTION PROBLEM 46

As shown in Figure 4.2, varying the coarsening strategies using the afore-
mentioned strategies does not have obvious influences on the overall performance of the
multilevel feature selection technique. However, Table 4.1(a, b and c) show that the
average estimated classification error rate (0.05921) and the standard deviation (*
0.01275) over the 10 dataset instances are least for the feature clustering strategy. Also,
the random pre-setting strategy has a lower average estimated error rate (0.05980) but a
higher standard deviation (+ 0.01401) than the biased pre-setting strategy (0.06089 =
0.01039). The clustering strategy and the biased pre-setting strategy require more
computational resource than the random pre-setting strategy. The clustering strategy
requires additional computing resource to track the features that are combined to
constitute a coarser subspace at each level; and the biased pre-setting strategy requires
additional computing resource to determine the features that are selected from a coarse
subspace to a coarser subspace. Therefore, the computational cost of the multilevel
feature selection technique is higher when based on the clustering coarsening or the
biased pre-setting approach than when based on the random pre-setting coarsening
approach. I use the random pre-setting coarsening strategy in present implementations of
the multilevel feature selection technique, since this strategy requires the least
computation cost and its influence on the multilevel feature selection technique is highly
competitive when compared with the other strategies.

Besides the coarsening strategy, another important parameter in the coarsening
phase is the reduction factor (i.e. r = [Fj| / [Fi|). The reduction factor can be predefined
explicitly as a constant value when the coarsening is done using feature pre-setting

strategy. The reduction factor can also be defined implicitly as the average window size

CHAPTER 4. MULTILEVEL SEARCH ALGORITHM FOR FEATURE SELECTION PROBLEM 47

when the coarsening is done using a clustering strategy. Presently, the appropriate value
of the reduction factor for a given problem instance cannot be determined theoretically. I
perform experiments to determine an appropriate value for the reduction factor for a
given problem instance. In the experiment, I use similar configurations (except for the
value of the reduction factor that varies with each instance) of the multilevel feature
selection algorithm to find the near-optimal subset for the same biomedical datasets. The
dimensionality of the original feature space of the biomedical datasets is 1500 and the
number of levels in the multilevel algorithm instances is set to 3. I compare the estimated
values of the classification error rate — CER using leave-one-out cross validation for the
multilevel algorithm instances with the reduction factor value set to 2, 3, 4, 5, and 6.
Table 4.2a, b, ¢ and Figure 4.3 show the results of the experiment. In Figure 4.3, the
objective function value for the near-optimal subset selected using the different

multilevel algorithm instances is plotted against 10 training set instances.

Table 4.2a classification error rate values for the multileve! feature selection technique with a reduction factor of 2

Different dataset 1 2 3 4 5 6 7 8 9 10

instances / same
dataset instances CER CER CER CER CER CER CER CER CER CER

0.0591133 0.0689655 0.0689655 0.0492611 0.0492611 0.0394089 0.0541872 0.1034483 0.0837438 0.0640394
0.0541872 0.0541872 0.0394089 0.0591133 0.0541872 0.0394089 0.0689655 0.0935961 0.0689655 0.0591133
0.0738916 0.0591133 0.0344828 0.0541872 0.0344828 0.0394089 0.0738916 0.0689655 0.0837438 0.0580186
0.0541872 0.0541872 0.0541872 0.0591133 0.0541872 0.0492611 0.0591133 0.0738916 0.0738916 0.0591133
5 0.0640394 0.0492611 0.0640394 0.0591133 0.0394089 0.044335 0.0591133 0.1034483 0.0689655 0.0613027

AW N -

Average 0.0610837 0.0571429 0.0522168 0.0561576 0.0463054 0.0423645 0.0630542 0.08867 0.0758621 0.0603175

Average objective function value = 0.06032 Standard Deviation = x 0.01360

CHAPTER 4. MULTILEVEL SEARCH ALGORITHM FOR FEATURE SELECTION PROBLEM

Table 4.2b The classification error rate values for the multilevel feature selection technique with a reduction factor of 3

48

Different dataset 1 2 3 4 5 6 7 8 9 10
instances / same
dataset instances = CER CER CER CER CER CER CER CER CER CER
1 0.0541872 0.0541872 0.0541872 0.0591133 0.0591133 0.0344828 0.0640394 0.08867 0.0788177 0.0607553
2 0.0492611 0.0591133 0.0344828 0.044335 0.0738916 0.0334089 0.0591133 0.0689655 0.0640394 0.0547345
3 0.0541872 0.0640394 0.044335 0.0640394 0.0344828 0.0344828 0.0492611 0.0788177 0.0738916 0.0552819
4 0.0492611 0.0640394 0.0394089 0.0492611 0.0394089 0.0492611 0.0689655 0.0738916 0.08867 0.0580186
5 0.0689655 0.0640394 0.0591133 0.0689655 0.0344828 0.044335 0.0689655 0.08867 0.0640394 0.0623974
Average 0.0551724 0.0610837 0.0463054 0.0571429 0.0482759 0.0403941 0.062069 0.079803 0.0738916 0.0582375
Average objective function value = 0.05824 Standard Deviation = + 0.01203
Table 4.2¢ The classification error rate values for the multilevel feature selection technique with a reduction factor of 4
Different dataset 1 2 3 4 5 6 7 8 9 10
instances / same
dataset instances ~ CER CER CER CER CER CER CER CER CER CER
1 0.0640394 0.08867 0.0738916 0.0640394 0.0541872 0.0591133 0.0837438 0.0935961 0.08867 0.074439
2 0.0640394 0.0738916 0.0689655 0.0689655 0.0640394 0.044335 0.0738916 0.0935961 0.0738916 0.0695129
3 0.0689655 0.0738916 0.0640394 0.0640394 0.0738916 0.0492611 0.0689655 0.0788177 0.08867 0.0700602
4 0.0689655 0.0738916 0.0591133 0.0788177 0.044335 0.044335 0.0689655 0.0837438 0.0935961 0.0684182
5 0.0689655 0.0788177 0.0591133 0.0738916 0.0541872 0.0541872 0.0788177 0.0985222 0.1133005 0.0755337
Average 0.0669951 0.0778325 0.0650246 0.0699507 0.0581281 0.0502463 0.0748768 0.0896552 0.0916256 0.0715928
Average objective function value = 0.07159 Standard Deviation = + 0.01283
Table 4.2d The classification error rate values for the multilevel feature selection technique with a reduction factor of 5
Different dataset 1 2 3 4 5 6 7 8 9 10
instances / same
dataset instances =~ CER CER CER CER CER CER CER CER CER CER
1 0.0640394 0.0738916 0.0837438 0.0788177 0.0541872 0.0492611 0.0591133 0.08867 0.0788177 0.0700602
2 0.0640394 0.0788177 0.0689655 0.0689655 0.0738916 0.0541872 0.0788177 0.0985222 0.08867 0.0749863
3 0.0591133 0.0640394 0.0738916 0.0689655 0.0788177 0.0591133 0.0788177 0.0935961 0.0738916 0.0722496
4 0.0689655 0.0689655 0.0640394 0.0591133 0.0541872 0.0541872 0.0689655 0.0837438 0.0837438 0.0673235
5 0.0640394 0.0788177 0.0640394 0.0640394 0.0689655 0.0591133 0.0837438 0.0788177 0.1034483 0.0738916
Average 0.0640394 0.0729064 0.070936 0.0679803 0.0660099 0.0551724 0.0738916 0.0886699 0.0857143 0.0717022
Average objective function value = 0.07170 Standard Deviation = + 0.00983
Table 4.2e The classification error rate values for the multitevel feature selection technique with a reduction factor of 6
Different dataset 1 2 3 4 5 6 7 8 9 10
instances / same
dataset instances CER CER CER CER CER CER CER CER CER CER
1 0.0689655 0.0738916 0.0394089 0.0788177 0.0591133 0.0591133 0.0788177 0.0788177 0.0788177 0.0684182
2 0.0689655 0.0689655 0.0640394 0.08867 0.0591133 0.0689655 0.0788177 0.0985222 0.0837438 0.0755337
3 0.0640394 0.0738916 0.0689655 0.0541872 0.0492611 0.0640394 0.0788177 0.0985222 0.0788177 0.0700602
4 0.0689655 0.0837438 0.0640394 0.0591133 0.044335 0.044335 0.0640394 0.0837438 0.0689655 0.0645868
5 0.0738916 0.08867 0.0689655 0.0738916 0.0837438 0.0591133 0.0837438 0.0935961 0.0788177 0.0782704
Average 0.0689655 0.0778325 0.0610837 0.070936 0.0591133 0.0591133 0.0768473 0.0906404 0.0778325 0.0713738

Average objective function value = 0.07137 Standard Deviation = + 0.00998

CHAPTER 4. MULTILEVEL SEARCH ALGORITHM FOR FEATURE SELECTION PROBLEM 49

0.1
0.09
2 008
3
[}
E
E o007
Q.
°
8
S 0.06 -
5
5 005 |——RFof 2|
2 |~ RF of 3 |
= 004 | RF of 4
® | RF of 5
IS |
£ 003 |—¥—RFof6
8
:‘§
8 002
[&]
0.01 -
0

1 2 3 4 5 6 7 8 9 10

Training dataset instances

As shown in Figure 4.3, with reduction factor values of 2 and 3, the multilevel feature
selection algorithm consistently finds near-optimal subsets having lower average error
rate than for the other reduction factor values (i.e. 4, 5 and 6). Using the empirical results
shown above, a reduction factor that coarsens a subspace by 30-50% can be
recommended for similar problem domain instances. This recommendation agrees with
the reduction factor of 2 that is used in most configurations of the multilevel search
algorithm for solving the graph partitioning problem. A reduction factor of 3 is used in
the present implementations of the multilevel feature selection algorithm.

The number of levels in the multilevel hierarchy is another important parameter
that can influence the performance of the multilevel feature selection technique. This

parameter can be explicitly predefined based on empirical inferences or implicitly

CHAPTER 4. MULTILEVEL SEARCH ALGORITHM FOR FEATURE SELECTION PROBLEM 50

defined as a function of other parameters such as the reduction factor and the
dimensionality of the original problem instance. I investigate the effect of the number of
hierarchical levels on the performance of the multilevel feature selection technique using
experiments that compare different instances of the technique having varying number of
levels while the other parameters of the technique are constant. Similar caliberation
experiments are performed using different instances of the multilevel feature selection
algorithm having the number of levels set to 2, 3, 4, 5, and 6 while the other
configurations remains constant. Table 4.3 (a, b, ¢, d, and e) and Figure 4.4 show the

results of the experiment.

Table 4.3a The classification error rate values for the multilevel feature selection technique with 2 levels

Different 1 2 3 4 5 6 7 8 9 10
dataset
instances /
same CER CER CER CER CER CER CER CER CER CER
dataset
instances
1 0.0837438 0.0738916 0.0689655 0.0837438 0.0591133 0.0689655 0.0738916 0.0640384 0.0738916 0.0788177
2 0.0492611 0.0640394 0.0837438 0.0591133 0.0541872 0.0738916 0.0689655 0.0689655 0.0591133 0.0738916
3 0.0591133 0.0788177 0.0788177 0.0492611 0.0640394 0.0640394 0.044335 0.0640394 0.0738916 0.0689655
4 0.0738916 0.0788177 0.0738916 0.0738916 0.0492611 0.0591133 0.0591133 0.0541872 0.0640394 0.0788177
5 0.0738916 0.0738916 0.0689655 0.0788177 0.0640394 0.0492611 0.0689655 0.0640394 0.0541872 0.0738916

Average 0.06798 0.07389 0.07488 0.06897 0.05813 0.06305 0.06305 0.06305 0.06502 0.07488

Average objective function value = 0.06728 Standard Deviation = + 0.00582

Table 4.3b The classification error rate values for the multilevel feature selection technique with 3 levels

Different 1 2 3 4 5 6 7 8 9 10
dataset

instances /
same CER CER CER CER CER CER CER CER CER CER
dataset

instances

1 0.0640394 0.0640394 0.0738916 0.0689655 0.0738916 0.0541872 0.0640394 0.0689655 0.0541872 0.0788177
2 0.0689655 0.0738916 0.0788177 0.0689655 0.0689655 0.0591133 0.0738916 0.0689655 0.0640394 0.0738916
3 0.0541872 0.0689655 0.0837438 0.0640394 0.0640394 0.0492611 0.0591133 0.0492611 0.0541872 0.0788177
4 0.0689655 0.0738916 0.0738916 0.0541872 0.044335 0.0591133 0.0738916 0.0591133 0.0689655 0.0738916
5 0.0541872 0.0738916 0.0689655 0.0591133 0.0591133 0.0591133 0.0541872 0.0541872 0.0738916 0.0837438

Average 0.06207 0.07094 0.07586 0.06305 0.06207 0.05616 0.06502 0.0601 0.06305 0.07783

Average objective function value = 0.06562 Standard Deviation = + 0.00700

CHAPTER 4. MULTILEVEL SEARCH ALGORITHM FOR FEATURE SELECTION PROBLEM 51

Table 4.3c The classification error rate values for the multilevel feature selection technique with 4 levels

Different 1 2 3 4 5 6 7 8 9 10
dataset
instances /
same CER CER CER CER CER CER CER CER CER CER
dataset
instances
1 0.0689655 0.0591133 0.0738916 0.0837438 0.0689655 0.0541872 0.0591133 0.0541872 0.0738916 0.0788177
2 0.0541872 0.0541872 0.0837438 0.0738916 0.0541872 0.0492611 0.0689655 0.0689655 0.0788177 0.0738916
3 0.0591133 0.08867 0.0837438 0.0492611 0.0541872 0.0541872 0.0689655 0.08867 0.0591133 0.0837438
4 0.0738916 0.0640394 0.0788177 0.0689655 0.0591133 0.0738916 0.0788177 0.0591133 0.0640394 0.0837438

5 0.0492611 0.0541872 0.0689655 0.0640394 0.0541872 0.0689655 0.0541872

0.0689655 0.0640394 0.0738916

Average 0.06108 0.06404 0.07783 0.06798 0.05813 0.0601 0.06601

0.06798 0.06798 0.07882

Average objective function value = 0.06700 Standard Deviation = + 0.00692

Table 4.3d The classification error rate values for the muttilevel feature selection technique with 5 levels

Different 1 2 3 4 5 6 7 8 9 10

dataset

instances /

same CER CER CER CER CER CER CER CER CER CER

dataset

instances
1 0.0591133 0.0640394 0.08867 0.0640394 0.0689655 0.0689655 0.0689655 0.0640394 0.0689655 0.08867
2 0.0541872 0.0738916 0.0738916 0.08867 0.044335 0.0591133 0.0788177 0.0689655 0.0541872 0.08867
3 0.0640394 0.0640394 0.0788177 0.0492611 0.0541872 0.0689655 0.0492611 0.0492611 0.0837438 0.0935961
4 0.0689655 0.0788177 0.0837438 0.0738916 0.0738916 0.0591133 0.0591133 0.0394089 0.08867 0.08867
5 0.0788177 0.0591133 0.0837438 0.0640394 0.0492611 0.0689655 0.0738916 0.0492611 0.0640394 0.0837438

Average 0.06502 0.06798 0.08177 0.06798 0.05813 0.06502 0.06601

0.05419 0.07192 0.08867

Average objective function value = 0.06867 Standard Deviation = + 0.01021

Table 4.3e The classification error rate values for the multilevel feature selection technique with 6 levels

Different 1 2 3 4 5 6 7 8 9 10
dataset
instances /
same CER CER CER CER CER CER CER CER CER CER
dataset
instances
1 0.0788177 0.0788177 0.0738916 0.0640394 0.0591133 0.0640394 0.0640394 0.0689655 0.0788177 0.0738916
2 0.0492611 0.0689655 0.0738916 0.0738916 0.0640394 0.0640394 0.0689655 0.0492611 0.0738916 0.0837438
3 0.0492611 0.0591133 0.0738916 0.0640394 0.0738916 0.0591133 0.0640394 0.0788177 0.0689655 0.08867
4

0.0541872 0.0591133 0.0738916 0.0689655 0.0640394 0.0591133 0.0591133
5 0.0837438 0.0788177 0.0738916 0.0591133 0.044335 0.0689655 0.0788177

0.0640394 0.0591133 0.0837438
0.0591133 0.0788177 0.0935961

Average 0.06305 0.06897 0.07389 0.06601 0.06108 0.06305 0.067

0.06404 0.07192 0.08473

Average objective function value = 0.06837 Standard Deviation = + 0.007047

CHAPTER 4. MULTILEVEL SEARCH ALGORITHM FOR FEATURE SELECTION PROBLEM 52

0.1

0.03 -

0.09
% 0.08 -
3
(2]
K]
£ 007
a
Q
&
g 006 -
3
E L ‘
T 0.05 - g—-%—-—&LeveIs
2 4-Levels |
© |
‘9‘ 0.04 - 5-Levels }
o | —¥—6-Levels |
S T
o
o
!‘%
©
o

0.02

0.01

1 » 2 | 3 ‘ 4 | 5 | 6 | 7 ‘ 8 | 9 | 10
Training dataset instances

From Figure 4.4, varying the number of levels in the multilevel hierarchy seem not to
show an obvious trend in the behaviour of the multilevel feature selection algorithm.
Moreso, the number of levels that is possible in the hierarchy is implicitly restricted by
the size of the feature selection problem instance and the value of the reduction factor,
since the dimensionality of the feature subspaces at any level in the hierarchy cannot be
less than the cardinality of the desired optimal subset. However, Table 4.3 (a, b, c, d, and
e) shows that setting the number of levels to 3 or 4 can be appropriate for the given
problem instance since the algorithm maintains a competitive classification error rate and

stability for these values.

4.2 Search phase

The search phase involves finding a solution of the smallest problem instance. For

the feature selection problem, the search phase finds a solution for the coarsest feature

CHAPTER 4. MULTILEVEL SEARCH ALGORITHM FOR FEATURE SELECTION PROBLEM 53

subspace. The solution generated by the search phase is presented to the refinement phase
to be improved upon. This solution can be obtained using either an exact or an
approximate search method. Exact searches yield optimal solutions for the given feature
subspace, but there are strong limitations on the dimensionality of feature subspace that
can be solved feasibly. To apply an exact search, the coarsening process has to be
performed until a feature subspace with small dimensionality is obtained. In the context
of the feature selection problem, there is need to consider the relevance of finding the
optimal solution for the coarsest feature subspace to the quality of the desired near-
optimal subset for the original feature space. Using a wrapper-based feature selection
technique, a solution is usually optimal with respect to a target classifier. That is, the
optimal solution can vary for different classifiers. Therefore, using an approximate
solution at the coarsest feature subspace may not necessarily impair the quality of the
near-optimal subset desired at the original feature space. Heuristic methods provide
approximate solutions that are adequate irrespective of the dimensionality of the original
feature space.

The search phase can be designed such that a single ‘best’ solution or a set of elite
solutions is produced at the end of the phase, and the refinement phase can be initiated
from the single ‘best’ solution or from the set of elite solutions. When a set of elite
solutions is found, the refinement phase can be performed over the elite set by
propagating and improving on the set of solutions across the levels. The set of elite
solutions can be obtained in different ways. An approach is to search the coarsest level
using different search methods and keeping the best solution obtained by each of the

search methods. Another approach is to generate the set of elite solutions by randomly

CHAPTER 4. MULTILEVEL SEARCH ALGORITHM FOR FEATURE SELECTION PROBLEM 54

selecting k different initial solutions that are used to initiate different instances of the
same search method. Also, the elite set can be generated using k best subsets found by a
single search method. However, there is a potential constraint on working with a set of
elite solutions: the additional computational cost required to compute the objective
function more often may not worth the effort in terms of the quality of the final near-
optimal solution. I perform experiments to investigate any influence on the performance
of the multilevel feature selection technique when a single solution or an elite solution set
is generated by the search phase. In the experiment, I configure two instances of the
multilevel feature selection such that the search phase for one instance generates a single
solution while the other instance generates a set of elite solutions at the coarsest feature
subspace. The search phase generates the elite solution set by randomly selecting k initial
solution that are used to initialize k instances of a search method (i.e. tabu search) and the
solution from the instances constitute the elite set. The search phase uses the same search
method to find the single solution and the solutions in the elite set. Any other search
method applicable to feature selection problem can be used to find the solution(s) in the
search phase. Allocating equivalent amount of computation resource to both search phase
configurations, I compare the estimated values of the classification error rate using the
leave-one-out cross validation for the multilevel algorithm instances having the two
search phase configurations: using a single solution and an elite solution set. Table 4.4a,

b and Figure 4.5 show the results of the experiments.

CHAPTER 4. MULTILEVEL SEARCH ALGORITHM FOR FEATURE SELECTION PROBLEM 55

Different 1 2 3 4 5 6 7 8 9 10
dataset
instances /
instances
1 0.0591133 0.0541872 0.0492611 0.0344828 0.0591133 0.044335 0.0591133 0.0295567 0.0394089 0.0591133
2 0.0334089 0.0640394 0.0541872 0.03940839 0.0591133 0.0640394 0.0591133 0.0295567 0.0295567 0.0689655
3 0.044335 0.0591133 0.0492611 0.0394089 0.0640394 0.0541872 0.0591133 0.044335 0.0344828 0.0591133
4 0.0541872 0.0541872 0.0492611 0.0394089 0.0492611 0.044335 0.0738916 0.0295567 0.0344828 0.0541872
5 0.0492611 0.0591133 0.0492611 0.0295567 0.0541872 0.0541872 0.0591133 0.0394089 0.0394089 0.0640394
Average 0.04926 0.05813 0.05025 0.03645 0.05714 0.05222 0.06207 0.03448 0.03547 0.06108
Average objective function value = 0.04966 Standard deviation = + 0.01067
Different 1 2 3 4 5 6 7 8 9 10
dataset
instances /
same dataset CER CER CER CER CER CER CER CER CER CER
instances
1 0.0492611 0.0591133 0.0541872 0.0344828 0.044335 0.0541872 0.0591133 0.0246305 0.0394089 0.0541872
2 0.0344828 0.0591133 0.044335 0.0344828 0.0541872 0.0591133 0.0591133 0.044335 0.044335 0.0640394
3 0.0492611 0.0591133 0.0492611 0.0295567 0.0541872 0.0591133 0.0689655 0.044335 0.0394089 0.0738916
4 0.044335 0.0591133 0.0492611 0.0344828 0.0492611 0.0541872 0.0640394 0.044335 0.044335 0.06403%4
5 0.0541872 0.0591133 0.0492611 0.0295567 0.0541872 0.0591133 0.0492611 0.0492611 0.0394089 0.0541872

Average 0.04631 0.05911 0.04926 0.03251 0.05123 0.05714 0.0601 0.04138 0.04138 0.06207

Average objective function value = 0.05005 Standard Deviation = + 0.00973

0.07

0.06

0.05

0.04

—e— Elite solution set |
0.03 —&— Single soluton l

0.02

0.01

Classification error rate value for near-optimal subse

1 2 3 4 5 6 7 8 9 10
Training dataset instances

CHAPTER 4. MULTILEVEL SEARCH ALGORITHM FOR FEATURE SELECTION PROBLEM 56

As shown in Figure 4.5, there is no apparent performance difference in the multilevel
feature selection technique when the search phase generates a single solution or a set of
elite solution that is used in the subsequent phases of the technique. However, Table 4.3a,
b show that the average estimated error rate over the 10 dataset instances is lower for the
search phase configuration that generates a single solution than for the search phase
configuration that generates an elite solution set. Also, the latter configuration generates
fairly more stable estimated error rate since the standard deviation over the 10 dataset
instances is lower. In the present implementations of the multilevel feature selection
technique, 1 use the search phase configuration that generates a single solution for

simplicity purposes.

4.3 Refinement phase

For the multilevel feature selection technique, the coarsening phase produces a
hierarchy of coarse feature subspaces such that the subspace at level i is (explicitly or
implicitly) a subset of the subspace at the next less coarse level i—1; the search phase
produces the starting solution(s), i.e. a solution(s) of the coarsest feature subspace; and
the refinement phase improves upon the starting solution(s) across the feature subspaces
in the hierarchy with decreasing coarseness. The refinement phase improves upon the
solutions(s) by interpolating the solutions(s) at a coarse level i onto the immediate less
coarse level i-1, and refining the projected solution in the less coarse subspace. The
interpolation and refining processes depend on how the features in the feature spaces are
generated in the coarsening phase. When the coarse feature subspace at level i in the
hierarchy consists of synthetic features generated from clusters of features from the next

less coarse subspace at level i-1, interpolating the solution at level i onto level i-1 can

CHAPTER 4. MULTILEVEL SEARCH ALGORITHM FOR FEATURE SELECTION PROBLEM 57

involve decomposing each synthetic feature that belongs to the solution at level i into the
constituent features at level i-1. To refine the solution, the features that result from the
projection can be combined literally to form a subset of features wherein an initial
solution can be selected and used to initiate the search heuristics over the subspace at
level i-1. I refer to the search heuristics that are used for the refinement processes as
refinement heuristics. When the coarse feature subspaces consist of original features that
are selected using the feature pre-setting startegies, the interpolation can simply consist of
using the ‘best’ solution (or solutions from the elite set) at level i as an initial solution for
the refinement heuristics at level i-1. Then once a solution has been interpolated from
level i, it can be improved upon by the refinement heuristics at level i—1. In the present
implementation of the multilevel feature selection technique, the later form of
interpolation is used since the coarsening is done using the random feature pre-setting
strategy.

Unlike the search phase, the set of heuristics that can be used in the refinement
phase is quite restricted. Search heuristics such as the greedy-like SFS, SBS, and their
variants cannot be used as refinement heuristics since these methods usually create the
'optimal’ feature subset from a sequence of addition or elimination of features from a
starting subset having a cardinality of 0 or L — the dimensionality of the original feature
space. In the present implementation of the multilevel feature selection technique, the
tabu search (as implemented in [53]) is used as the refinement heuristics.

To design the refinement phase of the multilevel feature selection technique, I
consider the following decisions: whether to interpolate and refine a single best solution

or a set of elite solutions across the levels; and whether to allocate a constant or varying

CHAPTER 4. MULTILEVEL SEARCH ALGORITHM FOR FEATURE SELECTION PROBLEM 58

amount of refinement resources. The first decision is guided by the results of the
experiments in the search phase (Table 4.4a, b and Figure 4.5 above) that investigate the
effect of using either a single solution or a set of elite solutions on the feature selection
algorithm. The results show that there is no apparent performance difference in the
multilevel feature selection technique when a single solution or an elite solution set is
generated by the search phase and improved upon accordingly by the refinement phase.
However, for the second decision, I investigate the effect of varying the allocation of the
refinement resource across the levels on the performance of the multilevel feature
selection algorithm. The refinement resource in this context refers to the cost of
computing the objective function values in order to determine the discriminatory
capability of an examined feature subset; and the allocation of the resource is based on
the number of times the objective function evaluates the examined feature subset at each
level during the refinement phase. Therefore, the allocation of resources directly relates
to the number of iterations of the refinement heuristics at each level. I performed
experiments to investigate three allocation possibilities: allocating equal amount of
resource to refine the solution(s) at each level (i.e. constant resource allocation);
increasing the amount of allocated resources with decreasing coarseness of the feature
subspaces across the levels; and decreasing the amount of allocated resource with
decreasing coarseness of the feature subspaces across the levels. The decrement or
increment of the resource allocation across the levels is based on a simple arithmetic
progression. The number of iterations for the level having the least amount of allocation
is set at a value (i.e. the basic number of iterations) and the subsequent levels are

increased progressively by a factor of the basic number of iterations. In the experiment, I

CHAPTER 4. MULTILEVEL SEARCH ALGORITHM FOR FEATURE SELECTION PROBLEM

59

create three instances of the multilevel feature selection algorithm such that each instance

is based on one of the allocation possibilities. I compare the classification error rate

derived using the leave-one-out cross validation for the three instances of the multilevel

feature selection algorithm. Table 4.5a, b, ¢ and Figure 4.6 show the effect of the three

refinement scenarios on the performance of the multilevel feature selection technique.

Table 4.5a The classification error rate values for the multilevel feature selection technique with increasing number of iterations as
coarseness decreases

Different dataset 1 2 3 4 5 6 7 8 9 10
instances / same
dataset instances CER CER CER CER CER CER CER CER CER CER
1 0.0640394 0.0837438 0.0689655 0.0837438 0.0738916 0.0985222 0.06403%4 0.0837438 0.0738916 0.0985222
2 0.0541872 0.0689655 0.0492611 0.0640394 0.0689655 0.0689655 0.0689655 0.0640394 0.0689655 0.0689655
3 0.0738916 0.0640394 0.0837438 0.0541872 0.0640394 0.0738916 0.0640394 0.0541872 0.0640394 0.0738916
4 0.0591133 0.0689655 0.0492611 0.0738916 0.0738916 0.0689655 0.0591133 0.0738916 0.0738916 0.0689655
5 0.0492611 0.0837438 0.0640394 0.0591133 0.0738916 0.0689655 0.0689655 0.0591133 0.0738916 0.0689655
Average 0.0600985 0.0738916 0.0630542 0.0669951 0.070936 0.0758621 0.0650246 0.0669951 0.070836 0.0758621

Average objective function value = 0.06897

Standard Deviation = + 0.00542

Table 4.5b The classification error rate values for the multilevel feature selection technique with decreasing number of iterations as
coarseness decreases

Different dataset 1 2 3 4 5 6 7 8 9 10
instances / same
dataset instances CER CER CER CER CER CER CER CER CER CER
1 0.0492611 0.0935961 0.0738916 0.0689655 0.0689655 0.0738916 0.0640394 0.0689655 0.0689655 0.0738916
2 0.0640394 0.1034483 0.044335 0.0640394 0.0738916 0.0837438 0.0591133 0.0640394 0.0738916 0.0837438
3 0.0640394 0.0591133 0.0689655 0.0640394 0.0591133 0.08867 0.0541872 0.0640394 0.0591133 0.08867
4 0.0837438 0.0788177 0.0738916 0.0591133 0.0935961 0.0788177 0.0640394 0.0591133 0.08935961 0.0788177
5 0.0492611 0.0689655 0.044335 0.0738916 0.0689655 0.08867 0.0591133 0.0738916 0.0689655 0.08867
Average 0.062069 0.0807882 0.0610837 0.0660099 0.0729064 0.0827586 0.0600985 0.0660099 0.0729064 0.0827586

Average objective function value = 0.07074

Standard Deviation = + 0.00898

Table 4.5¢ The classification error rate values for the multilevel feature selection technique with constant number of iterations as coarseness

decreases

Different dataset 1 2 3 4 5 6 7 8 9 10

instances / same

dataset instances CER CER CER CER CER CER CER CER CER CER
1 0.0738916 0.0788177 0.0788177 0.0788177 0.0689655 0.0788177 0.0738916 0.0788177 0.0689655 0.0788177
2 0.0492611 0.0837438 0.0788177 0.08867 0.0837438 0.0837438 0.0591133 0.08867 0.0837438 0.0837438
3 0.0738916 0.0935961 0.0788177 0.0689655 0.08867 0.0935961 0.0689655 0.0689655 0.08867 0.0935961
4 0.0541872 0.0985222 0.1034483 0.0837438 0.0738916 0.0935961 0.0788177 0.0837438 0.0738916 0.0935961
5 0.0591133 0.0738916 0.0837438 0.0738916 0.0788177 0.0738916 0.0788177 0.0738916 0.0788177 0.0738916

Average 0.062069 0.0857143 0.0847291 0.0788177 0.0788177 0.0847291 0.0719212 0.0788177 0.0788177 0.0847291

Average objective function value = 0.07892

Standard Deviation = + 0.00731

CHAPTER 4. MULTILEVEL SEARCH ALGORITHM FOR FEATURE SELECTION PROBLEM 60

0.09

0.08 -

0.07

0.06

0.05

0.04 | —@——Increasing iteration with

| decreasing coarseness |

} —i@— Decreasing iteration with 1

0.03 : decreasing coarseness |
l Constant iteration with |

i decreasing coarseness |

0.02

Classification error rate values for ‘optimal’ subset:

0.01 -

1 2 3 4 5 6 7 8 9 10
Training dataset instances

As shown in Figure 4.6, when the number of iterations across the levels is varied
(i.e. by decreasing or increasing), the multilevel feature selection algorithm finds subsets
with consistently less classification error than when a constant number of iteration is
maintained across the levels. This can be attributed to a more flexible exploration of the
hierarchical search framework that is derivable by implicitly allocating more resources to
the search method at levels where highly discriminatory subsets can be found. Besides,
the configuration of the multilevel feature selection technique wherein the number of
jiteration increases as the coarseness decreases across the levels enables an intensive
search in the subspaces with smaller dimensionality and a more diversified search in
subspaces with larger dimensionality. This can explain the reason for the relatively more
stable near-optimal subset generated by this configuration of the multilevel technique. In

the present implementation of the multilevel feature selection technique, the allocation of

CHAPTER 4. MULTILEVEL SEARCH ALGORITHM FOR FEATURE SELECTION PROBLEM 61

refinement resources increases as the coarseness of the subspaces decreases across the

levels.

Chapter 5

Experiments and Results

Generally, the evaluation of heuristics or meta-heuristics is based on empirical
analysis since there are presently no known theoretical methods for evaluating or
analysing these techniques. This chapter presents the empirical comparisons of the newly
presented multilevel feature selection technique with other feature selection techniques.
The following sections provide descriptions of the evaluation experiments and the
biomedical datasets used in the experiments, and a discussion of the results of the

experiments.

5.1 Experimental dataset

The dataset used in the experiments is a MRS dataset of biomedical origin from
the National Research Council’s Institute for Biodiagnostics (NRC-IBD). The dataset
consists of 337 labelled samples (175 in the class with label ‘1’ and 129 in the class with
label “27) with a feature space dimensionality of 1500 and the cardinality of the desired
optimal subset is set at 10. For each complete experiment run, the datasets is randomly
partitioned into training and test sets in the ratio 2:1 and with corresponding amount of
proportion from each class. That is the sample size of the training set is 203 (117 from
class ‘1’ and 86 from class ‘2’) and the sample size of the test set is 101 (58 from class
‘1> and 43 from class ‘2’). The a priori class labels are used as the basis for the
computation of the estimated classification error rates for the minimization objective

function values, and the classification accuracies. To minimize over-fitting, for each

62

CHAPTER 5. EXPERIMENTS AND RESULTS 63

training/test set dataset partition, the test set is independent of the training set and the test

set is used for the external cross-validation purposes.

5.2 Evaluation experiments

Using a synthetic dataset, Zhang and Sun [53] empirically compare the
performance of the basic tabu-search-based feature selection technique with other feature
selection techniques such as SFS, SBS, GSFS, GSBS, plus-I-take-away-r, SFES, SBES,
and GA. The result of the comparison shows that the SES and the SBS require the least
computational cost to obtain a solution (near-optimal feature subset), but these techniques
obtain solution with the worst quality in terms of the estimated error rate. On the other
hand, the tabu-search-based feature selection technique obtains better solutions than all
the other techniques using competitive amount of computational cost. These inferences
are used to set performance thresholds for the comparison experiments in this thesis.

Using a practical biomedical dataset (described in Section 5.1 above), I compare
the performance of the newly presented multilevel feature selection technique with the
tabu-search-based feature selection technique, the SFS technique, and a random feature
selection technique. The implementation of the multilevel feature selection technique is
based on the empirical recommendations for the calibration of the technique as presented
in Chapter 4 above. The coarsening phase of the technique is based on the random
variable pre-setting strategy with a reduction factor of 3 and the number of levels is also
set at 3; the search phase generates a single solution to be improved upon during the
refinement phase; and in the refinement phase, the allocation of the refinement resources
is increased as the coarseness of the subspaces decreases across the hierarchical levels.

The configuration of the tabu search method underlying the multilevel feature selection

CHAPTER 5. EXPERIMENTS AND RESULTS 64

technique and the tabu-search-based feature selection technique is based on the
recommendations in [53]. For the feature selection problem instance created by the
biomedical dataset in context, the tabu list size is set at 30, the neighbourhood candidate
list size is set at 100, and the initial solution is randomly selected based on a Gaussian
random number generator. The SFS technique is implemented as a deterministic greedy-
like method. The computational cost of this method is used as the upper limit of the
computational requirement for the other techniques. The random feature selection
technique simply evaluates the fitness of randomly selected feature subsets and the subset
having the best evaluation is considered as the near-optimal subset. This technique is
implemented to appraise any claims that the other feature selection techniques select
features purely based on probabilistic chances.

To provide a common basis for evaluating the examined feature selection
techniques, an equivalent amount of computational cost is assigned to each technique.
The computational cost is based on the number of times the objective function value is
computed in a complete run of each technique. For instance, the computational cost of the
SFS can be determined as follows: Given an original feature set F of cardinality L and the
cardinality of the desired near-optimal subset is m; the computational cost C of the SFS

technique is given as:

o[()l

For the feature selection problem instance in context, L = 1500 and m =10, therefore, C =
16445. A fairly less amount of computational cost (C = 15000) is allocated to the other
feature selection techniques. For the multilevel feature selection technique, the

computational cost is shared amongst the refinement heuristics according to the

CHAPTER 5. EXPERIMENTS AND RESULTS 65

implemented refinement option (i.e. increasing computational cost with decreasing
coarseness across the multilevel hierarchy). For the 3-level configuration of the
multilevel technique, 25 basic iterations is assigned to the coarsest subspace; the next less
coarse subspace is assigned 50 basic iterations; and the least subspace is assigned 75
basic iterations. For each coarse subspace, the neighbourhood size of the refinement
heuristics (tabu search) is set at 100 and this implies that the computational cost per basic
iteration is 100. Therefore the total computational cost C for the multilevel feature
selection technique is given as:
C =25*%100 + 50 *100 + 75*100 = 15000.

The computational cost that is derived by assigning 25 basic iterations to the coarsest
subspace is within the range of refinement resource allocation wherein over-fitting is less
likely to occur using the multilevel feature selection technique. As shown in figure 5.1
below, the classification error rate on independent test set begins to increase continually

when the number of basic iterations at the coarsest level is set at 35 and beyond.

0.165

0.16

0.155 -

Classification error rate

0.15

0.145 -

0.14

5 10 15 20 25 30 35 40 45

Number of Ilterations

CHAPTER 5. EXPERIMENTS AND RESULTS 66

That is, using the near-optimal feature subset selected by the multilevel technique as the
underlying feature space in the design of a classifier, the classification performance
degrades due to over-fitting when the computational cost assigned to the multilevel
technique is 21000 (i.e. C = 35%100 + 70*100 + 105*100 = 21000) and above.

For the tabu-search-based feature selection technique, the number of basic
iterations is set at 150; therefore the total computational cost C is also given as:

C = 150*100 = 15000.
For the random feature selection technique, the discriminatory capability of 15000
randomly selected subsets is examined and the optimal subset is the subset having the
‘best’ fitness or evaluation. Therefore, the computational cost for this technique is also
15000.

Besides, some of the examined techniques (multilevel feature selection, tabu-
search-based feature selection, and random feature selection) have random components.
Examples of the random components are: the random selection of subsets in the random
feature selection; the random generation of the initial solution and the random selection
of candidate set of solutions from the neighbourhood in the tabu search method
underlying the tabu-search-based and multilevel feature selection; and the random
coarsening of the feature subspaces in the multilevel feature selection. To normalize the
randomness in these techniques, the complete run of these techniques are repeated on the
same dataset instance for a number of times that is predefined by a randomness factor.
The average of the evaluation parameters (i.e. the minimization objective function values,
the classification accuracies on the training dataset instances, and the classification

accuracies on the independent test dataset instances) is obtained and analysed for the

CHAPTER 5. EXPERIMENTS AND RESULTS 67

evaluated feature selection techniques. The value of the randomness factor is set at 5 for
the experiments implemented in this thesis.

To establish a trend in the comparison of the evaluated feature selection
techniques, I perform the experiments on 10 randomly partitioned pairs of training and
test sets from the biomedical dataset in order to establish a trend in the evaluation results.
The evaluated techniques are implemented using Java 2 SDK Standard Edition version
1.4.2 on Microsoft Windows platform and the experiments are executed on Dell high
performance desktop (Pentium 4 CPU 3.00GHz, 1.00GB of RAM) and IBM servers. The

code listing of the implementation is presented in Appendix A.

5.3 Experimental results and discussions

The results of the experiments are shown in the following tables and figures
(Table 5.1, 5.2, and 5.3; and Figure 5.1, 5.2, and 5.3). Table 5.1a, b, c, d and Figure 5.1
compare the classification error rate values of the near-optimal subset selected by the
evaluated techniques; Table 5.2a, b, ¢, d and Figure 5.2 compare the training set
classification accuracies of a simple LDA classifier that is designed using the near-
optimal subsets selected by the evaluated techniques; and Table 5.3a, b, ¢, d and Figure
5.3 compare the test set classification accuracies of a simple LDA classifier that is

designed using the near-optimal subsets selected by the evaluated techniques.

Table 5.1a The classification error rate values for the multilevel feature selection technique

Different dataset 1 2 3 4 5 6 7 8 9 10

instances / same
dataset instances CER CER CER CER CER CER CER CER CER CER

0.044335 0.0591133 0.0640394 0.0689655 0.0541872 0.0492611 0.0689655 0.0591133 0.0689655 0.0640394
0.0492611 0.0541872 0.0492611 0.0788177 0.0492611 0.0591133 0.0591133 0.0492611 0.0541872 0.0492611
0.0591133 0.0591133 0.0541872 0.0640394 0.0689655 0.0492611 0.0591133 0.0640394 0.044335 0.0640394
0.044335 0.0492611 0.0788177 0.0689655 0.0837438 0.0541872 0.0541872 0.0492611 0.0640394 0.0492611
0.0295567 0.0394089 0.0788177 0.0689655 0.0492611 0.0492611 0.0591133 0.0640394 0.0689655 0.0640394

WO -

4]

Average 0.0453202 0.0522167 0.0650246 0.0699507 0.0610837 0.0522167 0.0600985 0.0571429 0.0600985 0.0581281

Average objective function value = 0.05813 Standard Deviation = + 0.00698

CHAPTER 5. EXPERIMENTS AND RESULTS

Table 5.1b The classification error rate values for the tabu-search-based feature selection technique

68

Different dataset 1 2 3 4 5 6 7 8 9 10
instances / same
dataset instances CER CER CER CER CER CER CER CER CER CER
1 0.0591133 0.0492611 0.0541872 0.0541872 0.0541872 0.044335 0.0591133 0.0689655 0.0640394 0.0591133
2 0.044335 0.0591133 0.0394089 0.0935961 0.0541872 0.0492611 0.0591133 0.0492611 0.0689655 0.0640394
3 0.0394089 0.0640394 0.0541872 0.0640394 0.0788177 0.0541872 0.0738916 0.0591133 0.0640394 0.044335
4 0.0591133 0.0541872 0.0492611 0.0837438 0.0788177 0.0541872 0.0591133 0.0541872 0.0541872 0.0541872
5 0.044335 0.0541872 0.0492611 0.0738916 0.0640394 0.0689655 0.0788177 0.0492611 0.0541872 0.0541872
Average 0.0492611 0.0561576 0.0492611 0.0738916 0.0660099 0.0541872 0.0660099 0.0561576 0.0610837 0.0551724
Average objective function value = 0.05872 Standard Deviation = + 0.00794
Table 5.1c The classification error rate values for the sequential forward selection technique
Different dataset 1 2 3 4 5 6 7 8 9 10
instances / same
dataset instances CER CER CER CER CER CER CER CER CER CER
1 0.0837438 0.0837438 0.0689655 0.1083744 0.0738916 0.0640394 0.08867 0.0985222 0.0788177 0.0837438
2 0.0837438 0.0837438 0.0689655 0.1083744 0.0738916 0.0640394 0.08867 0.0985222 0.0788177 0.0837438
3 0.0837438 0.0837438 0.0689655 0.1083744 0.0738916 0.0640394 0.08867 0.0985222 0.0788177 0.0837438
4 0.0837438 0.0837438 0.0689655 0.1083744 0.0738916 0.0640394 0.08867 0.0985222 0.0788177 0.0837438
5 0.0837438 0.0837438 0.0689655 0.1083744 0.0738916 0.0640394 0.08867 0.0985222 0.0788177 0.0837438
Average 0.0837438 0.0837438 0.0689655 0.1083744 0.0738916 0.0640394 0.08867 0.0985222 0.0788177 0.0837438
Average objective function value = 0.08325 Standard Deviation = £ 0.01323
Table 5.1d The classification error rate values for the random selection feature selection technique
Different dataset 1 2 3 4 5 6 7 8 9 10
instances / same
dataset instances ~ CER CER CER CER CER CER CER CER CER CER
1 0.08867 0.0985222 0.0985222 0.1083744 0.1034483 0.08867 0.1182266 0.0985222 0.1083744 0.1034483
2 0.0788177 0.0985222 0.08867 0.1083744 0.1083744 0.08867 0.1133005 0.0985222 0.1083744 0.1083744
3 0.08867 0.0935961 0.1034483 0.1182266 0.1083744 0.0837438 0.0985222 0.0985222 0.1034483 0.1034483
4 0.08867 0.0788177 0.0935961 0.1182266 0.0985222 0.0935961 0.1083744 0.0788177 0.0985222 0.1083744
5 0.0738916 0.0738916 0.08867 0.0985222 0.1133005 0.08867 0.1083744 0.1034483 0.1083744 0.1083744
Average 0.0837438 0.0886699 0.0945813 0.1103448 0.1064039 0.0886699 0.1093596 0.0955665 0.1054187 0.1064039
Average objective function value = 0.09892 Standard Deviation = £ 0.00980
Table 5.2a The classification accuracies for the muiltileve! feature selection technique on the training set
Different dataset 1 2 3 4 5 6 7 8 9 10
instances / same
dataset instances CA CA CA CA CA CA CA CA CA CA
1 95.57% 94.09% 93.60% 93.10% 94.58% 95.07% 93.10% 94.09% 93.10% 94.09%
2 95.57% 95.07% 95.07% 92.12% 95.07% 94.09% 94.58% 95.07% 94.58% 95.07%
3 94.09% 94.09% 95.07% 93.60% 93.10% 95.07% 94.09% 93.60% 95.57% 93.60%
4 95.57% 95.07% 92.61% 93.10% 91.63% 94.58% 94.58% 95.07% 93.60% 95.07%
5 97.04% 96.55% 92.12% 93.10% 95.07% 95.07% 94.09% 93.60% 93.10% 93.60%
Average 95.57% 94.98% 93.69% 93.00% 93.89% 94.78% 94.09% 94.29% 93.99% 94.29%

Average classification accuracy = 94.26%

Standard Deviation =+ 0.72%

NB. CA = Classification accuracy

CHAPTER 5. EXPERIMENTS AND RESULTS

Table 5.2b The classification accuracies for the basic tabu search feature selection technique on the training set

69

Different dataset 1 2 3 4 5 6 7 8 9 10
instances / same
dataset instances CA CA CA CA CA CA CA CA CA CA
1 94.09% 95.07% 95.07% 94.58% 94.58% 95.57% 94.58% 93.10% 93.60% 94.09%
2 95.57% 94.09% 96.55% 90.64% 95.57% 95.07% 94.09% 95.07% 93.10% 93.60%
3 96.06% 93.60% 94.58% 93.60% 92.12% 94.58% 92.61% 94.09% 93.60% 95.57%
4 94.09% 94.58% 95.07% 91.63% 92.12% 94.58% 94.58% 94.58% 94.58% 94.58%
5 95.57% 94.58% 95.07% 92.61% 93.60% 93.10% 92.12% 95.07% 94.58% 94.58%
Average 95.07% 94.38% 95.27% 92.61% 93.60% 94.58% 93.60% 94.38% 93.89% 94.48%
Average classification accuracy = 94.19% Standard Deviation = £ 0.79%
Table 5.2¢ The classification accuracies for the sequential forward feature selection technique on the training set
Different dataset 1 2 3 4 5 8 7 8 9 10
instances / same
dataset instances CA CA CA CA CA CA CA CA CA CA
1 91.63% 91.63% 93.10% 90.64% 92.61% 93.60% 91.13% 91.13% 92.12% 92.12%
2 91.63% 91.63% 93.10% 90.64% 92.61% 93.60% 91.13% 91.13% 92.12% 92.12%
3 91.63% 91.63% 93.10% 90.64% 92.61% 93.60% 91.13% 91.13% 92.12% 92.12%
4 91.63% 91.63% 93.10% 90.64% 92.61% 93.60% 91.13% 91.13% 92.12% 92.12%
S 91.63% 91.63% 93.10% 90.64% 92.61% 93.60% 91.13% 91.13% 92.12% 92.12%
Average 91.63% 91.63% 93.10% 90.64% 92.61% 93.60% 91.13% 91.13% 92.12% 92.12%
Average classification accuracy = 91.97% Standard Deviation = £ 0.93%
Table 5.2d The classification accuracies for the random feature selection technique on the training set
Different dataset 1 2 3 4 5 6 7 8 9 10
instances / same
dataset instances CA CA CA CA CA CA CA CA CA CA
1 91.63% 90.64% 90.64% 89.16% 90.15% 91.63% 89.66% 92.12% 89.66% 90.15%
2 92.61% 90.64% 91.13% 89.66% 90.15% 91.63% 89.16% 91.13% 89.66% 89.16%
3 91.63% 90.64% 90.15% 88.18% 90.64% 92.12% 90.64% 90.64% 89.66% 89.66%
4 92.12% 92.61% 91.13% 88.67% 90.64% 91.13% 89.66% 92.12% 91.63% 89.16%
5 93.60% 92.61% 91.63% 91.13% 89.16% 92.12% 89.66% 90.15% 89.16% 89.16%
Average 92.32% 91.43% 90.94% 89.36% 90.15% 91.72% 90.15% 90.15% 90.15% 89.46%
Average classification accuracy = 90.58% Standard Deviation = + 0.98%
Table 5.3a The classification accuracies for the multilevel feature selection technique on the test set
Different dataset 1 2 3 4 5 6 7 8 9 10
instances / same
dataset instances CA CA CA CA CA CA CA CA CA CA
1 83.17% 80.20% 84.16% 88.12% 87.13% 83.17% 88.12% 84.16% 89.11% 83.17%
2 82.18% 85.15% 84.16% 83.17% 89.11% 84.16% 83.17% 80.20% 85.15% 85.15%
3 81.19% 85.15% 86.14% 82.18% 90.10% 84.16% 84.16% 89.11% 82.18% 86.14%
4 77.23% 84.16% 84.16% 93.07% 87.13% 83.17% 89.11% 82.18% 87.13% 84.16%
5 86.14% 87.13% 83.17% 87.13% 83.17% 85.15% 82.18% 82.18% 84.16% 87.13%
Average 81.98% 84.36% 84.36% 86.73% 87.33% 83.96% 85.35% 83.56% 85.54% 85.15%

Average Classification Accuracy = 84.83% Standard Deviation = +1.55%

CHAPTER 5. EXPERIMENTS AND RESULTS 70

Table 5.3b The classification accuracies for the basic tabu search feature selection technique on the test set

Different dataset 1 2 3 4 5 6 7 8 9 10
instances / same
dataset instances CA CA CA CA CA CA CA CA CA CA
1 88.12% 83.17% 87.13% 88.12% 89.11% 83.17% 84.16% 77.23% 89.11% 85.15%
2 82.18% 88.12% 86.14% 78.22% 84.16% 84.16% 85.15% 78.22% 86.14% 86.14%
3 82.18% 83.17% 85.15% 81.19% 90.10% 86.14% 87.13% 82.18% 85.15% 83.17%
4 81.19% 81.19% 85.15% 77.23% 83.17% 83.17% 87.13% 89.11% 81.19% 88.12%
5 83.17% 83.17% 83.17% 85.15% 86.14% 83.17% 83.17% 81.19% 89.11% 88.12%
Average 83.37% 83.76% 85.35% 81.98% 86.53% 83.96% 85.35% 81.58% 86.14% 86.14%
Average classification accuracy = 84.42% Standard Deviation =+ 1.76%

Table 5.3c The classification accuracies for the sequential forward feature selection technique on the test set

Different dataset 1 2 3 4 5 6 7 8 9 10
instances / same
dataset instances CA CA CA CA CA CA CA CA CA CA
1 83.17% 83.17% 84.16% 77.23% 86.14% 80.20% 85.15% 83.17% 86.14% 86.14%
2 83.17% 83.17% 84.16% 77.23% 86.14% 80.20% 85.15% 83.17% 86.14% 86.14%
3 83.17% 83.17% 84.16% 77.23% 86.14% 80.20% 85.15% 83.17% 86.14% 86.14%
4 83.17% 83.17% 84.16% 77.23% 86.14% 80.20% 85.15% 83.17% 86.14% 86.14%
5 83.17% 83.17% 84.16% 77.23% 86.14% 80.20% 85.15% 83.17% 86.14% 86.14%
Average 83.17% 83.17% 84.16% 77.23% 86.14% 80.20% 85.15% 83.17% 86.14% 86.14%
Average classification accuracy = 83.47% Standard Deviation =+ 2.88%

Table 5.3d The classification accuracies for the random feature selection technique on the test set

Different dataset 1 2 3 a 5 6 7 8 9 10
instances / same
dataset instances CA CA CA CA CA CA CA CA CA CA
1 80.20% 81.19% 89.11% 84.16% 83.17% 86.14% 87.13% 80.20% 81.19% 87.13%
2 78.22% 84.16% 84.16% 81.19% 87.13% 81.19% 89.11% 74.26% 83.17% 85.15%
3 84.16% 83.17% 85.15% 85.15% 92.08% 85.15% 84.16% 79.21% 84.16% 83.17%
4 76.24% 87.13% 84.16% 87.13% 87.13% 81.19% 83.17% 81.19% 83.17% 84.16%
5 83.17% 84.16% 86.14% 86.14% 87.13% 86.14% 86.14% 79.21% 83.17% 86.14%
Average 80.40% 83.96% 85.74% 84.75% 87.33% 83.96% 85.94% 78.81% 82.97% 85.15%

Average classification accuracy = 83.90% Standard Deviation = + 2.60%

CHAPTER 5. EXPERIMENTS AND RESULTS

Classification accuracy

Classification error rate values of near-optimal subset

0.1

0.08

0.06 -

0.04 -

97.00%

96.00% -

95.00%

94.00%

93.00%

92.00%

91.00% -

90.00% -

89.00% -

88.00%

87.00% -

86.00%

0.02

| —&— Multileve! technique |

| —@— Tabu search

SFS
-~ Random technique

1 2 3 4 5 6 7 8 9 10

Training dataset instances

—&— Multilevel technique i
—&— Tabu search |
SFS :

- Random selection ;

1 2 3 4 5 6 7 8 9
Training dataset instances

10

71

CHAPTER 5. EXPERIMENTS AND RESULTS 72

90.00%

88.00%

86.00%

84.00%

82.00% | —e— Multilevel technique

i |

/ %—-@-——Tabu search i

80.00% | SFS }
iV | &~ Random selection |

78.00%

Classification accuracy

76.00%

74.00%

72.00%

1 ’ 2 » 3 | 4 ‘ 5 | 6 ‘ 7 l 8 | 9 . 10
Test dataset instances

Figure 5.2 shows that the multilevel feature selection technique and the tabu-search-based
feature selection techniques consistently selects near-optimal subsets that are better in
terms of the minimization objective function values than the SES and the random feature
selection techniques. Besides, Table 5.1a and b show that the average minimization
objective function value over the 10 dataset instances is better and more stable for the
multilevel feature selection technique (0.05813 + 0.00698) than for the tabu-search-based
technique (0.05872 = 0.00794). Moreover, by comparing the classification accuracies on
the training set (Table 5.2 and Figure 5.3), the evaluated techniques exhibit a
performance trend that is similar to the comparison of the minimization objective
function values described above.

Comparing the classification accuracies of the evaluated techniques on the
independent test set instances (Table 5.3 and Figure 5.4), the following enumerates the

evaluated techniques in the order of increasing average classification accuracy and the

CHAPTER 5. EXPERIMENTS AND RESULTS 73

stability of the selected solution: SFS (83.47% x 2.88%), random feature selection
technique (83.90% x 2.60%), tabu-search-based feature selection technique (84.42% =+
1.76%), and multilevel feature selection technique (84.83% * 1.55%).

Overall, the multilevel feature selection technique and the tabu-search-based feature
selection technique are outstandingly better techniques than the other evaluated feature
selection techniques, particularly for problem domains that are characterized with high
dimensionality and small sample size. Moreover, the multilevel technique demonstrates
better performance than the tabu-search-based technique in terms of the three evaluation
parameters (i.e. minimization objective function values, classification accuracy on
training set, and classification accuracy on independent test set). The outstanding
performance of the better techniques can be attributed to the exploration strategy of the
underlying search method for the techniques.

Moreover, using the GA-based feature selection technique presented in [33],
regions of features (i.e. ranges of consecutive features) are selected and used to classify
25 randomly partitioned pair of training set and independent test set instances from the
biomedical dataset used in the experiments described above. The average classification
accuracy on the training and test set that is derived using the GA technique is 89.60% =+
2.12% and 84.90% * 3.22% respectively. As presented above, the average classification
accuracies of the multilevel feature selection technique (94.26% + 0.72% and 84.83% =+
1.55%) on the same biomedical dataset is higher (for the training set) and more stable

than the accuracies obtained using the GA technique.

Chapter 6

Conclusions

Feature selection problem is an interesting and challenging optimization problem
that can be formulated as a 0-1 integer-programming problem. This research reviews
existing and presents a new technique for resolving feature selection problem in
application to biomedical datasets. This chapter presents a summary of the research and a

description of the future direction of the research as presented in this thesis.

6.1 Summary of the research

The inherent characteristics of biomedical datasets (i.e. small sample size and high
dimensionality) and the existence of different forms of these datasets pose challenges that
make the feature selection problem in biomedical datasets particularly difficult. This
research reviews existing feature selection techniques and investigates the application of
some of these techniques (SFS, random feature selection, and tabu search feature
selection) on practical biomedical datasets. More importantly, this research presents a
new feature selection technique (i.e. multilevel feature selection) that is based on the
multilevel search method. The performance of the new technique is influenced by
calibration parameters such as the number of levels in the multilevel hierarchy, the
reduction factor, the coarsening, search, and refinement strategies. The ‘best’ values of
these calibration parameters are determined empirically.

The performance of the multilevel feature selection technique is evaluated in
terms of the classification accuracies on training and test dataset instances of a simple

LDA classifier that is designed based on the result of the feature selection technique.

74

CHAPTER 6. CONCLUSIONS 75

Similarly, the performance of some existing feature selection techniques (SFS, random
feature selection, and tabu search feature selection) is evaluated using equivalent amount
of computational cost and the same dataset instances. The performance of the multilevel
feature selection technique is compared with the existing feature selection techniques.
The multilevel technique generates higher and more stable average classification
accuracies on the training and test dataset instances than the other evaluated feature

selection techniques.

6.2 Future work

In the present design of the multilevel feature selection technique, all the possible
coarsening strategies have not been investigated. This research can be extended by
exhaustively investigating the other coarsening options, since the capability of adapting
the technique to different forms of biomedical datasets depends on the coarsening phase.
Besides, the newly presented multilevel feature selection technique is based on
the simple V-cycle multilevel paradigm. An enhanced version of this technique can be
developed using the multilevel cooperative search method [34, 47] that combines parallel
multiple instances of the V-cycle multilevel methods that exchange search space
exploration information in order to derive an overall enhanced search result. In future
research work, the enhanced version of the multilevel feature selection technique will be
designed and developed. The enhanced version can be used to resolve the feature
selection problem formulation in (2) above. The result of the enhanced version can be

used to identify biomarkers in biomedical datasets.

Appendix A. Code Listing of the
Multilevel Festure Selection Algorithm

The following is the code listing for the implementation of the newly presented
multilevel feature selection technique and the other existing feature selection techniques

that are evaluated in this thesis.

22
* basicTabuSearch.java
* Implements the basic tabu search module

* @author Idowu Olayinka Oduntan
* @version August, 2005
*/

import java.lang.*;

public class basicTabuSearch

{
public int[] tabuFinalSolution;
public float tabuFinalValue;
public int basicTabuCost = 0;

// Declare object variables

parameter localParamObj;

localOptimum localOptimumObj;
initialSolutionManager initialSolutionObj;

// Declare other variables

int{] initialSolution;

int solutionSize, startDimension, endDimension;

int localNoOfIterations, localNoOfTabulteration, localNoOfLevels,
localReductionFactor;

int localNeighborhoodSize;

int neighborhoodIncrement;

String datasetType = "train";

public basicTabuSearch(parameter paramObj)

{
// create object instance of required classes
localParamObj = paramObj;
startDimension = localParamObj.startDimension;
endDimension = localParamObj.endDimension;
solutionSize = localParamObj.finalSolutionSize;
localNoOfIterations = localParamObj.noOfIterations;
localNoOfLevels = localParamObj.noOfLevels;
localNeighborhoodSize = localParamCbj.neighborhoodSize;
localReductionFactor = localParamObj.reductionFactor;
initialSolutionObj = new initialSolutionManager (startDimension,
endDimension, solutionSize);

//Derive the equivalent number of iterations for basic tabu search

localNoOfTabulteration = localNoOfIterations *
(localNoOfLevels* (localNoOfLevels+1) /2) ;

76

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 77

public void findTabuSearchSolution()

{
//Set the number of iterations of the local optimum search for the
basic tabu search.
localParamObj.setNoOfiterations (localNoOfTabulteration) ;
localParamObj . setNeighborhoodSize (localNeighborhoodSize) ;
localOptimumObj = new localOptimum{localParamObj) ;
//Generate initial solution for the basic tabu search.
initialSolution =
(int[])initialSolutionObj‘starterInitialSolution().clone();

//Find the optimal solution for the initial solution by calling
localOptimum

tabuFinalSolution =

(int []) localOptimumObj . localOptimumSearch(initialSolution) .clone ()

tabuFinalvalue = localOptimumObj.localOptimumValue;
basicTabuCost = localOptimumObj.computationCounter;
localParamObj .resetNoOfIterations () ;
localParamObj . resetNeighborhoodSize () ;

5
* Classifier.java

* Implements the simple LDA classifier.

* @author Idowu Olayinka Oduntan

* @version August 2005

*/

public class Classifier

{
// Declare the variables
int localSolutionSize, localNoOfItems;
int [] localDataIndexA, localDataIndexB, localOptimalSubset,
actualClassLabels, trainActualClasslabels, classifiedClassLabels,
trainClassifiedClassLabels, localClasslabels;
float[] localMeanVectorA, localMeanVectorB, localDataVector,
trainLocalDataVectoxr, constantVector, constantVector2;
float{] diffMeanVector;
float[] sumMeanVector;

float[] [] localDatasetAd, localDatasetB, localCovarianced,
localCovarianceB, localInverseCovariance, localTestDataset,
localTrainDataset;

float tempMahalanobis, referenceValue, classificationValue,
trainClassificationValue, classificationAccuracy,
trainClassificationAccuracy;

dataClass dataObject;

matrix matrixObij;

parameter paramObj;

printClass printObj;

objectiveFunction functionObj;

public Classifier(int([] optimalSubset, parameter localParamObj)
{

// create instances of required class objects.

paramObj = localParamObj;

matrixObj = new matrix();

functionObj = new objectiveFunction (paramObj) ;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM

public

printObj = new printClass();

// initialize generic variables.
localOptimalSubset = (int[])optimalSubset.clone () ;
localSolutionSize = localOptimalSubset.length;
localClassLabels = paramObj.globalClassLabel;
trainClassifier();

testClassifier();

void trainClassifiexr ()

// Assign data indexes for the training set.

localDataIndexA = (int[])paramObj.globalTrainDatalndexA.clone () ;
localDataIndexB = (int[])paramObj.globalTrainDataIndexB.clone() ;

78

// Assign dataset values for the training set for current optimal

solution

localbDatasetA = new

float [localDataIndexA.length] {localSolutionSize] ;
localDatasetB = new

float [localDataIndexB.length] [localSolutionSizel] ;

int tempDataCounter = 0;
localTrainDataset = new float[localDatalIndexA.length +
localbDataIndexB.length] [localSolutionSize];

// Class labels for the classification of train set

trainActualClassLabels = new int[localDataIndexA.length +

localDataIndexB.length] ;

trainClassifiedClassLabels = new int[localDataIndexA.length +

localbataIndexB.lengthl] ;

for(int i=0; i<localDataIndexA.length; i++)

{

trainActualClassLabels [tempDataCounter] =
localClassLabels [localDataIndexA([il];
for(int j=0; j<localSolutionSize; j++)

localbatasetA[i] []] =

paramObj .globalDataSet [localDatalIndexA[i]] [localOptim

alSubset [j]1-1];
localTrainDataset [tempDataCounter] [§] =

paramObj .globalDataSet [localDatalndexA[i]] [localOptim

alSubset [j]-11;

}

tempDataCounter++;

}

for (int 1=0; i<localDataIndexB.length; i++)

{

trainActualClassLabels [tempDataCounter] =
localClasslabels [localDataIndexB[i]];
for(int j=0; j<localSolutionSize; j++)

localDatasetB[i] [j] =

paramObj .globalDataSet [localDataIndexB[i]] [localOptim

alSubset [§1-1];
localTrainDataset [tempDataCounter] [j] =

paramObj .globalDataSet [localDataIndexB([i]] [localOptim

alSubset [j]1-11;

}

tempDataCounter++;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM

public

}

localMeanVectorA =

(float []) (functionObj.computeMeanVector (localDatasetA)) .clone(};
localMeanVectorB =

(float []) (functionObj.computeMeanVector (localDatasetB)) .clone() ;
localCovarianceA =

(float] [1) (functionObj.computeCovariance (localDatasetA,
localMeanVectorA)) .clone () ;

localCovarianceB =

(float [] []) (functionObj.computeCovariance (localDatasetB,
localMeanVectorB)) .clone();

localInverseCovariance =

79

(float [] []) functionObj.computeInverseSpooledCovariance (localCovari

ancedA, localDatasetA.length, localCovarianceB,
localDatasetB.length) .clone() ;

sumMeanVector = (float[]) (matrixObj.addVector (localMeanVectorA,
localMeanVectorB)) .clone () ;
diffMeanVector =

(float []) {(matrixObj.subtractVector (localMeanVectorA,
localMeanVectorB)) .clone () ;

constantVector =
(float [])matrixObj.vectorMatrixMultiply (diffMeanVector,
localInverseCovariance) .clone() ;

referenceValue = 0.5f *
matrixObj.vectorVectorMultiply (constantVector, sumMeanVector);

// Classify the train set

for(int i=0; i<tempDataCounter; i++)

{
trainLocalDataVector =
(float [])localTrainDataset [i] .clone() ;
trainClassificationValue = matrixObj.vectorVectorMultiply
(constantVector, trainLocalDataVector) ;
if (trainClassificationValue >= referenceValue)

trainClassifiedClassLabels[i] = 1;
else if (trainClassificationValue < referencevalue)
trainClassifiedClassLabels[i] = 2;

}

trainClassificationAccuracy =
classifierAccuracy (trainActualClassLabels,
trainClassifiedClassLabels);

voilid testClassifier()

int dataCounter = 0;

// BAssign the test dataset indexes and declare class label entries

for the test set.
localbDatalIndexA
localDatalndexB

(int []1) paramObj .globalTestDataIndexA.clone () ;
(int []) paramObj .globalTestDataIndexB.clone() ;

1]

]

// For the classification of the test set
actualClassLabels = new int[localDataIndexA.length +
localDatalIndexB.length] ;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM

}

classifiedClassLabels = new int[localDatalndexA.length +
localbataIndexB.lengthl ;

localTestDataset = new float[localDatalIndexA.length +
localDatalndexB.length] [localSolutionSizel] ;

for(int i=0; i<localbDataIndexA.length; i++)
{
actualClassLabels [dataCounter] =
localClassLabels[localDatalIndexA[i]];
for(int j=0; j<localSolutionSize; j++)
localTestDataset [dataCounter] [j] =

80

paramObj .globalDataSet [localDataIndexA[i]] [localOptim

alSubset[j]-171;
dataCountexr++;

}

for(int i=0; i<localDataIndexB.length; i++)

{
actualClassLabels[dataCounter] =
localClassLabels [localDataIndexB[i]];
for{int j=0; j<localSolutionSize; j++)
localTestDataset [dataCounter] [j] =
paramObij.globalbDataSet [localDataIndexB([i]] [localOptim
alSubset [j]-1];
dataCounter++;
}
for(int i=0; i<dataCounter; i++)
{

localDataVector = (float[])localTestDataset[i] .clone() ;

classificationvValue = matrixObj.vectorVectorMultiply

(constantVector, localDataVector);

if (classificationValue >= referenceValue)
classifiedClassLabels[i] = 1;

else if (classificationValue < referencevValue)
classifiedClassLabels[i] = 2;

}

classificationAccuracy = classifierAccuracy{actualClassLabels,
classifiedClassLabels) ;

public float classifierAccuracy(int[] actualSetLabels, int[]
classifiedSetLabels)

{

int accuracyCounter = 0;
for(int i=0; i<actualSetLabels.length; i++)

{

if (actualSetLabels[i] ==classifiedSetLabels[i])
accuracyCounter++;

}

return (accuracyCounter * 100.0f)/actualSetLabels.length;

* coarser.java
* This class generates a less coarse feature space from a given feature space

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 81

* @author Idowu Olayinka Oduntan
* @version August 2005
*/
import java.lang.Math;
public class coarser
{
int[] levelSubSpaces;
int[] coarseSubSpace;
int [1{] subSpacePartitions;
int [1 [] featureSubspacePartitions;
int [] {1 newFeatureSpacesWithComponents;
int [] [] coarseSubspaceElement;
int [] remainderPartition;
int[] partialSolution;
int [] localGivenSolutionSpace;
int localNoOfLevels, localNoOfPartition, localDimension,
localReductionFactor, localPartitionSolutionSize,
localNoOfPartialSolutions, tempLocalSolutionSize;
int localClusterWindow, localTempDatasetSize;
String localPartitionType;
parameter paramObj;
initialSolutionManager initialSolutionObj;

coarser (parameter givenParamObj)

{
//Initializes local input parameters: givenFeatureSpcace,
noOfPartitions, withinPartitionSearchParameters,
paramObj = givenParamObj;
localReductionFactor = paramObj.reductionFactor;
tempLocalSolutionSize = paramObj.solutionSize;
localNoOfLevels = paramObj.noOfLevels;
localNoOfPartition = paramObj.noOfPartitions;
localPartitionType = paramObj.partitionType;
localPartitionSolutionSize = paramObj.solutionSize *
localReductionFactor;
localClusterWindow = paramObj.clusterWindow;
featureSubspacePartitions = new int[localNoOfLevels] [];

public void randomCoarsen (int{] givenSolutionSpace)

featureSubspacePartitions [0] = (int[])givenSolutionSpace.clone();
int [] localSolutionSpace = (int[])givenSolutionSpace.clone();
int[] tempSolutionlist, tempSolutionList2;

int levelSolutionSize;

for(int j=1; j<localNoOfLevels; j++)

{
levelSolutionSize =
localSolutionSpace.length/localReductionFactor;
tempSolutionList = (int[])localSolutionSpace.clone() ;
tempSolutionList2 = new int [levelSolutionSize];

for(int i=0; i<localSolutionSpace.length; i++)

{
int randoml = (int) (({(localSolutionSpace.length - i}*
Math.random()) + 1i);
int templ = tempSolutionList [randoml];
tempSolutionList [randoml]=tempSolutionList[i];
tempSolutionList[i] = templ;

}

for(int k=0; k<levelSolutionSize; k++)

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM

}

{
}

featureSubspacePartitions[j] =
(int []) tempSolutionList2.clone() ;
localSolutionSpace = (int[])tempSolutionList2.clone();

tempSolutionList2[k] = tempSolutionList(k];

public int[] partitionFeatureSpace (int[] givenSolutionSpace)

{

//For block or fixed partitioning
localbDimension = givenSolutionSpace.length;
localGivenSolutionSpace = (int({])givenSolutionSpace.clone () ;

82

localNoOfPartialSolutions = localDimension/ (localReductionFactor *

localNoOfPartition * localPartitionSolutionSize) ;

int featureCounter=0; //Assign value feature counter
int [] newSolutionSpace;
int featureSubspaceSize = localDimension/localNoOfPartition;

int featureSubspaceRemainder = localDimension%localNoOfPartition;

featureSubspacePartitions = new int [localNoOfPartition-
1] [featureSubspaceSize] ;

remainderPartition = new int [featureSubspaceSize +
featureSubspaceRemainder] ;

// /*Set parameter object to reflect partition values*/
paramObj.setSolutionSize (localPartitionSolutionSize) ;
paramObj.setTabuListSize(featureSubspaceSize/2);
paramQObj . setNeighborhoodSize (featureSubspaceSize) ;

// Initialize the solution holder variable
int[] tempDimension = new int [localDimension];
for(int i=0; i<localDimension; i++)

{
}

if (localPartitionType.equals ("random"))

{

tempDimension[i] = localGivenSolutionSpacel[i];

for(int i1=0; i<localDimension;i++)

{
int r = (int) ({((localDimension-i)* Math.random())
i);
int temp = tempDimension|(r];
tempDimension [r] =tempDimension([i];
tempDimension([i] = temp;

}

for{int i=0; i<localNoOfPartition-1;i++)

{

for(int j=0; j<featureSubspaceSize; j++)
featureSubspacePartitions[i] [j] =

tempDimension [featureCounter] ;
featureCounter++;

}

for(int j=0; j<featureSubspaceSize + featureSubspaceRemainder;
J++)

+

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 83

remainderPartition[j] = tempDimension[featureCounter];
featureCounter++;

}

coarseSubSpace = (int[])coarsenSubSpaces () .clone();

paramObj.resetSolutionSize() ;
paramObj.resetTabuliistSize() ;
paramObj . resetNeighborhoodSize () ;
return coarseSubSpace;

public int({] coarsenSubSpaces ()
//Assigns value to partitionSubSpaces(][];

int [] remainderPartialSolution = new
int [localPartitionSolutionSize] ;
int[] tempPartialSolution;
int [] [] featurePartitionSolutions = new int[localNoOfPartition] [];
int partialSolutionCounter = 0;
int solutionCounter = 0;
boolean partialSolutionTester = false;
int{] localCoarseSubSpace = new
int {localNoOfPartition*localPartitionSolutionSize];
for(int i =0; i<localNoOfPartition; i++)
{
if (i==localNoOfPartition-1)
{
for(int j=0; j<localNoOfPartialSolutions; Jj++)
{
initialSolutionObj = new
initialSolutionManager (remainderPartition,
localPartitionSolutionSize) ;
localOptimum localOptimumObj = new localOptimum(paramObj,
remainderPartition) ;
int[] initialSolution =
(int [])initialSolutionObj.starterInitialSolution().clone() ;
tempPartialSolution =
(int []1)localOptimumObj .localOptimumSearch({initialSolution) .
clone() ;
if (3>0)

for (int m=0; m<tempPartialSolution.length; m++)

{

for(int k=0; k<featurePartitionSolutions(i].length;
k++)

{

if (tempPartialSolution[m]==featurePartitionSolutions[i] [k])

partialSolutionTester = true;

}
}

if (partialSolutionTester==false)
featurePartitionSolutions[i] [featurePartitionSolutions[i] .1
ength] = tempPartialSolution[m];

partialSolutionTester = false;

}
}

else

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM

84

featurePartitionSolutions{i] =
(int []) tempPartialSolution.clone() ;

}

}
}

else

{

for(int j=0; Jj<localNoOfPartialSolutions; j++)

{

initialSolutionObj = new

initialSolutionManager (featureSubspacePartitions[il,
localPartitionSolutionSize) ;

localOptimum localOptimumObj = new localOptimum(paramObj,
featureSubspacePartitions[i]) ;

int[] initialSolution =
(int[])initialSolutionObj.starterInitialSolution() .clone() ;
tempPartialSolution =

(int []) localOptimumObj.localOptimumSearch (initialSolution) .
clone () ;

if (§>0)

for (int m=0; m<tempPartialSolution.length; m++)

{

for (int k=0; k<featurePartitionSolutions[i].length; k++)

{

if (tempPartialSolution [m] ==featurePartitionSolutions([i] [k])

{
partialSolutionTester = true;
}
}

if (partialSolutionTester==false)
featurePartitionSolutions[i] [featurePartitionSolutions[i] .1
ength] = tempPartialSolution([m];

partialSolutionTester = false;

}

}

else

{

featurePartitionSolutions[i] =

(int []1) tempPartialSolution.clone () ;

}
}

}
}

for(int i =0; i<localNoOfPartition-1; i++)

{

for(int j=0; j<localPartitionSolutionSize; j++)
{

localCoarseSubSpace [solutionCounter] =
featurePartitionSolutions[i] [j];
solutionCounter++;

}
}

for(int j=0; j<localPartitionSolutionSize; j++)
{
localCoarseSubSpace [solutionCounter] =
remainderPartialSolution([j];
solutionCounter++;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM

}

public

{

}

return localCoarseSubSpace;

void clusterContigucusCoarse (int{] givenFeatureSpace)

newFeatureSpacesWithComponents = new int[localNoOfLevels] [];
newFeatureSpacesWithComponents [0] =

(int [])givenFeatureSpace.clone () ;

featureSubspacePartitions [0] = (int([])givenFeatureSpace.clone();
int [] tempGivenFeatureSpace = {(int[])givenFeatureSpace.clone();

for (int i=1; i<localNoOfLevels; i++)

int featureCounter = 0;

int featureComponentCounter = 0;

int newFeatureSpaceDimensionality;

if (tempGivenFeatureSpace.length%localClusterWindow>0)

newFeatureSpaceDimensionality =
tempGivenFeatureSpace.length/localClusterWindow+1;

}

else

newFeatureSpaceDimensionality =
tempGivenFeatureSpace.length/localClusterWindow;

int [] newFeatureSpace = new int [newFeatureSpaceDimensionality];
int [] tempNewFeatureSpacesWithComponents = new

int [newPFeatureSpaceDimensionality+tempGivenFeatureSpace.length];
System.out.println("Length of new featurespace with components

" +tempNewFeatureSpacesWithComponents. length) ;

for(int j=0; j<newFeatureSpaceDimensionality; Jj++)

int featureCounter_2 = 0;
int tempNewFeature = 0;
for{int k=0; k<localClusterWindow; k++)

if (featureCounter<tempGivenFeatureSpace. length)
featureCounter 2++;

tempNewFeature = tempNewFeature +
tempGivenFeatureSpace [featureCounter] ;
featureCounter++;

else

break;

newFeatureSpace[j] = tempNewFeature/featureCounter_2;
tempNewFeatureSpacesWithComponents [featureComponentCounter] =
newFeatureSpace[j];

featureComponentCounter++;

int tempCounter = featureCounter 2;

for (int m=featureComponentCounter;
m<featureComponentCounter+featureCounter_2; m++)
tempNewFeatureSpacesWithComponents [m] =
tempGivenFeatureSpace [featureCounter - tempCounter];
tempCounter--;

featureComponentCounter = featureComponentCounter +
featureCounter_ 2;

}

85

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM

tempGivenFeatureSpace = (int[])newFeatureSpace.clone() ;
featureSubspacePartitions[i] = (int[])newFeatureSpace.clone() ;

newFeatureSpacesWithComponents [i] =
(int []) tempNewFeatureSpacesWithComponents.clone () ;

public void clusterUncontiguousCoarse (int [] givenFeatureSpace)

featureSubspacePartitions [0] = (int[])givenFeatureSpace.clone();
int[] tempGivenFeatureSpace = (int[])givenFeatureSpace.clone();

public void biasedCoarser(int[] givenFeatureSpace)

featureSubspacePartitions[0] = (int[])givenFeatureSpace.clone() ;
int[] tempGivenFeatureSpace = (int[])givenFeatureSpace.clone();

int {] tempSolution = new int[tempLocalSolutionSize];

for (int i=1; i<localNoOfLevels; i++)

int newTempFeatureSpaceSize =
tempGivenFeatureSpace.length/localReductionFactor;
int localWithinNoOfIteration =
newTempFeatureSpaceSize/tempLocalSolutionSize;

int [] newTempFeatureSpace = new int [newTempFeatureSpaceSize];

int [] newTempFeatureSpace2;

int [] rankedFeatureSpacel;

int [] rankedFeatureSpace;

int newSpaceSolutionCounter =0;
int sameSolutionCounter = 0;
boolean solutionItemFlag = false;

rankFeatureSubset rankObj = new rankFeatureSubset (paramObj,
tempGivenFeatureSpace) ;

rankedFeatureSpacel = (int[])rankObj.rankingSubset () .clone();
rankedFeatureSpace = (int[])rankObj.rankedSubspace.clone();

for(int j=0; j<newTempFeatureSpaceSize; j++)

{

newTempFeatureSpace [j] =
rankedFeatureSpace [rankedFeatureSpace.length-1-j];

}

86

featureSubspacePartitions{i] = (int[])newTempFeatureSpace.clone() ;

tempGivenFeatureSpace = (int[])newTempFeatureSpace.clone();

* dataClass.java

* Java class that reads the header and data content of the given dataset file

* Partitions the data by stratification in the ratio 2:1 for train and test

set respectively.

* @author Idowu Olayinka Oduntan
* @version August 2005
*/

import java.io.BufferedReader;
import java.io.FileReader;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM

import java.util.StringTokenizer;

public class dataClass

{
// Declare variables
public int noOfHeadexLines;
public int noOfHeaderParameters;
public int noOfSamples;
public int noOfDimension;
public int noOfTrainSamples; // = 124;
public int noOfClasses; //=2;
public int classATrainCounter=0;
public int classBTrainCounter=0;
public int classATestCounter=0;
public int classBTestCounter=0;
public int testCounter;
public int trainCounter;
public int labelCounter;
public int zeroClassCounter;
public BufferedReader dataSetFile;
public String delimitChars, dataFileName;
public int[] dataSetParameters;
public String partitionType;

public int[] trainDatalIndex;
public int[] testDatalndex;

public int{] trainDataIndexA;
public int[] trainDatalIndexB;
public int[] testDatalndexA;
public int[] testDataIndexB;

public int[] classLabel;

public int[] nonZeroLabelIndex;
public float([] [] dataSet;

public float([] [] trainClassADataSet;
public floatl[] [l trainClassBDataSet;
public float[] [] testClassADataSet;
public float[][] testClassBDataSet;
public Stringl] sampleEntities;
public parameter paramObij;

// instantiate dataclass object and get global parameters from paramObj

public dataClass(parameter givenParamObj) //(int noOfHeader,

87

noOfHeaderParam, int samplesNo, int trainSampleNo, int noOfDimesionality,

int classesNo, String delimiters, String fileName)

{
paramObj = givenParamObj;
noOfHeaderLines = paramObj.noOfHeaderLines;
noOfHeaderParametexrs = paramObj.noOfHeaderParameters;
noOfSamples = paramObj.noOfSamples;
noOfDimension = paramObj.noOfDimension;
noOfClasses = paramObj.noOfClasses;
dataSetParameters = new int [noOfHeaderParameters] ;
dataSet = new float [noOfSamples] [noOfDimension];
sampleEntities = new String [noOfSamples];
classlLabel = new int [noOfSamples];
delimitChars = paramObj.delimiterChar;
dataFileName = paramObj.dataFile;
partitionType = paramObj.partitionType;
readData() ;
partitionDataset () ;
setDataVariables() ;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 88

}

public void readHeader ()

{

String dataSetLines;
BufferedReader dataSetFile;
StringTokenizer parameterString;
FileReader dataFile;
try
{
dataFile = new FileReader (dataFileName) ;
dataSetFile = new BufferedReader(dataFile) ;
for (int i=0; i<noOfHeaderLines; i++)
{
int j=0;
dataSetLines = dataSetFile.readLine();
parameterString = new StringTokenizer (dataSetLines,
delimitChars, false);
while (j<noOfHeaderParameters)

if (parameterString.hasMoreTokens ()==false)
break;

dataSetParameters[j]=Integer.parselnt (parameterString.nextToken());
J++s

}

}

dataSetFile.close () ;
dataFile.close () ;

}

catch (Exception e0)

{

System.out.println("Datafile is not available...! - One");

}
}

public void readData()
{
String dataSetLines;
BufferedReader dataSetFile;
StringTokenizer parameterString;
try
{
dataSetFile = new BufferedReader (new FileReader(dataFileName)) ;
for (int i=1; i<=noOfHeaderLines; i++)
dataSetLines = dataSetFile.readLine() ;
for (int 1=0; i<noOfSamples; i++) // For each sample, read a line to et
the feature values and class label
{
int j=0;
dataSetLines = dataSetFile.readline() ;
parameterString = new StringTokenizer (dataSetLines, delimitChars,
false) ;
if (parameterString.hasMoreTokens ()==true)
{
sampleEntities[i] = parameterString.nextToken();
while (j<noOfDimension) // Read feature values

if (parameterString.hasMoreTokens ()==£false)
break;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 89

dataSet [i] [j]=Float.parseFloat (parameterString.nextToken ()) ;
J++;

}

if (j==noOfDimension) // Read sample's class label
classLabel[i]= Integer.parselnt (parameterString.nextToken()) ;
}

}

dataSetFile.close();

catch (Exception e0)

{

System.out.println (e0.getMessage());

System.out.println("Datafile file is not available...! - Two");

}

}

public void partitionDataset () // Partition dataset into train and

test sets
int counter0 0;
int counterA 0;
int counterB = 0;

// Get the no of items with real class labels A or B and unreal class

label 0
for(int i =0; i<classLabel.length; i++)
{
if (classLabel [i]==0)
counter0++;
if (classLabel [i]==1)
countera++;
if (classLabel [i] ==2)
counterB++;

int [] classAIndex = new int [counterAl];

int [] classBIndex = new int [counterB];

int classACounter = 0;

int classBCounter = 0;

for(int i =0; i<classLabel.length; i++)

{

if (classLabel {i]==1)

classAIndex[classACounter] = i;
classACounter++;

if (classLabel [i]==2)

{

classBIndex[classBCounter] = i;

classBCounter++;

}
}
System.out.println{"ClassAcounter: "+classAIndex.length);
System.out.println("ClassBcounter: "+classBIndex.length);
// Determine the number of samples from each class that constitute the
training set - stratification

float tempA = (2f£/3f)*classACounter;
float tempB = (2f/3f)*classBCounter;
int noOfClassAtrainSamples = Math.round (tempA) ;
int noOfClassBtrainSamples = Math.round (tempB) ;
noOfTrainSamples = noOfClassAtrainSamples + noOfClassBtrainSamples;
trainDataIndex = new int [noOfTrainSamples];
testDatalndex = new int{classACounter + classBCounter -
noOfTrainSamples] ;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM

if (partitionType.equals ("random")) // Partition dataset randomly
{

int[] tempIndexA = (int[])classAIndex.clone();

int[] tempIndexB = (int[])classBIndex.clone();

for(int 1i=0; i<classACounter; i++)

{

int randomCounter = (int) (((classACounter - i) * Math.random())
i);

int temp = tempIndexA[randomCounter] ;

tempIndexA [randomCounter] =tempIndexA[i] ;

tempIndexA[i] = temp;

}

for(int i=0; i<classBCounter; i++)

{

int randomCounter = (int) (((classBCounter - 1) * Math.random())
i);

int temp = tempIndexB{randomCounter];
tempIndexB [randomCounter] =tempIndexB(i] ;
tempIndexB[i] = temp;

}

int trainCounter=0;

for(int j=0; j<noOfClassAtrainSamples; j++)

{

trainDatalIndex [trainCounter] = tempIndexAlj];
trainCounter++;

}

for(int j=0; j<noOfClassBtrainSamples; Jj++)
trainDataIndex [trainCounter] = templIndexBI[]j];
trainCounter++;

}

int locallIndexCounter = 0;
for (int j=noOfClassAtrainSamples; j<classACounter; j++)
{
testDataIndex[localindexCounter] = tempIndexA([j];
localIndexCounter++;

}

for(int j=noOfClassBtrainSamples; j<classBCounter; j++)

{

testDataIndex[localIndexCounter] = tempIndexB{jl;
localIndexCounter++;

}

System.out.println("\nSize of training set:
"+trainDataIndex.length) ;

System.out.println("\nSize of test set "+testDatalndex.length);

}

int classCounterA 0;
int classCounterB = 0;
for(int i=0; i<trainDatalndex.length; i++)

{

if (classLabel [trainDataIndex [i]]1==1)

{
}

if (classlLabel [trainDataIndex[i]]==2)

{

classCounterA++;

90

+

+

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 91

classCounterB++;

}
}

trainDatalndexA = new int[classCounterA];
trainDataIndexB = new int[classCounterB];
trainClassADataSet = new float[classCounterA] [noOfDimension] ;
trainClassBDataSet = new float[classCounterB] [noOfDimension] ;

classCounterd = 0;
classCounterB 0;
for(int i=0; i<trainDataIndex.length; i++)

{

if (classLabel [trainDataiIndex[i]]==1)

{

trainDataIndexA [classCounterA] = trainbDatalIndex([i];
for(int j=0; j<noOfDimension; j++)
trainClassADataSet [classCounterd] [j] =

dataSet [trainDataIndex[i}] [j];

classCounter++;
}
if (classLabel [trainDataIndex[i]}]==2)
{
trainDataIndexB{classCounterB] = trainDataIndex[i];

for(int j=0; j<noOfDimension; j++)
trainClassBDataSet [classCounterB] [j] =
dataSet [trainDataIlndex[il] [j];
classCounterB++;

}
}

classCounterA = 0;
classCounterB = 0;
for(int i=0; i<testDatalndex.length; i++)

{

if (classLabel [testDatalndex[i]]==1)

{

classCounteri++;

if (classLabel [testDatalndex[i]]==2)

{
}
}

testDataIndexA = new int [classCounterA] ;
testDataIndexB = new int[classCounterB];
testClassADataSet = new float[classCounterA] [noOfDimension] ;
testClassBDataSet = new float[classCounterB] [noOfDimension] ;

classCounterB++;

classCounterh
classCounterB

0;
0;

]

for(int i=0; i<testDatalndex.length; i++)

{

if (classLabel [testDataIndex[i]]==1)

{
testDataIndexA [classCounterA] = testDatalndex[i];
for(int j=0; j<noOfDimension; j++)
testClassADataSet [classCounterA] [j] =
dataSet [testDataIndex[i]] [j];

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 92

classCounterA++;
}
if (classLabel [testDatalndex[i] 1==2)
testDataIndexB[classCounterB] = testDatalndex[i];

for (int j=0; j<noOfDimension; j++)
testClassBDataSet [classCounterB] [j] =
dataSet [testDataIndex[i]] [j];
classCounterB++;

}

public void setDataVariables() // Reset data-related global parameters

paramObj . setGlobalDataSet ((£loat [] []1)dataSet.clone()};
paramObj.setGlobalClassLabel ((int [])classLabel.clone()) ;

paramObj.setGlobalTrainDatalndex ((int [])trainDatalndex.clone()) ;
paramObi.setGlobalTrainDatalndexA((int [])trainDataIndexA.clone()) ;
paramObj.setGlobalTrainDataIndexB ((int [])trainDataIndexB.clone()) ;
paramObj.setGlobalTrainClassADataSet ((float [] []) trainClassADataSet
.clone()) ;

paramObj .setGlobalTrainClassBDataSet { (float [] [1)trainClassBDataSet
.clone());
paramObj.setGlobalTestDatalIndex ((int [])testDatalndex.clone());
paramObj.setGlobalTestDataIndexA ((int [])testDatalndexA.clone()) ;
paramObj.setGlobalTestDataIndexB ((int []) testDatalndexB.clone()) ;
paramObj .setGlobalTestClassADataSet ((float[] [])testClassADataSet.c
lone());
paramObj.setGlobalTestClassBDataSet ((float [] [])testClassBDataSet.c
lone(}));

* eliteSolution.java
* Manages the elite solution set.

* @author Idowu Olayinka Oduntan
* @version August 2005

*/

public class eliteSolution

{

int localEliteSolutionSize, localSolutionSize;
public int (][] eliteSolutionSet;

public float[] eliteSolutionValues;

public int bottomQueueCounter;

public boolean foundInEliteSet;

public int eliminateIndex;

public eliteSolution(int(] [] givenEliteSolutionSet, float[]

givenSolutionvValue)

{
localEliteSolutionSize = eliteSolutionSet.length;
localSolutionSize = eliteSolutionSet[0].length;
eliteSolutionSet = (int[] [])givenEliteSolutionSet.clone() ;
eliteSolutionValues = (float[])givenSolutionValue.clone() ;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM

parameter paramObj = new parameter();

if (paramObj.optimumType.equals ("MIN"))
eliminateIndex = 0;

else

eliminateIndex = givenEliteSolutionSet.length-1;

}

public void addToEliteSet (int[] solution, float solutionValue)

{

boolean eliteSetChecker = checkInEliteSet ((int[])solution.clone(),
solutionvalue) ;

for(int m=0; m<eliteSolutionValues.length-1; m++)

{

for(int n=0; n<eliteSolutionValues.length-1-m; n++)

{

if (eliteSolutionValues([n] < eliteSolutionValues[n+1])

{

float templ = eliteSolutionValues([n];
eliteSolutionvValues{n] = eliteSolutionvValues[n+1];
eliteSolutionvValues([n+1l] = templ;

int[] temp2 = (int[])eliteSolutionSet [n].clone();
eliteSolutionSet[n] = (int([])eliteSolutionSet [n+1].clone();
eliteSolutionSet [n+1] = (int[])temp2.clone();

}
}

if (solutionValue<eliteSolutionValues [eliminateIndex])
removeFromEliteSet () ;
for (int 1=0; i<localSolutionSize; i++)
eliteSolutionSet [eliminateIndex] [i] = solution[i];
eliteSolutionvValues[eliminateIndex] solutionvValue;

}
}

public void removeFromEliteSet ()
{
for (int i=0; i<localEliteSolutionSize-1; i++)
{
for (int j=0; j<localSolutionSize; Jj++)
eliteSolutionSet{i] [j] = eliteSolutionSet [i+1] [j];
eliteSolutionValues[i] = eliteSolutionValues([i+1];
}
}

public boolean checkInEliteSet (int{] solution, float solutionValue)
{
foundInEliteSet = false;
int eliteSetCounter = 0;
while (eliteSetCounter<localEliteSolutionSize)
{
int solutionCounter = 0;
while (solutionCounter < solution.length &&

93

(eliteSolutionSet [eliteSetCounter] [solutionCounter] ==solution [solu

tionCounter]))

{

solutionCounter++;

if (solutionCounter>=solution.length-1)

{

foundInEliteSet = true;
break;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM

JER L.

}

eliteSetCounter++;

}

return foundInEliteSet;

* initialSolutionManager.java

* Generates an initial solution for the search routines

the multilevel searxch)

* @author
* @version

*/

Idowu Olayinka Oduntan
August 2005

public class initialSolutionManager

{

int [] newDatasetIndex;

public
public
public

int noOfDimensionSpace;
int solutionLength;
int{] initialSolution;

int startingDimensionLocal, endingDimensionLocal;

public

initialSolutionManager (int startingDimension, int endingDimensio

int solutionSize)

{

public

public

startingDimensionLocal = startingDimension;
endingDimensionLocal = endingDimension;

noOfDimensionSpace = endingDimension - startingDimension + 1;
solutionlength = solutionSize;

newDatasetIndex = new int [noOfDimensionSpace];
initialSolution = new int [solutionSizel;

int solutionSpaceIndex = startingDimension;

for (int i=0; i<noOfDimensionSpace; i++)

{
}

initialSolutionManager (int[] subFeatureSpace, int solutionSize)

newDatasetIndex[i] = solutionSpacelndex + i;

noOfDimensionSpace = subFeatureSpace.length;
solutionLength = solutionSize;

newDatasetIndex = new int [noOfDimensionSpacel];
initialSolution = new int [solutionSize]l;
newDatasetIndex (int []1) subFeatureSpace.clone() ;

|

int[] starterInitialSolution ()

int [] tempNewDatasetIndex = new int [noOfDimensionSpacel;
for (int j=0; j<noOfDimensionSpace; Jj++)
tempNewDatasetIndex[j] = newDatasetIndex([j];
for(int i=0; i1<noOfDimensionSpace; i++)
{
int randomCounter = (int) (((endingDimensionLocal -
(i+startingDimensionlLocal))* Math.random()) + i);
int temp = tempNewDatasetIndex[randomCounter];

%4

(basic tabu search and

n,

tempNewDatasetIndex [randomCounter] =tempNewDatasetIndex[i] ;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 95

/**

}

}

tempNewDatasetIndex[i] = temp;

for (int k=0;k<solutionLength;k++)

initialSolution[k] = tempNewDatasetIndex[k];

return (int[])initialSolution.clone();

public int[] starterInitialSolution(booclean featureSpaceFlag)

{

int [] tempNewDatasetIndex = new int [noOfDimensionSpace];

for

(int j=0; j<noOfDimensionSpace; Jj++)
tempNewDatasetIndex[j] = newDatasetIndex{j];

for(int i=0; i<noOfDimensionSpace; i++)

{

}

int randomCounter = (int) (((noOfDimensionSpace - i) *
Math.random()) + i);

int temp = tempNewDatasetIndex[randomCounter];
tempNewDatasetIndex [randomCounter] =tempNewDatasetIndex[i];
tempNewDatasetIndex[i] = temp;

for(int k=0;k<solutionlLength;k++)

{
}

initialSolution (k] = tempNewDatasetIndex[k];

return {(int[])initialSolution.clone() ;

* localOptimum.java

* Finds the local optimum for a given solution and neighborhood.
Idowu Olayinka Oduntan

August 2005

* @author
* @version

*/

public class localOptimum

{

public
public
public
public
public
public

float[]
float[]
float[]
float []
float []
float []
float[]
float []
float]

int [] [1 neighborList;

int [] localOptimumSolution;

float localOptimumValue;

int[] [] optimalEliteSolutionSet;
float [] optimalEliteSolutionSetValues;
int computationCounter = 0;

(]
(]
(]
(]
(]

localClassADataSet;
localClassBDhataSet;
localbataset;
currentClassADataSet;
currentClassBDataSet;

currentAMeanVector;
currentBMeanVector;

(]
(]

currentClassACovariance;
currentClassBCovariance;

int[] currentSolution;
int{] localDatalndexA;
int [] localDatalIndexB;
int[] localGivenSolutionSpace;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 96

int localNeighborSize, localNoOfIterations, localTabulistSize,
localSolutionSize, localNoOfEliteSolutions;
float localClassifierThreshold;

String fileName, delimiters, localDatasetType, localOptimumType;
boolean searchSpaceGiven;

dataClass dataObject;

matrix matrixObj;

neighborhood neighborObj;

objectiveFunction functionObj;

tabulist tabuObj;

localOptimum(parameter paramObj)

{
// initialize variables
localNeighborSize = paramObj.neighborhoodSize;
localNoOfIterations = paramObj.noOfIterations;
localTabulistS8ize = paramObj.tabulistSize;
localSolutionSize = paramObj.solutionSize;
localDatasetType paramObj .datasetType;
localOptimumType = paramObj.optimumType;

]

//create an instance each of the regquired objects

matrixObj = new matrix();

functionObj = new objectiveFunction (paramObij) ;

neighborObj = new neighborhood (paramObj) ;

tabuObj = new tabulist (localTabulListSize, localSolutionSize,
paramObj) ;

fileName = paramObj.dataFile;

delimiters = paramObj.delimiterChar;

searchSpaceGiven = false;

localOptimum(parameter paramObj, int[] givenSolutionSpace)

{
// create a copy of the given solution space
localGivenSolutionSpace = (int{])givenSolutionSpace.clone();
localNeighborSize = paramObj.neighborhoodSize;
localNoOfIterations = paramObj.noOfIterations;
localTabulistSize = paramObj.tabulistSize;
localSolutionSize = paramObj.solutionSize;
localDatasetType = paramObj.datasetType;
localOptimumType = paramObj.optimumType;
localNoOfEliteSolutions = paramObj.noOfEliteSolutions;
matrixObj = new matrix();
functionObj = new objectiveFunction (paramObj) ;
neighborObj = new neighborhood (paramObj, localGivenSolutionSpace) ;
tabuObj = new tabulist (localTabulistSize, localSolutionSize,
paramObj) ;
fileName = paramObj.dataFile;
delimiters = paramObj.delimiterChar;
searchSpaceGiven = true;

public float computeObjvalue (int[] contextSolution)

int[] localCurrentSolution = ({(int[])contextSolution.clone () ;

float objFunctValue;

objFunctValue = functionObj.meanSquareError (localCurrentSolution);
computationCounter++;

return objFunctValue;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 97

public int{] localOptimumSearch(int[] givenSolution)

{
float currentObjFunctValue, bestObjFunctValue, newObjValue;
float[] trackBestSolution = new float[localNeighborSize];
int [] trackBestSolutionIndex = new int [localNeighboxrSizel;
currentSolution = (int[])givenSolution.clone () ;
localOptimumSolution = (int{])givenSolution.clone();

currentObjFunctValue = computeObjValue (currentSolution) ;
bestObjFunctValue = currentObjFunctValue;

for(int i=0; i<localNoOflterations; i++)

{

candidateList { (int [])currentSolution.clone()); //Generate
neighborhood for the current Solution

//Compute and track the objective function for each feasible
golution in the neighborhood

for(int j=0; j<localNeighborSize; j++)

{

int [] newCurrentSolution = new int [givenSolution.lengthl];
trackBestSolutionIndex[j] = j;

for(int k=0; k<givenSolution.length; k++)

{

newCurrentSolution(k] = neighborList[j] [k];

}

trackBestSolution[j] = computeObjValue (newCurrentSolution) ;
}

//Re-arrange the neighborhood entries in the descending order of
objective function value.
for(int m=0; m<localNeighborSize-1; m++)

{

for(int n=0; n<localNeighborSize-1-m; n++)

{

if (trackBestSolution[n] < trackBestSolution[n+ll)

{

float templ = trackBestSolution[nl];

trackBestSolutionin] = trackBestSolutionin+1];
trackBestSolution[n+l] = templ;

int temp2 = trackBestSolutionIndex[n];
trackBestSolutionIndex[n] = trackBestSolutionIndex[n+1};
trackBestSolutionIndex[n+l] = temp2;

}

}

}

if (trackBestSolution[localNeighborSize-1] < bestObjFunctValue)

// Set the admissible solution with the best fitness value as
current and best solutions.

for(int r=0; r<currentSolution.length; r++)

{

currentSolution[r] =

neighborList [trackBestSolutionIndex [localNeighborSize-1]] [r];
localOptimumSolution[r] =

neighborList [trackBestSolutionIndex[localNeighborSize-1]] [r];
}

// Set the fitness value for this admissible solution as the best
value

bestObjFunctValue = trackBestSolution[localNeighborSize-1];
currentObjFunctvValue = trackBestSolution[localNeighborSize-1];

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM

tabuObj.addToTabu((int []) currentSolution.clone (),
trackBestSolution[localNeighborSize-1]) ;

}

else

{

boolean bestFound = false;

boolean tabuChecker;

int [J] tabuAdmissibleSolution = new int [localSolutionSizel;
int bestCounter = localNeighborSize-1;

while (!bestFound && bestCounter>=0)

{

for(int r=0; r<localSolutionSize; r++)
tabuAdmissibleSolution[r] =

neighborList [trackBestSolutionIndex[bestCounter]] [r];
tabuChecker =
tabuObj.checkInTabu ((int [])tabuAdmissibleSolution.clone()) ;
if ({tabuChecker)

{

currentSolution = (int{])tabuAdmissibleSolution.clone(};
currentObjFunctValue = trackBestSolution[bestCounter];
tabuObj.addToTabu((int []) tabuAdmissibleSolution.clone(),
trackBestSolution [bestCounter]) ;

bestFound = true;

1

else

bestCounter--;

}
}

candidatelist ((int [])currentSolution.clone()) ;

}

localOptimumvValue = bestObjFunctValue;
return (int[])localOptimumSolution.clone();

public int[][] localOptimumSearch(int[] [] givenSolutionSet, floatl[]
givenSolutionSetValues)

{

float currentObjFunctValue, bestObjFunctValue, newObjValue;
float[] trackBestSolution = new float[localNeighborSize]l;
int[] trackBestSolutionIndex = new int [localNeighborSize];
eliteSolution eliteSolutionObj = new

eliteSolution((int[] [1)givenSolutionSet.clone(),

(float [])givenSolutionSetValues.clone()) ;
optimalEliteSolutionSet =

(int []1 [])eliteSolutionObj.eliteSolutionSet.clone () ;
optimalEliteSolutionSetValues =

(float [])eliteSolutionObj.eliteSolutionvValues.clone() ;
for(int g=0; g<givenSolutionSet.length; g++)

{

currentSolution = (int([])givenSolutionSet{g] .clone();
localOptimumSolution = (int[])givenSolutionSet[qg].clone() ;
boolean feasibleSolution = false;

currentObjFunctValue = givenSolutionSetValues[g];
//computeObjvValue (currentSolution) ;

bestObjFunctValue = currentObjFunctValue;

for(int i=0; i<localNoOflterations; i++)

{

candidatelist ((int []) currentSolution.clone()); //Generate neighborhood
for the current Solution

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 99

//Compute and track the objective function for each feasible solution in
the neighborhood
for(int j=0; j<localNeighborSize; j++)

int [] newCurrentSolution = new int[givenSolutionSet [0].lengthl;
trackBestSolutionIndex[j] = j;
for{int k=0; k<givenSolutionSet[0].length; k++)

{

newCurrentSolution[k] = neighborList[j] [k];

}

trackBestSolution[j] = computeObjValue (newCurrentSolution);
}

//Re-arrange the neighborhood entries in the descending order of
objective function value.

for{int m=0; m<localNeighborSize-1; m++)

{

for (int n=0; n<localNeighborSize-1-m; n++)

{

if (tkrackBestSolution[n] < trackBestSolutionin+1l])

{

float templ = trackBestSolution[n];

trackBestSolution[n] = trackBestSolution[n+1];
trackBestSolution[n+l] = templ;

int temp2 = trackBestSolutionIndexin];
trackBestSolutionIndex[n] = trackBestSolutionIndex[n+l];
trackBestSolutionIndex[n+l] = temp2;

}

}

!

if (trackBestSolution[localNeighborSize-1] < bestObjFunctValue)

// Set the admissible solution with the best fitness value as current and
best solutions.

for(int r=0; r<currentSolution.length; r++)

{

currentSolution(r] =

neighborlList [trackBestSolutionIndex [localNeighborS8ize-11] [x];
localOptimumSolution[r] =

neighborList [trackBestSolutionIndex[localNeighborSize-1]] [r];

}

// Set the fitness value for this admissible solution as the best value
bestObjFunctValue = trackBestSolution{localNeighborSize-1];
currentObjFunctValue = trackBestSolution([localNeighborSize-1];

// add to tabu list

tabulObj.addToTabu ((int []) currentSolution.clone(),
trackBestSolution{localNeighborSize-1]) ;

// add to elite solution list
eliteSolutionObj.addToEliteSet ((int[])localOptimumSolution.clone(),
bestObjFunctValue) ;

}

else

{

boolean bestFound = false;

boolean tabuChecker;

int[] tabuAdmissibleSolution = new int [localSolutionSize];
int bestCounter = localNeighborSize-1;

while (!bestFound && bestCounter>=0)

{

for(int r=0; r<localSolutionSize; r++)
tabuAdmissibleSolutionfr] =

neighborList [trackBestSolutionIndex [bestCounter]] [x];

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 100

if (! (tabuObj.checkInTabu((int[])tabuAdmissibleSolution.clone()})))

{

currentSolution = (int[])tabuAdmissibleSolution.clone() ;
currentObjFunctValue = trackBestSolution[bestCounter];
tabuObj .addToTabu ((int []) tabuAdmissibleSolution.clone (),
trackBestSolution{bestCounter]) ;

bestFound = true;

!

else

bestCounter--;

}
}

candidateList ((int [])currentSolution.clone()) ;

}
}

return (int[] [])eliteSolutionObj.eliteSolutionSet.clone();

}

//generate cadidate list
public void candidateLlist (int{] currentLocalSolution)

{

neighborList =

(int {1 [1) (neighborObj.generateNeighbors (currentLocalSolution)) .clone () ;

//£ind neighborhood best

public float evaluateSolution{int[] currentSolution, boolean OptimumType)

{

neighborlList =

(int [] []) (neighborObj .generateNeighbors (currentSolution)) .clone () ;

return 0.0f; //return objfuntn value of local optimum.

* matrix.java
* This class creates the matrix object and enables manipulations
and vectors

* @author Idowu Olayinka Oduntan
* @version August 2005
*/

public class matrix

{

//Declare variables.

public int resultType;

public float[] sumVectorResult;
public float[] [] inverse;

//Empty matrix class constructor
public matrix()

{
}

// Method to multiply two matrices.

of matrices

public float[][] matrixMultiply(float[]{] firstMatrix, floatl[][]

secondMatrix)

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 101

{

int firstMatrixRow = firstMatrix.length;

int firstMatrixColumn = firstMatrix[0].length;

int secondMatrixRow = secondMatrix.length;

int secondMatrixColumn = secondMatrix{0].length;

float[] [] tempMatrixl = (float(] [])firstMatrix.clone();

float][] tempMatrix2 = (float[] [])secondMatrix.clone() ;

float[] {] newMatrix = new float{firstMatrixColumn] [secondMatrixRowl] ;

if (firstMatrixColumn!=secondMatrixRow)
return null;

else

{

for(int i= 0; i<firstMatrixRow; i++)

{

for(int j=0; j<secondMatrixColumn; j++)
{

for{(int k=0; k<firstMatrixColumn; k++)
{

newMatrix[i]l [J] = (tempMatrixl[il] (k] * tempMatrix2[k] [jl) +
newMatrix[i] [j];

!

)

}

}

return (float] [])newMatrix.clone() ;

}

// Method multiplies a matrix by a scalar and returns the new matrix
public float[][] scalarMultiply(float[] [] givenMatrix, float
scalarMultiplier)
{

float scalarFactor = scalarMultiplier;

int matrixRow = givenMatrix.length;

int matrixColumn = givenMatxrix[0] .length;

float [] [] newScaledMatrix;

newScaledMatrix = new float [matrixRow] [matrixColumn] ;

for{int 1=0; i<matrixRow; i++)

{

for(int j=0; j<matrixColumn; j++)

{

newScaledMatrix[i] [j] = givenMatrix[i] [j] * scalarFactor;

}

}

return (float{] [])newScaledMatrix.clone() ;

public float[] scalarVectorMultiply(float multiplier, float[]
givenVector)

{

float[] newVector = new float[givenVector.length];

for(int i=0; i<givenVector.length; i++)

newVector[i] = givenVector[i]l*multiplier;

return (float[])newVector.clone();

}

// Method adds two matrices and returns the new matrix;
public float[][] addMatrix(float[][] firstMatrix, float[][] secondMatrix)
{

int firstMatrixRow = firstMatrix.length;

int firstMatrixColumn = firstMatrix[0].length;

int secondMatrixRow = secondMatrix.length;

int secondMatrixColumn = secondMatrix[0].length;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM

}

float [] [] additionMatrix = new

float [firstMatrixRow] [firstMatrixColumn] ;
if (firstMatrixRow!=secondMatrixRow | |
firstMatrixColumn!=secondMatrixColumn)
return null;

for(int i=0; i<firstMatrixRow; i++)

{

for(int j=0; j<firstMatrixColumn; j++)

additionMatrix[i] [j] = firstMatrix(i] [j] + secondMatrix[il [j];

}
}

return (float[] []})additionMatrix.clone();

//Method adds two vectors and return a new vector
public float[] addVector(float[] firstVector, floatl[] secondvVector)

{

}

int firstVectorLength = firstVector.length;
int secondVectorLength = secondVector.length;
float[] additionVector = new float[firstVectorLength];
if (firstVectorLength!=secondVectorLength)
return null;

for(int j=0; j<firstVectorLength; j++)

additionVector[j]l = firstVector[j]l + secondVector[j];

}

return (float[])additionVector.clone();

102

//Method subtracts a matrix from another matrix and returns a new matrix
public float[][] subtractMatrix(float[]l[] firstMatrix, floatl[][]
secondMatrix)

{

}

int firstMatrixRow = firstMatrix.length;
int firstMatrixColumn = firstMatrix[0].length;
int secondMatrixRow = secondMatrix.length;
int secondMatrixColumn = secondMatrix[0].length;
float [] [] subtractMatrix = new float
[firstMatrixRow] [firstMatrixColumn] ;
if (firstMatrixRow!=secondMatrixRow ||
firstMatrixColumn!=secondMatrixColumn)
return null;
for(int i=0; i<firstMatrixRow; i++)
{
for(int j=0; j<firstMatrixColumn; j++)
{
subtractMatrix[i] [§]1 = firstMatrix[i] [j] -
secondMatrix ([i] [J];

}

return (float] [])subtractMatrix.clone();

//Method subtracts a vector from another vector and returns a new vector
public float[] subtractVector(float[] firstVector, flecat[] secondVector)

{

int firstVectorLength = firstVector.length;
int secondVectorLength = secondVector.length;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM

float [] subtractVector = new float [firstVectorLengthl];

if (firstVectorLength!=secondVectorLength)
return null;
for(int j=0; Jj<firstVectorLength; j++)

subtractVector[j] = firstVector[j] - secondvVector([jl;

}

return (float[])subtractVector.clone();

}

public float columnVectorMultiply ()

{
}

return 0;

//Method creates the transpose of the given matrix and return same

public float[] [l transposeMatrix(float(][] givenMatrix)
{

int matrixRow = givenMatrix.length;

int matrixColumn = givenMatrix[0].length;

float tempEntry =0;

float (][] tempMatrix = new float [matrixRow] [matrixColumn] ;
float] [] transposeMatrix = new float[matrixColumn] [matrixRow] ;

for(int i=0; i<matrixColumn; i++)

{

for(int j=0; j<matrixRow; J++)

{
}
}

return (float (] [])transposeMatrix.clone();

transposeMatrix[i] [j] = givenMatrixI[jl [i];

}

//Method multiplies a matrix by a vector and returns a vector

public float[] vectorMatrixMultiply (float[] givenVector, floatl][]

givenMatrix)

{

int vectorLength = givenVector.length;
int matrixRow = givenMatrix.length;
int matrixColumn = givenMatrix[0].length;

float [] newVector = new float [matrixColumn] ;

if (vectorLength!=matrixRow)

{
}

else

{

return null;

for(int j=0; j<matrixColumn; j++)

{

for(int k=0; k<vectorLength; k++)

{

newVector [j] = (givenVector([k] * givenMatrix[k] [j])
newVector [j] ;

}
}
}

return (float[])newVector.clone();

103

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 104

//Method multiplies a vector by a matrix and returns a vector
public float[] matrixVectorMultiply(float([][] givenMatrix, float(]
givenVector)

{

int vectorLength = givenVector.length;
int matrixRow = givenMatrix.length;
int matrixColumn = givenMatrix[0].length;
float [] newVector = new float[matrixColumn];
if (vectorLength!=matrixColumn)

{

return null;

}

else

{

for{int j=0; j<matrixRow; j++)
{

for(int k=0; k<vectorLength; k++)

{
newVector[jl = (givenVector(k] * givenMatrix[jl[k]) + newVector[j];
}
}
}

return (float(])newVector.clone() ;

}

//Method multiplies a vector by a vector and returns a number
public float vectorVectorMultiply (float{] firstVector, floatl[]
secondVector)
{

int firstVectorLength = firstVector.length;

int secondVectorLength = secondVector.length;

float multiplyValue =0.0f;

if (firstVectorLength!=secondVectorLength)

return 0.0f;

else

{

for(int k=0; k<firstVectorLength; k++)

{

multiplyValue = (firstVector[k] * secondVectorlk]) +

multiplyValue;

}

return multiplyValue;

public float getElement ()

{
return 0.0f£;
}
public int returnRow(float(] [] givenMatrix)

return 0;

public int returnColumn ()

return 0;

public float[]{] inverseMatrix(float (][] givenMatrix)

{

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 105

int matrixDimension = givenMatrix.length;
float[] [] tempMatrix0 = new

float [matrixDimension] [matrixDimension] ;
for(int i=0; i<matrixDimension; i++)
for(int j=0; j<matrixDimension; j++)
tempMatrix0[i] [J] = givenMatrix[i] [j];

inverse = new float [matrixDimension] (matrixDimension] ;
float[] tempMatrix = new float [matrixDimension] ;

float pivotElement, factor;

for (int 1=0; i<matrixDimension; i++)

for(int j=0; j<matrixDimension; j++)

{

if (i==73)
inversel[i] [j]1 = 1.0f;
else

inverse[i] [j] = 0.0f;

}
}

for(int i=0; i<matrixDimension; i++)

{

for (int j=i+1; j<matrixDimension; Jj++)

if (Math.abs (tempMatrix0[i] [1]) < Math.abs(tempMatrix0[j] [i]))
{

for(int k =0; k<matrixDimension; k++)

{

tempMatrix[k] = tempMatrixoO([i] [k];

tempMatrix0[i] [k] = tempMatrixO[(j] [k];

tempMatrix0[j] [k] = tempMatrix[k];

tempMatrix[k] = inverseflil [k];

inverse(i] [k] = inverse(j] [k];

inverse[j] [k] tempMatrix[k];

}

}
}

}

for{int i=0; i<matrixDimension; i++)

{
pivotElement = tempMatrixO[i] [i];
for (int j=matrixDimension-1; j>=0; j--)
{
tempMatrix0[i] [j] = tempMatrix0I[i] [j]/pivotElement;
inverse[il [§] = inversel[i] [j]/pivotElement;
}
for(int j=i+1l; j<matrixDimension; j++)
{
factor = -1 * tempMatrixO0[j] [i];
for (int k=0; k<matrixDimension; k++)
{
tempMatrix0[j] [k] = tempMatrix0[j][k] + (tempMatrixO[i] [k]l* factor);
inverse(j] [k] = inversel[jl[k] + (inverseli] [k]* factor);
}
}
}
for(int i=matrixDimension-1; i>=1; i--)
{
for(int j=i-1; j>=0; j--)
{
factor = -1 * tempMatrix0[j] [i];
for (int k=0; k<matrixDimension; k++)

{

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM

tempMatrix0[j] [k] = tempMatrixO[j] [k] + tempMatrixO0[i] [k]*factor;
inverse([j] (k] = inversel[j] [kl + inversel[i] [k]l*factor;

}
}

return {(float([] [])inverse.clone();

* neighbourhood.java

* This class generates the neighborhood set for a given solution
* @author Idowu Olayinka Oduntan

* @version August 2005

public class neighborhood
{
public int startDimension, endDimension;
public int neighborLength;
public int solutionLength;
public int noOfReplaceables;
public int totalNoOfFeatures;
public int[] removelIndex;
public int[] replacelIndex;
public int[] [1 neighborCandidatelist;
public int([] replaceableSolution;
public int[] newSolutionSpace;
public boolean newSolutionSpaceGiven = false;
int [] randomGenerator;
int [} tempRandomGenerator;

public neighborhood (parameter paramObj)

{

startDimension = paramObj.startDimension;

endDimension = paramObj.endDimension;

noOfReplaceables = paramObj.hammingDistance;
solutionLength = paramObj.solutionSize;

neighborLength = paramObj.neighborhoodSize;
totalNoOfFeatures = endDimension - startDimension + 1;
replaceableSolution = new int [noOfReplaceables];
neighborCandidatelList = new int [neighborLengthl] [solutionLength] ;
for(int i=0; i<noOfReplaceables; i++)
replaceableSolution[1]=0;

newSolutionSpaceGiven = false;

}

public neighborhood (parameter paramObj, int[] givenSolutionSpace)
{

noOfReplaceables = paramObj.hammingDistance;

solutionLength = paramObj.solutionSize;

neighborLength = paramObj.neighborhoodSize;

totalNoOfFeatures = givenSolutionSpace.length;

replaceableSolution = new int [noOfReplaceables];
neighborCandidatelList = new int [neighborLength] {solutionLength];
newSolutionSpace = new int [solutionLengthl];
for(int i=0; i<noOfReplaceables; i++)

replaceableSolution[il=0;

106

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 107

newSolutionSpaceGiven = true;
newSolutionSpace = (int{])givenSolutionSpace.clone /() ;

}

public int ([l [] generateNeighbors(int[] argSolution)

{

int (] updatedSolutionl = new int{solutionLength];

int[] tempSolutionList = new int [solutionLength];

int[] tempSolutionList2 = new int [solutionLength];

int [1 localGivenSolution = (int[])argSolution.clone();
tempSolutionList2 = (int(])argSolution.clone();

for(int m=0; m<neighborLength; w++)

{

tempSolutionList = (int[])argSolution.clone();
updatedSolutionl = (int([])argSolution.clone () ;

//randomly re-arrange the solution items in tempSolutionList
for(int i=0; i<solutionLength; i++)

{

int randoml = (int) (((solutionLength - i)* Math.random()) + 1);
int templ = tempSolutionList [randoml] ;
tempSolutionlList [randoml] =tempSolutionList [i];
tempSolutionList [i] = templ;

//Select one of the re-arranged entries as the replaceable item.
for (int k=0;k<noOfReplaceables; k++)

{

replaceableSolutionlk] = tempSolutionList [k];

}

// generate replacing solution for the replaceable item by creating a
list of items that are not in the present solution.
tempRandomGenerator = new int [totalNoOfFeatures - solutionLength] ;
int tempSolutionCounter = 0;

boolean solutionFlag;

for(int i=0; i<totalNoOfFeatures; i++)

//check if the ith feature is in the current solution feature subset.
golutionFlag = true;

for(int j=0; j<solutionLength; j++)

{

if (newSolutionSpaceGiven==true)

{

if (newSolutionSpace[i]==1localGivenSolution{jl)

{
solutionFlag=false;
}
!

else

{

if ((i+startDimension)==1localGivenSolution[]j])

{

solutionFlag=false;

}
}
}

if (solutionFlag==true)

if (newSolutionSpaceGiven==true)

{

tempRandomGenerator [tempSolutionCounter] = newSolutionSpace([i];

}

else

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 108

tempRandomGenerator [tempSolutionCounter] = i+startDimension;
tempSolutionCounter++;
solutionFlag = true;

}

//Randomly re-arrange the features that are not in the present solution
feature subset.

int random2;

for(int i=0; i< (totalNoOfFeatures-solutionlength); i++)

{

random2 = (int) (((totalNoOfFeatures-solutionlLength-i)* Math.random()) +
i);

int temp2 = tempRandomGenerator [random2] ;
tempRandomGenerator [random2] =tempRandomGenerator [i] ;
tempRandomGenerator [i] = temp2;

}

int counter2 =0;

boolean replaceFlag, neighborFlag=false;

for(int i1=0; i<solutionLength; i++)

replaceFlag = true;
for(int j=0; j<noOfReplaceables; j++)

if (updatedSolutionl [i] == replaceableSolution[jl)
{

replaceFlag=false;
neighborCandidateList [m] [1]
counter2++;

break;

}

}

if (replaceFlag==true)

neighborCandidateList [m] [i] = updatedSolutionl{i];
if (neighborCandidateList [m] [1]1==0)

neighborFlag = true;

tempRandomGenerator [counter2] ;

if (neighborFlag==true)

{

System.out.println("Neighborhood of a Zero entxy");
for(int i=0; i<solutionLength; i++)

{

System.out.print (neighborCandidateList [m] [1]+"\t");

}

System.out.println() ;

System.out.println ("Tempgenerator is: ");

for{(int j=0; j<totalNoOfFeatures - solutionLength; j++)

{

System.out.println (tempRandomGenerator [jl);

}
System.out.println() ;
}
}

return (int (] [])neighborCandidateList.clone() ;

* objectiveFunction.java
* This class computes all objective function-related values
* @author Idowu Olayinka Oduntan

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 109

* @version August 2005
*/
public class objectiveFunction

{

// Declare variables.

public int[] validatingTrainSet; //Complete training set index

public int[] wvalidatingClassLabel; //Complete dataset class labels

public float[][] validatingDataSet; //Complete training set dataset

matrix matrixInstance; //Create an instance of the matrix class for matrix
and vector manipulation

parameter localParamObj;

int{] localTempFeatureSpace;

public cbjectiveFunction(parameter paramObj)

{

localParamObj = paramObj;
matrixInstance = new matrix();

validatingTrainSet = (int [1)paramObj.globalTrainDataIndex.clone() ;
validatingClassLabel = {int[])paramObj.globalClassLabel.clonel();

if ({paramObj . tempDataFlag)

validatingDataSet = (float[] [])paramObj.globalDataSet.clone();

else

{

validatingDataSet = (float [] [])paramObj.tempGlobalDataset.clone ()} ;
localTempFeatureSpace = (int []1)paramObj.globalTempLevelSubspace.clone () ;

}

public objectiveFunction(parameter paramObj, floatI[][] givenDataset)

localParamObj = paramObj;
matrixInstance = new matrix();

validatingTrainSet = (int [1)paramObj .globalTrainDataIndex.clone () ;
validatingClassLabel = (int[])paramObj.globalClassLabel.clone();
validatingDataSet = (float[] [])givenDataset.clone();

}

public float[][] computeSpooledCovariance(float(]{] firstCovariance, int
sampleSizel, float(][] secondCovariance, int sampleSize2)

{

int scalarFactorl = sampleSizel - 1;

int scalarFactor2 = sampleSize2 - 1;

int scalarFactor3 = sampleSizel + sampleSize2 - 2;
float [] [] tempCovariancel =

(float] [])matrixInstance.scalarMultiply (firstCovariance,
scalarFactorl) .clone() ;

float [] [] tempCovariance2 =

(float [] [])matrixInstance.scalarMultiply (secondCovariance,
scalarFactor2) .clone() ;

float[] [] tempCovariance3 =

(float [] [1)matrixInstance.addMatrix (tempCovariancel,
tempCovariance2) .clone () ;
float[] [] spooledCovariance =

(float[] [])matrixInstance.scalarMultiply (tempCovariance3,
1.0f/scalarFactor3) .clone () ;
return (float[] [])spooledCovariance.clone() ;

}

public float[][] computelInverseSpooledCovariance (float[] [] firstCovariance, int
sampleSizel, float[] [] secondCovariance, int sampleSize2)

{

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 110

float [} [] localSpooledCovariance =

(float [] []) computeSpooledCovariance (firstCovariance, sampleSizel,

secondCovariance, sampleSize2).clone();

float[] [} inverseSpooledCovariance =

(float[] [1)matrixInstance.inverseMatrix(localSpooledCovariance) ;
return (float[] [])inverseSpooledCovariance.clone () ;

}

public float computeMahalanobis(float([][] firstCovariance, int sampleSizel,
float[] [] secondCovariance, int sampleSize2, int dimension, float({]
firstMeanVector, float([] secondMeanVector)
{

float[] [1 locallInverseSpooledCovariance =

(float [] []1) computeInverseSpooledCovariance (firstCovariance, sampleSizel,

secondCovariance, sampleSize2);

System.out.println("Inverse Spooled covariance");

for(int i=0; i<localInverseSpooledCovariance.length; i++)

{

System.out.println("\n") ;

for(int j=0; j<locallnverseSpooledCovariance{0].length; j++)

System.out .print (localInverseSpooledCovariance [i] [F1+"\t");

}
}

float[] meanVectorDifference =

(float [])matrixInstance.subtractVector (firstMeanVector,
secondMeanVector) .clone () ;

for(int i=0; i<meanVectorDifference.length; i++)

System.out .print (meanVectorDifference [1]+"\t");

float[] tempMultiplyl =

(float [])matrixInstance.vectorMatrixMultiply (meanVectorDifference,
locallnverseSpooledCovariance) .clone () ;

for{int i=0; i<tempMultiplyl.length; i++)

System.out.print (tempMultiplyl [i]+"\t"};

float tempMultiply2 = matrixInstance.vectorVectorMultiply (meanVectorDifference,
tempMultiplyl) ;

Double doubleObj = new Double (Math.sgrt (tempMultiply2));

float mDistanceValue = doubleObj.floatValue() ;

if (mDistanceValue>=0.0f)

return mDistanceValue;

else

return 0.0£;

}

public float[] computeMeanVector (float [][ldatavValues)
{

int rowLength = dataValues.length;.

int colLength = dataValues[0].length;

float sumMeanValue;

float [] meanVector;

float [] [] datasetValues;

datasetValues = new float [rowLength] [colLengthl];

meanVector = new float [colLength];

for(int i1=0; i<rowlLength; i++)

{

for(int j=0; j<colLength; j++)

{

datasetValues[i] [j] = dataValues[i] [j];

}

}

for(int i1 = 0; i<colLength; i++)

{

sumMeanValue = 0.0f;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHEM

return

}

public

for(int j=0; j<rowLength; j++)

{

sumMeanValue = sumMeanValue + datasetValues/[j] [i];

}

meanVector[i] = sumMeanValue/rowLength;

}

(float])meanVector.clone () ;

float[] [] computeCovariance (float[] [] dataValues, float[]

meanVectorValues)

{

int rowLength = dataValues.length;

int colLength = dataValues[0].length;

float [] meanVector;

float[] referenceColumnVector;

float[] columnVector;

float (] [1 datasetValues;

float[] [] covarianceMatrix;

float covarianceMatrixValue=0.0f;

datasetValues = new float [rowLengthl] [colLength];
meanVector = new float [colLengthl;
covarianceMatrix = new float [colLengthl] [colLength];
referenceColumnVector = new float [rowLengthl];
columnVector = new float [rowLength];
datasetValues = dataValues;

meanVector = (float[])meanVectorValues.clone() ;
for(int i=0; i<rowLength; i++)

{

for(int j=0; j<colLength; j++)

{

datasetValues[i] [j] = datavValues[i] [j];

}

}

for(int 1i=0; i<colLength; i++)

{

for(int j=i; j<colLength; j++)
if(i==7)

for (int k=0; k<rowLength; k++)
ieferenceColumnVector[k]=datasetValues[k][j]—meanVector[j];
}

}

else

{

for(int k=0; k<rowLength; k++)
iolumnVector[k]=datasetVa1ues[k][j]—meanVector[j];

}

}

for(int n=0; n<rowLength; n++)

{

if (i==9)

111

covarianceMatrixValue = referenceColumnVector [n]*referenceColumnVector [n]

+ covarianceMatrixValue;
else

covarianceMatrixValue = referenceColumnvVector [n]*columnVector[n] +

covarianceMatrixValue;

}

covarianceMatrix[i] [§] = covarianceMatrixValue/ (rowLength-1);

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM

public

covarianceMatrix{j] [i] = covarianceMatrix([i] [j];
covarianceMatrixValue =0.0f;

}
}

return (float (] [])covarianceMatrix.clone () ;

}

float meanSquareError (int [] currentSolution)

int [] localCurrentSolution = (int[])currentSoclution.clone();
float meanSquareError=0.0f;

float validateReference;

float[] errorvValues = new float[validatingTrainSet.lengthl];
int[] tempTrainSet = new intl[validatingTrainSet.length-11];

int {] completeTrainset = (int[])validatingTrainSet.clone();
float[] [] validateDataSeth;

float[] [] validateDataSetB;

float[] [] validateCovariancel;

float [] [] validateCovarianceB;

float [] [1 validatelnverseCovariance;

float[] validateMeanA;

float[] validateMeanB;

float[] validateSumMeanVector;
float [] validateDiffMeanVector;
float[] validateConstantVector;

float [] testValidateVector = new float([localCurrentSolution.lengthl];

int classLabelIndicatoxr;

int validateClassLabelIndicator;

int completeCounterA = 0;

int completeCounterB = 0;

// Compute whole-sample covariance inverse.
for(int j=0; j<completeTrainset.length; j++)

if (validatingClassLabel [completeTrainset [j]1==1)
completeCounterA++;

else if (validatingClassLabel [completeTrainset [j]]==2)
completeCounterB++;

float [] [] completeDataSetA = new
float [completeCounterA] [currentSolution.length];
float[]l [] completeDataSetB = new

float [completeCounterB] [currentSolution. lengthl;
int completeCounterl=0;

int completeCounter2=0;

int totalCompleteCounter;

for(int j=0; j<completeTrainset.length; j++)

if (validatingClassLabel [completeTrainset [j]]==1)

{

for (int k=0; k<currentSolution.length; k++)

if (!localParamObj.tempDataFlag)
completeDataSetA [completeCounterl] [k] =

validatingDataSet [completeTrainset[j]] [localCurrentSolutionlk]-171;

else

{

for(int m=0; m<localTempFeatureSpace.length; m++)

if (localCurrentSolution [k] ==localTempFeatureSpace [m])
{

completeDataS8etA [completeCounterl] [k] =
validatingDataSet [completeTrainset[j]] [m];

break;

112

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM

completeCounterl++;

}

else if (validatingClassLabel [completeTrainset {j]]1==2)

{

for(int k=0; k<currentSolution.length; k++)

if (!localParamObj.tempDataFlag)
completeDataSetB{completeCounter2] [k] =
validatingDataSet [completeTrainset [j]1] [localCurrentSolution (k]-11;
else

{

for(int m=0; m<localTempFeatureSpace.length; m++)

if (localCurrentSolution[k]==1ocalTempFeatureSpace [m])
{

completeDataSetB {completeCounter2] [k] =
validatingDataSet [completeTrainset [j]] [m];

break;

}

}

}

completeCounter2++;

}

// Total number of samples in both classes
totalCompleteCounter = completeCounterl + completeCounter2;
// Mean vector of class A using all the samples

float[] completeMeanA =

(float []1) computeMeanVector (completeDataSeta) .clone () ;

// Mean vector of class B using all the samples
float [] completeMeanB =
(float []) computeMeanVector (completeDataSetB) .clone () ;

// Sum of mean vectors for class A and B {(i.e. y in the reference text)
float [] completeMeanSum =

113

(float [])matrixInstance.addVector (completeMeanA, completeMeanB); //i.e. Y

// Difference of mean vectors for class A and B (i.e. z in the reference
text)

float [] completeMeanDifference =

(float [])matrixInstance.subtractVector (completeMeanA, completeMeanB) ;
//i.e. Z

// Class A covariance using all the samples
float [] [] completeCovariancel =
(float[] []) computeCovariance (completeDataSetA, completeMeand).clone();

// Class B covariance using all the samples
float [} [] completeCovarianceB =
(float [] []) computeCovariance (completeDataSetB, completeMeanB) .clone();

// inverse spooled covariance using all the samples

float[] [] completeInverseSpooled =

(float [] []) computeInverseSpooledCovariance (completeCovarianced,
completeDataSetA.length, completeCovarianceB,
completeDataSetB.length) .clone () ;

// Estimate train classifier parameters for cross-validation
for(int i=0; i<validatingTrainSet.length; i++)

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 114

{

classLabellIndicator = validatingClassLabel [validatingTrainSet[i]];

int counter =0;

int counterA = 0;

int counterB = 0;

int classCounter = 0;

float constantCK =0.0f;

float[] adjustedMeanVector = new float [currentSolution.length];
float [] [1 inverseSpooledCovaraianceWithout;

float [] excludedVector = new float [currentSolution.length]; // i.e. x(i)

// Extract the excluded vector, i.e. x(i)
for (int k=0; k<currentSolution.length; k++)
excludedVector [k] = validatingDataSet [validatingTrainSet[i]] [k];

// Training set without the excluded vector
for(int j=0; j<validatingTrainSet.length; j++)

if(it=7)

{

tempTrainSet [counter] = validatingTrainSet[jl];
counter++;

}
}

for (int j=0; j<tempTrainSet.length; Fj++)

if (validatingClassLabel [tempTrainSet [j]]==1)
counterA++;

else if(validatingClassLabel [tempTrainSet{j]]==2)
counterB++;

//Compute the constantCK i.e. c(k) in the reference.
if (classLabelIndicator==1)

adjustedMeanVector =

(float [])matrixInstance.subtractVector (excludedVector, completeMeanh) ;
constantCK = completeCounterl/ ((completeCounterl-

1) * (totalCompleteCounter-2}) ;

classCounter = completeCounterl;

}

else if (classLabelIndicators==2)

{

adjustedMeanVector =

(float [l)matrixInstance.subtractVector (excludedvVector, completeMeanB) ;
constantCK = completeCounter2/ ({(completeCounter2-

1) * (totalCompleteCounter-2}) ;

classCounter = completeCounter2;

}

//Compute the inverse of the spooled covariance without the excluded
vector.

float[] numeratorpProductl =

(float [])matrixInstance.vectorMatrixMultiply (adjustedMeanVector,
completelnverseSpooled) .clone () ;

float numeratorpProduct2 =

matrixInstance.vectorVectorMultiply (adjustedMeanVector,
numeratorpProductl) ;

float [] denorminatorpProductl =

(float [])matrixInstance.matrixVectorMultiply (completeInverseSpooled,
adjustedMeanvVector) ;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 115

float denorminatorpProduct2 =
matrixInstance.vectorVectorMultiply (denorminatorpProductl,
adjustedMeanVector) ;

float multiplierConstant = (constantCK * numeratorpProduct)/ (1l -
constantCK * denorminatorpProduct2) ;

float []1[] tempInverseSpooledCovaraianceWithout =

(float [] [])matrixInstance.scalarMultiply (completeInverseSpooled,
multiplierConstant) .clone() ;

validateInverseCovariance =

(float [] [l)matrixInstance.addMatrix (completeInverseSpooled,
tempInverseSpooledCovaraianceWithout) ;

validateDataSetA = new float[counterA] [currentSolution.length];
validateDataSetB = new float [counterB] [currentSolution.length];
int tempCounterl=0;

int tempCounter2=0;

for(int j=0; j<tempTrainSet.length; j++)

if (validatingClassLabel [tempTrainSet [j]]1==1)
{

for (int k=0; k<currentSolution.length; k++)

{

if (!localParamObj . tempDataFlag)

{

validateDataSetA[tempCounterl] [k] =
validatingDataSet [tempTrainSet [j]] [localCurrentSolution[k]-11;

}

else

{

for(int m=0; m<localTempFeatureSpace.length; m++)

{

if (localCurrentSolution[k] ==localTempFeatureSpace [m])
{

validateDataSetA [tempCounterl] [k] =

validatingDataSet [tempTrainSet [j]1] [m];

break;

}
}
}
}

tempCounterl++;

else if(validatingClassLabel [tempTrainSet [j]]==2)

{

for(int k=0; k<currentSolution.length; k++)

if (!localParamObj.tempDataFlag)

{

validateDataSetB [tempCounter2] [k] =
validatingDataSet [tempTrainSet [j]] [localCurrentSolution (k] -1];

}

else

{

for(int m=0; m<localTempFeatureSpace.length; m++)

if (localCurrentSolution (k] ==localTempFeatureSpace[m])
{

validateDataSetB [tempCounter2] [k] =

validatingDataSet [tempTrainSet[j]] [m];

break;

}
}
}

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 116

}

tempCounter2++;

}

}

validateMeanA = (float[])computeMeanVector (validateDataSetA) .clonel();
validateMeanB = (float [])computeMeanVector (validateDataSetB) .clone() ;
validateSumMeanVector = (float[]) (matrixInstance.addVector (validateMeand,

validateMeanB)) .clone() ;

validateDiffMeanVector =

(float[]) (matrixInstance.subtractVector(validateMeanhd,
validateMeanB)) .clone () ;

validateConstantVector =

(float[])matrixInstance.vectorMatrixMultiply (validateDiffMeanVector,
validateInverseCovariance) .clone () ;

validateReference = 0.5f *
matrixInstance.vectorVectorMultiply(validateConstantVector,
validateSumMeanVector) ;

for(int m=0; m<localCurrentSolution.length; m++)

{

if (! localParamObj.tempDataFlag)

testValidateVectoxr[m] =

validatingDataSet [validatingTrainSet {i]] [localCurrentSolution[m]-1];
else

{

for(int n=0; n<localTempFeatureSpace.length; n++)

{

if (localCurrentSolution[m] ==localTempFeatureSpace [n]l)

{

testValidateVector[m] = validatingDataSet[validatingTrainSet(i]] [n];
break;

}
}
}
}

float testClassLabelValue =
matrixInstance.vectorVectorMultiply (validateConstantVector,
testValidateVector) ;

if (matrixInstance.vectorVectorMultiply(validateConstantVector,
testValidateVector) >=validateReference)
validateClassLabelIndicator = 1;

else

validateClasslLabelIndicator = 2;

if (validateClassLabelIndicator!=classLabelIndicator)
meanSquareError = meanSquareError + 1;

}

return meanSquareError/validatingTrainSet.length;

* parameter.java
* This class sets and resets all global parameters for the multilevel and
basic tabu search alogrithms.

* @author Idowu Olayinka Oduntan
* @version August 2005
*/

public class parameter

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 117

// Object initialization

//Dataset parameters

public String dataFile = "albi_vs_dubl®";
public int noOfSamples = 337;

public int noOfTrainSamples = 202;

int origNoOfSamples = 337;

int origNoOfTrainSamples = 202;

//public String dataFile = "albi vs para";
//public int noOfSamples = 304;

//public int noOfTrainSamples = 124;
//int origNoOfSamples = 304;

//int origNoOfTrainSamples = 124;

public String delimitexrChar = " []l=;:\t ";
public String datasetType = "train";
public String optimumType = "MIN";

public int noOfHeaderLines = 3;
public int noOfHeaderParameters = 4;
public int noOfClasses = 2;

public int noOfDimension = 1500;

int origNoOfHeaderLines = 3;

int origNoOfHeaderParameters = 4;
int origNoOfClasses = 2;

int origNoOfDimension = 1500;
String origDatasetType = "train";

//Dataset variables

public int[] globalTrainDatalIndex;
public int[] globalTestDatalndex;
public int[] globalTrainDataIndexA;
public int{] globalTrainDataIndexB;
public int[] globalTestDatalIndexA;
public int{] globalTestDataIndexB;
public int[] globalClassLabel;

public float[] [] globalDataSet;

public float(] [] globalTrainClassADataSet;

public float[] [] globalTrainClassBDataSet;

public float[] [] globalTestClassBhDataSet;

public float[] [] globalTestClassBDataSet;

public float[] [] tempGlobalDataset;

public int[] globalTempLevelSubspace;

public int([] globalTempLevelSubspaceWithComponents;
public boolean tempDataFlag = false;

//Search parameters

public String searchType = "tabu"
public int searchSpace;

public int solutionSize = 10;

public int defaultSolutionSize = 10;
public int partialSolutionSize = 10;
public int finalSolutionSize = 10;
public int baseNoOfIterations = 10;
public int noOflIterations = 25;

public int tempNoOflterations = 25;
public int tabuListSize=1500/50; //750;
public int neighborhoodSize = 1500/15;//1500;
public int hammingDistance = 1;

String origSearchType = "tabu"
int origSearchSpace = 1500;
int origSolutionSize = 10;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM

int origDefaultSolutionSize
int origPartialSolutionSize
int origFinalSolutionSize =
int origBaseNoOfIterations =

= 10;
= 10;
10;

10;

int origNoOflterations = tempNoOfIlterations;

int origTabuListSize = 1500/
int origNeighborhoodSize = 1
int origHammingDistance = 1;

//Multilevel parameters
public int noOfPartitions =
public int noOfLevels = 3;
public int reductionFactor =

50; //750
500/15; //1500

3;

2;

public int partitionSolutionSize = 30;
public int noOfEliteSolutions = 5;
public int clusterWindow = 2;

//String partitionType = "fixed";
String partitionType = "random'";
int origNoOfPartitions = 3;

int origNoOfLevels = 3;

int origStartDimension = 1;
int origEndDimension = 1500;
int origReductionFactor = 2;

//Misc parameters
public String outputMedia = "file';

public String outputFileName = "outputFile";
public int noOfRuns = 10;
public int randomnessFactor =
public int startDimension = 1
public int endDimension = 150

5; //5;
0;

public parameter ()

{
}

// Set dataset variables
public void setGlobalDataSet (float[] [] dataSet)

{
}

public void setGlobalClassLabel (int [] classLabel)

{
}

// Set temp dataset variables

globalDataSet = (float[][])dataSet.clone();

globalClassLabel = (int[])classLabel.clone();

public void setTempGlobalDataset (int[] tempLevelSubspace, intl(]

tempLevelWithComponents, float[] [] tempDataset)

{

tempGlobalDataset = (float({] [])tempDataset.clone();

globalTempLevelSubspace = (int[])tempLevelSubspace.clone();

globalTempLevelSubspaceWithComponents =
(int []) tempLevelWithComponents.clone () ;
tempDataFlag = true;

}

// Set temp dataset variables
public void resetTempGlobalDataset ()

{

tempDataFlag = false;

118

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 119

// Set train dataset variables:
public void setGlobalTrainDataIndex(int[] trainDatalIndex)

globalTrainDataIndex = (int[])trainDatalndex.clone() ;

public void setGlobalTrainDataIndexA(int[] trainDataIndexA)

globalTrainDataIndexA = (int[])trainDatalndexA.clone();

public void setGlobalTrainDataIndexB (int[] trainDataIndexB)

globalTrainDataIndexB = (int[])trainDatalIndexB.clone();

public void setGlobalTrainClassADataSet (float[] [] trainClassADataSet)

globalTrainClassADataSet = (float[] [])trainClassADataSet.clone() ;

public void setGlobalTrainClassBDataSet (float[] [] trainClassBDataSet)

globalTrainClassBDataSet = (float[] [])trainClassBDataSet.clone();

// Set test dataset variables:
public void setGlobalTestDataIndex(int [] testDatalndex)

{
}

public void setGlobalTestDataIndexA(int[] testDatalndexA)

{
}

public void setGlobalTestDataIndexB(int[] testDatalIndexB)

{
}

public void setGlobalTestClassADataSet (float[] [] testClassADataSet)

{
}

public void setGlobalTestClassBDataSet (float[] [] testClassBDataSet)

{
}

/* Dataset parameters */
// Set the number of hearderlines
public void setNoOfHeaderLines (int newValue)

{
}

// Reset the number of hearderlines
public void resetNoOfHeaderLines ()

globalTestDataIndex = (int{])testDatalIndex.clone() ;

globalTestDataIndexA = (int[])testDataIndexA.clone () ;

globalTestDataIndexB = (int[])testDatalndexB.clone();

globalTestClassADataSet = (float[] [])testClassADataSet.clone();

globalTestClassBDataSet = (float[] [])testClassBDataSet.clone();

noOfHeaderLines = newValue;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 120

{
}

// Set the number of hearder parameters
public void setNoOfHeaderParameters (int newValue)

{
}

// Reset the number of hearder parameters
public void resetNoOfHeaderParameters ()

{
}

// Set the number of samples
public void setNoOfSamples (int newValue)

{

noOfHeaderLines = origNoOfHeadexLines;

noOfHeaderParameters = newValue;

noOfHeaderParameters = origNoOfHeaderParameters;

noOfSamples = newValue;

// Reset the number of samples
public void resetNoOfSamples ()

{
}

// Set the number of train samples
public void setNoOfTrainSamples (int newValue)

{
}

// Reset the number of train samples
public void resetNoOfTrainSamples ()

{
}

// Set the number of classes
public void setNoOfClasses(int newValue)

{

noOfSamples = origNoOfSamples;

noOfTrainSamples = newValue;

noOfTrainSamples = origNoOfTrainSamples;

noOfClasses = newValue;

// Reset the number of classes
public void resetNoOfClasses()

{
}

// Set the number of dimension
public void setNoOfDimension (int newValue)

{
}

// Reset the number of dimension
public void resetNoOfDimension ()

{
}

// Set the dataset type (i.e. 'train' or 'test' set)
public void setDatasetType (String newValue)

{

noOfClasses = origNoOfClasses;

noOfDimension = newValue;

noOfDimension = origNoOfDimension;

datasetType = newValue;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 121

}

// Reset the dataset type (i.e. 'train' or 'test' set)
public void resetDatasetType (String newValue)

{
}

datasetType = origDatasetType;

/* Search parameter */
// Set the serach type
public void setSearchType (String newValue)

{
}

// Reset the serach type
public void resetSearchType ()

{
}

// Set the search space size
public void setSearchSpace (int newValue)

{
}

// Reset the search space size
public void resetSearchSpace ()

{
}

// Set the solution size
public void setSolutionSize(int newValue)

{
}

// Reset the solution size
public void resetSolutionSize()

{
}

// Set the default solution size
public void setDefaultSolutionSize (int newValue)

{
}

// Reset the default solution size
public void resetDefaultSolutionSize()

{
}

// Set the partial solution size
public void setPartialSolutionSize{int newValue)

{
}

// Reset the partial solution size
public void resetPartialSolutionSize()

{
}

searchType = newValue;

searchType = origSearchType;

searchSpace = newValue;

searchSpace = origSearchSpace;

solutionSize = newValue;

solutionSize = origSolutionSize;

defaultSolutionSize = newValue;

defaultSolutionSize = origDefaultSolutionSize;

partialSolutionSize = newValue;

partialSolutionSize = origPartialSolutionSize;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 122

// Set the final solution size
public void setFinalSolutionSize{int newValue)

{
}

// Reset the final solution size
public void resetFinalSolutionSize ()

{
}

// Set the base number of iterations
public void setBaseNoOfIterations (int newValue)

{
}

// Reset the base number of iterations
public void resetBaseNoOfIterations ()

{
}

// Set the number of iterations
public void setNoOflIterations(int newValue)

{
}

// Reset the base number of iterations
public void resetNoOfIterations ()

{
}

// Set tabu list size
public void setTabulistSize (int newValue)

{
}

// Reset tabu list size
public void resetTabulListSize ()

{
}

// Set neighborhood size
public void setNeighborhoodSize (int newValue)

{
}

// Reset neighborhood size
public void resetNeighborhoodSize ()

{
}

// Set hamming distance value
public void setHammingDistance (int newValue)

{
}

// Reset hamming distance value
public void resetHammingDistance ()

finalSolutionSize = newValue;

finalSolutionSize = origFinalSclutionSize;

baseNoOfIterations = newValue;

baseNoOfIterations = origBaseNoOfIterations;

noOflterations = newValue;

noOfIterations = origNoOfIterations;

tabulistSize = newValue;

tabulistSize = origTabuListSize;

neighborhoodSize = newValue;

neighborhoodSize = origNeighborhoodSize;

hammingDistance = newValue;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 123

{
}

// Set start value of dimension
public void setStartDimension(int newValue)

{
}

// Reset start value of dimension
public void resetStartDimension ()

{
}

// Set end value of dimension
public void setEndDimension(int newValue)

{
}

// Reset end value of dimension

hammingDistance = origHammingDistance;

startDimension = newValue;

startDimension = origStartDimension;

endDimension = newValue;

public void resetEndDimension ()

{
}

endDimension = origEndDimension;

/* Multilevel parameters */
// Set the number of partitions at each level
public void setNoOfPartitions (int newValue)

{
}

// Reset the number of partitions at each level
public void resetNoOfPartitions ()

{
}

// Set the number of levels in the multilevel hierarchy
public void setNoOfLevels (int newValue)

{

noOfPartitions = newValue;

noOfPartitions = origNoOfPartitions;

noOfLevels = newValue;

// Reset the number of levels in the multilevel hierarchy
public void resetNoOfLevels ()

{
}

//Set the reduction factor across levels in the multilevel hierarchy
public void setReductionFactor (int newValue)

{
}

// Reset the number of levels in the multilevel hierarchy
public void resetReductionFactor ()

{
}

noOfLevels = origNoOfLevels;

reductionFactor = newValue;

reductionFactor = origReductionFactor;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 124

5.2

* printClass.java
* This class provides methods that handle all output print reguirements.
* @author Idowu Olayinka Oduntan
* @version August 2005
*/
import java.io.PrintStream;
import java.lio.FileOutputStream;
import java.io.IOException;
public class printClass

{

PrintStream outputResult;

parameter paramObj;

String outputMedia, localOutputFile;
public printClass()

{

paramObj = new parameter();
localOutputFile = paramObj.outputFileName;
outputMedia = paramObj.outputMedia;

txy

{
outputResult = new PrintStream(new
FileOutputStream(localOutputFile, true));

}

catch (Exception e0)

{
}

System.out.println("Cannot print to output file...!");

}

public void printHeader (String headerString)
{
if (outputMedia.equals ("file"))
{
outputResult.printin();
outputResult.println(headerString) ;
outputResult.println() ;

else if (outputMedia.equals("file and screen"))
{
outputResult.println();
outputResult.println(headerString) ;
outputResult.println() ;
System.out.println(};
System.out .println(headerString) ;
System.out.println();

else
System.out.println() ;

System.out.println (headerString) ;
System.out.println();

}

public void printLiteral (String literal)

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM

public

{

if (outputMedia.equals("file"})

{

outputResult.print (literal);

System.out.print (literal);

void printOutput (int[] currentSolution, float currentValue,
noQfRuns)

if (outputMedia.equals ("file"))

{

outputResult.println() ;

int

outputResult.print (noOfRuns+"\t" + currentValue+"\t\t");

for(int z= 0; z<currentSolution.length; z++)
outputResult .print (currentSolution[z]+"\t");

else

System.out.println() ;

System.out.print (noOfRuns+"\t" + currentValue+"\t");

* randomFS.java
* This class Selects the 'optimal'feature subsets randomly

* @author
* @version

Idowu Olayinka Oduntan
2005-Feb-21

public class randomFS

{

parameter localParamObj;

localOptimum localOptimumObj;
initialSolutionManager initialSolutionObj;
int localStartDimension, localEndDimension,
randomSolutionSetSize, localNoOfIterations;

public
public
public
public
public

int{] [] randomSolutionSet;
int [} randomOptimalSolution;
float [1 randomOptimalSolutionvValues;

float randomOptimalvValue =1000000f;
int randomSearchCost = 0;

// Create initial solution
// Generate random solutions
// Find the best amongst the randomly generated set

public randomFS (parameter paramObj)

{

localParamObj = paramObj;

localStartDimension = localParamObj.startDimension;

localSolutionSize,

125

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 126

localEndDimension = localParamObj.endDimension;

localSolutionSize = localParamObj.solutionSize;

localNoOfIterations = localParamObj.noOfIterations;
randomSolutionSetSize = localParamObj.neighborhoodSize *
localParamObj.noOfIterations;

initialSolutionObj = new initialSolutionManager (localStartDimension,
localEndDimension, localSolutionSize);

localOptimumObj = new localOptimum(localParamObj) ;

randomSolutionSet = new int [randomSolutionSetSizel [localSolutionSizel;
randomOptimalSolutionValues = new float [randomSolutionSetSizel;

}

public int[] optimalRandomSearch ()

{

for(int i=0; i<randomSolutionSetSize; i++)

randomSolutionSet [i] =

(int [1)initialSolutionObj.starterInitialSolution{() .clone () ;
randomOptimalSolutionvalues[i] =
localOptimumObj . computeObjValue (randomSolutionSet [i]);
randomSearchCost++;

}

for (int m=0; m<randomSolutionSetSize-1; m++)

{

for (int n=0; n<randomSolutionSetSize-1-m; n++)

if (randomOptimalSolutionvalues[n] < randomOptimalSolutionValues[n+1])
{

float templ = randomOptimalSolutionValues [n];
randomOptimalSolutionvalues[n] = randomOptimalSolutionvalues [n+1];
randomOptimalSolutionvaluesin+l] = templ;

int[] temp2 = (int[])randomSolutionSet[n].clone();
randomSolutionSet [n] = (int{])randomSolutionSet [n+1].clone();
randomSolutionSet [n+1] = (int[])temp2.clone() ;

!

}

}

if (randomOptimalSolutionvValues [randomSolutionSetSize-
1] <=randomOptimalvValue)

{

randomOptimalSolution = (int[])randomSolutionSet [randomSolutionSetSize-
1] .clone () ;

randomOptimalValue = randomOptimalSolutionValues[randomSolutionSetSize-
11;

}

return (int{])randomOptimalSolution.clone(};

22
* rankFeatureSubset.java
* This class ranks a subset of feature based on discriminatory capability

* @author Idowu Olayinka Oduntan
* @version 2005-Feb-21
*/

public class rankFeatureSubset

{

public int[] solutionSubset;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 127

public float bestRankValue;
public int rankingCost = 0;
public int[] rankedSubspace;
objectiveFunction objFunction;
int [] bestRanked;

int [] bestRankedArrays;

int[] localCurrentSubsets;
int{] [] localCurrentSubsetArrays;
int {] rankedSubsets;

int [] [] rankedSubsetArrays;
float [] rankValues;

float objFunctValue;
boolean subsetArrays;

public rankFeatureSubset (parameter paramObj, int[] givenSubsets)
{
//Get the training datasets
objFunction = new objectiveFunction (paramObj) ;
localCurrentSubsets = (int[])givenSubsets.clone();
rankedSubsets = (int[])givenSubsets.clone() ;
bestRanked = new int{1];
rankValues = new float[givenSubsets.length];
subsetArrays = false;

}

public rankFeatureSubset (parameter paramObj, intl][] givenSubsets)

{
//Get the training datasets
objFunction = new objectiveFunction (paramObj) ;
localCurrentSubsetArrays = (int[] []1)givenSubsets.clone () ;
rankedSubsetArrays = (int[] [])givenSubsets.clone () ;
bestRankedArrays = new int [givenSubsets[0].length];
rankValues = new float[givenSubsets.length];
subsetArrays = true;

}

public int[] rankingSubset ()

{

if (! subsetArrays)

{

for (int i=0; i<localCurrentSubsets.length; i++)

{

int[] tempSolution = new int[1];

tempSolution[0] = localCurrentSubsets[i];

rankingCost++;

rankValues [i] = objFunction.meanSquareError (tempSolution) ;

}

// Order the subsets in descending ordexr of ranking criterion
for(int j=0; j<localCurrentSubsets.length-1; j++)

{

for (int k=0; k<localCurrentSubsets.length-1-7j; k++)

if (rankValues [k] < rankValues[k+1])

{
float templ = rankValuesl[k];
rankValues [k] = rankValues[k+1l];

rankValues[k+1l] = templ;

int temp2 = rankedSubsets[k];
rankedSubsets [k] = rankedSubsets[k+1];
rankedSubsets [k+1] = temp2;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 128

}
}
}

rankedSubspace = (int[])rankedSubsets.clone () ;
//The best subset is the last array element.
bestRanked[0] = rankedSubsets[localCurrentSubsets.length-1];

//The best subset value is the last array element.
bestRankValue = rankValues[localCurrentSubsets.length-1];
return (int[]) bestRanked.clone();

}

else

{

for(int i=0; i<localCurrentSubsetArrays.length; i++)

{
rankingCost++;
rankValues([i] =
objFunction.meanSquareError ((int [])localCurrentSubsetArrays[i] .clo
ne());

}

for{int j=0; j<localCurrentSubsetArrays.length-1; j++)

{

for(int k=0; k<localCurrentSubsetArrays.length-1-j; k++)

{

if (rankValues{k] < rankValues([k+1])

{

float templ = rankValues[k];

rankvalues[k] = rankValues [k+1];

rankvValues [k+1] = templ;

int{] temp2 = (int[])rankedSubsetArrays (k] .clonel()};
rankedSubsetArrays [k] = (int[])rankedSubsetArrays(k+1].clone();
rankedSubsetArrays [k+1] = (int[])temp2.clone();

}
}

//The best subset is the last array element.

bestRanked = (int[])rankedSubsetArrays[localCurrentSubsetArrays.length-
1] .clone () ;

//The best subset value is the last array element.

bestRankValue = rankValues[localCurrentSubsetArrays.length-1];

return (int[]) bestRanked.clone() ;

75 S

* refiner.java

* This class generates an improved solution from a less coarse

* feature subspace using solution from an immediate coarser feature space
* @author Idowu Olayinka Oduntan
* @version August 2005
*

/

public class refiner
{
public int multilevelCost = 0;
int [1[] locallLevelSubSpaces;
int [] [1 localLevelSubSpacesWithComponents;
int[] finalRefineSolution;
int [] [] finalRefineEliteSolution;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 129

int[] initialSolution;

int[][] initialEliteSolution;

int solutionSize, localNoOfIterations, localEliteSize, localSampleSize,
localClusterWindowSize;

float finalRefineSolutionValue;

float[] finalRefineEliteSolutionValue;
float [] [] localGlobalDataset;

float initialRefineSolutionValue;

float[] initialRefineEliteSolutionValue;
float[] tempFinalRefineEliteSolutionValue;
float[]1 [] [l tempNewDataValues;

int [1 [] tempFinalRefineEliteSolution;

parameter paramObj;
initialSolutionManager initialSolutionObj, withinInitSolutionObj;
localOptimum localOptimumObj;

// Refiner for single solution variable pre-setting coarsening strategy
refiner (int[] [] givenLevelSubSpaces, parameter givenParam)
{

paramObj = givenParam;

localLevelSubSpaces = (int[] [])givenLevelSubSpaces.clone () ;

localNoOfIterations = paramObj.noOfIterations;
paramObj .resetSolutionSize() ;

solutionSize = paramObj.solutionSize;
finalRefineSolution = (int[])refineProcess() .clone();

paramObj .resetTabulistS8ize() ;
paramObj . resetNeighborhoodSize () ;
paramObj .resetNoOfIterations () ;

}

// Refiner for elite solution set with variable pre-setting coarsening
strategy

refiner (int [] [] givenLevelSubSpaces, parameter givenParam, int eliteSize)
{

paramObj = givenParam;

localEliteSize = eliteSize;

localLevelSubSpaces = (int[] [])givenLevelSubSpaces.clone();

localNoOfIterations = paramObj.noOfIterations;
paramObj.resetSolutionSize () ;

solutionSize = paramObj.solutionSize;

finalRefineEliteSolution =

(int[] [1)refineProcess (localEliteSize) .clone() ;
tempFinalRefineEliteSolution = (int[] [])finalRefineEliteSolution.clone();
tempFinalRefineEliteSolutionvValue =

(float []) finalRefineEliteSolutionvalue.clone() ;

for{(int i=0; i<initialEliteSolution.length; i++)

{

System.out .println("Initial elite solution set");
System.out.print (initialRefineEliteSolutionValue [1i]+"\t");
for(int j=0; j<initialEliteSolution{0].length; j++)

{

System.out .print (initialEliteSolution[i] [§1+"\t");

}

}

System.out.println() ;
for(int i=0; i<finalRefineEliteSolution.length; i++)

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 130

{

System.out.println("Final elite solution set");
System.out.print (finalRefineEliteSolutionvValue [i]+"\t");
for(int j=0; j<finalRefineEliteSolution[0].length; j++)
{

System.out .print (finalRefineEliteSolution[i] [J1+"\¢e");

}

}

System.out.printlin();
for (int j=0; j<finalRefineEliteSclution.length-1; J++)

{

for{int k=0; k<finalRefineEliteSolution.length-1-J; k++)

if (tempFinalRefineEliteSolutionvValue [k] <
tempFinalRefineEliteSolutionvValue [k+1])

{

float templ = tempFinalRefineEliteSolutionValue [k];
tempFinalRefineEliteSolutionvValue [k] =
tempFinalRefineEliteSolutionValue [k+1];
tempFinalRefineEliteSolutionvValue [k+1] = templ;

int[] temp2 = (int[])tempFinalRefineEliteSolution(k].clone();
tempFinalRefineEliteSolution(k] =

(int []) tempFinalRefineEliteSolution[k+1] .clone() ;
tempFinalRefineEliteSolution(k+1] = (intf{])temp2.clone();

}
}
}

finalRefineSolution =
tempFinalRefineEliteSolution[finalRefineEliteSolution.length—l];
finalRefineSolutionValue =
tempFinalRefineEliteSolutionValue{finalRefineEliteSolution.length—l];
paramObj . resetTabulListSize () ;

paramObj . resetNeighborhoodsize () ;

paramObj .resetNoOfIterations () ;

//Refine for single solution with clustered coarsening strategy
refiner (int [] [] givenLevelSubSpaces, int(] []
givenSubspacesWithComponents, parameter givenParam)
{
paramObj = givenParam;
localGlobalDataset = (float[][])paramObj.globalDataSet.clone() ;
locallevelSubSpaces = (int[][])givenLevelSubSpaces.clone();
locallLevelSubSpacesWithComponents =
(int [] [])givenSubspacesWithComponents.clone () ;
localNoOfIterations = paramObj.noOfIterations;
paramObj .resetSolutionSize () ;
solutionSize = paramObj.solutionSize;
localSampleSize = paramObj.globalDataSet.length;
localClusterWindowSize = paramObj.clusterWindow;

finalRefineSolution =

(int []1) refineProcess (givenSubspacesWithComponents) .clone () ;
paramObj .resetTabulistSize () ;

paramObj .resetNelghborhoodSize () ;
paramObj.resetNoOfIterations () ;

}

//Refine processing for single solution with variable pre-setting
coarsening
public int[] refineProcess/()

{

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 131

initialSolutionObj = new

initialSolutionManager (localLevelSubSpaces [localLevelSubSpaces.len
gth-1], solutionSize);

initialSolution =

(int [1)initialSolutionObj.starterInitialSolution(true) .clone();

for (int i=locallLevelSubSpaces.length - 1; i>=0; i--)

if (localLevelSubSpaces[i] .length < paramObj.tabulistSize)

paramObj .setTabulistSize (10) ;

if ((localLevelSubSpaces[i].length < paramObj.neighborhoodSize))
paramObj .setNeighborhoodSize (15) ;

paramObj .setNoOfIterations ((locallLevelSubSpaces.length -

i) *localNoOfIterations) ;

localOptimumObj = new localOptimum(paramObj, localLevelSubSpaces(i]);
initialSolution =

(int [1) localOptimumObj . localOptimumSearch (initialSolution) .clone() ;
multilevelCost = multilevelCost + localOptimumObj.computationCounter;
}

paramObj .resetTabulistSize () ;

paramObj . resetNeighborhoodSize () ;

paramObj .resetNoOfIterations () ;

finalRefineSolutionvValue = localOptimumObj.localOptimumValue;

return (int[])initialSolution.clone () ;

public int[] refineProcess(int[] [] givenSubspaceWithComponents)
{

tempNewDataValues = new

float [localLevelSubSpaces.length] [localSampleSize] [];
tempNewDataValues [0] = (float[] [])localGlobalDataset.clone () ;
int[]1 [] localSubspaceWithComponents =

(int [] [1)givenSubspaceWithComponents.clone () ;
initialSolutionObj = new

initialSolutionManager (locallevelSubSpaces [locallevelSubSpaces.length-1],
solutionSize) ;

initialSolution =
(int[])initialSolutionObj.starterInitialSolution(true).clone();
for(int i=1; i<localLevelSubSpaces.length; i++)

float [] [] tempValues = new

float [localSampleSize] [localLevelSubSpaces[i] .lengthl];
for{int j=0; j<localSampleSize; j++)

{

for(int k=0; k<localLevelSubSpaces{i].length; k++)

{

int windowCounter = 0;

float newDataValue = 0.0f;

int componentCounterl = (localClusterWindowSize+1)*k + 1;

for (int m=componentCounterl; m<componentCounterl+localClusterWindowSize;
m++)

{

if (m<localSubspaceWithComponents [i] .length)

{

newDataValue = newDataValue + tempNewDataValues[i-
1] [§] [localClusterWindowSize*k+windowCounter] ;
windowCounter++;

}
}

tempValues [j] [k] =newDataValue/windowCounter;

}

tempNewDataValues{i] = (float[][])tempValues.clone();

}

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 132

}

for (int i=locallLevelSubSpaces.length - 1; 1i>=0; i--)

{

paramObj .setTempGlobalDataset (localLevelSubSpaces [i],
localSubspaceWithComponents[i], tempNewDataValues[i]);

if (locallLevelSubSpaces[i] .length < paramObj.tabulistSize)
paramObj.setTabulistSize (10) ;

if ((locallLevelSubSpaces[i] .length < paramObj.neighborhoodSize))
paramObj .setNeighborhoodSize (15) ;

// Set the number of iteration for the given coarse subspace.
paramObj.setNoOfIterations {{localLevelSubSpaces.length -
i)*localNoOfIterations) ;

localOptimumObj = new localOptimum(paramObj, locallLevelSubSpaces[i]);
if (i==locallLevelSubSpaces.length - 1)

{

initialSolution =

(int [1) localOptimumObj.localOptimumSearch(initialSolution) .clone () ;
multilevelCost = multilevelCost + localOptimumObj.computationCounter;

}

else

{

int[] tempInitialSolution = (int[])initialSolution.clone();
int [] tempInitialSolutionSpace = new

int [paramObj.clustexWindow*solutionSize] ;

int initialSolutionSpaceCounter = 0;

for(int m=0; m<tempInitialSolution.length; m++)

{

for(int j=0; j<locallLevelSubSpaces[i+1].length; j++)

int indexCounter = j* (paramObj.clusterWindow+1) ;

if (tempInitialSolution[m]==1localSubspaceWithComponents[i+1] [indexCounter]
)

{

for{int n=0; n<paramObj.clusterWindow; n++)

{

tempInitialSolutionSpace[initialSolutionSpaceCounter] =
localSubspaceWithComponents [i+1] [++indexCounter] ;
initialSolutionSpaceCounter++;

}

break;

%

}

int nonZeroCounter = 0;
for(int j=0; j<tempInitialSolutionSpace.length; j++)

if (tempInitialSolutionSpace([j] !=0)

nonZeroCounter++;

}

int initialCountexr = 0;

int[] initialSolutionSpace = new int [nonZeroCounter];
System.out.println("The values of tempInitialSolution:");
for(int j=0; j<tempInitialSolutionSpace.length; Jj++)

{

System.out.print (tempInitialSolutionSpace[j]l+"\t"};

if (tempInitialSolutionSpace[j] !=0)

initialSolutionSpace[initialCounter] = tempInitialSolutionSpaceljl;
initialCounter++;

}
}

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 133

System.out.println("The solution of new feature space:
"+initialSolutionSpace.length) ;

withinInitSolutionObj = new initialSolutionManager (initialSolutionSpace,
solutionSize);

int{] tempInitialSolution_2 =
(int[])withinInitSolutionObj.starterInitialSolution(true) .clone() ;
initialSolution =

(int [1) localOptimumObj .localOptimumSearch({tempInitialSolution 2) .clone() ;

}

paramObj .resetTempGlobalDataset () ;

}

finalRefineSolutionvValue = localOptimumObj.localOptimumValue;
paramObj .resetTempGlobalDataset () ;
paramObj.resetTabulListSize () ;

paramObj . resetNeighborhoodSize () ;

paramObj .resetNoOfIterations () ;

return (int([])initialSoclution.clone();

}

//Refine processing for elite solution set with variable pre-setting
coarsening

public int[] {] refineProcess(int eliteSize)

{

initialEliteSolution = new int[eliteSize] [];
initialRefineEliteSolutionvValue = new float[eliteSize];
finalRefineEliteSolutionValue = new float[eliteSizel;

initialSolutionObj = new
initialSoluticonManager (locallLevelSubSpaces [locallLevelSubSpaces.length-1],
solutionSize) ;

objectiveFunction objFunction = new objectiveFunction (paramObj) ;

for(int 1=0; i<eliteSize; i++)

{

initialEliteSolution[i] =
(int[]1)initialSolutionObj.starterInitialSolution(true).clone() ;
initialRefineEliteSolutionValuel[i] =
objFunction.meanSquareError (initialEliteSolution(il);

}

for(int j=0; j<eliteSize; j++)

{

for (int i=locallevelSubSpaces.length - 1; i>=0; i--)

if (locallLevelSubSpaces[i] .length < paramObj.tabulListSize)
paramObj .setTabuListSize (10) ;

if ((localLevelSubSpaces[i].length < paramObj.neighborhoodSize))
paramObj . setNeighborhoodSize (15} ;
paramObj.setNoOfIterations ((localLevelSubSpaces.length -
i)*localNoOfIterations) ;

localOptimumObj = new localOptimum(paramObj, localLevelSubSpaces(il);
initialEliteSolution[j] =

(int [1) localOptimumObj .localOptimumSearch (initialEliteSolution[j]) .clone
)

multilevelCost = multilevelCost + localOptimumObj.computationCounter;

}

paramObj.resetTabulListSize() ;

paramObj . resetNeighborhoodSize () ;

paramObj .resetNoOfIterations() ;

finalRefineEliteSolutionvValue[j]l = localOptimumObj.localOptimumValue;

}

return (int[] []1)initialEliteSolution.clone();

}

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM

/522

* SFS.java

* This class implements the SFS (Sequential Forward Selection) technique
* @author Idowu Olayinka Oduntan

* @version August 2005

*

/

public class SFS
{
public float optimalvValue;
public int SFSCost = 0;
parameter localParameter;
int localSolutionSize, featureSpaceDimension;
int [] optimalSubset;
int{] originalFeatureSet;
float[] solutionValueSet;

public SFS(parameter paramObj)

{

localParameter = paramObj;

localSolutionSize = localParameter.solutionSize;
featureSpaceDimension = localParameter.ncOfDimension;
originalFeatureSet = new int [featureSpaceDimension];
for(int i=0; i<featureSpaceDimension; i++)

{
}

originalFeatureSet [i] = i+1;

rankFeatureSubset rankingObj = new rankFeatureSubset (localParameter,

originalFeatureSet) ;

// Generate initial solution
optimalSubset = (int[])rankingObj.rankingSubset ().clone();
SFSCost = SFSCost + rankingObj.rankingCost;

}

public SFS(parameter paramObj, int[] givenFeatureSpace, int
newSolutionSize)

{

localParameter = paramObj;

localSolutionSize = newSolutionSize;

featureSpaceDimension = givenFeatureSpace.length;
originalFeatureSet = (int[])givenFeatureSpace.clone();

rankFeatureSubset rankingObj = new rankFeatureSubset (localParameter,

originalFeatureSet) ;

// Generate initial solution
optimalSubset = (int[])rankingObj.rankingSubset ().clone();
SFSCost = SFSCost + rankingObj.rankingCost;

}

public int[] [] generateNewSolutionSubset (int[] currentSolution)

{

int {] tempOriginalFeatures = {(int[])originalFeatureSet.clone();
int featureSpaceSize = featureSpaceDimension - currentSolution.length;

int[] [] solutionSubsets = new

int [featureSpaceSize] [currentSolution.length+1];

int[] remainingFeatures = new int [featureSpaceDimension-
currentSolution.length] ;

134

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 135

int m=0;

int n=0;

// Assign the current solution to all the subsets in the solutionSubsets
for (int i=0; i<featureSpaceSize; i++)

for(int j=0; j<currentSolution.length; j++)

solutionSubsets([i] [j] = currentSolution([j];

// Begin: Find the features that are in the feature space but not in the
current solution set

for(int j=0; j<featureSpaceDimension; Jj++)

//boolean statusFlag = false;
int k=0;
while (k<currentSolution.length)

{

if (tempOriginalFeatures[j]l==currentSolutionk])
éempOriginalFeatures[j] = 0;

break;

}

kK++;

}

}

while (m<tempOriginalFeatures.length && n<remainingFeatures.length)

{

if (tempOriginalFeatures [m] !=0)
remainingFeatures[n] = tempOriginalFeatures [m];
n++;

}

m++ ;

// End: Find the features that are in the feature space but not in the
current solution set

for(int i=0; i<featureSpaceSize; i++)

solutionSubsetsi] [currentSolution.length] = remainingFeatures([i];

}

return {(int{][])solutionSubsets.clone();

}

public int[] findOptimalSubset ()
{
int {] currentSolution;
currentSolution = (int[])optimalSubset.clone();
for(int i=0; i<localSolutionSize; i++)
{
System.out .printin() ;
for (int r=0; r<currentSolution.length; r++)
System.out.print (currentSolution[rl+"\t");

int [] [] currentSolutionSubset =
(int [] [1)generateNewSolutionSubset ((int [])currentSolution.clone())
.clone () ;

rankFeatureSubset rankingObj = new

rankFeatureSubset (localParameter,

(int [] {1) currentSolutionSubset.clone()) ;

currentSolution = (int[])rankingObj.rankingSubset () .clone()};

// Return the OPTIMAL feature subset
SFSCost = SFSCost + rankingObj.rankingCost;
optimalvalue = rankingObj.bestRankValue;

}

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM

System.out.println();
System.out.print ("\n The computational cost for SFS is:
"+SFSCost+"\n") ;

return (int[])currentSolution.clone();

tabulist.java

implements tabu list in tabu search

The tabu list is implemented as a prioritized queue
@author Idowu O. Oduntan

@version August 2005

public class tabulist

{

public int tabulistLength;
public int noOftabulistElements;
public int[] [l tabuElements;
public float[] tabuvalues;
public int bottomQueueCounter;
public boolean foundInTabuList;
public int eliminateIndex;
public int tabuEffectCounter;

// Proper tabu list construct

public tabulist(int tabuLength, int noOfElements, parameter paramObj)

{

tabuListLength = tabuLength;
noOftabul.istElements = noOfElements;
tabuElements = new int [tabuListLength] [noOftabuListElements];
tabuvValues = new float [tabulListLengthl];
bottomQueueCounter = 0;
if (paramObj .optimumType.equals ("MIN"))
eliminateIndex = 0;
else
eliminateIndex = tabulistLength-1;
for (int i=0; i<tabulListLength; i++)
{
for (int j=0; j<noOftabulistElements; j++)
tabuElements [i] [§]1 = 0;
tabuvalues{i] = 10000000f;
}
}

public void addToTabu (int [] solution, float tabuSolutionvalue)

{

boolean tabuChecker = checkInTabu{ (int[])solution.clone());

for(int m=0; m<tabuListLength-1; m++)

{

for(int n=0; n<tabulListLength-1-m; n++)

if (tabuValues[n] < tabuValues[n+1])

{

float templ = tabuValues([n];
tabuvalues[n] = tabuvalues[n+1];

136

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 137

tabuValues [n+1] = templ;

int[] temp2 = (int(])tabuElements([n].clo
tabuElements([n] = (int[])tabuElements [n+
tabuElements[n+1] = (int([])temp2.clone()

}
}
1
if (1 tabuChecker)

{

for (int i=0; i<noOftabulistElements; i++)

ne () ;
1] .clone();

1

tabuElements [eliminateIndex] [i] = solution[i];
tabuValues [eliminateIndex] = tabuSolutionValue;
}

}

public void removeFromTabu ()

for (int i=0; i<tabulistLength-1; i++)
for (int j=0; j<noOftabulListElements; j+
tabuElements[i] {j] = tabuElements

public boolean checkInTabu(int[] solution)

foundInTabuList = false;

int tabulistCounter = 0;

while (tabuListCounter<tabulListLength)

{

int solutionCounter = 0;

while (solutionCounter < solution.length &&
(tabuElements [tabuListCounter] [solutionCountexr]
DD

{

solutionCounter++;

}

if (solutionCounter>=solution.length-1)

{

foundInTabuliist = true;
break;

}

tabulistCounter++;

if (foundInTabulist)
tabukffectCounter++;
return foundInTabulist;

+)
[i+1) (31

==golution[solutionCounter

/522

* This class coordinates the overall searches and the generated solutions
* @author Idowu Olayinka Oduntan

* @version August 2005

*/

public class testCoarseAlgorithms

{

public static void main(String[] args)

{

Classifier classifierObj;

parameter initParamObj = new parameter();
printClass printObj = new printClass();

int localNoOfLevels, localNoOfRuns, localRandomnessFactor;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 138

int [] testCoarseSpace;

int []1 [] localFeatureSubspaceWithComponents;

int [] [] levelSubSpaces;

int[] finalSolution;

float finalSolutionvValue;

float meanAccuracy = 0f;

float meanAccuracyTB = Of;

float meanObjFunct = 0f;

float meanObjFunctTB = 0Of;

float standardDeviation = 0f;

float standardDeviationTB = 0f;

double stdAccuracy;

double stdAccuracyTB;

float[] classifyAccuracyValues;

float[] classifyAccuracyValuesTB;

float[] classifyAccuracyValuesRFS;

float[] deviationValues;

float[] deviationValuesTB;

float [] deviationValuesRFS;

float[] objFunctValues;

float[] objFunctValuesTB;

float [] objFunctValuesRFS;

String outputFile;

String levelVariables;

localNoOfLevels = initParamObj.noOfLevels;
localRandomnessFactor = initParamObj.randomnessFactor;
outputFile = initParamObj.outputFileName;
localNoOfRunsg = initParamObj.noOfRuns;
classifyAccuracyValues = new float [localNoOfRunsl] ;
classifyAccuracyValuesTB = new float [localNoOfRuns] ;
classifyAccuracyValuesRFS = new float[localNoOfRuns];
deviationValues = new float [localNoOfRuns];
deviationValuesTB = new float[localNoOfRuns] ;
deviationValuesRFS = new float[localNoOfRuns] ;
objFunctValues = new float [localNoOfRuns];
objFunctValuesTB = new float [localNoOfRuns] ;
objFunctValuesRFS = new float[localNoOfRuns] ;

String literal;

float[] tempClassifyAccuracyValues = new float [localRandomnessFactor] ;
float[] tempFinalSolutionvValues = new float [localRandomnessFactor];
int[] [] tempFinalSolution = new

int [localRandomnessFactor] [initParamObj.solutionSize] ;

System.out.println("Starts processing...");
printObj.printHeader ("\n\nFinal selection solution \n\nRunNoc \t
ObjectiveFunctValue \t 'optimal' Subset");

for(int k=0; k<localNoOfRuns; k++)

{

parameter paramObj = new parameter();

dataClass dataObj = new dataClass(paramObj) ;

int [] featureSolutionSpace = new int [1500];

levelSubSpaces = new int[localNoOfLevels] [];

for(int i1i=0; 1<1500; i++)

{

featureSolutionSpace[i] = i+1;
1
literal = "\n\nMultilevel result for 3-levels; reduction factor 3; random

coarsening; no of basic iteration 5";

printObj.printLiteral (literal) ;

for(int j=0; j<localRandomnessFactoxr; Jj++)

// Set the no. of levels and the no. of iterations at levels.
paramObj .setNoOfIterations(5); //Set no. of iteration to 50;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 139

testCoarseSpace = (int[])featureSolutionSpace.clone() ;

coarser coarseObj = new coarser (paramObi) ;

coarseObj . randomCoarsen ((int []) testCoarseSpace.clone(}) ;
levelSubSpaces = (int[] [])coarseObj.featureSubspacePartitions.clone();
refiner refinerObj = new refiner (levelSubSpaces, paramObj);
tempFinalSolution(j] = (int[])refinerObj.finalRefineSolution.clone();
tempFinalSolutionvValues[j] = refinerObj.finalRefineSolutionValue;
printObi.printOutput (tempFinalSolution[j], tempFinalSclutionValues[jl,
3

classifierObj = new Classifier((int[])tempFinalSolution{j].clone(),
paramObj) ;

tempClassifyAccuracyValues[j] = classifierObj.classificationAccuracy;
literal = "\nTrainset Classification accuracy:

"sclassifierObj.trainClassificationAccuracy+"%";
printObj.printLiteral (literal);

literal = "\nIndependent Testset Classification accuracy:
"+classifierObj.classificationAccuracy+"%";
printObj.printLiteral (literal) ;

System.out .println("Computation cost of Multilevel FS:
"+refinerObj.multilevelCost+"\n") ;

//Reset the no. of levels and the no. of iterations at levels.

paramObj .resetNoOfIterations(); //reset no. of iteration to default
value;
paramObj .resetNoOfLevels () ; //Set no. of levels to default value;

}

// Training and classification using multilevel search with different no.
of levels

literal = "\n\nMultilevel result for 3-levels; reduction factor 3; random
coarsening; no of basic iteration 10";

printObj.printLiteral (literal) ;

for(int j=0; j<localRandomnessFactor; Jj++)

// Set the no. of levels and the no. of iterations at levels.
paramObj .setNoQOfIterations(10); //Set no. of iteratiom to 50;

//paramObj . setNoOfLevels(2) ; //Set no. of levels to 2;
testCoarseSpace = (int[])featureSolutionSpace.clone();

coarser coarseObj = new coarser (paramObj) ;

coarseObj .randomCoarsen ((int [])testCoarseSpace.clone()) ;
levelSubSpaces =

(int [] []1) coarseObj. featureSubspacePartitions.clone() ;

refiner refinerObj = new refiner(levelSubSpaces, paramObj);

tempFinalSolution([j] =
(int [1)refinerObj.finalRefineSolution.clone() ;
tempFinalSolutionValues[j] = refinerObj.finalRefineSolutionvValue;

printObj.printOutput (tempFinalSolution([j],

tempFinalSolutionvalues[j], J};
classifierObj = new
Classifier((int{])tempFinalSolution{j].clone(), paramObj) ;

tempClassifyAccuracyValues[j] =
classifierObj.classificationAccuracy;

literal = "\nTrainset Classification accuracy:
"yclassifierObj.trainClassificationAccuracy+"%";
printObj.printLiteral (literal);

literal = "\nIndependent Testset Classification accuracy:
"rclassifierObj.classificationAccuracy+"s";
printObj.printLiteral (literal);

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 140

System.out .println("Computation cost of Multilevel FS:
"+refinerObj.multilevelCost+"\n") ;

//Reset the no. of levels and the no. of iterations at levels.
paramObj .resetNoOfIterations(); //reset no. of iteration to
default value;

paramObj.resetNoOfLevels () ;//Set no. of levels to default value;

}

// Training and classification using multilevel search with
different no. of levels

literal = "\n\nMultilevel result for 3-levels; reduction factor 3;
random coarsening; no of basic iteration 15";
printObj.printLiteral (literal) ;

for(int j=0; j<localRandomnessFactor; Jj++)

// Set the no. of levels and the no. of iterations at levels.
paramObj.setNoOfIterations(15); //Set no. of iteration to 50;

//paramObj . setNoOfLevels (2) ; //Set no. of levels to 2;
testCoarseSpace = (int[])featureSolutionSpace.clone();
coarser coarseCbj = new coarser (paramObj);

coarseObj . randomCoarsen ({int []) testCoarseSpace.clone()) ;
levelSubSpaces =

(int []1 [1) coarseObj . featureSubspacePartitions.clone(} ;
refiner refinerObj = new refiner(levelSubSpaces, paramObj);

tempFinalSolution(j] =
(int [1)refinerObyj.finalRefineSolution.clone () ;

tempFinalSolutionValues[j] = refinerObj.finalRefineSolutionValue;
printObj.printOutput (tempFinalSolutionl[j],
tempFinalSolutionvValues(jl, J);

classifierObj = new
Classifier((int[])tempFinalSolution[j].clone(), paramObj);

tempClassifyAccuracyValues([]j] =
classifierObj.classificationAccuracy;

literal = "\nTrainset Classification accuracy:
"+classifiexObj.trainClassificationAccuracy+"%";
printObj.printLiteral (literal) ;

literal = "\nIndependent Testset Classification accuracy:
"+classifierObj.classificationAccuracy+"%";
printObj.printLiteral (literal) ;

System.out .println("Computation cost of Multilevel FS:
"t+refinerObj.multilevelCost+"\n");

//Reset the no. of levels and the no. of iterations at levels.

paramObj .resetNoOflterations(); //reset no. of iteration to
default value;
paramObj .resetNoOfLevels () ; //Set no. of levels to default value;

}

// Training and classification using multilevel search with different no. of
levels

literal = "\n\nMultilevel result for 3-levels; reduction factor 3; random
coarsening; no of basic iteration 20";

printObj .printLiteral (literal);

for(int j=0; j<localRandomnessFactor; j++)

{

// Set the no. of levels and the no. of iterations at levels.
paramObj.setNoOfIterations(20); //Set no. of iteration to 50;

//paramObj . setNoOfLevels (2) ; //8et no. of levels to 2;

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 141

testCoarseSpace = (int[])featureSolutionSpace.clone();

coarser coarseObj = new coarser (paramObj) ;

coarseObj .randomCoarsen ((int []) testCoarseSpace.clone()) ;

levelSubSpaces = (int[] [])coarseObj.featureSubspacePartitions.clonel();
refiner refinerObj = new refiner (levelSubSpaces, paramObj) ;
tempFinalSolution[j] = (int{])refinexrObj.finalRefineSolution.clone();
tempFinalSolutionvValues[j] = refinerObj.finalRefineSolutionvValue;

printObj .printOutput (tempFinalSolution(j], tempFinalSolutionValues{jl, 3);
classifierObj = new Classifier((int[])tempFinalSolution{j].clone(), paramObj);
tempClassifyAccuracyValues[j] = classifierObj.classificationAccuracy;
literal = "\nTrainset Classification accuracy:
"+classifierObj.trainClassificationAccuracy+"%";

printObj.printLiteral (literal) ;

literal = "\nIndependent Testset Classification accuracy:
"+classifierObj.classificationAccuracy+"%";

printObj.printLiteral (literal);

System.out .println("Computation cost of Multilevel FS:
"yrefinerObj.multilevelCost+"\n") ;

//Reset the no. of levels and the no. of iterations at levels.
paramObj.resetNoOfIterations (); //reset no. of iteration to default value;
paramObj . resetNoOfLevels () ; //Set no. of levels to default value;

}

// Training and classification using multilevel search with different no. of
levels

literal = "\n\nMultilevel result for 3-levels; reduction factor 3; random
coarsening; no of basic iteration 25";

printObj.printLiteral (literal) ;

for(int j=0; j<localRandomnessFactor; Jj++)

{

// Set the no. of levels and the no. of iterations at levels.
paramObj.setNoOfIterations (25); //Set no. of iteration to 50;

//paramObj .setNoOfLevels (2) ; //Set no. of levels to 2;
testCoarseSpace = (int[l)featureSolutionSpace.clone() ;

coarser coarseObj = new coarser (paramObj) ;

coarseObj .randomCoarsen ((int []) testCoarseSpace.clone()) ;

levelSubSpaces = (int[] [])coarseOb].featureSubspacePartitions.clone () ;
refiner refinerObj = new refiner (levelSubSpaces, paramObj);
tempFinalSolution([j] = (int{[])refinerObj.finalRefineSolution.clone () ;
tempFinalSolutionvValues[j] = refinerObj.finalRefineSolutionvValue;
printObj.printOutput (tempFinalSolution{jJ, tempFinalSolutionvValues([j], Jj);
classifierObj = new Classifier((int[])tempFinalSolution[j].clone(), paramObj);
tempClassifyAccuracyValues[j] = classifierObj.classificationAccuracy;
literal = "\nTrainset Classification accuracy:
"+classifierObj.trainClassificationAccuracy+"%";

printObj.printLiteral (literal) ;

literal = "\nIndependent Testset Classification accuracy:
"+classifierObj.classificationAccuracy+"%";

printObj.printLiteral (literal);

System.out .println("Computation cost of Multilevel FS:
"+refinerObj.multilevelCost+"\n") ;

//Reset the no. of levels and the no. of iterations at levels.

paramObj .resetNoOfIterations(); //reset no. of iteration to default value;
paramObj .resetNoOfLevels () ; //Set no. of levels to default value;

}

// Training and classification using multilevel search with different no. of
levels

literal = "\n\nMultilevel result for 3-levels; reduction factor 3; random
coarsening; no of basic iteration 30";

printObj.printLiteral (litexral) ;

for(int j=0; j<localRandomnessFactor; j++)

// Set the no. of levels and the no. of iterations at levels.

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 142

paramObj.setNoOfIterations(30); //Set no. of iteration to 50;

//paramObj .setNoOfLevels (2) ; //Set no. of levels to 2;
testCoarseSpace = (int[])featureSolutionSpace.clone() ;

coarser coarseObj = new coarser (paramObj) ;
coarseObj.randomCoarsen((int [1)testCoarseSpace.clone());

levelSubSpaces = (int[] [])coarselbj.featureSubspacePartitions.clone();
refiner refinerObj = new refiner (levelSubSpaces, paramObj) ;
tempFinalSolution[j] = (int[])refinerObj.finalRefineSolution.clone () ;
tempFinalSolutionvValues[j] = refinerObj.finalRefineSolutionValue;

printObj .printOutput (tempFinalSolution(j], tempFinalSolutionValuesl[jl, j);
classifierObj = new Classifier((int(l)tempFinalSolution[j].clone(), paramObj) ;
tempClassifyAccuracyValues([j] = classifierObj.classificationAccuracy;
literal = "\nTrainset Classification accuracy:
"+classifierObj.trainClassificationAccuracy+"%";

printObj.printLiteral (literal);

literal = "\nIndependent Testset Classification accuracy:
"+classifierObj.classificationAccuracy+"%";

printObj.printLiteral (literal) ;

System.out.println("Computation cost of Multilevel FS:
"+refinerObj.multilevelCost+"\n") ;

//Reset the no. of levels and the no. of iterations at levels.

paramObj .resetNoOfIterations(); //reset no. of iteration to default value;
paramObj .resetNoOfLevels () ; //Set no. of levels to default value;
}

// Training and classification using multilevel search with different no. of
levels

literal = "\n\nMultilevel result for 3-levels; reduction factor 3; random
coarsening; no of basic iteration 35";

printObj .printLiteral (1iteral) ;

for(int j=0; j<localRandomnessFactor; j++)

{

// Set the no. of levels and the no. of iterations at levels.
paramObj.setNoOfIterations (35); //Set no. of iteration to 50;

//paramObj .setNoOfLevels (2) ; //Set no. of levels to 2;
testCoarseSpace = (int[]) featureSolutionSpace.clone () ;

coarser coarseOb]j = new coarser (paramObj) ;
coarseObj.randomCoarsen((int [])testCoarseSpace.clone()) ;

levelSubSpaces = (int[] [])coarseOb]j.featureSubspacePartitions.clone() ;
refiner refinerObj = new refiner (levelSubSpaces, paramObj) ;
tempFinalSolution[j] = (int[])refinerObj.finalRefineSolution.clone();
tempFinalSolutionValues[j] = refinerObj.finalRefineSolutionValue;
printObj.printOutput (tempFinalSolution[j], tempFinalSolutionvalues([j]l, J);:
classifierObj = new Classifier((int[])tempFinalSolution([j].clone(), paramObj):;
tempClassifyAccuracyValues[j] = classifierObj.classificationAccuracy;
literal = "\nTrainset Classification accuracy:
"+classifierObj.trainClassificationAccuracy+"%";

printObj.printLiteral (literal);

literal = "\nIndependent Testset Classification accuracy:
"+classifierObj.clagssificationAccuracy+"%";

printObj.printLiteral (literal);

System.out.println("Computation cost of Multilevel FS:
"+refinerObj.multilevelCost+"\n") ;

//Reset the no. of levels and the no. of iterations at levels.

paramObj .resetNoOfIterations(); //reset no. of iteration to default value;
paramObj .resetNoOfLevels () ; //Set no. of levels to default value;
}

// Training and classification using multilevel search with different no. of
levels

literal = "\n\nMultilevel result for 3-levels; reduction factor 3; random
coarsening; no of basic iteration 40";

printObj.printLiteral (literal) ;

for(int j=0; j<localRandomnessFactor; j++)

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 143

// Set the no. of levels and the no. of iterations at levels.

paramObj .setNoOfIterations (40); //Set no. of iteration to 50;

//paramObj .setNoOfLevels (2) ; //Set no. of levels to 2;
testCoarseSpace = (int{])featureSolutionSpace.clone();

coarser coarseObj = new coarser (paramObj) ;
coarseObj.randomCoarsen ({int []) testCoarseSpace.clone()) ;

levelSubSpaces = (int{[] [])coarseObj.featureSubspacePartitions.clone (});
refiner refinerObj = new refiner (levelSubSpaces, paramObj);
tempFinalSolution[j] = (int[])refinerObj.finalRefineSolution.clone();
tempFinalSolutionValues[j] = refinerObj.finalRefineSolutionValue;
printObj.printOutput (tempFinalSolution([j], tempFinalSolutionvValues([jl, J);
classifierObj = new Classifier ((int(])tempFinalSolution[j].clone(), paramObj) ;
tempClassifyAccuracyValues[j] = classifierObj.classificationAccuracy;
literal = "\nTrainset Classification accuracy:
"+classifierObj.trainClassificationAccuracy+"%";

printObj.printLiteral (literal);

literal = "\nIndependent Testset Classification accuracy:
"yeclassifierObj.classificationAccuracy+"%";

printObj.printLiteral (literal);

System.out .println("Computation cost of Multilevel FS:
"trefinerObj.multilevelCost+"\n") ;

//Reset the no. of levels and the no. of iterations at levels.

paramObj .resetNoOfIterations(); //reset no. of iteration to default value;
paramObj .resetNoOfLevels () ; //Set no. of levels to default value;
}

// Training and classification using multilevel search with different no. of
levels

literal = "\n\nMultilevel result for 3-levels; reduction factor 3; random
coarsening; no of basic iteration 45";

printObj.printLiteral(literal) ;

for(int j=0; j<localRandomnessFactor; J++)

// Set the no. of levels and the no. of iterations at levels.

paramObj .setNoOfIterations (45); //Set no. of iteration to 50;

//paramObj .setNoOfLevels (2) ; //Set no. of levels to 2;
testCoarseSpace = (int[])featureSolutionSpace.clone();

coarser coarseObj = new coarser (paramObj) ;

coarseObj . randomCoarsen ((int []) testCoarseSpace.clone ()) ;

levelSubSpaces = (int[] []1)coarseOb]j.featureSubspacePartitions.clone();
refiner refinerObj = new refiner(levelSubSpaces, paramObj);
tempFinalSolution[j] = (int(])refinerObj.finalRefineSolution.clone ();
tempFinalSolutionvValues[j] = refinerObj.finalRefineSolutionValue;
printObj.printOutput (tempFinalSolution[j], tempFinalSolutionvValues{jl, J);
classifierObj = new Classifier{(int[])tempFinalSolution[j].clone(), paramObj);
tempClassifyAccuracyValues([j] = classifierObj.classificationAccuracy;
literal = "\nTrainset Classification accuracy:
"yeclassifierObj.trainClassificationAccuracy+"%";

printObj.printLiteral (literal);

literal = "\nIndependent Testset Classification accuracy:
"+classifierObj.classificationAccuracy+"%";

printObj.printLiteral (literal);

System.out .println("Computation cost of Multilevel FS:

"irefinerObj .multilevelCost+"\n");

//Reset the no. of levels and the no. of iterations at levels.

paramObj .resetNoOfIterations(); //reset no. of iteration to default value;
paramObj . resetNoOfLevels () ; //Set no. of levels to default value;

}
}

if (initParamObj.outputMedia.equals("file"))
System.out.println("\nkEnd of process... check the output file
npnnginitParamObj . outputFileName+" ' "+" for the process reults.");
else

APPENDIX A. CODE LISTING OF THE MULTILEVEL FEATURE SELECTION ALGORITHM 144

System.out .printlin{"\nEnd of process... ");

References

(1]

[2]

[5]

[6]

(7]

(8]

D. W. Aha and R. L. Bankert. A comparative evaluation of sequential feature
selection algorithms. In Proceedings of the Fifth International Workshop on
Artificial Intelligence and Statistics, pages 1-7, Ft. Lauderdale, FL, January 1995.

C. I. Alpert, J. - H. Huang and A. B. Kahng. Multilevel circuit partitioning. In Proc.
34th ACM/IEEE Design Automation Conference, pages 530-533, June 1997.

C. Ambroise and G. J. McLachlan. Selection bias in gene extraction on the basis of
microarray gene-expression data. Proceedings of the National Academy of Sciences
of the USA, 99(10): 6562-6566, 2002.

S. T. Barnard and H. D. Simon. A fast multilevel implementation of recursive
spectral bisection for partitioning unstructured problems. Concurrency: Practice &
Experience, 6(2):101-117, 1994.

A. Brandt. Multi-level adaptive solutions to boundary value problems. Mathematics
of Computation, 31:333-390, 1977.

W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial, second
edition. STAM 2000.

S.A. Bustin and S. Dorudi. The value of microarray techniques for quantitative gene
profiling in molecular diagnostics. Trends in Molecular Medicine, 8:269-272, 2002.
R. Caruana and D. Freitag. Greedy attribute selection. In Proceedings of the 11th
International Conference in Machine Learning, pages 28-36, New Brunswick, New

Jersey, July 1994.

145

REFERENCES 146

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

S. Das. Filters, Wrappers and a Boosting-Based Hybrid for Feature Selection. In
Proceedings of the 18th International Conference in Machine Learning, pages 359-
366, Williamstown, Massachusetts, June 2001.

K. Fukunaga. Introduction to Statistical Pattern Recognition, 2nd edition.
Academic Boston, 1990.

C. Furlanello, M. Serafini, S. Merler and G. Jurman. An accelerated procedure for
recursive feature ranking on microarray data. Neural Networks 16:641-648, 2003.
M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.

F. Glover, E. Taillard, M. Laguna, D. de Werra. A user’s guide to taboo search.
Annals of Operations Research, 41:3-28, 1993.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection.
Journal of machine learning research, 3(7-8):1157-1182, 2003.

M. A. Hall. Correlation-based feature selection for discrete and numeric class
machine learning. In Proceedings of the 17th International Conference in Machine
Learning, pages 359-366, Stanford, California, June 2000.

A. Hertz and D. de Werra. The tabu search metaheuristic: how we used it. Annals
of Mathematics and Artificial Intelligence, 1:111-121, 1990.

F. van der Heijden, R. P. W. Duin. Classification, parameter estimation and state

estimation: an engineering approach using MATLAB. J. Wiley, England, 2004.

REFERENCES 147

[19]

[20]

[21]

[24]

[25]

[26]

[27]

B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. S.
Karin, ed. Proceedings of Supercomputing ’95, San Diego. ACM Press, New York,
December 1995.

R. A. Iles, A. N. Stevens and J. R. Griffiths. NMR Studies of metabolites in living
tissue. Progress in Nuclear Magnetic Resonance Spectroscopy, 15(1-2):49-200,
1982.

A. K. Jain, R. P. W. Duin, and J. Mao. Statistical pattern recognition. [EEE
Transactions on Pattern Analysis and Machine Intelligence, 22(1):4-37, 2000.

L. T. Jolliffe. Principal Component Analysis, Springer-Verlag, New York, 1986.

G. Karypis, V. Aggarwal, V. Kumar and S. Shekhar. Multilevel hypergraph
partitioning: application in VLSI domain. IEEE Transactions on VLSI Systems.
7(1):69-79, 1999.

K. Kira and L.A. Rendell. The feature selection problem: traditional methods and a
new algorithm. In 10th National Conference on Artificial Intelligence, pages 129-
134, San Jose, California, June 1992.

J. Kittler. Feature set search algorithms. In Pattern Recognition and Signal
Processing, C.H. Chen, Ed., Sijthoff and Noordhoff, The Netherlands, 1978.

R. Kohavi and G. H. John. Wrappers for Feature Subset Selection. Artificial
Intelligence, 97(1-2):273-324, 1997.

J. B. Kruskal and M. Wish. Multidimensional Scaling, Sage Publications, Beverly

Hills, CA 1977.

REFERENCES 148

(28]

[29]

[30]

(31]

(33]

[34]

(35]

H. Liu and R. Setiono. A probabilistic approach to feature selection - a filter
solution. In Proceedings of the 13th International Conference in Machine Learning
pages 319-327, Bari, Italy, July 1996.

H. Liu and L. Yu. Towards integrating feature selection algorithms for
classification and clustering. [EEE Transactions on Knowledge and Data
Engineering, 17(4):491-502, 2005.

Microarray Techniques. Retrieved August 23, 2005, from the National Health
Museum Website:
http://www.accessexcellence.org/RC/VL/GG/nhgri_PDFs/microarray_technology.
pdf

U. R. Muller and D. V. Nicolau. Microarray technology and its applications.
Springer, New York, 2005.

P. M. Narendra and K. Fukunaga. A branch and bound algorithm for feature subset
selection. IEEE Trans. Computers, 26(9):917-922, 1977.

A. E. Nikulin, B. Dolenko, T. Bezabeh and R. L. Somorjai. Near-optimal region
selection for feature space reduction: novel preprocessing methods for classifying
MR spectra. NMR Biomedicine 11:209 — 216, 1998.

M. Ouyang, M. Toulouse, K. Thulasiraman, F. Glover, and J. S. Deogun.
Multilevel cooperative search for the circuit/hypergraph partitioning problem.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
21(6):685-694, 2002.

M. Pirlot. General local search methods. European journal of operational research,

92:493-511, 1996.

REFERENCES 149

[36]

[37]

[38]

[40]

[41]

[42]

[43]

P. Pudil, J. Novovicova, and J. Kittler. Floating search methods in feature
selection. Pattern Recognition Letters 15(11):1119-1125, 1994.

S. J. Raudys and A. K. Jain. Small sample size effects in statistical pattern
recognition: Recommendation for practitioners. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 13(3):252-264, 1991.

W. Siedlecki and J. Sklansky. A note on genetic algorithm for large-scale feature
selection. Pattern Recognition Letters, 10(11):335-347, 1989.

R. L. Somorjai, B. Dolenko, and R. Baumgartner. Class prediction and discovery
using gene microarray and proteomics mass spectroscopy data: curses, caveats, and
cautions. Bioinformatics 19(12):1484-1491, 2003.

R. L. Somorjai and A. Nikulin. The curse of small sample sizes in medical
diagnosis via MR spectroscopy. In Proceedings Twelfth Annual Scientific Meeting
of the Society of Magnetic Resonance in Medicine. New York, pages 685, August
1993.

R. L. Somorjai, A. Nikulin, B. Dolenko, R. Baumgartner, and C. Bowman. Class
prediction from mass spectroscopy data. A poster at the National Research
Council’s Institute for Biodiagnostics, Winnipeg.

P. Somol, P. Pudil, F. J. Ferri, and J. Kittler. Fast branch and bound algorithm in
feature selection. In Proceedings Fourth World Multiconferenc in Systemics,
Cybernetics, and Informatics 7(1):646-651, 2000.

P. Somol, P. Pudil, and J. Kittler. Fast branch and bound algorithm in feature
selection. IEEE Transactions on Pattern Analysis and Machine Intelligence,

26(7):900-912, 2004.

REFERENCES 150

[44]

[46]

[50]
(51}

[52]

[53]

D. D. Stark and W. G. William. Magnetic resonance imaging, 2nd edition. Mosby
Year Book, St. Louis, 1992.

S. Stearns. On selecting features for pattern classifiers. In 3rd International Joint
Conference on Pattern Recognition, pages 71-75, Coronado, California, November
1976.

M. Stone. Cross-validatory choice and assessment of statistical predictions (with
discussion), Journal of the Royal Statistical Society B, 36:111-147, 1974.

M. Toulouse, K. Thulasiraman, and F. Glover. Multi-level cooperative search: a
new paradigm for combinatorial optimization and an application to graph
partitioning. In Proceedings of the 5th International Euro-Par Conference on
Parallel Processing, pages 533-542, Toulouse, France, August 1999.

C. Walshaw. A multilevel approach to the traveling salesman problem. Operations
Research 50(5):862-877, 2002.

C. Walshaw. A multilevel approach to the graph colouring problem. Technical
Report 01/IM69, Computing and Mathematical Sciences, University of Greenwich,
London, UK, 2001.

L.A. Wosley. Integer programming. J. Wiley, New York, 1998.

1. Xu. An introduction to multilevel methods. Oxford University Press, 1997.

L. Yu and H. Liu. Feature selection for high-dimensional data: a fast correlation-
based filter solution. In Proceedings of the 20th International Conference in
Machine Learning, pages 856-863, Washington, D.C., August 2003.

H. Zhang and G. Sun. Feature selection using tabu search method. Parttern

recognition 35(3):701-711, 2002.

REFERENCES 151

[54] L. Zheng and X. He. Classification Techniques in Pattern Recognition, In
Proceedings of the 13th International Conference in Central Europe on Computer

Graphics, Visualization and Computer Vision, page 77, Plzen, January 2005.

