EMPTY-SHAPE TRIANGULATION ALGORITHMS

By

TIMOTHY LAMBERT

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science
University of Manitoba
Winnipeg, Manitoba

© August 1994

.
Bl o™

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of

Canada to reproduce, Iloan,

distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario)

Your file Votre référence

Qur file Notre référence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
théese a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-13278-1

Al

Canada

Name __ - .
Dissertation Abstracts International is arranged by broad, general subject categories. Please select the one subject which most
nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided.

C OMPUTER SCH:’ NCE 019134 UME

SUBJECT TERM SUBJECT CODE
Subject Categories
THE HUMANITIES AND SOCIAL SCIENCES
COMMUNICATIONS AND THE ARTS Psychology ...oooveviviiieiciciis 0525 PHILOSOPHY, RELIGION AND ANGIENt ..o 0579
Architecturec.coovurieurenren. 0729 Reading ~..0535 THEOLOGY Medieval0581
ér‘l History .. 8355 geligious . 8;]2; Philosophy lvl\o l:ern ...0582
inema .. ciences ... et AR Black0328
Dance ... /0378 Secondary ... ‘losgg Relign African T 03]
Fine Arts0357 Social Sciences .0534 Biblical Studias Asia, Australia and Oceania 0332
Information Science0723 Sociolagy of0340 Cler : - Canadianccccceeiveinn.n. 0334
Journalism0391 Special0529 P - European....
Library Science0399 Teacher Training .. .0530 Philogph);‘ar Latin American ...
Mass Communications0708 Technology0710 Theol Middle Eastern ...
MUSIC oo ..0413 Tests cndgﬂ\easuremenfs . 0288 BOIOGY rvvvereerssesns s United States ...
_? gg;:e}; Communication 8222 Vocationalooooveveveveiieeenene. 0747 SOGAI. SCIENCES IL-ici\s:’ory of Science .
LANGUAGE, LITERATURE AND A s e 0323 poitical Seiance
EDUCATION LINGUISTICS Archaodtoay 0324 General ...
General 0515 9y International Law and
e naion Gag longuee < Gulural .. - ety Lo e
ﬁg:;ilctlﬁ&dmConhnumg 82}9 fncient Busigess Administration) Recitﬁ]l:;ill)andmlmsfrcf
""""" inguistics eneralcoceeeiennn..... 0310 !
é\lﬁ """" [and Mulbcolomsi 8%5% Modern ..o, Accounting ..0272 goc!c; Work ..
B] inguatl and Mulficuliura 0688 Literature chking0770 OCI(;O;Og)’ 1
C‘éﬂ’”n‘iz;"y T 0975 Generdl ... Management ..0454 cﬁgﬁﬁilé'
Corrcalom and Inicion /0727 ool e Conoion Sodies 0% Demograhy -
E'c;rlrr)]/egth(;lrghood 82%‘81 mejlevcl 0297 Economics | Ethnic and Racial Stud
LOTETIATY o odern .. General oo 0501
gngéwce """" e 82{3 Alrican0316 Agricultural0503
HU‘ l'ﬁnce and L-ounseling " 0680 American0591 Commerce-Business . .0505
H?Gh """"""""""""" 0745 Asian0305 Finance0508
H!gt er "3 0520 Canadian (English)0352 History0509 Social S M
Home Econormics "0378 Conadian (French) ... 0353 labor’. 0510 Bovelopment -
: - nglish eo .
:-ndusinal """ PR T— : 823; Ge%manic ...031N Folklore ry .0358 T Theory and Mef
'xng‘uageran fleraiure " 0280 Latin American0312 Geography .. 0366 Ur%nsporfzéh'gn o
Ssicema R 0529 gAiddle Eastern ... 83}% Serontology 0351 V&Q;Z:,’; Stue ';
NS A - OMANCE ...veveereenincns isto
gt;!;i%ﬁ’hy of . - 82;2 Slavic and East European0314 Grgnerol 0578

THE SCIENCES AND ENGINEERING

BIOLOGICAL SCIENCES Geodesy .o 0370 Speech Pathology 0460 Engineerin
Agriculture Geology0372 Toxicology Generaloooeircien, 0537
Generalcocoveveiiiiiin. 0473 Geophysics ...0373 Home Economics Aerospace0538
Agronomy ... 0285 mdro[ogy ...0388 Agricultural0539
Animal Culture and ~ ineralogy0411 PHYSICAL SCIENCES Automotive0540
A Nufrilﬁ'gmh...l. 81;2 EG eoboklmy . 831212 Pure Sciences Biomedical0541
nimal Pathology alececology . h Chemical0542
Food Science and S eontoli)g;’) oalg Chemistry N — 0543
echnologycoccevnnn aleozoology . o S R Electronics and Electrical 0544
Forestry and Wildlife0478 Palynolo g)’0427 ﬁgnlcu_hur[cl : Heat and Thermodynamics ... 0348
Plant Culture0479 Physical geogrcphy0368 B."“g"'c‘? """ Hydraulic ..0545
g}an: Eﬁthsgkl)gy 83?9 Physical Oceanography 0415 lnlg: Sﬂ';'ry : l,\r;\du.siriol . 823?
an iologyotz oo oo o norganic... : aring
Range Management --.0777 HEALTH AND ENVIRONMENTAL Nuclear ... : Materials Science 70794
" IWoocl Technologyccco... 0746 SCIENCES Phome sy Mechl‘laniccl0548
10 %:’e);werd 0306 E'nvii'ﬁng':entd Sciences 0768 Phrsiccﬂ mier:icngurgy 82??
.............................. ealth Sciences Polomer : .
e B N e
Rotan " 0309 Audiclogy 0300 Mathematicscocovrveen.... Petro|egumg T 0765
Coll 10379 Chemothera 0792 Physics Sanitary and Municipal ... 0554
Ecology 0329 Esnlg:zn 8326 (A?energl Sysfemrysgience unicipar ... 0330
” Ul COUSHCS v 0986 m | BT T T -
G- 03 Hospiol Man 0769 sronomy and Soratons kaarah 058
Limnology - 10793 Human Development oree ASITOPRYSICS .- Plbsiics Technology . 70795
ey S B I
h edicine an fOMIC oo, . 0748 T TR e
ANAgLe.—gL;lcc,;nce 8%?; Mental Health 0347 Electronics and Electricic?/ 0607 PSYCHOLOGY
Oceanography . 0416 HU:S-IFQ 82;8 Elilme}?tgry Particles an 0798 General 0621
: . . irticn toh Enoray o one al s
Eh)é.‘glotl.ogy ggg?) Obstetrics an dgy ..0380 Flui qndnslrgzmq . 0759 (Bje.hgwcl)rd - 82%‘21
Vgte’?ir:g?y I, 0778 O%:_i':]upcﬁonal Health an 0354 ,t\\lAOITCU,ar8609 D;C:aclgpﬁ%éﬁt'é‘l' 0650
b erapy ... uclear .. .0610 : v
Bio Zhoczlizzs 0472 Ophthalmolo 0381 Opfics ... 0759 an ir':‘r};e]ntcl . 82%3
Ganeral 0786 Pathology ... oor] Radiation .. 0756 porconality . 10625
Medical ... 0760 Eharmccolog 8?73 5 Solid State . 832}3 Physiolog?::a 0989
""""""""""""""" armacy ... tatiSHCS oveicc ; -
EARTH SCIENCES Ph sicclc},her PY ...0382 “ 15.1 . PSYChObIOlqu -.0349
‘ . Pubfic Health 0573 Applied Sciences Psychometrics . 0632
Biogeochemistrycoccvviuneann. 0425 Radiology ... 0574 Applied Mechanics 0346 S0CHal e, 0451

Geochemistrycccoeniriunnnn 0996 RecreQhion . 0575 Computer Scienceccovennn.. 0984 @

EMPTY-SHAPE TRIANGULATION ALGORITHMS

BY

TIMOTHY LAMBERT

A Thesis submitted to the Faculty of Graduate Studies of the University of Manitoba in partial
fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

© 1994

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA to lend or
sell copies of this thesis, to the NATIONAL LIBRARY OF CANADA to microfilm this thesis and
to lend or sell copies of the film, and UNIVERSITY MICROFILMS to publish an abstract of this
thesis.

The author reserves other publications rights, and neither the thesis nor extensive extracts from it

may be printed or otherwise reproduced without the author’s permission.

Abstract

The Delaunay triangulation of a set of sites (points in the plane) can be defined as the
triangulation with the property that the circumcircle of each triangle is empty (contains no
site). I generalize this to define empty-shape triangulations. An empty-shape triangulation is
defined by a set of shapes with the property that any triangle has a unique circumscribing
shape. The Delaunay triangulation is the empty-shape triangulation where the shapes
consist of the set of all circles.

In this thesis I develop a taxonomy for triangulation algorithms, describe and imple-
ment a plane sweep algorithm for empty-shape triangulations, describe algorithms for con-
strained empty-shape triangulations and an algorithm for higher-dimensional empty-shape
triangulations. I implement an algorithm for computing convex-distance-function Delaunay
triangulations by extending them to empty-shape triangulations and then extracting the
appropriate subtriangulation.

Two properties of the Delaunay triangulation are necessary for the correctness of the
known efficient algorithms. I prove that the only triangulations with these properties are
empty-shape triangulations.

[analyze, implement and measure the performance of Delaunay triangulation algorithms
on random convex polygouns.

There is no generally accepted definition of what a random convex polygon is. I give

several operational definitions, design efficient algorithms and implement some of them.

i

Acknowledgements

I thank Bill Hoskins and Dereck Meek for their supervision and useful feedback without
which this thesis would never have been completed.

I thank Judy Goldsmith for prodding me to get the thesis into shape.

Thanks to Robert Thomas for his careful reading of this manuscript.

Thanks to David Kirkpatrick and Barry Schaudt for useful discussions. (And apologies
to Barry for finding a hole in his algorithm.)

And special thanks to all my friends who never doubted that I would one day finish my
thesis.

And extra special thanks to Donald Knuth for TRX.

iii

Contents

Abstract

Acknowledgements

Contents

List of Tables

List of Figures

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6
1.7

Triangulation Algorithm Taxonomy.
Locally Optimized Triangulations
Convex-Distance-Function Delaunay triangulations
Constrained Delaunay triangulation e
Delaunay Triangulation of Convex Polygons
Generating Random Convex Polygons

Contributions of this thesis

2 Triangulation Algorithms

2.1

2.2

Introduction
2.1.1 Constraint properties
2.1.2 Metric properties e e e
2.1.3 Algorithm paradigms
Flip Triangulation Algorithms

2.2.1 Delaunay triangulationo L L.

v

il

iii

v

ix

© W o > A R e

10

2.3

2.4

2.5

2.6

2.7

2.2.2 Constrained Delaunay triangulation 26
2.2.3 Simple polygon Delaunay triangulation 27
2.2.4 Convex-Polygon Delaunay triangulation 27
2.2.5 Convex-Distance-Function Delaunay triangulation 27
Incremental Triangulation Algorithms 28
2.3.1 Delaunay triangulation oL 28
2.3.2 Counstrained Delaunay triangulation 33
2.3.3 Simple polygon Delaunay triangulation 33
2.3.4 Convex-Polygon Delaunay triangulation 34
2.3.5 Special polygon Delaunay triangulation 34
2.3.6 Convex-Distance-Function Delaunay triangulation 34
Selection Triangulation Algorithms 35
2.4.1 Delaunay triangulation L. 35
2.4.2 Constrained Delaunay triangulation 42
2.4.3 Simple polygon Delaunay triangulation 43
2.4.4 Convex-Polygon Delaunay triangulation 44
2.4.5 Convex-Distance-Function Delaunay triangulation 44
Sweepline Triangulation Algorithms 45
2.5.1 Delaunay triangulation L. 45
2.5.2 Constrained Delaunay triangulation 54
2.5.3 Simple polygon Delaunay triangulation 59
2.5.4 Special polygon Delaunay triangulation 59
2.5.5 Convex-Polygon Delaunay triangulation 60
2.5.6 Convex-Distance-Function Delaunay triangulation 60
Divide-and-Conquer Triangulation Algorithms 61
2.6.1 Delaunay triangulation L. 61
2.6.2 Constrained Delaunay triangulation 62
2.6.3 Simple polygon Delaunay triangulation 66
2.6.4 Special polygon Delaunay triangulation 66
2.6.5 Convex-Polygon Delaunay triangulation 66
2.6.6 Convex-Distance-Function Delaunay triangulation 66

Conclusion 67

3 Local Optimization of Triangulations 69

3.1 Introduction oL 69
3.1.1 Optimal triangulations 69
3.1.2 Systematic Triangulations 70
3.1.3 Local triangulations Lo 71
3.1.4 Locally Optimized Triangulations 72

3.2 Flips . . . o o e e 72

3.3 Triangle-Based Flip Rules 76
3.3.1 Algorithms for GOT's 81

3.4 The Delaunay Triangulation 33

3.5 Testing Flip Rules 90

3.6 Systematic and Local Flip Rules are Generalized Delaunay rules 96
3.6.1 Systematic local rules have the circumscribing property 97
3.6.2 Rules with the circumscribing property are systematic and local . . 107
3.6.3 The only rotation and translation-invariant systematic local flip rule

is DT, . . o o e 108
3.6.4 The only systematic local homothetic flip rules are generalized De-
launay rules.o L 109
3.7 Conclusion L e 118
4 Computing Empty-Shape Triangulations 119

4.1 Two dimensions e e 119
4.1.1 An implementation of the sweepline algorithm 120
4.1.2 Computing convex-distance-function Delaunay triangulations 126
4.1.3 Bounding unbounded “circles” 141
4.1.4 Constrained empty-shape Delaunay triangulations 142

4.2 Three or More Dimensions 142
4.2.1 Higher-Dimensional Convex Distance Functions 143
4.2.2 An Algorithm for Higher-Dimensional Convex-Distance-Function De-

launay Triangulation Lo 148

4.3 Conclusion L e 150

5 Delaunay triangulation of convex polygons 151
5.1 Introduction 151

vi

5.2 Previousworko 152
5.3 Preliminaries L 153
5.4 Analysiso 153
5.4.1 The Circumcircle Algorithm 154

5.4.2 The Divide-and-Conquer Algorithm 157

5.4.3 The Incremental Algorithm 159

5.5 DBmpirical Tests 161
5.6 Conclusion 173

6 Generating Random Convex Polygons 174
6.1 Introduction 174
6.2 Rejection 176
6.3 Iteration L 181
6.4 Vector 182
6.5 Bounce 184
6.6 Triangulation 186
6.6.1 Realizing a Delaunay triangulation in O(n?) time. 186

6.6.2 Realizing a Delaunay triangulation in O(n) time. 189

6.6.3 Implementation L 192

6.7 Dual 193
6.8 Conclusion 194

7 Further Work 195
7.1 Performance of Delaunay triangulation algorithms 195
7.2 Is Locality Necessary? 195
7.3 More Powerful Flip Rules 195
7.4 Higher-Dimensional Convex-Distance-Function Delaunay triangulation . . . 196
7.5 Robustness of Delaunay triangulation algorithms 196
7.6 Convex-Polygon Delaunay triangulation 196
7.7 Random convex polygons 196
7.8 Prove linear number of points generated by the iteration algorithm 197

8 Conclusion 198
A DT = —ry = =0y = (rR); = abey = (Rr%/A) 201

vii

B DT # P, DT # s9, DT # —a

C Calculation of badness measures
D Miscellaneous function definitions
Bibliography

Index of Definitions

Colophon

viil

208

210

213

217

245

249

List of Tables

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4

Delaunay triangulation problems 21
Published Triangulation Algorithms 24
Incremental Delaunay Triangulation Algorithms 32
Execution time (seconds) for some implementations 67
Some proposed flip rules 77
Some possible badness measures for triangles 78
Some possible joint functions Lo L 81
% of flip graphs of each type for flip rules 93

ix

List of Figures

1.1 Voronoi diagram (solid) and Delaunay triangulation (dotted) 2
2.1 Counstraint properties L L 13
2.2 Metric properties L L L 13
2.3 Bounded Voronoi diagram and constrained Delaunay triangulation 15
2.4 Dxtra sheets in constrained Voronoi diagram 16
2.5 Conforming Delaunay triangulation. Added points are marked with bullets. 17
2.6 Ball for a convex distance function 000 20
2.7 Flip algorithm 25
2.8 Proposed bucket orderings Lo 30
2.9 Circumcircle algorithm. Stackisin bold 36
2.10 Circumcircle algorithm. Queueisin bold 37
2.11 Boundary size in circumcircle algorithm (log scale) 38
2.12 Strip tangent to the part of OABC on the same sideof ABasC 39
2.13 Search for a Delaunay triangle using an @ sorted list 39
2.14 Bucket search for a Delaunay triangle 40
2.15 Graph formed by intersection of buckets with acircle 41
2.16 Type I edge AC is added when sweepline reaches ¢ 45
2.17 Type Il edge AC is added when sweepline reaches G 47
2.18 Circles through boundary edges tangent to sweepline 48
2.19 Sweep tangent circles in the wrongorder 48
2.20 Boundary changes from aXAY S to aXACAYS 49
2.21 Boundary is LAMAXNXAYL 50
222 CAisaDelaunayedge 51
2.23 Sweep algorithmo 52

2.24
2.25
2.26
2.27
2.28
2.29
2.30
2.31
2.32

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23

Sweep algorithm
Partial constrained Delaunay triangulation—Constraint edges are in bold

ABC' can be added to the triangulation when the sweepline reaches R’ . . .
Incoming edges for a siteevent L L L.
Outgoing edges for a siteevent
Finding the next crossedge
Merging two triangulationso L.
Divide-and-Conquer triangulation

A vertical strip. Constraint edges arein bold.

Aflip ...
Flip graph for a seven siteset L.
Directed flip graph using shorter diagonal
Neither Greedy nor Minimum Weight triangulation is local
Delaunay triangulation of ABC'D is ABC,ACD
Some possible triangulations of P
Possible directed flip graphs L L
Directed flip graph using —Ry oL
Scatter plot for flip rules

Regions around a triangle L.

P

YL (BDE)and Y0, (BCE)
Flip graphs for ABCDE and A'BCDE.
FO(ABE) and FO(ACE). e
NotatypeIflipgraph
Notatype [flipgraph
DeABC
Flip graph of A’B'C'DE’'
Inserting C' in the triangulation of A’B'D'E’
CeBDENABD e
Either nonlocal or nonsystematic
DeEABC

X1

3.24
3.25
3.26
3.27
3.28
3.29
3.30

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9
4.10

ot G

1
2
3

(@]

5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

K and K’ intersect three times 108
Two different O curves 109
ABC' is homothetic to A’B'C’ 111
K and K intersect three times. 112
K and a translate of I/ (P, 3) K" intersect three times. 113
Two common support lines, 114
SE(L,PY oo 116
Sweep algorithm L 127
Sweep algorithm Lo 128
Possible values for whichcorner[A,B,C] and in right tril[A,B,C,D] . .. 130
inrighttriisnotaflipruleo oL 131
Regions for support_right tri A B 132
cdf Delaunay triangulation for a right triangle 136

Selection algorithm for right triangle with rounded corners (solid lines) . . . 138

Delaunay triangulation where “circle” is a hyperbola with asymptotes z+y =

Oand y=0.. 142
Locally Delaunay but not globally Delaunay 144
ABCD has two circumballs in the {o metric 146
How Appppppry divides P oo o 0 0 0 0oL oo 154
Merging the triangulations of two sub-polygons 158
Division of P by psp; - 160
Adding p; to D1 . . . L 160
Average triangulation time Lo 162
The dual of a triangulation 164
Averageedgelength 165
Distribution of 31-gon edge lengths 166
A polygon with longedges 167
Average number of distance comparisons 168
Derivation of G 169
496-gon vertex degrees L. L e 170
Average number of flips Lo 171
Average triangulation time L L L. 172

xii

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

Al
A2
A3

B.1

C.1
C.2

7+ is chosen from the uniform distribution on (7 ins Tmax] - - - oo 175
Acceptance regions for adding a point to P 177
How the acceptance regions change when a new point P is added 180
Tree rotation takes time O(1) 181
Dividing exterior of the hull into regions 182
Convex polygon edges regarded as vectors 183
Adding triangle ACB Lo 187
Realizing a Delaunay triangulation, 188
ABC divides the triangulation into three components 189
Dual of triangulation and traversalorder 190
New current triangle is previously unvisited 190
Realizing a Delaunay triangulation—Q(n) algorithm 191
Traversal order forangles 192
Inscribed Circles 202
Quadrilateral ABCD 203
Cyclic quadrilaterals 204
A counterexample L. 208
Case 1: yp not between yg and ye 211
Case 2: ypis between yq and yo 212

xiii

Imagine a vast sheet of paper on which straight Lines, Triangles, Squares,
Pentagons, Hexagons, and other figures, instead of remaining fixed in their
places, move freely about, on or in the surface, but without the power of ris-
ing above or sinking below it, very much like shadows—only hard with lumi-
nous edges—and you will then have a pretty correct notion of my country and
countrymen. ..

Our Women are Straight Lines.

Our Soldiers and Lowest Classes of Workmen are Triangles with two equal
sides, each about eleven inches long, and a base or third side so short (often
not exceeding half an inch) that they form at their vertices a very sharp and
formidable angle. Indeed when their bases are of the most degraded type (not
more than the eighth part of an inch in size), they can hardly be distinguished
from Straight Lines or Women; so extremely pointed are their vertices.

...a wise ordinance of Nature has decreed that, in proportion as the working-
classes increase in intelligence, knowledge and all virtue, in that same proportion
their acute angle (which makes them physically terrible) shall increase also and
approximate to the comparatively harmless angle of an Equilateral Triangle.
Thus, in the most brutal and formidable of the soldier class—creatures almost
on a level with women in their lack of intelligence—it is found that, as they wax
in the mental ability necessary to employ their tremendous penetrating power

to advantage, so they wane in the power of penetration itself.
Edwin A. Abbott Flatland [1]

Chapter 1

Introduction

A set of sites (points) in the plane can be connected into a network of triangles by Jjoining
pairs of sites with line segments so that no segments cross and no more segments can be

added. There are many applications of triangulations:

e A surveyor measures the height of the ground at a set of a sites, and then wants to
find a surface interpolating those sites (for example, to construct a contour map).

Triangulating the sites gives a polyhedral surface [329].

e A mechanical engineer who wishes to analyze a mechanical component can divide it
up into finite elements and solve the resulting equations. Triangular elements are a

popular choice [341].

e If the sites represent an image, we might wish to cluster the sites into groups that are
close together. Triangulating the sites connects each site to others that are close to

it [36].

e If the sites represent post offices, we might wish to find the post office closest to
a given query location (this is called the post office problem [185]). For each post
office, the set of sites that it is closest to is known as its Voronoi polygon. The set
of all Voronoi polygons is called the Voronoi diagram [318]. The Voronoi diagram is
dual to the Delaunay triangulation (see figure 1.1) and can be constructed from it in
time O(n). To solve the post-office problem it is only necessary to locate the Voronoi

polygon containing the query point [295].

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Voronoi diagram (solid) and Delaunay triangulation (dotted)

¢ If the sites represent cities that we wish to connect in a power grid by joining cities
with straight power lines, then the grid with the shortest total line length is the Eu-
clidean minimum spanning tree of the sites. Using a general minimum-spanning-tree
algorithm to compute this requires examining O(n?) edges. The Euclidean minimum
spanning tree is a subgraph of the Delaunay triangulation [78] (see figure 1.1) and can
be constructed from it in time O(n) [263].

e Other applications of triangulations include such fields as robotics [245], pattern
recognition [311], surface fitting [19], computer-aided geometric design [289], geog-
raphy [255], geology [327], architecture [233], medicine [20], computer graphics [10],
forestry [324], VLSI [208], remote sensing [81], image processing [143], computer vi-
sion [114], and hydrology [167]. Aurenhammer [15], Bern and Eppstein [25], Okabe et
al. [248], and De Floriani [74] survey many of these applications.

CHAPTER 1. INTRODUCTION 3

The most commonly constructed triangulation is the Delaunay triangulation. There are

two reasons for this:
L. there are fast (O(nlogn)) algorithms for its construction:

e divide and conquer [202],
e randomized incremental [148], or

e plane sweep [122].
2. it has useful geometric properties:

e Amongst all triangulations, it optimizes various triangulation measures. These

include

— maximizing the minimum angle [298],

|

minimizing the maximum circumscribed circle [71],

— minimizing the maximum smallest enclosing circle! [71, 266],
— minimizing the integral of the gradient squared [261, 272], and
— maximizing the mean inradius (proved in appendix A).

e The circumcircle of each triangle contains no other site [78].

e It contains as subgraphs the convex hull, the Fuclidean minimum spanning tree,

the Gabriel graph [130], and the relative neighbourhood graph [312] of the sites.

e The length of the shortest path between two sites along edges of the Delaunay

triangulation is within a constant factor of the straight-line distance [53, 90, 174].

e If we define a relation on the triangles by their order along rays from a given

site, then that relation is a partial order [75, 95].

The fact the Delaunay triangulation optimizes so many measures has led some au-
thors astray in claiming that the Delaunay triangulation minimizes the sum of the
minimum triangle angles [206, 257, 260, 294], that it minimizes the standard devia-
tion of the triangle angles [329], and that it minimizes the total edge length [89, 295].

(Counterexamples to these claims can be found in appendix B.)

'The smallest enclosing circle differs from the circumscribing circle when the triangle is obtuse.

CHAPTER 1. INTRODUCTION 4

1.1 Triangulation Algorithm Taxonomy

There have been about one hundred papers published describing triangulation algorithms
(see table 2.2 on 24). The surveys by Aurenhammer [15], De Floriani [74], Fortune [120]
and Okabe et al. [248] list some of these, but the only attempt at classification is made by
De Floriani who divides them into “static” (off-line) and “dynamic” (on-line) algorithms.

[n chapter 2 I provide a taxonomy for triangulation algorithms. [hope that my taxonomy
will prove useful to programmers faced with choosing from a hundred alternatives for a
triangulation algorithm by helping them realize that there are really only a half dozen
choices; to researchers by discouraging them from publishing a microscopic variation on a
previous method and encouraging them to find a new algorithm; and to anyone who wants to
understand triangulation algorithms by helping them to apply their intuition about sorting
algorithms to this problem.

The one-dimensional analogue of triangulation is sorting; so I have adapted Knuth’s
taxonomy for sorting algorithms [185]. I classify triangulation algorithms into Incremen-
tal (e.g. [145]), Selection (e.g. [229]), Flip (e.g. [19]) and Divide-and-Conquer algorithms.
Just as with sort algorithms, straightforward algorithms of the first three types have worst-
case complexity of O(n?), cleverer algorithms can improve on this (for example Fortune’s
sweepline algorithm [122] is a triangulation by selection algorithm with worst-case com-
plexity O(nlogn)), the Divide-and-Conquer algorithm [202] has worst-case complexity
O(nlogn), and the randomized incremental algorithm of Guibas et al. [148] has average

(taken over all insertion orders) complexity O(nlogn)).

1.2 Locally Optimized Triangulations

A locally optimized triangulation can be defined by a flip rule that determines which diag-
onal of a convex quadrilateral should be included in the triangulation. The Flip algorithm
repeatedly applies the flip rule to adjacent triangles in the triangulation until there are no
flippable edges left.

The rule is generally chosen to select the “better” of the two triangulations of the

quadrilateral. About twenty different such rules have been published, including:

¢ maximize the minimum angle in both triangles [194] (this leads to the Delaunay

triangulation [298]),

CHAPTER 1. INTRODUCTION 5

e minimize the maximum angle [19],

e select the shorter diagonal [233],

e maximize the sum of the minimum angles [43, 294],
e maximize the minimum altitude [138, 332], and

e minimize the maximum inradius [288].

For each flip rule we can also consider a globally optimized triangulation. For the
maximize-minimum angle flip rule this is just the Delaunay triangulation. Ior the shorter-
diagonal rule this is the triangulation with minimum total edge length, this is commonly
called the MWT (Minimum Weight triangulation). No polynomial-time algorithm is known
for the MWT. (It is one of the remaining open problems from Garey and Johnson [133].)
Polynomial algorithms have been published for only a few globally optimized triangulations

(other than those that are the Delaunay triangulation):

¢ the minimize-maximum-angle rule [103] (O(n?logn)),

e the minimize-maximum-edge-length rule [100] (O(n?)),

¢ the maximize-minimum-triangle-height rule [24] (O(n?logn)), and

e the minimize-maximum-eccentricity rule [24] (eccentricity is distance from circumcen-

tre to triangle) (O(n?)).

If we use the Delaunay flip rule, the Flip algorithm terminates with the Delaunay trian-
gulation [194] using at most O(n?) flips [102]. If the flips are done in the right order then
on average only O(n) flips are required [148]. Do fast algorithms exist for the triangulations
defined by other flip rules?

Two key properties of the Delaunay triangulation are needed to prove the correctness

of the algorithms described in chapter 2:
e A Systematic property—there is a unique triangulation.

o A Local property—when a site is added to the triangulation, the only new edges are

those adjacent to the new site.

CHAPTER 1. INTRODUCTION 6

Nielson and Franke [243] claim that the min-max angle rule has the systematic property.
It is easy to construct a five site counterexample,? but it would be tedious to do so for other
flip rules for which counter-examples exist, so in chapter 3 I generalized all the dozen or
so flip rules that I had seen published to get 120 different flip rules and tested each of
these against random convex pentagons to see if I could find counterexamples to the two
properties. I found counterexamples to all of them, except those that were equivalent to the
Delaunay triangulation. This led me to search for the proof described in the next paragraph.

I prove that the only systematic local flip rule that is invariant under rotations and
translations of the quadrilateral is the Delaunay rule (section 3.6.3).

[prove that the only systematic local flip rules invariant under scaling and translation
correspond to generalizations of convex-distance-function Delaunay triangulations which I
call empty-shape triangulations (section 3.6.4).

This suggests that algorithms as fast as Delaunay triangulation algorithms for triangu-
lations other than empty-shape triangulations are unlikely to be found. However, for most
site sets, these other triangulations do not differ by much from the Delaunay triangulations,
so computing a Delaunay triangulations and then applying the flip algorithm should work

well in practice.

1.3 Convex-Distance-Function Delaunay triangulations

The Voronoi diagram and Delaunay triangulation can be defined for non-Euclidean metrics.
Algorithms to compute the Voronoi diagram have been published for the /; metric by
Hwang [158], for the {; and o, metrics by Lee and Wong [203], for the {, metric by Lee [200],
for metrics where paths are limited to a fixed number of orientations by Widmayer et al. [333]
and for a metric where paths can only go in a certain connected range of directions by Chang
et al. [45]. These metrics are all special cases of Minkowski convex distance functions,
where the ball (“unit circle”) can be any convex shape. Chew and Drysdale [55] give
a Voronoi diagram algorithm for convex distance functions. The corresponding Delaunay
triangulation can be easily computed from the Voronoi diagram, but it is simpler to calculate
it directly. Drysdale [91] implements a Divide-and-Conquer algorithm for convex-distance-

function Delaunay triangulation.

*Nielson gives a six point counter-example in a note correcting this [242].

CHAPTER 1. INTRODUCTION 7

The above papers and the book by Okabe, Boots and Sugihara [248] give many applica-
tions for these Voronoi diagrams and Delaunay triangulations including defining response
areas for emergency units in urban areas, scheduling head movement in a two-dimensional
secondary storage system, analyzing market areas, finding minimum spanning trees, Steiner
trees and nearest neighbours in these metrics, finding largest empty homothetic convex
shapes, testing polygon containment, and planning robot motion.

The algorithms® described in chapter 2 can be implemented so that they use only two

geometric tests:
e Is a point inside the circle passing through three other points?
o s a point to the left of a directed line?

If the ball for the distance function is smooth (no corners) and strictly convex (no flat spots)
then for any three points there is a unique circumball [187]. If we replace “circle” in the
first test above by “ball” the algorithm will work for this distance function with essentially
the same proof of correctness.

If this is not the case (for example, the Manhattan metric), the outer face of the trian-
gulation may have concavities, and the algorithms will break down. It is possible to fix up
the algorithms—this is what Drysdale does for the Divide-and-Conquer algorithm, but has
only been done in the metrics /; and [, for a sweepline algorithm [297] and Drysdale lists
the implementation of a general sweepline algorithm as an open problem.

In chapter 4 I show that a simpler approach, using empty-shape triangulations (which
generalize convex-distance-function Delaunay triangulations), is to fix the distance function
and round off the corners at an infinitesimal scale. This produces a supertriangulation from
which the desired triangulation can be easily extracted, leading to the first known Flip,
Selection and Sweepline algorithms for convex-distance-function Delaunay triangulations
(section 4.1.2).

I present a complete working implementation of my new sweepline algorithm for empty-
shape triangulations and convex-distance-function Delaunay triangulations, and implemen-
tation of the geometric primitives required for the other algorithms (section 4.1.1).

I give examples showing that algorithms for higher-dimensional Delaunay triangulation

®with the sole exception of the sweepline algorithm

CHAPTER 1. INTRODUCTION 3

do not work in general for higher-dimensional convex-distance-function Delaunay triangu-
lation (section 4.2.1). I give a Selection algorithm for higher-dimensional convex-distance-

function Delaunay triangulation (section 4.2.2).

1.4 Constrained Delaunay triangulation

A constrained triangulation is one where certain edges are forced (for example, triangu-
lating a simple polygon). In a constrained Delaunay triangulation, sites can occur in the
circumcircle of a triangle if they are hidden from a triangle vertex by a constraint edge.

Algorithms have been published for constrained Delaunay triangulation, using Incre-
mental (e.g. [63]), Selection (e.g. [216]), Flip (e.g. [33]), Divide-and-Conquer (e.g. [57]) and
Sweepline algorithms (e.g. [291]).

Applications of constrained Delaunay triangulations include constructing finite-element
meshes for polygonal shapes [164], dividing polygons into triangles while avoiding small
angles [54], finding shortest paths that avoid line obstacles [56], finding the greedy triangu-
lation (this is formed by adding edges that do not intersect previously added edges in order
from shortest to longest) [139, 211] and fitting a surface to a scattered set of sites and line
segments [76].

Using the ideas in the previous section, I can create algorithms for constrained Delaunay
triangulation using arbitrary convex distance functions, a problem not previously considered

in the literature (section 4.1.4).

1.5 Delaunay Triangulation of Convex Polygons

The worst-case lower bound for constructing the Delaunay triangulation is Q(nlogn) in?
the real-RAM model [263]. If the sites to be triangulated form a convex polygon this lower
bound does not apply and Aggarwal ef al. have found an O(n) worst-case algorithm [5].
Unfortunately, it is too complicated to be practical. Devijver and Maybank [83] present
a very simple algorithm that is O(n3) in the worst case and O(n?) if we take the average
over all possible triangulations of the polygon. Chew [52] gives a randomized incremental

algorithm that is O(n) if we take the average over all insertion orders.

4Q(g(n)) 1s the set of functions f(n) such that |f(n)| > C|g(n)| for some C > 0 [144].

CHAPTER 1. INTRODUCTION 9

In chapter 5 I calculate the average time complexity of general Delaunay triangulation
algorithms over all possible triangulations of the polygon. This is O(n) for all types of
algorithm, except for the simple selection algorithm, which is O(n?’/) and the sweepline
algorithm, which is still O(nlogn).

Surprisingly, when tested on random convex polygons generated by the methods de-
scribed in chapter 6, each of the algorithms exhibited worst-case performance, rather than
the performance expected from assuming that all triangulations were equally likely. TFor
example, the incremental algorithm took time O(n?). To improve this to O(n) it is nec-
essary to insert the sites in a random order. A similar randomization is required to make
Divide-and-Conquer take time O(n).

I implemented both of these randomizations and the resulting algorithms ran in the

expected time on my test polygons.

1.6 Generating Random Convex Polygons

To test the analysis described in the preceding section, it is necessary to be able to generate
random convex n-gons. Unfortunately, there is no accepted definition of what a random
convex polygon is. For example, Sylvester’s problem [277] is to find the probability that the
convex hull of four random sites is a quadrilateral. Even for sites drawn from the uniform
distribution, this turns out to depend on the shape of the region from which they are drawn.

Random convex polygons have been generated on the computer by Crain [67], who
used Voronoi polygons defined by a Poisson point process, by Crain and Miles [68], who
examined polygons defined by a Poisson line process, by Devroye [84], De Pano et al. [80] and
Abrahamson [2], who took the convex hull of random points, and by May and Smith [226],
who took the intersection of random half-spaces. However, none of these methods let you
specify the number of sides of the polygon.

In chapter 6 I describe efficient algorithms for each of the following methods:

¢ Pick n points from some distribution. Reject if their convex hull is not an n-gon. (We

can generate a convex n-gon in time O(nlogn) using this method.)

e Select points from some distribution until their convex hull has n vertices. (This takes
time O(hlogn) where h is the number of times times the hull changes, which seems

in practice to be proportional to n.)

CHAPTER 1. INTRODUCTION 10

e The n vectors comprising the sides of the polygon can be regarded as a point in 2n-
dimensional space. For the polygon to close, the vectors must sum to zero. This means
that the point must lie on a 2n — 2 dimensional flat; so pick from some distribution
on this flat. (This takes time O(nlogn) since it is necessary to sort the vectors to

construct the polygon.)

o Start with an arbitrary convex polygon and give each vertex a random velocity. If a
vertex is ever about to become concave, we “bounce” it from that constraint. If we
perform O(n) bounces the resulting polygon should be “random”. (Each bounce will
take time O(logn) since the event queue will have O(n) elements, giving O(n logn)

time in total.)

e Choose a random topological triangulation of a polygon. Use Dillencourt’s construc-
tive proof of the realizability of such triangulations as Delaunay triangulations [87] to

construct a convex polygon.

o We can take the dual of polygons produced by the above methods. For example, for
the first method, this amounts to taking the intersection of half-spaces containing the

origin.

I have implemented the first three methods above and used them for testing the perfor-
mance of the convex polygon triangulation algorithms described in chapter 5.

Some other uses for my random convex polygons might be to determine how often
random convex polygons were unimodal [6] and how often the minimum-area and minimum-

perimeter-enclosing rectangles are different [80].

1.7 Contributions of this thesis

I develop a taxonomy of Delaunay triangulation algorithms that allows us to use our in-
tuitions about sorting algorithms to understand triangulation algorithms and show that
this classification scheme deals with constrained Delaunay triangulation algorithms as well
(chapter 2).

Sweepline algorithms for Delaunay triangulation and constrained Delaunay triangulation
have been presented in terms of the dual Voronoi diagram. I give a clearer and simpler
presentation showing how the sweepline algorithm is a direct search for Delaunay triangles

(section 2.5).

CHAPTER 1. INTRODUCTION 11

L implement and illustrate all the Delaunay triangulation algorithms described in sec-
tions 2.2.1,2.3.1,2.4.1,2.5.1, and 2.6.1.

I prove that the only systematic local flip rule that is invariant under rotations and
translations of the quadrilateral is the Delaunay flip rule (section 3.6.3).

I prove that the only systematic local flip rules invariant under scaling and translation
correspond to generalizations of convex-distance-function Delaunay triangulations which
L call empty-shape triangulations (section 3.6.4). I show how to modify Delaunay trian-
gulation algorithms to produce empty-shape triangulations and constrained empty-shape
triangulations (section 4.1). This also provides new algorithms for convex-distance-function
Delaunay triangulations and constrained convex-distance-function Delaunay triangulations.

I present a complete working implementation of the new sweepline algorithm for empty-
shape triangulations and convex-distance-function Delaunay triangulations (solving a prob-
lem posed in [91]) and implementation of the geometric primitives required for the other
algorithms (section 4.1).

I'show that that this approach does not generalize to three-dimensional convex-distance-
function Delaunay triangulation and design an algorithm for this problem (section 4.2).
I also prove some results bounding the complexity of three-dimensional convex-distance-
function Delaunay triangulation (theorems 14 and 15).

[compute the average (taken over all possible triangulations) execution time for three
algorithms for computing the Delaunay triangulation of a convex polygon (section 5.4).
I measure the performance of the algorithms on random convex polygons and show that
randomization of the algorithms is necessary to obtain the expected execution times (sec-
tion 5.5). I also give an O(1) space algorithm for convex-polygon Delaunay triangulation
(solving a problem incorrectly solved in [83]).

I give several operational definitions of “random” convex polygons, design efficient
(O(nlogn) or better) algorithms to compute them and implement some of them (chap-
ter 6). Two algorithms I developed as part of algorithms for convex polygon generation
are interesting in their own right—a data structure that allows generation of variates in
time O(logn) from a dynamically changing discrete distribution (section 6.2) and an O(n)
algorithm for realizing a Delaunay triangulation of a convex polygon (section 6.6.2).

I prove that the Delaunay triangulation optimizes several geometrical properties of the

triangulation including maximizing the mean inradius (appendix A).

Chapter 2

Triangulation Algorithms

2.1 Introduction

There have been over a hundred papers published on various algorithms for Delaunay and
non-Delaunay triangulation problems (table 2.2 on page 24).

We can classify Delaunay triangulation problems using two orthogonal axes:

constraint properties What is the nature of the constraint edges? Figure 2.1 shows a

lattice of the constraint properties described in section 2.1.1.

metric properties What is the shape of the “circle” in this metric? Figure 2.2 shows a

lattice of the metrics described in section 2.1.2.

Not included in this framework are non-Delaunay triangulations such as the Greedy
triangulation and the Minimum Weight triangulation. These are discussed in chapter 3.

Section 2.1.3 describes the classification for the algorithmic paradigms used to classify
Delaunay triangulation algorithms.

Sections 2.2 to 2.6 survey how each paradigm has been applied to each Delaunay tri-
angulation problem. Where it has not been applied, I design an algorithm to demonstrate

that it can be so applied.

2.1.1 Constraint properties

Note from figure 2.1 that all the other Delaunay triangulation problems are subsets of the
constrained Delaunay triangulation problem. Simpler triangulation algorithms are possible

for these problems, so it is worthwhile to consider them separately.

12

CHAPTER 2. TRIANGULATION ALGORITHMS

constrained
Delaunay
/ triangulation
P
simple
polygon
Delaunay
triangulation N\
Delaunay
triangulation
special
polygon
Delaunay
triangulation
\ convex
N\ polygon
Delaunay
triangulation

Figure 2.1: Constraint properties

empty
shape
triangulations
v
convex
distance
function
Delaunay
triangulations
= I
Manhattan Euclidean
metric metric
Delaunay Delaunay
triangulations triangulations

Figure 2.2: Metric properties

CHAPTER 2. TRIANGULATION ALGORITHMS 14

The Delaunay triangulation

Let S be a set of points in the plane. We will call the points in S sites.

To simplify the discussion we will assume that the set of sites is non-degenerate, that
is, no three sites are collinear and no four sites are cocircular. Degenerate site sets can be
made non-degenerate by a small perturbation of the sites. This can be done by modifying
the computation of the geometric primitives rather than actually moving any sites [97].

The Delaunay triangulation of §' is the unique triangulation of S such that the circumcir-
cle of each triangle contains no site in its interior. Sites s and ¢ are connected by a Delaunay
edge iff there exists a circle through s and ¢ which has no other site on its boundary or in
its interior.

The Voronoi polygon of a site s € 5' is the set of points that are closer to s than to any
other site in §. The Voronoi polygons of all the sites form a partition of the plane known as
the Voronoi diagram of §. The Voronoi diagram is the dual of the Delaunay triangulation.
Figure 1.1 shows the Voronoi diagram and Delaunay triangulation of a set of sites.

There is a strong relationship between the Delaunay triangulation and three-dimensional
convex hulls [94, 147]. The lifting map sends each point (,y) to the three-dimensional point
(z,y,2% + y?). The lifting map sends the base plane to the paraboloid z = 22 + y%. To lift
a triangulation we just apply the lifting map to its sites to get a triangulation embedded in
three dimensions. The lower convex hull of a point set consists of those faces visible from
(0,0, —o0). The lift of the Delaunay triangulation is just the lower convex hull of the lifted
sites. (This follows from the fact that the lift of a circle is the intersection of a plane with
the paraboloid.)

If all except one of the sites are on a line, then any triangulation sorts the sites in the
order in which they occur on that line. This means that there is a worst-case lower bound
of Q(nlogn) for any Delaunay triangulation algorithm.

Shamos and Hoey [295] were the first to develop an algorithm that attained this bound.

See the surveys by Aurenhammer [15], Fortune [120] and Okabe et al. [248] for more

information on the properties of Voronoi diagrams and Delaunay triangulations.

Constrained Delaunay triangulation

Let § be a set of sites in the plane and E be a set of straight-line edges (constraints)

connecting sites in 5. A point A is visible from a point B if the segment AB does not cross

CHAPTER 2. TRIANGULATION ALGORITHMS 15

an edge of Iv.

The constrained Delaunay triangulation of (S, I/) is the unique triangulation of S such
that the circumcircle of each triangle contains no site visible from all three vertices of the
triangle in its interior and the vertices of each triangle are mutually visible. Sites s and ¢
are connected by a constrained Delaunay edge iff s is visible from ¢, and there exists a circle
through s and ¢ which has no other site on its boundary or in its interior visible to s and t.

The bounded Voronoi polygon of a site s € §' is the set of points whose closest visible site
is s. The bounded Voronoi polygons of all the sites form the bounded Voronoi diagram of
5. Figure 2.3 shows the bounded Voronoi diagram and constrained Delaunay triangulation
of a set of sites and constraints. Note that AB is a Delaunay edge but that the bounded
Voronoi polygons of A and B are not adjacent, i.e. the bounded Voronoi diagram and

constrained Delaunay triangulation are not dual.

Figure 2.3: Bounded Voronoi diagram and constrained Delaunay triangulation

The dual of the constrained Delaunay triangulation is the constrained Voronoi diagram.
This is formed by taking the bounded Voronoi diagram and gluing an extra sheet to it
along each constraint edge so that if you cross the constraint edge, you move from the base

plane to the associated extra sheet. If a Voronoi polygon is adjacent to a constraint in the

CHAPTER 2. TRIANGULATION ALGORITHMS 16

base plane, then it extends into the associated extra sheet. Figure 2.4 shows the two extra
sheets that are glued to the bounded Voronoi diagram in figure 2.3 to form the constrained

Voronoi diagram.

Figure 2.4: Ixtra sheets in constrained Voronoi diagram

The lift of the constrained Delaunay triangulation is just the lowest triangulated surface
which contains all the constraint edges.

Chew [57] and Wang and Schubert [320] were the first to develop worst-case optimal
O(nlogn) algorithm for constrained Delaunay triangulation.

Some applications of constrained Delaunay triangulations are listed in section 1.4. For
more on the properties of constrained Delaunay triangulations see Joe and Wang [165].
(They say “constrained Voronoi diagram” instead of “bounded Voronoi diagram” and “ex-
tended constrained Voronoi diagram” instead of “constrained Voronoi diagram?”.)

A related construction is the conforming Delaunay triangulation. The conforming De-
launay triangulation of (5, E) is the Delaunay triangulation of §' D S, where 57 is chosen
such that no edge in the Delaunay triangulation of S crosses an edge in E. Figure 2.5
shows the conforming Delaunay triangulation corresponding to the constrained Delaunay
triangulation shown in figure 2.3.

The usual approach used to construct a conforming Delaunay triangulation is to repeat-

edly add sites on constraint edges that are crossed by Delaunay edges until the triangulation

CHAPTER 2. TRIANGULATION ALGORITHMS 17

Figure 2.5: Conforming Delaunay triangulation. Added points are marked with bullets.

is conforming [29, 30, 150, 239, 249, 276, 278, 287, 314, 330]. This approach seems to work
well in practice, though it is possible that vast numbers of extra sites would have to be
added. Edelsbrunner and Tan [101] show that with n sites and m edges, Q(mn) extra sites
can be required and give an algorithm to find a conforming triangulation with at most

O(m?n) extra sites.

Convex-Polygon Delaunay triangulation

If the sites form a convex polygon, and we are given the order in which they occur around
the boundary, the Q(n logn) lower bound no longer applies, and Aggarwal et al. [5] have de-
veloped a worst-case O(n) algorithm. Chapter 5 is devoted to the analysis, implementation

and performance measurement of several algorithms for this problem.

Simple polygon Delaunay triangulation

Definition. A polygon with vertices po,p1,...,pn_1, and edges e; = pipisy (define p,, as
Po) Is a simple polygon if

e adjacent segments intersect only at their shared vertex: e; N €41 = Dit1-
e non-adjacent segments do not intersect: e;Ne;j = G if 5 £ i + 1.

This is a special case of constrained Delaunay triangulation where the constraints form a
simple polygon and the sites are the endpoints of the constraint edges. Furthermore, we

are only interested in the part of the triangulation inside the polygon. The incremental

CHAPTER 2. TRIANGULATION ALGORITHMS 18

algorithm for constrained Delaunay triangulation (section 2.3.2) requires this computation
as one step.

The Q(nlogn) lower bound does not apply in this case either, and recently Klein and
Lingas [181] have presented a randomized algorithm that takes expected linear time.

In contrast, calculating the Delaunay triangulation of the vertices of a simple polygon

still requires time Q(nlogn) [4, 290]. That is, the constraints make the problem “easier”.

Special polygon Delaunay triangulation

Triangulations of particular kinds of polygons are required as steps in other geometric
problems.

A polygon is monotone if there is a line [such that all lines parallel to { intersect
the polygon at most twice. Yeung [338] provides a O(nlogn) algorithm for the Delaunay
triangulation of a monotone polygon.

If we delete a site from a Delaunay triangulation it is necessary to retriangulate the
polygon formed by the union of all the triangles adjacent to the deleted site. This Delaunay
deletion polygon is characterized by having the intersection of the circumcircles of all trian-
gles formed from three vertices be nonempty. Aggarwal et al’s convex-polygon Delaunay
triangulation algorithm can be generalized to triangulate Delaunay deletion polygons in
linear time [5].

A polygon P is a Delaunay monotone polygon if there is a line which intersects every
internal edge of the Delaunay triangulation of P [321]. These arise when a single constraint
is inserted into a constrained Delaunay triangulation, and their Delaunay triangulations
can be found in linear time [204, 321].

A polygon P with vertices po,...,p, is a normal histogram if the p; have ascending
@-coordinates, po and p, have the same y-coordinate, and all other vertices have larger
y-coordinates. Klein and Lingas present a linear algorithm for Delaunay triangulation of
normal histograms as a step in their linear algorithm for the Delaunay triangulation of a

simple polygon [181].

2.1.2 Metric properties

Definition. A homothety h(t,,t,,k) is a product of a translation by (tz,ty) and a scaling
by k.
Atz ty, k) (z,y) = (t. + ke, t, + ky).

CHAPTER 2. TRIANGULATION ALGORITHMS 19

If & # 1 then the homothety has a fixed point P, so we will also call it H(P,k). Aset Ais
a homothet of a set B of there is a homothety H such that H(B) = A.

Lay [195] and Coxeter [66] (who calls them dilatations) cover some of the properties of
homotheties.
[will use shape set to refer to an equivalence class under homotheties. For example, the

set of all axis-parallel squares is a shape set.

Definition. A convex body is sirictly conver if it contains no straight line segments in its

boundary [317].

Definition. A directed line [is a support line of a set K iff [contains a boundary point (a

support point) of K and K is contained in the closed halfplane to the left of /.

We can associate directed lines with the half-planes to their left. A convex set can be

seen to be equal to the intersection of the half spaces associated with its support lines.

Definition. A convex body is smooth if there is a unique support line at each boundary

point [195].

Definition. The polar set K* of K is defined by
K* = {(z,y)|ax + by < 1 for all (a,b) € K}.

If K contains a single point (a,b) # (0,0) then K* is the closed half-plane az + by < 1.
The dual of such a point is its polar set K*. The dual of a closed convex set K with (0,0)
in its interior is its polar set K*. See Lay [195] for more details.

Boundary points and support lines are dual—that is, the directed line associated with
the dual of a boundary point p of K is a support line of the dual X*. Smoothness and strict
convexity are dual—if there are two support lines at a boundary point of K, then, in the
dual there are two boundary points incident on the same support line, and the boundary
of the dual will contain the segment joining these two points. In other words, & is smooth

if and only if the dual of K is strictly convex.

Definition. Given a closed convex set K with (0,0) in its interior, then the conver distance

function f:R? — R of K is defined by

d(z,y) = inf{k|(x — y) € h(0,0,k)K}.

CHAPTER 2. TRIANGULATION ALGORITHMS 20

K is called the ball for the convex distance function.

Note that we have generalized the definition given by Chew and Drysdale [55] by allowing
the convex set to be unbounded.

I we let P’ be the point where the ray OP (O is the origin) intersects the boundary of
K then d(P,0) = |OP|/|OP'| (see figure 2.6). The Euclidean metric is the convex distance
function of the unit disc {(2,y)]2?+y? < 1}. The Manhattan metric is the convex distance

function of the square with corners (0,1), (1,0), (0, —1), and (—1,0).

/GP
/
/ P’

Figure 2.6: Ball for a convex distance function

Given a ball K, a circumbell of a triangle T is a homothet of that ball with the vertices
of T' on its boundary. We say that K circumscribes T. If the ball is smooth and strictly
convex then every non-degenerate triangle has a unique circumball [187].

The convex-distance-function Voronoi diagram is defined just as in section 2.1.1, but us-
ing the convex distance function to measure distance. In the dual convex-distance-function
Delaunay triangulation each triangle has a circumball with no site in its interior.

If the ball is not smooth then some triangles will not have circumballs and the outer
face of the Delaunay triangulation is not the convex hull but the support hull [91]. (See
figure 4.6 for an example.) An edge PQ is part of the support hull iff there is an infinitely
large homothet of the ball with P and @ on its boundary and no site in its interior.

Similarly, if the ball is unbounded, some triangles will not have circumballs and the
outer face is the support hull. In addition, some sites will be outside the the support hull
(See figure 4.8 for an example.). We can regard an unbounded ball as having a corner at
infinity.

If the ball is not strictly convex and the line through two sites is parallel to a straight-

line segment on the boundary, then there may be an infinite number of circumballs for a

CHAPTER 2. TRIANGULATION ALGORITHMS 21

triangle with the two sites as two vertices. Consequently, the Delaunay triangulation is
ambiguously defined. A small perturbation of the sites will solve this problem, so we can
deal with it in the same way that other degeneracies are dealt with.

In this thesis I further generalize convex-distance-function Delaunay triangulation to de-
fine the empty-shape triangulation. If we are given a set of balls & such that for any triangle
1" there is exactly one ball in £ which circumscribes 7', in the empty-shape triangulation
each triangle has an empty circumball. Tigure 4.6 shows an empty-shape triangulation
where K consists of all homothets of a triangle and three hyperbolae.

Table 2.1 shows the Delaunay triangulation problems for which algorithms have been
published. Chapter 4 gives algorithms for constrained empty-shape triangulations, which

are a superset of all the problems in table 2.1.

empty-shape | convex distance | Euclidean Manhattan
triangulation | function
constrained [57]
no constraints [55] [295] [158]
simple polygon [181] [180]
convex polygon [5]

Table 2.1: Delaunay triangulation problems

2.1.3 Algorithm paradigms

The one-dimensional analogue of triangulation is sorting. Much has been written on
the taxonomy of sorting algorithms. One commonly used classification scheme is that
of Knuth [185], who classifies sorting algorithms into insertion, selection, exchange, and
divide and conquer. If all except one of the input sites are on a line, then the triangulation
algorithm functions as a sorting algorithm, so it should be no surprise that we can adapt

Knuth’s scheme to classify triangulation algorithms.

Flip

Bubble sort repeatedly exchanges adjacent elements that are out of order until the sequence
is sorted. The number of exchanges is equal to the number of inversions in the list which is

O(n?) in the worst and average case.

CHAPTER 2. TRIANGULATION ALGORITHMS 22

By exchanging non-adjacent elements it is possible to obtain a O(nlogn) algorithm.

Analogously, a flip algorithm for triangulation repeatedly modifies a triangulation by
“exchanging” diagonals of convex quadrilaterals in the triangulation that are “out of order”
until the triangulation is “sorted”. In this context to “exchange” means to flip! the diagonal,
“out of order” means that the triangulation of the convex quadrilateral is not Delaunay and

“sorted” means that the triangulation is Delaunay.

Incremental

Insertion sort inserts each point into the sorted sequence in turn. This takes time O(n) in
the worst and average cases, giving O(n?) time to sort n points.

Using a more sophisticated data structure, (such as an AVL tree) to store the sorted
sequence enables the insertion to be carried out in time O(logn), leading to a O(nlogn)
algorithm.

Analogously, an incremental algorithm for triangulation maintains a triangulation of the

sites processed so far. Lach new site is inserted in the triangulation in turn.

Selection

Selection sort outputs a sorted sequence by selecting the smallest element in a sequence,
then the next to smallest and so on. Finding the smallest element takes time O(n), so the
total time taken is O(n?).

By using a priority queue data structure (such as a heap) that enables the selection to
made in time O(log n) we can obtain a O(nlogn) algorithm (heapsort).

Analogously, a selection algorithm for triangulation finds Delaunay triangles one at a

time from the set of sites.

Sweepline

The sweepline paradigm is an important computational geometry paradigm that can be used
to create a selection triangulation algorithm by finding Delaunay triangles in the order that
a sweepline crosses the rightmost point of their circumball. Although sweepline algorithms
are selection triangulation algorithms, they are important enough to be given their own

category.

'defined on page 72

%

CHAPTER 2. TRIANGULATION ALGORITHMS 23

The sweepline algorithm is analogous to heap sort in that it uses a priority queue data

structure to select Delaunay triangles in time O(logn) per triangle.

Divide and Conquer

Merge sort divides the sequence to be sorted into two equal sized sequences. These are
sorted recursively and the results merged to produce a final sorted sequence. Since the
merge step takes O(n) time, merge sort takes O(nlogn) time overall.

Analogously, the Divide-and-Conquer triangulation algorithm divides the sites into two

equal sized sets, recursively triangulates each set, and merges the two triangulations.

Published algorithms

Table 2.2 classifies published triangulation algorithms using the above scheme. The great

popularity of the incremental algorithm is evident.

2.2 Flip Triangulation Algorithms

2.2.1 Delaunay triangulation

The flip algorithm for the Delaunay triangulation constructs an initial triangulation and
then does Delaunay flips until no more flips are possible.

Lawson [194] proved that the flip algorithm will converge to the Delaunay triangulation,
no matter what order the flips are done in.

The initial triangulation can be made by constructing a star triangulation by connecting
a site to all others and then filling in the concavities [233], finding a spiral path through
the sites and then filling in between whorls of the spiral [222], by repeatedly dividing the
sites into two by finding a path connecting sites [207], or by connecting sites to other visible
sites [19].

We can repeatedly make passes over all the edges of the triangulation, flipping any
eligible edges and stopping when a pass is made without any flips [233]. Or, if we use
a list of triangles to store the triangulation, we can check each triangle against its three
neighbours. Once a triangle has been tested it need not be tested again, so one pass over the
triangle list, with new triangles being added at the end, will suffice. Figure 2.7 shows the

sequence of triangulations that this method produces, starting with a star triangulation.

CHAPTER 2.

TRIANGULATION ALGORITHMS

24

325)

Flip Incremental Selection Sweepline Divide and
Conquer
Delaunay (19, 119, 161, | [7, 8, 31, 34, [20, 22, 37, 40, | [122, 199] [39, 70, 92,
triangulation | 207, 222, 269, | 35, 36, 42, 58, | 69, 81, 105, 104, 147, 172,
280] 64, 65, 82, 85, | 112, 113, 124, 173, 199, 202]
115, 116, 119, | 154, 175, 183,
123, 131, 134, | 198, 224, 227,
135, 145, 148, | 229, 271, 281,
150, 152, 163, | 305, 307]
168, 194, 197,
202, 213, 221,
225, 234, 246,
249, 253, 260,
294, 296, 300,
302, 303, 308,
314, 327, 339,
340]
Constrained [33, 231, 252, [14, 27, 63,73, | (201, 216, 218, | [291] [57, 165, 236,
Delaunay 309] 76, 142, 160, 228, 241] 237, 279]
triangulation 169, 171, 181,
219, 220, 301,
320, 321]
simple [76, 301] [63] [201]
polygon
Delaunay
triangulation
special [181, 182] [171, 338]
polygon
Delaunay
triangulation
convex [161] [55] [83]
polygon
Delaunay
triangulation
convex- [45, 77, 121, [91, 158, 170,
distance- 299, 297] 200, 203, 205]
function
Delaunay
triangulation
non-Delaunay | [109, 136, 138, [139, 211, 204] [235]
triangulations | 156, 233, 254,

Table 2.2: Published Triangulation Algorithms

A =] A
e o= &=\ =<

%’ lz’ @ J’
K\ K =
J’

< \
%%/

CHAPTIER 2. TRIANGULATION ALGORITHMS 26

Efficiency of the flip algorithm

In the lifted triangulation each flip causes the surface to move downwards. Jonsequently,
once an edge is deleted it can never come back. Since there are (?) possible edges there can

be at most O(n?) flips.

2.2.2 Constrained Delaunay triangulation

The flip algorithm is the conceptually simplest algorithm for constructing the constrained
Delaunay triangulation. Construct an initial triangulation that contains all the constraint
edges. Do constrained Delaunay flips until no more are possible. A constrained Delaunay
flip differs from a Delaunay flip in that it will not delete a constraint edge. The proof of the
correctness is almost identical to that for the unconstrained flip algorithm and the worst
case is still O(n?).

The only difficulty is that it is no longer trivial to construct the initial constrained
triangulation. Garey et al. [132] give a O(nlogn) for this problem. Implementing this algo-
rithm is the most complicated part of implementing the flip algorithm for the constrained
Delaunay triangulation, since it requires two stages: first a plane sweep from left to right
that adds edges so that each site has an edge to its left and an edge to its right, and then
triangulation of the resulting monotone polygons.

There have been no published implementations using this method.

In many applications, the constraint edges form a simple polygon. We can triangulate
the simple polygon and complete the triangulation by triangulating the sites that fall into
each triangle by any of the above methods. There exists a very simple algorithm to trian-
gulate the simple polygon. An ear of a polygon is a triangle ABC' where A, B and C are
successive vertices along the boundary, ZABC' is convex, and AABC contains no polygon
vertex in its interior. Meisters [230] has proved that any polygon has at least two ears. The
ear-cutting algorithm triangulates a polygon in time O(n3). It finds an ear in time O(n?)
by testing (in time O(n)) each of O(n) possibilities, cutting this ear from the polygon and
recursively triangulating the resulting polygon.

This algorithm has been proposed in [337] and [336], while [231] and [252] use it with
the flip algorithm.

A slightly more complicated algorithm, also with O(n®) worst-case complexity, directly

searches for a triangle standing on a side that does not intersect a polygon edge [51].

CHAPTER 2. TRIANGULATION ALGORITHMS 27

Borgers [33] uses it with the flip algorithm.
Implementors have used these simple O(n®) algorithms because in their applications the
number of constraints is small relative to the number of sites, so the flipping time dominates.
We should also note that there has been much research into finding o(n log n) algorithms?
for polygon triangulation. Such algorithms were found for special cases [50, 107, 153, 310,
313, 335], then general O(nloglogn) algorithms [178, 306] and O(nlog*n) randomized
algorithms [62, 60, 292] were developed before Chazelle found a deterministic O(n) algo-

rithm [48].

2.2.3 Simple polygon Delaunay triangulation

We construct an arbitrary triangulation of the simple polygon and then apply the flip
algorithm. We have already discussed triangulating simple polygons in section 2.2.2.

2.2.4 Convex-Polygon Delaunay triangulation

In this case it is particularly easy to construct an initial triangulation. For example, con-
necting one vertex to all others will suffice. Joe [161] describes a flip algorithm for convex
polygon Delaunay triangulation.

2.2.5 Convex-Distance-Function Delaunay triangulation

If the convex-distance-function ball is smooth and bounded then the flip algorithm will work

in the same way that it does in the Euclidean metric. If not, two difficulties are encountered:
1. We must first find the support hull and construct an initial triangulation of that.

2. The convex-distance-function Delaunay triangulation of a convex quadrilateral may

not contain any triangles, making it unclear which way to flip the diagonal.

In section 4.1.2 I present a way to deal with these difficulties.

2o(g(n)) is the set of functions f(n) such that |f(n)| < ¢|g(n)| for all ¢ > 0 [144].

CHAPTER 2. TRIANGULATION ALGORITHMS 28

2.3 Incremental Triangulation Algorithms

2.3.1 Delaunay triangulation

There are two main ways that a new site can be inserted into a triangulation. Watson’s
method [326], is to scan through all the triangles, deleting all those triangles whose cir-
cumcircles contain the new site. The deleted triangles form a star-shaped polygon.® New
triangles are then added by connecting the new site to each boundary edge of this polygon.
The list of boundary edges can be computed by collecting all the edges of the deleted poly-
gons and discarding all the edges that occur twice. For this method, we do not need a data
structure that keeps track of triangle adjacencies. A simple list of triangles will suffice.

Another method, due to Lawson [194] connects the new site to all those sites visible
from it. This triangulation is then converted to a Delaunay triangulation by repeated flips.
The only possible candidate triangles for flipping are the new triangles that have just been
created by connecting the new site.

If the new site is inside the convex hull of the sites triangulated so far, then the only
sites visible from it will be the three corners of the triangle that it is inside, so to simplify
programming you can start with a triangulation of some dummy sites whose convex hull
includes all the real sites [202].

If the new site is outside the convex hull of the sites triangulated so far, then the only
sites visible from it will be a sequence of sites on the convex hull. To ensure that this is
the only case that you need to consider in your triangulation algorithm you can sort all the

sites in order of distance from the origin [194], or sort them by their « coordinate [65, 308].

Efficiency of Incremental Algorithms

In the worst case, an incremental algorithm will require O(n) time to insert a site in the
triangulation, since the new site might have to be connected to all O(n) other sites. This
means that the total time will be O(n?) in the worst case. A sequence of sites along a
half-parabola [202] is an example of this worst case.

Most implementations of incremental algorithms perform much better than this in prac-

tice for reasons explained below:

®A star-shaped polygon is a polygon with a point in its interior from which every other interior point is
visible.

CHAPTER 2. TRIANGULATION ALGORITHMS 29

Insertion by Flipping When a site is inserted into a Delaunay triangulation the only
new edges are those adjacent to the new site, so the number of flips required is d, the degree
of the new vertex. If the sites are uniformly distributed, he expected value of d is 6 and the
expected number of flips is O(n). Guibas, Knuth and Sharir [148] generalize this result to
show that the expected number of flips is O(n) for any site set, provided that the sites are
inserted in random order.

The other time-consuming part of incremental algorithms, is finding the sites to initially
connect the new site to.

If we reorder the sites such that the new site is outside the convex hull of the sites
triangulated so far, it is necessary to search the convex hull of the sites. If the sites are
uniformly distributed and we order the sites by the distance from the origin, the expected
number of sites in the convex hull is O(n'/?) [268], giving a total search time of O(n/?) [194].
If sites are uniformly distributed over a rectangle, then the expected number of sites in the
convex hull is O(logn) [270], so sorting the sites by & coordinate will lead to a total search
time of O(nlogn) [308].

If the new site i‘s inside the convex hull, it is necessary to find the containing triangle.

We can use the partial Delaunay triangulation for this. We test the new site against
each side of a given triangle. If it is inside each side, we have found the containing triangle,
otherwise the next triangle to be checked is the one on the other side of a side that the site
is outside. We can walk across the triangulation from one triangle to an adjacent triangle
until we find the containing triangle. If the sites are uniformly distributed, the average
number of triangles intersected by a line is O(y/n) (see below), so in this case the search
time is O(y/n) and the search time for the entire algorithm is O(n3/2) [145].

We can improve on this by reordering the sites so that successive sites are close together,
and starting the search for the containing triangle at the site of last insertion.

A fast way to do this sorting is to divide an enclosing rectangle into b buckets and in time
O(n + b) reorder the sites by the buckets they fall into. Lee and Schachter [202] proposed
using a serpentine or spiral order (see figure 2.8) and about /n buckets. If the sites are
uniformly distributed, there will be O(y/n) sites in each bucket and an average search time
of O(n'/%) per site, and a total search time of O(n®/*). Sloan [300] reports that for an
implementation of the above scheme using serpentine ordering the observed run time was
O(n'-98) for sites uniformly distributed on the unit square. He suggests that this is because

for the values of n tested (< 10,000) the time for the O(n) flip operations dominates. Ohya,

CHAPTER 2. TRIANGULATION ALGORITHMS 30

T / — 23 22 32 33

{ / ————— \\ 21 20 30 31
{ *A) 01 00 10 11

\\ 03 02 12 13

L\

Serpentine Spiral Quatenary

Figure 2.8: Proposed bucket orderings

[ri and Murota [247] got similar results for an implementation using a spiral ordering (about
O(n*%%) for n < 32,000).

Ohya, Iri and Murota [246] also tried using n buckets so that there is an average of one
site per bucket and a quaternary ordering for the buckets. (The numbers in figure 2.8 are in
base 4 to make the pattern clearer.) The observed execution time was O(n), for n < 32,000.

Agishtein and Migdal [7] sort the sites by the order that they occur on a space-filling frac-
tal curve. This takes time O(nlogn) for any distribution of sites. The observed execution
time to compute the triangulation (not counting the initial sort) was O(n) for n < 90, 000.
This approach is similar to using quaternary bucketing without a fixed number of buckets,
and subdividing any bucket with more than one site.

Note that for all the schemes that involve re-ordering the sites, the Guibas-Knuth-Sharir
guarantee (that the expected number of flips is O(n) regardless of the site distribution) is
voided. Indeed, for sites on a half-parabola, sorting by = coordinate, or spiral or serpentine
bucket ordering can lead to Q(n?) flips since the order of insertion could be the order that
sites occur on the half-parabola. The quaternary ordering scheme is designed to be more
robust by mixing up the ordering of the buckets. If the sites are on a half parabola through
the bottom row of buckets, with one site per bucket, the total number of flips to produce

the triangulation satisfies the recurrence

J1) = o (2.1)
f2) = 1 (22)
F@YY = @)+ 2+ 1), (2.3)

CHAPTER 2. TRIANGULATION ALGORITHMS 31

The solution to this is @(nlogn),* so while better than the other schemes, the number of
flips is still suboptimal for this particular distribution of sites.

By keeping all the intermediate triangulations, Guibas, Knuth and Sharir [148] are able
to locate the insertion triangle in average time O(logn) (average over all insertions and
all insertion orderings, regardless of site distribution). Whenever a triangle is flipped, or
subdivided by a new site, instead of deleting it, they keep it around, with pointers to the
two (if flipped) or three (if subdivided) new intersecting child triangles. Since the expected
number of flips to construct the triangulation is O(n), the total space required is O(n) on
average. To find the insertion triangle for a new site it is just necessary to start at the
root triangle that contains all others, and move to the child which contains the new site
until a leaf triangle is reached. The total search time to construct the triangulation is then

O(nlogn).

Watson’s algorithm If we do not keep track of triangle adjacencies and use Watson’s
method of deleting all triangles whose circumcircles include the new site, we can avoid
having to search all the triangles by pre-sorting the sites by @ coordinate. When searching
the triangles, if we discover one whose circumcircle does not intersect the vertical line
through the new site, then we know that no later site can be inside the circumcircle of that
triangle, and it need not be checked when inserting later sites. So, when inserting a new
site, it is only necessary to check those triangles whose circumcircles intersect the vertical
line.

If the sites are uniformly distributed inside the unit square, we can estimate this number.
A circle of radius R has a probability of 2R of intersecting a random vertical line (ignoring
edge effects). The expected value of R is 3/(4+/n) [232], and there are 2n Delaunay tri-
angles (again ignoring edge effects), so a random vertical line will intersect 3v/n Delaunay
circumcircles on average.

We also need to consider the triangles that are Delaunay triangles of the sites to the
left of the line, but whose circumcircles contain a site to the right of the line. An edge of
such a triangle must be intersected by a Delaunay edge that crosses the vertical line, so we
can bound this number by considering the number of Delaunay edges that cross a vertical
line. A line of length { has probability 2//x of intersecting a random vertical line [277]. The
expected length of a Delaunay edge is 32/97/n [232], and there are 3n Delaunay edges

4@(g(n)) is the set of functions f(n) such that Clg(n)| < |f(r)| < D|g(n)| for some C, D > 0 [144].

CHAPTER 2. TRIANGULATION ALGORITHMS 32

(ignoring edge effects), so a random vertical line will intersect (64/37%)/n Delaunay edges.

Hence, it only necessary to search O(y/n) triangles, giving time O(n'*®) for uniformly
distributed sites. Sloan and Houlsby [302] report execution times growing at O(n'3) for an
implementation of the above approach.

If we record triangle adjacencies, then the same triangulation walking, site reordering,
and keeping old triangulations methods can be used as in flip insertion.

The Delaunay tree, proposed by Boissonnat and Teillaud [31], by keeping old trian-
gulations around allows us to find the triangles whose circumcircles contain the new site
in average time O(logn). The main difference from the Guibas-Knuth-Sharir method is
that fewer triangles are kept—the temporary triangles created while flipping that are not
in a partial Delaunay triangulation are not included. This saves space, but makes the data
structure a little more complicated since triangles have a variable number of children.

A similar scheme was proposed by Palacios-Velez and Renaud [253]. The main difference
is that for deleted triangles we just store a pointer to the site whose insertion caused the
deletion of this triangle, since each new triangle that intersects it must be adjacent to
this site. When searching for an enclosing triangle for a new site, we can walk on the
triangulation, starting at a triangle adjacent to the deletion causing site. They measured
a total search time of O(nlogn) for an implementation of this method for n < 15,000 and
uniformly distributed sites. They also compared this method with a simple triangulation
walk scheme. This proved to be slower for n > 500 but sorting the sites made a dramatic
difference—in this case fewer than 4 triangles needed to be searched for each insertion, as
compared with 24 for the hierarchical method and 35 for unsorted triangulation walking.
(This is for n = 2000.)

Table 2.3 further classifies the incremental Delaunay triangulation algorithms from ta-

ble 2.2 by the way insertions are carried out.

Watson’s algorithm | [31, 82, 85, 115, 116, 135, 152, 107, 253, 260, 302, 314, 327,
339]

Flip [34, 163, 296]

inside (7, 36, 42, 58, 119, 123, 131, 134, 148, 150, 168, 202, 221,
934, 246, 294, 300, 303]

outside (8, 65, 194, 308]

Table 2.3: Incremental Delaunay Triangulation Algorithms

CHAPTER 2. TRIANGULATION ALGORITHMS 33

2.3.2 Constrained Delaunay triangulation

Given a constrained Delaunay triangulation we can insert a new site or a new constraint.
Inserting a new site is done in the same way as in the incremental Delaunay triangulation
algorithm—we connect it to all the sites that it can see and then use the constrained flip
algorithm to get the new constrained Delaunay triangulation.

To insert a constraint it is necessary to delete the & edges that it intersects and then
insert the edge. If & > 1 the result will contain one or two non-triangular faces—a p-gon and
an r-gon,where p+r = k4 5. We need to compute a simple polygon Delaunay triangulation.
This has been done by the selection algorithm [63] (section 2.4.3), the flip algorithm [76, 301]
(section 2.2.3), and the divide-and-conquer algorithm [169] (section 2.6.3).

If we use a worst case O(k?) (e.g. selection) algorithm, then since & is O(n) and there
could be O(n) constraints, the worst-case execution time is O(n®). However, in many
applications, k tends to be small (i.e. the constraint edges are short), or there are not many
constraints, so this approach can give reasonable performance.

In fact, the faces to be retriangulated are Delaunay monotone polygons (section 2.1.1)
and hence can be triangulated in time O(k), yielding O(n?) worst-case algorithms [204, 321].

If we do not require an on-line algorithm, we can insert all the constraints before doing
any retriangulating. This leaves us with a set of simple polygons to Delaunay triangulate.
If we use an O(nlogn) algorithm for this, we obtain a O(n logn) for constrained Delaunay

triangulation [169, 320].

2.3.3 Simple polygon Delaunay triangulation

The natural way to apply this paradigm is to add vertices one at a time to the polygon,
maintaining a simple polygon triangulation at all times. In particular, if the polygon has
vertices p1ps...p, and {pr,,P,,..., Pk} is a subset of the vertices such that &y < ky <
... < k; we want the Delaunay triangulation of the polygon DPky Pk, - - - Pk;- Unfortunately,
this polygon may not be simple (its edges might cross). We could also try adding the
constraints one at a time, but a subset these might not form a simple polygon either.
Consequently, we must insert points in an order such that PkyPky - - -Pk; 18 a simple
polygon. One way to achieve this is to first triangulate the simple polygon (section 2.2.2).
Pick any triangle to start, and then add triangles that share an edge with previously added

triangles, one at a time. This introduces one new vertex at each step. Each intermediate

CHAPTER 2. TRIANGULATION ALGORITHMS 34

polygon is simple because its edges are edges of the polygon triangulation, and hence do
not intersect. The Delaunay triangulation can be updated by flipping in the usual manner.
Note that since sites are not inserted in a random order the Guibas-Knuth-Sharir [148]

result does not apply: we cannot say that the expected number of flips is O(n).

2.3.4 Convex-Polygon Delaunay triangulation

If the sites are the vertices of a convex polygon then the two sites to connect a new site
to can be found in constant time. If the sites are inserted in a random order the expected
total number of flips is O(n) and the total time is O(n). This result was first proved by

Chew [52].

2.3.5 Special polygon Delaunay triangulation

Why were we able to find a linear randomized insertion algorithm for convex polygons but
not for simple polygons? The difference was that for convex polygons, we were guaranteed
that polygons like py, py, . .. py; were simple. So we also have a linear randomized insertion
algorithm for polygons with the property that a line joining any two vertices does not cross
a polygon side.

Klein and Lingas [182] show that the same applies for polygons with the property
that sides of polygons like pi, pi, ... pr, were edges of the Delaunay triangulation or of the
furthest-site Delaunay triangulation® of the sites {Pry»Prss- - Pk, }. Such polygons include

Delaunay deletion polygons and monotone histograms.

2.3.6 Convex-Distance-Function Delaunay triangulation

If the convex-distance-function ball is smooth and bounded then the incremental algorithm
will work in the same way that it does in the Euclidean metric. If not, two difficulties are

encountered:
1. We don’t always know how to flip diagonals (see section 2.2.5).
2. Connecting a new site to all visible sites may add edges outside the support hull.

Drysdale [91] presents an algorithm that deals with these difficulties in the case of non-

smooth balls. In section 4.1.2 I present a way to deal with these difficulties in all cases.

*Triangles of the furthest-site Delaunay triangulation contain all other sites in their circumcircles.

CHAPTER 2. TRIANGULATION ALGORITHMS 35

2.4 Selection Triangulation Algorithms

2.4.1 Delaunay triangulation

The naive selection algorithm just considers all (5) possible triangles. We check each triangle
to see if its circumcircle is empty in time O(n), leading to a O(n?) algorithm.

Given a Delaunay edge we can find the Delaunay triangle on a given side of that edge
by a simple scan through the sites on that side. We start with a candidate site for the third
site of that triangle. If another site is inside the circumecircle of the candidate triangle, then
that site becomes the new candidate.

The circumeircle algorithm [229] starts by finding a Delaunay edge (for example, by
finding the closest site to a particular site). We place this edge and its reverse on a stack.
The algorithm proceeds by popping an edge from the stack, finding the Delaunay triangle
on that edge, and pushing the two new Delaunay edges onto the stack. If we push an edge
onto the stack and its reverse is already on the stack, we remove both edges.

Figure 2.9 shows the the sequence of triangles constructed. Triangles around the convex
hull are found first, then it spirals inward. This is a depth first search of the dual graph of
the triangulation.

If a queue is used instead of a stack (figure 2.10), the boundary tends to sweep across the
triangulation, and the size of the boundary is likely to be smaller. A queue gives a breadth
first search of the dual graph of the triangulation. Figure 2.11 shows average and maximum
boundary sizes for each data structure, with sites taken from the uniform distribution over
the unit square.

For each Delaunay edge we do a O(n) search through all the sites, so this algorithm
takes time O(n?). The edges stored on the stack form the boundary of the area triangulated
so far, so the stack will have maximum size O(n). The only data structure needed by this
algorithm is the stack since Delaunay triangles can be output as they are computed. If we
wish to construct the adjacencies for the triangles it is necessary to store with each edge
the associated triangle.

If we lift our two-dimensional triangulation problem to a three-dimensional convex hull
problem, then the gift-wrapping algorithm [263] is just the circumcircle algorithm in dis-

guise.

iz

CHAPTER 2. TRIANGULATION ALGORITHMS

BRAY:

BRRA:
BRAL
BRAY

Figure 2.9: Circumcircle algorithm. Stack is in bold

36

CHAPTER 2. TRIANGULATION ALGORITHMS

_

g

BB
BRH

Figure 2.10: Circumcircle algorithm. Queue is in bold

BRRR
BRHR

37

CHAPTER 2. TRIANGULATION ALGORITHMS 38

Key Slope
* Average for stack 0.76
102 | o Maximum for stack | 0.73
g_ @ Average for queue 0.65
7 © Maximum for queue | 0.62
6.
5

Edges 41
on 3/
bound-
ary (log 2
scale)
104
7..
6_
5
4
AR
Mot 2 3 4 5 678902 2 3 04 5 67
Number of sites

Figure 2.11: Boundary size in circumcircle algorithm (log scale)

Speeding up the circumcircle algorithm

Sorting on « A simple way to speed up the search for the Delaunay triangle is to sort the
sites by @ coordinate. All the sites in a vertical strip will be contiguous in the sorted list. If
C' is a candidate site for the third vertex of the triangle on AB, then it is only necessary to
test those sites in the vertical strip with sides tangent to the part of OABC on the same
side of AB as C'. If we find a site inside the circle ABC, then we have a new candidate and
the circumcircle and consequently the vertical strip to be checked will shrink.

If we test the sites in the right order it is unnecessary to test sites outside the vertical
strip tangent to the actual Delaunay arc® on AB. The optimal order is the order in which
the sites are touched by the expanding vertical strip (see figure 2.13).

If the sites are uniformly distributed in a unit square then the expected radius of a
Delaunay circumcircle is 3/(4,/n) and the expected number of sites searched is less than
3/n. Hence the total search time to construct the Delaunay triangulation is O(n3/2).

Fang and Piegl [112] uses an approach similar to the above, though without the optimum

search ordering.

Sthe part of the Delaunay circle on the same side of AB as C

CHAPTER 2. TRIANGULATION ALGORITHMS

Figure 2.12: Strip tangent to the part of QABC on the same side of AB as C

p//

/;\
T
TN

Figure 2.13: Search for a Delaunay triangle using an 2 sorted list

39

CHAPTER 2. TRIANGULATION ALGORITHMS 40

Bucketing If the sites to be triangulated are uniformly distributed, we can use bucketing
to improve the execution time to O(n) in the average case [113, 224, 227, 307].

We need to use O(n) buckets so that each bucket will contain O(1) = p sites on the
average. To find the third site of the Delaunay triangle to the right of the edge AB (see
figure 2.14) we need to first search the buckets intersected by the edge AB. To ensure that
buckets are not searched unnecessarily, the order in which the remaining buckets should
be searched is the order in which they are encountered by an expanding arc through the
sites A and B. The buckets in figure 2.14 are numbered in the order that they will be
searched. We can stop the search when we have searched all the buckets to the right of AB
that intersect the circumcircle of the candidate triangle. (In figure 2.14 we would stop after

searching bucket 11.)

13
@
P 12
;7 /
// f
/ l
| \
\ \
\ \
\
\
~
~N

Figure 2.14: Bucket search for a Delaunay triangle

A circle with radius R will contain an average of 7 R? = ¢ bucket corners, and intersect

an average of 2R = h horizontal and 2R = [vertical lines. Consider the planar graph formed

CHAPTER 2. TRIANGULATION ALGORITHMS 41

by the intersection of the buckets with the circle (see figure 2.15). This has ¢+ 2h+ 2/ = v
vertices and (4c + 3(2h + 2))/2 = e edges since the vertices inside the circle have degree 4

and the ones on the boundary have degree 3. Euler’s formula says

f = 2+e—-w
= 24 2c+3(h+1)— (c+2h+20)
= 24+c¢+h+ 1

(This is one more than the number of buckets, since it counts the exterior face.)

/’M‘\

——

Figure 2.15: Graph formed by intersection of buckets with a circle

Miles [232] proves that the the moments of the circumradius of a random Delaunay tri-
angle are E[R*] = T(k/2+2)/(np)*/%. Therefore, the average number of buckets intersected

by a Delaunay circumcircle will be

E[rR®+ 4R + 1]
_ B, T(5/2)
EETIN CHTTE
203 1
[V

The number of buckets searched will hence be at most b(p) and at most pb(p) sites will be

b(p)

+1

tested. The optimum value of p will depend on the amount of time it takes to test a site

CHAPTER 2. TRIANGULATION ALGORITHMS 42

and the amount of time it takes to compute the next bucket and test if it is empty. If these
times are equal the optimum value is about 1, giving about 6 sites tested and 6 buckets
searched.

The total search time for the whole triangulation will hence be O(n).

To ensure that the total running time is O(n) we must make sure that the updating of
the stack takes O(1) time. We cannot just search the entire stack for the reverse of the edge
to be added, since this could take O(n) time. The stack is just the edges making up the
boundary of the triangulated region and almost all sites will appear on this boundary at
most once, so we just need to maintain a table that contains for each site a list of pointers
into the edges on the stack that it is the first site of.

Maus [224] and McCullagh [227] do not search the buckets in the optimum order defined
above. Instead they search all the buckets intersecting a circle through AB. If these are all
empty, they try progressively larger circles. Fang and Piegl [113] adopt a similar approach,
except that they search the buckets in a bounding square of the circle. They report an
optimum value of p of 16/9. Tarvydas [307] just searches the nine buckets adjacent to the

bucket containing the centre of AB.

2.4.2 Constrained Delaunay triangulation

When searching for a new triangle on an edge AB it is sufficient just to test AC and BC
to see if they intersect a constraint edge. This gives a very simple O(n?%e) algorithm. Since
e is O(n) this is O(n®) in the worst case. A simple improvement, implemented by Lo [216]
Is to first construct the triangles on either side of the constraint edges. Once we have done
this it is no longer necessary to test for intersection with the constraint edges, giving time
O(ne® +n?). In many applications there are only a few constraint edges—if e is O(1/n) the
total time is just O(n?).

Another possibility, suggested by Lee and Lin [201] is to construct (in time O(eloge))
the visibility polygon from A. We can test in time log e whether a site is in this polygon.
This gives a O(n?loge) algorithm. Lee and Lin also suggest using a O(n?) algorithm [12]
to construct the visibility graph for the entire set of sites, which gives a O(n?) algorithm,
but this is not practical since the space requirement is O (n?) and the visibility algorithm is

much more complicated than the simple Selection triangulation algorithm.

CHAPTER 2. TRIANGULATION ALGORITHMS 43

Bucket Search

If the sites are uniformly distributed we can consider using bucketing. The obvious approach
is to store each edge in the buckets that it intersects. When we search a bucket, we test
each site in the bucket against each constraint edge intersecting that bucket. I urthermore,
we do not search buckets on the far side of constrained edges that we find in a bucket.

There is a problem with this approach: it is possible to have Q(n) constraint edges, each
of which intersects Q(/n) buckets, leading to (n3/2) storage requirements. Furthermore,
even if we could, by some clever data structure, reduce this to O(n), we have another
problem. The constraint edges will divide each bucket up into an average of Q(y/n) regions.
When we search a bucket, we will only consider sites in one of these regions. This means
that we will have to search Q(y/n) buckets on average to find a site, so the total search time
for the algorithm will be Q(n3/?).

This problem may not be as bad as it seems—most applications will not want to force
a lot of long edges, since this guarantees many skinny triangles. In this context a long
edge is one that intersects O(/n) buckets. If the constraint edges intersect a total of O(n)
buckets (e.g. O(y/n) long edges, or O(n) edges that intersect O(1) buckets) then the total
storage requirements are O(n) In this case, each bucket is intersected by an average of O(1)
coustraint edges, so we can still expect to find O(1) candidate sites per bucket which gives
O(n) search time and O(n) time to construct the constrained Delaunay triangulation.

This approach is adopted by Piegl and Richard [256] for the slightly less general problem

that occurs when the constraints form multiply connected polygons.

2.4.3 Simple polygon Delaunay triangulation

The visibility graph (from a site) in a simple polygon can be constructed in time O(n) [106]
and so the search for a triangle standing on an edge will take time O(n) and the circumcircle
algorithm will take time O(n?). In fact, since in this case the Delaunay triangulation divides
the polygon into two smaller polygons we can do better than this on average.

Let us consider the two extreme cases for the structure of the triangulation of the
polygon: a thin triangulation (where the dual graph is a path) and a bushy triangulation
(where the dual graph is a complete ternary tree).”

In the case of a thin triangulation if we randomly choose a side of the polygon to

"These names come from Chatopadhyay and Das [46].

CHAPTER 2. TRIANGULATION ALGORITHMS 44

construct a Delaunay triangulation then the average time taken satisfies

o =1

T(n)=n+ —i— > T()
=1

giving time O(nlogn). On the other hand, if we always choose the newly constructed side,
we gel
Tn)y=n+T(n-1),

giving a total of O(n?).

In the case of a bushy triangulation if we randomly choose a side we always get a
worst-case split and take time O(n?). On the other hand, if we always choose the newly
constructed side, in O(logn) steps we get to the middle of the triangulation and after that,
each Delaunay triangle that we find divides the polygon exactly into two, so run time is
O(nlogn).

In the case where the triangulation is a random one from all possible polygon triangu-
lations, the run time is O(n%?) (see section 5.4.1.)

If we have no a priori information about which sorts of triangulations are most likely
it would seem best to alternate between a randomly chosen side and a newly constructed

side.
2.4.4 Convex-Polygon Delaunay triangulation
This is similar to simple polygon Delaunay triangulation except that it is no longer necessary

to test for intersections with polygon edges. See section 5.4.1 for more details.

2.4.5 Convex-Distance-Function Delaunay triangulation

If the convex-distance-function ball is smooth and bounded then the selection algorithm
will work in the same way that it does in the Euclidean metric. If not, two difficulties are

encountered:
1. The dual graph of the triangulation may not be connected.
2. The triangulation may contain edges that are not part of any triangle.

In section 4.1.2 I present a way to deal with these difficulties.

CHAPTER 2. TRIANGULATION ALGORITHMS 45

2.5 Sweepline Triangulation Algorithms

2.5.1 Delaunay triangulation

Fortune’s sweepline algorithm for the Voronoi diagram [122] works by deforming the plane
so that each site appears at the bottom of its Voronoi region. Guibas and Stolfi [149] give a
three-dimensional interpretation. An infinite cone extending upwards is placed at each site
so that the view from below is just the Voronoi diagram and space is swept with a plane
that makes the same angle with the base plane as the cones.

We can think of Fortune’s algorithm as a selection Delaunay triangulation algorithm in
the following way: The circumcircle algorithm extends the triangulated region by searching
through all the sites for each edge on the boundary of the triangulated region. The sweepline
algorithm makes one pass from left to right over the sites. As each site is encountered, it
is connected to the appropriate part of the boundary. Each triangle is added as soon as we
are sure that its circumcircle is empty.

We will maintain the subset of the Delaunay triangulation that is guaranteed to be
present no matter what sites are to the right of the sweepline. We will be able to include
an edge if we can find an empty circumcircle touching that edge. Let AC' be the Delaunay

edge shared by Delaunay triangles ABC and ACD (see figure 2.16).

Figure 2.16: Type I edge AC' is added when sweepline reaches C'

CHAPTER 2. TRIANGULATION ALGORITHMS 46

Consider the pencil of circles that pass through the sites A and C'. The locus formed by
the rightmost points of these circles is a branch of a rectangular hyperbola® with leftmost
point €. The circles whose centres lie on the segment joining the circumcentre of ABC (E
in figure 2.16) and the circumcentre of ACD (F in figure 2.16) are the only empty ones. The
rightmost points of these empty circles form a segment of the hyperbola (the part whose
y coordinates are between those of 2 and I'). We are interested in the first empty circle
that the sweepline passes over. This is the one corresponding to the leftmost point of the

hyperbola segment. There are two possibilities:

Type I edge The y coordinate of C' is between that of £ and that of I’ (figure 2.16). The

edge AC' must be added when the sweepline reaches C.

Type II edge The y coordinates of 7 and I are both greater or hoth less than (s (fig-
ure 2.17). The edge AC' must be added when the sweepline reaches the rightmost

point of the circumecircle AC'D.

From the above it might seem that we need to know the entire Delaunay triangulation
in order to determine the edge to add next, but in fact we only need to keep track of the
boundary of the partial triangulation, those edges that could potentially have a Delaunay
triangle on their right hand side. We can order the edges of the boundary in an anticlockwise
order, starting from the leftmost site.

Define STC(AB) (sweep tangent circle) of an edge AB to mean the circle through A
and B and tangent to the sweepline at a point to the right of AB. (Note that there are
two circles through an edge, tangent to a line.) The sweep tangent circle for a boundary
edge will be empty, since if it contained a site, a Delaunay triangle to the right of the
edge with a circumcircle to the left of the sweepline would exist. The order of the edges
around the boundary is the order in which their tangent circles touch the sweepline (see

figure 2.18), since if ABC' are three consecutive sites on the boundary and the tangent

8Put the origin at the midpoint of AC, and let C' have coordinates (a,b). The circle centres lie on the

line az + by = 0. Let the circle centre be (20, y) (50 20 = ——gy) and its rightmost point be (%, y). Then
(z—20)* = (z0—a) +(y—b)
b b
(@+29) = (--v~a)’ +(y—0b)

0

z + 2§xy -y —(a® +0°)

which is a rectangular hyperbola.

CHAPTER 2. TRIANGULATION ALGORITHMS 47

Figure 2.17: Type II edge AC' is added when sweepline reaches G

point for STC(AB) is above the tangent point for STC(BC), then C' € STC(AB) (see
figure 2.19), which is impossible.

Initially the boundary will contain just the leftmost site. When we add a type I edge
AC where C'is the new site and A occurs on the boundary in the sequence a X AY 38 (v and
p are sequences of vertices), the boundary becomes aX ACAY S (see figure 2.20). When
we add a type I edge AC' (see figure 2.17) the edges DC and AD will already have been
included in the partial triangulation (since we can find an empty circle entirely to the left
of the sweepline that touches C'D with a centre just a little above F'). The boundary will
contain aADCP since all new edges are added to the boundary and edges are only deleted
when their Delaunay triangle is found. The boundary becomes a ACS. At termination, the
boundary contains the convex hull of the sites.

If ABC' are three consecutive vertices on the boundary and C is to the right of AB (i.e.
B is a concave vertex), then ABC' is a potential Delaunay triangle, and AC' can be added
to the triangulation when the sweepline reaches the rightmost point of)ABC (since then
OABC = STC(AB)). We will update the boundary whenever the sweepline reaches a site
or the rightmost point of circumcircle. It is sufficient to maintain a priority queue for these

events, ordered by @ coordinate. The priority queue will contain a site event for each site

CHAPTER 2. TRIANGULATION ALGORITHMS 48

Figure 2.18: Circles through boundary edges tangent to sweepline

Figure 2.19: Sweep tangent circles in the wrong order

CHAPTER 2. TRIANGULATION ALGORITHMS 49

Figure 2.20: Boundary changes from aX AY 3 to aXACAY (3

CHAPTER 2. TRIANGULATION ALGORITHMS 50

to the right of the sweepline, and a circumcircle event for concavity ABC' on the boundary.

We initialize the queue to contain all the sites except the leftmost. We then proceed by
removing an event from the queue.

If this is a circumcircle event for triangle ADC' we can output the triangle ADC and
update the boundary from a X ADCY 3 to aX ACY 3. We remove events (if any) for XAD
and DCY and add events for X AC' (if A is concave) and ACY (if C' is concave).

It this is site event for site ', we need to find the boundary site to connect it to.
Such a site is guaranteed to exist—consider an expanding circle through C', tangent to the
sweepline. The first site that it touches, say A, is the site we want. A could occur on the
boundary more than once (see figure 2.21). At the correct spot on the boundary a X AY S,

we have (' € wedge(X AY).5

Figure 2.21: Boundary is LAMAXNXAY L

We update the boundary from aX AY 8 to X AC AY 3, remove the event (if it exists)
for X AY and add events for X AC' and C'AY (if they are concave).
We could search the entire boundary to find the spot with the desired properties, but

*wedge(X AY) is the intersection of the half-plane to the right of X4 and the half-plane to the right of
AY.

CHAPTER 2. TRIANGULATION ALGORITHMS 51

there is a better way. Since the tangent points of the STC's of boundary edges are ordered, we
can use binary search to find adjacent boundary edges X A and AY such that ¢ is between
the tangent points of STC(X A) and STC(AY). Now, STC(AC) C STC(X AUSTC(AY JUR

where R is the shaded region in figure 2.22.

Figure 2.22: C'4 is a Delaunay edge

If R is empty then STC(AC) is empty and, since the tangent points of STC(X A) and
STC(AY) are in wedge(X AY) and C'is between them, then C € wedge(X AY).

If R is not empty, then let C’ be the leftmost point in R. The circle through A and C’
with a vertical tangent at C' is empty. By the same reasoning as in the previous paragraph,
C' would be connected to A when the sweepline reached ¢’ , which contradicts XA and AY
being adjacent.

When the queue becomes empty, we will have constructed the Delaunay triangulation
and the boundary will contain the convex hull of the sites.

Figures 2.23 and 2.24 show the sequence of events that occur. Circumecircle events added

to the queue are shown as dashed circles, while those deleted are shown as dotted circles.

Efficiency of Sweepline

The total number of events that occur is equal to the number of edges in the Delaunay
triangulation, which is O(n). The boundary is a subset of the Delaunay triangulation, so

its size is O(n). The event queue contains at most one event for each site, and one event for

CHAPTER 2. TRIANGULATION ALGORITHMS

Figure 2.23: Sweep algorithm

CHAPTER 2. TRIANGULATION ALGORITHMS

Figure 2.24: Sweep algorithm

53

CHAPTER 2. TRIANGULATION ALGORITHMS 54

each boundary edge, so its size is O(n). By using suitable data structures (for example, a
heap for the queue and a balanced tree for the boundary) updates and searches on the event
queue and the boundary can be done in time O(logn). The time to process each event is

O(logn) and the total time to compute the triangulation is O(nlogn).

2.5.2 Constrained Delaunay triangulation

The sweepline algorithm can be modified to compute the constrained Delaunay triangula-
tion. We still maintain a subset of the constrained Delaunay triangulation that is guaranteed
to be present no matter what sites are to the right of the sweepline.!® This obviously in-
cludes all the constraint edges. Constraint edges that lie entirely to the left of the sweepline
can be treated just like any other edges. Constraint edges that lie entirely to the right of
the sweepline can be ignored until the sweepline reaches them. Constraint edges that cross
the sweepline divide the area between the partial constrained Delaunay triangulation and
the sweepline into a number of regions (see figure 2.25). We will call these constraint edges

aclive constraints.

Figure 2.25: Partial constrained Delaunay triangulation—Constraint edges are in bold

“*Though not the maximal such subset as we will see below.

L2

T
ot

CHAPTIR 2. TRIANGULATION ALGORITHMS

Definition. If a site is the leftmost point of a constraint edge then that edge is an incoming
edge of that site. If a site is the rightmost point of a constraint edge then that edge is an

outgoing edge of that site.

When a site event for a site with no incoming edges is processed the search for the
boundary site to connect it to is confined to the piece of the boundary that borders the
region the new site belongs to since these are the only sites visible from the new site. For
example, in figure 2.25 when processing the site event for (', the boundary to be searched
is just XY and C' must be connected to Y (compare with figure 2.20).

FEach piece of the boundary can be stored as a balanced tree just as in section 2.5.1. If
there are k active constraints there will be & + 1 pieces. These pieces can be organized into
a balanced tree with the constraints stored in the internal nodes and the houndary pieces in
the leaves. We will call this tree the constraint tree. An in-order traversal of the constraint
tree puts each boundary piece between the two constraints that form its top and bottom.
The number of constraints is O(n), so the constraint tree only requires O(n) space in the
worst case.

The queue is exactly the same as it is in the original algorithm.

Circumcircle events are processed just as in the original algorithm. If the rightmost
point of the circumcircle is on the far side of a constraint from the inscribed triangle, then
we could be sure that the circumcircle was empty of visible sites before the sweepline reached

the rightmost point (see figure 2.26).

Figure 2.26: ABC can be added to the triangulation when the sweepline reaches R’

CHAPTER 2. TRIANGULATION ALGORITHMS 56

If we wanted to maintain the maximal subset of the constrained Delaunay triangulation
that is guaranteed to be present no matter what sites are to the right of the sweepline
we would have to schedule the circumcircle event when the sweepline passes the rightmost
point of the circumcircle modified by removing all the parts on the far side of constraints
(the unshaded portion in figure 2.26). However, it is rather difficult to compute the right-
most point of the modified circumcircle since we would have to find the potentially O(n)
constraints that intersect it.

Fortunately, this is not necessary. We can schedule the circumcircle event when the
sweepline passes the rightmost point of the unmodified circumcircle. The only way this
could cause a problem is if we encountered a site inside the circumcircle on the far side of
a constraint (in the shaded region in figure 2.26). This site could only cause the removal of
the circumcircle event if the new site ended up being connected to one of the vertices of the
inscribed triangle. But this is impossible since these vertices do not belong to the piece of
the boundary adjacent to the region that the new site falls into.

There are three stages to processing a site event for a site C: first we must deal with
the incoming edges for a site, then find a boundary site to connect it to, then deal with the

outgoing edges.

Incoming Edges Let ¢ be the number of incoming edges. These edges will occur in suc-
cession in an in-order traversal of the constraint tree, so we can find them (and the
boundary pieces that they separate) in time O(i + logn). The in-order traversal of

the constraint tree will look like this:
abochbleQCbg e bi_lXinﬂ

where the b; denote pieces of the boundary and the X ; are left ends of constraint
edges (see figure 2.27). We just need to modify the constraint tree so that in the
in-order traversal the above sequence is replaced by the single boundary piece boC'b;.
Each boundary piece is represented by a balanced tree, so that we can construct this
new piece in time O(logn) by merging two balanced trees by creating a tree with C'
at the root and by and b; as its children and rebalancing if necessary. To modify the

constraint tree we just need to delete the 7 incoming edges in time O(ilogn).

Find a boundary site to connect it to If the site has an incoming edge this is unnec-

essary. Otherwise, the search is confined to the piece of the boundary that borders

CHAPTER 2. TRIANGULATION ALGORITHMS

\

Figure 2.27: Incoming edges for a site event

CHAPTER 2. TRIANGULATION ALGORITHMS 58

the region the new site belongs to. We first do a search in the constraint tree to find
this piece. To compare the new site to a constraint, we just have to test whether it is
above or below. Then we do a search within the piece and modify the event queue just

as in the original algorithm. Fach of these take time O(logn) for a total of O(log n).

Outgoing edges Let j be the number of outgoing edges. Let the boundary piece that ¢
belongs to be b = bpC'b;. The in-order traversal of the constraint tree will look like
this:

aFGbDES

where I'G' and DI are the constraint edges that bound b (see figure 2.28).

Figure 2.28: Outgoing edges for a site event
The constraint tree must be modified so that its in-order traversal looks like:
aFGbg.XlC’b'leCb'g .. .b;_lXib;-DEﬂ

where by = boC', b = C for 0 < k < j, and b; = Cb;. We need to split the boundary
piece b into two pieces at C. This can be accomplished in time O(logn) [185]. We

need to insert j constraints into the constraint tree which will take time O(jlogn).

The total time to process a site event is therefore O(logn + (5 + o) log n). The total time

to process all the site events is O(nlogn) since the total number of incoming and outgoing

CHAPTER 2. TRIANGULATION ALGORITHMS 59

edges is O(n).

The efficiency of processing site events can be improved somewhat by noticing that if a
site has incoming and outgoing edges we merge two boundary pieces and then split them
apart at the same spot. This is unnecessary, so we only need to merge when a site has
incoming but no outgoing, and split when it has outgoing edges but no incoming edges.

The total time to construct the constrained Delaunay triangulation is O(nlogn) just as
in the original algorithm.

Seidel [291] gives another sweepline algorithm for constrained Delaunay triangulation.
He proceeds by modifying Fortune’s algorithm [122] for the Voronoi diagram to compute
the constrained Voronoi diagram. It is simplest to think of it as operating in a base plane
(which holds the sites), plus one plane per constraint edge. Iach extra plane is glued to
the base plane along its constraint edge so that crossing the constraint edge goes from one
plane to the other. All the planes are swept in parallel and by appropriate data structures

each event can be processed in time O(logn), giving a O(nlogn) algorithm.

2.5.3 Simple polygon Delaunay triangulation

Some simplification of the sweepline algorithm for constrained Delaunay triangulation (sec-
tion 2.5.2) is possible if the constraints form a simple polygon—it is not necessary to com-
pute the part of the triangulation inside the polygon and each site has exactly two incident

constraints.

2.5.4 Special polygon Delaunay triangulation

If the polygon is monotone, each vertex has exactly one incoming and one outgoing edge.
This means that we will never have to search the boundary for a site to connect a new edge
to, so we do not need a fancy data structure to store the boundary. Nor do we need to
implement the geometric primitive that finds the tangent point of a sweep tangent circle.
Furthermore, we no longer need to schedule site events so that they are processed when the
boundary is correct. Instead, we can just process all the site events first. This amounts
to setting the boundary (which can now be represented by a double-linked list) to be the
polygon. Then we schedule a circumcircle event for each triangle formed by a convex corner
of the polygon. To process an event, we cut off the appropriate corner of the polygon, delete
up to two events (for corners containing the vertex that has been removed), and schedule

up to two events (for the two new corners created). It takes time O(logn) to process an

CHAPTER 2. TRIANGULATION ALGORITHMS 60

event, giving us a very simple O(nlogn) algorithm.

We can use this algorithm to build a O(nlogn) algorithm for simple polygon Delau-
nay triangulation. Use a sweepline algorithm to divide the polygon into monotone poly-
gons [263], Delaunay triangulate each monotone polygon with the above algorithm, and
merge the triangulations together with technique used in the Divide-and-Conquer algo-

rithm. Each of these steps takes time O(n logn).

2.5.5 Convex-Polygon Delaunay triangulation

Convex polygons are monotone, so the algorithm described in the previous section will work

for this case.

2.5.6 Convex-Distance-Function Delaunay triangulation

If the convex-distance-function ball is strictly convex, smooth and bounded then the sweep-
line algorithm will work in the same way that it does in the Euclidean metric [299]. If not,

two difficulties are encountered:
1. The partial triangulation (and hence the boundary) may be disconnected.
2. The sweep tangent circle may not exist.

In section 4.1.2 T present a way to deal with these difficulties. Dehne and Klein [77] also
solve this problem, though in a different way by creating two more types of events.

Shute et al. [297] give a sweepline algorithm for the Manhattan metric. They use a
sweepline parallel to a side of the square ball for this metric. This ensures that the boundary
of the partial triangulation is monotone, making site insertion easy. This approach does
not generalize to other metrics.

Chang et al. [45] give a sweepline algorithm for the oriented Voronoi diagram. This is a
convex distance function where the ball is a circle sector, with the origin at the centre. They
use a sweepline that reaches the origin of the ball first. This approach does not generalize

to other metrics.

CHAPTER 2. TRIANGULATION ALGORITHMS 61

2.6 Divide-and-Conquer Triangulation Algorithms

2.6.1 Delaunay triangulation

The hard part about the divide-and-conquer algorithms is the merge step.

While it is possible to merge two arbitrary Delaunay triangulations in linear time [176],
the merge step is much simpler if the two triangulations are separated by a line. In this
case, all the new edges in the merged triangulation will cross the separating line. We can
find these edges in the order in which they cross this line. Given one of these cross edges LR
(see figure 2.29), we can quickly find the next one, LR’ say. LRR' is a Delaunay triangle, so
RRE' must be a Delaunay edge in the triangulation of the set of sites to the right of the line.
We could find the site R’ by searching all the sites adjacent to R and all the sites adjacent

to L, but there is a better way.

Figure 2.29: Finding the next cross edge

Suppose L, R’ and R” are three successive neighbours of R (see figure 2.29). If R" is
outside QLRR’ then since RR'R" is a Delaunay triangle of the right hand sites, QRR'R"
contains none of the right hand sites, and consequently no other neighbour of R could be
inside LRR'. If R" is inside QLRR’, then RR' cannot be a Delaunay edge of the merged
triangulation, so it can be deleted and the next two neighbours of B considered. We can

similarly find L adjacent to L such that Q) LRL’ contains none of the left hand sites.

CHAPTER 2. TRIANGULATION ALGORITHMS 62

If ' is outside QLRR' then OLRR’ is an empty circle, and LR’ is the next cross edge
and can be inserted in the triangulation. If I/ is inside QLRR' then QLRI is an empty
circle, and L'R is the next cross edge.

The first cross edge is just the bottom hull edge that crosses the vertical line. Figure 2.30
shows the sequence of partial triangulations as all the cross edges are found.

The number of steps to do the merge is O(n), since there is one step for each new edge
added and one step for each edge deleted.

If the sites are sorted by « coordinate, it is easy to divide them into two equal sets
separated by a vertical line. Tigure 2.31 shows how the triangulations are merged together
to form the final triangulation.

This is the algorithm described by Lee and Schachter in [202]. Guibas and Stolfi give a

more detailed description in [147].

Efficiency of Divide-and-Conquer

If the sites are uniformly distributed on a unit square, the expected number of Delaunay
edges crossing a vertical line is O(y/n) (see the discussion in section 2.3.1). From this it
might appear that (not counting the initial sort), the run time should satisfy the equation
T(n) = O(y/n) + 2T (n/2) which has solution T'(n) = O(n), but this is not the case. A look
at figure 2.31 reveals the problem. The typical merge is not along a line splitting a square,
but one dividing a rectangle along its long axis and most Delaunay edges will cross this
line, leading to £(n) merge steps. Ohya, Iri and Murota [246] report that the divide and
conquer algorithm does indeed take time ©(nlogn) for n < 32,000 uniformly distributed
sites.

However, if the splitting is done on both horizontal and vertical lines, Dwyer [92] shows
that expected running time O(nloglogn) is obtained. Katajainen and Koppinen [173]
improve this to O(n).

2.6.2 Constrained Delaunay triangulation

Chew [57] generalizes the Divide-and-Conquer algorithm to construct constrained Delaunay
triangulations.

Intermediate triangulations that are to be merged together triangulate all the sites in a
vertical strip. Constraint edges that cross a vertical strip divide it up into regions. Chew

keeps track of only those regions that contain sites (the unshaded regions in figure 2.32),

e -

&

z\' yay
//’
7N

\/\\ /// WM/ i

Ny
REE

A <

CHAPTER 2. TRIANGULATION ALGORITHMS 65

. . By .
since otherwise (n?) space could be required.

Figure 2.32: A vertical strip. Constraint edges are in bold.

He also adds virtual sites where the constraint edges cross the strip edges. These are the
white sites in figure 2.32. The virtual sites are considered to be infinitely far away for the
purposes of constructing the triangulation. (So they are never considered to be inside the
circumcircle of three real sites.) When two strips are merged, the virtual sites that are on
their common edge allow adjacent regions to be matched up. These virtual sites are then
eliminated. The adjacent regions are then merged independently, by the same technique as
in the original algorithm. Two strips can be merged in time linear in the number of sites
they contain, so the algorithm takes time O(nlogn) in total.

Moreau and Volino [237] have implemented Chew’s algorithm. They modified the al-
gorithm to remove the virtual vertices. Instead, an AVL tree is used to keep track of the
active regions and match them up for merging.

Joe and Wang [165] sketch a Divide-and-Conquer algorithm for the extended constrained

Voronoi diagram. This could be used to construct the constrained Delaunay triangulation

CHAPTER 2. TRIANGULATION ALGORITHMS 66

by duality.

2.6.3 Simple polygon Delaunay triangulation

A diagonal of a polygon is an edge connecting two vertices that is interior to the polygon.

The divide step of a Divide-and-Conquer algorithm will divide the polygon at two ver-
tices. The edge connecting these two vertices must be a diagonal if the two smaller polygons
are to be simple.

Chazelle [47] showed that a diagonal of a simple polygon where each subpolygon has n/3
vertices can be found in time O(n). Lee and Lin [201] use this result to do the division for
a Divide-and-Conquer algorithm. The merging of the triangulated subpolygons is done the
same way as in the Delaunay triangulation algorithm. This algorithm takes time O(nlogn).

An alternative to Chazelle’s algorithm for diagonal finding is to triangulate the polygon
(see section 2.2.2). Using the triangulation it is easy to find in linear time a diagonal where

each subpolygon has n/3 vertices.

2.6.4 Special polygon Delaunay triangulation

It is easy to find a diagonal in time O(n) that splits a monotone polygon in two roughly
equal subpolygons. Yeung [338] used this idea to design a Divide-and-Conquer algorithm
for the Delaunay triangulation of convex polygons. Kao and Mount [171] use a similar

approach for Delaunay monotone polygons.

2.6.5 Convex-Polygon Delaunay triangulation

Splitting a convex polygon in two can be done in constant time. The merge step could
still take O(n) in the worst case, so the divide and conquer algorithm for the Delaunay
triangulation of a convex polygon is O(nlogn) in the worst case. Section 5.4.2 analyzes the

average time over all triangulations of a convex polygon.

2.6.6 Convex-Distance-Function Delaunay triangulation

If the convex-distance-function ball is smooth and bounded then the Divide-and-Conquer
algorithm will work in the same way that it does in the Euclidean metric. If not, two

difficulties are encountered:

CHAPTER 2. TRIANGULATION ALGORITHMS 67

Reference | n Plip Random Quaternary Sweepline Divide and
Incremental Incremental Conquer

[120] 10000 59 51 24 42
50000 | 317 285 128 222

[199] 219 164 195
220 333 410

[246] 2l4 4.2 7.5
215 8.5 16.4

Table 2.4: Execution time (seconds) for some implementations

L. It is necessary to start the merge with the bottom support hull edge (instead of bottom

convex hull edge).

2. Deleting non-Delaunay edges could cause one of the subtriangulations being merged

to become disconnected.

Drysdale [91] presents an algorithm that deals with these difficulties in the case of non-
smooth balls.

In section 4.1.2 T present a way to deal with these difficulties in all cases.

2.7 Conclusion

Although the worst-case performance of the incremental, selection and flip algorithms for
the Delaunay triangulation is O(n?), the use of bucketing can give average-case performance
of O(n) with selection and incremental algorithms for most site sets, while randomized in-
sertion can attain average-case performance of O(n log n) for any site set. Furthermore, the
flip algorithm tends to require only O(n) flips when measured on sample data. That is, all
five classes of algorithms have comparable asymptotic performance. Table 2.4 summarizes
some measurements of the actual performance implementations of some of the algorithms
on uniformly distributed data.

Needless to say, the numbers are not comparable across the boxes of table 2.4—only the
relative sizes are important since the measurements are for different computers at different
times.

The actual execution times are roughly comparable—any of the algorithms should be

suitable for triangulating large site sets. The quaternary incremental is one of the simplest

CHAPTER 2. TRIANGULATION ALGORITHMS 68

to implement and one of the best performers.

It would be interesting to make similar measurements for some of the other Delaunay

triangulation problems such as constrained Delaunay triangulation.

Chapter 3

Local Optimization of

Triangulations

3.1 Introduction

3.1.1 Optimal triangulations

There are many different possible triangulations of a set of sites. Which one is optimal will

depend on the application. For example:

e If the triangulation is to be used as finite-element mesh we wish to avoid ill-conditioned

equations. This means that we wish to avoid triangles with angles close to 180° [17].

o If we are using the triangulation to linearly interpolate functions with a bounded sec-
ond derivative, then the error is minimized by minimizing the maximum circumradius
of any triangle [250].

e If the triangulation represents a three-dimensional surface which is to be rendered on

a raster display, then we want to avoid triangles less than one pixel wide as these can

cause undesirable artifacts [118].

e If the triangulation contains no obtuse angles then it can be used to discretize partial
differential equations in a way such that the resulting matrix is a Stieltjes matrix, a

desirable property for computation and theoretical analysis [18].

Many alternative definitions of optimality can be found in table 3.1. The only point

of agreement seems to be that a triangulation consisting entirely of equilateral triangles is

69

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 70

optimal.

This does not necessarily apply to two-and-a-half-dimensional triangulations, where a
triangulated surface is embedded in three dimensions. These are often used for scattered-
data interpolation in R?, where a function value is specified at a set of sites and must be
interpolated.

Nadler [240] showed that the best shaped triangles for best [, approximation' of a
quadratic /" by linear polynomials are long in the direction of minimum second directional
derivative of I" and narrow in the direction of maximum second directional derivative of F.

Dazevedo and Simpson [71] showed that the triangulation that gave the best ., ap-
proximation was a convex-distance-function Delaunay triangulation where the “circle” was
an ellipse with the long axis in the direction of minimum second derivative. Rippa [273]
extended this to the best [, approximation, where 1 < p < 0.

Dyn, Levin and Rippa [93] consider several optimality conditions including minimizing
the angle between the triangle normals (also considered by Choi et al. [59]) and minimizing
the jump in the normal derivatives. Quak and Schumaker [265] try to minimize the energy
(thinking of the surface as an elastic membrane). Brown [38] computes a surface normal at
each vertex by taking the average of the normals of the adjacent triangles and then tries to
minimize the sum of the squares of the angles between vertex normals and adjacent triangle
normals.

There are also definitions of optimality applicable to two-dimensional triangulations
where it is permitted to add extra (Steiner) points and to higher-dimensional triangulation.

See Bern and Eppstein’s survey [25] for more details.

3.1.2 Systematic Triangulations

Definition. A triangulation has the systematic property if it depends only on the positions

of the sites, not on the order in which they are presented.

That is, the triangulation is a well defined function from sets of sites to triangulations.
If a triangulation is not systematic, the results of a computation using the triangulation

can be difficult to reproduce.

!An I, approximation minimizes the integral of the squares of the deviations of the approximation from
the true function.

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 71

In a survey on triangulations Watson and Philip [328] found only three systematic

triangulations:

e the Minimum Weight triangulation (MWT) which is the triangulation which mini-

mizes the total edge length of all triangles [215].

e the Greedy triangulation which is formed by considering edges in order from shortest to
longest and adding them to the triangulation if they don’t intersect any edge already

present [223].

e the Delaunay Triangulation, the dual of the Voronoi diagram [263].

3.1.3 Local triangulations

Definition. A triangulation has the local property when the only edges added when a site

is added to the triangulation are those adjacent to the new site.

The Delaunay triangulation is the only one of the three triangulations mentioned above
with the local property.

The local property is particularly useful for surface-fitting applications—adding a new
vertex will produce only local changes to the surface [72].

The local property of the Delaunay triangulation is also the key to some of the fast
algorithms for its computation. The incremental algorithm [202] will make at most O(n)
changes to the triangulation when adding a new site, giving a worst case of O(n?) time
to compute the Delaunay triangulation. Guibas, Knuth and Sharir [148] show that the
average? number of sites adjacent to a new site is O(1), so the incremental algorithm will
make an average? of O(n) changes to the triangulation.

The divide-and-conquer algorithm [202, 147] for the Delaunay triangulation also depends
on the local property, since it guarantees that the new edges added when merging two
triangulations separated by a line are just those that cross the line and of course are ordered
by their intersection with that line.

In contrast, the Minimum Weight Triangulation does not possess any sort of local prop-
erty. Kirkpatrick [177] shows that it is possible for the MWT of n sites to share no edges
(apart from hull edges which every triangulation must share) with each of its n — 1 site

subsets.

>The average here is taken over all n! insertion orders.

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 72

3.1.4 Locally Optimized Triangulations

A flip rule determines which triangulation of a set of four sites is optimal. If the sites form
a convex quadrilateral, this amounts to making a choice between the diagonals.

Given a flip rule, a locally optimized triangulation (LOT) is one where each quadrilateral
formed by adjacent triangles is optimally triangulated. It can be constructed by the flip
algorithm, which repeatedly flips the diagonals of non-optimal quadrilaterals.

Aflip rule is systematic (local) if its LOT is systematic (local). If a flip rule is systematic
(local) then the flip algorithm generates a unique triangulation (does O(n?) flips in the worst
case).

If a triangulation is locally Delaunay then it is globally Delaunay [298], so the flip rule
that selects the Delaunay triangulation of the quadrilateral (DT) is systematic and local.
Nielson and Franke [243] claimed that the flip rule “choose the triangulation that minimizes
the maximum angle in both triangles” is systematic. Which flip rules are systematic and
local?

Nielson [242] has given a six site counterexample that disproves his claim above. One
of the points in his counterexample can be deleted to yield a five site counterexample. The
main result of this chapter is to prove that such a five site counterexample exists for any

flip rule that is not a generalization of the Delaunay triangulation flip rule.

3.2 Flips

Lawson [194] introduced the idea of local optimization of a triangulation.

Definition. In a triangulation, if two adjacent triangles, ABC' and ACD, form a convex
quadrilateral ABC' D3 it is possible to perform a flip (figure 3.1) and replace the diagonal
AC with BD to get the triangles ABD and BCD.

Any triangulation can be transformed into any other triangulation on the same set of sites

by a sequence of flips [193, 319].

Definition. The flip graph of a set of sites: The nodes consist of all possible triangulations
of that set. Two nodes are connected by an edge if one can be transformed into the other

by a single flip.

*Throughout this thesis it is assumed that the vertices of quadrilaterals and triangles are given in anti-
clockwise order.

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 73

C , ¢
D D

flip

v

Figure 3.1: A flip

Figure 3.2 shows the flip graph for a set of seven sites.

Definition. A flip rule is a function F(ABCD) — {AC, BD,either} where ABCD is a
quadrilateral, which tells us whether the triangulation should include the diagonal AC or
the diagonal BD. We must have F(ABCD) = F(BCDA) = F(CDAB) = F(DABC).

For example, Mirante [233] suggested a flip rule to select whichever of AC and BD is shorter.
The flip rules that have been proposed (see table 3.1) areinvariant under translation, scaling,
and (usually) rotation and reflection of ABC'D. (This is why we must allow the value either
for a flip rule, for if ABC'D is a square, a rotation of 90° maps diagonal AC to BD.)

A flip rule that frequently returns the value either is not very useful.
Definition. either(F) is the set of quadrilaterals (regarded as points in R?) that flip rule

I returns either for, and similarly for AC(F) and BD(F).

For example, if F' is the flip rule “choose the shorter diagonal” then
AC(F) = {(€1,91, 22, Y2, %3, s, 04,)| (01 — @3)” + (31 — ¥3)* > (w2 ~ 24)? + (v2 — ya)?}.

If Fis a good flip rule then AC(F) and BD(F) should be open sets and either(F") the
boundary between them.

Often a flip rule can be defined by a function f: R® — R such that AC(F) = {x|f(x) >
0} either(F) = {x|f(x) = 0}. For example, with the “choose shorter diagonal” flip rule

we can use
F(®1, 51, %2, Y2, 23, 43,24, 44) = (21 — @3)% + (91 — ¥3)% — (g — z4)® — (y2 — ya)2.

If f is continuous then AC(F) will be an open set
For the rest of this thesis we shall assume that the sites are “in general position” with

respect to a good flip rule and it never gives the value either.

74

ULATIONS

1
T

LOCAL OPTIMIZATION OF TRIANG

CHAPTER 3.

Figure 3.2: Flip graph for a seven site set

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 75

A flip rule amounts to putting directions on the edges of the flip graph, pointing to the
triangulation that the flip rule prefers. This produces a directed flip graph. Figure 3.3 shows

a directed flip graph using the “choose the shorter diagonal” flip rule.

5.
(4,3)
(2,2) (6,2)
5 4.2
(0,0) (7,0) A B

Figure 3.3: Directed flip graph using shorter diagonal

Note that a flip rule cannot assign arbitrary directions to all the edges of the flip graph,
since the same convex quadrilateral can occur in many different triangulations. In figure 3.2
parallel lines with the same dash pattern correspond to flips of the same quadrilateral, so

must have the same direction.

Definition. A locally optimized triangulation (LOT) with respect to a flip rule F is one

where the flip rule would not change any diagonal.

This corresponds to a sink (a node with no outgoing edges) in the directed flip graph (e.g.
the top and bottom left triangulations in figure 3.3). Of course, with a bad choice of flip

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 76

rule the flip graph might not have a sink and a locally optimized triangulation will not exist.
The main reason for studying LOTs is that very simple algorithms exist for computing

them.

Definition. The flip algorithm for constructing a LOT takes an initial triangulation and

repeatedly performs flips using the flip rule until no more are possible (207, 233].

The initial triangulation could be part of the problem definition or might have to be com-

puted by some other method.

Definition. The incremental algorithm adds sites to the triangulation one site at a time.
The new site is connected to all the sites visible from it. The flip algorithm is then used to

construct a LOT of all the sites considered so far. [194, 202]

A program using either of these algorithms will go into an endless loop if there is no
locally optimized triangulation. In the next section we will prove that LOTs exist for a

broad class of flip rules.

3.3 Triangle-Based Flip Rules

There have been many different flip rules proposed (see table 3.1). All except the last two

rules in the table fall into the class of triangle-based flip rules.

Definition. A badness function is a function J(ABC) — R* or R~ which measures the
“badness” of a triangle ABC, that is, we would prefer a triangle with a small value of
b(ABC).

When ABC' is an equilateral triangle 5(ABC) should be minimized. Unless b(ABC) is a
dimensionless quantity scaling can affect its value. For example, if b(ABC) is the perimeter
of ABC' then halving the length of each side will halve the value of bJ(ABC). However, if
the area of a triangle is kept fixed, the minimum value of the perimeter occurs when the
triangle is equilateral. Since, in triangulating a site set, the total area is fixed, there are no
difficulties caused by using badness measures that are not dimensionless.

Sometimes the triangle property is maximized for equilateral triangles (for example, the
size of the smallest angle). In this case we just use the negation for our badness measure.

There are many possible choices for a badness measure (table 3.2). The only require-

CHAPTER 3.

LOCAL OPTIMIZATION OF TRIANGULATIONS

77

DESCRIPTION Rer NAME
Let the “badness” of a triangle be the quantity |a’/a—\/3/4] | [41] (¢'/a)w
where o’ is the length of the minimum altitude and « is that
of the longest side. Choose triangulation that minimizes
maximum bhadness.
Similar to above, except minimize root mean square (304] (a/fa—+/3)
badness.
Maximize minimum angle in both triangles [194] — 0Ol
Minimize maximum angle in both triangles (19, 243] | veo
Choose shorter diagonal of quadrilateral [233] Py
Maximize the sum of the minimum angles [43, 294]

[

Let “quality” of triangle be the inradius divided by the cir-
cumradius. Choose the triangulation which maximizes the
harmonic mean of quality.

Similar to above, except maximize geometric mean

(=r/R)o

Similar to above, except maximize arithmetic mean

(=r/R)

Similar to above, except maximize minimum quality (=7/R)eo
Minimize the minimum circumradius [231] R_q
Maximize the minimum inradius [214] —Teo
Minimize the maximum inradius [288] Too
Maximize the minimum altitude (138, 332] | —d!,
Maximize the minimum value of area of incircle divided by | [214] (=1%/A) o
area of triangle

Maximize the minimum area [214] Ay
Minimize the arithmetic mean of “sliveriness”, the quantity | [282, 283] | (P%/A);
Perimeter?/Area

Minimize the maximum “sliveriness”, the quantity [284] (P2/A)o
Perimeter?/Area

Let the “goodness” of a triangle be the area divided by the | [325] (—A/P?)
square of the perimeter. Maximize the minimum goodness.

Let triangle “quality” be the area divided by the sum of the [217] (Ef—f-__})%?)o
squares of the lengths of each side. Maximize the geometric

mean of the qualities of each triangle.

Choose the triangle with closest circumcentre. [328] doo
Minimize the standard deviation of the triangle angles [329] Sy

Choose the shorter diagonal provided that the minimum | [156]

angle is above some threshold.

Minimize “irregularity”, the quantity Z(d(p) - 6)%, [127]

where d(p) is the degree of p p=4,B,C,D

Let I be the point where the diagonals of ABC D intersect. | [109]

If AC' is the shorter diagonal we select it provided 1/4 <
AIJIC < 4.

Table 3.1: Some proposed flip rules

CHAPTER 3.

LOCAL OPTIMIZATION OF TRIANGULATIONS

NAME | DESCRIPTION
—a | Smallest angle
B | Median angle
v | Largest angle
a | Length of longest side
—c | Length of shortest side
P =a+4+ b+ c | Perimeter
abe | Product of sides
—A | Area
R = abc/(4A) | Radius of circumcircle
—r = —2A/P | Radius of incircle
—a' = ~2A/a | Length of shortest altitude
—r/R | Ratio of inradius and circumradius
—7r? /A | Area of incircle on area of triangle
—c/a | Ratio of shortest and longest sides
—c/P | Fraction of perimeter taken by shortest side
a — ¢ | Difference between longest and shortest sides
b/(c — a) | Median side divided by difference in other two sides
A =afa' | Aspect ratio (Largest width divided by smallest width)

d=1+\/R?> - (c/2)? - R?

5= > (i-60°)2/3

Eccentricity. Signed distance from circumecentre to tri-
angle. Take the negative root if circumcentre is outside
the triangle.

Standard deviation of the triangle angles.

78

i€{a, 0,7}
P | Perimeter measured by /., metric
R | Radius of circumcircle in /., metric
—r°° = —2A /P> | Radius of incircle in [, metric (see appendix C)
7.00
b
a
Y
R

Table 3.2: Some possible badness measures for triangles

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 79

ments are that it be unaffected by translation and (usually) rotation and that it be mini-
mized (in the sense mentioned above) for equilateral triangles.

Now we need a way to measure the joint badness of two triangles.
Definition. A joint function is a function f : R+> — R* and R-% — R~ that is commu-
tative (f(z,y) = f(y,x)), associative (f(z, f(y,2)) = f(f(z,y),z)) and monotonic (ife >y
then f(x,2) > f(y,=2)).

Definition. A triangle-based flip rule by is a flip rule

AC i f(B(ACD),b(ABC)) < f(b(ABD),b(BC D))
bj(ABCD) = BD i f(b(AC'D),b(ABC))> f(b(ABD),b(BCD)) .

either otherwise
where b is a badness function and f is a joint function.

or example, if we take b(ABC') to be [AB|+|BC|+|AC| (the perimeter) and f(z,y) = a+y
we gel
AC if |AC| < |BD|
b;(ABCD)={ BD if|AC|> |BD| ,

either otherwise

which is the shorter-diagonal flip rule we encountered earlier.

Definition. If b is a badness function b, is the set of flip rules by where f is any joint

function.

For example, R, is the set of triangle-based flip rules with the circumradius as the badness

measure.

Definition. The total badness B(T) of a triangulation using by consisting of triangles
11,1y, .., Tods f(O(T1), f(D(T2), .. ., F(B(Tr-1),b(Tn)) - - +)). Note that this does not depend

on the ordering of the triangles.
Theorem 1 LOTs always exist for triangle-based flip rules.

Proor. If the flip rule prefers T/ to T we can take T' as T, 15, Ts,...,T,.

B(T') = F((T)), f(W(T}), K)) where K = f(b(T3),...,b(Ty)...)

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 80

f(f(b(Tl)v b(-T‘Z))> I()
= B(T)

A

That is, every time a flip is performed the total badness is decreased. Since there are a
finite number of triangulations there must be at least one triangulation where no flips will

be performed. m]

The Minkowski distance function [,(z,y) = £ ¥/Jz[P + [y]P when p # 0,400 satisfies
the conditions of a joint function. (We take the sign of [, to be the same as & and y.)
leo(,y) = max(x,y) is not monotone, but we can still prove that LOTs exist for flip rules

using /oo.
Theorem 2 LOTs always exist for flip rules using loo.

Proor. We order the triangles of T such that 6(7}) > b(Ty) > -+ > b(Ty,). Define the total
badness B(T) to be the sequence (b(T1),b(73),...,5(T,)). We use lexicographic ordering
for total badness.

Now, if T’ is preferred to T by the flip rule and is formed by replacing T; and T}
(¢ <g) with T and T} (k < 1) then max(b(T),b(T})) = b(T:) > max(b(T%),b(T})) = b(TL).
Hence, 1 < kso B(T') = (b(T1), .. ., b(T5-1), 0(Tiq1), - . -, 0(TL), . .). Now, b(T;) > b(Tiyy) >
-+ -0(Tk) 2 b(T) but b(T;) > b(T}) so at least one of the > signs must be a >, say b(T},) >
W Tn1) = 0(T},) and b(Ty) > b(T}) for k < m. Hence, B(T) > B(T’) and by the same

argument as before a LOT must exist. a

A similar argument shows that LOTs exist if we use {_oo(%,y) = min(z,y). We shall
extend our definition of joint functions to include Iy, _o and lp. (We can regard them as
the limits of the joint function {, as p — o0, p — —co0 and p — 0 respectively.) We will
write b, instead of b;,. Some possible joint functions are listed in table 3.3. The names of
the triangle-based flip rules in table 3.1 can be found in the last column. (The first entry is
(@'/a)oo instead of |a’/a — \/3/4|co. The reader can check that these two rules are identical.)

Definition. LOT(by) is a locally optimized triangulation using flip rule b;.

Definition. The flip rule by is systematic if LOT(by) is unique (that is, has the systematic
property).

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 81

NAME | DESCRIPTION
[_o | min(a,y)
Ly | /(L] + 1/ |yl)
lo | |yl
Lot =]+ lyl
L | Va?+ 42

loo | max(z,y)

Table 3.3: Some possible joint functions

The example in figure 3.3 showed that LOT(P;) was not systematic.

Definition. GOT(by) is the triangulation with the minimum total badness with respect to

flip rule by.

GOT stands for globally optimized triangulation. If b, is systematic then LOT(by) =
GOT(by).

Definition. The flip rule by is local if LOT(b) has the local property.

The Greedy triangulation is a LOT(P;). The Minimum Weight triangulation is the
GOT(Py). Neither the Greedy triangulation nor the Minimum Weight triangulation has the
local property: The Greedy triangulation and the Minimum Weight triangulation of the set
{A,B,C, D} in figure 3.4 is ABC, BC'D. Now we add the site E. The Greedy triangulation
and the Minimum Weight triangulation of {A, B,C, D, E}is ABE,BDE,BCD. BD is an
edge of this triangulation that was not in the triangulation of {4, B, C, D}, and of course

BD is not adjacent to F.

- C (3,4) c op - .
D(0,3) (4,3) D/\B AC ~ 361
BD = 4
CE =~ 4.12
A(5,1) A AD ~ 5.39
E(4,0)

Figure 3.4: Neither Greedy nor Minimum Weight triangulation is local

3.3.1 Algorithms for GOT's

No polynomial-time algorithm is known for the Minimum Weight triangulation [263].

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS §2

Plaisted and Hong [258] describe a O(logn) approximation to the MWT. Baszenski and
Schumalker [21] have used simulated annealing to approximate the MWT.

Polynomial algorithms are known for only a few GOTs. Edelsbrunner et al. [103] gen-
eralize flips to insert arbitrary edges and develop an O(n?logn) algorithm for 0T (Veo)-
Bern «t al [24] have generalized this approach to compute GOT(bs) in the cases where
beo has the anchor property. b, has the anchor property if each triangle with the worst
badness has an anchor. An anchor is a vertex that must be incident to a new edge crossing
the opposite side of the triangle in any improved triangulation. In particular, ve, —a’_,
and d., have the anchor property [24].

Edelsbrunner and Tan [100] give a O(n?) algorithm for GOT(as).

The brute-force algorithm for the Greedy triangulation takes O(n3) time and O(n?)
space. In 1979 Gilbert [137] improved the time bound to O(n?logn). It was almost ten
years before any further improvement was made. First, the space requirement was reduced
to O(n) [139, 210] and then the time requirement was reduced to O(n?) [204, 322] and
finally to the optimal O(nlogn) [323].

All the fast algorithms listed above are rather complicated.

For any badness function b, GOT(b_s) can be computed by searching the O(n?) trian-
gles that contain no other site, finding the one that minimizes b, and arbitrarily completing
the triangulation. The naive implementation of this algorithm takes O(n?) time (since it
takes O(n) time to test if a triangle contains a site). This can be improved to O(n®): for a
given site P, sort the other sites by their angles relative to P getting Q,@2,...,Qn-1. The
triangle PQ1Q); will contain no other site if ZPQQ; is smaller than LPG1Q;for 1l < j <.
Consequently, all site-free triangles with PQ; as a side can be found in time O(n) by scan-
ning through the @; while keeping track of the minimum ZPQ,Q;. All site-free triangles
involving P can be found in time O(n?) (including the time to sort the Q;), and all site-free
triangles can be found in time O(n3).

For some badness functions this can be improved—Edelsbrunner and Guibas [96] show
that the minimum area triangle (and hence GOT(A_.,)) can be found in time O(n?) and
space O(n) by topologically sweeping the dual arrangement of lines. The dual of a point is
a line and vice versa, in such a way that incidence is preserved [49]. The dual of the sites is
a set of of lines that partition the plane into a subdivision known as an arrangement [146].
An edge in this dual arrangement that is a subset of the line) from its intersection with

line P to the line @ is dual to an angle PQR that contains no other site. The smallest

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 83

angle is dual to an edge in the arrangement, so the smallest angle and hence GOT'(a_ o)
can also be found in time O(n?) by topologically sweeping the dual arrangement.

Eppstein [108] proves that in the case where the sites form a convex polygon GOT (e _)
is the farthest site Delaunay triangulation, which can be computed in time O(n) [5).

For badness measures, b, that are minimized by degenerate triangles (such as A, @ and
7), the problem of computing GOT(b_.,) falls into the class of n2-hard problems for which
no sub-quadratic algorithms are known [251]. This is because the problem of determining
whether three sites are collinear is n2-hard.

If the sites form a convex polygon, Klincsek [184] describes a dynamic programining
algorithm for the Minimum Weight triangulation (GOT(P;)). We can generalize this to

compute GOT'(by) for any triangle-based flip rule b s for sites on a convex polygon.
Algorithm 1 GOT(by) of a convex polygon.
Let p1,p2,...,p, be the vertices (in order) of the convex polygon. We will consider p,,;

to be the same as p;. The basic idea is to compute B(i,7), defined to be the total badness

of the GOT(by) for p;, pity,...,p;.

for ::=1 to n do
B(i,1+ 1) := identity
for k:=3ton—1do
for ::=1 to n do
B(i,i + k) = mini ik (B, 5), F(b(pwipe), BU, k)

identity; is defined by f(z'dentityf,rc) = f(=, identity;) = x. For example, identity, = 1
and identity_, = co.

This computes the badness of the GOT—the actual GOT can be extracted by the usual
dynamic programming backtracking technique.

The algorithm uses ©(n?) time and ©(n?) space.

3.4 The Delaunay Triangulation

Let P be the set of points py, ps, ..., p,.

Definition. The Voronoi polygon Vp: is the set of sites closer to p; than to any other site.

Definition. The Voronoi diagram Vor(P) is the set of Voronoi polygouns for all sites.

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 84

It can be shown [263, 274] thatl if no four sites are co-circular, the straight-line dual of
Vor(P) forms the Delaunay triangulation.

Since there is only one Voronoi diagram of a set of sites it follows that the Delaunay
triangulation has the systematic property. Furthermore, if a new site Pn+1 is added to P
the Voronoi polygons {V,;[i = 1,...,n} can only get smaller as Vions takes territory away
from them. Two Voronoi polygons that were not adjacent in V or(P) cannot be adjacent
in Vor(P + {pnt1}). So edges in the Delaunay triangulation of P+ {p,4;} that are not in
the Delaunay triangulation of P do not connect two sites in P-—they must be adjacent to
Pnt1- That is, the Delaunay triangulation has the local property.

Now, a triangle ABC' in the Delaunay triangulation corresponds to three mutually
adjacent Voronoi polygons, V4, Vg and V. The boundary between two adjacent Voronoi
polygons V4 and Vg consists of points equidistant from A and B and closer to to A and B
than to any other site. The point common to all three boundaries is equidistant from A,
B and C so it is the circumcentre of ABC'. It is closer to A, B and ¢ than to any other
site, so the circumcircle of ABC contains no other site of P. This is called the empty-circle
property. Contrariwise, any triangle with the empty-circle property must be a triangle of

the Delaunay triangulation.

Definition. The flip rule DT is the rule that chooses the Delaunay triangulation of ABC'D.
That is,

AC if the Delaunay triangulation is ABC, AC'D
DT(ABCD) =< BD ifitis ABD,BCD
either if ABC'D is a cyclic quadrilateral

The equation of the circumcircle through A = (24,y4), B = (zB,yB) and C = (v, yc) is

2?4y oz oy

thtyi T4 ya
gl@y)=| > 77
Tgt¥Ys TB UYB

e G G O WY

25+l we ye

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 85

The point (z,y) is outside the circumcircle if and only if g(z,y) > 0. So,

AC if g(zp,yp) > 0
DT(ABCD)={ BD if g(xp,yp) <0 .
either if g(ap,yp) =0

Theorem 3 R, = {DT}. (That is, if f is a joint function Ry=DT.)

Proor. Let ABC'D be a convex quadrilateral with the Delaunay triangulation ABC, AC'D
(figure 3.5). We can assume that ZAC B and /C'AD are acute angles. For,if /AC'B is obtuse
D

Figure 3.5: Delaunay triangulation of ABCD is ABC, AC'D

then ZBAC is acute (part of same triangle as ZACB) and ZACD is acute (quadrilateral is
convex); so we can interchange A and C' to make the statement true. A similar argument
works if ZCAD is obtuse.

The circumcentres of ABD (say I') and ABC (say E) both lie on the perpendicular
bisector of AB. Counsider the family of circles through A and B. As the circle centre moves
along the bisector from infinity above AB (the side with C' and D on) to infinity below,
the part of the circle above AB gets smaller and the smaller pieces are contained in the
larger ones. The circumradius gets smaller as the centre approaches AB , has a minimum
when it reaches AB, and then gets larger again. Since C' lies in the circumcircle of ABD,

E is lower than F. By a plane geometry theorem [110] if ZAC'B is acute E is above

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 86

AB and R(ABC) < R(ABD). Similarly R(CDA) < R(CDB). (R is the radius of the
circumcircle—see table 3.2.)

So, for any joint function f, f(R(ABC), R(ACD)) < J(R(ABD),R(CDB)). Hence
Rs(ABCD) = AC.]

Since R, is a singleton set, with a slight abuse of notation we also use R, to mean the

single element of this set.
Theorem 4 For any site set LOT(DT) is the Delaunay triangulation.

Proor. Let ABC be a non-Delaunay triangle of a LOT(DT). QABC (the circumcircle of
ABC) must contain another site, say X, on the opposite side of BC' from A (we can relabel
to make this true). A line from A to X will cross a finite number of triangles. Let BC'D
be the second of these (after ABC). DT(ABCD) = BC; so D must be outside OABC.
So the the part of QABC above BC is included in the part of OBCD above it. Hence
X isin OBCD. Similarly X is in the circumcircle of the third, fourth and every triangle
crossed by AX. Let the last and second last of these be QRX and PQR respectively. Then
DT(PQRX) = QR;so X is outside OPQR. Contradiction. a

Since the Delaunay triangulation has the systematic and local properties this also shows
that B, = DT is systematic and local.

LOT(~aso) was one of the first triangulations considered [192] and can also be proved
to be the same as the Delaunay triangulation (see appendix A).

The Delaunay triangulation can be calculated quickly, with very simple O(n?) algorithms
and reasonably simple O(nlogn) algorithms. The reason for this is the local property of

the Delaunay triangulation.

Theorem 5 If I is a local flip rule then the incremental algorithm to construct LOT(F)

of a set of n sites will require at most %(n — 2)(n — 3) flips.

Proor. Consider what happens when the incremental algorithm is used to construct
LOT(F) of the site set P, where F is a local flip rule. When we add Pr the only flips
that are performed are those that add a new edge adjacent to Pr and each such flip adds
such an edge. So the number of flips to add p, is just the degree of p, in LOT(F) minus
the number of sites it is first connected to. p,, is initially connected to at least two sites

because p, will always be visible to two sites in a triangulation of py,...,p,_1. Hence the

CHAPTER 3. LOCAL OPTIMIZATION OI TRIANGULATIONS 87

number of flips is at most n — 3 and the total number of flips needed by the incremental

algorithm to construct LOT(F) is at most L(n — 2)(n — 3). O

Theorem 6 The incremenial algorithm can require é(n — 2)(n — 3) flips to construct «
LOT(F) (F a local flip rule) of a set of n sites.

Proor. We will show that there is a site set where the incremental algorithm for the
Delaunay triangulation requires £(n — 2)(n — 3) flips. If A = (a,a?),B = (b,0%),C =

(¢,¢®), D = (d,d?) lie on the half parabola & = VUand 0 <a <b<e<dthen

d?+d* d d* 1
@ +a! a a?
D24+t b b2
2

=(d-a)(d-b)(d—c)(c—a)c—b)(b—a)a+b+c+d)>0

2 :
c“—i—c1 [

so DT(ABCD) = AC.

Now, consider the site set P = {p; = (n,n?), p = (n — 1,(n — 1)%), ...p, = (1,1)}.
DT (pipapap1) = pip2 so ps is outside Opipaps. Similarly, p4,ps,...,p;_1 are also outside
Opip2p1; s0 pipapr is a triangle of the Delaunay triangulation of p1,...,p;. By the same
TeAsONing p;Papa, PiPaPs, - - -, PiPi—1Pi—2 are also triangles in the Delaunay triangulation of
P1,---,pi- That is, p; is connected to every other site in the Delaunay triangulation of
P1s-.-,pi. When the incremental algorithm adds p; to the triangulation it is initially con-
nected to p; and p;_; only (these are all it can see because P is a convex polygon), so i — 3
flips must be performed. Hence the incremental algorithm requires a total of H(n—2)(n-3)

flips for this site set. d

Theorem 7 If F is a local flip rule then the flip algorithm can require at most 1(n—2)(n-3)
flips to consiruct LOT(F) from any triangulation of a set of n sites. It does not matter in

what order the flips are done.

Proor. Consider what happens after we perform a flip on a quadrilateral ABC D, replacing
diagonal AC' with diagonal BD. We now have the LOT(F) for ABC D; so when we go on
to consider other sites in the triangulation, because of the local property the only edges that
can be added are those with at least one end a site other than A, B, C or D. Consequently

the edge AC can never be added. That is, an edge deleted by a flip will never be added by

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 88

another flip. Iach flip deletes exactly one edge. There are (5) possible edges and at least
2n — 3 edges in the final triangulation, so the maximum number of flips is (5)—(2n-3) =

s(n—2)(n-3). o

Theorem 8 There exisis a set of n sites so that for any systematic flip rule F' there is an
initial triangulation for which the flip algorithm requires O(n?) flips to construct LOT(I),
regardless of the order in which the flips are done.

Proor. The site set P is defined as follows (we will take n as even): The sites py, ... s Pr/2

lie on the circle with centre (—100,0) and radius 99.5 with

pi = (=100 + 1/(99.5) — (i/n)?,i/n) ~ (~0.5, i/n).

The sites p(,/3)41, - - > Pn lie on the circle with centre (100,0) and radius 99.5 with

Pitnsz = (100 — 1/(99.5)2 — (i/n)?,i/n) ~ (0.5,i/n).

(See figure 3.6.)

T S
Pe P12 Ps 12 Pe 12
Ps P11 Ps D11 Ps 711
P4 P10 Pa 010 Pa 210
b3 9 p3 P9 Ps3 29
P2 143 P2 143 P2 8
y41 P P P " Pr
1,2,3,4,5,7,8,9,10,11 7,8,9,1,2,10,3,4,11,5 7,8,9,10,11,1,2,3,4.5

Figure 3.6: Some possible triangulations of P

Any triangulation of P must include the edge p;p, since it is not intersected by any
other possible edge. Similarly edges pyps, ... s P(nf2)~1Pn/25 Prj2P(n/2)+1s - - - » Pn—1Pn TUSE
be in every triangulation. The sequences of edges pip .. -Pny2 a0d P(n/2)41 - - - Py divide the
triangulation into three independent pieces. We shall only be concerned with the middle
piece. Each triangle of the middle piece has two edges that cross the y axis and one edge
of the form p;p; .

If we move a point up the y axis from (0,0) to (0,1) we cross each triangle (of the

middle piece) in turn. This defines an ordering among these triangles. Associated with

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 89

this ordering is a sequence of the numbers 1 to n — 1, excluding n/2. This sequence is
formed by associating the number ¢ with a triangle with an edge p;p;y; (the associated
sequences are written below each triangulation in figure 3.6). There are two possible types

of quadrilaterals in the triangulation of the middle piece:

e those with three corners in one piece and one in the other. These are of the form
PiPig1Pit2p; With associated subsequence i,¢+4 1. These quadrilaterals are not convex

so no flip is possible.

e those with two corners in each piece. These are of the form PiPi41PjPj+1 With two
possible associated subsequences ¢, j and 7,7 depending on which way the diagonal of
the quadrilateral is drawn. A flip in the triangulation corresponds to exchanging a

pair of adjacent numbers in the sequence.

Therefore, a flip in the triangulation corresponds to changing the number of inversions
(pairs of elements that are out of order) in the sequence by one.

Now consider the triangulation T formed by joining P(n/2)+1 b0 all the sites in the left
half and Pny2 to all the sites in the right half. Tt has associated sequence 1,2, .. L(n/2) -
1,(n/2)+1,...,n—1 with 0 inversions. Now consider the triangulation S formed by joining
Pn to all the sites in the left half and p; to all the sites in the right half. It has associated
sequence (n/2)+1,...,m —1,1,2,...,(n/2) — 1 with ((n/2) — 1)? inversions.

Therefore ((n/2)—1)® flips are required to transform T into S. Now, if it were possible to
find a sequences of flips that transformed T and S into the LOT(F) in less than ((n/2)-1)?
flips we could transform T into S in less than ((n/2) — 1)? flips merely by transforming T
into the LOT(F') and reversing the flips that transform S into the LOT(F). Hence either
T or S requires at least 1((n/2) — 1)2 = O(n?) flips. |

Theorem 8 might seem to suggest that an O(n?) algorithm is optimal for constructing
the Delaunay triangulation but Delaunay triangulation algorithms do not have to use flips.
The local property also lets us merge two disjoint Delaunay triangulations of n sites each
in O(n) time. This leads to an O(nlogn) Divide-and-Conquer algorithm to construct the
Delaunay triangulation [202].

In practice the O(n?) worst case does not seem to occur and the performance of the flip
algorithm is competitive with that of the Divide-and-Conquer algorithm [120].

If we use the incremental or flip algorithm to construct LOT(by), where by is not local,

although we know that the process of repeatedly performing flips will eventually terminate,

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 90

there is no reason why exponentially many flips may not be necessary to construct LOT(by).

Type I Type II

SN

%
\, /
N

A B

D

b

/
\

AN PN
V.o e

B e —_—
A B A B

Figure 3.7: Possible directed flip graphs

3.5 Testing Flip Rules

By using the badness measures in table 3.2 each combined with the joint functions in

table 3.3 we can create 120 flip rules. We would like to find out which ones are systematic

and local.

Consider a set of sites that forms a convex pentagon. If the flip rule does not return

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 91

either for any of the 5 subsets of size 4 (quadrilaterals), there are only four possible different

directed flip graphs for such a set (see figure 3.7).

e Type IV: No sink. No LOT exists. We proved this was impossible for triangle-based

flip rules.
o Type IIl: Two sinks. LOT is not unique. The flip rule is not systematic.

e Type II: One sink. The flip rule is not local: The (unique) LOT of ACDE is
ACE,CDFEsince I'C'is preferred to DAbut ADE, ABD, BD is the LOT of ABCDE.

The edge AD is a new edge in this triangulation although it is not adjacent to B.
e Type I: One sink. A flip rule which is systematic and local will always give this result.

If the flip rule returns the value either for any quadrilateral, we classify the flip rule as
type V. Since either should result with probability zero in a good flip rule, a type V flip
graph is a witness to the fact that a flip rule is not good.

To test our triangle-based flip rules we generate “random” pentagons and then for each
triangle-based flip rule classify the type of the directed flip graph. If any type III graphs
are found, then we know that that triangle-based flip rule is not systematic. If any type II
graphs are found, then we know that that triangle-based flip rule is not local. If any type
IV graphs are found, we have made mistake somewhere.

Of course, even if our flip rule gives us only type I graphs this doesn’t mean it is local
and systematic. Perhaps our set of test pentagons was unlucky, or perhaps the flip rule is
local and systematic for pentagons but not for other site sets.

For example, consider the flip rule —R; (mazimize the sum of the circumradii). The
directed flip graph for this rule can be obtained by reversing the edges of the directed flip
graph for Ry (minimize the sum of the circumradii). Reversing the edges of the type I graph
in figure 3.7 gives another type I graph so —R; will always produce a type I graph for a
pentagon.

However, — R; is not systematic as figure 3.8 shows. Figure 3.8 is the directed flip graph
for the four corners of a square and a fifth site inside the square using —R;. (The fifth site
is inside the circumcircle of any three of the others so the middle triangulation in figure 3.8
is the Delaunay triangulation of the set. So, in the directed flip graph using DT = Ry?

both arrows point to the middle triangulation. Reversing them gives figure 3.8.)

*See theorem 3 in section 3.4.

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 92

Figure 3.8: Directed flip graph using — R,

We have already seen that LOT(R.) and LOT(~as,) are the same as the Delaunay
triangulation. Other flip rules might also be the same as DT'; so if the flip graph is type I
we check to see if the LOT is the same as the Delaunay triangulation.

5000 pentagons were generated by taking points from the uniform distribution within
the unit circle until their convex hull formed a pentagon. (This is the iteration method
for generating convex polygons described in section 6.3.) The results are summarized in
table 3.4.

The first thing to be noted about table 3.4 is the set of flip rules that produced type V
flip graphs.

The reason why A; always gave a type V flip graph is quite simple. The sum of the
areas of the triangles making up a quadrilateral is just the area of that quadrilateral, and
this will be the same whichever way the diagonal is drawn. Consequently Ay will always
give the value either—not a very useful flip rule.

oo does not always return the value either—it will only do so when the quadrilateral
has a side longer than both diagonals. However, it is easy to see that this will always be
the case for at least one sub-quadrilateral of a pentagon since the longest diagonal or side
of the pentagon will be a side of at least one sub-quadrilateral.

Similar explanations can be found for the other rules that gave type V flip graphs.

The second thing to be noted is the set of rules that always produced the Delaunay
triangulation. As well as R, and —a,, as we would expect from section 3.4, this set
includes the rules —ry, (—7/R)1, (=r?/A)g and abe;. Proofs that this is always the case for
some of these rules can be found in appendix A.

This discovery might prove useful in programs that compute the Delaunay triangulation
since it is possible that one of these rules could be calculated in less time than it takes to
test to see if a site is inside the circumcircle of three other sites. Or one of these rules may
be less vulnerable to numerical error when the four sites are almost co-circular.

The third and most important thing to be noticed is the remaining set of rules. None of

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 93
Joint Badness Measure (see table 3.2)
Fll}lc- I T 7’2 [C C b e} [co [oS)
tion Ri ol vlad Al 7| P a]c AN A RS abc Ple—c| == R | P |r
DTJ100| 49/14|16| 3 9140 (60{2| 34] 38 32{41] 37{36| 48] 34] 49| 38| 9o|{DT
[|100| 73|56|56|54| 52(71|85(9]| 66| 69| 66|68 69]631 73| 66 791 71} 531
| 1I 0 7T{12112}116] 13| 7| 4(1] 10 9 9111 8110 81 10 4 6 14|11
I 0| 20132(32(30 3522|116 24| 23| 251221 24/26| 18| 25| 17| 24 33|10
DT 100 91|67|70|21] 65(|54({60 (2] 86| 97| 78|48 48[41| 50| 67 49| 48| 58 | DT
[1100] 99184(89|54| 86{82|85[9| 98100 95|77| 78|71| 77| 87 791 781 8411
4 11 010.7| 5] 416 5| 5{ 4(110.6{0.1 21 5 5] 6 5 5 4 41 5|11
II1 0104f11] 7130 8{14 1116 110.1 41181 17]23]| 18 8| 17| 181 11{III
DT 100 85|72{81{21] 75|57(60|2| 91|100| 97|48] 60[43| 50| 54 491 50| 64| DT
[{100] 97)88|94!54| 93/83185[9(99|100|100|76(85|73| 78| 78| 79 791 881
| II 0 1] 31 11186 2| 4] 411]10.2 0101 5 4] 6 5 6 4 41 4111
III 0 2] 9| 4130 5113111({6(0.9 0(0.1[19) 1121} 18] 16 17| 17| 9o|IlI
DT |100(65]|75({79| 0]100]60|60[2]100] 94| 96|49 100147] 50} 47 491 521 75{DT
T7100] 85(90]95] 0]100(85[85|9|100]|100]100]|76{100] 74| 78] 74 79 81| 94|1
L II 0 51 31 2] 0 01 4| 411 010.2]01] 5 0} 6 4 6 4 41 2111
111 0} 10 81 3] 0 O|1r|11]|86 0103|0319 0|20{ 17| 20) 17| 16| 5]|III
DT 100] 56|75|31] 3] 36|64l60(2[701 79| 91|48 67|47] 51 431 49| 54 32(DT
T{100| 799166 (54| 69/88(85(9{ 89| 95| 99|74| 87|72| 79| 71! 79 82) 6811
L II 0 61 2| 7116 71 41 411 4 2103} 7 3] 8 3 7 4 41 7|10
111 0| 15| 7126(30] 25| 9116 6 310519 10|20] 16| 21| 17| 14| 25]1III
DT {100|100{71{55{21] 50|63 o[0| 79| 88| 83|48| 43|36| 48] 77 0| 48| 47|DT
I[100|100(91 79 (54| 75{85| olo| 95] 98| 96|77| 69|67| 77! 94 0] 761 741
| II{ -0 01 4, 9{16f 11| 7| 0|0 3 1 21 8 81 8 8 3 0 31 10|11
I 0 0] 5112130| 14 8| olo 310.9 2116 23(24(16 4 0 91 16111
LThere were no type IV flip graphs I
The only flip rules to produce type V flip graphs
rule | A; | G | €—co | -1 | 0 | €1 | c2 ¢ | RZ | P
% type V | 100 | 100 84 84 | 84 | 84 | 84 | 100 | 100 11

Table 3.4: % of flip graphs of each type for flip rules

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 94

them were systematic or local. This contradicts Nielson and Franke [243] who, because of
the close similarity between the descriptions of —ea ., and 7. (see table 3.1) assumed that
Yoo Was systematic.®

Another rule that might be thought to be systematic and local is R%®. At first sight
it would appear that the proof in section 3.4 should work if the word ‘circle’ is replaced
throughout by ‘square parallel to the axes’. Unfortunately, it is not always possible to draw
such a square through three sites. For example, no square parallel to the axes can be drawn
through the points (0,0), (1,3) and (4,4). So, while we can find a smallest enclosing square
for this triangle with radius 2, this square does not have the “empty square property” and
the proof in section 3.4 does not apply.

If 1 < p < oo then it is possible to find a ball in the [, metric through any three points,
so RY is systematic and local in these cases. (Tests confirm that it always produces type I
flip graphs for pentagons.) However, the triangulations that these rules produce are duals
of the Voronoi diagram under the [, metric so these triangulations are generalized Delaunay
triangulations. (Though these rules are not rotation invariant.)

If we examine the scatter plot of type I and Delaunay percentages shown in figure 3.9
(rules that gave any type V flip graphs have been excluded from this plot) there is a strong
correlation bhetween these two percentages, which suggests that a rotation invariant rule
that always gives a type I flip graph will always give the Delaunay triangulation. This
result is proved in the next section. In section 3.4 we noted that constructing a locally
optimized triangulation for a flip rule that is not local could take exponential time. The
authors cited in table 3.1 managed to construct LOTs for several different non-local flip
rules, presumably without needing an exponential number of flips. How is this possible?
The answer lies in the fact that all of these rules agreed with DT more than 50% of the
time on a convex pentagon. Consequently a LOT for one of these rules of a typical set of
sites will be identical to the Delaunay triangulation except for a number of isolated ‘islands’
of a few adjacent triangles. The flip algorithm will perform quite quickly on the part of the
triangulation that is the same as the Delaunay and exponential behaviour on a small set
of non-Delaunay triangles will not cause any problems. Nielson and Franke [243] compared
LOT(DT) and LOT (7o) for the same set of sites and found 90% of the triangles to be the

same.

®Nielson has written a note correcting this error [242].

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS

% of flip
graphs
same as
the De-
launay
triangu-
lation

1004

904

80+

704

60

50

404

30+

201

104

o0

%O%O

0
50

T T T T T

60 65 70 75 80 85

% of flip graphs that were type I

Figure 3.9: Scatter plot for flip rules

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 96

3.6 Systematic and Local Flip Rules are Generalized De-

launay rules
Definition. The lines making up the sides of a triangle ABC divide the plane into seven
regions (see figure 3.10). We will denote by ABC the region that is adjacent to the sites A

and B, but not C'. The regions are open sets. Their union is the plane except for the lines

ADB, BC, and AC.

ABC ABC

Figure 3.10: Regions around a triangle

Definition. F'*(ABC) is the set of points in the plane for which the flip rule ¥ would not
choose the triangle ABC. That is, if D € ABC then D € F*(ABC) iff F(ABCD) = BD.
We can similarly define F*(ABC) in the regions ABC and ABC. In the remaining regions,
the quadrilateral is not convex, so the flip rule must choose the interior diagonal. This means
that ABC is included in F*(ABC) and ABC, ABC, ABC are excluded. FO(ABC) is the
boundary of F'*(ABC'), and F~(ABC) = R? — (F+(ABC) + FO(ABC))

Definition. Let F° be the set of curves FO(ABC) for all possible triangles ABC.

If F = DT, F%is the set of all circles. This is intimately related to the empty-circle
property of the Delaunay triangulation. The curves in F° for some flip rule F' act in a way
similar to circles for DT

Figure 3.11 shows F° for F = 7.,. We have rotated and scaled so that the longest
triangle side is (0,0)(1,0). The black dot marks the position of the third triangle vertex.

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 97

This plot was produced numerically (and some of the jaggedness of the curves are sampling
artifacts), Hansford [151] and Powar [262] give analytical descriptions of +2.

The interesting thing to note is that some of the curves in figure 3.11 (the two dashed
curves in particular) intersect at points other than (0, 0) and (1,0). We will prove that this
is not possible for a systematic local flip rule.

The basic idea behind the proof is illustrated by figure 3.12 which shows just the two
dashed curves from figure 3.11. The flip graphs for the pentagons ABCDFE and A’/BCDFE
are shown in figure 3.13. The bold arrows in figure 3.13 follow from the placement of the
sites in figure 3.12. For example, the direction of the leftmost bold arrow in figure 3.13 is
a consequence of the fact that A € v (BDE) (v (BDE) is the region outside v2 (BDE)
in figure 3.12.)

If 7o Is systematic and local, both of the flip graphs in figure 3.13 must be type I—this
means that the remaining edges must be as shown in the figure. This is impossible since it
requires both yoo(BCDE) = EC (in the left graph) and Yoo (BCDE) = BD (in the right
graph).

This proves that 7., cannot be systematic and local. Section 3.6.1 generalizes this result.

Definition. A curve circumseribes a polygon if each vertex of the polygon lies on the curve.
Definition. We say that I has the circumscribing property if, given any triangle, there is

exactly one curve in F° circumscribing that triangle.

3.6.1 Systematic local rules have the circumscribing property

Lemma 1 If I is a systematic local rule and C € FO(ABE)N ABE then FY(ABE) =
FY(ACE) in the region ACE — ABC (the shaded region in figure 8.14).

Proor. If F*(ABE) # F*(ACE) then there is a point D € F*(ABE)\ F*(ACE)
or a point D € FT(ACE)\ F*(ABE) (see figure 3.14). Note that ABCDE is strictly
convex. Let’s consider the first case. If D € FP(ACE) then because F*(ABE) is open and
FO(ACE) is the boundary of F~(ACE) we can find a new D' € F¥(ABE)n F~(ACE).

e ABCD'FE is strictly convex
o FF(ABCE) = either

o F(ABD'E) = AD'

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS

075 |

05t

0.25

-0.25 |

~0.75 }

Figure 3.11: 42

1.2

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 99

075}

05|

025}

-0.25 }

~0.75 L

-0.2 1.2

Figure 3.12: 43 (BDE) and 72,(BCE)

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 100

Contradiction —__

J

— W
o Y

\
A B A B

Figure 3.13: Flip graphs for ABCDE and A’BCDE.

Figure 3.14: F(ABE) and F°(ACE)

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 101

e FM(ACD'EY=CE

Now, because AD'(F) and C'E(F) are open sets we find a ball around ABC'E such that
for all A'B'C'E" in that ball F(A'B'D'E"y = A'D', F(A'C'D'E") = C"E’ and A'B'C' D'
is convex. And since ABC'L is on the boundary between AC(F) and BE(F) we can find

A'B'C'E" in that ball such that:
o A/B'C'D'E’ is strictly convex
o F(A'B'C'E") = B/
o F(A'B'D'E) = A'D/
o INAC'D'E=C'E

There is no way that we can pick the directions of the two remaining edges in the flip graph
for A'B'C'D'E’ so that it is type [(see figure 3.15). This contradicts I being local and

systematic.

\, /

E@C @
AR

Figure 3.15: Not a type I flip graph

If D€ FH(ACE)\ F*(ABE), the proof is the same, except that we find A’B'C'E’ such
that F(A'B'C'E') = A'C". This leads to a flip graph that is figure 3.15 with all the arrows
reversed. This still can’t be type L. a

Lemma 2 If I is a systematic local rule and C' € F*(ABE) N ABE then F*(ABE) =
F*(BCE) in the region ACE — ABC (the shaded region in figure 3.14).

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 102

Proor. If there is a point D € F*(ABE)\ F*(BCE), then just as in lemma 1 we can
find A'B'C'D'E' such that

o A'B'C"D'E’ is strictly convex
o F(A'B'C'E") = B'E’
o F(A'B'D'E) = A'D'
o F(B'C'D'E"Y = C'

The flip graph for A’B’C'D'E’ cannot be type I (see figure 3.16).

Q& O
\, /

Figure 3.16: Not a type I flip graph

It D € F*(BCE)\ F*(ACE) then we can find a flip graph that is figure 3.16 with the

arrows reversed. This still can’t be type L. a

Lemma 3 If F is a systematic local rule and C € FO(ABE)N ABE then F*(ABE) =
FY(ACE) =0 in the region ABC (the shaded region in figure 3.17).

Proor. If there is a D € F*(ACE) N ABC then, just as in the proof of Lemma 1 we can
find A’B'C"E’ such that

o A'B'C'E is convex

e Dec AB'C.

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS

o F(A'C'DE")= A'D

o F(A'B'C'E') = B'E'

The flip graph for A’B'C'DE’ (see figure 3.18) contradicts F being systematic.

FH(ABEYNABC = .

D/

FO(ABE)

Figure 3.17: D € ABC

E/

¢’

BI

AI

B

Figure 3.18: Flip graph of A’B'C'DE’

103

Hence

If there is a D € FT(ACE)N ABC, then we find D' € F~(ACE)Nn F*(ABE)Nn ABC

and A'B'C"E' such that
¢ A'B'C'E' is convex
o D'c AB'C.
o F(A'B'D'E) = A'D'

o F(AC'D'E") = C'E'

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 104

o F(ABIC'E) = B'E
The triangulation of A’B'D'E" is A'B'D', A’ D' E'. If we add ¢’ the resulting triangulation of
A'B'C'D'E s AB'E', B'C'E' ,B'"D'C", ' D' I (see figure 3.19). We have a new edge B’
that is not adjacent to C”, which contradicts F being local. Hence PYHACEYNABC = 0.

O
D’ B’
-—
E A
[nsert C7
D' B
—_— c’ —_—
B A’

Figure 3.19: Inserting C’ in the triangulation of A’'B'D'E’

Lemma 4 If F is a systematic local rule and D € FO(ABE)NABE then (BDENABD) C
F*(ABE) (BDEN ABD is the shaded region in figure 3.20).

Proor. Suppose C' € (BDE N ABD)\ F*(ABE). If C ¢ F°(ABE) then we can find a
"€ BDENABD N F~(ABE). We can now find A'B'D'E’ such that

e A'B'D'E' is convex
e C'c B'D'E'NA'B'D
o F(A'B'D'E"Yy = A'D'
o F'(AB'C'E"Y = B'E’
Depending on the choice we make for the remaining edge direction in the flip graph for

A'B'C'D'E’ (see figure 3.21), we end up either with figure 3.18 or figure 3.19, contradicting

F being systematic and local. a

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 105

FOABE)

Figure 3.20: C € BDEN ABD

D’ B’
-—
E yy
Insert C’
D' B’
c’ —_—
E' A’

Figure 3.21: Either nonlocal or nonsystematic

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 106

Lemma 5 If I is a systemalic local flip rule and D € FO(ABC) then FH(ABC) =
FY(BCD) = FYH(ACD) = F*(ABD).

Proor. D cannot be in ABCUABCUABCUABC. Relabel the points if necessary, so that
D € ABC (see figure 3.22). Note that C' € FO(ABD), B € I'°(ACD) and A € FO(BCD).

Figure 3.22: D € ABC

We need to prove the result in the regions AC'D and ACD N BC'D (shaded in figure 3.22).
The rest will follow by symmetry.

e In the region ACDNBCD, applying lemma 1 with ABE replaced by ABC shows that
F*(ABC) = FT(BCD) and with ABE replaced by ABD shows that FY(ABD) =
F*(ACD). Applying lemma 2 with ABFE replaced by ABC shows that FT(ABC) =
F+(ACD).

o In the region ABC, lemma 3 shows that F¥(ABC) = F*(ABD) = §). Because F is
a flip rule F*(ABC) =0, and F*(BCD) = 0 because ABC ¢ BCD.

e in the region BCDNACD = I, applying lemma 4 with ABE replaced by ABC shows
that I C F*(ABC) and with ABE replaced by ABD shows that I C F+(ABD).
I C F*(BCD) becanse I C BCD and I C F+*(ACD) because I C AC'D.

Finally we note that we have left out the lines AB, BC' and AC in the proof, but there is
only one way to complete F'*(ABC) onto these lines. o

Theorem 9 If I is a systematic local rule and P,Q,R € F°(ABC) then Ft(ABC) =
FY(PQR). (That is, F has the circumscribing property.)

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 107

Proor. By lemma 4, FP(ABC) = FO(ABR) = F(AQR) = FO(PQR). a

Theorem 10 If I' is a systematic local rule then F*(ABC) is conves.

Proor. If F*(ABC) is not convex, then there are points P,Q € FY(ABC) and R ¢
F*(ABC) such that R lies on the line segment PQ (see figure 3.23). If R € FO(ABC) then

Figure 3.23: F*(ABC) is convex

we can find new PQR such that P,Q € F*(ABC) and R € F~(ABC). The segment PR
goes from inside ¥ (ABC) to outside, so let P’ be a point where it intersects FP(ABC), and
Q" a point where QR intersects FO(ABC). Let § € FO(ABC)\ PQ. (If we can’t find such a
S5'then FO°(ABC) = PQ, which contradicts R € F~(ABC).) Since R is on the edge of P/’ 5
and R € F'7(ABC) = F~(P'Q’'S) (by theorem 9) we can find an R’ € P'Q'§ N F=(P'Q'S)

which contradicts F' being a flip rule. O

3.6.2 Rules with the circumscribing property are systematic and local

The proof that DT is systematic and local relies on the following geometric fact: If two
circles share a common chord, then on each side of the chord, the interior of one circle is a
subset of the interior of the other circle. We shall call this the nesting property.

If F' has the circumscribing property then the same fact is true, provided we replace
“circle” with “curve from F°. Consequently the same proof proves that rules with the
circumscribing property are systematic and local.

Also, just as for the Delaunay triangulation we have the “empty-circle property”——the

circumcircle of each Delaunay triangle contains no other site, for GOT(F), F systematic

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 108

and local, we have the “empty-shape property”—the circumscribing curve for each triangle
GOT(F) contains no other site. We will call triangulations like GOT(F) empty-shape

iriangulations in such cases.

3.6.3 The only rotation and translation-invariant systematic local flip rule
is DT.
Definition. The two asymplotes of an unbounded curve are the limits of the support lines

as the support point goes to infinity.
Theorem 11 The only rotation and translation-invariant systematic local flip rule is DT,
Proor. Let /' be such a rule and K € FO,

Case 1 K is bounded. Fujiwara [128] and Bol [32] have shown that if X is a compact convex
set which is not a disc, then it is possible to find an infinite number of congruent copies
K" of K such that K and K’ have at least four points in common on their boundaries.
It follows from theorem 9 that K = K’. Hence K has an infinite number of symmetries

and must be a disc.

Case 2 K is unbounded. Let Ay and A, be the asymptotes to I, P their point of inter-
section, and o the angle between them. Rotate & by /2 about P, translate by d

in direction A; and by d in direction A; + a/2 to get K’ (figure 3.24). By making

Figure 3.24: K and K’ intersect three times

d sufficiently large we can ensure that Ay is a chord of K’. Then the boundaries of
K and K’ intersect three times and by theorem 9 K = K’ , t.e. o =0 and K is a

half-plane, which we can regard as infinitely large disc.

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 109

Hence FO(ABC) is a circle for any three points A, B, and C'. By theorem 9 this circle is

the circumecircle of ABC and so F' = DT 0

3.6.4 The only systematic local homothetic flip rules are generalized De-

launay rules.

A homothetic flip rule is one that is invariant under homotheties of the quadrilateral.
Notice that if /7 is a homothetic flip rule, F° must be closed under homotheties, and
since either(F') is a closed set, 79 is a closed set.
At this point it might seem that a systematic local homothetic rule F must necessarily
be that of a Delaunay triangulation based on the convex distance function induced by the
“circle” FO(ABC) [55, 91], but this is only true if F° contains only one shape set.

Suppose FO(ABC) is a square (see figure 3.25). This is what you would expect in the

C FoBc)

FO(ADB)

Figure 3.25: Two different F© curves

leo metric. If D is in the shaded region in figure 3.25 then it is not possible to draw a scaled,
translated copy of the square F°(ABC) through the points ADB. F°(ADB) must be a
different shape, for example, the bottom right corner of a circle joined to an upwards ray
and a leftwards ray.

In general, the F° curves will be a collection of shape sets. We can complete the example
with three more copies of F°(ABD) rotated through 90°, 180° and 270°. This corresponds

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 110

to a convex-distance-function Delaunay triangulation where the circle is a square with in-

finitesimally rounded corners.

Definition. A cone is a convex set with a boundary consisting of two rays. We will also

consider an infinite strip with boundary a pair of antiparallel® lines a cone.
Note that if a convex set is invariant under a homothety, it must be a cone.

Theorem 12 Let F' be a homothetic systematic local flip rule. Then K € F° is either

strictly convex or a cone.

Proor. Suppose K is not strictly convex. Let XY be a line segment on the boundary of
K. Take A and B interior points of XV and ¢ a point on the boundary of X not on the
line XY. Then we can find a C’ sufficiently close to € such that the line through C” parallel
to C'A intersects the segment XY at A’ and the line through C” parallel to C'B intersects
the segment XY at B’ (see figure 3.26).

Since the sides of the triangles ABC and A’ B'C" are parallel, there is a homothety that
transforms ABC to A’B'C’. By theorem 9, K must be invariant under this homothety and

hence must be a cone. O

Definition. We can order the support lines of a convex set by the angle they make with
the z axis. If 0 < o(l) < 27 is the angle between | and the = axis then we say [< m if
0<a(m)-a(l)<rmor0<a(m)—a(l)+2r <r. If ao(m)— a(l) = £7 then [and m are

antiparalle] and we do not define < in this case.

Definition. If K is a convex set then 77 (P) (the pretangent) is the minimum support line

through P, and T75(P) (the posttangent) is the maximum support line through P.
Definition. P is a corner of K if T{f(P) # T (P).

Definition. The support cone to K at a point P is the cone with sides T (P) and T (P).
Note that this is limy_oo H(P, k)K.

Definition. If K is an unbounded convex set, the asymplole cone to K is the cone with
sides Ay and A}'{, the asymptotes to K. Note that the asymptotes are the maximum
and minimum support lines to K and if P is the intersection point of the asymptotes the

asymptote cone is limy_.o H(P, k) K.

5Two parallel lines with opposite directions are antiparallel.

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 111

Figure 3.26: ABC' is homothetic to A’B'C"

Definition. Two sets have a common support line if they each have a support line with

the same direction.

Lemma 6 Let I be a translation-invariant systematic local flip rule. If K, K' € FO have
@ common support line | at a point P and Ty (P) < Ty ,(P) then TE(P) > T ,(P).

Proor. Suppose T (P) < TF,(P).. Then
Ti(P) < T, (P) < I < TH(P) < T P)

Translate K’ by a distance d in direction ! (see figure 3.27).

For any value of d, the support cones of X and K’ intersect. Since X and K’ get
arbitrarily close to their support cones as they get closer to P , for sufficiently small values
of d K and K’ will also intersect three times. By theorem 9, K' is a translate of K which
contradicts T (P) < Tr,(P). |

Definition. If P is on K then in a neighbourhood of P we define P*(K) to be the part

of K that follows P as we traverse K& in an anti-clockwise direction and P~ (K) as the part

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 112

Figure 3.27: K and K’ intersect three times.

that precedes P.

Definition. If X and K’ are curves with a common support line [and K is a subset of the

convex hull of &’ when translated so that the support points coincide then we say I C; K.

Lemma 7 Let I' be a homothetic systematic local flip rule and K,K'e FO. If T;(P) =
Ti,/(P) or T (P) = Tx.(P) then K is homothetic to K', or one of K and K' is a cone.

Furthermore, K C; K' or K' C; K where [is a common support line at P.

Proor.

Case 1 T (P) > Ty, (P). In some neighbourhood of P, P~(K) is between P~(K') and
Ty (P) (see figure 3.28). If I = PH(K) N TH(P) # 0 then K is not strictly convex
and by theorem 12 must be a cone. Otherwise, we can find a k& large enough so
that P+(H(P,k)K') is between P*(K) and Ti#(P). P~(K) will still be between
P=(H(P,k)K'") and Ty (P) for some neighbourhood of P. By a similar argument to
that in lemma 6, X and K’ are homothetic which contradicts Tw(P) > Tr/(P). So if
T (P) > Tg/(P), K is a cone and K’ C; K.

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 113

T (P)

T (P)
Tx-(P)

YR
P (H(P.3)K") P (H(P,3)K")

Figure 3.28: K and a translate of #(P,3)K" intersect three times.

Case 2 T (P) = Ty.(P). If both K and K’ are cones, then obviously K = K’ If (say)
K is a cone then K’ C; K and K is the support cone of k' at P.

If neither are cones, relabel if necessary so that in some neighbourhood of P, P~(K)
is between P~(K') and Tr(P). As in case 1 we can find a k large enough so that
PH(H(P,k)K') is between P+(K) and T3 (P). However, in this case it is possible for
PT(H(P,k)K") to also switch sides and be between P~(K) and Tr (P). Nevertheless,
unless P~(H(P,k)K') and P+(H(P,k)K') switch at the same value of k& we can
proceed as in case 1. If they do switch at the same value of k, then since H(P, k) is
continuous P~(H(P,k)K') intersects P~(K) and PT(H(P,k)K') intersects PH(K).
So H(P,k)K' intérsects K three times and by theorem 9, K’ is homothetic to K and
K'o K.]

Lemma 8 If two shapes in F' have two common support lines at different points and in

different directions, then the shapes are homothetic.

Proor. Let the support lines be | and m with m > [and support points P and

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 114

P’. We can translate and scale one of the shapes so that the support points coincide (see

figure 3.6.4).

Figure 3.29: Two common support lines

Case 1 Ty (P) = Tx/(P). By lemma 7 K and K’ are homothetic or one is a cone.

If, say, K is a cone then PP’ is one of the sides of the cone and one of the support
lines. Since K'is convex, the segment PP’ must be part of X’. kK and K’ have three

common points and by theorem 9, K = K’ and the original shapes were homothetic.

Case 2 Ty (P) > Ty /(P). Since PP’ > T (P) a small expansion of K’ about P’ produces
two intersections of K’ with K near P which combined with the intersection at P’

means that by theorem 9 K is homothetic to K. a
Definition. Sr(l, P) is the set of curves in F° through P with { as a support line.

Lemma 9 Let I be a homothetic systematic local flip rule. If K, K' € F° have a common

support line | then K C; K' or K' C; K. That is, Sp(l, P) is totally ordered by C;.

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 115

Proor. From lemma 7 the result follows if T (P) = T, (P). Otherwise, by lemma 6,
T (P) < T P) < U< TE(P) < TE(P). So in a neighbourhood of P, K C K' If Kis
not a subset of the convex hull of K’ then K and K’ must intersect at some point other
than P. By a similar argument to case 2 in lemma 8, K is homothetic to K’ and the result

follows. O

Lemma 10 Given a P €1 and Q (o the left of I, there exists K € Sr(l,p) such that Q € K.

Proor. Let K =limp_p FO(PP'Q)), where P € .]

Lemma 11 There is at most one bounded shape set in FO. If there is no bounded shape in

FO, then FO contains two antiparallel rays.

Proor. A closed bounded set has a support line parallel to any given direction; so
lemma 8 shows that any two bounded shapes in F° must be homothetic.

If there is no bounded shape in F° then for any P and [the minimum (with respect to
Cy) shape in Sr(l, P) must be unbounded and pass through P and by lemma 10 must have
an empty interior. Hence it must be a ray (degenerate cone) with direction 7, say. This
ray will be also be the minimum for / such that —r < [< r. The minimum for [such that

r <l < —r must be —r. O

Theorem 13 If there is a finite number of shape sets in F° then there is one bounded shape

set with all the other shapes “rounding” off the corners of this shape.

PRrooF. Since there is only a finite number of shape sets in Sg(l, P) it is meaningful
to talk about the following shape set using the ¢ ordering. If K is not a cone then
H(P,k)K C; H(P,k')K if k < k; so the shape set preceding K is the asymptote cone of
K and the following shape set is the support cone of K. The shape set following a cone
cannot be another cone, since in that case a point in the region between the two cones will
not have a K in Sg(l, P) passing through it, contradicting lemma 10. Consequently the
support cone of one shape is the asymptote cone of the following shape set (see figure 3.30.)

If 9 does not contain exactly one bounded shape set, lemma 11 shows that it contains
a pair of antiparallel rays. In this case we can pretend that F° contains a (bounded) digon

(line segment) with sides parallel to the rays.

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS

T(P)

TA(P)
B A
A

Figure 3.30: Sg(l, P)

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 117

So FO contains exactly one bounded shape set. For each corner of this shape set there
is a shape that “rounds” the corner, with asymptotes corresponding to the corner. If these
shapes have corners then there are shapes to round their corners and so on. This describes

all the shapes in F°. |

If 7° contains an infinite number of shape sets then the result is similar, except that it
is possible to have an infinite number of cones to fill in the space between two cones.

How does this relate to convex-distance-function Delaunay triangulation? We can de-
fine the Buclidean Delaunay triangulation by the “empty-circle property”—the triangles of
the Euclidean Delaunay triangulation are just those whose circumcircles contain no other
site. Similarly, the convex-distance-function Delaunay triangulation can be defined by the
“empty-ball property”—the triangles are those whose circumscribing balls are empty, where
the ball is the unit circle for the convex distance function. Triangulations defined by sys-
tematic local flip rules further generalize this to the “empty-shape property”—the triangles
are those whose circumscribing shapes are empty.

If the convex distance function is not strictly convex then theorem 12 tells us that the
corresponding flip rule is not local and systematic. The problem here is that in this case
triangles with a side parallel to a line segment on the boundary of the shape have more than
one circumscribing shape and the Delaunay triangulation is not unambiguously defined. To
resolve this ambiguity one particular circumscribing shape must be chosen (e.g. the bottom
leftmost one [179]). This is effectively treating the flat part of the boundary as being very
slightly curved, that is, the shape is strictly convex.

If the convex distance function has corners then the conditions of theorem 13 are violated
because there is no shape that rounds the corners of the convex distance function. The
problem here is that triangles with two sides that are support lines at the same corner
of the convex distance function cannot be circumscribed and the convex-distance-function
Delaunay triangulation does not completely triangulate the convex hull of the input sites.
In this case we can add shapes to round the corners of the convex distance function and the
convex-distance-function Delaunay triangulation is just a subset of the generalized one.

Finally we note that we can interpret our generalized convex-distance-function Delaunay
triangulation as duals of Voronoi diagrams in the surreal [141] Cartesian plane, where the

distance function is smooth (no corners) and strictly convex.

CHAPTER 3. LOCAL OPTIMIZATION OF TRIANGULATIONS 118

3.7 Conclusion

Locally optimized triangulations are simple to define and compute, while the systematic
and local properties are important and useful properties for a flip rule to possess.

I have shown that the only translation and rotation invariant systematic local flip rule
is the rule DT, and found that the Delaunay triangulation maximizes the mean inradius
over all triangulations as well as several other geometric properties. This gives some more
reasons to support the use of the Delaunay triangulation as the most natural and useful
triangulation of a set of sites.

[have shown that the only homothetic systematic local flip rules correspond to empty-
shape Delaunay triangulations, which generalize convex-distance-function Delaunay trian-
gulations. Any Delaunay triangulation algorithm can be modified to produce empty-shape
Delaunay triangulations and consequently convex-distance-function Delaunay triangula-
tions.

These new simpler algorithms for convex-distance-function Delaunay triangulations are

well suited for practical use.

Chapter 4

Computing Empty-Shape

Triangulations

4.1 Two dimensions

Since empty-shape triangulations are systematic and local we can use the flip algorithm
to compute empty-shape triangulations in worst-case time O(n?). Other algorithms for
computing the Delaunay triangulation that use the incircle test, such as the divide-and-
conquer algorithm [202] and the selection algorithm [229] will also compute empty-shape
triangulations—it is only necessary to replace the incircle test with the F function.

The sweepline algorithm for Delaunay triangulation [122, 120] uses two different geo-

metric tests:
1. Find the rightmost point of the circumcircle of three sites.

2. Determine whether a site is above or below the contact point of a circle through two

other sites and tangent to the vertical line through the first site.

To implement a sweepline algorithm for empty-shape triangulation it is necessary to
be able to compute these two primitives when “circle” is replaced by “curve from FO°”.
The only difficulty arises for the first primitive when the curve is unbounded and has no

rightmost point. This can be overcome in one of two ways:

1. By using surreal numbers [141] and using polynomials in w to represent such points

“at infinity”.

119

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 120

2. By noticing that such events occur after all site events and “finite” circumcircle events.
If we have events for ABC and BC'D then ABC' must occur before BC'D Jjust if
I'(ABCD) = AC. So F imposes a partial order on the infinite circumcircle events.

It is sufficient to process the event queue in a way consistent with this partial order.

4.1.1 An implementation of the sweepline algorithm

Here is a complete Miranda. [28, 315] implementation of the sweepline algorithm.!
Plane sweep algorithms operate by sweeping a vertical line across the plane from left to
right.

Any plane sweep algorithm requires two data structures:

o The sweep-line status which represents the intersection of the sweepline with the

geometry.
e A priority queue containing events, places where the status changes.

Priority Queue ADT

> abstype priority * *x*

> with push :: (priority * *x) -> * -> (priority * #*x*)

> top :: (priority * #%) -> %

> pop :: (priority * **) -> (priority * #*:x*)

> empty :: (x->%x) -> (priority * *%)

> isempty :: (priority * *x) -> bool

> remove :: (priority * **) -> * -> (priority % **)

empty is given a function that defines the ordering of events and creates an empty queue.
isempty determines if a queue is empty. top returns the smallest value from a queue, pop
deletes that value. push inserts a value into the queue and remove deletes an arbitrary
value from the queue.

The priority queue can be implemented? with a heap so that each operation takes time

O(logn), where n is the number of values in the queue.

'The TEX source of this document is an executable Miranda program. Lines starting with > are Miranda
source. All others are comments.
Zappendix D contains an implementation.

UHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 121

Plane Sweep Algorithm

The algorithm processes events one at a time. The event processing function is given the
current state and an event and returns a new state, a list of new events, a list of events to

be deleted and a list of results.
> do_event_t * k% kkx == % -> kx -> (k, [kx], [*x], [¥x%])

The sweep function is also given a starting state, an initial list of events, and a function
that defines the ordering of events. It returns the results of processing the events until there
are no more events.

It uses an auxiliary function sweep’ that is passed the current event queue.

> sweep :: do_event_t k &% kkk => % > [sk] -> (kk-Dkckkxk) => [kkk]

> sweep do_event start_state start_events event_priority

> = sweep’ do_event start_state ¢

> where q = foldl push (empty event_priority) start_events

> sweep’ :: do_event_t k *¥ *x* -> x -> priority sk kkkk -> [#*k]

> sweep’ do_event s g

> =[], if isempty q

> = r++sweep’ do_event news newq, otherwise

> where (news,newevent,delevent,r) = do_event s (top @)

> newq = foldl push (foldl remove (pop q) delevent) newevent

Ordered Sequence ADT

We can use an ordered sequence ADT to represent the sweep-line status. Instead of being
ordered by <, it is ordered by a transitive, irreflexive relation < between elements and pairs
of elements and also between two pairs of elements. If A, B and C are three successive
elements in the sequence, the invariant is that (4, B) < (B, C).

Elements can occur more than once in the sequence, but clearly a pair can occur once

only.

> abstype ordered_seq._point

> with insert :: ordered_seq_point -> point

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 122

-> (ordered_seq_point, [point])
delete :: ordered_seq_point -> (point,point)

-> (ordered_seq_point, [point])
create :: ((point,point)-> point -> bool) -> [point]

VvV vV VvV v v

-> ordered_seq_point

Inserting a new element X involves finding (... A, B,C ..) such that (4, B) < X and
(B,C) £ X and replacing the sequence by (...,A,B,X,B,C,..). insert returns the new
sequence and the list [4, B, C].

Since elements can occur more than once in a sequence it is necessary to specify which oc-
currence by giving the successor of an element to be deleted, as well as that element. delete
Just deletes the first element of a pair (C, D) from the sequence (...,A,B,C,D,E,..) and
returns the sequence (..., 4,B,D,FE,...) and the list [4, B, D, E].

create creates the ordered sequence (D, A, D) from [D, A, D'] and the < relation.

The lists that insert and delete return contain just enough of the context of the
insertion or deletion point to schedule events as will be seen below.

The ordered sequence can be implemented?® using balanced trees so that each operation

takes time O(logn) where n is the number of elements in the sequence.

Delaunay sweepline

Now we can apply the general sweepline algorithm to computing Delaunay triangulations.

Define STS(AB) (sweep tangent shape) of an edge AB to mean the shape through the
two sites of the edge and tangent to the sweepline at a point to the right at the ends of the
edge. (Note that there may be two shapes through an edge, tangent to a line.) The sweep
tangent shape for a boundary edge will be empty, since if it contained a site, a Delaunay
triangle to the right of the edge with a circumcircle to the left of the sweepline would exist.

Another way to think of the state is to consider the part of the Delaunay triangulation
of the sites to the left of the sweepline that is guaranteed to be present, no matter how the
sites to the right of the sweepline are arranged. The sweepline state is just the boundary
of the external face of this partial triangulation.

The relation < corresponds to the ordering of the contact points of the shapes tangent
to the sweep line. (A4,B) < X means that the contact point for STS(AB) is below X on

®appendix D contains an implementation.

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 123

the sweepline.

Implementing this relation obviously depends on the shape. It can be done by computing
the contact point, but it is simpler to find the circumscribing shape through A, B and X.
Because of the nesting property, the contact point is below X iff the intersection of the
circumscribing shape with the sweepline is below X. For example, if the shape is a circle,
we can just test if the circumcentre of ABX is below X. (circle_centre computes the

centre of the circle circumscribing three points.*)

> point == (num,num)
> triangle == [point]
> below_func == triangle -> bool

> below_circle :: below_func

> below_circle [x,a,b] = snd(circle_centre [a,x,b])>snd x

Another way to implement this relation is to determine if the slope of the tangent to
the circumscribing shape through A, B and X is positive or negative.

To turn a below function into a < relation, we need to observe that below gives the
right answer only if X is to the right of AB. Otherwise the contact point is below X if B
is below A. area computes twice the signed area of a polygon,® and its sign is used to test
if X is to the right of AB.

> before_func == (point,point) -> point -> bool
> makebefore :: below_func -> before_func

> makebefore below (a,b) x

> = below [x,b,a]l, if area [x,b,a] > O

> = fst a > fst b, otherwise

There are two sorts of events that change the sweepline status.

o If ABC are three consecutive sites on the boundary, and the sweepline passes the
rightmost point of the circumscribing shape for ABC, then ABC is a Delaunay tri-
angle. The two edges on the boundary AB and BC must be replaced by the single
edge AC. (This is what delete does.)

*Appendix D contains an implementation.
®Appendix D contains an implementation.

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 124

e If the sweepline passes over a site P, then we must find the site X on the boundary
such that the shape passing through X and P and tangent to the sweepline is empty.

The edges X P and PX must be added to the boundary. (This is what insert does.)
> delaunay_event ::= Site point| Circumshape triangle

We must ensure that there is a Circumshape event in the priority queue for each triple
of consecutive sites ABC' on the boundary where C' is to the left of AB. So, whenever the
boundary is changed, we must delete events for triples that are no longer consecutive and

insert events for triples that are now consecutive.

do_delaunay_event::
do_event_t (ordered_seq_point) delaunay_event triangle

do_delaunay_event s (Site p)

where (news,[x,a,y]) = insert s p
do_delaunay_event s (Circumshape [c,b,a])
= (news,acwC[[c,a,x],[y,c,a]l,acwC[[b,a,x], ly,c,bld,[[c,b,all)

>
>
>
> = (news,acwC[[p,a,x],[y,a,p]],acwC[[y,a,x]],[[p,a]])
>
>
>
> where (news,[x,a’,c’,y]) = delete s (b,c)

Notice that the list of results of do_delaunay_event is a singleton list of Delaunay
triangles. (One for each Circumshape event.)®
acwC filters out triangles where the third point is not left of the first two (i.e. triangle

vertices are not anticlockwise.)

> acwC :: [triangle] -> [delaunay_event]
> acwC ts = [Circumshape t | t <- ts; area t > 0]

Site events are scheduled when the scan line reaches the site. Circumshape events
are scheduled when the scan line reaches the rightmost point of a circumscribing shape.
schedule is polymorphic so that we can use real numbers (type num) or surreal numbers

for ordering events.

> schedule_func * == delaunay_event -> *

®The code above also returns the Delaunay edge associated with each Site event—this is used to em-
phasize these edges in figure 2.23.

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 125

> schedule :: (point->*) -> (triangle->*) -> schedule_func *
> schedule rightmostp rightmost (Site p) = rightmostp p
> schedule rightmostp rightmost (Circumshape t) = rightmost t

If we use real numbers to order events, rightmostp will just take the @ coordinate (and can
be implemented with the standard function fst).
Implementing rightmost depends on the shape. For example, the rightmost Point of a

circle can be computed by: (d2 computes the Buclidean distance between two Points.”)

> rightmost_circle :: triangle -> num

> rightmost_circle t

> = cxtr
> where (cx,cy) = circle_centre t
> r = d2 (hd t) (cx,cy)

Finally, we can write a function to compute empty-shape Delaunay triangulation. It
requires a list of sites, the < relation and the schedule function. The only tricky part is
creating the initial state. It simplifies the program to use sentinel sites directly above and

below the leftmost site.

> sweep_geom_funcs * == (schedule_func *,before_func)
> sweep_delaunay :: sweep_geom_funcs * -> [point] -> [triangle]

> sweep_delaunay (sched,before) ps

> = sweep do_delaunay_event

> (create before [(ax,ay+1),(ax,ay),(ax,ay—l)])
> (map Point rest)

> sched

> where (ax,ay):rest = sort ps

For example,
sweep_delaunay (schedule fst rightmost_circle, makebefore below_circle)

will calculate the Euclidean Delaunay triangulation.

"Appendix D contains an implementation.

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 126

Iigures 4.1 and 4.2 show the sequence of events that occur when computing the empty-
shape triangulation for a triangle and three hyperbolae that round off its corners. Cir-
cumshape events added to the queue are shown as dashed shapes, while those deleted are
shown as dotted shapes.

These figures were produced by using a modified version of sweep that returns the
sweepline state and the queue after each event and using the graphics system described

in [190].

4.1.2 Computing convex-distance-function Delaunay triangulations

An algorithm for empty-shape Delaunay triangulation can be used to compute a convex-
distance-function Delaunay triangulation. If the convex distance function has corners it is
sufficient to add shapes that round the corners (see below) and compute the empty-shape
Delaunay triangulation. This triangulation is a superset of the convex-distance-function
Delaunay triangulation. The triangles in both triangulations are Jjust those whose circum-
scribing shape is a homothet of the original convex-distance-function ball. The triangles
that are in the empty-shape triangulation and not in the convex-distance-function triangu-
lation are those whose circumscribing shape is one of the shapes used to round the corners.
It is clear that a simple O(n) pass over the empty-shape triangulation will produce the
convex-distance-function triangulation.

It is interesting to compare these algorithms with previously published algorithms. The
fact that the convex-distance-function may have corners complicates algorithms such as the
Divide-and-Conquer algorithm given by Chew and Drysdale [55]. The merge step involves
computing the bisecting curve between the two sets of sites. Corners can cause this curve to
repeatedly head off to infinity and require the merge to be restarted. That is, the algorithm
must be “fixed” to deal with the problems caused by corners. In contrast, using empty-
shape Delaunay triangulations solves the problem by “fixing” the convex distance function

to remove the corners, and leaves the algorithm unchanged.

Rounding Corners

How do we add shapes to round off the corners of a convex distance function? The simplest
solution is to add an unbounded smooth shape with asymptotes equal to the support cone
for each corner.

The simplest such shape is one branch of a hyperbola. The equation of the rectangular

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS

Figure 4.1: Sweep algorithm

127

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 128

Figure 4.2: Sweep algorithm

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS

hyperbola through 4 = (v4,y4), B = (vp,yg) and C' = (zc,yc) is

xy @

N TAYA T4 Y4
hiz,y) =

TBYB B UB

Tcyc ¢ Yo

(Since this has the form (x — a)(y — b) = r and passes through A4, B and C.)

129

50, to round an arbitrary corner, it is sufficient to apply an affine transformation so that

its support cone is mapped to the positive = and y axes and then test the sign of -

P
Tal¥a
NV
tpYB
N
Yoo

Joa 0
Tp¥p

Ty Ya
¢ Yp
To Yo
¢ Yp

where A’, B', C" and D' are the sites that the flip rule is being applied to after transforma.

tion.

There is one exception—this will not work if the sides of the corner are antiparallel rays.

In this case the parabola with a vertical diameter

p(z,y) =

can be used instead of the hyperbola.

Implementation

T Yy
TA YA
B YB
o Yo

Pt

If the sites A, B, and C' cannot be circumscribed by the convex-distance-function “circle”

the flip rule cannot return any of the values {AC, BD,either}. We must instead identify

the corner of the “circle” that has caused the problem. This is the corner at which the

support cone to the “circle” is contained in the support cone to the triangle ABC' (see

figure 4.3.)

Let us make this concrete with an example: we will implement the flip rule for the

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 130

C

oD

whichcorner={] whichcorner=[]
in_right_tri=False

in_right_tri=True

----------------- C
S o
A
whichcorner={(0,-1),(1,-1)] whichecorner=[(1,0),(0,1)] whichcorner=[(-1,1),(-1,0)]
in_right_tri isimelevent

in_right_tri isirmrelevent in_right_tri isirrelevent

Figure 4.3: Possible values for whichcorner[4,B,C] and inright tri[A,B,C,D]

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 131

convex distance function where the “circles” are homothets of the right-angled triangle
X(0,0)Y(1,0)Z(0,1). Since we can find an affine transformation to transform any triangle
into this right triangle, this lets us handle the convex-distance-function Delaunay triangu-
lation for any triangular convex distance function.

First let us implement the flip rule for the case when the triangle ABC can be circum-
scribed by a homothet of the right triangle X (0,0)¥ (1, 0)Z(0,1).

We merely find the smallest homothet that encloses ABC and test to see if D is inside.

> fliprule == [point] -> bool

> in_right_tri :: fliprule

> in_right_tri [(ax,ay), (bx,by), (cx,cy), (dx,dy)]

> = dx > w & dy > s & dx+dy < ne

> where s = min [ay,by,cy] || bottom edge is y >= s

> w = min [ax,bx,cx] || left edge is x >= w

> ne = max [ax+ay,bx+by,cx+cy]l || diag edge is x+y <= ne

Note that in_right_tri is not a well defined flip rule: figure 4.4 shows an example

where in_right_tri [a,b,c,d]:in_right_tri [d,a,b,c].

Figure 4.4: in_right_tri is not a flip rule

To test if ABC is circumscribable and to find the offending corner if it is not, requires
another geometric primitive, support_right_tri. This finds the support cone to the right
triangle at the support point of a given directed line AB. We will represent the cone by

two vectors giving the direction of each ray.

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 132

> cone == [point]

support_right_tri can take on one of three possible values, depending on which of the
three regions relative to A that B falls into (see figure 4.5). support_right_tri assumes

that the triangle has a positive area.

M
—Il||I,i1

N\ [(11),(-1,0)]
N[]

K77 7
— [(0,-1),(1 yl — [,0),(0,1)]

_Be | /

2

B

Figure 4.5: Regions for support_right_tri A B

suppoft_f == point -> point ~-> cone
support_right_tri :: support_f
support_right_tri (ax,ay) (bx,by)
[(1,0),(0,1)], if bxd>ax & by < ay
[(0,-1),(1,-1)1, if bx<ax & (bx+by<ax+ay)
[(-1,1),(-1,0)], otherwise

v v AVARN V4 v v
1}

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 133

For an arbitrary convex distance function with ¢ corners, the support primitive can be
implemented using binary search in time loge. All that is needed is a list of the corners of
the convex distance function.

[t is interesting to compare our primitives with Drysdale’s [91]. Instead of a support
primitive he uses a InInfCircle(p,a,b) primitive. This returns inside if p is inside the
homothet of the cone support a b that passes through a and b. The support primitive
is more powerful since it can be used to implement the InInfCircle but not vice versa.
However, it is unclear how InInfCircle could be implemented with computing the support
cone.

Now we can identify the problem corner if ABC' is not circumscribable. This will occur
iff the support points for two sides of ABC' are the same, and the duplicated support point
will be the problem corner (see figure 4.3). We will use the empty list to represent the case
where there is no problem corner. (We assume that the triangle has a positive area—our

Delaunay triangulation algorithms produce positive triangles only.)

> whichcorner :: support_f -> triangle -> cone

> whichcorner support [a,b,c]

> = supab, if supab = supbc \/ supab = supca

supbc, if supbc = supca

[T, otherwise

where supab = support a b

supbc = support b c¢

v vV Vv Vv Vv

supca = support c a

Now we can can use a hyperbola to round the corners. If the corner has support cone

given by the vectors (ay, ay) and B, 3,) then the affine transformation
T("U> ?j) = (ﬂyz - ﬂw?h =y T + axy)

will transform them so that they are parallel to the @ and y axes. We then test if T(D) lies
inside the rectangular hyperbola through T(A)T(B)T(C).

> round_corners :: support_f -> fliprule -> fliprule
> round_corners sup flip quad

> = flip quad, corn=[]

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 134

> = (affine_flip corn in_hyperbola) quad, otherwise

> where corn = whichcorner sup (take 3 quad)

affine_flip [a,b] applies an affine transformation (the one that maps the vector a

onto the « axis and b onto the y axis) to a flip rule.

> affine_flip :: cone -> fliprule -> fliprule

> affine_flip corn = (. (map (affine corn)))
affine applies an affine transformation to a point.

> affine :: cone -> point -> point

> affine [(ax,ay), (bx,by)] (x,y) = (by*x-bx*y, -ay*kxtaxkxy)

Testing to see if a point is inside a rectangular hyperbola through three points just
involves evaluating the sign of a determinant, and is very similar to testing to see if a point
is inside a circumcircle.

Note that it is always possible to fit a rectangular hyperbola through three non-collinear
points, but that the points may lie on different branches. If we label the points such that
¢4 < ap < 2¢ then for all the points to lie on the same branch we must have YA > ¥YB > Yo
It is not hard to see that this will always be the case with the points used here.

hdist is the analogue of the Euclidean distance function.

in_hyperbola :: fliprule
in_hyperbela [a, b, c, d]
= hdist hc d > hdist hc a

vV VvV VvV Vv

where hc = hyperbola_centre [a,b,c]

> hdist :: peoint -> point -> num
> hdist (ax,ay) (bx,by) = (ax-bx)*(ay-by)

hyperbola_centre :: [point] -> point
hyperbola_centre t

= (cx,cy)

where ds = map d t

v Vv vV v Vv

xs = map fst t

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 135

> ys = map snd t

> divisor = area t

> cx = area (zip2 xs ds)/divisor
> cy = area (zip2 ds ys)/divisor
>

d (x,y) = xxy

Iinally, we can put all the pieces together. delaunay is given a flip rule and a list of sites
and computes the Delaunay triangulation using any algorithm that uses a flip rule as the
geometric primitive (selection [229], incremental [202], lip [207] or Divide-and-Conquer [202]
algorithms).

We round the corners, compute the empty-shape triangulation, and extract the triangles
that can be circumscribed.

While this finds all the triangles of the convex-distance-function Delaunay triangulation,
the triangulation may include edges that are not part of any triangle (see figure 4.6).

Referring back to figure 4.3, if we use B to label the corner of the triangle ABC' whose
support cone contains the support cone of the “circle”, it is evident that every “circle”
with AC" as a chord must include B in its interior. This means that the edge AC is not
in the Delaunay triangulation. Furthermore, the nesting property implies that all “circles”
through AB contain no site on the same side of AB as (. Consequently it is only necessary
to examine the triangles on either side of an edge to determine if that edge is Delaunay.

The edge that is not a Delaunay edge is the one whose support point is different from

the other two.

> edge == [point]
> nondelaunay :: support_f -> triangle -> edge

> nondelaunay support [a,b,c]

> = [c,al, if supab = supbc

> = [b,c], if supab = supca

> = [a,bl, if supbc = supca

> =[], otherwise

> where supab = support a b
> supbc = support b ¢
> supca = support c a

The convex-distance-function Delaunay triangulation can now be calculated by removing

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 136

all the non-Delaunay edges from the augmented triangulation.

> cdf_delaunay :: support.f -> fliprule -> [point] -> [triangle]
> cdf_delaunay sup flip ps
> = filter circumscribable ts ++
(potential_edges -- nonedges) -- map reverse nonedges
where circumscribable t = nondelaunay sup t = []

ts = delaunay (round_corners sup flip) ps

nonedges = map (nondelaunay sup) nontriangles

>

>

>

> nontriangles = filter ((”).circumscribable) ts

>

> potential_edges = concat(map explode nontriangles)
>

explode [a,b,c] = [[a,b]l,[b,cl,[c,a]l]

Figure 4.6: cdf Delaunay triangulation for a right triangle

For example, the Delaunay triangulation for our right-triangle distance function is com-
puted with cdf_delaunay support_right_tri in_right_tri.

Figure 4.7 shows the working of the selection algorithm [229] for our example distance
function. The selection algorithm starts with a hull edge and finds the Delaunay triangle
standing on this edge by searching all the other sites. This gives two (possibly new) edges

to which the algorithm can be recursively applied. Figure 4.7 also shows the empty circle

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 137

for each triangle as it is discovered.

Figure 4.6 shows why the selection algorithm will not work with the original (unrounded)
convex distance function: hull edges may not belong to the triangulation, the dual graph
of the triangulation may not be connected, and there may be edges that do not belong to

any triangle.

Implementation of primitives for the sweepline algorithm

We need two primitives: find the @ coordinate of the rightmost point of the “circle” through
three points, and test whether a point is on top of the “circle” through that point and two
other points.

Here they are for our right-triangle example: (It is simpler to write one function that
returns the results of both primitives for a triangle.)

Naturally these are only well defined if the three points are circumscribable by the right

triangle.

> sweep_primitives * == triangle -> (¥,bool)
sweep_prim_right_tri :: sweep_primitives num
sweep_prim_right_tri [(ax,ay), (bx,by), (cx,cy)]

>
>
> = (ne-s, ay=s)
> where s = min [ay,by,cyl || bottom edge is y >= s
>

ne = max [ax+ay,bx+by,cx+tcy] || diag edge is x+y <= ne

Just as with flip rules, we can use hyperbolae to round the corners. We will use surreals
for the rightmost points of hyperbolae with no real rightmost point. We only need to deal
with surreals of the form aw 4 b, so we will just use ordered pairs like (a,b) to represent
them. (This means that we can use Miranda’s > operator which uses lexicographic ordering

to compare surreals.)

> surreal == (num,num)
> to_surreal :: num -> surreal

> to_surreal x = (0,x)

round_corners_sweep takes a partial sweep-primitives function and creates a total
one. If the triangle is circumscribable (i.e. there is no problem corner) then we just use the

supplied partial function, converting the rightmost value to a surreal.

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 138

=
/
Ve

]
/
u
TR

el

/
'
7
b
v
e

n
~~
\
=
] Ve u
Ve
Ve
" "
13 "

f
/
//

Pl

Figure 4.7: Selection algorithm for right triangle with rounded corners (solid lines)

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 139

> round_corners_sweep :: support_f -> sweep_primitives num
> -> sweep_primitives surreal
> round_corners_sweep sup sweep_prim tri

> = applypair (to_surreal,id) (sweep_prim tri), corn=[]

Otherwise, we need to circumscribe the triangle with a hyperbola with asymptotes parallel
to the sides of the corner. We apply a transformation to the triangle (giving tri’) so that

the asymptotes are transformed to 2 and y axes.

> = (rightmost,tax>0), otherwise
> where

> corn = whichcorner sup tri

> tri’ = map (affine corn) tri

(x—hy)(y—hy) = 7 is the equation of the rectangular hyperbola through the transformed

points. We will call the hyperbola that it is the transformation of, the ‘original hyperbola’.

> (hx,hy) = hyperbola_centre tri’
> r = hdist (hx,hy) (ax,ay)
> (ax,ay) = hd tri’

The tangent vector to the rectangular hyperbola at the point (z,y) is
((z — hy)?, —7).

A point is below the original hyperbola if the tangent at that point lies in the first or fourth
quadrant, that is, the @ component is positive. We need to use the inverse transformation

to convert a tangent to the rectangular hyperbola to a tangent to the original hyperbola.
> (tax,tay) = iaffine corn ((ax-hx)"2,-r)

The rightmost point of the original hyperbola has a vertical tangent. The correspond-
ing point on the rectangular hyperbola will have tangent (tz,1y), the transformed vertical
tangent. This point satisfies (z — h;)2 = —7r ty/t,. If this equation has a solution, then

the inverse transformation gives the rightmost point of the original hyperbola. Otherwise,

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 140

the original hyperbola does not have a real rightmost point. We can arbitrarily choose w as
the rightmost point of an original hyperbola® with centre (0,0) and radius » = 1. Another
original hyperbola with centre (x,y) and radius r, will have rightmost point rw + x. For
the sweepline algorithm, we can just use rw since this will only make a difference if two
hyperbolae have the same radius, and the ordering of Circumshape events only matters for
triangles with a common edge. Clearly, if two homothetic hyperbolae have two points in
common and the same radius, then they are identical. By comstruction it is not possible for

two non-homothetic hyperbolae to have two points in common.

> (tx,ty) = affine corn (0,1)
> X’2 = -r¥ty/tx
> (x,y) = (sqrt x’2 + hx,hy + r/(x-hx))

(r,0), tx=0 \/ x?2<=0

to_surreal (fst(iaffine corn (x,y))), otherwise

1l

rightmost

v Vv

iaffine is just the inverse of affine.

> iaffine [(ax,ay), (bx,by)] (x,y)
> = ((ax*x+bx*y)/det, (ay*x+by*y)/det)
> where det = ax¥by - bx*ay

Finally, we can use the primitives to produce the geometric functions required by

sweep_delaunay.

round_geom_funcs :: support_f -> sweep_primitives num

-> sweep_geom_funcs surreal

round_geom_funcs sup sweep_prim

where rightbelow = round_corners_sweep sup sweep_prim

>
>
>
> = (schedule (to_surreal.fst) rightmost, makebefore below)
>
> rightmost = fst.rightbelow

>

below = snd.rightbelow

For example, the Delaunay triangulation for our right-triangle distance function (see

figures 4.1 and 4.2) can be computed with

8 Assuming that is, we are calculating the Delaunay triangulation of sites with real coordinates. If they
have surreal coordinates, more careful calculation is required.

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 141

sweep_delaunay (round_geom_funcs support_right_tri sweep_prim_right_tri)

Looking at these figures should make it clear why it was necessary to round the corners.
Consider what it would be necessary to do to use a sweep algorithm to directly calculate
the convex-distance-function Delaunay triangulation. The triangles whose circumscribing
shape have no real rightmost point can be safely discarded, but ignoring the ones that
are unbounded on the left causes the partial Delaunay triangulation to be disconnected
into potentially n pieces. The sweep algorithm uses binary search on the boundary of the
partial Delaunay triangulation to find a Delaunay edge connecting newly encountered sites
to the partial triangulation in time O(logn). In order to maintain this, the disconnected
pieces would have to be organized into a data structure with similar properties. But this is

precisely what the triangles with circumscribing shapes unbounded on the left do.

4.1.3 Bounding unbounded “circles”

It the “circle” for the convex distance function is unbounded there are further difficulties.
Not all the sites may be included in the triangulation (see figure 4.8). No previous published
algorithm correctly deals with this in the general case, though for the case where the “circle”
is a right-angle cone with sides the positive 2 and y axes the Delaunay triangulation is the
set of maxima of the sites [189], joined together in wx-sorted order. (And there are no
triangles in the triangulation, just edges!)

To deal with unbounded “circles”, as well as adding shapes to round the corners, we
need to add a shape with a corner whose support cone is equal to the asymptote cone of
the unbounded “circle”.

If we transform the sides of the asymptote cone onto the z and y axes, then a right
triangle can be used as this shape.

The only exception occurs if the sides of the asymptote cone are antiparallel (for example,
a parabola). In this case an infinite strip (a digon) with another shape to round the other

corner will work.

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 142

Figure 4.8: Delaunay triangulation where “circle” is a hyperbola with asymptotes z +y =0
and y = 0.

4.1.4 Constrained empty-shape Delaunay triangulations

Constrained empty-shape Delaunay triangulations can be defined in exactly the same way
as constrained Delaunay triangulations, and any algorithm that computes constrained De-
launay triangulations can be used to compute constrained empty-shape Delaunay triangu-
lations.

Just as in the previous section it is also possible to compute constrained convex-distance-
function Delaunay triangulations using Incremental (e.g. [63]), Selection (e.g. [216]), Flip
(e.g. [33]), Divide-and-Congquer (e.g. [57]) or Sweepline algorithms (e.g. [291]). All that is

required is changing the appropriate geometric primitive.

4.2 Three or More Dimensions

The results of section 3.6 extend into three or more dimensions. The triangulation of a set
of sites in space consists of a division of the convex hull of the sites into tetrahedra whose

vertices belong to the set. A pair of tetrahedra which form a convex pentahedron can be

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 143

exchanged for three tetrahedra that form a convex pentahedron and vice versa, so we cal
define flip rules in a natural manner (slightly complicated by the fact that the number of
tetrahedra is not fixed).

Now consider a site set where all but one of the sites are co-planar. Every tetrahedron
in the triangulation of this set will have as one vertex the non-planar site. The sides of the
tetrahedra opposite this site form a triangulation in the plane and the space flip rule gives
a flip rule in the plane, so if the flip rule is systematic and local it must be a generalized
Delaunay rule.

In higher dimensions it is still true that if a triangulation is locally Delaunay then it
globally Delaunay [94]. However, Joe [162] has shown than even in three dimensions DT is
not systematic. This is because it is possible for a triangulation to not be locally Delaunay
but impossible to improve by flipping. If the flipping is done incrementally, that is sites
are added one at a time and flips used to construct a LOT after each site is added, then

idelsbrunner and Shah [99] show that the result is always the Delaunay triangulation.

4.2.1 Higher-Dimensional Convex Distance Functions

This result does not extend to higher-dimensional convex-distance-function Delaunay trian-
gulations. It is possible for a triangulation to be locally Delaunay but not globally Delaunay.
Here is an example in R® using the (., metric:

Take A[6,6,2] B[10,4,8] C[0,2,6] D[2,12,0] E[4,8,10] F[8,0,4] (see figure 4.9) and

consider the diagram:

distance from centre
cell centre | radius | A | B|C | D! E|F
ACEF | [4,4,6] | 4 416|418 (4|4
ACDE | [1,7,5] | 5 519 (5155 |7
ABEF | [6,4,6] | 4 4146844
BCEF | [5,3,9] | 5 7151519 |5]5
BCDF | [6,6,2] | 6 0 ({6166 |86

This is locally Delaunay but not Delaunay. (Since BCDF has A in its circumball but is
adjacent only to BCEF and E is outside BCDF’s circumball.)

Schaudt and Drysdale [285] give an incremental algorithm that computes the Delaunay
triangulation for convex distance functions in d dimensions provided the set of sites is “non-

degenerate”. They defined “non-degenerate” to mean that each set of d+1 sites had a unique

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS

o E[4,8,10]
/
B[10;
\N T —
N
AN
F18,0.4)
N
A[6,62] N N \
S\N

A AI66,2]

7]
| /
v
v
3{10,4,8] !
|
; C[0,2,6]
|
F(80.4]
Y
.
D220y
| \ '
N

D210y

€[04

6]

|
|
|
|
N [
}
|
|

N,
B[10.48]

l
|
|
I

F[8,0.4]

Figure 4.9: Locally Delaunay but not globally Delaunay

144

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 145

circumball. Unfortunately, this definition of “non-degenerate” is too restrictive. Consider
the site set (again, in R? using the I, metric) A[1,1,7] B[5,3,0] C[3,5,8] D[8,6,1] (see
figure 4.10). This has two circumballs, both of radius 4 with centres [4,5,4] and [5,2,4],
so is “degenerate” by Schaudt and Drysdale’s definition. However, any small perturbation
of the sites ABCD still has two circumballs, so the set of “degenerate configurations” does
not have measure 0.° We will call a configuration like ABC'D pseudo-degenerate.

Lé [196] gives a formal definition of “non-degeneracy” for site configurations in R¢ with
respect to a convex distance function.

Note that the existence of a pseudo-degenerate configuration does not depend on the I,
ball being non-smooth and non-strictly convex. We can perturb the ball slightly so that it
is smooth and strictly convex and still have a configuration like ABC'D.

A large set of randomly chosen sites will almost certainly contain a pseudo-degenerate
configuration and the Schaudt-Drysdale algorithm will fail.

Icking et al. [159] give balls in R® such that there is a tetrahedron with ¢ circumballs

for any ¢ > 1.

Theorem 14 The mazimum number of circumballs of @ non-degenerate configuration of

d + 1 sites in R with the o, metric is ol

Proor. Let sp,$1,...,5q4 be the sites, and WLOG take sy and sy as the pair of sites that
are the furthest from each other and d(so, 81) = Sp1 — 811 = 27, where 7 is the radius of the
circumball. Fach site lies on a different one of the 2d faces of the circumball. (If two sites
lie on the same face, then the configuration is degenerate, since a small perturbation of the
sites destroys this property.) We call the two faces orthogonal to the ith coordinate the
min-i face and the max-i face, so sy lies on the max-1 face, and s; lies on the min-1 face.
It is not possible for any other pair of faces to have sites on both faces of the pair. (Such
a configuration would be degenerate since the sites in question would be distance 2r from
each other.) So, one of each of the d — 1 remaining sites lies on one of each of the remaining
pairs of faces. This gives us a bound of 24! on the number of circumballs through the sites.

To improve this to QL%J, note that a site can only lie on the max-i face if it is the
--maximum (has the largest ith coordinate of the sites). The number of choices for the face

that a site lies on is just the number of 4s for which the site is a maximum or a minimum.

*Numerical experiments indicate that four sites taken from the uniform distribution inside the unit cube
have two I, circamballs 2.6% of the time.

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 146

_ Intersection of top _
cube with plane ABC

\
\
Y \
N \
N \
\ N N
DI[8,6,1} N
\
\
\ \ C[3,5,8]
\\ p Y
\ 7/ \\
B[5,3,0] \\
\ \
\\
\ \
\
\\\ Afl,1,7]

\

Intersection of bottom ___/ \ M
cube with plane ABC \
\)
\\

Figure 4.10: ABCD has two circumballs in the /o, metric

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 147

The total number of choices for all sites is 2(d—1). Now let us count the number of choices
for the circumball. If a site has no choices, then there is no possible circumball through the
sites. If a site has just one choice, then it is forced to lie on that face, the max-i face, say.
Then the i-minimum cannot lie on the min-i face, so we have reduced by one the choices for
the i-minimum site. Once we have dealt with all the forced sites, the remaining & sites will
have at least two choices each. Bach forced site reduces the total number of choices by 2, so
the total number of choices left is 2k, that is, each remaining site has exactly two choices.
Note that k& = 1 is impossible, since that site would have to be both a i-minimum and a
i-maximum. (This would be degenerate.) Fach time we make a choice of a face for one of
these, one of the other remaining sites is forced. This means that we can make a choice
between {wo faces at most |k/2] times. & is at most d — 1, so the number of circumballs is

d—
at most 2 5] . O

We can construct configurations that attain this bound. For example, in R5, the site

set
{(0, 1,1,1, 1),(4, 1,1,1, 1), (1,(),0, 1, 1),(1,2, 2,1, 1),(1, 1,1, 0,0), (1, 1, 1,2,2)}

has 4 circumballs, as does any configuration with (., distance less than 1 /2 from this one.
The generalization to R? is obvious.

Configurations with large numbers of circumballs seem to be quite rare. I chose 6 points
from the uniform distribution on the unit hypercube in R, and found that the configuration
had no circumballs in 75% of the trials, one circumball in 20%, two circumballs in 5%, and
four circumballs in just 0.03% of the trials.!0

Another interesting fact can be discovered by examining figure 4.10. The left-hand
picture shows an orthogonal projection onto the plane through ABC'. The thin dashed line
shows the intersection between the top cube and the plane ABC while the thin dot-dashed
line shows the intersection with the bottom cube. Looking at the part of the plane ABC
“below” the line BC' we see that the nesting property does not hold, even if we just consider
the plane ABC'. Consequently, it is possible for ABC to be a common facet of two Delaunay

tetrahedra on the same side of ABC and of three Delaunay tetrahedra altogether.

10 Jyust 17 times in 50,000 trials.

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 148

4.2.2 An Algorithm for Higher-Dimensional Convex-Distance-Function

Delaunay Triangulation

Bearing this possibility in mind, we can now sketch a selection algorithm for computing the
cdf Delaunay triangulation of n sites that works for pseudo-degenerate configurations. We
assume that the sites are not truly degenerate (that is, each set of d + 1 sites has a finite
number of circumballs). The symbolic perturbation technique of Edelshrunner and Miicke
can be used to simulate this [97] if necessary. The algorithm is similar to the gift-wrapping
algorithm for computing the convex hull [44]. The geometric primitives required are one to
find the set of circumballs of d+1 sites, and one that tests if a site is inside a circumball. We
proceed from simplex to simplex, at each step constructing a simplex that shares a facet, (a
d dimensional simplex) with a previously constructed simplex. To construct a simplex on
a facet, we select any other site as a candidate and find the circumballs of the d sites in the
facet and the candidate site. We then test each other site against each of the circumballs,
eliminating circumballs found to be non-empty. If the last circumball of a candidate is
eliminated, then the site responsible becomes the new candidate.

Now, if the nesting property holds, it is only necessary to keep a single candidate and
make one pass to find the new simplex. This is because if we find a site inside the circumball
of a candidate we are guaranteed that the circumball of the new site does not contain any
of the sites that we have already checked, and if a site is outside the circumball of the
candidate then its circumball will contain the candidate.

Since the nesting property does not hold it is necessary to maintain a set of candidate
sites. Each new site is tested to see if it is inside each candidate circumball, and circumballs
found to be non-empty are eliminated. If the last circumball of a candidate is eliminated,
it is removed from the candidate set. It also necessary to test the circumball(s) of the new
site against each candidate. If at least one circumball survives, then the new site is added
to the candidate set. Finally, it is necessary to make two passes over the sites so that each
candidate circumball is tested against all sites.

Clearly, any simplex found by this algorithm will have an empty circumball. To ensure
that we find all of the Delaunay simplices we can use the techniques of section 4.1 to
round the corners of the convex distance function and guarantee that the dual graph of the
Delaunay triangulation is connected. This also means that any facet of the convex hull will
also be a facet of a Delaunay simplex; so the normal gift-wrapping algorithm can be used

to find an initial facet.

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 149

The algorithm performs a traversal of the dual graph of the triangulation; so a set ADT
is needed to keep track of the facets already encountered and a stack (for depth first) or

queue (for breadth first) to help us find the next facet to search from.

Analysis In the unlikely event that the set of sites is not pseudo-degenerate then each
facet is incident on only two simplices and there are at most O(nLd/ 2J) simplices (since in
this case the Delaunay triangulation is a projection of a d + 1-dimensional polytope [94])
and O(nl?/2l) facets. Fach facet requires a test to see if it is in the set of visited facets
(O(logn) if a balanced tree is used to implement the set ADT) and O(n) circumball tests
to construct a new simplex on that facet. The total execution time is O(nL(‘l“)/?J), the
same as that for the Schaudt-Drysdale algorithm.

More likely, the site set is pseudo-degenerate. Then O(esn) circumball tests will be
required to find the potentially s simplices adjacent to a facet, where ¢ is the maximum
possible number of circumballs through a set of d + 1 sites, and s is the maximum size of
the candidate set.

cis a constant that depends only on the distance function. (For example, in R? using the
{0 metric we proved above that ¢ = 2“1;_1] .) Furthermore, ¢ < s since having ¢ circumballs

passing through d + 1 sites forms a candidate set of size c.

Theorem 15 If the ball for the convex distance function is polyhedral then s is at most

(f = 1)d + 1, where f is the number of faces of the polyhedron.

Proor. To see why this is true consider the pencil of balls passing through the d sites
that form a facet.

These balls are all homothets to each other, so apply a homothety to each one and also
to the hyperplane through the d sites so that they are all transformed to the unit ball.
The hyperplanes are transformed to a pencil of parallel hyperplanes that intersect the ball.
The sites are transformed to points on the intersection of the surface of the ball and the
appropriate hyperplane. Imagine sweeping a hyperplane across the ball, starting at vertex
F and ending at vertex L. (These are the support points for the hyperplane.) As we sweep
across the ball, each site moves across the surface of the ball from F to L, changing faces
at most f — 1 times, so there are at most (f — 1)d occasions when the faces that the sites
lie on change.

We can therefore partition the original pencil of balls into at most (f—1)d+1 subpencils,

according to which sites lie on which faces. Within each subpencil all the balls are mutually

CHAPTER 4. COMPUTING EMPTY-SHAPE TRIANGULATIONS 150

homothetic (with the same centre of homothety), namely the intersection of the d support
planes of the faces that hold sites. Consequently, the nesting property holds within each
subpencil and there can be only one candidate circumball within each subpencil. Since

there are (f — 1)d + 1 subpencils, this is the maximum size of the candidate set. ad

So, if the ball has f faces the total execution time of the algorithm is O(nk fdc), where

k is the size of the output.

4.3 Conclusion

It is simpler to compute empty-shape triangulations than to directly compute convex-
distance-function Delaunay triangulations. In this chapter I have given a complete im-
plementation of a sweepline algorithm for empty-shape triangulations, showing that the
only things that had to be changed from a Euclidean sweepline algorithm were the geo-
metric primitives. Other Delaunay triangulation algorithms (flip, incremental, selection,
Divide-and-Conquer) can also be easily modified to produce empty-shape triangulations. (I
so modified the selection algorithm to produce figure 4.7.)

Empty-shape triangulations also provide a simple way to compute convex-distance-
function Delaunay triangulations. Given the corners of the convex-distance-function ball
and the geometric primitives for the convex distance function I create the geometric prim-
itives for an empty-shape triangulation that is a superset of the convex-distance-function
Delaunay triangulation. Extracting the convex-distance-function Delaunay triangulation
from this superset is straightforward.

These ideas also allow the computation of convex-distance-function Delaunay triangula-
tions when the ball is unbounded and computation of constrained convex-distance-function
Delaunay triangulations.

Turning to higher dimensions, I show that algorithms for higher-dimensional Euclidean
Delaunay triangulation such as the incremental algorithm do not generalize to convex-
distance-function Delaunay triangulation. The only one that can be easily modified to

work is the selection algorithm, and I describe how to do this.

Chapter 5

Delaunay triangulation of convex

polygons

5.1 Introduction

The case where the sites to be triangulated are the vertices of a convex polygon has been
previously considered by Devijver and Maybank [83], by Joe [161], by Chew [52] and by
Aggarwal et al. [5]. This case is of special interest because of the insight it gives us into the
general case. Lee and Schachter [202] show that the worst case for incremental algorithms
occurs when the sites lie on a parabola (and hence form a convex polygon). Algorithms
that use bucketing [11, 22] will also perform poorly in this case since they require the sites
to be distributed approximately uniformly.

Also, if we delete a site from a general Delaunay triangulation it is necessary to retrian-
gulate a star-shaped polygon. Convex-polygon Delaunay triangulation algorithms can be
generalized to work in this case too.

The Q(nlogn) lower bound for constructing the Delaunay triangulation [295] (based on
sorting) does not apply in this case. We shall show that some algorithms use linear expected
time and implementations of these algorithms run in linear time.

It would be nice to calculate the expected run time for a ‘random convex polygon’, but
there is no commonly accepted definition of what this means. For example, one could define
it to mean ‘the convex hull of a set of points from the uniform distribution’. However, one
cannot take points from the uniform distribution over the entire plane. Instead, we must

take them from the uniform distribution over some bounded subset, and then the convex

151

CHAPTER 5. DELAUNAY TRIANGULATION OF CONVEX POLYGONS 152

hull of those points will tend to approximate the shape of that subset. This contradicts our
intuitive idea of randomness.

We shall calculate the average execution time over all possible triangulations of a poly-
gon. This requires us to assume that all possible Delaunay triangulations are equally likely,
but gets around the difficulty of defining a ‘random convex polygon’ and doesn’t require us

to know anything about the location of the points.

5.2 Previous work

Devijver and Maybank [83] give an algorithm that they claim satisfies a “minimum space
complexity constraint”, that is, requires O(1) space in addition to the input. They choose
an arbitrary side of the n-gon and find and test each of the n — 2 possible triangles that
could stand on that side for the empty-circle property. When they find a triangle with an
empty circumcircle, it splits the polygon into two smaller polygons which are recursively
triangulated. The worst case for this algorithm is O(n?®) and it actually requires more than
O(1) space since it must use a stack for recursion. The stack will require O(logn) if the
smaller piece is triangulated first. In section 5.4.1 I describe an algorithm that requires
O(1) additional space.

Joe [161] describes a flip algorithm for convex-polygon Delaunay triangulation. The
polygon is decomposed into two chains wuyus...up, and vyvy...v,, where uy = v and
Upy = Upy are the endpoints of a diameter of the polygon. An initial triangulation is
constructed by adding edges of the form w;v;. If the last edge added was u;v; then the
next edge added is either w;v;11 or u;1v; depending on which of these two edges is present
in the Delaunay triangulation of w;vju;4+1vj11. Flips (see section 2.2.1) are then used to
transform the triangulation into a Delaunay one. This algorithm has worst-case complexity
of O(n?). Joe suggests that it will take O(n) time for most polygons.

Aggarwal, Guibas, Saxe and Shor [5] describe an O(n) algorithm for computing the
convex hull of a polygon in 3-space with a convex projection onto a plane. By using Guibas
and Stolfi’s [147] lifting map p(z,y) = (¢, y, 2>+ y?) which maps the Delaunay triangulation
of a set of sites 5 to the lower part of the convex hull of u(S) they are able to obtain the
Delaunay triangulation of a convex polygon in linear time. Unfortunately, the algorithm is
rather involved and difficult to follow and seems to involve large constants.

Chew [52] describes a much simpler randomized algorithm that runs in linear expected

CHAPTER 5. DELAUNAY TRIANGULATION OF CONVEX POLYGONS 153

time. The sites are inserted into the triangulation one at a time in a random order. The
amount of time required to insert a site is proportional to its degree in the resulting trian-
gulation which is 4 — 6/n on average. Hence the average (taken over all insertion orders)
execution time is O(n). Seidel [293] observes that Chew’s algorithm and analysis was the
first example of backwards analysis of randomized geometric algorithms.

Djidjev and Lingas [88] showed that Aggarwal et al.’s algorithm allows the construction
the Voronoi diagram of the vertices of a monotone histogram (7.e. the sites are sorted by
@-coordinate and have in this ordering monotone y-coordinates). Klein and Lingas [182]
show that Chew’s algorithm can be generalized to compute the convex hull of the same site
sets that Aggarwal et al’s algorithin can (and hence it can compute the Voronoi diagram

of monotone histograms).

5.3 Preliminaries

Let P be an (n + 2)-gon with vertices popy ... Pnt1. The number of different ways of

triangulating P is given by the Catalan number

with generating function

> , 1—+v1-4z
z) = ",n:___~___:1 .,2‘.
c(z) T;)an 5 + zc*(@)

and satisfying the recurrence

Cn—l—l = Z Ckcn—-k-

k=0

Cr is ©(4"n3/2). See [23, 264] for details.

5.4 Analysis

The fact that the sites lie on a convex polygon has been used to simplify the algorithms in

this section.

CHAPTER 5. DELAUNAY TRIANGULATION OF CONVEX POLYGONS 154

5.4.1 The Circumcircle Algorithm

This algorithm uses the fact that in the Delaunay triangulation, there are no sites in the
interior of the circumcircle of any triangle [202]. So, given an edge of the Delaunay triangu-
lation (in particular, the edge p,pnyq0f P), we can find the Delaunay triangle on that edge,

PkPrPnt1 by scanning through all the sites (this part is the same as in the general case).

radius := infinity; c:= p[n + 1];
for 1:=1 to n do
begin if distance(c,pli]) < radius then
begin k:=1;
¢ := circumeirclecentre(p[n], p[n + 1], p[i]);
radius := distance(c, p[t]);
end;

end;

P

Pn Pr41
Figure 5.1: How Apgpppyyq divides P

This triangle divides P into a (k +2)-gon p,r1pop1 .. .px and a (n—Fk+1)-gon prprat...pn
(see figure 5.1); so we recursively apply the algorithm to each of these smaller polygons.
(This is where the fact that the sites are convex enables us to simplify things.) So, if
scan(a,b) returns the third point of the Delaunay triangle on side p,py of the polygon
PaPat1 - .- Py We can triangulate the polygon with:

CHAPTER 5. DELAUNAY TRIANGULATION OF CONVEX POLYGONS 155

procedure circumiri(a,b: pointindex);
var k: pointindez;
begin if b —a > 1 then
begin £ := scan(a,b);
print_triangle(a, k, b);
circumiri(a, k); circumiri(k,b);
end;

end;

Devijver and Maybank [83] pose the problem of computing the Delaunay triangulation
using only O(1) additional space. This algorithm can be modified to remove the recursion
and solve their problem (note that O(n) stack space could be required by the algorithm
above). The dual graph of the Delaunay triangulation is a tree (see figure 6.10). We merely
traverse the outer face of this tree until we return to our starting point. The scan procedure
outlined above lets us cross any edge of the Delaunay triangulation using a constant amount
of space. The time requirement is increased by a constant factor of 2 since each edge must
now be crossed twice. The modified algorithm is similar to the Avis-Fukuda algorithm for

the enumeration of the facets of a convex hull [16].

A nalysis

Let Tc(n) be the number of vertices scanned by the circumcircle algorithm when triangu-
lating an (n + 2)-gon. Then T¢(n + 1) = n+ 1+ Te(k) + Te(n — k), since we must scan
n + 1 vertices and then we have a (k + 2)-gon and a (n — k + 2)-gon to triangulate. The
worst case for this algorithm occurs when the division is always most unequal, that is when
kis always 0. Then Te(n + 1) = n + 1+ Te(0) + Te(n), and since T,(0) = 0, the solution is
Te(n) = gn(n + 1), that is Te(n) is O(n?).

The best case occurs when k is always |(n ~ 1)/2|. Then T.(2n + 1) =2n+ 1+ 2T.(n)
and if n = 27 — 1 the solution is Ty(n) = (j —)n + j, so Te(n) is O(nlogn). Now, the

expected time complexity is given by

Te(n+1)=n+1+ an Pr L (To(k) + Te(n — k),
k=0

where P,’f_,_lis the probability that in an (n+3)-gon prpyt1pars is a triangle of the Delaunay

CHAPTER 5. DELAUNAY TRIANGULATION OF CONVEX POLYGONS 156

triangulation. P,L 11 is Just the number of triangulations which include PhPnt1Pny2 divided

by the the total number of triangula,tions. This is CChp/Chyt. So

Tn+1) = n+1+zc’”c“ K (Tu(k) + Tu(n — k),

k=0 n+t1

Te(n+1)Chyr = (n+1)C n+1+ZCkCn W Tk +ZQC” wTo(n — k)

k=0 k=0
= (n+ 1)Coy1+ 2> CuCryTe(k).
k=0
Let -
= Z Te(n)Cpra”™.
n=0
Now -
e"To(n)Ch = 2"nChp + 22 Y (Te(k)C)Crpi.
k=0
So summing from 1 to co
&) n—1
Z "I(n)Cp = = Z nCra™ ! 4+ 22 Zz" 1 Z (Te(kB)Cr)Crpon,
n=1
§e) - TO)Ch = wd(e) + 20c(e)g(e).
Since T¢(0) = 0,
ac'(z)

9(z) = l—_am

Now, ¢(x) = 1 + wc*(2); so, differentiating, ¢/(z) = ¢2(z) + 2xc(2)c/(2) and

iy — _ C(x)
¢le) = 1 — 2zc(z)’

Therefore

zc*(z)
(1 — 2z¢(z))?
c(z) -1
1—-4z
—1 -4z -2z
2z(1 — 4z)

g(z) =

CHAPTER 5. DELAUNAY TRIANGULATION OF CONVEX POLYGONS 157

So, taking the coefficient of 2™,

Te(n)C,, = 4™ — %(271+2)7

) C’n 2 n—}—]. (?;:L)

= —-(2n+1)

4m ,
— m ~(2n+1)
= O(n*?).

We see that the performance of the algorithm on average is much better than the worst

case suggests.

5.4.2 The Divide-and-Conquer Algorithm

Divide the polygon into the two smaller polygons, Pln/2)+1 - - - PuPny1 and popy .. -Pln/2| and
recursively triangulate each piece. The triangulations are then merged. (This could involve

deleting some edges.) See section 2.6.1 for details.

Analysis

Let Tq(n) be the time taken by the Divide-and-Conquer algorithm to triangulate an (n+2)-
gon. The divide step takes constant time since the vertices of the polygon are in order. The
merge step must add to the triangulation all edges going from one piece to the other, that
is those crossing the dotted vertical line in figure 5.2, say a edges. The final triangulation

contains m — 1 edges, the two pieces contain [n/2| — 1 and [n/2] — 1 edges so we must

CHAPTER 5. DELAUNAY TRIANGULATION OF CONVEX POLYGONS 158

p{_n/‘l]

Pinf2j41

Prnt1 l Po

Figure 5.2: Merging the triangulations of two sub-polygons

delete a + [n/2] =14 [n/2] = 1—(n — 1) = a — 1 edges. So the total number of additions
and deletions is @(a). Lee and Schachter [202] show how to structure the merge step so

that the total work done is ©(a). Hence
a(n) = O(a) + 2T4(n/2) (n even)

(assuming that all possible Delaunay triangulations of each piece are equally likely). Now,
in the worst case all edges of the triangulation cross the vertical line and ¢ = n — 1, and
s0 Tq(n) = O(nlogn). In the best case @ = 1 and Ta(n) = O(n). Let AX be the average
number of edges crossing the line from the centre of Pn+1Po to the centre of pypyyy (the
dotted line in figure 5.3). Now we shall count the number of edges that cross the line in all
possible triangulations. The edge p;p; crosses the line when 0 < i <kandk+1<j< n+ 1
(excepting t=0,j=n+landi=Fk,j=k+ 1). This edge divides P into a (j — i+ 1)-gon
and a (n—j+443)-gon (see figure 5.3) which can be triangulated in Cj—i—t and Cp_j_iy)
ways respectively. Hence p;p; occurs in Cj_; 1C ~(j—i~1) triangulations. Therefore the

total number

k nil
CnAv,; = Z Z Cij—imrC ~(j—i-1) — 2CoCYy

=0 j=k+1

CHAPTER 5. DELAUNAY TRIANGULATION OF CONVEX POLYGONS 159

k n—i
- Z Z Cymcin—m - 26’06'”
t=0 m=k—i
k-1 n—k n—1
= Z (777' + 1)C'mcn~m + (/V + L) Z Crmcn—m + Z (’Il —-m-+ I) /’mC’n—m
m=1 m=k m=n—k+1
k—1 n—k
= 2 Z (m + 1)C'mcrn~m + (l\: + l) Z C’mc'n—m-
m=1 m=k

We are interested in

1 n—1
Agn = ” (2 (77z + I)Cv’/ncvl)n—m + (n + l)c’i>

Hence Ta(n) = O(y/n) + 2T4(n/2) and the solution is Ty(n) = O(n).

5.4.3 The Incremental Algorithm

Let D; be the Delaunay triangulation of py...p;. We construct Dy, D3, ..., Dpyy in turn
by merging the triangulation of p; with that of D,_;. We could use the method used in
the Divide-and-Conquer algorithm, but the use of ‘flips’ [192] simplifies the procedure. We
make use of the following facts: The edges added in constructing D; from D;_; are just
those incident to p;. The edges deleted are those that intersect the edges added. We connect
pi to po and p;_; (see figure 5.4). If p; is outside the circumcircle of the triangle poprp;i—1
then popyp;_1 is a triangle of D;. There can be no more edges from p; in D; since they would
cross pip;—1. We can stop since we have constructed D;. If p; is inside the circumcircle of
the triangle poprp;_1, then pop;_1 ¢ D; so we perform a ‘flip’, that is, we delete pop;_; and
insert p;py. Now, if p;py ¢ D; then some edge p,p, must intersect it. This is impossible,

since no edge p;p. € D; \ D;_; can do this and we have already eliminated pop;_;, the

CHAPTER 5. DELAUNAY TRIANGULATION OFF CONVEX POLYGONS 160

(n—j+17+3)gon

Pnt1 l Po

Figure 5.3: Division of P by p;p,

Pm

D

b

Pi-1 Po
Pi

Figure 5.4: Adding p; to D;_¢

CHAPTER 5. DELAUNAY TRIANGULATION OF CONVEX POLYGONS 161

only possibility in D;_;. Hence p;pr € D;. We now continue by considering the triangles
Pic1pepr and popn,pyr in turn. If p; is outside the circumcircle we can stop since we will
have found a triangle of D;. Otherwise we perform a flip and consider two more triangles.
We continue this process, stopping when we find a Delaunay triangle or reach the polygon
edge. Since only Delaunay edges are added and we only stop when we find an edge that no

pi-edge could cross, this process will construct D;.

Analysis

Let Ti(n) be the number of flips performed by the incremental algorithm in triangulating
an (n + 2)-gon. The number of flips in constructing D; from D;_ is just the number of

edges incident on p;, say d; flips. Hence

Tl(n) = Tl(n — 1) +d; = Z(li
=1
since Tj(1) = 0. Now in the worst case all the edges of D; are incident on p; and so d; = i— 1,
and Ti(n) = tn(n — 1) = O(n?). In the average case d; = A? = 2(i — 1)/(i 4 2) (since there
are ¢ — 1 edges and 7 4 2 sites) in an (i + 2)-gon; so Ti(n) = 2n — 3H, 4o + 41 = O(n). (H,

is the nth harmonic number.)

5.5 Empirical Tests

To test the analysis described in the preceding section, it is necessary to be able to generate
random convex n-gons. Unfortunately, there is no accepted definition of what a random
convex polygon is. Chapter 6 discusses the difficulty and presents several operational defi-
nitions.

The three algorithms were implemented in Pascal and tested on convex polygons of sizes
from 31 to 992 generated by the rejection method (see section 6.2) with sites taken from the
uniform distribution on the unit square. Execution times (averages of 70 trials) are plotted
in figure 5.5. A least-squares line of best fit has been drawn through each set of points. The
results are surprising. Although the slope of the line for the circumcircle algorithm suggests
O(n!®1) behaviour it can be seen that the points are curving upwards. The slope is tending

towards 1 (the slope of the line through the last two points is 0.9), implying worst case

CHAPTER 5. DELAUNAY TRIANGULATION OF CONVEX POLYGONS 162

10~

Time
(sec-
onds)
per side
(log
scale)

Algorithm Slope
@ Circumcircle 0.61
2 + Divide-and-Conquer | 0.22
+ Incremental

3

9
3
7
6

]
ot
o
-3
o]
O

!

<

w

9 } 1 1 |
3274 5 6 7T 8 9 N2 2 3
Number of sides (log scale)

Pligure 5.5: Average triangulation time

CHAPTER 5. DELAUNAY TRIANGULATION OF CONVEX POLYGONS 163

(0(n?)) behaviour. The divide-and-conquer and incremental algorithms also show worst-
case behaviour. This suggests that all possible triangulations of the polygons generated by
the above method are not equiprobable. Now, we would expect the Divide-and-Conquer
algorithm to exhibit worst-case behaviour if A%, (the average value of AZ for the generated
polygons) is O(n). The circumcircle algorithm will perform poorly when the i that it finds
tends to be close to p, or p,o;. This will occur if the triangulation tends to have ‘short’
edges. Define L, to be the average length of all edges over all possible triangulations (we
will say pips has length 2) and L,, to be the average in our generated polygons. The edge

PrPry1 has length min(k + 1,n — k4 1) and occurs in C,,_,C} triangulations, so

L. = Z;\L_:.ll Cn—/cC’k mln(lo -{-— l’n _ k + 1)
' Zf; 1L Cn—k C'A»

Now, 22;11 CrnkCr = C'n—{-l - 20, = 2:_;22 Cn 50,

A 2n + 2 !
Ly = ———(2Y (k4 1D)CiCons 1 C’2>
2 (4n_2)c,2n(kz:jl(+ 1DCConk + (n + 1)C?
n+1A§n
2n — 1

Similarly, Ly, = %_gn. This is quite remarkable.

o If L, > L, we would expect the circumcircle algorithm to perform better than ex-

pected and the Divide-and-Conquer algorithm to do worse.

o If [, < L, we would expect the opposite.

How did both algorithms manage to do so badly?
It is instructive to consider the maximum and minimum possible average edge length
for a particular triangulation, L% and L™,

Let D be a triangulation of an (n + 2)-gon, P. The average length of the edges of D is

1

L(D) = > min(j—i,n+2—j49).
n-1 %
ijeD

Form D', the dual of the triangulation. This will be a tree with n vertices, each having
a maximum degree of three. Edges of D’ correspond to edges of D which divide P into two

pieces. Add directions to the edges of D’ to point from the triangle in the larger piece to

CHAPTER 5. DELAUNAY TRIANGULATION OF CONVEX POLYGONS 164

the triangle in the smaller piece. The length of an edge in 1 is one more than the number
of triangles in the smaller of the pieces it divides P into. The length of an edge in D’ is one
more than the number of its descendant vertices.

Now, D' must have a source, say s, and every vertex can be reached from s (since we will
always be going from a larger piece to a smaller piece). Bach vertex other than s has exactly
one incoming edge. (If there were two, there would be two paths from s to it, contradicting
D’ being a tree.); so we can associate with each vertex the length of the incoming edge
(figure 5.6).

Figure 5.6: The dual of a triangulation

In the total length of all the vertices in D', each vertex will contribute one to the sum
for each ancestor it has, so L(D) = 1 + (,epr depth(v))/(n — 1) where depth(v) is the
number of edges on the path from s to v (the number of ancestors of).

This is a similar expression to that for the average internal path length of a binary v
tree [186] and the minimum possible value occurs when the maximum possible number of
nodes are at depths 1,2,3,...,k. That is, we have 3 depth 1 nodes, 6 depth 2, 12 depth 3,
.-y 3281 depth k, n 4+ 2 — 3. 2% depth k + 1, where k = [logy((n +2)/3)]. Hence

Lpm = 14

k
ni1(Zz’-3-25_1+(k+1)(n+2—3-2k)>
=0

Il

1+L(3-2’“(k—1)+3+(k+1)(n+2—3'2k)>

n—1

CHAPTER 5.

O(log n).

DELAUNAY TRIANGULATION OF CONVEX POLYGONS

165

1+ ~l—l<(k + D) (n+2)— 3281 4 3)
n —

The maximum possible value of L(D) occurs when D' is just a path. Then s is in the

centre of this path; so if n is odd

1 (n—1)/2
(2 >

=1
1 n—1n+1
n—1 2 2
= %(n—!—ii).
3.‘
[~ ® v i3 D —D
2_
1071
9_
8..
7_
Length 4]
per side
5_
(log
scale) 41
37 Key
* Expected —~0.47
24 o Obtained —0.13
® Maximum possible | —0.02
& Minimum possible —0.77
1072
9..
8 1 T 1 1] 1 [1 1 1 A T 1 1 T I
3 4 5 6 7 8 9 Ly 2 3 4 5 6 7 8 9 g

Number of sides (log scale)

Figure 5.7: Average edge length

Ly, L, are plotted in figure 5.7 for the same polygons that execution times were measured

for. We see that L, is O(n). This explains the performance of the Divide-and-Conquer

algorithm, but not that of the circumcircle algorithm.

CHAPTER 5. DELAUNAY TRIANGULATION OF CONVEX POLYGONS 166

3% Key
* Expected
o Obtained
2-
*
0
1074 *
Fraction g] °
of edges g o
(log] * o
scale) © o
6 * o
o
5 * 0 o
°© o
* [¢)
47 *
* *
31 x4
2 1] 1 |] 1 i 1§ T T T ¥ 1
2 3 4 5 6 7 8 9 10 11 12 13 14 15
Length

Figure 5.8: Distribution of 31-gon edge lengths

CHAPTER 5. DELAUNAY TRIANGULATION OF CONVEX POLYGONS 167

Iigure 5.8 plots the distribution of edge lengths for 2000 31-gons and the expected
distribution. (We would expect 2CxChrop/ 721 CrClui = Ant2 pk | of the edges to be of

length & + 1 in an (n + 2)-gon if n # 2k.) We see that there are more long edges than

expected. This also suggests that the circumcircle algorithm would perform better than

expected, not worse.

d S/

a b
Figure 5.9: A polygon with long edges

Looking at the triangulation of a convex polygon with a large value of I, suggests a
reason for this behaviour. (Figure 5.9 shows a polygon with T = 3.8, whilst Ly =~ 3.42.)
Consider the behaviour of the circumcircle algorithm on this polygon. If we start with edge
ab = popnt1, the algorithm will find py, = ¢ and split the polygon using triangle abc. When
we continue to triangulate the left piece, we construct triangles bed, bde, de f, efg and so
on. Each of these triangles represents the worst case for splitting the polygon. We see that
although the polygon has a high average edge length, the algorithm exhibits worst-case
hehaviour.

The problem is that the new side formed by splitting the polygon to be triangulated
is special. The third point of a triangle constructed on this new side is very likely to be
adjacent to one of the endpoints of the new side.

Fortunately, there is a simple way to solve this problem. Instead of constructing the
triangle on the new side, we pick a side at random to build the triangle on.

Figure 5.10 plots the number of vertices scanned by the original and randomized al-

gorithm, along with the expected number. We see that while the unmodified algorithm

CHAPTER 5. DELAUNAY TRIANGULATION OF CONVEX POLYGONS 168

Algorithm Slope
* Expected 0.57
& Circumcircle 0.96
® Random circumcircle | 0.29

10> |

Number
of com-
parisons 3
per side
(log
scale) 2

10 |
9_
8._
7..

5 6 7 & 9 ll()? 2 3
Number of sides (log scale)

(&
]
ronr]
]
o
-3
co-]
WO
—
<o
o

Figure 5.10: Average number of distance comparisons

CHAPTER 5. DELAUNAY TRIANGULATION OF CONVEX POLYGONS 169

is O(n?) the random algorithm performs better than expected. It appears to be at most
O(n®/y and could even be O(nlogn).

The behaviour of the incremental algorithm is also anomalous.

Let G¢ be the number of triangulations of an (n + 2)-gon in which p, has degree d. By
the degree of a vertex we mean the number of internal edges joined to it. Let p; be the
third vertex of the triangle on PnPnt1. We divide the triangulations where p,, has degree
d > 0 into two sets: those where & = 0 and those where 0 < k < n — 1. (If £ = n then p,

has degree 0.)
Dy

Pk

/
/
/
/

Po

Pn Prt1
Figure 5.11: Derivation of G¢

If £ = 0 the remainder of the polygon is an (n + 1)-gon where po has degree d— 1. There
are G~} such triangulations.

If 0 <k <n—1let p; be the vertex on the other side of Prt1px (figure 5.11). If we
delete p,11py and insert p,p; we have a triangulation where Pn has degree d+ 1. There are

G such triangulations.
Hence, G¢ = G4+1 4 G’i:ll if d,n > 0. We also have G¢ = 0 if d = n. The solution to

ci_ (2-3-d) (2m-3-d
no n— 2 n '

Figure 5.12 shows G%gq/Cl4og and the distribution of degrees for the generated 496-gons. We

this recurrence is

see that vertices of high degree are more likely than expected. Now, when the incremental
algorithm adds p; of degree d in Dy, to the triangulation it must perform d flips.

Now, since pr_y is close to pg the sites that are connected to pr in Dy will probably

CHAPTER 5. DELAUNAY TRIANGULATION OF CONVEX POLYGONS 170

. 9 o
. * x
1071 *y
E o [
F _’).‘ O * *
10 % °X .
E o ¥
] 5,
10 3 2o
3 * 0 g
Fraction 19—+ * % - O °© Lo
of E % ¢ o
vertices 10“5: ol % ° © °
(log E *
scale) 10_6: * N
E *
& *
1077} *
*
*
-8 *
10 N
*
*
1072 *
Key
* Expected
o Obtained
0
0 5 10 15 20 25 30 35
Degree

Figure 5.12: 496-gon vertex degrees

CHAPTER 5. DELAUNAY TRIANGULATION OF CONVEX POLYGONS 171

be connected to py_y in Dy_y; so adding py_; will probably take at least d flips. Similarly
adding pr_2, pr—3, ... will also tend to require d flips.

Clearly, if d is large, the average number of flips per vertex added will be much larger
than 2(k — 1)/(k + 2) as predicted by our theory. (In fact, for the generated polygons it
seems to be about £/7.) This is why the incremental algorithm performed so poorly.

Fortunately, the same method that worked for the circumcircle algorithm also works

here. Instead of adding sites in the order py, ps, ps3, ..., we add them in a random order.

Algorithm Slope
34 *x Expected 0.10
-+ Incremental 0.81
X Random incremental | 0.09

104
Number 97
of flips 7.
per side 6-

(log
scale)

10°

5 6 7 8 9 I102 2 3
Number of sides (log scale)

]
o]
[
o
-3
o
el

o

fed

[4)

Figure 5.13: Average number of flips

Figure 5.13 shows the number of flips for the two versions of the incremental algorithm,
and the expected number. We see that the original algorithm is O(n?) while the random
algorithm is O(n).

Figure 5.14 shows execution times for the original and randomized algorithms.

These experiments were repeated using the iteration method (section 6.3) and the vector
method (section 6.4) to generate convex polygons. The results were similar to those obtained

using the rejection method.

CHAPTER 5. DELAUNAY TRIANGULATION OF CONVEX POLYGONS 172

3 Algorithm Slope +
¢ Circumcircle 0.61
2 =+ Divide-and-Conquer 0.22
+ Incremental 0.71
® Random circumcircle | 0.08
X Random incremental
1072
9..
8_
Time] -

(sec- ¢
onds)
per side
(log 41
scale)

T T T3
Number of sides (log scale)

(
]
e
o]
o
~3]
co.
7
o
<
w

Figure 5.14: Average triangulation time

CHAPTER 5. DELAUNAY TRIANGULATION OF CONVEX POLYGONS 173

5.6 Conclusion

All the algorithms exhibited worst-case behaviour on the generated polygons rather than the
behaviour predicted by our analysis. There were two causes for this worst-case behaviour.

Firstly, all triangulations of our generated polygons were not equally likely—there was a
bias towards long edges. Secondly, the overall triangulation and the subtriangulations con-
sidered by the various algorithms were not ‘independent’. The circumcircle and incremental
algorithms were vastly speeded up by randomizing to ensure this independence.

The worst-case behaviour has some interesting implications for general Delaunay trian-
gulation algorithms. A major step in the incremental algorithm is finding the first edge
from a new site (either by finding the closest site to the new site [145], or finding the tri-
angle the site is in [202]). In the convex polygon case, this search is unnecessary. Finding
this edge could take O(n) time; so one approach [11] has been to sort the sites in such a
way that successive sites are close together and to start the search at the previous point.
However, this chapter has shown that if the sites form a convex polygon this approach leads
to O(n) update time. The worst case for such algorithms may be much more probable than
previously thought.

It would be nice to generalize the analysis of these algorithms to the case where the sites
do not form a convex polygon. Unfortunately, while combinatorial results for the number
of possible triangulations of a set of sites exist [267, 316], these allow curved edges. If we
restrict the edges to being straight, then the number of possible triangulations depends on
the position of the sites, and the techniques used in this chapter do not apply.

Finally, observation of figure 5.14 reveals how misleading considering just asymptotic
behaviour can be. The random incremental algorithm has the best asymptotic behaviour
(O(n)) of the five algorithms in figure 5.14, and yet is the slowest for 32-gons. Even for

1000-gons the random circumcircle algorithm is faster by a factor of almost 2.

Chapter 6

Generating Random Convex

Polygons

6.1 Introduction

‘o test the analysis described in section 5.4, it is necessary to be able to generate random

convex n-gons. Unfortunately, there is no accepted definition of what a random convex
polygon is. For example, Sylvester’s problem [277] is to find the probability that the convex
hull of four random points is a quadrilateral. Even for points drawn from the uniform
distribution, this turns out to depend on the shape of the region from which they are
drawn.

Random convex polygons have been generated on the computer by Crain [67], who
used Voronoi polygons defined by a Poisson point process, by Crain and Miles [68] who
examined polygons defined by a Poisson line process, by Devroye [84], De Pano et al. [80]
and Abrahamson [2] who took the convex hull of random points, and by May and Smith [226]
who took the intersection of random half-spaces. However, none of these methods let you
specify the number of sides of the polygon.

The only published algorithm that allows the number of sides of the polygon to be
specified is that of Roussille and Dufour [275]. They present an algorithm that also allows
constraints on the range of values a given polygon angle will take to be specified. The
algorithm works its way around the boundary of the polygon, randomly choosing an angle
for each corner and a length for each edge. The requirement that the polygon be convex

and that it be possible to satisfy the constraints on the remaining angles imposes further

174

CHAPTER 6. GENERATING RANDOM CONVEX POLYGONS 175

constraints on the angles and lengths chosen. The authors do not discuss what probability
distribution the angle should be chosen from. If the uniform distribution is used then the
first few angles chosen will use up most of the slack available and the remaining angles will
be very close to straight angles. This does not seem like a very random convex polygon. It
seems desirable that the probability distribution for each angle in the resulting polygon be
the same, and it is unclear how to make this happen.

XY7 Geobench [286, 244] contains an algorithm for generating a random convex polygon
with a specified number of sides. It can best be described if we use polar coordinates
pi = (7i,0;), where 1 < ¢ < n, for the corners of the convex polygon. The angles 6; are
chosen by taking n values from the uniform distribution on [0, 27) and sorting them so that
the corners are given in anti-clockwise order. An initial cyclic convex polygon is created by
setting all the r;s to the same value. Then, a randomly chosen 7; is given a new randomly
chosen value 7, subject to the constraint that the resulting polygon remain convex. That is,
p; must lie to the left of p;_yp;11 and to the right of p;_sp;_; and Pir1Pi+2 (see figure 6.1).

This last step is repeated n times.

Figure 6.1: 7} is chosen from the uniform distribution on ["min> Tmax]

There are some problems with this approach. The distribution of the number of times
that a corner is moved is approximately Poisson with mean 1 if n is large, so that the
fraction of vertices moved i times is approximately i'e~!/i!. Approximately e~1 /0! =~ 37%
of the corners will not be moved at all and will all lie on the same circle, which doesn’t

seem particularly random. Furthermore, if n is large it is not possible to move the corners

CHAPTER 6. GENERATING RANDOM CONVEX POLYGONS 176

very far at each step and the final polygon closely approximates a circle.

[wish to be able to generate polygons quickly—in close to the optimal O(n) time. After
all, it doesn’t seem to right to test an O(nlogn) algorithm with data that takes time Q(n?)
to generate.

In this chapter I consider the following methods:
Rejection Pick n points from some distribution. Reject if their convex hull is not an n-gon.
Iteration Select points from some distribution until their convex hull has n vertices.

Vector The n vectors comprising the sides of the polygon can be regarded as a point in 2n
dimensional space. For the polygon to close, the vectors must sum to zero. This means
that the point must lie on a (2n — 2)-dimensional flat, so pick from some distribution
on this flat (for example, the uniform distribution over a (2n — 2)-dimensional unit

hypersphere).

Bounce Start with an arbitrary convex n-gon and give each vertex a random velocity. If
a vertex is ever about to become concave, we “hounce” it from that constraint. If we

perform O(n) bounces the resulting polygon should be “random?”.

Triangulation Choose a random topological triangulation of a polygon. Construct a con-

vex polygon with Delaunay triangulation homeomorphic to this.

Dual We can take the dual of polygons produced by the above methods. For example, The
Dual Rejection method takes the intersection of n half-spaces containing the origin

and rejects the resulting polygon if it has fewer than n sides.

6.2 Rejection

Pick n points from some distribution. Reject if their convex hull is not an n-gon.

Another way of thinking about this method is to consider convex n-gons with bounded
integer coordinates (e.g. those expressible as 32 bit integers). Randomly choosing one such
n-gon is equivalent to the Rejection method with the points coming from the uniform
distribution on a square.

The naive implementation of this method is obviously not feasible. The probability of
the convex hull of n points from most distributions having n vertices is extremely small,

even for moderate values of n.

CHAPTER 6. GENERATING RANDOM CONVEX POLYGONS 177

We will therefore use an iterative rejection method to generate a convex polygon, re-
Jecting points that would cause the convex hull to have fewer than n points. If we have a
convex n-gon P we generate another point p from the distribution. If [conv(p+ Pl <n+1
we reject p, otherwise we form conv(p + P) to get a convex (n + 1)-gon. (conv(A4) denotes
the convex hull of the set A.) In other words, we accept the point if it lies in one of the
shaded regions in figure 6.2. (This is called the 2-level of the arrangement formed by the

sides of P [98].) We repeat this process until we have a convex polygon with the desired

Figure 6.2: Acceptance regions for adding a point to P

number of sides.

If we represent P as a circular list of points (oriented anti-clockwise)
type polygon = Jrecord

a : point;

nezxt : polygon;

end;

we can generate a convex n-gon with

CHAPTER 6. GENERATING RANDOM CONVEX POLYGONS 178

procedure makepolygon(var P : polygon; n : integer);
var u, right, temp : polygon;
P point;
size, noright : integer;
begin maketriangle(P); size := 3;
while size < n do
P = randompoint;
{count number of edges of P that p is to the right of }
u = P; noright := 0;
repeat if -left(ul.a,ul.nextT.a,p) then
begin noright := noright + 1;
right = u;
end;
u = uT.next;
until (u = P)V (noright > 1);
if noright =1 then {add p to P}
begin new(temp); templ.a:=p; temp|.next := u|.next;
ul.next := p;
end;
end;

end;

where maketriangle makes a triangle by taking three points from the distribution and
left(z,y, z) returns true iff z is to the left of the line from z to y. The only drawback
of this procedure is that it takes time ®(n?) to generate a convex n-gon.

To improve this to O(nlogn) we need to compute the probability that a random point
falls into each of the shaded regions in figure 6.2. Let a; denote the probability that a point
falls into acceptance region z, §; the area of acceptance region i and f4; the minimum value
of the probability density function over region i.

If the points are being chosen from the uniform distribution over some shape, then q;
is just the area of the intersection of the shaded region with the distribution shape (this
intersection will probably be a triangle). If some other distribution is being used (for
example, a normal distribution), then a; is just the integral of the probability distribution

over acceptance region ¢.

CHAPTER 6. GENERATING RANDOM CONVEX POLYGONS 179

‘To randomly select a point from the acceptance regions we select region ! with probability
; and randomly choose a point from this region. For large values of n these regions will
be small triangles. If the points are being chosen from a uniform distribution, then it is
sufficient to choose a point from the uniform distribution over the triangle in time O(1).
Most other distributions will be almost constant over the acceptance region, that is, u;0;
will be almost as big as a;. So with probability (1;6;)/a; (most of the time) we choose
a point from the uniform distribution over the triangle in time O(1). Otherwise we can
subdivide the region and repeat the process

To get O(nlogn) total time we need to be able to select an acceptance region in time
O(logn). The alias method for generating random variables [188] could randomly select an
acceptance region with the required probability in time O(1). Unfortunately, it takes time
O(n) to construct the alias table and this would be required after each point is generated
(since the probabilities of all acceptance regions change). The alias method is therefore not
suitable. ‘

Instead, we use a tree structure. The leaves of the tree in order from left to right
correspond to the acceptance regions in order around the polygon. In each internal node we
store a probability given by the sums of all the a;s of the leaves in the associated subtree.

We can define it in Miranda [28, 315] like this:

> tree ::= Leaf num region | Internal num tree tree
> probability :: tree -> num

> probability (Leaf p reg) = p

> probability (Internal p 1 r) =p

To select a leaf with the required probability we begin by generating a random number
uniformly between 0 and the probability of the root.

If the number is less than the probability of the left subtree, we recursively select from
the left subtree with the same number, otherwise select from the right subtree using the

number less the left subtree probability.

> select :: tree -> num -> region
> select (Leaf p reg) n = reg

> select (Internal p 1l r) n

>

select 1 n, if n < probability 1
>

select r (n - probability 1), otherwise

CHAPTER 6. GENERATING RANDOM CONVEX POLYGONS 180

The optimal (in the sense of fastest selection of an acceptance region on average) tree is
a Huffman tree [157]. Unfortunately, rebuilding the Huffman tree after a point is inserted
will take O(n) time; so we cannot use a Huffman tree.

Instead we will use some sort of balanced tree (height balanced or B tree or some similar
scheme). Since the tree is balanced, the select function will select a region in time O(logn).

Now we need to show that the tree can be updated in time O(logn). Figure 6.3 shows
that when a new point is inserted, its region is split into two and the two adjacent regions
(only) change. So all that is required is to split the relevant leaf node, rebalance the tree
(O(logn)) and then recompute the probabilities of all the ancestors of the four changed

regions (O(logn) since each node has O(log) ancestors). To simplify the computation we

Add
Pto
convex
hull

Figure 6.3: How the acceptance regions change when a new point P is added

store a parent pointer for each node (this saves us having to store the path from the root
to the leaf) and link all the leaves together in a double linked list (simplifies finding the
adjacent region).

Figure 6.4 shows how the tree rotation(s) necessary for rebalancing take time O(1). We
need to recalculate the probabilities at only two internal nodes.

Putting it all together, we can now generate a “random” convex n-gon in time O(n log 7).
g g g g g

CHAPTER 6. GENERATING RANDOM CONVEX POLYGONS 181

Figure 6.4: Tree rotation takes time O(1)

There is one remaining difficulty—our selection is biased. Fortunately, correcting for this
bias is easy. At each iteration there is a probability A = > i 4; of getting a point in an
acceptance region and a probability 1 — A of getting one outside. In the case that it is
outside, we might as well stop, because there is no chance the the convex hull can have n
vertices. Instead of doing this we always pick a point in the acceptance region and weight
the result by A (this value is conveniently available at the root of the tree). The weight of
the final polygon is given by the product of all the weights A during its construction. We use
this weight when computing any statistics using this polygon (for example, the execution

times in chapter 5).

6.3 Iteration

In the iteration method we repeatedly take points from our distribution until the convex
hull has n points. If & points are taken from the unit disc, the expected number of points
in the convex hull is @(k'/3) [268], so the naive implementation of this method will require
generating ©(n3) points to produce an 7-gOon.

However, it is unnecessary to generate points that fall inside the convex hull of the
preceding points. We can divide the area outside the convex hull into regions as shown in
figure 6.5 and generate a point in one of these regions by the method described in section 6.2.

It takes time O(logn) to select a region, and then O(1) to generate a point in that region
and update the convex hull (we may have to delete O(n) vertices, but this can be charged
to the vertices when they are created), and O(logn) to update the tree used for region

selection. If A points are generated while creating our n-gon, the total time is O(hlogn).

CHAPTER 6. GENERATING RANDOM CONVEX POLYGONS 182

Figure 6.5: Dividing exterior of the hull into regions

When implemented using a uniform distribution on the unit disc, & turned out to be

roughly 27 and the total time to generate an n-gon was O(n logn).

6.4 Vector

We can regard the sides of the convex polygon as vectors (figure 6.6).
Let the vectors be (x1, 1), (#2,%2), - -+, (Tn,¥n). Since the polygon must close up, the

sum of the vectors is 0. That is,
n

Z.’L‘i:O.

i=1

CHAPTER 6. GENERATING RANDOM CONVEX POLYGONS 183

Figure 6.6: Convex polygon edges regarded as vectors

If we think of (21, 22, ...,2,) as a point in n-dimensional space, this says that this point must
lie on the hyperplane 3, z; = 0. So all we need to do is choose a point from some distribution
on this hyperplane. I have chosen the uniform distribution on the n — 1 dimensional unit
hypersphere in my implementation.

We can generate a point on the surface of a n — 1 dimensional unit hypersphere by
making a vector from n — 1 normally distributed variates and normalizing it [238]. To get
a point from the uniform distribution on the interior of this hypersphere we just scale this
point by a factor k& = u'/® where u is a uniform variate between 0 and 1.

If we extend this vector with a 0, we have a point on the hyperplane z, = 0. This
hyperplane can be rotated onto the 2_i%; = 0 hyperplane by constructing a orthonormal
basis for R" containing (1,1,...,1)/+/n, the normal to this hyperplane. This basis forms

the columns of the transformation matrix for the rotation. The transformation is

-1 -1 ~1 -1 =17 i
al, V21 V33 Va3 Va(n-1) Vr T2
2 -1 -1 -1
I D . R e
2! -1 -1 T
/Z’nl—l J 0 0 0 Ce e —__—n(n-—l) ﬁ z 1 J
T, n—1 =1 L Tn
L i 0 0 0 ... W=y ﬁJ

CHAPTER 6. GENERATING RANDOM CONVEX POLYGONS 184

The following Pascal fragment performs the transformation in time O(n).

sum := x[n]/sqrt(n);
for i := n downto 2 do begin
sum := sum + x[i-1]/sqrt(i*(i-1));
x[i] := i*x[i-1]/sqrt(i*(i-1)) - sum;
end; {for}

x[1] := -sum;

This generates the « coordinates of our vectors. The y coordinates are generated exactly
the same way. Tinally the n vectors are sorted by direction to create the convex polygon.

The sorting is the only part that requires O(nlogn) time.

6.5 Bounce

This idea is due to Thurston [26].

Start with an arbitrary convex n-gon and give each vertex a random velocity. If a vertex
is ever about to become concave, we “bounce” it from that constraint. If we perform O(n)
bounces the resulting polygon should be “random”.

We can use discrete event simulation [117] techniques to implement this method. We
maintain a priority queue containing all potential bounces (events). This queue enables
us to identify the next bounce to occur. We then modify velocities so that the polygon
does not become concave and adjust the priority queue accordingly. We need to be able to
calculate when the bounces occur and how to modify velocities to avoid concavities.

Let A = (az,ay), B = (bg,by) and C = (cz,¢y) be three successive vertices on the
boundary of the convex polygon, with velocities (@uzs Guy), (byz,byy) and (Cuzs Cyy). The
position of the point A at time £ is given by A(t) = (ag + tays, @y +tayy). For the polygon
to remain convex the area of ABC must be positive, so that a “bounce” will occur whenever

the area becomes zero. Let

(a.{v?a’;’q) = (a’flf - b:vaa'y - by)7
(a;;aﬂ ai/y) = (avl‘ - bv:c; Uyy — bvy)7
(c;‘)C;) = (ca: - b:c; Cy — by):

(C:J:m C;y) = (Cw: — byg, Coy — bvy)-

CHAPTER 6. GENERATING RANDOM CONVEX POLYGONS 185

Then

20(8) = (c + ey,)ay +tay,) — (¢ + tey,)(af, + tal,)
=y — Cyan +

g ! 7 !’ ! !
t(Chety + €y, — € a, — ¢, a)) +
2

o~

N ror
(C'uwa‘uy - C'uya"u:v)‘

So, if we start with ¢ = 0 a bounce will occur at the smallest positive root of the quadratic
equation A(t) = 0. If this equation has no positive roots then no bounce is possible.

One natural way to modify the velocity of B to prevent a concavity when a bounce
occurs at time 7, is to imagine that vertices are physical particles and to conserve the total
energy of the system. This means that we change the direction of B but not its speed.
Unfortunately, this is not always possible: for example, if B has a velocity of zero and the
motion of A and C'is causing the concavity.

One solution is just to randomly choose a new velocity for B such that %(tb) > 0. We
can just keep randomly choosing until one has the desired property, or if we are selecting
velocities from the unit disc we just need to select from the uniform distribution on the
region formed by the intersection of the unit disc and the halfplane defined by id%(tb) > 0.
Then we just need to modify the events (if any) in the priority queue for the neighbours of
B and insert the new event for B.

An alternative solution that does not require generating a new random number each
bounce, is to choose a frame of reference moving with the velocity of A (so that A is
stationary in this frame) and rotating about A such that the motion of C' is along the
line AC in this frame. We can then bounce B by reversing the component of its velocity
perpendicular to AC. Note that this is done in a non-inertial frame of reference so that the
energy of the system is not conserved.

If we use a heap to implement the priority queue then finding the minimum, insertion .
and deletion operations can be performed in time O(logn) and each event processed in
time O(logn). If we perform O(n) events, the total time to generate a convex polygon is
O(nlogn).

CHAPTER 6. GENERATING RANDOM CONVEX POLYGONS 186

6.6 Triangulation

Choose a random topological triangulation of a polygon. Construct a convex polygon with
Delaunay triangulation homeomorphic to this.

Atkinson and Sack [13] give a O(n) algorithm for choosing a random triangulation of a
convex polygon.

Dillencourt [87] gives a constructive proof for the realizability as a Delaunay triangula-
tion of any triangulation of the interior of a simple polygon. A naive implementation of the
construction will take O(n?) time. I show below how the construction can be performed in
O(n) time.

The total time to generate a convex polygon by this method is O(n).

6.6.1 Realizing a Delaunay triangulation in O(n?) time.

Dillencourt’s construction shows how to compute each angle of each triangle in the triangu-
lation. If the values of the angles (measured in some arbitrary units such that s units form

a straight angle) are a;, then the a;s must satisfy the following properties:

1. For each vertex, a;; + ...+ @y, < s where a;),...,qa;, are the angles at that vertex.

This says that the polygon is convex.

2. For each interior edge, a; + a; < s where a; and a; are the two angles facing the edge.

This says that the triangulation is Delaunay.
3. For each ¢, a; > 0.
4. For each triangle, a; + a; + a;, = s where q;, a; and ay are the angles of the triangle.

The construction proceeds incrementally, computing values satisfying the above prop-
erties for progressively larger subtriangulations of the triangulation to be realized.

Initially we'start with any triangle, set each a; to 1 and s to 3, clearly satisfying the
four properties above. Each step adds any triangle which shares a common edge (AB in
figure 6.7) with one of the triangles in the subtriangulation.

For each triangle in a triangulation of a simple polygon we can define the opposite
corner with respect to a triangle 7' in the triangulation as follows: starting at 7" follow a
path within the triangulation to that the triangle. The opposite corner is the one opposite

the last edge crossed.

CHAPTER 6. GENERATING RANDOM CONVEX POLYGONS 187

s szl |
B B

Figure 6.7: Adding triangle AC B

Let z be the value of the opposite corner to the new triangle (see figure 6.7). The new
triangle is given values 2+ 1, z+ 1 and s — z — 1 at vertices A, B and respectively. The
value of s is replaced by s’ = s + 2 + 1. The value of the opposite corner with respect to
ABC' in every other triangle is increased by z + 1.

Property 1 remains true for vertices other then A, B and C: since exactly one of the
angles adjacent to each of these vertices is an opposite corner, both sides of the inequality
@iy t...+az < s are increased by z + 1. The totals at A and B are also increased by z + 1,
while there is only one angle at C, and it is clearly less than s'.

Property 2 remains true because for edges other than AB only one of the angles facing
the edge is an opposite corner, while for AB we have /BDA+/ACB = z42+4+14s—2z—1 =
s+ z< 8.

Property 3 is obviously still true.

Property 4 is true for AABC. For the other triangles it is still true since there is exactly
one opposite corner per triangle.

Figure 6.8 gives an example of the steps in the construction.

Once all the angles of all the triangles have been computed we Just need to pick positions
for the endpoints of one edge and then trigonometry determines the positions of of all the

other vertices.

CHAPTER 6. GENERATING RANDOM CONVEX POLYGONS 188

[

10 12 15

N/

Figure 6.8: Realizing a Delaunay triangulation

CHAPTER 6. GENERATING RANDOM CONVEX POLYGONS 189

Since an angle in each triangle must be updated at each step in the computation of the

angles the total time required is Q(n?).

6.6.2 Realizing a Delaunay triangulation in O(n) time.

The key to improving the execution time to O(n) is the following observation: Since the
angles of a triangle add to s, it doesn’t matter if the value of one of the angles is incorrect,
as long as we know which one it is.

Any given triangle ABC' divides the triangulation into three pieces: those triangles
whose opposite corner is A, those whose opposite corner is B and those whose opposite
corner is ' (see figure 6.9). If we add all the triangles whose opposite corner is A without
updating the angles of ABC only the value of A will be incorrect. Its value can then be
computed from the value of s and the other angles. Then the triangles opposite B can be

added and the value of B then corrected and similarly for .

opposite
corner
is B

opposite
corner
isC

opposite
corner
is A

Figure 6.9: ABC divides the triangulation into three components

We wish to do this for all triangles, so the appropriate order is given by traversing the
outer face of the dual graph of the polygon triangulation (see figure 6.10).

To describe the invariant for this algorithm we need one more bit of state—the current
triangle of the traversal. By the opposite corner of a triangle we just mean the opposite
corner with respect to the current triangle. (The current triangle does not have an opposite
corner.)

For each angle ¢ we store a value a}. The relationship between the a; and the a; of

CHAPTER 6. GENERATING RANDOM CONVEX POLYGONS 190

Figure 6.10: Dual of triangulation and traversal order

the previous section is quite simple: If 7 is not an opposite corner then a; = af. If i is
an opposite corner then a; = s — (L'j — a), where j and & are the two other corners of the
triangle.

The traversal order ensures that we only ever cross a single edge when moving from one
current triangle to a new one. If the new current triangle is one we haven’t visited before
then we can compute the values for its angles and update s just as in section 6.6.1 (see
figure 6.11). This will be correct since we know that the values for the current triangle are
correct. The difference from section 6.6.1 is that we do not add z + 1 to all the opposite
corners with respect to ABC'. Since ABC' is now the current triangle, these are all opposite

corners and their values do not matter.

B B
A

C
D
s

D

Figure 6.11: New current triangle is previously unvisited

CHAPTER 6. GENERATING RANDOM CONVEX POLYGONS 191

Figure 6.12: Realizing a Delaunay triangulation—O(n) algorithm

CHAPTER 6. GENERATING RANDOM CONVEX POLYGONS 192

If the new current triangle has been visited before, the corner opposite the edge crossed
to enter this triangle is no longer an opposite corner, so we compute its value from s and
the values of the two other corners.

One traversal of the outer face ensures that all the triangles are visited. A second
one ensures that all the angles are correct. Figure 6.12 shows the steps for our example
triangulation. The current triangle is highlighted in bold. The steps where no values change
have not been shown.

Each step takes O(1) time. The traversal crosses each edge exactly twice, so there are

O(n) steps and a total run time of O(n).

6.6.3 Implementation

The following fragment of C implements the algorithm described above.

The topology of the triangulation is represented by three functions on the angles. prev
and next give the next angle in the same triangle in the anticlockwise and clockwise di-
rections respectively. adj is the successor in the clockwise ordering of angles which share
a common vertex. The last angle in this ordering has adj(i)=-1 In figure 6.13 we have

next(1)=5, prev(1)=9, adj (1)=2, and adj(2)=-1.

Figure 6.13: Traversal order for angles

We traverse the angles in the order in which they occur on the outer face (see figure 6.13).
Let i is the current angle. If adj(i)=0 then the successor to i in the ordering is next (i)
in the same triangle. Otherwise, we cross a triangle edge to adj(i) and must update the
angles of the new triangle. We store the values of the angles in array a, which is initially

zero (so that we can test to see if we have entered a triangle for the first time by looking at

CHAPTER 6. GENERATING RANDOM CONVEX POLYGONS 193

alil). We assume that the triangles are numbered from 0 to 3%*n-1, where n is the number

of triangles.

for (1 = 0; i < 3%n; ++1i)

alil = 0;
i=0;
ali]l = al[next(i)] = alprev(i)] = 1;
s = 3;
for (j = 0; j < 2; ++j) {
do {
if (adj(i) == -1) {
i = next(i);
} else {
i= adj(i);

if (a[i] == 0) {
z = al[next(adj(prev(i)))];

alprev(i)] = ali] = z + 1;

alnext(i)] 8 -z -1;

s =8 +z + 1;

} else {
alnext(i)] = s - alil - alprev[ill;
+
}
} while (i != 0);
}
6.7 Dual

We can take the dual of the convex polygons produced by any of the above methods. For
example, The Dual Rejection method takes the intersection of n half-spaces containing the

origin and rejects the resulting polygon if it has fewer than n sides.

CHAPTER 6. GENERATING RANDOM CONVEX POLYGONS 194

6.8 Conclusion

I have implemented the Rejection, Iteration and Vector methods described above.
Some other uses for my random convex polygons can be to determine how often ran-
dom convex polygons were unimodal [6] and how often the minimum-area and minimum-

perimeter-enclosing rectangles are different [80].

Chapter 7

Further Work

7.1 Performance of Delaunay triangulation algorithms

Not much has been done on actually measuring the performance of Delaunay triangulation
algorithms. Implement all the constrained Delaunay triangulation algorithms described in
chapter 2, the bucketing versions of the algorithms described in sections 2.3.1 and 2.4.1 and
convex-distance-function versions of these algorithms 4.1.2 and measure the performance

on a variety of distributions of sites and constraints.

7.2 Is Locality Necessary?

It may be possible to generalize the proof in section 3.6 to prove that systematic flip rules
are generalized Delaunay rules, since I have not found a flip rule that is systematic but not

local.

7.3 More Powerful Flip Rules

A generalization of the work in chapter 3 that might be considered is that of more powerful
flip rules. For example, we could look at sets of three triangles that formed a convex
pentagon and replace the triangulation of the pentagon with GOT(Py) of that pentagon.
Such a rule would always be systematic for convex pentagons, (but not local since GOT(P)
(the Minimum Weight triangulation is not local), so would pass the tests in section 3.5.

The proofs in section 3.6 are obviously not applicable.

195

CHAPTER 7. IF'URTHER WORK 196

For this rule we could experiment using convex hexagons and a similar technique to
that of section 3.5 could be used (although the directed flip graph is considerably more

complicated).

7.4 Higher-Dimensional Convex-Distance-Function Delau-

nay triangulation

The structure of higher-dimensional convex-distance-function Delaunay triangulations is
very different from that of higher-dimensional Fuclidean Delaunay triangulations. It would
be very interesting to investigate this structure and perhaps develop a more efficient algo-
rithm than that described in section 4.2.1. Visualization tools such as IRIS Explorer would

prove useful in visualizing the shape of the associated Voronoi diagram.

7.5 Robustness of Delaunay triangulation algorithms

When implemented using floating point arithmetic Delaunay triangulation algorithms some-
times fail because computations are inexact. This failure occurs because the approximated
DT flip rule is not systematic and local. The tests used in section 3.5 can be used to ex-
amine this and compare various different implementations of the DT flip rule. (The results

in appendix A suggest a variety of alternative implementations.)

7.6 Convex-Polygon Delaunay triangulation

It would be interesting to implement Aggarwal et al.’s deterministic linear algorithm as well
as a sweepline and a flip algorithm and compare execution times with the other algorithms

described in chapter 5.

7.7 Random convex polygons

Implement the other algorithms designed in chapter 6 and use them to test the algorithms
in chapter 5 and also to measure how often random convex polygons were unimodal [6] and

how often the minimum-area and minimum-perimeter-enclosing rectangles are different [80).

CHAPTER 7. FURTHER WORK 197

7.8 Prove linear number of points generated by the itera-

tion algorithm

The iteration algorithm (section 6.3) for generating a random convex n-gon generated

roughly 2n points. It would be interesting to prove that this number was O(n).

Chapter 8

Conclusion

A useful heuristic in problem solving is to look for problems that you can use your favourite
technique on. Faced with a large number of alternative definitions of optimality, in chapter 3
I looked for optimal triangulations defined by flip rules for which there were fast algorithms
like those for the Delaunay triangulation rather than trying to find fast algorithms for each
different definition. The “systematic” and “local” properties capture the properties of the
Delaunay triangulation that are needed for the fast Delaunay triangulation algorithms to
work.

‘The experiments described in section 3.5 convinced me that that there were no system-
atic local flip rules other than the Delaunay rule. I also discovered several more optimality
properties of the Delaunay triangulation (proved in appendix A).

I proved that the Delaunay rule is the only systematic local flip rotation and translation-
invariant rule (section 3.6.3). When I tried the natural extension of this result to convex-
distance-function Delaunay rules, I discovered empty-shape triangulations which generalize
convex-distance-function Delaunay triangulations and are the only systematic local homo-
thetic rules (proved in section 3.6.4).

All of the algorithms I describe in chapter 2 can be used to compute empty-shape tri-
angulations. To demonstrate this I implemented a sweepline algorithm for empty-shape
triangulations using Miranda (section 4.1.1). The greater expressive power of Miranda as
compared to a language like C allowed a very compact implementation of the sweepline
algorithm—100 lines of Miranda as opposed to 900 lines of C [120] or 2500 lines of C [199).
This enabled me to present the complete implementation, together with extensive commen-

tary in a few pages of this thesis.

198

CHAPTER 8. CONCLUSION 199

It is easier to compute empty-shape triangulations than convex-distance-function De-
launay triangulations. (After all, I discovered them while looking for triangulations that
were easy to compute.) So, extending the convex distance function by adding shapes to
“round” its corners allows me to compute an empty-shape triangulation that is a superset of
the convex-distance-function Delaunay triangulation (and from which the convex-distance-
function Delaunay triangulation is easily extracted) (section 4.1.2). This provides a way for
all the algorithms described in chapter 2 to be used to compute convex-distance-function
Delaunay triangulations. Previously published algorithms for convex-distance-function De-
launay triangulations dealt with the problems caused by corners in the distance function
by modifying the algorithm-—my approach modifies the distance function. This approach
yields simple algorithms for constrained convex-distance-function Delaunay triangulations
as well.

Naturally I wanted to consider if this approach generalized to three dimensions. When
looking at the published algorithm for three dimensional convex-distance-function Delaunay
triangulation [285], I found something very disturbing—the authors observed that Delaunay
tetrahedra could intersect. I wrote some simple programs to test the properties of random
configurations and found the counterexamples presented in section 4.2.1. These show that
the previously published algorithm is incorrect, so I devised a correct one.

In my literature review I found a vast number of published Delaunay triangulation
algorithms (table 2.2). I found that a standard taxonomy for sorting algorithms applied
to triangulation algorithms proved useful for classifying them and thinking about them.
My work in section 4.1.2 amounts to filling in the empty boxes in the “convex distance
function” row of table 2.2, while the proofs in section 3.6 show why the empty boxes in the
“non-Delaunay” row are likely to remain empty.

Devijver and Maybank [83] analyze an algorithm for convex-polygon Delaunay triangu-
lation that they claim satisfies a “minimum space complexity constraint”. They computed
the average execution time over all possible triangulations of the convex polygon. Unfor-
tunately, their algorithm was very inefficient and did not satisfy their “minimum space
complexity constraint”. I did a similar analysis for more efficient algorithms and designed
an algorithm that satisfies the “minimum space complexity constraint” (section 5.4).

Algorithms should be implemented and tested, so I had to have some way of generating
“random” convex polygons, in order to test the algorithms analyzed in section 5.4. Since

the concept of a “random” convex polygon is not well defined, [used a variety of operational

CHAPTER 8. CONCLUSION 200

definitions (chapter 6). To get efficient algorithms for generating convex polygons by my
definitions, I developed a data structure that allows generation of variates in time O(logn)
from a dynamically changing discrete distribution (section 6.2) and a O(n) algorithm for
realizing a Delaunay triangulation of a convex polygon (section 6.6.2).

The results of testing the algorithms analyzed in section 5.4 on the random convex
polygons generated by the methods of chapter 6 were surprising—all the algorithms had
worst-case execution times rather than that that predicted by my analysis, thus showing
that each triangulation of the polygons produced by my methods were not equally likely.
In order to achieve the expected execution times predicted by my analysis it was necessary
to randomize the algorithms. This is an interesting result. Randomization has found many
applications in computational geometry [61] in recent years and in many cases it may be
unnecessary to add an explicit randomization step if the the input is already “random” in

some sense. | have discovered a case here where it definitely is necessary.

Appendix A

DT'=—r = —ae = (rR); = abe; = (Rr?/A),

We will prove that each of the rules R,, —r{, —a., (rR)y, abey and (Rr?/A)g produces the
same result as the Delaunay triangulation on a convex quadrilateral.

Let ABC'D be a convex quadrilateral with Delaunay triangulation ABC, AC'D (so
DT(ABCD) = AC). D is outside the circumcircle of ABC and B is outside the cir
cumcircle of AC'D. We have already proved in theorem 3 that DT = R..

Theorem 16 —7; = DT,

Proor. Let P be the point where the diagonals of ABCD intersect. Let r4 = r(DAB),
raB = 1(PAB), rps = r(PDA) and hy be the length of the altitude at A in triangle DAB
(see figure A.1).

Demir [79] has proved the following relation between these quantities:

TDATTAB — T4 = 2——7‘DZ:AB. (A.1)

Applying this relation to triangles ABC, BCD, and CDA yields:

T T

TAB+TBC —TB = 2%}327 (A.2)
T T

reo+rep —re = 2-29CR (A.3)

rop +rpa—rp = 2904 (A.4)

201

APPENDIX A. DT = 1| = —ae, = (rR); = abe; = (Rr?/A)o 202

Figure A.1: Inscribed Circles

Adding A.1 and A.3 and subtracting A.2 and A.4 we get:

TDATAB TABTBC TBCTCD TCDTDA
- + — > . (A.5)

. " — T4 — e =D
TBTTD = TA—TC (ha hp he hp

Now let D' be the point where BD intersects the circumcircle of ABC, and define r'D A,
r'C'D and h', appropriately.
PD'A is similar to PCB; so
7./ r !
DA BC and TBC Tpa

ha hp ho Ry

Clearly 7h4 < rpa. Also,

DA 2A(PDA)

hp hp(|PD| + |DA| + |AP])

' |AP|

(IPD|+|DA|+|AP)
|AP|

(1PD'] +| D' Al 4 |AP])

™D

hy

APPENDIX A. DT = —r) = ~q., = (rR); = abey = (R7*2/A)0 203

Using these results in equation A.5 we get

! !
r T rge T
. , ” . . D4 BC . BC DA
rgt+rp—ra—rc>2 7ABI_‘*_“)+7CD(-55=)] =0.
A hp he h'y

That is, - (ABC'D) = AC. O

Theorem 17 —ac, = DT (also proved in [192, 202, 298]).

Proor. Because D is outside QABC, a plane geometry theorem [111] states that o =
LADB < LACB = o (see figure A.2). Similarly, the unprimed angles are less than
D

\p>

d

B
Figure A.2: Quadrilateral ABC'D

the corresponding primed angles in figure A.2. Also, min(ZABD,/CBD) < LABC and
min(ZADB,/BDC) < LADC. Hence

max(~a(ABC), ~a(ACD)) = - min(LABC, LACB, LBAC, LACD, LADC, [C AD)
< —min(ZABD, /CBD,/ADB, [BDC)
< max(—a(ABD), —a(BCD)).

That is, —ae(ABCD) = AC. o

Theorem 18 abc; = DT.

APPENDIX A. DT'= —11 = —ag = (rR); = abey = (Rr?/A)g 204

Figure A.3: Cyclic quadrilaterals

Proor. Let a = |AB|, b = |BC|, ¢ = |CD|, d = |AD|, = = |AC| and y = |BD]|. (See
figure A.2). There is a unique cyclic quadrilateral ABC’ D' with |BC'| = b, |C"D'| = ¢ and
|AD'| = d (figure A.3). Let o’ = |AC’| and ¢’ = |BD|.

If LABC' < LABC then 2’ < ¢ (Cosine law). Consequently ZAD'C' < LADC'. Hence,
LABC + LADC < ABC' + LAD'C' = 180° (opposite angles of a cyclic quadrilateral are
supplementary). Since LABC+/BCD+/.CDA+/.DAB = 360° we have /BCD+/DAB <
180° < LABC + LADC. But (see figure A.2)

LBCD+ /[DAB = o +8 4+ +¢§
> o+ p+y+6
= [ABC + LADC.

This is a contradiction. Hence LABC' > LABC, &' > z and y' < y.

Ptolemy’s theorem [9] gives us z'y’ = ac + bd. If we construct two more cyclic quadri-
laterals ABC'D" and ABC"D' (figure A.3) by setting |D”A| = ¢ and |BC"| = ¢ and let
#' = |AC"| = |BD"| then Ptolemy’s theorem applied to these two triangulations gives us

&'z = ad + bc and y'2' = ab + ed.

abc(ABC) 4 abc(ACD) = abz + cdz

APPENDIX A. DT = —r = —an, = (rR), = abe; = (Rr?/A)g 205

< a'(ab+ cd)

— $,ylzl

= y'(ad + bec)

< ady + bey

= abc(ABD) 4 abe(BC D)

That is, abe,(ABC D) = AC. o

Theorem 19 rR; = DT.

Proor. If a triangle T has side lengths p, ¢ and » and area A then badness function
rR(T) = (2A/(p+q+7))(pgr/(42)) = pgr/(2(p+q-+7)) (see table 3.2). Note that if »' > »
and p,q > 0 then pgr'/(p+q++') > pgr/(p+ ¢ + 7).

abz cdz
a+b+a ct+d+z
abz’ cdz’
a+b+a' cH+d+ a2
&' (abe + abd + abz’ + acd + bed + ede’)
aa+b+c+d+a’)+ (a+d)(c+d)
z'(abe + abd + acd + bed + &'(ab + cd))
rc’(a—}—b—{—c—i—(l—}—rc’) +aly + a2
abc + abd + acd + bed + 2'y' 2’
a+b+c+dta +y + 2
bey’ ady’
= r— + crdty by symmetry
bey ady
btety a+d+y
= 2(rR(ABD)+ rR(BCD))

2(rR(ABC) + rR(ACD)) =

That is, 7Ry (ABCD) = AC. O

Theorem 20 (Rr?/A)y = DT.

Proor. If a triangle T has side lengths p, g and r let

Rr? pqr
g(r) = —(T) = Grat

APPENDIX A. DT = —rj = —aeo = (rR) = abc;, = (Rr?/A)g 206

Now, because 1" is a triangle, p,g > 0 and 0 < r < p+ ¢; so

gy = 2t gt)’ 2 tatr) pup+g-v)

P+ g+)1 (p+qg+7r)?

Hence if T' has side lengths p, ¢, v’ and #’ > r then g(+') > g(r).

Rr? LRr? abz cdx
/—A(ABC) A (ACD) = (a+b+a) (c+d+)2
abeda’a’
((a+b+a")(c+d+a")
abed
(a+bdb+ct+d+a’+y + 2)2
ady bey
(a+d+y)*(b+cty)?
Rr? Rr?

= R (ABD)——(BCD).

. Rr?
That is, —Z—(ABC'D) = AC. o
If DT(ABC D) = either, then ABCD is a cyclic quadrilateral and all the inequalities
in the above theorems become equalities.

In particular, from theorem 16 we have
Theorem 21 7(ABC) 4 r(CDA) = r1(DAB) + r(BCD) if and only if ABCD is cyclic.

The first known statement of the “if” part of this theorem was on a tablet hung in a
Japanese temple in 1800 [129]. It is the most celebrated Japanese temple geometry theorem,
mentioned or proved in [129, 155, 166, 331]. None of these proofs can be easily modified
to prove the converse; so the “only if” part would appear to be a new result in elementary
geometry.

The results in this section do not generalize to three dimensions as the following coun-
terexample shows.

The points A = (0,0,0), B = (1,0,0), ¢’ = (0,1,0), D = (0,0,1), E = (1,1,1) lie on
a common sphere. The convex polyhedron ABC DE can be divided into tetrahedra in two
ways: the two tetrahedra ABC'D and BCDE, or the three tetrahedra AEBC, AECD, and
AEDB.

APPENDIX A. DT = —r; = —ay = (rR), = abe; = (Rr?/A)

tetrahedron | volume | area inradius circumradius
ABCD 1/6 (3+Vv3)/2 1-13 1/2
BCDE 1/3 2v3 V3 1/2
AEBC 1/6 (1+2v2+V3)/2 | 1/(1+2v2+V3) | 1/2
AECD 1/6 (T+2v2+3)/2 | 1/(1+2v2+V3) | 1/2
AEDB 1/6 (T+2v2+V3)/2 | 1/(1+2v2+V3) | 1/2

207

Clearly r(ABCD) + r(BCDE) # r(AEBC) + r(AECD) + r(AEDB). Similar calcu-

lations show that this is also a counterexample for (rR),, (R72/A)o, and — e (no matter

whether we use face angle, dihedral angle or solid angle).

Appendix B

DT#Pl,DT#SQ,DT#—CL’l

It is sufficient to give a single counterexample for each.

Consider the points A = (1,0), B = (1/2,v/3/2), €' = (~1,0) and D = (1/2, -v/3/2).
These points all lie on the unit circle, so DT(ABCD) = either. |AC| =2 >3 = |BD|,so
P, (ABCD) = BD. The triangle angles are as shown in figure B.1. The sum of the minimum
triangle angles is 60° for the triangulation {ABC,C'DA} and 90° for the triangulation
{ABD,BCD}. Hence, —a;(ABCD) = BD. The sum of the squares of the differences of the
angles form 60° is 4(30)* = 3600 for the triangulation { ABC, CDA} and 2(30)24-60% = 5400
for the triangulation {ABD, BC'D}. Hence, s5(ABCD) = AC.

B B
90° 60°
30
30° 60° o °
C 30° ¢0° A Cc <60 120°) A
30°
90° 60°
D D

Figure B.1: A counterexample

Clearly, by perturbing the point A slightly so that it lies inside OBCD, we can produce

208

APPENDIX B. DT # Py, DT # 83, DT # —o 209

A'BC'D such that its Delaunay triangulation does not minimize the total edge length,
contradicting Shamos and Hoey [295] and Dobkin [89]. This was first noted by Lloyd [215].
The same A’BC'D also contradicts the claim by several authors [150, 206, 257, 260, 294]
that the Delaunay triangulation minimizes the sum of the minimum triangle angles.
By perturbing the point A slightly so that it lies outside OBCD we can produce A'BC'D
such that its Delaunay triangulation does not minimize the standard deviation of the triangle

angles, contradicting Watson [329)].

Appendix C

Calculation of badness measures

Let A= (24,94), B = (vp,yp) and C = (z¢,yc). Calculation of most of the measures in

table 3.2 is straightforward. For example,
A(ABC) = 'é‘(fl/’A?/B +TBYc +Tcys —TAYC — TBYA — TCYB)-

Definition. range(as,...,a,) = max(ay, ..., an) — min(ay,. .., a,)
R*®(ABC) = %ma,x(ra,nge(n;A, Tg,), range(t 4, Tp, c))-

Calculating 7°°(ABC') is a little more complicated. r*°(ABC') is the radius of the largest
square parallel to the axes that can fit inside ABC. Call this square §. § must touch all
three sides of ABC'. (For if it did not touch a given side it could be moved toward that side
so that it did not touch any side and then made larger.)

Relabel the points so that ¢ < xp < 4. There are two possibilities: yg is between

ya and y¢ or it is not.

Case 1 yp is not between y4 and yo (see figure C.1). By reflecting about the z and y axes
if necessary we can get yo < ya < yg. Let D, E and F be the points where S touches
BC', AC and AB respectively.
AB has a negative slope and S is below it so F must be the upper right corner of 5.
C'B and AC have positive slopes and S is below C'B and above AC so D is the upper
left and E the lower right corner of § (see figure C.1).

Let H be the intersection of a vertical line through B and AC , and let G be the
intersection of a horizontal line through A and BC. Because BH is parallel to EF,

210

APPENDIX C. CALCULATION OF BADNESS MEASURES 211

B

C

Figure C.1: Case 1: yp not between y4 and y¢

the triangles AFE and ABH are similar. Therefore,

Ar I'E

Also BDF and BG A are similar; so
BF DF .
AB - AG (€2)

Since AF + BF = AB, if we add equations C.1 and C.2 we get

, . FE I
"~ BH ' AG’
1
A T ic

Now, A(ABH) = -BH-(v4~2p) and A(HBC) = 5 BH -(zp —a¢);s0 A(ABC) =
A(ABH)+A(HBC)=1-BH -(z4—2¢), and consequently BH = 2A(ABC) /(x4 —
z¢). Similarly AG = 2A(ABC)/(ys — yc), and so

A(ABC)

“(ABC) =)
i) (za—2c+yB—yc)

Case 2 yp is between y4 and y¢ (see figure C.2). If necessary we can reflect about the

@ axis to gel yo < yp < ya. Asin case 1, D and E are the upper left and lower

APPENDIX C. CALCULATION OF BADNESS MEASURES 212

A
B
1 G
J
{0
7

Figure C.2: Case 2: yp is between y4 and y¢

right corners of 5. However, AB now has a positive slope so I is the upper left
corner of S. This means D = I = B. Let the upper right corner of S be I and
G be the intersection of BI and AC. Let the lower left corner of § be J and H be
the intersection of BJ and AC (see figure C.2). Triangles BHG, IEG and JHE are
similar; so just as in case 1 we get BI = 1/(1/BH + 1/BG) and

A(ABC)

r°(ABC) = - - —.
Ta—Cc+ya—yc

Combining the formulze for each case and allowing for relabelling and reflection gives

A(ABC)
range(z 4,25, vc) + range(y4, yB, yo)
= 2A(ABC)/P®(ABC).

r(ABC) =

Appendix D

Miscellaneous function definitions

Here are some Miranda functions required by the programs in chapter 4 that were not
included in chapter 4.
Priority Queue ADT

First, an implementation of the priority queue ADT specified on page 120.

To make it easier to understand the operations, this implementation is very simple,
using a list and the push operation takes time O(n) instead of the optimal O(logn) possible
with a heap-ordered tree.

We represent the priority queue by a pair containing the function that defines the order-
ing of events, and a list of pairs of the event order and the event. For example,if f a < £ b

then the priority queue
push (push (empty f) a) b)
will be represented by the pair
(£,[(f a, a), (£ b, B)])
The type definition:
> priority * *x == (x->xx, [(*x,%)])
The implementation of the operations is straightforward:

> top = snd.hd.snd
> pop (p,x:xs) = (p,xs)

213

APPENDIX D. MISCELLANEQUS FUNCTION DEFINITIONS 214

> empty p = (p,[1)
> isempty (p,xs) = xs = []

push (p,xs) y
= (p,push’ xs (p y,y))
push’ [1 y = [y]

push’ (x:xs) y = y:x:xs, if y<=x

vV vV VvV v v

x:(push’ xs y), otherwise

> remove (p,xs) y
> = (p,remove’ xs (p y,y))

remove’ [] y = []

remove’ (x:xs) y = xs, if y=x

(x:xs), if y<x

v A\ v v
n

x:(remove’ xs y), otherwise

Ordered Sequence ADT

A simple implementation of the ordered sequence ADT specified on page 121.

As with the priority queue implementation above we use a list and the insert operation
takes time O(n) instead of the optimal O(logn) possible with a balanced tree.

We represent the ordered sequence as a triple containing the before function, the list
of sites, and a history list of all the operations that have been performed on the sequence.
The history list is not needed for the insert, delete and create operations, but was found
useful for debugging purposes. Since Miranda is a lazy language, there is no overhead in

leaving it in.

> ordered_seq_point == ((point,point) -> point -> bool, [point], [op])
> op ::= Insert point [point] |

> Delete (point,point) [point] |

> Create [point]

In our implementation of insert, we are careful to check that the ordered sequence

invariant holds.

> insert (before,as,h) x

APPENDIX D. MISCELLANEOUS FUNCTION DEFINITIONS 215

= ((before,prefix++[a,b,x,b,c]++suffix,Insert x as:h),[a,b,cl)
where befores = t1(init(map ((converse before) x) (pairs as)))
|l ignore dummy elements

#(takewhile (=False) befores), check

error invariant failure in insert, otherwise
prefix = take (pos) as

>

>

>

> pos
>

>

> (a:b:c:suffix) = drop (pos) as
>

check = and(dropwhile (=False) befores)

delete (before,as,h) p

((before,prefix++[a,b,d,e]++suffix,Delete p as:h)
,[a,b,d,el), if #(drop (pos-2) as)>=5

>
>
>
> = error (deletet++show (pos, #(drop (pos-2) as),as,p)
> ++lay (map show h)), otherwise

> where pos = position (pairs as) p

> prefix = take (pos-2) as

>

(a:b:c:d:e:suffix) = drop (pos-2) as

> create before as

> = (before,as, [Create as])

Miscellaneous functions

These were considered standard, so were not included in section 4.1 and are included here
for the sake of completeness.

The Euclidean distance between two points.
> d2 (a,b) (c,d) = sqrt((a-c)~2+(b-d)"2)
Twice the signed area of a polygon.

polygon == [point]
area :: polygon -> num
area ps = sum [x¥y’-y*x’ |

((x,y),(x’,y%)) <~ zip2 ps (t1 ps ++ [hd ps])]

APPENDIX D. MISCELLANEOUS FUNCTION DEFINITIONS 216

The centre of the circle through a set of co-circular points.

> circle_centre :: [point] -> point

> circle_centre t

> = (cx,cy), divisor “= 0

> = error (show t), otherwise

> where ds = map d t

> xs = map fst t

> ys = map snd t

> divisor = 2%area t

> cx = area (zip2 ds ys)/divisor
> cy = area (zip2 xs ds)/divisor
> d (x,y) = x°2 + y°2

Pairs of elements

> pairs xs = zip2 xs (t1 xs)

Bibliography

[1]

[2]

[9]

[10]

Edwin A. Abbott. Flatland, pages 3-4, 8, 10-11. Dover, New York, 1952. (Originally
published in 1884).

Karl Abrahamson. On the modality of convex polygons. Discrete and Computational
Geometry, 5:409-419, 1990.

Adobe Systems Incorporated. PostScript Language Reference Manual. Addison-

Wesley, Reading, Massachusetts, 1985.

A. Aggarwal, H. Edelsbrunner, P. Raghavan, and P. Tiwari. Optimal time bounds for

some proximity problems in the plane. Inform. Process. Lett., 42:55-60, 1992.

Alok Aggarwal, Leonidas J. Guibas, and James Saxe. A linear-time algorithm for
computing the Voronoi diagram of a convex polygon. Discrete and Computational
Geometry, 4:591-604, 1989.

Alok Aggarwal and Robert C. Melville. Fast computation of the modality of polygouns.
Journal of Algorithms, 7:369-381, 1986.

Michael E. Agishtein and Alexander A. Migdal. Smooth surface reconstruction from
scattered data points. Computers & Graphics (Pergamon), 15(1):29-39, 1991.

H. Akima. A method of bivariate interpolation on smooth surface fitting for irregularly
distributed data points. ACM Transactions on Mathematical Software, 4:148-159,
1978.

N. Altshiller-Court. College Geometry. Barnes & Noble, New York, 1952.

D. B. Arnold and W. J. Milne. The use of Voronoi tessellations in processing soil

survey results. IEEE Computer Graphics and Applications, pages 22-28, March 1984.

217

BIBLIOGRAPHY 218

[11] T. Asano, M. Edahiro, H. Imai, M. Iri, and K. Murota. Bucketing techniques in
computational geometry. In G. T. Toussaint, editor, Computational Geometry, pages

153-195. North-Holland, 1985.

[12] Ta. Asano, Te. Asano, L. J. Guibas, J. Hershberger, and . Tmai. Visibility of disjoint
polygons. Algorithmica, 1:49-63, 1986.

[13] M. D. Atkinson and J.-R. Sack. Generating binary trees at random. Information

Processing Letters, 41:21-23, 1992.

[14] S. Auerbach and H. Schaeben. Surface representations reproducing given digitized
contour lines. Mathematical Geology, 22(6):723-742, 1990.

[15] F. Aurenhammer. Voronoi diagrams—a survey of a fundamental geometric data struc-
ture. Computing Surveys, 23(3):345-405, 1991.

[16] D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration
of arrangements and polyhedra. In Proc. 7th Annu. ACM Sympos. Comput. Geom.,
pages 98-104, 1991.

[17] L. Babuska and A. Aziz. On the angle condition in the finite element method. SIAM
J. Numer. Analysis, 13:214-227, 1976.

[18] Brenda S. Baker, Eric Grosse, and Conor §. Rafferty. Nonobtuse triangulation of
polygons. Discrete and Computational Geomeiry, 3(2):147-168, January 1988.

[19] R. E. Barnhill. Representation and approximation of surfaces. In J. R. Rice, editor,
Math. Software III, pages 69-120. Academic Press, New York, NY, 1977.

[20] R. C. Barr, T. M. Gallie, and M. S. Spach. Automated production of contour maps
for electrophysiology. Computers in Biomedical Research, 13:142-191, 1980.

[21] G. Baszenski and Larry L. Schumaker. Use of simulated annealing to construct trian-
gular facet surfaces. In Pierre-Jean Laurent, Alain Le Méhauté, and Larry L. Schu-

maker, editors, Curves and Surfaces, pages 27-32, Boston, 1991. Academic Press.

[22] J. O. Bentley, B. W. Wiede, and A. C. Yao. Optimal expected time algorithms for
closest point problems. ACM Transactions on Mathematical Software, 6:563-580,
1980.

BIBLIOGRAPHY 219

[23]

[24]

[28]

[29]

[30]

[32]

[33]

G. Berman and K. D. Fryer. Introduction to Combinatorics, pages 230-231. Academic

Press, New York, 1972.

M. Bern, H. Edelsbrunner, D. Eppstein, S. Mitchell, and T. S. Tan. Edge-insertion
for optimal triangulations. Tech. Report EDC UILU-ENG-92-1702, Univ. Ilinois,
Urbana, IL, 1992.

M. Bern and D. Eppstein. Mesh generation and optimal triangulation. In D.-Z. Du
and F. K. Hwang, editors, Computing in Fuclidean Geometry, volume 1 of Lecture

Notes Series on Computing, pages 23-90. World Scientific, Singapore, 1992.
Marshall Bern. Personal Communication.

J. Bernal. Constructing Delaunay triangulations for sets constrained by line seg-
ments. Technical Report NIST/TN-1252, Mathematical Analysis Div., National Inst.
of Standards and Technology (NEL), Gaithershurg, MD, September 1988.

Richard Bird and Philip Wadler. Introduction to Functional Programming. Prentice-
Hall, 1988.

J.-D. Boissonnat. Shape reconstruction from planar cross-sections. Comput. Vision
Graph. Image Process., 44(1):1-29, October 1988.

J.-D. Boissonnat and B. Geiger. Three-dimensional reconstruction of complex shapes
based on the Delaunay triangulation. Report 1697, INRIA Sophia-Antipolis, Val-
bonne, France, April 1992.

Jean-Daniel Boissonnat and Monique Teillaud. An hierarchical representation of ob-
jects: The Delaunay tree. In Proceedings of the Second Annual Symposium on Com-
putational Geomelry, pages 260-268, New York, 1986. ACM Press.

G. Bol. Zur kinematischen Ordnung ebener Jordan-Kurven. Abh. Math. Sem. Univ.
Hamburg, 11:394-408, 1936.

C. Borgers. Generalized Delaunay triangulations of nonconvex domains. Computers
& Mathematics With Applications, 20(7):45-49, 1990.

5. W. Bova and G. F. Carey. Mesh generation/refinement using fractal concepts and
iterated function systems. International Journal for Numerical Methods in Engineer-

ing, 33(2):287-305, Jan 1992.

BIBLIOGRAPHY 220

(35]

[36]

[38]

[39]

[40]

[41]

A. Bowyer. Computing Dirichlet tessellations. The Computer Journal, 24(2):162-166,
1981.

J. W. Brandt and V. R. Algazi. Continuous skeleton computation by Voronoi diagram.

CVGIP Image Understanding, 55(3):329-338, 1992.

K. Brassel and D. Reif. A procedure to generate Thiessen polygons. Geographical
Analysis, 11(3):289-303, 1979.

J. L. Brown. Vertex based data dependent triangulations. Computer Aided Geometric
Design, 8:239-251, 1991.

C. I'. Bryant. Two-dimensional automatic triangular mesh generation. IFEFE Trans-
actions On Magnetics, MAG-21(6):2547-2550, 1985.

T. D. Bui and V. N. Hanh. Automatic mesh generation for finite-element analysis.
Computing, 44(4):305-329, 1990.

J. C. Cavendish. Automatic triangulation of arbitrary planar domains for the finite
element method. International Journal for Numerical Methods in Engineering, 8:679~
696, 1974.

Z. J. Cendes, D. N. Shenton, and H. Shahnasser. Magnetic field computation using
Delaunay triangulation and complementary finite element methods. IEEE Transac-
tions on Magnetics, MAG-19(6), 1983.

Zoltan J. Cendes. Unlocking the magic of Maxwell’s equations. IEEE Spectrum,
26(4):29-33, Apr 1989.

D. R. Chand and S. S. Kapur. An algorithm for convex polytopes. J. ACM, 17:78-86,
1970.

Maw Shang Chang, Nen-Fu Huang, and Chuan-Yi Tang. Optimal algorithm for
constructing oriented Voronoi diagrams and geographic neighborhood graphs. Infor-
mation Processing Letters, 35(5):255-260, Aug 1990.

5. Chattopadhyay and P. P. Das. Counting thin and bushy triangulations. Pattern
Recognition Letters, 12(3):139-144, 1991.

BIBLIOGRAPHY 221

[47] B. Chazelle. A theorem on polygon cutting with applications. In Proc. 23rd Annu.
IEEL Sympos. Found. Comput. Sci., pages 339-349, 1982.

[48] B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom.,
6:485-524, 1991.

[49] B. Chazelle, I.. J. Guibas, and D. T. Lee. The power of geometric duality. BIT,
25:76-90, 1985.

[50] B. Chazelle and J. Incerpi. Triangulating a polygon by divide and conquer. In Pro-
ceedings of the 21st Allerton Conference on Communications, Control and Computing,
pages 447-456, 1983.

01} Xiangping Chen and Daoning Ying. Polygon triangulation algorithm as a powerful
g g g g g

core processor of plan-1. Computer Graphics Forum, 8(3):193-198, Sep 1989.

[52] L. P. Chew. Building Voronoi diagrams for convex polygons in linear expected time.
Technical Report PCS-TR90-147, Dept. Math. Comput. Sci., Dartmouth College,
Hanover, NH, 1986.

[63] L. P. Chew. There are planar graphs almost as good as the complete graph. J.
Comput. Syst. Sei., 39:205-219, 1989.

[54] L. P. Chew. Guaranteed-quality triangular meshes. Technical Report CU-CSD-TR-
89-983, Cornell Univ., Ithaca, NY. Dept. of Computer Science., Apr 89.

[65] L. P. Chew and R. L. Drysdale, IIl. Voronoi diagrams based on convex distance
functions. In Proc. Ist Annu. ACM Sympos. Comput. Geom., pages 235-244, 1985.

[56] L. Paul Chew. There is a planar graph almost as good as the complete graph. In
Proceedings of the Second Annual Symposium on Computational Geometry, pages
169-177, New York, 1986. ACM Press.

[57] L. Paul Chew. Constrained Delaunay triangulations. Algorithmica, 4(1):97-108, 1989.

[68] Raju Chithambaram, Renato Barrera, and Kate Beard. Skeletonizing polygons for
map generalization. In Technical Papers - 1991 ACSM-ASPRS Annual Convention,
pages 44-55, Bethesda, MD, USA, 1991. ACSM.

BIBLIOGRAPHY 222

[59] B. K. Choi, H. Y. Shin, Y. L. Yoon, and J. W. Lee. Triangulation of scattered data
in 3d space. Computer-Aided Design, 20(5):239-248, Jun 1988.

[60] K. Clarkson, R. E. Tarjan, and C. J. Van Wyk. A fast Las Vegas algorithm for
triangulating a simple polygon. Discrete Comput. Geom., 4:423-432, 1989.

[61] K. L. Clarkson. Randomized geometric algorithms. In D.-Z. Du and F. K. Hwang,
editors, Computing in Fuclidean Geomelry, volume 1 of Lecture Notes Series on Com-

puting, pages 117-162. World Scientific, Singapore, 1992.

[62] K. L. Clarkson, R. Cole, and R. E. Tarjan. Randomized parallel algorithms for
trapezoidal diagrams. In Proc. 7th Annu. ACM Sympos. Comput. Geom., pages 152—
161, 1991.

[63] A. K. Cline and R. J. Renka. A constrained 2-dimensional triangulation and the
solution of closest node problems in the presence of barriers. SIAM J. Numer. Anal.,

27(5):1305-1321, 1990.

[64] A. K. Cline and R. L. Renka. A storage-efficient method for construction of a Thiessen
triangulation. Rocky Mountain Journal of Mathematics, 14(1):119-138, 1984.

[65] Y. Correc and E. Chapuis. Fast computation of Delaunay triangulations. Advances
in Engineering Software, 9(2):77-83, 1987.

[66] H. S. M. Coxeter. Introduction to Geometry. John Wiley & Sons, New York, 1961.

[67] I. K. Crain. Monte-Carlo simulation of the random Voronoi polygons: Preliminary

results. Search, 3:220-221, 1972.

[68] 1. K. Crain and R. E. Miles. Monte-Carlo estimates of the distributions of the random
polygons determined by random lines in a plane. Journal of Statistical Computation
and Simulation, 4:293-325, 1976.

[69] Robert G. Cromley and Daniel Grogan. A procedure for identifying and storing a
Thiessen diagram within a convex boundary. Geographical Analysis, 17(2):167-175,
April 1985.

[70] J. R. Davy and P. M. Dew. A note on improving the performance of Delaunay

triangulation. In R. A. Earnshaw and B. Wyvill, editors, New Advances in Computer

BIBLIOGRAPHY 223

Graphics: Proceedings of Computer Graphics International 89, pages 209-226, Tokyo,

1989. Springer-Verlag.

[71] E. F'. Dazevedo and R. B. Simpson. On optimal interpolation triangle incidences.
SIAM J. Sci. Statist. Comput., 10(6):1063-1075, 1989.

[72] L. De Floriani, B. Falcidieno, and C. Pienovi. Delaunay-based representation of sur-
faces defined over arbitrarily shaped domains. Computer Vision, Graphics, and Image

Processing, 32:127-140, 1985.

[73] L. de Floriani and E. Puppo. An on-line algorithm for constrained Delaunay triangu-
lation. C'VGIP: Graphical Models and Image Processing, 54(3):290-300, 1992.

[74] Leila De Floriani. Surface representation based on triangular grids. The Visual Com-

puter, 3:27-50, 1987.

[75] Leila De Floriani, Bianca Falcidieno, George Nagy, and Caterina Pienovi. On sorting

triangles in a Delaunay tessellation. Algorithmica, 6:522-532, 1991.

[76] Leila De Floriani and Enrico Puppo. Constrained Delaunay triangulation for mul-
tiresolution surface description. In Proc. Ninth IEEE International Conference on

Pattern Recognition, pages 566-569, Los Alamitos, California, 1988. CS Press.

[77] Frank Dehne and Rolf Klein. “the big sweep”: On the power of the wavefront approach

to Voronoi diagrams. manuscript, December 1992.

[78] B. Delaunay. Sur la spheére vide. Bull. Acad. Sci. USSR: Class. Sci. Mat. Nat.,
7:793-800, 1934.

[79] Hiiseyin Demir. Incircles within. Mathematics Magazine, 59:77-83, 1986.

[80] N. Adlai A. DePano, Farinaz D. Boudreau, Philip Katner, and Brian Li. Algorith-
mic paradigms. examples in computational geometry II. In 21st SIGCSE Technical
Symposium on Computer Science Education, pages 186-191, Fort Collins Computer
Center, Fort Collins, CO, 1990. ACM.

[81] B. J. Devereux, R. M. Fuller, L. Carter, and R. J. Parsell. Geometric correction of
airborne scanner imagery by matching Delaunay triangles. International Journal of

Remote Sensing, 11(12):2237-2251, 1990.

BIBLIOGRAPHY 224

[82] P. A. Devijver and M. Dekesel. Insert and delete algorithms for maintaining dynamic

Delaunay triangulations. Pattern Recogn. Lett., 1:73-77, 1982.

[83] P. A. Devijver and S. Maybank. Computation of the Delaunay triangulation of a
convex polygon under a minimum space complexity constraint. In Proceedings of the

6th IELL International Conference on Pattern Recognition, pages 420-422, 1982.

[84] L. P. Devroye. On the computer generation of random convex hulls. Comput. Math.

Appl., 8:1-13, 1982.

[85] Tamal K. Dey, Kokichi Sugihara, and Chandrajit L. Bajaj. Delaunay triangulations in
three dimensions with finite precision arithmetic. Computer Aided Geometric Design,

9:457-470, 1992.
[86] P. J. Diggle. Statistical Analysis of Point Patterns. Academic Press, 1983.

[87] Michael B. Dillencourt. Realizability of Delaunay triangulations. Information Pro-
cessing Letters, 33(6):283-287, Feb 1990.

[88] H. Djidjev and A. Lingas. On computing the Voronoi diagram for restricted planar
figures. In Proc. 2nd Workshop Algorithms Data Struct., volume 519 of Lecture Notes
in Computer Science, pages 54—-64. Springer-Verlag, 1991.

[89] D. P. Dobkin. Computational geometry and computer graphics. Proc. IEEE,
80(9):1400-1411, September 1992.

[90] D. P. Dobkin, S. J. Friedman, and K. J. Supowit. Delaunay graphs are almost as
good as complete graphs. Discrete Comput. Geom., 5:399-407, 1990.

[91] Robert L. (Scot) Drysdale, IIl. A practical algorithm for computing the Delaunay
triangulation for convex distance functions. In Proc. 1st ACM-SIAM Sympos. Discrete
Algorithms, pages 159-168, 1990.

[92] Rex A. Dwyer. A faster divide-and-conquer algorithm for constructing Delaunay

triangulations. Algorithmica, 2:137-151, 1987.

[93] Nira Dyn, David Levin, and Samuel Rippa. Data dependent triangulations for piece-
wise linear interpolation. IMA Journal of Numerical Analysis, 10:137-154, 1990.

BIBLIOGRAPHY 225

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS Mono-
graphs on Theoretical Computer Science. Springer-Verlag, Heidelberg, West Germany,

1987.

H. Edelsbrunner. An acyclicity theorem for cell complexes in d dimensions. In Proc.

dth Annu. ACM Sympos. Comput. Geom., pages 145-151, 1989.

H. Edelsbrunner and L. J. Guibas. Topologically sweeping an arrangement. J. Com-

pul. Syst. Sci., 38:165-194, 1989. Corrigendum in 42 (1991), 249-251.

H. Edelsbrunner and . P. Miicke. Simulation of simplicity: a technique to cope with

degenerate cases in geometric algorithms. ACM Trans. Graph., 9:66-104, 1990.

II. Ldelsbrunner, J. O’Rourke, and R. Seidel. Constructing arrangements of lines
with applications. In Proceedings 2/th IEEE Symposium on Foundations of Computer

Science, pages 83-91, 1983.

H. Edelsbrunner and N. R. Shah. Incremental topological flipping works for regular

triangulations. In Proc. 8th Annu. ACM Sympos. Comput. Geom., pages 43-52, 1992.

H. Edelsbrunner and T. S. Tan. A quadratic time algorithm for the minmax length
triangulation. In Proc. 32nd Annu. IEEE Sympos. Found. Comput. Sci., pages 414~
423, 1991.

H. Edelsbrunner and T. S. Tan. An upper bound for conforming Delaunay triangula-

tions. In Proc. §th Annu. ACM Sympos. Compul. Geom., pages 53-62, 1992.
Herbert Edelsbrunner. CS5497: Triangulations. Course notes, UIUC, Spring 1991.

Herbert Edelsbrunner, Tiow Seng Tan, and Roman Waupotitsch. O(N?log N) time
algorithm for the minmax angle triangulation. SIAM journal on scientific and statis-
tical computing, 13(4):994-1008, July 1992.

M. Elbaz and J.-C. Spehner. Construction of Voronoi diagrams in the plane by using
maps. Theoretical Computer Science, 77(3):331-343, 1990.

M. H. Elfick. Contouring by use of a triangular mesh. The Cartographic Journal,
16(1):24-29, 1979.

BIBLIOGRAPHY 226

[106] H. ElGindy and D. Avis. A linear algorithm for computing the visibility polygon from
a point. J. Algorithms, 2:186-197, 1981.

[107] Hossam ElGindy and Godfried T. Toussaint. On geodesic properties of polygons
relevant to linear time triangulation. Visual Comput., 5(1):68-74, 1989.

[108] D. Eppstein. The farthest point Delaunay triangulation minimizes angles. Compud.
Geom. Theory Appl., 1:143-148, 1999,

[109] G. Erlebacher and P. R. Eiseman. Adaptive triangular mesh generation. AJAA
Journal, 25(10):1356-1364, 1987.

[110] Duclid. Elements of geometry. Book III, Proposition 31.

[111] Buclid. Blements of geometry. Book ITI, A consequence of Proposition 21.

[112] T.-P. Fang and L. A. Piegl. Algorithm for Delaunay triangulation and convex-hull

computation using sparse matrix. Comput.-Aided Design, 24(8):425-436, August
1992.

[113] T.-P. Fang and L. A. Piegl. Delaunay triangulation using a uniform grid. IEEE
Comput. Graph. Appl., 13(3):36-48, May 1993.

[114] Olivier Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT
Press, Cambridge, MA, 1993.

[115] D. Field. A flexible Delaunay triangulation algorithm. Research Publication GMR-
5675, General Motors, 1987.

[116] David A. Field and Thomas W. Nehl. Stitching together tetrahedral meshes. In Pro-
ceedings of the SIAM Regional Conference on Geometric Aspects of Indusirial Design,
pages 25-38, Philadelphia, PA, 1992. Soc. for Industrial & Applied Mathematics.

[117] George S. Fishman. Principles of discrete event simulation. Wiley, New York, 1978.

[118] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer
Graphics: Principles and Practice. Addison-Wesley, Reading, MA, 1990.

[119] S. Fortune. Numerical stability of algorithms for 2-d Delaunay triangulations and
Voronoi diagrams. In Proc. 8th Annu. ACM Sympos. Comput. Geom., pages 83-92,
1992.

BIBLIOGRAPHY 227

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

5. Fortune. Voronoi diagrams and Delaunay triangulations. In D.-Z. Du and F. K.
Hwang, editors, Computing in Fuclidean Geometry, volume 1 of Lecture Notes Series

on Computing, pages 193-233. World Scientific, Singapore, 1992.

5. J. Fortune. A fast algorithm for polygon containment by translation. In Proc. 12th
Internat. Collog. Automata Lang. Program., volume 194 of Lecture Notes in Computer

Science, pages 189-198. Springer-Verlag, 1985.

Steven Fortune. Sweepline algorithm for Voronoi diagrams. Algorithmica, 2(2):153-

174, 1987.

R. J. Fowler and J. J. Little. Automatic extraction of irregular network digital terrain

models. Computer Graphics, 13(2):199-207, August 1979.

C. O. Frederick, Y. C. Wong, and F. W. Edge. Two-dimensional automatic mesh
generation for structural analysis. International Journal for Numerical Methods in
Engineering, 2:133-144, 1970.

Free Software TFoundation. Gnu graphics 0.17. Available by FTP from
ged.rice.edu:/pub/graphics.tar.Z.

William H. Frey and David A. Field. Mesh relaxation for improving triangulations.
In Proceedings of the SIAM Regional Conference on Geometric Aspects of Industrial
Design, pages 11-24, Philadelphia, PA, USA, 1992. Soc for Industrial & Applied
Mathematics Publ.

William H. Irey and David A. Field. Mesh relaxation for improving triangulations.
In Proceedings of the SIAM Regional Conference on Geometric Aspects of Industrial
Design, pages 11-24, Philadelphia, PA, 1992. Soc. for Industrial & Applied Mathe-

matics.

M. Fujiwara. Ein Satz iiber konvexe geschlossene Kurven. Sci. Repts. Téhoku Univ.,
9:289-294, 1920.

Hidetosi Fukagawa and Dan Pedoe. Japanese Temple Geometry Problems. The
Charles Babbage Research Centre, Winnipeg, 1989.

K. R. Gabriel and R. R. Sokal. A new statistical approach to geographic variation
analysis. Systematic Zoology, 18:259-278, 1969.

BIBLIOGRAPHY 228

[131]

[132]

[133]

[134]

[136]

[137]

[138]

[139]

[140]

[141]

Luis F. Garcia and Osama A. Mohammed. Automatic finite element grid generation
in electromagnetics. In 1988 IEEE Southeastcon, Conference Proceedings, pages 571~

575, New York, NY, USA, 1988. IEEE.

M. R. Garey, D. S. Johnson, and T. P. Preparata. Triangulating a simple polygon.
Information Processing Letters, 7:175-179, 1978.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-completeness. W. H. Freeman, San Irancisco, 1979.

P. L. George, I'. Hecht, and M. G. Vallet. Creation of internal points in Voronoi’s type
method. Control adaptation. Advances in Engineering Software and Workstations,

13(5-6):303-312, Sep-Nov 1991.

P. L. George and I". Hermeline. Delaunay’s mesh of a convex polyhedron in dimension
d. Application to arbitrary polyhedra. International Journal for Numerical Methods

in Iingineering, 33(5):975-995, Apr 1992.

G. Ghione, R. D. Graglia, and C. Rosati. New general-purpose two-dimensional
mesh generator for finite elements, generalized finite differences, and moment method
applications. IEEE Transactions on Magnetics, MAG-24(1):307-310, Jan 1987.

P. D. Gilbert. New results in planar triangulations. Report R-850, Coordinated Sci.
Lab., Univ. Illinois, Urbana, IL, 1979.

C. M. Gold, T. D. Charters, and J. Ramsden. Automated contour mapping using
triangular element data structures and an interpolant over each irregular triangular

domain. Computer Graphics, 11(2):170-175, 1977.

5. Goldman. A space efficient greedy triangulation algorithm. Information Processing
Letters, 31(4):191-196, 1989.

N. A. Golias and T. D. Tsiboukis. Adaptive refinement in 2-d finite element appli-
cations. International Journal of Numerical Modelling: Electronic Networks, Devices

and Fields, 4(2):81-95, Jun 1991.

Harry Gonshor. An introduction to the theory of surreal numbers, volume 110 of
London Mathematical Society lecture note series. Cambridge University Press, Cam-

bridge, 1986.

BIBLIOGRAPHY 229

[142]

[143]

(144]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

T. Gonzalez and M. Razzazi. Properties and algorithms for constrained Delaunay

triangulations. In Proc. 3rd Canad. Conf. Comput. Geom., pages 114-117, 1991.

Ardeshir Goshtasby. Piecewise linear mapping functions for image registration. Pai-

tern Recognition, 19(6):459-466, 1986.

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics:

A Foundation for Computer Science. Addison-Wesley, Reading, MA, 1989.

P. J. Green and R. Sibson. Computing Dirichlet tessellations in the plane. The

Computer Journal, 21(2):168-173, 1978.

B. Griinbaum. Arrangements and spreads. In Regional Conf. Ser. Math.. Amer.
g ;

Math. Soc., page 17, Providence, RI, 1972.

L. J. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions
and the computation of Voronoi diagrams. ACM Transactions on Graphics, 4:74—

123, 1985.

Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir. Randomized incremental
construction of Delaunay and Voronoi diagrams. In M. S. Paterson, editor, Automata,
Languages and Programming: 17th International Colloguium, pages 414-431, Berlin,
1990. Springer-Verlag. LNCS 443.

Leonidas J. Guibas and Jorge Stolfi. Ruler, compass, and computer: The design and
analysis of geometric algorithms. Technical Report 37, Digital Equipment Corporation

Systems Research Center, 1989.

A. J. Hansen and P. L. Levin. On conforming Delaunay mesh generation. Adv.
Engineering Software, 14(2):129-135, 1992.

Dianne Hansford. The neutral case for the min-max triangulation. Computer Aided

Geometric Design, 7:431-438, 1990.

F. Hermeline. Triangulation automatique d’un polyédre en dimension N. RAIRO-
Mathematical Modelling And Numerical Analysis-Modelisation Mathematique Et
Analyse Numerique, 16(3):211-242, 1982.

BIBLIOGRAPHY 230

[153]

[154]

[155]

[156]

[159]

[160]

[161]

[162]

[163]

[164]

5. Hertel and K. Mehlhorn. Fast triangulation of simple polygons. In Proceedings

1983 Foundations of Computation Theory Conference, pages 207-218, 1983.

A. L Hinde and R. E. Miles. Monte Carlo estimates of the distributions of the random
polygons of the Voronoi tessellation with respect to a Poisson process. Journal of

Statistics and Computer Simulation, 10:205-223, 1980.

R. Honsberger. Mathematical Gems III. The Mathematical Association of America,

Washington D.C., 1985.

Yih-ping Huang. Triangular irregular network generation and topographical mod-
elling. Computers in Industry, 12:203-213, 1989.

D. A. Huffman. A method for the construction of minimum-redundancy codes. Pro-
ceedings of the [RF, 40:1098-1101, 1952.

I'. K. Hwang. An O(nlogn) algorithm for rectilinear minimal spanning trees. Journal
of the ACM, 26:177-18, 1979.

C. Icking, R. Klein, N.-M. L&, and L. Ma. Convex distance functions in 3-space are
different. In Proc. 9th Annu. ACM Sympos. Comput. Geom., pages 116-123, 1993.

Hiroshi Inagaki and Kokichi Sugihara. Numerically robust algorithm for constructing
Delaunay triangulation. In Proc. 6¢h Canad. Conf. Comput. Geom., pages 171-176,

Saskatoon, Canada, 1994.

B. Joe. Delaunay triangular meshes in convex polygons. SIAM Journal On Scientific
and Statistical Computing, 7(2):514-539, 1986.

B. Joe. 3-dimensional triangulations from local transformations. Siam Journal On
Scientific And Statistical Computing, 10(4):718-741, 1989.

B. Joe. Geompack. A software package for the generation of meshes using geometric
algorithms. Advances in Engineering Software and Workstations, 13(5-6):325-331,
Sep-Nov 1991.

B. Joe and R. B. Simpson. Triangular meshes for regions of complicated shape.

International Journal for Numerical Methods in Engineering, 23:751-778, 1986.

BIBLIOGRAPHY 231

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

Barry Joe and Cao An Wang. Duality of constrained Voronoi diagrams and Delaunay

triangulations. Algorithmica, 9(2):149-155, 1993.
R. A. Johnson. Advanced uclidean Geometry. Dover, New York, 1960.

N. L. Jones, S. G. Wright, and D. R. Maidment. Watershed delineation with triangle-
based terrain models. Journal Of Hydraulic Engineering-ASCE, 116(10):1232-1251,
1990.

Norman L. Jones and Stephen G. Wright. Algorithm for smoothing triangulated

surfaces. Journal of Computing in Civil Engineering, 5(1):85-102, Jan 1991.

Dz-Mou Jung. An optimal algorithm for constrained Delaunay triangulation. In
Proceedings. Twenty-Sizth Annual Allerton Conference on Communication, Control

and Computing, pages 85-86, Urbana, IL, USA, 1988. Univ. Illinois.

T. C. Kao and D. M. Mount. An algorithm for computing compacted Voronoi di-
agrams defined by convex distance functions. In Proc. 8rd Canad. Con, Comput.
Geom., pages 104-109, 1991.

T. C. Kao and D. M. Mount. Incremental construction and dynamic maintenance
of constrained Delaunay triangulations. In Proc. 4th Canad. Conf. Comput. Geom.,

pages 170-175, 1992.

Michael Karasick, Derek Lieber, and Lee R. Nackman. Efficient Delaunay triangula-
tion using rational arithmetic. ACM Transactions on Graphics, 10(1):71-91, January
1991.

Jyrki Katajainen and Markku Koppinen. Constructing Delaunay triangulations by
merging buckets in quadtree order. Annales Societatis Mathematicae Polonae, Series
IV, Fundamenta Informaticae, 11(3):275-288, 1988.

J. M. Keil and C. A. Gutwin. The Delaunay triangulation closely approximates the
complete Euclidean graph. In Proc. 1st Workshop Algorithms Data Struct., volume
382 of Lecture Notes in Computer Science, pages 47-56. Springer-Verlag, 1989.

J. P. Kermode and D. Weaire. 2D-Froth—a program for the investigation of 2-
dimensional froths. Computer Physics Communications, 60(1):75-109, 1990.

BIBLIOGRAPHY 232

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[186]

[187]

D. G. Kirkpatrick. Efficient computation of continuous skeletons. In Proc. 20th Annu.

IEEE Sympos. Found. Compul. Seci., pages 18-27, 1979.

D. G. Kirkpatrick. On the absence of local characterizations of minimum weight

triangulations. In Abstracts Ist Canad. Conf. Comput. Geom., page 16, 1989,

D. G. Kirkpatrick, M. M. Klawe, and R. E. Tarjan. Polygon triangulation in
O(nloglogn) time with simple data structures. In Proc. 6th Annu. ACM Sympos.

Comput. Geom., pages 34-43, 1990.

R. Klein. Concrete and Absiract Voronoi Diagrams, volume 400 of Lecture Notes in

Computer Science. Springer-Verlag, 1989.

R. Klein and A. Lingas. Manhattonian proximity in a simple polygon. In Proc. 8th
Annu. ACM Sympos. Comput. Geom., pages 312-319, 1992.

R. Klein and A. Lingas. A linear-time randomized algorithm for the bounded Voronoi
diagram of a simple polygon. In Proc. 9th Annu. ACM Sympos. Comput. Geom.,
pages 124-132,1993.

R. Klein and A. Lingas. A note on generalizations of Chew’s algorithm for the Voronoi
diagram of a convex polygon. In Proc. 5th Canad. Conf. Comput. Geom., pages 370—
374, Waterloo, Canada, 1993.

C. Kleinstreuer and J. T. Holdeman. A triangular finite element mesh generation
for fluid dynamic systems of arbitrary geometry. International Journal for Numerical
Methods in Engineering, 15:1325-1334, 1980.

G. T. Klincsek. Minimal triangulations of polygonal domains. Annals of Discrete
Mathematics, 9:121-123, 1980.

D. E. Knuth. The Art of Computer Programming: Vol 3, Sorting and Searching.
Addison-Wesley, Reading, Mass., 1973.

D. E. Knuth. The Art of Computer Programming: Vol 1, Fundamental Algorithms,
pages 399-401. Addison-Wesley, Reading, Mass., 1975.

Horst Kramer. A characterization of boundaries of smooth strictly convex plane sets.

L’Analyse Numérique et la Théorie de {’approzimation, 7(1):61-65, 1978.

BIBLIOGRAPHY 233

[188]

[189]

[190]

[191]

[192]

(193]

[194]

[196]

[197]

[198]

[199]

Richard A. Kronmal and Arthur V. Peterson. On the alias method for generating

random variables from a discrete distribution. Amer. Stat., 33:214-218, 1979.

H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of vectors.

J. ACM, 22:469-476, 1975.

Tim Lambert, Peter Lindsay, and Ken Robinson. Using Miranda as a first program-

ming language. Journal of Functional Programming, 3(1):5-34, 1993.

Leslie Lamport. IWNTRX: A Document Preparation System. Addison-Wesley, Reading,

Massachusett, 1985.

C. L. Lawson. Generation of a triangular grid with application to contour plotting.
Technical Memorandum 299, California Institute of Technology Jet Propulsion Lab-

oratory, 1972.
C. L. Lawson. Transforming triangulations. Discrete Mathematics, 3:365-372, 1972.

C. L. Lawson. Software for C'! surface interpolation. In J. R. Rice, editor, Math.

Software II1, pages 161-194, New York, NY, 1977. Academic Press.

Steven R. Lay. Convex Sets and their Applications. John Wiley & Sons, New York,
1982.

N.-M. Lé&. On general properties of strictly convex smooth distance functions in R¢.

In Proc. 5th Canad. Conf. Comput. Geom., pages 375-380, Waterloo, Canada, 1993.

E. Le Bras-Mehlman, M. Schmitt, O. D. Faugeras, and J. D. Boissonnat. How the
Delaunay triangulation can be used for representing stereo data. In Second Inter-
national Conference on Computer Vision, pages 54-63, New York, NY, USA, 1988.
IEEE.

G. Le Caér and J. S. Ho. The Voronoi tessellation generated from eigenvalues of com-
plex random matrices. Journal Of Physics A-Mathematical And General, 23(14):3279-
3295, 1990.

G. Leach. Improving worst-case optimal Delaunay triangulation algorithms. In Proc.
4th Canad. Conf. Comput. Geom., pages 340-346, 1992.

BIBLIOGRAPHY 234

[200]

[201]

[202]

[206]

[207]

[208]

[209]

[210]

D. T. Lee. Two-dimensional Voronoi diagrams in the {, metric. Journal of the ACM,
27:604-618, 1980.

D. T. Lee and A. K. Lin. Generalized Delaunay triangulation for planar graphs.

Discrete and Computational Geomelry, pages 201-217, 1986.

D. T. Lee and B. J. Schachter. Two algorithms for constructing the Delaunay tri-
angulation. International journal of Computer and Information Sciences, 9:219-242,
1980.

D.T. Lee and C. K. Wong. Voronoi diagrams in {y ({,) metrics with two-dimensional

storage applications. SIAM Journal on Computing, 9(1):200-211, 1980.

Christos Levcopoulus and Andrzej Lingas. Fast algorithms for greedy triangulations.
BIT, 32:280-296, 1992.

D. Leven and M. Sharir. Planning a purely translational motion for a convex object in

two-dimensional space using generalized Voronoi diagrams. Discrete Comput. Geom.,

2:9-31, 1987.

Peter L. Levin and James R. Hoburg. Donor cell-finite element descriptions of wire-
duct precipitator fields, charges and efficiencies. IEEE Transactions on Industry Ap-
plications, 26:662-670, 1990.

B. A. Lewis and J. S. Robinson. Triangulation of planar regions with applications.
Comput. J., 21:324-332, 1978.

Z. M. Lin and Hung C. Lin. A new placement algorithm for custom chip design. In
1990 IEEE International Symposium on Circuits and Systems Part § (of /), pages
1672-1675, IEEE Service Center, Piscataway, NJ, USA, 1990. IEEE.

P. A. Lindholm. Automatic triangle mesh generation on surfaces of polyhedra. IEEE
Transactions on Magnetics, MAG-19(6):2539-2542, 1983.

A. Lingas. A space efficient algorithm for the greedy triangulation. In Proc. 18th IFIP
Conf. System Modelling and Oplimization, volume 113 of Lecture Notes in Conirol
and Information Science, pages 359-364. Springer-Verlag, 1988.

BIBLIOGRAPHY 235

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

A. Lingas. Voronoi diagrams with barriers and the shortest diagonal problem. Inform.

Process. Lett., 32:191-198, 1989.

M. A. Linton, P. R. Calder, and J. M. Vlissides. Composing user interface with
InterViews. IEEL Computer, 22(2):8-22, February 1989.

Dani Lischinski. Incremental delaunay triangulation. In Paul Heckbert, editor, Graph-

ies Gems 1V, pages 47-59. Academic Press, Boston, 1994.
F. I. Little and J. L. Schwing. Automatic generation of triangulations. cited in [19].

Ii. L. Lloyd. On triangulations of a set of points in the plane. In IEEE 18th Annual
Symposium on the Foundations of Computer Science, pages 228-240, 1977.

5. H. Lo. Delaunay triangulation of non-convex planar domains. International Journal

Jor Numerical Methods in Engineering, 28(11):2695-2707, Nov 1989.

S. H. Lo. Volume discretization into tetrahedra. I. verification and orientation of
boundary surfaces. Computers and Structures, 39(5):493-500, 1991.

5. H. Lo. Generation of high-quality gradation finite element mesh. Engineering
Fracture Mechanics, 41(2):191-202, Jan 1992.

Michael K. Loze and R. Saunders. Two simple algorithms for constructing a two-
dimensional constrained Delaunay triangulation. Applied Numerical Mathematics,
11:403-418, 1993.

Yizhi Lu and Wayne Wei-Ming Dai. A numerical stable algorithm for constructing
constained Delaunay triangulation and application to multichip module layout. In
China 1991 International Conference on Circuits and Systems, June 1991, Shenzhen
China, pages 644-647, 1991.

G. Macedonio and M. T. Pareschi. An algorithm for the triangulation of arbitrarily
distributed points: Applications to volume estimate and terrain fitting. Computers &
Geosciences, 17(7):859-874, 1991.

E. R. Magnus, C. C. Joyce, and W. D. Scott. A spiral procedure for selecting a
triangular grid from random data. Journal for Applied Mathematics and Physics
(ZAMP), 34:231-235, March 1983.

BIBLIOGRAPHY 236

[223] G. K. Manacher and A. .. Zobrist. Probablistic methods with heaps for fast average-
case greedy algorithms. In Advances in Computing Research Vol 1 , bages 261-278.

JAT Press, 1983.

[224] A. Maus. Delaunay triangulation and the convex hull of n points in expected linear

time. BIT, 24:151-163, 1984.

[225] D. J. Mavriplis. Adaptive mesh generation for viscous flows using Delaunay triangu-
lation. Journal Of Computational Physics, 90(2):271-291, 1990.

[226] Jerrold H. May and Robert L. Smith. Random polytopes: Their definition, generation
and aggregate properties. Mathematical Programming, 24:39-54, 1982.

[227] M. J. McCullagh and C. G. Ross. Delaunay triangulation of a random data set for
isarithmic mapping. The Cartographic Journal, 17(2):93-99, 1980.

[228] David G. McKenna. The inward spiral method: An improved TIN generation tech-
nique and data structure for land planning applications. In Proceedings, AUTO-
CARTO 8, pages 670-679, Baltimore, MD, March 29-April 3, 1987. Eighth Interna-

tional Symposium on Computer-Assisted Cartography.

[229] D. H. McLain. Two dimensional interpolation from random data. The Computer
Journal, 19(2):178-191, 1976.

[230] G. Meisters. Polygons have ears. Amer. Math. Monthly, 82:648-651, 1975.

[231] David Meyers, Shelley Skinner, and Kenneth Sloan. Surfaces from contours. ACM
Transactions on Graphics, 11(3):228-258, July 1992.

[232] R. E. Miles. On the homogeneous planar Poisson point process. Mathematical Bio-
sciences, 6:85-127, 1970.

[233] A. Mirante and N. Weingarten. The radial sweep algorithm for constructing trian-
gulated irregular networks. IEEE Computer Graphics and Applications, pages 11-21,
May 1982.

[234] Osama A. Mohammed and Luis F. Garcia. Optimum finite element automatic grid
generator for electromagnetic field computations. IEEE Transactions on Magnetics,
MAG-24(6):3177-3179, Nov 1988.

BIBLIOGRAPHY 237

[235] I. G. Moore. Automatic contouring of geological data. In APCOM 77, 15th Interna-
tional Symposium on the Application of Computers and Operations Research in the
Mineral Industries, pages 209-220. Australasian Institute of Mining and Metallurgy,
1977.

[236] J-M. Moreau. Hierarchical Delaunay triangulation. In Proc. 6th Canad. Conf. Com-
put. Geom., pages 165-170, Saskatoon, Canada, 1994.

[237] J.-M. Moreau and P. Volino. Constrained Delaunay triangulation revisited. In Proc.
oth Canad. Conf. Compul. Geom., pages 340-345, Waterloo, Canada, 1993.

[238] Mervin M. Muller. A note on a method for generating points uniformly on n-
dimensional spheres. Commun. ACM, 2(4):19-20, 1959.

239] L. R. Nackman and V. Srinivasan. Point placement for Delaunay triangulation of
p) g

polygonal domains. In Proc. 8rd Canad. Conf. Comput. Geom., pages 37-40, 1991.

[240] E. J. Nadler. Piecewise Linear Approzimation on Triangulations of Planar Regions.

PhD. thesis, Brown University, Providence, RI, May 1985.

[241] J. M. Nelson. A triangulation algorithm for arbitrary planar domains. Applied Math-
ematical Modelling, 2:151-159, September 1978.

[242] G. M. Nielson. An example with a local minimum for the minmax ordering of trian-
gulations. Computer Science Department Technical Report TR-87-014, Arizona State
University, Tempe, Arizona, 1987.

[243] G. M. Nielson and R. Franke. Surface construction based upon triangulations. In
R. Barnhill and W. Boehm, editors, Surfaces in Computer-Aided Geometric Design,
pages 163-177. North Holland, 1983.

[244] J. Nievergelt, P. Schorn, C. Amman, A. Briingger, and M. De Lorezi. XYZ: A project
in experimental geometric computation. In Computational Geomeiry: Methods, Algo-
rithms and Applications. Proc. CG’91, International Workshop on Comp. Geometry,
Bern, March 1991, volume 553 of Springer LNCS, pages 171-186, 1991.

[245] C O’Dunlaing and C. K. Yap. A retraction method for planning the motion of a disc.
Journal of Algorithms, 6:104-111, 1985.

BIBLIOGRAPHY 238

[246]

[247]

[248]

[249]

[250]

[253]

[254]

[255]

[256]

[257]

T. Ohya, M. Iri, and K. Murota. A fast Voronoi diagram algorithm with quaternary

tree bucketing. Information Processing Lelters, 18:227-231, 1984.

T. Ohya, M. Ini, and K. Murota. Improvements of the incremental method for the
Voronoi diagram with computational comparison of various algorithms. Journal of
the Operations Research Society of Japan, 27(4):306-336, 1984.

Atsuyuki Okabe, Barry Boots, and Kokichi Sugihara. Spatial Tessellations : Concepts
and Applications of Voronoi Diagrams. Wiley series in probability and mathematical

statistics. Wiley & Sons, Chichester, 1992.

Amr A. Oloufa. Triangulation applications in volume calculation. Journal of Com-

puting in Civil Engineering, 5(1):103-121, Jan 1991.

Stephen M. Omohundro. The Delaunay triangulation and function learning. Technical

Report TR-90-001, International Computer Science Institute, Berkeley, CA, 1990.

J. O’Rourke. Computational geometry column 22. Internat. J. Comput. Geom. Appl.,
4:119-122, 1994. Also in SIGACT News 25:1 (1994), 31-33.

A. Oxley. Surface fitting by triangulation. The Computer Journal, 28(3):335-339,
1985.

Oscar Palacios-Velez and Baltasar Cuevas Renaud. Dynamic hierarchical subdivision
algorithm for computing Delaunay triangulations and other closest-point problems.
ACM Transactions on Mathematical Software, 16(3):275-292, Sep 1990.

J. Penman and M. D. Grieve. Self-adaptive mesh generation technique for the finite-
element method. IEFE Proceedings. A, Physical science, measurement and instrumen-

tation, management and education, reviews, 134(8):634-650, 1987.

T. K. Peucker, R. J. Fowler, and J. J. Little. The triangulated irregular network. In
Proceedings ASP-ACSM Symposium on Digital Terrain Models, pages 516-540, 1978.

Les A. Piegl and Arnaud M. Richard. Algorithm and data structure for triangulating
multiply connected polygonal domains. Computers & Graphics, 17(5):563-574, 1993.

J. J. Pisano, P. K. Enge, and P. L. Levin. Using GPS to calibrate Loran-C. IEEE
Transactions On Aerospace And Electronic Systems, 27(4):696-708, 1991.

BIBLIOGRAPHY 239

[258] David A. Plaisted and Jiarong Hong. A heuristic triangulation algorithm. Journal of
Algorithms, 8:405-437, 1987.

[259] PostScript Developer Tools & Strategy Group. Encapsulated PosTSCRIPT files spec-
ification. Mountain View, CA, 1989.

[260] M. Pourazady and M. Radhakrishnan. Optimization of a triangular mesh. Computers
and Structures, 40(3):795-804, 1991.

[261] P. L. Powar. Minimal roughness property of the Delaunay triangulation: a shorter

approach. Computer Aided Geometric Design, 9:491-494, 1992,

[262] P. L. Powar. The neutral case for the min-max angle criterion: a generalized concept.
Computer Aided Geometric Design, 9:413-418, 1992,

[263] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, New York, 1985.

[264] P. W. Purdom and C. A. Brown. The Analysis of Algorithms, page 307. Holt, Rinehart
and Winston, New York, 1985.

[265] Ewald Quak and Larry L. Schumaker. Cubic spline fitting using data dependent
triangulations. Computer Aided Geometric Design, 7(1-4):293-301, Jun 1990.

[266] V. T. Rajan. Optimality of the Delaunay triangulation in R?. In Proc. 7th Annu.
ACM Sympos. Comput. Geom., pages 357-363, 1991,

[267] P. N. Rathie. A census of simple planar triangulations. J. Comb. Theory B, 16:134—
138, 1974.

[268] H. Raynaud. Sur Venveloppe convex nuages des points aléatoires dans R”™. J. Appl.
Prob., 7:35-48, 1970.

[269] K. Reichert, J. Skoczylas, and T. Tarnhuvud. Automatic mesh generation based on
expert-system-methods. IEEE Transactions On Magnetics, 27(5):4197-4200, 1991.

[270] A. Rényi and R. Sulanke. Uber die konvexe Hiille von n zufallig gerwahten Punkten
L Z. Wahrsch. Verw. Gebiete, 2:75-84, 1963.

BIBLIOGRAPHY 240

[271] D. Rhynsburger. Analytic delineation of Thiessen polygons. Geographical Analysis,
5(2):133-144, April 1973.

[272] Samuel Rippa. Minimal roughness property of the Delaunay triangulation. Computer
Auvded Geometric Design, 7:489-497, 1990.

[273] Samuel Rippa. Long and thin triangles can be good for linear interpolation. SIAM
Journal on Numerical Analysis, 29(1):257-270, Feb 1992.

[274] C. A. Rogers. Packing and Covering. Cambridge University Press, 1964.

[275] M. Roussille and P. Dufour. Generation of convex polygons with individual angular
constraints. Information Processing Letters, 24(3):159-164, February 1987.

[276] A. Saalfeld. Delaunay edge refinements. In Proc. $rd Canad. Con, Comput. Geom.,
pages 33-36, 1991.

[277] Luis A. Santalo. Integral Geometry and Geometric Probability. Addison-Wesley, 1976.

[278] Nickolas Sapidis and Renato Perucchio. Delaunay triangulation of arbitrarily shaped
planar domains. Computer Aided Geometric Design, 8(6):421-437, Dec 1991.

[279] V. Sarin and S. Kapoor. Algorithms for relative neighbourhood graphs and Voronoi
diagrams in simple polygons. In Proc. {th Canad. Conf. Comput. Geom., pages 292—
298, 1992.

[280] D. G. Sawker, G. R. Shevare, and S. P. Koruthu. Contour plotting for scattered data.
Computers and Graphics, 11(2):101-104, 1987.

[281] Sanjeev Saxena, P. C. P. Bhatt, and V. C. Prasad. Efficient VLSI parallel algorithm
for Delaunay triangulation on orthogonal tree network in two and three dimensions.
IEEFE Transactions on Computers, 39(3):400-404, Mar 1990.

[282] Lori Scarlatos and Theo Pavlidis. Adaptive hierarchical triangulation. In Technical
Papers 1991 ACSM-ASPRS Annual Convention. Volume 6 Auto-Carto 10, pages 234~
246, 1991.

[283] Lori Scarlatos and Theo Pavlidis. Hierarchical triangulation using cartographics co-
herence. CVGIP: Graphical Models and Image Processing, 54(2):147-161, March 1992.

BIBLIOGRAPHY 241

[284] Lori L. Scarlatos and Theo Pavlidis. Optimizing triangulations by curvature equal-

ization. In Visualization 92, pages 333-339. IREE Computer Society, 1992.

[285] B. F. Schaudt and R. L. Drysdale. Higher-dimensional Voronoi diagrams for convex

distance functions. In Proc. 4th Canad. Conf. Comput. Geom., pages 274-279, 1992.

[286] Peter Schorn et al. XYZ Geobench v4.4.5. Available by FTP from
neptune.inf.ethz.ch:/XYZ, 1994,

[287] W. J. Schroeder and M. S. Shephard. Geometry-based fully-automatic mesh genera-
tion and the Delaunay triangulation. International Journal For Numerical Methods

In Engineering, 26(11):2503-2515, 1988.

[288] L. L. Schumaker. Triangulation methods. In C. K. Chui, L. L. Schumaker, and F. L.
Utreras, editors, Topics in Multivariate Approzimation, pages 219-232, New York,
1987. Academic Press.

[289] Larry L. Schumaker. Tria,ﬂgula,tions in CAGD. IEEE Comput. Graph. Appl., 13:47-
52, January 1993.

[290] R. Seidel. A method for proving lower bounds for certain geometric problems. In
G. T. Toussaint, editor, Computational Geomelry, pages 319-334. North-Holland,
Amsterdam, Netherlands, 1985.

[291] R. Seidel. Constrained Delaunay triangulations and Voronoi diagrams. In Rep. 260,
pages 178-191. IIG-TU, Graz, Austria, 1988.

[292] R. Seidel. A simple and fast incremental randomized algorithm for computing trape-
zoidal decompositions and for triangulating polygons. Comput. Geom. Theory Appl.,
1:51-64, 1991.

[293] R. Seidel. Backwards analysis of randomized geometric algorithms. Technical Report
TR-92-014, International Computer Science Institute, Berkeley, CA, 1992.

[294] Hamid Shahnasser, Ward Morgan, and A. Raghuram. Dynamic date structure suitable
for adaptive mesh refinement in finite element method. Finite Elements in Analysis
and Design, 4(3):237-247, Nov 1988.

BIBLIOGRAPHY 242

[295]

[296]

[297]

[298]

[299]

[300]

[301]

302]

[303]

[304]

[305]

M. L. Shamos and D. Hoey. Closest point problems. In Proceedings of the 16th Annual

Symposium on the Foundations of Computer Science, pages 151-162. IEEE, 1975.

M. Shapiro. A note on Lee and Schachter’s algorithm for Delaunay triangulation.

International journal of Computer and Information Sciences, 10(6):413-418, 1981.

G. M. Shute, L. L. Deneen, and C. D. Thomborson (a.k.a. Thompson). An O(N LogN)
plane-sweep algorithm for £; and L., Delaunay triangulations. Algorithmica, 6:207—
221, 1991.

R. Sibson. Locally equiangular triangulations. The Computer Journal, 21(3):243-245,
1978.

Sven Skyum. A sweepline algorithm for generalized delaunay triangulations. Technical
Report DAIMIPB-373, Computer Science Department, Aarhus University, November
1991.

5. W. Sloan. A fast algorithm for constructing Delaunay triangulations in the plane.

Advances in Engineering Software, 9(1):34-55, January 1987.

5. W. Sloan. A fast algorithm for generating constrained Delaunay triangulations.
Research Report 065.07.1991, The University of Newcastle Department of Civil En-
gineering and Surveying, New South Wales, 1991.

5. W. Sloan and G. T. Houlsby. An implementation of Watson’s algorithm for com-
puting 2-dimensional Delaunay triangulations. Advances in Engineering Software,
6(4):192-197, 1984.

Kokichi Sugihara and Masao Iri. Construction of the Voronoi diagram for “one mil-
lion” generators in single-precision arithmetic. Proceedings of the IEEE, 80(9):1471-
1484, 1992.

J. Suhara and J. Fukuda. Automatic mesh generation for finite element analysis. In
J. T. Oden, R. W. Clough, and Y. Yamamoto, editors, Advances in Computational
Methods in Structural Mechanics and Design, pages 607-624. UAU Press, Huntsville,
Alabama, 1972.

M. Tanemura, T. Ogawa, and W. Ogita. A new algorithm for three-dimensional
Voronoi tessellation. Journal of Computational Physics, 51:191-207, 1983.

BIBLIOGRAPHY 243

[306] R. E. Tarjan and C. J. Van Wyk. An O(nloglogn)-time algorithm for triangulating
a simple polygon. SIAM J. Comput., 17:143-178, 1988. Frratum in 17 (1988), 106.

[307] Albin Tarvydas. Terrain approximation by triangular facets. In Technical Papers of
the 44th Annual Meeting of the American Congress on Surveying and Mapping., pages

924-532, FFalls Church, VA, US, 1984. American Congress on Surveying and Mapping.

[308] John C. Tipper. Straightforward iterative algorithm for the planar Voronoi diagram.

Information Processing Letters, 34(3):155-160, Apr 1990.

[309] John C. Tipper. FORTRAN programs to construct the planar Voronoi diagram.
Computers & Geosciences, 17(5):597-632, 1991.

[310] G. Toussaint. Efficient triangulation of simple polygons. Visual Comput., 7:280-295,
1991.

[311] G. T. Toussaint. Pattern recognition and geometrical complexity. In Proceedings 5th

International Conference on Pattern Recognition, pages 1324-1347, 1980.

[312] G. T. Toussaint. The relative neighbourhood graph of a finite planar set. Pattern
Recognition, 12:261-268, 1980.

[313] G. T. Toussaint. A new linear algorithm for triangulating monotone polygons. Tech-
nical Report SOCS 83.9, McGill University, 1983.

[314] Victor J. D. Tsai. Delaunay trianagulation in TIN creation: An overview and a

linear-time algorithm. Int. J. Geographical Information Systems, 7(6):501-524, 1993.
[315] David Turner. An overview of Miranda. SIGPLAN Notices, 21(12), 1986.
[316] W. T. Tutte. A census of planar triangulations. Canadian J. Math., 14:21-38, 1962.
[317] Frederick A. Valentine. Convez Sets. McGraw-Hill, New York, 1964.

[318] G. M. Voronoi. Nouvelles applications des parametres continus 2 la théorie des formes
quadratiques. deuxiéme Mémoire: Recherches sur les parallélloedres primitifs. .J.
Reine Angew. Math., 134:198-287, 1908.

[319] K. Wagner. Bemerkungen zum vierfarbenproblem. Jahresbericht der Deutschen
Mathematiker- Vereinigung, 46:26-32, 1936.

BIBLIOGRAPHY 244

[320]

321]

[322]

[323]

[324]

[326]

[327]

[328]

[329]

[330]

[331]

C. A. Wang and L. Schubert. An optimal algorithm for constructing the Delaunay
triangulation of a set of line segments. In Proc. 9rd Annu. ACM Sympos. Comput.
Geom., pages 223232, 1987.

C. A. Wang and Y. H. Tsin. Efficiently updating constrained Delaunay triangulations.
In Proc. 4th Canad. Conf. Comput. Geom., pages 176-181, 1992.

Cao An Wang. Efficiently updating the constrained Delaunay triangulation. BIT,
33:238-252, 1993.

a0 An Wang. An optimal algorithm for greedy triangulation of a set of points. In

Proc. 6th Canad. Conf. Comput. Geom., pages 332-338, Saskatoon, Canada, 1994.

D. Ward. Triangular tessellation—a new approach to forest inventory. Forest Feology

And Management, 44(2-4):285-290, 1991.

Glen Y. Watabayishi and J. A. Galt. An optimized triangular mesh system from
random points. In J Hiuser and C. Taylor, editors, Numerical Grid Generation in

Computational Fluid Dynamics, pages 437-448, Swansea, U.K., 1986. Pineridge Press.

D. I'. Watson. Computing the n-dimensional Delaunay tessellation with application

to Voronoi polytopes. The Computer Journal, 24:167-172, 1981.

D. F. Watson. Automatic contouring of raw data. Computers and Gleosciences,

8(1):97-101, 1982.

D. F. Watson and C. M. Philip. Survey: Systematic triangulations. Computer Vision,
Graphics, and Image Processing, 26:217-223, 1984.

David F. Watson. Contouring: A Guide to the Analysis and Display of Spatial Data.
Pergamon, Oxford, 1992.

N. P. Weatherill. Integrity of geometrical boundaries in the two-dimensional Delaunay
triangulation. Communications in Applied Numerical Methods, 6(2):101-109, Feb
1990.

David Wells. The Penguin Dictionary of Curious and Inieresting Geometry. Penguin,
London, 1991.

BIBLIOGRAPHY 245

[332] Marvin S. White Jr. and Patricia Griffin. Piecewise linear rubber-sheet map trans-

formation. Americen Cartographer, 12(2):123-131, Oct 1985.

[333] P Widmayer, F. Wu, and C. K. Wong. On some distance problems in fixed orienta-

tions. STAM Journal on Computing, 16:728-746, 1987.

[334] Stephen Wolfram. Mathematica: A System for Doing Mathematics by Computer.
Addison- Wesley, Redwood City, 1988.

[335] T. C. Woo and S. Y. Shin. A linear time algorithm for triangulating a point visible
polygon. ACM Transactions on Graphics, 4(1):60-70, 1985.

[336] F. Yamaguchi and T. Tokieda. A unified algorithm for Boolean shape operations.

IEEE Computer Graphics and Applications, 4:24-27, June 1984.

[337] I'. Yamaguchi and T. Tokieda. A solid modeller with a 4 x 4 determinant processor.

IEEE Computer Graphics and Applications, pages 51-59, April 1985.

[338] T. M. Yeung. Generalization of Delaunay triangulation. M.Sc. thesis, Department of
EE/CS, Northwestern University, May 1980.

[339] M. M. F. Yuen, S. T. Tan, and K. Y. Hung. A hierarchical approach to automatic
finite-element mesh generation. International Journal For Numerical Methods I En-

gineering, 32(3):501-525, 1991,

[340] Jian-Ming Zhou, Ke-Ran Shao, Ke-Ding Zhou, and Qiong-Hua Zhan. Computing con-
strained triangulation and Delaunay triangulation: A new algorithm. IEEE Transac-

tions on Magnetics, 26(2):694-697, Mar 1990.

[341] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method. McGraw-Hill,
London, 1989.

Index of Definitions

ABC, 96 7, 78
Af, 110 FO 96
DT, 84 either(F"), 73

FH(ABC), 96
GOT(by), 81

active constraints, 54

anchor, 82

H(P,k), 18

LOT(b,), 80 anchor property, 82

P78 antiparallel, 110

PHK), 111 arrangemernt, 82

P78 aspect ratio, 78

R, 78 asymptote, 108

R™, 78 asymptote cone, 110

R, 79, 86 badness function, 76

Sr(l,P), 114 ball, 20

TXZ(P), 110 bounded Voronoi diagram, 15
A, 78 bounded Voronoi polygon, 15
Q,8 bushy triangulation, 43

0, 31

a, 78 circumball, 20

v, 78 circumcircle algorithm, 35

cr, 112 circumscribes, 20, 97

a, T8 circumscribing property, 97

o, 78 common support line, 111

¢, 78 cone, 110

h(ts,ty, k), 18 conforming Delaunay triangulation, 16
0, 27 constrained Delaunay triangulation, 15
r, 78 constrained Voronoi diagram, 15

constraints, 14

246

INDEX OF DEFINITIONS

convex distance function, 19

corner, 110

Delaunay deletion polygon, 18
Delaunay monotone polygon, 18
Delaunay triangulation, 14
diagonal, 66

directed flip graph, 75

dual, 19, 82

ear, 26
ear-cutting algorithm, 26
eccentricity, 78

empty-shape triangulation, 21, 108

flip, 72

flip algorithm, 22, 76
flip graph, 72

flip rule, 73

GOT, 81
Greedy triangulation, 71

homothet, 19
homothetic flip rule, 109
homothety, 18

incoming edge, 55

incremental algorithm, 22, 76
joint function, 79

lift, 14

lifting map, 14
local flip rule, 81
local property, 71

locally optimized triangulation, 75

LOT, 75

lower convex hull, 14

Minimum Weight triangulation, 71
monotone, 18
MWT, 71

nesting property, 107
non-degenerate, 14

normal histogram, 18

opposite corner, 186
ordering of support lines, 110

outgoing edge, 55

polar set, 19

pseudo-degenerate, 145
range, 210

selection algorithm, 22
shape set, 19

simple polygon, 17
sink, 75

sites, 14

smooth, 19

star-shaped polygon, 28
STC, 46

strictly convex, 19

STS, 122

support cone, 110
support hull, 20
support line, 19
support point, 19
sweep tangent circle, 46, 122
systematic flip rule, 80

INDEX OF DEFINITIONS 248

systematic property, 70

thin triangulation, 43
total badness, 79

triangle-based flip rule, 79

visible, 14
Voronoi diagram, 14, 83

Voronoi polygon, 14, 83

wedge, 50

Colophon

This thesis was produced with a small modification of the suthesis style for BTRX.

The figures were produced by a variety of means:

IXTpX picture environment [191], extended by me to use PosTScripr! [3] for the lines

and circles, so that all circle sizes and line orientations were possible (e.g. figure 3.7).

Graphs were produced by a plotting program that I wrote which could produce a

IsTpXpicture environment (e.g. figure 5.5).

The program idraw which comes as part of the InterViews toolkit [212] (e.g. fig-
ure 3.2).

Miranda?® [315] programs using a graphics package I wrote [190] to produce encapsu-
lated PosTScrIPT [259] (e.g. figure 2.30).

A combination of writing a Miranda program to produce a picture and editing the
resulting picture with idraw. I added unix® plotfile output to my Miranda graphics
environment and then used plot2ps from the Gnu graphics system [125] to produce

an idraw file (e.g. figure 4.10).

Plotting from Mathematica [334], conversion to idraw format and then using idraw

to edit the plot (e.g. figure 3.11).

' PoSTSCRIPT is a trademark of Adobe Systems Incorporated.
*Miranda is a trademark of Research Software Ltd.
®UNIX is a trademark of AT&T.

249

