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Abstract 

 

This thesis seeks to characterize the size of the interaction volume in a sample subject to 

electric force microscope (EFM) probing. It discusses the historical relevance of the EFM 

and the experimental method used. It then discusses the modeling of the fields 

surrounding the grating sample with the equivalent charge model (ECM) where a tip or 

other rotationally symmetric conducting element is replaced by a series of point charges 

on the vertical axis that mimic the original fields. The results of the model were then 

compared to the experimental data as well as a model simulated using COMSOL, a finite 

element analysis package. The electrostatic model was found to have good agreement 

with the simulated and experimental results and was then used to estimate the volume of 

interaction and the lateral resolution of this technique. The volume of interaction was 

estimated at 6000 μm
3
 and the lateral resolution was estimated at 10 μm. 

  



iii 

 

Acknowledgments 

I would like to thank my supervisor, Dr. Derek Oliver for proposing this topic and 

allowing me the opportunity to take my studies further. I am very grateful for his straight-

shooting, to the point method of dealing with me – his door was always open to my 

countless enquiries. This thesis would not have been possible without all of his guidance 

(and patience) along the way. Thank you. 

 

I would also like to thank Iman Yahyaie for his patience in dealing with my many 

problems with the SPM rig. His extreme patience and steady hands had an aptitude for 

dealing all the equipment that I broke. Thank you. 

 

I would also like to thank Dominic Schaub for his aid in debugging my mathematical 

models. His help and guidance was an excellent resource to have sitting behind me in the 

office. I could comfortably bounce ideas off him without a thought of how I was 

distracting him from his work. Thank you.  



iv 

 

Electronic Materials 

 

 

This CDROM contains MATLAB scripts and COMSOL models used in the 

implementation and verification of the models described in this thesis. The MATLAB 

scripts require MATLAB version R2009B or greater and the COMSOL models were 

created using COMSOL V3.5A.  

 

  



v 

 

Table of Contents 
 Abstract ....................................................................................................................... ii 

 Acknowledgments...................................................................................................... iii 

 Electronic Materials ................................................................................................... iv 

 Table of Contents ........................................................................................................ v

 List of Tables .............................................................................................................. vi 

 List of Figures ............................................................................................................ vi 

 

1 Introduction ................................................................................................................. 1 
1.1 Evolution of Microscopy ...................................................................................... 1 
1.2 Overview .............................................................................................................. 8 

2 Experimental Theory and Setup .................................................................................11 
2.1 EFM Background ................................................................................................11 

2.2 Heterodyne Electrostatic Imaging ...................................................................... 12 

2.3 Experimental Setup ............................................................................................ 15 
3 Electrostatic Modelling of EFM Setup ..................................................................... 22 

3.1 Introduction ........................................................................................................ 22 

3.2 Field due to a Single Point Charge ..................................................................... 25 
3.3 Equivalent Charge Model ................................................................................... 30 

3.4 Post Processing ................................................................................................... 35 
4 Results and Discussion ............................................................................................. 38 

4.1 Experimental Data Analysis ............................................................................... 38 

4.1.1 Interpreting the Data ................................................................................... 38 
4.1.2 Data Collection ........................................................................................... 42 

4.2 Analytical Data Analysis .................................................................................... 47 

4.2.1 Lateral Resolution ....................................................................................... 52 

4.2.2 Depth versus Relative Permittivity ............................................................. 55 
5 Numerical Electrostatic Modelling ........................................................................... 57 

5.1 Introduction to Finite Element Analysis and COMSOL ..................................... 57 
5.2 Verification of Analytic Model ........................................................................... 58 
5.3 Determination of Ratio Inversion ....................................................................... 64 

5.4 Scan Line over SiO2 Step ................................................................................... 68 
6 Conclusions ............................................................................................................... 75 

6.1 Future Work ........................................................................................................ 77 
7 References ................................................................................................................. 79 
 

 

 

 

 

 

 

 



vi 

 

List of Tables 
Table 5.1: Fit parameters for the COMSOL simulations and experimental data. ............. 72 

 

List of Figures 
Figure 1.1: STM image of an atomically resolved chiral nanotube [8] ............................. 4 
Figure 2.1: Experimental setup. The cantilever voltage is driven by an applied amplitude 

modulated signal. The change in position of the cantilever is detected using a beam 

bounce system and sent to a lock-in amplifier to be analyzed and recorded by a computer.

........................................................................................................................................... 13 
Figure 2.2: Experimental Apparatus consists of a personal computer (A) connected to a 

Veeco EnviroScope controller (B) and a NanoScope IIIa AFM controller (C) connected to 

a breakout box (D). The controllers operate the EnviroScope (E) which is isolated on an 

air table (F). ....................................................................................................................... 15 
Figure 2.3: Beam bounce system used to detect horizontal and vertical deflection using a 

four quadrant split photodetector. ..................................................................................... 17 

Figure 2.4: Quality factor of the cantilever versus the air pressure in the vacuum 

chamber. The error reflects the size of the frequency bins as the data was captured 50 

times and averaged by the spectrum analyzer. .................................................................. 19 
Figure 3.1: TGZ series sample grating used to validate the model. A) Tip centred above 

SiO2 grating. B) Tip centred above Si substrate ............................................................... 22 

Figure 3.2: Voltage found using the ECM. Point charges and test points are marked. .... 25 
Figure 3.3: A point charge Q is located at the origin with two dielectric boundaries at z=a 

and z=b. This forms three distinct regions, region 1, 2 & 3. ............................................ 26 
Figure 3.4: Two equal but opposite point charges are mirrored about the plane z=0. The 

dielectric configuration is also mirrored about this plane. ................................................ 28 
Figure 3.5: The voltage due to a single point charge about three dielectric regions above 

a ground plane. From top to bottom, εr1=1, εr2=12 & εr3=4. ............................................. 29 
Figure 3.6: Tip geometry illustrating the switch over point between the conical and 

spherical distributions ....................................................................................................... 33 
Figure 3.7: RMS error of the equivalent charge model varies with the number of point 

charges used to model the  tip. .......................................................................................... 34 

Figure 3.8: RMS error of the equivalent charge model varies with the number of test 

points used. This plot was generated with Nc=40. ............................................................ 35 
Figure 3.9: Plot of Force versus Depth for the equation of (3.19) ................................... 37 

Figure 4.1: A force plot created by plotting the displacement of the piezo in the z 

direction versus the voltage representing vertical displacement of the cantilever. This plot 

was created by engaging the tip into the aluminum sample holder. ................................. 39 
Figure 4.2: Cumulative sum of a scaled displacement spectrum. This data was collected 

using the NSC18 cantilever at room temperature an pressure. ......................................... 41 
Figure 4.3: A typical scan of the TGZ-02 sample grating taken at a lift height of 300 nm 

and an applied voltage of 3V. The image on the left is height data and the image on the 

right is the electrostatic response of the tip. ...................................................................... 44 



vii 

 

Figure 4.4: Amplitude of vibration of the cantilever (which is proportional to force) when 

above silicon versus cantilever lift height for applied voltage of 1 to 4 Volts. ................. 45 
Figure 4.5: Amplitude of vibration of the cantilever when above silicon dioxide versus 

cantilever lift height for applied voltage of 1 to 4 Volts. .................................................. 45 

Figure 4.6: The ratio response for several voltages versus the lift height of the cantilever.

........................................................................................................................................... 47 
Figure 4.7: This is the subset of the data in Figure 4.6 representing the far response 

asymptotically approaching a ratio of one. The dashed line represents an average 

approach to unity. .............................................................................................................. 47 

Figure 4.8: Force above Si calculated on the tip versus cantilever lift height for applied 

voltage of 1 to 4 Volts. ...................................................................................................... 48 
Figure 4.9: Force above SiO2 calculated on the tip versus cantilever lift height for applied 

voltage of 1 to 4 Volts. ...................................................................................................... 49 

Figure 4.10: The ratio response calculated as a function of lift height ............................ 49 
Figure 4.11: Total force (%) acting on the cantilever found by calculating the Maxwell 

stress tensor over a volume defined by the depth of its deepest point. ............................. 51 
Figure 4.12: Depth of interaction volume versus lift height for a tip above SiO2 and Si. 51 

Figure 4.13: Interaction volume versus lift height for a tip above SiO2 and Si. .............. 51 
Figure 4.14: Response function of the NSC-18 cantilever tip at a lift height of 300 nm 55 
Figure 4.15: Predicted resolution versus lift height ......................................................... 55 

Figure 4.16: Depth of interaction plotted against the relative permittivity of an infinite 

dielectric sheet  430 μm thick resting on a ground plane with a tip-sample separation of 

300 nm. ............................................................................................................................. 56 
Figure 5.1: Left: The schematic representation of the analytical model in COMSOL; 

Middle: The mesh used to solve this model; Right: The voltage plot of the solution. ..... 60 

Figure 5.2: COMSOL solution focused on the voltage near the tip. The vertical line 

represents the region where the comparison was made. ................................................... 61 
Figure 5.3: Comparison of COMSOL results to the analytical model along the vertical 

line crossing the SiO2 layer. .............................................................................................. 62 

Figure 5.4:  Comparison of COMSOL results to the analytical model at the test points 

along the surface of the tip. ............................................................................................... 62 

Figure 5.5:  Left: Schematic depiction of the substitution of point charges with a 

triangular tip shape. Middle: The mesh used to solve this model. Right: The voltage plot 

of the solution. .................................................................................................................. 63 
Figure 5.6:  Left: Schematic depiction of the tip with cantilever. Middle: The mesh used 

to solve the model. Right: The voltage plot of the solution. ............................................. 65 
Figure 5.7:   The four positions of the tip used to determine the nature of the ratio 

inversion. ........................................................................................................................... 66 

Figure 5.8: Far response and near response with and without the cantilever included in 

the model. .......................................................................................................................... 67 

Figure 5.9: A) Schematic view of the tip over the sample surface in the COMSOL 

simulation environment. B) Enlarged view of the tip-sample region as the tip is scanned 

from left to right. ............................................................................................................... 69 
Figure 5.10: Graphical representation of the model fitted to the data sets. The parameters 

include a, b, x0 and τ. ........................................................................................................ 70 
Figure 5.11: The force calculated by COMSOL acting on the tip versus the offset from 



viii 

 

the step edge forms the sparse data while the experimental amplitude of vibration, which 

is proportional to force acting on the tip versus the offset from the step edge forms the 

solid line. The COMSOL data is represented by the left vertical axis and the experimental 

data is represented by the right vertical axis. The relation to the surface profile is shown 

on the lower plot for both COMSOL and the experimental data. ..................................... 71 
Figure 5.12: The Logistic function fit to the experimental data and the COMSOL 

simulated data. .................................................................................................................. 72 
Figure 5.13: Depth of interaction plotted against the offset of the tip from the SiO2 step 

edge. The solid line represents the data fitted to (5.4) and the dashed line represents the 

surface profile. .................................................................................................................. 74 
Figure 5.14: Volume of interaction plotted against the offset of the tip from the SiO2 step 

edge. The solid line represents the data fitted to (5.4) and the dashed line represents the 

surface profile. .................................................................................................................. 74 



1 

 

1 Introduction 

1.1 Evolution of Microscopy 

The optical microscope was first developed during the European Renaissance [1]. The 

magnification factor of the first optical microscopes was extremely poor by today's 

standards but provided a basis for improvement and innovation. In 1873 Ernst Abbe was 

credited for discovering the diffraction limit of optical microscopes while employed by 

Carl Zeiss [2]. This limit implies that there is a maximum resolution that can be achieved 

by traditional optical microscopes in the range of 50 to 100 nm under optimal conditions 

[3]. 

 

In 1928, E. H. Synge published a new idea that formed the basis for the modern scanning 

probe microscopes [3]. In abstract terms, Synge described a method to obtain an image at 

resolutions much smaller than the wavelength of visible light (Synge suggested 10 nm) 

using what is now known as near-field scanning optical microscopy (NSOM). The 

method proposed raster scanning a 10 nm aperture in a section of silver foil held in close 

proximity to the surface of the sample, which would be intensely illuminated from 

behind. An image of the sample could then be collected pixel by pixel and displayed as 

an image using another light source such as a CRT display. Four technical difficulties 

were cited, most interestingly how to position the aperture with respect to the sample 

under study. The first solution involved mechanical actuators that positioned the aperture 

by means of screw adjustments, such as the micromanipulators used on modern 

microscopes. In 1932, Synge published an update to his previous publication in which he 
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suggested that the mechanical actuators could be replaced by three piezoelectric quartz 

crystals (one for each Cartesian axis) so that the position of the aperture would be 

controlled electronically by applying a voltage across each crystal [4]. This approach 

would provide a fast, reliable means of positioning and raster scanning a probe across a 

surface, as employed by a scanning probe microscope. 

 

The viability of this proposal was proved in 1972 when the first NSOM was 

demonstrated using 3 cm microwave radiation [5]. An aperture of 1.5mm was used to 

detect the incident radiation, this was 1/20 of the illuminating wavelength. Aluminum 

grating samples of 1mm, 0.75mm and 0.5mm were prepared on glass slides to provide 

contrast for the microwave radiation and were all clearly resolved despite the diffraction 

limit of 3 cm; a resolution of λ/60. 

 

The first scanning probe microscope was reported in 1981 when the scanning tunnelling 

microscope (STM) was demonstrated [6]. In 1986 Binnig and Rohrer were awarded the 

Nobel Prize in Physics "for their design of the scanning tunnelling microscope" [7]. This 

device combined the raster scanning principal demonstrated by the NSOM with the 

piezoelectric scanning device recommended by Synge in 1932. It coupled a sharp 

conducting tungsten tip to a piezoelectric scanning device used to manoeuvre the tip 

within several nanometres of a conducting surface. When a voltage is applied the 

electrons flow through the vacuum gap (potential barrier), separating the tip from the 

surface, most commonly termed quantum mechanical tunnelling. The tunnelling current 

JT is exponentially dependent on the difference between the work function of the probe 
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and the sample, ψ, as well as the distance between the probe and sample, s [6], 

       
    

 
(1.1) 

where A is a constant that is dependent on the appropriate quasi-free-electron mass. 

Assuming that the work function difference between the tip and surface remains constant 

then the tunnelling current (1.1) depends only on the tip-sample distance. This is the basis 

for topographical detection in STM. The tip is raster scanned across the surface and in 

every sample position the tunnelling current is kept constant by adjusting the height of 

the tip above the surface. The height of the tip above the surface is recorded by measuring 

the relative change in voltage applied to the z-axis piezoelectric positioning actuator from 

one location to another. 

 

The high resolution of the STM is a consequence of the exponential dependence of the 

tunnelling current on the separation, s. For a typical work function difference, a change in 

topology of a few Ångstroms induces a change of up to three orders of magnitude in 

tunnelling current [6]. This, coupled with the ability of the piezoelectric positioning 

device to accurately place the tip within a fraction of a nanometre, allowed for atomic 

resolution imaging. Figure 1.1 shows an STM image of a chiral nanotube with atomic 

resolution; the positions of carbon atoms are clearly visible. 
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Figure 1.1: STM image of an atomically resolved chiral nanotube [8] 

The invention of the STM dramatically improved the ability to inspect the surface of 

conducting and semiconducting materials, however insulating materials could not be 

imaged using this technique. In 1986 Binnig, Quate and Gerber published a paper 

describing an atomic force microscope (AFM) for imaging insulating surfaces [9]. This 

method was inspired by the stylus profilometer where a cantilever with a stylus is 

dragged across the sample surface. The AFM imaged the surface profile by detecting the 

force between the sample and a conductive cantilever with a sharp diamond tip. As the 

deflection of the cantilever is directly proportional to the force acting on it, the force can 

be measured indirectly by detecting the deflection. To detect the deflection an STM tip 

was placed above the cantilever and used as a feedback mechanism to keep the deflection 

on the cantilever constant, thus the topography of the sample could be determined by 

reading the height of the STM piezoelectric positioning device. 

 

The deflection detection technique described by Binnig, Quate and Gerber was not ideal 

and others sought to improve the technique. In 1987 Martin, Williams and 

Wickramasinghe implemented an optical laser heterodyne interferometer to measure the 

deflection of the cantilever [10]. This device focused a laser on the top of the cantilever 

and measured the phase shift of the reflected optical radiation with respect to the 
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originating radiation to produce a measure of the cantilever deflection. A major 

improvement occurred in 1988 when Meyer and Amer published a method of detecting 

the deflection of a cantilever using a simple but effective beam bounce system [11]. This 

system used a tungsten wire electrochemically etched then bent to form a cantilever. A 

small mirror, 300 μm x 300 μm, was attached to the top of the cantilever to reflect the 

laser onto a split photodetector. The split photodetector detected the motion of the 

cantilever by sensing differences in optical illumination of both halves; a value that is 

modulated by the displacement of the cantilever (the split photodetector is discussed 

further in Section 2.3). This system has been widely adopted as a primary means of 

detecting the deflection of a cantilever. Modern Si cantilevers incorporate a reflective 

layer onto which a laser can be focused so the addition of a mirror is unnecessary. 

 

The development of the AFM in 1986 spurred the development of many more scanning 

probe techniques. Of these, this thesis is most concerned with the electrostatic force 

microscope (EFM). In 1988 Martin, Abraham and Wickramasinghe modified an AFM to 

measure the electrostatic forces between a conducting AFM tip and an electrically 

charged sample [12]. This was accomplished by applying a DC voltage across the tip and 

sample and varying their separation. From this experiment the sensitivity to capacitance 

change was estimated to be approximately 4x10
-20

F [12]. Martin et al. found that an AC 

voltage was more convenient to measure the tip-sample capacitance. An AC voltage was 

applied between the tip and the sample and the induced oscillation on the cantilever was 

measured with an optical interferometer. The distance between the tip and sample was 

controlled using a feedback loop that attempted to maintain constant amplitude of 



6 

 

cantilever oscillation. It was estimated that the AC technique could achieve sensitivity to 

changes of capacitance on the order of 8x10
-22

 F [12]. These techniques provided a map 

of electrostatic force which could be mapped to localized voltage or changes of 

capacitance which offer a map of variation in dielectric constant. 

 

In the same year that Martin et al. published their electrostatic imaging technique, Stern, 

Terris, Mamin and Rugar published a technique to deposit and image surface charge on 

insulating surfaces [13]. By adjusting the tip-sample distance, this technique used a 

feedback loop to maintain a constant force-gradient obtained from the vibration 

amplitude of the cantilever. To deposit a surface charge, a 100V, 25ms pulse was applied 

to the cantilever tip. The charge transfer mechanism was speculated to be corona 

discharge from the tip to the surface. With a charge deposited, the tip was then biased 

with respect to the sample and raster scanned across the surface. This technique detected 

three forces: the force due to the electrostatic interaction of the tip and the surface charge, 

the force due to the bias voltage between the tip and the sample and the van der Waals 

force acting between the tip and sample. The electrostatic force due to the surface charge 

was the desired signal; however the contrast of this signal could be enhanced by adjusting 

the bias of the tip to sample voltage. This technique illustrated that the local charge 

mobility of microscopic charges was much faster than the case of macroscopic charges by 

measuring the time required for the microscopic surface charge to dissipate and 

comparing it with the well known time of the macroscopic case. 

 

The limiting factor of techniques that relied on the measurement of electrostatic forces 
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was the bandwidth imposed by the mechanical resonance of the cantilever. The maximum 

frequency that could be measured was limited by the cantilever frequency response [14]. 

A challenge is presented because most signals of interest change with much higher 

frequencies than that of the cantilever. As a solution to this problem, Bridges et al. 

developed a heterodyne EFM technique that allowed for measurement of high speed 

periodic signals [14,15]. This technique mixed a sinusoidal waveform at the resonant 

frequency of the cantilever with a periodic sampling waveform triggered at the same 

frequency as the signal to be detected; the resultant signal was then applied between the 

tip and sample. This gave several components that could be adjusted: the DC offset and 

frequency of the sinusoidal signal as well as the sampling waveform. An option suggested 

was to use a narrow pulse with an adjustable delay τ, as the sampling waveform, VS(t). In 

this case two terms are present in the equation of force at the cantilever resonant 

frequency; one known term containing a multiple of the DC offset of the applied 

sinusoidal waveform and the other a function of the voltage to be measured, VC(x,y,t). By 

nulling the total force at the cantilever resonant frequency reported by a lock-in amplifier 

(the amplitude of vibration at resonance is proportional to the force acting on the 

cantilever), the voltage to be measured VC(x,y,t=τ), could be easily determined. This 

would provide the operator with a voltage measurement at the delay of the sampling 

waveform; to obtain a sample from the entire period of the voltage to be measured, the 

delay was swept from the beginning to the end of the periodic waveform being studied. 

 

The heterodyne EFM technique provided a means to measure high speed changes in 

periodic signals applied to integrated circuits (IC). This was a very useful tool in 
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debugging problems with heavily integrated high speed ICs; it provided a means to 

measure the voltage present at any point on the surface of the IC with high spatial 

resolution. A problem with this technique would occur when a buried interconnect below 

the region of interest interfered with the measurement.  This implies that the voltage 

being measured is not simply a surface phenomenon but the conducting tip on the 

cantilever is interacting with a volume of the sample. This volume is of interest when 

inspecting the dielectric properties of materials on and near the surface of a sample. The 

smaller the surface structures are, the more likely they will not be resolved from the 

substrate material. In this thesis this question will be addressed and an answer presented 

to the question of the volume of interaction. 

 

1.2 Overview 

In this thesis the size of the interaction volume in a sample subject to EFM probing is 

characterized. To this end, a simple dielectric grating sample was selected. The fields due 

to a tip in proximity to this sample were mathematically modelled and compared to the 

experimental results. 

 

In chapter 2 the experimental theory and setup is presented. Background information 

regarding the electric force microscope and the heterodyne electrostatic imaging 

technique is presented along with the experimental setup. The equipment used in the 

experiments detailed in the document consists of a Veeco Nanoscope IIIa and 

Enviroscope controller connecting a workstation PC to the Enviroscope chamber. This 

chamber provided the piezoelectric scanning device and the cantilever deflection 
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detection system along with a sealed environmentally controlled chamber. This 

equipment also includes the frequency mixing devices and the lock-in amplifier used to 

detect the amplitude of vibration of the cantilever at resonance. 

 

In chapter 3 the basis for the electrostatic model used in this thesis is presented. It starts 

by reviewing previous methods of estimating the field around a cantilever and selects the 

equivalent charge method. This method uses the fact that any charge distribution that 

results in the same field distributions are interchangeable. With this in mind the tip can be 

replaced by a series of point charges which is easier to model. The fields from these point 

charges are then calculated when in the presence of dielectric material as defined by the 

sample that is being modelled. 

 

In chapter 4 the data that was captured to verify the model shown in chapter 3 is 

presented. It covers the calibration method used to convert from the cantilever deflection 

signal to the force acting on the cantilever, and general interpretation of the data as well 

as the data collection methods. The experimental data was then compared to the 

analytical model. The model was then used to estimate the lateral resolution of the 

technique as well as the dependence of the depth of the volume of interaction with the 

relative permittivity of the sample dielectric. 

 

In chapter 5 the electrostatic modeling that was done to verify that the model is correctly 

implementing the electrostatic theory is discussed. This section discusses the use of 

COMSOL, a finite element analysis package that allows calculation of the various fields 
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of complex shapes that are not easily modeled. COMSOL was used to calculate the fields 

around a simulated tip and sample as well as determine the cause of discrepancies 

between the analytical model and experimental results. 
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2 Experimental Theory and Setup 

2.1 EFM Background 

The Electrostatic Force Microscope is a non-contact scanning probe technique developed 

from its predecessor, the Atomic Force Microscope, where a conducting tip is used to 

detect the electrical characteristics of a material. This technique uses the standard contact 

mode to determine the topography of the sample; the tip is brought in contact with the 

sample then scanned across the surface. The surface topology information is then used to 

scan the tip a set distance above the surface while a voltage is applied to probe the 

samples dielectric and conductive properties. When the charged tip approaches the 

surface of the test material a force is observed. This force is due to any surface charge 

that may exist as well as the polarization of the dielectric material. 

 

The motion of the cantilever when the probe is not in contact with the surface obeys the 

second order differential equation for forced harmonic oscillation, (2.1) [16], 

ζF+F=kz+
t

z

Q

mω
+

t

z
m 1

0

2

2








 

(2.1) 

where m is the mass of the cantilever, z = z0+ςΩ is the position of the tip above the 

surface, ςΩ is the oscillatory component of the cantilevers position described at resonance 

by Avsin(Ωt+φ1), ω0 is the resonant frequency of the cantilever, Q is the quality factor of 

the system and k is the spring constant. At resonance (Ω=ω0) this equation simplifies to 

(2.2) where k' is the effective spring constant which accounts for the force derivatives 

[16]. 
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ΩΩ F=ζ
Q

ωmω
i+mωk' 








 02  

(2.2) 

Equation (2.2) can be solved for ,Ωζ  which is a function of the amplitude of vibration at 

resonance, Av. At resonance the amplitude of vibration can be approximated by [16]: 

 Ωv F
k

Q
A   

(2.3) 

This shows a linear relationship between the amplitude of vibration at resonance of the 

cantilever and the force acting on the cantilever, which is stable, provided that the quality 

factor and spring constant do not change during operation. The quality factor is defined 

by the damping effects of the environment such as vacuum quality or air density. In the 

experiments described in this thesis, the vacuum quality does slowly drift over time but 

this variation was not sufficiently large to cause a noticeable effect. The spring constant is 

based on physical properties of the cantilever and varies only when in close proximity to 

the surface. Relation (2.3) is useful as a way of calculating the force acting on the tip by 

measuring the amplitude of vibration of the cantilever at its resonant frequency. 

 

2.2 Heterodyne Electrostatic Imaging 

The experimental work performed utilized an imaging technique developed to perform 

measurements of high speed changes of the polarization of dielectric material. The 

change in polarization is typically limited by the mechanical bandwidth of the cantilever. 

This technique allows changes in charge to be measured at much higher frequencies when 

compared with the mechanical resonant frequency of the cantilever. To achieve this, a 

high frequency signal is amplitude modulated at half of the resonant frequency (see the 
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discussion around (2.4)) of the cantilever and then applied to the tip [17]. Depending on 

the application the RF signal may be applied directly to the sample to induce, for 

example, a surface acoustic wave [18].  

 

Figure 2.1: Experimental setup. The cantilever voltage is driven by an applied amplitude modulated signal. 

The change in position of the cantilever is detected using a beam bounce system and sent to a lock-in 

amplifier to be analyzed and recorded by a computer. 

The cantilever is driven by applying an amplitude modulated signal shown schematically 

in Figure 2.1. This signal is designed to drive the cantilever at its resonant frequency as 

well as stimulate the sample at frequencies of interest. The high frequency component is 

chosen arbitrarily and depends on the sample that is to be probed. The low frequency 

component is chosen based on the cantilever being used and is equal to half of its 

resonant frequency. The relation of one half is due to the equation of the force on the tip 

(2.4) [16,17].  

2

2

1
V

z

C
=Fz 












 

(2.4) 

 

This equation shows the force acting on the cantilever in the vertical direction is related 

to the derivative of the capacitance between the tip and sample as well as the square of 
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the voltage signal applied to the tip. As a result, the force acting on the tip that will drive 

the cantilever, is dependent on the square of the applied voltage. The applied voltage can 

be represented as the product of two sinusoidal signals at frequency ωm/2 and ωRF. The 

square of the applied voltage is calculated as shown in (2.5). 

 tωt
ω

=V RF
m cos

2
cos 








 

 
   
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










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











2

2cos1

2

cos1
cos

2
cos

2

2

2 tω+tω+
=tωt

ω
=V RFm

RF
m  

 

(2.5) 

The first term of V
2
 is purely ωm, while the remaining terms are all near the high 

frequency component, ωRF. Note that the low frequency component, ωm, is double the 

applied frequency. This term is directly responsible for stimulating the cantilever at 

resonance and is chosen to match the resonant frequency of the cantilever.  

 

The deflection signal generated by the split photodetector was used as an input to a lock-

in amplifier. The lock-in amplifier provided an output signal that was proportional to the 

amplitude of the deflection signal at the resonant frequency of the cantilever. The second 

harmonic of the modulation frequency (i.e. ωm) was passed to the lock-in amplifier as the 

reference frequency. The output of the lock-in amplifier was then fed into the computer to 

be recorded by the software.  
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The mixer depicted in Figure 2.1 was a Mini-Circuits ZASWA 2-50 high speed switch 

driven at a frequency of ωm/2. This setup essentially amplitude modulates a square wave 

with a sinusoidal signal. The effect of this was the addition of higher order harmonics of 

the low frequency signal and has no effect on the operation of the imaging technique.  

 

2.3 Experimental Setup 

The experimental apparatus used to conduct these experiments was a Vecco di 

EnvroScope connected to a computer with a NanoScope IIIa controller. The EnviroScope 

provides a small chamber in which the sample and tip can be placed under vacuum. This 

chamber houses the deflection sensor and optics and provides a means of changing the 

sample and making electrical connections.  

 

Figure 2.2: Experimental Apparatus consists of a personal computer (A) connected to a Veeco EnviroScope 

controller (B) and a NanoScope IIIa AFM controller (C) connected to a breakout box (D). The controllers 

operate the EnviroScope (E) which is isolated on an air table (F).  

The cantilever used for these experiments required a conductive coating on the contacting 
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side to which the voltage signal can be applied. The tips chosen were the NSC18/Ti-Pt. 

These silicon cantilevers were coated by the manufacturer with 20 nm of titanium 

followed by 10 nm of platinum. The voltage signal was routed though an SMA connector 

on the sidewall of the vacuum chamber then to a cantilever clamp with a conductive path 

to the tip. Once the tip was installed in the EnviroScope the sample was mounted directly 

below the tip.  

 

The TGZ series sample grating, the sample that was selected for this work, was grounded 

with respect to the voltage signal that was applied to the tip. To ensure proper grounding, 

conductive silver epoxy was used to attach the sample grating to a sample stage. This 

stage was then mounted on a conductive magnetic puck that was used to mechanically 

support the sample on the EnviroScope's stage as well as provide a conductive path to 

ground (the housing of the vacuum chamber). 

 

To detect the force acting on the tip, the amplitude of vibration was measured using a 

beam bounce system where a laser is focused on the back of the cantilever and reflected 

back to a split photodetector, represented graphically in Figure 2.3. The photodetector 

measures the optical power incident on its four quadrants, producing signals proportional 

the sum of all quadrants (A+B+C+D), the difference between the top and bottom halves 

(A+B-C-D), and the difference between the left and right halves (A+C-B-D). This allows 

the microscope to measure the vertical and horizontal deflection signals as well as the 

total sum signal which is an indication of how well the laser is aligned with the cantilever 

tip. When the beam is centred on the detector the optical power is equal on all quadrants. 
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When the tip is deflected away from the surface, the beam shifts from the centre position 

toward the top half of the detector. In this case the signal from the activated quadrants 

will become stronger and the signal from the opposing quadrants will weaken, thus 

indicating the beam has shifted and the tip has moved. The output of the photodetector 

system provides the controller with a measure of the deflection of the cantilever in both 

the vertical and horizontal direction and will correspond to the movement of the tip from 

its neutral position. The vertical deflection signal is utilized when the tip is engaged to the 

sample surface. The tip starts above the surface and is moved toward it, before the tip 

makes contact, the vertical deflection signal will remain constant. Once the tip makes 

contact with the surface, the deflection signal will increase due to the bending of the 

cantilever until the desired deflection is reached. At this point the microscope will raster 

the tip across the surface using a control system to maintain the desired deflection by 

adjusting the height of the piezoelectric positioning tube; the surface topology is 

determined by recording the height of the piezo.  

 

Figure 2.3: Beam bounce system used to detect horizontal and vertical deflection using a four quadrant 

split photodetector. 
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The amplitude of oscillation is important in this method because it can be related to the 

force by (2.3). This force reflects the electrostatic attraction between the tip and sample; 

the calculation of which is dependent on the quality factor. Air causes a significant 

damping effect on the cantilever which is mathematically observed in the quality factor, 

Q. In air, the cantilevers used had quality factors on the order of 10
2
. This left a resonant 

peak with a very low signal to noise ratio. To increase the sensitivity of this system it was 

desirable to operate in a vacuum which, as a consequence of removing the damping due 

to air, results in a sharper (narrower) resonant peak. This is typically characterized as an 

increase in the quality factor of the system.. The width of this peak is important as the 

cantilever approaches the sample surface, the resonant frequency will shift with the 

loading of the cantilever due to the van der Waals attractive forces (this issue is the basis 

for tapping mode operation). If the cantilever is not being driven at its resonance 

frequency the lock-in amplifier will not report the correct amplitude of vibration because 

its reference signal is generated from the driving frequency applied to the cantilever. To 

prevent the need for external correction it is desirable to operate with a sufficiently 

narrow resonant peak to provide enough sensitivity, while maintaining a sufficiently wide 

resonant peak that a slight shift in resonant frequency will have a minor effect on the 

output. This is effectively a trade-off between sensitivity and stability. 

 

Figure 2.4 shows a plot of the quality factor versus pressure. This plot was created by 

allowing the pump to reach steady state pressure, around 10
-5

 Torr, closing the vacuum 

valve and allowing the chamber to gradually drift back to atmospheric pressure. At each 



19 

 

pressure in Figure 2.4, spectra representing an average of 50 samples were downloaded 

from the spectrum analyzer. The precision of these measurements, 2 Hz, represented the 

frequency resolution (bin size) setting of the spectrum analyzer. It was found 

experimentally that a quality factor on the order of a few thousand was a desirable 

operating point; a fair trade off between sensitivity and stability. This operating point was 

achieved by using the priming pump and not engaging the turbo pump, after 

approximately 15 minutes the pressure stabilized at approximately 10
-1

 Torr. 

 

Figure 2.4: Quality factor of the cantilever versus the air pressure in the vacuum chamber. The major 

source of error is due to the finite width of frequency bins of the spectrum analyzer. 

To begin a series of sample collections, the sample was arranged such that the troughs of 

the TGZ series grating were parallel to the slow scan axis. This is done to prevent 

discontinuities in the electrostatic scan when the tip crossed the boundary between the 
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sample step and the substrate. These discontinuities can be quite large in comparison to 

the meaningful data and so must be prevented. The tip was then randomly placed above a 

section of the sample that optically appeared to be free of debris. The priming vacuum 

pump was engaged and the chamber pressure stabilized over a period of several minutes. 

Once the vacuum level was near the desired operating point, the tip was engaged as 

described previously.  

 

The TGZ sample gratings have a 3μm period so a contact mode scan was initially 

performed covering a 10 μm square. This was done at a relatively high scan rate of 1-

2Hz. The image created by this initial scan was used to level the sample and obtain a 

perspective on what was in the neighbourhood of the tip when the scan was being 

completed. Once a suitable step was located the scan size was decreased to image only 

the edge of a single step, the slow scan axis was disabled and lift mode was enabled. By 

disabling the slow scan axis, the image created was representative of the average value of 

a single line on the surface of the sample rather than a two dimensional area.  This 

provided statistical relevance to each sample point on the scan line by calculating the 

mean value of the response above the surface. 

 

The decision to image only the edge of a step was made to increase the time spent above 

any data point while in lift mode. The relatively large quality factor required to operate 

provides a compromise; a large quality factor is required to pick the resonant peak out of 

the background noise, however, it causes the cantilever to oscillate with little damping so 

a longer period of time is required to allow the cantilever to settle over every data point 
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captured.  

 

Once the scan process was started, the cantilever's resonant peak from the deflection 

signal was observed using a SR760 FFT spectrum analyzer, sampling the signal at 100 

kHz. If a shift in resonant behaviour of the cantilever was observed then a manual 

adjustment of the driving frequency would be made. This adjustment would ensure that 

the driving frequency always corresponded to one half of the resonant frequency of the 

cantilever, thus providing the lock-in amplifier with an accurate reference. 
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3 Electrostatic Modelling of EFM Setup  

3.1 Introduction 

The purpose of the model introduced in this chapter is to simulate the experimental setup 

and to provide insight into the fields that surround the tip and sample. Specifically, an 

estimate of the volume of test material interacting with the tip is desired. To accomplish 

this, a model is outlined that estimates the total force acting on the cantilever when the tip 

is centred directly above a peak (Figure 3.1 A) and a valley (Figure 3.1 B) on the sample 

grating, TGZ-01, 02 & 03 manufactured by MikroMasch [19]. The comparison between 

experimental data and the model enables estimation of the volume of interaction.  

 

Figure 3.1: TGZ series sample grating used to validate the model. A) Tip centred above SiO2 grating. B) 

Tip centred above Si substrate 

The voltage entirely characterizes a given electrical and geometrical setup and is 

normally found by solving Laplace's Equation. The solution to LaPlace’s Equation will 

yield the voltage at every location in the space surrounding the tip.  In order to find the 

forces associated with a given electrical and geometrical setup the voltage arising from 

the tip must be known. The total force can be derived from the electric field, 

displacement field and the polarization density which can all be derived from this 
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voltage.  

 

The most basic case would be to solve Laplace's Equation with a conducting AFM tip in 

proximity to a grounded planar electrode. At first glance this problem appears straight 

forward but to date there is no general analytic solution despite attempts to estimate it 

[20]. Chung et al. use Legendre Functions of non-integral order to find an exact solution 

of the near field and estimates the far field with that of a tip in contact with the ground 

plane [20]. Patil et al. used the prolate spheroidal coordinate system to approximate the 

tip as a hyperbola, although this technique is only valid when the tip-sample distance is 

on the order of the tip radius [21].  

 

When the tip is within a few tip radii of the conducting surface, the effects of the cone 

can be ignored. In this case, a common practice is to model the tip as a sphere placed 

above the ground plane as is done by Terris et al. [22]. Jeffery used the bispherical 

coordinate system to find an exact solution to the Laplace equation under these 

conditions [23]. An extension of this idea is to use a point charge located above the 

surface to model the sphere [24]. When the point charge is sufficiently far from the 

ground plane, an equipotential surface can be considered roughly spherical. The problem 

with the sphere model is that it only represents a part of the tip and the entire cone should 

be considered for a good estimation of the total force seen by the cantilever.  

 

Hudlet [25] modeled the tip as a cone with a spherical tip then broke down the surface 

into infinitesimal facets. The field due to each facet was assumed to be the same as the 
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field due to two infinite planes with the same orientation as the facets. The total field was 

then found by the superposition of the fields due to each facet. Belaidi et al. reviewed and 

compared a series of analytical models to the equivalent charge model (ECM) [24].  

 

The ECM replaces the tip with a series of point charges on the vertical axis with 

magnitudes such that the surface of the tip is at a constant voltage [24,26,27]. When a 

conducting tip is placed above a ground plane, the method of images enables replacement 

of the ground plane by a series of equal but opposite charges. In this case the voltage at 

any point can be found using [24]: 
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(3.1) 

where Qi is the i
th

 point charge, rm is the point at which the voltage is to be calculated, 

and ri is the location of the i
th

 point charge. Equation (3.1) is used to solve for Qi by 

creating a series of M equations with N unknowns. By selecting M test points on the 

surface of the tip, N charge positions at ri along the z-axis, and V(rm)=V0 for the tip 

voltage, an overdetermined system (M>N) can be created that can be solved using the 

least mean square method of error minimization. With all Qi and ri known, the voltage at 

any point can be found and plotted as shown in Figure 3.2. 
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Figure 3.2: Equipotentials (voltage) found using the ECM. Point charges and test points are marked. 

This method works well but cannot be used without modification to predict the fields 

found in the present study. The TGZ sample grating will cause the fields to deform at the 

interfaces between the two different dielectric materials. Despite this, the ECM was used 

as a basis for the model described in the following sections. 

 

3.2 Field due to a Single Point Charge 

The ECM presented in [24] consisted of an infinite grounded plane with the tip located 

above it and no ability to account for dielectric material. The ECM in [26,27] allowed for 

limited insertion of dielectric material; the tip charges are placed above an infinite 

dielectric sheet that rests on a ground plane.  To model the TGZ series sample gratings 

the silicon substrate, as well as a layer of silicon dioxide, the tip and the ground plane 

must all be considered. The ECM presented in [27] suggests the use of Green's functions 

to model multiple layers of dielectric material and this method was chosen.  
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Figure 3.3: A point charge Q is located at the origin with two dielectric boundaries at z=a and z=b. This 

forms three distinct regions, region 1, 2 & 3. 

Smythe outlined the following procedure in [28]; a point charge of Q is located at the 

origin in proximity to two dielectric boundaries forming three regions with boundaries 

located at z=a and z=b. The geometry is presented graphically in Figure 3.3. To develop 

a solution for the Laplace equation in all three regions, the first case considered was that 

without any dielectric material present. The solution to this case yielded [28]: 
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With the dielectric configuration used, the electric field from a point charge placed at the 

origin in region three caused the molecules of the dielectric material to polarize, which in 

turn created a secondary electric field that summed with the primary electric field in the 

region. This secondary electric field can be modelled by adding a second term to (3.2). It 

should be noted that any function of k can be inserted inside the integral and the result 

will always be a solution to Laplace's Equation because the integral only involves ρ and z 

[28]. This property was used to determine the prototype voltage found in (3.3). 
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Similarly, V2 and V3 can be written [28]: 
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These equations contain four unknown functions of k. To determine the unknowns the 

dielectric boundary conditions were considered. At a dielectric boundary both the voltage 

and the normal components of the electric displacement must be piecewise continuous, 

this is a direct result of Gauss’s Law [26,28,29]. Assuming the absence of bound charge 

at the dielectric boundaries, the four boundary conditions for the present case are: 
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Using these boundary conditions, a series of four equations and four unknowns may be 

assembled that will allow A, B, C & D to be determined. Using these results and (3.7) & 

(3.8), V1, V2 and V3 can be solved as a function of the geometrical and electrical 

parameters. With this knowledge of the voltage, the method of images as well as a shift of 

the coordinate system was used to mirror the model about the z=0 plane as illustrated in 
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Figure 3.4. This caused the z=0, plane to be a contour of zero voltage and model the 

ground plane. The total voltage in Regions 1, 2 & 3 was, therefore, the superposition of 

the voltage due to the charge Q and the image charge -Q. The results of these calculations 

are found in (3.9); a sample calculation of these voltages is shown in Figure 3.5. 
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Figure 3.4: Two equal but opposite point charges are mirrored about the plane z=0. The dielectric 

configuration is also mirrored about this plane. 
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Figure 3.5: Equipotentials (voltages) due to a single point charge about three dielectric regions 

above a ground plane. From top to bottom, εr1=1, εr2=12 & εr3=4. 
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Where the constants in (3.9) are defined by: 
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*a, b & c and εr1, εr2 & εr3 are defined in Figure 3.4. 

 

3.3 Equivalent Charge Model 

With the knowledge of the field due to a single point charge in the presence of dielectric 

sheets, the field of a conical AFM tip may be developed in the presence of these same 

dielectric sheets. To do this, the tip was modelled as a series of point charges distributed 

along the z-axis. To create the equipotential surface, a series of test points located on the 

tip surface and point charges were chosen such that the equipotential surface was 

maintained at V0.  

 

The charge positions had to be chosen arbitrarily but the point of the AFM tip is orders of 

magnitude smaller than the base, so charges were preferentially assigned nearer to the tip 

using the quartic relation of (3.10). 
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In this relation, n is the n
th

 point charge of a total of Nc point charges and t will lie 

between zero and one. The exponent of 4 was chosen arbitrarily to ensure that there were 

many more point charges near the tip than the base. Using this relationship, the Nc points 

along the line defined by (3.11) were found. 
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(3.11) 

This line is defined from 0<t<1, where h is the tip height (20.25μm), r0 is the tip radius 

(10 nm) and z0 is the absolute position of the tip above the ground plane. The r0/10 term 

prevents the point charges from being placed on the surface of the probe, which would 

cause a singularity at that point.  

  

The test positions were calculated using a similar method. Again the quartic relation of 

(3.10) is used to find t (although Nt, the number of test charges, is substituted for Nc). To 

determine the boundary between the spherical and the conical tip surfaces the portion of 

the total length that corresponds to the the length of the spherical surface needs to be 

defined. This point, sw, is where the switch from the spherical distribution formula to the 

conical distribution formula occurs and is defined as (see Figure 3.6): 
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For the points that lie on the spherical part of the tip model, the coordinates were 

calculated using: 
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For the points that lie on the conical part of the tip model, the coordinates were calculated 

using: 
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Using these calculations, the charge positions and the test positions can be found for any 

given set of geometrical parameters. Figure 3.2 shows an example plot with the test 

points and point charge positions marked.  

 

With the charge locations and test points clearly defined, the magnitude of the charges 

was revealed using (3.9a). This equation was solved for V1; since the relation between V1 

and Q is linear, Q is factored out. (3.15) shows this result summed for all point charges.   
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This equation can be written for every i
th

 test point to obtain Nt equation with Nc 

unknowns. Provided that Nt > Nc, this system can be solved for all Q using the least mean 

squares method of error minimization.  
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Figure 3.6: Tip geometry illustrating the switch over point between the conical and spherical 

distributions 

Although the distribution of the point charges and the test points have been determined, 

and from this the value of the point charges as a function of the tip voltage, V0, have been 

calculated there has been no discussion of how to choose Nc and Nt. These values are 

arbitrary but may be chosen based on different reasoning. The number of point charges 

will affect the overall processing time required to find the fields at any given point, a 

process that is required to be repeated several millions of times to obtain any useful data. 

An Intel Core 2 Duo running at 1.8 GHz took approximately 210 μs per point charge to 

calculate the fields at a point. This relation scaled linearly, if the number of point charges 

doubled, the calculation time would double. The number of point charges also affected 

the error. The assumption that the fields due to the tip are equivalent to the fields due to 

the point charges enabled the estimation of the root mean square (RMS) error from the 

voltage difference between the tip voltage at the test points, and was calculated using 

(3.16). 



34 

 

   
t

N

=i

i

t

RMS VrV
N

=E
1

2

01

1
 

(3.16) 

In Figure 3.7, this error has been plotted in the range of 2 to 400 point charges, showing 

that an increased number of point charges asymptotically decreases the RMS error, 

neglecting the available processing power.  For the simulations run Nc=40 was chosen to 

balance processing time and RMS error.  

Point Charges 

 

Figure 3.7: RMS error of the equivalent charge model varies with the number of point charges used to 

model the tip. 
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Test Points 

 

Figure 3.8: RMS error of the equivalent charge model varies with the number of test points used. This plot 

was generated with Nc=40. 

When choosing the number of test points distributed on the tip surface, Nt, it was found 

that many more test points than point charges were desirable as it significantly reduced 

the RMS error. Figure 3.8 shows a plot of the RMS error for 40 point charges as a 

function of increasing test points. It was clear that the number of test points should be 

greater than the number of point charges however, the error approaches its asymptote 

well before Nt=Nc
2
. This may be an excessive number of test points, however this process 

required only a short time compared to the time required to perform post processing 

calculations using the model. For example, on the same computer mentioned above, it 

took approximately 26 seconds to compute the point charges compared with almost 10 

minutes to perform post processing tasks. 

 

3.4 Post Processing  

To validate the model its output was generated and compared to the experimental results. 
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To verify the model, it was decided to use the total force seen by the tip over the silicon 

substrate and the silicon dioxide grating. In order to calculate the total force acting on the 

tip in any given geometry the electrostatic Maxwell stress tensor was used. In the two 

dimensional case, this is defined by [30]: 

ijjiij EδDED=T 
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(3.17) 

The Maxwell stress tensor describes the pressure exerted on a differential surface. Tij is 

the pressure acting parallel to the i
th

 axis on a surface normal to the j
th

 axis. The diagonal 

elements correspond to the pressure acting in the normal direction to the surface and the 

off-diagonal elements correspond to the shear pressures acting in the tangential 

directions.  To calculate the total force acting on a surface we can calculate the surface 

integral of the tensor as in (3.18). 

sa=F n
T d
 

 (3.18) 

(3.18) allows direct calculation of the force acting on the tip with the correct definition of 

an and ds. This technique was also used to calculate the volume of interaction by defining 

the an and ds to correspond to the surface of an equipotential volume in the sample.  

 

To calculate the volume of sample material that was responsible for the total force acting 

on the tip, the equipotential surface that contains the material responsible for the majority 

of the force must be found. To accomplish this, the force is calculated using the Maxwell 

stress tensor at several equipotential surfaces within the material corresponding to 
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different depths. This data was then fitted to the curve found in (3.19). With the fit 

parameters β1, β2 & β3 known the depth, x, corresponding to a fixed value, for example 

90% of the total force, can be found by solving for x.  

 x
ββ=F

β
3

21 1


  (3.19) 

 

 

Figure 3.9: Plot of Force versus Depth for the equation of (3.19) 
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4 Results and Discussion 

4.1 Experimental Data Analysis 

4.1.1 Interpreting the Data 

The output of the lock-in amplifier described in Chapter 2 was sent to the auxiliary 

analog input on the NanoScope IIIa controller. This input was recorded as a separate 

image channel along with height information gathered from the contact portion of the 

scan. To interpret the electrostatic response image recorded in Volts but representing the 

amplitude of vibration of the cantilever in meters, the lock-in settings must be recorded 

for each image and must not change during the capture process. 

 

The relation between voltage from the deflection sensor and the displacement of the 

cantilever is approximately linear and changes with any adjustment of the deflection 

sensor, laser or cantilever and cannot be assumed from a previous setup. The first 

approach to characterizing this relation is a force plot (Figure 4.1). Here, the deflection of 

the cantilever is plotted against the extension of the piezo tube while engaging the tip 

against a hard sample. Prior to making contact with the surface, no deflection is recorded; 

this is seen as the horizontal segment in the force plot, A of Figure 4.1. As the tip 

approaches the surface, attractive van der Waals forces snap the tip into contact causing 

the small bump at point B. As the tip is pressed into the surface it deflects proportionally 

to the distance travelled by the piezo. The slope of this linear segment the the left of B 

(V/m) may be used to calibrate the deflection signal of the cantilever. As the tip is 

retracted, moisture present on the surface holds the tip until it snaps off the surface. The 
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force to disconnect the tip is larger than the van der Waals force and is responsible for 

point C.  

 

Figure 4.1: A force plot created by plotting the displacement of the piezo in the z direction versus the 

voltage representing vertical displacement of the cantilever. This plot was created by engaging the tip into 

the aluminum sample holder. 

The problem with using the force plot to determine the relationship between voltage and 

distance is that it can be a destructive process. The tip may be damaged and the cantilever 

may be broken off the block, so this technique must be left until all measurements have 

been completed in order to safeguard the data collection process. To avoid these 

concerns, a thermal method can be used.  

 

The thermal method assumes that a harmonic oscillator will oscillate due to the thermal 

energy present in the system; therefore the cantilever must be in thermal equilibrium with 

its environment [31]. This assumption cannot be met under vacuum as the heat 

dissipation is only radiative, therefore this procedure must be done in atmospheric 

conditions where there are also conduction and convection currents. Assuming thermal 

equilibrium, the energy associated with the ambient temperature will correspond 

primarily to the fundamental resonance frequency of the cantilever and all other modes 

can be ignored [31].  
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The thermal method equates the energy represented by the area of the resonance peak in 

the spectrum of the displacement signal with the thermal energy present in the 

environment to calculate the relationship between voltage and cantilever displacement, x 

in (4.1). To do this, the spectrum was captured using an SR760 spectrum analyzer 

connected via a serial cable to the computer running a custom downloading application.  

This spectrum is in units of V/√Hz and must be converted to units of Joules per 

'frequency bin' before it can be manipulated. To do this, (4.1) was used, where k is the 

spring constant, f is the width of a single frequency bin in the spectrum and x is the 

relation to be determined.  
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(4.1) 

The relation between cantilever displacement and voltage was initially factored out and 

determined later. A cumulative sum of the scaled spectrum is plotted as in Figure 4.2, to 

determine the energy associated with the resonance peak, ΔE. This energy is due only to 

thermal oscillations and is equal to kBT. The relation between displacement and 

deflection sensor output can now be found using (4.2). 










V

m
x=

Tk

ΔE

B

 
(4.2) 

 



41 

 

 

 

 

Figure 4.2: Cumulative sum of a scaled displacement spectrum. This data was collected using the 

NSC18 cantilever at room temperature and pressure. 

With the relation between deflection amplitude and sensor output known and the spring 

constant, k, obtained from the data sheet, the output of the deflection sensor could then be 

used to measure force using (2.3). For the cantilevers used in these experiments 

(MikroMasch NSC18-Ti-Pt) the spring constant was typically 3.5 ± ~50% [N/m] [32].  

 

The quality factor, Q, and resonant frequency were determined under the normal 

operating conditions. To measure this data, the EnviroScope chamber was pumped down 

to the desired pressure (approximately 10
-1

 as described in Section 2.3) and a 

displacement spectrum was again captured. The resonant frequency and bandwidth of this 

peak represents the resonant frequency and bandwidth of the cantilever while under 

vacuum. 

 

Using the information gathered above, the captured data from the deflection sensor 

output was interpreted to the amplitude of vibration of the cantilever. The first step to 

doing this was to undo the amplification of the original signal due to the lock-in 

amplifier. The voltage signal at the input of the lock-in amplifier is related to its output 
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signal by [33]: 
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Where sensitivity, offset and expand are the settings of the lock-in amplifier that were 

recorded for each captured image. The input signal was found using this relationship and 

then converted to the amplitude of vibration of the cantilever in meters using (4.2). 

 

To calculate the force acting on the tip, (2.3) derived in Chapter 2 was used. It is restated 

here: 

 Ωv F
k

Q
A   

(2.3) 

4.1.2 Data Collection 

Several data sets were collected on three different samples, the TGZ-01, -02 & -03 

manufactured by MikroMasch [34]. These samples are gratings designed to calibrate the 

z-axis of the piezoelectric positioning tube. The grating samples consist of a silicon 

substrate with a silicon dioxide layer grown on the surface to varying thicknesses (TGZ-

01 = 20 nm, TGZ-02 = 100 nm & TGZ-03 = 500 nm) then etched with a square, 3 μm 

periodic pattern. The sample is then protected with a 10nm layer of Si3N4 to prevent 

oxidation of the exposed Si surface. 

 

The grating samples were scanned at the minimum scan rate allowable by the software, 

0.1 Hz. This was necessary to allow sufficient time above each data point for the 
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electrostatic response of the cantilever to stabilize. Above any given location on the 

surface, the cantilever amplitude of vibration changed in response to the local 

electrostatic force applied to it. The rate at which the amplitude of vibration changed is 

dependent on the quality factor of the cantilever which was on the order of 10
3
 to 10

4
. To 

ensure that the cantilever had sufficient time to stabilize, the time constant of the system 

was calculated. The second order differential equation describing the motion of a forced 

harmonic oscillator is [35]: 
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(4.4) 

A solution to (4.4) decays with the factor of e
-t/τ

, where τ=2Q/ω0 [36]. To ensure that the 

cantilever has settled above every given data point, it should remain above it for at least 

3τ; this will enable the cantilever to settle to 95% of its final value. The MikroMasch 

NSC18-Ti-Pt tips used in this experiment have a typical resonant frequency of 75 kHz 

and under low vacuum had a quality factor less than 10
4
 providing a time constant less 

than τ=42.4 [ms] [32]. The total time required per scan line was 16.3 seconds to scan 128 

points across the sample surface allowing 3τ for each point.  

 

The TGZ-02 sample grating was scanned the most extensively. This was done to verify 

the analytical model described in Chapter 3. This sample was scanned with a lift height of 

150 – 500 nm at an interval of 25 nm with an amplitude of applied voltage of 1 – 4V at 

intervals of 1V. The TGZ-01 and TGZ-03 grating samples were scanned at an applied 

voltage of 3 and 4 Volts. 
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Figure 4.3: A typical scan of the TGZ-02 sample grating taken at a lift height of 300 nm and an applied 

voltage of 3V. The image on the left is height data and the image on the right is the electrostatic response of 

the tip. 

Figure 4.3 is a representative set of scan data in which the electrical response appears 

inverted compared to the topographical image. This inversion is due to the lower 

permittivity of the SiO2 as compared to the Si substrate. This inversion was predicted by 

the models presented in [37,38] and experimentally verified. The method outlined in [37] 

used a DC EFM technique to obtain a similar electrostatic response to those seen in 

Figure 4.3, obtained from the use of the heterodyned electrostatic technique discussed in 

Section 2.2. To analyze the scan data in a methodical manor, the data points were divided 

into two groups: the points above silicon and the points above silicon dioxide. This was 

accomplished using the height data; the midpoint of the smooth transition was found and 

10% of the total width was ignored on both sides of the midpoint. The remaining 80% of 

the data points were then split into the two groups representing the electrostatic response 

of the tip over the Si substrate and over the SiO2 steps. The mean and standard deviation 

above Si and SiO2 were then calculated for all applied voltages and plotted versus lift 

height in Figure 4.4 & Figure 4.5. 
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Figure 4.4: Amplitude of vibration of the cantilever (which is proportional to force) when above silicon 

versus cantilever lift height for applied voltage of 1 to 4 Volts. 

 

 

Figure 4.5: Amplitude of vibration of the cantilever when above silicon dioxide versus cantilever lift height 

for applied voltage of 1 to 4 Volts. 
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Figure 4.4 & Figure 4.5, suggest that the force seems to asymptotically approach zero. 

This is as expected; as the tip is withdrawn from the surface toward infinity, the 

polarization of the material decreases causing the force to tend to zero. Further, for every 

applied voltage there is a corresponding lift height that will yield a maximum response 

force, highlighted by the dashed lines through the force maxima in these figures.  This 

maximum force does not occur at the same lift height for the Si and SiO2 samples, so this 

defines an operational range between optimal lift heights when scanning these samples.  

 

The ratio response, defined as the ratio of the force on the tip while above the SiO2 step 

divided by the force on the tip while above the Si substrate, was calculated and plotted in 

Figure 4.6. This plot visually suggests two regimes: the near response and the far 

response.  The near response occurs when the tip is close to the surface and is seen in 

Figure 4.6 as the section before the tails extend toward infinity. In this region the force 

attributed to the SiO2 is greater than that due to the Si, an inversion that likely results 

from the interaction of the conical surface of the tip with the side wall of the SiO2 step. 

This is discussed further in Section 5.3. 

 

The far response is plotted in Figure 4.7 with the near response omitted. This is the 

expected response when considering the permittivity of the material. A small permittivity 

will permit less polarization and hence a smaller force will be seen by the tip, where as a 

large permittivity will permit more polarization causing a larger force to be observed.  
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Figure 4.6: The ratio response for several voltages versus the lift height of the cantilever.  

 

 

Figure 4.7: This is the subset of the data in Figure 4.6 representing the far response asymptotically 

approaching a ratio of one. The dashed line represents an average approach to unity. 

 

4.2 Analytical Data Analysis 

The data collected from the analytical model was used to verify that the model is accurate 

and to predict the volume of interaction. To verify the accuracy of the model, the same 

outputs were generated from the model that was gathered experimentally, specifically the 
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force acting on the tip. 

 

Figure 4.8 & Figure 4.9 shows the plots of the data generated from the analytical model 

described in Chapter 3, it is the analogue of what is shown in Figure 4.4 & Figure 4.5, 

generated from the experimental data. From the comparison of these two data sets it is 

obvious that the analytical model does not account for the behaviour of the tip when in 

the near region. This result would be expected if the experimental data were not 

previously examined. This implies that there is something that the analytical model does 

not take into account that is occurring in the experimental data. Based on the COMSOL 

simulations presented in Chapter 5 it is proposed that the interaction of the tip with the 

side of the SiO2 step was the cause of the inversion in the experimental data seen in 

Figure 4.3. This conclusion was drawn because the numerical simulations show this 

inversion when the tip was 50 nm from the boundary regardless of whether or not the 

cantilever was included in the simulations, whereas this behaviour was not seen when the 

tip was 750 nm away from the boundary (see Figure 5.8 in Chapter 5). 

 

Figure 4.8: Force above Si calculated on the tip versus cantilever lift height for applied voltage of 1 to 4 

Volts. 
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Figure 4.9: Force above SiO2 calculated on the tip versus cantilever lift height for applied voltage of 1 to 4 

Volts. 

 

 

Figure 4.10: The ratio response calculated as a function of lift height 

 

Figure 4.10 shows the ratio response generated from the analytical model, analogous to 

Figure 4.6. The analytical ratio response clearly resembles that obtained from the 

experimental data; however the steepness near the origin is greater. It is speculated that 

this difference is due to the simplification in the analytical model where the SiO2 step is 

replaced with an infinite sheet of SiO2 of the same thickness.  
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The data collected from the analytical model in the far region follows the form of the 

experimental data closely; this provides confidence that the calculated information 

regarding the volume of interaction and resolution is reasonable. To determine the 

volume of interaction, a region of the material was defined below the surface as a contour 

of constant voltage. This contour was very close to a sphere so the radius and centre point 

of a sphere were fitted to the contour; the centre point was always found to be near the tip 

of the probe. The force acting on the material was then found by calculating the Maxwell 

stress tensor over the surface of the intersection of the sphere with the material. To 

determine the volume responsible for the majority of the force acting on the cantilever, an 

iterative 'divide and conquer' process was employed. The two start points corresponded to 

an extremely small volume and an extremely large volume found by selecting a voltage at 

a small depth and a large depth into the surface. These two voltages defined two volumes 

of constant voltage that were used to find the corresponding forces acting on the material. 

The target force must be between the two extreme forces and was found by dividing the 

region between the two points into two sub regions and picking the region that contained 

the force, then iteratively splitting the region until the force was found to within an 

accuracy of 10
-4

 [N].   

 

The target force was chosen to be 90% of the force acting on the cantilever. This decision 

was based on the plot in Figure 4.11; this shows that as the depth of the volume of 

constant voltage is increased, the percent of the total force acting on the cantilever ramps 

up quickly then asymptotically approaches unity. The elbow of the plot was a reasonable 
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choice for a threshold; this point occurs at approximately 90% of the total force. 

 

Figure 4.11: Total force (%) acting on the cantilever found by calculating the Maxwell stress tensor over a 

volume defined by the depth of its deepest point. 

 

 
 

Figure 4.12: Depth of interaction volume versus lift 

height for a tip above SiO2 and Si. 

Figure 4.13: Interaction volume versus lift height for 

a tip above SiO2 and Si. 

The depth and volume of constant voltage was calculated at various lift heights, but is 

independent of applied voltage. The plots in Figure 4.12 & Figure 4.13 predicted that the 

depth and volume is dependent on the material, Si or SiO2. As the lift height was 

increased past approximately 600 nm, the effects of the SiO2 layer became negligible. 

This was due to the thickness of the SiO2 sheet being three orders of magnitude thinner 

than the thickness of the Si substrate; as the tip is lifted above the surface, the fields in the 
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region are determined to a greater extent by the larger structures. Figure 4.12 represents 

the depth into the material from the surface that the contour of constant voltage takes, but 

because this contour is roughly spherical and the distance between the surface and the 

centre of the sphere is much less than the radius of the sphere, the depth also represents 

the lateral resolution of the technique. It suggests that this technique coupled with this 

sample will yield a poor lateral resolution in the range of tens of micrometers. This 

resolution is insufficient even for this micrometer scaled calibration grating sample.  

 

4.2.1 Lateral Resolution 

To show that the resolution found in the previous section is possible, a technique outlined 

by Gomez-Monivas et al. [39] was used to calculate the lateral resolution. This technique 

assumes that the dielectric thickness is small in comparison to a typical field gradient, an 

assumption that is not maintained in this case; this will show a completeness of 

investigation. 

 

The technique outlined here is a perturbative approach to calculating the electric fields 

due to dielectric and topographic inhomogeneities placed on a homogenous substrate. 

(4.5) is the starting point for this method; it relates the homogenous electric field E0, the 

capacitance C0 and the applied voltage V to the electrostatic energy of the homogenous 

case U0 [39] [40]. 
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The electrostatic force of the homogenous case can be determined by finding the gradient 
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of the energy using (4.6).  
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To account for inhomogeneities the change in electrostatic energy is calculated as the 

volume integral of the polarization field P, which is a function of the total field E.  
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As previously mentioned (Section 3.1), the total field E0, in the vicinity of the tip has no 

general analytic solution; Laplace's equation must be solved numerically in order to 

estimate a solution. Using a pertubative approach [40], the total field was replaced with 

the homogenous field and a correction factor that considers the discontinuous boundaries. 

This simplification is based on the assumption that the dielectric thickness is small in 

comparison to a typical field gradient i.e. the tangential electric field is insignificant to 

the end result. 
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(4.8) 

where E0|| is the unpertubated field tangential to the surface. This can be written in terms 

of an equivalent surface profile, Zeff. 

dSEZεΔU eff
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(4.9) 

This profile contains all the information about the changing dielectric permittivity and 

topography. The change in force can then be found by a two dimensional convolution 

between the equivalent surface profile and the response function of the microscope. The 

response function contains information about the specific tip being used as well as the 
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placement of the tip in relation to the sample. It is expressed as: 
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(4.10) 

where S is the surface of the homogenous sample surface. The response function of (4.10) 

is only a function of the homogenous electric field and the geometry of the tip; with this 

function known, the lateral resolution can be calculated. 

 

To calculate the homogenous electric field, the equivalent charge method was used. A Si 

substrate 430 μm thick was placed above an infinite ground plane representing the Si 

substrate of the TGZ sample series. The charges were placed and calculated according to 

the discussion in Chapter 3. The lateral resolution was then calculated from the fields 

found using the ECM by measuring the 3 dB point of the response function, (4.10). A plot 

of this response function is shown in Figure 4.14 with the 3 dB point marked. A 

resolution of 228.4 nm was calculated based on a typical lift height of 300 nm and the 

dimensions of the NSC18 cantilever described in Chapter 2. A plot of resolution versus 

lift height is seen in Figure 4.15; the plot shows a linear relation between lift height and 

resolution. 
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Figure 4.14: Response function of the NSC-18 cantilever tip at a lift height of 300 nm 

 

 

Figure 4.15: Predicted resolution versus lift height 

The resolution determined from this technique was not in agreement with the numbers 

calculated from the analytical model. This is due to the failure of the TGZ sample to 

satisfy the assumption that the dielectric thickness is small in comparison to a typical 

field gradient. This suggests that this technique is best suited for samples of thin films 

formed over a conductive substrate.  

 

4.2.2 Depth versus Relative Permittivity 

Another use for the analytical model is to generate predictions of the depth or resolution 

as a function of the relative permittivity. This will provide insight into what type of 
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samples will provide suitable resolutions. To this end the analytical model was used to 

calculate the depth of interaction when the tip was 300 nm away from an infinite sheet of 

dielectric material 430 μm thick resting on a ground plane. The depth was calculated with 

the relative permittivity ranging from 4 to 1000 and plotted in Figure 4.16. 

 

Figure 4.16: Depth of interaction plotted against the relative permittivity of an infinite dielectric sheet  430 

μm thick resting on a ground plane with a tip-sample separation of 300 nm. 

This plot shows a steep decline until a relative permittivity of ~100 is reached. This 

suggests that for this particular setup, a sample with a relative permittivity of 

approximately 100 will yield the best resolution, and in general the higher the 

permittivity of the material the better the resolution will be. 
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5 Numerical Electrostatic Modelling 

5.1 Introduction to Finite Element Analysis and COMSOL 

Finite element analysis is a numerical method used to find approximate solutions to 

partial differential equations over complex domains for which analytical techniques are 

either unsuited or prohibitively difficult to implement. The main advantage to the finite 

element method over other numerical techniques (such as the finite difference method) is 

that it is possible to vary the degree of accuracy for which different parts of a complex 

model may be solved, ie., with more detail at points of interest to the study and less detail 

elsewhere. This minimizes the computational power required to find a useful solution. 

Using this approach, a solution is estimated by discretizing the domain into mesh 

elements defined by a series of nodes and interpolating the values between the nodes on 

the element surface. To estimate the value at the nodes an expression is developed, that 

when minimized, will yield the desired solution. For the case of solving Laplace's 

equation, the potentials at the nodes are found such that they minimize the potential 

energy in the electric field, W [41].  
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To estimate the values at the nodes, the dependent variable V(x,y), is approximated by a 

linear combination of known basis functions, φi multiplied by the unknown node values vi 

[41,42]. 
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The number of nodes in the mesh, N will always be greater than the number of degrees of 

freedom because some of the nodes are defined by the boundary conditions of the 

problem statement. If there are B nodes defined by boundary conditions, then there are N-

B degrees of freedom remaining to provide an estimate of the solution.  

 

The approximation of (5.2) can then be substituted into the equation to be minimized, W. 

In the case of Laplace's equation, the potential energy is minimized with respect to the 

node voltages vi. This yields N-B equations with N-B unknowns [41].  
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(5.3) 

COMSOL Multiphysics [42] uses this simplistic principal and expands it to apply to a 

multitude of physical problems including heat transfer, structural mechanics and 

electromagnetics. COMSOL can employ several modules to solve complex problems, for 

example the structural dynamics module can be used with the electrostatic module to 

predict the elastic compression and expansion of a cantilever due to an electrostatic force. 

The simulations can be run in 1, 2 & 3 dimensional space as well as 1 & 2 dimensional 

modes that expand to 2 & 3 dimensional space based on rotational symmetry. This 

provided a powerful simulation tool to independently verify the model presented in this 

thesis. 

 

5.2 Verification of Analytic Model 

COMSOL was used to verify the mathematical model presented in Chapter 3, ensuring 

that the field calculations were correct. To this end, a specific geometric arrangement was 
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chosen; a tip voltage of 3 Volts, a lift height of 300 nm and a tip geometry corresponding 

to the NSC18 cantilever probe and the TGZ-02 sample grating (as assumed by the 

analytical model).  

 

To begin simulating the analytical model, a two dimensional electrostatic axial symmetric 

model was selected, consistent with the symmetry assumed by the analytical model. The 

nature of an axial symmetric model suggests that all objects in the model are rotated 

about the vertical axis, therefore a point charge in a two dimensional axial symmetric 

model represents a circular line charge in three dimensions with a total charge of 

Q=q02πr Coulombs, where r is the distance from the axis of rotation and q0 is the charge 

per unit length. If the point charge is located on the vertical axis, then r will be zero, 

therefore the total charge will be zero. To avoid this problem the point charges were 

located 100 pm from the vertical axis. The vertical position and magnitude of the point 

charges were determined from the analytical model and the magnitude of the charge was 

found using the previous relation, q0=Q/2πr, where Q is the charge associated with one of 

the ten point charges used in the model.  

 

Next, three sub-regions were added, one for the air above the sample, one for the SiO2 

sheet and one for the Si substrate (see Figure 5.1). These sub-regions are finite in extent 

(200 μm from the simulated tip) as COMSOL is unable to simulate an infinitely large 

region of space. The size of these regions was chosen to simulate a ground potential at 

infinity without the requirement for unreasonable amounts of memory and processing 

power. The relative permittivities for the three regions were adjusted to be 12, 4 and 1 
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representing Si, SiO2 and air respectively. The boundary conditions were initialized and 

then a mesh made up of 700 thousand mesh elements was created and solved for 1.4 

million degrees of freedom. The solution is plotted in Figure 5.1. 

 

Figure 5.1: Left: The schematic representation of the analytical model in COMSOL; Middle: The mesh 

used to solve this model; Right: The voltage plot of the solution. 

With the COMSOL numerical model solved, point values were compared with the 

analytical model. To this end, two lines were considered; the first was the line along the 

surface of the tip corresponding to the test points outlined in Chapter 3, and the second 

was a 700 nm vertical line, 500 nm from the axis of symmetry centred vertically about 

the SiO2 layer (see Figure 5.2). Each line consisted of 100 points; for the tip surface the 

points were spaced biquadratically and for the vertical line the points were spaced 

linearly.  
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Figure 5.2: COMSOL solution focused on the voltage near the tip. The vertical line represents the region 

where the comparison was made.  

Figure 5.3 shows the plot of voltage versus displacement for the vertical line of 

comparison. From the plot, it is clear that the COMSOL data is nearly the same as the 

analytical data. To obtain a measure of similarity a percentage difference was calculated, 

defined as the absolute difference between the two equivalent values divided by their 

average value. Two values that are the same would have a percentage difference of 0% 

where as a pair of extremely dissimilar values would yield a value greater than 100%. 

The percentage difference was calculated for every point along the vertical line and the 

RMS value was then found to be 2.93%. 

 

Figure 5.4 shows the voltage along the surface of the tip as calculated both by COMSOL 

and the analytical model. The oscillating nature of this plot is due to the limited number 

of point charges. Using many more point charges would reduce this oscillatory behaviour 

significantly. The percentage difference was calculated at every test point along the tip 

surface and the RMS value for this data series was found to be 0.57%.  
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Figure 5.3: Comparison of COMSOL results to the analytical model along the vertical line crossing the 

SiO2 layer. 

 

 

Figure 5.4:  Comparison of COMSOL results to the analytical model at the test points along the surface of 

the tip. 

From these results, it was concluded that the analytical model accurately represented the 

fields present around a series of point charges distributed along the vertical axis. Next, 

the analytical model was compared with a COMSOL simulation where the point charges 
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were replaced with a triangle, representing a conical tip when revolved about the vertical 

axis. This was done to explore how well the point charges approximated the fields around 

the conical tip. The surface of the tip was held at a potential of 3V. The remainder of the 

simulation was unchanged from the previous case (see Figure 5.5).  This simulation was 

compared against the analytical model with 40 point charges, the same number of point 

charges that was used when computing the results of Section 4.2. The COMSOL 

simulation was then meshed with 713 thousand mesh elements and solved for 1.4 million 

degrees of freedom. 

 

To gauge the similarity of the models, the same two lines of comparison were used. The 

RMS value of the percentage difference calculated along the tip surface was 3.86%. The 

RMS value of the percentage difference calculated along the vertical line of comparison 

was found to be 5.94%. 

 

Figure 5.5:  Left: Schematic depiction of the substitution of point charges with a triangular tip shape. 

Middle: The mesh used to solve this model. Right: The voltage plot of the solution.  
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5.3 Determination of Ratio Inversion 

Figure 4.6 of Chapter 4 shows a plot of the ratio response versus lift height for several 

voltages and they all exhibit an unexpected inversion in the near region. To explore the 

cause of this inversion a further COMSOL simulation was undertaken. It was speculated 

that this inversion was due to either the presence of the cantilever or the interaction of the 

tip with the side of the SiO2 step. To test these two hypotheses, a series of COMSOL 

simulations were conducted. The model consisted of a 200 μm cube to represent the Si 

substrate, a 200 μm cube to represent the air and a 1.5 μm x 24 μm x 100 nm block was 

placed on the centre of the Si surface to represent the SiO2 (see Figure 5.6). The SiO2 

block was truncated at 24 μm to reduce the number of mesh elements required to solve 

the problem. The 100 nm dimension restricted the size of mesh elements that COMSOL 

could generate, producing a prohibitively large number of mesh elements. The length of 

24 μm was chosen based on another series of simulation. The force on the tip was 

calculated as the SiO2 step was increased from a 1.5 x 1.5 μm square until the force on 

the tip approached its asymptote. This provided assurance that a 24 μm SiO2 step was 

sufficiently long to preserve the expected behaviour. 

 



65 

 

 

Figure 5.6:  Left: Schematic depiction of the tip with cantilever. Middle: The mesh used to solve the model. 

Right: The voltage plot of the solution.  

Two varieties of probes were used, first a tip without a cantilever was used by adding a 

cone above the SiO2 step while the second type had this same cone with a block added 

above it to represent the cantilever (see Figure 5.6). These two tips were placed above the 

SiO2 step at its centre, 750 nm from its edge and 50 nm from its edge, as well as above 

the Si, 50 nm from the step and 750 nm from the step (see Figure 5.7). A distance of 50 

nm was chosen because it was a round number greater than the distance required to 

prevent contact between the tip and the surface, 36.4 nm, and a distance of 750 nm was 

chosen because it was the midpoint between the two edges of the SiO2 step. These 

positions ensure that the tip will have little chance to interact with the side of the SiO2 

step when it is far from the step and great opportunity to interact with the side when they 

are near without contacting the edge with the side of the tip. These two tips were placed 

from 10 nm to 500 nm above the four positions with a tip voltage of 3V, because the ratio 

response is not dependent on the applied voltage. Each case of the model was then 

meshed with ~10
5
 mesh elements and solved for ~10

6
 degrees of freedom. 

 



66 

 

 

Figure 5.7:   The four positions of the tip used to determine the nature of the ratio inversion.  

Once each model was solved the force was calculated on the tip by integrating the 

Maxwell's stress tensor over the surface of the probe. With these values, the near ratio 

response was calculated by dividing the force above the SiO2 step by the force above Si, 

50 nm from the step edge. The far ratio response was calculated the same way using the 

forces 750 nm from the step edge. This was repeated for both probes, the conical tip with 

and without the cantilever. The results of these simulations are shown in Figure 5.8. 
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Figure 5.8: Far response and near response with and without the cantilever included in the model. 

 

A 

B 

C 

D 
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The data presented in Figure 5.8 is somewhat inconclusive. The scatter in the output from 

COMSOL arises from the low mesh density that was employed to calculate the Maxwell 

stress tensor. Higher mesh densities could be employed in these calculations, however the 

additional time per calculation and computational power required to improve the data 

scatter was not available. The data clearly shows two varieties of response. The first type, 

seen in Figure 5.8A & C, shows the response approaching unity from above whereas the 

second type, seen in Figure 5.8B & D shows the response approaching unity from below. 

This similarity between Figure 5.8A & C and Figure 5.8B & D suggest that the presence 

or absence of the cantilever does not affect the outcome of the calculation. As a 

consequence, it is reasonable to conclude that the inversion of the ratio response seen in 

the experimental data (and not seen in the analytical model) is due to the tip interacting 

with the side wall of the SiO2 step. 

 

5.4 Scan Line over SiO2 Step 

A COMSOL simulation was designed to produce a plot of the force acting on the probe 

versus the position of the tip over the surface by recreating a single scan line of the plot 

found in Figure 4.3. Once the COMSOL model was verified against the experimental 

data, the interaction depth and volume were calculated and compared to the analytical 

model.  

 

The COMSOL model used to generate this information was very similar to the model 

used in the previous section to determine the cause of the ratio inversion. It too was 

composed of a 200 μm cube representing the Si substrate, a 200 μm cube representing the 
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air and a 1.5 μm x 24 μm x 100 nm block representing the SiO2 step. The tip was 

simulated with a cone of the same height and radius as the NSC18 probe (see Figure 

5.9A).  The model was evaluated several times as the tip was scanned across the edge of 

the SiO2 step (see Figure 5.9B). In each tip position the model was meshed to contain on 

the order of 200 thousand mesh elements and solved for approximately 350 thousand 

degrees of freedom. This is a fairly low mesh density for a three dimensional model with 

such a large ratio of dimensions; the result is a noisy solution (as seen in Figure 5.11). 

 

Figure 5.9: A) Schematic view of the tip over the sample surface in the COMSOL simulation environment. 

B) Enlarged view of the tip-sample region as the tip is scanned from left to right. 

To aid in analysis, the noisy data was fitted to a logistic function of the form: 

 
  τ

e+

ab
+a=xf

xx /
1 0




 

(5.4) 

The shape of this model is seen in Figure 5.10; it contains four parameters: a and b are 

initial and final magnitudes, x0 is the midpoint between these two magnitudes and occurs 

at the centre of the transition period, and τ represents the width of this transition period. 

The width of the transition band can be quantified by measuring the transition half width 

at 3τ defined as the horizontal distance between the centre of the transition period to the 

point where the magnitude is 95% of its final value plus 5% of its initial value. At these 

points, the model evaluates to: 
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Figure 5.10:Graphical representation of the model fitted to the data sets. The parameters include a, b, x0 

and τ. 

The data was collected from the COMSOL simulations by integrating the Maxwell stress 

tensor over the surface of the tip to calculate the force acting on the probe in each 

position above the sample. The data seen in Figure 5.11 shows the calculated force with a 

large degree of scatter. This scatter is due to the calculation of the Maxwell stress tensor; 

it is extremely sensitive to mesh density and as previously stated the mesh density for this 

series of computations was relatively low. The simulated force was then compared to the 

amplitude of vibration of the cantilever from the experimental data in Figure 5.11. To 

compare the similarity of the data sets, both the COMSOL data and the experimental data 

were fit to the logistic function (5.4) and plotted (with normalized magnitudes) in Figure 
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5.12. All four parameters of (5.4) were fitted to the two data sets and given in Table 5.1. 

The relatively poor fit coefficient for the COMSOL data reflects the high degree of scatter 

introduced from the calculation of the Maxwell stress tensor. 

 

 

Figure 5.11: The force calculated by COMSOL acting on the tip versus the offset from the step edge forms 

the sparse data while the experimental amplitude of vibration, which is proportional to force acting on the 

tip versus the offset from the step edge forms the solid line. The COMSOL data is represented by the left 

vertical axis and the experimental data is represented by the right vertical axis. The relation to the surface 

profile is shown on the lower plot for both COMSOL and the experimental data. 
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Figure 5.12: The Logistic function fit to the experimental data and the COMSOL simulated data. 

 

 Table 5.1: Fit parameters for the COMSOL simulations and experimental data.  

  a b x0 τ R
2
 coeff.  

 COMSOL 194 pN 206 pN 38.2 nm 24.0 nm 0.583  

 Experimental 7.77 mV 10.52 mV 120.1 nm 22.1 nm 0.972  

 

In the comparison between the two data sets the magnitudes (parameters a and b) are 

ignored as the units of each set are dissimilar. This leaves the width and position of the 

transition period for comparison. It is evident from Figure 5.12 and Table 5.1 that the 

transition widths for both sets of data are fairly similar. The difference of this width will 

be compared using the half width, 3τ (see Figure 5.10). The experimental data has a 

transition half width of 3τ=66.33 nm and the COMSOL data set has a transition half width 

of 3τ=72.0 nm. These values have a percentage difference (absolute difference divided by 
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average value) of 8.2% or quite similar. 

 

The position of the transition period is expected to be at x=0 if the discontinuity was only 

due to dielectric change as opposed to surface displacement as well. The discontinuity 

has been shifted to the positive end, away from the edge of the dielectric step. The 

COMSOL data was shifted by x0=38.2 nm where as the experimental data was shifted by 

x0=120.1 nm. 

 

Because the experimental data and COMSOL simulation showed good agreement, 

information regarding the depth and volume of interaction was extracted from the 

COMSOL simulation. Figure 5.13 & Figure 5.14 show the depth and volume of 

interaction plotted against the offset of the tip from the edge of the SiO2 step with a plot 

of the data fitted to (5.4). The analytical model in Chapter 4 (see Figure 4.12) predicted 

that the expected depth of interaction when above SiO2 was 10.46 μm and when above Si 

was 10.39 μm. The plot of Figure 5.13 shows similar behaviour but suggests that the 

median depth of interaction above SiO2 was 8.61 μm and the median depth above Si was 

6.94 μm. This difference was due to two sources of error: first the noise associated with 

the meshing process in the finite element analysis (especially the calculation of the 

Maxwell stress tensor as it is very dependent on mesh size), and second, the 

simplification of the analytical model where the SiO2 step was replaced by an infinite 

sheet of constant thickness. 
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Figure 5.13:Depth of interaction plotted against the offset of the tip from the SiO2 step edge. The solid line 

represents the data fitted to (5.4) and the dashed line represents the surface profile. 

 

 

Figure 5.14:Volume of interaction plotted against the offset of the tip from the SiO2 step edge. The solid line 

represents the data fitted to (5.4) and the dashed line represents the surface profile. 
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6 Conclusions 

Chapter 3 outlines an electrostatic model that was used to predict the fields around an 

EFM tip and a TGZ series grating sample. The model makes use of the equivalent charge 

model to replace the complex surface of the tip with a series of point charges placed on 

the vertical axis. Within the model, the TGZ sample grating is represented by an infinite 

sheet of Si, 430 μm thick, resting on a ground plane with a 100 nm infinite sheet of SiO2 

resting on its surface. These simplifications allow the calculation of the force acting on 

the tip, the spatial resolution of the imaging probes and the volume of sample material 

that is interacting with the tip.  

 

The model was implemented as defined within MATLAB and verified against a finite 

element simulation. The model and the FEM simulations are in good agreement. The 

RMS percentage difference between the analytical model and the FEM simulation was 

0.57% on the surface of the tip and 2.93% along a line of comparison 500 nm from the 

axis of symmetry. These results demonstrate good agreement between the analytical 

model and the fields predicted by electrostatic theory due to localized point charges. Next 

the model was compared with an FEM simulation of a conical conducting tip above a 

simulated sample surface. The RMS percentage difference between the analytical model 

and the FEM simulation was calculated as 3.86% along the surface of the tip and 5.94% 

along the line of comparison. These values are slightly larger than the previous case 

because the simulations are not modelling exactly the same setup. In the first case, a 

series of point charges was being compared to a series of point charges but in the second 
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case, a series of point charges was being compared to a solid conical tip. As such a 5% 

difference is acceptable.  

 

With the model accurately predicting the fields around the tip and sample, it was then 

programmed to simulate the experimental setup. The TGZ-02 sample was modelled and 

the force acting on the tip under various lift heights and applied voltages was then 

calculated. The shape of the force plots above Si and above SiO2 (see Figure 4.8 & Figure 

4.9) was compared with the shape of the plot of amplitude of vibration obtained from the 

cantilever during the experimental work. This comparison found some differences in the 

behaviour of the experimental and analytical results but generally predicted the same 

shape that was observed in the experimental work. 

 

The major difference between the experimental and analytical data was found in the ratio 

of the response, (force), i.e. the ratio of the force above the SiO2 step and the force above 

the Si substrate. The experimental data showed an inversion in this ratio when the tip was 

near the surface but this inversion was not seen in the analytical model. It was suggested 

(Section 5.3) that this inversion was due to additional electrostatic interactions between 

the side wall of the SiO2 step and the edge of the tip. The analytical model could not 

predict these forces because it replaced the SiO2 step with an infinite sheet of the same 

thickness so there was no side wall present.  

 

As the analytical model produced similar results to the experimental data, it was used to 

extract an estimation of the volume of interaction and the spatial resolution of the 



77 

 

technique. Figure 4.12 & Figure 4.13 presented plots of interaction depth and volume. 

These plots show us that at a lift height of 300 nm the depth of interaction (which 

provides an estimate of the lateral resolution as well) was on the order of 10 μm and the 

volume of interaction was on the order of 6000 μm
3
. A lateral resolution of 10 μm is quite 

poor and could account for the soft sloping electrostatic response found in Figure 4.3. 

The model was also used to predict the variation of depth or resolution with permittivity. 

The model suggested that a low permittivity was detrimental to resolution; a relative 

permittivity of 4 (as SiO2) would increase the minimum resolution from approximately 

10 μm to 14 μm. An increase in relative permittivity from 12 to 100 had the effect of 

lowering the resolution from 10 μm to approximately 9 μm and an increase in relative 

permittivity from 100 to 1000 had very little effect on the resolution.  

 

With the insight gained from the application of the analytical model described in this 

document an important piece of knowledge was gained: this EFM technique works best 

with thin coverage over a conducting ground plane as the resolution increases with 

decreasing thickness. This has implications for sample choice and preparation; thin film 

samples on the order of hundreds of nanometres thick will provide the best spatial 

resolution. 

 

6.1 Future Work 

To improve upon the work presented in this thesis, the most important place for 

improvement is the electrostatic model presented in chapter 3. A major simplification was 

made to aid in the development of the model. This simplification was the substitution of 
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an SiO2 step on top of an Si substrate with an infinite sheet of Si representing the 

substrate and an infinite sheet of SiO2 representing the step. This simplification enabled 

the use of the equivalent charge method which requires rotation symmetry. A logical 

improvement would be to find a method to model the step while still predicting the fields 

of the tip with reasonable accuracy.   

 

Another area of improvement is the equivalent charge method. The charge required to 

build the fields in the vicinity of the tip-material interface does not ensure the fields 

surrounding the tip in the vicinity of the cantilever are correct. This was not possible 

using the ECM, instead the ECM had a larger than normal field in the region above the 

tip and may have skewed the data by decreasing the force acting on the tip. 

 

A final area of improvement would be to enable time dependent modeling of the dynamic 

heterodyned technique. This model has assumed a worst case deflection approach instead 

of modeling the dynamic behaviour of the cantilever under forced oscillation. This may 

improve the consistency of the model with the experimental data. 

 

With these improvements the electrostatic model would be able to produce scan lines that 

show the deflection of the cantilever as it is traced across the surface of the simulated 

sample as well as provide a better estimate of the experimental technique. 
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